

NI-DAQ™mx	Help
January	2008,	370466L-01
This	help	file	contains	information	about	using	NI-DAQmx	to	program
your	National	Instruments	device.	NI-DAQmx	is	the	software	you	use	to
communicate	with	and	control	your	NI	data	acquisition	(DAQ)	device.
Refer	to	Support	in	NI-DAQ	8.7	in	the	NI-DAQ	8.7	Readme	for	a	list	of
devices	supported	in	NI-DAQmx.
This	document	describes	only	NI-DAQmx.	For	information	on	Traditional
NI-DAQ	(Legacy),	refer	to	the	Traditional	NI-DAQ	(Legacy)	User	Manual.
For	more	information	about	this	help	file,	refer	to	the	following	topics:
Using	Help
Related	Documentation
Important	Information
Technical	Support	and	Professional	Services
To	comment	on	National	Instruments	documentation,	refer	to	the	National
Instruments	Web	site.
©	2003–2008	National	Instruments	Corporation.	All	rights	reserved.

javascript:WWW(WWW_Feedback)

Related	Documentation
Many	manuals	also	are	available	as	PDFs.	You	must	have	Adobe
Acrobat	Reader	with	Search	and	Accessibility	5.0.5	or	later	installed	to
view	the	PDFs.	Refer	to	the	Adobe	Systems	Incorporated	Web	site	to
download	Acrobat	Reader.	Refer	to	the	National	Instruments	Product
Manuals	Library	for	updated	documentation	resources.
The	following	documents	contain	information	that	you	may	find	helpful	as
you	use	this	help	file.	For	additional	details	on	these	documents,	along
with	their	default	installation	locations,	refer	to	ni.com/kb.

DAQ	Assistant	Help
DAQ	Getting	Started	Guide
Getting	Started	with	LabVIEW
Getting	Started	with	LabVIEW	SignalExpress
LabVIEW	Help
LabVIEW	Real-Time	User	Manual
LabVIEW	SignalExpress	Help
LabWindows™/CVI™	Help
Measurement	&	Automation	Explorer	Help	for	NI-DAQmx
NI	Measurement	Studio	Help
NI-DAQmx	C	Reference	Help
NI-DAQmx	Data	Acquisition	VIs
SCXI	Quick	Start	Guide
PID	Control	Toolset	Manual
Taking	an	NI-DAQmx	Measurement	in	LabVIEW
Taking	an	NI-DAQmx	Measurement	in	LabVIEW	SignalExpress
Taking	an	NI-DAQmx	Measurement	in	LabWindows/CVI
Using	NI-DAQmx	with	LabVIEW	Project
Device	Documentation

For	a	descriptions	of	NI-DAQmx	documents	along	with	default	installation
locations,	refer	to	NI-DAQmx	for	Windows	Documentation	on	ni.com.

javascript:WWW(WWW_Adobe)
javascript:WWW(WWW_Manuals)
javascript:WWW(WWW_RelatedDoc)

Using	Help
Conventions
Navigating	Help
Searching	Help
Printing	Help	File	Topics

Conventions
This	help	file	uses	the	following	formatting	and	typographical
conventions:

<	> Angle	brackets	that	contain	numbers	separated	by	an
ellipsis	represent	a	range	of	values	associated	with	a
bit	or	signal	name—for	example,	AO	<0..3>.

» The	»	symbol	leads	you	through	nested	menu	items
and	dialog	box	options	to	a	final	action.	The	sequence
File»Page	Setup»Options	directs	you	to	pull	down
the	File	menu,	select	the	Page	Setup	item,	and	select
Options	from	the	last	dialog	box.
This	icon	denotes	a	tip,	which	alerts	you	to	advisory
information.
This	icon	denotes	a	note,	which	alerts	you	to
important	information.

attribute/property This	term	is	used	to	represent	properties	for
LabVIEW,	Visual	C++,	Visual	Basic	.NET,	and	Visual
C#;	and	Get	and	Set	Attribute	functions	for	ANSI	C
and	LabWindows™/CVI™.

bold Bold	text	denotes	items	that	you	must	select	or	click
on	in	the	software,	such	as	menu	items	and	dialog
box	options.	Bold	text	also	denotes	parameter	names,
emphasis,	or	an	introduction	to	a	key	concept.

green Underlined	text	in	this	color	denotes	a	link	to	a	help
topic,	help	file,	or	Web	address.

italic Italic	text	denotes	variables,	emphasis,	cross
references,	or	an	introduction	to	a	key	concept.	Italic
text	also	denotes	text	that	is	a	placeholder	for	a	word
or	value	that	you	must	supply.

function/VI This	term	is	used	to	generically	represent	functions,
VIs,	and	methods,	depending	on	the	programming
language	you	use.	A	function/VI	might	not	exactly
match	the	term	used	in	your	programming	language.
Consult	the	appropriate	reference	documentation,

such	as	the	NI-DAQmx	C	Reference	Help,	for	the
specific	terms.

monospace Text	in	this	font	denotes	text	or	characters	that	you
should	enter	from	the	keyboard,	sections	of	code,
programming	examples,	and	syntax	examples.	This
font	is	also	used	for	the	proper	names	of	disk	drives,
paths,	directories,	programs,	subprograms,
subroutines,	device	names,	functions,	operations,
variables,	filenames,	and	extensions.

Navigating	Help	(Windows	Only)
To	navigate	this	help	file,	use	the	Contents,	Index,	and	Search	tabs	to
the	left	of	this	window	or	use	the	following	toolbar	buttons	located	above
the	tabs:

Hide—Hides	the	navigation	pane	from	view.
Locate—Locates	the	currently	displayed	topic	in	the	Contents	tab,
allowing	you	to	view	related	topics.
Back—Displays	the	previously	viewed	topic.
Forward—Displays	the	topic	you	viewed	before	clicking	the	Back
button.
Options—Displays	a	list	of	commands	and	viewing	options	for	the
help	file.

Searching	Help	(Windows	Only)
Use	the	Search	tab	to	the	left	of	this	window	to	locate	content	in	this	help
file.	If	you	want	to	search	for	words	in	a	certain	order,	such	as	"related
documentation,"	add	quotation	marks	around	the	search	words	as	shown
in	the	example.	Searching	for	terms	on	the	Search	tab	allows	you	to
quickly	locate	specific	information	and	information	in	topics	that	are	not
included	on	the	Contents	tab.

Wildcards
You	also	can	search	using	asterisk	(*)	or	question	mark	(?)	wildcards.
Use	the	asterisk	wildcard	to	return	topics	that	contain	a	certain	string.	For
example,	a	search	for	"prog*"	lists	topics	that	contain	the	words
"program,"	"programmatically,"	"progress,"	and	so	on.
Use	the	question	mark	wildcard	as	a	substitute	for	a	single	character	in	a
search	term.	For	example,	"?ext"	lists	topics	that	contain	the	words
"next,"	"text,"	and	so	on.

Note		Wildcards	do	not	work	when	searching	with	Simplified
Chinese,	Traditional	Chinese,	Japanese,	and	Korean	characters.

Nested	Expressions
Use	nested	expressions	to	combine	searches	to	further	refine	a	search.
You	can	use	Boolean	expressions	and	wildcards	in	a	nested	expression.
For	example,	"example	AND	(program	OR	VI)"	lists	topics	that	contain
"example	program"	or	"example	VI."	You	cannot	nest	expressions	more
than	five	levels.

Boolean	Expressions
Click	the	 	button	to	add	Boolean	expressions	to	a	search.	The	following
Boolean	operators	are	available:

AND	(default)—Returns	topics	that	contain	both	search	terms.	You
do	not	need	to	specify	this	operator	unless	you	are	using	nested
expressions.
OR—Returns	topics	that	contain	either	the	first	or	second	term.
NOT—Returns	topics	that	contain	the	first	term	without	the	second
term.
NEAR—Returns	topics	that	contain	both	terms	within	eight	words
of	each	other.

Search	Options

Use	the	following	checkboxes	on	the	Search	tab	to	customize	a	search:
Search	previous	results—Narrows	the	results	from	a	search	that
returned	too	many	topics.	You	must	remove	the	checkmark	from
this	checkbox	to	search	all	topics.
Match	similar	words—Broadens	a	search	to	return	topics	that
contain	words	similar	to	the	search	terms.	For	example,	a	search
for	"program"	lists	topics	that	include	the	words	"programs,"
"programming,"	and	so	on.
Search	titles	only—Searches	only	in	the	titles	of	topics.

Printing	Help	File	Topics	(Windows	Only)
Complete	the	following	steps	to	print	an	entire	book	from	the	Contents
tab:

1.	 Right-click	the	book.
2.	 Select	Print	from	the	shortcut	menu	to	display	the	Print	Topics

dialog	box.
3.	 Select	the	Print	the	selected	heading	and	all	subtopics	option.

Note		Select	Print	the	selected	topic	if	you	want	to	print
the	single	topic	you	have	selected	in	the	Contents	tab.

4.	 Click	the	OK	button.

Printing	PDF	Documents
This	help	file	may	contain	links	to	PDF	documents.	To	print	PDF
documents,	click	the	print	button	located	on	the	Adobe	Acrobat	Viewer
toolbar.

Getting	Started	with	NI-DAQmx
This	section	provides	an	overview	of	NI-DAQ,	including	a	discussion	of
the	differences	between	NI-DAQmx	and	Traditional	NI-DAQ	(Legacy).	It
also	includes	information	on	configuring	tasks	and	pointers	on	how	to
create	NI-DAQmx	applications	in	different	ADEs,	such	as
LabWindows/CVI	and	LabVIEW.

NI-DAQ	8.x	Overview
National	Instruments	measurement	devices	are	packaged	with	NI-DAQ
driver	software,	an	extensive	library	of	functions	and	VIs	you	can	call
from	your	application	software,	such	as	LabVIEW	or	LabWindows/CVI,	to
program	your	NI	measurement	devices.	Measurement	devices	include
DAQ	devices	such	as	the	M	Series	multifunction	I/O	(MIO)	devices,
signal	conditioning	modules,	and	switch	modules.	Driver	software	has	an
application	programming	interface	(API),	which	is	a	library	of	VIs,
functions,	classes,	attributes,	and	properties	for	creating	applications	for
your	device.
NI-DAQ	8.x	comes	with	the	latest	version	of	the	software	driver,	which	is
called	NI-DAQmx.	NI-DAQmx	replaces	Traditional	NI-DAQ	(Legacy).	NI-
DAQmx	and	Traditional	NI-DAQ	(Legacy)	have	their	own	APIs,	hardware
configurations,	and	software	configurations.	NI-DAQmx	CDs	also	include
LabVIEW	SignalExpress	LE,	an	easy-to-use	configuration-based	tool
specifically	designed	for	data	logging	applications.

NI-DAQmx
NI-DAQmx	has	the	following	advantages	over	Traditional	NI-DAQ
(Legacy):

DAQ	Assistant—a	graphical	way	to	configure	virtual	channels	and
measurement	tasks	for	your	device,	and	to	generate	NI-DAQmx
code	based	on	your	virtual	channels	and	tasks,	for	use	in
LabVIEW,	LabVIEW	SignalExpress,	LabWindows/CVI,	and
Measurement	Studio.
Increased	performance,	including	faster	single-point	analog	I/O
and	multithreading.
NI-DAQmx	simulated	devices	for	testing	and	modifying
applications	without	plugging	in	hardware.
Simpler,	more	intuitive	APIs	for	creating	DAQ	applications	using
fewer	functions	and	VIs	than	earlier	versions	of	NI-DAQ.
Expanded	functionality	for	LabVIEW,	including	property	nodes	and
waveform	data	type	support.
Similar	APIs	and	functionality	for	ANSI	C,	LabWindows/CVI,	and
Measurement	Studio,	including	native	.NET	and	C++	interfaces.
Improved	support	and	performance	for	the	LabVIEW	Real-Time
Module.

Traditional	NI-DAQ	(Legacy)
Traditional	NI-DAQ	(Legacy)	is	an	upgrade	of	the	earlier	version	of	NI-
DAQ.	Traditional	NI-DAQ	(Legacy)	has	the	same	VIs	and	functions	and
works	the	same	way	as	NI-DAQ	6.9.3,	except	you	can	use	Traditional	NI-
DAQ	(Legacy)	and	NI-DAQmx	on	the	same	computer,	and	some
hardware	is	no	longer	supported.

Who	Can	Use	NI-DAQmx
You	should	install	and	use	NI-DAQmx	if	the	following	situations	apply:

You	are	a	new	NI-DAQ	user.
You	are	using	devices	supported	by	NI-DAQmx;	refer	to	the	NI-
DAQ	Readme	for	a	list	of	supported	devices.
You	are	using	Windows	Vista/2000/NT/XP.

If	you	are	using	NI	application	software	with	NI-DAQmx,	you	must	use
LabVIEW,	LabWindows/CVI,	or	Measurement	Studio	version	7.x	or	later,
LabVIEW	SignalExpress	2.x	or	later	(including	SignalExpress	LE),	or	the
LabVIEW	Real-Time	Module	7.1	or	later.
If	you	use	one	of	the	Microsoft	.NET	languages,	Visual	C#	and/or	Visual
Basic	.NET,	or	a	device	supported	only	by	NI-DAQmx,	such	as	an	M
Series	device,	you	must	use	NI-DAQmx.
You	also	can	use	NI-DAQmx	with	a	supported	compiler,	such	as	an	ANSI
C	compiler.

Who	Must	Use	Traditional	NI-DAQ	(Legacy)
Install	and	use	Traditional	NI-DAQ	(Legacy)	if	one	of	the	following
situations	apply:

You	have	a	device	that	is	not	supported	by	NI-DAQmx,	such	as	the
AT	E	Series	multifunction	DAQ	devices.
You	are	using	a	version	of	LabVIEW,	LabWindows/CVI,	or
Measurement	Studio	earlier	than	version	7.0.
You	are	upgrading	from	NI-DAQ	6.9.x	and	have	existing
applications	that	you	do	not	want	to	port	to	NI-DAQmx	now.
Note		The	earliest	version	of	NI	application	software	supported	by
Traditional	NI-DAQ	(Legacy)	is	version	6.0.	LabVIEW,
LabWindows/CVI,	or	Measurement	Studio	versions	6.x	can	use
Traditional	NI-DAQ	(Legacy)	from	the	NI-DAQ	8.x	distribution.

Configuring	a	Task
DAQ	Assistant
Introduction	to	MAX
Capabilities	of	MAX

DAQ	Assistant
The	DAQ	Assistant	is	a	graphical	interface	for	configuring	measurement
tasks,	channels,	and	scales.	Using	the	DAQ	Assistant,	you	can
interactively	build	a	measurement	channel	or	task	for	use	in	LabVIEW	7.x
or	later,	LabVIEW	SignalExpress	2.x	or	later,	LabWindows/CVI	7.x	or
later,	and	Measurement	Studio	7.x	or	later.	With	these	NI	application
software	packages,	you	also	can	use	the	DAQ	Assistant	to	generate
code	for	use	in	your	applications.	Refer	to	the	DAQ	Assistant	Help	for
additional	information.
See	Also
Creating	Channels	and	Tasks	with	the	DAQ	Assistant

javascript:LaunchHelp(L_taskconfigchm,'DAQ_Config_Asst_Help.html')
mxcncpts.chm::/launchDAQAss.html

Introduction	to	Measurement	&	Automation
Explorer	(MAX)
You	configure	your	NI	measurement	and	signal	conditioning	devices	with
MAX.	MAX	informs	other	programs	which	devices	you	have	in	your
system	and	how	they	are	configured.	Use	MAX	to	add,	configure,	test,
and	remove	a	measurement	device	or	signal	conditioning	device.
To	check	the	system	resources	used	by	a	DAQ	device	and	to	select
attached	accessories,	expand	Devices	and	Interfaces	in	the
configuration	tree,	and	right-click	the	device	for	options.	For	more
information,	refer	to	Measurement	&	Automation	Explorer	Help	for	NI-
DAQmx.

Capabilities	of	MAX	for	NI-DAQmx
You	can	use	MAX	for	the	following	measurement	configuration	actions:

Configuring	resources	and	other	device-specific	settings	for	DAQ
devices	in	your	system
Testing	the	resources	and	the	functionality	of	DAQ	devices	in	your
system
Configuring	channels,	scales,	and	tasks	using	the	DAQ	Assistant
Creating	and	configuring	NI-DAQmx	simulated	devices

When	you	run	an	application	using	NI-DAQ,	the	software	reads	the
configuration	to	determine	the	devices	you	configured.	Therefore,	you
must	configure	DAQ	devices	first	with	MAX.	Refer	to	Measurement	&
Automation	Explorer	Help	for	NI-DAQmx	for	more	information	about
configuring	and	testing	DAQ	devices.

Exporting	and	Importing	a	Configuration	in	MAX
You	can	save	virtual	channels,	tasks,	devices,	and	their	relationships	for
reuse	in	other	systems	also	running	MAX.	To	reuse	a	configuration,	you
must	first	export	a	channel,	task,	or	device	configuration.	Exporting	the
configuration	creates	an	.nce	configuration	file	that	you	can	then	import
into	another	system	with	MAX.	Using	the	Import	and	Export	features	in
MAX,	you	can	create	an	NI-DAQmx	simulated	version	of	a	physical
device	or	import	an	NI-DAQmx	simulated	device	configuration	onto	a
physical	device.	For	detailed	instructions	on	how	to	export	and	import
configurations	for	deployment,	refer	to	Measurement	&	Automation
Explorer	Help	for	NI-DAQmx.

Note		When	you	use	LabWindows/CVI	to	create	a	distribution,	you
can	specify	to	invoke	the	MAX	Configuration	Export	Wizard	to
include	the	hardware	configurations	in	your	deployed	application.

You	can	also	programmatically	import	and	export	configuration	files.	For
more	information,	refer	to	the	MAX	Configuration	VI	Reference	for
LabVIEW	or	the	MAX	Configuration	Function	Reference	for
LabWindows/CVI.

mxcncpts.chm::/simDev.html
mxcncpts.chm::/Deployment.html

Distributed	Applications
You	can	use	the	DAQmx	I/O	Server	to	bind	to	a	global	virtual	channel
created	in	MAX	or	to	a	DAQ	channel	created	in	LabVIEW	Project.	You
can	use	the	network	variable	in	LabVIEW	Project	to	bind	to	the	channel,
or	you	can	use	a	third-party	OPC.	Refer	to	the	NI-DAQmx	topics	in	the
LabVIEW	documentation	for	instructions	on	binding	to	a	DAQ	channel
using	LabVIEW	Project.

