
NI-DAQmx	Key	Concepts
January	2008,	371407F-01
NI-DAQmx	Key	Concepts	covers	important	concepts	in	NI-DAQmx	such
as	channels	and	tasks.	The	ways	that	NI-DAQmx	handles	timing,
triggering,	buffering,	and	signal	routing	are	also	central	in	the	NI-DAQmx
API.
©	2005–2008	National	Instruments	Corporation.	All	rights	reserved.



Channels	and	Tasks	in	NI-DAQmx
Virtual	channels	and	tasks	are	fundamental	components	of	NI-DAQmx.
Virtual	channels,	or	sometimes	referred	to	generically	as	channels,	are
software	entities	that	encapsulate	the	physical	channel	along	with	other
channel	specific	information—range,	terminal	configuration,	and	custom
scaling—that	formats	the	data.	Tasks	are	collections	of	one	or	more
virtual	channels	with	timing,	triggering,	and	other	properties.



Channels,	Physical	Versus	Virtual
A	physical	channel	is	a	terminal	or	pin	at	which	you	can	measure	or
generate	an	analog	or	digital	signal.	A	single	physical	channel	can
include	more	than	one	terminal,	as	in	the	case	of	a	differential	analog
input	channel	or	a	digital	port	of	eight	lines.	Every	physical	channel	on	a
device	has	a	unique	name	(for	instance,	SC1Mod4/ai0,	Dev2/ao5,	and
Dev6/ctr3)	that	follows	the	NI-DAQmx	physical	channel	naming
convention.
Virtual	channels	are	software	entities	that	encapsulate	the	physical
channel	along	with	other	channel	specific	information—range,	terminal
configuration,	and	custom	scaling—that	formats	the	data.	To	create
virtual	channels,	use	the	DAQmx	Create	Virtual	Channel	function/VI	or
the	DAQ	Assistant.
Virtual	channels	created	with	the	DAQmx	Create	Virtual	Channel
function/VI	are	called	local	virtual	channels	and	can	only	be	used	within
the	task.	With	this	function/VI,	you	choose	the	name	to	assign	for	the
virtual	channel,	which	is	used	in	the	rest	of	the	NI-DAQmx	software
framework	to	refer	to	the	physical	channel.
If	you	create	virtual	channels	with	the	DAQ	Assistant,	you	can	use	them
in	other	tasks	and	reference	them	outside	the	context	of	a	task.	Because
these	channels	can	apply	to	multiple	tasks,	they	are	called	global	virtual
channels.	You	can	select	global	virtual	channels	with	the	NI-DAQmx	API
or	DAQ	Assistant	and	add	them	to	a	task.	If	you	add	a	global	virtual
channel	to	several	tasks	and	modify	that	global	virtual	channel	with	the
DAQ	Assistant,	the	change	applies	to	all	tasks	that	use	that	global	virtual
channel.

See	Also
Creating	Virtual	Channels	with	the	API
Creating	Virtual	Channels	with	the	DAQ	Assistant
Device-Specific	Physical	Channels
Device-Specific	Internal	Channels

mxdevconsid.chm::/PhysChannels.html
mxdevconsid.chm::/internalChannels.html


Creating	Virtual	Channels	with	the	API
The	following	example	illustrates	the	difference	between	physical	and
virtual	channels	and	demonstrates	how	to	create	virtual	channels	with	the
API.



Problem
Create	an	NI-DAQmx	virtual	channel	to	measure	temperature	in	the
range	50°	C	to	200°	C	using	a	J-type	thermocouple	wired	to	channel	0	on
an	M	Series	device	configured	as	Device	1.	Use	LabVIEW	or
LabWindows™/CVI™	to	write	your	application.



Solution
1.	 Call	the	AI	Temp	TC	instance	of	the	DAQmx	Create	Virtual

Channel	VI	in	LabVIEW	(DAQmxCreateAIThrmcplChan	function	in
LabWindows/CVI).

2.	 Use	Dev1/ai0	as	the	physical	channel	on	the	device	to	which	the
thermocouple	signal	is	connected.

3.	 Specify	myThermocoupleChannel	as	the	name	to	assign	to	your
virtual	channel.

4.	 Select	the	appropriate	values	for	the	thermocouple	type	and
range	inputs.	NI-DAQmx	applies	these	attributes	to	the	virtual
channel.

You	have	now	created	a	virtual	channel.

See	Also
Choosing	Whether	to	Use	the	API	or	the	DAQ	Assistant
Device-Specific	Physical	Channels
Device-Specific	Internal	Channels

mxdevconsid.chm::/PhysChannels.html
mxdevconsid.chm::/internalChannels.html


Types	of	Virtual	Channels
You	can	create	a	number	of	different	types	of	virtual	channels,	depending
on	the	signal	type—analog,	digital,	or	counter—and	direction	(input	or
output).	These	channels	can	be	either	global	virtual	channels	or	local
virtual	channels.	For	information	on	specific	functions/VIs,	refer	to	the	NI
reference	help	for	your	ADE.



Analog	Input	Channels
Analog	input	channels	measure	different	physical	phenomena	using	a
variety	of	sensors.	The	type	of	channel	to	create	depends	on	the	type	of
sensor	and/or	phenomenon	you	want	to	read.	For	instance,	you	can
create	channels	for	measuring	temperature	with	a	thermocouple,
measuring	current,	measuring	voltage,	and	measuring	voltage	with
excitation.



Analog	Output	Channels
NI-DAQmx	supports	two	types	of	phenomena,	voltage	and	current.	You
can	use	custom	scales	if	the	output	from	the	device	relates	to	another
unit	of	measure.



Digital	Input/Output	Channels
For	digital	channels,	you	can	create	both	line-based	and	port-based
digital	channels.	A	line-based	channel	can	contain	one	or	more	digital
lines	from	one	or	more	ports	on	a	device.	Reading	or	writing	to	a	line-
based	channel	does	not	affect	other	lines	on	the	hardware.	You	can	split
lines	in	a	particular	port	between	multiple	channels	and	use	those
channels	simultaneously	within	one	or	multiple	tasks,	but	the	lines	in	a
given	channel	must	all	be	input	lines	or	all	be	output	lines.	Additionally,	all
channels	in	a	task	must	be	either	input	channels	or	output	channels.
Some	devices	also	require	that	the	lines	of	a	given	port	all	be	input	lines
or	output	lines.	Check	your	device	documentation	for	the	capabilities	of
your	device.
A	port-based	channel	represents	a	fixed	collection	of	lines	on	the	device.
Reading	or	writing	to	a	port	affects	all	the	lines	on	the	port.	The	number
of	lines	in	the	port	(commonly	referred	to	as	port	width)	is	hardware
dependent	and	typically	varies	from	8	lines	(MIO	device)	to	32	lines
(SCXI	digital	modules).



Counter	Input/Output	Channels
NI-DAQmx	supports	several	types	of	counter	input	and	output	channels
for	different	types	of	counter	measurements	and	generations.	To	find	out
more	about	counter	measurements	and	terminals	used	for	common
applications,	refer	to	Counter	Parts	in	NI-DAQmx.



Physical	Channel	Syntax
Use	this	syntax	to	refer	to	physical	channels	and	groups	of	physical
channels	in	NI-DAQmx.



Physical	Channel	Names
Physical	channel	names	consist	of	a	device	identifier	and	a	slash	(/)
followed	by	a	channel	identifier.	For	example,	if	the	physical	channel	is
Dev0/ai1,	the	device	identifier	is	Dev0,	and	the	channel	identifier	is	ai1.
MAX	assigns	device	identifiers	to	devices	in	the	order	they	are	installed
in	the	system,	such	as	Dev0	and	Dev1.	You	also	can	assign	arbitrary
device	identifiers	with	MAX.
For	analog	I/O	and	counter	I/O,	channel	identifiers	combine	the	type	of
the	channel,	such	as	analog	input	(ai),	analog	output	(ao),	and	counter
(ctr),	with	a	channel	number	such	as	the	following:
ai1
ctr0

For	digital	I/O,	channel	identifiers	specify	a	port,	which	includes	all	lines
within	a	port:
port0

Or,	the	channel	identifier	can	specify	a	line	within	a	port:
port0/line1

All	lines	have	a	unique	identifier.	Therefore,	you	can	use	lines	without
specifying	which	port	they	belong	to.	For	example,	line31—is	equivalent
to	port3/line7	on	a	device	with	four	8-bit	ports.



Physical	Channel	Ranges
To	specify	a	range	of	physical	channels,	use	a	colon	between	two
channel	numbers	or	two	physical	channel	names:
Dev0/ai0:4
Dev0/ai0:Dev0/ai4

For	digital	I/O,	you	can	specify	a	range	of	ports	with	a	colon	between	two
port	numbers:
Dev0/port0:1

You	also	can	specify	a	range	of	lines:
Dev0/port0/line0:4
Dev0/line0:31

You	can	specify	channel	ranges	in	reverse	order:
Dev0/ai4:0
Dev0/ai4:Dev0/ai0
Dev0/port1/line3:0



Physical	Channel	Lists
Use	commas	to	separate	physical	channel	names	and	ranges	in	a	list	as
follows:
Dev0/ai0,	Dev0/ai3:6
Dev0/port0,	Dev0/port1/line0:2

See	Also
Device-Specific	Physical	Channels
Device-Specific	Internal	Channels
Multidevice	Tasks

mxdevconsid.chm::/PhysChannels.html
mxdevconsid.chm::/internalChannels.html
mxdevconsid.chm::/multidevicetasks.html


Digital	Lines,	Ports,	and	Port	Width
Digital	lines	and	ports	are	important	parts	of	a	digital	input/output	system.
Line—A	line	is	an	individual	signal.	It	refers	to	a	physical	terminal.	The
data	that	the	line	carries	are	called	bits,	binary	values	that	are	either	1	or
0.	The	terms	line	and	bit	are	fairly	interchangeable.	For	example,	an	8-bit
port	is	the	same	as	a	port	with	eight	lines.
Port—A	port	is	a	collection	of	digital	lines.	Usually,	the	lines	are	grouped
into	an	8-bit	or	32-bit	port.
Port	Width—The	port	width	refers	to	the	number	of	lines	in	a	port.	For
example,	a	device	with	one	port	with	eight	lines	has	a	port	width	of	eight.



Channel	Name	Generation
NI-DAQmx	assigns	names	to	local	virtual	channels	that	you	create
programmatically	with	the	NI-DAQmx	API	when	you	do	not	provide	a
name	for	each	local	virtual	channel.

Physical	Channel
Names

Name	To
Assign

Generated	Local	Virtual	Channel
Names

Dev1/ai0:1 — Dev1/ai0,	Dev1/ai1
Dev1/ai0:7 "foo" foo0,	foo1,	...,	foo7
Dev1/ai0:7 "a0:3,	b" a0,	a1,	a2,	a3,	b0,	b1,	b2,	b3



Naming	Channels,	Tasks,	and	Scales
Use	the	following	guidelines	to	name	your	channels,	tasks,	and	scales:

Use	any	alphanumeric	characters.
Do	not	use	nonalphanumeric	characters	with	the	following
exceptions:

In	NI-DAQmx	7.4	or	later,	dashes	are	allowed	in	channel,
task,	and	scale	names.
Spaces	are	allowed.
You	can	use	underscores	within	the	channel,	task,	or
scale	name,	but	you	cannot	use	leading	underscores,
such	as	_Dev1.

Note		You	can	use	other	nonalphanumeric	characters	when
creating	channels,	tasks,	and	scales,	but	exporting	that
configuration	to	another	system	might	not	work	correctly,
especially	if	the	operating	system	is	in	a	different	language.
You	must	use	no	more	than	256	characters.



Switch	Channels
You	can	program	your	NI	switch	modules	with	NI-DAQmx.	This	section
covers	switch	basics,	including	switch	channel	and	relay	strings,
connection/disconnection	syntax,	and	switch	scan	list	syntax.



Switch	Channel	Strings	and	Switch	Relay
Strings
Switch	channel	strings	and	switch	relay	strings	identify	a	specific	channel
or	relay	of	a	switch.	These	strings	are	typically	used	when	an	operation
or	query	is	performed	on	the	switch—connect,	disconnect,	find	path,	and
so	on.	These	strings	are	constructed	in	very	similar	fashions.
A	switch	channel	or	relay	string	can	be	either	of	the	following:

A	combination	of	the	switch	device/channel	name	or	a	switch
device/relay	name	(for	example,	Dev1/ch0).
A	switch	relay	name	without	the	switch	channel	name	(for
example,	ch0).	This	syntax	is	only	valid	as	a	shortcut	and	can
only	be	used	if	a	string	with	a	switch	device/channel	name	or	a
switch	device/relay	name	(as	shown	above)	was	previously	used
to	specify	a	device.

You	can	find	the	switch	channels	and	switch	relay	strings	in	LabVIEW
and	LabWindows/CVI	from	the	switch	I/O	name	control.	The	name
control	should	list	valid	channel/relay	names	for	your	current	switch
hardware	configuration.



Connection	and	Disconnection	List	Syntax
Use	connection	lists	and	disconnection	lists	with	DAQmx	Switch	Connect
(Multiple)	and	DAQmx	Switch	Disconnect	(Multiple),	respectively.	These
function/VI	list	parameters	use	a	rich	and	versatile	syntax	to	describe	the
operation	that	the	function/VI	performs.	Because	these	lists	use	the	same
syntax,	they	are	referred	to	here	as	connection	lists	for	simplicity.	The
connection	list	syntax	is	similar	to	the	switch	scanlist	syntax	with	few
exceptions.
Connection/disconnection	lists	are	strings	composed	of	one	or	more
switching	operations.	For	those	lists	that	contain	multiple	operations,
commas	separate	each	operation:
Operation1,	Operation2,	Operation3
Switching	operations	can	connect/disconnect	channels	in	one	of	two
ways:

Specify	the	endpoints.	When	you	specify	the	endpoints,	NI-
DAQmx	searches	for	an	available	path	between	the	endpoints	to
connect/disconnect.	The	syntax	for	specifying	the	endpoints	is	as
follows:

channel1	->	channel2

where	the	channel	names	of	a	switch	are	separated	by	an	arrow
(->).

The	two	specified	channels	must	reside	on	the	same	device	and
an	available	path	between	them	must	exist.	If	the	path	between
the	two	channels	includes	one	or	more	channels,	these
intermediate	channels	should	have	their	usage	mode	marked	as
"reserved	for	routing."

For	example,	if	a	path	exists	between	channel0,	com0,	and	AB0,
it	is	possible	to	connect	channel0	to	AB0	by	marking	the	usage
mode	of	com0	as	"reserved	for	routing."	The	operation	in	the
string	would	appear	as	the	following:

channel0	->	AB0



When	multiple	intermediate	channels	exist	and	their	usage	is
marked	as	"reserved	for	routing,"	NI-DAQmx	selects	the
intermediate	channel	to	use.

Specify	an	explicit	path.	When	you	specify	an	explicit	path,	you
define	the	endpoints	as	well	as	any	intermediate	channels	of	the
path.	Specifying	an	explicit	path	can	be	useful	in	applications	in
which	you	have	calibrated	your	system	based	on	a	specific	path
through	the	switch.

The	syntax	for	specifying	an	explicit	path	is	as	follows:

[channel1	->	channel2	->	channel3]

For	example,	if	you	want	to	connect	column	1	and	column	5	of	a
matrix	and	use	row	2	to	complete	that	connection,	you	would
have	to	mark	the	usage	of	row	2	as	"reserved	for	routing"	and
use	the	following	string:

[c1	->	r2	->	c5]	

The	following	is	additional	information	on	connection	and	disconnection
lists:

A	connection/disconnection	list	string	can	contain	switching
operations	on	different	switch	modules.	To	do	so,	add	the	switch
name	and	a	/	before	the	operation.	Refer	to	the	following
example.

Switch1/ch1	->	com0	,	[switch2/c0	->	r2	->	c5]	,	switch3/r0	->	c4

Before	execution,	NI-DAQmx	validates	the
connection/disconnection	list.	If	any	errors	are	returned,	NI-
DAQmx	aborts	execution	of	the	list.
The	order	of	the	operations	in	the	connection/disconnection	list
does	not	guarantee	their	order	of	execution.	To	ensure	a	specific
order,	use	multiple	connection/disconnection	lists.



NI-DAQmx	ignores	any	white	space,	and	inputs	are	not	case
sensitive.	You	can	use	spaces	and	carriage	returns	to	improve
readability.



Scan	Lists
A	scan	list	is	a	string	composed	of	device	names,	channel	names,	and
characters	that	define	connections,	disconnections,	triggering,	and	timing
of	the	scan.



Switch	Modules	in	NI-DAQmx
MAX	supplies	the	default	device	name	(or	resource	name)	you	use	in	a
scan	list.	To	find	the	default	name,	open	MAX,	and	go	to	Devices	and
Interfaces»NI-DAQmx	Devices.	An	example	name	is	SCXI-
1130:"SC1Mod1".	The	part	of	the	name	in	quotes—for	instance,
SC1Mod1	or	Dev1—is	what	you	use	in	the	scan	list.



Scan	List	Characters
The	following	characters	can	be	used	in	a	scan	list.

Character Definition
-> Used	in	a	connect	action	(/Dev1/channel1->channel2).	For

example,	the	string	/SC1Mod1/ch0->com0	connects	CH0	to
COM0.

~ Used	with	'->'	in	a	disconnect	action	(~/Dev1/channel1-
>channel2).	Valid	only	in	No	Action	mode.	For	example,
~/Dev1/ch0->com0	means	disconnect	CH0	and	COM0.

; Wait	for	debounce,	send	scan	advanced	output	signal,	then
wait	for	trigger	input.

& Separates	connect	and/or	disconnect	actions.	For	example,
the	string	/Dev1/ch0->com0	&	/Dev1/ch9->com1	means
connect	CH0	to	COM0	and	CH9	to	COM1	(in	no	particular
order).

&& Wait	for	debounce.	For	example,	/Dev1/ch0->com0	&&
/Dev1/ch9->com1	means	connect	CH0	to	COM0,	wait	for	the
relays	to	settle,	then	connect	CH9	to	COM1.

: Used	in	a	channel	range	(channelX:Y,	where	X	and	Y	are
integers).	Text	containing	a	channel	range	represents
multiple	scan	list	entries.	For	example,	the	string
/SC1Mod4/ch0:7->com0;	represents	8	scan	list	entries.	A
semicolon	must	appear	after	the	connect	action	using	a
channel	range.

Tip		NI-DAQmx	ignores	white	space	and	line	returns.	Use	these	to
format	the	appearance	of	lengthy	scan	lists.



Scan	List	Entries
A	scan	list	entry	is	the	text	delimited	by	semicolons	(;).	Scan	lists	are
composed	of	one	or	more	scan	list	entries.	For	example,	the	following
scan	list	contains	two	scan	list	entries:
/Dev1/ch0->com0;	/Dev1/ch1->com0;



Scan	Modes
The	scan	mode	affects	how	NI-DAQmx	interprets	the	scan	list	string.
Typical	scanning	applications	use	the	Break	Before	Make	scan	mode.

Mode Description
Break
Before
Make
(default)

Connections	from	the	previous	scan	list	entry	are	automatically
disconnected	before	executing	the	current	scan	list	entry.
Disconnect	actions	(~/Dev1/channel1->channel2)	are	not	valid	in
this	mode.

No
Action

Connections	remain	connected	until	they	are	explicitly
disconnected	by	a	disconnect	action.

Break
After
Make

Currently	unsupported.



Scan	List	Examples
Example	1
Scan	Mode:	No	Action
Scan	List:	/Dev1/ch0->com0;	~/Dev1/ch0->com0	&&	/Dev1/ch1->com0;
~/Dev1/ch1->com0	&&
Meaning:

1.	 Connect	ch0	to	com0.
2.	 Wait	for	debounce,	send	scan	advanced	signal,	then	wait	for

trigger	input.
3.	 Disconnect	ch0	from	com0,	and	wait	for	debounce.
4.	 Connect	ch1	to	com0.
5.	 Wait	for	debounce,	send	scan	advanced	signal,	then	wait	for

trigger	input.
6.	 Disconnect	ch1	from	com0,	and	wait	for	debounce.
7.	 If	the	scan	is	set	to	continuous,	return	to	step	1;	else,	stop.

Example	2
Scan	Mode:	Break	Before	Make
Scan	List:	/Dev1/ch0->com0;	/Dev1/ch1->com0;
Meaning:
This	scan	list	is	equivalent	to	Example	1.	Notice	that	the	disconnect
actions	in	Example	1	are	no	longer	required.
Example	3
Scan	Mode:	Break	Before	Make
Scan	List:	/Dev1/ch0:1->/Dev1/com0;
Meaning:
This	scan	list	is	equivalent	to	Example	1	and	Example	2.	This	scan	list
uses	a	channel	range	to	reduce	typing.



Switch	Scanning
Another	method	to	operate	relays	in	a	switch	module	is	through
scanning.	Scanning	is	typically	used	when	timing	of	connections	needs	to
be	synchronized	with	an	event	of	another	device	such	as	a	measurement
instrument.
Unlike	the	immediate	operations,	where	the	relay	actuates	immediately
after	calling	DAQmx	Switch	Connect	(or	Disconnect)	function/VI,
scanning	consists	of	setting	up	a	list	of	connections	to	be	made	after	an
event.
Connection	operations	are	entered	in	a	scan	list	that	is	downloaded	to
the	memory	of	the	switch	module.	The	first	entry	in	the	scan	list	is
executed	when	the	switch	module	is	initiated	using	the	DAQmx	Start
Task	function/VI.	The	triggering	settings	determine	how	the	switch
advances	through	subsequent	entries	in	the	list.	The	scan	list	can	be
executed	continuously	or	for	a	finite	number	of	times.
After	each	connection,	switch	modules	can	generate	a	digital	pulse	called
Advance	Complete.	This	pulse	is	typically	used	to	trigger	another	device,
such	as	a	DMM	to	take	a	measurement.
There	are	three	scanning	options—Software	Trigger	Scanning,
Synchronous	Scanning,	and	Handshaking—which	ultimately	determine
the	triggering	scheme.



Software	Trigger	Scanning
In	Software	Trigger	Scanning,	the	scan	list	starts	when	the	DAQmx	Start
Task	function/VI	is	called.	Each	subsequent	entry	is	executed	after	each
call	of	the	DAQmx	Send	Software	Trigger	function/VI.
To	write	a	software	trigger	scanning	program,	complete	the	following
steps:

1.	 Set	Topology	Name	of	the	switch	module	using	DAQmx	Switch
Set	Topology	and	Reset.

2.	 Set	up	the	list	of	connections	using	the	DAQmx	Switch	Create
Scan	List	function/VI.

3.	 Set	the	Trigger	Type	attribute/property	in	the	DAQmx	Trigger
class	to	Software.

4.	 Select	number	of	times	the	scan	list	executes	by	setting	the
Repeat	Mode	attribute/property	in	DAQmx	Switch	Scan	Class	to
Continuous	or	Finite.

5.	 Initialize	the	switch	module	using	the	DAQmx	Start	Task
function/VI.	The	first	entry	in	the	scan	list	is	executed	and	the
switch	waits	for	software	triggers	to	execute	the	following	entries
in	the	list.

6.	 Execute	each	set	of	connections	in	the	scan	list	by	calling	the
DAQmx	Send	Software	Trigger	function/VI	and	specifying	the
Advance	Trigger.

7.	 Terminate	the	scanning	operation	using	the	DAQmx	Stop	Task
function/VI.

8.	 Release	resources	using	the	DAQmx	Clear	Task	function/VI.
Refer	to	the	Switch	Scanning—Software	Trigger	VI	for	an	example	of
software	trigger	scanning	in	LabVIEW.



Synchronous	Scanning
In	synchronous	scanning,	each	entry	in	the	scan	list	is	executed	after	the
switch	receives	a	digital	pulse.	This	digital	pulse	is	the	Advance	Trigger.	A
common	use	of	synchronous	scanning	is	with	a	measurement	device	like
a	digital	multimeter	(DMM).	The	DMM	is	programmed	to	take
measurements	at	regular	intervals	and	generate	a	digital	pulse.	When	the
switch	receives	this	digital	pulse,	it	advances	to	the	next	entry	in	its	scan
list.	You	must	program	the	DMM	interval	time	to	account	for	the	time
required	by	the	switch	to	actuate	and	settle.
To	write	a	synchronous	scanning	program,	complete	the	following	steps:

1.	 Set	Topology	Name	of	the	switch	module	using	the	DAQmx
Switch	Set	Topology	and	Reset	function/VI.

2.	 Set	up	the	list	of	connections	using	the	DAQmx	Switch	Create
Scan	List	function/VI.

3.	 Set	the	Trigger	Type	attribute/property	to	Digital	Edge	and
source	appropriately	in	the	DAQmx	Trigger	function/VI.	The
source	should	coincide	with	the	destination	of	the	digital	pulse
sent	by	the	measurement	device.

4.	 Select	number	of	times	the	scan	list	executes	by	setting	the
Repeat	Mode	attribute/property	in	DAQmx	Switch	Scan	Class	to
continuous	or	finite.

5.	 Configure	the	digital	pulse	generated	after	each	connection.	In
synchronous	scanning,	this	digital	pulse	is	not	used.	Set	the
Advance	Complete	Event:Output	Terminal	in	DAQmx	Export
Signal	class	to	an	empty	string.

6.	 Initialize	the	switch	module	using	the	DAQmx	Start	Task
function/VI.	The	first	entry	in	the	scan	list	is	executed	and	the
switch	waits	for	digital	pulses	to	execute	the	following	entries	in
the	list.	Each	time	the	switch	module	receives	a	digital	pulse,	it
executes	an	entry	in	its	scan	list.

7.	 Terminate	the	scanning	operation	using	the	DAQmx	Stop	Task
function/VI.

8.	 Release	resources	using	the	DAQmx	Clear	Task	function/VI.
Refer	to	the	Switch	Scanning	with	DMM—Synchronous	VI	for	an
example	of	synchronous	scanning	in	LabVIEW.



Handshaking
Handshaking	is	very	similar	to	synchronous	scanning	except	the	switch
sends	a	digital	pulse	back	to	the	measurement	device	after	each	set	of
connections.	In	this	case,	the	measurement	device	accepts	a	pulse	as	a
trigger	for	its	measurements	instead	of	taking	measurements	at	regular
intervals.	If	you	use	a	DMM,	it	needs	to	be	initialized	and	ready	to	accept
a	trigger	for	its	first	measurement.	The	switch	is	then	initiated,	executes
its	first	entry	in	the	scan	list,	waits	for	a	digital	pulse	to	execute	its	next
entry,	and	generates	a	digital	pulse	(Advance	Complete).	When	the	DMM
receives	this	digital	pulse,	it	takes	the	first	measurement	and	generates	a
digital	pulse.	When	the	switch	receives	this	pulse,	it	executes	the	next
entry	in	the	scan	list,	generates	another	digital	pulse,	and	so	on.
To	write	a	handshaking	program,	complete	the	following	steps:

1.	 Set	Topology	Name	of	the	switch	module	using	the	DAQmx
Switch	Set	Topology	and	Reset	function/VI.

2.	 Set	up	the	list	of	connections	using	the	DAQmx	Switch	Create
Scan	List	function/VI.

3.	 Set	the	Trigger	Type	to	Digital	Edge	and	the	source
appropriately	in	the	DAQmx	Trigger	function/VI.	The	source
should	coincide	with	the	destination	of	the	digital	pulse	sent	by
the	measurement	device.

4.	 Configure	the	digital	pulse	generated	after	each	set	of
connections.	Set	the	Advance	Complete	Event:Output
Terminal	in	DAQmx	Export	Signal	class	appropriately.	This
output	terminal	should	coincide	with	the	source	of	the	DMM	input
trigger.

5.	 Select	number	of	times	the	scan	list	executes	by	setting	the
Repeat	Mode	attribute/property	in	DAQmx	Switch	Scan	Class	to
continuous	or	finite.

6.	 Initialize	the	switch	module	using	the	DAQmx	Start	Task
function/VI.	The	first	entry	in	the	scan	list	is	executed,	and	the
switch	waits	for	digital	pulses	to	execute	the	following	entries	in
the	list.	Each	time	the	switch	module	receives	a	digital	pulse,	it
executes	an	entry	in	its	scan	list	and	generates	a	digital	pulse.

7.	 Terminate	the	scanning	operation	using	the	DAQmx	Stop	Task
function/VI.



8.	 Release	resources	using	the	DAQmx	Clear	Task	function/VI.
Refer	to	Switch	Scanning	with	DMM—Handshaking	VI	for	an	example	of
handshaking	in	LabVIEW.



Topology
A	switch	topology	is	an	abstract	representation	of	the	channels	and
relays	in	a	switch	module.	The	topology	establishes	the	default	states	for
all	relays	on	a	module.	It	also	defines	the	channel	names.	Some	switches
can	use	multiple	topologies.	Notice	that	terminal	blocks	or	accessories
can	force	the	switch	to	use	a	given	topology	or	set	of	topologies.
The	power	up	default	topology	for	each	switch	is	set	by	the	hardware.
You	can,	however,	change	the	default	topology	that	the	switch	goes	into
when	device	reset	is	called	by	configuring	the	topology	in	MAX.
The	three	major	switch	topologies	are	general	purpose,	multiplexer,	and
matrix.



Channel	Usage
Every	switch	channel	has	a	usage	type	associated	with	it.	By	default,
most	channels	are	considered	load	channels.	In	terms	of	usage,	a	load
channel	is	essentially	a	channel	with	no	special	capabilities.	The	NI-
DAQmx	switch	API	offers	two	additional	usage	types	for	a	given	channel
for	added	software	protection	against	unintentional	damage	to	your
system.	These	additional	types	are	source	and	reserved	for	routing.
Setting	a	channel	as	source	indicates	to	NI-DAQmx	that	a	signal	source
is	connected	to	this	channel.	NI-DAQmx	does	not	allow	two	user-defined
source	channels	to	be	directly	or	indirectly	connected.	Setting	a	channel
as	reserved	for	routing	indicates	to	NI-DAQmx	that	you	are	not	planning
on	wiring	directly	to	the	channel	and	that	it	is	available	for	NI-DAQmx	for
routing	as	needed.

Note		Configuring	the	usage	of	a	channel	provides	additional
software	protection	when	using	the	Connect/Disconnect	or
scanning	functions/VIs,	but	it	does	not	provide	additional	protection
when	manipulating	relays	directly	using	the	Open/Close	Relay
functions/VIs.	National	Instruments	recommends	against	mixing
the	two	types	of	function/VI	calls.

You	can	change	the	default	usage	type	for	channels	while	configuring
devices	in	MAX.	By	changing	the	default	values	for	channel	usage	on
each	topology,	you	are	setting	the	defaults	that	will	be	used	for	those
attributes/properties	when	a	reset	is	called.



Tasks	in	NI-DAQmx
A	task	is	a	collection	of	one	or	more	virtual	channels	with	timing,
triggering,	and	other	properties.	Conceptually,	a	task	represents	a
measurement	or	generation	you	want	to	perform.	All	channels	in	a	task
must	be	of	the	same	I/O	type,	such	as	analog	input	or	counter	output.
However,	a	task	can	include	channels	of	different	measurement	types,
such	as	an	analog	input	temperature	channel	and	an	analog	input
voltage	channel.	With	some	devices,	you	can	include	channels	from
multiple	devices	in	a	task.	To	perform	a	measurement	or	a	generation
with	a	task,	follow	these	steps:

1.	 Create	or	load	a	task.	You	can	create	tasks	interactively	with	the
DAQ	Assistant	or	programmatically	in	your	ADE	such	as
LabVIEW	or	LabWindows/CVI.

