
Store	Analog	Functions
Class/Panel	Name Function	Name

Store	Analog	Wfm	F64 niHWS_StoreAnalogWfmF64

Store	Analog	Wfm	I8 niHWS_StoreAnalogWfmI8

Store	Analog	Wfm	I16 niHWS_StoreAnalogWfmI16

Store	Analog	Wfm	I32 niHWS_StoreAnalogWfmI32



niHWS_StoreAnalogWfmF64
C	Function	Prototype
tHWS_Status	niHWS_StoreAnalogWfmF64	(const	char	filePath[],	double	rate,
double	gain,	double	offset,	long	compressionLevel,	long	numSamples,
const	double*	wfmData,	long	overwriteExistingFile);



Purpose
Creates	a	new	file	for	storing	double-precision	floating-point	analog
waveform	data.
This	function	is	intended	for	storing	a	single	waveform	in	a	file.	To	store
multiple	waveforms	in	a	file,	use	the	Low	Level	functions.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or

open.	The	.hws	extension	is	typically	used	for	HWS	files,
although	using	this	extension	is	optional.

rate double The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

gain double Intended	for	waveforms	to	be	generated	by	hardware	that
supports	applying	a	gain	control	to	the	downloaded	waveform.
For	example,	this	parameter	can	be	used	for	the	gain
parameter	in	NI-FGEN.

NI-HWS	does	not	apply	this	gain	when	writing	the	data	in
wfmData.

offset double Intended	for	waveforms	to	be	generated	by	hardware	that
supports	applying	an	offset	control	to	the	downloaded
waveform.	For	example,	this	parameter	can	be	used	for	the
offset	parameter	in	NI-FGEN.
NI-HWS	does	not	apply	this	offset	when	writing	the	data	in
wfmData.

compressionLevel long Provides	control	over	the	amount	of	compression	applied	to	the
waveform	samples	as	they	are	written	to	the	HWS	file.

A	value	of	0	means	no	compression.	A	value	of	9	means
maximum	compression.	Values	between	zero	and	nine	indicate
increasing	levels	of	compression.

numSamples long The	number	of	samples	the	new	waveform	contains.

wfmData const	double* The	array	containing	the	data	for	the	waveform.	This	array
should	contain	at	least	the	amount	of	data	indicated	by	the
value	assigned	to	numSamples.

overwriteExistingFile long Allows	this	function	to	overwrite	the	file	if	it	exists.

Set	to	1	to	overwrite	the	existing	file	and	create	a	new	file.

Set	to	0	to	prevent	overwriting	an	existing	file.

Return	Value



niHWS_StoreAnalogWfmI8
C	Function	Prototype
tHWS_Status	niHWS_StoreAnalogWfmI8	(const	char	filePath[],	double	rate,
double	gain,	double	offset,	long	compressionLevel,	long	numSamples,
const	char*	wfmData,	long	overwriteExistingFile);



Purpose
Creates	a	new	file	for	storing	8-bit	signed	integer	(I8)	analog	waveform
data.
This	function	is	intended	for	storing	a	single	waveform	in	a	file.	To	store
multiple	waveforms	in	a	file,	use	the	Low	Level	functions.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or	open.

The	.hws	extension	is	typically	used	for	HWS	files,	although	using
this	extension	is	optional.

rate double The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

gain double Intended	for	waveforms	to	be	generated	by	hardware	that
supports	applying	a	gain	control	to	the	downloaded	waveform.	For
example,	this	parameter	can	be	used	for	the	gain	parameter	in
NI-FGEN.

NI-HWS	does	not	apply	this	gain	when	writing	the	data	in
wfmData.

offset double Intended	for	waveforms	to	be	generated	by	hardware	that
supports	applying	an	offset	control	to	the	downloaded	waveform.
For	example,	this	parameter	can	be	used	for	the	offset	parameter
in	NI-FGEN.

NI-HWS	does	not	apply	this	offset	when	writing	the	data	in
wfmData.

compressionLevel long Provides	control	over	the	amount	of	compression	applied	to	the
waveform	samples	as	they	are	written	to	the	HWS	file.

A	value	of	0	means	no	compression.	A	value	of	9	means
maximum	compression.	Values	between	zero	and	nine	indicate
increasing	levels	of	compression.

numSamples long The	number	of	samples	the	new	waveform	contains.

wfmData const	char* The	array	containing	the	data	for	the	waveform.	This	array	should
contain	at	least	the	amount	of	data	indicated	by	the	value
assigned	to	numSamples.

overwriteExistingFile long Allows	this	function	to	overwrite	the	file	if	it	exists.

Set	to	1	to	overwrite	the	existing	file	and	create	a	new	file.

Set	to	0	to	prevent	overwriting	an	existing	file.

Return	Value



niHWS_StoreAnalogWfmI16
C	Function	Prototype
tHWS_Status	niHWS_StoreAnalogWfmI16	(const	char	filePath[],	double	rate,
double	gain,	double	offset,	long	compressionLevel,	long	numSamples,
const	short*	wfmData,	long	overwriteExistingFile);



Purpose
Creates	a	new	file	for	storing	16-bit	signed	integer	(I16)	analog	waveform
data.
This	function	is	intended	for	storing	a	single	waveform	in	a	file.	To	store
multiple	waveforms	in	a	file,	use	the	Low	Level	functions.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or	open.

The	.hws	extension	is	typically	used	for	HWS	files,	although	using
this	extension	is	optional.

rate double The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

gain double Intended	for	waveforms	to	be	generated	by	hardware	that
supports	applying	a	gain	control	to	the	downloaded	waveform.	For
example,	this	parameter	can	be	used	for	the	gain	parameter	in
NI-FGEN.

NI-HWS	does	not	apply	this	gain	when	writing	the	data	in
wfmData.

offset double Intended	for	waveforms	to	be	generated	by	hardware	that
supports	applying	an	offset	control	to	the	downloaded	waveform.
For	example,	this	parameter	can	be	used	for	the	offset	parameter
in	NI-FGEN.

NI-HWS	does	not	apply	this	offset	when	writing	the	data	in
wfmData.

compressionLevel long Provides	control	over	the	amount	of	compression	applied	to	the
waveform	samples	as	they	are	written	to	the	HWS	file.

A	value	of	0	means	no	compression.	A	value	of	9	means
maximum	compression.	Values	between	zero	and	nine	indicate
increasing	levels	of	compression.

numSamples long The	number	of	samples	the	new	waveform	contains.

wfmData const	short* The	array	containing	the	data	for	the	waveform.	This	array	should
contain	at	least	the	amount	of	data	indicated	by	the	value
assigned	to	numSamples.

overwriteExistingFile long Allows	this	function	to	overwrite	the	file	if	it	exists.

Set	to	1	to	overwrite	the	existing	file	and	create	a	new	file.

Set	to	0	to	prevent	overwriting	an	existing	file.

Return	Value



niHWS_StoreAnalogWfmI32
C	Function	Prototype
tHWS_Status	niHWS_StoreAnalogWfmI32	(const	char	filePath[],	double	rate,
double	gain,	double	offset,	long	compressionLevel,	long	numSamples,
const	long*	wfmData,	long	overwriteExistingFile);



Purpose
Creates	a	new	file	for	storing	32-bit	signed	integer	(I32)	analog	waveform
data.
This	function	is	intended	for	storing	a	single	waveform	in	a	file.	To	store
multiple	waveforms	in	a	file,	use	the	Low	Level	functions.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or	open.

The	.hws	extension	is	typically	used	for	HWS	files,	although	using
this	extension	is	optional.

rate double The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

gain double Intended	for	waveforms	to	be	generated	by	hardware	that
supports	applying	a	gain	control	to	the	downloaded	waveform.	For
example,	this	parameter	can	be	used	for	the	gain	parameter	in
NI-FGEN.

NI-HWS	does	not	apply	this	gain	when	writing	the	data	in
wfmData.

offset double Intended	for	waveforms	to	be	generated	by	hardware	that
supports	applying	an	offset	control	to	the	downloaded	waveform.
For	example,	this	parameter	can	be	used	for	the	offset	parameter
in	NI-FGEN.

NI-HWS	does	not	apply	this	offset	when	writing	the	data	in
wfmData.

compressionLevel long Provides	control	over	the	amount	of	compression	applied	to	the
waveform	samples	as	they	are	written	to	the	HWS	file.

A	value	of	0	means	no	compression.	A	value	of	9	means
maximum	compression.	Values	between	zero	and	nine	indicate
increasing	levels	of	compression.

numSamples long The	number	of	samples	the	new	waveform	contains.

wfmData const	long* The	array	containing	the	data	for	the	waveform.	This	array	should
contain	at	least	the	amount	of	data	indicated	by	the	value
assigned	to	numSamples.

overwriteExistingFile long Allows	this	function	to	overwrite	the	file	if	it	exists.

Set	to	1	to	overwrite	the	existing	file	and	create	a	new	file.

Set	to	0	to	prevent	overwriting	an	existing	file.

Return	Value



Retrieve	Analog	Functions
Class/Panel	Name Function	Name

Retrieve	Analog	Wfm	F64 niHWS_RetrieveAnalogWfmF64

Retrieve	Analog	Wfm	I8 niHWS_RetrieveAnalogWfmI8

Retrieve	Analog	Wfm	I16 niHWS_RetrieveAnalogWfmI16

Retrieve	Analog	Wfm	I32 niHWS_RetrieveAnalogWfmI32



niHWS_RetrieveAnalogWfmF64
C	Function	Prototype
tHWS_Status	niHWS_RetrieveAnalogWfmF64	(const	char	filePath[],
double*	rate,	double*	gain,	double*	offset,	long	wfmBufferSize,
double*	wfmBuffer,	long*	numSamplesInWfm);



Purpose
Retrieves	the	analog	waveform	as	double-precision	floating-point	data
from	the	file	specified.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or	open.

The	.hws	extension	is	typically	used	for	HWS	files,	although	using
this	extension	is	optional.

rate double* The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

gain double* This	parameter	is	equivalent	to	element	1	of	the	coeffArray.
NI-HWS	stores	polynomial	scaling	coefficients	that	are	intended	to
be	applied	to	waveform	data	by	your	application	or	your	hardware.
The	offset	and	gain	parameters	in	the	high-level	Store	and
Retrieve	functions	are	identical	to	the	first	two	elements	of	the
coeffArray	in	the	Get	and	Set	Scaling	Coefficients	functions.

Note		If	a	waveform	stored	as	integers	is
retrieved	by	this	function,	NI-HWS
scales	the	integers	to	floating	point
numbers	using	the	coeffArray	and	sets
the	gain	parameter	to	1.

offset double* This	parameter	is	equivalent	to	element	0	of	the	coeffArray.
NI-HWS	stores	polynomial	scaling	coefficients	that	are	intended	to
be	applied	to	waveform	data	by	your	application	or	your	hardware.
The	offset	and	gain	parameters	in	the	high-level	Store	and
Retrieve	functions	are	identical	to	the	first	two	elements	of	the
coeffArray	in	the	Get	and	Set	Scaling	Coefficients	functions.

Note		If	a	waveform	stored	as	integers	is
retrieved	by	this	function,	NI-HWS
scales	the	integers	to	floating	point
numbers	using	the	coeffArray	and	sets
the	offset	parameter	to	0.

wfmBufferSize long Specifies	how	many	samples	to	read	into	wfmBuffer.
If	wfmBufferSize	is	0,	the	total	number	of	samples	in	the	waveform
is	returned	in	numSamplesInWfm.

wfmBuffer double* Contains	the	data	for	the	waveform.	This	array	must	be	large
enough	to	contain	at	least	the	amount	of	data	indicated	by	the	value
assigned	to	wfmBufferSize.

numSamplesInWfm long* Returns	the	total	number	of	samples	in	the	waveform.

Return	Value



niHWS_RetrieveAnalogWfmI8
C	Function	Prototype
tHWS_Status	niHWS_RetrieveAnalogWfmI8	(const	char	filePath[],
double*	rate,	double*	gain,	double*	offset,	long	wfmBufferSize,
char*	wfmBuffer,	long*	numSamplesInWfm);



Purpose
Retrieves	the	analog	waveform	samples	as	8-bit	signed	integers	from	the
file	specified.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or	open.

The	.hws	extension	is	typically	used	for	HWS	files,	although	using
this	extension	is	optional.

rate double* The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

gain double* This	parameter	is	equivalent	to	element	1	of	the	coeffArray.
NI-HWS	stores	polynomial	scaling	coefficients	that	are	intended	to
be	applied	to	waveform	data	by	your	application	or	your	hardware.
The	offset	and	gain	parameters	in	the	high-level	Store	and
Retrieve	functions	are	identical	to	the	first	two	elements	of	the
coeffArray	in	the	Get	and	Set	Scaling	Coefficients	functions.

offset double* This	parameter	is	equivalent	to	element	0	of	the	coeffArray.
NI-HWS	stores	polynomial	scaling	coefficients	that	are	intended	to
be	applied	to	waveform	data	by	your	application	or	your	hardware.
The	offset	and	gain	parameters	in	the	high-level	Store	and
Retrieve	functions	are	identical	to	the	first	two	elements	of	the
coeffArray	in	the	Get	and	Set	Scaling	Coefficients	functions.

wfmBufferSize long Specifies	how	many	samples	to	read	into	wfmBuffer.
If	wfmBufferSize	is	0,	the	total	number	of	samples	in	the	waveform
is	returned	in	numSamplesInWfm.

wfmBuffer char* Contains	the	data	for	the	waveform.	This	array	must	be	large
enough	to	contain	at	least	the	amount	of	data	indicated	by	the	value
assigned	to	wfmBufferSize.

numSamplesInWfm long* Returns	the	total	number	of	samples	in	the	waveform.

Return	Value



niHWS_RetrieveAnalogWfmI16
C	Function	Prototype
tHWS_Status	niHWS_RetrieveAnalogWfmI16	(const	char	filePath[],
double*	rate,	double*	gain,	double*	offset,	long	wfmBufferSize,
short*	wfmBuffer,	long*	numSamplesInWfm);



Purpose
Retrieves	the	analog	waveform	samples	as	16-bit	signed	integers	(I16)
from	the	file	specified.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or	open.

