
Related	Documentation
Some	NI-IMAQ	and	NI	Vision	manuals	are	available	as	PDFs.	You	must
have	Adobe	Reader	with	Search	and	Accessibility	5.0.5	or	later	installed
to	view	the	PDFs.	Refer	to	the	Adobe	Systems	Incorporated	Web	site	at
www.adobe.com	to	download	Adobe	Reader.	Refer	to	the	National
Instruments	Product	Manuals	Library	at	ni.com/manuals	for	updated
documentation	resources.
The	following	documents	contain	information	that	you	may	find	helpful	as
you	use	this	help	file:

NI	Vision	Acquisition	Software	Release	Notes—Contains
information	about	new	functionality,	minimum	system
requirements,	and	installation	instructions	for	NI-IMAQ	driver
software.
Measurement	&	Automation	Explorer	for	NI-IMAQ—Explains	how
to	configure	NI-IMAQ,	an	image	acquisition	device,	and	a	camera
using	Measurement	&	Automation	Explorer	(MAX).
NI-IMAQ	Function	Reference	Help—Contains	reference
information	about	the	LabWindows/CVI	functions	for	NI-IMAQ
driver	software.
NI-IMAQ	VI	Reference	Help—Contains	reference	information
about	the	LabVIEW	palettes	and	VIs	for	NI-IMAQ	driver	software.
NI	Developer	Zone—For	more	information	about	developing	your
image	acquisition	application,	visit	the	NI	Developer	Zone	at
ni.com/zone.	NI	Developer	Zone	contains	example	programs,
tutorials,	technical	presentations,	the	Instrument	Driver	Network,	a
measurement	glossary,	an	online	magazine,	and	a	product	advisor,
as	well	as	a	community	area	where	you	can	share	ideas,
questions,	and	source	code	with	developers	around	the	world.

javascript:WWW(WWW_Adobe)
javascript:WWW(WWW_Manuals)
javascript:WWW(WWW_Zone)


Using	Help
Conventions
Navigating	Help
Searching	Help
Printing	Help	File	Topics



Conventions
This	help	file	uses	the	following	conventions:

<	> Angle	brackets	that	contain	numbers	separated	by	an	ellipsis
represent	a	range	of	values	associated	with	a	bit	or	signal
name—for	example,	AO	<0..3>.

» The	»	symbol	leads	you	through	nested	menu	items	and
dialog	box	options	to	a	final	action.	The	sequence	File»Page
Setup»Options	directs	you	to	pull	down	the	File	menu,
select	the	Page	Setup	item,	and	select	Options	from	the	last
dialog	box.
This	icon	denotes	a	tip,	which	alerts	you	to	advisory
information.
This	icon	denotes	a	note,	which	alerts	you	to	important
information.

bold Bold	text	denotes	items	that	you	must	select	or	click	in	the
software,	such	as	menu	items	and	dialog	box	options.	Bold
text	also	denotes	parameter	names.

green Underlined	text	in	this	color	denotes	a	link	to	a	help	topic,
help	file,	or	Web	address.

italic Italic	text	denotes	variables,	emphasis,	cross	references,	or
an	introduction	to	a	key	concept.	Italic	text	also	denotes	text
that	is	a	placeholder	for	a	word	or	value	that	you	must
supply.

monospace Text	in	this	font	denotes	text	or	characters	that	you	should
enter	from	the	keyboard,	sections	of	code,	programming
examples,	and	syntax	examples.	This	font	is	also	used	for
the	proper	names	of	disk	drives,	paths,	directories,
programs,	subprograms,	subroutines,	device	names,
functions,	operations,	variables,	filenames,	and	extensions.



Navigating	Help	(Windows	Only)
To	navigate	this	help	file,	use	the	Contents,	Index,	and	Search	tabs	to
the	left	of	this	window	or	use	the	following	toolbar	buttons	located	above
the	tabs:

Hide—Hides	the	navigation	pane	from	view.
Locate—Locates	the	currently	displayed	topic	in	the	Contents	tab,
allowing	you	to	view	related	topics.
Back—Displays	the	previously	viewed	topic.
Forward—Displays	the	topic	you	viewed	before	clicking	the	Back
button.
Options—Displays	a	list	of	commands	and	viewing	options	for	the
help	file.



Searching	Help	(Windows	Only)
Use	the	Search	tab	to	the	left	of	this	window	to	locate	content	in	this	help
file.	If	you	want	to	search	for	words	in	a	certain	order,	such	as	"related
documentation,"	add	quotation	marks	around	the	search	words	as	shown
in	the	example.	Searching	for	terms	on	the	Search	tab	allows	you	to
quickly	locate	specific	information	and	information	in	topics	that	are	not
included	on	the	Contents	tab.



Wildcards
You	also	can	search	using	asterisk	(*)	or	question	mark	(?)	wildcards.
Use	the	asterisk	wildcard	to	return	topics	that	contain	a	certain	string.	For
example,	a	search	for	"prog*"	lists	topics	that	contain	the	words
"program,"	"programmatically,"	"progress,"	and	so	on.
Use	the	question	mark	wildcard	as	a	substitute	for	a	single	character	in	a
search	term.	For	example,	"?ext"	lists	topics	that	contain	the	words
"next,"	"text,"	and	so	on.

Note		Wildcard	searching	will	not	work	on	Simplified	Chinese,
Traditional	Chinese,	Japanese,	and	Korean	systems.



Nested	Expressions
Use	nested	expressions	to	combine	searches	to	further	refine	a	search.
You	can	use	Boolean	expressions	and	wildcards	in	a	nested	expression.
For	example,	"example	AND	(program	OR	VI)"	lists	topics	that	contain
"example	program"	or	"example	VI."	You	cannot	nest	expressions	more
than	five	levels.



Boolean	Expressions
Click	the	 	button	to	add	Boolean	expressions	to	a	search.	The	following
Boolean	operators	are	available:

AND	(default)—Returns	topics	that	contain	both	search	terms.	You
do	not	need	to	specify	this	operator	unless	you	are	using	nested
expressions.
OR—Returns	topics	that	contain	either	the	first	or	second	term.
NOT—Returns	topics	that	contain	the	first	term	without	the	second
term.
NEAR—Returns	topics	that	contain	both	terms	within	eight	words
of	each	other.



Search	Options

Use	the	following	checkboxes	on	the	Search	tab	to	customize	a	search:
Search	previous	results—Narrows	the	results	from	a	search	that
returned	too	many	topics.	You	must	remove	the	checkmark	from
this	checkbox	to	search	all	topics.
Match	similar	words—Broadens	a	search	to	return	topics	that
contain	words	similar	to	the	search	terms.	For	example,	a	search
for	"program"	lists	topics	that	include	the	words	"programs,"
"programming,"	and	so	on.
Search	titles	only—Searches	only	in	the	titles	of	topics.



Printing	Help	File	Topics	(Windows	Only)
Complete	the	following	steps	to	print	an	entire	book	from	the	Contents
tab:

1.	 Right-click	the	book.
2.	 Select	Print	from	the	shortcut	menu	to	display	the	Print	Topics

dialog	box.
3.	 Select	the	Print	the	selected	heading	and	all	subtopics	option.

Note		Select	Print	the	selected	topic	if	you	want	to	print
the	single	topic	you	have	selected	in	the	Contents	tab.

4.	 Click	the	OK	button.



Printing	PDF	Documents
This	help	file	may	contain	links	to	PDF	documents.	To	print	PDF
documents,	click	the	print	button	located	on	the	Adobe	Acrobat	Viewer
toolbar.



Imaging	Fundamentals
This	section	contains	information	about	the	nomenclature	and	concepts
related	to	image	acquisition	and	machine	vision	applications.
Digital	Images
Cameras
Color	Basics
Quadrature	Encoders



Digital	Images
This	section	contains	information	about	the	definition	and	properties	of
digital	images,	image	types,	and	file	formats.
Definition	of	a	Digital	Image
Properties	of	a	Digital	Image
Image	Files



Definition	of	a	Digital	Image
An	image	is	a	two-dimensional	array	of	values	representing	light	intensity.
For	the	purposes	of	image	processing,	the	term	image	refers	to	a	digital
image.	An	image	is	a	function	of	the	light	intensity
f(x,	y)

where	f	is	the	brightness	of	the	point	(x,	y)	and	x	and	y	represent	the
spatial	coordinates	of	a	picture	element	(abbreviated	pixel).
By	convention,	the	spatial	reference	of	the	pixel	with	the	coordinates	(0,0)
is	located	at	the	top,	left	corner	of	the	image.	Notice	in	the	following
image	that	the	value	of	x	increases	moving	from	left	to	right,	and	the
value	of	y	increases	from	top	to	bottom.

In	digital	image	processing,	an	imaging	sensor	converts	an	image	into	a
discrete	number	of	pixels.	The	imaging	sensor	assigns	each	pixel	a
numeric	location	and	a	gray	level	or	color	value	that	specifies	the
brightness	or	color	of	the	pixel.



Properties	of	a	Digital	Image
A	digitalized	image	has	three	basic	properties:	resolution,	definition,	and
number	of	planes.



Spatial	Resolution
The	spatial	resolution	of	an	image	is	its	number	of	rows	and	columns	of
pixels.



Image	Definition
The	definition	of	an	image	indicates	the	number	of	shades	that	you	can
see	in	an	image.	The	bit	depth	of	an	image	is	the	number	of	bits	used	to
encode	the	value	of	a	pixel.	For	a	given	bit	depth	of	n,	the	image	has	an
image	definition	of	2n,	meaning	a	pixel	can	have	2n	different	values.	For
example,	for	a	bit	depth	of	8	bits,	a	pixel	can	take	256	different	values
ranging	from	0	to	255.	For	a	bit	depth	of	16	bits,	a	pixel	can	take	65,536
different	values	ranging	from	0	to	65,535	or	from	-32,768	to	32,767.
The	manner	in	which	you	encode	your	image	depends	on	the	nature	of
the	image	acquisition	device,	the	type	of	image	processing	you	need	to
use,	and	the	type	of	analysis	you	need	to	perform.	For	example,	8-bit
encoding	is	sufficient	if	you	need	to	obtain	the	shape	information	of
objects	in	an	image.	However,	if	you	need	to	precisely	measure	the	light
intensity	of	an	image	or	region	in	an	image,	you	should	use	16-bit	or
floating-point	encoding.
Use	color	encoded	images	when	your	machine	vision	or	image
processing	application	depends	on	the	color	content	of	the	objects	you
are	inspecting	or	analyzing.



Number	of	Planes
The	number	of	planes	in	an	image	corresponds	to	the	number	of	arrays
of	pixels	that	compose	the	image.	A	grayscale	or	pseudo-color	image	is
composed	of	one	plane.	A	true-color	image	is	composed	of	three	planes
—one	each	for	the	red	component,	green	component,	and	blue
component.
In	true-color	images,	the	color	component	intensities	of	a	pixel	are	coded
into	three	different	values.	The	color	image	is	the	combination	of	three
arrays	of	pixels	corresponding	to	the	red,	green,	and	blue	components	in
an	RGB	image.	HSL	images	are	defined	by	their	hue,	saturation,	and
luminance	values.	Refer	to	Color	Basics	for	more	information	about	color
images	and	when	they	are	used.



Image	Files
An	image	file	is	composed	of	a	header	followed	by	pixel	values.
Depending	on	the	file	format,	the	header	contains	image	information
about	the	horizontal	and	vertical	resolution,	pixel	definition,	and	the
original	palette.	Image	files	may	also	store	information	about	calibration,
pattern	matching	templates,	and	overlays.	The	following	are	common
image	file	formats:

Bitmap	(BMP)
Tagged	image	file	format	(TIFF)
Portable	network	graphics	(PNG)—Offers	the	capability	of	storing
image	information	about	spatial	calibration,	pattern	matching
templates,	and	overlays
Joint	Photographic	Experts	Group	format	(JPEG)
National	Instruments	internal	image	file	format	(AIPD)—Used	for
saving	floating-point,	complex,	and	HSL	images

Standard	formats	for	8-bit	grayscale	and	RGB	color	images	are	BMP,
TIFF,	PNG,	JPEG,	and	AIPD.	Standard	formats	for	16-bit	grayscale	and
complex	images	are	PNG	and	AIPD.



Cameras
There	are	many	different	types	of	cameras	available	for	your	image
acquisition	applications.	You	should	use	the	parameters	of	your
application	to	decide	which	type	of	camera	system	is	appropriate	for	your
needs.
The	National	Instruments	Industrial	Camera	Advisor	at	ni.com/zone	offers
a	one-stop	Web	resource	for	selecting	an	imaging	camera.	This	virtual
catalog	provides	features	and	specifications	for	more	that	150	cameras
so	that	you	can	compare	cameras	by	category	(such	as	analog,	digital,
line	scan,	area	scan,	or	progressive	scan),	by	feature,	or	by
manufacturer.
The	following	sections	provide	information	about	cameras:
Area	Scan	vs.	Line	Scan
Analog
Digital

javascript:WWW(WWW_Camera)


Area	Scan	vs.	Line	Scan
Cameras	use	different	methods	of	acquiring	the	pixels	of	an	image.	Two
commonly	used	methods	are	area	scan	and	line	scan.	An	area	scan
camera	acquires	an	area	of	pixels	at	a	time	until	the	entire	image	is
acquired.	Most	applications	use	this	type	of	camera.	A	line	scan	camera
scans	only	one	line	of	pixels	at	a	time,	providing	faster	acquisition.
However,	the	lines	must	be	fit	together	by	your	acquisition	hardware	and
software	to	create	a	whole	image.	Line	scan	cameras	are	useful	in	web
inspection	applications	during	which	the	object	under	inspection	moves
along	a	conveyor	or	stage	in	a	production	system.	Line	scan	cameras	are
also	useful	in	high-resolution	applications	because	you	can	arbitrarily
lengthen	the	image	by	fitting	a	specified	number	of	lines	together.



Analog	Cameras
Analog	cameras	output	a	video	signal	in	an	analog	format.	The	horizontal
sync	(HSYNC)	pulse	identifies	the	beginning	of	each	line;	multiple	lines
make	up	a	field.	An	additional	pulse,	called	the	vertical	sync	(VSYNC),
identifies	the	beginning	of	a	field.	For	most	traditional	analog	cameras,
the	odd	and	even	fields	are	interlaced	to	increase	the	perceived	image
update	rate.	Two	fields	make	up	one	frame.	Some	higher-end	cameras
expose	the	entire	image	at	once.	The	following	figure	illustrates	the
analog	output	of	a	video	signal.

1		HSYNC	Signal		 3		Video	Data		
2		Black	Level		 4		Single	Line	Scan		

The	black	level	is	a	reference	voltage	for	measuring	pixel	intensities.	Low
voltages	typically	indicate	darker	pixels,	while	higher	voltages	result	in
lighter	pixels.



Standard	Analog	Video	Formats
The	following	table	describes	the	standard	video	formats	used	by	analog
imaging	cameras.	These	formats	vary	in	image	size,	color	availability,
and	frame	rate.	Most	analog	cameras	adhere	to	one	of	these	four
formats.

Format Country Frames	per	Second Color Image	Size
RS-170 USA,	Japan 30 No 640	×	480
NTSC USA,	Japan 30 Yes 640	×	480
CCIR Europe 25 No 768	×	576
PAL Europe 25 Yes 768	×	576



Digital	Cameras
Digital	cameras	use	three	types	of	signals—data	lines,	a	pixel	clock,	and
enable	lines.	Data	lines	are	parallel	wires	that	carry	digital	signals
corresponding	to	pixel	values.	Monochrome	digital	cameras	typically
represent	pixels	with	8,	10,	12,	or	14	bits.	Color	digital	cameras	typically
use	up	to	8	or	10	bits	per	color	for	each	pixel.	Depending	on	your
camera,	you	may	have	as	many	as	30	data	lines,	or	wires,	representing
one	pixel.	The	number	of	data	lines	per	pixel	determines	bit	depth.
The	pixel	clock	is	a	high-frequency	pulse	train	that	indicates	when	the
data	lines	contain	valid	data.	On	the	active	edge	of	the	pixel	clock—which
can	be	either	the	rising	edge	or	the	falling	edge,	depending	on	the
camera—the	value	of	the	digital	lines	is	input	into	your	image	acquisition
device.	The	pixel	clock	frequency	determines	the	rate	that	pixels	are
acquired.
Enable	lines	indicate	when	data	lines	contain	valid	data.	The	Line	Valid
signal	in	digital	cameras	provides	the	same	type	of	information	about
where	each	line	is	located	as	the	HSYNC	signal	provides	for	analog
cameras.	In	digital	cameras,	the	Line	Valid	signal	is	usually	active	for	the
entire	duration	of	the	line,	rather	than	indicating	only	the	start	of	the	line.
At	the	end	of	that	row,	the	Line	Valid	signal	goes	inactive	until	the	next
row	of	pixels	begins.	The	Frame	Valid	signal	in	digital	cameras	provides
the	same	type	information	about	where	each	line	is	located	as	the
VSYNC	signal	provides	for	analog	cameras.	In	digital	cameras,	the
Frame	Valid	signal	is	active	during	the	acquisition	of	an	entire	frame.	At
the	end	of	that	frame,	the	Frame	Valid	signal	goes	inactive	until	the
beginning	of	the	next	frame.
Digital	line	scan	cameras	consist	of	a	single	row	of	pixel	elements	and
require	only	a	Line	Valid	timing	signal.	Area	scan	cameras	provide	both
the	Line	Valid	and	Frame	Valid	signals.



Taps
Increasing	the	speed	of	the	digital	camera	pixel	clock	or	acquiring	more
than	one	pixel	at	a	time	can	greatly	improve	camera	acquisition	speed.	A
tap	is	a	group	of	data	lines	that	together	carry	one	pixel.	A	camera	that
latches	only	one	pixel	during	the	active	edge	of	the	pixel	clock	is	known
as	a	single	tap	camera.	Other	cameras	have	multiple	pixels	on	separate
data	lines	that	are	all	available	during	the	active	edge	of	the	pixel	clock.
These	multi-tap	cameras	are	available	with	as	many	as	10	taps.
Cameras	with	multiple	taps	require	more	data	lines	but	provide	faster
data	transfer.



Camera	Files
Because	digital	cameras	vary	in	specifications	such	as	speed,	image
size,	pixel	depth,	number	of	taps,	and	modes,	NI-IMAQ	requires	a
camera	file	specific	to	your	camera	to	define	all	of	these	values	in	order
to	use	that	camera	with	your	image	acquisition	device.	You	can	find	a	list
of	camera	files	that	have	been	tested	and	approved	by	National
Instruments	online	at	the	National	Instruments	Industrial	Camera	Advisor
at	ni.com/zone.	You	also	can	create	your	own	camera	files	using	the	NI
Camera	File	Generator,	which	you	can	download	from	the	National
Instruments	Machine	Vision	Web	site	at	ni.com/vision.

javascript:WWW(WWW_Camera)
javascript:WWW(WWW_Vision)


Types	of	Digital	Cameras
There	are	three	main	types	of	digital	cameras:	parallel,	Camera	Link,	and
IEEE	1394.
Parallel
Many	older	or	specialized	digital	cameras	use	a	parallel	interface	that
provides	a	wide	range	of	acquisition	speeds,	image	sizes,	and	pixel
depths.	Parallel	cameras	often	require	users	to	customize	their	cables
and	connectors	to	suit	their	image	acquisition	device.
Camera	Link
The	Camera	Link	standard	was	developed	to	ease	the	challenges	of	the
custom	cable	interface	between	parallel	digital	cameras	and	image
acquisition	devices.	National	Instruments,	as	part	of	the	Camera	Link
Standards	Committee	consisting	of	camera	and	frame	grabber
manufacturers,	developed	this	standard	to	offer	speed	and	triggering
functionality	with	the	ease	of	standardized	cabling.	This	standard	allows
for	high-speed	image	capture.
IEEE	1394
The	IEEE	1394	standard	offers	a	simple	daisy	chain	cabling	system	with
a	standard	interface.	IEEE	1394,	however,	lacks	the	data	throughput
capabilities	of	the	parallel	and	Camera	Link	interfaces.	IEEE	1394	also
lacks	trigger	synchronization	capabilities.
The	following	table	describes	the	advantages	and	disadvantages	of	the
three	main	digital	interface	standards.

