
NI-DNET™	Programmer	Reference	Help
April	2006,	371106B-01
This	help	file	is	a	programming	reference	for	functions,	objects,	and	data
types	in	the	NI-DNET	software	for	Windows.	This	help	file	assumes	that
you	are	already	familiar	with	Windows.
For	more	information	about	this	help	file,	refer	to	the	following	topics:
Using	Help
Related	Documentation
Glossary
Important	Information
Technical	Support	and	Professional	Services
To	comment	on	National	Instruments	documentation,	refer	to	the	National
Instruments	Web	site.
©	2004–2006	National	Instruments	Corporation.	All	rights	reserved.

javascript:WWW(WWW_Feedback)


How	to	Use	the	Documentation	Set
Use	the	installation	guide	to	install	and	configure	your	DeviceNet
hardware	and	NI-DNET	software.
Use	the	NI-DNET	User	Manual	to	learn	the	basics	of	NI-DNET	and	how
to	develop	an	application.	The	user	manual	also	contains	information
about	DeviceNet	hardware.
Use	this	NI-DNET	Programmer	Reference	Help	for	specific	information
about	each	NI-DNET	function	and	object.



Related	Documentation
Most	NI-DNET	manuals	also	are	available	as	PDFs.	You	must	have
Adobe	Reader	with	Search	and	Accessibility	5.0.5	or	later	installed	to
view	the	PDFs.	Refer	to	the	Adobe	Systems	Incorporated	Web	site	at
www.adobe.com	to	download	Adobe	Reader.	Refer	to	the	National
Instruments	Product	Manuals	Library	at	ni.com/manuals	for	updated
documentation	resources.
The	following	documents	contain	information	that	you	may	find	helpful	as
you	use	this	help	file:

CAN	Specification	Version	2.0,	1991,	Robert	Bosch	Gmbh.,
Postfach	500,	D-7000	Stuttgart	1
DeviceNet	Specification,	Volumes	1	and	2,	Version	2.0,	Open
DeviceNet	Vendor	Association
LabVIEW	online	reference
Microsoft	Win32	Software	Development	Kit	(SDK)	online	help

javascript:WWW(WWW_Adobe)
javascript:WWW(WWW_Manuals)


Using	Help
Conventions
Navigating	Help
Searching	Help
Printing	Help	File	Topics



Conventions
This	help	file	uses	the	following	formatting	and	typographical
conventions:

» The	»	symbol	leads	you	through	nested	menu	items	and
dialog	box	options	to	a	final	action.	The	sequence	File»Page
Setup»Options	directs	you	to	pull	down	the	File	menu,
select	the	Page	Setup	item,	and	select	Options	from	the	last
dialog	box.
This	icon	denotes	a	note,	which	alerts	you	to	important
information.

bold Bold	text	denotes	items	that	you	must	select	or	click	in	the
software,	such	as	menu	items	and	dialog	box	options.	Bold
text	also	denotes	parameter	names.

green Underlined	text	in	this	color	denotes	a	link	to	a	help	topic,
help	file,	or	Web	address.

italic Italic	text	denotes	variables,	emphasis,	cross	references,	or
an	introduction	to	a	key	concept.	Italic	text	also	denotes	text
that	is	a	placeholder	for	a	word	or	value	that	you	must
supply.

monospace Text	in	this	font	denotes	text	or	characters	that	you	should
enter	from	the	keyboard,	sections	of	code,	programming
examples,	and	syntax	examples.	This	font	is	also	used	for
the	proper	names	of	disk	drives,	paths,	directories,
programs,	subprograms,	subroutines,	device	names,
functions,	operations,	variables,	filenames,	and	extensions.

monospace
italic

Italic	text	in	this	font	denotes	text	that	is	a	placeholder	for	a
word	or	value	that	you	must	supply.



Navigating	Help	(Windows	Only)
To	navigate	this	help	file,	use	the	Contents,	Index,	and	Search	tabs	to
the	left	of	this	window	or	use	the	following	toolbar	buttons	located	above
the	tabs:

Hide—Hides	the	navigation	pane	from	view.
Locate—Locates	the	currently	displayed	topic	in	the	Contents	tab,
allowing	you	to	view	related	topics.
Back—Displays	the	previously	viewed	topic.
Forward—Displays	the	topic	you	viewed	before	clicking	the	Back
button.
Options—Displays	a	list	of	commands	and	viewing	options	for	the
help	file.



Searching	Help	(Windows	Only)
Use	the	Search	tab	to	the	left	of	this	window	to	locate	content	in	this	help
file.	If	you	want	to	search	for	words	in	a	certain	order,	such	as	"related
documentation,"	add	quotation	marks	around	the	search	words	as	shown
in	the	example.	Searching	for	terms	on	the	Search	tab	allows	you	to
quickly	locate	specific	information	and	information	in	topics	that	are	not
included	on	the	Contents	tab.



Wildcards
You	also	can	search	using	asterisk	(*)	or	question	mark	(?)	wildcards.
Use	the	asterisk	wildcard	to	return	topics	that	contain	a	certain	string.	For
example,	a	search	for	"prog*"	lists	topics	that	contain	the	words
"program,"	"programmatically,"	"progress,"	and	so	on.
Use	the	question	mark	wildcard	as	a	substitute	for	a	single	character	in	a
search	term.	For	example,	"?ext"	lists	topics	that	contain	the	words
"next,"	"text,"	and	so	on.

Note		Wildcard	searching	will	not	work	on	Simplified	Chinese,
Traditional	Chinese,	Japanese,	and	Korean	systems.



Nested	Expressions
Use	nested	expressions	to	combine	searches	to	further	refine	a	search.
You	can	use	Boolean	expressions	and	wildcards	in	a	nested	expression.
For	example,	"example	AND	(program	OR	VI)"	lists	topics	that	contain
"example	program"	or	"example	VI."	You	cannot	nest	expressions	more
than	five	levels.



Boolean	Expressions
Click	the	 	button	to	add	Boolean	expressions	to	a	search.	The	following
Boolean	operators	are	available:

AND	(default)—Returns	topics	that	contain	both	search	terms.	You
do	not	need	to	specify	this	operator	unless	you	are	using	nested
expressions.
OR—Returns	topics	that	contain	either	the	first	or	second	term.
NOT—Returns	topics	that	contain	the	first	term	without	the	second
term.
NEAR—Returns	topics	that	contain	both	terms	within	eight	words
of	each	other.



Search	Options

Use	the	following	checkboxes	on	the	Search	tab	to	customize	a	search:
Search	previous	results—Narrows	the	results	from	a	search	that
returned	too	many	topics.	You	must	remove	the	checkmark	from
this	checkbox	to	search	all	topics.
Match	similar	words—Broadens	a	search	to	return	topics	that
contain	words	similar	to	the	search	terms.	For	example,	a	search
for	"program"	lists	topics	that	include	the	words	"programs,"
"programming,"	and	so	on.
Search	titles	only—Searches	only	in	the	titles	of	topics.



Printing	Help	File	Topics	(Windows	Only)
Complete	the	following	steps	to	print	an	entire	book	from	the	Contents
tab:

1.	 Right-click	the	book.
2.	 Select	Print	from	the	shortcut	menu	to	display	the	Print	Topics

dialog	box.
3.	 Select	the	Print	the	selected	heading	and	all	subtopics	option.

Note		Select	Print	the	selected	topic	if	you	want	to	print
the	single	topic	you	have	selected	in	the	Contents	tab.

4.	 Click	the	OK	button.



Printing	PDF	Documents
This	help	file	may	contain	links	to	PDF	documents.	To	print	PDF
documents,	click	the	print	button	located	on	the	Adobe	Acrobat	Viewer
toolbar.



NI-DNET	Data	Types
This	topic	describes	the	data	types	used	by	NI-DNET	functions	and
objects.
The	NI-DNET	data	types	provide	consistency	for	various	programming
environments	and	facilitate	access	to	the	DeviceNet	network.	In	general,
all	NI-DNET	data	types	begin	with	NCTYPE_.
The	following	table	lists	each	NI-DNET	data	type,	its	equivalent	data	type
in	ANSI	C,	LabVIEW,	and	DeviceNet,	and	a	brief	description.
NI-DNET	Data	Types
NI-DNET	Data	Type ANSI	C LabVIEW DeviceNet Description
NCTYPE_type_P NCTYPE_type	* N/A N/A Pointer	to	a	variable

with	type	
NCTYPE_INT8 signed	char I8 SINT 8-bit	signed	integer
NCTYPE_INT16 signed	short I16 INT 16-bit	signed	integer
NCTYPE_INT32 signed	long I32 DINT 32-bit	signed	integer
NCTYPE_UINT8 unsigned	char U8 USINT 8-bit	unsigned	integer
NCTYPE_UINT16 unsigned	short U16 UINT 16-bit	unsigned	integer
NCTYPE_UINT32 unsigned	long U32 UDINT 32-bit	unsigned	integer
NCTYPE_BOOL unsigned	char TF	(Boolean) BOOL Boolean	value.	In

ANSI	C,	constants
NC_TRUE	(1)
NC_FALSE	(0)
used	for	comparisons

NCTYPE_STRING char	*,	array	of
characters
terminated	by
null	character	\0

abc	(string) STRING ASCII	character	string

NCTYPE_REAL float SGL REAL 32-bit	floating	point
NCTYPE_LREAL double DBL LREAL 64-bit	floating	point
NCTYPE_ANY_P void	* N/A N/A Reference	to	variable

of	unknown	type,	used
in	cases	where	actual
data	type	can	vary



depending	on
particular	context.

NCTYPE_OBJH unsigned	long Type	definition
ncObjHandle.ctl
(U32)

N/A Handle	referring	to	an
NI-DNET	object.	Refer
to	ncOpenDnetExplMsg
ncOpenDnetIntf
ncOpenDnetIO

NCTYPE_VERSION unsigned	long U32 N/A Version	number.	Major,
minor,	subminor,	and
beta	version	numbers
are	encoded	in
unsigned	32-bit	integer
from	high	byte	to	low
byte.	Letters	are
encoded	as	numeric
equivalents	('A'	is	1,	'Z'
is	26,	and	so	on).
Version	2.0B	would	be
hexadecimal	
and	Beta	version	1.4.2
beta	7	would	be	hex
01040207

NCTYPE_DURATION unsigned	long U32 N/A Time	duration
indicating	elapsed	time
between	two	events.
Time	is	expressed	in	1
ms	increments.	(For
example,	10	s	is
10,000
constant
NC_DURATION_NONE
(0)	is	used	for	zero
duration,	and
NC_DURATION_
INFINITE
hex)	is	used	for	infinite
duration.



NCTYPE_ATTRID unsigned	long U32 N/A Identifier	used	to
access	internal
attributes	in	the	NI-
DNET	device	driver
(not	attributes	in
DeviceNet	devices).
Refer	to	
Objects

NCTYPE_OPCODE unsigned	long U32 N/A Operation	code	used
with	ncOperateDnetIntf
function.

NCTYPE_STATE unsigned	long U32 N/A Object	states,	encoded
as	32-bit	mask	(one	bit
for	each	state).	For
information,	refer	to
ncWaitForState

NCTYPE_STATUS signed	long I32 N/A For	ANSI	C,	this
represents	the	status
returned	from	NI-
DNET	functions.	Refer
to	ncStatusToString
more	information.	For
LabVIEW,	NI-DNET
functions	use	the
standard	error	clusters
for	status	information.



NI-DNET	Functions
The	following	topics	list	all	NI-DNET	functions	and	describe	the	purpose,
format,	parameters,	and	return	status	for	each	function.
All	NI-DNET	functions	are	reentrant	to	achieve	good	multitasking
performance.	Unless	otherwise	stated,	each	NI-DNET	function	suspends
execution	of	your	program	until	it	completes.
Using	the	Function	Descriptions
List	of	NI-DNET	Functions



Using	the	Function	Descriptions
The	description	of	each	function	is	structured	as	follows:



Purpose
States	the	function's	purpose.



Format
Describes	the	function's	format	for	the	LabVIEW	and	C	(including	C++)
programming	languages.



Input
Lists	the	function's	input	parameters	(values	passed	into	the	function).



Output
Lists	the	function's	output	parameters	(values	passed	out	of	the	function).



Function	Description
Provides	details	about	the	function's	purpose	and	effect.



Parameter	Description
Provides	details	about	each	input/output	parameter,	including	allowed
values	and	their	meanings.



Examples
Each	function	description	includes	sample	LabVIEW	and	C	code	showing
how	to	use	the	function.	For	more	detailed	examples,	refer	to	the	NI-
DNET	User	Manual	for	information	regarding	the	location	of	example
programs	for	LabVIEW	and	C.



List	of	NI-DNET	Functions
The	following	table	contains	an	alphabetical	list	of	the	NI-DNET	functions.



NI-DNET	Functions
Function Purpose

EasyIOClose(Easy	IO
Close)

Close	multiple	NI-DNET	objects	(LabVIEW	only)

EasyIOConfig
(Easy	IO	Config)

Configure	and	open	multiple	NI-DNET	objects
(LabVIEW	only)

ncCloseObject	(Close) Close	an	NI-DNET	object
ncConvertForDnetWrite
(Convert	for	DeviceNet
Write)

Convert	an	appropriate	LabVIEW	data	type	for
writing	data	bytes	on	the	DeviceNet	network

ncConvertFromDnetRead
(Convert	From
DeviceNet	Read)

Convert	data	from	the	DeviceNet	network	into
an	appropriate	LabVIEW	data	type

ncCreateNotification
(Create	Notification)

Create	a	notification	callback	for	an	object	(C
only)

ncGetDnetAttribute
(Get	DeviceNet
Attribute)

Get	an	attribute	value	from	a	DeviceNet	device
using	an	Explicit	Messaging	Object

ncGetDriverAttr
(Get	Driver	Attribute)

Get	the	value	of	an	attribute	in	the	NI-DNET
driver

ncOpenDnetExplMsg
(Open	DeviceNet
Explicit	Messaging)

Configure	and	open	an	NI-DNET	Explicit
Messaging	Object

ncOpenDnetIntf
(Open	DeviceNet
Interface)

Configure	and	open	an	NI-DNET	Interface
Object

ncOpenDnetIO
(Open	DeviceNet	I/O)

Configure	and	open	an	NI-DNET	I/O	Object

ncOperateDnetIntf
(Operate	DeviceNet
Interface)

Perform	an	operation	on	an	NI-DNET	Interface
Object

ncReadDnetExplMsg
(Read	DeviceNet
Explicit	Message)

Read	an	explicit	message	response	from	an
Explicit	Messaging	Object



ncReadDnetIO
(Read	DeviceNet	I/O)

Read	input	from	an	I/O	Object

ncSetDnetAttribute
(Set	DeviceNet
Attribute)

Set	an	attribute	value	for	a	DeviceNet	device
using	an	Explicit	Messaging	Object

ncSetDriverAttr
(Set	Driver	Attribute)

Set	the	value	of	an	attribute	in	the	NI-DNET
driver

ncStatusToString
(Status	to	String)

Convert	status	returned	from	an	NI-DNET
function	into	a	descriptive	string	(C	only)

ncWaitForState
(Wait	for	State)

Wait	for	one	or	more	states	to	occur	in	an	object

ncWriteDnetExplMsg
(Write	DeviceNet
Explicit	Message)

Write	an	explicit	message	request	using	an
Explicit	Messaging	Object

ncWriteDnetIO
(Write	DeviceNet	I/O)

Write	output	to	an	I/O	Object



EasyIOClose	(Easy	IO	Close)
Purpose
Close	multiple	NI-DNET	objects	in	one	call.



Format
LabVIEW

C
Not	applicable



Input
Interface	ObjHandle
In

Object	handle	of	an	open	Interface	Object,	returned
from	either	Easy	IO	Config	or	Open	DeviceNet
Interface	function

Device	ObjHandle	In Array	of	I/O	and/or	Explicit	Messaging	object
handles

Error	in NI-DNET	Error	Cluster	input



Output
Error	out NI-DNET	Error	Cluster	output



Function	Description
EasyIOClose	stops	the	Interface	Object,	closes	all	the	object	handles
passed	in	the	Device	ObjHandle	In	parameter,	and	then	closes	the
Interface	Object.	You	normally	call	EasyIOClose	near	the	end	of	your
application	to	ensure	that	all	objects	are	properly	deallocated.
EasyIOClose	accepts	Interface	ObjHandle	In	and	Device	ObjHandle	In	as
input	parameters.	You	pass	the	outputs	from	EasyIOConfig	as	inputs	to
EasyIOClose.
Internally,	the	EasyIOClose	function	makes	use	of
OperateDeviceNetInterface.vi	(ncOperateDnetIntf)	and	CloseObject.vi
(ncCloseObject).	To	learn	more	about	these	functions,	refer	to	the
corresponding	function	description	sections.



Parameter	Descriptions
Interface	ObjHandle	In
Description Contains	an	interface	object	handle	returned	from	the	Easy

IO	Config	or	Open	DeviceNet	Interface	function.
Values The	encoding	of	object	handle	is	internal	to	NI-DNET.

Device	ObjHandle	In
Description Array	of	I/O	object	handles	to	be	closed.	You	pass	in	the

array	returned	from	Easy	IO	Config.
Values The	encoding	of	object	handles	is	internal	to	NI-DNET.



Examples
LabVIEW
Close	Interface	Object	and	I/O	Objects	opened	with	Easy	IO	Config.



EasyIOConfig	(Easy	IO	Config)
Purpose
Configure	and	open	an	NI-DNET	Interface	Object	and	multiple	NI-DNET
I/O	Objects.



Format
LabVIEW

C
Not	applicable



Input
Interface	Name Name	of	DeviceNet	interface
Device
Configurations
DeviceMacId
ConnectionType
InputLength
OutputLength
ExpPacketRate

Array	of	I/O	Object	configuration	clusters
MAC	ID	of	the	remote	device
Type	of	I/O	connection
Number	of	input	bytes
Number	of	output	bytes
Expected	rate	of	I/O	message	(packet)	production

Interface
Configuration
IntfMacId
BaudRate
PollMode

Interface	Object	configuration	cluster
MAC	ID	of	the	DeviceNet	interface
Baud	rate
Communication	scheme	for	all	polled	I/O
connections



Output
Interface
ObjHandle	Out

Object	handle	you	use	with	all	subsequent	function	calls
for	the	Interface	Object

Device
ObjHandle	Out

Array	of	object	handles	you	index	to	reference	a
particular	I/O	Object

Error	out NI-DNET	Error	Cluster	output



Function	Description
EasyIOConfig	configures,	opens,	and	starts	an	Interface	and	multiple	I/O
Objects,	and	returns	object	handles	for	the	newly	created	objects.
Internally,	the	EasyIOConfig	function	makes	use	of	ncOpenDnetIntf,
ncOpenDnetIO,	ncOperateDnetIntf,	and	ncWaitForState.	If	you	are	not
familiar	with	the	input	clusters	mentioned	above,	refer	to	ncOpenDnetIntf
and/or	ncOpenDnetIO	parameter	descriptions	before	reading	this	section.
For	more	details	on	any	of	these	functions,	refer	to	the	corresponding
function	descriptions.
Use	EasyIOConfig	to	open	multiple	devices	(I/O	connections)	with	one	VI
call.	This	high-level	function	accepts	Interface	Configuration	and	an	array
of	Device	Configurations	as	its	inputs.	The	Device	Configurations	can
contain	any	number	of	I/O	connections	that	you	want	to	open.
Remember,	however,	that	you	can	only	have	one	instance	of	a	particular
connection	per	device.	For	example,	you	cannot	open	two	poll
connections	on	the	same	device.	Similarly,	opening	COS	and	cyclic
connections	simultaneously	on	a	device	will	result	in	an	error,	since	these
two	connections	are	mutually	exclusive.
The	relationship	between	expected	packet	rate	(EPR)	and	the	PollMode
parameter	of	the	Interface	Object	is	the	same	as	discussed	in	the
ncOpenDnetIntf	and	ncOpenDnetIO	function	descriptions.	For	example,	if
you	configure	the	Interface	Object	in	Scanned	mode,	you	must	configure
all	the	strobe	connections	with	the	same	EPR	and	all	the	poll	connections
with	either	the	same	EPR	value	or	an	integer	multiple	of	it.	If	this	is	not
the	case,	you	will	see	an	Inconsistent	Parameter	error.
Since	the	EasyIOConfig	function	also	starts	the	interface,	a	call	to
ncOperateDnetIntf	(for	Start)	is	only	needed	if	the	communication	needs	to
be	interrupted	in	the	middle	of	your	application	to	set	some	driver
attributes	for	an	object.	To	do	so,	call	ncOperateDnetIntf	with	Stop	as	the
Opcode	after	calling	EasyIOConfig,	make	necessary	calls	to
ncSetDriverAttr,	and	then	call	ncOperateDnetIntf	with	Start	as	the	Opcode	to
restart	the	communication.
To	open	an	Explicit	Messaging	Object,	call	ncOpenDnetExplMsg
separately	after	a	call	to	EasyIOConfig.

Note		For	any	NI-DNET	LabVIEW	application,	make	sure	that	all



the	open	calls	are	matched	by	an	equal	number	of	close	calls.	For
example,	if	you	have	called	the	Open	DeviceNet	Interface	function
twice,	you	must	call	the	Close	Object	function	twice	as	well,
passing	in	the	handles	returned	from	the	open	interface	calls.	Also,
to	ensure	proper	closure	of	all	NI-DNET	objects,	create	your	own
stop	button	to	stop	your	application,	instead	of	using	the	LabVIEW
stop	button	from	the	menu	bar.



Parameter	Descriptions
Interface	Name
Description Name	of	the	DeviceNet	interface	as	an	ASCII	string	with

format	"DNETx",	where	x	is	a	decimal	number	starting	at
zero	that	indicates	which	DeviceNet	interface	is	being	used.
You	associate	DeviceNet	interface	names	with	physical
ports	using	Measurement	and	Automation	Explorer	(MAX).

Values "DNET0",	"DNET1",	...	"DNET31"
In	LabVIEW,	you	select	the	interface	name	from	an
enumerated	list.

Device	Configurations
Description Array	of	NI-DNET	I/O	Object	configuration	clusters.	For	a

description	of	individual	elements	within	the	I/O	cluster,	refer
to	the	ncOpenDnetIO	parameter	description.

Values Refer	to	the	ncOpenDnetIO	input	parameters	description	for
value	range	applicable	to	each	configuration	parameter.

Interface	Configuration
Description Configuration	cluster	for	NI-DNET	Interface	Object.	For	a

description	of	individual	elements	within	the	interface
cluster,	refer	to	the	ncOpenDnetIntf	parameter	description.

Values Refer	to	the	ncOpenDnetIntf	input	parameters	description	for
allowed	values	for	each	cluster	element.

Interface	ObjHandle	Out
Description If	the	Easy	IO	Config	function	is	successful,	a	handle	to	the

newly	opened	Interface	Object	is	returned	in	Interface
ObjHandle	Out.	This	handle	is	used	with	all	subsequent
function	calls	for	that	Interface	Object.

Values The	encoding	of	object	handles	is	internal	to	NI-DNET.

Device	ObjHandle	Out
Description If	the	Easy	IO	Config	function	is	successful,	an	array	of	I/O

Object	handles	is	returned	in	Device	ObjHandle	Out.	This
array	can	be	indexed	to	retrieve	individual	I/O	handles	for
data	read	and	write.



Values The	encoding	of	object	handles	is	internal	to	NI-DNET.