The	.hws	extension	is	typically	used	for	HWS	files,	although	using
this	extension	is	optional.

rate double* The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

gain double* This	parameter	is	equivalent	to	element	1	of	the	coeffArray.
NI-HWS	stores	polynomial	scaling	coefficients	that	are	intended	to
be	applied	to	waveform	data	by	your	application	or	your	hardware.
The	offset	and	gain	parameters	in	the	high-level	Store	and
Retrieve	functions	are	identical	to	the	first	two	elements	of	the
coeffArray	in	the	Get	and	Set	Scaling	Coefficients	functions.

offset double* This	parameter	is	equivalent	to	element	0	of	the	coeffArray.
NI-HWS	stores	polynomial	scaling	coefficients	that	are	intended	to
be	applied	to	waveform	data	by	your	application	or	your	hardware.
The	offset	and	gain	parameters	in	the	high-level	Store	and
Retrieve	functions	are	identical	to	the	first	two	elements	of	the
coeffArray	in	the	Get	and	Set	Scaling	Coefficients	functions.

wfmBufferSize long Specifies	how	many	samples	to	read	into	wfmBuffer.
If	wfmBufferSize	is	0,	the	total	number	of	samples	in	the	waveform
is	returned	in	numSamplesInWfm.

wfmBuffer short* Contains	the	data	for	the	waveform.	This	array	must	be	large
enough	to	contain	at	least	the	amount	of	data	indicated	by	the	value
assigned	to	wfmBufferSize.

numSamplesInWfm long* Returns	the	total	number	of	samples	in	the	waveform.

Return	Value



niHWS_RetrieveAnalogWfmI32
C	Function	Prototype
tHWS_Status	niHWS_RetrieveAnalogWfmI32	(const	char	filePath[],
double*	rate,	double*	gain,	double*	offset,	long	wfmBufferSize,
long*	wfmBuffer,	long*	numSamplesInWfm);



Purpose
Retrieves	the	analog	waveform	samples	as	32-bit	signed	integers	from
the	file	specified.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or	open.

The	.hws	extension	is	typically	used	for	HWS	files,	although	using
this	extension	is	optional.

rate double* The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

gain double* This	parameter	is	equivalent	to	element	1	of	the	coeffArray.
NI-HWS	stores	polynomial	scaling	coefficients	that	are	intended	to
be	applied	to	waveform	data	by	your	application	or	your	hardware.
The	offset	and	gain	parameters	in	the	high-level	Store	and
Retrieve	functions	are	identical	to	the	first	two	elements	of	the
coeffArray	in	the	Get	and	Set	Scaling	Coefficients	functions.

offset double* This	parameter	is	equivalent	to	element	0	of	the	coeffArray.
NI-HWS	stores	polynomial	scaling	coefficients	that	are	intended	to
be	applied	to	waveform	data	by	your	application	or	your	hardware.
The	offset	and	gain	parameters	in	the	high-level	Store	and
Retrieve	functions	are	identical	to	the	first	two	elements	of	the
coeffArray	in	the	Get	and	Set	Scaling	Coefficients	functions.

wfmBufferSize long Specifies	how	many	samples	to	read	into	wfmBuffer.
If	wfmBufferSize	is	0,	the	total	number	of	samples	in	the	waveform
is	returned	in	numSamplesInWfm.

wfmBuffer long* Contains	the	data	for	the	waveform.	This	array	must	be	large
enough	to	contain	at	least	the	amount	of	data	indicated	by	the	value
assigned	to	wfmBufferSize.

numSamplesInWfm long* Returns	the	total	number	of	samples	in	the	waveform.

Return	Value



Store	Digital	Functions
Class/Panel	Name Function	Name

Store	Digital	Wfm	U8 niHWS_StoreDigitalWfmU8

Store	Digital	Wfm	2D	U8 niHWS_StoreDigitalWfm2DU8

Store	Digital	Wfm	U16 niHWS_StoreDigitalWfmU16

Store	Digital	Wfm	2D	U16 niHWS_StoreDigitalWfm2DU16

Store	Digital	Wfm	U32 niHWS_StoreDigitalWfmU32

Store	Digital	Wfm	2D	U32 niHWS_StoreDigitalWfm2DU32

Store	Digital	WDT niHWS_StoreDigitalWfmWDT



niHWS_StoreDigitalWfmU8
C	Function	Prototype
tHWS_Status	niHWS_StoreDigitalWfmU8	(const	char	filePath[],	double	rate,
const	char	validSignals[],	long	compressionLevel,	long	numSamples,
const	unsigned	char*	wfmData,	long	overwriteExistingFile);



Purpose
Creates	a	new	file	for	storing	digital	8-bit	unsigned	integer	(U8)	waveform
data.
This	function	is	intended	for	storing	a	single	waveform	in	a	file.	To	store
multiple	waveforms	in	a	file,	use	the	Low	Level	functions.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or

open.	The	.hws	extension	is	typically	used	for	HWS	files,
although	using	this	extension	is	optional.

rate double The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

validSignals const	char[] The	list	of	lines	(or	bits)	in	the	digital	samples	that	are	valid.
For	example,	"0,3,6"	means	that	only	bits	0,	3,	and	6	of	each
unsigned	long	digital	sample	contain	valid	digital	data.

The	values	in	the	string	can	receive	any	integer	value	between
0	and	7.	Individual	lines	are	separated	by	commas.	You	can
use	a	hyphen	to	denote	an	inclusive	range	of	lines.	For
example,	"2-5"	is	equivalent	to	"2,3,4,5".

compressionLevel long This	parameter	provides	control	over	the	amount	of
compression	applied	to	the	waveform	samples	as	they	are
written	to	the	HWS	file.

A	value	of	0	means	no	compression.	A	value	of	9	means
maximum	compression.	Values	between	zero	and	nine
indicate	increasing	levels	of	compression.

numSamples long The	number	of	samples	the	new	waveform	contains.

wfmData const	unsigned
char*

Contains	the	data	for	the	waveform.	This	array	must	be	large
enough	to	contain	at	least	the	amount	of	data	indicated	by	the
value	assigned	to	numSamples.

overwriteExistingFile long Allows	this	function	to	overwrite	the	file	if	it	exists.

Set	to	1	to	overwrite	the	existing	file	and	create	a	new	file.

Set	to	0	to	prevent	overwriting	an	existing	file.

Return	Value



niHWS_StoreDigitalWfmU16
C	Function	Prototype
tHWS_Status	niHWS_StoreDigitalWfmU16		(const	char	filePath[],	double	rate,
const	char	validSignals[],	long	compressionLevel,	long	numSamples,
const	unsigned	short*	wfmData,	long	overwriteExistingFile);



Purpose
Creates	a	new	file	for	storing	digital	16-bit	unsigned	(U16)	waveform
data.
This	function	is	intended	for	storing	a	single	waveform	in	a	file.	To	store
multiple	waveforms	in	a	file,	use	the	Low	Level	functions.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or

open.	The	.hws	extension	is	typically	used	for	HWS	files,
although	using	this	extension	is	optional.

rate double The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

validSignals const	char[] The	list	of	lines	(or	bits)	in	the	digital	samples	that	are	valid.
For	example,	"0,3,6"	means	that	only	bits	0,	3,	and	6	of	each
unsigned	long	digital	sample	contain	valid	digital	data.

The	values	in	the	string	can	receive	any	integer	value	between
0	and	15.	Individual	lines	are	separated	by	commas.	You	can
use	a	hyphen	to	denote	an	inclusive	range	of	lines.	For
example,	"2-5"	is	equivalent	to	"2,3,4,5".

compressionLevel long This	parameter	provides	control	over	the	amount	of
compression	applied	to	the	waveform	samples	as	they	are
written	to	the	HWS	file.

A	value	of	0	means	no	compression.	A	value	of	9	means
maximum	compression.	Values	between	zero	and	nine
indicate	increasing	levels	of	compression.

numSamples long The	number	of	samples	the	new	waveform	contains.

wfmData const	unsigned
short*	

Contains	the	data	for	the	waveform.	This	array	must	be	large
enough	to	contain	at	least	the	amount	of	data	indicated	by	the
value	assigned	to	numSamples.

overwriteExistingFile long Allows	this	function	to	overwrite	the	file	if	it	exists.

Set	to	1	to	overwrite	the	existing	file	and	create	a	new	file.

Set	to	0	to	prevent	overwriting	an	existing	file.

Return	Value



niHWS_StoreDigitalWfmU32
C	Function	Prototype
tHWS_Status	niHWS_StoreDigitalWfmU32	(const	char	filePath[],	double	rate,
const	char	validSignals[],	long	compressionLevel,	long	numSamples,
const	unsigned	long*	wfmData,	long	overwriteExistingFile);



Purpose
Creates	a	new	file	for	storing	digital	32-bit	unsigned	long	(U32)	waveform
data.
This	function	is	intended	for	storing	a	single	waveform	in	a	file.	To	store
multiple	waveforms	in	a	file,	use	the	Low	Level	functions.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or

open.	The	.hws	extension	is	typically	used	for	HWS	files,
although	using	this	extension	is	optional.

rate double The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

validSignals const	char[] The	list	of	lines	(or	bits)	in	the	digital	samples	that	are	valid.
For	example,	"0,3,6"	means	that	only	bits	0,	3,	and	6	of	each
unsigned	long	digital	sample	contain	valid	digital	data.

The	values	in	the	string	can	receive	any	integer	value	between
0	and	31.	Individual	lines	are	separated	by	commas.	You	can
use	a	hyphen	to	denote	an	inclusive	range	of	lines.	For
example,	"2-5"	is	equivalent	to	"2,3,4,5".

compressionLevel long This	parameter	provides	control	over	the	amount	of
compression	applied	to	the	waveform	samples	as	they	are
written	to	the	HWS	file.

A	value	of	0	means	no	compression.	A	value	of	9	means
maximum	compression.	Values	between	zero	and	nine
indicate	increasing	levels	of	compression.

numSamples long The	number	of	samples	the	new	waveform	contains.

wfmData const	unsigned
long*

Contains	the	data	for	the	waveform.	This	array	must	be	large
enough	to	contain	at	least	the	amount	of	data	indicated	by	the
value	assigned	to	numSamples.

overwriteExistingFile long Allows	this	function	to	overwrite	the	file	if	it	exists.

Set	to	1	to	overwrite	the	existing	file	and	create	a	new	file.

Set	to	0	to	prevent	overwriting	an	existing	file.

Return	Value



niHWS_StoreDigitalWfm2DU8
Specific	Function
C	Function	Prototype
tHWS_Status	niHWS_StoreDigitalWfm2DU8		(const	char	filePath[],
double	rate,	long	compressionLevel,	long	numRows,	long	numSamplesPerRow,
const	unsigned	char*	wfmData,	long	overwriteExistingFile);



Purpose
Creates	a	new	file	for	storing	a	two-dimensional	array	of	digital	8-bit
unsigned	integer	data.
This	function	is	intended	for	storing	a	single	waveform	in	a	file.	To	store
multiple	waveforms	in	a	file	use	the	Low	Level	functions.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or

open.	The	.hws	extension	is	typically	used	for	HWS	files,
although	using	this	extension	is	optional.

rate double The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

compressionLevel long This	parameter	provides	control	over	the	amount	of
compression	applied	to	the	waveform	samples	as	they	are
written	to	the	HWS	file.

A	value	of	0	means	no	compression.	A	value	of	9	means
maximum	compression.	Values	between	zero	and	nine
indicate	increasing	levels	of	compression.

numRows long The	number	of	rows	the	new	waveform	contains.

numSamplesPerRow long The	number	of	samples	the	new	waveform	contains.

wfmData const	unsigned
char*	

Contains	the	data	for	the	waveform.	This	array	must	be	large
enough	to	contain	at	least	the	amount	of	data	indicated	by	the
value	assigned	to	the	numSamplesPerRow	parameter	times
the	number	of	signals.

overwriteExistingFile long Allows	this	function	to	overwrite	the	file	if	it	exists.

Set	to	1	to	overwrite	the	existing	file	and	create	a	new	file.

Set	to	0	to	prevent	overwriting	an	existing	file.

Return	Value



niHWS_StoreDigitalWfm2DU16
Specific	Function
C	Function	Prototype
tHWS_Status	niHWS_StoreDigitalWfm2DU16		(const	char	filePath[],
double	rate,	long	compressionLevel,	long	numRows,	long	numSamplesPerRow,
const	unsigned	short*	wfmData,	long	overwriteExistingFile);



Purpose
Creates	a	new	file	for	storing	a	two-dimensional	array	of	digital	16-bit
(U16)	data.
This	function	is	intended	for	storing	a	single	waveform	in	a	file.	To	store
multiple	waveforms	in	a	file	use	the	Low	Level	functions.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or

open.	The	.hws	extension	is	typically	used	for	HWS	files,
although	using	this	extension	is	optional.

rate double The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

compressionLevel long This	parameter	provides	control	over	the	amount	of
compression	applied	to	the	waveform	samples	as	they	are
written	to	the	HWS	file.

A	value	of	0	means	no	compression.	A	value	of	9	means
maximum	compression.	Values	between	zero	and	nine
indicate	increasing	levels	of	compression.

numRows long The	number	of	rows	the	new	waveform	contains.

numSamplesPerRow long The	number	of	samples	the	new	waveform	contains.

wfmData const	unsigned
short*

Contains	the	data	for	the	waveform.	This	array	must	be	large
enough	to	contain	at	least	the	amount	of	data	indicated	by	the
value	assigned	to	the	numSamplesPerRow	parameter	times
the	number	of	rows.

overwriteExistingFile long Allows	this	function	to	overwrite	the	file	if	it	exists.

Set	to	1	to	overwrite	the	existing	file	and	create	a	new	file.

Set	to	0	to	prevent	overwriting	an	existing	file.

Return	Value



niHWS_StoreDigitalWfm2DU32
Specific	Function
C	Function	Prototype
tHWS_Status	niHWS_StoreDigitalWfm2DU32	(const	char	filePath[],
double	rate,	long	compressionLevel,	long	numRows,	long	numSamplesPerRow,
const	unsigned	long*	wfmData,	long	overwriteExistingFile);



Purpose
Creates	a	new	file	for	storing	a	two-dimensional	array	of	digital	32-bit
(U32)	data.
This	function	is	intended	for	storing	a	single	waveform	in	a	file.	To	store
multiple	waveforms	in	a	file	use	the	Low	Level	functions.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or

open.	The	.hws	extension	is	typically	used	for	HWS	files,
although	using	this	extension	is	optional.

rate double The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

compressionLevel long This	parameter	provides	control	over	the	amount	of
compression	applied	to	the	waveform	samples	as	they	are
written	to	the	HWS	file.

