
DAQmxAddGlobalChansToTask
int32	DAQmxAddGlobalChansToTask	(TaskHandle	taskHandle,	const	char

channelNames[]);



Purpose
Adds	global	virtual	channels	from	MAX	to	the	given	task.

javascript:launchSharedHelp('mxcncpts.chm::/Chans.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	from	MAX.

channelNames const	char	[] The	channels	to	add	to	the	task.	You	can	specify	a	list	or	range	of	channels.	These
channels	must	be	valid	channels	available	from	MAX.	If	you	pass	an	invalid
channel,	NI-DAQmx	returns	an	error.	This	value	is	ignored	if	it	is	empty.

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxClearTask
int32	DAQmxClearTask	(TaskHandle	taskHandle);



Purpose
Clears	the	task.	Before	clearing,	this	function	stops	the	task,	if	necessary,	and
releases	any	resources	reserved	by	the	task.	You	cannot	use	a	task	once	you	clear
the	task	without	recreating	or	reloading	the	task.
If	you	use	the	DAQmxCreateTask	function	or	any	of	the	NI-DAQmx	Create
Channel	functions	within	a	loop,	use	this	function	within	the	loop	after	you
finish	with	the	task	to	avoid	allocating	unnecessary	memory.

javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	clear.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateTask
int32	DAQmxCreateTask	(const	char	taskName[],	TaskHandle	*taskHandle);



Purpose
Creates	a	task	.	If	you	use	this	function	to	create	a	task,	you	must	use
DAQmxClearTask	to	destroy	it.
If	you	use	this	function	within	a	loop,	NI-DAQmx	creates	a	new	task	in	each
iteration	of	the	loop.	Use	the	DAQmxClearTask	function	within	the	loop	after
you	finish	with	the	task	to	avoid	allocating	unnecessary	memory.

javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskName const	char	[] Name	assigned	to	the	task.

Note	This	name	may	be	changed	internally.	If	you	are	using	the	C	API,	call	DAQmxGetTaskName	to
verify	whether	the	name	was	changed	during	creation.	If	you	are	using	the	CVI	API,	call
DAQmxGetTaskAttribute	with	attribute	ID	DAQmx_Task_Name	to	verify	the	name	change.

Output

Name Type Description

taskHandle TaskHandle	* A	reference	to	the	task	created	in	this	function.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxIsTaskDone
int32	DAQmxIsTaskDone	(TaskHandle	taskHandle,	bool32	*isTaskDone);



Purpose
Queries	the	status	of	the	task	and	indicates	if	it	completed	execution.	Use	this
function	to	ensure	that	the	specified	operation	is	complete	before	you	stop	the	task.

javascript:launchSharedHelp('mxcncpts.chm::/isTaskDone.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

Output

Name Type Description

isTaskDone bool32	* Indicates	whether	the	measurement	or	generation	completed.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxLoadTask
int32	DAQmxLoadTask	(const	char	taskName[],	TaskHandle	*taskHandle);



Purpose
Loads	an	existing	named	task	from	Measurement	&	Automation	Explorer	(MAX).
If	you	use	this	function	to	load	a	task,	you	must	use	DAQmxClearTask	to
destroy	it.

javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskName const	char	[] A	named	task	in	MAX.

Output

Name Type Description

taskHandle TaskHandle	* A	reference	to	the	task	returned	by	this	function.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxStartTask
int32	DAQmxStartTask	(TaskHandle	taskHandle);



Purpose
Transitions	the	task	from	the	committed	state	to	the	running	state,	which	begins
measurement	or	generation.	Using	this	function	is	required	for	some	applications	and
optional	for	others.
If	you	do	not	use	this	function,	a	measurement	task	starts	automatically	when	a
read	operation	begins.	The	autoStart	parameter	of	the	NI-DAQmx	Write
functions	determines	if	a	generation	task	starts	automatically	when	you	use	an
NI-DAQmx	Write	function.
If	you	do	not	call	DAQmxStartTask	and	DAQmxStopTask	when	you	call	NI-
DAQmx	Read	functions	or	NI-DAQmx	Write	functions	multiple	times,	such	as
in	a	loop,	the	task	starts	and	stops	repeatedly.	Starting	and	stopping	a	task
repeatedly	reduces	the	performance	of	the	application.

javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');
javascript:launchSharedHelp('mxcncpts.chm::/taskStateModel.html');
javascript:launchSharedHelp('mxcncpts.chm::/startFunction.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	start.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxStopTask
int32	DAQmxStopTask	(TaskHandle	taskHandle);



Purpose
Stops	the	task	and	returns	it	to	the	state	it	was	in	before	you	called	DAQmxStartTask
or	called	an	NI-DAQmx	Write	function	with	autoStart	set	to	TRUE.
If	you	do	not	call	DAQmxStartTask	and	DAQmxStopTask	when	you	call	NI-
DAQmx	Read	functions	or	NI-DAQmx	Write	functions	multiple	times,	such	as
in	a	loop,	the	task	starts	and	stops	repeatedly.	Starting	and	stopping	a	task
repeatedly	reduces	the	performance	of	the	application.

javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');
javascript:launchSharedHelp('mxcncpts.chm::/taskStateModel.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	stop.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxRegisterDoneEvent
int32	DAQmxRegisterDoneEvent	(TaskHandle	taskHandle,	uInt32	options,

DAQmxDoneEventCallbackPtr	callbackFunction,	void
*callbackData);



Purpose
Registers	a	callback	function	to	receive	an	event	when	a	task	stops	due	to	an
error	or	when	a	finite	acquisition	task	or	finite	generation	task	completes
execution.	A	Done	event	does	not	occur	when	a	task	is	stopped	explicitly,	such
as	by	calling	DAQmxStopTask.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

options uInt32 Use	this	parameter	to	set	certain	options.	You	can	combine	flags	with	the	bitwise-OR
operator	('|')	to	set	multiple	options.	Pass	a	value	of	zero	if	no	options	need	to	be	set.

Value
0

DAQmx_Val_SynchronousEventCallbacks

Note	If	you	are	receiving	synchronous	events	faster
than	you	are	processing	them,	then	the	user	interface
of	your	application	might	become	unresponsive.

callbackFunction DAQmxDoneEventCallbackPtr The	function	that	you	want	DAQmx	to	call	when	the	event	occurs.	The	function	
pass	in	this	parameter	must	have	the	following	prototype:
int32	CVICALLBACK	Callback	(TaskHandle	taskHandle,	int32	



*callbackData);	
Upon	entry	to	the	callback,	the	taskHandle	parameter	contains	
on	which	the	event	occurred.	The	status	parameter	contains	the	status	of	the	task
when	the	event	occurred.	If	the	status	value	is	negative,	it	indicates	an	error.	
status	value	is	zero,	it	indicates	no	error.	If	the	status	value	is	positive,	it	indicates	a
warning.	The	callbackData	parameter	contains	the	value	you	passed	in	the
callbackData	parameter	of	this	function.

callbackData void	* A	value	that	you	want	DAQmx	to	pass	to	the	callback	function	as	the	function	data
parameter.	Do	not	pass	the	address	of	a	local	variable	or	any	other	variable	that	might
not	be	valid	when	the	function	is	executed.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxRegisterEveryNSamplesEvent
int32	DAQmxRegisterEveryNSamplesEvent	(TaskHandle	taskHandle,	int32

everyNsamplesEventType,	uInt32	nSamples,	uInt32	options,
DAQmxEveryNSamplesEventCallbackPtr	callbackFunction,	void
*callbackData);



Purpose
Registers	a	callback	function	to	receive	an	event	when	the	specified	number	of
samples	is	written	from	the	device	to	the	buffer	or	from	the	buffer	to	the	device.
This	function	only	works	with	devices	that	support	buffered	tasks.
When	you	stop	a	task	explicitly	any	pending	events	are	discarded.	For	example,
if	you	call	DAQmxStopTask	then	you	do	not	receive	any	pending	events.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

everyNsamplesEventType int32 The	type	of	event	you	want	to	receive.

Value
DAQmx_Val_Acquired_Into_Buffer

DAQmx_Val_Transferred_From_Buffer



nSamples uInt32 The	number	of	samples	after	which	each	event	should	occur.

options uInt32 Use	this	parameter	to	set	certain	options.	You	can	combine	flags	with	the	bitwise-OR
operator	('|')	to	set	multiple	options.	Pass	a	value	of	zero	if	no	options	need	to	be	set.

Value
0

DAQmx_Val_SynchronousEventCallbacks

Note	If	you	are	receiving	synchronous	events	faster
than	you	are	processing	them,	then	the	user	interface
of	your	application	might	become	unresponsive.

callbackFunction DAQmxEveryNSamplesEventCallbackPtr The	function	that	you	want	DAQmx	to	call	when	the	event	occurs.	The	function	
pass	in	this	parameter	must	have	the	following	prototype:
int32	CVICALLBACK	Callback	(TaskHandle	taskHandle,	int32
everyNsamplesEventType,	uInt32	nSamples,	void	*callbackData);
Upon	entry	to	the	callback,	the	taskHandle
on	which	the	event	occurred.	The	everyNSamplesEventType
value	you	passed	in	the	everyNSamplesEventType
nSamples	parameter	contains	the	value	you	passed	in	the	
this	function.	The	callbackData	parameter	contains	the	value	you	passed	in	the
callbackData	parameter	of	this	function.



callbackData void	* A	value	that	you	want	DAQmx	to	pass	to	the	callback	function	as	the	function	data
parameter.	Do	not	pass	the	address	of	a	local	variable	or	any	other	variable	that	might
not	be	valid	when	the	function	is	executed.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxRegisterSignalEvent
int32	DAQmxRegisterSignalEvent	(TaskHandle	taskHandle,	int32	signalID,

uInt32	options,	DAQmxSignalEventCallbackPtr	callbackFunction,
void	*callbackData);



Purpose
Registers	a	callback	function	to	receive	an	event	when	the	specified	hardware	event
occurs.
When	you	stop	a	task	explicitly	any	pending	events	are	discarded.	For	example,
if	you	call	DAQmxStopTask	then	you	do	not	receive	any	pending	events.

javascript:launchSharedHelp('mxcncpts.chm::/Events.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

signalID int32 The	signal	for	which	you	want	to	receive	results.

Value
DAQmx_Val_SampleClock
DAQmx_Val_SampleCompleteEvent

DAQmx_Val_ChangeDetectionEvent

DAQmx_Val_CounterOutputEvent

options uInt32 Use	this	parameter	to	set	certain	options.	You	can	combine	flags	with	the	bitwise-OR
operator	('|')	to	set	multiple	options.	Pass	a	value	of	zero	if	no	options	need	to	be	set.

Value
0

DAQmx_Val_SynchronousEventCallbacks



Note	If	you	are	receiving	synchronous	events	faster
than	you	are	processing	them,	then	the	user	interface
of	your	application	might	become	unresponsive.

callbackFunction DAQmxSignalEventCallbackPtr The	function	that	you	want	DAQmx	to	call	when	the	event	occurs.	The	function	
pass	in	this	parameter	must	have	the	following	prototype:
int32	CVICALLBACK	Callback	(TaskHandle	taskHandle,	int32	
*callbackData);	
Upon	entry	to	the	callback,	the	taskHandle	parameter	contains	
on	which	the	event	occurred.	The	signalID	parameter	contains	the	value	you	passed
in	the	signalID	parameter	of	this	function.	The	callbackData
value	you	passed	in	the	callbackData	parameter	of	this	function.

callbackData void	* A	value	that	you	want	DAQmx	to	pass	to	the	callback	function	as	the	function	data
parameter.	Do	not	pass	the	address	of	a	local	variable	or	any	other	variable	that	might
not	be	valid	when	the	function	is	executed.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxGetNthTaskChannel
int32	DAQmxGetNthTaskChannel	(TaskHandle	taskHandle,	uInt32	index,	char

buffer[],	int32	bufferSize);



Purpose
Returns	the	Nth	channel.	This	function	takes	the	taskHandle,	index,	and
bufferSize	you	specify	and	returns	the	Nth	channel.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

index uInt32 The	Nth	channel	you	want	to	return.	The	index	starts	at	1.

bufferSize int32 The	size,	in	bytes,	of	buffer.	If	you	pass	0,	this	function	returns	the	number	of	bytes
needed	to	allocate.

