

NI	Digital	Waveform	Generator/Analyzer	Help
September	2007,	370520J-01
This	help	file	explains	fundamental	and	advanced	concepts	necessary	for
using	a	National	Instruments	digital	waveform	generator/analyzer.	NI
digital	waveform	generator/analyzers	include	the	following	devices:

NI	PXI/PCI-6541	(NI	6541)
NI	PXI/PCI-6542	(NI	6542)
NI	PXI/PCI-6551	(NI	6551)
NI	PXI/PCI-6552	(NI	6552)
NI	PXI/PCI-6561	(NI	6561)
NI	PXI/PCI-6562	(NI	6562)

NI	digital	waveform	generator/analyzers	include	the	NI-HSDIO	driver	with
an	intuitive,	powerful	application	programming	interface	(API)	for	high-
speed	digital	applications.	NI-HSDIO	is	Windows-compatible	and
provides	an	API	for	LabVIEW,	LabWindows™/CVI™,	and	other	text-
based	development	environments.
To	navigate	this	help	file,	use	the	Contents,	Index,	and	Search	tabs	to
the	left	of	this	window.
For	more	information	about	the	NI	digital	waveform	generator/analyzer	or
this	help	file,	refer	to	the	following	topics	and	sections:
Conventions—formatting	and	typographical	conventions	in	this	help	file
Related	Documentation
Glossary
Fundamentals—terminology	and	concepts	common	to	NI	high-speed
digital	I/O	applications
Devices—information	specific	to	the	different	families	of	NI	digital
waveform	generator/analyzers
Integration	and	System	Considerations—information	on	creating	a
hardware	system	with	the	NI	digital	waveform	generator/analyzer
Programming—programming	information	for	the	NI-HSDIO	API
Important	Information
Technical	Support	and	Professional	Services

To	comment	on	National	Instruments	documentation,	refer	to	the	National
Instruments	Web	site.
©	2003–2007	National	Instruments	Corporation.	All	rights	reserved.

javascript:WWW(WWW_Feedback)

Conventions
The	following	conventions	appear	in	this	help	file:

<	> Angle	brackets	that	contain	numbers	separated	by	an
ellipsis	represent	a	range	of	values	associated	with	a	bit	or
signal	name—for	example,	DIO	<0..3>.

[] Square	brackets	enclose	optional	items—for	example,
[response].

» The	»	symbol	leads	you	through	nested	menu	items	and
dialog	box	options	to	a	final	action.	The	sequence
File»Page	Setup»Options	directs	you	to	pull	down	the	File
menu,	select	the	Page	Setup	item,	and	select	Options	from
the	last	dialog	box.
The	 	symbol	indicates	that	the	following	text	applies	only	to
a	specific	product,	a	specific	operating	system,	or	a	specific
software	version.
This	icon	denotes	a	tip,	which	alerts	you	to	advisory
information.
This	icon	denotes	a	note,	which	alerts	you	to	important
information.
This	icon	denotes	a	caution,	which	advises	you	of
precautions	to	take	to	avoid	injury,	data	loss,	or	a	system
crash.

bold Bold	text	denotes	items	that	you	must	select	or	click	in	the
software,	such	as	menu	items	and	dialog	box	options.	Bold
text	also	denotes	parameter	names.

dark	red Text	in	this	color	denotes	a	caution.
green Underlined	text	in	this	color	denotes	a	link	to	a	help	topic,

help	file,	or	Web	address.
italic Italic	text	denotes	variables,	emphasis,	cross	references,	or

an	introduction	to	a	key	concept.	Italic	text	also	denotes	text
that	is	a	placeholder	for	a	word	or	value	that	you	must
supply.

monospace Text	in	this	font	denotes	text	or	characters	that	you	should

enter	from	the	keyboard,	sections	of	code,	programming
examples,	and	syntax	examples.	This	font	is	also	used	for
the	proper	names	of	disk	drives,	paths,	directories,
programs,	subprograms,	subroutines,	device	names,
functions,	operations,	variables,	filenames,	and	extensions.

monospace
bold

Bold	text	in	this	font	denotes	the	messages	and	responses
that	the	computer	automatically	prints	to	the	screen.	This
font	also	emphasizes	lines	of	code	that	are	different	from	the
other	examples.

monospace
italic

Italic	text	in	this	font	denotes	text	that	is	a	placeholder	for	a
word	or	value	that	you	must	supply.

Related	Documentation
Most	NI	digital	waveform	generator/analyzer	manuals	also	are	available
as	PDFs.	You	must	have	Adobe	Acrobat	Reader	with	Search	and
Accessibility	5.0.5	or	later	installed	to	view	the	PDFs.	Refer	to	the	Adobe
Systems	Incorporated	Web	site	to	download	Acrobat	Reader.	Refer	to
the	National	Instruments	Product	Manuals	Library	for	updated
documentation	resources.
The	following	documents	contain	information	that	you	may	find	helpful	as
you	use	this	help	file:

NI	Digital	Waveform	Generator/Analyzer	Getting	Started	Guide
(PDF)
Specifications	for	the	NI	PXI/PCI-6541/6542	(PDF)
NI	PXI/PCI-6551/6552	Specifications	(PDF)
NI	PXI/PCI-6561/6562	Specifications	(PDF)
NI	Script	Editor	Help,	available	by	launching	the	NI	Script	Editor
(included	with	NI-HSDIO)	and	selecting	Help»NI	Script	Editor
Help.
Maintain	Forced-Air	Cooling	Note	to	Users
National	Instruments	High-Speed	Digital	ATE	and	Stimulus
Response	Features
NI-HSDIO	Instrument	Driver	Readme
Electrical	Characteristics	of	Low-Voltage	Differential	Signaling
(LVDS)	Interface	Circuits,	Revision	A,	2001	edition

javascript:WWW(WWW_Adobe)
javascript:WWW(WWW_Manuals)
javascript:AcrobatLink('UG.pdf');
javascript:AcrobatLink('654xSpecs.pdf');
javascript:AcrobatLink('655xSpecs.pdf');
javascript:AcrobatLink('656xSpecs.pdf');
javascript:WWW(WWW_nsi5410)

Fundamentals
Expand	this	book	for	more	information	about	concepts	and	terminology
used	in	this	help	file.

Voltage	Levels
Digital	devices	have	voltage	levels	specified	for	normal	operation	of	their
acquisition	and	generation	operations.	Voltage	levels	define	how	a	device
determines	a	valid	logic	state	(logic	high	level	or	logic	low	level).
Voltage	levels	are	defined	differently	for	single-ended	and	differential
devices.

Single-Ended	Voltage	Levels
For	single-ended	devices,	voltage	levels	are	usually	specified	in	terms	of
the	voltage	placed	on	the	output	terminal	when	driving	a	high	level	signal
or	when	driving	a	low	level	signal,	and	by	the	voltage	required	on	the
input	terminal	for	the	signal	to	be	recognized	as	a	high	or	low	level	signal.
For	the	NI	digital	waveform	generator/analyzers,	the	single-ended	voltage
levels	are	defined	as	follows:

Generation	Voltage	High	Level—When	configured	for	active
drive	generation,	this	is	the	voltage	produced	at	the	channel
electronics	when	the	Pattern	Generation	Engine	generates	a
binary	one.	When	configured	for	open	collector	generation,
Generation	Voltage	High	Level	is	equivalent	to	setting	the	data
channel	to	a	high-impedance	state.
Generation	Voltage	Low	Level—The	voltage	produced	at	the
channel	electronics	when	the	Pattern	Generation	Engine
generates	a	binary	zero.
Acquisition	Voltage	High	Level—The	voltage	level	at	or	above
which	the	Pattern	Acquisition	Engine	senses	a	binary	one.
Acquisition	Voltage	Low	Level—The	voltage	level	at	or	below
which	the	Pattern	Acquisition	Engine	senses	a	binary	zero.
Note		On	the	NI	655x	devices	these	levels	are	configurable.

When	connecting	an	NI	digital	waveform	generator/analyzer	to	a	device
under	test	(DUT),	you	must	ensure	that	the	interface	voltage	levels	are
compatible.	The	relationship	between	the	single-ended	voltage	levels	and
the	DUT	voltage	levels	are	shown	in	the	following	figure.

To	accurately	communicate	with	a	DUT,	configure	the	NI	module	such
that	the	following	conditions	are	met:

Generation	Voltage	High	Level	³	DUT	VIH

Generation	Voltage	Low	Level	£	DUT	VIL
Acquisition	Voltage	High	Level	£	DUT	VOH
Acquisition	Voltage	Low	Level	³	DUT	VOL
Acquisition	Voltage	High	Level	>	Acquisition	Voltage	Low	Level

The	extra	margin	between	the	voltage	level	being	driven	by	the	source
and	the	voltage	level	required	at	the	destination	is	known	as	the	noise
immunity	margin	(NIM).	The	NIM	indicates	the	amount	of	noise	tolerable
on	the	connecting	cable	with	a	data	bit	being	received	in	correctly.	The
total	NIM	is	computed	by	the	following	formula:
NIM	=	[min	(|Generation	Voltage	High	-	DUT	VIH|,	|Generation	Voltage
Low	-	DUT	VIL|,	
|DUT	VOH	-	Acquisition	Voltage	High|,	|DUT	VOL	-	Acquisition	Voltage
Low|)]
The	NI	SHC68-C68-D2	shielded	cable	for	single-ended	high-speed	digital
signals	provides	excellent	protection	against	external	noise	sources.
However,	if	your	system	operates	in	a	particularly	noisy	environment	and
is	having	difficulty	with	incorrect	data	bits,	consider	increasing	the	NIM,	if
possible.

Differential	Voltage	Levels
Unlike	single-ended	signals,	differential	signals	are	transmitted	in	parity.
That	is,	instead	of	a	single	conductor	referenced	to	ground,	two
conductors,	referenced	to	each	other,	transmit	data.	The	digital	driver	still
drives	two	voltages,	as	in	the	single-ended	case.	The	receiver,	however,
interprets	the	signals	based	on	the	voltage	difference	between	the	pair	of
signals	—	not	on	a	reference	to	ground.	For	the	differential	digital	signal
to	be	interpreted	as	a	binary	0,	the	signal	must	be	less	than	its
complementary	signal	by	more	than	a	particular	value,	shown	as	VTH	in
the	figure	below.	VTH	varies	and	is	specified	by	the	particular	logic	family.

Since	the	conductors	are	referenced	and	transmitted	together,	by	using
differential	signals	you	can	achieve	higher	noise	immunity	in	your	signals.
A	benefit	to	this	is	that	you	can	allow	much	smaller	signal	swings,	so	you
can	transmit	data	farther,	faster,	and	at	a	fraction	of	the	power
Since	differential	signals	reference	a	positive	signal	to	a	complementary
signal,	across	a	specified	differential	impedance,	voltage	levels	are
typically	specified	from	a	differential,	rather	than	an	absolute,	perspective
(depending	on	the	standard).	For	example,	the	absolute	voltage	levels	of
an	LVDS	transmission	pair	across	a	100	Ω	differential	terminating
impedance	may	have	a	VOH	of	1.4	V	on	the	positive	conductor	and	a	VOL
of	1.1	V	on	the	complementary	conductor.	The	differential	voltage	would
then	be	called	out	as	the	difference	between	the	two—300	mV,	shown	as
VOD	in	the	following	figure.	There	is,	however,	a	common-mode
component	of	the	signal,	shown	as	VOS	in	the	following	figure,	that	is	also
called	out	by	most	differential	specifications	and	is	referenced	to
common.
For	differential	NI	digital	waveform	generator/analyzers,	the	voltage
levels	are	defined	as	follows:

Differential	Output	Voltage	(VOD)—The	difference	in	voltage
between	the	positive	and	complementary	conductors	of	a
differential	transmission.	You	can	think	of	this	value	as	the
difference	of	the	two	conductors.
Offset	Voltage	(VOS)—The	common	mode	of	the	differential
signal.	You	can	think	of	this	value	as	the	average	of	the	two
conductors.

Threshold	Voltage	(VTH)—The	differential	voltage	threshold	at
which	the	receiver	registers	a	valid	logic	state.
Input	Voltage	Range	(VRANGE)—The	absolute	voltage,	referenced
to	common,	allowed	by	the	receiver.

When	connecting	a	differential	NI	digital	waveform	generator/analyzer	to
a	DUT,	ensure	that	the	interface	voltage	levels	are	compatible.	The
relationship	between	the	differential	NI	device	voltage	levels	and	the	DUT
voltage	levels	are	shown	in	the	following	figure.

The	total	NIM	is	computed	by	the	following	formula:
NIM	=	[min	(|Generation	VOD	-	DUT	VTH|,|DUT	VOD	-	Acquisition	VTH|)]

The	NI	SHB12X-B12X	shielded	cable	for	differential	high-speed	digital
signals	provides	excellent	protection	against	external	noise	sources.

Digital	Logic
Expand	this	book	for	more	information	about	digital	logic	families	and
states.

Logic	Families
Logic	families	are	groups	of	logic	circuits	with	standardized	voltage	levels
that	constitute	a	valid	logic	state.	All	circuits	within	a	logic	family	are
compatible	with	other	circuits	within	that	family,	since	they	share	the
same	characteristics.
Logic	families	can	be	defined	by	single-ended	voltage	levels,	such	as	the
1.8	V,	2.5	V,	3.3	V,	or	5.0	V	logic	families,	or	by	differential	voltage	levels,
such	as	LVPECL	and	LVDS.
Refer	to	Configuring	Voltage	Levels	for	more	information	about	using	NI-
HSDIO	to	select	logic	families	and	configure	your	voltage	levels.

Note		If	you	use	the	NI	655x	devices,	you	can	configure	custom
voltage	levels	for	your	operation.

Related	Topics:
Logic	Families	(NI	654x)
Logic	Families	(NI	655x)
Logic	Families	(NI	656x)

Single-Ended	Logic	Families
Includes	TTL,	LVTTL,	CMOS,	and	LVCMOS
Single-ended	logic	families	use	standardized	single-ended	voltage	levels
to	interpret	the	voltage	swing	between	the	voltage	driven	by	the	device
and	ground	as	either	a	binary	one	or	a	zero.
Examples	of	the	voltage	levels	for	common	single-ended	logic	families
are	shown	in	the	following	table.

Logic	Family Voltage	Range
CMOS 0	to	5	V
TTL 0	to	5	V
LVTTL 0	to	3.3	V
LVCMOS 0	to	3.3	V

The	single-ended	logic	families	for	NI	digital	waveform
generator/analyzers	are	named	after	the	voltage	the	NI	device	interprets
as	a	binary	1	when	configured	for	active	drive	generation.	These	logic
families	include	1.8V,	2.5V,	3.3V,	and	5.0V.

Differential	Logic	Families
Differential	logic	families	use	differential	voltage	levels	to	measure	the
voltage	difference	between	a	pair	of	wires	and	interpret	the	difference	as
a	binary	one	or	zero.

Low-Voltage	Differential	Signaling	(LVDS)

Low-voltage	differential	signaling	(LVDS)	is	a	low-noise,	low-power,	low-
amplitude	differential	method	for	high-speed	digital	data	transfer.
The	following	figure	shows	a	diagram	of	a	typical	LVDS	circuit.

A	current	source	at	the	driver	provides	approximately	3.5	mA	of	current.
The	direction	of	the	current	depends	on	whether	the	driver	drives	a	logic
high	level	or	low	level.	When	the	current	reaches	the	receiver,	a	100	Ω
terminating	resistor	connects	the	two	ends	of	the	differential	transmission
line	to	provide	a	return	path	for	the	current.	A	voltage	of	approximately
350	mV	(3.5	mA	x	100	Ω)	is	established	across	the	two	input	terminals	of
the	receiver.	The	differential	voltage	at	the	receiver	is	either	positive	or
negative,	depending	on	the	direction	of	the	current.	The	receiver
recognizes	a	positive	differential	voltage	signal	as	a	logic	high	level
(binary	1)	and	a	negative	differential	voltage	as	a	logic	low	level	(binary
0).
The	electrical	characteristics	of	an	LVDS	signal	offers	many	performance
improvements	compared	to	single-ended	standards.	For	example,	since
the	received	voltage	is	a	differential	between	two	signals,	the	voltage
swing	between	the	logic	high	level	and	low	level	state	can	be	smaller,
allowing	for	faster	rise	and	fall	times	and	thus	faster	toggle	and	data
rates.	Also,	as	with	LVPECL	circuits,	the	differential	receiver	is	less
susceptible	to	common-mode	noise	than	single-ended	transmission
methods.
The	LVDS	standard	defines	the	electrical	aspects	of	this	type	of	data
transmission.	The	standard	defines	driver	and	receiver	electrical
characteristics	only.	The	standard	does	not	create	protocol,	interconnect,
or	connector	definitions	because	these	aspects	are	application-specific.

For	more	information	on	LVDS,	refer	to	the	Understanding	LVDS	for
Digital	Test	Systems	application	note	on	ni.com.

Note		Refer	to	the	ANSI/TIA/EIA-644-A	electrical	characteristics
standard,	Electrical	Characteristics	of	Low-Voltage	Differential
Signaling	(LVDS)	Interface	Circuits,	Revision	A,	2001	edition	for
more	information	about	the	LVDS	standard.

javascript:WWW(WWW_rdldt6)

Low-Voltage	Positive	Emitter-Coupled	Logic	(LVPECL)

Emitter-Coupled	Logic	circuits	use	a	design	with	transistors	that	steer
current	through	gates	to	compute	logical	functions.	Because	the
transistors	are	always	in	the	active	region,	they	can	change	state	very
rapidly,	so	ECL	circuits	can	operate	at	very	high	speeds.
LVPECL	circuits	are	a	type	of	ECL	circuit	that	require	a	pair	of	signal	lines
for	each	channel.	The	differential	transmission	scheme	is	less
susceptible	to	common-mode	noise	than	single-ended	transmission
methods.	LVPECL	circuits	are	designed	for	use	with	supply	voltages	of
3	V	or	3.3	V.

Digital	Logic	States
Test	engineers	can	choose	from	a	number	of	different	digital	I/O
instruments	with	a	range	of	features	for	communication	and	test
applications.	Beyond	the	basic	capabilities	of	driving	a	digital	pattern	of
1's	and	0's,	digital	instruments	often	support	waveforms	that	can	include
some	or	all	of	the	logic	states	shown	in	the	following	table.

		 Logic	State Drive	Data Expected	Response
Drive	States 0 Logic	Low Don’t	Care

1 Logic	High Don’t	Care
Z Disable Don’t	Care

Compare	States L Disable Logic	Low
H Disable Logic	High
X Disable Don’t	Care

The	six	logic	states	control	the	voltage	driver	and,	if	supported,	the
compare	engine	of	the	digital	tester	on	a	per	clock	cycle	basis.	The	Drive
states	specify	what	stimulus	data	the	tester	drives	on	a	particular	channel
or	when	to	disable	the	voltage	driver	(referred	to	as	the	tristate	or	high-
impedance	state).	Compare	states	indicate	the	expected	response	from
the	DUT.	These	six	logic	states	make	it	possible	to	perform	bidirectional
communication	and	real-time	hardware	comparison	of	acquired	response
data.
The	NI	655x	digital	waveform	generator/analyzer	supports	all	six	logic
states	shown	in	the	preceding	table,	allowing	the	device	to	perform
bidirectional	stimulus/response	test	options	with	hardware	comparison.
Other	NI	digital	waveform	generator	analyzers	can	perform	simultaneous
generation	and	acquisition	using	1's	and	0's,	but	they	do	not	support
bidirectional	operation.
Related	Topics:

Hardware	Comparison	(NI	655x)
Comparing	Response	Data	with	Expected	Data

Hysteresis
Hysteresis	refers	to	the	difference	in	voltage	levels	between	the	detection
of	a	transition	from	a	logic	low	level	to	a	logic	high	level	and	the	transition
from	a	logic	high	level	to	a	logic	low	level.	Refer	to	the	following	figure
illustrating	hysteresis.

All	digital	logic	devices	have	some	level	of	hysteresis	on	their	digital
inputs.	The	magnitude	of	a	particular	device's	hysteresis	can	be
determined	by	the	following	formula:
Hysteresis	≈	VIH	-	VIL
On	a	rising	edge	of	the	digital	signal	on	the	input,	the	device	detects	a
transition	from	a	logic	low	to	a	logic	high	at	VIH.	Conversely,	the	device
detects	a	transition	from	a	logic	high	to	a	logic	low	when	the	voltage	at
the	input	of	the	device	crosses	VIL.

Hysteresis	is	a	useful	property	for	digital	devices	because	it	provides
some	amount	of	natural	immunity	to	high-frequency	noise	in	your	digital
system.	This	noise,	often	caused	by	reflections	from	the	high	edge	rates
of	logic	level	transitions,	could	cause	false	transition	detections	by	the
digital	device	if	only	a	single	voltage	threshold	determined	a	change	in
logic	state.	This	phenomenon	is	more	clearly	illustrated	in	the	following
figure.

In	this	figure,	after	applying	hysteresis	the	first	sample	is	acquired	as	a
logic	low	level.	The	second	sample	is	also	a	logic	low	level	because	the
signal	has	not	yet	crossed	the	logic	high	level	threshold.	The	third	and

fourth	samples	are	logic	high	level,	and	the	fifth	is	logic	low	level.
For	devices	with	fixed	voltage	thresholds,	the	NIM	and	hysteresis	of	your
system	are	determined	by	your	choice	of	system	components.	Some	NI
devices	allow	you	to	control	both	your	system	NIM	and	hysteresis.	Both
system	NIM	and	hysteresis	give	your	system	levels	of	noise	immunity,
but	for	a	specific	logic	family,	there	is	always	a	trade-off	between	these
two—the	larger	the	hysteresis,	the	smaller	the	NIM,	and	vice	versa.	To
determine	how	to	set	your	voltage	thresholds,	carefully	examine	the
signal	quality	in	your	system	to	determine	whether	you	need	more	noise
immunity	from	your	valid	logic	levels	(greater	NIM)	or	need	more	noise
immunity	on	your	logic	level	transitions	(greater	hysteresis).

AC	Waveform	Characteristics
The	following	terms	describe	some	of	the	common	AC	waveform
characteristics.

Rise	time	and	fall	time—Rise	time	(trise)	is	the	time	that	it	takes	a
signal	to	rise	from	20%	to	80%	of	the	voltage	between	the	voltage
low	level	and	the	voltage	high	level.	Fall	time	(tfall)is	the	time	that	it
takes	a	signal	to	fall	from	80%	to	20%	of	the	voltage	between	the
voltage	low	level	and	the	voltage	high	level.
The	following	figure	illustrates	rise	and	fall	time.

Preshoot	and	Overshoot—Preshoot	and	overshoot	are	peak
distortions	preceding	(preshoot)	or	following	(overshoot)	an	edge.
The	following	figure	shows	an	example	of	preshoot	and	overshoot
on	a	signal.

Note		Together,	overshoot,	preshoot,	and	undershoot	are
called	aberrations.

Settling	time—Settling	time	(tS)	is	the	time	required	for	an
amplifier,	relay,	or	other	circuits	to	reach	a	stable	mode	of
operation.	In	the	context	of	signal	acquisition,	the	settling	time	for	a
full-scale	step	is	the	amount	of	time	required	for	a	signal	to	reach	a
certain	accuracy	and	stay	within	that	accuracy	range.
The	following	figure	illustrates	settling	time	on	a	digital	signal.

Duty	cycle—For	clock	signals,	the	percentage	of	the	waveform
period	that	the	waveform	is	at	logic	high	level.
The	following	figure	shows	the	difference	between	two	waveforms
with	different	duty	cycles.	Notice	that	the	30%	duty-cycle	waveform
is	at	logic	high	level	for	less	time	than	the	50%	duty	cycle
waveform.

Termination
Unlike	systems	designed	for	lower	speed	applications,	in	high-speed
digital	systems,	simple	passive	circuit	elements	like	wires,	cables,	and
chip	PCB	interconnections	can	significantly	affect	signal	quality.	High-
speed	digital	edges	contain	frequency	components	that	are	several	times
the	effective	toggle	rate	of	that	signal.	For	example,	a	digital	edge	with	a
rise	time	of	1.5	ns	contains	significant	energy	in	frequencies	up	to
333	MHz,	regardless	of	toggle	rate.	When	designing	systems	using	NI
digital	waveform	generator/analyzers,	you	must	have	a	basic
understanding	of	both	transmission	lines	and	termination	so	that	you	can
maximize	signal	quality	and	minimize	the	effects	of	signal	reflections.
The	signals	in	the	following	figures	show	identical	digital	waveforms
generated	by	an	NI	PXI-6552.	The	first	figure	shows	a	properly
terminated	waveform	where	the	test	system	was	designed	with	a	careful
understanding	of	both	transmission	lines	and	termination.	The	second
figure	shows	a	waveform	from	an	unterminated	system	where
transmission	line	effects	and	termination	were	not	considered.

Consider	the	following	key	areas	when	designing	your	test	system:
Zs—The	impedance	at	the	source	of	the	transmission	line
Z0—The	characteristic	AC	impedance	of	the	transmission	line
Zt—The	impedance	at	the	destination	of	the	transmission	line

By	carefully	controlling	these	three	elements	of	your	system,	you	can
achieve	the	best	possible	results.	Leaving	these	three	elements

uncontrolled	can	result	in	the	type	of	signal	distortion	shown	in	the
improperly	terminated	signal	and	produce	the	following	results:

Signals	that	exceed	specified	high-level	and	low-level	thresholds
(overshoot	and	undershoot)
Signals	that	have	false	edges	(ringing)
Signals	that	have	reduced	operating	margins	(degraded	eye
diagram	caused	by	inter-symbol	interference)
Potential	physical	damage	or	overheating	of	driver/receiver
components	in	extreme	cases

Refer	to	Terminating	Your	Module	for	information	about	series	and
parallel	resistor	termination	that	is	commonly	applicable	to	your	NI	digital
waveform	generator/analyzer.

Transmission	Lines
In	lower	frequency	(slow	edge	rate)	applications,	you	can	assume	that
small	wires	interconnecting	devices	do	not	affect	system	performance
and	that	every	point	in	a	wire	has	the	same	voltage	as	every	other	point
for	any	instance	in	time.	At	lower	frequencies,	this	"lumped"	circuit	model
is	valid.	However,	as	frequency	content	increases,	even	the	small
geometries	of	typical	wire	dimensions	become	a	significant	portion	of	the
signal	wavelengths,	in	which	case	the	small	inductance	and	capacitance
become	electrically	significant	impedances.
What	constitutes	a	significant	proportion	of	the	wavelength?	While	this
value	changes	for	different	applications,	for	digital	circuits,	a	good
general	rule	is	that	if	the	propagation	delay	in	a	wire	or	interconnect	is
greater	than	one-sixth	of	the	rise	time	of	the	digital	signal,	then	the
"lumped"	circuit	analysis	assumption	is	no	longer	valid	and	you	should
analyze	the	interconnect	as	a	transmission	line.
For	calculation	purposes,	you	should	understand	the	concept	of	electrical
length	(l).	Electrical	length	is	defined	as	the	distance	that	a	signal	can
travel	in	an	electrical	medium	during	the	time	that	it	takes	for	one	rise	or
fall	time,	whichever	is	longer.	Using	the	concept	of	electrical	length,	the
general	rule	of	the	previous	paragraph	can	be	rephrased	as	follows:	If	the
physical	length	of	a	wire	or	electrical	interconnect	is	greater	than	one-
sixth	of	the	electrical	length	of	a	signal	propagating	on	that	wire,	the
system	must	be	analyzed	as	a	transmission	line.
Velocity	is	defined	as	the	rate	at	which	an	electrical	wave	propagates	in
the	transmission	medium.	Using	this	value	you	can	calculate	electrical
length	in	one	of	the	following	ways:

l(in)	=	Velocity(in/ns)	•	trise
l(in)	=	trise(ns)/tpd(ns/in)

where	trise	is	the	rise/fall	time	of	the	digital	edge,	and	tpd	is	the
propagation	delay	of	the	edge	in	the	transmission	line.
For	example,	the	NI	SHC68-C68-D2	shielded	cable	has	a	tpd	of
165	ps/inch.	On	an	NI	655x	device,	trise	for	a	high-speed	digital	signal	can
be	as	low	as	1.5	ns.	Therefore,	the	electrical	length	is	9	in.	(trise/tpd	=
	1.5/.165	=	9	in.),	and	any	trace	lengths	longer	than	1.5	in.	(9	in./6)

should	be	treated	as	a	transmission	line.	Since	this	cable	is	significantly
longer	than	1.5	in.,	NI	considers	this	cable	to	be	a	transmission	line	and
designed	the	cable	to	have	a	controlled	50	Ω	characteristic	impedance
cable.

Note		While	the	propagation	delay	number	in	the	previous
example	is	specific	to	the	NI	SHC68-C68-D2	cable,	if	you	do	not
know	the	specific	propagation	delays	for	your	interconnects,	when
using	the	NI	digital	waveform	generator/analyzer,	assume	that	you
are	working	with	transmission	lines	for	any	wire	or	interconnect
longer	than	1	to	2	inches.

The	following	figure	gives	a	simple	diagram	of	a	basic	single-ended
transmission	line.	A	voltage	source	(Vs)	generates	a	digital	edge	with	an
impedance	of	Zs	looking	"into"	the	transmission	line.	The	transmission
line	itself	has	some	low	characteristic	AC	impedance	(Z0)	to	ground,
typically	50	Ω	for	most	test	systems.	The	end	of	the	transmission	line	is
most	commonly	terminated	through	an	impedance	(Zt)	to	ground	at	the
destination.

Practically,	termination	at	only	one	end	of	the	transmission	line	is	often
adequate	and	is	more	commonly	used.	However,	for	high-precision
applications,	termination	at	both	the	source	and	the	load	end	of	the
transmission	line	yields	the	best	results.

Characteristic	Impedance
The	characteristic	impedance	of	a	transmission	line	largely	influences	the
transient	response	of	a	signal	passing	through	it.	The	physical	properties
of	the	transmission	line	materials	determine	its	characteristic	impedance.
For	example,	the	dielectric	of	the	insulators	and	the	cross-sectional
geometry	of	a	cable	determine	its	capacitance.	Likewise,	the	inductance
of	the	cable	is	a	function	of	the	length	and	the	properties	of	the	dielectric.
The	characteristic	impedance	is	a	function	of	both	this	inductance	and
capacitance.	Manufacturers	of	cables	provide	the	specification	for	the
characteristic	impedance	of	that	cable,	along	with	how	it	behaves	over
environmental	extremes.
It	is	critical	to	match	the	characteristic	impedance	to	the	source
impedance.	If	the	impedances	do	not	match,	the	resulting	signal	at	the
load	is	greatly	distorted	in	both	time	and	amplitude.	Any	time	you	disrupt
the	geometry	described	above,	it	results	in	impedance	mismatches	and
signal	reflections.	For	example,	at	the	interfaces	or	boundaries	between
the	cables	and	the	devices,	you	should	use	connectors	designed	to
maintain	this	characteristic	impedance	(coaxial	connectors).	Screw
terminals,	tees	in	the	transmission	line,	or	wire	stubs	are	not
recommended.

Caution		Failure	to	use	the	connectors	designed	for	these	cables
may	result	in	impedance	mismatches.

Signal	Reflections
A	digital	rising	or	falling	edge	is	a	step	function	that	can	be	modeled	as	a
high-frequency	wavefront.	As	the	wavefront	travels	along	the
transmission	line,	it	acts	as	a	purely	AC	signal,	encountering	the
characteristic	impedance	(Z0)	of	the	transmission	line.	When	the
wavefront	reaches	the	end	of	the	path,	if	Z0	and	the	termination	(Zt)	do
not	match,	portions	of	the	wave	are	reflected.	As	the	wave	reflects	back
along	the	transmission	line,	it	eventually	reaches	the	original	source
impedance	(Zs).	If	the	transmission	line	characteristic	impedance	(Z0)
and	Zs	do	not	match,	then	portions	of	the	wave	are	re-reflected.	The
superposition	of	these	reflected	waves	can	cause	significant	signal
degradation.
Reflection	caused	by	an	impedance	mismatch	at	the	end	of	a
transmission	line	is	quantified	by	the	reflection	coefficient.	Reflection
coefficient	Γ	is	given	by	the	following	formula:
Γ	=	Vr/Vi	=	(Zt	-	Z0)/(Zt	+	Z0);
where	Vr	is	the	reflected	voltage,	Vi	is	the	incident	voltage,	Zt	is	the
terminating	impedance,	and	Z0	is	the	characteristic	impedance	of	the
transmission	line.
For	example,	by	applying	this	formula,	you	can	calculate	that	when	a
3.3	V	wave,	traveling	down	a	50	Ω	characteristic	medium	hits	a	1	kΩ	load
impedance,	the	reflection	coefficient	Γt	is	equal	to
(1	kΩ	-	50	Ω)/(1	kΩ	+	50	Ω),	or	.90,	and	Vr	equals	0.9	x	3.3	V	=	2.97	V.

Thus,	the	reflected	wave	Vr	is	almost	the	same	magnitude	as	the	incident
wave.	At	the	load,	this	condition	only	has	the	effect	of	giving	an
erroneous	voltage—assuming	that	the	circuit	was	originally	calibrated
with	a	50	Ω	load.	While	nearly	the	entire	signal	is	reflected	back,	this
reflection	is	eliminated	at	the	source	because	the	source	and	the
transmission	line	are	matched.
However,	should	the	transmission	line/cable	be	mismatched	from	the
source	and	the	load,	the	mismatch	causes	a	scenario	of	multiple
reflections	resulting	in	aberrations	at	the	load	similar	to	what	is	shown	in
the	improperly	terminated	signal	in	this	figure.

Note		NI	strongly	recommends	that	you	take	great	care	to	ensure

that	the	source	impedance	of	the	system	is	matched	as	closely	as
possible	to	the	characteristic	impedance	of	the	transmission	line.
For	generation	operations,	the	source	impedance	is	inside	the	NI
device	and	is	handled	by	the	hardware	architecture.	For
acquisition	operations,	however,	you	control	the	source	impedance
of	the	system.	You	should	create	a	source	impedance	as	close	to
the	characteristic	impedance	of	your	device	as	possible.

Types	of	Termination
There	are	several	forms	of	line	termination,	including	parallel,	series,	and
differential.
Parallel	termination	matches	the	characteristic	impedance	of	the	medium
at	the	end	of	the	line,	squelching	the	wavefront	at	the	destination	(Zt	=
Z0).

Differential	termination	is	a	variation	of	parallel	termination	used	for
differential	transmission	lines.	Many	electrical	standards,	such	as	emitter-
coupled	logic	(ECL)	and	LVDS,	require	that	traces	are	routed
differentially.	As	such,	parallel	termination	is	used	between	the	two
modes	of	the	differential	trace.
Series	termination	places	series	impedance	equal	to	the	characteristic
impedance	at	the	source	of	the	transmission	line.	This	termination
prevents	the	source	from	re-reflecting	any	reflections	from	an
unterminated	transmission	line.	It	also	prevents	reflections	from	the
transmission	line	to	the	source	at	the	entry	(ZS	=	Z0).

Practically,	termination	at	only	one	end	of	the	transmission	line	is	often
adequate	and	is	more	commonly	used.

Crosstalk
Crosstalk	is	an	expected	natural	phenomenon	caused	by	the	close
proximity	of	signals	and	capacitance.	Crosstalk	results	in	unwanted
coupling	of	the	signals.	Crosstalk	is	the	ratio,	in	dB,	of	the	level	of	the
interference	on	the	affected	channel	to	the	actual	level	of	the	interfering
signal.	Crosstalk	consists	of	any	unwanted	signal	on	one	channel	that	is
caused	by	a	signal	on	another	channel.

Understanding	I/O	Current
The	following	subtopics	explain	important	concepts	that	you	should
understand	in	relation	to	I/O	current:

Sinking	and	Sourcing
AC	and	DC	Current

Sinking	and	Sourcing	Current
Sinking	current	refers	to	the	ability	of	a	circuit	to	dissipate	current.
Sourcing	refers	to	the	ability	of	a	signal	source	to	supply	current.

AC	and	DC	Current
AC	current	is	current	sourced/sunk	during	the	transition	between	low	and
high	level	states	driving	a	capacitive	load	(such	as	a	cable)	or	an
inductive	load	(such	as	a	device	interconnect).	DC	current	is	the	current
sourced/sunk	when	the	generation	terminals	are	at	a	static	voltage
driving	a	resistive	load.	The	illustration	below	of	a	digital	waveform	shows
when	AC	or	DC	current	is	sourced/sunk.

Use	the	following	formulas	to	calculate	AC	current.

where
I	is	current	in	amps,
C	is	load	capacitance	in	farads,	and
dV/dt	is	the	rate	of	change	of	the	voltage	level	in	volts/s,
or

where
I	is	the	current	in	amps,
L	is	the	inductive	loading	in	henrys,	and
V(t)	is	the	voltage	in	volts	as	a	function	of	time.

Use	the	following	formula	to	calculate	DC	current.

where
I	is	current	in	amps,
V	is	voltage	level	in	volts,	and
R	is	resistance	in	ohms.

Digital	Terminology
Expand	this	book	for	more	information	about	some	key	terms	used	in	this
help	file.

Timing	and	Triggering
Expand	this	book	for	more	information	about	concepts	and	terminology
related	to	timing	and	triggering.

Clocks
You	can	configure	the	following	device	clocks	for	your	digital	waveform
generator/analyzer:

Sample	Clock
Reference	Clock
STROBE

Sample	Clock
The	Sample	clock	is	the	primary	timebase	for	the	digital	waveform
generator/analyzer.	This	clock	controls	the	rate	at	which	samples	are
acquired	or	generated.	Each	period	of	the	Sample	clock	is	capable	of
initiating	the	acquisition	or	generation	of	one	sample	per	channel.
Using	NI-HSDIO,	you	can	program	the	Sample	clock	to	come	from	either
the	On	Board	Clock	source	signal	or	an	external	frequency	generator.
Because	of	the	pipelined	architecture	of	the	NI	digital	waveform
generator/analyzer,	the	clock	source	for	the	Sample	clock	must	be
continuous,	free-running,	and	of	a	constant	frequency	for	the	duration	of
each	generation	and/or	acquisition	operation.
Related	Topics:

NI	654x	Clock	Sources	Summary
NI	655x	Clock	Sources	Summary
NI	656x	Clock	Sources	Summary

Reference	Clock
The	onboard	frequency	generator	on	the	NI	digital	waveform
generator/analyzer	uses	a	phase-locked	loop	(PLL)	circuit	to	lock	the
high-frequency	internal	timebase	of	the	device	to	a	known	reference
frequency.	The	most	common	clock	to	which	the	NI	device	is	locked	is
the	10	MHz	reference	clock	signal	on	the	PXI	backplane	(PXI_CLK10).
This	clock	signal	is	shared	among	all	modules	in	the	PXI	system,	so	you
can	lock	all	the	modules	in	your	system	to	this	stable	clock.

Note		PXI_CLK10	is	only	available	on	NI	digital	waveform
generator/analyzers	for	the	PXI	bus.	The	Onboard	Reference	clock
is	a	10	MHZ	clock	signal	that	is	available	for	use	with	NI	digital
waveform	generator/analyzers	for	the	PCI	bus.

You	can	use	the	Reference	clock	only	when	On	Board	Clock	is	selected
as	the	Sample	clock	source	for	a	dynamic	generation	or	acquisition
session.
Related	Topics:

NI	654x	Clock	Sources	Summary
NI	655x	Clock	Sources	Summary
NI	656x	Clock	Sources	Summary

STROBE
The	STROBE	channel	on	the	DDC	connector	is	a	dedicated	channel	for
the	STROBE	signal.	STROBE	can	be	used	only	for	acquisition	sessions.
Designed	for	use	in	source-synchronous	data	transfer	applications,	the
data	channels	are	sampled	precisely	on	a	user-selected	edge
(programmable	as	rising	or	falling	edge)	of	the	STROBE	signal,	when
configured	as	the	Sample	clock.	The	advantage	of	using	STROBE	as	the
Sample	clock	source	signal	for	the	acquisition	operation	is	that	the
acquisition	session	Sample	clock	and	the	data	channels	now	travel
together	through	the	same	cable	and	system	delays,	maintaining	time
correlation	between	them.
Since	NI	digital	waveform	generator/analyzers	only	have	one	onboard
clock,	normally	generation	and	acquisition	sessions	on	the	same	NI
device	must	use	the	same	Sample	clock	rate.	However,	by	choosing
STROBE	as	the	clock	for	acquisition	operations,	generation	and
acquisition	operations	can	use	two	different	timebases.
Related	Topics:

NI	654x	Clock	Sources	Summary
NI	655x	Clock	Sources	Summary
NI	656x	Clock	Sources	Summary

Triggers
Triggers	are	signals	that	cause	the	NI	device	to	perform	some	action
such	as	the	starting,	stopping,	or	pausing	of	an	acquisition	or	generation
operation.	Triggers	can	be	internal	(software-generated)	or	external.
External	digital	triggers	can	be	several	different	types.	External	triggers
can	be	re-exported	and,	along	with	events,	can	allow	you	to	synchronize
the	hardware	operation	with	external	circuitry	or	other	NI	devices.
Refer	to	Triggers	Summary	and	Events	Summary	for	descriptions	of	the
triggers	and	events	you	can	use	with	your	device.

Types	of	Triggers
You	can	configure	the	triggers	supported	by	your	NI	digital	waveform
generator/analyzer	as	one	of	the	following	trigger	types:

Edge
Level
Pattern	Match
Software
Note		Individual	triggers	may	not	support	all	the	trigger	types	listed
here.	Refer	to	Triggers	Summary	for	more	information.

Edge	Trigger
A	digital	signal	has	two	discrete	levels:	a	high	level	and	a	low	level.	When
the	signal	transitions	from	high	to	low	or	from	low	to	high,	a	digital	edge	is
created.	There	are	two	types	of	edges:	rising,	which	occurs	when	the
signal	transitions	from	low	level	to	high	level,	and	falling,	which	occurs
with	a	transition	from	high	level	to	low	level.	Triggers	configured	to	act	on
a	rising	or	falling	edge	of	a	digital	signal	are	called	edge	triggers.
In	the	following	figure,	an	edge	trigger	could	be	configured	to	occur	either
at	the	place	labeled	Falling	Edge	of	Signal	or	at	Rising	Edge	of	Signal.

Level	Trigger
You	can	configure	certain	triggers	to	act	when	a	signal	goes	below	the
defined	low	level	or	above	the	defined	high	level.	Triggers	configured	to
act	in	this	way	are	known	as	level	triggers.	Not	all	triggers	can	be
configured	to	be	level	triggers.	Refer	to	Triggers	Summary	for	information
about	which	triggers	you	can	configure	for	level	triggering.

Pattern-Match	Trigger
A	pattern-match	trigger	behaves	like	a	combination	lock.	When	the
correct	combination	is	read,	the	lock	opens.	Likewise,	in	the	case	of
triggers,	when	the	desired	acquisition	pattern	is	read,	the	pattern-match
trigger	is	asserted.
The	level	state	of	a	digital	signal	can	be	represented	by	a	binary	pattern,
where	a	1	corresponds	to	the	high	level	(H)	and	a	0	corresponds	to	a	low
level	(L).	For	example,	if	the	logic	levels	on	channels	0-3	are	HLLH
respectively,	then	this	pattern	could	be	represented	in	binary	by	replacing
the	H's	with	1's	and	the	L's	with	0's—	1001.	A	pattern-match	trigger	allows
you	to	configure	the	device	to	monitor	the	input	terminals	for	a	specific
pattern	(for	example,	10101110).	When	this	pattern	is	acquired	by	the
device,	the	device	asserts	the	pattern-match	trigger.
You	can	also	specify	when	you	want	rising	(R	or	r)	and	falling	edges	(F	or
f)	on	any	edge	(E	or	e)	to	occur	in	the	pattern	to	be	matched.

Note		Pattern-match	triggers	are	valid	only	for	acquisition
sessions.

Software	Trigger
A	software	trigger	is	generated	internally	by	a	programmatic	call,	such	as
a	LabVIEW	VI	or	C	function,	and	can	occur	at	any	time,	based	upon	the
conditions	specified	in	the	program.

Triggers	Summary
The	following	table	describes	the	triggers	supported	by	NI	digital
waveform	generator/analyzers.	The	Used	In	column	indicates	which
types	of	operations	can	use	a	trigger	type.	The	Supported	Types	column
denotes	which	trigger	types	are	valid	for	a	given	trigger.

Note		Using	DDR	mode	has	certain	implications	for	using	some
acquisition	triggers.

Trigger
Name Used	In Supported

Types Description

Start Acquisition,
Generation

Digital
Edge,
Pattern
Match1,
Software

The	Start	trigger	transitions	a	device
into	a	state	where	the	device	can
respond	to	Sample	clocks.

For	an	acquisition	session,
this	trigger	transitions	the
device	from	a	nonsampling
state	into	a	sampling	state—
the	device	starts	sampling
and	storing	data.
For	a	generation	session,	this
trigger	transitions	the	device
from	an	Idle	state	to	a	sample
generation	state—the	device
starts	generating	samples.

Reference Acquisition Digital
Edge,
Pattern
Match1,
Software

The	Reference	trigger	transitions	a
device	from	the	Wait	for	Reference
Trigger	sampling	state	into	the	Post
Reference	trigger	sampling	state.	In
the	Post	Reference	Trigger	sampling
state,	a	counter	begins	counting
Sample	clock	cycles.	When	the
configured	number	of	samples	is
acquired,	the	device	transitions	into
a	Done	state.	In	other	words,	the
arrival	of	this	trigger	establishes	the
reference	point	that	separates

pretrigger	and	posttrigger	samples.
Advance Acquisition Digital

Edge,
Pattern
match1,
Software

The	Advance	trigger	initiates	the
acquisition	of	the	additional	records
in	a	multirecord	acquisition.

Pause Acquisition,
Generation

Digital
Level,
Pattern
Match1

The	Pause	trigger	indicates	to	the
device	that	it	should	pause	the
acquisition	or	generation.	Therefore,
the	Pause	trigger	is	only	effective
when	received	during	an	active
acquisition	or	generation	session.
For	generation	operations,	the	Data
Active	event	indicates	when	the
operation	is	paused.

Script Generation Digital
Edge,
Digital
Level,
Software

The	Script	trigger	is	a	general-
purpose	trigger	with	a	role	that	is
entirely	determined	by	the	context	of
the	dynamic	generation	script.	A
script	allows	you	to	create
sophisticated	dynamic	generation
operations.	For	example,	the	script
could	configure	the	device	to
generate	waveform	A,	then	wait	for
the	Script	trigger,	then	generate
waveform	B.	You	can	create	multiple
Script	triggers	for	use	in	your
application.

1Pattern	match	triggers	are	valid	only	for	acquisition	sessions.

Events
An	event	is	a	signal	generated	by	the	NI	device	at	a	device	state.
Typically,	events	are	configured	to	indicate	when	a	specific	hardware
condition	has	been	met.
Refer	to	Triggers	Summary	and	Events	Summary	for	descriptions	of	the
triggers	and	events	you	can	use	with	your	device.

Events	Summary
The	following	table	describes	the	event	types	supported	by	NI	digital
waveform	generator/analyzers.	The	Used	In	column	indicates	which
types	of	operations	can	use	an	event	type.

Event
Name Used	In Description

Data
Active
Event

Generation The	Data	Active	event	indicates	when	the	Pattern
Generation	Engine	is	generating	data.	If	the
Pattern	Generation	Engine	is	waiting	for	a	trigger
or	is	paused,	the	Data	Active	event	is	deasserted.
When	the	Pattern	Generation	Engine	is
generating	data,	the	Data	Active	event	is
asserted,	synchronous	with	the	data.

Marker
Event

Generation The	Marker	event	is	a	general-purpose	event	that
is	configured	within	a	generation	script.	The
Marker	event	can	be	asserted	synchronous	to
any	even	numbered	sample	within	a	waveform
within	a	script.	For	example,	the	Marker	event	can
be	asserted	when	sample	432	of	waveform	A	is
generated.	You	can	create	multiple	Marker	events
for	use	in	your	application.

Note		When	using	DDR	mode,	marker
positions	will	have	a	quantization	twice	that
of	SDR	mode.	Refer	to	your	device
specifications	for	more	information	about
marker	quantization.

Ready
for	Start
Event

Acquisition,
Generation

For	both	acquisition	and	generation,	the	Ready
For	Start	event	indicates	that	the	NI	digital
waveform/generator	analyzer	is	configured	and
ready	to	receive	a	Start	trigger.

Ready
for
Advance
Event

Acquisition An	event	that	indicates	when	the	device	enters	its
Wait	for	Advance	Trigger	state,	which	indicates
that	the	acquisition	of	the	previous	record	is
complete.

End	of Acquisition An	event	that	indicates	when	the	device	enters	its

Record
Event

Record	Complete	state,	which	indicates	that	the
current	record	has	been	acquired.

Sample
Error
Event

Hardware
Comparison

An	event	that	indicates	when	the	device	detects	a
sample	where	the	actual	response	and	the
expected	response	do	not	match.

Generation
Expand	this	book	for	more	information	about	concepts	and	terminology
related	to	generation.

Drive	Type
Drive	type	describes	the	behavior	of	the	generation	channels.	Single-
ended	high-speed	digital	waveform	generator/analyzers	support	two	drive
types:	active	drive	and	open	collector.	The	generation	drive	type	can	be
configured	individually	for	each	channel	and	is	available	for	dynamic	and
static	operations.
For	active	drive	channels,	data	is	fed	to	the	output	driver.	For	open-
collector	channels,	the	data	provided	to	the	output	driver	is	always	zero,
and	the	data	is	fed	to	the	tristate	control	terminal	of	the	output	driver.
You	can	configure	all	NI	digital	waveform	generator/analyzers	for	active
drive	generation	and	some	for	open	collector	generation.	When
configured	for	active	drive	generation,	a	channel	generates	the
Generation	Voltage	High	Level	for	logic	1.	When	configured	for	open-
collector	generation,	a	channel	goes	to	the	high-impedance	state	for	logic
1.	In	both	cases,	a	channel	generates	the	Generation	Voltage	Low	Level
for	logic	0.

Active	Drive
When	configured	for	active	drive	generation,	a	channel	generates	the
Generation	Voltage	High	Level	for	logic	1,	and	the	channel	generates	the
Generation	Voltage	Low	Level	for	logic	0.
You	can	configure	all	NI	digital	waveform	generator/analyzers	for	active
drive	generation	and	some	for	open	collector	generation.

Open	Collector
When	configured	for	open-collector	generation,	a	channel	goes	to	the
high-impedance	state	for	logic	1.	For	open	collector	operations,	external
pull-up	resistors	are	typically	used	to	force	a	voltage	for	the	logic	high
state.

Note		Differential	NI	digital	waveform	generator/analyzers,	such	as
the	NI	656x	devices,	do	not	support	open	collector	generation.
NI	654x	devices	support	open	collector	generation	only	for	static
generation.

Drive	type	is	a	channel-based	attribute;	channels	configured	for	open-
collector	output	never	drive	the	Generation	Voltage	High	Level	in	the	line.
Logic	ones	found	in	initial	and	Idle	states	force	the	line	to	high-impedance
for	static	and	dynamic	generations.
The	main	application	for	open	collector	generation	channels	is
bidirectional,	multidrop	busses.	Open-collector	outputs	prevent	different
gates	from	attempting	to	double-drive	the	line.	By	using	a	pull-up	resistor,
the	bus	is	high	if	all	connected	devices	are	high,	and	the	bus	is	low	if	any
device	drives	a	zero.	This	setup	is	generally	called	wired-AND	for
positive-true	logic	and	wired-OR	for	negative-true	logic.	Some	examples
of	busses	implemented	with	open-collector	outputs	include	I2C	and
SMBus.
Interfacing	with	a	wired	logic	bus	requires	you	to	consider	the	voltages
that	are	generated	at	the	bus.	These	voltages	depend	on	four	factors:
value	of	the	pull-up	resistor,	value	to	which	the	line	is	"pulled	up",
configured	voltage	for	low	state,	and	configured	input	impedance.	The
following	diagram	shows	how	these	factors	interact.

Typical	applications	will	have	a	Generation	Voltage	Low	Level	of	0.0	V,

and	Rin	as	high	impedance;	Rpull	must	be	carefully	chosen	to	get	the
desired	voltage	values	in	the	bus.	Refer	to	your	device	specifications	for
the	Rin	for	your	device.	Typical	values	for	a	pull-up	resistor	in	I2C	range
between	2.4	kΩ	and	3.9	kΩ.
NI	655x	devices	have	per	cycle,	per	pin	tristate	functionality,	which	allows
the	generation	of	zeros,	ones,	and	tristate	in	the	same	channel.	Open
collector	is	limited	to	zero	and	tristate;	however,	these	two	features	can
operate	simultaneously.	Using	per	cycle	tristate	in	a	channel	configured
for	open-collector	generation	causes	the	line	to	be	tristated	by	both	Z's
and	1's	found	in	the	waveform.

Static	Generation
Static	generation	places	a	single	pattern	on	the	configured	channels.
Static	generation,	like	static	acquisition,	is	controlled	by	software	and
does	not	use	hardware	timing.
Because	a	function	call	is	required	for	each	data	point	generated,	static
generation	is	generally	used	only	for	single-point	or	low-speed
applications.	Static	generation	can	be	helpful	in	system	and	cable
debugging,	DC-level	semiconductor	testing,	and	many	other	applications.
Static	generation	is	also	called	immediate,	unstrobed,	or	nonlatched
generation.

Dynamic	Generation
Dynamic	generation	is	a	clocked	operation	where	binary	data	is	sent	from
the	NI	device	to	the	DUT	across	multiple	digital	channels.	The	data	can
be	generated	based	on	complex	scripts,	and	it	can	react	to	triggers,
generate	markers,	and	be	shifted	in	time	with	respect	to	the	generating
clock.
Related	Topics:

NI	654x	Dynamic	Generation
NI	655x	Dynamic	Generation
NI	656x	Dynamic	Generation

Waveforms
All	user	generation	data	patterns	are	stored	to	the	device	onboard
memory	as	waveforms.	These	waveforms	are	arrays	of	every	sample
that	the	device	generates	in	the	order	they	are	generated.
Generated	waveforms	are	assigned	a	name	when	they	are	stored	in
onboard	memory.	This	name	allows	you	to	store	or	delete	multiple
waveforms	from	the	device	memory	and	refer	to	them	easily	for	simple
generation	or	for	complex	scripts.	When	the	generation	session	is	closed,
the	waveforms	are	removed	from	onboard	memory.

Scripts
You	can	link	and	loop	multiple	waveforms	together	in	a	generation
operation	using	a	script.	A	script	is	a	series	of	instructions	that	indicates
how	waveforms	saved	in	the	onboard	memory	should	be	sent	to	the	DUT.
The	script	can	specify	the	order	in	which	the	waveforms	are	generated,
the	number	of	times	they	are	generated,	and	the	triggers	and	markers
associated	with	the	generation.
You	can	create	a	script	to	manage	dynamic	generation	based	on	multiple
waveforms	and	triggers.	For	example,	you	could	download	waveforms	A,
B,	C,	and	D	into	device	memory.	You	could	then	write	a	script	that	would
wait	for	a	trigger	to	initiate	dynamic	generation	and,	upon	receiving	this
trigger,	generate	waveform	A	three	times,	then	generate	marker	0,	and
finally	generate	waveforms	B,	C,	and	D	twice	(BCDBCD).
A	simple	script	example	is	shown	below:
script	myFirstScript			generate	countUp
		generate	allOnes
		generate	countDown
end	script
When	executed,	this	script	generates	three	waveforms	(countUp,	allOnes,
and	countDown)	consecutively.
Related	Topics:

Generating	Multiple	Waveforms/Linking	&	Looping
Common	Scripting	Use	Cases
Scripting	Instructions

its:niscripted.chm::/use_cases.html
its:niscripted.chm::/scripting_instructions.html

Initial	and	Idle	States
The	Initial	state	configures	the	state	of	the	data	generation	channels	after
a	session	has	been	configured	but	before	the	device	starts	generating
the	waveform.	The	Initial	state	is	often	useful	while	the	device	is	waiting
for	a	Start	trigger.
The	Idle	state	configures	the	state	of	the	data	generation	channels	after
the	waveform	generation	has	begun	and	the	generation	has	paused	or
stopped.
The	Initial	state	and	Idle	state	are	per	channel	selectable.	You	can	select
the	following	values	on	all	NI	digital	waveform	generator/analyzers	for
data	generation	channels:

1—Drive	the	channel	to	a	high	level.
0—Drive	the	channel	to	a	low	level.
X—Hold	last	value/Leave	the	channel	at	its	current	state.
Z—(NI	654x/655x	only)	Put	the	channel	in	a	high-impedance	state.
Note		If	you	use	an	X	Idle	state	in	DDR	mode,	the	last	value	held
is	the	last	valid	state	of	the	channel.

Related	Topics:
Configuring	Initial	and	Idle	States
Generation	Considerations	for	DDR	Mode

Per	Cycle	Tristate
NI	digital	waveform	generator/analyzers	allow	you	to	select	between
driving	a	0	or	a	1	during	every	active	period	of	the	Sample	clock.	Some
NI	devices	have	the	additional	capability	of	selecting	between	driving	a	0
or	1	and	tristating	the	channel	during	every	active	clock	cycle.	This
capability	is	referred	to	as	per	cycle	tristate.
To	enable	this	functionality,	the	NI	digital	waveform	generator/analyzer
allows	you	to	create	waveforms	composed	of	0,	1,	and	Z	values.	For
each	sample	in	the	waveform,	you	can	select	which	channel	to	tristate	by
inserting	Z	values	in	the	waveform	at	that	location.

Per	cycle	tristate	is	useful	for	communicating	or	testing	bidirectional
digital	channels.	For	example,	communicating	with	a	memory	device	may
require	the	generator	to	drive	address	and	data	channels	during	a	write,
but	tristate	the	data	channels	during	a	read.

Notes		At	high-speeds,	care	must	be	taken	when	switching	a
channel	from	driving	to	receiving	data	to	ensure	the	signal
reflections	resulting	from	tristating	the	channel	do	not	affect	the
signal	transmission.
Per	cycle	tristate	is	currently	only	supported	on	NI	655x	devices.

Related	Topic:	Per	Cycle	Tristate	(NI	655x)

Generating	Waveforms	Using	Streaming
Streaming	is	a	method	of	generating	waveforms	that	are	too	large	to	fit	in
the	onboard	memory	of	the	device.	Streaming	can	be	used	in	dynamic
generation	sessions.
To	stream	waveform	data,	you	allocate	and	identify	all	or	a	portion	of	the
device	onboard	memory	to	act	as	an	onboard	waveform	for	streaming.
Before	initiating	generation,	you	fill	that	onboard	memory	with	the	first
part	of	your	waveform.	As	the	waveform	is	generated,	space	in	the
onboard	memory	becomes	free	and	you	fill	that	space	with	new
waveform	data.	You	repeat	the	process	of	filling	the	freed	onboard
memory	in	blocks	of	new	waveform	data	until	the	waveform	is	complete.
The	following	instructions	are	a	guide	for	configuring	your	application	for
streaming.
As	an	example,	we	have	a	1.6	GB	waveform	we	want	to	generate	and	a
device	with	256	MB	of	onboard	memory.	This	1.6	GB	waveform	may	be
in	the	host	memory,	on	disk,	or	data	that	your	application	generates	on-
the-fly	during	generation.

1.	 Specify	the	amount	of	onboard	memory	used	for	streaming.
Use	the	niHSDIO	Allocate	Named	Waveform	VI	or	the
niHSDIO_AllocateNamedWaveform	function	to	specify	the	amount
of	onboard	memory	to	reserve	for	streaming.	This	memory	serves
as	a	buffer	for	the	streaming	process.	The	niHSDIO	Allocate
Waveform	VI/function	returns	a	waveform	handle.

2.	 Identify	the	streaming	waveform.
Set	the	Streaming	Waveform	Name	property	or	the
NIHSDIO_ATTR_STREAMING_WAVEFORM_NAME	attribute	to
the	waveform	handle	returned	in	Step	1.	Setting	this	property
ensures	that	no	streaming	data	is	overwritten	before	it	is
generated.	NI-HSDIO	monitors	your	progress	to	ensure	that	you
write	fresh	data	fast	enough	to	keep	up	with	the	generation.	If
your	application	fails	to	keep	up,	or	attempts	to	write	fresh	data	on
top	of	data	that	has	not	been	generated,	NI-HSDIO	returns	an
error.

3.	 Fill	the	streaming	waveform	with	initial	data.
Call	the	niHSDIO	Write	Named	Waveform	VI	or	the	one	of	the
Write	Named	Waveform	functions	to	write	the	first	part	of	the
waveform	data	to	the	streaming	waveform	in	onboard	memory.

Tip		When	transferring	large	blocks	of	waveform	data,
break	up	the	data	into	smaller	blocks	and	call	the	niHSDIO
Write	Named	Waveform	VI	or	the	one	of	the	Write	Named
Waveform	functions	multiple	times—the	data	is	appended
sequentially.	A	computer	can	allocate	smaller	blocks	of	a
large	waveform	faster	than	allocating	a	single	large

contiguous	block	in	memory.	Depending	on	the	amount	of
RAM	on	the	computer,	transferring	ten	16	MB	blocks	can
be	faster	than	transferring	one	160	MB	block.

4.	 Begin	generating	the	waveform.
Call	the	niHSDIO	Init	Generation	Session	VI	or	the
niHSDIO_InitGenerationSession	function	to	begin	the	waveform
generation.	As	the	waveform	generates,	space	in	the	streaming
waveform	becomes	free.

5.	 As	the	waveform	generates,	monitor	available	memory.
Use	the	Space	Available	in	Streaming	Waveform	property	or	the
NIHSDIO_ATTR_SPACE_AVAILABLE_IN_STREAMING_WAVEFORM
attribute	to	determine	how	much	of	the	onboard	waveform	is	free
for	writing	new	data.	As	the	waveform	generates,	space	becomes
available	to	write	more	waveform	data.	Once	a	certain	amount	of
the	onboard	memory	becomes	available,	say	10	percent	of	the
allocated	onboard	memory,	you	can	write	more	of	the	waveform	to
the	streaming	waveform	in	onboard	memory.	In	general,	writing	in
larger	blocks,	such	as	16	MB,	results	in	more	efficient	streaming
and	faster	streaming	rates.

6.	 Write	a	block	of	waveform	data.
Call	the	niHSDIO	Write	Named	Waveform	VI	or	the	one	of	the
Write	Named	Waveform	functions	to	write	a	new	block	of
waveform	data	to	the	streaming	waveform	in	onboard	memory.

7.	 Repeat	the	process	of	monitoring	the	available	memory	and
writing	waveform	data	in	blocks	as	free	space	becomes	available.

Improving	Streaming	Performance
To	improve	your	maximum	sustainable	transfer	rate	for	streaming,
consider	the	following:

Adjust	the	Data	Transfer	Block	Size	property	or	the
NIHSDIO_ATTR_DATA_TRANSFER_BLOCK_SIZE	attribute	to	be
closer	to	the	waveform	size.	This	change	makes	the	data	transfer
is	more	efficient	and	is	accomplished	in	a	single	transfer	instead	of
four	transfers.
When	streaming	from	hard	drives,	consider	the	hard	drive	speed
for	maximum	sustainable	rates.	Laptop	hard	drives	typically	have	a
data	transfer	rate	of	5	to	10	MB/s.	Desktop	hard	drives	often	can
meet	or	exceed	20	MB/s.
Transfer	rates	from	hard	drives	can	vary	for	a	number	of	reasons.
For	example,	where	the	data	is	physically	stored	on	the	hard	drive
and	how	much	data	is	stored	can	affect	transfer	rates.	Storing	your
waveform	files	on	a	fairly	empty,	defragmented	hard	drive	may	help
increase	performance.
Consider	using	a	RAID	configuration	to	utilize	striping	to	increase
data	transfer	rates	from	disk.
When	using	18-slot	PXI	chassis,	install	the	device	used	for
streaming	in	the	first	segment,	Slots	2	to	6,	of	the	PXI	chassis.
Utilize	Direct	DMA.

Direct	DMA
Direct	DMA	can	be	used	to	transfer	waveform	data	to	and	from	device
onboard	memory	at	rates	well	beyond	the	typical	5	to	30	MB/sec	range	in
a	standard	PC-based	architecture.	To	achieve	such	high	rates,	Direct
DMA	establishes	a	direct	connection	between	device	onboard	memory
and	a	specialized	waveform	data	source.	Direct	DMA	is	commonly	used
to	stream	waveform	data	from	disk	at	data	rates	of	higher	than
100	MB/sec.	Conduant's	StreamStor™	products	are	one	example	of
Direct	DMA-compatible	data	sources.

Configuring	Your	Application	for	Direct	DMA
Direct	DMA	is	available	for	both	acquisition	and	generation.	For
acquisition	operations,	use	the	Direct	DMA	instance	of	the	nniHSDIO
Fetch	Waveform	VI;	no	additional	attribute	configurations	are	needed.	For
generation	operations,	complete	the	following	steps	to	configure	your
application	for	Direct	DMA.

1.	 Enable	the	device	for	Direct	DMA	writes	by	setting	the	Direct	DMA
Enable	property	or	the
NIHSDIO_ATTR_DIRECT_DMA_ENABLED	attribute	to	TRUE.
Once	enabled,	NI-HSDIO	monitors	and	reports	any	issues	with
the	Direct	DMA	transfer.

2.	 Identify	the	waveform	data	source	and	set	the	Direct	DMA
Window	Address	property	or	the
NIHSDIO_ATTR_DIRECT_DMA_WINDOW_ADDRESS	attribute	to
the	address	provided	by	your	Direct	DMA-compatible	data	source.

3.	 Set	the	Direct	DMA	Window	Size	property	or	the
NIHSDIO_ATTR_DIRECT_DMA_WINDOW_SIZE	attribute	to	the
size	of	the	memory	window	provided	by	your	Direct	DMA-
compatible	data	source.

4.	 In	LabVIEW,	use	the	Direct	DMA	instance	of	the	niHSDIO	Write
Named	Waveform	VI.

or

In	C/CVI,	use	the	instance	of	the	Write	Named	Waveform	function
that	corresponds	to	the	data	width	of	your	device	to	write	blocks	of
data	to	the	device.	For	each	block	of	data	written	to	the	device,
you	pass	the	Direct	DMA	window	address	to	the	data	parameter
instead	of	an	array	of	samples	residing	in	host	memory.	NI-HSDIO
detects	when	the	address	is	within	the	Direct	DMA	window	and
handles	the	transfer	appropriately.

Acquisition
Expand	this	book	for	more	information	about	concepts	and	terminology
related	to	acquisition.

Static	Acquisition
Static	acquisition	samples	the	configured	channels	once,	reflecting	the
present	state	of	the	channels.	Static	acquisition,	like	static	generation,	is
controlled	by	software	and	does	not	use	hardware	timing.
Because	a	function	call	is	required	for	each	data	point	acquired,	static
acquisition	is	generally	used	only	for	single-point	or	low-speed
applications.	Static	acquisition	can	be	helpful	for	system	and	cable
debugging,	DC-level	semiconductor	testing,	and	many	other	applications.
Static	acquisition	is	also	called	immediate,	unstrobed,	or	nonlatched
acquisition.

Dynamic	Acquisition
Dynamic	acquisition	is	a	clocked	event	in	which	digital	data	is	transferred
from	the	DUT	into	onboard	memory.	The	logic	state	of	each	acquisition	is
determined	by	the	configured	data	interpretation	method,	and	the
acquisition	voltage	levels	are	defined	by	your	dynamic	acquisition
operation.
At	every	clock	edge,	the	Pattern	Acquisition	Engine	stores	the	current
state	of	each	DIO	channel	configured	for	dynamic	acquisition	into
onboard	memory	as	a	sample.	Samples	are	stored	in	the	order	they	are
received	to	onboard	memory	as	a	record.	You	can	configure	the	number
of	samples	per	record.
Related	Topics:

NI	654x	Dynamic	Acquisition
NI	655x	Dynamic	Acquisition
NI	656x	Dynamic	Acquisition

Records
A	record	is	a	group	of	samples.	Acquired	data	is	stored	into	device
onboard	memory	as	a	record.	When	configuring	an	acquisition	session,
you	can	determine	how	many	samples	are	stored	in	a	record.
You	can	also	acquire	multiple	unique	records	in	a	series;	this	process	is
known	as	multirecord	acquisition.	The	Advance	trigger	initiates	the
acquisition	of	the	additional	records	in	a	multirecord	acquisition.	The	End
of	Record	event	indicates	when	a	record	acquisition	is	complete.

Hardware	Comparison
Hardware	comparison	allows	a	device	to	verify	in	real-time	at	the	full	data
rate	of	the	device	that	a	DUT	generates	the	correct	response	data	under
different	use	cases	and	stimulus	data.	Traditionally,	the	comparison	was
done	by	acquiring	data	into	the	PC	memory	and	then	performing	software
analysis.

Note		Real-time	hardware	comparison	is	supported	with	only	the
NI	655x	devices.	Other	NI	digital	waveform	generator/analyzers,
such	as	the	NI	654x/656x	support	acquiring	the	data	into	PC
memory	for	analysis.

Related	Topics:
Digital	Logic	States
Hardware	Comparison	(NI	655x)
Comparing	Response	Data	with	Expected	Data

Onboard	Memory
NI	digital	waveform	generator/analyzers	use	multiple	megabytes	of
onboard	memory	to	acquire	and	generate	data.	Onboard	memory	allows
much	higher	data	rates	than	would	be	allowed	by	streaming	data	from
system	memory	across	the	PCI	bus.	Acquisition	Memory	and	Generation
Memory	are	separate;	for	example,	a	64	MS	device	has	two	64	MS
memory	blocks—one	for	acquisition	and	one	for	generation.

Note		If	you	are	performing	hardware	comparison,	the	fault	data	is
stored	separately	from	the	acquisition	and	generation	data,	so	fault
data	does	not	consume	any	of	your	Acquisition	or	Generation
Memory.	Hardware	comparison	is	supported	only	on	NI	655x
devices.

The	NI	654x/655x/656x	can	be	purchased	with	different	memory	options.
Refer	to	ni.com/catalog	for	more	information	about	these	options.
Refer	to	Generation	Onboard	Memory	and	Acquisition	Onboard	Memory
for	more	information	about	memory	management	for	your	application.

javascript:WWW(WWW_Catalog)

Generation	Onboard	Memory
Waveforms	and	scripts	are	stored	together	in	device	memory.	They	are
stored	in	contiguous	blocks,	appearing	in	memory	in	the	order	they	were
written	to	the	device.	You	can	delete	individual	waveforms	from	the
device,	freeing	up	the	space	they	occupy	for	other	waveforms	to	be
written.
Deleting	waveforms	that	are	not	at	the	end	of	the	utilized	space	causes
memory	fragmentation.	The	following	scenario	demonstrates	how
memory	fragmentation	can	occur.	First,	assume	four	waveforms	are
currently	in	memory	as	shown	in	the	following	figure	(sizes,	in	MS,	are
shown	for	clarity).

In	the	previous	figure,	there	is	enough	memory	to	write	an	additional
22	MS	waveform	to	the	device.
If	Waveform	C	is	deleted,	that	memory	is	freed,	as	shown	in	the	following
figure.

However,	because	waveforms	are	always	stored	contiguously	in	memory,
the	largest	waveform	that	could	be	stored	in	memory	is	still	22	MS.
Writing	Waveforms	C	last	would	have	been	advantageous	because	then
deleting	Waveform	C	would	create	a	single	block	of	free	space,	as	shown
in	the	following	figure.

In	this	situation,	you	can	now	write	a	37	MS	waveform	to	your	device.
Notice	that	when	you	create	a	script	for	your	dynamic	generation

operation	it	consumes	some	space	in	memory,	as	shown	in	the	following
figure.

Acquisition	Onboard	Memory
When	an	acquisition	operation	is	initiated,	the	device	begins	waiting	for
the	Start	trigger.	Once	the	Start	trigger	is	received,	the	device	starts
acquiring	data	and	storing	the	samples	into	device	memory.	The	first
sample	acquired	marks	the	beginning	of	the	acquired	record,	as	shown	in
the	following	figure.

If	no	Start	trigger	has	been	configured,	acquisition	begins	immediately
after	the	operation	is	initiated.
After	the	device	has	recognized	the	Start	trigger	and	has	acquired	the
configured	number	of	pretrigger	samples,	the	device	can	now	recognize
a	Reference	trigger.	While	waiting	for	the	Reference	trigger,	the	device	is
still	sampling	data	into	the	device	memory.	If	the	record	overflows,	the
newest	samples	overwrite	the	oldest	samples	in	the	record.	After	the
Reference	trigger	is	received,	the	device	acquires	enough	posttrigger
samples	and	finishes	the	acquisition,	as	shown	in	the	following	figure.

If	no	Reference	trigger	has	been	configured,	a	single	record	of	data	is
acquired.

Fetching	Acquired	Data
Data	acquired	between	the	Start	trigger	and	the	first	pretrigger	sample	is
also	available	to	be	fetched.	The	following	figure	shows	the	four	common
fetch	positions.

In	cases	where	no	Reference	trigger	has	been	configured,	First
Pretrigger	Sample	and	Reference	Trigger	are	equivalent	to	First	Sample.

Multirecord	Acquisitions
In	the	case	of	multirecord	acquisitions,	the	Advance	trigger	initiates	the
acquisition	or	fetch	operation	for	the	second	and	all	subsequent	records.
Therefore,	for	multirecord	acquisitions,	the	Start	trigger	shown	in	the
previous	figures	would	be	replaced	by	an	Advance	trigger	for	all	records
after	the	initial	acquisition.

Data	and	Clock	Position
Your	NI	digital	waveform	generator/analyzer	allows	you	to	configure	the
subperiod	time	at	which	each	waveform	sample	is	generated	or	acquired.
This	subperiod	time	selection	is	referred	to	as	the	data	position.	You	can
also	configure	the	position	of	the	exported	Sample	clock	(clock	position).
Configuring	data	and	clock	positions	allows	you	to	use	your	NI	digital
waveform	generator	analyzer	for	many	common	applications	including,
among	others,	measuring	set-up	and	hold	times,	measuring	propagation
delays,	and	maximizing	the	timing	margins	among	high-speed	data
transfers.

Data	Position	Settings
You	have	three	available	data	position	settings	for	acquisition	and
generation	channels:

Sample	clock	rising	edge—Data	is	generated/acquired	on	the
rising	edge	of	the	clock	driving	the	operation.
Sample	clock	falling	edge—Data	is	generated/acquired	on	the
falling	edge	of	the	clock	driving	the	operation.
Delay	from	Sample	clock	rising	edge—Data	is
generated/acquired	at	a	specified	time	(specified	in	the	niHSDIO
Configure	Data	Position	Delay	VI	or	the
niHSDIO_ConfigureDataPositionDelay	function)	after	the	rising	edge
of	the	clock	driving	the	operation.	The	data	position	delay
resolution	depends	on	your	clock	frequency.
Note		NI	656x	devices	have	special	considerations	for	legal
delayed	data	settings	for	Sample	clock	frequencies	between	25
and	50	MHz.

Refer	to	the	Acquisition	and	Generation	books	for	your	device	for	timing
diagrams	illustrating	changing	data	position.
Refer	to	Configuring	Data	Position	for	more	information	about	using	NI-
HSDIO	to	configure	data	position.

Clock	Position	Settings
You	have	three	available	clock	position	settings	for	the	position	of	the
exported	Sample	clock:

Inverted—The	exported	Sample	clock	is	an	inverted	copy	of	the
Sample	clock.
Noninverted—The	exported	Sample	clock	is	an	exact	copy	of	the
Sample	clock.
Delayed—The	exported	Sample	clock	is	a	delayed	version	of	the
Sample	clock,	delayed	by	0	to	1	of	the	Sample	clock	periods.	The
data	position	delay	resolution	depends	on	your	clock	frequency.
Notes		Because	the	data	position	is	relative	to	the	Sample	clock,
changes	to	the	exported	Sample	clock	position	do	not	affect	the
timing	of	the	data	channel	operations.
NI	656x	devices	have	special	considerations	for	exporting	the
Sample	clock	at	frequencies	between	25	and	50	MHz.

Related	Topics:
Dynamic	Generation	Timing	Diagrams	(NI	654x)
Dynamic	Generation	Timing	Diagrams	(NI	655x)
Dynamic	Generation	Timing	Diagrams	(NI	656x)
Advanced	Attributes

Data	Position	Delay	Resolution
NI	digital	waveform	generator/analyzers	have	three	internal	independent
delay	mechanisms,	one	for	dynamic	generation,	one	for	dynamic
acquisition,	and	one	for	the	exported	Sample	clock.	The	delay
mechanisms	are	capable	of	delaying	the	data	and	clock	positions	by	up
to	one	full	Sample	clock	period,	in	steps	of	1/256	of	the	Sample	clock
period,	for	Sample	clock	frequencies	of	25	MHz	and	above.	Refer	to	the
specifications	document	for	your	device	for	valid	frequencies	and	ranges
for	delays.

Note		NI	656x	devices	have	special	considerations	for	legal
delayed	data	settings	for	Sample	clock	frequencies	between	25
and	50	MHz.

The	following	table	lists	the	resolution	of	the	delay	mechanisms	for	the
frequencies	that	the	NI	digital	waveform	generator/analyzer	internal
Sample	clock	can	produce.	For	externally	supplied	frequencies	above
25	MHz	that	are	not	listed	in	this	table,	the	delay	resolution	is	1/256	of	the
Sample	clock	period.

Operating	Frequency* Resolution/Step	Size
200	MHz 20	ps†

100	MHz 39	ps†

66.7	MHz 59	ps†

50	MHz 78	ps
40	MHz 98	ps
33.3	MHz 117	ps
28.6	MHz 137	ps
25	MHz 156	ps
*Not	all	operating	frequencies	will	be	applicable	to	your	device.

†For	NI	656x	devices,	refer	to	the	device	specifications	document	for
more	information	about	the	supported	step	sizes.

Data	Width
Data	width	is	the	size,	in	bytes,	of	a	raw	sample	from	the	operation.	Raw
sample	refers	to	the	native	format	and	organization	of	the	device,	which
can	be	an	8-,	16-,	or	32-byte	integer.
If	you	do	not	require	all	the	channels	in	your	device	during	a	dynamic
acquisition	and	would	like	to	achieve	greater	memory	depth,	you	can
specify	a	data	width	other	than	the	total	number	of	available	bits	for	your
device	for	the	session.	For	example,	if	you	are	acquiring	data	on	eight	of
the	16	channels	of	an	NI	656x,	if	you	specify	a	data	width	of	one	byte,
you	can	store	twice	as	many	samples	than	if	you	had	specified	the	data
width	as	being	the	entire	two	bytes.	Data	width	is	read-only	during
generation	sessions.

Data	Rate	Multiplier
NI	digital	waveform	generator/analyzers	can	be	configured	to	acquire
and/or	generate	data	once	per	Sample	clock	period	(single	data	rate,	or
SDR	mode)	or	twice	per	Sample	clock	period	(double	data	rate,	or	DDR
mode).

Note		DDR	is	not	supported	by	all	devices.

You	can	configure	the	data	rate	multiplier	for	your	acquisition	and
generation	sessions	by	configuring	the	data	rate	multiplier
property/attribute	in	NI-HSDIO.

Single	Data	Rate	(SDR)
When	the	data	rate	multiplier	is	configured	for	SDR	operation,	the
NI	digital	waveform	generator/analyzer	generates	or	acquires	data	once
per	Sample	clock	period.	The	relationship	of	the	data	to	the	Sample	clock
is	determined	by	the	data	position.
The	following	figure	shows	an	example	of	SDR	generation	configured	for
rising	edge	data	position.

Double	Data	Rate	(DDR)
When	the	data	rate	multiplier	is	configured	for	DDR	operation,	the
NI	digital	waveform	generator/analyzer	generates	or	acquires	data	twice
per	Sample	clock	period.	The	digital	waveform	generator/analyzer	trades
channel	count	for	data	rate	by	generating	or	acquiring	on	half	the	number
of	channels	but	at	twice	the	rate.	The	phase	relationship	of	the	data	to
the	Sample	clock	is	determined	by	the	data	position.	While	you	can
configure	the	data	rate	multiplier	for	acquisition	and	generation
separately,	you	cannot	have	both	SDR	channels	and	DDR	channels	in
the	same	direction.
The	following	figure	shows	an	example	of	DDR	generation	configured	for
rising	edge	data	position.

Notes		DDR	is	currently	only	available	on	NI	656x	devices.
Configuring	the	data	rate	multiplier	for	DDR	operation	impacts
memory	usage,	data	width,	and	other	aspects	of	your	application.
Refer	to	the	device	documentation	to	determine	if	DDR	mode
meets	your	application	needs.

Data	Position	with	DDR
Acquisition	and	generation	sessions	can	be	configured	to	acquire	or
generate	the	first	data	sample	on	the	rising	or	falling	edge	of	the	Sample
clock	or	on	a	delayed	version	of	the	rising	edge	of	the	Sample	clock
when	the	data	rate	multiplier	is	configured	for	DDR	operation.	The
second	sample	is	acquired	or	generated	on	each	subsequent	Sample
clock	edge.	These	data	positions	are	shown	in	the	following	figure.	Notice
that	the	delay	is	still	a	fraction	of	the	entire	Sample	clock	period.

Generation	Considerations	for	DDR
DDR	generation	has	some	additional	considerations	for	your	application.
The	following	diagram	shows	how	digital	data	is	stored	in	Generation
Onboard	Memory	and	how	that	impacts	the	trigger,	event,	and	waveform
quantum	and	the	generated	data.

Data	Width
Data	width	is	a	function	of	your	data	rate	multiplier.	Since	data	width
refers	to	how	large	your	sample	is	in	bytes,	using	DDR	mode	effectively
halves	your	allowable	data	width.	For	example,	on	a	device	with
16	channels,	you	can	generate	or	acquire	data	on	all	16	channels.	For
the	same	device	in	DDR	mode,	you	can	generate	on	only	eight	channels
and	acquire	on	the	other	eight.

Memory	Usage
Memory	usage	is	effectively	doubled	per	channel	since	the	data	width
and	channel	count	are	halved.

Marker	Positions
Marker	positions	have	a	quantization	twice	that	of	SDR	mode.	Refer	to
your	device	specifications	for	more	information	about	quantization.

Waveform	Sizes
The	size	of	the	waveforms	you	save	to	the	onboard	memory	have	a
quantization	twice	that	of	SDR	mode.	Refer	to	your	device	specifications
for	more	information	about	quantization.

Initial/Idle	States
If	a	channel's	Idle	state	is	configured	for	"hold	last	value"	(X),	the	last
value	held	is	the	last	DDR	data	sample.

Acquisition	Considerations	for	DDR
DDR	acquisition	has	some	additional	considerations	for	your	application.

Edge	Triggers
In	DDR	acquisitions,	while	data	channels	are	sampled	on	both	clock
edges,	triggers	are	only	stored	once	per	Sample	clock	period.	For
example,	refer	to	the	following	figure.	Consider	if	PFI	Trigger	A	was	a
digital	edge	Start	trigger,	and	the	device	were	configured	for	rising	edge
data	position.	Whether	PFI	Trigger	A	arrives	before	the	rising	edge	of	the
clock	or	before	the	falling	clock	edge,	the	trigger	has	the	same	effect—
the	first	sample	acquired	is	that	of	the	rising	clock	edge.

Pattern	Match	Trigger

In	DDR	acquisitions,	while	data	channels	are	sampled	on	both	clock
edges,	triggers	are	only	stored	once	per	Sample	clock	period.	In	the
following	figure,	consider	if	the	device	were	configured	for	a	pattern
match	Start	trigger	and	rising	edge	data	position.	Whether	the	data	in
sample	A	or	B	matches	the	pattern	configured	for	the	pattern	match
trigger,	sample	A	is	the	first	acquired	sample.

Special	Considerations	for	Using	the	Pause	Trigger
If	a	Pause	trigger	is	asserted	on	either	edge	of	the	Sample	clock,	the
acquisition	is	paused	for	the	samples	that	occur	on	both	edges	of	the
clock.

Data	Width
Data	width	is	a	function	of	your	data	rate	multiplier.	Since	data	width
refers	to	how	large	your	sample	is	in	bytes,	using	DDR	mode	effectively
halves	your	allowable	data	width.	For	example,	on	a	device	with
16	channels,	you	can	generate	or	acquire	data	on	all	16	channels.	For
the	same	device	with	its	data	rate	multiplier	configured	for	DDR,	you	can
generate	on	only	eight	channels	and	acquire	on	the	other	eight.

Memory	Usage
Memory	usage	is	effectively	doubled	per	channel	since	the	data	width
and	channel	count	are	halved.

Channel-to-Channel	Skew
For	dynamic	generation,	channel-to-channel	skew	is	defined	as	the	time
difference	between	corresponding	edges	on	the	data	channels.	For
example,	if	two	data	channels	are	each	programmed	to	transition	from
low	to	high	level	on	a	particular	sample,	the	time	difference	between	the
rising	edges	on	the	two	channels	would	be	the	channel-to-channel	skew
between	the	two	channels.
For	dynamic	acquisition,	channel-to-channel	skew	is	defined	as	the
difference	between	the	sampling	times	for	each	data	channel.	When
each	sample	is	acquired,	the	point	in	time	at	which	each	data	channel	is
sampled	with	respect	to	every	other	data	channel	is	not	identical,	but	the
difference	is	within	some	small	window	of	time.	This	time	window	is
referred	to	as	the	channel-to-channel	skew.
The	following	figure	shows	the	channel-to-channel	skew	of	a	group	of
signals.

Specified	channel-to-channel	skew	generally	refers	to	the	skew	across	all
data	channels	on	a	device.

Devices
Expand	this	book	for	more	information	your	NI	digital	waveform
generator/analyzer	hardware	and	functionality.

NI	654x
The	NI	654x	is	a	32-channel	digital	I/O	device	that	you	can	use	as	a
PC/peripheral	device	interface,	pattern	generator,	pattern	analyzer,	or
stimulus-response	tester.	The	NI	6541	has	a	maximum	Sample	clock
frequency	of	50	MHz,	and	the	NI	6542	has	a	maximum	Sample	clock
frequency	of	100	MHz.
The	NI	654x	also	provides	the	following	features:

Sophisticated	timing	engine	to	maintain	and	measure	the	timing
parameters	of	the	DUT
Selectable	voltage	levels	for	interfacing	to	devices	from	different
logic	families
Data	channels	with	per	channel	direction	control
Deep	onboard	memory	with	triggering	and	pattern	sequencing
capabilities
Ability	to	use	NI-TClk	to	synchronize	multiple	devices

You	can	use	the	internal	On	Board	Clock	or	import	an	external	clock
through	the	front	panel.	You	can	also	shift	the	generated	data,	acquired
data,	and	exported	Sample	clock	relative	to	the	onboard	clock	for	clock
frequencies	above	25	MHz,	which	is	critical	when	accounting	for
propagation	delays	and	setup-and-hold	times	in	the	DUT.
Expand	this	book	for	more	information	about	NI	654x	hardware-related
topics.

ms-its:nitclk.chm::/NI_TClk_Help.html

Hardware	Architecture
Expand	this	book	for	more	information	about	the	NI	654x	hardware
architecture.

Block	Diagram
The	following	figure	is	a	block	diagram	illustrating	the	main	functional
units	and	data	flow	of	the	NI	654x.	The	text	that	follows	the	figure
describes	the	basic	elements	of	the	diagram	and	provides	links	to
sections	with	more	detailed	information	about	some	of	the	blocks.
Click	hotspots	within	the	graphic	for	more	detailed	information
about	that	functional	block.

The	Clocking	module	selects	and	distributes	the	clocks	for	the	dynamic
generation	and	dynamic	acquisition	operations.
For	dynamic	generation	operations,	the	user-supplied	data	is	loaded	from
the	host	computer	memory	into	the	onboard	Generation	Memory.	The
Pattern	Generation	Engine	retrieves	data	from	Generation	Memory	and
executes	the	script	functionality	while	interacting	with	the	associated
Trigger	and	Event	control	module.	The	Pattern	Generation	Engine	then
sends	the	data	to	the	Pattern	Generation	Timing	and	Control	module,

where	the	data	is	given	the	selected	data	position	and	data	delay	and	is
then	sent	to	the	channel	electronics	drivers.	The	channel	electronics
drivers	generate	the	data	at	the	voltage	levels	of	the	selected	logic	family.
For	dynamic	acquisition	operations,	signals	arrive	at	the	channel
electronics,	where	the	signal	levels	are	compared	to	the	voltage
thresholds	for	the	selected	logic	family.	The	Timing	and	Control	module
samples	the	data	using	the	selected	clock,	data	position,	and	data	delay
values	and	passes	the	data	to	the	Pattern	Acquisition	Engine.	The
Pattern	Acquisition	Engine	and	the	Trigger	and	Event	Control	module
recognize	triggers	and	determine	when	the	data	should	be	stored	into
Acquisition	Memory.	The	acquired	data	can	then	be	fetched	by	the	host
computer.

Channel	Electronics
The	channel	electronics	of	NI	654x	devices	consist	of	selectable	voltage
buffers,	the	appropriate	termination	resistors,	and	I/O	protection	diodes.
Each	I/O	channel	is	capable	of	simultaneously	driving	and	receiving	data.
The	following	figure	provides	a	basic	block	diagram	for	the	channel
electronics.	Refer	to	NI	654x	Block	Diagram	for	a	picture	of	how	the
channel	electronics	circuitry	fits	into	the	overall	block	diagram.

Dynamic	Generation
For	dynamic	generation	operations,	the	data	appears	at	the	input	of	the
selectable	voltage	buffer	after	the	Pattern	Generation	Timing	and	Control
module	gives	the	data	the	selected	data	position	and	data	delay.	The
selectable	voltage	buffer	converts	the	data	signal	to	the	user-selected
logic	family	before	sending	the	data	signal	to	the	DDC	connector	on	the
NI	654x	front	panel.
The	selectable	voltage	buffer	can	be	set	to	high-impedance	generation
with	the	Tristate	Control	line.	The	Tristate	Control	can	be	set
automatically	by	the	Initial	and	Idle	States	or	can	be	set	programmatically
with	the	niHSDIO	Tristate	Channels	VI	or	niHSDIO_TristateChannels
function.	When	a	channel	is	configured	for	open	collector	generation
(supported	for	static	generation	only),	the	tristate	control	transforms	logic
1's	into	Z	states	(high-impedance).
The	protection	diodes	are	critical	for	guarding	against	overvoltage
situations.	Refer	to	Input	Protection	for	more	information	about	this
portion	of	the	channel	electronics.

Dynamic	Acquisition
Patterns	acquired	by	the	NI	654x	are	received	using	a	selectable	voltage
buffer.	Refer	to	the	NI	654x	Specifications	for	the	input	voltage	thresholds
for	each	logic	family	setting.
The	output	of	the	selectable	voltage	buffer	is	sampled	by	the	Pattern
Acquisition	Timing	and	Control	module	before	being	sent	to	the	Pattern
Acquisition	Engine	for	storage	into	Acquisition	Memory.
The	input	impedance	is	high	impedance,	referenced	to	ground.

Voltage	Ranges	and	Settings
The	NI	654x	uses	the	following	four	logic	families	to	control	the	device
voltage	levels:

1.8	V	Logic
2.5	V	Logic
3.3	V	Logic
5.0	V	Logic

Selecting	one	of	these	logic	families	determines	the	NI	654x	generation
levels	or	acquisition	thresholds.	For	mixed-voltage	systems	the
generation	levels	and	acquisition	thresholds	can	be	set	independently.
For	example,	you	can	set	the	Generation	Voltage	Family	to	1.8	V	Logic
while	you	set	the	Acquisition	Voltage	Family	to	5.0	V	Logic.	By
synchronizing	and	operating	multiple	NI	654x	devices,	you	can	use
multiple	generation	or	acquisition	voltage	configurations	in	the	same
system.

Note		The	maximum	generation	voltage	of	the	NI	654x	is	3.3	V.
Therefore,	setting	the	Generation	Logic	Family	to	5.0	V	Logic
produces	a	3.3	V	signal,	which	is	compatible	with	standard	5	V
TTL	input	thresholds.	Refer	to	the	NI	654x	specifications	for
details.

The	Generation	Logic	Family	selection	sets	the	voltage	levels	used	for	all
data,	clock,	and	event	generations,	including	the	exported	PLL	reference
clock.	The	Acquisition	Logic	Family	selection	sets	the	levels	used	for	all
acquired	data,	clock,	and	trigger	signals,	except	for	the	CLK	IN	SMB	jack
connector.	Refer	to	Clock	Sources	Summary	for	acceptable	CLK	IN
signal	characteristics.
When	programming	your	device	using	NI-HSDIO,	the	functions	and
instance	VIs	for	configuring	voltage	levels	are	named	according	to	the
type	of	channel	(data,	trigger,	or	event)	that	you	want	to	configure.
For	more	information	about	voltage	level	ranges	and	resolutions,	refer	to
the	NI	654x	specifications.

Logic	Families
The	NI	654x	Acquisition	and	Generation	Logic	Families	can	be
independently	set	to	one	of	four	values:	1.8	V	Logic,	2.5	V	Logic,	3.3	V
Logic,	and	5.0	V	Logic.	The	actual	voltage	levels	defined	by	these	logic
families	are	defined	in	the	NI	654x	specifications.
Setting	the	Generation	Logic	Family	determines	the	generation	voltage
levels	(Generation	Voltage	High	and	Low)	for	the	device.	The	NI	654x
generates	these	voltages	for	a	1	(Generation	Voltage	High)	or	a	0
(Generation	Voltage	Low).	The	following	diagram	clarifies	the	physical
meaning	of	generation	voltage	level	specifications.

Setting	the	Acquisition	Logic	Family	determines	the	acquisition	voltage
levels	(Acquisition	Voltage	High	and	Low)	for	the	device.	An	acquired
voltage	below	Acquisition	Voltage	Low	is	read	as	a	0,	a	voltage	acquired
above	Acquisition	Voltage	High	is	read	as	a	1.

Note		Any	acquired	voltage	between	Acquisition	Voltage	Low	and
Acquisition	Voltage	High	cannot	be	guaranteed	to	be	read	as	a	1
or	a	0.	In	the	following	figure,	these	samples	are	shown	as	an	X,
indicating	that	the	acquired	value	is	unknown.

The	following	diagram	illustrates	the	physical	meaning	of	the	acquisition
voltage	level	specifications.

Related	Topics:
Logic	Families	Overview

Single-Ended	Voltage	Levels
Voltage	Ranges	and	Settings	(NI	654x)

Input	Impedance
The	input	impedance	of	the	NI	654x	is	high	impedance.	Refer	to	the	NI
654x	specifications	for	more	information	on	the	high-impedance	values
for	your	device.	Selectable	input	impedance	is	only	available	with	the
NI	655x	products.
Refer	to	Configuring	Input	Impedance	for	more	information	on	configuring
this	property.

Source	Impedance
The	NI	654x	data,	clock,	and	event	generation	channels	have	a	50	Ω
source	impedance.	For	applications	where	the	full	voltage	swing	is
required	at	the	DUT,	a	parallel	termination	resistance	of	1	kΩ	to	10	kΩ	is
recommended.	With	a	system	terminated	by	10	kΩ,	much	of	the	signal
reflections	are	eliminated	by	the	source	50	Ω	termination	and	the	parallel
termination.	Thus	the	voltage	seen	at	the	termination	resistor	is	99.5%	of
the	configured	voltage.
Because	the	NI	654x	interface	cable	(NI	SHC68-C68-D2)	is	a	50	Ω
transmission	line,	when	you	use	3.3	V	Logic,	you	can	build	matched
impedance	systems	with	a	50	Ω	parallel	termination	as	the	load.	While	a
matched	system	is	beneficial	because	all	reflections	are	eliminated,	the
voltage	at	the	termination	is	one-half	of	the	generation	voltage	level.	The
change	in	voltage	is	caused	by	the	voltage	divider	that	is	created	by	the
source	and	termination	impedance,	as	shown	in	the	following	figure.

Use	the	following	formula	to	calculate	the	voltage	sensed	at	the
termination	point,	VTERM.

where				VO	is	the	voltage	driven	by	the	NI	654x,

RTerm	is	the	termination	impedance,

RSource	is	the	source	impedance

For	example,	if	RSOURCE	=	50	Ω	and	if	the	termination	resistance	is	also
set	to	50	Ω,	then	the	voltage	level	seen	at	the	termination	is	one-half	the
source	voltage.
Always	calculate	the	maximum	current	that	the	NI	654x	in	your	test
system	can	source	and	sink.	You	can	calculate	the	maximum	current
using	the	following	formula:
Max	current	=	VOH	(max)/(50	+	RTerm)

For	example,	if	the	device	is	driving	1.8	V	into	a	50	Ω	load,	the	maximum
current	would	be	calculated	as	follows:
Imax	=	1.8	V/(50	Ω	+	50	Ω)	=	18	mA

18	mA	is	higher	than	the	NI	654x	current	specification	at	1.8	V	Logic
operation;	therefore,	the	device	should	not	be	connected	to	a	50	Ω	load
when	using	the	1.8	V	Logic	family.

Note		 Refer	to	the	NI	654x	specifications	for	details	on	the
maximum	current	that	the	NI	654x	can	source	for	each
generation	voltage	setting.

The	NI	654x	generation	lines	can	be	programmatically	set	to	a	high-
impedance	(tristate)	state	when	not	in	use.	Upon	power	up,	DDC	CLK
OUT,	CLK	OUT,	DIO<0..31>,	and	PFI	<0..3>	are	set	to	tristate	and
remain	in	that	state	until	configured	for	generation.
Refer	to	Termination	and	Terminating	Your	Module	for	more	information
about	signal	reflections	and	termination.

Input	Protection
DDC	CLK	OUT,	CLK	OUT,	DIO<0..31>,	PFI	<0..3>,	and	STROBE	are
protected	using	diode	clamps	connected	to	positive	and	negative	voltage
supplies.	The	following	figure	illustrates	this	circuit.

The	entire	I/O	circuit	is	shown	in	the	Channel	Electronics	diagram.
These	diodes	act	as	open	circuits	unless	the	I/O	voltage	levels	go	above
Vp+	or	below	Vp-.	When	the	I/O	voltage	exceeds	Vp+/Vp-,	the	diodes
become	short	circuits,	clamping	the	input	voltage	to	Vp+/Vp-.	Therefore,
these	diodes	prevent	input	voltages	from	going	more	than	a	diode	drop,
or	approximately	0.5	V,	beyond	the	positive	or	negative	protection	rails.
The	following	diagram	demonstrates	the	effect	of	the	clamp.

The	NI	654x	is	protected	from	instantaneous	shorts	to	legal	DUT
voltages.	Refer	to	the	NI	654x	specifications	for	details	on	input
protection.

Signal	Routing
The	NI	654x	is	capable	of	sending	and	receiving	signals	through	the	front
panel	and	through	the	PXI	trigger	bus	(for	PXI	bus	computers)	or	the
RTSI	trigger	bus	(for	PCI	bus	computers).
The	front	panel	connectors	provide	connectivity	for	the	bidirectional	DIO
channels	as	well	as	for	control	lines	for	sending	and	receiving	clocks,
triggers,	and	events.

Signal	Routing	for	PXI	Devices
You	can	use	the	PXI	trigger	bus	to	send	and	receive	events,	triggers,	and
Sample	and	Reference	clocks.	For	more	information	about	triggers,
events,	and	clocks,	refer	to	Dynamic	Generation	Triggers	and	Events,
Dynamic	Acquisition	Triggers	and	Events,	and	Clocking.
All	signal	routing	operations	can	be	characterized	by	a	source	and	a
destination.	The	following	table	summarizes	the	possible	sources	and
destinations	for	NI	654x/655x/656x	signals.	Sources	are	listed	in	the	far
left	column,	and	the	possible	destinations	span	the	top	of	the	table.	Some
of	the	internal	signals	are	broken	into	separate	columns	for	generation
(Gen)	and	acquisition	(Acq).

Destinations	→ Front	Panel Backplane

Sources
↓

CLK
OUT

PFI	0 PFI
<1..3>

DDC
CLK
OUT

PXI_TRIG
<0..6>

PXI_TRIG7 PXI_STAR

Front	Panel
CLK	IN √ — — √ — —
PFI	0 — — √ — √ —
PFI	<1..3> — √ √ — √ —
Backplane
PXI_TRIG<0..7> — √ √ — √ —
PXI_STAR √ — — √ — — —
Internal
Sample
Clock

√ — — √ — —

Reference
Clock

√ — — — — —

Start
Trigger
(Gen)

— √ √ — √ —

Pause
Trigger
(Gen)

— √ √ — √ —

ScriptTrigger<0..3> — √ √ — √ —
Start
Trigger
(Acq)

— √ √ — √ —

Advance
Trigger
(Acq)

— √ √ — √ —

Ready	for	Start
Event	(Gen)

— √ √ — √ —

Marker<0..3>
Event

— √ √ — √ —

Data	Active	Event — √ √ — — — —
Reference	Trigger
(Acq)

— √ √ — √ —

Ready	for	Start
Event	(Acq)

— √ √ — √ —

Ready	for	Advance
Event	(Acq)

— √ √ — √ —

End	of	Record
Event	(Acq)

— √ √ — √ —

Signal	Routing	for	PCI	Devices
You	can	use	the	RTSI	trigger	bus	to	send	and	receive	events,	triggers,
and	Sample	and	Reference	clocks.	For	more	information	about	triggers,
events,	and	clocks,	refer	to	Dynamic	Generation	Triggers	and	Events,
Dynamic	Acquisition	Triggers	and	Events,	and	Clocking.
All	signal	routing	operations	can	be	characterized	by	a	source	and	a
destination.	The	following	table	summarizes	the	possible	sources	and
destinations	for	NI	654x/655x/656x	signals.	Sources	are	listed	in	the	far
left	column,	and	the	possible	destinations	span	the	top	of	the	table.	Some
of	the	internal	signals	are	broken	into	separate	columns	for	generation
(Gen)	and	acquisition	(Acq).

Destinations	→ Front	Panel Backplane

Sources
↓

CLK
OUT

PFI	0 PFI
<1..3>

DDC
CLK
OUT

RTSI
<0..6>

RTSI
7

Start
Trigger
(Gen)

Pause
Trigger
(Gen)

Front	Panel
CLK	IN √ — — √ — — — —
PFI	0 — — √ — √ — √ √
PFI	<1..3> — √ √ — √ — √ √
Backplane
RTSI	<0..7> — √ √ — √ — √ √
Internal
Sample
Clock

√ — — √ — — — —

Reference
Clock

√ — — — — — — —

Onboard	Ref	Clock — — — — — √ — —
Start
Trigger
(Gen)

— √ √ — √ — — √

Pause
Trigger
(Gen)

— √ √ — √ — √ —

ScriptTrigger<0..3> — √ √ — √ — √ √
Start
Trigger
(Acq)

— √ √ — √ — — —

Advance
Trigger
(Acq)

— √ √ — √ — — —

Ready	for	Start
Event	(Gen)

— √ √ — √ — √ √

Marker<0..3>
Event

— √ √ — √ — √ √

Data	Active	Event — √ √ — — — — —
Reference	Trigger
(Acq)

— √ √ — √ — — —

Ready	for	Start
Event	(Acq)

— √ √ — √ — — —

Ready	for	Advance
Event	(Acq)

— √ √ — √ — — —

End	of	Record
Event	(Acq)

— √ √ — √ — — —

Clocking
The	following	figure	shows	how	the	clock	sources	are	routed	to	produce
the	NI	654x	clock	signals.

Clock	Sources	Summary
The	following	tables	describe	the	clock	sources	available	for	the	NI	654x.
These	clock	sources	are	shown	in	the	Clocking	diagram.	For	a	more
general	description	of	these	clocks,	refer	to	Clocks	for	Digital	Waveform
Generator/Analyzers.

Sample	Clock
Clock
Source Used	In Location Description

On	Board
Clock

Acquisition,
Generation

Internal The	NI	654x	provides	a	single	high-
precision	200	MHz	voltage-
controlled	crystal	oscillator	(VCXO)
clock	source.	The	NI	654x	can
generate	any	clock	frequency	of
200	MHz/n,	where	n	is	any	integer
from	2	to	4,194,304	for	the	NI	6542,
and	4	to	4,194,304	for	the	NI	6541.
For	example,	for	the	NI	6542,	the	On
Board	Clock	can	run	at	100	MHz,
66.67	MHz,	50	MHz,	40	MHz,
33.33	MHz,	28.57	MHz,	25	MHz,
22.22	MHz,	and	so	on.	The	onboard
PLL	allows	the	On	Board	Clock	to	be
phase-locked	to	the	Reference
clock,	if	one	is	provided.

CLK	IN Acquisition,
Generation

Front
panel
SMB	jack
connector

The	CLK	IN	SMB	jack	is	intended	for
use	as	an	external	frequency	input
channel,	allowing	you	to	provide	an
alternate	frequency	as	the	Sample
clock	rate.	The	CLK	IN	signal	can	be
any	sine	or	square	wave	signal	that
meets	the	specifications	provided	in
the	NI	654x	specifications.	The	CLK
In	signal	must	be	free	running.

PXI_STAR
(NI	PXI-
6541/6542
only)

Acquisition,
Generation

Backplane The	PXI_STAR	connector	can	be
used	as	an	external	frequency	input
channel,	allowing	you	to	provide	an
alternate	frequency	as	the	Sample
clock	rate.	The	PXI_STAR	signal
specifications	are	provided	in	the
NI	654x	specifications.	The
PXI_STAR	signal	must	be	free

running.

Reference	Clock
Clock
Source Used	In Location Description

NONE Acquisition,
Generation

Internal When	no	reference	clock	source	is
selected,	the	PLL	is	not	locked	and
the	On	Board	Clock	has	no	known
phase	relationship	to	any	other
clocks	in	the	system.

CLK	IN Acquisition,
Generation

Front
panel
SMB	jack
connector

The	CLK	IN	SMB	jack	can	be	used
to	provide	an	external	Reference
clock	for	the	PLL.	The	CLK	IN	signal
can	be	any	sine	or	square	wave
signal	that	meets	the	specifications
provided	in	the	NI	654x
specifications,	and	must	be	free
running.

PXI_CLK10
(NI	PXI-
6541/6542
only)

Acquisition,
Generation

PXI
trigger
bus

The	PXI	Clock	10	line	exists	on	the
PXI	backplane	and	provides	a
10	MHz	reference	clock	to	all	slots
in	the	chassis.	The	PLL	can	be
configured	to	lock	to	this	signal.

RTSI	7
(NI	PCI-
6541/6542
only)

Acquisition,
Generation

RTSI
trigger
bus

The	Onboard	Reference	Clock	can
be	routed	to	RTSI	7	to	provide	a
10	MHz	reference	clock	signal	to	the
NI	654x	and	other	devices	that
share	the	RTSI	bus.	The	PLL	can	be
configured	to	lock	to	this	signal.

STROBE
Clock
Source Used	In Location Description

STROBE Acquisition DDC
connector

STROBE	is	intended	for	use	as	the
Sample	clock	for	dynamic	acquisition
sessions	when	source-synchronous
transfers	are	desired	(that	is,	when	the
data	and	clock	travel	together	through
the	cable	from	the	DUT	to	the	NI	654x).
The	STROBE	signal	must	be	a	free-
running	square	wave	clock.	STROBE	is
sampled	at	the	same	voltage
thresholds	as	the	dynamic	acquisition
data	lines.

Exporting	a	Clock
The	NI	654x	provides	several	resources	for	exporting	clocks.	The
Clocking	block	diagram	shows	how	the	NI	654x	exports	these	clocks.

Note		As	shown	in	the	clocking	block	diagram,	it	is	possible	to
export	both	the	Reference	clock	and	the	Sample	clock	at	the	same
time	if	you	route	the	Reference	clock	to	CLK	OUT	and	the	Sample
clock	to	DDC	CLK	OUT.

For	information	about	using	NI-HSDIO	to	export	clocks,	refer	to	the
niHSDIO	Export	Signal	VI	or	the	niHSDIO_ExportSignal	function.
The	following	table	summarizes	the	possible	exported	clock	options.

Clock Destination Description
Sample	Clock DDC	CLK

OUT
DDC	CLK	OUT	on	DDC
connector

CLK	OUT CLK	OUT	SMB	jack
connector

Reference	Clock CLK	OUT CLK	OUT	SMB	jack
connector

Onboard	Reference	Clock	(NI
PCI-654x	only)

RTSI	7 RTSI	trigger	bus
channel	7

Sample	Clock
The	Sample	clock	can	be	exported	to	one	of	two	destinations:	the
DDC	CLK	OUT	pin	on	the	DDC	connector	or	the	CLK	OUT	SMB	jack
connector.

