


FieldPoint	LabWindows/CVI	Interface	Help
April	2003	Edition,	Part	Number	370481B-01
This	help	file	describes	each	function	in	the	FieldPoint	LabWindows/CVI
interface.
To	navigate	this	help	file,	use	the	Contents,	Index,	and	Search	tabs	to	the	left	of
this	window.
For	more	information	about	this	help	file,	refer	to	the	following	topics:
Conventions—formatting	and	typographical	conventions	in	this	help	file
Important	Information
Technical	Support	and	Professional	Services
To	comment	on	the	documentation,	email	techpubs@ni.com
©	1998–2003	National	Instruments	Corporation.	All	rights	reserved.

mailto:techpubs@ni.com


Conventions
The	following	conventions	appear	in	this	help	file:
[	] Square	brackets	enclose	optional	items—for	example,	[response].

» The	»	symbol	leads	you	through	nested	menu	items	and	dialog	box	options	to	a	final	action.	The
sequence	File»Page	Setup»Options	directs	you	to	pull	down	the	File	menu,	select	the	Page	Setup
item,	and	select	Options	from	the	last	dialog	box.

This	icon	denotes	a	note,	which	alerts	you	to	important	information.

This	icon	denotes	a	caution,	which	advises	you	of	precautions	to	take	to	avoid	injury,	data	loss,	or	a
system	crash.

blue Text	in	this	color	denotes	a	specific	platform	and	indicates	that	the	text	following	it	applies	only	to
that	platform.

bold Bold	text	denotes	items	that	you	must	select	or	click	on	in	the	software,	such	as	menu	items	and
dialog	box	options.	Bold	text	also	denotes	parameter	names,	emphasis,	or	an	introduction	to	a	key
concept.

dark	red Text	in	this	color	denotes	a	caution.

green Underlined	text	in	this	color	denotes	a	link	to	a	help	topic,	help	file,	or	Web	address.

italic Italic	text	denotes	variables	or	cross	references.	This	font	also	denotes	text	that	is	a	placeholder	for	a
word	or	value	that	you	must	supply.

monospace Text	in	this	font	denotes	text	or	characters	that	you	should	enter	from	the	keyboard,	sections	of	code,
programming	examples,	and	syntax	examples.	This	font	is	also	used	for	the	proper	names	of	disk
drives,	paths,	directories,	programs,	subprograms,	subroutines,	device	names,	functions,	operations,
variables,	filenames	and	extensions,	and	code	excerpts.

monospace
bold

Bold	text	in	this	font	denotes	the	messages	and	responses	that	the	computer	automatically	prints	to
the	screen.	This	font	also	emphasizes	lines	of	code	that	are	different	from	the	other	examples.

monospace
italic

Italic	text	in	this	font	denotes	text	that	is	a	placeholder	for	a	word	or	value	that	you	must	supply.



Using	Functions	from	LabWindows/CVI
You	must	configure	your	device	network	in	Measurement	and	Automation
Explorer	(MAX,	at	Program	Files\National	Instruments\MAX\NIMax.exe)
before	you	use	any	of	the	functions	from	LabWindows/CVI.	MAX	stores	all
configuration	information	for	the	device	network	in	a	configuration	(.iak)	file.
The	FieldPoint	LabWindows/CVI	interface	requires	a	valid	.iak	file	to	use	the
FieldPoint	server	from	LabWindows/CVI.
Configuring	FieldPoint	in	MAX
FieldPoint	LabWindows/CVI	Function	Reference
Error	and	Status	Information

FPMAXProvider.chm::/Configuring_FieldPoint_in_MAX.html


Error	and	Status	Information
Each	function	returns	error	codes	and	warnings	through	the	return	value	of	that
function.	A	program	must	examine	this	value	after	each	call	to	a	FieldPoint
LabWindows/CVI	interface	function	to	determine	if	an	error	occurred.
Possible	error	codes	and	their	meanings	appear	with	the	corresponding	function
description.



FieldPoint	LabWindows/CVI	Function	Reference

Class Panel
Name Function	Name

Server	Management
Server	management	functions	manage	the	operations	of	a	server.	These
functions	create	and	destroy	references	to	a	particular	server.

Open FP_Open

Close FP_Close

I/O	Point	Management
I/O	point	management	functions	manage	the	operations	of	I/O	points.
These	functions	create	and	destroy	references	to	a	particular	I/O	point.

Create	Tag
I/O	Point

FP_CreateTagIOPoint

Destroy	I/O
Point

FP_DestroyIOPoint

I/O	Management
I/O	management	functions	manage	reads	and	writes	to	I/O	points.	These
functions	perform	synchronous	and	asynchronous	read,	write,	and
advise	operations.

Read FP_Read

Read	Cache FP_ReadCache

Advise FP_Advise

Change
Advise
State

FP_ChangeAdviseState

Free	PD
Callback
Buffer

FP_FreePDCallbackBuffer

Stop FP_Stop

Write FP_Write

Error
Message

FP_ErrorMsg



Data	Types

LabWindows/CVI FieldPoint

int IAAttr

BOOLEAN IABoolean

unsigned	char IAByte

unsigned	long IADeviceType

unsigned	long IAHandle

DWORD IAParam

unsigned	long IAStatus

char* IAString

unsigned	long IATaskID

VARTYPE IAType

double IATimeStamp

unsigned	long IAVendor



Examples
FieldPoint	examples	for	LabWindows/CVI	are	stored	in	the	samples	folder	under
your	LabWindows/CVI	directory.