Getting	Started	in	your	ADE
LabVIEW
LabVIEW	SignalExpress
LabWindows/CVI
Measurement	Studio
.NET	without	Measurement	Studio
ANSI	C	without	LabWindows/CVI

Creating	an	Application	with	LabVIEW
If	you	program	your	NI-DAQmx-supported	device	in	LabVIEW,	you	can
interactively	create	virtual	channels—both	global	and	local—and	tasks	by
launching	the	DAQ	Assistant	from	MAX	or	from	within	LabVIEW.	Refer	to
the	DAQ	Assistant	Help	for	additional	information.	You	also	can	create
local	virtual	channels	and	tasks,	and	write	your	own	applications	using
the	NI-DAQmx	API.	To	get	started	in	LabVIEW,	follow	these	general
steps:

1.	 Open	an	existing	or	new	LabVIEW	VI.
2.	 Build	your	VI,	using	the	NI-DAQmx	VIs	and	properties.

For	help	with	NI-DAQmx	VIs,	refer	to	LabVIEW	NI-DAQmx	VI	Reference
Help.	For	general	help	with	programming	in	LabVIEW,	refer	to	LabVIEW
Help.

javascript:LaunchHelp(L_taskconfigchm,'DAQ_Config_Asst_Help.html')

Creating	an	Application	in	LabVIEW
SignalExpress
If	you	use	your	NI-DAQmx-supported	device	in	LabVIEW	SignalExpress,
you	can	create	a	project	that	includes	NI-DAQmx	steps.	With	LabVIEW
SignalExpress,	you	can	log	and	analyze	data.	You	can	also	add	global
virtual	channels	that	you	created	in	MAX	to	your	NI-DAQmx	steps	in
LabVIEW	SignalExpress.	Refer	to	the	DAQ	Assistant	Help	for	additional
information.	To	get	started	in	LabVIEW	SignalExpress,	follow	these
general	steps:

1.	 Click	Add	Step	and	select	Acquire	Signals»Acquire
DAQmx»Analog	Input»Voltage	to	drop	the	DAQmx	Acquire
Step.

2.	 Click	the	+	button	to	add	a	channel	to	the	NI-DAQmx	step.
For	help	with	using	the	DAQ	Assistant	with	LabVIEW	SignalExpress,
refer	to	Taking	an	NI-DAQmx	Measurement	in	LabVIEW	SignalExpress.
For	general	help	with	programming	in	LabVIEW	SignalExpress,	refer	to
LabVIEW	SignalExpress	Help.

javascript:LaunchHelp(L_taskconfigchm,'DAQ_Config_Asst_Help.html')

Creating	an	Application	with	LabWindows/CVI
If	you	program	your	NI-DAQmx-supported	device	in	LabWindows/CVI,
you	can	interactively	create	global	or	local	virtual	channels	and	tasks	by
launching	the	DAQ	Assistant	from	MAX	or	from	within	LabWindows/CVI.
You	can	generate	the	configuration	code	based	on	your	task	or	channel
in	LabWindows/CVI.	Refer	to	the	DAQ	Assistant	Help	for	additional
information	about	generating	code.	You	also	can	create	local	virtual
channels	and	tasks,	and	write	your	own	applications	using	the	NI-DAQmx
API.	To	create	an	application,	follow	these	general	steps:

1.	 Create	a	new	project	file	(.prj).
2.	 Open	an	existing	or	new	source	file	(.c).
3.	 Add	your	source	file	to	the	project.
4.	 Select	NI-DAQmx	from	the	Library	Tree,	and	choose	the	function

panel	you	want	to	use.
5.	 To	view	examples	of	NI-DAQmx	applications	in	LabWindows/CVI,

launch	the	NI	Example	Finder.
6.	 Build	your	application.

For	help	with	NI-DAQmx	functions,	refer	to	NI-DAQmx	C	Function
Reference	Help.	For	general	help	with	programming	in	LabWindows/CVI,
refer	to	LabWindows/CVI	Help,	accessible	through	Start»All
Programs»National	Instruments»LabWindows	CVI»LabWindows	CVI
Help.

javascript:LaunchHelp(L_taskconfigchm,'DAQ_Config_Asst_Help.html')

Creating	an	Application	in	Measurement	Studio
with	Visual	C++,	Visual	C#,	or	Visual	Basic	.NET
If	you	program	your	NI-DAQmx-supported	device	in	Measurement	Studio
using	Visual	C++,	Visual	C#,	or	Visual	Basic	.NET,	you	can	interactively
create	channels	and	tasks	by	launching	the	DAQ	Assistant	from	MAX	or
from	within	Visual	Studio	.NET.	You	can	generate	the	configuration	code
based	on	your	task	or	channel	in	Measurement	Studio.	Refer	to	the	DAQ
Assistant	Help	for	additional	information	about	generating	code.	You	also
can	create	channels	and	tasks,	and	write	your	own	applications	in	your
ADE	using	the	NI-DAQmx	API.
For	help	with	NI-DAQmx	methods	and	properties,	refer	to	the	NI-DAQmx
.NET	Class	Library	or	the	NI-DAQmx	Visual	C++	Class	Library	included
in	the	NI	Measurement	Studio	Help.	For	general	help	with	programming
in	Measurement	Studio,	refer	to	the	NI	Measurement	Studio	Help,	which
is	fully	integrated	with	the	Microsoft	Visual	Studio	.NET	help.	To	view	this
help	file	in	Visual	Studio.	NET,	select	Measurement	Studio»NI
Measurement	Studio	Help.
To	create	an	application	in	Visual	C++,	Visual	C#,	or	Visual	Basic	.NET,
follow	these	general	steps:

1.	 In	Visual	Studio	.NET,	select	File»New»Project	to	launch	the
New	Project	dialog	box.

2.	 Find	the	Measurement	Studio	folder	for	the	language	you	want	to
create	a	program	in.

3.	 Choose	a	project	type.	You	add	DAQ	tasks	as	a	part	of	this	step.

javascript:LaunchHelp(L_taskconfigchm,'DAQ_Config_Asst_Help.html')

Creating	a	.NET	Application	without
Measurement	Studio
With	the	Microsoft	.NET	Framework	version	1.1	or	later,	you	can	use	NI-
DAQmx	to	create	applications	using	Visual	C#	and	Visual	Basic	.NET
without	Measurement	Studio.	You	need	Microsoft	Visual	Studio	.NET
2003	or	Microsoft	Visual	Studio	2005	for	the	API	documentation	to	be
installed.
The	installed	documentation	contains	the	NI-DAQmx	API	overview,
measurement	tasks	and	concepts,	and	function	reference.	This	help	is
fully	integrated	into	the	Visual	Studio	.NET	documentation.	To	view	the
NI-DAQmx	.NET	documentation,	go	to	Start»All	Programs»National
Instruments»NI-DAQ»NI-DAQmx	.NET	Reference	Help.	Expand	NI
Measurement	Studio	Help»NI	Measurement	Studio	.NET	Class
Library»Reference	to	view	the	function	reference.	Expand	NI
Measurement	Studio	Help»NI	Measurement	Studio	.NET	Class
Library»Using	the	Measurement	Studio	.NET	Class	Libraries	to	view
conceptual	topics	for	using	NI-DAQmx	with	Visual	C#	and	Visual	Basic
.NET.
To	get	to	the	same	help	topics	from	within	Visual	Studio,	go	to
Help»Contents.	Select	Measurement	Studio	from	the	Filtered	By	drop-
down	list	and	follow	the	previous	instructions.

Creating	an	ANSI	C	Application	without
LabWindows/CVI
NI-DAQmx	has	a	C	API	that	you	can	use	to	create	applications.	To	create
an	application,	follow	these	general	steps:

1.	 Create	a	new	project.
2.	 Open	existing	or	new	source	files	(.c),	and	add	them	to	the

project.	Make	sure	you	include	the	NI-DAQmx	header	file,
nidaqmx.h,	in	your	source	code	files.	You	can	find	this	header	file
at	NI-DAQ\DAQmx	ANSI	C	Dev\include.

3.	 Add	the	NI-DAQmx	import	library,	nidaqmx.lib,	to	the	project.	The
import	library	files	are	located	under	NI-DAQ\DAQmx	ANSI	C
Dev\lib\.

4.	 To	view	examples	of	NI-DAQmx	applications,	go	to	the	NI-
DAQ\Examples\DAQmx	ANSI	C	directory.

5.	 Build	your	application.
For	help	with	NI-DAQmx	functions,	refer	to	the	NI-DAQmx	C	Reference
Help,	which	is	installed	by	default	at	Start»All	Programs»National
Instruments»NI-DAQ»NI-DAQmx	C	Reference	Help.

Examples
Each	API	includes	a	collection	of	programming	examples	to	help	you	get
started	developing	an	application.	You	can	modify	example	code	and
save	it	in	an	application.	You	can	use	examples	to	develop	a	new
application	or	add	example	code	to	an	existing	application.
To	run	examples	without	hardware	installed,	you	can	use	an	NI-DAQmx
simulated	device.	In	MAX,	refer	to	the	Measurement	&	Automation
Explorer	Help	for	NI-DAQmx	by	selecting	Help»Help	Topics»	NI-
DAQmx	for	information	on	NI-DAQmx	simulated	devices.
To	find	the	locations	of	examples	for	your	software	application,	refer	to
the	following	table.

Software	Application Example	Location
LabVIEW	or	LabWindows/CVI Help»Find	Examples
LabVIEW	SignalExpress Program	Files\National

Instruments\SignalExpress\Examples
ANSI	C *...NI-DAQ\Examples\DAQmx	ANSI	C
MFC	7.0	C++ *...NI-DAQ\Examples\MStudioVC2003
Visual	Basic	.NET	and	C#	for
Visual	Studio	2003

*...NI-DAQ\Examples\DotNET1.1

MFC	8.0	C++ *...NI-DAQ\Examples\MStudioVC2005
Visual	Basic	.NET	and	C#	for
Visual	Studio	2005

*...NI-DAQ\Examples\DotNET2.0

*	For	Windows	XP,	the	default	path	is	<drive>:\Documents	and	Settings\All
Users\Documents\National	Instruments\NI-DAQ\Examples\...	.	For	Windows
Vista,	the	default	path	is	<drive>:\Users\Public\Documents\	National
Instruments\NI-DAQ\Examples\...	.

Note		Visual	Studio	2003	and	Visual	Studio	2005	do	not	require
Measurement	Studio.

Troubleshooting
Installation	and	Configuration
Refer	to	the	DAQ	Getting	Started	Guide	and	the	SCXI	Quick	Start	Guide
for	general	installation	and	configuration	instructions.
Use	the	following	resources	if	you	have	problems	installing	your	DAQ
hardware	and/or	software:

For	troubleshooting	instructions,	refer	to	the	Hardware	Installation/
Configuration	Troubleshooter	at	ni.com/support/install.
Refer	to	ni.com/kb	for	documents	on	troubleshooting	common
installation	and	programming	problems	and	for	answering
frequently	asked	questions	about	NI	products.
If	you	think	you	have	damaged	your	device	and	need	to	return	your
National	Instruments	hardware	for	repair	or	calibration,	refer	to
ni.com/support	and	search	on	Sending	a	Board	for	Repair	or
Calibration	to	learn	how	to	begin	the	Return	Merchandise
Authorization	(RMA)	process.

For	LabWindows/CVI	users,	if	the	Data	Acquisition	function	panel	is
disabled,	you	may	need	to	uninstall	NI-DAQ	and	reinstall	it,	making	sure
that	you	add	support	for	LabWindows/CVI.	If	you	have	installed
LabWindows/CVI	support	and	Data	Acquisition	is	still	dimmed,	select
Library»Customize.	In	the	Customize	Library	Menu	dialog	box,	check
Data	Acquisition,	and	restart	LabWindows/CVI.	You	might	also	need	to
verify	that	the	dataacq.lib	is	in	the	bin	directory.

Programming
To	help	you	get	started	programming,	you	can	use	the	shipping	examples
for	your	ADE.
You	can	also	visit	NI's	extensive	library	of	technical	support	resources	at
ni.com/support.
You	can	interactively	configure	global	virtual	channels	and	tasks	with	the
DAQ	Assistant.	For	NI	application	software	such	as	LabVIEW,	you	can
use	the	DAQ	Assistant	to	generate	code.
Finally,	the	NI-DAQmx	Help	contains	programming	flowcharts	for
common	applications	such	as	measuring	temperature,	current,	strain,
position,	and	acceleration.

javascript:WWW(WWW_Support)

External	Connections
In	addition	to	the	information	on	making	signal	connections	in	this	help
file,	the	Connection	Diagram	tab	in	the	DAQ	Assistant	within	MAX	shows
you	how	to	connect	signals.

Calibration
For	information	on	externally	calibrating	your	device,	including
step-by-step	calibration	procedures,	refer	to	ni.com/calibration.
For	an	overview	of	calibration,	including	the	difference	between
self-calibration	and	external	calibration,	refer	to	Calibration.
For	device-specific	information	required	for	calibration	with	NI-
DAQmx,	refer	to	Device-Specific	Calibration.
For	information	on	channel	calibration,	refer	to	What	Is	Channel
Calibration?

javascript:WWW(WWW_CC)
mxcncpts.chm::/calibration.html
mxdevconsid.chm::/Calibration.html
mxcncpts.chm::/ChannelCalibration.html

CPU	Usage
NI-DAQmx	tasks	use	100%	of	the	CPU	if	no	other	processes	are	running.
However,	as	soon	as	another	process	requires	the	CPU,	the	NI-DAQmx
task	yields	to	that	process.

Troubleshooting	an	SCXI	System
The	following	are	some	tips	to	help	you	troubleshoot	problems	with	an
SCXI	system:

Can	MAX	establish	communication	with	the	chassis?	If	not,	try	one
or	all	of	the	following:	Connect	the	DAQ	device	to	a	different
module	in	the	chassis.	Try	a	different	cable	assembly.	Try	a
different	chassis.	Try	a	different	DAQ	device.	If	you	have	multiple
chassis,	disconnect	them	and	reconnect	them	one	at	a	time	to
isolate	the	problem.
Make	sure	that	each	SCXI	chassis	connected	to	a	single	DAQ
device	has	a	unique	address.
If	you	have	multiple	SCXI	modules,	remove	all	the	modules	and
test	each	module	individually.
If	a	particular	chassis	does	not	work,	try	another	one.
If	you	are	getting	erroneous	readings	from	your	signal	source,
disconnect	the	signal	source	and	short	the	input	channel	to
ground.	You	should	get	a	0	V	reading.
Alternately,	connect	a	battery	or	other	known	signal	source	to	the
input	channel.
Run	an	example	program	to	see	if	you	still	get	erroneous	results.

Frequently	Asked	Questions	(FAQ)
For	answers	to	frequently	asked	questions,	visit	the	NI-DAQmx	FAQ.

javascript:WWW(WWW_newFAQ)

Generic	Programming	Flowcharts
This	section	contains	general	programming	flowcharts	that	you	can	use
when	creating	an	application.	You	also	can	find	programming	flowcharts
for	typical	applications—such	as	measuring	temperature,	measuring
current,	and	measuring	strain—in	the	Common	Applications	section	of
this	help	file.
In	the	programming	flowcharts,	many	applications	also	include	explicit
control	functions	to	start,	stop,	and	clear	the	task.	For	instance,	for
applications	that	use	your	counter/timer,	such	as	finite	counter	input,	you
need	to	call	the	Start	function/VI	to	arm	the	counter.	In	LabVIEW,	clearing
occurs	automatically.	For	other	ADEs,	you	must	include	these	functions
in	your	application.
Functions	and	VIs	produce	the	core	functionality	of	the	NI-DAQmx	API.
For	instance,	NI-DAQmx	includes	functions	for	timing,	triggering,	reading,
and	writing	samples.	However,	for	advanced	functionality,	Visual	C++,
Visual	C#,	Visual	Basic	.NET,	and	LabVIEW	require	properties.	ANSI	C
and	LabWindows/CVI	employ	the	Get	and	Set	Attribute	functions.	For
more	information,	refer	to	the	programming	reference	help	for	your	ADE.

Analog	Input	Programming	Flowcharts
Single	Sample	Analog	Input
Finite	Analog	Input
Continuous	Analog	Input

Analog	Output	Programming	Flowcharts
Single	Sample	Analog	Output
Finite	Analog	Output
Continuous	Analog	Output

Digital	Input	Programming	Flowcharts
Single	Sample	Digital	Input
Finite	Digital	Input
Continuous	Digital	Input

Digital	Output	Programming	Flowcharts
Single	Sample	Digital	Output
Finite	Digital	Output
Continuous	Digital	Output

Measuring	Counter	Values	(Counter	Input)	Programming
Flowcharts
Single	Point	Counter	Input
Finite	Counter	Input
Continuous	Counter	Input

Analog	Input	Programming	Flowcharts
This	section	contains	general	programming	flowcharts	that	you	can	use
when	creating	an	application.	You	also	can	find	programming	flowcharts
for	typical	applications—such	as	measuring	temperature,	measuring
current,	and	measuring	strain—in	the	Common	Applications	section	of
this	help	file.
Functions	and	VIs	provide	the	core	functionality	of	the	NI-DAQmx	API.
For	instance,	NI-DAQmx	includes	functions	for	timing,	triggering,	reading,
and	writing	samples.	However,	for	advanced	functionality,	Visual	C++,
Visual	C#,	Visual	Basic	.NET,	and	LabVIEW	require	properties.	ANSI	C
and	LabWindows/CVI	employ	the	Get	and	Set	Attribute	functions.	For
more	information,	refer	to	the	programming	reference	help	for	your	ADE.

Analog	Input	Programming	Flowcharts
Single	Sample	Analog	Input
Finite	Analog	Input
Continuous	Analog	Input
Triggered	Acquisition

Single	Sample	Analog	Input	Programming
Flowchart
Acquiring	a	single	sample	is	an	on-demand	operation.	In	other	words,	NI-
DAQmx	acquires	one	value	from	an	input	channel	and	immediately
returns	the	value.	This	operation	does	not	require	any	buffering	or
hardware	timing.	For	example,	if	you	periodically	needed	to	monitor	the
fluid	level	in	a	tank,	you	acquire	single	data	points.	You	can	connect	the
transducer	that	produces	a	voltage	representing	the	fluid	level	to	a	single
channel	on	your	measurement	device	and	initiate	a	single-channel,
single-point	acquisition	when	you	want	to	know	the	fluid	level.
With	NI-DAQmx,	you	also	can	gather	data	from	multiple	channels.	For
instance,	you	might	want	to	monitor	the	fluid	level	in	the	tank	as	well	as
the	temperature.	In	this	case,	you	need	two	transducers	connected	to	two
channels	on	your	device.	The	following	flowchart	depicts	the	steps	to
programmatically	create	a	single	sample	analog	input	application.	If	you
prefer,	you	can	configure	a	task	for	acquiring	a	single	sample	using	the
DAQ	Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	read,	include	the	Start	function/VI	and	Stop	function/VI	in	your
application.	In	the	previous	flowchart,	the	Start	function/VI	would
come	just	before	you	read	samples,	and	Stop	would	come	just
before	you	clear	the	task.

Finite	Analog	Input	Programming	Flowchart
One	way	to	acquire	multiple	samples	for	one	or	more	channels	is	to
acquire	single	samples	in	a	repetitive	manner.	However,	acquiring	a
single	sample	on	one	or	more	channels	over	and	over	is	inefficient	and
time	consuming.	Moreover,	you	do	not	have	accurate	control	over	the
time	between	each	sample	or	channel.	Instead,	you	can	use	hardware
timing,	which	uses	a	buffer	in	computer	memory	to	acquire	data	more
efficiently.	Programmatically,	you	need	to	include	the	timing	function,
specifying	the	sample	rate	and	the	sample	mode	(finite).	As	with	other
functions,	you	can	acquire	multiple	samples	for	a	single	channel	or
multiple	channels.	You	can	configure	a	task	for	finite	analog	input	using
the	DAQ	Assistant.

mxcncpts.chm::/HardwreSoftwreTiming.html
mxcncpts.chm::/buffering.html

Continuous	Analog	Input	Programming
Flowchart
If	you	want	to	view,	process,	or	log	a	subset	of	the	samples	as	they	are
being	acquired,	you	need	to	continually	acquire	samples.	For	these	types
of	applications,	set	the	sample	mode	to	continuous.	The	following
flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx	application	for
measuring	voltage.	Instead,	you	can	configure	a	task	for	continuous
analog	input	using	the	DAQ	Assistant.