2.	 Configure	the	channel,	timing,	and	triggering	properties	as
necessary.

3.	 Optionally,	perform	various	task	state	transitions	to	prepare	the
task	to	perform	the	specified	operation.

4.	 Read	or	write	samples.
5.	 Clear	the	task.

If	appropriate	for	your	application,	repeat	steps	2	through	4.	For	instance,
after	reading	or	writing	samples,	you	can	reconfigure	the	virtual	channel,
timing,	or	triggering	properties	and	then	read	or	write	additional	samples
based	on	this	new	configuration.
If	properties	need	to	be	set	to	values	other	than	their	defaults	for	your
task	to	be	successful,	your	program	must	set	these	properties	every	time
it	executes.	For	example,	if	you	run	a	program	that	sets	property	A	to	a
nondefault	value	and	follow	that	with	a	second	program	that	does	not	set
property	A,	the	second	program	uses	the	default	value	of	property	A.	The
only	way	to	avoid	setting	properties	programmatically	each	time	a
program	runs	is	to	use	virtual	channels	and/or	tasks	created	in	the	DAQ
Assistant.
See	Also
Creating	Tasks	with	the	API
Creating	Tasks	with	the	DAQ	Assistant

mxdevconsid.chm::/multidevicetasks.html


Creating	Tasks	with	the	API
The	following	example	illustrates	how	to	create	a	task	with	the	API:



Problem
Create	an	NI-DAQmx	task	to	measure	temperature	in	the	range	50°C	to
200°C	using	a	J-type	thermocouple	that	is	wired	to	channel	0	on	an	M
Series	device	configured	as	Device	1.	Sample	the	temperature	10	times
per	second,	and	acquire	10,000	samples.	Use	LabVIEW	or
LabWindows/CVI	to	write	your	application.



Solution
1.	 Call	the	AI	Temp	TC	instance	of	the	DAQmx	Create	Virtual

Channel	VI	in	LabVIEW	(DAQmxCreateAIThrmcplChan	function	in
LabWindows/CVI).

2.	 Specify	Dev1/ai0	as	the	physical	channel	for	the	device
connected	to	the	thermocouple	signal.

3.	 Specify	myThermocoupleChannel	as	the	name	to	assign	to	your
virtual	channel.

4.	 Select	the	appropriate	values	for	the	thermocouple	type	and
range	inputs.	NI-DAQmx	applies	these	attributes	to	the	virtual
channel.

5.	 Call	the	Sample	Clock	instance	of	DAQmx	Timing	VI	in	LabVIEW
(or	DAQmxCfgSampClkTiming	function	in	LabWindows/CVI),
specifying	a	rate	of	10	Hz	and	a	sample	mode	of	finite.

6.	 Call	the	DAQmx	Start	Task	VI	(DAQmxStartTask	in
LabWindows/CVI).

7.	 Call	the	Analog	1D	DBL	1Chan	NSamp	instance	of	DAQmx	Read
VI	(DAQmxReadAnalogF64	in	LabWindows/CVI),	specifying
number	of	samples	per	channel	as	10,000.

8.	 Call	the	DAQmx	Stop	Task	VI	(DAQmxStopTask	function	in
LabWindows/CVI)	after	the	desired	number	of	samples	have
been	acquired.

9.	 Call	the	DAQmx	Clear	Task	VI	(DAQmxClearTask	function	in
LabWindows/CVI).

You	have	now	created	a	task	called	myTemperatureTask	that	uses	a	local
virtual	channel	called	myThermocoupleChannel.

Note		You	also	can	use	the	DAQ	Assistant	to	create	the	same	task
and	generate	the	code	to	run	the	task.

See	Also
Creating	Tasks	with	the	DAQ	Assistant
Choosing	Whether	to	Use	the	API	or	the	DAQ	Assistant



Using	the	Start	Task	function/VI
To	explicitly	start	a	task,	call	the	Start	Task	function/VI.	You	auto-start	a
task	when	you	perform	some	other	operation	that	implicitly	starts	the
task.	For	instance,	calling	a	Read	function/VI	or	a	Write	function/VI	might
implicitly	start	the	task	if	one	is	not	already	started.	How	to	specify	this
behavior	depends	on	the	operation	that	your	task	performs.	By	default,
the	Read	function/VI	and	the	Write	function/VI	for	a	single	sample
automatically	starts	a	task.



Starting	a	Finite	Measurement	Task
If	you	have	specified	a	task	to	perform	a	finite	measurement,	you	do	not
need	to	call	the	Start	Task	function/VI,	nor	do	you	need	to	change	the
default	behavior	of	the	DAQmx	Read	function/VI.	Calling	the	Read
function/VI	starts	your	task,	performs	the	finite	measurement,	and	stops
the	task	after	the	last	sample	is	read.	The	task	returns	to	its	state	before
you	called	the	read	operation.	However,	if	you	need	to	perform	additional
read	operations	after	the	task	has	been	stopped	(in	other	words,	if	you
want	to	read	earlier	locations	in	the	buffer),	the	default	behavior	is
insufficient	for	two	reasons:

1.	 The	task	is	returned	to	the	Verified	state	and	the	samples	are	no
longer	accessible.

2.	 Future	calls	of	the	Read	function/VI	start	new	read	operations
rather	than	reading	from	the	completed	operation.

For	this	situation,	explicitly	commit	the	task	by	calling	the	Control	Task
function/VI	with	the	action	parameter	set	to	Commit.	Then,	after
performing	the	initial	read	operation	and	before	performing	the
subsequent	read	operations,	set	the	Auto-Start	Read	attribute/property
to	False.



Starting	a	Continuous	Measurement	Task
For	a	continuous	measurement,	explicitly	call	the	Start	Task	function/VI,
perform	the	desired	read	operations,	and	call	the	Stop	Task	function/VI	to
stop	the	continuous	measurement.	When	you	perform	a	read	operation	in
a	loop—regardless	if	the	read	operation	performs	a	single-sample,	on-
demand	read,	or	a	multiple-sample,	hardware-timed	read—call	the	Start
Task	function/VI	before	entering	the	loop	and	call	the	Stop	Task
function/VI	after	leaving	the	loop.



Starting	an	Analog	Output	Task
The	behavior	of	the	Write	function/VI	is	more	complicated.	Calling	the
Write	function/VI	always	results	in	the	task	transitioning	to	at	least	the
Committed	state.	Whether	the	task	transitions	to	the	Running	state
depends	on	the	value	of	the	Auto-Start	parameter.
For	single-sample	write	operation,	call	a	single-sample	version	of	the
Write	function/VI.	This	call	implicitly	starts	the	task,	writes	the	single
sample,	and	stops	the	task.	For	a	multiple-sample,	on-demand	write
operation,	call	the	Write	function/VI,	but	also	set	the	Auto-Start
parameter	to	True,	which	by	default	is	set	to	False.	This	call	implicitly
starts	the	task,	writes	the	multiple	samples,	and	stops	the	task.
For	a	multiple-sample,	hardware-timed	write	operation,	first	call	the	Write
function/VI	to	write	the	samples	to	generate,	explicitly	call	the	Start	Task
function/VI,	wait	for	the	samples	to	be	generated	by	calling	the	Wait	Until
Done	function/VI,	and	then	explicitly	call	the	Stop	Task	function/VI.
If	you	attempt	to	perform	a	hardware-timed	generation	with	the	Auto-
Start	parameter	of	the	Write	function/VI	set	to	True	either	because	you
explicitly	set	it	to	true	or	because	you	are	using	a	single-sample	Write
function/VI,	the	operation	might	fail	because	the	samples	that	you	write
are	not	transferred	to	the	device	in	time	to	generate	the	waveform.	As	a
result,	when	performing	hardware-timed	generations,	always	write	at
least	part	of	the	waveform	to	generate	before	starting	the	task.



Improving	Performance	with	the	Start	Task	function/VI
There	are	other	situations	in	which	you	should	explicitly	call	the	DAQmx
Start	Task	function/VI	and	the	DAQmx	Stop	Task	function/VI,	even
though	you	are	not	required	to	do	so.	When	you	call	the	Read	function/VI
or	the	Write	function/VI	in	a	loop,	you	can	significantly	improve
performance	if	you	explicitly	call	the	Start	Task	function/VI	before	entering
the	loop	and	call	the	Stop	Task	function/VI	after	exiting	the	loop.	Without
explicitly	calling	the	Start	Task	function/VI	before	entering	the	loop,	the
task	must	implicitly	transition	from	its	current	state	to	the	Running	state
before	performing	the	read	or	write	operation.	After	the	read	or	write
operation	is	complete,	the	task	must	implicitly	transition	from	the	Running
state	back	to	its	previous	state.	These	implicit	state	transitions	occur	for
every	iteration	of	the	loop,	which	is	inefficient.



Aborting	a	Task
Several	conditions	cause	a	task	to	abort:

To	explicitly	abort	a	task,	call	the	Control	Task	function/VI	with	the
Action	parameter	set	to	Abort.	In	general,	aborting	a	task	is	not	a
normal	operation.	It	is	intended	for	exceptional	situations.
In	LabVIEW,	you	also	can	abort	a	task	by	clicking	the	Abort
Execution	button.	Doing	so	results	in	all	tasks	created	in	that	VI
hierarchy	to	be	aborted	and	then	cleared.
If	you	remove	a	device	from	the	system,	all	tasks	currently	using
the	resources	of	that	device	are	aborted.
If	you	call	the	Reset	Device	function/VI	to	restore	a	device	to	its
initial	configuration,	all	tasks	currently	utilizing	the	resources	of
that	device	are	aborted.

When	a	task	is	aborted,	it	is	returned	to	the	Verified	state.	If	the	task	is
running,	it	is	stopped	as	soon	as	possible	and	is	then	unreserved.	After	a
task	has	been	aborted,	you	can	continue	to	use	the	task.	However,	you
might	need	to	transition	the	task	back	to	its	previous	state	before
continuing	the	specified	operation.



Using	Is	Task	Done
You	can	use	the	Is	Task	Done	function/VI	for	applications	in	which	you
need	to	monitor	the	progress	of	a	task	running	in	one	section	of	your
application	from	another	section	of	your	application.
In	general,	use	the	Is	Task	Done	function/VI	with	continuous
measurements	and	generations	when	you	are	not	actively	reading	or
writing	samples	but	want	to	monitor	for	errors.



Using	Wait	Until	Done
You	might	need	to	call	the	Wait	Until	Done	function/VI	to	ensure	that	the
specified	operation	is	complete	before	you	stop	the	task.
The	most	common	example	is	a	finite	generation.	If	you	start	a	task	that
performs	a	finite	generation	and	then	immediately	stop	the	task,	the
generation	probably	has	not	completed	when	you	stop	the	task.	As	a
result,	the	generation	does	not	complete	as	expected.	To	ensure	that	the
finite	generation	completes	as	expected,	call	the	Wait	Until	Done
function/VI	before	stopping	the	task.	After	the	Wait	Until	Done	function/VI
executes,	the	finite	generation	has	been	completed,	and	you	can	stop	the
task.
In	general,	use	the	Wait	Until	Task	Done	function/VI	with	finite
measurements	and	generations.



When	Is	A	Task	Done?
If	the	measurement	or	generation	is	finite,	the	task	is	done	when	you
acquire	or	generate	the	final	sample.	If	the	measurement	or	generation	is
continuous	(including	on-demand	timing),	the	task	is	not	done	until	you
call	the	Stop	Task	function/VI.	In	addition,	the	task	is	done	if	a	fatal	error
is	generated	while	performing	the	measurement	or	generation,	or	you
abort	the	measurement	or	generation.	Check	for	errors	and	warnings	to
verify	the	task	completed	successfully.



Task	State	Model
NI-DAQmx	uses	a	task	state	model	to	improve	ease	of	use	and	speed	up
driver	performance.
The	task	state	model	consists	of	five	states—Unverified,	Verified,
Reserved,	Committed,	and	Running.	You	call	the	Start	Task	function/VI,
Stop	Task	function/VI,	and	Control	Task	function/VI	to	transition	the	task
from	one	state	to	another.	The	task	state	model	is	very	flexible.	You	can
choose	to	interact	with	as	little	or	as	much	of	the	task	state	model	as	your
application	requires.

To	find	out	more	about	each	of	these	states,	refer	to	the	following	topics:
Unverified
Verified
Reserved
Committed
Running

If	you	explicitly	invoke	a	state	transition	that	has	already	occurred,	it	is
not	repeated	and	an	error	is	not	returned.	For	example,	if	the	task	has
already	reserved	its	resources	and,	therefore,	is	in	the	Reserved	state,
calling	the	Control	Task	function/VI	with	the	Action	parameter	set	to
Reserve	does	not	reserve	the	resources	again.



Unverified	State
When	a	task	is	created	or	loaded,	either	explicitly	or	implicitly,	it	is	in	the
Unverified	state.	In	this	state,	you	configure	the	timing,	triggering,	and
channel	attributes/properties	of	the	task.



Verified	State
NI-DAQmx	checks	the	timing,	triggering,	and	channel
attributes/properties	for	correctness	when	the	task	transitions	from	the
Unverified	to	the	Verified	state.	You	can	explicitly	perform	this	transition
by	calling	the	Control	Task	function/VI	with	Action	set	to	Verify.	While	NI-
DAQmx	detects	and	verifies	some	invalid	values	for	attributes/properties
immediately	when	you	set	the	attribute/property,	NI-DAQmx	cannot	verify
other	values	immediately	because	they	depend	on	other
attributes/properties	and	the	devices	being	used.	NI-DAQmx	checks	the
value	of	these	attributes/properties	during	the	verify	transition	and	reports
any	invalid	values	at	that	time.	If	NI-DAQmx	finds	no	invalid	values,	the
task	is	successfully	verified	and	transitions	to	the	Verified	state.
Otherwise,	it	remains	in	the	Unverified	state.
In	certain	cases,	NI-DAQmx	will	coerce	the	values	of	attributes/properties
when	successfully	verifying	a	task	rather	than	generating	an	error.	This	is
done	when	the	value	set	on	the	attribute/property	cannot	be	met	exactly
as	specified	and	coercing	it	to	a	legal	value	has	little	functional	impact	on
the	task.



Reserved	State
The	resources	a	task	uses	to	perform	the	specified	operation	are
acquired	exclusively	when	the	task	transitions	from	the	Verified	state	to
the	Reserved	state.	These	resources	can	be	clocks	or	channels	on	a
device,	trigger	lines	on	a	PXI	chassis,	or	buffer	memory	in	the	computer.
Reserving	these	resources	prevents	other	tasks	from	using	these
resources,	which	interferes	with	this	task	performing	the	specified
operation.	You	can	explicitly	perform	this	transition	by	calling	the	Control
Task	function/VI	with	Action	set	to	Reserve.	This	transition	fails	if	some
task	resources	are	currently	reserved	by	another	task.	If	the	task	can
gain	access	to	all	the	resources	it	uses,	the	task	is	successfully	reserved
and	transitions	to	the	Reserved	state.	Otherwise,	it	remains	in	the
Verified	state.



Committed	State
NI-DAQmx	programs	some	of	the	settings	for	the	resources	when	the
task	is	committed.	These	settings	might	be	the	rate	of	a	clock	or	the	input
limits	of	a	channel	on	a	device,	the	direction	of	a	trigger	line	on	a	PXI
chassis,	or	the	size	of	the	buffer	memory	in	the	computer.	Other	settings,
such	as	the	sample	counter,	cannot	be	programmed	when	the	task	is
committed	because	they	need	to	be	programmed	every	time	the	task	is
started.	When	a	task	is	committed,	it	transitions	from	the	Reserved	state
to	the	Committed	state.	You	can	explicitly	perform	this	transition	by
invoking	the	Control	Task	function/VI	with	Action	set	to	Commit.	In
general,	the	commit	transition	should	not	fail.	If	it	does,	it	is	an
exceptional	condition	and	the	task	remains	in	the	Reserved	state.	If	the
settings	for	the	resources	used	by	the	task	are	programmed,	the	task	is
successfully	committed	and	transitions	to	the	Committed	state.



Running	State
When	the	task	begins	to	perform	the	specified	operation,	the	task
transitions	from	the	Committed	state	to	the	Running	state.	You	can
explicitly	perform	this	transition	by	invoking	the	Start	Task	function/VI.
Notice	that	starting	a	task	does	not	necessarily	start	acquiring	samples	or
generating	a	waveform.	You	might	have	specified	the	timing	and
triggering	attributes/properties	such	that	a	sample	is	not	acquired	until
you	call	the	Read	function/VI	or	a	waveform	is	not	generated	until	a
trigger	is	detected.	In	general,	the	start	transition	does	not	fail.	If	it	does,	it
is	an	exceptional	condition,	and	the	task	remains	in	the	Committed	state.
If	the	task	begins	to	perform	the	specified	operation,	the	task	is
successfully	started	and	transitions	to	the	Running	state.



Running	to	Committed	State
The	task	ceases	to	perform	the	specified	operation	when	the	task
transitions	from	the	Running	state	to	the	Committed	state.	To	explicitly
perform	this	transition,	call	the	Stop	Task	function/VI.	Notice	that	you
might	have	specified	the	timing	and	triggering	attributes/properties	such
that	all	the	samples	are	acquired	before	this	transition	occurs.	For	output
operations,	the	last	value	written	will	typically	continue	to	be	generated
after	the	task	is	stopped.	In	this	situation,	despite	the	fact	that	no
additional	samples	are	acquired,	the	task	is	still	in	the	Running	state	until
this	transition	occurs.	In	general,	the	stop	transition	does	not	fail.	If	it
does,	it	is	an	exceptional	condition,	and	the	task	is	returned	to	the
Reserved	state.	If	the	task	is	stopped,	the	task	successfully	transitions
back	to	the	Committed	state.



Committed	to	Verified	State
When	the	task	resources	that	perform	the	specified	operation	are
released,	the	task	transitions	from	the	Committed	state	to	the	Verified
state.	These	resources	may	be	clocks	or	channels	on	a	device,	trigger
lines	on	a	PXI	chassis,	or	buffer	memory	in	the	computer.	To	explicitly
perform	this	transition,	call	the	Control	Task	function/VI	with	Action	set	to
Unreserve.	After	the	task	releases	all	of	its	resources,	it	successfully
transitions	back	to	the	Verified	state.



Explicit	Versus	Implicit	State	Transitions
When	should	you	perform	explicit	state	transitions,	and	when	should	you
rely	on	the	task	to	perform	implicit	state	transitions?	The	answer	depends
on	your	application.	The	following	list	identifies	instances	in	which	you
should	use	explicit	state	transitions:

Verify—If	in	your	application	users	interactively	configure	a	task
by	setting	various	channel,	timing,	and	triggering
attributes/properties,	explicitly	verify	the	task	occasionally	to
inform	the	users	if	they	have	set	an	attribute/property	to	an	invalid
value.
Reserve—If	the	following	is	true,	explicitly	reserve	a	task:	your
application	contains	many	different	tasks	that	use	the	same	set	of
resources,	one	of	these	tasks	repeatedly	performs	its	operation,
and	you	want	to	ensure	that	none	of	the	other	tasks	acquires
these	resources	after	the	task	begins	its	sequence	of	operations.

Reserving	the	task	exclusively	acquires	the	resources	that	the
task	uses,	ensuring	that	other	tasks	cannot	acquire	these
resources.	For	example,	if	your	application	contains	two	tasks
that	each	perform	a	sequence	of	measurements	and	you	want	to
ensure	that	each	sequence	is	completed	before	the	other
sequence	begins,	you	can	explicitly	reserve	each	task	before	it
begins	its	sequence	of	measurements.

Commit—If	your	application	performs	multiple	measurements	or
generations	by	repeatedly	starting	and	stopping	a	task,	explicitly
commit	a	task.	Committing	the	task	exclusively	acquires	the
resources	that	the	task	uses	and	programs	some	of	the	settings
for	these	resources.	By	explicitly	committing	the	task,	these
operations	are	performed	once,	not	each	time	the	task	is	started,
which	can	considerably	decrease	the	time	needed	to	start	your
task.	For	example,	if	your	application	repeatedly	performs	finite,
hardware-timed	measurements,	the	time	required	to	start	the	task
can	dramatically	decrease	if	you	explicitly	commit	the	task	before
repeatedly	performing	these	measurements.	Explicitly	committing
a	task	also	is	required	if	you	need	to	perform	additional	read
operations	of	the	samples	acquired	by	the	task	after	stopping	the



task.	For	more	information,	refer	to	Using	the	Start	Task
Function/VI
Start—If	your	application	repeatedly	performs	read	or	write
operations,	explicitly	start	a	task.	Starting	the	task	reserves	the
resources	that	the	task	uses,	programs	some	of	the	settings	for
these	resources,	and	begins	to	perform	the	specified	operation.
By	explicitly	starting	the	task,	these	operations	are	performed
once,	not	each	time	the	read	or	write	operation	is	performed.	This
process	can	considerably	decrease	the	time	required	to	perform
each	read	or	write	operation.	For	example,	if	your	application
repeatedly	performs	single-sample,	software-timed	read
operations,	the	time	required	for	each	read	operation	can
dramatically	decrease	if	you	explicitly	start	the	task	before
repeatedly	performing	these	read	operations.



Implicit	Task	State	Transitions
Although	you	can	explicitly	transition	a	task	through	each	of	its	states	as
described	in	Task	State	Model,	you	rarely	need	this	level	of	detailed
control.	Two	scenarios	exist	in	which	a	task	is	implicitly	transitioned	from
one	state	to	another:

Moving	the	task	through	multiple	states	at	the	same	time
Operations	that	require	state	transitions



Task	Moves	Through	Multiple	States	at	the	Same
Time
Some	state	transitions	require	the	task	to	move	through	one	or	more
states	to	reach	the	specified	state.	For	example,	if	the	task	is	in	the
Unverified	state,	and	you	call	the	Control	Task	function/VI,	setting	Action
to	Reserve,	the	task	is	verified	and	reserved.	The	task	transitions	from
the	Unverified	state	to	the	Verified	state	and	to	the	Reserved	state.	In
most	applications,	it	is	not	helpful	to	explicitly	transition	the	task	to	each
state.	Instead,	invoke	only	those	transitions	that	are	necessary,	and	the
task	implicitly	handles	the	rest.



Operations	That	Require	State	Transitions
You	implicitly	transition	the	task	to	a	new	state	when	you	perform	an
operation	that	requires	that	the	task	be	in	a	specific	state	and	it	is	not.	If
this	occurs,	the	task	is	implicitly	transitioned	to	the	required	state.	Some
operations	that	require	state	transitions	include	the	following:

Querying	the	value	of	an	attribute/property	implicitly	verifies	the
task.	This	verification	is	required	to	return	accurate	coerced
values	of	attributes/properties.	Because	the	coerced	value	of	a
attribute/property	often	depends	on	the	values	of	other
attributes/properties,	the	task	as	a	whole	must	be	verified	to
calculate	the	value.	Because	the	task	might	be	implicitly	verified
when	you	query	the	value	of	an	attribute/property,	NI-DAQmx
may	return	an	error	specifying	that	the	value	of	attribute/property
is	invalid.
Calling	the	Read	function/VI	implicitly	commits	the	task	if	the	task
is	not	already	committed.	If	the	value	of	the	DAQmx	Read	Auto
Start	attribute/property	is	True	and	the	task	has	not	been	started,
the	task	also	is	implicitly	started.	For	more	information	regarding
the	auto-start	behavior	of	read	operations,	refer	to	Using	the	Start
Task	Function/VI.
Calling	the	Write	function/VI	commits	the	task.	If	the	value	of	the
Auto-Start	parameter	is	True,	the	task	also	is	started.	For	more
information	regarding	the	auto-start	behavior	of	write	operations,
refer	to	Using	the	Start	Task	Function/VI.

For	example,	if	the	task	is	in	the	Reserved	state,	the	value	of	the
DAQmx	Read	Auto	Start	attribute/property	is	True,	and	you	call	the
Read	function/VI,	the	task	is	implicitly	committed	and	started.	The	task
transitions	from	the	Reserved	state	to	the	Committed	state	and	to	the
Running	state	before	the	read	operation	is	performed.

In	some	applications,	it	is	not	necessary	to	explicitly	transition	the	task	to
any	state.	Instead,	invoke	the	desired	operation	and	the	task	implicitly
handles	everything	else.



Transitioning	the	State	Backwards
When	a	task	is	implicitly	transitioned	backwards,	it	returns	to	the	state	of
the	task	prior	to	the	last	operation	that	resulted	in	a	forward	state
transition.	For	example,	if	the	task	was	in	the	Verified	state	and	you
called	the	Start	Task	function/VI	to	start	the	task,	the	task	is	reserved,
committed,	and	started,	transitioning	to	the	Reserved	state	and	to	the
Committed	state	before	transitioning	to	the	Running	state.	When	you
invoke	the	Stop	Task	function/VI,	the	task	is	not	just	stopped	and
transitioned	from	the	Running	state	to	the	Committed	state.	If	this	were
the	case,	the	result	is	unexpected	because	the	task	still	has	its	resources
reserved	despite	the	fact	that	you	never	explicitly	reserved	them.	Instead,
the	task	is	stopped,	uncommitted,	and	unreserved,	returning	to	the
Verified	state,	its	state	immediately	before	you	performed	the	last
operation	that	resulted	in	the	state	transition,	calling	the	Start	Task
function/VI.
As	another	example,	suppose	the	task	is	in	the	Reserved	state,	and	you
call	the	Read	function/VI	to	perform	a	finite	measurement.	This	results	in
the	task	implicitly	transitioning	from	the	Reserved	state	to	the	Committed
state	and	then	to	the	Running	state	before	performing	the	read	operation.
When	the	read	operation	completes,	the	task	does	not	remain	in	the
running	state.	If	this	were	the	case,	the	result	is	unexpected	behavior,
because	you	need	to	stop	the	task	and	unreserve	its	resources	despite
the	fact	you	never	explicitly	reserved	the	resources	or	started	the	task.
Instead,	after	the	finite	read	operation	completes,	the	task	is	implicitly
transitioned	from	the	Running	state	to	the	Committed	state	to	the
Reserved	state.	This	results	in	the	task	returning	to	the	state	before	you
performed	the	read	operation.
Keep	in	mind	that	setting	the	value	of	a	channel,	timing,	or	triggering
attribute/property	does	not	implicitly	transition	the	task	back	to	the
Unverified	state.	Instead,	the	task	remains	in	its	current	state	and	is
implicitly	verified	when	the	next	state	transition	occurs.	For	example,	if
the	task	is	in	the	Reserved	state	and	you	set	the	value	of	timing
attribute/property,	the	task	remains	in	the	Reserved	state.	The	next	time
the	task,	either	implicitly	or	explicitly,	is	committed,	the	task	is	verified.
Because	the	task	is	implicitly	verified	when	the	next	state	transition
occurs,	NI-DAQmx	can	return	an	error	specifying	that	the	value	of
attribute/property	is	invalid.



Creating	Channels	and	Tasks	with	the	DAQ
Assistant
You	can	launch	the	DAQ	Assistant	from	your	NI	application	software	or
from	MAX.	The	DAQ	Assistant	is	a	graphical	interface	for	configuring
channels,	tasks,	and	scales.
After	you	launch	the	DAQ	Assistant,	follow	the	wizard	instructions	to
create	your	new	task	or	channel.	When	the	wizard	is	done,	you	can
configure	measurement-specific	settings,	scaling,	and,	if	necessary,
timing	and	triggering.



LabVIEW
In	LabVIEW,	there	are	several	ways	to	open	the	DAQ	Assistant.	A	couple
of	common	ones	are	the	following:

Drop	the	DAQ	Assistant	Express	VI	from	the	Express	Input
palette,	as	described	in	Getting	Started	with	LabVIEW.
Use	the	DAQmx	Task	Name	control	to	open	the	DAQ	Assistant.
Taking	an	NI-DAQmx	Measurement	in	LabVIEW,	which	is
included	in	the	LabVIEW	Help,	has	step-by-step	instructions	on
how	to	create	a	task	from	the	DAQmx	Task	Name	control	and
generate	code	from	the	task.



LabWindows/CVI
In	LabWindows/CVI,	select	Tools»Create/Edit	DAQmx	Tasks.	You	also
can	launch	the	DAQ	Assistant	by	clicking	the	Task	Name	control	of	the
DAQmx	LoadTask	function	panel	and	selecting	New	Task.



Measurement	Studio
In	Measurement	Studio,	open	Visual	Studio	.NET	and	select
Project»Add	New	Item	to	open	the	Add	New	Item	dialog	box.	In	the
Categories	pane,	select	Measurement	Studio»Assistants.	In	the
Templates	pane,	select	DAQmx	Task	Class.



MAX
In	MAX,	right-click	Data	Neighborhood,	and	select	Create	New	from	the
shortcut	menu.	Select	NI-DAQmx	Task	or	NI-DAQmx	Global	Virtual
Channel	in	the	Create	New	window,	and	click	Next.
See	Also
Choosing	Whether	to	Use	the	API	or	the	DAQ	Assistant



Choosing	Whether	to	Use	the	API	or	the	DAQ
Assistant
When	creating	a	new	application,	you	can	choose	to	use	DAQ	Assistant
or	the	API.



Advantages	of	Using	the	DAQ	Assistant
The	DAQ	Assistant	requires	no	programming.	You	can	configure
channels,	timing,	triggering,	and	scales	interactively.
The	DAQ	Assistant	can	decrease	development	time.	You	can
create	a	complete	application	in	a	matter	of	minutes.
If	you	create	your	application	using	the	DAQ	Assistant	and	later
need	functionality	that	it	doesn't	expose,	you	can	easily
generated	the	equivalent	API	code	from	your	DAQ	Assistant	task
if	you	use	an	NI	ADE	such	as	LabVIEW,	LabWindows/CVI,	or
Measurement	Studio.



Advantages	of	Using	the	API
The	API	contains	advanced	features	not	exposed	by	the	DAQ
Assistant.
The	API	provides	additional	flexibility,	allowing	you	to	customize
your	application	to	suit	your	needs.
The	API	gives	you	tighter	control	over	the	performance	of	your
application.



Timing	and	Triggering
Timing	and	triggering	are	important	in	NI-DAQmx.	The	clocks	section
explains	clocks	and	handshaking.	The	triggering	section	goes	over	the
triggers—such	as	a	Start	Trigger	and	a	Reference	Trigger—and	common
trigger	types—such	as	an	analog	edge	trigger	or	a	digital	edge	trigger.



Timing,	Hardware	Versus	Software
You	can	use	software	timing	or	hardware	timing	to	control	when	a	signal
is	generated.	With	hardware	timing,	a	digital	signal,	such	as	a	clock	on
your	device,	controls	the	rate	of	generation.	With	software	timing,	the	rate
at	which	the	samples	are	generated	is	determined	by	the	software	and
operating	system	instead	of	by	the	measurement	device.	A	hardware
clock	can	run	much	faster	than	a	software	loop.	A	hardware	clock	is	also
more	accurate	than	a	software	loop.
In	NI-DAQmx,	select	hardware	timing	with	the	Sample	Clock	Timing
function/VI	or	by	setting	the	Sample	Timing	Type	attribute/property	to
Sample	Clock.	If	you	do	neither	of	these	things,	or	you	set	the	Sample
Timing	Type	attribute/property	to	On	Demand,	you	are	selecting
software	timing.