Examples
LabVIEW
Open	Interface	Object	"DNET0"	using	baud	rate	125000,	MAC	ID	5,	and
poll	mode	Scanned.	Open	two	I/O	Objects,	with	MAC	ID	6	and	9,	and	start
the	communication.



ncCloseObject	(Close)
Purpose
Close	an	NI-DNET	object.



Format
LabVIEW

C
NCTYPE_STATUS ncCloseObject(NCTYPE_OBJH	ObjHandle)



Input
ObjHandle Object	handle	of	an	open	Interface	Object,	Explicit

Messaging	Object,	or	I/O	Object



Output
None



Function	Description
The	ncCloseObject	function	closes	an	NI-DNET	object	when	it	no	longer
needs	to	be	in	use,	such	as	when	the	application	is	about	to	terminate.
When	an	object	is	closed,	NI-DNET	stops	all	pending	operations	for	the
object,	and	you	can	no	longer	use	the	ObjHandle	in	your	application.
If	the	object	specified	by	ObjHandle	has	a	notification	pending,
ncCloseObject	disables	the	notification	by	implicitly	calling
ncCreateNotification	with	DesiredState	zero.
When	ncCloseObject	has	been	called	for	all	open	NI-DNET	objects,	NI-
DNET	stops	all	DeviceNet	communication	(ncCloseObject	issues	an
implicit	call	to	ncOperateDnetIntf	with	Opcode	NC_OP_STOP).



Parameter	Descriptions
ObjHandle
Description ObjHandle	must	contain	an	object	handle	returned	from	the

ncOpenDnetIntf,	ncOpenDnetExplMsg,	or	ncOpenDnetIO
function.

Values The	encoding	of	ObjHandle	is	internal	to	NI-DNET.



Examples
LabVIEW
Close	an	NI-DNET	object.

C
Close	an	NI-DNET	object.

NCTYPE_STATUS	 status;
NCTYPE_OBJH	 objh;
status	=	ncCloseObject	(objh);



ncConvertForDnetWrite	(Convert	For	DeviceNet
Write)
Purpose
Convert	an	appropriate	LabVIEW	data	type	for	writing	data	bytes	on	the
DeviceNet	network.



Format
LabVIEW

C
Not	applicable,	but	see	Examples	at	the	end	of	this	section



Input
DnetData	in Initial	data	bytes	to	write	on	the	DeviceNet	network
DnetType DeviceNet	data	type	to	convert	into
ByteOffset Byte	offset	of	the	DeviceNet	member	to	convert	into
8[TF]	in LabVIEW	array	of	8	TF	to	convert	from
I32/I16/I8	in LabVIEW	I32,	I16,	or	I8	to	convert	from
U32/U16/U8	in LabVIEW	U32,	U16,	or	U8	to	convert	from
DBL/SGL	in LabVIEW	DBL	or	SGL	to	convert	from
abc	in LabVIEW	string	to	convert	from



Output
DnetData	out DeviceNet	data	bytes	(with	member	inserted)



Function	Description
Many	fundamental	differences	exist	between	the	encoding	of	a
DeviceNet	data	type	and	its	equivalent	data	type	in	LabVIEW.	For
example,	for	a	32-bit	integer,	the	DeviceNet	DINT	data	type	uses	Intel
byte	ordering	(lowest	byte	first),	and	the	equivalent	LabVIEW	I32	data
type	uses	Motorola	byte	ordering	(highest	byte	first).
ncConvertForDnetWrite	takes	an	initial	sequence	of	bytes	to	write	on	the
DeviceNet	network,	and	given	the	byte	offset	and	DeviceNet	data	type	for
a	specific	data	member,	converts	an	appropriate	LabVIEW	data	type	for
placement	into	those	data	bytes.	You	provide	initial	data	bytes	using
DnetData	in,	convert	a	LabVIEW	data	type	for	each	data	member
changed	by	your	LabVIEW	program	(possibly	replacing	all	initial	bytes
with	LabVIEW	data),	then	write	the	bytes	onto	the	DeviceNet	network.
You	typically	use	ncConvertForDnetWrite	with	the	following	NI-DNET
functions:

ncWriteDnetIO—Convert	a	LabVIEW	data	type	for	placement	into
the	output	assembly.
ncSetDnetAttribute—Convert	a	LabVIEW	data	type	to	set	as	the
attribute	value.
ncWriteDnetExplMsg—Convert	a	LabVIEW	data	type	for	placement
into	the	service	request.

Since	DeviceNet	data	types	are	similar	to	C	language	data	types,	C
programming	does	not	need	a	function	like	ncConvertForDnetWrite.	By
using	standard	C	language	pointer	manipulations,	you	can	convert	an
appropriate	C	language	data	type	for	writing	as	a	DeviceNet	data
member.	For	more	information	about	converting	C	language	data	types,
refer	to	the	Examples	at	the	end	of	this	section.



Parameter	Descriptions
DnetData	in
Description Initial	data	bytes	to	write	on	the	DeviceNet	network.	These

data	bytes	are	normally	created	as	a	constant	array	of	U8,
then	given	valid	default	values.	If	you	need	to	convert
multiple	DeviceNet	data	members,	you	can	wire	this	input
terminal	from	the	DnetData	out	output	terminal	of	a	previous
use	of	this	function.

If	you	replace	all	initial	data	bytes	using	this	function,	the
default	values	are	unimportant,	and	you	can	leave	them	as
zero.

Values Initial	data	bytes	to	write	on	the	DeviceNet	network

or

DnetData	out	output	terminal	of	a	previous	use	of	this
function

DnetType
Description An	enumerated	list	from	which	you	choose	the	DeviceNet

data	type	to	convert	into.	For	each	DeviceNet	data	type,	the
appropriate	LabVIEW	data	type	is	listed	in	parentheses.

When	you	select	the	DeviceNet	data	type	BOOL,
ncConvertForDnetWrite	converts	the	byte	indicated	by
ByteOffset	from	an	array	of	eight	LabVIEW	Booleans.	You
can	index	into	this	array	to	change	specific	Boolean
members.	The	Boolean	at	index	zero	is	the	least	significant
bit	(bit	0),	the	Boolean	at	index	one	is	the	next	least
significant	(bit	1),	and	so	on.

Values BOOL	(8[TF])
SINT	(I8)
INT	(I16)
DINT	(I32)
USINT	(U8)
UINT	(U16)



UDINT	(U32)
REAL	(SGL)
LREAL	(DBL)
SHORT_STRING	(abc)
STRING	(abc)

ByteOffset
Description Byte	offset	of	the	DeviceNet	member	to	convert	into.	For	the

DeviceNet	data	member	you	want	to	replace,	this	is	the	byte
offset	in	DnetData	in	where	the	member	begins.	Byte	offsets
start	at	zero.

You	can	find	information	on	the	format	of	your	DeviceNet
data	in	the	following	functions:

ncWriteDnetIO—Specification	for	your	device's	output
assembly.
ncSetDnetAttribute—Data	type	of	the	attribute.	Unless
the	attribute's	DeviceNet	data	type	is	a	structure	or
array,	the	value	for	ByteOffset	is	always	0.
ncWriteDnetExplMsg—Specification	for	the	service
data	of	the	explicit	message	request.

Values 0	to	255

8[TF]	in
Description If	the	selected	DnetType	is	BOOL,	this	input	terminal

provides	the	LabVIEW	data	to	convert	into	a	DeviceNet	data
member.	The	LabVIEW	data	type	for	this	input	terminal	is	an
array	of	eight	LabVIEW	Booleans,	indicated	as	8[TF].	You
can	index	into	this	array	to	change	specific	Boolean
members.	The	Boolean	at	index	zero	is	the	least	significant
bit	(bit	0),	the	Boolean	at	index	one	is	the	next	least
significant	(bit	1),	and	so	on.

Values LabVIEW	data	to	convert	into	a	DeviceNet	data	member

I32/I16/I8	in
Description If	the	selected	DnetType	is	SINT,	INT,	or	DINT,	this	input

terminal	provides	the	LabVIEW	data	to	convert	into	a
DeviceNet	data	member.	Although	the	LabVIEW	data	type



for	this	input	terminal	is	I32,	it	can	be	coerced	automatically
from	I16	or	I8.

Values LabVIEW	data	to	convert	into	a	DeviceNet	data	member

U32/U16/U8	in
Description If	the	selected	DnetType	is	USINT,	UINT,	or	UDINT,	this

input	terminal	provides	the	LabVIEW	data	to	convert	into	a
DeviceNet	data	member.	Although	the	LabVIEW	data	type
for	this	input	terminal	is	U32,	it	can	be	coerced	automatically
from	U16	or	U8.

Values LabVIEW	data	to	convert	into	a	DeviceNet	data	member

DBL/SGL	in
Description If	the	selected	DnetType	is	REAL	or	LREAL,	this	input

terminal	provides	the	LabVIEW	data	to	convert	into	a
DeviceNet	data	member.	Although	the	LabVIEW	data	type
for	this	input	terminal	is	DBL,	it	can	be	coerced
automatically	from	SGL.

Values LabVIEW	data	to	convert	into	a	DeviceNet	data	member

abc	in
Description If	the	selected	DnetType	is	SHORT_STRING	or	STRING,	this

input	terminal	provides	the	LabVIEW	data	to	convert	into	a
DeviceNet	data	member.	The	LabVIEW	data	type	for	this
input	terminal	is	abc.

Values LabVIEW	data	to	convert	into	a	DeviceNet	data	member

DnetData	out
Description DeviceNet	data	bytes	(with	member	inserted).	These	data

bytes	are	written	on	the	DeviceNet	network	using	the
ncWriteDnetIO,	ncSetDnetAttribute,	or	ncWriteDnetExplMsg
function.	If	you	need	to	convert	multiple	DeviceNet	data
members,	you	can	also	wire	this	output	terminal	into	the
DnetData	in	input	terminal	of	a	subsequent	use	of	this
function.

Values Data	input	terminal	of	ncWriteDnetIO
or
AttrData	input	terminal	of	ncSetDnetAttribute



or
ServData	input	terminal	of	ncWriteDnetExplMsg
or
DnetData	in	input	terminal	of	a	subsequent	use	of	this
function



Examples
LabVIEW

1.	 Use	ncWriteDnetIO	to	write	Command	Assembly	1	to	a	Position
Controller.	In	this	output	assembly,	the	byte	at	offset	0	consists	of
8	BOOL	and	the	bytes	at	offset	4–7	consist	of	a	Target	Position	of
type	DINT.	Use	ncConvertForDnetWrite	to	convert	appropriate
LabVIEW	data	types	for	these	DeviceNet	data	members.

2.	 Set	an	attribute	Foo	using	the	ncSetDnetAttribute	function.	The
attribute	Foo	is	contained	in	an	object	with	class	ID	D5	hex,
instance	ID	1,	attribute	ID	5,	and	its	DeviceNet	data	type	is
LREAL.	Use	ncConvertForDnetWrite	to	convert	the	appropriate
LabVIEW	data	type	for	Foo.



C
1.	 Demonstrate	the	same	conversions	as	LabVIEW	example	1.

NCTYPE_UINT8	 data[8];
NCTYPE_UINT8	 I;
NCTYPE_INT32	 TargetPos;	 /*	DINT	*/
NCTYPE_BOOL	 Enable;	 	 /*	BOOL	*/
NCTYPE_BOOL	 StartTraj;	/*	BOOL	*/

			/*	Initialize	default	values	of	zero.		*/
for	(I	=	0;	I	<	8;	I++)
			data[I]	=	0;

			/*	If	Enable	is	true,	set	bit	7	of	byte	0.		If	StartTraj	is	
			true,	set	bit	0	of	byte	0.		*/
if	(Enable	==	NC_TRUE)
			data[0]	|=	0x80;
if	(StartTraj	==	NC_TRUE)
			data[0]	|=	0x01;

			/*	Take	the	address	of	the	data	byte	at	offset	4,	cast	that	
			address	to	point	to	the	appropriate	C	language	data	type,	then	
			dereference	the	pointer	in	order	to	store	the	value.		*/
*(NCTYPE_INT32	*)(&(data[4]))	=	TargetPos;

status	=	ncWriteDnetIO(objh,	sizeof(data),	data);



2.	 Demonstrate	the	same	conversion	as	LabVIEW	example	2.

NCTYPE_LREAL	 foo;
			/*	Conversion	is	performed	automatically	simply	by	passing	in	
			a	pointer	to	the	appropriate	C	language	data	type.		*/
foo	=	354654.4543;
status	=	ncSetDnetAttribute(objh,	0xD5,	0x01,	0x05,	100,	
	 	 	 sizeof(foo),	&foo);



ncConvertFromDnetRead	(Convert	From
DeviceNet	Read)
Purpose
Convert	data	read	from	the	DeviceNet	network	into	an	appropriate
LabVIEW	data	type.



Format
LabVIEW

C
Not	applicable,	but	see	Examples	at	the	end	of	this	section



Input
DnetData	in Data	bytes	read	from	the	DeviceNet	network
DnetType DeviceNet	data	type	to	convert	from
ByteOffset Byte	offset	of	the	DeviceNet	member	to	convert



Output
DnetData	out DeviceNet	data	bytes	(unchanged)
8[TF]	out Converted	LabVIEW	array	of	8	TF
I32/I16/I8	out Converted	LabVIEW	I32,	I16,	or	I8
U32/U16/U8	out Converted	LabVIEW	U32,	U16,	or	U8
DBL/SGL	out Converted	LabVIEW	DBL	or	SGL
abc	out Converted	LabVIEW	string



Function	Description
Many	fundamental	differences	exist	between	the	encoding	of	a
DeviceNet	data	type	and	its	equivalent	data	type	in	LabVIEW.	For
example,	for	a	32-bit	integer,	the	DeviceNet	DINT	data	type	uses	Intel
byte	ordering	(lowest	byte	first),	and	the	equivalent	LabVIEW	I32	data
type	uses	Motorola	byte	ordering	(highest	byte	first).
ncConvertFromDnetRead	takes	a	sequence	of	bytes	read	from	the
DeviceNet	network,	and	given	the	byte	offset	and	DeviceNet	data	type	for
a	specific	data	member	in	those	bytes,	converts	that	DeviceNet	data
member	into	an	appropriate	LabVIEW	data	type.
You	typically	use	ncConvertFromDnetRead	with	the	following	NI-DNET
functions:

ncReadDnetIO—Convert	a	member	of	the	input	assembly	to	its
LabVIEW	data	type.
ncGetDnetAttribute—Convert	the	attribute	to	its	LabVIEW	data	type.
ncReadDnetExplMsg—Convert	a	member	in	the	service	response	to
its	LabVIEW	data	type.

Since	DeviceNet	data	types	are	similar	to	C	language	data	types,	C
programming	does	not	need	a	function	like	ncConvertFromDnetRead.	By
using	standard	C	language	pointer	manipulations,	you	can	convert	a
DeviceNet	data	member	into	its	appropriate	C	language	data	type.	For
more	information	about	converting	DeviceNet	data	members	into	C
language	data	types,	refer	to	the	Examples	at	the	end	of	this	section.



Parameter	Descriptions
DnetData	in
Description Data	bytes	read	from	the	DeviceNet	network.	These	data

bytes	are	read	from	the	DeviceNet	network	using
ncReadDnetIO,	ncGetDnetAttribute,	or	ncReadDnetExplMsg.	If
you	need	to	convert	multiple	DeviceNet	data	members,	you
can	wire	this	input	terminal	from	the	DnetData	out	output
terminal	of	a	previous	use	of	this	function.

Values Data	output	terminal	of	ncReadDnetIO
or
AttrData	output	terminal	of	ncGetDnetAttribute
or
ServData	output	terminal	of	ncReadDnetExplMsg
or
DnetData	out	output	terminal	of	a	previous	use	of	this
function

DnetType
Description An	enumerated	list	from	which	you	select	the	DeviceNet

data	type	to	convert.	For	each	DeviceNet	data	type,	the	list
displays	the	resulting	LabVIEW	data	type	in	parentheses.

When	you	select	the	DeviceNet	data	type	BOOL,
ncConvertFromDnetRead	converts	the	byte	indicated	by
ByteOffset	into	an	array	of	eight	LabVIEW	Booleans.	You
can	index	into	this	array	to	use	specific	Boolean	members.
The	Boolean	at	index	zero	is	the	least	significant	bit	(bit	0),
the	Boolean	at	index	one	is	the	next	least	significant	(bit	1),
and	so	on.

Values BOOL	(8[TF])	
SINT	(I8)
INT	(I16)
DINT	(I32)
USINT	(U8)
UINT	(U16)
UDINT	(U32)
REAL	(SGL)



LREAL	(DBL)
SHORT_STRING	(abc)
STRING	(abc)

ByteOffset
Description Byte	offset	of	the	DeviceNet	member	to	convert.	For	the

DeviceNet	data	member	you	want	to	convert,	this	is	the	byte
offset	in	DnetData	in	where	the	member	begins.	Byte	offsets
start	at	zero.

You	can	find	information	on	the	format	of	your	DeviceNet
data	in	the	following	functions:

ncReadDnetIO—Specification	for	your	device's	input
assembly.
ncGetDnetAttribute—Data	type	of	the	attribute.	Unless
the	attribute's	DeviceNet	data	type	is	a	structure	or
array,	the	value	for	ByteOffset	is	always	0.
ncReadDnetExplMsg—Specification	for	the	service
data	of	the	explicit	message	response.

Values 0	to	255

DnetData	out
Description DeviceNet	data	bytes	(unchanged).	The	data	bytes	of

DnetData	in	are	passed	through	the	VI	to	this	output	terminal
unchanged.	To	convert	another	DeviceNet	data	member,
this	data	can	be	passed	on	to	another	call	to	this	function.

Values Same	as	DnetData	in

8[TF]	out
Description If	the	selected	DnetType	is	BOOL,	this	output	terminal

provides	the	converted	DeviceNet	data	member.	The
LabVIEW	data	type	for	this	output	terminal	is	an	array	of
eight	LabVIEW	Booleans,	indicated	as	8[TF].	You	can	index
into	this	array	to	use	specific	Boolean	members.	The
Boolean	at	index	zero	is	the	least	significant	bit	(bit	0),	the
Boolean	at	index	one	is	the	next	least	significant	(bit	1),	and
so	on.



Values Converted	DeviceNet	data	member

I32/I16/I8	out
Description If	the	selected	DnetType	is	SINT,	INT,	or	DINT,	this	output

terminal	provides	the	converted	DeviceNet	data	member.
Although	the	LabVIEW	data	type	for	this	output	terminal	is
I32,	it	can	be	coerced	automatically	to	I16	or	I8.

Values Converted	DeviceNet	data	member

U32/U16/U8	out
Description If	the	selected	DnetType	is	USINT,	UINT,	or	UDINT,	this

output	terminal	provides	the	converted	DeviceNet	data
member.	Although	the	LabVIEW	data	type	for	this	output
terminal	is	U32,	it	can	be	coerced	automatically	to	U16	or
U8.

Values Converted	DeviceNet	data	member

DBL/SGL	out
Description If	the	selected	DnetType	is	REAL	or	LREAL,	this	output

terminal	provides	the	converted	DeviceNet	data	member.
Although	the	LabVIEW	data	type	for	this	output	terminal	is
DBL,	it	can	be	coerced	automatically	to	SGL.

Values Converted	DeviceNet	data	member

abc	out
Description If	the	selected	DnetType	is	SHORT_STRING	or	STRING,	this

output	terminal	provides	the	converted	DeviceNet	data
member.	The	LabVIEW	data	type	for	this	output	terminal	is
abc.

Values Converted	DeviceNet	data	member



Examples
LabVIEW

1.	 Use	ncReadDnetIO	to	read	Response	Assembly	1	from	a	Position
Controller.	In	this	input	assembly,	the	byte	at	offset	0	consists	of	8
BOOL,	and	the	bytes	at	offset	4–7	consist	of	an	Actual	Position	of
type	DINT.	Use	ncConvertFromDnetRead	to	convert	these
DeviceNet	data	members	into	appropriate	LabVIEW	data	types.

2.	 Get	the	Device	Type	attribute	using	the	ncGetDnetAttribute
function.	The	Device	Type	is	contained	in	the	Identity	Object
(class	ID	1,	instance	ID	1,	attribute	ID	2),	and	its	DeviceNet	data
type	is	UINT.	Use	ncConvertFromDnetRead	to	convert	the	Device
Type	into	an	appropriate	LabVIEW	data	type.



C
1.	 Demonstrate	the	same	conversions	as	LabVIEW	example	1.

NCTYPE_UINT8	 data[8];
NCTYPE_INT32	 ActualPos;	 /*	DINT	*/
NCTYPE_BOOL	 CurrentDir;	 /*	BOOL	*/
NCTYPE_BOOL	 TrajInProg;	 /*	BOOL	*/
status	=	ncReadDnetIO(objh,	sizeof(data),	data);

			/*	Take	the	address	of	the	data	byte	at	offset	4,	cast	that	
			address	to	point	to	the	appropriate	C	language	data	type,	then	
			dereference	the	pointer.		*/
ActualPos	=	*(NCTYPE_INT32	*)(&(data[4]));

			/*	If	bit	4	of	byte	0	is	set,	then	CurrentDir	is	true.	If	bit	
			0	of	byte	0	is	set,	the	TrajInProg	is	true.		*/
CurrentDir	=	(data[0]	&	0x10)	?	NC_TRUE	:	NC_FALSE;
TrajInProg	=	(data[0]	&	0x01)	?	NC_TRUE	:	NC_FALSE;

2.	 Demonstrate	the	same	conversion	as	LabVIEW	example	2.

NCTYPE_UINT16	device_type;
NCTYPE_UINT16	actual_length;
			/*	Conversion	is	performed	automatically	simply	by	passing	in	
			a	pointer	to	the	appropriate	C	language	data	type.		*/
status	=	ncGetDnetAttribute(objh,	0x01,	0x01,	0x02,
	 	 	 100,	sizeof(device_type),	&device_type,
	 	 	 &actual_length);



ncCreateNotification	(Create	Notification)
Purpose
Create	a	notification	callback	for	an	object	(C	only).



Format
LabVIEW
Not	applicable
C
NCTYPE_STATUS

ncCreateNotification		(NCTYPE_OBJH	ObjHandle,
	 	 				NCTYPE_STATE	DesiredState,
	 	 				NCTYPE_DURATION	Timeout,
	 	 				NCTYPE_ANY_P	RefData,
	 	 				NCTYPE_NOTIFY_CALLBACK	
	 	 	 	Callback)



Input
ObjHandle Object	handle	of	an	open	Explicit	Messaging	Object	or

I/O	Object
DesiredState States	for	which	notification	is	called
Timeout Number	of	milliseconds	to	wait	for	one	of	the	desired

states
RefData Pointer	to	user-specified	reference	data
Callback Address	of	your	callback	function



Output
None



Function	Description
ncCreateNotification	creates	a	notification	callback	for	the	object	specified
by	ObjHandle.	The	NI-DNET	driver	uses	the	notification	callback	to
communicate	state	changes	to	your	application.	The	ncCreateNotification
function	does	not	apply	to	LabVIEW	programming.
You	commonly	use	ncCreateNotification	to	receive	notifications	when	new
input	data	is	available	for	an	I/O	Object.	Within	your	notification	callback
function,	you	call	ncReadDnetIO	to	read	the	new	input	data,	perform	any
needed	calculations	for	that	data,	call	ncWriteDnetIO	to	provide	output
data,	then	return	from	the	callback	function.
You	normally	use	ncCreateNotification	when	you	want	to	let	other	code	to
execute	while	waiting	for	NI-DNET	states,	especially	when	the	other	code
does	not	call	NI-DNET	functions.	If	you	do	not	need	such	background
execution,	ncWaitForState	offers	better	overall	performance.	You	cannot
use	ncWaitForState	at	the	same	time	as	ncCreateNotification.
This	function	is	not	supported	for	Visual	Basic	6.
The	Status	parameter	of	your	callback	function	indicates	any	error
detected	by	NI-DNET.	You	should	always	check	this	Status	parameter
prior	to	checking	the	CurrentState	parameter	of	your	callback	function.
When	ncCreateNotification	returns	successfully,	NI-DNET	calls	your
notification	callback	function	whenever	one	of	the	states	specified	by
DesiredState	occurs	in	the	object.	If	DesiredState	is	0,	NI-DNET	disables
notifications	for	the	object	specified	by	ObjHandle.