FP_Advise
IAStatus	FP_Advise (IAHandle	serverHandle,	IAHandle	IOPointHandle,	long	adviseRate,	IABoolean

notifyOnChange,	IAByte	buffer[],	unsigned	long	bufferSize,	IABoolean	callbackMethod,
IAHandle	callbackFunction,	DWORD	cParam,	IATaskID	*taskID);



Purpose
This	function	continuously	reads	time-stamped	data	at	a	specified	rate	from	the
I/O	point	into	a	buffer.	Advise	is	an	asynchronous	operation.	After	FP_Advise
initiates	the	operation,	it	immediately	returns,	and	the	client	thread	continues
execution.	The	callback	function	executes	according	to	the	behavior	you	specify
with	callbackMethod.	The	advise	operation	will	continue	to	monitor	the	I/O
point	at	the	rate	you	specify	until	you	explicitly	terminate	it	with	a	call	to
FP_Stop	or	FP_Close.
Use	FP_ChangeAdviseState	to	suspend	or	resume	user	callbacks.
Use	FP_ReadCache	to	read	the	last	known	value	on	the	I/O	point.
Use	FP_Stop	to	terminate	a	single	advise	operation.

Note		The	recommended	method	of	monitoring	an	I/O	point	is	to	schedule	an	advise	on	an	I/O	point,	pass
NULL	for	the	function	pointer,	and	use	a	timer	on	the	UIR	to	periodically	read	the	cache	on	the	I/O
point.	When	you	use	NULL	for	the	callbackFunction	pointer,	your	program	ignores	callbackMethod.



Parameter	List
Name Type Description

serverHandle IAHandle Handle	to	a	specific	server	session.	Create	the	handle	with	FP_Open.

IOPointHandle IAHandle The	handle	that	FP_CreateTagIOPoint	returns.	The	handle	identifies	the	I/O	point
described	in	this	function.

adviseRate long Specifies	the	poll	rate	for	the	I/O	point	in	milliseconds.	An	advise	rate	of	1,000
indicates	that	the	I/O	point	is	polled	once	per	second.

notifyOnChange IABoolean Indicates	when	to	execute	the	callback.	When	TRUE,	the	server	invokes	the
callback	only	if	the	value	changed	from	the	last	read.	If	it	is	FALSE,	the	server
invokes	the	callback	after	every	read.	

Valid	Range:
(0)	FALSE	-	Notify	Always
(1)	TRUE	-	Notify	Only	on	Change

buffer IAByte[	] Memory	that	you	allocate.	The	server	copies	data	into	this	buffer.

bufferSize unsigned
long

Indicates	the	number	of	bytes	allocated	in	buffer.

callbackMethod IABoolean Specifies	which	type	of	callback	mechanism	the	server	uses	for	the	specified
Advise	task.	The	FieldPoint	LabWindows/CVI	interface	provides	two	different
methods,	as	described	below:	

(0)	FALSE	-	PostDeferred	Callbacks
(1)	TRUE	-	Asynchronous	Callbacks

callbackFunction IAHandle A	function	pointer	(as	defined	with	the	specification	that	follows)	or	a	NULL
value	indicating	no	callback	function.	When	this	parameter	is	NULL,	your
program	ignores	callbackMethod.

cParam DWORD Parameter	that	you	define	to	be	passed	to	the	callback.	You	can	use	this	parameter
to	pass	meaningful	or	useful	data	when	processing	the	reply.

taskID IATaskID Created	by	FP_Advise	and	should	be	used	when	calling	FP_ReadCache	or
FP_Stop.

Caution		Do	not	use	local	data	buffers,	or	the	same	data	buffer	for	multiple	advise	operations,	because	it
causes	unpredictable	results.	It	is	a	good	idea	to	use	distinct	global	data	buffers	for	each	advise	task.



Parameter	Discussion
PostDeferred	Callbacks
This	option	is	valid	with	LabWindows/CVI	versions	5.0	and	later.	The	server
executes	the	callback	in	the	main	LabWindows/CVI	thread	each	time
LabWindows/CVI	processes	system	events.	A	considerable	delay	could	occur
between	the	call	to	the	function	by	the	server	and	when	LabWindows/CVI
executes	the	function.	Thus,	for	a	large	number	of	I/O	points	or	fast	advise	rates,
the	PostDeferred	queue	may	become	full,	causing	the	callbacks	to	be	dropped.
Call	FP_FreePDCallbackBuffer	in	the	callback	function	for	post	deferred
callbacks	to	free	the	buffer	allocated	by	the	server	manager.
Asynchronous	Callbacks
The	asynchronous	call	returns	the	data	to	the	callback	as	soon	as	the	server
completes	the	operation.	If	you	are	using	a	version	of	LabWindows/CVI	earlier
than	5.5,	observe	the	following	guidelines	for	the	callback	function:

The	function	must	be	short	and	must	not	call	other	I/O	or	UIR	functions.
Use	only	multithread-safe	LabWindows/CVI	libraries.	For	example,	do
not	update	UIR	controls	in	an	asynchronous	callback.
Note		The	recommended	method	of	monitoring	an	I/O	point	is	to	schedule	an	advise	on	an	I/O	point,	pass
NULL	for	the	function	pointer,	and	use	a	timer	on	the	UIR	to	periodically	read	the	cache	on	the	I/O
point.	When	you	use	NULL	for	the	callbackFunction	pointer,	your	program	ignores	callbackMethod.

callbackFunction
If	you	pass	a	callback	function	into	this	parameter	and	set	the	callback	method	to
post	deferred,	LabWindows/CVI	allocates	memory	for	every	callback.	You	must
free	this	memory	in	the	callback	function	using	the	FP_FreePDCallbackBuffer
function.	No	memory	is	allocated	for	asynchronous	callbacks,	so	you	should	not
use	the	FP_FreePDCallbackBuffer	function	for	asynchronous	callbacks.
The	function	has	the	following	definition:
void	CVICALLBACK	yourFunction	(void*	buffer);
The	type	of	the	function	pointer	is	FP_CallbackFuncPtr:
FP_CallbackFuncPtr	yourfuncPtr	=	yourFunction;
Enter	'yourfuncPtr'	in	the	callbackFunction	control.
LabWindows/CVI	returns	the	callback	data	as	a	pointer	to	void.	To	get	back



meaningful	data	you	must	cast	the	void	pointer	to	a	struct	of	the	following	type:
FP_CallbackParamType;
The	members	of	the	struct	are

IAHandle	hIOpoint;	//handle	to	the	IOPoint
IAStatus	status;	//status
IABoolean	CBMethod;//the	mechanism	for	the	callback
IAByte*	buffer;	//buffer	containing	the	data
UInt32	buffersize;	//size	of	databuffer
IATimeStamp	timeStamp;	//time	stamp
DWORD	cParam;	//user	specified	parameter

For	example:
FP_CallbackParamType	g_param;
Use	g_param	to	read	back	the	data	in	your	callback	function:
void	yourFunction	(void*	buffer)

{
g_param	=	*((FP_CallbackParamType*)	buffer);	//cast	data
int	bsize	=	g_param.buffersize;
//bsize	contains	the	buffer	size
}



Return	Value
The	LabWindows/CVI	manager	or	the	server	can	return	the	following	status
codes.	FP_ErrorMsg	converts	the	status	codes	into	descriptive	strings.
LabWindows/CVI	Manager-Level	Error	Codes 0x8480	IA_MGR_ERROR

0x8484	IA_MGR_SERVER_NOT_LOADED
0x8487	IA_MGR_INVALID_SERVER_HND

FieldPoint	Server-Level	Standard	Error	Codes 0x8000	to	0x83FF

Refer	to	the	error	section	in	your	server	help	file	for	more	information.



FP_ChangeAdviseState
IAStatus	FP_ChangeAdviseState (IAHandle	serverHandle,	IATaskID	taskID,	IABoolean	callbackState);



Purpose
This	function	resumes	or	suspends	user	callbacks	on	all	advise	tasks	or	a
specified	advise	task.	The	advise	operation	does	not	stop,	and	FP_ReadCache
still	returns	the	last	known	valid	data	on	the	I/O	point.
Use	this	function	to	disable	callbacks	to	your	callback	function	without	stopping
the	advise	operation	on	an	I/O	point.



Parameter	List
Name Type Description

serverHandle IAHandle Handle	to	a	specific	server	session.	Create	the	handle	with	FP_Open.

taskID IATaskID Task	ID	of	the	advise	operation	to	enable	or	disable	the	callback.	Enter	zero	to	change
the	state	of	all	current	advise	operations.	FP_Advise	returns	this	value	when	you
initiate	the	advise	operation.	taskID	remains	valid	after	this	function.

callbackState IABoolean Enables	or	disables	user	callbacks	for	advise	operations	you	specified.	

Valid	Range:
(0)	FALSE	-	Resume	:	Enable	callbacks
(1)	TRUE	-	Suspend	:	Disable	callbacks



Return	Value
The	LabWindows/CVI	manager	or	the	server	can	return	the	following	status
codes.	FP_ErrorMsg	converts	the	status	codes	into	descriptive	strings.
LabWindows/CVI	Manager-Level	Error	Codes 0x8480	IA_MGR_ERROR

0x8484	IA_MGR_SERVER_NOT_LOADED
0x8487	IA_MGR_INVALID_SERVER_HND
0x8488	IA_MGR_INVALID_TASK_ID

FieldPoint	Server-Level	Standard	Error	Codes 0x8000	to	0x83FF

Refer	to	the	error	section	in	your	server	help	file	for	more	information.



FP_Close
IAStatus	FP_Close	(IAHandle	serverHandle);



Purpose
This	function	closes	a	server	session.	FP_Close	stops	all	running	advise	tasks	on
the	server	you	specify.	Destroy	all	I/O	points	using	FP_DestroyIOPoints	before
you	call	FP_Close.