Analog	Output	Programming	Flowcharts
This	section	contains	general	programming	flowcharts	that	you	can	use
when	creating	an	application.	You	also	can	find	programming	flowcharts
for	typical	applications—such	as	generating	voltage	and	generating
current—in	the	Common	Applications	section	of	this	help	file.
In	the	programming	flowcharts,	many	applications	also	include	explicit
control	functions	to	start,	stop,	and	clear	the	task.	In	LabVIEW,	clearing
occurs	automatically.	For	other	ADEs,	you	must	include	these	functions
in	your	application.
Functions	and	VIs	provide	the	core	functionality	of	the	NI-DAQmx	API.
For	instance,	NI-DAQmx	includes	functions	for	timing,	triggering,	reading,
and	writing	samples.	However,	for	advanced	functionality,	Visual	C++,
Visual	C#,	Visual	Basic	.NET,	and	LabVIEW	require	properties.	ANSI	C
and	LabWindows/CVI	employ	the	Get	and	Set	Attribute	functions.	For
more	information,	refer	to	the	programming	reference	help	for	your	ADE.

Analog	Output	Programming	Flowcharts
Single	Sample	Analog	Output
Finite	Analog	Output
Continuous	Analog	Output

Single	Sample	Analog	Output	Programming
Flowchart
Generating	a	single	sample	is	an	on-demand	operation.	In	other	words,
NI-DAQmx	generates	one	value	from	an	input	channel	and	immediately
returns	the	value.	This	operation	does	not	require	any	buffering	or
hardware	timing.
With	NI-DAQmx,	you	also	can	generate	samples	from	multiple	channels.
If	you	prefer,	you	can	configure	a	task	for	generating	a	single	sample
using	the	DAQ	Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	written,	include	the	Start	function/VI	and	Stop	function/VI	in
your	application.	In	the	preceding	flowchart,	the	Start	function/VI
would	come	just	before	you	write	samples,	and	Stop	would	come
just	before	you	clear	the	task.

Finite	Analog	Output	Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	generate	a	finite	number	of	voltage	samples	in	a	buffered
generation.	If	you	prefer,	you	can	configure	this	task	using	the	DAQ
Assistant.

Continuous	Analog	Output	Programming
Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	continuously	generate	voltage	samples.	If	you	prefer,	you
can	configure	this	task	using	the	DAQ	Assistant.

Counter	Programming	Flowcharts
This	section	contains	general	programming	flowcharts	that	you	can	use
when	creating	an	application.	You	also	can	find	programming	flowcharts
for	typical	applications—such	as	counting	edges	and	generating	pulses—
in	the	Common	Applications	section	of	this	help	file.
In	the	programming	flowcharts,	many	applications	also	include	explicit
control	functions	to	start,	stop,	and	clear	the	task.	For	instance,	for
applications	that	use	your	counter,	such	as	counting	edges	or	measuring
period,	you	need	to	call	the	Start	function/VI	to	arm	the	counter.	In
LabVIEW,	clearing	occurs	automatically.	For	other	ADEs,	you	must
include	these	functions	in	your	application.
Functions	and	VIs	provide	the	core	functionality	of	the	NI-DAQmx	API.
For	instance,	NI-DAQmx	includes	functions	for	timing,	triggering,	reading,
and	writing	samples.	However,	for	advanced	functionality,	Visual	C++,
Visual	C#,	Visual	Basic	.NET,	and	LabVIEW	require	properties.	ANSI	C
and	LabWindows/CVI	employ	the	Get	and	Set	Attribute	functions.	For
more	information,	refer	to	the	programming	reference	help	for	your	ADE.

Counter	Input	Programming	Flowcharts
Single	Point	Counter	Input
Finite	Counter	Input
Continuous	Counter	Input

Single	Point	Counter	Input	Programming
Flowchart
The	following	flowchart	depicts	the	main	steps	you	must	complete	for	an
on-demand	counting	application.	If	you	prefer,	you	can	configure	this	task
using	the	DAQ	Assistant.

Finite	Counter	Input	Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	you	must	complete	for
finite	counter	input	in	an	NI-DAQmx	application.	If	you	prefer,	you	can
configure	this	task	using	the	DAQ	Assistant.

1Time-based	measurements	include	period,	semi-period,	pulse	width,
two-edge	separation,	and	digital	frequency.
2Edge	counting-based	measurements	include	edge	counting,	encoder-
based	position	measurements,	and	GPS	timestamp	measurements.

Continuous	Counter	Input	Programming
Flowchart
The	following	flowchart	depicts	the	main	steps	you	must	complete	for
continuous	counting	in	an	NI-DAQmx	application.	If	you	prefer,	you	can
configure	this	task	using	the	DAQ	Assistant.

1Time-based	measurements	include	period,	semi-period,	pulse	width,
two-edge	separation,	and	digital	frequency.
2Edge	counting-based	measurements	include	edge	counting,	encoder-
based	position	measurements,	and	GPS	timestamp	measurements.

Digital	Input	Programming	Flowcharts
This	section	contains	general	programming	flowcharts	that	you	can	use
when	creating	an	application.	You	also	can	find	programming	flowcharts
for	typical	applications—such	as	measuring	a	digital	value—in	the
Common	Applications	section	of	this	help	file.
In	the	programming	flowcharts,	many	applications	also	include	explicit
control	functions	to	start,	stop,	and	clear	the	task.	In	LabVIEW,	clearing
occurs	automatically.	For	other	ADEs,	you	must	include	these	functions
in	your	application.
Functions	and	VIs	provide	the	core	functionality	of	the	NI-DAQmx	API.
For	instance,	NI-DAQmx	includes	functions	for	timing,	triggering,	reading,
and	writing	samples.	However,	for	advanced	functionality,	Visual	C++,
Visual	C#,	Visual	Basic	.NET,	and	LabVIEW	require	properties.	ANSI	C
and	LabWindows/CVI	employ	the	Get	and	Set	Attribute	functions.	For
more	information,	refer	to	the	programming	reference	help	for	your	ADE.

Digital	Input	Programming	Flowcharts
Single	Sample	Digital	Input
Finite	Digital	Input
Continuous	Digital	Input

Single	Sample	Digital	Input	Programming
Flowchart
Acquiring	a	single	sample	is	an	on-demand	operation.	In	other	words,	NI-
DAQmx	acquires	one	value	from	an	input	channel	and	immediately
returns	the	value.	This	operation	does	not	require	any	buffering	or
hardware	timing.	For	example,	if	you	periodically	needed	to	monitor	the
fluid	level	in	a	tank,	you	acquire	single	data	points.	You	can	connect	the
transducer	that	produces	a	voltage	representing	the	fluid	level	to	a	single
channel	on	your	measurement	device	and	initiate	a	single-channel,
single-point	acquisition	when	you	want	to	know	the	fluid	level.
With	NI-DAQmx,	you	also	can	gather	data	from	multiple	channels.	For
instance,	you	might	want	to	monitor	the	fluid	level	in	the	tank	as	well	as
the	temperature.	In	this	case,	you	need	two	transducers	connected	to	two
channels	on	your	device.	The	following	flowchart	depicts	the	steps	to
programmatically	create	an	application	to	measure	digital	values.	If	you
prefer,	you	can	configure	a	task	for	acquiring	a	single	sample	using	the
DAQ	Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	read,	include	the	Start	function/VI	and	Stop	function/VI	in	your
application.	In	the	previous	flowchart,	the	Start	function/VI	would
come	just	before	you	read	samples,	and	Stop	would	come	just
before	you	clear	the	task.

Finite	Digital	Input	Programming	Flowchart
One	way	to	acquire	multiple	samples	for	one	or	more	channels	is	to
acquire	single	samples	in	a	repetitive	manner.	However,	acquiring	a
single	data	sample	on	one	or	more	channels	over	and	over	is	inefficient
and	time	consuming.	Moreover,	you	do	not	have	accurate	control	over
the	time	between	each	sample	or	channel.	Instead,	you	can	use
hardware	timing,	which	uses	a	buffer	in	computer	memory	to	acquire
data	more	efficiently.	Programmatically,	you	need	to	include	the	timing
function,	specifying	the	sample	rate	and	the	sample	mode	(finite).	As
with	other	functions,	you	can	acquire	multiple	samples	for	a	single
channel	or	multiple	channels.	You	can	configure	a	task	for	measuring
digital	values	using	the	DAQ	Assistant.

Note		Triggering	and	Sample	Clock	timing	for	Digital	I/O	are	not
supported	on	all	devices.

mxcncpts.chm::/HardwreSoftwreTiming.html
mxcncpts.chm::/buffering.html
mxcncpts.chm::/triggering.html
mxdevconsid.chm::/sampleclockDIO.html

Continuous	Digital	Input	Programming
Flowchart
If	you	want	to	view,	process,	or	log	a	subset	of	the	samples	as	they	are
being	acquired,	you	need	to	continually	acquire	samples.	For	these	types
of	applications,	set	the	sample	mode	to	continuous.	The	following
flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx	application	for
acquiring	digital	signals.	You	can	configure	a	task	for	continuously
acquiring	digital	values	using	the	DAQ	Assistant.

Note		Sample	clock	timing	for	Digital	I/O	is	not	supported	on	all
devices.

mxdevconsid.chm::/sampleclockDIO.html

Digital	Output	Programming	Flowcharts
This	section	contains	general	programming	flowcharts	that	you	can	use
when	creating	an	application.	You	also	can	find	programming	flowcharts
for	typical	applications	in	the	Common	Applications	section	of	this	help
file.
In	the	programming	flowcharts,	many	applications	also	include	explicit
control	functions	to	start,	stop,	and	clear	the	task.	For	instance,	for
applications	that	use	your	counter/timer,	such	as	counting	edges	or
measuring	period,	you	need	to	call	the	Start	function/VI	to	arm	the
counter.	In	LabVIEW,	clearing	occurs	automatically.	For	other	ADEs,	you
must	include	these	functions	in	your	application.
Functions	and	VIs	provide	the	core	functionality	of	the	NI-DAQmx	API.
For	instance,	NI-DAQmx	includes	functions	for	timing,	triggering,	reading,
and	writing	samples.	However,	for	advanced	functionality,	Visual	C++,
Visual	C#,	Visual	Basic	.NET,	and	LabVIEW	require	properties.	ANSI	C
and	LabWindows/CVI	employ	the	Get	and	Set	Attribute	functions.	For
more	information,	refer	to	the	programming	reference	help	for	your	ADE.

Digital	Output	Programming	Flowcharts
Single	Sample	Digital	Output
Finite	Digital	Output
Continuous	Digital	Output

Single	Sample	Digital	Output	Programming
Flowchart
Generating	a	single	sample	is	an	on-demand	operation.	In	other	words,
NI-DAQmx	generates	one	value	on	an	output	channel	immediately	after
the	Write	function/VI	is	called.	This	operation	does	not	require	any
buffering	or	hardware	timing.
With	NI-DAQmx,	you	also	can	generate	samples	from	multiple	channels.
If	you	prefer,	you	can	configure	a	task	for	generating	a	single	sample
using	the	DAQ	Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	written,	include	the	Start	function/VI	and	Stop	function/VI	in
your	application.	In	the	preceding	flowchart,	the	Start	function/VI
would	come	just	before	you	write	samples,	and	Stop	would	come
just	before	you	clear	the	task.

Finite	Digital	Output	Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	generate	a	finite	number	of	digital	values	in	a	buffered
generation.	If	you	prefer,	you	can	configure	a	task	for	generating	digital
values	using	the	DAQ	Assistant.

Note		Sample	clock	timing	for	Digital	I/O	is	not	supported	on	all
devices.

mxdevconsid.chm::/sampleclockDIO.html

Continuous	Digital	Output	Programming
Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	continuously	generate	digital	values.	If	you	prefer,	you	can
configure	a	task	for	generating	digital	values	using	the	DAQ	Assistant.

Note		Sample	clock	timing	for	Digital	I/O	is	not	supported	on	all
devices.

mxdevconsid.chm::/sampleclockDIO.html

Triggered	Acquisition	Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	you	follow	for	adding
triggering	to	an	acquisition.	If	you	prefer,	you	can	configure	triggering	with
the	DAQ	Assistant.

Measuring	Temperature
Note		Temperature	measurements	may	require	you	to	condition
the	signal.	The	conditioning	requirements	depend	on	your	sensor.
Refer	to	the	Overview	of	Temperature	Sensor	Types	for	an
explanation	of	sensor	types	and	conditioning	requirements.

measfunds.chm::/sensoroverview.html

Using	a	Thermocouple	to	Measure	Temperature
A	popular	way	to	measure	temperature	with	a	DAQ	device	is	to	use	a
thermocouple,	as	shown	in	the	following	figure,	because	thermocouples
are	inexpensive,	easy	to	use,	and	easy	to	obtain.	Thermocouples
produce	a	voltage	that	varies	based	on	temperature.	Using	a
thermocouple,	you	can	measure	a	voltage	and	use	a	formula	to	convert
the	voltage	measurement	to	temperature.

The	typical	wiring	for	a	thermocouple,	as	shown	in	the	following	figure,
uses	a	resistor,	R,	only	if	the	thermocouple	is	not	grounded	at	any	other
point.	If,	for	example,	the	thermocouple	tip	were	already	grounded,	using
a	resistor	would	cause	a	ground	loop	and	result	in	erroneous	readings.

You	also	can	measure	temperature	using	Resistance	Temperature
Detectors	(RTD)	and	Thermistors.
Making	Signal	Connections
Creating	a	Program
RTD
Thermistor
Thermocouple

Examples

measfunds.chm::/thermocouples.html
measfunds.chm::/rtd.html
measfunds.chm::/thermistors.html
measfunds.chm::/ConnectAISigs.html

Measuring	Temperature	with	an	RTD
Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	measure	temperature	with	an	RTD.	Alternatively,	you	can
configure	a	task	for	measuring	temperature	using	the	DAQ	Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	read,	include	the	Start	function/VI	and	Stop	function/VI	in	your
application.	In	the	previous	flowchart,	the	Start	function/VI	would
come	just	before	you	read	samples,	and	Stop	would	come	just
before	you	clear	the	task.

Measuring	temperature	is	an	example	of	analog	input	measurement.
Refer	to	Analog	Input	Programming	Flowcharts	for	additional	flowcharts
that	can	help	you	create	an	application.

Measuring	Temperature	with	a	Thermistor
Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	measure	temperature	with	a	thermistor.	Alternatively,	you
can	configure	a	task	for	measuring	temperature	using	the	DAQ	Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	read,	include	the	Start	function/VI	and	Stop	function/VI	in	your
application.	In	the	previous	flowchart,	the	Start	function/VI	would
come	just	before	you	read	samples,	and	Stop	would	come	just
before	you	clear	the	task.

Measuring	temperature	is	an	example	of	analog	input	measurement.
Refer	to	Analog	Input	Programming	Flowcharts	for	additional	flowcharts
that	can	help	you	create	an	application.

Measuring	Temperature	with	a	Thermocouple
Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	measure	temperature	with	a	thermocouple.	Alternatively,
you	can	configure	a	task	for	measuring	temperature	using	the	DAQ
Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	read,	include	the	Start	function/VI	and	Stop	function/VI	in	your
application.	In	the	previous	flowchart,	the	Start	function/VI	would
come	just	before	you	read	samples,	and	Stop	would	come	just
before	you	clear	the	task.

Measuring	temperature	is	an	example	of	analog	input	measurement.
Refer	to	Analog	Input	Programming	Flowcharts	for	additional	flowcharts
that	can	help	you	create	an	application.

Measuring	and	Generating	Current
Many	measurement	devices	can	measure	and	generate	current.	To
measure	or	generate	current	with	a	DAQ	device,	you	need	a	resistor.
Current	then	can	be	measured	through	an	analog	input	connector	or
generated	through	an	analog	output	connector.	The	resistance	must	be
placed	in	parallel	with	the	connector	and	the	current	source.	To	measure
voltage	dropped	across	the	resistor	and	convert	it	to	current,	use	Ohm's
Law.
I(A)	=	V(V)/	R(Ω)

where	I	is	the	current,	V	is	the	voltage,	and	R	is	the	resistance.

4	to	20	mA	Loops
4	to	20	milliamp	(4-20	mA)	loops	are	commonly	used	in	measurement
systems.	4-20	mA	loops	couple	a	dynamic	range	with	a	live	zero	of	4	mA
for	open	circuit	detection	in	a	system	that	does	not	produce	sparks.	Other
advantages	include	a	variety	of	compatible	hardware,	a	long	operating
range,	and	low	cost.	4-20	mA	loops	have	a	variety	of	uses,	including
digital	communications,	control	applications,	and	reading	remote	sensors.
The	purpose	of	the	4-20	mA	current	loop	is	for	the	sensor	to	transmit	a
signal	in	the	form	of	a	current.	In	the	following	figure,	the	Level	Sensor
and	Remote	Sensor	Electronics	are	typically	built	into	a	single	unit.	An
external	24	VDC	supply	powers	the	sensor.	The	sensor	regulates	the
current,	which	represents	the	value	of	what	the	sensor	measures,	in	this
case,	the	fluid	level	in	a	tank.

Current	Loop	Wiring
The	DAQ	device	reads	the	voltage	drop	across	the	249	Ω	resistor	Rp,
using	Ohm's	Law.
Because	the	current	is	4-20	mA	and	Rp	is	249	Ω,	V	ranges	from	0.996	V
to	4.98	V,	which	is	within	the	range	that	DAQ	devices	can	read.	Although
the	equation	is	useful	for	calculating	the	current,	the	current	typically
represents	a	physical	quantity	you	want	to	measure.	In	the	following
figure,	the	tank	level	measures	0	to	50	feet.	4	mA	represents	0	feet,	and
20	mA	represents	50	feet.	L	is	the	tank	level,	and	I	is	the	current.

Linear	Relationship	between	Tank	Level	and	Current
Using	the	Ohm's	Law	equation	and	substituting	0.249	for	the	value	of	Rp,
you	can	derive	L	in	terms	of	measured	voltage:

Making	Signal	Connections
Creating	a	Program
Measuring	Current
Generating	Current

Examples
See	Also
Tips	on	Measuring	AC	Current

measfunds.chm::/ConnectAISigs.html

Measuring	Current	Programming	Flowchart
The	following	flowchart	illustrates	the	main	steps	required	in	an	NI-
DAQmx	application	to	measure	current.	Alternatively,	you	can	configure	a
task	for	measuring	current	using	the	DAQ	Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	read,	include	the	Start	function/VI	and	Stop	function/VI	in	your
application.	In	the	previous	flowchart,	the	Start	function/VI	would
come	just	before	you	read	samples,	and	Stop	would	come	just
before	you	clear	the	task.

Measuring	current	is	an	example	of	an	analog	input	measurement.	Refer
to	Analog	Input	Programming	Flowcharts	for	additional	flowcharts	that
can	help	you	create	an	application.

Tips	on	Measuring	AC	Current
To	measure	AC	current,	insert	a	precisely	calibrated,	low-value	resistor
into	the	signal	path	and	measure	the	voltage	drop	across	the	resistor.
You	must	then	perform	high-pass	filtering	on	the	resulting	signal	to
remove	the	DC	component.	You	can	perform	this	filtering	using	an	analog
filter	or	digital	signal	processing	techniques,	such	as	the	filtering	tools	in
the	analysis	library	of	LabVIEW.

Measuring	Strain
Strain	(ε)	is	the	amount	of	deformation	of	a	body	due	to	an	applied	force.
Specifically,	strain	is	the	fractional	change	in	length,	as	shown	in	the
following	figure.