Note		Some	devices	do	not	support	hardware	timing.	Refer	to	your
device	documentation	if	you	are	unsure	if	your	device	supports
hardware	timing.



Clocks
Periodic	digital	edges	measure	time	and	are	called	clocks.	Clocks	such
as	a	sample	timebase	clock	and	the	20	MHz	timebase	clock	mark	the
passing	of	time	or	are	used	to	align	other	signals	in	time.	Clocks	usually
do	not	cause	actions	in	the	sense	that	triggers	do.	The	names	of	clocks
usually	do	not	refer	to	actions.	The	sample	clock	is	a	notable	exception.



Clocks	in	NI-DAQmx
The	following	are	some	common	clocks	used	by	DAQ	devices.	Refer	to
your	device	documentation	for	all	the	clocks	on	your	device.

AI	Convert	Clock—The	clock	on	a	multiplexed	device	that
directly	causes	ADC	conversions.	The	default	AI	Convert	Clock
rate	uses	10	µs	of	additional	settling	time	between	channels,
compared	to	the	fastest	AI	Convert	Clock	rate	for	the	device.
When	the	Sample	Clock	rate	is	too	high	to	allow	for	10	µs	of
additional	settling	time,	the	default	AI	Convert	Clock	rate	uses	as
much	settling	time	as	is	allowed	by	the	Sample	Clock	rate.	If
there	are	multiple	devices	in	the	same	task,	the	same	amount	of
additional	settling	time	is	used	for	all	devices	in	the	task,	even	if
their	maximum	AI	Convert	Clock	rates	differ.
AI	Convert	Clock	Timebase—The	clock	that	is	divided	down	to
produce	the	AI	convert	clock.
AI	Sample	Clock—The	clock	that	controls	the	time	interval
between	samples.	Each	time	the	sample	clock	ticks	(produces	a
pulse),	one	sample	per	channel	is	acquired.
AI	Sample	Clock	Timebase—The	clock	used	as	the	onboard
clock	source	of	the	sample	clock.	When	the	source	of	the	sample
clock	is	set	to	the	onboard	clock,	the	Sample	Clock	Timebase	is
divided	down	to	produce	the	sample	clock.	When	the	source	of
the	Sample	Clock	Timebase	is	also	the	onboard	clock,	the	master
timebase	is	divided	down	to	produce	the	Sample	Clock
Timebase.
AO	Sample	Clock—The	clock	that	controls	the	time	interval
between	samples.	Each	time	the	sample	clock	ticks	(and
produces	a	pulse),	one	sample	per	channel	is	generated.
AO	Sample	Clock	Timebase—The	onboard	clock	used	as	the
source	of	the	AO	sample	clock.	The	AO	Sample	Clock	Timebase
is	divided	down	to	produce	the	AO	sample	clock.
Counter	Timebase—The	clock	connected	to	the	source	terminal
of	a	counter	(Ctr0Source,	for	example).
Master	Timebase—An	onboard	clock	used	by	other	counters	on
the	device.	The	master	timebase	is	divided	down	to	produce	a
slower	clock	or	to	measure	elapsed	time.	This	timebase	is	the



onboard	clock	used	as	the	source	of	the	AI	Sample	Clock
timebase,	the	AO	Sample	Clock	timebase,	and	the	counter
timebases,	for	example.
20	MHz	Timebase—The	onboard	clock	source	for	the	master
timebase	from	which	other	timebases	are	derived,	if	the	device
does	not	support	an	80	MHz	Timebase.	Otherwise,	the	clock
produced	by	dividing	the	80	MHz	Timebase	by	4.
80	MHz	Timebase—The	onboard	clock	source	for	the	master
timebase	from	which	other	timebases	are	derived.
100	kHz	Timebase—The	clock	produced	by	dividing	the	20	MHz
Timebase	by	200.

Note		M	Series	and	C	Series	devices	do	not	have	a	master
timebase	of	an	arbitrary	frequency.	These	devices	use	the	20
MHz/80	MHz/100	kHz	timebase	directly.

The	following	diagram	illustrates	the	M	Series	clocks	that	comprise
analog	input	and	analog	output	timing.	The	black	circles	in	the	diagram
represent	terminals.



The	following	diagram	illustrates	the	C	Series	clocks	that	comprise
analog	input	and	analog	output	timing.



The	following	diagram	illustrates	the	E	Series	clocks	that	comprise
analog	input	and	analog	output	timing.	The	black	circles	in	the	diagram
represent	terminals.





Trigger	and	Clock	Distinction
The	distinction	between	triggers	and	clocks	is	blurred	when	the	digital
edges	used	as	a	trigger	are	periodic.	In	such	a	case,	a	clock	causes	the
device	to	perform	an	action.	The	sample	clock	is	the	primary	example.
The	stimulus	for	the	action	of	producing	a	sample	is	so	often	a	clock	that
NI-DAQmx	configures	the	sample	clock	instead	of	the	sample	trigger.
The	distinction	is	made	clear	when	you	consider	the	sample	clock	is	in
fact	just	one	way	of	providing	the	source	of	a	sample	trigger.



Sample	Timing	Types
NI-DAQmx	introduces	the	concept	of	a	sample	timing	type.	Each	sample
timing	type	is	a	different	stimulus	for	triggering	the	action	of	producing	a
sample.	When	you	select	a	Timing	function/VI,	you	select	your	sample
timing	type.	There	also	is	an	attribute/property	for	setting	the	following
sample	timing	types:

Sample	Clock—A	digital	edge	produces	each	sample.	Nearly	all
devices	have	an	onboard	clock	that	is	dedicated	to	producing
these	edges	periodically.	Even	when	the	edges	are	not	periodic,
as	they	might	be	when	the	clock	source	is	something	other	than
the	dedicated	onboard	clock,	you	still	use	sample	clock	timing.
Sample	clock	timing	is	a	type	of	hardware	timing.
On	Demand—Every	time	the	Read	or	Write	function/VI	executes,
the	device	produces	the	requested	samples	as	fast	as	possible.
In	this	mode,	the	Sample	Quantity	attributes/properties	are
ignored.	On-demand	timing	is	a	type	of	software	timing.
Change	Detection—Change	detection	timing	captures	samples
from	digital	physical	channels	when	NI-DAQmx	detects	a	change
—a	rising	edge,	a	falling	edge,	or	both	rising	and	falling	edges—
on	one	or	more	digital	lines	or	ports.	Change	detection	timing
reduces	the	digital	data	an	application	has	to	process.
One	issue	to	be	aware	of	with	change	detection	on	some	devices
is	overflow.	Overflow	occurs	when	NI-DAQmx	cannot	read	a
sample	prior	to	the	next	change	detection	event.	The	effect	is	that
one	or	more	samples	can	be	missed.
Programmatically,	you	include	the	Change	Detection	Timing
function/VI,	specifying	the	physical	channels	for	rising	and	falling
edges	on	which	to	detect	changes.	You	can	query	for	an	overflow
by	using	the	Overflow	attribute/property	in	your	application	after
the	task	starts.
Handshake—The	handshake	sample	timing	type	is	used	to
acquire	or	generate	digital	data	with	the	8255	protocol.	Many
devices	have	an	8255	chip,	and	other	devices	emulate	the	8255
protocol	by	default	with	the	handshake	timing	type.
Burst	Handshake—Burst	handshake	timing	acquires	or
generates	digital	data	on	the	data	lines	with	a	clocked	protocol.

mxdevconsid.chm::/ChangeDetStaticDIO.html


This	timing	type	involves	three	control	signals:	the	sample	clock,
the	Pause	Trigger,	and	the	Ready	for	Transfer	Event.	Data	is
transferred	on	each	active	sample	clock	edge	if	the	peripheral
device	deasserts	the	Pause	Trigger	and	the	DAQ	device	asserts
the	Ready	for	Transfer	Event.
There	are	separate	Burst	Handshake	Timing	functions/VIs	based
on	whether	you	import	or	export	a	sample	clock.	Using	the
appropriate	function/VI	is	important	because	there	are	timing
restrictions	(such	as	setup	and	hold	times)	when	sharing	a	clock
between	the	two	devices.
Implicit—The	implicit	sample	timing	type	is	used	for	acquiring
period	or	frequency	samples	using	counters.	It	is	also	used	for
generating	pulses.	This	timing	type	is	called	implicit	because	the
signal	being	measured	is	itself	the	timing	signal	or	the	timing	is
implicit	in	the	rate	of	the	generated	pulse	train.



Sample	Clock
Your	device	uses	a	sample	clock	to	control	the	rate	at	which	samples	are
acquired	and	generated.	This	sample	clock	sets	the	time	interval
between	samples.	Each	tick	of	this	clock	initiates	the	acquisition	or
generation	of	one	sample	per	channel.	In	Traditional	NI-DAQ	(Legacy),
the	sample	clock	is	called	the	scan	clock	or	the	scan	interval	counter.	You
also	can	connect	an	outside	source	as	your	clock.	In	software,	you	can
specify	the	interval	(how	fast	the	clock	acquires	or	generates	signals)	by
specifying	the	sample	rate,	which	is	called	the	scan	rate	or	update	rate	in
Traditional	NI-DAQ	(Legacy).	You	can	limit	the	sample	rate	by	the	signal
conditioning	you	apply	to	the	signals	or	the	number	of	channels	in	your
application.	However,	the	number	of	channels	affects	your	measurement
only	if	you	are	sampling	close	to	the	maximum	sample	rate	for	your
device.

Note		Sample	clock	timing	for	digital	I/O	is	not	supported	on	all
devices.

mxdevconsid.chm::/sampleclockDIO.html


Handshaking
If	you	want	to	communicate	with	an	external	device	using	an	exchange	of
signals	to	request	and	acknowledge	each	data	transfer,	use
handshaking.
For	example,	you	might	want	to	acquire	an	image	from	a	scanner.	The
process	involves	the	following	steps:

1.	 The	scanner	sends	a	pulse	to	your	measurement	device	after	it
scans	the	image	and	is	ready	to	transfer	the	data.

2.	 Your	measurement	device	reads	an	8-,	16-,	or	32-bit	digital
sample.

3.	 Your	measurement	device	then	sends	a	pulse	to	the	scanner	to
inform	the	scanner	that	the	digital	sample	has	been	read.

4.	 The	scanner	sends	out	another	pulse	when	the	scanner	is	ready
to	send	another	digital	sample.

5.	 After	your	measurement	device	receives	this	digital	pulse,	the
device	reads	the	sample.

This	process	repeats	until	all	the	samples	are	transferred.

Note		Not	all	devices	support	handshaking.	Refer	to	your	device
documentation	to	see	if	handshaking	is	supported	on	your	device.
For	E	Series	devices,	only	those	devices	with	more	than	eight
digital	lines—those	devices	that	have	an	additional	8255	chip
onboard—support	handshaking.

Handshaking	Signals	(Devices	with	an	Additional	8255	Chip	Onboard)



Burst	Handshaking	Signals
For	devices	that	support	burst	handshake	timing,	three	signals	are	used:

Pause	Trigger	(formerly	called	REQ)
Ready	for	Transfer	Event	(formerly	called	ACK)
sample	clock

For	digital	input	tasks,	when	the	Pause	Trigger	signal	is	logic	low	and	the
Ready	for	Transfer	Event	is	logic	high,	the	samples	are	sent	to	the
measurement	device.	For	digital	output	tasks,	when	the	Pause	Trigger
signal	is	logic	low	and	the	Ready	for	Transfer	Event	is	logic	high,	the	NI-
DAQmx	device	sends	the	samples	to	a	peripheral	device.	The	sample
clock,	either	onboard	or	external,	controls	the	timing.	Data	is	transferred
or	acquired	on	either	the	rising	or	falling	edge	of	the	sample	clock.
The	default	terminals	used	for	burst	handshaking	signals	vary	from
device	to	device.	Refer	to	Burst	Handshaking	Timing	Signal	Defaults	for
your	device.

mxdevconsid.chm::/burstHandTiming.html


Handshaking	Signals	for	Devices	That	Emulate
the	8255	Protocol
Devices	that	emulate	the	8255	protocol	support	two	handshaking	signals:

Handshake	Trigger—Also	called	Strobe	Input	(STB)	and
Acknowledge	Input	(ACK)
Handshake	Event—Also	called	Input	Buffer	Full	(IBF)	and
Output	Buffer	Full	(OBF)

For	input	tasks,	when	the	Handshake	Trigger	signal	is	low,	the	samples
are	sent	to	the	measurement	device.	After	the	samples	have	been	sent,
Handshake	Event	is	high,	which	tells	the	peripheral	device	that	the	data
has	been	read.	For	digital	output,	Handshake	Event	is	low	while	the	NI-
DAQmx	device	sends	the	samples	to	a	peripheral	device.	After	the
peripheral	device	receives	the	samples,	it	sends	a	low	pulse	back	on	the
Handshake	Trigger	line.	Refer	to	your	device	documentation	to	determine
which	digital	ports	you	can	configure	for	handshaking	signals.
The	default	terminals	used	for	handshaking	signals	vary	from	device	to
device.	Refer	to	Handshaking	Timing	Signal	Defaults	for	your	device.

mxdevconsid.chm::/HandDefault.html


Handshaking	Signals	for	8255-Based	Devices
8255-based	devices	that	perform	handshaking	support	four	handshaking
signals:

Strobe	Input	(STB)
Input	Buffer	Full	(IBF)
Output	Buffer	Full	(OBF)
Acknowledge	Input	(ACK)

Use	the	STB	and	IBF	signals	for	digital	input	operations	and	the	OBF	and
ACK	signals	for	digital	output	operations.	When	the	STB	line	is	low,	the
samples	are	sent	to	the	measurement	device.	After	the	samples	have
been	sent,	IBF	is	high,	which	tells	the	peripheral	device	that	the	data	has
been	read.	For	digital	output,	OBF	is	low	while	the	software	sends	the
samples	to	an	peripheral	device.	After	the	peripheral	device	receives	the
samples,	it	sends	a	low	pulse	back	on	the	ACK	line.	Refer	to	your	device
documentation	to	determine	which	digital	ports	you	can	configure	for
handshaking	signals.



Digital	Data	on	Multiple	Ports
For	8255-based	devices,	the	ports	in	the	task	affect	which	handshaking
lines	are	used.	Always	use	the	handshaking	lines	associated	with	the
highest	order	port	in	the	task.	For	instance,	if	you	want	to	group	ports	1
and	2	into	a	single	task,	use	the	handshaking	lines	associated	with	port
2.
Connect	all	the	STB	lines	together	if	you	are	grouping	ports	for	digital
input,	as	shown	in	the	following	figure.	Connect	only	the	IBF	line	of	the
highest	order	port	in	the	task	to	the	other	device.	No	connection	is
needed	for	the	IBF	signals	for	the	other	ports.

If	you	group	ports	for	digital	output	on	an	8255-based	device,	connect
only	the	handshaking	signals	of	the	last	port	in	the	port	list,	as	shown	in
the	following	figure.

When	performing	handshaking,	some	lines	are	automatically	reserved	for
control	purposes	and	are	unavailable	for	use.	The	control	lines	used
depend	on	the	ports	you	are	using	and	whether	you	are	handshaking
with	input	or	output	channels.	The	remaining	lines	in	the	port	not	used	for



control	are	still	available	for	use.	If	you	are	transferring	data	across	any
line	in	a	port	in	a	handshaking	task,	the	entire	port	is	reserved	for
handshaking	data	and	the	remaining	lines	in	the	port	are	unavailable	for
use.



Hardware-Timed	Single	Point	Sample	Mode
In	hardware-timed	single	point	sample	mode,	samples	are	acquired	or
generated	continuously	using	hardware	timing	and	no	buffer.	You	must
use	the	sample	clock	or	change	detection	timing	types.	No	other	timing
types	are	supported.
Use	hardware-timed	single	point	sample	mode	if	you	need	to	know	if	a
loop	executes	in	a	given	amount	of	time,	such	as	in	a	control	application.
Because	there	is	no	buffer	if	you	use	hardware-timed	single	point	sample
mode,	you	should	ensure	that	reads	or	writes	execute	fast	enough	to
keep	up	with	hardware	timing.	If	a	read	or	write	executes	late,	it	returns	a
warning.
Continuous	Pulses	(HW	Timed	Updates)	is	hardware-timed	single	point
for	counter	output.	Refer	to	Hardware-Timed	Counter	Tasks	for	more
information.



Multiplexed	Versus	Simultaneous	Sampling
S	Series	devices	use	simultaneous	sampling.	These	devices	have	an
ADC	for	each	analog	channel,	which	allows	you	to	sample	from	all
channels	at	the	same	time,	as	shown	in	the	following	figure.

Other	devices,	such	as	M	Series	and	E	Series	devices,	use	multiplexed
sampling.	With	this	type	of	sampling,	a	single	ADC	is	used	for	all	analog
input	channels.	These	devices	use	both	a	sample	clock	and	a	convert
clock.	The	sample	clock	initiates	the	acquisition	of	a	sample	from	all
channels	in	the	scan	list.	The	convert	clock	causes	the	ADC	conversion
for	each	individual	channel.	The	following	figure	depicts	a	three-channel
analog	input	task	on	a	device	that	uses	multiplexed	sampling.	Notice	that,
unlike	S	Series	devices,	the	samples	are	not	digitized	simultaneously.

The	convert	clock	must	run	faster	than	the	sample	clock	to	achieve	the
specified	sample	rate.	For	instance,	if	you	specify	a	sample	rate	of	10	S/s
for	8	analog	input	channels,	the	convert	clock	must	run	at	least	eight
times	the	sample	rate	(80	Hz)	to	ensure	that	each	channel	is	sampled	10
times	a	second.	At	faster	sampling	rates,	you	must	also	take	settling	time
between	channels	into	account.
C	Series	devices	in	a	NI	cDAQ-9172	chassis	use	both	simultaneous	and
multiplexed	sampling,	where	all	devices	in	the	chassis	share	the	same
sample	clock.	Devices,	such	as	the	NI	9215,	with	an	ADC	for	each
analog	channel	use	simultaneous	sampling.	Devices	with	a	single	ADC
sample	in	sequence,	using	multiplexed	sampling.	An	example	of	such	a
device	is	the	NI	9205.
Each	multiplexed	C	Series	device	has	a	separate	convert	clock.	The
convert	clock	timing	is	based	on	the	number	of	channels	for	that	device	in
the	task,	not	the	total	number	of	channels	in	the	task.	You	can	set	the
convert	clock	rate	on	a	per-device	basis	using	the	Active	Devices	and	AI
Convert	Rate	attributes/properties	on	the	DAQmx	Timing	property	node.



The	following	figure	depicts	a	ten-channel	analog	input	task	on	two
simultaneous	sampling	C	Series	devices	and	two	multiplexed	sampling	C
Series	devices	with	different	AI	convert	rates:



Setup	and	Hold	Times
When	a	DAQ	device	samples	a	digital	signal,	the	signal	must	remain
stable	for	a	period	of	time	before	and	after	the	assertion	of	the	clock	edge
used	for	timing.	The	amount	of	time	before	the	assertion	of	the	clock	is
called	the	setup	time.	The	amount	of	time	after	the	assertion	of	the	clock
edge	is	called	the	hold	time.	Refer	to	your	device	documentation	for
minimum	setup	and	hold	times.



Simultaneous	Analog	Output	On-Demand
Timing
Typically,	when	you	use	software	timing	to	output	samples	on	multiple	AO
channels,	NI-DAQmx	writes	a	sample	to	the	first	DAC,	and	the	sample	is
generated.	Then,	NI-DAQmx	writes	a	sample	to	the	second	DAC,	and
that	sample	is	generated,	and	so	on.	However,	with	the	simultaneous
single-point	on-demand	timing,	all	of	the	data	is	generated	at	the	same
time	after	NI-DAQmx	writes	to	each	DAC.	You	set	this	timing	with	the
Simultaneous	Analog	Output	Enable	attribute/property.



Timing	Response	Modes
Digital	I/O	and	DAQ	devices	typically	use	the	single-cycle	timing
response	mode,	meaning	the	device	responds	to	an	external	signal	by
the	next	active	sample	clock	edge.
Devices	that	support	the	pipelined	timing	response	mode,	such	as	the	NI
PCIe-6536	and	NI	PCIe-6537,	can	respond	to	an	external	signal	a	few
sample	clock	edges	later.	This	mode	uses	a	source-synchronous	clock
scheme,	which	simultaneously	returns	the	clock	and	data	to	the	acquiring
device.	With	a	source-synchronous	data	transfer,	you	can	acquire	and
generate	data	at	much	higher	rates	than	with	single-cycle	timing
response	mode.
With	the	pipelined	timing	response	mode,	you	can	configure	external
sample	clocks,	but	the	sample	clock	must	be	free-running	and	started
before	the	task	commits.	If	you	export	the	sample	clock,	the	export
occurs	during	a	task	commit.	As	with	other	events,	when	the	task
uncommits,	the	signal	remains	exported.



Triggering
When	a	device	controlled	by	NI-DAQmx	does	something,	it	performs	an
action.	Two	very	common	actions	are	producing	a	sample	and	starting	a
waveform	acquisition.	Every	NI-DAQmx	action	needs	a	stimulus	or
cause.	When	the	stimulus	occurs,	the	action	is	performed.	Causes	for
actions	are	called	triggers.	Triggers	are	named	after	the	actions	they
cause:

Advance	Trigger
Expiration	Trigger
Handshake	Trigger
Pause	Trigger
Reference	Trigger
Start	Trigger
Arm	Start	Trigger

In	addition	to	specifying	the	action	you	want	a	trigger	to	cause,	you	must
select	the	type	of	trigger	to	use,	which	determines	how	the	trigger	is
produced.



Advance	Trigger
An	Advance	Trigger	causes	a	switch	device	to	execute	the	next	entry	in
its	instruction	(scan)	list.	You	can	configure	this	trigger	to	occur	on	a
digital	edge	or	when	the	Send	Software	Trigger	function/VI	runs.



Arm	Start	Trigger
When	you	configure	an	Arm	Start	Trigger,	a	counter	task	does	not
respond	to	any	Start	Triggers	until	after	the	Arm	Start	Trigger	occurs.	You
can	configure	this	trigger	to	occur	on	a	digital	edge.	The	Arm	Start
Trigger	is	separate	from	a	Start	Trigger	and	is	typically	used	in	advanced
counter/timer	applications.	You	might	use	an	Arm	Start	Trigger	to
synchronize	multiple	tasks,	such	as	counting	edges	and	pulse
generation.	The	Start	Trigger	then	would	be	used	to	start	the	acquisition
or	generation.



Expiration	Trigger
An	Expiration	Trigger	expires	a	watchdog	task.	You	can	use	this	trigger
instead	of	the	watchdog	timer	to	signal	an	expiration.	You	can	configure
this	trigger	to	occur	on	a	digital	edge.

mxdevconsid.chm::/watchdogTimers.html


Handshake	Trigger
A	Handshake	Trigger	is	a	control	signal	from	a	peripheral	device.	The
peripheral	device	asserts	the	Handshake	Trigger	to	signal	to	the	DAQ
device	that	it	has	acquired	a	sample	(for	output	tasks)	or	generated	a
sample	(for	input	tasks).	For	input	tasks,	the	DAQ	device	latches	data,	by
default,	at	the	trigger	position	specified	by	the	sample	when
attribute/property	when	the	peripheral	device	deasserts	the	Handshake
Trigger.



Pause	Trigger
With	sample	clock	timing	or	burst	handshake	timing,	the	Pause	Trigger
pauses	an	ongoing	acquisition	or	generation.	Deasserting	this	trigger
resumes	an	acquisition	or	generation.	Depending	on	your	device,	there
are	some	additional	issues	you	need	to	remember.

mxdevconsid.chm::/pauseTrigConsid.html


Reference	Trigger
A	Reference	Trigger	establishes	the	reference	point	in	a	set	of	input
samples.	You	can	configure	this	trigger	to	occur	on	a	digital	edge,	a
digital	pattern,	an	analog	edge,	or	when	an	analog	signal	enters	or	leaves
a	window.	Data	acquired	up	to	the	reference	point	is	pretrigger	data.	Data
acquired	after	this	reference	point	is	posttrigger	data.



Start	Trigger
A	Start	Trigger	begins	an	acquisition	or	generation.	You	can	configure
this	trigger	to	occur	on	a	digital	edge,	a	digital	pattern,	an	analog	edge,	or
when	an	analog	signal	enters	or	leaves	a	window.



Trigger	Types
In	addition	to	specifying	the	action	you	want	a	trigger	to	cause,	you	must
select	the	type	of	trigger	to	use,	which	determines	how	the	trigger	is
produced.	If	you	need	to	trigger	off	an	analog	signal,	use	an	analog	edge
trigger	or	an	analog	window	trigger.	If	the	trigger	signal	is	digital,	choose
a	digital	edge	trigger	with	the	source	typically	being	one	of	the	PFI	pins.

Analog	Edge
Analog	Level
Analog	Window
Digital	Edge
Digital	Level
Digital	Pattern
Software



Analog	Edge	Triggering
For	analog	edge	triggering,	you	configure	the	measurement	device	to
look	for	a	certain	signal	level	and	slope	(either	rising	or	falling).	After	the
device	identifies	the	trigger	condition,	the	device	performs	the	specified
action	associated	with	the	trigger,	such	as	starting	the	measurement	or
marking	which	sample	was	acquired	when	the	trigger	occurred.	You
connect	analog	trigger	signals	to	any	analog	input	channel	or	terminal
capable	of	accepting	analog	signals.	Refer	to	the	device-specific	analog
triggering	considerations	for	your	device	for	additional	information.
In	the	following	figure,	the	trigger	is	set	to	capture	data	for	a	rising	edge
signal	when	the	signal	reaches	3.2.

mxdevconsid.chm::/analogTrig.html


Hysteresis
Hysteresis	adds	a	window	above	or	below	the	trigger	level	and	often	is
used	to	reduce	false	triggering	due	to	noise	or	jitter	in	the	signal.	When
using	hysteresis	with	a	rising	slope,	the	trigger	asserts	when	the	signal
starts	below	level	(or	threshold	level)	minus	hysteresis	and	then
crosses	above	level.	The	trigger	deasserts	when	the	signal	crosses
below	level	minus	hysteresis.
For	example,	if	you	add	a	hysteresis	of	1	to	the	previous	example,	which
used	a	level	of	3.2,	the	signal	must	start	at	or	drop	below	2.2	for
triggering	to	occur.	The	trigger	then	asserts	as	the	signal	rises	above	3.2
and	deasserts	when	it	falls	below	2.2.

When	using	hysteresis	with	a	falling	slope,	the	trigger	asserts	when	the
signal	starts	above	level	(or	threshold	level)	plus	hysteresis	and	then
crosses	below	level.	The	trigger	deasserts	when	the	signal	crosses
above	level	plus	hysteresis.	If	you	instead	trigger	on	a	falling	edge	at
3.2	with	a	hysteresis	of	1,	the	signal	must	start	at	or	rise	above	4.2	for
triggering	to	occur.	The	trigger	will	then	assert	as	the	signal	falls	below
3.2	and	deassert	when	it	rises	above	4.2.

See	Also
Device-Specific	Analog	Triggering	Considerations

mxdevconsid.chm::/analogTrig.html


Analog	Level	Triggering
An	analog	level	trigger	is	similar	to	an	analog	edge	trigger.	With	both
trigger	types,	you	specify	the	edge—rising	or	falling—and	the	trigger
level.	With	an	analog	edge	trigger,	you	are	interested	in	the	point	at	which
the	trigger	condition	is	met.	With	an	analog	level	trigger,	on	the	other
hand,	you	are	interested	in	the	duration	that	the	signal	remains	above	or
below	the	trigger	level.	An	analog	level	trigger	is	typically	used	with	a
Pause	Trigger.	The	Pause	Trigger	asserts	or	deasserts	when	the	trigger
condition	is	met.	In	the	following	illustration,	a	trigger	asserts	when	the
signal	crosses	above	the	trigger	level	and	deasserts	when	it	drops	below
it.	The	deassertion	of	the	trigger	could	correspond	to	a	Pause	Trigger.



Analog	Window	Triggering
A	window	trigger	occurs	when	an	analog	signal	either	passes	into
(enters)	or	passes	out	of	(leaves)	a	window	defined	by	two	voltage	levels.
Specify	the	levels	by	setting	the	window	top	value	and	the	window	bottom
value.	The	following	image	demonstrates	a	trigger	that	acquires	data
when	the	signal	enters	the	window.

The	following	image	demonstrates	a	trigger	that	acquires	data	when	the
signal	leaves	the	window.

See	Also
Device-Specific	Analog	Triggering	Considerations

mxdevconsid.chm::/analogTrig.html


Digital	Edge	Triggering
A	digital	trigger	is	usually	a	TTL	signal	with	two	discrete	levels:	a	high	and
a	low	level.	When	the	signal	moves	from	high	to	low	or	from	low	to	high,
a	digital	edge	is	created.	There	are	two	types	of	edges:	rising	and	falling.
You	can	produce	Start	or	Reference	Triggers	from	the	rising	or	falling
edge	of	your	digital	signal.
In	the	following	figure,	the	acquisition	begins	after	the	falling	edge	of	the
digital	trigger	signal.	Usually,	digital	trigger	signals	are	connected	to	PFI
pins	on	your	measurement	device.



Digital	Pattern	Triggering
For	digital	pattern	triggering,	you	configure	the	device	to	detect	a	specific
digital	pattern	on	specific	physical	channels.	After	detecting	this
condition,	the	device	performs	the	action	associated	with	the	trigger,	such
as	starting	the	task	or	marking	which	sample	was	acquired	when	the
trigger	occurred.
The	digital	pattern	is	specified	using	the	following	characters:

X:	ignore	the	physical	channel
0:	Match	on	a	logic	low	level	on	the	physical	channel
1:	Match	on	a	logic	high	level	on	the	physical	channel
R:	Match	on	rising	edge	on	the	physical	channel
E:	Match	on	either	rising	or	falling	edge	on	the	physical	channel
F:	Match	on	falling	edge	on	the	physical	channel

For	instance,	if	you	specify	a	pattern	of	"X11100"	and	a	source	of
"dev1/line0:4,dev1/line6,"	the	pattern	match	occurs	when	physical
channels	"dev1/line1,"	"dev1/line2,"	and	"dev1/line3"	are	logic	high	and
when	physical	channels	"dev1/line4"	and	"dev1/line6"	are	logic	low.
"dev1/line0"	is	ignored.

For	pattern	triggers	on	ports,	the	pattern	match	occurs	in	reverse	order.
For	instance,	if	you	specify	a	pattern	of	"11000000"	and	a	source	of
"dev1/port0,"	the	pattern	match	occurs	when	physical	channels
"dev1/line0"	and	"dev1/line1"	are	logic	high	and	the	other	six	lines	are
logic	low.