Output

buffer char	[] The	Nth	channel	in	the	index.	If	you	pass	NULL,	this	function	returns	the	number	of
bytes	needed	to	allocate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	negative	value	indicates	an	error.
For	this	function,	if	you	pass	NULL	for	the	buffer	or	0	for	the	buffer	size,	this	function	returns	the
number	of	bytes	needed	to	allocate.



DAQmxGetNthTaskDevice
int32	DAQmxGetNthTaskDevice	(TaskHandle	taskHandle,	uInt32	index,	char

buffer[],	int32	bufferSize);



Purpose
Returns	the	Nth	device.	This	function	takes	the	taskHandle,	index,	and
bufferSize	you	specify	and	returns	the	Nth	device.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

index uInt32 The	Nth	device	you	want	to	return.	The	index	starts	at	1.

bufferSize int32 The	size,	in	bytes,	of	buffer.	If	you	pass	0,	this	function	returns	the	number	of	bytes
needed	to	allocate.

Output

buffer char	[] The	Nth	device	in	the	index.	If	you	pass	NULL,	this	function	returns	the	number	of
bytes	needed	to	allocate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	negative	value	indicates	an	error.
For	this	function,	if	you	pass	NULL	for	the	buffer	or	0	for	the	buffer	size,	this	function	returns	the
number	of	bytes	needed	to	allocate.



DAQmxTaskControl
int32	DAQmxTaskControl	(TaskHandle	taskHandle,	int32	action);



Purpose
Alters	the	state	of	a	task	according	to	the	action	you	specify.	To	minimize	the	time
required	to	start	a	task,	for	example,	DAQmxTaskControl	can	commit	the	task
prior	to	starting.

javascript:launchSharedHelp('mxcncpts.chm::/taskStateModel.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

action int32 Specifies	how	to	alter	the	task	state.

Value Description
DAQmx_Val_Task_Start Starts	execution	of	the

task.
DAQmx_Val_Task_Stop Stops	execution	of	the

task.
DAQmx_Val_Task_Verify Verifies	that	all	task

parameters	are	valid
for	the	hardware.

DAQmx_Val_Task_Commit Programs	the
hardware	as	much	as
possible	according	to
the	task	configuration.

DAQmx_Val_Task_Reserve Reserves	the
hardware	resources
needed	for	the	task.
No	other	tasks	can
reserve	these	same
resources.

DAQmx_Val_Task_Unreserve Releases	all
previously	reserved
resources.

DAQmx_Val_Task_Abort Abort	is	used	to	stop
an	operation,	such	as
Read	or	Write,	that	is
currently	active.
Abort	puts	the	task
into	an	unstable	but
recoverable	state.	To
recover	the	task,	call
Start	to	restart	the	task



or	call	Stop	to	reset
the	task	without
starting	it.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAIAccelChan
int32	DAQmxCreateAIAccelChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	int32
terminalConfig,	float64	minVal,	float64	maxVal,	int32	units,	float64
sensitivity,	int32	sensitivityUnits,	int32	currentExcitSource,	float64
currentExcitVal,	const	char	customScaleName[]);



Purpose
Creates	channel(s)	that	use	an	accelerometer	to	measure	acceleration	and	adds	the
channel(s)	to	the	task	you	specify	with	taskHandle.

javascript:launchSharedHelp('measfunds.chm::/Accelerometers.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

terminalConfig int32 The	input	terminal	configuration	for	the	channel.

Value Description
DAQmx_Val_Cfg_Default
(-1)

At	run	time,	NI-
DAQmx	chooses	the
default	terminal	configuration	for
the	channel.

DAQmx_Val_RSE Referenced	single-ended	mode

DAQmx_Val_NRSE Nonreferenced	single-ended	mode

DAQmx_Val_Diff Differential	mode

DAQmx_Val_PseudoDiff Pseudodifferential	mode

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	acceleration	measurements	from	the	channel.

Name Description
DAQmx_Val_AccelUnit_g G.	1	g	is

approximately
equal	to	9.81	m/s

DAQmx_Val_FromCustomScale Units	specified	by
a	custom	scale.
Use
customScaleName
to	specify	a	custom

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/groundSig.html');
javascript:launchSharedHelp('mxdevconsid.chm::/defaultTermConfig.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/diffMeasSys.html');
javascript:launchSharedHelp('measfunds.chm::/pseudodiffMeasSystem.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


scale.

sensitivity float64 The	sensitivity	of	the	sensor.	This	value	is	in	the	units	you	specify	with
sensitivityUnits.	Refer	to	the	sensor	documentation	to	determine	this	value.

sensitivityUnits int32 The	units	of	sensitivity.

Name Description
DAQmx_Val_mVoltsPerG mVolts/g.
DAQmx_Val_VoltsPerG Volts/g.

currentExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in	excitation

source	of	the	device.	You
must	use	currentExcitVal
to	specify	the	amount	of
excitation.

DAQmx_Val_External Use	an	excitation	source
other	than	the	built-in
excitation	source	of	the
device.	You	must	use
currentExcitVal	to
specify	the	amount	of
excitation.

DAQmx_Val_None Supply	no	excitation	to	the
channel.	You	cannot	use
this	value	if	the	sensor
requires	excitation.

currentExcitVal float64 The	amount	of	excitation,	in	amperes,	that	the	sensor	requires.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAICurrentChan
int32	DAQmxCreateAICurrentChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	int32
terminalConfig,	float64	minVal,	float64	maxVal,	int32	units,	int32
shuntResistorLoc,	float64	extShuntResistorVal,	const	char
customScaleName[]);



Purpose
Creates	channel(s)	for	current	measurement	and	adds	the	channel(s)	to	the	task
you	specify	with	taskHandle.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.
You	can	specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer	to
these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

terminalConfig int32 The	input	terminal	configuration	for	the	channel.

Value Description
DAQmx_Val_Cfg_Default
(-1)

At	run	time,
NI-DAQmx
chooses	the
default	terminal

configuration	for	the
channel.

DAQmx_Val_RSE Referenced	single-ended
mode

DAQmx_Val_NRSE Nonreferenced	single-ended
mode

DAQmx_Val_Diff Differential	mode

DAQmx_Val_PseudoDiff Pseudodifferential	mode

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Value Description
DAQmx_Val_Amps amperes
DAQmx_Val_FromCustomScale Units	a	custom

scale

specifies.	If
you	select
this	value,

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/groundSig.html');
javascript:launchSharedHelp('mxdevconsid.chm::/defaultTermConfig.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/diffMeasSys.html');
javascript:launchSharedHelp('measfunds.chm::/pseudodiffMeasSystem.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


you	must
specify	a
custom
scale	name.

shuntResistorLoc int32 The	location	of	the	shunt	resistor.

Value Description
DAQmx_Val_Default At	run	time,	NI-

DAQmx	chooses	the
default	shunt	resistor
location	for	the
channel.

DAQmx_Val_Internal Use	the	built-in	shunt
resistor	of	the	device.

DAQmx_Val_External Use	a	shunt	resistor
external	to	the	device.
You	must	specify	the
value	of	the	shunt
resistor	in
extShuntResistorVal.

extShuntResistorVal float64 The	value,	in	ohms,	of	an	external	shunt	resistor.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this
parameter,	you	must	set	units	to	DAQmx_Val_FromCustomScale.	If
you	do	not	set	units	to	DAQmx_Val_FromCustomScale,	you	must	set
customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAICurrentRMSChan
int32	DAQmxCreateAICurrentRMSChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	int32
terminalConfig,	float64	minVal,	float64	maxVal,	int32	units,	int32
shuntResistorLoc,	float64	extShuntResistorVal,	const	char
customScaleName[]);



Purpose
Creates	channel(s)	for	RMS	current	measurement	and	adds	the	channel(s)	to	the
task	you	specify	with	taskHandle.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.
You	can	specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer	to
these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

terminalConfig int32 The	input	terminal	configuration	for	the	channel.

Value Description
DAQmx_Val_Cfg_Default
(-1)

At	run	time,
NI-DAQmx
chooses	the
default	terminal

configuration	for	the
channel.

DAQmx_Val_RSE Referenced	single-ended
mode

DAQmx_Val_NRSE Nonreferenced	single-ended
mode

DAQmx_Val_Diff Differential	mode

DAQmx_Val_PseudoDiff Pseudodifferential	mode

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Value Description
DAQmx_Val_Amps amperes
DAQmx_Val_FromCustomScale Units	a	custom

scale

specifies.	If
you	select
this	value,

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/groundSig.html');
javascript:launchSharedHelp('mxdevconsid.chm::/defaultTermConfig.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/diffMeasSys.html');
javascript:launchSharedHelp('measfunds.chm::/pseudodiffMeasSystem.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


you	must
specify	a
custom
scale	name.

shuntResistorLoc int32 The	location	of	the	shunt	resistor.

Value Description
DAQmx_Val_Default At	run	time,	NI-

DAQmx	chooses	the
default	shunt	resistor
location	for	the
channel.

DAQmx_Val_Internal Use	the	built-in	shunt
resistor	of	the	device.

DAQmx_Val_External Use	a	shunt	resistor
external	to	the	device.
You	must	specify	the
value	of	the	shunt
resistor	in
extShuntResistorVal.

extShuntResistorVal float64 The	value,	in	ohms,	of	an	external	shunt	resistor.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this
parameter,	you	must	set	units	to	DAQmx_Val_FromCustomScale.	If
you	do	not	set	units	to	DAQmx_Val_FromCustomScale,	you	must	set
customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAIFreqVoltageChan
int32	DAQmxCreateAIFreqVoltageChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	float64
minVal,	float64	maxVal,	int32	units,	float64	thresholdLevel,	float64
hysteresis,	const	char	customScaleName[]);



Purpose
Creates	channel(s)	that	use	a	frequency-to-voltage	converter	to	measure
frequency	and	adds	the	channel(s)	to	the	task	you	specify	with	taskHandle.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Name Description
DAQmx_Val_Hz hertz
DAQmx_Val_FromCustomScale Units	specified	by

a	custom	scale.
Use
customScaleName
to	specify	a	custom
scale.

thresholdLevel float64 The	voltage	level	at	which	to	recognize	waveform	repetitions.

hysteresis float64 Specifies	in	volts	a	window	below	thresholdLevel.	The	input	voltage	must	pass
below	thresholdLevel	minus	hysteresis	before	NI-DAQmx	recognizes	a
waveform	repetition.	Hysteresis	can	improve	measurement	accuracy	when	the
signal	contains	noise	or	jitter.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAIMicrophoneChan
int32	DAQmxCreateAIMicrophoneChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	int32
terminalConfig,	int32	units,	float64	micSensitivity,	float64
maxSndPressLevel,	int32	currentExcitSource,	float64
currentExcitVal,	const	char	customScaleName[]);



Purpose
Creates	channel(s)	that	use	a	microphone	to	measure	sound	pressure	and	adds	the
channel(s)	to	the	task	you	specify	with	taskHandle.

javascript:launchSharedHelp('daqhelp.chm::/soundPress.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

terminalConfig int32 The	input	terminal	configuration	for	the	channel.

Value Description
DAQmx_Val_Cfg_Default
(-1)

At	run	time,	NI-
DAQmx	chooses	the
default	terminal	configuration	for
the	channel.

DAQmx_Val_RSE Referenced	single-ended	mode

DAQmx_Val_NRSE Nonreferenced	single-ended	mode

DAQmx_Val_Diff Differential	mode

DAQmx_Val_PseudoDiff Pseudodifferential	mode

units int32 The	units	to	use	to	return	sound	pressure	measurements.