Parameter	List
Name Type Description

serverHandle IAHandle Handle	to	a	specific	server	session.	Create	the	handle	with	FP_Open.



Return	Value
The	LabWindows/CVI	manager	or	the	server	can	return	the	following	status
codes.	FP_ErrorMsg	converts	the	status	code	to	a	descriptive	string.
LabWindows/CVI	Manager-Level	Error	Codes 0x8480	IA_MGR_ERROR

0x8484	IA_MGR_SERVER_NOT_LOADED
0x8485	IA_MGR_DLL_NOT_MAPPED	
0x8487	IA_MGR_INVALID_SERVER_HND

FieldPoint	Server-Level	Standard	Error	Codes 0x8000	to	0x83FF

Refer	to	the	error	section	in	your	server	help	file	for	more	information.



FP_CreateTagIOPoint
IAStatus	FP_CreateTagIOPoint (IAHandle	serverHandle,	IAString	commName,	IAString	deviceName,	IAString

itemName,	IAHandle	*IOPointHandle);



Purpose
This	function	creates	an	I/O	point	that	represents	a	digital	input,	analog	output,
or	other	accessible	data	on	a	FieldPoint	device	using	the	configuration
information	of	the	named	tag.	You	must	have	entered	the	tag	information	into	the
server	configuration	(.iak)	file	for	this	call	to	succeed.	The	server	returns	a
handle	to	the	new	I/O	point	in	hIOPoint.
Use	FP_DestroyIOPoint	to	destroy	the	I/O	point	after	all	I/O	operations	have
completed.



Parameter	List
Name Type Description

serverHandle IAHandle Handle	to	a	specific	server	session.	Create	the	handle	with	FP_Open.

commName IAString Name	of	the	communications	resource	configured	in	MAX.

deviceName IAString Name	of	the	device	configured	in	MAX.

itemName IAString Name	of	the	item	configured	in	MAX.

IOPointHandle IAHandle
(passed	by
reference)

Returned	handle	that	represents	the	I/O	point.	Use	the	I/O	point	handle	in	read,
read	cache,	write,	and	advise	operations.	Destroy	the	handle	using
FP_DestroyIOPoint.



Return	Value
The	LabWindows/CVI	manager	or	the	server	can	return	the	following	status
codes.	FP_ErrorMsg	converts	the	status	codes	into	descriptive	strings.
LabWindows/CVI	Manager-Level	Error	Codes 0x8480	IA_MGR_ERROR

0x8484	IA_MGR_SERVER_NOT_LOADED
0x8487	IA_MGR_INVALID_SERVER_HND

FieldPoint	Server-Level	Standard	Error	Codes 0x8000	to	0x83FF

Refer	to	the	error	section	in	your	server	help	file	for	more	information.



FP_DestroyIOPoint
IAStatus	FP_DestroyIOPoint (IAHandle	serverHandle,	IAHandle	IOPointHandle);



Purpose
This	function	destroys	an	I/O	point	handle.	Call	this	function	on	any	handle	you
created	with	FP_CreateTagIOPoint.	The	I/O	point	handle	is	no	longer	valid	after
a	call	to	this	function.



Parameter	List
Name Type Description

serverHandle IAHandle Handle	to	a	specific	server	session.	Create	the	handle	with	FP_Open.

IOPointHandle IAHandle Handle	to	an	I/O	point.	FP_CreateTagIOPoint	returns	the	handle.



Return	Value
The	LabWindows/CVI	manager	or	the	server	can	return	the	following	status
codes.	FP_ErrorMsg	converts	the	status	codes	into	descriptive	strings.
LabWindows/CVI	Manager-Level	Error	Codes 0x8480	IA_MGR_ERROR

0x8484	IA_MGR_SERVER_NOT_LOADED
0x8487	IA_MGR_INVALID_SERVER_HND

FieldPoint	Server-Level	Standard	Error	Codes 0x8000	to	0x83FF

Refer	to	the	error	section	in	your	server	help	file	for	more	information.



FP_ErrorMsg
IAStatus	FP_ErrorMsg (IAHandle	serverHandle,	IAStatus	IAStatus,	char	errorMessage[]);



Purpose
This	function	copies	a	NULL-terminated	ASCII	message	string	that	describes
the	corresponding	provided	status	code	in	the	buffer	that	you	allocate.



Parameter	List
Name Type Description

serverHandle IAHandle Handle	to	a	specific	server	session.	Create	the	handle	with	FP_Open.

IAStatus IAStatus Used	to	find	an	ASCII	error	string.

errorMessage char	[	] Memory	that	you	allocate.	The	server	copies	the	error	message	into	this	buffer.
Maximum	error	message	size	is	256	bytes.



Return	Value
The	LabWindows/CVI	manager	or	the	server	can	return	the	following	status
codes.	FP_ErrorMsg	converts	the	status	codes	into	descriptive	strings.
LabWindows/CVI	Manager-Level	Error	Codes 0x8480	IA_MGR_ERROR

0x8484	IA_MGR_SERVER_NOT_LOADED
0x8487	IA_MGR_INVALID_SERVER_HND

FieldPoint	Server-Level	Standard	Error	Codes 0x8000	to	0x83FF

Refer	to	the	error	section	in	your	server	help	file	for	more	information.



