
Digital	Filter	Design	Toolkit
June	2008,	371988B-01
The	LabVIEW	Digital	Filter	Design	Toolkit	includes	several	filter	design
tools	for	designing,	analyzing,	and	simulating	floating-point	and	fixed-
point	digital	filters,	including	multirate	filters.	This	help	file	discusses	the
general	digital	filter	design	process	and	introduces	the	tools	in	the	Digital
Filter	Design	Toolkit	that	you	can	use	in	a	digital	filter	design.

Note		All	occurrences	of	filters	in	this	book	refer	to	single-rate
filters	unless	these	topics	explicitly	use	multirate	filters.

You	can	use	the	Signal	Processing	VIs	in	the	LabVIEW	Full	or
Professional	Development	System	to	perform	waveform	measurements,
waveform	conditioning,	waveform	monitoring,	waveform	generation,
signal	processing,	and	point-by-point	analysis.	The	Signal	Processing	VIs
contain	some	digital	filter	design	VIs	similar	to	VIs	in	the	Digital	Filter
Design	Toolkit.	For	example,	the	Butterworth	Coefficients	VI	is	similar	to
the	DFD	Butterworth	Design	VI	and	the	Parks-McClellan	VI	is	similar	to
the	DFD	Remez	Design	VI.	However,	the	Digital	Filter	Design	VIs	provide
more	capabilities,	such	as	support	for	arbitrary	phase	and	magnitude
specifications	and	fixed-point	filter	design.
Although	the	VIs	have	similar	functionality,	the	results	you	obtain	might
be	different	because	the	design	algorithms	are	different.	Refer	to	the
National	Instruments	Web	site	at	ni.com	for	information	about	working
with	the	Signal	Processing	VIs	and	the	Digital	Filter	Design	VIs.
This	help	file	contains:

Concepts—An	overview	of	how	to	use	the	Digital	Filter	Design
Toolkit.
How-To—Step-by-step	instructions	on	accomplishing	tasks	using
the	Digital	Filter	Design	Toolkit.
Reference—Detailed	information	about	the	Digital	Filter	Design
VIs.
MathScript	Functions—Detailed	information	about	the	Digital
Filter	Design	MathScript	classes	of	functions	and	commands	that
LabVIEW	MathScript	supports.

To	view	related	topics,	click	the	Locate	button,	shown	at	left,	in	the

lvdfdtconcepts.chm::/dfdt_concepts_intro.html
lvdfdtconcepts.chm::/dfdt_concepts_intro.html
lvanls.chm::/Signal_Processing_VIs.html
lvanls.chm::/Butterworth_Coefficients.html
lvdigfiltdestk.chm::/DFD_Butterworth.html
lvanls.chm::/Parks_McClellan.html
lvdigfiltdestk.chm::/DFD_Remez_Design.html
lvdigfiltdestk.chm::/DFD_VIs.html
javascript:WWW(WWW_DFD)
lvdfdtconcepts.chm::/dfdt_concepts_intro.html
lvdfdthowto.chm::/dfdthowto_intro.html
lvdigfiltdestk.chm::/DFD_VIs.html
lvdfdttextmath.chm::/DFMC_dfdt.html

toolbar	at	the	top	of	this	window.	The	LabVIEW	Help	highlights	this
topic	in	the	Contents	tab	so	you	can	navigate	the	related	topics.

©	2005–2008	National	Instruments	Corporation.	All	rights	reserved.

Related	Documentation	(Digital	Filter	Design
Toolkit)
The	following	documents	contain	information	that	might	be	helpful	as	you
use	the	LabVIEW	Digital	Filter	Design	Toolkit.
You	must	install	the	PDFs	to	access	them	from	this	help	file.	You	must
have	Adobe	Reader	6.0.1	or	later	installed	to	view	or	search	the	PDF
versions	of	these	manuals.	Refer	to	the	Adobe	Systems	Incorporated
Web	site	to	download	Adobe	Reader.	Refer	to	the	National	Instruments
Product	Manuals	Library	for	updated	documentation	resources.

LabVIEW	Digital	Filter	Design	Toolkit	Readme—Use	this	file	to
obtain	introductory	information	about	the	Digital	Filter	Design
Toolkit,	such	as	overview,	system	requirements,	installation
instructions,	and	known	issues	with	LabVIEW.	Open	this	readme
by	selecting	Start»All	Programs»National
Instruments»LabVIEW»Readme	and	opening
readme_DFDT.html	or	by	navigating	to	the	labview\readme\
directory	and	opening	readme_DFDT.html.
LabVIEW	Digital	Filter	Design	Toolkit	Example	VIs—Refer	to	the
labview\examples\Digital	Filter	Design	directory	for	example	VIs
that	demonstrate	common	tasks	using	the	Digital	Filter	Design
Toolkit.	You	also	can	access	these	VIs	by	selecting	Help»Find
Examples	from	the	pull-down	menu	and	selecting	Toolkits	and
Modules»Digital	Filter	Design	in	the	NI	Example	Finder
window.
Additional	LabVIEW	documentation

The	following	list	of	references	contains	more	information	about	the
theory	and	algorithms	implemented	in	the	Digital	Filter	Design	Toolkit.

Chugani,	Mahesh	L.;	Abhay	R.	Samant;	and	Michael	Cerna.
LabVIEW	Signal	Processing.	Upper	Saddle	River,	NJ:	Prentice
Hall,	1998.
Diniz,	Paulo	S.	R.;	Eduardo	A.	B.	da	Silva;	and	Sergio	L	Netto.
Digital	Signal	Processing:	System	Analysis	and	Design.	New
York:	Cambridge	University	Press,	2002.
Hogenauer,	E.	B.	“An	economical	class	of	digital	filters	for
decimation	and	interpolation.”	IEEE	Transactions	on	Acoustics,

lvhowto.chm::/Install_LV_PDFs.html
lvhowto.chm::/Searching_PDFs.html
javascript:WWW(WWW_Adobe)
javascript:WWW(WWW_Manuals)
lvhowto.chm::/Finding_Example_VIs.html
lvconcepts.chm::/LabVIEW_Documentation_Resources.html

Speech,	and	Signal	Processing,	ASSP-29	(2)	(1981):	155–162.
Ifeachor,	E.	C.,	and	B.	W.	Jervis.	Digital	Signal	Processing:	A
Practical	Approach.	2nd	ed.	Publishing	House	of	Electronics
Industry,	2003.
Jayasimha,	S.,	and	P.	V.	R.	N.	Rao.	“An	iteration	scheme	for	the
design	of	equiripple	Mth-band	FIR	filters.”	IEEE	Transactions	on
Signal	Processing,	vol.	43	(8)	(August	1995):	1998-2002.
Mintzer,	F.	“On	half-band,	third-band,	and	nth-band	FIR	filters	and
their	design.”	IEEE	Transactions	on	Acoustics,	Speech,	and
Signal	Processing,	ASSP-30	(5)	(October	1982):	734–738.
Neuvo,	Y;	C-Y	Dong;	and	S.K.	Mitra.	“Interpolated	finite	impulse
response	filters.”	IEEE	Transactions	on	Acoustics,	Speech,	and
Signal	Processing,	ASSP-32	(June	1984):	563–570.
Oppenheim,	A.	V.,	and	R.	W.	Schafer.	Discrete-Time	Signal
Processing.	Englewood	Cliffs,	NJ:	Prentice	Hall,	1989.
Orfanidis,	S.	J.	Introduction	to	Signal	Processing.	Upper	Saddle
River,	NJ:	Prentice	Hall,	1998.
Parks,	T.	W.,	and	C.	S.	Burrus.	Digital	Filter	Design.	New	York:
John	Wiley	&	Sons,	Inc.,	1987.
Rabiner,	L.	R.	“Approximate	design	relationships	for	low-pass	FIR
digital	filters.”	IEEE	Transactions	on	Audio	and	Electroacoustics,
vol.	21	(5)	(October	1973):	456–460.
Selesnick,	I.	W.,	and	C.	S.	Burrus.	“Generalized	digital
Butterworth	filter	design.”	IEEE	Transactions	on	Signal
Processing,	vol.	46	(6)	(June	1998):	1688–1694.
Vaidyanathan,	P.	P.	Multirate	Systems	and	Filter	Banks.
Englewood	Cliffs,	NJ:	Prentice	Hall,	1993.
Vaidyanathan,	P.	P.,	and	T.	Q.	Nguyen.	“A	‘trick’	for	the	design	of
FIR	half-band	filters.”	IEEE	Transactions	on	Circuits	and
Systems,	vol.	34	(3)	(March	1987):	297–300.

Digital	Filter	Design	Toolkit	Features
The	LabVIEW	Digital	Filter	Design	Toolkit	includes	a	variety	of	tools	to
help	you	design	digital	filters.	For	example,	the	Digital	Filter	Design
Toolkit	includes	Express	VIs	that	you	can	use	to	interact	graphically	with
filter	specifications	to	design	appropriate	digital	filters.
In	addition	to	the	tools	that	help	you	quickly	create	digital	filters,	the
Digital	Filter	Design	Toolkit	includes	tools	for	single-rate	and	multirate
digital	filter	design,	floating-point	to	fixed-point	conversion,	filter	analysis,
and	simulation	on	a	desktop	computer.	The	following	sections	describe
the	major	features	that	the	Digital	Filter	Design	Toolkit	provides.

Comprehensive	Analysis	Tools
You	can	use	the	Filter	Analysis	VIs	to	evaluate	the	characteristics	of
digital	filters.	You	can	examine	the	frequency	response,	group	delay,
phase	delay,	impulse	response,	step	response,	and	pole-zero	placement
of	a	digital	filter.

lvdigfiltdestk.chm::/DFD_Analysis_VIs.html

Large	Selection	of	Filter	Structures
When	you	design	digital	filters	with	the	Digital	Filter	Design	Toolkit,	you
can	select	from	one	of	23	possible	filter	structures,	which	range	from	the
direct	form	and	cascaded	form	structures	to	the	lattice	auto-regressive
(AR),	lattice	moving	average	(MA),	and	lattice	ARMA	structures.
Filter	structures	are	mathematically	equivalent	when	you	use	floating-
point	computation.	However,	different	structures	can	perform	differently	in
fixed-point	implementations	and	can	lead	to	different	computation
complexity	and	memory	usage	in	fixed-point	or	floating-point
implementations.	Selecting	an	appropriate	filter	structure	is	critical	for
digital	filter	design,	especially	for	fixed-point	digital	filters	in	which	the
precision	of	the	filter	coefficients	and	filtering	operations	is	more	limited
than	for	floating-point	digital	filters.

lvdfdtconcepts.chm::/select_structure.html

Multirate	Digital	Filter	Design
The	Multirate	Filter	Design	VIs	help	you	design,	analyze,	and	implement
single-stage	multirate	filters,	multistage	multirate	filters,	halfband	filters,
Nyquist	filters,	raised	cosine	filters,	and	cascaded	integrator	comb	(CIC)
filters.

lvdigfiltdestk.chm::/DFD_Multi_Design_VIs.html
lvdfdtconcepts.chm::/design_mrate.html

Special	Digital	Filter	Design
The	Special	Filter	Design	VIs	help	you	design	IIR	notch/peak	filters,	IIR
comb	filters,	maximally	flat	filters,	narrowband	filters,	and	group	delay
compensators.

lvdigfiltdestk.chm::/DFD_Special_VIs.html
lvdfdtconcepts.chm::/special_filt_design.html

Fixed-Point	Filter	Design	and	Code	Generation
The	Fixed-Point	Tools	VIs	and	Multirate	Fixed-Point	Tools	VIs	help	you
quantize,	analyze,	model,	and	simulate	the	fixed-point	filter	design,
including	single-rate	and	multirate	filters.	You	can	save	the	resulting
fixed-point	filter	information	as	C	code,	which	you	then	can	implement	on
digital	signal	processing	(DSP)	chips.	You	also	can	save	the	resulting
fixed-point	information	as	LabVIEW	code,	which	you	then	can	implement
on	NI	Reconfigurable	I/O	(RIO)	targets.

lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html
lvdigfiltdestk.chm::/MR_FXP_Tools.html
lvdfdtconcepts.chm::/design_fp_filters.html

Generalized	Remez	and	Least	Pth	Norm	Design	Algorithms
You	can	use	algorithms	such	as	the	generalized	Remez	method	and	the
least	pth	norm	method	to	specify	an	arbitrary	magnitude	and	a	phase
response	for	a	digital	filter.	The	Digital	Filter	Design	Toolkit	includes
automatic	order-estimation	VIs	to	assist	you	in	estimating	the	filter	order.

lvdfdtconcepts.chm::/Remez_DesignMethod.html
lvdfdtconcepts.chm::/lpth_norm_design.html

Supported	Execution	Targets	(Digital	Filter
Design	Toolkit)
You	can	use	the	LabVIEW	Digital	Filter	Design	Toolkit	to	execute	a	digital
filter	on	many	different	types	of	targets.	The	following	table	shows	the
supported	target	types	and	any	additional	software	you	must	install	to
execute	a	digital	filter	on	that	type	of	target.

Type	of	Target
Additional
Required
Software

A	Windows	PC —
A	National	Instruments	field-programmable	gate
array	(FPGA)	target,	such	as	an	NI	Reconfigurable
I/O	(NI-RIO)	device.	To	use	a	digital	filter	on	an
FPGA	target,	you	first	must	generate	FPGA	code	for
that	filter.

LabVIEW
FPGA
Module
NI-RIO
driver
software

A	32-bit	microprocessor.	To	use	a	digital	filter	on	a
32-bit	microprocessor,	you	first	must	generate	fixed-
point	C	code	for	that	filter.

LabVIEW
with
embedded
target
support
The
LabVIEW
add-on	for
the
embedded
target

An	NI	Real-Time	(RT)	target,	such	as	an	NI	PXI	or
CompactRIO	controller,	running	the	Ardence	Phar
Lap	Embedded	Tool	Suite	(ETS)	or	Wind	River
VxWorks	real-time	operating	system	(RTOS).	The
Digital	Filter	Design	VIs	support	native	execution	on
these	operating	systems.

LabVIEW
Real-Time
Module
Driver
software
for	any
hardware

lvdfdtconcepts.chm::/gen_lv_fpga.html
lvdfdtconcepts.chm::/gen_fp_c_code.html
lvdigfiltdestk.chm::/DFD_VIs.html

devices

Note		Refer	to	the	National	Instruments	Web	site	for	information
about	the	National	Instruments	products	this	table	mentions.

javascript:WWW(WWW_NI)

Digital	Filter	Design	Concepts	(Digital	Filter
Design	Toolkit)
This	book	contains	information	about	the	digital	filter	design	process.	You
can	use	the	LabVIEW	Digital	Filter	Design	Toolkit	to	design	floating-point
and	fixed-point	digital	filters.	You	need	fundamental	knowledge	about
digital	signal	processing	to	understand	the	content	in	this	book.	The	book
Discrete-Time	Signal	Processing	provides	necessary	information	to	help
you	develop	a	firm	base	in	the	fundamentals.
You	can	use	the	Digital	Filter	Design	Toolkit	to	design	the	following	types
of	filters:

Single-rate	filters—Single-rate	filters	are	digital	filters	that	do	not
change	the	sampling	frequency	of	a	signal	during	the	filtering
process.	Therefore,	if	you	apply	a	single-rate	filter	to	an	input
signal,	the	output	signal	has	the	same	sampling	frequency	as	the
input	signal.	The	Designing	Floating-Point	Filters	book	contains
more	information	about	designing	single-rate	filters.
Multirate	filters—Multirate	filters	are	digital	filters	that	convert
the	sampling	frequency	of	an	input	signal	to	a	new	sampling
frequency.	Multirate	filters	increase	or	decrease	the	sampling
frequency	of	the	input	signal	while	minimizing	passband
distortion,	aliasing,	and	imaging	in	the	signal.	Therefore,	the
sampling	frequency	of	the	output	signal	from	a	multirate	filter	is
different	from	that	of	the	input	signal.	Multirate	filters	can	reduce
computational	complexity	and	data	volume	in	one	system,	or
multirate	filters	can	change	the	frequency	as	necessary	to	be
compatible	with	other	systems.	In	multirate	signal	processing,	the
primary	consideration	is	the	selection	and	modification	of	the
proper	sampling	frequency.	The	Designing	Multirate	Filters	book
contains	more	information	about	designing	multirate	filters.

To	view	related	topics,	click	the	Locate	button,	shown	at	left,	in	the
toolbar	at	the	top	of	this	window.	The	LabVIEW	Help	highlights	this
topic	in	the	Contents	tab	so	you	can	navigate	the	related	topics.

lvdfdtconcepts.chm::/dfd_related_doc.html
lvdfdtconcepts.chm::/sampling_frequency.html
lvdfdtconcepts.chm::/design_fl_filters.html
lvdfdtconcepts.chm::/design_mrate.html

Digital	Filter	Design	Basics	(Digital	Filter	Design
Toolkit)
Before	using	the	LabVIEW	Digital	Filter	Design	Toolkit	to	design	a	digital
filter,	you	need	to	obtain	an	overview	of	the	general	design	process	and
application	areas	of	digital	filters.
When	you	design	a	digital	filter,	you	begin	by	creating	specifications	that
define	the	characteristics	you	want	in	the	digital	filter.	You	can	design
both	FIR	and	IIR	filters	with	specific	filter	attributes,	and	you	can
customize	the	sampling	frequency,	filter	specifications,	and	design
method.	After	you	design	a	digital	filter,	you	need	to	analyze	the
characteristics	of	the	digital	filter	by	evaluating	the	magnitude	and
impulse	responses,	phase	responses	and	group	delays,	or	poles	and
zeroes.	The	Digital	Filter	Design	Toolkit	provides	the	Filter	Analysis	VIs	to
help	you	evaluate	the	characteristics	of	a	filter.

To	view	related	topics,	click	the	Locate	button,	shown	at	left,	in	the
toolbar	at	the	top	of	this	window.	The	LabVIEW	Help	highlights	this
topic	in	the	Contents	tab	so	you	can	navigate	the	related	topics.

lvdfdtconcepts.chm::/dfd_process.html
lvdfdtconcepts.chm::/digital_filter_app.html
lvdfdtconcepts.chm::/FIR_and_IIR_Filters.html
lvdfdtconcepts.chm::/Filter_Attributes.html
lvdfdtconcepts.chm::/Sampling_Frequency.html
lvdfdtconcepts.chm::/dfd_filter_spec.html
lvdfdtconcepts.chm::/Design_Methods.html
lvdfdtconcepts.chm::/grp_phase_delay.html
lvdfdtconcepts.chm::/Poles_and_Zeroes.html
lvdigfiltdestk.chm::/DFD_Analysis_VIs.html

Digital	Filter	Design	Process	Overview	(Digital
Filter	Design	Toolkit)
Digital	filter	design	involves	the	following	three	steps:

1.	 Specifying	the	design	method	and	target	digital	filter	attributes,	or
the	characteristics	you	want	the	digital	filter	to	possess.

2.	 Analyzing	the	characteristics	of	the	floating-point	digital	filter	you
designed	in	Step	1.

3.	 Implementing	the	filter	on	fixed-point	targets	with	finite-precision
arithmetic.

The	design	process	is	iterative.	You	usually	experiment	with	different
design	specifications	or	design	methods	to	obtain	the	appropriate	digital
filter	for	an	application.	Sometimes	you	might	need	to	revise	the
specifications	or	modify	the	design	method	after	you	simulate	the	filter,
especially	when	designing	fixed-point	filters.

Filter	Specifications	(Digital	Filter	Design
Toolkit)
For	most	digital	filters,	you	typically	design	the	digital	filter	response	in
the	frequency	domain.	The	frequency	response	specification	for	the
digital	filter	typically	includes	the	target	magnitude	response,	phase
response,	and	the	allowable	deviation	for	each.	The	following	figure
illustrates	the	magnitude	frequency	response	of	a	lowpass	filter,	which
allows	low	frequencies	to	pass	and	attenuates	high	frequencies.

The	frequency	range	from	the	passband	edge	frequency	to	the	stopband
edge	frequency	is	the	transition	band,	which	has	a	frequency	response
that	is	unspecified.	The	filter	passband	and	stopband	can	contain
oscillations,	which	are	known	as	ripples.	A	typical	example	of	a	ripple
appears	in	the	circle	of	the	previous	figure.	δp	indicates	the	magnitude	of
the	passband	ripple,	which	equals	the	maximum	deviation	from	the	unity.
δs	indicates	the	magnitude	response	of	the	stopband	ripple,	which	equals
the	maximum	deviation	from	zero.
Notice	the	transition	band	between	the	passband	and	stopband
frequencies.	In	an	ideal	design,	a	digital	filter	has	a	target	gain	in	the
passband	and	a	zero	gain	(−∞	dB)	in	the	stopband.	In	a	real
implementation,	a	finite	transition	region	between	the	passband	and	the
stopband,	which	is	known	as	the	transition	band,	always	exists.	The	gain
of	the	filter	in	the	transition	band	is	unspecified.	The	gain	usually	changes
gradually	through	the	transition	band	from	1	(0	dB)	in	the	passband	to	0
(−∞	dB)	in	the	stopband.

You	can	measure	the	passband	ripple	and	stopband	ripple	in	decibels,	as
shown	in	the	following	equations:
passband	ripple	=	−20log10(1−δp)

stopband	ripple	=	−20log10(δs)

Based	on	the	two	equations	above,	you	can	convert	the	passband	ripple
to	or	from	the	decibel	representation.	For	example,	if	passband	ripple
equals	0.01	dB,	that	is,	0.01	=	−20log10(1−δp),	then	δp	=	0.00115.
Similarly,	if	stopband	ripple	equals	60	dB,	that	is	60	=	−20log10(δs),	then
δs	=	0.001.

The	following	figure	illustrates	the	magnitude	frequency	responses	of	a
highpass	filter,	which	passes	high	frequencies	and	attenuates	low
frequencies.

The	following	figure	illustrates	the	magnitude	frequency	responses	of	a
bandpass	filter,	which	passes	a	certain	band	of	frequencies	and
attenuates	lower	and	higher	frequencies.

In	the	previous	figure,	stopband	edge	frequency	1	indicates	the	maximum
frequency	of	the	lower	frequency	range	that	you	want	to	attenuate,	and
stopband	edge	frequency	2	indicates	the	minimum	frequency	of	the
higher	frequency	range	that	you	want	to	attenuate.	The	frequency	range
between	passband	edge	frequency	1	and	2	indicates	the	range	of
frequencies	that	can	pass	through	the	filter.
The	following	figure	illustrates	the	magnitude	frequency	response	of	a
bandstop	filter,	which	attenuates	a	certain	band	of	frequencies	and
passes	all	frequencies	not	within	the	band.

In	the	previous	figure,	passband	edge	frequency	1	indicates	the
maximum	frequency	of	the	lower	frequency	range	that	can	pass	through
the	filter,	and	passband	edge	frequency	2	indicates	the	minimum
frequency	of	the	higher	frequency	range	that	can	pass	through	the	filter.
The	frequency	range	between	stopband	edge	frequency	1	and	2

indicates	the	range	of	frequencies	that	you	want	to	attenuate.