DDC	CLK	OUT—The	Sample	clock	can	be	exported	to	the
DDC	CLK	OUT	pin	on	the	DDC	connector.	The	exported	Sample
clock	is	generated	at	the	logic	family	voltage	levels	specified	for
dynamic	generation.	For	dynamic	generation	sessions,	exporting
the	Sample	clock	to	this	connector	allows	for	source-synchronous
clocking	by	routing	the	Sample	clock	through	the	same	cable	and
propagation	delay	characteristics	as	the	generated	data.
CLK	OUT—The	Sample	clock	can	be	exported	to	the	CLK	OUT
SMB	connector.	The	exported	Sample	clock	is	generated	at	the
logic	family	voltage	levels	specified	for	dynamic	generation.

You	can	export	the	Sample	clock	to	either	the	DDC	connector	or	the	CLK
OUT	SMB	jack	connector,	but	not	at	the	same	time.

Reference	Clock
If	you	configure	a	Reference	clock	for	the	PLL	on	the	NI	654x,	you	can
export	the	reference	clock	to	the	CLK	OUT	SMB	jack	connector.	The
exported	reference	clock	operates	at	the	logic	family	voltage	levels
specified	for	dynamic	generation.

Onboard	Reference	Clock
If	you	are	using	an	NI	PCI-654x,	you	can	export	the	10	MHz	onboard
reference	clock	to	RTSI	7	on	the	RTSI	trigger	bus.	You	can	then	use	a
RTSI	cable	to	connect	this	signal	to	other	PCI	devices.

Channel	Interface
The	NI	654x	has	32	channels.	Each	channel	is	independently
configurable	for	generation,	acquisition,	or	simultaneous	generation	and
acquisition	operations.	Generation	and	acquisition	logic	families	on	the
NI	654x	are	independently	selectable—you	can	select	one	logic	family	for
all	generation	channels	and	a	different	logic	family	for	all	acquisition
channels.
The	following	topics	provide	more	information	about	the	channel
interface:

Front	Panel	and	Connector	Pinout
LED	Indicators

Front	Panel	and	Connector	Pinout
The	NI	654x	front	panel,	shown	below,	has	three	SMB	jack	connectors
and	one	68-pin	Digital	Data	&	Control	(DDC)	VHDCI	connector.	The	SMB
jack	connectors	are	described	in	the	SMB	Jack	Connector	Names	and
Descriptions	table.	The	DDC	connector	signals	are	described	in	the	DDC
Connector	Names	and	Descriptions	table.

SMB	Jack	Connector	Names	and	Descriptions

Connector Signal	Name Signal
Type Signal	Description

CLK	IN Reference/Clock
Input

Control External	reference	clock	used	for
the	PLL	or	for	the	external	Sample
clock	used	for	pattern	generation
and/or	acquisition.

PFI	0 Programmable
Function
Interface	(PFI)	0

Control Input	terminal	to	the	NI	654x	for
external	triggers	or	the	output
terminal	from	the	NI	654x	for
events.

CLK	OUT Reference/Clock
Output

Control Terminal	for	the	exported	PLL
Reference	clock	or	the	exported
Sample	clock.

DDC	Connector	Names	and	Descriptions

Pins Signal
Name

Signal
Type

Signal
Description

33 DDC	CLK
OUT

Control Terminal	for	the
exported
Sample	clock.

67 STROBE Control External	Sample
clock	source
which	can	be
used	for
dynamic
acquisition.

1,	3,	5,	7,	9,	11,	13,	15,	17,	19,
21,	23,	25,	27,	29,	31,	35,	37,	39,
41,	43,	45,	47,	49,	51,	53,	55,	57,
59,	61,	63,	65

DIO	<0..31> Data Bidirectional
digital	I/O	data
channels	0
through	31.

26,	30,	64 PFI<1..3> Control Input	terminals
to	the	NI	654x
for	external
triggers,	or
output	terminals
from	the
NI	654x	for
events.

2,	4,	6,	10,	12,	14,	16,	18,	20,	22,
24,	28,	32,	34,	36,	38,	40,	42,	44,
46,	48,	50,	54,	56,	58,	62,	66

GND Ground Ground
reference	for
signals.

8,	52,	60 RESERVED N/A These	terminals
are	reserved	for
future	use.	Do
not	connect	to
these	pins.

LED	Indicators	(PXI	Only)
The	NI	PXI-654x	has	two	LED	indicators	on	the	front	panel,	labeled
ACCESS	and	ACTIVE.	The	following	tables	describe	what	each	LED
color	indicates.

ACTIVE	LED
Color Indications
Off Device	not	armed,	not	triggered,	or	experiencing	an	error.
Amber Device	armed	and	awaiting	Start	trigger.	If	performing	a	dynamic

acquisition	operation,	the	device	may	be	acquiring	pretrigger
samples.

Green Device	received	Start	trigger.
Red Error	condition.

ACCESS	LED
Color Indications
Off Device	not	ready.
Amber Device	being	accessed	by	software.
Green Device	ready	to	be	programmed.
Red Running	the	niHSDIO	Self	Test	VI	or	calling	the

niHSDIO_self_test	function	produced	a	failure.

Acquisition
Expand	this	book	for	more	information	about	static	and	dynamic
acquisition	using	the	NI	654x.

Static	Acquisition
Static	acquisition	is	a	software-timed	(nonclocked)	operation.	When
performing	static	acquisition	operations,	the	NI	654x	uses	the	device
logic	family	to	determine	and	return	the	current	logic	state	of	the
configured	data	channels	each	time	a	static	read	is	requested.
You	can	perform	static	acquisition	operations	at	any	time	on	channels
configured	for	static	acquisition.	You	can	also	use	static	acquisition	to
read	back	the	current	value	on	channels	configured	for	static	generation
or	dynamic	generation	at	any	time.
For	more	information	about	performing	static	acquisition	in	NI-HSDIO,
refer	to	Reading	and	Writing	Static	Data.

Dynamic	Acquisition
The	NI	654x	provides	flexible	acquisition	capabilities	for	up	to	32-bit	wide
patterns	with	a	selectable	logic	family	using	either	an	internal	or	external
clock	source.	External	triggers	can	control	the	acquisition	operation,	and
the	Pattern	Acquisition	Engine	can	route	those	control	signals	to	be
shared	with	other	devices.
Refer	to	Dynamic	Acquisition	Clock	Sources	for	information	about
available	clocks	for	a	dynamic	acquisition	operation.
For	information	about	defining	acquisition	resources	in	NI-HSDIO,	refer	to
Acquisition	Configuration	Functions	to	learn	which	VIs	and	C	functions
are	available	for	your	application.

Dynamic	Acquisition	Clock	Sources
Dynamic	acquisition	is	a	clocked	operation	driven	by	one	of	several
clocking	resources.	Refer	to	the	main	Clocking	diagram	for	this	device	to
see	a	block	diagram	for	these	clock	resources.

Dynamic	Acquisition	State	Diagram
The	following	figure	illustrates	the	state	diagram	for
NI	654x/NI	655x/NI	656x	dynamic	acquisition.

In	this	diagram,	the	device	starts	in	an	Idle	state,	where	it	is	configured
for	the	acquisition	operation.	Once	configured,	the	device	moves	into	a
Wait	for	Start	Trigger	state,	where	it	generates	the	Ready	for	Start	event
to	indicate	that	the	Pattern	Acquisition	Engine	is	configured	and	ready	to
receive	a	Start	trigger.
After	receiving	the	Start	trigger,	the	device	moves	into	a	sampling	state
where	it	starts	sampling	pre-Reference	trigger	data.	After	the	minimum
number	of	pre-Reference	trigger	samples	is	acquired,	the	device
continues	sampling	and	waits	for	the	Reference	trigger.	When	the	device
receives	the	Reference	trigger,	a	counter	begins	counting	Sample	clocks.
After	a	predetermined	number	of	samples	are	acquired,	the	device
transitions	to	a	Record	Complete	state,	and	generates	the	End	of	Record
event.
At	this	point,	if	the	acquisition	is	only	configured	to	acquire	one	record,
the	device	transitions	to	the	Done	state.	If	the	device	has	more	records	to
acquire,	after	the	Record	Complete	state,	the	device	transitions	to	the
Wait	for	Advance	Trigger	state,	and	emits	the	Ready	for	Advance	event.
After	receiving	the	Advance	trigger,	the	device	moves	back	into	the

sampling	state	where	it	starts	sampling	pre-Reference	trigger	data,	and
starts	the	process	of	acquiring	another	record.	This	process	repeats	until
all	records	are	acquired,	then	the	device	moves	into	a	Done	state,	and
the	operation	stops.

Dynamic	Acquisition	Timing	Diagrams
The	following	diagram	illustrates	the	data	positions	available	when
acquiring	waveforms	with	the	NI	654x.	For	simplicity,	the	delayed	data	is
shown	delayed	by	25%	of	the	clock	period;	however,	this	value	can	vary
between	0%	and	100%.

Using	the	Sample	Clock	as	the	Acquisition	Clock

Using	STROBE	as	the	Acquisition	Clock

Dynamic	Acquisition	Triggers	and	Events
The	following	table	describes	the	relationship	of	triggers	and	events	in	a
dynamic	acquisition	operation.	The	sequence	of	triggers	and	events	is
shown	in	the	Dynamic	Acquisition	State	Diagram.
Triggers	are	received	synchronously	by	the	Pattern	Acquisition	Engine.
The	Ready	for	Start	event	and	all	re-exported	triggers	are
asynchronously	generated	by	the	Pattern	Acquisition	Engine.

Trigger/Event Received	From Exported	To
Start	Trigger The	Start	trigger	can	be	received	from

a	rising	or	falling	edge	on	PFI	<0..3>,
RTSI<0..7>	(PCI	devices),
PXI_TRIG<0..7>	(PXI	devices),	or	by
matching/not-matching	a	pattern
received	on	DIO<0..31>.	The	Start
Trigger	can	also	be	sent	by	software.

The	Start	trigger
can	be	exported
to	PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>.

Reference
Trigger

The	Reference	trigger	can	be
received	on	a	rising	edge	on
PFI	<0..3>	RTSI<0..7>	(PCI	devices),
or	PXI_TRIG<0..7>	(PXI	devices),	or
by	matching/not-matching	a	pattern
received	on	DIO<0..31>.	The
Reference	trigger	can	also	be	sent	by
software.

The	Reference
trigger	can	be
exported	to
PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Advance
Trigger

The	Advance	trigger	can	be	received
from	a	rising	or	falling	edge	on
PFI	<0..3>,	RTSI<0..7>	(PCI	devices),
PXI_TRIG<0..7>	(PXI	devices),	or	by
matching/not-matching	a	pattern
received	on	DIO<0..31>.	The
Advance	trigger	can	also	be	sent	by
software.

The	Advance
trigger	can	be
exported	to
PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Pause	Trigger The	Pause	trigger	can	be	received
from	PFI<0..3>,	RTSI<0..7>	(PCI
devices),	PXI_TRIG<0..7>	(PXI
devices),	or	by	matching/not-matching

—

a	pattern	received	on	DIO<0..31>.
Ready	for
Start	Event

— The	Ready	For
Start	event	can
be	exported	to
PFI<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Ready	for
Advance
Event

— The	Ready	For
Advance	event
can	be	exported
to	PFI<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

End	of	Record
Event

— The	End	of
Record	event	can
be	exported	to
PFI<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Generation
Expand	this	book	for	more	information	about	static	and	dynamic
generation	using	the	NI	654x.

Static	Generation
Static	generation	is	a	software	timed	(nonclocked)	operation	and	can	be
applied	to	any	number	of	the	available	DIO<0..31>	channels.	When
performing	a	static	generation	operation,	the	NI	654x	sets	the	current
state	of	the	configured	data	channels	to	the	requested	logic	state	of	the
configured	generation	logic	family.	NI	654x	devices	support	the	open
collector	drive	type	for	static	generation	operations,	which	means	that
they	can	set	the	configured	data	channels	to	a	high-impedance	(Z)	state
when	the	channels	are	configured	to	drive	the	Generation	Voltage	High
Level.
Refer	to	Voltage	Ranges	and	Settings	for	more	information	about	voltage
levels	for	each	logic	state.
Static	generation	can	be	done	on	any	number	of	channels,	provided	that
those	channels	are	not	configured	for	a	dynamic	operation.	To	statically
set	the	state	of	dynamic	generation	channels,	refer	to	Initial	and	Idle
States.
For	more	information	about	performing	static	generation	with	NI-HSDIO,
refer	to	Reading	and	Writing	Static	Data.

Dynamic	Generation
Dynamic	generation	is	a	clocked	operation	where	binary	data	is	sent	from
the	NI	digital	waveform	generator/analyzer	to	the	DUT	across	multiple
digital	channels.
The	NI	digital	waveform	generator/analyzer	can	generate	complex	digital
patterns	at	a	variety	of	voltage	levels	synchronous	to	any	of	several	clock
sources.	The	data	can	be	generated	as	simple	waveforms	or	based	on
complex	scripts.	External	triggers	can	control	the	data	generation,	and
the	Pattern	Generation	Engine	can	export	several	types	of	events	to
indicate	the	progress	of	the	generation.
In	addition,	the	NI	digital	waveform	generator/analyzer	allows	for	precise
subperiod	timing	control	between	the	generated	data	and	the	exported
Sample	clock,	making	the	device	a	versatile	digital	pattern	generator.
NI	654x	devices	support	only	active	drive	generation	during	dynamic
generation	operations.

Dynamic	Generation	Clock	Sources
Dynamic	generation	is	a	clocked	operation.	The	dynamic	generation
operation	is	clocked	by	one	of	several	clocking	resources.	Your
application	needs	may	determine	which	source	you	should	use.	Refer	to
the	main	Clocking	diagram	to	see	a	block	diagram	for	these	clock
resources.
The	following	section	discusses	additional	considerations	for	using	these
clocking	resources	for	dynamic	generation:

On	Board	Clock
The	default	clock	source	for	dynamic	generation	sessions	is	the
On	Board	Clock.	This	clock	can	be	locked	to	a	reference	clock	to
synchronize	operations	across	multiple	devices	or	can	be	used
without	a	reference	clock	when	multidevice	synchronization	is	not
required.	The	On	Board	Clock	is	derived	from	integer	divisors	of
the	200	MHz	VCXO.	Refer	to	the	NI	654x	specifications	for
information	about	the	possible	On	Board	Clock	frequencies.
You	can	configure	the	On	Board	Clock	source	in	the	following
ways:

Free-running,	nonphase-locked—In	this	mode,	the	VCXO
is	used	at	its	fundamental	frequency,	allowing	for	a	stable
and	accurate	200	MHz	clock.	This	configuration	is	the
default	setting,	and	it	is	most	useful	when	only	one	NI	654x
is	in	the	system	or	when	multidevice	synchronization	is	not
required.
Phase-Locked—The	On	Board	Clock	source	can	be	locked
to	a	reference	clock	using	the	PLL	circuit	to	ensure	that
Sample	clock	alignment	across	devices	is	achieved.	In	this
operation	mode,	the	PLL	circuit	must	be	provided	a	precision
source	to	which	it	can	lock.	The	On	Board	Clock	source	can
be	locked	to	one	of	the	following	reference	clock	sources:

PXI_CLK10	(NI	PXI-6541/6542	only)/RTSI	7	(NI	PCI-
6541/6542)—The	PXI	standard	defines	a	precision
10	MHz	reference	(PXI_CLK10)	to	be	distributed
across	the	backplane	to	each	device	in	the	PXI
chassis.	If	you	are	using	PXI,	this	10	MHz	backplane
clock	is	used	as	the	reference	for	the	PLL	in	this	mode

of	PLL	operation.	If	you	are	using	PCI,	drive	the
10	MHz	On	Board	Reference	Clock	onto	RTSI	7,	and
configure	RTSI	7	as	the	reference	clock	source.
CLK	IN—If	you	want	to	provide	your	own	reference,
you	can	provide	an	external	source	on	the	CLK	IN
SMB	connector	to	which	the	PLL	can	lock.	Using	an
external	reference	allows	you	to	easily	synchronize
clocks	across	instruments	within	and	outside	of	the
system.	Refer	to	the	NI	654x	specifications	for
information	about	the	possible	reference	clock
frequencies.

External	Source	(CLK	IN)
Alternatively,	your	dynamic	generation	operation	can	be	driven
from	an	external	Sample	clock	source.	Using	an	external
frequency	generator,	you	can	drive	dynamic	generation	operations
at	any	frequency	within	the	NI	654x	specifications.	Frequency
limitations	and	acquisition	levels	are	listed	in	NI	654x
specifications.
PXI_STAR	(NI	PXI-6541/6542	only)
The	PXI	specification	allocates	resources	for	high-speed	precision
clock	and	trigger	routing	across	the	PXI	backplane.	The	NI	PXI-
654x	can	use	this	resource	to	clock	your	dynamic	generation	task.
An	external	source	can	drive	this	resource	at	any	suitable
frequency,	allowing	the	NI	PXI-654x	to	operate	at	noninteger
divisors	of	200	MHz,	similar	to	how	it	operates	using	an	external
clock	source	(CLK	IN).

For	a	summary	of	these	and	other	clock	sources,	refer	to	Clock	Sources
Summary.

Dynamic	Generation	State	Diagram
The	following	figure	illustrates	the	state	diagram	for	the
NI	654x/655x/NI	656x	dynamic	generation.

The	device	starts	in	an	Idle	state	where	it	is	configured	for	a	generation
operation.	Once	initiated,	the	device	moves	into	a	Wait	for	Start	Trigger
state,	where	it	generates	the	Ready	for	Start	event	to	indicate	that	the
Pattern	Generation	Engine	is	configured	and	ready	to	receive	a	Start
trigger.	After	receiving	the	Start	trigger,	the	dynamic	generation	operation
begins,	and	at	this	point,	the	generation	can	be	acted	upon	by	Script	and
Pause	triggers,	and	it	can	generate	the	Data	Active	and	Marker	events.
When	the	generation	is	complete,	the	device	moves	into	the	Done	state.

Dynamic	Generation	Timing	Diagrams
The	following	figure	illustrates	the	data	and	clock	positions	available
when	generating	waveforms	with	the	NI	654x.	For	simplicity,	the	data	is
shown	delayed	by	25%	of	the	clock	period;	however,	this	value	can	vary
between	0%	and	100%.

Note		Data	generation	on	the	rising	clock	edge,	falling	clock	edge,
or	delayed,	is	per	channel	selectable.	However,	in	the	delayed
case,	the	delay	value	is	constant	across	all	delayed	channels.

For	more	information	about	using	NI-HSDIO	to	adjust	the	data	position,
refer	to	Configuring	Data	Position.

Generation	Provided	Setup	and	Hold	Times	Timing
Diagram

Dynamic	Generation	Triggers	and	Events
The	following	table	describes	the	relationship	of	triggers	and	events	in	a
dynamic	acquisition	operation.	The	sequence	of	triggers	and	events	is
shown	in	the	Dynamic	Generation	State	Diagram.
Start,	Pause,	and	Script	triggers	are	received	asynchronously	by	the
Pattern	Generation	Engine.	Cable	propagation	delays	and	pipeline
delays	can	cause	the	Pattern	Generation	Engine	to	take	multiple	clock
cycles	to	respond	to	a	trigger.	Refer	to	NI	654x	specifications	for	more
information.	The	Ready	For	Start,	Data	Active,	and	Marker	0	events	are
generated	by	the	Pattern	Generation	Engine	synchronous	to	the	data
generation.
The	following	table	provides	information	about	how	these	triggers	and
events	can	arrive	at	and	be	exported	from	the	NI	654x.

Trigger/Event Received	From Exported	To
Start	Trigger The	Start	trigger	can	be	received	from

a	rising	or	falling	edge	on	PFI	<0..3>,
RTSI<0..7>	(PCI	devices),	or
PXI_TRIG<0..7>	(PXI	devices).	The
Start	trigger	can	also	be	sent	by
software.

The	Start	trigger
can	be	exported
to	PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Pause	Trigger The	Pause	trigger	is	level-based	and
can	be	received	on	PFI<0..3>,
RTSI<0..7>	(PCI	devices),	or
PXI_TRIG<0..7>	(PXI	devices).	The
Pause	trigger	can	also	be	sent	by
software.

Note		When	the	Pause	trigger
is	asserted,	the	NI	654x	Pattern
Generation	Engine	may	take
several	clock	cycles	to	respond
because	of	cable	propagation
delay	and	the	pipelining	in	the
system.	Refer	to	the	NI	654x
specifications	for	more

The	Pause
trigger	can	be
exported	to
PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

information.

Script	Trigger
<0..3>

Four	Script	triggers	can	be	edge-	or
level-based	and	can	be	received	on
PFI	<0..3>,	RTSI<0..7>	(PCI	devices),
or	PXI_TRIG<0..7>	(PXI	devices).	The
Script	trigger	can	also	be	sent	by
software.

The	Script	trigger
can	be	exported
to	PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Ready	for
Start	Event

— The	Ready	For
Start	event	can
be	exported	to
PFI<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Data	Active
Event

— The	Data	Active
event	can	be
exported	to
PFI	<0..3>.

Marker	Event
<0..3>

— A	Marker	event
can	be	exported
to	PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

NI	655x
The	NI	655x	is	a	20-channel	digital	I/O	device	that	you	can	use	as	a
PC/peripheral	device	interface,	pattern	generator,	pattern	analyzer,	or
stimulus-response	tester.	The	NI	6551	has	a	maximum	Sample	clock
frequency	of	50	MHz,	and	the	NI	6552	has	a	maximum	Sample	clock
frequency	of	100	MHz.
The	NI	655x	also	provides	the	following	features:

Sophisticated	timing	engine	to	maintain	and	measure	the	timing
parameters	of	the	DUT
Programmable	voltage	levels	for	testing	multiple	devices	or
characterizing	a	single	device	under	varying	conditions
Data	channels	with	per	channel	direction	control
Deep	onboard	memory	with	triggering	and	pattern	sequencing
capabilities
Ability	to	use	NI-TClk	to	synchronize	multiple	devices
Per	pin,	per	cycle	tristate	capabilities
Support	for	real-time	hardware	comparison	of	actual	response	data
with	expected	response	data.	For	more	information	on	this	feature,
refer	to	the	National	Instruments	High-Speed	Digital	ATE	and
Stimulus	Response	Features	white	paper	on	ni.com.

You	can	use	the	internal	On	Board	Clock	or	import	an	external	clock
through	the	front	panel.	You	can	also	shift	the	generated	data,	acquired
data,	and	exported	Sample	clock	relative	to	the	onboard	clock	for	clock
frequencies	above	25	MHz,	which	is	critical	when	accounting	for
propagation	delays	and	setup-and-hold	times	in	the	DUT.
Expand	this	book	for	more	information	about	NI	655x	hardware-related
topics.

ms-its:nitclk.chm::/NI_TClk_Help.html
javascript:WWW(WWW_nsi5410)

Hardware	Architecture
Expand	this	book	for	more	information	about	the	NI	655x	hardware
architecture.

Block	Diagram
The	following	figure	is	a	block	diagram	illustrating	the	main	functional
units	and	data	flow	of	the	NI	655x.	The	text	that	follows	the	figure
describes	the	basic	elements	of	the	diagram	and	provides	links	to
sections	with	more	detailed	information	about	some	of	the	blocks.
Click	hotspots	within	the	graphic	for	more	detailed	information
about	that	functional	block.

The	Clocking	module	selects	and	distributes	the	clocks	for	the	dynamic
generation	and	dynamic	acquisition	operations.
For	dynamic	generation	operations,	the	user-supplied	data	is	loaded	from
the	host	computer	memory	into	the	onboard	Generation	Memory.	The
Pattern	Generation	Engine	retrieves	data	from	Generation	Memory	and
executes	the	script	functionality	while	interacting	with	the	associated
Trigger	and	Event	control	module.	The	Pattern	Generation	Engine	then
sends	the	data	to	the	Pattern	Generation	Timing	and	Control	module,

where	the	data	is	given	the	selected	data	position	and	data	delay	and	is
then	sent	to	the	Channel	Electronics	drivers.	The	Channel	Electronics
drivers	generate	the	data	at	the	user-defined	voltage	levels.
For	dynamic	acquisition	operations,	signals	arrive	at	the	Channel
Electronics	comparators,	where	the	signal	levels	are	compared	to	the
user-defined	voltage	thresholds.	The	Timing	and	Control	module	samples
the	data	using	the	selected	clock,	data	position,	and	data	delay	values
and	passes	the	data	to	the	Pattern	Acquisition	Engine.	The	Pattern
Acquisition	Engine	and	the	Trigger	and	Event	Control	module	recognize
triggers	and	determine	when	the	data	should	be	stored	into	Acquisition
Memory.	The	acquired	data	can	then	be	fetched	by	the	host	computer.

Channel	Electronics
The	channel	electronics	of	the	NI	655x	devices	consist	of	a	variable
voltage	driver,	dual	comparators,	the	appropriate	termination	resistors,
and	I/O	protection	diodes.	Each	I/O	channel	is	capable	of	simultaneously
driving	and	receiving	data.
The	following	figure	provides	a	basic	block	diagram	for	the	channel
electronics.	Refer	to	NI	655x	Block	Diagram	for	a	picture	of	how	the
channel	electronics	fits	into	the	overall	block	diagram.

Dynamic	Generation
For	dynamic	generation	operations,	the	data	appears	at	the	input	of	the
variable	voltage	driver	after	the	Pattern	Generation	Timing	and	Control
module	gives	the	data	the	selected	data	position	and	data	delay.	The
variable	voltage	driver	converts	the	data	signal	to	the	user-defined
voltage	levels	(Generation	Voltage	High	and	Generation	Voltage	Low)
before	sending	the	data	signal	to	the	DDC	connector	on	the	NI	655x	front
panel.
The	variable	voltage	driver	can	be	set	to	high-impedance	generation	with
the	Tristate	control	line.	The	Tristate	control	can	be	set	automatically	by
the	Initial	and	Idle	States	or	can	be	set	programmatically	with	the
niHSDIO	Tristate	Channels	VI	or	niHSDIO_TristateChannels	function.
When	a	channel	is	configured	for	open	collector	generation,	the	tristate
control	transforms	logic	1's	into	Z	states	(high-impedance).
The	protection	diodes	are	critical	for	guarding	against	overvoltage
situations.

Dynamic	Acquisition
Patterns	acquired	by	the	NI	655x	are	received	using	a	dual-comparator
architecture.	One	comparator	is	assigned	to	each	acquisition	threshold
(Acquisition	Voltage	High	and	Acquisition	Voltage	Low).
The	output	of	the	dual	comparators	are	combined	into	a	single	bit	using
the	selected	data	interpretation	method.	The	data	is	sampled	by	the
Pattern	Acquisition	Timing	and	Control	module	before	being	sent	to	the
Pattern	Acquisition	Engine	for	storage	into	Acquisition	Memory.
You	can	programmatically	set	the	input	impedance	to	high	impedance	or
50	Ω,	referenced	to	ground.

Voltage	Ranges	and	Settings
For	testing	functional	limits,	you	can	set	custom	voltage	levels	in	10	mV
increments	from	–2	V	to	+5.5	V.	This	range	allows	compatibility	with
common	logic	families	such	as	CMOS,	TTL,	and	LVTTL,	as	well	as
custom	logic	levels.	The	Channel	Electronics	diagram	shows	how	these
voltage	levels	are	used	with	the	dual	comparators	and	the	variable
voltage	driver.
You	can	set	four	voltage	levels	on	the	NI	655x:	Generation	Voltage	High
and	Low	Levels	and	Acquisition	Voltage	High	and	Low	Level.	Generation
voltage	levels	are	the	voltage	levels	used	for	all	data,	clock,	and	event
generations,	with	the	exception	of	the	exported	PLL	reference	clock,
which	is	fixed	at	3.3	V	Logic.	Acquisition	voltage	levels	are	used	for	all
acquired	data,	clock,	and	trigger	signals,	except	for	the	CLK	IN	SMB	jack
connector.	Refer	to	Clock	Sources	Summary	for	acceptable	CLK	IN
signal	characteristics.
When	programming	your	device	using	NI-HSDIO,	the	functions	and
instance	VIs	for	configuring	voltage	levels	are	named	according	to	the
type	of	channel	(data,	trigger,	or	event)	that	you	want	to	configure.	For
more	information	about	configuring	voltage	levels	with	NI-HSDIO,	refer	to
Configuring	Voltage	Levels.
To	stay	within	PXI	and	PCI	power	and	cooling	requirements,	the
allowable	generation	voltage	levels	are	reduced	at	higher	Sample	clock
frequencies.	The	following	table	shows	the	relationship	between	Sample
clock	frequency	and	allowable	generation	voltage	levels.

NI	655x	Generation	Voltage	Level	Limits
Typical
Application

Sample	Clock
Frequency

Minimum
Level

Maximum
Level

Negative	logic Up	to	50	MHz –2.0	V 3.7	V
5	V	Logic Up	to	50	MHz –0.5	V 5.5	V
3.3	V	Logic Up	to	50	MHz	(NI

6551)
Up	to	100	MHz
(NI	6552)

–0.5	V 3.7	V

You	can	independently	set	Generation	Voltage	High	and	Generation
Voltage	Low	anywhere	from	the	minimum	level	to	the	maximum	level
shown	in	the	table,	depending	on	your	application	and	Sample	clock
frequency.	Acquisition	Voltage	High	and	Acquisition	Voltage	Low	can
always	be	independently	set	anywhere	between	–2.0	and	5.5	V,
regardless	of	the	Sample	clock	frequency.	By	synchronizing	and
operating	multiple	NI	655x	devices,	you	can	use	different	voltage
configurations	in	the	same	system.
For	more	information	about	voltage	level	ranges	and	resolutions,	refer	to
NI	655x	specifications.

Data	Interpretation
For	any	NI	655x	acquisition,	the	outputs	of	the	dual	comparators	must	be
combined	into	a	single	bit	before	being	sampled	and	returned	to	the
software.	One	comparator	uses	the	Acquisition	Voltage	Low	threshold	for
comparison,	and	the	other	uses	the	Acquisition	Voltage	High	threshold.
You	can	set	these	thresholds	independently	and	then	configure	the	data
interpretation	method	to	determine	the	signal	behavior,	based	on	the
context	of	these	thresholds.	The	following	sections	describe	the	data
interpretation	in	more	detail.

High	or	Low
High	or	Low	is	the	default	data	interpretation	method,	and	this	method
mimics	the	data-sheet	performance	of	most	digital	semiconductors.	Using
this	setting,	the	NI	655x	provides	some	hysteresis	for	your	acquired
signal.	When	the	input	signal	is	sampled	below	Acquisition	Voltage	Low,
a	0	is	received.	A	1	is	not	recognized	until	the	acquired	signal	passes
above	Acquisition	Voltage	Low	threshold	and	above	Acquisition	Voltage
High	threshold.	Conversely,	if	the	acquired	signal	was	last	sampled
above	Acquisition	Voltage	High	(as	a	1),	the	signal	is	not	be	sampled	as
a	0	until	the	signal	is	sampled	below	Acquisition	Voltage	High	and	below
Acquisition	Voltage	Low.	In	short,	signals	with	voltage	in	the	mid-band
(between	Acquisition	Voltage	High	and	Acquisition	Voltage	Low)	are
recognized	at	the	last	valid	logic	level	(either	above	Acquisition	Voltage
High	or	Acquisition	Voltage	Low)	at	which	they	were	sampled.

Valid	or	Invalid
This	data	interpretation	method	returns	an	indication	of	whether	the
acquired	signal	is	between	Acquisition	Voltage	High	and	Acquisition
Voltage	Low.	Signals	sampled	between	Acquisition	Voltage	High	and
Acquisition	Voltage	Low	(in	the	mid-band,	or	Invalid)	are	returned	as	a	1,
while	signals	sampled	either	above	Acquisition	Voltage	High	or	below
Acquisition	Voltage	Low	(Valid)	are	returned	as	a	0.

For	information	about	configuring	data	interpretation	with	NI-HSDIO,	refer
to	Configuring	Data	Interpretation.

Logic	Families
NI	655x	use	logic	families	with	the	voltage	levels	shown	in	the	following
table:

NI-HSDIO
Logic
Family

Acquisition
Voltage	Low

Acquisition
Voltage	High

Generation
Voltage	Low

Generation
Voltage	High

5.0	V	Logic 1.8	V 2.0	V 0.0	V 5.0	V
3.3	V	Logic 1.6	V 1.7	V 0.0	V 3.3	V
2.5	V	Logic 1.2	V 1.3	V 0.0	V 2.5	V
1.8	V	Logic 0.85	V 0.95	V 0.0	V 1.8	V

You	can	also	configure	custom	voltage	levels	for	your	operation.
Related	Topics:

Configuring	Voltage	Levels
Logic	Families	Overview
Single-Ended	Voltage	Levels
Voltage	Ranges	and	Settings	(NI	655x)

Input	Impedance
You	can	programmatically	set	the	input	impedance	of	DIO<0..19>	and
STROBE	to	be	50	Ω	or	high-impedance.	Refer	to	the	NI	655x
specifications	for	more	information	on	the	high-impedance	values	for	your
device.	The	main	application	of	50	Ω	is	in	matched-impedance	systems.
In	these	systems,	the	DUT	source	impedance	is	50	Ω	and	the	NI	655x
input	impedance	is	50	Ω.	This	system	has	the	benefit	of	no	signal
reflections,	at	the	cost	of	one-half	the	signal	amplitude.	For	applications
where	minor	reflections	can	be	tolerated,	50	kΩ	input	impedance	is
appropriate.	Refer	to	Transmission	Lines	and	Terminating	Your	Module
for	more	information	about	signal	reflections	and	termination.
When	using	an	input	impedance	of	50	Ω,	keep	in	mind	that	the	inherent
voltage	divider,	shown	in	the	following	graphic,	can	cause	the	voltage
levels	sensed	on	the	data	lines	to	be	affected.	Using	the	50	Ω	impedance
setting	can	cause	the	measured	voltage	level	to	be	lower	than	the
voltage	at	the	source,	depending	on	source	impedance.	To	compensate
for	this	attenuation,	set	the	acquisition	voltage	thresholds	accordingly.

You	can	calculate	the	voltages	measured	by	the	NI	655x	with	the
following	formula:
VI/O	=	VSource(RTerm/(RTerm	+	RSource))

where				VI/O	is	the	voltage	seen	at	the	NI	655x	connector

VS	is	the	voltage	driven	by	the	source

RTerm	is	the	input	impedance

RS	is	the	source	impedance

For	example,	if	the	NI	655x	input	impedance	is	set	to	50	Ω,	a	5	V
acquisition	is	sensed	as	2.5	V	if	driven	from	a	50	Ω	source.
Always	calculate	the	maximum	current	that	you	may	be	causing	the
NI	655x	to	sink.	You	can	calculate	the	maximum	current	by	using	the
following	formula:

Max	current	=	(max(Vsource))/(Rsource	+	Rterm)

Verify	that	the	resulting	max	current	is	within	the	NI	655x	specifications.

Note			Channels	configured	for	simultaneous	generation	and
acquisition	operations	have	an	input	impedance	of	50	Ω	to	the
voltage	being	generated	by	the	variable	voltage	driver	because	the
NI	655x	variable	voltage	driver	is	configured	to	have	a	50	Ω	source
impedance.

Related	Topic:	Configuring	Input	Impedance

Source	Impedance
The	NI	655x	data,	clock,	and	event	generation	channels	have	a	50	Ω
source	impedance.	For	applications	where	the	full	voltage	swing	is
required	at	the	DUT,	a	parallel	termination	resistance	of	1	kΩ	to	10	kΩ	is
recommended.	With	a	system	terminated	by	10	kΩ,	the	majority	of	the
signal	reflections	are	eliminated	by	the	source	50	Ω	termination	and	the
parallel	termination,	and	the	voltage	seen	at	the	termination	resistor	is
99.5%	of	the	configured	voltage.
Because	the	NI	655x	interface	cable	(NI	SHC68-C68-D2)	is	a	50	Ω
transmission	line,	it	is	possible	to	build	matched	impedance	systems	with
a	50	Ω	parallel	termination	as	the	load.	While	a	matched	system	is
beneficial	because	all	reflections	are	eliminated,	the	voltage	at	the
termination	is	a	voltage	division	of	the	voltage	generation	of	the	NI	655x,
as	illustrated	in	the	following	figure.

Use	the	following	formula	to	calculate	the	voltage	sensed	at	the
termination	point,	VTERM.

where				VO	is	the	voltage	driven	by	the	NI	655x,

RTerm	is	the	termination	impedance

RSource	is	the	source	impedance

For	example,	if	RSOURCE	=	50	Ω	and	if	the	termination	resistance	is	also
set	to	50	Ω,	then	the	voltage	level	seen	at	the	termination	is	one-half	the
source	voltage.
Always	calculate	the	maximum	current	that	the	NI	655x	in	your	test
system	can	source	and	sink.	You	can	calculate	the	maximum	current
using	the	following	formula:
Max	current	=	max{|VOH|,	|VOL|}/(50	+	RTerm)

Note		 Refer	to	the	NI	655x	specifications	for	details	on	the
maximum	current	that	the	NI	655x	can	source.

The	NI	655x	generation	lines	can	be	programmatically	set	to	a	high-
impedance	(tristate)	state	when	not	in	use.	Upon	power	up,	DIO<0..19>
and	PFI	<0..3>	are	set	to	high-impedance	and	remain	in	that	state	until
configured	for	generation.
Refer	to	Termination	and	Terminating	Your	Module	for	more	information
about	signal	reflections	and	termination.

Input	Protection
DIO<0..19>,	PFI	<0..3>,	DDC	CLK	OUT,	and	STROBE	are	protected
using	diode	clamps	connected	to	the	positive	and	negative	voltage
supplies.	The	following	figure	illustrates	this	circuit.

The	entire	I/O	circuit	is	shown	in	the	Channel	Electronics	diagram.
These	diodes	act	as	open	circuits	unless	the	I/O	voltage	levels	go	above
Vp+	or	below	Vp-.	When	the	I/O	voltage	exceeds	Vp+/Vp-,	the	diodes
become	short	circuits,	clamping	the	input	voltage	to	Vp+/Vp-.	Therefore,
these	diodes	prevent	input	voltages	from	going	more	than	a	diode	drop,
or	approximately	0.5	V,	beyond	the	positive	or	negative	protection	rails.
The	following	diagram	demonstrates	the	effect	of	the	clamp.

The	NI	655x	is	protected	from	instantaneous	shorts	to	legal	DUT
voltages.	Refer	to	the	NI	655x	specifications	for	details	on	device	input
protection.

Signal	Routing
NI	digital	waveform	generator/analyzers	are	capable	of	sending	and
receiving	signals	through	the	front	panel	and	through	the	PXI	trigger	bus
(for	PXI	bus	computers)	or	the	RTSI	trigger	bus	(for	PCI	bus	computers).
The	front	panel	connectors	provide	connectivity	for	the	bidirectional	DIO
channels	as	well	as	for	control	lines	for	sending	and	receiving	clocks,
triggers,	and	events.	Refer	to	the	Front	Panel	and	Connector	Pinout	topic
for	your	device	for	more	information	about	the	front	panel	connectivity.

Clocking
The	following	figure	shows	how	the	clock	sources	are	routed	to	produce
the	NI	655x	clock	signals.

Clock	Sources	Summary
The	following	tables	describe	the	clock	sources	available	for	the	NI	655x.
These	clock	sources	are	shown	in	the	Clocking	diagram.	For	a	more
general	description	of	these	clocks,	refer	to	Clocks	for	Digital	Waveform
Generator/Analyzers.

Sample	Clock
Clock
Source Used	In Location Description

On	Board
Clock

Acquisition,
Generation

Internal The	NI	655x	provides	a	single	high-
precision	200	MHz	voltage-
controlled	crystal	oscillator	(VCXO)
clock	source.	The	NI	655x	can
generate	any	clock	frequency	of
200	MHz/n,	where	n	is	any	integer
from	2	to	4,194,304	for	the	NI	6552,
and	4	to	4,194,304	for	the	NI	6551.
For	example,	for	the	NI	6552,	the	On
Board	Clock	can	run	at	100	MHz,
66.67	MHz,	50	MHz,	40	MHz,
33.33	MHz,	28.57	MHz,	25	MHz,
22.22	MHz,	and	so	on.	The	onboard
PLL	allows	the	On	Board	Clock	to	be
phase-locked	to	the	Reference
clock,	if	one	is	provided.

CLK	IN Acquisition,
Generation

Front
panel
SMB	jack
connector

The	CLK	IN	SMB	jack	is	intended	for
use	as	an	external	frequency	input
channel,	allowing	you	to	provide	an
alternate	frequency	as	the	Sample
clock	rate.	The	CLK	IN	signal	can	be
any	sine	or	square	wave	signal	that
meets	the	specifications	provided	in
the	NI	655x	specifications.	The	CLK
IN	signal	must	be	free	running.

PXI_STAR
(NI	PXI-
6551/6552
only)

Acquisition,
Generation

Backplane The	PXI_STAR	connector	can	be
used	as	an	external	frequency	input
channel,	allowing	you	to	provide	an
alternate	frequency	as	the	Sample
clock	rate.	The	PXI_STAR	signal
specifications	are	provided	in	the
NI	655x	specifications.	The
PXI_STAR	signal	must	be	free

running.

Reference	Clock
Clock
Source Used	In Location Description

NONE Acquisition,
Generation

Internal When	no	reference	clock	source	is
selected,	the	PLL	is	not	locked	and
the	On	Board	Clock	has	no	known
phase	relationship	to	any	other
clocks	in	the	system.

CLK	IN Acquisition,
Generation

Front
panel
SMB	jack
connector

The	CLK	IN	SMB	jack	can	be	used
to	provide	an	external	reference
clock	for	the	PLL.	The	CLK	IN	signal
can	be	any	sine	or	square	wave
signal	that	meets	the	specifications
provided	in	the	NI	655x
specifications.	The	CLK	IN	signal
must	be	free	running.

PXI_CLK10
(NI	PXI-
6551/6552
only)

Acquisition,
Generation

PXI
trigger
bus

The	PXI	Clock	10	line	exists	on	the
PXI	backplane	and	provides	a
10	MHz	reference	clock	to	all	slots
in	the	chassis.	The	PLL	can	be
configured	to	lock	to	this	signal.

RTSI	7
(NI	PCI-
6551/6552
only)

Acquisition,
Generation

RTSI
trigger
bus

The	Onboard	Reference	Clock	can
be	routed	to	RTSI	7	to	provide	a
10	MHz	reference	clock	signal	to	the
NI	655x	and	other	devices	that
share	the	RTSI	bus.	The	PLL	can	be
configured	to	lock	to	this	signal.

STROBE
Clock
Source Used	In Location Description

STROBE Acquisition DDC
connector

STROBE	is	intended	for	use	as	the
Sample	clock	for	dynamic	acquisition
sessions	when	source-synchronous
transfers	are	desired	(that	is,	when	the
data	and	clock	travel	together	through
the	cable	from	the	DUT	to	the	NI	655x).
The	STROBE	signal	must	be	a	free-
running	square	wave	clock.	STROBE	is
sampled	at	the	same	voltage
thresholds	as	the	dynamic	acquisition
data	lines.

Exporting	a	Clock
The	NI	655x	provides	several	resources	for	exporting	clocks.	The
Clocking	block	diagram	shows	how	the	NI	655x	exports	these	clocks.

Note		As	shown	in	the	Clocking	block	diagram,	it	is	possible	to
export	both	the	reference	clock	and	the	Sample	clock	at	the	same
time	if	you	route	the	Reference	clock	to	CLK	OUT	and	the	Sample
clock	to	DDC	CLK	OUT.

For	information	about	using	NI-HSDIO	to	export	clocks,	refer	to	the
niHSDIO	Export	Signal	VI	or	the	niHSDIO_ExportSignal	function.
The	following	table	summarizes	the	possible	exported	clock	options.

Clock Destination Description
Sample	Clock DDC	CLK

OUT
DDC	CLK	OUT	on	DDC
connector

CLK	OUT CLK	OUT	SMB	jack
connector

Reference	Clock CLK	OUT CLK	OUT	SMB	jack
connector

Onboard	Reference	Clock	(NI
PCI-655x	only)

RTSI	7 RTSI	trigger	bus
channel	7

Sample	Clock
The	Sample	clock	can	be	exported	to	one	of	two	destinations:	the
DDC	CLK	OUT	pin	on	the	DDC	connector	or	the	CLK	OUT	SMB	jack
connector.

DDC	CLK	OUT—The	Sample	clock	can	be	exported	to	the	CLK
OUT	pin	on	the	DDC	connector.	The	exported	Sample	clock	is
generated	at	the	same	voltage	levels	specified	for	dynamic
generation.	For	dynamic	generation	sessions,	exporting	the
Sample	clock	to	this	connector	allows	for	source	synchronous
clocking	by	routing	the	Sample	clock	through	the	same	cable	and
propagation	delay	characteristics	as	the	generated	data.
CLK	OUT—The	Sample	clock	can	be	exported	to	the	CLK	OUT
SMB	connector.	The	exported	Sample	clock	is	generated	at	the
same	voltage	levels	specified	for	dynamic	generation.

You	can	export	the	Sample	clock	to	either	the	DDC	connector	or	the	CLK
OUT	SMB	jack	connector,	but	not	at	the	same	time.

Reference	Clock
If	you	configure	a	Reference	clock	for	the	PLL	on	the	NI	655x,	you	can
export	the	reference	clock	to	the	CLK	OUT	SMB	jack	connector.	The
exported	reference	clock	operates	at	3.3	V	logic,	independent	of	the	rest
of	your	programmed	channels,	DIO<0..19>.

Onboard	Reference	Clock
If	you	are	using	an	NI	PCI-655x,	you	can	export	the	10	MHz	onboard
reference	clock	to	RTSI	7	on	the	RTSI	trigger	bus.	You	can	then	use	a
RTSI	cable	to	connect	this	signal	to	other	PCI	devices.

Channel	Interface
The	NI	655x	has	20	channels.	Each	channel	is	independently
configurable	for	generation,	acquisition,	or	simultaneous	generation	and
acquisition	operations.	Generation	and	acquisition	voltage	levels	on	the
NI	655x	are	independently	programmable—you	can	select	one	set	of
voltage	levels	for	all	generation	drivers	and	a	different	set	of	voltage
levels	for	all	acquisition	comparators.
The	following	topics	provide	more	information	about	the	channel
interface:

Front	Panel	and	Connector	Pinout
LED	Indicators

Front	Panel	and	Connector	Pinout
The	NI	655x	front	panel,	shown	below,	has	three	SMB	jack	connectors
and	one	68-pin	Digital	Data	&	Control	(DDC)	VHDCI	connector.	The	SMB
jack	connectors	are	described	in	the	SMB	Jack	Connector	Names	and
Descriptions	table.	The	DDC	connector	signals	are	described	in	the	DDC
Connector	Names	and	Descriptions	table.

SMB	Jack	Connector	Names	and	Descriptions

Connector Signal	Name Signal
Type Signal	Description

CLK	IN Reference/Clock
Input

Control External	reference	clock	used	for
the	PLL	or	for	the	external	Sample
clock	used	for	pattern	generation
and/or	acquisition.

PFI	0 Programmable
Function
Interface	(PFI)	0

Control Input	terminal	to	the	NI	655x	for
external	triggers	or	the	output
terminal	from	the	NI	655x	for
events.

CLK	OUT Reference/Clock
Output

Control Terminal	for	the	exported	PLL
Reference	clock	or	the	exported
Sample	clock.

DDC	Connector	Names	and	Descriptions

Pins Signal
Name

Signal
Type

Signal
Description

33 DDC	CLK
OUT

Control Terminal	for	the
exported	Sample
clock.

67 STROBE Control External	Sample
clock	source	which
can	be	used	for
dynamic
acquisition.

13,	15,	17,	19,	21,	23,	25,	27,
29,	31,	47,	49,	51,	53,	55,	57,
59,	61,	63,	65

DIO	<0..19> Data Bidirectional	digital
I/O	data	channels
0	through	19.

26,	30,	64 PFI<1..3> Control Input	terminals	to
the	NI	655x	for
external	triggers	or
output	terminals
from	the	NI	655x
for	events.

2,	4,	6,	10,	12,	14,	16,	18,	20,
22,	24,	28,	32,	34,	36,	38,	40,
42,	44,	46,	48,	50,	54,	56,	58,
62,	66

GND Ground Ground	reference
for	signals.

1,	3,	5,	7,	8,	9,	11,	35,	37,	39,
41,	43,	45,	52,	60

RESERVED N/A These	terminals
are	reserved	for
future	use.	Do	not
connect	to	these
pins.

LED	Indicators	(PXI	Only)
The	NI	PXI-655x	has	two	LED	indicators	on	the	front	panel,	labeled
ACCESS	and	ACTIVE.	The	following	tables	describe	what	each	LED
color	indicates.

ACTIVE	LED
Color Indications
Off Device	not	armed,	not	triggered,	or	experiencing	an	error.
Amber Device	armed	and	awaiting	Start	trigger.	If	performing	a	dynamic

acquisition	operation,	the	device	may	be	acquiring	pretrigger
samples.

Green Device	received	Start	trigger.
Red Error	condition.

ACCESS	LED
Color Indications
Off Device	not	ready.
Amber Device	being	accessed	by	software.
Green Device	ready	to	be	programmed.
Red Running	the	niHSDIO	Self	Test	VI	or	calling	the

niHSDIO_self_test	function	produced	a	failure.

Acquisition
Expand	this	book	for	more	information	about	static	and	dynamic
acquisition	using	the	NI	655x.

Static	Acquisition
Static	acquisition	is	a	software-timed	(nonclocked)	operation.	When
performing	static	acquisition	operations,	the	NI	655x	returns	the	current
logic	state	of	the	configured	data	channels	each	time	a	static	read	is
requested.
You	can	perform	static	acquisition	operations	at	any	time	on	channels
configured	for	static	acquisition.	You	can	also	use	static	acquisition	to
read	back	the	current	value	on	channels	configured	for	static	generation
or	dynamic	generation	at	any	time.
For	more	information	about	performing	static	acquisition	in	NI-HSDIO,
refer	to	Reading	and	Writing	Static	Data.

Dynamic	Acquisition
The	NI	655x	provides	flexible	acquisition	capabilities	for	up	to	20-bit	wide
patterns	with	programmable	voltage	thresholds	using	either	an	internal	or
external	clock	source.	The	NI		655x	dual	comparator	architecture	allows
for	data	interpretation	based	on	the	acquired	voltage	level	relationship	to
both	the	Acquisition	Voltage	Low	and	Acquisition	Voltage	High
thresholds.	External	triggers	can	control	the	acquisition	operation,	and
the	Pattern	Acquisition	Engine	can	route	those	control	signals	to	be
shared	with	other	devices.
Refer	to	Dynamic	Acquisition	Clock	Sources	for	information	about
available	clocks	for	a	dynamic	acquisition	operation.
For	information	about	defining	acquisition	resources	in	NI-HSDIO,	refer	to
Acquisition	Configuration	Functions	to	learn	which	VIs	and	C	functions
are	available	for	your	application.

Dynamic	Acquisition	Clock	Sources
Dynamic	acquisition	is	a	clocked	operation	driven	by	one	of	several
clocking	resources.	Refer	to	the	main	Clocking	diagram	for	this	device	to
see	a	block	diagram	for	these	clock	resources.

Dynamic	Acquisition	Timing	Diagrams
The	following	diagram	illustrates	the	data	positions	available	when
acquiring	waveforms	with	the	NI	655x.	For	simplicity,	the	delayed	data	is
shown	delayed	by	25%	of	the	clock	period;	however,	this	value	can	vary
between	0%	and	100%.

Using	the	Sample	Clock	as	the	Acquisition	Clock

Using	STROBE	as	the	Acquisition	Clock

Dynamic	Acquisition	Triggers	and	Events
The	following	table	describes	the	relationship	of	triggers	and	events	in	a
dynamic	acquisition	operation.	The	sequence	of	triggers	and	events	is
shown	in	the	Dynamic	Acquisition	State	Diagram.
Triggers	are	received	synchronously	by	the	Pattern	Acquisition	Engine.
The	Ready	for	Start	event	and	all	re-exported	triggers	are
asynchronously	generated	by	the	Pattern	Acquisition	Engine.

Trigger/Event Received	From Exported	To
Start	Trigger The	Start	trigger	can	be	received	from

a	rising	or	falling	edge	on	PFI	<0..3>,
RTSI<0..7>	(PCI	devices),
PXI_TRIG<0..7>	(PXI	devices),	or	by
matching/not-matching	a	pattern
received	on	DIO<0..19>.	The	Start
trigger	can	also	be	sent	by	software.

The	Start	trigger
can	be	exported
to	PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Reference
Trigger

The	Reference	trigger	can	be
received	on	a	rising	edge	on
PFI	<0..3>	RTSI<0..7>	(PCI	devices),
or	PXI_TRIG<0..7>	(PXI	devices),	or
by	matching/not-matching	a	pattern
received	on	DIO<0..19>.	The
Reference	trigger	can	also	be	sent	by
software.

The	Reference
trigger	can	be
exported	to
PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Advance
Trigger

The	Advance	trigger	can	be	received
from	a	rising	or	falling	edge	on
PFI	<0..3>,	RTSI<0..7>	(PCI
devices),	PXI_TRIG<0..7>	(PXI
devices),	or	by	matching/not-
matching	a	pattern	received	on
DIO<0..19>.	The	Start	trigger	can
also	be	sent	by	software.

The	Advance
trigger	can	be
exported	to
PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Pause	Trigger The	Pause	trigger	can	be	received
from	PFI<0..3>,	RTSI<0..7>	(PCI
devices),	PXI_TRIG<0..7>	(PXI
devices),	or	by	matching/not-

—

matching	a	pattern	received	on
DIO<0..19>.

Ready	for
Start	Event

— The	Ready	For
Start	event	can	be
exported	to
PFI<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Ready	for
Advance
Event

— The	Ready	For
Advance	event
can	be	exported
to	PFI<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

End	of	Record
Event

— The	End	of
Record	event	can
be	exported	to
PFI<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Generation
Expand	this	book	for	more	information	about	static	and	dynamic
generation	using	the	NI	655x.

Static	Generation
Static	generation	is	a	software	timed	(nonclocked)	operation	and	can	be
applied	to	any	number	of	the	available	DIO<0..19>	channels.	When
performing	a	static	generation	operation,	the	NI	655x	sets	the	current
state	of	the	configured	data	channels	to	the	requested	logic	state—high
level	or	low	level.	NI	655x	devices	support	the	open	collector	drive	type,
which	means	that	they	can	set	the	configured	data	channels	to	a	high-
impedance	(Z)	state	when	the	channels	are	configured	to	drive	the
Generation	Voltage	High	Level.
Refer	to	Voltage	Ranges	and	Settings	for	more	information	about	voltage
levels	for	each	logic	state.
Static	generation	can	be	done	on	any	number	of	channels,	provided	that
those	channels	are	not	configured	for	a	dynamic	operation.	To	statically
set	the	state	of	dynamic	generation	channels,	refer	to	Initial	and	Idle
States.
For	more	information	about	performing	static	generation	with	NI-HSDIO,
refer	to	Reading	and	Writing	Static	Data.

Dynamic	Generation
Dynamic	generation	is	a	clocked	operation	where	binary	data	is	sent	from
the	NI	digital	waveform	generator/analyzer	to	the	DUT	across	multiple
digital	channels.
The	NI	655x	can	generate	complex	digital	patterns	up	to	20	bits	wide	at	a
variety	of	voltage	levels	synchronous	to	any	of	several	clock	sources.
The	data	can	be	generated	as	simple	waveforms	or	based	on	complex
scripts.	External	triggers	can	control	the	data	generation,	and	the	Pattern
Generation	Engine	can	export	several	types	of	events	to	indicate	the
progress	of	the	generation.
In	addition,	the	NI	655x	allows	for	precise	subperiod	timing	control
between	the	generated	data	and	the	exported	Sample	clock.	All	these
options	make	the	NI	655x	a	versatile	digital	pattern	generator.
NI	655x	devices	support	the	open	collector	drive	type,	which	means	that
they	can	set	the	configured	data	channels	to	a	high-impedance	(Z)	state
when	the	channels	are	configured	to	drive	the	Generation	Voltage	High
Level.

Dynamic	Generation	Clock	Sources
Dynamic	generation	is	a	clocked	operation.	The	dynamic	generation
operation	is	clocked	by	one	of	several	clocking	resources.	Your
application	needs	may	determine	which	source	you	should	use.	Refer	to
the	main	Clocking	diagram	to	see	a	block	diagram	for	these	clock
resources.
The	following	information	discusses	additional	considerations	for	using
these	clocking	resources	for	dynamic	generation:

On	Board	Clock
The	default	clock	source	for	dynamic	generation	sessions	is	the
On	Board	Clock.	This	clock	can	be	locked	to	a	reference	clock	to
synchronize	operations	across	multiple	devices	or	can	be	used
without	a	reference	clock	when	multidevice	synchronization	is	not
required.	The	On	Board	Clock	is	derived	from	integer	divisors	of
the	200	MHz	VCXO.	Refer	to	the	NI	655x	specifications	for
information	about	the	possible	On	Board	Clock	frequencies.
You	can	configure	the	On	Board	Clock	source	in	the	following
ways:

Free-running,	nonphase-locked—In	this	mode,	the	VCXO
is	used	at	its	fundamental	frequency,	allowing	for	a	stable
and	accurate	200	MHz	clock.	This	configuration	is	the
default	setting,	and	it	is	most	useful	when	only	one	NI	655x
is	in	the	system	or	when	multidevice	synchronization	is	not
required.
Phase-Locked—The	On	Board	Clock	source	can	be	locked
to	a	reference	clock	using	the	PLL	circuit	to	ensure	that
Sample	clock	alignment	across	devices	is	achieved.	In	this
operation	mode,	the	PLL	circuit	must	be	provided	a	precision
source	to	which	it	can	lock.	The	On	Board	Clock	source	can
be	locked	to	one	of	the	following	reference	clock	sources:

PXI_CLK10	(NI	PXI-6551/6552	only)/RTSI	7	(NI	PCI-
6551/6552)—The	PXI	standard	defines	a	precision
10	MHz	reference	(PXI_CLK10)	to	be	distributed
across	the	backplane	to	each	device	in	the	PXI
chassis.	If	you	are	using	PXI,	this	10	MHz	backplane
clock	is	used	as	the	reference	for	the	PLL	in	this	mode

of	PLL	operation.	If	you	are	using	PCI,	drive	the
10	MHz	On	Board	Reference	Clock	onto	RTSI	7,	and
configure	RTSI	7	as	the	reference	clock	source.
CLK	IN—If	you	want	to	provide	your	own	reference,
you	can	provide	an	external	source	on	the	CLK	IN
SMB	connector	to	which	the	PLL	can	lock.	Using	an
external	reference	allows	you	to	easily	synchronize
clocks	across	instruments	within	and	outside	of	the
system.	Refer	to	the	NI	655x	specifications	for
information	about	the	possible	reference	clock
frequencies.

External	Source	(CLK	IN)
Alternatively,	your	dynamic	generation	operation	can	be	driven
from	an	external	Sample	clock	source.	Using	an	external
frequency	generator,	you	can	drive	dynamic	generation	operations
at	any	frequency	within	the	NI	655x	specifications.	Frequency
limitations	and	acquisition	levels	are	listed	in	NI	655x
specifications.
PXI_STAR	(NI	PXI-6551/6552	only)
The	PXI	specification	allocates	resources	for	high-speed	precision
clock	and	trigger	routing	across	the	PXI	backplane.	The	NI	PXI-
655x	can	use	this	resource	to	clock	your	dynamic	generation	task.
An	external	source	can	drive	this	resource	at	any	suitable
frequency,	allowing	the	NI	PXI-655x	to	operate	at	noninteger
divisors	of	200	MHz,	similar	to	how	it	operates	using	an	external
clock	source	(CLK	IN).

For	a	summary	of	these	and	other	clock	sources,	refer	to	Clock	Sources
Summary.

Dynamic	Generation	Timing	Diagrams
The	following	figure	illustrates	the	data	and	clock	positions	available
when	generating	waveforms	with	the	NI	655x.	For	simplicity,	the	data	is
shown	delayed	by	25%	of	the	clock	period;	however,	this	value	can	vary
between	0%	and	100%.

Note		Data	generation	on	the	rising	clock	edge,	falling	clock	edge,
or	delayed,	is	per	channel	selectable.	However,	in	the	delayed
case,	the	delay	value	is	constant	across	all	delayed	channels.

For	more	information	about	using	NI-HSDIO	to	adjust	the	data	position,
refer	to	Configuring	Data	Position.

Dynamic	Generation	Triggers	and	Events
The	following	table	describes	the	relationship	of	triggers	and	events	in	a
dynamic	acquisition	operation.	The	sequence	of	triggers	and	events	is
shown	in	the	Dynamic	Generation	State	Diagram.
Start,	Pause,	and	Script	triggers	are	received	asynchronously	by	the
Pattern	Generation	Engine.	Cable	propagation	delays	and	pipeline
delays	can	cause	the	Pattern	Generation	Engine	to	take	multiple	clock
cycles	to	respond	to	a	trigger.	Refer	to	NI	655x	specifications	for	more
information.	The	Ready	For	Start,	Data	Active,	and	Marker	0	events	are
generated	by	the	Pattern	Generation	Engine	synchronous	to	the	data
generation.
The	following	table	provides	information	about	how	these	triggers	and
events	can	arrive	at	and	be	exported	from	the	NI	655x.

Trigger/Event Received	From Exported	To
Start	Trigger The	Start	trigger	can	be	received	from

a	rising	or	falling	edge	on	PFI	<0..3>,
RTSI<0..7>	(PCI	devices),	or
PXI_TRIG<0..7>	(PXI	devices).	The
Start	trigger	can	also	be	sent	by
software.

The	Start	trigger
can	be	exported
to	PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Pause	Trigger The	Pause	trigger	is	level-based	and
can	be	received	on	PFI<0..3>,
RTSI<0..7>	(PCI	devices),	or
PXI_TRIG<0..7>	(PXI	devices).	The
Pause	trigger	can	also	be	sent	by
software.

Note		When	the	Pause	trigger
is	asserted,	the	NI	655x	Pattern
Generation	Engine	may	take
several	clock	cycles	to	respond
because	of	cable	propagation
delay	and	the	pipelining	in	the
system.	Refer	to	the	NI	655x
specifications	for	more

The	Pause
trigger	can	be
exported	to
PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

information.

Script	Trigger
<0..3>

Four	Script	triggers	can	be	edge-	or
level-based	and	can	be	received	on
PFI	<0..3>,	RTSI<0..7>	(PCI	devices),
or	PXI_TRIG<0..7>	(PXI	devices).	The
Script	trigger	can	also	be	sent	by
software.

The	Script	trigger
can	be	exported
to	PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Ready	for
Start	Event

— The	Ready	For
Start	event	can
be	exported	to
PFI<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Data	Active
Event

— The	Data	Active
event	can	be
exported	to
PFI	<0..3>.

Marker	Event
<0..3>

— A	Marker	event
can	be	exported
to	PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Per	Cycle	Tristate
The	NI	655x	is	capable	of	tristating	channels	on	a	per	pin,	per	cycle	basis
while	generating	waveforms.	In	addition	to	the	standard	digital	states	of	0
and	1,	the	NI	655x	digital	waveforms	also	support	the	Z	state,	so	during
each	clock	cycle	(sample)	a	channel	can	drive	low,	drive	high,	or	go	to	a
high-impedance	state.
To	use	this	feature,	write	your	waveforms	using	the	digital	waveform	data
type	(WDT).	For	more	information	about	writing	digital	data	using	the
digital	waveform	data	type,	refer	to	Digital	Waveform	Data
Representation.
The	NI	655x	stores	information	about	which	channels	to	tristate	in	a
section	of	onboard	memory	that	is	separate	from	the	waveform	data.	The
NI	655x	implementation	of	per	pin,	per	cycle	tristate	is	optimized	for
memory	usage	so	that	each	distinct	combination	of	channels	to	tristate	is
stored	only	once	in	memory.	Thus,	if	a	waveform	tristates	the	same
combination	of	channels	at	various	samples	throughout	the	waveform,
only	one	memory	location	of	the	tristate	memory	is	used.	The	tristate
memory	can	store	up	to	4,095	distinct	combinations	of	channels	to
tristate.

Note		If	the	input	impedance	for	a	channel	is	configured	for	50	Ω,
the	channel	has	a	50	Ω	impedance	connection	to	ground.	Thus,
when	the	line	is	set	to	tristate,	this	connection	pulls	the	channel	to
ground	instead	of	placing	the	channel	in	a	high-impedance	state.

Hardware	Comparison
Hardware	comparison	allows	the	NI	655x	to	verify	that	a	DUT	returns	the
correct	response	data	under	different	use	cases	and	stimulus	data.

Note		Real-time	hardware	comparison	is	supported	with	only	the
NI	655x	devices.	Other	NI	digital	waveform	generator/analyzers,
such	as	the	NI	654x/656x	support	acquiring	the	data	into	PC
memory	for	analysis.

There	are	two	primary	methods	for	comparing	acquired	response	data
with	expected	data.	With	the	first	method,	the	NI	655x	captures	the	actual
response	data	into	PC	memory	and	uses	software	to	post-process	the
results.	The	software	uses	only	the	two	basic	logic	states,	0	and	1,	to
configure	the	testers	stimulus	data.	With	the	second	method,	you	can
preload	the	NI	655x	with	both	stimulus	and	expected	response	data	and
make	real-time	comparisons	as	data	is	acquired.	Whenever	a	waveform
contains	a	comparison	logic	state	(H	or	L),	then	the	acquired	response
data	is	compared	to	the	expected	response.	You	can	choose	whether	this
real-time	hardware	comparison	operation	drives	and	compares	data
(Stimulus	and	Expected	Response	mode)	or	whether	it	only	acquires	and
compares	(Expected	Response	Only	mode).
Data	comparison	logic	in	the	onboard	FPGA	connects	the	generation	and
acquisition	circuitry.	The	data	decoder	receives	data	from	onboard
memory	and	enables/disables	the	driver	based	on	the	logic	state	of	each
sample.	The	decoder	transfers	the	expected	response	to	the	acquisition
engine.	A	FIFO	allows	the	alignment	of	the	actual	response	with	the
expected	response.	If	an	error	is	detected	during	the	comparison,	then
information	on	the	fault	is	stored	separately	from	the	acquired	data	so	the
application	software	can	retrieve	both	types	of	information	for	further
analysis.
The	device	stores	the	following	information	for	each	fault	detected:

Sample	number	of	the	fault
Channel(s)	at	fault
Total	number	of	repeated	errors	(useful	if	the	Filter	Repeated
Sample	Errors	property	or	the
NIHSDIO_ATTR_HWC_FILTER_REPEATED_SAMPLE_ERRORS
attribute	is	enabled)

Related	Topics:
Digital	Logic	States
Comparing	Response	Data	with	Expected	Data

Hardware	Comparison	Triggers	and	Events
Hardware	comparison	supports	the	triggers	and	events	used	in	NI	655x
acquisition	and	generation	sessions.
In	addition,	the	Sample	Error	event	is	also	used	in	hardware	comparison
to	indicate	when	the	device	detects	a	sample	that	is	in	error.
Related	Topics:

Dynamic	Acquisition	Triggers	and	Events
Dynamic	Generation	Triggers	and	Events
Eliminating	Round	Trip	Delay

NI	656x
The	NI	656x	is	a	16-channel	digital	I/O	device	that	you	can	use	as	a
PC/peripheral	device	interface,	pattern	generator,	pattern	analyzer,	or
stimulus-response	tester.	The	NI	6561	has	a	maximum	Sample	clock
frequency	of	100	MHz,	and	the	NI	6562	has	a	maximum	Sample	clock
frequency	of	200	MHz.	Using	the	data	rate	multiplier	of	these	devices,
you	can	generate	and	acquire	data	at	200	Mb/s	or	400	Mb/s,
respectively.
The	NI	656x	also	provides	the	following	features:

Sophisticated	timing	engine	to	maintain	and	measure	the	timing
parameters	of	a	DUT
LVDS	voltage	levels	for	high-speed	interfacing	to	devices
Data	channels	with	per	channel	software	direction	control
Selectable	single-ended	LVCMOS	or	differential	LVDS
configuration	for	PFI	channel	3	on	the	DDC	connector
Double-data	rate	(DDR)	or	single-data	rate	(SDR)	data	rate
multiplier	options
Deep	onboard	memory	with	triggering	and	pattern	sequencing
capabilities
Ability	to	use	NI-TClk	to	synchronize	multiple	devices

You	can	use	the	internal	On	Board	Clock	or	import	an	external	clock
through	the	front	panel.	You	can	also	shift	the	generated	data,	acquired
data,	and	exported	Sample	clock	relative	to	the	onboard	clock	for	clock
frequencies	above	25	MHz,	which	is	critical	when	accounting	for
propagation	delays	and	setup-and-hold	times	in	the	DUT.
Expand	this	book	for	more	information	about	NI	656x	hardware-related
topics.

ms-its:nitclk.chm::/NI_TClk_Help.html

Hardware	Architecture
Expand	this	book	for	more	information	about	the	NI	656x	hardware
architecture.

Block	Diagram
The	following	figure	is	a	block	diagram	illustrating	the	main	functional
units	and	data	flow	of	the	NI	656x.	The	text	that	follows	the	figure
describes	the	basic	elements	of	the	diagram	and	provides	links	to
sections	with	more	detailed	information	about	some	of	the	blocks.
Click	hotspots	within	the	graphic	for	more	detailed	information
about	that	functional	block.

The	Clocking	module	selects	and	distributes	the	clocks	for	the	dynamic
generation	and	dynamic	acquisition	operations.
For	dynamic	generation	operations,	the	user-supplied	data	is	loaded	from
the	host	computer	memory	into	the	onboard	Generation	Memory.	The
Pattern	Generation	Engine	retrieves	data	from	the	Generation	Memory
and	executes	the	script	functionality	while	interacting	with	the	associated
Trigger	and	Event	control	module.	The	Pattern	Generation	Engine	then
sends	the	data	to	the	Pattern	Generation	Timing	and	Control	module,

where	the	data	is	given	the	selected	data	position	and	data	delay	and	is
then	sent	to	the	Channel	Electronics	drivers.	The	Channel	Electronics
drivers	generate	the	data	at	LVDS	voltage	levels.
For	dynamic	acquisition	operations,	signals	arrive	at	the	Channel
Electronics	circuitry,	where	the	signal	levels	are	interpreted	appropriately
for	LVDS.	The	Timing	and	Control	module	samples	the	data	using	the
selected	clock,	data	position,	and	data	delay	values	and	passes	the	data
to	the	Pattern	Acquisition	Engine.	The	Pattern	Acquisition	Engine	and	the
Trigger	and	Event	Control	module	recognize	triggers	and	determine
when	the	data	should	be	stored	into	Acquisition	Memory.	The	acquired
data	can	then	be	fetched	by	the	host	computer.

Channel	Electronics
The	channel	electronics	of	NI	656x	devices	consist	of	LVDM	buffers	and
the	appropriate	termination	resistors.	LVDM	is	an	LVDS-compatible
standard	that	allows	for	a	100	Ω	parallel	termination	at	the	source	and
destination,	which	provides	for	the	software-selectable	direction	control
feature	of	the	NI	656x.	Each	I/O	channel	is	capable	of	simultaneously
driving	and	receiving	data.
The	following	figure	provides	a	basic	block	diagram	for	the	channel
electronics.	Refer	to	NI	656x	Block	Diagram	for	a	picture	of	how	the
channel	electronics	circuitry	fits	into	the	overall	block	diagram.

Dynamic	Generation
For	dynamic	generation	operations,	the	data	signal	appears	at	the	buffer
input	after	the	Pattern	Generation	Timing	and	Control	module	gives	the
data	the	selected	data	position	and	data	delay.	The	buffer	converts	the
data	signal	to	LVDS	voltage	levels	before	sending	the	data	signal	to	the
DDC	connector	on	the	NI	656x	front	panel.
The	buffer	can	be	set	to	high-impedance	generation	with	the	tristate
control	line.	The	tristate	control	cannot	be	set	automatically	by	the	Initial
and	Idle	States.	Set	tristate	programmatically	with	the	niHSDIO	Tristate
Channels	VI	or	niHSDIO_TristateChannels	function.
Protection	for	the	channel	electronics	is	critical	for	guarding	against
overvoltage	situations	and	is	built	into	the	LVDM	buffers.	Refer	to	Input
Protection	for	more	information	about	this	portion	of	the	channel
electronics.

Note		LVDM	buffers	drive	LVDS	logic	levels	across	100	Ω	source
and	100	Ω	destination	termination	loads	(50	Ω	total	DC	load).

Dynamic	Acquisition
Patterns	acquired	by	the	NI	656x	are	received	using	a	differential
receiver.	Refer	to	the	NI	656x	Specifications	for	the	input	voltage
thresholds	and	ranges	for	LVDS.
The	output	of	the	receiver	is	sampled	by	the	Pattern	Acquisition	Timing
and	Control	module	before	being	sent	to	the	Pattern	Acquisition	Engine
for	storage	into	Acquisition	Memory.
The	input	impedance	is	differential	100	Ω.

Voltage	Ranges	and	Settings
The	NI	656x	uses	the	following	three	voltage	logic	families	on	various
pins:

LVDS—Data	channels,	PFI<1..3>,	clock	inputs/outputs
LVPECL—Exported	Sample	clock
3.3V	Logic/TTL/CMOS—PFI	0,	PFI	3

All	data	channels	on	NI	656x	devices	are	LVDS	compliant.	The	following
table	describes	which	terminal	configurations	are	supported	by	the	PFI	
channels	on	the	device.

PFI
Channel Location Terminal	Configuration

0 NI	656x	front
panel

TTL/CMOS	only

1,	2 DDC	connector LVDS	only
3 DDC	connector LVDS	or	TTL/CMOS,	software-

selectable

Triggers	and	events	must	be	individually	configured	to	use	LVDS	or
single-ended	terminal	configurations	using	NI-HSDIO.
When	the	Sample	clock	is	exported	to	the	DDC	connector,	both	an	LVDS
and	an	LVPECL	version	of	the	clock	signal	are	exported.
You	do	not	need	to	configure	voltage	levels	to	use	the	NI	656x.	Using	the
NI-HSDIO	Configure	Voltage	functions	or	VIs	with	the	NI	656x	returns	an
error.
For	more	information	about	voltage	level	ranges	and	resolutions,	refer	to
NI	656x	specifications.

Logic	Families
The	NI	656x	PFI	3	channel	can	be	independently	set	to	one	of	two
modes:	LVDS	or	single-ended.	The	actual	voltage	levels	defined	by	these
logic	families	are	defined	in	the	NI	656x	specifications.	The	PFI	terminal
configuration	is	software-selectable	using	NI-HSDIO.
Refer	to	Voltage	Ranges	and	Settings	(NI	656x)	for	more	information
about	the	logic	families	supported	by	the	other	PFI	channels.
Related	Topics:

Logic	Families	Overview
Differential	Voltage	Levels
Voltage	Ranges	and	Settings	(NI	656x)

Input	Impedance
The	input	impedance	of	the	NI	656x	is	100	Ω	differential.	Selectable	input
impedance	is	only	available	with	the	NI	655x	products.
Refer	to	Configuring	Input	Impedance	for	more	information	on	configuring
this	property.

Source	Impedance
The	NI	656x	LVDS	data	and	event	generation	channels	have	a	100	Ω
differential	source	impedance.	For	generation	operations,	terminate	the
transmission	line	with	a	100	Ω	parallel	resistance.
Because	the	NI	656x	interface	cable	(NI	SHB12X-B12X)	is	a	100	Ω
differential	transmission	line,	when	you	use	LVDS,	you	can	build	matched
impedance	systems	with	a	100	Ω	differential	termination	as	the	load.
LVDS	specifications	of	the	NI	656x	are	expected	across	100	Ω	source	in
parallel	with	100	Ω	destination	termination	(50	Ω	DC	load).

Data	Rate	Multiplier
The	NI	656x	can	be	configured	for	single	data	rate	(SDR)	or	double	data
rate	(DDR)	operation	by	setting	the	data	rate	multiplier	for	your
acquisition	and/or	generation	session	in	NI-HSDIO.	The	data	rate
multiplier	can	be	independently	configured	for	the	generation	and
acquisition	sessions.

Single	Data	Rate	(SDR)
When	the	data	rate	multiplier	is	configured	for	SDR	operation,	generation
and	acquisition	sessions	can	run	on	all	16	channels	of	the	NI	656x.
Direction	control	is	software-specified.

Double	Data	Rate	(DDR)
When	the	data	rate	multiplier	is	configured	for	DDR	operation,	the	digital
waveform	generator/analyzer	trades	channel	count	for	data	rate	by
generating	or	acquiring	on	half	the	number	of	channels	but	at	twice	the
rate.	This	rate	is	achieved	by	generating	data	on	both	the	rising	and
falling	edge	of	the	Sample	clock.	For	generation	sessions,	the	device
generates	data	on	the	lower	eight	channels	of	the	NI	656x	(DIO	<0..7>),
and	for	acquisition	sessions	the	device	acquires	data	on	the	upper	eight
channels	(DIO	<8..15>).
DDR	mode	has	some	important	implications	for	some	NI	656x
functionality.

Memory	Usage—Memory	size	in	samples	is	effectively	doubled
since	the	data	width	and	channel	count	are	halved.
Marker	Positions—Marker	positions	have	a	quantization	twice
that	of	SDR	mode.	Refer	to	the	NI	656x	specifications	for	more
information	about	quantization.
Waveform	Sizes—The	size	of	the	waveforms	you	save	to	the
onboard	memory	have	a	quantization	twice	that	of	SDR	mode.
Refer	to	the	NI	656x	specifications	for	more	information	about
quantization.
Initial/Idle	States—If	a	channel's	Idle	state	is	configured	for	"hold
last	value,"	the	last	value	held	is	the	last	DDR	data	sample.
Data	Width—Data	width	is	a	function	of	your	data	rate	multiplier.
Since	data	width	refers	to	how	large	your	sample	is	in	bytes,	using
DDR	mode	effectively	halves	your	allowable	data	width.	For
NI	656x	devices,	SDR	operation	would	have	a	data	width	of
2	bytes	per	sample	while	DDR	mode	would	have	a	data	width	of
1	byte	per	sample.

Related	Topics:
Data	Rate	Multiplier	Overview
Single	Data	Rate	(SDR)
Double	Data	Rate	(DDR)
Data	Position	with	DDR
Generation	Considerations	for	DDR
Acquisition	Considerations	for	DDR

Input	Protection
PFI	0	and	3	are	protected	using	diode	clamps	connected	to	positive	and
negative	voltage	supplies.	PFI	0	and	3	are	clamped	to	5	V.
The	following	figure	illustrates	this	circuit.

These	diodes	act	as	open	circuits	unless	the	I/O	voltage	levels	go	above
Vp+	or	below	Vp-.	When	the	I/O	voltage	exceeds	Vp+/Vp-,	the	diodes
become	short	circuits,	clamping	the	input	voltage	to	Vp+/Vp-.	Therefore,
these	diodes	prevent	input	voltages	from	going	more	than	a	diode	drop,
or	approximately	0.5	V,	beyond	the	positive	or	negative	protection	rails.
The	following	diagram	demonstrates	the	effect	of	the	clamp.

DIO	<0..15>,	PFI	<1..2>,	DDC	CLK	OUT	LVDS,	DDC	CLK	OUT	LVPECL,
and	STROBE	are	protected	using	robust	pin	electronics.	Each	channel	is
independently	buffered	using	a	robust	pin	electronic	transceiver.	These
devices	can	protect	against	instantaneous	shock	and	overvoltage	cases.
In	addition	to	the	I/O	circuit	shown	in	the	Channel	Electronics	diagram,
data	channels	have	a	weak	pull-up	resistor	(300	kΩ),	internal	to	the	I/0
buffer,	to	3.3	V.	This	internal	pull-up	resistor	is	a	fail-safe	mechanism
intended	to	set	a	known	state	when	the	receiver	circuit	is	not	being	driven
(tristate).
In	a	tristate	condition,	there	is	an	equivalent	RC	circuit	created	from	3.3	V
to	ground.	This	RC	equivalent	is	the	interaction	between	these	weak	pull-
up	resistors	and	the	capacitive	transmission	media	(a	cable	or	PCB,	for
example).	As	such,	when	the	output	terminals	were	previously	tristated,
some	finite	amount	of	time	passes	between	the	time	when	output
terminals	are	driven	to	when	the	cable	voltage	reaches	a	steady
common-mode	value.	This	time	varies	with	cable	length	and	can	take	as

many	as	several	Sample	clock	periods.

Note		For	this	reason	the	NI	656x	device	does	not	support	high-
impedance	initial	and	Idle	states.	Use	the	niHSDIO	Tristate
Channels	VI	or	the	niHSDIO_TristateChannels	function.

Refer	to	the	NI	656x	specifications	for	details	on	input	protection.

Signal	Routing
The	NI	656x	is	capable	of	sending	and	receiving	signals	through	the	front
panel	and	through	the	PXI	trigger	bus.
The	front	panel	connectors	provide	connectivity	for	the	bidirectional	DIO
channels	as	well	as	for	control	lines	for	sending	and	receiving	clocks,
triggers,	and	events.

Clocking
The	following	figure	shows	how	the	clock	sources	are	routed	to	produce
the	NI	656x	clock	signals.

Clock	Sources	Summary
The	following	tables	describe	the	clock	sources	available	for	the	NI	656x.
These	clock	sources	are	shown	in	the	Clocking	diagram.	For	a	more
general	description	of	these	clocks,	refer	to	Clocks	for	Digital	Waveform
Generator/Analyzers.

Sample	Clock
Clock
Source Used	In Location Description

On	Board
Clock

Acquisition,
Generation

Internal The	NI	656x	provides	a	single	high-
precision	200	MHz	voltage-
controlled	crystal	oscillator	(VCXO)
clock	source.	The	NI	656x	can
generate	any	clock	frequency	of
200	MHz/n,	where	n	is	any	integer
from	1	to	4,194,304	for	the	NI	6562,
and	2	to	4,194,304	for	the	NI	6561.
For	example,	for	the	NI	6562,	the	On
Board	Clock	can	run	at	200	MHz,
100	MHz,	66.67	MHz,	50	MHz,
40	MHz,	33.33	MHz,	28.57	MHz,
25	MHz,	22.22	MHz,	and	so	on.	The
onboard	PLL	allows	the	On	Board
Clock	to	be	phase-locked	to	the
Reference	clock,	if	one	is	provided.

CLK	IN Acquisition,
Generation

Front
panel
SMB	jack
connector

The	CLK	IN	SMB	jack	is	intended	for
use	as	an	external	frequency	input
channel,	allowing	you	to	provide	an
alternate	frequency	as	the	Sample
clock	rate.	The	CLK	IN	signal	can	be
any	sine	or	square	wave	signal	that
meets	the	specifications	provided	in
the	NI	656x	specifications.	The	CLK
IN	signal	must	be	free	running.

PXI_STAR
(NI	PXI-
6561/6562
only)

Acquisition,
Generation

Backplane The	PXI_STAR	connector	can	be
used	as	an	external	frequency	input
channel,	allowing	you	to	provide	an
alternate	frequency	as	the	Sample
clock	rate.	The	PXI_STAR	signal
specifications	are	provided	in	the
NI	656x	specifications.	The
PXI_STAR	signal	must	be	free

running.

Reference	Clock
Clock
Source Used	In Location Description

NONE Acquisition,
Generation

Internal When	no	reference	clock	source	is
selected,	the	PLL	is	not	locked	and
the	On	Board	Clock	has	no	known
phase	relationship	to	any	other
clocks	in	the	system.

CLK	IN Acquisition,
Generation

Front
panel
SMB	jack
connector

The	CLK	IN	SMB	jack	can	be	used
to	provide	an	external	Reference
clock	for	the	PLL.	The	CLK	IN	signal
can	be	any	sine	or	square	wave
signal	that	meets	the	specifications
provided	in	the	NI	656x
specifications.	The	CLK	IN	signal
must	be	free	running.

PXI_CLK10 Acquisition,
Generation

PXI
trigger
bus

The	PXI	Clock	10	line	exists	on	the
PXI	backplane	and	provides	a
10	MHz	reference	clock	to	all	slots
in	the	chassis.	The	PLL	can	be
configured	to	lock	to	this	signal.

RTSI	7
(NI	PCI-
6561/6562
only)

Acquisition,
Generation

RTSI
trigger
bus

The	Onboard	Reference	Clock	can
be	routed	to	RTSI	7	to	provide	a
10	MHz	reference	clock	signal	to	the
NI	654x	and	other	devices	that
share	the	RTSI	bus.	The	PLL	can	be
configured	to	lock	to	this	signal.

STROBE
Clock
Source Used	In Location Description

STROBE Acquisition DDC
connector

STROBE	is	intended	for	use	as	the
Sample	clock	for	dynamic	acquisition
sessions	when	source-synchronous
transfers	are	desired	(that	is,	when	the
data	and	clock	travel	together	through
the	cable	from	the	DUT	to	the	NI	656x).
The	STROBE	signal	must	be	a	free-
running	LVDS	signal.

Exporting	a	Clock
The	NI	656x	provides	several	resources	for	exporting	clocks.	The
Clocking	block	diagram	shows	how	the	NI	656x	exports	these	clocks.

Note		As	shown	in	the	clocking	block	diagram,	it	is	possible	to
export	both	the	Reference	clock	and	the	Sample	clock	at	the	same
time	if	you	route	the	Reference	clock	to	the	CLK	OUT	SMB	jack
connector	and	the	Sample	clock	to	DDC	CLK	OUT	channel	on	the
DDC	connector.	You	cannot	route	the	Sample	clock	to	both
connectors.

For	information	about	using	NI-HSDIO	to	export	clocks,	refer	to	the
niHSDIO	Export	Signal	VI	or	the	niHSDIO_ExportSignal	function.
The	following	table	summarizes	the	possible	exported	clock	options.

Clock Destination Description
Sample	Clock DDC	CLK

OUT
DDC	CLK	OUT	LVDS	and	DDC
CLK	OUT	LVPECL	on	DDC
connector

CLK	OUT CLK	OUT	SMB	jack	connector
Reference	Clock CLK	OUT CLK	OUT	SMB	jack	connector
Onboard	Reference
Clock	(NI	PXI-656x
only)

RTSI	7 RTSI	trigger	bus	channel	7

Sample	Clock
The	Sample	clock	can	be	exported	to	one	of	two	destinations:	the	DDC
connector	or	the	CLK	OUT	SMB	jack	connector.

DDC	CLK	OUT—The	Sample	clock	can	be	exported	to	the
DDC	CLK	OUT	on	the	DDC	connector.	The	exported	Sample	clock
is	generated	at	the	logic	family	voltage	levels	specified	for	dynamic
generation.	For	dynamic	generation	sessions,	exporting	the
Sample	clock	to	this	connector	allows	for	source-synchronous
clocking	by	routing	the	Sample	clock	through	the	same	cable	and
propagation	delay	characteristics	as	the	generated	data.

Note		When	the	Sample	clock	is	exported	to	the	DDC
connector,	both	an	LVDS	and	an	LVPECL	version	of	the
clock	signal	are	exported.

CLK	OUT—The	Sample	clock	can	be	exported	to	the	CLK	OUT
SMB	jack	connector.	Refer	to	the	NI	656x	specifications	for	more
information	about	the	voltage	levels	for	the	exported	Sample	clock.

You	can	export	the	Sample	clock	to	either	the	DDC	connector	or	the	CLK
OUT	SMB	jack	connector,	but	not	at	the	same	time.

Reference	Clock
If	you	configure	a	reference	clock	for	the	PLL	on	the	NI	656x,	you	can
export	the	reference	clock	to	the	CLK	OUT	SMB	jack	connector.	Refer	to
the	NI	656x	specifications	for	more	information	about	the	voltage	levels
for	the	exported	Reference	clock.

Onboard	Reference	Clock
If	you	are	using	an	NI	PCI-656x,	you	can	export	the	10	MHz	onboard
reference	clock	to	RTSI	7	on	the	RTSI	trigger	bus.	You	can	then	use	a
RTSI	cable	to	connect	this	signal	to	other	PCI	devices.

Valid	Data	Delay	Ranges
At	frequencies	higher	than	50	MHz,	you	can	legally	configure	your	data
delay	as	any	fractional	value	from	0	to	1	clock	period.
At	the	25	to	50	MHz	frequency	range,	however,	portions	of	the	Sample
clock	period	do	not	support	the	data	delay.	For	frequencies	between	25
and	50	MHz,	you	can	legally	configure	data	delay	as	any	value	from	0	to
1	Sample	clock	periods	except:

where	tp	represents	the	period	of	the	Sample	clock.

The	following	figure	compares	the	legal	and	illegal	settings	for	delayed
data	position.

Channel	Interface
The	NI	656x	has	16	channels.	Each	channel	is	independently
configurable	for	generation,	acquisition,	or	simultaneous	generation	and
acquisition	operations.	Generation	and	acquisition	logic	families	on	the
NI	656x	are	automatically	configured.	Using	the	NI-HSDIO	Configure
Voltage	functions	or	VIs	with	the	NI	656x	returns	an	error.
The	following	topics	provide	more	information	about	the	channel
interface:

Front	Panel	and	Connector	Pinout
LED	Indicators

Front	Panel	and	Connector	Pinout
The	NI	656x	front	panel,	shown	below,	has	three	SMB	jack	connectors
and	one	73-pin	Digital	Data	&	Control	(DDC)	12x	Infiniband	connector.
The	SMB	jack	connectors	are	described	in	the	SMB	Jack	Connector
Names	and	Descriptions	table.	The	DDC	connector	signals	are	described
in	the	DDC	Connector	Names	and	Descriptions	table.

Note		If	you	design	a	custom	cabling	solution	with	connector
(779157-01)	and	cable	(192744-01),	the	NI	656x	pinout	is	reversed
at	the	end	connector.	For	example,	the	signal	shown	on	pin	1
shown	in	the	previous	figure	would	map	to	pin	73	at	the	end
connector.

SMB	Jack	Connector	Names	and	Descriptions

Connector Signal	Name Signal
Type Signal	Description

CLK	IN Reference/Clock
Input

Control External	reference	clock	used	for
the	PLL	or	for	the	external	Sample
clock	used	for	pattern	generation
and/or	acquisition.

PFI	0 Programmable
Function
Interface	(PFI)	0

Control Input	terminal	to	the	NI	656x	for
external	triggers	or	the	output
terminal	from	the	NI	656x	for
events.

CLK	OUT Reference/Clock
Output

Control Terminal	for	the	exported	PLL
Reference	clock	or	the	exported
Sample	clock.

DDC	Connector	Names	and	Descriptions

Pins Signal
Name

Signal
Type Signal	Description

65 DDC	CLK
OUT	LVDS

Control Positive	terminal	for	the
LVDS	exported	Sample
clock.

66 DDC	CLK
OUT	LVDS*

Control Complementary	terminal
for	the	LVDS	exported
Sample	clock.

71 DDC	CLK
OUT
LVPECL

Control Positive	terminal	for	the
LVPECL	exported	Sample
clock.

72 DDC	CLK
OUT
LVPECL*

Control Complementary	terminal
for	the	LVPECL	exported
Sample	clock.

62 STROBE Control Positive	external	Sample
clock	source	that	can	be
used	for	dynamic
acquisition.

63 STROBE* Control Complementary	external
Sample	clock	source	that
can	be	used	for	dynamic
acquisition.

14,	17,	20,	23,	26,	29,
32,	35,	38,	41,	44,	47,
50,	53,	56,	59

DIO	<0..15> Data Positive	bidirectional
digital	I/O	data	channels	0
through	15.

15,	18,	21,	24,	27,	30,
33,	36,	39,	42,	45,	48,
51,	54,	57,	60

DIO	<0..15>* Data Complementary
bidirectional	digital	I/O
data	channels	0	through
15.

2,	5,	8 PFI<1..3> Control Positive	input	terminals	to
the	NI	656x	for	external
triggers	or	output	terminals
from	the	NI	656x	for
events.

3,	6,	9 PFI<1..3>* Control Complementary	input
terminals	to	the	NI	656x
for	external	triggers	or
output	terminals	for	the
NI	656x	for	events.

Note		Pin	9	is
grounded	when	the
PFI	channel	is
configured	for	the
single-ended
terminal
configuration.

1,	4,	7,	10,	13,	16,	19,
22,	25,	28,	31,	34,	37,
40,	43,	46,	49,	52,	55,
58

GND Ground Ground	reference	for
signals.

11,	12,	68,	69 RESERVED N/A These	terminals	are
reserved	for	future	use.	Do
not	connect	to	these	pins.

LED	Indicators	(PXI	Only)
The	NI	PXI-656x	has	two	LED	indicators	on	the	front	panel,	labeled
ACCESS	and	ACTIVE.	The	following	tables	describe	what	each	LED
color	indicates.

ACTIVE	LED
Color Indications
Off Device	not	armed,	not	triggered,	or	experiencing	an	error.
Amber Device	armed	and	awaiting	Start	trigger.	If	performing	a	dynamic

acquisition	operation,	the	device	may	be	acquiring	pretrigger
samples.

Green Device	received	Start	trigger.
Red Error	condition.

ACCESS	LED
Color Indications
Off Device	not	ready.
Amber Device	being	accessed	by	software.
Green Device	ready	to	be	programmed.
Red Running	the	niHSDIO	Self	Test	VI	or	calling	the

niHSDIO_self_test	function	produced	a	failure.

Acquisition
Expand	this	book	for	more	information	about	static	and	dynamic
acquisition	using	the	NI	656x.

Static	Acquisition
Static	acquisition	is	a	software-timed	(nonclocked)	operation.	When
performing	static	acquisition	operations,	the	NI	656x	returns	the	current
logic	state	of	the	configured	data	channels	each	time	a	static	read	is
requested.
You	can	perform	static	acquisition	operations	at	any	time	on	channels
configured	for	static	acquisition.	You	can	also	use	static	acquisition	to
read	back	the	current	value	on	channels	configured	for	static	generation
or	dynamic	generation	at	any	time.
For	more	information	about	performing	static	acquisition	in	NI-HSDIO,
refer	to	Reading	and	Writing	Static	Data.

Dynamic	Acquisition
The	NI	656x	provides	flexible	acquisition	capabilities	for	up	to	16-bit	wide
patterns	with	LVDS	voltage	levels	using	either	an	internal	or	external
clock	source.	External	triggers	can	control	the	acquisition	operation,	and
the	Pattern	Acquisition	Engine	can	route	those	control	signals	to	be
shared	with	other	devices.
Refer	to	Dynamic	Acquisition	Clock	Sources	for	information	about
available	clocks	for	a	dynamic	acquisition	operation.
For	information	about	defining	acquisition	resources	in	NI-HSDIO,	refer	to
Acquisition	Configuration	Functions	to	learn	which	VIs	and	C	functions
are	available	for	your	application.

Dynamic	Acquisition	Clock	Sources
Dynamic	acquisition	is	a	clocked	operation	driven	by	one	of	several
clocking	resources.	Refer	to	the	main	Clocking	diagram	for	this	device	to
see	a	block	diagram	for	these	clock	resources.

Dynamic	Acquisition	Timing	Diagrams
The	following	diagram	illustrates	the	data	positions	available	when
acquiring	waveforms	with	the	NI	656x	in	SDR	mode.	For	simplicity,	the
delayed	data	is	shown	delayed	by	0.25	clock	periods;	however,	this	value
can	vary	between	zero	and	one,	with	some	exceptions.

Using	the	Sample	Clock	as	the	Acquisition	Clock

Using	STROBE	as	the	Acquisition	Clock

Dynamic	Acquisition	Triggers	and	Events
The	following	table	describes	the	relationship	of	triggers	and	events	in	a
dynamic	acquisition	operation.	The	sequence	of	triggers	and	events	is
shown	in	the	Dynamic	Acquisition	State	Diagram.
Triggers	are	received	synchronously	by	the	Pattern	Acquisition	Engine.
The	Ready	for	Start	event	and	all	re-exported	triggers	are
asynchronously	generated	by	the	Pattern	Acquisition	Engine.

Trigger/Event Received	From Exported	To
Start	Trigger The	Start	trigger	can	be	received	from

a	rising	or	falling	edge	on	PFI	<0..3>,
RTSI<0..7>	(PCI	devices),
PXI_TRIG<0..7>	(PXI	devices),	or	by
matching/not-matching	a	pattern
received	on	DIO<0..15>.	The	Start
Trigger	can	also	be	sent	by	software.

The	Start	trigger
can	be	exported
to	PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Reference
Trigger

The	Reference	trigger	can	be
received	on	a	rising	edge	on
PFI	<0..3>	RTSI<0..7>	(PCI	devices),
or	PXI_TRIG<0..7>	(PXI	devices),	or
by	matching/not-matching	a	pattern
received	on	DIO<0..15>.	The
Reference	trigger	can	also	be	sent	by
software.

The	Reference
trigger	can	be
exported	to
PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Advance
Trigger

The	Advance	trigger	can	be	received
from	a	rising	or	falling	edge	on
PFI	<0..3>,	RTSI<0..7>	(PCI	devices),
PXI_TRIG<0..7>	(PXI	devices),	or	by
matching/not-matching	a	pattern
received	on	DIO<0..15>.	The
Advance	trigger	can	also	be	sent	by
software.

The	Advance
trigger	can	be
exported	to
PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Pause	Trigger The	Pause	trigger	can	be	received
from	PFI<0..3>,	RTSI<0..7>	(PCI
devices),	PXI_TRIG<0..7>	(PXI
devices),	or	by	matching/not-matching

—

a	pattern	received	on	DIO<0..15>.
Ready	for
Start	Event

— The	Ready	For
Start	event	can
be	exported	to
PFI<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Ready	for
Advance
Event

— The	Ready	For
Advance	event
can	be	exported
to	PFI<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

End	of	Record
Event

— The	End	of
Record	event	can
be	exported	to
PFI<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Generation
Expand	this	book	for	more	information	about	static	and	dynamic
generation	using	the	NI	656x.

Static	Generation
Static	generation	is	a	software	timed	(nonclocked)	operation	and	can	be
applied	to	any	number	of	the	available	DIO<0..15>	channels.	When
performing	a	static	generation	operation,	the	NI	656x	sets	the	current
state	of	the	configured	data	channels	to	the	requested	logic	state.
Static	generation	can	be	done	on	any	number	of	channels,	provided	that
those	channels	are	not	configured	for	a	dynamic	operation.	To	statically
set	the	state	of	dynamic	generation	channels,	refer	to	Initial	and	Idle
States.
For	more	information	about	performing	static	generation	with	NI-HSDIO,
refer	to	Reading	and	Writing	Static	Data.

Dynamic	Generation
Dynamic	generation	is	a	clocked	operation	where	binary	data	is	sent	from
the	NI	digital	waveform	generator/analyzer	to	the	DUT	across	multiple
digital	channels.
The	NI	digital	waveform	generator/analyzer	can	generate	complex	digital
patterns	synchronous	to	any	of	several	clock	sources.	The	data	can	be
generated	as	simple	waveforms	or	based	on	complex	scripts.	External
triggers	can	control	the	data	generation,	and	the	Pattern	Generation
Engine	can	export	several	types	of	events	to	indicate	the	progress	of	the
generation.
In	addition,	the	NI	digital	waveform	generator/analyzer	allows	for	precise
subperiod	timing	control	between	the	generated	data	and	the	exported
Sample	clock,	making	the	device	a	versatile	digital	pattern	generator.

Dynamic	Generation	Clock	Sources
Dynamic	generation	is	a	clocked	operation.	The	dynamic	generation
operation	is	clocked	by	one	of	several	clocking	resources.	Your
application	needs	may	determine	which	source	you	should	use.	Refer	to
the	main	Clocking	diagram	to	see	a	block	diagram	for	these	clock
resources.
The	following	information	discusses	additional	considerations	for	using
these	clocking	resources	for	dynamic	generation:

On	Board	Clock
The	default	clock	source	for	dynamic	generation	sessions	is	the
On	Board	Clock.	This	clock	can	be	locked	to	a	reference	clock	to
synchronize	operations	across	multiple	devices	or	can	be	used
without	a	reference	clock	when	multidevice	synchronization	is	not
required.	The	On	Board	Clock	is	derived	from	integer	divisors	of
the	200	MHz	VCXO.	Refer	to	the	NI	656x	specifications	for
information	about	the	possible	On	Board	Clock	frequencies.
You	can	configure	the	On	Board	Clock	source	in	the	following
ways:

Free-running,	nonphase-locked—In	this	mode,	the	VCXO
is	used	at	its	fundamental	frequency,	allowing	for	a	stable
and	accurate	200	MHz	clock.	This	configuration	is	the
default	setting,	and	it	is	most	useful	when	multidevice
synchronization	is	not	required.
Phase-Locked—The	On	Board	Clock	source	can	be	locked
to	a	reference	clock	using	the	PLL	circuit	to	ensure	that
Sample	clock	alignment	across	devices	is	achieved.	In	this
operation	mode,	the	PLL	circuit	must	be	provided	a	precision
source	to	which	it	can	lock.	The	On	Board	Clock	source	can
be	locked	to	one	of	the	following	reference	clock	sources:

PXI_CLK10	(NI	PXI-6561/6562	only)—The	PXI
standard	defines	a	precision	10	MHz	reference
(PXI_CLK10)	to	be	distributed	across	the	backplane	to
each	device	in	the	PXI	chassis.	If	you	are	using	PXI,
this	10	MHz	backplane	clock	is	used	as	the	reference
for	the	PLL	in	this	mode	of	PLL	operation.

CLK	IN—If	you	want	to	provide	your	own	reference,
you	can	provide	an	external	source	on	the	CLK	IN
SMB	connector	to	which	the	PLL	can	lock.	Using	an
external	reference	allows	you	to	easily	synchronize
clocks	across	instruments	within	and	outside	of	the
system.	Refer	to	the	NI	656x	specifications	for
information	about	the	possible	reference	clock
frequencies.

External	Source	(CLK	IN)
Alternatively,	your	dynamic	generation	operation	can	be	driven
from	an	external	Sample	clock	source.	Using	an	external
frequency	generator,	you	can	drive	dynamic	generation	operations
at	any	frequency	within	the	NI	656x	specifications.	Frequency
limitations	and	acquisition	levels	are	listed	in	NI	656x
specifications.
PXI_STAR	(NI	PXI-6561/6562	only)
The	PXI	specification	allocates	resources	for	high-speed	precision
clock	and	trigger	routing	across	the	PXI	backplane.	The	NI	PXI-
656x	can	use	this	resource	to	clock	your	dynamic	generation	task.
An	external	source	can	drive	this	resource	at	any	suitable
frequency,	allowing	the	NI	PXI-656x	to	operate	at	noninteger
divisors	of	200	MHz,	similar	to	how	it	operates	using	an	external
clock	source	(CLK	IN).

For	a	summary	of	these	and	other	clock	sources,	refer	to	Clock	Sources
Summary.

Dynamic	Generation	Timing	Diagrams
The	following	figure	illustrates	the	data	and	clock	positions	available
when	generating	waveforms	with	the	NI	656x	in	SDR	mode.	For
simplicity,	the	data	is	shown	delayed	by	25%	of	the	clock	period;
however,	this	value	can	vary	between	0%	and	100%,	with	some
exceptions.	Refer	to	the	NI	656x	specifications	for	more	information
about	valid	ranges.

Note		Data	generation	on	the	rising	or	falling	clock	edge	is	per
channel	selectable.	However,	if	you	use	the	delayed	position,	all
the	data	and	PFI	channels	must	be	delayed,	and	the	delay	value
must	be	constant	across	all	channels.

For	more	information	about	using	NI-HSDIO	to	adjust	the	data	position,
refer	to	Configuring	Data	Position.

Generation	Provided	Setup	and	Hold	Times	Timing
Diagram

Dynamic	Generation	Triggers	and	Events
The	following	table	describes	the	relationship	of	triggers	and	events	in	a
dynamic	acquisition	operation.	The	sequence	of	triggers	and	events	is
shown	in	the	Dynamic	Generation	State	Diagram.
Start,	Pause,	and	Script	triggers	are	received	asynchronously	by	the
Pattern	Generation	Engine.	Cable	propagation	delays	and	pipeline
delays	can	cause	the	Pattern	Generation	Engine	to	take	multiple	clock
cycles	to	respond	to	a	trigger.	Refer	to	NI	656x	specifications	for	more
information.	The	Ready	For	Start,	Data	Active,	and	Marker	0	events	are
generated	by	the	Pattern	Generation	Engine	synchronous	to	the	data
generation.
The	following	table	provides	information	about	how	these	triggers	and
events	can	arrive	at	and	be	exported	from	the	NI	656x.

Trigger/Event Received	From Exported	To
Start	Trigger The	Start	trigger	can	be	received	from

a	rising	or	falling	edge	on	PFI	<0..3>,
RTSI<0..7>	(PCI	devices),	or
PXI_TRIG<0..7>	(PXI	devices).	The
Start	trigger	can	also	be	sent	by
software.

The	Start	trigger
can	be	exported
to	PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Pause	Trigger The	Pause	trigger	is	level-based	and
can	be	received	on	PFI<0..3>,
RTSI<0..7>	(PCI	devices),	or
PXI_TRIG<0..7>	(PXI	devices).	The
Pause	trigger	can	also	be	sent	by
software.

Note		When	the	Pause	trigger
is	asserted,	the	NI	656x	Pattern
Generation	Engine	may	take
several	clock	cycles	to	respond
because	of	cable	propagation
delay	and	the	pipelining	in	the
system.	Refer	to	the	NI	656x
specifications	for	more

The	Pause
trigger	can	be
exported	to
PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

information.

Script	Trigger
<0..3>

Four	Script	triggers	can	be	edge-	or
level-based	and	can	be	received	on
PFI	<0..3>,	RTSI<0..7>	(PCI	devices),
or	PXI_TRIG<0..7>	(PXI	devices).	The
Script	trigger	can	also	be	sent	by
software.

The	Script	trigger
can	be	exported
to	PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Ready	for
Start	Event

— The	Ready	For
Start	event	can
be	exported	to
PFI<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Data	Active
Event

— The	Data	Active
event	can	be
exported	to
PFI	<0..3>.

Marker	Event
<0..3>

— A	Marker	event
can	be	exported
to	PFI	<0..3>,
RTSI<0..6>	(PCI
devices),	or
PXI_TRIG<0..6>
(PXI	devices).

Integration	and	System	Considerations
Expand	this	book	for	more	information	about	system	considerations	and
hardware	integration.

Terminating	Your	Module
Expand	this	section	to	learn	about	terminated	and	unterminated
configurations	for	acquisition	and	generation	operations	with	the	following
device	families:

NI	654x
NI	655x
NI	656x

Refer	to	Termination	for	more	information	about	the	theory	and
recommendations	for	system	termination.

Terminating	Your	NI	654x
Expand	this	section	to	learn	about	the	termination	configurations	for
acquisition	and	generation	with	the	NI	654x.
Refer	to	Termination	for	more	information	about	the	theory	and
recommendations	for	system	termination.