Interface Advantages Disadvantages
Parallel
standard

High	Speed Bulky	cabling
No	physical	or	protocol
standards	for	interfacing	with
image	acquisition	devices

IEEE
1394
standard

Simple	cabling	that	allows
daisy	chaining	and	use	of
hubs	and	repeaters
Low	cost
No	camera	files	required

Slower	data	transfer	rate



Camera
Link
standard

High	speed
Uniform	cables

More	costly	than	IEEE	1394
10	m	cable	length	limit



Camera	Link
Developed	by	a	consortium	of	camera	and	image	acquisition	device
manufacturers,	Camera	Link	is	a	standard	for	interfacing	digital	cameras
with	image	acquisition	devices.	Camera	Link	simplifies	connectivity
between	the	image	acquisition	device	and	the	camera	by	defining	a
single	standard	connector	for	both.	This	standard	ensures	compatibility	of
devices	bearing	the	Camera	Link	logo.
The	basis	for	the	Camera	Link	standard	is	a	serial	data	transmission
method	consisting	of	a	general-purpose	transmitter/receiver	pair.	Each
driver	takes	28	bits	of	parallel	digital	data	and	a	clock	and	serializes	the
stream	to	four	LVDS	(EIA-644)	data	streams	and	an	LVDS	clock.	The
Camera	Link	standard	provides	high-speed	data	transmission	across	10
wires	over	distances	of	up	to	10	m.
Camera	Link	Base	configuration	uses	one	transmitter/receiver	pair	and
requires	one	cable	for	data	transmission.	Camera	Link	Medium
configuration	uses	two	transmitter/receiver	pairs.	Camera	Link	Full
configuration	uses	three	transmitter/receiver	pairs.	Both	Medium	and	Full
configuration	require	two	data	cables.
Refer	to	the	Specifications	of	the	Camera	Link	Interface	Standard	for
Digital	Cameras	and	Frame	Grabbers	manual	for	more	detailed
information	about	Camera	Link	specifications.	This	manual	is	available
on	several	Web	sites,	including	the	Automated	Imaging	Association	Web
site	at	www.machinevisiononline.org.

javascript:WWW(WWW_Machine_Vision)


Color	Basics
This	section	explains	basic	color	theories,	describes	color	image	output
options,	and	describes	methods	you	can	use	to	acquire	a	color	image.
Introduction	to	Color
Color	Spaces
Image	Representations
Color	Camera	Types



Introduction	to	Color
Color	is	the	wavelength	of	the	light	the	human	eye	receives	when	we	look
at	an	object.	In	theory,	the	color	spectrum	is	infinite.	Humans,	however,
can	see	only	a	small	portion	of	this	spectrum​the	portion	that	goes	from
the	red	edge	of	infrared	light	(the	longest	wavelength)	to	the	blue	edge	of
ultraviolet	light	(the	shortest	wavelength).	This	continuous	spectrum	is
called	the	visible	spectrum.
White	light	is	a	combination	of	all	colors.	The	spectrum	of	white	light	is
continuous	and	goes	from	ultraviolet	to	infrared	in	a	smooth	transition.
You	can	represent	a	good	approximation	of	white	light	by	selecting	a	few
reference	colors	and	weighting	them	appropriately.	The	most	common
way	to	represent	white	light	is	to	use	three	reference	components,	such
as	red,	green,	and	blue	(RGB)	primaries.	You	can	simulate	most	colors	of
the	visible	spectrum	using	these	primaries.	For	example,	video	projectors
use	red,	green,	and	blue	light	generators,	and	an	RGB	camera	uses	red,
green,	and	blue	sensors.
The	perception	of	a	color	depends	on	many	factors:

Hue—The	perceived	dominant	color.	Hue	depends	directly	on	the
wavelength	of	a	color.
Saturation—The	amount	of	white	light	present	in	a	color.	Pastels
typically	have	a	low	saturation	while	very	rich	colors	have	a	high
saturation.	For	example,	pink	typically	has	a	red	hue	but	has	a	low
saturation.
Luminance—The	brightness	information	in	the	video	picture.	The
luminance	signal	amplitude	varies	in	proportion	to	the	brightness	of
the	video	signal	and	corresponds	exactly	to	the	monochrome
picture.



Color	Spaces
Color	spaces	allow	you	to	represent	a	color.	A	color	space	is	a	subspace
within	a	three-dimensional	coordinate	system	where	each	color	is
represented	by	a	point.	You	can	use	color	spaces	to	facilitate	the
description	of	colors	between	persons,	machines,	or	software	programs.
Various	industries	and	applications	use	a	number	of	different	color
spaces.	Humans	perceive	color	according	to	parameters	such	as
brightness,	hue,	and	intensity,	while	computers	perceive	color	as	a
combination	of	red,	green,	and	blue.	The	printing	industry	uses	cyan,
magenta,	and	yellow	to	specify	color.
The	following	is	a	list	of	common	color	spaces:

RGB—Based	on	red,	green,	and	blue.	Used	by	computers	to
display	images.
HSL—Based	on	hue,	saturation,	and	luminance.	Used	in	image
processing	applications.
CIE—Based	on	brightness,	hue,	and	colorfulness.	Defined	by	the
Commission	Internationale	de	l'Eclairage	(International
Commission	on	Illumination)	as	the	different	sensations	of	color
that	the	human	brain	perceives.
CMY—Based	on	cyan,	magenta,	and	yellow.	Used	by	the	printing
industry.
YIQ—Separates	the	luminance	information	(Y)	from	the	color
information	(I	and	Q).	Used	for	TV	broadcasting.



When	to	Use
You	must	define	a	color	space	every	time	you	process	color	images.	If
you	expect	the	lighting	conditions	to	vary	considerably	during	your	color
machine	vision	application,	use	the	HSL	color	space.	The	HSL	color
space	provides	more	accurate	color	information	than	the	RGB	space
when	running	color	processing	functions,	such	as	color	matching,	color
location,	and	color	pattern	matching.
If	you	do	not	expect	the	lighting	conditions	to	vary	considerably	during
your	application,	and	you	can	easily	define	the	colors	you	are	looking	for
using	red,	green,	and	blue,	use	the	RGB	space.	Also,	use	the	RGB
space	if	you	want	to	display,	but	not	process,	color	images	in	your
application.	The	RGB	space	reproduces	an	image	as	you	would	expect
to	see	it.



Color	Image	Representations
Color	images	can	be	represented	in	different	formats.	These	formats	can
contain	all	color	information	from	the	image,	or	they	can	consist	of	just
one	aspect	of	the	color	information,	such	as	hue	or	luminance.	The
following	image	representations	can	be	produced	using	NI-IMAQ	or	color
image	acquisition	devices.
32-Bit	RGB
The	most	common	image	representation	is	32-bit	RGB	format.	In	this
representation,	the	three	8-bit	color	planes—red,	green,	and	blue—are
packed	into	an	array	of	32-bit	integers.	This	representation	is	useful	for
displaying	the	image	on	the	monitor.	The	32-bit	integer	is	organized	as

0 RED GREEN BLUE

where	the	high-order	byte	is	not	used,	and	the	low-order	byte	is	blue.
Each	color	plane	can	be	returned	individually.	The	red,	green,	or	blue
plane	is	extracted	from	the	RGB	image	and	represented	as	an	array	of	8-
bit	integers.
64-Bit	RGB
In	the	64-bit	RGB	representation,	the	three	16-bit	color	planes	are
packed	into	an	array	of	64-bit	integers,	where	the	high-order	byte	is	not
used.	This	representation	allows	for	more	distinct	colors	per	plane.
32-Bit	HSL
In	the	32-bit	HSL	representation,	the	three	8-bit	color	planes—hue,
saturation,	and	luminance—are	packed	into	an	array	of	32-bit	integers	in
the	same	manner	as	the	32-bit	RGB	representation.
The	hue,	saturation,	and	luminance	planes	also	can	be	returned
individually	if	you	want	to	analyze	the	image.	You	can	retrieve	the	data	in
8-bit	format	to	reduce	the	amount	of	data	to	be	processed.



Color	Camera	Types
You	can	use	three	basic	camera	types	for	color	acquisition—analog	or
digital	RGB	cameras,	composite	color	cameras,	and	Bayer	cameras.



RGB	Cameras
RGB	cameras	deliver	the	three	basic	color	components—red,	green,	and
blue—on	three	different	wires.	This	type	of	camera	often	uses	three
independent	CCD	sensors	to	acquire	the	three	color	signals.	RGB
cameras	are	used	for	very	accurate	color	acquisition.



Composite	Color	Cameras
Composite	color	cameras	transmit	the	video	signal	on	a	single	wire.	The
signal	is	composed	of	two	of	the	following	components,	which	are	added
together:

A	monochrome	video	signal	that	contains	the	gray	level	information
from	the	image	and	the	composite	synchronization	signals.	This
signal	is	the	same	as	a	standard	monochrome	video	signal,	such
as	RS-170	or	CCIR-601.
A	modulated	signal	that	contains	the	color	information	from	the
image.	The	format	of	this	signal	depends	on	your	camera.	The
three	main	analog	color	standards	are	as	follows:

M-NTSC	(also	called	NTSC)	is	used	mainly	in	the	U.S.	and
Japan.
B/G-PAL	(also	called	PAL)	is	used	mainly	in	Europe,	India,
and	Australia.
SECAM,	which	is	used	mainly	in	France	and	the	former
Soviet	Republics,	is	used	only	for	broadcasting,	so	SECAM
countries	often	use	PAL	as	the	local	color	image	format.



Bayer	Cameras
Bayer	encoding	is	a	method	to	produce	color	images	with	a	single
imaging	sensor,	as	opposed	to	three	individual	sensors	for	the	red,
green,	and	blue	components	of	light.	This	technology	greatly	reduces	the
cost	of	cameras.
The	Bayer	color	filter	array	(CFA)	is	a	primary	color	mosaic	pattern	of
50%	green,	25%	red,	and	25%	blue	pixels.	Green	pixels	comprise	half	of
the	total	pixels	because	the	human	eye	gets	most	of	its	sharpness
information	from	green	light.
Light	travels	through	the	camera	lens	onto	an	image	sensor	that	provides
one	value	for	each	sensor	cell.	The	sensor	is	an	array	of	tiny,	light-
sensitive	diodes	called	photosites,	which	converts	light	into	electrical
charges.	The	sensor	is	covered	by	the	Bayer	CFA	so	that	only	one	color
value	reaches	any	given	pixel.	The	raw	output	is	a	mosaic	of	red,	green,
and	blue	pixels	of	different	intensities.
When	the	image	is	captured,	the	accumulated	charge	for	each	cell	is
read	and	analog	values	are	converted	to	digital	pixel	values	using	an
analog-to-digital	(A/D)	converter.
Interpolation,	sometimes	referred	to	as	demosaicing,	fills	in	the	missing
colors.	A	decoding	algorithm	determines	a	value	for	the	RGB
components	for	each	pixel	in	the	array	by	averaging	the	color	values	of
selected	neighboring	pixels	and	producing	an	estimate	of	color	and
intensity.	This	algorithm	can	be	applied	for	the	camera,	the	image
acquisition	device,	or	in	the	software.	This	algorithm	is	included	in	NI-
IMAQ	and	NI-IMAQ	for	IEEE	1394	Cameras.
After	the	interpolation	process	is	complete,	the	white	balancing	process
further	enhances	the	image	by	adjusting	the	red	and	blue	signals	to
match	the	green	signal	in	white	areas	of	the	image.



Quadrature	Encoders
This	section	contains	an	overview	of	quadrature	encoders	and
information	about	the	scaled	encoder	signal	used	with	NI-IMAQ.
Quadrature	Encoder	Overview
Scaled	Encoder	Signal



Quadrature	Encoder	Overview
A	quadrature	encoder	uses	two	output	channels,	Phase	A	and	Phase	B,
to	track	the	position	of	a	rotary	shaft.	Generally,	this	shaft	is	coupled	to	a
motor	drive	that	controls	the	movement	of	an	object	of	interest.	By
monitoring	the	encoder	Phase	A	and	Phase	B	signals,	you	can	obtain	a
precise	measurement	of	the	object's	position.
To	generate	Phase	A	and	Phase	B	signals,	the	quadrature	encoder	uses
two	code	tracks	with	sectors	positioned	90	degrees	out	of	phase.	The
phase	difference	indicates	the	position	and	direction	of	rotation.	If	Phase
A	leads	Phase	B,	the	shaft	is	rotating	in	a	clockwise	direction.	If	Phase	B
leads	Phase	A,	the	shaft	is	rotating	in	a	counter-clockwise	direction.	The
following	figure	illustrates	the	Phase	A	signal	leading	the	Phase	B	signal.

1		Phase	A	Signal		
2		Phase	B	Signal		

Compatible	NI	image	acquisition	devices	include	hardware	that	can	be
used	to	track	both	the	position	and	direction	of	rotation	of	the	Phase	A
and	Phase	B	signals.	For	example,	this	information	can	be	used	in
conjunction	with	a	line	scan	camera	to	acquire	lines	synchronous	to	the
movement	of	a	conveyor	belt.	This	gives	you	the	ability	to	specify	your
line	rate	in	terms	of	positional	units	(such	as	inches	or	centimeters)	rather
than	time.



Scaled	Encoder	Signal
The	scaled	encoder	signal	is	an	edge-sensitive	signal	that	is	used	to
track	cumulative	forward	progression	of	the	quadrature	encoder	Phase	A
and	Phase	B	signals.	The	scaled	encoder	signal	is	derived	by	applying	a
divide	factor	to	the	raw	positional	signal	that	is	encoded	between	Phase
A	and	Phase	B.
All	NI	image	acquisition	devices	expect	the	raw	positional	signal	to	be
encoded	with	x4	encoding.	The	scaled	encoder	signal	can	be	used	as	a
line	trigger,	as	a	timebase	for	pulse	generation,	and	it	can	be	driven	out
on	a	trigger	line	for	external	usage.	The	following	figure	illustrates	the
scaled	encoder	signal	that	is	produced	when	using	a	divide	factor	of	six.

1		Phase	A	Signal		 3		Position		
2		Phase	B	Signal		 4		Scaled	Encoder	Signal		

NI	image	acquisition	devices	that	support	multiple	ports	have	a	unique
scaler	per	port.	The	unique	scaler	allows	you	to	simultaneously	acquire
from	multiple	line	scan	cameras	using	different	line	rates	that	are	all
synchronous	to	the	same	quadrature	encoder.	Some	NI	image
acquisition	devices	also	support	querying	the	absolute	position	counter
value.	Refer	to	the	image	acquisition	device	documentation	to	determine
if	the	device	supports	querying	the	absolute	position	counter.
Refer	to	the	Quadrature	Encoder	Overview	for	more	information	about
quadrature	encoders.



Programming	with	NI-IMAQ
Using	NI-IMAQ	you	can	program	your	image	acquisition	device	to
acquire,	display,	and	save	images.	You	can	use	NI-IMAQ	with	other
National	Instruments	software	for	a	complete	image	acquisition	and
analysis	solution.	NI-IMAQ	works	with	LabVIEW,	LabWindows/CVI,	and
other	common	programming	languages.	National	Instruments	Vision
software	adds	powerful	image	processing	and	analysis	to	these
programming	environments.	You	also	can	use	Vision	Assistant	to	quickly
and	easily	prototype	your	image	analysis	applications.
The	following	sections	describe	how	to	use	NI-IMAQ	to	program	your
image	acquisition	device.
Building	Applications	with	NI-IMAQ
Programming	with	NI-IMAQ	Functions
Programming	with	NI-IMAQ	VIs
Programming	with	ActiveX	Controls
Variable	Height	Acquisition
NI-IMAQ	and	the	LabVIEW	Real-Time	Module



Building	Applications	with	NI-IMAQ
The	following	sections	describe	important	fundamentals	for	developing
applications	using	NI-IMAQ.
Architecture
NI-IMAQ	libraries
Sample	Programs



Architecture
The	following	block	diagram	of	the	NI-IMAQ	architecture	illustrates	the
low-	and	mid-level	architecture	for	NI	image	acquisition	devices.

The	architecture	uses	a	hardware	abstraction	layer,	which	separates
software	API	capabilities,	such	as	general	acquisition	and	control
functions,	from	hardware-specific	information.	This	layer	lets	you	use	new
image	acquisition	hardware	without	having	to	recompile	your
applications.



NI-IMAQ	Libraries
The	NI-IMAQ	function	libraries	are	dynamic	link	libraries	(DLLs),	which
means	that	NI-IMAQ	routines	are	not	linked	into	the	executable	files	of
applications.	Only	the	information	about	the	NI-IMAQ	routines	in	the	NI-
IMAQ	import	libraries	is	stored	in	the	executable	files.
Import	libraries	contain	information	about	their	DLL-exported	functions,
indicating	the	presence	and	location	of	the	DLL	routines.	Depending	on
the	development	tools	you	use,	you	may	give	the	DLL	routines
information	through	import	libraries	or	function	declarations.	Your	NI-
IMAQ	software	kit	contains	function	prototypes	for	all	routines.



Sample	Programs
Refer	to	the	readme.rtf	file	located	in	your	target	installation	directory	for
the	latest	details	on	NI-IMAQ	sample	programs.	These	programs	are
installed	in	the	Sample	subdirectory	under	the	target	installation	folder	if
you	elected	to	install	the	sample	files.



Programming	with	NI-IMAQ	Functions
The	following	sections	describe	important	fundamentals	of	programming
your	image	acquisition	device	using	NI-IMAQ.
Function	Overview
Establishing	Interface	Connections	and	Sessions
Managing	Buffers
Camera	Attributes
NI-IMAQ	Status	Signals
Line	Scan	Image	Acquisition
Geometric	Definitions
Programming	Examples
Refer	to	the	NI-IMAQ	Function	Reference	Help	for	more	information
about	NI-IMAQ	programming	functions.



Creating	an	Application	Using	C
This	section	outlines	the	process	for	developing	NI-IMAQ	applications
using	C.	Detailed	instructions	about	creating	project	and	source	files	are
not	included.	Refer	to	the	documentation	included	with	your	particular
development	environment	for	information	about	creating	and	managing
project	files.
When	programming,	use	the	following	guidelines:

Include	the	NIIMAQ.H	header	file	in	all	C	source	files	that	use	NI-
IMAQ	functions.	Add	this	file	to	the	top	of	your	source	files.
Add	the	IMAQ.LIB	import	library	to	your	project.	Some
environments	allow	you	to	add	import	libraries	simply	by	inserting
them	into	your	list	of	project	files.	Other	environments	allow	you	to
specify	import	libraries	under	the	linker	settings	portion	of	the
project	file.
When	compiling,	indicate	where	the	compiler	can	find	the	NI-IMAQ
header	files	and	shared	libraries.	You	can	find	most	of	the	files	you
need	for	development	under	the	NI-IMAQ	target	installation
directory.	If	you	choose	the	default	directory	during	installation,	the
target	installation	directory	is	C:\Program	Files\National
Instruments\NI-IMAQ.	You	can	find	the	include	files	under	the
include	subdirectory.	The	import	libraries	for	Microsoft	Visual	C++
are	located	under	the	lib\msvc	subdirectory.



Function	Overview
The	NI-IMAQ	application	programming	interface	(API)	is	divided	into
three	groups:	high-level	functions,	low-level	functions,	and	generic
functions.	With	the	high-level	functions,	you	can	write	programs	quickly
without	having	to	learn	the	details	of	the	low-level	API	and	driver.	The
low-level	functions	give	you	finer	granularity	and	control	over	the	image
acquisition	process,	but	you	must	understand	the	API	and	driver	in
greater	detail.	Generic	functions	allow	you	to	set	up	interfaces	and
sessions	and	close	both	when	you	are	finished.

Note		The	high-level	functions	call	low-level	functions	and	use
certain	attributes	that	are	listed	in	the	high-level	function
description	in	the	NI-IMAQ	Function	Reference	Help.	Changing	the
value	of	these	attributes	while	using	low-level	functions	affects	the
operation	of	the	high-level	functions.