Events
Triggers	and	clocks	are	input	signals.	Exportable	triggers	and	clocks,
such	as	the	sample	clock,	also	can	be	output	signals.	Output	signals	that
do	not	have	a	trigger	or	clock	counterpart	are	called	events.	Events	are
emitted	to	signify	a	device	state	change,	the	arrival	of	a	certain	kind	of
sample,	the	production	of	a	certain	amount	of	samples,	or	the	passage	of
time.
NI-DAQmx	includes	the	following	events:

Advance	Complete	Event—A	signal	emitted	by	a	switch	when	it
has	finished	executing	an	instruction	in	its	scan	list.
AI	Hold	Complete	Event—A	signal	emitted	by	a	multiplexed
analog	input	circuit	when	the	analog	signal	at	the	physical
channel	being	measured	has	been	latched	or	held.	The	AI	Hold
Complete	Event	is	designed	to	signal	an	external	multiplexer	to
switch	to	the	next	channel.	This	signal	was	previously	known	as
SCANCLK,	which	is	the	legacy	name	of	the	external	terminal
where	this	signal	can	be	emitted.
Change	Detection	Event—A	signal	a	DIO	device	generates
after	it	detects	a	change—a	rising	edge,	a	falling	edge,	or	both
rising	and	falling	edges—on	the	data	lines.
Counter	Output	Event—A	signal	produced	by	a	counter	when	it
reaches	terminal	count.
Handshake	Event—A	signal	generated	by	a	DAQ	device	that	is
used	for	handshaking.	The	assertion	and	deassertion	times	for
this	event	are	configurable	within	a	handshaking	cycle	for	some
devices.	For	these	devices,	the	default	configuration	is	to	mimic
the	8255	protocol,	which	means	that	for	input	tasks,	this	event
asserts	after	the	device	has	space	available	in	its	FIFO;	for
output	tasks,	it	asserts	after	valid	data	has	been	driven	on	the
data	lines;	and	in	both	input	and	output	tasks,	the	event
deasserts	after	the	Handshake	Trigger	has	been	asserted.
Ready	For	Start	Event—A	signal	produced	when	a	device	is
ready	to	accept	a	Start	Trigger.
Ready	For	Transfer	Event—A	signal	sent	to	the	peripheral
device	that	signals	that	the	DAQ	device	is	ready	for	a	transfer.
For	burst	handshake	output	tasks,	this	means	that	the	data	is	on



the	data	lines.	For	input	tasks,	this	means	that	there	is	space
available	in	the	device	FIFO.	This	event	is	used	by	devices	that
support	burst	handshake	timing.
Sample	Complete	Event—A	signal	produced	when	the	device
acquires	a	sample	from	every	channel	in	a	task.
Watchdog	Timer	Expired	Event—A	signal	produced	when	a
watchdog	timer	expires.	Watchdog	timers	are	hardware	features
that	can	detect	failures	in	the	software	controlling	the	device.

Note		The	Sample	Complete	Event	is	not	exportable.

mxdevconsid.chm::/burstHandTiming.html


Exported	Signal	Behaviors
You	can	export	clocks,	triggers,	and	events.	The	exported	signal	can
exhibit	one	of	three	behaviors.	It	can	rapidly	change	from	its	current	state
and	then	back	again	(pulse),	change	from	its	current	state	and	remain	at
that	state	(toggle),	or	change	from	its	current	state	and	remain	at	that
new	state	for	a	period	of	time	determined	by	the	configuration	of	the	task
before	reverting	back	to	the	initial	state	(level).	Most	exported	signals
have	pulse	behavior,	but	some	signals	have	programmable	output
behavior.	For	example,	the	Counter	Output	Event	supports	toggle	as	well
as	pulse	behaviors.	The	Sample	Clock	supports	pulse	and	level
behaviors.	You	specify	the	behavior	through	the	Output	Behavior
attribute/property	for	the	exported	signal.
Most	exported	signals	exhibit	the	pulse	behavior.	When	the	event	occurs,
a	finite	pulse	is	generated.	The	pulse	width	of	some	exported	triggers	and
events	is	configurable.	The	polarity	of	a	signal	exported	as	a	pulse	is	also
sometimes	configurable.	In	the	following	illustration,	the	polarity	is	set	to
active	high,	meaning	the	initial	state	change	of	the	signal	is	from	low	to
high.	When	an	event	is	exported	as	a	pulse,	each	time	the	event	occurs,
the	exported	signal	pulses.

When	an	event	is	exported	as	a	toggle,	each	time	the	event	occurs	the
exported	signal	changes	state	just	once	and	remains	at	its	new	state	until
the	next	occurrence	of	the	event.	You	can	also	set	the	initial	state.	In	the
following	illustration,	the	initial	state	is	set	to	high.	The	Counter	Output
Event	is	an	example	of	a	signal	that	can	toggle.

For	level	behavior,	the	signal	changes	state	and	remains	at	that	state	for
a	period	of	time	that	is	dependent	on	some	configurable	aspect	of	your
task.	If	you	are	exporting	the	Sample	Clock,	the	exported	signal	goes
high	at	the	beginning	of	the	sample	and	goes	low	when	the	last	AI
Convert	Clock	pulse	begins,	as	shown	in	the	illustration.

Note		On	some	devices,	the	exported	signal	can	go	low	at	the



beginning	of	the	sample	and	then	high	when	the	last	AI	Convert
Clock	pulse	begins.	Refer	to	your	device	documentation	for
additional	information.



Software	Events
Software	events	provide	an	asynchronous	notification	mechanism	for	a
set	of	DAQ	events.	Unlike	hardware	events,	software	events	do	not
require	you	to	use	a	thread	to	wait	until	data	is	available.	Using	event-
based	programming,	you	can	write	an	application	that	continues	to
perform	work	while	waiting	for	data	without	resorting	to	developing	a
multi-threaded	application.
NI-DAQmx	includes	the	following	software	events:

Every	N	Samples	Acquired	Into	Buffer	Event—Occurs	when
the	user-defined	number	of	samples	is	written	from	the	device	to
the	PC	buffer.	This	event	works	only	with	devices	that	support
buffered	tasks.

Note		The	value	you	set	for	this	event	must	be	evenly	divisible	into
the	buffer	size	if	you	are	using	DMA	as	your	data	transfer
mechanism.	For	instance,	if	the	buffer	size	is	1,000	samples,
specifying	102	for	this	software	event	generates	an	error.
Specifying	100,	however,	would	not	generate	an	error.	If	you	are
using	IRQ	as	the	data	transfer	method,	the	value	does	not	need	to
be	evenly	divisible.	With	IRQ,	however,	the	Data	Transfer
Request	Condition	attribute/property	can	affect	when	this
software	event	occurs.
Every	N	Samples	Transferred	From	Buffer	Event—Occurs
when	the	user-defined	number	of	samples	is	written	from	the	PC
buffer	to	the	device.	This	event	works	only	with	devices	that
support	buffered	tasks.

Note		The	value	you	set	for	this	event	must	be	evenly	divisible	into
the	buffer	size	if	you	are	using	DMA	as	your	data	transfer
mechanism.	For	instance,	if	the	buffer	size	is	1,000	samples,
specifying	102	for	this	software	event	generates	an	error.
Specifying	100,	however,	would	not	generate	an	error.	If	you	are
using	IRQ	as	the	data	transfer	method,	the	value	does	not	need	to
be	evenly	divisible.	With	IRQ,	however,	the	Data	Transfer
Request	Condition	attribute/property	can	affect	when	this
software	event	occurs.
Done	Event—Occurs	when	the	task	completes	execution	or



when	an	error	causes	the	task	to	finish.	Recoverable	errors	that
do	not	cause	the	task	to	finish	do	not	cause	this	event	to	fire.
Calling	the	Stop	Task	function/VI	to	complete	execution	similarly
does	not	cause	this	event	to	fire.
Signal	Event—Occurs	when	the	specified	hardware	signal
occurs.	Supported	signals	include	the	counter	output	event,
change	detection	event,	sample	complete	event,	and	the	sample
clock.



Reading	and	Writing	Data
This	section	covers	buffering	and	selecting	data	formats	and
organization.



Selecting	Read	and	Write	Data	Format	and
Organization
NI-DAQmx	provides	multiple	VIs	and	functions	for	reading	and	writing
data.	In	many	cases,	you	can	use	multiple	options.	This	section	outlines
the	options	and	provides	some	guidelines	to	follow	to	select	the	best
option.	Some	data	formats	and	organizations	are	not	supported	in	all
ADEs.
The	read	and	write	VIs	have	two	major	selection	criteria:	data	format	and
data	organization.	Data	format	deals	with	the	type	of	the	data	that	is
returned.	For	example,	counter	reads	can	return	integers	or	floating-point
formats.	The	second	category,	data	organization,	deals	with	the	structure
the	data	is	returned	in.	For	example,	analog	reads	have	a	variety	of	array
and	scalar	organizations.



Data	Formats	in	NI-DAQmx
Data	format	deals	with	the	type	of	the	data	that	is	read	or	written.



Analog	Channel	Data	Formats
Waveform
The	waveform	data	format	includes	the	channel	name,	timing,	and	unit
information	with	the	actual	64-bit	scaled	floating-point	data.	Your	ADE
provides	a	mechanism	for	extracting	and	setting	individual	parts	of	the
waveform.
For	input	tasks,	you	can	use	the	additional	information	for	a	variety	of
purposes.	For	example,	you	can	update	graphs	to	show	the	timing
information	and	include	labels	with	the	channel	names.	Analysis	routines
can	use	the	timing	information	for	calculations	such	as	FFTs.	Because
there	is	overhead	associated	with	including	this	additional	information,
NI-DAQmx	allows	you	to	configure	the	information	you	want	to	include.
For	output	tasks,	the	timing	information	is	the	primary	field	that	is	useful.
A	library	that	generates	a	waveform	can	include	timing	information	that
sets	up	the	timing	for	your	output	task.
When	reading	data,	the	waveform	data	includes	the	time	when	the	first
sample	in	the	waveform	was	acquired,	t0,	and	the	amount	of	time	that
elapsed	between	each	sample,	dt.	However,	there	are	limitations	on
these	two	values.
64-Bit	Floating-Point	Numbers
The	64-bit	floating-point	number	format	allows	you	to	read	or	write	scaled
data	with	no	additional	information.	Use	this	format	to	work	with	scaled
data	that	requires	higher	performance	than	the	waveform	format
provides.	You	might	also	use	this	format	because	it	is	a	better	match	for
the	libraries	you	plan	to	use.
Unsigned	and	Signed	Integers
The	unsigned	and	signed	integer	format	reads	or	writes	data	in	the	native
format	of	the	device.	Use	this	format	for	maximum	performance.	The
tradeoff	is	that	your	application	has	to	understand	how	to	interpret	and
manipulate	data	that	is	not	in	engineering	units.



Digital	Channel	Data	Formats
Waveform
The	waveform	data	format	includes	the	channel	name	and	timing
information	with	the	actual	data	represented	in	a	dedicated	digital	format.
Your	ADE	provides	a	mechanism	for	extracting	and	setting	individual
parts	of	the	waveform.
The	dedicated	digital	format	represents	digital	data	similar	to	logic
analyzers	and	digital	simulation	tools.	Each	channel	has	no	limits	on	the
number	of	lines.	In	addition,	the	digital	format	allows	for	additional	states
beyond	basic	1s	and	0s.	The	ADE	can	take	advantage	of	this	format	by
tailoring	data	and	graph	displays	for	the	digital	data.
For	input	tasks,	you	can	use	the	additional	information	for	a	variety	of
purposes.	For	example,	you	can	update	graphs	to	show	the	timing
information	and	include	labels	with	the	channel	names.	Because	there	is
overhead	associated	with	including	this	additional	information,	NI-DAQmx
allows	you	to	configure	the	information	you	want	to	include.
For	output	tasks,	the	timing	information	is	the	primary	field	that	is	useful.
A	waveform	generated	by	a	library	may	include	timing	information	that
you	can	use	to	set	up	the	timing	for	your	output	task.
When	reading	data,	the	waveform	data	includes	the	time	when	the	first
sample	in	the	waveform	was	acquired,	t0,	and	the	amount	of	time	that
elapsed	between	each	sample,	dt.	However,	there	are	limitations	on
these	two	values.
Line	Format	(Boolean)
The	line	format	represents	each	line	within	a	channel	as	a	single	Boolean
value	(a	single	byte).	The	states	of	the	data	are	limited	to	1s	(true)	and	0s
(false).	Line	formats	are	only	provided	for	single	sample	reads	and	writes.
Use	the	line	format	when	it	is	convenient	for	manipulating	or	displaying
the	digital	data.	A	typical	application	is	controlling	or	reading	back	relay
states.	For	high-speed	digital	applications,	you	should	generally	not	use
the	line	format.
Port	Format	(Integer)
The	port	format	matches	the	native	format	of	digital	devices	that	can
represent	only	two	digital	states	and	organize	individual	lines	into



collections	known	as	ports.	For	more	information,	refer	to	Digital	Data—
Integer	Format
The	port	format	is	the	most	efficient	in	terms	of	space,	as	it	requires	only
a	bit	of	memory	per	line.	In	addition,	the	port	format	is	often	the	most
efficient	in	time	as	it	matches	the	native	format	of	many	devices.
The	largest	integer	supported	is	32	bits;	therefore,	you	can	read	and	write
digital	channels	with	no	more	than	32	lines	when	using	the	port	format.



Counter	Channel	Data	Formats
64-Bit	Floating-Point	Numbers
The	64-bit	floating-point	number	format	reads	scaled	data.	This	format	is
best	when	you	want	to	work	with	data	in	engineering	units.
Unsigned	Integers
The	unsigned	integer	format	reads	data	in	the	native	format	of	the	device.
Use	this	format	for	maximum	performance.	The	tradeoff	is	that	your
application	will	have	to	understand	how	to	interpret	and	manipulate	data
that	is	not	in	engineering	units.



Raw	Data	Formats
The	raw	data	format	is	defined	by	the	native	data	format	of	the	device.



Data	Organization
The	number	of	channels	and	the	number	of	samples	being	read	generally
affect	data	organization.	For	example,	if	100	samples	are	read	for	eight
analog	channels	using	64-bit	floating-point	format,	a	two-dimensional
array	is	used	with	one	index	selecting	the	channel	and	the	second	index
selecting	the	sample.	On	the	other	hand,	a	simple	floating-point	scalar
value	is	sufficient	to	read	one	sample	for	one	analog	channel	using	the
64-bit	floating-point	format.	In	general,	the	data	organization	for	a
particular	read	or	write	call	is	the	simplest	reasonable	format	that	can
handle	the	number	of	channels	and	samples	requested.
There	are	often	multiple	legal	data	organizations	to	choose	from.	The
main	tradeoff	to	consider	for	data	organization	is	difficulty	in	manipulation
of	the	data.	You	can	use	data	organizations	that	can	handle	multiple
channels	and	multiple	samples,	but	they	are	generally	the	most
complicated	to	manipulate.
Performance	is	not	significantly	different	for	equivalent	operations	using
read	or	writes	with	different	data	organizations.



Waveform	Data	Organization
A	waveform	can	contain	one	or	more	samples.



1D	Waveform	Array	Data	Organization
The	single	dimension	of	a	waveform	array	selects	the	channel.	Each
waveform	can	contain	multiple	samples,	so	a	second	dimension	is	not
required.



Scalar	Data	Organization
Use	scalars	when	you	read	or	write	a	single	sample	on	a	single	channel.
Scalar	data	is	easy	to	manipulate.	It	is	a	good	match	when	data	is	read
and	or	written	to	individual	channels	as	needed.
Scalar	data	is	generally	not	a	good	match	for	high-speed	multiple	sample
applications.
Scalar	data	also	is	not	a	good	choice	if	multiple	channels	are	acquired	or
generated	simultaneously.	Using	a	multiple	channel	organization	is	easier
and	in	the	case	of	output	operations	is	actually	a	requirement.



Array	Data	Organization
Array	formats	allow	you	to	read	or	write	data	for	multiple	channels	and/or
multiple	samples	at	the	same	time.	If	you	acquire	or	generate	on	multiple
channels	simultaneously,	reading	and	writing	them	at	the	same	time	is
easiest.	Reading	and	writing	multiple	samples	in	one	call	is	more	efficient
than	reading	and	writing	samples	one	at	a	time.



Raw	Data	Organization
The	raw	data	organization	is	defined	by	the	native	organization	of	the
device.



Digital	Data	(Integer	Format)
You	typically	use	an	integer	format	to	read	or	write	entire	ports.	In	integer
format,	each	digital	channel	you	read	or	write	must	fit	into	one	integer.
For	example,	if	the	largest	channel	in	a	task	consists	of	one	8-line	port,
you	can	use	the	8-bit,	16-bit,	or	32-bit	format.	If	you	have	more	than	one
8-line	port	or	a	port	with	more	than	eight	lines	in	any	channel	within	a
task,	you	must	use	the	32-bit	format.
Each	byte	in	the	integer	maps	to	a	port	in	the	channel,	in	the	order	in
which	you	added	the	ports	to	the	channel.	The	least	significant	byte	maps
to	the	first	port	added	to	the	channel,	with	all	unused	bytes	zeroed	out.
Therefore,	if	a	channel	contains	two	8-line	ports,	port0	and	port1,	and	you
added	port0	to	the	channel	before	port1,	the	channel	uses	a	32-bit
representation:

unused unused port1 port0

Within	a	particular	byte,	each	bit	in	the	integer	maps	to	a	line	in	the
corresponding	port.	NI-DAQmx	orders	the	bits	by	line	number,	with	the
least	significant	bit	mapping	to	the	lowest	line	number.	Therefore,	with
these	values	assigned	to	the	lines	in	the	channel,	you	might	get	the
following:

port0/line0 0
port0/line1 0
port0/line2 1
port0/line3 0
port0/line4 1
port0/line5 1
port0/line6 0
port0/line7 1
port1/line0 1
port1/line1 1
port1/line2 1
port1/line3 0
port1/line4 1



port1/line5 0
port1/line6 0
port1/line7 1

The	32-bit	binary	representation	of	the	channel	is	the	following:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 0 0

with	an	integer	value	of	38836.
If	you	specify	only	certain	lines	in	a	port	to	read	or	write,	the	full	length	of
the	integer	is	still	used,	but	all	unused	bits	are	zeroed	out.	Therefore,	the
following	lines	and	values:

port0/line0 1
port0/line3 1

yield	the	following	8-bit	representation:

0 0 0 0 1 0 0 1

with	an	integer	value	of	9.



Interleaving
Interleaved	samples	prioritize	samples	before	channels,	such	that	the
array	lists	the	first	sample	from	every	channel	in	the	task,	then	the
second	sample	from	every	channel,	up	to	the	last	sample	from	every
channel.

Channel	0—Sample	1
Channel	1—Sample	1
Channel	2—Sample	1
Channel	0—Sample	2
Channel	1—Sample	2
Channel	2—Sample	2
...
Channel	0—Sample	N
Channel	1—Sample	N
Channel	2—Sample	N

Non-interleaved	samples	prioritize	channels	before	samples,	such	that
the	array	lists	all	samples	from	the	first	channel	in	the	task,	then	all
samples	from	the	second	channel,	up	to	all	samples	from	the	last
channel.

Channel	0—Sample	1
Channel	0—Sample	2
...
Channel	0—Sample	N
Channel	1—Sample	1
Channel	1—Sample	2
...
Channel	1—Sample	N
Channel	2—Sample	1
Channel	2—Sample	2
...



Channel	2—Sample	N



Raw	Data
Raw	data	is	in	the	native	format	and	organization	of	the	device,	read
directly	from	the	device	or	buffer	without	scaling	or	reordering.	The	native
format	of	a	device	can	be	an	8-,	16-,	or	32-bit	integer,	signed	or
unsigned.
If	you	use	a	different	integer	size	than	the	native	format	of	the	device,
one	integer	can	contain	multiple	samples	or	one	sample	can	stretch
across	multiple	integers.	For	example,	if	you	use	32-bit	integers,	but	the
device	uses	8-bit	samples,	one	integer	contains	up	to	four	samples.	If
you	use	8-bit	integers,	but	the	device	uses	16-bit	samples,	a	sample
might	require	two	integers.	This	behavior	varies	from	device	to	device.
Refer	to	your	device	documentation	for	more	information.
NI-DAQmx	does	not	separate	raw	data	into	channels.	It	returns	data	in
an	interleaved	or	non-interleaved	1D	array,	depending	on	the	raw
ordering	of	the	device.	Refer	to	your	device	documentation	for	more
information.

Note		If	your	device	supports	software	calibration,	NI-DAQmx	does
not	calibrate	raw	samples.	Refer	to	calibration	to	find	out	if	your
device	uses	software	or	hardware	calibration.

mxdevconsid.chm::/Calibration.html


Unscaled	Data
Unscaled	data	is	in	the	native	format	of	the	device,	read	directly	from	the
device	or	buffer	without	scaling.	The	native	format	of	a	device	can	be	an
8-,	16-,	or	32-bit	integer,	signed	or	unsigned.

Note		If	your	device	supports	software	calibration,	NI-DAQmx	does
not	calibrate	unscaled	samples.	Refer	to	calibration	to	find	out	if
your	device	uses	software	or	hardware	calibration.

mxdevconsid.chm::/Calibration.html


Waveform	Timing	Limitations
The	limitation	on	t0	is	that	NI-DAQmx	calculates	the	starting	time	for	the
task	when	data	is	read	the	first	time.	At	this	time,	NI-DAQmx	calculates
the	starting	time	for	the	task	by	reading	the	current	system	time	and
subtracting	the	number	of	samples	acquired	×	dt	from	the	system.
Therefore,	if	you	call	read	after	the	acquisition	is	complete,	the	calculated
start	time	for	the	task	is	not	accurate.	This	inaccuracy	is	reflected	in	the
t0	returned	with	the	waveform	data.
The	limitation	on	dt	is	that	for	certain	timing	types,	NI-DAQmx	cannot
calculate	the	value	of	dt.	When	you	use	sample	clock	timing,	NI-DAQmx
calculates	dt	based	on	the	rate	of	the	clock.	Because	NI-DAQmx	does
not	know	the	rate	when	handshake,	implicit,	on	demand,	or	change
detection	timing	is	specified,	NI-DAQmx	returns	dt	as	0.	Waveforms	with
a	dt	of	0	often	do	not	work	with	the	waveform	analysis	functions.
However,	you	can	always	update	the	value	of	dt	in	your	application	if	you
know	the	expected	rate	of	the	timing	source.	Your	ADE	has	an	interface
to	update	the	value	of	dt.

Note		The	waveform	data	only	supports	symmetric	timing	between
samples.	If	your	timing	is	not	symmetric	such	as	if	each	sample
has	a	time	stamp,	the	waveform	data	format	cannot	contain	the
timing	information.	However,	you	can	use	your	ADE's	analysis
library	to	resample	the	data	using	a	constant	dt.	You	can	the	use
the	resampled	data	with	the	waveform	based	analysis	library.



Buffering
A	buffer	is	a	temporary	storage	in	computer	memory	for	acquired	or	to-
be-generated	samples.	Typically	this	storage	is	allocated	from	your
computer's	memory	and	is	also	called	the	task	buffer.	For	input
operations,	a	data	transfer	mechanism	transfers	samples	from	your
device	into	the	buffer	where	they	wait	for	a	call	to	the	Read	function/VI	to
copy	the	samples	to	your	application.	For	output	operations,	the	Write
function/VI	copies	samples	into	the	buffer	where	they	wait	for	the	data
transfer	mechanism	to	transfer	them	to	your	device.



When	Is	a	Buffer	Created?
If	you	use	the	Timing	function/VI	and	set	the	sample	mode	to	finite	or
continuous,	NI-DAQmx	creates	a	buffer.	If	you	set	sample	mode	to
hardware	timed	single	point,	NI-DAQmx	does	not	create	a	buffer.
If	you	set	the	Data	Transfer	Mechanism	to	Programmed	I/O	or	set	the
buffer	size	to	zero	by	using	either	the	Input	or	Output	Buffer	Config
function/VIs,	NI-DAQmx	does	not	create	a	buffer	(even	if	you	also	used
the	Timing	function/VI).	A	data	transfer	mechanism	of	programmed	I/O
means	there	is	no	buffer.
See	Also
How	Is	Buffer	Size	Determined?
Reference	Triggering	Impact	on	Buffers
Continuous	Acquisition	and	Generation	with	Finite	Buffer	Size
Controlling	Where	in	the	Buffer	to	Read	Samples
Read	Status	Attributes/Properties	and	Buffers
Controlling	Where	in	the	Buffer	to	Write	Samples
Write	Status	Attributes/Properties	and	Buffers



How	Is	Buffer	Size	Determined?
Input	Tasks
If	your	acquisition	is	finite	(sample	mode	on	the	Timing	function/VI	set	to
Finite	Samples),	NI-DAQmx	allocates	a	buffer	equal	in	size	to	the	value
of	the	samples	per	channel	attribute/property.	For	example,	if	you
specify	samples	per	channel	of	1,000	samples	and	your	application	uses
two	channels,	the	buffer	size	would	be	2,000	samples.	Thus,	the	buffer	is
exactly	big	enough	to	hold	all	the	samples	you	want	to	acquire.
If	the	acquisition	is	continuous	(sample	mode	on	the	Timing	function/VI
set	to	Continuous	Samples),	NI-DAQmx	allocates	a	buffer	equal	in	size	to
the	value	of	the	samples	per	channel	attribute/property,	unless	that
value	is	less	than	the	value	listed	in	the	following	table.	If	the	value	of	the
samples	per	channel	attribute/property	is	less	than	the	value	in	the
table,	NI-DAQmx	uses	the	value	in	the	table.

Sample	Rate Buffer	Size
no	rate	specified 10	kS
0–100	S/s 1	kS
100–10,000	S/s 10	kS
10,000–1,000,000	S/s 100	kS
>1,000,000	S/s 1	MS

You	can	override	the	default	buffer	size	by	calling	the	Input	Buffer	Config
function/VI.
NI-DAQmx	does	not	create	a	buffer	when	the	sample	mode	on	the
Timing	function/VI	is	set	to	hardware-timed	single	point.

Note		Using	very	large	buffers	may	result	in	diminished	system
performance	due	to	excessive	reading	and	writing	between
memory	and	the	hard	disk.	Reducing	the	size	of	the	buffer	or
adding	more	memory	to	the	system	can	reduce	the	severity	of
these	problems.



Output	Tasks
For	generations,	the	amount	of	data	you	write	before	starting	a
generation	determines	the	size	of	the	buffer.	The	first	call	to	a	Multiple
Samples	version	of	the	Write	function/VI	creates	a	buffer	and	determines
its	size.
You	also	can	use	the	Output	Buffer	Config	function/VI	to	create	an	output
buffer.	If	you	use	this	function/VI,	you	must	use	it	before	writing	any	data.
The	samples	per	channel	attribute/property	on	the	Timing	function/VI
does	not	determine	the	buffer	size	for	output.	Instead	it	is	the	total
number	of	samples	to	generate.	If	n	is	your	buffer	size,	setting	samples
per	channel	to	3×n	generates	the	data	in	the	buffer	exactly	three	times.
To	generate	the	data	exactly	once,	set	samples	per	channel	to	n.
NI-DAQmx	does	not	create	a	buffer	when	the	sample	mode	on	the
Timing	function/VI	is	set	to	hardware-timed	single	point.



Continuous	Acquisition	and	Generation	with
Finite	Buffer	Size
The	NI-DAQmx	API	uses	circular	buffers	as	shown	in	the	following	figure.
For	input	operations,	portions	of	data	are	read	from	the	buffer	while	the
buffer	is	filled.	Likewise	for	output	operations,	portions	of	the	buffer	can
be	written	to	while	the	buffer	is	emptied.	Using	a	circular	buffer,	you	can
set	up	your	device	to	continuously	acquire	data	in	the	background	while
NI-DAQmx	retrieves	the	acquired	data.

When	a	continuous	operation	reaches	the	end	of	the	buffer,	it	returns	to
the	beginning	and	fills	up	(or	in	the	case	of	output	operations,	reads	from)
the	same	buffer	again.	Your	input	application	must	retrieve	data	in	blocks,
from	one	location	in	the	buffer,	while	the	data	enters	the	circular	buffer	at
a	different	location,	so	newer	data	does	not	overwrite	unread	data.
While	a	circular	buffer	works	well	in	many	applications,	two	possible
problems	can	occur	with	this	type	of	acquisition:	Your	application	might
try	to	retrieve	data	from	the	buffer	faster	than	data	is	placed	into	it,	or
your	application	might	not	retrieve	data	from	the	buffer	before	NI-DAQmx
overwrites	the	data	into	the	buffer.	When	your	application	tries	to	read
data	from	the	buffer	that	has	not	yet	been	collected,	NI-DAQmx	waits	for
the	data	to	be	acquired	and	then	returns	the	data.	If	your	application	does
not	read	the	data	from	the	circular	buffer	fast	enough,	you	receive	an
error,	stating	that	some	data	has	been	overwritten	and	lost.	If	losing	data
in	this	way	is	not	important	to	you,	change	the	setting	of	the	OverWrite



Mode	attribute/property.



Reference	Triggering	Impact	on	Buffers
Until	the	Reference	Trigger	occurs,	the	acquisition	runs	continuously
even	though	you	must	set	the	sample	mode	parameter	on	the	Timing
function/VI	to	Finite	Samples.	The	number	of	posttrigger	samples	in	your
buffer	after	the	acquisition	has	finished	is	equal	to	the	value	of	the
samples	per	channel	parameter	from	the	Timing	function/VI	minus	the
number	of	pretrigger	samples	from	the	Trigger	function/VI.	When	using	a
Reference	Trigger,	the	default	read	position	is	Relative	To	First
Pretrigger	Sample	with	a	read	Offset	of	0.



Controlling	Where	in	the	Buffer	to	Read	Samples
Default	read	behavior	depends	on	if	a	Reference	Trigger	is	configured.	If
there	is	no	Reference	Trigger,	NI-DAQmx	reads	samples	beginning	with
the	first	sample	acquired	with	each	subsequent	read	beginning	where	the
previous	one	left	off.	If	there	is	a	Reference	Trigger,	NI-DAQmx	reads
samples	beginning	with	the	first	pretrigger	sample	and	cannot	begin
reading	until	the	acquisition	has	finished.	This	default	behavior	can	be
changed	by	using	the	Relative	To	and	Offset	attributes/properties.
The	place	where	a	read	begins	is	called	the	Current	Read	Position.	Each
time	data	is	read,	the	Current	Read	Position	is	computed	based	on	the
settings	of	the	Relative	To	and	Offset	attributes/properties.	When	there
is	no	Reference	Trigger,	the	default	for	Relative	To	is	Current	Read
Position.	When	there	is	a	Reference	Trigger,	the	default	for	Relative	To
is	First	Pretrigger	Sample.	In	either	case,	the	default	for	Offset	is	0.
Changing	the	settings	of	these	two	attributes/properties	controls	where	in
the	buffer	data	is	read.
During	a	continuous	acquisition,	for	example,	you	can	always	read	the
most	recent	1000	points	by	setting	Relative	To	to	Most	Recent	Sample
and	Offset	to	-1000.	Even	when	a	Reference	Trigger	is	configured,	you
can	begin	reading	samples	immediately	by	setting	Relative	To	to	First
Sample.