Parameter	Descriptions
ObjHandle
Description ObjHandle	must	contain	an	object	handle	returned	from

ncOpenDnetExplMsg	or	ncOpenDnetIO.
Values The	encoding	of	ObjHandle	is	internal	to	NI-DNET.

DesiredState
Description States	for	which	notification	is	called.	So	that	notification	can

be	enabled	for	multiple	states	simultaneously,	a	single	bit
represents	each	state.	For	example,	if	NI-DNET	provides
states	with	values	of	hex	1	and	hex	4,	DesiredState	of	hex	5
enables	notification	for	both	states.

ReadAvail	for	the	I/O	Object
For	the	I/O	Object,	the	ReadAvail	state	sets	when	a	new
input	message	is	received	from	the	network.	The	ReadAvail
state	clears	when	you	call	ncReadDnetIO.	For	example,	for	a
change-of-state	(COS)	I/O	connection,	the	notification
occurs	when	a	COS	input	message	is	received.
The	typical	behavior	for	your	callback	function	is	to	call
ncReadDnetIO	to	read	the	new	input	data,	perform	any
calculations	needed,	call	ncWriteDnetIO	to	provide	output
data,	then	return	from	the	callback	function.
ReadAvail	for	the	Explicit	Messaging	Object
For	the	Explicit	Messaging	Object,	the	ReadAvail	state	sets
when	an	explicit	message	response	is	received	from	the
network.	The	ReadAvail	state	clears	when	you	call
ncReadDnetExplMsg.	An	explicit	message	response	is
received	only	after	you	send	an	explicit	message	request
using	ncWriteDnetExplMsg.
Although	using	a	notification	for	an	explicit	message
response	allows	for	execution	of	other	code	while	waiting,	it
is	often	more	straightforward	to	use	the	following	sequence
of	calls:	ncWriteDnetExplMsg,	ncWaitForState,	and
ncReadDnetExplMsg.	This	is	the	sequence	used	internally	by
ncGetDnetAttribute	and	ncSetDnetAttribute.



The	ReadAvail	state	is	not	needed	when	using	the	explicit
messaging	functions	ncGetDnetAttribute	and
ncSetDnetAttribute	because	both	of	these	functions	wait	for
the	explicit	message	response	internally.
Established	for	the	Explicit	Messaging	Object
For	the	Explicit	Messaging	Object,	the	Established	state	is
clear	(not	established)	before	you	start	communication	using
ncOperateDnetIntf.	After	you	start	communication,	the
Established	state	remains	clear	until	the	explicit	message
connection	has	been	successfully	established	with	the
remote	DeviceNet	device.	After	the	explicit	message
connection	has	been	established,	the	Established	state	sets
and	remains	set	for	as	long	as	the	explicit	message
connection	is	open.
Until	the	Established	state	is	set	for	the	Explicit	Messaging
Object,	all	calls	to	ncGetDnetAttribute,	ncSetDnetAttribute,	or
ncWriteDnetExplMsg	return	the	error	CanErrNotStarted.	Before
you	call	any	of	these	functions	in	your	application,	you	must
first	wait	for	the	Established	state	to	set.
After	the	Established	state	is	set,	unless	communication
problems	occur	with	the	device	(CanErrFunctionTimeout),	it
remains	set	until	you	stop	communication	using
ncOperateDnetIntf.
While	waiting	for	one	of	the	above	states,	if	an	error	occurs
(such	as	a	communication	error	or	an	initialization	error),	the
notification	returns	immediately	with	the	appropriate	error
code.	For	example,	if	you	call	ncCreateNotification	with
DesiredState	of	ReadAvail,	the	notification	function	will	return
when	data	is	available	for	a	read,	or	when	a	DeviceNet
communication	error	(such	as	connection	timeout)	is
detected.

Values A	combination	of	the	following	bit	values:

1	hex	(ReadAvail	state,	constant	NC_ST_READ_AVAIL)

8	hex	(Established,	constant	NC_ST_ESTABLISHED)



In	the	LabWindows™/CVI™	function	panel,	to	facilitate
combining	multiple	states,	you	can	select	a	combination
from	an	enumerated	list	of	all	valid	combinations.	This	list
contains	the	names	of	each	state	in	the	combination,	such
as	ReadAvail	or	Established.

Timeout
Description Number	of	milliseconds	to	wait	for	one	of	the	desired	states.

If	the	timeout	expires	before	one	of	the	desired	states
occurs,	your	notification	function	is	called	with	CurrentState	of
0	and	Status	of	CanErrFunctionTimeout.	Use	the	special
timeout	value	of	FFFFFFFF	hex	to	wait	indefinitely.

Values 1	to	200000
or
FFFFFFFF	hex	(infinite	duration,	constant
NC_DURATION_INFINITE)

RefData
Description RefData	provides	a	pointer	that	is	passed	to	all	calls	of	your

notification	callback	function.	It	is	typically	used	to	provide
the	address	of	globally	declared	reference	data	for	use
within	the	notification	callback.	For	example,	for	the
ReadAvail	state,	RefData	is	often	the	data	buffer	which	you
pass	to	ncReadDnetIO	to	read	available	data.	If	the
notification	callback	does	not	need	reference	data,	you	can
set	RefData	to	NULL.

Values Pointer	to	any	globally	declared	data	variable

or

NULL

Callback
Description This	is	the	address	of	a	callback	function	within	your

application	source	code.	Within	the	code	for	the	callback
function,	you	can	call	any	of	the	NI-DNET	functions	except
for	ncCreateNotification	and	ncWaitForState.



Declare	this	function	using	the	following	C	language
prototype.

NCTYPE_STATE	 _NCFUNC_	Callback(
			NCTYPE_OBJH	ObjHandle,	
			NCTYPE_STATE	 CurrentState,	
			NCTYPE_STATUS	 Status,	
			NCTYPE_ANY_P	 RefData);

In	the	declaration	for	your	callback,	the	constant	_NCFUNC_
is	required	for	your	compiler	to	declare	the	function	such
that	it	can	be	called	by	the	NI-DNET	device	driver.

Parameter	descriptions	for	Callback	

ObjHandle
Object	handle	originally	passed	to	ncCreateNotification.	This
identifies	the	object	generating	the	notification,	which	is
useful	when	you	use	the	same	callback	function	for	multiple
objects.
CurrentState
Current	state	of	the	object.	If	one	of	the	desired	states
occurs,	it	provides	the	current	value	of	the	ReadAvail	and
Established	states.	If	the	Timeout	expires	before	one	of	the
desired	states	occurs,	it	has	the	value	0.
Status
Current	status	of	the	object.	If	one	of	the	desired	states
occurs,	it	has	the	value	0	(DnetSuccess).	If	the	Timeout
expires	before	one	of	the	desired	states	occurs,	it	has	the
value	BFF62001	hex	(CanErrFunctionTimeout).
RefData
Pointer	to	your	reference	data	as	originally	passed	to
ncCreateNotification.
Return	Value	from	Callback
The	value	you	return	from	the	callback	indicates	the	desired
states	to	re-enable	for	notification.	If	you	want	to	continue	to



receive	notifications,	return	the	same	value	as	the	original
DesiredState	parameter.	If	you	no	longer	want	to	receive
notifications,	return	a	value	of	0.

If	you	return	a	nonzero	value	from	the	callback,	and	one	of
those	states	is	still	set,	the	callback	is	invoked	again
immediately	after	you	return.	For	example,	if	you	return
ReadAvail	from	the	callback	without	calling	ncReadDnetIO	to
read	the	available	data,	the	callback	is	invoked	again.
Information	Specific	to	LabWindows/CVI
When	the	NI-DNET	device	driver	calls	your	notification
callback,	it	does	so	in	a	separate	thread	within	the
LabWindows/CVI	process.	Your	application's	front	panel
indicators	and	controls	can	only	be	accessed	within	the
main	thread	of	the	LabWindows/CVI	process.	Although	you
can	call	NI-DNET	functions	and	perform	generic	C
calculations	in	your	notification	callback,	you	cannot	call
LabWindows/CVI	functions	which	access	the	front	panel
(the	User	Interface	Library).	To	use	the	LabWindows/CVI
User	Interface	Library,	save	any	data	needed	for	front	panel
indicators	using	global	variables,	then	register	a	deferred
callback	using	the	LabWindows/CVI	PostDeferredCall
function.	Since	a	LabWindows/CVI	deferred	callback
executes	in	the	main	thread	of	the	LabWindows/CVI
process,	you	can	call	any	LabWindows/CVI	function,
including	the	User	Interface	Library.
Information	Specific	to	Microsoft,	Borland,	and	Other	C
Compilers
When	the	NI-DNET	device	driver	calls	your	notification
callback,	it	does	so	in	a	separate	thread	within	your	process.
Therefore,	it	has	access	to	any	process	global	data,	but	not
thread	local	data.	If	your	callback	function	needs	to	access
global	variables,	you	must	protect	that	access	using
synchronization	primitives	(such	as	semaphores)	because
your	callback	is	running	in	a	different	thread	context.	For	an
explanation	of	these	concepts	and	other	multithreading
issues,	refer	to	the	online	help	of	the	Microsoft	Win32
Software	Development	Kit	(SDK).



Values Address	of	a	callback	function	within	your	application	source
code.	For	example,	if	your	function	is	declared	with	the
name	MyReadCallback,	you	would	pass	MyReadCallback	as
the	Callback	parameter.



Example
C
Create	a	notification	for	the	ReadAvail	state.	Use	a	timeout	of	10	seconds.

NCTYPE_UINT8	 DataBuffer[20];
NCTYPE_STATE	 _NCFUNC_	MyReadCallback	(
	 	 	 NCTYPE_OBJH	ObjHandle,
	 	 	 NCTYPE_STATE	CurrentState,
	 	 	 NCTYPE_STATUS	Status,
	 	 	 NCTYPE_ANY_P	RefData)	{
			if	(Status	==	DnetSuccess)	{
	 Status	=	ncReadDnetIO(ObjHandle>,	20,	RefData);
	 .
	 .
	 .
			}
			.
			.
			.
			return(NC_ST_READ_AVAIL);
}

void	main()	{
			NCTYPE_STATUS	 status;
			NCTYPE_OBJH	objh;

			.
			.
			.
			status	=	ncCreateNotification(objh,	NC_ST_READ_AVAIL,
	 	 10000,	DataBuffer,	MyReadCallback);
			.
			.
			.
}



ncGetDnetAttribute	(Get	DeviceNet	Attribute)
Purpose
Get	an	attribute	value	from	a	DeviceNet	device	using	an	Explicit
Messaging	Object.



Format
LabVIEW

C
NCTYPE_STATUS

ncGetDnetAttribute(
			NCTYPE_OBJH	 	 ObjHandle,
			NCTYPE_UINT16	 	 ClassId,
			NCTYPE_UINT16	 	 InstanceId,
			NCTYPE_UINT8	 	 AttributeId,
			NCTYPE_DURATION	 	 Timeout,
			NCTYPE_UINT16	 	 SizeofAttrData,
			NCTYPE_ANY_P	 	 AttrData,
			NCTYPE_UINT16_P	 	 ActualAttrDataLength
			NCTYPE_UINT16_P	 	 DeviceError);



Input
ObjHandle Object	handle	of	an	open	Explicit	Messaging	Object
ClassId Identifies	the	class	which	contains	the	attribute
InstanceId Identifies	the	instance	which	contains	the	attribute
AttributeId Identifies	the	attribute	to	get
Timeout Maximum	time	to	wait	for	response	from	device
SizeofAttrData Size	of	AttrData	buffer	in	bytes	(C	only)



Output
AttrData Attribute	value	received	from	device
ActualAttrDataLength Actual	number	of	attribute	data	bytes	returned
DeviceError Error	codes	from	device	error	response



Function	Description
ncGetDnetAttribute	gets	the	value	of	an	attribute	from	a	DeviceNet	device
using	an	Explicit	Messaging	Object.
ncGetDnetAttribute	executes	the	Get	Attribute	Single	service	on	a	remote
DeviceNet	device.
The	format	of	the	data	returned	in	AttrData	is	defined	by	the	DeviceNet
data	type	in	the	attribute's	description.	When	using	LabVIEW,	the
ncConvertFromDnetRead	function	can	convert	this	DeviceNet	data	type
into	an	appropriate	LabVIEW	data	type.	When	using	C,	AttrData	can	point
to	a	variable	of	the	appropriate	data	type	as	specified	in	NI-DNET	Data
Types.



Parameter	Descriptions
ObjHandle
Description ObjHandle	must	contain	an	object	handle	returned	from	the

ncOpenDnetExplMsg	function.	In	LabVIEW,	ObjHandle	passes
through	the	VI	as	an	output	so	that	it	can	be	used	for
subsequent	function	calls	for	the	object.

Values The	encoding	of	ObjHandle	is	internal	to	NI-DNET.

ClassId
Description Identifies	the	class	which	contains	the	attribute.	For

descriptions	and	identifiers	for	each	standard	DeviceNet
class,	refer	to	the	DeviceNet	Specification	(Volume	2,
Chapter	6,	The	DeviceNet	Object	Library).	Vendor-specific
classes	are	documented	by	the	device	vendor.	Although	the
DeviceNet	Specification	allows	16-bit	class	IDs,	most	class
IDs	are	8-bit.	NI-DNET	automatically	uses	the	class	ID	size
(16-bit	or	8-bit)	that	is	appropriate	for	your	device.

Values 00	to	FFFF	hex

InstanceId
Description Identifies	the	instance	which	contains	the	attribute.	Instance

ID	0	is	used	to	get	an	attribute	from	the	class	itself.	Other
instance	IDs	typically	are	numbered	starting	at	1.	For
example,	the	primary	Identity	Object	in	a	device	uses
instance	ID	1.	Although	the	DeviceNet	Specification	allows
16-bit	instance	IDs,	most	instance	IDs	are	8-bit.	NI-DNET
automatically	uses	the	instance	ID	size	(16-bit	or	8-bit)	that
is	appropriate	for	your	device.

Values 00	to	FFFF	hex

AttributeId
Description Identifies	the	attribute	to	get.	Attribute	IDs	are	listed	in	the

class	and	instance	descriptions	in	the	DeviceNet
Specification.	The	attribute's	description	also	lists	the
DeviceNet	data	type	for	the	attribute's	value.

Values 00	to	FF	hex



Timeout
Description Maximum	time	to	wait	for	response	from	device.	To	get	the

attribute	from	the	device,	an	explicit	message	request	for
the	Get	Attribute	Single	service	is	sent	to	the	device.	After
sending	the	service	request,	this	function	must	wait	for	the
explicit	message	response	for	Get	Attribute	Single.	Timeout
specifies	the	maximum	number	of	milliseconds	to	wait	for
the	response	before	giving	up.	If	the	timeout	expires	before
the	response	is	received,	this	function	returns	a	status	of
BFF62001	hex	(CanErrFunctionTimeout).

For	most	DeviceNet	devices,	a	Timeout	of	100	ms	is
appropriate.	The	special	timeout	value	of	FFFFFFFF	hex	is
used	to	wait	indefinitely.

Values 1	to	1000

or

FFFFFFFF	hex	(infinite	duration,	constant
NC_DURATION_INFINITE)

SizeofAttrData
Description For	C,	this	is	the	size	of	the	buffer	referenced	by	AttrData.	It

is	used	to	verify	that	you	have	enough	bytes	available	to
store	the	attribute	data.	This	size	is	normally	obtained	using
the	C	language	sizeof	function	and	has	no	direct	relation	to
the	number	of	bytes	received	on	the	network.

For	LabVIEW,	since	the	buffer	for	AttrData	is	allocated
automatically	by	NI-DNET,	this	size	is	not	needed.

The	number	of	bytes	allocated	for	AttrData	should	be	large
enough	to	hold	the	maximum	number	of	data	bytes	defined
for	the	attribute.

Values sizeof	(buffer	referenced	by	AttrData)

AttrData
Description Attribute	value	received	from	device.



The	format	of	the	data	returned	in	AttrData	is	defined	by	the
DeviceNet	data	type	in	the	attribute's	description.	When
using	LabVIEW,	the	ncConvertFromDnetRead	function	can
convert	this	DeviceNet	data	type	into	an	appropriate
LabVIEW	data	type.	When	using	C,	AttrData	can	point	to	a
variable	of	the	appropriate	data	type	as	specified	in	NI-
DNET	Data	Types.

The	number	of	attribute	data	bytes	returned	is	the	smaller	of
SizeofAttrData	and	ActualAttrDataLength.

Values Attribute	data	bytes

ActualAttrDataLength
Description Actual	number	of	attribute	data	bytes	returned.	This	length

is	obtained	from	the	actual	Get	Attribute	Single	response
message.	If	this	length	is	greater	than	SizeofAttrData,	only
SizeofAttrData	bytes	are	returned	in	AttrData.	If	this	length	is
less	than	or	equal	to	SizeofAttrData,	ActualAttrDataLength
bytes	are	valid	in	AttrData.

Values 0	to	240

DeviceError
Description Error	codes	from	device's	error	response.

If	the	remote	device	responds	successfully	to	the	Get
Attribute	Single	service,	the	return	status	is	0	(DnetSuccess),
and	DeviceError	returns	0.

If	the	remote	device	returns	an	error	response	for	the	Get
Attribute	Single	service,	the	return	status	is	BFF62014	hex
(DnetErrErrorResponse),	and	DeviceError	returns	the	error
codes	from	the	response.

The	General	Error	Code	from	the	device's	error	response	is
returned	in	the	low	byte	of	DeviceError.	Common	values	for
General	Error	Code	include	Attribute	Not	Supported	(14
hex),	Object	Does	Not	Exist	(16	hex),	and	Invalid	Attribute



Value	(09	hex).

The	Additional	Code	from	the	device's	error	response	is
returned	in	the	high	byte	of	DeviceError.	The	Additional	Code
provides	additional	information	that	further	describes	the
error.	If	no	additional	information	is	needed,	the	value	FF
hex	is	placed	into	this	field.

Values	for	the	General	Error	Code	and	Additional	Code	are
documented	in	the	DeviceNet	Specification.	Common	error
code	values	are	found	in	Appendix	H,	DeviceNet	Error
Codes,	in	the	DeviceNet	Specification.	Object-specific	error
codes	are	listed	in	the	object	description.	Vendor-specific
error	codes	are	listed	in	your	device's	documentation.

Values Error	codes	from	the	device's	error	response.



Examples
LabVIEW
Get	the	Serial	Number	attribute	using	an	Explicit	Messaging	Object.	The
Serial	Number	is	contained	in	the	Identity	Object	(class	ID	1,	instance	ID
1,	attribute	ID	6).	The	DeviceNet	data	type	for	Device	Type	is	UDINT,	for
which	the	LabVIEW	data	type	U32	should	be	used.	The	Timeout	is	100
ms.

C
Get	the	Device	Type	attribute	using	the	Explicit	Messaging	Object
referenced	by	objh.	The	Device	Type	is	contained	in	the	Identity	Object
(class	ID	1,	instance	ID	1,	attribute	ID	2).	The	DeviceNet	data	type	for
Device	Type	is	UINT,	for	which	the	NI-DNET	data	type	NCTYPE_UINT16
should	be	used.

NCTYPE_STATUS	 status;
NCTYPE_OBJH	 objh;
NCTYPE_UINT16	device_type;
NCTYPE_UINT16	actual_length;
NCTYPE_UINT16	device_error;
status	=	ncGetDnetAttribute(objh,	0x01,	0x01,	0x02,	100,	
	 	 	 sizeof(device_type),	&device_type,	
	 	 	 &actual_length,	&device_error);



ncGetDriverAttr	(Get	Driver	Attribute)
Purpose
Get	the	value	of	an	attribute	in	the	NI-DNET	driver.



Format
LabVIEW

C
NCTYPE_STATUS

ncGetDriverAttr	 (NCTYPE_OBJH	 ObjHandle,
	 	 NCTYPE_ATTRID	 AttrId,
	 	 NCTYPE_UINT32	SizeofAttr,
	 	 NCTYPE_ANY_P	Attr)



Input
ObjHandle Object	handle	of	an	open	Explicit	Messaging	Object,	I/O

Object,	or	Interface	Object
AttrId Identifier	of	the	attribute	to	get
SizeofAttr Size	of	the	Attr	buffer	in	bytes	(C	only)



Output
Attr Returned	attribute	value



Function	Description
ncGetDriverAttr	gets	the	value	of	an	attribute	in	the	NI-DNET	driver
software.	Within	NI-DNET	objects,	attributes	represent	configuration
settings,	status,	and	other	information.
Since	you	only	need	to	access	NI-DNET	driver	attributes	under	special
circumstances,	ncGetDriverAttr	is	seldom	used.	For	information	about	the
attributes	of	each	NI-DNET	object,	refer	to	NI-DNET	Objects.
ncGetDriverAttr	only	applies	to	the	NI-DNET	software	on	your	computer
and	cannot	be	used	to	get	an	attribute	from	a	remote	DeviceNet	device.
To	get	an	attribute	from	a	remote	DeviceNet	device,	use	the
ncGetDnetAttribute	function.



Parameter	Descriptions
ObjHandle
Description ObjHandle	must	contain	an	object	handle	returned	from

ncOpenDnetExplMsg,	ncOpenDnetIntf,	or	ncOpenDnetIO.

In	LabVIEW,	ObjHandle	passes	through	the	VI	as	an	output
so	that	it	can	be	used	for	subsequent	function	calls	for	the
object.

Values The	encoding	of	ObjHandle	is	internal	to	NI-DNET.

AttrId
Description Identifier	of	the	NI-DNET	attribute.	Supported	attribute

identifiers	for	each	NI-DNET	object	are	listed	in	NI-DNET
Objects.

Values 80000000	to	8000FFFF	hex	(high	bit	differentiates	from
DeviceNet	IDs)

SizeofAttr
Description For	C,	this	is	the	size	of	the	buffer	referenced	by	Attr.	It	is

used	to	verify	that	you	have	enough	bytes	available	to	store
the	attribute's	value.	This	size	is	normally	obtained	using	the
C	language	sizeof	function.

For	LabVIEW,	since	the	buffer	for	Attr	is	allocated
automatically	by	NI-DNET,	this	size	is	not	needed.

Values sizeof	(buffer	referenced	by	Attr)

Attr
Description Returned	attribute	value.	The	value	is	usually	returned	in	an

unsigned	32-bit	integer	(and	thus	Attr	is	of	type
NCTYPE_UINT32_P).

Values Value	of	NI-DNET	attribute



Examples
LabVIEW
Get	the	DeviceNet	protocol	version	supported	by	NI-DNET.