Interface	Functions
Interface	functions	can	be	used	in	combination	with	both	high-	and	low-
level	functions	to	perform	the	following	tasks:

Set	up	the	interface	and	session.
Close	the	interface	and	session	when	you	are	finished	with	the
application.
Obtain	an	interface	name.
Reset	the	interface.



High-Level	Functions
High-level	functions	support	four	basic	types	of	image	acquisition:

Snap	acquires	a	single	frame	or	field	to	a	buffer.
Grab	performs	an	acquisition	that	loops	continually	on	one	buffer.
You	obtain	a	copy	of	the	acquisition	buffer	by	grabbing	a	copy	to	a
separate	buffer	that	can	be	used	for	analysis.
Sequence	performs	an	acquisition	that	acquires	a	specified
number	of	buffers,	then	stops.
Ring	performs	an	acquisition	that	loops	continually	on	a	specified
number	of	buffers.

The	high-level	function	set	also	allows	simple	triggered	acquisitions	and
the	generation	of	external	signals	on	the	trigger	lines.



Low-Level	Functions
Low-level	functions	support	all	types	of	acquisition.	Use	low-level
functions	to	perform	the	following	tasks:

Create	a	custom	acquisition	sequence	or	ring.
Create	and	manage	buffers.
Set	session	and	interface	attributes	to	adjust	image	quality	and
size.
Start	a	synchronous	or	asynchronous	acquisition.
Extract	buffers	out	of	a	live	acquisition	for	analysis.



Establishing	Interface	Connections	and
Sessions
To	acquire	images	using	the	high-level	or	low-level	functions,	you	must
first	learn	how	to	establish	a	connection	to	an	interface	and	create	a
session.	Refer	to	the	following	sections	for	information	about	managing
interfaces	and	sessions.	Then	refer	to	the	high-level	or	low-level	samples
for	information	about	acquiring	images.



Interface	Functions
Use	interface	functions	to	query	the	number	of	available	interfaces,
establish	a	connection	to,	control	access	to,	and	initialize	hardware.	All
parameters	configured	in	MAX	for	an	image	acquisition	device	are
associated	with	an	interface	name.	You	can	have	one	device	associated
with	more	than	one	interface	name,	which	allows	you	to	have	several
different	configurations	for	one	device.	Use	the	interface	name	to	refer	to
the	device	in	the	programming	environment.
Interface	name	information	is	stored	in	an	interface	(.iid)	file	and	includes
the	device	serial	number	and	the	camera	file	associated	with	each
channel	or	port	on	the	device.	NI-IMAQ	specifies	all	interfaces	by	a
name.	By	default,	the	system	creates	default	names	for	the	number	of
devices	in	the	system.	These	names	observe	the	convention	shown	in
the	following	table.

Interface	Name Device	Installed
img0 Device	0
img1 Device	1
... ...

imgn Device	n

The	interface	name	always	identifies	a	single	port	of	an	image	acquisition
device.	A	port	identifies	a	single	independent	data	stream	from	a	camera.
All	NI	image	acquisition	devices	support	at	least	one	port.	Devices	that
support	multiple	ports	can	sustain	independent	and	asynchronous
acquisitions	from	the	cameras	on	each	port.
The	port	number	may	be	explicitly	identified	by	using	the	::	operator	to
append	the	port	number	suffix	to	the	interface	name.	Port	numbers	are
zero-based.	For	example,	img0::1	opens	port	number	1	of	the	image
acquisition	device	identified	by	img0.	Interface	names	that	do	not	have	a
port	number	suffix	default	to	port	0.	img0::0	and	img0	are	equivalent	in
meaning.
You	can	edit	existing	interfaces	or	create	new	interfaces	by	using	MAX.
You	also	can	use	MAX	to	configure	the	default	state	of	a	particular
interface.
Before	you	can	acquire	image	data	successfully,	you	must	open	an



interface	by	using	the	imgInterfaceOpen	function.	imgInterfaceOpen
requires	an	interface	name	and	returns	a	handle	to	this	interface.	NI-
IMAQ	uses	this	handle	to	reference	this	interface	when	using	other	NI-
IMAQ	functions.
To	establish	a	connection	to	the	first	device	in	your	system,	use	the
following	program	example:
INTERFACE_IDinterfaceID;
if	(imgInterfaceOpen("img0",	&interfaceID)	==	IMG_ERR_GOOD)
{
//	user	code
imgClose(interfaceID,	FALSE);
}

This	example	opens	an	interface	named	img0.	When	the	program	is
finished	with	the	interface,	it	closes	the	interface	using	the	imgClose
function.
Refer	to	the	NI-IMAQ	Function	Reference	Help	for	a	complete	list	of	the
available	interface	functions.



Session	Functions
Use	session	functions	to	configure	the	type	of	acquisition	you	want	to
perform	using	a	particular	interface.	After	you	have	established	a
connection	to	an	interface,	create	a	session	and	configure	it	to	perform
the	type	of	acquisition	you	require.
To	create	a	session,	call	the	imgSessionOpen	function.	This	function
requires	a	valid	interface	handle	and	returns	a	handle	to	a	session.	NI-
IMAQ	then	uses	this	session	handle	to	reference	this	session	when	using
other	NI-IMAQ	calls.
To	create	a	session,	use	the	following	example	program:
INTERFACE_ID	interfaceID;
SESSION_ID	sessionID;
if	(imgInterfaceOpen("img0",	&interfaceID)	==	IMG_ERR_GOOD)
{
if	(imgSessionOpen(interfaceID,	&sessionID)	==	IMG_ERR_GOOD)
{
//	user	code
imgClose(sessionID,	FALSE);
}
imgClose(interfaceID,	FALSE);
}

This	example	opens	an	interface	named	img0	and	then	creates	a	session
to	acquire	images.	When	the	program	is	finished	with	the	interface	and
session,	it	then	closes	both	handles	using	the	imgClose	function.
Refer	to	the	NI-IMAQ	Function	Reference	Help	for	a	complete	list	of	the
available	session	functions.



Managing	Buffers
NI-IMAQ	can	automatically	perform	buffer	management,	or	you	can
perform	buffer	management	manually.	If	the	high-level	acquisition
routines	(imgSnap,	imgGrab,	imgSequenceSetup,	and	imgRingSetup)	are
initialized	with	NULL	pointers	for	buffer	addresses,	NI-IMAQ	automatically
allocates	a	buffer	and	returns	the	value	of	the	buffer	pointer.	After	you
obtain	a	buffer	pointer,	you	can	use	this	pointer	in	successive	calls.
For	greater	control	of	the	acquisition	buffers,	create	buffers	with	a
memory	allocation	routine	(for	example,	malloc)	or	use	the	low-level
function	imgCreateBuffer.	When	creating	buffers	using	either	approach,
dispose	of	the	buffers	using	free	or	imgDisposeBuffer	when	applicable	to
free	PC	memory.



Camera	Attributes
Camera	attributes	allow	you	to	control	camera-specific	functions,	such	as
integration	time	and	pixel	binning,	directly	from	NI-IMAQ.	You	can	set
camera	attributes	in	MAX.	Information	about	specific	attributes	for	some
cameras	is	contained	in	a	camera	attribute	file	<my	camera>.txt,	which	is
in	the	<NI-IMAQ>/Camera	Info	directory,	where	<NI-IMAQ>	is	the	location
to	which	NI-IMAQ	is	installed.
All	parameters	configured	for	a	camera	type	are	stored	in	a	camera	(.icd)
file.	The	camera	file	is	then	associated	with	a	specific	channel	or	port	on
an	image	acquisition	device.	The	camera	file	includes	information	about
the	video	signal	timing	and	the	input	signal	range	of	the	video	signal.
The	camera	attribute	file	lists	all	attributes	for	the	camera.	Each	attribute
description	contains	the	following	fields:

Attribute	Name	contains	the	name	of	the	attribute	in	quotes.
Description	contains	a	brief	description	of	the	camera.
Data	Type	contains	the	data	type	of	the	attribute—String,	Integer,
or	Float.

String	indicates	that	there	are	several	valid	values	for	this
attribute	that	are	expressed	as	strings.
Integer	indicates	that	the	attribute	value	is	a	numeric	value
of	type	integer.
Float	indicates	that	the	attribute	value	is	a	numeric	value	of
type	floating	point.

Possible	Values	contains	a	list	of	valid	String,	Integer,	or	Float
values.

Use	the	imgSetCameraAttributeString	and	imgGetCameraAttributeString
functions	to	set	and	get	the	value	of	String	attributes.	Use	the
imgSetCameraAttributeNumeric	and	imgGetCameraAttributeNumeric
functions	to	set	and	get	the	value	of	Float	and	Integer	attributes.

Note		The	spelling	and	syntax	of	the	Attribute	Name	and	string
values	must	match	the	camera	attribute	file	exactly.

Many	cameras	are	configured	with	serial	commands.	Many	camera	files
provided	by	National	Instruments	are	already	programmed	with	the
camera	serial	command	set.	When	you	use	the



imgSetCameraAttributeString	or	imgSetCameraAttributeNumeric	function,	any
serial	commands	programmed	into	the	camera	file	are	automatically	sent
to	the	camera	when	imgSessionOpen	is	called.	If	you	need	more	low-level
control	over	the	serial	communication	between	the	camera	and	your
image	acquisition	device,	use	the	imgSessionSerial	functions.



NI-IMAQ	Status	Signals
NI-IMAQ	contains	several	status	signals	that	you	can	use	to	trigger	the
generation	of	a	pulse	or	invoke	a	callback	function.	Acquisition	in
Progress	(AQ_IN_PROGRESS)	indicates	that	the	device	is	acquiring
image	data.	This	signal	becomes	TRUE	when	the	device	initiates	the
acquisition	either	through	a	software	or	hardware	triggered	start.	When
the	last	piece	of	image	data	is	transferred	to	memory,	this	signal
becomes	FALSE.	If	the	acquisition	is	a	sequence,	acquisition	in	progress
stays	TRUE	throughout	the	acquisition	until	the	entire	sequence	is
completed.	Acquisition	Done	(AQ_DONE)	is	the	inverse	of	Acquisition
in	Progress.	This	signal	becomes	TRUE	when	the	last	piece	of	data	is
transferred	to	memory,	indicating	that	the	acquisition	has	completed.
Frame	Start	(FRAME_START)	and	Frame	Done	(FRAME_DONE)
indicate	the	status	of	an	acquisition	on	a	buffer	basis.	Frame	Start
indicates	that	a	buffer	is	being	acquired.	This	signal	becomes	TRUE
when	the	device	detects	the	first	valid	pixel	in	the	current	region	of
interest.	The	signal	becomes	FALSE	when	the	device	detects	the	last
valid	pixel	of	the	frame.	If	the	acquisition	is	a	sequence,	a	ring,	or	a	grab,
Frame	Start	and	Frame	Done	pulse	for	every	buffer	in	the	acquisition.
Frame	Done	is	the	inverse	of	Frame	Start	and	indicates	when	the	image
is	transferred	from	the	camera	to	the	image	acquisition	device.
Buffer	Complete	(BUF_COMPLETE)	indicates	when	the	image	data	has
been	transferred	to	memory	and	is	available	for	image	processing.
Buffer	Complete	becomes	TRUE	when	the	data	in	an	image	buffer	has
been	transferred	to	memory,	which	may	be	either	onboard	or	system
memory,	depending	on	the	acquisition.
The	following	figure	illustrates	the	values	of	the	signals	during	a	three-
buffer	sequence	acquisition.



You	can	use	the	NI-IMAQ	status	signals	for	many	purposes.	You	can
generate	pulses	based	on	the	assertion	of	any	of	these	signals.	Pulse
generation	allows	you	to	generate	specific	timing	pulses	based	on
acquisitions	to	control	other	aspects	of	your	system,	such	as	a	strobe
light.	Furthermore,	you	can	configure	callback	functions	that	are	invoked
by	any	of	these	signals.	For	example,	to	initiate	an	image	processing
routine	as	soon	as	an	image	is	in	memory,	configure	a	callback
containing	image	processing	code.	Invoke	the	callback	when	you	assert
Buffer	Complete.



Line	Scan	Image	Acquisition
Unlike	area	scan	cameras,	line	scan	cameras	output	only	one	line	at	a
time.	However,	the	programming	interface	for	area	scan	and	line	scan
cameras	is	identical.	The	driver	builds	up	the	lines	acquired	into	a	2D
image.	The	height	of	this	image	is	set	in	MAX	and	can	be	changed	with
the	region	of	interest	height	attribute.	You	also	can	configure	NI-IMAQ	to
acquire	a	variable	number	of	lines.	Refer	to	Variable	Height	Acquisition
for	more	information.
Triggering	line	scan	images	is	similar	to	triggering	area	scan	images.
Using	the	imgSessionTriggerConfigure2	function,	you	can	trigger	the	start
of	each	buffer.	The	imgSessionLineTrigSource2	function	also	allows	you	to
trigger	each	line	of	the	image,	not	just	the	start	of	the	image.	For
example,	if	you	are	using	a	conveyor	belt,	you	can	use	an	encoder	to
trigger	each	line	of	the	image	and	synchronize	the	movement	of	the
conveyor	belt	and	the	image	acquisition.
FRAME_START	and	FRAME_DONE	status	signals	are	not	valid	for	a
line	scan	acquisition	unless	each	buffer	is	triggered.	Skip	count	is	not
supported	for	line	scan	acquisitions.	A	continuous	line	scan	acquisition
into	onboard	memory	is	not	supported.	However,	continuous	line	scan
acquisition	into	system	memory	is	supported.



Geometric	Definitions
The	following	list	defines	several	terms	you	should	be	familiar	with	when
performing	image	acquisition	tasks:

A	sync	window	is	the	area	defined	by	the	horizontal
synchronization	pulse	(HSYNC)	and	the	vertical	synchronization
pulse	(VSYNC).
An	acquisition	window	is	the	image	size	specific	to	a	video
standard	or	camera	resolution.	The	default	is	set	by	your	specific
camera	file.	The	window	starting	position	varies	according	to
camera.
A	region	of	interest	(ROI)	is	a	hardware-programmable	rectangular
portion	of	the	acquisition	window.	This	is	a	specific	area	of	the
image	to	acquire.

The	following	figure	illustrates	the	geometric	relationship	of	these	terms.



Programming	Examples
This	section	introduces	some	examples	for	performing	the	different	types
of	image	acquisition.	The	error	codes	that	NI-IMAQ	returns	are	not
included	in	the	examples.	In	your	programs,	always	check	the	return
code	for	errors.

Note		You	can	find	the	code	examples	discussed	in	this	section	in
the	<NI-IMAQ>\Sample	directory,	where	<NI-IMAQ>	is	the	location
to	which	NI-IMAQ	is	installed.



Introductory	Examples
High-Level	Snap	Functions
High-Level	Grab	Functions
High-Level	Sequence	Functions
High-Level	Ring	Functions
High-Level	Signal	I/O	Functions



Advanced	Examples
Performing	a	Snap	Using	Low-Level	Functions
Performing	a	Grab	Using	Low-Level	Functions
Performing	a	Sequence	Acquisition	Using	Low-Level	Functions
Performing	a	Ring	Acquisition	Using	Low-Level	Functions



High-Level	Snap	Functions
A	snap	acquires	a	single	image	into	a	memory	buffer.	Snap	functions
include	imgSnap	and	imgSnapArea.	Use	these	functions	to	acquire	a	single
frame	or	field	to	a	buffer.	To	use	these	functions,	you	must	have	a	valid
session	handle.
When	you	invoke	a	snap,	it	initializes	the	device	and	acquires	the	next
incoming	video	frame	(or	field)	to	a	buffer.	Use	a	snap	for	low-speed	or
single-capture	applications	in	which	ease	of	programming	is	essential.
The	following	figure	illustrates	a	typical	snap	programming	order.

The	hlsnap.c	example	demonstrates	how	to	perform	a	single	snap	using
imgSnap.	The	example	opens	an	interface	and	a	session	and	then
performs	a	single	snap.	The	buffer	pointer	that	is	passed	to	imgSnap	is
initialized	to	NULL,	which	instructs	imgSnap	to	automatically	allocate	a
buffer	for	the	image.	The	size	of	the	buffer	is	calculated	based	on	the	ROI
and	the	rowPixel	attributes:	ROI	height	multiplied	by	rowPixel	multiplied
by	the	number	of	bytes	per	pixel.	When	you	open	a	session,	the	ROI
values	are	initialized	from	the	acquisition	window	(ACQWINDOW)
dimensions	that	are	configured	in	MAX.	The	ACQWINDOW	dimensions
vary	depending	on	the	type	of	camera	you	are	using.
The	sample	then	calls	a	process	function	to	analyze	the	image.	When	the
program	is	finished,	it	calls	imgClose	with	the	interface	handle	and	sets
the	freeResources	flag	to	TRUE.	This	instructs	NI-IMAQ	to	free	all	of	the
resources	associated	with	this	interface,	which	releases	the	session	as
well	as	the	memory	buffer	allocated	by	imgSnap.



High-Level	Grab	Functions
A	grab	is	a	continuous	high-speed	acquisition	of	data	to	a	single	buffer	in
host	memory.	Grab	functions	include	imgGrabSetup,	imgGrab,	and
imgGrabArea.	You	can	use	these	functions	to	perform	an	acquisition	that
loops	continually	on	one	buffer.	Obtain	a	copy	of	the	acquisition	buffer	by
grabbing	a	copy	to	a	separate	buffer.	To	use	these	functions,	you	must
have	a	valid	session	handle.
Calling	imgGrabSetup	initializes	a	session	for	a	grab	acquisition.	After
imgGrabSetup,	each	successive	grab	copies	the	last	acquired	buffer	into	a
user	buffer	where	you	can	perform	processing	on	the	image.	Use	grab	for
high-speed	applications	where	you	need	processing	performed	on	only
one	image	at	a	time.
The	following	figure	illustrates	a	typical	grab	programming	order.

The	hlgrab.c	example	demonstrates	how	to	perform	a	grab	using
imgGrabArea.	The	example	performs	multiple	grabs	until	an	appropriate
condition	is	met.	The	program	configures	the	session	to	perform	a	grab
operation	by	calling	the	imgGrabSetup	function.	The	program	then



calculates	the	area	to	grab	using	the	current	ROI,	rowPixels,	and
bytesPerPixel,	and	starts	the	acquisition	by	calling
imgSessionStartAcquisition.	In	this	example,	the	program	allocates	a	user
buffer	for	grabbing	and	passes	this	buffer	to	imgGrabArea.	When	the
acquisition	is	complete,	it	stops.	The	program	then	frees	the	user	buffer
and	all	of	the	resources	associated	with	this	interface	by	calling	imgClose.



High-Level	Sequence	Functions
Sequence	functions	include	imgSequenceSetup,	imgSessionStartAcquisition,
and	imgStopAcquisition.	A	sequence	initiates	a	variable-length	and
variable-delay	transfer	to	multiple	buffers.	You	can	configure	the	delay
between	acquisitions	with	imgSequenceSetup	and	specify	both	the	buffer
list	used	for	transfers	and	the	number	of	buffers.	After	imgSequenceSetup,
you	can	monitor	the	status	of	the	transfer	and	perform	processing	on	any
of	the	buffers	in	the	sequence	or	you	can	wait	until	the	acquisition
completes	and	process	all	buffers	simultaneously.
Use	a	sequence	in	applications	where	you	need	to	perform	processing
on	multiple	images.	You	can	configure	a	sequence	to	acquire	every
frame	or	skip	a	variable	number	of	frames	between	each	image.
The	following	figure	illustrates	a	typical	sequence	programming	order.

The	HLSeq.c	example	demonstrates	how	to	perform	a	sequence
acquisition	using	imgSequenceSetup.	The	example	sets	up	a	sequence
that	uses	ten	user-allocated	buffers.	Each	buffer	in	the	sequence	has	its
own	skip	count	associated	with	it.	The	skip	count	is	the	number	of	frames
to	skip	prior	to	acquiring	the	next	image.	The	acquisition	is	started	at
setup	time	and	the	setup	call	is	synchronous.