NI	654x	Generation	Termination
Generation	Termination:	High-Impedance	Load
Configuration
A	common	configuration	for	your	NI	654x	is	to	connect	the	output
terminals	of	your	NI	device	directly	to	your	device	under	test	(DUT).	Most
digital	logic	inputs	have	an	input	impedance	of	at	least	1–10	KΩ.
Therefore,	connecting	the	NI	654x	output	terminals	directly	to	the	input	of
your	DUT	creates	a	source-terminated	configuration,	because	the
generation	channels	of	the	NI	654x	have	a	50	Ω	source	impedance.
While	this	source	termination	configuration	does	not	provide	the	absolute
highest	level	of	signal	quality,	there	are	many	advantages	to	a	source-
terminated	configuration.	First,	very	good	signal	levels	are	possible	if	you
ensure	that	you	have	the	cleanest	possible	50	Ω	characteristic
impedance	transmission	line.	Second,	this	source-terminated
configuration	allows	you	to	directly	wire	to	your	DUT	without	the	need	for
additional	termination	resistors.	Lastly,	given	that	at	DC	there	is
effectively	a	voltage	divider	between	the	50	Ω	Zs	resistance	and	the	high-
impedance	Zt	of	your	DUT,	having	an	source-terminated	system
preserves	the	largest	possible	voltage	swings	at	the	DUT	according	to
the	following	formula:	VDUT	=	Vsource*(Zt/(Zs	+	Zt)

So,	for	a	DUT	with	an	input	impedance	of	1	kΩ,	programming	a
generation	voltage	level	of	3.3	V	at	the	NI	654x	source	produces	a	3.3	V
*	(1000/1050)	=	3.14	V	swing	at	the	DUT.
A	source-terminated	configuration	results	in	reflections	in	the
transmission	line.	These	reflections,	however,	are	absorbed	at	the	source
and	not	re-reflected	back	to	the	load,	thus	preserving	the	signal	integrity.
Practically,	the	source	impedance	does	not	perfectly	match	the
transmission	line	impedance;	therefore,	a	small	fraction	of	the	reflected
wave	is	re-reflected	back	toward	the	load.	This	second	reflection	creates
small	signal	aberrations	and	a	low	level	of	inter-symbol	interference.
For	example,	a	5%	mismatch	at	the	source	results	in	a	2.5%	re-reflection
back	at	the	load:
Γs	=	(1.05	-1)/(1.05	+	1)	≈	2.5%

Generation	Termination:	Terminated	Load	Configuration
The	source-terminated	load	configuration	is	easy	to	use	with	a	terminated
source,	such	as	the	NI	654x,	and	is	recommended	for	all	applications
except	the	most	demanding	in	regard	to	timing	precision	or	signal
integrity.	For	applications	demanding	the	highest	levels	of	signal	quality
and	timing	precision,	NI	recommends	that	you	seriously	consider
following	the	recommendations	of	the	terminated	load	configuration.
For	applications	requiring	the	highest	levels	of	signal	integrity	and	timing
accuracy,	NI	strongly	recommends	carefully	controlling	the	termination
impedance	at	the	end	of	the	transmission	line.	To	control	the	termination
impedance,	add	a	parallel	termination	resistor	to	ground	as	close	as
possible	to	the	digital	input	pin	of	the	device	under	test	(DUT).	In	this
configuration,	the	transmission	line	is	terminated	at	both	ends,	which
produces	the	highest	possible	signal	integrity.
Ideally,	the	source	impedance,	ZS,	and	the	characteristic	impedance	of
the	transmission	line,	Z0,	should	be	kept	as	close	as	possible	to	50	Ω	as
this	will	give	you	the	best	possible	signal	quality.
However,	depending	on	your	NI	device,	having	all	the	lines	terminated
into	50	Ω	may	violate	the	maximum	current	specifications.	Refer	to	the	NI
654x	specifications	for	more	information	about	the	maximum	current	for
your	device	to	determine	how	many	lines	you	can	simultaneously
terminate	into	50	Ω.
While	a	Zt	of	50	Ω	is	ideal,	you	can	also	use	values	as	high	as	300	Ω
without	significantly	affecting	signal	quality.	Using	this	higher	resistance
value	enables	you	to	increase	the	voltage	swing	across	the	DUT	and
decrease	the	drive	current	requirements	on	your	NI	654x.
Given	that	at	DC	there	is	effectively	a	voltage	divider	between	the	50	Ω
ZS	resistance	and	the	termination	resistance,	having	a	terminated	load
reduces	the	largest	possible	voltage	swings	at	the	DUT	according	to	the
following	formula:	VDUT	=	Vsource*(Zt/(Zs	+	Zt)

So,	for	a	50	Ω	termination,	programming	a	generation	voltage	level	of
3.3	V	at	the	NI	654x	source	produces	a	3.3	V	x	(50/100)		=	1.65	V	at	the
DUT.	This	reduced	voltage	swing	at	the	DUT	should	be	considered	when
you	create	your	system.

Depending	on	voltage	swing	requirements,	you	have	several	generation
termination	options.	The	following	table	lists	some	of	the	options	for	the
different	voltage	swings.

Tip		Using	a	parallel	termination	resistor	is	only	necessary	for
applications	requiring	the	highest	signal	integrity.

Required	Voltage
Swing	at	DUT Termination	Options

3.3	V Generation	voltage	family	=	3.3	V	Logic,	no
termination	resistance

2.5	V Generation	voltage	family	=	2.5	V	Logic,
no	termination	resistance
Generation	voltage	family	=	3.3	V	Logic,	Zt
=	156	Ω	(Imax	=	16	mA)

1.8	V Generation	voltage	family	=	1.8	V	Logic,
no	termination	resistance
Generation	voltage	family	=	3.3	V	Logic,	Zt
=	60	Ω	(Imax	=	30	mA)
Generation	voltage	family	=	2.5	V	Logic,	Zt
=	129	Ω	(Imax	=	14	mA)

NI	654x	Acquisition	Termination
High-Impedance	Load	Acquisition	Configuration
For	acquisition	operations,	the	NI	654x	can	only	be	used	in	a	high-
impedance	load	configuration	because	the	input	impedance	of	the
NI	654x	is	set	to	10	kΩ.	The	high-impedance	load	configuration	is	easy	to
drive	since	it	does	not	present	a	significant	DC	load	to	the	source	and
preserves	the	signal	amplitude.	It	is	very	important	that	you	follow	the
recommendations	in	this	section	to	achieve	the	highest	level	of	AC	signal
quality.
The	same	transmission	line	considerations	discussed	for	the	generation
case	are	applicable	to	acquired	signals.	The	input	impedance	of	10	kΩ
implies	a	reflection	coefficient	Γt	of	0.99,	or	nearly	full	reflection.

With	all	high-impedance	load	transmission	lines,	it	is	essential	that	you
take	care	to	match	the	source	impedance	of	the	transmission	line	to	the
characteristic	impedance	of	the	transmission	line.	The	source	matching	in
this	configuration	is	particularly	important,	since	there	are	significant
reflections	from	the	high-impedance	load	(input	of	NI	654x	in	this	case).
You	should	take	care	to	ensure	that	your	transmission	line	has	a
characteristic	impedance	of	as	close	to	50	Ω	as	possible.
Therefore,	Zs	(external	source	output	impedance)	should	match	Z0	=
50	Ω	(the	cable	impedance)	for	10	kΩ	input	configuration.	To	achieve	this
Zs	=	50	Ω,	you	must	determine	the	output	impedance	of	your	digital	driver
and	add	a	series	resistor	as	close	as	possible	to	the	driver	pin	such	that
the	output	impedance	of	your	buffer	plus	the	value	of	the	series	resistor
equal	50	Ω.
If	you	require	50	Ω	termination	for	your	acquisition	application,	consider
using	one	of	the	NI	655x	products.

NI	654x	Termination	Summary
The	following	table	provides	a	high-level	summary	of	the	termination
considerations	for	your	NI	654x.	Click	a	title	for	more	information	about
that	type	of	termination.

Generation	Termination

Source Transmission
Line Termination	(Load)

Zs	=	50	Ω Zo	=	50	Ω Zt	=	Open	(Tristate)	or	Unterminated
Works	for	all	except	most	demanding
applications
Zt	=	50–300	Ω
Recommended	for	better	signal	integrity.

Acquisition	Termination

Termination Transmission
Line Source

Zt	=	10	kΩ 50	Ω Zs	=	50	Ω
This	configuration	works	well	for	most
applications.
Zs	<	50	Ω
This	configuration	is	not	recommended

because	of	the	mismatch	on	both	ends.
The	recommended	setup	is	to	increase	Zs
to	50	Ω	by	adding	series	resistance	at	the
source.
Zs	>	50	Ω
This	configuration	is	not	recommended
because	of	the	mismatch	on	both	ends.

Note		You	must	reduce	the	operating
frequency	significantly	to	allow	the
signal	reflections	to	settle	down.	You
must	reduce	the	frequency
proportional	to	cable	length	and
impedance	mismatch.

Terminating	Your	NI	655x
Expand	this	section	to	learn	about	the	termination	configurations	for
acquisition	and	generation	with	the	NI	655x.
Refer	to	Termination	for	more	information	about	the	theory	and
recommendations	for	system	termination.

NI	655x	Generation	Termination
Generation	Termination:	Unterminated	Load	Configuration
A	common	configuration	for	your	NI	655x	is	to	connect	the	output
terminals	of	your	NI	device	directly	to	your	device	under	test	(DUT).	Most
digital	logic	inputs	have	an	input	impedance	of	1–10	KΩ.	Since	your
NI	655x	was	designed	to	be	used	in	a	50	Ω	environment,	connecting	the
NI	device	output	terminals	directly	to	the	input	of	your	DUT	effectively
creates	an	unterminated	load	configuration.
While	this	unterminated	configuration	does	not	provide	the	absolute
highest	level	of	signal	quality,	there	are	many	advantages	to	an
unterminated	configuration.	First,	very	good	signal	levels	are	possible	if
you	ensure	that	you	have	the	cleanest	possible	50	Ω	characteristic
impedance	transmission	line.	Second,	this	unterminated	configuration
allows	you	to	directly	wire	to	your	DUT	without	the	need	for	additional
termination	resistors.	Lastly,	given	that	at	DC	there	is	effectively	a	voltage
divider	between	the	50	Ω	Zs	resistance	and	the	high-impedance	Zt	of
your	DUT,	having	an	unterminated	load	preserves	the	largest	possible
voltage	swings	at	the	DUT	according	to	the	following	formula:	Vt	=	Vs*
(Zt/(Zs	+	Zt)

So,	for	a	DUT	with	an	input	impedance	of	1	kΩ,	programming	a
generation	voltage	level	of	3.3	V	at	the	NI	655x	source	produces	a	3.3	V
*	(1000/1050)	=	3.14	V	swing.
The	unterminated	load	generates	reflections	in	the	transmission	line.	The
load	reflections,	however,	are	absorbed	at	the	source	and	not	re-reflected
back	to	the	load,	thus	preserving	the	signal	integrity.	Practically,	the
source	impedance	does	not	perfectly	match	the	transmission	line
impedance;	therefore,	a	small	fraction	of	the	reflected	wave	is	re-
reflected	back	toward	the	load.	This	second	reflection	creates	small
signal	aberrations	and	a	low	level	of	inter-symbol	interference.
For	example,	a	5%	mismatch	at	the	source	results	in	a	2.5%	re-reflection
back	at	the	load:
Γs	=	(1.05	-1)/(1.05	+	1)	≈	2.5%

Generation	Termination:	Terminated	Load	Configuration
The	unterminated	load	configuration	is	easy	to	use	with	a	terminated
source,	such	as	the	NI	655x,	and	is	recommended	for	all	applications
except	the	most	demanding	in	regard	to	timing	precision	or	signal
integrity.	For	applications	demanding	the	highest	levels	of	signal	quality
and	timing	precision,	NI	recommends	that	you	seriously	consider
following	the	recommendations	of	the	terminated	load	configuration.
For	applications	requiring	the	highest	levels	of	signal	integrity	and	timing
accuracy,	NI	strongly	recommends	carefully	controlling	the	termination
impedance	at	the	end	of	the	transmission	line.	To	control	the	termination
impedance,	add	a	parallel	termination	resistor	to	ground	as	close	as
possible	to	the	digital	input	pin	of	the	device	under	test	(DUT).	In	this
configuration,	the	transmission	line	is	terminated	at	both	ends	of	the
transmission	line,	which	produces	the	highest	possible	signal	integrity.
Ideally,	the	source	impedance,	ZS,	and	the	characteristic	impedance	of
the	transmission	line,	Z0,	should	be	kept	as	close	as	possible	to	50	Ω	as
this	will	give	you	the	best	possible	signal	quality.
However,	depending	on	your	NI	device,	having	all	the	lines	terminated
into	50	Ω	may	violate	the	maximum	current	specifications	for	your	NI
device.	Refer	to	the	NI	655x	specifications	for	more	information	about	the
maximum	current	for	your	device	to	determine	how	many	lines	you	can
simultaneously	terminate	into	50	Ω.
While	a	Zt	of	50	Ω	is	ideal,	you	can	also	use	values	as	high	as	150	Ω
without	significantly	affecting	signal	quality.	Using	this	higher	resistance
value	enables	you	to	increase	the	voltage	swing	across	the	DUT	and
decrease	the	drive	current	requirements	on	your	NI	655x.
Given	that	at	DC	there	is	effectively	a	voltage	divider	between	the	50	Ω
ZS	resistance	and	the	termination	resistance,	having	a	terminated	load
reduces	the	largest	possible	voltage	swings	at	the	DUT	according	to	the
following	formula:	Vt	=	Vs*(Zt/(Zs	+	Zt)

So,	for	a	50	Ω	termination,	programming	a	generation	voltage	level	of
3.3	V	at	the	NI	655x	source	produces	a	3.3	V	x	(50/100)	=	1.65	V.	This
reduced	voltage	swing	at	the	DUT	should	be	considered	when	you	create
your	system.

NI	655x	Acquisition	Termination
Unterminated	Acquisition	Configuration
For	acquisition	operations,	an	unterminated	configuration	essentially
implies	that	you	set	the	input	impedance	of	the	NI	device	to	10	kΩ	using
NI-HSDIO.	The	unterminated	configuration	is	easy	to	drive	since	it	does
not	present	a	significant	DC	load	to	the	source	and	preserves	the	signal
amplitude.	As	a	result,	this	is	the	recommended	configuration	for	most
applications.	When	you	use	this	mode,	however,	it	is	very	important	that
you	follow	the	recommendations	in	this	section	to	achieve	the	highest
level	of	AC	signal	quality.
The	same	transmission	line	considerations	discussed	for	the	generation
case	are	applicable	to	acquired	signals.	Programming	an	input
impedance	of	10	kΩ	implies	a	reflection	coefficient	Γt	of	0.99,	or	nearly
full	reflection	and	is	effectively	an	unterminated	input.
With	all	unterminated	transmission	lines,	it	is	essential	that	you	take	care
to	match	the	source	impedance	of	the	transmission	line	to	the
characteristic	impedance	of	the	transmission	line.	The	source	matching	in
this	configuration	is	particularly	important,	since	there	are	significant
reflections	from	the	unterminated	load	(input	of	NI	655x	in	the	case).
First,	you	should	take	care	to	ensure	that	your	transmission	line	has	a
characteristic	impedance	of	as	close	to	50	Ω	as	possible.
Therefore,	Zs	(external	source	output	impedance)	should	match	Z0	=
50	Ω	(the	cable	impedance)	for	10	kΩ	input	configuration.	To	achieve	this
Zs	=	50	Ω,	you	must	determine	the	output	impedance	of	your	digital	driver
and	add	a	series	resistor	as	close	as	possible	to	the	driver	pin	such	that
the	output	impedance	of	your	buffer	plus	the	value	of	the	series	resistor
equal	50	Ω.
A	10	kΩ	input	configuration	is	not	recommended	for	use	with	drivers	that
are	not	matched	to	the	cable	impedance	at	50	Ω.

Terminated	Acquisition	Configuration
Input	termination	of	50	Ω	is	recommended	for	best	signal	integrity	since
there	are	no	reflections	back	to	the	signal	source,	provided	that	the	signal
source	can	drive	this	load.
The	50	Ω	input	configuration	reduces	the	signal	swing	seen	by	the
NI	655x	input	comparators	by	half,	assuming	the	signal	source	is	50	Ω.
You	should	consider	this	amplitude	reduction	when	configuring	the	input
thresholds.
For	example,	a	50	Ω	source	with	a	0	to	5	V	step	generation	(into	high-
impedance)	is	seen	as	a	0	to	2.5	step	source	at	the	NI	655x	acquisition
comparators	when	you	configure	the	NI	655x	for	50	Ω	input	impedance.

NI	655x	Termination	Summary
The	following	table	provides	a	high-level	summary	of	the	termination
considerations	for	your	NI	655x.	Click	a	title	for	more	information	about
that	type	of	termination.

Generation	Termination

Source Transmission
Line Termination	(Load)

Zs	=	50	Ω Zo	=	50	Ω Zt	=	Open	(Tristate)	or	Unterminated
Works	for	all	except	most	demanding
applications
Zt	=	50–150	Ω
Recommended	for	better	signal	integrity.

Acquisition	Termination

Termination Transmission
Line Source

Zt	=	10	kΩ 50	Ω Zs	=	50	Ω
This	configuration	works	well	for	most
applications.
Zs	<	50	Ω
This	configuration	is	not	recommended

because	of	the	mismatch	on	both	ends.
The	recommended	setup	is	to	increase	Zs
to	50	Ω	by	adding	series	resistance	at	the
source.
Zs	>	50	Ω
This	configuration	is	not	recommended
because	of	the	mismatch	on	both	ends.

Note		You	must	reduce	the	operating
frequency	significantly	to	allow	the
signal	reflections	to	settle	down.	You
must	reduce	the	frequency
proportional	to	cable	length	and
impedance	mismatch.

Zt	=	50	Ω Zs	=	50	Ω
This	configuration	is	recommended	for	best
signal	integrity.
Vi	=	Vo/2
Source	must	be	able	to	drive	50	Ω
Zs	<	50	Ω
Source-side	mismatch	degrades	signal
integrity,	but	this	configuration	is	still	usable
in	many	applications.
Vi	=	50/(50	+	Zs)	*	Vo
Zs	>	50	Ω
Source-side	mismatch	degrades	signal
integrity,	but	this	configuration	is	still	usable
in	many	applications.
Vi	=	50/(50	+	Zs)	*	Vo

Terminating	Your	NI	656x
Expand	this	section	to	learn	about	the	termination	configurations	for
acquisition	and	generation	with	the	NI	656x.
Refer	to	Termination	for	more	information	about	the	theory	and
recommendations	for	system	termination.

NI	656x	Generation	Termination
Generation	Termination:	Terminated	Load	Configuration
DIO,	DDC	CLK	OUT,	and	LVDS	PFI	Channels
The	NI	656x	requires	a	differential	termination	at	the	destination	of	100	Ω
to	properly	drive	the	LVDS	logic	levels	and	to	maintain	signal	integrity.
LVDS	is	a	current-driven	technology.	That	is,	a	logic	state	is	derived	from
the	differential	voltage	generated	by	forcing	a	current	through	a	known
impedance.	Forcing	current	one	direction	signifies	a	logic	high	level,	and
forcing	current	the	alternate	direction	signifies	a	logic	low	level.	As	such,
it	requires	that	the	current	path	be	completed,	through	a	100	Ω	resistor,
at	the	destination.	The	differential	voltage	then	seen	at	the	receiver	is	a
function	of	this	resistor.	LVDS	levels	are	generated	using	a	100	Ω	resistor
at	the	receiver.
For	applications	requiring	the	highest	levels	of	signal	integrity	and	timing
accuracy,	NI	strongly	recommends	carefully	controlling	the	termination
impedance	at	the	end	of	the	transmission	line.	In	a	differential
environment,	there	is	an	effective	virtual	ground	at	the	midpoint	of	there
terminating	resistor.	In	a	50	Ω	single-ended	environment,	the
transmission	line	is	effectively	matched	with	the	100	Ω	differential
impedance	caused	by	this	virtual	ground	effect.
Unloaded	Single-Ended	PFI	Channels
A	common	configuration	for	your	NI	656x	is	to	configure	the	terminals	for
single-ended	mode	and	connect	them	directly	to	your	device	under	test
(DUT).	Most	digital	logic	inputs	have	an	input	impedance	of	1–10	KΩ.
Therefore,	connecting	the	NI	656x	output	terminals	directly	to	the	input	of
your	DUT	effectively	creates	a	source-terminated	configuration	because
the	PFI	channels	of	the	NI	656x	have	a	50	Ω	source	impedance	when	in
single-ended	mode.
While	this	source	configuration	does	not	provide	the	absolute	highest
level	of	signal	quality,	there	are	many	advantages	to	a	source-terminated
configuration.	First,	very	good	signal	levels	are	possible	if	you	ensure	that
you	have	the	cleanest	possible	50	Ω	characteristic	impedance
transmission	line.	Second,	this	source-terminated	configuration	allows
you	to	directly	wire	to	your	DUT	without	the	need	for	additional
termination	resistors.	Lastly,	given	that	at	DC	there	is	effectively	a	voltage

divider	between	the	50	Ω	Zs	resistance	and	the	high-impedance	Zt	of
your	DUT,	having	a	source-terminated	load	preserves	the	largest
possible	voltage	swings	at	the	DUT	according	to	the	following	formula:	Vt
=	Vs*(Zt/(Zs	+	Zt)

So,	for	a	DUT	with	an	input	impedance	of	1	kΩ,	programming	a
generation	voltage	level	of	3.3	V	at	the	NI	655x	source	produces	a	3.3	V
*	(1000/1050)	=	3.14	V	swing.
The	source-terminated	load	generates	reflections	in	the	transmission	line.
These	reflections,	however,	are	absorbed	at	the	source	and	not	re-
reflected	back	to	the	load,	thus	preserving	the	signal	integrity.	Practically,
the	source	impedance	does	not	perfectly	match	the	transmission	line
impedance;	therefore,	a	small	fraction	of	the	reflected	wave	is	re-
reflected	back	toward	the	load.	This	second	reflection	creates	small
signal	aberrations	and	a	low	level	of	inter-symbol	interference.
For	example,	a	5%	mismatch	at	the	source	results	in	a	2.5%	re-reflection
back	at	the	load:
Γs	=	(1.05	-1)/(1.05	+	1)	≈	2.5%

Loaded	Single-Ended	PFI	Channels
The	source-terminated	load	configuration	is	easy	to	use	with	a	terminated
source,	such	as	the	NI	656x,	and	is	recommended	for	all	applications
except	the	most	demanding	in	regard	to	timing	precision	or	signal
integrity.	For	applications	demanding	the	highest	levels	of	signal	quality
and	timing	precision,	NI	recommends	that	you	seriously	consider
following	the	recommendations	of	the	terminated	load	configuration.
For	applications	requiring	the	highest	levels	of	signal	integrity	and	timing
accuracy,	NI	strongly	recommends	carefully	controlling	the	termination
impedance	at	the	end	of	the	transmission	line.	To	control	the	termination
impedance,	add	a	parallel	termination	resistor	to	ground	as	close	as
possible	to	the	digital	input	pin	of	the	device	under	test	(DUT).	In	this
configuration,	the	transmission	line	is	terminated	at	both	ends	of	the
transmission	line,	which	produces	the	highest	possible	signal	integrity.
Ideally,	the	source	impedance,	ZS,	and	the	characteristic	impedance	of
the	transmission	line,	Z0,	should	be	kept	as	close	as	possible	to	50	Ω	as
this	will	give	you	the	best	possible	signal	quality.
However,	depending	on	your	NI	device,	having	all	the	lines	terminated

into	50	Ω	may	violate	the	maximum	current	specifications.	Refer	to	the	NI
656x	specifications	for	more	information	about	the	maximum	current	for
your	device	to	determine	how	many	lines	you	can	simultaneously
terminate	into	50	Ω.
While	a	Zt	of	50	Ω	is	ideal,	you	can	also	use	values	as	high	as	300	Ω
without	significantly	affecting	signal	quality.	Using	this	higher	resistance
value	enables	you	to	increase	the	voltage	swing	across	the	DUT	and
decrease	the	drive	current	requirements	on	your	NI	656x.
Given	that	at	DC	there	is	effectively	a	voltage	divider	between	the	50	Ω
ZS	resistance	and	the	termination	resistance,	having	a	terminated	load
reduces	the	largest	possible	voltage	swings	at	the	DUT	according	to	the
following	formula:	Vt	=	Vs*(Zt/(Zs	+	Zt)

For	a	50	Ω	termination,	programming	a	generation	voltage	level	of	3.3	V
at	the	NI	656x	PFI	source	produces	a	3.3	V	x	(50/100)	=	1.65	V	at	the
DUT.	This	reduced	voltage	swing	at	the	DUT	should	be	considered	when
you	create	your	system.

NI	656x	Acquisition	Termination
DIO,	STROBE,	LVDS	PFI	Channels
The	NI	656x	devices	employ	a	single	differential	100	Ω	terminating
resistor	located	at	the	differential	receiver.	This	100	Ω	resistor	guarantees
signal	quality	in	a	100	Ω	differential	environment	and	induces	the	correct
voltage	levels	required	by	the	LVDS	standard.
This	impedance	is	always	present	and	is	not	software	selectable.

Single-Ended	PFI	Channels
For	single-ended	trigger	operations,	the	NI	656x	can	only	be	used	in	a
high-impedance	load	configuration	because	the	input	impedance	of	the
NI	656x	is	set	to	10	kΩ,	when	in	single-ended	mode.	The	high-
impedance	load	configuration	is	easy	to	drive	since	it	does	not	present	a
significant	DC	load	to	the	source	and	preserves	the	signal	amplitude.	It	is
very	important	that	you	follow	the	recommendations	in	this	section	to
achieve	the	highest	level	of	AC	signal	quality.
The	same	transmission	line	considerations	discussed	for	the	generation
case	are	applicable	to	acquired	signals.	The	input	impedance	of	10	kΩ
implies	a	reflection	coefficient	Γt	of	0.99,	or	nearly	full	reflection.

With	all	high-impedance	load	transmission	lines,	it	is	essential	that	you
take	care	to	match	the	source	impedance	of	the	transmission	line	to	the
characteristic	impedance	of	the	transmission	line.	The	source	matching	in
this	configuration	is	particularly	important,	since	there	are	significant
reflections	from	the	high-impedance	load	(input	of	NI	656x	in	this	case).
You	should	take	care	to	ensure	that	your	transmission	line	has	a
characteristic	impedance	of	as	close	to	50	Ω	as	possible.
Therefore,	Zs	(external	source	output	impedance)	should	match	Z0	=
50	Ω	(the	cable	impedance)	for	10	kΩ	input	configuration.	To	achieve	this
Zs	=	50	Ω,	you	must	determine	the	output	impedance	of	your	digital	driver
and	add	a	series	resistor	as	close	as	possible	to	the	driver	pin	such	that
the	output	impedance	of	your	buffer	plus	the	value	of	the	series	resistor
equal	50	Ω.
If	you	require	50	Ω	termination	for	your	acquisition	application,	consider
using	one	of	the	NI	655x	products.

Thermal	Shutdown
NI-HSDIO	1.1	and	later	support	thermal	shutdown	capabilities	with
NI	digital	waveform	generator/analyzers.	These	capabilities	allow	your
device	to	detect	when	the	device	temperature	has	risen	above	its	optimal
operating	temperature	and	to	then	power	down,	preventing	damage	to
your	device	or	improper	performance.
Air	circulation	paths,	fan	settings,	and	space	allowances	are	several
factors	that	can	influence	device	temperature.	To	prevent	thermal
shutdown,	follow	the	guidelines	in	the	5.	Installing	the	Hardware	section
of	the	NI	Digital	Waveform	Generator/Analyzer	Getting	Started	Guide,
which	ships	with	your	device.
In	the	event	that	your	device	powers	down,	you	will	be	notified	with	an
error	message	in	one	of	the	following	ways:

NI-HSDIO—NI-HSDIO	will	return	an	error	when	you	use	any	of	the
functions	that	program	the	hardware	or	check	hardware	status,	for
example,	the	static	acquisition	and	generation	functions,	commit
functions,	and	self	calibration	function.

Note		This	particular	error	code	is	not	returned	by
niHSDIO_self_test	(or	the	niHSDIO	Self	Test	VI)	because	it
can	only	return	a	0	for	pass	or	a	nonzero	value	for	fail.

MAX—Measurement	&	Automation	Explorer	will	return	an	error
message	if	you	run	a	self-test	on	your	device	after	it	exceeds	the
thermal	shutdown	temperature.	The	thermal	shutdown	error
continues	to	be	reported	until	the	device	is	successfully	reset.

To	re-enable	your	device	after	thermal	shutdown,	complete	the	following
steps:

1.	 Power	down	the	computer	or	chassis	that	contains	the	module.
2.	 Review	the	guidelines	in	the	Installing	the	Hardware	section	of	the

NI	Digital	Waveform	Generator/Analyzer	Getting	Started	Guide
that	shipped	with	your	module	and	make	any	necessary
adjustments	to	ensure	your	module	can	cool	itself	effectively.

3.	 Reset	the	device	by	either	calling	niHSDIO_ResetDevice	(or	using
the	niHSDIO	Reset	Device	VI)	or	performing	a	device	reset	in
MAX.	For	more	information	on	performing	a	device	reset	in	MAX,
refer	to	the	Configuring	in	MAX	section	of	the	NI	Digital	Waveform

Generator/Analyzer	Getting	Started	Guide.	The	thermal	shutdown
error	continues	to	be	reported	until	the	device	is	successfully
reset.

PXI
This	section	contains	information	about	integrating	NI	digital	waveform
generator/analyzers	into	a	PXI-based	measurement	system.
The	PXI	architecture	has	built-in	timing	and	triggering	features	that	can
synchronize	multiple	devices	using	the	PXI	trigger	bus	lines	on	the	PXI
backplane.	Multiple	devices	in	a	modular	instrumentation	system	can
share	a	common	Reference	clock	and	synchronize	to	triggers	that	are
distributed	over	controlled	signal	paths	that	ensure	matched	propagation.
PC	plug-ins	with	RTSI	also	provide	an	internal	bus	that	can	be	accessed
by	multiple	devices.	Internal	routing	of	these	timing	signals	in	PXI	(and
PC	plug-ins	with	RTSI)	eliminate	complicated	external	wiring	and	the
need	to	calculate	propagation	delays.	Standardized	timing	protocols
eliminate	incompatibilities,	giving	you	the	best	performance	when
synchronizing	any	kind	of	analog,	digital,	or	timing	measurements.

Chassis	Considerations
NI	PXI	modules	are	designed	to	operate	in	a	PXI/Compact	PCI	chassis	at
specified	environmental	conditions.	Device	performance	and	reliability
may	be	limited	at	temperatures	above	the	specified	operating	range.	For
best	performance,	take	the	following	precautions:

Ensure	that	the	ambient	temperature	is	within	the	temperature
listed	in	the	specifications	document	for	your	module,	and	that	the
temperature	is	stable	(±5	°C).
Follow	standard	metrology	practices.
Use	a	PXI	chassis	with	a	well	designed	cooling	system.

Operating	the	module	outside	the	specified	operating	temperatures	can
increase	bias	currents	in	the	electronic	components,	increase	noise,
accelerate	drifts,	and	decrease	product	life.	Beyond	the	maximum
specified	operating	temperatures,	the	circuits	perform	differently	than
during	the	factory	calibration,	resulting	in	additional	measurement	errors
which	may	not	be	accounted	for	by	the	Tempco	specifications.
To	minimize	the	temperature	rise	above	ambient,	position	the	chassis
away	from	heat	sources	and	clean	the	PXI/Compact	PCI	chassis	air	filter
at	regular	intervals.	Clean	air	filters	are	essential	to	ensuring	that	the
devices	operate	at	peak	performance.
Operating	under	high	humidity	or	dusty	conditions	can	cause	leakages
between	circuit	components	to	increase	and	result	in	additional
measurement	errors.

Chassis	Cooling	Guidelines
Follow	these	guidelines	to	optimize	cooling	and	ensure	best	performance
and	reliability:

Always	run	chassis	with	fans	set	on	high.	In	newer	NI	chassis	the
settings	are	"HIGH"	and	"AUTO".	On	some	older	NI	chassis	the	fan
settings	may	be	"HI"	and	"LO".
Cover	all	empty	slots	in	the	chassis	with	a	blank	EMC	slot	filler
panel.
Remove	and	clean	the	inlet	filters	often	to	prevent	buildup	of	dust
and	other	foreign	material	that	may	restrict	airflow.
Locate	the	chassis	such	that	the	fan	inlets	and	outlet	vents	are	not
obstructed.	Keep	other	objects	and	equipment	a	minimum	of
3	inches	sway	from	the	fan	inlets.

For	more	information	regarding	cooling	considerations,	refer	to	your
chassis	documentation.

PCI
Peripheral	Component	Interconnect	(PCI)	is	a	high-performance
expansion	bus	architecture	originally	developed	by	Intel	to	replace	ISA
and	EISA.	It	has	achieved	widespread	acceptance	as	a	standard	for	PCs
and	workstations,	and	offers	a	theoretical	maximum	transfer	rate	of
132	Mbytes/s.

RTSI
The	Real-Time	System	Integration	Bus	(RTSI)	is	a	timing	bus	developed
by	National	Instruments.	PCI	devices	can	use	the	RTSI	bus	to	share	and
exchange	timing	and	control	signals	between	multiple	devices.	The	RTSI
bus	consists	of	the	RTSI	bus	interface	connector	(located	at	the	back	of
the	device)	and	a	RTSI	ribbon	cable.
When	there	are	multiple	SMC-based	products	in	the	PCI	computer	that
need	to	be	phase-locked	to	a	common	10	MHz	Reference	clock,	they	can
be	connected	with	a	RTSI	cable.	One	of	these	connected	devices	should
drive	its	Onboard	Reference	Clock	to	RTSI	7.	All	of	the	devices	should
receive	their	Reference	clock	from	RTSI	7.

Tip		The	device	on	the	end	of	the	RTSI	cable	should	drive	the
Onboard	Reference	clock,	instead	of	a	device	located	at	the	center
of	the	cable.	This	configuration	results	in	optimal	signal	integrity	for
the	Reference	clock.

Synchronizing	Multiple	Devices
Synchronizing	multiple	devices	can	occur	to	varying	degrees.	On	the
simplest	level,	the	devices	may	be	essentially	operating	independently
with	triggers	and	events	passed	between	them	to	regulate	operations.
However,	in	more	tightly	integrated	systems,	the	Sample	clocks	are
phase	aligned	between	all	the	devices,	and	all	devices	are	triggered	at
the	same	time.	For	the	NI	digital	waveform	generator/analyzers,	this
alignment	is	done	using	the	Sample	clock	source,	Reference	clock
source,	and	by	using	NI-TClk	for	clock	alignment	and	trigger	routing.

Sample	Clock	Phase	Alignment
PXI	Devices

For	PXI	digital	waveform	generator/analyzers	using	an	internal	clock
source,	the	internal	clock	source	can	be	phase	aligned	to	the	PXI_CLK10
signal	on	the	backplane	by	selecting	PXI_CLK10	as	the	Reference	clock
source.	NI-TClk	ensures	that	the	Sample	clock	dividers	on	each	PXI
device	are	in	phase	for	Sample	clock	alignment.
For	PXI	digital	waveform	generator/analyzers	using	an	external	clock
source	(CLK	IN,	STROBE,	or	PXI_STAR),	ensure	that	the	Sample	clocks
are	aligned	when	presented	to	the	devices.	If	you	are	using	PXI_STAR
as	the	external	clock	source,	the	matched	length	traces	on	the	PXI
backplane	assist	in	keeping	the	distributed	Sample	clocks	aligned.	You
can	use	a	device	like	the	NI	PXI-5404	or	NI	PXI-6653	to	distribute	clocks
on	PXI_STAR.

PCI	Devices
For	PCI	digital	waveform	generator/analyzers	using	an	internal	clock
source,	the	internal	clock	source	can	be	phase	aligned	to	a	10	MHz
reference	signal	on	the	RTSI	7	line	of	the	RTSI	connector.	Configure	the
PCI	device	at	one	end	of	the	RTSI	cable	to	drive	the	Onboard	Reference
Clock	onto	RTSI	7,	and	configure	all	of	the	PCI	devices	to	receive	their
Reference	clock	from	RTSI	7.	NI-TClk	ensures	that	the	Sample	clock
dividers	on	each	device	are	in	phase	for	Sample	clock	alignment.
For	PCI	digital	waveform	generator/analyzers	using	an	external	clock
source	(CLK	IN	or	STROBE),	ensure	that	the	Sample	clocks	are	aligned
when	presented	to	the	devices.

Trigger	Routing
The	NI-TClk	software	uses	the	PXI	trigger	bus/RTSI	bus	lines	to
deterministically	pass	triggers	between	multiple	NI	digital	waveform
generator/analyzers.	Refer	to	the	multidevice	NI-TClk	examples	for	more
information.	Deterministic	trigger	routing	ensures	that	all	NI	digital
waveform	generator/analyzers	in	the	system	start	on	the	same	sample.

Programming

Expand	this	book	to	view	the	topics	that	provide	information	about
programming	your	NI	waveform	generator/analyzer	with	NI-HSDIO.

Getting	Started	with	NI-HSDIO
This	topic	describes	how	to	begin	using	NI-HSDIO	with	your	application
development	environment	(ADE),	lists	any	files	to	include	in	your
application,	and	mentions	special	considerations	to	make	with	each	ADE.
To	successfully	build	your	application,	install	NI-HSDIO.	You	also	must
install	one	of	the	following	ADEs:

LabVIEW
LabWindows/CVI
Microsoft	Visual	C++

Using	NI-HSDIO	in	LabVIEW
This	topic	assumes	that	you	are	using	the	National	Instruments	LabVIEW
ADE	to	manage	your	code	development	and	that	you	are	familiar	with	the
ADE.
To	develop	an	NI-HSDIO	application	in	LabVIEW,	follow	these	general
steps:

1.	 Open	an	existing	or	new	LabVIEW	VI.
2.	 From	the	Function	Palette,	locate	the	NI-HSDIO	VIs	at	NI

Measurements»NI-HSDIO.
3.	 Select	the	VIs	that	you	want	to	use	and	drop	them	on	the	block

diagram	to	build	your	application.

Example	Programs	for	LabVIEW
If	you	are	using	LabVIEW	7.0	or	later,	you	can	use	the	NI	Example	Finder
to	search	or	browse	examples.	NI-HSDIO	examples	are	classified	by
keyword,	so	you	can	search	for	a	particular	device	or	measurement
function.
To	browse	the	NI-HSDIO	examples	available	in	LabVIEW,	launch
LabVIEW,	click	Open»Examples,	and	navigate	to	Hardware	Input	and
Output»Modular	Instruments»NI-HSDIO.	You	can	also	acess	the
examples	using	the	Start	menu,	by	selecting	Start»All
Programs»National	Instruments»NI-HSDIO»Examples.

Considerations	for	using	the	LabVIEW	Real-Time	Module
To	develop	an	NI-HSDIO	application	in	the	LabVIEW	Real-Time	Module,
follow	the	same	steps	used	for	developing	any	application	in	LabVIEW,
using	the	NI-HSDIO	LabVIEW	VIs.

Note		Applications	running	NI-HSDIO	in	the	LabVIEW	Real-Time
Module	on	a	real-time	target	may	be	compromised	and/or	slow	at
64	MB.

Hardware	Support
NI-HSDIO	supports	operating	all	NI	digital	waveform	generator/analyzers
on	RT	targets.
Unsupported	Features
When	using	NI	digital	waveform	generator/analyzers	with	the	LabVIEW
Real-Time	Module,	the	following	features	are	not	supported:

External	calibration
Express	VIs

Related	Documentation
For	configuration	instructions	for	remote	systems,	refer	to	the
Remote	Systems	Help	in	Measurement	&	Automation	Explorer
(MAX)	by	selecting	Help»Help	Topics»Remote	Systems	in	MAX.
For	more	information	on	the	LabVIEW	Real-Time	Module,	refer	to
the	LabVIEW	Real-Time	Module	User	Manual	at	ni.com/manuals.
For	additional	troubleshooting	and	support	information,	refer	to	the
LabVIEW	Real-Time	Support	main	page.

javascript:WWW(WWW_Manuals)
javascript:WWW(WWW_rdlvrt)

Using	NI-HSDIO	in	LabWindows/CVI
This	topic	assumes	that	you	are	using	the	LabWindows™/CVI™	ADE	to
manage	your	code	development	and	that	you	are	familiar	with	the	ADE.
To	develop	an	NI-HSDIO	application	in	LabWindows/CVI,	follow	these
general	steps:

1.	 Open	an	existing	or	new	project	file.
2.	 Load	the	NI-HSDIO	function	panel	from	the	location	specified	in

the	NI-HSDIO	Instrument	Driver	Readme.
3.	 Use	the	function	panel	to	navigate	the	function	hierarchy	and

generate	function	calls	with	the	proper	syntax	and	variable	values.

Example	Programs	for	LabWindows/CVI
If	you	are	using	LabWindows/CVI	7.0	or	later,	you	can	use	the	NI
Example	Finder	to	search	or	browse	examples.	NI-HSDIO	examples	are
classified	by	keyword,	so	you	can	search	for	a	particular	device	or
measurement	function.
To	browse	the	NI-HSDIO	examples	available	in	LabWindows/CVI,	launch
LabWindows/CVI,	select	Help»NI	Example	Finder,	and	navigate	to
Hardware	Input	and	Output»Modular	Instruments»NI-HSDIO.	You	can
also	acess	the	examples	using	the	Start	menu,	by	selecting	Start»All
Programs»National	Instruments»NI-HSDIO»Examples.

Using	NI-HSDIO	in	Visual	C++
This	topic	assumes	that	you	are	using	the	Microsoft	Visual	C++	ADE	to
manage	your	code	development	and	that	you	are	familiar	with	the	ADE.
To	develop	an	NI-HSDIO	application	in	Visual	C++,	follow	these	general
steps:

1.	 Open	an	existing	or	new	Visual	C++	project.
2.	 Create	source	files	of	type	.c	(C	source	code)	or	.cpp	(C++	source

code)	and	add	them	to	the	project.	Make	sure	that	you	include	the
NI-HSDIO	header	file,	niHSDIO.h,	as	follows	in	your	source	code
files:	#include	"niHSDIO.h"

3.	 Specify	the	directory	that	contains	the	NI-HSDIO	header	file	under
the	Preprocessor»Additional	include	directories	settings	in
your	compiler—for	Visual	C++	6.0	these	files	are	under
Project»Settings»C/C++.	The	NI-HSDIO	header	files	are	located
in	the	.\Include	directory	within	your	NI-HSDIO	directory.

4.	 Add	the	NI-HSDIO	import	library	niHSDIO.lib	to	the	project	under
Link»General»Object/Library	Modules.	The	NI-HSDIO	import
library	files	are	located	in	the	.\Lib	directory	within	your	NI-HSDIO
directory.

5.	 Add	NI-HSDIO	function	calls	to	your	application.
6.	 Build	your	application.

Example	Programs	for	Visual	C++
You	can	find	example	programs	at	the	location	specified	in	the	NI-HSDIO
Instrument	Driver	Readme	or	from	the	Start	menu	by	selecting
Programs»National	Instruments»NI-HSDIO»Examples»c.
All	C	examples	are	installed	with	support	makefiles	that	are	executable
from	a	command	prompt.	To	build	examples,	run	vcvars32	to	set	up	your
build	environment.	From	the	example	directory,	type
nmake	/f	makefilename.

Note		You	might	get	a	compiler	error	if	the	example	uses	NI-HWS
because	some	operating	systems	may	not	be	able	to	resolve	the
$(PROGRAMFILES)	variable	referred	to	in	the	makefile.	Replace
HWSPATH=$(PROGRAMFILES)\National	Instruments\NI-HWS	in	the
makefile	with	the	absolute	install	path	for	NI-HWS.	The	default
absolute	path	is	specified	in	the	NI-HSDIO	Instrument	Driver
Readme.

Special	Considerations
String	Passing
To	pass	strings,	pass	a	pointer	to	the	first	element	of	the	character	array.
Be	sure	that	the	string	is	null-terminated.
Parameter	Passing
By	default,	C	passes	parameters	by	value.	Remember	to	pass	pointers	to
variables	when	you	need	to	pass	by	address.

Digital	Waveform	Data	Representation
NI-HSDIO	supports	two	data	types	to	represent	digital	waveform	data.
The	first	data	type	is	as	a	one-dimensional	array	of	integer	data.	The
other	data	type	is	the	digital	waveform	data	type	(WDT).	VIs	and
functions	in	NI-HSDIO	that	write	or	read/fetch	digital	waveform	data	can
accept	either	data	type.
The	WDT	is	required	when	you	use	more	than	the	0	and	1	states	in	a
waveform,	for	example,	if	your	waveform	includes	Z's,	X's,	H's,	or	L's.
Binary	data	uses	only	1	bit	per	channel	per	sample,	and	this	cannot
represent	more	than	two	states.	DWDT	uses	8	bits	per	channel	per
sample	and	can	represent	extended	digital	states.
One	difference	between	U32	array	data	and	WDT	data	is	memory	usage.
Each	sample	of	U32	data	occupies	four	bytes	of	PC	memory,
independent	of	the	number	of	channels	being	used.	Each	sample	of	a
digital	WDT	data	occupies	1	byte	for	each	channel	used,	but	unused
channels	do	not	occupy	memory.	Thus,	a	1,000-sample	waveform	of	16
channels	represented	in	a	raw	U32	array	would	occupy
(4	Bytes/sample)	x	(1,000	samples)	=	4	kBytes.
The	same	1,000	sample	waveform	represented	in	a	WDT	would	occupy
approximately
(1	byte/channel)	x	(16	channels/sample)	x	(1,000	samples)	=	16	kBytes.
Related	Topics:

Digital	Waveform	Data	Representation	in	LabVIEW
Digital	Waveform	Data	Representation	in	C

Digital	Waveform	Data	Representation	in
LabVIEW
NI-HSDIO	supports	two	data	types	to	represent	digital	waveform	data.
The	first	data	type	is	as	a	one-dimensional	array	of	integer	data.	The
following	figures	show	the	LabVIEW	control	for	this	data	type	and	an
example	of	a	VI	wired	to	the	data	type.

The	following	figures	show	the	control	for	the	LabVIEW	digital	waveform
data	type	(WDT)	and	an	example	of	a	VI	wired	to	the	data	type.

VIs	in	NI-HSDIO	that	write	or	read/fetch	digital	waveform	data	can	accept
either	data	type.
The	digital	WDT	includes	not	only	the	digital	values	but	also	can	contain
additional	attribute	information,	such	as	time	stamps	(shown	in	the	figure
of	the	WDT	control).	Raw	data,	such	as	the	U32	array	data,	consist	only
of	the	digital	values.
If	you	intend	to	graph	data	using	the	LabVIEW	digital	waveform	graph,	NI
recommends	that	you	use	the	WDT,	as	it	can	be	directly	wired,	as	shown
in	the	following	figure.

Creating	Waveforms	with	per	Cycle	Tristate	Capabilities
NI-HSDIO	provides	the	niHSDIO	Convert	Binary	to	DWDT	VI	to	convert
digital	waveforms	containing	Z	values	from	a	U32	array	of	binary	data
values	and	a	U32	array	of	masks	of	which	channels	to	tristate.

Digital	Waveform	Data	Representation	in	C
As	in	LabVIEW,	the	NI-HSDIO	C	functions	represent	digital	waveform
data	in	two	formats.	Data	can	be	represented	as	a	one-dimensional	array
of	binary	data	or	in	an	expanded	waveform	data	type	(WDT)	format.
Each	integer	value	in	the	array	corresponds	to	the	state	of	one	channel
during	one	sample	of	the	waveform.	The	following	example	shows	writing
a	waveform	in	the	waveform	data	type	format.
ViUInt8	data[NUM_BITS	*	NUM_SAMPLES]	=	{
0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	1,
0,	0,	0,	0,	0,	0,	1,	0,
0,	0,	0,	0,	0,	0,	1,	1,
...
1,	1,	1,	0,	0,	1,	1,	1,
};

error	=	niHSDIO_WriteNamedWaveformWDT(vi,	waveformName,
NUM_SAMPLES,	NIHSDIO_VAL_GROUP_BY_SAMPLE,	data);
If	your	device	supports	per	cycle	tristate,	use	the	waveform	data	type
format	to	use	this	feature.	The	digital	state	values	for	0,	1,	and	Z	are
defined	in	the	niHSDIO.h	header	file	under	Digital	Channel	States,	and
are	defined	as	follows:

#define NI_DIO_0 0
#define NI_DIO_1 1
#define NI_DIO_Z 2

File	I/O	and	Digital	Waveform	Data
You	will	often	store	digital	waveform	data	on	a	disk	and	use	file	I/O	in
your	program	to	retrieve	the	data.	A	convenient	file	format	for	storing
digital	waveform	data	is	the	.hws	file	format.	NI	Hierarchical	Waveform
Storage	(NI-HWS)	provides	a	set	of	functions	for	easily	and	efficiently
storing	and	retrieving	digital	waveform	data	files.	NI-HWS	works	with
binary	data	(U8,	U16,	and	U32)	and	Waveform	Data	Type	(WDT)	data,	as
shown	in	the	LabVIEW	code	snippets	in	the	following	figure:

NI-HWS	can	convert	some	waveform	data	from	the	data	type	in	which	it
was	stored	to	a	different	data	type	when	the	data	is	read	or	retrieved.	The
table	below	shows	the	supported	type	conversions.	A	"Yes"	in	a	box
means	that	data	stored	as	one	data	type	can	be	retrieved	as	the	other
data	type;	a	dash	means	the	conversion	is	not	supported.

Stored	Type
Retrieved	Type

Digital
WDT

Digital
1D	U8

Digital
2D	U8

Digital
1D	U16

Digital
2D	U16

Digital
1D	U32

Digital
2D	U32

Digital
WDT

Yes — — — — — —

Digital
1D	U8

Yes Yes Yes Yes Yes Yes Yes

Digital
2D	U8

Yes — Yes — Yes — Yes

Digital
1D	U16

Yes Yes* Yes* Yes Yes Yes Yes

Digital Yes — Yes* — Yes — Yes

2D	U16
Digital
1D	U32

Yes Yes* Yes* Yes* Yes* Yes Yes

Digital
2D	U32

Yes — Yes* — Yes* — Yes

*For	digital	waveforms,	smaller	data	types	can	read	larger	data	types
with	the	following	restrictions:	the	data	must	be	mapped	and	all	mapped
bits	must	be	within	the	smaller	data	types	range.

When	digital	data	is	retrieved	as	WDT,	the	Dynamic	Channel	List	attribute
is	used	to	determine	the	number	of	channels	of	data	that	the	digital	WDT
contains.	When	data	is	initially	stored	as	WDT,	this	attribute	is
automatically	set.
The	NI	Digital	Waveform	Editor	(DWE)	uses	digital	.hws	files	as	its	native
file	format	for	easy	transfer	of	data	between	the	DWE	and	your
programming	environment.	The	following	figure	illustrates	the	relationship
between	your	programming	environment,	the	DWE,	and	.hws	files.

Programming	Flow
The	diagrams	in	the	following	sections	show	the	basic	programming	flow
of	applications	using	NI-HSDIO	for	waveform	generation,	waveform
acquisition,	simultaneous	generation	and	acquisition,	and	static
generation	and	acquisition.
The	functions	and	VIs	are	categorized	under	these	main	topics	to	assist
you	in	understanding	where	you	should	call	a	function	or	VI	in	your
applications.	Functions	and	VIs	that	do	not	fall	into	the	programming	flow
are	considered	Utility	functions	that	perform	various	tasks,	such	as
resetting	the	device.

Initialize	Your	Session
For	any	application	you	write,	open	a	session	to	establish	communication
with	the	instrument	by	using	one	of	the	following	two	functions:

LabVIEW	VIs C	Functions
niHSDIO	Init	Acquisition	Session niHSDIO_InitAcquisitionSession
niHSDIO	Init	Generation	Session niHSDIO_InitGenerationSession

Use	these	functions	for	both	dynamic	and	static	data	operations.	Use	the
ViSession	handle	or	instrument	handle	returned	by	these	functions	to
identify	the	NI	device	in	all	subsequent	NI-HSDIO	function	calls.

Tip		Do	not	confuse	these	two	functions	with	niHSDIO	Initiate	or
niHSDIO_Initiate,	which	are	used	to	start	a	dynamic	data	operation.

In	addition	to	establishing	a	session	with	the	device,	these	two	functions
also	send	initialization	commands	to	set	the	device	to	the	state	necessary
for	the	operation	of	the	instrument	driver.	These	two	functions	can	also
perform	a	number	of	additional	tasks,	such	as	verifying	that	the
instrument	driver	is	valid	for	the	device	and	resetting	the	device	to	a
known	state.

Select	Channels
Your	digital	device	contains	multiple	channels.	Use	the	following
functions	to	specify	which	channels	you	want	to	use	in	your	data
operations.

LabVIEW	VIs C	Functions
niHSDIO	Assign	Dynamic	Channels niHSDIO_AssignDynamicChannels
niHSDIO	Assign	Static	Channels niHSDIO_AssignStaticChannels

You	can	configure	a	channel	for	more	than	one	simultaneous	data
operation.	A	channel	can	be	simultaneously	configured	for	the	following
operations:

Dynamic	Generation	and	any	(Static	and/or	Dynamic)	Acquisition
Static	Generation	and	any	(Static	and/or	Dynamic)	Acquisition
Both	Static	and	Dynamic	Acquisition
Note		You	cannot	configure	a	particular	channel	for	simultaneous
dynamic	and	static	generation.

Configure	the	Hardware
Use	Configuration	VIs	and	functions	to	set	up	the	triggers,	voltage	levels,
and	other	settings	and	features	needed	for	your	data	operation.
Acquisition	Configuration	Functions	and	Generation	Configuration
Functions	have	tables	that	list	VIs	and	functions	for	configuring	the	NI
digital	waveform	generator/analyzer.	Click	the	VI/function	for	more
information.

Acquisition	Configuration	Functions
LabVIEW	VIs C	Functions
niHSDIO	Configure
Sample	Clock

niHSDIO_ConfigureSampleClock

niHSDIO	Configure
Acquisition	Size

niHSDIO_ConfigureAcquisitionSize

niHSDIO	Configure
Data	Interpretation

niHSDIO_ConfigureDataInterpretation

niHSDIO	Configure
Voltage(Polymorphic
VI)

niHSDIO_ConfigureDataVoltageLogicFamily
niHSDIO_ConfigureDataVoltageCustomLevels
niHSDIO_ConfigureTriggerVoltageLogicFamily
niHSDIO_ConfigureTriggerVoltageCustomLevels
niHSDIO_ConfigureEventVoltageLogicFamily
niHSDIO_ConfigureEventVoltageCustomLevels

niHSDIO	Configure
Data	Position

niHSDIO_ConfigureDataPosition

niHSDIO	Configure
Data	Position	Delay

niHSDIO_ConfigureDataPositionDelay

niHSDIO	Configure
Trigger
(Polymorphic	VI)

niHSDIO_ConfigureDigitalEdgeStartTrigger
niHSDIO_ConfigurePatternMatchStartTrigger
niHSDIO_ConfigurePatternMatchStartTriggerU32
niHSDIO_ConfigureSoftwareStartTrigger
niHSDIO_DisableStartTrigger
niHSDIO_ConfigureDigitalEdgeRefTrigger
niHSDIO_ConfigurePatternMatchRefTrigger
niHSDIO_ConfigurePatternMatchRefTriggerU32
niHSDIO_ConfigureSoftwareRefTrigger
niHSDIO_DisableRefTrigger
niHSDIO_ConfigureDigitalEdgeAdvanceTrigger
niHSDIO_ConfigurePatternMatchAdvanceTrigger

niHSDIO_ConfigurePatternMatchAdvanceTriggerU32
niHSDIO_ConfigureSoftwareAdvanceTrigger
niHSDIO_DisableAdvanceTrigger
niHSDIO_ConfigureDigitalLevelPauseTrigger
niHSDIO_ConfigurePatternMatchPauseTrigger
niHSDIO_ConfigurePatternMatchPauseTriggerU32
niHSDIO_DisablePauseTrigger

niHSDIO	Export
Signal

niHSDIO_ExportSignal

niHSDIO	Configure
Ref	Clock

niHSDIO_ConfigureRefClock

Note		Some	advanced	attributes	are	not	available	through	a
configuration	VI	or	function.	Set	these	attributes	directly	using	the
NI-HSDIO	Property	Node	VI	or	one	of	the	niHSDIO	SetAttribute
functions.	Refer	to	Using	Attributes	with	NI-HSDIO	for	more
information	on	attribute	programming.	Refer	Advanced	Attributes
for	a	list	of	those	attributes	configurable	only	through	a	property
node	or	SetAttribute	function.

Generation	Configuration	Functions
LabVIEW	VIs C	Functions
niHSDIO	Configure
Sample	Clock

niHSDIO_ConfigureSampleClock

niHSDIO	Configure
Generation	Mode

niHSDIO_ConfigureGenerationMode

niHSDIO	Configure
Generation	Repeat

niHSDIO_ConfigureGenerationRepeat

niHSDIO	Configure
Waveform	to
Generate

niHSDIO_ConfigureWaveformToGenerate

niHSDIO	Configure
Script	to	Generate

niHSDIO_ConfigureScriptToGenerate

niHSDIO	Configure
Initial
State(Polymorphic	VI)

niHSDIO_ConfigureInitialState
niHSDIO_ConfigureInitialStateU32

niHSDIO	Configure
Idle	State
(Polymorphic	VI)

niHSDIO_ConfigureIdleState
niHSDIO_ConfigureIdleStateU32

niHSDIO	Configure
Voltage
(Polymorphic	VI)

niHSDIO_ConfigureDataVoltageLogicFamily
niHSDIO_ConfigureDataVoltageCustomLevels
niHSDIO_ConfigureTriggerVoltageLogicFamily
niHSDIO_ConfigureTriggerVoltageCustomThresholds
niHSDIO_ConfigureEventVoltageLogicFamily
niHSDIO_ConfigureEventVoltageCustomLevels

niHSDIO	Configure
Data	Position

niHSDIO_ConfigureDataPosition

niHSDIO	Configure
Data	Position	Delay

niHSDIO_ConfigureDataPositionDelay

niHSDIO	Configure
Trigger
(Polymorphic	VI)

niHSDIO_ConfigureDigitalEdgeStartTrigger
niHSDIO_ConfigurePatternMatchStartTrigger
niHSDIO_ConfigurePatternMatchStartTriggerU32

niHSDIO_ConfigureSoftwareStartTrigger
niHSDIO_DisableStartTrigger
niHSDIO_ConfigureDigitalEdgeScriptTrigger
niHSDIO_ConfigureDigitalLevelScriptTrigger
niHSDIO_ConfigureSoftwareScriptTrigger
niHSDIO_DisableScriptTrigger
niHSDIO_ConfigureDigitalLevelPauseTrigger
niHSDIO_ConfigurePatternMatchPauseTrigger
niHSDIO_ConfigurePatternMatchPauseTriggerU32
niHSDIO_DisablePauseTrigger

niHSDIO	Export
Signal

niHSDIO_ExportSignal

niHSDIO	Configure
Ref	Clock

niHSDIO_ConfigureRefClock

Note		Some	advanced	attributes	are	not	available	through	a
configuration	VI	or	function.	Set	these	attributes	directly	using	the
NI-HSDIO	Property	Node	VI	or	one	of	the	niHSDIO	SetAttribute
functions.	Refer	to	Using	Attributes	with	NI-HSDIO	for	more
information	on	attribute	programming.	Refer	Advanced	Attributes
for	a	list	of	those	attributes	configurable	only	through	a	property
node	or	SetAttribute	function.

Advanced	Attributes
These	advanced	attributes,	called	properties	in	LabVIEW,	are	not
available	through	a	configuration	VI	or	function.	Set	these	attributes
directly	using	the	niHSDIO	Property	Node	or	the	niHSDIO	Set	Attribute
functions.	Refer	to	Using	Attributes	with	NI-HSDIO	for	more	information
on	attribute	programming.

Advanced	Acquisition	Attributes
LabVIEW
Property C	Attribute

Sample
Clock
Impedance

NIHSDIO_ATTR_SAMPLE_CLOCK_IMPEDANCE

Ref	Clock
Impedance

NIHSDIO_ATTR_REF_CLOCK_IMPEDANCE

Digital	Edge
Start	Trigger
Impedance

NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_IMPEDANCE

Digital	Edge
Start	Trigger
Position

NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_POSITION

Digital	Edge
Start	Trigger
Terminal
Configuration

NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_TERMINAL_CONFIGURATION

Digital	Edge
Reference
Trigger
Impedance

NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_IMPEDANCE

Digital	Edge
Reference
Trigger
Position

NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_POSITION

Digital	Edge
Reference
Trigger
Terminal
Configuration

NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_TERMINAL_CONFIGURATION

Digital	Edge
Advance
Trigger
Impedance

NIHSDIO_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_IMPEDANCE

Digital	Edge
Advance
Trigger
Position

NIHSDIO_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_POSITION

Digital	Edge
Advance
Trigger
Terminal
Configuration

NIHSDIO_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_TERMINAL_CONFIGURATION

Ready	For
Advance
Event
Terminal
Configuration

NIHSDIO_ATTR_READY_FOR_ADVANCE_EVENT_TERMINAL_CONFIGURATION

Ready	For
Start	Event
Terminal
Configuration

NIHSDIO_ATTR_READY_FOR_START_EVENT_TERMINAL_CONFIGURATION

Digital	Level
Pause
Trigger
Impedance

NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_IMPEDANCE

Digital	Level
Pause
Trigger
Position

NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_POSITION

Digital	Level
Pause
Trigger
Terminal
Configuration

NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_TERMINAL_CONFIGURATION

Exported
Sample
Clock	Mode

NIHSDIO_ATTR_EXPORTED_SAMPLE_CLOCK_MODE

Exported
Sample

NIHSDIO_ATTR_EXPORTED_SAMPLE_CLOCK_DELAY

Clock	Delay
Fetch
Relative	To

NIHSDIO_ATTR_FETCH_RELATIVE_TO

Fetch	Offset NIHSDIO_ATTR_FETCH_OFFSET
Fetch
Backlog

NISHDIO_ATTR_FETCH_BACKLOG

Advanced	Generation	Attributes
LabVIEW
Property C	Attribute

Sample
Clock
Impedance

NIHSDIO_ATTR_SAMPLE_CLOCK_IMPEDANCE

Ref	Clock
Impedance

NIHSDIO_ATTR_REF_CLOCK_IMPEDANCE

Data	Active
Event
Position

NIHSDIO_ATTR_DATA_ACTIVE_EVENT_POSITION

Marker	Event
Pulse
Polarity

NIHSDIO_ATTR_MARKER_EVENT_PULSE_POLARITY

Marker	Event
Position

NIHSDIO_ATTR_MARKER_EVENT_POSITION

Exported
Sample
Clock	Mode

NIHSDIO_ATTR_EXPORTED_SAMPLE_CLOCK_MODE

Exported
Sample
Clock	Delay

NIHSDIO_ATTR_EXPORTED_SAMPLE_CLOCK_DELAY

Digital	Edge
Start	Trigger
Impedance

NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_IMPEDANCE

Digital	Edge
Start	Trigger
Position

NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_POSITION

Digital	Edge
Start	Trigger
Terminal
Configuration

NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_TERMINAL_CONFIGURATION

Digital	Edge
Reference

NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_IMPEDANCE

Trigger
Impedance
Digital	Edge
Reference
Trigger
Position

NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_POSITION

Digital	Edge
Reference
Trigger
Terminal
Configuration

NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_TERMINAL_CONFIGURATION

Digital	Edge
Script
Trigger
Impedance

NIHSDIO_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_IMPEDANCE

Digital	Edge
Script
Trigger
Terminal
Configuration

NIHSDIO_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_TERMINAL_CONFIGURATION

Digital	Level
Script
Trigger
Impedance

NIHSDIO_ATTR_DIGITAL_LEVEL_SCRIPT_TRIGGER_IMPEDANCE

Digital	Level
Script
Trigger
Terminal
Configuration

NIHSDIO_ATTR_DIGITAL_LEVEL_SCRIPT_TRIGGER_TERMINAL_CONFIGURATION

Hardware	Comparison	Attributes
LabVIEW
Property C	Attribute

Advanced:Hardware
Compare:Hardware
Compare	Mode

NIHSDIO_ATTR_HWC_HARDWARE_COMPARE_MODE

Advanced:Hardware
Compare:Filter
Repeated	Sample
Errors

NIHSDIO_ATTR_HWC_FILTER_REPEATED_SAMPLE_ERRORS

Advanced:Hardware
Compare:Samples
Compared

NIHSDIO_ATTR_HWC_SAMPLES_COMPARED

Advanced:Hardware
Compare:Number
Of	Sample	Errors

NIHSDIO_ATTR_HWC_NUM_SAMPLE_ERRORS

Advanced:Hardware
Compare:Sample
Error	Backlog

NIHSDIO_ATTR_HWC_SAMPLE_ERROR_BACKLOG

Advanced:Hardware
Compare:Samples
Error	Buffer
Overflowed

NIHSDIO_ATTR_HWC_SAMPLE_ERROR_BUFFER_OVERFLOWED

Acquiring	or	Generating	Static	Data
After	you	configure	the	acquisition	or	generation,	you	can	acquire	or
generate	the	static	data	using	the	static	read/write	VIs	and	functions.

Reading	and	Writing	Static	Data
Static	acquisition	and	static	generation	are	software-timed	operations	that
can	be	performed	on	any	number	of	channels.	Static	operations	can
performed	using	the	following	functions:

LabVIEW	VIs C	Functions
niHSDIO	Assign	Static	Channels niHSDIO_AssignStaticChannels
niHSDIO	Read	Static	(U32) niHSDIO_ReadStaticU32
niHSDIO	Write	Static	(U32) niHSDIO_WriteStaticU32

Acquiring	Dynamic	Data
After	you	have	configured	the	acquisition,	you	can	acquire	data	using	the
read	functions	or	using	the	initiate	and	fetch	functions.

Read
The	Read	functions	are	an	easy	way	to	acquire	data	from	the	device.
These	functions	initiate	an	acquisition,	fetch	the	acquired	data,	and	return
control	to	your	program	after	all	the	requested	data	has	been	acquired.	If
you	have	not	configured	a	Start	trigger,	the	device	immediately	begins
acquiring	the	data.
The	Read	VIs/functions	are	shown	in	the	following	table.

LabVIEW	VIs C	Functions
Use	one	of	the	following	instances	of	the
niHSDIO	Read	Waveform	polymorphic
VI:

niHSDIO	Read	Waveform	(U32)
niHSDIO	Read	Waveform	(U16)
niHSDIO	Read	Waveform	(U8)
niHSDIO	Read	Waveform	(WDT)
niHSDIO	Read	Multi	Record	(2D
U32)
niHSDIO	Read	Multi	Record	(2D
U16)
niHSDIO	Read	Multi	Record	(2D
U8)
niHSDIO	Read	Multi	Record	(1D
WDT)

niHSDIO_ReadWaveformU32
niHSDIO_ReadWaveformU16
niHSDIO_ReadWaveformU8
niHSDIO_ReadMultiRecordU32
niHSDIO_ReadMultiRecordU16
niHSDIO_ReadMultiRecordU8

You	can	configure	the	maximum	length	of	time	to	allow	the	measurement
operation	to	complete.	If	the	measurement	operation	does	not	complete
within	this	time	interval,	the	function	returns	a	timeout	error.

Note		If	you	are	programming	in	C,	you	must	declare	an	array	in
your	program.	This	array	allocates	space	for	the	data	that	is
acquired	with	the	read	function.	LabVIEW	users	do	not	need	to
declare	an	array	because	the	niHSDIO	Read	Waveform	VI
handles	the	array.

Initiate	and	Fetch
Use	the	Initiate	and	Fetch	functions	to	perform	other	operations	while	the
device	acquires	data.	Initiate	begins	the	acquisition	operation	and	returns
control	to	your	program.	Fetch	transfers	the	acquired	data	from
acquisition	onboard	memory	to	your	application.
The	Initiate	and	Fetch	VIs/functions	are	shown	in	the	following	table.

LabVIEW	VIs C	Functions
niHSDIO	Initiate niHSDIO_Initiate
Use	one	of	the	following	instances	of	the
niHSDIO	Fetch	Waveform	polymorphic
VI:

niHSDIO	Fetch	Waveform	(U32)
niHSDIO	Fetch	Waveform	(U16)
niHSDIO	Fetch	Waveform	(U8)
niHSDIO	Fetch	Waveform	(WDT)
niHSDIO	Fetch	Multi	Record	(2D
U32)
niHSDIO	Fetch	Multi	Record	(2D
U16)
niHSDIO	Fetch	Multi	Record	(2D
U8)
niHSDIO	Fetch	Multi	Record	(1D
WDT)

niHSDIO_FetchWaveformU32
niHSDIO_FetchWaveformU16
niHSDIO_FetchWaveformU8
niHSDIO_FetchMultiRecordU32
niHSDIO_FetchMultiRecordU16
niHSDIO_FetchMultiRecordU8

Note		If	you	are	programming	in	C,	you	must	declare	an	array	in
your	program.	This	array	allocates	space	for	the	data	that	is
acquired	with	the	fetch	functions.	LabVIEW	users	do	not	need	to
declare	an	array	because	the	Fetch	VIs	allocate	the	array.

If	you	fetch	the	data	while	the	device	is	still	acquiring,	the	function	waits
until	all	the	requested	data	has	been	acquired.	If	the	data	is	not	acquired
within	the	time	specified	with	the	timeout	parameter,	NI-HSDIO	returns	an
error.	If	you	want	to	stop	the	device	before	it	finishes,	use	the	niHSDIO
Abort	VI	or	the	niHSDIO_Abort	function.	However,	you	cannot	fetch	after
aborting.

Tip		Read	the	NIHSDIO_ATTR_FETCH_BACKLOG	attribute	before
calling	the	fetch	function	to	determine	the	number	of	samples
available,	or	use	the	Fetch	Backlog	property	in	LabVIEW
(Dynamic	Acquisition»Fetch	Backlog)	for	the	same	purpose.
Note		The	read	functions	combine	the	initiate	and	fetch	functions
into	one	call.	The	read	functions	are	more	suitable	for	simple
acquisitions,	while	initiate/fetch	is	better	suited	for	complex
applications	that	involve	triggering.

Making	Multirecord	Acquisitions
NI-HSDIO	supports	multirecord	acquisitions,	which	allow	you	to	capture
multiple,	triggered	waveforms	without	software	intervention.	NI-HSDIO
stores	each	record	in	separate	memory	locations	on	the	NI	device.
The	main	benefit	of	multirecord	acquisitions	is	that	you	can	quickly
acquire	numerous	triggered	waveforms.	Multirecord	acquisitions	allow
hardware	rearming	of	the	NI	device	before	the	data	is	fetched.	Therefore,
the	rearm	time,	or	the	time	when	the	NI	device	is	not	ready	for	a	trigger,
is	extremely	small,	often	from	1	to	100	µs,	depending	on	the	record
length	and	the	device.	This	short	rearm	time	allows	you	to	capture	data
whether	the	triggers	occur	microseconds	or	many	days	apart.

Fetching	Multirecord	Acquisitions
You	use	the	same	fetch	functions	for	retrieving	multirecord	acquisitions
as	you	do	for	single-record	acquisitions.	However,	you	must	also	specify
the	starting	record	and	the	number	of	records	to	fetch.
Fetching	multiple	records	with	a	single	fetch	function	requires
understanding	the	order	of	the	returned	waveforms.	If	you	are	using	a	C-
based	language,	the	waveforms	are	packed	into	a	one-dimensional	array.
For	LabVIEW	users,	the	waveforms	are	returned	as	a	two-dimensional
array	(where	rows	represent	records	and	columns	represent	samples).
You	can	use	the	Index	Array	VI	to	extract	the	waveform	of	interest.
You	can	also	fetch	each	record	individually	using	the	following	procedure:

1.	 Set	the	number	of	records	to	fetch	to	1.
2.	 Use	a	loop	to	set	the	starting	record	as	the	zero-based	index	of

the	record	you	want	to	fetch.
3.	 Call	one	of	the	fetch	functions/VIs.

Generating	Dynamic	Data
After	you	configure	the	generation	and	write	your	waveform(s)	to	the
device,	you	can	generate	the	data	by	calling	an	initiate	function.	You	can
generate	data	one	waveform	at	a	time,	or	you	can	use	scripts	to	generate
complex	sequences	of	waveforms.

Writing	Waveforms	to	Your	Device
Before	you	can	generate	any	data,	you	must	write	your	waveform(s)	to
the	device	onboard	memory.	Use	the	Write	Named	Waveform
VIs/functions	to	write	waveform	data	from	your	PC	memory	to	your
onboard	device	memory.
The	Write	Named	Waveform	VIs/functions	are	shown	in	the	following
table.

LabVIEW	VIs C	Functions
Use	one	of	the	following
instances	of	the	niHSDIO
Write	Named	Waveform
polymorphic	VI:

niHSDIO	Write
Named	Waveform
(U32)
niHSDIO	Write
Named	Waveform
(U16)
niHSDIO	Write
Named	Waveform
(U8)
niHSDIO	Write
Named	Waveform
(WDT)
niHSDIO	Write
Named	Waveform
From	File	(HWS)

niHSDIO_WriteNamedWaveformU32
niHSDIO_WriteNamedWaveformU16
niHSDIO_WriteNamedWaveformU8
niHSDIO_WriteNamedWaveformWDT
niHSDIOWriteNamedWaveformFromFileHWS

You	can	associate	names	with	each	waveform	you	write	to	the	device.
Naming	waveforms	is	optional	if	you	are	writing	a	single	waveform	to	the
device	and	are	not	using	scripts.	You	must	name	each	waveform	if	you
write	multiple	waveforms	to	your	device.	Use
niHSDIO_ConfigureWaveformToGenerate	to	select	which	named	waveform
is	generated	at	Initiate.	However,	you	must	also	name	each	waveform
when	using	scripts,	as	the	script	generate	statement	uses	the	waveform
name	to	know	which	waveform	to	generate.

Note		Select	Programming»Reference»Script	Instructions	from
the	table	of	contents	of	this	help	file	for	more	information	on	the
generate	statement	and	other	scripting	instructions.

When	using	very	large	waveforms,	it	may	be	problematic	to	allocate
enough	PC	memory	to	perform	a	single	Write	Named	Waveform	call.	You
can	write	large	waveforms	to	your	device	by	writing	smaller	blocks	at	a
time.	Use	the	niHSDIO	Allocate	Named	Waveform	VI	and
niHSDIO_AllocateNamedWaveform	function	and	Write	Named	Waveform
VI/functions	(listed	in	the	previous	table)	to	accomplish	this	task.

Note		An	easier	way	to	handle	the	task	in	the	example	below	is	by
using	niHSDIO	Write	Named	Waveform	From	File	(HWS),	as	this
VI/function	handles	memory	allocation	for	you.

Refer	to	the	following	code	snippets	for	an	example	of	writing	a	1	MS
waveform	to	onboard	memory	in	LabVIEW	and	in	C.

#define	BLOCK_SIZE									8192

ViUInt32	data[BLOCK_SIZE];
.
.
.
niHWS_OpenFile("mydata.hws",	niHWS_Val_ReadOnly,	&fileHandle;.
niHWS_GetWfmReference	(fileHandle,	VI_NULL,	VI_NULL,	&wfmRef);

/*	reserve	onboard	memory,	name	the	waveform	"myWfm"	*/

niHWS_GetWfmI32Attribute	(wfmRef,	niHWS_Attr_WaveformSize,
&wfmSize);
niHSDIO_AllocateNamedWaveform	(instrHdl,	"myWfm",	wfmSize);

/*	write	waveform	1	block	at	a	time	*/
numSamplesWritten	=	0;
while	(numSamplesWritten	<=	wfmSize)
{
/*	Read	BLOCK_SIZE	samples	from	.hws	file,	put	in	data	*/
niHWS_ReadDigitalU32(wfmRef,	BLOCK_SIZE,	data,
&actualSamplesRead);
niHSDIO_WriteNamedWaveformU32	(instrHdl,	"myWfm",
actualSamplesRead,	data);
numSamplesRead	=	numSamplesRead	+	actualSamplesRead;

}

.

.

.
Each	call	to	a	Write	Named	Waveform	VI/function	writes	to	the	end	of	the
most	previously	written	data.

Note		Closing	the	session	using	the	niHSDIO	close	VI	or	the
niHSDIO_close	function	also	deletes	all	waveforms	from	your
device.	You	can	manually	delete	a	single	named	waveform	from
onboard	memory	by	calling	the	niHSDIO	Delete	Named
Waveform	VI	or	the	niHSDIO_DeleteNamedWaveform	function.

Note		If	you	try	to	write	past	the	end	of	a	waveform,	NI-HSDIO
returns	an	error.

Note		NI	digital	waveform	generator/analyzers	require	blocks	be
multiples	of	32	samples	for	NI	654x/655x	devices	or	64	samples
for	NI	656x	devices	when	writing	to	preallocated	waveforms.	The
overall	waveform	size	does	not	have	this	restriction,	but	it	must	be
even	for	the	NI	654x/655x	devices	or	a	multiple	of	four	for	the
NI	656x	(a	multiple	of	eight	if	the	NI	656x	is	in	DDR	mode).	The
last	call	to	Write	Named	Waveform	should	write	enough	data	to	fill
the	waveform.

Generating	Data	in	Single-Waveform	Mode
You	can	generate	data	in	one	of	two	generation	modes:	waveform	or
scripted.	Use	the	niHSDIO	Configure	Generation	Mode	VI	or	the
niHSDIO_ConfigureGenerationMode	function	to	switch	between	the	two
modes.	The	default	mode	is	waveform.
In	waveform	mode,	call	initiate	to	generate	the	waveform	you	specified	by
calling	the	niHSDIO	Configure	Waveform	to	Generate	VI	or	the
niHSDIO_ConfigureWaveformToGenerate	function.	Once	you	have
generated	the	waveform,	you	can	call	the	niHSDIO	Configure	Waveform
To	Generate	VI	or	the	niHSDIO_ConfigureWaveformToGenerate	function
again	to	switch	to	a	different	named	waveform.

Tip		You	can	configure	whether	you	want	to	generate	a	single
waveform	once,	n	times,	or	continuously	by	calling	the	niHSDIO
Configure	Generate	Repeat	VI	or	the
niHSDIO_ConfigureGenerationRepeat	function.

Generating	Multiple	Waveforms/Linking	&
Looping
The	second	generation	mode,	scripted,	allows	you	to	link	and	loop
multiple	waveforms	in	complex	combinations.
Use	the	niHSDIO	Configure	Generation	Mode	VI	or	the
niHSDIO_ConfigureGenerationMode	function	to	switch	to	scripted	mode.
Write	all	waveforms	that	are	referenced	in	the	script	using	a	Write	Named
Waveform	call,	and	associate	the	proper	names	to	them.
After	waveforms	are	written	to	your	device,	use	the	niHSDIO	Write
Script	VI	or	the	niHSDIO_WriteScript	function	to	write	the	script(s)
containing	the	generation	instructions	to	be	executed.	Multiple	scripts	can
exist	on	your	device	simultaneously.	If	you	write	multiple	scripts	to	your
device,	you	must	select	the	one	you	wish	to	execute	by	calling	the
niHSDIO	Configure	Script	To	Generate	VI	or	the
niHSDIO_ConfigureScriptToGenerate	function.	Call	initiate	to	execute	the
selected	script.

Note		Internally,	the	script	stores	physical	device	memory	locations
to	refer	to	named	waveforms.	Thus,	write	all	waveforms	to	the
device	before	writing	the	script,	or	the	device	does	not	know	where
the	waveform	is	located.	The	initiate	function	produces	an	error	if
this	rule	is	violated.	If	you	delete	waveforms	and	rewrite	them,
rewrite	the	script	to	update	it	with	the	new	locations,	even	if	the
script	text	has	not	changed.

Related	Topics:
Scripts
Common	Scripting	Use	Cases
Scripting	Instructions

ms-its:niscripted.chm::/use_cases.html
ms-its:niscripted.chm::/scripting_instructions.html

Comparing	Response	Data	with	Expected	Data
You	can	generate	stimulus	data	and	acquire	the	response	data	for
analysis	by	synchronizing	the	generation	and	acquisition	sessions.
To	perform	software	comparison,	you	must	transfer	all	data	to	the	host
computer	for	post-processing,	which	makes	this	method	suitable	for
slower-speed	applications.	Transferring	all	the	data	to	the	host	computer
may	exceed	computer	bandwidth	limitations	if	more	data	is	to	be
acquired	than	can	fit	on	the	testers	onboard	memory.	For	this	situation
and	other	cases	that	require	faster	comparison	rates,	real-time	hardware
comparison	may	be	used.

Note		Real-time	hardware	comparison	(HWC)	is	supported	only	on
the	NI	655x	family	of	devices.

There	are	two	configurations	for	comparing	expected	response	data	with
actual	response	data:	response-only	and	stimulus-response.	In	the
response-only	mode,	the	device	does	not	drive	any	data,	it	only	acquires
and	compares.	A	generation	session	downloads	the	expected	waveform.
In	the	stimulus-response	mode,	the	device	drives	and	compares	data	in
the	same	session.	You	can	download	waveforms	with	drive	and/or
compare	data.	All	digital	states	supported	in	this	mode.

Response-Only	Mode
NI	655x	Only			In	Response-Only	mode,	the	device	does	not	drive
any	data;	it	only	acquires	data	and	compares	the	acquired	data
against	an	expected	waveform.	A	generation	session	is	exclusively
used	to	download	expected	data.

Stimulus-Response	Mode
NI	655x	Only			In	Stimulus-Response	mode,	the	device	drives	and
compares	data	in	the	same	operation.	You	can	download
waveforms	with	drive	and/or	compare	data.	This	mode	support	all
digital	states,	which	means	that	the	waveform	contains	both
generation	and	expected	data.

Comparing	Response	Data	in	Software
During	a	software	comparison	application,	the	tester	generates	the
stimulus	data,	captures	the	actual	response	data,	and	then	performs
analysis	of	the	response	data	after	it	is	stored	in	the	host	PC	memory.
The	actual	response	data	analysis	is	performed	entirely	in	software	and
not	in	real-time.
The	following	steps	describe	software	comparison	in	more	detail.

1.	 Enter	original	test	data	or	read	the	data	from	a	file.	The	test	data
may	contain	both	stimulus	and	response	data.

2.	 The	tester	extracts	stimulus	data	from	the	test	data.	1s	and	0s	in
the	test	data	specify	stimulus	data;	all	other	characters	indicate
that	no	data	is	generated,	so	the	voltage	drivers	are	disabled.

3.	 The	digital	tester	generates	stimulus	data	onto	the	channel	and
acquires	the	response	data.	The	generation	and	acquisition
operations	occur	in	parallel.	During	this	step,	reducing	the	round-
trip	delay	can	be	important.

4.	 Once	the	generation	and	acquisition	are	complete,	the	application
program	performs	the	comparison	on	a	per	bit	basis	in	software.
The	final	pass/fail	decision	is	only	affected	by	the	response	data
acquired	when	an	H	or	L	was	present	in	the	original	test	data.

To	perform	software	comparison,	you	must	transfer	all	data	to	the	host
computer	for	post-processing,	which	makes	this	method	suitable	for
slower-speed	applications.	Transferring	all	the	data	to	the	host	computer
may	exceed	computer	bandwidth	limitations	if	more	data	is	to	be
acquired	than	can	fit	on	the	testers	onboard	memory.	For	this	situation
and	other	cases	that	require	faster	comparison	rates,	real-time	hardware
comparison	may	be	used.

Comparing	Response	Data	in	Hardware
Leveraging	the	onboard	FPGA	to	compare	the	acquired	response	data	to
the	expected	data	drastically	increases	the	speed	and	reduces	the
necessary	post-processing	data	analysis	of	stimulus-response
applications.	To	develop	a	program	to	compare	the	response	data	in
hardware,	complete	the	following	steps:

1.	 The	original	test	data	is	entered	by	a	user	or	read	from	a	file.	The
test	data	may	contain	both	stimulus	and	response	data.

2.	 Stimulus	data	is	extracted	from	the	test	data.	1s	and	0s	in	the	test
data	specify	stimulus	data;	all	other	characters	indicate	that	no
data	is	generated,	so	the	voltage	drivers	are	disabled.

3.	 Use	the	Hardware	Compare	Mode	property	or	the
NIHSDIO_ATTR_HWC_HARDWARE_COMPARE_MODE	attribute
to	enable	the	hardware	comparison	block	on	the	NI	655x	during
the	configuration	stage	of	both	the	generation	and	acquisition
sessions.	After	you	enable	the	hardware	comparison,	a	digital
waveform	created	with	the	six	logic	states	dictate	the	NI	655x
operations—acquisition,	generation,	and	hardware	comparison—
which	eliminates	the	need	for	any	parsing	and	software	analysis
functions.

4.	 The	stimulus	data	is	generated	onto	the	channel	by	the	digital
tester,	and	the	response	data	is	acquired.	The	generation	and
acquisition	operations	occur	in	parallel,	so	reducing	the	round-trip
delay	can	be	important.

5.	 Once	the	generation	and	acquisition	are	complete,	the	application
program	performs	the	comparison	on	a	per	bit	basis	in	software.
The	final	pass/fail	decision	is	only	effected	by	the	response	data
that	was	acquired	when	an	H	or	L	was	present	in	the	original	test
data.

6.	 For	applications	requiring	more	complex	fault	analysis,	a	fetch
function	can	acquire	the	faulty	data	and	any	samples	surrounding
that	error.	For	every	sample	that	is	in	error,	you	can	retrieve	the
following	information:

Sample	number	of	the	fault
Channel(s)	at	fault
Total	number	of	repeated	errors	(useful	if	the	Filter

Repeated	Sample	Errors	property	or	the
NIHSDIO_ATTR_HWC_FILTER_REPEATED_SAMPLE_ERRORS
attribute	are	enabled)

Use	the	Sample	Error	Backlog	property	or	the
NIHSDIO_ATTR_HWC_SAMPLE_ERROR_BACKLOG	attribute	to	query
how	many	errors	can	be	returned	using	the	niHSDIO	HWC	Fetch	Sample
Errors	(U32)	VI	or	the	niHSDIO_HWC_FetchSampleErrors	function.	Use	the
Number	Of	Sample	Errors	property	or
NIHSDIO_ATTR_HWC_NUM_SAMPLE_ERRORS	attribute,	along	with	the
Samples	Compared	property	or	the
NIHSDIO_ATTR_HWC_SAMPLES_COMPARED	attribute,	to	calculate	the
sample	error	rate.	By	capturing	this	information,	you	can	perform	more
detailed	fault	analysis.
The	hardware	performs	all	the	data	comparison	on	a	per	sample	basis,
which	significantly	reduces	the	time	spent	analyzing	the	data	in	software.
Using	this	hardware	comparison	method,	you	can	program	the	NI	655x
for	high-performance	functional	tests	and	other	stimulus-response
applications.
For	a	complete	hardware	compare	example,	refer	to	the	"Hardware
Compare	-	Fetch	Error	Records"	example	included	with	NI-HSDIO.

Hardware	Comparison	Functions
You	use	the	same	VIs/functions	as	you	normally	would	to	configure	your
acquisition	and	generation	sessions,	but	you	can	also	use	the	following
VI/function	to	fetch	the	fault	data.

LabVIEW	VIs C	Functions
niHSDIO	HWC	Fetch	Sample	Errors
(U32)

niHSDIO_HWC_FetchSampleErrors

Note		Some	advanced	attributes	are	not	available	through	a
configuration	VI	or	function.	Set	the	attributes	directly	using	the	NI-
HSDIO	Property	Node	VI	or	one	of	the	niHSDIO	SetAttribute
functions.	Refer	to	Using	Attributes	with	NI-HSDIO	for	more
information	on	attribute	programming.	Refer	to	Advanced
Attributes	for	a	list	of	those	attributes	configurable	only	through	a
property	node	or	SetAttribute	function.

Using	Attributes	with	NI-HSDIO
Attributes,	which	are	typically	called	properties	in	LabVIEW,	serve	as	a
base	for	parameters.
NI-HSDIO	contains	high-level	functions	that	set	most	of	the	instrument
attributes.	Some	attributes	are	not	accessible	through	the	high-level
functions.	For	example,	input	impedance	is	not	set	with	any	of	the	NI-
HSDIO	configuration	functions.	The	values	for	these	attributes	must	be
set	using	the	attribute.
Accessing	Attributes
In	LabVIEW,	you	can	find	attributes	in	the	NI-HSDIO	property	node.	To
access	them,	complete	the	following	steps:

1.	 Open	a	VI.
2.	 Make	sure	that	you	are	viewing	the	block	diagram.	Navigate	to	the

NI-HSDIO	palette	at	All	Functions»NI	Measurements»NI-
HSDIO»Static	and	Dynamic	Acquisition	or	All
Functions»NI	Measurements»NI-HSDIO»Static	and	Dynamic
Generation,	and	then	drag	the	property	node	icon	to	the	block
diagram.

3.	 Left-click	the	property	node,	and	select	the	attribute	you	want	to
use.

4.	 To	add	additional	attributes,	resize	the	property	node.
In	C,	attributes	are	accessed	with	the	niHSDIO	Set	and	Get	Attribute
functions.	These	functions	correspond	to	a	particular	data	type.	For
example,	to	set	the	input	impedance,	which	has	a	data	type	or	ViReal64,
use	niHSDIO_SetAttributeViReal64.
Refer	to	the	Function	Reference	section	for	a	complete	listing	of	available
attributes	and	properties.

Closing	Your	Session
For	any	application	you	write,	you	must	close	the	specified	session	to
close	communication	with	the	device	and	free	resources	that	it	has
reserved.	If	the	session	is	running,	it	is	first	aborted.
You	can	close	your	session	by	using	the	following	functions:

LabVIEW	VI C	Function
niHSDIO	Close niHSDIO_close

Use	these	functions	for	both	dynamic	and	static	data	operations.

Note		To	prevent	generating	unwanted	signal	glitches	between
initializing	and	closing	sessions,	no	front	panel	terminals	or
channels	are	tristated	by	the	close	functions—they	are	all	left
driving	whatever	voltage	they	would	have	been	driving	had	you
simply	used	the	niHSDIO	Abort	VI	or	the	niHSDIO_Abort	function.
Use	the	niHSDIO	Reset	VI	or	the	niHSDIO_reset	function	before
using	the	close	functions	if	you	want	to	tristate	your	terminals	and
channels	before	closing	your	session.

Using	the	NI	Digital	Waveform	Editor
The	NI	Digital	Waveform	Editor	(DWE)	provides	a	simple	way	to	create
source	data	for	your	digital	waveform	generation	application.	Refer	to
ni.com/catalog	for	more	information	about	how	you	can	purchase	this
software.
Refer	to	the	NI	Digital	Waveform	Editor	Help	for	detailed	information
about	creating	waveforms.

javascript:WWW(WWW_Catalog)

Features
Expand	this	book	to	view	topics	that	explain	how	to	configure	certain
features	of	the	NI	digital	waveform	generator/analyzer	with	NI-HSDIO.

Configuring	Voltage	Levels
NI	654x/655x	devices	support	configuring	voltage	levels	for	use	with	a
predefined	logic	family	during	a	acquisition	or	generation	session.	If	you
are	using	an	NI	655x	device,	you	can	also	configure	custom	voltage
levels.	Refer	to	Single-Ended	Voltage	Levels	for	information	about
restrictions	when	configuring	custom	voltage	levels.
You	can	configure	these	voltage	levels	using	the	following	functions:

LabVIEW	VIs C	Functions
Use	one	of	the	following
instances	of	the	niHSDIO
Configure	Voltage
polymorphic	VI:

niHSDIO	Configure
Data	Voltage	Logic
Family
niHSDIO	Configure
Data	Voltage
Custom	Levels
niHSDIO	Configure
Event	Voltage
Logic	Family
niHSDIO	Configure
Event	Voltage
Custom	Levels
niHSDIO	Configure
Trigger	Voltage
Logic	Family
niHSDIO	Configure
Trigger	Voltage
Custom	Levels

niHSDIO_ConfigureDataVoltageLogicFamily,
niHSDIO_ConfigureDataVoltageCustomLevels,
niHSDIO_ConfigureEventVoltageLogicFamily,
niHSDIO_ConfigureEventVoltageCustomLevels,
niHSDIO_ConfigureTriggerVoltageLogicFamily,

or
niHSDIO_ConfigureTriggerVoltageCustomLevels

Configuring	Generation/Acquisition	Frequencies
You	can	configure	the	generation	or	acquisition	frequencies	of	your
device	using	the	following	functions:

LabVIEW	VI C	Function
niHSDIO	Configure	Sample	Clock niHSDIO_ConfigureSampleClock

Additionally,	you	can	export	a	clock	using	the	niHSDIO	Export	Signal	VI
or	the	niHSDIO_ExportSignal	function.

Configuring	Data	Interpretation
You	can	configure	the	data	interpretation	for	use	during	static	or	dynamic
acquisition	operations	using	the	following	functions:

LabVIEW	VI C	Function
niHSDIO	Configure	Data
Interpretation

niHSDIO_ConfigureDataInterpretation

Configuring	Initial	and	Idle	States
You	can	configure	Initial	and	Idle	States	for	use	during	a	dynamic
generation	operation	using	the	following	functions:

LabVIEW	VIs C	Functions
Initial	State

Use	one	of	the	following	instances	of
the	niHSDIO	Configure	Initial	State
polymorphic	VI:

niHSDIO	Configure	Initial	State
(String)
niHSDIO	Configure	Initial	State
(U32)

niHSDIO_ConfigureInitialState
or

niHSDIO_ConfigureInitialStateU32

Idle	State
Use	one	of	the	following	instances	of
the	niHSDIO	Configure	Idle	State
polymorphic	VI:

niHSDIO	Configure	Idle	State
(String)
niHSDIO	Configure	Idle	State
(U32)

niHSDIO_ConfigureIdleState	
or

niHSDIO_ConfigureIdleStateU32

Configuring	Data	Position
You	can	configure	the	data	position	for	acquisition	or	generation
operations	using	the	following	functions:

LabVIEW	VI C	Function
niHSDIO	Configure	Data	Position niHSDIO_ConfigureDataPosition
niHSDIO	Configure	Data	Position
Delay

niHSDIO_ConfigureDataPositionDelay

Configuring	Input	Impedance
You	can	configure	input	impedance	on	particular	channels	by	setting	the
following	attributes:

LabVIEW	Property C	Attribute
Input	Impedance NIHSDIO_ATTR_INPUT_IMPEDANCE

Note		Configurable	input	impedance	is	not	supported	on
NI	654x/656x	devices.

Refer	to	Using	Attributes	with	NI-HSDIO	for	more	information	on	setting
attribute-based	configuration	options.

Configuring	PFI	Terminal	Configuration
You	can	configure	PFI	3	on	the	NI	656x	to	be	single-ended	or	LVDS
terminals	using	the	following	properties/attributes:

LabVIEW
Property C	Attribute

Start	Trigger
Digital	Edge
Terminal
Configuration

NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_TERMINAL_CONFIGURATION

Script
Trigger
Digital	Edge
Terminal
Configuration

NIHSDIO_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_TERMINAL_CONFIGURATION

Script
Trigger
Digital	Level
Terminal
Configuration

NIHSDIO_ATTR_DIGITAL_LEVEL_SCRIPT_TRIGGER_TERMINAL_CONFIGURATION

Reference
Trigger
Digital	Edge
Terminal
Configuration

NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_TERMINAL_CONFIGURATION

Pause
Trigger
Digital	Level
Terminal
Configuration

NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_TERMINAL_CONFIGURATION

Marker	Event
Terminal
Configuration

NIHSDIO_ATTR_MARKER_EVENT_TERMINAL_CONFIGURATION

Ready	for
Start	Event
Terminal

NIHSDIO_ATTR_READY_FOR_START_EVENT_TERMINAL_CONFIGURATION

Configuration
Ready	for
Advance
Event
Terminal
Configuration

NIHSDIO_ATTR_READY_FOR_ADVANCE_EVENT_TERMINAL_CONFIGURATION

Data	Active
Event
Terminal
Configuration

NIHSDIO_ATTR_DATA_ACTIVE_EVENT_TERMINAL_CONFIGURATION

End	of
Record
Event
Terminal
Configuration

NIHSDIO_ATTR_END_OF_RECORD_EVENT_TERMINAL_CONFIGURATION

Exported
Start	Trigger
Terminal
Configuration

NIHSDIO_ATTR_EXPORTED_START_TRIGGER_TERMINAL_CONFIGURATION

Exported
Advance
Trigger
Terminal
Configuration

NIHSDIO_ATTR_EXPORTED_ADVANCE_TRIGGER_TERMINAL_CONFIGURATION

Exported
Reference
Trigger
Terminal
Configuration

NIHSDIO_ATTR_EXPORTED_REF_TRIGGER_TERMINAL_CONFIGURATION

Exported
Script
Trigger
Terminal
Configuration

NIHSDIO_ATTR_EXPORTED_SCRIPT_TRIGGER_TERMINAL_CONFIGURATION

Exported
Pause

NIHSDIO_ATTR_EXPORTED_PAUSE_TRIGGER_TERMINAL_CONFIGURATION

Trigger
Terminal
Configuration

Note		This	feature	is	supported	only	on	NI	656x	devices.

Refer	to	Using	Attributes	with	NI-HSDIO	for	more	information	on	setting
attribute-based	configuration	options.

Configuring	a	Data	Rate	Multiplier
You	can	configure	the	data	rate	multiplier	for	acquisition	or	generation
operations	using	the	following	property/attribute:

LabVIEW	Property C	Attribute
Data	Rate	Multiplier NIHSDIO_ATTR_DATA_RATE_MULTIPLIER

Configuring	Data	Width
You	can	configure	the	data	width	for	acquisition	operations	using	the
following	property/attribute:

LabVIEW	Property C	Attribute
Advanced:Data	Width NIHSDIO_ATTR_DATA_WIDTH

Valid	values	for	data	width	vary	by	device.

NI	654x 1,	2,	4
NI	655x 1,	2,	4
NI	656x 1,	2

Configuring	Triggers
You	can	configure	triggers	with	NI-HSDIO	using	the	following	functions:

LabVIEW	VIs C	Functions
Use	one	of	the
following	instances	of
the	niHSDIO
Configure	Trigger
polymorphic	VI:

Digital	Edge
Start	Trigger
Pattern	Match
Start	Trigger
Software	Start
Trigger
Disable	Start
Trigger
Digital	Edge
Ref	Trigger
Pattern	Match
Ref	Trigger
Software	Ref
Trigger
Disable	Ref
Trigger
Digital	Edge
Advance
Trigger
Pattern	Match
Advance
Trigger
Software
Advance
Trigger
Disable
Advance

niHSDIO_ConfigureDigitalEdgeStartTrigger
niHSDIO_ConfigurePatternMatchStartTrigger
niHSDIO_ConfigurePatternMatchStartTriggerU32
niHSDIO_ConfigureSoftwareStartTrigger
niHSDIO_DisableStartTrigger
niHSDIO_ConfigureDigitalEdgeRefTrigger
niHSDIO_ConfigurePatternMatchRefTrigger
niHSDIO_ConfigurePatternMatchRefTriggerU32
niHSDIO_ConfigureSoftwareRefTrigger
niHSDIO_DisableRefTrigger
niHSDIO_ConfigureDigitalEdgeAdvanceTrigger
niHSDIO_ConfigurePatternMatchAdvanceTrigger
niHSDIO_ConfigurePatternMatchAdvanceTriggerU32
niHSDIO_ConfigureSoftwareAdvanceTrigger
niHSDIO_DisableAdvanceTrigger
niHSDIO_ConfigureDigitalEdgeScriptTrigger
niHSDIO_ConfigureDigitalLevelScriptTrigger
niHSDIO_ConfigureSoftwareScriptTrigger
niHSDIO_DisableScriptTrigger
niHSDIO_ConfigureDigitalLevelPauseTrigger
niHSDIO_ConfigurePatternMatchPauseTrigger
niHSDIO_ConfigurePatternMatchPauseTriggerU32
niHSDIO_DisablePauseTrigger

Trigger
Digital	Edge
Script	Trigger
Digital	Level
Script	Trigger
Software	Script
Trigger
Disable	Script
Trigger
Digital	Level
Pause	Trigger
Pattern	Match
Pause	Trigger
Disable	Pause
Trigger

niHSDIO	Send
Software	Edge
Trigger

niHSDIO_SendSoftwareEdgeTrigger

Configuring	Events
You	can	configure	events	with	NI-HSDIO	using	the	following	functions:

LabVIEW	VI C	Functions
niHSDIO	Export	Signal niHSDIO_ExportSignal

Eliminating	Round	Trip	Delay
While	performing	a	stimulus-response	application,	the	time	required	for
data	to	move	from	the	digital	tester,	through	the	cable	and	DUT,	and	back
to	the	tester	is	known	as	round	trip	delay	(RTD).
One	way	to	account	for	round-trip	delay	is	by	exporting	a	signal	with	an
edge	that	is	synchronous	to	the	start	of	the	stimulus	data.	This	signal
should	be	routed	through	equal	lengths	of	cable	to	the	acquisition	Start
trigger	so	that	the	signal	has	the	same	round	trip	delay	as	the	data.	The
Data	Active	event	can	be	used	to	accomplish	this	task,	since	it	is
synchronous	to	the	start	of	the	stimulus	data.
The	following	figure	illustrates	the	signal	routing	involved	in	elimination
round	trip	delay.

For	example,	you	can	export	the	Data	Active	event	on	PFI	1	and	route	it
to	PFI	2,	which	you	can	configure	as	the	acquisition	Start	trigger	source.
Then	you	can	export	the	generation	Sample	clock	to	DDC	CLK	OUT	and
configure	the	acquisition	Sample	clock	source	as	STROBE.	Match	your
cable	lengths	so	that	the	signals	are	routed	with	the	same	round	trip
delay	as	the	data.	This	method	ensures	that	clocks,	control	signals,	and
data	signals	all	arrive	at	the	device	at	the	same	time.
Another	method	to	account	for	round-trip	delay	is	to	internally	route	a
delayed	version	of	your	Data	Active	event	to	your	acquisition	Start	trigger.
To	use	this	method,	you	must	first	know	your	total	round-trip	delay.	Once
known,	set	the	Data	Active	Internal	Route	Delay	property	or	the
NIHSDIO_ATTR_DATA_ACTIVE_INTERNAL_ROUTE_DELAY	attribute
to	that	number	of	clock	cycles.	Then	set	the	Data	Position	Delay	property
or	the	NIHSDIO_ATTR_DATA_POSITION_DELAY	attribute	to	the	desired
fractional	delay.

Reference
Expand	this	book	for	reference	information	about	programming	with	NI-
HSDIO.

LabVIEW	Reference
This	section	describes	the	VIs	and	properties	included	with	NI-HSDIO
that	you	can	use	to	configure	and	operate	your	digital	waveform
generator/analyzer.

VI	Reference
Use	the	VIs	on	the	NI-HSDIO	palette	to	build	the	block	diagram.
Click	the	icons	for	VI	and	function	descriptions.

Dynamic	and	Static	Acquisition	Subpalette
Use	the	VIs	located	on	the	NI-HSDIO»Dynamic	and	Static	Acquisition
palette	to	program	acquisition	operations.
Click	the	icons	for	VI	and	function	descriptions.

niHSDIO	Init	Acquisition	Session
Creates	a	new	acquisition	session.	You	can	perform	static	and	dynamic
acquisition	operations	with	this	session.
Creating	a	new	session	does	not	automatically	tristate	your	front	panel
terminals	or	channels	possibly	driving	voltages	from	previous	sessions.
Refer	to	the	niHSDIO	Close	VI	for	more	information	on	leaving	lines
driving	after	closing	a	session.
Set	reset	instrument	to	TRUE	to	place	your	device	in	a	known	start-up
state	when	creating	a	new	session.	This	action	is	equivalent	to	using	the
niHSDIO	Reset	VI,	and	it	tristates	the	front	panel	terminals	and
channels.

resource	name	specifies	the	device	name,	for	example
"PXI1Slot3,"	where	"PXI1Slot3"	is	a	device	name	assigned	by
Measurement	&	Automation	Explorer.
id	query	specifies	whether	the	driver	performs	an	ID	query	on	the
instrument.
When	id	query	is	set	to	TRUE,	the	driver	ensures	compatibility
between	the	instrument	and	the	driver.	When	id	query	is	set	to
FALSE,	the	driver	skips	the	ID	query.

reset	instrument	specifies	whether	the	driver	resets	the	device
during	initialization	of	the	session.	TRUE	means	that	the	device	is
reset;	FALSE	means	that	the	device	is	not	reset.
Refer	to	niHSDIO	Reset	for	more	information	on	what	happens
during	an	instrument	reset.

Note		Resetting	your	device	resets	the	entire	device.
Acquisition	or	generation	operations	in	progress	will	be
aborted	and	cleared.

option	string	is	currently	unused.	Leave	this	parameter	unwired.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.

niHSDIO	Assign	Dynamic	Channels
Configures	channels	for	dynamic	acquisition	(if	instrument	handle	is	an
acquisition	session)	or	dynamic	generation	(if	instrument	handle	is	a
generation	session).

Note		A	channel	cannot	simultaneously	be	assigned	to	static
generation	and	dynamic	generation.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	list	identifies	which	channels	are	reserved	for	dynamic
operation.
Examples	of	valid	syntax	for	this	control	are	0:31	or	0-15,16-31	or
0-30,31.	The	order	of	these	channels	specifies	the	order	when
using	the	waveform	data	type	VIs	(niHSDIO	Read	Waveform	and
niHSDIO	Write	Named	Waveform).
Leave	channel	list	blank	to	specify	all	channels.	Use	"none"	to
unassign	all	channels.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains

niHSDIO	Configure	Sample	Clock
Configures	the	Sample	clock.	This	VI	allows	you	to	specify	the	clock
source	and	rate	for	the	Sample	clock.
If	clock	source	is	set	to	On	Board	Clock,	NI-HSDIO	coerces	the	rate
to	a	value	that	is	supported	by	the	hardware.	Select	Timing»Sample
Clock»Rate	from	the	property	node	to	get	the	coerced	value	of	the
Sample	clock	rate.	clock	source	can	be	set	to	STROBE	only	for
acquisition	sessions.
Refer	to	Clocks	for	Digital	Waveform	Generator/Analyzers	for	more
information	about	the	Sample	clock	sources.	Refer	to	the	Clocking	book
for	your	device	for	a	block	diagram	of	the	clocking	circuitry.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
clock	source	specifies	the	Sample	clock	source.	You	can	select
On	Board	Clock,	ClkIn,	PXI	STAR	Line,	or	Strobe	as	the	value
for	this	control.
clock	rate	specifies	the	Sample	clock	rate,	expressed	in	Hz.

You	must	set	this	property	even	when	you	supply	an	external
clock	because	NI-HSDIO	uses	this	property	for	a	number	of
reasons,	including	optimal	error	checking	and	certain	pulse	width
selections.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

niHSDIO	Configure	Acquisition	Size
Configures	the	size	of	the	acquisition,	including	how	many	records	are
acquired	and	the	minimum	record	size.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	per	record	sets	the	number	of	samples	to	acquire	per
record.	If	you	need	pretrigger	and	posttrigger	points,	configure	a
Reference	trigger	and	specify	the	number	of	pretrigger	points.
number	of	records	sets	how	many	records	are	acquired.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a

niHSDIO	Read	Waveform
Initiates	a	waveform	acquisition	on	channels	enabled	for	dynamic
acquisition,	waits	to	acquire	the	number	of	samples	specified	in
samples	to	read,	and	returns	the	acquired	data.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

1D	U32
This	instance	of	niHSDIO	Read	Waveform	returns	the	binary
representation	of	the	acquired	waveform.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

1D	U16
This	instance	of	niHSDIO	Read	Waveform	returns	the	acquired
waveform	as	an	array	of	unsigned	16-bit	data.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

1D	U8
This	instance	of	niHSDIO	Read	Waveform	returns	the	acquired
waveform	as	an	array	of	unsigned	8-bit	data.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

WDT
This	instance	of	niHSDIO	Read	Waveform	returns	the	acquired
waveform	data	with	the	waveform	data	type.

timestamp	type	specifies	whether	the	timestamp	for	the
waveform	data	is	relative	or	absolute.
instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.

2D	U32
This	instance	of	niHSDIO	Read	Waveform	returns	the	acquired
waveform	as	a	two-dimensional	array	of	unsigned	32-bit	data.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

2D	U16
This	instance	of	niHSDIO	Read	Waveform	returns	the	acquired
waveform	as	a	two-dimensional	array	of	unsigned	16-bit	data.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

2D	U8
This	instance	of	niHSDIO	Read	Waveform	returns	the	acquired
waveform	as	a	two-dimensional	array	of	unsigned	8-bit	data.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

1D	WDT
This	instance	of	niHSDIO	Read	Waveform	returns	the	acquired
waveform	as	an	array	of	waveform	data	types.

timestamp	type	specifies	whether	the	timestamp	for	the
waveform	data	is	relative	or	absolute.
instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.

niHSDIO	Close
Closes	the	specified	session	and	frees	resources	that	it	has	reserved.	If
the	session	is	running,	it	is	first	aborted.
To	prevent	generating	unwanted	signal	glitches	between	initializing	and
closing	sessions,	no	front	panel	terminals	or	channels	are	tristated	by
the	niHSDIO	Close	VI.	The	terminals	and	channels	are	all	left	driving
whatever	voltage	they	would	have	been	driving	had	you	used	the
niHSDIO	Abort	VI.	Use	the	niHSDIO	Reset	VI	before	niHSDIO	Close	if
you	want	to	tristate	all	terminals	and	channels	before	closing	your
session.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	identifies	where	and	why	an	error	occurred.	The

Acquisition	Configuration	Subpalette
Use	the	VIs	located	on	the	NI-HSDIO»Dynamic	and	Static
Acquisition»Acquisition	Configuration	palette	to	configure	acquisition
operations.
Click	the	icons	for	VI	and	function	descriptions.

niHSDIO	Configure	Trigger
Configures	the	specified	trigger.
Refer	to	Triggers	for	more	information	about	the	triggers	that	are
available	with	your	NI	digital	waveform	generator/analyzer.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

Digital	Edge	Start	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Start	trigger
for	digital	edge	triggering.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
source	specifies	the	trigger	source.	You	can	choose	PFI	<0..3>,
PXI	Trigger	Line/RTSI	<0..7>,	or	PXI	STAR	Line.
edge	specifies	the	edge	to	detect.	You	can	choose	Rising	Edge
or	Falling	Edge.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.