C
Get	the	version	of	the	NI-DNET	software	using	the	Interface	Object
referenced	by	objh.

NCTYPE_STATUS	 status;
NCTYPE_OBJH	 objh;
NCTYPE_VERSION	 swver;
status	=	ncGetDriverAttr(objh,	NC_ATTR_SOFTWARE_VERSION,	
	 	 	 sizeof(swver),	&swver);



ncOpenDnetExplMsg	(Open	DeviceNet	Explicit
Messaging)
Purpose
Configure	and	open	an	NI-DNET	Explicit	Messaging	Object.



Format
LabVIEW

C
NCTYPE_STATUS

ncOpenDnetExplMsg(	NCTYPE_STRING	 IntfName,
	 	 	NCTYPE_UINT32	 DeviceMacId,
	 	 	NCTYPE_OBJH_P	 ObjHandle);



Input
IntfName Name	of	DeviceNet	interface
DeviceMacId MAC	ID	of	the	remote	device



Output
ObjHandle Object	handle	you	use	with	all	subsequent	function	calls

for	the	Explicit	Messaging	Object



Function	Description
ncOpenDnetExplMsg	configures	and	opens	an	NI-DNET	Explicit
Messaging	Object	and	returns	a	handle	that	you	use	with	all	subsequent
function	calls	for	that	object.
The	Explicit	Messaging	Object	represents	an	explicit	messaging
connection	to	a	remote	DeviceNet	device.	Since	only	one	explicit
messaging	connection	is	created	for	a	given	device,	the	Explicit
Messaging	Object	is	also	used	for	features	which	apply	to	the	device	as	a
whole.
Use	the	Explicit	Messaging	Object	to	do	the	following:

Execute	the	DeviceNet	Get	Attribute	Single	service	on	the	remote
device	(ncGetDnetAttribute).
Execute	the	DeviceNet	Set	Attribute	Single	service	on	the	remote
device	(ncSetDnetAttribute).
Send	any	other	explicit	message	request	to	the	remote	device	and
receive	the	associated	explicit	message	response
(ncWriteDnetExplMsg,	ncReadDnetExplMsg).
Configure	NI-DNET	settings	that	apply	to	the	entire	remote	device.



Parameter	Descriptions
IntfName
Description Name	of	the	DeviceNet	interface	as	an	ASCII	string	with

format	"DNETx",	where	x	is	a	decimal	number	starting	at
zero	that	indicates	which	DeviceNet	interface	is	being	used.
You	associate	DeviceNet	interface	names	with	physical
ports	using	Measurement	&	Automation	Explorer	(MAX).

Values "DNET0",	"DNET1",	..."DNET31"

In	LabVIEW,	the	interface	name	is	selected	from	an
enumerated	list.	The	LabWindows/CVI	function	panel	also
provides	an	enumerated	list.

DeviceMacId
Description MAC	ID	(device	address)	of	the	remote	DeviceNet	device.

Many	devices	use	physical	switches	to	set	their	MAC	ID.
For	such	devices,	you	can	usually	determine	the	device's
MAC	ID	by	examining	those	switches.	MAC	ID	63	is	usually
reserved	for	new	devices	(many	devices	use	63	as	the
factory	default).

If	you	do	not	know	the	MAC	ID	of	your	DeviceNet	device,
NI-DNET	provides	a	utility	which	can	display	the	MAC	ID	for
you.	This	utility,	Configurator,	is	described	in	the	NI-DNET
User	Manual.

Values 0	to	63

ObjHandle
Description If	the	ncOpenDnetExplMsg	function	is	successful,	a	handle	to

the	newly	opened	Explicit	Messaging	Object	is	returned	in
ObjHandle.	This	handle	is	used	with	all	subsequent	function
calls	for	that	Explicit	Messaging	Object.

The	functions	most	commonly	used	with	the	Explicit
Messaging	Object	are	ncGetDnetAttribute	and
ncSetDnetAttribute.



Values The	encoding	of	ObjHandle	is	internal	to	NI-DNET.



Examples
LabVIEW
Open	an	Explicit	Messaging	Object	using	interface	"DNET2"	and	device
MAC	ID	15.

C
Open	an	Explicit	Messaging	Object	using	interface	"DNET0"	and	device
MAC	ID	12.

NCTYPE_STATUS	 status;
NCTYPE_OBJH	 objh;
status	=	ncOpenDnetExplMsg("DNET0",	12,	&objh);



ncOpenDnetIntf	(Open	DeviceNet	Interface)
Purpose
Configure	and	open	an	NI-DNET	Interface	Object.



Format
LabVIEW

C
NCTYPE_STATUS

ncOpenDnetIntf(	 NCTYPE_STRING	IntfName,
	 	 NCTYPE_UINT32	IntfMacId,
	 	 NCTYPE_UINT32>	 BaudRate,
	 	 NCTYPE_UINT32	PollMode,
	 	 NCTYPE_OBJH_P	ObjHandle);



Input
IntfName Name	of	DeviceNet	interface
IntfMacId MAC	ID	of	the	DeviceNet	interface
BaudRate Baud	rate
PollMode Communication	scheme	for	all	polled	I/O	connections



Output
ObjHandle Object	handle	you	use	with	all	subsequent	function	calls

for	the	Interface	Object



Function	Description
ncOpenDnetIntf	configures	and	opens	an	NI-DNET	Interface	Object	and
returns	a	handle	that	you	use	with	all	subsequent	function	calls	for	that
object.
The	Interface	Object	represents	a	DeviceNet	interface.	Since	this
interface	acts	as	a	device	on	the	DeviceNet	network	much	like	any	other
device,	it	is	configured	with	its	own	MAC	ID	and	baud	rate.
Use	the	Interface	Object	to	do	the	following:

Configure	NI-DNET	settings	which	apply	to	the	entire	interface.
Start	and	stop	communication	for	all	NI-DNET	objects	associated
with	the	interface.

The	Interface	Object	must	be	the	first	NI-DNET	object	opened	by	your
application,	and	thus	ncOpenDnetIntf	must	be	the	first	NI-DNET	function
called	by	your	application.



Parameter	Descriptions
IntfName
Description Name	of	the	DeviceNet	interface	as	an	ASCII	string	with

format	"DNETx",	where	x	is	a	decimal	number	starting	at
zero	that	indicates	which	DeviceNet	interface	is	being	used.
You	associate	DeviceNet	interface	names	with	physical
ports	using	Measurement	&	Automation	Explorer	(MAX).

Values "DNET0",	"DNET1",	..."DNET31"

In	LabVIEW,	the	interface	name	is	selected	from	an
enumerated	list.	The	LabWindows/CVI	function	panel	also
provides	an	enumerated	list.

IntfMacId
Description MAC	ID	(device	address)	of	the	DeviceNet	interface.	This	is

the	MAC	ID	used	by	your	DeviceNet	interface	for
communication	with	other	DeviceNet	devices.

A	device's	MAC	ID	indicates	the	priority	of	its	DeviceNet
messages	on	the	network,	with	lower	numbered	MAC	IDs
having	higher	priority.	If	your	DeviceNet	interface	is	the	only
master	in	the	network	(the	usual	case),	this	MAC	ID	is	often
set	to	0.

Values 0	to	63

BaudRate
Description Baud	rate	used	for	communication	on	the	network

connected	to	the	DeviceNet	interface.	The	DeviceNet
protocol	supports	baud	rates	of	125,000,	250,000,	and
500,000	b/s.

Values 125000,	250000,	or	500000

In	LabVIEW,	you	select	the	baud	rate	from	an	enumerated
list.	The	LabWindows/CVI	function	panel	also	provides	an
enumerated	list.

PollMode



Description Determines	the	communication	scheme	used	for	all	polled
I/O	connections	in	which	the	interface	acts	as	a	master.	The
poll	mode	determines	the	overall	scheme	used	to	transmit
poll	requests	to	slave	devices.

Automatic
The	default	poll	mode	is	Automatic.	Use	this	mode	if	you	do
not	want	to	specify	exact	timing	for	polled	and	strobed	I/O
connections.	In	Automatic	mode,	the	NI-DNET	software
automatically	calculates	a	safe	rate	for	production	of	all	poll
requests	and	strobe	requests.	This	mode	is	similar	to
Scanned	mode,	except	that	you	do	not	need	to	specify	a	valid
ExpPacketRate	for	each	polled/strobed	I/O	Object
(ExpPacketRate	is	ignored).
If	you	use	Automatic,	you	cannot	call	the	ncOpenDnetIO
function	while	communicating	(after	ncOperateDnetIntf	with
Start),	because	the	automatic	rate	calculation	occurs	during
Start.	Use	Scanned	or	Individual	if	you	need	to	open	I/O
connections	while	communicating.
Scanned
This	mode	enables	the	traditional	scanned	I/O	scheme	for
polled	and	strobed	I/O	connections.	In	Scanned	mode,	all	poll
requests	and	strobe	requests	are	produced	in	quick
succession,	then	NI-DNET	waits	to	receive	individual
responses.	The	benefits	of	scanned	I/O	are	reduced
overhead	and	improved	overall	determinism	on	the
DeviceNet	network.
When	using	Scanned	mode,	since	all	poll	and	strobe
requests	are	produced	at	the	same	time,	you	normally	set
the	ExpPacketRate	for	all	polled	and	strobed	I/O	Objects	to	a
common	value.
If	you	need	to	isolate	devices	that	are	slow	to	respond	to
poll	requests,	it	is	possible	to	use	different	ExpPacketRate
values	while	still	maintaining	the	benefits	of	scanned	I/O.
You	can	set	all	ExpPacketRate	values	for	polled	I/O	Objects
as	two	groups:	one	foreground	group,	and	a	second
background	group	whose	ExpPacketRate	is	an	exact	multiple



of	the	foreground	group's.	All	strobed	I/O	must	use	the	same
rate	as	the	foreground	group	for	polled	I/O.	For	example,
you	can	set	some	polled	I/O	(and	all	strobed	I/O)	to	a
common	foreground	rate	of	100	ms,	and	other	polled	I/O	to
a	background	rate	of	500	ms.	To	maintain	overall	network
determinism,	the	background	poll	requests	are	interspersed
evenly	among	each	foreground	scan.
Individual
This	mode	enables	you	to	configure	poll	rates	individually
for	each	polled	I/O	connection.	In	Individual	mode,	poll
requests	are	not	produced	as	a	group,	but	instead	each
polled	I/O	connection	communicates	at	an	independent	rate.
The	rate	at	which	each	poll	request	is	produced	is
determined	solely	by	the	ExpPacketRate	of	that	connection's
I/O	Object.
Use	individual	polling	when	you	have	detailed	knowledge	of
the	time	it	takes	each	device	to	perform	its	physical
measurement	or	control	function.	For	example,	if	you	have	a
discrete	input	device	capable	of	acquiring	a	new
measurement	every	10	ms,	an	analog	input	device	with	a
measurement	rate	of	45	ms,	and	a	temperature	sensor	with
a	measurement	rate	of	200	ms,	you	could	use	individual
polling	to	communicate	with	each	device	at	its	exact
measurement	rate.	Since	communication	occurs	only	at	the
actual	rate	needed	for	each	device,	individual	polling	often
provides	optimum	network	usage.
For	additional	information	on	PollMode	and	ExpPacketRate,
refer	to	the	NI-DNET	User	Manual.

Values Automatic	(constant	NC_POLL_AUTO,	value	0)

Scanned	(constant	NC_POLL_SCAN,	value	1)

Individual	(constant	NC_POLL_INDIV,	value	2)

In	LabVIEW,	you	select	the	poll	mode	from	an	enumerated
list.	The	LabWindows/CVI	function	panel	also	provides	an
enumerated	list.



ObjHandle
Description If	the	ncOpenDnetIntf	function	is	successful,	a	handle	to	the

newly	opened	Interface	Object	is	returned	in	ObjHandle.	This
handle	is	used	with	all	subsequent	function	calls	for	that
Interface	Object.

The	function	most	commonly	used	with	the	Interface	Object
is	ncOperateDnetIntf.

Values The	encoding	of	ObjHandle	is	internal	to	NI-DNET.



Examples
LabVIEW
Open	Interface	Object	"DNET1"	using	baud	rate	500000,	MAC	ID	3,	and
poll	mode	Scanned.

C
Open	Interface	Object	"DNET0"	using	baud	rate	125000,	MAC	ID	0,	and
poll	mode	Automatic.

NCTYPE_STATUS	 status;
NCTYPE_OBJH	 objh;
status	=	ncOpenDnetIntf("DNET0",	0,	125000,	NC_POLL_AUTO,	&objh);



ncOpenDnetIO	(Open	DeviceNet	I/O)
Purpose
Configure	and	open	an	NI-DNET	I/O	Object.



Format
LabVIEW

C
NCTYPE_STATUS

ncOpenDnetIO(	 NCTYPE_STRING	IntfName,
	 	 NCTYPE_UINT32	DeviceMacId,
	 	 NCTYPE_UINT32	ConnectionType,
	 	 NCTYPE_UINT32	InputLength,
	 	 NCTYPE_UINT32	OutputLength,
	 	 NCTYPE_UINT32	ExpPacketRate,
	 	 NCTYPE_OBJH_P	 ObjHandle);



Input
IntfName Name	of	DeviceNet	interface
DeviceMacId MAC	ID	of	the	remote	device
ConnectionType Type	of	I/O	connection
InputLength Number	of	input	bytes
OutputLength Number	of	output	bytes
ExpPacketRate Expected	rate	of	I/O	message	(packet)	production



Output
ObjHandle Object	handle	you	use	with	all	subsequent	function	calls

for	the	I/O	Object



Function	Description
ncOpenDnetIO	configures	and	opens	an	NI-DNET	I/O	Object	and	returns
a	handle	that	you	use	with	all	subsequent	function	calls	for	that	object.
The	I/O	Object	represents	an	I/O	connection	to	a	remote	DeviceNet
device.	The	I/O	Object	usually	represents	I/O	communication	as	a	master
with	a	remote	slave	device.	If	your	computer	is	essentially	being	used	as
the	primary	controller	of	your	DeviceNet	devices,	you	should	configure
I/O	communication	as	a	master.
You	can	also	configure	the	I/O	Object	for	I/O	communication	as	a	slave
with	a	remote	master.	If	your	computer	is	essentially	being	used	as	a
peripheral	device	for	another	primary	controller,	you	can	configure	I/O
communication	as	a	slave.	This	is	done	by	setting	the	I/O	Object's
DeviceMacId	to	the	same	MAC	ID	as	the	Interface	Object	(IntfMacId
parameter	of	ncOpenDnetIntf).
The	I/O	Object	supports	as	many	master/slave	I/O	connections	as
currently	allowed	by	the	DeviceNet	Specification	(version	2.0).	This
means	that	you	can	use	polled,	strobed,	and	COS/cyclic	I/O	connections
simultaneously	for	a	given	device.	As	specified	by	the	DeviceNet
Specification,	you	can	only	use	one	master/slave	I/O	connection	of	a
given	type	for	each	device	(MAC	ID).	For	example,	you	cannot	open	two
polled	I/O	connections	for	the	same	device.
Use	the	I/O	Object	to	do	the	following:

Read	data	from	the	most	recent	message	received	on	the	I/O
connection	(ncReadDnetIO).
Write	data	for	the	next	message	produced	on	the	I/O	connection
(ncWriteDnetIO).



Parameter	Descriptions
IntfName
Description Name	of	the	DeviceNet	interface	as	an	ASCII	string	with

format	"DNETx",	where	x	is	a	decimal	number	starting	at
zero	that	indicates	which	DeviceNet	interface	is	being	used.
You	associate	DeviceNet	interface	names	with	physical
ports	using	Measurement	&	Automation	Explorer	(MAX).

Values "DNET0",	"DNET1",	..."DNET31"

In	LabVIEW,	you	select	the	interface	name	from	an
enumerated	list.	The	LabWindows/CVI	function	panel	also
provides	an	enumerated	list.

DeviceMacId
Description MAC	ID	(device	address)	of	the	remote	DeviceNet	device.

Many	devices	use	physical	switches	to	set	their	MAC	ID.
For	such	devices,	you	can	usually	determine	the	device's
MAC	ID	by	examining	those	switches.	MAC	ID	63	is	usually
reserved	for	new	devices	(many	devices	use	63	as	the
factory	default).

If	you	do	not	know	the	MAC	ID	of	your	DeviceNet	device,
NI-DNET	provides	a	utility	which	can	display	the	MAC	ID	for
you.	This	utility,	Configurator,	is	described	in	the	NI-DNET
User	Manual.

For	I/O	communication	as	a	master	to	a	remote	slave	device
(the	usual	case),	DeviceMacId	is	the	MAC	ID	of	the	remote
DeviceNet	slave	device,	and	thus	must	be	different	than	the
MAC	ID	of	your	DeviceNet	interface.	If	you	want	to	configure
I/O	communication	as	a	slave	with	a	remote	master,	set
DeviceMacId	to	the	same	MAC	ID	as	your	DeviceNet
interface	(the	IntfMacId	parameter	of	your	previous	call	to
ncOpenDnetIntf).	By	associating	the	I/O	Object	with	your
DeviceNet	interface	in	this	manner,	you	indicate	that	it
represents	I/O	communication	as	a	slave.



Values 0	to	63

ConnectionType
Description Type	of	master/slave	I/O	connection.	The	connection	type	is

either	Polled,	Strobed,	change-of-state	(COS),	or	Cyclic.	As
specified	by	the	DeviceNet	Specification,	you	can	use	only
one	master/slave	I/O	connection	of	a	given	type	for	each
device	(MAC	ID).	For	example,	you	cannot	open	two	polled
I/O	connections	for	the	same	device.

If	you	do	not	know	the	I/O	connection	types	supported	by
your	DeviceNet	device,	NI-DNET	provides	a	utility	which
queries	the	device	for	both	this	information	and	the	device's
supported	input	and	output	lengths.	This	utility,	Configurator,
is	described	in	the	NI-DNET	User	Manual.	Change-of-state
(COS)	and	cyclic	I/O	connections	are	acknowledged	by
default.	If	you	want	to	suppress	acknowledgments	for	these
I/O	connections,	set	the	Ack	Suppress	driver	attribute	to	true
prior	to	starting	communication.	For	more	information,	refer
to	the	description	of	the	I/O	Object.

Values Poll	(constant	NC_CONN_POLL,	value	0)

Strobe	(constant	NC_CONN_STROBE,	value	1)

COS	(constant	NC_CONN_COS,	value	2)

Cyclic	(constant	NC_CONN_CYCLIC,	value	3)

In	LabVIEW,	you	select	the	connection	type	from	an
enumerated	list.	The	LabWindows/CVI	function	panel	also
provides	an	enumerated	list.

InputLength
Description Number	of	input	bytes	for	the	I/O	connection.	This	is	the

number	of	bytes	read	from	the	I/O	connection	using	the
ncReadDnetIO	function.

The	following	information	is	specific	to	the	ConnectionType
setting.



Poll,	COS,	and	Cyclic
For	these	I/O	connection	types,	the	input	length	is	the	same
as	the	number	of	bytes	consumed	from	the	remote	device.
Strobe	as	master	(DeviceMacId	not	equal	to	IntfMacId)
For	this	I/O	connection,	the	input	length	is	the	same	as	the
number	of	bytes	consumed	from	the	strobe	response
message,	and	must	have	a	value	from	0	to	8.
Strobe	as	slave	(DeviceMacId	equal	to	IntfMacId)
For	this	I/O	connection,	the	input	length	must	have	a	value
of	1.	The	input	data	consists	of	a	single	Boolean	value	(bit)
obtained	from	the	master's	strobe	command	message	using
IntfMacId.	This	Boolean	value	is	returned	from	the
ncReadDnetIO	function	as	a	single	byte.

Values Poll,	COS,	and	Cyclic:	0	to	255

Strobe	as	master	(DeviceMacId	not	equal	to	IntfMacId):	0	to	8

Strobe	as	slave	(DeviceMacId	equal	to	IntfMacId):	1

OutputLength
Description Number	of	output	bytes	for	the	I/O	connection.	This	is	the

number	of	bytes	written	to	the	I/O	connection	using	the
ncWriteDnetIO	function.

The	following	information	is	specific	to	the	ConnectionType
setting.

Poll,	COS,	and	Cyclic
For	these	I/O	connections	types,	the	output	length	is	the
same	as	the	number	of	bytes	produced	to	the	remote
device.
Strobe	as	master	(DeviceMacId	not	equal	to	IntfMacId)
For	this	I/O	connection,	the	output	length	must	have	a	value
of	1.	The	output	data	consists	of	a	single	Boolean	value	(bit)
which	is	placed	into	the	strobe	command	message	using



DeviceMacId.	This	Boolean	value	is	provided	to	the
ncWriteDnetIO	function	as	a	single	byte.
Strobe	as	slave	(DeviceMacId	equal	to	IntfMacId)
For	this	I/O	connection,	the	output	length	must	have	a	value
from	0	to	8.	The	output	length	is	the	same	as	the	number	of
bytes	produced	in	the	strobe	response	message.

Values Poll,	COS,	and	Cyclic:	0	to	255

Strobe	as	master	(DeviceMacId	not	equal	to	IntfMacId):	1

Strobe	as	slave	(DeviceMacId	equal	to	IntfMacId):	0	to	8

ExpPacketRate
Description Expected	rate	of	I/O	message	(packet)	production	in

milliseconds.

As	specified	in	the	DeviceNet	Specification,	the	expected
packet	rate	is	used	to	trigger	data	productions.	The
expected	packet	rate	is	also	used	for	the	watchdog	timer	to
verify	that	the	device	on	the	other	side	of	the	I/O	connection
still	exists	and	is	producing	data	as	expected.	The	expected
packet	rate	of	each	I/O	connection	is	a	major	factor	in
determining	the	overall	performance	of	your	DeviceNet
network.

The	following	information	is	specific	to	the	ConnectionType
setting	and	the	PollMode	setting	of	your	Interface	Object.