High-Level	Ring	Functions
Ring	and	sequence	functions	include	imgRingSetup,
imgSessionStartAcquisition,	and	imgStopAcquisition.	Use	these	functions	to
perform	a	continuous	acquisition	that	loops	or	stops	after	a	certain
number	of	images	have	been	captured.	A	ring	initiates	a	continuous	high-
speed	acquisition	to	multiple	buffers.	Calling	imgRingSetup	initiates	a	ring.
imgRingSetup	specifies	both	the	buffer	list	used	for	transfers	and	the
number	of	buffers.	After	you	call	imgRingSetup,	you	can	monitor	the	status
of	the	transfer	and	perform	processing	on	any	of	the	buffers	in	the	ring.
Use	a	ring	for	high-speed	applications	where	you	need	to	perform
processing	on	every	image.	You	must	use	multiple	buffers	because
processing	times	may	vary	depending	on	other	applications	and
processing	results.	You	can	configure	a	ring	to	acquire	every	frame	or	to
skip	a	fixed	number	of	frames	between	each	acquisition.
For	certain	applications,	you	can	temporarily	extract	a	buffer	from	the	ring
to	prevent	it	from	being	overwritten	during	the	next	pass	of	the	ring.	Use
the	imgSessionExamineBuffer	and	imgSessionReleaseBuffer	functions	to	do
this.
The	following	figure	illustrates	a	typical	ring	programming	order.



The	HLRing.c	example	demonstrates	how	to	perform	a	ring	acquisition
using	imgRingSetup.	The	example	sets	up	a	ring	containing	six	buffers
and	sets	the	skip	count	to	three,	which	causes	the	program	to	acquire	on
every	fourth	frame.	Unlike	the	sequence	example,	the	skip	count	is	set	to
the	same	value	for	every	buffer	in	the	ring.	A	skip	count	is	the	number	of
frames	skipped	prior	to	acquiring	an	image	to	a	buffer.	The	program	then
loops,	waiting	for	the	next	buffer	to	be	acquired.	The	imgSessionStatus
function	queries	NI-IMAQ	for	the	buffer	number	of	the	last	valid	buffer	that
has	been	acquired.	The	last	valid	buffer	is	defined	as	the	buffer	that
contains	the	most	recent	video	image.	This	process	continues	until	a
designated	condition	is	met	and	then	the	acquisition	stops.



High-Level	Signal	I/O	Functions
The	signal	I/O	functions	fall	into	two	categories—triggering	acquisitions
and	driving	the	trigger	lines.	Use	triggered	acquisitions	to	acquire	images
precisely	when	an	external	event	occurs,	such	as	a	sensor	activating.
Driving	trigger	lines	allows	you	to	control	external	devices	in	sync	with	the
image	acquisition.	For	example,	you	can	fire	a	strobe	light	before	the
acquisition	of	each	frame	in	a	sequence.
You	can	initiate	any	of	the	four	types	of	acquisitions	from	an	external
trigger	source	by	using	imgSessionTriggerConfigure.	For	sequence	and
ring	acquisitions,	you	can	choose	to	trigger	only	the	first	buffer	in	the	list,
or	you	can	choose	to	trigger	each	buffer	in	the	list.	After	you	use	this
function	to	set	up	the	trigger,	any	acquisition	performed	on	the	session
waits	for	a	trigger.	Use	imgSessionTriggerClear	to	remove	the	trigger
settings	from	the	session.
Many	machine	vision	cameras	support	asynchronous	reset,	which	is	an
immediate	frame	output	after	a	trigger.	Most	camera	files	supplied	by
National	Instruments	program	the	image	acquisition	device	to	send	this
trigger	through	the	camera	control	lines.	For	applications	using
asynchronous	reset,	the	external	trigger	signal	should	be	routed	to	the
image	acquisition	device,	and	imgSessionTriggerConfigure	should	be
called	to	setup	the	device	to	trigger	the	camera.
Some	applications	need	to	send	signals	out	from	the	image	acquisition
hardware	to	an	external	device.	You	can	drive	many	types	of	signals	out
of	the	trigger	lines	by	using	imgSessionTriggerDrive.	The	parameters	of
this	function	include	a	trigger	line	number,	the	polarity	of	the	line,	and
what	to	drive	on	the	line.	You	can	use	a	steady	state	value	of	high	or	low
or	one	of	the	internal	state	signals	of	the	hardware,	such	as	acquisition	in
progress.	When	you	need	to	generate	specific	pulses,	use	imgPulseCreate
and	imgPulseStart.
The	following	figure	shows	the	outline	of	a	program	that	waits	for	an
external	trigger	on	line	1	before	acquiring	a	single	image.	The	program
also	configures	the	driver	to	assert	RTSI	trigger	line	3	when	the
acquisition	is	finished.	The	trigsnap.c	example	contains	C	code	that
implements	this	program.





Performing	a	Snap	Using	Low-Level	Functions
The	LLSnap.c	example	demonstrates	how	to	perform	a	snap	acquisition
using	low-level	calls.	The	example	sets	up	a	single-frame	acquisition	to	a
buffer	allocated	by	NI-IMAQ.	The	program	retrieves	the	acquisition
window	width	of	the	selected	camera	and	aligns	it	on	a	32-bit	boundary.
You	must	align	both	the	acquisition	window	width	and	rowPixels	on	a	32-
bit	boundary	to	ensure	that	the	image	is	acquired	properly.	The	software
does	not	perform	this	alignment	for	you	unless	you	select	a	scaling
option.	After	the	program	sets	the	ROI,	it	locks	the	memory	and	acquires
the	image.	If	you	choose	to	plot	the	image	using	the	imgPlot	function,	you
must	align	the	image	width	on	a	32-bit	boundary	as	well.



Performing	a	Grab	Using	Low-Level	Functions
The	LLGrab.c	example	demonstrates	how	to	perform	a	grab	acquisition
using	low-level	calls.	The	example	sets	up	a	continuous	acquisition	to	a
single	user-allocated	buffer.
As	described	in	the	low-level	snap	example,	the	program	retrieves	the
acquisition	window	width	of	the	selected	camera	and	aligns	it	on	a	32-bit
boundary.	The	program	creates	a	buffer	list	to	describe	the	acquisition
buffers.	Next,	the	program	sets	the	ROI	to	the	acquisition	window	width.
The	program	performs	a	calculation	to	determine	the	correct	memory
requirements	of	the	user	buffer.	The	program	creates	the	buffer	and
configures	buffer	element	0	for	a	single	continuous	acquisition.	The
program	then	locks	the	memory	and	starts	the	image	acquisition
asynchronously.	The	main	processing	loop	of	the	code	shows	how	to	wait
for	vertical	blank	and	copy	the	buffer	to	an	analysis	buffer.
Keep	your	analysis	code	fast	to	minimize	the	number	of	missed	frames
during	analysis.	If	you	need	more	time	to	examine	a	buffer,	set	up	a
multiple-buffer	ring	and	call	imgSessionExamineBuffer	to	extract	the
appropriate	buffer	from	the	live	sequence.



Performing	a	Sequence	Acquisition	Using	Low-
Level	Functions
The	LLSeq.c	example	demonstrates	how	to	perform	a	sequence
acquisition	using	low-level	calls.	The	example	sets	up	a	sequence
acquisition	to	multiple	buffers	allocated	by	NI-IMAQ.	As	described	in	the
low-level	snap	example,	the	program	retrieves	the	acquisition	window
width	of	the	selected	camera	and	aligns	it	on	a	32-bit	boundary.	It	creates
a	buffer	list	to	describe	the	acquisition	buffers.	Next,	the	program	sets	the
ROI	to	the	acquisition	window	width.	The	program	calculates	the	correct
memory	requirements	of	the	frame	buffer.	However,	this	memory
requirement	calculation	is	not	necessary	if	you	choose	to	use	the	default
acquisition	window	width,	rowPixels,	and	ROI.	In	this	case,	NI-IMAQ
allocates	the	correct	size	buffer	if	you	pass	0	as	the	size	parameter	to
imgCreateBuffer.	The	program	creates	the	buffer	and	configures	the	buffer
list	for	each	buffer	element	in	the	ring.	The	program	locks	the	memory
and	starts	the	image	acquisition	asynchronously.
The	main	processing	loop	of	the	code	shows	how	to	process	each	buffer
acquired	in	sequential	order.



Performing	a	Ring	Acquisition	Using	Low-Level
Functions
The	LLRing.c	example	demonstrates	how	to	perform	a	ring	acquisition
using	low-level	calls.	The	example	sets	up	a	continuous	acquisition	to
multiple	buffers	allocated	by	NI-IMAQ.
As	described	in	the	low-level	snap	example,	the	program	retrieves	the
acquisition	window	width	of	the	selected	camera	and	aligns	it	on	a	32-bit
boundary.	It	then	creates	a	buffer	list	to	describe	the	acquisition	buffers.
Next,	the	program	sets	the	ROI	to	the	acquisition	window	width.	The
program	calculates	the	correct	memory	requirements	of	the	frame	buffer.
The	program	creates	the	buffer	and	configures	the	buffer	list	for	each
buffer	element	in	the	ring.	The	program	then	locks	the	memory	and	starts
the	image	acquisition	asynchronously.
The	main	processing	loop	of	the	code	shows	how	to	wait	for	the	first
buffer	to	be	filled	and	subsequently	processed.	NI-IMAQ	returns	a	value
of	0xFFFFFFFF	as	the	IMG_ATTR_LAST_VALID_BUFFER	attribute	until
the	successful	acquisition	of	the	first	buffer.	To	guarantee	that	you	wait	for
the	acquisition	of	a	new	buffer	in	a	ring	with	more	than	one	buffer,	you
can	loop	on	the	attribute	IMG_ATTR_LAST_VALID_BUFFER	until	it
changes.	If	your	buffer	analysis	requires	many	computations,	call
imgSessionExamineBuffer	to	extract	the	appropriate	buffer	from	the	live
sequence.	When	you	use	imgSessionExamineBuffer,	the	driver	does	not
allow	you	to	write	new	data	into	that	buffer	during	the	analysis.	Use
imgSessionReleaseBuffer	to	return	the	buffer	to	the	continuous	sequence.



Programming	with	NI-IMAQ	VIs
The	following	sections	describe	important	fundamentals	for	programming
your	image	acquisition	device	using	NI-IMAQ	VIs.
Overview
Location	of	NI-IMAQ	Examples
Common	NI-IMAQ	VI	Parameters
Managing	Buffers	in	LabVIEW
NI-IMAQ	Acquisition	Types
Acquisition	VIs
Triggering
Image	Display
Camera	Attributes
Error	Handling
Refer	to	NI-IMAQ	and	the	LabVIEW	Real-Time	Module	for	information
about	programming	NI-IMAQ	with	the	LabVIEW	Real-Time	Module.



Overview	of	NI-IMAQ	VIs
LabVIEW	is	a	development	environment	based	on	graphical
programming.	In	contrast	to	text-based	programming	languages,	where
instructions	determine	program	execution,	LabVIEW	uses	dataflow
programming,	where	the	flow	of	data	determines	execution.	The	NI-IMAQ
VI	Library,	a	series	of	virtual	instruments	(VIs)	for	using	LabVIEW	with
your	image	acquisition	device,	is	included	with	the	NI-IMAQ	software.
NI	Vision	for	LabVIEW	is	an	image	processing	and	analysis	library	that
consists	of	more	than	300	VIs.	Some	of	the	basic	NI	Vision	VIs	are
shared	with	NI-IMAQ.	If	you	use	these	basic	functions,	you	can	later
upgrade	your	programs	to	use	NI	Vision	without	any	changes	to	the
image	acquisition	VIs.



Location	of	NI-IMAQ	Examples
The	NI-IMAQ	VI	examples	illustrate	some	common	applications.	You	can
find	examples	through	the	NI	Example	Finder.	To	access	the	NI	Example
Finder,	select	Find	Examples	from	the	LabVIEW	Help	menu.	Refer	to
the	NI	Example	Finder	Help	for	more	information	about	finding	examples
using	the	NI	Example	Finder.	Click	the	Help	button	in	the	NI	Example
Finder	to	display	the	NI	Example	Finder	Help.
You	also	can	find	the	NI-IMAQ	VI	examples	in	the
<LabVIEW>\examples\IMAQ	directory,	where	<LabVIEW>	is	the	location
to	which	you	installed	LabVIEW.	For	a	brief	description	of	any	example,
open	the	example	VI	and	choose	File»VI	Properties»Documentation.
You	also	can	display	help	for	the	VI	by	clicking	the	yellow	question	mark
next	to	the	VI	icon	in	the	block	diagram	or	front	panel.



NI-IMAQ	Acquisition	Types
Four	NI-IMAQ	image	acquisition	types	are	available	in	LabVIEW:	snap,
grab,	sequence,	and	ring.	The	following	sections	describe	each
acquisition	type	and	give	examples.



Snap
A	snap	acquires	a	single	image	into	a	memory	buffer.	Use	this	acquisition
mode	to	acquire	a	single	frame	or	field	to	a	buffer.	When	you	invoke	a
snap,	it	initializes	the	device	and	acquires	the	next	incoming	video	frame
(or	field)	to	a	buffer.	Use	a	snap	for	low-speed	or	single-capture
applications.
Use	the	IMAQ	Snap	VI	for	snap	applications.	The	following	diagrams
shows	a	simplified	block	diagram	for	using	IMAQ	Snap.



Grab
A	grab	is	a	continuous,	high-speed	acquisition	of	data	to	a	single	buffer	in
host	memory.	This	function	performs	an	acquisition	that	loops	continually
on	one	buffer.	You	can	get	a	copy	of	the	acquisition	buffer	by	grabbing	a
copy	to	a	LabVIEW	image	buffer.
You	must	use	two	VIs—IMAQ	Grab	Setup	and	IMAQ	Grab	Acquire—for	a
grab	acquisition	in	LabVIEW.	IMAQ	Grab	Setup,	which	you	call	only
once,	initializes	the	acquisition	and	starts	capturing	the	image	to	an
internal	software	buffer.	IMAQ	Grab	Acquire,	which	you	can	call	multiple
times,	copies	the	image	currently	stored	in	the	internal	buffer	to	a
LabVIEW	image	buffer.	The	Immediate?	input	to	IMAQ	Grab	Acquire
determines	if	the	system	returns	the	image	currently	being	acquired	or
the	last	completely	acquired	image.	The	default	value	is	FALSE,	which
causes	NI-IMAQ	to	wait	until	the	current	image	is	completely	acquired
before	returning	it.	A	typical	application	for	an	immediate	transfer	is	the
acquisition	of	images	of	stationary	objects.	After	the	program	finishes
copying	images,	call	IMAQ	Close	once	to	shut	down	the	acquisition.
The	following	figure	shows	a	simplified	block	diagram	for	using	IMAQ
Grab	Setup	and	IMAQ	Grab	Acquire.	In	this	example,	you	perform	an
immediate	copy	by	wiring	a	TRUE	to	the	Immediate?	input.



Sequence
A	sequence	initiates	a	variable-length	and	variable-delay	transfer	to
multiple	buffers.	Use	a	sequence	for	applications	that	process	multiple
images.	You	can	configure	a	sequence	to	acquire	every	frame	or	skip	a
variable	number	of	frames	between	each	image.
Use	IMAQ	Sequence	for	sequence	applications.	IMAQ	Sequence	starts,
acquires,	and	releases	a	sequence	acquisition.	The	input	Skip	Table	is
an	array	containing	the	number	of	frames	to	skip	between	images.	IMAQ
Sequence	does	not	return	until	the	entire	sequence	is	acquired.
The	following	figure	shows	a	simplified	block	diagram	for	using	IMAQ
Sequence.	Place	IMAQ	Create	inside	a	For	Loop	to	create	an	array	of
images	for	the	Images	in	input	to	IMAQ	Sequence.	To	Decimal	and
Concatenate	create	a	unique	name	for	each	image	in	the	array.

Note		Each	image	must	have	a	unique	name.



Ring
A	ring	initiates	a	continuous	high-speed	acquisition	to	multiple	buffers.
Use	a	ring	for	high-speed	applications	where	you	need	to	perform
processing	on	every	image.	You	must	use	multiple	buffers	because
processing	times	may	vary,	depending	on	other	applications	and
processing	results.	You	can	find	an	example	of	a	ring	acquisition	in	the
<LabVIEW>\examples\IMAQ\IMAQ	Low	Level.llb	file,	where	<LabVIEW>
is	the	location	to	which	LabVIEW	is	installed.
You	can	configure	a	ring	to	acquire	every	frame	or	to	skip	a	fixed	number
of	frames	between	acquisitions.	In	LabVIEW,	you	must	use	the	NI-IMAQ
low-level	VIs	to	perform	a	ring.



Common	NI-IMAQ	VI	Parameters
IMAQ	Session	is	a	unique	identifier	that	specifies	the	interface	file	used
for	the	acquisition.	This	identifier	is	produced	by	the	IMAQ	Init	VI	and
used	as	an	input	to	all	other	NI-IMAQ	VIs.	The	NI-IMAQ	VIs	use	IMAQ
Session	Out,	which	is	identical	to	IMAQ	Session,	to	simplify	dataflow
programming.	IMAQ	Session	Out	is	similar	to	the	duplicate	file	sessions
provided	by	the	file	I/O	VIs.	The	high-level	acquisition	VIs—IMAQ	Snap,
IMAQ	Grab	Setup,	and	IMAQ	Sequence—require	you	to	wire	IMAQ
Session	In	only	if	you	are	using	an	interface	other	than	the	default	img0,
if	you	are	using	multiple	devices,	or	if	you	need	to	set	IMAQ	properties
before	the	acquisition.
Many	acquisition	VIs	require	that	you	supply	an	image	buffer	to	receive
the	captured	image.	You	can	create	this	image	buffer	with	the	IMAQ
Create	VI.	Refer	to	Managing	Buffers	in	LabVIEW	for	more	information.
The	input	that	receives	the	image	buffer	is	Image	in.	The	Image	out
output	returns	the	captured	image.
During	development,	it	may	be	useful	to	examine	the	contents	of	your
image	at	run-time.	With	LabVIEW	7.0	or	later,	you	can	use	a	LabVIEW
image	probe	to	view	the	contents	of	your	image	during	execution.	Right-
click	your	image	wire	and	select	Probe.
The	acquisition	VIs	use	the	Region	of	Interest	input	to	specify	a
rectangular	portion	of	an	image	frame	to	be	captured.	You	can	use
Region	of	Interest	to	reduce	the	size	of	the	image	you	want	to	capture.
Region	of	Interest	is	an	array	of	four	elements	with	the	elements	defined
as	Left,	Top,	Right,	Bottom.	If	Region	of	Interest	is	not	wired,	the	entire
image	acquisition	window	is	captured.	You	configure	the	default
acquisition	window	using	MAX.
The	acquisition	VIs	use	the	Step	x	and	Step	y	inputs	to	specify	a
horizontal	and	vertical	sampling	step.	The	sampling	step	causes	a
reduction	in	spatial	resolution.



Managing	Buffers	in	LabVIEW
IMAQ	Create	and	IMAQ	Dispose	manage	image	buffers	in	LabVIEW.
IMAQ	Create	allocates	an	image	buffer.	The	following	diagram	illustrates
the	IMAQ	Create	VI.

Image	Name	is	a	label	for	the	buffer	created.	Each	buffer	must	have	a
unique	name.	Image	Type	specifies	the	type	of	image	being	created.
Use	8	bits	for	8-bit	monochrome	images,	16	bits	for	10-,	12-,	and	14-bit
monochrome	images,	RGB	for	RGB	color	images,	and	HSL	for	HSL	color
images.	If	you	do	not	know	the	image	type	at	design	time,	you	can	get
the	image	type	programmatically	from	the	session	with	the	LabVIEW
property	node.
When	you	acquire	into	a	buffer,	the	image	type	of	the	buffer	is	coerced	to
match	the	type	of	the	acquired	image.
New	Image	contains	information	about	the	buffer,	which	is	initially	empty.
When	you	wire	New	Image	to	the	Image	in	input	of	an	image	acquisition
VI,	the	image	acquisition	VI	allocates	the	correct	amount	of	memory	for
the	acquisition.	If	you	are	going	to	process	the	image,	you	might	need	to
wire	to	Border	Size.	Border	Size	is	the	width,	in	pixels,	created	around
an	image.	Some	image	processing	functions,	such	as	labeling	and
morphology,	require	a	border.
IMAQ	Dispose	frees	the	memory	allocated	for	the	image	buffer.	Call	this
VI	only	after	the	image	is	no	longer	required	for	processing.	The	following
diagram	illustrates	the	IMAQ	Dispose	VI.