Pattern	Match	Start	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Start	trigger
for	pattern	match	triggering.	This	VI	is	only	valid	for	acquisition	sessions.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	list	specifies	which	channels	are	configured	for	pattern
matching	using	the	pattern	string.	The	order	of	channels	in	the	list
determines	the	order	of	the	pattern	string.
pattern	specifies	the	binary	pattern	that	activates	the	pattern
match	trigger	under	the	conditions	specified	in	trigger	when.
This	string	expression	creates	a	mask	for	the	pattern.	This
expression	is	composed	of	characters:

X	or	x:	Ignore	the	channel
1:	Match	on	a	logic	1
0:	Match	on	a	logic	0
R	or	r:	Match	on	a	rising	edge
F	or	f:	Match	on	a	falling	edge
E	or	e:	Match	on	either	edge

The	first	character	in	the	expression	corresponds	to	the	first
channel	in	channel	list.	The	number	of	characters	in	pattern
must	correspond	to	the	number	of	channels	specified	in	channel
list	or	an	error	is	returned.
For	example,	the	following	two	examples	are	valid	and	do	the
same	thing:

channel	list	=	"19-0"	and	pattern	=	"0000	0XXX	XX11
1111	1111"
channel	list	=	"0-19"	and	pattern	=	"1111	1111	11XX	XXX0
0000"

trigger	when	specifies	the	conditions	under	which	the	trigger	is
sent.
Pattern	Matches	means	that	the	trigger	is	sent	when	the
sampled	pattern	matches	the	pattern	specified	in	pattern.
Pattern	Does	Not	Match	means	that	the	trigger	is	sent	when	the

Pattern	Match	Start	Trigger	(U32)
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Start	trigger
for	pattern	match	triggering.	The	pattern	you	specify	in	this	instance	only
represents	logic	high	and	logic	low.	If	you	require	more	choices	for	your
pattern,	use	the	niHSDIO	Configure	Pattern	Match	Start	Trigger
instance	of	this	VI.
This	VI	is	only	valid	for	acquisition	sessions.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	list	specifies	which	channels	are	configured	for	pattern
matching	using	the	pattern	string.	The	order	of	channels	in	the	list
determines	the	order	of	the	pattern	string.
pattern	specifies	the	binary	pattern	that	activates	the	pattern
match	trigger	under	the	conditions	specified	in	trigger	when.
Bits	on	channels	not	specified	in	channel	list	are	ignored.

trigger	when	specifies	the	conditions	under	which	the	trigger	is
sent.
Pattern	Matches	means	that	the	trigger	is	sent	when	the
sampled	pattern	matches	the	pattern	specified	in	pattern.
Pattern	Does	Not	Match	means	that	the	trigger	is	sent	when	the
sampled	pattern	does	not	match	the	pattern	specified	in	pattern.
Refer	to	Pattern	Match	Trigger	for	an	illustration	of	when	your
data	is	acquired	when	using	a	pattern	match	trigger	for
acquisitions.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.

Software	Start	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Start	trigger
for	software	triggering.	Use	the	niHSDIO	Send	Software	Edge
Triggering	VI	to	assert	the	trigger	condition.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	identifies	where	and	why	an	error	occurred.	The
source	string	includes	the	name	of	the	VI	that	produced	the
error,	what	inputs	are	in	error,	and	how	to	eliminate	the
error.

Disable	Start	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	instrument	to
not	wait	for	a	Start	trigger	after	the	niHSDIO	Initiate	VI	is	used.	This	VI	is
only	necessary	if	you	have	configured	a	Start	trigger	and	now	want	to
disable	it.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	identifies	where	and	why	an	error	occurred.	The
source	string	includes	the	name	of	the	VI	that	produced	the
error,	what	inputs	are	in	error,	and	how	to	eliminate	the

Digital	Edge	Ref	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Reference
trigger	for	digital	edge	triggering.	If	the	Reference	trigger	is	asserted
before	the	required	number	of	pretrigger	samples	are	acquired,	it	is
ignored.	This	VI	is	valid	only	for	acquisition	sessions.

pretrig	samples	specifies	the	number	of	pretrigger	samples	the
device	must	receive	before	the	Reference	trigger	is
acknowledged.
instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
source	specifies	the	trigger	source.	You	can	choose	PFI	<0..3>,
PXI	Trigger	Line/RTSI	<0..7>,	or	PXI	STAR	Line.
edge	specifies	the	edge	to	detect.	You	can	choose	Rising	Edge
or	Falling	Edge.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

Pattern	Match	Ref	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Reference
trigger	for	pattern	match	triggering.	If	the	Reference	trigger	asserts
before	the	required	number	of	pretrigger	samples	are	acquired,	it	is
ignored.	This	VI	is	only	valid	for	acquisition	sessions.

trigger	when	specifies	the	conditions	under	which	the	trigger	is
sent.
Pattern	Matches	means	that	the	trigger	is	sent	when	the
sampled	pattern	matches	the	pattern	specified	in	pattern.
Pattern	Does	Not	Match	means	that	the	trigger	is	sent	when	the
sampled	pattern	does	not	match	the	pattern	specified	in	pattern.
Refer	to	Pattern	Match	Trigger	for	an	illustration	of	when	your
data	is	acquired	when	using	a	pattern	match	trigger	for
acquisitions.

pretrig	samples	specifies	the	number	of	pretrigger	samples	the
device	must	receive	before	the	Reference	trigger	is
acknowledged.
instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	list	specifies	which	channels	are	configured	for	pattern
matching	using	the	pattern	string.	The	order	of	channels	in	the	list
determines	the	order	of	the	pattern	string.
pattern	specifies	the	binary	pattern	that	activates	the	pattern
match	trigger	under	the	conditions	specified	in	trigger	when.
This	string	expression	creates	a	mask	for	the	pattern.	This
expression	is	composed	of	characters:

X	or	x:	Ignore	the	channel
1:	Match	on	a	logic	1
0:	Match	on	a	logic	0
R	or	r:	Match	on	a	rising	edge
F	or	f:	Match	on	a	falling	edge
E	or	e:	Match	on	either	edge

The	first	character	in	the	expression	corresponds	to	the	first

Pattern	Match	Ref	Trigger	(U32)
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Reference
trigger	for	pattern	match	triggering.	The	pattern	you	specify	in	this
instance	only	represents	logic	high	and	logic	low.	If	you	require	more
choices	for	your	pattern,	use	the	niHSDIO	Configure	Pattern	Match	Ref
Trigger	instance	of	this	VI.
If	the	Reference	trigger	asserts	before	the	required	number	of	pretrigger
samples	are	acquired,	it	is	ignored.	This	VI	is	only	valid	for	acquisition
sessions.

trigger	when	specifies	the	conditions	under	which	the	trigger	is
sent.
Pattern	Matches	means	that	the	trigger	is	sent	when	the
sampled	pattern	matches	the	pattern	specified	in	pattern.
Pattern	Does	Not	Match	means	that	the	trigger	is	sent	when	the
sampled	pattern	does	not	match	the	pattern	specified	in	pattern.
Refer	to	Pattern	Match	Trigger	for	an	illustration	of	when	your
data	is	acquired	when	using	a	pattern	match	trigger	for
acquisitions.

pretrig	samples	specifies	the	number	of	pretrigger	samples	the
device	must	receive	before	the	Reference	trigger	is
acknowledged.
instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	list	specifies	which	channels	are	configured	for	pattern
matching	using	the	pattern	string.	The	order	of	channels	in	the	list
determines	the	order	of	the	pattern	string.
pattern	specifies	the	binary	pattern	that	activates	the	pattern
match	trigger	under	the	conditions	specified	in	trigger	when.
Bits	on	channels	not	specified	in	channel	list	are	ignored.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or

Software	Ref	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Start	trigger
for	software	triggering.	If	the	Reference	trigger	asserts	before	the
required	number	of	pretrigger	samples	are	acquired,	it	is	ignored.	Use
the	niHSDIO	Send	Software	Edge	Triggering	VI	to	assert	the	trigger
condition.	This	VI	is	valid	only	for	acquisition	sessions.

pretrig	samples	specifies	the	number	of	pretrigger	samples	the
device	must	receive	before	the	Reference	trigger	is
acknowledged.
instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code

Disable	Ref	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	acquisition	to
have	no	Reference	trigger.	This	VI	is	only	necessary	if	you	have
configured	a	Reference	trigger	and	now	want	to	disable	it.	This	VI	is
valid	only	for	acquisition	sessions.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	identifies	where	and	why	an	error	occurred.	The
source	string	includes	the	name	of	the	VI	that	produced	the
error,	what	inputs	are	in	error,	and	how	to	eliminate	the

Digital	Edge	Advance	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Advance
trigger	for	digital	edge	triggering.	This	VI	is	valid	only	for	acquisition
sessions.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
source	specifies	the	trigger	source.	You	can	choose	PFI	<0..3>,
PXI	Trigger	Line/RTSI	<0..7>,	or	PXI	STAR	Line.
edge	specifies	the	edge	to	detect.	You	can	choose	Rising	Edge
or	Falling	Edge.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a

Pattern	Match	Advance	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Advance
trigger	for	pattern	match	triggering.	This	VI	is	only	valid	for	acquisition
sessions.

trigger	when	specifies	the	conditions	under	which	the	trigger	is
sent.
Pattern	Matches	means	that	the	trigger	is	sent	when	the
sampled	pattern	matches	the	pattern	specified	in	pattern.
Pattern	Does	Not	Match	means	that	the	trigger	is	sent	when	the
sampled	pattern	does	not	match	the	pattern	specified	in	pattern.
Refer	to	Pattern	Match	Trigger	for	an	illustration	of	when	your
data	is	acquired	when	using	a	pattern	match	trigger	for
acquisitions.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	list	specifies	which	channels	are	configured	for	pattern
matching	using	the	pattern	string.	The	order	of	channels	in	the	list
determines	the	order	of	the	pattern	string.
pattern	specifies	the	binary	pattern	that	activates	the	pattern
match	trigger	under	the	conditions	specified	in	trigger	when.
This	string	expression	creates	a	mask	for	the	pattern.	This
expression	is	composed	of	characters:

X	or	x:	Ignore	the	channel
1:	Match	on	a	logic	1
0:	Match	on	a	logic	0
R	or	r:	Match	on	a	rising	edge
F	or	f:	Match	on	a	falling	edge
E	or	e:	Match	on	either	edge

The	first	character	in	the	expression	corresponds	to	the	first
channel	in	channel	list.	The	number	of	characters	in	pattern
must	correspond	to	the	number	of	channels	specified	in	channel
list	or	an	error	is	returned.
For	example,	the	following	two	examples	are	valid	and	do	the

Pattern	Match	Advance	Trigger	(U32)
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Advance
trigger	for	pattern	match	triggering.	The	pattern	you	specify	in	this
instance	only	represents	logic	high	and	logic	low.	If	you	require	more
choices	for	your	pattern,	use	the	niHSDIO	Configure	Pattern	Match
Advance	Trigger	instance	of	this	VI.
This	VI	is	only	valid	for	acquisition	sessions.

trigger	when	specifies	the	conditions	under	which	the	trigger	is
sent.
Pattern	Matches	means	that	the	trigger	is	sent	when	the
sampled	pattern	matches	the	pattern	specified	in	pattern.
Pattern	Does	Not	Match	means	that	the	trigger	is	sent	when	the
sampled	pattern	does	not	match	the	pattern	specified	in	pattern.
Refer	to	Pattern	Match	Trigger	for	an	illustration	of	when	your
data	is	acquired	when	using	a	pattern	match	trigger	for
acquisitions.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	list	specifies	which	channels	are	configured	for	pattern
matching	using	the	pattern	string.	The	order	of	channels	in	the	list
determines	the	order	of	the	pattern	string.
pattern	specifies	the	binary	pattern	that	activates	the	pattern
match	trigger	under	the	conditions	specified	in	trigger	when.
Bits	on	channels	not	specified	in	channel	list	are	ignored.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.

Software	Advance	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Advance
trigger	for	software	triggering.	Use	the	niHSDIO	Send	Software	Edge
Triggering	VI	to	assert	the	trigger	condition.	This	VI	is	valid	only	for
acquisition	sessions.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	identifies	where	and	why	an	error	occurred.	The
source	string	includes	the	name	of	the	VI	that	produced	the
error,	what	inputs	are	in	error,	and	how	to	eliminate	the

Disable	Advance	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	acquisition	to
not	use	an	Advance	trigger.	This	VI	is	only	necessary	if	you	have
configured	an	Advance	trigger	and	now	want	to	disable	it.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	identifies	where	and	why	an	error	occurred.	The
source	string	includes	the	name	of	the	VI	that	produced	the
error,	what	inputs	are	in	error,	and	how	to	eliminate	the
error.

Digital	Edge	Script	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Script	trigger
for	digital	edge	triggering.	This	VI	is	valid	only	for	generation	sessions.

trigger	id	specifies	the	instance	of	the	Script	trigger.
You	can	choose	Script	Trigger	0,	Script	Trigger	1,	Script
Trigger	2,	or	Script	Trigger	3.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
source	specifies	the	trigger	source.	You	can	choose	PFI	<0..3>,
PXI	Trigger	Line/RTSI	<0..7>,	or	PXI	STAR	Line.
edge	specifies	the	edge	to	detect.	You	can	choose	Rising	Edge
or	Falling	Edge.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE

Digital	Level	Script	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	a	Script	trigger
for	level	triggering.	This	VI	is	valid	only	for	generation	sessions.

trigger	id	specifies	the	instance	of	the	Script	trigger.
You	can	choose	Script	Trigger	0,	Script	Trigger	1,	Script
Trigger	2,	or	Script	Trigger	3.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
source	specifies	the	trigger	source.	You	can	choose	PFI	<0..3>,
PXI	Trigger	Line/RTSI	<0..7>,	or	PXI	STAR	Line.
trigger	when	specifies	the	active	level	for	the	desired	trigger.
trigger	when	can	be	either	of	the	following:

High	Level:	Trigger	is	active	while	its	source	is	high
Low	Level:	Trigger	is	active	while	its	source	is	low

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains

Software	Script	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Script	trigger
for	software	triggering.	Use	the	niHSDIO	Send	Software	Edge
Triggering	VI	to	assert	the	trigger	condition.	This	VI	is	valid	only	for
generation	sessions.

trigger	id	specifies	the	instance	of	the	Script	trigger.
You	can	choose	Script	Trigger	0,	Script	Trigger	1,	Script
Trigger	2,	or	Script	Trigger	3.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code

Disable	Script	Trigger
This	instance	of	niHSDIO	Configure	Trigger	disables	a	Script	trigger.
This	VI	is	only	necessary	if	you	have	configured	a	Script	trigger	and	now
want	to	disable	it.	This	VI	is	valid	only	for	generation	sessions.

trigger	id	specifies	the	instance	of	the	Script	trigger.
You	can	choose	Script	Trigger	0,	Script	Trigger	1,	Script
Trigger	2,	or	Script	Trigger	3.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a

Digital	Level	Pause	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Pause	trigger
as	a	level	trigger.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
source	specifies	the	trigger	source.	You	can	choose	PFI	<0..3>,
PXI	Trigger	Line/RTSI	<0..7>,	or	PXI	STAR	Line.
trigger	when	specifies	the	active	level	for	the	desired	trigger.
trigger	when	can	be	either	of	the	following:

High	Level:	Trigger	is	active	while	its	source	is	high
Low	Level:	Trigger	is	active	while	its	source	is	low

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.

Pattern	Match	Pause	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Pause	trigger
for	pattern	match	triggering.	This	VI	is	only	valid	for	acquisition	sessions.

trigger	when	specifies	the	conditions	under	which	the	trigger	is
sent.
Pattern	Matches	means	that	the	trigger	is	sent	when	the
sampled	pattern	matches	the	pattern	specified	in	pattern.
Pattern	Does	Not	Match	means	that	the	trigger	is	sent	when	the
sampled	pattern	does	not	match	the	pattern	specified	in	pattern.
Refer	to	Pattern	Match	Trigger	for	an	illustration	of	when	your
data	is	acquired	when	using	a	pattern	match	trigger	for
acquisitions.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	list	specifies	which	channels	are	configured	for	pattern
matching	using	the	pattern	string.	The	order	of	channels	in	the	list
determines	the	order	of	the	pattern	string.
pattern	specifies	the	binary	pattern	that	activates	the	pattern
match	trigger	under	the	conditions	specified	in	trigger	when.
This	string	expression	creates	a	mask	for	the	pattern.	This
expression	is	composed	of	characters:

X	or	x:	Ignore	the	channel
1:	Match	on	a	logic	1
0:	Match	on	a	logic	0
R	or	r:	Match	on	a	rising	edge
F	or	f:	Match	on	a	falling	edge
E	or	e:	Match	on	either	edge

The	first	character	in	the	expression	corresponds	to	the	first
channel	in	channel	list.	The	number	of	characters	in	pattern
must	correspond	to	the	number	of	channels	specified	in	channel
list	or	an	error	is	returned.
For	example,	the	following	two	examples	are	valid	and	do	the
same	thing:

Pattern	Match	Pause	Trigger	(U32)
This	instance	of	niHSDIO	Configure	Trigger	configures	the	Pause	trigger
for	pattern	match	triggering.	The	pattern	you	specify	in	this	instance	only
represents	logic	high	and	logic	low.	If	you	require	more	choices	for	your
pattern,	use	the	niHSDIO	Configure	Pattern	Match	Start	Trigger
instance	of	this	VI.
This	VI	is	only	valid	for	acquisition	sessions.

trigger	when	specifies	the	conditions	under	which	the	trigger	is
sent.
Pattern	Matches	means	that	the	trigger	is	sent	when	the
sampled	pattern	matches	the	pattern	specified	in	pattern.
Pattern	Does	Not	Match	means	that	the	trigger	is	sent	when	the
sampled	pattern	does	not	match	the	pattern	specified	in	pattern.
Refer	to	Pattern	Match	Trigger	for	an	illustration	of	when	your
data	is	acquired	when	using	a	pattern	match	trigger	for
acquisitions.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	list	specifies	which	channels	are	configured	for	pattern
matching	using	the	pattern	string.	The	order	of	channels	in	the	list
determines	the	order	of	the	pattern	string.
pattern	specifies	the	binary	pattern	that	activates	the	pattern
match	trigger	under	the	conditions	specified	in	trigger	when.
Bits	on	channels	not	specified	in	channel	list	are	ignored.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.

Disable	Pause	Trigger
This	instance	of	niHSDIO	Configure	Trigger	configures	the	data
operation	to	have	no	Pause	trigger.	This	VI	is	only	necessary	if	you
configured	the	Pause	trigger	and	now	want	to	disable	it.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	identifies	where	and	why	an	error	occurred.	The
source	string	includes	the	name	of	the	VI	that	produced	the
error,	what	inputs	are	in	error,	and	how	to	eliminate	the
error.

niHSDIO	Export	Signal
Routes	signals	(clocks,	triggers,	and	events)	to	the	output	terminal	you
specify.	Refer	to	your	device	documentation	for	valid	signal	destinations.
Any	routes	created	within	a	session	persist	after	the	session	closes	to
prevent	signal	glitching.	To	unconfigure	signal	routes	created	in	previous
sessions,	set	the	reset	instrument	parameter	in	the	niHSDIO	Init
Generation	Session	VI	or	the	niHSDIO	Init	Acquisition	Session	VI	to
TRUE	or	use	niHSDIO	Reset	Device.	Details.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
signal	specifies	the	signal	to	export.	You	can	select	Sample
Clock,	Reference	Clock,	Start	Trigger,	Reference	Trigger,
Advance	Trigger,	Pause	Trigger,	Script	Trigger,	Data	Active
Event,	Ready	for	Start	Event,	Ready	for	Advance	Event,
Marker	Event,	End	of	Record	Event,	or	Onboard	Ref	Clock.
Selecting	Script	Trigger	or	Marker	Event	requires	a	signal
identifier	to	describe	the	particular	signal.

signal	identifier	describes	the	signal	being	exported.
You	can	select	Script	Trigger	0,	Script	Trigger	1,	Script	Trigger
2,	Script	Trigger	3,	Marker	0,	Marker	1,	Marker	2,	Marker	3,	or
None.

output	terminal	specifies	the	terminal	where	the	signal	will	be
exported.	You	can	choose	Do	not	export	signal,	PFI	<0..3>,	PXI
Trigger	Line/RTSI	<0..7>,	ClkOut	on	SMB	Connector,	or
ClkOut	on	Digital	Data	&	Control	connector.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is

niHSDIO	Export	Signal	Details
If	you	export	a	signal	with	this	VI	and	commit	the	session,	the	signal	is
routed	to	the	output	terminal	you	specify.	If	you	then	reconfigure	the
signal	to	have	a	different	output	terminal,	the	previous	output	terminal	is
tristated	after	the	session	is	committed.	If	you	change	output	terminal
to	Do	Not	Export	at	commit,	the	previous	output	terminal	is	tristated.

niHSDIO	Configure	Voltage
Configures	the	voltage	levels	for	the	data,	trigger,	and	event	channels.
You	can	use	either	predefined	logic	families	or	custom	voltage	levels.
For	more	information	on	the	voltage	options	available	with	your	device,
refer	to	Voltage	Levels	and	Logic	Families.

Note		NI	656x	devices	do	not	support	configuring	voltage	levels.
NI-HSDIO	returns	an	error	if	you	use	this	VI	when	programming
those	devices.

Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

Data	Voltage	Logic	Family
This	instance	of	niHSDIO	Configure	Voltage	configures	the	voltage
levels	for	the	data	channels	using	a	logic	family.	Refer	to	the	device
documentation	for	descriptions	of	logic	families	and	possible	voltage
restrictions.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
logic	family	identifies	the	settings	for	the	instrument	generation
and	acquisition	operations.	You	can	choose	5.0	V,	3.3	V,	2.5	V,	or
1.8	V	Logic	for	the	logic	family.
channel	list	identifies	which	channels	to	apply	settings.
Leave	channel	list	blank	to	apply	to	all	channels.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error

Data	Voltage	Custom	Levels
This	instance	of	niHSDIO	Configure	Voltage	configures	the	voltage
levels	of	the	data	channels	using	the	specified	high	and	low	levels.
Refer	to	the	device	documentation	for	possible	voltage	restrictions.

Note		If	you	are	using	an	NI	654x	device	for	generation	sessions,
you	must	set	high	level	to	the	appropriate	logic	family	value,	and
you	must	set	low	level	to	0.	For	acquisition	sessions	with	the
NI	654x,	select	the	same	value	for	high	level	and	low	level	from
the	following	list:	0.9	V,	1.25	V,	or	1.65	V.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
high	level	specifies	what	voltage	identifies	high	level.
channel	list	identifies	which	channels	to	apply	settings.
Leave	channel	list	blank	to	apply	to	all	channels.

low	level	specifies	what	voltage	identifies	low	level.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains

Trigger	Voltage	Logic	Family
This	instance	of	niHSDIO	Configure	Voltage	configures	the	voltage
levels	for	the	trigger	channels	using	a	logic	family.	Refer	to	the	device
documentation	for	descriptions	of	logic	families	and	possible	voltage
restrictions.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
logic	family	identifies	the	settings	for	the	instrument	generation
and	acquisition	operations.	You	can	choose	5.0	V,	3.3	V,	2.5	V,	or
1.8	V	Logic	for	the	logic	family.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a

Trigger	Voltage	Custom	Levels
This	instance	of	niHSDIO	Configure	Voltage	configures	the	voltage
levels	of	the	trigger	channels	using	user-defined	high	and	low	levels.
Refer	to	the	device	documentation	for	possible	voltage	restrictions.

Note		If	you	are	using	an	NI	654x	device	for	generation	sessions,
you	must	set	high	level	to	the	appropriate	logic	family	value,	and
you	must	set	low	level	to	0.	For	acquisition	sessions	with	the
NI	654x,	select	the	same	value	for	high	level	and	low	level	from
the	following	list:	0.9	V,	1.25	V,	or	1.65	V.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
high	level	specifies	what	voltage	identifies	high	level.
low	level	specifies	what	voltage	identifies	low	level.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE

Event	Voltage	Logic	Family
This	instance	of	niHSDIO	Configure	Voltage	configures	the	voltage
levels	for	the	event	channels	using	a	logic	family.	Refer	to	the	device
documentation	for	descriptions	of	logic	families	and	possible	voltage
restrictions.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
logic	family	identifies	the	settings	for	the	instrument	generation
and	acquisition	operations.	You	can	choose	5.0	V,	3.3	V,	2.5	V,	or
1.8	V	Logic	for	the	logic	family.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a

Event	Voltage	Custom	Levels
This	instance	of	niHSDIO	Configure	Voltage	configures	the	voltage
levels	of	the	event	channels	using	user-defined	high	and	low	levels.
Refer	to	the	device	documentation	for	possible	voltage	restrictions.

Note		If	you	are	using	an	NI	654x	device	for	generation	sessions,
you	must	set	high	level	to	the	appropriate	logic	family	value,	and
you	must	set	low	level	to	0.	For	acquisition	sessions	with	the
NI	654x,	select	the	same	value	for	high	level	and	low	level	from
the	following	list:	0.9	V,	1.25	V,	or	1.65	V.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
high	level	specifies	what	voltage	identifies	high	level.
low	level	specifies	what	voltage	identifies	low	level.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE

niHSDIO	Configure	Data	Interpretation
Use	this	VI	to	select	between	acquiring	high/low	data	or	valid/invalid
data	during	a	static	or	dynamic	acquisition	operation.
Select	High	or	Low	to	get	logic	high	or	logic	low	values.	Select	Valid	or
Invalid	to	tell	if	the	signal	is	within	the	specified	voltage	range,	(above
Data	Voltage	Low	Level	but	below	Data	Voltage	High	Level)	or	outside
the	range	(below	Data	Voltage	Low	Level	or	above	Data	Voltage	High
Level).

Note		NI	654x/656x	devices	only	support	the	high/low	mode	of
data	interpretation.	NI-HSDIO	returns	an	error	if	you	select
valid/invalid	mode	for	an	acquisition	with	these	devices.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	list	identifies	which	channels	to	apply	settings.
Leave	channel	list	blank	to	apply	to	all	channels.

data	interpretation	specifies	the	value	for	data	interpretation.
High	or	Low	means	that	the	data	read	represents	logical	values
(logic	high	or	logic	low).
Valid	or	Invalid	means	that	the	data	read	represents	whether
channel	data	is	within	a	specified	voltage	range.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

niHSDIO	Configure	Data	Position
Configures	the	various	ways	the	data	is	clocked	relative	to	the	Sample
clock.
Refer	to	the	Acquisition	and	Generation	books	for	your	device	for	timing
diagrams	that	illustrate	the	effects	of	data	position	changes.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	list	identifies	which	channels	to	apply	settings.
Leave	channel	list	blank	to	apply	to	all	channels.

position	specifies	which	edge	of	the	Sample	clock	signal	is	used
to	time	the	operation.	You	can	also	configure	the	device	to
generate	data	at	a	configurable	delay	past	each	rising	edge	of	the
Sample	clock.
You	can	choose	Sample	Clock	Rising	Edge,	Sample	Clock
Falling	Edge,	or	Delay	from	Rising	Edge	of	Sample	Clock.	If
you	choose	Delay	from	Rising	Edge	of	Sample	Clock,	specify
the	delay	using	the	delay	parameter	of	the	Configure	Data
Position	Delay	VI.

Notes		The	Delay	from	Sample	Clock	Rising	Edge
setting	has	more	jitter	than	the	rising	or	falling	edge	values.
Certain	devices	have	sample	clock	frequency	limitations
when	a	custom	delay	is	used.	Refer	to	the	device
documentation	for	details.
To	configure	a	delay	on	NI	656x	devices,you	must	delay	all
channels	on	the	device.	NI-HSDIO	returns	an	error	if	you
apply	a	delay	to	only	a	partial	channel	list.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If

niHSDIO	Configure	Data	Position	Delay
Configures	the	data	position	delay	with	respect	to	the	Sample	clock.	To
configure	the	data	delay,	select	Delay	from	Rising	Edge	of	Sample
Clock	as	the	value	for	the	position	parameter	of	the	niHSDIO
Configure	Data	Position	VI.

Note		To	configure	a	delay	on	NI	656x	devices,	you	must	delay	all
channels	on	the	device.	NI-HSDIO	returns	an	error	if	you	apply	a
delay	to	only	a	partial	channel	list.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	list	identifies	which	channels	to	apply	settings.
Leave	channel	list	blank	to	apply	to	all	channels.

delay	specifies	the	delay	after	the	Sample	clock	rising	edge	when
the	device	generates	or	acquires	a	new	data	sample.	Data	delay
is	expressed	as	a	fraction	of	the	clock	period.
All	the	channels	in	the	session	that	use	delayed	sample	clock	to
position	data	must	have	the	same	delay	value.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.

Advanced	Timing	Subpalette
Use	the	VIs	located	on	the	NI-HSDIO»Dynamic	and	Static
Acquisition»	Acquisition	Configuration»Adv	Timing	palette	to
configure	advanced	timing	properties.
Click	the	icons	for	VI	and	function	descriptions.

niHSDIO	Configure	Ref	Clock
Configures	the	Reference	clock.	Use	this	VI	when	you	are	using	the	On
Board	Clock	as	a	Sample	clock,	and	you	want	the	Sample	clock	to	be
phase-locked	to	a	reference	signal.	Phase-locking	the	Sample	clock	to	a
Reference	clock	prevents	the	Sample	clock	from	"drifting"	relative	to	the
Reference	clock.
Refer	to	Clocks	for	Digital	Waveform	Generator/Analyzers	for	more
information	about	the	Reference	clock.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
source	specifies	the	PLL	Reference	clock	source.	You	can
choose	None,	ClkIn,	PXI	Clock	10	Line,	or	RTSI	7.
Set	clock	source	to	None	if	you	do	not	want	to	phase	lock	the
onboard	clock	with	a	Reference	clock.

clock	rate	specifies	the	reference	clock	rate,	expressed	in	hertz.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error

niHSDIO	Adjust	Sample	Clock	Relative	Delay
Delays	the	Sample	clock	relative	to	the	Reference	clock.	Use	this	VI	to
align	the	Sample	clock	of	your	device	with	the	Sample	clock	of	another
device	in	your	system.	The	adjustment	takes	effect	immediately.	Only
call	this	VI	after	your	session	is	committed.
This	function	returns	an	error	if	the	clock	source	parameter	of	the
niHSDIO	Configure	Ref	Clock	VI	is	set	to	none.
This	VI	can	only	align	the	device	Sample	clock	to	another	sample	clock
if	the	other	device	is	using	the	same	reference	clock	source.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
adjustment	time	specifies	the	time,	in	seconds,	by	which	you
want	to	delay	the	Sample	clock.	Values	range	between	0	and	the
Sample	clock	period	(1/Sample	Clock	Rate).
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE

niHSDIO	Tristate	Channels
Forces	a	channel	into	a	high-impedance	state.	The	effect	is	immediate;
it	does	not	require	the	session	be	committed.	The	channel	remains
tristated	regardless	of	what	other	software	commands	are	called.	Call
this	VI	again	and	wire	FALSE	to	the	tristate	terminal	to	allow	other
software	commands	to	control	the	channel	normally.
Channels	stay	tristated	while	the	session	remains	open.	Closing	the
session	does	not	affect	the	high-impedance	state	of	the	channel,	but
future	sessions	can	now	control	it.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	list	identifies	which	channels	will	be	tristated.	Channels
not	specified	in	this	list	are	unaffected.
Syntax	examples:	"2-15"	or	"0-3,	5,	8-15",	or	"0,	3,	10."

tristate	specifies	whether	the	channels	specified	in	channel	list
remain	tristated.	If	tristate	is	TRUE,	the	channels	specified	in
channel	list	remain	tristated,	ignoring	future	software	commands.
If	tristate	is	FALSE,	the	channels	specified	in	channel	list	can
have	the	tristate	condition	removed	by	future	software
commands.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the

Advanced	Acquisition	Control	Subpalette
Use	the	VIs	located	on	the	NI-HSDIO»Dynamic	and	Static
Acquisition»Advanced	Acquisition	Control	palette	to	program
advanced	acquisition	operations.
Click	the	icons	for	VI	and	function	descriptions.

niHSDIO	Initiate
Commits	any	pending	attributes	to	hardware	and	starts	the	dynamic
operation.
Refer	to	the	niHSDIO	Commit	VI	for	more	information	on	committing.
For	a	generation	operation	with	a	configured	Start	trigger,	the	niHSDIO
Initiate	VI	causes	the	channels	to	go	to	their	Initial	states.	Refer	to	the
niHSDIO	Configure	Initial	State	VI	for	more	information	on	Initial	states.
This	function	is	valid	for	only	dynamic	operations	(acquisition	or
generation).	It	is	not	valid	for	static	operations.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.

niHSDIO	Abort
Stops	a	running	dynamic	session.	This	VI	is	generally	not	required	on
finite	data	operations,	as	these	operations	complete	once	the	last	data
point	is	generated	or	acquired.	This	VI	is	generally	only	required	for
continuous	operations	or	if	you	wish	to	interrupt	an	incomplete	finite
operation.
This	VI	is	valid	only	for	dynamic	operations	(acquisition	or	generation).	It
is	not	valid	for	static	operations.

Note		To	avoid	receiving	hardware	clocking	errors	when
reconfiguring	an	external	clock,	you	should	explicitly	call	the
niHSDIO	Abort	VI	after	your	finite	operation	has	completed	before
performing	any	clocking	reconfiguration.	An	external	clock	that
stops	sending	pulses	to	the	device	(even	after	a	finite	operation
has	completed)	may	cause	NI-HSDIO	to	think	the	clock	became
unlocked	if	the	device	has	not	implicitly	aborted	yet.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains

niHSDIO	Wait	Until	Done
Pauses	execution	of	your	program	until	the	dynamic	data	operation	is
completed	or	the	VI	returns	a	timeout	error.	niHSDIO	Wait	Until	Done	is
a	blocking	VI	that	periodically	checks	the	operation	status.	This	VI
returns	control	to	the	calling	program	if	the	operation	completes
successfully	or	if	an	error	occurs	(including	a	timeout	error).
Use	this	VI	for	finite	data	operations	that	you	expect	to	complete	within	a
certain	time.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
max	time	milliseconds	specifies	the	number	of	milliseconds	to
allow	the	function	to	complete	before	returning.	If	the	specified
time	elapses	before	the	data	operation	has	completed,	the
function	returns	a	timeout	error.
Setting	a	value	of	0	causes	the	function	to	return	immediately.
This	setting	can	be	useful	to	manually	poll	for	hardware	errors
after	a	data	operation	has	been	initiated.	If	no	other	error	has
occurred	and	the	data	operation	is	still	not	complete,	the	function
returns	a	timeout	error.
Setting	a	value	of	–1	causes	the	function	to	never	timeout.	Be
careful	not	to	use	this	value	during	a	continuous	operation,	as	it
never	returns	unless	a	hardware	error	occurs.	Perform	a	manual
device	reset	from	Measurement	&	Automation	Explorer	if	you	get
stuck	in	this	state	or	use	the	niHSDIO	Reset	VI	or	niHSDIO	Reset
Device	from	the	other	session	of	the	device.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source

niHSDIO	Fetch	Waveform
Transfers	acquired	waveform	data	from	device	memory	to	PC	memory.
The	data	was	acquired	to	onboard	memory	previously	by	the	hardware
after	it	was	initiated.
If	the	number	of	samples	specified	in	samples	to	read	is	not	available
after	the	time	duration	specified	in	max	time	milliseconds,	this	VI
returns	no	data	with	a	timeout	error.
The	fetch	position	can	be	modified	by	selecting	the	appropriate	Fetch
Relative	To	and	Fetch	Offset	properties	in	the	property	node.	The
default	Fetch	Relative	To	value	is	Current	Read	Position.	The	default
Offset	value	is	0.
The	niHSDIO	Fetch	Waveform	(U32)	VI	is	not	necessary	if	you	use	the
niHSDIO	Read	Waveform	VI,	as	the	fetch	is	performed	as	part	of	that
function.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

1D	U32
This	instance	of	niHSDIO	Fetch	Waveform	fetches	the	data	as	an	array
of	unsigned	32-bit	integers	and	returns	the	number	of	samples	read.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

1D	U16
This	instance	of	niHSDIO	Fetch	Waveform	fetches	the	data	as	an	array
of	unsigned	16-bit	integers	and	returns	the	number	of	samples	read.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

1D	U8
This	instance	of	niHSDIO	Fetch	Waveform	fetches	the	data	as	an	array
of	unsigned	8-bit	integers	and	returns	the	number	of	samples	read.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

WDT
This	instance	of	niHSDIO	Fetch	Waveform	fetches	the	data	using	the
waveform	data	type	and	returns	the	number	of	samples	read.

timestamp	type	specifies	whether	the	timestamp	for	the
waveform	data	is	relative	or	absolute.
instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.

2D	U32
This	instance	of	niHSDIO	Fetch	Waveform	fetches	the	data	as	a	two-
dimensional	array	of	unsigned	32-bit	integers	and	returns	the	number	of
samples	read.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,

2D	U16
This	instance	of	niHSDIO	Fetch	Waveform	fetches	the	data	as	a	two-
dimensional	array	of	unsigned	16-bit	integers	and	returns	the	number	of
samples	read.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,

2D	U8
This	instance	of	niHSDIO	Fetch	Waveform	fetches	the	data	as	a	two-
dimensional	array	of	unsigned	8-bit	integers	and	returns	the	number	of
samples	read.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,

1D	WDT
This	instance	of	niHSDIO	Fetch	Waveform	fetches	the	data	as	an	array
of	waveform	data	type	data	and	returns	the	number	of	samples	read.

timestamp	type	specifies	whether	the	timestamp	for	the
waveform	data	is	relative	or	absolute.
instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.

Direct	DMA
Transfers	acquired	waveform	data	from	device	memory	directly	to	PC
memory	allocated	by	a	Direct	DMA-compatible	device.	The	size	of	the
sample	that	is	transferred	is	determined	by	the	the	data	width	for	your
device.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	to	read	specifies	the	number	of	samples	to	fetch.
If	you	specify	a	value	for	samples	to	read	that	is	greater	than	the
number	of	samples	in	the	device	memory,	NI-HSDIO	returns	the
samples	that	are	acquired	after	max	time	milliseconds.	Setting
this	parameter	to	-1	acquires	the	samples	per	record	specified	in
niHSDIO	Configure	Acquisition	Size.

max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.
For	single	record	operations,	if	you	set	this	parameter	to	0,	the	VI
returns	immediately	with	up	to	the	number	of	samples	specified	in
samples	to	read.	Setting	this	parameter	to	0	is	not	supported	for
multirecord	acquisitions.
If	samples	to	read	is	greater	than	the	number	of	samples	in	the
device	memory	and	all	the	available	samples	are	acquired	before
a	timeout,	NI-HSDIO	returns	the	available	samples.

buffer	address	specifies	the	location	for	the	buffer	in	memory	at
which	to	transfer	acquired	data.
buffer	size	specifies	the	size	(in	bytes)	of	the	buffer	in	memory	at
which	to	transfer	acquired	data.
record	to	fetch	specifies	the	record	number	to	fetch.	The	records
are	zero-indexed.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or

niHSDIO	HWC	Fetch	Sample	Errors	(U32)
Returns	the	sample	error	information	from	a	hardware	comparison
operation.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
samples	errors	to	read	specifies	the	number	of	sample	errors	to
fetch.
max	time	milliseconds	specifies	in	milliseconds	the	time	allotted
for	the	VI	to	complete	before	returning	a	timeout	error.
If	you	set	the	value	to	-1,	the	VI	never	times	out.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
sample	numbers	returns	the	number	of	samples	with	errors.
error	bits	returns	the	bit	numbers	that	were	in	error	for	each
sample	that	has	an	error.
number	of	sample	errors	read	returns	the	total	number	of
sample	errors	read	from	device	memory.
repeat	count	returns	the	number	of	times	the	error	was	repeated.

Static	Acquisition	Subpalette
Use	the	VIs	located	on	the	NI-HSDIO»Dynamic	and	Static
Acquisition»Static	Acquisition	palette	to	program	static	acquisition
operations.
Click	the	icons	for	VI	and	function	descriptions.

niHSDIO	Assign	Static	Channels
Configures	channels	for	static	acquisition	(if	instrument	handle	is	an
acquisition	session)	or	for	static	generation	(if	instrument	handle	is	a
generation	session).
A	channel	cannot	simultaneously	be	assigned	to	static	generation	and
dynamic	generation.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	list	identifies	which	channels	will	be	configured	as	static.
Examples	of	valid	syntax	for	this	control	are	0:31	or	0-15,16-31	or
0-30,31.	Leave	channel	list	blank	to	specify	all	channels.	Use
"none"	to	unassign	all	channels.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error

niHSDIO	Read	Static	(U32)
Immediately	reads	the	digital	value	on	channels	configured	for	static
acquisition.
You	can	configure	a	channel	for	static	acquisition	using	the	niHSDIO
Assign	Static	Channels	VI.	Channels	not	configured	for	static	acquisition
return	a	zero.
Values	obtained	from	static	read	operations	are	affected	by	the	data
interpretation	parameter	of	the	niHSDIO	Configure	Data
Interpretation	VI.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
read	data	is	the	bit-value	of	data	read	from	channels	configured
for	static	acquisition.
The	least	significant	bit	of	read	data	corresponds	to	the	lowest
physical	channel	number.	For	example,	if	read	data	returns	a
value	of	0x00F0,	channels	4	-7	are	logic	one	and	the	remaining
channels	are	logic	zero	or	are	not	configured	for	static	acquisition.

error	out	contains	error	information.	If	error	in	indicates	that	an

Utility	Subpalette
Use	the	VIs	located	on	the	NI-HSDIO»Dynamic	and	Static
Acquisition»Utility	palette	to	access	utility	features	of	NI-HSDIO.
Click	the	icons	for	VI	and	function	descriptions.

niHSDIO	Is	Done
Checks	the	hardware	to	determine	if	the	device	completed	the	dynamic
data	operation	or	if	any	errors	have	occurred.	You	can	also	use	this	VI
for	continuous	dynamic	data	operations	to	poll	for	error	conditions.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
done	returns	the	state	of	the	completed	data	operation.	The	VI
returns	TRUE	if	the	data	operation	is	complete	or	an	error	has
occurred.	The	VI	returns	FALSE	if	the	data	operation	has	not
completed.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a

niHSDIO	Commit
Programs	the	hardware	for	the	data	operation	using	the	properties	you
select.	Before	entering	the	committed	state,	most	property	values	are
stored	in	software	only;	these	values	have	not	yet	been	programmed	to
the	hardware.	Once	the	session	is	committed,	the	hardware	is
configured.	Details
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

Dynamic
This	instance	of	niHSDIO	Commit	configures	the	hardware	for	a
dynamic	operation.	Start	the	operation	with	the	niHSDIO	Initiate	VI.	If
you	commit	while	the	dynamic	operation	is	in	progress,	you	receive	an
error.
For	many	operations	it	is	not	necessary	to	explicitly	use	the	Dynamic
instance	of	the	niHSDIO	Commit	VI	because	the	following	VIs	implicitly
commit:	niHSDIO	Initiate,	niHSDIO	Read	Waveform,	niHSDIO	Write
Named	Waveform,	and	niHSDIO	Write	Script.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a

Static
This	instance	of	niHSDIO	Commit	configures	the	hardware	for	a	static
operation.	For	most	static	operations,	it	is	not	necessary	to	explicitly	use
the	Static	instance	of	the	niHSDIO	Commit	VI	because	the	following	VIs
implicitly	commit:	niHSDIO	Read	Static	(U32)	and	niHSDIO	Write	Static
(U32).

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	identifies	where	and	why	an	error	occurred.	The
source	string	includes	the	name	of	the	VI	that	produced	the

niHSDIO	Commit	Details
Committing	only	programs	the	hardware	properties	that	have	changed
since	previous	commits.

Note		Committing	some	properties	(for	example,	voltage	levels),
may	have	immediate	effects	seen	on	the	device	connectors.

Note		Before	committing	a	session	that	requires	an	external
clock,	ensure	the	external	clock	is	available.	Otherwise	you
receive	an	error	that	the	device	could	not	find	or	lock	to	the
external	clock.

niHSDIO	Reset
Resets	the	session	to	its	Initial	state.	All	channels	and	front	panel
terminals	are	put	into	a	high-impedance	state.	All	software	attributes	are
reset	to	their	initial	values.	During	a	reset,	routes	of	signal	between	this
and	other	devices	are	released,	regardless	of	which	device	created	the
route.	For	instance,	a	trigger	signal	being	exported	to	a	PXI	trigger	line
and	used	by	another	device	will	no	longer	be	exported.	Details

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.

niHSDIO	Reset	Details
The	niHSDIO	Reset	VI	is	applied	to	the	entire	device.	If	you	have	both	a
generation	and	an	acquisition	session	active,	the	niHSDIO	Reset	VI
resets	the	current	session,	including	attributes,	and	invalidates	the	other
session	if	it	is	committed	or	running.	The	other	session	must	be	closed.

niHSDIO	Reset	Device
Resets	the	device	to	its	Initial	state	and	reloads	the	FPGA.	All	channels
and	front	panel	terminals	are	put	into	a	high-impedance	state.	All
software	attributes	are	reset	to	their	initial	values.	The	entire	contents	of
the	FPGA	and	EEPROM	files	are	reloaded.	Use	this	function	to	re-
enable	your	device	if	it	has	disabled	itself	because	the	device
temperature	has	risen	above	its	optimal	operating	temperature.
During	a	device	reset,	routes	of	signals	between	this	and	other	devices
are	released,	regardless	of	which	device	created	the	route.	For
instance,	a	trigger	signal	being	exported	to	a	PXI	trigger	line	and	used
by	another	device	is	no	longer	exported.	Details

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error

niHSDIO	Reset	Device	Details
The	niHSDIO	Reset	Device	VI	is	applied	to	the	entire	device.	If	you
have	both	a	generation	and	an	acquisition	session	active,	the	niHSDIO
Reset	Device	VI	resets	the	current	session,	including	attributes,	and
invalidates	the	other	session	if	it	is	committed	or	running.	The	other
session	must	be	closed.
Generally,	using	the	niHSDIO	Reset	VI	is	acceptable	in	place	of	the
niHSDIO	Reset	Device	VI.	The	niHSDIO	Reset	VI	executes	more
quickly.

niHSDIO	Send	Software	Edge	Trigger
Forces	a	particular	edge-based	trigger	to	occur.
This	VI	only	applies	to	the	triggers	listed	below,	and	is	valid	if	the
particular	trigger	has	been	configured	for	edge,	pattern	match,	or
software	triggering:

Start	Trigger
Reference	Trigger
Advance	Trigger
Script	Trigger

For	edge	or	pattern	match	triggers,	you	can	use	this	VI	as	a	software
override.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
trigger	specifies	the	trigger	to	assert.
You	can	select	Start	Trigger,	Reference	Trigger,	Advance
Trigger,	or	Script	Trigger	as	the	value	for	this	control.

trigger	identifier	specifies	the	trigger	to	assert.
trigger	identifier	can	be	ScriptTrigger0,	ScriptTrigger1,
ScriptTrigger2,	or	ScriptTrigger3,	or	you	could	leave	this	parameter
blank	for	the	Start	and	Reference	triggers.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

niHSDIO	Error	Message
Takes	the	error	code	returned	by	the	NI-HSDIO	VIs,	interprets	it,	and
returns	it	as	a	readable	string.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	code	is	the	error	code	returned	by	the	device.	The	default
value	is	0,	which	means	no	errors	occurred.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	message	returns	a	user-readable	message	string	that
corresponds	to	the	status	code	you	specify.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.

niHSDIO	Self	Test
Performs	a	self-test	on	the	instrument	and	returns	the	test	results.	The
niHSDIO	Self	Test	VI	performs	a	simple	series	of	tests	that	ensure	the
instrument	is	powered	up	and	responding.	Complete	functional	testing
and	calibration	are	not	performed	by	this	function.
This	function	is	internal	and	does	not	affect	external	I/O	connections	or
connections	between	devices.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
self	test	result	contains	the	value	returned	from	the	device	self-
test.	A	0	means	the	self-test	passed;	anything	else	means	the	test
failed.
self	test	message	returns	the	self-test	response	string	from	the
device.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

Calibration	Subpalette
Use	the	VIs	located	on	the	NI-HSDIO»Dynamic	and	Static
Acquisition»Utility»Calibration	palette	to	access	calibration	operations.
Click	the	icons	for	VI	and	function	descriptions.

niHSDIO	Self	Cal
Self-calibrates	the	device.	During	self-calibration,	the	VCXO	oscillator
phase	D/A	converters	are	recalibrated.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	identifies	where	and	why	an	error	occurred.	The
source	string	includes	the	name	of	the	VI	that	produced	the
error,	what	inputs	are	in	error,	and	how	to	eliminate	the
error.

niHSDIO	Change	Ext	Cal	Password
Changes	the	password	that	is	required	to	initialize	an	external
calibration	session.	password	may	be	up	to	four	characters	long.
You	can	call	this	VI	from	an	acquisition,	generation,	or	calibration
session.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
old	password	specifies	the	old	(current)	external	calibration
password.
new	password	specifies	the	new	(desired)	external	calibration
password.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.

niHSDIO	Init	Ext	Cal
Creates	and	initializes	a	special	NI-HSDIO	external	calibration	session.
instrument	handle	out	is	an	NI-HSDIO	session	that	can	be	used
during	the	calibration	session.
Multiple	calls	to	this	function	return	the	same	session	ID.	Calibration
sessions	are	mutually	exclusive	with	acquisition	and	generation
sessions.

resource	name	specifies	the	device	name,	for	example
"PXI1Slot3,"	where	"PXI1Slot3"	is	a	device	name	assigned	by
Measurement	&	Automation	Explorer.
password	is	the	current	calibration	password	for	the	device.	This
password	is	case	sensitive.	The	default	password	for	all	NI
products	is	NI.
error	in	(no	error)	can	accept	error	information	wired	from	VIs
previously	called.	Use	this	information	to	decide	if	any
functionality	should	be	bypassed	in	the	event	of	errors	from	other
VIs.
The	pop-up	option	Explain	Error	(or	Explain	Warning)	gives
more	information	about	the	error	displayed.

status	is	either	TRUE	(X)	for	an	error,	or	FALSE
(checkmark)	for	no	error	or	a	warning.
The	pop-up	option	Explain	Error	(or	Explain	Warning)
gives	more	information	about	the	error	displayed.

code	identifies	the	error	or	warning.	The	pop-up	option
Explain	Error	(or	Explain	Warning)	gives	more	information
about	the	error	displayed.
source	describes	the	origin	of	the	error	or	warning.
The	pop-up	option	Explain	Error	(or	Explain	Warning)
gives	more	information	about	the	error	displayed.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an

niHSDIO	Cal	Adjust	Channel	Voltage
Adjusts	the	voltage	of	the	selected	channel(s).	The	only	errors	that	can
be	returned	are	actual	calibration	process	errors.

Notes		This	function	is	not	supported	for	the	NI	654x/656x
devices.
This	function	runs	a	static	loopback	test	before	doing	adjusting
the	voltage.	You	must	disconnect	the	cable	from	your	device	to
run	this	function.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	specifies	channels	on	which	voltage	will	be	adjusted.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.

niHSDIO	Close	Ext	Cal
Closes	an	NI-HSDIO	external	calibration	session	and,	if	specified,
stores	the	new	calibration	constants	and	calibration	data	in	the	onboard
EEPROM.

Note		Whether	you	commit	or	cancel,	the	device	is	reset	and	the
FPGA	is	reloaded	afterwards.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
calibration	action	specifies	the	action	to	perform	upon	closing.

Cancel No	changes	are	made	to	the	calibration	constants	and
data	in	the	EEPROM.

Commit The	new	calibration	constants	and	data	determined
during	the	external	calibration	session	are	stored	in	the
onboard	EEPROM,	given	that	the	calibration	was
complete	and	passed	successfully.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.

niHSDIO	Convert	Binary	to	WDT
Converts	unsigned	binary	data	into	the	digital	waveform	data	type
(WDT).	Use	this	VI	to	easily	convert	extended	state	(0,	1,	H,	L,	X,	Z)
digital	waveforms	from	binary	data.	Details.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

Stimulus	Data
Converts	binary	data	to	drive	low	(0)	or	drive	high	(1)	digital	waveform
data	types.	You	can	specify	a	bitmask	to	create	tristate	(Z)	data.

dt	specifies	the	time	between	values	in	digital	waveform.
signal	list	specifies	which	bits	from	data	to	include	in	the	digital
waveform.
data	specifies	the	high	and	low	values	(assuming	drive	enabled
is	enabled)	in	the	digital	waveform.
drive	enable	specifies	the	bitmask	that	selects	between	tristating
and	driving	the	value	selected	in	the	data.	Bits	set	to	0	translate
to	Z	(tristate),	and	bits	set	to	1	translate	to	the	value	of	the
corresponding	bit	in	data.	If	drive	enable	is	empty,	all	the	values
in	the	array	translate	to	0	and	1.
compress	data	specifies	whether	the	digital	waveform	data	is
compressed.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

digital	waveform	contains	the	converted	data	for	the	waveform.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.

Response	Data
Converts	binary	data	to	expect	low	(L)	or	expect	high	(H)	digital
waveform	data	types.	A	bitmask	may	be	specified	to	create	don't	care
(X)	data.

dt	specifies	the	time	between	values	in	digital	waveform.
signal	list	specifies	which	bits	from	data	to	include	in	the	digital
waveform.
data	specifies	the	high	and	low	values	(assuming	drive	enabled
is	enabled)	in	the	digital	waveform.
compare	enable	specifies	the	bitmask	that	selects	between	X
(ignore)	and	a	compare	value	determined	by	the	data	array.	Bits
set	to	0	translate	to	X,	and	bits	set	to	1	translate	to	L	(compare
low)	or	H	(compare	high)	depending	on	the	value	of	the
corresponding	bit	in	the	data	.	If	this	array	is	empty,	all	the	values
in	the	data	array	translate	to	L	and	H.
compress	data	specifies	whether	the	digital	waveform	data	is
compressed.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

digital	waveform	contains	the	converted	data	for	the	waveform.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

Stimulus	and	Response	Data
Compiles	binary	data	to	bidirectional	drive	(0,	1,	Z)	and	compare	(H,	L,
X)	data.
Note:	A	bit	cannot	be	set	to	1	in	both	the	drive	enable	and	compare
enable	arrays.	Compare	values	(H,	L,	0,	and	X)	always	cause	the
channel	to	be	set	to	tristate.	Details.

dt	specifies	the	time	between	values	in	digital	waveform.
signal	list	specifies	which	bits	from	data	to	include	in	the	digital
waveform.
data	specifies	the	high	and	low	values	(assuming	drive	enabled
is	enabled)	in	the	digital	waveform.
drive	enable	specifies	the	bitmask	that	selects	between	tristating
and	driving	the	value	selected	in	the	data.	Bits	set	to	0	translate
to	Z	(tristate),	and	bits	set	to	1	translate	to	the	value	of	the
corresponding	bit	in	data.	If	drive	enable	is	empty,	this	VI
translates	all	bits	to	0	or	1	(all	drive	enable	bits	are	assumed	to
be	set	to	1).	Refer	to	Details	for	more	information	about	how
drive	enable	and	compare	enable	interact.
compare	enable	specifies	the	bitmask	that	selects	between	X
(ignore)	and	a	compare	value	determined	by	the	data	array.	Bits
set	to	0	translate	to	X,	and	bits	set	to	1	translate	to	L	(compare
low)	or	H	(compare	high)	depending	on	the	value	of	the
corresponding	bit	in	data.	If	compare	enable	is	empty,	this	VI
translates	all	bits	to	0,	L,	or	Z	based	on	data	and	drive	enable.
Refer	to	Details	for	more	information	about	how	drive	enable	and
compare	enable	interact.
compress	data	specifies	whether	the	digital	waveform	data	is
compressed.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If

niHSDIO	Convert	Binary	To	WDT	Stimulus	And	Response
Data	(U32)	Details
The	following	table	shows	how	the	Stimulus	and	Response	instance	of
this	VI	translates	bits,	depending	on	the	values	set	for	drive	enable	and
compare	enable.

drive	enable
0 1

compare	enable
0 Z 0/1*

1 L/H* Error
*This	value	is	determined	by	the	corresponding	bit	in	data.

niHSDIO	Get	Session	Reference
Returns	a	session	reference	you	can	pass	to	other	VIs.	Session
references	are	of	generic	type,	which	means	that	the	corresponding
wires	are	blue-green,	unlike	the	wires	for	regular	instrument	driver
sessions.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
session	reference	references	the	device	session.	session
reference	is	a	generic	ViSession	reference	that	can	be	passed	to
other	VIs.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.

Dynamic	and	Static	Generation	Subpalette
Use	the	VIs	located	on	the	NI-HSDIO»Dynamic	and	Static	Generation
palette	to	program	generation	operations.
Click	the	icons	for	VI	and	function	descriptions.

niHSDIO	Init	Generation	Session
Creates	a	new	generation	session.	You	can	perform	static	and	dynamic
generation	operations	with	this	session.
Creating	a	new	session	does	not	automatically	tristate	your	front	panel
terminals	or	channels	that	might	have	been	left	driving	voltages	from
previous	sessions.	Refer	to	the	niHSDIO	Close	VI	for	more	information
on	leaving	lines	driving	after	closing	a	session.
Set	reset	instrument	to	TRUE	to	place	your	device	in	a	known	start-up
state	when	creating	a	new	session.	This	action	is	equivalent	to	using	the
niHSDIO	Reset	VI,	and	it	tristates	the	front	panel	terminals	and
channels.

resource	name	specifies	the	device	name,	for	example
"PXI1Slot3,"	where	"PXI1Slot3"	is	a	device	name	assigned	by
Measurement	&	Automation	Explorer.
id	query	specifies	whether	the	driver	performs	an	ID	query	upon
the	instrument.
When	id	query	is	set	to	TRUE,	the	driver	ensures	compatibility
between	the	instrument	and	the	driver.	When	id	query	is	set	to
FALSE,	the	driver	skips	the	ID	query.

reset	instrument	specifies	whether	the	driver	resets	the	device
during	initialization	of	the	session.	TRUE	means	that	the	device	is
reset;	FALSE	means	that	the	device	is	not	reset.
Refer	to	niHSDIO	Reset	for	more	information	on	what	happens
during	an	instrument	reset.

Note		Resetting	your	device	resets	the	entire	device.
Acquisition	or	generation	operations	in	progress	will	be
aborted	and	cleared.

option	string	is	currently	unused.	Leave	this	parameter	unwired.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.

niHSDIO	Write	Named	Waveform
Transfers	waveform	data	from	PC	memory	to	onboard	memory.	If	you
specify	a	waveform	name	not	already	being	used	on	the	instrument,
the	appropriate	amount	of	onboard	memory	is	allocated	(if	available)
and	the	data	is	stored	in	that	new	location.	Supported	devices	for	the
binary	instances	of	this	VI	depend	on	the	data	width	for	your	device,	not
on	the	number	of	assigned	dynamic	channels.	The	WDT	and	HWS
instances	do	not	have	this	restriction.	Details.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

1D	U32
This	instance	of	niHSDIO	Write	Named	Waveform	writes	the	waveform
to	onboard	memory	from	a	one-dimensional	array	of	unsigned	32-bit
data.	This	instance	is	supported	for	devices	with	a	data	width	of	4.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
waveform	name	represents	the	name	to	associate	with	the
allocated	waveform	memory.
You	should	name	waveforms	using	this	VI	under	either	of	the
following	conditions:

You	are	using	scripts
You	want	to	download	multiple	waveforms	into	the
hardware

data	is	the	waveform	where	acquired	samples	are	written.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

hsdio.chm::/hsdio_init_acq_sess.html
hsdio.chm::/hsdio_init_gen_sess.html
hsdio.chm::/hsdio_init_acq_sess.html
hsdio.chm::/hsdio_init_gen_sess.html

1D	U16
This	instance	of	niHSDIO	Write	Named	Waveform	writes	the	waveform
to	onboard	memory	from	a	one-dimensional	array	of	unsigned	16-bit
data.	This	instance	is	supported	for	devices	with	a	data	width	of	2.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
waveform	name	represents	the	name	to	associate	with	the
allocated	waveform	memory.
You	should	name	waveforms	using	this	VI	under	either	of	the
following	conditions:

You	are	using	scripts
You	want	to	download	multiple	waveforms	into	the
hardware

data	contains	the	data	to	be	written.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

hsdio.chm::/hsdio_init_acq_sess.html
hsdio.chm::/hsdio_init_gen_sess.html
hsdio.chm::/hsdio_init_acq_sess.html
hsdio.chm::/hsdio_init_gen_sess.html

1D	U8
This	instance	of	niHSDIO	Write	Named	Waveform	writes	the	waveform
to	onboard	memory	from	a	one-dimensional	array	of	unsigned	8-bit
data.	This	instance	is	supported	for	devices	with	a	data	width	of	1.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
waveform	name	represents	the	name	to	associate	with	the
allocated	waveform	memory.
You	should	name	waveforms	using	this	VI	under	either	of	the
following	conditions:

You	are	using	scripts
You	want	to	download	multiple	waveforms	into	the
hardware

data	contains	the	data	for	the	waveform	to	be	written.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

hsdio.chm::/hsdio_init_acq_sess.html
hsdio.chm::/hsdio_init_gen_sess.html
hsdio.chm::/hsdio_init_acq_sess.html
hsdio.chm::/hsdio_init_gen_sess.html

WDT
This	instance	of	niHSDIO	Write	Named	Waveform	writes	the	waveform
to	onboard	memory	as	waveform	data	type	data.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
waveform	name	represents	the	name	to	associate	with	the
allocated	waveform	memory.
You	should	name	waveforms	using	this	VI	under	either	of	the
following	conditions:

You	are	using	scripts
You	want	to	download	multiple	waveforms	into	the
hardware

data	is	the	waveform	where	acquired	samples	are	written.
Use	rate	from	waveform	controls	how	the	sample	rate	is
computed.
Setting	this	value	to	TRUE	computes	the	sample	rate	from	the
WDT	value.	If	the	sample	rate	has	been	configured	using	the
niHSDIO	Configure	Sample	Clock	VI,	Use	rate	from	waveform
overrides	the	sample	rate.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the

hsdio.chm::/hsdio_init_acq_sess.html
hsdio.chm::/hsdio_init_gen_sess.html
hsdio.chm::/hsdio_config_sample_clk.html
hsdio.chm::/hsdio_init_acq_sess.html
hsdio.chm::/hsdio_init_gen_sess.html

HWS
This	instance	of	niHSDIO	Write	Named	Waveform	writes	the	waveform
to	onboard	memory	from	a	.hws	(Hierarchical	Waveform	Storage)	file.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
waveform	name	represents	the	name	to	associate	with	the
allocated	waveform	memory.
You	should	name	waveforms	using	this	VI	under	either	of	the
following	conditions:

You	are	using	scripts
You	want	to	download	multiple	waveforms	into	the
hardware

file	path	specifies	the	path	and	file	name	of	the	HWS	file	to	open.
The	.hws	extension	is	typically	used	for	HWS	files,	although	using
this	extension	is	optional.
Use	rate	from	waveform	controls	how	the	sample	rate	is
computed.
Setting	this	value	to	TRUE	computes	the	sample	rate	from	the
WDT	value.	If	the	sample	rate	has	been	configured	using	the
niHSDIO	Configure	Sample	Clock	VI,	Use	rate	from	waveform
overrides	the	sample	rate.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

hsdio.chm::/hsdio_init_acq_sess.html
hsdio.chm::/hsdio_init_gen_sess.html
hsdio.chm::/hsdio_config_sample_clk.html
hsdio.chm::/hsdio_init_acq_sess.html
hsdio.chm::/hsdio_init_gen_sess.html

Direct	DMA
Writes	a	specified	amount	of	data	from	a	Direct	DMA-compatible	device
to	the	waveform	in	onboard	memory.	The	sample	size	is	4	bytes	for
NI	654x/655x	devices,	and	2	bytes	for	the	NI	656x	in	SDR	mode	or
1	byte	in	DDR	mode.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
window	address	specifies	the	window	address	from	the	Direct
DMA-compatible	data	source.
samples	to	write	specifies	the	number	of	samples	to	write	from
the	Direct	DMA-compatible	data	source.
waveform	name	represents	the	name	to	associate	with	the
allocated	waveform	memory.
You	should	name	waveforms	using	this	VI	under	either	of	the
following	conditions:

You	are	using	scripts
You	want	to	download	multiple	waveforms	into	the
hardware

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init

hsdio.chm::/hsdio_init_acq_sess.html
hsdio.chm::/hsdio_init_gen_sess.html
hsdio.chm::/hsdio_init_acq_sess.html
hsdio.chm::/hsdio_init_gen_sess.html

niHSDIO	Write	Named	Waveform	Details
Data	is	always	written	to	memory	starting	at	the	waveform	write	position.
The	initial	write	position	for	a	new	waveform	is	the	start	of	the	allocated
memory.	This	VI	moves	the	next	write	position	to	the	end	of	the	data	just
written,	so	subsequent	uses	of	this	VI	appends	data	to	the	end	of
previously	written	data.	You	may	also	manually	change	the	write
position	with	the	niHSDIO	Set	Named	Waveform	Next	Write	Position	VI.
If	you	try	to	write	past	the	end	of	the	allocated	space,	the	VI	returns	an
error.
Waveforms	are	stored	contiguously	in	onboard	memory.	You	cannot
resize	an	existing	named	waveform.	Instead,	delete	the	existing
waveform	using	the	niHSDIO	Delete	Named	Waveform	VI	and	then	re-
create	it	with	the	new	size	using	the	same	name.
This	VI	also	calls	the	Dynamic	instance	of	the	niHSDIO	Commit	VI.
When	you	explicitly	call	the	niHSDIO	Allocate	Named	Waveform	VI	and
write	waveforms	using	multiple	niHSDIO	Write	Named	Waveform	VIs,
each	waveform	block	written	must	be	a	multiple	of	32	samples	for	the
NI	654x/655x	devices	or	a	multiple	of	64	samples	for	the	NI	656x
devices	(128	samples	in	DDR	mode).

Note		If	the	waveform	was	allocated	10	KB,	but	this	function	has
only	written	a	5	KB	waveform,	the	remaining	5	KB	contain	invalid
data.

hsdio.chm::/set_named_wvfm.html
hsdio.chm::/hsdio_delete_wvfm.html
hsdio.chm::/hsdio_commit.html
hsdio.chm::/hsdio_allocate_named_wvfm.html

Generation	Configuration	Subpalette
Use	the	VIs	located	on	the	NI-HSDIO»Dynamic	and	Static
Generation»Generation	Configuration	palette	to	configure	generation
operations.
Click	the	icons	for	VI	and	function	descriptions.

niHSDIO	Configure	Generation	Repeat
Specifies	how	many	times	to	generate	a	waveform	or	whether	it	should
be	continuously	generated.
This	VI	is	only	valid	when	the	generation	mode	parameter	of	the
Configure	Generation	Mode	VI	is	set	to	Waveform.	This	VI	does	not
apply	in	scripted	mode.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
repeat	mode	specifies	the	repeat	mode	to	configure.	You	can
select	either	Finite	or	Continuous	as	the	value	of	this	parameter.
If	you	choose	Finite,	specify	the	number	of	times	to	repeat	in	the
repeat	count	parameter.	If	you	choose	Continuous,	calling	the
niHSDIO	Initiate	VI	generates	the	named	waveform	continuously
until	the	niHSDIO	Abort	VI	is	called.	repeatCount	is	ignored.

repeat	count	specifies	the	number	of	times	to	generate	the
waveform.
repeat	count	is	ignored	if	repeat	mode	is	set	to	Continuous.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.

niHSDIO	Configure	Initial	State
Sets	the	Initial	state	of	the	channels	for	a	dynamic	generation	operation.
The	Initial	state	of	each	channel	is	driven	once	the	operation	is	initiated
using	the	niHSDIO	Initiate	VI.	Channels	remain	unchanged	until	the
operation	is	initiated.	The	Initial	state	is	active	once	the	session	is
initiated	until	the	first	waveform	sample	is	generated.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

Initial	state	(String)
You	can	specify	initial	state	in	either	a	binary	format	or	a	string.	This
instance	of	niHSDIO	Configure	Initial	State	uses	a	string	format	to
represent	the	Initial	state	of	a	dynamic	pattern	generation	session.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	list	specifies	the	channels	being	sampled.
initial	state	describes	the	Initial	state	of	a	dynamic	generation
operation.
This	expression	is	composed	of	characters:

X	or	x:	keeps	the	previous	value
1:	sets	the	channel	to	logic	high
0:	sets	the	channel	to	logic	low
Z	or	z:	disables	the	channel	or	sets	it	to	a	high-impedance
state
Note		NI	656x	devices	do	not	support	the	high-impedance
(Z)	Initial	state.

The	first	character	in	initial	state	corresponds	to	the	first	channel
in	channel	list.	The	number	of	characters	in	the	pattern	must
equal	the	number	of	channels	specified	in	channel	list	or	an
error	is	returned.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

Initial	state	(U32)
This	instance	of	niHSDIO	Configure	Initial	State	uses	a	binary	format
(1s	and	0s)	to	represent	the	Initial	state	of	a	dynamic	generation
session.	If	you	require	more	choices	for	your	Initial	state,	use	the
niHSDIO	Configure	Initial	State	(String)	instance	of	the	niHSDIO
Configure	Initial	State	VI.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
initial	state	describes	the	Initial	state	of	a	dynamic	generation
operation.	initial	state	defines	the	bit	mask	representing	the
Initial	state.	High	is	specified	with	a	1,	and	low	is	specified	with	a
0.	If	you	need	to	specify	values	other	than	high	and	low,	use	the
niHSDIO	Configure	Initial	State	(String)	instance	of	this	VI.
The	first	character	in	initial	state	corresponds	to	the	first	channel
in	channelList.	The	number	of	characters	in	the	pattern	must
equal	the	number	of	channels	specified	in	channelList	or	an
error	is	returned.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains

niHSDIO	Configure	Idle	State
Sets	the	Idle	state	of	the	channels	for	a	dynamic	generation	operation.
The	operation	may	be	idle	when	the	generation	operation	completes
normally,	when	the	generation	operation	pauses	from	an	active	Pause
trigger,	or	when	the	generation	operation	terminates	because	of	an
underflow	error.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

Idle	state	(String)
You	can	specify	idle	state	in	either	a	binary	or	a	string	format.	This
instance	of	niHSDIO	Configure	Idle	State	uses	a	string	format	to
represent	the	Initial	state	of	a	dynamic	pattern	generation	session.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
channel	list	specifies	the	channels	being	sampled.
idle	state	describes	the	Idle	state	of	a	dynamic	generation
operation.
This	expression	is	composed	of	characters:

X	or	x:	Keeps	the	previous	value
1:	Sets	the	channel	to	logic	high
0:	Sets	the	channel	to	logic	low
Z	or	z:	Disables	the	channel	(sets	it	to	a	high-impedance
state).
Note		NI	656x	devices	do	not	support	the	high-impedance
(Z)	Idle	state.

The	first	character	in	idle	state	corresponds	to	the	first	channel	in
channel	list.	The	number	of	characters	in	the	pattern	must	equal
the	number	of	channels	specified	in	channel	list	or	an	error	is
returned.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

Idle	state	(U32)
This	instance	of	niHSDIO	Configure	Idle	State	uses	a	binary	format	to
only	represent	logic	high	and	logic	low.	If	you	require	more	choices	for
your	Idle	state,	use	the	niHSDIO	Configure	Idle	State	(String)	VI.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
idle	state	describes	the	Idle	state	across	all	channels	configured
for	dynamic	generation.
idle	state	defines	the	bit	mask	representing	the	Idle	state.	High	is
specified	with	a	1,	and	low	is	specified	with	a	0.	If	you	need	to
specify	values	other	than	high	or	low,	use	the	niHSDIO	Configure
Idle	State	(String)	instance	of	this	VI.
The	first	character	in	idle	state	corresponds	to	the	first	channel	in
channel	list.	The	number	of	characters	in	the	pattern	must	equal
the	number	of	channels	specified	in	channel	list	or	an	error	is
returned.
Each	binary	digit	of	this	value	is	applied	to	the	corresponding
channel	if	it	is	configured	for	dynamic	generation.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an

Waveform	Control	Subpalette
Use	the	VIs	located	on	the	NI-HSDIO»Dynamic	and	Static
Generation»Generation	Configuration»Waveform	Control	palette	to
configure	generation	operations.
Click	the	icons	for	VI	and	function	descriptions.

niHSDIO	Configure	Waveform	To	Generate
Sets	the	waveform	to	be	generated	upon	a	call	to	the	niHSDIO
Initiate	VI	when	the	generation	mode	parameter	of	the	niHSDIO
Configure	Generation	Mode	VI	is	set	to	Waveform
If	this	function	is	not	called	and	you	have	multiple	waveforms	in	onboard
memory,	NI-HSDIO	generates	an	error	at	initiate.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
waveform	name	represents	the	name	of	the	waveform	to	be
generated	at	initiate.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a

niHSDIO	Allocate	Named	Waveform
Reserves	waveform	space	in	onboard	memory	and	associates	a
waveform	name	with	it.	Individual	waveforms	are	stored	contiguously	in
onboard	memory.
The	name	given	to	the	waveform	is	the	same	name	used	in	the
niHSDIO	Write	Named	Waveform	VI	to	populate	the	waveform	with
data,	as	well	as	the	waveform	name	referenced	in	scripts.
If	space	is	unavailable	to	accommodate	a	waveform	of	size	size	in
samples,	an	error	is	returned	and	no	memory	space	is	allocated.
This	VI	does	not	change	any	data	on	the	device	itself,	but	rather	adds
the	named	reference	in	software.	Use	the	niHSDIO	Write	Named
Waveform	VI	to	fill	the	onboard	memory	with	waveform	data	to	be
generated.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
waveform	name	represents	the	name	to	associate	with	the
allocated	waveform	memory.
You	should	name	waveforms	using	this	VI	under	either	of	the
following	conditions:

You	are	using	scripts
You	want	to	download	multiple	waveforms	into	the
hardware

size	in	samples	specifies	the	number	of	samples	to	allocate	for
the	named	waveform.
The	number	of	bits	in	the	allocated	samples	differs	depending	on
the	device	you	are	using.

Device Bits	Per	Sample
NI	654x 32
NI	655x 32
NI	656x 16	in	SDR	mode

8	in	DDR	mode

error	in	describes	error	conditions	that	occur	before	this	VI	or

niHSDIO	Delete	Named	Waveform
Frees	waveform	space	in	onboard	memory.
The	niHSDIO	Delete	Named	Waveform	VI	releases	onboard	memory
space	previously	allocated	by	either	the	niHSDIO	Allocate	Named
Waveform	VI	or	the	niHSDIO	Write	Named	Waveform	VI.	Any	future
references	to	the	deleted	waveform	result	in	an	error.	However,
previously	written	scripts	that	still	reference	the	deleted	waveform	will
not	generate	an	error	at	initiation.
An	error	is	generated	if	the	waveform	name	is	not	allocated	in	onboard
memory.

waveform	name	is	the	name	of	the	waveform	to	delete.
instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE

niHSDIO	Set	Named	Waveform	Next	Write
Position
Modifies	where	within	a	named	waveform	to	next	write	data.
The	niHSDIO	Write	Named	Waveform	VI	always	begins	writing	at	the
current	write	position.	Existing	data	in	the	waveform	is	overwritten.
Details

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
waveform	name	represents	the	name	to	associate	with	the
allocated	waveform	memory.
position	Specifies	where	to	place	the	write	position,	in
conjunction	with	offset.	You	can	choose	either	Current	Write
Position	or	Start	of	Waveform	as	the	values	for	this	control.
If	you	choose	Start	of	Waveform,	the	offset	is	relative	to	the
beginning	of	the	waveform.	If	you	choose	Current	Write
Position,	the	offset	is	relative	to	the	current	write	position	in	the
waveform.

offset	allows	you	to	set	the	write	position	of	the	named
waveform,	in	conjunction	with	position.	offset	is	in	samples.
Before	issuing	a	write	waveform	command,	offset	relative	to	the
start	of	the	waveform	must	be	a	multiple	of	32	samples	for	the	NI
654x/655x	or	a	multiple	of	64	samples	for	the	NI	656x	(128
samples	for	the	NI	656x	in	DDR	mode).

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.

niHSDIO	Set	Named	Waveform	Next	Write	Position	Details
position	and	offset	are	used	together	to	determine	where	the	next	write
position	will	be.	position	describes	an	absolute	or	relative	move.	offset
is	the	number	of	samples	to	shift	the	next	write	position.	You	must
always	set	the	write	position	at	a	position	that	is	a	multiple	of	32
samples	for	the	NI	654x/655x	or	a	multiple	of	64	samples	for	the	NI
656x	(128	samples	for	the	NI	656x	in	DDR	mode).
The	write	position	is	moved	to	the	end	of	the	most	recently	written	data
after	each	use	of	the	niHSDIO	Write	Named	Waveform	VI.	Thus	you	do
not	need	to	explicitly	use	this	VI	unless	you	want	to.	Attempting	to	set
the	write	position	beyond	the	bounds	of	the	allocated	space	results	in	an
error.
Examples	of	combinations	of	position	and	offset:

Position Offset Next	Write	Position
Start	of
Waveform

0 Start	of	waveform.

Start	of
Waveform

5 Sixth	sample	of	waveform.

Start	of
Waveform

-1 ERROR.	These	settings	would	try	to	place	write
position	before	start	of	waveform.

Current
Write
Position

0 No	effect.	These	settings	leave	the	next	write
position	unchanged.

Current
Write
Position

10 Shift	write	position	10	samples	ahead	from	current
location.	This	position	setting	is	only	valid	if	the
current	write	position	plus	this	offset	is	in	the
waveform.

Current
Write
Position

-10 Shift	write	position	10	samples	back	from	current
location.	This	position	setting	is	only	valid	if	the
current	write	position	is	greater	than	10.

Scripting	Subpalette
Use	the	VIs	located	on	the	NI-HSDIO»Dynamic	and	Static
Generation»Generation	Configuration»Scripting	palette	to	configure
generation	operations.
Click	the	icons	for	VI	and	function	descriptions.

niHSDIO	Configure	Generation	Mode
Specifies	whether	to	initiate	the	waveform	generation	based	on	a
specified	script	or	based	on	a	waveform.
Initiation	occurs	upon	calling	the	niHSDIO	Initiate	VI.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
generation	mode	specifies	the	generation	mode	to	configure.
You	can	choose	Waveform	or	Scripted	as	the	values	for	this
parameter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.

niHSDIO	Write	Script
Writes	a	string	containing	scripts	that	govern	the	generation	of
waveforms.
If	this	function	is	called	repeatedly,	previously	written	scripts	with	unique
names	remain	loaded.	Previously	written	scripts	with	identical	names	to
those	being	written	are	replaced.	If	there	are	multiple	scripts	loaded
when	the	niHSDIO	Initiate	VI	is	called,	then	one	of	the	scripts	must	be
designated	as	the	script	to	generate.	If	there	is	only	one	script	in
memory,	you	do	not	need	to	designate	the	script	to	generate.
An	error	is	returned	if	the	script	uses	incorrect	syntax.	This	VI	calls	the
Dynamic	instance	of	the	niHSDIO	Commit	VI.	All	pending	attributes	are
committed	to	hardware.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
script	contains	the	text	of	the	script	you	want	to	use	for	your
generation	operation.
For	more	information	on	scripting	syntax,	select
Programming»Reference»Scripting	Instructions	from	the
table	of	contents	in	this	help	file.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init

niHSDIO	Configure	Script	To	Generate
Sets	the	script	to	be	generated	upon	a	call	to	the	niHSDIO	Initiate	VI
when	the	generation	mode	parameter	of	the	niHSDIO	Configure
Generation	Mode	VI	is	set	to	Scripted.	If	there	are	multiple	scripts
loaded	when	niHSDIO	Initiate	is	called,	then	one	of	the	scripts	must	be
designated	the	script	to	generate	or	you	receive	an	error.
This	function	need	only	be	called	if	multiple	scripts	are	present	in
onboard	memory.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
script	name	specifies	a	string	containing	a	syntactically	correct
script.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	negative	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	was	obtained	from	the
niHSDIO	Init	Acquisition	Session	VI	or	the	niHSDIO	Init
Generation	Session	VI.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error
occurred.

Static	Generation	Subpalette
Use	the	VIs	located	on	the	NI-HSDIO»Dynamic	and	Static
Generation»Static	Generation	palette	to	program	generation
operations.
Click	the	icons	for	VI	and	function	descriptions.

niHSDIO	Write	Static	(U32)
Writes	to	channels	configured	for	static	generation.	You	can	configure	a
channel	for	static	generation	using	the	niHSDIO	Assign	Static
Channels	VI.

instrument	handle	identifies	your	instrument	session.
instrument	handle	was	obtained	from	the	niHSDIO	Init
Acquisition	Session	VI	or	the	niHSDIO	Init	Generation	Session	VI.
write	data	is	the	bit-value	of	data	to	drive	on	channels	configured
for	static	generation.	1	corresponds	to	logic	high	level,	0
corresponds	to	logic	low	level.
The	least	significant	bit	of	write	data	corresponds	to	the	lowest
physical	channel	number.	For	example,	a	write	data	value	of
0xFF00	sets	the	lower	8	channels	to	0,	while	setting	the	upper	8
channels	to	logic	high	level.
Data	values	in	write	data	corresponding	to	channels	not
configured	for	static	generation	are	ignored.
Static	channels	explicitly	disabled	with	the	niHSDIO	Tristate
Channels	VI	remain	disabled,	but	the	channel	data	value	changes
internally.	Re-enabling	a	channel	with	niHSDIO	Tristate
Channels	VI	causes	the	channel	to	drive	any	value	that	you	have
written	to	it,	even	while	the	channel	was	disabled.

channel	mask	specifies	the	bit-value	of	channels	to	leave
unchanged.	1	means	to	change	the	channel	to	whatever	is
reflected	by	write	data.	0	means	do	not	alter	the	channel,
regardless	of	write	data.
The	least	significant	bit	of	channel	mask	corresponds	to	the
lowest	physical	channel	number.	For	example,	a	write	data	value
of	0xFFFF	and	channel	mask	of	0x0080	means	set	only	channel
7	to	1;	all	other	channels	remain	unchanged.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.

Utility	Subpalette
Use	the	VIs	located	on	the	NI-HSDIO»Dynamic	and	Static
Generation»Utility	palette	to	access	utility	features	of	NI-HSDIO.
Click	the	icons	for	VI	and	function	descriptions.

NI-HSDIO	Express	(Acquisition)	VI
Acquires	a	digital	waveform	from	a	National	Instruments	digital
waveform	generators/analyzer.

Dialog	Box	Options
Block	Diagram	Inputs
Block	Diagram	Outputs

Dialog	Box	Options
Parameter Description
Configuration Contains	the	following	options:

Device—Specifies	the	device	used.	Unavailable
devices	are	disabled.
Enable	HW	Compare—Specifies	whether	this
Express	VI	compares	the	acquired	data	to	an
expected	response.	Configure	the	expected
response	data	source	using	the	HW	Compare
tab.
Tristate	channels	before	acquisition—
Specifies	whether	configured	channels	that	were
previously	left	generating	data	are	tristated.
Checked:	Configured	channels	previously	left
generating	data	are	tristated.
Unchecked:	Configured	channels	previously	left
generating	data	are	not	tristated.
Channels—Displays	the	channels	currently
configured	to	acquire	data.

Modify—Click	Modify	to	launch	the	Select
Channels	dialog	box.

Timing—Contains	the	following	options:
Rate	(Hz)—Specifies	the	Sample	clock
frequency	for	the	acquisition.
Units:	Samples	per	second	(S/s)
Samples	to	Read—Specifies	the	number
of	samples	to	acquire.

Voltage Contains	the	following	options:
Logic	family—Specifies	whether	you	configure
your	voltage	levels	using	one	of	the	predefined
voltage	families	for	this	device.
Custom	levels	(V)—Specifies	whether	you
configure	custom	high	and	low	voltage	thresholds
for	the	acquisition.	This	feature	is	not	supported
on	all	devices.

High—Specifies	the	high	voltage	threshold
for	the	acquisition.	This	feature	is	not
supported	on	all	devices.

Block	Diagram	Inputs
Parameter Description
data Contains	the	expected	response	data	for	the	comparison

operation.	data	does	not	exist	when	you	select	the	Read
from	File	option	in	the	NI-HSDIO	Express	(Acquisition)
Results	page.

close Determines	whether	the	instrument	session	remains	open
when	the	VI	finishes	execution.	Use	this	parameter	for	loop
optimization	by	setting	it	to	FALSE	on	all	iterations	other
than	the	last	iteration.	close	is	TRUE	by	default.

Note		This	input	is	not	intended	to	be	used	to	share
the	session	between	Express	VIs.	If	you	have	a	loop
containing	multiple	Express	VIs	that	use	the	same
device,	you	must	wire	in	TRUE	for	this	input.

max	time Specifies	the	timeout	value	for	the	Express	VI.
error	in Describes	error	conditions	that	occur	before	this	Express	VI

runs.

Block	Diagram	Outputs
Parameter Description
data Contains	the	digital	data	acquired	by	the	device.
passed Returns	the	pass/fail	result	of	the	last	hardware	comparison

operation.
number	of
sample
errors

Returns	the	number	of	sample	errors	found	in	the	last
hardware	comparison	operation.

BER Returns	the	bit	error	rate	(BER).	BER	is	calculated	by
taking	the	number	of	sample	errors	and	dividing	it	by	the
total	number	of	samples	compared.

BER	per
channel

Returns	the	bit	error	rate	(BER)	for	each	channel.	BER	for
an	individual	channel	is	calculated	by	taking	the	number	of
bit	errors	found	for	that	channel	and	dividing	it	by	the	total
number	of	samples	compared.

error
locations

Returns	the	bit	numbers	and	the	bit	locations	that	were	in
error	for	each	sample	that	has	an	error.

error	out Contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	Express	VI	ran,	error	out
contains	the	same	error	information.	Otherwise,	it
describes	the	error	status	that	this	Express	VI	produces.

This	Express	VI	uses	the	functionality	of	the	following	VIs	and	functions:
niHSDIO	Init	Acquisition	Session
niHSDIO	Tristate	Channels
niHSDIO	Assign	Dynamic	Channels
niHSDIO	Configure	Sample	Clock
niHSDIO	Configure	Voltage
niHSDIO	Configure	Acquisition	Size
niHSDIO	Configure	Data	Position
niHSDIO	Configure	Data	Position	Delay
niHSDIO	Configure	Ref	Clock
niHSDIO	Configure	Trigger
niHSDIO	Read	Waveform
niHSDIO	Close

NI-HSDIO	Express	(Generation)	VI
Acquires	a	digital	waveform	from	a	National	Instruments	digital
waveform	generators/analyzer.

Dialog	Box	Options
Block	Diagram	Inputs
Block	Diagram	Outputs

Dialog	Box	Options
Parameter Description
Configuration Contains	the	following	options:

Device—Specifies	the	device	to	use	for	the
generation.	This	ring	control	lists	all	devices
installed	on	this	computer	which	can	be	used	by
this	Express	VI.	If	you	reopen	the	NI-HSDIO
Express	(Generation)	configuration	page	and	the
current	device	is	dimmed,	you	can	no	longer
select	it.
Generation	Mode—You	can	select	one	of	the
following	modes:

Finite—Configures	the	device	to	generate
a	single	waveform	once.	In	this	generation
mode,	the	Express	VI	waits	until	the
waveform	generation	is	complete	or	Max
time	expires	before	exiting.
Start	Continuous—Configures	the	device
to	generate	the	same	waveform
continuously	until	it	is	stopped	or	a	new
waveform	is	downloaded.	In	this
generation	mode,	the	Express	VI	returns
without	waiting	for	the	waveform
generation	to	complete.
Stop	Continuous—Configures	the
Express	VI	to	stop	a	generation	previously
started	by	an	instance	of	this	Express	VI
configured	in	Start	continuous	generation
mode.	This	VI	stops	the	device	and
releases	all	device	resources	used	by	the
generation.

Channels—Displays	the	channels	currently
configured	to	acquire	data.

Modify—Click	Modify	to	launch	the	Select
Channels	dialog	box.

Timing—Contains	the	following	options:
Extract	rate	from	waveform—Specifies
whether	this	Express	VI	configures	the
device	sample	rate	using	the	value	in	the
waveform	at	the	data	input	terminal	or	the
sample	rate	stored	in	the	waveform	file.

Block	Diagram	Inputs
Parameter Description
data Contains	the	digital	waveform	to	generate.	data	does	not

exist	when	you	select	the	Read	from	File	option	in	the	NI-
HSDIO	Express	(Generation)	configuration	page.

close Determines	whether	the	instrument	session	remains	open
when	the	Express	VI	finishes	execution.	Use	this
parameter	for	loop	optimization	by	setting	it	to	FALSE	on	all
iterations	other	than	the	last	iteration.	close	is	TRUE	by
default.

Note		This	input	is	not	intended	to	be	used	to	share
the	session	between	Express	VIs.	If	you	have	a	loop
containing	multiple	Express	VIs	that	use	the	same
device,	you	must	wire	in	TRUE	for	this	input.

max	time Specifies	the	timeout	value	for	the	generation.
error	in Describes	error	conditions	that	occur	before	this	Express	VI

runs.

Block	Diagram	Outputs
Parameter Description
error	out Contains	error	information.	If	error	in	indicates	that	an

error	occurred	before	this	Express	VI	ran,	error	out
contains	the	same	error	information.	Otherwise,	it
describes	the	error	status	that	this	Express	VI	produces.

This	Express	VI	uses	the	functionality	of	the	following	VIs	and	functions:
niHSDIO	Init	Generation	Session
niHSDIO	Assign	Dynamic	Channels
niHSDIO	Configure	Sample	Clock
niHSDIO	Configure	Voltage
niHSDIO	Configure	Generation	Repeat
niHSDIO	Export	Signal
niHSDIO	Property	Node
niHSDIO	Configure	Data	Position
niHSDIO	Configure	Data	Position	Delay
niHSDIO	Configure	Trigger
niHSDIO	Write	Named	Waveform
niHSDIO	Initiate
niHSDIO	Wait	Until	Done
niHSDIO	Abort
niHSDIO	Close

niHSDIO	Property	Node
The	niHSDIO	Property	Node	is	used	to	set,	get,	or	check	properties.

Some	NI-HSDIO	properties	are	channel	based.	When	a	property	is
channel	based,	you	must	specify	an	active	channel	before	setting,
getting,	or	checking	properties.

Active	Channels
Short	Name:	ActiveChannels
Specifies	part	of	the	session	to	which	subsequent	properties	apply.	The
Active	Channels	property	is	most	often	used	to	specify	a	channel	or
channels.	You	can	also	use	the	Active	Channels	property	to	specify	a
script	trigger	or	marker.
You	can	set	the	Active	Channels	property	more	than	once	within	a
property	node,	if	you	want	to	independently	set	and/or	get	properties	that
apply	to	different	parts	of	a	session.	The	following	example	shows	how	to
set	Voltage	Levels:	Data	High	to	5	for	channel	0	and	to	3	for	channel	1.

If	you	want	to	set	and/or	get	properties	that	apply	to	a	part	of	the	session,
and	then	get	and/or	set	properties	that	apply	to	the	session	as	a	whole
within	the	same	property	node,	set	Active	Channels	to	an	empty	string
before	the	properties	that	apply	to	session	as	a	whole.	The	following
example	shows	how	to	set	Data	High	for	channel	0	and	a	Samples	per
Record	for	the	session.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Dynamic	Channels
Short	Name:	DynamicChannels
Configures	channels	for	dynamic	operation.	The	group	of	dynamic
channels	is	reconfigured	each	time	this	property	is	set.	For	example,
setting	this	property	to	0-10	and	then	setting	it	to	5-8	results	in	only
channels	5-8	being	assigned	to	dynamic.	Channels	0-4	and	9-10	are
unconfigured	by	the	second	configuration.
Writing	an	empty	string	to	this	property	configures	all	channels	for
dynamic	operation.	Writing	the	value	None	unconfigures	all	channels	for
dynamic	operation.	The	session	must	be	committed	before	this	property
takes	effect	(refer	to	the	niHSDIO	Commit	VI	for	more	information	on
committing	a	session).
You	can	configure	a	channel	for	more	than	one	simultaneous	operation.
A	channel	can	be	simultaneously	configured	for	the	following	operations:

Dynamic	generation	and	any	(static	and/or	dynamic)	acquisition
Static	generation	and	any	(static	and/or	dynamic)	acquisition
Both	static	and	dynamic	acquisition
Note		You	cannot	configure	a	particular	channel	for	simultaneous
dynamic	and	static	generation.

Unconfiguring	a	dynamic	generation	channel	frees	that	channel	to	be
reconfigured	for	static	generation.	Unconfiguring	a	dynamic	generation
channel	does	not	stop	the	channel	from	driving	its	current	valueany	value
already	written	to	the	channel	continues	to	be	driven.
Syntax	examples:

2-15	or	15-2	both	set	channels	2	through	15	to	dynamic
0-3,	5,	8-15
0,	3,	10	or	3,	10,	0
''	(empty	string)configure	all	channels	for	dynamic
Noneunconfigure	all	dynamic	channels

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Static	Channels
Short	Name:	StaticChannels
Configures	channels	for	static	operation.	The	group	of	static	channels	is
reconfigured	each	time	this	property	is	set.	For	example,	setting	this
property	to	0-10	and	then	setting	it	to	5-8	results	in	only	channels	5-8
being	assigned	to	static.	Channels	0-4	and	9-10	are	unconfigured	by	the
second	configuration.	Writing	an	empty	string	to	this	property	configures
all	channels	for	static.	Writing	the	value	None	unconfigures	all	channels
for	static.	The	channel	is	not	configured	or	unconfigured	until	a	call	to	the
niHSDIO	Read	Static	(U32)	VI	(for	acquisition	sessions)	or	the	niHSDIO
Write	Static	(U32)	VI	(for	generation	sessions).
Writing	an	empty	string	to	this	property	configures	all	channels	for
dynamic	operation.	Writing	the	value	None	unconfigures	all	channels	for
dynamic	operation.	The	session	must	be	committed	before	this	property
takes	effect	(refer	to	the	niHSDIO	Commit	VI	for	more	information	on
committing	a	session).
You	can	configure	a	channel	for	more	than	one	simultaneous	operation.
A	channel	can	be	simultaneously	configured	for	the	following	operations:

Dynamic	generation	and	any	(static	and/or	dynamic)	acquisition
Static	generation	and	any	(static	and/or	dynamic)	acquisition
Both	static	and	dynamic	acquisition
Note		You	cannot	configure	a	particular	channel	for	simultaneous
dynamic	and	static	generation.

Unconfiguring	a	static	generation	channel	frees	that	channel	to	be
reconfigured	for	dynamic	generation.	Unconfiguring	a	static	generation
channel	does	not	stop	the	channel	from	driving	its	current	value		any
static	value	already	written	to	the	channel	continues	to	be	driven.
Syntax	examples:

2-15	or	15-2	both	set	channels	2	through	15	to	dynamic
0-3,	5,	8-15
0,	3,	10	or	3,	10,	0
''	(empty	string)configure	ALL	channels	for	dynamic
Noneunconfigure	all	dynamic	channels

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Voltage	Levels:Data	High
Short	Name:	DataVolt.High
This	attribute	sets	the	high	data	voltage	level	for	the	session.	For	an
acquisition	session,	this	sets	the	Acquisition	Voltage	High	Level.	For	a
generation	session,	this	sets	the	Generation	Voltage	High	Level.
This	property	applies	to	static	and	dynamic	data	operations.

Note		NI	656x	devices	do	not	support	configuring	voltage	levels.
NI-HSDIO	returns	an	error	if	you	select	this	property	when
programming	those	devices.

Units:	volts

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based Yes

Voltage	Levels:Data	Low
Short	Name:	DataVolt.Low
Specifies	the	data	voltage	low	level	for	the	session.	For	an	acquisition
session,	this	sets	the	Acquisition	Voltage	Low	Level.	For	a	generation
session,	this	sets	the	Generation	Voltage	Low	Level.
This	property	applies	to	static	and	dynamic	data	operations.

Note		NI	656x	devices	do	not	support	configuring	voltage	levels.
NI-HSDIO	returns	an	error	if	you	use	this	property	when
programming	those	devices.

Units:	volts

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based Yes

Voltage	Levels:Trigger	High
Short	Name:	TrigVolt.High
Specifies	the	trigger	voltage	high	level	for	the	session.
If	you	do	not	explicitly	set	this	property,	NI-HSDIO	assumes	the	same
value	as	the	Data	Voltage	High	Level	property	for	the	acquisition	session.

Note		NI	656x	devices	do	not	support	configuring	voltage	levels.
NI-HSDIO	returns	an	error	if	you	use	this	property	when
programming	those	devices.

Units:	volts

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No

Voltage	Levels:Trigger	Low
Short	Name:	TrigVolt.Low
Specifies	the	trigger	voltage	low	level	for	the	session.
If	you	do	not	explicitly	set	this	property,	NI-HSDIO	assumes	the	same
value	as	the	Data	Voltage	Low	Level	property	for	the	acquisition	session.

Note		NI	656x	devices	do	not	support	configuring	voltage	levels.
NI-HSDIO	returns	an	error	if	you	use	this	property	when
programming	those	devices.

Units:	volts

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No

Voltage	Levels:Event	High
Short	Name:	EventVolt.High
Specifies	the	high	event	voltage	level	for	the	session.
If	you	do	not	explicitly	set	this	property,	NI-HSDIO	assumes	the	same
value	as	the	Data	Voltage	High	Level	property	for	the	generation	session.

Note		NI	656x	devices	do	not	support	configuring	voltage	levels.
NI-HSDIO	returns	an	error	if	you	use	this	property	when
programming	those	devices.

Units:	volts

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No

Voltage	Levels:Event	Low
Short	Name:	EventVolt.Low
Specifies	the	low	event	voltage	level	for	the	session.
If	you	do	not	explicitly	set	this	property,	NI-HSDIO	assumes	the	same
value	as	the	Data	Voltage	Low	Level	property	for	the	generation	session.

Note		NI	656x	devices	do	not	support	configuring	voltage	levels.
NI-HSDIO	returns	an	error	if	you	use	this	property	when
programming	those	devices.

Units:	volts

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No

Dynamic	Acquisition:Samples	Per	Record
Short	Name:	SampsPerRecord
Specifies	the	number	of	samples	to	be	acquired	per	record.	If	you	are
using	a	Reference	trigger,	this	includes	both	pretrigger	and	posttrigger
samples.
This	property	is	valid	only	for	acquisition	sessions.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Dynamic	Acquisition:Number	Of	Records	To
Acquire
Short	Name:	NumRecords
Specifies	the	total	number	of	records	you	want	to	acquire.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI niHSDIO	Configure	Acquisition	Size

Dynamic	Acquisition:Fetch:Fetch	Relative	To
Short	Name:	FetchRelativeTo
Specifies	the	absolute	location	within	the	acquired	record	from	which	to
begin	fetching.	The	default	value	is	Current	read	position.	However,	NI-
HSDIO	changes	the	default	value	internally	as	follows.	If	the	Reference
trigger	is	enabled	(not	disabled),	then	the	fetch	occurs	from	the	first
pretrigger	sample.	If	the	Reference	trigger	is	disabled,	then	the	fetch
occurs	from	the	first	sample.

Most	recent
sample	(46)

Specifies	that	fetching	occur	relative	to	the	most	recently
acquired	data.	The	Fetch	Offset	property	must	be
negative.

First
sample	(47)

Specifies	that	fetching	occurs	at	the	first	sample	acquired
by	the	device.	If	the	device	wraps	its	buffer,	then	the	first
sample	is	no	longer	available.	In	this	case,	NI-HSDIO
returns	an	error	if	the	fetch	offset	is	in	the	overwritten
data.

Reference
trigger	(48)

Specifies	that	fetching	occur	relative	to	the	Reference
trigger.	This	value	behaves	like	First	Sample	if	no
Reference	trigger	is	configured.

First
pretrigger
sample	(49)

Specifies	that	fetching	occur	relative	to	the	first	pretrigger
sample	acquired.	This	value	behaves	like	First	Sample	if
no	Reference	trigger	is	configured.

Current
read
position	(50)

Specifies	that	fetching	occur	after	the	last	fetched	sample.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Dynamic	Acquisition:Fetch:Fetch	Offset
Short	Name:	FetchOffset
Specifies	the	offset	in	samples	to	start	fetching	acquired	waveform	data.
The	offset	is	applied	relative	to	the	Fetch	Relative	To	position.	Offset	can
be	a	positive	or	negative	value.
If	the	specified	offset	would	cause	the	fetch	to	exceed	the	end	of	the
waveform,	NI-HSDIO	returns	a	data	overwrite	error.	If	the	selected	offset
would	cause	the	fetch	location	to	occur	before	the	start	of	the	waveform,
the	fetch	location	is	coerced	to	the	beginning	of	the	waveform.
This	property	is	only	valid	for	acquisition	sessions.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Dynamic	Acquisition:Fetch:Fetch	Backlog
Short	Name:	FetchBacklog
Queries	how	many	acquired	data	points	remain	in	onboard	memory.
This	property	is	only	valid	for	acquisition	sessions.
This	property	is	used	with	the	Fetch	Offset	and	Fetch	Relative	To
properties.	This	property	returns	the	number	of	samples	available	from
the	given	Fetch	Relative	To	and	Fetch	Offset	values.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions RO
Channel	Based No

Dynamic	Acquisition:Fetch:Records	Done
Short	Name:	RecordsDone
Returns	the	number	of	records	that	have	been	acquired.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions RO
Channel	Based No
High-Level	VI None

Dynamic	Acquisition:Input	Impedance
Short	Name:	InputImpedance
Use	this	property	to	change	input	impedance	on	the	front	panel
connector.
Refer	to	the	following	table	for	the	supported	settings	for	your	device.	NI-
HSDIO	returns	an	error	if	you	select	an	unsupported	setting.

Device Supported	Value
NI
654x

High	impedance

Refer	to	the	specifications	document	for	your	device	for	more
information	on	the	supported	high-impedance	values.

NI
655x

50	or	high	impedance

Refer	to	the	specifications	document	for	your	device	for	more
information	on	the	supported	high-impedance	values.

NI
656x

100	in	LVDS	terminal	configuration
10,000	in	single-ended	terminal	configuration

Refer	to	the	Termination	section	for	acquisition	with	your	device	for	more
information	about	choosing	the	input	impedance.
Units:	ohms

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based Yes

Dynamic	Acquisition:Data	Interpretation
Short	Name:	DataInterpretation
Specifies	whether	you	acquire	high/low	data	or	valid/invalid	data	during	a
static	or	dynamic	acquisition	session.	Refer	to	your	specific	hardware
documentation	to	understand	how	data	is	returned	to	you	when	the
voltage	level	is	above	voltage	level	low	but	below	voltage	level	high	and
you	select	High	or	low.

Note		NI	654x/656x	devices	only	support	the	high/low	mode	of
data	interpretation.	NI-HSDIO	returns	an	error	if	you	select
valid/invalid	mode	for	an	acquisition	with	these	devices.

This	property	is	only	valid	for	acquisition	sessions.

High	or
low	(3)

Select	High	or	low	to	get	logic	high	or	logic	low	values.

Valid	or
invalid	(4)

Select	Valid	or	invalid	to	tell	if	the	signal	was	in	the
undefined	voltage	level	(above	voltage	level	high	but	below
voltage	level	low).

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based Yes

Dynamic	Generation:Initial	State
Short	Name:	InitialState
Specifies	a	dynamic	generation	channel	state	after	the	session	is	initiated
and	before	the	first	waveform	sample	is	generated.	The	channel	changes
to	the	Initial	state	once	the	data	operation	has	been	initiated.	When	the
start	trigger	occurs,	the	Initial	state	is	replaced	by	the	first	sample	in	the
waveform.
Channels	explicitly	disabled	with	the	niHSDIO	Tristate	Channels	VI
remain	disabled,	but	the	channel	data	value	changes	internally.	Re-
enabling	a	channel	with	the	niHSDIO	Tristate	Channels	VI	while	the
device	is	waiting	for	a	Start	trigger	causes	the	channel	to	go	to	its	Initial
state.
This	property	is	valid	only	for	generation	sessions.

Tristate	(24) Sets	the	channel	to	a	high-impedance	state.
Note		NI	656x	devices	do	not	support	the
tristate	Initial	state.

Logic	high	(1) Sets	the	channel	to	a	logic-high	(high	level)	state.
Logic	low	(0) Sets	the	channel	to	a	logic-low	(low	level)	state.
Hold	last
value	(27)

The	channel	retains	its	previous	value.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based Yes

Dynamic	Generation:Idle	State
Short	Name:	IdleState
Specifies	a	dynamic	generation	channel	state	while	the	device	is	idle.
The	following	conditions	cause	the	Idle	state	to	become	active:

The	generation	session	completes	normally.
The	generation	session	pauses	from	an	active	Pause	trigger.
The	generation	session	terminates	because	of	an	underflow	error.
Channels	explicitly	disabled	with	the	niHSDIO	Tristate	Channels	VI
remain	disabled,	but	the	channel	data	value	changes	internally.
Re-enabling	a	channel	with	the	niHSDIO	Tristate	Channels	VI
while	the	device	is	idle	causes	the	channel	to	go	into	an	Idle	state.

This	property	is	valid	only	for	generation	sessions.

Tristate	(24) Sets	the	channel	to	a	high-impedance	state.
Note		NI	656x	devices	do	not	support	the
tristate	Idle	state.

Logic	high	(1) Sets	the	channel	to	a	logic-high	(high	level)	state.
Logic	low	(0) Sets	the	channel	to	a	logic-low	(low	level)	state.
Hold	last
value	(27)

The	channel	retains	its	previous	value.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based Yes

Dynamic	Generation:Drive	Type
Short	Name:	DriveType
Specifies	what	the	data	channels	generate	when	set	to	logic	1.	Using	the
open	collector	setting	to	generate	a	Z	is	useful	for	wired	logic	buses,	such
as	I2C	or	SMBus.

Notes		NI	656x	devices	only	support	the	active	drive	setting.	NI-
HSDIO	returns	an	error	if	you	try	to	configure	the	channels	on
these	devices	for	open	collector	generation.

NI	654x	devices	support	open	collector	generation	only	for	static
generation.	NI-HSDIO	returns	an	error	if	you	try	to	configure	the
channels	on	these	devices	for	open	collector	dynamic	generation.

This	property	is	only	valid	for	generation	sessions.

Active
drive	(75)

The	Generation	Voltage	High	Level	for	the	device	is
produced	at	the	channel	electronics	when	the	Pattern
Generation	Engine	generates	a	binary	1.

Open
collector	(76)

The	channel	electronics	assume	a	high-impedance	state
when	the	Pattern	Generation	Engine	generates	a
binary	1.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based Yes

Dynamic	Generation:Repeat	Mode
Short	Name:	RepeatMode
Specifies	whether	or	not	to	generate	a	single	waveform	continuously.
This	property	is	valid	only	when	the	Generation	Mode	property	is	set	to
Waveform;	it	is	not	used	if	you	select	Scripted.
If	this	property	is	set	to	Finite,	then	use	the	Repeat	Count	property	to
specify	how	many	times	the	named	waveform	is	generated.
This	property	is	valid	only	for	generation	sessions.

Finite	(16) Calling	the	niHSDIO	Initiate	VI	generates	the	named
waveform	a	finite	number	of	times.	The	number	to
repeat	is	defined	by	the	Repeat	Count	property.

Continuous	(17) Calling	niHSDIO	Init	Generation	Session	VI	generates
the	named	waveform	continuously	(until	the	niHSDIO
Abort	VI	is	called).

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Dynamic	Generation:Repeat	Count
Short	Name:	RepeatCount
Specifies	how	many	times	to	generate	the	waveform	specified	by	the
Waveform	To	Generate	property.	This	property	is	valid	only	when	the
Repeat	Mode	property	is	set	to	Finite;	it	is	not	used	when	the	Repeat
Mode	property	is	set	to	Continuous.	This	property	is	valid	only	when	the
Generation	Mode	property	is	set	to	Waveform—it	is	ignored	if	you	select
Scripted.
This	property	is	only	valid	for	generation	sessions.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Dynamic	Generation:Generation	Mode
Short	Name:	GenerationMode
Use	this	property	to	specify	whether	to	generate	the	waveform	specified
by	the	Waveform	To	Generate	property	or	the	script	specified	by	the
Script	To	Generate	property	upon	calling	the	niHSDIO	Initiate	VI.
This	property	is	valid	only	for	generation	sessions.

Waveform	(14) Calling	the	niHSDIO	Initiate	VI	generates	the	named
waveform	represented	by	the	Waveform	to	Generate
property.