FP_FreePDCallbackBuffer
IAStatus	FP_FreePDCallbackBuffer (void	*callbackBuffer);



Purpose
This	function	frees	the	post	deferred	callback	buffer	passed	to	the	post	deferred
callback	from	the	server	manager.



Parameter	List
Name Type Description

callbackBuffer void	* The	buffer	passed	to	the	post	deferred	callback	from	the	server	manager.



Return	Value
The	LabWindows/CVI	manager	or	the	server	can	return	the	following	status
codes.	FP_ErrorMsg	converts	the	status	codes	into	descriptive	strings.
LabWindows/CVI	Manager-Level	Error	Codes 0x0	IA_SUCCESS

0x8480	IA_MGR_ERROR

FieldPoint	Server-Level	Standard	Error	Codes 0x8000	to	0x83FF

For	details	refer	to	the	FieldPoint	documentation	or	use	the	FP_ErrorMsg
function.



FP_Open
IAStatus	FP_Open (IAString	configFilePath,	IAHandle	*serverHandle);



Purpose
This	function	opens	a	session	with	a	server.	Close	the	session	with	FP_Close.

Note		Calling	FP_Open	more	than	once	on	the	same	server	returns	the	same	server	handle.



Parameter	List
Name Type Description

configFilePath IAString Path	and	name	of	the	.iak	configuration	file	created	by	MAX	that	contains	the	current
FieldPoint	configuration	information.	When	this	parameter	is	NULL,	the	server
obtains	its	configuration	information	from	the	last	configuration	file	used	in	MAX.

serverHandle IAHandle
(passed
by
reference)

Handle	returned	to	identify	a	server.	All	other	server	functions	use	this	handle.



Return	Value
The	LabWindows/CVI	manager	or	the	server	can	return	the	following	status
codes.	FP_ErrorMsg	converts	the	status	codes	into	descriptive	strings.
LabWindows/CVI	Manager-Level	Error	Codes 0x8480	IA_MGR_ERROR

0x8481	IA_MGR_SERVER_DLL_NOT_FND
0x8482	IA_MGR_DLL_LOAD_FAILED
0x8483	IA_MGR_SERVER_LOAD_FAILED
0x8489	IA_MGR_FUNC_NOT_FND

FieldPoint	Server-Level	Standard	Error	Codes 0x8000	to	0x83FF

Refer	to	the	error	section	in	your	server	help	file	for	more	information.



FP_Read
IAStatus	FP_Read (IAHandle	serverHandle,	IAHandle	IOPointHandle,IAByte	buffer[],	unsigned	long

bufferSize,	SYSTEMTIME	*timestamp);



Purpose
This	function	reads	the	value	of	the	I/O	point	specified	by	the	I/O	point	handle.
This	is	a	synchronous	read.

Note		The	recommended	method	of	monitoring	an	I/O	point	is	to	schedule	an	advise	on	an	I/O	point,	pass
NULL	for	the	function	pointer,	and	use	a	timer	on	the	UIR	to	periodically	read	the	cache	on	the	I/O
point.	When	you	use	NULL	for	the	callbackFunction	pointer,	your	program	ignores	callbackMethod.



Parameter	List
Name Type Description

serverHandle IAHandle Handle	to	a	specific	server	session.	Create	the	handle	with	FP_Open.

IOPointHandle IAHandle Used	to	refer	to	an	I/O	point.	You	can	create	the	handle	with
FP_CreateTagIOPoint.

buffer IAByte[	] Memory	that	you	allocate.	The	server	copies	data	into	this	buffer.

bufferSize unsigned	long Size	of	the	buffer	that	you	created	for	the	read	operation.	The	buffer	size
should	indicate	the	length	(in	bytes)	of	allocated	memory	pointed	to	by	the
buffer	pointer.

timestamp SYSTEMTIME
(passed	by
reference)

Time	when	the	FieldPoint	server	read	the	value.	The	timestamp	is	returned	in
the	Windows	SYSTEMTIME	format.



Return	Value
The	LabWindows/CVI	manager	or	the	server	can	return	the	following	status
codes.	FP_ErrorMsg	converts	the	status	codes	into	descriptive	strings.
LabWindows/CVI	Manager-Level	Error	Codes 0x8480	IA_MGR_ERROR

0x8484	IA_MGR_SERVER_NOT_LOADED
0x8487	IA_MGR_INVALID_SERVER_HND

FieldPoint	Server-Level	Standard	Error	Codes 0x8000	to	0x83FF

Refer	to	the	error	section	in	your	server	help	file	for	more	information.



FP_ReadCache
IAStatus	FP_ReadCache (IAHandle	serverHandle,	IATaskID	taskID,	IAByte	buffer[],	unsigned	long	bufferSize,

SYSTEMTIME	*timestamp);



Purpose
This	function	reads	the	last	known	value	returned	during	an	advise	poll	cycle.	A
valid	task	ID	is	necessary	to	invoke	this	function.	You	can	call	FP_ReadCache
on	a	stopped	advise	operation	or	on	one	with	suspended	callbacks.	For	a	stopped
advise	operation,	this	function	returns	the	last	valid	value	before	the	operation
was	stopped.
FP_ReadCache	is	useful	for	reading	data	and	updating	UIR	controls	when	using
the	asynchronous	callback	mechanism.