Design	Methods	(Digital	Filter	Design	Toolkit)
The	LabVIEW	Digital	Filter	Design	Toolkit	provides	the	following	finite
impulse	response	(FIR)	filter	design	methods.

Kaiser	Window
Dolph-Chebyshev	Window
Equi-Ripple	FIR

The	Kaiser	Window	method	and	the	Dolph-Chebyshev	Window	method
allows	you	to	obtain	the	filter	coefficients	directly	from	the	analytical
equations,	so	these	methods	are	easier	to	use	than	the	Equi-Ripple	FIR
method,	which	also	is	known	as	the	Remez	design	method,	but	the	Equi-
Ripple	FIR	method	yields	optimal	filters	and	often	produces	the	best
results	for	most	FIR	filter	design	problems.
In	addition	to	the	FIR-based	methods,	the	Digital	Filter	Design	Toolkit
supports	the	following	infinite	impulse	response	(IIR)	filter	design
methods.

Butterworth
Chebyshev
Inverse	Chebyshev
Elliptic

The	following	figure	illustrates	the	magnitude	responses	of	a	typical
lowpass	filter	designed	by	the	four	IIR	filter	design	methods.	Each	filter
has	the	same	numerator	and	denominator	order	values.

lvdfdtconcepts.chm::/Remez_DesignMethod.html

The	following	table	summarizes	the	main	features	of	the	four	IIR-based
design	methods	so	you	can	determine	the	IIR	filter	design	method	to	use.

IIR	Filter Ripple	in
Passband?

Ripple	in
Stopband?

Transition
Bandwidth	for
a	Fixed	Order

Order	for
Given	Filter
Specifications

Butterworth No No Widest Highest
Chebyshev Yes No Narrower Lower
Inverse
Chebyshev

No Yes Narrower Lower

Elliptic Yes Yes Narrowest Lowest

Group	Delay	and	Phase	Delay	(Digital	Filter
Design	Toolkit)
For	a	filter	with	a	frequency	response	of	H(ejω),	the	phase	delay
response	 	is	defined	by	the	following	equation:

The	group	delay	response	 	is	defined	as	the	negative	derivative	of	the
phase	response	ω,	as	shown	in	the	following	equation:

Both	the	group	delay	and	phase	delay	are	in	samples.

For	a	generalized	linear	phase	filter	with	arg[H(ejω)]	=	– ω+β,	the	group
delay	is	represented	by	the	following	equation:

The	phase	delay	is	represented	by	the	following	equation:

You	can	represent	the	phase	delay	as	the	time	delay	in	samples
experienced	by	each	frequency	component	of	the	input	signal.	The	filter
is	represented	by	the	following	illustration:

The	filter	H(ejω)	shifts	all	frequency	components	by	a	phase	β	and	then
filters	the	signal	with	a	new	filter	Hnew(ejω)	that	has	a	phase	of	– ω.	You
can	interpret	the	group	delay	as	the	time	delay	in	samples	experienced
by	each	frequency	component	through	the	new	filter	Hnew(ejω).

Linear	phase	filters	are	characterized	by	a	constant	group	delay.	The
deviation	of	the	group	delay	from	a	constant	value	within	the	passband
indicates	the	degree	of	nonlinearity	in	the	phase.	Use	the	group	delay	to
analyze	the	linearity	of	a	filter.

Digital	Filter	Applications	(Digital	Filter	Design
Toolkit)
Filters	are	signal	processing	elements	that	alter	the	frequency	spectrum
of	an	input	signal.	You	might	use	filters	for	the	following	applications:

Attenuating	noise	in	a	signal	where	the	noise	power	and	signal
power	are	concentrated	at	different	frequencies.	For	example,
you	might	use	a	notch	filter	to	attenuate	a	60	Hz	powerline
interference	present	in	a	signal.
Extracting	signal	components	from	a	signal	that	contains	different
signal	components	concentrated	at	different	frequencies.	For
example,	you	might	use	a	bandpass	filter	to	extract	a	particular
radio	station	signal	from	a	broadband	radio	signal.
Reshaping	the	frequency	spectrum	of	the	input	signal.	For
example,	you	might	use	an	A-weighting	filter	to	approximate	the
frequency	response	of	a	human	ear.	As	another	example,	you
might	use	an	equalizer	filter	to	undo	magnitude	and	phase
distortion	caused	by	passing	a	signal	through	a	linear	time-
invariant	communications	channel.

You	can	use	either	fixed-point	or	floating-point	arithmetic	to	implement
digital	signal	processing	systems.	Although	floating-point
implementations	are	typically	easier	to	design,	fixed-point
implementations	are	often	less	expensive	and	more	efficient	in	power
than	floating-point	implementations.	Floating-point	designs	are	typically
appropriate	in	applications	that	run	on	desktop	computers,	and	fixed-
point	designs	are	often	more	appropriate	in	embedded	applications,	in
which	you	need	to	minimize	cost	or	power	consumption.

Designing	Floating-Point	Filters	(Digital	Filter
Design	Toolkit)
This	book	explains	how	to	use	the	interactive	Classical	Filter	Design
Express	VI	to	design	floating-point	filters.	This	book	also	describes	how
to	analyze	and	use	a	designed	floating-point	filter.

To	view	related	topics,	click	the	Locate	button,	shown	at	left,	in	the
toolbar	at	the	top	of	this	window.	The	LabVIEW	Help	highlights	this
topic	in	the	Contents	tab	so	you	can	navigate	the	related	topics.

lvdigfiltdestk.chm::/DFD_Classical_Filter.html

Floating-Point	Filter	Design	Process	(Digital
Filter	Design	Toolkit)
The	following	figure	illustrates	the	floating-point	filter	design	process.	You
first	design	the	specifications	of	the	filter.	You	then	analyze	the
characteristics	of	the	resulting	filter	to	determine	if	the	filter	meets	the
requirements	of	the	system.	If	the	filter	does	not	meet	the	requirements	of
the	system,	you	can	modify	the	specifications	and	repeat	the	process.
After	you	design	an	appropriate	filter,	you	can	use	the	filter	in	the	system.

For	a	particular	design	problem,	you	can	use	several	different	techniques
and	filter	types	to	yield	an	acceptable	result.	To	achieve	the	best	results,
you	might	need	to	experiment	with	several	different	approaches.

Entering	Floating-Point	Filter	Specifications
(Digital	Filter	Design	Toolkit)
You	can	use	the	Classical	Filter	Design	Express	VI	to	configure	a
classical	digital	filter	interactively.	After	you	place	the	Express	VI	on	the
block	diagram,	the	Configure	Classical	Filter	Design	dialog	box
appears,	as	shown	in	the	following	figure:

From	the	configuration	dialog	box,	you	can	select	the	filter	type	and
design	method	from	the	pull-down	menus	and	then	enter	the	filter
specifications	through	either	the	numeric	controls	on	the	left	side	of	the
configuration	dialog	box	or	the	graphical	interface	on	the	right	side	of	the
configuration	dialog	box.	The	results	are	equivalent.

lvdigfiltdestk.chm::/DFD_Classical_Filter.html
lvdfdthowto.chm::/design_fp_filter_1.html

Using	the	Numerical	Controls
Classical	digital	filter	specifications	include	frequency	ranges	and	ripple
constraints.	You	can	specify	the	maximum	allowable	deviation	δp	from
unity	gain	in	the	passband	in	the	Passband	ripple	numeric	control.	You
can	specify	the	maximum	allowable	deviation	δs	from	the	zero	gain	in	the
stopband	in	the	Stopband	attenuation	numeric	control.
You	can	specify	deviations	in	either	a	logarithmic	or	a	linear	scale.	The
Classical	Filter	Design	Express	VI	uses	a	logarithmic	scale	by	default.	To
use	a	linear	scale,	remove	the	checkmark	from	the	Magnitude	in	dB
checkbox	in	the	configuration	dialog	box.
The	following	equations	show	the	relationship	between	the	logarithmic
and	linear	scales.
passband	ripple	=	−20log10(1−δp)

stopband	ripple	=	−20log10(δs)

Based	on	the	two	equations	above,	you	can	convert	the	passband	ripple
to	or	from	the	decibel	representation.	For	example,	if	passband	ripple
equals	0.01	dB,	that	is,	0.01	=	−20log10(1−δp),	then	δp	=	0.00115.
Similarly,	if	stopband	ripple	equals	60	dB,	that	is	60	=	−20log10(δs),	then
δs	=	0.001.

Using	the	Graphical	Interface
The	right	side	of	the	Configure	Classical	Filter	Design	dialog	box
displays	the	magnitude	response	of	the	designed	digital	filter.	The
magnitude	axis	can	be	either	a	linear	or	a	logarithmic	scale.	Remove	the
checkmark	from	the	Magnitude	in	dB	checkbox	to	use	a	linear	scale,	or
keep	the	checkmark	in	the	Magnitude	in	dB	checkbox	to	use	a
logarithmic	scale.	The	Frequency	axis,	in	hertz,	covers	the	range	from	0
to	half	the	sampling	frequency,	which	is	the	Nyquist	frequency.
The	Magnitude	Response	graph	contains	a	set	of	cursors	that	you	can
use	to	specify	the	passband	and	stopband.	Use	the	passband	cursor	to
change	the	passband.	Under	the	linear	scale,	the	distance	between	unity
and	the	horizontal	passband	cursor	specifies	the	maximum	passband
ripple.	The	location	of	the	vertical	passband	cursor	indicates	the
passband	edge	frequency.	The	stopband	cursors	work	the	same	when
defining	the	specifications	of	the	stopband.	The	distance	between	the
horizontal	passband	cursor	and	the	horizontal	stopband	cursor	specifies
the	stopband	attenuation.

Guidelines	for	Entering	Filter	Specifications
As	you	define	a	filter	specification,	you	must	adhere	to	a	set	of	rules	to
maintain	valid	specifications.	If	you	do	not	adhere	to	the	following	rules,
the	Error	message	indicator	of	the	Configure	Classical	Filter	Design
dialog	box	displays	a	message	with	suggestions	for	repositioning	the
cursors.

Keep	horizontal	cursors	in	the	range	(0,	1)	in	a	linear	scale	or
(−inf,	0	dB)	in	a	logarithmic	scale.
Keep	the	horizontal	passband	cursor	above	the	horizontal
stopband	cursor.

Selecting	the	Design	Method
After	you	enter	the	target	digital	filter	specifications	into	the	numeric
controls	or	graphical	interface,	select	a	design	method.
When	you	design	a	digital	filter	with	the	Classical	Filter	Design	Express
VI,	the	design	method	and	the	filter	specifications	that	you	specify	control
the	shape	of	the	frequency	response.	You	cannot	alter	the	phase
response,	even	though	the	phase	response	for	filters	generated	with	the
FIR	methods	in	this	VI	are	linear	phase.	If	you	want	to	specify	the
magnitude	response	and	phase	response,	use	the	Advanced	FIR	Filter
Design	VIs,	the	Advanced	IIR	Filter	Design	VIs,	or	the	Special	Filter
Design	VIs.
Refer	to	the	Lowpass_Step	1_Design	Lowpass	VI	in	the
labview\examples\Digital	Filter	Design\Case	Studies\Single-Rate	Filter\
directory	for	an	example	that	demonstrates	how	to	use	the	Classical
Filter	Design	Express	VI	to	design	a	lowpass	filter.
	Open	example	

lvdfdtconcepts.chm::/design_methods.html
lvdigfiltdestk.chm::/DFD_Adv_FIR_VIs.html
lvdigfiltdestk.chm::/DFD_Adv_IIR_VIs.html
lvdigfiltdestk.chm::/DFD_Special_VIs.html
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CSingle-Rate%20Filter%5C%5CLowpass_Step%201_Design%20Lowpass.vi');

Analyzing	Floating-Point	Filters	(Digital	Filter
Design	Toolkit)
After	you	enter	the	target	specifications	for	a	digital	filter,	you	can	analyze
the	characteristics	of	the	resulting	filter	in	the	Configure	Classical	Filter
Design	dialog	box	of	the	Classical	Filter	Design	Express	VI	by	evaluating
the	pole-zero	plot,	the	magnitude	response,	and	the	filter	order.

lvdfdtconcepts.chm::/enter_filter_spec.html
lvdfdthowto.chm::/design_fp_filter_2.html
lvdigfiltdestk.chm::/DFD_Classical_Filter.html
lvdfdtconcepts.chm::/Poles_and_Zeroes.html

Magnitude	Response
The	frequency	response	of	a	digital	filter	is	defined	by	H(ej2πf),	and	the
magnitude	response	is	defined	by	|H(ej2πf)|.	For	discrete-time	systems,
H(ej2πf)	is	periodic	with	a	period	of	fs.	For	real-valued	digital	filters,	the
magnitude	response	is	symmetric	with	respect	to	0,	±fs,	±2fs,	….
Therefore,	you	can	calculate	the	magnitude	response	for	only	[0,	fs/2],
which	contains	the	frequencies	between	0	and	the	Nyquist	frequency.
The	magnitude	response	graph	in	the	Configure	Classical	Filter
Design	dialog	box	includes	a	green	vertical	line	to	indicate	the	location	of
fs/2.

Filter	Order	Specification
The	Classical	Filter	Design	Express	VI	automatically	computes	the
minimal	filter	order	required	to	fulfill	the	given	filter	specification	and
displays	the	order	in	the	Filter	order	indicator.	With	the	same
specification,	you	can	use	different	algorithms	to	create	digital	filters	with
different	filter	orders.	You	can	estimate	the	computational	complexity	and
cost	based	on	the	filter	order.	If	you	have	strict	requirements	for	the
system,	the	filter	order	can	help	you	determine	if	the	filter	is	acceptable.

Using	Floating-Point	Filters	(Digital	Filter	Design
Toolkit)
After	you	analyze	the	filter	design,	you	can	use	the	filter	to	process	an
input	signal.	Use	the	Processing	VIs	to	process	a	signal	with	the	filter	you
designed.	The	Processing	VIs	can	process	an	input	signal	in	the
following	two	ways:

As	a	sequence	of	data	blocks
As	a	sequence	of	data	blocks	with	saved	internal	filter	states

Refer	to	the	Lowpass_Step	2_Perform	Lowpass	Filtering	VI	in	the
labview\examples\Digital	Filter	Design\Case	Studies\Single-Rate	Filter
directory	for	an	example	that	demonstrates	how	to	apply	a	lowpass	filter
to	a	filtering	application.
	Open	example	

lvdfdtconcepts.chm::/analyze_design.html
lvdfdthowto.chm::/design_fp_filter_3.html
lvdigfiltdestk.chm::/DFD_Processing_VIs.html
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CSingle-Rate%20Filter%5C%5CLowpass_Step%202_Perform%20Lowpass%20Filtering.vi');

Designing	Fixed-Point	Filters	(Digital	Filter
Design	Toolkit)
This	book	explains	how	you	use	the	Fixed-Point	Tools	VIs	to	implement	a
fixed-point	digital	filter	from	a	floating-point	reference	filter	that	you
designed.

To	view	related	topics,	click	the	Locate	button,	shown	at	left,	in	the
toolbar	at	the	top	of	this	window.	The	LabVIEW	Help	highlights	this
topic	in	the	Contents	tab	so	you	can	navigate	the	related	topics.

lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html
lvdfdtconcepts.chm::/design_fl_filters.html

Fixed-Point	Filter	Design	Process	(Digital	Filter
Design	Toolkit)
Fixed-point	signal	processing	platforms,	such	as	fixed-point	digital	signal
processors	(DSPs)	and	field-programmable	gate	arrays	(FPGAs),	are
typically	more	power-efficient	and	less	expensive	than	floating-point
alternatives.	However,	fixed-point	systems	are	generally	more	difficult	to
design.	For	example,	you	must	consider	the	effects	of	coarser
quantizations	in	fixed-point	systems.
To	design	a	fixed-point	filter,	you	first	must	design	a	floating-point	filter,
also	known	as	a	reference	filter,	that	meets	the	target	specifications.	In
some	cases,	for	example,	if	you	need	an	infinite	impulse	response	(IIR)
filter	with	a	narrow	transition	band	but	a	high	stopband	attenuation,	you
need	to	design	a	reference	filter	that	exceeds	the	target	specifications.
The	excess	margin	ensures	a	smooth	conversion	from	a	floating-point
representation	to	a	fixed-point	representation.	You	then	must	modify	the
floating-point	filter	to	accommodate	the	finite-precision	constraints	of	the
target	platform	while	still	trying	to	meet	the	target	specifications.	The
following	figure	illustrates	the	fixed-point	filter	design	process.	The	grey
boxes	illustrate	the	floating-point	filter	design	process,	the	dotted	lines
represent	optional	steps,	and	the	arrows	on	the	left	indicate	to	which
steps	you	can	return	if	the	filter	design	fails	to	meet	the	requirements	in
the	current	step.

lvdfdtconcepts.chm::/design_fl_filters.html
lvdfdtconcepts.chm::/dfd_fl_process.html

Designing	a	fixed-point	filter	from	a	reference	floating-point	filter	involves
the	following	steps:

1.	 Selecting	a	filter	structure.	In	floating-point	filter	design,	after	you
select	a	design	method,	the	LabVIEW	Digital	Filter	Design	Toolkit
uses	a	default	filter	structure	according	to	the	specified	design
method.	However,	in	fixed-point	implementations,	different	filter
structures	can	have	different	memory	and	multiplier	requirements
and	might	cause	different	finite	word	length	effects.	To	obtain	the
best	filtering	results,	you	must	convert	the	default	filter	structure
to	an	appropriate	structure.	This	step	is	optional.

2.	 Scaling	the	filter	coefficients.	Every	filter	structure	contains	many
accumulators,	each	of	which	might	use	a	different	data	range.
You	can	scale	the	filter	coefficients	by	using	the	DFD	Scale	Filter

lvdfdtconcepts.chm::/select_structure.html
lvdfdtconcepts.chm::/design_methods.html
lvdfdtconcepts.chm::/select_structure.html
lvdfdtconcepts.chm::/scale_filter_coef.html
lvdfdtconcepts.chm::/dfd_structure_graph.html
lvdigfiltdestk.chm::/DFD_Scale_Filter.html

VI	to	ensure	that	all	of	the	accumulators	use	the	same	data
range.	Scaling	the	filter	coefficients	can	help	you	obtain	a	better
filtering	result,	especially	for	IIR	Cascaded	Second-Order
Sections	Form	structures.	This	step	is	optional.

3.	 Quantizing	the	floating-point	filter.	Quantization	is	the	process	of
approximating	a	fixed-point	value	for	each	reference	floating-
point	value.	You	then	can	use	the	fixed-point	values	in	fixed-point
mathematical	computation	or	a	hardware	implementation.	By
quantizing	the	coefficients	of	the	reference	floating-point	filter,	you
convert	a	floating-point	filter	to	a	fixed-point	filter.

4.	 Analyzing	the	fixed-point	filter.	To	determine	how	the
characteristics	of	the	realized	fixed-point	filter	deviate	from	the
characteristics	of	the	reference	floating-point	filter,	you	must
analyze	the	fixed-point	filter.

5.	 Creating	a	fixed-point	filter	model.	To	create	the	fixed-point	filter
model,	you	must	configure	the	quantizers	for	the	input	and	output
signals	and	specify	the	settings	for	internal	computation.

6.	 Simulating	the	fixed-point	filter.	Before	applying	the	fixed-point
filter	model	in	real-world	applications,	you	must	simulate	the
behavior	of	the	filter	to	verify	if	the	fixed-point	filter	model	works
as	you	require	in	a	simulation.	If	the	fixed-point	filter	does	not
provide	the	required	performance	in	the	simulation,	you	can
change	the	implementation	structure,	modify	quantization
settings,	or	redefine	the	filter	specifications	for	the	reference
floating-point	filter.

7.	 Generating	code	from	the	fixed-point	filter.	You	can	export	filter
coefficients	and	automatically	generate	integer	LabVIEW	code,
LabVIEW	FPGA	code,	and	C	code	from	the	fixed-point	filter	for
designated	hardware	targets.

lvdfdtconcepts.chm::/iir_sos_specs.html
lvdfdtconcepts.chm::/quantize_fl_filters.html
lvdfdtconcepts.chm::/analyze_fixedpoint.html
lvdfdtconcepts.chm::/model_fp_filter.html
lvdfdtconcepts.chm::/sim_fp_filters.html
lvdfdtconcepts.chm::/Generating_Code.html

Finite	Word	Length	Effects
Converting	a	floating-point	filter	to	fixed-point	can	alter	the	characteristics
and	performance	of	the	filter	significantly.	You	must	analyze	the	filter	and
simulate	the	filtering	process	with	expected	input	signals.	Fixed-point
arithmetic	can	have	the	following	detrimental	effects	on	filter
performance.

Degraded	signal-to-noise	ratio	(SNR)	due	to	the	reduced
precision	of	internal	registers,	adders,	subtracters,	and	multipliers
Distorted	frequency	response	from	a	limited	word	length
representation	of	filter	coefficients
Overflowed	or	clipped	signal	information	due	to	insufficient
headroom	in	the	signal	paths
Zero-input	limit	cycles	of	infinite	impulse	response	(IIR)	filters	due
to	nonlinear	quantizers	in	the	feedback	loop	of	IIR	filters	or	to	the
overflow	of	the	summation	operations

lvdfdtconcepts.chm::/specify_wl_iwl.html

Selecting	a	Filter	Structure	(Digital	Filter	Design
Toolkit)
A	filter	structure	specifies	how	you	arithmetically	use	a	set	of	filter
coefficients	to	process	an	input	signal.	For	a	specified	digital	filter,	dozens
of	mathematically	equivalent	implementation	structures	are	available.	For
a	floating-point	digital	filter,	the	effects	of	different	implementation
structures	on	the	filter	behavior	are	negligible	in	most	cases.	For	a	fixed-
point	digital	filter,	different	implementation	structures	can	result	in
different	signal	outputs.
In	addition	to	FIR	and	IIR	structures,	the	LabVIEW	Digital	Filter	Design
Toolkit	also	provides	lattice	structures.	Lattice	structures,	including	lattice
allpass,	lattice	AR,	lattice	ARMA,	and	lattice	MA,	can	be	good
alternatives	for	fixed-point	filter	implementation.	For	example,	lattice
structures	can	preserve	the	stability	of	fixed-point	IIR	filters	as	long	as	the
lattice	reflection	coefficients	have	moduli	less	than	one,	regardless	of
how	limited	the	arithmetic	precision	might	be.
The	Digital	Filter	Design	Toolkit	provides	the	following	three	categories	of
lattice	structures.

Basic	Section	Type—Two	multipliers	per	lattice	section.	This
category	offers	the	most	general	lattice	structure.
One	Multiplier	Section	Type—Only	one	multiplier	per	lattice
section.	This	category	saves	resources	on	hardware	targets	such
as	field-programmable	gate	arrays	(FPGAs).
Normalized	Section	Type—Four	multipliers	per	lattice	section.
This	category	automatically	scales	the	internal	signals	to	help
minimize	the	quantization	effects	in	each	lattice	section	at	the
cost	of	increasing	the	implementation	complexity.