A	value	of	0	means	no	compression.	A	value	of	9	means
maximum	compression.	Values	between	zero	and	nine
indicate	increasing	levels	of	compression.

numRows long The	number	of	rows	the	new	waveform	contains.

numSamplesPerRow long The	number	of	samples	the	new	waveform	contains.

wfmData const	unsigned
long*	

Contains	the	data	for	the	waveform.	This	array	must	be	large
enough	to	contain	at	least	the	amount	of	data	indicated	by	the
value	assigned	to	the	numSamplesPerRow	parameter	times
the	number	of	rows.

overwriteExistingFile long Allows	this	function	to	overwrite	the	file	if	it	exists.

Set	to	1	to	overwrite	the	existing	file	and	create	a	new	file.

Set	to	0	to	prevent	overwriting	an	existing	file.

Return	Value



niHWS_StoreDigitalWfmWDT
C	Function	Prototype
tHWS_Status	niHWS_StoreDigitalWfmWDT	(const	char	filePath[],	double	rate,
long	compressionLevel,	tHWS_DigitalWDTDataLayout	data_layout,	long
number_ofSignals,	long	number_ofSamples,	const	unsigned	char*
waveformData,	long	overwriteExistingFile);



Purpose
Creates	a	new	file	for	storing	digital	waveform	data	type	(WDT)	data.
This	function	is	intended	for	storing	a	single	waveform	in	a	file.	To	store
multiple	waveforms	in	a	file,	use	the	Low	Level	functions.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file

to	create	or	open.	The	.hws	extension	is
typically	used	for	HWS	files,	although	using	this
extension	is	optional.

rate double The	rate	of	the	Sample	clock	used	to	capture
the	waveform.

compressionLevel long This	parameter	provides	control	over	the
amount	of	compression	applied	to	the
waveform	samples	as	they	are	written	to	the
HWS	file.

A	value	of	0	means	no	compression.	A	value	of
9	means	maximum	compression.	Values
between	zero	and	nine	indicate	increasing
levels	of	compression.

dataLayout tHWS_DigitalWDTDataLayout Describes	the	layout	of	the	waveform	data.

Defined	Values

niHWS_Val_GroupBySample—specifies	that
consecutive	samples	in	wfmData	are	such	that
the	array	contains	the	first	sample	from	every
signal	in	the	operation,	then	the	second	sample
from	every	signal,	up	to	the	last	sample	from
every	signal.	
niHWS_Val_GroupBySignal—specifies	that
consecutive	samples	in	wfmData	are	such	that
the	array	contains	all	the	samples	from	the	first
signal	in	the	operation,	then	all	the	samples
from	the	second	signal,	up	to	all	samples	from
the	last	signal.

numSignals long The	number	of	signals	the	new	waveform
contains.

numSamples long The	number	of	samples	the	new	waveform
contains.

wfmData const	unsigned	char* Contains	the	data	for	the	waveform.	This	array
must	be	large	enough	to	contain	at	least	the
amount	of	data	indicated	by	the	value	assigned
to	the	numSamples	parameter	times
numSignals.

overwriteExistingFile long Allows	this	function	to	overwrite	the	file	if	it
exists.

Set	to	1	to	overwrite	the	existing	file	and	create
a	new	file.

Set	to	0	to	prevent	overwriting	an	existing	file.



Return	Value



Retrieve	Digital	Functions
Class/Panel	Name Function	Name

Retrieve	Digital	Wfm	U8 niHWS_RetrieveDigitalWfmU8

Retrieve	Digital	Wfm	2D	U8 niHWS_RetrieveDigitalWfm2DU8

Retrieve	Digital	Wfm	U16 niHWS_RetrieveDigitalWfmU16

Retrieve	Digital	Wfm	2D	U16 niHWS_RetrieveDigitalWfm2DU16

Retrieve	Digital	Wfm	U32 niHWS_RetrieveDigitalWfmU32

Retrieve	Digital	Wfm	2D	U32 niHWS_RetrieveDigitalWfm2DU32

Retrieve	Digital	Wfm	WDT niHWS_RetrieveDigitalWfmWDT



niHWS_RetrieveDigitalWfmU8
C	Function	Prototype
tHWS_Status	niHWS_RetrieveDigitalWfmU8	(const	char	filePath[],
double*	rate,	long	validSignalsSize,	char	validSignals[],	long	wfmBufferSize,
unsigned	char*	wfmBuffer,	long*	numSamplesInWfm);



Purpose
Retrieves	the	digital	waveform	samples	as	8-bit	unsigned	integers	(U8)
from	the	file	specified.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or	open.

The	.hws	extension	is	typically	used	for	HWS	files,	although	using
this	extension	is	optional.

rate double* The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

validSignalsSize long The	number	of	characters	that	the	string	allocated	for	the
validSignals	parameter	can	hold.
If	validSignalsSize	is	0	and	no	error	occurs,	the	actual	size	of	the
validSignals	string,	including	the	end	of	string	termination
character,	is	returned	in	the	status	parameter.

validSignals char[] The	list	of	lines	(or	bits)	in	the	digital	samples	that	are	valid.	For
example,	"0,3,6"	means	that	only	bits	0,	3,	and	6	of	each	unsigned
long	digital	sample	contain	valid	digital	data.

The	values	in	the	string	can	receive	any	integer	value	between	0
and	7.	Individual	lines	are	separated	by	commas.	You	can	use	a
hyphen	to	denote	an	inclusive	range	of	lines.	For	example,	"2-5"	is
equivalent	to	"2,3,4,5".

wfmBufferSize long Specifies	how	many	samples	to	read	into	wfmBuffer.
If	wfmBufferSize	is	0,	the	number	of	samples	in	the	waveform	is
returned	in	numSamplesInWfm.

wfmBuffer unsigned
char*

Contains	the	data	for	the	waveform.	This	array	must	be	large
enough	to	contain	at	least	the	amount	of	data	indicated	by	the	value
assigned	to	wfmBufferSize.

numSamplesInWfm long* Reports	the	total	number	of	samples	in	the	waveform.

Return	Value



niHWS_RetrieveDigitalWfmU16
C	Function	Prototype
tHWS_Status	niHWS_RetrieveDigitalWfmU16	(const	char	filePath[],
double*	rate,	long	validSignalsSize,	char	validSignals[],	long	wfmBufferSize,
unsigned	short*	wfmBuffer,	long*	numSamplesInWfm);



Purpose
Retrieves	the	digital	waveform	samples	as	16-bit	unsigned	integers	(U16)
from	the	file	specified.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or	open.

The	.hws	extension	is	typically	used	for	HWS	files,	although	using
this	extension	is	optional.

rate double* The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

validSignalsSize long The	number	of	characters	that	the	string	allocated	for	the
validSignals	parameter	can	hold.
If	validSignalsSize	is	zero	and	no	error	occurs,	the	actual	size	of
the	validSignals	string,	including	the	end	of	string	termination
character,	is	returned	in	the	status	parameter.

validSignals char[] The	list	of	lines	(or	bits)	in	the	digital	samples	that	are	valid.	For
example,	"0,3,6"	means	that	only	bits	0,	3,	and	6	of	each	unsigned
long	digital	sample	contain	valid	digital	data.

The	values	in	the	string	can	receive	any	integer	value	between	0
and	15.	Individual	lines	are	separated	by	commas.	You	can	use	a
hyphen	to	denote	an	inclusive	range	of	lines.	For	example,	"2-5"	is
equivalent	to	"2,3,4,5".

wfmBufferSize long Specifies	how	many	samples	to	read	into	wfmBuffer.
If	wfmBufferSize	is	0,	the	number	of	samples	in	the	waveform	is
returned	in	numSamplesInWfm.

wfmBuffer unsigned
short*

Contains	the	data	for	the	waveform.	This	array	must	be	large
enough	to	contain	at	least	the	amount	of	data	indicated	by	the	value
assigned	to	wfmBufferSize.

numSamplesInWfm long* Reports	the	total	number	of	samples	in	the	waveform.

Return	Value



niHWS_RetrieveDigitalWfmU32
C	Function	Prototype
tHWS_Status	niHWS_RetrieveDigitalWfmU32	(const	char	filePath[],
double*	rate,	long	validSignalsSize,	char	validSignals[],	long	wfmBufferSize,
unsigned	long*	wfmBuffer,	long*	numSamplesInWfm);



Purpose
Retrieves	the	digital	waveform	samples	as	32-bit	unsigned	integers	(U32)
from	the	file	specified.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or	open.

The	.hws	extension	is	typically	used	for	HWS	files,	although	using
this	extension	is	optional.

rate double* The	rate	of	the	Sample	clock	used	to	capture	the	waveform.

validSignalsSize long The	number	of	characters	that	the	string	allocated	for	the
validSignals	parameter	can	hold.
If	validSignalsSize	is	0	and	no	error	occurs,	the	actual	size	of	the
validSignals	string,	including	the	end	of	string	termination
character,	is	returned	in	the	status	parameter.

validSignals char[] The	list	of	lines	(or	bits)	in	the	digital	samples	that	are	valid.	For
example,	"0,3,6"	means	that	only	bits	0,	3,	and	6	of	each	unsigned
long	digital	sample	contain	valid	digital	data.

The	values	in	the	string	can	receive	any	integer	value	between	0
and	31.	Individual	lines	are	separated	by	commas.	You	can	use	a
hyphen	to	denote	an	inclusive	range	of	lines.	For	example,	"2-5"	is
equivalent	to	"2,3,4,5".

wfmBufferSize long Specifies	how	many	samples	to	read	into	wfmBuffer.
If	wfmBufferSize	is	0,	the	number	of	samples	in	the	waveform	is
returned	in	numSamplesInWfm.

wfmBuffer unsigned
long*

Contains	the	data	for	the	waveform.	This	array	must	be	large
enough	to	contain	at	least	the	amount	of	data	indicated	by	the	value
assigned	to	wfmBufferSize.

numSamplesInWfm long* Reports	the	total	number	of	samples	in	the	waveform.

Return	Value



niHWS_RetrieveDigitalWfm2DU8
Specific	Function
C	Function	Prototype
tHWS_Status	niHWS_RetrieveDigitalWfm2DU8		(const	char	filePath[],
double*	rate,	long	wfmBufferSize,	unsigned	char*	wfmBuffer,
long*	numRowsInWfm,	long*	numSamplesPerRowInWfm);



Purpose
Retrieves	the	digital	waveform	samples	as	a	two-dimensional	array	of	8-
bit	unsigned	integers	(U8)	from	the	file	specified.
If	there	are	multiple	waveforms	in	the	file,	use	the	low-level	functions	to
retrieve	them.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to

create	or	open.	The	.hws	extension	is	typically	used	for
NI-HWS	files,	although	using	this	extension	is	optional.

rate double* The	rate	of	the	Sample	clock	used	to	capture	the
waveform.

wfmBufferSize long Specifies	how	many	samples	to	read	into	the
wfmBuffer.
If	the	wfmBufferSize	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	the
numSamplesPerRowInWfm	parameter	and	the
number	of	rows	in	the	waveform	is	returned	in	the
numRowsInWfm	parameter.

wfmBuffer unsigned	char* Contains	the	data	for	the	waveform.	This	array	must	be
large	enough	to	contain	at	least	the	amount	of	data
indicated	by	the	value	assigned	to	the	wfmBufferSize
times	the	number	of	rows	in	the	waveform.

numRowsInWfm long* Reports	the	number	of	rows	the	waveform.

numSamplesPerRowInWfm long* Reports	the	number	of	samples	per	row	in	the
waveform.

If	the	wfmBufferSize	parameter	is	0,	the	number	of
samples	per	row	in	the	waveform	is	returned	in	the
numSamplesPerRowInWfm	parameter.

If	the	numSamplesPerRowInWfm	parameter	is	0,	the
number	of	rows	in	the	waveform	is	returned	in	the
numRowsInWfm	parameter.

Return	Value



niHWS_RetrieveDigitalWfm2DU16
Specific	Function
C	Function	Prototype
tHWS_Status	niHWS_RetrieveDigitalWfm2DU16		(const	char	filePath[],
double*	rate,	long	wfmBufferSize,	unsigned	short*	wfmBuffer,
long*	numRowsInWfm,	long*	numSamplesPerRowInWfm);



Purpose
Retrieves	the	digital	waveform	samples	as	a	two-dimensional	array	of	16-
bit	unsigned	integers	(U16)	from	the	file	specified.
If	there	are	multiple	waveforms	in	the	file,	use	the	low-level	functions	to
retrieve	them.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to

create	or	open.	The	.hws	extension	is	typically	used	for
NI-HWS	files,	although	using	this	extension	is	optional.

rate double* The	rate	of	the	Sample	clock	used	to	capture	the
waveform.

wfmBufferSize long Specifies	how	many	samples	to	read	into	the
wfmBuffer.
If	the	wfmBufferSize	is	0,	the	number	of	samples	in
the	waveform	is	returned	in	the
numSamplesPerRowInWfm	parameter	and	the
number	of	rows	in	the	waveform	is	returned	in	the
numRowsInWfm	parameter.

wfmBuffer unsigned	short* Contains	the	data	for	the	waveform.	This	array	must	be
large	enough	to	contain	at	least	the	amount	of	data
indicated	by	the	value	assigned	to	the	wfmBufferSize
times	the	number	of	rows	in	the	waveform.

numRowsInWfm long* Reports	the	number	of	rows	the	waveform.

numSamplesPerRowInWfm long* Reports	the	number	of	samples	per	row	in	the
waveform.	If	the	WfmBufferSize	parameter	is	0,	the
number	of	samples	per	row	in	the	waveform	is	returned
in	the	numSamplesPerRowInWfm	parameter.