Strain	can	be	positive	(tensile)	or	negative	(compressive).	Although
dimensionless,	strain	is	sometimes	expressed	in	units	such	as	in./in.	or
mm/mm.	In	practice,	the	magnitude	of	measured	strain	is	very	small.
Therefore,	strain	is	often	expressed	as	microstrain	(µε).
When	a	uniaxial	force	strains	a	bar,	as	in	the	preceding	figure,	a
phenomenon	known	as	Poisson	Strain	causes	the	girth	of	the	bar,	D,	to
contract	in	the	transverse	direction,	which	is	perpendicular	to	the	force.
The	magnitude	of	this	transverse	contraction	is	a	material	property
indicated	by	its	Poisson's	Ratio.	The	Poisson's	Ratio	of	a	material	is	the
negative	ratio	of	the	strain	in	the	transverse	direction	to	the	strain	in	the
axial	direction,	which	is	parallel	to	the	force.	Poisson's	Ratio	for	steel,	for
example,	ranges	from	0.25	to	0.3.
To	measure	strain,	you	can	use	one	or	more	strain	gages	in	a
Wheatstone	bridge	in	one	of	several	bridge	configurations.	Refer	to
Signal	Conditioning	Requirements	for	Strain	Gages	for	more	information
about	strain	gages	and	bridge	configurations.
Making	Signal	Connections
Creating	a	Program
Examples

measfunds.chm::/strainGauges.html
measfunds.chm::/bridgeConfig.html
measfunds.chm::/signalConStrain.html
measfunds.chm::/ConnectAISigs.html

Measuring	Strain	Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	measure	strain.	Alternatively,	you	can	configure	a	task	to
measure	strain	with	a	strain	gage	using	the	DAQ	Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	read,	include	the	Start	function/VI	and	Stop	function/VI	in	your
application.	In	the	previous	flowchart,	the	Start	function/VI	would
come	just	before	you	read	samples,	and	Stop	would	come	just
before	you	clear	the	task.

Measuring	strain	is	an	example	of	an	analog	input	measurement.	Refer
to	Analog	Input	Programming	Flowcharts	for	additional	flowcharts	that
can	help	you	create	an	application.

Measuring	Resistance
Resistance	is	the	opposition	to	passage	of	an	electric	current.	One	Ohm
(Ω)	is	the	resistance	through	which	one	volt	(V)	of	electric	force	causes
one	ampere	(A)	to	flow.	Two	common	methods	for	measuring	resistance
are	the	2-wire	method	and	the	4-wire	method.	Both	methods	send	a
current	through	a	resistor	with	a	measurement	device	measuring	the
voltage	drop	from	the	signal	before	and	after	it	crosses	the	resistor.	The
2-wire	method	is	easier	to	implement,	but	this	method	is	less	accurate
than	the	4-wire	method	for	resistances	below	100	Ω.	To	calculate
resistance,	use	the	following	equation.
R(Ω)	=	V(V)	/	I(A)

where	R	is	the	resistance,	V	is	the	voltage,	and	I	is	the	current.
Making	Signal	Connections
Creating	a	Program
Examples

measfunds.chm::/2WireRes.html
measfunds.chm::/4WireRes.html
measfunds.chm::/ConnectAISigs.html

Measuring	Resistance	Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	measure	resistance.	Alternatively,	you	can	configure	a	task
for	measuring	resistance	using	the	DAQ	Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	read,	include	the	Start	function/VI	and	Stop	function/VI	in	your
application.	In	the	preceding	flowchart,	the	Start	function/VI	would
come	just	before	you	read	samples,	and	Stop	would	come	just
before	you	clear	the	task.

Measuring	resistance	is	an	example	of	an	analog	input	measurement.
Refer	to	Analog	Input	Programming	Flowcharts	for	additional	flowcharts
that	can	help	you	create	an	application.

Measuring	Voltage
Most	measurement	devices	can	measure,	or	read,	voltage.	Two	common
voltage	measurements	are	direct	current	(DC)	and	alternating	current
(AC).

Measuring	DC	Voltage
DC	voltage	is	useful	for	measuring	phenomena	that	change	slowly	with
time,	such	as	temperature,	pressure,	or	strain.	With	DC	signals,	you	want
to	accurately	measure	the	amplitude	of	a	signal	at	a	given	point	in	time.
Wind	Speed	Example
The	following	figure	shows	a	typical	wiring	diagram	for	an	anemometer
with	an	output	range	of	0	to	10	V,	which	corresponds	to	wind	speed	of	0
to	200	mph.	Use	the	following	equation	to	scale	the	data:

Using	this	equation,	a	measurement	of	3	V	would	correspond	to	a	wind
speed	of	60	mph	(3	V	×	20	mph/V	=	60	mph).
Notice	that	the	wiring	diagram	in	the	following	figure	uses	a	resistor,	R,
because	an	anemometer	is	usually	not	a	grounded	signal	source.	If	the
anemometer	transducer	were	already	grounded,	using	a	resistor	would
cause	a	ground	loop	and	result	in	erroneous	readings.

Averaging
Averaging	can	improve	measurement	accuracy	for	noisy	and	rapidly
changing	signals.
The	following	figure	shows	what	an	actual	wind	speed	might	look	like
over	time.	Due	to	gusting	winds,	the	speed	values	look	noisy.	Notice	that
the	wind	speed	reading	of	29	mph	is	a	peak	speed	that	might	give	the
impression	that	the	wind	is	holding	at	29	mph.	A	better	representation
might	be	to	take	the	average	speed	over	a	short	period	of	time.

One	common	reason	for	averaging	is	to	eliminate	50	or	60	Hz	power	line
noise.	The	oscillating	magnetic	field	around	power	lines	can	introduce
noise	voltages	on	unshielded	transducer	wiring.	Because	power	line
noise	is	sinusoidal,	or	shaped	like	a	sine	wave,	the	average	over	one
period	is	zero.	If	you	use	a	scan	rate	that	is	an	integer	multiple	of	the
noise	and	average	data	for	an	integer	multiple	of	periods,	you	can
eliminate	the	line	noise.	One	example	that	works	for	both	50	and	60	Hz	is
to	sample	at	300	samples	per	second	and	average	30	points.	Notice	that
300	is	an	integer	multiple	of	both	50	and	60.	One	period	of	the	50	Hz
noise	is	300/50	=	6	points.	One	period	of	the	60	Hz	noise	is	300/60	=	5
points.	Averaging	30	points	is	an	integer	multiple	of	both	periods,	so	you
can	ensure	that	you	average	whole	periods.

Measuring	AC	Voltage
AC	voltage	is	a	waveform	that	constantly	increases,	decreases,	and
reverses	polarity.	AC	voltage	is	common	in	household,	lab,	and	industrial
devices	because	most	power	lines	deliver	AC	voltage.	You	can	measure
AC	voltages	to	determine	the	maximum,	minimum,	and	peak-to-peak
values	of	a	signal.	The	peak-to-peak	value	of	a	signal	is	the	maximum
voltage	swing,	from	maximum	to	minimum.
AC	Voltage	and	Root	Mean	Square	(RMS)
Voltage,	current,	and	power	are	not	constant	values	because	AC	signals
alternate.	However,	you	can	use	Vrms	(root	mean	square)	to	measure
voltage,	current,	and	power	such	that	a	load	connected	to	a	120	volts	AC
(VAC)	source	develops	the	same	amount	of	power	as	that	same	load
connected	to	a	120	volts	DC	(VDC)	source.	With	RMS,	the	power	formula
for	DC	also	works	for	AC.	For	sinusoidal	waveforms,	Vrms	=
Vpeak/square	root	of	2.	Because	voltmeters	read	Vrms,	the	120	VAC	of	a
typical	U.S.	wall	outlet	actually	has	a	peak	value	of	about	170	V.
Making	Signal	Connections
Creating	a	Program
Examples

measfunds.chm::/ConnectAISigs.html

Measuring	Voltage	Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	measure	voltage.	Alternatively,	you	can	configure	a	task	for
measuring	voltage	using	the	DAQ	Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	read,	include	the	Start	function/VI	and	Stop	function/VI	in	your
application.	In	the	previous	flowchart,	the	Start	function/VI	would
come	just	before	you	read	samples,	and	Stop	would	come	just
before	you	clear	the	task.

Measuring	voltage	is	an	example	of	an	analog	input	measurement.	Refer
to	Analog	Input	Programming	Flowcharts	for	additional	flowcharts	that
can	help	you	create	an	application.
To	measure	AC	voltages,	you	generally	use	a	hardware	timed
acquisition,	such	as	the	ones	shown	in	Finite	Voltage	Measurements	and
Continuous	Voltage	Measurements.	To	measure	DC	voltages,	you	often
do	not	need	a	buffer	or	hardware	timing,	so	you	can	use	a	simple
application	such	as	the	one	shown	in	Acquiring	a	Single	Sample.

Generating	Voltage
You	can	generate	single	sample	DC	signals	or	time-varying	multiple
sample	signals.

Single	Samples—Including	Steady	Signals
Use	single	samples	if	the	signal	level	is	more	important	than	the
generation	rate.	For	instance,	generate	one	sample	at	a	time	if	you	need
to	generate	a	constant,	or	DC,	signal.	You	can	use	software	or	hardware
timing	if	the	device	supports	hardware	timing	to	control	when	the	device
generates	a	signal.

mxcncpts.chm::/HardwreSoftwreTiming.html

Time-Varying	Multiple	Samples
Use	multiple	samples	if	the	generation	rate	is	just	as	important	as	the
signal	level,	as	in	an	AC	sine	wave.	Function	generators	are	a	common
type	of	device	that	you	can	program	to	produce	certain	types	of
waveforms,	such	as	sine,	triangle,	and	square	waves.	You	also	can	use	a
DAQ	device	as	a	function	generator.	You	do	this	by	generating	one	cycle
of	a	sine	wave,	such	as	with	the	Sine	Generation	VI	in	LabVIEW,	storing
one	cycle	of	sine	wave	data	in	a	waveform,	and	programming	the	device
to	generate	the	values	continuously	from	the	waveform	one	point	at	a
time	at	a	specified	rate.
Also	called	buffered	analog	output,	generating	multiple	samples	involves
the	following	steps:

1.	 Your	application	writes	multiple	samples	into	a	buffer.
2.	 All	the	samples	in	the	buffer	are	then	sent	to	your	device

according	to	the	timing	you	specify.	You	can	use	software	or
hardware	timing	(if	your	device	supports	hardware	timing)	to
control	when	your	device	generates	a	signal.

Making	Signal	Connections
Creating	a	Program
Generating	Voltage	General	Programming	Flow
Generating	Multiple	Samples	Programming	Flow

Examples
See	Also
External	Reference	Sources	for	Generating	Voltage
What	is	a	Buffer?

measfunds.chm::/ConnectAOSigs.html
mxcncpts.chm::/extRefSource.html
mxcncpts.chm::/buffering.html

Generating	Voltage	Programming	Flowchart
The	following	flowchart	illustrates	the	main	steps	required	in	an	NI-
DAQmx	application	to	generate	voltage.	Alternatively,	you	can	configure
a	task	for	generating	voltage	using	the	DAQ	Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	read,	include	the	Start	function/VI	and	Stop	function/VI	in	your
application.	In	the	previous	flowchart,	the	Start	function/VI	would
come	just	before	you	read	samples,	and	Stop	would	come	just
before	you	clear	the	task.

Generating	voltage	is	an	example	of	an	analog	output	measurement.
Refer	to	Analog	Output	Programming	Flowcharts	for	additional	flowcharts
that	can	help	you	create	an	application.

Measuring	and	Generating	Digital	Values
Signals	that	are	read	or	measured	are	called	input	signals.	Those	signals
that	are	generated	are	called	output,	or	standard	output.	Some
specialized	devices	also	support	a	Wired-OR	output.	Refer	to	the	device
documentation	for	more	information	about	the	types	of	input	and	output
the	device	supports.
This	section	covers	software-timed	digital	input/output	operations​or
unstrobed	operations.	These	signals	are	controlled	by	software	timing.
Measuring	and	generating	digital	values	are	used	in	a	number	of
applications,	including	controlling	relays	and	monitoring	alarm	states.
Generally,	measuring	and	generating	digital	values	is	used	in	laboratory
testing,	production	testing,	and	industrial	process	monitoring	and	control.
Making	Signal	Connections
Creating	a	Program
Measuring	a	Digital	Value
Generating	a	Digital	Value

Examples

mxcncpts.chm::/HardwreSoftwreTiming.html
measfunds.chm::/ConnectDIOSigs.html

Generating	a	Digital	Value	Programming
Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	generate	digital	values.	If	you	prefer,	you	can	configure	a
task	for	generating	digital	values	using	the	DAQ	Assistant.

Measuring	a	Digital	Value	Programming
Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	measure	digital	values.	If	you	prefer,	you	can	configure	a
task	for	acquiring	digital	values	using	the	DAQ	Assistant.

Edge	Counting
Edge	counting	is	when	a	device	counts	rising	or	falling	edges	using	a
counter	channel.	You	can	choose	to	do	either	single	point	or	buffered
sample	clock	edge	counting.
The	following	figure	shows	an	example	of	edge	counting	in	which	the
counter	in	a	device	counts	five	edges	on	the	input	terminal.

With	buffered	edge	counting,	the	device	latches	the	number	of	edges
counted	onto	each	active	edge	of	the	sample	clock	and	stores	the
number	in	the	buffer.	There	is	no	built-in	clock	for	buffered	edge	counting,
so	you	must	supply	an	external	sample	clock.

In	NI-DAQmx,	when	doing	on-demand	edge	counting,	you	first	arm	the
counter	by	calling	the	Start	function/VI.	Each	subsequent	read	returns	the
number	of	edges	counted	since	the	counter	was	started.	If	you	perform
multiple	reads	without	first	starting	the	counter,	the	counter	implicitly
starts	and	stops	with	each	Read	function/VI	call,	and	the	number	of
counted	edges	is	not	cumulative	between	read	calls.
You	also	can	pause	counting	with	on-demand	edge	counting	in	NI-
DAQmx	by	configuring	a	pause	trigger.	To	configure	a	pause	trigger,	use
the	trigger	attributes/properties	to	set	the	source	terminal	of	the	digital
trigger	as	well	as	the	level	on	which	to	pause.
Making	Signal	Connections
Creating	a	Program

mxcncpts.chm::/CounterParts.html
mxdevconsid.chm::/counterSigCon.html

Examples

Edge	Counting	Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	you	must	complete	for
counting	edges	in	an	NI-DAQmx	application.	If	you	prefer,	you	can
configure	a	task	for	counting	edges	using	the	DAQ	Assistant.

Edge	counting	is	an	example	of	a	counter	measurement.	Refer	to
Counter	Programming	Flowcharts	for	additional	flowcharts	that	can	help
you	create	an	application.

Generating	Pulses
Some	measurement	devices	can	generate	a	pulse	from	the	counter	of
the	device.	A	pulse	is	a	signal	whose	amplitude	deviates	from	zero	for	a
short	period	of	time.	The	pulse	is	either	high	or	low.	A	high	pulse	starts
low,	pulses	high,	and	returns	low,	and	a	low	pulse	starts	high,	pulses	low,
and	returns	high.

Note		You	can	use	Butterworth	filters	only	in	the	LabVIEW	Full	and
Professional	Development	Systems.

A	pulse	train	is	more	than	one	pulse.	You	can	use	a	pulse	or	pulse	train
as	a	clock	signal,	a	gate,	or	a	trigger	for	a	measurement	or	a	pulse
generation.	You	can	use	a	single	pulse	of	known	duration	to	determine
an	unknown	signal	frequency	or	to	trigger	an	analog	acquisition.	You	can
use	a	pulse	train	of	known	frequency	to	determine	an	unknown	pulse
width.
Each	pulse	or	pulse	train	consists	of	three	parts:

Initial	Delay—The	amount	of	time	the	output	remains	at	the	idle
state	before	generating	the	pulse.
High	Time—The	amount	of	time	the	pulse	is	at	a	high	level.
Low	Time—The	amount	of	time	the	pulse	is	at	a	low	level.

The	period	of	the	pulse	is	the	sum	of	the	high	time	and	the	low	time.	The
frequency	is	the	reciprocal	of	the	period,	1/period.
The	following	figure	shows	the	parts	of	a	pulse.

The	following	figure	shows	the	parts	of	a	pulse	train.

mxcncpts.chm::/CounterParts.html

Before	you	generate	a	pulse,	you	need	to	determine	if	you	want	to	output
the	pulse	or	pulse	train	in	terms	of	frequency,	time,	or	number	of	ticks	of
the	counter	timebase.	For	frequency,	you	need	to	determine	the	duty
cycle.	For	time,	you	specify	the	high	time	and	the	low	time.	Use	the
number	of	ticks	if	you	are	using	a	counter	timebase	with	an	unknown
rate.	When	you	configure	a	pulse	generation,	the	output	appears	at	the
counter	output	terminal.
The	idle	state	controls	the	pulse	generation	polarity.	When	you	set	the
idle	state	to	low,	the	pulse	generation	starts	low	for	the	initial	delay,
transitions	to	high	for	the	high	time,	and	transitions	to	low	for	the	low
time,	as	shown	in	the	following	figure.	The	high	time	and	low	time	repeat
for	each	pulse.

When	you	set	the	idle	state	to	high,	the	pulse	generation	starts	high	for
the	initial	delay,	transitions	to	low	for	the	low	time,	and	transitions	to	high
for	the	high	time,	as	shown	in	the	following	figure.	In	both	cases,	the
output	rests	at	the	idle	state	after	the	pulse	generation	completes.

When	generating	pulses,	you	can	generate	either	a	single	pulse,	a	finite
pulse	train,	or	a	continuous	pulse	train.	You	can	update	the	high	time	and

measfunds.chm::/DutyCycle.html

low	time	of	a	continuous	pulse	train	generation	at	any	time,	including
while	the	application	is	running.	This	is	useful	for	applications	that	require
pulse	width	modulation,	such	as	proportional	integral	derivative	(PID)
loop	control	applications.
By	default,	single	pulses	are	generated	unless	you	use	the	Timing
function/VI	with	the	implicit	timing	type.	The	Samples	Per	Channel	input
to	the	Timing	function/VI	determines	the	number	of	pulses	to	generate	for
finite	pulse	trains.	Generating	a	single	pulse	or	a	continuous	pulse	train
only	requires	the	use	of	one	counter.	However,	generating	finite	pulse
trains	requires	the	use	of	paired	counters.
You	can	configure	a	variety	of	triggers	with	pulse	generations.	All	pulse
generations	support	Start	Triggers.	Single	pulse	generation	and	finite
pulse	train	generation	also	support	the	Retriggerable	property,	or
attribute,	for	Start	Triggers.	To	determine	if	a	pulse	is	complete	and	the
hardware	is	ready	for	another	Start	Trigger,	query	the	Pulse	Done
property.	Continuous	pulse	train	generations	also	support	pause	triggers.
However,	you	cannot	use	both	the	start	and	the	pause	trigger	at	the
same	time.
You	can	use	the	same	properties	that	create	the	channel	to	update	the
rate	of	the	pulse	train	generation.	Because	you	need	two	properties	to
specify	the	rate	of	the	pulse	train,	the	rate	only	updates	when	you	set	one
of	the	two	properties.	For	example,	if	you	specify	the	pulse	generation	in
terms	of	frequency,	the	frequency	and	duty	cycle	properties	control	the
rate	of	the	generation.	However,	the	rate	only	updates	when	you	set	the
frequency	property.	The	same	is	true	when	you	specify	pulse	generation
in	terms	of	time	or	ticks;	the	low	time	and	low	ticks	properties	control
when	the	rate	updates.	When	updating	the	rate	of	the	pulse	generation,	a
complete	period	of	the	current	rate	generates	before	the	new	rate	takes
effect.
Making	Signal	Connections
Creating	a	Program
Generating	a	Pulse
Generating	a	Finite	Pulse	Train
Generating	a	Continuous	Pulse	Train

Examples

mxcncpts.chm::/pairedCounters.html
mxdevconsid.chm::/counterSigCon.html

Generating	a	Pulse	Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	generate	a	pulse.	If	you	prefer,	you	can	configure	a	task	to
generate	a	pulse	using	the	DAQ	Assistant.