Parameter	List
Name Type Description

serverHandle IAHandle Handle	to	a	specific	server	session.	You	create	the	handle	with	FP_Open.

taskID IATaskID Task	ID	of	the	advise	operation	for	which	to	read	the	cache.	FP_Advise
returns	the	task	ID.

buffer IAByte[	] Memory	that	you	allocate.	The	server	copies	data	into	this	buffer.

bufferSize unsigned	long Number	of	bytes	allocated	for	the	buffer.	If	the	buffer	size	is	too	small,	an
error	returns.

timestamp SYSTEMTIME
(passed	by	reference)

Time	the	data	was	retrieved	from	the	physical	device.	The	timestamp	is
returned	in	the	Windows	SYSTEMTIME	format.

Caution		Entering	a	constant	or	literal	value	may	cause	unpredictable	results.



Return	Value
The	LabWindows/CVI	manager	or	the	server	can	return	the	following	status
codes.	FP_ErrorMsg	converts	the	status	codes	into	descriptive	strings.
LabWindows/CVI	Manager-Level	Error	Codes 0x8480	IA_MGR_ERROR

0x8484	IA_MGR_SERVER_NOT_LOADED
0x8485	IA_MGR_DLL_NOT_MAPPED
0x8487	IA_MGR_INVALID_SERVER_HND
0x8488	IA_MGR_INVALID_TASK_ID
0x848A	IA_MGR_BUFFER_TOO_SMALL

FieldPoint	Server-Level	Standard	Error	Codes 0x8000	to	0x83FF

Refer	to	the	error	section	in	your	server	help	file	for	more	information.



FP_Stop
IAStatus	FP_Stop (IAHandle	serverHandle,	IATaskID	taskID);



Purpose
This	function	stops	an	advise	operation	on	the	I/O	point	with	the	specified
taskID.	The	taskID	becomes	invalid	after	a	call	to	this	function.



Parameter	List
Name Type Description

serverHandle IAHandle Handle	to	a	specific	server	session.	Create	the	handle	with	FP_Open.

taskID IATaskID Task	ID	of	the	advise	operation	for	which	to	read	the	cache.	FP_Advise	returns	the	task
ID.	The	task	ID	becomes	invalid	after	a	call	to	FP_Stop.



Return	Value
The	LabWindows/CVI	manager	or	the	server	can	return	the	following	status
codes.	FP_ErrorMsg	converts	the	status	codes	into	descriptive	strings.
LabWindows/CVI	Manager-Level	Error	Codes 0x8480	IA_MGR_ERROR

0x8484	IA_MGR_SERVER_NOT_LOADED
0x8487	IA_MGR_INVALID_SERVER_HND
0x8488	IA_MGR_INVALID_TASK_ID

FieldPoint	Server-Level	Standard	Error	Codes 0x8000	to	0x83FF

Refer	to	the	error	section	in	your	server	help	file	for	more	information.



FP_Write
IAStatus	FP_Write (IAHandle	serverHandle,	IAHandle	IOPointHandle,	IAByte	buffer[],	unsigned	long

bufferSize);



Purpose
This	function	writes	data	from	the	buffer	you	specify	to	an	I/O	point.	The
operation	is	synchronous	and	therefore	blocks	client	execution	until	the	write
operation	completes.



Parameter	List
Name Type Description

serverHandle IAHandle Handle	to	a	specific	server	session.	Create	the	handle	with	FP_Open.

IOPointHandle IAHandle Used	to	reference	an	I/O	point.	You	can	create	the	handle	with	FP_CreateTagIOPoint.

buffer IAByte[	] Buffer	containing	data	you	want	to	write	to	the	server.

bufferSize unsigned
long

Size	of	the	buffer	that	you	created	for	the	write	operation.	The	buffer	size	should
indicate	the	length	(in	bytes)	of	allocated	memory	pointed	to	by	the	buffer	pointer.



Return	Value
The	LabWindows/CVI	manager	or	the	server	can	return	the	following	status
codes.	FP_ErrorMsg	converts	the	status	codes	into	descriptive	strings.
LabWindows/CVI	Manager-Level	Error	Codes 0x8480	IA_MGR_ERROR

0x8484	IA_MGR_SERVER_NOT_LOADED
0x8487	IA_MGR_INVALID_SERVER_HND

FieldPoint	Server-Level	Standard	Error	Codes 0x8000	to	0x83FF

Refer	to	the	error	section	in	your	server	help	file	for	more	information.



Asynchronous	Program	Flow
The	following	figure	illustrates	asynchronous	LabWindows/CVI	program	flow.



Synchronous	Program	Flow
The	following	figure	illustrates	synchronous	LabWindows/CVI	program	flow	for
input	and	output	modules.