When	you	select	a	filter	structure,	you	must	balance	a	number	of	factors,
including	the	filter	type,	implementation	resources,	and	computational
complexity.	For	IIR	filters,	you	also	need	to	consider	the	sensitivity	to
coefficient	quantization	of	each	structure.	The	following	table	lists	the
default	filter	structures	that	the	Filter	Design	VIs	use.

Design	Method Default	Structure
Kaiser	Window FIR	Direct	Form

lvdfdtconcepts.chm::/FIR_Filter_Specs.html
lvdfdtconcepts.chm::/iir_direct_specs.html
lvdfdtconcepts.chm::/lattice_allpass.html
lvdfdtconcepts.chm::/Lattice_AR_Specs.html
lvdfdtconcepts.chm::/Lattice_ARMA_Specs.html
lvdfdtconcepts.chm::/Lattice_MA_Specs.html
lvdfdtconcepts.chm::/Lattice_ARMA_Specs.html
lvdfdthowto.chm::/design_fxp_filter_1.html
lvdigfiltdestk.chm::/DFD_Design_VIs.html
lvdfdtconcepts.chm::/FIR_Filter_Specs.html#direct

Dolph-Chebyshev
Window

FIR	Direct	Form

Windowed	FIR FIR	Direct	Form
Remez/Equi-Ripple FIR	Direct	Form
Least	Pth	Norm	FIR FIR	Direct	Form

IIR	Notch	Peak IIR	Direct	Form	II
IIR	Comb IIR	Direct	Form	II
Arbitrary	Group	Delay IIR	Direct	Form	II
Least	Pth	Norm	IIR IIR	Direct	Form	II

Butterworth IIR	Cascaded	Second-Order	Sections	Form	II
Transposed

Chebyshev IIR	Cascaded	Second-Order	Sections	Form	II
Transposed

Inverse	Chebyshev IIR	Cascaded	Second-Order	Sections	Form	II
Transposed

Elliptic IIR	Cascaded	Second-Order	Sections	Form	II
Transposed

Bessel IIR	Cascaded	Second-Order	Sections	Form	II
Transposed

Maxflat IIR	Cascaded	Second-Order	Sections	Form	II
Transposed

Group	Delay
Compensator

IIR	Cascaded	Second-Order	Sections	Form	II
Transposed

You	can	use	the	DFD	Convert	Structure	VI	to	select	a	different	filter
structure,	with	the	following	caveats:

You	cannot	convert	an	IIR	structure	into	or	from	an	FIR	structure.
You	cannot	convert	a	lattice	allpass	structure	into	or	from	a
lattice	AR	structure.
You	can	convert	an	FIR	filter	to	an	FIR	Symmetric	filter	structure
only	if	the	FIR	filter	has	symmetric	coefficients.
You	can	convert	an	FIR	filter	to	an	FIR	Antisymmetric	filter
structure	only	if	the	FIR	filter	has	antisymmetric	coefficients.
You	can	convert	an	FIR	filter	to	a	lattice	MA	(minimum	phase)

lvdfdtconcepts.chm::/iir_direct_specs.html#direct_ii
lvdfdtconcepts.chm::/iir_sos_specs.html#sos_ii_trans
lvdigfiltdestk.chm::/DFD_Convert_Struc.html

filter	structure	only	if	the	FIR	filter	is	minimum	phase.
You	can	convert	an	FIR	filter	to	a	lattice	MA	(maximum	phase)
filter	structure	only	if	the	FIR	filter	is	maximum	phase.
You	must	use	an	allpass	filter	if	you	want	to	convert	a	filter
structure	to	a	lattice	allpass	structure.
You	must	use	an	all-pole	IIR	filter	if	you	want	to	convert	a	filter
structure	to	a	lattice	AR	structure.

Refer	to	the	Change	Structure	of	Filter	VI	in	the	labview\examples\Digital
Filter	Design\Getting	Started\Apply	Filters	directory	for	an	example	that
demonstrates	how	to	change	the	structure	of	a	filter.
	Open	example	

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CChange%20Structure%20of%20Filter.vi');

IIR	Cascaded	Second-Order	Sections	Form
Structures	(Digital	Filter	Design	Toolkit)
The	transfer	function	of	an	infinite	impulse	response	(IIR)	filter	with	a
Cascaded	Second-Order	Sections	Form	structure	is	defined	as	follows:

where	z	is	a	complex	variable,	N	is	the	number	of	sections,	a	is	the	set	of
reverse	coefficients,	and	b	is	the	set	of	forward	coefficients.

IIR	Cascaded	Second-Order	Sections	Form	I
Comparing	with	the	IIR	Direct	Form	structures,	the	IIR	Cascaded
Second-Order	Sections	Form	structures	have	more	computational
complexity.	However,	the	cascaded	structures	help	alleviate	finite	word
length	effects.	The	following	figure	represents	the	IIR	Cascaded	Second-
Order	Sections	Form	I	structure.	Refer	to	the	Understanding	Filter
Structure	Graphs	topic	for	information	that	helps	you	read	and
understand	a	filter	structure	graph.

lvdfdtconcepts.chm::/iir_direct_specs.html
lvdfdtconcepts.chm::/dfd_fp_process.html#finite_effects
lvdfdtconcepts.chm::/dfd_structure_graph.html

IIR	Cascaded	Second-Order	Sections	Form	II
The	following	figure	represents	the	IIR	Cascaded	Second-Order	Sections
Form	II	structure.	Comparing	with	Form	I,	this	structure	uses	the	same
number	of	mathematical	operations	but	fewer	delays.

IIR	Cascaded	Second-Order	Sections	Form	I	Transposed
The	following	figure	represents	the	IIR	Cascaded	Second-Order	Sections
Form	I	Transposed	structure.

IIR	Cascaded	Second-Order	Sections	Form	II	Transposed
The	following	figure	represents	the	IIR	Cascaded	Second-Order	Sections
Form	II	Transposed	structure.

The	IIR	Cascaded	Second-Order	Sections	Form	I	and	Form	II
Transposed	structures	implement	forward	coefficients	first.	The	Form	I
Transposed	and	Form	II	structures	implement	reverse	coefficients	first.
The	IIR	Cascaded	Second-Order	Sections	Form	II	structure	has	the
same	computational	complexity	as	the	Form	I,	but	the	Form	I	requires
more	memory	for	saving	internal	states.	The	Form	II	Transposed	is	the
structure	that	you	most	frequently	use.	Using	the	Form	I	and	Form	II	and
their	transposed	structures	has	the	same	advantages	and	disadvantages
as	using	the	FIR	Direct	Form	and	FIR	Direct	Form	Transposed
structures.

lvdfdtconcepts.chm::/FIR_Filter_Specs.html#direct
lvdfdtconcepts.chm::/FIR_Filter_Specs.html#transposed

IIR	Direct	Form	Structures	(Digital	Filter	Design
Toolkit)
The	transfer	function	of	an	infinite	impulse	response	(IIR)	filter	is	defined
as	follows:

where	z	is	a	complex	variable,	M	is	the	order	of	the	numerator,	N	is	the
order	of	the	denominator,	a	is	the	set	of	reverse	coefficients,	and	b	is	the
set	of	forward	coefficients.

IIR	Direct	Form	I
The	IIR	Direct	Form	I	structure	is	the	most	straightforward	IIR	structure
from	a	filter	transfer	function	perspective.	The	following	figure	represents
the	IIR	Direct	Form	I	structure.	Refer	to	the	Understanding	Filter
Structure	Graphs	topic	for	information	that	helps	you	read	and
understand	a	filter	structure	graph.

Note		This	figure	and	the	following	figures	show	a	special	case
when	N	=	M.

lvdfdtconcepts.chm::/dfd_structure_graph.html

IIR	Direct	Form	II
The	following	figure	represents	the	IIR	Direct	Form	II	structure.	You	can
see	that	this	structure	contains	fewer	mathematical	operations	and
delays.

IIR	Direct	Form	I	Transposed
The	following	figure	represents	the	IIR	Direct	Form	I	Transposed
structure.

IIR	Direct	Form	II	Transposed
The	following	figure	represents	the	IIR	Direct	Form	II	Transposed
structure.

The	IIR	Direct	Form	I	and	Form	II	Transposed	structures	implement
forward	coefficients	first.	The	Form	I	Transposed	and	Form	II	structures
implement	reverse	coefficients	first.	Using	Form	I	and	Form	II	and	their
transposed	structures	has	the	same	advantages	and	disadvantages	as
using	the	FIR	Direct	Form	and	FIR	Direct	Form	Transposed	structures.
The	IIR	Direct	Form	structures	usually	require	few	mathematical
operations.	However,	the	sensitivity	to	finite	word	length	effects	limits	the
use	of	this	form	in	fixed-point	implementations.	Use	the	IIR	Cascaded
Second-Order	Sections	Form	structures	to	alleviate	finite	word	length
effects.

lvdfdtconcepts.chm::/FIR_Filter_Specs.html#direct
lvdfdtconcepts.chm::/FIR_Filter_Specs.html#transposed
lvdfdtconcepts.chm::/iir_sos_specs.html
lvdfdtconcepts.chm::/dfd_fp_process.html#finite_effects

Lattice	Allpass	Structures	(Digital	Filter	Design
Toolkit)
For	an	allpass	filter,	you	can	implement	one	of	the	following	section	types
of	lattice	allpass	filter	structures:

Basic	section	type
One	multiplier	section	type
Normalized	section	type

The	following	figure	represents	the	basic	section	type	of	a	lattice	allpass
filter	structure.	Refer	to	the	Understanding	Filter	Structure	Graphs	topic
for	information	that	helps	you	read	and	understand	a	filter	structure
graph.

The	total	number	of	the	lattice	reflection	coefficients	k	is	M,	where	M	is
the	filter	order.	The	total	number	of	multipliers	is	2M.
The	following	figure	represents	the	one	multiplier	section	type	of	a	lattice
allpass	filter	structure.

The	total	number	of	the	lattice	reflection	coefficients	k	is	M,	which	is	the
same	as	in	the	basic	section	type.	However,	the	total	number	of
multipliers	is	only	M,	which	is	half	the	number	that	the	basic	section	type
requires.	Therefore,	the	one	multiplier	section	type	of	a	lattice	allpass
structure	involves	fewer	multipliers	than	other	section	types.	Fewer
multipliers	require	less	hardware	resources.
The	following	figure	represents	the	normalized	section	type	of	a	lattice

lvdfdtconcepts.chm::/dfd_structure_graph.html

allpass	filter	structure.

You	can	derive	k'	from	k	in	the	normalized	section	type	by	using	the
formula	 .
One	advantage	of	the	normalized	section	type	structure	is	that	this
structure	automatically	scales	the	internal	signals	in	each	lattice	section.
Unfortunately,	scaling	the	internal	signals	increases	the	implementation
complexity.

Understanding	Filter	Structure	Graphs	(Digital
Filter	Design	Toolkit)
The	realization	of	a	digital	filter	involves	summations	and	multiplications
of	the	output,	input,	and	intermediate	operands.	You	must	make	the
values	that	pass	along	the	signal	path	available	during	the	realization
process.	Therefore,	to	represent	the	structure	of	a	filter	using	a	signal
flow	graph,	you	not	only	need	adders	and	multipliers,	but	you	also	need
delays	that	help	you	store	the	passed	values.	The	following	figure	shows
the	symbol	of	an	adder.

You	can	treat	a	consecutive	sequence	of	adders	in	a	filter	structure	as	an
accumulator.
The	following	figure	shows	the	symbol	of	a	multiplier.

The	following	figure	shows	the	symbol	of	a	delay.

In	the	previous	figure,	z–1	is	a	delay	that	stores	the	value	of	x[n].	The	z-
transform	of	x[n–1]	is	z–1	times	the	z-transform	of	x[n].	The	number	of
adders	and	multipliers	implies	computational	complexity	in	the	realization
of	a	filter	structure,	and	the	number	of	delays	implies	memory	unit
requirements	in	the	hardware.	The	more	adders,	multipliers,	and	delays	a
filter	structure	contains,	the	more	computational	complexity	and	memory
units	the	filter	requires.	You	can	view	the	signal	flow	graphs	of	the
following	filter	structures:

FIR	structures
IIR	Cascaded	Second-Order	Sections	Form	structures
IIR	Direct	Form	structures
Lattice	Allpass	structures
Lattice	AR	structures

lvdfdtconcepts.chm::/FIR_Filter_Specs.html
lvdfdtconcepts.chm::/iir_sos_specs.html
lvdfdtconcepts.chm::/iir_direct_specs.html
lvdfdtconcepts.chm::/lattice_allpass.html
lvdfdtconcepts.chm::/Lattice_AR_Specs.html

Lattice	ARMA	structures
Lattice	MA	structures

lvdfdtconcepts.chm::/Lattice_ARMA_Specs.html
lvdfdtconcepts.chm::/Lattice_MA_Specs.html

Scaling	the	Filter	Coefficients	(Digital	Filter
Design	Toolkit)
A	filter	structure	consists	of	many	accumulators.	Each	accumulator	might
use	a	different	data	range.	However,	the	LabVIEW	Digital	Filter	Design
Toolkit	provides	only	one	sum	quantizer	QS>	for	all	the	accumulators.	You
can	scale	the	filter	coefficients	before	quantizing	them	to	ensure	that	all
the	accumulators	use	the	same	data	range.	Scaling	the	filter	coefficients
can	help	you	obtain	a	better	filtering	result,	especially	for	IIR	Cascaded
Second-Order	Sections	Form	structures.	Use	the	DFD	Scale	Filter	VI	to
scale	the	coefficients	of	a	floating-point	filter.
Refer	to	the	Scale	Filter	before	Targeting	to	FXP	VI	in	the
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Single-Rate
directory	for	an	example	that	demonstrates	how	to	scale	the	filter
coefficients.
	Open	example	

lvdfdtconcepts.chm::/dfd_structure_graph.html
lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdthowto.chm::/design_fxp_filter_2.html
lvdfdtconcepts.chm::/quantize_fl_filters.html
lvdfdtconcepts.chm::/iir_sos_specs.html
lvdigfiltdestk.chm::/DFD_Scale_Filter.html
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CScale%20Filter%20before%20Targeting%20to%20FXP.vi');

Quantizing	Floating-Point	Filters	(Digital	Filter
Design	Toolkit)
After	selecting	a	filter	structure,	you	must	quantize	the	coefficients	of	the
reference	floating-point	filter.	Quantizing	the	filter	coefficients	is	the
process	of	approximating	each	floating-point	value	with	a	fixed-point
value	that	you	use	in	a	fixed-point	mathematical	computation	or	hardware
implementation.	Using	the	DFD	FXP	Quantize	Coef	VI,	you	can	configure
the	filter	coefficients	quantizer	QC	and	convert	the	reference	floating-point
filter	to	a	fixed-point	filter.
If	you	use	the	Easy	instance	of	the	DFD	FXP	Quantize	Coef	VI	to
quantize	the	filter	coefficients,	you	must	complete	the	following	steps:

1.	 Specify	appropriate	word	length	values	for	coefficients	a/k	word
length	and	coefficients	b/v	word	length.

2.	 Specify	the	appropriate	gain	processing	target.
3.	 Specify	the	appropriate	gain	word	length	value.	This	VI

automatically	calculates	the	integer	word	lengths	for	coefficients
a/k,	coefficients	b/v,	and	gain.	The	VI	then	uses	the	resulting
values	to	quantize	the	filter	coefficients.

If	you	use	the	Advanced	instance	of	the	DFD	FXP	Quantize	Coef	VI	to
quantize	the	filter	coefficients,	you	must	complete	the	following	steps:

1.	 Configure	the	coefficients	a/k	quantizer	and	coefficients	b/v
quantizer.

2.	 Specify	the	appropriate	gain	processing	target.
3.	 Specify	the	appropriate	gain	word	length	value.	This	VI	then

automatically	calculates	the	integer	word	length	of	gain	and	uses
the	resulting	value	to	quantize	the	gain	if	you	set	the	gain
processing	input	to	On	Target.

lvdfdtconcepts.chm::/select_structure.html
lvdfdthowto.chm::/design_fxp_filter_3.html
lvdigfiltdestk.chm::/DFD_FXP_QCoef.html
lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/configure_quantizer.html

Specifying	the	Gain	Processing	Target
A	filter	gain	implies	a	multiplication	operation.	If	you	process	the	filtered
signal	on	a	target,	for	example,	an	NI	Reconfigurable	I/O	(RIO)	target,	the
filtering	process	requires	hardware	resources	on	the	target	for	the
multiplication	operation	that	the	filter	gain	introduces.	However,	if	you
want	to	process	the	filtered	signal	on	a	host	machine,	you	can	move	the
filter	gain	operation	to	the	host	machine	and	save	resources	on	the
target.	Use	the	gain	processing	input	of	the	DFD	FXP	Quantize	Coef	VI
to	specify	an	appropriate	gain	processing	target.
Refer	to	the	Lowpass_Step	3_Analyze	Quantized	Lowpass	VI	in	the
labview\examples\Digital	Filter	Design\Case	Studies\Single-Rate	Filter
directory	for	an	example	that	demonstrates	how	to	quantize	a	floating-
point	lowpass	filter	and	analyze	the	quantized	lowpass	filter.
	Open	example	

lvdfdtconcepts.chm::/analyze_fixedpoint.html
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CSingle-Rate%20Filter%5C%5CLowpass_Step%203_Analyze%20Quantized%20Lowpass.vi');

Filter	Structures	and	Filter	Coefficients	(Digital
Filter	Design	Toolkit)
Different	filter	structures	use	different	groups	of	filter	coefficients.	The
LabVIEW	Digital	Filter	Design	Toolkit	categorizes	filter	coefficients	into
three	groups:	zeroes,	poles,	and	gain.	For	example,	FIR	filter	coefficients,
IIR	forward	coefficients,	and	lattice	ladder	coefficients	correspond	to
zeroes.	IIR	reverse	coefficients	and	lattice	reflection	coefficients,
excluding	lattice	MA	reflection	coefficients,	correspond	to	poles.	Different
groups	of	filter	coefficients	have	different	data	ranges.	Therefore,	in
addition	to	the	gain,	the	Digital	Filter	Design	Toolkit	provides	the	following
two	quantizers	for	these	groups:	coefficients	a/k	and	coefficients	b/v.
When	you	quantize	the	filter	coefficients,	configure	the	appropriate
quantizer	according	to	the	filter	structure	type.	The	following	table	lists
the	filter	structures,	the	filter	coefficients,	and	the	corresponding
quantizers.

Filter	Structure Filter	Coefficients	and	the	Corresponding
Quantizer

FIR	structures All	FIR	filter	coefficients	correspond	to	the
coefficients	b/v	quantizer.

IIR	Direct	Form
structures

The	reverse	coefficients	correspond	to	the
coefficients	a/k	quantizer.	The	forward	coefficients
correspond	to	the	coefficients	b/v	quantizer.IIR	Cascaded

Second-Order
Sections	Form
structures
Lattice	Allpass
structures

The	reflection	coefficients	correspond	to	the
coefficients	a/k	quantizer.

Lattice	AR
structures
Lattice	MA
structures
Lattice	ARMA
structures

The	reflection	coefficients	correspond	to	the
coefficients	a/k	quantizer.	The	ladder	coefficients
correspond	to	the	coefficients	b/v	quantizer.

lvdfdtconcepts.chm::/select_structure.html
lvdfdtconcepts.chm::/FIR_Filter_Specs.html
lvdfdtconcepts.chm::/iir_direct_specs.html
lvdfdtconcepts.chm::/Lattice_ARMA_Specs.html
lvdfdtconcepts.chm::/iir_direct_specs.html
lvdfdtconcepts.chm::/Lattice_ARMA_Specs.html
lvdfdtconcepts.chm::/quantize_fl_filters.html
lvdfdtconcepts.chm::/FIR_Filter_Specs.html
lvdfdtconcepts.chm::/iir_direct_specs.html
lvdfdtconcepts.chm::/iir_sos_specs.html
lvdfdtconcepts.chm::/lattice_allpass.html
lvdfdtconcepts.chm::/Lattice_AR_Specs.html
lvdfdtconcepts.chm::/Lattice_MA_Specs.html
lvdfdtconcepts.chm::/Lattice_ARMA_Specs.html

Filter	Coefficients	and	Quantizers	(Digital	Filter
Design	Toolkit)
In	a	fixed-point	filter	implementation,	you	quantize	the	coefficients	as	well
as	the	intermediate	operands	and	results.	The	LabVIEW	Digital	Filter
Design	Toolkit	uses	quantizers	to	store	different	quantization	settings	for
the	coefficients	and	the	intermediate	operands	and	results.	You	must
configure	all	quantizers	correctly	in	a	fixed-point	filter	implementation.
The	following	figure	shows	an	example	of	a	fixed-point	model.

This	fixed-point	model	contains	the	following	quantizers:
QI	is	the	input	quantizer	for	the	input	signal	of	a	fixed-point	filter.
QS	is	the	sum	quantizer	for	the	summation	of	a	fixed-point	adder.
QD	is	the	delay	quantizer	for	the	input	of	a	delay	element.
QM	is	the	multiplicand	quantizer	for	the	multiplicand	of	a	fixed-
point	multiplier,	which	multiplies	a	quantized	multiplicand	by	a
quantized	coefficient.
QC	is	the	filter	coefficients	quantizer	for	the	reference	floating-
point	filter.	Depending	on	the	group	type	of	the	filter	coefficients,
QC	can	be	coefficients	a/k	or	coefficients	b/v.
QP	is	the	product	quantizer	for	the	product	of	a	fixed-point
multiplier.
QO	is	the	output	quantizer	for	the	output	signal	of	a	fixed-point
filter.