Generating	a	Finite	Pulse	Train	Programming
Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	for	generating	a	finite	pulse	train.	Alternatively,	you	can
configure	a	task	for	generating	the	pulse	train	using	the	DAQ	Assistant.

Generating	a	Continuous	Pulse	Train
Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	for	generating	a	continuous	pulse	train.	Alternatively,	you	can
configure	a	task	for	generating	the	pulse	train	using	the	DAQ	Assistant.

Measuring	Acceleration
Acceleration	is	a	change	in	velocity	with	respect	to	time.	An
accelerometer	is	a	transducer	that	represents	acceleration	as	a	voltage.
Accelerometers	also	can	measure	vibration	and	shock.	Accelerometers
typically	convert	acceleration	measured	in	g's	to	voltage.	For	example,	a
sensor	with	a	rated	output	of	10	mV/g	should	produce	50	mV	when
subjected	to	5	g	of	acceleration.
Making	Signal	Connections
Creating	a	Program
Examples

measfunds.chm::/Accelerometers.html
measfunds.chm::/ConnectAISigs.html

Measuring	Acceleration	Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	measure	acceleration.	Alternatively,	you	can	configure	a
task	for	measuring	acceleration	using	the	DAQ	Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	read,	include	the	Start	function/VI	and	Stop	function/VI	in	your
application.	In	the	previous	flowchart,	the	Start	function/VI	would
come	just	before	you	read	samples,	and	Stop	would	come	just
before	you	clear	the	task.

Measuring	acceleration	is	an	example	of	an	analog	input	measurement.
Refer	to	Analog	Input	Programming	Flowcharts	for	additional	flowcharts
that	can	help	you	create	an	application.

Measuring	Angular	Displacement
Angular	displacement	is	movement	around	an	axis,	such	as	the	angular
motion	of	the	shaft	of	a	motor.	An	angular	displacement	sensor	is	a
device	whose	output	signal	represents	the	rotation	of	the	shaft;	it	cannot
measure	the	physical	displacement	of	the	whole	shaft.	One	type	of
sensor	used	to	measure	angular	displacement	is	a	rotary	variable
differential	transformer	(RVDT).	Another	type	of	sensor	used	to	measure
angular	displacement	is	a	resolver,	which	is	a	rotating	transformer	that
can	measure	360°	of	rotation.
On	M	Series	devices,	C	Series	devices,	and	NI-TIO-based	devices,	you
can	use	the	counters	to	perform	displacement	measurements	with
quadrature	encoders,	or	angular	encoders.	You	can	measure	angular
position	with	X1,	X2,	and	X4	angular	encoders.	You	can	choose	to	do
either	a	single-point	or	a	buffered	sample	clock	displacement
measurement.
You	also	can	measure	velocity	with	angular	encoders,	but	you	need	to
use	a	sample	clock	with	a	fixed	frequency.	To	measure	velocity,	use	the
following	formula:
V	=	D/T

where	V	is	the	average	velocity,	D	is	the	distance,	and	T	is	time.
The	counter	measures	the	position	of	the	encoder	using	the	A	and	B
signals,	which	are	offset	by	90°.	The	counter	also	supports	the	Z	index,
which	provides	a	precise	reference	point	and	is	available	on	some
encoders.
Making	Signal	Connections
Creating	a	Program
RVDT	Programming	Flowchart
Encoder	Programming	Flowchart

Examples

measfunds.chm::/RVDTs.html
mxcncpts.chm::/ConfigDisplacMeas.html
measfunds.chm::/quadEncoders.html
measfunds.chm::/zIndexing.html
measfunds.chm::/ConnectAISigs.html

Measuring	Position	with	Encoders	Programming
Flowchart
The	following	flowchart	depicts	the	main	steps	you	must	complete	for
measuring	position	with	an	encoder	in	an	NI-DAQmx	application.	If	you
prefer,	you	can	configure	a	task	using	the	DAQ	Assistant.

Measuring	position	with	an	encoder	is	an	example	of	a	counter
measurement.	Refer	to	Counter	Programming	Flowcharts	for	additional
flowcharts	that	can	help	you	create	an	application.

Measuring	Position	with	an	RVDT	or	LVDT
Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	measure	position	with	an	RVDT	or	LVDT.	Alternatively,	you
can	configure	a	task	for	measuring	position	using	the	DAQ	Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	read,	include	the	Start	function/VI	and	Stop	function/VI	in	your
application.	In	the	previous	flowchart,	the	Start	function/VI	would
come	just	before	you	read	samples,	and	Stop	would	come	just
before	you	clear	the	task.

Measuring	position	is	an	example	of	an	analog	input	measurement.	Refer
to	Analog	Input	Programming	Flowcharts	for	additional	flowcharts	that
can	help	you	create	an	application.

Measuring	Linear	Displacement
Linear	displacement	is	movement	and	direction	along	a	single	axis.	A
position	or	linear	displacement	sensor	is	a	device	whose	output	signal
represents	the	distance	an	object	has	traveled	from	a	reference	point.
The	linear	variable	differential	transformer	(LVDT)	is	a	sensor	that
measures	linear	displacement.
On	M	Series	devices,	C	Series	devices,	and	NI-TIO-based	devices,	you
can	use	the	counters	to	perform	displacement	measurements	with	two-
pulse	encoders.	Linear	position	can	be	measured	with	two-pulse
encoders.	You	can	choose	to	do	either	a	single	point	or	a	buffered
sample	clock	displacement	measurement.
You	also	can	measure	velocity	with	two-pulse	encoders,	but	you	need	to
use	a	sample	clock	with	a	fixed	frequency.	To	measure	velocity,	use	the
following	formula:
V	=	D/T

where	V	is	the	average	velocity,	D	is	the	distance,	and	T	is	time.
The	counter	measures	the	position	of	the	encoder	using	the	A	and	B
signals,	which	are	offset	by	90°.	The	counter	also	supports	the	Z	index,
which	provides	a	precise	reference	point	and	is	available	on	some
encoders.
Making	Signal	Connections
Creating	a	Program
LVDT	Programming	Flowchart
Encoder	Programming	Flowchart

Examples

measfunds.chm::/LVDTs.html
mxcncpts.chm::/ConfigDisplacMeas.html
measfunds.chm::/twoPulse.html
measfunds.chm::/zIndexing.html
mxdevconsid.chm::/counterSigCon.html

Measuring	Analog	Frequency
Some	devices	can	measure	analog	frequency	directly	using	frequency-
to-voltage	circuitry.	Many	devices,	however,	only	measure	voltage,	and
you	must	use	software	algorithms	to	convert	those	measurements	to
frequency.
Devices	that	measure	analog	frequency,	such	as	DSA	devices	and	the
SCXI-1126,	have	circuitry	that	produces	triggers	of	the	same	frequency
as	the	measured	signal.	Every	time	the	signal	passes	from	threshold
level	minus	hysteresis	to	threshold	level,	a	trigger	occurs.	A	pulse
generator	uses	these	triggers	and	produces	a	pulse	once	every
frequency	cycle.	The	input	frequency	range	sets	the	width	of	this	pulse.
As	the	input	frequency	range	increases,	the	pulse	width	grows	smaller.
This	pulse	train	is	then	converted	to	a	DC	signal	that	has	a	level
proportional	to	the	duty	cycle	of	the	pulse	train.	The	duty	cycle	is	the
fraction	of	a	period	of	the	pulse	train	when	the	pulse	is	occurring.	The	DC
signal	has	a	voltage	that	is	proportional	to	the	input	frequency	and	can
therefore	be	scaled	to	that	frequency	value.
For	devices	that	cannot	measure	frequency	directly,	you	need	to	use
software	algorithms,	such	as	the	Fast	Fourier	Transform	(FFT),	to	convert
voltage	to	frequency.	LabVIEW	Full	and	Professional	Development
Systems	contains	advanced	analysis	VIs	that	handle	these
transformations.	The	LabWindows™/CVI™	full	development	system	also
contains	advanced	analysis	functions	to	help	you	measure	analog
frequency.	Regardless	of	whether	you	use	existing	VIs	or	functions	or
create	your	own,	you	need	to	sample	at	least	twice	as	fast	as	the	highest
frequency	component	in	the	signal	you	are	acquiring.

Analog	Frequency,	Sample	Rate,	and	the	Nyquist	Theorem
The	Nyquist	Theorem	states	that	the	highest	frequency	you	can
accurately	represent	is	half	the	sampling	rate.	For	instance,	to	measure
the	frequency	of	a	100	Hz	signal,	you	need	a	sampling	rate	of	at	least
200	S/s.	In	practice,	you	should	use	sampling	rates	of	5	to	10	times	the
expected	frequencies	to	improve	accuracy	of	measurements.
In	addition	to	sample	rate,	you	need	to	determine	the	number	of	samples
to	acquire.	You	must	sample	a	minimum	of	three	cycles	of	the	analog
signal.	For	example,	you	need	to	collect	at	least	15	samples,	or	points,	if
you	use	a	sampling	rate	of	500	S/s	to	measure	the	frequency	of	a	100	Hz
signal.	Because	you	sample	about	five	times	faster	than	the	signal
frequency,	you	sample	about	five	points	per	cycle	of	the	signal.	You	need
data	from	three	cycles,	so	5	points	x	3	cycles	=	15	points.	In	practice,
however,	you	should	acquire	10	or	more	cycles	to	improve	accuracy	of
measurements,	so	you	should	acquire	50	or	more	samples.
The	number	of	points	you	collect	determines	the	number	of	frequency
bins	that	the	samples	fall	into.	The	size	of	each	bin	is	the	sampling	rate
divided	by	the	number	of	points	you	collect.	For	example,	if	you	sample
at	500	S/s	and	collect	100	points,	you	have	bins	at	5	Hz	intervals.
The	Nyquist	frequency	is	the	bandwidth	of	the	sampled	signal	and	is
equal	to	half	the	sampling	frequency.	Frequency	components	below	the
Nyquist	frequency	appear	normally.	Frequency	components	above	the
Nyquist	frequency	appear	aliased	between	0	and	the	Nyquist	frequency.
The	aliased	component	is	the	absolute	value	of	the	difference	between
the	actual	component	and	the	closest	integer	multiple	of	the	sampling
rate.	For	example,	if	you	have	a	signal	with	a	component	at	800	Hz	and
you	sample	at	500	S/s,	that	component	appears	aliased	at	200	Hz
because	|800–(2	x	500)|	=	200(Hz).
One	way	to	eliminate	aliased	components	is	to	use	an	analog	hardware
filter	before	you	digitize	and	analyze	the	frequency	information.	If	you
want	to	perform	all	the	filtering	in	software,	you	must	first	sample	at	a	rate
fast	enough	to	correctly	represent	the	highest	frequency	component	the
signal	contains.	For	example,	with	the	highest	component	at	800	Hz,	the
minimum	sampling	rate	is	1,600	Hz,	but	you	should	sample	5	to	10	times
faster	than	800	Hz.	If	the	frequency	you	want	to	measure	is	around	100
Hz,	you	can	use	a	lowpass	Butterworth	filter	with	a	cutoff	frequency	(fc)	of

250	Hz	to	filter	out	frequencies	above	250	Hz	and	pass	frequencies
below	250	Hz.

Note		LabVIEW	includes	Butterworth	filters	with	the	LabVIEW	Full
and	Professional	Development	Systems.

Measuring	Frequency	with	Filtering
The	following	figure	shows	a	lowpass	filter.

Lowpass	Filter
The	Ideal	Filter	in	the	figure	is	optimal.	All	frequencies	above	the	Nyquist
frequency	are	rejected.	The	Real	Filter	in	the	figure	is	what	you	might
actually	be	able	to	accomplish	with	a	Butterworth	filter.	The	passband	is
where	Vout/Vin	is	close	to	1.	The	stopband	occurs	where	Vout/Vin	is	close
to	0.	The	frequencies	gradually	attenuate	on	the	transition	region
between	1	and	0.
Making	Signal	Connections
Creating	a	Program
Examples

measfunds.chm::/ConnectAISigs.html

Measuring	Analog	Frequency	Programming
Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	measure	analog	frequency.	Alternatively,	you	can	configure
a	task	for	measuring	analog	frequency	using	the	DAQ	Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	read,	include	the	Start	function/VI	and	Stop	function/VI	in	your
application.	In	the	previous	flowchart,	the	Start	function/VI	would
come	just	before	you	read	samples,	and	Stop	would	come	just
before	you	clear	the	task.

Measuring	frequency	is	an	example	of	analog	input	measurement.	Refer
to	Analog	Input	Programming	Flowcharts	for	additional	flowcharts	that
can	help	you	create	an	application.

Hysteresis	with	Analog	Frequency
Measurements
For	waveform	repetitions,	hysteresis	adds	a	window	below	the	threshold
level.	Hysteresis	is	typically	used	to	avoid	erroneous	measurements	due
to	noise	or	jitter	in	the	signal.	The	signal	must	drop	below	the	threshold
level	minus	the	hysteresis	before	NI-DAQmx	recognizes	a	waveform
repetition	at	the	threshold	level.

Generating	Current	Programming	Flowchart
The	following	flowchart	illustrates	the	main	steps	required	in	an	NI-
DAQmx	application	to	generate	current.	Alternatively,	you	can	configure	a
task	for	generating	current	using	the	DAQ	Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	read,	include	the	Start	function/VI	and	Stop	function/VI	in	your
application.	In	the	previous	flowchart,	the	Start	function/VI	would
come	just	before	you	read	samples,	and	Stop	would	come	just
before	you	clear	the	task.

Generating	current	is	an	example	of	an	analog	output	measurement.
Refer	to	Analog	Output	Programming	Flowcharts	for	additional	flowcharts
that	can	help	you	create	an	application.

Control
You	can	create	an	event	response	or	control	loop	application	in	any
operating	system	supported	by	NI-DAQmx,	such	as	Windows	2000.
However,	your	application	can	only	be	deterministic	if	you	have	the
LabVIEW	Real-Time	module	and	use	your	application	on	a	real-time
controller.	This	section	assumes	that	you	are	using	LabVIEW	with	NI-
DAQmx	to	create	a	control	application.	It	does	not	assume	that	you	have
the	LabVIEW	Real-Time	module	or	the	real-time	controller.

measfunds.chm::/eventResponse.html
measfunds.chm::/realTime.html

Event	Response
In	a	control	application,	an	event	is	the	same	as	an	occurrence.	This
occurrence	leads	to	an	action,	or	a	response.	An	example	is	monitoring
the	temperature	of	an	engine.	When	the	temperature	rises	too	high,	the
engine	slows	down.	The	event,	in	this	case,	would	be	the	temperature
rising	above	a	predetermined	level,	and	the	response	would	be	the
engine	slowing	down.	Another	example	comes	from	manufacturing.	In	a
manufacturing	line,	a	system	senses	when	a	part	is	in	front	of	a	station
(the	event)	and	takes	a	reading	or	manipulates	the	part	(the	response).	If
the	system	does	not	sense	and	respond	to	the	presence	of	that	part	in	a
set	amount	of	time,	the	manufacturing	line	creates	defective	parts.
When	creating	an	event	response	application,	make	sure	you	consider
the	amount	of	time	needed	to	respond	to	the	event.	For	example,	if	the
device	controls	the	temperature	of	your	home,	the	time	to	react	to	events
(changes	in	temperature)	is	less	critical	than	if	the	device	controls	a
nuclear	reactor.	If	the	application	is	not	time	critical,	the	application	does
not	need	to	be	deterministic,	meaning	that	you	do	not	need	the	LabVIEW
Real-Time	Module	or	a	real-time	controller.
The	relative	priority	of	the	task	is	important	as	well.	Because	LabVIEW	is
multi-threaded,	you	can	separate	the	application	into	tasks,	each	with	its
own	priority.	By	setting	priorities,	time-critical	tasks	can	take	precedence
over	non-time-critical	tasks.	The	time-critical	task	must	periodically	yield
processor	resources	to	the	lower-priority	tasks	so	they	can	execute.	By
properly	separating	the	time-critical	task	from	lower	priority	tasks,	you
can	reduce	application	jitter.	Refer	to	the	LabVIEW	Real-Time	Module
Concepts	book	in	the	LabVIEW	Help	for	more	information	about
assigning	priorities	to	tasks.
Creating	a	Program
Examples
See	Also
Key	Control	Concepts
Setting	Priorities	for	Control	Applications

measfunds.chm::/cntrlOverview.html
mxcncpts.chm::/timCtrlLoops.html
measfunds.chm::/jitterOverview.html
mxcncpts.chm::/controlNidaqmx.html
mxcncpts.chm::/priorities.html

Control	Loops
A	control	application	monitors	and	controls	a	system.	The	application
continuously	loops	by	reading	samples,	processing	data,	and	adjusting
the	output.	You	can	use	NI-DAQmx	and	DAQ	devices	to	create	a	control
application.	With	the	LabVIEW	Real-Time	Module,	you	can	create
deterministic	control	applications.

measfunds.chm::/cntrlOverview.html
mxcncpts.chm::/softwareProcess.html

Creating	a	Control	Loop	Application	with	NI-DAQmx
The	following	block	diagram	shows	a	typical	deterministic	control	loop
application.	First,	an	analog	value	is	read.	This	value	corresponds	to	the
process	variable.	This	value	is	compared	to	the	set	point,	which	is
specified	in	the	Ctrl	Algrthm	VI	in	the	diagram,	and	adjusted	as	necessary
within	the	while	loop,	possibly	using	a	PID	algorithm.	The	adjusted	value
is	then	written.	This	value	corresponds	to	the	actuator	output.
In	the	block	diagram,	the	sampling	rates	are	the	same	for	analog	input
and	output.	Because	the	example	shown	assumes	a	single	DAQ	device,
the	Start	Trigger	synchronizes	the	analog	input	and	analog	output	tasks.
For	multiple	devices,	synchronization	works	differently.	Refer	to
Synchronization	for	more	information.	Notice	also	that	the	slave	task​the
analog	output	task​starts	before	the	analog	input	task.	Finally,	within	the
loop,	the	Wait	for	Next	Sample	Clock	VI	checks	to	make	sure	that	the
loop	executes	within	the	specified	sampling	rate.	If	it	does	not,	this	VI
returns	an	error.

Examples
See	Also
Timing	Control	Loops
Key	Control	Concepts
Setting	Priorities	for	Control	Applications

measfunds.chm::/cntrlOverview.html
measfunds.chm::/cntrlOverview.html
measfunds.chm::/PID.html
measfunds.chm::/Synchronization.html
mxcncpts.chm::/timCtrlLoops.html
mxcncpts.chm::/controlNidaqmx.html
mxcncpts.chm::/priorities.html

Measuring	Sound	Pressure
Sound	pressure	is	the	dynamic	variation	of	the	static	pressure	of	air	and
is	measured	in	force	per	unit	area	(Pa).	The	instantaneous	sound
pressure	is	typically	averaged	over	a	certain	duration	to	give	sound
pressure	level.	Sound	pressure	level	is	usually	represented	on	a
logarithmic	amplitude	scale,	which	is	similar	to	the	human	perception	of
hearing.	Typical	values	on	this	logarithmic	scale	are	a	sound	level	of	0
dB,	which	is	the	average	threshold	of	human	hearing,	60	to	70	dB	for
normal	conversation,	110	dB	at	an	extremely	loud	concert,	and	150	dB
for	the	noise	of	a	rocket	takeoff	or	a	jet	engine	at	close	range.
The	Sound	Pressure	Level	(SPL	or	LP)	in	decibels	is	defined	by	the
following	equation.
SPL	=	20	log10	(p/pref)
where	p	is	the	instantaneous	sound	pressure	in	Pa	and	pref	is	20	µPa,
the	internationally	accepted	reference	for	sound	pressure	measurements,
which	roughly	corresponds	to	the	threshold	of	human	hearing.
You	use	a	microphone	to	measure	sound	pressure.	The	microphone	acts
as	a	transducer,	creating	a	voltage	signal	that	is	proportional	to	the
instantaneous	sound	pressure.
Making	Signal	Connections
Creating	a	Program
Examples

measfunds.chm::/microphones.html
measfunds.chm::/ConnectAISigs.html

Measuring	Sound	Pressure	Programming
Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	measure	sound	pressure.	Alternatively,	you	can	configure	a
task	for	measuring	sound	pressure	using	the	DAQ	Assistant.