Acquisition	VIs
Two	acquisition	VI	types	are	available	in	LabVIEW—high-level	and	low-
level.



High-Level
You	can	use	the	high-level	acquisition	VIs	for	basic	image	acquisition
applications.	NI-IMAQ	includes	VIs	for	snap,	grab,	and	sequence	as
described	in	NI-IMAQ	Acquisition	Types.	You	can	find	examples	of	using
the	high-level	acquisition	VIs	in	the	<LabVIEW>\examples\IMAQ\IMAQ
High	Level.llb	file,	where	<LabVIEW>	is	the	location	to	which	LabVIEW	is
installed.



Low-Level
Use	the	low-level	acquisition	VIs	for	more	advanced	image	acquisition
applications,	including	ring	acquisitions	and	acquisitions	to	onboard
memory.	The	low-level	VIs	configure	an	acquisition,	start	an	acquisition,
retrieve	the	acquired	images,	and	stop	an	acquisition.	You	can	use	these
VIs	in	conjunction	with	the	event	VIs	to	construct	advanced	image
acquisition	applications.
Complete	the	following	steps	to	perform	a	low-level	acquisition:

1.	 Call	IMAQ	Init	to	initialize	the	device	and	create	an	IMAQ
Session.

2.	 Configure	the	acquisition	with	IMAQ	Configure	List	and	IMAQ
Configure	Buffer.	IMAQ	Configure	List	configures	a	buffer	list	to	be
used	in	an	acquisition.	The	buffer	list	contains	a	specific	number
of	buffers	that	contain	the	acquired	images.	The	buffers	can	be
stored	either	in	system	memory	or	in	onboard	memory	for	devices
with	onboard	memory.

3.	 Call	IMAQ	Configure	Buffer	once	for	each	buffer	in	the	buffer	list.
The	buffer	contains	the	channel	or	port	from	which	to	acquire	and
the	number	of	frames	to	skip	before	acquiring	into	the	buffer.

4.	 After	configuring	the	buffer	list	and	individual	buffers,	call	IMAQ
Start	to	start	the	acquisition	asynchronously.	IMAQ	Start	returns
immediately	after	the	acquisition	has	started.

5.	 Access	the	acquired	images	using	either	IMAQ	Get	Buffer	or
IMAQ	Extract	Buffer.	IMAQ	Get	Buffer	returns	acquired	images
from	the	buffer	list	and	is	normally	used	for	snap	and	sequence
acquisitions.	IMAQ	Get	Buffer	waits	until	the	requested	buffer	has
been	acquired	to	return	the	image.	You	also	can	use	this	VI	to
return	all	images	in	the	buffer	list.	IMAQ	Get	Buffer	can	retrieve
images	from	a	continuous	acquisition	only	if	the	acquisition	has
been	stopped.	

IMAQ	Extract	Buffer	extracts	a	buffer	from	a	continuous
acquisition	and	allows	for	the	examination	of	a	buffer	during
acquisition.	This	VI	removes	the	buffer	from	the	acquisition.	NI-
IMAQ	does	not	write	new	data	into	the	buffer	until	this	VI	is	called
again.	Use	IMAQ	Extract	Buffer	in	ring	acquisitions	when	you



must	process	images	during	the	acquisition.	IMAQ	Copy	Acquired
Buffer	returns	a	copy	of	an	acquired	image.	IMAQ	Copy	Acquired
Buffer	allows	you	to	create	a	copy	of	any	buffer	at	any	time	during
the	acquisition.

6.	 After	an	acquisition,	release	the	resources	associated	with	the
acquisition	using	IMAQ	Close.	IMAQ	Close	also	stops	the
acquisition	if	one	is	in	progress.	If	you	want	to	stop	the	acquisition
without	releasing	the	resources	(such	as	the	image	buffers),	use
IMAQ	Stop.

Examples	of	the	low-level	acquisition	VIs	are	included	in	the
<LabVIEW>\examples\IMAQ\IMAQ	Low	Level.llb	file,	where	<LabVIEW>
is	the	location	to	which	LabVIEW	is	installed.



Bayer	Decoded	Acquisition
Complete	the	following	steps	to	perform	a	Bayer	decoded	acquisition:

1.	 Call	IMAQ	Init	to	generate	an	IMAQ	Session.
2.	 Use	the	IMAQ	property	node	to	find	the	bits	per	pixel.
3.	 Create	an	image	with	IMAQ	Create	using	the	image	type	from	the

property	node.
4.	 Acquire	the	image	with	IMAQ	Snap.
5.	 Call	IMAQ	Create	Bayer	LUT	to	create	a	lookup	table	based	on

the	input	gains.
Note		To	find	the	appropriate	values	for	the	gains,	use	the
White	Balancing	Utility	located	at	Start»All
Programs»National	Instruments»Vision»White
Balancing	Utility.

6.	 Create	an	RGB	image	using	IMAQ	Create.
7.	 Call	IMAQ	Bayer	Color	Decode	to	decode	the	color	information

from	the	raw	image.
The	following	figure	shows	a	block	diagram	for	acquiring	an	IMAQ	Bayer
decoded	image.



Triggering
You	can	use	trigger	lines	on	the	image	acquisition	device	to	link	or
coordinate	a	vision	action	or	function	with	events	external	to	the
computer,	such	as	receiving	a	strobe	pulse	for	lighting	or	a	pulse	from	an
infrared	detector	that	indicates	the	position	of	an	item	on	an	assembly
line.	All	TTL	trigger	lines	are	bidirectional	so	that	the	device	can	generate
or	receive	the	triggers	on	any	line.	Isolated	inputs	and	outputs	are
unidirectional.	Isolated	inputs	may	only	be	used	to	receive	triggers.
Isolated	outputs	may	only	be	used	to	generate	triggers.	Use	Real-Time
System	Integration	(RTSI)	triggers	to	coordinate	your	image	acquisition
device	with	other	National	Instruments	devices,	such	as	data	acquisition
(DAQ)	devices.
Use	IMAQ	Configure	Trigger2	to	configure	the	trigger	conditions	for	an
acquisition.	You	must	call	IMAQ	Configure	Trigger2	before	the	acquisition
VI.	The	Trigger	Type	input	specifies	the	type	of	trigger	signal.	Each
trigger	line	has	a	programmable	polarity	that	is	specified	with	Trigger
Polarity.	Frame	timeout	specifies	the	amount	of	time	to	wait	for	the
trigger.
The	following	diagram	shows	how	to	use	IMAQ	Configure	Trigger2	to
perform	a	snap	acquisition	based	on	a	trigger.



Image	Display
Many	image	acquisition	applications	require	that	one	or	more	images	be
displayed.	You	have	three	options	for	displaying	images	in	LabVIEW.
If	you	have	LabVIEW	7.0	or	later,	you	display	an	image	directly	on	the
front	panel	using	the	Image	Display	control,	which	is	available	on	the
Vision	Controls	palette.	To	display	an	image	on	the	Image	Display
control,	place	the	image	control	on	the	front	panel	of	your	VI.	On	the
block	diagram,	wire	the	Image	Out	from	an	acquisition	VI	to	the	Image
Display	control	terminal.	The	following	diagram	illustrates	using	an	Image
Display	control	to	display	an	image.	To	view	examples	using	the	Image
Display	control	in	LabVIEW	7.0	and	later,	select	Help»Find	Examples.

If	you	have	NI	Vision	7	for	LabVIEW,	the	image	processing	and	analysis
software	for	LabVIEW,	you	can	display	an	image	in	an	external	window
using	the	External	Display	VIs	on	the	External	Display	palette.	IMAQ
WindDraw,	located	at	Vision	Utilities»Display,	displays	an	image	in	a
separate	image	window.	The	following	figure	illustrates	using	IMAQ
WindDraw	to	display	an	image	acquired	using	IMAQ	Snap.	You	can
display	images	in	the	same	way	using	any	acquisition	type.	Refer	to	the
NI	Vision	Concepts	Manual	for	more	information	about	the	display
capabilities	of	NI	Vision.

If	you	do	not	have	either	LabVIEW	7.0	or	later	or	NI	Vision,	you	can
display	an	image	with	a	LabVIEW	picture	control.
To	display	an	image	on	a	picture	control,	place	the	picture	control	on	the
front	panel	of	the	VI.	Use	either	the	IMAQ	ImageToArray	VI	or	the	IMAQ
ColorImageToArray	VI	to	copy	an	image	from	an	image	buffer	into	a
LabVIEW	array.	You	can	wire	this	array	to	the	Draw	True-Color	Pixmap
VI.	Wire	the	new	image	output	from	Draw	True-Color	Pixmap	to	the



picture	control	indicator.	Refer	to	the	LabVIEW	VI,	Function,	&	How	To
Help	for	more	information	about	the	picture	control.	The	following	figure
illustrates	using	a	picture	control	to	display	an	RGB	image	acquired	with
IMAQ	Snap.



Camera	Attributes
Camera	attribute	VIs	allow	you	to	control	camera-specific	functions,	such
as	integration	time	and	pixel	binning,	directly	from	LabVIEW.	You	can	set
them	from	MAX.	Information	about	specific	attributes	for	some	cameras
is	contained	in	a	camera	attribute	file	<my	camera>.txt,	which	is	in	the	<NI-
IMAQ>/Camera	Info	directory,	where	<NI-IMAQ>	is	the	location	to	which
NI-IMAQ	is	installed.
Use	the	IMAQ	Set	Camera	Attribute	VI	to	set	the	value	of	a	camera
attribute.	The	camera	attribute	file	lists	all	attributes	for	the	camera	and
each	attribute	description	contains	four	fields:	Attribute	Name,
Description,	Data	Type,	and	Possible	Values.

Note		Camera	attribute	files	are	not	available	for	every	camera.

The	Attribute	Name	field	contains	the	name	of	the	attribute	in	quotes.
Wire	this	field	to	the	Camera	Attribute	input	on	IMAQ	Set	Camera
Attribute	VI.	The	Data	Type	field	contains	the	data	type	of	the	attribute
which	can	either	be	String,	Integer,	or	Float.	String	indicates	that	there
is	a	list	of	possible	values	which	are	listed	in	Possible	Values	in	quotes.
To	set	the	value	of	a	string	attribute,	wire	the	appropriate	string	value	to
Attribute	Value	on	IMAQ	Set	Camera	Attribute.

Note		The	spelling	and	syntax	of	the	Attribute	Name	and	string
values	must	match	the	camera	attribute	file	exactly.

A	data	type	of	Integer	indicates	that	NI-IMAQ	converts	the	string	wired	to
Attribute	Value	to	an	integer.	Float	indicates	that	NI-IMAQ	converts	the
string	wired	to	Attribute	Value	to	a	floating	point	number.	The	valid
numeric	values	for	integer	and	float	data	types	are	listed	in	Possible
Values.	Use	Format	into	String,	located	on	the	String	subpalette,	to
convert	numerics	into	strings	for	use	with	IMAQ	Set	Camera	Attribute.
The	following	figure	shows	how	to	use	IMAQ	Set	Camera	Attribute	to	set
the	value	of	a	float	camera	attribute.



Use	the	IMAQ	Get	Camera	Attribute	VI	to	get	the	value	of	a	camera
attribute.	Use	MAX	to	find	information	about	the	attributes	for	your
camera.	All	camera	attributes	are	returned	in	string	format.	If	the	data
type	of	the	attribute	is	integer	or	float,	use	the	Scan	from	String	function,
located	on	the	String	subpalette,	to	convert	the	string	into	a	numeric.	The
following	figure	shows	how	to	use	IMAQ	Get	Camera	Attribute	with	Scan
from	String	to	get	the	value	of	a	float	camera	attribute.

Many	cameras	are	configured	with	serial	commands.	Camera	files
provided	by	National	Instruments	are	already	programmed	with	the
appropriate	camera	serial	command	set.	All	serial	commands	set	in	the
camera	file	are	automatically	sent	to	the	camera	when	IMAQ	Init	is
called.	If	you	need	more	low-level	control	over	the	serial	communication
between	the	camera	and	your	IMAQ	device,	use	the	IMAQ	Serial	Read
and	IMAQ	Serial	Write	VIs.
The	following	figure	illustrates	how	to	use	the	IMAQ	Serial	VIs.



Error	Handling
Every	NI-IMAQ	VI	contains	an	error	in	input	cluster	and	an	error	out
output	cluster.	The	following	diagram	illustrates	error	clusters.

The	clusters	contain	a	Boolean	value	that	indicates	if	an	error	occurred,
the	code	for	the	error,	and	the	source	or	the	name	of	the	VI	that	returned
the	error.	If	error	in	indicates	an	error,	the	VI	passes	the	error	information
to	error	out	and	does	not	execute	any	NI-IMAQ	function.
You	can	use	Functions»Time&Dialog	Palette»Simple	Error	Handler	to
check	for	errors	that	occur	while	executing	a	VI.	If	you	wire	an	error
cluster	to	the	Simple	Error	Handler	VI,	the	VI	deciphers	the	error
information	and	displays	a	dialog	box	that	describes	the	error.	If	no	error
occurred,	the	Simple	Error	Handler	VI	does	nothing.
The	following	figure	shows	how	to	wire	an	NI-IMAQ	VI	to	the	Simple	Error
Handler	VI.



NI-IMAQ	and	the	LabVIEW	Real-Time	Module
With	NI-IMAQ	and	the	LabVIEW	Real-Time	Module,	you	have	all	the
tools	necessary	to	develop	a	complete	image	acquisition	application	on	a
reliable,	embedded	platform.	NI-IMAQ	for	the	LabVIEW	Real-Time
Module	combines	the	image	acquisition	capabilities	of	Vision	hardware
and	NI-IMAQ	software	with	the	real-time	programming	and	execution
capabilities	of	the	LabVIEW	Real-Time	Module.
Develop	your	image	acquisition	application	with	NI-IMAQ	for	the
LabVIEW	Real-Time	Module.	Then	download	your	code	to	run	on	a	real-
time,	embedded	target.	You	also	can	add	National	Instruments	DAQ,
Motion	Control,	CAN,	and	serial	instruments	to	the	system	to	create	a
complete,	integrated,	embedded	system.
The	following	sections	describe	how	you	can	use	NI-IMAQ	to	create	an
image	acquisition	application	for	a	real-time,	embedded	target	with	the
LabVIEW	Real-Time	Module.
System	Components	and	Requirements
Displaying	Images	with	NI-IMAQ	and	the	LabVIEW	Real-Time	Module
Troubleshooting	NI-IMAQ	for	the	LabVIEW	Real-Time	Module



System	Components	and	Requirements
Using	NI-IMAQ	with	the	LabVIEW	Real-Time	Module	consists	of	a
development	system	and	one	or	more	deployed	real-time	targets.



Development	System
The	development	system	is	made	up	of	two	components—a	Pentium-
based	host	machine	using	a	Windows	operating	system	and	a	National
Instruments	PXI	chassis	housing	a	PXI	controller.	Use	the	host	machine
to	configure	the	PXI	controller	as	a	real-time	target	and	to	develop	the
application.	Execute	the	application	remotely	on	the	PXI	controller.	The
two	machines	communicate	with	each	other	over	a	network	connection
and	use	MAX	to	share	configuration	settings	and	software.

Note		You	must	have	a	network	connection	during	development	to
configure	your	real-time	target	and	download	software	and	code
from	your	host	machine.	This	network	connection	is	optional	at
runtime.

Pentium-Based	Host	Computer
The	host	machine	must	meet	the	following	minimum	system
requirements:

Windows	Vista/XP/2000
Pentium	4	1	GHz	processor
1024	×	768	resolution	video	adapter	using	16-bit	color
512	MB	RAM
2	GB	of	free	hard	disk	space
LabVIEW	7.1.1	or	later	and	the	LabVIEW	Real-Time	Module	7.1.1
or	later

National	Instruments	PXI	System
Select	the	PXI	controller	that	best	meets	the	needs	of	the	application.
The	following	table	lists	the	different	controllers	you	can	use	with	NI-
IMAQ	and	the	LabVIEW	Real-Time	Module.

Device Functionality
NI	8184,	NI	8185,	and	NI	8186 Supports	full	functionality

NI	8175	and	NI	8176 Supports	full	functionality
NI	8106,	NI	8170,	NI	8156B,	and	NI	8140

RT	Series
Does	not	support	real-time

Video	Out

The	PXI	system	also	must	meet	the	following	minimum	system



requirements:
Network	adapter
National	Instruments	PXI	image	acquisition	device
Analog	or	digital	camera	and	associated	cables



Deployed	System
After	you	have	configured	the	host	development	system,	you	can	set	up
and	configure	additional	LabVIEW	Real-Time	Module	targets	for
deployment.	These	deployed	systems	use	the	same	hardware	and
software	as	the	development	LabVIEW	Real-Time	Module	target.
The	deployed	LabVIEW	Real-Time	Module	devices	can	be	connected	to
the	same	subnet	as	the	host	development	system	or	connected	to	a
different	subnet	as	required	by	your	application.	These	connections	are
illustrated	in	the	following	figure.



Displaying	Images	with	NI-IMAQ	and	the
LabVIEW	Real-Time	Module
NI-IMAQ	and	the	LabVIEW	Real-Time	Module	give	you	two	options	for
displaying	images—Remote	Display	and	RT	Video	Out.	Choose	the
display	option	that	best	fits	the	needs	of	the	application.



Remote	Display
Remote	Display	is	available	in	LabVIEW	7.0	or	later.	Use	Remote	Display
during	development	and	debugging	to	view	the	LabVIEW	front	panel
Image	Display	control	from	the	host	machine.	Use	RT	Video	Out	to
display	images	on	a	monitor	connected	to	the	remote	LabVIEW	Real-
Time	Module	system.
When	you	use	Remote	Display,	the	real-time	target	machine	must
transfer	the	image	back	to	host	machine	across	the	network.	Use	the
IMAQ	Remote	Compression	VI,	located	on	the	Vision	Utilities»IMAQ	RT
palette,	to	minimize	network	bandwidth	consumed	for	remote	display.



RT	Video	Out
RT	Video	Out	allows	you	to	display	images	on	a	monitor	that	is
connected	to	the	PXI	controller.	To	access	this	feature,	use	the	IMAQ	RT
Video	Out	VI	from	the	Vision	Utilities»IMAQ	RT	palette.

Note		This	feature	is	available	only	on	PXI	controllers	that	feature
the	i815	chipset	or	the	i845	chipset,	such	as	the	National
Instruments	PXI-8175/76	Series	controllers	or	the	PXI-8184/85/86
Series	controllers.

To	programmatically	configure	the	system	to	use	IMAQ	RT	Video	Out	to
display	system	images,	use	the	IMAQ	Video	Out	Display	Mode	VI.	This
VI	allows	you	to	set	parameters	for	screen	area,	color	depth,	and	refresh
frequency.

Tip		Refer	to	the	HL	Grab	to	Real-Time	Target	with	Display
example	for	a	demonstration	of	interactively	setting	the	RT	Video
Out	display	mode.



Troubleshooting	NI-IMAQ	and	the	LabVIEW	Real-
Time	Module
This	section	describes	solutions	and	suggestions	for	common	errors	in
NI-IMAQ	for	the	LabVIEW	Real-Time	Module.



PXI	Controller	Errors
Why	can​t	MAX	find	my	PXI	controller?
Try	the	following	techniques	if	your	PXI	controller	does	not	appear	in
MAX:

When	configuring	the	PXI	controller,	ensure	that	the	controller	is
located	on	the	same	subnet	of	the	network	as	the	host	PC.	If	you
are	unsure	of	your	network	configuration,	consult	your	network
administrator	for	assistance.
If	you	do	not	have	a	keyboard	connected	to	the	PXI	controller,
check	the	BIOS	settings	of	the	controller.	The	Halt	On	setting	must
be	set	to	All,	But	Keyboard	for	the	PXI	controller	to	boot	without	a
keyboard	connected.	You	can	find	the	Halt	On	setting	in	the
Standard	CMOS	Setup	options.	Refer	to	the	PXI	controller	user
manual	for	more	information	about	BIOS	settings.