Name Description
DAQmx_Val_Pascals pascals
DAQmx_Val_FromCustomScale Units	specified	by

a	custom	scale.
Use
customScaleName
to	specify	a	custom
scale.

micSensitivity float64 The	sensitivity	of	the	microphone.	Specify	this	value	in	millivolts	per	pascal.

maxSndPressLevel float64 The	maximum	instantaneous	sound	pressure	level	you	expect	to	measure.	This
value	is	in	decibels,	referenced	to	20	micropascals.

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/groundSig.html');
javascript:launchSharedHelp('mxdevconsid.chm::/defaultTermConfig.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/diffMeasSys.html');
javascript:launchSharedHelp('measfunds.chm::/pseudodiffMeasSystem.html');


currentExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in	excitation

source	of	the	device.	You
must	use	currentExcitVal
to	specify	the	amount	of
excitation.

DAQmx_Val_External Use	an	excitation	source
other	than	the	built-in
excitation	source	of	the
device.	You	must	use
currentExcitVal	to
specify	the	amount	of
excitation.

DAQmx_Val_None Supply	no	excitation	to	the
channel.	You	cannot	use
this	value	if	the	sensor
requires	excitation.

currentExcitVal float64 The	amount	of	excitation,	in	amperes,	that	the	sensor	requires.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAIResistanceChan
int32	DAQmxCreateAIResistanceChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	float64
minVal,	float64	maxVal,	int32	units,	int32	resistanceConfig,	int32
currentExcitSource,	float64	currentExcitVal,	const	char
customScaleName[]);



Purpose
Create	channel(s)	to	measure	resistance	and	adds	the	channel(s)	to	the	task	you
specify	with	taskHandle.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Name Description
DAQmx_Val_Ohms ohms
DAQmx_Val_FromCustomScale Units	specified	by

a	custom	scale.
Use
customScaleName
to	specify	a	custom
scale.

resistanceConfig int32 The	configuration	for	resistance	measurements.

Value Description
DAQmx_Val_2Wire 2-wire	mode.
DAQmx_Val_3Wire 3-wire	mode.
DAQmx_Val_4Wire 4-wire	mode.

currentExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in	excitation

source	of	the	device.	You
must	use	currentExcitVal
to	specify	the	amount	of

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


excitation.
DAQmx_Val_External Use	an	excitation	source

other	than	the	built-in
excitation	source	of	the
device.	You	must	use
currentExcitVal	to
specify	the	amount	of
excitation.

DAQmx_Val_None Supply	no	excitation	to	the
channel.	You	cannot	use
this	value	if	the	sensor
requires	excitation.

currentExcitVal float64 The	amount	of	excitation,	in	amperes,	that	the	sensor	requires.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAIRTDChan
int32	DAQmxCreateAIRTDChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	float64
minVal,	float64	maxVal,	int32	units,	int32	rtdType,	int32
resistanceConfig,	int32	currentExcitSource,	float64	currentExcitVal,
float64	r0);



Purpose
Creates	channel(s)	that	use	an	RTD	to	measure	temperature	and	adds	the
channel(s)	to	the	task	you	specify	with	taskHandle.

javascript:launchSharedHelp('measfunds.chm::/rtd.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.
You	can	specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer
to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Name Description
DAQmx_Val_DegC degrees	Celsius
DAQmx_Val_DegF degrees	Fahrenheit
DAQmx_Val_Kelvins kelvins
DAQmx_Val_DegR degrees	Rankine

rtdType int32 The	type	of	RTD	connected	to	the	channel.

Value Description
DAQmx_Val_Pt3750 Pt3750
DAQmx_Val_Pt3851 Pt3851
DAQmx_Val_Pt3911 Pt3911
DAQmx_Val_Pt3916 Pt3916
DAQmx_Val_Pt3920 Pt3920
DAQmx_Val_Pt3928 Pt3928
DAQmx_Val_Custom You	must	specify	the

'A',	'B',	and	'C'
constants	for	the	Callendar-
Van	Dusen	equation

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/RTDTypes.html');
javascript:launchSharedHelp('measfunds.chm::/CallendarVanDusen.html');


resistanceConfig int32 The	configuration	for	resistance	measurements.

Value Description
DAQmx_Val_2Wire 2-wire	mode.
DAQmx_Val_3Wire 3-wire	mode.
DAQmx_Val_4Wire 4-wire	mode.

currentExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in

excitation	source
of	the	device.	You
must	use
currentExcitVal
to	specify	the
amount	of
excitation.

DAQmx_Val_External Use	an	excitation
source	other	than
the	built-in
excitation	source
of	the	device.	You
must	use
currentExcitVal
to	specify	the
amount	of
excitation.

DAQmx_Val_None Supply	no
excitation	to	the
channel.	You
cannot	use	this
value	if	the	sensor
requires	excitation.

currentExcitVal float64 The	amount	of	excitation,	in	amperes,	that	the	sensor	requires.

r0 float64 The	sensor	resistance	in	ohms	at	0	deg	C	for	the	Callendar-Van	Dusen
equation	Refer	to	the	sensor	documentation	to	determine	this	value.

javascript:launchSharedHelp('measfunds.chm::/CallendarVanDusen.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAIStrainGageChan
int32	DAQmxCreateAIStrainGageChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	float64
minVal,	float64	maxVal,	int32	units,	int32	strainConfig,	int32
voltageExcitSource,	float64	voltageExcitVal,	float64	gageFactor,
float64	initialBridgeVoltage,	float64	nominalGageResistance,	float64
poissonRatio,	float64	leadWireResistance,	const	char
customScaleName[]);



Purpose
Creates	channel(s)	to	measure	strain	and	adds	the	channel(s)	to	the	task	you
specify	with	taskHandle.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Name Description
DAQmx_Val_Strain Strain
DAQmx_Val_FromCustomScale Units	specified	by

a	custom	scale.
Use
customScaleName
to	specify	a	custom
scale.

strainConfig int32 The	strain	gage	bridge	configuration.

Value Description
DAQmx_Val_FullBridgeI Four	active	gages

with	two	pairs
subjected	to	equal
and	opposite
strains.

DAQmx_Val_FullBridgeII Four	active	gages
with	two	aligned
with	maximum
principal	strain	and
two	Poisson	gages

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/bridgeConfig.html');


in	adjacent	arms.
DAQmx_Val_FullBridgeIII Four	active	gages

with	two	aligned
with	maximum
principal	strain	and
two	Poisson	gages
in	opposite	arms.

DAQmx_Val_HalfBridgeI Two	active	gages
with	one	aligned
with	maximum
principal	strain	and
one	Poisson	gage.

DAQmx_Val_HalfBridgeII Two	active	gages
with	equal	and
opposite	strains.

DAQmx_Val_QuarterBridgeI Single	active	gage.
DAQmx_Val_QuarterBridgeII Single	active	gage

and	one	dummy
gage.

voltageExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in	excitation

source	of	the	device.	You
must	use	voltageExcitVal
to	specify	the	amount	of
excitation.

DAQmx_Val_External Use	an	excitation	source
other	than	the	built-in
excitation	source	of	the
device.	You	must	use
voltageExcitVal	to	specify
the	amount	of	excitation.

DAQmx_Val_None Supply	no	excitation	to	the
channel.	You	cannot	use
this	value	if	the	sensor



requires	excitation.

voltageExcitVal float64 The	amount	of	excitation,	in	volts,	that	the	sensor	requires.

gageFactor float64 The	sensitivity	of	the	strain	gages	and	relates	the	change	in	electrical	resistance
to	the	change	in	strain.	Each	gage	in	the	bridge	must	have	the	same	gage	factor.
Refer	to	the	sensor	documentation	to	determine	this	value.

initialBridgeVoltage float64 The	bridge	output	voltage	in	the	unloaded	condition.	NI-DAQmx	subtracts	this
value	from	any	measurements	before	applying	scaling	equations.	Perform	a
voltage	measurement	on	the	bridge	with	no	strain	applied	to	determine	this
value.

nominalGageResistance float64 The	resistance,	in	ohms,	of	the	gages	in	an	unstrained	position.	Each	gage	in	the
bridge	must	have	the	same	nominal	gage	resistance.	The	resistance	across	arms
of	the	bridge	that	do	not	have	strain	gages	must	also	be	the	same	as	the	nominal
gage	resistance.	Refer	to	the	sensor	documentation	to	determine	this	value.

poissonRatio float64 The	ratio	of	lateral	strain	to	axial	strain	in	the	material	in	which	you	measure
strain.

leadWireResistance float64 The	amount,	in	ohms,	of	resistance	in	the	lead	wires.	Ideally,	this	value	is	the
same	for	all	leads.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAITempBuiltInSensorChan
int32	DAQmxCreateAITempBuiltInSensorChan	(TaskHandle	taskHandle,	const

char	physicalChannel[],	const	char	nameToAssignToChannel[],	int32
units);



Purpose
Creates	channel(s)	to	measure	temperature	with	a	built-in	sensor	of	a	terminal
block	or	device	and	adds	the	channel(s)	to	the	task	you	specify	with	taskHandle.
On	SCXI	modules,	for	example,	this	could	be	the	CJC	sensor.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.
You	can	specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer
to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

units int32 The	units	to	use	to	return	the	measurement.

Name Description
DAQmx_Val_DegC degrees	Celsius
DAQmx_Val_DegF degrees	Fahrenheit
DAQmx_Val_Kelvins kelvins
DAQmx_Val_DegR degrees	Rankine

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAIThrmcplChan
int32	DAQmxCreateAIThrmcplChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	float64
minVal,	float64	maxVal,	int32	units,	int32	thermocoupleType,	int32
cjcSource,	float64	cjcVal,	const	char	cjcChannel[]);



Purpose
Creates	channel(s)	that	use	a	thermocouple	to	measure	temperature	and	adds	the
channel(s)	to	the	task	you	specify	with	taskHandle.

javascript:launchSharedHelp('measfunds.chm::/thermocouples.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.
You	can	specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer
to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Name Description
DAQmx_Val_DegC degrees	Celsius
DAQmx_Val_DegF degrees	Fahrenheit
DAQmx_Val_Kelvins kelvins
DAQmx_Val_DegR degrees	Rankine

thermocoupleType int32 The	type	of	thermocouple	connected	to	the	channel.

Value Description
DAQmx_Val_J_Type_TC J-type

thermocouple.
DAQmx_Val_K_Type_TC K-type

thermocouple.
DAQmx_Val_N_Type_TC N-type

thermocouple.
DAQmx_Val_R_Type_TC R-type

thermocouple.
DAQmx_Val_S_Type_TC S-type

thermocouple.

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/thermocouples.html');


DAQmx_Val_T_Type_TC T-type
thermocouple.

DAQmx_Val_B_Type_TC B-type
thermocouple.

DAQmx_Val_E_Type_TC E-type
thermocouple.

cjcSource int32 The	source	of	cold	junction	compensation.

Value Description
DAQmx_Val_BuiltIn Use	a	cold-

junction
compensation
channel	built	into
the	terminal
block.

DAQmx_Val_ConstVal You	must	specify
the	cold-junction
temperature.

DAQmx_Val_Chan Use	a	channel	for
cold-junction
compensation.

cjcVal float64 The	temperature	of	the	cold	junction	of	the	thermocouple	if	you	set
cjcSource	to	DAQmx_Val_ConstVal.

cjcChannel const	char	[] The	channel	that	acquires	the	temperature	of	the	thermocouple	cold-
junction	if	you	set	cjcSource	to	DAQmx_Val_Chan.	You	can	use	a
global	channel	or	another	virtual	channel	already	in	the	task.	If	the
channel	is	a	temperature	channel,	NI-DAQmx	acquires	the
temperature	in	the	correct	units.	Other	channel	types,	such	as	a
resistance	channel	with	a	custom	sensor,	must	use	a	custom	scale	to
scale	values	to	degrees	Celsius.

javascript:launchSharedHelp('measfunds.chm::/sigcontherm.html');
javascript:launchSharedHelp('measfunds.chm::/sigcontherm.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAIThrmstrChanIex
int32	DAQmxCreateAIThrmstrChanIex	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	float64
minVal,	float64	maxVal,	int32	units,	int32	resistanceConfig,	int32
currentExcitSource,	float64	currentExcitVal,	float64	a,	float64	b,
float64	c);



Purpose
Creates	channel(s)	that	use	a	thermistor	to	measure	temperature	and	adds	the
channel(s)	to	the	task	you	specify	with	taskHandle.	Use	this	function	when	the
thermistor	requires	current	excitation.

javascript:launchSharedHelp('measfunds.chm::/thermistors.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.
You	can	specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer
to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Name Description
DAQmx_Val_DegC degrees	Celsius
DAQmx_Val_DegF degrees	Fahrenheit
DAQmx_Val_Kelvins kelvins
DAQmx_Val_DegR degrees	Rankine

resistanceConfig int32 The	configuration	for	resistance	measurements.