Scripted	(15) Calling	niHSDIO	Initiate	generates	the	script
represented	by	the	Script	to	Generate	property.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Dynamic	Generation:Waveform	to	Generate
Short	Name:	WaveformToGenerate
Specifies	which	named	waveform	in	onboard	memory	is	generated	upon
calling	the	niHSDIO	Initiate	VI	when	the	Generation	Mode	is	set	to
Waveform.	If	this	attribute	is	not	set	to	a	valid	waveform	name	and	more
than	one	waveform	is	in	onboard	memory,	you	receive	an	error	upon
calling	niHSDIO	Initiate.	If	only	one	waveform	is	in	onboard	memory	and
this	property	is	set	to	""	(empty	string),	then	that	waveform	is	generated
upon	calling	the	niHSDIO	Initiate	VI.
This	property	is	ignored	when	the	Generation	Mode	property	is	set	to
Scripted,	since	the	Script	To	Generate	property	defines	the	sequence	of
waveforms	to	generate.
This	property	is	valid	only	for	generation	sessions.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Dynamic	Generation:Script	to	Generate
Short	Name:	ScriptToGenerate
Specifies	which	script	in	onboard	memory	is	generated	upon	calling	the
niHSDIO	Initiate	VI	when	the	Generation	Mode	property	is	set	to
Scripted.	If	this	property	is	not	set	to	a	valid	script	and	more	than	one
script	is	in	onboard	memory,	you	receive	an	error	upon	calling	niHSDIO
Initiate.	If	only	one	script	is	in	onboard	memory	and	this	property	is	set	to
""	(empty	string),	then	that	script	is	generated	upon	calling	the	niHSDIO
Initiate	VI.
This	property	is	ignored	when	Generation	Mode	is	set	to	Waveform,
since	the	Waveform	To	Generate	property	defines	which	waveform	to
generate.
This	property	is	valid	only	for	generation	sessions.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Dynamic	Generation:Data
Transfer:Streaming:Enable
Short	Name:	StreamingEnable
Enables	streaming	of	data	from	host	memory	to	the	device.
This	property	is	valid	only	for	dynamic	generation	sessions.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Permissions R/W
Channel	Based No
High-Level	VI None

Dynamic	Generation:Data
Transfer:Streaming:Streaming	Waveform	Name
Short	Name:	StreamingWaveformName
Specifies	the	name	of	the	waveform	for	streaming.	Use	this	property	in
conjunction	with	the	Streaming	Enable	property.

Note		You	cannot	stream	an	unnamed	waveform.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No
High-Level	VI None

Dynamic	Generation:Data
Transfer:Streaming:Space	Available	in
Streaming	Waveform
Short	Name:	SpaceAvailInStreamingWfrm
Specifies	the	space	(in	samples)	available	in	the	streaming	waveform.
This	property	is	valid	only	when	streaming.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions RO
Channel	Based No
High-Level	VI None

Dynamic	Generation:Data	Transfer:Direct
DMA:Enable
Short	Name:	DirectDMAEnable
Enables	direct	DMA.
This	property	is	valid	only	for	dynamic	generation	sessions.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Permissions R/W
Channel	Based No
High-Level	VI None

Dynamic	Generation:Data	Transfer:Direct
DMA:Window	Size	(in	bytes)
Short	Name:	DirectDMAWindowSize
Specifies	the	direct	DMA	window	size	(in	bytes).

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Dynamic	Generation:Data	Transfer:Direct
DMA:Window	Address
Short	Name:	DirectDMAWindowAddress
Specifies	the	start	address	for	the	direct	DMA	window.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Dynamic	Generation:Data	Transfer:Data	Transfer
Block	Size
Short	Name:	DataTransferBlockSize
Specifies	the	number	of	samples	to	download	to	onboard	memory	at	one
time.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Timing:Sample	Clock:Rate
Short	Name:	SampClk.Rate
Specifies	the	Sample	clock	rate.

Note		You	must	set	this	property	even	when	you	supply	an
external	clock	because	NI-HSDIO	uses	this	property	for	a	number
of	reasons,	including	optimal	error	checking	and	certain	pulse
width	selections.

Units:	hertz

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No

Timing:Sample	Clock:Source
Short	Name:	SampClk.Source
Specifies	the	Sample	clock	source.

OnBoardClock The	device	will	use	the	onboard	oscillator.
ClkIn The	device	will	use	the	clock	present	at	the	front	panel

CLK	IN	SMB	jack	connector.
PXI_STAR The	device	will	use	the	PXI_STAR	signal	which	is	present

on	the	PXI	backplane.	This	selection	is	valid	only	for	PXI
devices	in	slots	other	than	Slot	2.

STROBE The	device	will	use	the	clock	present	at	the	STROBE
channel	of	the	DDC	connector.

Note		STROBE	is	valid	only	for	acquisition
operations.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Timing:Sample	Clock:Impedance
Short	Name:	SampClk.Impedance
Use	this	property	to	program	the	device	input	impedance	when	the
Sample	clock	is	supplied	through	the	device	front	panel.
Units:	ohms

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No

Timing:Sample	Clock:Export:Output	Terminal
Short	Name:	ExportedSampClk.OutputTerm
Use	this	property	to	export	the	Sample	clock	to	the	specified	terminal.

None The	signal	is	not	exported.
ClkOut The	device	will	export	the	signal	present	to	the	front	panel

CLK	OUT	SMB	jack	connector.
DDC_ClkOut The	device	will	export	the	signal	to	the	DDC	CLK	OUT

channel	in	the	front	panel	DDC	connector.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Timing:Sample	Clock:Export:Mode
Short	Name:	ExportedSampClk.Mode
Specifies	the	position	of	the	exported	Sample	clock	relative	to	the
Sample	clock	used	by	the	device.	When	the	Sample	clock	rate	is	set	to
less	than	25	MS/s,	this	property	must	not	be	set	to	Delayed.

Noninverted	(21) The	device	exports	the	Sample	clock	without
modifications.

Inverted	(22) The	device	inverts	the	Sample	clock	prior	to	exporting
it.

Delayed	(23) The	device	delays	the	Sample	clock	prior	to	exporting
it.	Use	the	Exported	Sample	Clock	Delay	property	to
specify	the	delay	value.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Timing:Sample	Clock:Export:Delay
Short	Name:	ExportedSampClk.Delay
Use	this	property	to	specify	the	delay	of	the	exported	Sample	clock
relative	to	the	Sample	clock	used	by	the	device.	This	property	is	relevant
only	when	Exported	Sample	Clock	Mode	is	set	to	Delayed.	Otherwise,
this	property	is	ignored.	This	property	is	specified	as	fraction	of	the
Sample	clock	interval,	that	is,	as	fraction	of	(1/Sample	Clock	Rate).

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No

Timing:Ref	Clock:Rate
Short	Name:	RefClk.Rate
Specifies	the	rate	of	the	Reference	clock.	10	MHz	is	the	only	valid	value
for	this	property.
This	property	is	ignored	when	Reference	Clock	Source	is	set	to	None.
Units:	hertz

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No

Timing:Ref	Clock:Source
Short	Name:	RefClk.Source
Specifies	the	Reference	clock	source.

None The	device	will	not	use	a	Reference	clock.
ClkIn The	device	will	use	the	clock	present	at	the	front	panel	CLK

IN	SMB	jack	connector.
PXI_CLK10 The	device	will	use	the	PXI_CLK10	signal,	which	is	present

on	the	PXI	backplane.	This	selection	is	valid	only	for	PXI
devices.

RTSI7 The	device	will	use	the	signal	present	on	RTSI	trigger	line	7.
This	selection	is	valid	only	for	PCI	devices.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Timing:Ref	Clock:Impedance
Short	Name:	RefClk.Impedance
Specifies	the	input	impedance	of	the	Reference	clock	when	it	is	supplied
through	the	device	front	panel.	Valid	values	are	50	or	1000.
Units:	ohms

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No

Timing:Ref	Clock:Export	Output	Terminal
Short	Name:	ExportedRefClk.OutputTerm
Use	this	property	to	export	the	Reference	clock	to	the	specified	terminal.

None The	signal	is	not	exported.
ClkOut The	devices	will	use	the	signal	present	at	the	front	panel

CLK	OUT	SMB	jack	connector.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Timing:Onboard	Ref	Clock:Export	Output
Terminal
Short	Name:	ExportedOnboardRefClk.OutputTerm
Use	this	property	to	export	the	Onboard	Reference	clock	to	the	specified
terminal.

None The	signal	is	not	exported.
RTSI7 The	signal	is	exported	to	RTSI	7.

Note		The	Onboard	Reference	clock	is	only	available	on	PCI
devices.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Timing:Data	Position:Position
Short	Name:	DataPos.Position
Specifies	which	edge	of	the	Sample	clock	signal	is	used	to	time	the
acquisition	or	generation.	You	can	also	configure	the	device	to	acquire	or
generate	data	at	a	configurable	delay	past	each	rising	edge	of	the
Sample	clock.

Sample
clock
rising
edge	(18)

The	device	samples	or	generates	data	on	the	Sample	clock
rising	edge.

Sample
clock
falling
edge	(19)

The	device	samples	or	generates	data	on	the	Sample	clock
falling	edge.

Delay
from
sample
clock
rising
edge	(20)

The	device	samples	or	generates	data	with	a	delay	from	the
Sample	clock	rising	edge.	Specify	the	delay	using	the	Data
Position	Delay	property.	This	choice	has	more	jitter	than	the
rising	or	falling	edge	values.	Certain	devices	have	Sample
clock	frequency	limitations	on	when	a	custom	delay	can	be
used.	Refer	to	the	device	documentation	for	details.

Note		To	configure	a	delay	on	NI	656x	devices,you
must	delay	all	channels	on	the	device.	NI-HSDIO
returns	an	error	if	you	apply	a	delay	to	only	a	partial
channel	list.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based Yes

Timing:Data	Position:Delay
Short	Name:	DataPos.Delay
Specifies	the	delay	after	the	Sample	clock	rising	edge	when	the	device
acquires	or	generates	a	new	data	sample.	Data	delay	is	expressed	as	a
fraction	of	the	clock	period	(for	example,	a	fraction	of	1/Sample	Clock
Rate).	This	property	is	relevant	only	when	Data	Position	is	set	to	Delay
from	Sample	clock	rising	edge.

Note		To	configure	a	delay	on	NI	656x	devices,you	must	delay	all
channels	on	the	device.	NI-HSDIO	returns	an	error	if	you	apply	a
delay	to	only	a	partial	channel	list.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based Yes

Timing:Advanced:Oscillator	Phase	DAC	Value
Short	Name:	OscillatorPhaseDacValue
Use	this	attribute	to	phase	shift	the	PLL	circuit	of	the	On	Board	Clock
source.	You	can	use	this	attribute	to	align	the	Sample	clock	of	this	device
with	another	device	that	shares	the	same	Reference	clock.	This	property
is	not	valid	if	Ref	Clock	Source	is	set	to	None.	The	valid	range	for	this
attribute	is	0	to	4,095.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Timing:Advanced:Exported	Sample	Clock	Offset
Short	Name:	ExportedSampleClk.Offset
Use	this	attribute	to	offset	the	exported	clock	by	a	fixed	time.	Refer	to
Dynamic	Generation	Timing	Diagrams	for	your	device	for	more
information	about	changing	this	value.
Valid	values	for	this	ViReal64	are	2.5e-9	and	0	for	the	NI	654x/655x
devices	and	1.6e-9	for	the	NI	656x	devices.
Units:	seconds

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No

Triggers:Start:Type
Short	Name:	StartTrig.Type
Specifies	whether	you	want	the	Start	trigger	to	be	a	digital	edge,	pattern
match,	or	software	trigger.

None
(28)

The	data	operation	starts	immediately	after	you	call	the
niHSDIO	Initiate	VI.

Digital
edge
(29)

The	data	operation	does	not	start	until	a	digital	edge	is
detected.	The	source	of	the	digital	edge	is	specified	with	the
Digital	Edge	Start	Trigger	Source	property,	and	the	active
edge	is	specified	with	the	Digital	Edge	Start	Trigger	Edge
property.

Software
(32)

The	data	operation	does	not	start	until	a	software	trigger
occurs.	You	can	assert	the	software	trigger	by	calling	the
niHSDIO	Send	Software	Edge	Trigger	VI	and	selecting	Start
Trigger	as	the	trigger	parameter.

Pattern
match
(31)

The	data	operation	does	not	take	effect	until	a	specific	data
pattern	matching	condition	is	met.	Configure	the	condition	by
setting	the	Start	Trigger	Pattern	Match	Pattern	and	Start
Trigger	Pattern	Match	Trigger	When	properties.	This	value	is
valid	only	for	acquisition	sessions.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Triggers:Start:Digital	Edge:Source
Short	Name:	StartTrig.DigEdge.Source
Specifies	the	source	terminal	for	the	Start	trigger.	This	property	is	used
only	when	Start	Trigger	Type	is	set	to	Digital	edge.

PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PFI2 PFI	2	on	the	front	panel	DDC	connector.
PFI3 PFI	3	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig1 PXI	trigger	line	1.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig2 PXI	trigger	line	2.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig3 PXI	trigger	line	3.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig4 PXI	trigger	line	4.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig5 PXI	trigger	line	5.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig6 PXI	trigger	line	6.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig7 PXI	trigger	line	7.	This	selection	is	available	only	for	PXI

devices.
RTSI0 RTSI	trigger	line	0.	This	selection	is	available	only	for	PCI

devices.
RTSI1 RTSI	trigger	line	1.	This	selection	is	available	only	for	PCI

devices.
RTSI2 RTSI	trigger	line	2.	This	selection	is	available	only	for	PCI

devices.
RTSI3 RTSI	trigger	line	3.	This	selection	is	available	only	for	PCI

devices.

RTSI4 RTSI	trigger	line	4.	This	selection	is	available	only	for	PCI
devices.

RTSI5 RTSI	trigger	line	5.	This	selection	is	available	only	for	PCI
devices.

RTSI6 RTSI	trigger	line	6.	This	selection	is	available	only	for	PCI
devices.

RTSI7 RTSI	trigger	line	7.	This	selection	is	available	only	for	PCI
devices.

PXI_STAR The	device	will	use	the	PXI_STAR	signal	which	is	present	on
the	PXI	backplane.	This	selection	is	valid	only	for	PXI
devices	in	slots	other	than	Slot	2.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Triggers:Start:Digital	Edge:Edge
Short	Name:	StartTrig.DigEdge.Edge
Specifies	the	active	edge	for	the	Start	trigger.	This	property	is	used	only
Start	Trigger	Type	is	set	to	Digital	edge.

Rising	edge	(12) Rising-edge	trigger
Falling	edge	(13) Falling-edge	trigger

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Triggers:Start:Digital	Edge:Position
Short	Name:	StartTrig.Position
Specifies	the	position	where	the	Start	trigger	is	latched,	relative	to	the
Sample	clock.	Trigger	voltages	and	positions	are	only	relevant	if	the
trigger	source	is	a	front	panel	connector.

Sample
clock
rising
edge	(18)

The	device	samples	or	generates	data	on	the	Sample	clock
rising	edge.

Sample
clock
rising
edge	(19)

The	device	samples	or	generates	data	on	the	Sample	clock
falling	edge.

Delay
from
Sample
clock
rising
edge	(20)

The	device	samples	or	generates	data	with	a	delay	from	the
Sample	clock	rising	edge.	Specify	the	delay	using	the	Data
Position	Delay	property.	This	choice	has	more	jitter	than	the
rising	or	falling	edge	values.	Certain	devices	have	Sample
clock	frequency	limitations	on	when	a	custom	delay	can	be
used.	Refer	to	the	device	documentation	for	details.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Triggers:Start:Digital	Edge:Terminal
Configuration
Short	Name:	StartTrig.DigEdge.TermConfig
Specifies	whether	the	Start	trigger	terminal	is	configured	for	single-ended
or	LVDS	operation.	Valid	values	for	this	property	vary	by	device.	Refer	to
your	device	documentation	to	determine	if	your	hardware	supports	LVDS
operation.

LVDS	(64) The	terminal	is	configured	for	LVDS	operation.
Single-Ended
(65)

The	terminal	is	configured	for	single-ended
operation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Start:Digital	Edge:Impedance
Short	Name:	StartTrig.DigEdge.Impedance
Specifies	the	impedance	on	the	channel	configured	for	the	digital	edge
Start	trigger.
Refer	to	the	following	table	for	the	supported	settings	for	your	device.	NI-
HSDIO	returns	an	error	if	you	select	an	unsupported	setting.

Device Supported	Value
NI	654x 100
NI	655x 50	or	10000
NI	656x 100	in	LVDS	terminal	configuration

10000	in	single-ended	terminal	configuration

This	attribute	is	only	set	if	the	trigger	is	configured	to	use	a	PFI	channel,
and	it	is	ignored	if	the	trigger	is	configured	for	any	other	channel.
Units:	ohms

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Start:Pattern	Match:Pattern
Short	Name:	StartTrig.PatMatch.Pattern
Sets	the	pattern	match	mask	for	the	Start	trigger.	This	property	is	used
when	Start	Trigger	Type	is	set	to	Pattern	match.
The	pattern	is	a	string	of	characters	representing	the	entire	pattern	to
match.	Each	character	corresponds	to	a	particular	channel.

X	or	x:	Ignore	the	channel
1:	Match	on	a	logic	1
0:	Match	on	a	logic	0
R	or	r:	Match	on	a	rising	edge
F	or	f:	Match	on	a	falling	edge
E	or	e:	Match	on	either	edge
Spaces	are	ignored,	and	are	useful	for	readability	to	segment	long
patterns

The	rightmost	character	in	the	expression	corresponds	to	the	lowest
numbered	physical	channel.	For	example,	XXXX	XXXX	XXXX	1111	1100
specifies	to	match	when	channels	0	and	1	are	0	and	channels	2-7	are	1.
The	values	seen	by	pattern	matching	are	affected	by	the	Data
Interpretation	property.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Triggers:Start:Pattern	Match:Trigger	When
Short	Name:	StartTrig.PatMatch.TrigWhen
Specifies	whether	a	pattern	match	Start	trigger	asserts	when	a	particular
pattern	is	matched	or	not	matched.	This	property	is	valid	only	for
acquisition	sessions.

Pattern	matches	(36) The	trigger	asserts	when	the	pattern
matches.

Pattern	does	not
match	(37)

The	trigger	asserts	when	the	pattern	does	not
match.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Triggers:Start:Export:Output	Terminal
Short	Name:	ExportedStartTrig.OutputTerm
Specifies	the	destination	terminal	for	exporting	the	Start	trigger.

None The	signal	is	not	exported.
PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PFI2 PFI	2	on	the	front	panel	DDC	connector.
PFI3 PFI	3	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig1 PXI	trigger	line	1.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig2 PXI	trigger	line	2.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig3 PXI	trigger	line	3.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig4 PXI	trigger	line	4.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig5 PXI	trigger	line	5.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig6 PXI	trigger	line	6.	This	selection	is	available	only	for	PXI

devices.
RTSI0 RTSI	trigger	line	0.	This	selection	is	available	only	for	PCI

devices.
RTSI1 RTSI	trigger	line	1.	This	selection	is	available	only	for	PCI

devices.
RTSI2 RTSI	trigger	line	2.	This	selection	is	available	only	for	PCI

devices.
RTSI3 RTSI	trigger	line	3.	This	selection	is	available	only	for	PCI

devices.
RTSI4 RTSI	trigger	line	4.	This	selection	is	available	only	for	PCI

devices.

RTSI5 RTSI	trigger	line	5.	This	selection	is	available	only	for	PCI
devices.

RTSI6 RTSI	trigger	line	6.	This	selection	is	available	only	for	PCI
devices.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Triggers:Start:Export:Terminal	Configuration
Short	Name:	ExportedStartTrig.TermConfig
Specifies	whether	the	Start	trigger	output	terminal	is	configured	for
single-ended	or	LVDS	operation.	Valid	values	for	this	property	vary	by
device.	Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

LVDS	(64) The	terminal	is	configured	for	LVDS	operation.
Single-Ended
(65)

The	terminal	is	configured	for	single-ended
operation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Ref:Type
Short	Name:	RefTrig.Type
Specifies	the	Reference	trigger	type.	Depending	on	this	property	value,
more	properties	may	need	to	be	set	to	fully	configure	the	trigger.

None
(28)

The	device	does	not	use	a	Reference	trigger.	The	data
operation	starts	immediately	after	you	call	the	niHSDIO
Initiate	VI.

Digital
edge
(29)

The	data	operation	does	not	start	until	a	digital	edge	is
detected.	The	source	of	the	digital	edge	is	specified	with	the
Digital	Edge	Ref	Trigger	Source	property,	and	the	active	edge
is	specified	with	Digital	Edge	Ref	Trigger	Edge	property.

Software
(32)

The	data	operation	does	not	start	until	a	software	trigger
occurs.	You	can	assert	the	software	trigger	by	calling
niHSDIO	Send	Software	Edge	Trigger	VI	and	selecting	Start
Trigger	as	the	trigger	parameter.

Pattern
match
(31)

The	data	operation	does	not	take	effect	until	a	specific	data
pattern	matching	condition	is	met.	Configure	the	condition	by
setting	the	Pattern	Match	Ref	Trigger	Pattern	and	Pattern
Match	Ref	Trigger	Trigger	When	properties.	This	value	is	valid
only	for	acquisition	sessions.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Triggers:Ref:Pretrigger	Samples	Per	Record
Short	Name:	RefTrig.PretrigSamples
Specifies	the	number	of	pretrigger	samples,	which	are	the	samples
acquired	before	the	Reference	trigger	is	received,	to	be	acquired	per
record.	The	number	of	pretrigger	samples	cannot	be	greater	than	the
Samples	Per	Record	property.
This	property	is	valid	only	for	acquisition	sessions.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Triggers:Ref:Digital	Edge:Edge
Short	Name:	RefTrig.DigEdge.Edge
Specifies	the	active	edge	for	the	Reference	trigger.	This	property	is	used
when	Reference	Trigger	Type	is	set	to	Digital	edge.

Rising	edge	(12) Rising-edge	trigger
Falling	edge	(13) Falling-edge	trigger

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Triggers:Ref:Digital	Edge:Source
Short	Name:	RefTrig.DigEdge.Source
Specifies	the	source	terminal	for	the	Reference	trigger.	This	property	is
used	only	when	Reference	Trigger	Type	is	set	to	Digital	edge.

PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PFI2 PFI	2	on	the	front	panel	DDC	connector.
PFI3 PFI	3	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig1 PXI	trigger	line	1.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig2 PXI	trigger	line	2.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig3 PXI	trigger	line	3.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig4 PXI	trigger	line	4.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig5 PXI	trigger	line	5.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig6 PXI	trigger	line	6.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig7 PXI	trigger	line	7.	This	selection	is	available	only	for	PXI

devices.
RTSI0 RTSI	trigger	line	0.	This	selection	is	available	only	for	PCI

devices.
RTSI1 RTSI	trigger	line	1.	This	selection	is	available	only	for	PCI

devices.
RTSI2 RTSI	trigger	line	2.	This	selection	is	available	only	for	PCI

devices.
RTSI3 RTSI	trigger	line	3.	This	selection	is	available	only	for	PCI

devices.

RTSI4 RTSI	trigger	line	4.	This	selection	is	available	only	for	PCI
devices.

RTSI5 RTSI	trigger	line	5.	This	selection	is	available	only	for	PCI
devices.

RTSI6 RTSI	trigger	line	6.	This	selection	is	available	only	for	PCI
devices.

RTSI7 RTSI	trigger	line	7.	This	selection	is	available	only	for	PCI
devices.

PXI_STAR The	device	will	use	the	PXI_STAR	signal	which	is	present	on
the	PXI	backplane.	This	selection	is	valid	only	for	PXI
devices	in	slots	other	than	Slot	2.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Triggers:Ref:Digital	Edge:Position
Short	Name:	RefTrig.Position
Specifies	the	position	where	the	Reference	trigger	is	latched,	relative	to
the	Sample	clock.	Trigger	voltages	and	positions	are	only	relevant	if	the
trigger	source	is	a	front	panel	connector.
This	property	is	valid	only	for	acquisition	sessions.

Sample
clock
rising
edge	(18)

The	device	samples	or	generates	data	on	the	Sample	clock
rising	edge.

Sample
clock
rising
edge	(19)

The	device	samples	or	generates	data	on	the	Sample	clock
falling	edge.

Delay
from
Sample
clock
rising
edge	(20)

The	device	samples	or	generates	data	with	a	delay	from	the
Sample	clock	rising	edge.	Specify	the	delay	using	the	Data
Position	Delay	property.	This	choice	has	more	jitter	than	the
rising	or	falling	edge	values.	Certain	devices	have	Sample
clock	frequency	limitations	on	when	a	custom	delay	can	be
used.	Refer	to	the	device	documentation	for	details.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Triggers:Ref:Digital	Edge:Terminal
Configuration
Short	Name:	RefTrig.DigEdge.TermConfig
Specifies	whether	the	Reference	trigger	terminal	is	configured	for	single-
ended	or	LVDS	operation.	Valid	values	for	this	property	vary	by	device.
Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

LVDS	(64) The	terminal	is	configured	for	LVDS	operation.
Single-Ended
(65)

The	terminal	is	configured	for	single-ended
operation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Ref:Digital	Edge:Impedance
Short	Name:	RefTrig.DigEdge.Impedance
Specifies	the	impedance	on	the	channel	configured	for	the	digital	edge
Reference	trigger.
Refer	to	the	following	table	for	the	supported	settings	for	your	device.	NI-
HSDIO	returns	an	error	if	you	select	an	unsupported	setting.

Device Supported	Value
NI	654x 100
NI	655x 50	or	10000
NI	656x 100	in	LVDS	terminal	configuration

10000	in	single-ended	terminal	configuration

This	attribute	is	only	set	if	the	trigger	is	configured	to	use	a	PFI	channel,
and	it	is	ignored	if	the	trigger	is	configured	for	any	other	channel.
Units:	ohms

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Ref:Pattern	Match:Pattern
Short	Name:	RefTrig.PatMatch.Pattern
Sets	the	pattern	match	mask	for	the	Reference	trigger.	This	property	is
used	when	Reference	Trigger	Type	is	set	to	Pattern	match.
The	pattern	is	a	string	of	characters	representing	the	entire	pattern	to
match.	Each	character	corresponds	to	a	particular	channel.

X	or	x:	Ignore	the	channel
1:	Match	on	a	logic	1
0:	Match	on	a	logic	0
R	or	r:	Match	on	a	rising	edge
F	or	f:	Match	on	a	falling	edge
E	or	e:	Match	on	either	edge
Spaces	are	ignored,	and	are	useful	for	readability	to	segment	long
patterns

The	rightmost	character	in	the	expression	corresponds	to	the	lowest
numbered	physical	channel.	For	example,	XXXX	XXXX	XXXX	1111	1100
specifies	to	match	when	channels	0	and	1	are	0	and	channels	2-7	are	1.
The	values	seen	by	pattern	matching	are	affected	by	the	Data
Interpretation	property.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Triggers:Ref:Pattern	Match:Trigger	When
Short	Name:	RefTrig.PatMatch.TrigWhen
Specifies	whether	a	pattern	match	Reference	trigger	asserts	when	a
particular	pattern	is	matched	or	not	matched.	This	property	is	valid	only
for	acquisition	sessions.

Pattern	matches	(36) The	trigger	asserts	when	the	pattern
matches.

Pattern	does	not
match	(37)

The	trigger	asserts	when	the	pattern	does	not
match.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Triggers:Ref:Export:Output	Terminal
Short	Name:	ExportedRefTrig.OutputTerm
Specifies	the	destination	terminal	for	exporting	the	Reference	trigger.

None The	signal	is	not	exported.
PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PFI2 PFI	2	on	the	front	panel	DDC	connector.
PFI3 PFI	3	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig1 PXI	trigger	line	1.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig2 PXI	trigger	line	2.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig3 PXI	trigger	line	3.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig4 PXI	trigger	line	4.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig5 PXI	trigger	line	5.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig6 PXI	trigger	line	6.	This	selection	is	available	only	for	PXI

devices.
RTSI0 RTSI	trigger	line	0.	This	selection	is	available	only	for	PCI

devices.
RTSI1 RTSI	trigger	line	1.	This	selection	is	available	only	for	PCI

devices.
RTSI2 RTSI	trigger	line	2.	This	selection	is	available	only	for	PCI

devices.
RTSI3 RTSI	trigger	line	3.	This	selection	is	available	only	for	PCI

devices.
RTSI4 RTSI	trigger	line	4.	This	selection	is	available	only	for	PCI

devices.

RTSI5 RTSI	trigger	line	5.	This	selection	is	available	only	for	PCI
devices.

RTSI6 RTSI	trigger	line	6.	This	selection	is	available	only	for	PCI
devices.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Triggers:Ref:Export:Terminal	Configuration
Short	Name:	ExportedRefTrig.TermConfig
Specifies	whether	the	exported	Reference	trigger	output	terminal	is
configured	for	single-ended	or	LVDS	operation.	Valid	values	for	this
property	vary	by	device.	Refer	to	your	device	documentation	to	determine
if	your	hardware	supports	LVDS	operation.

LVDS	(64) The	terminal	is	configured	for	LVDS	operation.
Single-Ended
(65)

The	terminal	is	configured	for	single-ended
operation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Ref:Advanced:Start	to	Reference
Trigger	Holdoff
Short	Name:	StartToRefHoldoff
Specifies	the	amount	of	time	after	the	Start	trigger	before	the	Reference
trigger	is	recognized.
This	attribute	is	especially	useful	when	you	want	each	device	in	a
multidevice	situation	to	recognize	the	Reference	trigger	at	the	same	time,
though	the	Reference	trigger	is	shared	among	devices	and	each	device
has	a	different	pretrigger	count.
Units:	seconds

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No

Triggers:Ref:Advanced:Reference	to	Reference
Trigger	Holdoff
Short	Name:	RefToRefHoldoff
Use	this	property	to	specify	the	amount	of	time	until	the	next	record's
Reference	trigger	can	be	recognized.
This	property	is	especially	useful	when	you	want	each	device	in	a
multidevice	situation	to	recognize	the	Reference	trigger	at	the	same	time,
though	the	Reference	trigger	is	shared	among	devices	and	each	device
has	a	different	record	size.
Units:	seconds

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No

Triggers:Advance:Type
Short	Name:	AdvanceTrig.Type
Specifies	whether	you	want	the	Advance	trigger	to	be	a	digital	edge,
pattern	match,	or	software	trigger.

None
(28)

No	Advance	trigger	is	configured.

Digital
edge
(29)

The	Advance	trigger	is	not	asserted	until	a	digital	edge	is
detected.	The	source	of	the	digital	edge	is	specified	with	the
Digital	Edge	Advance	Trigger	Source	property,	and	the	active
edge	is	specified	with	the	Digital	Edge	Advance	Trigger	Edge
property.

Software
(32)

The	Advance	trigger	is	not	asserted	until	a	software	trigger
occurs.	You	can	assert	the	software	trigger	by	calling	the
niHSDIO	Send	Software	Edge	Trigger	VI	with	and	selecting
Start	Trigger	as	the	trigger	parameter.

Pattern
match
(31)

The	Advance	trigger	is	not	asserted	until	a	specific	data
pattern	matching	condition	is	met.	Configure	the	condition	by
setting	the	Advance	Trigger	Pattern	Match	Pattern	and
Advance	Trigger	Pattern	Match	Trigger	When	properties.	This
value	is	valid	only	for	acquisition	sessions.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Advance:Digital	Edge:Source
Short	Name:	AdvanceTrig.DigEdge.Source
Specifies	the	source	terminal	for	the	Advance	trigger.	This	property	is
used	only	when	Advance	Trigger	Type	is	set	to	Digital	edge.

PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PFI2 PFI	2	on	the	front	panel	DDC	connector.
PFI3 PFI	3	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig1 PXI	trigger	line	1.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig2 PXI	trigger	line	2.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig3 PXI	trigger	line	3.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig4 PXI	trigger	line	4.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig5 PXI	trigger	line	5.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig6 PXI	trigger	line	6.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig7 PXI	trigger	line	7.	This	selection	is	available	only	for	PXI

devices.
RTSI0 RTSI	trigger	line	0.	This	selection	is	available	only	for	PCI

devices.
RTSI1 RTSI	trigger	line	1.	This	selection	is	available	only	for	PCI

devices.
RTSI2 RTSI	trigger	line	2.	This	selection	is	available	only	for	PCI

devices.
RTSI3 RTSI	trigger	line	3.	This	selection	is	available	only	for	PCI

devices.

RTSI4 RTSI	trigger	line	4.	This	selection	is	available	only	for	PCI
devices.

RTSI5 RTSI	trigger	line	5.	This	selection	is	available	only	for	PCI
devices.

RTSI6 RTSI	trigger	line	6.	This	selection	is	available	only	for	PCI
devices.

RTSI7 RTSI	trigger	line	7.	This	selection	is	available	only	for	PCI
devices.

PXI_STAR The	device	will	use	the	PXI_STAR	signal	which	is	present	on
the	PXI	backplane.	This	selection	is	valid	only	for	PXI
devices	in	slots	other	than	Slot	2.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Advance:Digital	Edge:Edge
Short	Name:	AdvanceTrig.DigEdge.Edge
Specifies	the	active	edge	for	the	Advance	trigger.	This	property	is	used
only	when	Advance	Trigger	Type	is	set	to	Digital	edge.

Rising	edge	(12) Rising-edge	trigger
Falling	edge	(13) Falling-edge	trigger

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Advance:Digital	Edge:Position
Short	Name:	AdvanceTrig.DigEdge.Position
Specifies	the	position	where	the	Advance	trigger	is	latched,	relative	to	the
Sample	clock.	Trigger	voltages	and	positions	are	only	relevant	if	the
trigger	source	is	a	front	panel	connector.

Sample
clock
rising
edge	(18)

The	device	advances	to	the	next	record	on	the	Sample	clock
rising	edge.

Sample
clock
falling
edge	(19)

The	device	advances	to	the	next	record	on	the	Sample	clock
falling	edge.

Delay
from
Sample
clock
rising
edge	(20)

The	device	advances	to	the	next	record	after	a	delay	from	the
Sample	clock	rising	edge.	Specify	the	delay	using	the	Data
Position	Delay	property.	This	choice	has	more	jitter	than	the
rising	or	falling	edge	values.	Certain	devices	have	Sample
clock	frequency	limitations	on	when	a	custom	delay	can	be
used.	Refer	to	the	device	documentation	for	details.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Advance:Digital	Edge:Terminal
Configuration
Short	Name:	AdvanceTrig.DigEdge.TermConfig
Specifies	whether	the	Advance	trigger	terminal	is	configured	for	single-
ended	or	LVDS	operation.	Valid	values	for	this	property	vary	by	device.
Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

LVDS	(64) The	terminal	is	configured	for	LVDS	operation.
Single-Ended
(65)

The	terminal	is	configured	for	single-ended
operation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Advance:Digital	Edge:Impedance
Short	Name:	AdvanceTrig.DigEdge.Impedance
Specifies	the	impedance	on	the	channel	configured	for	the	digital	edge
Advance	trigger.
Refer	to	the	following	table	for	the	supported	settings	for	your	device.	NI-
HSDIO	returns	an	error	if	you	select	an	unsupported	setting.

Device Supported	Value
NI	654x 100
NI	655x 50	or	10000
NI	656x 100	in	LVDS	terminal	configuration

10000	in	single-ended	terminal	configuration

This	attribute	is	only	set	if	the	trigger	is	configured	to	use	a	PFI	channel,
and	it	is	ignored	if	the	trigger	is	configured	for	any	other	channel.
Units:	ohms

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Advance:Pattern	Match:Pattern
Short	Name:	AdvanceTrig.PatMatch.Pattern
Sets	the	pattern	match	mask	for	the	Advance	trigger.	This	property	is
used	when	Advance	Trigger	Type	is	set	to	Pattern	match.
The	pattern	is	a	string	of	characters	representing	the	entire	pattern	to
match.	Each	character	corresponds	to	a	particular	channel.

X	or	x:	Ignore	the	channel
1:	Match	on	a	logic	1
0:	Match	on	a	logic	0
R	or	r:	Match	on	a	rising	edge
F	or	f:	Match	on	a	falling	edge
E	or	e:	Match	on	either	edge
Spaces	are	ignored,	and	are	useful	for	readability	to	segment	long
patterns

The	rightmost	character	in	the	expression	corresponds	to	the	lowest
numbered	physical	channel.	For	example,	XXXX	XXXX	XXXX	1111	1100
specifies	to	match	when	channels	0	and	1	are	0	and	channels	2-7	are	1.
The	values	seen	by	pattern	matching	are	affected	by	the	Data
Interpretation	property.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Advance:Pattern	Match:Trigger	When
Short	Name:	AdvanceTrig.PatMatch.TrigWhen
Specifies	whether	a	pattern	match	Advance	trigger	asserts	when	a
particular	pattern	is	matched	or	not	matched.	This	property	is	valid	only
for	acquisition	sessions.

Pattern	matches	(36) The	trigger	asserts	when	the	pattern
matches.

Pattern	does	not
match	(37)

The	trigger	asserts	when	the	pattern	does	not
match.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Advance:Export:Output	Terminal
Short	Name:	ExportedAdvanceTrig.OutputTerm
Specifies	the	destination	terminal	for	exporting	the	Advance	trigger.

None The	signal	is	not	exported.
PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PFI2 PFI	2	on	the	front	panel	DDC	connector.
PFI3 PFI	3	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig1 PXI	trigger	line	1.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig2 PXI	trigger	line	2.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig3 PXI	trigger	line	3.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig4 PXI	trigger	line	4.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig5 PXI	trigger	line	5.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig6 PXI	trigger	line	6.	This	selection	is	available	only	for	PXI

devices.
RTSI0 RTSI	trigger	line	0.	This	selection	is	available	only	for	PCI

devices.
RTSI1 RTSI	trigger	line	1.	This	selection	is	available	only	for	PCI

devices.
RTSI2 RTSI	trigger	line	2.	This	selection	is	available	only	for	PCI

devices.
RTSI3 RTSI	trigger	line	3.	This	selection	is	available	only	for	PCI

devices.
RTSI4 RTSI	trigger	line	4.	This	selection	is	available	only	for	PCI

devices.

RTSI5 RTSI	trigger	line	5.	This	selection	is	available	only	for	PCI
devices.

RTSI6 RTSI	trigger	line	6.	This	selection	is	available	only	for	PCI
devices.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Advance:Export:Terminal	Configuration
Short	Name:	ExportedAdvanceTrig.TermConfig
Specifies	whether	the	Advance	trigger	output	terminal	is	configured	for
single-ended	or	LVDS	operation.	Valid	values	for	this	property	vary	by
device.	Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

LVDS	(64) The	terminal	is	configured	for	LVDS	operation.
Single-Ended
(65)

The	terminal	is	configured	for	single-ended
operation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Script:Type
Short	Name:	ScriptTrig.Type
Specifies	the	Script	trigger	type.	Depending	upon	the	value	of	this
attribute,	more	attributes	may	be	needed	to	fully	configure	the	trigger.
This	property	is	only	valid	for	generation	sessions.

None	(28) The	device	does	not	use	a	Script	trigger.	The	data
operation	starts	immediately	after	you	call	the	niHSDIO
Initiate	VI.

Digital
edge	(29)

The	data	operation	does	not	start	until	a	digital	edge	is
detected.	The	source	of	the	digital	edge	is	specified	with
the	Digital	Edge	Script	Trigger	Source	property,	and	the
active	edge	is	specified	with	the	Digital	Edge	Script
Trigger	Edge	property.

Digital
level	(30)

The	Script	trigger	is	active	when	the	level	of	the	Script
trigger	matches	the	desired	level.	The	source	of	the
Script	trigger	is	specified	with	the	Digital	Level	Script
Trigger	Source	property,	and	the	desired	level	is	specified
with	the	Digital	Level	Script	Trigger	When	property.

Software	(32) The	data	operation	does	not	start	until	a	software	trigger
occurs.	You	can	assert	the	software	trigger	by	calling
niHSDIO	Send	Software	Edge	Trigger	VI	and	selecting
Start	Trigger	as	the	trigger	parameter.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Triggers:Script:Digital	Edge:Source
Short	Name:	ScriptTrig.DigEdge.Source
Specifies	the	source	terminal	for	the	Script	trigger.	This	property	is	used
when	Script	Trigger	Type	is	set	to	Digital	edge.

PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PFI2 PFI	2	on	the	front	panel	DDC	connector.
PFI3 PFI	3	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig1 PXI	trigger	line	1.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig2 PXI	trigger	line	2.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig3 PXI	trigger	line	3.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig4 PXI	trigger	line	4.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig5 PXI	trigger	line	5.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig6 PXI	trigger	line	6.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig7 PXI	trigger	line	7.	This	selection	is	available	only	for	PXI

devices.
RTSI0 RTSI	trigger	line	0.	This	selection	is	available	only	for	PCI

devices.
RTSI1 RTSI	trigger	line	1.	This	selection	is	available	only	for	PCI

devices.
RTSI2 RTSI	trigger	line	2.	This	selection	is	available	only	for	PCI

devices.
RTSI3 RTSI	trigger	line	3.	This	selection	is	available	only	for	PCI

devices.

RTSI4 RTSI	trigger	line	4.	This	selection	is	available	only	for	PCI
devices.

RTSI5 RTSI	trigger	line	5.	This	selection	is	available	only	for	PCI
devices.

RTSI6 RTSI	trigger	line	6.	This	selection	is	available	only	for	PCI
devices.

RTSI7 RTSI	trigger	line	7.	This	selection	is	available	only	for	PCI
devices.

PXI_STAR The	device	will	use	the	PXI_STAR	signal	which	is	present	on
the	PXI	backplane.	This	selection	is	valid	only	for	PXI
devices	in	slots	other	than	Slot	2.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Triggers:Script:Digital	Edge:Edge
Short	Name:	ScriptTrig.DigEdge.Edge
Specifies	the	active	edge	for	the	Script	trigger.	This	property	is	used
when	Script	Trigger	Type	is	set	to	Digital	edge.

Rising	edge	(12) Rising-edge	trigger
Falling	edge	(13) Falling-edge	trigger

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Triggers:Script:Digital	Edge:Terminal
Configuration
Short	Name:	ScriptTrig.DigEdge.TermConfig
Specifies	whether	the	Script	trigger	terminal	is	configured	for	single-
ended	or	LVDS	operation.	Valid	values	for	this	property	vary	by	device.
Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

LVDS	(64) The	terminal	is	configured	for	LVDS	operation.
Single-Ended
(65)

The	terminal	is	configured	for	single-ended
operation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Script:Digital	Edge:Impedance
Short	Name:	ScriptTrig.DigEdge.Impedance
Specifies	the	impedance	on	the	channel	configured	for	the	digital	edge
Script	trigger.
Refer	to	the	following	table	for	the	supported	settings	for	your	device.	NI-
HSDIO	returns	an	error	if	you	select	an	unsupported	setting.

Device Supported	Value
NI	654x 100
NI	655x 50	or	10000
NI	656x 100	in	LVDS	terminal	configuration

10000	in	single-ended	terminal	configuration

This	attribute	is	only	set	if	the	trigger	is	configured	to	use	a	PFI	channel,
and	it	is	ignored	if	the	trigger	is	configured	for	any	other	channel.
Units:	ohms

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Script:Digital	Level:Source
Short	Name:	ScriptTrig.DigLevel.Source
Specifies	the	source	terminal	for	the	Script	trigger.	This	property	is	used
when	Script	Trigger	Type	is	set	to	Digital	level.

PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PFI2 PFI	2	on	the	front	panel	DDC	connector.
PFI3 PFI	3	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig1 PXI	trigger	line	1.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig2 PXI	trigger	line	2.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig3 PXI	trigger	line	3.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig4 PXI	trigger	line	4.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig5 PXI	trigger	line	5.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig6 PXI	trigger	line	6.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig7 PXI	trigger	line	7.	This	selection	is	available	only	for	PXI

devices.
RTSI0 RTSI	trigger	line	0.	This	selection	is	available	only	for	PCI

devices.
RTSI1 RTSI	trigger	line	1.	This	selection	is	available	only	for	PCI

devices.
RTSI2 RTSI	trigger	line	2.	This	selection	is	available	only	for	PCI

devices.
RTSI3 RTSI	trigger	line	3.	This	selection	is	available	only	for	PCI

devices.

RTSI4 RTSI	trigger	line	4.	This	selection	is	available	only	for	PCI
devices.

RTSI5 RTSI	trigger	line	5.	This	selection	is	available	only	for	PCI
devices.

RTSI6 RTSI	trigger	line	6.	This	selection	is	available	only	for	PCI
devices.

RTSI7 RTSI	trigger	line	7.	This	selection	is	available	only	for	PCI
devices.

PXI_STAR The	device	will	use	the	PXI_STAR	signal	which	is	present	on
the	PXI	backplane.	This	selection	is	valid	only	for	PXI
devices	in	slots	other	than	Slot	2.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Triggers:Script:Digital	Level:Trigger	When
Short	Name:	ScriptTrig.DigLevel.TrigWhen
Specifies	the	active	level	for	the	Script	trigger.	This	property	is	used	when
Script	Trigger	Type	is	set	to	Digital	level.

High	(34) The	data	operation	is	paused	when	the	trigger	is	high	level.
Low	(35) The	data	operation	is	paused	when	the	trigger	is	low	level.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Triggers:Script:Digital	Level:Terminal
Configuration
Short	Name:	ScriptTrig.DigLevel.TermConfig
Specifies	whether	the	Script	trigger	terminal	is	configured	for	single-
ended	or	LVDS	operation.	Valid	values	for	this	property	vary	by	device.
Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

LVDS	(64) The	terminal	is	configured	for	LVDS	operation.
Single-Ended
(65)

The	terminal	is	configured	for	single-ended
operation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Script:Digital	Level:Impedance
Short	Name:	ScriptTrig.DigLevel.Impedance
Specifies	the	impedance	on	the	channel	configured	for	the	digital	level
Script	trigger.
Refer	to	the	following	table	for	the	supported	settings	for	your	device.	NI-
HSDIO	returns	an	error	if	you	select	an	unsupported	setting.

Device Supported	Value
NI	654x 100
NI	655x 50	or	10000
NI	656x 100	in	LVDS	terminal	configuration

10000	in	single-ended	terminal	configuration

This	attribute	is	only	set	if	the	trigger	is	configured	to	use	a	PFI	channel,
and	it	is	ignored	if	the	trigger	is	configured	for	any	other	channel.
Units:	ohms

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Script:Export:Output	Terminal
Short	Name:	ExportedScriptTrig.OutputTerm
Specifies	the	output	terminal	for	the	exported	Script	trigger.
Setting	this	attribute	to	an	empty	string	means	that	when	you	commit	the
session,	the	signal	is	removed	from	that	terminal	and,	if	possible,	the
terminal	is	tristated.	Event	voltages	and	positions	are	only	relevant	if	the
destination	of	the	event	is	a	front	panel	connector.
This	attribute	is	valid	only	for	generation	sessions.

None The	signal	is	not	exported.
PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PFI2 PFI	2	on	the	front	panel	DDC	connector.
PFI3 PFI	3	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig1 PXI	trigger	line	1.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig2 PXI	trigger	line	2.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig3 PXI	trigger	line	3.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig4 PXI	trigger	line	4.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig5 PXI	trigger	line	5.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig6 PXI	trigger	line	6.	This	selection	is	available	only	for	PXI

devices.
RTSI0 RTSI	trigger	line	0.	This	selection	is	available	only	for	PCI

devices.
RTSI1 RTSI	trigger	line	1.	This	selection	is	available	only	for	PCI

devices.
RTSI2 RTSI	trigger	line	2.	This	selection	is	available	only	for	PCI

devices.
RTSI3 RTSI	trigger	line	3.	This	selection	is	available	only	for	PCI

devices.
RTSI4 RTSI	trigger	line	4.	This	selection	is	available	only	for	PCI

devices.
RTSI5 RTSI	trigger	line	5.	This	selection	is	available	only	for	PCI

devices.
RTSI6 RTSI	trigger	line	6.	This	selection	is	available	only	for	PCI

devices.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Triggers:Script:Export:Terminal	Configuration
Short	Name:	ExportedScriptTrig.TermConfig
Specifies	whether	the	Script	trigger	output	terminal	is	configured	for
single-ended	or	LVDS	operation.	Valid	values	for	this	property	vary	by
device.	Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

LVDS	(64) The	terminal	is	configured	for	LVDS	operation.
Single-Ended
(65)

The	terminal	is	configured	for	single-ended
operation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Pause:Type
Short	Name:	PauseTrig.Type
Specifies	the	Pause	trigger	type.	Depending	upon	the	value	of	this
property,	more	properties	may	be	needed	to	fully	configure	the	trigger.

None	(28) No	Pause	trigger	is	configured.
Digital
level	(30)

The	Pause	trigger	is	active	when	the	level	of	the	Pause
trigger	matches	the	desired	level.	The	source	of	the	Pause
trigger	is	specified	with	the	Digital	Level	Pause	Trigger
Source	property,	and	the	desired	level	is	specified	with	the
Digital	Level	Pause	Trigger	When	property.

Pattern
match	(31)

The	data	operation	does	not	take	effect	until	a	specific	data
pattern	matching	condition	is	met.	Configure	the	condition
by	setting	Pattern	Match	Pause	Trigger	Pattern	and	Pattern
Match	Pause	Trigger	When.	This	is	valid	only	for	acquisition
sessions.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Triggers:Pause:Digital	Level:Source
Short	Name:	PauseTrig.DigLevel.Source
Specifies	the	source	terminal	for	the	Pause	trigger.
This	property	only	applies	to	acquisition	operations.

PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PFI2 PFI	2	on	the	front	panel	DDC	connector.
PFI3 PFI	3	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig1 PXI	trigger	line	1.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig2 PXI	trigger	line	2.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig3 PXI	trigger	line	3.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig4 PXI	trigger	line	4.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig5 PXI	trigger	line	5.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig6 PXI	trigger	line	6.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig7 PXI	trigger	line	7.	This	selection	is	available	only	for	PXI

devices.
RTSI0 RTSI	trigger	line	0.	This	selection	is	available	only	for	PCI

devices.
RTSI1 RTSI	trigger	line	1.	This	selection	is	available	only	for	PCI

devices.
RTSI2 RTSI	trigger	line	2.	This	selection	is	available	only	for	PCI

devices.
RTSI3 RTSI	trigger	line	3.	This	selection	is	available	only	for	PCI

devices.

RTSI4 RTSI	trigger	line	4.	This	selection	is	available	only	for	PCI
devices.

RTSI5 RTSI	trigger	line	5.	This	selection	is	available	only	for	PCI
devices.

RTSI6 RTSI	trigger	line	6.	This	selection	is	available	only	for	PCI
devices.

RTSI7 RTSI	trigger	line	7.	This	selection	is	available	only	for	PCI
devices.

PXI_STAR The	device	will	use	the	PXI_STAR	signal	which	is	present	on
the	PXI	backplane.	This	selection	is	valid	only	for	PXI
devices	in	slots	other	than	Slot	2.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Triggers:Pause:Digital	Level:Trigger	When
Short	Name:	PauseTrig.DigLevel.TrigWhen
Specifies	the	active	level	for	pausing	the	dynamic	operation.

High	(34) The	data	operation	is	paused	when	the	trigger	is	high	level.
Low	(35) The	data	operation	is	paused	when	the	trigger	is	low	level.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Triggers:Pause:Digital	Level:Position
Short	Name:	PauseTrig.DigLevel.Position
Specifies	the	position	where	the	start	trigger	is	latched,	relative	to	the
Sample	clock.	Trigger	voltages	and	positions	are	only	relevant	if	the
trigger	source	is	a	front	panel	connector.

Sample
clock
rising
edge	(18)

The	Pause	trigger	asserts	on	the	Sample	clock	rising	edge.

Sample
clock
rising
edge	(19)

The	Pause	trigger	asserts	on	the	Sample	clock	falling	edge.

Delay
from
Sample
clock
rising
edge	(20)

The	Pause	trigger	asserts	after	a	delay	from	the	Sample
clock	rising	edge.	Specify	the	delay	using	the	Data	Position
Delay	property.	This	choice	has	more	jitter	than	the	rising	or
falling	edge	values.	Certain	devices	have	Sample	clock
frequency	limitations	on	when	a	custom	delay	can	be	used.
Refer	to	the	device	documentation	for	details.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Pause:Digital	Level:Terminal
Configuration
Short	Name:	PauseTrig.DigLevel.TermConfig
Specifies	whether	the	Pause	trigger	terminal	is	configured	for	single-
ended	or	LVDS	operation.	Valid	values	for	this	property	vary	by	device.
Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

LVDS	(64) The	terminal	is	configured	for	LVDS	operation.
Single-Ended
(65)

The	terminal	is	configured	for	single-ended
operation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Pause:Digital	Level:Impedance
Short	Name:	PauseTrig.DigLevel.Impedance
Specifies	the	impedance	on	the	channel	configured	for	the	digital	level
Pause	trigger.
Refer	to	the	following	table	for	the	supported	settings	for	your	device.	NI-
HSDIO	returns	an	error	if	you	select	an	unsupported	setting.

Device Supported	Value
NI	654x 100
NI	655x 50	or	10000
NI	656x 100	in	LVDS	terminal	configuration

10000	in	single-ended	terminal	configuration

This	attribute	is	only	set	if	the	trigger	is	configured	to	use	a	PFI	channel,
and	it	is	ignored	if	the	trigger	is	configured	for	any	other	channel.
Units:	ohms

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
Channel	Based No
High-Level	VI None

Triggers:Pause:Pattern	Match:Pattern
Short	Name:	PauseTrig.PatMatch.Pattern
Sets	the	pattern	match	mask	for	the	Pause	trigger.	This	property	is	used
when	Pause	Trigger	Type	is	set	to	Pattern	match.
The	pattern	is	a	string	of	characters	representing	the	entire	pattern	to
match.	Each	character	corresponds	to	a	particular	channel.

X	or	x:	Ignore	the	channel
1:	Match	on	a	logic	1
0:	Match	on	a	logic	0
R	or	r:	Match	on	a	rising	edge
F	or	f:	Match	on	a	falling	edge
E	or	e:	Match	on	either	edge
Spaces	are	ignored,	and	are	useful	for	readability	to	segment	long
patterns

The	rightmost	character	in	the	expression	corresponds	to	the	lowest
numbered	physical	channel.	For	example,	XXXX	XXXX	XXXX	1111	1100
specifies	to	match	when	channels	0	and	1	are	0	and	channels	2-7	are	1.
The	values	seen	by	pattern	matching	are	affected	by	the	Data
Interpretation	property.
This	property	is	only	valid	for	acquisition	sessions.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Triggers:Pause:Pattern	Match:Trigger	When
Short	Name:	PauseTrig.PatMatch.TrigWhen
Specifies	whether	a	pattern	match	Pause	trigger	asserts	when	a
particular	pattern	is	matched	or	not	matched.
This	property	is	valid	only	for	acquisition	sessions.

Pattern	matches	(36) The	trigger	asserts	when	the	pattern
matches.

Pattern	does	not
match	(37)

The	trigger	asserts	when	the	pattern	does	not
match.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Triggers:Pause:Export:Output	Terminal
Short	Name:	ExportedPauseTrig.OutputTerm
Specifies	the	output	terminal	for	the	exported	Pause	trigger.
This	property	is	only	valid	for	generation	sessions.

None The	signal	is	not	exported.
PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PFI2 PFI	2	on	the	front	panel	DDC	connector.
PFI3 PFI	3	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig1 PXI	trigger	line	1.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig2 PXI	trigger	line	2.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig3 PXI	trigger	line	3.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig4 PXI	trigger	line	4.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig5 PXI	trigger	line	5.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig6 PXI	trigger	line	6.	This	selection	is	available	only	for	PXI

devices.
RTSI0 RTSI	trigger	line	0.	This	selection	is	available	only	for	PCI

devices.
RTSI1 RTSI	trigger	line	1.	This	selection	is	available	only	for	PCI

devices.
RTSI2 RTSI	trigger	line	2.	This	selection	is	available	only	for	PCI

devices.
RTSI3 RTSI	trigger	line	3.	This	selection	is	available	only	for	PCI

devices.
RTSI4 RTSI	trigger	line	4.	This	selection	is	available	only	for	PCI

devices.
RTSI5 RTSI	trigger	line	5.	This	selection	is	available	only	for	PCI

devices.
RTSI6 RTSI	trigger	line	6.	This	selection	is	available	only	for	PCI

devices.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Triggers:Pause:Export:Terminal	Configuration
Short	Name:	ExportedPauseTrig.TermConfig
Specifies	whether	the	Pause	trigger	output	terminal	is	configured	for
single-ended	or	LVDS	operation.	Valid	values	for	this	property	vary	by
device.	Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

LVDS	(64) The	terminal	is	configured	for	LVDS	operation.
Single-Ended
(65)

The	terminal	is	configured	for	single-ended
operation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Events:Ready	For	Start:Output	Terminal
Short	Name:	RdyForStartEvent.OutputTerm
Specifies	the	destination	terminal	for	the	Ready	for	Start	event.	Event
voltages	and	positions	are	only	relevant	if	the	destination	of	the	event	is	a
front	panel	connector.

None The	signal	is	not	exported.
PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PFI2 PFI	2	on	the	front	panel	DDC	connector.
PFI3 PFI	3	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig1 PXI	trigger	line	1.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig2 PXI	trigger	line	2.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig3 PXI	trigger	line	3.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig4 PXI	trigger	line	4.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig5 PXI	trigger	line	5.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig6 PXI	trigger	line	6.	This	selection	is	available	only	for	PXI

devices.
RTSI0 RTSI	trigger	line	0.	This	selection	is	available	only	for	PCI

devices.
RTSI1 RTSI	trigger	line	1.	This	selection	is	available	only	for	PCI

devices.
RTSI2 RTSI	trigger	line	2.	This	selection	is	available	only	for	PCI

devices.
RTSI3 RTSI	trigger	line	3.	This	selection	is	available	only	for	PCI

devices.

RTSI4 RTSI	trigger	line	4.	This	selection	is	available	only	for	PCI
devices.

RTSI5 RTSI	trigger	line	5.	This	selection	is	available	only	for	PCI
devices.

RTSI6 RTSI	trigger	line	6.	This	selection	is	available	only	for	PCI
devices.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Events:Ready	For	Start:Active	Level
Short	Name:	RdyForStartEvent.ActiveLvl
Specifies	the	output	polarity	of	the	Ready	for	Start	Event.

Active
high	(10)

The	exported	signal	is	low	level	while	the	event	is	deasserted.
A	high	pulse	occurs	when	the	event	asserts.	The	exported
signal	is	low	level	while	the	event	is	deasserted.

Active
low	(11)

The	exported	signal	is	high	level	while	the	event	is
deasserted.	A	low	pulse	occurs	when	the	event	asserts.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Events:Ready	For	Start:Terminal	Configuration
Short	Name:	RdyForStartEvent.TermConfig
Specifies	whether	the	Ready	for	Start	event	terminal	is	configured	for
single-ended	or	LVDS	operation.	Valid	values	for	this	property	vary	by
device.	Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

LVDS	(64) The	terminal	is	configured	for	LVDS	operation.
Single-Ended
(65)

The	terminal	is	configured	for	single-ended
operation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Events:Ready	For	Advance:Output	Terminal
Short	Name:	RdyForAdvanceEvent.OutputTerm
Specifies	the	destination	terminal	for	the	Ready	for	Advance	Event.	Event
voltages	and	positions	are	only	relevant	if	the	destination	of	the	event	is	a
front	panel	connector.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No
High-Level	VI None

Events:Ready	For	Advance:Active	Level
Short	Name:	RdyForAdvanceEvent.ActiveLvl
Specifies	the	output	polarity	of	the	Ready	for	Advance	Event.

Active
high	(10)

The	exported	signal	is	low	level	while	the	event	is	deasserted.
A	high	pulse	occurs	when	the	event	asserts.	The	exported
signal	is	low	level	while	the	event	is	deasserted.

Active
low	(11)

The	exported	signal	is	high	level	while	the	event	is
deasserted.	A	low	pulse	occurs	when	the	event	asserts.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Events:Ready	For	Advance:Terminal
Configuration
Short	Name:	RdyForAdvanceEvent.TermConfig
Specifies	whether	the	Ready	for	Advance	event	terminal	is	configured	for
single-ended	or	LVDS	operation.	Valid	values	for	this	property	vary	by
device.	Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

LVDS	(64) The	terminal	is	configured	for	LVDS	operation.
Single-Ended
(65)

The	terminal	is	configured	for	single-ended
operation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Events:End	Of	Record:Output	Terminal
Short	Name:	EndOfRecEvent.OutputTerm
Specifies	the	destination	terminal	for	the	End	of	Record	Event.	Event
voltages	and	positions	are	only	relevant	if	the	destination	of	the	event	is	a
front	panel	connector.

None The	signal	is	not	exported.
PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PFI2 PFI	2	on	the	front	panel	DDC	connector.
PFI3 PFI	3	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig1 PXI	trigger	line	1.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig2 PXI	trigger	line	2.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig3 PXI	trigger	line	3.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig4 PXI	trigger	line	4.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig5 PXI	trigger	line	5.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig6 PXI	trigger	line	6.	This	selection	is	available	only	for	PXI

devices.
RTSI0 RTSI	trigger	line	0.	This	selection	is	available	only	for	PCI

devices.
RTSI1 RTSI	trigger	line	1.	This	selection	is	available	only	for	PCI

devices.
RTSI2 RTSI	trigger	line	2.	This	selection	is	available	only	for	PCI

devices.
RTSI3 RTSI	trigger	line	3.	This	selection	is	available	only	for	PCI

devices.

RTSI4 RTSI	trigger	line	4.	This	selection	is	available	only	for	PCI
devices.

RTSI5 RTSI	trigger	line	5.	This	selection	is	available	only	for	PCI
devices.

RTSI6 RTSI	trigger	line	6.	This	selection	is	available	only	for	PCI
devices.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No
High-Level	VI None

Events:End	Of	Record:Pulse	Polarity
Short	Name:	EndOfRecEvent.PulsePolarity
Specifies	the	output	polarity	of	the	Ready	for	Advance	Event.

Active
high	(10)

The	exported	signal	is	low	level	while	the	event	is	deasserted.
A	high	pulse	occurs	when	the	event	asserts.	The	exported
signal	is	low	level	while	the	event	is	deasserted.

Active
low	(11)

The	exported	signal	is	high	level	while	the	event	is
deasserted.	A	low	pulse	occurs	when	the	event	asserts.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Events:End	Of	Record:Terminal	Configuration
Short	Name:	EndOfRecEvent.TermConfig
Specifies	whether	the	End	of	Record	event	terminal	is	configured	for
single-ended	or	LVDS	operation.	Valid	values	for	this	property	vary	by
device.	Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

LVDS	(64) The	terminal	is	configured	for	LVDS	operation.
Single-Ended
(65)

The	terminal	is	configured	for	single-ended
operation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Events:Data	Active:Output	Terminal
Short	Name:	DataActiveEvent.OutputTerm
Specifies	the	destination	terminal	for	the	Data	Active	Event.	Event
voltages	and	positions	are	only	relevant	if	the	destination	of	the	event	is	a
front	panel	connector.
This	attribute	is	valid	only	for	generation	sessions.

None The	signal	is	not	exported.
PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PFI2 PFI	2	on	the	front	panel	DDC	connector.
PFI3 PFI	3	on	the	front	panel	DDC	connector.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Events:Data	Active:Active	Level
Short	Name:	DataActiveEvent.ActiveLvl
Specifies	the	output	polarity	of	the	Data	Active	event.

Active
high	(10)

The	exported	signal	is	low	level	while	the	event	is	deasserted.
A	high	pulse	occurs	when	the	event	asserts.

Active
low	(11)

The	exported	signal	is	high	level	while	the	event	is
deasserted.	A	low	pulse	occurs	when	the	event	asserts.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Events:Data	Active:Position
Short	Name:	DataActiveEvent.Position
Specifies	the	position	of	the	event	relative	to	the	Sample	clock.	Event
voltages	and	positions	are	only	relevant	if	the	destination	of	the	event	is	a
front	panel	connector.

Sample
clock
rising
edge	(18)

The	event	occurs	on	the	Sample	clock	rising	edge.

Sample
clock
rising
edge	(19)

The	event	occurs	on	the	Sample	clock	falling	edge.

Delay
from
Sample
clock
rising
edge	(20)

The	event	occurs	after	a	delay	from	the	Sample	clock	rising
edge.	Specify	the	delay	using	the	Data	Position	Delay
property.	This	choice	has	more	jitter	than	the	rising	or	falling
edge	values.	Certain	devices	have	Sample	clock	frequency
limitations	on	when	a	custom	delay	can	be	used.	Refer	to	the
device	documentation	for	details.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Events:Data	Active:Terminal	Configuration
Short	Name:	DataActiveEvent.TermConfig
Specifies	whether	the	Data	Active	event	terminal	is	configured	for	single-
ended	or	LVDS	operation.	Valid	values	for	this	property	vary	by	device.
Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

LVDS	(64) The	terminal	is	configured	for	LVDS	operation.
Single-Ended
(65)

The	terminal	is	configured	for	single-ended
operation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Events:Marker:Output	Terminal
Short	Name:	MarkerEvent.OutputTerm
Specifies	the	destination	terminal	for	the	Marker	Event.

None The	signal	is	not	exported.
PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PFI2 PFI	2	on	the	front	panel	DDC	connector.
PFI3 PFI	3	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig1 PXI	trigger	line	1.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig2 PXI	trigger	line	2.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig3 PXI	trigger	line	3.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig4 PXI	trigger	line	4.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig5 PXI	trigger	line	5.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig6 PXI	trigger	line	6.	This	selection	is	available	only	for	PXI

devices.
RTSI0 RTSI	trigger	line	0.	This	selection	is	available	only	for	PCI

devices.
RTSI1 RTSI	trigger	line	1.	This	selection	is	available	only	for	PCI

devices.
RTSI2 RTSI	trigger	line	2.	This	selection	is	available	only	for	PCI

devices.
RTSI3 RTSI	trigger	line	3.	This	selection	is	available	only	for	PCI

devices.
RTSI4 RTSI	trigger	line	4.	This	selection	is	available	only	for	PCI

devices.

RTSI5 RTSI	trigger	line	5.	This	selection	is	available	only	for	PCI
devices.

RTSI6 RTSI	trigger	line	6.	This	selection	is	available	only	for	PCI
devices.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Events:Marker:Pulse	Polarity
Short	Name:	MarkerEvent.PulsePolarity
Specifies	the	output	polarity	of	the	Marker	Event.
This	property	is	valid	only	for	generation	sessions.

Active
high	(10)

The	exported	signal	is	low	level	while	the	event	is	deasserted.
A	high	pulse	occurs	when	the	event	asserts.	The	exported
signal	is	low	level	while	the	event	is	deasserted.

Active
low	(11)

The	exported	signal	is	high	level	while	the	event	is
deasserted.	A	low	pulse	occurs	when	the	event	asserts.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Events:Marker:Position
Short	Name:	MarkerEvent.Position
Specifies	the	position	of	the	event	relative	to	the	Sample	clock.	Event
voltages	and	positions	are	only	relevant	if	the	destination	of	the	event	is	a
front	panel	connector.
This	property	is	valid	only	for	generation	sessions.

Sample
clock
rising
edge	(18)

The	event	occurs	on	the	Sample	clock	rising	edge.

Sample
clock
falling
edge	(19)

The	event	occurs	on	the	Sample	clock	falling	edge.

Delay
from
Sample
clock
rising
edge	(20)

The	event	occurs	after	a	delay	from	the	Sample	clock	rising
edge.	Specify	the	delay	using	the	Data	Position	Delay
property.	This	choice	has	more	jitter	than	the	rising	or	falling
edge	values.	Certain	devices	have	Sample	clock	frequency
limitations	on	when	a	custom	delay	can	be	used.	Refer	to	the
device	documentation	for	details.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Events:Marker:Terminal	Configuration
Short	Name:	MarkerEvent.TermConfig
Specifies	whether	the	Marker	event	terminal	is	configured	for	single-
ended	or	LVDS	operation.	Valid	values	for	this	property	vary	by	device.
Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

LVDS	(64) The	terminal	is	configured	for	LVDS	operation.
Single-Ended
(65)

The	terminal	is	configured	for	single-ended
operation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Events:Sample	Error:Output	Terminal
Short	Name:	SampleErrorEvent.OutputTerm
Specifies	the	destination	terminal	for	the	Sample	Error	event.	Event
voltages	and	positions	are	only	relevant	if	the	destination	of	the	event	is	a
front	panel	connector.

None The	signal	is	not	exported.
PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PFI2 PFI	2	on	the	front	panel	DDC	connector.
PFI3 PFI	3	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig1 PXI	trigger	line	1.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig2 PXI	trigger	line	2.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig3 PXI	trigger	line	3.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig4 PXI	trigger	line	4.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig5 PXI	trigger	line	5.	This	selection	is	available	only	for	PXI

devices.
PXI_Trig6 PXI	trigger	line	6.	This	selection	is	available	only	for	PXI

devices.
RTSI0 RTSI	trigger	line	0.	This	selection	is	available	only	for	PCI

devices.
RTSI1 RTSI	trigger	line	1.	This	selection	is	available	only	for	PCI

devices.
RTSI2 RTSI	trigger	line	2.	This	selection	is	available	only	for	PCI

devices.
RTSI3 RTSI	trigger	line	3.	This	selection	is	available	only	for	PCI

devices.

RTSI4 RTSI	trigger	line	4.	This	selection	is	available	only	for	PCI
devices.

RTSI5 RTSI	trigger	line	5.	This	selection	is	available	only	for	PCI
devices.

RTSI6 RTSI	trigger	line	6.	This	selection	is	available	only	for	PCI
devices.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
Channel	Based No

Total	Acquisition	Memory	Size
Short	Name:	TotalAcqMemSize
Specifies	the	total	onboard	memory	size	for	acquiring	data.	The	number
of	samples	is	based	on	the	default	device	data	width.
If	you	configure	your	device	to	use	a	different	data	width,	the	total
memory	size	is	actually	the	value	returned	by	this	attribute	multiplied	by
the	quotient	of	the	default	data	width	divided	by	the	configured	data
width.	For	example,	if	you	configure	1-byte	data	width	for	a	2-byte	device,
the	total	acquisition	memory	size	is	twice	the	number	of	samples	that	is
returned	by	this	attribute.
Units:	samples

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions RO
Channel	Based No

Total	Generation	Memory	Size
Short	Name:	TotalGenMemSize
Specifies	the	total	onboard	memory	size	for	generating	data.	The	number
of	samples	is	based	on	the	default	device	data	width.
If	you	configure	your	device	to	use	a	different	data	width,	the	total
memory	size	is	actually	the	value	returned	by	this	attribute	multiplied	by
the	quotient	of	the	default	data	width	divided	by	the	configured	data
width.	For	example,	if	you	configure	1-byte	data	width	for	a	2-byte	device,
the	total	generation	memory	size	is	twice	the	number	of	samples	that	is
returned	by	this	attribute.
Units:	samples

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions RO
Channel	Based No

Serial	Number
Short	Name:	SerialNumber
Returns	the	serial	number	of	the	device.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions RO
Channel	Based No

Resource	Descriptor
Short	Name:	ResourceDescriptor
Specifies	the	resource	descriptor	used	to	identify	the	instrument	in
Measurement	&	Automation	Explorer.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions RO
Channel	Based No

Advanced:Data	Width
Short	Name:	DataWidth
Specifies,	in	bytes,	the	size	of	a	raw	sample	from	the	operation.

1	byte
(1)

A	raw	sample	is	one	byte.	You	can	choose	this	value	for
NI	654x/655x/656x.

2	bytes
(2)

A	raw	sample	is	two	bytes.	You	can	choose	this	value	for
NI	654x/655x/656x.

4	bytes
(4)

A	raw	sample	is	four	bytes.	You	can	choose	this	value	for
NI	654x/655x.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W	for	acquisition	sessions,

RO	for	generation	sessions
Channel	Based No
High-Level	VI None

Advanced:Data	Rate	Multiplier
Short	Name:	DataRateMultiplier
Specifies	whether	you	want	the	device	to	acquire	or	generate	in	single
data	rate	(SDR)	mode	or	in	double	data	rate	(DDR)	mode.

Single
Data
Rate
(1)

In	SDR	mode,	the	device	generates	or	acquires	data	on	a
single	edge	of	the	Sample	clock.	Therefore,	you	can	generate
or	acquire	data	on	the	rising	or	falling	edge	of	every	Sample
clock	pulse	or	on	a	delayed	version	of	the	rising	edge	of	the
Sample	clock.

Double
Data
Rate
(2)

In	DDR	mode,	the	device	generates	or	acquires	data	on	both
edges	of	the	Sample	clock.	Therefore,	you	can	generate	or
acquire	data	on	every	rising	and	falling	edge	of	the	Sample
clock.	Acquisition	and	generation	sessions	can	be	configured	in
DDR	mode	to	acquire	or	generate	the	first	data	sample	on	the
rising	or	falling	edge	of	the	clock	or	on	a	delayed	version	of	the
rising	edge	of	the	clock.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Advanced:Data	Active	Internal	Route	Delay
Short	name:	DataActiveInternalRouteDelay
Configures	the	number	of	Sample	clock	cycles	to	delay	the	internal	Data
Active	event.	Internally	routing	a	delayed	version	of	this	event	is	useful
when	you	want	to	synchronize	an	acquisition	trigger	to	the	generation
operation.	Use	this	coarse	delay	together	with	the	finer-resolution	data
delay	to	compensate	for	the	round	trip	delay	of	data	in	stimulus/response
operations.
You	can	configure	the	delayed	Data	Active	event	as	the	source	for	any
acquisition	trigger	by	manually	entering	DelayedDataActiveEvent	as	the
trigger	source	parameter	in	the	appropriate	trigger	configuration	function
or	VI	instance.
This	attribute	is	only	applicable	in	acquisition	sessions.
Valid	values	for	this	attribute	are	0	to	24.
Units:	Sample	clock	cycles

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No
High-Level	VI None

Advanced:Hardware	Compare:Hardware
Compare	Mode
Short	Name:	HardwareCompare.Mode
Configures	the	device	to	compare	expected	data	to	actual	data	in	real-
time.	This	property	must	be	set	to	the	same	value	in	both	sessions.

Note		To	use	this	feature	you	must	have	an	acquisition	and	a
generation	session	running	concurrently.

When	you	set	this	property	to	either	Stimulus	And	Expected	Response
or	Expected	Response	Only,	the	generation	engine	sends	expected
data	to	the	acquisition	session	to	compare	against	acquired	data.
Use	the	Waveform	Data	Type	(WDT)	instance	of	the	niHSDIO	Write
Named	Waveform	VI	to	write	expected	data	to	the	device.	The	device
drives	any	values	of	0,	1,	or	Z	in	the	waveform,	while	values	of	H,	L,	or	X
are	treated	as	expected	data	values.
This	property	must	be	set	before	data	is	written	to	the	device.

Disabled	(77) Comparison	engine	is	disabled.	Any	attempts	to	write
expected	response	data	to	the	device	results	in	an	error.

Stimulus	And
Expected
Response	(78)

Device	drives	and	compares	data	in	parallel	sessions,
without	any	software	reconfiguration.	You	can	download
waveforms	with	drive	and/or	compare	data.	All	digital
states	supported	in	this	mode.

Expected
Response
Only	(79)

Device	does	not	drive	any	data,	it	only	acquires	and
compares.	You	cannot	download	drive	data.	A
generation	session	downloads	the	expected	waveform.
Selecting	this	value	pauses	the	generation	lines	to
synchronize	the	acquisition	and	generation	sessions.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based No

Advanced:Hardware	Compare:Sample	Error
Backlog
Short	Name:	HardwareCompare.SampleErrorBacklog
Returns	the	number	of	sample	errors	you	can	read	using	the	niHSDIO
HWC	Fetch	Sample	Errors	VI.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions RO
Channel	Based No

Advanced:Hardware	Compare:Number	Of
Sample	Errors
Short	Name:	HardwareCompare.NumSampleErrors
Returns	the	total	number	of	sample	errors	since	the	acquisition	was
initiated.	Use	this	property	along	with	the	Samples	Compared	property	to
calculate	the	sample	error	rate.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R0
Channel	Based No

Advanced:Hardware	Compare:Samples
Compared
Short	Name:	HardwareCompare.SamplesCompared
Returns	the	total	number	of	samples	compared	since	the	acquisition	was
initiated.	Use	this	property,	along	with	the	Number	Of	Sample	Errors
property,	to	calculate	the	sample	error	rate.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R0
Channel	Based No

Advanced:Hardware	Compare:Filter	Repeated
Sample	Errors
Short	Name:	HardwareCompare.FilterRepeatedErrors
Specifies	whether	the	device	stores	and	counts	errors	when	the	same
error	appears	in	consecutive	samples.	If	this	attribute	is	set	to	TRUE,	the
device	only	counts	distinct	errors.	An	error	is	defined	as	distinct	if	the
expected	response	value	and	the	actual	sample	error	do	not	change	over
the	same	number	of	Sample	clock	cycles.	The	Fetch	Sample	Errors	VI
returns	the	number	of	clock	cycles	for	which	the	repeated	error	occurred.
This	property	is	helpful	if	your	NI	device	clock	rate	is	faster	than	your
DUT	clock	rate.	In	this	case,	one	error	from	the	DUT	could	result	in
several	identical	errors	on	the	device.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Permissions R/W
Channel	Based No

Advanced:Hardware	Compare:Samples	Error
Buffer	Overflowed
Short	Name:	HardwareCompare.ErrorBufferOverflowed
Returns	whether	the	FIFO	used	to	store	sample	errors	has	overflowed.
The	NI	655x	FIFO	can	contain	4,094	sample	errors.	If	the	FIFO
overflows,	the	hardware	stops	storing	error	information	for	further	errors,
but	it	continues	to	compare	data	and	count	the	sample	errors
encountered.
You	can	remove	sample	errors	from	the	FIFO	using	the	niHSDIO	HWC
Fetch	Sample	Errors	(U32)	VI.	Removing	sample	errors	creates	room	for
additional	sample	errors	to	be	stored	in	the	FIFO.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Permissions RO
Channel	Based No

Alphabetical	Property	List	and	Default	Values
The	following	table	lists	the	default	values	for	each	property	you	can
configure	for	your	device.	An	"N/A"	in	a	table	cell	indicates	that	the	listed
property	is	not	supported	for	that	device.	A	dash	indicates	that	the
property	does	not	have	a	default	value	or	that	it	is	a	read-only	property.	""
is	used	in	the	following	ways:

In	output	terminal	properties	to	indicate	to	the	device	not	to	export
the	relevant	signal
In	trigger	source	properties	to	the	device	that	the	relevant	trigger	is
not	used
In	dynamic	and	static	channels	to	means	"all	channels"

LabVIEW
Property

NI	654x
Default
Value

NI	655x
Default
Value

NI	656x
Default
Value

Property	Location

Active
Channels

"" "" "" Active	Channels

Advance
Trigger	Type

None None None Triggers»Advance»Type

Data	Active
Event	Active
Level

Active	high Active	high Active	high Events»Data	Active»Active	Level

Data	Active
Event	Output
Terminal

"" "" "" Events»Data	Active»Output
Terminal

Data	Active
Event
Position

Sample	clock
rising	edge

Sample	clock
rising	edge

Sample	clock
rising	edge

Events»Data	Active»Position

Data	Active
Event
Terminal
Configuration

Single-Ended Single-Ended LVDS Events»Data	Active»Terminal
Configuration

Data	Active
Internal
Route	Delay

N/A 0 N/A Advanced»Hardware
Compare»Hardware	Compare
Mode

Data
Interpretation

High	or	low High	or	low High	or	low Dynamic	Acquisition»Data
Interpretation

Data	Position Sample	clock
rising	edge

Sample	clock
rising	edge

Sample	clock
rising	edge

Timing»Data	Position»Position

Data	Position
Delay

0	% 0	% 0	% Timing»Data	Position»Delay

Data	Rate
Multiplier

Single	Data
Rate

Single	Data
Rate

Single	Data
Rate

Advanced»Data	Position»Delay

Data
Transfer
Block	Size

0 0 0 Dynamic	Generation»Data
Transfer»Data	Transfer	Block	Size

Data	Voltage
High	Level

3.3	V	logic
family
voltage

levels.	Refer
to	device

specifications
for	more

information.

3.3	V	logic
family
voltage

levels.	Refer
to	device

specifications
for	more

information.

N/A Voltage	Levels»Data	High

Data	Voltage
Low	Level

3.3	V	logic
family
voltage

levels.	Refer
to	device

specifications
for	more

information.

3.3	V	logic
family
voltage

levels.	Refer
to	device

specifications
for	more

information.

N/A Voltage	Levels»Data	Low

Data	Width 4	bytes 4	bytes 2	bytes Advanced»Data	Width
Digital	Edge
Advance
Trigger	Edge

Rising	edge Rising	edge Rising	edge Triggers»Advance»Digital
Edge»Edge

Digital	Edge
Advance
Trigger
Impedance

10000	Ω 10000	Ω 10000	Ω Triggers»Advance»Digital
Edge»Impedance

Digital	Edge Sample	clock Sample	clock Sample	clock Triggers»Advance»Digital

Advance
Trigger
Position

rising	edge rising	edge rising	edge Edge»Position

Digital	Edge
Advance
Trigger
Source

"" "" "" Triggers»Advance»Digital
Edge»Source

Digital	Edge
Advance
Trigger
Terminal
Configuration

Single-Ended Single-Ended LVDS Triggers»Advance»Digital
Edge»Terminal	Configuration

Digital	Edge
Ref	Trigger
Edge

Rising	edge Rising	edge Rising	edge Triggers»Ref»Digital	Edge»Edge

Digital	Edge
Ref	Trigger
Impedance

10000	Ω 10000	Ω 10000	Ω Triggers»Ref»Digital
Edge»Impedance

Digital	Edge
Ref	Trigger
Position

Sample	clock
rising	edge

Sample	clock
rising	edge

Sample	clock
rising	edge

Triggers»Ref»Digital	Edge»Position

Digital	Edge
Ref	Trigger
Source

"" "" "" Triggers»Ref»Digital	Edge»Source

Digital	Edge
Ref	Trigger
Terminal
Configuration

Single-Ended Single-Ended LVDS Triggers»Ref»Digital
Edge»Terminal	Configuration

Digital	Edge
Script
Trigger	Edge

Rising	edge Rising	edge Rising	edge Triggers»Script»Digital	Edge»Edge

Digital	Edge
Script
Trigger
Impedance

10000	Ω 10000	Ω 10000	Ω Triggers»Script»Digital
Edge»Impedance

Digital	Edge "" "" "" Triggers»Script»Digital

Script
Trigger
Source

Edge»Source

Digital	Edge
Script
Trigger
Terminal
Configuration

Single-Ended Single-Ended LVDS Triggers»Script»Digital
Edge»Terminal	Configuration

Digital	Edge
Start	Trigger
Edge

Rising	edge Rising	edge Rising	edge Triggers»Start»Digital	Edge»Edge

Digital	Edge
Start	Trigger
Impedance

10000 10000 10000 Triggers»Start»Digital
Edge»Impedance

Digital	Edge
Start	Trigger
Position

Sample	clock
rising	edge

Sample	clock
rising	edge

Sample	clock
rising	edge

Triggers»Start»Digital
Edge»Position

Digital	Edge
Start	Trigger
Source

"" "" "" Triggers»Start»Digital
Edge»Source

Digital	Edge
Start	Trigger
Terminal
Configuration

Single-Ended Single-Ended LVDS Triggers»Start»Digital
Edge»Terminal	Configuration

Digital	Level
Pause
Trigger
Impedance

10000	Ω 10000	Ω 10000	Ω Triggers»Pause»Digital
Level»Impedance

Digital	Level
Pause
Trigger
Position

Sample	clock
rising	edge

Sample	clock
rising	edge

Sample	clock
rising	edge

Triggers»Pause»Digital
Level»Position

Digital	Level
Pause
Trigger
Terminal

Single-Ended Single-Ended LVDS Triggers»Pause»Digital
Level»Terminal	Configuration

Configuration
Digital	Level
Pause
Trigger
Source

"" "" "" Triggers»Pause»Digital
Level»Source

Digital	Level
Pause
Trigger
When

High High High Triggers»Pause»Digital
Level»Trigger	When

Digital	Level
Script
Trigger
Impedance

10000	Ω 10000	Ω 10000	Ω Triggers»Pause»Digital
Level»Impedance

Digital	Level
Script
Trigger
Terminal
Configuration

Single-Ended Single-Ended LVDS Triggers»Script»Digital
Level»Terminal	Configuration

Digital	Level
Script
Trigger
Source

"" "" "" Triggers»Script»Digital
Level»Source

Digital	Level
Script
Trigger
When

High High High Triggers»Script»Digital
Level»Trigger	When

Direct	DMA
Enable

FALSE FALSE FALSE Dynamic	Generation»Data
Transfer»Direct	DMA»Enable

Direct	DMA
Window
Address

0 0 0 Dynamic	Generation»Data
Transfer»Direct	DMA»Window
Address

Direct	DMA
Window	Size

0 0 0 Dynamic	Generation»Data
Transfer»Direct	DMA»Window	Size

Dynamic
Channels

"" "" "" Dynamic	Channels

End	of
Record
Event	Output
Terminal

"" "" "" Events»End	of	Record»Output
Terminal

End	of
Record
Event	Pulse
Polarity

Active	high Active	high Active	high Events»End	of	Record»Pulse
Polarity

End	of
Record
Event
Terminal
Configuration

Single-Ended Single-Ended LVDS Events»End	of	Record»Terminal
Configuration

Event
Voltage	High
Level

3.3	V	logic
family
voltage

levels.	Refer
to	device

specifications
for	more

information.

3.3	V	logic
family
voltage

levels.	Refer
to	device

specifications
for	more

information.

N/A Voltage	Levels»Event	High

Event
Voltage	Low
Level

3.3	V	logic
family
voltage

levels.	Refer
to	device

specifications
for	more

information.

3.3	V	logic
family
voltage

levels.	Refer
to	device

specifications
for	more

information.

N/A Voltage	Levels»Event	Low

Exported
Advance
Trigger
Output
Terminal

"" "" "" Triggers»Advance»Export»Output
Terminal

Exported
Advance
Trigger

Single-Ended Single-Ended LVDS Triggers»Advance»Export»Terminal
Configuration

Terminal
Configuration
Exported
Onboard	Ref
Clock	Output
Terminal

"" "" "" Timing»Onboard	Ref	Clock»Export
Output	Terminal

Exported
Pause
Trigger
Output
Terminal

"" "" "" Triggers»Pause»Export»Output
Terminal

Exported
Pause
Trigger
Terminal
Configuration

Single-Ended Single-Ended LVDS Triggers»Pause»Export»Terminal
Configuration

Exported	Ref
Clock	Output
Terminal

"" "" "" Timing»Ref	Clock»Export	Output
Terminal

Exported	Ref
Trigger
Output
Terminal

"" "" "" Triggers»Ref»Export»Output
Terminal

Exported	Ref
Trigger
Terminal
Configuration

Single-Ended Single-Ended LVDS Triggers»Ref»Export»Terminal
Configuration

Exported
Sample
Clock	Delay

0	% 0	% 0	% Timing»Sample	Clock»Export
Delay

Exported
Sample
Clock	Mode

Noninverted Noninverted Noninverted Timing»Sample	Clock»Export
Mode

Exported
Sample
Clock	Offset

2.5	ns 2.5	ns 1.5	ns Timing»Advanced»Exported
Sample	Clock	Offset

Exported
Sample
Clock	Output
Terminal

"" "" "" Timing»Sample	Clock»Export
Output	Terminal

Exported
Script
Trigger
Output
Terminal

"" "" "" Triggers»Script»Export»Output
Terminal

Exported
Script
Trigger
Terminal
Configuration

Single-Ended Single-Ended LVDS Triggers»Script»Export»Terminal
Configuration

Exported
Start	Trigger
Output
Terminal

"" "" "" Triggers»Start»Export»Output
Terminal

Exported
Start	Trigger
Terminal
Configuration

Single-Ended Single-Ended LVDS Triggers»Start»Export»Terminal
Configuration

Fetch
Backlog

— — — Dynamic	Acquisition»Fetch
Backlog

Fetch	Offset 0	S 0	S 0	S Dynamic	Acquisition»Fetch	Offset
Fetch
Relative	To

Most	recent
sample	with
no	Reference

trigger
configured;
Reference
trigger	with
Reference
trigger

configured

Most	recent
sample	with
no	Reference

trigger
configured;
Reference
trigger	with
Reference
trigger

configured

Most	recent
sample	with
no	Reference

trigger
configured;
Reference
trigger	with
Reference
trigger

configured

Dynamic	Acquisition»Fetch
Relative	To

Filter N/A FALSE N/A Advanced»Hardware

Repeated
Sample
Errors

Compare»Filter	Repeated	Sample
Errors

Generation
Mode

Waveform Waveform Waveform Dynamic	Generation»Generation
Mode

Hardware
Compare
Mode

Disabled Disabled Disabled Advanced:Hardware
Compare:Hardware	Compare
Mode

Idle	State Hold	last
value

Hold	last
value

Hold	last
value

Dynamic	Generation»Idle	State

Initial	State Hold	last
value

Hold	last
value

Hold	last
value

Dynamic	Generation»Initial	State

Input
Impedance

50	Ω 50	Ω 50	Ω Dynamic	Acquisition»Input
Impedance

Marker	Event
Output
Terminal

"" "" "" Events»Marker»Output	Terminal

Marker	Event
Position

Sample	clock
rising	edge

Sample	clock
rising	edge

Sample	clock
rising	edge

Events»Marker»Position

Marker	Event
Pulse
Polarity

Active	high Active	high Active	high Events»Marker»Pulse	Polarity

Marker	Event
Terminal
Configuration

Single-Ended Single-Ended LVDS Events»Marker»Terminal
Configuration

Number	of
Records	to
Acquire

1 1 1 Dynamic	Acquisition»Number	of
Records	to	Acquire

Number	of
Sample
Errors

— — — Advanced»Hardware
Compare»Number	of	Sample
Errors

Oscillator
Phase	DAC
Value

0 0 0 Timing»Advanced»Oscillator	Phase
DAC	Value

Pattern "" "" "" Triggers»Advance»Pattern

Match
Advance
Trigger
Pattern

Match»Pattern

Pattern
Match
Advance
Trigger
When

Pattern
matches

Pattern
matches

Pattern
matches

Triggers»Advance»Pattern
Match»Trigger	When

Pattern
Match	Pause
Trigger
Pattern

"" "" "" Triggers»Pause»Pattern
Match»Pattern

Pattern
Match	Pause
Trigger
When

Pattern
matches

Pattern
matches

Pattern
matches

Triggers»Pause»Pattern
Match»Trigger	When

Pattern
Match	Ref
Trigger
Pattern

"" "" "" Triggers»Ref»Pattern
Match»Pattern

Pattern
Match	Ref
Trigger
When

Pattern
matches

Pattern
matches

Pattern
matches

Triggers»Ref»Pattern
Match»Trigger	When

Pattern
Match	Start
Trigger
Pattern

"" "" "" Triggers»Start»Pattern
Match»Pattern

Pattern
Match	Start
Trigger
When

Pattern
matches

Pattern
matches

Pattern
matches

Triggers»Start»Pattern
Match»Trigger	When

Pause
Trigger	Type

None None None Triggers»Pause»Type

Ready	for Active	high Active	high Active	high Events»Ready	for	Advance»Active

Advance
Event	Level
Active	Level

Level

Ready	for
Advance
Event	Output
Terminal

"" "" "" Events»Ready	for	Advance»Output
Terminal

Ready	for
Advance
Event
Terminal
Configuration

Single-Ended Single-Ended LVDS Events»Ready	for	Advance»Digital
Edge»Impedance

Ready	for
Start	Event
Level	Active
Level

Active	high Active	high Active	high Events»Ready	for	Start»Active
Level

Ready	for
Start	Event
Output
Terminal

"" "" "" Events»Ready	for	Start»Output
Terminal

Ready	for
Start	Event
Terminal
Configuration

Single-Ended Single-Ended LVDS Events»Ready	for	Start»Terminal
Configuration

Records
Done

— — — Dynamic
Acquisition»Fetch»Records	Done

Ref	Clock
Impedance

50	Ω 50	Ω 100	Ω Clock»Ready	for	Start»Active	Level

Ref	Clock
Rate

10M 10M 10M Timing»Ref	Clock»Rate

Ref	Clock
Source

"" "" "" Timing»Ref	Clock»Source

Ref	Trigger
Pretrigger
Samples

0 0 0 Triggers»Ref»Pretrigger	Samples
Per	Record

Ref	Trigger
Type

None None None Triggers»Ref»Type

Repeat
Count

1 1 1 Dynamic	Generation»Repeat	Count

Repeat
Mode

Finite Finite Finite Dynamic	Generation»Repeat	Mode

Resource
Descriptor

— — — Device	Characteristics»Resource
Descriptor

Sample
Clock
Impedance

50	Ω 50	Ω 100	Ω Timing»Sample	Clock»Impedance

Sample
Clock	Rate

50	MHz 50	MHz 50	MHz Timing»Sample	Clock»Rate

Sample
Clock	Source

OnBoardClock OnBoardClock OnBoardClock Timing»Sample	Clock»Source

Sample	Error
Backlog

N/A — N/A Advanced»Hardware
Compare»Output	Terminal

Sample	Error
Buffer
Overflowed

N/A — N/A Advanced»Hardware
Compare»Sample	Error	Buffer
Overflowed

Sample	Error
Event	Output
Terminal

N/A "" N/A Events»Sample	Error»Output
Terminal

Samples
Compared

N/A — N/A Advanced»Hardware
Compare»Samples	Compared

Samples	Per
Record

1000 1000 1000 Dynamic	Acquisition»Samples	Per
Record

Script	To
Generate

"" "" "" Dynamic	Generation»Script	to
Generate

Script
Trigger	Type

None None None Triggers»Script»Type

Serial
Number

— — — Device	Characteristics»Serial
Number

Space 0 0 0 Dynamic	Generation»Data

Available	in
Streaming
Waveform

Transfer»Streaming»Space
Available	in	Streaming	Waveform

Start	Trigger
Type

None None None Triggers»Start»Type

Static
Channels

"" "" "" Static	Channels

Streaming
Enable

FALSE FALSE FALSE Dynamic	Generation»Data
Transfer»Streaming»Enable

Streaming
Waveform
Name

"" "" "" Dynamic	Generation»Data
Transfer»Streaming»Streaming
Waveform	Name

Total
Acquisition
Size

— — — Device	Characteristics»Total
Acquisition	Size

Total
Generation
Size

— — — Device	Characteristics»Total
Generation	Size

Trigger
Voltage	High
Level

3.3	V	logic
family
voltage

levels.	Refer
to	device

specifications
for	more

information.

3.3	V	logic
family
voltage

levels.	Refer
to	device

specifications
for	more

information.

N/A Voltage	Levels»Trigger	High

Trigger
Voltage	Low
Level

3.3	V	logic
family
voltage

levels.	Refer
to	device

specifications
for	more

information

3.3	V	logic
family
voltage

levels.	Refer
to	device

specifications
for	more

information

N/A Voltage	Levels»Trigger	Low

Waveform	to
Generate

"" "" "" Dynamic	Generation»Waveform	to
Generate

C/C++	Reference
This	section	describes	the	functions	and	attributes	included	with	NI-
HSDIO	that	you	can	use	to	configure	and	operate	your	digital	waveform
generator/analyzer.

NI-HSDIO	Functions
Class/Panel	Name Function	Name

Initialize	Acquisition	Session niHSDIO_InitAcquisitionSession
Initialize	Generation	Session niHSDIO_InitGenerationSession
Close niHSDIO_close
Voltage
Configure	Data	Voltage	(Logic	Family) niHSDIO_ConfigureDataVoltageLogicFamily
Configure	Data	Voltage	(Custom	Levels) niHSDIO_ConfigureDataVoltageCustomLevels
Configure	Trigger	Voltage	(Logic	Family) niHSDIO_ConfigureTriggerVoltageLogicFamily
Configure	Trigger	Voltage	(Custom	Levels) niHSDIO_ConfigureTriggerVoltageCustomLevels
Configure	Event	Voltage	(Logic	Family) niHSDIO_ConfigureEventVoltageLogicFamily
Configure	Event	Voltage	(Custom	Levels) niHSDIO_ConfigureEventVoltageCustomLevels
Dynamic	I/O
Assign	Dynamic	Channels niHSDIO_AssignDynamicChannels
Initiate niHSDIO_Initiate
Wait	Until	Done niHSDIO_WaitUntilDone
Abort niHSDIO_Abort
Dynamic	Acquisition
Configure	Acquisition	Size niHSDIO_ConfigureAcquisitionSize
Configure	Data	Interpretation niHSDIO_ConfigureDataInterpretation
Read	Waveform	(1D	U32) niHSDIO_ReadWaveformU32
Fetch	Waveform	(1D	U32) niHSDIO_FetchWaveformU32
Read	Waveform	(1D	U16) niHSDIO_ReadWaveformU16
Fetch	Waveform	(1D	U16) niHSDIO_FetchWaveformU16
Read	Waveform	(1D	U8) niHSDIO_ReadWaveformU8
Fetch	Waveform	(1D	U8) niHSDIO_FetchWaveformU8
Read	Multi	Record	(2D	U32) niHSDIO_ReadMultiRecordU32
Fetch	Multi	Record	(2D	U32) niHSDIO_FetchMultiRecordU32

Read	Multi	Record	(2D	U16) niHSDIO_ReadMultiRecordU16
Fetch	Multi	Record	(2D	U16) niHSDIO_FetchMultiRecordU16
Read	Multi	Record	(2D	U8) niHSDIO_ReadMultiRecordU8
Fetch	Multi	Record	(2D	U8) niHSDIO_FetchMultiRecordU8
Dynamic	Generation
Write	Named	Waveform	(1D	U32) niHSDIO_WriteNamedWaveformU32
Write	Named	Waveform	(1D	U16) niHSDIO_WriteNamedWaveformU16
Write	Named	Waveform	(1D	U8) niHSDIO_WriteNamedWaveformU8
Write	Named	Waveform	(WDT) niHSDIO_WriteNamedWaveformWDT
Write	Named	Waveform	From	File	(HWS) niHSDIO_WriteNamedWaveformFromFileHWS
Initial/Idle	States
Configure	Idle	State	(String) niHSDIO_ConfigureIdleState
Configure	Idle	State	(U32) niHSDIO_ConfigureIdleStateU32
Configure	Initial	State	(String) niHSDIO_ConfigureInitialState
Configure	Initial	State	(U32) niHSDIO_ConfigureInitialStateU32
Waveform	Control
Configure	Repeat	Mode niHSDIO_ConfigureGenerationRepeat
Configure	Waveform	To	Generate niHSDIO_ConfigureWaveformToGenerate
Allocate	Named	Waveform niHSDIO_AllocateNamedWaveform
Set	Named	Waveform	Next	Write	Position niHSDIO_SetNamedWaveformNextWritePosition
Delete	Named	Waveform niHSDIO_DeleteNamedWaveform
Scripting
Configure	Generation	Mode niHSDIO_ConfigureGenerationMode
Write	Script niHSDIO_WriteScript
Configure	Script	To	Generate niHSDIO_ConfigureScriptToGenerate
Timing	&	Triggering
Timing
Configure	Sample	Clock niHSDIO_ConfigureSampleClock
Configure	Data	Position niHSDIO_ConfigureDataPosition

Configure	Data	Position	Delay niHSDIO_ConfigureDataPositionDelay
Advanced
Configure	Ref	Clock niHSDIO_ConfigureRefClock
Adjust	Sample	Clock	Relative	Delay niHSDIO_AdjustSampleClockRelativeDelay
Triggers
Start	Trigger
Configure	Start	Trigger	(Digital	Edge) niHSDIO_ConfigureDigitalEdgeStartTrigger
Configure	Start	Trigger	(Digital	Pattern	Match) niHSDIO_ConfigurePatternMatchStartTrigger
Configure	Start	Trigger	(Software) niHSDIO_ConfigureSoftwareStartTrigger
Disable	Start	Trigger niHSDIO_DisableStartTrigger
Ref	Trigger
Configure	Ref	Trigger	(Digital	Edge) niHSDIO_ConfigureDigitalEdgeRefTrigger
Configure	Ref	Trigger	(Digital	Pattern	Match) niHSDIO_ConfigurePatternMatchRefTrigger
Configure	Ref	Trigger	(Software) niHSDIO_ConfigureSoftwareRefTrigger
Disable	Ref	Trigger niHSDIO_DisableRefTrigger
Advance	Trigger
Configure	Advance	Trigger	(Digital	Edge) niHSDIO_ConfigureDigitalEdgeAdvanceTrigger
Configure	Advance	Trigger	(Digital	Pattern	Match) niHSDIO_ConfigurePatternMatchAdvanceTrigger
Configure	Advance	Trigger	(Software) niHSDIO_ConfigureSoftwareAdvanceTrigger
Disable	Advance	Trigger niHSDIO_DisableAdvanceTrigger
Script	Trigger
Configure	Script	Trigger	(Digital	Edge) niHSDIO_ConfigureDigitalEdgeScriptTrigger
Configure	Script	Trigger	(Digital	Level) niHSDIO_ConfigureDigitalLevelScriptTrigger
Configure	Script	Trigger	(Software) niHSDIO_ConfigureSoftwareScriptTrigger
Disable	Script	Trigger niHSDIO_DisableScriptTrigger
Pause	Trigger
Configure	Pause	Trigger	(Digital	Level) niHSDIO_ConfigureDigitalLevelPauseTrigger
Configure	Pause	Trigger	(Digital	Pattern	Match) niHSDIO_ConfigurePatternMatchPauseTrigger
Disable	Pause	Trigger niHSDIO_DisablePauseTrigger

Send	Software	Trigger	(Edge	Trigger) niHSDIO_SendSoftwareEdgeTrigger
Events
Export	Signal niHSDIO_ExportSignal
Static	I/O
Assign	Static	Channels niHSDIO_AssignStaticChannels
Read	Static	Channels niHSDIO_ReadStaticU32
Write	Static	Channels niHSDIO_WriteStaticU32
Calibration
Self	Calibrate niHSDIO_SelfCal
Change	External	Calibration	Password niHSDIO_ChangeExtCalPassword
Initialize	External	Calibration	Session niHSDIO_InitExtCal
Adjust	Channel	Voltage niHSDIO_CalAdjustChannelVoltage
Close	External	Calibration niHSDIO_CloseExtCal
Utility	Functions
Self-Test niHSDIO_self_test
Is	Done? niHSDIO_IsDone
Device	Control
Tristate	Channels niHSDIO_TristateChannels
Commit	Dynamic niHSDIO_CommitDynamic
Commit	Static niHSDIO_CommitStatic
Reset niHSDIO_reset
Reset	Device niHSDIO_ResetDevice
Error	Handling
Clear	Error niHSDIO_ClearError
Error	Message niHSDIO_error_message
Get	Error niHSDIO_GetError
Locking
Lock	Session niHSDIO_LockSession
Unlock	Session niHSDIO_UnlockSession

Set/Get	Attribute
Set	Attribute
Set	Attribute	ViBoolean niHSDIO_SetAttributeViBoolean
Set	Attribute	ViInt32 niHSDIO_SetAttributeViInt32
Set	Attribute	ViReal64 niHSDIO_SetAttributeViReal64
Set	Attribute	ViSession niHSDIO_SetAttributeViSession
Set	Attribute	ViString niHSDIO_SetAttributeViString
Get	Attribute
Get	Attribute	ViBoolean niHSDIO_GetAttributeViBoolean
Get	Attribute	ViInt32 niHSDIO_GetAttributeViInt32
Get	Attribute	ViReal64 niHSDIO_GetAttributeViReal64
Get	Attribute	ViSession niHSDIO_GetAttributeViSession
Get	Attribute	ViString niHSDIO_GetAttributeViString

niHSDIO_InitAcquisitionSession
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_InitAcquisitionSession	(ViRsrc	resourceName,
ViBoolean	idQuery,	ViBoolean	resetInstrument,	ViConstString	optionString,
ViSession*	vi);

Purpose
Call	this	function	to	create	a	new	acquisition	session.	You	can	perform
static	and	dynamic	acquisition	operations	with	this	session.
Creating	a	new	session	does	not	automatically	tristate	your	front	panel
terminals	or	channels	that	might	have	been	left	driving	voltages	from
previous	sessions	(refer	to	niHSDIO_close	for	more	information	about
leaving	lines	driving	after	closing	a	session).
Pass	VI_TRUE	into	the	resetInstrument	parameter	to	place	your	device
in	a	known	start-up	state	when	creating	a	new	session.	This	action	is
equivalent	to	calling	niHSDIO_reset,	and	it	tristates	the	front	panel
terminals	and	channels.

Parameters
Name Type Description
resourceName ViRsrc Specifies	the	device	name,	for	example

"Dev1"	where	"Dev1"	is	an	device
name	assigned	by	Measurement	&
Automation	Explorer.

idQuery ViBoolean Specifies	whether	the	driver	performs
an	ID	query	on	the	device.	When	this
parameter	is	set	to	VI_TRUE,	NI-
HSDIO	ensures	compatibility	between
the	device	and	the	driver.

Defined	Values

VI_TRUE	(1)—Perform	ID	query.
VI_FALSE	(0)—Skip	ID	query.

Default	Value:	VI_FALSE
resetInstrument ViBoolean Specifies	whether	the	driver	resets	the

device	during	initialization	of	the
session.	Refer	to	niHSDIO_reset	for
more	information	about	what	happens
during	a	device	reset.

Defined	Values

VI_FALSE	(0)—Do	not	reset	device.
VI_TRUE	(1)—Reset	device.

Default	Value:	VI_FALSE
Note		Resetting	your	device
resets	the	entire	device.
Acquisition	or	generation
operations	in	progress	are
aborted	and	cleared.

optionString ViConstString Currently	unused.	Set	this	string	to	"".

vi ViSession Returns	a	ViSession	handle.	Use	this
handle	to	identify	the	device	in	all
subsequent	instrument	driver	function
calls	related	to	your	acquisition
operation.

Return	Value

niHSDIO_InitGenerationSession
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_InitGenerationSession	(ViRsrc	resourceName,
ViBoolean	idQuery,	ViBoolean	resetInstrument,	ViConstString	optionString,
ViSession*	vi);

Purpose
Call	this	function	to	create	a	new	generation	session.	You	can	perform
static	and	dynamic	generation	operations	with	this	session.
Creating	a	new	session	does	not	automatically	tristate	your	front	panel
terminals	or	channels	that	might	have	been	left	driving	voltages	from
previous	sessions	(refer	to	niHSDIO_close	for	more	information	about
leaving	lines	driving	after	closing	a	session).
Pass	VI_TRUE	into	the	resetInstrument	parameter	to	place	your	device
in	a	known	start-up	state	when	creating	a	new	session.	This	action	is
equivalent	to	calling	niHSDIO_reset,	and	it	tristates	the	front	panel
terminals	and	channels.

Parameters
Name Type Description
resourceName ViRsrc Specifies	the	device	name,	for	example

"Dev1"	where	"Dev1"	is	a	device	name
assigned	by	Measurement	&
Automation	Explorer.

idQuery ViBoolean Specifies	whether	the	driver	performs
an	ID	query	upon	the	device.	When	this
parameter	is	set	to	VI_TRUE,	NI-
HSDIO	ensures	compatibility	between
the	device	and	driver.

Defined	Values

VI_TRUE	(1)—Perform	ID	query.
VI_FALSE	(0)—Skip	ID	query.

Default	Value:	VI_FALSE
resetInstrument ViBoolean Specifies	whether	the	driver	resets	the

device	during	initialization	of	the
session.	Refer	to	niHSDIO_reset	for
more	information	about	what	happens
during	a	device	reset.

Defined	Values

VI_FALSE	(0)—Do	not	reset	device.	
VI_TRUE	(1)—Reset	device.

Default	Value:	VI_FALSE
Note		Resetting	your	device
resets	the	entire	device.
Acquisition	or	generation
operations	in	progress	are
aborted	and	cleared.

optionString ViConstString Currently	unused.	Set	this	string	to	"".
vi ViSession Returns	a	VISession	handle.	Use	this

handle	to	identify	the	device	in	all
subsequent	instrument	driver	function
calls	related	to	your	generation
operation.

Return	Value

niHSDIO_close
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_close	(ViSession	vi);

Purpose
Closes	the	session	and	frees	resources	that	it	has	reserved.	If	the
session	is	running,	it	is	first	aborted.
To	prevent	generating	unwanted	signal	glitches	between	sessions,	no
front	panel	terminals	or	channels	are	tristated	by	calling	niHSDIO_close—
they	are	all	left	driving	whatever	voltage	they	would	have	been	driving
had	you	simply	called	niHSDIO_Abort.	Call	niHSDIO_reset	before	calling
niHSDIO_close	if	you	want	to	tristate	your	terminals	and	channels	before
closing	your	session.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	the	niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

Return	Value

niHSDIO_ConfigureDataVoltageLogicFamily
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureDataVoltageLogicFamily	(ViSession	vi,
ViConstString	channelList,	ViInt32	logicFamily);

Purpose
This	function	configures	the	voltage	levels	for	the	data	channels	using	a
logic	family.