Remote	Display	Errors
Why	is	my	application	slow	when	I	use	Remote	Display?
Remote	Display	transfers	images	across	the	network	from	the	Real-Time
target	machine	to	the	host	machine.	Images	are	large,	and	this	network
transfer	can	be	slow.	You	can	use	the	IMAQ	Remote	Compression	VI,
located	on	the	Vision	Utilities»IMAQ	RT	palette,	to	compress	the	image
before	transferring	it	over	the	network.	Compressing	the	image	improves
performance	but	may	impact	image	quality.
Why	does	my	remotely	displayed	image	have	low	quality?
Try	the	following	to	improve	your	image	quality:

Ensure	that	the	camera	aperture	is	open	to	allow	the	appropriate
amount	of	light	for	an	acquisition.
Check	the	compression	settings.
Verify	that	the	display	settings	in	Windows	are	set	to	use	at	least
24-bit	color.



RT	Video	Out	Errors
Why	do	I	have	an	invalid	Video	Out	Mode?
To	use	the	RT	Video	Out	functionality	in	NI-IMAQ	for	the	LabVIEW	Real-
Time	Module,	you	must	have	a	PXI	controller	that	supports	this	feature.
Refer	to	the	following	table	for	a	list	of	controllers	that	supports	the	RT
Video	Out	functionality.

Device Functionality
NI	8184,	NI	8185,	and	NI	8186 Supports	full	functionality

NI	8175	and	NI	8176 Supports	full	functionality
NI	8106,	NI	8170,	NI	8156B,	and	NI

8140	RT	Series
Does	not	support	RT	Video	Out

RT	Desktop Support	based	on	graphics	card
in	RT	Desktop

If	you	are	using	a	controller	that	does	not	support	RT	Video	Out,	consider
using	Remote	Display	to	display	the	images.
Why	can​t	I	see	my	images	when	I	use	RT	Video	Out?
Use	the	IMAQ	Video	Out	VI	to	configure	the	video	mode	before	you
attempt	to	display	the	images.	This	VI	allows	you	to	set	the	refresh
frequency,	screen	area,	and	color	depth.

Note		If	you	are	using	a	monitor	that	does	not	support	high	refresh
frequencies,	the	images	do	not	display	correctly.	Refer	to	the
monitor	documentation	for	information	about	supported	refresh
frequencies.



Programming	with	ActiveX	controls
This	topic	discusses	using	National	Instruments	NI	Vision	for	Visual	Basic
software	with	your	image	acquisition	device,	including	the	organization	of
NI	Vision	for	Visual	Basic	and	using	the	CWIMAQ	control.
Programming	with	ActiveX	controls	allows	you	to	easily	configure	and
perform	image	acquisition	tasks	using	NI	Vision	for	Visual	Basic	and	the
CWIMAQ	control.



Documentation	and	Examples
This	topic	assumes	that	you	are	familiar	with	Visual	Basic	and	can	use
ActiveX	controls	in	Visual	Basic.	The	following	are	good	sources	of
information	about	Visual	Basic	and	ActiveX	controls:

Microsoft	Developer	Network	(MSDN)	at	www.msdn.microsoft.com
Documentation	that	accompanies	Microsoft	Visual	Studio

Several	additional	documentation	resources	are	available	to	help	you
create	your	vision	application:

NI	Vision	Concepts	Manual—If	you	are	new	to	machine	vision	and
imaging,	read	this	manual	to	understand	the	concepts	behind	NI
Vision.
NI	Vision	for	Visual	Basic	Reference	Help—If	you	need	information
about	individual	methods,	properties,	or	objects,	refer	to	this	help
file.
Example	programs—If	you	want	examples	of	how	to	create
specific	applications,	go	to	the	<Vision>\Examples\MSVB	directory
or	the	<Vision>\Examples\MSVB.NET	directory,	where	<Vision>	is
the	location	to	which	you	installed	Vision.
CWMachineVision	source	code—If	you	want	to	see	the	source
code	for	the	CWMachineVision	control,	go	to	the
<Vision>\Source\MSVB\MachineVision	directory.
Application	Notes—If	you	want	to	know	more	about	advanced	NI
Vision	concepts	and	applications,	refer	to	the	Application	Notes
located	on	the	National	Instruments	Web	site	at	ni.com/appnotes.nsf.
NI	Developer	Zone	(NIDZ)—If	you	want	even	more	information
about	developing	a	vision	application,	visit	the	NI	Developer	Zone
at	ni.com/zone.	The	NI	Developer	Zone	contains	example
programs,	tutorials,	technical	presentations,	the	Instrument	Driver
Network,	a	measurement	glossary,	an	online	magazine,	a	product
advisor,	and	a	community	area	where	you	can	share	ideas,
questions,	and	source	code	with	vision	developers	around	the
world.

javascript:WWW(WWW_Zone)


NI	Vision	for	Visual	Basic
NI	Vision	for	Visual	Basic	consists	of	four	ActiveX	controls	contained	in
two	files:	cwimaq.ocx	and	cwmv.ocx.



cwimaq.ocx
cwimaq.ocx	contains	three	ActiveX	controls	and	a	collection	of	ActiveX
objects.	The	ActiveX	controls	are	the	CWIMAQ	control,	the
CWIMAQVision	control,	and	the	CWIMAQViewer	control.	Refer	to
ActiveX	Objects	for	more	information	about	the	ActiveX	objects.



CWIMAQ	Control
Use	this	control	to	configure	and	perform	an	acquisition	from	an	image
acquisition	device.	The	CWIMAQ	control	has	property	pages	that	allow
you	to	modify	various	properties	to	configure	your	acquisition	and	gather
information	about	your	image	acquisition	device.	All	of	the	functionality
available	from	the	property	pages	during	design	time	is	also	available
through	the	properties	of	the	CWIMAQ	control	during	run-time.	The
control	has	methods	that	allow	you	to	perform	and	control	acquisitions,
as	well.

Note		You	must	have	the	NI-IMAQ	device	driver	installed	on	the
target	system	for	the	CWIMAQ	control	to	function.



CWIMAQVision	Control
Use	this	control	to	analyze	and	process	images	and	their	related	data.
The	CWIMAQVision	control	provides	methods	for	reading	and	writing
images	to	and	from	files,	analyzing	images,	and	performing	a	variety	of
image	processing	algorithms	on	images.

Note		This	control	is	available	only	if	you	have	NI	Vision	for	Visual
Basic	installed.	Contact	your	National	Instruments	sales
representative,	or	visit	the	National	Instruments	Web	site	at	ni.com
to	purchase	NI	Vision	for	Visual	Basic.

javascript:WWW(WWW_NI)


CWIMAQViewer	Control
Use	this	control	to	display	images	and	provide	the	interface	through
which	the	user	interacts	with	the	displayed	image.	This	control	includes
the	ability	to	zoom	and	pan	images	and	to	draw	regions	of	interest	(ROIs)
on	an	image.	The	CWIMAQViewer	control	has	property	pages	that	allow
you	to	configure	the	appearance	and	behavior	of	the	viewer	during
design	time	as	well	as	properties	that	you	can	configure	during	run-time.
The	control	has	methods	that	allow	you	to	attach	images	to	and	detach
images	from	the	viewer	for	display	purposes.

Note		The	CWIMAQViewer	control	is	referred	to	as	a	viewer	in	the
remainder	of	this	document.



cwmv.ocx
cwmv.ocx	contains	one	ActiveX	control	and	a	collection	of	ActiveX
objects.	Refer	to	ActiveX	Objects	for	more	information	about	ActiveX
objects.



CWMachineVision	Control
Use	this	control	to	perform	high-level	machine	vision	tasks,	such	as
measuring	distances.	This	control	is	written	entirely	in	Visual	Basic	using
the	methods	on	the	CWIMAQVision	and	CWIMAQViewer	controls.	The
source	code	for	the	CWMachineVision	control	is	included	in	the	product.

Note		This	control	is	available	only	if	you	have	NI	Vision	for	Visual
Basic	installed.	Contact	your	National	Instruments	sales
representative,	or	visit	the	National	Instruments	Web	site	at	ni.com
to	purchase	NI	Vision	for	Visual	Basic.

javascript:WWW(WWW_NI)


ActiveX	Objects
ActiveX	objects	are	classified	as	input	and	output	objects.	The	objects
are	grouped	according	to	input	parameters	and	output	parameters	that
are	used	by	particular	methods,	which	reduces	the	number	of	parameters
that	you	must	pass	to	those	methods.

Note		ActiveX	objects	in	cwimaq.ocx	have	a	CWIMAQ	prefix,	and
objects	in	cwmv.ocx	have	a	CWMV	prefix.

You	must	create	an	ActiveX	object	before	you	can	use	it.	You	can	use	the
New	keyword	in	Visual	Basic	to	create	these	objects.	For	example,	use
the	following	syntax	to	create	and	store	an	image	in	a	variable	named
image:
Dim	image	as	New	CWIMAQImage

Tip		If	you	intend	to	develop	your	application	in	Visual	C++,
National	Instruments	recommends	that	you	use	NI	Vision	for
LabWindows/CVI.	However,	if	you	decide	to	use	NI	Vision	for
Visual	Basic	to	develop	applications	for	Visual	C++,	you	can	create
objects	using	the	respective	Create	methods	on	the
CWIMAQVision	control	or	CWMachineVision	control.	For	example,
to	create	a	CWIMAQImage	object,	use	the
CWIMAQVision.CreateCWIMAQImage	method.



Buffer	Management
The	CWIMAQ	control	uses	the	CWIMAQImage	object	in	a
CWIMAQImage	collection	as	the	image	buffer	when	performing	an
acquisition.	You	can	access	this	collection	using	the	Images	property	on
the	CWIMAQ	control.	Set	the	count	property	of	the	collection	to	the
number	of	buffers	that	your	application	requires.
You	also	can	set	the	number	of	buffers	during	design	time	by	setting	the
value	of	Image	Count	on	the	Acquisition	property	page	for	the
CWIMAQ	control.	When	you	start	the	acquisition,	the	CWIMAQ	control
automatically	manages	the	image	type	and	the	size	of	the	images	in	the
collection.



Acquire	an	Image
Use	the	CWIMAQ	control	to	acquire	images	with	a	National	Instruments
image	acquisition	device.	You	can	use	NI	Vision	for	Visual	Basic	to
perform	one-shot	and	continuous	acquisitions.	You	can	choose	the
acquisition	type	during	design	time	by	setting	the	value	of	the
Acquisition	Type	combo	box	to	One-Shot	or	Continuous.	The
Acquisition	Type	combo	box	is	located	on	the	Acquisition	property
page	of	the	CWIMAQ	control.	You	can	set	the	value	at	run-time	by	setting
the	CWIMAQ.AcquisitionType	property	to	cwimaqAcquisitionOneShot	or
cwimaqAcquisitionContinuous.



One-Shot	Acquisition
Use	a	one-shot	acquisition	to	start	an	acquisition,	perform	the	acquisition,
and	stop	the	acquisition	using	a	single	method.	The	number	of	frames
acquired	is	equal	to	the	number	of	images	in	the	images	collection.	Use
the	CWIMAQ.AcquireImage	method	to	perform	this	operation
synchronously.	Use	the	CWIMAQ.Start	method	to	perform	this	operation
asynchronously.
If	you	want	to	acquire	a	single	field	or	frame	into	a	buffer,	set	the	image
count	to	1.	This	operation	is	also	referred	to	as	a	snap.	Use	a	snap	for
low-speed	or	single	capture	applications.	The	following	code	illustrates	a
synchronous	snap:
Private	Sub	Start_Click()
CWIMAQ1.AcquisitionType	=	cwimaqAcquisitionOneShot
CWIMAQ1.AcquireImage

End	Sub
If	you	want	to	acquire	multiple	frames,	set	the	image	count	to	the	number
of	frames	you	want	to	acquire.	This	operation	is	called	a	sequence.	Use	a
sequence	for	applications	that	process	multiple	images.	The	following
code	illustrates	an	asynchronous	sequence	when	numberOfImages	is	the
number	of	images	that	you	want	to	process:
Private	Sub	Start_Click()
CWIMAQ1.AcquisitionType	=	cwimaqAcquisitionOneShot
CWIMAQ1.Images.RemoveAll
CWIMAQ1.Images.Add	numberOfImages
CWIMAQ1.Start

End	Sub



Continuous	Acquisition
Use	a	continuous	acquisition	to	start	an	acquisition	and	continuously
acquire	frames	into	the	image	buffers,	and	then	explicitly	stop	the
acquisition.	Use	the	CWIMAQ.Start	method	to	start	the	acquisition.	Use
the	CWIMAQ.Stop	method	to	stop	the	acquisition.	If	you	use	a	single
buffer	for	the	acquisition,	this	operation	is	called	a	grab.	The	following
code	illustrates	a	grab:
Private	Sub	Start_Click()
CWIMAQ1.AcquisitionType	=	cwimaqAcquisitionContinuous
CWIMAQ1.Start

End	Sub
Private	Sub	Stop_Click()
CWIMAQ1.Stop

End	Sub
A	ring	operation	uses	multiple	buffers	for	the	acquisition.	Use	a	ring	for
high-speed	applications	that	require	processing	on	every	image.	The
following	code	illustrates	a	ring,	where	numberOfImages	is	the	number	of
images	that	you	want	to	process:
Private	Sub	Start_Click()
CWIMAQ1.AcquisitionType	=	cwimaqAcquisitionContinuous
CWIMAQ1.Images.RemoveAll
CWIMAQ1.Images.Add	numberOfImages
CWIMAQ1.Start

End	Sub
Private	Sub	Stop_Click()
CWIMAQ1.Stop

End	Sub



Triggering
You	may	need	to	coordinate	a	vision	event	with	events	that	are	occurring
outside	the	computer,	such	as	receiving	a	strobe	pulse	for	lighting	or	an
infrared	detector	pulse	indicating	the	position	of	an	item	on	an	assembly
line.	Any	TTL-level	signal	can	serve	as	a	trigger	for	image	acquisition
devices.	All	of	the	lines	are	fully	bidirectional,	allowing	your	image
acquisition	device	to	generate	or	receive	the	triggers	on	any	line.	Use
Real-Time	System	Integration	(RTSI)	triggers	to	coordinate	the	image
acquisition	device	with	other	National	Instruments	devices,	such	as	data
acquisition	(DAQ)	devices.
You	can	configure	triggers	during	both	design	time	and	run-time.	At
design	time,	use	the	Signal	I/O	property	page	of	the	CWIMAQ	control	to
configure	the	triggers.	At	run-time,	use	the	CWIMAQSignals	object,	which
you	can	access	through	CWIMAQ.Signals	to	configure	the	triggers.
Each	CWIMAQSignal	object	that	is	added	to	the	CWIMAQSignals
collection	corresponds	to	a	trigger	line	that	you	want	to	configure.	The
CWIMAQSignal.Line	property	specifies	which	external	or	RTSI	trigger
receives	the	incoming	trigger	signal.	Each	trigger	line	has	a
programmable	polarity	that	is	specified	with	CWIMAQSignal.Polarity.	Use
the	CWIMAQ.FrameTimeout	property	to	specify	the	amount	of	time	to	wait
for	a	trigger.	When	you	have	configured	the	triggers,	you	can	perform	any
acquisition	described	above.	The	following	code	illustrates	the	use	of	a
trigger	to	control	your	acquisition:
Private	Sub	Start_Click()
'Capture	an	image	on	a	trigger	on	RTSI	line	0
CWIMAQ1.Signals.Add.Initialize	cwimaqRTSI,_	cwimaqCaptureStart,
cwimaqActiveHigh,	0

End	Sub



Display	an	Image
Use	the	CWIMAQViewer	control	to	display	an	image.	Use	the
CWIMAQViewer.Attach	method	to	attach	the	image	you	want	the	viewer
to	display.	When	you	attach	an	image	to	a	viewer,	the	image
automatically	updates	the	viewer	whenever	an	operation	modifies	the
contents	of	the	image.	You	can	access	the	image	attached	to	the	viewer
using	the	CWIMAQViewer.Image	property.	Before	you	attach	an	image	to
the	viewer,	the	viewer	already	has	an	image	attached	by	default.
Therefore,	the	viewer	has	an	image	attached	to	it	at	all	times.	You	can
use	the	attached	image	as	either	a	source	image,	destination	image,	or
both	using	the	Image	property.
Use	the	following	code	to	attach	an	image	to	the	viewer:
Private	Sub	Start_Click()
CWIMAQ1.AcquisitionType	=	cwimaqAcquisitionContinuous
CWIMAQ1.Images.RemoveAll
CWIMAQ1.Images.Add	1
CWIMAQViewer1.Attach	CWIMAQ1.Images(1)
CWIMAQ1.Start

End	Sub
Private	Sub	Stop_Click()
CWIMAQ1.Stop

End	Sub
You	can	use	the	CWIMAQViewer.Palette	property	to	access	the
CWIMAQPalette	object	associated	with	the	viewer.	Use	the
CWIMAQPalette	object	to	programmatically	apply	a	color	palette	to	the
viewer.	You	can	set	the	CWIMAQPalette.Type	property	to	apply	predefined
color	palettes.	For	example,	if	you	need	to	display	a	binary	image—an
image	containing	particle	regions	with	pixel	values	of	1	and	a	background
region	with	pixel	values	of	0—set	the	Type	property	to
cwimaqPaletteBinary.	Refer	to	Chapter	2,	Display,	of	the	NI	Vision
Concepts	Manual	for	more	information	about	color	palettes.
You	also	can	set	a	default	palette	during	design	time	using	the	Menu
property	page	for	the	CWIMAQViewer	control.	You	also	can	change	the



color	palette	during	run-time	by	using	the	context	menu	on	the	viewer.



Camera	Attributes
Camera	attributes	allow	you	to	control	camera-specific	functions,	such	as
integration	time	and	pixel	binning.	You	can	access	the	camera	attributes
using	CWIMAQ.CameraAttribute.	You	also	can	set	them	in	MAX.
Information	about	specific	attributes	for	some	cameras	is	contained	in	a
camera	attribute	file	<my	camera>.txt,	which	is	in	the	<NI-IMAQ>/Camera
Info	directory,	where	<NI-IMAQ>	is	the	location	to	which	NI-IMAQ	is
installed.

Note		Camera	attribute	files	are	not	available	for	every	camera.

The	camera	attribute	file	lists	all	attributes	for	the	camera	where	each
attribute	description	contains	four	fields:	Attribute	Name,	Description,
Data	Type,	and	Possible	Values.	The	Attribute	Name	field	contains	the
name	of	the	attribute	in	quotation	marks.	Pass	the	value	of	this	field	to
the	Attribute	parameter	of	the	CameraAttribute	property.
The	Data	Type	field	contains	the	data	type	of	the	attribute,	which	can	be
String,	Integer,	or	Float.	String	indicates	that	possible	values	are	listed
in	quotes	in	the	Possible	Values	section.	To	set	the	value	of	a	String
attribute,	set	the	appropriate	string	value	for	the	CameraAttribute.

Note		The	spelling	and	syntax	of	the	Attribute	Name	and	string
values	must	match	the	camera	attribute	file	exactly.