Return	Value



niHWS_RetrieveDigitalWfm2DU32
Specific	Function
C	Function	Prototype
tHWS_Status	niHWS_RetrieveDigitalWfm2DU32		(const	char	filePath[],
double*	rate,	long	wfmBufferSize,	unsigned	long*	wfmBuffer,
long*	numRowsInWfm,	long*	numSamplesPerRowInWfm);



Purpose
Retrieves	the	digital	waveform	samples	as	a	two-dimensional	array	of	32-
bit	unsigned	integers	(U32)	from	the	file	specified.
If	there	are	multiple	waveforms	in	the	file,	use	the	low-level	functions	to
retrieve	them.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to

create	or	open.	The	.hws	extension	is	typically	used	for
NI-HWS	files,	although	using	this	extension	is	optional.

rate double* The	rate	of	the	Sample	clock	used	to	capture	the
waveform.

wfmBufferSize long Specifies	how	many	samples	to	read	into	the
wfmBuffer.
If	the	wfmBufferSize	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	the
numSamplesPerRowInWfm	parameter	and	the
number	of	rows	in	the	waveform	is	returned	in	the
numRowsInWfm	parameter.

wfmBuffer unsigned	long* Contains	the	data	for	the	waveform.	This	array	must	be
large	enough	to	contain	at	least	the	amount	of	data
indicated	by	the	value	assigned	to	the	wfmBufferSize
times	the	number	of	rows	in	the	waveform.

numRowsInWfm long* Reports	the	number	of	rows	the	waveform.

numSamplesPerRowInWfm long* Reports	the	number	of	samples	per	row	in	the
waveform.

If	the	wfmBufferSize	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	the
numSamplesPerRowInWfm	parameter	and	the
number	of	rows	in	the	waveform	is	returned	in	the
numRowsInWfm	parameter.

Return	Value



niHWS_RetrieveDigitalWfmWDT
Specific	Function
C	Function	Prototype
tHWS_Status	niHWS_RetrieveDigitalWfmWDT	(const	char	filePath[],	double
*rate,	tHWS_DigitalWDTDataLayout	data_layout,	long	waveformBufferSize,
unsigned	char	waveformBuffer[],	long	*number_ofSignals_inWaveform,	long
*number_ofSamples_inWaveform);



Purpose
Retrieves	the	digital	waveform	data	type	samples	from	the	file	specified.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	file	name	of

the	HWS	file	to	create	or	open.	The
.hws	extension	is	typically	used	for
HWS	files	although	using	this
extension	is	optional.

rate double* The	rate	of	the	sample	clock	used	to
capture	the	waveform.

dataLayout tHWS_DigitalWDTDataLayout Describes	the	layout	of	the	waveform
data.

Defined	Values

niHWS_Val_GroupBySample—
specifies	that	consecutive	samples	in
waveformBuffer	are	such	that	the
array	contains	the	first	sample	from
every	signal	in	the	operation,	then	the
second	sample	from	every	signal,	up
to	the	last	sample	from	every	signal.	
niHWS_Val_GroupBySignal—specifies
that	consecutive	samples	in
waveformBuffer	are	such	that	the
array	contains	all	the	samples	from
the	first	signal	in	the	operation,	then
all	the	samples	from	the	second
signal,	up	to	all	samples	from	the	last
signal.

waveformBufferSize long Specifies	the	size	of
waveformBuffer,	in	samples.

Allocate	enough	memory	for	the
entire	waveform	to	be	read,	then	pass
the	pre-allocated	array	and	the	size	of
that	array	to	this	function.

waveformBuffer unsigned	char[] Contains	the	data	for	the	waveform.
This	array	must	be	large	enough	to
contain	at	least	the	amount	of	data
indicated	by	the	value	assigned	to	the
Waveform	Buffer	Size	parameter.

numberofSignalsinWaveform long* Reports	the	number	of	signals	in	the
waveform.	

If	the	waveformBufferSize
parameter	is	0,	the	number	of	signals
in	the	waveform	is	returned	in	the
numberofSignalsinWaveform



parameter.

numberofSamplesinWaveform long* Reports	the	number	of	samples	in	the
waveform.	

If	the	waveformBufferSize
parameter	is	0,	the	number	of
samples	in	the	waveform	is	returned
in	the
numberofSamplesinWaveform
parameter.

Return	Value



Low-Level	Functions
Class/Panel	Name Function	Name

Open	File niHWS_OpenFile

Close	File niHWS_CloseFile

Read	Functions
Get	Waveform	Reference niHWS_GetWfmReference

Read	Analog	Functions
Read	Analog	F64 niHWS_ReadAnalogF64

Read	Analog	I8 niHWS_ReadAnalogI8

Read	Analog	I16 niHWS_ReadAnalogI16

Read	Analog	I32 niHWS_ReadAnalogI32

Read	Digital	Functions
Read	Digital	WDT niHWS_ReadDigitalWDT

Read	Digital	U8 niHWS_ReadDigitalU8

Read	Digital	2D	U8 niHWS_ReadDigital2DU8

Read	Digital	U16 niHWS_ReadDigitalU16

Read	Digital	2D	U16 niHWS_ReadDigital2DU16

Read	Digital	U32 niHWS_ReadDigitalU32

Read	Digital	2D	U32 niHWS_ReadDigital2DU32

Read	Utility	Functions
Get	Number	of	Groups niHWS_GetNumberOfGroups

Get	Group	Name niHWS_GetGroupName

Get	Number	of	Waveforms niHWS_GetNumberOfWaveforms

Get	Waveform	Name niHWS_GetWfmName

Get	Scaling	Coefficients niHWS_GetScalingCoefficients

Get	Group	String	Attribute niHWS_GetGroupStringAttribute

Get	Waveform	String	Attribute niHWS_GetWfmStringAttribute

Get	Waveform	I32	Attribute niHWS_GetWfmI32Attribute

Get	Waveform	I64	Attribute niHWS_GetWfmI64Attribute

Get	Waveform	F64	Attribute niHWS_GetWfmF64Attribute

Write	Functions
New	Waveform	Reference niHWS_NewWfmReference

Write	Analog
Write	Analog	F64 niHWS_WriteAnalogF64

Write	Analog	I8 niHWS_WriteAnalogI8

Write	Analog	I16 niHWS_WriteAnalogI16



Write	Analog	I32 niHWS_WriteAnalogI32

Write	Digital
Write	Digital	WDT niHWS_WriteDigitalWDT

Write	Digital	U8 niHWS_WriteDigitalU8

Write	Digital	2D	U8 niHWS_WriteDigital2DU8

Write	Digital	U16 niHWS_WriteDigitalU16

Write	Digital	2D	U16 niHWS_WriteDigital2DU16

Write	Digital	U32 niHWS_WriteDigitalU32

Write	Digital	2D	U32 niHWS_WriteDigital2DU32

Write	Utility	Functions
Set	Scaling	Coefficients niHWS_SetScalingCoefficients

Set	Group	String	Attribute niHWS_SetGroupStringAttribute

Set	Waveform	String	Attribute niHWS_SetWfmStringAttribute

Set	Waveform	F64	Attribute niHWS_SetWfmF64Attribute

		

Seek niHWS_Seek

Get	Error	String niHWS_GetErrorString



niHWS_OpenFile
C	Function	Prototype
tHWS_Status	niHWS_OpenFile	(const	char	filePath[],
tHWS_FilePermissions	permissions,	tHWS_FileHandle*	fileHandle);



Purpose
Opens	or	creates	an	HWS	waveform	file.	The	file	must	be	closed	with	the
niHWS_CloseFile	function.



Parameters
Name Type Description
filePath const	char[] Specifies	the	path	and	filename	of	the	HWS	file	to	create	or

open.	The	.hws	extension	is	typically	used	for	HWS	files,
although	using	this	extension	is	optional.

permissions tHWS_FilePermissions Specifies	file	access	options

Defined	Values
niHWS_Val_ReadOnly—Opens	an	existing	file	for	reading.	An
error	is	returned	if	the	specified	file	does	not	exist.	An	error	is
returned	if	an	attempt	is	made	to	write	to	the	file.

niHWS_Val_ReadWriteExisting—Opens	an	existing	file	for	both
reading	and	writing.	An	error	is	returned	if	the	specified	file	does
not	exist.

niHWS_Val_ReadWriteCreateNew—Creates	a	new	file	for	both
reading	and	writing.	An	error	is	returned	if	the	specified	file
already	exists.

niHWS_Val_ReadWriteCreateNewAlways—Creates	a	new	file	for
both	reading	and	writing.	If	the	specified	file	already	exists,	its
contents	are	lost.

fileHandle tHWS_FileHandle* Refers	to	an	open	HWS	file.

Return	Value



niHWS_CloseFile
C	Function	Prototype
tHWS_Status	niHWS_CloseFile	(tHWS_FileHandle	fileHandle);



Purpose
Closes	the	NI-HWS	file	specified	by	fileHandle.



Parameters
Name Type Description
fileHandle tHWS_FileHandle Refers	to	an	open	HWS	file.

Return	Value



Read	Functions
Class/Panel	Name Function	Name

Get	Waveform	Reference niHWS_GetWfmReference

Read	Analog	Functions
Read	Analog	F64 niHWS_ReadAnalogF64

Read	Analog	I8 niHWS_ReadAnalogI8

Read	Analog	I16 niHWS_ReadAnalogI16

Read	Analog	I32 niHWS_ReadAnalogI32

Read	Digital	Functions
Read	Digital	U8 niHWS_ReadDigitalU8

Read	Digital	2D	U8 niHWS_ReadDigital2DU8

Read	Digital	U16 niHWS_ReadDigitalU16

Read	Digital	2D	U16 niHWS_ReadDigital2DU16

Read	Digital	U32 niHWS_ReadDigitalU32

Read	Digital	2D	U32 niHWS_ReadDigital2DU32

Read	Digital	WDT niHWS_ReadDigitalWDT

Read	Utility	Functions
Get	Number	of	Groups niHWS_GetNumberOfGroups

Get	Group	Name niHWS_GetGroupName

Get	Number	of	Waveforms niHWS_GetNumberOfWaveforms

Get	Waveform	Name niHWS_GetWfmName

Get	Scaling	Coefficients niHWS_GetScalingCoefficients

Get	Group	String	Attribute niHWS_GetGroupStringAttribute

Get	Waveform	String	Attribute niHWS_GetWfmStringAttribute

Get	Waveform	I32	Attribute niHWS_GetWfmI32Attribute

Get	Waveform	I64	Attribute niHWS_GetWfmI64Attribute

Get	Waveform	F64	Attribute niHWS_GetWfmF64Attribute



niHWS_GetWfmReference
C	Function	Prototype
tHWS_Status	niHWS_GetWfmReference	(tHWS_FileHandle	fileHandle,
const	char	groupName[],	const	char	wfmName[],
tHWS_WfmRef*	wfmReference);



Purpose
Returns	a	reference	to	an	existing	waveform.
Waveforms	are	identified	by	reference	for	purposes	of	setting	and	getting
waveform	attributes	and	reading	and	writing	data.



Parameters
Name Type Description
fileHandle tHWS_FileHandle Refers	to	an	open	HWS	file.

groupName const	char[] The	name	of	the	group.	Groups	are	identified	by	name	for
purposes	of	setting	and	getting	group	attributes.

If	only	one	group	is	in	the	file,	this	parameter	can	be	NULL	or	the
empty	string.

wfmName const	char[] The	name	of	the	waveform.	If	there	is	only	one	waveform	in	the
group,	the	waveform	name	is	optional	(this	parameter	can	be
NULL	or	the	empty	string).	Otherwise,	you	must	supply	the
waveform	name.

wfmReference tHWS_WfmRef* A	reference	to	the	waveform.	Waveforms	are	identified	by
reference	for	purposes	of	setting	and	getting	waveform	attributes
and	reading	and	writing	data.

Return	Value



Read	Analog	Functions
Class/Panel	Name Function	Name
Read	Analog	F64 niHWS_ReadAnalogF64

Read	Analog	I8 niHWS_ReadAnalogI8

Read	Analog	I16 niHWS_ReadAnalogI16

Read	Analog	I32 niHWS_ReadAnalogI32



niHWS_ReadAnalogF64
C	Function	Prototype
tHWS_Status	niHWS_ReadAnalogF64	(tHWS_WfmRef	wfmReference,
long	numSamplesToRead,	double*	wfmBuffer,	long*	actualSamplesRead);



Purpose
Returns	analog	waveform	samples	as	double-precision	floating-point
data	beginning	at	the	current	read/write	position.
Analog	waveform	data	stored	as	doubles	returns	unaltered.	Analog
waveform	data	stored	as	integers	(chars,	shorts,	or	longs)	is	scaled	to
doubles	using	the	stored	scaling	coefficients.
A	read	moves	the	read/write	position	so	that	it	points	to	the	next	unread
sample	in	the	waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by

reference	for	purposes	of	setting	and	getting	waveform
attributes	and	reading	and	writing	data.

numSamplesToRead long Specifies	how	many	samples	to	read	into	wfmBuffer.
If	numSamplesToRead	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	actualSamplesRead.

wfmBuffer double* The	array	that	contains	the	data	for	the	waveform.	It	is
assumed	that	this	array	is	big	enough	to	contain	at	least	the
amount	of	data	indicated	by	the	value	assigned	to
numSamplesToRead.

actualSamplesRead long* Reports	the	number	of	samples	read.

If	numSamplesToRead	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	actualSamplesRead.

Return	Value



niHWS_ReadAnalogI8
C	Function	Prototype
tHWS_Status	niHWS_ReadAnalogI8	(tHWS_WfmRef	wfmReference,
long	numSamplesToRead,	char*	wfmBuffer,	long*	actualSamplesRead);



Purpose
Returns	analog	waveform	samples	as	8-bit	signed	integers	(I8)	beginning
at	the	current	read/write	position.	Only	I8	data	can	be	retrieved	with	this
function.
A	read	moves	the	read/write	position	so	that	it	points	to	the	next	unread
sample	in	the	waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by

reference	for	purposes	of	setting	and	getting	waveform
attributes	and	reading	and	writing	data.

numSamplesToRead long Specifies	how	many	samples	to	read	into	wfmBuffer.
If	numSamplesToRead	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	actualSamplesRead.

wfmBuffer char* The	array	that	contains	the	data	for	the	waveform.	It	is
assumed	that	this	array	is	big	enough	to	contain	at	least	the
amount	of	data	indicated	by	the	value	assigned	to
numSamplesToRead.

actualSamplesRead long* Reports	the	number	of	samples	read.

If	numSamplesToRead	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	actualSamplesRead.