Notes		Refer	to	Logic	Families	for	links	to	the	applicable	logic
families	for	your	device	and	possible	voltage	restrictions.
NI	656x	devices	do	not	support	configuring	voltage	levels.	NI-
HSDIO	returns	an	error	if	you	use	this	function	when	programming
those	devices.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the	function
used	to	initialize	the	session.

channelList ViConstString Identifies	channels	to	apply	settings.	Use	""
or	VI_NULL	to	specify	all	channels.

logicFamily ViInt32 Specifies	the	logic	family	for	the	data
voltage	levels.

Defined	Values

NIHSDIO_VAL_1_8V_LOGIC	(8)—Uses	1.8
V	logic	family.
NIHSDIO_VAL_2_5V_LOGIC	(7)—Uses	2.5
V	logic	family.
NIHSDIO_VAL_3_3V_LOGIC	(6)—Uses	3.3
V	logic	family.
NIHSDIO_VAL_5_0V_LOGIC	(5)—Uses	5.0
V	logic	family.

Return	Value

niHSDIO_ConfigureDataVoltageCustomLevels
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureDataVoltageCustomLevels	(ViSession	vi,
ViConstString	channelList,	ViReal64	lowLevel,	ViReal64	highLevel);

Purpose
This	function	configures	the	voltage	levels	of	the	data	channels	using	the
specified	high	and	low	levels.

Notes		Refer	to	the	device	documentation	for	possible	voltage
restrictions.

		 If	you	are	using	an	NI	654x	device	for	generation	sessions,	you
must	set	highLevel	to	the	appropriate	logic	family	value,	and	you
must	set	lowLevel	to	0.	For	acquisition	sessions	with	the	NI	654x,
select	the	same	value	for	highLevel	and	lowLevel	from	the
following	list:	0.9	V,	1.25	V,	or	1.65	V.
NI	656x	devices	do	not	support	configuring	voltage	levels.	NI-
HSDIO	returns	an	error	if	you	use	this	function	when	programming
those	devices.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the	function
used	to	initialize	the	session.

channelList ViConstString Identifies	channels	to	apply	settings.	Use	""
or	VI_NULL	to	specify	all	channels.

lowLevel ViReal64 Specifies	what	voltage	identifies	low	level.
highLevel ViReal64 Specifies	what	voltage	identifies	high	level.

Return	Value

niHSDIO_ConfigureTriggerVoltageLogicFamily
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureTriggerVoltageLogicFamily	(ViSession	vi,
ViInt32	logicFamily);

Purpose
This	function	configures	the	voltage	levels	for	the	trigger	channels	using
a	logic	family.

Note		Refer	to	the	device	documentation	for	descriptions	of	logic
families	and	possible	voltage	restrictions.
NI	656x	devices	do	not	support	configuring	voltage	levels.	NI-
HSDIO	returns	an	error	if	you	use	this	function	when	programming
those	devices.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.

vi	was	obtained	from	the	function	used	to
initialize	the	session.

logicFamily ViInt32 Specifies	the	logic	family	for	the	trigger	voltage
levels.

Defined	Values

NIHSDIO_VAL_1_8V_LOGIC	(8)—Uses	1.8	V
logic	family.
NIHSDIO_VAL_2_5V_LOGIC	(7)—Uses	2.5	V
logic	family.
NIHSDIO_VAL_3_3V_LOGIC	(6)—Uses	3.3	V
logic	family.
NIHSDIO_VAL_5_0V_LOGIC	(5)—Uses	5.0	V
logic	family.

Return	Value

niHSDIO_ConfigureTriggerVoltageCustomLevels
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureTriggerVoltageCustomLevels	(ViSession	vi,
ViReal64	lowLevel,	ViReal64	highLevel);

Purpose
This	function	configures	the	voltage	levels	of	the	trigger	channels	using
user-defined	high	and	low	levels.

Notes		Refer	to	the	device	documentation	for	possible	voltage
restrictions.

		 If	you	are	using	an	NI	654x	device	for	generation	sessions,	you
must	set	highLevel	to	the	appropriate	logic	family	value,	and	you
must	set	lowLevel	to	0.	For	acquisition	sessions	with	the	NI	654x,
select	the	same	value	for	highLevel	and	lowLevel	from	the
following	list:	0.9	V,	1.25	V,	or	1.65	V.
NI	656x	devices	do	not	support	configuring	voltage	levels.	NI-
HSDIO	returns	an	error	if	you	use	this	function	when	programming
those	devices.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi

was	obtained	from	the	function	used	to	initialize
the	session.

lowLevel ViReal64 Specifies	what	voltage	identifies	low	level.
highLevel ViReal64 Specifies	what	voltage	identifies	high	level.

Return	Value

niHSDIO_ConfigureEventVoltageLogicFamily
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureEventVoltageLogicFamily	(ViSession	vi,
ViInt32	logicFamily);

Purpose
This	function	configures	the	voltage	levels	for	the	event	channels	using	a
logic	family.

Notes		Refer	to	the	device	documentation	for	descriptions	of	logic
families	and	possible	voltage	restrictions.
NI	656x	devices	do	not	support	configuring	voltage	levels.	NI-
HSDIO	returns	an	error	if	you	use	this	function	when	programming
those	devices.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.

vi	was	obtained	from	the	function	used	to
initialize	the	session.

logicFamily ViInt32 Specifies	the	logic	family	for	the	event	voltage
levels.

Defined	Values

NIHSDIO_VAL_1_8V_LOGIC	(8)—Uses	1.8	V
logic	family.
NIHSDIO_VAL_2_5V_LOGIC	(7)—Uses	2.5	V
logic	family.
NIHSDIO_VAL_3_3V_LOGIC	(6)—Uses	3.3	V
logic	family.
NIHSDIO_VAL_5_0V_LOGIC	(5)—Uses	5.0	V
logic	family.

Return	Value

niHSDIO_ConfigureEventVoltageCustomLevels
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureEventVoltageCustomLevels	(ViSession	vi,
ViReal64	lowLevel,	ViReal64	highLevel);

Purpose
This	function	configures	the	voltage	levels	of	the	event	channels	using
user-defined	high	and	low	levels.

Notes		Refer	to	the	device	documentation	for	possible	voltage
restrictions.

		 If	you	are	using	an	NI	654x	device	for	generation	sessions,	you
must	set	highLevel	to	the	appropriate	logic	family	value,	and	you
must	set	lowLevel	to	0.	For	acquisition	sessions	with	the	NI	654x,
select	the	same	value	for	highLevel	and	lowLevel	from	the
following	list:	0.9	V,	1.25	V,	or	1.65	V.
NI	656x	devices	do	not	support	configuring	voltage	levels.	NI-
HSDIO	returns	an	error	if	you	use	this	function	when	programming
those	devices.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi

was	obtained	from	the	function	used	to	initialize
the	session.

lowLevel ViReal64 Specifies	what	voltage	identifies	low	level.
highLevel ViReal64 Specifies	what	voltage	identifies	high	level.

Return	Value

niHSDIO_AssignDynamicChannels
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_AssignDynamicChannels	(ViSession	vi,
ViConstString	channelList);

Purpose
Configures	channels	for	dynamic	acquisition	(if	vi	is	an	acquisition
session)	or	dynamic	generation	(if	vi	is	a	generation	session).

Note		A	channel	cannot	be	assigned	to	static	generation	and
dynamic	generation	at	the	same	time.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

channelList ViConstString This	string	identifies	which	channels	are
reserved	for	dynamic	operation.

Valid	Syntax

"0-19"	or	"0-15,16-19"	or	"0-18,19"
""	(empty	string)	or	VI_NULL	to	specify	all
channels
"none"	to	unassign	all	channels

Channels	cannot	be	configured	for	both
static	generation	and	dynamic	generation.

Return	Value

niHSDIO_Initiate
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_Initiate	(ViSession	vi);

Purpose
Commits	any	pending	attributes	to	hardware	and	starts	the	dynamic
operation	(refer	to	the	niHSDIO_CommitDynamic	function	for	more
information	about	committing).
For	a	generation	operation	with	a	Start	trigger	configured,	calling
niHSDIO_Initiate	causes	the	channels	to	go	to	their	Initial	states.
This	function	is	only	valid	for	dynamic	operations	(acquisition	or
generation).	It	is	not	valid	for	static	operations.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	the	niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

Return	Value

niHSDIO_WaitUntilDone
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_WaitUntilDone	(ViSession	vi,
ViInt32	maxTimeMilliseconds);

Purpose
Call	this	function	to	pause	execution	of	your	program	until	the	dynamic
data	operation	is	completed	or	the	function	returns	a	timeout	error.
niHSDIO_WaitUntilDone	is	a	blocking	function	that	periodically	checks	the
operation	status.	It	returns	control	to	the	calling	program	if	the	operation
completes	successfully	or	an	error	occurs	(including	a	timeout	error).
This	function	is	most	useful	for	finite	data	operations	that	you	expect	to
complete	within	a	certain	time.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was	obtained
from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession
function.

maxTimeMilliseconds ViInt32 This	parameter	specifies	the	number
of	milliseconds	to	allow	the	function
to	complete	before	returning.	If	the
specified	time	elapses	before	the
data	operation	has	completed,	the
function	returns	a	timeout	error.

Setting	a	value	of	0	causes	the
function	to	return	immediately.	This
setting	can	be	useful	to	manually	poll
for	hardware	errors	after	a	data
operation	has	been	initiated.	If	no
other	error	has	occurred	and	the
data	operation	is	still	not	complete,
the	function	returns	a	timeout	error.

Setting	a	value	of	-1	causes	the
function	to	never	timeout.	Be	careful
not	to	use	this	value	during	a
continuous	operation,	as	it	will	never
return	unless	a	hardware	error
occurs.	Perform	a	manual	device
reset	from	Measurement	&
Automation	Explorer	if	you	get	stuck
in	this	state	or	use	niHSDIO_reset	or
niHSDIO_ResetDevice	from	the	other
session	of	the	device.

Default	Value:	10000

Return	Value

niHSDIO_Abort
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_Abort	(ViSession	vi);

Purpose
Stops	a	running	dynamic	session.	This	function	is	generally	not	required
on	finite	data	operations,	as	they	complete	on	their	own	after	the	last	data
point	is	generated	or	acquired.	This	function	is	generally	required	for
continuous	operations	or	if	you	wish	to	interrupt	a	finite	operation	before	it
has	completed.
This	function	is	valid	for	dynamic	operations	(acquisition	or	generation)
only.	It	is	not	valid	for	static	operations.

Note		To	avoid	receiving	hardware	clocking	errors	when
reconfiguring	an	external	clock,	explicitly	call	the	niHSDIO_Abort
function	after	your	finite	operation	has	completed	before
performing	any	clocking	reconfiguration.	An	external	clock	that
stops	sending	pulses	to	the	device	(even	after	a	finite	operation
has	completed)	may	cause	NI-HSDIO	to	return	an	error,	stating
that	the	clock	became	unlocked,	if	the	device	has	not	implicitly
aborted	yet.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	the	niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

Return	Value

niHSDIO_ConfigureAcquisitionSize
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureAcquisitionSize	(ViSession	vi,
ViInt32	samplesPerRecord,	ViInt32	numberOfRecords);

Purpose
Configures	the	acquisition	size,	including	the	number	of	acquired	records
and	the	minimum	record	size.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from
niHSDIO_InitAcquisitionSession.

samplesPerRecord ViInt32 Sets	the	number	of	samples	to	be
acquired	per	record.	If	you	need
pretrigger	and	post-rigger	points,
configure	a	Reference	trigger	and
specify	the	number	of	pretrigger	points.

Default	Value:	1000
numberOfRecords ViInt32 Sets	how	many	records	are	acquired.

Default	Value:	1

Return	Value

niHSDIO_ConfigureDataInterpretation
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureDataInterpretation	(ViSession	vi,
ViConstString	channelList,	ViInt32	dataInterpretation);

Purpose
Selects	between	high/low	data	or	valid/invalid	data	interpretation	during	a
static	or	dynamic	acquisition	operation.
Select	NIHSDIO_VAL_HIGH_OR_LOW	to	get	logic	high	or	logic	low
values.	Select	NIHSDIO_VAL_VALID_OR_INVALID	to	determine	if	the
signal	is	within	the	specified	voltage	range	(above
NIHSDIO_ATTR_DATA_VOLTAGE_LOW_LEVEL	but	below
NIHSDIO_ATTR_DATA_VOLTAGE_HIGH_LEVEL)	or	outside	the	range
(below	NIHSDIO_ATTR_DATA_VOLTAGE_LOW_LEVEL	or	above
NIHSDIO_ATTR_DATA_VOLTAGE_HIGH_LEVEL).

Note		NI	654x/656x	devices	only	support	the	high/low	mode	of
data	interpretation.	NI-HSDIO	returns	an	error	if	you	select
valid/invalid	mode	for	an	acquisition	with	these	devices.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from
niHSDIO_InitAcquisitionSession.

channelList ViConstString Identifies	channels	to	apply	settings.
Use	""	or	VI_NULL	to	specify	all
channels.

dataInterpretation ViInt32 Selects	the	data	interpretation	mode.

Defined	Values

NIHSDIO_VAL_HIGH_OR_LOW	(3)
—Data	read	represents	logical
values	(logic	high	or	low	level)

NIHSDIO_VAL_VALID_OR_INVALID
(4)—Data	read	represents	whether
channel	data	is	within	the	specified
voltage	range.

Default	Value:
NIHSDIO_VAL_HIGH_OR_LOW

Return	Value

niHSDIO_ReadWaveformU32
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ReadWaveformU32	(ViSession	vi,	ViInt32	samplesToRead,
ViInt32	maxTimeMilliseconds,	ViInt32*	numberOfSamplesRead,
ViUInt32[]	data);

Purpose
Initiates	a	waveform	acquisition	on	channels	enabled	for	dynamic
acquisition,	waits	until	it	acquires	the	number	of	samples	in
samplesToRead,	and	returns	the	acquired	binary	data.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was
obtained	from
niHSDIO_InitAcquisitionSession.

samplesToRead ViInt32 Specifies	the	number	of	samples
to	fetch.

maxTimeMilliseconds ViInt32 Specifies	in	milliseconds	how	long
to	allow	the	function	to	complete
before	returning	a	timeout	error.	

A	value	of	0	causes	the	function	to
return	immediately	with	up	to	the
number	of	samples	specified	in
samplesToRead.	If	you	set
maxTimeMilliseconds	to	a	value
other	than	0,	and	a	timeout	occurs
before	all	the	samples	are
acquired,	you	receive	a	timeout
error.	If	you	specify	a	value	for
samplesToRead	that	is	greater
than	the	number	of	samples	in	the
device	memory,	NI-HSDIO	returns
the	available	samples	after
maxTimeMilliseconds.	A	value	of
-1	causes	the	function	to	never
time	out.

numberOfSamplesRead ViInt32 Returns	the	number	of	samples
that	were	successfully	fetched	and
transferred	into	data[].

data ViUInt32[] Returns	the	preallocated	array
where	samples	are	written.

Return	Value

niHSDIO_FetchWaveformU32
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_FetchWaveformU32	(ViSession	vi,	ViInt32	samplesToRead,
ViInt32	maxTimeMilliseconds,	ViInt32*	numberOfSamplesRead,
ViUInt32[]	data);

Purpose
Transfers	acquired	binary	data	from	onboard	memory	to	PC	memory.	The
data	was	acquired	to	onboard	memory	previously	by	calling	the
niHSDIO_Initiate	function.
If	the	number	of	samples	specified	in	samplesToRead	is	still	not
available	after	the	number	of	milliseconds	specified	in
maxTimeMilliseconds,	this	function	returns	no	data	with	a	timeout	error.
The	fetch	position	can	be	modified	by	using	niHSDIO_SetAttributeViInt32
and	the	NIHSDIO_ATTR_FETCH_RELATIVE_TO	attribute	or
NIHSDIO_ATTR_FETCH_OFFSET	attributes.	The	default	value	for
NIHSDIO_ATTR_FETCH_RELATIVE_TO	is
NIHSDIO_VAL_CURRENT_READ_POSITION.	The	default	value	for
NISHDIO_ATTR_FETCH_OFFSET	is	0.
Calling	this	function	is	not	necessary	if	you	are	using	the
niHSDIO_ReadWaveformU32	function,	as	the	fetch	is	performed	as	part	of
that	function.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was
obtained	from
niHSDIO_InitAcquisitionSession.

samplesToRead ViInt32 Specifies	the	number	of	samples
to	fetch.

Default	Value:	1000
maxTimeMilliseconds ViInt32 Specifies	in	milliseconds	how	long

to	allow	the	function	to	complete
before	returning	a	timeout	error.

A	value	of	0	causes	the	function	to
return	immediately	with	up	to	the
number	of	samples	specified	in
samplesToRead.	If	you	set
maxTimeMilliseconds	to	a	value
other	than	0,	and	timeout	occurs
before	all	the	samples	are
acquired,	you	receive	a	timeout
error.	If	you	specify	a	value	for
samplesToRead	that	is	greater
than	the	number	of	samples	in	the
device	memory,	NI-HSDIO	returns
the	available	samples	after	max
time	milliseconds.	A	value	of	–1
causes	the	function	to	never
timeout.

Default	Value:	10000
numberOfSamplesRead ViInt32 Returns	the	number	of	samples

that	were	successfully	fetched	and
transferred	into	data[].

data ViUInt32[] Returns	the	pre-allocated	array
where	samples	are	written.

Return	Value

niHSDIO_ReadWaveformU16
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ReadWaveformU16	(ViSession	vi,	ViInt32	samplesToRead,
ViInt32	maxTimeMilliseconds,	ViInt32*	numberOfSamplesRead,
ViUInt16[]	data);

Purpose
Initiates	a	waveform	acquisition	on	channels	enabled	for	dynamic
acquisition,	waits	until	it	acquires	the	number	of	samples	in
samplesToRead,	and	returns	the	acquired	binary	data.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was
obtained	from
niHSDIO_InitAcquisitionSession.

samplesToRead ViInt32 Specifies	the	number	of	samples
to	fetch.

maxTimeMilliseconds ViInt32 Specifies	in	milliseconds	how	long
to	allow	the	function	to	complete
before	returning	a	timeout	error.	

A	value	of	0	causes	the	function	to
return	immediately	with	up	to	the
number	of	samples	specified	in
samplesToRead.	If	you	set
maxTimeMilliseconds	to	a	value
other	than	0,	and	timeout	occurs
before	all	the	samples	are
acquired,	you	receive	a	timeout
error.	If	you	specify	a	value	for
samplesToRead	that	is	greater
than	the	number	of	samples	in	the
device	memory,	NI-HSDIO	returns
the	available	samples	after
maxTimeMilliseconds.	A	value	of
-1	causes	the	function	to	never
time	out.

numberOfSamplesRead ViInt32 Returns	the	number	of	samples
that	were	successfully	fetched	and
transferred	into	data[].

data ViUInt16[] Returns	the	preallocated	array
where	samples	are	written.

Return	Value

niHSDIO_FetchWaveformU16
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_FetchWaveformU16	(ViSession	vi,	ViInt32	samplesToRead,
ViInt32	maxTimeMilliseconds,	ViInt32*	numberOfSamplesRead,
ViUInt32[]	data);

Purpose
Transfers	acquired	binary	data	from	onboard	memory	to	PC	memory.	The
data	was	acquired	to	onboard	memory	previously	by	calling	the
niHSDIO_Initiate	function.
If	the	number	of	samples	specified	in	samplesToRead	is	still	not
available	after	the	number	of	milliseconds	specified	in
maxTimeMilliseconds,	this	function	returns	no	data	with	a	timeout	error.
The	fetch	position	can	be	modified	by	using	niHSDIO_SetAttributeViInt32
and	the	NIHSDIO_ATTR_FETCH_RELATIVE_TO	or
NIHSDIO_ATTR_FETCH_OFFSET	attributes.	The	default	value	for
NIHSDIO_ATTR_FETCH_RELATIVE_TO	is
NIHSDIO_VAL_CURRENT_READ_POSITION.	The	default	value	for
NIHSDIO_ATTR_FETCH_OFFSET	is	0.
Calling	this	function	is	not	necessary	if	you	use	the
niHSDIO_ReadWaveformU16	function,	as	the	fetch	is	performed	as	part	of
that	function.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was
obtained	from
niHSDIO_InitAcquisitionSession.

samplesToRead ViInt32 Specifies	the	number	of	samples
to	fetch.

maxTimeMilliseconds ViInt32 Specifies	in	milliseconds	how	long
to	allow	the	function	to	complete
before	returning	a	timeout	error.	

A	value	of	0	causes	the	function	to
return	immediately	with	up	to	the
number	of	samples	specified	in
samplesToRead.	If	you	set
maxTimeMilliseconds	to	a	value
other	than	0,	and	a	timeout	occurs
before	all	the	samples	are
acquired,	you	receive	a	timeout
error.	If	you	specify	a	value	for
samplesToRead	that	is	greater
than	the	number	of	samples	in	the
device	memory,	NI-HSDIO	returns
the	available	samples	after
maxTimeMilliseconds.	A	value	of
-1	causes	the	function	to	never
time	out.

numberOfSamplesRead ViInt32 Returns	the	number	of	samples
that	were	successfully	fetched	and
transferred	into	data[].

data ViUInt32[] Returns	the	preallocated	array
where	samples	are	written.

Return	Value

niHSDIO_ReadWaveformU8
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ReadWaveformU8	(ViSession	vi,	ViInt32	samplesToRead,
ViInt32	maxTimeMilliseconds,	ViInt32*	numberOfSamplesRead,
ViUInt8[]	data);

Purpose
Initiates	a	waveform	acquisition	on	channels	enabled	for	dynamic
acquisition,	waits	until	it	acquires	the	number	of	samples	in
samplesToRead,	and	returns	the	acquired	binary	data.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was
obtained	from
niHSDIO_InitAcquisitionSession.

samplesToRead ViInt32 Specifies	the	number	of	samples
to	fetch.

maxTimeMilliseconds ViInt32 Specifies	in	milliseconds	how	long
to	allow	the	function	to	complete
before	returning	a	timeout	error.	

A	value	of	0	causes	the	function	to
return	immediately	with	up	to	the
number	of	samples	specified	in
samplesToRead.	If	you	set
maxTimeMilliseconds	to	a	value
other	than	0,	and	a	timeout	occurs
before	all	the	samples	are
acquired,	you	receive	a	timeout
error.	If	you	specify	a	value	for
samplesToRead	that	is	greater
than	the	number	of	samples	in	the
device	memory,	NI-HSDIO	returns
the	available	samples	after
maxTimeMilliseconds.	A	value	of
-1	causes	the	function	to	never
time	out.

numberOfSamplesRead ViInt32 Returns	the	number	of	samples
that	were	successfully	fetched	and
transferred	into	data[].

data ViUInt8[] Returns	the	preallocated	array
where	samples	are	written.

Return	Value

niHSDIO_FetchWaveformU8
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_FetchWaveformU8	(ViSession	vi,	ViInt32	samplesToRead,
ViInt32	maxTimeMilliseconds,	ViInt32*	numberOfSamplesRead,
ViUInt8[]	data);

Purpose
Transfers	acquired	binary	data	from	onboard	memory	to	PC	memory.	The
data	was	acquired	to	onboard	memory	previously	by	calling	the
niHSDIO_Initiate	function.

If	the	number	of	samples	specified	in	samplesToRead	is	still	not
available	after	the	number	of	milliseconds	specified	in
maxTimeMilliseconds,	this	function	returns	no	data	with	a	timeout	error.
The	fetch	position	can	be	modified	by	using	niHSDIO_SetAttributeViInt32
and	the	NIHSDIO_ATTR_FETCH_RELATIVE_TO	or
NIHSDIO_ATTR_FETCH_OFFSET	attributes.	The	default	value	for
NIHSDIO_ATTR_FETCH_RELATIVE_TO	is
NIHSDIO_VAL_CURRENT_READ_POSITION.	The	default	value	for
NIHSDIO_ATTR_FETCH_OFFSET	is	0.
Calling	this	function	is	not	necessary	if	you	use	the
niHSDIO_ReadWaveformU8	function,	as	the	fetch	is	performed	as	part	of
that	function.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was
obtained	from
niHSDIO_InitAcquisitionSession.

samplesToRead ViInt32 Specifies	the	number	of	samples
to	fetch.

maxTimeMilliseconds ViInt32 Specifies	in	milliseconds	how	long
to	allow	the	function	to	complete
before	returning	a	timeout	error.	

A	value	of	0	causes	the	function	to
return	immediately	with	up	to	the
number	of	samples	specified	in
samplesToRead.	If	you	set
maxTimeMilliseconds	to	a	value
other	than	0,	and	timeout	occurs
before	all	the	samples	are
acquired,	you	receive	a	timeout
error.	If	you	specify	a	value	for
samplesToRead	that	is	greater
than	the	number	of	samples	in	the
device	memory,	NI-HSDIO	returns
the	available	samples	after
maxTimeMilliseconds.	A	value	of
-1	causes	the	function	to	never
time	out.

numberOfSamplesRead ViInt32 Returns	the	number	of	samples
that	were	successfully	fetched	and
transferred	into	data[].

data ViUInt8[] Returns	the	preallocated	array
where	samples	are	written.

Return	Value

niHSDIO_FetchWaveformDirectDMA
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_FetchWaveformDirectDMA	(ViSession	vi,
ViInt32	maxTimeMilliseconds,	ViInt32	samplesToRead,	ViUint32	bufferSize,
void	bufferAddress,	niHSDIO_wfmInfo	waveformInfo,	ViUInt32*
offsetToFirstSample;

Purpose
Transfers	acquired	waveform	data	from	device	memory	directly	to	PC
memory	allocated	by	a	Direct	DMA-compatible	device.	The	size	of	the
sample	that	is	transferred	is	determined	by	the	the	data	width	for	your
device.
If	the	number	of	samples	specified	in	samplesToRead	is	still	not
available	after	the	number	of	milliseconds	specified	in
maxTimeMilliseconds,	this	function	returns	no	data	with	a	timeout	error.
The	fetch	position	can	be	modified	by	using	niHSDIO_SetAttributeViInt32
and	the	NIHSDIO_ATTR_FETCH_RELATIVE_TO	or
NIHSDIO_ATTR_FETCH_OFFSET	attributes.	The	default	value	for
NIHSDIO_ATTR_FETCH_RELATIVE_TO	is
NIHSDIO_VAL_CURRENT_READ_POSITION.	The	default	value	for
NIHSDIO_ATTR_FETCH_OFFSET	is	0.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was
obtained	from
niHSDIO_InitAcquisitionSession

maxTimeMilliseconds ViInt32 Specifies	in	milliseconds	how
long	to	allow	the	function	to
complete	before	returning	a
timeout	error.	

A	value	of	0	causes	the
function	to	return	immediately
with	up	to	the	number	of
samples	specified	in
samplesToRead.	If	you	set
maxTimeMilliseconds	to	a
value	other	than	0,	and	timeout
occurs	before	all	the	samples
are	acquired,	you	receive	a
timeout	error.	If	you	specify	a
value	for	samplesToRead	that
is	greater	than	the	number	of
samples	in	the	device	memory,
NI-HSDIO	returns	the
available	samples	after
maxTimeMilliseconds.	A
value	of	-1	causes	the	function
to	never	time	out.

samplesToRead ViInt32 Specifies	the	number	of
samples	to	fetch.

bufferSize ViUInt32 Specifies	the	size	(in	bytes)	of
the	buffer	in	memory	at	which
to	transfer	acquired	data.

bufferAddress void Specifies	the	location	for	the
buffer	in	memory	at	which	to

transfer	acquired	data.
waveformInfo niHSDIO_wfmInfo Returns	the	absolute	and

relative	timestamp	for	the
operation,	the	dt,	and	the
actual	number	of	samples
read.

offsetToFirstSample ViUInt32* Returns	the	offset	of	the	first
sample	acquired	within	the
specified	buffer.	Data	is
transfered	from	device
memory	in	128	byte
increments,	so	the	first	sample
of	the	acquired	data	typically
occurs	at	some	offset	from	the
start	of	the	buffer	when	using	a
Reference	trigger.

Return	Value

niHSDIO_ReadMultiRecordU32
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ReadMultiRecordU32	(ViSession	vi,
ViInt32	samplesToRead,	ViInt32	maxTimeMilliseconds,	ViInt32	startingRecord,
ViInt32	recordsToRead,	ViUInt32[]	waveformData,	niHSDIO_wfmInfo
*	waveformInfo);

Purpose
Initiates	a	multirecord	acquisition	and	returns	the	acquired	waveform	as	a
two-dimensional	array	of	unsigned	32-bit	data.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was
obtained	from
niHSDIO_InitAcquisitionSession

samplesToRead ViInt32 Specifies	the	number	of
samples	to	fetch.

maxTimeMilliseconds ViInt32 Specifies	in	milliseconds	how
long	to	allow	the	function	to
complete	before	returning	a
timeout	error.	

A	value	of	-1	causes	the
function	to	never	time	out.

startingRecord ViInt32 Specifies	the	first	record	you
want	to	fetch.

recordsToRead ViInt32 Specifies	the	number	of
records	you	want	to	fetch.

waveformData ViUInt32[] Returns	the	array	of	waveform
data	that	contains	the	records
to	fetch.

waveformInfo niHSDIO_wfmInfo
*

Returns	information	about	the
records.	waveformInfo
includes	an	absolute
timestamp,	relative	timestamp,
the	number	of	samples
fetched,	and	the	dT	of	the
waveform.

Return	Value

niHSDIO_FetchMultiRecordU32
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_FetchMultiRecordU32	(ViSession	vi,
ViInt32	samplesToRead,	ViInt32	maxTimeMilliseconds,	ViInt32	startingRecord,
ViInt32	recordsToRead,	ViUInt32[]	waveformData,	niHSDIO_wfmInfo
*	waveformInfo);

Purpose
Fetches	the	data	as	a	two-dimensional	array	of	unsigned	32-bit	integers
and	returns	the	number	of	samples	read.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was
obtained	from
niHSDIO_InitAcquisitionSession

samplesToRead ViInt32 Specifies	the	number	of
samples	to	fetch.

maxTimeMilliseconds ViInt32 Specifies	in	milliseconds	how
long	to	allow	the	function	to
complete	before	returning	a
timeout	error.		

A	value	of	-1	causes	the
function	to	never	time	out.

startingRecord ViInt32 Specifies	the	the	first	record
you	want	to	fetch.

recordsToRead ViInt32 Specifies	the	number	of
records	you	want	to	fetch.

waveformData ViUInt32[] Returns	the	array	of	waveform
data	that	contains	the	records
to	fetch.

waveformInfo niHSDIO_wfmInfo
*

Returns	information	about	the
records.	waveformInfo
includes	an	absolute
timestamp,	relative	timestamp,
the	number	of	samples
fetched,	and	the	dT	of	the
waveform.

Return	Value

niHSDIO_ReadMultiRecordU16
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ReadMultiRecordU16	(ViSession	vi,
ViInt32	samplesToRead,	ViInt32	maxTimeMilliseconds,	ViInt32	startingRecord,
ViInt32	recordsToRead,	ViUInt16[]	waveformData,	niHSDIO_wfmInfo
*	waveformInfo);

Purpose
This	function	initiates	a	multirecord	acquisition,	and	returns	the	acquired
waveform	as	a	two-dimensional	array	of	unsigned	16-bit	data.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was
obtained	from
niHSDIO_InitAcquisitionSession

samplesToRead ViInt32 Number	of	samples	to	fetch.
maxTimeMilliseconds ViInt32 This	attribute	specifies	in

milliseconds	how	long	to	allow
the	function	to	complete	before
returning	a	timeout	error.	

A	value	of	-1	causes	the
function	to	never	time	out.

startingRecord ViInt32 The	first	record	you	want	to
fetch.

recordsToRead ViInt32 The	number	of	records	you
want	to	fetch.

waveformData ViUInt16[] The	array	of	waveform	data
that	contains	the	records	to
fetch.

waveformInfo niHSDIO_wfmInfo
*

Returns	information	about	the
records.	waveformInfo
includes	an	absolute
timestamp,	relative	timestamp,
the	number	of	samples
fetched,	and	the	dT	of	the
waveform.

Return	Value

niHSDIO_ReadMultiRecordU8
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ReadMultiRecordU8	(ViSession	vi,	ViInt32	samplesToRead,
ViInt32	maxTimeMilliseconds,	ViInt32	startingRecord,	ViInt32	recordsToRead,
ViUInt8[]	waveformData,	niHSDIO_wfmInfo	*	waveformInfo);

Purpose
Initiates	a	multirecord	acquisition	and	returns	the	acquired	waveform	as	a
two-dimensional	array	of	unsigned	8-bit	data.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was
obtained	from
niHSDIO_InitAcquisitionSession

samplesToRead ViInt32 Specifies	the	number	of
samples	to	fetch.

maxTimeMilliseconds ViInt32 Specifies	in	milliseconds	how
long	to	allow	the	function	to
complete	before	returning	a
timeout	error.	

A	value	of	-1	causes	the
function	to	never	time	out.

startingRecord ViInt32 Specifies	the	first	record	you
want	to	fetch.

recordsToRead ViInt32 Specifies	the	number	of
records	you	want	to	fetch.

waveformData ViUInt8[] Returns	the	array	of	waveform
data	that	contains	the	records
to	fetch.

waveformInfo niHSDIO_wfmInfo
*

Returns	information	about	the
records.	waveformInfo
includes	an	absolute
timestamp,	relative	timestamp,
the	number	of	samples
fetched,	and	the	dT	of	the
waveform.

Return	Value

niHSDIO_FetchMultiRecordU16
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_FetchMultiRecordU16	(ViSession	vi,
ViInt32	samplesToRead,	ViInt32	maxTimeMilliseconds,	ViInt32	startingRecord,
ViInt32	recordsToRead,	ViUInt16[]	waveformData,	niHSDIO_wfmInfo
*	waveformInfo);

Purpose
Fetches	the	data	as	a	two-dimensional	array	of	unsigned	16-bit	integers
and	returns	the	number	of	samples	read.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was
obtained	from
niHSDIO_InitAcquisitionSession

samplesToRead ViInt32 Specifies	the	Number	of
samples	to	fetch.

Default	Value:	1000
maxTimeMilliseconds ViInt32 Specifies	in	milliseconds	how

long	to	allow	the	function	to
complete	before	returning	a
timeout	error.

A	value	of	-1	causes	the
function	to	never	timeout.

Default	Value:	10000
startingRecord ViInt32 Specifies	the	first	record	you

want	to	fetch.
recordsToRead ViInt32 Specifies	the	number	of

records	you	want	to	fetch.
waveformData ViUInt16[] Returns	the	array	of	waveform

data	that	contains	the	records
to	fetch.

waveformInfo niHSDIO_wfmInfo
*

Returns	information	about	the
records.	waveformInfo
includes	an	absolute
timestamp,	relative	timestamp,
the	number	of	samples
fetched,	and	the	dT	of	the
waveform.

Return	Value

niHSDIO_FetchMultiRecordU8
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_FetchMultiRecordU8	(ViSession	vi,	ViInt32	samplesToRead,
ViInt32	maxTimeMilliseconds,	ViInt32	startingRecord,	ViInt32	recordsToRead,
ViUInt8[]	waveformData,	niHSDIO_wfmInfo	*	waveformInfo);

Purpose
Fetches	the	data	as	a	two-dimensional	array	of	unsigned	8-bit	integers
and	returns	the	number	of	samples	read.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was
obtained	from
niHSDIO_InitAcquisitionSession

samplesToRead ViInt32 Specifies	the	number	of
samples	to	fetch.

Default	Value:	1000
maxTimeMilliseconds ViInt32 Specifies	in	milliseconds	how

long	to	allow	the	function	to
complete	before	returning	a
timeout	error.

A	value	of	-1	causes	the
function	to	never	timeout.

Default	Value:	10000
startingRecord ViInt32 Specifies	the	first	record	you

want	to	fetch.
recordsToRead ViInt32 Specifies	the	number	of

records	you	want	to	fetch.
waveformData ViUInt8[] Returns	the	array	of	waveform

data	that	contains	the	records
to	fetch.

waveformInfo niHSDIO_wfmInfo
*

Returns	information	about	the
records.	waveformInfo
includes	an	absolute
timestamp,	relative	timestamp,
the	number	of	samples
fetched,	and	the	dT	of	the
waveform.

Return	Value

niHSDIO_HWC_FetchSampleErrors
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_HWC_FetchSampleErrors	(ViSession	vi,
ViInt32*	numSampleErrorsToRead,	ViInt32	maxTimeMilliseconds,	ViReal64[]
sampleNumber,	ViUInt32[]	errorBits,	ViInt32[]	errorRepeatCount,	ViUInt32*
reserved1,	ViUInt32*	reserved2);

Purpose
Returns	the	sample	error	information	from	a	hardware	comparison
operation.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was
obtained	from
niHSDIO_InitAcquisitionSession.

numSampleErrorsToRead ViInt32* Specifies	the	number	of	sample
errors	to	fetch.

maxTimeMilliseconds ViInt32 Specifies	in	milliseconds	how
long	to	allow	the	function	to
complete	before	returning	a
timeout	error.

A	value	of	0	causes	the	function
to	return	immediately	with	up	to
the	number	of	samples
specified	in	samplesToRead.	If
you	set	maxTimeMilliseconds
to	a	value	other	than	0,	and
timeout	occurs	before	all	the
samples	are	acquired,	you
receive	a	timeout	error.	If	you
specify	a	value	for
samplesToRead	that	is	greater
than	the	number	of	samples	in
the	device	memory,	NI-HSDIO
returns	the	available	samples
after	max	time	milliseconds.	A
value	of	–1	causes	the	function
to	never	timeout.

sampleNumber ViReal64[] Returns	the	number	of	samples
with	errors.

errorBits ViUInt32[] Returns	the	bit	numbers	that
were	in	error	for	each	sample
that	has	an	error.

errorRepeatCount ViInt32[] Returns	the	number	of	times
that	error	was	repeated.

reserved1 ViUInt32* Reserved.
reserved2 ViUInt32* Reserved.

Return	Value

niHSDIO_WriteNamedWaveformU32
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_WriteNamedWaveformU32	(ViSession	vi,
ViConstString	waveformName,	ViInt32	samplesToWrite,	ViUInt32[]	data);

Purpose
Transfers	waveform	data	from	PC	memory	to	onboard	memory.
Supported	devices	for	this	function	depend	on	the	data	width	for	your
device,	not	on	the	number	of	assigned	dynamic	channels.	This	function
may	be	used	when	the	data	width	is	4.
If	you	specify	a	waveformName	not	already	allocated	on	the	device,	the
appropriate	amount	of	onboard	memory	is	allocated	(if	available),	and	the
data	is	stored	in	that	new	location.
Data	is	always	written	to	memory	starting	at	the	current	write	position	of
the	waveform.	A	new	waveform	write	position	is	the	start	of	the	allocated
memory.	Calling	this	function	moves	the	next	write	position	to	the	end	of
the	data	just	written,	so	subsequent	calls	to	this	function	append	data	to
the	end	of	previously	written	data.	You	can	manually	change	the	write
position	by	calling	niHSDIO_SetNamedWaveformNextWritePosition.	If	you
try	to	write	past	the	end	of	the	allocated	space,	NI-HSDIO	returns	an
error.
Waveforms	are	stored	contiguously	in	onboard	memory.	You	cannot
resize	an	existing	named	waveform.	Instead,	delete	the	existing
waveform	using	niHSDIO_DeleteNamedWaveform	and	then	recreate	it	with
the	new	size	using	the	same	name.
This	function	calls	niHSDIO_CommitDynamic—	all	pending	attributes	are
committed	to	hardware.

When	you	explicitly	call	niHSDIO_AllocateNamedWaveform	and	write
waveforms	using	multiple	niHSDIO_WriteNamedWaveformU32	calls,	each
waveform	block	written	must	be	a	multiple	of	32	samples	for	the
NI	654x/655x	devices	or	a	multiple	of	64	samples	for	the	NI	656x	devices
(128	samples	if	the	NI	656x	is	in	DDR	mode).

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from
niHSDIO_InitGenerationSession.

waveformName ViConstString Specifies	a	string	representing	the
name	to	associate	with	the	allocated
waveform	memory.

Default	Value:	""	(empty	string)
samplesToWrite ViInt32 Specifies	the	number	of	samples	in

data	to	be	written	to	onboard	memory.

If	samples	to	write	is	less	than	the
size	of	data,	only	the	number	of
samples	indicated	in	samplesToWrite
are	written.

Default	Value:	1000
data ViUInt32[] Specifies	the	waveform	data.

If	you	want	to	use	Direct	DMA	to	write
your	waveform	from	onboard	memory,
pass	the	memory	address	(pointer
value)	of	the	region	so	that	you	write
within	the	direct	DMA	window.

Return	Value

niHSDIO_WriteNamedWaveformU16
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_WriteNamedWaveformU16	(ViSession	vi,
ViConstString	waveformName,	ViInt32	samplesToWrite,	ViUInt16[]	data);

Purpose
Transfers	waveform	data	from	PC	memory	to	onboard	memory.
Supported	devices	for	this	function	depend	on	the	data	width	for	your
device,	not	on	the	number	of	assigned	dynamic	channels.	This	function
may	be	used	when	the	data	width	is	2.
If	you	specify	a	waveformName	not	already	allocated	on	the	device,	the
appropriate	amount	of	onboard	memory	is	allocated	(if	available)	and	the
data	is	stored	in	that	new	location.
Data	is	always	written	to	memory	starting	at	the	current	write	position	of
the	waveform.	A	new	waveform's	write	position	is	the	start	of	the
allocated	memory.	Calling	this	function	moves	the	next	write	position	to
the	end	of	the	data	just	written.	Thus,	subsequent	calls	to	this	function
append	data	to	the	end	of	previously	written	data.	You	may	also	manually
change	the	write	position	by	calling
niHSDIO_SetNamedWaveformNextWritePosition.	If	you	try	to	write	past	the
end	of	the	allocated	space,	an	error	will	be	returned.
Waveforms	are	stored	contiguously	in	onboard	memory.	You	cannot
resize	an	existing	named	waveform.	Instead,	delete	the	existing
waveform	using	niHSDIO_DeleteNamedWaveform	and	then	re-create	it
with	the	new	size	using	the	same	name.
This	function	calls	niHSDIO_CommitDynamic—all	pending	attributes	are
committed	to	hardware.
When	you	explicitly	call	niHSDIO_AllocateNamedWaveform	and	write
waveforms	using	multiple	niHSDIO_WriteNamedWaveformU16	calls,	each
waveform	block	written	must	be	a	multiple	of	32	samples	for	the
NI	654x/655x	devices	or	a	multiple	of	64	samples	for	the	NI	656x	devices
(128	samples	if	the	NI	656x	is	in	DDR	mode).

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from
niHSDIO_InitGenerationSession.

waveformName ViConstString Specifies	a	string	representing	the
name	to	associate	with	the	allocated
waveform	memory.

samplesToWrite ViInt32 Specifies	the	number	of	samples	in
data	to	be	written	to	onboard	memory.

If	samples	to	write	is	less	than	the
size	of	data,	only	the	number	of
samples	indicated	in	samplesToWrite
are	written.

data ViUInt16[] Specifies	the	waveform	data.

If	you	want	to	use	Direct	DMA	to	write
your	waveform	from	onboard	memory,
pass	the	memory	address	(pointer
value)	of	the	region	so	that	you	write
within	the	direct	DMA	window.

Return	Value

niHSDIO_WriteNamedWaveformU8
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_WriteNamedWaveformU8	(ViSession	vi,
ViConstString	waveformName,	ViInt32	samplesToWrite,	ViUInt8[]	data);

Purpose
Transfers	waveform	data	from	PC	memory	to	onboard	memory.
Supported	devices	for	this	function	depend	on	the	data	width	for	your
device,	not	on	the	number	of	assigned	dynamic	channels.	This	function
may	be	used	when	the	data	width	is	1.
If	you	specify	a	waveformName	not	already	allocated	on	the	device,	the
appropriate	amount	of	onboard	memory	is	allocated	(if	available)	and	the
data	is	stored	in	that	new	location.
Data	is	always	written	to	memory	starting	at	the	current	write	position	of
the	waveform.	A	new	waveform's	write	position	is	the	start	of	the
allocated	memory.	Calling	this	function	moves	the	next	write	position	to
the	end	of	the	data	just	written.	Thus,	subsequent	calls	to	this	function
append	data	to	the	end	of	previously	written	data.	You	may	also	manually
change	the	write	position	by	calling
niHSDIO_SetNamedWaveformNextWritePosition.	If	you	try	to	write	past	the
end	of	the	allocated	space,	an	error	will	be	returned.
Waveforms	are	stored	contiguously	in	onboard	memory.	You	cannot
resize	an	existing	named	waveform.	Instead,	delete	the	existing
waveform	using	niHSDIO_DeleteNamedWaveform	and	then	recreate	it	with
the	new	size	using	the	same	name.
This	function	calls	niHSDIO_CommitDynamic	-	all	pending	attributes	are
committed	to	hardware.

When	you	explicitly	call	niHSDIO_AllocateNamedWaveform	and	write
waveforms	using	multiple	niHSDIO_WriteNamedWaveformU8	calls,	each
waveform	block	written	must	be	a	multiple	of	32	samples	for	the
NI	654x/655x	devices	or	a	multiple	of	64	samples	for	the	NI	656x	devices
(128	samples	if	the	NI	656x	is	in	DDR	mode).

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from
niHSDIO_InitGenerationSession.

waveformName ViConstString Specifies	a	string	representing	the
name	to	associate	with	the	allocated
waveform	memory.

samplesToWrite ViInt32 Specifies	the	number	of	samples	in
data	to	be	written	to	onboard	memory.

If	samples	to	write	is	less	than	the
size	of	data,	only	the	number	of
samples	indicated	in	samplesToWrite
are	written.

data ViUInt8[] Specifies	the	waveform	data.

If	you	want	to	use	Direct	DMA	to	write
your	waveform	from	onboard	memory,
pass	the	memory	address	(pointer
value)	of	the	region	so	that	you	write
within	the	direct	DMA	window.

Return	Value

niHSDIO_WriteNamedWaveformWDT
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_WriteNamedWaveformWDT	(ViSession	vi,
ViConstString	waveformName,	ViInt32	samplesToWrite,	ViInt32	dataLayout,
ViUInt8[]	data);

Purpose
Transfers	multistate	digital	waveforms	from	PC	memory	to	onboard
memory.	Each	element	of	data[]	uses	one	byte	per	channel	per	sample.
The	supported	values	are	defined	in	niHSDIO.h.
If	you	specify	a	waveformName	not	already	allocated	on	the	device,	the
appropriate	amount	of	onboard	memory	is	allocated	(if	available),	and	the
data	is	stored	in	that	new	location.
Data	is	always	written	to	memory	starting	at	the	current	write	position	of
the	waveform.	A	new	waveform's	write	position	is	the	start	of	the
allocated	memory.	Calling	this	function	moves	the	next	write	position	to
the	end	of	the	data	just	written.	Thus,	subsequent	calls	to	this	function
append	data	to	the	end	of	previously	written	data.	You	can	manually
change	the	write	position	by	calling
niHSDIO_SetNamedWaveformNextWritePosition.	If	you	try	to	write	past	the
end	of	the	allocated	space,	NI-HSDIO	returns	an	error.
Waveforms	are	stored	contiguously	in	onboard	memory.	You	cannot
resize	an	existing	named	waveform.	Instead,	delete	the	existing
waveform	using	niHSDIO_DeleteNamedWaveform	and	then	recreate	it	with
the	new	size	using	the	same	name.
This	function	calls	niHSDIO_CommitDynamic—	all	pending	attributes	are
committed	to	hardware.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from
niHSDIO_InitGenerationSession.

waveformName ViConstString Specifies	a	string	representing	the	name
to	associate	with	the	allocated	waveform
memory.

samplesToWrite ViInt32 Specifies	the	number	of	samples	in	data
to	be	written	to	onboard	memory.	This
number	is	not	equal	to	the	length	of	the
data[]	array,	since	its	size	is	the	number
of	samples	to	write	times	the	number	of
channels.

dataLayout ViInt32 Describes	the	layout	of	the	waveform
contained	in	data[].

Defined	Values

NIHSDIO_VAL_GROUP_BY_SAMPLE—
Specifies	that	consecutive	samples	in
data[]	are	such	that	the	array	contains	the
first	sample	from	every	signal	in	the
operation,	then	the	second	sample	from
every	signal,	up	to	the	last	sample	from
every	signal.	
NIHSDIO_VAL_GROUP_BY_CHANNEL—
Specifies	that	consecutive	samples	in
data[]	are	such	that	the	array	contains	all
the	samples	from	the	first	signal	in	the
operation,	then	all	the	samples	from	the
second	signal,	up	to	all	samples	from	the
last	signal.

data ViUInt8[] Specifies	the	digital	waveform	data.	Each
value	on	this	array	defines	the	state	of
one	channel	of	one	sample.	Supported

states	are	defined	in	niHSDIO.h

Return	Value

niHSDIO_WriteNamedWaveformFromFileHWS
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_WriteNamedWaveformFromFileHWS		(ViSession	vi,
ViConstString	waveformName,	ViConstString	filePath,
ViBoolean	useRateFromWaveform,	ViInt32*	waveformSize);

Purpose
Reads	and	transfers	data	from	a	digital	.hws	file	to	onboard	memory.
If	you	specify	a	waveformName	not	already	allocated	on	the	device,	the
appropriate	amount	of	onboard	memory	is	allocated	(if	available),	and	the
data	is	stored	in	that	new	location.
Data	is	always	written	to	memory	starting	at	the	current	write	position	of
the	waveform.	A	new	waveform's	write	position	is	the	start	of	the
allocated	memory.	Calling	this	function	moves	the	next	write	position	to
the	end	of	the	data	just	written.	Thus,	subsequent	calls	to	this	function
append	data	to	the	end	of	previously	written	data.	You	can	manually
change	the	write	position	by	calling
niHSDIO_SetNamedWaveformNextWritePosition.	If	you	try	to	write	past	the
end	of	the	allocated	space,	NI-HSDIO	returns	an	error.
Waveforms	are	stored	contiguously	in	onboard	memory.	You	cannot
resize	an	existing	named	waveform.	Instead,	delete	the	existing
waveform	using	niHSDIO_DeleteNamedWaveform	and	then	re-create	it
with	the	new	size	using	the	same	name.
This	function	calls	niHSDIO_CommitDynamic—	all	pending	attributes	are
committed	to	hardware.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was
obtained	from
niHSDIO_InitGenerationSession.

waveformName ViConstString Specifies	a	string	representing
the	name	to	associate	with	the
allocated	waveform	memory.

filePath ViConstString Specifies	the	path	and	file	name
of	the	digital	.hws	file	to	open.
The	.hws	extension	is	typically
used	for	.hws	files,	although
using	this	extension	is	optional.

useRateFromWaveform ViBoolean Controls	how	the	sample	rate	is
computed.

Setting	this	value	to	TRUE
computes	the	generation	rate
from	the	WDT	value.	If	the
sample	rate	has	been	configured
using
niHSDIO_ConfigureSampleClock
function,
useRateFromWaveform
overrides	the	sample	rate.

waveformSize ViInt32 Returns	the	number	of	samples
contained	in	the	waveform.

Return	Value

niHSDIO_ConfigureIdleState
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureIdleState	(ViSession	vi,
ViConstString	channelList,	ViConstString	idleState);

Purpose
Sets	the	Idle	state	for	a	dynamic	generation	operation.	The	Idle	state	may
be	active	in	a	variety	of	conditions:

The	generation	operation	completes	normally.
The	generation	operation	pauses	from	an	active	Pause	trigger.
The	generation	operation	terminates	due	to	an	underflow	error.

Valid	Syntax:
Both	of	these	examples	are	valid	and	do	the	same	thing.	The	order	of
channelList	determines	the	order	of	the	pattern	string.

niHSDIO_ConfigureIdleState(vi,	"19-0",	"0000	0XXX	XX11	111Z	ZZZZ");

niHSDIO_ConfigureIdleState(vi,	"0-19",	"ZZZZ	Z111	11XX	XXX0	0000");

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from
niHSDIO_InitGenerationSession.

channelList ViConstString Specifies	which	channels	will	have	their	idle
value	set	using	the	idleState	string.	The
order	of	channels	in	channelList
determines	the	order	of	the	idleState	string.

idleState ViConstString Describes	the	Idle	state	of	a	dynamic
generation	operation.	This	expression	is
composed	of	the	following	characters:

'X'	or	'x':	keeps	the	previous	value
'1':	sets	the	channel	to	logic	high
'0':	sets	the	channel	to	logic	low
'Z'	or	'z':	disables	the	channel	(sets	it
to	high-impedance)
Note		NI	656x	devices	do	not	support
the	high-impedance	(Z)	Idle	state.

The	first	character	in	the	expression
corresponds	to	the	first	channel	in
channelList.	The	number	of	characters	in
pattern	must	equal	the	number	of	channels
specified	in	channelList,	or	NI-HSDIO
returns	an	error.

The	default	state	of	a	channel	is	to	keep	the
previous	value.

Return	Value

niHSDIO_ConfigureIdleStateU32
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureIdleStateU32	(ViSession	vi,	ViUInt32	idleState);

Purpose
Sets	the	Idle	state	for	a	dynamic	generation	operation.	The	Idle	state	may
be	active	in	a	variety	of	conditions:

The	generation	operation	completes	normally.
The	generation	operation	pauses	from	an	active	Pause	trigger.
The	generation	operation	terminates	due	to	an	underflow	error.

Unlike	niHSDIO_ConfigureIdleState	which	uses	a	string,	this	function	uses
a	binary	format	to	only	represent	high	and	low.	If	you	require	more
choices	for	your	Idle	state,	use	the	niHSDIO_ConfigureIdleState	function.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi

was	obtained	from	niHSDIO_InitGenerationSession.
idleState ViInt32 Specifies	the	bit	mask	representing	the	Idle	state.

High	is	specified	with	a	1,	and	low	is	specified	with
a	0.
The	first	character	in	idleState	corresponds	to	the
first	channel	in	channelList.	The	number	of
characters	in	the	pattern	must	equal	the	number	of
channels	specified	in	channelList,	or	NI-HSDIO
returns	an	error.

Return	Value

niHSDIO_ConfigureInitialState
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureInitialState	(ViSession	vi,
ViConstString	channelList,	ViConstString	initialState);

Purpose
Sets	the	Initial	state	for	a	dynamic	generation	operation.	The	Initial	state
of	each	channel	is	driven	after	the	session	is	initiated	using
niHSDIO_Initiate.	Channels	remain	unchanged	until	the	first	waveform
sample	is	generated.
Valid	Syntax:
Both	of	these	examples	are	valid	and	do	the	same	thing.	The	order	of
channelList	determines	the	order	of	the	pattern	string.

niHSDIO_ConfigureInitialState	(vi,	"19-0",	"0000	0XXX	XX11	111Z
ZZZZ");
niHSDIO_ConfigureInitialState	(vi,	"0-19",	"ZZZZ	Z111	11XX	XXX0
0000");

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from
niHSDIO_InitGenerationSession.

channelList ViConstString Specifies	which	channels	have	their	initial
value	set	using	the	initialState	string.	The
order	of	channels	in	channelList
determines	the	order	of	the	initialState
string.

initialState ViConstString Describes	the	Initial	state	of	a	dynamic
generation	operation.	This	expression	is
composed	of	characters:

'X'	or	'x':	keeps	the	previous	value
'1':	sets	the	channel	to	logic	high
'0':	sets	the	channel	to	logic	low
'Z'	or	'z':	disables	the	channel	or	sets
it	to	high-impedance
Note		NI	656x	devices	do	not	support
the	high-impedance	(Z)	Initial	state.

The	first	character	in	the	expression
corresponds	to	the	first	channel	in
channelList.	The	number	of	characters	in
pattern	must	equal	the	number	of	channels
specified	in	channelList	or	an	error	is
returned.

The	default	state	of	a	channel	is	to	keep	the
previous	value.

Return	Value

niHSDIO_ConfigureInitialStateU32
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureInitialStateU32	(ViSession	vi,
ViUInt32	initialState);

Purpose
Sets	the	Initial	state	for	a	dynamic	generation	operation.	The	Initial	state
of	each	channel	is	driven	after	the	session	is	initiated	using
niHSDIO_Initiate.	Channels	remain	unchanged	until	the	first	waveform
sample	is	generated.
Unlike	niHSDIO_ConfigureInitialState	which	uses	a	string,	this	function
uses	a	binary	format	to	only	represent	high	and	low.	If	you	require	more
choices	for	your	Initial	state,	use	the	niHSDIO_ConfigureInitialState
function.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi

was	obtained	from
niHSDIO_InitGenerationSession.

initialState ViUInt32 Specifies	the	bit	mask	representing	the	Initial
state.	High	is	specified	with	a	1,	and	low	is
specified	with	a	0.
The	first	character	in	initialState	corresponds	to
the	first	channel	in	channelList.	The	number	of
characters	in	the	pattern	must	equal	the	number
of	channels	specified	in	channelList	or	NI-
HSDIO	returns	an	error.

Return	Value

niHSDIO_ConfigureGenerationRepeat
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureGenerationRepeat	(ViSession	vi,
ViInt32	repeatMode,	ViInt32	repeatCount);

Purpose
Specifies	the	number	of	times	to	generate	a	waveform	or	whether	to
generate	it	continuously.	This	function	is	only	valid	when	the
generationMode	parameter	of	the	niHSDIO_ConfigureGenerationMode
function	is	set	to	NIHSDIO_VAL_WAVEFORM.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.

vi	was	obtained	from
niHSDIO_InitGenerationSession.

repeatMode ViInt32 Specifies	the	repeat	mode	to	configure.

Defined	Values

NIHSDIO_VAL_FINITE	(16)—Calling	the
niHSDIO_Initiate	function	generates	the	named
waveform	a	finite	number	of	times.	The
number	of	times	is	specified	by	the
repeatCount	parameter.

NIHSDIO_VAL_CONTINUOUS	(17)—Calling
the	niHSDIO_Initiate	function	generates	the
named	waveform	continuously	(until	the
niHSDIO_Abort	function	is	called).
repeatCount	is	ignored.

Default	Value:	NIHSDIO_VAL_FINITE
repeatCount ViInt32 Specifies	the	number	of	times	to	generate	the

waveform.	This	parameter	is	ignored	if
repeatMode	is	NIHSDIO_VAL_CONTINUOUS.

Default	Value:	1

Return	Value

niHSDIO_ConfigureWaveformToGenerate
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureWaveformToGenerate	(ViSession	vi,
ViConstString	waveformName);

Purpose
Sets	the	waveform	to	be	generated	upon	a	call	to	the	niHSDIO_Initiate
function	when	NIHSDIO_ATTR_GENERATION_MODE	equals
NIHSDIO_VAL_WAVEFORM.	This	function	need	only	be	called	if	multiple
waveforms	are	present	in	onboard	memory	(refer	to
NIHSDIO_ATTR_WAVEFORM_TO_GENERATE	for	more	information).

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from
niHSDIO_InitGenerationSession.

waveformName ViConstString Specifies	which	waveform	to	generate
upon	calling	niHSDIO_Initiate.

Return	Value

niHSDIO_AllocateNamedWaveform
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_AllocateNamedWaveform	(ViSession	vi,
ViConstString	waveformName,	ViInt32	sizeInSamples);

Purpose
Reserves	waveform	space	in	onboard	memory	and	associates	a
waveform	name	with	it.	Individual	waveforms	are	stored	contiguously	in
onboard	memory.

Notes		The	niHSDIO_AllocateNamedWaveform	function	sets	aside
onboard	memory	space	and	associates	a	string	name	with	that
space.	The	name	given	to	the	waveform	is	the	same	name	used	in
the	write	named	waveform	functions,	as	well	as	the	name	used	in
scripts.
If	not	enough	space	is	available	to	accommodate	a	waveform	of
size	sizeInSamples,	an	error	is	returned	and	no	memory	space	is
created.
This	function	does	not	change	any	data	on	the	device	itself,	but
rather	adds	the	named	reference	in	software.	Use	the	write	named
waveform	functions	to	fill	the	onboard	memory	with	waveform	data
to	be	generated.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from
niHSDIO_InitGenerationSession.

waveformName ViConstString Specifies	the	string	representing	the
name	to	associate	with	the	allocated
waveform	memory.

Default	Value:	""
sizeInSamples ViInt32 Number	of	samples	to	allocate	for	the

named	waveform.
The	number	of	bits	in	the	allocated
samples	differs	depending	on	the
device	you	are	using.

Device Bits	Per	Sample
NI	654x 32
NI	655x 32
NI	656x 16	in	SDR	mode

8	in	DDR	mode

Default	Value:	10000

Return	Value

niHSDIO_SetNamedWaveformNextWritePosition
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_SetNamedWaveformNextWritePosition	(ViSession	vi,
ViConstString	waveformName,	ViInt32	position,	ViInt32	offset);

Purpose
Modifies	where	within	a	named	waveform	to	next	write	data.	Write	named
waveform	functions	always	begins	writing	at	the	current	write	position.
Existing	data	in	the	waveform	is	overwritten.
The	position	and	offset	parameters	are	used	together	to	determine	the
next	write	position.	position	describes	an	absolute
(NIHSDIO_VAL_START_OF_WAVEFORM)	or	relative
(NIHSDIO_VAL_CURRENT_READ_POSITION)	move.	offset	is	the
number	of	samples	to	shift	the	next	write	position.	You	must	always	set
the	write	position	at	a	position	that	is	a	multiple	of	32	samples	for	the
NI	654x/655x	devices	or	64	samples	for	the	NI	656x	devices	(128
samples	if	the	NI	656x	is	in	DDR	mode).
Examples	of	combinations	of	position	and	offset	Position:
NIHSDIO_VAL_START_OF_WAVEFORM	
Offset:	0	
Effect:	Write	location	becomes	the	start	of	waveform.

Position:	NIHSDIO_VAL_START_OF_WAVEFORM	
Offset:	5	
Effect:	Write	location	becomes	the	sixth	sample	in	waveform.

Position:	NIHSDIO_VAL_START_OF_WAVEFORM	
Offset:	-1	
Effect:	ERROR—The	device	would	try	to	place	the	write	position	before
start	of	waveform.

Position:	NIHSDIO_VAL_CURRENT_READ_POSITION	
Offset:	0	
Effect:	No	effect—leaves	next	write	position	unchanged.

Position:	NIHSDIO_VAL_CURRENT_POSITION	
Offset:	10	
Effect:	Shift	write	position	10	samples	ahead	from	current	write	location.
This	position	setting	is	only	valid	if	the	current	write	position	plus	this
offset	is	in	the	waveform.	

Position:	NIHSDIO_VAL_CURRENT_POSITION	

Offset:	-10	
Effect:	Shift	write	position	10	samples	back	from	current	location.	This
position	setting	is	only	valid	if	the	current	write	position	is	greater	than	10.

The	write	position	is	moved	to	the	end	of	the	most	recently	written	data
after	each	call	to	niHSDIO_WriteNamedWaveformU32.	Thus	you	do	not
need	to	explicitly	call	niHSDIO_SetNamedWaveformNextWritePosition
unless	you	want	to.

Attempting	to	set	the	write	position	past	the	end	of	the	allocated	space
results	in	an	error.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

waveformName ViConstString Specifies	a	string	representing	the	name
to	associate	with	the	allocated	waveform
memory.

Default	Value:	""
position ViInt32 Specifies	where	to	place	the	write

position	(in	conjunction	with	offset):

Defined	Values

NIHSDIO_VAL_START_OF_WAVEFORM
(44)—Offset	is	relative	to	the	beginning
of	the	waveform.

NIHSDIO_VAL_CURRENT_POSITION
(45)—Offset	is	relative	to	the	current
write	position	in	the	waveform.

Default	Value:
NIHSDIO_VAL_CURRENT_POSITION

offset ViInt32 Specifies	the	write	position	of	the	name
waveform	in	conjunction	with	the	mode
attribute.	offset	is	in	samples.

Default	Value:	0

Return	Value

niHSDIO_DeleteNamedWaveform
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_DeleteNamedWaveform	(ViSession	vi,
ViConstString	waveformName);

Purpose
Frees	a	named	waveform	space	in	onboard	memory.

Note		This	function	releases	onboard	memory	space	previously
allocated	by	either	the	niHSDIO_AllocateNamedWaveform	or	Write
Named	Waveform	functions.	Any	future	reference	to	the	deleted
waveform	results	in	an	error.	However,	previously	written	scripts
that	still	reference	the	deleted	waveform	do	not	generate	an	error
at	initiation.

An	error	is	generated	if	the	waveform	name	is	not	allocated	in
onboard	memory.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from
niHSDIO_InitGenerationSession.

waveformName ViConstString Specifies	the	name	of	the	waveform	to
delete.

Default	Value:	""

Return	Value

niHSDIO_ConfigureGenerationMode
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureGenerationMode	(ViSession	vi,
ViInt32	generationMode);

Purpose
Configures	whether	to	generate	the	waveform	specified	in
NIHSDIO_ATTR_WAVEFORM_TO_GENERATE	or	the	script	specified	in
NIHSDIO_ATTR_SCRIPT_TO_GENERATE	upon	calling	the
niHSDIO_Initiate	function.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.

vi	was	obtained	from
niHSDIO_InitGenerationSession.

generationMode ViInt32 Specifies	the	generation	mode	to	configure.

Defined	Values

NIHSDIO_VAL_WAVEFORM	(14)—Calling
niHSDIO_Initiate	generates	the	named
waveform	represented	by
NIHSDIO_ATTR_WAVEFORM_TO_GENERATE
NIHSDIO_VAL_SCRIPTED	(15)—Calling
niHSDIO_Initiate	generates	the	script
represented	by
NIHSDIO_ATTR_SCRIPT_TO_GENERATE.

Default	Value:	NIHSDIO_VAL_WAVEFORM

Return	Value

niHSDIO_WriteScript
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_WriteScript	(ViSession	vi,	ViConstString	script);

Purpose
Writes	a	string	containing	scripts	that	govern	the	generation	of
waveforms.	If	this	function	is	called	repeatedly,	previously	written	scripts
with	unique	names	remain	loaded.	Previously	written	scripts	with	identical
names	to	those	being	written	are	replaced.
If	multiple	scripts	are	loaded	when	the	niHSDIO_Initiate	function	is	called,
then	one	of	the	scripts	must	be	designated	as	the	script	to	generate	by
setting	NIHSDIO_ATTR_SCRIPT_TO_GENERATE	to	the	desired	script
name.	If	only	one	script	is	in	memory,	then	you	do	not	need	to	designate
the	script	to	generate.	All	waveforms	referenced	in	the	scripts	must	be
written	before	the	script	is	written.
An	error	is	returned	if	the	script	uses	incorrect	syntax.	This	function	calls
the	niHSDIO_CommitDynamic	function.	All	pending	attributes	are
committed	to	hardware.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi

was	obtained	from	niHSDIO_InitGenerationSession.
script ViConstString Specifies	a	string	containing	a	syntactically	correct

script.

Return	Value

niHSDIO_ConfigureScriptToGenerate
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureScriptToGenerate	(ViSession	vi,
ViConstString	scriptName);

Purpose
Sets	the	script	to	be	generated	upon	a	call	to	the	niHSDIO_Initiate
function	when	in	NIHSDIO_ATTR_GENERATION_MODE	equals
NIHSDIO_VAL_SCRIPTED.	If	there	are	multiple	scripts	loaded	when
niHSDIO_Initiate	is	called,	then	one	script	must	be	designated	as	the
script	to	generate	or	you	receive	an	error.	This	function	need	only	be
called	if	multiple	scripts	are	present	in	onboard	memory	(refer	to
NIHSDIO_ATTR_SCRIPT_TO_GENERATE	for	more	information).

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from
niHSDIO_InitGenerationSession.

scriptName ViConstString Specifies	which	script	to	generate	upon
calling	niHSDIO_Initiate.

Return	Value

niHSDIO_ConfigureSampleClock
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureSampleClock	(ViSession	vi,
ViConstString	clockSource,	ViReal64	clockRate);

Purpose
Configures	the	Sample	clock.	This	function	allows	you	to	specify	the
clock	source	and	rate	for	the	Sample	clock.
If	clockSource	is	set	to	NIHSDIO_VAL_ON_BOARD_CLOCK_STR,	NI-
HSDIO	coerces	the	rate	to	a	value	that	is	supported	by	the	hardware.
Use	the	niHSDIO_GetAttributeViReal64	function	to	get	the	value	for
NIHSDIO_ATTR_SAMPLE_CLOCK_RATE	to	see	to	what	value	NI-HSDIO
has	coerced	the	Sample	clock	rate.
clockSource	can	be	set	to	NIHSDIO_VAL_STROBE_STR	for	acquisition
only.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

clockSource ViConstString Specifies	the	Sample	clock	source.	Refer	to
NIHSDIO_ATTR_SAMPLE_CLOCK_SOURCE
for	details.

Defined	Values

NIHSDIO_VAL_ON_BOARD_CLOCK_STR
("OnBoardClock")—The	device	uses	the	On
Board	Clock	as	the	Sample	clock	source.
NIHSDIO_VAL_STROBE_STR	("STROBE")—
The	device	uses	the	signal	present	on	the
STROBE	channel	as	the	Sample	clock
source.	This	choice	is	only	valid	for
acquisition	operations.
NIHSDIO_VAL_CLK_IN_STR	("ClkIn")—The
device	uses	the	signal	present	on	the	front
panel	CLK	IN	SMB	jack	connector	as	the
Sample	clock	source.
NIHSDIO_VAL_PXI_STAR_STR
("PXI_STAR")—The	device	uses	the	signal
present	on	the	PXI_STAR	line	as	the
Sample	clock	source.	This	choice	is	valid	for
devices	in	slots	that	support	PXI_STAR.

Default	Value:
NIHSDIO_VAL_ON_BOARD_CLOCK_STR

clockRate ViReal64 Specifies	the	Sample	clock	rate,	expressed
in	Hz.	You	must	set	this	property	even	when
you	supply	an	external	clock	because	NI-
HSDIO	uses	this	property	for	a	number	of
reasons,	including	optimal	error	checking

and	certain	pulse	width	selections.

Default	Value:	50000000

Return	Value

niHSDIO_ConfigureDataPosition
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureDataPosition	(ViSession	vi,
ViConstString	channelList,	ViInt32	position);

Purpose
Configures	channels	to	be	clocked	in	various	ways	by	the	Sample	clock
edges.	You	have	three	options	for	data	position:	rising	edge,	falling	edge,
or	delayed.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	

niHSDIO_InitAcquisitionSession	or	niHSDIO_InitGenerationSession
channelList ViConstString Identifies	channels	to	apply	settings.	Use	""	or	

channels.
position ViInt32 Specifies	which	edge	of	the	Sample	clock	signal	times	the	operation.	You	can

also	configure	the	device	to	generate	data	at	a	configurable	delay	past	each
rising	edge	of	the	Sample	clock.

Defined	Values

NIHSDIO_VAL_SAMPLE_CLOCK_RISING_EDGE
or	generates	data	on	the	rising	edge	of	the	Sample	clock.
NIHSDIO_VAL_SAMPLE_CLOCK_FALLING_EDGE
samples	or	generates	data	on	the	falling	edge	of	the	Sample	clock.
NIHSDIO_VAL_DELAY_FROM_SAMPLE_CLOCK_RISING_EDGE
device	samples	or	generates	data	with	delay	from	rising	edge	of	the	Sample
clock.	Specify	the	delay	using	NIHSDIO_ATTR_DATA_POSITION_DELAY
the	niHSDIO_ConfigureDataPositionDelay	function.

Notes		NIHSDIO_VAL_DELAY_FROM_SAMPLE_CLOCK_RISING_EDGE
has	more	jitter	than	the	rising	or	falling	edge	values.
Certain	devices	have	sample	clock	frequency	limitations	when	a	custom
delay	is	used.	Refer	to	the	device	documentation	for	details.
To	configure	a	delay	on	NI	656x	devices,	you	must	delay	all	channels	on
the	device.	NI-HSDIO	returns	an	error	if	you	apply	a	delay	to	only	a
partial	channel	list.

Default	Value:	NIHSDIO_VAL_SAMPLE_CLOCK_RISING_EDGE

Return	Value

niHSDIO_ConfigureDataPositionDelay
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureDataPositionDelay	(ViSession	vi,
ViConstString	channelList,	ViReal64	delay);

Purpose
Sets	up	the	data	delay	with	respect	to	the	Sample	clock.	To	configure	the
data	delay,	select
NIHSDIO_VAL_DELAY_FROM_SAMPLE_CLOCK_RISING_EDGE	as	the
value	for	the	position	parameter	of	the	niHSDIO_ConfigureDataPosition
function.

Note		To	configure	a	delay	on	NI	656x	devices,	you	must	delay	all
channels	on	the	device.	NI-HSDIO	returns	an	error	if	you	apply	a
delay	to	only	a	partial	channel	list.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

channelList ViConstString Identifies	channels	to	apply	settings.	Use	""
or	VI_NULL	to	specify	all	channels.

Default	Value:	""
delay ViReal64 Specifies	the	delay	after	the	Sample	clock

rising	edge	when	the	device	generates	or
acquires	a	new	data	sample.	Data	delay	is
expressed	as	a	fraction	of	the	clock	period,
that	is,	a	fraction	of
1/NIHSDIO_ATTR_SAMPLE_CLOCK_RATE.
All	the	channels	in	the	session	that	use
delayed	Sample	clock	to	position	data	must
have	the	same	delay	value.

Default	Value:	0.00

Return	Value

niHSDIO_ConfigureRefClock
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureRefClock	(ViSession	vi,
ViConstString	clockSource,	ViReal64	clockRate);

Purpose
Configures	the	Reference	clock.	Use	this	function	when	you	are	using	the
On	Board	Clock	as	a	Sample	clock,	and	you	want	the	Sample	clock	to	be
phase-locked	to	a	reference	signal.	Phase-locking	the	Sample	clock	to	a
Reference	clock	prevents	the	Sample	clock	from	"drifting"	relative	to	the
Reference	clock.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

clockSource ViConstString Specifies	the	PLL	Reference	clock	source.
Refer	to
NIHSDIO_ATTR_REF_CLOCK_SOURCE
for	details.

Defined	Values

NIHSDIO_VAL_NONE_STR	("None")—The
device	does	not	use	a	Reference	clock.
NIHSDIO_VAL_CLK_IN_STR	("ClkIn")—
The	device	uses	the	signal	present	on	the
front	panel	CLK	IN	SMB	jack	connector	as
the	Reference	clock	source.
NIHSDIO_VAL_PXI_CLK10_STR
("PXI_CLK10")—The	device	uses	the
10	MHz	PXI	backplane	clock	as	the
Reference	clock	source.	This	source	is
only	available	for	PXI	devices.
NIHSDIO_VAL_RTSI7_STR	("RTSI7")—The
device	uses	the	signal	on	RTSI	7	as	the
Reference	clock	source.	This	source	is
only	available	for	PCI	devices.

Default	Value:	NIHSDIO_VAL_NONE_STR
clockRate ViReal64 Specifies	the	Reference	clock	rate,

expressed	in	Hz.	Refer	to
NIHSDIO_ATTR_REF_CLOCK_RATE	for
details.

Default	Value:	10000000

Return	Value

niHSDIO_AdjustSampleClockRelativeDelay
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_AdjustSampleClockRelativeDelay	(ViSession	vi,
ViReal64	adjustmentTime);

Purpose
Delays	the	Sample	clock	relative	to	the	Reference	clock.	Use	this
function	to	align	the	Sample	clock	of	your	device	to	the	Sample	clock	of
another	device	in	your	system.
Only	call	this	function	after	your	session	is	committed.	The	effect	of	this
function	is	immediate.
This	function	generates	an	error	if
NIHSDIO_ATTR_REF_CLOCK_SOURCE	is	set	to
NIHSDIO_VAL_NONE_STR.
This	function	can	only	align	the	device	Sample	clock	to	another	Sample
clock	if	the	other	device	is	using	the	same	Reference	clock	source.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the	function
used	to	initialize	the	session.

adjustmentTime ViReal64 Specifies	the	time	in	seconds	to	delay	the
Sample	clock.	Values	range	between	0	and
the	Sample	clock	period
(1/NIHSDIO_ATTR_SAMPLE_CLOCK_RATE

Return	Value

niHSDIO_ConfigureDigitalEdgeStartTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureDigitalEdgeStartTrigger	(ViSession	vi,
ViConstString	source,	ViInt32	edge);

Purpose
Configures	the	Start	trigger	for	edge	triggering.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	the	niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

source ViConstString You	may	specify	any	valid	source	terminal	for	this	trigger.
Trigger	voltages	and	positions	are	only	relevant	if	the	source
of	the	trigger	is	from	the	front	panel	connectors.

Refer	to
NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_SOURCE
for	possible	values.

edge ViInt32 Specifies	the	edge	to	detect.

Defined	Values

NIHSDIO_VAL_RISING_EDGE	(12)—Rising	edge	trigger.
NIHSDIO_VAL_FALLING_EDGE	(13)—Falling	edge	trigger.

Default	Value:	NIHSDIO_VAL_RISING_EDGE

Return	Value

niHSDIO_ConfigurePatternMatchStartTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigurePatternMatchStartTrigger	(ViSession	vi,
ViConstString	channelList,	ViConstString	pattern,	ViInt32	triggerWhen);

Purpose
Configures	the	Start	trigger	for	pattern-match	triggering.	This	function	is
only	valid	for	acquisition	operations.
Valid	Syntax:
Both	of	the	following	examples	are	valid	and	do	the	same	thing.	The
order	of	channelList	determines	the	order	of	the	pattern	string.

niHSDIO_ConfigurePatternMatchStartTrigger	(vi,	"19-0",	"0000	0XXX
XX11	1111	1111");
niHSDIO_ConfigurePatternMatchStartTrigger	(vi,	"0-19",	"1111	1111
11XX	XXX0	0000");
Note		The	logic	levels	seen	by	pattern	matching	are	affected	by
data	interpretation.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.

vi	was	obtained	from
niHSDIO_InitAcquisitionSession.

channelList ViConstString This	string	specifies	which	channels	will	be
configured	for	pattern	matching	using	the
pattern	string.	The	order	of	channels	in	the	list
determines	the	order	of	the	pattern	string.

pattern ViConstString This	string	expression	describes	the	pattern	to
be	matched.	This	expression	is	composed	of
the	following	characters:

X	or	x:	Ignore	the	channel
1:	Match	on	a	logic	1
0:	Match	on	a	logic	0
R	or	r:	Match	on	a	rising	edge
F	or	f:	Match	on	a	falling	edge
E	or	e:	Match	on	either	edge

The	first	character	in	the	expression
corresponds	to	the	first	channel	in
channelList.	The	number	of	characters	in
pattern	must	correspond	to	the	number	of
channels	specified	in	channelList.

triggerWhen ViInt32 Specifies	the	when	the	trigger	asserts.

Defined	Values

NIHSDIO_VAL_PATTERN_MATCHES	(36)—
The	trigger	asserts	when	the	pattern	matches.
NIHSDIO_VAL_PATTERN_DOES_NOT_MATCH
(37)—The	trigger	asserts	when	the	pattern
does	not	match.

Default	Value:

NIHSDIO_VAL_PATTERN_MATCHES

Return	Value

niHSDIO_ConfigurePatternMatchStartTriggerU32
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigurePatternMatchStartTriggerU32	(ViSession	vi,
ViConstString	channelList,	ViUInt32	pattern,	ViInt32	triggerWhen);

Purpose
Configures	the	Start	trigger	for	pattern-match	triggering.
Unlike	niHSDIO_ConfigurePatternMatchStartTrigger	which	uses	a	string,
this	function	uses	a	binary	format	to	only	represent	high	and	low.	If	you
require	more	choices	for	your	pattern,	use	the
niHSDIO_ConfigurePatternMatchStartTrigger	function.
This	function	is	only	valid	for	acquisition	operations.

Note		The	logic	levels	seen	by	pattern	matching	are	affected	by
data	interpretation.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.

vi	was	obtained	from
niHSDIO_InitAcquisitionSession.

channelList ViConstString This	string	specifies	which	channels	will	be
configured	for	pattern	matching	using	the
pattern	string.	The	order	of	channels	in	the	list
determines	the	order	of	the	pattern	string.

pattern ViUInt32 Specifies	the	binary	pattern	that	activates	the
pattern	match	trigger	under	the	conditions
specified	in	triggerWhen.

Bits	on	channels	not	specified	in	channelList
are	ignored.

triggerWhen ViInt32 Specifies	the	when	the	trigger	asserts.

Defined	Values

NIHSDIO_VAL_PATTERN_MATCHES	(36)—
The	trigger	asserts	when	the	pattern	matches.
NIHSDIO_VAL_PATTERN_DOES_NOT_MATCH
(37)—The	trigger	asserts	when	the	pattern
does	not	match.

Default	Value:
NIHSDIO_VAL_PATTERN_MATCHES

Return	Value

niHSDIO_ConfigureSoftwareStartTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureSoftwareStartTrigger	(ViSession	vi);

Purpose
Configures	the	Start	trigger	for	software	triggering.

Refer	to	niHSDIO_SendSoftwareEdgeTrigger	for	more	information	about
using	the	software	Start	trigger.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	the	niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

Return	Value

niHSDIO_DisableStartTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_DisableStartTrigger	(ViSession	vi);

Purpose
Configures	the	device	to	not	wait	for	a	Start	trigger	after	the
niHSDIO_Initiate	function	is	called.	Calling	this	function	is	only	necessary
if	you	have	configured	a	Start	trigger	and	now	want	to	disable	it.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	the	niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

Return	Value

niHSDIO_ConfigureDigitalEdgeRefTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureDigitalEdgeRefTrigger	(ViSession	vi,
ViConstString	source,	ViInt32	edge,	ViInt32	pretriggerSamples);

Purpose
Configures	the	Reference	trigger	for	edge	triggering	in	an	acquisition.	If
the	Reference	trigger	asserts	before	all	the	pretrigger	samples	are
acquired,	then	it	is	ignored.	This	function	is	only	valid	for	acquisition
operations.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	

obtained	from	niHSDIO_InitAcquisitionSession
source ViConstString You	may	specify	any	valid	source	terminal	for	this	trigger.

Trigger	voltages	and	positions	are	only	relevant	if	the
source	of	the	trigger	is	from	the	front	panel	connectors.

Refer	to
NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_SOURCE
for	possible	values.

edge ViInt32 Specifies	the	edge	to	detect.

Defined	Values

NIHSDIO_VAL_RISING_EDGE	(12)—Rising	edge	trigger.
NIHSDIO_VAL_FALLING_EDGE	(13)—Falling	edge	trigger.

Default	Value:	NIHSDIO_VAL_RISING_EDGE
pretriggerSamples ViInt32 Specifies	the	number	of	necessary	pretrigger	samples

before	the	Reference	trigger	is	acknowledged.

Return	Value

niHSDIO_ConfigurePatternMatchRefTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigurePatternMatchRefTrigger	(ViSession	vi,
ViConstString	channelList,	ViConstString	pattern,	ViInt32	triggerWhen,
ViInt32	pretriggerSamples);

Purpose
Configures	the	Reference	trigger	for	pattern-match	triggering.	If	the
Reference	trigger	asserts	before	all	the	pretrigger	samples	are	acquired,
then	it	is	ignored.	This	function	is	only	valid	for	acquisition	sessions.
Valid	Syntax:
Both	of	the	following	examples	are	valid	and	do	the	same	thing.	The
order	of	channelList	determines	the	order	of	the	pattern	string.

niHSDIO_ConfigurePatternMatchAdvanceTrigger	(vi,	"19-0",	"0000
0XXX	XX11	1111	1111");
niHSDIO_ConfigurePatternMatchAdvanceTrigger	(vi,	"0-19",	"1111
1111	11XX	XXX0	0000");
Note		The	logic	levels	seen	by	pattern	matching	are	affected	by
data	interpretation.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.

vi	was	obtained	from
niHSDIO_InitAcquisitionSession.

channelList ViConstString This	string	specifies	which	channels	are
configured	for	pattern	matching	using	the
pattern	string.	The	order	of	channels	in	the	list
determines	the	order	of	the	pattern	string.

pattern ViConstString This	string	expression	describes	the	pattern	to
be	matched.	This	expression	is	composed	of
the	following	characters:

X	or	x:	Ignore	the	channel
1:	Match	on	a	logic	1
0:	Match	on	a	logic	0
R	or	r:	Match	on	a	rising	edge
F	or	f:	Match	on	a	falling	edge
E	or	e:	Match	on	either	edge

The	first	character	in	the	expression
corresponds	to	the	first	channel	in
channelList.	The	number	of	characters	in
pattern	must	correspond	to	the	number	of
channels	specified	in	channelList,	or	an	error
is	returned.

triggerWhen ViInt32 Specifies	when	the	trigger	asserts.

Defined	Values

NIHSDIO_VAL_PATTERN_MATCHES	(36)—
The	trigger	asserts	when	the	pattern	matches.
NIHSDIO_VAL_PATTERN_DOES_NOT_MATCH
(37)—The	trigger	asserts	when	the	pattern
does	not	match.

Default	Value:
NIHSDIO_VAL_PATTERN_MATCHES

pretriggerSamples ViInt32 Specifies	the	number	of	necessary	pretrigger
samples	before	the	Reference	trigger	is
acknowledged.

Return	Value

niHSDIO_ConfigurePatternMatchRefTriggerU32
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigurePatternMatchRefTriggerU32	(ViSession	vi,
ViConstString	channelList,	ViUInt32	pattern,	ViInt32	triggerWhen,
ViInt32	pretriggerSamples);

Purpose
Configures	the	Reference	trigger	for	pattern-match	triggering.	If	the
Reference	trigger	asserts	before	all	the	pretrigger	samples	are	acquired,
then	it	is	ignored.
Unlike	niHSDIO_ConfigurePatternMatchRefTrigger	which	uses	a	string,	this
function	uses	a	binary	format	to	only	represent	high	and	low.	If	you
require	more	choices	for	your	pattern,	use	the
niHSDIO_ConfigurePatternMatchRefTrigger	function.
This	function	is	only	valid	for	acquisition	sessions.

Note		The	logic	levels	seen	by	pattern	matching	are	affected	by
data	interpretation.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.

vi	was	obtained	from
niHSDIO_InitAcquisitionSession.

channelList ViConstString This	string	specifies	which	channels	are
configured	for	pattern	matching	using	the
pattern	string.	The	order	of	channels	in	the	list
determines	the	order	of	the	pattern	string.

pattern ViUInt32 Specifies	the	binary	pattern	that	activates	the
pattern	match	trigger	under	the	conditions
specified	in	triggerWhen.

Bits	on	channels	not	specified	in	channelList
are	ignored.

triggerWhen ViInt32 Specifies	when	the	trigger	asserts.

Defined	Values

NIHSDIO_VAL_PATTERN_MATCHES	(36)—
The	trigger	asserts	when	the	pattern	matches.
NIHSDIO_VAL_PATTERN_DOES_NOT_MATCH
(37)—The	trigger	asserts	when	the	pattern
does	not	match.

Default	Value:
NIHSDIO_VAL_PATTERN_MATCHES

pretriggerSamples ViInt32 Specifies	the	number	of	necessary	pretrigger
samples	before	the	Reference	trigger	is
acknowledged.

Return	Value

niHSDIO_ConfigureSoftwareRefTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureSoftwareRefTrigger	(ViSession	vi,
ViInt32	pretriggerSamples);

Purpose
Configures	the	Reference	trigger	for	software	triggering.	If	the	Reference
trigger	asserts	before	all	the	pretrigger	samples	are	acquired,	then	it	is
ignored.	This	function	is	valid	only	for	acquisition	sessions.
Refer	to	niHSDIO_SendSoftwareEdgeTrigger	for	more	information	about	the
software	Reference	trigger.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from
niHSDIO_InitAcquisitionSession.

pretriggerSamples ViInt32 Specifies	the	number	of	necessary
pretrigger	samples	before	the
Reference	trigger	is	acknowledged.

Default	Value:	500

Return	Value

niHSDIO_DisableRefTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_DisableRefTrigger	(ViSession	vi);

Purpose
Configures	the	acquisition	operation	to	have	no	Reference	trigger.	Calling
this	function	is	only	necessary	if	you	have	configured	a	Reference	trigger
and	now	want	to	disable	it.	This	function	is	valid	only	for	acquisition
sessions.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	niHSDIO_InitAcquisitionSession.

Return	Value

niHSDIO_ConfigureDigitalEdgeAdvanceTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureDigitalEdgeAdvanceTrigger	(ViSession	vi,
ViConstString	source,	ViInt32	edge);

Purpose
Configures	the	Advance	trigger	for	edge	triggering.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was	obtained

from	the	niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

source ViConstString You	may	specify	any	valid	source	terminal	for	this	trigger.	Trigger
voltages	and	positions	are	only	relevant	if	the	source	of	the	trigger
is	from	the	front	panel	connectors.

Refer	to
NIHSDIO_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_SOURCE
for	possible	values.

edge ViInt32 Specifies	the	edge	to	detect.

Defined	Values

NIHSDIO_VAL_RISING_EDGE	(12)—Rising	edge	trigger.
NIHSDIO_VAL_FALLING_EDGE	(13)—Falling	edge	trigger.

Default	Value:	NIHSDIO_VAL_RISING_EDGE

Return	Value

niHSDIO_ConfigurePatternMatchAdvanceTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigurePatternMatchAdvanceTrigger	(ViSession	vi,
ViConstString	channelList,	ViConstString	pattern,	ViInt32	triggerWhen);

Purpose
Configures	the	Advance	trigger	for	pattern-match	triggering.	This	function
is	only	valid	for	acquisition	operations.
Valid	Syntax:
Both	of	the	following	examples	are	valid	and	do	the	same	thing.	The
order	of	channelList	determines	the	order	of	the	pattern	string.

niHSDIO_ConfigurePatternMatchAdvanceTrigger	(vi,	"19-0",	"0000
0XXX	XX11	1111	1111");
niHSDIO_ConfigurePatternMatchAdvanceTrigger	(vi,	"0-19",	"1111
1111	11XX	XXX0	0000");
Note		The	logic	levels	seen	by	pattern	matching	are	affected	by
data	interpretation.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.

vi	was	obtained	from
niHSDIO_InitAcquisitionSession.

channelList ViConstString This	string	specifies	which	channels	will	be
configured	for	pattern	matching	using	the
pattern	string.	The	order	of	channels	in	the	list
determines	the	order	of	the	pattern	string.

pattern ViConstString This	string	expression	describes	the	pattern	to
be	matched.	This	expression	is	composed	of
the	following	characters:

X	or	x:	Ignore	the	channel
1:	Match	on	a	logic	1
0:	Match	on	a	logic	0
R	or	r:	Match	on	a	rising	edge
F	or	f:	Match	on	a	falling	edge
E	or	e:	Match	on	either	edge

The	first	character	in	the	expression
corresponds	to	the	first	channel	in
channelList.	The	number	of	characters	in
pattern	must	correspond	to	the	number	of
channels	specified	in	channelList.

triggerWhen ViInt32 Specifies	the	when	the	trigger	asserts.

Defined	Values

NIHSDIO_VAL_PATTERN_MATCHES	(36)—
The	trigger	asserts	when	the	pattern	matches.
NIHSDIO_VAL_PATTERN_DOES_NOT_MATCH
(37)—The	trigger	asserts	when	the	pattern
does	not	match.

Default	Value:

NIHSDIO_VAL_PATTERN_MATCHES

Return	Value

niHSDIO_ConfigurePatternMatchAdvanceTriggerU32
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigurePatternMatchAdvanceTriggerU32	(ViSession	vi,
ViConstString	channelList,	ViUInt32	pattern,	ViInt32	triggerWhen);

Purpose
Configures	the	Advance	trigger	for	pattern-match	triggering.
Unlike	niHSDIO_ConfigurePatternMatchAdvanceTrigger	which	uses	a	string,
this	function	uses	a	binary	format	to	only	represent	high	and	low.	If	you
require	more	choices	for	your	pattern,	use	the
niHSDIO_ConfigurePatternMatchAdvanceTrigger	function.
This	function	is	only	valid	for	acquisition	operations.

Note		The	logic	levels	seen	by	pattern	matching	are	affected	by
data	interpretation.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.

vi	was	obtained	from
niHSDIO_InitAcquisitionSession.

channelList ViConstString This	string	specifies	which	channels	will	be
configured	for	pattern	matching	using	the
pattern	string.	The	order	of	channels	in	the	list
determines	the	order	of	the	pattern	string.

pattern ViUInt32 Specifies	the	binary	pattern	that	activates	the
pattern	match	trigger	under	the	conditions
specified	in	triggerWhen.

Bits	on	channels	not	specified	in	channelList
are	ignored.

triggerWhen ViInt32 Specifies	the	when	the	trigger	asserts.

Defined	Values

NIHSDIO_VAL_PATTERN_MATCHES	(36)—
The	trigger	asserts	when	the	pattern	matches.
NIHSDIO_VAL_PATTERN_DOES_NOT_MATCH
(37)—The	trigger	asserts	when	the	pattern
does	not	match.

Default	Value:
NIHSDIO_VAL_PATTERN_MATCHES

Return	Value

niHSDIO_ConfigureSoftwareAdvanceTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureSoftwareAdvanceTrigger	(ViSession	vi);

Purpose
Configures	the	Advance	trigger	for	software	triggering.
Refer	to	niHSDIO_SendSoftwareEdgeTrigger	for	more	information	about
using	the	software	Advance	trigger.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	the	niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

Return	Value

niHSDIO_DisableAdvanceTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_DisableAdvanceTrigger	(ViSession	vi);

Purpose
Configures	the	device	to	not	wait	for	a	Advance	trigger	after	the
niHSDIO_Initiate	function	is	called.	Calling	this	function	is	only	necessary
if	you	have	configured	a	Advance	trigger	and	now	want	to	disable	it.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	the	niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

Return	Value

niHSDIO_ConfigureDigitalLevelPauseTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureDigitalLevelPauseTrigger	(ViSession	vi,
ViConstString	source,	ViInt32	triggerWhen);

Purpose
Configures	the	Pause	trigger	for	level	triggering.	The	operation	is	paused
when	the	trigger	is	active.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	

from	the	niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

source ViConstString You	may	specify	any	valid	source	terminal	for	this	trigger.
Trigger	voltages	and	positions	are	only	relevant	if	the	source	of
the	trigger	is	from	the	front	panel	connectors.

Refer	to
NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_SOURCE
for	possible	values.

triggerWhen ViInt32 Specifies	the	active	level	for	the	desired	trigger.

Defined	Values

NIHSDIO_VAL_HIGH	(34)—Trigger	is	active	while	its	source	is
high	level.
NIHSDIO_VAL_LOW	(35)—Trigger	is	active	while	its	source	is
low	level.

Default	Value:	NIHSDIO_VAL_HIGH

Return	Value

niHSDIO_ConfigurePatternMatchPauseTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigurePatternMatchPauseTrigger	(ViSession	vi,
ViConstString	channelList,	ViConstString	pattern,	ViInt32	triggerWhen);

Purpose
Configures	the	Pause	trigger	for	pattern-match	triggering.	This	function	is
valid	only	for	acquisition	sessions.
Valid	Syntax:
Both	of	the	following	examples	are	valid	and	do	the	same	thing.	The
order	of	channelList	determines	the	order	of	the	pattern	string.

niHSDIO_ConfigurePatternMatchPauseTrigger	(vi,	"19-0",	"0000	0XXX
XX11	1111	1111");
niHSDIO_ConfigurePatternMatchPauseTrigger	(vi,	"0-19",	"1111	1111
11XX	XXX0	0000");
Note		The	values	seen	by	pattern	matching	are	affected	by	data
interpretation.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.

vi	was	obtained	from
niHSDIO_InitAcquisitionSession.

channelList ViConstString This	string	specifies	which	channels	are
configured	for	pattern	matching	using	the
pattern	string.	The	order	of	channels	in	the	list
determines	the	order	of	the	pattern	string.	Ex.
"0-19"	and	"19-0"	are	reverse	of	one	another.

pattern ViConstString This	string	expression	describes	the	pattern	to
be	matched.	The	pattern	specifies	an	edge	or
level	transition	that	must	occur	before	the
trigger	is	recognized.	The	first	sample	acquired
will	be	the	first	full	sample	following	the
configured	transition.

This	expression	is	composed	of	characters:
X	or	x:	Ignore	the	channel
1:	Match	on	a	logic	1
0:	Match	on	a	logic	0
R	or	r:	Match	on	a	rising	edge
F	or	f:	Match	on	a	falling	edge
E	or	e:	Match	on	either	edge

The	first	character	in	the	expression
corresponds	to	the	first	channel	in
channelList.	The	number	of	characters	in
pattern	must	correspond	to	the	number	of
channels	specified	in	channelList	or	an	error
is	returned.

triggerWhen ViInt32 Specifies	when	the	trigger	asserts.

Defined	Values

NIHSDIO_VAL_PATTERN_MATCHES	(36)—
The	trigger	asserts	when	the	pattern	matches.
NIHSDIO_VAL_PATTERN_DOES_NOT_MATCH
(37)—The	trigger	asserts	when	the	pattern
does	not	match.

Default	Value:
NIHSDIO_VAL_PATTERN_MATCHES

Return	Value

niHSDIO_ConfigurePatternMatchPauseTriggerU32
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigurePatternMatchPauseTriggerU32	(ViSession	vi,
ViConstString	channelList,	ViUInt32	pattern,	ViInt32	triggerWhen);

Purpose
Configures	the	Pause	trigger	for	pattern-match	triggering.
Unlike	niHSDIO_ConfigurePatternMatchPauseTrigger	which	uses	a	string,
this	function	uses	a	binary	format	to	only	represent	high	and	low.	If	you
require	more	choices	for	your	pattern,	use	the
niHSDIO_ConfigurePatternMatchPauseTrigger	function.
This	function	is	valid	only	for	acquisition	sessions.

Note		The	values	seen	by	pattern	matching	are	affected	by	data
interpretation.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.

vi	was	obtained	from
niHSDIO_InitAcquisitionSession.

channelList ViConstString This	string	specifies	which	channels	are
configured	for	pattern	matching	using	the
pattern	string.	The	order	of	channels	in	the	list
determines	the	order	of	the	pattern	string.	Ex.
"0-19"	and	"19-0"	are	reverse	of	one	another.

pattern ViUInt32 Specifies	the	binary	pattern	that	activates	the
pattern	match	trigger	under	the	conditions
specified	in	triggerWhen.

Bits	on	channels	not	specified	in	channelList
are	ignored.

triggerWhen ViInt32 Specifies	when	the	trigger	asserts.

Defined	Values

NIHSDIO_VAL_PATTERN_MATCHES	(36)—
The	trigger	asserts	when	the	pattern	matches.
NIHSDIO_VAL_PATTERN_DOES_NOT_MATCH
(37)—The	trigger	asserts	when	the	pattern
does	not	match.

Default	Value:
NIHSDIO_VAL_PATTERN_MATCHES

Return	Value

niHSDIO_DisablePauseTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_DisablePauseTrigger	(ViSession	vi);

Purpose
Sets	the	data	operation	to	have	no	Pause	trigger.	Calling	this	function	is
only	necessary	if	you	have	configured	a	Pause	trigger	and	now	want	to
disable	it.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	the	niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

Return	Value

niHSDIO_ConfigureDigitalEdgeScriptTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureDigitalEdgeScriptTrigger	(ViSession	vi,
ViConstString	triggerID,	ViConstString	source,	ViInt32	edge);

Purpose
Configures	the	Script	trigger	for	edge	triggering.	This	function	is	only	valid
for	generation	sessions	that	use	scripting.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi

from	niHSDIO_InitGenerationSession.
triggerID ViConstString Identifies	which	Script	trigger	this	function	configures.

Defined	Values

"ScriptTrigger0"
"ScriptTrigger1"
"ScriptTrigger2"
"ScriptTrigger3"

Default	Value:	ScriptTrigger0
source ViConstString You	may	specify	any	valid	source	terminal	for	this	trigger.

Trigger	voltages	and	positions	are	only	relevant	if	the	source	of
the	trigger	is	from	the	front	panel	connectors.

Refer	to
NIHSDIO_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_SOURCE
for	possible	values.

edge ViInt32 Specifies	the	edge	to	detect.

Defined	Values

NIHSDIO_VAL_RISING_EDGE	(12)—Rising	edge	trigger.
NIHSDIO_VAL_FALLING_EDGE	(13)—Falling	edge	trigger.

Default	Value:	NIHSDIO_VAL_RISING_EDGE

Return	Value

niHSDIO_ConfigureDigitalLevelScriptTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureDigitalLevelScriptTrigger	(ViSession	vi,
ViConstString	triggerID,	ViConstString	source,	ViInt32	triggerWhen);

Purpose
Configures	the	Script	trigger	for	level	triggering.	This	function	is	only	valid
for	generation	sessions	that	use	scripting.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	

from	niHSDIO_InitGenerationSession.
triggerID ViConstString Identifies	which	script	trigger	this	function	configures.

Defined	Values

"ScriptTrigger0"
"ScriptTrigger1"
"ScriptTrigger2"
"ScriptTrigger3"

Default	Value:	"ScriptTrigger0"
source ViConstString You	may	specify	any	valid	source	terminal	for	this	trigger.

Trigger	voltages	and	positions	are	only	relevant	if	the	source	of
the	trigger	is	from	the	front	panel	connectors.

Refer	to
NIHSDIO_ATTR_DIGITAL_LEVEL_SCRIPT_TRIGGER_SOURCE
for	possible	values.

triggerWhen ViInt32 Specifies	the	active	level	for	the	desired	trigger.

Defined	Values

NIHSDIO_VAL_HIGH	(34)—Trigger	is	active	while	its	source	is
high	level.
NIHSDIO_VAL_LOW	(35)—Trigger	is	active	while	its	source	is
low	level.	

Default	Value:	NIHSDIO_VAL_HIGH

Return	Value

niHSDIO_ConfigureSoftwareScriptTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ConfigureSoftwareScriptTrigger	(ViSession	vi,
ViConstString	triggerID);

Purpose
Configures	the	Script	trigger	for	software	triggering.	This	function	is	only
valid	for	generation	sessions	that	use	scripting.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.

vi	was	obtained	from
niHSDIO_InitGenerationSession.

triggerID ViConstString Identifies	which	script	trigger	this	function
configures.

Defined	Values

"ScriptTrigger0"
"ScriptTrigger1"
"ScriptTrigger2"
"ScriptTrigger3"

Default	Value:	"ScriptTrigger0"

Return	Value

niHSDIO_DisableScriptTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_DisableScriptTrigger	(ViSession	vi,
ViConstString	triggerID);

Purpose
Sets	the	data	operation	to	not	have	a	Script	trigger.	Calling	this	function
is	only	necessary	if	you	have	configured	a	particular	Script	trigger	and
now	want	to	disable	it.	This	function	is	only	valid	for	generation	sessions.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.

vi	was	obtained	from
niHSDIO_InitGenerationSession.

triggerID ViConstString Identifies	which	Script	trigger	this	function	will
configure.

Defined	Values

"ScriptTrigger0"
"ScriptTrigger1"
"ScriptTrigger2"
"ScriptTrigger3"

Default	Value:	"ScriptTrigger0"

Return	Value

niHSDIO_SendSoftwareEdgeTrigger
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_SendSoftwareEdgeTrigger	(ViSession	vi,	ViInt32	trigger,
ViConstString	triggerIdentifier);

Purpose
Use	this	function	to	force	a	particular	edge-based	trigger	to	occur.	This
function	applies	to	the	Start,	Reference,	Advance,	and	Script	triggers,
and	is	valid	if	the	particular	trigger	is	configured	for	edge,	pattern	match,
or	software	triggering	(for	edge	or	pattern-match	triggers	you	can	use
niHSDIO_SendSoftwareEdgeTrigger	as	a	software	override).

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

trigger ViInt32 The	trigger	to	assert.	

Defined	Values

NIHSDIO_VAL_START_TRIGGER	(53)
—Start	trigger	for	dynamic	acquisition
or	generation.
NIHSDIO_VAL_REF_TRIGGER	(54)—
Reference	trigger	for	dynamic
acquisition.
NIHSDIO_VAL_SCRIPT_TRIGGER	(58)
—Script	trigger	for	dynamic	generation.
NIHSDIO_VAL_ADVANCE_TRIGGER
(61)—Advance	trigger	for	dynamic
acquisition.

Default	Value:
NIHSDIO_VAL_START_TRIGGER

triggerIdentifier ViConstString Describes	the	software	trigger.	For
example,	"ScriptTrigger0"	could	be	the
identifier	for	the	Script	trigger,	or	you
could	have	an	empty	string	for	the	Start
and	Reference	triggers.

Defined	Values

"ScriptTrigger0"
"ScriptTrigger1"
"ScriptTrigger2"
"ScriptTrigger3"
""	(empty	string)	or	VI_NULL

Default	Value:	""	(empty	string)

Return	Value

niHSDIO_ExportSignal
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ExportSignal	(ViSession	vi,	ViInt32	signal,
ViConstString	signalIdentifier,	ViConstString	outputTerminal);

Purpose
Use	this	function	to	route	signals	(clocks,	triggers,	and	events)	to	the
output	terminal	you	specify.	Refer	to	your	device	documentation	for	valid
signal	destinations.
Any	routes	created	within	a	session	persist	after	the	session	closes	to
prevent	signal	glitching.	To	unconfigure	signal	routes	created	in	previous
sessions,	set	the	resetInstrument	parameter	in
niHSDIO_InitGenerationSession	or	niHSDIO_InitAcquisitionSession	to
VI_TRUE	or	use	niHSDIO_reset.
If	you	export	a	signal	with	this	function	and	commit	the	session,	the	signal
is	routed	to	the	output	terminal	you	specify.	If	you	then	reconfigure	the
signal	to	have	a	different	output	terminal,	the	previous	output	terminal	is
tristated	after	the	session	is	committed.	If	you	change	the	output	terminal
to	NIHSDIO_VAL_DO_NOT_EXPORT_STR	or	an	empty	string	when	you
commit	the	operation,	the	previous	output	terminal	is	tristated.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	

obtained	from	the	niHSDIO_InitAcquisitionSession
niHSDIO_InitGenerationSession	function.

signal ViInt32 Signal	(clock,	trigger,	or	event)	to	export.

Defined	Values

NIHSDIO_VAL_SAMPLE_CLOCK	(51)—Device	Sample
clock.
NIHSDIO_VAL_REF_CLOCK	(52)—Device	Reference	clock.
NIHSDIO_VAL_START_TRIGGER	(53)—Device	Start	trigger.
NIHSDIO_VAL_REF_TRIGGER	(54)—Device	Reference
trigger	(dynamic	acquisition	only).
NIHSDIO_VAL_ADVANCE_TRIGGER	(61)—Device	Advance
trigger	(dynamic	acquisition	only)
NIHSDIO_VAL_PAUSE_TRIGGER	(57)—Device	Pause
trigger	(dynamic	generation	only).
NIHSDIO_VAL_SCRIPT_TRIGGER	(58)—Device	Script
trigger	(dynamic	generation	only—requires	
to	describe	a	particular	Script	trigger).
NIHSDIO_VAL_DATA_ACTIVE_EVENT	(55)—	Data	Active
event	(dynamic	generation	only).
NIHSDIO_VAL_MARKER_EVENT	(59)—Marker	event
(dynamic	generation	only—requires	signalIdentifier
describe	a	particular	marker).
NIHSDIO_VAL_READY_FOR_START_EVENT
for	Start	event.
NIHSDIO_VAL_READY_FOR_ADVANCE_EVENT
Ready	for	Advance	event	(dynamic	acquisition	only).
NIHSDIO_VAL_END_OF_RECORD_EVENT
Record	event	(dynamic	acquisition	only).
NIHSDIO_VAL_ONBOARD_REF_CLOCK
onboard	Reference	clock	(PCI	devices	only).

Default	Value:	NIHSDIO_VAL_SAMPLE_CLOCK

signalIdentifier ViConstString Describes	the	signal	being	exported.

Defined	Values
"ScriptTrigger0"
"ScriptTrigger1"
"ScriptTrigger2"
"ScriptTrigger3"
"Marker0"
"Marker1"
"Marker2"
"Marker3"
""	(empty	String)
VI_NULL

Default	Value:	""	(empty	String)
outputTerminal ViConstString Output	terminal	where	the	signal	is	exported:

NIHSDIO_VAL_PFI0_STR—NIHSDIO_VAL_PFI3_STR
PFI	connectors
NIHSDIO_VAL_PXI_TRIG0_STR—
NIHSDIO_VAL_PXI_TRIG6_STR	:	the	PXI	trigger
backplane	(for	PXI	devices	only)
NIHSDIO_VAL_PXI_TRIG7/NIHSDIO_VAL_RTSI0_STR
—NIHSDIO_VAL_RTSI6_STR	:	the	RTSI	trigger	bus
(for	PCI	devices	only)
NIHSDIO_VAL_RTSI7_STR	:	RTSI	trigger	line	7,
designated	for	the	Onboard	Reference	Clock

Note		NI-HSDIO	returns	an	error	if	you	route
any	signal	other	than	the	Onboard	Ref	Clock	to
PXI	Trigger	Line	7/RTSI	7.	The	Onboard	Ref
Clock	is	only	available	on	PCI	devices.