Error	Handling
Errors	generated	by	the	CWIMAQ	control	have	an	Error	Context	and	a
Status	Code	associated	with	them.	The	CWIMAQErrorContext	constants
specify	the	Error	Contexts.	The	Status	Code	for	an	error	is	a	negative
value	that	corresponds	to	the	actual	error	that	occurred.
There	are	three	ways	that	errors	are	reported	by	the	CWIMAQ	control:

Return	value	of	the	methods
Exceptions
IMAQError	event

The	CWIMAQ.ExceptionOnError	property	specifies	if	the	control	throws	an
exception	when	an	error	occurs.	If	ExceptionOnError	is	set	to	False,	no
exception	is	generated.	If	the	error	was	generated	as	a	result	of	a	method
call,	the	method	returns	the	status	code.	If	ExceptionOnError	is	set	to
True,	the	CWIMAQ	control	throws	an	exception.	If	you	choose	to	catch
this	exception,	you	can	use	the	Err	object	in	Visual	Basic	to	get
information	about	the	exception	that	the	control	generated.
The	CWIMAQ	control	generates	an	IMAQError	event	if	there	is	an	error.
To	select	the	contexts	for	which	CWIMAQ	generates	error	events,	add
the	appropriate	CWIMAQErrorContexts	constants	together	and	assign
the	sum	of	the	constants	to	CWIMAQ.ErrorEventMask.	The	IMAQError
event	provides	information	about	the	status	code	and	the	context	in
which	the	error	occurred
You	can	handle	errors	using	one	of	the	following	methods:

Set	ExceptionOnError	to	True,	and	do	not	provide	an	exception-
handling	mechanism.	This	directs	your	application	to	generate	a
run-time	error	and	display	a	run-time	error	dialog.
Set	ExceptionOnError	to	True,	and	provide	an	exception-handling
mechanism.	You	can	then	direct	how	your	application	handles	the
exception.
Set	ExceptionOnError	to	False	to	check	the	value	of	the	return	code.
This	method	requires	you	to	check	the	return	values	every	time
you	make	a	method	call	and	handle	the	return	values
appropriately.
Use	the	IMAQError	event	handler	in	conjunction	with	setting	the
value	of	ExceptionOnError	to	do	what	is	appropriate	for	your



application.	This	method	allows	you	to	handle	errors	according	to
the	context.	Also,	this	method	allows	you	to	identify	errors	that
might	occur	during	an	asynchronous	acquisition	to	handle	them
appropriately.



Warnings
Warnings	are	different	from	errors	in	the	following	respects:

They	have	a	positive	Status	Code.
They	do	not	generate	exceptions,	even	if	ExceptionOnError	is	True.
They	generate	an	IMAQWarning	event	instead	of	an	IMAQError
event.

You	can	handle	warnings	by	checking	the	return	value	of	the	methods	or
by	providing	an	IMAQWarning	event	handler.



Variable	Height	Acquisition	(VHA)
In	some	line	scan	applications,	you	may	not	know	the	exact	size	of	the
object	or	objects	you	are	imaging.	One	example	is	a	conveyer	belt
application	that	acquires	continuous	line-scan	images	of	objects	with
multiple	sizes.	For	such	applications,	you	can	use	a	mode	of	triggered
acquisition	that	allows	you	to	acquire	a	variable	number	of	lines	in	a
multiple	buffered	application.
In	this	mode,	you	supply	the	image	acquisition	device	a	trigger	which
asserts	when	you	want	to	begin	capture.	The	image	acquisition	device
continues	to	acquire	lines	until	the	trigger	is	unasserted.	When	the
acquisition	is	complete,	the	driver	returns	the	number	of	lines	acquired.
By	using	the	variable	line	mode,	you	acquire	only	the	amount	of	data	that
you	need.	This	technology	greatly	enhances	performance	by	minimizing
the	total	amount	of	data	to	process.



Setup	for	Acquiring	a	Variable	Number	of	Lines
To	set	up	your	system	for	acquiring	a	variable	number	of	lines,	first
determine	the	size	of	the	largest	possible	object	under	inspection.	The
NI-IMAQ	driver	software	defines	the	dimensions	of	an	image	as	width
and	height.	Width	is	the	number	of	pixels	per	line	and	height	is	the
number	of	lines	in	the	image.	When	you	determine	the	maximum
possible	object	size,	in	lines,	for	your	application,	enter	this	number	for
the	height	parameter	in	MAX,	as	follows:

1.	 Launch	MAX.
2.	 Click	Devices	and	Interfaces»NI-IMAQ	Devices»PCI-

14xx»XXX,	where	XXX	represents	the	camera	you	want	to	use.
Click	the	Acquisition	Parameters	tab.

3.	 Enter	the	maximum	possible	number	of	lines	in	the	Acquisition
Window	Height	control.

NI-IMAQ	uses	this	line	number	information	to	allocate	each	image	into	a
buffer.	This	allocation	is	done	prior	to	the	acquisition	to	ensure	that
memory	is	available	on	the	system	before	the	acquisition	begins.
Setting	Up	the	Trigger
The	VHA	trigger	can	come	in	any	unused	external	trigger	line	or	RTSI
line.	The	trigger	can	be	either	High	True	or	Low	True.	Acquisition	of	a
buffer	begins	on	the	assertion	of	this	trigger	line	and	terminates	when	the
line	is	deasserted	or	the	number	of	lines	equals	the	Height	parameter	set
in	MAX.
Enabling	VHA	in	Your	Code
The	actual	implementation	varies	depending	on	the	development
application	you	use,	but	the	concept	is	the	same.	Complete	the	following
general	steps:

1.	 Enable	the	Variable	Height	Acquisition	attribute	or	property.
2.	 Configure	the	buffers.
3.	 Set	up	the	trigger	to	Trigger	each	buffer.
4.	 Begin	the	acquisition.
5.	 Check	the	actual	height	for	each	buffer	during	the	acquisition.



Examples
If	you	install	the	IMAQ	examples	for	your	compiler,	you	can	find	a	ready-
to-run	example	showing	how	to	acquire	a	variable	number	of	lines	with	a
line	scan	camera.

In	LabVIEW,	refer	to	LL	VHA	Ring.vi,	which	is	located	in	the
<LabVIEW>\examples\IMAQ\IMAQ	Signal	IO.llb	file,	where
LabVIEW	is	location	to	which	<LabVIEW>	is	installed.
In	LabWindows/CVI,	refer	to	VHA	Ring.prj,	which	is	located	in	the
<CVI>\samples\IMAQ\Signal	IO	folder.
In	Microsoft	C++	version	6,	refer	to	the	<NI-
IMAQ>\Sample\MSVC\Signal	IO\VHA	Ring	folder.



Integration	with	DAQ	and	Motion	Control
Platforms	that	support	NI-IMAQ	also	support	NI-DAQ	and	a	variety	of
National	Instruments	data	acquisition	(DAQ)	devices.	This	allows
integration	between	image	acquisition	devices	and	DAQ	products.
With	National	Instruments	image	acquisition	hardware	and	NI	Vision
pattern	matching	software,	you	can	quickly	and	accurately	locate	objects
in	instances	where	objects	vary	in	size,	orientation,	focus,	and	even	when
the	part	is	poorly	illuminated.	Use	National	Instruments	high-performance
stepper	and	servo	motion	control	products	with	pattern	matching	software
in	inspection	and	guidance	applications,	such	as	locating	alignment
markers	on	semiconductor	wafers,	guiding	robotic	arms,	inspecting	the
quality	of	manufactured	parts,	and	locating	cells.



Glossary
A 	 B 	 C 	 D 	 F 	 G 	 H 	 I 	 L 	 M 	 N 	 P 	 Q 	 R 	 S 	 T 	 U 	 V 	

W 	 Y



A
acquisition
window

The	image	size	specific	to	a	video	standard	or	camera
resolution.

active	line
region

The	region	of	lines	actively	being	stored.	Defined	by	a	line
start	(relative	to	the	vertical	synchronization	signal)	and	a
line	count.

active
pixel
region

The	region	of	pixels	actively	being	stored.	Defined	by	a	pixel
start	(relative	to	the	horizontal	synchronization	signal)	and	a
pixel	count.

API Application	programming	interface.
area A	rectangular	portion	of	an	acquisition	window	or	frame	that

is	controlled	and	defined	by	software.



B
base
configuration

A	configuration	defined	by	the	Camera	Link	specification
that	uses	one	cable	between	the	camera	and	the	image
acquisition	device.	This	configuration	supports
combinations	of	camera	bit	depths	and	number	of	taps
that	allow	the	data	to	be	transmitted	and	received	by	a
single	28-signal	interface	chip.

black
reference
level

The	level	that	represents	the	darkest	value	an	image	can
have.

buffer Temporary	storage	for	acquired	data.
bus A	group	of	conductors	that	interconnect	individual	circuitry

in	a	computer,	such	as	the	PCI	bus;	typically	the
expansion	vehicle	to	which	I/O	or	other	devices	are
connected.



C
Camera
Link

Interface	standard	for	digital	video	data	and	camera	control
based	on	the	Channel	Link	chipset.

Channel
Link
chipset

The	physical	interface	chip	on	which	Camera	Link	is	based.
Accepts	28	signals	and	serializes	the	data	and	enable	signals
at	a	7:1	ratio	for	transmission	across	the	Camera	Link	cable.



D
DAQ Data	acquisition.	(1)	Collecting	and	measuring	electrical

signals	from	sensors,	transducers,	and	test	probes	or	fixtures
and	inputting	them	to	a	computer	for	processing.	(2)	Collecting
and	measuring	the	same	kinds	of	electrical	signals	with	A/D	or
DIO	devices	plugged	into	a	computer,	and	possibly	generating
control	signals	with	D/A	and/or	DIO	devices	in	the	same
computer.

DIO Digital	input/output.
DLL Dynamic	link	library.	A	software	module	in	Microsoft	Windows

containing	executable	code	and	data	that	can	be	called	or
used	by	Windows	applications	or	other	DLLs;	functions	and
data	in	a	DLL	are	loaded	and	linked	at	run	time	when	they	are
referenced	by	a	Windows	application	or	other	DLLs.

DMA Direct	memory	access.	A	method	by	which	data	can	be
transferred	to	and	from	computer	memory	from	and	to	a
device	or	memory	on	the	bus	while	the	processor	does
something	else;	DMA	is	the	fastest	method	of	transferring	data
to/from	computer	memory.

down-
plugging

Plugging	a	larger	device	into	a	smaller	connector.	An	example
of	down-plugging	is	plugging	a	64-bit	PCI	device	into	a	32-bit
connector.	Down-plugging	is	not	allowed	by	the	PCI	Express
specification;	a	larger	link	device	will	not	mechanically	fit	into	a
smaller	link	connector.

drivers Software	that	controls	a	specific	hardware	device,	such	as	an
image	acquisition	device.



F
full
configuration

A	configuration	defined	by	the	Camera	Link	specification
that	uses	two	cables	between	the	camera	and	the	image
acquisition	device.	This	configuration	supports
combinations	of	camera	bit	depths	and	number	of	taps
that	allow	the	data	to	be	transmitted	and	received	by	three
28-signal	interface	chips.



G
gray	level The	brightness	of	a	pixel	in	an	image.



H
handshaking A	type	of	protocol	that	makes	it	possible	for	two	devices	to

synchronize	operations.
HSL A	color	encoding	scheme	using	hue,	saturation,	and

luminance	information	where	each	image	in	the	pixel	is
encoded	using	32	bits:	8	bits	for	hue,	8	bits	for	saturation,
8	bits	for	luminance,	and	8	unused	bits.

hue Determination	of	color,	such	as	red,	blue,	green,	and
yellow.	White,	black,	and	gray	are	not	considered	hues.
They	are	intensities.



I
I/O Input/output.	The	transfer	of	data	to/from	a	computer	system

involving	communications	channels,	operator	interface	devices,
and/or	data	acquisition	and	control	interfaces.



L
LabVIEW Laboratory	Virtual	Instrument	Engineering	Workbench.

Program	development	environment	based	on	the	G
programming	language.	LabVIEW	is	used	commonly	for	test
and	measurement	applications.

lane PCI	Express	Lane.	A	PCI	Express	lane	contains	one
differential	pair	for	transmitting	data	and	one	differential	pair
for	receiving	data.

link PCI	Express	Link.	A	collection	of	one	or	more	PCI	Express
lanes.	A	xN	Link	is	composed	on	N	lanes.	The	number	of
lanes	in	the	link	limits	device	throughput.	A	x1	link
theoretically	provides	250	MB/s	in	each	direction—to	and
from	the	device.	Once	overhead	is	accounted	for,	a	x1	link
can	provide	approximately	200	MB/s	of	input	capability	and
200	MB/s	of	output	capability.	Increasing	the	number	of
lanes	in	a	link	increases	maximum	throughput	by
approximately	the	same	factor.

luminance The	brightness	or	intensity	of	a	color.	The	monochrome	level
of	a	video	signal.

LVDS Low	Voltage	Differential	Signaling	(EIA-644).



M
MAX Measurement	&	Automation	Explorer.	The	National

Instruments	Windows-based	graphical	configuration	utility
you	can	use	to	configure	NI	software	and	hardware,
execute	system	diagnostics,	add	new	channels	and
interfaces,	and	view	the	devices	and	instruments	you
have	connected	to	your	computer.	MAX	is	installed	on	the
desktop	during	the	National	Instruments	driver	software
installation.

medium
configuration

A	configuration	defined	by	the	Camera	Link	specification
that	uses	two	cables	between	the	camera	and	the	image
acquisition	device.	This	configuration	supports
combinations	of	camera	bit	depths	and	number	of	taps
that	allow	the	data	to	be	transmitted	and	received	by	two
28-signal	interface	chips.



N
NI-
IMAQ

Driver	software	for	National	Instruments	image	acquisition
hardware.



P
parity Method	of	error	checking.	Ensures	that	there	is	always	either

an	even	number	or	an	odd	number	of	asserted	bits	in	a	byte,
character,	or	word,	according	to	the	logic	of	the	system.	If	a	bit
should	be	lost	in	data	transmission,	its	loss	can	be	detected	by
checking	the	parity

PCI Peripheral	component	interconnect.	A	high-performance
expansion	bus	architecture	originally	developed	by	Intel	to
replace	ISA	and	EISA.	PCI	offers	a	theoretical	maximum
transfer	rate	of	133	Mbytes/s	shared	among	all	devices	on	the
bus	for	input	and	output.

PCIe PCI	Express.	A	high-performance	expansion	bus	architecture
originally	developed	by	Intel	to	replace	PCI.	PCIe	offers	a
theoretical	maximum	transfer	rate	that	is	dependent	upon	lane
width.	A	x1	link	theoretically	provides	250	MB/s	in	each
direction—to	and	from	the	device.	Once	overhead	is	accounted
for,	a	x1	link	can	provide	approximately	200	MB/s	of	input
capability	and	200	MB/s	of	output	capability.	Increasing	the
number	of	lanes	in	a	link	increases	maximum	throughput	by
approximately	the	same	factor.

pixel Picture	element.	The	smallest	division	that	makes	up	the	video
scan	line;	for	display	on	a	computer	monitor,	a	pixel's	optimum
dimension	is	square	(aspect	ratio	of	1:1,	or	the	width	equal	to
the	height).

pixel
clock

Divides	the	incoming	horizontal	video	line	into	pixels.

PLC Programmable	logic	controller.	(1)	A	highly	reliable	special-
purpose	computer	used	in	industrial	monitoring	and	control
applications.	PLCs	typically	have	proprietary	programming	and
networking	protocols,	and	special-purpose	digital	and	analog
I/O	ports.	(2)	A	device	with	multiple	inputs	and	outputs	that
contains	a	program	you	can	alter.

protocol The	exact	sequence	of	bits,	characters,	and	control	codes
used	to	transfer	data	between	computers	and	peripherals
through	a	communications	channel.



Q
quadrature
encoder

An	encoding	technique	for	a	rotating	device	where	two
tracks	of	information	are	placed	on	the	device,	with	the
signals	on	the	tracks	offset	by	90	degrees	from	each	other.
The	phase	difference	indicates	the	position	and	direction	of
rotation.



R
real	time A	property	of	an	event	or	system	in	which	data	is	processed

as	it	is	acquired	instead	of	being	accumulated	and	processed
at	a	later	time.

resolution The	smallest	signal	increment	that	can	be	detected	by	a
measurement	system.	Resolution	can	be	expressed	in	bits,	in
proportions,	or	in	percent	of	full	scale.	For	example,	a	system
has	12-bit	resolution,	on	part	in	4,096	resolution,	and	0.0244
percent	of	full	scale.

RGB Red,	green,	blue—A	three-component	video	signal	in	which
all	the	colors	in	a	scene	or	image	are	conveyed	as	three
primary	colors	(red,	green,	and	blue)	on	three	separate
channels.	Sometimes,	the	green	signal	also	carries	the
horizontal	and	vertical	synchronization	information.

ROI Region	of	interest.	A	hardware-programmable	rectangular
portion	of	the	acquisition	window.

RTSI	bus Real-Time	System	Integration	Bus.	The	National	Instruments
timing	bus	that	connects	Vision	and	DAQ	devices	directly,	by
means	of	connectors	on	the	devices,	for	precise
synchronization	of	functions.



S
saturation The	amount	of	color	pigment	present.	The	lower	the

saturation,	the	more	white	is	present	in	the	color.
scatter-
gather
DMA

A	type	of	DMA	that	allows	the	DMA	controller	to	reconfigure
on-the-fly.



T
tap A	set	of	data	lines	that	deliver	one	pixel	per	pixel	clock	from

the	camera.	Some	cameras	send	multiple	streams,	or	taps,	of
data	over	a	cable	simultaneously	to	increase	transfer	rate.
Also	referred	to	as	channels	or	simultaneous	pixels.

transfer
rate

The	rate,	measured	in	bytes/s,	at	which	data	is	moved	from
source	to	destination	after	software	initialization	and	set	up
operations.	The	maximum	rate	at	which	the	hardware	can
operate.

trigger Any	event	that	causes	or	starts	some	form	of	data	capture.
trigger
control
and
mapping
circuitry

Circuitry	that	routes,	monitors,	and	drives	external	and	RTSI
bus	trigger	lines.	You	can	configure	each	of	these	lines	to	start
or	stop	acquisition	on	a	rising	edge	or	a	falling	edge.

TTL Transistor-transistor	logic.	A	digital	circuit	composed	of	bipolar
transistors	wired	in	a	certain	manner.	A	typical	medium-speed
digital	technology.	Nominal	TTL	logic	levels	are	0	and	5	V.



U
up-
plugging

Plugging	a	smaller	link	device	into	a	larger	link	connector.	For
example,	for	the	PCI	Express	bus,	up-plugging	is	plugging	a
x1	device	into	a	x4	connector	or	plugging	a	x4	device	into	a
x16	connector.



V
VI Virtual	instrument.	(1)	A	combination	of	hardware	and/or	software

elements,	typically	used	with	a	PC,	that	has	the	functionality	of	a
classic	stand-alone	instrument	(2)	A	LabVIEW	software	module	(VI),
which	consists	of	a	front	panel	user	interface	and	a	block	diagram
program.



W
web
inspection

Applications	that	involve	acquiring	images	of	objects	on	a
fast-moving	conveyor	or	stage	in	a	production	system.



Y
YUV A	representation	of	a	color	image	used	for	the	coding	of	NTSC	or

PAL	video	signals.	The	luminance	information	is	called	Y,	while	the
chrominance	information	is	represented	by	two	components,	U
and	V,	that	represent	the	coordinates	in	a	color	plane.



Important	Information
Warranty
Copyright
Trademarks
Patents
Warning	Regarding	Use	of	NI	Products



Warranty
The	media	on	which	you	receive	National	Instruments	software	are
warranted	not	to	fail	to	execute	programming	instructions,	due	to	defects
in	materials	and	workmanship,	for	a	period	of	90	days	from	date	of
shipment,	as	evidenced	by	receipts	or	other	documentation.	National
Instruments	will,	at	its	option,	repair	or	replace	software	media	that	do	not
execute	programming	instructions	if	National	Instruments	receives	notice
of	such	defects	during	the	warranty	period.	National	Instruments	does	not
warrant	that	the	operation	of	the	software	shall	be	uninterrupted	or	error
free.
A	Return	Material	Authorization	(RMA)	number	must	be	obtained	from
the	factory	and	clearly	marked	on	the	outside	of	the	package	before	any
equipment	will	be	accepted	for	warranty	work.	National	Instruments	will
pay	the	shipping	costs	of	returning	to	the	owner	parts	which	are	covered
by	warranty.
National	Instruments	believes	that	the	information	in	this	document	is
accurate.	The	document	has	been	carefully	reviewed	for	technical
accuracy.	In	the	event	that	technical	or	typographical	errors	exist,
National	Instruments	reserves	the	right	to	make	changes	to	subsequent
editions	of	this	document	without	prior	notice	to	holders	of	this	edition.
The	reader	should	consult	National	Instruments	if	errors	are	suspected.
In	no	event	shall	National	Instruments	be	liable	for	any	damages	arising
out	of	or	related	to	this	document	or	the	information	contained	in	it.
EXCEPT	AS	SPECIFIED	HEREIN,	NATIONAL	INSTRUMENTS	MAKES
NO	WARRANTIES,	EXPRESS	OR	IMPLIED,	AND	SPECIFICALLY
DISCLAIMS	ANY	WARRANTY	OF	MERCHANTABILITY	OR	FITNESS
FOR	A	PARTICULAR	PURPOSE.	CUSTOMER'S	RIGHT	TO	RECOVER
DAMAGES	CAUSED	BY	FAULT	OR	NEGLIGENCE	ON	THE	PART	OF
NATIONAL	INSTRUMENTS	SHALL	BE	LIMITED	TO	THE	AMOUNT
THERETOFORE	PAID	BY	THE	CUSTOMER.	NATIONAL
INSTRUMENTS	WILL	NOT	BE	LIABLE	FOR	DAMAGES	RESULTING
FROM	LOSS	OF	DATA,	PROFITS,	USE	OF	PRODUCTS,	OR
INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES,	EVEN	IF	ADVISED	OF
THE	POSSIBILITY	THEREOF.	This	limitation	of	the	liability	of	National
Instruments	will	apply	regardless	of	the	form	of	action,	whether	in
contract	or	tort,	including	negligence.	Any	action	against	National
Instruments	must	be	brought	within	one	year	after	the	cause	of	action



accrues.	National	Instruments	shall	not	be	liable	for	any	delay	in
performance	due	to	causes	beyond	its	reasonable	control.	The	warranty
provided	herein	does	not	cover	damages,	defects,	malfunctions,	or
service	failures	caused	by	owner's	failure	to	follow	the	National
Instruments	installation,	operation,	or	maintenance	instructions;	owner's
modification	of	the	product;	owner's	abuse,	misuse,	or	negligent	acts;
and	power	failure	or	surges,	fire,	flood,	accident,	actions	of	third	parties,
or	other	events	outside	reasonable	control.