Return	Value



niHWS_ReadAnalogI16
C	Function	Prototype
tHWS_Status	niHWS_ReadAnalogI16	(tHWS_WfmRef	wfmReference,
long	numSamplesToRead,	short*	wfmBuffer,	long*	actualSamplesRead);



Purpose
Returns	analog	waveform	samples	as	16-bit	signed	integers	(I16)
beginning	at	the	current	read/write	position.	Only	data	stored	as	8-	or	16-
bit	signed	integers	(chars	or	shorts)	can	be	retrieved	with	this	function.	8-
bit	data	is	sign-extended	to	16	bits.
A	read	moves	the	read/write	position	so	that	it	points	to	the	next	unread
sample	in	the	waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by

reference	for	purposes	of	setting	and	getting	waveform
attributes	and	reading	and	writing	data.

numSamplesToRead long Specifies	how	many	samples	to	read	into	wfmBuffer.
If	numSamplesToRead	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	actualSamplesRead.

wfmBuffer short* The	array	that	contains	the	data	for	the	waveform.	It	is
assumed	that	this	array	is	big	enough	to	contain	at	least	the
amount	of	data	indicated	by	the	value	assigned	to
numSamplesToRead.

actualSamplesRead long* Reports	the	number	of	samples	read.

If	numSamplesToRead	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	actualSamplesRead.

Return	Value



niHWS_ReadAnalogI32
C	Function	Prototype
tHWS_Status	niHWS_ReadAnalogI32	(tHWS_WfmRef	wfmReference,
long	numSamplesToRead,	long*	wfmBuffer,	long*	actualSamplesRead);



Purpose
Returns	analog	waveform	samples	as	32-bit	signed	integers	(I32)
beginning	at	the	current	read/write	position.	Data	stored	as	8-	or	16-bit
signed	integers	(chars	or	shorts)	is	sign-extended	to	32	bits.
A	read	moves	the	read/write	position	so	that	it	points	to	the	next	unread
sample	in	the	waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by

reference	for	purposes	of	setting	and	getting	waveform
attributes	and	reading	and	writing	data.

numSamplesToRead long Specifies	how	many	samples	to	read	into	wfmBuffer.
If	numSamplesToRead	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	actualSamplesRead.

wfmBuffer long* The	array	that	contains	the	data	for	the	waveform.	It	is
assumed	that	this	array	is	big	enough	to	contain	at	least	the
amount	of	data	indicated	by	the	value	assigned	to
numSamplesToRead.

actualSamplesRead long* Reports	the	number	of	samples	read.

If	numSamplesTo	Read	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	actualSamplesRead.

Return	Value



Read	Digital	Functions
Class/Panel	Name Function	Name
Read	Digital	U8 niHWS_ReadDigitalU8

Read	Digital	WDT niHWS_ReadDigitalWDT

Read	Digital	2D	U8 niHWS_ReadDigital2DU8

Read	Digital	U16 niHWS_ReadDigitalU16

Read	Digital	2D	U16 niHWS_ReadDigital2DU16

Read	Digital	U32 niHWS_ReadDigitalU32

Read	Digital	2D	U32 niHWS_ReadDigital2DU32



niHWS_ReadDigitalU8
C	Function	Prototype
tHWS_Status	niHWS_ReadDigitalU8		(tHWS_WfmRef	wfmReference,
long	numSamplesToRead,	unsigned	char*	wfmBuffer,
long*	actualSamplesRead);



Purpose
Returns	digital	waveform	samples	as	8-bit	unsigned	integers	(U8)
beginning	at	the	current	read/write	position.
A	read	moves	the	read/write	position	so	that	it	points	to	the	next	unread
sample	in	the	waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by

reference	for	purposes	of	setting	and	getting	waveform
attributes	and	reading	and	writing	data.

numSamplesToRead long Specifies	how	many	samples	to	read	into	wfmBuffer.
If	numSamplesToRead	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	actualSamplesRead.

wfmBuffer unsigned	char* The	array	that	contains	the	data	for	the	waveform.	It	is
assumed	that	this	array	is	big	enough	to	contain	at	least	the
amount	of	data	indicated	by	the	value	assigned	to
numSamplesToRead.

actualSamplesRead long* Reports	the	number	of	samples	read.

If	numSamplesToRead	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	actualSamplesRead.

Return	Value



niHWS_ReadDigitalU16
C	Function	Prototype
tHWS_Status	niHWS_ReadDigitalU16		(tHWS_WfmRef	wfmReference,
long	numSamplesToRead,	unsigned	short*	wfmBuffer,
long*	actualSamplesRead);



Purpose
Returns	digital	waveform	samples	as	16-bit	unsigned	integers	(U16)
beginning	at	the	current	read/write	position.
A	read	moves	the	read/write	position	so	that	it	points	to	the	next	unread
sample	in	the	waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by

reference	for	purposes	of	setting	and	getting	waveform
attributes	and	reading	and	writing	data.

numSamplesToRead long Specifies	how	many	samples	to	read	into	wfmBuffer.
If	numSamplesToRead	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	actualSamplesRead.

wfmBuffer unsigned
short*

The	array	that	contains	the	data	for	the	waveform.	It	is
assumed	that	this	array	is	big	enough	to	contain	at	least	the
amount	of	data	indicated	by	the	value	assigned	to
numSamplesToRead.

actualSamplesRead long* Reports	the	number	of	samples	read.

If	numSamplesToRead	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	actualSamplesRead.

Return	Value



niHWS_ReadDigitalU32
C	Function	Prototype
tHWS_Status	niHWS_ReadDigitalU32	(tHWS_WfmRef	wfmReference,
long	numSamplesToRead,	unsigned	long*	wfmBuffer,
long*	actualSamplesRead);



Purpose
Returns	digital	waveform	samples	as	32-bit	unsigned	integers	(U32)
beginning	at	the	current	read/write	position.
A	read	moves	the	read/write	position	so	that	it	points	to	the	next	unread
sample	in	the	waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by

reference	for	purposes	of	setting	and	getting	waveform
attributes	and	reading	and	writing	data.

numSamplesToRead long Specifies	how	many	samples	to	read	into	wfmBuffer.
If	numSamplesToRead	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	actualSamplesRead.

wfmBuffer unsigned	long* The	array	that	contains	the	data	for	the	waveform.	It	is
assumed	that	this	array	is	big	enough	to	contain	at	least	the
amount	of	data	indicated	by	the	value	assigned	to
numSamplesToRead.

actualSamplesRead long* Reports	the	number	of	samples	read.

If	numSamplesToRead	is	0,	the	number	of	samples	in	the
waveform	is	returned	in	actualSamplesRead.

Return	Value



niHWS_ReadDigital2DU8
Specific	Function
C	Function	Prototype
tHWS_Status	niHWS_ReadDigital2DU8		(tHWS_WfmRef	wfmReference,
long	numSamplesToReadPerRow,	unsigned	char*	wfmBuffer,
long*	actualSamplesReadPerRow);



Purpose
Returns	digital	waveform	samples	as	a	two-dimensional	array	of	8-bit
unsigned	integers	(U8)	beginning	at	the	current	read/write	position.
A	read	moves	the	read/write	position	so	that	it	points	to	the	next	unread
sample	in	the	waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified

by	reference	for	purposes	of	setting	and	getting
waveform	attributes	and	reading	and	writing	data.

numSamplesToReadPerRow long Specifies	how	many	samples	to	read	into	the
wfmBuffer.
If	the	numSamplesToReadPerRow	parameter	is	0,
the	number	of	samples	in	the	waveform	is	returned	in
the	actualSamplesReadPerRow	parameter.

wfmBuffer unsigned	char* The	array	that	contains	the	data	for	the	waveform.	It	is
assumed	that	this	array	is	big	enough	to	contain	at
least	the	amount	of	data	indicated	by	the	value
assigned	to	the	numSamplesToReadPerRow
parameter	times	the	number	of	rows	of	the	2D
waveform.	You	can	get	the	number	of	rows	using	the
niHWS_GetWfmI32Attribute	function	to	get	the
niHWS_Attr_NumRows	attribute.

actualSamplesReadPerRow long* Reports	the	number	of	samples	read	per	row.

If	the	numSamplesToReadPerRow	parameter	is	0,
the	number	of	samples	in	the	waveform	is	returned	in
the	actualSamplesReadPerRow	parameter.

Return	Value



niHWS_ReadDigital2DU16
Specific	Function
C	Function	Prototype
tHWS_Status	niHWS_ReadDigital2DU16		(tHWS_WfmRef	wfmReference,
long	numSamplesToReadPerRow,	unsigned	short*	wfmBuffer,
long*	actualSamplesReadPerRow);



Purpose
Returns	digital	waveform	samples	as	a	two-dimensional	array	of	16-bit
unsigned	integers	(U16)	beginning	at	the	current	read/write	position.
A	read	moves	the	read/write	position	so	that	it	points	to	the	next	unread
sample	in	the	waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified

by	reference	for	purposes	of	setting	and	getting
waveform	attributes	and	reading	and	writing	data.

numSamplesToReadPerRow long Specifies	how	many	samples	to	read	into	the
wfmBuffer.
If	the	numSamplesToReadPerRow	parameter	is	0,
the	number	of	samples	in	the	waveform	is	returned	in
the	actualSamplesReadPerRow	parameter.

wfmBuffer unsigned
short*

The	array	that	contains	the	data	for	the	waveform.	It	is
assumed	that	this	array	is	big	enough	to	contain	at
least	the	amount	of	data	indicated	by	the	value
assigned	to	the	numSamplesToReadPerRow
parameter	times	the	number	of	rows	of	the	2D
waveform.	You	can	get	the	number	of	rows	using	the
niHWS_GetWfmI32Attribute	function	to	get	the
niHWS_Attr_NumRows	attribute.

actualSamplesReadPerRow long* Reports	the	number	of	samples	read	per	row.

If	the	numSamplesToReadPerRow	parameter	is	0,
the	number	of	samples	in	the	waveform	is	returned	in
the	actualSamplesReadPerRow	parameter.

Return	Value



niHWS_ReadDigital2DU32
Specific	Function
C	Function	Prototype
tHWS_Status	niHWS_ReadDigital2DU32	(tHWS_WfmRef	wfmReference,
long	numSamplesToReadPerRow,	unsigned	long*	wfmBuffer,
long*	actualSamplesReadPerRow);



Purpose
Returns	digital	waveform	samples	as	a	two-dimensional	array	of	32-bit
unsigned	integers	(U32)	beginning	at	the	current	read/write	position.
A	read	moves	the	read/write	position	so	that	it	points	to	the	next	unread
sample	in	the	waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified

by	reference	for	purposes	of	setting	and	getting
waveform	attributes	and	reading	and	writing	data.

numSamplesToReadPerRow long Specifies	how	many	samples	to	read	into	the
wfmBuffer.
If	the	numSamplesToReadPerRow	parameter	is	0,
the	number	of	samples	in	the	waveform	is	returned	in
the	actualSamplesReadPerRow	parameter.

wfmBuffer unsigned	long* The	array	that	contains	the	data	for	the	waveform.	It	is
assumed	that	this	array	is	big	enough	to	contain	at
least	the	amount	of	data	indicated	by	the	value
assigned	to	the	numSamplesToReadPerRow
parameter	times	the	number	of	rows	of	the	2D
waveform.	You	can	get	the	number	of	rows	using	the
niHWS_GetWfmI32Attribute	function	to	get	the
niHWS_Attr_NumRows	attribute.

actualSamplesReadPerRow long* Reports	the	number	of	samples	read	per	row.

If	the	numSamplesToReadPerRow	parameter	is	0,
the	number	of	samples	in	the	waveform	is	returned	in
the	actualSamplesReadPerRow	parameter.

Return	Value



niHWS_ReadDigitalWDT
C	Function	Prototype
tHWS_Status	niHWS_ReadDigitalWDT	(tHWS_WfmRef	waveformReference,
tHWS_DigitalWDTDataLayout	data_layout,	long	number_ofSamples_toRead,
unsigned	char*	waveformData,	long	*actualSamplesRead);



Purpose
Returns	digital	waveform	samples	as	a	waveform	data	type,	beginning	at
the	current	read/write	position.
A	read	moves	the	read/write	position	so	that	it	points	to	the	next	unread
sample	in	the	waveform.
The	digital	waveform	is	an	array	of	chars	where	each	char	represents	a
single	bit	of	a	waveform.	If	dataLayout	is	configured	for
niHWS_Val_GroupBySample,	then	all	the	bits	for	the	first	sample	are	in	the
first	elements	of	the	array,	all	the	bits	for	the	next	sample	are	in	the	next
elements,	and	so	on.	If	dataLayout	is	configured	for
niHWS_Val_GroupBySignal,	then	the	first	range	of	elements	in	the	array
contains	the	bit	0	values	for	each	sample,	the	next	set	of	array	elements
contain	the	bit	1	values	for	each	sample,	and	so	on.
Each	bit	is	represented	by	a	char	because	a	bit	can	be	any	of	the
following	eight	different	values:	H,	L,	0,	1,	X,	Z,	V,	T.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are

identified	by	reference	for	purposes	of	setting
and	getting	waveform	attributes	and	reading
and	writing	data.

dataLayout tHWS_DigitalWDTDataLayout Describes	the	layout	of	the	waveform	data.

Defined	Values

NIHWS_VAL_GROUP_BY_SAMPLE—specifies
that	consecutive	samples	in	wfmBuffer	are
such	that	the	array	contains	the	first	sample
from	every	signal	in	the	operation,	then	the
second	sample	from	every	signal,	up	to	the	last
sample	from	every	signal.	
NIHWS_VAL_GROUP_BY_SIGNAL—specifies
that	consecutive	samples	in	wfmBuffer	are
such	that	the	array	contains	all	the	samples
from	the	first	signal	in	the	operation,	then	all	the
samples	from	the	second	signal,	up	to	all
samples	from	the	last	signal.

numSamplesToRead long Specifies	how	many	samples	to	read	into
wfmBuffer.
If	numSamplesToRead	is	0,	the	number	of
samples	in	the	waveform	is	returned	in
actualSamplesRead.

wfmBuffer unsigned	char* The	array	that	contains	the	data	for	the
waveform.	It	is	assumed	that	this	array	is	big
enough	to	contain	at	least	the	amount	of	data
indicated	by	the	value	assigned	to
numSamplesToRead	times	the	total	number	of
signals.

actualSamplesRead long* Reports	the	number	of	samples	read.