Tip		To	increase	performance,	especially	when	multiple	samples
are	read,	include	the	Start	function/VI	and	Stop	function/VI	in	your
application.	In	the	previous	flowchart,	the	Start	function/VI	would
come	just	before	you	read	samples,	and	Stop	would	come	just
before	you	clear	the	task.

Measuring	sound	pressure	is	an	example	of	an	analog	input
measurement.	Refer	to	Analog	Input	Programming	Flowcharts	for
additional	flowcharts	that	can	help	you	create	an	application.

Measuring	Time—Period,	Semi-Period,	Pulse
Width,	Two-Edge	Separation,	and	Digital
Frequency
You	can	use	the	counters	on	a	DAQ	device	to	measure	time.	Time
measurements	are	period,	pulse	width,	semi-period,	frequency,	and	two-
edge	separation	measurements.

Measuring	Digital	Frequency
The	digital	frequency	of	a	signal	is	the	inverse	of	the	period	of	a	signal.
To	get	the	frequency	of	the	signal,	take	the	inverse	of	the	period.	The
formula	for	frequency	is	Frequency	(in	Hz)	=	Counter	Timebase	Rate	(in
Hz)	/	Count.
The	Counter	Timebase	Rate	is	a	known	frequency	and	is	usually	a	built-
in	time	source.	If	the	counter	timebase	rate	is	unknown,	you	only	can
make	measurements	only	in	terms	of	ticks	of	the	counter	timebase.	This
may	be	the	case	if	you	are	using	an	external	signal	for	the	counter
timebase,	and	the	frequency	of	the	external	signal	is	unknown	or
aperiodic.
Digital	frequency	is	an	example	of	a	time	measurement.	Refer	to
Configuring	a	Time	Measurement	in	NI-DAQmx	and	Two	Counter
Measurement	Method	for	more	information	about	measuring	time.
Making	Signal	Connections
Creating	a	Program
Examples

mxcncpts.chm::/ConfigTimeMeas.html
mxcncpts.chm::/twoCounterMeasMeth.html
mxdevconsid.chm::/counterSigCon.html

Measuring	Digital	Frequency	and	Period
Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	measure	digital	frequency	or	period.	Alternatively,	you	can
configure	a	task	for	measuring	digital	frequency	using	the	DAQ	Assistant.

Digital	frequency	and	period	are	examples	of	counter	measurements.
Refer	to	Counter	Programming	Flowcharts	for	additional	flowcharts	that
can	help	you	create	an	application.

Measuring	Period,	Semi-Period,	Pulse	Width,
and	Two-Edge	Separation
You	can	measure	period,	semi-period,	pulse	width,	and	two-edge
separation	using	counters,	such	as	on	a	DAQ	device,	to	determine	the
duration	of	an	event	or	to	determine	the	interval	time	between	two
events.
Period	measurements	measure	the	time	between	consecutive	rising	or
falling	edges	of	a	pulse.	Semi-period	measurements	measure	the	time
between	consecutive	edges.	Pulse	width	measurements	measure	the
time	between	either	a	rising	and	falling	edge,	or	a	falling	and	rising	edge.
Two-edge	separation	measurements	measure	the	time	between	the
rising	or	falling	edge	of	one	digital	signal	and	the	rising	or	falling	edge	of
another	digital	signal.

The	formula	for	period,	semi-period,	pulse	width,	and	two-edge
separation	is	as	follows:
Period,	Semi-Period,	Pulse	Width,	or	Two-Edge	Separation	(in	seconds)
=	Count	/	Counter	Timebase	Rate	(in	Hz).
where	Count	is	the	number	of	counter	timebase	ticks	that	elapse	during
one	period,	semi-period,	pulse	width,	or	two-edge	separation	of	the
measured	input	signal	or	signals.
The	Counter	Timebase	Rate	is	a	known	frequency	and	is	usually	a	built-
in	time	source.	If	the	counter	timebase	rate	is	unknown,	you	only	can
make	measurements	only	in	terms	of	ticks	of	the	counter	timebase.	This
may	be	the	case	if	you	are	using	an	external	signal	for	the	counter
timebase,	and	the	frequency	of	the	external	signal	is	unknown	or
aperiodic.
Period,	semi-period,	pulse	width,	and	two-edge	separation	are	examples

mxcncpts.chm::/CounterParts.html

of	time	measurements.	Refer	to	Configuring	a	Time	Measurement	in	NI-
DAQmx	and	Two	Counter	Measurement	Method	for	more	information
about	measuring	time.
Making	Signal	Connections
Creating	a	Program
Measuring	Semi-Period,	Two-Edge	Separation,	and	Pulse	Width
Programming	Flowchart
Measuring	Digital	Frequency	and	Period	Programming	Flowchart

Examples

mxcncpts.chm::/ConfigTimeMeas.html
mxcncpts.chm::/twoCounterMeasMeth.html
mxdevconsid.chm::/counterSigCon.html

Measuring	Semi-Period,	Two-Edge	Separation,
and	Pulse	Width	Programming	Flowchart
The	following	flowchart	demonstrates	the	main	steps	required	in	an	NI-
DAQmx	application	to	measure	semi-period	and	pulse	width.
Alternatively,	you	can	configure	a	task	for	measuring	semi-period	and
pulse	width	using	the	DAQ	Assistant.

Period,	semi-period,	two-edge	separation,	and	pulse	width	is	an	example
of	a	counter	measurement.	Refer	to	Counter	Programming	Flowcharts	for
additional	flowcharts	that	can	help	you	create	an	application.

Measuring	GPS	Timestamp
You	can	take	a	GPS	timestamp	measurement	with	the	NI	PXI-6608.	In	a
GPS	timestamp	measurement,	the	NI	PXI-6608	determines	the	precise
time	of	year	using	a	specialized	onboard	counter.	You	can	select	a	single
point	(on-demand)	timestamp	or	a	buffered	(sample	clock)	timestamp.
You	can	synchronize	the	GPS	timestamp	counter	to	a	GPS	receiver
signal	by	using	a	pulse	per	second	(PPS)	or	an	IRIG-B	(timecode	TTL)
synchronization	signal	from	the	GPS	receiver.	PPS	does	not	include	any
timing	information;	rather,	the	PPS	accurately	reports	when	the	beginning
of	a	second	occurs.	IRIG-B,	on	the	other	hand,	has	the	time	encoded	in
the	signal	from	the	beginning	of	the	current	year.	The	GPS	counter	can
latch	on	the	current	time	upon	receiving	a	hardware	gate	signal.	GPS
does	not	provide	year	information;	however,	the	time	is	stored	in	a	64-bit
floating-point	number	that	can	be	converted	to	seconds	since	January	1
of	the	current	year.
When	doing	an	on-demand	GPS	timestamp	measurement,	you	must	first
arm	the	counter	by	calling	the	Start	function/VI.	Each	subsequent	read
returns	the	number	of	seconds	counted.
When	doing	a	buffered	GPS	timestamp	measurement,	the	current	time	is
latched	on	each	active	edge	of	the	sample	clock	and	stored	in	the	buffer.
There	is	no	built-in	clock	for	buffered	GPS	timestamp	measurements,	so
you	must	supply	an	external	sample	clock.
Making	Signal	Connections
Creating	a	Program
Examples

mxdevconsid.chm::/counterSigCon.html

GPS	Timestamp	Programming	Flowchart
The	following	flowchart	depicts	the	main	steps	required	in	an	NI-DAQmx
application	to	take	a	GPS	timestamp	measurement	with	an	NI	PXI-6608.
Alternatively,	you	can	configure	this	task	using	the	DAQ	Assistant.

GPS	timestamp	is	an	example	of	a	counter	measurement.	Refer	to
Counter	Programming	Flowcharts	for	additional	flowcharts	that	can	help
you	create	an	application.

Glossary
Prefixes 	 Numbers/Symbols 	 A 	 B 	 C 	 D 	 E 	 F 	 G 	 H 	 I 	 J 	

L 	 M 	 N 	 O 	 P 	 R 	 S 	 T 	 U 	 V 	 W

Symbol Prefix Value
n nano 10	-9

µ micro 10	-6

m milli 10	-3

k kilo 10	3

M mega 10	6

Symbol Meaning
% percent
+ positive	of,	or	plus
– negative	of,	or	minus
Ω ohm
º degree

A
acceleration A	change	in	velocity	with	respect	to	time.
accelerometer A	sensor	that	represents	acceleration	as	a	voltage.
ADC Analog-to-digital	converter—an	electronic	device,	often

an	integrated	circuit,	that	converts	an	analog	signal	to	a
digital	value.

address A	character	code	that	identifies	a	specific	location	(or
series	of	locations)	in	memory.

ADE Application	development	environment—some	examples
include	LabVIEW	and	LabWindows/CVI.

advanced
terminal

A	terminal	not	accessible	from	the	I/O	connector	or	a
terminal	not	commonly	used	in	measurement
applications.

AI Analog	input—acquisition	of	data.
amplification A	type	of	signal	conditioning	that	improves	accuracy	in

the	resulting	digitized	signal	by	increasing	signal
amplitude	relative	to	noise.

analog Data	represented	by	continuously	variable	physical
quantities.

AO Analog	output—generation	of	data.
angular
displacement

Movement	about	an	axis,	such	as	the	angular	motion	of
the	shaft	of	a	motor.

angular
displacement
sensor

A	device	whose	output	signal	represents	the	rotation	of
the	shaft,	such	as	a	rotary	variable	differential
transformer	(RVDT).

API Application	programming	interface—A	library	of
functions,	classes	or	VIs,	attributes,	and	properties	for
creating	applications	for	your	device.

asynchronous 1.	 Hardware—a	signal	that	occurs	or	is	acted	upon
at	an	arbitrary	time,	without	synchronization	to
another	signal,	such	as	a	reference	clock.

2.	 Software—a	VI	or	function	that	begins	an

operation	and	returns	prior	to	the	completion	or
termination	of	the	operation.

attenuation The	reduction	of	a	voltage	or	acoustical	pressure.
Measured	referenced	to	the	original	voltage.

B
bandwidth The	range	of	frequencies	present	in	a	signal,	or	the	range	of

frequencies	to	which	a	measuring	device	can	respond.
base
address

A	memory	address	that	serves	as	the	starting	address	for
programmable	registers.	All	other	addresses	are	located	by
adding	to	the	base	address.

bipolar A	signal	range	that	includes	both	positive	and	negative
values	(for	example,	​5	V	to	+5	V).

BIOS Basic	Input/Output	System—BIOS	functions	are	the
fundamental	level	of	any	PC	or	compatible	computer.	BIOS
functions	embody	the	basic	operations	needed	for
successful	use	of	the	computer	hardware	resources.

bit The	smallest	unit	of	data	used	in	a	digital	operation.	Bits	are
binary,	so	they	can	be	either	a	1	or	a	0.

buffer In	software,	temporary	storage	for	acquired	or	to-be-
generated	samples.

bus The	group	of	conductors	that	interconnect	individual	circuitry
in	a	computer.	Typically,	a	bus	is	the	expansion	vehicle	to
which	I/O	or	other	devices	are	connected.	Examples	of	PC
buses	are	the	ISA	bus	and	PCI	bus.

C
C	Series A	family	of	devices	or	modules	used	for	analog	input,

analog	output,	digital	input/output,	and	counter/timer
applications.	C	Series	devices	work	with	chassis	based
on	the	CompactDAQ,	CompactRIO,	and	other
architectures,	and	are	components	of	the	NI	USB-9XXX
devices.

cDAQ The	prefix	of	the	product	model	name	of	a	CompactDAQ
device,	such	as	NI	cDAQ-9172.

CH Channel.
channel 1.	 Physical—a	terminal	or	pin	at	which	you	can

measure	or	generate	an	analog	or	digital	signal.	A
single	physical	channel	can	include	more	than
one	terminal,	as	in	the	case	of	a	differential
analog	input	channel	or	a	digital	port	of	eight
lines.	The	name	used	for	a	counter	physical
channel	is	an	exception	because	that	physical
channel	name	is	not	the	name	of	the	terminal
where	the	counter	measures	or	generates	the
digital	signal.

2.	 Virtual—a	collection	of	property	settings	that	can
include	a	name,	a	physical	channel,	input	terminal
connections,	the	type	of	measurement	or
generation,	and	scaling	information.	You	can
define	NI-DAQmx	virtual	channels	outside	a	task
(global)	or	inside	a	task	(local).	Configuring	virtual
channels	is	optional	in	Traditional	NI-DAQ
(Legacy)	and	earlier	versions,	but	is	integral	to
every	measurement	you	take	in	NI-DAQmx.	In
Traditional	NI-DAQ	(Legacy),	you	configure	virtual
channels	in	MAX.	In	NI-DAQmx,	you	can
configure	virtual	channels	either	in	MAX	or	in	a
program,	and	you	can	configure	channels	as	part
of	a	task	or	separately.

3.	 Switch—a	switch	channel	represents	any
connection	point	on	a	switch.	It	may	be	made	up

of	one	or	more	signal	wires	(commonly	one,	two,
or	four),	depending	on	the	switch	topology.	A
virtual	channel	cannot	be	created	with	a	switch
channel.	Switch	channels	may	be	used	only	in	the
NI-DAQmx	Switch	functions	and	VIs.

clock A	periodic	digital	signal.
CMRR Common-mode	rejection	ratio—a	measure	of	the	ability

of	an	instrument	to	reject	interference	from	a	common-
mode	signal,	usually	expressed	in	decibels	(dB).

code	width The	smallest	detectable	change	in	an	input	voltage	of	a
DAQ	device.

cold-junction
compensation

A	method	of	compensating	for	inaccuracies	in
thermocouple	circuits.

CompactDAQ An	architecture	or	chassis	for	C	Series	devices.
configuration
tree

Refers	to	the	left	window	in	MAX,	which	contains	items
such	as	Data	Neighborhood	and	Devices	and	Interfaces.

counter/timer A	circuit	that	counts	digital	edges.	Counters	and	timers
usually	have	from	16	bits	to	48	bits	(sometimes	more)
counting	capability.	The	total	number	of	counts	possible
equals	2N,	where	N	is	the	number	of	bits	in	the	counter.
When	the	edges	counted	are	produced	by	a	clock,
elapsed	time	can	be	computed	from	the	number	of	edges
counted	if	the	clock	frequency	is	known.

convert	clock The	clock	on	a	multiplexed	device	that	directly	causes
ADC	conversions.

custom	scale A	method	of	instructing	NI-DAQmx	to	apply	additional
scaling	to	your	data.	Refer	to	the	Create	Scale
function/VI	in	your	reference	help.

D
DAC Digital-to-analog	converter—an	electronic	device,	often	an

integrated	circuit,	that	converts	a	digital	value	into	a
corresponding	analog	voltage	or	current.

DAQ Refer	to	data	acquisition.
DAQ
Assistant

A	graphical	interface	for	configuring	measurement	tasks,
virtual	channels,	and	scales.

DAQ	device A	device	that	acquires	or	generates	data	and	can	contain
multiple	channels	and	conversion	devices.	DAQ	devices
include	plug-in	devices,	PCMCIA	cards,	and	DAQPad
devices,	which	connect	to	a	computer	USB	or	1394
(FireWire)	port.	SCXI	modules	are	considered	DAQ
devices.

data Samples.
data
acquisition
(DAQ)

1.	 Acquiring	and	measuring	analog	or	digital	electrical
signals	from	sensors,	transducers,	and	test	probes
or	fixtures.

2.	 Generating	analog	or	digital	electrical	signals.

dB Decibel—the	unit	for	expressing	a	logarithmic	measure	of
the	ratio	of	two	signal	levels:	dB=20log10	V1/V2,	for
signals	in	volts.

DC direct	current
delay	from
sample

The	amount	of	time	to	wait	after	receiving	a	sample	clock
edge	before	beginning	the	acquisition	of	a	sample.

delay	from
start

The	amount	of	time	to	wait	after	receiving	a	Start	Trigger
before	beginning	the	operation.

determinism Characteristic	of	a	system	that	describes	how	consistently
it	can	respond	to	external	events	or	perform	operations
within	a	given	time	limit.

device 1.	 An	instrument	or	controller	you	can	access	as	a
single	entity	that	controls	or	monitors	real-world	I/O
points.	A	device	often	is	connected	to	a	host
computer	through	some	type	of	communication

network.
2.	 See	also	DAQ	device	and	measurement	device.

digital A	TTL	signal.	Refer	to	edge.
DIO digital	input/output
DMA direct	memory	access—A	method	of	transferring	data

between	a	buffer	and	a	device	that	is	used	most	often	for
high-speed	operations.

driver Software	unique	to	the	device	or	type	of	device,	and
includes	the	set	of	commands	the	device	accepts.

drop-down
listbox

A	graphical	box	with	a	down	arrow	button	that	lets	you
select	values	or	options	from	a	list.	To	select	a	value	or
option	in	the	selection	box,	click	the	down	arrow	for	a
complete	list	of	values	or	options,	then	use	your	arrow
keys	or	mouse	to	select	a	value	or	option	from	the	list.

DSUB D-subminiature	connector
DUT device	under	test—a	device	used	for	testing	purposes.

E
E	Series A	standard	architecture	for	instrumentation-class,

multichannel	data	acquisition	devices.
edge A	digital	edge	is	a	single	rising	or	falling	TTL	transition.	An

analog	edge	is	defined	by	the	slope,	level,	and	hysteresis
settings.

event A	digital	signal	produced	from	a	device	or	circuit.	For	an
advanced	discussion	of	events,	refer	to	Events.

excitation Supplying	a	voltage	or	current	source	to	energize	a	sensor	or
circuit.

mxcncpts.chm::/Events.html

F
fall	time The	time	for	a	signal	to	transition	from	90%	to	10%	of	the

maximum	signal	amplitude.
filtering A	type	of	signal	conditioning	that	you	can	use	to	remove

unwanted	frequency	components	from	the	signal	you	are
measuring.

FIFO A	type	of	memory	that	implements	a	First	In	First	Out	strategy
in	which	samples	are	removed	in	the	order	they	were	written.
FIFOs	are	typically	used	as	intermediate	buffers	between	an
ADC	or	DAC	and	the	memory	buffer.

floating
signal
sources

Signal	sources	with	voltage	signals	that	are	not	connected	to
an	absolute	reference	or	system	ground.

G
gain The	factor	by	which	a	signal	is	amplified,	often	expressed	in

decibels	(dB).	Gain	as	a	function	of	frequency	is	commonly
referred	to	as	the	magnitude	of	the	frequency	response
function.

grounded
signal
sources

Signal	sources	with	voltage	signals	that	are	referenced	to	a
system	ground,	such	as	the	earth	or	a	building	ground.
Grounded	signal	sources	are	also	called	referenced	signal
sources.