Copyright
Under	the	copyright	laws,	this	publication	may	not	be	reproduced	or
transmitted	in	any	form,	electronic	or	mechanical,	including	photocopying,
recording,	storing	in	an	information	retrieval	system,	or	translating,	in
whole	or	in	part,	without	the	prior	written	consent	of	National	Instruments
Corporation.
National	Instruments	respects	the	intellectual	property	of	others,	and	we
ask	our	users	to	do	the	same.	NI	software	is	protected	by	copyright	and
other	intellectual	property	laws.	Where	NI	software	may	be	used	to
reproduce	software	or	other	materials	belonging	to	others,	you	may	use
NI	software	only	to	reproduce	materials	that	you	may	reproduce	in
accordance	with	the	terms	of	any	applicable	license	or	other	legal
restriction.



Trademarks
National	Instruments,	NI,	ni.com,	and	LabVIEW	are	trademarks	of
National	Instruments	Corporation.	Refer	to	the	Terms	of	Use	section	on
ni.com/legal	for	more	information	about	National	Instruments	trademarks.
FireWire®	is	the	registered	trademark	of	Apple	Computer,	Inc.
Handle	Graphics®,	MATLAB®,	Real-Time	Workshop®,	Simulink®,
Stateflow®,	and	xPC	TargetBox®	are	registered	trademarks,	and
TargetBox™	and	Target	Language	Compiler™	are	trademarks	of	The
MathWorks,	Inc.
Tektronix®	and	Tek	are	registered	trademarks	of	Tektronix,	Inc.
Other	product	and	company	names	mentioned	herein	are	trademarks	or
trade	names	of	their	respective	companies.
Members	of	the	National	Instruments	Alliance	Partner	Program	are
business	entities	independent	from	National	Instruments	and	have	no
agency,	partnership,	or	joint-venture	relationship	with	National
Instruments.

javascript:WWW(WWW_Trademark)


Patents
For	patents	covering	National	Instruments	products,	refer	to	the
appropriate	location:	Help»Patents	in	your	software,	the	patents.txt	file	on
your	CD,	or	ni.com/patents.

javascript:WWW(WWW_Patents)


WARNING	REGARDING	USE	OF	NATIONAL
INSTRUMENTS	PRODUCTS
(1)	NATIONAL	INSTRUMENTS	PRODUCTS	ARE	NOT	DESIGNED
WITH	COMPONENTS	AND	TESTING	FOR	A	LEVEL	OF	RELIABILITY
SUITABLE	FOR	USE	IN	OR	IN	CONNECTION	WITH	SURGICAL
IMPLANTS	OR	AS	CRITICAL	COMPONENTS	IN	ANY	LIFE	SUPPORT
SYSTEMS	WHOSE	FAILURE	TO	PERFORM	CAN	REASONABLY	BE
EXPECTED	TO	CAUSE	SIGNIFICANT	INJURY	TO	A	HUMAN.
(2)	IN	ANY	APPLICATION,	INCLUDING	THE	ABOVE,	RELIABILITY	OF
OPERATION	OF	THE	SOFTWARE	PRODUCTS	CAN	BE	IMPAIRED	BY
ADVERSE	FACTORS,	INCLUDING	BUT	NOT	LIMITED	TO
FLUCTUATIONS	IN	ELECTRICAL	POWER	SUPPLY,	COMPUTER
HARDWARE	MALFUNCTIONS,	COMPUTER	OPERATING	SYSTEM
SOFTWARE	FITNESS,	FITNESS	OF	COMPILERS	AND
DEVELOPMENT	SOFTWARE	USED	TO	DEVELOP	AN	APPLICATION,
INSTALLATION	ERRORS,	SOFTWARE	AND	HARDWARE
COMPATIBILITY	PROBLEMS,	MALFUNCTIONS	OR	FAILURES	OF
ELECTRONIC	MONITORING	OR	CONTROL	DEVICES,	TRANSIENT
FAILURES	OF	ELECTRONIC	SYSTEMS	(HARDWARE	AND/OR
SOFTWARE),	UNANTICIPATED	USES	OR	MISUSES,	OR	ERRORS	ON
THE	PART	OF	THE	USER	OR	APPLICATIONS	DESIGNER	(ADVERSE
FACTORS	SUCH	AS	THESE	ARE	HEREAFTER	COLLECTIVELY
TERMED	"SYSTEM	FAILURES").	ANY	APPLICATION	WHERE	A
SYSTEM	FAILURE	WOULD	CREATE	A	RISK	OF	HARM	TO
PROPERTY	OR	PERSONS	(INCLUDING	THE	RISK	OF	BODILY
INJURY	AND	DEATH)	SHOULD	NOT	BE	RELIANT	SOLELY	UPON	ONE
FORM	OF	ELECTRONIC	SYSTEM	DUE	TO	THE	RISK	OF	SYSTEM
FAILURE.	TO	AVOID	DAMAGE,	INJURY,	OR	DEATH,	THE	USER	OR
APPLICATION	DESIGNER	MUST	TAKE	REASONABLY	PRUDENT
STEPS	TO	PROTECT	AGAINST	SYSTEM	FAILURES,	INCLUDING	BUT
NOT	LIMITED	TO	BACK-UP	OR	SHUT	DOWN	MECHANISMS.
BECAUSE	EACH	END-USER	SYSTEM	IS	CUSTOMIZED	AND
DIFFERS	FROM	NATIONAL	INSTRUMENTS'	TESTING	PLATFORMS
AND	BECAUSE	A	USER	OR	APPLICATION	DESIGNER	MAY	USE
NATIONAL	INSTRUMENTS	PRODUCTS	IN	COMBINATION	WITH
OTHER	PRODUCTS	IN	A	MANNER	NOT	EVALUATED	OR
CONTEMPLATED	BY	NATIONAL	INSTRUMENTS,	THE	USER	OR



APPLICATION	DESIGNER	IS	ULTIMATELY	RESPONSIBLE	FOR
VERIFYING	AND	VALIDATING	THE	SUITABILITY	OF	NATIONAL
INSTRUMENTS	PRODUCTS	WHENEVER	NATIONAL	INSTRUMENTS
PRODUCTS	ARE	INCORPORATED	IN	A	SYSTEM	OR	APPLICATION,
INCLUDING,	WITHOUT	LIMITATION,	THE	APPROPRIATE	DESIGN,
PROCESS	AND	SAFETY	LEVEL	OF	SUCH	SYSTEM	OR
APPLICATION.



Technical	Support	and	Professional	Services
Visit	the	following	sections	of	the	National	Instruments	Web	site	at	ni.com
for	technical	support	and	professional	services:

Support—Online	technical	support	resources	at	ni.com/support
include	the	following:

Self-Help	Resources—For	answers	and	solutions,	visit	the
award-winning	National	Instruments	Web	site	for	software
drivers	and	updates,	a	searchable	KnowledgeBase,	product
manuals,	step-by-step	troubleshooting	wizards,	thousands	of
example	programs,	tutorials,	application	notes,	instrument
drivers,	and	so	on.
Free	Technical	Support—All	registered	users	receive	free
Basic	Service,	which	includes	access	to	hundreds	of
Applications	Engineers	worldwide	in	the	NI	Discussion
Forums	at	ni.com/forums.	National	Instruments	Applications
Engineers	make	sure	every	question	receives	an	answer.
For	information	about	other	technical	support	options	in	your
area,	visit	ni.com/services	or	contact	your	local	office	at
ni.com/contact.

Training	and	Certification—Visit	ni.com/training	for	self-paced
training,	eLearning	virtual	classrooms,	interactive	CDs,	and
Certification	program	information.	You	also	can	register	for
instructor-led,	hands-on	courses	at	locations	around	the	world.
System	Integration—If	you	have	time	constraints,	limited	in-house
technical	resources,	or	other	project	challenges,	National
Instruments	Alliance	Partner	members	can	help.	To	learn	more,
call	your	local	NI	office	or	visit	ni.com/alliance.

If	you	searched	ni.com	and	could	not	find	the	answers	you	need,	contact
your	local	office	or	NI	corporate	headquarters.	You	also	can	visit	the
Worldwide	Offices	section	of	ni.com/niglobal	to	access	the	branch	office
Web	sites,	which	provide	up-to-date	contact	information,	support	phone
numbers,	email	addresses,	and	current	events.

javascript:WWW(WWW_Support)
javascript:WWW(WWW_KB)
javascript:WWW(WWW_Manuals)
javascript:WWW(WWW_Exchange)
javascript:WWW(WWW_Service)
javascript:WWW(WWW_Contact)
javascript:WWW(WWW_Customer_Education)
javascript:WWW(WWW_Integration)
javascript:WWW(WWW_Global)


Interface	Functions
The	interface	function	set	can	be	used	in	combination	with	both	high-	and
low-level	functions	to	set	up	and	close	the	interface	and	session.	Use
interface	functions	in	both	high-level	and	low-level	applications.

imgInterfaceOpen Opens	an	interface	by	name	as	specified	by
Measurement	&	Automation	Explorer	(MAX).

imgSessionOpen Opens	a	session	and	returns	a	session	ID.
imgClose Closes	a	session	or	interface	and	unlocks	and

releases	all	buffers	associated	with	the	data
type.

imgInterfaceQueryNames Returns	the	interface	name	identified	by	the
index	parameter.

imgInterfaceReset Performs	a	reset	on	the	interface.



High-Level	Functions
High-level	functions	are	divided	into	the	following	types:

Snap	functions—Capture	all	or	a	portion	of	a	single	frame	or	field
to	the	user	buffer.
Grab	functions—Perform	a	continuous	acquisition	of	data	to	a
single	buffer.
Ring	and	Sequence	functions—Start	and	stop	a	continuous
acquisition	of	multiple	fields	or	frames.
Signal	I/O	functions—Control	the	trigger	lines	on	image	acquisition
devices.
Miscellaneous	functions—Set	and	get	the	acquisition	window
region	of	interest	and	return	information	such	as	session	status
and	buffer	sizes.



Snap	Functions
imgSnap Performs	a	single	frame	or	field	acquisition.
imgSnapArea Performs	an	area-specific	frame	or	field	acquisition.



Grab	Functions
imgGrabSetup Configures	and	optionally	starts	a	continuous	acquisition.
imgGrab Acquires	the	most	current	frame	into	the	specified	buffer.

Call	this	function	only	after	calling	imgGrabSetup.
imgGrabArea Performs	a	transfer	from	a	continuous	acquisition	using

the	given	parameters.	Call	this	function	only	after	calling
imgGrabSetup.



Ring	and	Sequence	Functions
imgRingSetup Prepares	a	session	for	acquiring	continuously

and	looping	into	a	buffer	list.
imgSequenceSetup Prepares	a	session	for	acquiring	a	sequence

into	a	buffer	list.
imgSessionStartAcquisition Starts	an	acquisition.
imgSessionStopAcquisition Stops	an	acquisition.



Signal	I/O	Functions
imgSessionTriggerConfigure2 Configures	an	acquisition	to	start	based	on

an	external	trigger.
imgSessionLineTrigSource2 Configures	triggering	per	line	for	acquisition

from	a	line	scan	camera.
imgSessionTriggerClear Disables	all	triggers	on	the	session.
imgSessionTriggerDrive2 Configures	the	specified	trigger	line	to	drive

a	signal	out.
imgSessionTriggerRead2 Reads	the	current	value	of	the	specified

trigger	line.
imgSessionTriggerRoute2 Drives	the	destination	trigger	line	with	the

signal	on	the	source	trigger	line.
imgSessionWaitSignal2 Waits	for	a	signal	to	be	asserted.	This

function	returns	when	the	specified	signal	is
asserted.

imgSessionWaitSignalAsync2 Monitors	for	a	signal	to	be	asserted	and
invokes	a	user-defined	callback	when	the
signal	is	asserted.

imgEncoderResetPosition Resets	the	absolute	encoder	position
counter	to	0.

imgPulseCreate2 Configures	the	attributes	of	a	pulse.	A
single	pulse	consists	of	a	delay	phase
(phase	1),	followed	by	a	pulse	phase
(phase	2),	and	then	a	return	to	the	original
level.

imgPulseDispose Disposes	of	a	pulse	ID.
imgPulseRate Converts	delay	and	width	into	delay,	width,

and	timebase	values	needed	by
imgPulseCreate.

imgPulseStart Starts	the	generation	of	a	pulse.	You	must
call	imgPulseCreate	first	to	configure	the
pulse.

imgPulseStop Stops	the	generation	of	a	pulse.



Miscellaneous	Functions
imgSessionStatus Gets	the	current	session	status.
imgSessionSetROI Sets	the	acquisition	region	of	interest.
imgSessionGetROI Gets	the	acquisition	region	of	interest.
imgSessionGetBufferSize Gets	the	minimum	buffer	size	needed	for	frame

buffer	allocation.



Low-Level	Functions
The	low-level	function	set	supports	all	types	of	acquisition.	Low-level
functions	are	divided	into	the	following	types:

Acquisition	functions—Configure,	start,	and	abort	an	image
acquisition,	or	examine	a	buffer	during	an	acquisition.
Attribute	functions—Examine	and	change	NI-IMAQ	or	camera
attributes.
Buffer	management	functions—Set	up	objects	such	as	buffer	lists
and	buffers.
Interface	functions—Load	and	control	the	selected	image
acquisition	device	and	cameras.	These	functions	use	information
stored	by	Measurement	&	Automation	Explorer	(MAX).
Utility	functions—Display	an	image	in	a	window,	save	an	image	to
a	file,	or	get	detailed	error	information.
Serial	communication	functions—Enables	communication	between
the	camera	and	devices	that	support	serial	communication.



Acquisition	Functions
imgSessionAbort Stops	an	asynchronous	acquisition	or

synchronous	continuous	acquisition
immediately.

imgSessionAcquire Starts	acquisition	synchronously	or
asynchronously	to	the	frame	buffers	in	the
associated	session	buffer	list.

imgSessionConfigure Specifies	the	buffer	list	to	use	with	this
session.

imgSessionCopyArea Copies	an	area	of	a	session	buffer	to	a	user-
specified	buffer.

imgSessionCopyBuffer Copies	a	session	buffer	to	a	user-specified
buffer.

imgSessionExamineBuffer Extracts	a	buffer	from	a	live	acquisition.	This
function	lets	you	lock	a	buffer	out	of	a
continuous	loop	sequence	for	processing
when	you	are	performing	a	ring	(continuous)
acquisition.

imgSessionReleaseBuffer Releases	a	buffer	that	was	previously	held
with	imgSessionExamineBuffer.



Attribute	Functions
imgGetAttribute Returns	an	attribute	for	an	interface	or

session.
imgSetAttribute Sets	an	attribute	for	an	interface	or

session.
imgGetCameraAttributeNumeric Gets	the	value	of	numeric	camera

attributes.
imgGetCameraAttributeString Gets	the	value	of	textual	camera

attributes.
imgSetCameraAttributeNumeric Sets	the	value	of	numeric	camera

attributes.
imgSetCameraAttributeString Sets	the	value	of	textual	camera

attributes.
imgSessionSetUserLUT8bits Downloads	a	custom	8-bit	lookup	table	to

your	image	acquisition	device.
imgSessionSetUserLUT16bits Downloads	a	custom	16-bit	lookup	table

to	your	image	acquisition	device.



Buffer	Management	Functions
imgCreateBuffer Creates	a	user	frame	buffer	based	on	the

geometric	definitions	of	the	associated	session.
imgCreateBufList Creates	a	buffer	list.
imgDisposeBuffer Disposes	of	a	user	frame	buffer	created	by

imgCreateBuffer.
imgDisposeBufList Purges	all	image	buffers	associated	with	this

buffer	list.
imgGetBufferElement Gets	an	element	of	a	specific	type	from	a	buffer

list.
imgSetBufferElement Sets	a	buffer	list	element	of	a	given	type	to	a

specific	value.
imgSessionClearBuffer Clears	image	data	from	a	session	to	the	specified

pixel	value.



Interface	Functions
imgInterfaceQueryNames Returns	the	interface	name	identified	by	the

index	parameter.
imgInterfaceReset Performs	a	hardware	reset	on	the	interface	type

and	returns	a	status,	either	good	or	bad.



Utility	Functions
imgPlot Plots	a	buffer	to	a	window.
imgPlotDC Plots	a	buffer	to	device	context.
imgSessionSaveBufferEx Saves	a	buffer	of	a	session	to	disk	in

bitmap,	TIFF,	or	PNG	format.
imgBayerColorDecode Decodes	the	color	information	from	Bayer

encoded	images.
imgCalculateBayerColorLUT Calculates	a	look-up	table	(LUT)	based	on

input	gain	values	that	is	used	in	decoding
the	Bayer	encoded	images.

imgShowError Returns	a	null-terminated	string	describing
the	error	code.



Serial	Communication	Functions
imgSessionSerialWrite Sends	data	out	the	serial	port	on	boards	that

support	serial.
imgSessionSerialRead Reads	in	data	from	the	serial	port	on	boards

that	support	serial.
imgSessionSerialReadBytes Reads	in	an	expected	number	of	bytes	from

the	serial	port	on	image	acquisition	devices
that	support	serial	communication.

imgSessionSerialFlush Clears	the	internal	serial	buffer.



Branch	Offices
Office Telephone	Number
Australia 1800	300	800
Austria 43	662	457990-0
Belgium 32	(0)	2	757	0020
Brazil 55	11	3262	3599
Canada 800	433	3488
China 86	21	6555	7838
Czech	Republic 420	224	235	774
Denmark 45	45	76	26	00
Finland 385	(0)	9	725	72511
France 33	(0)	1	48	14	24	24
Germany 49	89	7413130
India 91	80	41190000
Israel 972	0	3	6393737
Italy 39	02	413091
Japan 81	3	5472	2970
Korea 82	02	3451	3400
Lebanon 961	(0)	1	33	28	28
Malaysia 1800	887710
Mexico 01	800	010	0793
Netherlands 31	(0)	348	433	466
New	Zealand 0800	553	322
Norway 47	(0)	66	90	76	60
Poland 48	22	3390150
Portugal 351	210	311	210
Russia 7	495	783	6851
Singapore 1800	226	5886
Slovenia 386	3	425	42	00



South	Africa 27	0	11	805	8197
Spain 34	91	640	0085
Sweden 46	(0)	8	587	895	00
Switzerland 41	56	2005151
Taiwan 886	02	2377	2222
Thailand 662	278	6777
Turkey 90	212	279	3031
United	Kingdom 44	(0)	1635	523545
United	States	(Corporate) 512	683	0100