Value Description
DAQmx_Val_2Wire 2-wire	mode.
DAQmx_Val_3Wire 3-wire	mode.
DAQmx_Val_4Wire 4-wire	mode.

currentExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in

excitation	source
of	the	device.	You
must	use
currentExcitVal

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


to	specify	the
amount	of
excitation.

DAQmx_Val_External Use	an	excitation
source	other	than
the	built-in
excitation	source
of	the	device.	You
must	use
currentExcitVal
to	specify	the
amount	of
excitation.

DAQmx_Val_None Supply	no
excitation	to	the
channel.	You
cannot	use	this
value	if	the	sensor
requires	excitation.

currentExcitVal float64 The	amount	of	excitation,	in	amperes,	that	the	sensor	requires.

a float64 The	A	constant	from	the	Steinhart-Hart	thermistor	equation.

b float64 The	B	constant	from	the	Steinhart-Hart	thermistor	equation.

c float64 The	C	constant	from	the	Steinhart-Hart	thermistor	equation.

javascript:launchSharedHelp('measfunds.chm::/thermistors.html');
javascript:launchSharedHelp('measfunds.chm::/thermistors.html');
javascript:launchSharedHelp('measfunds.chm::/thermistors.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAIThrmstrChanVex
int32	DAQmxCreateAIThrmstrChanVex	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	float64
minVal,	float64	maxVal,	int32	units,	int32	resistanceConfig,	int32
voltageExcitSource,	float64	voltageExcitVal,	float64	a,	float64	b,
float64	c,	float64	r1);



Purpose
Creates	channel(s)	that	use	a	thermistor	to	measure	temperature	and	adds	the
channel(s)	to	the	task	you	specify	with	taskHandle.	Use	this	function	when	the
thermistor	requires	voltage	excitation.

javascript:launchSharedHelp('measfunds.chm::/thermistors.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.
You	can	specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer
to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Name Description
DAQmx_Val_DegC degrees	Celsius
DAQmx_Val_DegF degrees	Fahrenheit
DAQmx_Val_Kelvins kelvins
DAQmx_Val_DegR degrees	Rankine

resistanceConfig int32 The	configuration	for	resistance	measurements.

Value Description
DAQmx_Val_2Wire 2-wire	mode.
DAQmx_Val_3Wire 3-wire	mode.
DAQmx_Val_4Wire 4-wire	mode.

voltageExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in

excitation	source
of	the	device.	You
must	use
voltageExcitVal	to

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


specify	the	amount
of	excitation.

DAQmx_Val_External Use	an	excitation
source	other	than
the	built-in
excitation	source
of	the	device.	You
must	use
voltageExcitVal	to
specify	the	amount
of	excitation.

DAQmx_Val_None Supply	no
excitation	to	the
channel.	You
cannot	use	this
value	if	the	sensor
requires	excitation.

voltageExcitVal float64 The	amount	of	excitation,	in	volts,	that	the	sensor	requires.

a float64 The	A	constant	from	the	Steinhart-Hart	thermistor	equation.

b float64 The	B	constant	from	the	Steinhart-Hart	thermistor	equation.

c float64 The	C	constant	from	the	Steinhart-Hart	thermistor	equation.

r1 float64 The	value,	in	ohms,	of	the	reference	resistor.

javascript:launchSharedHelp('measfunds.chm::/thermistors.html');
javascript:launchSharedHelp('measfunds.chm::/thermistors.html');
javascript:launchSharedHelp('measfunds.chm::/thermistors.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAIVoltageChan
int32	DAQmxCreateAIVoltageChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	int32
terminalConfig,	float64	minVal,	float64	maxVal,	int32	units,	const
char	customScaleName[]);



Purpose
Creates	channel(s)	to	measure	voltage	and	adds	the	channel(s)	to	the	task	you	specify	with
taskHandle.	If	your	measurement	requires	the	use	of	internal	excitation	or	you
need	the	voltage	to	be	scaled	by	excitation,	call	DAQmxCreateAIVoltageChanWithExcit.

javascript:launchSharedHelp('daqhelp.chm::/Meas_Volt.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

terminalConfig int32 The	input	terminal	configuration	for	the	channel.

Value Description
DAQmx_Val_Cfg_Default
(-1)

At	run	time,	NI-
DAQmx	chooses	the
default	terminal	configuration	for
the	channel.

DAQmx_Val_RSE Referenced	single-ended	mode

DAQmx_Val_NRSE Nonreferenced	single-ended	mode

DAQmx_Val_Diff Differential	mode

DAQmx_Val_PseudoDiff Pseudodifferential	mode

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	voltage	measurements.

Name Description
DAQmx_Val_Volts volts
DAQmx_Val_FromCustomScale Units	a	custom

scale	specifies.	Use
customScaleName
to	specify	a	custom
scale.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/groundSig.html');
javascript:launchSharedHelp('mxdevconsid.chm::/defaultTermConfig.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/diffMeasSys.html');
javascript:launchSharedHelp('measfunds.chm::/pseudodiffMeasSystem.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAIVoltageRMSChan
int32	DAQmxCreateAIVoltageRMSChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	int32
terminalConfig,	float64	minVal,	float64	maxVal,	int32	units,	const
char	customScaleName[]);



Purpose
Creates	channel(s)	to	measure	RMS	voltage	and	adds	the	channel(s)	to	the	task	you	specify
with	taskHandle.	If	your	measurement	requires	the	use	of	internal	excitation	or
you	need	the	voltage	to	be	scaled	by	excitation,	call	DAQmxCreateAIVoltageChanWithExcit.

javascript:launchSharedHelp('daqhelp.chm::/Meas_Volt.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

terminalConfig int32 The	input	terminal	configuration	for	the	channel.

Value Description
DAQmx_Val_Cfg_Default
(-1)

At	run	time,	NI-
DAQmx	chooses	the
default	terminal	configuration	for
the	channel.

DAQmx_Val_RSE Referenced	single-ended	mode

DAQmx_Val_NRSE Nonreferenced	single-ended	mode

DAQmx_Val_Diff Differential	mode

DAQmx_Val_PseudoDiff Pseudodifferential	mode

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	voltage	measurements.

Name Description
DAQmx_Val_Volts volts
DAQmx_Val_FromCustomScale Units	a	custom

scale	specifies.	Use
customScaleName
to	specify	a	custom
scale.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/groundSig.html');
javascript:launchSharedHelp('mxdevconsid.chm::/defaultTermConfig.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/diffMeasSys.html');
javascript:launchSharedHelp('measfunds.chm::/pseudodiffMeasSystem.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAIVoltageChanWithExcit
int32	DAQmxCreateAIVoltageChanWithExcit	(TaskHandle	taskHandle,	const

char	physicalChannel[],	const	char	nameToAssignToChannel[],	int32
terminalConfig,	float64	minVal,	float64	maxVal,	int32	units,	int32
bridgeConfig,	int32	voltageExcitSource,	float64	voltageExcitVal,
bool32	useExcitForScaling,	const	char	customScaleName[]);



Purpose
Creates	channel(s)	to	measure	voltage	and	adds	the	channels	to	the	task	you
specify	with	taskHandle.	Use	this	instance	for	custom	sensors	that	require
excitation.	You	can	choose	to	use	the	excitation	to	scale	the	measurement.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

terminalConfig int32 The	input	terminal	configuration	for	the	channel.

Value Description
DAQmx_Val_Cfg_Default
(-1)

At	run	time,	NI-
DAQmx	chooses	the
default	terminal	configuration	for
the	channel.

DAQmx_Val_RSE Referenced	single-ended	mode

DAQmx_Val_NRSE Nonreferenced	single-ended	mode

DAQmx_Val_Diff Differential	mode

DAQmx_Val_PseudoDiff Pseudodifferential	mode

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	voltage	measurements.

Name Description
DAQmx_Val_Volts volts
DAQmx_Val_FromCustomScale Units	a	custom

scale	specifies.	Use
customScaleName
to	specify	a	custom
scale.

bridgeConfig int32 The	type	of	Wheatstone	bridge	the	sensor	is.

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/groundSig.html');
javascript:launchSharedHelp('mxdevconsid.chm::/defaultTermConfig.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/diffMeasSys.html');
javascript:launchSharedHelp('measfunds.chm::/pseudodiffMeasSystem.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


Value Description
DAQmx_Val_FullBridge Sensor	is	a	full

bridge.	If	you	set
useExcitForScaling
to	TRUE,	NI-
DAQmx	divides	the
measurement	by	the
excitation	value.
Many	sensors	scale
data	to	native	units
using	scaling	of
volts	per	excitation.

DAQmx_Val_HalfBridge Sensor	is	a	half
bridge.	If	you	set
useExcitForScaling
to	TRUE,	NI-
DAQmx	divides	the
measurement	by	the
excitation	value.
Many	sensors	scale
data	to	native	units
using	scaling	of
volts	per	excitation.

DAQmx_Val_QuarterBridge Sensor	is	a	quarter
bridge.	If	you	set
useExcitForScaling
to	TRUE,	NI-
DAQmx	divides	the
measurement	by	the
excitation	value.
Many	sensors	scale
data	to	native	units
using	scaling	of
volts	per	excitation.

DAQmx_Val_NoBridge Sensor	is	not	a
Wheatstone	bridge.

voltageExcitSource int32 The	source	of	excitation.



Value Description
DAQmx_Val_Internal Use	the	built-in	excitation

source	of	the	device.	You
must	use	voltageExcitVal
to	specify	the	amount	of
excitation.

DAQmx_Val_External Use	an	excitation	source
other	than	the	built-in
excitation	source	of	the
device.	You	must	use
voltageExcitVal	to	specify
the	amount	of	excitation.

DAQmx_Val_None Supply	no	excitation	to	the
channel.	You	cannot	use
this	value	if	the	sensor
requires	excitation.

voltageExcitVal float64 The	amount	of	excitation,	in	volts,	that	the	sensor	requires.

useExcitForScaling bool32 Specifies	whether	NI-DAQmx	divides	the	measurement	by	the	excitation.	You
should	typically	set	useExcitForScaling	to	TRUE	for	ratiometric	transducers.	If
you	set	useExcitForScaling	to	TRUE,	set	maxVal	and	minVal	to	reflect	the
scaling.
For	example,	if	you	expect	to	acquire	a	voltage	between	-5	and	5,	and	you	use	an
excitation	of	.10	volts	to	scale	the	measurement,	set	minVal	to	-50	and	set
maxVal	to	50.	If	you	set	bridgeConfig	to	DAQmx_Val_NoBridge,
useExcitForScaling	has	no	effect	on	the	measurement.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAIPosLVDTChan
int32	DAQmxCreateAIPosLVDTChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	float64
minVal,	float64	maxVal,	int32	units,	float64	sensitivity,	int32
sensitivityUnits,	int32	voltageExcitSource,	float64	voltageExcitVal,
float64	voltageExcitFreq,	int32	ACExcitWireMode,	const	char
customScaleName[]);



Purpose
Creates	channel(s)	that	use	an	LVDT	to	measure	linear	position	and	adds	the
channel(s)	to	the	task	you	specify	with	taskHandle.

javascript:launchSharedHelp('measfunds.chm::/LVDTs.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can	specify	a	
range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a	name,	NI-
DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.	If	you	specify	your	own
names	for	nameToAssignToChannel,	you	must	use	the	names	when	you	refer	to	these
channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can	specify	a	list	of
names	separated	by	commas.	If	you	provide	fewer	names	than	the	number	of	virtual	channels
you	create,	NI-DAQmx	automatically	assigns	names	to	the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	linear	position	measurements	from	the	channel.