If	numSamplesToRead	is	0,	the	number	of
samples	in	the	waveform	is	returned	in
actualSamplesRead.

Return	Value



Read	Utility	Functions
Class/Panel	Name Function	Name

Get	Number	of	Groups niHWS_GetNumberOfGroups

Get	Group	Name niHWS_GetGroupName

Get	Number	of	Waveforms niHWS_GetNumberOfWaveforms

Get	Waveform	Name niHWS_GetWfmName

Get	Scaling	Coefficients niHWS_GetScalingCoefficients

Get	Group	String	Attribute niHWS_GetGroupStringAttribute

Get	Waveform	String	Attribute niHWS_GetWfmStringAttribute

Get	Waveform	I32	Attribute niHWS_GetWfmI32Attribute

Get	Waveform	I64	Attribute niHWS_GetWfmI64Attribute

Get	Waveform	F64	Attribute niHWS_GetWfmF64Attribute



niHWS_GetNumberOfGroups
C	Function	Prototype
tHWS_Status	niHWS_GetNumberOfGroups	(tHWS_FileHandle	fileHandle,
long*	numberOfGroups);



Purpose
Reports	the	number	of	waveform	groups	contained	in	the	NI-HWS	file.



Parameters
Name Type Description
fileHandle tHWS_FileHandle Refers	to	an	open	HWS	file.

numberOfGroups long* The	number	of	waveform	groups	in	the	NI-HWS	file.

Return	Value



niHWS_GetGroupName
C	Function	Prototype
tHWS_Status	niHWS_GetGroupName	(tHWS_FileHandle	fileHandle,
long	groupIndex,	long	groupNameSize,	char	groupName[]);



Purpose
Returns	the	name	of	a	group	in	an	NI-HWS	file.	Groups	are	identified	by
name	for	purposes	of	setting	and	getting	group	attributes.



Parameters
Name Type Description
fileHandle tHWS_FileHandle Refers	to	an	open	HWS	file.

groupIndex long A	number	such	that	0	 	groupIndex	<	numberOfGroups
where

numberOfGroups	is	obtained	by	calling
niHWS_GetNumberOfGroups.	If	five	groups	are	in	a	file,	their	group
indices	are	0	through	4.	The	only	use	for	the	groupIndex
parameter	is	to	obtain	the	name	of	a	group.	Groups	are	identified
by	name	for	purposes	of	setting	and	getting	group	attributes.

groupNameSize long Specifies	the	number	of	characters	in	the	groupName.
If	this	parameter	is	set	to	0	and	there	is	no	error,	the	actual
number	of	characters,	including	the	end	of	string	termination
character,	in	the	groupName	are	returned	in	the	status
parameter.

groupName char[] The	name	of	the	group	specified	by	the	groupIndex	parameter.
Groups	are	identified	by	name	for	purposes	of	setting	and	getting
group	attributes.

If	groupName	is	not	NULL,	up	to	groupNameSize	characters
are	copied	into	it.

If	the	actual	size	of	groupName	is	larger,	an	error	is	returned
along	with	the	portion	of	the	name	that	fits.

Return	Value



niHWS_GetNumberOfWaveforms
C	Function	Prototype
tHWS_Status	niHWS_GetNumberOfWaveforms	
(tHWS_FileHandle	fileHandle,	const	char	groupName[],
long*	numberOfWaveforms);



Purpose
Reports	the	number	of	waveforms	in	the	group	specified	by	groupName.
If	there	is	only	one	group	in	the	HWS	file,	the	groupName	parameter	can
be	NULL	or	the	empty	string.



Parameters
Name Type Description
fileHandle tHWS_FileHandle Refers	to	an	open	HWS	file.

groupName const	char[] The	name	of	the	group.	Groups	are	identified	by	name	for
purposes	of	setting	and	getting	group	attributes.

If	only	one	group	is	in	the	file	groupName	can	be	NULL	or
the	empty	string.

numberOfWaveforms long* Returns	the	number	of	waveforms	in	the	group	specified	by
groupName.

Return	Value



niHWS_GetWfmName
C	Function	Prototype
tHWS_Status	niHWS_GetWfmName		(tHWS_FileHandle	fileHandle,
const	char	groupName[],	long	wfmIndex,	long	wfmNameSize,
char	wfmName[]);



Purpose
Returns	the	name	of	a	waveform	in	a	group.	The	name	of	a	waveform	is
necessary	for	getting	a	reference	to	the	waveform.	Waveforms	are
identified	by	reference	for	purposes	of	setting	and	getting	waveform
attributes	and	reading	and	writing	data.



Parameters
Name Type Description
fileHandle tHWS_FileHandle Refers	to	an	open	HWS	file.

groupName const	char[] The	name	of	the	group.	Groups	are	identified	by	name	for
purposes	of	setting	and	getting	group	attributes.

If	only	one	group	is	in	the	file,	groupName	can	be	NULL	or	the
empty	string.

wfmIndex long A	number	such	that	0	 	wfmIndex	<	numberOfWaveforms
where

numberOfWaveforms	is	obtained	by	calling
niHWS_GetNumberOfWaveforms.	If	five	waveforms	are	in	a	group,
their	waveform	indices	are	0	through	4.

The	only	use	for	the	wfmIndex	parameter	is	to	obtain	the	name	of
a	waveform.

wfmNameSize long Specifies	the	number	of	characters	in	the	wfmName	parameter.
If	this	parameter	is	set	to	0	and	no	error	occurs,	the	actual	number
of	characters,	including	the	end	of	string	termination	character,	in
the	wfmName	are	returned	in	the	status	parameter.

wfmName char[] The	name	of	the	waveform	specified	by	the	wfmIndex	parameter.
The	name	of	a	waveform	is	necessary	for	getting	a	reference	to	the
waveform.	Waveforms	are	identified	by	reference	for	purposes	of
setting	and	getting	waveform	attributes	and	reading	and	writing
data.

If	wfmName	is	not	NULL,	up	to	wfmNameSize	characters	are
copied	into	it.

If	the	actual	size	of	the	waveform	name	is	larger,	an	error	is
returned	along	with	the	portion	of	the	name	that	fits.

Return	Value



niHWS_GetScalingCoefficients
C	Function	Prototype
tHWS_Status	niHWS_GetScalingCoefficients	(tHWS_WfmRef	wfmReference,
long	numCoeffs,	double*	coeffArray,	long*	actualNumCoeffs);



Purpose
Retrieves	the	coefficients	of	an	nth	degree	polynomial	scaling	function.
When	an	analog	waveform	stored	as	integer	data	is	retrieved	by	a
floating-point	read	or	retrieve	function,	the	data	is	scaled	according	to	this
polynomial	scaling	function.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by

reference	for	purposes	of	setting	and	getting	waveform	attributes
and	reading	and	writing	data.

numCoeffs long The	number	of	coefficients	to	return	in	coeffArray.
If	numCoeffs	is	0,	the	number	of	coefficients	in	the	polynomial	are
returned	in	the	actualNumCoeffs.
If	the	number	of	coefficients	in	the	polynomial	is	greater	than	the
nonzero	value	of	numCoeffs,	then	as	many	coefficients	as	can	fit
are	returned	in	the	coeffArray	along	with	an	error.
The	actual	number	of	coefficients	returned	in	the	coeffArray	is
always	returned	in	actualNumCoeffs.

coeffArray double* The	array	of	polynomial	scaling	coefficients.	The	coefficient	for	the
nth	term	of	the	polynomial	is	returned	in	the	nth	index	of	the
coeffArray.
For	example,	the	coefficients	for	a	2nd-degree	polynomial,

y	=	ax2	+	bx	+	c

would	be

coeffArray[0]	=	c
coeffArray[1]	=	b
coeffArray[2]	=	a

actualNumCoeffs long* The	actual	number	of	coefficients	returned	in	coeffArray.
If	numCoeffs	is	0,	the	number	of	coefficients	in	the	polynomial	are
returned	in	actualNumCoeffs.
If	the	number	of	coefficients	in	the	polynomial	is	greater	than	the
nonzero	value	of	numCoeffs,	then	as	many	coefficients	as	can	fit
are	returned	in	the	coeffArray	parameter	along	with	an	error.

Return	Value



niHWS_GetGroupStringAttribute
C	Function	Prototype
tHWS_Status	niHWS_GetGroupStringAttribute		(tHWS_FileHandle	fileHandle,
const	char	groupName[],	tHWS_GroupStringAttributes	attributeID,
long	stringSize,	char	attributeVal[]);



Purpose
Retrieves	text	attributes	that	apply	to	all	the	waveforms	within	a	group.



Parameters
Name Type Description
fileHandle tHWS_FileHandle Refers	to	an	open	HWS	file.

groupName const	char[] The	name	of	the	group.	Groups	are	identified	by	name	for
purposes	of	setting	and	getting	group	attributes.

If	only	one	group	is	in	the	file,	groupName	can	be	NULL	or
the	empty	string.

attributeID tHWS_GroupStringAttributes Specifies	the	attribute	to	retrieve.

Defined	Values
niHWS_Attr_GroupNote—A	general	purpose	text	field	for
any	comment	that	applies	to	all	the	waveforms	stored	in
this	group.

niHWS_Attr_Technician—A	general	purpose	text	field
intended	for	the	name	of	the	technician	who	acquired	or
generated	the	waveforms	in	this	group.

niHWS_Attr_Project—A	general	purpose	text	field	intended
for	any	information	about	the	project	for	which	the
waveforms	in	this	group	were	created.

niHWS_Attr_GroupTimestamp—A	string	of	the	form
hour:minutes:seconds.fractional	seconds	followed	by	AM
or	PM	MM/DD/YYYY.	This	string	is	intended	to	refer	to	all
the	waveforms	in	the	group.

stringSize long The	number	of	characters	that	the	string	allocated	for	the
attributeVal	parameter	can	hold.
If	stringSize	is	0	and	no	error	occurs,	the	actual	size	of	the
string	attribute,	including	the	end	of	string	termination
character,	is	returned	in	the	status	parameter.

attributeVal char[] The	current	setting	of	the	attribute	specified	by	attributeID.

Return	Value



niHWS_GetWfmStringAttribute
C	Function	Prototype
tHWS_Status	niHWS_GetWfmStringAttribute		(tHWS_WfmRef	wfmReference,
tHWS_WfmStringAttributes	attributeID,	long	stringSize,	char	attributeVal[]);



Purpose
Retrieves	text	attributes	that	apply	to	the	waveform	specified	by
wfmReference.



Parameters
Name Type Description
wfmReference tHWS_WfmRef References	to	the	waveform.	Waveforms	are	identified	by

reference	for	purposes	of	setting	and	getting	waveform
attributes	and	reading	and	writing	data.

attributeID tHWS_WfmStringAttributes Selects	the	attribute	to	retrieve.

Defined	Values
niHWS_Attr_WfmNote—	A	general	purpose	text	field	for
any	information	pertaining	to	the	waveform.

niHWS_Attr_XAxisLabel—A	general	purpose	text	field
intended	for	labeling	the	x-axis	of	a	waveform	data	plot.

niHWS_Attr_YAxisLabel—A	general	purpose	text	field
intended	for	labeling	the	y-axis	of	a	waveform	data	plot.

niHWS_Attr_XAxisUnits—A	general	purpose	text	field
intended	for	denoting	the	units	of	the	X	Axis	Increment
attribute.

niHWS_Attr_YAxisUnits—A	general	purpose	text	field
intended	for	denoting	the	units	of	the	waveform	data.

niHWS_Attr_WfmName—A	read-only	attribute	that	is	the
same	as	that	returned	by	niHWS_GetWfmName.

niHWS_AttrValid_Signals—The	list	of	lines	(or	bits)	in	the
samples	of	a	digital	waveform	that	are	valid.	For	example,
"0,3,6"	means	that	only	bits	0,	3,	and	6	of	each	unsigned
long	digital	sample	contain	valid	digital	data.	A	hyphen
may	be	used	to	denote	an	inclusive	range	of	consecutive
lines.	For	example,	"2-5"	is	equivalent	to	"2,	3,	4,	5".

niHWS_Attr_WfmTimestamp—A	string	of	the	form
hour:minutes:seconds.fractional	seconds	followed	by	AM
or	PM	MM/DD/YYYY.	Intended	to	serve	as	the	time	the
waveform	was	originally	acquired.

stringSize long The	number	of	characters	that	the	string	allocated	for
attributeVal	can	hold.
If	stringSize	is	0	and	no	error	occurs,	the	actual	size	of
the	string	attribute,	including	the	end	of	string	termination
character,	is	returned	in	the	status	parameter.

attributeVal char[] The	current	setting	of	the	attribute	specified	by
attributeID.

Return	Value



niHWS_GetWfmI32Attribute
C	Function	Prototype
tHWS_Status	niHWS_GetWfmI32Attribute	(tHWS_WfmRef	wfmReference,
tHWS_WfmI32Attributes	attributeID,	long*	attributeVal);



Purpose
Retrieves	integer	attributes	that	apply	to	the	waveform	specified	by
wfmReference.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by

reference	for	purposes	of	setting	and	getting	waveform
attributes	and	reading	and	writing	data.

attributeID tHWS_WfmI32Attributes The	waveform	attribute	to	retrieve.

niHWS_Attr_YAxisDataType—	A	read-only	attribute	that
returns	the	type	of	integer	or	floating-point	data	that	the
waveform	is	stored	as.

Defined	Values
niHWS_Val_DataTypeI8	niHWS_Val_DataTypeI16
niHWS_Val_DataTypeI32
niHWS_Val_DataTypeF64
niHWS_Val_DataTypeU32
niHWS_Val_DataTypeDWDT
niHWS_Val_DataTypeU8
niHWS_Val_DataTypeU16

niHWS_Attr_IOType—A	read-only	attribute	that	returns	the
type	of	the	waveform	as	either	analog	(niHWS_Val_Analog),
digital	(niHWS_Val_Digital),	or	unknown
(niHWS_Val_Unknown).

niHWS_Attr_ScalingType—A	read-only	attribute	that	returns
the	only	currently	supported	scaling	type	of
niHWS_Val_Polynomial.

niHWS_Attr_WaveformSize—A	read-only	attribute	that	returns
the	total	number	of	samples	in	a	waveform.	For	digital	2D
files	with	multiple	rows,	this	attribute	refers	to	the	number	of
samples	per	row.

niHWS_Attr_NumRows—A	read-only	attribute	that	returns	the
number	of	rows	in	the	waveform.

niHWS_Attr_NumSignals—A	read-only	attribute	that	returns
the	number	of	signals	in	the	waveform.

attributeVal long* The	current	setting	of	the	attribute	specified	by	attributeID.