Read	Status	Attributes/Properties	and	Buffers
The	three	Read	Status	attributes/properties	are	useful	for	observing	the
progress	of	your	acquisition.	The	Current	Read	Position	is	the	place	in
the	buffer	where	the	next	read	begins	if	the	Relative	To	attribute/property
is	Current	Read	Position	and	the	Offset	is	0.	In	any	case,	the	Current
Read	Position	is	always	where	the	last	read	left	it.	Total	Samples	per
Channel	Acquired	is	the	total	number	of	samples	per	channel	acquired
by	the	device	and	transferred	into	the	buffer.	Available	Samples	per
Channel	is	computed	by	first	calculating	the	Current	Read	Position
based	on	the	settings	of	the	Relative	To	and	Offset	attributes/properties
and	then	subtracting	this	number	from	Total	Samples	per	Channel
Acquired.



Controlling	Where	in	the	Buffer	to	Write	Samples
By	default,	NI-DAQmx	writes	samples	sequentially	beginning	with	the	first
sample	in	the	buffer,	and	each	write	begins	where	the	previous	one	left
off.	The	sample	where	a	write	begins	is	called	the	Current	Write	Position.
Each	time	data	is	written,	the	Current	Write	Position	is	computed	based
on	the	settings	of	the	Relative	To	and	Offset	attributes/properties.	The
default	write	behavior	results	from	the	default	settings	of	these	two
attributes/properties.	The	default	for	Relative	To	is	Current	Write	Position
and	the	default	for	Offset	is	0.	Changing	the	settings	of	these	two
attributes/properties	controls	where	in	the	buffer	data	is	written.



Write	Status	Attributes/Properties	and	Buffers
The	three	Write	Status	attributes/properties	are	useful	for	observing	the
progress	of	your	generation.	The	Current	Write	Position	is	the	place	in
the	buffer	where	the	next	write	begins	if	the	Relative	To	attribute/property
is	Current	Write	Position	and	the	Offset	is	0.	In	any	case,	the	Current
Write	Position	is	always	where	the	last	write	left	it.	Total	Samples	per
Channel	Generated	is	the	total	number	of	samples	per	channel
generated	by	your	device	since	the	task	started.	Space	Available	in
Buffer	is	computed	by	first	calculating	the	Current	Write	Position	based
on	the	settings	of	the	Relative	To	and	Offset	attributes/properties	and
then	subtracting	this	number	from	the	sum	of	Total	Samples	per
Channel	Generated	and	the	buffer	size.	If	regeneration	is	allowed,	the
Space	Available	in	Buffer	value	is	capped	at	the	buffer	size	and	grows
from	0	to	the	buffer	size	repeatedly.



Glitching
Glitching	refers	to	the	generation	of	a	waveform	in	which,	when
transitioning	from	old	samples	in	the	buffer	to	new	samples,	a	mixture	of
old	and	new	samples	is	generated	rather	than	just	the	new	samples.	This
situation	may	occur	when	continuously	generating	samples	if	the
Regeneration	Mode	write	attribute/property	is	set	to	Allow	Regeneration.
Glitching	occurs	when,	while	you	write	new	samples,	a	subset	of	these
new	samples	are	generated	and	then,	since	you	have	not	finished	writing
all	of	the	new	samples,	a	subset	of	the	old	samples	is	generated.	After
your	write	operation	completes,	only	the	new	samples	are	generated.
NI-DAQmx	reduces	the	likelihood	of	glitching	by	ensuring	that	the	writing
of	new	samples	does	not	overtake	the	generation.	This	glitching
protection	works	by	pausing	the	write	until	the	total	samples	generated	is
more	than	one	buffer	ahead	of	the	current	write	position.	However,	NI-
DAQmx	does	not	ensure	that	the	generation	does	not	overtake	the	new
samples	being	written.	If	this	occurs,	a	glitch	results,	and	NI-DAQmx
reports	the	kWarningPotentialGlitchDuringWrite	warning	(error	200015).
The	following	suggestions	can	help	you	to	avoid	generating	glitches:

Write	new	samples	that	are	almost	one	buffer	ahead	of	the	total
samples	generated.	By	writing	the	new	samples	almost	one
buffer	ahead	of	the	total	samples	generated,	there	is	less	of	a
chance	that	the	generation	overtakes	the	new	samples	that	are
being	written.	If	you	are	updating	the	entire	buffer	at	a	time,	wait
to	write	the	new	samples	until	the	total	samples	generated
attribute/property	is	one	sample	greater	than	an	integral	number
of	buffer	sizes.	For	example,	if	the	buffer	size	is	1000	samples,
wait	to	write	new	samples	until	the	total	samples	generated	is
either	1001,	2001,	3001,	and	so	on.
Increase	the	buffer	size.	If	the	buffer	size	is	larger,	there	is	less	of
a	chance	that	the	generation	overtakes	the	new	samples	that	are
being	written.
Decrease	the	sample	clock	rate.	If	the	sample	clock	rate	is
slower,	there	is	less	of	a	chance	that	the	generation	overtakes
the	new	samples	that	are	being	written.

In	the	following	graphs,	the	sine	wave	is	generated	from	old	samples	and
the	square	wave	is	generated	from	the	new	samples.	The	first	graph



depicts	glitching.

The	second	graph	depicts	the	same	waveforms	without	glitching.



Data	Transfer	Mechanisms
There	are	four	primary	ways	to	transfer	data	across	the	PCI	bus:	Direct
Memory	Access	(DMA),	Interrupt	Request	(IRQ),	Programmed	I/O,	and
USB	Bulk.



Direct	Memory	Access	(DMA)
DMA	is	a	mechanism	to	transfer	data	between	the	device	and	computer
memory	without	the	involvement	of	the	CPU.	This	mechanism	makes
DMA	the	fastest	available	data	transfer	mechanism.	National	Instruments
uses	DMA	hardware	and	software	technology	to	achieve	high	throughput
rates	and	to	increase	system	utilization.	DMA	is	the	default	method	of
data	transfer	for	DAQ	devices	that	support	it.

Note		DAQCard	and	USB	devices	do	not	support	DMA.



Interrupt	Request	(IRQ)
IRQ	transfers	rely	on	the	CPU	to	service	data	transfer	requests.	The
device	notifies	the	CPU	when	it	is	ready	to	transfer	data.	The	data
transfer	speed	is	tightly	coupled	to	the	rate	at	which	the	CPU	can	service
the	interrupt	requests.	If	you	are	using	interrupts	to	acquire	data	at	a	rate
faster	than	the	rate	the	CPU	can	service	the	interrupts,	your	systems	may
start	to	freeze.



Programmed	I/O
Programmed	I/O	is	a	data	transfer	mechanism	in	which	a	buffer	is	not
used	and	instead	the	computer	reads	and	writes	directly	to	the	device.
Software-timed	(on-demand)	operations	typically	use	programmed	I/O.



USB	Bulk
USB	Bulk	is	a	buffered,	message-based	streaming	mechanism	for	data
transfer.	This	high-speed	method	is	the	default	transfer	mechanism	for
USB	devices.
Memory	Mapping
Memory	mapping	is	a	technique	for	reading	and	writing	to	a	device
directly	from	your	program,	which	avoids	the	overhead	of	delegating	the
reads	and	writes	to	kernel-level	software.	Delegation	to	the	kernel	is
safer,	but	slower.	Memory	mapping	is	less	safe	because	an	entire	4	KB
page	of	memory	must	be	exposed	to	your	program	for	this	to	work,	but	it
is	faster.	Memory	mapping	is	set	by	default	if	your	device	supports	it.



Changing	Data	Transfer	Mechanisms	between	DMA	and
IRQ
There	are	a	limited	number	of	DMA	channels	per	device	(refer	to	your
device	documentation).	Each	operation	(AI,	AO,	and	so	on)	that	requires
a	DMA	channel	uses	that	mechanism	until	all	of	the	DMA	channels	are
used.	After	all	of	the	DMA	channels	are	used,	you	receive	an	error	if	you
try	to	run	another	operation	requesting	a	DMA	channel.	If	appropriate,
you	can	change	one	of	the	operations	to	use	interrupts.	For	NI-DAQmx,
use	the	Data	Transfer	Mechanism	channel	attribute/property.



Regeneration
Generating	the	same	data	more	than	once	is	called	regeneration.	You
can	configure	NI-DAQmx	to	allow	or	disallow	regeneration	by	setting	the
Regeneration	Mode	attribute/property.	By	default,	NI-DAQmx	allows
regeneration	for	sample	clock	timing	and	disallows	it	for	handshaking	or
burst	handshaking	timing.	When	regeneration	is	disallowed,	new	data
must	be	continuously	written	to	the	device.



Allowing	Regeneration	and	Using	Onboard	Memory
When	the	Use	Only	Onboard	Memory	attribute/property	is	true,	NI-
DAQmx	transfers	data	only	once	to	the	device	and	that	data	is	continually
regenerated	from	there.	Attempting	to	write	new	data	to	the	device	after
starting	the	task	returns	an	error.	In	addition,	the	amount	of	data	written
to	the	device	before	staring	the	task	must	fit	in	the	onboard	memory	of
the	device.
When	the	Use	Only	Onboard	Memory	attribute/property	is	false,	NI-
DAQmx	continuously	transfers	data	from	the	host	memory	buffer	to	the
device	even	though	this	data	is	not	changing.	Thus,	if	you	write	new	data
to	the	device	after	starting	the	task,	that	new	data	is	generated	and
regenerated	until	you	write	more	new	data.	This	type	of	regeneration	is
sometimes	called	PC	memory	or	user	buffer	regeneration.
When	this	attribute/property	is	false,	you	can	also	set	the	Data	Transfer
Request	Condition	attribute/property	to	specify	when	to	transfer	data
from	the	host	buffer	to	the	device.



Signal	Routing
A	single	routing	API	now	controls	all	the	digital	routing	for	NI
measurements	devices.	Signal	routing	controls	the	mapping	of	digital
signals	or	triggers	across	hardware	such	as	digital	multiplexers	or	public
trigger	buses.
Here	is	a	basic	list	of	features	in	the	signal	routing	API:

A	single	unified	signal	routing	API	for	all	devices	supported	in	NI-
DAQmx
Multi-device	routing:	a	single	route	will	be	able	to	span	two
devices
Logical	inverter	support
Double	driving	prevention	across	public	trigger	buses



Specifying	a	Route
A	route	is	a	connection	between	a	pair	of	terminals.	The	source	and
destination	terminals	make	a	terminal	pair.	Any	time	the	source	or
destination	terminal	of	a	signal	is	specified,	a	route	is	created.	Usually,
you	specify	only	one	terminal	for	the	route.	For	example,	if	you	export	a
signal	to	the	I/O	connector,	you	set	the	destination	terminal,	but	the
source	terminal	is	predetermined	by	the	name	of	the	signal.	If	you	import
a	hardware	trigger	for	a	task,	you	can	set	the	source	terminal,	but	the
destination	terminal	is	predetermined	by	the	name	of	the	trigger.



Single-Device	Routing	Versus	Multi-Device
Routing
A	single-device	route	is	a	connection	between	two	terminals	on	the	same
physical	device.	Before	NI-DAQmx,	all	routes	were	single-device	routes.
NI-DAQmx	introduces	multi-device	routing.	An	example	is	specifying	a
terminal	on	a	device	as	the	source	of	a	Start	Trigger	for	a	second	device.



Creating	Multi-Device	Routes
NI-DAQmx	supports	multi-device	routing.	You	simply	specify	the	source
terminal	and	destination	terminal.	If	the	two	terminals	are	on	different
devices,	NI-DAQmx	uses	the	trigger	bus	to	route	the	signal	from	the
source	device	to	the	destination	device.	NI-DAQmx	also	selects	and
reserves	an	available	trigger	line	on	the	trigger	bus.



Plugging	in	and	Registering	Your	RTSI	Cable	in
MAX
To	create	a	multi-device	route,	the	source	and	destination	devices	must
share	a	trigger	bus	both	physically	and	logically	in	MAX.	For	PCI	devices,
you	must	register	your	RTSI	cable	in	MAX.	For	more	information	on	how
to	register	(or	add)	a	RTSI	cable	in	MAX,	refer	to	Measurement	&
Automation	Explorer	Help	for	NI-DAQmx.	If	you	do	not	register	your	RTSI
cable,	NI-DAQmx	fails	to	create	a	route.	PXI	trigger	backplanes	are
automatically	registered	when	you	identify	your	chassis	type	in	MAX.



Dynamically	Selecting	Trigger	Bus	Lines
Management	of	trigger	lines	is	another	feature	of	NI-DAQmx	routing.	If
you	hard-code	two	measurement	tasks	to	the	same	trigger	line	for
different	signals,	at	least	one	of	the	measurement	tasks	causes	a
resource	conflict.	Multi-device	routing	allows	you	to	dynamically	select
trigger	lines	at	run	time.	This	means	that	NI-DAQmx	selects	any	available
trigger	line.	You	can	still	select	a	specific	trigger	bus	line	by	splitting	your
multi-device	route	into	two	single-device	routes.	However,	the	two	static
routes	lose	the	ability	to	dynamically	choose	an	available	trigger	at	run
time.



Task-Based	Routing
Task-based	routing	is	the	most	common	form	of	routing.	When	you	create
a	hardware	trigger	or	export	a	hardware	signal,	you	create	a	task-based
route.	These	routes	are	embedded	in	a	task.	You	can	use	Export	Signal
function/VI	to	explicitly	make	a	task-based	route.	When	the	task	is
committed,	the	route	is	committed.	When	the	task	is	cleared,	the	route	is
unreserved.	Clearing	the	task	does	not	always	clear	the	route.	Refer	to
Lazy	Line	Transitions	for	more	information.



Immediate	Routing
Immediate	routing	is	not	associated	with	any	task.	An	immediate	route	is
a	pair	of	fully	qualified	terminal	names	specifying	the	source	and
destination	of	the	route.	When	an	immediate	route	is	created,	the	route
gets	committed	to	hardware	immediately.	Because	an	immediate	route
does	not	have	a	task	governing	its	lifetime,	you	need	to	actively	destroy
the	route.	Create	an	immediate	route	with	the	Connect	Terminals
function/VI	and	destroy	it	with	the	Disconnect	Terminals	function/VI.	Also,
if	you	make	an	immediate	route	multiple	times	with	several	calls	to
Connect	Terminals,	only	one	call	to	Disconnect	Terminals	releases	the
route.	There	are	other	ways	to	destroy	routes	such	as	resetting	the
device.	Refer	to	Device	Resetting	and	Interactions	with	Routing	for	more
information.



Logical	Inversion	of	Signals
If	you	route	a	signal	to	or	from	an	external	device,	you	might	need	to
invert	the	polarity	of	the	signal.	For	example,	you	may	need	to	change	a
high	gating	signal	to	a	low	gating	one	or	look	at	falling	edges	instead	of
rising	edges.	With	routing	in	NI-DAQmx,	you	can	invert	a	signal	during
the	routing.	If	there	is	an	inverter	available	along	the	route,	the	inversion
of	the	signal	takes	place.	Inversion	could	fail	if	an	overlapping	route	has
previously	reserved	the	inverter	with	an	incompatible	configuration.



Routing	and	Hardware	Sharing
Two	or	more	routes	might	overlap	in	a	compatible	fashion—especially	if
these	two	routes	have	the	same	source	and	destination.	When	routes
overlap	in	a	compatible	fashion,	the	routing	software	handles	this
situation.
As	an	example,	assume	that	two	separate	tasks	make	the	same	route.
The	resources	associated	with	the	routes	are	not	released	until	both
tasks	have	been	unreserved.	Mixing	task-based	and	immediate	routes	is
acceptable,	too.	However,	the	hardware	resources	are	not	released	until
all	task-based	routes	have	been	released	and	the	immediate	route	has
been	disconnected.
Releasing	a	task-based	route	using	the	Disconnect	Terminals	function/VI
is	not	possible.	You	must	release	task-based	routes	by	unreserving	or
clearing	the	task.	In	LabVIEW,	if	you	explicitly	create	your	task	with	the
Create	Task	VI,	you	must	clear	it	with	the	Clear	Task	VI.	Otherwise,
LabVIEW	clears	your	task	for	you	when	the	top	level	VI	of	your	program
stops	executing.



Line	Tristating	Issues
During	device	initialization,	all	terminals	on	the	I/O	connector	and	trigger
buses	are	tristated.	Tristated	means	the	terminal	is	floating	or	at	high
impedance.	For	the	terminal	to	be	driven	from	the	device,	the	tristate
buffer	associated	with	the	terminal	must	be	enabled.
For	instance,	assume	that	you	have	a	device	with	a	single	bidirectional
terminal	on	the	I/O	connector.	The	terminal	on	the	I/O	connector	is	called
the	trigger	terminal	for	reference	purposes.	Also,	the	trigger	terminal	of
the	device	is	bidirectional	because	it	can	accept	an	external	trigger	signal
or	export	the	internal	trigger	signal.	The	exported	internal	trigger	signal
could	be	different	from	the	external	trigger	signal.

Scenario Usage	and	Consequences
The	trigger
terminal	is
being	driven
by	an
external
trigger
signal	only.

This	is	a	common	case	for	triggering	an	operation	from	an
external	source.	As	a	result	of	this	operation,	you	must
disable	the	tristate	buffer	associated	with	the	trigger
terminal	so	that	the	internal	trigger	signal	does	not	drive
the	trigger	terminal,	too.

The	trigger
terminal	is
being	driven
by	the
internal
device
trigger	only.

In	this	case,	an	internally	generated	trigger	is	starting	the
device.	This	signal	could	be	useful	for	other	devices,	too.
To	export	this	trigger	signal,	you	must	enable	the	tristate
buffer	associated	with	the	trigger	pin,	so	the	device	can
drive	the	pin	with	the	trigger	signal.	It	is	important	that
there	is	no	external	signal	hooked	up	to	the	trigger
terminal.	If	it	is	inconvenient	to	unhook	the	external	signal,
you	must	make	sure	the	external	signal	is	at	least	tristated.

The	trigger
terminal	is
being	driven
by	both	the
internal
device
trigger	AND
an	external
trigger

Driving	the	trigger	pin	both	internally	and	externally	is
called	double	driving.	If	the	internal	and	external	sources
drive	the	signal	in	opposite	directions,	it	signals	problems.
Usually	the	driving	hardware	is	damaged,	but	more
extreme	consequences	can	occur	as	well.	Remember	to
be	very	careful	to	avoid	double	driving	any	terminals	on
your	I/O	connectors.



signal.



Lazy	Line	Transitions
When	a	task-based	route	gets	created	and	released,	it	does	not
necessarily	go	away.	The	hardware	resources	associated	with	the	route
are	released,	but	the	configuration	might	remain	so	that	glitches	are
minimized.
By	default,	all	tristate	buffers	associated	with	I/O	connector	terminals	are
disabled.	When	a	task-based	route	with	a	destination	on	the	I/O
connector	is	released,	the	tristate	buffer	associated	with	the	I/O
connector	terminal	is	not	disabled.	This	means	that	even	though	the
route	was	released,	glitches	are	minimized	on	the	destination	terminal	on
the	I/O	connector.	If	you	do	not	want	this	behavior,	you	can	disable	the
tristate	buffer	associated	with	the	I/O	terminal	with	the	Tri-State	Output
Terminal	function/VI.	Or,	if	you	initially	created	the	route	by	exporting	a
signal	with	the	Export	Signal	function/VI,	you	can	also	disable	the	tristate
buffer	by	calling	the	Export	Signal	function/VI	with	the	same	signal	name
but	with	an	empty	string	as	the	output	terminal.	Putting	the	terminal	back
into	a	tristate	mode	is	necessary	if	an	external	signal	must	be	connected
to	the	I/O	terminal.	If	the	terminal	is	not	tristated	first,	double	driving	the
terminal	damages	the	hardware.
All	other	connectors,	such	as	the	RTSI	connector,	use	a	different	rule.
When	the	task-based	route	associated	with	the	RTSI	connector	is
released,	the	tristate	buffer	associated	with	the	RTSI	terminal	is	disabled.
The	RTSI	bus	is	a	public	bus	that	is	shared	by	multiple	devices.	All
drivers	using	the	RTSI	bus	assume	that	all	devices	on	the	bus	are
tristated.	The	I/O	connector	is	different	because	you	have	full	control	of	it.
You	must	keep	track	of	which	terminals	are	tristated	or	being	driven	by
internal	or	external	signals.



Device	Resetting	and	Interactions	with	Routing
When	you	reset	a	device	in	NI-DAQmx,	every	immediate	route	and	task
associated	with	the	device	is	invalidated.	When	the	task	is	invalidated,	all
the	routes	are	invalidated,	too.	If	a	task-based	route	is	invalidated	using	a
device	reset,	its	parent	task	also	is	invalidated.
For	instance,	device	A	is	running	a	task	that	performs	an	analog	input
operation.	This	same	analog	input	operation	receives	its	Start	Trigger
from	device	B.	This	task	spans	across	device	A	and	B	due	to	the	multi-
device	routing.	If	device	B	gets	reset,	all	routes	on	device	B	are
destroyed.	The	invalidation	of	the	task-based	route	on	device	B	causes
its	parent	task	on	device	A	to	be	invalidated,	too.	You	must	consider
these	possible	consequences	when	issuing	a	device	reset.	If	the	route
between	device	A	and	B	is	an	immediate	route,	there	is	not	a	relationship
between	the	immediate	route	and	the	task.	This	could	result	in	the	task
not	being	invalidated.	You	need	to	decide	if	you	need	to	preserve	the
task.



Device	Routing	in	MAX
NI-DAQmx	exposes	much	more	of	your	device's	routing	functionality	than
Traditional	NI-DAQ	(Legacy).	You	can	discover	what	routes	are	possible
by	referring	to	a	table	of	possible	routes	in	MAX.
To	find	the	device	routing	table	for	your	device,	launch	MAX	and	select
Devices	and	Interfaces»NI-DAQmx	Devices.	Click	a	device	to	open	a
tabbed	window	in	the	middle	pane.	Click	the	Device	Routes	tab	at	the
bottom	of	the	pane	to	display	the	device	routing	table.

Note		MAX	does	not	display	the	device	routing	table	for	SCXI
chassis,	SCC	connector	blocks,	or	RTSI	cable	devices.

Each	cell	in	the	table	is	an	index	with	the	valid	source	and	destination
terminal	for	the	device.	These	are	the	same	terminal	names	you	can	find
in	the	Terminal	Name	I/O	control	in	LabVIEW.
If	a	route	is	possible	between	a	source	and	destination	terminal,	the
intersecting	cell	is	colored	green	or	yellow.	A	green	cell	indicates	the
route	can	be	made	without	consuming	any	important	resource	of	your
device.	A	yellow	cell	indicates	that	although	the	route	is	possible,
something	important	must	be	consumed	to	create	the	route.	Placing	the
cursor	over	a	yellow	square	reveals	the	resource	used	in	the	subsystem
used	indicator.	Usually,	the	sacrificed	resource	is	a	counter.
When	you	display	the	device	routing	table	for	a	cDAQ	chassis	or	a	C
Series	device,	the	table	contains	all	of	the	terminals	for	the	chassis	and
all	devices	installed	in	the	chassis.



Counters
This	section	provides	an	overview	of	counters	in	NI-DAQmx	and	the	two
counter	measurement	method	for	period	and	frequency	measurements.



Paired	Counters
For	more	complex	and	accurate	measurements	and	generations,	a
counter	is	paired	with	another	counter	with	dedicated	connections	to	and
from	each	counter.	This	pairing	allows	you	to	perform	such	operations	as
finite	pulse-train	generations,	higher	accuracy	frequency	and	period
measurements,	and	cascaded	edge	counting.	Paired	counters	are
generally	numbered	sequentially.	For	example,	ctr0	and	ctr1	are	a	pair,
ctr2	and	ctr3	are	a	pair,	and	so	on.



Two	Counter	Measurement	Method
For	period	and	frequency	measurements,	you	also	can	use	a	second
counter.	For	most	applications,	the	low	frequency	with	one	counter
method	is	sufficient	and	desirable	because	it	uses	fewer	resources.
However,	if	you	have	a	high-frequency	or	widely	varying	signal,	you	can
use	one	of	the	two	counter	measurement	methods—the	high-frequency
measurement	method	or	the	large-range	measurement	method.
Depending	on	the	rate	of	your	input	signal	and	measurement	method
used,	your	measurement	is	subject	to	different	amounts	of	quantization
error.	In	two	counter	applications,	you	only	need	to	call	the	Create
Channel	function/VI	once,	specifying	only	the	counter	channel	to	which
you	want	to	connect	your	input	signal.	NI-DAQmx	automatically	takes
care	of	making	the	internal	routes	necessary	to	perform	the
measurement	across	paired	counters.



High	Frequency	Two-Counter	Measurement
Method
Use	this	high-frequency	measurement	method	if	you	measure	a	digital
frequency	or	period	of	a	signal	with	a	high	frequency	component.	To
perform	measurements	using	this	method	in	NI-DAQmx,	a	paired	counter
generates	a	pulse	train	with	a	period	specified	using	the	measurement
time	attribute/property.	The	measurement	time	is	generally	much	larger
than	the	period	of	the	input	signal	being	measured	to	reduce	quantization
error.	However,	the	measurement	time	must	be	small	enough	to	keep
the	counter	from	rolling	over.	The	measurement	counter	counts	the
number	of	periods	of	the	input	signal	that	occur	during	the	measurement
time,	averages	the	results,	and	returns	the	averaged	value	in	the	Read
function/VI.	The	value	returned	is	calculated	as	follows:
Period	(in	seconds)	=	Measurement	Time	/	Number	of	Periods	Counted
Frequency	(in	Hz)	=	Number	of	Periods	Counted	/	Measurement	Time

To	determine	if	you	should	use	the	high-frequency	measurement	method,
refer	to	the	quantization	error	tables.	If	the	quantization	error	listed	for	the
one-counter	method	is	too	high,	use	the	high-frequency	measurement
method	instead.



Large-Range	Two	Counter	Measurement	Method
If	you	measure	the	digital	frequency	or	the	period	of	a	counter	signal,	you
can	use	this	two-counter	method	to	measure	signals	with	large	ranges.
This	method	is	useful	when	you	have	a	widely	varying	signal	to	measure
and	would	like	increased	accuracy	throughout	the	entire	range.	Refer	to
the	quantization	error	section	for	more	information	on	increasing
measurement	accuracy	with	the	large-range	measurement	method.	You
can	also	use	this	method	to	measure	signal	frequencies	that	are	faster
than	your	counter	timebase	rate	as	long	as	the	input	signal	does	not
exceed	the	maximum	input	frequency	supported	by	the	counter.
To	perform	measurements	using	this	method	in	NI-DAQmx,	a	paired
counter	is	used	to	divide	the	input	signal	by	a	value	specified	using	the
Divisor	attribute/property.	However,	you	need	to	be	careful	the	Divisor
you	choose	does	not	cause	the	counter	to	roll	over.	This	divisor	has	the
effect	of	shifting	the	measurable	frequency	range	upward.	The	Divisor
scales	the	measured	period	and	returns	data	according	to	the	following
equations:
Period	=	Measured	Period	/	Divisor
Frequency	=	Divisor	×	Measured	Period

For	example,	if	you	use	a	24-bit	counter	and	the	Counter	Timebase	Rate
is	100	kHZ,	the	measurable	frequency	range	is	approximately	0.006	Hz
to	50	kHz	because

However,	with	a	divisor	of	4,	the	measurable	frequency	range	is	0.024	Hz
to	200	kHz	because

To	determine	if	you	should	use	the	large-range	measurement	method,
refer	to	the	quantization	error	tables.	If	the	quantization	error	listed	for	the
one-counter	method	in	that	section	is	too	high,	use	the	large-range
measurement	method	instead.



Quantization	Error
Quantization	error	is	the	inherent	uncertainty	in	digitizing	an	analog	value
as	a	result	of	the	finite	resolution	of	the	conversion	process.	Quantization
error	depends	on	the	number	of	bits	in	the	converter,	along	with	its	errors,
noise,	and	nonlinearities.	Quantization	error	occurs	due	to	phase
differences	between	the	input	signal	and	the	counter	timebase.
Depending	on	how	the	phase	of	the	input	signal	and	counter	timebase
align,	the	count	measured	has	three	possibilities:

Miss	Both	Edges—The	counter	recognizes	neither	the	first
rising	edge	nor	the	last	rising	edge	of	the	counter	timebase,
giving	a	count	of	one	less	than	the	expected	value.
Miss	One,	Catch	One—The	counter	only	recognizes	the	first
rising	edge	or	the	last	rising	edge	of	the	counter	timebase,	giving
the	expected	value.
Catch	Both	Edges—The	counter	recognizes	both	the	first	rising
edge	and	the	last	rising	edge	of	the	counter	timebase,	giving	a
count	of	one	more	than	the	expected	value.

For	example,	if	the	counter	timebase	rate	is	20	MHz,	and	the	frequency
of	the	input	signal	is	5	MHz,	the	measured	value	can	be	3,	4,	or	5	due	to
quantization	error.	This	corresponds	to	a	measured	frequency	of	6.67
MHz,	5	MHz,	or	4	MHz,	resulting	in	a	quantization	error	of	as	much	as
33%.
Quantization	Error	with	One	Counter	Time	Measurements
For	one	counter	time	measurements,	the	following	equation	gives	the
quantization	error.
ErrQuantization	=	Actual	Frequency	/	(Counter	Timebase	Rate	-	Actual
Frequency)

You	can	reduce	the	quantization	error	for	single	counter	time
measurements	by	increasing	the	counter	timebase	rate.	The	following
table	shows	the	quantization	error	for	various	timebase	rates	with	given



input	signal	frequencies:

Actual	Frequency	of	Input
Signal

Counter	Timebase
Rate

Quantization
Error

10	Hz 100	kHz 0.01%
100	Hz 100	kHz 0.10%
1	kHz 100	kHz 1.01%
10	kHz 100	kHz 11.11%
10	kHz 20	MHz 0.05%
100	kHz 20	MHz 0.50%
1	MHz 20	MHz 5.26%
2	MHz 20	MHz 11.11%
5	MHz 20	MHz 33.33%

For	period	and	frequency	measurements,	if	the	quantization	error	is	too
large	for	your	input	signal,	you	might	consider	using	one	of	the	two
counter	period	and	frequency	measurements.
Quantization	Error	with	High	Frequency	Two	Counter	Method
For	two	counter	high-frequency	measurements,	the	following	equations
give	the	quantization	error.
ErrQuantization	=	Actual	Period	/	Measurement	Time

ErrQuantization	=	1	/	(Measurement	Time	×	Actual	Frequency)

Increasing	the	measurement	time	reduces	the	quantization	error.	The
quantization	error	also	decreases	with	higher	frequency	input	signals.
The	following	table	shows	the	quantization	error	for	various	measurement
times	and	input	signal	frequencies:

Actual	Frequency	of	Input
Signal

Measurement
Time

Quantization
Error

10	kHz 1	ms 10.00%
100	kHz 1	ms 1.00%
1	MHz 1	ms 0.10%
5	MHz 1	ms 0.02%
10	MHz 1	ms 0.01%



10	kHz 10	ms 1.00%
100	kHz 10	ms 0.10%
1	MHz 10	ms 0.01%
5	MHz 10	ms 0.002%
10	MHz 10	ms 0.001%
10	kHz 100	ms 0.10%
100	kHz 100	ms 0.010%
1	MHz 100	ms 0.001%
5	MHz 100	ms 0.0002%
10	MHz 100	ms 0.0001%
10	kHz 1	s 0.010%
100	kHz 1	s 0.0010%
1	MHz 1	s 0.0001%
5	MHz 1	s 0.00002%
10	MHz 1	s 0.00001%

As	the	table	shows,	quantization	error	is	reduced	at	higher	frequencies	of
the	input	signal.	However,	the	advantage	of	this	measurement	method
disappears	at	lower	frequency	input	signals	because	you	need	to
measure	longer	to	gain	accuracy,	and	you	use	up	more	resources.
Quantization	Error	with	Large	Range	Two-Counter	Measurement
Method
For	two	counter	large-range	measurements,	the	following	equations	give
the	quantization	error.
ErrQuantization	=	1	/	(Divisor	×	Counter	Timebase	Rate	×	Actual	Period	–
1)
ErrQuantization	=	Actual	Frequency	/	(Divisor	×	Counter	Timebase	Rate	–
Actual	Frequency)

Increasing	the	divisor,	increasing	the	counter	timebase	rate,	or	lowering
the	input	signal	frequency	reduces	the	quantization	error.	The	table	lists
the	quantization	error	for	various	divisors	and	input	signal	frequencies
assuming	a	counter	timebase	rate	of	20	MHz.