Name Description
DAQmx_Val_Meters Meters
DAQmx_Val_Inches Inches
DAQmx_Val_FromCustomScale Units	a	custom	scale

specifies.	Use
customScaleName
specify	a	custom	scale.

sensitivity float64 The	sensitivity	of	the	sensor.	This	value	is	in	the	units	you	specify	with	sensitivityUnits
to	the	sensor	documentation	to	determine	this	value.

sensitivityUnits int32 The	units	of	sensitivity.

Name Description
DAQmx_Val_mVoltsPerVoltPerMillimeter mvolts/volt/mmeter
DAQmx_Val_mVoltsPerVoltPerMilliInch mvolts/volt/0.001

inch

voltageExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in	excitation	source	of

the	device.	You	must	use
voltageExcitVal	to	specify	the
amount	of	excitation.

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


DAQmx_Val_External Use	an	excitation	source	other	than
the	built-in	excitation	source	of	the
device.	You	must	use
voltageExcitVal	to	specify	the
amount	of	excitation.

DAQmx_Val_None Supply	no	excitation	to	the	channel.
You	cannot	use	this	value	if	the
sensor	requires	excitation.

voltageExcitVal float64 The	amount	of	excitation,	in	volts,	that	the	sensor	requires.

voltageExcitFreq float64 The	excitation	frequency,	in	hertz,	that	the	sensor	requires.	Refer	to	the	sensor	documentation
to	determine	this	value.

ACExcitWireMode int32 The	number	of	leads	on	the	sensor.	Some	sensors	may	require	you	to	tie	leads	together	to	create
a	4-wire	or	5-wire	sensor.	Refer	to	the	documentation	for	your	sensor	for	more	information.

Value Description
DAQmx_Val_4Wire 4-wire.
DAQmx_Val_5Wire 5-wire.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you	must	set	
DAQmx_Val_FromCustomScale.	If	you	do	not	set	units	to	DAQmx_Val_FromCustomScale
you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAIPosRVDTChan
int32	DAQmxCreateAIPosRVDTChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	float64
minVal,	float64	maxVal,	int32	units,	float64	sensitivity,	int32
sensitivityUnits,	int32	voltageExcitSource,	float64	voltageExcitVal,
float64	voltageExcitFreq,	int32	ACExcitWireMode,	const	char
customScaleName[]);



Purpose
Creates	channel(s)	that	use	an	RVDT	to	measure	angular	position	and	adds	the
channel(s)	to	the	task	you	specify	with	taskHandle.

javascript:launchSharedHelp('measfunds.chm::/RVDTs.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can	specify	a
list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a	name,	NI-
DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.	If	you	specify	your
own	names	for	nameToAssignToChannel,	you	must	use	the	names	when	you	refer	to
these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can	specify	a
list	of	names	separated	by	commas.	If	you	provide	fewer	names	than	the	number	of
virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names	to	the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	angular	position	measurements	from	the	channel.

Name Description
DAQmx_Val_Degrees Degrees
DAQmx_Val_Radians Radians
DAQmx_Val_FromCustomScale Units	specified	by	a

custom	scale.	Use
customScaleName
specify	a	custom
scale.

sensitivity float64 The	sensitivity	of	the	sensor.	This	value	is	in	the	units	you	specify	with	sensitivityUnits
Refer	to	the	sensor	documentation	to	determine	this	value.

sensitivityUnits int32 The	units	of	sensitivity.

Name Description
DAQmx_Val_mVoltsPerVoltPerDegree mvolts/volt/degree
DAQmx_Val_mVoltsPerVoltPerRadian mvolts/volt/radian

voltageExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in	excitation

source	of	the	device.	You	must
use	voltageExcitVal	to	specify
the	amount	of	excitation.

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


DAQmx_Val_External Use	an	excitation	source	other
than	the	built-in	excitation
source	of	the	device.	You	must
use	voltageExcitVal	to	specify
the	amount	of	excitation.

DAQmx_Val_None Supply	no	excitation	to	the
channel.	You	cannot	use	this
value	if	the	sensor	requires
excitation.

voltageExcitVal float64 The	amount	of	excitation,	in	volts,	that	the	sensor	requires.

voltageExcitFreq float64 The	excitation	frequency,	in	hertz,	that	the	sensor	requires.	Refer	to	the	sensor
documentation	to	determine	this	value.

ACExcitWireMode int32 The	number	of	leads	on	the	sensor.	Some	sensors	may	require	you	to	tie	leads	together	to
create	a	4-wire	or	5-wire	sensor.	Refer	to	the	documentation	for	your	sensor	for	more
information.

Value Description
DAQmx_Val_4Wire 4-wire.
DAQmx_Val_5Wire 5-wire.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you	must	set
units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units	to
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



Obsolete
This	function	is	obsolete.	Use	DAQmxCreateAITempBuiltInSensorChan	instead.



DAQmxCreateAIDeviceTempChan
int32	DAQmxCreateAIDeviceTempChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	int32
units);



Purpose
Creates	channel(s)	that	use	a	sensor	built	into	a	terminal	block	or	device	to
measure	temperature	and	adds	the	channel(s)	to	the	task	you	specify	with
taskHandle.	On	SCXI	modules,	for	example,	this	could	be	the	CJC	sensor.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.
You	can	specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer
to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

units int32 The	units	to	use	to	return	the	measurement.

Name Description
DAQmx_Val_DegC degrees	Celsius
DAQmx_Val_DegF degrees	Fahrenheit
DAQmx_Val_Kelvins kelvins
DAQmx_Val_DegR degrees	Rankine

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateTEDSAIAccelChan
int32	DAQmxCreateTEDSAIAccelChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	int32
terminalConfig,	float64	minVal,	float64	maxVal,	int32	units,	int32
currentExcitSource,	float64	currentExcitVal,	const	char
customScaleName[]);



Purpose
Creates	channel(s)	that	use	an	accelerometer	to	measure	acceleration	and	adds	the	channel(s)	to
the	task	you	specify	with	taskHandle.	You	must	configure	the	physical	channel(s)
with	TEDS	information	to	use	this	function.

javascript:launchSharedHelp('measfunds.chm::/Accelerometers.html');
javascript:launchSharedHelp('daqhelp.chm::/Accel.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

terminalConfig int32 The	input	terminal	configuration	for	the	channel.

Value Description
DAQmx_Val_Cfg_Default
(-1)

At	run	time,	NI-
DAQmx	chooses	the
default	terminal	configuration	for
the	channel.

DAQmx_Val_RSE Referenced	single-ended	mode

DAQmx_Val_NRSE Nonreferenced	single-ended	mode

DAQmx_Val_Diff Differential	mode

DAQmx_Val_PseudoDiff Pseudodifferential	mode

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	acceleration	measurements	from	the	channel.

Name Description
DAQmx_Val_AccelUnit_g G.	1	g	is

approximately
equal	to	9.81	m/s

DAQmx_Val_FromCustomScale Units	specified	by
a	custom	scale.
Use
customScaleName
to	specify	a	custom

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/groundSig.html');
javascript:launchSharedHelp('mxdevconsid.chm::/defaultTermConfig.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/diffMeasSys.html');
javascript:launchSharedHelp('measfunds.chm::/pseudodiffMeasSystem.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


scale.

currentExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in	excitation

source	of	the	device.	You
must	use	currentExcitVal
to	specify	the	amount	of
excitation.

DAQmx_Val_External Use	an	excitation	source
other	than	the	built-in
excitation	source	of	the
device.	You	must	use
currentExcitVal	to
specify	the	amount	of
excitation.

DAQmx_Val_None Supply	no	excitation	to	the
channel.	You	cannot	use
this	value	if	the	sensor
requires	excitation.

currentExcitVal float64 The	amount	of	excitation,	in	amperes,	that	the	sensor	requires.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateTEDSAICurrentChan
int32	DAQmxCreateTEDSAICurrentChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	int32
terminalConfig,	float64	minVal,	float64	maxVal,	int32	units,	int32
shuntResistorLoc,	float64	externalShuntResistorValue,	const	char
customScaleName[]);



Purpose
Creates	channel(s)	to	measure	current	and	adds	the	channel(s)	to	the	task	you	specify	with
taskHandle.	You	must	configure	the	physical	channel(s)	with	TEDS	information
to	use	this	function.

javascript:launchSharedHelp('daqhelp.chm::/Measuring_Current.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

terminalConfig int32 The	input	terminal	configuration	for	the	channel.

Value Description
DAQmx_Val_Cfg_Default
(-1)

At	run	time,	NI-
DAQmx	chooses	the
default	terminal	configuration	for
the	channel.

DAQmx_Val_RSE Referenced	single-ended	mode

DAQmx_Val_NRSE Nonreferenced	single-ended	mode

DAQmx_Val_Diff Differential	mode

DAQmx_Val_PseudoDiff Pseudodifferential	mode

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	measurements.

Name Description
DAQmx_Val_FromCustomScale Units	a	custom

scale	specifies.	Use
customScaleName
to	specify	a	custom
scale.

DAQmx_Val_FromTEDS Units	defined	by
TEDS	information
associated	with	the

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/groundSig.html');
javascript:launchSharedHelp('mxdevconsid.chm::/defaultTermConfig.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/diffMeasSys.html');
javascript:launchSharedHelp('measfunds.chm::/pseudodiffMeasSystem.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


channel.

shuntResistorLoc int32 The	location	of	the	shunt	resistor.

Value Description
DAQmx_Val_Internal Use	the	built-in	shunt

resistor	of	the	device.
DAQmx_Val_External Use	a	shunt	resistor

external	to	the	device.	You
must	specify	the	value	of
the	shunt	resistor	in
extShuntResistorVal

extShuntResistorVal float64 The	value,	in	ohms,	of	an	external	shunt	resistor.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateTEDSAIMicrophoneChan
int32	DAQmxCreateTEDSAIMicrophoneChan	(TaskHandle	taskHandle,	const

char	physicalChannel[],	const	char	nameToAssignToChannel[],	int32
terminalConfig,	int32	units,	float64	maxSndPressLevel,	int32
currentExcitSource,	float64	currentExcitVal,	const	char
customScaleName[]);



Purpose
Creates	channel(s)	that	use	a	microphone	to	measure	sound	pressure	and	adds	the
channel(s)	to	the	task	you	specify	with	taskHandle.	You	must	configure	the
physical	channel(s)	with	TEDS	information	to	use	this	function.

javascript:launchSharedHelp('daqhelp.chm::/soundPress.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

terminalConfig int32 The	input	terminal	configuration	for	the	channel.

Value Description
DAQmx_Val_Cfg_Default
(-1)

At	run	time,	NI-
DAQmx	chooses	the
default	terminal	configuration	for
the	channel.

DAQmx_Val_RSE Referenced	single-ended	mode

DAQmx_Val_NRSE Nonreferenced	single-ended	mode

DAQmx_Val_Diff Differential	mode

DAQmx_Val_PseudoDiff Pseudodifferential	mode

units int32 The	units	to	use	to	return	sound	pressure	measurements.

Name Description
DAQmx_Val_Pascals pascals
DAQmx_Val_FromCustomScale Units	specified	by

a	custom	scale.
Use
customScaleName
to	specify	a	custom
scale.

maxSndPressLevel float64 The	maximum	instantaneous	sound	pressure	level	you	expect	to	measure.	This
value	is	in	decibels,	referenced	to	20	micropascals.

currentExcitSource int32 The	source	of	excitation.