Strobe	with	Automatic	poll	mode
When	using	the	Automatic	poll	mode,	the	ExpPacketRate
setting	is	ignored	for	strobed	I/O	Objects.	The	rate	of
production	for	the	strobe	command	message	is	determined
automatically	by	NI-DNET.
Strobe	with	Scanned	or	Individual	poll	mode
When	using	the	Scanned	or	Individual	poll	mode,	you	must
set	the	ExpPacketRate	to	the	same	value	for	all	strobed	I/O
Objects.	Since	a	single	strobe	command	message	is



produced	for	all	strobed	I/O	connections,	the	rate	of
production	for	that	message	must	be	identical	for	all	strobed
I/O	Objects.
Poll	with	Automatic	poll	mode
When	using	the	Automatic	poll	mode,	the	ExpPacketRate
setting	is	ignored	for	polled	I/O	Objects.	NI-DNET
automatically	determines	the	rate	of	production	for	the	poll
command	messages.
Poll	with	Scanned	poll	mode
When	using	the	Scanned	poll	mode,	since	all	poll	and	strobe
requests	are	produced	at	the	same	time,	you	normally	set
the	ExpPacketRate	for	all	polled/strobed	I/O	Objects	to	a
common	value.
If	you	need	to	isolate	devices	that	are	slow	to	respond	to
poll	requests,	it	is	possible	to	use	different	ExpPacketRate
values	while	still	maintaining	the	benefits	of	scanned	I/O.
You	can	set	all	ExpPacketRate	values	for	polled	I/O	Objects
as	two	groups,	one	foreground	group,	and	a	second
background	group	whose	ExpPacketRate	is	an	exact	multiple
of	the	foreground	group's.	All	strobed	I/O	must	use	the	same
rate	as	the	foreground	group	for	polled	I/O.	For	example,
you	can	set	some	polled	I/O	(and	all	strobed	I/O)	to	a
common	foreground	rate	of	100	ms,	and	other	polled	I/O	to
a	background	rate	of	500	ms.	To	maintain	overall	network
determinism,	the	background	poll	requests	are	interspersed
evenly	among	each	foreground	scan.
Poll	with	Individual	poll	mode
When	using	the	Individual	poll	mode,	the	ExpPacketRate
determines	the	rate	at	which	the	poll	request	of	each	polled
I/O	Object	is	produced.	Although	all	strobed	I/O	Objects
must	still	use	the	same	rate,	each	polled	I/O	Object
communicates	at	a	rate	which	is	independent	of	all	other	I/O
connections.
Change-of-state	(COS)	with	any	poll	mode
For	COS	I/O	Objects,	the	ExpPacketRate	is	used	solely	to
verify	that	the	I/O	connection	still	exists.	If	no	change	in	data



produces	I/O	message	within	the	expected	packet	rate,	the
previous	data	is	produced	again	to	maintain	the	I/O
connection.	Since	this	rate	is	used	solely	to	maintain	the	I/O
connection,	it	is	often	set	to	a	large	value,	such	as	10000	(10
seconds).
In	addition	to	the	expected	packet	rate,	COS	I/O
connections	also	produce	an	I/O	message	when	a	change	is
detected	in	the	data.	These	I/O	change	messages	do	not
occur	at	a	predetermined	rate.	The	time	between	each	I/O
change	message	depends	on	when	an	actual	change	takes
place	and	how	fast	the	device	can	measure	new	data	and
detect	changes.
Cyclic	with	any	poll	mode
For	cyclic	I/O	Objects,	the	ExpPacketRate	determines	the	rate
at	which	the	I/O	message	is	produced.	Each	cyclic	I/O
Object	communicates	at	a	rate	which	is	independent	of	all
other	I/O	connections.
Note	regarding	I/O	as	a	slave	(DeviceMacId	equal	to
IntfMacId)
The	ExpPacketRate	setting	applies	only	to	I/O	Objects	used
for	communication	as	a	master	(the	usual	case).	For	I/O
Objects	used	for	communication	as	a	slave,	this	setting	is
ignored	because	the	remote	master	determines	the
expected	packet	rate	on	behalf	of	your	slave	I/O	connection.

Values 1	to	60000

ObjHandle
Description If	the	ncOpenDnetIO	function	is	successful,	a	handle	to	the

newly	opened	I/O	Object	is	returned	in	ObjHandle.	This
handle	is	used	with	all	subsequent	function	calls	for	that	I/O
Object.

The	functions	most	commonly	used	with	the	I/O	Object	are
ncReadDnetIO	and	ncWriteDnetIO.

Values The	encoding	of	ObjHandle	is	internal	to	NI-DNET.



Examples
LabVIEW
Open	an	I/O	Object	using	interface	"DNET2",	device	MAC	ID	15,
connection	type	Poll,	input	length	14,	output	length	6,	and	expected
packet	rate	40	ms.

C
Open	an	I/O	Object	using	interface	"DNET0",	device	MAC	ID	12,
connection	type	Strobe,	input	length	2,	output	length	1,	and	expected
packet	rate	100	ms.

NCTYPE_STATUS	 status;
NCTYPE_OBJH	 objh;
status	=	ncOpenDnetIO("DNET0",	12,	,NC_CONN_STROBE,	2,	1,	100,	&objh);



ncOperateDnetIntf	(Operate	DeviceNet	Interface)
Purpose
Perform	an	operation	on	an	NI-DNET	Interface	Object.



Format
LabVIEW

C
NCTYPE_STATUS

ncOperateDnetIntf	 (NCTYPE_OBJH	 ObjHandle,
	 	 	NCTYPE_UINT32	 Opcode,
	 	 	NCTYPE_UINT32	 Param);



Input
ObjHandle Object	handle	of	an	open	Interface	Object
Opcode Operation	code	indicating	which	operation	to	perform
Param Parameter	whose	meaning	is	defined	by	Opcode



Output
None



Function	Description
ncOperateDnetIntf	operates	on	an	NI-DNET	Interface	Object.
Use	ncOperateDnetIntf	to	start	and	stop	all	DeviceNet	communication	for
the	associated	interface,	including	all	explicit	messaging	and	I/O
connections.	After	you	open	the	Explicit	Messaging	Objects	and	I/O
Objects	required	by	your	application,	you	must	use	ncOperateDnetIntf	to
start	communication.	You	must	also	use	ncOperateDnetIntf	to	stop
communication	before	terminating	your	application.



Parameter	Descriptions
ObjHandle
Description ObjHandle	must	contain	an	object	handle	returned	from	the

ncOpenDnetIntf	function.

In	LabVIEW,	ObjHandle	passes	through	the	VI	as	an	output
so	that	it	can	be	used	for	subsequent	function	calls	for	the
Interface	Object.

Values The	encoding	of	ObjHandle	is	internal	to	NI-DNET.

Opcode
Description Determines	which	operation	to	perform	on	the	Interface

Object.

Start
Start	all	DeviceNet	communication	for	the	associated
interface.	For	each	Explicit	Messaging	Object	and	I/O
Object	which	has	been	opened	for	the	interface	(same
IntfName),	this	operation	establishes	the	DeviceNet
connection	with	the	remote	device.	When	the	operation
establishes	I/O	connections,	it	places	outputs	into	active
mode	(data	is	produced	on	the	network).	If	the	default
output	data	(all	bytes	zero)	is	not	valid	for	your	application,
use	ncWriteDnetIO	for	each	I/O	Object	to	initialize	valid
output	data	prior	to	starting	communication.	If	the	interface
has	already	been	started,	this	operation	has	no	effect.
Stop
Stop	all	DeviceNet	communication	for	the	associated
interface.	For	each	Explicit	Messaging	Object	and	I/O
Object	which	has	been	opened	for	the	interface,	this
operation	closes	the	DeviceNet	connection	with	the	remote
device.	Although	closing	all	NI-DNET	objects	implicitly	stops
communication,	you	should	perform	this	operation	prior	to
calling	ncCloseObject.	If	the	interface	has	already	been
stopped,	this	operation	has	no	effect.
Active



Place	the	outputs	of	all	I/O	connections	into	active	mode.
When	an	I/O	connection	is	in	active	mode,	it	produces	data
in	its	outgoing	I/O	message.	This	operation	is	used	after	a
previous	Idle	to	restore	normal	communication	on	all	I/O
Objects	associated	with	the	interface.	If	the	interface	has
already	been	placed	into	active	mode	or	is	stopped,	this
operation	has	no	effect.
Idle
Place	the	outputs	of	all	I/O	connections	into	the	idle	mode.
When	an	I/O	connection	is	in	the	idle	mode,	it	does	not
produce	data	in	its	outgoing	I/O	message,	but	the	I/O
connection	is	kept	open	by	producing	an	I/O	message	with
zero	data	bytes.	Use	this	operation	when	valid	output	data	is
no	longer	available	from	your	application,	such	as	when	a
control	algorithm	has	been	paused.	If	the	interface	has
already	been	placed	into	idle	mode	or	is	stopped,	this
operation	has	no	effect.

Note		The	DeviceNet	Specification	does	not	clearly
define	the	behavior	of	a	slave	device	on	reception	of
an	idle	(zero	length)	I/O	message.	Many	slave
devices	exhibit	unexpected	behavior	when	the	Idle
operation	is	used.	If	you	need	to	suspend	your
application,	but	want	to	keep	I/O	connections	open,
you	should	provide	valid	idle	values	for	outputs	using
ncWriteDnetIO	rather	than	use	the	Idle	operation.

Values Start	(constant	NC_OP_START,	value	1)

Stop	(constant	NC_OP_STOP,	value	2)

Active	(constant	NC_OP_ACTIVE,	value	4)

Idle	(constant	NC_OP_IDLE,	value	5)

In	LabVIEW,	you	select	the	operation	code	from	an
enumerated	list.	The	LabWindows/CVI	function	panel	also
provides	an	enumerated	list.

Param



Description The	meaning	of	Param	is	defined	by	each	operation	code
(Opcode).	Since	none	of	the	operations	currently	use	this
additional	parameter,	it	is	ignored	and	you	should	normally
set	it	to	zero.	In	the	future,	if	new	operations	require	some
form	of	qualifying	information,	this	parameter	might	be	used.

Values 0



Examples
LabVIEW
Start	communication	using	an	Interface	Object.

C
Stop	communication	for	the	Interface	Object	referenced	by	objh.

NCTYPE_STATUS	 status;
NCTYPE_OBJH	 objh;
status	=	ncOperateDnetIntf(objh,	NC_OP_STOP,	0);



ncReadDnetExplMsg	(Read	DeviceNet	Explicit
Message)
Purpose
Read	an	explicit	message	response	from	an	Explicit	Messaging	Object.



Format
LabVIEW

C
NCTYPE_STATUS

ncReadDnetExplMsg(	 NCTYPE_OBJH	 ObjHandle,
	 	 NCTYPE_UINT8_P	 ServiceCode,
	 	 NCTYPE_UINT16	SizeofServData,
	 	 NCTYPE_ANY_P	ServData,
	 	 NCTYPE_UINT16_P	 ActualServ
	 	 	 	 DataLength);



Input
ObjHandle Object	handle	of	an	open	Explicit	Messaging	Object
SizeofServData Size	of	ServData	buffer	in	bytes	(C	only)



Output
ServiceCode DeviceNet	service	code	from	response
ServData Service	data	from	response
ActualServDataLength Actual	number	of	service	data	bytes	in	response



Function	Description
ncReadDnetExplMsg	reads	an	explicit	message	response	from	an	Explicit
Messaging	Object.
The	two	most	commonly	used	DeviceNet	explicit	messages	are	the	Get
Attribute	Single	service	and	the	Set	Attribute	Single	service.	The	easiest
way	to	execute	the	Get	Attribute	Single	service	on	a	remote	device	is	to
use	the	NI-DNET	ncGetDnetAttribute	function.	The	easiest	way	to	execute
the	Set	Attribute	Single	service	on	a	remote	device	is	to	use	the	NI-DNET
ncSetDnetAttribute	function.
To	execute	services	other	than	Get	Attribute	Single	and	Set	Attribute
Single,	use	the	following	sequence	of	function	calls:	ncWriteDnetExplMsg,
ncWaitForState,	ncReadDnetExplMsg.	The	ncWriteDnetExplMsg	function
sends	an	explicit	message	request	to	a	remote	DeviceNet	device.	The
ncWaitForState	function	waits	for	the	explicit	message	response,	and	the
ncReadDnetExplMsg	function	reads	that	response.
Some	of	the	DeviceNet	services	which	use	ncReadDnetExplMsg	are
Reset,	Save,	Restore,	Get	Attributes	All,	and	Set	Attributes	All.	Although
the	DeviceNet	Specification	defines	the	overall	format	of	these	services,
in	most	cases	their	meaning	and	service	data	are	object	specific	or
vendor	specific.	Unless	your	device	requires	such	services	and
documents	them	in	detail,	you	probably	do	not	need	them	for	your
application.	For	more	information,	refer	to	the	NI-DNET	User	Manual.



Parameter	Descriptions
ObjHandle
Description ObjHandle	must	contain	an	object	handle	returned	from

ncOpenDnetExplMsg.

In	LabVIEW,	ObjHandle	passes	through	the	VI	as	an	output
so	that	it	can	be	used	for	subsequent	function	calls	for	the
object.

Values The	encoding	of	ObjHandle	is	internal	to	NI-DNET.

ServiceCode
Description Identifies	the	service	response	as	either	success	or	error.	If

the	response	is	success,	this	value	is	the	same	as	the
ServiceCode	of	the	request	(ncWriteDnetExplMsg),	and	the
ServData	bytes	are	formatted	as	defined	by	the	service.	If	the
response	is	error,	this	value	is	14	hex,	ServData[0]	contains	a
General	Error	Code,	and	ServData[1]	contains	an	Additional
Code.	Either	the	DeviceNet	Specification	or	the	object	itself
define	the	error	codes.

Although	the	DeviceNet	Specification	requires	the	high	bit	of
the	service	code	(hex	80)	to	be	set	in	all	explicit	message
responses,	NI-DNET	clears	this	response	indicator	so	that
you	can	compare	the	actual	service	code	to	the	value	used
with	ncWriteDnetExplMsg.

Values Same	as	the	ServiceCode	of	ncWriteDnetExplMsg	(success
response)	or	14	hex	(error	response)

SizeofServData
Description For	C,	this	is	the	size	of	the	buffer	referenced	by	ServData.

Use	it	to	verify	that	you	have	enough	bytes	available	to	store
the	service	data	from	the	response.	This	size	is	normally
obtained	using	the	C	language	sizeof	function	and	has	no
direct	relation	to	the	number	of	bytes	received	on	the
network.

For	LabVIEW,	since	the	buffer	for	ServData	is	allocated



automatically	by	NI-DNET,	this	size	is	not	needed.

The	number	of	bytes	allocated	for	ServData	should	be	large
enough	to	hold	the	maximum	number	of	service	data
response	bytes	defined	for	the	service.

Values sizeof	(buffer	referenced	by	ServData)

ServData
Description Service	data	bytes	from	response.	If	the	response	is

success,	these	bytes	are	formatted	as	defined	by	the
service.	If	the	response	is	error,	the	first	byte	(ServData[0])
contains	a	General	Error	Code,	and	the	second	byte
(ServData[1])	contains	an	Additional	Code.	Either	the
DeviceNet	Specification	or	the	object	itself	define	the	error
codes.

The	number	of	service	data	bytes	returned	is	the	smaller	of
SizeofServData	and	ActualServDataLength.

Values Service	data	bytes	from	response

ActualServDataLength
Description Actual	number	of	service	data	bytes	in	response.	This

length	is	obtained	from	the	actual	response	message.	If	this
length	is	greater	than	SizeofServData,	only	SizeofServData
bytes	are	returned	in	ServData.	If	this	length	is	less	than	or
equal	to	SizeofServData,	ActualServDataLength	bytes	are	valid
in	ServData.

Values 0	to	240



Examples
LabVIEW
Read	an	explicit	message	response	from	an	Explicit	Messaging	Object.

C
Read	an	explicit	message	response	from	the	Explicit	Messaging	Object
referenced	by	objh.

NCTYPE_STATUS	 status;
NCTYPE_OBJH	 objh;
NCTYPE_UINT8	 servcode;
NCTYPE_UINT8	 servdata[20];
NCTYPE_UINT16	actual_len;
status	=	ncReadDnetExplMsg(objh,	&servcode,	20,	servdata,	&actual_len);



ncReadDnetIO	(Read	DeviceNet	I/O)
Purpose
Read	input	data	from	an	I/O	Object.



Format
LabVIEW

C
NCTYPE_STATUS

ncReadDnetIO(	 NCTYPE_OBJH	 ObjHandle,
	 	 NCTYPE_UINT32	SizeofData,
	 	 NCTYPE_ANY_P	Data);



Input
ObjHandle Object	handle	of	an	open	I/O	Object
SizeofData Size	of	Data	buffer	in	bytes	(C	only)



Output
Data Input	data



Function	Description
ncReadDnetIO	reads	input	data	from	an	NI-DNET	I/O	Object.
Since	each	I/O	Object	continuously	acquires	input	data	from	the
DeviceNet	network,	you	normally	wait	for	new	input	to	become	available
prior	to	calling	ncReadDnetIO.	By	waiting	for	new	input	data,	your
application	can	handle	I/O	data	at	the	same	rate	as	the	DeviceNet	I/O
communication.	You	can	use	the	function	ncCreateNotification	(C	only)	or
ncWaitForState	(C	or	LabVIEW)	to	wait	for	new	input	data.
ncReadDnetIO	normally	returns	input	data	bytes	obtained	from	the	input
assembly	of	a	remote	DeviceNet	slave	device.	The	format	of	this	input
assembly	is	normally	documented	either	by	the	device	vendor	or	within
the	DeviceNet	Specification	itself.
The	bytes	of	a	device's	input	assembly	often	consist	of	multiple	data
members	rather	than	a	single	value.	For	C,	you	can	often	obtain	each
data	member	from	the	input	bytes	by	using	typecasting.	For	LabVIEW,
you	can	often	obtain	each	data	member	from	the	input	bytes	using	the
ncConvertFromDnetRead	function.	For	more	information	on	input
assemblies	and	how	to	obtain	individual	data	members,	refer	to	the	NI-
DNET	User	Manual.



Parameter	Descriptions
ObjHandle
Description ObjHandle	must	contain	an	object	handle	returned	from

ncOpenDnetIO.

In	LabVIEW,	ObjHandle	passes	through	the	VI	as	an	output
so	that	it	can	be	used	for	subsequent	function	calls	for	the
object.

Values The	encoding	of	ObjHandle	is	internal	to	NI-DNET.

SizeofData
Description For	C,	SizeofData	is	the	size	of	the	buffer	referenced	by	Data.

Use	it	to	verify	that	you	have	enough	bytes	available	to	store
the	input	bytes.	This	size	is	normally	obtained	using	the	C
language	sizeof	function	and	has	no	direct	relation	to	the
number	of	bytes	received	on	the	network.

For	LabVIEW,	since	the	buffer	for	Data	is	allocated
automatically	by	NI-DNET,	this	size	is	not	needed.

The	actual	number	of	bytes	received	on	the	I/O	connection
is	determined	by	the	InputLength	parameter	of	ncOpenDnetIO
and	not	this	size.

Values sizeof	(buffer	referenced	by	Data)

Data
Description Input	data.	The	format	of	these	input	bytes	is	specific	to	your

DeviceNet	device.
Values Input	data	bytes



Examples
LabVIEW
Read	20	input	bytes	from	an	I/O	Object.

C
Read	10	input	bytes	from	the	I/O	Object	referenced	by	objh.

NCTYPE_STATUS	 status;
NCTYPE_OBJH	 objh;
NCTYPE_UINT8	 input[10];
status	=	ncReadDnetIO(objh,	10,	input);



ncSetDnetAttribute	(Set	DeviceNet	Attribute)
Purpose
Set	an	attribute	value	for	a	DeviceNet	device	using	an	Explicit	Messaging
Object.



Format
LabVIEW

C
NCTYPE_STATUS

ncSetDnetAttribute(
			NCTYPE_OBJH	 		ObjHandle,
			NCTYPE_UINT16	 		ClassId,
			NCTYPE_UINT16	 		InstanceId,
			NCTYPE_UINT8	 		AttributeId,
			NCTYPE_DURATION	 		Timeout,
			NCTYPE_UINT16	 		AttrDataLength,
			NCTYPE_ANY_P	 		AttrData
			NCTYPE_UINT16_P	 		DeviceError);



Input
ObjHandle Object	handle	of	an	open	Explicit	Messaging	Object
ClassId Identifies	the	class	which	contains	the	attribute
InstanceId Identifies	the	instance	which	contains	the	attribute
AttributeId Identifies	the	attribute	to	set
Timeout Maximum	time	to	wait	for	response	from	device
AttrDataLength Number	of	attribute	data	bytes	to	set
AttrData Attribute	value	to	set	in	device



Output
DeviceError Error	codes	from	device's	error	response



Function	Description
ncSetDnetAttribute	sets	the	value	of	an	attribute	for	a	DeviceNet	device
using	an	Explicit	Messaging	Object.
ncSetDnetAttribute	executes	the	Set	Attribute	Single	service	on	a	remote
DeviceNet	device.
The	DeviceNet	data	type	in	the	attribute's	description	defines	the	format
of	the	data	provided	in	AttrData.	When	using	LabVIEW,	the
ncConvertForDnetWrite	function	can	convert	this	DeviceNet	data	type	from
an	appropriate	LabVIEW	data	type.	When	using	C,	AttrData	can	point	to	a
variable	of	the	appropriate	data	type	as	specified	in	NI-DNET	Data
Types.



Parameter	Descriptions
ObjHandle
Description ObjHandle	must	contain	an	object	handle	returned	from	the

ncOpenDnetExplMsg	function.

In	LabVIEW,	ObjHandle	passes	through	the	VI	as	an	output
so	that	it	can	be	used	for	subsequent	function	calls	for	the
object.

Values The	encoding	of	ObjHandle	is	internal	to	NI-DNET.

ClassId
Description Identifies	the	class	which	contains	the	attribute.	You	can	find

descriptions	and	identifiers	for	each	standard	DeviceNet
class	in	the	DeviceNet	Specification	(Volume	2,	Chapter	6,
The	DeviceNet	Object	Library).	The	device	vendor
documents	vendor-specific	classes.	Although	the	DeviceNet
Specification	allows	16-bit	class	IDs,	most	class	IDs	are	8-
bit.	NI-DNET	automatically	used	the	class	ID	size	(16-bit	or
8-bit)	that	is	appropriate	for	your	device.

Values 00	to	FFFF	hex

InstanceId
Description Identifies	the	instance	which	contains	the	attribute.	Instance

ID	0	sets	an	attribute	in	the	class	itself.	Other	instance	IDs
typically	are	numbered	starting	at	1.	For	example,	the
primary	Identity	Object	in	a	device	uses	instance	ID	1.
Although	the	DeviceNet	Specification	allows	16-bit	instance
IDs,	most	instance	IDs	are	8-bit.	NI-DNET	automatically
uses	the	instance	ID	size	(16-bit	or	8-bit)	that	is	appropriate
for	your	device.

Values 00	to	FFFF	hex

AttributeId
Description Identifies	the	attribute	to	set.	The	class	and	instance

descriptions	list	attribute	IDs.	The	attribute's	description	also
lists	the	DeviceNet	data	type	for	the	attribute's	value.



Values 00	to	FF	hex

Timeout
Description Maximum	time	to	wait	for	response	from	device.	To	set	the

attribute	in	the	device,	an	explicit	message	request	for	the
Set	Attribute	Single	service	is	sent	to	the	device.	After
sending	the	service	request,	this	function	must	wait	for	the
explicit	message	response	for	Set	Attribute	Single.	Timeout
specifies	the	maximum	number	of	milliseconds	to	wait	for
the	response	before	giving	up.	If	the	timeout	expires	before
the	response	is	received,	this	function	returns	a	status	of
BFF62001	hex	(CanErrFunctionTimeout).

For	most	DeviceNet	devices,	a	Timeout	of	100	ms	is
appropriate.

The	special	timeout	value	of	FFFFFFFF	hex	is	used	to	wait
indefinitely.

Values 1	to	1000

or

FFFFFFFF	hex	(infinite	duration,	constant
NC_DURATION_INFINITE)

AttrDataLength
Description Number	of	attribute	data	bytes	to	set.	This	length	also

specifies	the	number	of	bytes	provided	in	AttrData.
Values 0	to	239

AttrData
Description Attribute	value	to	set	in	device.

The	DeviceNet	data	type	in	the	attribute's	description
defines	the	format	of	the	data	provided	in	AttrData.	When
using	LabVIEW,	the	ncConvertForDnetWrite	function	can
convert	this	DeviceNet	data	type	from	an	appropriate
LabVIEW	data	type.	When	using	C,	AttrData	can	point	to	a



variable	of	the	appropriate	data	type	as	specified	in	NI-
DNET	Data	Types.

The	AttrDataLength	parameter	specifies	the	number	of
attribute	data	bytes	to	set.