NIHSDIO_VAL_CLK_OUT_STR—CLK	OUT	coaxial
connector	on	the	front	panel
NIHSDIO_VAL_DDC_CLK_OUT_STR
OUT	terminal	in	the	DDC	connector

""	(empty	string)	or	VI_NULL—the	signal	is	not
exported

Trigger	and	event	voltages	and	positions	are	only
relevant	if	the	destination	of	the	event	is	one	of	the
front	panel	connectors.

Return	Value

niHSDIO_AssignStaticChannels
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_AssignStaticChannels	(ViSession	vi,
ViConstString	channelList);

Purpose
Use	this	function	to	configure	channels	for	static	acquisition	(if	vi	is	an
acquisition	session)	or	static	generation	(if	vi	is	a	generation	session).	A
channel	cannot	be	simultaneously	assigned	to	a	static	generation	and
dynamic	generation.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

channelList ViConstString This	string	identifies	which	channels	will	be
configured	as	static.

Valid	Syntax

"0-19"	or	"0-15,16-19"	or	"0-18,19"
""	(empty	string)	or	VI_NULL	to	specify	all
channels
"none"	to	unassign	all	channels

Channels	cannot	be	configured	for	both
static	generation	and	dynamic	generation.

Return	Value

niHSDIO_ReadStaticU32
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ReadStaticU32	(ViSession	vi,	ViUInt32*	readData);

Purpose
This	function	immediately	reads	the	digital	value	on	channels	configured
for	static	acquisition.	Configure	a	channel	for	static	acquisition	using	the
niHSDIO_AssignStaticChannels	function.	Channels	not	configured	for	static
acquisition	return	a	zero.
Values	obtained	from	static	read	operations	are	affected	by	data
interpretation.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi

was	obtained	from	niHSDIO_InitAcquisitionSession.
readData ViUInt32 Bit-value	of	data	read	from	channels	configured	for

static	acquisition.

The	least	significant	bit	of	readData	corresponds
to	the	lowest	physical	channel	number	(for
example,	readData	of	0x00F0	means	channels	4-
7	are	logic	one,	while	the	remaining	channels	are
logic	zero	or	are	not	configured	for	static
acquisition).

Return	Value

niHSDIO_WriteStaticU32
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_WriteStaticU32	(ViSession	vi,	ViUInt32	writeData,
ViUInt32	channelMask);

Purpose
This	function	writes	to	channels	configured	for	static	generation.	You	can
configure	a	channel	for	static	generation	using	the
niHSDIO_AssignStaticChannels	function.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from
niHSDIO_InitGenerationSession.

writeData ViUInt32 Bit-value	of	data	to	drive	on	channels
configured	for	static	generation.	1
corresponds	to	logic	high,	0	corresponds	to
logic	low.	

The	least	significant	bit	of	writeData
corresponds	to	the	lowest	physical	channel
number	(for	example,	writeData	of	0xFF00
means	set	the	lower	eight	channels	to	0,	while
setting	the	upper	eight	channels	to	logic	high.

Data	values	in	writeData	corresponding	to
channels	not	configured	for	static	generation
are	ignored.	

Static	channels	explicitly	disabled	with	the
niHSDIO_TristateChannels	function	remain
disabled,	but	the	channel	data	value	changes
internally.	Re-enabling	a	channel	with
niHSDIO_TristateChannels	causes	the	channel
to	drive	any	value	that	you	have	written	to	it,
even	while	the	channel	was	disabled.

channelMask ViUInt32 Bit-value	of	channels	to	leave	unchanged.	1
means	to	change	the	channel	to	whatever	is
reflected	by	writeData.	0	means	do	not	alter
the	channel,	regardless	of	writeData.

The	least	significant	bit	of	channelMask
corresponds	to	the	lowest	physical	channel
number	(for	example,	writeData	of	0xFFFF
and	channelMask	of	0x0080	means	set	only
channel	7	to	1;	all	other	channels	remain

unchanged).

Default	Value:	-1

Return	Value

niHSDIO_SelfCal
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_SelfCal	(ViSession	vi);

Purpose
This	function	self-calibrates	the	device.	During	self-calibration,	the	VCXO
oscillator	phase	D/A	converters	are	recalibrated.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	the	function	used	to	initialize	the
session.

Return	Value

niHSDIO_ChangeExtCalPassword
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ChangeExtCalPassword	(ViSession	vi,
ViConstString	oldPassword,	ViConstString	newPassword);

Purpose
Changes	the	password	that	is	required	to	initialize	an	external	calibration
session.	The	password	may	be	up	to	four	characters	long.
You	can	call	this	function	from	an	acquisition,	generation,	or	calibration
session.

Parameters
Name Type Description
vi ViSession The	session	handle	returned	from

niHSDIO_InitAcquisitionSession,
niHSDIO_InitGenerationSession,	or
niHSDIO_InitExtCal.

oldPassword ViConstString The	old	(current)	external	calibration
password.	

Default	Value:	""
newPassword ViConstString The	new	(desired)	external	calibration

password.	

Default	Value:	""

Return	Value

niHSDIO_InitExtCal
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_InitExtCal	(ViRsrc	resourceName,	ViConstString	password,
ViSession*	vi);

Purpose
Creates	and	initializes	a	special	NI-HSDIO	external	calibration	session.
The	ViSession	returned	is	an	NI-HSDIO	session	that	can	be	used	during
the	calibration	session.
Multiple	calls	to	this	function	return	the	same	session	ID.	Calibration
sessions	are	mutually	exclusive	with	acquisition	and	generation	sessions.

Parameters
Name Type Description
resourceName ViRsrc Specifies	the	device	name,	for	example

"Dev1"	where	"Dev1"	is	a	device	name
assigned	by	Measurement	&	Automation
Explorer.	

Default	Value:	"PXI1Slot3"
password ViConstString The	calibration	password	required	to

open	an	external	calibration	session	to
the	device.	

Default	Value:	""
vi ViSession Returns	a	session	handle	that	you	use	to

identify	the	instrument	in	all	subsequent
NI-HSDIO	function	calls.

Return	Value

niHSDIO_CalAdjustChannelVoltage
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_CalAdjustVoltage	(ViSession	vi,	ViConstString	channelList);

Purpose
Adjusts	the	voltage	of	the	selected	channel(s).	The	only	errors	that	can
be	returned	are	actual	calibration	process	errors.

Notes		This	function	is	not	supported	for	the	NI	654x/656x	devices.
This	function	runs	a	static	loopback	test	before	adjusting	the
voltage.	You	must	disconnect	the	cable	from	your	device	to	run
this	function.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from
niHSDIO_InitExtCal.

channelList ViConstString Identifies	channels	on	which	voltage	will	be
adjusted.

Return	Value

niHSDIO_CloseExtCal
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_CloseExtCal	(ViSession	vi,	ViInt32	action);

Purpose
Closes	an	NI-HSDIO	external	calibration	session	and,	if	specified,	stores
the	new	calibration	constants	and	calibration	data	in	the	onboard
EEPROM.

Note		Whether	you	commit	or	cancel,	the	device	is	reset	and	the
FPGA	is	reloaded	afterwards.

Parameters
Name Type Description
vi ViSession The	session	handle	that	you	obtain	from

niHSDIO_InitExtCal.	The	handle	identifies	a	particular
instrument	session.

action ViInt32 The	action	to	perform	upon	closing.
Defined	Values
NIHSDIO_VAL_EXT_CAL_COMMIT	(62)—The	new
calibration	constants	and	data	determined	during	the
external	calibration	session	are	stored	in	the	onboard
EEPROM,	given	that	the	calibration	was	complete
and	passed	successfully.
NIHSDIO_VAL_EXT_CAL_CANCEL	(63)—No
changes	are	made	to	the	calibration	constants	and
data	in	the	EEPROM.

Return	Value

niHSDIO_TristateChannels
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_TristateChannels	(ViSession	vi,	ViConstString	channelList,
ViBoolean	tristate);

Purpose
Use	this	function	to	force	a	channel	into	a	high-impedance	state.	The
effect	is	immediate—it	does	not	require	the	session	be	committed.	The
channel	will	remain	tristated	regardless	of	what	other	software
commands	are	called.	Call	this	function	again	and	pass	VI_FALSE	into
the	tristate	parameter	to	allow	other	software	commands	to	control	the
channel	normally.
Channels	are	kept	in	a	high-impedance	state	while	the	session	remains
open.	Closing	the	session	does	not	affect	the	high-impedance	state	of
the	channel,	but	future	sessions	can	now	control	it.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from
niHSDIO_InitGenerationSession.

channelList ViConstString This	string	identifies	which	channels	will	be
tristated.	Channels	not	specified	in	this	list
are	unaffected.

Syntax	examples:	"2-15"	or	"0-3,	5,	8-15"	or
"0,	3,	10"

tristate ViBoolean Specifies	whether	the	channels	specified	in
channelList	remain	tristated,	ignoring
future	software	commands.

Defined	Values

VI_TRUE	(1)—The	channels	specified	in
channelList	remain	tristated,	ignoring
future	software	commands.
VI_FALSE	(0)—The	channels	specified	in
channelList	are	untristated	by	future
software	commands.

Default	Value:	VI_TRUE

Return	Value

niHSDIO_CommitDynamic
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_CommitDynamic	(ViSession	vi);

Purpose
Programs	the	hardware	for	the	dynamic	data	operation	using	the
attributes	you	select.	Before	entering	the	committed	state,	most	attribute
values	are	stored	in	software	only;	these	values	have	not	yet	been
programmed	to	the	hardware.	Once	the	session	is	committed,	the
hardware	is	configured.
For	many	operations	it	is	not	necessary	to	explicitly	call	this	function
because	the	following	functions	implicitly	commit:

niHSDIO_Initiate
niHSDIO_WriteScript
Read	Waveform	functions
Write	Named	Waveform	functions

Start	the	operation	with	niHSDIO_Initiate.	Running	this	function	while	a
dynamic	operation	is	in	progress	returns	an	error.	Committing	only
programs	attributes	changed	since	previous	commits.

Note		Committing	some	attributes	may	have	immediate	effects
seen	on	external	instrument	connectors.	Voltage	levels	are	an
example	of	an	attribute	with	an	immediate	effect	when	committed.

Before	committing	a	session	that	requires	an	external	clock,	ensure	the
external	clock	is	available.	Otherwise	you	receive	an	error	that	the	device
could	not	find	or	lock	to	the	external	clock.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	the	function	used	to	initialize	the
session.

Return	Value

niHSDIO_CommitStatic
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_CommitStatic	(ViSession	vi);

Purpose
Programs	the	hardware	for	the	static	data	operation	using	the	attributes
you	select.	Before	entering	the	committed	state,	most	attribute	values	are
stored	in	software	only;	these	values	have	not	yet	been	programmed	to
the	hardware.	Once	the	session	is	committed,	the	hardware	is
configured.
For	most	static	operations	it	is	not	necessary	to	explicitly	call
niHSDIO_CommitStatic	because	the	following	functions	implicitly	commit:

niHSDIO_ReadStaticU32
niHSDIO_WriteStaticU32

Committing	only	programs	attributes	changed	since	previous	commits.

Note		Committing	some	attributes	may	have	immediate	effects
seen	on	external	instrument	connectors.	Voltage	levels	are	an
example	of	an	attribute	with	an	immediate	effect	when	committed.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	the	function	used	to	initialize	the
session.

Return	Value

niHSDIO_reset
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_reset	(ViSession	vi);

Purpose
Call	this	function	to	reset	the	session	to	its	Initial	state.	All	channels	and
front	panel	terminals	are	put	into	a	high-impedance	state.	All	software
attributes	are	reset	to	their	initial	values.
During	a	reset,	routes	of	signals	between	this	and	other	devices	are
released,	regardless	of	which	device	created	the	route.	For	instance,	a
trigger	signal	being	exported	to	a	PXI	trigger	line	and	used	by	another
device	will	no	longer	be	exported.
niHSDIO_reset	is	applied	to	the	entire	device.	If	you	have	both	a
generation	and	an	acquisition	session	active,	niHSDIO_reset	resets	the
current	session,	including	attributes,	and	invalidates	the	other	session	if	it
is	committed	or	running.	The	other	session	must	be	closed.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	the	niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

Return	Value

niHSDIO_ResetDevice
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ResetDevice	(ViSession	vi);

Purpose
Call	this	function	to	reset	the	device	to	its	Initial	state	and	reload	its
FPGA.	All	channels	and	front	panel	terminals	are	put	into	a	high-
impedance	state.	All	software	attributes	are	reset	to	their	initial	values.
The	entire	contents	of	the	FPGA	and	EEPROM	files	are	reloaded.	Use
this	function	to	re-enable	your	device	if	it	has	disabled	itself	because	the
device	temperature	has	risen	above	its	optimal	operating	temperature.
During	a	device	reset,	routes	of	signals	between	this	and	other	devices
are	released,	regardless	of	which	device	created	the	route.	For	instance,
a	trigger	signal	being	exported	to	a	PXI	trigger	line	and	used	by	another
device	will	no	longer	be	exported.
niHSDIO_ResetDevice	is	applied	to	the	entire	device.	If	you	have	both	a
generation	and	an	acquisition	session	active,	niHSDIO_ResetDevice
resets	the	current	session,	including	attributes,	and	invalidates	the	other
session	if	it	is	committed	or	running.	The	other	session	must	be	closed.

Generally,	calling	niHSDIO_reset	is	acceptable	instead	of	calling
niHSDIO_ResetDevice.	niHSDIO_reset	executes	more	quickly.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	the	niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

Return	Value

niHSDIO_ClearError
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_ClearError	(ViSession	vi);

Purpose
Clears	the	error	information	for	the	current	execution	thread	and	the	IVI
session	you	specify.	If	you	pass	VI_NULL	for	vi,	this	function	clears	the
error	information	only	for	the	current	execution	thread.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	the	niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

Return	Value

niHSDIO_error_message
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_error_message	(ViSession	vi,	ViStatus	errorCode,	ViChar[
]	errorMessage);

Purpose
Takes	the	error	code	returned	by	NI-HSDIO	functions,	interprets	it,	and
returns	it	as	a	user	readable	string.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

errorCode ViStatus The	error	code	returned	from	the	device.
errorMessage ViChar[] Message	string	

Note		The	string	must	contain	at	least
256	characters.

Return	Value

niHSDIO_GetError
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_GetError	(ViSession	vi,	ViStatus*	errorCode,
ViInt32	errorDescriptionBufferSize,	ViChar[]	errorDescription);

Purpose
Returns	the	error	information	associated	with	the	instrument	handle.	This
function	retrieves	and	then	clears	the	error	information	for	the	session.	If
vi	is	VI_NULL,	this	function	retrieves	and	then	clears	the	error
information	for	the	current	thread.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your

instrument	session.	vi	was
obtained	from	the
niHSDIO_InitAcquisitionSession
or
niHSDIO_InitGenerationSession
function.

errorCode ViStatus Returns	the	error	code	for	the
session	or	execution	thread.

errorDescriptionBufferSize ViInt32 Passes	the	number	of	bytes	in
the	ViChar	array	you	specify
for	the	errorDescription
parameter.	

If	the	error	description,
including	the	terminating	NULL
byte,	contains	more	bytes	than
you	indicate	in	this	parameter,
the	function	copies	BufferSize	-
1	bytes	into	the	buffer,	places
an	ASCII	NULL	byte	at	the	end
of	the	buffer,	and	returns	the
buffer	size	you	must	pass	to
get	the	entire	value.	For
example,	if	the	value	is
"123456"	and	the	buffer	size	is
4,	the	function	places	"123"
into	the	buffer	and	returns	7.	

If	you	pass	a	negative	number,
the	function	copies	the	value	to
the	buffer	regardless	of	the
number	of	bytes	in	the	value.

errorDescription ViChar[] Returns	the	error	description

for	the	IVI	session	or	execution
thread.	

If	there	is	no	description,	the
function	returns	an	empty
string.	The	buffer	must	contain
at	least	as	many	elements	as
the	value	you	specify	with	the
buffer	size	parameter.	

If	you	pass	0	for	the
errorDescriptionBufferSize,
you	can	pass	VI_NULL	for	this
parameter.

Return	Value

niHSDIO_IsDone
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_IsDone	(ViSession	vi,	ViBoolean*	done);

Purpose
Call	this	function	to	check	the	hardware	to	determine	if	your	dynamic	data
operation	has	completed.	You	can	also	use	this	function	for	continuous
dynamic	data	operations	to	poll	for	error	conditions.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument	session.	vi	was

obtained	from	the	niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

done ViBoolean Returns	the	status	of	your	data	operation.

Defined	Values

VI_TRUE	(1)—Indicates	that	the	data	operation	is
complete	or	an	error	has	occurred.
VI_FALSE	(0)—Indicates	that	the	data	operation	has
not	completed.

Return	Value

niHSDIO_LockSession
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_LockSession	(ViSession	vi,	ViBoolean*	callerHasLock);

Purpose
This	function	obtains	the	multithreaded	lock	on	the	instrument	session.
Before	doing	so,	the	function	waits	until	all	other	execution	threads	have
released	the	lock	on	the	instrument	session.	Other	threads	might	have
obtained	the	lock	on	this	session	in	the	following	ways:

-	Your	application	called	niHSDIO_LockSession
-	A	call	to	the	instrument	driver	locked	the	session
-	A	call	to	the	IVI	engine	locked	the	session

After	the	call	to	niHSDIO_LockSession	returns	successfully,	no	other
threads	can	access	the	instrument	session	until	you	call
niHSDIO_UnlockSession.	Use	niHSDIO_LockSession	and
niHSDIO_UnlockSession	around	a	sequence	of	calls	to	instrument	driver
functions	if	you	require	exclusive	access	through	the	end	of	the
sequence.

You	can	safely	make	nested	calls	to	niHSDIO_LockSession	within	the
same	thread.	To	completely	unlock	the	session,	you	must	balance	each
call	to	niHSDIO_LockSession	with	a	call	to	niHSDIO_UnlockSession.	If,
however,	you	use	the	callerHasLock	parameter	in	all	calls	to
niHSDIO_LockSession	and	niHSDIO_UnlockSession	within	a	function,	the
IVI	Library	locks	the	session	only	once	within	the	function,	regardless	of
the	number	of	calls	you	make	to	niHSDIO_LockSession.	This	functionality
allows	you	to	call	niHSDIO_UnlockSession	just	once	at	the	end	of	the
function.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

callerHasLock ViBoolean This	parameter	serves	as	a	convenience.	If
you	do	not	want	to	use	this	parameter,	pass
VI_NULL.	You	can	use	this	parameter	in
complex	functions	to	track	lock	status	and
the	need	to	unlock	the	session.	Pass	the
address	of	a	local	ViBoolean	variable	in	the
declaration	of	the	local	variable	and	initialize
it	to	VI_FALSE.	Also,	pass	the	address	of
the	same	local	variable	to	any	other	calls
you	make	to	niHSDIO_LockSession	or
niHSDIO_UnlockSession	in	the	same	function.

Return	Value

niHSDIO_UnlockSession
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_UnlockSession	(ViSession	vi,	ViBoolean*	callerHasLock);

Purpose
This	function	releases	a	lock	that	you	acquired	on	an	instrument	session
using	niHSDIO_LockSession.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

callerHasLock ViBoolean This	parameter	serves	as	a	convenience.	If
you	do	not	want	to	use	this	parameter,	pass
VI_NULL.	You	can	use	this	parameter	in
complex	functions	to	track	lock	status	and
the	need	to	unlock	the	session.	Pass	the
address	of	a	local	ViBoolean	variable	in	the
declaration	of	the	local	variable	and	initialize
it	to	VI_FALSE.	Also,	pass	the	address	of
the	same	local	variable	to	any	other	calls
you	make	to	niHSDIO_LockSession	or
niHSDIO_UnlockSession	in	the	same	function.

Return	Value

niHSDIO_self_test
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_self_test	(ViSession	vi,	ViInt16*	selfTestResult,	ViChar[
]	selfTestMessage);

Purpose
This	function	performs	a	self-test	on	the	device	and	returns	the	test
results.	The	self-test	function	performs	a	simple	series	of	tests	that
ensure	the	device	is	powered	up	and	responding.	Complete	functional
testing	and	calibration	are	not	performed	by	this	function.
This	function	is	internal	and	does	not	affect	external	I/O	connections	or
connections	between	devices.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

selfTestResult ViInt16 This	control	contains	the	value	returned
from	the	device	self-test.

Self-test	Code	Description:
0—Self-test	passed
Anything	else—Self-test	failed

selfTestMessage ViChar[] Returns	the	self-test	response	string	from
the	device;	you	must	pass	a	ViChar	array
at	least	IVI_MAX_MESSAGE_BUF_SIZE
bytes	in	length

Return	Value

niHSDIO_GetAttributeViBoolean
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_GetAttributeViBoolean	(ViSession	vi,
ViConstString	channelList,	ViAttr	attributeID,	ViBoolean*	value);

Purpose
This	function	queries	the	value	of	a	ViBoolean	attribute.	You	can	use	this
function	to	get	the	values	of	device-specific	attributes	and	inherent	IVI
attributes.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

channelList ViConstString If	the	attribute	is	channel	or	instance	based,
this	parameter	specifies	the	name	of	the
channel	or	instance	on	which	to	set	the
value	of	the	attribute;	if	the	attribute	is	not
channel	or	instance	Based,	pass	VI_NULL
or	an	empty	string.

attributeID ViAttr The	ID	of	an	attribute.
value ViBoolean Returns	the	current	value	of	the	attribute;

pass	the	address	of	a	ViBoolean	variable.

Return	Value

niHSDIO_GetAttributeViInt32
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_GetAttributeViInt32	(ViSession	vi,
ViConstString	channelList,	ViAttr	attributeID,	ViInt32*	value);

Purpose
This	function	queries	the	value	of	a	ViInt32	attribute.	You	can	use	this
function	to	get	the	values	of	device-specific	attributes	and	inherent	IVI
attributes.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

channelList ViConstString If	the	attribute	is	channel	or	instance	based,
this	parameter	specifies	the	name	of	the
channel	or	instance	on	which	to	set	the
value	of	the	attribute;	if	the	attribute	is	not
channel	or	instance	based,	pass	VI_NULL
or	an	empty	string.

attributeID ViAttr The	ID	of	an	attribute.
value ViInt32 Returns	the	current	value	of	the	attribute;

pass	the	address	of	a	ViInt32	variable.

Return	Value

niHSDIO_GetAttributeViReal64
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_GetAttributeViReal64	(ViSession	vi,
ViConstString	channelList,	ViAttr	attributeID,	ViReal64*	value);

Purpose
This	function	queries	the	value	of	a	ViReal64	attribute.	You	can	use	this
function	to	get	the	values	of	device-specific	attributes	and	inherent	IVI
attributes.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

channelList ViConstString If	the	attribute	is	channel	or	instance	based,
this	parameter	specifies	the	name	of	the
channel	or	instance	on	which	to	set	the
value	of	the	attribute;	if	the	attribute	is	not
channel	or	instance	based,	pass	VI_NULL
or	an	empty	string.

attributeID ViAttr The	ID	of	an	attribute.
value ViReal64 Returns	the	current	value	of	the	attribute;

pass	the	address	of	a	ViReal64	variable.

Return	Value

niHSDIO_GetAttributeViSession
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_GetAttributeViSession	(ViSession	vi,
ViConstString	channelList,	ViAttr	attributeID,	ViSession*	value);

Purpose
This	function	queries	the	value	of	a	ViSession	attribute.	You	can	use	this
function	to	get	the	values	of	device-specific	attributes	and	inherent	IVI
attributes.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

channelList ViConstString If	the	attribute	is	channel	or	instance	based,
this	parameter	specifies	the	name	of	the
channel	or	instance	on	which	to	set	the
value	of	the	attribute;	if	the	attribute	is	not
channel	or	instance	based,	pass	VI_NULL
or	an	empty	string.

attributeID ViAttr The	ID	of	an	attribute.
value ViSession Returns	the	current	value	of	the	attribute;

pass	the	address	of	a	ViSession	variable.

Return	Value

niHSDIO_GetAttributeViString
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_GetAttributeViString	(ViSession	vi,
ViConstString	channelList,	ViAttr	attributeID,	ViInt32	bufSize,	ViChar[]	value);

Purpose
This	function	queries	the	value	of	a	ViString	attribute.	You	can	use	this
function	to	get	the	values	of	device-specific	attributes	and	inherent	IVI
attributes.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

channelList ViConstString If	the	attribute	is	channel	or	instance	based,
this	parameter	specifies	the	name	of	the
channel	or	instance	on	which	to	set	the
value	of	the	attribute;	if	the	attribute	is	not
channel	or	instance	based,	pass	VI_NULL
or	an	empty	string.

attributeID ViAttr The	ID	of	an	attribute.
bufSize ViInt32 Pass	the	number	of	bytes	in	the	ViChar

array	you	specify	for	the	value	parameter.	

If	the	current	value	of	the	attribute,	including
the	terminating	NULL	byte,	contains	more
bytes	than	you	indicate	in	this	parameter,
the	function	copies	Array	Size-1	bytes	into
the	buffer,	places	an	ASCII	NULL	byte	at
the	end	of	the	buffer,	and	returns	the	array
size	you	must	pass	to	get	the	entire	value.
For	example,	if	the	value	is	"123456",	and
the	Array	Size	is	4,	the	function	places
"123"	into	the	buffer	and	returns	7.

If	you	pass	0,	you	can	pass	VI_NULL	for
the	value	buffer	parameter.

value ViChar[] Returns	the	current	value	of	the	attribute;
pass	the	address	of	a	ViChar	array.

Return	Value

niHSDIO_SetAttributeViBoolean
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_SetAttributeViBoolean	(ViSession	vi,
ViConstString	channelList,	ViAttr	attributeID,	ViBoolean	value);

Purpose
This	function	sets	the	value	of	a	ViBoolean	attribute.	This	is	a	low-level
function	that	you	can	use	to	set	the	values	of	device-specific	attributes
and	inherent	IVI	attributes.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

channelList ViConstString If	the	attribute	is	channel	or	instance	based,
this	parameter	specifies	the	name	of	the
channel	or	instance	on	which	to	set	the
value	of	the	attribute;	if	the	attribute	is	not
channel	or	instance	based,	pass	VI_NULL
or	an	empty	string.

You	can	pass	in	multiple	channels	to	this
function.

attributeID ViAttr The	ID	of	an	attribute.
value ViBoolean The	value	to	which	you	want	to	set	the

attribute;	some	of	the	values	might	not	be
valid	depending	on	the	current	settings	of
the	instrument	session.

Return	Value

niHSDIO_SetAttributeViInt32
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_SetAttributeViInt32	(ViSession	vi,
ViConstString	channelList,	ViAttr	attributeID,	ViInt32	value);

Purpose
This	function	sets	the	value	of	a	ViInt32	attribute.	This	is	a	low-level
function	that	you	can	use	to	set	the	values	of	device-specific	attributes
and	inherent	IVI	attributes.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

channelList ViConstString If	the	attribute	is	channel	or	instance	based,
this	parameter	specifies	the	name	of	the
channel	or	instance	on	which	to	set	the
value	of	the	attribute;	if	the	attribute	is	not
channel	or	instance	based,	pass	VI_NULL
or	an	empty	string.

You	can	pass	in	multiple	channels	to	this
function.

attributeID ViAttr The	ID	of	an	attribute.
value ViInt32 The	value	to	which	you	want	to	set	the

attribute;	some	of	the	values	might	not	be
valid	depending	on	the	current	settings	of
the	instrument	session.

Return	Value

niHSDIO_SetAttributeViReal64
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_SetAttributeViReal64	(ViSession	vi,
ViConstString	channelList,	ViAttr	attributeID,	ViReal64	value);

Purpose
This	function	sets	the	value	of	a	ViReal64	attribute.	This	is	a	low-level
function	that	you	can	use	to	set	the	values	of	device-specific	attributes
and	inherent	IVI	attributes.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

channelList ViConstString If	the	attribute	is	channel	or	instance	based,
this	parameter	specifies	the	name	of	the
channel	or	instance	on	which	to	set	the
value	of	the	attribute;	if	the	attribute	is	not
channel	or	instance	based,	pass	VI_NULL
or	an	empty	string.

You	can	pass	in	multiple	channels	to	this
function.

attributeID ViAttr The	ID	of	an	attribute.
value ViReal64 The	value	to	which	you	want	to	set	the

attribute;	some	of	the	values	might	not	be
valid	depending	on	the	current	settings	of
the	instrument	session.

Return	Value

niHSDIO_SetAttributeViSession
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_SetAttributeViSession	(ViSession	vi,
ViConstString	channelList,	ViAttr	attributeID,	ViSession	value);

Purpose
This	function	sets	the	value	of	a	ViSession	attribute.	This	is	a	low-level
function	that	you	can	use	to	set	the	values	of	device-specific	attributes
and	inherent	IVI	attributes.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

channelList ViConstString If	the	attribute	is	channel	or	instance	based,
this	parameter	specifies	the	name	of	the
channel	or	instance	on	which	to	set	the
value	of	the	attribute;	if	the	attribute	is	not
channel	or	instance	based,	pass	VI_NULL
or	an	empty	string.

You	can	pass	in	multiple	channels	to	this
function.

attributeID ViAttr The	ID	of	an	attribute.
value ViSession The	value	to	which	you	want	to	set	the

attribute;	some	of	the	values	might	not	be
valid	depending	on	the	current	settings	of
the	instrument	session.

Return	Value

niHSDIO_SetAttributeViString
Specific	Function
C	Function	Prototype
ViStatus	niHSDIO_SetAttributeViString	(ViSession	vi,
ViConstString	channelList,	ViAttr	attributeID,	ViConstString	value);

Purpose
This	function	sets	the	value	of	a	ViString	attribute.	This	is	a	low-level
function	that	you	can	use	to	set	the	values	of	device-specific	attributes
and	inherent	IVI	attributes.

Parameters
Name Type Description
vi ViSession This	handle	identifies	your	instrument

session.	vi	was	obtained	from	the
niHSDIO_InitAcquisitionSession	or
niHSDIO_InitGenerationSession	function.

channelList ViConstString If	the	attribute	is	channel	or	instance	based,
this	parameter	specifies	the	name	of	the
channel	or	instance	on	which	to	set	the
value	of	the	attribute;	if	the	attribute	is	not
channel	or	instance	based,	pass	VI_NULL
or	an	empty	string.

You	can	pass	in	multiple	channels	to	this
function.

attributeID ViAttr The	ID	of	an	attribute.
value ViConstString The	value	to	which	you	want	to	set	the

attribute;	some	of	the	values	might	not	be
valid	depending	on	the	current	settings	of
the	instrument	session.

Return	Value

NI-HSDIO	Attributes
Group/Attribute	Name

Dynamic	Channels NIHSDIO_ATTR_DYNAMIC_CHANNELS
Static	Channels NIHSDIO_ATTR_STATIC_CHANNELS
Voltage	Levels
Data	High NIHSDIO_ATTR_DATA_VOLTAGE_HIGH_LEVEL
Data	Low NIHSDIO_ATTR_DATA_VOLTAGE_LOW_LEVEL
Trigger	High NIHSDIO_ATTR_TRIGGER_VOLTAGE_HIGH_LEVEL
Trigger	Low NIHSDIO_ATTR_TRIGGER_VOLTAGE_LOW_LEVEL
Event	High NIHSDIO_ATTR_EVENT_VOLTAGE_HIGH_LEVEL
Event	Low NIHSDIO_ATTR_EVENT_VOLTAGE_LOW_LEVEL
Dynamic	Acquisition
Samples	Per	Record NIHSDIO_ATTR_SAMPLES_PER_RECORD
Number	Of	Records	To	Acquire NIHSDIO_ATTR_NUM_RECORDS
Input	Impedance NIHSDIO_ATTR_INPUT_IMPEDANCE
Data	Interpretation NIHSDIO_ATTR_DATA_INTERPRETATION
Fetch
Fetch	Relative	To NIHSDIO_ATTR_FETCH_RELATIVE_TO
Fetch	Offset NIHSDIO_ATTR_FETCH_OFFSET
Fetch	Backlog NIHSDIO_ATTR_FETCH_BACKLOG
Records	Done NIHSDIO_ATTR_RECORDS_DONE
Dynamic	Generation
Initial	State NIHSDIO_ATTR_INITIAL_STATE
Idle	State NIHSDIO_ATTR_IDLE_STATE
Drive	Type NIHSDIO_ATTR_DRIVE_TYPE
Repeat	Mode NIHSDIO_ATTR_REPEAT_MODE
Repeat	Count NIHSDIO_ATTR_REPEAT_COUNT
Generation	Mode NIHSDIO_ATTR_GENERATION_MODE

Waveform	To	Generate NIHSDIO_ATTR_WAVEFORM_TO_GENERATE
Script	To	Generate NIHSDIO_ATTR_SCRIPT_TO_GENERATE
Timing
Sample	Clock
Rate NIHSDIO_ATTR_SAMPLE_CLOCK_RATE
Source NIHSDIO_ATTR_SAMPLE_CLOCK_SOURCE
Impedance NIHSDIO_ATTR_SAMPLE_CLOCK_IMPEDANCE
Exported	Sample	Clock	Output	Terminal NIHSDIO_ATTR_EXPORTED_SAMPLE_CLOCK_OUTPUT_TERMINAL
Exported	Sample	Clock	Mode NIHSDIO_ATTR_EXPORTED_SAMPLE_CLOCK_MODE
Exported	Sample	Clock	Delay NIHSDIO_ATTR_EXPORTED_SAMPLE_CLOCK_DELAY
Ref	Clock
Rate NIHSDIO_ATTR_REF_CLOCK_RATE
Source NIHSDIO_ATTR_REF_CLOCK_SOURCE
Impedance NIHSDIO_ATTR_REF_CLOCK_IMPEDANCE
Export	Output	Terminal NIHSDIO_ATTR_EXPORTED_REF_CLOCK_OUTPUT_TERMINAL
Onboard	Ref	Clock
Export	Output	Terminal NIHSDIO_ATTR_EXPORTED_ONBOARD_REF_CLOCK_OUTPUT_TERMINAL
Data	Position
Position NIHSDIO_ATTR_DATA_POSITION
Delay NIHSDIO_ATTR_DATA_POSITION_DELAY
Advanced
Oscillator	Phase	DAC	Value NIHSDIO_ATTR_OSCILLATOR_PHASE_DAC_VALUE
Exported	Sample	Clock	Offset NIHSDIO_ATTR_EXPORTED_SAMPLE_CLOCK_OFFSET
Triggers
Start	Trigger
Type NIHSDIO_ATTR_START_TRIGGER_TYPE
Digital	Edge	Source NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_SOURCE
Digital	Edge	Edge NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_EDGE
Position NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_POSITION

Digital	Edge	Terminal	Configuration NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_TERMINAL_CONFIGURATION
Digital	Edge	Impedance NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_IMPEDANCE
Pattern	Match	Pattern NIHSDIO_ATTR_PATTERN_MATCH_START_TRIGGER_PATTERN
Pattern	Match	Trigger	When NIHSDIO_ATTR_PATTERN_MATCH_START_TRIGGER_WHEN
Export	Output	Terminal NIHSDIO_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL
Export	Terminal	Configuration NIHSDIO_ATTR_EXPORTED_START_TRIGGER_TERMINAL_CONFIGURATION
Ref	Trigger
Ref	Trigger	Type NIHSDIO_ATTR_REF_TRIGGER_TYPE
Pretrigger	Samples	Per	Record NIHSDIO_ATTR_REF_TRIGGER_PRETRIGGER_SAMPLES
Digital	Edge	Source NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_SOURCE
Digital	Edge	Edge NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_EDGE
Position NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_POSITION
Digital	Edge	Impedance NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_IMPEDANCE
Digital	Edge	Terminal	Configuration NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_TERMINAL_CONFIGURATION
Pattern	Match	Pattern NIHSDIO_ATTR_PATTERN_MATCH_REF_TRIGGER_PATTERN
Pattern	Match	Trigger	When NIHSDIO_ATTR_PATTERN_MATCH_REF_TRIGGER_WHEN
Export	Output	Terminal NIHSDIO_ATTR_EXPORTED_REF_TRIGGER_OUTPUT_TERMINAL
Export	Terminal	Configuration NIHSDIO_ATTR_EXPORTED_REF_TRIGGER_TERMINAL_CONFIGURATION
Start	to	Reference	Trigger	Holdoff NIHSDIO_ATTR_START_TO_REF_TRIGGER_HOLDOFF
Reference	to	Reference	Trigger	Holdoff NIHSDIO_ATTR_REF_TO_REF_TRIGGER_HOLDOFF
Advance	Trigger
Type NIHSDIO_ATTR_ADVANCE_TRIGGER_TYPE
Digital	Edge	Source NIHSDIO_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_SOURCE
Digital	Edge	Edge NIHSDIO_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_EDGE
Digital	Edge	Position NIHSDIO_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_POSITION
Digital	Edge	Terminal	Configuration NIHSDIO_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_TERMINAL_CONFIGURATION
Digital	Edge	Impedance NIHSDIO_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_IMPEDANCE
Pattern	Match	Pattern NIHSDIO_ATTR_PATTERN_MATCH_ADVANCE_TRIGGER_PATTERN
Pattern	Match	Trigger	When NIHSDIO_ATTR_PATTERN_MATCH_ADVANCE_TRIGGER_WHEN

Export	Output	Terminal NIHSDIO_ATTR_EXPORTED_ADVANCE_TRIGGER_OUTPUT_TERMINAL
Export	Terminal	Configuration NIHSDIO_ATTR_EXPORTED_ADVANCE_TRIGGER_TERMINAL_CONFIGURATION
Script	Trigger
Type NIHSDIO_ATTR_SCRIPT_TRIGGER_TYPE
Digital	Edge	Source NIHSDIO_ATTR_SCRIPT_TRIGGER_SOURCE
Digital	Edge	Edge NIHSDIO_ATTR_SCRIPT_TRIGGER_EDGE
Digital	Edge	Terminal	Configuration NIHSDIO_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_TERMINAL_CONFIGURATION
Digital	Edge	Impedance NIHSDIO_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_IMPEDANCE
Digital	Level	Source NIHSDIO_ATTR_DIGITAL_LEVEL_SCRIPT_TRIGGER_SOURCE
Digital	Level	Level NIHSDIO_ATTR_DIGITAL_LEVEL_SCRIPT_TRIGGER_WHEN
Digital	Level	Terminal	Configuration NIHSDIO_ATTR_DIGITAL_LEVEL_SCRIPT_TRIGGER_TERMINAL_CONFIGURATION
Digital	Level	Impedance NIHSDIO_ATTR_DIGITAL_LEVEL_SCRIPT_TRIGGER_IMPEDANCE
Export	Output	Terminal NIHSDIO_ATTR_EXPORTED_SCRIPT_TRIGGER_OUTPUT_TERMINAL
Export	Terminal	Configuration NIHSDIO_ATTR_EXPORTED_SCRIPT_TRIGGER_TERMINAL_CONFIGURATION
Pause	Trigger
Type NIHSDIO_ATTR_PAUSE_TRIGGER_TYPE
Digital	Level	Source NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_SOURCE
Digital	Level	Level NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_WHEN
Digital	Level	Position NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_POSITION
Digital	Level	Terminal	Configuration NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_TERMINAL_CONFIGURATION
Digital	Level	Impedance NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_IMPEDANCE
Pattern	Match	Pattern NIHSDIO_ATTR_PATTERN_MATCH_PAUSE_TRIGGER_PATTERN
Pattern	Match	Trigger	When NIHSDIO_ATTR_PATTERN_MATCH_PAUSE_TRIGGER_WHEN
Export	Output	Terminal NIHSDIO_ATTR_EXPORTED_PAUSE_TRIGGER_OUTPUT_TERMINAL
Export	Terminal	Configuration NIHSDIO_ATTR_EXPORTED_PAUSE_TRIGGER_TERMINAL_CONFIGURATION
Events
Ready	For	Start	Event
Output	Terminal NIHSDIO_ATTR_READY_FOR_START_EVENT_OUTPUT_TERMINAL
Active	Level NIHSDIO_ATTR_READY_FOR_START_EVENT_LEVEL_ACTIVE_LEVEL

Terminal	Configuration NIHSDIO_ATTR_READY_FOR_START_EVENT_TERMINAL_CONFIGURATION
Ready	For	Advance	Event
Output	Terminal NIHSDIO_ATTR_READY_FOR_ADVANCE_EVENT_OUTPUT_TERMINAL
Active	Level NIHSDIO_ATTR_READY_FOR_ADVANCE_EVENT_LEVEL_ACTIVE_LEVEL
Terminal	Configuration NIHSDIO_ATTR_READY_FOR_ADVANCE_EVENT_TERMINAL_CONFIGURATION
End	Of	Record	Event
Output	Terminal NIHSDIO_ATTR_END_OF_RECORD_EVENT_OUTPUT_TERMINAL
Pulse	Polarity NIHSDIO_ATTR_END_OF_RECORD_EVENT_PULSE_POLARITY
Terminal	Configuration NIHSDIO_ATTR_END_OF_RECORD_EVENT_TERMINAL_CONFIGURATION
Data	Active	Event
Output	Terminal NIHSDIO_ATTR_DATA_ACTIVE_EVENT_OUTPUT_TERMINAL
Active	Level NIHSDIO_ATTR_DATA_ACTIVE_EVENT_LEVEL_ACTIVE_LEVEL
Position NIHSDIO_ATTR_DATA_ACTIVE_EVENT_POSITION
Terminal	Configuration NIHSDIO_ATTR_DATA_ACTIVE_EVENT_TERMINAL_CONFIGURATION
Marker	Event
Output	Terminal NIHSDIO_ATTR_MARKER_EVENT_OUTPUT_TERMINAL
Pulse	Polarity NIHSDIO_ATTR_MARKER_EVENT_PULSE_POLARITY
Position NIHSDIO_ATTR_MARKER_EVENT_POSITION
Terminal	Configuration NIHSDIO_ATTR_MARKER_EVENT_TERMINAL_CONFIGURATION
Device	Characteristics
Total	Acquisition	Memory	Size NIHSDIO_ATTR_TOTAL_ACQUISITION_MEMORY_SIZE
Total	Generation	Memory	Size NIHSDIO_ATTR_TOTAL_GENERATION_MEMORY_SIZE
Serial	Number NIHSDIO_ATTR_SERIAL_NUMBER
Advanced
Data	Width NIHSDIO_ATTR_DATA_WIDTH
Data	Rate	Multiplier NIHSDIO_ATTR_DATA_RATE_MULTIPLIER
Data	Active	Internal	Route	Delay NIHSDIO_ATTR_DATA_ACTIVE_INTERNAL_ROUTE_DELAY

NIHSDIO_ATTR_DYNAMIC_CHANNELS
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_AssignDynamicChannels

Description
Assigns	channels	for	dynamic	operation.	The	group	of	dynamic	channels
is	changed	each	time	this	attribute	is	set.	For	example,	setting	this
attribute	to	0-10	and	then	setting	it	to	5-8	results	in	only	channels	5-8
being	assigned	to	dynamic.	Channels	0-4	and	9-10	are	no	longer
assigned	to	the	dynamic	operation	by	the	second	configuration.
Setting	an	empty	string	to	this	attribute	configures	all	channels	for
dynamic	operation.	Writing	None	removes	all	channels	from	the	dynamic
operation.	The	session	must	be	committed	before	changes	to	this
attribute	will	take	affect	(refer	to	niHSDIO_CommitDynamic	for	more
information	about	committing	a	session).
You	can	configure	a	channel	for	more	than	one	simultaneous	operation.
A	channel	can	be	simultaneously	configured	for	the	following	operations:

Dynamic	generation	and	any	(static	and/or	dynamic)	acquisition
Static	generation	and	any	(static	and/or	dynamic)	acquisition
Both	static	and	dynamic	acquisition
Note		You	cannot	configure	a	particular	channel	for	simultaneous
dynamic	and	static	generation.

Unconfiguring	a	dynamic	generation	channel	frees	that	channel	to	be
reconfigured	for	static	generation.	Unconfiguring	a	dynamic	generation
channel	does	not	stop	the	channel	from	driving	its	current	valueany	value
already	written	to	the	channel	continues	to	be	driven.
Syntax	examples:

2-15	or	15-2	set	channels	2	through	15	to	dynamic
0,	3,	10	or	3,	10,	0	set	channels	0,	3,	and	10	to	dynamic
""	(empty	string)	sets	all	channels	for	dynamic
None	removes	all	channels	from	dynamic

NIHSDIO_ATTR_STATIC_CHANNELS
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_AssignStaticChannels

Description
Assigns	channels	for	static	operation.	The	group	of	static	channels	is
changed	each	time	this	attribute	is	set.	For	example,	setting	this	attribute
to	0-10	and	then	setting	it	to	5-8	results	in	only	channels	5-8	being
assigned	to	static.	Channels	0-4	and	9-10	are	unconfigured	by	the
second	configuration.
Writing	an	empty	string	to	this	attribute	configures	all	channels	for	static
operation.	Writing	the	value	None	removes	all	channels	from	static
operation.	The	channel	is	not	changed	until	a	call	to
niHSDIO_ReadStaticU32	(for	acquisition	sessions)	or
niHSDIO_WriteStaticU32	(for	generation	sessions).
You	can	configure	a	channel	for	more	than	one	simultaneous	operation.
A	channel	can	be	simultaneously	configured	for	the	following	operations:

Dynamic	generation	and	any	(static	and/or	dynamic)	acquisition
Static	generation	and	any	(static	and/or	dynamic)	acquisition
Both	static	and	dynamic	acquisition
Note		You	cannot	configure	a	particular	channel	for	simultaneous
dynamic	and	static	generation.

Unconfiguring	a	static	generation	channel	frees	that	channel	to	be
reconfigured	for	dynamic	generation.	Unconfiguring	a	static	generation
channel	does	not	stop	the	channel	from	driving	its	current	value		any
static	value	already	written	to	the	channel	continues	to	be	driven.
Syntax	examples:

2-15	or	15-2	set	channels	2	through	15	to	static
0,	3,	10	or	3,	10,	0	set	channels	0,	3,	and	10	to	static
""	(empty	string)	sets	all	channels	for	static
None	removes	all	channels	from	static	operation.

NIHSDIO_ATTR_DATA_VOLTAGE_HIGH_LEVEL
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViReal64 R/W Channel None niHSDIO_ConfigureDataVoltageLogicFamily
niHSDIO_ConfigureDataVoltageCustomLevels

Description
This	attribute	sets	the	high	data	voltage	level	for	the	session.	For	an
acquisition	session,	this	sets	the	Acquisition	Voltage	High	Level.	For	a
generation	session,	this	sets	the	Generation	Voltage	High	Level.
This	property	applies	to	static	and	dynamic	data	operations.

Note		NI	656x	devices	do	not	support	configuring	voltage	levels.
NI-HSDIO	returns	an	error	if	you	use	this	attribute	when
programming	those	devices.

NIHSDIO_ATTR_DATA_VOLTAGE_LOW_LEVEL
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViReal64 R/W Channel None niHSDIO_ConfigureDataVoltageLogicFamily
niHSDIO_ConfigureDataVoltageCustomLevels

Description
This	attribute	sets	the	low	data	voltage	level	for	the	session.	For	an
acquisition	session,	this	sets	the	Acquisition	Voltage	Low	Level.	For	a
generation	session,	this	sets	the	Generation	Voltage	Low	Level.

Note		NI	656x	devices	do	not	support	configuring	voltage	levels.
NI-HSDIO	returns	an	error	if	you	use	this	attribute	when
programming	those	devices.

NIHSDIO_ATTR_EVENT_VOLTAGE_HIGH_LEVEL
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViReal64 R/W N/A None niHSDIO_ConfigureEventVoltageLogicFamily
niHSDIO_ConfigureEventVoltageCustomLevels

Description
This	attribute	sets	the	high	event	voltage	level	for	the	session.	If	you	do
not	explicitly	set	this	attribute,	NI-HSDIO	assumes	the	same	value	as
NIHSDIO_ATTR_DATA_VOLTAGE_HIGH_LEVEL	for	the	generation
session.

Note		NI	656x	devices	do	not	support	configuring	voltage	levels.
NI-HSDIO	returns	an	error	if	you	use	this	attribute	when
programming	those	devices.

NIHSDIO_ATTR_EVENT_VOLTAGE_LOW_LEVEL
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViReal64 R/W N/A None niHSDIO_ConfigureEventVoltageLogicFamily
niHSDIO_ConfigureEventVoltageCustomLevels

Description
This	attribute	sets	the	low	event	voltage	level	for	the	session.	If	you	do
not	explicitly	set	this	attribute,	NI-HSDIO	assumes	the	same	value	as
NIHSDIO_ATTR_DATA_VOLTAGE_LOW_LEVEL	for	the	generation
session.

Note		NI	656x	devices	do	not	support	configuring	voltage	levels.
NI-HSDIO	returns	an	error	if	you	use	this	attribute	when
programming	those	devices.

NIHSDIO_ATTR_TRIGGER_VOLTAGE_LOW_LEVEL
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViReal64 R/W N/A None niHSDIO_ConfigureTriggerVoltageLogicFamily
niHSDIO_ConfigureTriggerVoltageCustomLevels

Description
This	attribute	sets	the	low	trigger	voltage	level	for	the	session.	If	you	do
not	explicitly	set	this	attribute,	NI-HSDIO	assumes	the	same	value	as
NIHSDIO_ATTR_DATA_VOLTAGE_LOW_LEVEL	for	the	acquisition
session.

Note		NI	656x	devices	do	not	support	configuring	voltage	levels.
NI-HSDIO	returns	an	error	if	you	use	this	attribute	when
programming	those	devices.

NIHSDIO_ATTR_TRIGGER_VOLTAGE_HIGH_LEVEL
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViReal64 R/W N/A None niHSDIO_ConfigureTriggerVoltageLogicFamily
niHSDIO_ConfigureTriggerVoltageCustomLevels

Description
This	attribute	sets	the	high	trigger	voltage	level	for	the	session.	If	you	do
not	explicitly	set	this	attribute,	NI-HSDIO	assumes	the	same	value	as
NIHSDIO_ATTR_DATA_VOLTAGE_HIGH_LEVEL	for	the	acquisition
session.

Note		NI	656x	devices	do	not	support	configuring	voltage	levels.
NI-HSDIO	returns	an	error	if	you	use	this	attribute	when
programming	those	devices.

NIHSDIO_ATTR_SAMPLES_PER_RECORD
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	the	number	of	samples	to	be	acquired	per	record.	If	you	are
using	a	Reference	trigger,	this	attribute	includes	both	pretrigger	and
posttrigger	samples.
This	attribute	is	valid	only	for	acquisition	sessions.

NIHSDIO_ATTR_INPUT_IMPEDANCE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViReal64 R/W Channel None None

Description
Use	this	attribute	to	change	input	impedance	for	the	data	channels.	Refer
to	the	device	documentation	for	more	information	about	the	input
impedance.
Refer	to	the	following	table	for	the	supported	settings	for	your	device.	NI-
HSDIO	returns	an	error	if	you	select	an	unsupported	setting.

Device Supported	Value
NI
654x

High	impedance

Refer	to	the	specifications	document	for	your	device	for	more
information	on	the	supported	high-impedance	values.

NI
655x

50	or	high	impedance

Refer	to	the	specifications	document	for	your	device	for	more
information	on	the	supported	high-impedance	values.

NI
656x

100	in	LVDS	terminal	configuration
10,000	in	single-ended	terminal	configuration

Refer	to	the	Termination	section	for	acquisition	with	your	device	for	more
information	about	choosing	the	input	impedance.
Units:	ohms

NIHSDIO_ATTR_DATA_INTERPRETATION
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W Channel None niHSDIO_ConfigureDataInterpretation

Description
Use	this	attribute	to	select	between	acquiring	using	the	high/low	data	or
valid/invalid	data	mode	of	data	interpretation	during	a	static	or	dynamic
acquisition	operation.
Select	high/low	mode	to	get	logic	high	or	logic	low	values.	Use
valid/invalid	mode	to	tell	if	the	signal	is	within	the	specified	voltage	range
(above	data	voltage	low	level	but	below	data	voltage	high	level)	or
outside	the	range	(below	data	voltage	low	level	or	above	data	voltage
high	level).

Note		NI	654x/656x	devices	only	support	the	high/low	mode	of
data	interpretation.	NI-HSDIO	returns	an	error	if	you	select
valid/invalid	mode	for	an	acquisition	with	these	devices.

Refer	to	your	specific	hardware	documentation	to	understand	how	data	is
returned	to	you.	This	attribute	is	only	valid	for	acquisition	sessions.

Defined	Values:
NIHSDIO_VAL_HIGH_OR_LOW	(3) Data	read	represents	logical

values	(high	level	or	low	level).
NIHSDIO_VAL_VALID_OR_INVALID	(4) Data	read	represents	the

channel	data	state:	tristate,
high	level,	or	low	level.

NIHSDIO_ATTR_FETCH_BACKLOG
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 RO N/A None None

Description
Use	this	attribute	to	query	how	many	acquired	samples	remain	in
onboard	memory.	This	attribute	is	used	with
NIHSDIO_ATTR_FETCH_OFFSET	and	NIHSDIO_FETCH_RELATIVE_TO.
This	attribute	returns	the	number	of	samples	available	from	the	specified
relativeTo	and	offset.
This	attribute	is	valid	only	for	acquisition	sessions.

NIHSDIO_ATTR_FETCH_RELATIVE_TO
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	the	absolute	location	within	the	acquired	record	from	which	to
begin	fetching.	The	default	value	is
NIHSDIO_VAL_CURRENT_READ_POSITION.	If	the	Reference	trigger	is
enabled,	the	read	position	is	initially	set	to	the	first	pretrigger	sample.	If
the	Reference	trigger	is	disabled,	the	read	position	is	initially	set	to	the
first	sample	acquired.	After	every	fetch,	the	read	position	moves	to	the
sample	immediately	after	the	last	fetched	sample.	Thus,	if	you	call	fetch
multiple	times	and	NIHSDIO_ATTR_FETCH_RELATIVE_TO	is	set	to
NIHSDIO_VAL_CURRENT_READ_POSITION,	each	fetch	retrieves	a
different	part	of	the	record.	If	NIHSDIO_ATTR_FETCH_RELATIVE_TO	is
set	to	any	other	value,	you	must	modify
NIHSDIO_ATTR_FETCH_OFFSET	between	fetches	to	fetch	different	parts
of	the	record.

Defined	Values:
NIHSDIO_VAL_MOST_RECENT_SAMPLE	(46) Specifies	that	fetching	occur

relative	to	the	most	recently
acquired	data.	The	fetch	offset
(NIHSDIO_ATTR_FETCH_OFFSET
must	be	negative.

NIHSDIO_VAL_FIRST_SAMPLE	(47) Specifies	that	fetching	occurs	at
the	first	sample	acquired	by	the
device.	If	the	device	wraps	its
buffer,	then	the	first	sample	is	no
longer	available.	In	this	case,	NI-
HSDIO	returns	an	error	if	the	fetch
offset	is	in	the	overwritten	data.

NIHSDIO_VAL_REFERENCE_TRIGGER	(48) Specifies	that	fetching	occur
relative	to	the	Reference	trigger.
This	value	behaves	like
NIHSDIO_VAL_FIRST_SAMPLE
no	Reference	trigger	is	configured.

NIHSDIO_VAL_FIRST_PRETRIGGER_SAMPLE	(49) Specifies	that	fetching	occur
relative	to	the	first	pretrigger
sample	acquired.	This	value
behaves	like
NIHSDIO_VAL_FIRST_SAMPLE
no	Reference	trigger	is	configured.

NIHSDIO_VAL_CURRENT_READ_POSITION	(50) Specifies	that	fetching	occur	after
the	last	fetched	sample.

NIHSDIO_ATTR_FETCH_OFFSET
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None None

Description
Offset	in	samples	to	start	fetching	acquired	waveform	data.	The	offset	is
applied	relative	to	the	NIHSDIO_ATTR_FETCH_RELATIVE_TO	position.
Offset	can	be	a	positive	or	negative	value.
If	the	specified	offset	would	cause	the	fetch	to	exceed	the	end	of	the
waveform,	NI-HSDIO	returns	a	data	overwrite	error.	If	the	selected	offset
would	cause	the	fetch	location	to	occur	before	the	start	of	the	waveform,
the	fetch	location	is	coerced	to	the	beginning	of	the	waveform.
This	attribute	is	valid	only	for	acquisition	sessions.

NIHSDIO_ATTR_RECORDS_DONE
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 RO N/A None None

Description
Returns	the	number	of	records	that	have	been	acquired.

NIHSDIO_ATTR_NUM_RECORDS
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	the	number	of	records	you	want	to	acquire.

NIHSDIO_ATTR_INITIAL_STATE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W Channel None niHSDIO_ConfigureInitialState
niHSDIO_ConfigureInitialStateU32

Description
Specifies	the	channel	state	after	the	session	is	initiated	but	before	the
first	waveform	sample	is	generated.	The	channel	changes	to	the	Initial
state	once	the	data	operation	has	been	initiated.	When	the	Start	trigger	is
asserted,	the	Initial	state	is	replaced	by	the	first	sample	in	the	waveform.
This	attribute	is	valid	only	for	generation	sessions.

Note		NI	656x	devices	do	not	support	the	tristate	Initial	state.

Defined	Values:
NIHSDIO_VAL_TRISTATE	(24) Sets	the	channel	to	a	high-

impedance	state.
NIHSDIO_VAL_LOGIC_HIGH	(1) Sets	the	channel	to	a	logic-

high	(high	level)	state.
NIHSDIO_VAL_LOGIC_LOW	(0) Sets	the	channel	to	a	logic-

low	(low	level)	state.
NIHSDIO_VAL_HOLD_LAST_VALUE	(27) The	channel	retains	its

previous	value.

NIHSDIO_ATTR_IDLE_STATE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W Channel None niHSDIO_ConfigureIdleState
niHSDIO_ConfigureIdleStateU32

Description
Specifies	the	Idle	state	for	a	channel.
A	dynamic	generation	operation	may	be	idle	when	the	operation
completes	normally,	when	the	operation	pauses,	or	when	it	terminates
because	of	an	underflow	error.
This	attribute	is	valid	only	for	generation	sessions.

Note		NI	656x	devices	do	not	support	the	tristate	Idle	state.

Defined	Values:
NIHSDIO_VAL_TRISTATE	(24) Sets	the	channel	to	a	high-

impedance	state.
NIHSDIO_VAL_LOGIC_HIGH	(1) Sets	the	channel	to	a	logic-

high	(high	level)	state.
NIHSDIO_VAL_LOGIC_LOW	(0) Sets	the	channel	to	a	logic-

low	(low	level)	state.
NIHSDIO_VAL_HOLD_LAST_VALUE	(27) The	channel	retains	its

previous	value.

NIHSDIO_ATTR_DRIVE_TYPE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W Channel None N/A

Description
Specifies	what	the	data	channels	generate	when	set	to	logic	1.	Using	the
open	collector	setting	to	generate	a	Z	is	useful	for	wired	logic	buses,	such
as	I2C	or	SMBus.

Notes		NI	656x	devices	only	support	the	active	drive	setting.	NI-
HSDIO	returns	an	error	if	you	try	to	configure	the	channels	on
these	devices	for	open	collector	generation.

NI	654x	devices	support	open	collector	generation	only	for	static
generation.	NI-HSDIO	returns	an	error	if	you	try	to	configure	the
channels	on	these	devices	for	open	collector	dynamic	generation.

This	property	is	only	valid	for	generation	sessions.

Defined	Values:
Active
drive	(75)

The	Generation	Voltage	High	Level	for	the	device	is
produced	at	the	channel	electronics	when	the	Pattern
Generation	Engine	generates	a	binary	1.

Open
collector	(76)

The	channel	electronics	assume	a	high-impedance	state
when	the	Pattern	Generation	Engine	generates	a
binary	1.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
Channel	Based Yes

NIHSDIO_ATTR_REPEAT_MODE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W N/A None niHSDIO_ConfigureGenerationRepeat

Description
Use	this	attribute	to	specify	whether	or	not	to	generate	a	single	waveform
continuously.	This	attribute	is	valid	only	when
NIHSDIO_ATTR_GENERATION_MODE	is	set	to
NIHSDIO_VAL_WAVEFORM;	it	is	not	used	when	in	scripted	mode.	If	this
attribute	is	set	to	NIHSDIO_VAL_FINITE,	then	use
NIHSDIO_ATTR_REPEAT_COUNT	to	specify	how	many	times	the	named
waveform	is	generated.
This	attribute	is	valid	only	for	generation	sessions.

Defined	Values:
NIHSDIO_VAL_FINITE	(16) Calling	niHSDIO_Initiate	generates

the	named	waveform	a	finite
number	of	times.	The	number	to
repeat	is	defined	by
NIHSDIO_ATTR_REPEAT_COUNT.

NIHSDIO_VAL_CONTINUOUS	(17) Calling
niHSDIO_InitGenerationSession
generates	the	named	waveform
continuously	(until	niHSDIO_Abort	is
called).

NIHSDIO_ATTR_REPEAT_COUNT
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W N/A None niHSDIO_ConfigureGenerationRepeat

Description
Use	this	attribute	to	specify	how	many	times	to	generate	the	waveform
specified	by	NIHSDIO_ATTR_WAVEFORM_TO_GENERATE.	This
attribute	is	valid	only	when	NIHSDIO_ATTR_REPEAT_MODE	is	set	to
NIHSDIO_VAL_FINITE;	it	is	not	used	when	the	device	is	in	continuous
mode.	This	attribute	is	valid	only	when
NIHSDIO_ATTR_GENERATION_MODE	is	set	to
NIHSDIO_VAL_WAVEFORM;	it	is	ignored	when	in	scripted	mode.
This	attribute	is	only	valid	for	generation	sessions.

NIHSDIO_ATTR_GENERATION_MODE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W N/A None niHSDIO_ConfigureGenerationMode

Description
Use	this	attribute	to	specify	whether	to	generate	the	waveform	specified
by	NIHSDIO_ATTR_WAVEFORM_TO_GENERATE	or	the	script	specified
by	NIHSDIO_ATTR_SCRIPT_TO_GENERATE	upon	calling
niHSDIO_Initiate.
This	attribute	is	valid	only	for	generation	sessions.

Defined	Values:
NIHSDIO_VAL_WAVEFORM	(14) Calling	niHSDIO_Initiate	generates	the	named

waveform	represented	by
NIHSDIO_ATTR_WAVEFORM_TO_GENERATE

NIHSDIO_VAL_SCRIPTED	(15) Calling	niHSDIO_Initiate	generates	the	script
represented	by
NIHSDIO_ATTR_SCRIPT_TO_GENERATE

NIHSDIO_ATTR_WAVEFORM_TO_GENERATE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ConfigureWaveformToGenerate

Description
Use	this	attribute	to	specify	which	named	waveform	in	onboard	memory
is	generated	upon	calling	niHSDIO_Initiate	when
NIHSDIO_ATTR_GENERATION_MODE	is	NIHSDIO_VAL_WAVEFORM.	If
this	attribute	is	not	set	to	a	valid	waveform	name	and	more	than	one
waveform	is	in	onboard	memory,	you	receive	an	error	when	calling
niHSDIO_Initiate.	If	only	one	waveform	is	in	onboard	memory	and	this
attribute	is	set	to	empty	string,	then	that	waveform	is	generated	upon
calling	niHSDIO_Initiate.
This	attribute	is	ignored	when	NIHSDIO_ATTR_GENERATION_MODE	is
set	to	NIHSDIO_VAL_SCRIPTED,	since
NIHSDIO_ATTR_SCRIPT_TO_GENERATE	defines	the	sequence	of
waveforms	to	generate.
This	attribute	is	valid	only	for	generation	sessions.

NIHSDIO_ATTR_SCRIPT_TO_GENERATE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ConfigureScriptToGenerate

Description
Use	this	attribute	to	specify	which	script	in	onboard	memory	is	generated
upon	calling	niHSDIO_Initiate	when
NIHSDIO_ATTR_GENERATION_MODE	is	NIHSDIO_VAL_SCRIPTED.	If
this	attribute	is	not	set	to	a	valid	script	and	more	than	one	script	is	in
onboard	memory,	you	receive	an	error	upon	calling	niHSDIO_Initiate.	If
only	one	script	is	in	onboard	memory	and	this	attribute	is	set	to	empty
string,	you	receive	an	error	upon	calling	niHSDIO_Initiate.
This	attribute	is	ignored	when	NIHSDIO_ATTR_GENERATION_MODE	is
set	to	NIHSDIO_VAL_WAVEFORM,	since
NIHSDIO_ATTR_WAVEFORM_TO_GENERATE	defines	which	waveform
to	generate.
This	attribute	is	valid	only	for	generation	sessions.

NIHSDIO_ATTR_STREAMING_ENABLED
Data
type Access Applies	to Coercion High-Level	Functions

ViBoolean R/W N/A None None

Description
Enables	streaming	of	data	from	host	memory	to	the	device.
This	property	is	valid	only	for	dynamic	generation	sessions.

NIHSDIO_ATTR_STREAMING_WAVEFORM_NAME
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W N/A None None

Description
Specifies	the	name	of	the	waveform	for	streaming.	Use	this	attribute	in
conjunction	with	the	NIHSDIO_ATTR_STREAMING_ENABLED	attribute.

Note		You	cannot	stream	an	unnamed	waveform.

NIHSDIO_ATTR_SPACE_AVAILABLE_IN_STREAMING_WAVEFORM
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 RO N/A None None

Description
Specifies	the	space	(in	samples)	available	in	the	streaming	waveform.
This	property	is	valid	only	when	streaming.

NIHSDIO_ATTR_DIRECT_DMA_ENABLED
Data
type Access Applies	to Coercion High-Level	Functions

ViBoolean R/W N/A None None

Description
Enables	direct	DMA.
This	property	is	valid	only	for	dynamic	generation	sessions.

NIHSDIO_ATTR_DIRECT_DMA_WINDOW_SIZE
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	the	direct	DMA	window	size	(in	bytes).

NIHSDIO_ATTR_DIRECT_DMA_WINDOW_ADDRESS
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	the	start	address	for	the	direct	DMA	window.

NIHSDIO_ATTR_DATA_TRANSFER_BLOCK_SIZE
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	the	number	of	samples	to	download	to	onboard	memory	at	one
time.

NIHSDIO_ATTR_SAMPLE_CLOCK_RATE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViReal64 R/W N/A None niHSDIO_ConfigureSampleClock

Description
Use	this	attribute	to	specify	the	Sample	clock	rate.
You	must	set	this	attribute	even	when	you	supply	an	external	clock
because	NI-HSDIO	uses	this	attribute	for	a	number	of	reasons,	including
optimal	error	checking	and	certain	pulse	width	selections.
If	you	are	using	the	On	Board	Clock	source,	getting	this	value	shows	how
NI-HSDIO	coerced	the	value.
Units:	hertz

NIHSDIO_ATTR_SAMPLE_CLOCK_SOURCE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ConfigureSampleClock

Description
Use	this	attribute	to	specify	the	Sample	clock	source.
STROBE	is	valid	only	for	acquisition	operations.

Defined	Values:
NIHSDIO_VAL_ON_BOARD_CLOCK_STR	("OnBoardClock") The	device

will	use
the
onboard
oscillator.

NIHSDIO_VAL_CLK_IN_STR	("ClkIn") The	device
will	use
the	clock
present	at
the	front
panel	CLK
IN	SMB
jack
connector.

NIHSDIO_VAL_PXI_STAR_STR	("PXI_STAR") The	device
will	use
the
PXI_STAR
signal
which	is
present	on
the	PXI
backplane.
This
selection
is	valid
only	for
PXI
devices	in
slots	other
than
Slot	2.

NIHSDIO_VAL_STROBE_STR	("STROBE") The	device
will	use
the	clock
present	at

the
STROBE
channel	of
the	DDC
connector.
This	is
valid	only
for
acquisition
sessions.

NIHSDIO_ATTR_SAMPLE_CLOCK_IMPEDANCE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViReal64 R/W N/A None None

Description
Use	this	attribute	to	program	the	input	impedance	of	the	CLK	IN	SMB
jack	connector	when	the	Sample	clock	is	supplied	through	the	front
panel.
Units:	ohms

NIHSDIO_ATTR_EXPORTED_SAMPLE_CLOCK_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ExportSignal

Description
Use	this	attribute	to	export	the	Sample	clock	to	the	specified	terminal.

Defined	Values:
NIHSDIO_VAL_DO_NOT_EXPORT_STR	("None") The	signal	is	not

exported.
NIHSDIO_VAL_CLK_OUT_STR	("ClkOut") The	devices	will

use	the	signal
present	at	the
front	panel	CLK
OUT	SMB	jack
connector.

NIHSDIO_VAL_DDC_CLK_OUT_STR	("DDC_ClkOut") DDC	CLK	OUT
channel	in	the
front	panel	DDC
connector.

NIHSDIO_ATTR_EXPORTED_SAMPLE_CLOCK_MODE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None None

Description
Use	this	attribute	to	specify	the	position	of	the	exported	Sample	clock
relative	to	the	Sample	clock	used	by	the	device.	When	the	Sample	clock
rate	is	set	to	less	than	25	MS/s,	this	attribute	must	not	be	set	to
NIHSDIO_VAL_DELAYED.

Defined	Values:
NIHSDIO_VAL_NONINVERTED	(21) The	device	exports	the	Sample	clock	without

modifications.
NIHSDIO_VAL_INVERTED	(22) The	device	inverts	the	Sample	clock	prior	to	exporting	it.
NIHSDIO_VAL_DELAYED	(23) The	device	delays	the	Sample	clock	prior	to	exporting	it.

Use
NIHSDIO_ATTR_EXPORTED_SAMPLE_CLOCK_DELAY
to	specify	the	delay.

NIHSDIO_ATTR_EXPORTED_SAMPLE_CLOCK_DELAY
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViReal64 R/W N/A None None

Description
Use	this	attribute	to	specify	the	delay	of	the	exported	Sample	clock
relative	to	the	Sample	clock	used	by	the	device.	This	attribute	is	relevant
only	when	NIHSDIO_ATTR_EXPORTED_SAMPLE_CLOCK_MODE	is	set
to	NIHSDIO_VAL_DELAYED.	Otherwise,	this	attribute	is	ignored.	This
attribute	is	specified	as	a	fraction	of	the	Sample	clock	period,	that	is,	as	a
fraction	of	(1/NIHSDIO_ATTR_SAMPLE_CLOCK_RATE).

NIHSDIO_ATTR_REF_CLOCK_RATE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViReal64 R/W N/A None niHSDIO_ConfigureRefClock

Description
Use	this	attribute	to	specify	the	rate	of	the	Reference	clock.	10	MHz	is
currently	the	only	valid	value	for	this	attribute.	This	attribute	is	ignored
when	NIHSDIO_ATTR_REF_CLOCK_SOURCE	is	set	to	None.
Units:	hertz

NIHSDIO_ATTR_REF_CLOCK_SOURCE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ConfigureRefClock

Description
Use	this	attribute	to	specify	the	Reference	clock	source.

Defined	Values:
NIHSDIO_VAL_NONE_STR	("None") The	device	will	not	use

a	Reference	clock.
NIHSDIO_VAL_CLK_IN_STR	("ClkIn") The	device	will	use	the

clock	present	at	the
front	panel	CLK	IN
SMB	jack	connector.

NIHSDIO_VAL_PXI_CLK10_STR	("PXI_CLK10") The	device	will	use	the
PXI_CLK10	signal,
which	is	present	on	the
PXI	backplane.	This
selection	is	valid	only
for	PXI	devices.

NIHSDIO_VAL_RTSI7_STR	("RTSI7") RTSI	trigger	line	7.
This	selection	is	valid
only	for	PCI	devices.

NIHSDIO_ATTR_REF_CLOCK_IMPEDANCE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViReal64 R/W N/A None None

Description
Use	this	attribute	to	set	the	input	impedance	of	the	Reference	clock	when
it	is	supplied	through	the	front	panel.
Valid	values	are	50	or	1000.
Units:	ohms

NIHSDIO_ATTR_EXPORTED_REF_CLOCK_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ExportSignal

Description
Use	this	attribute	to	export	the	Reference	clock	to	the	specified	terminal.

Defined	Values:
NIHSDIO_VAL_DO_NOT_EXPORT_STR	("None") The	signal	is	not

exported.
NIHSDIO_VAL_CLK_OUT_STR	("ClkOut") The	devices	will	use

the	signal	present	at
the	front	panel	CLK
OUT	SMB	jack
connector.

NIHSDIO_ATTR_EXPORTED_ONBOARD_REF_CLOCK_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W None None None

Description
Use	this	attribute	to	export	the	Onboard	Reference	clock	to	the	specified
terminal.	This	attribute	is	only	valid	for	PCI	devices.

Defined	Values
NIHSDIO_VAL_NONE_STR	("None") The	device	will	not	export	the

Onboard	Reference	clock.
NIHSDIO_VAL_RTSI7_STR	("RTSI7") RTSI	trigger	line	7.

NIHSDIO_ATTR_DATA_POSITION
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W Channel None niHSDIO_ConfigureDataPosition

Description
Specifies	the	data	position	for	the	operation,	which	specifies	which	edge
of	the	Sample	clock	is	used	to	time	the	generation	or	acquisition.	You	can
also	configure	the	device	to	generate	or	acquire	data	at	a	configurable
delay	past	each	rising	edge	of	the	Sample	clock.	When	this	attribute	is
set	to	NIHSDIO_VAL_DELAY_FROM_SAMPLE_CLOCK_RISING_EDGE,
use	NIHSDIO_ATTR_DATA_POSITION_DELAY	to	specify	the	delay
value.

Note		To	configure	a	delay	on	NI	656x	devices,	you	must	delay	all
channels	on	the	device.	NI-HSDIO	returns	an	error	if	you	apply	a
delay	to	only	a	partial	channel	list.

Defined	Values:
NIHSDIO_VAL_SAMPLE_CLOCK_RISING_EDGE	(18) The	device	samples	or	generates	data	on

the	Sample	clock	rising	edge.
NIHSDIO_VAL_SAMPLE_CLOCK_FALLING_EDGE	(19) The	device	samples	or	generates	data	on

the	Sample	clock	falling	edge.
NIHSDIO_VAL_DELAY_FROM_SAMPLE_CLOCK_RISING_EDGE	(20) The	device	samples	or	generates	data	with

a	delay	from	the	
Specify	the	delay	using
NIHSDIO_ATTR_DATA_POSITION_DELAY
This	choice	has	more	jitter	than	the	rising
or	falling	edge	values.	Certain	devices	have
Sample	clock	frequency	limitations	on
when	a	custom	delay	can	be	used.	Refer	to
the	

NIHSDIO_ATTR_DATA_POSITION_DELAY
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViReal64 R/W Channel None niHSDIO_ConfigureDataPositionDelay

Description
Specifies	the	delay	after	the	Sample	clock	rising	edge	when	the	device
generates	or	acquires	a	new	data	sample.	Data	delay	is	expressed	as	a
fraction	of	the	clock	period	(for	example,	a	fraction	of
1/NIHSDIO_ATTR_SAMPLE_CLOCK_RATE).	This	attribute	is	relevant
only	when	NIHSDIO_ATTR_DATA_POSITION	is	set	to
NIHSDIO_VAL_DELAY_FROM_SAMPLE_CLOCK_RISING_EDGE.

Note		To	configure	a	delay	on	NI	656x	devices,	you	must	delay	all
channels	on	the	device.	NI-HSDIO	returns	an	error	if	you	apply	a
delay	to	only	a	partial	channel	list.

NIHSDIO_ATTR_EXPORTED_SAMPLE_CLOCK_OFFSET
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViReal64 R/W N/A None None

Description
Use	this	attribute	to	offset	the	exported	Sample	clock	by	a	fixed	time.
Refer	to	Dynamic	Generation	Timing	Diagrams	for	more	information
about	changing	this	value.
Valid	values	for	this	ViReal64	are	2.5e-9	and	0	for	the	NI	654x/655x
devices	and	1.6e-9	for	the	NI	656x	devices.
Units:	seconds

NIHSDIO_ATTR_OSCILLATOR_PHASE_DAC_VALUE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None None

Description
Use	this	attribute	to	phase	shift	the	PLL	circuit	of	the	onboard	clock
source.	You	can	use	this	attribute	to	align	the	Sample	clock	of	this	device
with	another	device	that	shares	the	same	Reference	clock.	This	attribute
is	valid	if	NIHSDIO_ATTR_REF_CLOCK_SOURCE	source	is	not	set	to
NIHSDIO_VAL_NONE_STR.
The	valid	range	for	this	attribute	is	0	to	4,095.

NIHSDIO_ATTR_START_TRIGGER_TYPE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W N/A None niHSDIO_ConfigureDigitalEdgeStartTrigger
niHSDIO_ConfigurePatternMatchStartTrigger
niHSDIO_ConfigureSoftwareStartTrigger
niHSDIO_DisableStartTrigger

Description
Use	this	attribute	to	specify	whether	you	want	the	Start	trigger	to	be	a
digital	edge,	pattern	match,	or	software	trigger.	You	can	also	choose
NIHSDIO_VAL_NONE	as	the	value	for	this	attribute.

Defined	Values:
NIHSDIO_VAL_NONE	(28) The	data	operation	starts	immediately	after	you	call

niHSDIO_Initiate.
NIHSDIO_VAL_DIGITAL_EDGE	(29) The	data	operation	does	not	start	until	a	digital	edge	is	detected.

The	source	of	the	digital	edge	is	specified	with
NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_SOURCE
and	the	active	edge	is	specified	with
NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_EDGE

NIHSDIO_VAL_SOFTWARE	(32) The	data	operation	does	not	start	until	a	software	trigger	occurs.
You	can	assert	the	software	trigger	by	calling
niHSDIO_SendSoftwareEdgeTrigger
NIHSDIO_VAL_START_TRIGGER

NIHSDIO_VAL_PATTERN_MATCH	(31) The	data	operation	does	not	take	effect	until	a	specific	data
pattern	matching	condition	is	met.	Configure	the	condition	by
setting
NIHSDIO_ATTR_PATTERN_MATCH_START_TRIGGER_PATTERN
and
NIHSDIO_ATTR_PATTERN_MATCH_START_TRIGGER_WHEN
This	is	valid	only	for	acquisition	sessions.

NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_SOURCE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ConfigureDigitalEdgeStartTrigger

Description
Specifies	the	source	terminal	for	the	Start	trigger.	This	attribute	is	used
only	when	NIHSDIO_ATTR_START_TRIGGER_TYPE	is	set	to
NIHSDIO_VAL_DIGITAL_EDGE.

Defined	Values:
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front	panel

SMB	jack	connector.
NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PXI_TRIG0_STR	("PXI_Trig0") PXI	trigger	line	0.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG1_STR	("PXI_Trig1") PXI	trigger	line	1.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG2_STR	("PXI_Trig2") PXI	trigger	line	2.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG3_STR	("PXI_Trig3") PXI	trigger	line	3.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG4_STR	("PXI_Trig4") PXI	trigger	line	4.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG5_STR	("PXI_Trig5") PXI	trigger	line	5.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG6_STR	("PXI_Trig6") PXI	trigger	line	6.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG7_STR	("PXI_Trig7") PXI	trigger	line	7.	(PXI

devices)
NIHSDIO_VAL_RTSI0_STR	("RTSI0") RTSI	trigger	line	0.	(PCI

devices)
NIHSDIO_VAL_RTSI1_STR	("RTSI1") RTSI	trigger	line	1.	(PCI

devices)
NIHSDIO_VAL_RTSI2_STR	("RTSI2") RTSI	trigger	line	2.	(PCI

devices)
NIHSDIO_VAL_RTSI3_STR	("RTSI3") RTSI	trigger	line	3.	(PCI

devices)

NIHSDIO_VAL_RTSI4_STR	("RTSI4") RTSI	trigger	line	4.	(PCI
devices)

NIHSDIO_VAL_RTSI5_STR	("RTSI5") RTSI	trigger	line	5.	(PCI
devices)

NIHSDIO_VAL_RTSI6_STR	("RTSI6") RTSI	trigger	line	6.	(PCI
devices)

NIHSDIO_VAL_RTSI7_STR	("RTSI7") RTSI	trigger	line	7.	(PCI
devices)

NIHSDIO_VAL_PXI_STAR_STR	("PXI_STAR") The	device	will	use	the
PXI_STAR	signal	which
is	present	on	the	PXI
backplane.	This	selection
is	valid	only	for	PXI
devices	in	slots	other
than	Slot	2.

NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_EDGE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W N/A None niHSDIO_ConfigureDigitalEdgeStartTrigger

Description
Specifies	the	active	edge	for	the	Start	trigger.	This	attribute	is	used	only
when	NIHSDIO_ATTR_START_TRIGGER_TYPE	is	set	to
NIHSDIO_VAL_DIGITAL_EDGE.

Defined	Values:
NIHSDIO_VAL_RISING_EDGE	(12) Rising-edge	trigger.
NIHSDIO_VAL_FALLING_EDGE	(13) Falling-edge	trigger.

NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_POSITION
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None None

Specifies	the	position	where	the	Start	trigger	is	asserted,	relative	to	the
Sample	clock.	Trigger	voltages	and	positions	are	only	relevant	if	the
trigger	source	is	a	front	panel	connector.

Defined	Values:
NIHSDIO_VAL_SAMPLE_CLOCK_RISING_EDGE	(18) The	trigger	is	received	synchronously	with

the	rising	edge	of	the	Sample	clock.
NIHSDIO_VAL_SAMPLE_CLOCK_FALLING_EDGE	(19) The	trigger	is	received	synchronously	with

the	Sample	clock	falling	edge.
NIHSDIO_VAL_DELAY_FROM_SAMPLE_CLOCK_RISING_EDGE	(20) The	trigger	is	received	synchronously	with

the	delay	the	Sample	clock	rising	
can	use	this	value	when	the	Sample	clock
rate	is	25	MS/s	or	more.	Specify	the	delay
using
NIHSDIO_ATTR_DATA_POSITION_DELAY
This	choice	has	more	jitter	than	the	rising
or	falling	edge	values.	Certain	devices	have
Sample	clock	frequency	limitations	on
when	a	custom	delay	can	be	used.	Refer	to
the	

NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_IMPEDANCE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViReal R/W N/A None

Description
Specifies	the	impedance	on	the	channel	configured	for	the	digital	edge
Start	trigger.
Refer	to	the	following	table	for	the	supported	settings	for	your	device.	NI-
HSDIO	returns	an	error	if	you	select	an	unsupported	setting.

Device Supported	Value
NI	654x 100
NI	655x 50	or	10000
NI	656x 100	in	LVDS	terminal	configuration

10000	in	single-ended	terminal	configuration

This	attribute	is	only	set	if	the	trigger	is	configured	to	use	a	PFI	channel,
and	it	is	ignored	if	the	trigger	is	configured	for	any	other	channel.
Units:	ohms

NIHSDIO_ATTR_DIGITAL_EDGE_START_TRIGGER_TERMINAL_CONFIGURATION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	whether	the	Start	trigger	terminal	is	configured	for	single-ended
or	LVDS	operation.	Valid	values	for	this	attribute	vary	by	device.	Refer	to
your	device	documentation	to	determine	if	your	hardware	supports	LVDS
operation.

Defined	Values:
NIHSDIO_VAL_LVDS	(64) The	terminal	will	be	configured	for

LVDS	voltage	levels.
NIHSDIO_VAL_SINGLE_ENDED	(65) The	terminal	will	be	configured	for

single-ended	voltage	levels.

NIHSDIO_ATTR_PATTERN_MATCH_START_TRIGGER_PATTERN
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ConfigurePatternMatchStartTrigger

Description
Sets	the	pattern	match	mask	for	the	Start	trigger.	This	attribute	is	used
when	NIHSDIO_ATTR_START_TRIGGER_TYPE	is	set	to
NIHSDIO_VAL_PATTERN_MATCH.	The	pattern	is	a	string	of	characters
representing	the	entire	pattern	to	be	matched	on.	Each	character
corresponds	to	a	particular	channel.

'X':	Match	on	any	value
'1':	Match	on	a	logic	1
'0':	Match	on	a	logic	0
R	or	r:	Match	on	a	rising	edge
F	or	f:	Match	on	a	falling	edge
E	or	e:	Match	on	either	edge

Spaces	are	ignored,	and	are	useful	for	readability	to	segment	long
patterns.	The	rightmost	character	in	the	expression	corresponds	to	the
lowest	numbered	physical	channel.	For	example,	XXXX	XXXX	XXXX
1111	1100	specifies	to	match	when	channels	0	and	1	are	'0'	and	channels
2-7	are	'1'.	The	values	seen	by	pattern	matching	are	affected	by
NIHSDIO_ATTR_DATA_INTERPRETATION.

NIHSDIO_ATTR_PATTERN_MATCH_START_TRIGGER_WHEN
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W N/A None niHSDIO_ConfigurePatternMatchStartTrigger

Description
Specifies	whether	a	pattern	match	Start	trigger	asserts	when	a	particular
pattern	is	matched	or	not	matched.	This	attribute	is	valid	only	for
acquisition	tasks.

Defined	Values:
NIHSDIO_VAL_PATTERN_MATCHES	(36) The	trigger	asserts

when	the	pattern
matches.

NIHSDIO_VAL_PATTERN_DOES_NOT_MATCH	(37) The	trigger	asserts
when	the	pattern
does	not	match.

NIHSDIO_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ExportSignal

Description
Specifies	the	destination	terminal	for	exporting	the	Start	trigger.	Event
voltages	and	positions	are	only	relevant	if	the	destination	of	the	event	is	a
front	panel	connector.

Defined	Values:
NIHSDIO_VAL_DO_NOT_EXPORT_STR	("None") The	signal	is	not

exported.
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front

panel	SMB	jack
connector.

NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PXI_TRIG0_STR	("PXI_Trig0") PXI	trigger	line	0.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG1_STR	("PXI_Trig1") PXI	trigger	line	1.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG2_STR	("PXI_Trig2") PXI	trigger	line	2.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG3_STR	("PXI_Trig3") PXI	trigger	line	3.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG4_STR	("PXI_Trig4") PXI	trigger	line	4.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG5_STR	("PXI_Trig5") PXI	trigger	line	5.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG6_STR	("PXI_Trig6") PXI	trigger	line	6.	(PXI
devices)

NIHSDIO_VAL_RTSI0_STR	("RTSI0") RTSI	trigger	line	0.
(PCI	devices)

NIHSDIO_VAL_RTSI1_STR	("RTSI1") RTSI	trigger	line	1.
(PCI	devices)

NIHSDIO_VAL_RTSI2_STR	("RTSI2") RTSI	trigger	line	2.
(PCI	devices)

NIHSDIO_VAL_RTSI3_STR	("RTSI3") RTSI	trigger	line	3.
(PCI	devices)

NIHSDIO_VAL_RTSI4_STR	("RTSI4") RTSI	trigger	line	4.
(PCI	devices)

NIHSDIO_VAL_RTSI5_STR	("RTSI5") RTSI	trigger	line	5.
(PCI	devices)

NIHSDIO_VAL_RTSI6_STR	("RTSI6") RTSI	trigger	line	6.
(PCI	devices)

NIHSDIO_ATTR_EXPORTED_START_TRIGGER_TERMINAL_CONFIGURATION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	the	terminal	configuration	for	the	exported	Start	trigger	terminal.
Valid	values	for	this	attribute	vary	by	device.	Refer	to	your	device
documentation	to	determine	if	your	hardware	supports	LVDS	operation.

Defined	Values:
NIHSDIO_VAL_LVDS	(64) The	terminal	will	be	configured	for

LVDS	voltage	levels.
NIHSDIO_VAL_SINGLE_ENDED	(65) The	terminal	will	be	configured	for

single-ended	voltage	levels.

NIHSDIO_ATTR_REF_TRIGGER_TYPE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W N/A None niHSDIO_ConfigureDigitalEdgeRefTrigger
niHSDIO_ConfigurePatternMatchRefTrigger
niHSDIO_ConfigureSoftwareRefTrigger
niHSDIO_DisableRefTrigger

Description
Specifies	the	Reference	trigger	type.	Depending	on	this	attribute	value,
you	may	need	to	set	more	attributes	to	fully	configure	the	trigger.
This	attribute	is	valid	only	for	acquisition	sessions.

Defined	Values:
NIHSDIO_VAL_NONE	(28) The	acquisition	operation	does	not	have	a	Reference	trigger.

The	data	operation	starts	immediately	after	you	call
niHSDIO_Initiate	and	after	the	Start	trigger,	if	
asserts.

NIHSDIO_VAL_DIGITAL_EDGE	(29) The	Reference	trigger	asserts	when	a	digital	edge	is	detected.
The	source	of	the	digital	edge	is	specified	with
NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_SOURCE
and	the	active	edge	is	specified	with
NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_EDGE

NIHSDIO_VAL_SOFTWARE	(32) The	data	operation	does	not	start	until	a	software	trigger
occurs.	You	can	assert	the	software	trigger	by	calling
niHSDIO_SendSoftwareEdgeTrigger
NIHSDIO_VAL_REF_TRIGGER	as	the	trigger	name.

NIHSDIO_VAL_PATTERN_MATCH	(31) The	data	operation	does	not	take	effect	until	a	specific	data
pattern	matching	condition	is	met.	Configure	the	condition	by
setting
NIHSDIO_ATTR_PATTERN_MATCH_REF_TRIGGER_PATTERN
and
NIHSDIO_ATTR_PATTERN_MATCH_REF_TRIGGER_WHEN
This	is	valid	only	for	acquisition	sessions.

NIHSDIO_ATTR_REF_TRIGGER_PRETRIGGER_SAMPLES
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W N/A None niHSDIO_ConfigureDigitalEdgeRefTrigger
niHSDIO_ConfigurePatternMatchRefTrigger
niHSDIO_ConfigureSoftwareRefTrigger

Description
Specifies	the	number	of	pretrigger	samples	to	be	acquired	per	record	(for
example,	the	samples	acquired	before	the	Reference	trigger	is	received).
The	number	of	pretrigger	samples	cannot	be	greater	than
NIHSDIO_ATTR_SAMPLES_PER_RECORD.
This	attribute	is	valid	only	for	acquisition	sessions.

NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_SOURCE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ConfigureDigitalEdgeRefTrigger

Description
Specifies	the	source	terminal	for	the	Reference	trigger.	This	attribute	is
used	only	when	NIHSDIO_ATTR_REF_TRIGGER_TYPE	is	set	to
NIHSDIO_VAL_DIGITAL_EDGE.

Defined	Values:
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front	panel

SMB	jack	connector.
NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PXI_TRIG0_STR	("PXI_Trig0") PXI	trigger	line	0.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG1_STR	("PXI_Trig1") PXI	trigger	line	1.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG2_STR	("PXI_Trig2") PXI	trigger	line	2.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG3_STR	("PXI_Trig3") PXI	trigger	line	3.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG4_STR	("PXI_Trig4") PXI	trigger	line	4.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG5_STR	("PXI_Trig5") PXI	trigger	line	5.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG6_STR	("PXI_Trig6") PXI	trigger	line	6.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG7_STR	("PXI_Trig7") PXI	trigger	line	7.	(PXI

devices)
NIHSDIO_VAL_RTSI0_STR	("RTSI0") RTSI	trigger	line	0.	(PCI

devices)
NIHSDIO_VAL_RTSI1_STR	("RTSI1") RTSI	trigger	line	1.	(PCI

devices)
NIHSDIO_VAL_RTSI2_STR	("RTSI2") RTSI	trigger	line	2.	(PCI

devices)
NIHSDIO_VAL_RTSI3_STR	("RTSI3") RTSI	trigger	line	3.	(PCI

devices)

NIHSDIO_VAL_RTSI4_STR	("RTSI4") RTSI	trigger	line	4.	(PCI
devices)

NIHSDIO_VAL_RTSI5_STR	("RTSI5") RTSI	trigger	line	5.	(PCI
devices)

NIHSDIO_VAL_RTSI6_STR	("RTSI6") RTSI	trigger	line	6.	(PCI
devices)

NIHSDIO_VAL_RTSI7_STR	("RTSI7") RTSI	trigger	line	7.	(PCI
devices)

NIHSDIO_VAL_PXI_STAR_STR	("PXI_STAR") The	device	will	use	the
PXI_STAR	signal	which
is	present	on	the	PXI
backplane.	This	selection
is	valid	only	for	PXI
devices	in	slots	other
than	Slot	2.

NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_EDGE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W N/A None niHSDIO_ConfigureDigitalEdgeRefTrigger

Description
Specifies	the	active	edge	for	the	Reference	trigger.	This	attribute	is	used
when	NIHSDIO_ATTR_REF_TRIGGER_TYPE	is	set	to
NIHSDIO_VAL_DIGITAL_EDGE.

Defined	Values:
NIHSDIO_VAL_RISING_EDGE	(12) Rising-edge	trigger.
NIHSDIO_VAL_FALLING_EDGE	(13) Falling-edge	trigger.

NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_POSITION
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None None

Specifies	the	position	where	the	Reference	trigger	is	asserted,	relative	to
the	Sample	clock.	Trigger	voltages	and	positions	are	only	relevant	if	the
trigger	source	is	a	front	panel	connector.

Defined	Values:
NIHSDIO_VAL_SAMPLE_CLOCK_RISING_EDGE	(18) The	trigger	is	received	synchronously	with

the	rising	edge	of	the	Sample	clock.
NIHSDIO_VAL_SAMPLE_CLOCK_FALLING_EDGE	(19) The	trigger	is	received	synchronously	with

the	Sample	clock	falling	edge.
NIHSDIO_VAL_DELAY_FROM_SAMPLE_CLOCK_RISING_EDGE	(20) The	trigger	is	received	synchronously	with

the	delay	the	Sample	clock	rising	
can	use	this	value	when	the	Sample	clock
rate	is	25	MS/s	or	more.	Specify	the	delay
using
NIHSDIO_ATTR_DATA_POSITION_DELAY
This	choice	has	more	jitter	than	the	rising
or	falling	edge	values.	Certain	devices	have
Sample	clock	frequency	limitations	on
when	a	custom	delay	can	be	used.	Refer	to
the	

NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_IMPEDANCE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViReal R/W N/A None

Description
Specifies	the	impedance	on	the	channel	configured	for	the	digital	edge
Reference	trigger.	Valid	values	for	this	attribute	vary	by	device.
Refer	to	the	following	table	for	the	supported	settings	for	your	device.	NI-
HSDIO	returns	an	error	if	you	select	an	unsupported	setting.

Device Supported	Value
NI	654x 100
NI	655x 50	or	10000
NI	656x 100	in	LVDS	terminal	configuration

10000	in	single-ended	terminal	configuration

This	attribute	is	only	set	if	the	trigger	is	configured	to	use	a	PFI	channel,
and	it	is	ignored	if	the	trigger	is	configured	for	any	other	channel.
Units:	ohms

NIHSDIO_ATTR_DIGITAL_EDGE_REF_TRIGGER_TERMINAL_CONFIGURATION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	whether	the	Reference	trigger	terminal	is	configured	for	single-
ended	or	LVDS	operation.	Valid	values	for	this	attribute	vary	by	device.
Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

Defined	Values:
NIHSDIO_VAL_LVDS	(64) The	terminal	will	be	configured	for

LVDS	voltage	levels.
NIHSDIO_VAL_SINGLE_ENDED	(65) The	terminal	will	be	configured	for

single-ended	voltage	levels.

NIHSDIO_ATTR_PATTERN_MATCH_REF_TRIGGER_PATTERN
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ConfigurePatternMatchRefTrigger

Description
Sets	the	pattern	match	mask	for	the	Reference	trigger.	This	attribute	is
used	when	NIHSDIO_ATTR_REF_TRIGGER_TYPE	is	set	to
NIHSDIO_VAL_PATTERN_MATCH.
The	pattern	is	a	string	of	characters	representing	the	entire	pattern	to	be
matched	on.	Each	character	corresponds	to	a	particular	channel.

'X':	Match	on	any	value
'1':	Match	on	a	logic	1
'0':	Match	on	a	logic	0
R	or	r:	Match	on	a	rising	edge
F	or	f:	Match	on	a	falling	edge
E	or	e:	Match	on	either	edge

Spaces	are	ignored,	and	are	useful	for	readability	to	segment	long
patterns.	The	rightmost	character	in	the	expression	corresponds	to	the
lowest	numbered	physical	channel.	For	example,	XXXX	XXXX	XXXX
1111	1100	specifies	to	match	when	channels	0	and	1	are	'0'	and	channels
2-7	are	'1'.	The	values	seen	by	pattern	matching	are	affected	by
NIHSDIO_ATTR_DATA_INTERPRETATION.
This	attribute	is	valid	only	for	acquisition	sessions.

NIHSDIO_ATTR_PATTERN_MATCH_REF_TRIGGER_WHEN
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W N/A None niHSDIO_ConfigurePatternMatchRefTrigger

Description
Specifies	whether	a	pattern	match	Reference	trigger	asserts	when	a
particular	pattern	is	matched	or	not	matched.	This	attribute	is	valid	only
for	acquisition	tasks.

Defined	Values:
NIHSDIO_VAL_PATTERN_MATCHES	(36) The	trigger	asserts

when	the	pattern
matches.

NIHSDIO_VAL_PATTERN_DOES_NOT_MATCH	(37) The	trigger	asserts
when	the	pattern
does	not	match.

NIHSDIO_ATTR_EXPORTED_REF_TRIGGER_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ExportSignal

Description
Specifies	the	destination	terminal	for	exporting	the	Reference	trigger.
Event	voltages	and	positions	are	only	relevant	if	the	destination	of	the
event	is	a	front	panel	connector.
This	attribute	is	valid	only	for	acquisition	sessions.

Defined	Values:
NIHSDIO_VAL_DO_NOT_EXPORT_STR	("None") The	signal	is	not

exported.
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front

panel	SMB	jack
connector.

NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PXI_TRIG0_STR	("PXI_Trig0") PXI	trigger	line	0.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG1_STR	("PXI_Trig1") PXI	trigger	line	1.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG2_STR	("PXI_Trig2") PXI	trigger	line	2.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG3_STR	("PXI_Trig3") PXI	trigger	line	3.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG4_STR	("PXI_Trig4") PXI	trigger	line	4.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG5_STR	("PXI_Trig5") PXI	trigger	line	5.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG6_STR	("PXI_Trig6") PXI	trigger	line	6.	(PXI
devices)

NIHSDIO_VAL_RTSI0_STR	("RTSI0") RTSI	trigger	line	0.
(PCI	devices)

NIHSDIO_VAL_RTSI1_STR	("RTSI1") RTSI	trigger	line	1.
(PCI	devices)

NIHSDIO_VAL_RTSI2_STR	("RTSI2") RTSI	trigger	line	2.
(PCI	devices)

NIHSDIO_VAL_RTSI3_STR	("RTSI3") RTSI	trigger	line	3.
(PCI	devices)

NIHSDIO_VAL_RTSI4_STR	("RTSI4") RTSI	trigger	line	4.
(PCI	devices)

NIHSDIO_VAL_RTSI5_STR	("RTSI5") RTSI	trigger	line	5.
(PCI	devices)

NIHSDIO_VAL_RTSI6_STR	("RTSI6") RTSI	trigger	line	6.
(PCI	devices)

NIHSDIO_ATTR_EXPORTED_REF_TRIGGER_TERMINAL_CONFIGURATION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	whether	the	exported	Reference	trigger	output	terminal	is
configured	for	single-ended	or	LVDS	operation.	Valid	values	for	this
attribute	vary	by	device.	Refer	to	your	device	documentation	to	determine
if	your	hardware	supports	LVDS	operation.

Defined	Values:
NIHSDIO_VAL_LVDS	(64) The	terminal	will	be	configured	for

LVDS	voltage	levels.
NIHSDIO_VAL_SINGLE_ENDED	(65) The	terminal	will	be	configured	for

single-ended	voltage	levels.

NIHSDIO_ATTR_START_TO_REF_TRIGGER_HOLDOFF
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViReal64 R/W N/A None None

Description
Use	this	attribute	to	specify	the	amount	of	time	after	a	Start	trigger	before
a	Reference	trigger	can	be	recognized.	If	the	pretrigger	time	(pretrigger
samples	/	frequency)	is	greater	than	this	attribute,	then	the	holdoff	value
is	ignored.
This	attribute	is	especially	useful	when	you	want	each	device	in	a
multidevice	situation	to	recognize	the	Reference	trigger	at	the	same	time,
though	the	Reference	trigger	is	shared	among	devices	and	each	device
has	a	different	pretrigger	count.
Units:	seconds

NIHSDIO_ATTR_REF_TO_REF_TRIGGER_HOLDOFF
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViReal64 R/W N/A None None

Description
Use	this	attribute	to	specify	the	amount	of	time	until	the	next	record's
Reference	trigger	can	be	recognized.	If	the	posttrigger	time	of	the	current
record	plus	the	pretrigger	time	of	the	next	record	(posttrigger	record	n	+
pretrigger	record	n+1	/	frequency)	is	greater	than	this	attribute,	then	the
holdoff	value	is	ignored.
This	attribute	is	especially	useful	when	you	want	each	device	in	a
multidevice	situation	to	recognize	the	Reference	trigger	at	the	same	time,
though	the	Reference	trigger	is	shared	among	devices	and	each	device
has	a	different	record	size.
Units:	seconds

NIHSDIO_ATTR_ADVANCE_TRIGGER_TYPE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W N/A None niHSDIO_ConfigureDigitalEdgeAdvanceTrigger
niHSDIO_ConfigurePatternMatchAdvanceTrigger
niHSDIO_ConfigureSoftwareAdvanceTrigger
niHSDIO_DisableAdvanceTrigger

Description
Use	this	attribute	to	specify	whether	you	want	the	Advance	trigger	to	be	a
digital	edge,	pattern	match,	or	software	trigger.	You	can	also	choose
NIHSDIO_VAL_NONE	as	the	value	for	this	attribute.
The	Advance	trigger	is	used	only	in	acquisition	sessions.

Defined	Values:
NIHSDIO_VAL_NONE	(28) No	Advance	trigger	is	configured.
NIHSDIO_VAL_DIGITAL_EDGE
(29)

The	Advance	trigger	is	not	asserted	until	a	digital	edge	is	detected.
The	source	of	the	digital	edge	is	specified	with
NIHSDIO_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_SOURCE
and	the	active	edge	is	specified	with
NIHSDIO_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_EDGE

NIHSDIO_VAL_SOFTWARE	(32) The	Advance	trigger	is	not	asserted	until	a	software	trigger	occurs.
You	can	assert	the	software	trigger	by	calling	the
niHSDIO_SendSoftwareEdgeTrigger	function	with
NIHSDIO_VAL_START_TRIGGER	as	the	trigger	name.

NIHSDIO_VAL_PATTERN_MATCH
(31)

The	Advance	trigger	is	asserted	when	a	specific	data	pattern
matching	condition	is	met.	Configure	the	condition	by	setting
NIHSDIO_ATTR_PATTERN_MATCH_ADVANCE_TRIGGER_PATTERN
and
NIHSDIO_ATTR_PATTERN_MATCH_ADVANCE_TRIGGER_WHEN

NIHSDIO_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_SOURCE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ConfigureDigitalEdgeAdvanceTrigger

Description
Specifies	the	source	terminal	for	the	Advance	trigger.	This	attribute	is
used	only	when	NIHSDIO_ATTR_ADVANCE_TRIGGER_TYPE	is	set	to
NIHSDIO_VAL_DIGITAL_EDGE.

Defined	Values:
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front	panel

SMB	jack	connector.
NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PXI_TRIG0_STR	("PXI_Trig0") PXI	trigger	line	0.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG1_STR	("PXI_Trig1") PXI	trigger	line	1.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG2_STR	("PXI_Trig2") PXI	trigger	line	2.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG3_STR	("PXI_Trig3") PXI	trigger	line	3.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG4_STR	("PXI_Trig4") PXI	trigger	line	4.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG5_STR	("PXI_Trig5") PXI	trigger	line	5.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG6_STR	("PXI_Trig6") PXI	trigger	line	6.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG7_STR	("PXI_Trig7") PXI	trigger	line	7.	(PXI

devices)
NIHSDIO_VAL_RTSI0_STR	("RTSI0") RTSI	trigger	line	0.	(PCI

devices)
NIHSDIO_VAL_RTSI1_STR	("RTSI1") RTSI	trigger	line	1.	(PCI

devices)
NIHSDIO_VAL_RTSI2_STR	("RTSI2") RTSI	trigger	line	2.	(PCI

devices)
NIHSDIO_VAL_RTSI3_STR	("RTSI3") RTSI	trigger	line	3.	(PCI

devices)

NIHSDIO_VAL_RTSI4_STR	("RTSI4") RTSI	trigger	line	4.	(PCI
devices)

NIHSDIO_VAL_RTSI5_STR	("RTSI5") RTSI	trigger	line	5.	(PCI
devices)

NIHSDIO_VAL_RTSI6_STR	("RTSI6") RTSI	trigger	line	6.	(PCI
devices)

NIHSDIO_VAL_RTSI7_STR	("RTSI7") RTSI	trigger	line	7.	(PCI
devices)

NIHSDIO_VAL_PXI_STAR_STR	("PXI_STAR") The	device	will	use	the
PXI_STAR	signal	which
is	present	on	the	PXI
backplane.	This	selection
is	valid	only	for	PXI
devices	in	slots	other
than	Slot	2.

NIHSDIO_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_EDGE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W N/A None niHSDIO_ConfigureDigitalEdgeAdvanceTrigger

Description
Specifies	the	active	edge	for	the	Advance	trigger.	This	attribute	is	used
only	when	NIHSDIO_ATTR_ADVANCE_TRIGGER_TYPE	is	set	to
NIHSDIO_VAL_DIGITAL_EDGE.

Defined	Values:
NIHSDIO_VAL_RISING_EDGE	(12) Rising-edge	trigger.
NIHSDIO_VAL_FALLING_EDGE	(13) Falling-edge	trigger.

NIHSDIO_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_POSITION
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None None

Specifies	the	position	where	the	Advance	trigger	is	asserted,	relative	to
the	Sample	clock.	Trigger	voltages	and	positions	are	only	relevant	if	the
trigger	source	is	a	front	panel	connector.

Defined	Values:
NIHSDIO_VAL_SAMPLE_CLOCK_RISING_EDGE	(18) The	trigger	is	received	synchronously	with

the	rising	edge	of	the	Sample	clock.
NIHSDIO_VAL_SAMPLE_CLOCK_FALLING_EDGE	(19) The	trigger	is	received	synchronously	with

the	Sample	clock	falling	edge.
NIHSDIO_VAL_DELAY_FROM_SAMPLE_CLOCK_RISING_EDGE	(20) The	trigger	is	received	synchronously	with

the	delay	the	Sample	clock	rising	
can	use	this	value	when	the	Sample	clock
rate	is	25	MS/s	or	more.	Specify	the	delay
using
NIHSDIO_ATTR_DATA_POSITION_DELAY
This	choice	has	more	jitter	than	the	rising
or	falling	edge	values.	Certain	devices	have
Sample	clock	frequency	limitations	on
when	a	custom	delay	can	be	used.	Refer	to
the	

NIHSDIO_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_IMPEDANCE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViReal R/W N/A None

Description
Specifies	the	impedance	on	the	channel	configured	for	the	digital	edge
Advance	trigger.	Valid	values	for	this	attribute	vary	by	device.
Refer	to	the	following	table	for	the	supported	settings	for	your	device.	NI-
HSDIO	returns	an	error	if	you	select	an	unsupported	setting.

Device Supported	Value
NI	654x 100
NI	655x 50	or	10000
NI	656x 100	in	LVDS	terminal	configuration

10000	in	single-ended	terminal	configuration

This	attribute	is	only	set	if	the	trigger	is	configured	to	use	a	PFI	channel,
and	it	is	ignored	if	the	trigger	is	configured	for	any	other	channel.
Units:	ohms

NIHSDIO_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_TERMINAL_CONFIGURATION
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	the	terminal	configuration	for	the	exported	Advance	trigger.
This	attribute	is	used	to	switch	between	single-ended	and	LVDS
configuration.

Defined	Values:
NIHSDIO_VAL_LVDS	(64) The	terminal	will	be	configured	for

LVDS	voltage	levels.
NIHSDIO_VAL_SINGLE_ENDED	(65) The	terminal	will	be	configured	for

single-ended	voltage	levels.