H
hardware The	physical	components	of	a	computer	system,	such	as	the

circuit	boards,	plug-in	boards,	chassis,	enclosures,
peripherals,	and	cables.

hardware
timing

A	means	of	controlling	signal	generation.	A	digital	signal,
such	as	a	clock	on	a	DAQ	device,	controls	the	rate	of
generation.

hardware
triggering

A	form	of	triggering	in	which	the	source	of	the	trigger	is	an
analog	or	digital	signal.	Refer	to	Software	Trigger.

hex Hexadecimal—a	base-16	numbering	system.
hysteresis A	window	around	a	trigger	level	that	is	often	used	to	reduce

false	triggering	due	to	noise	or	jitter	in	the	signal.
Hz Hertz—cycles	per	second	of	a	periodic	signal.

I
IEEE
P1451

Family	of	IEEE	standards	defining	a	variety	of	smart
transducer	interfaces.	All	of	the	standards	within	this	family
support	the	concept	of	a	TEDS	that	provides	self-
identification	and	plug	and	play	operation	to	transducers.

IEEE
P1451.4

An	IEEE	standard	that	defines	the	concept	of	plug	and	play
sensors	with	analog	signals.	This	is	accomplished	with	the
addition	of	a	TEDS	in	memory,	typically	an	EEPROM,
embedded	within	the	sensor	and	communicated	through	a
simple,	low-cost	serial	connection.

instrument
driver

Refer	to	driver.

internal
channel

A	physical	channel	not	accessible	from	an	I/O	connector.
Internal	channels	are	often	used	for	calibration	and	are
intended	for	advanced	applications.

interrupt A	method	whereby	a	device	notifies	the	computer	of	some
condition	on	the	device	that	requires	the	computer's
attention.	When	this	condition	is	a	request	for	data	or	a
notification	of	available	data,	interrupts	are	used	as	a	data
transfer	mechanism.

interrupt
level

The	relative	priority	at	which	a	device	can	interrupt.

I/O Input/Output—the	transfer	of	data	to/from	a	computer
system	involving	communications	channels,	operator
interface	devices,	and/or	data	acquisition	and	control
interfaces.

IRQ Interrupt	ReQuest.
ISA Industry	Standard	Architecture—Also	refers	to	a	common

PC	expansion	bus.
isolation A	type	of	signal	conditioning	in	which	you	isolate	the

transducer	signals	from	the	computer.	Isolation	makes	sure
the	measurements	from	the	measurement	device	are	not
affected	by	differences	in	ground	potentials.

J
jitter The	amount	of	time	that	the	loop	cycle	time	varies	from	the	desired

time.

L
LED light-emitting	diode—a	semiconductor	light	source.
line An	individual	signal	in	a	digital	port.	The	difference

between	a	bit	and	a	line	is	that	the	bit	refers	to	the	actual
data	transferred,	and	the	line	refers	to	the	hardware	the
bit	is	transferred	on.	However,	the	terms	line	and	bit	are
fairly	interchangeable.	For	example,	an	8-bit	port	is	the
same	as	a	port	with	eight	lines.

linear
displacement

Movement	in	one	direction	along	a	single	axis.

linear
displacement
sensor

A	device	that	measures	linear	displacement.

linearization A	type	of	signal	conditioning	in	which	software	linearizes
the	voltage	levels	from	transducers,	so	the	voltages	can
be	scaled	to	measure	physical	phenomena.

LSB least	significant	bit—often	used	to	refer	to	the	smallest
voltage	change	detectable	by	an	A/D	converter	or	the
smallest	voltage	change	that	can	be	generated	by	a	D/A
converter.

LVDT Linear-voltage	differential	transformer—A	sensor	used	to
measure	linear	displacement.	An	LVDT	consists	of	a
passive	transform	with	one	primary	and	two	secondary
windings.	The	primary	winding	is	excited	by	an	audio
frequency	range	AC	voltage,	whose	imbalance	between
the	secondary	windings,	is	proportional	to	the
displacement.	The	secondary	windings	are	identical,	but
are	normally	connected	with	opposite	polarity,	so	the
transducer	at	resting	position	will	have	zero	output
voltage.

M
M	Series A	standard	architecture	for	instrumentation-class,

multichannel	data	acquisition	devices.
MAX Measurement	&	Automation	Explorer—A	centralized

configuration	environment	that	allows	you	to	configure	all
of	your	National	Instruments	devices.

measurement
device

DAQ	devices	such	as	the	M	Series	multifunction	I/O
(MIO)	devices,	SCXI	signal	conditioning	modules,	and
switch	modules.

memory
buffer

Refer	to	buffer.

memory
mapping

A	technique	for	reading	and	writing	to	a	device	directly
from	your	program,	which	avoids	the	overhead	of
delegating	the	reads	and	writes	to	kernel-level	software.
Delegation	to	the	kernel	is	safer,	but	slower.	Memory
mapping	is	less	safe	because	an	entire	4	KB	page	of
memory	must	be	exposed	to	your	program	for	this	to
work,	but	it	is	faster.

microphone A	transducer	that	converts	acoustical	waves	into
electrical	signals.

MIO multifunction	I/O—Designates	a	category	of	data
acquisition	devices	that	have	multiple	analog	input
channels,	digital	I/O	channels,	timing,	and	optionally,
analog	output	channels.	An	MIO	product	can	be
considered	a	miniature	mixed	signal	tester,	due	to	its
broad	range	of	signal	types	and	flexibility.	It	is	also
known	as	multifunction	DAQ.	An	E	Series	device	is	an
example	of	an	MIO	device.

module A	board	assembly	and	its	associated	mechanical	parts,
front	panel,	optional	shields,	and	so	on.	A	module
contains	everything	required	to	occupy	one	or	more	slots
in	a	mainframe.	SCXI	and	PXI	devices	are	modules.

multiplexed
mode

An	SCXI	operating	mode	in	which	analog	input	channels
are	multiplexed	into	one	module	output	so	that	the

cabled	DAQ	device	has	access	to	the	multiplexed	output
as	well	as	the	outputs	on	all	other	multiplexed	modules	in
the	chassis	through	the	SCXI	bus.	Also	called	serial
mode.

multiplexer A	switching	device	with	multiple	terminals	that
sequentially	connects	each	of	its	terminals	to	a	single
terminal,	typically	at	high	speeds.	Often	used	to	measure
several	signals	with	a	single	analog	input	channel.

multithreading Running	tasks	of	an	application	for	a	short	amount	of
time	to	give	the	impression	of	multiple	tasks	running
simultaneously.

N
NI-DAQ Driver	software	included	with	all	NI	measurement	devices.

NI-DAQ	is	an	extensive	library	of	VIs	and	functions	you	can
call	from	an	application	development	environment	(ADE),
such	as	LabVIEW,	to	program	all	the	features	of	an	NI
measurement	device,	such	as	configuring,	acquiring	and
generating	data	from,	and	sending	data	to	the	device.

NI-DAQ	7.x Includes	two	NI-DAQ	drivers—NI-DAQmx	and	Traditional
NI-DAQ	(Legacy)—each	with	its	own	API,	hardware
configuration,	and	software	configuration.

NI-DAQmx The	latest	NI-DAQ	driver	with	new	VIs,	functions,	and
development	tools	for	controlling	measurement	devices.
The	advantages	of	NI-DAQmx	over	earlier	versions	of	NI-
DAQ	include	the	DAQ	Assistant	for	configuring	channels
and	measurement	tasks	for	your	device	for	use	in
LabVIEW,	LabWindows/CVI,	and	Measurement	Studio;
increased	performance	such	as	faster	single-point	analog
I/O;	and	a	simpler	API	for	creating	DAQ	applications	using
fewer	functions	and	VIs	than	earlier	versions	of	NI-DAQ.

NI-DAQmx
Simulated
Device

A	replica	of	a	device	created	using	the	NI-DAQmx
Simulated	Device	option	in	the	Create	New	menu	of	MAX
for	the	purpose	of	operating	a	function	or	program	without
hardware.	An	NI-DAQmx	simulated	device	behaves
similarly	to	a	physical	device.	Its	driver	is	loaded,	and
programs	using	it	are	fully	verified.

nonlinearity A	measure	in	percentage	of	full-scale	range	(FSR)	of	the
worst-case	deviation	from	the	ideal	transfer	function—a
straight	line.	

This	specification	is	included	only	for	DAQ	products,	such
as	signal	conditioning	products,	that	do	not	have	an	ADC.
Because	a	product	with	this	specification	can	also	be	used
with	a	DAQ	product	with	an	ADC,	this	nonlinearity
specification	must	be	added	to	the	relative	accuracy
specification	of	the	DAQ	product	with	the	ADC.

NRSE Nonreferenced	single-ended	mode—all	measurements	are
made	with	respect	to	a	common	(NRSE)	measurement
system	reference,	but	the	voltage	at	this	reference	can	vary
with	respect	to	the	measurement	system	ground.

O
onboard Provided	by	the	data	acquisition	device.
onboard
channels

Channels	provided	by	the	plug-in	data	acquisition	device.

onboard
clock

The	default	source	for	a	particular	clock.	Usually,	the	device
has	dedicated	a	circuit	for	producing	this	signal	and	its	only
purpose	is	to	act	as	the	source	for	a	certain	clock.

onboard
memory

Memory	provided	by	a	device	for	temporary	storage	of	input
or	output	data.	Typically,	onboard	memory	is	a	FIFO,	which	is
distinct	from	computer	memory.

operating
system

Base-level	software	that	controls	a	computer,	runs	programs,
interacts	with	users,	and	communicates	with	installed
hardware	or	peripheral	devices.	Also	referred	to	as	OS.

P
parallel
mode

A	type	of	SCXI	operating	mode	in	which	the	module	sends
each	of	its	input	channels	directly	to	a	separate	analog
input	channel	of	the	device	connected	to	the	module.

pattern	I/O pattern	input	and	output—a	digital	I/O	operation	on	which
a	clock	signal	initiates	a	digital	transfer.	Because	the	clock
signal	is	a	constant	frequency,	you	can	generate	and
receive	patterns	at	a	constant	rate.

PCI peripheral	component	interconnect—a	high-performance
expansion	bus	architecture	originally	developed	by	Intel	to
replace	ISA	and	EISA.	PCI	has	achieved	widespread
acceptance	as	a	standard	for	PCs	and	work	stations,	and
it	offers	a	theoretical	maximum	transfer	rate	of	132
Mbytes/s.

PCMCIA An	expansion	bus	architecture	that	has	found	widespread
acceptance	as	a	de	facto	standard	in	notebook-size
computers.	PCMCIA	originated	as	a	specification	for	add-
on	memory	cards	written	by	the	Personal	Computer
Memory	Card	International	Association.

PFI programmable	function	interface—general	purpose	input
terminals,	fixed	purpose	output	terminals.	The	name	of	the
fixed	output	signal	is	often	placed	on	the	I/O	connector
next	to	the	terminal	as	a	hint.

physical
channel

Refer	to	channel.

PID proportional	integral	derivative—Combination	of
proportional,	integral,	and	derivative	control	actions.
Refers	to	a	control	method	in	which	the	controller	output	is
proportional	to	the	error,	its	time	history,	and	the	rate	at
which	it	is	changing.	The	error	is	the	difference	between
the	observed	and	desired	values	of	a	variable	that	is
under	control	action.

pin Refer	to	terminal.
Poisson's The	negative	ratio	of	the	strain	in	the	transverse	direction

Ratio (perpendicular	to	the	force)	to	the	strain	in	the	axial
direction	(parallel	to	the	force).

port A	collection	of	digital	lines.	Usually	the	lines	are	grouped
into	either	a	8-bit	or	32-bit	port.	Most	E	Series	devices
have	one	8-bit	port.

port	width The	number	of	lines	in	a	port.	For	example,	most	E	Series
devices	have	one	port	with	eight	lines;	therefore,	the	port
width	is	eight.

position
sensor

Refer	to	linear	displacement	sensor.

posttrigger
samples

If	there	is	no	Reference	Trigger,	posttrigger	samples	are
the	data	acquired	after	the	task	is	started.	If	there	is	a
Reference	Trigger,	this	is	the	data	acquired	after	the
Reference	Trigger.

plug	and
play	devices

Devices	that	do	not	require	DIP	switches	or	jumpers	to
configure	resources	on	the	devices.	Also	called	switchless
devices.

plug	and
play	sensors

A	transducer	with	an	associated	TEDS—includes	both
Virtual	TEDS	and	smart	TEDS	sensors.

pretrigger
samples

Data	acquired	before	the	occurrence	of	the	Reference
Trigger.

pretriggering The	technique	used	on	a	measurement	device	to	keep	a
circular	buffer	filled	with	samples,	so	that	when	the
Reference	Trigger	conditions	are	met,	the	buffer	includes
samples	leading	up	to	the	trigger	condition	as	well	as
samples	acquired	immediately	after	the	trigger.

programmed
I/O

A	data	transfer	mechanism	in	which	a	buffer	is	not	used
and	instead,	the	computer	reads	and	writes	directly	to	the
device.

propagation
delay

The	amount	of	time	required	for	a	signal	to	pass	through	a
circuit.

pulsed
output

A	form	of	counter	signal	generation	by	which	a	pulse	is
generated	when	a	counter	reaches	a	certain	value.

PWM pulse-width	modulation

PXI PCI	eXtensions	for	Instrumentation—a	rugged,	open
system	for	modular	instrumentation	based	on
CompactPCI,	with	special	mechanical,	electrical,	and
software	features.	The	PXI	standard	was	originally
developed	by	National	Instruments	in	1997	and	is	now
managed	by	the	PXI	Systems	Alliance.

PXI	trigger
bus

The	timing	bus	that	connects	PXI	DAQ	devices	directly,	by
means	of	connectors	built	into	the	backplane	of	the	PXI
chassis,	for	precise	synchronization	of	functions.	This	bus
is	functionally	equivalent	to	the	RTSI	bus	for	PCI	DAQ
devices.

R
range The	minimum	and	maximum	analog	signal	levels	that	the

ADC	can	digitize.
raw Data	that	has	not	been	changed	in	any	way.	For	input,	data

is	returned	exactly	as	received	from	the	device.	For	output,
data	is	written	as	is	to	the	device.	Refer	to	unscaled	and
scaled.

real	time A	property	of	an	event	or	system	in	which	samples	are
processed	as	they	are	acquired	instead	of	being
accumulated	and	processed	at	a	later	time.

referenced
signal
source

Signal	sources	with	voltage	signals	that	are	referenced	to	a
system	ground,	such	as	the	earth	or	a	building	ground.	Also
called	grounded	signal	sources.

resolution The	smallest	amount	of	input	signal	change	that	a	device	or
sensor	can	detect.	The	term	discrimination	is	also	used	for
resolution.

rise	time The	time	for	a	signal	to	transition	from	10%	to	90%	of	the
maximum	signal	amplitude.

route A	connection	between	a	pair	of	terminals.	Any	time	the
source	or	destination	terminal	of	a	signal	is	specified,	a
route	is	created.

RSE Referenced	single-ended	mode—all	measurements	are
made	with	respect	to	a	common	reference	measurement
system	or	a	ground.	Also	called	a	grounded	measurement
system.

RTD Resistance	temperature	detector—a	metallic	probe	that
measures	temperature	based	on	its	coefficient	of	resistivity.

RTSI	bus Real-time	system	integration	bus—the	NI	timing	bus	that
connects	DAQ	devices	directly,	by	means	of	connectors	on
top	of	the	devices,	for	precise	synchronization	of	functions.
This	bus	is	functionally	equivalent	to	the	PXI	Trigger	bus	for
PXI	DAQ	devices.

RVDT rotary	variable	differential	transformer—a	sensor	whose
output	signal	represents	the	rotation	of	the	shaft.

S
s seconds
S samples.	Refer	to	sample.
S/s samples	per	second—used	to	express	the	rate	at	which	a

measurement	device	samples	an	analog	signal.
sample A	single	measurement	from	a	single	channel	or,	for	output,

a	single	generation	to	a	single	channel.
sample
clock

The	clock	that	initiates	an	acquisition	of	one	sample	from
each	channel	in	the	scan	list.	For	example,	with	each
sample	clock	pulse,	M	Series	devices	acquire	a	sample	on
each	analog	input	channel	in	a	task	by	multiplexing	each
channel	through	a	single	ADC.	On	simultaneous	sampling
devices,	the	sample	clock	initiates	the	simultaneous
acquisition	of	one	sample	from	each	channel	in	the	task
through	a	dedicated,	per-channel	ADC.	No	multiplexing
(and	therefore	no	convert	clock)	is	necessary	for	S	Series
devices.

sample
clock	rate

Refer	to	sample	rate.

sample	rate The	number	of	samples	per	channel	per	second.	For
example,	a	sample	rate	of	10	S/s	means	sampling	each
channel	10	times	per	second.

scale Data	that	has	been	mathematically	transformed	into
engineering	units.	Other	manipulations	also	can	be	done
such	as	reordering	to	match	the	channel	order.

scanning Method	of	sequentially	connecting	channels.
SCC Signal	conditioning	component—low	channel	count	analog

or	digital	I/O	modules	for	conditioning	DAQ	systems.
SCXI Signal	Conditioning	eXtensions	for	Instrumentation—the

NI	product	line	for	conditioning	low-level	signals	within	an
external	chassis	near	sensors	so	that	only	high-level
signals	are	sent	to	measurement	devices	in	the	noisy	PC
environment.	SCXI	is	an	open	standard	available	for	all
vendors.

sensor A	device	that	responds	to	a	physical	stimulus	(heat,	light,
sound,	pressure,	motion,	flow,	and	so	on)	and	produces	a
corresponding	electrical	signal.

signal A	means	of	conveying	information.	An	analog	waveform,	a
clock,	and	a	single	digital	(TTL)	edge	are	all	examples	of
signals.

signal
conditioning

The	manipulation	of	signals	to	prepare	them	for	digitizing.

smart	TEDS
sensor

A	transducer	with	a	built-in	self-identification	EEPROM
that	provides	the	TEDS.

software
timing

A	means	of	controlling	signal	generation.	The	software,
such	as	NI-DAQmx,	and	the	operating	system	control	the
rate	of	generation.

software
trigger

A	VI	or	function	that,	when	it	executes,	triggers	an	action
such	as	starting	an	acquisition.

source
impedance

A	parameter	of	signal	sources	that	reflects	current-driving
ability	of	voltage	sources	(lower	is	better)	and	the	voltage-
driving	ability	of	current	sources	(higher	is	better).

static	AO Analog	output	operations	that	use	software	timing.
static	digital
I/O

Software-timed	digital	I/O	operations	that	do	not	involve
the	use	of	control	signals	in	data	transfers.	Also	known	as
software-timed	I/O	or	unstrobed	I/O.

strain The	amount	of	deformation	of	a	body	due	to	an	applied
force.

strobed	I/O Any	operation	in	which	every	data	transfer	is	timed	by
hardware	signals.	In	the	case	of	sample	clock	timing,	this
hardware	signal	is	a	clock	edge.	In	the	case	of
handshaking	I/O,	hardware	signals	involve	two	or	three
handshaking	lines.

STC system	timing	controller
synchronous 1.	 Hardware—a	signal	that	occurs	or	is	acted	upon	in

synchrony	with	another	signal,	such	as	a	reference
clock.

2.	 Software—a	VI	or	function	that	begins	an	operation

and	returns	only	when	the	operation	is	complete.

T
task In	NI-DAQmx,	a	collection	of	one	or	more	channels,

timing,	and	triggering	and	other	properties	that	apply	to
the	task	itself.	Conceptually,	a	task	represents	a
measurement	or	generation	you	want	to	perform.

task	buffer Refer	to	buffer.
TCR temperature	coefficient	of	resistance—the	average

resistance	change	per	one	degree	at	temperatures
between	0	°C	and	100	°C.