Actual	Frequency	of	Input	Signal Divisor Quantization	Error
1	kHz 4 0.00125%
100	kHz 4 0.125%
1	MHz 4 1.266%
1	kHz 10 0.0005%
100	kHz 10 0.05%
1	MHz 10 0.5%
1	kHz 100 0.00005%
100	kHz 100 0.005%
1	MHz 100 0.05%

Notice	that	the	use	of	a	divisor	reduces	the	quantization	error.	Although
the	high	frequency	two-counter	measurement	method	is	more	accurate	at
higher	frequencies,	the	large	range	two-counter	measurement	method	is
more	accurate	throughout	the	range	in	a	shorter	amount	of	time.	For
example,	if	the	input	signal	varies	between	1	kHz	and	1	MHz	and	you
require	a	maximum	quantization	error	of	2.0%	at	any	signal	range,	you
need	a	minimum	measurement	time	of	50	ms	using	the	high	frequency
two-counter	measurement	method.	To	gain	the	same	accuracy	using	the
large	range	two-counter	method	requires	a	maximum	measurement	time
of	4	ms	for	any	one	measurement.



Counter	Parts	in	NI-DAQmx
A	counter	contains	several	advanced	terminals	that	you	can	use	to
perform	time	measurements	and	generate	pulses.	For	most	applications,
NI-DAQmx	automatically	makes	the	proper	routes	from	the	terminal
connector	block	to	the	correct	advanced	terminal	with	no	additional
routing	required.	For	advanced	applications,	you	might	need	to	make
explicit	routes	to	the	internal	counter	terminals.
Advanced	Terminals	and	Common	Counter	Applications
The	following	lists	the	names	of	the	advanced	terminals	as	well	as	their
common	uses:
CtrnGate—The	signal	at	this	advanced	terminal	is	used	as	the	Start
Trigger,	pause	trigger,	sample	clock,	or	the	input	signal	being	measured.
The	following	table	lists	how	this	terminal	is	used	in	various	applications:

Application Purpose	of	Gate	Terminal
Pulse	Generation Pause	or	Start	Trigger
One	Counter	Time	Measurements Input	Signal
Two	Counter	Time	Measurements Unused
Nonbuffered	Edge	Counting Pause	Trigger
Buffered	Edge	Counting Sample	Clock
Two-Edge	Separation Second	Input	Terminal
Position Z	Input	Terminal

CtrnSource—The	signal	at	this	advanced	terminal	is	either	the	input
terminal	for	the	measurement	or	the	counter	timebase.	The	following
table	lists	how	this	terminal	is	used	in	various	applications:

Application Purpose	of	Source	Terminal
Pulse	Generation Counter	Timebase
One	Counter	Time	Measurements Counter	Timebase
Two	Counter	Time	Measurements Input	Terminal
Nonbuffered	Edge	Counting Input	Terminal
Buffered	Edge	Counting Input	Terminal
Two-Edge	Separation Counter	Timebase



Position A	Input	Terminal

CtrnInternalOutput—The	signal	at	this	advanced	terminal	is	where	the
pulsed	or	toggled	output	of	the	counter	appears.	The	output	of	a	counter
pulses	or	toggles	when	the	counter	reaches	terminal	count.	When
counting	down,	the	counter	reaches	terminal	count	when	the	count
reaches	zero.	When	counting	up,	the	counter	reaches	terminal	count
when	the	counter	rolls	over.	To	configure	the	counter	to	toggle	or
generate	pulses,	use	the	Export	Signal	function/VI	with	Counter	Output
Event	as	the	signal	name.
For	the	output	of	a	counter	to	appear	at	the	I/O	connector	(Ctr0Out,	for
example),	the	signal	on	the	internal	output	terminal	must	be	routed	to	a
terminal	on	the	I/O	connector.	For	pulse	generations,	this	route	is
automatically	made	to	the	dedicated	counter	output	terminal	on	the	I/O
connector.	For	measurements,	if	you	are	interested	in	observing	this
signal,	you	need	to	manually	make	this	route	to	the	appropriate	pin	on
the	I/O	connector	using	the	Export	Signal	function/VI	with	Counter	Output
Event	as	the	signal	name.	After	you	route	the	internal	output	of	a	counter
to	the	I/O	connector,	the	signal	remains	on	the	I/O	connector	until	the
device	is	reset	or	you	explicitly	tristate	the	terminal.
CtrnAux	(TIO-,	STC	II-,	and	STC	III-Based	Devices)—The	following
table	lists	how	this	terminal	is	used	in	various	applications:

Application Purpose	of	Source	Terminal
Pulse	Generation Unused
One	Counter	Time	Measurements Unused
Two	Counter	Time	Measurements Unused
Nonbuffered	Edge	Counting Optional	Count	Direction	Terminal
Buffered	Edge	Counting Optional	Count	Direction	Terminal
Two-Edge	Separation First	Input	Terminal
Position B	Input	Terminal

The	main	parts	of	a	counter	include	the	following:
A	GATE	input	terminal	controls	when	counting	occurs.	A	GATE	input	is
similar	to	a	trigger	because	it	starts	or	stops	a	count.
A	SOURCE	(CLK)	input	terminal	is	the	timebase	for	a	measurement	or
the	signal	to	count.



A	count	register	increments	or	decrements	the	number	of	edges	to	count.
If	the	count	register	decrements,	it	counts	down	to	zero.	The	count
register	size	is	the	number	of	bits	in	the	counter,	and	you	calculate	it	as
Count	Register	=	2no.	of	bits.
An	OUT	signal	terminal	can	output	a	pulse	or	a	pulse	train,	which	is	a
series	of	pulses.



Configuring	a	Time	Measurement	in	NI-DAQmx
To	configure	a	measurement,	you	specify	the	expected	range	of	the	input
signal.	Based	on	this	range,	NI-DAQmx	automatically	picks	the	internal
timebase	that	provides	the	highest	resolution	for	your	measurement	and
uses	it	as	the	counter	timebase.	You	also	can	explicitly	specify	the	source
of	the	counter	timebase	by	setting	the	Counter	Timebase	Source
attribute/property	and	the	rate	of	the	timebase	by	setting	the	Counter
Timebase	Rate	attribute/property.	For	more	information	on	where	to
connect	input	signals,	refer	to	Connecting	Counter	Signals.
To	perform	buffered	time	measurements,	use	the	Timing	function/VI	with
the	Implicit	timing	type.	After	the	acquisition	begins,	NI-DAQmx
consecutively	measures	each	sample	of	the	input	signal	and	stores	it	in
the	input	buffer.	Due	to	this	consecutive	measurement,	the	rate	of	the
input	signal	implicitly	determines	the	rate	of	the	acquisition.	Depending
on	the	phase	of	the	input	signal	in	relation	to	the	start	of	the
measurement,	the	first	sample	of	buffered	measurements	is	often	invalid.
For	instance,	if	you	are	performing	a	buffered	period	measurement,	and
you	start	the	measurement	when	the	input	signal	is	halfway	through	its
current	cycle,	the	measured	period	for	the	first	sample	is	half	its	expected
value.	Subsequent	samples	indicate	the	correct	values	because	they	are
guaranteed	to	be	taken	after	a	full	period	of	the	input	signal.	For	this
reason,	the	first	sample	of	buffered	period,	pulse	width,	and	semi-period
measurements	often	indicates	a	smaller	value	than	the	actual	value.	For
buffered	frequency	measurements,	the	first	sample	often	indicates	a
higher	frequency	than	the	actual	frequency.
With	bus-powered	M	Series	USB	devices,	such	as	the	NI	6210,	NI	6211,
NI	6212,	NI	6215,	NI	6216,	and	NI	6218,	you	can	take	buffered	time
measurements	with	the	sample	clock	timing	type.	After	the	acquisition
begins,	your	device	consecutively	measures	each	sample	of	the	input
signal	but	does	not	store	it	to	the	input	buffer	unless	there	is	an	active
edge	of	the	sample	clock	source	signal.	Using	this	timing	type,	the
sample	clock	rate	determines	the	acquisition	rate	rather	than	the	input
signal.	With	this	buffered	time	measurement	method,	all	measurements
returned	are	a	valid,	complete	cycle	of	your	input	signal.	Using	this
method,	you	can	measure	signals	that	are	much	faster	than	your	sample
rate,	which	minimizes	the	amount	of	data	transferred	from	your	device	to
NI-DAQmx.

mxdevconsid.chm::/counterSigCon.html


For	non-buffered	time	measurements,	calling	the	Read	function/VI
initiates	the	measurement	and	returns	the	next	valid	sample.	Calling	the
Read	function/VI	repeatedly	does	not	return	consecutive	measurements
of	the	input	signal.



Configuring	a	Displacement	Measurement	with
NI-DAQmx
To	configure	a	measurement,	specify	the	initial	sensor	position	through
the	Initial	Angle	attribute/property.	You	also	can	specify	if	the	Z	Input
Terminal	is	used	with	the	Z	Index	Enable	attribute/property.	You	can
configure	the	reload	position	on	a	Z	index,	and	when	a	Z	index	position
should	cause	a	reload	to	occur	in	relation	to	the	A	and	B	signals,	by	using
the	Z	Index	Phase	and	Z	Index	Value	attributes/properties,	respectively.
When	performing	a	single	point,	or	on-demand,	displacement
measurement,	you	first	arm	the	counter	by	calling	the	Start	Task
function/VI.	Each	subsequent	read	returns	the	current	position	of	the
encoder.	If	you	perform	multiple	reads	without	first	starting	the	counter,
the	counter	implicitly	starts	and	stops	with	each	Read	function/VI	call,
and	the	position	is	not	recorded	properly	between	read	calls.
With	a	buffered	displacement	measurement,	the	device	latches	the
current	position	onto	each	active	edge	of	the	sample	clock	and	stores	the
position	in	the	buffer.	There	is	no	onboard	clock	for	buffered
displacement	measurement,	so	you	must	supply	an	external	sample
clock.



Terminals
A	terminal	is	a	named	location	where	a	signal	is	either	generated	(output
or	produced)	or	acquired	(input	or	consumed).	A	terminal	that	can	output
only	one	signal	is	often	named	after	that	signal.	A	terminal	with	an	input
that	can	be	used	only	for	one	signal	is	often	named	after	the	clock	or
trigger	that	the	signal	is	used	for.	Terminals	that	are	used	for	many
signals	have	generic	names	such	as	RTSI,	PXITrig,	or	PFI.
See	Also
Signal	and	Terminal	Confusion
Terminal	Names
Signal	Routing



Signal	Versus	Terminal
A	signal	is	a	means	of	conveying	information.	An	analog	waveform	and	a
digital	edge	are	both	examples	of	signals.	The	word	signal,	in	this
section,	refers	to	the	digital	edge	variety,	also	known	as	hardware
signals.	A	terminal,	on	the	other	hand,	is	a	named	location	where	a	signal
is	either	generated	(output	or	produced)	or	acquired	(input	or	consumed).
When	a	terminal	shares	a	name	with	a	signal,	it	is	not	always	clear	which
is	being	referred	to—the	terminal	or	the	signal.	The	sample	clock
provides	a	good	example.
Within	most	devices,	there	is	a	terminal	such	that	the	signal	at	that
terminal	is	always	used	as	the	sample	clock.	So	when	you	refer	to	the
sample	clock	signal,	you	refer	to	this	terminal.	For	instance,	for	M	Series
analog	input	tasks,	this	terminal	is	named	the	ai/SampleClock	terminal.
For	analog	output	tasks,	this	terminal	is	named	the	ao/SampleClock
terminal.
When	you	use	the	Timing	function/VI	to	select	the	source	of	the	sample
clock	signal	for	your	analog	input	task	on	an	M	Series	device,	you	choose
a	signal	at	some	other	terminal	to	act	as	the	source	for	the
ai/SampleClock	terminal.	In	other	words,	NI-DAQmx	connects	your
chosen	terminal	(a	PFI	terminal	pin,	for	instance)	to	the	ai/SampleClock
terminal.	Selecting	the	ai/SampleClock	terminal	as	the	sample	clock
source	returns	an	error	because	a	terminal	cannot	be	connected	to	itself.



Terminal	Names
OnboardClock An	alias	for	the	terminal	within	a	device

where	the	default	source	for	a	clock	can	be
found.	If	your	application	does	not	set	the
source	of	a	clock	(or	uses	an	empty	string	as
the	source),	the	clock's	particular	onboard
clock	is	used.	For	example,	the	onboard
clock	for	the	ai	sample	clock	is	the	ai	Sample
Clock	Timebase.

PFIn Programmable	Function	Interface—
general-purpose	input	terminals,	fixed-
purpose	output	terminals.	The	name	of	the
fixed	output	signal	is	often	placed	on	the	I/O
connector	next	to	the	terminal	as	a	hint.

PXITrign PXI	Trigger	bus—general-purpose
input/output	lines.

RTSIn Real	Time	System	Integration	bus—
general-purpose	input/output	lines.	RTSI7	is
the	exception.	It	is	the	only	line	to	use	for	the
20	MHz	Timebase	signal.

ai/SampleClock A	terminal	within	a	device	where	the	analog
input	sample	clock	can	be	found.

ai/StartTrigger A	terminal	within	a	device	where	the	analog
input	Start	Trigger	can	be	found.

ai/ReferenceTrigger A	terminal	within	a	device	where	the	analog
input	Reference	Trigger	can	be	found.

ao/SampleClock A	terminal	within	a	device	where	the	analog
output	sample	clock	can	be	found.

ao/StartTrigger A	terminal	within	a	device	where	the	analog
output	Start	Trigger	can	be	found.

20MHzTimebase A	terminal	within	a	device	where	the	onboard
clock	source	for	the	master	timebase	can	be
found.

80MHzTimebase A	terminal	within	a	device	where	the	onboard



clock	source	for	the	master	timebase	can	be
found.

MasterTimebase A	terminal	within	a	device	where	the	master
timebase	signal	can	be	found.	This	signal
originates	either	from	the	20MHzTimebase
terminal	or	the	RTSI7	terminal.	This	signal	is
the	onboard	source	for	the	Sample	Clock
Timebases	and	is	one	of	the	possible
sources	for	the	AI	convert	clock	timebase.

100kHzTimebase A	terminal	within	a	device	where	the	100	kHz
Timebase	signal	can	be	found.	This	signal	is
created	by	dividing	the	signal	at	the
20MHzTimebase	terminal	by	200	and	is	one
of	the	possible	sources	for	the	Sample	Clock
Timebases.

ai/ConvertClock A	terminal	within	a	device	where	the	AI
Convert	Clock	can	be	found.

ai/ConvertClockTimebase A	terminal	within	a	device	where	the	AI
Convert	Clock	Timebase	can	be	found.	This
is	the	onboard	clock	source	for	the	AI
convert	clock.

ai/HoldCompleteEvent A	terminal	within	a	device	where	the	AI	Hold
Complete	Event	signal	can	be	found.

AIHoldComplete The	terminal	at	the	I/O	connector	(external	to
the	device)	where	the	AI	Hold	Complete
Event	signal	can	be	emitted.

ai/PauseTrigger A	terminal	within	a	device	where	the	analog
input	pause	trigger	can	be	found.

ai/SampleClockTimebase A	terminal	within	a	device	where	the	AI
Sample	Clock	Timebase	can	be	found.	This
is	the	onboard	clock	source	for	the	AI
sample	clock.

AnalogComparisonEvent A	terminal	within	a	device	where	the	output
of	the	analog	comparison	circuit,	the	Analog
Comparison	Event	signal,	can	be	found.	This
circuit	is	active	whenever	an	analog	edge	or



window	trigger	is	configured.

ao/PauseTrigger A	terminal	within	a	device	where	the	analog
output	pause	trigger	can	be	found.

ao/SampleClockTimebase A	terminal	within	a	device	where	the	AO
Sample	Clock	Timebase	can	be	found.	This
is	the	onboard	clock	source	for	the	AO
sample	clock.

Ctr0Out,	Ctr1Out Terminals	at	the	I/O	connector	where	the
output	of	counter	0	or	counter	1	can	be
emitted.	You	also	can	use	Ctr0Out	as	a
terminal	for	driving	an	external	signal	onto
the	RTSI	bus.

Ctr0Gate,	Ctr1Gate Terminals	within	a	device	whose	purpose
depends	on	the	application.	Refer	to	Counter
Parts	in	NI-DAQmx	for	more	information	on
how	the	gate	terminal	is	used	in	various
applications.

Ctr0Source,	Ctr1Source Terminals	within	a	device	whose	purpose
depends	on	the	application.	Refer	to	Counter
Parts	in	NI-DAQmx	for	more	information	on
how	the	source	terminal	is	used	in	various
applications.

Ctr0InternalOutput,
Ctr1InternalOutput

Terminals	within	a	device	where	you	can
choose	the	pulsed	or	toggled	output	of	the
counters.	Refer	to	Counter	Parts	in	NI-
DAQmx	for	more	information	on	internal
output	terminals.

PairedCtrInternalOutput A	terminal	within	a	device	that	chains
counters	together,	creating	a	paired	counter
without	using	any	external	connections.	If
your	application	uses	counter	0,
PairedCtrInternalOutput	refers	to	the	output
of	counter	1.	If	your	application	uses	counter
1,	PairedCtrInternalOutput	refers	to	the
output	of	counter	0.



PairedCtrOutputPulse A	terminal	within	a	device	that	chains
counters	together	without	using	any	external
connections.	If	you	configure	counter	0,
PairedCtrOutputPulse	refers	to	the	pulsed
output	of	counter	1.	If	you	configure	counter
1,	PairedCtrOutputPulse	refers	to	the	pulsed
output	of	counter	0.	Refer	to	Paired	Counters
for	more	information.	When	the	counter
reaches	terminal	count	(zero	when	counting
down,	its	maximum	count	when	counting
up),	the	output	of	the	PairedCtrOutputPulse
pulses.	By	using	this	terminal,	you	can	chain
counters	together	to	create	a	wider	counter,
perform	buffered	edge	counting	using	the
other	counter	as	your	clock	source,	perform
finite	pulse-train	generation,	and	create	other
custom	applications.

Note		M	Series	and	C	Series	devices	do	not	have	a	master
timebase	of	an	arbitrary	frequency.	These	devices	use	the	20
MHz/80	MHz/100	kHz	timebase	directly.



Analog	Input	Accessory	Terminal	Names
The	following	table	lists	the	revised	names	for	analog	input	terminal
names.

Original
Terminal
Names

Revised
Terminal
Names

Explanation

AIGND,
ACHGND

AIGND The	reference	point	for	referenced	single-
ended	measurements	and	the	bias	current
return	point	for	differential	measurements

ACH# AI# AI0,	AI1,	and	so	on;	the	analog	input	channels
AISENSE AISENSE The	reference	point	for	NRSE	measurements

using	channels	0–15
AISENSE2 AISENSE2 The	reference	point	for	NRSE	measurements

using	channels	16–63
SCANCLK AI	HOLD

COMP
The	terminal	where	the	AI	Hold	Complete
Event	signal	appears

TRIG1 AI	START
TRIG

Placed	as	a	hint	next	to	the	PFI	terminal
where	the	AI	Start	Trigger	can	be	emitted

TRIG2 AI	REF
TRIG

Placed	as	a	hint	next	to	the	PFI	terminal
where	the	AI	Reference	Trigger	can	be
emitted

CONVERT* AI	CONV
CLK

Placed	as	a	hint	next	to	the	PFI	terminal
where	the	AI	Convert	Clock	can	be	emitted

STARTSCAN AI	SAMP
CLK

Placed	as	a	hint	next	to	the	PFI	terminal
where	the	AI	Sample	Clock	can	be	emitted

measfunds.chm::/refSingleEnded.html
measfunds.chm::/refSingleEnded.html


Analog	Output	Accessory	Terminal	Names
The	following	table	lists	the	revised	names	for	analog	output	terminal
names.

Original
Terminal
Names

Revised
Terminal
Names

Explanation

DAC0OUT AO0 An	analog	output	channel
DAC1OUT AO1 An	analog	output	channel
EXTREF AO	EXT	REF AO	external	reference
AOGND AO	GND The	analog	output	ground
UPDATE* AO	SAMP

CLK
Placed	as	a	hint	next	to	the	PFI	terminal
where	the	AO	Sample	Clock	can	be	emitted

WFTRIG AO	START
TRIG

Placed	as	a	hint	next	to	the	PFI	terminal
where	the	AO	Start	Trigger	can	be	emitted



Counter	Accessory	Terminal	Names
The	following	table	lists	the	revised	names	for	counter	terminal	names.

Original	Terminal
Names

Revised
Terminal
Names

Explanation

GPCTR1_SOURCE CTR1SOURCE Placed	as	a	hint	next	to	the	PFI
terminal	where	the	Ctr1Source
signal	can	be	emitted

GPCTR1_GATE CTR1GATE Placed	as	a	hint	next	to	the	PFI
terminal	where	the	Ctr1Gate	signal
can	be	emitted

GPCTR1_OUT CTR1OUT The	name	of	the	terminal	where
the	Ctr1Out	signal	appears

GPCTR0_SOURCE CTR0SOURCE Placed	as	a	hint	next	to	the	PFI
terminal	where	the	Ctr0Source
signal	can	be	emitted

GPCTR0_GATE CTR0GATE Placed	as	a	hint	next	to	the	PFI
terminal	where	the	Ctr0Gate	signal
can	be	emitted

GPCTR0_OUT CTR0OUT The	name	of	the	terminal	where
the	Ctr0Out	signal	appears

FREQ_OUT FREQ	OUT The	name	of	the	terminal	where
the	output	of	the	4-bit	clock	divider
signal	appears



Digital	Accessory	Terminal	Names
The	following	table	lists	the	revised	names	for	digital	terminal	names.

Original
Terminal
Names

Revised
Terminal
Names

Explanation

DIO# P0.# Ports	on	devices	are	referred	to	by	a	number.	Port
A	is	called	port	0,	for	instance.	The	#	symbol
refers	to	a	single	digital	line

PA#,	PB#,
and	so	on

P0.#,
P1.#,	and
so	on

Ports	on	devices	are	referred	to	by	a	number.	Port
A	is	called	port	0,	for	instance.	The	#	symbol
refers	to	a	single	digital	line

DIOA#,
DIOB#

P0.#,
P1.#,	and
so	on

The	#	symbol	refers	to	a	single	digital	line



Syntax	for	Terminal	Names
The	syntax	for	terminal	names	is	a	unique	identifier	that	refers	to	a
physical	terminal	in	your	system.	To	guarantee	the	uniqueness	of	a
terminal	name	across	multiple	devices,	terminal	names	begin	with	a
forward	slash,	followed	by	the	name	of	the	device	as	configured	in	MAX,
such	as	Dev1.	A	forward	slash	and	the	name	of	the	terminal	follow	the
device	identifier,	such	as	PFI3.	For	example,	the	fully	qualified	terminal
name	for	PFI3	on	Dev1	is	/Dev1/PFI3.
Many	fully	qualified	terminal	names	might	have	multiple	forward	slash
delimiters.	For	example,	the	Start	Trigger	for	the	analog	input	subsection
on	Dev1	is	/Dev1/ai/StartTrigger.



Coercion
When	a	value	you	set	cannot	be	met	exactly,	NI-DAQmx	sometimes
adjusts—or	coerces—that	value	to	a	valid	one.	Coercion	often	occurs
when	an	attribute/property	supports	a	set	of	discrete	ranges.
After	you	set	an	attribute/property,	you	can	query	that	attribute/property	to
determine	its	actual	value	after	coercion.
See	Also
Input	Limit	Coercion
Clock/Pulse	Frequency	Coercion



Input	Limit	Coercion
Some	devices	support	only	a	discrete	set	of	device	ranges.	When	you
specify	input	limits,	NI-DAQmx	coerces	those	values	to	fit	within	one	of
the	supported	device	ranges.
For	instance,	suppose	your	device	only	supports	ranges	of	0	to	10	V,	-5
to	5	V,	and	-10	to	0	V.	If	you	set	a	maximum	value	of	8	V,	NI-DAQmx
coerces	the	maximum	value	to	10	V.	NI-DAQmx	also	coerces	scaled
values,	including	custom	scaling.	If	you	have	a	temperature	sensor	that
outputs	100	mV	for	every	1	°C,	NI-DAQmx	coerces	a	maximum	value	of
80	°C	to	100	°C.
Because	NI-DAQmx	coerces	input	limits,	code	width	is	calculated	based
on	the	coerced	values,	which	can	be	outside	the	minimum	and	maximum
values	you	expect	to	measure.

measfunds.chm::/devRange.html
measfunds.chm::/limitSettings.html
measfunds.chm::/codewidth.html


Clock/Pulse	Frequency	Coercion
Frequencies	of	clocks	or	pulse	trains	must	be	evenly	divisible	into	the
frequency	of	its	timebase.	For	example,	the	rate	of	the	Sample	Clock
must	be	evenly	divisible	into	the	frequency	of	the	Sample	Clock
Timebase.	If	you	specify	a	Sample	Clock	rate	that	is	not	evenly	divisible
into	the	frequency	of	the	Sample	Clock	Timebase,	NI-DAQmx	coerces
the	Sample	Clock	rate	to	one	that	is	valid.



Calibration
There	are	two	types	of	calibration,	channel	calibration	and	device
calibration.



Device	Calibration
What	Is	Device	Calibration?
Device	calibration	consists	of	verifying	the	measurement	accuracy	of	a
device	and	adjusting	for	any	measurement	error.	Verification	consists	of
measuring	the	performance	of	the	device	and	comparing	these
measurements	to	the	published	specifications.	During	calibration,	you
supply	and	read	voltage	levels	or	other	signals	using	external	standards,
then	you	adjust	the	device	calibration	constants.	The	new	calibration
constants	are	stored	in	the	EEPROM.	These	calibration	constants	are
loaded	from	memory	as	needed	to	adjust	for	the	error	in	the
measurements	taken	by	the	device.	There	are	two	kinds	of	calibration,
external	and	self.	For	more	information	on	calibrating	your	device	with	NI-
DAQmx,	refer	to	Device	Calibration	Considerations.	For	detailed	external
calibration	procedures,	refer	to	ni.com/calibration.

mxdevconsid.chm::/Calibration.html
javascript:WWW(WWW_CC)


External	Calibration
External	calibration,	which	is	typically	performed	by	a	metrology	lab,
requires	using	a	high-precision	voltage	source	to	verify	and	adjust
calibration	constants.	This	procedure	replaces	all	calibration	constants	in
the	EEPROM	and	is	equivalent	to	a	factory	calibration.	Because	the
external	calibration	procedure	changes	all	EEPROM	constants,	it
invalidates	the	original	calibration	certificate.	If	an	external	calibration	is
done	with	a	NIST-certified	voltage	source,	a	new	NIST	traceability
certificate	can	be	issued.



Self-Calibration	(Internal	Calibration)
Self-calibration	adjusts	the	calibration	constants	with	respect	to	an
onboard	reference	stored	on	the	device.	The	new	calibration	constants
are	defined	with	respect	to	the	calibration	constants	created	during	an
external	calibration	to	ensure	that	the	measurements	are	traceable	to
these	external	standards.	The	new	calibration	constants	do	not	affect	the
constants	created	during	an	external	calibration	because	they	are	stored
in	a	different	area	of	the	device	memory.	You	can	perform	a	self-
calibration	at	any	time	to	adjust	the	device	for	use	in	environments	other
than	those	in	which	the	device	was	externally	calibrated.	You	use	the
DAQmx	Self	Calibrate	(or	DAQmxSelfCal)	function/VI	to	perform	a	self-
calibration.

Note		Self-calibration	does	not	require	any	external	connections.



Channel	Calibration
Channel	calibration	is	a	technique	used	to	achieve	higher	measurement
accuracy.	In	most	applications,	device	calibration	provides	sufficient
accuracy.	However,	in	applications	where	the	highest	degree	of	accuracy
is	critical,	channel	calibration	is	necessary,	but	it	does	not	replace	device
calibration.	Channel	calibration	compensates	for	various	errors,	including
those	introduced	by	cabling,	wiring,	and	sensors.



Control	in	NI-DAQmx
This	section	explains	control	concepts	as	implemented	in	NI-DAQmx.
Timing	control	loops,	synchronizing	analog	input	and	output,	using
control	algorithms,	single-point	real-time	applications,	and	setting
priorities	for	control	applications	in	LabVIEW	are	described.
For	a	general	introduction	to	control,	independent	of	the	software	you	are
using,	refer	to	the	control	overview.

measfunds.chm::/cntrlOverview.html


NI-DAQmx	Single-Point	Real-Time	Applications
This	section	describes	sample	applications	that	demonstrate	the
functionality	for	hardware-timed	single-point	operations	on	real-time
platforms.
Most	of	these	applications	use	the	Wait	For	Next	Sample	Clock
function/VI,	which	guarantees	tight	synchronization	between	the
hardware	layer	and	the	software	layers	for	hardware-timed	single-point
tasks.	Wait	For	Next	Sample	Clock	provides	an	accurate	way	to	correlate
application	execution	to	hardware	signals,	such	as	the	sample	clock	for
the	given	task,	while	providing	feedback	on	the	overall	real-time
execution	of	the	control	loop.
The	following	sections	present	common	control	applications:

Hardware-Timed	Simultaneously	Updated	I/O
Hardware-Timed	Simultaneously	Updated	I/O	with	Data
Exchanges	between	Time-Critical	and	Non-Time-Critical	Loops
Hardware-Timed	Input,	Software-Timed	Output
Hardware-Timed	Counter	Tasks
Software-Timed	I/O
Hardware-Timed	Simultaneously	Updated	I/O	Using	the	Timed
Loop	(LabVIEW	Only)



Hardware-Timed	Simultaneously	Updated	I/O
Requirement
The	I/O	must	be	hardware-timed.	All	output	values	need	to
simultaneously	update	at	the	arrival	of	the	sample	clock	edge.



Solution
Use	the	Wait	For	Next	Sample	Clock	function/VI	to	verify	that	a	new
sample	clock	edge	has	not	yet	occurred.
Advantages

The	current	iteration's	output	samples	are	guaranteed	to	be
aligned	with	the	next	iteration's	input	samples.
NI-DAQmx	returns	an	error	if	the	Wait	For	Next	Sample	Clock
function/VI	does	not	start	before	the	next	sample	clock	edge
occurs.
I/O	jitter	is	confined	to	the	jitter	of	the	hardware	clock,	which	is	on
the	order	of	a	few	nanoseconds.