Each	quantizer	has	a	different	effect	on	a	fixed-point	filter	response

lvdfdtconcepts.chm::/structure_coef_q.html

depending	on	the	filter	structure.	You	must	create	a	fixed-point	filter
model	and	simulate	the	behavior	of	the	filter	model	through	trial	and	error
before	you	use	the	corresponding	fixed-point	filter.	Although	you	can
determine	the	effects	of	coefficient	quantization	at	design	time,	you
cannot	determine	other	quantization	effects	until	you	filter	the	expected
input	signals.	For	example,	the	actual	data	might	be	too	large	or	might
lead	to	limit	cycles.
When	you	configure	the	quantizers,	depending	on	which	VI	you	use,	you
might	need	to	complete	some	or	all	of	the	following	items:

Specify	the	quantizer	source
Specify	the	word	length	and	integer	word	length
Handle	overflows	and	underflows
Specify	the	rounding	mode

lvdfdtconcepts.chm::/model_fp_filter.html
lvdfdtconcepts.chm::/sim_fp_filters.html
lvdfdtconcepts.chm::/specify_q_source.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html

Specifying	the	Quantizer	Source	(Digital	Filter
Design	Toolkit)
A	fixed-point	filter	implementation	involves	many	different	quantizers,
such	as	the	coefficients	quantizer,	the	input	quantizer,	and	the	product
quantizer.	Each	quantizer	has	a	different	effect	on	a	fixed-point	filter
response.	You	must	specify	the	appropriate	quantizer	source	when
configuring	the	quantizers.	Use	the	source	input	of	the	Fixed-Point	Tools
VIs	to	choose	an	appropriate	quantizer	source.

lvdfdtconcepts.chm::/configure_quantizer.html
lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html

Specifying	the	Word	Length	and	Integer	Word
Length	(Digital	Filter	Design	Toolkit)
The	word	length	indicates	the	number	of	bits	you	want	to	use	in
representing	a	fixed-point	number.	The	integer	word	length	specifies	the
number	of	bits,	including	the	sign	bit,	you	use	in	representing	the	integer
part	of	a	fixed-point	number.	The	difference	in	bits	between	the	word
length	and	the	integer	word	length	determines	the	digits	of	precision.
The	finite	word	length	of	a	quantizer	can	affect	the	frequency	response	of
the	resulting	fixed-point	filter.	The	larger	word	length	value	you	specify,
the	less	the	fixed-point	representation	distorts	the	frequency	response.
However,	a	larger	word	length	value	also	requires	more	hardware
resources,	so	you	must	specify	a	word	length	that	provides	an	acceptable
tradeoff	between	distortion	and	hardware	resource	consumption.
Use	the	wl	and	iwl	inputs	of	the	Fixed-Point	Tools	VIs	to	specify	the	word
length	and	integer	word	length,	respectively,	of	a	quantizer.

lvdfdtconcepts.chm::/configure_quantizer.html
lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html

Handling	Overflows	and	Underflows	(Digital
Filter	Design	Toolkit)
Fixed-point	numbers	can	represent	only	numbers	of	a	finite	range.
Overflows	occur	when	a	number	is	greater	than	the	maximum
representable	number	within	the	range.	Underflows	occur	when	a
number	is	less	than	the	minimum	representable	number	within	the	range.
You	can	handle	overflows	and	underflows	using	one	of	the	following	two
modes:

Saturation—A	quantizer	converts	the	specified	number	to	the
maximum	representable	number	in	the	case	of	an	overflow	or	to
the	minimum	representable	number	in	the	case	of	an	underflow.
Wrap—A	quantizer	wraps	the	specified	value	from	the	maximum
representable	number	to	the	minimum	representable	number	in
the	case	of	an	overflow	and	from	the	minimum	representable
number	to	the	maximum	representable	number	in	the	case	of	an
underflow.	In	the	wrap	mode,	when	an	overflow	or	an	underflow
occurs,	the	absolute	value	of	the	error	is	2iwl,	which	is	greater
than	the	total	available	dynamic	range.

The	saturation	mode	of	the	output	quantizer	is	preferred	over	the	wrap
mode	in	most	real-world	applications	because	the	saturation	mode	helps
avoid	signal	discontinuities,	or	sudden	changes	in	the	amplitudes.
However,	the	saturation	mode	is	more	complicated	than	the	wrap	mode.
For	internal	quantizers,	such	as	the	sum	quantizer,	the	wrap	mode	is
preferred	because	this	mode	allows	intermediate	overflows	and
underflows	within	a	certain	range	as	long	as	the	final	output	does	not
contain	overflows	or	underflows.	Use	the	overflow	mode	input	of	the
Fixed-Point	Tools	VIs	to	specify	an	appropriate	setting	for	handling
overflows	and	underflows.

lvdfdtconcepts.chm::/configure_quantizer.html
lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html

Setting	the	Rounding	Mode	(Digital	Filter	Design
Toolkit)
Fixed-point	numbers	represent	discrete	values	with	limited	precision.
Typically,	the	precision	of	fixed-point	numbers	is	less	than	that	of	floating-
point	numbers.	Rounding	determines	the	most	appropriate	fixed-point
number	to	represent	a	specified	floating-point	value	based	on	the
precision	you	specify.	Use	one	of	the	following	modes	to	specify	how	you
want	rounding	to	occur	in	a	quantizer.

Nearest—The	nearest	mode	rounds	to	the	closest	representable
number.	If	the	two	nearest	representable	numbers	are	an	equal
distance	apart,	this	mode	rounds	to	the	nearest	representable
number	whose	least	significant	bit	is	0.	The	rounding	error	of	this
mode	is	zero-mean,	but	this	mode	has	higher	implementation
complexity	than	the	Truncation	mode	due	to	the	computation	of
choosing	the	closest	representable	number.
Truncation—The	truncation	mode	rounds	to	the	closest
representable	number	less	than	the	original	value.	This	mode	is
the	most	common	rounding	mode	in	hardware.	However,	the
rounding	error	of	this	mode	has	a	nonzero	mean.

Use	the	rounding	mode	input	of	the	Fixed-Point	Tools	VIs	to	set	an
appropriate	rounding	option.

lvdfdtconcepts.chm::/configure_quantizer.html
lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html

Analyzing	Fixed-Point	Filters	(Digital	Filter
Design	Toolkit)
The	Filter	Analysis	Express	VI	performs	fixed-point	analysis	in	the
frequency	domain.	Use	the	calculated	results	to	optimize	the	fixed-point
filter.	You	might	need	to	analyze	and	adjust	the	filter	design	iteratively
until	the	calculated	results	are	satisfactory.
Use	the	Filter	Analysis	Express	VI	to	observe	the	response	of	the	fixed-
point	filter.	Ensure	that	the	fixed-point	filter	is	stable	by	verifying	that	all
poles	are	within	the	unit	circle	and	that	the	filter	maintains	a	satisfactory
frequency	response.	If	the	fixed-point	characteristics	do	not	satisfy	the
requirements,	try	one	or	more	of	the	following	options:

Return	to	the	quantization	step	and	change	the	quantizer
settings.
Change	the	implementation	structure.
Change	the	floating-point	reference	filter	specifications	to	allow
more	headroom	for	finite-precision	effects.
For	infinite	impulse	response	(IIR)	filters,	reduce	the	pole	radius
constraint	of	the	reference	floating-point	filter.

If	you	notice	large	distortions	in	the	response,	look	for	underflow	or
overflow	conditions.	Use	the	DFD	FXP	Coef	Report	VI	to	determine	if
overflows	or	underflows	exist	in	the	quantized	coefficients.	If	you	find
occurrences	of	overflows	or	underflows	in	the	coefficients	report,	repeat
the	quantization	step	by	using	an	increased	iwl	value	for	the	coefficients
quantizer.	Increasing	the	iwl	value	helps	eliminate	overflows	and
underflows	and	improve	the	frequency	response	of	the	filter.	If	you	do	not
find	any	occurrences	of	overflows	or	underflows,	try	reducing	the	value	of
iwl	to	allow	more	digits	of	precision	for	the	quantized	coefficients.	If	the
minimum	allowable	iwl	value	still	returns	large	distortions	in	the
frequency	response,	you	need	to	increase	the	value	of	wl	to	minimize	the
distortion.

Note		Underflows	and	overflows	that	happen	during	quantization
do	not	always	affect	filter	responses.	Therefore,	if	the	filter
response	after	coefficients	quantization	is	satisfactory,	you	do	not
need	to	make	adjustments	to	avoid	overflows	or	underflows.

Refer	to	the	Lowpass_Step	3_Analyze	Quantized	Lowpass	VI	in	the

lvdigfiltdestk.chm::/DFD_Check_Filter.html
lvdfdthowto.chm::/design_fxp_filter_4.html
lvdfdtconcepts.chm::/quantize_fl_filters.html
lvdfdtconcepts.chm::/select_structure.html
lvdfdtconcepts.chm::/enter_filter_spec.html
lvdigfiltdestk.chm::/DFD_FXP_Coef_Report.html

labview\examples\Digital	Filter	Design\Case	Studies\Single-Rate	Filter
directory	for	an	example	that	demonstrates	how	to	quantize	a	floating-
point	lowpass	filter	and	analyze	the	quantized	lowpass	filter.
	Open	example	

lvdfdtconcepts.chm::/quantize_fl_filters.html
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CSingle-Rate%20Filter%5C%5CLowpass_Step%203_Analyze%20Quantized%20Lowpass.vi');

Creating	Fixed-Point	Filter	Models	(Digital	Filter
Design	Toolkit)
In	a	fixed-point	implementation,	after	quantizing	the	coefficients	of	a
reference	floating-point	filter,	you	also	must	configure	all	other	quantizers,
such	as	the	input,	output,	and	multiplicand	quantizers.	This	process
creates	a	fixed-point	model	for	the	filter.	You	must	create	a	fixed-point
filter	model	before	you	simulate	the	filtering	process	or	generate	code
from	the	filter.	You	can	use	either	the	DFD	FXP	Modeling	VI	or	the	DFD
FXP	Set	Quantizer	VI	to	create	fixed-point	filter	models.	Refer	to	the
Details	section	of	the	DFD	FXP	Set	Quantizer	VI	for	information	about
guidelines	on	the	quantizer	settings.

Note		After	quantizing	the	coefficients	of	a	reference	floating-point
filter,	you	automatically	obtain	a	fixed-point	filter	model	with	the
following	default	values:	input	word	length	=	output	word	length	=
16.	The	Specifying	the	Word	Length	and	Integer	Word	Length
topic	contains	more	information	about	the	effects	of	different	word
length	values.

If	you	use	the	DFD	FXP	Modeling	VI	to	create	the	fixed-point	filter	model,
complete	the	following	steps:

1.	 Specify	the	word	lengths	for	the	input	and	output	signals.
2.	 Set	the	rounding	mode	for	the	output	signal.

The	DFD	FXP	Modeling	VI	automatically	calculates	all	quantizer	settings
of	the	fixed-point	filter	model.	You	can	use	the	DFD	FXP	Get	Quantizer	VI
to	retrieve	the	quantizer	settings	or	use	the	DFD	FXP	Set	Quantizer	VI	to
modify	the	quantizer	settings.

Note		Output	quantizers	generally	have	different	integer	word
lengths	from	the	input	quantizers.	Before	generating	code,	check
the	quantizer	settings	to	confirm	or	modify	the	settings	you	want	to
use	for	the	fixed-point	filter.	If	you	reduce	the	default	output	integer
word	length,	National	Instruments	recommends	that	you	change
the	overflow	mode	to	Saturate.

If	you	use	the	DFD	FXP	Set	Quantizer	VI	to	create	the	fixed-point	filter
model,	you	must	configure	the	quantizers.
Refer	to	the	Lowpass_Step	4_Model	and	Simulate	FXP	Lowpass	VI	in

lvdfdtconcepts.chm::/quantize_fl_filters.html
lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdthowto.chm::/design_fxp_filter_5.html
lvdigfiltdestk.chm::/DFD_FXP_Modeling.html
lvdigfiltdestk.chm::/DFD_FXP_Set_Q.html
lvdigfiltdestk.chm::/DFD_FXP_Set_Q.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/set_rounding_mode.html
lvdigfiltdestk.chm::/DFD_Get_Quantizer.html
lvdigfiltdestk.chm::/DFD_FXP_Set_Q.html
lvdfdtconcepts.chm::/configure_quantizer.html

the	labview\examples\Digital	Filter	Design\Case	Studies\Single-Rate	Filter
directory	for	an	example	that	demonstrates	how	to	create	a	fixed-point
model	of	a	lowpass	filter	and	simulate	the	filtering	result.
	Open	example	

lvdfdtconcepts.chm::/sim_fp_filters.html
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CSingle-Rate%20Filter%5C%5CLowpass_Step%204_Model%20and%20Simulate%20FXP%20Lowpass.vi');

Simulating	Fixed-Point	Filters	(Digital	Filter
Design	Toolkit)
After	you	create	a	fixed-point	filter	model,	you	must	simulate	the	filtering
process	to	verify	that	the	fixed-point	model	works	as	expected	in	a
complete	implementation.	You	can	use	the	DFD	FXP	Simulation	VI	and
the	DFD	FXP	Simulation	with	State	VI	to	facilitate	this	evaluation.	To
verify	the	simulation	result,	you	can	use	the	following	two	options:

Compare	the	simulation	results	with	the	filter	output	results	that
you	obtain	by	processing	the	same	signal	with	the	reference
floating-point	filter.	Ensure	that	the	simulation	results	are
sufficiently	similar	to	the	filtering	results	of	the	reference	floating-
point	filter.
Use	the	DFD	FXP	Simulation	Report	VI	to	monitor	the	behavior	of
the	fixed-point	filter	during	the	simulation	process	by	observing
the	filtering	text	report	output.	The	report	contains	statistical
information	about	all	the	quantizers—except	the	coefficients	a/k
and	coefficients	b/v	quantizers—in	the	fixed-point	model.	Each
quantizer	has	five	data	entries:	max	value,	min	value,
#overflows,	#underflows,	and	#operations.	Ensure	that	both
#overflows	and	#underflows	equal	0	or	fall	below	an
appropriate	threshold.

Like	all	other	parts	of	the	design	process,	simulation	is	a	trial-and-error
process.	If	you	observe	overflow	or	underflow	in	the	filtering	text	report	or
if	the	simulation	result	does	not	match	the	actual	floating-point	filtering
result,	try	making	the	following	adjustments:

Return	to	the	modeling	step.	Modify	the	integer	word	lengths	for
the	related	quantizers	to	eliminate	overflows	and	underflows	until
both	#overflows	and	#underflows	equal	0	or	fall	below	an
appropriate	threshold.	Use	max	value	and	min	value	to
estimate	the	integer	word	lengths.

Tip		The	DFD	FXP	Modeling	VI	automatically	calculates
the	integer	word	lengths	so	you	cannot	modify	them
directly.	However,	you	can	use	the	DFD	FXP	Get
Quantizer	VI	to	retrieve	the	integer	word	lengths	for	the
related	quantizers	and	then	use	the	DFD	FXP	Set
Quantizer	VI	to	modify	the	integer	word	lengths.

lvdfdtconcepts.chm::/model_fp_filter.html
lvdfdthowto.chm::/design_fxp_filter_6.html
lvdigfiltdestk.chm::/DFD_FXP_Simulation.html
lvdigfiltdestk.chm::/DFD_FXP_Sim_State.html
lvdigfiltdestk.chm::/DFD_FXP_SimReport.html
lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/model_fp_filter.html
lvdigfiltdestk.chm::/DFD_Get_Quantizer.html
lvdigfiltdestk.chm::/DFD_FXP_Set_Q.html

Change	the	implementation	structure.
Adjust	the	specifications	and	redesign	the	floating-point	filter.

Note		In	the	filtering	text	report,	the	#operations	entry	for	the
product	and	sum	quantizers	provides	information	about	the
computational	requirements	of	the	fixed-point	filter.	A	smaller	value
implies	a	faster	computational	speed.	If	several	filter	structures
satisfy	the	performance	requirements	of	the	filter,	select	the	filter
structure	whose	product	quantizer	has	the	smallest	#operations
value.

Refer	to	the	Lowpass_Step	4_Model	and	Simulate	FXP	Lowpass	VI	in
the	labview\examples\Digital	Filter	Design\Case	Studies\Single-Rate	Filter
directory	for	an	example	that	demonstrates	how	to	create	a	fixed-point
model	of	a	lowpass	filter	and	simulate	the	filtering	result.
	Open	example	

lvdfdtconcepts.chm::/select_structure.html
lvdfdtconcepts.chm::/enter_filter_spec.html
lvdfdtconcepts.chm::/model_fp_filter.html
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CSingle-Rate%20Filter%5C%5CLowpass_Step%204_Model%20and%20Simulate%20FXP%20Lowpass.vi');

Exporting	Fixed-Point	Integer	Coefficients
(Digital	Filter	Design	Toolkit)
If	you	have	a	filter	execution	engine	for	which	you	need	only	filter
coefficients,	you	can	export	the	fixed-point	filter	coefficients	to	a	text	file
using	the	DFD	Save	to	Text	File	VI.	You	can	save	the	coefficients	to	a
text	file	and	download	them	to	the	execution	target.	The	text	file	contains
a	section	that	provides	all	information	about	the	fixed-point	integer
coefficients	and	corresponding	quantizers.
Refer	to	the	Export	FIR	Coef	to	Xilinx	COE	File	VI	in	the
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Single-Rate
directory	for	an	example	that	demonstrates	how	to	export	fixed-point
integer	coefficients.
	Open	example	

lvdigfiltdestk.chm::/DFD_Save_to_Text.html
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CExport%20FIR%20Coef%20to%20Xilinx%20COE%20File.vi');

Generating	Fixed-Point	C	Code	(Digital	Filter
Design	Toolkit)
You	usually	program	target	digital	signal	processing	(DSP)	hardware
using	C	code.	To	generate	C	code	from	the	fixed-point	filter	model,	use
the	C	Code	instance	of	the	DFD	FXP	Code	Generator	VI.	You	can
compile	the	generated	code	to	run	on	a	fixed-point	DSP.

Note		C	code	can	yield	a	less	compact	and	less	efficient
implementation	than	a	hand-written,	assembly-coded
implementation.	If	you	need	to	improve	the	performance	of	a	filter,
you	can	translate	the	C	code	to	assembly	code	manually.

The	DFD	FXP	Code	Generator	VI	produces	three	files,	where	filtername
is	the	string	you	wire	to	the	filter	name	input:

nidfdtyp.h	contains	the	definitions	of	the	data	types	in	the
C	source	files	that	the	DFD	FXP	Code	Generator	VI	generates.
filtername.h	contains	type	definitions,	global	variable	declarations,
and	function	prototypes.
filtername.c	contains	the	code	that	implements	the	filter,	including
the	filter	coefficients,	information	about	the	implementation
structure	and	quantizer	settings	in	the	fixed-point	model,	and	the
following	functions:

filtername_State	filtername_CreateState()	creates	the
memory	space	needed	to	store	the	internal	states	of	the
filter.
void	filtername_DisposeState(filtername_State	state)	disposes
of	the	memory	space	used	to	store	the	internal	states	of
the	filter.
void	filtername_InitState(filtername_State	state)	initializes	the
internal	states	to	zeroes.	Call	this	function	for	the	first
block	when	processing	a	large	data	sequence	that
consists	of	multiple	data	blocks.
I16	filtername_Filtering(I16	sampleIn,	filtername_State	state)
implements	the	fixed-point	filter.
static	I16	filtername_Coef[]	contains	the	quantized
coefficients	of	the	fixed-point	filter.

lvdfdthowto.chm::/generate_c_code.html
lvdigfiltdestk.chm::/DFD_FXP_Codegen.html

Refer	to	the	LabVIEW	C	Code	Generation	VI	in	the
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Single-Rate
directory	for	an	example	that	demonstrates	how	to	generate	LabVIEW	C
code	from	a	fixed-point	filter.
	Open	example	

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CLabVIEW%20C%20Code%20Generation.vi');

Generating	Integer	LabVIEW	Code	(Digital	Filter
Design	Toolkit)
Integer	LabVIEW	code	can	run	on	any	platform	or	target	on	which	you
can	run	LabVIEW	VIs.	Integer	LabVIEW	code	is	useful	when	you
simulate	the	behavior	of	a	fixed-point	filter	on	the	Windows	platform.	You
can	use	the	DFD	FXP	Code	Generator	VI	to	generate	integer	LabVIEW
code	from	a	fixed-point	filter.	The	LabVIEW	Digital	Filter	Design	Toolkit
uses	LabVIEW	projects	to	manage	the	resulting	integer	LabVIEW	code.
The	following	figure	shows	an	example	project	file	that	contains	integer
LabVIEW	code.

In	the	previous	figure,	the	filtername.lvproj	file,	where	filtername	denotes
the	name	of	the	fixed-point	filter,	contains	the	following	folders	and	VIs	in
addition	to	the	default	items.

filtername	Block—This	folder	contains	all	generated	VIs	and
subVIs	related	to	the	fixed-point	filter	from	which	you	generate
integer	LabVIEW	code.	You	can	apply	the	filter	to	another	project
by	adding	this	folder	into	the	target	project	file.
Filter	SubVIs—This	folder	contains	the	generated	subVIs.	You
usually	do	not	need	to	modify	these	subVIs.
filtername_Filter.vi—This	VI	is	the	top-level	VI	of	the	generated

lvdigfiltdestk.chm::/DFD_FXP_Codegen.html
lvdfdthowto.chm::/generate_integerlv_code.html
lvconcepts.chm::/Using_LabVIEW_Projects.html

integer	LabVIEW	code.	To	use	the	integer	LabVIEW	code,	place
this	VI	on	the	block	diagram.

Refer	to	the	Integer	LabVIEW	Code	Generation	VI	in	the
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Single-Rate
directory	for	an	example	that	demonstrates	how	to	generate	integer
LabVIEW	code	from	a	fixed-point	filter.
	Open	example	

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CInteger%20LabVIEW%20Code%20Generation.vi');

Generating	LabVIEW	FPGA	Code	(Digital	Filter
Design	Toolkit)
LabVIEW	field-programmable	gate	array	(FPGA)	code	is	a	type	of	code
specifically	optimized	to	run	on	NI	Reconfigurable	I/O	(RIO)	devices	such
as	the	NI	PXI-7831R.	LabVIEW	FPGA	code	takes	advantage	of	the
specific	features,	such	as	the	single-cycle	Timed	Loop	(SCTL)	and
memory	items,	of	the	LabVIEW	FPGA	Module.	Therefore,	this	type	of
code	can	run	on	an	FPGA	target	efficiently.	You	can	use	the	DFD	FXP
Code	Generator	VI	to	generate	LabVIEW	FPGA	code	for	filters	with	the
following	filter	structures:

FIR	structures
IIR	Cascaded	Second-Order	Sections	Form	structures
Lattice	MA	structures
Lattice	ARMA	structures

Note		To	generate	LabVIEW	FPGA	code,	you	must	install	the
LabVIEW	FPGA	Module	and	NI-RIO	driver	software	with	R	Series
support.	To	execute	the	FPGA	code,	you	also	need	an	FPGA
target	on	which	to	run	the	code.

The	LabVIEW	Digital	Filter	Design	Toolkit	uses	LabVIEW	projects	to
manage	the	resulting	LabVIEW	FPGA	code.	The	following	figure	shows
an	example	project	file	that	contains	LabVIEW	FPGA	code.

lvdigfiltdestk.chm::/DFD_FXP_Codegen.html
lvdfdthowto.chm::/generate_fpga_code.html
lvdfdtconcepts.chm::/FIR_Filter_Specs.html
lvdfdtconcepts.chm::/iir_sos_specs.html
lvdfdtconcepts.chm::/Lattice_MA_Specs.html
lvdfdtconcepts.chm::/Lattice_ARMA_Specs.html
lvconcepts.chm::/Using_LabVIEW_Projects.html

In	the	previous	figure,	the	filtername.lvproj	file,	where	filtername	denotes
the	name	of	the	fixed-point	filter,	contains	the	following	folders	and	VIs	in
addition	to	the	default	items.

filtername	Block—This	folder	contains	all	generated	VIs	and
subVIs	related	to	the	fixed-point	filter	from	which	you	generate
LabVIEW	FPGA	code.	You	can	apply	the	filter	to	another	project
by	copying	and	pasting	this	folder	into	the	target	project	file.

Note		Each	filter	block	contains	some	FPGA	memory
components	to	store	the	internal	states	of	the	fixed-point
filter.	Multiple	filter	blocks	cannot	share	the	same	memory
components	in	one	FPGA	project.	Therefore,	if	you	want	to
use	the	filter	block	multiple	times	in	one	FPGA	project,	you
must	generate	the	filter	blocks	with	different	filter	names
from	the	same	fixed-point	filter.