NIHSDIO_ATTR_PATTERN_MATCH_ADVANCE_TRIGGER_PATTERN
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ConfigurePatternMatchAdvanceTrigger

Description
Sets	the	pattern	match	mask	for	the	Advance	trigger.	This	attribute	is
used	when	NIHSDIO_ATTR_ADVANCE_TRIGGER_TYPE	is	set	to
NIHSDIO_VAL_PATTERN_MATCH.	The	pattern	is	a	string	of	characters
representing	the	entire	pattern	to	be	matched	on.	Each	character
corresponds	to	a	particular	channel.

'X':	Match	on	any	value
'1':	Match	on	a	logic	1
'0':	Match	on	a	logic	0
R	or	r:	Match	on	a	rising	edge
F	or	f:	Match	on	a	falling	edge
E	or	e:	Match	on	either	edge

Spaces	are	ignored,	and	are	useful	for	readability	to	segment	long
patterns.	The	rightmost	character	in	the	expression	corresponds	to	the
lowest	numbered	physical	channel.	For	example,	XXXX	XXXX	XXXX
1111	1100	specifies	to	match	when	channels	0	and	1	are	'0'	and	channels
2-7	are	'1'.	The	values	seen	by	pattern	matching	are	affected	by
NIHSDIO_ATTR_DATA_INTERPRETATION.

NIHSDIO_ATTR_PATTERN_MATCH_ADVANCE_TRIGGER_WHEN
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W N/A None niHSDIO_ConfigurePatternMatchAdvanceTrigger

Description
Specifies	whether	a	pattern	match	Advance	trigger	asserts	when	a
particular	pattern	is	matched	or	not	matched.	This	attribute	is	valid	only
for	acquisition	tasks.

Defined	Values:
NIHSDIO_VAL_PATTERN_MATCHES	(36) The	trigger	asserts

when	the	pattern
matches.

NIHSDIO_VAL_PATTERN_DOES_NOT_MATCH	(37) The	trigger	asserts
when	the	pattern
does	not	match.

NIHSDIO_ATTR_EXPORTED_ADVANCE_TRIGGER_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W None None niHSDIO_ExportSignal

Description
Use	this	attribute	to	specify	the	output	terminals	for	the	exported	Advance
trigger.	Setting	this	attribute	to	an	empty	string	means	that	when	you
commit	the	session,	the	signal	is	removed	from	that	terminal	and,	if
possible,	the	terminal	is	tristated.	Event	voltages	and	positions	are	only
relevant	if	the	destination	of	the	event	is	a	front	panel	connector.
This	attribute	is	valid	only	for	acquisition	sessions.

Defined	Values:
NIHSDIO_VAL_DO_NOT_EXPORT_STR	("None") The	signal	is	not

exported.
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front

panel	SMB	jack
connector.

NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PXI_TRIG0_STR	("PXI_Trig0") PXI	trigger	line	0.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG1_STR	("PXI_Trig1") PXI	trigger	line	1.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG2_STR	("PXI_Trig2") PXI	trigger	line	2.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG3_STR	("PXI_Trig3") PXI	trigger	line	3.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG4_STR	("PXI_Trig4") PXI	trigger	line	4.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG5_STR	("PXI_Trig5") PXI	trigger	line	5.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG6_STR	("PXI_Trig6") PXI	trigger	line	6.	(PXI
devices)

NIHSDIO_VAL_RTSI0_STR	("RTSI0") RTSI	trigger	line	0.
(PCI	devices)

NIHSDIO_VAL_RTSI1_STR	("RTSI1") RTSI	trigger	line	1.
(PCI	devices)

NIHSDIO_VAL_RTSI2_STR	("RTSI2") RTSI	trigger	line	2.
(PCI	devices)

NIHSDIO_VAL_RTSI3_STR	("RTSI3") RTSI	trigger	line	3.
(PCI	devices)

NIHSDIO_VAL_RTSI4_STR	("RTSI4") RTSI	trigger	line	4.
(PCI	devices)

NIHSDIO_VAL_RTSI5_STR	("RTSI5") RTSI	trigger	line	5.
(PCI	devices)

NIHSDIO_VAL_RTSI6_STR	("RTSI6") RTSI	trigger	line	6.
(PCI	devices)

NIHSDIO_ATTR_EXPORTED_ADVANCE_TRIGGER_TERMINAL_CONFIGURATION
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W None None None

Description
Specifies	whether	the	Advance	trigger	output	terminal	is	configured	for
single-ended	or	LVDS	operation.	Valid	values	for	this	attribute	vary	by
device.	Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

Defined	Values:
NIHSDIO_VAL_LVDS	(64) The	terminal	will	be	configured	for

LVDS	voltage	levels.
NIHSDIO_VAL_SINGLE_ENDED	(65) The	terminal	will	be	configured	for

single-ended	voltage	levels.

NIHSDIO_ATTR_SCRIPT_TRIGGER_TYPE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W Script
Trigger

None niHSDIO_ConfigureDigitalEdgeScriptTrigger
niHSDIO_ConfigureDigitalLevelScriptTrigger
niHSDIO_ConfigureSoftwareScriptTrigger
niHSDIO_DisableScriptTrigger

Description
Specifies	the	Script	trigger	type.	Depending	upon	the	value	of	this
attribute,	more	attributes	may	be	needed	to	fully	configure	the	trigger.
This	attribute	is	only	valid	for	generation	sessions.

Defined	Values:
NIHSDIO_VAL_NONE	(28) The	operation	does	not	use	a	Script	trigger.	The	data	operation

starts	immediately	after	you	call	niHSDIO_Initiate
NIHSDIO_VAL_DIGITAL_EDGE	(29) The	Script	trigger	asserts	when	a	digital	edge	is	detected.	

source	of	the	digital	edge	is	specified	with
NIHSDIO_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_SOURCE
and	the	active	edge	is	specified	with
NIHSDIO_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_EDGE

NIHSDIO_VAL_DIGITAL_LEVEL	(30) The	Script	trigger	is	active	when	the	level	of	the	Script	trigger
matches	the	desired	level.	The	source	of	the	Script	trigger	is
specified	with
NIHSDIO_ATTR_DIGITAL_LEVEL_SCRIPT_TRIGGER_SOURCE
and	the	desired	level	is	specified	with
NIHSDIO_ATTR_DIGITAL_LEVEL_SCRIPT_TRIGGER_WHEN

NIHSDIO_VAL_SOFTWARE	(32) The	Script	trigger	is	not	recognized	software	asserts	it.	You	may
create	a	software	trigger	by	calling
niHSDIO_SendSoftwareEdgeTrigger	with	the	appropriate	Script
trigger	as	the	trigger	name,	for	example,	"ScriptTrigger0".	You
can	assert	the	software	trigger	by	calling
niHSDIO_SendSoftwareEdgeTrigger	with
NIHSDIO_VAL_SCRIPT_TRIGGER

NIHSDIO_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_SOURCE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViString R/W Script
Trigger

None niHSDIO_ConfigureDigitalEdgeScriptTrigger

Description
Specifies	the	source	terminal	for	the	Script	trigger.	This	attribute	is	used
when	NIHSDIO_ATTR_SCRIPT_TRIGGER_TYPE	is	set	to
NIHSDIO_VAL_DIGITAL_EDGE.

Defined	Values:
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front	panel

SMB	jack	connector.
NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PXI_TRIG0_STR	("PXI_Trig0") PXI	trigger	line	0.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG1_STR	("PXI_Trig1") PXI	trigger	line	1.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG2_STR	("PXI_Trig2") PXI	trigger	line	2.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG3_STR	("PXI_Trig3") PXI	trigger	line	3.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG4_STR	("PXI_Trig4") PXI	trigger	line	4.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG5_STR	("PXI_Trig5") PXI	trigger	line	5.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG6_STR	("PXI_Trig6") PXI	trigger	line	6.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG7_STR	("PXI_Trig7") PXI	trigger	line	7.	(PXI

devices)
NIHSDIO_VAL_RTSI0_STR	("RTSI0") RTSI	trigger	line	0.	(PCI

devices)
NIHSDIO_VAL_RTSI1_STR	("RTSI1") RTSI	trigger	line	1.	(PCI

devices)
NIHSDIO_VAL_RTSI2_STR	("RTSI2") RTSI	trigger	line	2.	(PCI

devices)
NIHSDIO_VAL_RTSI3_STR	("RTSI3") RTSI	trigger	line	3.	(PCI

devices)

NIHSDIO_VAL_RTSI4_STR	("RTSI4") RTSI	trigger	line	4.	(PCI
devices)

NIHSDIO_VAL_RTSI5_STR	("RTSI5") RTSI	trigger	line	5.	(PCI
devices)

NIHSDIO_VAL_RTSI6_STR	("RTSI6") RTSI	trigger	line	6.	(PCI
devices)

NIHSDIO_VAL_RTSI7_STR	("RTSI7") RTSI	trigger	line	7.	(PCI
devices)

NIHSDIO_VAL_PXI_STAR_STR	("PXI_STAR") The	device	will	use	the
PXI_STAR	signal	which
is	present	on	the	PXI
backplane.	This	selection
is	valid	only	for	PXI
devices	in	slots	other
than	Slot	2.

NIHSDIO_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_EDGE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W Script
Trigger

None niHSDIO_ConfigureDigitalEdgeScriptTrigger

Description
Specifies	the	active	edge	for	the	Script	trigger.	This	attribute	is	used
when	NIHSDIO_ATTR_SCRIPT_TRIGGER_TYPE	is	set	to
NIHSDIO_VAL_DIGITAL_EDGE.

Defined	Values:
NIHSDIO_VAL_RISING_EDGE	(12) Rising-edge	trigger.
NIHSDIO_VAL_FALLING_EDGE	(13) Falling-edge	trigger.

NIHSDIO_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_IMPEDANCE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViReal R/W N/A None

Description
Specifies	the	impedance	on	the	channel	configured	for	the	digital	edge
Script	trigger.
Refer	to	the	following	table	for	the	supported	settings	for	your	device.	NI-
HSDIO	returns	an	error	if	you	select	an	unsupported	setting.

Device Supported	Value
NI	654x 100
NI	655x 50	or	10000
NI	656x 100	in	LVDS	terminal	configuration

10000	in	single-ended	terminal	configuration

This	attribute	is	only	set	if	the	trigger	is	configured	to	use	a	PFI	channel,
and	it	is	ignored	if	the	trigger	is	configured	for	any	other	channel.
Units:	ohms

NIHSDIO_ATTR_DIGITAL_EDGE_SCRIPT_TRIGGER_TERMINAL_CONFIGURATION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	whether	the	Script	trigger	terminal	is	configured	for	single-
ended	or	LVDS	operation.	Valid	values	for	this	attribute	vary	by	device.
Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

Defined	Values:
NIHSDIO_VAL_LVDS	(64) The	terminal	will	be	configured	for

LVDS	voltage	levels.
NIHSDIO_VAL_SINGLE_ENDED	(65) The	terminal	will	be	configured	for

single-ended	voltage	levels.

NIHSDIO_ATTR_DIGITAL_LEVEL_SCRIPT_TRIGGER_SOURCE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViString R/W Script
Trigger

None niHSDIO_ConfigureDigitalLevelScriptTrigger

Description
Specifies	the	source	terminal	for	the	Script	trigger.	This	attribute	is	used
when	NIHSDIO_ATTR_SCRIPT_TRIGGER_TYPE	is	set	to
NIHSDIO_VAL_DIGITAL_LEVEL.

Defined	Values:
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front	panel

SMB	jack	connector.
NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PXI_TRIG0_STR	("PXI_Trig0") PXI	trigger	line	0.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG1_STR	("PXI_Trig1") PXI	trigger	line	1.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG2_STR	("PXI_Trig2") PXI	trigger	line	2.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG3_STR	("PXI_Trig3") PXI	trigger	line	3.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG4_STR	("PXI_Trig4") PXI	trigger	line	4.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG5_STR	("PXI_Trig5") PXI	trigger	line	5.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG6_STR	("PXI_Trig6") PXI	trigger	line	6.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG7_STR	("PXI_Trig7") PXI	trigger	line	7.	(PXI

devices)
NIHSDIO_VAL_RTSI0_STR	("RTSI0") RTSI	trigger	line	0.	(PCI

devices)
NIHSDIO_VAL_RTSI1_STR	("RTSI1") RTSI	trigger	line	1.	(PCI

devices)
NIHSDIO_VAL_RTSI2_STR	("RTSI2") RTSI	trigger	line	2.	(PCI

devices)
NIHSDIO_VAL_RTSI3_STR	("RTSI3") RTSI	trigger	line	3.	(PCI

devices)

NIHSDIO_VAL_RTSI4_STR	("RTSI4") RTSI	trigger	line	4.	(PCI
devices)

NIHSDIO_VAL_RTSI5_STR	("RTSI5") RTSI	trigger	line	5.	(PCI
devices)

NIHSDIO_VAL_RTSI6_STR	("RTSI6") RTSI	trigger	line	6.	(PCI
devices)

NIHSDIO_VAL_RTSI7_STR	("RTSI7") RTSI	trigger	line	7.	(PCI
devices)

NIHSDIO_VAL_PXI_STAR_STR	("PXI_STAR") The	device	will	use	the
PXI_STAR	signal	which
is	present	on	the	PXI
backplane.	This	selection
is	valid	only	for	PXI
devices	in	slots	other
than	Slot	2.

NIHSDIO_ATTR_DIGITAL_LEVEL_SCRIPT_TRIGGER_WHEN
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W Script
Trigger

None niHSDIO_ConfigureDigitalLevelScriptTrigger

Description
Specifies	the	active	level	for	the	Script	trigger.	This	attribute	is	used	when
NIHSDIO_ATTR_SCRIPT_TRIGGER_TYPE	is	set	to
NIHSDIO_VAL_DIGITAL_LEVEL.

Defined	Values:
NIHSDIO_VAL_HIGH	(34) The	trigger	is	asserted	when	the	signal	is

high	level.
NIHSDIO_VAL_LOW	(35) The	trigger	is	asserted	when	the	signal	is	low

level.

NIHSDIO_ATTR_DIGITAL_LEVEL_SCRIPT_TRIGGER_IMPEDANCE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViReal R/W N/A None

Description
Specifies	the	impedance	on	the	channel	configured	for	the	digital	level
Script	trigger.
Refer	to	the	following	table	for	the	supported	settings	for	your	device.	NI-
HSDIO	returns	an	error	if	you	select	an	unsupported	setting.

Device Supported	Value
NI	654x 100
NI	655x 50	or	10000
NI	656x 100	in	LVDS	terminal	configuration

10000	in	single-ended	terminal	configuration

This	attribute	is	only	set	if	the	trigger	is	configured	to	use	a	PFI	channel,
and	it	is	ignored	if	the	trigger	is	configured	for	any	other	channel.
Units:	ohms

NIHSDIO_ATTR_DIGITAL_LEVEL_SCRIPT_TRIGGER_TERMINAL_CONFIGURATION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	whether	the	Script	trigger	terminal	is	configured	for	single-
ended	or	LVDS	operation.	Valid	values	for	this	attribute	vary	by	device.
Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

Defined	Values:
NIHSDIO_VAL_LVDS	(64) The	terminal	will	be	configured	for

LVDS	voltage	levels.
NIHSDIO_VAL_SINGLE_ENDED	(65) The	terminal	will	be	configured	for

single-ended	voltage	levels.

NIHSDIO_ATTR_EXPORTED_SCRIPT_TRIGGER_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W Script	Trigger None niHSDIO_ExportSignal

Description
Use	this	attribute	to	specify	the	output	terminals	for	the	exported	Script
trigger.	Setting	this	attribute	to	an	empty	string	means	that	when	you
commit	the	session,	the	signal	is	removed	from	that	terminal	and,	if
possible,	the	terminal	is	tristated.	Event	voltages	and	positions	are	only
relevant	if	the	destination	of	the	event	is	a	front	panel	connector.
This	attribute	is	valid	only	for	generation	sessions.

Defined	Values:
NIHSDIO_VAL_DO_NOT_EXPORT_STR	("None") The	signal	is	not

exported.
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front

panel	SMB	jack
connector.

NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PXI_TRIG0_STR	("PXI_Trig0") PXI	trigger	line	0.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG1_STR	("PXI_Trig1") PXI	trigger	line	1.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG2_STR	("PXI_Trig2") PXI	trigger	line	2.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG3_STR	("PXI_Trig3") PXI	trigger	line	3.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG4_STR	("PXI_Trig4") PXI	trigger	line	4.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG5_STR	("PXI_Trig5") PXI	trigger	line	5.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG6_STR	("PXI_Trig6") PXI	trigger	line	6.	(PXI
devices)

NIHSDIO_VAL_RTSI0_STR	("RTSI0") RTSI	trigger	line	0.
(PCI	devices)

NIHSDIO_VAL_RTSI1_STR	("RTSI1") RTSI	trigger	line	1.
(PCI	devices)

NIHSDIO_VAL_RTSI2_STR	("RTSI2") RTSI	trigger	line	2.
(PCI	devices)

NIHSDIO_VAL_RTSI3_STR	("RTSI3") RTSI	trigger	line	3.
(PCI	devices)

NIHSDIO_VAL_RTSI4_STR	("RTSI4") RTSI	trigger	line	4.
(PCI	devices)

NIHSDIO_VAL_RTSI5_STR	("RTSI5") RTSI	trigger	line	5.
(PCI	devices)

NIHSDIO_VAL_RTSI6_STR	("RTSI6") RTSI	trigger	line	6.
(PCI	devices)

NIHSDIO_ATTR_EXPORTED_SCRIPT_TRIGGER_TERMINAL_CONFIGURATION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	whether	the	Script	trigger	output	terminal	is	configured	for
single-ended	or	LVDS	operation.	Valid	values	for	this	attribute	vary	by
device.	Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

Defined	Values:
NIHSDIO_VAL_LVDS	(64) The	terminal	will	be	configured	for

LVDS	voltage	levels.
NIHSDIO_VAL_SINGLE_ENDED	(65) The	terminal	will	be	configured	for

single-ended	voltage	levels.

NIHSDIO_ATTR_PAUSE_TRIGGER_TYPE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W N/A None niHSDIO_ConfigureDigitalLevelPauseTrigger
niHSDIO_ConfigurePatternMatchPauseTrigger
niHSDIO_DisablePauseTrigger

Description
Specifies	the	Pause	trigger	type.	Depending	upon	the	value	of	this
attribute,	you	may	need	to	set	more	attributes	to	fully	configure	the
trigger.

Defined	Values:
NIHSDIO_VAL_NONE	(28) The	Pause	trigger	does	not	assert.	The	data	operation	starts

immediately	after	you	call	niHSDIO_Initiate
NIHSDIO_VAL_DIGITAL_LEVEL	(30) The	level	trigger	is	not	active	until	the	level	of	the	trigger	matches

the	desired	level.	The	source	of	the	Pause	trigger	is	specified	with
NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_SOURCE
and	the	desired	level	is	specified	with
NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_WHEN

NIHSDIO_VAL_PATTERN_MATCH	(31) The	data	operation	is	paused	while	a	specific	data	pattern
matching	condition	is	met.	Configure	the	condition	by	setting
NIHSDIO_ATTR_PATTERN_MATCH_PAUSE_TRIGGER_PATTERN
and
NIHSDIO_ATTR_PATTERN_MATCH_PAUSE_TRIGGER_WHEN
This	is	valid	only	for	acquisition	sessions.

NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_SOURCE
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ConfigureDigitalLevelPauseTrigger

Description
Specifies	the	source	terminal	for	the	Pause	trigger.	This	attribute	only
applies	to	acquisition	operations.

Defined	Values:
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front	panel

SMB	jack	connector.
NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front	panel

DDC	connector.
NIHSDIO_VAL_PXI_TRIG0_STR	("PXI_Trig0") PXI	trigger	line	0.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG1_STR	("PXI_Trig1") PXI	trigger	line	1.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG2_STR	("PXI_Trig2") PXI	trigger	line	2.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG3_STR	("PXI_Trig3") PXI	trigger	line	3.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG4_STR	("PXI_Trig4") PXI	trigger	line	4.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG5_STR	("PXI_Trig5") PXI	trigger	line	5.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG6_STR	("PXI_Trig6") PXI	trigger	line	6.	(PXI

devices)
NIHSDIO_VAL_PXI_TRIG7_STR	("PXI_Trig7") PXI	trigger	line	7.	(PXI

devices)
NIHSDIO_VAL_RTSI0_STR	("RTSI0") RTSI	trigger	line	0.	(PCI

devices)
NIHSDIO_VAL_RTSI1_STR	("RTSI1") RTSI	trigger	line	1.	(PCI

devices)
NIHSDIO_VAL_RTSI2_STR	("RTSI2") RTSI	trigger	line	2.	(PCI

devices)
NIHSDIO_VAL_RTSI3_STR	("RTSI3") RTSI	trigger	line	3.	(PCI

devices)

NIHSDIO_VAL_RTSI4_STR	("RTSI4") RTSI	trigger	line	4.	(PCI
devices)

NIHSDIO_VAL_RTSI5_STR	("RTSI5") RTSI	trigger	line	5.	(PCI
devices)

NIHSDIO_VAL_RTSI6_STR	("RTSI6") RTSI	trigger	line	6.	(PCI
devices)

NIHSDIO_VAL_RTSI7_STR	("RTSI7") RTSI	trigger	line	7.	(PCI
devices)

NIHSDIO_VAL_PXI_STAR_STR	("PXI_STAR") The	device	will	use	the
PXI_STAR	signal	which
is	present	on	the	PXI
backplane.	This	selection
is	valid	only	for	PXI
devices	in	slots	other
than	Slot	2.

NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_WHEN
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W N/A None niHSDIO_ConfigureDigitalLevelPauseTrigger

Description
Specifies	the	active	level	for	pausing	the	dynamic	operation.

Defined	Values:
NIHSDIO_VAL_HIGH	(34) The	trigger	is	asserted	when	the	signal	is

high	level.
NIHSDIO_VAL_LOW	(35) The	trigger	is	asserted	when	the	signal	is	low

level.

NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_POSITION
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None None

Specifies	the	position	where	the	digital	level	Pause	trigger	is	asserted,
relative	to	the	Sample	clock.	Trigger	voltages	and	positions	are	only
relevant	if	the	trigger	source	is	a	front	panel	connector.

Defined	Values:
NIHSDIO_VAL_SAMPLE_CLOCK_RISING_EDGE	(18) The	trigger	is	received	synchronously	with

the	rising	edge	of	the	Sample	clock.
NIHSDIO_VAL_SAMPLE_CLOCK_FALLING_EDGE	(19) The	trigger	is	received	synchronously	with

the	Sample	clock	falling	edge.
NIHSDIO_VAL_DELAY_FROM_SAMPLE_CLOCK_RISING_EDGE	(20) The	trigger	is	received	synchronously	with

the	delay	the	Sample	clock	rising	
can	use	this	value	when	the	Sample	clock
rate	is	25	MS/s	or	more.	Specify	the	delay
using
NIHSDIO_ATTR_DATA_POSITION_DELAY
This	choice	has	more	jitter	than	the	rising
or	falling	edge	values.	Certain	devices	have
Sample	clock	frequency	limitations	on
when	a	custom	delay	can	be	used.	Refer	to
the	

NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_TERMINAL_CONFIGURATION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	whether	the	Pause	trigger	terminal	is	configured	for	single-
ended	or	LVDS	operation.	Valid	values	for	this	attribute	vary	by	device.
Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

Defined	Values:
NIHSDIO_VAL_LVDS	(64) The	terminal	will	be	configured	for

LVDS	voltage	levels.
NIHSDIO_VAL_SINGLE_ENDED	(65) The	terminal	will	be	configured	for

single-ended	voltage	levels.

NIHSDIO_ATTR_DIGITAL_LEVEL_PAUSE_TRIGGER_IMPEDANCE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViReal R/W N/A None

Description
Specifies	the	impedance	on	the	channel	configured	for	the	digital	level
Pause	trigger.
Refer	to	the	following	table	for	the	supported	settings	for	your	device.	NI-
HSDIO	returns	an	error	if	you	select	an	unsupported	setting.

Device Supported	Value
NI	654x 100
NI	655x 50	or	10000
NI	656x 100	in	LVDS	terminal	configuration

10000	in	single-ended	terminal	configuration

This	attribute	is	only	set	if	the	trigger	is	configured	to	use	a	PFI	channel,
and	it	is	ignored	if	the	trigger	is	configured	for	any	other	channel.
Units:	ohms

NIHSDIO_ATTR_PATTERN_MATCH_PAUSE_TRIGGER_PATTERN
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ConfigurePatternMatchPauseTrigger

Description
Sets	the	pattern	match	mask	for	the	Pause	trigger.	This	attribute	is	used
when	NIHSDIO_ATTR_PAUSE_TRIGGER_TYPE	is	set	to
NIHSDIO_VAL_PATTERN_MATCH.	The	pattern	is	a	string	of	characters
representing	the	entire	pattern	to	be	matched	on.	Each	character
corresponds	to	a	particular	channel.

'X':	Match	on	any	value
'1':	Match	on	a	logic	1
'0':	Match	on	a	logic	0
R	or	r:	Match	on	a	rising	edge
F	or	f:	Match	on	a	falling	edge
E	or	e:	Match	on	either	edge

Spaces	are	ignored,	and	are	useful	for	readability	to	segment	long
patterns.	The	rightmost	character	in	the	expression	corresponds	to	the
lowest	numbered	physical	channel.	For	example,	XXXX	XXXX	XXXX
1111	1100	specifies	to	match	when	channels	0	and	1	are	'0'	and	channels
2-7	are	'1'.	The	values	seen	by	pattern	matching	are	affected	by
NIHSDIO_ATTR_DATA_INTERPRETATION.
This	attribute	is	only	valid	for	acquisition	sessions.

NIHSDIO_ATTR_PATTERN_MATCH_PAUSE_TRIGGER_WHEN
Specific	Attribute
Data
type Access Applies

to Coercion High-Level	Functions

ViInt32 R/W N/A None niHSDIO_ConfigurePatternMatchPauseTrigger

Description
Specifies	whether	a	pattern	match	Pause	trigger	asserts	when	a
particular	pattern	is	matched	or	not	matched.	This	attribute	is	valid	only
for	acquisition	sessions.

Defined	Values:
NIHSDIO_VAL_PATTERN_MATCHES	(36) The	trigger	asserts

when	the	pattern
matches.

NIHSDIO_VAL_PATTERN_DOES_NOT_MATCH	(37) The	trigger	asserts
when	the	pattern
does	not	match.

NIHSDIO_ATTR_EXPORTED_PAUSE_TRIGGER_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ExportSignal

Description
Specifies	the	destination	terminal	for	the	exported	Pause	trigger.	Event
voltages	and	positions	are	only	relevant	if	the	destination	of	the	event	is
one	of	the	front	panel	connectors.
This	attribute	is	only	valid	for	generation	sessions.

Defined	Values:
NIHSDIO_VAL_DO_NOT_EXPORT_STR	("None") The	signal	is	not

exported.
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front

panel	SMB	jack
connector.

NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PXI_TRIG0_STR	("PXI_Trig0") PXI	trigger	line	0.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG1_STR	("PXI_Trig1") PXI	trigger	line	1.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG2_STR	("PXI_Trig2") PXI	trigger	line	2.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG3_STR	("PXI_Trig3") PXI	trigger	line	3.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG4_STR	("PXI_Trig4") PXI	trigger	line	4.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG5_STR	("PXI_Trig5") PXI	trigger	line	5.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG6_STR	("PXI_Trig6") PXI	trigger	line	6.	(PXI
devices)

NIHSDIO_VAL_RTSI0_STR	("RTSI0") RTSI	trigger	line	0.
(PCI	devices)

NIHSDIO_VAL_RTSI1_STR	("RTSI1") RTSI	trigger	line	1.
(PCI	devices)

NIHSDIO_VAL_RTSI2_STR	("RTSI2") RTSI	trigger	line	2.
(PCI	devices)

NIHSDIO_VAL_RTSI3_STR	("RTSI3") RTSI	trigger	line	3.
(PCI	devices)

NIHSDIO_VAL_RTSI4_STR	("RTSI4") RTSI	trigger	line	4.
(PCI	devices)

NIHSDIO_VAL_RTSI5_STR	("RTSI5") RTSI	trigger	line	5.
(PCI	devices)

NIHSDIO_VAL_RTSI6_STR	("RTSI6") RTSI	trigger	line	6.
(PCI	devices)

NIHSDIO_ATTR_EXPORTED_PAUSE_TRIGGER_TERMINAL_CONFIGURATION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	whether	the	Pause	trigger	output	terminal	is	configured	for
single-ended	or	LVDS	operation.	Valid	values	for	this	attribute	vary	by
device.	Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

Defined	Values:
NIHSDIO_VAL_LVDS	(64) The	terminal	will	be	configured	for

LVDS	voltage	levels.
NIHSDIO_VAL_SINGLE_ENDED	(65) The	terminal	will	be	configured	for

single-ended	voltage	levels.

NIHSDIO_ATTR_READY_FOR_START_EVENT_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ExportSignal

Description
Specifies	the	destination	terminal	for	the	Ready	for	Start	event.	Event
voltages	and	positions	are	only	relevant	if	the	destination	of	the	event	is	a
front	panel	connector.

Defined	Values:
NIHSDIO_VAL_DO_NOT_EXPORT_STR	("None") The	signal	is	not

exported.
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front

panel	SMB	jack
connector.

NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PXI_TRIG0_STR	("PXI_Trig0") PXI	trigger	line	0.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG1_STR	("PXI_Trig1") PXI	trigger	line	1.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG2_STR	("PXI_Trig2") PXI	trigger	line	2.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG3_STR	("PXI_Trig3") PXI	trigger	line	3.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG4_STR	("PXI_Trig4") PXI	trigger	line	4.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG5_STR	("PXI_Trig5") PXI	trigger	line	5.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG6_STR	("PXI_Trig6") PXI	trigger	line	6.	(PXI
devices)

NIHSDIO_VAL_RTSI0_STR	("RTSI0") RTSI	trigger	line	0.
(PCI	devices)

NIHSDIO_VAL_RTSI1_STR	("RTSI1") RTSI	trigger	line	1.
(PCI	devices)

NIHSDIO_VAL_RTSI2_STR	("RTSI2") RTSI	trigger	line	2.
(PCI	devices)

NIHSDIO_VAL_RTSI3_STR	("RTSI3") RTSI	trigger	line	3.
(PCI	devices)

NIHSDIO_VAL_RTSI4_STR	("RTSI4") RTSI	trigger	line	4.
(PCI	devices)

NIHSDIO_VAL_RTSI5_STR	("RTSI5") RTSI	trigger	line	5.
(PCI	devices)

NIHSDIO_VAL_RTSI6_STR	("RTSI6") RTSI	trigger	line	6.
(PCI	devices)

NIHSDIO_ATTR_READY_FOR_START_EVENT_LEVEL_ACTIVE_LEVEL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	the	output	polarity	of	the	Ready	for	Start	event.

Defined	Values:
NIHSDIO_VAL_ACTIVE_HIGH	(10) The	exported	signal	is	low	level

while	the	event	is	deasserted.	A
high	pulse	occurs	when	the	event
asserts.	This	attribute	does	not
apply	to	other	exported	signals.

NIHSDIO_VAL_ACTIVE_LOW	(11) The	exported	signal	is	high	level
while	the	event	is	deasserted.	A	low
pulse	occurs	when	the	event
asserts.	This	attribute	does	not
apply	to	other	exported	signals.

NIHSDIO_ATTR_READY_FOR_START_EVENT_TERMINAL_CONFIGURATION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	whether	the	Ready	for	Start	event	terminal	is	configured	for
single-ended	or	LVDS	operation.	Valid	values	for	this	attribute	vary	by
device.	Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

Defined	Values:
NIHSDIO_VAL_LVDS	(64) The	terminal	will	be	configured	for

LVDS	voltage	levels.
NIHSDIO_VAL_SINGLE_ENDED	(65) The	terminal	will	be	configured	for

single-ended	voltage	levels.

NIHSDIO_ATTR_READY_FOR_ADVANCE_EVENT_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ExportSignal

Description
Specifies	the	destination	terminal	for	the	Ready	for	Advance	event.	Event
voltages	and	positions	are	only	relevant	if	the	destination	of	the	event	is	a
front	panel	connector.

Defined	Values:
NIHSDIO_VAL_DO_NOT_EXPORT_STR	("None") The	signal	is	not

exported.
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front

panel	SMB	jack
connector.

NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PXI_TRIG0_STR	("PXI_Trig0") PXI	trigger	line	0.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG1_STR	("PXI_Trig1") PXI	trigger	line	1.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG2_STR	("PXI_Trig2") PXI	trigger	line	2.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG3_STR	("PXI_Trig3") PXI	trigger	line	3.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG4_STR	("PXI_Trig4") PXI	trigger	line	4.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG5_STR	("PXI_Trig5") PXI	trigger	line	5.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG6_STR	("PXI_Trig6") PXI	trigger	line	6.	(PXI
devices)

NIHSDIO_VAL_RTSI0_STR	("RTSI0") RTSI	trigger	line	0.
(PCI	devices)

NIHSDIO_VAL_RTSI1_STR	("RTSI1") RTSI	trigger	line	1.
(PCI	devices)

NIHSDIO_VAL_RTSI2_STR	("RTSI2") RTSI	trigger	line	2.
(PCI	devices)

NIHSDIO_VAL_RTSI3_STR	("RTSI3") RTSI	trigger	line	3.
(PCI	devices)

NIHSDIO_VAL_RTSI4_STR	("RTSI4") RTSI	trigger	line	4.
(PCI	devices)

NIHSDIO_VAL_RTSI5_STR	("RTSI5") RTSI	trigger	line	5.
(PCI	devices)

NIHSDIO_VAL_RTSI6_STR	("RTSI6") RTSI	trigger	line	6.
(PCI	devices)

NIHSDIO_ATTR_READY_FOR_ADVANCE_EVENT_LEVEL_ACTIVE_LEVEL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	the	output	polarity	of	the	Ready	for	Advance	event.

Defined	Values:
NIHSDIO_VAL_ACTIVE_HIGH	(10) The	exported	signal	is	low	level

while	the	event	is	deasserted.	A
high	pulse	occurs	when	the	event
asserts.	This	attribute	does	not
apply	to	other	exported	signals.

NIHSDIO_VAL_ACTIVE_LOW	(11) The	exported	signal	is	high	level
while	the	event	is	deasserted.	A	low
pulse	occurs	when	the	event
asserts.	This	attribute	does	not
apply	to	other	exported	signals.

NIHSDIO_ATTR_READY_FOR_ADVANCE_EVENT_TERMINAL_CONFIGURATION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	whether	the	Ready	for	Advance	event	terminal	is	configured	for
single-ended	or	LVDS	operation.	Valid	values	for	this	attribute	vary	by
device.	Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

Defined	Values:
NIHSDIO_VAL_LVDS	(64) The	terminal	will	be	configured	for

LVDS	voltage	levels.
NIHSDIO_VAL_SINGLE_ENDED	(65) The	terminal	will	be	configured	for

single-ended	voltage	levels.

NIHSDIO_ATTR_END_OF_RECORD_EVENT_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ExportSignal

Description
Specifies	the	destination	terminal	for	the	End	of	Record	event.	Event
voltages	and	positions	are	only	relevant	if	the	destination	of	the	event	is	a
front	panel	connector.

Defined	Values:
NIHSDIO_VAL_DO_NOT_EXPORT_STR	("None") The	signal	is	not

exported.
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front

panel	SMB	jack
connector.

NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PXI_TRIG0_STR	("PXI_Trig0") PXI	trigger	line	0.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG1_STR	("PXI_Trig1") PXI	trigger	line	1.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG2_STR	("PXI_Trig2") PXI	trigger	line	2.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG3_STR	("PXI_Trig3") PXI	trigger	line	3.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG4_STR	("PXI_Trig4") PXI	trigger	line	4.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG5_STR	("PXI_Trig5") PXI	trigger	line	5.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG6_STR	("PXI_Trig6") PXI	trigger	line	6.	(PXI
devices)

NIHSDIO_VAL_RTSI0_STR	("RTSI0") RTSI	trigger	line	0.
(PCI	devices)

NIHSDIO_VAL_RTSI1_STR	("RTSI1") RTSI	trigger	line	1.
(PCI	devices)

NIHSDIO_VAL_RTSI2_STR	("RTSI2") RTSI	trigger	line	2.
(PCI	devices)

NIHSDIO_VAL_RTSI3_STR	("RTSI3") RTSI	trigger	line	3.
(PCI	devices)

NIHSDIO_VAL_RTSI4_STR	("RTSI4") RTSI	trigger	line	4.
(PCI	devices)

NIHSDIO_VAL_RTSI5_STR	("RTSI5") RTSI	trigger	line	5.
(PCI	devices)

NIHSDIO_VAL_RTSI6_STR	("RTSI6") RTSI	trigger	line	6.
(PCI	devices)

NIHSDIO_ATTR_END_OF_RECORD_EVENT_PULSE_POLARITY
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	the	output	polarity	of	the	End	of	Record	event.	
This	attribute	is	valid	only	for	acquisition	sessions.

Defined	Values:
NIHSDIO_VAL_ACTIVE_HIGH	(10) The	exported	signal	is	low	level

while	the	event	is	deasserted.	A
high	pulse	occurs	when	the	event
asserts.	This	attribute	does	not
apply	to	other	exported	signals.

NIHSDIO_VAL_ACTIVE_LOW	(11) The	exported	signal	is	high	level
while	the	event	is	deasserted.	A	low
pulse	occurs	when	the	event
asserts.	This	attribute	does	not
apply	to	other	exported	signals.

NIHSDIO_ATTR_END_OF_RECORD_EVENT_TERMINAL_CONFIGURATION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	the	terminal	configuration	for	the	operation.	Valid	values	for	this
attribute	vary	by	device.	Refer	to	your	device	documentation	to	determine
if	your	hardware	supports	LVDS	operation.

Defined	Values:
NIHSDIO_VAL_LVDS	(64) The	terminal	will	be	configured	for

LVDS	voltage	levels.
NIHSDIO_VAL_SINGLE_ENDED	(65) The	terminal	will	be	configured	for

single-ended	voltage	levels.

NIHSDIO_ATTR_DATA_ACTIVE_EVENT_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ExportSignal

Description
Specifies	the	destination	terminal	for	the	Data	Active	event.	Event
voltages	and	positions	are	only	relevant	if	the	destination	of	the	event	is	a
front	panel	connector.
This	attribute	is	valid	only	for	generation	sessions.

Defined	Values:
NIHSDIO_VAL_DO_NOT_EXPORT_STR	("None") The	signal	is	not

exported.
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front

panel	SMB	jack
connector.

NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front
panel	DDC	connector.

NIHSDIO_ATTR_DATA_ACTIVE_EVENT_LEVEL_ACTIVE_LEVEL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	the	output	polarity	of	the	Data	Active	event.

Defined	Values:
NIHSDIO_VAL_ACTIVE_HIGH	(10) The	exported	signal	is	low	level

while	the	event	is	deasserted.	A
high	pulse	occurs	when	the	event
asserts.	This	attribute	does	not
apply	to	other	exported	signals.

NIHSDIO_VAL_ACTIVE_LOW	(11) The	exported	signal	is	high	level
while	the	event	is	deasserted.	A	low
pulse	occurs	when	the	event
asserts.	This	attribute	does	not
apply	to	other	exported	signals.

NIHSDIO_ATTR_DATA_ACTIVE_EVENT_POSITION
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None None

Description
Use	this	attribute	to	specify	the	position	of	the	Data	Active	event	relative
to	the	Sample	clock.	Event	voltages	and	positions	are	only	relevant	if	the
destination	of	the	event	is	a	front	panel	connector.

Defined	Values:
NIHSDIO_VAL_SAMPLE_CLOCK_RISING_EDGE	(18) The	event	is	issued	synchronously	with	the

Sample	clock	rising	edge.
NIHSDIO_VAL_SAMPLE_CLOCK_FALLING_EDGE	(19) The	event	is	issued	synchronously	with	the

Sample	clock	falling	edge.
NIHSDIO_VAL_DELAY_FROM_SAMPLE_CLOCK_RISING_EDGE	(20) The	event	is	issued	synchronously	with

delay	from	rising	edge	of	the	
Specify	the	delay	using
NIHSDIO_ATTR_DATA_POSITION_DELAY
This	choice	has	more	jitter	than	the	rising
or	falling	edge	values.	Certain	devices	have
Sample	clock	frequency	limitations	on
when	a	custom	delay	can	be	used.	Refer	to
the	device	documentation	for	details.

NIHSDIO_ATTR_DATA_ACTIVE_EVENT_TERMINAL_CONFIGURATION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	whether	the	Data	Active	event	terminal	is	configured	for	single-
ended	or	LVDS	operation.	Valid	values	for	this	attribute	vary	by	device.
Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

Defined	Values:
NIHSDIO_VAL_LVDS	(64) The	terminal	will	be	configured	for

LVDS	voltage	levels.
NIHSDIO_VAL_SINGLE_ENDED	(65) The	terminal	will	be	configured	for

single-ended	voltage	levels.

NIHSDIO_ATTR_MARKER_EVENT_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W Marker None niHSDIO_ExportSignal

Description
Specifies	the	destination	terminal	for	the	Marker	event.	Event	voltages
and	positions	are	only	relevant	if	the	destination	of	the	event	is	a	front
panel	connector.
This	attribute	is	valid	only	for	generation	sessions.

Defined	Values:
NIHSDIO_VAL_DO_NOT_EXPORT_STR	("None") The	signal	is	not

exported.
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front

panel	SMB	jack
connector.

NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PXI_TRIG0_STR	("PXI_Trig0") PXI	trigger	line	0.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG1_STR	("PXI_Trig1") PXI	trigger	line	1.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG2_STR	("PXI_Trig2") PXI	trigger	line	2.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG3_STR	("PXI_Trig3") PXI	trigger	line	3.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG4_STR	("PXI_Trig4") PXI	trigger	line	4.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG5_STR	("PXI_Trig5") PXI	trigger	line	5.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG6_STR	("PXI_Trig6") PXI	trigger	line	6.	(PXI
devices)

NIHSDIO_VAL_RTSI0_STR	("RTSI0") RTSI	trigger	line	0.
(PCI	devices)

NIHSDIO_VAL_RTSI1_STR	("RTSI1") RTSI	trigger	line	1.
(PCI	devices)

NIHSDIO_VAL_RTSI2_STR	("RTSI2") RTSI	trigger	line	2.
(PCI	devices)

NIHSDIO_VAL_RTSI3_STR	("RTSI3") RTSI	trigger	line	3.
(PCI	devices)

NIHSDIO_VAL_RTSI4_STR	("RTSI4") RTSI	trigger	line	4.
(PCI	devices)

NIHSDIO_VAL_RTSI5_STR	("RTSI5") RTSI	trigger	line	5.
(PCI	devices)

NIHSDIO_VAL_RTSI6_STR	("RTSI6") RTSI	trigger	line	6.
(PCI	devices)

NIHSDIO_ATTR_MARKER_EVENT_PULSE_POLARITY
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W Marker None None

Description
Specifies	the	output	polarity	of	the	Marker	event.
This	attribute	is	valid	only	for	generation	sessions.

Defined	Values:
NIHSDIO_VAL_ACTIVE_HIGH	(10) The	exported	signal	is	low	level

while	the	event	is	deasserted.	A
high	pulse	occurs	when	the	event
asserts.	This	attribute	does	not
apply	to	other	exported	signals.

NIHSDIO_VAL_ACTIVE_LOW	(11) The	exported	signal	is	high	level
while	the	event	is	deasserted.	A	low
pulse	occurs	when	the	event
asserts.	This	attribute	does	not
apply	to	other	exported	signals.

NIHSDIO_ATTR_MARKER_EVENT_POSITION
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W Marker None None

Description
Use	this	attribute	to	specify	the	position	of	the	Marker	event	relative	to
the	Sample	clock.	Event	voltages	and	positions	are	only	relevant	if	the
destination	of	the	event	is	a	front	panel	connector.
This	attribute	is	valid	only	for	generation	sessions.

Defined	Values:
NIHSDIO_VAL_SAMPLE_CLOCK_RISING_EDGE	(18) The	event	is	issued	synchronously	with	the

Sample	clock	rising	edge.
NIHSDIO_VAL_SAMPLE_CLOCK_FALLING_EDGE	(19) The	event	is	issued	synchronously	with	the

Sample	clock	falling	edge.
NIHSDIO_VAL_DELAY_FROM_SAMPLE_CLOCK_RISING_EDGE	(20) The	event	is	issued	synchronously	with

delay	from	rising	edge	of	the	
Specify	the	delay	using
NIHSDIO_ATTR_DATA_POSITION_DELAY
This	choice	has	more	jitter	than	the	rising
or	falling	edge	values.	Certain	devices	have
Sample	clock	frequency	limitations	on
when	a	custom	delay	can	be	used.	Refer	to
the	device	documentation	for	details.

NIHSDIO_ATTR_MARKER_EVENT_TERMINAL_CONFIGURATION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	whether	the	Marker	event	terminal	is	configured	for	single-
ended	or	LVDS	operation.	Valid	values	for	this	attribute	vary	by	device.
Refer	to	your	device	documentation	to	determine	if	your	hardware
supports	LVDS	operation.

Defined	Values:
NIHSDIO_VAL_LVDS	(64) The	terminal	will	be	configured	for

LVDS	voltage	levels.
NIHSDIO_VAL_SINGLE_ENDED	(65) The	terminal	will	be	configured	for

single-ended	voltage	levels.

NIHSDIO_ATTR_SAMPLE_ERROR_EVENT_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString R/W N/A None niHSDIO_ExportSignal

Description
Specifies	the	destination	terminal	for	the	Sample	Error	event.	Event
voltages	and	positions	are	only	relevant	if	the	destination	of	the	event	is	a
front	panel	connector.

Defined	Values:
NIHSDIO_VAL_DO_NOT_EXPORT_STR	("None") The	signal	is	not

exported.
NIHSDIO_VAL_PFI0_STR	("PFI0") PFI	0	on	the	front

panel	SMB	jack
connector.

NIHSDIO_VAL_PFI1_STR	("PFI1") PFI	1	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI2_STR	("PFI2") PFI	2	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PFI3_STR	("PFI3") PFI	3	on	the	front
panel	DDC	connector.

NIHSDIO_VAL_PXI_TRIG0_STR	("PXI_Trig0") PXI	trigger	line	0.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG1_STR	("PXI_Trig1") PXI	trigger	line	1.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG2_STR	("PXI_Trig2") PXI	trigger	line	2.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG3_STR	("PXI_Trig3") PXI	trigger	line	3.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG4_STR	("PXI_Trig4") PXI	trigger	line	4.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG5_STR	("PXI_Trig5") PXI	trigger	line	5.	(PXI
devices)

NIHSDIO_VAL_PXI_TRIG6_STR	("PXI_Trig6") PXI	trigger	line	6.	(PXI
devices)

NIHSDIO_VAL_RTSI0_STR	("RTSI0") RTSI	trigger	line	0.
(PCI	devices)

NIHSDIO_VAL_RTSI1_STR	("RTSI1") RTSI	trigger	line	1.
(PCI	devices)

NIHSDIO_VAL_RTSI2_STR	("RTSI2") RTSI	trigger	line	2.
(PCI	devices)

NIHSDIO_VAL_RTSI3_STR	("RTSI3") RTSI	trigger	line	3.
(PCI	devices)

NIHSDIO_VAL_RTSI4_STR	("RTSI4") RTSI	trigger	line	4.
(PCI	devices)

NIHSDIO_VAL_RTSI5_STR	("RTSI5") RTSI	trigger	line	5.
(PCI	devices)

NIHSDIO_VAL_RTSI6_STR	("RTSI6") RTSI	trigger	line	6.
(PCI	devices)

NIHSDIO_ATTR_TOTAL_ACQUISITION_MEMORY_SIZE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 RO N/A None None

Description
Returns	the	total	onboard	memory	size,	in	samples,	for	acquiring	data.
The	number	of	samples	is	based	on	the	default	device	data	width.
If	you	configure	your	device	to	use	a	different	data	width,	the	total
memory	size	is	actually	the	value	returned	by	this	attribute	multiplied	by
the	quotient	of	the	default	data	width	divided	by	the	configured	data
width.	For	example,	if	you	configure	1-byte	data	width	for	a	2-byte	device,
the	total	acquisition	memory	size	is	twice	the	number	of	samples	that	is
returned	by	this	attribute.
Units:	samples

NIHSDIO_ATTR_TOTAL_GENERATION_MEMORY_SIZE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 RO N/A None None

Description
Returns	the	total	onboard	memory	size,	in	samples,	for	generating	data.
The	number	of	samples	is	based	on	the	default	device	data	width.
If	you	configure	your	device	to	use	a	different	data	width,	the	total
memory	size	is	actually	the	value	returned	by	this	attribute	multiplied	by
the	quotient	of	the	default	data	width	divided	by	the	configured	data
width.	For	example,	if	you	configure	1-byte	data	width	for	a	2-byte	device,
the	total	generation	memory	size	is	twice	the	number	of	samples	that	is
returned	by	this	attribute.
Units:	samples

NIHSDIO_ATTR_SERIAL_NUMBER
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViString RO None None None

Description
Returns	the	device	serial	number.

NIHSDIO_ATTR_DATA_WIDTH
Specific	Attribute
Data
type Access Applies

to Coercion High	Level
Functions

ViInt32 R/W	for	acquisition
sessions,
RO	for	generation
sessions

N/A None None

Description
Indicates,	in	bytes,	the	size	of	a	raw	sample	from	the	operation.
Valid	Values:	Vary	by	device.

NI	654x 1,	2,	4
NI	655x 1,	2,	4
NI	656x 1,	2

NIHSDIO_ATTR_DATA_RATE_MULTIPLIER
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None

Description
Specifies	whether	you	want	the	device	to	acquire	or	generate	in	single
data	rate	(SDR)	mode	or	in	double	data	rate	(DDR)	mode.

Defined	Values:
NIHSDIO_VAL_SINGLE_DATA_RATE	(1) The	device	will	sample	or

generate	data	in	single	data
rate	(SDR)	mode.	When	in
SDR	mode,	the	NI	digital
waveform	generator/analyzer
generates	or	acquires	data
on	a	single	edge	of	the
Sample	clock.	Therefore,	you
can	generate	or	acquire	data
on	the	rising	or	falling	edge
of	every	Sample	clock	pulse
or	on	a	delayed	version	of
the	rising	edge	of	the	Sample
clock.

NIHSDIO_VAL_DOUBLE_DATA_RATE	(2) The	device	will	sample	or
generate	data	in	double	data
rate	(DDR)	mode.	When	in
DDR	mode,	the	NI	digital
waveform	generator/analyzer
generates	or	acquires	data
on	both	edges	of	the	Sample
clock.	Therefore,	you	can
generate	or	acquire	data	on
every	rising	and	falling	edge
of	the	Sample	clock.
Acquisition	and	generation
sessions	can	be	configured
in	DDR	mode	to	acquire	or
generate	the	first	data
sample	on	the	rising	or	falling
edge	of	the	clock	or	on	a
delayed	version	of	the	rising
edge	of	the	clock.

NIHSDIO_ATTR_DATA_ACTIVE_INTERNAL_ROUTE_DELAY
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViInt32 R/W N/A None N/A

Description
Configures	the	number	of	Sample	clock	cycles	to	delay	the	internal	Data
Active	event.	Internally	routing	a	delayed	version	of	this	event	is	useful
when	you	want	to	synchronize	an	acquisition	trigger	to	the	generation
operation.	Use	this	coarse	delay	together	with	the	finer-resolution	data
delay	to	compensate	for	the	round	trip	delay	of	data	in	stimulus/response
operations.
You	can	configured	the	delayed	Data	Active	event	as	the	source	for	any
acquisition	trigger	by	manually	entering	DelayedDataActiveEvent	as	the
triggerSource	parameter.
This	attribute	is	only	applicable	in	acquisition	sessions.
Valid	values	for	this	attribute	are	0	to	24.
Units:	Sample	clock	cycles

NIHSDIO_ATTR_HWC_HARDWARE_COMPARE_MODE
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViIn32 R/W None None None

Description
Configures	the	device	to	compare	expected	data	and	actual	data	in	real-
time.	This	attribute	must	be	set	to	the	same	value	in	both	sessions.

Note		To	use	this	feature	you	must	have	an	acquisition	and	a
generation	session	running	concurrently.

When	you	set	this	attribute	to	either
NIHSDIO_VAL_HWC_STIMULUS_AND_EXPECTED_RESPONSE	or
NIHSDIO_VAL_HWC_EXPECTED_RESPONSE_ONLY,	the	generation
engine	sends	expected	data	to	the	acquisition	session	to	compare
against	acquired	data.
Use	the	niHSDIO_WriteNamedWaveformWDT	function	to	write	expected
data	to	the	device.	The	device	drives	any	values	of	0,	1,	or	Z	in	the
waveform,	while	values	of	H,	L,	or	X	are	treated	as	expected	data	values.
This	property	must	be	set	before	data	is	written	to	the	device.

NIHSDIO_VAL_HWC_DISABLED	(77) Comparison
engine	is
disabled.
Any
attempts	to
write
expected
response
data	to	the
device
results	in	an
error.

NIHSDIO_VAL_HWC_STIMULUS_AND_EXPECTED_RESPONSE	(78) Device
drives	and
compares
data	in	the
same
session.
You	can
download
waveforms

with	drive
and/or
compare
data.	All
digital
states	are
supported
in	this
mode.

NIHSDIO_VAL_HWC_EXPECTED_RESPONSE_ONLY	(79) Device
does	not
drive	any
data,	it	only
acquires
and
compares.
You	cannot
download
drive	data.
A
generation
session
downloads
the
expected
waveform.
Selecting
this	value
pauses	the
generation
lines	to
synchronize
the
acquisition
and
generation
sessions.

NIHSDIO_ATTR_HWC_SAMPLE_ERROR_BACKLOG
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViIn32 RO None None None

Description
Returns	the	number	of	sample	errors	available	you	can	read	using	the
niHSDIO_HWC_FetchSampleErrors	function.

NIHSDIO_ATTR_HWC_NUM_SAMPLE_ERRORS
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViIn32 RO None None None

Description
Returns	the	total	number	of	sample	errors	since	the	acquisition	was
initiated.	Use	this	attribute,	along	with
NIHSDIO_ATTR_HWC_SAMPLES_COMPARED,	to	calculate	the	sample
error	rate.

NIHSDIO_ATTR_HWC_SAMPLES_COMPARED
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViReal64 RO None None None

Description
Returns	the	total	number	of	samples	compared	since	the	acquisition	was
initiated.	Use	this	attribute,	along	with
NIHSDIO_ATTR_HWC_NUM_SAMPLE_ERRORS,	to	calculate	sample
error	rate.

NIHSDIO_ATTR_HWC_FILTER_REPEATED_SAMPLE_ERRORS
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViBoolean R/W None None None

Description
Specifies	whether	the	device	stores	and	counts	errors	when	the	same
error	appears	in	consecutive	samples.	If	this	attribute	is	set	to	VI_TRUE,
the	device	only	counts	distinct	errors.	An	error	is	defined	as	distinct	if	the
expected	response	value	and	the	actual	sample	error	do	not	change	over
the	same	number	of	Sample	clock	cycles.	The
niHSDIO_HWC_FetchSampleErrors	function	returns	the	number	of	clock
cycles	for	which	the	repeated	error	occurred.
This	attribute	is	helpful	if	your	NI	device	clock	rate	is	significantly	faster
than	your	DUT	clock	rate.	In	this	case,	one	error	from	the	DUT	could
result	in	several	identical	errors	on	the	device.

NIHSDIO_ATTR_HWC_SAMPLE_ERROR_BUFFER_OVERFLOWED
Specific	Attribute
Data
type Access Applies	to Coercion High-Level	Functions

ViBoolean RO None None None

Description
Returns	whether	the	buffer	used	to	store	sample	errors	has	overflowed.
The	NI	655x	FIFO	can	contain	4,094	sample	errors.	If	the	buffer
overflows,	the	hardware	stops	storing	error	information	for	further	errors,
but	it	continues	to	compare	data	and	count	the	sample	errors
encountered.
You	can	remove	sample	errors	from	the	FIFO	using	the
niHSDIO_HWC_FetchSampleErrors	function.	Removing	sample	errors
creates	room	for	additional	sample	errors	to	be	stored	in	the	FIFO.

Alphabetical	Attribute	List	and	Default	Values
The	following	table	lists	the	default	values	for	each	property	you	can
configure	for	your	device.	An	"N/A"	in	a	table	cell	indicates	that	the	listed
property	is	not	supported	for	that	device.	A	dash	indicates	that	the
property	does	not	have	a	default	value	or	that	it	is	a	read-only	property.	""
is	used	in	the	following	ways:

In	output	terminal	properties	to	indicate	to	the	device	not	to	export
the	relevant	signal
In	trigger	source	properties	to	the	device	that	the	relevant	trigger	is
not	used
In	dynamic	and	static	channels	to	means	"all	channels"

C/C++	Attribute

ADVANCE	TRIGGER	TYPE
DATA_ACTIVE_EVENT
_LEVEL_ACTIVE_LEVEL
DATA_ACTIVE_EVENT
_OUTPUT_TERMINAL
DATA_ACTIVE_EVENT_POSITION

DATA_ACTIVE_EVENT
_TERMINAL_CONFIGURATION
DATA_ACTIVE_INTERNAL_ROUTE_DELAY
DATA_INTERPRETATION
DATA_POSITION

DATA_POSITION_DELAY
NIHSDIO_ATTR_DATA_RATE_MULTIPLIER
NIHSDIO_ATTR_DATA_TRANSFER_BLOCK_SIZE
DATA_VOLTAGE_HIGH_LEVEL 3.3	V	logic	family	voltage	levels.

Refer	to	device	specifications	for

DATA_VOLTAGE_LOW_LEVEL 3.3	V	logic	family	voltage	levels.

Refer	to	device	specifications	for

NIHSDIO_ATTR_DATA_WIDTH
DIGITAL_EDGE_ADVANCE
_TRIGGER_EDGE
DIGITAL_EDGE_ADVANCE
_TRIGGER_IMPEDANCE
DIGITAL_EDGE_ADVANCE
_TRIGGER_POSITION
DIGITAL_EDGE_ADVANCE
_TRIGGER_SOURCE
DIGITAL_EDGE_ADVANCE_TRIGGER
_TERMINAL_CONFIGURATION
DIGITAL_EDGE_REF
_TRIGGER_EDGE
DIGITAL_EDGE_REF
_TRIGGER_IMPEDANCE
DIGITAL_EDGE_REF
_TRIGGER_POSITION

SAMPLE_CLOCK_RISING_EDGE

DIGITAL_EDGE_REF_TRIGGER_SOURCE
DIGITAL_EDGE_REF_TRIGGER
_TERMINAL_CONFIGURATION
DIGITAL_EDGE_SCRIPT_TRIGGER_EDGE
DIGITAL_EDGE_SCRIPT
_TRIGGER_IMPEDANCE
DIGITAL_EDGE_SCRIPT
_TRIGGER_SOURCE
DIGITAL_EDGE_SCRIPT_TRIGGER
_TERMINAL_CONFIGURATION
DIGITAL_EDGE_START
_TRIGGER_EDGE
DIGITAL_EDGE_START
_TRIGGER_IMPEDANCE

DIGITAL_EDGE_START
_TRIGGER_POSITION

SAMPLE_CLOCK_RISING_EDGE

START_TRIGGER_SOURCE
DIGITAL_EDGE_START_TRIGGER
_TERMINAL_CONFIGURATION
DIGITAL_LEVEL_PAUSE
_TRIGGER_IMPEDANCE
DIGITAL_LEVEL_PAUSE
_TRIGGER_POSITION

SAMPLE_CLOCK_RISING_EDGE

DIGITAL_LEVEL_PAUSE
_TRIGGER_SOURCE
DIGITAL_LEVEL_PAUSE_TRIGGER
_TERMINAL_CONFIGURATION
DIGITAL_LEVEL_PAUSE
_TRIGGER_WHEN
DIGITAL_LEVEL_SCRIPT
_TRIGGER_IMPEDANCE
DIGITAL_LEVEL_SCRIPT
_TRIGGER_SOURCE
DIGITAL_LEVEL_SCRIPT_TRIGGER
_TERMINAL_CONFIGURATION
DIGITAL_LEVEL_SCRIPT
_TRIGGER_WHEN
DIRECT_DMA_ENABLED
DIRECT_DMA_WINDOW_ADDRESS
DIRECT_DMA_WINDOW_SIZE
DYNAMIC_CHANNELS
END_OF_RECORD_EVENT
_OUTPUT_TERMINAL
END_OF_RECORD_EVENT
_PULSE_POLARITY
END_OF_RECORD_EVENT
_TERMINAL_CONFIGURATION

EVENT_VOLTAGE_HIGH_LEVEL 3.3	V	logic	family	voltage	levels.
Refer	to	device	specifications	for

EVENT_VOLTAGE_LOW_LEVEL 3.3	V	logic	family	voltage	levels.
Refer	to	device	specifications	for

EXPORTED_ADVANCE_TRIGGER
_OUTPUT_TERMINAL
EXPORTED_ADVANCE_TRIGGER
_TERMINAL_CONFIGURATION
EXPORTED_ONBOARD_REF_CLOCK
_OUTPUT_TERMINAL
EXPORTED_PAUSE_TRIGGER
_OUTPUT_TERMINAL
EXPORTED_PAUSE_TRIGGER
_TERMINAL_CONFIGURATION
EXPORTED_REF_CLOCK
_OUTPUT_TERMINAL
EXPORTED_REF_TRIGGER
_OUTPUT_TERMINAL
EXPORTED_REF_TRIGGER
_TERMINAL_CONFIGURATION
EXPORTED_SAMPLE_CLOCK_DELAY
EXPORTED_SAMPLE_CLOCK_MODE
EXPORTED_SAMPLE_CLOCK_OFFSET
EXPORTED_SAMPLE_CLOCK
_OUTPUT_TERMINAL
EXPORTED_SCRIPT_TRIGGER
_OUTPUT_TERMINAL
EXPORTED_SCRIPT_TRIGGER
_TERMINAL_CONFIGURATION
EXPORTED_START_TRIGGER
_OUTPUT_TERMINAL

EXPORTED_START_TRIGGER
_TERMINAL_CONFIGURATION
FETCH_BACKLOG
FETCH_OFFSET
FETCH_RELATIVE_TO MOST_RECENT_SAMPLE

REFERENCE_TRIGGER
Reference	trigger	is	configured

NIHSDIO_ATTR_HWC_FILTER_REPEATED_SAMPLE_ERRORS
GENERATION_MODE
NIHSDIO_ATTR_HWC_HARDWARE_COMPARE_MODE
IDLE_STATE
INITIAL_STATE
INPUT_IMPEDANCE
MARKER_EVENT
_OUTPUT_TERMINAL
MARKER_EVENT_POSITION

MARKER_EVENT_PULSE_POLARITY
MARKER_EVENT
_TERMINAL_CONFIGURATION
NUM_RECORDS
NIHSDIO_ATTR_HWC_NUM_SAMPLE_ERRORS
OSCILLATOR_PHASE_DAC_VALUE
PATTERN_MATCH_ADVANCE
_TRIGGER_PATTERN
PATTERN_MATCH_ADVANCE
_TRIGGER_WHEN
PATTERN_MATCH_PAUSE
_TRIGGER_PATTERN
PATTERN_MATCH_PAUSE
_TRIGGER_WHEN

PATTERN_MATCHES_REF
_TRIGGER_PATTERN
PATTERN_MATCH_REF
_TRIGGER_WHEN
PATTERN_MATCH_START
_TRIGGER_PATTERN
PATTERN_MATCH_START
_TRIGGER_WHEN
PAUSE_TRIGGER_TYPE
READY_FOR_ADVANCE_EVENT
_LEVEL_ACTIVE_LEVEL
READY_FOR_ADVANCE_EVENT
_OUTPUT_TERMINAL
READY_FOR_ADVANCE_EVENT
_TERMINAL_CONFIGURATION
READY_FOR_START_EVENT
_LEVEL_ACTIVE_LEVEL
READY_FOR_START_EVENT
_OUTPUT_TERMINAL
READY_FOR_START_EVENT
_TERMINAL_CONFIGURATION
RECORDS_DONE
REF_CLOCK_IMPEDANCE
REF_CLOCK_RATE
REF_CLOCK_SOURCE
REF_TRIGGER_PRETRIGGER_SAMPLES
REF_TRIGGER_TYPE
REPEAT_COUNT
REPEAT_MODE
SAMPLE_CLOCK_IMPEDANCE
SAMPLE_CLOCK_RATE
SAMPLE_CLOCK_SOURCE

NIHSDIO_ATTR_HWC_SAMPLE_ERROR_BACKLOG
NIHSDIO_ATTR_HWC_SAMPLE_ERROR_BUFFER_OVERFLOWED
NIHSDIO_ATTR_HWC_SAMPLES_COMPARED
SAMPLES_PER_RECORD
SCRIPT_TO_GENERATE
SCRIPT_TRIGGER_TYPE
NIHSDIO_ATTR_SERIAL_NUMBER
SPACE_AVAILABLE_IN_STREAMING_WAVEFORM
START_TRIGGER_TYPE
STATIC_CHANNELS
STREAMING_ENABLED
STREAMING_WAVEFORM_NAME
TOTAL_ACQUISITION_SIZE
TOTAL_GENERATION_SIZE
TRIGGER_VOLTAGE_HIGH_LEVEL 3.3	V	logic	family	voltage	levels.

Refer	to	device	specifications	for

TRIGGER_VOLTAGE_LOW_LEVEL 3.3	V	logic	family	voltage	levels.
Refer	to	device	specifications	for

WAVEFORM_TO_GENERATE

Return	Value
Reports	the	status	of	this	operation.	To	obtain	a	text	description	of	the
status	code,	call	the	niHSDIO_error_message	function.	To	obtain	additional
information	concerning	the	error	condition,	use	the	niHSDIO_GetError	and
niHSDIO_ClearError	functions.
The	general	meaning	of	the	status	code	is	as	follows:

Value Meaning
0 Success
Positive	Values Warnings
Negative	Values Errors

Operating	System	Support
For	information	about	the	supported	operating	system	(OS)	for	your
device,	refer	to	the	NI-HSDIO	Instrument	Driver	Readme.

Note		Some	devices	are	not	supported	under	Windows	Vista.
Refer	to	your	product	readme	for	a	complete	list	of	products	and
their	OS	support.

Glossary
Prefixes Numbers/Symbols A B C D E F G H I J L M

N O P R S T U V W X Z

Prefix Meaning Value
p pico 10-12

n nano 10-9

µ micro 10-6

m milli 10-3

k kilo 103

M mega 106

G giga 109

Numbers	and	Symbols
° degrees
- negative	of,	or	minus
< less	than
> greater	than
≤ less	than	or	equal	to
≥ greater	than	or	equal	to
Ω ohms
/ per
% percent
± plus	or	minus

A
A amps
aberration Signal	distortions	that	cause	imperfections	in	the	shape

or	sharpness	of	the	signal.
active	drive A	drive	type	where	the	generation	voltage	high	level	is

configured	as	the	voltage	produced	at	the	channel
electronics	when	the	Pattern	Generation	Engine
generates	a	binary	one.

ADE application	development	environment
API application	programming	interface—a	standardized	set

of	subroutines	or	functions,	along	with	the	parameters
that	a	program	can	call.

asynchronous For	hardware,	it	is	a	property	of	an	event	that	occurs	at
an	arbitrary	time,	without	synchronization	to	a	reference
clock.	In	software,	it	is	the	property	of	a	function	that
begins	an	operation	and	returns	prior	to	the	completion
or	termination	of	the	operation.

B
b bits
B bytes
bidirectional
data
channels

Data	channels	that	can	be	programmatically	configured
as	acquisition	or	generation.

bit Single	value	for	a	single	position	in	time,	on	a	single	line.
A	bit	can	have	four	possible	values:	0,	1,	X,	and	Z.

buffer 1.	 Temporary	storage	for	acquired	or	generated	data
(software).

2.	 A	collection	of	samples.

bus 1.	 Group	of	conductors	that	interconnect	individual
circuitry	in	a	computer.	Typically,	a	bus	is	the
expansion	vehicle	to	which	I/O	or	other	devices
are	connected.

2.	 A	logical	grouping	of	multiple	channels.

C
cache High-speed	processor	memory	that	buffers	commonly

used	instructions	or	data	to	increase	processing
throughput.

channel Single	digital	terminal,	used	for	generating	and/or
acquiring	data.

characteristic
impedance

Transmission	line	parameter	that	determines	how
propagating	signals	are	transmitted	or	reflected	in	the
line.

clock 1.	 Hardware	component	that	controls	timing	for
reading	from	or	writing	to	channels.

2.	 Periodic	digital	edges	that	can	be	used	to
measure	time.

CompactPCI Core	specification	defined	by	the	PCI	Industrial
Computer	Manufacturer's	Group	(PICMG).

compare
data

Expected	response	data	from	your	device	under	test
(DUT).

control
signals

Signals	that	regulate/control	the	data	transfer.

counter/timer A	circuit	that	counts	external	pulses	or	clock	pulses
(timing).

crosstalk Ratio,	in	dB,	of	the	level	of	the	interference	on	the
affected	channel	to	the	actual	level	of	the	interfering
signal.

current
sinking

The	ability	to	dissipate	current	for	analog	or	digital
signals.

current
sourcing

The	ability	to	supply	current	for	analog	or	digital	signals.

D
DAQ Data	Acquisition—Collecting	and	measuring	electrical

signals	from	sensors,	transducers,	and	test	probes	or
fixtures	and	inputting	them	to	a	computer	for	processing.
Also	refers	to	collecting	and	measuring	the	same	kinds
of	electrical	signals	with	analog-to-digital	and/or	digital
devices	plugged	into	a	PC,	and	possibly	generating
control	signals	with	digital-to-analog	and/or	digital
devices	in	the	same	PC.

Data	Active
event

The	Data	Active	event	indicates	when	the	Pattern
Generation	Engine	is	generating	data.	If	the	Pattern
Generation	Engine	is	waiting	for	a	trigger	or	is	paused,
the	Data	Active	event	is	deasserted.	When	the	Pattern
Generation	Engine	is	generating	data,	the	Data	Active
event	is	asserted,	synchronous	with	the	data.

data
interpretation

Data	interpretation	determines	whether	the	input	signal
is	acquired	as	a	0	or	a	1,	based	on	how	it	relates	to	the
Acquisition	Voltage	High	and	Low	Levels	and	the
configured	data	interpretation	mode.

In	High	or	Low	mode,	when	the	input	signal	is	sampled
below	Acquisition	Voltage	Low	Level,	a	0	is	received.	A	1
is	not	recognized	until	the	acquired	signal	passes	above
Acquisition	Voltage	Low	Level	and	above	Acquisition
Voltage	High	Level.	Conversely,	if	the	acquired	signal
was	last	sampled	above	Acquisition	Voltage	High	(as	a
1),	the	signal	is	not	be	sampled	as	a	0	until	the	signal	is
sampled	below	Acquisition	Voltage	High	Level	and	below
Acquisition	Voltage	Low	Level.

In	Valid	or	Invalid	mode,	signals	sampled	between	the
Acquisition	Voltage	High	and	Acquisition	Voltage	Low
Levels	are	returned	as	a	1,	while	signals	sampled	either
above	Acquisition	Voltage	High	Level	or	below
Acquisition	Voltage	Low	Level	are	returned	as	a	0.

data	rate
multiplier

an	attribute	that	specifies	whether	the	device	to	acquires
or	generates	in	single	data	rate	(SDR)	mode	or	in	double
data	rate	(DDR)	mode.

DC direct	current
default
setting

Default	parameter	value	recorded	in	the	driver.	In	many
cases,	the	default	input	of	a	control	is	a	certain	value

E
End	of
Record
event

An	event	that	indicates	when	the	device	enters	its	Record
Complete	state,	which	indicates	that	the	current	record	has
been	acquired.

event Events	are	emitted	to	signify	a	device	state	change,	the
arrival	of	a	certain	kind	of	sample,	the	production	of	a	certain
number	of	samples,	or	the	passage	of	time.

eye
diagram

Diagram	constructed	by	looking	at	the	outputs	of	a	digital
transmitter	over	three	periods	of	the	main	system	clock.	For
more	information,	refer	to	the	Digital	Waveform	Timing
document	on	ni.com/zone.

javascript:WWW(WWW_rddwft)

F
fall	time The	time	that	it	takes	a	signal	to	fall	from	80%	to	20%	of	the

voltage	between	the	voltage	low	level	and	the	voltage	high
level.

fetch An	operation	that	transfers	acquired	waveform	data	from
device	memory	to	PC	memory.

FPGA field-programmable	gate	array—Fundamentally,	an	FPGA	is	a
semi-conductor	device	which	contains	a	large	quantity	of
gates	(logic	devices),	which	are	not	interconnected,	and
whose	function	is	determined	by	a	wiring	list,	which	is
downloaded	to	the	FPGA.

function Set	of	software	instructions	executed	by	a	single	line	of	code
that	can	have	input	and/or	output	parameters	and	returns	a
value	when	executed.

G
group Collection	of	lines.

H
high
level

For	generation,	the	high	level	is	the	voltage	produced	when	a
binary	one	is	generated.	For	acquisition,	the	high	level	is	the
voltage	threshold	above	which	the	input	will	be	sampled	as	a
binary	one.

I
I/O input/output—Transfer	of	data	to/from	a	computer	system

involving	communications	channels,	operator	interface
devices,	and/or	data	acquisition	and	control	interfaces.

idle	state Specifies	the	values	of	the	channels	when	the	generation
operation	is	paused	or	has	completed.

IIH current	input	high—The	maximum	amount	of	current
required	on	the	input	pin	when	the	voltage	on	the	input	pin
is	higher	than	VIH.

IIL current	input	low—The	maximum	amount	of	current
required	on	the	input	pin	when	the	voltage	on	the	input	pin
is	lower	than	VIL.

Initial	state Specifies	the	values	of	the	channels	when	the	generation
operation	has	not	yet	started.

instructions Statements	used	to	define	a	script.
interrupt Computer	signal	indicating	that	the	CPU	should	suspend

its	current	task	to	service	a	designated	activity.
inter-
symbol
interference

In	a	digital	transmission	system,	distortion	of	the	received
signal,	in	which	distortion	in	the	form	of	temporal
spreading	and	consequent	overlap	of	individual	pulses	to
the	degree	that	the	receiver	cannot	reliably	distinguish
between	state	changes.

IOH current	output	high—The	minimum	amount	of	available
current	on	the	output	pin	when	the	logic	device	is	driving	a
logic	high.

IOL current	output	low—The	minimum	amount	of	available
current	on	the	output	pin	when	the	logic	device	is	driving	a
logic	low.

J
jitter The	deviation	from	ideal	timing	of	an	event.	Jitter	is	typically

measured	from	the	zero-crossing	of	a	reference	signal.	Jitter
typically	comes	from	crosstalk,	simultaneous	switching	outputs,
and	other	regularly	occurring	interference	signals.

L
line Represents	the	value	of	one	bit	of	a	sample	over	all	samples.	A

line	is	independent	of	any	hardware	I/O	connector.
line
group

A	collection	of	lines	displayed	as	a	single	plot	on	a	digital
waveform	graph.

line
name

Name	of	a	line	within	a	sample	or	buffer.

low
level

For	generation,	the	low	level	is	the	voltage	produced	when	a
binary	zero	is	generated.	For	acquisition,	the	low	level	is	the
voltage	threshold	below	which	the	input	will	be	sampled	as	a
binary	one.

LSB least	significant	bit
LVDM LVDM	is	an	LVDS-compatible	standard	that	allows	for	a	100	O

parallel	termination	at	the	source.
LVDS low	voltage	differential	signaling.	A	low-noise,	low-power,	low-

amplitude	method	for	high-speed	digital	data	transfer.

M
Marker	event The	Marker	event	is	a	general-purpose	event	that	is

configured	within	a	generation	script.	The	Marker	event
can	be	asserted	synchronous	to	any	even	numbered
sample	within	a	waveform	within	a	script.

MB/s Unit	for	data	transfer	that	means	one	million	or	106
bytes	per	second.

Measurement
&	Automation
Explorer
(MAX)

Controlled,	centralized	configuration	environment	that
allows	you	to	configure	all	of	your	National	Instruments
DAQ,	GPIB,	HSDIO,	IMAQ,	IVI,	Motion,	and	VISA
devices.

MSB most	significant	bit

N
NIM noise	immunity	margin—Extra	margin	between	the	voltage	level

being	driven	by	the	source	and	the	voltage	level	required	at	the
destination.

O
On	Board
Clock

For	NI	Digital	Waveform	Generator/Analyzers,	this	term
refers	to	the	onboard	voltage-controlled	crystal	oscillator
(VCXO)	clock	source.

Onboard
Reference
clock

On	PCI	devices,	the	Onboard	Reference	Clock	is	the
10	MHz	signal	you	can	export	to	RTSI	7	on	the	RTSI
trigger	bus.

open
collector

A	drive	type	where	the	generation	voltage	high	level	is
configured	as	the	high-impedance	state.

overshoot Overshoot	is	a	peak	distortion	following	an	edge.

P
parallel
termination

Termination	that	matches	the	characteristic	impedance
of	the	medium	at	the	end	of	the	transmission	line.

Pause	trigger Trigger	used	to	indicate	to	the	device	that	it	should	stop
generating	and/or	acquiring.	The	device	resumes	when
the	pause	trigger	becomes	inactive.

PFI Programmable	Function	Interface.	I/O	channels	to	the
digital	waveform	generator/analyzer.	Functionality	and
specifications	will	vary	by	device	and	operation.

pin	number See	terminal.
posttrigger Acquiring	data	that	occurs	after	a	trigger.
preshoot Preshoot	is	a	peak	distortion	preceding	an	edge.
pretrigger Acquiring	data	that	occurs	before	a	trigger.
programmable
function
interface

See	PFI.

propagation
delay

The	amount	of	time	required	for	a	signal	to	pass
through	a	circuit.

protocol The	exact	sequence	of	bits,	characters	and	control
codes	used	to	transfer	data	between	computers	and
peripherals	through	a	communications	channel,	such
as	the	GPIB.

PXI PCI	eXtensions	for	Instrumentation—Rugged,	open
system	for	modular	instrumentation	based	on
CompactPCI,	with	special	mechanical,	electrical,	and
software	features.

PXI	trigger
bus

PXI	equivalent	of	the	RTSI	bus,	with	additional	timing
and	synchronization	capabilities.

R
Ready	for
Advance
event

An	event	that	indicates	when	the	device	enters	its	Wait	for
Advance	Trigger	state,	which	indicates	that	the	acquisition
of	the	previous	record	is	complete.

Ready	for
Start
event

For	both	acquisition	and	generation,	the	Ready	For	Start
event	indicates	that	the	NI	digital	waveform/generator
analyzer	is	configured	and	ready	to	receive	a	Start	trigger.

real	time Property	of	an	event	or	system	in	which	data	is	processed
as	it	is	acquired	instead	of	being	accumulated	and
processed	at	a	later	time.

Reference
clock

Clock	to	which	a	device	phase	locks	another,	usually	faster,
clock.	A	common	source	for	the	reference	clock	is	the
10	MHz	oscillator	present	on	the	PXI	backplane.

Reference
trigger

This	trigger	establishes	the	reference	point	that	separates
pretrigger	and	posttrigger	samples.

rise	time The	time	that	it	takes	a	signal	to	rise	from	20%	to	80%	of
the	voltage	between	the	voltage	low	level	and	the	voltage
high	level.

round	trip
delay

Time	required	for	the	data	to	move	from	the	digital	tester,
through	the	cable	and	DUT,	and	back	to	the	tester.

Rsource source	impedance

RTD See	round	trip	delay.
Rterm termination	impedance

RTSI	bus Real-Time	System	Integration	Bus—The	National
Instruments	timing	bus	that	connects	DAQ	devices	directly,
by	means	of	connectors	on	top	of	the	devices,	for	precise
synchronization	of	functions.

S
s seconds
S sample
sample The	value	being	generated/acquired	on	all	of	the	digital

data	channels	during	a	single	sample	clock	cycle.
Sample
clock

Samples	are	generated	or	acquired	based	on	Sample
clock	cycles.

Sample
Error	event

An	event	that	indicates	when	the	device	detects	a
sample	where	the	actual	response	and	the	expected
response	do	not	match.

script Collection	of	instructions	that	describe	the	order	and
timing	of	one	or	more	waveforms.

Script	trigger General-purpose	trigger	that	has	a	role	that	is
determined	by	the	context	of	the	script.

series
termination

Termination	that	places	series	impedance	equal	to	the
characteristic	impedance	at	the	source	of	the
transmission	line.

settling	time Time	required	for	an	amplifier,	relay,	or	other	circuits	to
reach	a	stable	mode	of	operation.

signal Means	of	conveying	information.	In	this	help	file,	signal
refers	to	a	digital	transmission.

software
trigger

Programmed	event	that	triggers	an	operation	such	as
data	acquisition.

Start	trigger The	Start	trigger	transitions	a	device	into	a	state	where
the	device	can	respond	to	Sample	clocks.	For	an
acquisition	session,	the	device	starts	sampling	and
storing	data.	For	a	generation	session,	the	device	starts
generating	samples.

static
acquisition

Software-timed	(nonclocked)	that	returns	the	current
digital	logic	state	of	the	configured	data	channels	with
each	read.

static
generation

Software-timed	(nonclocked)	that	sets	the	current	state	of
the	configured	data	channels	to	the	requested	digital
logic	state.

streaming A	method	of	generating	waveforms	that	are	too	large	to
fit	in	device	onboard	memory	by	filling	an	allocated
portion	of	onboard	memory	with	the	first	part	of	the

T
terminal Named	location	where	a	signal	is	either	produced	(generated)

or	consumed	(acquired).
tfall fall	time

tpd propagation	delay

transfer
rate

Rate,	measured	in	bytes/s	or	samples/s,	at	which	data	is
moved	from	source	to	destination	after	software	initialization
and	set	up	operations;	the	maximum	rate	at	which	the
hardware	can	operate.

trigger A	signal	sent	to	the	device	to	control	the	device	in	some	way.
In	the	context	of	the	NI	digital	waveform	generator/analyzer,
triggers	are	essentially	the	opposite	of	events.

trise rise	time

ts settling	time

TTL transistor-transistor	logic

U
unstrobed
I/O

Basic	digital	I/O	operations	that	do	not	involve	the	use	of
control	signals	in	data	transfers.	Unstrobed	data	transfers
are	controlled	by	software	commands.	Also	known	as
software-timed	I/O.

V
V volts
VCXO voltage-controlled	crystal	oscillator
vector See	sample.
VHDCI very	high-density	connector	interface
VI Virtual	Instrument

1.	 A	combination	of	hardware	and/or	software	elements,
typically	used	with	a	PC,	that	has	the	functionality	of	a
classic	stand-alone	instrument.

2.	 A	LabVIEW	software	module	(VI),	which	consists	of	a
front	panel	user	interface	and	a	block	diagram
program.

VIH voltage	input	high—The	input	voltage	level	at	or	above	which
the	logic	device	senses	a	binary	one.

VIL Input	voltage	level	at	or	below	which	the	logic	device	senses
a	binary	zero.

virtual
channels

Channel	names	that	can	be	defined	outside	the	application
and	used	without	having	to	perform	scaling	operations.

VOD differential	output	voltage—The	difference	in	voltage
between	the	positive	and	complementary	conductors	of	a
differential	transmission.	Can	be	thought	of	as	the	difference
of	the	two	conductors.

VOH voltage	output	high—The	generated	voltage	level	at	the
output	pin	when	the	logic	device	outputs	a	binary	one.

VOL voltage	output	low—The	generated	voltage	level	at	the
output	pin	when	the	logic	device	outputs	a	binary	zero.

VOS offset	voltage—The	common	mode	of	the	differential	signal.
Can	be	thought	of	as	the	average	of	the	two	conductors.

VRANGE input	voltage	range—The	absolute	voltage,	referenced	to
common,	allowed	by	the	receiver.

VTH threshold	voltage—the	differential	voltage	threshold	at	which
the	receiver	registers	a	valid	logic	state.

W
waveform A	collection	of	digital	samples	generated	or	acquired	at	the

DDC	connector.

X
x Bit	state	meaning	that	the	channel	is	ignored.

Z
z Bit	state	meaning	that	the	channel	is	set	to	high-impedance.
Z0 The	characteristic	AC	impedance	of	the	transmission	line.

Zs The	impedance	at	the	source	of	the	transmission	line.

Zt The	impedance	at	the	destination	of	the	transmission	line.

Important	Information
Warranty
Copyright
Trademarks
Patents
Warning	Regarding	Use	of	NI	Products

Warranty
The	NI	654x/655x/656x	is	warranted	against	defects	in	materials	and
workmanship	for	a	period	of	one	year	from	the	date	of	shipment,	as
evidenced	by	receipts	or	other	documentation.	National	Instruments	will,
at	its	option,	repair	or	replace	equipment	that	proves	to	be	defective
during	the	warranty	period.	This	warranty	includes	parts	and	labor.
The	media	on	which	you	receive	National	Instruments	software	are
warranted	not	to	fail	to	execute	programming	instructions,	due	to	defects
in	materials	and	workmanship,	for	a	period	of	90	days	from	date	of
shipment,	as	evidenced	by	receipts	or	other	documentation.	National
Instruments	will,	at	its	option,	repair	or	replace	software	media	that	do	not
execute	programming	instructions	if	National	Instruments	receives	notice
of	such	defects	during	the	warranty	period.	National	Instruments	does	not
warrant	that	the	operation	of	the	software	shall	be	uninterrupted	or	error
free.
A	Return	Material	Authorization	(RMA)	number	must	be	obtained	from
the	factory	and	clearly	marked	on	the	outside	of	the	package	before	any
equipment	will	be	accepted	for	warranty	work.	National	Instruments	will
pay	the	shipping	costs	of	returning	to	the	owner	parts	which	are	covered
by	warranty.
National	Instruments	believes	that	the	information	in	this	document	is
accurate.	The	document	has	been	carefully	reviewed	for	technical
accuracy.	In	the	event	that	technical	or	typographical	errors	exist,
National	Instruments	reserves	the	right	to	make	changes	to	subsequent
editions	of	this	document	without	prior	notice	to	holders	of	this	edition.
The	reader	should	consult	National	Instruments	if	errors	are	suspected.
In	no	event	shall	National	Instruments	be	liable	for	any	damages	arising
out	of	or	related	to	this	document	or	the	information	contained	in	it.
EXCEPT	AS	SPECIFIED	HEREIN,	NATIONAL	INSTRUMENTS	MAKES
NO	WARRANTIES,	EXPRESS	OR	IMPLIED,	AND	SPECIFICALLY
DISCLAIMS	ANY	WARRANTY	OF	MERCHANTABILITY	OR	FITNESS
FOR	A	PARTICULAR	PURPOSE.	CUSTOMER'S	RIGHT	TO	RECOVER
DAMAGES	CAUSED	BY	FAULT	OR	NEGLIGENCE	ON	THE	PART	OF
NATIONAL	INSTRUMENTS	SHALL	BE	LIMITED	TO	THE	AMOUNT
THERETOFORE	PAID	BY	THE	CUSTOMER.	NATIONAL
INSTRUMENTS	WILL	NOT	BE	LIABLE	FOR	DAMAGES	RESULTING

FROM	LOSS	OF	DATA,	PROFITS,	USE	OF	PRODUCTS,	OR
INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES,	EVEN	IF	ADVISED	OF
THE	POSSIBILITY	THEREOF.	This	limitation	of	the	liability	of	National
Instruments	will	apply	regardless	of	the	form	of	action,	whether	in
contract	or	tort,	including	negligence.	Any	action	against	National
Instruments	must	be	brought	within	one	year	after	the	cause	of	action
accrues.	National	Instruments	shall	not	be	liable	for	any	delay	in
performance	due	to	causes	beyond	its	reasonable	control.	The	warranty
provided	herein	does	not	cover	damages,	defects,	malfunctions,	or
service	failures	caused	by	owner's	failure	to	follow	the	National
Instruments	installation,	operation,	or	maintenance	instructions;	owner's
modification	of	the	product;	owner's	abuse,	misuse,	or	negligent	acts;
and	power	failure	or	surges,	fire,	flood,	accident,	actions	of	third	parties,
or	other	events	outside	reasonable	control.

Copyright
Under	the	copyright	laws,	this	publication	may	not	be	reproduced	or
transmitted	in	any	form,	electronic	or	mechanical,	including	photocopying,
recording,	storing	in	an	information	retrieval	system,	or	translating,	in
whole	or	in	part,	without	the	prior	written	consent	of	National	Instruments
Corporation.
National	Instruments	respects	the	intellectual	property	of	others,	and	we
ask	our	users	to	do	the	same.	NI	software	is	protected	by	copyright	and
other	intellectual	property	laws.	Where	NI	software	may	be	used	to
reproduce	software	or	other	materials	belonging	to	others,	you	may	use
NI	software	only	to	reproduce	materials	that	you	may	reproduce	in
accordance	with	the	terms	of	any	applicable	license	or	other	legal
restriction.

Trademarks
National	Instruments,	NI,	ni.com,	and	LabVIEW	are	trademarks	of
National	Instruments	Corporation.	Refer	to	the	Terms	of	Use	section	on
ni.com/legal	for	more	information	about	National	Instruments	trademarks.
FireWire®	is	the	registered	trademark	of	Apple	Computer,	Inc.
Handle	Graphics®,	MATLAB®,	Real-Time	Workshop®,	Simulink®,
Stateflow®,	and	xPC	TargetBox®	are	registered	trademarks,	and
TargetBox™	and	Target	Language	Compiler™	are	trademarks	of	The
MathWorks,	Inc.
Tektronix®	and	Tek	are	registered	trademarks	of	Tektronix,	Inc.
Other	product	and	company	names	mentioned	herein	are	trademarks	or
trade	names	of	their	respective	companies.
Members	of	the	National	Instruments	Alliance	Partner	Program	are
business	entities	independent	from	National	Instruments	and	have	no
agency,	partnership,	or	joint-venture	relationship	with	National
Instruments.

javascript:WWW(WWW_Trademark)

Patents
For	patents	covering	National	Instruments	products,	refer	to	the
appropriate	location:	Help»Patents	in	your	software,	the	patents.txt	file	on
your	CD,	or	ni.com/patents.

javascript:WWW(WWW_Patents)

WARNING	REGARDING	USE	OF	NATIONAL
INSTRUMENTS	PRODUCTS
(1)	NATIONAL	INSTRUMENTS	PRODUCTS	ARE	NOT	DESIGNED
WITH	COMPONENTS	AND	TESTING	FOR	A	LEVEL	OF	RELIABILITY
SUITABLE	FOR	USE	IN	OR	IN	CONNECTION	WITH	SURGICAL
IMPLANTS	OR	AS	CRITICAL	COMPONENTS	IN	ANY	LIFE	SUPPORT
SYSTEMS	WHOSE	FAILURE	TO	PERFORM	CAN	REASONABLY	BE
EXPECTED	TO	CAUSE	SIGNIFICANT	INJURY	TO	A	HUMAN.
(2)	IN	ANY	APPLICATION,	INCLUDING	THE	ABOVE,	RELIABILITY	OF
OPERATION	OF	THE	SOFTWARE	PRODUCTS	CAN	BE	IMPAIRED	BY
ADVERSE	FACTORS,	INCLUDING	BUT	NOT	LIMITED	TO
FLUCTUATIONS	IN	ELECTRICAL	POWER	SUPPLY,	COMPUTER
HARDWARE	MALFUNCTIONS,	COMPUTER	OPERATING	SYSTEM
SOFTWARE	FITNESS,	FITNESS	OF	COMPILERS	AND
DEVELOPMENT	SOFTWARE	USED	TO	DEVELOP	AN	APPLICATION,
INSTALLATION	ERRORS,	SOFTWARE	AND	HARDWARE
COMPATIBILITY	PROBLEMS,	MALFUNCTIONS	OR	FAILURES	OF
ELECTRONIC	MONITORING	OR	CONTROL	DEVICES,	TRANSIENT
FAILURES	OF	ELECTRONIC	SYSTEMS	(HARDWARE	AND/OR
SOFTWARE),	UNANTICIPATED	USES	OR	MISUSES,	OR	ERRORS	ON
THE	PART	OF	THE	USER	OR	APPLICATIONS	DESIGNER	(ADVERSE
FACTORS	SUCH	AS	THESE	ARE	HEREAFTER	COLLECTIVELY
TERMED	"SYSTEM	FAILURES").	ANY	APPLICATION	WHERE	A
SYSTEM	FAILURE	WOULD	CREATE	A	RISK	OF	HARM	TO
PROPERTY	OR	PERSONS	(INCLUDING	THE	RISK	OF	BODILY
INJURY	AND	DEATH)	SHOULD	NOT	BE	RELIANT	SOLELY	UPON	ONE
FORM	OF	ELECTRONIC	SYSTEM	DUE	TO	THE	RISK	OF	SYSTEM
FAILURE.	TO	AVOID	DAMAGE,	INJURY,	OR	DEATH,	THE	USER	OR
APPLICATION	DESIGNER	MUST	TAKE	REASONABLY	PRUDENT
STEPS	TO	PROTECT	AGAINST	SYSTEM	FAILURES,	INCLUDING	BUT
NOT	LIMITED	TO	BACK-UP	OR	SHUT	DOWN	MECHANISMS.
BECAUSE	EACH	END-USER	SYSTEM	IS	CUSTOMIZED	AND
DIFFERS	FROM	NATIONAL	INSTRUMENTS'	TESTING	PLATFORMS
AND	BECAUSE	A	USER	OR	APPLICATION	DESIGNER	MAY	USE
NATIONAL	INSTRUMENTS	PRODUCTS	IN	COMBINATION	WITH
OTHER	PRODUCTS	IN	A	MANNER	NOT	EVALUATED	OR
CONTEMPLATED	BY	NATIONAL	INSTRUMENTS,	THE	USER	OR

APPLICATION	DESIGNER	IS	ULTIMATELY	RESPONSIBLE	FOR
VERIFYING	AND	VALIDATING	THE	SUITABILITY	OF	NATIONAL
INSTRUMENTS	PRODUCTS	WHENEVER	NATIONAL	INSTRUMENTS
PRODUCTS	ARE	INCORPORATED	IN	A	SYSTEM	OR	APPLICATION,
INCLUDING,	WITHOUT	LIMITATION,	THE	APPROPRIATE	DESIGN,
PROCESS	AND	SAFETY	LEVEL	OF	SUCH	SYSTEM	OR
APPLICATION.

Technical	Support	and	Professional	Services
Visit	the	following	sections	of	the	National	Instruments	Web	site	at	ni.com
for	technical	support	and	professional	services:

Support—Online	technical	support	resources	at	ni.com/support
include	the	following:

Self-Help	Resources—For	answers	and	solutions,	visit	the
award-winning	National	Instruments	Web	site	for	software
drivers	and	updates,	a	searchable	KnowledgeBase,	product
manuals,	step-by-step	troubleshooting	wizards,	thousands	of
example	programs,	tutorials,	application	notes,	instrument
drivers,	and	so	on.
Free	Technical	Support—All	registered	users	receive	free
Basic	Service,	which	includes	access	to	hundreds	of
Applications	Engineers	worldwide	in	the	NI	Developer
Exchange	at	ni.com/exchange.	National	Instruments
Applications	Engineers	make	sure	every	question	receives
an	answer.
For	information	about	other	technical	support	options	in	your
area,	visit	ni.com/services	or	contact	your	local	office	at
ni.com/contact.

Training	and	Certification—Visit	ni.com/training	for	self-paced
training,	eLearning	virtual	classrooms,	interactive	CDs,	and
Certification	program	information.	You	also	can	register	for
instructor-led,	hands-on	courses	at	locations	around	the	world.
System	Integration—If	you	have	time	constraints,	limited	in-house
technical	resources,	or	other	project	challenges,	National
Instruments	Alliance	Partner	members	can	help.	To	learn	more,
call	your	local	NI	office	or	visit	ni.com/alliance.
Declaration	of	Conformity	(DoC)—A	DoC	is	our	claim	of
compliance	with	the	Council	of	the	European	Communities	using
the	manufacturers	declaration	of	conformity.	This	system	affords
the	user	protection	for	electronic	compatibility	(EMC)	and	product
safety.	You	can	obtain	the	DoC	for	your	product	by	visiting
ni.com/certification.
Calibration	Certificate—If	your	product	supports	calibration,	you
can	obtain	the	calibration	certificate	for	your	product	at

javascript:WWW(WWW_Support)
javascript:WWW(WWW_KB)
javascript:WWW(WWW_Manuals)
javascript:WWW(WWW_Exchange)
javascript:WWW(WWW_Service)
javascript:WWW(WWW_Contact)
javascript:WWW(WWW_Customer_Education)
javascript:WWW(WWW_Integration)
javascript:WWW(WWW_Doc)
javascript:WWW(WWW_CC)

ni.com/calibration.
If	you	searched	ni.com	and	could	not	find	the	answers	you	need,	contact
your	local	office	or	NI	corporate	headquarters.	You	also	can	visit	the
Worldwide	Offices	section	of	ni.com/niglobal	to	access	the	branch	office
Web	sites,	which	provide	up-to-date	contact	information,	support	phone
numbers,	email	addresses,	and	current	events.

javascript:WWW(WWW_Global)

Branch	Offices
Office Telephone	Number
Australia 1800	300	800
Austria 43	662	457990-0
Belgium 32	(0)	2	757	0020
Brazil 55	11	3262	3599
Canada 800	433	3488
China 86	21	5050	9800
Czech	Republic 420	224	235	774
Denmark 45	45	76	26	00
Finland 358	(0)	9	725	72511
France 33	(0)	1	57	66	24	24
Germany 49	89	7413130
India 91	80	41190000
Israel 972	0	3	6393737
Italy 39	02	41309277
Japan 0120-527196
Korea 82	02	3451	3400
Lebanon 961	(0)	1	33	28	28
Malaysia 1800	887710
Mexico 01	800	010	0793
Netherlands 31	(0)	348	433	466
New	Zealand 0800	553	322
Norway 47	(0)	66	90	76	60
Poland 48	22	3390150
Portugal 351	210	311	210
Russia 7	495	783	6851
Singapore 1800	226	5886
Slovenia 386	3	425	42	00

South	Africa 27	0	11	805	8197
Spain 34	91	640	0085
Sweden 46	(0)	8	587	895	00
Switzerland 41	56	2005151
Taiwan 886	02	2377	2222
Thailand 662	278	6777
Turkey 90	212	279	3031
United	Kingdom 44	(0)	1635	523545
United	States	(Corporate) 512	683	0100

	NI Digital Waveform Generator/Analyzer Help
	Conventions
	Related Documentation
	Fundamentals
	Voltage Levels
	Single-Ended Voltage Levels
	Differential Voltage Levels

	Digital Logic
	Logic Families
	Single-Ended Logic Families
	Differential Logic Families

	Digital Logic States

	Hysteresis
	AC Waveform Characteristics
	Termination
	Transmission Lines
	Characteristic Impedance
	Signal Reflections
	Types of Termination

	Crosstalk
	Understanding I/O Current
	Sinking and Sourcing Current
	AC and DC Current

	Digital Terminology
	Timing and Triggering
	Clocks
	Sample Clock
	Reference Clock
	STROBE

	Triggers
	Types of Triggers
	Edge Trigger
	Level Trigger
	Pattern-Match Trigger
	Software Trigger

	Triggers Summary

	Events
	Events Summary

	Generation
	Drive Type
	Active Drive
	Open Collector

	Static Generation
	Dynamic Generation
	Waveforms
	Scripts
	Initial and Idle States
	Per Cycle Tristate
	Streaming
	Direct DMA

	Acquisition
	Static Acquisition
	Dynamic Acquisition
	Records

	Hardware Comparison
	Onboard Memory
	Generation Onboard Memory
	Acquisition Onboard Memory

	Data and Clock Position
	Data Position Settings
	Clock Position Settings
	Data Position Delay Resolution

	Data Width
	Data Rate Multiplier
	Single Data Rate (SDR)
	Double Data Rate (DDR)
	Data Position with DDR
	Generation Considerations for DDR
	Acquisition Considerations for DDR

	Channel-to-Channel Skew

	Devices
	NI 654x
	Hardware Architecture
	Block Diagram
	Channel Electronics
	Voltage Ranges and Settings
	Logic Families
	Input Impedance
	Source Impedance

	Input Protection
	Signal Routing
	Signal Routing for PXI Devices
	Signal Routing for PCI Devices

	Clocking
	Clock Sources Summary
	Exporting a Clock

	Channel Interface
	Front Panel and Connector Pinout
	LED Indicators

	Acquisition
	Static Acquisition
	Dynamic Acquisition
	Dynamic Acquisition Clock Sources
	Dynamic Acquisition State Diagram
	Dynamic Acquisition Timing Diagrams
	Dynamic Acquisition Triggers and Events

	Generation
	Static Generation
	Dynamic Generation
	Dynamic Generation Clock Sources
	Dynamic Generation State Diagram
	Dynamic Generation Timing Diagrams
	Dynamic Generation Triggers and Events

	NI 655x
	Hardware Architecture
	Block Diagram
	Channel Electronics
	Voltage Ranges and Settings
	Data Interpretation
	Logic Families
	Input Impedance
	Source Impedance

	Input Protection
	Signal Routing
	Signal Routing for PXI Devices
	Signal Routing for PCI Devices

	Clocking
	Clock Sources Summary
	Exporting a Clock

	Channel Interface
	Front Panel and Connector Pinout
	LED Indicators

	Acquisition
	Static Acquisition
	Dynamic Acquisition
	Dynamic Acquisition Clock Sources
	Dynamic Acquisition State Diagram
	Dynamic Acquisition Timing Diagrams
	Dynamic Acquisition Triggers and Events

	Generation
	Static Generation
	Dynamic Generation
	Dynamic Generation Clock Sources
	Dynamic Generation State Diagram
	Dynamic Generation Timing Diagrams
	Dynamic Generation Triggers and Events
	Per Cycle Tristate

	Hardware Comparison
	Hardware Comparison Triggers and Events

	NI 656x
	Hardware Architecture
	Block Diagram
	Channel Electronics
	Voltage Ranges and Settings
	Logic Families
	Input Impedance
	Source Impedance

	Data Rate Multiplier
	Input Protection
	Signal Routing
	Signal Routing for PXI Devices
	Signal Routing for PCI Devices

	Clocking
	Clock Sources Summary
	Exporting a Clock
	Valid Data Delay Ranges

	Channel Interface
	Front Panel and Connector Pinout
	LEDs and Indicators

	Acquisition
	Static Acquisition
	Dynamic Acquisition
	Dynamic Acquisition Clock Sources
	Dynamic Acquisition State Diagram
	Dynamic Acquisition Timing Diagrams
	Dynamic Acquisition Triggers and Events

	Generation
	Static Generation
	Dynamic Generation
	Dynamic Generation Clock Sources
	Dynamic Generation State Diagram
	Dynamic Generation Timing Diagrams
	Dynamic Generation Triggers and Events

	Integration and System Considerations
	Terminating Your Module
	Terminating Your NI 654x
	NI 654x Generation Termination
	NI 654x Acquisition Termination
	NI 654x Termination Summary

	Terminating Your NI 655x
	NI 655x Generation Termination
	NI 655x Acquisition Termination
	NI 655x Termination Summary

	Terminating Your NI 656x
	NI 656x Generation Termination
	NI 656x Acquisition Termination

	Thermal Shutdown
	PXI
	Chassis Considerations

	PCI
	RTSI

	Synchronizing Multiple Devices

	Programming
	Getting Started with NI-HSDIO
	Using NI-HSDIO in LabVIEW
	Considerations for using the LabVIEW Real-Time Module

	Using NI-HSDIO in LabWindows/CVI
	Using NI-HSDIO in Visual C++
	Digital Waveform Data Representation
	Digital Waveform Data Representation in LabVIEW
	Digital Waveform Data Representation in C
	File I/O and Digital Waveform Data

	Programming Flow
	Initialize Your Session
	Select Channels
	Configure the Hardware
	Acquisition Configuration Functions
	Generation Configuration Functions
	Advanced Attributes

	Acquiring or Generating Static Data
	Reading and Writing Static Data

	Acquiring Dynamic Data
	Read
	Initiate and Fetch
	Making Multiple-Record Acquisitions

	Generating Dynamic Data
	Writing Waveforms to Your Device
	Generating Data in Single-Waveform Mode
	Generating Multiple Waveforms/Linking & Looping

	Comparing Response Data with Expected Data
	Comparing Response Data in Software
	Comparing Response Data in Hardware
	Hardware Comparison Functions

	Using Attributes with NI-HSDIO
	Closing Your Session

	Using the NI Digital Waveform Editor
	Features
	Configuring Voltage Levels
	Configuring Generation/Acquisition Frequencies
	Configuring Data Interpretation
	Configuring Initial and Idle States
	Configuring Data Position
	Configuring Input Impedance
	Configuring Terminal Configuration
	Configuring a Data Rate Multiplier
	Configuring Data Width
	Configuring Triggers
	Configuring Events
	Eliminating Round Trip Delay

	Reference
	LabVIEW Reference
	VIs
	Dynamic & Static Acquisition VIs
	niHSDIO Init Acqusition Session
	niHSDIO Assign Dynamic Channels
	niHSDIO Configure Sample Clock
	niHSDIO Configure Acquisition Size
	niHSDIO Read Waveform
	niHSDIO Close
	Acquisition Configuration
	niHSDIO Configure Trigger
	niHSDIO Export Signal
	niHSDIO Configure Voltage
	niHSDIO Configure Data Interpretation
	niHSDIO Configure Data Position
	niHSDIO Configure Data Position Delay
	Adv Timing
	niHSDIO Configure Ref Clock
	niHSDIO Adjust Sample Clock Relative Delay

	niHSDIO Tristate Channels

	Advanced Acquisition Control
	niHSDIO Initiate
	niHSDIO Abort
	niHSDIO Wait Until Done
	niHSDIO Fetch Waveform
	niHSDIO HWC Fetch Sample Errors (U32)

	Static Acquisition
	niHSDIO Assign Static Channels
	niHSDIO Read Static (U32)

	Utility
	niHSDIO Is Done
	niHSDIO Commit
	niHSDIO Reset
	niHSDIO Reset Device
	niHSDIO Send Software Edge Trigger
	niHSDIO Error Message
	niHSDIO Self Test
	Calibration
	niHSDIO Self Calibrate
	niHSDIO Change Ext Cal Password
	niHSDIO Init Ext Cal
	niHSDIO Cal Adjust Channel Voltage
	niHSDIO Close Ext Cal

	niHSDIO Convert Binary to WDT (U32)
	niHSDIO Get Session Reference VI

	Dynamic & Static Generation VIs
	niHSDIO Init Generation Session
	niHSDIO Assign Dynamic Channels
	niHSDIO Configure Sample Clock
	niHSDIO Write Named Waveform
	niHSDIO Initiate
	niHSDIO Wait Until Done
	niHSDIO Close
	Generation Configuration
	niHSDIO Configure Trigger
	niHSDIO Export Signal
	niHSDIO Configure Voltage
	niHSDIO Configure Generation Repeat
	niHSDIO Configure Initial State
	niHSDIO Configure Idle State
	niHSDIO Configure Data Position
	niHSDIO Configure Data Position Delay
	Waveform Control
	niHSDIO Configure Waveform To Generate
	niHSDIO Allocate Named Waveform
	niHSDIO Delete Named Waveform
	niHSDIO Set Named Waveform Next Write Position

	Scripting
	niHSDIO Configure Generation Mode
	niHSDIO Write Script
	niHSDIO Configure Script To Generate

	Adv Timing
	niHSDIO Configure Ref Clock
	niHSDIO Adjust Sample Clock Relative Delay

	niHSDIO Tristate Channels

	Static Generation
	niHSDIO Assign Static Channels
	niHSDIO Write Static (U32)

	niHSDIO Abort
	Utility
	niHSDIO Is Done
	niHSDIO Commit
	niHSDIO Reset
	niHSDIO Reset Device
	niHSDIO Send Software Edge Trigger
	niHSDIO Error Message
	niHSDIO Self Test
	Calibration
	niHSDIO Self Cal
	niHSDIO Change Ext Cal Password
	niHSDIO Init Ext Cal
	niHSDIO Cal Adjust Channel Voltage
	niHSDIO Close Ext Cal

	niHSDIO Convert Binary to WDT
	niHSDIO Get Session Reference

	NI-HSDIO Express (Acquisition) VI
	NI-HSDIO Express (Generation) VI

	Properties
	Active Channels
	Dynamic Channels
	Static Channels

	Alphabetical Property List and Default Values

	C/C++ Reference
	Functions
	niHSDIO_InitAcquisitionSession
	niHSDIO_InitGenerationSession
	niHSDIO_close

	Attributes
	NIHSDIO_ATTR_DYNAMIC_CHANNELS
	NIHSDIO_ATTR_STATIC_CHANNELS

	Alphabetical Attribute List and Default Values

	Return Value

	Operating System Support
	Glossary
	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	Warning Regarding Use of NI Products

	Technical Support and Professional Services