Restrictions
Read,	process,	and	write	operations	are	confined	to	the	time	available
between	the	moment	the	device	starts	acquiring	data	and	the	moment
the	next	sample	clock	edge	arrives.



Sample	Application
An	example	of	this	kind	of	application	is	an	analog	control	loop	that	reads
samples	from	a	specific	number	of	analog	input	channels,	processes	the
data	using	a	control	algorithm	(such	as	PID),	and	writes	new	control
values	to	the	analog	output	channels.

Related	Topic
Hardware-Timed	Simultaneously	Updated	I/O



LabVIEW	Example—Hardware-Timed
Simultaneously	Updated	I/O

Note		Although	this	example	is	written	for	LabVIEW	users,	the
principles	apply	if	you	are	using	another	ADE,	such	as
LabWindows/CVI.



LabVIEW	Example
Wire	the	Wait	For	Next	Sample	Clock	VI	to	one	of	the	hardware-
timed	tasks.	Use	dataflow	wiring	to	guarantee	that	the	Wait	For
Next	Sample	Clock	VI	executes	after	the	AO	Write	call.
If	the	Wait	For	Next	Sample	Clock	VI	does	not	start	before	the
arrival	of	the	next	sample	clock	edge,	it	returns	an	error.



Sample	Block	Diagram



Notes
Use	only	one	Wait	For	Next	Sample	Clock	VI	within	a	LabVIEW
loop.	If	you	have	multiple	hardware-timed	single-point	I/O	tasks
within	the	same	LabVIEW	loop,	you	can	connect	the	Wait	For
Next	Sample	Clock	VI	to	any	one	hardware-timed	single	point
task	within	that	loop.
If,	when	a	cycle	overflow	occurs,	you	want	to	receive	a	warning
rather	than	an	error,	set	the	DAQmx	Real-Time»Convert	Late
Errors	to	Warnings	property	to	True.
Wait	For	Next	Sample	Clock	has	two	modes	of	operation:	Polling
and	Wait	For	Interrupt.	Wait	For	Interrupt	mode,	which	is	the
default,	allows	lower	priority	processes	to	execute	while	the	time-
critical	loop	waits	for	the	next	sample	clock.	Polling	mode	allows
for	higher	sampling	rates,	but	it	prevents	lower	priority	processes
in	the	system	from	executing	while	the	time-critical	loop	waits	for
the	next	sample	clock.
Analog	DAQmx	Read	calls	have	two	modes	of	operation:	Polling
and	Wait	For	Interrupt.	Wait	For	Interrupt	mode	allows	lower
priority	processes	to	execute	while	the	time-critical	loop	waits	for
all	the	requested	samples	to	be	converted.	Polling	mode	allows
for	higher	sampling	rates,	but	it	prevents	lower	priority	processes
in	the	system	from	executing	while	the	time-critical	loop	waits	for
the	converted	analog	samples.
The	specific	application	shown	in	this	section	assumes	the	use	of
Wait	For	Interrupt	mode	for	both	the	Wait	For	Next	Sample	Clock
VI	and	the	DAQmx	Analog	Read	VI.	Too	change	these	values,
use	the	DAQmx	Read»Advanced»Wait	Mode	and/or	DAQmx
Real-Time»Wait	For	Next	Sample	Clock	Wait	Mode	properties.



Hardware-Timed	Simultaneously	Updated	I/O
with	Data	Exchanges	between	Time-Critical	and
Non-Time-Critical	Loops
Requirement
The	I/O	needs	to	be	hardware-timed.	All	output	values	need	to
simultaneously	update	at	the	arrival	of	the	sample	clock	edge.	Data
needs	to	be	exchanged	between	a	time-critical	loop	and	lower-priority
processes.



Solution
Use	the	Wait	For	Next	Sample	Clock	function/VI	to	verify	that	a
new	sample	clock	edge	has	not	yet	occurred.
Place	the	communication	code	(usually	real-time	FIFOs	in
LabVIEW	or	a	thread-safe	queue	in	LabWindows/CVI)	after	the
Wait	For	Next	Sample	Clock	function/VI.

Advantages
The	current	iteration's	output	samples	are	guaranteed	to	be
aligned	with	the	next	iteration's	input	samples.
NI-DAQmx	returns	an	error	if	the	Wait	For	Next	Sample	Clock
function/VI	does	not	start	before	the	next	sample	clock	edge
occurs.
I/O	jitter	is	confined	to	the	jitter	of	the	hardware	clock,	which	is	on
the	order	of	a	few	nanoseconds.
Hardware-timed	counter	input	operations	have	no	conversion
period	similar	to	that	of	multiplexed	analog	input.	Therefore,	you
can	place	the	real-time	FIFO,	or	the	thread-safe	queue,
anywhere	within	the	loop.

Restrictions
Read,	process,	and	write	operations	are	confined	to	the	amount	of	time
available	between	the	moment	the	device	starts	acquiring	data	and	the
moment	the	next	sample	clock	edge	arrives.



Sample	Application
An	example	of	this	kind	of	application	is	an	analog	control	loop	that	reads
samples	from	a	specific	number	of	analog	input	channels,	processes	the
data	using	a	control	algorithm	(such	as	PID),	and	writes	the	new	control
values	to	the	analog	output	channels.	The	application	uses	a	real-time
FIFO	to	stop	the	control	loop	based	on	a	Boolean	value	provided	by	a
lower-priority	process.	A	similar	approach	can	employ	the	use	of	real-time
FIFOs	to	vary	the	PID	parameters	on	the	fly,	or	to	transfer	acquired	and
control	output	values	to	lower-priority	processes	for	data	logging	and
remote	monitoring.



Timing	Diagram

Related	Topic
LabVIEW	example	for	Hardware-Timed	Simultaneously	Updated	I/O
with	Data	Exchanges	between	Time-Critical	and	Non-Time-Critical
Loops



LabVIEW	Example—Hardware-Timed
Simultaneously	Updated	I/O	with	Data
Exchanges	between	Time-Critical	and	Non-Time-
Critical	Loops

Note		Although	this	example	is	written	for	LabVIEW	users,	the
principles	apply	if	you	are	using	another	ADE,	such	as
LabWindows/CVI.
Wire	the	Wait	For	Next	Sample	Clock	VI	to	one	of	the	hardware-
timed	tasks.	Use	dataflow	wiring	to	guarantee	that	the	Wait	For
Next	Sample	Clock	VI	executes	after	the	AO	Write	call.
Use	dataflow	wiring	to	guarantee	that	the	real-time	FIFO
operations	execute	after	the	Wait	For	Next	Sample	Clock	VI
executes.
If	the	Wait	For	Next	Sample	Clock	VI	does	not	execute	before	the
arrival	of	the	next	sample	clock	edge,	it	returns	an	error.



Sample	Block	Diagram



Notes
Use	only	one	Wait	For	Next	Sample	Clock	VI	within	a	LabVIEW
loop.	If	you	have	multiple	hardware-timed	I/O	tasks	within	the
same	LabVIEW	loop,	you	can	connect	the	Wait	For	Next	Sample
Clock	VI	to	any	one	hardware-timed	single-point	task	within	that
loop.
If,	when	a	cycle	overflow	occurs,	you	want	to	receive	a	warning
rather	than	an	error,	set	the	DAQmx	Real-Time»Convert	Late
Errors	to	Warnings	property	to	True.
Although	you	do	not	have	to	place	the	real-time	FIFO	code	after
the	Wait	For	Next	Sample	Clock	VI,	it	is	highly	recommended	that
you	do	so	when	dealing	with	multiple-channel	analog	input
operations	on	multiplexed	devices	(such	as	E	and	M	Series).
Because	the	device	can	spend	up	to	50%	of	the	sample	period
converting	samples	on	the	analog	input	channels,	executing	the
FIFO	code	during	this	conversion	period	has	the	advantage	of
using	up	otherwise	idle	time.
You	can	increase	the	Analog	Input	Conversion	Rate	manually
through	the	DAQmx	Timing	Property	Node.	This	reduces	the	total
amount	of	time	spent	converting	the	requested	number	of
samples.	It	is	important	to	consider	the	minimum	settling	time
specifications	for	the	complete	data	acquisition	system	to	avoid
signal	degradation	and	interference.



Hardware-Timed	Input,	Software-Timed	Output
Requirement
An	analog	input	task	must	be	hardware-timed.	The	output	task	does	not
need	hardware	synchronization	with	the	sample	clock	edge.



Solution
Use	the	DAQmx	real-time	Report	Missed	Samples	attribute/property,
which	returns	an	error	if	new	samples	are	available	before	the	read
operation	finishes	converting	samples	from	the	previous	iteration.
Advantages

Input	samples	are	hardware-timed.
Read,	process,	and	write	operations	can	overflow	into	the	next
sample	period,	as	long	as	enough	time	remains	for	the
subsequent	read	operation	to	complete	on	the	next	set	of	input
samples.	An	application	that	acquires	data	from	multiple
channels	on	multiplexed	devices	(such	as	E	Series	and	M	Series)
has	to	wait	for	the	device	to	convert	input	samples	before	the
read	operation	can	return.	By	allowing	process	and	write
operations	to	overflow	into	the	next	sample	period,	the
application	takes	advantage	of	otherwise	idle	time.	This	enables
the	application	to	achieve	higher	control-loop	rates.

Restrictions
Output	updates	suffer	from	software	jitter	because	they	are	not	hardware-
timed.



Sample	Application
An	example	of	this	kind	of	application	is	an	analog	control	loop	that	reads
samples	from	a	specific	number	of	multiplexed	analog	input	channels,
processes	the	data	using	a	control	algorithm	(such	as	PID),	and	writes
the	new	control	values	to	the	analog	output	channels	using	a	software-
timed	task.



Timing	Diagram

Related	Topic
LabVIEW	example	for	hardware-timed	input,	software-timed	output



LabVIEW	Example—Hardware-Timed	Input,
Software-Timed	Output

Note		Although	this	example	is	written	for	LabVIEW	users,	the
principles	apply	if	you	are	using	another	ADE,	such	as
LabWindows/CVI.
Set	the	Report	Missed	Samples	property	for	the	analog	input
operation	to	True.
The	analog	input	operation	returns	an	error	if	new	samples	are
available	before	the	read	operation	finishes	converting	samples
from	the	previous	iteration.



Sample	Block	Diagram



Notes
If,	when	an	Analog	Input	Read	overflow	error	occurs,	you	prefer
to	receive	a	warning	rather	than	an	error,	set	the	Convert	Late
Errors	to	Warnings	property	to	True.
Do	not	use	the	Wait	For	Next	Sample	Clock	VI	and	the	Report
Missed	Samples	property	within	the	same	LabVIEW	loop.
Only	hardware-timed	single-point	analog	input	tasks	support	the
Report	Missed	Samples	property.
Because	the	analog	output	task	is	software	timed,	the	value	is
written	out	as	soon	as	the	write	call	is	initiated.	It	does	not	wait	for
a	hardware	clock	to	output	the	data.



Hardware-Timed	Counter	Tasks
Requirement
Use	hardware-timed	counter	input	operations	to	drive	a	control	loop.



Solution
Use	the	Wait	For	Next	Sample	Clock	function/VI	to	synchronize	the
counter	operations	with	the	counter's	sample	clock.
Advantages

Counter	tasks	allow	for	flexible	timing	and	event	detection
operations	that	can	drive	the	software	processing	of	the	control
loop.	In	other	words,	the	control	loop	can	have	a	dynamic	clock
rate.
NI-DAQmx	returns	an	error	if	the	Wait	For	Next	Sample	Clock
function/VI	does	not	start	before	the	next	sample	clock	edge
arrives.

Restrictions
Read,	process,	and	write	operations	are	confined	to	the	time	available
between	the	moment	the	device	starts	acquiring	data	and	the	moment
the	next	sample	clock	edge	arrives.



Sample	Application
An	example	of	this	kind	of	application	is	a	control	loop	that	uses	a
counter	input	task,	such	as	count	edges,	while	controlling	digital	lines
based	on	some	predefined	control	logic.	This	sample	application
performs	communication	through	the	use	of	real-time	FIFOs.	In
LabWindows/CVI,	you	can	use	a	thread-safe	queue	instead	of	real-time
FIFOs.



Timing	Diagram



Sample	Application	2
Another	example	application	is	a	control	loop	that	monitors	discrete
inputs	and	uses	the	values	to	update	a	counter	output	task,	using	pulse
frequency	mode	to	generate	pulse-width	modulation	control	signals.	This
example	application	performs	communication	through	the	use	of	real-
time	FIFOs.	In	LabWindows/CVI,	you	can	use	a	thread-safe	queue
instead	of	real-time	FIFOs.



Timing	Diagram

Related	Topic
LabVIEW	example	for	Hardware-Timed	Counter	Tasks



LabVIEW	Example—Hardware-Timed	Counter
Tasks

Note		Although	this	example	is	written	for	LabVIEW	users,	the
principles	apply	if	you	are	using	another	ADE,	such	as
LabWindows/CVI.
Wire	the	Wait	For	Next	Sample	Clock	VI	to	the	counter	input	task.
If	the	Wait	For	Next	Sample	Clock	VI	does	execute	before	the
arrival	of	the	next	sample	clock	edge,	it	returns	an	error.



Sample	Block	Diagram



Example	2
Wire	the	Wait	For	Next	Sample	Clock	VI	to	the	counter	output
task.
If	the	Wait	For	Next	Sample	Clock	VI	does	not	execute	before	the
arrival	of	the	next	sample	clock	edge,	it	returns	an	error.



Sample	Block	Diagram



Notes
Use	only	one	Wait	For	Next	Sample	Clock	VI	within	a	LabVIEW
loop.	If	you	have	multiple	hardware-timed	I/O	tasks	within	the
same	LabVIEW	loop,	you	can	connect	the	Wait	For	Next	Sample
Clock	VI	to	any	one	hardware-timed	single	point	task	within	that
loop.
If,	when	a	cycle	overflow	occurs,	you	want	to	receive	a	warning
rather	than	an	error,	set	the	DAQmx	Real-Time»Convert	Late
Errors	to	Warnings	property	to	True.
Hardware-timed	counter	operations	have	no	conversion	period
similar	to	that	of	multiplexed	analog	input.	Therefore,	the	real-
time	FIFO	can	be	placed	anywhere	within	the	LabVIEW	loop.
NI-DAQmx	provides	a	mechanism	to	recover	after	missing	a
sample	clock	edge	when	performing	counter	writes.	If	this	write
recovery	mechanism	is	not	successful,	NI-DAQmx	returns	an
error,	and	subsequent	operations	on	that	task	are	no	longer
hardware	timed.
The	DAQmx	Real-Time»Write	Recovery	Mode	property	allows
you	to	choose	between	Wait	For	Interrupt	or	Polling	mode	for	the
recovery	mechanism.	Wait	For	Interrupt,	which	is	the	default,
allows	lower	priority	processes	to	execute	while	NI-DAQmx
attempts	to	recover.	Polling	mode,	on	the	other	hand,	allows	for
higher	sampling	rates.



Software-Timed	I/O
Requirement
The	I/O	tasks	do	not	support	hardware-timed	operations.



Solution
Apply	software	timing	to	your	time-critical	loop	by	using	the	Timed	Loop
in	LabVIEW	or	asynchronous	timers	in	LabWindows/CVI.	Configure	your
NI-DAQmx	tasks	to	use	on-demand	timing.
Advantages

You	can	perform	I/O	control	loops	with	operations	that	are	not
hardware-timed.
Read,	process,	and	write	operations	are	confined	to	the	software
timing	period	that	you	define	with	the	Timed	Loop	or
asynchronous	timers.

Restrictions
I/O	samples	suffer	from	software	jitter.



Sample	Application
An	example	of	this	kind	of	application	is	a	digital	I/O	control	loop.	The
application	monitors	the	state	of	several	discrete	inputs	and	toggles	the
corresponding	output	based	on	the	control	algorithm.	Hardware	timing	is
not	available	for	single-point	digital	I/O	tasks	in	NI-DAQmx.



Timing	Diagram

Related	Topic
LabVIEW	example	for	software-timed	I/O



LabVIEW	Example—Software-Timed	I/O
Note		Although	this	example	is	written	for	LabVIEW	users,	the
principles	apply	if	you	are	using	another	ADE,	such	as
LabWindows/CVI.
A	Timed	Loop	running	off	the	system's	time	sources	(millisecond
or	microsecond	resolution)	accomplishes	the	task.	Configure	the
Timed	Loop	to	run	at	the	desired	rate.
Configure	all	tasks	to	be	software-timed	(on	demand).
The	Timed	Loop	provides	feedback	to	the	application	as	to
whether	the	previous	iteration	completed	in	time.	It	does	this
through	the	"Finished	Late	[i-1]"	node.



Sample	Block	Diagram



Notes
The	Timed	Loop	allows	the	application	to	adjust	its	period	from
within	the	loop,	allowing	the	implementation	of	dynamic	timing
algorithms	for	control.
Lower-priority	processes	can	execute	while	the	Timed	Loop	waits
until	its	next	iteration.
Other	software	timing	methods	include	the	use	of	the	Wait	and
Wait	Until	next	multiple	VIs	(with	microsecond	or	milliseconds
resolution).	These	methods	provide	no	feedback	when	the
application	falls	behind.



Hardware-Timed	Simultaneously	Updated	I/O
Using	the	Timed	Loop	(LabVIEW	Only)
Requirement
I/O	needs	to	be	hardware-timed.	All	output	values	need	to	simultaneously
update	at	the	arrival	of	the	sample	clock	edge.	The	application	uses	the
Timed	Loop.



Solution
Use	the	DAQmx	Create	Timing	Source	function/VI	to	create	a	timing
source	that	drives	a	Timed	Loop	that	contains	the	I/O	operations	and	the
control	algorithm.
Advantages

Using	a	timing	source	allows	you	to	specify	an	I/O	signal	(for
example,	the	sample	clock	signal)	to	trigger	the	execution	of
Timed	Loop	iterations.
Timing	sources	such	as	the	Control	Loop	From	Task	provide
strict	lateness	checking	and	allow	other	threads	to	execute	while
several	analog	channels	are	being	multiplexed	and	sampled.
The	Timed	Loop	provides	feedback	as	to	whether	the	iterations
complete	in	time.
Multi-rate	applications,	using	distinct	I/O	hardware	subsystems,
are	possible	by	extending	this	approach	to	multiple	Timed	Loops.

Restrictions
Minor	increase	in	overhead	when	compared	to	a	regular
LabVIEW	While	Loop
Requires	additional	code	to	handle	warm-up	iterations



Sample	Application
An	example	of	this	kind	of	application	is	an	analog	control	loop	that	reads
samples	from	a	specific	number	of	analog	input	channels,	processes	the
data	using	a	control	algorithm	(such	as	PID),	and	writes	the	new	control
values	to	the	analog	output	channels.
You	can	create	such	an	application	with	the	Control	Loop	From	Task
timing	source.	The	Control	Loop	From	Task	timing	source	uses	the
sample	clock	signal	from	the	analog	input	task,	which	allows	strict
lateness-checking	of	all	tasks	associated	with	that	sample	clock.
The	Control	Loop	From	Task	timing	source	also	allows	you	to	specify	a
delay	between	the	time	the	sample	clock	event	is	handled	and	the	time
the	Timed	Loop	starts	executing.	This	delay,	or	sleep	time,	keeps	the
Analog	Input	Read	function/VI	inside	the	Timed	Loop	from	using	100%	of
the	CPU	time	available	while	waiting	for	the	analog	input	samples	to	be
multiplexed	and	digitized.



Timing	Diagram

Related	Topic
LabVIEW	example	for	hardware-timed	simultaneously	updated	I/O
using	the	Timed	Loop



LabVIEW	Example—Hardware-Timed
Simultaneously	Updated	I/O	Using	the	Timed
Loop

Create	a	Control	Loop	From	Task	timing	source	for	the	Timed
Loop.	This	signal	serves	as	the	timebase	that	drives	the
execution	of	the	Timed	Loop.
The	Timed	Loop	provides	feedback	to	the	application	as	to
whether	the	previous	iteration	completed	in	time.	It	does	this
through	the	"Finished	Late	[i-1]"	node.
Allow	a	few	warm-up	iterations	to	account	for	the	effects	of
processor-caching	and	other	events	that	may	occur	during	the
first	iterations	of	the	loop.



Sample	Block	Diagram



Notes
The	Analog	Input	Read	VI	is	implicitly	configured	to	polling	mode
when	using	the	Control	Loop	From	Task	timing	source.	Polling
mode	avoids	the	additional	scheduling	overhead	associated	with
interrupts	inside	the	Timed	Loop.
You	can	increase	the	Analog	Input	Conversion	Rate	manually
through	DAQmx	Timing	properties.	This	reduces	the	total	amount
of	time	spent	converting	the	requested	number	of	samples.	It	is
important	to	consider	the	minimum	settling	time	specifications	for
the	complete	data	acquisition	system	to	avoid	signal	degradation
and	interference.
Do	not	use	the	Wait	For	Next	Sample	Clock	VI	for	any	of	these
tasks.
Lower-priority	processes,	including	other	Timed	Loops	with	lower
priorities,	can	execute	while	the	Timed	Loop	waits	until	its	next
iteration.
To	optimize	multi-channel	control	applications	in	which	lower-
priority	threads	might	require	additional	processing	time,	provide
a	non-zero	value	for	the	sleep	time	(us)	parameter	of	the	Create
Timing	Source	VI.	This	non-zero	value	allows	other	threads	to
use	the	time	spent	converting	analog	input	samples	to	perform
other	tasks	such	as	communication	or	logging	to	disk.
The	maximum	amount	of	sleep	time	you	can	set	without
impacting	the	overall	rate	of	the	application	depends	on	several
factors,	including	the	number	of	analog	channels	being	acquired,
the	sample	conversion	rate,	and	the	system's	specifications.

The	following	diagram	shows,	for	multiple	channel	configurations,	the
effect	of	the	amount	of	sleep	over	the	maximum	achievable	rate	and	the
amount	of	work	lower-priority	threads	can	execute	at	such	rates.



*See	benchmark	configuration	below.
The	graph	shows	that,	when	acquiring	8	channels	using	a	specific
hardware	and	software	configuration,	the	maximum	achievable	rate
decreases	as	soon	as	the	amount	of	sleep	time	increases	from	0	to	5	µs.
This	is	not,	however,	the	case	for	the	12-	and	16-channel	configurations,
for	which	increasing	the	amount	of	sleep	up	to	10	and	15	µs	respectively
has	no	visible	effect	on	the	maximum	achievable	I/O	rates.	In	the	12-	and
16-channel	case,	the	additional	sleep	interval	allows	other	threads	to
execute	more	work	(refer	to	definition	below)	without	affecting	the	overall
I/O	rate	of	the	application.



Benchmark	Configuration
Hardware	Configuration:

NI	PXI-8196	RT	Controller
NI	PXI-6070	E	Series	MIO	device
NI	PXI-6723	Analog	Output	device

Software	Configuration:
LabVIEW	Real-Time	8.0
NI-DAQmx	8.0
Ethernet	driver	set	to	polling	mode

Benchmark	details:
A	work	unit	is	defined	as	the	number	of	times	a	normal-priority
loop	can	increment	an	unsigned	64-bit	number	while	the	I/O
Timed	Loop,	depicted	in	the	sample	block	diagram	above,	runs	in
parallel	with	it.
The	analog	input	conversion	is	not	explicitly	configured.	This
means	that	the	DAQmx	driver	auto-calculates	it	based	on	the
number	of	channels	and	desired	sample	clock	rate.



Timing	Control	Loops
You	can	time	control	loops	using	software	timing	or	hardware	timing.	You
can	also	use	the	Timed	Loop	structure.
For	software	timing,	the	software	and	operating	system	determines	the
rate	at	which	the	loop	executes.	Software	timing	is	not	deterministic.
Controlling	a	while	loop	and	using	the	Wait	Until	Next	ms	Multiple	VI	to
handle	timing	is	an	example	of	a	software-timed	loop.	Hardware	timing
uses	the	DAQ	device	internal	clock	or	an	external	clock	to	control	when	a
read	executes	within	a	loop.	The	example	block	diagram	shown	in
Control	Loops	in	the	Common	Applications	section	uses	hardware	timing.
The	Timed	Loop	structure	is	hardware	timed.	It	is	ideal	for	multirate
applications.	By	default,	the	Timed	Loop	uses	the	1	kHz	clock	of	the
Windows	operating	system	as	its	timing	source.	Refer	to	your	LabVIEW
Help	for	more	information	about	the	Timed	Loop	structure.

Note		The	Timed	Loop	is	only	available	in	LabVIEW	7.1	and	later.

measfunds.chm::/realTime.html


Control	Algorithms
There	are	many	data	processing	algorithms	to	consider	when	creating	a
control	application.	You	can	create	custom	control	algorithms	using
LabVIEW.	You	also	can	use	VIs,	such	as	the	LabVIEW	Control	Design
and	Simulation	Module	VIs	and	Functions,	to	process	control	application
data.	This	module	offers	several	libraries	that	you	can	use	to	design,
analyze,	simulate,	and	deploy	dynamic	system	models,	including
controllers.



Synchronizing	Analog	Input	and	Output
You	can	time	analog	output	events	and	synchronize	the	events	to	the
analog	input	clock.	You	can	share	a	common	clock	for	A/D	and	D/A
conversions	to	ensure	that	both	occur	simultaneously.	The	advantage	of
this	method	is	that,	so	long	as	your	software	completes	in	time,	you	mask
out	jitter.	One	caveat	is	that	outputs	are	always	one	loop	cycle	behind	the
inputs,	as	shown	in	the	following	figure.

See	also
Synchronization

measfunds.chm::/Synchronization.html


Setting	Priorities	for	Control	Applications	in
LabVIEW
The	relative	priority	of	parallel	processes	is	important	in	a	control
application.	Because	LabVIEW	is	multi-threaded,	you	can	separate	your
application	into	individual	tasks,	each	with	its	own	priority.	By	setting
priorities,	time-critical	tasks	can	take	precedence	over	non-time-critical
tasks.	The	time-critical	task	must	periodically	yield	processor	resources
to	the	lower-priority	tasks	so	they	can	execute.	By	properly	separating	the
time-critical	task	from	lower	priority	tasks,	you	can	reduce	application
jitter.	Refer	to	the	LabVIEW	Real-Time	User	Manual	for	details	on
assigning	priorities	to	tasks.

measfunds.chm::/jitterOverview.html


I/O	Cycles
The	input	and	output	operations	along	with	any	processing	performed
during	a	single	sample	clock	period	are	called	I/O	cycles.	I/O	cycles	can
consist	of	reads	or	writes	only,	but	an	I/O	cycle	in	a	typical	control
application	consists	of	reading	data,	processing	that	data,	then	writing	a
result.



NI-DAQmx	Simulated	Devices
This	section	includes	information	about	timing	and	triggering,	task
behavior,	and	reading	and	writing	data	with	NI-DAQmx	simulated
devices.
Refer	to	the	Measurement	&	Automation	Explorer	Help	for	NI-DAQmx	for
detailed	instructions	on	creating	NI-DAQmx	simulated	devices	and
importing	NI-DAQmx	simulated	device	configurations	onto	physical
devices.
Timing	and	Triggering
Task	Behavior
Reading	and	Writing	Data



Timing	and	Triggering	with	NI-DAQmx	Simulated
Devices
With	NI-DAQmx	simulated	devices,	the	following	timing	and	triggering
considerations	exist:

NI-DAQmx	simulated	devices	simulate	timing	for	continuous
analog	input,	digital	input,	and	all	output	tasks.	Timing	is	not
simulated	for	counter	tasks.
NI-DAQmx	simulated	devices	do	not	cause	a	timed	loop	to
execute.
NI-DAQmx	simulated	devices	support	software	events.	However,
events	that	rely	on	the	hardware,	such	as	a	sample	clock	event,
are	not	supported.
Triggers	always	occur	immediately.
Watchdog	timers	do	not	expire.



Task	Behavior	of	NI-DAQmx	Simulated	Devices
NI-DAQmx	tasks	using	NI-DAQmx	simulated	devices	are	verified	just	as
tasks	are	on	physical	devices.	If	a	property	is	set	to	an	invalid	value,	the
error	returned	for	an	NI-DAQmx	simulated	device	is	identical	to	the	error
returned	for	a	real	device.	All	resources	necessary	for	the	task	are
reserved	for	NI-DAQmx	simulated	devices.	RTSI	lines,	PXI	Trigger	lines,
DMA	channels,	counters,	and	so	on	are	counted	and	reserved	just	as	on
physical	devices.

Note		NI-DAQmx	simulated	devices	cannot	be	included	in	the
same	task	with	physical	devices.



Reading	and	Writing	Data	with	NI-DAQmx
Simulated	Devices
All	NI-DAQmx	simulated	devices	return	analog	input	data	in	the	form	of	a
full-scale	sine	wave	with	3%	of	full-scale	noise.	When	multiple	channels
are	in	the	task,	the	data	for	each	channel	is	offset	5	°	in	time.	Digital	data
is	always	returned	as	if	each	eight-bit	port	were	a	binary	counter.	Counter
data	is	always	returned	as	0.
Data	written	to	an	NI-DAQmx	simulated	device	is	scaled	as	if	the	device
were	real.



Deployment
Deployment	refers	to	developing	an	application	so	that	it	can	be
distributed,	or	deployed,	on	a	different	computer	than	the	one	on	which
the	application	was	developed.	To	deploy	an	application,	you	need	the
saved	application	and	any	configuration	information	the	application	and
system	requires.
When	deploying	an	application,	you	must	coordinate	the	use	of
configuration	items	that	can	be	shared	among	multiple	tasks.	This
includes	devices,	scales,	and	global	virtual	channels.



Developing	Applications	for	Deployment
You	can	deploy	NI-DAQmx	applications	in	several	ways:

You	can	use	the	MAX	Export	Wizard	to	deploy	an	entire	setup	to
another	computer,	including	tasks,	channels,	scales,	and	devices.
You	can	use	the	MAX	Export	Wizard	to	deploy	an	entire	setup,
except	the	device	configurations,	to	another	computer.	You	might
choose	to	do	this	if	the	target	computer	already	has	tasks	that
rely	on	existing	device	configurations.	In	this	case,	you	might
have	to	make	modifications	after	deployment	so	that	your	tasks
and	channels	refer	to	the	device	configurations	on	the	target
computer.
You	can	use	the	MAX	Export	Wizard	initially	to	deploy	a	fixed	set
of	device,	scale,	and	global	virtual	channel	configurations	among
a	group	of	users.	Each	member	of	the	group	can	create	tasks
that	rely	on	the	shared	configurations,	then	create	applications
that	use	these	tasks,	and	finally	share	the	applications	within	the
group.	In	some	cases,	the	tasks	deploy	with	the	applications
automatically.	In	other	cases,	you	must	deploy	the	tasks
separately	from	the	applications.	Refer	to	the	Deploying	Tasks
and	Channels	section	for	more	information.



Deploying	Tasks	and	Channels
Your	tasks	and	channels	deploy	automatically	with	your	application	under
the	following	circumstances:

You	use	LabVIEW	Express	VIs	for	your	DAQ	applications.
You	save	your	tasks	within	a	LabWindows/CVI	or	Measurement
project,	and	the	tasks	use	local	channels	only.
You	create	your	tasks	and	channels	programmatically	using	the
NI-DAQmx	API.