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/groundSig.html');
javascript:launchSharedHelp('mxdevconsid.chm::/defaultTermConfig.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/diffMeasSys.html');
javascript:launchSharedHelp('measfunds.chm::/pseudodiffMeasSystem.html');


Value Description
DAQmx_Val_Internal Use	the	built-in	excitation

source	of	the	device.	You
must	use	currentExcitVal
to	specify	the	amount	of
excitation.

DAQmx_Val_External Use	an	excitation	source
other	than	the	built-in
excitation	source	of	the
device.	You	must	use
currentExcitVal	to
specify	the	amount	of
excitation.

DAQmx_Val_None Supply	no	excitation	to	the
channel.	You	cannot	use
this	value	if	the	sensor
requires	excitation.

currentExcitVal float64 The	amount	of	excitation,	in	amperes,	that	the	sensor	requires.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateTEDSAIResistanceChan
int32	DAQmxCreateTEDSAIResistanceChan	(TaskHandle	taskHandle,	const

char	physicalChannel[],	const	char	nameToAssignToChannel[],
float64	minVal,	float64	maxVal,	int32	units,	int32	resistanceConfig,
int32	currentExcitSource,	float64	currentExcitVal,	const	char
customScaleName[]);



Purpose
Creates	channel(s)	to	measure	resistance	and	adds	the	channel(s)	to	the	task	you	specify
with	taskHandle.	You	must	configure	the	physical	channel(s)	with	TEDS
information	to	use	this	function.

javascript:launchSharedHelp('daqhelp.chm::/Measuring_Resistance.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	measurements.

Name Description
DAQmx_Val_FromCustomScale Units	a	custom

scale	specifies.	Use
customScaleName
to	specify	a	custom
scale.

DAQmx_Val_FromTEDS Units	defined	by
TEDS	information
associated	with	the
channel.

resistanceConfig int32 The	configuration	for	resistance	measurements.

Value Description
DAQmx_Val_2Wire 2-wire	mode.
DAQmx_Val_3Wire 3-wire	mode.
DAQmx_Val_4Wire 4-wire	mode.

currentExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in	excitation

source	of	the	device.	You

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


must	use	currentExcitVal
to	specify	the	amount	of
excitation.

DAQmx_Val_External Use	an	excitation	source
other	than	the	built-in
excitation	source	of	the
device.	You	must	use
currentExcitVal	to
specify	the	amount	of
excitation.

DAQmx_Val_None Supply	no	excitation	to	the
channel.	You	cannot	use
this	value	if	the	sensor
requires	excitation.

currentExcitVal float64 The	amount	of	excitation,	in	amperes,	that	the	sensor	requires.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateTEDSAIRTDChan
int32	DAQmxCreateTEDSAIRTDChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	float64
minVal,	float64	maxVal,	int32	units,	int32	resistanceConfig,	int32
currentExcitSource,	float64	currentExcitVal);



Purpose
Creates	channel(s)	that	use	an	RTD	to	measure	temperature	and	adds	the	channel(s)	to	the	task
you	specify	with	taskHandle.	You	must	configure	the	physical	channel(s)	with
TEDS	information	to	use	this	function.

javascript:launchSharedHelp('measfunds.chm::/rtd.html');
javascript:launchSharedHelp('daqhelp.chm::/simtemp.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.
You	can	specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer
to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Name Description
DAQmx_Val_DegC degrees	Celsius
DAQmx_Val_DegF degrees	Fahrenheit
DAQmx_Val_Kelvins kelvins
DAQmx_Val_DegR degrees	Rankine

resistanceConfig int32 The	configuration	for	resistance	measurements.

Value Description
DAQmx_Val_2Wire 2-wire	mode.
DAQmx_Val_3Wire 3-wire	mode.
DAQmx_Val_4Wire 4-wire	mode.

currentExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in

excitation	source
of	the	device.	You
must	use
currentExcitVal

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


to	specify	the
amount	of
excitation.

DAQmx_Val_External Use	an	excitation
source	other	than
the	built-in
excitation	source
of	the	device.	You
must	use
currentExcitVal
to	specify	the
amount	of
excitation.

DAQmx_Val_None Supply	no
excitation	to	the
channel.	You
cannot	use	this
value	if	the	sensor
requires	excitation.

currentExcitVal float64 The	amount	of	excitation,	in	amperes,	that	the	sensor	requires.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateTEDSAIStrainGageChan
int32	DAQmxCreateTEDSAIStrainGageChan	(TaskHandle	taskHandle,	const

char	physicalChannel[],	const	char	nameToAssignToChannel[],
float64	minVal,	float64	maxVal,	int32	units,	int32
voltageExcitSource,	float64	voltageExcitVal,	float64
initialBridgeVoltage,	float64	leadWireResistance,	const	char
customScaleName[]);



Purpose
Creates	channel(s)	to	measure	strain	and	adds	the	channel(s)	to	the	task	you	specify	with
taskHandle.	You	must	configure	the	physical	channel(s)	with	TEDS	information
to	use	this	function.

javascript:launchSharedHelp('daqhelp.chm::/Meas_Strain.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Name Description
DAQmx_Val_Strain Strain
DAQmx_Val_FromCustomScale Units	specified	by

a	custom	scale.
Use
customScaleName
to	specify	a	custom
scale.

voltageExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in	excitation

source	of	the	device.	You
must	use	voltageExcitVal
to	specify	the	amount	of
excitation.

DAQmx_Val_External Use	an	excitation	source
other	than	the	built-in
excitation	source	of	the
device.	You	must	use
voltageExcitVal	to	specify

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


the	amount	of	excitation.
DAQmx_Val_None Supply	no	excitation	to	the

channel.	You	cannot	use
this	value	if	the	sensor
requires	excitation.

voltageExcitVal float64 The	amount	of	excitation,	in	volts,	that	the	sensor	requires.

initialBridgeVoltage float64 The	bridge	output	voltage	in	the	unloaded	condition.	NI-DAQmx	subtracts	this
value	from	any	measurements	before	applying	scaling	equations.	Perform	a
voltage	measurement	on	the	bridge	with	no	strain	applied	to	determine	this
value.

leadWireResistance float64 The	amount,	in	ohms,	of	resistance	in	the	lead	wires.	Ideally,	this	value	is	the
same	for	all	leads.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateTEDSAIThrmcplChan
int32	DAQmxCreateTEDSAIThrmcplChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	float64
minVal,	float64	maxVal,	int32	units,	int32	cjcSource,	float64	cjcVal,
const	char	cjcChannel[]);



Purpose
Creates	channel(s)	that	use	a	thermocouple	to	measure	temperature	and	adds	the	channel(s)	to
the	task	you	specify	with	taskHandle.	You	must	configure	the	physical	channel(s)
with	TEDS	information	to	use	this	function.

javascript:launchSharedHelp('measfunds.chm::/thermocouples.html');
javascript:launchSharedHelp('daqhelp.chm::/simtemp.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.
You	can	specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer
to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Name Description
DAQmx_Val_DegC degrees	Celsius
DAQmx_Val_DegF degrees	Fahrenheit
DAQmx_Val_Kelvins kelvins
DAQmx_Val_DegR degrees	Rankine

cjcSource int32 The	source	of	cold	junction	compensation.

Value Description
DAQmx_Val_BuiltIn Use	a	cold-

junction
compensation
channel	built	into
the	terminal
block.

DAQmx_Val_ConstVal You	must	specify
the	cold-junction
temperature.

DAQmx_Val_Chan Use	a	channel	for
cold-junction

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/sigcontherm.html');


compensation.

cjcVal float64 The	temperature	of	the	cold	junction	of	the	thermocouple	if	you	set
cjcSource	to	DAQmx_Val_ConstVal.

cjcChannel const	char	[] The	channel	that	acquires	the	temperature	of	the	thermocouple	cold-
junction	if	you	set	cjcSource	to	DAQmx_Val_Chan.	You	can	use	a
global	channel	or	another	virtual	channel	already	in	the	task.	If	the
channel	is	a	temperature	channel,	NI-DAQmx	acquires	the
temperature	in	the	correct	units.	Other	channel	types,	such	as	a
resistance	channel	with	a	custom	sensor,	must	use	a	custom	scale	to
scale	values	to	degrees	Celsius.

javascript:launchSharedHelp('measfunds.chm::/sigcontherm.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateTEDSAIThrmstrChanIex
int32	DAQmxCreateTEDSAIThrmstrChanIex	(TaskHandle	taskHandle,	const

char	physicalChannel[],	const	char	nameToAssignToChannel[],
float64	minVal,	float64	maxVal,	int32	units,	int32	resistanceConfig,
int32	currentExcitSource,	float64	currentExcitVal);



Purpose
Creates	channel(s)	that	use	a	thermistor	to	measure	temperature	and	adds	the	channel(s)	to	the
task	you	specify	with	taskHandle.	Use	this	instance	when	the	thermistor	requires
current	excitation.	You	must	configure	the	physical	channel(s)	with	TEDS
information	to	use	this	function.

javascript:launchSharedHelp('measfunds.chm::/thermistors.html');
javascript:launchSharedHelp('daqhelp.chm::/simtemp.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.
You	can	specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer
to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Name Description
DAQmx_Val_DegC degrees	Celsius
DAQmx_Val_DegF degrees	Fahrenheit
DAQmx_Val_Kelvins kelvins
DAQmx_Val_DegR degrees	Rankine

resistanceConfig int32 The	configuration	for	resistance	measurements.

Value Description
DAQmx_Val_2Wire 2-wire	mode.
DAQmx_Val_3Wire 3-wire	mode.
DAQmx_Val_4Wire 4-wire	mode.

currentExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in

excitation	source
of	the	device.	You
must	use
currentExcitVal

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


to	specify	the
amount	of
excitation.

DAQmx_Val_External Use	an	excitation
source	other	than
the	built-in
excitation	source
of	the	device.	You
must	use
currentExcitVal
to	specify	the
amount	of
excitation.

DAQmx_Val_None Supply	no
excitation	to	the
channel.	You
cannot	use	this
value	if	the	sensor
requires	excitation.

currentExcitVal float64 The	amount	of	excitation,	in	amperes,	that	the	sensor	requires.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateTEDSAIThrmstrChanVex
int32	DAQmxCreateTEDSAIThrmstrChanVex	(TaskHandle	taskHandle,	const

char	physicalChannel[],	const	char	nameToAssignToChannel[],
float64	minVal,	float64	maxVal,	int32	units,	int32	resistanceConfig,
int32	voltageExcitSource,	float64	voltageExcitVal,	float64	r1);



Purpose
Creates	channel(s)	that	use	a	thermistor	to	measure	temperature	and	adds	the	channel(s)	to	the
task	you	specify	with	taskHandle.	Use	this	instance	when	the	thermistor	requires
voltage	excitation.	You	must	configure	the	physical	channel(s)	with	TEDS
information	to	use	this	function.

javascript:launchSharedHelp('measfunds.chm::/thermistors.html');
javascript:launchSharedHelp('daqhelp.chm::/simtemp.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.
You	can	specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer
to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Name Description
DAQmx_Val_DegC degrees	Celsius
DAQmx_Val_DegF degrees	Fahrenheit
DAQmx_Val_Kelvins kelvins
DAQmx_Val_DegR degrees	Rankine

resistanceConfig int32 The	configuration	for	resistance	measurements.

Value Description
DAQmx_Val_2Wire 2-wire	mode.
DAQmx_Val_3Wire 3-wire	mode.
DAQmx_Val_4Wire 4-wire	mode.

voltageExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in

excitation	source
of	the	device.	You
must	use
voltageExcitVal	to

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


specify	the	amount
of	excitation.

DAQmx_Val_External Use	an	excitation
source	other	than
the	built-in
excitation	source
of	the	device.	You
must	use
voltageExcitVal	to
specify	the	amount
of	excitation.