Input	Module Output	Module



Important	Information
Warranty
Copyright
Trademarks
Patents
Warning	Regarding	Use	of	NI	Products



Warranty
The	media	on	which	you	receive	National	Instruments	software	are	warranted
not	to	fail	to	execute	programming	instructions,	due	to	defects	in	materials	and
workmanship,	for	a	period	of	90	days	from	date	of	shipment,	as	evidenced	by
receipts	or	other	documentation.	National	Instruments	will,	at	its	option,	repair
or	replace	software	media	that	do	not	execute	programming	instructions	if
National	Instruments	receives	notice	of	such	defects	during	the	warranty	period.
National	Instruments	does	not	warrant	that	the	operation	of	the	software	shall	be
uninterrupted	or	error	free.
A	Return	Material	Authorization	(RMA)	number	must	be	obtained	from	the
factory	and	clearly	marked	on	the	outside	of	the	package	before	any	equipment
will	be	accepted	for	warranty	work.	National	Instruments	will	pay	the	shipping
costs	of	returning	to	the	owner	parts	which	are	covered	by	warranty.
National	Instruments	believes	that	the	information	in	this	document	is	accurate.
The	document	has	been	carefully	reviewed	for	technical	accuracy.	In	the	event
that	technical	or	typographical	errors	exist,	National	Instruments	reserves	the
right	to	make	changes	to	subsequent	editions	of	this	document	without	prior
notice	to	holders	of	this	edition.	The	reader	should	consult	National	Instruments
if	errors	are	suspected.	In	no	event	shall	National	Instruments	be	liable	for	any
damages	arising	out	of	or	related	to	this	document	or	the	information	contained
in	it.
Except	as	specified	herein,	National	Instruments	makes	no	warranties,
express	or	implied,	and	specifically	disclaims	any	warranty	of
merchantability	or	fitness	for	a	particular	purpose.	Customer's	right	to
recover	damages	caused	by	fault	or	negligence	on	the	part	of	National
Instruments	shall	be	limited	to	the	amount	theretofore	paid	by	the
customer.	National	Instruments	will	not	be	liable	for	damages	resulting
from	loss	of	data,	profits,	use	of	products,	or	incidental	or	consequential
damages,	even	if	advised	of	the	possibility	thereof.	This	limitation	of	the
liability	of	National	Instruments	will	apply	regardless	of	the	form	of	action,
whether	in	contract	or	tort,	including	negligence.	Any	action	against	National
Instruments	must	be	brought	within	one	year	after	the	cause	of	action	accrues.
National	Instruments	shall	not	be	liable	for	any	delay	in	performance	due	to
causes	beyond	its	reasonable	control.	The	warranty	provided	herein	does	not
cover	damages,	defects,	malfunctions,	or	service	failures	caused	by	owner's



failure	to	follow	the	National	Instruments	installation,	operation,	or	maintenance
instructions;	owner's	modification	of	the	product;	owner's	abuse,	misuse,	or
negligent	acts;	and	power	failure	or	surges,	fire,	flood,	accident,	actions	of	third
parties,	or	other	events	outside	reasonable	control.



Copyright
Under	the	copyright	laws,	this	publication	may	not	be	reproduced	or	transmitted
in	any	form,	electronic	or	mechanical,	including	photocopying,	recording,
storing	in	an	information	retrieval	system,	or	translating,	in	whole	or	in	part,
without	the	prior	written	consent	of	National	Instruments	Corporation.



Trademarks
CVI™,	FieldPoint™,	National	Instruments™,	and	ni.com™	are	trademarks	of
National	Instruments	Corporation.
Product	and	company	names	mentioned	herein	are	trademarks	or	trade	names	of
their	respective	companies.



Patents
For	patents	covering	National	Instruments	products,	refer	to	the	appropriate
location:	Help»Patents	in	your	software,	the	patents.txt	file	on	your	CD,	or
www.ni.com/patents

javascript:WWW(WWW_Patents)


WARNING	REGARDING	USE	OF	NATIONAL
INSTRUMENTS	PRODUCTS
(1)	National	Instruments	products	are	not	designed	with	components	and
testing	for	a	level	of	reliability	suitable	for	use	in	or	in	connection	with
surgical	implants	or	as	critical	components	in	any	life	support	systems
whose	failure	to	perform	can	reasonably	be	expected	to	cause	significant
injury	to	a	human.
(2)	In	any	application,	including	the	above,	reliability	of	operation	of	the
software	products	can	be	impaired	by	adverse	factors,	including	but	not
limited	to	fluctuations	in	electrical	power	supply,	computer	hardware
malfunctions,	computer	operating	system	software	fitness,	fitness	of
compilers	and	development	software	used	to	develop	an	application,
installation	errors,	software	and	hardware	compatibility	problems,
malfunctions	or	failures	of	electronic	monitoring	or	control	devices,
transient	failures	of	electronic	systems	(hardware	and/or	software),
unanticipated	uses	or	misuses,	or	errors	on	the	part	of	the	user	or
applications	designer	(adverse	factors	such	as	these	are	hereafter
collectively	termed	"system	failures").	Any	application	where	a	system
failure	would	create	a	risk	of	harm	to	property	or	persons	(including	the
risk	of	bodily	injury	and	death)	should	not	be	reliant	solely	upon	one	form
of	electronic	system	due	to	the	risk	of	system	failure.	To	avoid	damage,
injury,	or	death,	the	user	or	application	designer	must	take	reasonably
prudent	steps	to	protect	against	system	failures,	including	but	not	limited	to
back-up	or	shut	down	mechanisms.	Because	each	end-user	system	is
customized	and	differs	from	National	Instruments'	testing	platforms	and
because	a	user	or	application	designer	may	use	National	Instruments
products	in	combination	with	other	products	in	a	manner	not	evaluated	or
contemplated	by	National	Instruments,	the	user	or	application	designer	is
ultimately	responsible	for	verifying	and	validating	the	suitability	of	National
Instruments	products	whenever	National	Instruments	products	are
incorporated	in	a	system	or	application,	including,	without	limitation,	the
appropriate	design,	process	and	safety	level	of	such	system	or	application.