You	must	deploy	your	tasks	and	channels	using	the	MAX	Export	Wizard
if	you	create	your	tasks	and	channels	in	the	following	ways:

You	create	your	tasks	and	channels	directly	in	MAX.
You	create	your	tasks	and	channels	in	LabVIEW	from	the	Task
Name	and	Channel	Name	controls	and	do	not	generate
configuration	code.
You	create	your	tasks	in	LabWindows/CVI	and	neither	generate
configuration	code	nor	copy	the	tasks	to	your	project.



DAQmx	I/O	Server	and	Virtual	Channels
In	NI-DAQmx	8.0	or	later,	you	can	set	up	distributed	applications	to
combine	remote	data	applications	using	the	NI-DAQmx	I/O	Server.	For
instance,	you	can	configure	a	central	computer	to	monitor	other
computers	that	control	hardware	sensors	by	using	shared	variables.	You
can	connect	to	the	NI-DAQmx	I/O	Server	through	LabVIEW	8.0,	but
LabVIEW	is	not	required.	If	you	use	a	third-party	OPC	client,	you	also
can	access	DAQ	channels.

Note		You	must	have	at	least	one	global	virtual	channel	defined
either	in	the	project	or	in	Measurement	&	Automation	Explorer
(MAX)	to	use	the	NI-DAQmx	I/O	Server.	Global	virtual	channels	of
any	I/O	type	can	be	bound	to	shared	variables,	but	tasks	cannot.

When	using	a	third-party	OPC	client,	connect	to	the	variable	engine
server	to	access	DAQ	channels	on	the	network.
Refer	to	the	LabVIEW	Help	for	information	about	binding	to	a	DAQ
channel	using	a	shared	variable	in	a	LabVIEW	Project.



Translation	Guide—Traditional	NI-DAQ	(Legacy)
to	NI-DAQmx
The	following	topics	cover	terminology	changes	from	Traditional	NI-DAQ
(Legacy)	to	NI-DAQmx.	These	topics	are	intended	for	users	of	Traditional
NI-DAQ	(Legacy)	who	are	transitioning	to	NI-DAQmx.	Terminology	for
both	the	C	API	and	LabVIEW	are	included.

Common	Clock	Names
Analog	Input	Clock	and	Trigger	Names
Analog	Input	Read	Terminology
Analog	Output	Clock	and	Trigger	Names
Analog	Output	Write	Terminology
Analog	Output	Physical	Channel	Names
Counter	Clock	and	Trigger	Names
Counter	Application	Names
Counter	Physical	Channel	Names
Digital	Physical	Channel	Names



Common	Clock	Names	in	Traditional	NI-DAQ
(Legacy)	and	NI-DAQmx
The	following	table	translates	terms	from	Traditional	NI-DAQ	(Legacy)	to
NI-DAQmx	for	the	C	API	and	the	LabVIEW	API.

Traditional
NI-DAQ
(Legacy)	C
API

Traditional	NI-
DAQ	(Legacy)
LabVIEW

NI-
DAQmx Explanation

Board	Clock Board	Clock 20	MHz
Timebase

The	onboard	clock	source	for
the	master	timebase	from
which	other	timebases	are
derived



Analog	Input	Terminology	in	Traditional	NI-DAQ
(Legacy)	and	NI-DAQmx
This	section	explains	the	differences	between	Traditional	NI-DAQ
(Legacy)	and	NI-DAQmx	in	the	following	areas:

Analog	Input	Clock	and	Trigger	Names
Analog	Input	Read	Terminology



Analog	Input	Clock	and	Trigger	Names	in
Traditional	NI-DAQ	(Legacy)	and	NI-DAQmx
The	following	table	translates	terms	from	Traditional	NI-DAQ	(Legacy)	to
NI-DAQmx	for	the	C	API	and	the	LabVIEW	API.

Traditional
NI-DAQ
(Legacy)	C
API

Traditional
NI-DAQ
LabVIEW

NI-DAQmx Explanation

Sample
Interval
Counter
(and
Channel
Clock)

Channel
Clock	or
Interchannel
Delay

AI	Convert
Clock

The	E	Series	clock	that	directly
causes	analog-to-digital
conversions

Points	per
Second	(as
Sample
Rate)

Channels
per	Second

Conversions
per	Second

Units	for	specifying	AI	convert
clock	rate

Sample
Timebase
(and
Channel
Clock
Timebase)

Timebase AI	Convert
Clock
Timebase

The	clock	that	is	divided	down
to	produce	the	AI	convert	clock

Sample
Interval

Timebase
Divisor

AI	Convert
Clock
Timebase
Divisor

The	number	of	AI	Convert
Timebase	ticks	used	to	divide
down	the	AI	Convert	Timebase

Scan
Interval
Counter
(and	Scan
Clock)

Scan	Clock Sample
Clock

The	clock	that	controls	the	time
interval	between	samples.	Each
time	the	sample	clock	ticks
(produces	a	pulse)	one	sample
per	channel	is	acquired.

Scans	per
Second	(as

Scans	per
Second

Samples
per	Channel

Units	for	specifying	sample
acquisition	rate	(the	sample



scanRate) per	Second rate)
Scan
Timebase

Timebase Sample
Clock
Timebase

The	clock	that	is	divided	down
to	produce	the	sample	clock

Scan
Interval

Timebase
Divisor

Sample
Clock
Timebase
Divisor

The	number	of	Sample	Clock
Timebase	ticks	used	to	divide
down	the	Sample	Clock
Timebase

Start	Trigger Start
Trigger

Start	Trigger The	trigger	that	begins	an
acquisition

Stop	Trigger Stop	Trigger Reference
Trigger

The	trigger	that	creates	the
reference	point	between	the
pretrigger	samples	and	the
posttrigger	samples

No
Equivalent

Scan	Clock
Gating

Pause
Trigger

The	signal	that	pauses	and
resumes	an	acquisition

No
Equivalent

ATCOUT Analog
Comparison
Event

The	signal	from	the	analog
comparator	circuit,	used	most
often	for	analog	triggering

SCANCLK SCANCLK AI	Hold
Complete
Event

A	digital	signal	emitted	by	an	E
Series	device	when	the	analog
signal	to	be	converted	by	the
analog-to-digital	converter	has
been	held



Analog	Input	Read	Terminology	in	Traditional	NI-
DAQ	(Legacy)	and	NI-DAQmx
The	following	table	translates	terms	from	Traditional	NI-DAQ	(Legacy)	to
NI-DAQmx	for	the	C	API	and	the	LabVIEW	API.

Traditional	NI-
DAQ	(Legacy)
C	API

Traditional	
NI-DAQ
LabVIEW

NI-
DAQmx Explanation

Reading,
Voltage,	Sample

Sample Sample A	single	measurement	from	a
single	channel

Scan Scan No
Equivalent

A	set	of	samples,	one	from
each	channel	in	the	task

Sample	Count Scans	per
Buffer

Buffer
Size	(in
Samples
per
Channel)

Method	for	specifying	the
buffer	size

No	Equivalent—
the	Sequential
parameter	in
DAQ_Monitor	is
similar

Read/Search
Mode

Relative
To

Where	to	place	the	read
position	prior	to	adding	the
offset

No	Equivalent Read/Search
Offset

Offset After	placing	the	read
position,	this	offset	is	added
to	determine	where	the	read
takes	place;	all	subsequent
reads	use	this	offset	until	the
offset	is	changed

No	Equivalent Read	Mark
Scan

Current
Read
Position

The	current	read	position

No	Equivalent Scan
Backlog

Available
Samples
per
Channel

The	amount	of	unread	data
in	the	buffer



Retrieved End	of	Data
Scan

Total
Samples
per
Channel
Acquired

The	total	number	of	samples
per	channel	acquired	since
the	start	of	the	task

Count Total	Scans
to	Acquire

Samples
per
Channel

The	total	number	of	samples
to	acquire

numPts Number	to
Read

Number	of
Samples
per
Channel

The	number	of	samples	to
read



Analog	Output	Terminology	in	Traditional	NI-
DAQ	(Legacy)	and	NI-DAQmx
This	section	explains	the	differences	between	Traditional	NI-DAQ
(Legacy)	and	NI-DAQmx	in	the	following	areas:

Analog	Output	Clock	and	Trigger	Names
Analog	Output	Write	Terminology
Analog	Output	Physical	Channel	Names



Analog	Output	Clock	and	Trigger	Names	in
Traditional	NI-DAQ	(Legacy)	and	NI-DAQmx
The	following	table	translates	terms	from	Traditional	NI-DAQ	(Legacy)	to
NI-DAQmx	for	the	C	API	and	the	LabVIEW	API.

Traditional
NI-DAQ	C
API

Traditional
NI-DAQ
LabVIEW

NI-
DAQmx Explanation

Update
Clock

Update
Clock

Sample
Clock

The	clock	controlling	the	time	interval
between	samples.	Each	time	the
sample	clock	ticks	(produces	a
pulse)	one	sample	per	channel	is
generated.

Updates
per
Second

Updates
per
Second

Samples
per
Channel
per
Second

Units	for	specifying	digital-to-analog
conversion	(DAC)	rate

Timebase Timebase Sample
Clock
Timebase

The	clock	that	is	divided	down	to
produce	the	sample	clock

Interval Timebase
Divisor

Sample
Clock
Timebase
Divisor

The	number	of	Sample	Clock
Timebase	ticks	used	to	divide	down
the	Sample	Clock	Timebase

Start
Trigger

Start
Trigger

Start
Trigger

The	trigger	that	begins	a	generation

No
Equivalent

Gate Pause
Trigger

The	signal	that	pauses	and	resumes
a	generation



Analog	Output	Write	Terminology	in	Traditional
NI-DAQ	(Legacy)	and	NI-DAQmx
The	following	table	translates	terms	from	Traditional	NI-DAQ	(Legacy)	to
NI-DAQmx	for	the	C	API	and	the	LabVIEW	API.

Traditional
NI-DAQ	C
API

Traditional
NI-DAQ
LabVIEW

NI-DAQmx Explanation

Voltage,
Sample

Update Sample A	single	measurement
generated	at	a	single
channel

No	Equivalent Update No
Equivalent

A	set	of	samples,	one	for
each	channel	in	the	task

No	Equivalent Write	Mode Relative	To Where	to	place	the	write
position	prior	to	adding	the
offset

No	Equivalent Write	Offset Offset After	placing	the	write
position,	this	offset	is	added
to	determine	where	the
write	takes	place.	All
subsequent	writes	use	this
offset	until	the	offset
changes

No	Equivalent Write	Mark Current	Write
Position

The	place	in	the	buffer
where	the	next	write	begins
if	the	Relative	To
attribute/property	is	Current
Write	Position	and	the
Offset	attribute/property	is	0

No	Equivalent No
Equivalent

Space
Available	in
Buffer

The	number	of	samples	that
can	be	written	without
overwriting	a	sample	that
has	not	been	output

pointsDone,
itersDone

Output	Mark,
Buffer
Iterations

Total
Samples	Per
Channel

The	total	number	of
samples	that	have	been
generated	by	the	device



Generated since	the	task	began
oldDataStop Regeneration

Mode
Regeneration The	attribute/property	that

controls	whether	old	data	is
regenerated

partialTransfer Regeneration
Mode

No
Equivalent

To	stop	a	waveform
generation	after	a	specific
number	of	samples	are
generated,	set	the	NI-
DAQmx	attribute/property
samples	per	channel	to
the	desired	number	of
samples.

Iterations Iterations Samples	per
Channel

To	generate	a	finite	number
of	iterations	of	a	buffer,	set
the	samples	per	channel
attribute/property	to	I	×	N,
where	I	is	the	desired
number	of	iterations,	and	N
is	the	number	of	samples
per	channel	in	the	buffer.



Analog	Output	Physical	Channel	Names	in
Traditional	NI-DAQ	(Legacy)	and	NI-DAQmx
The	following	table	translates	terms	from	Traditional	NI-DAQ	(Legacy)	to
NI-DAQmx.

Traditional
NI-DAQ

NI-
DAQmx Explanation

0,	1,	and
so	on

Dev1/ao0,
Dev1/ao1,
and	so	on

In	Traditional	NI-DAQ	(Legacy),	physical	channel
names	are	numbers.	In	NI-DAQmx,	physical
channels	are	string	names	that	combine	the
device	name,	the	I/O	type,	and	the	physical
channel	number.



Counter	Terminology	in	Traditional	NI-DAQ
(Legacy)	and	NI-DAQmx
This	section	explains	the	differences	between	Traditional	NI-DAQ
(Legacy)	and	NI-DAQmx	in	the	following	areas:

Counter	Clock	and	Trigger	Names
Counter	Application	Names
Counter	Physical	Channel	Names



Counter	Clock	and	Trigger	Names	in	Traditional
NI-DAQ	(Legacy)	and	NI-DAQmx
The	following	table	translates	terms	from	Traditional	NI-DAQ	(Legacy)	to
NI-DAQmx	for	the	C	API	and	the	LabVIEW	API.

Traditional	NI-
DAQ	(Legacy)	C
API

Traditional	NI-
DAQ	(Legacy)
LabVIEW

NI-
DAQmx Explanation

Start	Trigger Start	Trigger Start
Trigger

The	signal	that	begins	a
counter	operation

Start	Trigger	for
NI	TIO-Based
Devices

Start	Trigger Arm
Start
Trigger

The	signal	that	begins	a
counter	operation

Gate Gate Pause
Trigger

The	signal	that	pauses
and	resumes	a	counter
operation



Counter	Application	Names
The	following	table	translates	terms	from	Traditional	NI-DAQ	(Legacy)	to
NI-DAQmx	for	both	the	C	and	the	LabVIEW	API.

Traditional	NI-
DAQ	(Legacy)
C	API

Traditional	NI-
DAQ	(Legacy)
LabVIEW

NI-DAQmx Explanation

Event	Counting Event	Counting Edge	Counting A	counter	tallies	the
total	number	of	rising
or	falling	edges

No	Equivalent Frequency
Shift-Keying

No	Equivalent NI-DAQmx	does	not
support	frequency
shift-keying

Two	Signal
Edge
Separation
Measurement

Two	Signal
Edge
Separation
Measurement

Two	Edge
Separation
Measurement

The	time	between
the	rising	or	falling
edge	of	one	digital
signal	and	the	rising
or	falling	edge	of
another	digital	signal

Pad
Synchronization

Pad
Synchronization

Digital
Synchronization

Synchronizes	the
input	signal	on	a
particular	PFI	line	to
the	maximum
timebase	available
on	the	device



Counter	Physical	Channel	Names	in	Traditional
NI-DAQ	(Legacy)	and	NI-DAQmx
The	following	table	translates	terms	from	Traditional	NI-DAQ	(Legacy)	to
NI-DAQmx.

Traditional
NI-DAQ
(Legacy)

NI-
DAQmx Explanation

0,	1,	and
so	on

Dev1/ctr0,
Dev1/ctr1,
and	so	on

In	Traditional	NI-DAQ	(Legacy),	physical	channel
names	are	numbers.	In	NI-DAQmx,	physical
channels	are	string	names	that	combine	the
device	name,	the	I/O	type,	and	the	physical
channel	number.



Counter	Attribute/Property	Names
Traditional
NI-DAQ
(Legacy)

NI-DAQmx Explanation

Synchronous
Counting

Duplication
Count
Prevention

Prevents	incorrect	duplicate	counts	caused
by	a	timebase	being	slower	than	the	signal
you	want	to	measure



Digital	Terminology	in	Traditional	NI-DAQ
(Legacy)	and	NI-DAQmx
This	section	explains	the	differences	between	Traditional	NI-DAQ
(Legacy)	and	NI-DAQmx	in	the	physical	channel	names.



Digital	Physical	Channel	Names	in	Traditional
NI-DAQ	(Legacy)	and	NI-DAQmx
The	following	table	translates	terms	from	Traditional	NI-DAQ	(Legacy)	to
NI-DAQmx.

Traditional
NI-DAQ
(Legacy)

NI-DAQmx Explanation

0,	1	as	port Dev1/port0,
Dev1/port1,	and
so	on

In	Traditional	NI-DAQ	(Legacy),	physical
channel	names	are	numbers.	In	NI-
DAQmx,	physical	channels	are	string
names	that	combine	the	device	name,	the
I/O	type,	and	the	physical	channel
number.	If	the	line	number	is	omitted	from
the	NI-DAQmx	name,	all	lines	in	the	port
are	included.

0,	1	as	line Dev1/port0/line0,
Dev1/port0/line1

When	the	line	number	is	present	in	the	NI-
DAQmx	name,	only	that	line	is	used.

No
Equivalent

Dev1/port1_16 Concatenated	ports,	port	a_b,	where	a	is
the	port	number	of	the	beginning	port	and
b	is	the	width	in	lines



Digital	Clock	and	Trigger	Names	in	Traditional
NI-DAQ	(Legacy)	and	NI-DAQmx
The	following	table	translates	terms	from	Traditional	NI-DAQ	(Legacy)	to
NI-DAQmx.

Traditional
NI-DAQ
(Legacy)

NI-
DAQmx Explanation

Start	Trigger Start
Trigger

The	trigger	that	begins	an	acquisition	or
generation.

Stop	Trigger Reference
Trigger

The	trigger	that	creates	the	reference	point
between	the	pretrigger	samples	and	the
posttrigger	samples.



Functions,	VIs,	Properties,	and	Attributes
You	program	your	device	primarily	with	the	functions	(or	VIs	in	LabVIEW)
that	make	up	the	NI-DAQmx	API.	The	functions	contain	the	core
functionality	of	the	API,	but	for	advanced	or	uncommon	functionality,	you
can	use	the	following:

Properties	for	LabVIEW,	Visual	C++,	Visual	Basic	.NET,	and
Visual	C#
Get	and	Set	Attribute	functions	for	ANSI	C	and	LabWindows/CVI

Refer	to	your	function	or	VI	reference	help	for	detailed	information	on
available	attributes	and	properties.



External	Reference	Sources	for	Generating
Voltage
Devices	that	support	an	external	voltage	reference	enable	you	to
maximize	the	resolution	of	your	device.	If	the	voltages	you	want	to
generate	do	not	exceed	a	certain	level	and	you	can	supply	an	external
reference	voltage	at	that	level,	you	achieve	your	device's	maximum
resolution.	The	external	reference	voltage	settings	are	available	as	a
Channel	property	in	the	Analog	Output»General
Properties»DAC»Reference	Voltage.
You	also	can	use	external	reference	voltages	to	apply	a	gain	to	a	DC
voltage	or	to	a	time-varying	waveform.	For	example,	set	your	external
reference	voltage	level	to	1.0,	and	write	a	sine	wave	buffer	with	values
from	–1.0	to	+1.0	V.	When	you	apply	an	actual	reference	voltage	of	2.0	V,
your	signal	jumps	to	±2	V	in	amplitude.	Increasing	the	reference	voltage
level	to	3.0	again	jumps	the	signal	to	±3	V.	Applying	a	reference	voltage
level	of	0.0	V	immediately	flat-lines	your	time-varying	voltage	signal	at	0.0
V.
The	terminal	you	use	for	external	reference	sources	varies	depending	on
your	device.

mxdevconsid.chm::/MSeriesExtRefSrc.html


Custom	Scales
You	can	create	scales	to	specify	a	conversion	from	the	prescaled	units
measured	by	a	channel	to	the	scaled	units	associated	with	your
transducer	or	actuator.	For	input	channels,	the	scale	converts	samples
read	to	the	final	scaled	units.	For	example,	a	scale	could	convert	a
voltage	to	a	linear	position.	For	output	channels,	the	scale	converts
samples	written	to	the	prescaled	units	of	the	channel.	For	example,	a
scale	could	convert	a	linear	position	to	a	voltage.	You	also	can	use
scales	to	calibrate	samples	read	or	written	so	that	the	final	scaled	units
are	identical	to	the	prescaled	units	of	the	channel.
Often,	you	do	not	need	to	create	a	scale	because	NI-DAQmx	has	explicit
support	for	many	of	the	most	common	transducers,	sensors,	and
actuators.	For	example,	when	creating	an	analog	input	temperature
channel,	you	can	specify	the	type	of	transducer	(for	example,	thermistor,
RTD,	or	thermocouple)	used	to	make	the	measurement	when	creating
the	channel.	However,	if	NI-DAQmx	does	not	explicitly	support	your
transducer	or	actuator,	you	can	create	a	scale	that	specifies	how	to
convert	from	the	prescaled	units	to	the	scaled	units.	You	can	associate
the	same	scale	with	multiple	channels.	You	do	not	need	to	create	a	scale
for	each	channel	if	the	scale	is	the	same.	After	a	scale	is	assigned	to	a
channel,	the	scale	applies	to	all	attributes	normally	expressed	in	the
prescaled	units	of	the	channel.	For	example,	if	a	custom	scale,	which
converts	volts	to	meters,	is	assigned	to	a	voltage	channel,	the	channels
minimum	and	maximum	attributes	are	expressed	in	meters.



Prescaled	Versus	Scaled	Units
Prescaled	refers	to	values	expressed	in	the	unit	of	the	channel	prior	to
the	custom	scale	being	applied.	Usually,	these	prescaled	units	are	volts
or	amps	since	scales	are	most	often	associated	with	channels	that
natively	measure	or	generate	signals	using	these	units.	However,	it	is
possible	to	associate	a	scale	with	a	channel	that	contains	a	transducer
explicitly	supported	by	NI-DAQmx.	In	this	case,	the	prescaled	units	are
the	units	of	the	channel	including	the	explicitly	supported	transducer.	For
example,	you	can	create	a	analog	input	resistance	channel	and	associate
a	scale	with	this	channel.	In	this	example,	the	prescaled	units	would	be
ohms	and	the	scale	would	specify	how	to	convert	from	ohms	to	the
desired	scaled	units.
Scaled	refers	to	values	expressed	in	the	final	unit	after	NI-DAQmx
applies	the	custom	scale.	For	example,	a	linear-position-to-voltage	scale
is	assigned	to	a	voltage	output	channel.	In	this	case,	the	prescaled
samples	are	in	volts	while	the	scaled	samples	could	be	specified	in
meters.	Scaled	units	are	the	units	that	are	most	convenient	for	your
application.	You	have	complete	control	over	the	scaled	units	when
specifying	your	scale.	The	scale	specifies	the	conversation	from	the
prescaled	units	of	the	signal	measured	or	generated	by	the	channel	to
your	specified	scaled	units.	When	you	read	samples	from	a	channel
associated	with	a	scale,	the	samples	are	in	scaled	units.	Likewise,	when
you	write	samples	to	a	channel	associated	with	a	scale,	the	samples	are
in	scaled	units.
You	can	create	scales	in	the	DAQ	Assistant	or	programmatically.	When
you	programmatically	associate	a	scale	with	a	channel,	you	must	set	the
custom	scale	name	attribute/property	to	the	name	of	the	scale	and	set
the	units	attribute/property	to	From	Custom	Scale.

Note		Unscaled	data	is	not	synonymous	with	prescaled	units.
Unscaled	data	refers	to	an	8-,	16-,	or	32-bit	integer	in	the	native
format	of	the	device.	Prescaled	refers	to	the	units	of	measurement,
such	as	volts	or	amps,	before	a	custom	scale	is	applied.



Example—Converting	Volts	to	Revolutions/Minute
Imagine	that	you	have	connected	an	analog	output	voltage	channel	to	a
motor	whose	speed	is	proportional	to	the	generated	voltage,	and	you
want	to	create	a	scale	that	specifies	this	conversion.	The	prescaled	units
in	this	case	would	be	volts	and	the	scaled	units	could	be
revolutions/minute.	You	would	then	specify	the	equation,	table,	or	map
that	converts	from	volts	to	revolution/minute.	After	you	have	created	this
scale,	you	would	associate	the	scale	with	an	analog	output	voltage
channel.	Now,	rather	than	having	to	convert	between	volts	and
revolutions/minute	when	operating	your	application	or	having	to	develop
additional	code	in	your	application	to	perform	this	conversion,	you	can
simply	write	samples	in	units	of	revolutions/minute	directly	to	the	channel
associated	with	the	scale	and	NI-DAQmx	automatically	performs	the
specified	conversions.	Scales	can	simplify	your	code	and	improve	the
usability	of	your	application.



Applying	Scales	That	Do	Not	Monotonically	Increase	or
Decrease
Some	scale	types	allow	scales	that	do	not	monotonically	increase	or
decrease.	This	is	problematic	because	application	of	the	scale	may	not
produce	the	desired	results.	For	example,	if	multiple	prescaled	values
map	to	the	same	scaled	value,	the	conversion	from	the	scaled	value	to
the	prescaled	values	is	ambiguous.	The	conversion	is	well	defined	and
predictable	even	in	these	cases.	While	not	disallowed,	non-monotonically
increasing	scales	should	be	avoided	or	used	with	caution.



Using	Traditional	NI-DAQ	(Legacy)	and	NI-
DAQmx	in	the	Same	Application
You	can	use	both	Traditional	NI-DAQ	(Legacy)	and	NI-DAQmx	in	the
same	computer,	and	in	the	same	application,	but	there	are	some
restrictions.	After	using	a	device	in	NI-DAQmx,	you	must	unreserve	all
NI-DAQmx	tasks	that	are	using	that	device	before	you	can	use	that
device	through	Traditional	NI-DAQ	(Legacy).	After	using	a	device	in
Traditional	NI-DAQ	(Legacy),	you	must	reset	the	device	before	you	can
use	that	device	in	NI-DAQmx.
Refer	to	ni.com/support	for	details	and	instructions	about	the	following
topics:

How	to	add	NI-DAQmx	code	to	a	Traditional	NI-DAQ	(Legacy)
application
How	to	run	both	Traditional	NI-DAQ	(Legacy)	applications	and	NI-
DAQmx	applications	that	use	the	same	device

javascript:WWW(WWW_Support)

	NI-DAQmx Key Concepts
	Channels and Tasks in NI-DAQmx
	Channels, Physical Versus Virtual
	Creating Virtual Channels with the API
	Types of Virtual Channels
	Physical Channel Syntax
	Digital Lines, Ports, and Port Width
	Channel Name Generation
	Naming Channels, Tasks, and Scales
	Switch Channels
	Switch Channel Strings and Relay Strings
	Connection and Disconnection List Syntax
	Scan Lists
	Switch Scanning
	Topology
	Channel Usage


	Tasks in NI-DAQmx
	Creating Tasks with the API
	Using the Start Task function/VI
	Aborting a Task
	Using Is Task Done
	Using Wait Until Done
	When Is A Task Done?
	Task State Model
	Unverified State
	Verified State
	Reserved State
	Committed State
	Running State
	Running to Committed State
	Committed to Verified State
	Explicit Versus Implicit State Transitions
	Implicit Task State Transitions
	Task Moves Through Multiple States at the Same Time
	Operations That Require State Changes
	Transitioning the State Backwards




	Creating Channels and Tasks with the DAQ Assistant
	DAQ Assistant Versus API

	Timing and Triggering
	Timing, Hardware Versus Software
	Clocks
	Sample Timing Types
	Sample Clock
	Handshaking
	Burst Handshaking Signals
	Handshaking Signals for 8255-Emulated Devices
	Handshaking Signals for 8255-Based Devices


	Hardware-Timed Single Point Sample Mode
	Multiplexed Versus Simultaneous Sampling
	Setup and Hold Times
	Simultaneous Analog Output On-Demand Timing
	Timing Response Modes

	Triggering
	Advance Trigger
	Arm Start Trigger
	Expiration Trigger
	Handshake Trigger
	Pause Trigger
	Reference Trigger
	Start Trigger
	Trigger Types
	Analog Edge Triggering
	Analog Level Triggering
	Analog Window Triggering
	Digital Edge Triggering
	Digital Pattern Triggering


	Events
	Exported Signal Behaviors
	Software Events

	Reading and Writing Data
	Selecting Read and Write Data Format and Organization
	Data Formats in NI-DAQmx
	Data Organization
	Digital Data (Integer Format)
	Interleaving
	Raw Data
	Unscaled Data
	Waveform Timing Limitations

	Buffering
	How Is Buffer Size Determined?
	Continuous Acquisition and Generation with Finite Buffer Size
	Reference Triggering Impact on Buffers
	Controlling Where in the Buffer to Read Samples
	Read Status Attributes/Properties and Buffers
	Controlling Where in the Buffer to Write Samples
	Write Status Attributes/Properties and Buffers
	Glitching
	Data Transfer Mechanisms

	Regeneration

	Signal Routing
	Specifying a Route
	Single-Device Routing Versus Multi-Device Routing
	Creating Multi-Device Routes
	Plugging in and Registering Your RTSI Cable in MAX
	Dynamically Selecting Trigger Bus Lines
	Task-Based Routing
	Immediate Routing
	Logical Inversion of Signals
	Routing and Hardware Sharing
	Line Tristating Issues
	Lazy Line Transitions
	Device Resetting and Interactions with Routing
	Device Routing in MAX

	Counters
	Paired Counters
	Two Counter Measurement Method
	High Frequency Two-Counter Measurement Method
	Large-Range Two Counter Measurement Method
	Quantization Error

	Counter Parts in NI-DAQmx
	Configuring a Time Measurement in NI-DAQmx
	Configuring a Displacement Measurement with NI-DAQmx

	Terminals
	Signal Versus Terminal
	Terminal Names
	Analog Input Accessory Terminal Names
	Analog Output Accessory Terminal Names
	Counter Accessory Terminal Names
	Digital Accessory Terminal Names
	Syntax for Terminal Names


	Coercion
	Input Limit Coercion
	Clock/Pulse Frequency Coercion

	Calibration
	Device Calibration
	Channel Calibration

	Control in NI-DAQmx
	NI-DAQmx Single-Point Real-Time Applications
	Hardware-Timed Simultaneously Updated I/O
	LabVIEW Example

	Hardware-Timed Simultaneously Updated I/O with Data Exchanges
	LabVIEW Example

	Hardware-Timed Input, Software-Timed Output
	LabVIEW Example

	Hardware-Timed Counter Tasks
	LabVIEW Example

	Software-Timed I/O
	LabVIEW Example

	Hardware-Timed Simultaneously Updated I/O Using the Timed Loop
	LabVIEW Example


	Timing Control Loops
	Control Algorithms
	Synchronizing Input and Output
	Setting Priorities for Control Applications in LabVIEW
	I/O Cycles

	NI-DAQmx Simulated Devices
	Timing and Triggering
	Task Behavior
	Reading and Writing Data

	Traditional NI-DAQ (Legacy) Versus NI-DAQmx
	Common Clock Names
	Analog Input Terminology
	Analog Input Clock and Trigger Names
	Analog Input Read Terminology

	Analog Output Terminology
	Analog Output Clock and Trigger Names
	Analog Output Write Terminology
	Analog Output Physical Channel Names

	Counter Terminology
	Counter Clock and Trigger Names
	Counter Application Names
	Counter Physical Channel Names
	Counter Attribute/Property Names

	Digital Terminology
	Digital Physical Channel Names
	Digital Clock and Trigger Names


	Functions, VIs, Properties, and Attributes
	External Reference Sources for Generating Voltage
	Custom Scales
	Using Traditional NI-DAQ (Legacy) with NI-DAQmx