DAQmx_Val_None Supply	no
excitation	to	the
channel.	You
cannot	use	this
value	if	the	sensor
requires	excitation.

voltageExcitVal float64 The	amount	of	excitation,	in	volts,	that	the	sensor	requires.

r1 float64 The	value,	in	ohms,	of	the	reference	resistor.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateTEDSAIVoltageChan
int32	DAQmxCreateTEDSAIVoltageChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	int32
terminalConfig,	float64	minVal,	float64	maxVal,	int32	units,	const
char	customScaleName[]);



Purpose
Creates	channel(s)	to	measure	voltage	and	adds	the	channel(s)	to	the	task	you	specify	with
taskHandle.	You	must	configure	the	physical	channel(s)	with	TEDS	information
to	use	this	function.	If	your	measurement	requires	the	use	of	internal	excitation
or	you	need	the	voltage	to	be	scaled	by	the	excitation,	use	the
DAQmxCreateTEDSAIVoltageChanWithExcit	function.

javascript:launchSharedHelp('daqhelp.chm::/Meas_Volt.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

terminalConfig int32 The	input	terminal	configuration	for	the	channel.

Value Description
DAQmx_Val_Cfg_Default
(-1)

At	run	time,	NI-
DAQmx	chooses	the
default	terminal	configuration	for
the	channel.

DAQmx_Val_RSE Referenced	single-ended	mode

DAQmx_Val_NRSE Nonreferenced	single-ended	mode

DAQmx_Val_Diff Differential	mode

DAQmx_Val_PseudoDiff Pseudodifferential	mode

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	measurements.

Name Description
DAQmx_Val_FromCustomScale Units	a	custom

scale	specifies.	Use
customScaleName
to	specify	a	custom
scale.

DAQmx_Val_FromTEDS Units	defined	by
TEDS	information
associated	with	the

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/groundSig.html');
javascript:launchSharedHelp('mxdevconsid.chm::/defaultTermConfig.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/diffMeasSys.html');
javascript:launchSharedHelp('measfunds.chm::/pseudodiffMeasSystem.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


channel.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateTEDSAIVoltageChanWithExcit
int32	DAQmxCreateTEDSAIVoltageChanWithExcit	(TaskHandle	taskHandle,

const	char	physicalChannel[],	const	char	nameToAssignToChannel[],
int32	terminalConfig,	float64	minVal,	float64	maxVal,	int32	units,
int32	voltageExcitSource,	float64	voltageExcitVal,	const	char
customScaleName[]);



Purpose
Creates	channel(s)	to	measure	voltage	and	adds	the	channel(s)	to	the	task	you	specify	with
taskHandle.	Use	this	instance	for	custom	sensors	that	require	excitation.	You
can	use	the	excitation	to	scale	the	measurement.	You	must	configure	the	physical
channel(s)	with	TEDS	information	to	use	this	function.

javascript:launchSharedHelp('daqhelp.chm::/Meas_Volt.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

terminalConfig int32 The	input	terminal	configuration	for	the	channel.

Value Description
DAQmx_Val_Cfg_Default
(-1)

At	run	time,	NI-
DAQmx	chooses	the
default	terminal	configuration	for
the	channel.

DAQmx_Val_RSE Referenced	single-ended	mode

DAQmx_Val_NRSE Nonreferenced	single-ended	mode

DAQmx_Val_Diff Differential	mode

DAQmx_Val_PseudoDiff Pseudodifferential	mode

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	measurements.

Name Description
DAQmx_Val_FromCustomScale Units	a	custom

scale	specifies.	Use
customScaleName
to	specify	a	custom
scale.

DAQmx_Val_FromTEDS Units	defined	by
TEDS	information
associated	with	the

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/groundSig.html');
javascript:launchSharedHelp('mxdevconsid.chm::/defaultTermConfig.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/refSingleEnded.html');
javascript:launchSharedHelp('measfunds.chm::/diffMeasSys.html');
javascript:launchSharedHelp('measfunds.chm::/pseudodiffMeasSystem.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


channel.

voltageExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in	excitation

source	of	the	device.	You
must	use	voltageExcitVal
to	specify	the	amount	of
excitation.

DAQmx_Val_External Use	an	excitation	source
other	than	the	built-in
excitation	source	of	the
device.	You	must	use
voltageExcitVal	to	specify
the	amount	of	excitation.

DAQmx_Val_None Supply	no	excitation	to	the
channel.	You	cannot	use
this	value	if	the	sensor
requires	excitation.

voltageExcitVal float64 The	amount	of	excitation,	in	volts,	that	the	sensor	requires.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateTEDSAIPosLVDTChan
int32	DAQmxCreateTEDSAIPosLVDTChan	(TaskHandle	taskHandle,	const

char	physicalChannel[],	const	char	nameToAssignToChannel[],
float64	minVal,	float64	maxVal,	int32	units,	int32
voltageExcitSource,	float64	voltageExcitVal,	float64
voltageExcitFreq,	int32	ACExcitWireMode,	const	char
customScaleName[]);



Purpose
Creates	channel(s)	that	use	an	LVDT	to	measure	linear	position	and	adds	the	channel(s)	to	the
task	you	specify	with	taskHandle.	You	must	configure	the	physical	channel(s)
with	TEDS	information	to	use	this	function.

javascript:launchSharedHelp('measfunds.chm::/LVDTs.html');
javascript:launchSharedHelp('daqhelp.chm::/linDisplaceLVDT.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	linear	position	measurements	from	the	channel.

Name Description
DAQmx_Val_Meters Meters
DAQmx_Val_Inches Inches
DAQmx_Val_FromCustomScale Units	a	custom

scale	specifies.	Use
customScaleName
to	specify	a	custom
scale.

voltageExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in	excitation

source	of	the	device.	You
must	use	voltageExcitVal
to	specify	the	amount	of
excitation.

DAQmx_Val_External Use	an	excitation	source
other	than	the	built-in
excitation	source	of	the
device.	You	must	use
voltageExcitVal	to	specify

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


the	amount	of	excitation.
DAQmx_Val_None Supply	no	excitation	to	the

channel.	You	cannot	use
this	value	if	the	sensor
requires	excitation.

voltageExcitVal float64 The	amount	of	excitation,	in	volts,	that	the	sensor	requires.

voltageExcitFreq float64 The	excitation	frequency,	in	hertz,	that	the	sensor	requires.	Refer	to	the	sensor
documentation	to	determine	this	value.

ACExcitWireMode int32 The	number	of	leads	on	the	sensor.	Some	sensors	may	require	you	to	tie	leads
together	to	create	a	4-wire	or	5-wire	sensor.	Refer	to	the	documentation	for	your
sensor	for	more	information.

Value Description
DAQmx_Val_4Wire 4-wire.
DAQmx_Val_5Wire 5-wire.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateTEDSAIPosRVDTChan
int32	DAQmxCreateTEDSAIPosRVDTChan	(TaskHandle	taskHandle,	const

char	physicalChannel[],	const	char	nameToAssignToChannel[],
float64	minVal,	float64	maxVal,	int32	units,	int32
voltageExcitSource,	float64	voltageExcitVal,	float64
voltageExcitFreq,	int32	ACExcitWireMode,	const	char
customScaleName[]);



Purpose
Creates	channel(s)	that	use	an	RVDT	to	measure	angular	position	and	adds	the	channel(s)	to
the	task	you	specify	with	taskHandle.	You	must	configure	the	physical	channel(s)
with	TEDS	information	to	use	this	function.

javascript:launchSharedHelp('measfunds.chm::/RVDTs.html');
javascript:launchSharedHelp('daqhelp.chm::/angDisplaceRVDT.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	angular	position	measurements	from	the	channel.

Name Description
DAQmx_Val_Degrees Degrees
DAQmx_Val_Radians Radians
DAQmx_Val_FromCustomScale Units	specified	by

a	custom	scale.
Use
customScaleName
to	specify	a	custom
scale.

voltageExcitSource int32 The	source	of	excitation.

Value Description
DAQmx_Val_Internal Use	the	built-in	excitation

source	of	the	device.	You
must	use	voltageExcitVal
to	specify	the	amount	of
excitation.

DAQmx_Val_External Use	an	excitation	source
other	than	the	built-in
excitation	source	of	the
device.	You	must	use

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


voltageExcitVal	to	specify
the	amount	of	excitation.

DAQmx_Val_None Supply	no	excitation	to	the
channel.	You	cannot	use
this	value	if	the	sensor
requires	excitation.

voltageExcitVal float64 The	amount	of	excitation,	in	volts,	that	the	sensor	requires.

voltageExcitFreq float64 The	excitation	frequency,	in	hertz,	that	the	sensor	requires.	Refer	to	the	sensor
documentation	to	determine	this	value.

ACExcitWireMode int32 The	number	of	leads	on	the	sensor.	Some	sensors	may	require	you	to	tie	leads
together	to	create	a	4-wire	or	5-wire	sensor.	Refer	to	the	documentation	for	your
sensor	for	more	information.

Value Description
DAQmx_Val_4Wire 4-wire.
DAQmx_Val_5Wire 5-wire.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAOCurrentChan
int32	DAQmxCreateAOCurrentChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	float64
minVal,	float64	maxVal,	int32	units,	const	char	customScaleName[]);



Purpose
Creates	channel(s)	to	generate	current	and	adds	the	channel(s)	to	the	task	you
specify	with	taskHandle.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	generate.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	generate.

units int32 The	units	in	which	to	generate	current.

Value Description
DAQmx_Val_Amps amperes
DAQmx_Val_FromCustomScale Units	a	custom

scale	specifies.	Use
customScaleName
to	specify	a	custom
scale.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAOFuncGenChan
int32	DAQmxCreateAOFuncGenChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	int32	type,
float64	frequency,	float64	amplitude,	float64	offset);



Purpose
Creates	a	channel	for	continually	generating	a	waveform	on	the	selected	physical
channel.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.
You	can	specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer
to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

type int32 Specifies	the	kind	of	waveform	to	generate.

Value Description
DAQmx_Val_Sine Sine	wave
DAQmx_Val_Triangle Triangle	wave
DAQmx_Val_Square Sawtooth	wave
DAQmx_Val_Sawtooth Square	wave

frequency float64 The	frequency	of	the	waveform	to	generate	in	hertz.

amplitude float64 The	zero-to-peak	amplitude	of	the	waveform	to	generate	in	volts.
Zero	and	negative	values	are	valid.

offset float64 The	voltage	offset	of	the	waveform	to	generate.

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateAOVoltageChan
int32	DAQmxCreateAOVoltageChan	(TaskHandle	taskHandle,	const	char

physicalChannel[],	const	char	nameToAssignToChannel[],	float64
minVal,	float64	maxVal,	int32	units,	const	char	customScaleName[]);



Purpose
Creates	channel(s)	to	generate	voltage	and	adds	the	channel(s)	to	the	task	you
specify	with	taskHandle.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

physicalChannel const	char	[] The	names	of	the	physical	channels	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	generate.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	generate.

units int32 The	units	in	which	to	generate	voltage.

Name Description
DAQmx_Val_Volts volts
DAQmx_Val_FromCustomScale Units	a	custom

scale	specifies.	Use
customScaleName
to	specify	a	custom
scale.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateDIChan
int32	DAQmxCreateDIChan	(TaskHandle	taskHandle,	const	char	lines[],	const

char	nameToAssignToLines[],	int32	lineGrouping);



Purpose
Creates	channel(s)	to	measure	digital	signals	and	adds	the	channel(s)	to	the	task
you	specify	with	taskHandle.	You	can	group	digital	lines	into	one	digital	channel	or
separate	them	into	multiple	digital	channels.	If	you	specify	one	or	more	entire	ports
in	lines	by	using	port	physical	channel	names,	you	cannot	separate	the	ports	into
multiple	channels.	To	separate	ports	into	multiple	channels,	use	this	function
multiple	times	with	a	different	port	each	time.

javascript:launchSharedHelp('mxcncpts.chm::/linesPorts.html');
javascript:launchSharedHelp('mxcncpts.chm::/virtChanTypes.html');
javascript:launchSharedHelp('mxcncpts.chm::/linesPorts.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

lines const	char	[] The	names	of	the	digital	lines	used	to	create	a	virtual	channel.	You	can
specify	a	list	or	range	of	lines.

nameToAssignToLines const	char	[] The	name	of	the	created	virtual	channel(s).	If	you	create	multiple	virtual
channels	with	one	call	to	this	function,	you	can	specify	a	list	of	names
separated	by	commas.	If	you	do	not	specify	a	name,	NI-DAQmx	uses	the
physical	channel	name	as	the	virtual	channel	name.	If	you	specify	your
own	names	for	nameToAssignToLines,	you	must	use	the	names	when
you	refer	to	these	channels	in	other	NI-DAQmx	functions.

lineGrouping int32 Specifies	whether	to	group	digital	lines	into	one	or	more	virtual
channels.	If	you	specify	one	or	more	entire	ports	in	lines,	you	must	set
lineGrouping	to	DAQmx_Val_ChanForAllLines.