States	Storage—This	folder	contains	information	about	the
specific	resources	on	an	FPGA	target,	including	FIFOs	and
memory	items.	These	resources	store	the	internal	states	of	the
fixed-point	filter.	You	usually	do	not	need	to	modify	the	items	in
this	folder.
Filter	SubVIs—This	folder	contains	the	generated	subVIs.	You

usually	do	not	need	to	modify	these	subVIs.
filtername_Filter.vi—This	VI	is	the	top-level	VI	of	the	generated
LabVIEW	FPGA	code.	To	use	the	LabVIEW	FPGA	code,	drag
and	drop	this	VI	to	the	block	diagram	of	the	calling	VI.

Refer	to	the	LabVIEW	FPGA	Code	Generation	VI	in	the
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Single-Rate
directory	for	an	example	that	demonstrates	how	to	generate	LabVIEW
FPGA	code	from	a	fixed-point	filter.
	Open	example	
You	can	generate	both	one-channel	and	multichannel	LabVIEW	FPGA
code	from	a	fixed-point	filter.	Refer	to	the	Lowpass.lvproj	file	in	the
labview\examples\Digital	Filter	Design\Case	Studies\Single-Rate	Filter\Lowpass
directory	for	an	example	that	demonstrates	how	to	generate	one-channel
LabVIEW	FPGA	code	from	a	lowpass,	finite	impulse	response	(FIR)	filter.
	Open	example	
Refer	to	the	Notch.lvproj	file	in	the	labview\examples\Digital	Filter
Design\Case	Studies\Notch	Filter\Notch	directory	for	an	example	that
demonstrates	how	to	generate	eight-channel	LabVIEW	FPGA	code	from
an	infinite	impulse	response	(IIR)	notch	filter.
	Open	example	

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CLabVIEW%20FPGA%20Code%20Generation.vi');
javascript:openProj('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CSingle-Rate%20Filter%5C%5CLowpass%5C%5CLowpass.lvproj');
javascript:openProj('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CNotch%20Filter%5C%5CNotch%5C%5CNotch.lvproj');

Resolving	LabVIEW	FPGA	Code	Compilation	Failures
Sometimes	the	LabVIEW	FPGA	code	might	not	compile	successfully.
One	potential	cause	of	a	compilation	failure	is	that	the	computation
resources	on	the	FPGA	target	might	not	meet	the	requirements	of	the
fixed-point	filter.	For	example,	the	NI	PXI-7831R	has	40	built-in	18x18
multipliers.	Therefore,	you	cannot	apply	filters	that	require	more	than	40
built-in	multipliers	to	the	NI	PXI-7831R.	Another	potential	cause	of	a
compilation	failure	is	that	the	fixed-point	filter	is	too	complicated	to
implement	in	an	SCTL	or	that	the	design	clock	rate	is	too	high.	A	more
complicated	fixed-point	filter	requires	more	FPGA	hardware	resources.
The	compilation	might	fail	when	the	FPGA	hardware	resources	are	not
sufficient.	For	example,	the	compilation	runs	properly	when	the	fixed-
point	filter	uses	only	40%	of	the	FPGA	hardware	resources	but	the
compilation	might	fail	if	the	fixed-point	filter	uses	about	85%	of	the	FPGA
hardware	resources.	If	you	encounter	compilation	failures,	try	converting
the	filter	structure	to	one	that	requires	fewer	resources	or	setting	the
design	clock	rate	to	a	lower	frequency.
The	following	table	lists	the	number	of	multiplication	units	that	each	filter
structure	uses.	One	multiplication	unit	might	require	multiple	FPGA	built-
in	multipliers,	depending	on	the	type	of	multiplication	unit.	For	example,
an	I16xI16	multiplication	unit	requires	only	one	FPGA	built-in	multiplier,
but	an	I16xI32	multiplication	unit	requires	two	FPGA	built-in	multipliers.
This	table	also	lists	the	estimated	execution	time	in	ticks.	One	tick	is	one
clock	cycle,	and	the	clock	rate	you	specify	when	compiling	the	FPGA	VI
determines	the	length	of	the	clock	cycle.	Execution	time	might	vary
because	of	the	call	overhead	in	loop	structures.

Note		Increasing	the	FPGA	target	clock	rate	reduces	the	amount	of
code	that	you	can	execute	in	the	SCTL	because	the	clock	cycle	is
shorter.

Structure
Number	of
Multiplication
Units1

Estimated
Execution	Time
(ticks)2

FIR	Direct	Form 1B order+5
FIR	Direct	Form	Transposed 1B order+5
FIR	Symmetric	(odd	order) 1B +5

lvhowto.chm::/integers.html
lvdfdtconcepts.chm::/FIR_Filter_Specs.html#direct
lvdfdtconcepts.chm::/FIR_Filter_Specs.html#transposed
lvdfdtconcepts.chm::/FIR_Filter_Specs.html#symmetric

FIR	Symmetric	(even	order) 1B +6
FIR	Antisymmetric	(odd	order) 1B +5
FIR	Antisymmetric	(even	order) 1B +6
IIR	Cascaded	Second-Order
Sections	Form	I

1A+1B *4+2

IIR	Cascaded	Second-Order
Sections	Form	I	Transposed

1A+1B *3+4

IIR	Cascaded	Second-Order
Sections	Form	II

1A+1B *4+6

IIR	Cascaded	Second-Order
Sections	Form	II	Transposed

1A+1B *3+4

Lattice	MA	(minimum	phase) 1A order*2+3
Lattice	MA	(maximum	phase) 1A order*2+4
Lattice	ARMA	(basic	sections) 2A+1B order+9
Lattice	ARMA	(one	multiplier
sections)

1A+1B order*2+6

Lattice	ARMA	(normalized
sections)

2A+1B order*2+6

1.	 Some	filter	structures	use	two	groups	of	multiplication	units
because	the	structures	contain	two	sets	of	filter	coefficients.	A
and	B	in	the	table	represent	coefficients	a/k	and	coefficients	b/v,
respectively.	One	multiplication	unit	might	require	different
number	of	FPGA	built-in	multipliers,	as	shown	in	the	following
table:
Multiplicand	x
Coefficients

Truncated	Internal
Precision

Full	Internal
Precision

I16xI16 One	multiplier One	multiplier
I16xI32 Two	multipliers Two	multipliers
I32xI16 Two	multipliers Two	multipliers
I32xI32 Three	multipliers Four	multipliers

2.	 The	number	of	ticks	in	the	Estimated	Execution	Time	column	is
per-channel	based.	This	table	assumes	that	the	filter	gain
processing	is	not	on	the	FPGA	target.	Therefore,	if	you	want	to

lvdfdtconcepts.chm::/FIR_Filter_Specs.html#symmetric
lvdfdtconcepts.chm::/FIR_Filter_Specs.html#antisymmetric
lvdfdtconcepts.chm::/FIR_Filter_Specs.html#antisymmetric
lvdfdtconcepts.chm::/iir_sos_specs.html#sos_i
lvdfdtconcepts.chm::/iir_sos_specs.html#sos_i_trans
lvdfdtconcepts.chm::/iir_sos_specs.html#sos_ii
lvdfdtconcepts.chm::/iir_sos_specs.html#sos_ii_trans
lvdfdtconcepts.chm::/Lattice_MA_Specs.html
lvdfdtconcepts.chm::/Lattice_MA_Specs.html
lvdfdtconcepts.chm::/Lattice_ARMA_Specs.html
lvdfdtconcepts.chm::/Lattice_ARMA_Specs.html
lvdfdtconcepts.chm::/Lattice_ARMA_Specs.html

process	the	filter	gain	on	the	FPGA	target,	add	one	more	tick	to
the	number	of	ticks.

3.	 order	is	the	filter	order.	For	IIR	filters,	order	is	the	larger	of	the
numerator	and	denominator	order	values.

4.	 	is	the	smallest	integer	greater	than	or	equal	to	x.

Postprocessing	Filtered	Signals	(Digital	Filter
Design	Toolkit)
After	you	deploy	fixed-point	filter	coefficients	to	the	target	hardware,	the
output	data	uses	a	fixed-point	representation.	To	convert	the	output
signal	of	the	fixed-point	filter	into	floating-point	representation,	you	must
process	the	fixed-point	signal	using	the	DFD	FXP	Postprocessing	VI.
Refer	to	the	Lowpass_Step	6_Postprocessing	VI	in	the
labview\examples\Digital	Filter	Design\Case	Studies\Single-Rate	Filter
directory	for	an	example	that	demonstrates	how	to	postprocess	a	filtered
signal.
	Open	example	

lvdigfiltdestk.chm::/DFD_FXP_Postp.html
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CSingle-Rate%20Filter%5C%5CLowpass_Step%206_Postprocessing.vi');

Designing	Special	Filters	(Digital	Filter	Design
Toolkit)
This	book	contains	information	about	using	the	LabVIEW	Digital	Filter
Design	Toolkit	to	design	special	single-rate	filters	with	the	Advanced	FIR
Filter	Design	VIs,	Advanced	IIR	Filter	Design	VIs,	and	the	Special	Filter
Design	VIs.

To	view	related	topics,	click	the	Locate	button,	shown	at	left,	in	the
toolbar	at	the	top	of	this	window.	The	LabVIEW	Help	highlights	this
topic	in	the	Contents	tab	so	you	can	navigate	the	related	topics.

lvdfdtconcepts.chm::/dfdt_concepts_intro.html
lvdigfiltdestk.chm::/DFD_Adv_FIR_VIs.html
lvdigfiltdestk.chm::/DFD_Adv_IIR_VIs.html
lvdigfiltdestk.chm::/DFD_Special_VIs.html

Linear	Phase	Filters	(Digital	Filter	Design
Toolkit)
Linear	phase	digital	filters	allow	all	the	frequency	components	of	an	input
signal	to	pass	through	the	filter	with	the	same	delay,	which	means	that
the	group	delay	through	the	filter	is	a	constant	value	independent	of	the
frequency.	Linear	phase	filters	are	useful	in	filtering	applications	in	which
you	want	to	minimize	signal	distortion	and	spreading	over	time.
Nonlinear	phase	response,	or	dispersion,	can	be	harmless	in	audio	and
other	applications	in	which	mild	phase	distortion	is	often	imperceptible	to
humans.	However,	phase	distortion	can	be	harmful	in	some	applications.
For	example,	in	digital	communications	applications,	signal	spreading
caused	by	phase	distortion	can	cause	interference	between	time
concentrated	information	symbols.
A	minimum	phase	filter	is	a	type	of	nonlinear	phase	filter	that	optimally
minimizes	the	group	delay	at	all	frequencies	for	a	given	magnitude
response	at	the	expense	of	phase	distortion.	Minimum	phase	filters	can
be	useful	in	control	applications	in	which	minimizing	delay	is	more
important	than	minimizing	signal	spreading.

Mathematical	Definition
The	digital	filter	frequency	response	H(f)	is	expressed	in	terms	of
magnitude	and	phase	in	the	following	equation:

H(f)	=	|H(f)|ejφ(f) (A)

where	|H(f)|	and	φ(f)	are	both	real-valued	functions	of	frequency	f	and
represent	the	magnitude	and	phase	of	the	frequency	response.
Only	finite	impulse	response	(FIR)	filters	can	have	exactly	linear	phase.
You	can	design	linear	phase	FIR	filters	using	either	window-based	design
methods	or	the	Remez	design	method.	The	Remez	design	method	in	the
DFD	Remez	Design	VI	is	more	powerful	and	flexible	than	window-based
design	methods.
The	equation	above	reduces	to	the	following	equation	for	a	linear	phase
FIR	digital	filter.

H(f)	=	(j)m	A(f)e−jπNf (B)

where m	=	0,	1
A(f)	is	the	amplitude	response	of	the	filter
N	is	the	order	of	the	filter,	which	is	equal	to	the	number	of	filter
taps	minus	one
f	is	the	normalized	frequency	with	the	range	[0,	0.5]
If	the	filter	coefficients	h(n)	(where	n	=	0,	1,	..,	N)	are	symmetric,
h(n)	=	h(N−n),	and	m	must	be	0
If	the	filter	coefficients	h(n)	are	antisymmetric,	h(n)	=	−h(N−n),
and	m	must	be	1

lvdigfiltdestk.chm::/DFD_Remez_Design.html

Types	of	Linear	Phase	FIR	Filters
The	following	table	lists	the	four	types	of	linear	phase	FIR	filters	and	the
characteristics	of	each	type.	The	book	Digital	Filter	Design	contains	more
information	about	linear	phase	FIR	filters.

Type Classification Frequency	Characteristics
I Even-order,

symmetric
A(f)	is	symmetric	about	f	=	0	and	f	=	0.5
A(f)	is	periodic	with	period	1

II Odd-order,
symmetric

A(f)	is	symmetric	about	f	=	0	and
antisymmetric	about	f	=	0.5
A(f)	is	constrained	to	0	at	f	=	0.5
A(f)	is	periodic	with	period	2

III Even-order,
antisymmetric

A(f)	is	antisymmetric	about	f	=	0	and	f	=	0.5
A(f)	is	constrained	to	0	at	both	f	=	0	and	f	=
0.5
A(f)	is	periodic	with	period	1

IV Odd-order,
antisymmetric

A(f)	is	antisymmetric	about	f	=	0	and
symmetric	about	f	=	0.5
A(f)	is	constrained	to	0	at	f	=	0
A(f)	is	periodic	with	period	2

Use	the	DFD	Remez	Design	VI	to	design	linear	phase	FIR	filters.	Set	the
order	input	and	the	filter	type	input	according	to	the	Classification
column	of	the	table	above.	The	DFD	Remez	Design	VI	designs	the
appropriate	type	of	linear	phase	FIR	filter	based	on	the	two	inputs.
Use	the	following	guidelines	to	determine	the	type	of	linear	phase	FIR
filter	you	design.

Type	III	and	IV	cannot	be	lowpass-like	filters.
Type	II	and	III	cannot	be	highpass-like	filters.
Type	III	and	IV	work	well	for	differentiators	or	Hilbert	transformers
because	they	can	give	a	constant	90°	phase	shift.

Experiment	with	different	types.	More	than	one	type	might	produce	an
acceptable	result	for	some	target	filter	responses,	but	only	one	type	can
meet	the	target	specifications.	Select	the	filter	type	that	has	the
smoothest	frequency	response.	For	example,	the	following	figure
illustrates	the	types	of	frequency	response	symmetry	for	each	type	of

lvdfdtconcepts.chm::/dfd_related_doc.html
lvdigfiltdestk.chm::/DFD_Remez_Design.html
lvdfdtconcepts.chm::/Differentiators.html
lvdfdtconcepts.chm::/Hilbert_Transformers.html

linear	phase	FIR	filter,	assuming	a	sampling	frequency	of	fs	=	1.	Notice
that	in	this	example,	a	Type	I	or	Type	II	filter	has	glitches,	or	rapid
changes,	at	the	frequency	point	of	1.	A	Type	III	or	Type	IV	filter	yields	the
smoothest	frequency	response	because	they	do	not	contain	glitches.

The	following	figure	shows	the	magnitude	response	requirement	of	an
ITU-468-weighting	filter.	Notice	that	the	magnitude	response	is	zero	at
DC	and	small	but	nonzero	at	high	frequencies.	Therefore,	Type	IV	(odd
order,	antisymmetric)	is	the	best	choice	for	approximating	this	response.

Arbitrary	Shape	Filters	(Digital	Filter	Design
Toolkit)
If	you	want	to	design	a	linear	phase	finite	impulse	response	(FIR)	filter
with	an	arbitrary	magnitude	response,	you	can	use	the	DFD	Remez
Design	VI.	If	you	want	to	design	a	filter	in	which	linear	phase	is	not
required	but	minimizing	filter	order	is	important,	you	can	use	the	DFD
Least	Pth	Norm	Design	VI	to	design	an	infinite	impulse	response	(IIR)
filter.
You	can	describe	an	arbitrary	frequency	response	with	multiple	points
using	piecewise	linear	interpolation.	The	number	of	points	you	must
supply	to	describe	the	shape	depends	on	the	target	arbitrary	shape
magnitude	response	in	a	certain	frequency	band.	You	do	not	have	to
space	the	points	evenly.	Use	more	points	where	the	magnitude	response
is	tightly	curved	and	fewer	points	where	the	magnitude	response	is	more
linear.

lvdigfiltdestk.chm::/DFD_Remez_Design.html
lvdigfiltdestk.chm::/DFD_LPth_Norm.html

FIR	Filters	with	Arbitrary	Magnitude	Responses
To	design	a	linear	phase	FIR	filter	with	an	arbitrary	shape	magnitude
response,	use	the	DFD	Remez	Design	VI	and	set	the	filter	type	input	to
Symmetric	or	Antisymmetric	according	to	the	linear	phase	FIR	filter	type
table.	Then	describe	the	shape	of	the	filter	by	specifying	multiple	points	in
the	band	specs	input.
The	following	example	uses	a	lowpass	filter	with	a	passband	frequency
ranging	from	0	to	0.25	and	a	stopband	frequency	ranging	from	0.3	to	0.5.
Three	points	at	frequencies	0,	0.1,	and	0.25	with	expected	amplitudes	of
1,	2,	and	1,	respectively,	describe	the	shape	of	the	passband	range.	To
design	this	filter,	enter	the	specifications	shown	in	the	following	figure	into
the	DFD	Remez	Design	VI.

The	following	figure	shows	the	magnitude	response	of	the	designed	filter.

The	previous	example	describes	the	passband	shape	with	only	three

lvdfdtconcepts.chm::/linear_min_filters.html#types

points.	You	also	can	describe	an	arbitrary	passband	shape	with	as	many
points	as	necessary.	The	following	example	uses	5,000	evenly-shaped
frequency	points	to	describe	the	passband	shape	of	a	sinc	compensation
lowpass	filter.	You	can	use	this	sinc	compensator	to	correct	the	amplitude
droop	caused	by	a	zero-order	hold	in	a	digital-to-analog	(D/A)	converter,
as	shown	in	the	following	figure:

An	amplitude	droop	measures	the	amount	that	the	signal	power
decreases	in	a	specified	frequency	range.	In	the	previous	figure,	the
Zero-Order	Hold	plot	shows	the	magnitude	response	of	a	zero-order
hold	in	the	D/A	converter.	You	can	see	an	amplitude	droop	exists	in	the
frequency	range	of	interest	[0,	0.2].	To	correct	the	amplitude	droop,	you
can	create	a	filter	that	whose	magnitude	response	is	similar	to	the	Anti-
Sinc	Compensator	plot	in	the	frequency	range	of	interest	[0,	0.2].	You
can	create	the	filter	by	describing	the	passband	shape	with	the
corresponding	inverse	sinc	function	values	of	the	droop.	The	following
figure	shows	the	magnitude	response	of	the	designed	filter.

IIR	Filters	with	Arbitrary	Magnitude	Responses
If	you	want	to	design	an	IIR	filter	with	an	arbitrary	shape	magnitude
response	and	the	phase	response	is	not	important,	use	the	DFD	Least
Pth	Norm	Design	VI	and	set	the	filter	type	input	to	either	Minimum	Phase
or	Maximum	Phase.	The	DFD	Least	Pth	Norm	Design	VI	ignores	all	other
phase	specification	inputs,	including	group	delay	and	phase	in	the	band
specs	input.	Define	the	shape	of	the	magnitude	response	by	entering
multiple	points	in	the	band	specs	input.
For	example,	you	can	design	a	minimum	phase	IIR	filter	with	the	same
arbitrary	magnitude	response	as	the	previous	example.	Set	the	filter
type	input	to	Minimum	Phase	and	enter	the	same	band	specs	into	the
DFD	Least	Pth	Norm	Design	VI.	The	following	figure	shows	the
magnitude	response	of	the	designed	filter.

Group	Delay	Compensator	(Digital	Filter	Design
Toolkit)
Infinite	impulse	response	(IIR)	filters	that	you	design	using	Butterworth,
Chebyshev,	or	Elliptic	methods	usually	have	a	nonconstant	group	delay,
which	means	that	they	have	nonlinear	phase	or	phase	distortion.	The
greatest	deviation	from	a	constant	group	delay	typically	occurs	at	the
edge	of	the	passband	or	somewhere	in	the	transition	band.
Given	a	filter	with	phase	distortion,	you	can	cascade	the	filter	with	an
allpass	filter	to	linearize	the	phase	response	in	the	specified	frequency
ranges	while	keeping	the	magnitude	response	unchanged.
Let	 	and	 	denote	the	group	delay	of	the	given	filter	and	the
designed	allpass	filter	at	the	i	th	frequency	point,	respectively.	The
coefficients	vector	of	the	allpass	filter	 	is	determined	by	the	following
equation:

where	 	is	the	target	group	delay	in	all	user-defined	frequency	ranges.

A	4th	order	elliptic	bandpass	filter	with	a	passband	frequency	ranging
from	0.3	to	0.4	has	nonconstant	group	delay	in	the	specified	passband.
The	following	figure	shows	how	to	compensate	the	filter	group	delay	in
the	specified	passband	to	be	near	constant	with	an	8th	order
compensator	using	the	DFD	Group	Delay	Compensator	VI.

The	block	diagram	in	the	above	figure	uses	the	DFD	Plot	Group	Delay	VI
to	check	the	group	delay	response	of	the	filter.	The	following	figure	shows
the	group	delay	response	of	the	original	filter	and	the	compensated	filter.

lvdfdtconcepts.chm::/FIR_and_IIR_Filters.html
lvdigfiltdestk.chm::/DFD_GDelay_Compens.html

In	the	previous	figure,	you	can	see	that	the	group	delay	of	the
compensated	filter	is	fairly	constant	in	the	passband	frequency	ranging
from	0.3	to	0.4.	The	constant	value	of	the	group	delay	indicates	that	the
compensated	filter	linearly	approximates	the	phase	response	in	the
passband.	However,	compared	to	the	original	filter,	the	compensated
filter	also	increases	the	delay	and	filtering	computation.