Return	Value



niHWS_GetWfmI64Attribute
C	Function	Prototype
tHWS_Status	niHWS_GetWfmI64Attribute	(tHWS_WfmRef	wfmReference,
tHWS_WfmI64Attributes	attributeID,	__int64*	attributeVal);



Purpose
Retrieves	64-bit	signed	integer	attributes	that	apply	to	the	waveform
specified	by	wfmReference.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by

reference	for	purposes	of	setting	and	getting	waveform
attributes	and	reading	and	writing	data.

attributeID tHWS_WfmI64Attributes The	waveform	attribute	to	retrieve.

Defined	Value
niHWS_Attr_WaveformSizeI64—The	number	of	samples	in
the	waveform.

attributeVal __int64* The	current	setting	of	the	attribute	specified	by	attributeID.

Return	Value



niHWS_GetWfmF64Attribute
C	Function	Prototype
tHWS_Status	niHWS_GetWfmF64Attribute		(tHWS_WfmRef	wfmReference,
tHWS_WfmF64Attributes	attributeID,	double*	attributeVal);



Purpose
Retrieves	floating	point	attributes	that	apply	to	the	waveform	specified	by
wfmReference.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by

reference	for	purposes	of	setting	and	getting	waveform
attributes	and	reading	and	writing	data.

attributeID tHWS_WfmF64Attributes The	waveform	attribute	to	retrieve.

Defined	Values
niHWS_Attr_XAxisStart—The	X	value	for	the	first	point	in
the	waveform.	The	Scope	Soft	Front	Panel	stores
relativeInitialX	in	this	attribute,	for	example.
niHWS_Attr_XAxisIncrement—The	period	between	samples
in	the	waveform.	The	rate	of	the	Sample	clock	used	to
capture	the	waveform	is	the	reciprocal	of	the	x-axis
increment.

niHWS_Attr_WaveformSize—A	read-only	attribute	that
returns	the	total	number	of	samples	in	a	waveform.

niHWS_Attr_WfmYAxisMin—The	minimum	value	of	the	y-
axis	after	applying	the	scaling	coefficients.

niHWS_Attr_WfmYAxisMax—The	maximum	value	of	the	y-
axis	after	applying	the	scaling	coefficients.

attributeVal double* The	current	setting	of	the	attribute	specified	by	attributeID
parameter.

Return	Value



Write	Functions
Class/Panel	Name Function	Name

New	Waveform	Reference niHWS_NewWfmReference

Write	Analog	Functions
Write	Analog	F64 niHWS_WriteAnalogF64

Write	Analog	I8 niHWS_WriteAnalogI8

Write	Analog	I16 niHWS_WriteAnalogI16

Write	Analog	I32 niHWS_WriteAnalogI32

Write	Digital	Functions
Write	Digital	WDT niHWS_WriteDigitalWDT

Write	Digital	U8 niHWS_WriteDigitalU8

Write	Digital	2D	U8 niHWS_WriteDigital2DU8

Write	Digital	U16 niHWS_WriteDigitalU16

Write	Digital	2D	U16 niHWS_WriteDigital2DU16

Write	Digital	U32 niHWS_WriteDigitalU32

Write	Digital	2D	U32 niHWS_WriteDigital2DU32

Write	Utility	Functions
Set	Scaling	Coefficients niHWS_SetScalingCoefficients

Set	Group	String	Attribute niHWS_SetGroupStringAttribute

Set	Waveform	String	Attribute niHWS_SetWfmStringAttribute

Set	Waveform	F64	Attribute niHWS_SetWfmF64Attribute

		 		



niHWS_NewWfmReference
C	Function	Prototype
tHWS_Status	niHWS_NewWfmReference	(tHWS_FileHandle	fileHandle,
const	char	groupName[],	const	char	wfmName[],	long	compressionLevel,
tHWS_WfmRef*	wfmReference);



Purpose
Creates	a	new	waveform	in	the	specified	group	and	returns	a	reference
to	it.
Waveforms	are	identified	by	reference	for	purposes	of	setting	and	getting
waveform	attributes	and	reading	and	writing	data.



Parameters
Name Type Description
fileHandle tHWS_FileHandle Refers	to	an	open	HWS	file.

groupName const	char[] Identifies	the	group	that	the	new	waveform	is	created	in.

If	the	group	referred	to	by	the	groupName	parameter	does	not
exist,	then	a	new	group	is	created	and	given	the	name
assigned	to	groupName.
groupName	can	be	NULL	or	the	empty	string	under	the
following	conditions:

1.	 The	file	is	new	and	without	groups.	A	new	group	is
created,	and	the	new	waveform	is	created	in	that
group.

2.	 Only	one	group	is	in	the	file.	The	new	waveform	is
created	in	that	group.

wfmName const	char[] The	name	of	the	waveform.	If	this	waveform	is	the	only	one	in
the	group,	then	the	name	is	optional	(it	can	be	NULL	or	the
empty	string).	Otherwise,	you	must	supply	a	name	when
creating	a	new	waveform.

compressionLevel long Provides	control	over	the	amount	of	compression	applied	to
the	waveform	samples	as	they	are	written	to	the	HWS	file.

A	value	of	0	means	no	compression.	A	value	of	9	means
maximum	compression.	Values	between	zero	and	nine
indicate	increasing	levels	of	compression.

wfmReference tHWS_WfmRef* References	the	waveform.	Waveforms	are	identified	by
reference	for	purposes	of	setting	and	getting	waveform
attributes	and	for	reading	and	writing	data.

Return	Value



Write	Analog	Functions
Class/Panel	Name Function	Name
Write	Analog	F64 niHWS_WriteAnalogF64

Write	Analog	I8 niHWS_WriteAnalogI8

Write	Analog	I16 niHWS_WriteAnalogI16

Write	Analog	I32 niHWS_WriteAnalogI32



niHWS_WriteAnalogF64
C	Function	Prototype
tHWS_Status	niHWS_WriteAnalogF64		(tHWS_WfmRef	wfmReference,
long	numSamples,	const	double*	wfmData);



Purpose
Writes	double-precision	floating-point	analog	waveform	data	into	the
waveform	beginning	at	the	current	read/write	position.
A	write	moves	the	read/write	position	so	that	it	points	to	the	next	sample
to	be	written.	Repeated	writes	to	the	same	waveform	concatenate	data	to
that	waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef References	the	waveform.	Waveforms	are	identified	by	reference	for

purposes	of	setting	and	getting	waveform	attributes	and	reading	and
writing	data.

numSamples long The	number	of	samples	in	wfmData	to	write	to	the	file.
wfmData const	double* The	array	containing	the	data	for	the	waveform.	It	is	assumed	that	this

array	contains	at	least	the	amount	of	data	indicated	by	the	value
assigned	to	numSamples.

Return	Value



niHWS_WriteAnalogI8
C	Function	Prototype
tHWS_Status	niHWS_WriteAnalogI8		(tHWS_WfmRef	wfmReference,
long	numSamples,	const	char*	wfmData);



Purpose
Writes	8-bit	signed	integer	(I8)	analog	waveform	data	into	the	waveform
beginning	at	the	current	read/write	position.
A	write	moves	the	read/write	position	such	that	it	points	to	the	next
sample.	Repeated	writes	to	the	same	waveform	concatenate	data	to	that
waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by	reference

for	purposes	of	setting	and	getting	waveform	attributes	and	reading
and	writing	data.

numSamples long The	number	of	samples	in	wfmData	to	write	to	the	file.
wfmData const	char* The	array	containing	the	data	for	the	waveform.	This	array	must	be

large	enough	to	contain	at	least	the	amount	of	data	indicated	by	the
value	assigned	to	numSamples.

Return	Value



niHWS_WriteAnalogI16
C	Function	Prototype
tHWS_Status	niHWS_WriteAnalogI16	(tHWS_WfmRef	wfmReference,
long	numSamples,	const	short*	wfmData);



Purpose
Writes	16-bit	signed	integer	(I16)	analog	waveform	data	into	the
waveform	beginning	at	the	current	read/write	position.
A	write	moves	the	read/write	position	such	that	it	points	to	the	next
sample.	Repeated	writes	to	the	same	waveform	concatenate	data	to	that
waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by	reference

for	purposes	of	setting	and	getting	waveform	attributes	and	reading
and	writing	data.

numSamples long The	number	of	samples	in	wfmData	to	write	to	the	file.
wfmData const	short* The	array	containing	the	data	for	the	waveform.	This	array	must	be

large	enough	to	contain	at	least	the	amount	of	data	indicated	by	the
value	assigned	to	numSamples.

Return	Value



niHWS_WriteAnalogI32
C	Function	Prototype
tHWS_Status	niHWS_WriteAnalogI32		(tHWS_WfmRef	wfmReference,
long	numSamples,	const	long*	wfmData);



Purpose
Writes	32-bit	signed	integer	(I32)	analog	waveform	data	into	the
waveform	beginning	at	the	current	read/write	position.
A	write	moves	the	read/write	position	such	that	it	points	to	the	next
sample.	Repeated	writes	to	the	same	waveform	concatenate	data	to	that
waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by	reference

for	purposes	of	setting	and	getting	waveform	attributes	and	reading
and	writing	data.

numSamples long The	number	of	samples	in	wfmData	to	write	to	the	file.
wfmData const	long* The	array	containing	the	data	for	the	waveform.	This	array	must	be

large	enough	to	contain	at	least	the	amount	of	data	indicated	by	the
value	assigned	to	numSamples.

Return	Value



Write	Digital	Functions
Class/Panel	Name Function	Name
Write	Digital	U8 niHWS_WriteDigitalU8

Write	Digital	2D	U8 niHWS_WriteDigital2DU8

Write	Digital	U16 niHWS_WriteDigitalU16

Write	Digital	2D	U16 niHWS_WriteDigital2DU16

Write	Digital	U32 niHWS_WriteDigitalU32

Write	Digital	2D	U32 niHWS_WriteDigital2DU32

Write	Digital	WDT niHWS_WriteDigitalWDT



niHWS_WriteDigitalU8
C	Function	Prototype
tHWS_Status	niHWS_WriteDigitalU8	(tHWS_WfmRef	wfmReference,
long	numSamples,	const	unsigned	char*	wfmData);



Purpose
Writes	digital	8-bit	unsigned	integer	(U8)	waveform	data	into	the
waveform	at	the	current	read/write	position.
A	write	moves	the	read/write	position	such	that	it	points	to	the	next
sample.	Repeated	writes	to	the	same	waveform	concatenate	data	to	that
waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by	reference

for	purposes	of	setting	and	getting	waveform	attributes	and	reading
and	writing	data.

numSamples long The	number	of	samples	in	wfmData	to	write	to	the	file.
wfmData const	unsigned

char*
The	array	containing	the	data	for	the	waveform.	This	array	must	be
large	enough	to	contain	at	least	the	amount	of	data	indicated	by	the
value	assigned	to	numSamples.

Return	Value



niHWS_WriteDigitalU16
C	Function	Prototype
tHWS_Status	niHWS_WriteDigitalU16		(tHWS_WfmRef	wfmReference,
long	numSamples,	const	unsigned	short*	wfmData);



Purpose
Writes	digital	16-bit	unsigned	integer	(U16)	waveform	data	into	the
waveform	at	the	current	read/write	position.
A	write	moves	the	read/write	position	such	that	it	points	to	the	next
sample.	Repeated	writes	to	the	same	waveform	concatenate	data	to	that
waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by	reference

for	purposes	of	setting	and	getting	waveform	attributes	and	reading
and	writing	data.

numSamples long The	number	of	samples	in	wfmData	to	write	to	the	file.
wfmData const	unsigned

short*
The	array	containing	the	data	for	the	waveform.	This	array	must	be
large	enough	to	contain	at	least	the	amount	of	data	indicated	by	the
value	assigned	to	numSamples.

Return	Value



niHWS_WriteDigitalU32
C	Function	Prototype
tHWS_Status	niHWS_WriteDigitalU32		(tHWS_WfmRef	wfmReference,
long	numSamples,	const	unsigned	long*	wfmData);



Purpose
Writes	digital	32-bit	unsigned	integer	(U32)	waveform	data	into	the
waveform	at	the	current	read/write	position.
A	write	moves	the	read/write	position	such	that	it	points	to	the	next
sample.	Repeated	writes	to	the	same	waveform	concatenate	data	to	that
waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by	reference

for	purposes	of	setting	and	getting	waveform	attributes	and	reading
and	writing	data.

numSamples long The	number	of	samples	in	wfmData	to	write	to	the	file.
wfmData const	unsigned

long*
The	array	containing	the	data	for	the	waveform.	This	array	must	be
large	enough	to	contain	at	least	the	amount	of	data	indicated	by	the
value	assigned	to	numSamples.

Return	Value



niHWS_WriteDigital2DU8
Specific	Function
C	Function	Prototype
tHWS_Status	niHWS_WriteDigital2DU8	(tHWS_WfmRef	wfmReference,
long	numRows,	long	numSamplesPerRow,	const	unsigned	char*	wfmData);



Purpose
Writes	a	two-dimensional	array	of	digital	8-bit	unsigned	integer	(U8)
waveform	data	into	the	waveform	beginning	at	the	current	read/write
position.
A	write	moves	the	read/write	position	such	that	it	points	to	the	next
sample.	Repeated	writes	to	the	same	waveform	concatenate	data	to	that
waveform.
When	you	call	this	function,	the	number	of	rows	in	the	array	must	be
equal	to	the	number	of	rows	in	niHWS_Attr_ValidSignals.
If	you	have	an	existing	waveform	that	contains	data,	the	number	of	rows
in	the	new	data	must	equal	the	number	of	rows	in	the	existing	data.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified

by	reference	for	purposes	of	setting	and	getting
waveform	attributes	and	reading	and	writing	data.

numRows long The	number	of	rows	in	the	wfmData	to	write	to	the	file.
numSamplesPerRow long The	number	of	samples	per	row	to	write	to	the	file.

wfmData const	unsigned	char* The	array	containing	the	data	for	the	waveform.	This
array	must	be	large	enough	to	contain	at	least	the
amount	of	data	indicated	by	the	value	assigned	to	the
numSamplesPerRow	parameter	times	the	number	of
rows	of	the	2D	waveform.	You	can	get	the	number	of
rows	using	the	niHWS_GetWfmI32Attribute	function	to	get
the	niHWS_Attr_NumRows	attribute.