Values Attribute	value	to	set	in	device.

DeviceError
Description Error	codes	from	device's	error	response.

If	the	remote	device	responds	successfully	to	the	Set
Attribute	Single	service,	the	return	status	is	0	(DnetSuccess),
and	DeviceError	returns	0.

If	the	remote	device	returns	an	error	response	for	the	Set
Attribute	Single	service,	the	return	status	is	BFF62014	hex
(DnetErrErrorResponse),	and	DeviceError	returns	the	error
codes	from	the	response.

The	General	Error	Code	from	the	device's	error	response	is
returned	in	the	low	byte	of	DeviceError.	Common	values	for
General	Error	Code	include	Attribute	Not	Supported	(14
hex),	Object	Does	Not	Exist	(16	hex),	and	Invalid	Attribute
Value	(09	hex).

The	Additional	Code	from	the	device's	error	response	is
returned	in	the	high	byte	of	DeviceError.	The	Additional	Code
provides	additional	information	that	further	describes	the
error.	If	no	additional	information	is	needed,	the	value	FF
hex	is	placed	into	this	field.

The	DeviceNet	Specification	documents	values	for	the
General	Error	Code	and	Additional	Code.	You	can	find
common	error	code	values	in	Appendix	H,	DeviceNet	Error
Codes,	in	the	DeviceNet	Specification.	The	object
description	lists	object-specific	error	codes.	Your	device's
documentation	lists	vendor-specific	error	codes.

Values Error	codes	from	the	device's	error	response.



Examples
LabVIEW
Set	the	Input	Range	attribute	of	an	Analog	Input	Object.	The	Input	Range
is	contained	in	instance	3	of	an	Analog	Input	Object	(class	ID	0A	hex,
instance	ID	3,	attribute	ID	7).	The	DeviceNet	data	type	for	Input	Range	is
USINT,	for	which	the	LabVIEW	data	type	U8	should	be	used.	The
Timeout	is	40	ms.

C
Set	the	MAC	ID	attribute	of	a	remote	DeviceNet	device	using	the	Explicit
Messaging	Object	referenced	by	objh.	The	MAC	ID	is	contained	in	the
DeviceNet	Object	(class	ID	3,	instance	ID	1,	attribute	ID	1).	The
DeviceNet	data	type	for	Device	Type	is	USINT,	for	which	the	NI-DNET
data	type	NCTYPE_UINT8	should	be	used.

NCTYPE_STATUS	 status;
NCTYPE_OBJH	 objh;
NCTYPE_UINT8	 mac_id;
NCTYPE_UINT16	device_error;
mac_id	=	12;
status	=	ncSetDnetAttribute(objh,	0x03,	0x01,	0x01,	100,	1,	&mac_id,	&device_error);



ncSetDriverAttr	(Set	Driver	Attribute)
Purpose
Set	the	value	of	an	attribute	in	the	NI-DNET	driver.



Format
LabVIEW

C
NCTYPE_STATUS

ncSetDriverAttr	 (NCTYPE_OBJH	ObjHandle,
	 	 NCTYPE_ATTRID	AttrId,
	 	 NCTYPE_UINT32	SizeofAttr,
	 	 NCTYPE_ANY_P	Attr)



Input
ObjHandle Object	handle	of	an	open	Explicit	Messaging	Object,	I/O

Object,	or	Interface	Object
AttrId Identifier	of	the	attribute	to	set
SizeofAttr Size	of	the	Attr	buffer	in	bytes	(C	only)
Attr New	attribute	value



Output
None



Function	Description
ncSetDriverAttr	sets	the	value	of	an	attribute	in	the	NI-DNET	driver
software.	NI-DNET	objects	use	attributes	to	represent	configuration
settings,	status,	and	other	information.
Since	you	only	need	to	access	NI-DNET	driver	attributes	under	special
circumstances,	you	seldom	need	to	use	ncSetDriverAttr.	For	information
about	the	attributes	of	each	NI-DNET	object,	refer	to	NI-DNET	Objects.
ncSetDriverAttr	only	applies	to	the	NI-DNET	software	on	your	computer
and	cannot	be	used	to	set	an	attribute	in	a	remote	DeviceNet	device.	To
set	an	attribute	in	a	remote	DeviceNet	device,	use	ncSetDnetAttribute.



Parameter	Descriptions
ObjHandle
Description ObjHandle	must	contain	an	object	handle	returned	from

ncOpenDnetExplMsg,	ncOpenDnetIntf,	or	ncOpenDnetIO.

In	LabVIEW,	ObjHandle	passes	through	the	VI	as	an	output
so	that	it	can	be	used	for	subsequent	function	calls	for	the
object.

Values The	encoding	of	ObjHandle	is	internal	to	NI-DNET.

AttrId
Description Identifier	of	the	NI-DNET	attribute.	For	each	NI-DNET

object,	a	list	of	supported	attribute	identifiers	is	provided	in
NI-DNET	Objects.

Values 80000000	to	8000FFFF	hex	(high	bit	differentiates	from
DeviceNet	IDs)

SizeofAttr
Description For	C,	SizeofAttr	is	the	size	of	the	buffer	referenced	by	Attr.

It	is	used	to	verify	that	the	Attr	buffer	is	large	enough	to	hold
the	attribute's	new	value.	This	size	is	normally	obtained
using	the	C	language	sizeof	function.

For	LabVIEW,	since	Attr	is	obtained	directly	as	an	input,	this
size	is	not	needed.

Values sizeof	(buffer	referenced	by	Attr)

Attr
Description New	attribute	value.	The	value	is	usually	provided	in	an

unsigned	32-bit	integer	(and	thus	Attr	is	of	type
NCTYPE_UINT32_P).

Values New	value	of	NI-DNET	attribute



Examples
LabVIEW
Verify	vendor	ID	20	for	the	DeviceNet	device	referenced	by	an	Explicit
Messaging	Object.

C
Suppress	acknowledgments	for	the	COS	I/O	Object	referenced	by	objh.

NCTYPE_STATUS	 status;
NCTYPE_OBJH	 objh;
NCTYPE_BOOL	 ack_sup;
ack_sup	=	NC_TRUE;
status	=	ncSetDriverAttr(objh,	NC_ATTR_ACK_SUPPRESS,	sizeof(ack_sup),	&ack_sup);



ncStatusToString	(Status	To	String)
Purpose
Convert	status	returned	from	an	NI-DNET	function	into	a	descriptive
string.



Format
LabVIEW
Not	applicable
For	LabVIEW,	NI-DNET	functions	use	the	standard	error	in	and	error	out
clusters	for	status	information.	You	can	view	error	descriptions	using
built-in	LabVIEW	features	such	as	Explain	Error	in	the	Help	menu,	or
the	Simple	Error	Handler	VI	in	your	diagram.
C
void

ncStatustoString(
			NCTYPE_STATUS	 Status,
			NCTYPE_UINT32	 SizeofString,
			NCTYPE_STRING	 String);



Input
Status Status	returned	from	a	previous	function	call
SizeofString Size	of	String	buffer	in	bytes



Output
String Textual	string	which	describes	the	function	status



Function	Description
For	applications	written	in	C,	C++,	or	Visual	Basic,	each	NI-DNET
function	returns	a	status	code	as	a	signed	32-bit	integer.	The	following
table	summarizes	the	NI-DNET	use	of	this	status:
NI-DNET	Status	Codes
Status	Code Meaning
Negative Error—Function	did	not	perform	expected	behavior.
Positive Warning—Function	performed	as	expected,	but	a

condition	arose	that	may	require	your	attention.
Zero Success—Function	completed	successfully.

ncStatusToString	converts	a	status	value	returned	from	an	NI-DNET
function	into	a	descriptive	string.	By	displaying	this	string	when	an	error
or	warning	is	detected,	you	can	avoid	interpretation	of	the	numeric	code
to	debug	the	problem.
The	ncStatustoString	function	is	not	applicable	to	LabVIEW	programming.
For	LabVIEW,	NI-DNET	functions	use	the	standard	error	in	and	error	out
clusters	for	status	information.	You	can	view	error	descriptions	using
built-in	LabVIEW	features	such	as	Explain	Error	in	the	Help	menu,	or
the	Simple	Error	Handler	VI	in	your	diagram.
If	you	want	to	avoid	displaying	error	messages	while	debugging	your
application,	you	can	use	the	Explain.exe	utility.	This	console	application	is
in	the	Utilities	subfolder	of	the	NI-DNET	installation	folder,	which	is
typically	\Program	Files\National	Instruments\NI-DNET\Utilities.	You	enter	an
NI-DNET	status	code	in	the	command	line	(such	as	Explain	0xBFF62001),
and	the	utility	displays	the	description.
Your	application	code	should	check	the	status	returned	from	every	NI-
DNET	function.	If	an	error	is	detected,	you	should	close	all	NI-DNET
handles,	then	exit	the	application.	If	a	warning	is	detected,	you	can
display	a	message	for	debugging	purposes,	or	simply	ignore	the	warning.



Parameter	Descriptions
Status
Description Status	must	contain	a	status	value	returned	from	a	previous

call	to	an	NI-DNET	function.	You	normally	call
ncStatustoString	only	when	the	status	is	nonzero,	indicating
an	error	or	warning	condition.

Values Value	of	data	type	NCTYPE_STATUS,	returned	from	an	NI-
DNET	function	call

SizeofString
Description SizeofString	is	the	size	of	the	buffer	referenced	by	String.

The	ncStatustoString	function	copies	at	most	SizeofString
bytes	into	the	string	and	cuts	off	the	text	as	needed.	You	can
normally	obtain	this	size	using	the	C	language	sizeof
function.

Although	you	can	often	obtain	an	adequate	description	with
fewer	bytes,	a	512-byte	buffer	is	large	enough	to	hold	any
NI-DNET	status	description.

Values sizeof	(buffer	referenced	by	String)

String
Description Textual	string	which	describes	the	function	status.	The	string

is	NULL	terminated	like	any	other	C	language	string.	The
number	of	bytes	returned	is	the	smaller	of	SizeofString	and
the	number	of	bytes	contained	in	the	actual	description.

Values Textual	string	which	describes	the	function	status



Example
C
Check	the	status	returned	from	the	ncOpenDnetIntf	function,	and	if	not
success,	print	a	descriptive	string.

NCTYPE_STATUS	 status;
NCTYPE_OBJH	 objh;
char		 descr[1024];
status	=	ncOpenDnetIntf("DNET0",	0,	125000,	NC_POLL_AUTO,	&objh);
if	(status	!=	DnetSuccess)	{
	 	 ncStatustoString(status,	sizeof(descr),	descr);
	 	 printf("ncOpenDnetIntf:	%s\n",	descr);
}



ncWaitForState	(Wait	For	State)
Purpose
Wait	for	one	or	more	states	to	occur	in	an	object.



Format
LabVIEW

C
NCTYPE_STATUS

ncWaitForState(
			NCTYPE_OBJH	 		ObjHandle,
			NCTYPE_STATE	 		DesiredState,
			NCTYPE_DURATION	 		Timeout,
			NCTYPE_STATE_P	 		CurrentState)



Input
ObjHandle Object	handle	of	an	open	Explicit	Messaging	Object	or

an	I/O	Object
DesiredState States	to	wait	for
Timeout Number	of	milliseconds	to	wait	for	one	of	the	desired

states



Output
CurrentState Current	state	of	object



Function	Description
Use	ncWaitforState	to	wait	for	one	or	more	states	to	occur	in	the	object
specified	by	ObjHandle.
ncWaitforState	is	commonly	used	to	wait	for	the	Established	state	of	an
Explicit	Messaging	Object,	or	else	to	wait	for	an	explicit	message
response	resulting	from	a	call	to	ncWriteDnetExplMsg,	then	read	that
response	using	ncReadDnetExplMsg.
While	waiting	for	the	desired	states,	ncWaitForState	suspends	the	current
execution.	For	C,	this	could	suspend	your	front	panel	user	interface.	For
LabVIEW,	you	can	still	access	your	front	panel	and	the	functions	that	are
not	directly	connected	to	ncWaitForState	can	still	execute.	If	you	want	to
allow	other	code	in	your	application	to	execute	while	waiting	for	NI-DNET
states,	refer	to	the	ncCreateNotification	(C	only)	function.
The	functions	ncWaitForState	and	ncCreateNotification	use	the	same
underlying	implementation.	Therefore,	for	each	object	handle,	only	one	of
these	functions	can	be	pending	at	a	time.	For	example,	you	cannot
invoke	ncWaitForState	twice	from	different	threads	for	the	same	object.	For
different	object	handles,	these	functions	can	overlap	in	execution.
The	status	returned	from	ncWaitForState	indicates	any	error	detected	by
NI-DNET.	You	should	always	check	this	return	status	prior	to	checking
the	CurrentState	value	returned	from	ncWaitForState.



Parameter	Descriptions
ObjHandle
Description ObjHandle	must	contain	an	object	handle	returned	from

ncOpenDnetExplMsg	or	ncOpenDnetIO.

In	LabVIEW,	ObjHandle	passes	through	the	VI	as	an	output
so	that	it	can	be	used	for	subsequent	function	calls	for	the
object.

Values The	encoding	of	ObjHandle	is	internal	to	NI-DNET.

DesiredState
Description States	to	wait	for.	Each	state	is	represented	by	a	single	bit

so	that	you	can	wait	for	multiple	states	simultaneously.	For
example,	if	NI-DNET	provides	states	with	values	of	hex	1
and	hex	4,	DesiredState	of	hex	5	waits	for	either	state	to
occur.

ReadAvail	for	the	I/O	Object
For	the	I/O	Object,	the	ReadAvail	state	is	set	when	a	new
input	message	is	received	from	the	network.	The	ReadAvail
state	clears	when	you	call	ncReadDnetIO.	For	example,	for	a
change-of-state	(COS)	I/O	connection,	the	ReadAvail	state
sets	when	a	COS	input	message	is	received.
Although	you	can	use	ncWaitForState	with	an	I/O	Object,	it	is
often	preferable	to	use	a	notification	(ncCreateNotification,	C
only).	Use	of	a	notification	callback	for	the	ReadAvail	state
allows	your	application	to	handle	multiple	I/O	connections
independently.
ReadAvail	for	the	Explicit	Messaging	Object
For	the	Explicit	Messaging	Object,	the	ReadAvail	state	sets
when	an	explicit	message	response	is	received	from	the
network.	The	ReadAvail	state	clears	when	you	call
ncReadDnetExplMsg.	An	explicit	message	response	is
received	only	after	you	send	an	explicit	message	request
using	ncWriteDnetExplMsg.	The	following	sequence	of	calls
is	typical:	ncWriteDnetExplMsg,	ncWaitForState,



ncReadDnetExplMsg.	This	sequence	is	used	internally	by
ncGetDnetAttribute	and	ncSetDnetAttribute.
The	ReadAvail	state	is	not	needed	when	using	the	explicit
messaging	functions	ncGetDnetAttribute	and
ncSetDnetAttribute	because	both	of	these	functions	wait	for
the	explicit	message	response	internally.
Established	for	the	Explicit	Messaging	Object
For	the	Explicit	Messaging	Object,	the	Established	state	is
clear	(not	established)	before	you	start	communication	using
ncOperateDnetIntf.	After	you	start	communication,	the
Established	state	remains	clear	until	the	explicit	message
connection	has	been	successfully	established	with	the
remote	DeviceNet	device.	After	the	explicit	message
connection	has	been	established,	the	Established	state	sets
and	remains	set	for	as	long	as	the	explicit	message
connection	is	open.
Until	the	Established	state	sets	for	the	Explicit	Messaging
Object,	all	calls	to	ncGetDnetAttribute,	ncSetDnetAttribute,	or
ncWriteDnetExplMsg	return	the	error	CanErrNotStarted.	Before
you	call	any	of	these	functions	in	your	application,	you	must
first	wait	for	the	Established	state	to	set.
After	the	Established	state	is	set,	unless	communication
problems	occur	with	the	device	(CanErrFunctionTimeout),	it
remains	set	until	you	stop	communication	using
ncOperateDnetIntf.
While	waiting	for	one	of	the	above	states,	if	an	error	occurs
(such	as	a	communication	error	or	an	initialization	error),	the
wait	returns	immediately	with	the	appropriate	error	code.	For
example,	if	you	call	ncWaitforState	with	DesiredState	of
ReadAvail,	the	wait	function	will	return	when	data	is	available
for	a	read,	or	when	a	DeviceNet	communication	error	(such
as	connection	timeout)	is	detected.

Values A	combination	of	one	or	more	of	the	following	bit	values.

1	hex	(ReadAvail,	constant	NC_ST_READ_AVAIL)



8	hex	(Established,	constant	NC_ST_ESTABLISHED)

In	LabVIEW	and	the	LabWindows/CVI	function	panel,	to
facilitate	combining	multiple	states,	you	can	select	a	valid
combination	from	an	enumerated	list	of	all	valid
combinations.	This	list	contains	the	names	of	each	state	in
the	combination,	such	as	ReadAvail	or	Established.

Timeout
Description Number	of	milliseconds	to	wait	for	one	of	the	desired	states.

If	the	timeout	expires	before	one	of	the	desired	states
occurs,	ncWaitForState	returns	a	status	of	BFF62001	hex
(CanErrFunctionTimeout).

The	special	timeout	value	of	FFFFFFFF	hex	is	used	to	wait
indefinitely.

Values 1	to	200000	or	FFFFFFFF	hex	(infinite	duration,	constant
NC_DURATION_INFINITE)

CurrentState
Description Current	state	of	the	object.	If	one	of	the	desired	states

occurs,	it	provides	the	current	value	of	the	ReadAvail	and
Established	states.	If	the	Timeout	expires	before	one	of	the
desired	states	occurs,	it	has	the	value	0.

Values 0	(desired	states	did	not	occur)

or

A	combination	of	one	or	more	of	the	following	bit	values.

1	hex	(ReadAvail,	constant	NC_ST_READ_AVAIL)

8	hex	(Established,	constant	NC_ST_ESTABLISHED)



Examples
LabVIEW
Wait	up	to	10	seconds	for	the	ReadAvail	state	of	an	Explicit	Messaging
Object.

C
Wait	up	to	10	seconds	for	the	ReadAvail	state	of	the	Explicit	Messaging
Object	referenced	by	objh.

NCTYPE_STATUS	 status;
NCTYPE_OBJH	 objh;
NCTYPE_STATE	 currstate;
status	=	ncWaitForState(objh,	NC_ST_READ_AVAIL,	10000,	&currstate);



ncWriteDnetExplMsg	(Write	DeviceNet	Explicit
Message)
Purpose
Write	an	explicit	message	request	using	an	Explicit	Messaging	Object.



Format
LabVIEW

C
NCTYPE_STATUS

ncWriteDnetExplMsg(
			NCTYPE_OBJH	ObjHandle,
			NCTYPE_UINT8	 ServiceCode,
			NCTYPE_UINT16	 ClassId,
			NCTYPE_UINT16	 InstanceId,
			NCTYPE_UINT16	 ServDataLength,
			NCTYPE_ANY_P	 ServData);



Input
ObjHandle Object	handle	of	an	open	Explicit	Messaging	Object
ServiceCode Identifies	the	service	being	requested
ClassId Identifies	the	class	to	which	service	is	directed
InstanceId Identifies	the	instance	to	which	service	is	directed
ServDataLength Number	of	service	data	bytes	for	request
ServData Service	data	for	request



Output
None



Function	Description
ncWriteDnetExplMsg	writes	an	explicit	message	request	using	an	Explicit
Messaging	Object.
The	two	most	commonly	used	DeviceNet	explicit	messages	are	the	Get
Attribute	Single	service	and	the	Set	Attribute	Single	service.	The	easiest
way	to	execute	the	Get	Attribute	Single	service	on	a	remote	device	is	to
use	the	NI-DNET	ncGetDnetAttribute	function.	The	easiest	way	to	execute
the	Set	Attribute	Single	service	on	a	remote	device	is	to	use	the	NI-DNET
ncSetDnetAttribute	function.
To	execute	services	other	than	Get	Attribute	Single	and	Set	Attribute
Single,	use	the	following	sequence	of	function	calls:	ncWriteDnetExplMsg,
ncWaitForState,	ncReadDnetExplMsg.	The	ncWriteDnetExplMsg	function
sends	an	explicit	message	request	to	a	remote	DeviceNet	device.	The
ncWaitForState	function	waits	for	the	explicit	message	response,	and	the
ncReadDnetExplMsg	function	reads	that	response.
Some	DeviceNet	services	that	use	ncWriteDnetExplMsg	are	Reset,	Save,
Restore,	Get	Attributes	All,	and	Set	Attributes	All.	Although	the	DeviceNet
Specification	defines	the	overall	format	of	these	services,	in	most	cases
their	meaning	and	service	data	are	object	specific	or	vendor	specific.
Unless	your	device	requires	such	services	and	documents	them	in	detail,
you	probably	do	not	need	them	for	your	application.	For	more
information,	refer	to	the	NI-DNET	User	Manual.



Parameter	Descriptions
ObjHandle
Description ObjHandle	must	contain	an	object	handle	returned	from

ncOpenDnetExplMsg.

In	LabVIEW,	ObjHandle	passes	through	the	VI	as	an	output
so	that	it	can	be	used	for	subsequent	function	calls	for	the
object.

Values The	encoding	of	ObjHandle	is	internal	to	NI-DNET.

ServiceCode
Description Identifies	the	service	being	requested.	You	can	find	service

code	values	for	the	commonly	used	DeviceNet	services	in
the	DeviceNet	Specification	(Volume	1,	Appendix	G,
DeviceNet	Explicit	Messaging	Services).	The	device's
vendor	documents	vendor-specific	service	codes.

Values 00	to	FF	hex

ClassId
Description Identifies	the	class	to	which	service	is	directed.	You	can	find

descriptions	and	identifiers	for	each	standard	DeviceNet
class	in	the	DeviceNet	Specification	(Volume	2,	Chapter	6,
The	DeviceNet	Object	Library).	The	device's	vendor
documents	vendor-specific	classes.	Although	the	DeviceNet
Specification	allows	16-bit	class	IDs,	most	class	IDs	are	8-
bit.	NI-DNET	automatically	uses	the	class	ID	size	(16-bit	or
8-bit)	that	is	appropriate	for	your	device.

Values 00	to	FFFF	hex

InstanceId
Description Identifies	the	instance	to	which	service	is	directed.	Instance

ID	0	is	used	to	direct	the	service	toward	the	class	itself.
Other	instance	IDs	typically	are	numbered	starting	at	1.	For
example,	the	primary	Identity	Object	in	a	device	uses
instance	ID	1.	Although	the	DeviceNet	Specification	allows
16-bit	instance	IDs,	most	instance	IDs	are	8-bit.	NI-DNET
automatically	uses	the	instance	ID	size	(16-bit	or	8-bit)	that



is	appropriate	for	your	device.
Values 00	to	FFFF	hex

ServDataLength
Description Number	of	service	data	bytes	for	the	request.	This	length

also	specifies	the	number	of	bytes	provided	in	ServData.
Values 0	to	240

ServData
Description Service	data	bytes	for	the	request.	The	format	of	this	data	is

specific	to	the	service	code	being	used.	For	commonly	used
services	which	are	not	object	specific,	the	format	of	this	data
is	defined	in	the	DeviceNet	Specification	(Volume	1,
Appendix	G,	DeviceNet	Explicit	Messaging	Services).	For
object-specific	service	codes,	the	format	of	this	data	is
defined	in	the	object	specification.	For	vendor-specific
service	codes,	the	format	of	this	data	is	defined	by	the
device	vendor.