Technical	Support	and	Professional	Services
Visit	the	following	sections	of	the	National	Instruments	Web	site	at	ni.com	for
technical	support	and	professional	services:

Support—Online	technical	support	resources	include	the	following:
Self-Help	Resources—For	immediate	answers	and	solutions,	visit
our	extensive	library	of	technical	support	resources	available	in
English,	Japanese,	and	Spanish	at	ni.com/support.	These	resources
are	available	for	most	products	at	no	cost	to	registered	users	and
include	software	drivers	and	updates,	a	KnowledgeBase,	product
manuals,	step-by-step	troubleshooting	wizards,	conformity
documentation,	example	code,	tutorials	and	application	notes,
instrument	drivers,	discussion	forums,	a	measurement	glossary,
and	so	on.
Assisted	Support	Options—Contact	NI	engineers	and	other
measurement	and	automation	professionals	by	visiting
ni.com/support.	Our	online	system	helps	you	define	your	question
and	connects	you	to	the	experts	by	phone,	discussion	forum,	or
email.

Training—Visit	ni.com/custed	for	self-paced	tutorials,	videos,	and
interactive	CDs.	You	also	can	register	for	instructor-led,	hands-on	courses
at	locations	around	the	world.
System	Integration—If	you	have	time	constraints,	limited	in-house
technical	resources,	or	other	project	challenges,	NI	Alliance	Program
members	can	help.	To	learn	more,	call	your	local	NI	office	or	visit
ni.com/alliance.

If	you	searched	ni.com	and	could	not	find	the	answers	you	need,	contact	your
local	office	or	NI	corporate	headquarters.	You	can	also	visit	the	Worldwide
Offices	section	of	ni.com/niglobal	to	access	the	branch	office	Web	sites,	which
provide	up-to-date	contact	information,	support	phone	numbers,	email	addresses,
and	current	events.

javascript:WWW(WWW_Support)
javascript:WWW(WWW_Support)
javascript:WWW(WWW_Customer_Education)
javascript:WWW(WWW_Integration)
javascript:WWW(WWW_Global)


Branch	Offices
Office Telephone	Number

Australia 61	2	9672	8846

Austria 43	0	662	45	79	90	0

Belgium 32	0	2	757	00	20

Brazil 55	11	3262	3599

Canada	(Calgary) 403	274	9391

Canada	(Montreal) 514	288	5722

Canada	(Ottawa) 613	233	5949

Canada	(Québec) 514	694	8521

Canada	(Toronto) 905	785	0085

Canada	(Vancouver) 514	685	7530

China 86	21	6555	7838

Czech	Republic 420	2	2423	5774

Denmark 45	45	76	26	00

Finland 385	0	9	725	725	11

France 33	0	1	48	14	24	24

Germany 49	0	89	741	31	30

Greece 30	2	10	42	96	427

Hong	Kong 2645	3186

India 91	80	51190000

Israel 972	0	3	6393737

Italy 39	02	413091

Japan 81	3	5472	2970

Korea 82	02	3451	3400

Malaysia 603	9059	6711

Mexico 001	800	010	0793

Netherlands 31	0	348	433	466

New	Zealand 64	09	914	0488

Norway 47	0	32	27	73	00

Poland 48	0	22	3390	150

Portugal 351	210	311	210

Russia 7	095	238	7139

Singapore 65	6	226	5886

Slovenia 386	3	425	4200

South	Africa 27	0	11	805	8197

Spain 34	91	640	0085

Sweden 46	0	8	587	895	00



Switzerland 41	56	200	51	51

Taiwan 886	2	2528	7227

United	Kingdom 44	0	1635	523545

United	States	(Corporate) 512	683	0100


	FieldPoint LabWindows/CVI Interface Help
	Conventions
	Using Functions from LabWindows/CVI
	Error and Status Information
	FieldPoint LabWindows/CVI Function Reference
	Data Types
	Examples
	FP_Advise
	FP_ChangeAdviseState
	FP_Close
	FP_CreateTagIOPoint
	FP_DestroyIOPoint
	FP_ErrorMsg
	FP_FreePDCallbackBuffer
	FP_Open
	FP_Read
	FP_ReadCache
	FP_Stop
	FP_Write


	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	Warning Regarding the Use of NI Products

	Technical Support and Professional Services