Narrowband	FIR	Filters	(Digital	Filter	Design
Toolkit)
The	order	of	a	finite	impulse	response	(FIR)	filter	is	related	inversely	to
the	transition	bandwidth.	Conventional	FIR	filters	with	narrow	transition
bands	and	high	orders	might	be	too	complex	to	implement.	You	might
consider	designing	narrowband	filters	using	infinite	impulse	response
(IIR)	filters.	However,	narrowband	IIR	filters	typically	have	nonlinear
phase,	especially	near	the	transition	band,	and	are	numerically	sensitive.
You	might	be	able	to	meet	the	target	filter	specifications	by	using
narrowband	FIR	filters	instead	of	using	IIR	filters.
The	DFD	Narrowband	Filter	Design	VI	uses	interpolated	FIR	(IFIR)
techniques	and	frequency	response	masking	techniques	to	design
narrowband	FIR	filters	with	significantly	less	computational	complexity
than	conventional	FIR	solutions,	as	shown	in	the	following	figure:

lvdfdtconcepts.chm::/FIR_and_IIR_Filters.html
lvdfdtconcepts.chm::/FIR_and_IIR_Filters.html
lvdigfiltdestk.chm::/DFD_Narrow_Filter.html

(a)	Frequency	response	of	the	target	narrowband	FIR	filter	H(z)

(b)	Frequency	response	of	a	shaping	filter	G(z)

(c)	Frequency	response	of	an	interpolated	filter	G(z	N)

(d)	Frequency	response	of	a	masking	filter	I(z)

To	better	understand	how	these	techniques	work,	assume	that	the	target
narrowband	filter	has	the	frequency	response	shown	in	part	(a)	of	the
previous	figure.	The	first	step	is	to	design	a	shaping	filter	as	shown	in
part	(b).	The	shaping	filter	has	a	wider	transition	band	than	the	target
narrowband	filter	and	determines	the	spectrum	shape	of	the	target

narrowband	filter.	The	next	step	is	to	design	an	interpolated	filter	with	the
frequency	response	shown	in	part	(c).	Notice	that	the	coefficients	of	the
interpolated	filter	G(zN)	are	constructed	by	inserting	N−1	zeroes	between
every	two	adjacent	coefficients	of	G(z).	The	magnitude	response	of	the
first	image	of	G(zN)	in	part	(c)	is	the	same	as	that	of	the	target	filter	H(z)
in	part	(a).	To	remove	the	unwanted	images	of	G(zN),	you	need	to
cascade	the	interpolated	filter	G(zN)	with	a	masking	filter	I(z),	which	has
the	magnitude	response	shown	in	part	(d).

By	cascading	the	interpolated	filter	G(zN)	and	the	masking	filter	I(z)	as
illustrated	in	the	following	figure,	you	can	obtain	the	target	narrowband
filter	H(z).

This	figure	shows	a	two-stage	narrowband	filter	structure.	Because	I(z)
and	G(z)	have	a	much	wider	transition	band	than	the	original	filter	H(z),
the	overall	order	of	I(z)	and	G(z)	is	lower	than	the	order	of	H(z),	which
makes	the	cascaded	filters	computationally	efficient.
Similarly,	if	the	lowpass	masking	filter	I(z)	also	is	a	narrowband	filter,	you
can	make	it	more	efficient	by	using	the	two-stage	narrowband	filter
structure.	The	following	figure	illustrates	the	diagram	of	the	resulting
three-stage	structure.	This	figure	uses	a	cascaded	integrator	comb	(CIC)
filter	as	the	first-stage	lowpass	masking	filter	in	this	case	because	of	the
lowpass	nature	and	efficient	implementation.

Assume	a	signal	with	a	sampling	frequency	of	5	kHz.	The	signal	has
useful	information	at	frequencies	below	100	Hz	and	noise	above	120	Hz.
To	suppress	the	noise,	you	can	apply	a	narrowband	lowpass	filter	with
the	following	specifications:

Specification Value
Passband	Range 0−100	Hz
Passband	Ripple 0.05	dB
Stopband	Range 120−2500	Hz

lvdfdtconcepts.chm::/cic_filters.html

Stopband	Attenuation 60	dB

If	you	design	the	lowpass	FIR	filter	using	the	DFD	Remez	Design	VI,
the	resulting	filter	has	689	taps.	Given	the	same	specifications,	the
DFD	Narrowband	Filter	Design	VI	generates	a	three-stage	narrowband
filter.	The	resulting	CIC	filter	has	5	stages,	the	interpolated	filter	F(zM)
has	18	nonzero	coefficients	and	the	interpolated	filter	G(zN)	has	27
nonzero	coefficients.	The	CIC	narrowband	filter	is	78%	less
computationally	complex	than	the	lowpass	FIR	filter	you	design	using	the
DFD	Remez	Design	VI.	The	following	figure	shows	the	magnitude
response	of	the	designed	narrowband	filter.

To	plot	the	frequency	response	of	narrowband	FIR	filters,	use	the	DFD
Plot	Narrowband	Freq	Response	VI.	To	perform	narrowband	filtering,	use
the	DFD	Narrowband	Filtering	VI.

lvanlsconcepts.chm::/FIR_Filters.html#taps
lvdigfiltdestk.chm::/DFD_Plot_Narrow_Freq.html
lvdigfiltdestk.chm::/DFD_Narrow_Filter.html

Designing	Multirate	Filters	(Digital	Filter	Design
Toolkit)
This	book	contains	information	about	using	the	LabVIEW	Digital	Filter
Design	Toolkit	to	design	multirate	filters.

To	view	related	topics,	click	the	Locate	button,	shown	at	left,	in	the
toolbar	at	the	top	of	this	window.	The	LabVIEW	Help	highlights	this
topic	in	the	Contents	tab	so	you	can	navigate	the	related	topics.

lvdfdtconcepts.chm::/dfdt_concepts_intro.html

Multirate	Filter	Basics	(Digital	Filter	Design
Toolkit)
Use	multirate	filters	in	digital	signal	processing	systems	when	different
sampling	frequencies	exist	in	different	parts	of	a	system,	or	when	you
want	to	reduce	computational	complexity	in	systems	by	using	a	uniform
sampling	frequency.	You	can	change	the	sampling	frequency	of	a	filter	by
using	decimation,	interpolation,	or	rational	resampling.	This	book
describes	the	three	filtering	modes	and	the	zero-phase	filtering	mode,
which	enables	you	to	eliminate	the	delay	between	the	input	and	output
signals.
Use	finite	impulse	response	(FIR)	structures	to	implement	multirate
filters.	Compared	to	infinite	impulse	response	(IIR)	structures,	FIR
structures	provide	unconditional	stability,	phase	linearity,	and	better	finite-
precision	performance.	Furthermore,	FIR	structures	contain	only
feedforward	signal	paths	that	enable	you	to	simplify	the	implementation
of	decimation	and	interpolation	filters.	In	principle,	you	can	use	both
lowpass	and	highpass	FIR	filters	to	implement	multirate	filters.	However,
the	LabVIEW	Digital	Filter	Design	Toolkit	provides	lowpass	multirate	FIR
filters	only.

To	view	related	topics,	click	the	Locate	button,	shown	at	left,	in	the
toolbar	at	the	top	of	this	window.	The	LabVIEW	Help	highlights	this
topic	in	the	Contents	tab	so	you	can	navigate	the	related	topics.

lvdfdtconcepts.chm::/dfd_decimation.html
lvdfdtconcepts.chm::/dfd_interpolation.html
lvdfdtconcepts.chm::/rational_resampling.html
lvdfdtconcepts.chm::/zero_phase_filtering.html
lvdfdtconcepts.chm::/FIR_Filter_Specs.html

Rational	Resampling	(Digital	Filter	Design
Toolkit)
Rational	resampling	is	the	process	of	converting	the	sampling	frequency
of	a	signal	to	another	sampling	frequency	that	differs	from	the	original
frequency	by	a	rational	factor	of	L/M,	where	both	L	and	M	are	integer
values.	Rational	resampling	also	is	known	as	fractional	resampling.
Rational	resampling	is	useful	for	interfacing	with	digital	signal	processing
(DSP)	systems	that	operate	at	different	frequencies.	By	choosing	L	and
M	properly,	you	can	approximate	any	desired	sampling	frequency	change
ratio.	For	example,	you	can	use	rational	resampling	with	L	=	147	and	M	=
160	to	convert	a	48	kHz	signal	from	a	professional	audio	system	to	a
44.1	kHz	signal	for	an	audio	CD.

Note		Decimation	and	interpolation	are	special	cases	of	rational
resampling.	The	rational	factors	of	decimation	and	interpolation	are
1/M	and	L/1,	respectively.

You	can	implement	a	rational	resampling	system	by	cascading	an	L−fold
expander	with	an	M−fold	decimator.	You	must	place	the	expander	before
the	decimator	to	avoid	discarding	useful	frequency	components	in	the
decimation	operation.	The	following	figure	shows	a	rational	resampling
filter	with	a	rational	factor	of	L/M.

This	rational	resampling	filter	first	interpolates	the	input	signal	x(n)	with
an	L−fold	expander	and	changes	the	sampling	frequency	of	the	original
signal	fs	to	a	new	sampling	frequency	Lfs.	The	expander	returns	an
output	signal	v(n)	with	this	new	sampling	frequency.	Both	the
interpolation	filter	following	the	expander	and	the	decimation	filter
preceding	the	decimator	are	lowpass	FIR	filters,	and	the	two	filters
operate	at	the	same	sampling	frequency	Lfs.	Therefore,	you	can	integrate
the	two	filters	into	one	lowpass	filter	H(z)	and	place	the	filter	between	the
expander	and	the	decimator.	The	filter	H(z)	returns	a	new	signal	w(n).
This	rational	resampling	filter	then	decimates	the	signal	w(n)	with	an	M
−fold	decimator	and	changes	the	sampling	frequency	from	Lfs	to	(L/M)fs.

lvdfdtconcepts.chm::/dfd_decimation.html
lvdfdtconcepts.chm::/dfd_interpolation.html

The	decimator	returns	an	output	signal	y(n)	with	this	new	sampling
frequency.
When	L<M,	this	rational	resampling	filter	converts	the	original	sampling
frequency	to	a	lower	frequency,	and	H(z)	acts	as	an	anti-aliasing	filter.
When	L>M,	this	rational	resampling	filter	converts	the	original	sampling
frequency	to	a	higher	frequency,	and	H(z)	acts	as	an	anti-imaging	filter.
The	cutoff	frequency	of	H(z)	is	the	smaller	of	the	two	values	fs/2	and
Lfs/(2M).

Note		The	Multirate	Processing	VIs	use	a	polyphase
implementation,	which	is	more	efficient	than	the	procedure	in	the
previous	figure,	to	implement	rational	resampling.	Refer	to	the
book	Multirate	Systems	and	Filter	Banks	for	more	information
about	polyphase	implementations.	Rational	resampling	filters	that
use	a	polyphase	implementation	compute	only	the	final	expected
output	samples,	not	the	inserted	zero	value	samples,	thus
reducing	the	computational	complexity	of	the	filters.

The	following	figure	illustrates	the	rational	resampling	of	a	signal	by	a
factor	of	2/3.	The	different	parts	in	the	following	figure	correspond	to	the
different	spectra	of	the	signal	at	different	stages	of	the	rational	resampling
process,	as	shown	in	the	previous	figure.	Because	L<M,	the	lowpass
filter	has	a	cutoff	frequency	of	Lfs/(2M)	and	acts	as	an	anti-aliasing	filter.
Part	(e)	of	this	figure	shows	the	spectrum	of	the	output	signal	if	you	use	a
lowpass	filter.	You	can	see	that	no	aliasing	occurs.	From	part	(f)	of	this
figure,	you	can	see	that	if	no	lowpass	filter	exists,	or	if	you	choose	the
cutoff	frequency	of	the	lowpass	filter	to	be	fs/2,	aliasing	occurs	between
each	spectrum	image	of	the	decimated	signal.	The	overlapping	spectra
indicate	aliasing	due	to	the	decimation	operation.

lvdigfiltdestk.chm::/DFD_M_Process_VIs.html
lvdfdtconcepts.chm::/dfd_related_doc.html

(a)	Spectrum	of	the	original	signal	x(n)

(b)	Spectrum	of	the	signal	v(n)	from	directly	interpolating	the	original
signal	by	2

(c)	Magnitude	response	of	the	anti-aliasing	filter	H(z)

(d)	Spectrum	of	the	signal	w(n)	from	the	anti-aliasing	filter	H(z)

(e)	Spectrum	of	the	output	signal	y(n)	with	the	anti-aliasing	filter

(f)	Spectrum	of	the	output	signal	y(n)	without	the	anti-aliasing	filter

To	design	rational	resampling	filters,	use	the	Rational	instance	of	the
DFD	MRate	Filter	Design	VI.

lvdigfiltdestk.chm::/DFD_MR_Design.html

Decimation	(Digital	Filter	Design	Toolkit)
Decimation	is	the	process	of	reducing	the	sampling	frequency	of	a	signal
to	a	lower	sampling	frequency	that	differs	from	the	original	frequency	by
an	integer	value.	Decimation	also	is	known	as	down-sampling.	The
lowpass	filtering	associated	with	decimation	removes	high-frequency
content	from	the	signal	to	accommodate	the	new	sampling	frequency.
Decimation	is	useful	in	applications	in	which	the	Nyquist	frequency	of	a
signal	is	much	higher	than	the	highest	frequency	of	the	signal.
Decimation	filters	help	you	remove	the	excess	bandwidth	and	reduce	the
sampling	frequency	of	the	signal.	Decimation	filters	also	help	you	reduce
the	computational	resources	required	for	processing	and	storing	the
signal.	During	the	analog-to-digital	(A/D)	conversion	process,	decimation
filters	also	can	reduce	the	variance	of	quantization	noise	in	a	signal	and
maintain	the	signal	power,	thus	improving	the	signal-to-noise	ratio	(SNR).
The	following	figure	shows	a	typical	M-fold	decimation	filter,	where	M	is
the	integer	value	by	which	you	want	to	decrease	the	sampling	frequency.
This	filter	contains	a	lowpass	FIR	filter	H(z).	This	lowpass	FIR	filter	is	an
anti-aliasing	filter	followed	by	an	M-fold	decimator.	The	decimator	passes
every	Mth	sample	and	discards	the	other	samples.	After	this	operation,
the	decimation	filter	changes	the	sampling	frequency	fs	of	the	input	signal
x(n)	to	a	new	sampling	frequency	fs/M.	The	decimation	filter	then	returns
an	output	signal	y(n)	with	the	new	sampling	frequency.

To	prevent	aliasing,	this	system	uses	the	lowpass	filter	H(z)	before	the	M-
fold	decimator	to	suppress	the	frequency	contents	above	the	frequency
fs/(2M),	which	is	the	Nyquist	frequency	of	the	output	signal.	This	system
produces	the	same	results	as	an	analog	anti-aliasing	filter	with	a	cutoff
frequency	of	fs/(2M)	followed	by	an	analog-to-digital	(A/D)	converter	with
a	sampling	frequency	of	fs/M.	Because	the	system	shown	in	the
figure	above	is	in	the	digital	domain,	H(z)	is	a	digital	anti-aliasing	filter.

Note		The	Multirate	Processing	VIs	use	a	polyphase
implementation,	which	is	more	efficient	than	the	procedure	in	the

lvdigfiltdestk.chm::/DFD_M_Process_VIs.html

previous	figure,	to	implement	decimation.	Refer	to	the	book
Multirate	Systems	and	Filter	Banks	for	more	information	about
polyphase	implementations.	Decimation	filters	that	use	a
polyphase	implementation	compute	only	the	final	expected	output
samples,	not	the	samples	to	discard,	thus	reducing	the
computational	complexity	of	the	filters.

The	following	figure	illustrates	the	potentially	harmful	effects	of	not	using
an	anti-aliasing	filter	before	the	decimator.	This	figure	shows	the
spectrum	of	the	original	signal	x(n)	and	the	spectra	of	the	signals
resulting	from	decimating	the	original	signal	by	2,	3,	and	M.	Notice	the
overlapping	spectra	in	parts	(c)	and	(d)	of	the	figure.	The	overlapping
spectra	indicate	aliasing	due	to	the	decimation	operation.

(a)	Spectrum	of	the	original	signal	x(n)

(b)	Spectrum	of	the	output	signal	y(n),	decimated	by	a	factor	of	2

(c)	Spectrum	of	the	output	signal	y(n),	decimated	by	a	factor	of	3

(d)	Spectrum	of	the	output	signal	y(n),	decimated	by	a	factor	of	M

To	design	decimation	filters,	use	the	Multirate	Filter	Design	VIs	with	the

lvdfdtconcepts.chm::/dfd_related_doc.html
lvdigfiltdestk.chm::/DFD_Multi_Design_VIs.html

filtering	mode	input	set	to	Decimation.

Interpolation	(Digital	Filter	Design	Toolkit)
Interpolation	is	the	process	of	increasing	the	sampling	frequency	of	a
signal	to	a	higher	sampling	frequency	that	differs	from	the	original
frequency	by	an	integer	value.	Interpolation	also	is	known	as	up-
sampling.	The	spectrum	of	the	output	signal	ideally	is	the	same	as	the
input	signal	spectrum,	except	the	output	signal	spectrum	contains	an
additional	high-frequency	region	with	zero-power	density.
The	following	figure	shows	a	typical	L-fold	interpolation	filter,	where	L	is
the	target	integer	increase	in	the	sampling	frequency.

The	interpolation	filter	contains	an	L-fold	expander	followed	by	a	lowpass
FIR	filter	H(z).	The	L-fold	expander	inserts	L−1	zeroes	between
consecutive	samples	to	the	original	signal	x(n)	and	changes	the	sampling
frequency	fs	of	the	original	signal	x(n)	to	a	new	sampling	frequency	Lfs.
This	process	introduces	images,	as	shown	in	the	figure	below,	to	the
original	signal.	The	interpolation	filter	then	uses	the	lowpass	FIR	filter
H(z)	to	remove	the	images.	Therefore,	this	lowpass	FIR	filter	is	an	anti-
imaging	filter.	The	interpolation	filter	then	returns	an	output	signal	y(n)
with	the	new	sampling	frequency.

Note		The	Multirate	Processing	VIs	use	a	polyphase
implementation,	which	is	more	efficient	than	the	procedure	in	the
previous	figure,	to	implement	interpolation.	Refer	to	the	book
Multirate	Systems	and	Filter	Banks	for	more	information	about
polyphase	implementations.	Interpolation	filters	that	use	a
polyphase	implementation	compute	only	the	nonzero	input
samples,	not	the	inserted	zero	samples,	thus	reducing	the
computational	complexity	of	the	filters.

The	following	figure	shows	the	spectrum	of	the	original	signal	x(n)	and
the	spectra	from	directly	interpolating	the	signal	by	2,	3,	and	L	without
using	an	anti-imaging	filter.	Notice	multiple	images	emerge	in	the	range
from	0	to	half	of	the	resulting	sampling	frequency	in	parts	(b),	(c),	and	(d)
of	the	figure.	These	images	demonstrate	the	effect	of	interpolation.

lvdigfiltdestk.chm::/DFD_M_Process_VIs.html
lvdfdtconcepts.chm::/dfd_related_doc.html

(a)	Spectrum	of	the	original	signal	x(n)

(b)	Spectrum	of	the	signal	v(n),	interpolated	by	a	factor	of	2

(c)	Spectrum	of	the	signal	v(n),	interpolated	by	a	factor	of	3

(d)	Spectrum	of	the	signal	v(n),	interpolated	by	a	factor	of	L

The	interpolation	system	uses	the	lowpass	filter	H(z)	after	the	expander
to	attenuate	the	frequency	components	of	the	signal	from	fs/2	to	Lfs/2.	In
the	time	domain,	the	effect	of	H(z)	is	to	replace	the	inserted	zero	value
samples	that	the	expander	introduces	with	the	interpolated	values.	When
replacing	the	inserted	zeroes	with	interpolated	values,	the	anti-imaging
lowpass	filter	H(z)	might	alter	the	original	values.	Use	a	Nyquist
interpolation	filter	for	H(z)	to	maintain	the	original	values.
To	design	interpolation	filters,	use	the	Multirate	Filter	Design	VIs	with	the
filtering	mode	input	set	to	Interpolation.

lvdfdtconcepts.chm::/Nyquist_Filters.html
lvdigfiltdestk.chm::/DFD_Multi_Design_VIs.html

Zero-Phase	Filtering	(Digital	Filter	Design
Toolkit)
Zero-phase	filtering	helps	you	eliminate	the	group	delay	in	the	output
signal	of	a	filter.	All	multirate	filters	you	design	with	the	LabVIEW	Digital
Filter	Design	Toolkit,	except	for	possible	odd-order	cascaded	integrator
comb	(CIC)	filters,	are	even-order,	linear	phase	FIR	filters.	When	you	use
linear	phase	FIR	filters	to	process	signals,	the	filters	return	signals	with	a
constant	group	delay,	as	shown	in	the	following	figure:

In	this	figure,	you	can	see	that	the	Output	Signal	plot	contains	a
constant	set	of	zero	values,	which	denotes	the	delay	between	the	output
and	input	signals.	If	you	want	to	eliminate	the	delay,	you	can	implement
the	filter	as	a	zero-phase	filter	by	setting	the	zero	phase?	input	of	the
Multirate	Processing	VIs	to	TRUE.	The	following	figure	shows	an
example	of	an	output	signal	that	has	no	delay	compared	with	the	input
signal.

lvdfdtconcepts.chm::/cic_filters.html
lvdfdtconcepts.chm::/design_fl_multirate.html#multirate_signal_processing
lvdigfiltdestk.chm::/DFD_M_Process_VIs.html

Because	zero-phase	filters	must	be	noncausal,	you	cannot	achieve	zero-
phase	filtering	in	real-time	signal	processing.	The	Multirate	Processing
VIs	achieve	zero-phase	by	padding	and	trimming	data.	For	single-block
processing,	the	VIs	pad	the	input	data	block	at	the	beginning	and	end
and	trim	the	output	data	so	the	delay	between	the	input	and	output	is
zero.	For	continuous	processing,	the	VIs	trim	the	initial	transition	so	the
delay	between	the	input	and	the	output	is	zero.

Note		Zero-phase	filtering	works	only	with	even-order	multirate
filters.	All	multirate	filters	you	design	using	the	Digital	Filter	Design
Toolkit,	except	odd-order	CIC	filters,	are	even-order	filters.

lvdfdtconcepts.chm::/Filter_Attributes.html
lvdigfiltdestk.chm::/DFD_M_Process_VIs.html

Designing	Floating-Point	Multirate	Filters	(Digital
Filter	Design	Toolkit)
You	can	follow	the	floating-point	single-rate	filter	design	process	to
design	a	floating-point	multirate	filter.	This	topic	explains	how	to	use	the
Multirate	FIR	Design	Express	VI	to	design	a	lowpass	multirate	finite
impulse	response	(FIR)	filter.	The	following	figure	illustrates	the	typical
magnitude	response	of	a	lowpass	filter	in	multirate	systems.

In	this	figure,	fs	denotes	the	sampling	frequency	of	the	input	signal.	When
designing	filter	specifications,	you	must	take	the	filtering	mode	into
consideration.	Because	decimation	and	interpolation	are	special	cases	of
rational	resampling,	you	can	use	the	following	filter	specifications	to
design	any	filter	with	a	rational	factor	of	L/M.