The	ServDataLength	parameter	specifies	the	number	of
service	data	bytes	sent	in	the	request	(and	provided	in	this
buffer).

Values Service	data	bytes	for	the	request



Examples
LabVIEW
Save	the	parameters	of	Parameter	Object	instance	2	to	non-volatile
memory.	The	service	code	for	Save	is	16	hex.	The	Parameter	Object	is
class	ID	0F	hex.	The	Parameter	Object	does	not	define	any	service	data
bytes	for	Save.

C
Reset	a	DeviceNet	device	to	its	power	on	state	using	the	Explicit
Messaging	Object	referenced	by	objh.	The	service	code	for	Reset	is	05
hex.	The	Identity	Object	(class	ID	1,	instance	ID	1)	is	used	to	reset
DeviceNet	devices.	The	Identity	Object	defines	a	single	byte	of	service
data,	where	0	is	used	to	simulate	a	power	cycle	and	1	is	used	to	reset	the
device	to	its	out-of-box	state.

NCTYPE_STATUS	 status;
NCTYPE_OBJH	 objh;
NCTYPE_UINT8	 type_of_reset;
type_of_reset	=	0;
status	=	ncWriteDnetExplMsg(objh,	0x05,	0x01,	0x01,	1,	&type_of_reset);



ncWriteDnetIO	(Write	DeviceNet	I/O)
Purpose
Write	output	data	to	an	I/O	Object.



Format
LabVIEW

C
NCTYPE_STATUS

ncWriteDnetIO(	 NCTYPE_OBJH	 ObjHandle,
	 	 NCTYPE_UINT32	SizeofData,
	 	 NCTYPE_ANY_P	Data);



Input
ObjHandle Object	handle	of	an	open	I/O	Object
SizeofData Size	of	Data	buffer	in	bytes	(C	only)
Data Output	data



Output
None



Function	Description
ncWriteDnetIO	writes	output	data	to	an	NI-DNET	I/O	Object.
Since	each	I/O	Object	continuously	produces	output	data	onto	the
DeviceNet	network	at	a	specified	rate,	calling	ncWriteDnetIO	multiple
times	for	each	output	message	is	redundant	and	can	often	waste
valuable	processor	time.	To	synchronize	calls	to	ncWriteDnetIO	with	each
output	message,	you	can	wait	for	input	data	(see	ncReadDnetIO),	or	if	no
input	data	exists	for	the	device,	you	can	use	an	idle	wait	(such	as	wait	for
10	ms).
The	output	data	bytes	passed	to	ncWriteDnetIO	are	normally	sent	to	the
output	assembly	of	a	remote	DeviceNet	slave	device.	The	format	of	this
output	assembly	is	normally	documented	either	by	the	device	vendor	or
within	the	DeviceNet	Specification	itself.
The	bytes	of	a	device's	output	assembly	often	consist	of	multiple	data
members	rather	than	a	single	value.	For	C,	you	can	often	place	each
data	member	into	the	output	bytes	by	using	typecasting.	For	LabVIEW,
you	can	often	place	each	data	member	into	the	output	bytes	using	the
ncConvertForDnetWrite	function.	For	more	information	on	output
assemblies	and	how	to	place	individual	data	members	into	the	output
bytes,	refer	to	the	NI-DNET	User	Manual.



Parameter	Descriptions
ObjHandle
Description ObjHandle	must	contain	an	object	handle	returned	from

ncOpenDnetIO.	In	LabVIEW,	ObjHandle	passes	through	the
VI	as	an	output	so	that	it	can	be	used	for	subsequent
function	calls	for	the	object.

Values The	encoding	of	ObjHandle	is	internal	to	NI-DNET.

SizeofData
Description For	C,	SizeofData	is	the	size	of	the	buffer	referenced	by	Data.

It	is	used	to	verify	that	the	Data	buffer	is	large	enough	to	hold
the	output	bytes.	This	size	is	normally	obtained	using	the	C
language	sizeof	function	and	has	no	direct	relation	to	the
number	of	bytes	produced	on	the	network.

For	LabVIEW,	since	Data	is	obtained	directly	as	an	input,
this	size	is	not	needed.

The	actual	number	of	bytes	produced	on	the	I/O	connection
is	determined	by	the	OutputLength	parameter	of
ncOpenDnetIO	and	not	this	size.

Values sizeof	(buffer	referenced	by	Data)

Data
Description Output	data.	The	format	of	these	output	bytes	is	specific	to

your	DeviceNet	device.
Values Output	data	bytes



Examples
LabVIEW
Write	4	output	bytes	to	an	I/O	Object.

C
Write	10	output	bytes	to	the	I/O	Object	referenced	by	objh.

NCTYPE_STATUS	 status;
NCTYPE_OBJH	 objh;
NCTYPE_UINT8	 output[10];
status	=	ncWriteDnetIO(objh,	10,	output);



NI-DNET	Objects
The	Explicit	Messaging	Object,	Interface	Object,	and	I/O	Object	topics
describe	each	NI-DNET	object,	list	the	functions	which	can	be	used	with
the	object,	and	describe	each	of	the	object's	driver	attributes.	The
description	of	each	object	is	structured	as	follows:



Description
Gives	an	overview	of	the	major	features	and	uses	of	the	object.



Functions
Lists	each	NI-DNET	function	which	can	be	used	with	the	object.	For
information	on	how	each	NI-DNET	function	is	used	with	the	object,	refer
to	NI-DNET	Functions.



Driver	Attributes
Lists	and	describes	the	NI-DNET	driver	attributes	for	each	object.	The
driver	attributes	are	listed	in	alphabetical	order.
For	each	driver	attribute,	the	description	lists	its	data	type,	attribute	ID,
and	permissions.	Driver	attribute	permissions	consist	of	one	of	the
following:

Get You	can	get	the	attribute	at	any	time	using	ncGetDriverAttr,	but
never	set	it.

Set You	can	get	the	attribute	at	any	time	using	ncGetDriverAttr.	You
can	set	the	attribute	using	ncSetDriverAttr,	but	only	prior	to
starting	communication	using	ncOperateDnetIntf.



Explicit	Messaging	Object
Description
The	Explicit	Messaging	Object	represents	an	explicit	messaging
connection	to	a	remote	DeviceNet	device	(physical	device	attached	to
your	interface	by	a	DeviceNet	cable).	Since	only	one	explicit	messaging
connection	is	created	for	a	given	device,	the	Explicit	Messaging	Object	is
also	used	for	features	that	apply	to	the	device	as	a	whole.
Use	the	Explicit	Messaging	Object	to	do	the	following:

Execute	the	DeviceNet	Get	Attribute	Single	service	on	the	remote
device	(ncGetDnetAttribute).
Execute	the	DeviceNet	Set	Attribute	Single	service	on	the	remote
device	(ncSetDnetAttribute).
Send	any	other	explicit	message	requests	to	the	remote	device
and	receive	the	associated	explicit	message	response
(ncWriteDnetExplMsg,	ncReadDnetExplMsg).
Configure	NI-DNET	settings	that	apply	to	the	entire	remote	device.



Functions
Function	Name Function	Description

ncCloseObject Close	an	NI-DNET	object
ncConvertForDnetWrite Convert	an	appropriate	LabVIEW	data	type	for

writing	data	bytes	on	the	DeviceNet	network
ncConvertFromDnetRead Convert	data	read	from	the	DeviceNet	network

into	an	appropriate	LabVIEW	data	type
ncCreateNotification Create	a	notification	callback	for	an	object	(C

only)
ncGetDnetAttribute Get	an	attribute	value	from	a	DeviceNet	device
ncGetDriverAttr Get	the	value	of	an	attribute	in	the	NI-DNET

driver
ncOpenDnetExplMsg Configure	and	open	an	NI-DNET	Explicit

Messaging	Object
ncReadDnetExplMsg Read	an	explicit	message	response
ncSetDnetAttribute Set	an	attribute	value	for	a	DeviceNet	device
ncSetDriverAttr Set	the	value	of	an	attribute	in	the	NI-DNET

driver
ncStatusToString Convert	status	returned	from	an	NI-DNET

function	into	a	descriptive	string	(C	only)
ncWaitForState Wait	for	one	or	more	states	to	occur	in	an	object
ncWriteDnetExplMsg Write	an	explicit	message	request



Driver	Attributes
Current	State
Attribute	ID NC_ATTR_STATE
Hex
Encoding

80000009

Data	Type NCTYPE_STATE
Permissions Get
Description Current	state	of	the	NI-DNET	object.	This	driver	attribute

provides	the	current	ReadAvail	and	Established	states	as
described	in	the	ncWaitForState	function.

Use	ncGetDriverAttr	when	you	need	to	determine	the
current	state	of	an	object	but	you	do	not	need	to	wait	for	a
specific	state.

Device	Type
Attribute	ID NC_ATTR_DEVICE_TYPE
Hex
Encoding

80000084

Data	Type NCTYPE_UINT16
Permissions Set
Description Device	Type	of	the	device	as	reported	in	the	Device	Type

attribute	of	device's	Identity	Object.	This	attribute	verifies
that	the	device	is	the	same	one	expected	by	your
application.	If	the	Device	Type	does	not	match,	NI-DNET
returns	the	error	DnetErrDevInitDevType.

The	Device	Type	indicates	conformance	to	a	specific
device	profile,	such	as	Photoelectric	Sensor	or	Position
Controller.

If	you	do	not	call	ncSetDriverAttr	to	set	the	Device	Type,	a
default	value	of	zero	is	used.	When	Device	Type	is	zero,
NI-DNET	does	not	verify	the	device's	Device	Type.



Keep	Explicit	Messaging
Attribute	ID NC_ATTR_KEEP_EXPL_MSG
Hex
Encoding

80000099

Data	Type NCTYPE_BOOL
Permissions Set
Description To	properly	close	I/O	connections	in	the	remote	device

when	ncCloseObject	is	called,	NI-DNET	must	ensure	that	an
explicit	messaging	connection	to	the	device	remains	open.
When	this	attribute	is	set	to	NC_TRUE	(the	default),	NI-
DNET	sends	a	nonoperational	request	(a	"ping")	to	the
device	every	few	seconds,	to	ensure	that	the	explicit
messaging	connection	does	not	timeout.	When	this
attribute	is	NC_FALSE,	NI-DNET	does	not	ping	the	explicit
messaging	connection.	If	you	are	certain	that	your
application	sends	a	request	on	a	periodic	basis,	you	can
set	this	attribute	to	NC_FALSE.	This	attribute	must	be	set
prior	to	starting	communication.

Mac	Id
Attribute	ID NC_ATTR_MAC_ID
Hex
Encoding

80000080

Data	Type NCTYPE_UINT8
Permissions Get
Description This	driver	attribute	allows	you	to	get	the	DeviceMacId

originally	passed	into	ncOpenDnetExplMsg.

Product	Code
Attribute	ID NC_ATTR_PRODUCT_CODE
Hex
Encoding

80000083

Data	Type NCTYPE_UINT16
Permissions Set
Description Product	Code	of	the	device	as	reported	in	the	Product



Code	attribute	of	device's	Identity	Object.	This	attribute
verifies	that	the	device	is	the	same	one	expected	by	your
application.	If	the	Product	Code	does	not	match,	NI-DNET
returns	the	error	DnetErrDevInitProdCode.

The	Product	Code	is	a	vendor-specific	value	which
identifies	a	particular	product	within	a	device	type.

If	you	do	not	call	ncSetDriverAttr	to	set	the	Product	Code,	a
default	value	of	zero	is	used.	When	Product	Code	is	zero,
NI-DNET	does	not	verify	the	device's	Product	Code.

Vendor	Id
Attribute	ID NC_ATTR_VENDOR_ID
Hex
Encoding

80000082

Data	Type NCTYPE_UINT16
Permissions Set
Description Vendor	ID	of	the	device	as	reported	in	the	Vendor	ID

attribute	of	device's	Identity	Object.	This	attribute	verifies
that	the	device	is	the	same	one	expected	by	your
application.	If	the	Vendor	ID	does	not	match,	NI-DNET
returns	the	error	DnetErrDevInitVendor.

The	Vendor	ID	is	a	number	assigned	to	the	device	vendor
by	the	Open	Device	Vendor's	Association	(ODVA).

If	you	do	not	call	ncSetDriverAttr	to	set	the	Vendor	ID,	a
default	value	of	zero	is	used.	When	Vendor	ID	is	zero,	NI-
DNET	does	not	verify	the	device's	Vendor	ID.



Interface	Object
Description
The	Interface	Object	represents	a	DeviceNet	interface.	Since	this
interface	acts	as	a	device	on	the	DeviceNet	network	much	like	any	other
device,	it	is	configured	with	its	own	MAC	ID	and	baud	rate.
Use	the	Interface	Object	to	do	the	following:

Configure	NI-DNET	settings	that	apply	to	the	entire	interface.
Start	and	stop	communication	for	all	NI-DNET	objects	associated
with	the	interface.

The	Interface	Object	must	be	the	first	NI-DNET	object	opened	by	your
application,	and	thus	the	ncOpenDnetIntf	function	must	be	the	first	NI-
DNET	function	called	by	your	application.



Functions
Function	Name Function	Description
EasyIOClose Close	multiple	NI-DNET	objects	(LabVIEW	only)
EasyIOConfig Configure	and	open	multiple	NI-DNET	objects

(LabVIEW	only)
ncCloseObject Close	an	NI-DNET	object
ncGetDriverAttr Get	the	value	of	an	attribute	in	the	NI-DNET	driver
ncOpenDnetIntf Configure	and	open	an	NI-DNET	Interface	Object
ncOperateDnetIntf Perform	an	operation	on	an	NI-DNET	Interface	Object
ncSetDriverAttr Set	the	value	of	an	attribute	in	the	NI-DNET	driver
ncStatusToString Convert	status	returned	from	an	NI-DNET	function	into

a	descriptive	string	(C	only)



Driver	Attributes
Baud	Rate
Attribute	ID NC_ATTR_BAUD_RATE
Hex
Encoding

80000007

Data	Type NCTYPE_BAUD_RATE
Permissions Get
Description This	driver	attribute	allows	you	to	get	the	BaudRate

originally	passed	into	ncOpenDnetIntf.

Interface	Protocol	Version
Attribute	ID NC_ATTR_PROTOCOL_VERSION
Hex
Encoding

80000002

Data	Type NCTYPE_VERSION
Permissions Get
Description This	driver	attribute	reports	the	version	of	the	DeviceNet

Specification	to	which	the	NI-DNET	software	conforms.
This	version	is	at	least	02000000	hex	(version	2.0).

Interface	Software	Version
Attribute	ID NC_ATTR_SOFTWARE_VERSION
Hex
Encoding

80000003

Data	Type NCTYPE_VERSION
Permissions Get
Description This	driver	attribute	reports	the	version	of	the	NI-DNET

software.	This	version	is	at	least	01000000	hex	(version
1.0).

Mac	Id
Attribute	ID NC_ATTR_MAC_ID
Hex
Encoding

80000080



Data	Type NCTYPE_UINT8
Permissions Get
Description This	driver	attribute	allows	you	to	get	the	IntfMacId

originally	passed	into	ncOpenDnetIntf.

Poll	Mode
Attribute	ID NC_ATTR_POLL_MODE
Hex
Encoding

8000009B

Data	Type NCTYPE_POLL_MODE
Permissions Get
Description This	driver	attribute	allows	you	to	get	the	PollMode

originally	passed	into	ncOpenDnetIntf.



I/O	Object
Description
The	I/O	Object	represents	an	I/O	connection	to	a	remote	DeviceNet
device	(physical	device	attached	to	your	interface	by	a	DeviceNet	cable).
The	I/O	Object	usually	represents	I/O	communication	as	a	master	with	a
remote	slave	device.	If	your	computer	is	being	used	as	the	primary
controller	of	your	DeviceNet	devices,	you	should	configure	I/O
communication	as	a	master.
You	can	also	configure	the	I/O	Object	for	I/O	communication	as	a	slave
with	a	remote	master.	If	your	computer	is	being	used	as	a	peripheral
device	for	another	primary	controller,	you	can	configure	I/O
communication	as	a	slave.	To	configure	I/O	communication	as	a	slave,
set	the	I/O	Object's	DeviceMacId	to	the	same	MAC	ID	as	the	Interface
Object	(IntfMacId	parameter	of	ncOpenDnetIntf).
The	I/O	Object	supports	as	many	master/slave	I/O	connections	as
currently	allowed	by	the	DeviceNet	Specification	(version	2.0).	This
means	that	you	can	use	polled,	strobed,	and	COS/cyclic	I/O	connections
simultaneously	for	a	given	device.	As	specified	by	the	DeviceNet
Specification,	only	one	master/slave	I/O	connection	of	a	given	type	can
be	used	for	each	device	(MAC	ID).	For	example,	you	cannot	open	two
polled	I/O	connections	for	the	same	device.
Use	the	I/O	Object	to	do	the	following:

Read	data	from	the	most	recent	message	received	on	the	I/O
connection	(ncReadDnetIO).
Write	data	for	the	next	message	produced	on	the	I/O	connection
(ncWriteDnetIO).



Functions
Function	Name Function	Description

EasyIOClose Close	multiple	NI-DNET	objects	(LabVIEW	only)
EasyIOConfig Configure	and	open	multiple	NI-DNET	objects

(LabVIEW	only)
ncCloseObject Close	an	NI-DNET	object
ncConvertForDnetWrite Convert	an	appropriate	LabVIEW	Data	Type	for

writing	data	bytes	on	the	DeviceNet	network
ncConvertFromDnetRead Convert	data	read	from	the	DeviceNet	network

into	an	appropriate	LabVIEW	Data	Type
ncCreateNotification Create	a	notification	callback	for	an	object	(C

only)
ncGetDriverAttr Get	the	value	of	an	attribute	in	the	NI-DNET

driver
ncOpenDnetIO Configure	and	open	an	NI-DNET	I/O	Object
ncReadDnetIO Read	input	data	from	an	I/O	Object
ncSetDriverAttr Set	the	value	of	an	attribute	in	the	NI-DNET

driver
ncStatusToString Convert	status	returned	from	an	NI-DNET

function	into	a	descriptive	string	(C	only)
ncWaitForState Wait	for	one	or	more	states	to	occur	in	an	object
ncWriteDnetIO Write	output	data	to	an	I/O	Object



Driver	Attributes
Ack	Suppress
Attribute	ID NC_ATTR_ACK_SUPPRESS
Hex
Encoding

8000009A

Data	Type NCTYPE_BOOL
Permissions Set
Description This	driver	attribute	applies	only	to	change-of-state	(COS)

or	cyclic	I/O	connections	(ConnectionType	of	COS	or	Cyclic).
It	determines	whether	acknowledgments	are	used	(false)	or
suppressed	(true).	Acknowledgments	are	used	with	COS
or	cyclic	I/O	connections	to	verify	that	produced	data	is
received	successfully.

When	InputLength	is	nonzero,	the	acknowledgment	is
produced	by	NI-DNET.	When	OutputLength	is	nonzero,	the
acknowledgment	is	consumed	by	NI-DNET.

If	you	do	not	call	ncSetDriverAttr	to	Set	Ack	Suppress,	a
default	value	of	false	is	used.

When	successful	device	operation	can	be	verified	by	other
means,	COS	or	cyclic	acknowledgment	can	often	be
suppressed.	For	example,	if	you	open	a	polled	I/O
connection	in	addition	to	the	COS	or	cyclic	I/O	connection,
you	can	Set	Ack	Suppress	to	true.

If	the	ConnectionType	of	this	I/O	object	is	Poll	or	Strobe,	the
Ack	Suppress	attribute	is	ignored.

Current	State
Attribute	ID NC_ATTR_STATE
Hex
Encoding

80000009

Data	Type NCTYPE_STATE



Permissions Get
Description Current	state	of	the	NI-DNET	object.	This	driver	attribute

provides	the	current	ReadAvail	and	Established	states	as
described	in	ncWaitForState.

Device	Type
Attribute	ID NC_ATTR_DEVICE_TYPE
Hex
Encoding

80000084

Data	Type NCTYPE_UINT16
Permissions Set
Description Device	Type	of	the	device	as	reported	in	the	Device	Type

attribute	of	device's	Identity	Object.	This	attribute	verifies
that	the	device	is	the	same	one	expected	by	your
application.	If	the	Device	Type	does	not	match,	NI-DNET
returns	the	error	DnetErrDevInitDevType.

The	Device	Type	indicates	conformance	to	a	specific
device	profile,	such	as	Photoelectric	Sensor	or	Position
Controller.

If	you	do	not	call	ncSetDriverAttr	to	Set	the	Device	Type,	a
default	value	of	zero	is	used.	When	Device	Type	is	zero,
NI-DNET	does	not	verify	the	device's	Device	Type.

Exp	Packet	Rate
Attribute	ID NC_ATTR_EXP_PACKET_RATE
Hex
Encoding

80000095

Data	Type NCTYPE_DURATION
Permissions Get
Description This	driver	attribute	allows	you	to	get	the	ExpPacketRate

originally	passed	into	ncOpenDnetIO.

Inhibit	Timer
Attribute	ID NC_ATTR_EXP_INHIBIT_TIMER



Hex
Encoding

80000097

Data	Type NCTYPE_DURATION
Permissions Set
Description This	driver	attribute	applies	only	to	COS	I/O	connections

(ncOpenDnetIO	with	ConnectionType	of	COS).	This	driver
attribute	configures	the	minimum	delay	time	between
subsequent	data	productions.	This	attribute	can	limit	the
amount	of	network	traffic	used	for	COS	messages	from
devices	with	frequently	changing	I/O.

The	default	value	for	Inhibit	Timer	is	zero,	as	specified	in
the	DeviceNet	Specification.	Since	this	default	is
appropriate	for	most	applications,	the	Inhibit	Timer	attribute
is	not	included	in	the	configuration	attributes	provided	with
ncOpenDnetIO.	If	you	want	to	change	the	default	Inhibit
Timer,	call	ncSetDriverAttr	prior	to	starting	communication.

If	ConnectionType	is	Poll,	Strobe,	or	Cyclic,	the	Inhibit	Timer
attribute	is	ignored.	For	these	I/O	connection	types,	the
frequency	of	data	production	is	controlled	entirely	by	the
ExpPacketRate	attribute.

Input	Length
Attribute	ID NC_ATTR_IN_LEN
Hex
Encoding

80000091

Data	Type NCTYPE_UINT32
Permissions Get
Description This	driver	attribute	allows	you	to	get	the	InputLength

originally	passed	into	ncOpenDnetIO.

Keep	Explicit	Messaging
Attribute	ID NC_ATTR_KEEP_EXPL_MSG
Hex
Encoding

80000099



Data	Type NCTYPE_BOOL
Permissions Set
Description To	properly	close	I/O	connections	in	the	remote	device

when	ncCloseObject	is	called,	NI-DNET	must	ensure	that	an
explicit	messaging	connection	to	the	device	remains	open.
When	this	attribute	is	Set	to	NC_TRUE	(the	default),	NI-
DNET	sends	a	nonoperational	request	(a	"ping")	to	the
device	every	few	seconds,	to	ensure	that	the	explicit
messaging	connection	does	not	timeout.	When	this
attribute	is	NC_FALSE,	NI-DNET	does	not	ping	the	explicit
messaging	connection.	If	you	are	certain	that	your	device
can	internally	close	its	own	I/O	connections	(deferred
delete),	you	can	Set	this	attribute	to	NC_FALSE.	This
attribute	must	be	Set	prior	to	starting	communication.