TEDS transducer	electronic	data	sheet—standardized	data
structure,	defined	by	IEEE	1451.4,	for	describing
sensors,	typically	stored	in	nonvolatile	memory	within	a
sensor.	The	manufacturer	of	the	sensor	stores,	into	this
memory,	initial	information	such	as	manufacturer	name,
sensor	type,	model	number,	serial	number,	and
calibration	data.	The	TEDS	data	structure	also	includes
space	for	custom	information	such	as	channel	ID,
location,	position,	direction,	tag	number,	etc.	Alternatively,
the	TEDS	data	may	be	stored	in	a	file	or	database	record
as	a	Virtual	TEDS.	For	information	on	IEEE	1451.4-
compliant	TEDS	sensors,	refer	to	www.ni.com/pnp.

TEDS	Class	I
Sensor

A	smart	TEDS	sensor	with	a	constant-current	powered
transducer	with	a	two-wire	interface,	such	as	an
accelerometer.	Class	I	transducers	also	include	diodes	or
analog	switches	with	which	the	multiplexing	of	the	analog
signal	with	the	digital	TEDS	information	on	the	single	pair
of	wires	is	possible.	The	digital	portion	of	the	mixed-mode
interface	(Class	1	or	Class	2)	is	based	on	the	1-Wire
protocol	from	Maxim/Dallas	Semiconductor.

TEDS	Class
II	Sensor

A	smart	TEDS	sensor	with	separate	wires	for	the	analog
and	digital	portions	of	the	TEDS	mixed-mode	interface.
The	analog	input/output	of	the	transducer	is	left
unmodified,	and	the	digital	TEDS	circuit	is	added	in
parallel,	such	as	thermocouples,	RTDs,	and	bridge-based
sensors.	The	digital	portion	of	the	mixed-mode	interface

javascript:WWW(WWW_TEDS)

(Class	1	or	Class	2)	is	based	on	the	1-Wire	protocol	from
Maxim/Dallas	Semiconductor.

terminal A	named	location	on	a	DAQ	device	where	a	signal	is
either	generated	(output	or	produced)	or	acquired	(input
or	consumed).

terminal
count

When	counting	up,	an	N	bit	counter	reaches	its	terminal
count	at	2N	-1.	An	N	bit	counter	counting	down	reaches
its	terminal	count	at	0.

thermistor A	semiconductor	sensor	that	produces	a	repeatable
change	in	electrical	resistance	as	a	function	of
temperature.	Most	thermistors	have	a	negative
temperature	coefficient.

thermocouple A	temperature	sensor	created	by	joining	two	dissimilar
metals.	The	junction	produces	a	small	voltage	as	a
function	of	the	temperature.

threshold The	voltage	level	a	signal	must	reach	for	a	trigger	to
occur.

tick A	digital	edge	of	a	clock.
timebase A	clock	that	is	divided	down	to	produce	another	clock	or	a

clock	provided	to	a	counter	for	measuring	elapsed	time.
Traditional
NI-DAQ
(Legacy)

An	upgrade	of	the	earlier	version	of	NI-DAQ.	Traditional
NI-DAQ	(Legacy)	has	the	same	VIs	and	functions	and
works	the	same	way	as	NI-DAQ	6.9.x,	except	you	can
use	both	Traditional	NI-DAQ	(Legacy)	and	NI-DAQmx	on
the	same	computer,	and	some	hardware	is	no	longer
supported.

transducer Refer	to	sensor.
transducer
excitation

A	type	of	signal	conditioning	that	uses	external	voltages
and	currents	to	excite	the	circuitry	of	a	signal	conditioning
system	into	measuring	physical	phenomena.

trigger Any	signal	that	causes	a	device	to	perform	an	action,
such	as	starting	an	acquisition.

TTL Transistor-transistor	logic—a	signal	having	two	discrete
levels,	a	high	and	a	low	level.

U
unipolar A	signal	range	that	is	always	positive	(for	example,	0	to	+10

V).
unscaled Samples	in	the	integer	form	that	the	hardware	produces	or

requires.	Although	no	mathematical	transformations	are
applied	to	unscaled	data,	other	manipulations	may	be	done
such	as	reordering	to	match	the	channel	order.

unstrobed
I/O

Refer	to	static	digital	I/O.

USB
DAQ

A	USB-based	family	of	devices	used	for	analog	input,	analog
output,	digital	input/output,	and	counter/timer	applications.
Some	example	devices	include	the	NI	USB-9201,	NI	USB-
9211,	NI	USB-9215,	NI	USB-9221,	NI	USB-9233,	and	NI
USB-9237	devices.	These	devices	are	also	referred	to	as
USB	DAQ	with	Integrated	Signal	Conditioning.

V
V volts
VI Refer	to	virtual	instrument.
virtual
channel

Refer	to	channel.

virtual
instrument

A	program	in	LabVIEW	that	models	the	appearance	and
function	of	a	physical	instrument.

VISA Virtual	Instrumentation	Software	Architecture.

W
waveform	data
type

A	LabVIEW	data	type	that	bundles	timing	information
along	with	the	data.

WDT Refer	to	waveform	data	type.

Important	Information
Warranty
Copyright
Trademarks
Patents
Warning	Regarding	Use	of	NI	Products

Warranty
The	media	on	which	you	receive	National	Instruments	software	are
warranted	not	to	fail	to	execute	programming	instructions,	due	to	defects
in	materials	and	workmanship,	for	a	period	of	90	days	from	date	of
shipment,	as	evidenced	by	receipts	or	other	documentation.	National
Instruments	will,	at	its	option,	repair	or	replace	software	media	that	do	not
execute	programming	instructions	if	National	Instruments	receives	notice
of	such	defects	during	the	warranty	period.	National	Instruments	does	not
warrant	that	the	operation	of	the	software	shall	be	uninterrupted	or	error
free.
A	Return	Material	Authorization	(RMA)	number	must	be	obtained	from
the	factory	and	clearly	marked	on	the	outside	of	the	package	before	any
equipment	will	be	accepted	for	warranty	work.	National	Instruments	will
pay	the	shipping	costs	of	returning	to	the	owner	parts	which	are	covered
by	warranty.
National	Instruments	believes	that	the	information	in	this	document	is
accurate.	The	document	has	been	carefully	reviewed	for	technical
accuracy.	In	the	event	that	technical	or	typographical	errors	exist,
National	Instruments	reserves	the	right	to	make	changes	to	subsequent
editions	of	this	document	without	prior	notice	to	holders	of	this	edition.
The	reader	should	consult	National	Instruments	if	errors	are	suspected.
In	no	event	shall	National	Instruments	be	liable	for	any	damages	arising
out	of	or	related	to	this	document	or	the	information	contained	in	it.
EXCEPT	AS	SPECIFIED	HEREIN,	NATIONAL	INSTRUMENTS	MAKES
NO	WARRANTIES,	EXPRESS	OR	IMPLIED,	AND	SPECIFICALLY
DISCLAIMS	ANY	WARRANTY	OF	MERCHANTABILITY	OR	FITNESS
FOR	A	PARTICULAR	PURPOSE.	CUSTOMER'S	RIGHT	TO	RECOVER
DAMAGES	CAUSED	BY	FAULT	OR	NEGLIGENCE	ON	THE	PART	OF
NATIONAL	INSTRUMENTS	SHALL	BE	LIMITED	TO	THE	AMOUNT
THERETOFORE	PAID	BY	THE	CUSTOMER.	NATIONAL
INSTRUMENTS	WILL	NOT	BE	LIABLE	FOR	DAMAGES	RESULTING
FROM	LOSS	OF	DATA,	PROFITS,	USE	OF	PRODUCTS,	OR
INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES,	EVEN	IF	ADVISED	OF
THE	POSSIBILITY	THEREOF.	This	limitation	of	the	liability	of	National
Instruments	will	apply	regardless	of	the	form	of	action,	whether	in
contract	or	tort,	including	negligence.	Any	action	against	National
Instruments	must	be	brought	within	one	year	after	the	cause	of	action

accrues.	National	Instruments	shall	not	be	liable	for	any	delay	in
performance	due	to	causes	beyond	its	reasonable	control.	The	warranty
provided	herein	does	not	cover	damages,	defects,	malfunctions,	or
service	failures	caused	by	owner's	failure	to	follow	the	National
Instruments	installation,	operation,	or	maintenance	instructions;	owner's
modification	of	the	product;	owner's	abuse,	misuse,	or	negligent	acts;
and	power	failure	or	surges,	fire,	flood,	accident,	actions	of	third	parties,
or	other	events	outside	reasonable	control.

Copyright
Under	the	copyright	laws,	this	publication	may	not	be	reproduced	or
transmitted	in	any	form,	electronic	or	mechanical,	including	photocopying,
recording,	storing	in	an	information	retrieval	system,	or	translating,	in
whole	or	in	part,	without	the	prior	written	consent	of	National	Instruments
Corporation.
National	Instruments	respects	the	intellectual	property	of	others,	and	we
ask	our	users	to	do	the	same.	NI	software	is	protected	by	copyright	and
other	intellectual	property	laws.	Where	NI	software	may	be	used	to
reproduce	software	or	other	materials	belonging	to	others,	you	may	use
NI	software	only	to	reproduce	materials	that	you	may	reproduce	in
accordance	with	the	terms	of	any	applicable	license	or	other	legal
restriction.

Trademarks
National	Instruments,	NI,	ni.com,	and	LabVIEW	are	trademarks	of
National	Instruments	Corporation.	Refer	to	the	Terms	of	Use	section	on
ni.com/legal	for	more	information	about	National	Instruments	trademarks.
FireWire®	is	the	registered	trademark	of	Apple	Computer,	Inc.
Handle	Graphics®,	MATLAB®,	Real-Time	Workshop®,	Simulink®,
Stateflow®,	and	xPC	TargetBox®	are	registered	trademarks,	and
TargetBox™	and	Target	Language	Compiler™	are	trademarks	of	The
MathWorks,	Inc.
Tektronix®	and	Tek	are	registered	trademarks	of	Tektronix,	Inc.
Other	product	and	company	names	mentioned	herein	are	trademarks	or
trade	names	of	their	respective	companies.
Members	of	the	National	Instruments	Alliance	Partner	Program	are
business	entities	independent	from	National	Instruments	and	have	no
agency,	partnership,	or	joint-venture	relationship	with	National
Instruments.

javascript:WWW(WWW_Trademark)

Patents
For	patents	covering	National	Instruments	products,	refer	to	the
appropriate	location:	Help»Patents	in	your	software,	the	patents.txt	file	on
your	CD,	or	ni.com/patents.

javascript:WWW(WWW_Patents)

WARNING	REGARDING	USE	OF	NATIONAL
INSTRUMENTS	PRODUCTS
(1)	NATIONAL	INSTRUMENTS	PRODUCTS	ARE	NOT	DESIGNED
WITH	COMPONENTS	AND	TESTING	FOR	A	LEVEL	OF	RELIABILITY
SUITABLE	FOR	USE	IN	OR	IN	CONNECTION	WITH	SURGICAL
IMPLANTS	OR	AS	CRITICAL	COMPONENTS	IN	ANY	LIFE	SUPPORT
SYSTEMS	WHOSE	FAILURE	TO	PERFORM	CAN	REASONABLY	BE
EXPECTED	TO	CAUSE	SIGNIFICANT	INJURY	TO	A	HUMAN.
(2)	IN	ANY	APPLICATION,	INCLUDING	THE	ABOVE,	RELIABILITY	OF
OPERATION	OF	THE	SOFTWARE	PRODUCTS	CAN	BE	IMPAIRED	BY
ADVERSE	FACTORS,	INCLUDING	BUT	NOT	LIMITED	TO
FLUCTUATIONS	IN	ELECTRICAL	POWER	SUPPLY,	COMPUTER
HARDWARE	MALFUNCTIONS,	COMPUTER	OPERATING	SYSTEM
SOFTWARE	FITNESS,	FITNESS	OF	COMPILERS	AND
DEVELOPMENT	SOFTWARE	USED	TO	DEVELOP	AN	APPLICATION,
INSTALLATION	ERRORS,	SOFTWARE	AND	HARDWARE
COMPATIBILITY	PROBLEMS,	MALFUNCTIONS	OR	FAILURES	OF
ELECTRONIC	MONITORING	OR	CONTROL	DEVICES,	TRANSIENT
FAILURES	OF	ELECTRONIC	SYSTEMS	(HARDWARE	AND/OR
SOFTWARE),	UNANTICIPATED	USES	OR	MISUSES,	OR	ERRORS	ON
THE	PART	OF	THE	USER	OR	APPLICATIONS	DESIGNER	(ADVERSE
FACTORS	SUCH	AS	THESE	ARE	HEREAFTER	COLLECTIVELY
TERMED	"SYSTEM	FAILURES").	ANY	APPLICATION	WHERE	A
SYSTEM	FAILURE	WOULD	CREATE	A	RISK	OF	HARM	TO
PROPERTY	OR	PERSONS	(INCLUDING	THE	RISK	OF	BODILY
INJURY	AND	DEATH)	SHOULD	NOT	BE	RELIANT	SOLELY	UPON	ONE
FORM	OF	ELECTRONIC	SYSTEM	DUE	TO	THE	RISK	OF	SYSTEM
FAILURE.	TO	AVOID	DAMAGE,	INJURY,	OR	DEATH,	THE	USER	OR
APPLICATION	DESIGNER	MUST	TAKE	REASONABLY	PRUDENT
STEPS	TO	PROTECT	AGAINST	SYSTEM	FAILURES,	INCLUDING	BUT
NOT	LIMITED	TO	BACK-UP	OR	SHUT	DOWN	MECHANISMS.
BECAUSE	EACH	END-USER	SYSTEM	IS	CUSTOMIZED	AND
DIFFERS	FROM	NATIONAL	INSTRUMENTS'	TESTING	PLATFORMS
AND	BECAUSE	A	USER	OR	APPLICATION	DESIGNER	MAY	USE
NATIONAL	INSTRUMENTS	PRODUCTS	IN	COMBINATION	WITH
OTHER	PRODUCTS	IN	A	MANNER	NOT	EVALUATED	OR
CONTEMPLATED	BY	NATIONAL	INSTRUMENTS,	THE	USER	OR

APPLICATION	DESIGNER	IS	ULTIMATELY	RESPONSIBLE	FOR
VERIFYING	AND	VALIDATING	THE	SUITABILITY	OF	NATIONAL
INSTRUMENTS	PRODUCTS	WHENEVER	NATIONAL	INSTRUMENTS
PRODUCTS	ARE	INCORPORATED	IN	A	SYSTEM	OR	APPLICATION,
INCLUDING,	WITHOUT	LIMITATION,	THE	APPROPRIATE	DESIGN,
PROCESS	AND	SAFETY	LEVEL	OF	SUCH	SYSTEM	OR
APPLICATION.

Technical	Support	and	Professional	Services
Visit	the	following	sections	of	the	National	Instruments	Web	site	at	ni.com
for	technical	support	and	professional	services:

Support—Online	technical	support	resources	at	ni.com/support
include	the	following:

Self-Help	Resources—For	answers	and	solutions,	visit	the
award-winning	National	Instruments	Web	site	for	software
drivers	and	updates,	a	searchable	KnowledgeBase,	product
manuals,	step-by-step	troubleshooting	wizards,	thousands	of
example	programs,	tutorials,	application	notes,	instrument
drivers,	and	so	on.
Free	Technical	Support—All	registered	users	receive	free
Basic	Service,	which	includes	access	to	hundreds	of
Applications	Engineers	worldwide	in	the	NI	Developer
Exchange	at	ni.com/exchange.	National	Instruments
Applications	Engineers	make	sure	every	question	receives
an	answer.
For	information	about	other	technical	support	options	in	your
area,	visit	ni.com/services	or	contact	your	local	office	at
ni.com/contact.

Training	and	Certification—Visit	ni.com/training	for	self-paced
training,	eLearning	virtual	classrooms,	interactive	CDs,	and
Certification	program	information.	You	also	can	register	for
instructor-led,	hands-on	courses	at	locations	around	the	world.
System	Integration—If	you	have	time	constraints,	limited	in-house
technical	resources,	or	other	project	challenges,	National
Instruments	Alliance	Partner	members	can	help.	To	learn	more,
call	your	local	NI	office	or	visit	ni.com/alliance.
Declaration	of	Conformity	(DoC)—A	DoC	is	our	claim	of
compliance	with	the	Council	of	the	European	Communities	using
the	manufacturer​s	declaration	of	conformity.	This	system	affords
the	user	protection	for	electronic	compatibility	(EMC)	and	product
safety.	You	can	obtain	the	DoC	for	your	product	by	visiting
ni.com/certification.
Calibration	Certificate—If	your	product	supports	calibration,	you
can	obtain	the	calibration	certificate	for	your	product	at

javascript:WWW(WWW_Support)
javascript:WWW(WWW_KB)
javascript:WWW(WWW_Manuals)
javascript:WWW(WWW_Exchange)
javascript:WWW(WWW_Service)
javascript:WWW(WWW_Contact)
javascript:WWW(WWW_Customer_Education)
javascript:WWW(WWW_Integration)
javascript:WWW(WWW_Doc)
javascript:WWW(WWW_CC)

ni.com/calibration.
If	you	searched	ni.com	and	could	not	find	the	answers	you	need,	contact
your	local	office	or	NI	corporate	headquarters.	You	also	can	visit	the
Worldwide	Offices	section	of	ni.com/niglobal	to	access	the	branch	office
Web	sites,	which	provide	up-to-date	contact	information,	support	phone
numbers,	email	addresses,	and	current	events.

javascript:WWW(WWW_Global)

Branch	Offices
Office Telephone	Number
Australia 1800	300	800
Austria 43	662	457990-0
Belgium 32	(0)	2	757	0020
Brazil 55	11	3262	3599
Canada 800	433	3488
China 86	21	5050	9800
Czech	Republic 420	224	235	774
Denmark 45	45	76	26	00
Finland 358	(0)	9	725	72511
France 33	(0)	1	57	66	24	24
Germany 49	89	7413130
India 91	80	41190000
Israel 972	0	3	6393737
Italy 39	02	41309277
Japan 0120-527196	/	81	3	5472	2970
Korea 82	02	3451	3400
Lebanon 961	(0)	1	33	28	28
Malaysia 1800	887710
Mexico 01	800	010	0793
Netherlands 31	(0)	348	433	466
New	Zealand 0800	553	322
Norway 47	(0)	66	90	76	60
Poland 48	22	3390150
Portugal 351	210	311	210
Russia 7	495	783	6851
Singapore 1800	226	5886
Slovenia 386	3	425	42	00

South	Africa 27	0	11	805	8197
Spain 34	91	640	0085
Sweden 46	(0)	8	587	895	00
Switzerland 41	56	2005151
Taiwan 886	02	2377	2222
Thailand 662	278	6777
Turkey 90	212	279	3031
United	Kingdom 44	(0)	1635	523545
United	States	(Corporate) 512	683	0100

	NI-DAQmx Help
	Related Documentation
	Using Help
	Conventions
	Navigating Help
	Searching Help
	Printing Help File Topics

	Getting Started
	NI-DAQ Overview
	Configuring a Task
	DAQ Assistant
	Introduction to MAX
	Capabilities of MAX
	Exporting and Importing Configurations

	Distributed Applications
	Getting Started in your ADE
	LabVIEW
	LabVIEW SignalExpress
	LabWindows/CVI
	Measurement Studio
	.NET
	ANSI C

	Finding Examples
	Troubleshooting
	FAQ

	Glossary
	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	Warning Regarding the Use of NI Products

	Technical Support Resources