Filter	Specification Value	Range
Passband	edge	frequency 0	<	fpass	<	min(Lfs/2M,	fs/2)

Stopband	edge	frequency fpass	<	fstop	<	Lfs/M−fpass

Typically,	fpass	is	the	highest	frequency	of	interest	in	the	input	signal.	If
fstop	<	min(Lfs/(2M),	fs/2),	the	transition	band	is	free	of	aliases.	If	you
change	the	constraints	of	fstop	to	min(Lfs/(2M),	fs/2)	<	fstop	<	(Lfs/2M
−fpass),	the	filter	has	a	wider	transition	band	and	a	lower	order,	which	can
reduce	the	computational	complexity	significantly	in	filtering	operations.
However,	the	transition	band	then	contains	aliasing	in	the	frequency
conversions.

lvdfdtconcepts.chm::/dfd_fl_process.html
lvdigfiltdestk.chm::/DFD_MRate_FIR_Design.html
lvdfdtconcepts.chm::/dfd_decimation.html
lvdfdtconcepts.chm::/dfd_interpolation.html
lvdfdtconcepts.chm::/rational_resampling.html

Entering	Floating-Point	Filter	Specifications
After	you	place	the	Multirate	FIR	Design	Express	VI	on	the	block
diagram,	the	Configure	Multirate	Filter	Design	dialog	box	appears,	as
shown	in	the	following	figure:

On	the	Floating-Point	Design	tab	of	the	configuration	dialog	box,	you
can	select	the	filter	type	and	design	method	from	the	pull-down	menus
and	specify	the	filter	factor.	You	then	can	enter	the	filter	specifications
through	either	the	numeric	controls	on	the	right	side	of	the	tab	or	the
magnitude	response	graphical	interface	on	the	configuration	dialog	box.
The	results	are	equivalent.
Using	the	Numerical	Controls
Similar	to	the	numerical	controls	for	single-rate	filter	design,	the
numerical	controls	for	multirate	filter	design	also	contain	frequency
ranges	and	ripple	constraint	settings.	In	addition	to	these	settings,	you
also	need	to	specify	the	sampling	frequency	of	the	input	signal	in	the
Input	sampling	frequency	numeric	control.	This	VI	then	automatically
calculates	the	sampling	frequency	of	the	output	signal	based	on	the	filter

lvdfdtconcepts.chm::/enter_filter_spec.html#text_interface

specifications	you	entered.
Using	the	Graphical	Interface
The	Magnitude	Response	graph	displays	the	magnitude	response	of
the	designed	multirate	filter.	The	magnitude	axis	can	be	either	a	linear	or
a	logarithmic	scale.	Remove	the	checkmark	from	the	Magnitude	in	dB
checkbox	to	use	a	linear	scale,	or	keep	the	checkmark	in	the	Magnitude
in	dB	checkbox	to	use	a	logarithmic	scale.
The	Magnitude	Response	graph	contains	a	set	of	cursors	that	you	can
use	to	specify	the	passband	and	stopband.	Use	the	passband	and
stopband	cursors	to	change	the	passband	and	stopband,	respectively,	of
the	multirate	filter.	Under	the	linear	scale,	the	distance	between	unity	and
the	horizontal	passband	cursor	specifies	the	maximum	passband	ripple.
The	location	of	the	vertical	passband	cursor	indicates	the	passband	edge
frequency.	The	stopband	cursors	work	the	same	when	defining	the
specifications	of	the	stopband.	Under	the	logarithmic	scale,	the	distance
between	0	dB	and	the	horizontal	stopband	cursor	specifies	the	stopband
attenuation.
Guidelines	for	Entering	Filter	Specifications
As	you	define	a	filter	specification,	you	must	adhere	to	a	set	of	rules	to
maintain	valid	specifications.	If	you	do	not	adhere	to	the	following	rules,
the	Configure	Multirate	Filter	Design	dialog	box	displays	a	message	in
the	Tips	indicator	with	suggestions	for	repositioning	the	cursors.

Keep	the	horizontal	cursors	in	the	range	(0,	1)	in	a	linear	scale	or
(−inf,	0	dB)	in	a	logarithmic	scale.
Keep	the	horizontal	passband	cursor	above	the	horizontal
stopband	cursor.
The	Passband	edge	frequency	value	must	be	less	than	the
Nyquist	frequency,	or	you	must	keep	the	vertical	passband	cursor
to	the	left	of	the	Nyquist	cursor.
The	Stopband	edge	frequency	value	must	be	greater	than	the
Passband	edge	frequency	value,	or	you	must	keep	the	vertical
passband	cursor	to	the	left	of	the	stopband	cursor.
If	you	remove	the	checkmark	from	the	Transition	band	aliasing
allowed	checkbox	to	avoid	aliasing	in	the	transition	band,	keep
the	Stopband	edge	frequency	value	between	the	Passband
edge	frequency	value	and	the	Nyquist	frequency,	or	keep	the

lvdfdtconcepts.chm::/dfd_filter_spec.html

vertical	stopband	cursor	between	the	vertical	passband	and
Nyquist	cursors.	If	you	keep	the	checkmark	in	the	Transition
band	aliasing	allowed	checkbox	to	allow	aliasing	in	the
transition	band,	keep	the	vertical	stopband	cursor	between	the
vertical	passband	cursor	and	the	vertical	stopband	limit	cursor.

After	you	finish	entering	the	filter	specifications,	click	the	Update	Design
button	to	apply	the	new	specifications.
Refer	to	the	MRate_Step1_Design	Decimation	VI	in	the
labview\examples\Digital	Filter	Design\Case	Studies\Multirate	Filter	directory
for	an	example	that	demonstrates	how	to	use	the	Multirate	FIR	Design
Express	VI	to	design	a	decimation	filter.
	Open	example	

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CMultirate%20Filter%5C%5CMRate_Step1_Design%20Decimation.vi');

Analyzing	the	Floating-Point	Filter	Design
When	you	design	the	multirate	filter	using	the	Multirate	FIR	Design
Express	VI,	you	can	analyze	the	filter	design	by	examining	the	magnitude
response	and	filter	order	in	real	time.

lvdfdtconcepts.chm::/analyze_design.html

Using	Floating-Point	Multirate	Filters
After	you	analyze	the	filter	design,	you	can	either	use	the	multirate	filter
to	process	an	input	signal	or	quantize	the	filter	coefficients	of	the
multirate	filter.	Use	the	Multirate	Processing	VIs	to	process	a	signal	with
the	multirate	filter	you	designed.	The	Multirate	Processing	VIs	can
process	an	input	signal	in	the	following	three	ways:

As	a	single	block	of	data
As	a	sequence	of	data	blocks
As	a	sequence	of	data	blocks	with	saved	internal	filter	states

Use	the	DFD	MRate	Filtering	for	Single	Block	VI	or	the	DFD	NStage
MRate	Filtering	for	Single	Block	VI	to	process	a	single	block	of	data.
When	processing	a	single	block,	the	VIs	extend	the	input	signal	block	at
both	ends	to	ensure	the	output	signal	block	has	the	same	length	as	the
input	signal	block.	Use	the	other	Multirate	Processing	VIs	to	process
multiple	signal	blocks	continuously.	These	VIs	automatically	retain	the
internal	states	of	the	filter	between	blocks,	and	they	allow	you	to	save
and	restore	filter	states	without	causing	artifact	glitches	in	the	processed
data.
You	achieve	the	same	results	when	you	process	multiple	blocks	as	a
sequence	of	blocks	as	when	you	process	them	together	as	one	single
block.	To	eliminate	the	delay	between	the	input	and	output	signals,
enable	the	zero-phase	filtering	option	when	using	the	Multirate
Processing	VIs.
Refer	to	the	MRate_Step2_Perform	Decimation	Filtering	VI	in	the
labview\examples\Digital	Filter	Design\Case	Studies\Multirate	Filter	directory
for	an	example	that	demonstrates	how	to	use	a	decimation	filter	in	a
filtering	application.
	Open	example	

lvdigfiltdestk.chm::/DFD_M_Process_VIs.html
lvdigfiltdestk.chm::/DFD_MR_S_Block.html
lvdigfiltdestk.chm::/DFD_NS_MR_S_Block.html
lvdfdtconcepts.chm::/zero_phase_filtering.html
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CMultirate%20Filter%5C%5CMRate_Step2_Perform%20Decimation%20Filtering.vi');

Quantizing	Multirate	Filter	Coefficients
After	you	analyze	the	filter	design,	you	can	either	quantize	the	filter
coefficients	of	the	designed	multirate	filter	and	convert	the	floating-point
filter	into	a	fixed-point	filter	or	use	the	floating-point	multirate	filter	to
process	an	input	signal.	To	quantize	the	filter	coefficients,	place	a
checkmark	in	the	Quantize	filter	checkbox	on	the	Fixed-Point
Quantization	tab,	and	specify	the	coefficients	word	length,	coefficients
scale	type,	and	gain	settings.

lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/scale_filter_coef.html
lvdfdtconcepts.chm::/quantize_fl_filters.html#gain_settings

Designing	Fixed-Point	Multirate	Filters	(Digital
Filter	Design	Toolkit)
The	fixed-point	multirate	filter	design	process	is	different	from	the	fixed-
point	single-rate	filter	design	process.	The	following	figure	illustrates	a
typical	fixed-point	multirate	filter	design	process.	The	grey	boxes	illustrate
the	floating-point	filter	design	process	and	the	arrows	on	the	left	indicate
to	which	steps	you	can	return	if	the	filter	design	fails	to	meet	the
requirements	in	the	current	step.

Designing	a	fixed-point	multirate	filter	involves	fewer	steps	than	designing
a	fixed-point	single-rate	filter.	The	following	sections	describe	each	step
in	the	fixed-point	multirate	filter	design	process	and	compare	the	process
to	the	fixed-point	single-rate	filter	design	process.

lvdfdtconcepts.chm::/dfd_fp_process.html
lvdfdtconcepts.chm::/dfd_fl_process.html

Quantizing	Floating-Point	Multirate	Filters
Use	the	DFD	FXP	MRate	Quantization	VI	to	quantize	floating-point
multirate	filters.	This	process	is	different	from	quantizing	floating-point
single-rate	filters.
In	the	fixed-point	single-rate	filter	design	process,	scaling	the	filter
coefficients	is	a	separate	step.	However,	the	fixed-point	multirate	filter
design	process	integrates	this	step	in	the	quantization	process.	Specify
an	appropriate	value	in	the	scale	type	input	of	the	DFD	FXP	MRate
Quantization	VI	to	scale	the	multirate	filter	coefficients.
Depending	on	which	VI	you	use	to	quantize	the	coefficients	of	a	floating-
point	single-rate	filter,	you	might	need	to	configure	some	or	all	of	the
following	items:	the	gain	settings,	word	length	and	integer	word	length,
overflow	mode,	and	rounding	mode.	However,	to	quantize	the	coefficients
of	a	floating-point	multirate	filter,	you	only	need	to	set	the	gain	processing
target	and	coefficients	word	length.	The	DFD	FXP	MRate	Quantization	VI
automatically	calculates	the	integer	word	length	of	the	filter	coefficients
and	configures	the	settings	for	the	overflow	and	rounding	modes.	The	VI
then	uses	the	resulting	values	to	quantize	the	filter	coefficients.
Refer	to	the	MRate_Step3_Analyze	Quantized	Decimation	VI	in	the
labview\examples\Digital	Filter	Design\Case	Studies\Multirate	Filter	directory
for	an	example	that	demonstrates	how	to	quantize	a	floating-point
decimation	filter	and	analyze	the	quantized	decimation	filter.
	Open	example	

lvdigfiltdestk.chm::/DFD_FXP_MR_Qua.html
lvdfdtconcepts.chm::/quantize_fl_filters.html
lvdfdtconcepts.chm::/scale_filter_coef.html
lvdfdtconcepts.chm::/quantize_fl_filters.html#gain_settings
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html
lvdfdtconcepts.chm::/design_fp_multirate.html#analysis
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CMultirate%20Filter%5C%5CMRate_Step3_Analyze%20Quantized%20Decimation.vi');

Analyzing	Fixed-Point	Multirate	Filters
Quantization	can	cause	the	characteristics	of	a	fixed-point	multirate	filter
to	deviate	from	the	reference	floating-point	multirate	filter.	Sometimes
quantization	even	causes	the	resulting	fixed-point	multirate	filter	to	fail	to
meet	the	target	specifications.	Therefore,	after	quantization,	you	must
analyze	the	behavior	of	the	fixed-point	multirate	filter.	You	can	use	the
Multirate	Filter	Analysis	VIs	to	calculate	the	frequency	response	of	the
fixed-point	multirate	filter.	Based	on	the	frequency	response	results,	you
can	determine	if	the	fixed-point	filter	meets	the	requirements.	If	the	fixed-
point	filter	does	not	meet	the	target	specifications,	try	either	or	both	of	the
following	methods:

Modify	the	quantization	settings	for	the	word	length	of	the
coefficients.
Modify	the	specifications	of	the	reference	floating-point	multirate
filter	to	allow	larger	headroom.	A	larger	headroom	helps	alleviate
fixed-point	effects.

To	optimize	the	resulting	multirate	fixed-point	filter,	analyze	and	adjust	the
filter	design	iteratively	until	the	frequency	response	meets	the	target
specifications.
Refer	to	the	MRate_Step3_Analyze	Quantized	Decimation	VI	in	the
labview\examples\Digital	Filter	Design\Case	Studies\Multirate	Filter	directory
for	an	example	that	demonstrates	how	to	quantize	a	floating-point
decimation	filter	and	analyze	the	quantized	decimation	filter.
	Open	example	

lvdigfiltdestk.chm::/DFD_M_Analysis_VIs.html
lvdfdtconcepts.chm::/design_fl_multirate.html#entering_specs
lvdfdtconcepts.chm::/design_fp_multirate.html#quantization
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CMultirate%20Filter%5C%5CMRate_Step3_Analyze%20Quantized%20Decimation.vi');

Creating	Fixed-Point	Multirate	Filter	Models
When	you	design	a	fixed-point	multirate	filter,	fixed-point	quantization
occurs	for	the	coefficients	and	for	the	intermediate	operands	and	results.
By	using	the	DFD	FXP	MRate	Modeling	VI,	you	need	to	configure	only
the	quantizers	for	the	input	and	output	signals.	The	DFD	FXP	MRate
Modeling	VI	automatically	configures	the	quantizers	for	intermediate
operands.
Setting	the	Input	and	Output	Word	Lengths
Use	the	DFD	FXP	MRate	Modeling	VI	to	specify	input	and	output	word
lengths.	These	word	lengths	determine	the	number	of	bits	to	use	in
representing	the	input	and	output	signals.	For	a	fixed-point	multirate	filter,
the	integer	word	length	of	the	output	signal	is	the	same	as	that	of	the
input	signal.
Setting	the	Rounding	Mode
Fixed-point	numbers	have	limited	word	lengths,	so	the	available	dynamic
range	of	fixed-point	numbers	is	lower	than	the	range	available	with
double-precision	and	floating-point	numbers.	Therefore,	fixed-point
numbers	can	approximate	floating-point	numbers	only.	In	the	LabVIEW
Digital	Filter	Design	Toolkit,	the	Multirate	Fixed-Point	Tools	VIs	use	a	32-
bit	computation	for	internal	operations.	Use	the	output	rounding	mode
input	of	the	DFD	FXP	MRate	Modeling	VI	to	configure	the	output
quantizer.
Setting	the	Internal	Precision
For	a	multirate	filter	with	a	finite	impulse	response,	if	both	the	coefficients
word	length	and	input	word	length	are	greater	than	16	bits,	the	internal
multiplication	is	equivalent	to	an	I32xI32	operation.	Theoretically,	you
need	four	I16xI16	multipliers	to	obtain	a	full-precision,	or	I32xI32,	result.
However,	the	fixed-point	hardware	target	usually	has	limited	multiplier
resources.	To	conserve	the	multiplier	resources,	you	can	choose	the
truncation	option.	This	option	enables	you	to	use	three	I16xI16	multipliers
to	obtain	an	approximated	output.	Use	the	internal	precision	input	of	the
DFD	FXP	MRate	Modeling	VI	to	choose	an	appropriate	option.

Note			A	cascaded	integrator	comb	(CIC)	filter	does	not	require
multipliers,	but	you	also	can	use	this	input	to	set	the	internal
precision	for	the	CIC	filter.

lvdigfiltdestk.chm::/DFD_FXP_MR_Mod.html
lvdigfiltdestk.chm::/MR_FXP_Tools.html
lvhowto.chm::/integers.html
lvdfdtconcepts.chm::/cic_filters.html
lvdfdtconcepts.chm::/cic_filters.html#internal_precision

Refer	to	the	MRate_Step4_Model	and	Simulate	FXP	Decimation	VI	in	the
labview\examples\Digital	Filter	Design\Case	Studies\Multirate	Filter	directory
for	an	example	that	demonstrates	how	to	create	a	fixed-point	model	of	a
multirate	filter	and	simulate	the	filtering	result.
	Open	example	

lvdfdtconcepts.chm::/design_fp_multirate.html#simulation
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CMultirate%20Filter%5C%5CMRate_Step4_Model%20and%20Simulate%20FXP%20Decimation.vi');

Simulating	Fixed-Point	Multirate	Filters
To	determine	the	quantization	and	modeling	effects	on	a	filtering	process,
you	not	only	need	to	analyze	the	frequency	response	of	a	fixed-point
filter,	but	you	also	need	to	simulate	the	filtering	process	with	the	actual
data.	You	can	use	the	DFD	FXP	MRate	Simulation	VI	to	simulate	the
filtering	process.	To	verify	if	the	fixed-point	multirate	filter	works	as	you
expect,	compare	the	simulation	result	with	the	actual	filtering	result	that
you	obtain	by	processing	the	same	signal	with	the	reference	floating-
point	multirate	filter.	Ensure	that	the	simulation	result	matches	the	actual
filtering	result.	If	the	simulation	result	does	not	match	the	actual	floating-
point	filtering	result,	try	making	the	following	adjustments:

Return	to	the	quantization	step.	Modify	the	word	length	for	the
filter	coefficients	and	the	scale	type	to	avoid	overflow	or
underflow.
Adjust	the	specifications	and	redesign	the	floating-point	multirate
filter.

Refer	to	the	MRate_Step4_Model	and	Simulate	FXP	Decimation	VI	in	the
labview\examples\Digital	Filter	Design\Case	Studies\Multirate	Filter	directory
for	an	example	that	demonstrates	how	to	create	a	fixed-point	model	of	a
multirate	filter	and	simulate	the	filtering	result.
	Open	example	

lvdigfiltdestk.chm::/DFD_FXP_MR_Sim.html
lvdfdtconcepts.chm::/design_fl_multirate.html#entering_specs
lvdfdtconcepts.chm::/design_fp_multirate.html#modeling
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CMultirate%20Filter%5C%5CMRate_Step4_Model%20and%20Simulate%20FXP%20Decimation.vi');

Generating	Code	from	Fixed-Point	Multirate	Filters
After	you	obtain	an	appropriate	fixed-point	filter	model,	you	can
implement	the	resulting	fixed-point	filter	on	target	hardware.	You	can
export	fixed-point	integer	coefficients	from	the	filter	and	then	use	the
coefficients	in	a	filter	execution	engine.	You	also	can	generate	LabVIEW
FPGA	code	and	then	use	the	LabVIEW	FPGA	Module	to	target	and
deploy	the	resulting	FPGA	code	to	an	NI	Reconfigurable	I/O	(RIO)	target.
Exporting	Fixed-Point	Integer	Coefficients
If	you	have	a	filter	execution	engine	for	which	you	need	only	filter
coefficients,	you	can	export	the	fixed-point	multirate	filter	coefficients	to	a
text	file	using	the	DFD	Save	MRate	to	Text	File	VI.	You	can	save	the
multirate	filter	coefficients	to	a	text	file	and	load	them	to	the	execution
target.	The	text	file	contains	a	section	that	provides	all	information	about
the	fixed-point	integer	coefficients	and	corresponding	quantizers.
Refer	to	the	Export	Multirate	FIR	Coef	to	Xilinx	COE	File	VI	in	the
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Multirate	directory
for	an	example	that	demonstrates	how	to	export	fixed-point	integer
coefficients.
	Open	example	
Generating	LabVIEW	FPGA	Code
You	can	use	the	DFD	FXP	MRate	Code	Generator	VI	to	generate
LabVIEW	field-programmable	gate	array	(FPGA)	code	from	a	multirate
filter.

Note		To	generate	LabVIEW	FPGA	code,	you	must	install	the
LabVIEW	FPGA	Module	and	NI-RIO	driver	software	with	R	Series
support.	To	execute	the	FPGA	code,	you	also	need	an	FPGA
target	on	which	to	run	the	code.

The	Digital	Filter	Design	Toolkit	uses	LabVIEW	projects	to	manage	the
resulting	LabVIEW	FPGA	code.	The	following	figure	shows	an	example
project	file	that	contains	LabVIEW	FPGA	code.

lvdigfiltdestk.chm::/DFD_MR_to_Text.html
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CMultirate%5C%5CExport%20Multirate%20FIR%20Coef%20to%20Xilinx%20COE%20File.vi');
lvdigfiltdestk.chm::/DFD_FXP_MR_Gen.html
lvconcepts.chm::/Using_LabVIEW_Projects.html

In	the	previous	figure,	the	filtername.lvproj	file,	where	filtername	denotes
the	name	of	the	fixed-point	filter,	contains	the	following	folders	and	VIs	in
addition	to	the	default	items.

filtername	Block—This	folder	contains	all	generated	VIs	and
subVIs	related	to	the	fixed-point	filter	from	which	you	generate
LabVIEW	FPGA	code.	You	can	apply	the	filter	to	another	project
by	copying	and	pasting	this	folder	into	the	target	project	file.

Note		Each	filter	block	contains	some	FPGA	memory
components	to	store	the	internal	states	of	the	fixed-point
multirate	filter.	Multiple	filter	blocks	cannot	share	the	same
memory	components	in	one	FPGA	project.	Therefore,	if
you	want	to	use	the	filter	block	multiple	times	in	one	FPGA
project,	you	must	generate	the	filter	blocks	with	different
filter	names	from	the	same	fixed-point	multirate	filter.

States	Storage—This	folder	contains	information	about	the
specific	resources	on	an	FPGA	target,	including	FIFOs	and
memory	items.	These	resources	store	the	internal	states	of	the
fixed-point	filter.	You	usually	do	not	need	to	modify	the	items	in

this	folder.
Filter	SubVIs—This	folder	contains	the	generated	subVIs.	You
usually	do	not	need	to	modify	these	subVIs.
filtername_DataIn—This	item	defines	the	input	FIFO	channel	to
the	filter	block	of	a	fixed-point	multirate	filter.	The	fixed-point
multirate	filter	uses	the	FIFO	to	communicate	with	other	sections
of	the	FPGA	code,	such	as	the	FPGA	I/O	Node.
filtername_DataOut—This	item	defines	the	output	FIFO	channel
from	the	filter	block	of	a	fixed-point	multirate	filter.	If	you	want	to
return	the	filtered	signal	directly	to	a	host	machine,	you	can
modify	the	property	of	this	file	by	completing	the	following	steps:

1.	 Right-click	filtername_DataOut.
2.	 Choose	Properties	from	the	shortcut	menu.
3.	 Choose	Target	to	Host-DMA	from	the	Type	menu.
4.	 Click	OK.

filtername_FIR.vi—This	VI	is	the	top-level	VI	of	the	generated
LabVIEW	FPGA	code.	To	use	the	LabVIEW	FPGA	code,	drag
and	drop	this	VI	to	the	block	diagram	of	the	calling	VI.

The	way	you	use	LabVIEW	FPGA	code	is	different	from	the	way	you	use
a	general	LabVIEW	VI.	The	following	figure	shows	an	example	of	a	block
diagram	that	uses	LabVIEW	FPGA	code	generated	from	the
filtername_FIR	VI.