Mac	Id
Attribute	ID NC_ATTR_MAC_ID
Hex
Encoding

80000080

Data	Type NCTYPE_UINT8
Permissions Get
Description This	driver	attribute	allows	you	to	get	the	DeviceMacId

originally	passed	into	ncOpenDnetIO.

Output	Length
Attribute	ID NC_ATTR_OUT_LEN
Hex
Encoding

80000092

Data	Type NCTYPE_UINT32
Permissions Get
Description This	driver	attribute	allows	you	to	get	the	OutputLength

originally	passed	into	ncOpenDnetIO.

Product	Code
Attribute	ID NC_ATTR_PRODUCT_CODE
Hex 80000083



Encoding
Data	Type NCTYPE_UINT16
Permissions Set
Description Product	Code	of	the	device	as	reported	in	the	Product

Code	attribute	of	device's	Identity	Object.	This	attribute	is
used	to	verify	that	the	device	is	the	same	one	expected	by
your	application.	If	the	Product	Code	does	not	match,	NI-
DNET	returns	the	error	DnetErrDevInitProdCode.

The	Product	Code	is	a	vendor-specific	value	which
identifies	a	particular	product	within	a	device	type.

If	you	do	not	call	ncSetDriverAttr	to	Set	the	Product	Code,	a
default	value	of	zero	is	used.	When	Product	Code	is	zero,
NI-DNET	does	not	verify	the	device's	Product	Code.

Vendor	Id
Attribute	ID NC_ATTR_VENDOR_ID
Hex
Encoding

80000082

Data	Type NCTYPE_UINT16
Permissions Set
Description Vendor	ID	of	the	device	as	reported	in	the	Vendor	ID

attribute	of	device's	Identity	Object.	This	attribute	verifies
that	the	device	is	the	same	one	expected	by	your
application.	If	the	Vendor	ID	does	not	match,	NI-DNET
returns	the	error	DnetErrDevInitVendor.

The	Vendor	ID	is	a	number	assigned	to	the	device	vendor
by	the	Open	Device	Vendor's	Association	(ODVA).

If	you	do	not	call	ncSetDriverAttr	to	Set	the	Vendor	ID,	a
default	value	of	zero	is	used.	When	Vendor	ID	is	zero,	NI-
DNET	does	not	verify	the	device's	Vendor	ID.



Glossary
Prefixes 	 Numbers/Symbols 	 A 	 B 	 C 	 D 	 E 	 H 	 I 	 K 	 L 	 M

N 	 O 	 P 	 R 	 S 	 V



Prefixes
Symbol Prefix Value
p pico 10	-12

n nano 10	-9

µ micro 10	-6

m milli 10	-3

k kilo 10	3

M mega 10	6

G giga 10	9

T tera 10	12



Numbers/Symbols
nV nanovolts 10-9	volts

µV microvolts 10-6	volts

µΩ microohms 10-6	ohms

mΩ milliohms 10-3	ohms

MΩ megaohms 106	ohms

pA picoamps 10-12	amperes

nA nanoamps 10-9	amperes

µA microamps 10-6	amperes

mA milliamps 10-3	amperes



A
ANSI American	National	Standards	Institute.
Application
Programming
Interface
(API)

A	collection	of	functions	used	by	a	user	application	to
access	hardware.	Within	NI-DNET,	you	use	API	functions
to	make	calls	into	the	NI-DNET	driver.

ASCII American	Standard	Code	for	Information	Interchange.
attribute The	externally	visible	qualities	of	an	object;	for	example,

an	instance	square	of	class	geometric	shapes	could	have
the	attributes	length	of	sides	and	color,	with	the	values	4
in.	and	blue.	Also	known	as	property.



B
b Bits.
bit
strobed
I/O

Master/slave	I/O	connection	in	which	the	master	broadcasts	a
single	strobe	command	to	all	strobed	slaves,	then	receives	a
strobe	response	from	each	strobed	salve.



C
CAN Controller	Area	Network.
change-of-
state	I/O

Master/slave	I/O	connection	which	is	similar	to	cyclic	I/O,
but	data	can	be	sent	when	a	change	in	the	data	is	detected.

class A	classification	of	things	with	similar	qualities.
connection An	association	between	two	or	more	devices	on	a	network

that	describes	when	and	how	data	is	transferred.
controller A	device	that	receives	data	from	sensors	and	sends	data	to

actuators	to	hold	one	or	more	external,	real-world	variables
at	a	certain	level	or	condition.	A	thermostat	is	a	simple
example	of	a	controller.

COS	I/O See	change-of-state	I/O.
cyclic	I/O Master/slave	I/O	connection	in	which	the	slave	(or	master)

sends	data	at	a	fixed	interval.



D
device A	physical	assembly,	linked	to	a	communication	line	(cable),

capable	of	communicating	across	the	network	according	to	a
protocol	specification.

device
network

Multi-drop	digital	communication	network	for	sensors,
actuators,	and	controllers.

DeviceNet
interface

A	physical	DeviceNet	port	on	an	AT-CAN,	PCI-CAN,
PCMCIA-CAN,	or	PXI-8461	interface.



E
expected
packet	rate

The	rate	(in	milliseconds)	at	which	a	DeviceNet
connection	is	expected	to	transfer	its	data.

explicit
messaging
connection

General-purpose	connection	used	for	executing
services	on	a	particular	object	in	a	DeviceNet	device.



H
hex Hexadecimal.



I
I/O
connection

Connection	used	for	exchange	of	physical	input/output
(sensor/activator)	data,	as	well	as	other	control-oriented
data.

individual
polling

A	polled	I/O	communication	scheme	in	which	each	polled
slave	communicates	at	its	own	individual	rate.

instance A	specific	instance	of	a	given	class.	For	example,	a	blue
square	of	4	inches	per	side	would	be	one	instance	of	the
class	Geometric	Shapes.



K
KB Kilobytes	of	memory.



L
LabVIEW Laboratory	Virtual	Instrument	Engineering	Workbench.
local Within	NI-DNET,	anything	that	exists	on	the	same	host

(personal	computer)	as	the	NI-DNET	driver.



M
MAC	ID Media	access	control	layer	identifier.	In	DeviceNet,	a

device's	MAC	ID	represents	its	address	on	the	DeviceNet
network.

master/slave DeviceNet	communication	scheme	in	which	a	master
device	allocates	connections	to	one	or	more	slave
devices,	and	those	slave	devices	can	only	communicate
with	the	master	and	not	one	another.

member An	individual	data	value	within	an	array	of	DeviceNet	data
bytes.

method An	action	performed	on	an	instance	to	affect	its	behavior;
the	externally	visible	code	of	an	object.	Within	NI-DNET,
you	use	NI-DNET	functions	to	execute	methods	for
objects.	Also	known	as	service,	operation,	and	action.

multi-drop A	physical	connection	in	which	multiple	devices
communicate	with	one	another	along	a	single	cable.



N
NI-DNET
driver

Device	driver	and/or	firmware	that	implement	all	the
specifics	of	a	National	Instruments	DeviceNet	interface.

notification Within	NI-DNET,	an	operating	system	mechanism	that	the
NI-DNET	driver	uses	to	communicate	events	to	your
application.	You	can	think	of	a	notification	of	as	an	API
function,	but	in	the	opposite	direction.



O
object See	instance.
ODVA Open	DeviceNet	Vendor's	Association.



P
olled
I/O

Master/slave	I/O	connection	in	which	the	master	sends	a	poll
command	to	a	slave,	then	receives	a	poll	response	from	that
slave.

protocol A	formal	set	of	conventions	or	rules	for	the	exchange	of
information	among	devices	of	a	given	network.



R
remote Within	NI-DNET,	anything	that	exists	in	another	device	of	the

device	network	(not	on	the	same	host	as	the	NI-DNET	driver).
resource Hardware	settings	used	by	National	Instruments	DeviceNet

hardware,	including	an	interrupt	request	level	(IRQ)	and	an	8
KB	physical	memory	range	(such	as	D0000	to	D1FFF	hex).



S
s Seconds.
scanned
polling

A	polled	I/O	communication	scheme	in	which	all	poll
commands	are	sent	out	at	the	same	rate,	in	quick	succession.

sensor A	device	that	measures	electrical,	mechanical,	or	other	signals
from	an	external,	real-world	variable;	in	the	context	of	device
networks,	sensors	are	devices	that	send	their	primary	data
value	onto	the	network;	examples	include	temperature	sensors
and	presence	sensors.	Also	known	as	transmitter.

strobed
I/O

See	bit	strobed	I/O.



V
VI Virtual	Instrument.



Important	Information
Warranty
Copyright
Trademarks
Patents
Warning	Regarding	Use	of	NI	Products



Warranty
The	media	on	which	you	receive	National	Instruments	software	are
warranted	not	to	fail	to	execute	programming	instructions,	due	to	defects
in	materials	and	workmanship,	for	a	period	of	90	days	from	date	of
shipment,	as	evidenced	by	receipts	or	other	documentation.	National
Instruments	will,	at	its	option,	repair	or	replace	software	media	that	do	not
execute	programming	instructions	if	National	Instruments	receives	notice
of	such	defects	during	the	warranty	period.	National	Instruments	does	not
warrant	that	the	operation	of	the	software	shall	be	uninterrupted	or	error
free.
A	Return	Material	Authorization	(RMA)	number	must	be	obtained	from
the	factory	and	clearly	marked	on	the	outside	of	the	package	before	any
equipment	will	be	accepted	for	warranty	work.	National	Instruments	will
pay	the	shipping	costs	of	returning	to	the	owner	parts	which	are	covered
by	warranty.
National	Instruments	believes	that	the	information	in	this	document	is
accurate.	The	document	has	been	carefully	reviewed	for	technical
accuracy.	In	the	event	that	technical	or	typographical	errors	exist,
National	Instruments	reserves	the	right	to	make	changes	to	subsequent
editions	of	this	document	without	prior	notice	to	holders	of	this	edition.
The	reader	should	consult	National	Instruments	if	errors	are	suspected.
In	no	event	shall	National	Instruments	be	liable	for	any	damages	arising
out	of	or	related	to	this	document	or	the	information	contained	in	it.
EXCEPT	AS	SPECIFIED	HEREIN,	NATIONAL	INSTRUMENTS	MAKES
NO	WARRANTIES,	EXPRESS	OR	IMPLIED,	AND	SPECIFICALLY
DISCLAIMS	ANY	WARRANTY	OF	MERCHANTABILITY	OR	FITNESS
FOR	A	PARTICULAR	PURPOSE.	CUSTOMER'S	RIGHT	TO	RECOVER
DAMAGES	CAUSED	BY	FAULT	OR	NEGLIGENCE	ON	THE	PART	OF
NATIONAL	INSTRUMENTS	SHALL	BE	LIMITED	TO	THE	AMOUNT
THERETOFORE	PAID	BY	THE	CUSTOMER.	NATIONAL
INSTRUMENTS	WILL	NOT	BE	LIABLE	FOR	DAMAGES	RESULTING
FROM	LOSS	OF	DATA,	PROFITS,	USE	OF	PRODUCTS,	OR
INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES,	EVEN	IF	ADVISED	OF
THE	POSSIBILITY	THEREOF.	This	limitation	of	the	liability	of	National
Instruments	will	apply	regardless	of	the	form	of	action,	whether	in
contract	or	tort,	including	negligence.	Any	action	against	National
Instruments	must	be	brought	within	one	year	after	the	cause	of	action



accrues.	National	Instruments	shall	not	be	liable	for	any	delay	in
performance	due	to	causes	beyond	its	reasonable	control.	The	warranty
provided	herein	does	not	cover	damages,	defects,	malfunctions,	or
service	failures	caused	by	owner's	failure	to	follow	the	National
Instruments	installation,	operation,	or	maintenance	instructions;	owner's
modification	of	the	product;	owner's	abuse,	misuse,	or	negligent	acts;
and	power	failure	or	surges,	fire,	flood,	accident,	actions	of	third	parties,
or	other	events	outside	reasonable	control.



Copyright
Under	the	copyright	laws,	this	publication	may	not	be	reproduced	or
transmitted	in	any	form,	electronic	or	mechanical,	including	photocopying,
recording,	storing	in	an	information	retrieval	system,	or	translating,	in
whole	or	in	part,	without	the	prior	written	consent	of	National	Instruments
Corporation.
National	Instruments	respects	the	intellectual	property	of	others,	and	we
ask	our	users	to	do	the	same.	NI	software	is	protected	by	copyright	and
other	intellectual	property	laws.	Where	NI	software	may	be	used	to
reproduce	software	or	other	materials	belonging	to	others,	you	may	use
NI	software	only	to	reproduce	materials	that	you	may	reproduce	in
accordance	with	the	terms	of	any	applicable	license	or	other	legal
restriction.



Trademarks
National	Instruments,	NI,	ni.com,	and	LabVIEW	are	trademarks	of
National	Instruments	Corporation.	Refer	to	the	Terms	of	Use	section	on
ni.com/legal	for	more	information	about	National	Instruments	trademarks.
FireWire®	is	the	registered	trademark	of	Apple	Computer,	Inc.
Handle	Graphics®,	MATLAB®,	Real-Time	Workshop®,	Simulink®,	and
Stateflow®	are	registered	trademarks,	and	TargetBox™,	xPC
TargetBox™,	and	Target	Language	Compiler™	are	trademarks	of	The
MathWorks,	Inc.
Tektronix®	and	Tek	are	registered	trademarks	of	Tektronix,	Inc.
Other	product	and	company	names	mentioned	herein	are	trademarks	or
trade	names	of	their	respective	companies.
Members	of	the	National	Instruments	Alliance	Partner	Program	are
business	entities	independent	from	National	Instruments	and	have	no
agency,	partnership,	or	joint-venture	relationship	with	National
Instruments.

javascript:WWW(WWW_Trademark)


Patents
For	patents	covering	National	Instruments	products,	refer	to	the
appropriate	location:	Help»Patents	in	your	software,	the	patents.txt	file	on
your	CD,	or	ni.com/patents.

javascript:WWW(WWW_Patents)


WARNING	REGARDING	USE	OF	NATIONAL
INSTRUMENTS	PRODUCTS
(1)	NATIONAL	INSTRUMENTS	PRODUCTS	ARE	NOT	DESIGNED
WITH	COMPONENTS	AND	TESTING	FOR	A	LEVEL	OF	RELIABILITY
SUITABLE	FOR	USE	IN	OR	IN	CONNECTION	WITH	SURGICAL
IMPLANTS	OR	AS	CRITICAL	COMPONENTS	IN	ANY	LIFE	SUPPORT
SYSTEMS	WHOSE	FAILURE	TO	PERFORM	CAN	REASONABLY	BE
EXPECTED	TO	CAUSE	SIGNIFICANT	INJURY	TO	A	HUMAN.
(2)	IN	ANY	APPLICATION,	INCLUDING	THE	ABOVE,	RELIABILITY	OF
OPERATION	OF	THE	SOFTWARE	PRODUCTS	CAN	BE	IMPAIRED	BY
ADVERSE	FACTORS,	INCLUDING	BUT	NOT	LIMITED	TO
FLUCTUATIONS	IN	ELECTRICAL	POWER	SUPPLY,	COMPUTER
HARDWARE	MALFUNCTIONS,	COMPUTER	OPERATING	SYSTEM
SOFTWARE	FITNESS,	FITNESS	OF	COMPILERS	AND
DEVELOPMENT	SOFTWARE	USED	TO	DEVELOP	AN	APPLICATION,
INSTALLATION	ERRORS,	SOFTWARE	AND	HARDWARE
COMPATIBILITY	PROBLEMS,	MALFUNCTIONS	OR	FAILURES	OF
ELECTRONIC	MONITORING	OR	CONTROL	DEVICES,	TRANSIENT
FAILURES	OF	ELECTRONIC	SYSTEMS	(HARDWARE	AND/OR
SOFTWARE),	UNANTICIPATED	USES	OR	MISUSES,	OR	ERRORS	ON
THE	PART	OF	THE	USER	OR	APPLICATIONS	DESIGNER	(ADVERSE
FACTORS	SUCH	AS	THESE	ARE	HEREAFTER	COLLECTIVELY
TERMED	"SYSTEM	FAILURES").	ANY	APPLICATION	WHERE	A
SYSTEM	FAILURE	WOULD	CREATE	A	RISK	OF	HARM	TO
PROPERTY	OR	PERSONS	(INCLUDING	THE	RISK	OF	BODILY
INJURY	AND	DEATH)	SHOULD	NOT	BE	RELIANT	SOLELY	UPON	ONE
FORM	OF	ELECTRONIC	SYSTEM	DUE	TO	THE	RISK	OF	SYSTEM
FAILURE.	TO	AVOID	DAMAGE,	INJURY,	OR	DEATH,	THE	USER	OR
APPLICATION	DESIGNER	MUST	TAKE	REASONABLY	PRUDENT
STEPS	TO	PROTECT	AGAINST	SYSTEM	FAILURES,	INCLUDING	BUT
NOT	LIMITED	TO	BACK-UP	OR	SHUT	DOWN	MECHANISMS.
BECAUSE	EACH	END-USER	SYSTEM	IS	CUSTOMIZED	AND
DIFFERS	FROM	NATIONAL	INSTRUMENTS'	TESTING	PLATFORMS
AND	BECAUSE	A	USER	OR	APPLICATION	DESIGNER	MAY	USE
NATIONAL	INSTRUMENTS	PRODUCTS	IN	COMBINATION	WITH
OTHER	PRODUCTS	IN	A	MANNER	NOT	EVALUATED	OR
CONTEMPLATED	BY	NATIONAL	INSTRUMENTS,	THE	USER	OR



APPLICATION	DESIGNER	IS	ULTIMATELY	RESPONSIBLE	FOR
VERIFYING	AND	VALIDATING	THE	SUITABILITY	OF	NATIONAL
INSTRUMENTS	PRODUCTS	WHENEVER	NATIONAL	INSTRUMENTS
PRODUCTS	ARE	INCORPORATED	IN	A	SYSTEM	OR	APPLICATION,
INCLUDING,	WITHOUT	LIMITATION,	THE	APPROPRIATE	DESIGN,
PROCESS	AND	SAFETY	LEVEL	OF	SUCH	SYSTEM	OR
APPLICATION.



Technical	Support	and	Professional	Services
Visit	the	following	sections	of	the	National	Instruments	Web	site	at	ni.com
for	technical	support	and	professional	services:

Support—Online	technical	support	resources	at	ni.com/support
include	the	following:

Self-Help	Resources—For	answers	and	solutions,	visit	the
award-winning	National	Instruments	Web	site	for	software
drivers	and	updates,	a	searchable	KnowledgeBase,	product
manuals,	step-by-step	troubleshooting	wizards,	thousands	of
example	programs,	tutorials,	application	notes,	instrument
drivers,	and	so	on.
Free	Technical	Support—All	registered	users	receive	free
Basic	Service,	which	includes	access	to	hundreds	of
Applications	Engineers	worldwide	in	the	NI	Developer
Exchange	at	ni.com/exchange.	National	Instruments
Applications	Engineers	make	sure	every	question	receives
an	answer.
For	information	about	other	technical	support	options	in	your
area,	visit	ni.com/services	or	contact	your	local	office	at
ni.com/contact.

Training	and	Certification—Visit	ni.com/training	for	self-paced
training,	eLearning	virtual	classrooms,	interactive	CDs,	and
Certification	program	information.	You	also	can	register	for
instructor-led,	hands-on	courses	at	locations	around	the	world.
System	Integration—If	you	have	time	constraints,	limited	in-house
technical	resources,	or	other	project	challenges,	National
Instruments	Alliance	Partner	members	can	help.	To	learn	more,
call	your	local	NI	office	or	visit	ni.com/alliance.

If	you	searched	ni.com	and	could	not	find	the	answers	you	need,	contact
your	local	office	or	NI	corporate	headquarters.	You	also	can	visit	the
Worldwide	Offices	section	of	ni.com/niglobal	to	access	the	branch	office
Web	sites,	which	provide	up-to-date	contact	information,	support	phone
numbers,	email	addresses,	and	current	events.

javascript:WWW(WWW_Support)
javascript:WWW(WWW_KB)
javascript:WWW(WWW_Manuals)
javascript:WWW(WWW_Exchange)
javascript:WWW(WWW_Service)
javascript:WWW(WWW_Contact)
javascript:WWW(WWW_Customer_Education)
javascript:WWW(WWW_Integration)
javascript:WWW(WWW_Global)


Branch	Offices
Office Telephone	Number
Australia 1800	300	800
Austria 43	0	662	45	79	90	0
Belgium 32	0	2	757	00	20
Brazil 55	11	3262	3599
Canada 800	433	3488
China 86	21	6555	7838
Czech	Republic 420	224	235	774
Denmark 45	45	76	26	00
Finland 385	0	9	725	725	11
France 33	0	1	48	14	24	24
Germany 49	0	89	741	31	30
India 91	80	41190000
Israel 972	0	3	6393737
Italy 39	02	413091
Japan 81	3	5472	2970
Korea 82	02	3451	3400
Lebanon 961	0	1	33	28	28
Malaysia 1800	887710
Mexico 01	800	010	0793
Netherlands 31	0	348	433	466
New	Zealand 0800	553	322
Norway 47	0	66	90	76	60
Poland 48	22	3390150
Portugal 351	210	311	210
Russia 7	095	783	68	51
Singapore 1800	226	5886
Slovenia 386	3	425	4200



South	Africa 27	0	11	805	8197
Spain 34	91	640	0085
Sweden 46	0	8	587	895	00
Switzerland 41	56	200	51	51
Taiwan 886	02	2377	2222
Thailand 662	278	6777
United	Kingdom 44	0	1635	523545
United	States	(Corporate) 512	683	0100


	NI-DNET Programmer Reference Help
	How to Use the Documentation Set
	Related Documentation
	Using Help
	Conventions
	Navigating Help
	Searching Help
	Printing Help File Topics

	NI-DNET Data Types
	NI-DNET Functions
	Using the Function Descriptions
	List of NI-DNET Functions
	EasyIOClose (Easy IO Close)
	EasyIOConfig (Easy IO Config)
	ncCloseObject (Close)
	ncConvertForDnetWrite (Convert For DeviceNet Write)
	ncConvertFromDnetRead (Convert From DeviceNet Read)
	ncCreateNotification (Create Notification)
	ncGetDnetAttribute (Get DeviceNet Attribute)
	ncGetDriverAttr (Get Driver Attribute)
	ncOpenDnetExplMsg (Open DeviceNet Explicit Messaging)
	ncOpenDnetIntf (Open DeviceNet Interface)
	ncOpenDnetIO (Open DeviceNet I/O)
	ncOperateDnetIntf (Operate DeviceNet Interface)
	ncReadDnetExplMsg (Read DeviceNet Explicit Message)
	ncReadDnetIO (Read DeviceNet I/O)
	ncSetDnetAttribute (Set DeviceNet Attribute)
	ncSetDriverAttr (Set Driver Attribute)
	ncStatusToString (Status To String)
	ncWaitForState (Wait For State)
	ncWriteDnetExplMsg (Write DeviceNet Explicit Message)
	ncWriteDnetIO (Write DeviceNet I/O)

	NI-DNET Objects
	Explicit Messaging Object
	Interface Object
	I/O Object

	Glossary
	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	Warning Regarding the Use of NI Products

	Technical Support and Professional Services