Return	Value



niHWS_WriteDigital2DU16
Specific	Function
C	Function	Prototype
tHWS_Status	niHWS_WriteDigital2DU16		(tHWS_WfmRef	wfmReference,
long	numRows,	long	numSamplesPerRow,	const	unsigned	short*	wfmData);



Purpose
Writes	a	two-dimensional	array	of	digital	16-bit	unsigned	integer	(U16)
waveform	data	into	the	waveform	beginning	at	the	current	read/write
position.
A	write	moves	the	read/write	position	such	that	it	points	to	the	next
sample.	Repeated	writes	to	the	same	waveform	concatenate	data	to	that
waveform.
When	you	call	this	function,	the	number	of	rows	in	the	array	must	be
equal	to	the	number	of	rows	in	niHWS_Attr_ValidSignals.
If	you	have	an	existing	waveform	that	contains	data,	the	number	of	rows
in	the	new	data	must	equal	the	number	of	rows	in	the	existing	data.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified

by	reference	for	purposes	of	setting	and	getting
waveform	attributes	and	reading	and	writing	data.

numRows long The	number	of	rows	in	the	wfmData	to	write	to	the	file.
numSamplesPerRow long The	number	of	samples	per	row	to	write	to	the	file.

wfmData const	unsigned	short* The	array	containing	the	data	for	the	waveform.	This
array	must	be	large	enough	to	contain	at	least	the
amount	of	data	indicated	by	the	value	assigned	to	the
numSamplesPerRow	parameter	times	the	number	of
rows	of	the	2D	waveform.	You	can	get	the	number	of
rows	using	the	niHWS_GetWfmI32Attribute	function	to
get	the	niHWS_Attr_NumRows	attribute.

Return	Value



niHWS_WriteDigital2DU32
Specific	Function
C	Function	Prototype
tHWS_Status	niHWS_WriteDigital2DU32	(tHWS_WfmRef	wfmReference,
long	numRows,	long	numSamplesPerRow,	const	unsigned	long*	wfmData);



Purpose
Writes	a	two-dimensional	array	of	digital	32-bit	unsigned	integer	(U32)
waveform	data	into	the	waveform	beginning	at	the	current	read/write
position.
A	write	moves	the	read/write	position	such	that	it	points	to	the	next
sample.	Repeated	writes	to	the	same	waveform	concatenate	data	to	that
waveform.
When	you	call	this	function,	the	number	of	rows	in	the	array	must	be
equal	to	the	number	of	rows	in	niHWS_Attr_ValidSignals.
If	you	have	an	existing	waveform	that	contains	data,	the	number	of	rows
in	the	new	data	must	equal	the	number	of	rows	in	the	existing	data.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified

by	reference	for	purposes	of	setting	and	getting
waveform	attributes	and	reading	and	writing	data.

numRows long The	number	of	rows	in	the	wfmData	to	write	to	the	file.
numSamplesPerRow long The	number	of	samples	per	row	to	write	to	the	file.

wfmData const	unsigned	long* The	array	containing	the	data	for	the	waveform.	This
array	must	be	large	enough	to	contain	at	least	the
amount	of	data	indicated	by	the	value	assigned	to	the
numSamplesPerRow	parameter	times	the	number	of
rows	of	the	2D	waveform.	You	can	get	the	number	of
rows	using	the	niHWS_GetWfmI32Attribute	function	to	get
the	niHWS_Attr_NumRows	attribute.

Return	Value



niHWS_WriteDigitalWDT
C	Function	Prototype
tHWS_Status	niHWS_WriteDigitalWDT	(tHWS_WfmRef	waveformReference,
tHWS_DigitalWDTDataLayout	data_layout,	long	number_ofSignals,	long
number_ofSamples,	const	unsigned	char*	waveformData);



Purpose
Writes	waveform	data	type	data	into	the	waveform	at	the	current
read/write	position.
A	write	moves	the	read/write	position	such	that	it	points	to	the	next
sample.	Repeated	writes	to	the	same	waveform	concatenate	data	to	that
waveform.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified

by	reference	for	purposes	of	setting	and	getting
waveform	attributes	and	reading	and	writing	data.

dataLayout tHWS_DigitalWDTDataLayout Describes	the	layout	of	the	waveform	data.

Defined	Values

niHWS_Val_GroupBySample—specifies	that
consecutive	samples	in	wfmData	are	such	that	the
array	contains	the	first	sample	from	every	signal	in	the
operation,	then	the	second	sample	from	every	signal,
up	to	the	last	sample	from	every	signal.	
niHWS_Val_GroupBySignal—specifies	that	consecutive
samples	in	wfmData	are	such	that	the	array	contains
all	the	samples	from	the	first	signal	in	the	operation,
then	all	the	samples	from	the	second	signal,	up	to	all
samples	from	the	last	signal.

numSignals long The	number	of	signals	in	wfmData	to	write	to	the	file.
numSamples long The	number	of	samples	in	wfmData	to	write	to	the	file.
wfmData const	unsigned	char* The	array	containing	the	data	for	the	waveform.	This

array	must	be	large	enough	to	contain	at	least	the
amount	of	data	indicated	by	the	value	assigned	to
numSamples	times	the	value	of	numSignals.

Return	Value



Write	Utility	Functions
Class/Panel	Name Function	Name

Set	Scaling	Coefficients niHWS_SetScalingCoefficients

Set	Group	String	Attribute niHWS_SetGroupStringAttribute

Set	Waveform	String	Attribute niHWS_SetWfmStringAttribute

Set	Waveform	F64	Attribute niHWS_SetWfmF64Attribute



niHWS_SetScalingCoefficients
C	Function	Prototype
tHWS_Status	niHWS_SetScalingCoefficients		(tHWS_WfmRef	wfmReference,
long	numCoeffs,	const	double*	coeffArray);



Purpose
Establishes	an	nth	degree	polynomial	scaling	function.
When	an	analog	waveform	stored	as	integer	data	is	retrieved	by	a
floating-point	Read	or	Retrieve	function,	NI-HWS	scales	the	data
according	to	this	polynomial	scaling	function.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by	reference

for	purposes	of	setting	and	getting	waveform	attributes	and	reading
and	writing	data.

numCoeffs long The	number	of	coefficients	in	coeffArray.
coeffArray const	double* The	array	of	polynomial	scaling	coefficients.	The	coefficient	for	the	nth

term	of	the	polynomial	is	contained	in	the	nth	index	of	coeffArray.
For	example,	the	coefficients	for	a	2nd	degree	polynomial,

y	=	ax2	+	bx	+	c

would	be

coeffArray[0]	=	c
coeffArray[1]	=	b
coeffArray[2]	=	a

Return	Value



niHWS_SetGroupStringAttribute
C	Function	Prototype
tHWS_Status	niHWS_SetGroupStringAttribute		(tHWS_FileHandle	fileHandle,
const	char	groupName[],	tHWS_GroupStringAttributes	attributeID,
const	char	attributeVal[]);



Purpose
Sets	the	value	of	text	attributes	that	apply	to	all	the	waveforms	within	a
group.



Parameters
Name Type Description
fileHandle tHWS_FileHandle Refers	to	an	open	HWS	file.

groupName const	char[] The	name	of	the	group.	Groups	are	identified	by	name	for
purposes	of	setting	and	getting	group	attributes.

If	only	one	group	is	in	the	file	this	parameter	can	be	NULL
or	the	empty	string.

attributeID tHWS_GroupStringAttributes Selects	the	attribute	to	set.

Defined	Values
niHWS_Attr_GroupNote—A	general	purpose	text	field	for
any	comment	that	applies	to	all	the	waveforms	stored	in
this	group.

niHWS_Attr_Technician—A	general	purpose	text	field
intended	for	the	name	of	the	technician	who	acquired	or
generated	the	waveforms	in	this	group.

niHWS_Attr_Project—A	general	purpose	text	field	intended
for	any	information	about	the	project	for	which	the
waveforms	in	this	group	were	created.

niHWS_Attr_GroupTimestamp—A	string	of	the	form
hour:minutes:seconds.fractional	seconds	followed	by	AM
or	PM	MM/DD/YYYY.	This	string	is	intended	to	refer	to	all
the	waveforms	in	the	group.

attributeVal const	char[] The	new	setting	of	the	attribute	specified	by	attributeID.

Return	Value



niHWS_SetWfmStringAttribute
C	Function	Prototype
tHWS_Status	niHWS_SetWfmStringAttribute		(tHWS_WfmRef	wfmReference,
tHWS_WfmStringAttributes	attributeID,	const	char	attributeVal[]);



Purpose
Sets	the	value	of	text	attributes	that	apply	to	the	waveform	specified	by
wfmReference.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by

reference	for	purposes	of	setting	and	getting	waveform
attributes	and	reading	and	writing	data.

attributeID tHWS_WfmStringAttributes Specifies	the	attribute	to	set.

Defined	Values
niHWS_Attr_WfmNote—	A	general	purpose	text	field	for
any	information	pertaining	to	the	waveform.

niHWS_Attr_XAxisLabel—A	general	purpose	text	field
intended	for	labeling	the	x-axis	of	a	waveform	data	plot.

niHWS_Attr_YAxisLabel—A	general	purpose	text	field
intended	for	labeling	the	y-axis	of	a	waveform	data	plot.

niHWS_Attr_XAxisUnits—A	general	purpose	text	field
intended	for	denoting	the	units	of	the	X	Axis	Increment
attribute.

niHWS_Attr_YAxisUnits—A	general	purpose	text	field
intended	for	denoting	the	units	of	the	waveform	data.

niHWS_Attr_ValidSignals—The	list	of	lines	(or	bits)	in	the
samples	of	a	digital	waveform	that	are	valid.	For	example,
"0,3,6"	means	that	only	bits	0,	3,	and	6	of	each	unsigned
long	digital	sample	contain	valid	digital	data.	A	hyphen
may	be	used	to	denote	an	inclusive	range	of	consecutive
lines.	For	example,	"2-5"	is	equivalent	to	"2,	3,	4,	5".

niHWS_Attr_WfmTimestamp—A	string	of	the	form
hour:minutes:seconds.fractional	seconds	followed	by	AM
or	PM	MM/DD/YYYY.	Intended	to	serve	as	the	time	the
waveform	was	originally	acquired.

attributeVal const	char[] The	new	setting	of	the	attribute	specified	by	attributeID.

Return	Value



niHWS_SetWfmF64Attribute
C	Function	Prototype
tHWS_Status	niHWS_SetWfmF64Attribute	(tHWS_WfmRef	wfmReference,
tHWS_WfmF64Attributes	attributeID,	double	attributeVal);



Purpose
Sets	floating	point	attributes	that	apply	to	the	waveform	specified	by
wfmReference.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by

reference	for	purposes	of	setting	and	getting	waveform
attributes	and	reading	and	writing	data.

attributeID tHWS_WfmF64Attributes The	waveform	attribute	to	set.

Defined	Values
niHWS_Attr_XAxisStart—The	X	value	for	the	first	point	in
the	waveform.	The	Scope	Soft	Front	Panel	stores
relativeInitialX	in	this	attribute	for	example.
niHWS_Attr_XAxisIncrement—The	period	between	samples
in	the	waveform.	The	rate	of	the	Sample	clock	used	to
capture	the	waveform	is	the	reciprocal	of	the	x-axis
increment.

niHWS_Attr_WfmYAxisMin—The	minimum	value	of	the	y-
axis	after	applying	the	scaling	coefficients.

niHWS_Attr_WfmYAxisMax—The	maximum	value	of	the	y-
axis	after	applying	the	scaling	coefficients.

attributeVal double The	new	setting	of	the	attribute	specified	by	attributeID.

Return	Value



niHWS_Seek
C	Function	Prototype
tHWS_Status	niHWS_Seek	(tHWS_WfmRef	wfmReference,
tHWS_RelativeTo	relativeTo,	long	offset);



Purpose
There	is	a	single	position	within	each	waveform	for	both	reading	and
writing.	This	function	moves	this	position.	First,	the	position	is	moved	to
the	place	in	the	waveform	specified	by	the	relativeTo	parameter,	then	the
offset	is	added.



Parameters
Name Type Description
wfmReference tHWS_WfmRef A	reference	to	the	waveform.	Waveforms	are	identified	by

reference	for	purposes	of	setting	and	getting	waveform	attributes
and	reading	and	writing	data.

relativeTo tHWS_RelativeTo Specifies	the	initial	placement	of	the	read/write	position	prior	to
adding	offset.
Defined	Values
niHWS_Start—Before	the	first	sample	in	the	waveform
niHWS_End—After	the	last	sample	in	the	waveform
niHWS_CurrentPosition—The	current	sample	in	the	waveform

offset long After	the	read/write	position	is	moved	according	to	the	value	of	the
relativeTo	parameter,	the	value	of	offset	is	added	to	determine	the
final	read/write	position.

offset	can	be	negative.	Having	offset	as	negative	is	useful	when
relativeTo	is	at	the	End	of	the	waveform.

Return	Value



niHWS_GetErrorString
Specific	Function
C	Function	Prototype
tHWS_Status	niHWS_GetErrorString		(tHWS_Status	errorCode,
long	stringSize,	char	errorString);



Purpose
This	function	provides	the	error	description	for	the	specified	error	code.



Parameters
Name Type Description
errorCode tHWS_Status Error	code	for	which	the	function	provides	a	description.

stringSize long The	number	of	characters	that	the	string	allocated	for	the	errorString
parameter	can	hold.

If	stringSize	is	0	and	no	error	occurs,	the	actual	size	of	the	error	string,
including	the	end	of	string	termination	character,	is	returned	in	the	status
parameter.

errorString char[] The	description	for	the	provided	error	code.



Return	Value
Reports	the	status	of	this	operation.	To	obtain	a	text	description	of	the
status	code,	call	niHWS_GetErrorString.
The	general	meaning	of	the	status	code	is	as	follows:

Value Meaning
0 Success

Negative	Values Errors