In	the	previous	figure,	the	filtername_FIR	VI	is	not	connected	to	any	other
items	on	the	block	diagram.	However,	this	VI	actually	communicates	with
the	items	in	the	loop	structures	by	processing	the	input	signal	from	the
filtername_DataIn	FIFO	and	returning	the	output	signal	to	the
filtername_DataOut	FIFO.
You	can	generate	LabVIEW	FPGA	code	from	a	fixed-point	single-stage
multirate	filter	by	using	the	DFD	FXP	MRate	Code	Generator	VI.	Refer	to
the	MRateDecimation.lvproj	file	in	the	labview\examples\Digital	Filter
Design\Case	Studies\Multirate	Filter	directory	for	an	example	that
demonstrates	how	to	generate	LabVIEW	FPGA	code	from	a	fixed-point
single-stage	decimation	filter.
	Open	example	

javascript:openProj('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CMultirate%20Filter%5C%5CMRateDecimation%5C%5CMRateDecimation.lvproj');

You	also	can	generate	LabVIEW	FPGA	code	from	a	fixed-point
multistage	multirate	filter	by	using	the	DFD	FXP	NStage	MRate	Code
Generator	VI.	Refer	to	the	NStageMRateDecimation.lvproj	file	in	the
labview\examples\Digital	Filter	Design\Case	Studies\Multistage	Multirate
Filter\NStageMRate	directory	for	an	example	that	demonstrates	how	to
generate	LabVIEW	FPGA	code	from	a	fixed-point	multistage	multirate
filter.
	Open	example	
Postprocessing	Filtered	Signals
After	you	deploy	fixed-point	filter	coefficients	to	the	target	hardware,	you
can	postprocess	the	filtered	signal	using	the	DFD	FXP	MRate
Postprocessing	VI.	Refer	to	the	MRate_Step6_Postprocessing	VI	in	the
labview\examples\Digital	Filter	Design\Case	Studies\Multirate	Filter	directory
for	an	example	that	demonstrates	how	to	postprocessing	a	filtered	signal.
	Open	example	

lvdfdtconcepts.chm::/mstage_mrate_filt.html
lvdigfiltdestk.chm::/DFD_NS_MR_Gen.html
javascript:openProj('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CMultistage%20Multirate%20Filter%5C%5CNStageMRate%5C%5CNStageMRateDecimation.lvproj');
lvdfdtconcepts.chm::/postprocess_srate.html
lvdigfiltdestk.chm::/DFD_FXP_MR_Pos.html
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CCase%20Studies%5C%5CMultirate%20Filter%5C%5CMRate_Step6_Postprocessing.vi');

Designing	Special	Multirate	Filters	(Digital	Filter
Design	Toolkit)
This	book	discusses	how	to	design	cascaded	integrator	comb,	Nyquist,
and	multistage	multirate	filters.

To	view	related	topics,	click	the	Locate	button,	shown	at	left,	in	the
toolbar	at	the	top	of	this	window.	The	LabVIEW	Help	highlights	this
topic	in	the	Contents	tab	so	you	can	navigate	the	related	topics.

lvdfdtconcepts.chm::/cic_filters.html
lvdfdtconcepts.chm::/Nyquist_Filters.html
lvdfdtconcepts.chm::/mstage_mrate_filt.html

Cascaded	Integrator	Comb	(CIC)	Filters	(Digital
Filter	Design	Toolkit)
A	CIC	filter	is	a	special	class	of	linear	phase,	finite	impulse	response
(FIR)	filter.	CIC	filters	do	not	require	multipliers	and	use	a	limited	amount
of	storage.	Therefore,	CIC	filters	are	more	efficient	than	conventional	FIR
filters,	especially	in	fixed-point	applications.	You	usually	use	CIC	filters	in
multirate	systems	with	large	sampling	frequency	conversion	factors,	such
as	digital	down	converters	(DDC)	and	digital	up	converters	(DUC)	in
communication	systems.

CIC	Filter	Basics
CIC	filters	do	not	have	multipliers	and	consist	of	only	adders,	subtracters,
and	registers.	Therefore,	you	can	implement	multirate	filters	efficiently
using	the	CIC	filter	structure.	CIC	filters	are	defined	by	the	following
transfer	function:

where z	is	a	complex	variable
I	is	a	basic	integrator	section
C	is	a	basic	comb	section
M	is	the	sampling	frequency	conversion	factor
R	is	the	differential	delay
N	is	the	number	of	stages

Theoretically,	R	and	N	can	be	any	positive	integer	value,	but	the
LabVIEW	Digital	Filter	Design	Toolkit	constrains	R	to	be	either	1	or	2
because	you	do	not	need	to	use	other	values	in	most	cases.	N	is	in	the
range	[1,	8].	The	equation	above	shows	that	a	CIC	filter	is	equivalent	to	N
stages	of	cascaded	FIR	filters	with	unit	coefficients.	Each	FIR	filter	has	a
rectangular	impulse	response.	All	coefficients	of	the	FIR	filters	are	1	and
therefore	symmetric,	so	the	CIC	filter	has	a	linear	phase	response	and
constant	group	delay.
Use	the	Multirate	CIC	Design	Express	VI	to	design	a	CIC	filter.	Refer	to
the	CIC	Filter	Design	VI	in	the	labview\examples\Digital	Filter
Design\Floating-Point	Filters\Multirate	directory	for	an	example	that
demonstrates	how	to	use	the	Multirate	CIC	Design	Express	VI	to	design
a	CIC	filter.
	Open	example	

lvdfdtconcepts.chm::/FIR_Filter_Specs.html
lvdfdtconcepts.chm::/grp_phase_delay.html
lvdigfiltdestk.chm::/DFD_CIC_Filter.html
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CCIC%20Filter%20Design.vi');

Implementing	Fixed-Point	CIC	Filters
The	Digital	Filter	Design	Toolkit	supports	fixed-point	implementation	of
only	lowpass	CIC	filters.	To	implement	fixed-point	CIC	filters,	cascade	N
basic	integrator	sections	(the	I	block)	and	N	basic	comb	sections	(the	C
block)	together	with	a	sampling	frequency	conversion	factor.	The
following	figure	shows	an	example	of	a	fixed-point	implementation	of	an
N-stage	decimation	CIC	filter,	where	M	is	the	sampling	frequency
conversion	factor.

The	following	figure	shows	an	example	of	a	fixed-point	implementation	of
an	N-stage	interpolation	CIC	filter.

The	following	figure	shows	a	basic	integrator	section	in	detail.

The	following	figure	shows	a	basic	comb	section	in	detail.

Setting	the	Internal	Precision
In	a	fixed-point	implementation,	the	maximum	bit	width	required	for	a	CIC
decimation	filter	is	the	sum	of	the	input	bits	and	the	bits	that	the	filter	uses
in	accommodating	the	maximum	filter	gain.	Using	the	maximum	bit	width
for	each	integrator	or	comb	section	guarantees	that	no	overflow	occurs	at

the	output	of	the	filter.	The	maximum	bit	width	also	ensures	that	you
obtain	a	full-precision	result.	However,	obtaining	the	full-precision	result
requires	the	maximum	field-programmable	gate	array	(FPGA)	hardware
resources.
In	most	real-world	applications,	the	required	output	bit	width	is	smaller
than	the	maximum	bit	width.	Therefore,	you	can	discard	the	least
significant	bits	(LSBs)	from	the	maximum	bit	width	to	obtain	a	smaller
output	bit	width.	Using	the	DFD	FXP	MRate	Modeling	VI,	you	can	prune
the	LSBs	in	each	successive	integrator	or	comb	section.	This	operation	is
known	as	bit	pruning.	Bit	pruning	enables	you	to	obtain	a	precision	that
approximates	the	full	precision	and	to	spare	the	FPGA	hardware
resources.	However,	bit	pruning	introduces	additional	noise	to	each
processing	section,	and	the	amount	of	LSBs	that	you	discard	determines
the	noise	level.
When	using	the	DFD	FXP	MRate	Modeling	VI	to	model	a	fixed-point	CIC
filter,	you	can	set	the	internal	precision	input	to	Truncated	to	prune	the
intermediate	bit	widths.	This	option	is	valid	for	only	multirate	FIR	filters
and	fixed-point	CIC	decimation	filters.	If	you	set	internal	precision	to
Full,	this	VI	applies	the	maximum	bit	width	to	each	processing	section.
The	following	figure	shows	an	example	of	filtering	results	by	using	both
the	Truncated	and	Full	options.

lvdigfiltdestk.chm::/DFD_FXP_MR_Mod.html

In	the	Output	Signal	graph	of	the	previous	figure,	you	can	see	that	the
Truncated	plot	renders	nearly	the	same	filtering	result	as	the	Full	plot
does.	The	Comparing	the	Full	and	Truncated	Options	graph	shows
the	detailed	difference	between	the	two	filtering	results.	The	few	nonzero
values	indicate	the	slight	precision	difference	between	the	two	internal
precision	options.

Multistage	Multirate	Filters	(Digital	Filter	Design
Toolkit)
The	filters	you	design	in	the	Designing	Floating-Point	Multirate	Filters	and
the	Designing	Fixed-Point	Multirate	Filters	books	are	single-stage
multirate	filters.	In	single-stage	multirate	filters,	the	normalized	transition
bandwidth	of	the	lowpass	FIR	filter	H(z)	is	inversely	related	to	the	filter
order.	The	narrower	the	normalized	transition	bandwidth,	the	higher	the
filter	order.	A	lowpass	FIR	filter	with	a	narrow	normalized	transition
bandwidth	therefore	requires	more	resources	to	implement.
In	decimation	and	interpolation	multirate	filters,	the	normalized	transition
bandwidth	inversely	relates	to	the	decimation	factor	M	and	the
interpolation	factor	L.	The	order	of	a	decimation	or	interpolation	filter
increases	as	M	or	L	increases,	and	the	resulting	multirate	filter	uses	more
resources	to	implement.	You	can	use	multistage	multirate	filters	to
simplify	multirate	filters	that	have	large	sampling	frequency	conversion
factors.
A	multistage	filter	gradually	increases	or	decreases	the	sampling
frequency	by	passing	the	signal	through	two	or	more	resampling	stages.
Each	stage	has	a	lower	decimation	or	interpolation	factor	than	the
corresponding	single-stage	multirate	filter	and	contains	fewer	operations.
Except	when	the	sampling	frequency	conversion	factor	is	a	prime
number,	multistage	filtering	is	more	efficient	than	single-stage	filtering
because	you	can	change	the	sampling	frequency	in	multiple	stages
rather	than	in	a	single	stage.	Using	multiple	stages	reduces	the
computation	operations	and	memory	usage.	Refer	to	the	book	Multirate
Systems	and	Filter	Banks	for	more	information	about	multistage	multirate
filter	design.
In	a	multistage	decimation	system,	the	overall	decimation	factor	M	is
equal	to	M1M2...MN,	where	Mi	is	the	decimation	factor	of	stage	i.	The
following	figure	illustrates	this	N-stage	decimation	process.

In	a	multistage	interpolation	system,	the	overall	interpolation	factor	L	is

lvdfdtconcepts.chm::/design_fl_multirate.html
lvdfdtconcepts.chm::/design_fp_multirate.html
lvdfdtconcepts.chm::/dfd_related_doc.html

equal	to	L1L2...LN,	where	Li	is	the	interpolation	factor	of	stage	i.	The
following	figure	illustrates	the	N-stage	interpolation	process.

You	can	use	the	DFD	NStage	MRate	Filter	Design	VI	to	design
multistage	multirate	filters	with	either	of	the	following	approaches:

Specify	the	overall	sampling	frequency	change	factor	and	the
factors	for	every	stage.
Specify	only	the	overall	sampling	frequency	change	factor	and
use	the	DFD	NStage	MRate	Filter	Design	VI	to	determine	the
factors	for	every	stage.

Use	the	following	guidelines	when	you	manually	specify	factorizations.
Use	two	or	three	stages	for	optimal	or	near	optimal	results.
Use	the	largest	factor	at	the	highest	sampling	frequency.
Decimate	in	order	from	the	largest	to	the	smallest	factor	and
interpolate	in	order	from	the	smallest	to	the	largest	factor.

When	you	implement	a	fixed-point	multistage	multirate	filter,	the	output
signal	word	length	of	the	previous	filter	stage	must	be	the	same	as	the
input	signal	word	length	of	the	next	filter	stage.	Refer	to	the	Multistage
Multirate	Filter	Design	VI	in	the	labview\examples\Digital	Filter
Design\Floating-Point	Filters\Multirate	directory	for	an	example	that
demonstrates	how	to	use	the	DFD	NStage	MRate	Filter	Design	VI	to
design	a	multistage	multirate	filter.
	Open	example	

lvdigfiltdestk.chm::/DFD_NS_MR_Filter.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CMultistage%20Multirate%20Filter%20Design.vi');

Advanced	Techniques	for	Designing	Filters
(Digital	Filter	Design	Toolkit)
This	book	contains	an	overview	of	advanced	techniques	for	developing
digital	filters	with	the	DFD	Remez	Design	VI	and	the	DFD	Least	Pth
Norm	Design	VI.	The	book	Digital	Filter	Design	contains	more	information
about	these	advanced	techniques.

To	view	related	topics,	click	the	Locate	button,	shown	at	left,	in	the
toolbar	at	the	top	of	this	window.	The	LabVIEW	Help	highlights	this
topic	in	the	Contents	tab	so	you	can	navigate	the	related	topics.

lvdigfiltdestk.chm::/DFD_Remez_Design.html
lvdigfiltdestk.chm::/DFD_LPth_Norm.html
lvdfdtconcepts.chm::/dfd_related_doc.html

Minimum	and	Maximum	Phase	FIR	Design
(Digital	Filter	Design	Toolkit)
The	Designing	Special	Filters	book	discusses	linear	phase	finite	impulse
response	(FIR)	filter	designs,	which	are	actually	amplitude
approximations	that	use	the	following	complex	approximation	criterion:

where	D(ωi)	is	the	ideal	frequency	response,	H(ωi)	is	the	frequency
response	of	the	designed	filter,	and	W(i)	is	the	positive	weight	at	the	ith
frequency	point.
Many	applications	require	linear	phase	to	ensure	that	the	frequency
components	of	an	input	signal	pass	through	the	filter	with	the	same	delay.
If	you	have	an	application	that	does	not	require	linear	phase,	you	can
control	the	magnitude	response	of	the	filter	and	allow	the	filtering	process
to	change	the	delay	relationship	between	different	frequency	components
arbitrarily.	You	can	use	the	following	expression	for	this	type	of	magnitude
approximation	problem.

Without	the	phase	constraint,	you	can	achieve	the	same	approximation
error	magnitude	with	a	lower	filter	order	or	a	smaller	approximation	error
magnitude	with	the	same	filter	order.	Both	options	reduce	the
implementation	cost.
More	than	one	set	of	filter	coefficients	can	have	the	same	magnitude
response.	In	the	z-plane	you	can	create	a	new	set	of	coefficients	with	the
same	magnitude	response,	unless	all	zeroes	are	on	the	unit	circle,
through	the	allpass	transformation	of	flipping	zeroes	to	their	conjugate
reciprocal	locations	relative	to	the	unit	circle.	You	can	specify	minimum
phase	or	maximum	phase	to	eliminate	the	ambiguity	about	which	set	of
FIR	filter	coefficients	you	are	using.
All	zeroes	in	a	minimum	phase	FIR	filter	are	inside	or	on	the	unit	circle.
Minimum	phase	filters	sometimes	are	called	minimum	energy	delay	filters
because	the	energy	of	the	impulse	response	is	maximally	concentrated
toward	the	beginning	of	the	impulse	response.

lvdfdtconcepts.chm::/special_filt_design.html

All	zeroes	in	a	maximum	phase	FIR	filter	are	outside	or	on	the	unit	circle.
The	energy	of	the	impulse	response	is	maximally	concentrated	toward
the	end	of	the	impulse	response.	Given	a	certain	magnitude	response,
the	impulse	responses	of	the	minimum	and	the	maximum	phase	FIR
filters	are	time-reversed.

The	following	figure	shows	the	magnitude	response	of	a	16th	order	FIR
filter.

You	can	use	two	different	sets	of	filter	coefficients	to	match	the
magnitude	response	of	the	FIR	filter.	The	following	figure	shows	the
impulse	response	and	zeroes	of	a	minimum	phase	filter	with	the	same
magnitude	response	of	the	16th	order	FIR	filter.

The	following	figure	shows	the	impulse	response	and	zeroes	of	a
maximum	phase	filter	with	the	same	magnitude	response	of	the	16th
order	FIR	filter.

Minimum	phase	filters	are	especially	useful	in	control	applications.	A
filtering	process	in	a	control	loop	typically	requires	the	response	to	an
input	stimulus	to	be	as	quick	as	possible.	A	large	delay	in	the	filtering
process	can	cause	a	negative	feedback	control	loop	to	become	unstable.
One	disadvantage	of	linear	phase	FIR	filters	is	that	the	system	delay,
also	called	the	group	delay,	is	fixed	to	half	the	filter	order,	which	might	be
unacceptably	long	when	the	filter	order	is	large.	Use	minimum	phase
filters	in	situations	where	minimizing	delay	is	critical	unless	the	system
requires	a	linear	phase	filter	or	the	linear	phase	filter	order	is	relatively
small.
You	can	design	minimum	or	maximum	phase	FIR	filters	using	the	DFD
Remez	Design	VI.	Set	the	filter	type	input	to	Minimum	Phase	or	Maximum
Phase	and	the	remaining	specifications	just	as	you	design	a	linear	phase
filter.	Refer	to	the	Exact	Gain	Control	Design	and	Ripple	Constraint
Design	topics	for	information	about	designing	minimum	and	maximum
phase	filters	with	exact	gain	control	or	ripple	constraints.
You	can	create	a	minimum	phase	filter	by	designing	a	linear	phase	filter
and	converting	it	to	a	minimum	phase	filter	by	flipping	the	zeroes	that	are
outside	the	unit	circle	to	their	conjugate	reciprocal	position	inside	the	unit
circle.	Although	the	new	minimum	phase	filter	possesses	the	same
magnitude	response	as	the	original	linear	phase	filter,	the	new	filter	is	not
optimal	relative	to	the	filter	magnitude	specification.	You	can	achieve	a
closer	match	to	the	magnitude	specification	or	a	lower	filter	order	by
specifying	a	minimum	phase	filter	directly.

Note		Minimum	phase	filters	can	achieve	better	results	in	terms	of
a	lower	ripple	or	lower	order	for	a	given	magnitude	specification
than	equivalent	linear	phase	filters.	Therefore,	minimum	phase	can
be	a	better	choice	than	linear	phase	in	applications	where	the

lvdigfiltdestk.chm::/DFD_Remez_Design.html
lvdfdtconcepts.chm::/linear_min_filters.html
lvdfdtconcepts.chm::/Exact_Gain_Control.html
lvdfdtconcepts.chm::/Ripple_Constraint.html

phase	response	is	not	constrained.

Least	Pth	Norm	Design	Method	(Digital	Filter
Design	Toolkit)
You	can	use	the	DFD	Least	Pth	Norm	Design	VI	to	design	the	following
infinite	impulse	response	(IIR)	and	finite	impulse	response	(FIR)	filters.

Linear	phase	FIR	design
Approximated	linear	phase	IIR	design
Minimum	and	maximum	phase	IIR	design

Although	you	can	design	linear	phase	filters	using	the	DFD	Remez
Design	VI,	you	can	design	FIR	and	IIR	filters	with	arbitrary	magnitude
and	phase	constraints	using	the	DFD	Least	Pth	Norm	Design	VI.

lvdigfiltdestk.chm::/DFD_LPth_Norm.html
lvdfdtconcepts.chm::/lpth_norm_linearfir.html
lvdfdtconcepts.chm::/applinear_iir_design.html
lvdfdtconcepts.chm::/min_max_iir.html

Least	Pth	Norm	Linear	Phase	FIR	Design	(Digital
Filter	Design	Toolkit)
You	can	design	a	linear	phase	FIR	filter	using	the	DFD	Least	Pth	Norm
Design	VI	by	setting	the	following	specifications.	Set	the	denominator
order	to	0,	the	filter	type	to	Symmetric	or	Antisymmetric,	all	phases	in	the
band	specifications	to	0,	and	the	group	delay	to	half	of	the	numerator
order.
For	example,	suppose	you	want	to	design	a	linear	phase	FIR	lowpass
filter	with	a	passband	frequency	range	of	[0,	0.2]	and	a	stopband
frequency	range	of	[0.3,	0.5].	Set	the	specifications	as	shown	in	the
following	figure:

The	following	figure	shows	the	magnitude	response	of	the	designed	filter.
Because	p	is	128,	the	designed	filter	is	almost	identical	to	the	result	using
the	Remez	equi-ripple	design	with	the	same	filter	specification.

lvdigfiltdestk.chm::/DFD_LPth_Norm.html

Approximated	Linear	Phase	IIR	Design	(Digital
Filter	Design	Toolkit)
You	can	design	IIR	filters	with	approximately	linear	phase	using	the	DFD
Least	Pth	Norm	Design	VI.	You	must	set	filter	type	to	Symmetric	or
Antisymmetric.
Although	it	is	theoretically	impossible	to	design	causal	IIR	digital	filters
with	exactly	linear	phase,	you	can	design	IIR	filters	with	approximately
linear	phase.	For	example,	suppose	you	want	to	design	an	approximately
linear	phase	IIR	lowpass	filter	with	a	passband	frequency	range	of	[0,	0.2]
and	a	stopband	frequency	range	of	[0.3,	0.5].	You	can	set	the
specifications	as	shown	in	the	following	figure:

The	following	figure	shows	the	magnitude	response	of	the	designed	filter.

The	following	figure	shows	the	phase	response	of	the	designed	filter.

lvdigfiltdestk.chm::/DFD_LPth_Norm.html

Notice	that	this	filter	has	greater	stopband	attenuation	than	the	linear
phase	FIR	filter	designed,	and	this	filter	keeps	the	passband	phase
response	roughly	linear.

lvdfdtconcepts.chm::/lpth_norm_linearfir.html

Minimum	and	Maximum	Phase	IIR	Design
(Digital	Filter	Design	Toolkit)
You	can	use	the	Minimum	Phase	or	Maximum	Phase	option	of	the
filter	type	input	if	you	want	a	minimum	or	maximum	phase	response	or	if
the	phase	response	is	not	important.	When	you	use	the	Minimum	Phase
or	Maximum	Phase	option,	the	DFD	Least	Pth	Norm	Design	VI	ignores
the	phase	and	group	delay	inputs.
For	example,	suppose	you	want	to	design	a	minimum	phase	IIR	lowpass
filter	with	a	passband	frequency	range	of	[0,	0.2]	and	a	stopband
frequency	range	of	[0.3,	0.5].	You	can	set	the	specifications	as	shown	in
the	following	figure:

The	following	figure	shows	the	magnitude	response	of	the	designed	filter.

The	following	figure	shows	the	phase	response	of	the	designed	filter.

lvdigfiltdestk.chm::/DFD_LPth_Norm.html

Notice	that	the	designed	filter	has	greater	stopband	attenuation	than	the
approximately	linear	phase	IIR	filter	designed,	but	the	passband	phase
response	is	now	highly	nonlinear.

lvdfdtconcepts.chm::/applinear_iir_design.html