Value Description
DAQmx_Val_ChanPerLine One	channel

for	each	line
DAQmx_Val_ChanForAllLines One	channel

for	all	lines

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateDOChan
int32	DAQmxCreateDOChan	(TaskHandle	taskHandle,	const	char	lines[],	const

char	nameToAssignToLines[],	int32	lineGrouping);



Purpose
Creates	channel(s)	to	generate	digital	signals	and	adds	the	channel(s)	to	the	task
you	specify	with	taskHandle.	You	can	group	digital	lines	into	one	digital	channel	or
separate	them	into	multiple	digital	channels.	If	you	specify	one	or	more	entire	ports
in	lines	by	using	port	physical	channel	names,	you	cannot	separate	the	ports	into
multiple	channels.	To	separate	ports	into	multiple	channels,	use	this	function
multiple	times	with	a	different	port	each	time.

javascript:launchSharedHelp('mxcncpts.chm::/linesPorts.html');
javascript:launchSharedHelp('mxcncpts.chm::/virtChanTypes.html');
javascript:launchSharedHelp('mxcncpts.chm::/linesPorts.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

lines const	char	[] The	names	of	the	digital	lines	used	to	create	a	virtual	channel.	You	can
specify	a	list	or	range	of	lines.

nameToAssignToLines const	char	[] The	name	of	the	created	virtual	channel(s).	If	you	create	multiple	virtual
channels	with	one	call	to	this	function,	you	can	specify	a	list	of	names
separated	by	commas.	If	you	do	not	specify	a	name,	NI-DAQmx	uses	the
physical	channel	name	as	the	virtual	channel	name.	If	you	specify	your
own	names	for	nameToAssignToLines,	you	must	use	the	names	when
you	refer	to	these	channels	in	other	NI-DAQmx	functions.

lineGrouping int32 Specifies	whether	to	group	digital	lines	into	one	or	more	virtual
channels.	If	you	specify	one	or	more	entire	ports	in	lines,	you	must	set
lineGrouping	to	DAQmx_Val_ChanForAllLines.

Value Description
DAQmx_Val_ChanPerLine One	channel

for	each	line
DAQmx_Val_ChanForAllLines One	channel

for	all	lines

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateCICountEdgesChan
int32	DAQmxCreateCICountEdgesChan	(TaskHandle	taskHandle,	const	char

counter[],	const	char	nameToAssignToChannel[],	int32	edge,	uInt32
initialCount,	int32	countDirection);



Purpose
Creates	a	channel	to	count	the	number	of	rising	or	falling	edges	of	a	digital
signal	and	adds	the	channel	to	the	task	you	specify	with	taskHandle.	You	can
create	only	one	counter	input	channel	at	a	time	with	this	function	because	a	task
can	include	only	one	counter	input	channel.	To	read	from	multiple	counters
simultaneously,	use	a	separate	task	for	each	counter.	Connect	the	input	signal	to
the	default	input	terminal	of	the	counter	unless	you	select	a	different	input	terminal.

javascript:launchSharedHelp('mxdevconsid.chm::/counters.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

counter const	char	[] The	name	of	the	counter	to	use	to	create	virtual	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer
to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

edge int32 Specifies	on	which	edges	of	the	input	signal	to	increment	or
decrement	the	count.

Value Description
DAQmx_Val_Rising Rising	edge(s).
DAQmx_Val_Falling Falling	edge(s).

initialCount uInt32 The	value	from	which	to	start	counting.

countDirection int32 Specifies	whether	to	increment	or	decrement	the	counter	on	each
edge.

Value Description
DAQmx_Val_CountUp Increment

the	count
register	on
each	edge.

DAQmx_Val_CountDown Decrement
the	count
register	on
each	edge.

DAQmx_Val_ExtControlled The	state	of	a
digital	line
controls	the
count
direction.
Each	counter
has	a	default	count

javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('mxdevconsid.chm::/counters.html');


direction	terminal.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateCIFreqChan
int32	DAQmxCreateCIFreqChan	(TaskHandle	taskHandle,	const	char	counter[],

const	char	nameToAssignToChannel[],	float64	minVal,	float64
maxVal,	int32	units,	int32	edge,	int32	measMethod,	float64
measTime,	uInt32	divisor,	const	char	customScaleName[]);



Purpose
Creates	a	channel	to	measure	the	frequency	of	a	digital	signal	and	adds	the
channel	to	the	task	you	specify	with	taskHandle.	You	can	create	only	one
counter	input	channel	at	a	time	with	this	function	because	a	task	can	include	only
one	counter	input	channel.	To	read	from	multiple	counters	simultaneously,	use	a
separate	task	for	each	counter.	Connect	the	input	signal	to	the	default	input	terminal	of	the
counter	unless	you	select	a	different	input	terminal.

javascript:launchSharedHelp('mxdevconsid.chm::/counters.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

counter const	char	[] The	name	of	the	counter	to	use	to	create	virtual	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Name Description
DAQmx_Val_Hz hertz
DAQmx_Val_Ticks Timebase	ticks
DAQmx_Val_FromCustomScale Units	by	a	custom

scale.	Use
customScaleName
to	specify	a	custom
scale.

edge int32 Specifies	between	which	edges	to	measure	the	frequency	or	period	of	the	signal.

Value Description
DAQmx_Val_Rising Rising	edge(s).
DAQmx_Val_Falling Falling	edge(s).

measMethod int32 The	method	used	to	calculate	the	period	or	frequency	of	the	signal.

Value Description
DAQmx_Val_LowFreq1Ctr Use	one	counter	that

uses	a	constant
timebase	to	measure
the	input	signal.

DAQmx_Val_HighFreq2Ctr Use	two	counters,

javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


one	of	which	counts
pulses	of	the	signal
to	measure	during
the	specified
measurement	time.

DAQmx_Val_LargeRng2Ctr Use	one	counter	to
divide	the	frequency
of	the	input	signal	to
create	a	lower-
frequency	signal	that
the	second	counter
can	more	easily
measure.

measTime float64 The	length	of	time	to	measure	the	frequency	or	period	of	a	digital	signal,	when
measMethod	is	DAQmx_Val_HighFreq2Ctr.	Measurement	accuracy	increases
with	increased	measurement	time	and	with	increased	signal	frequency.

Caution	If	you	measure	a	high-frequency	signal
for	too	long	a	time,	the	count	register	could	roll
over,	resulting	in	an	incorrect	measurement.

divisor uInt32 The	value	by	which	to	divide	the	input	signal,	when	measMethod	is
DAQmx_Val_LargeRng2Ctr.	The	larger	this	value,	the	more	accurate	the
measurement,	but	too	large	a	value	can	cause	the	count	register	to	roll	over,
resulting	in	an	incorrect	measurement.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateCIPeriodChan
int32	DAQmxCreateCIPeriodChan	(TaskHandle	taskHandle,	const	char

counter[],	const	char	nameToAssignToChannel[],	float64	minVal,
float64	maxVal,	int32	units,	int32	edge,	int32	measMethod,	float64
measTime,	uInt32	divisor,	const	char	customScaleName[]);



Purpose
Creates	a	channel	to	measure	the	period	of	a	digital	signal	and	adds	the	channel
to	the	task	you	specify	with	taskHandle.	You	can	create	only	one	counter	input
channel	at	a	time	with	this	function	because	a	task	can	include	only	one	counter
input	channel.	To	read	from	multiple	counters	simultaneously,	use	a	separate	task
for	each	counter.	Connect	the	input	signal	to	the	default	input	terminal	of	the	counter
unless	you	select	a	different	input	terminal.

Note	When	measMethod	is	set	to	DAQmx_Val_LowFreq1Ctr,	you	must	pass	the	values	0.000001	for
measTime	and	4	for	divisor.	These	values	will	be	ignored	by	the	function,	but	if	they	are	not	passed,	the
function	returns	an	error.

javascript:launchSharedHelp('mxdevconsid.chm::/counters.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

counter const	char	[] The	name	of	the	counter	to	use	to	create	virtual	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Value Description
DAQmx_Val_Seconds seconds
DAQmx_Val_Ticks Timebase	ticks
DAQmx_Val_FromCustomScale Units	a	custom

scale	specifies.	Use
customScaleName
to	specify	a	custom
scale.

edge int32 Specifies	between	which	edges	to	measure	the	frequency	or	period	of	the	signal.

Value Description
DAQmx_Val_Rising Rising	edge(s).
DAQmx_Val_Falling Falling	edge(s).

measMethod int32 Specifies	the	method	used	to	calculate	the	frequency	or	period	of	the	signal.

Value Description
DAQmx_Val_LowFreq1Ctr Use	one	counter	that

uses	a	constant
timebase	to	measure
the	input	signal.

DAQmx_Val_HighFreq2Ctr Use	two	counters,

javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


one	of	which	counts
pulses	of	the	signal
to	measure	during
the	specified
measurement	time.

DAQmx_Val_LargeRng2Ctr Use	one	counter	to
divide	the	frequency
of	the	input	signal	to
create	a	lower-
frequency	signal	that
the	second	counter
can	more	easily
measure.

measTime float64 The	length	of	time	to	measure	the	frequency	or	period	of	a	digital	signal,	when
measMethod	is	DAQmx_Val_HighFreq2Ctr.	Measurement	accuracy	increases
with	increased	measurement	time	and	with	increased	signal	frequency.

Caution	If	you	measure	a	high-frequency	signal
for	too	long	a	time,	the	count	register	could	roll
over,	resulting	in	an	incorrect	measurement.

divisor uInt32 The	value	by	which	to	divide	the	input	signal,	when	measMethod	is
DAQmx_Val_LargeRng2Ctr.	The	larger	this	value,	the	more	accurate	the
measurement,	but	too	large	a	value	can	cause	the	count	register	to	roll	over,
resulting	in	an	incorrect	measurement.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateCIPulseWidthChan
int32	DAQmxCreateCIPulseWidthChan	(TaskHandle	taskHandle,	const	char

counter[],	const	char	nameToAssignToChannel[],	float64	minVal,
float64	maxVal,	int32	units,	int32	startingEdge,	const	char
customScaleName[]);



Purpose
Creates	a	channel	to	measure	the	width	of	a	digital	pulse	and	adds	the	channel	to	the	task	you
specify	with	taskHandle.	startingEdge	determines	whether	to	measure	a	high
pulse	or	a	low	pulse.	You	can	create	only	one	counter	input	channel	at	a	time
with	this	function	because	a	task	can	include	only	one	counter	input	channel.	To
read	from	multiple	counters	simultaneously,	use	a	separate	task	for	each	counter.
Connect	the	input	signal	to	the	default	input	terminal	of	the	counter	unless	you	select	a
different	input	terminal.

javascript:launchSharedHelp('daqhelp.chm::/measPeriod.html');
javascript:launchSharedHelp('mxdevconsid.chm::/counters.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

counter const	char	[] The	name	of	the	counter	to	use	to	create	virtual	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Value Description
DAQmx_Val_Seconds seconds
DAQmx_Val_Ticks Timebase	ticks
DAQmx_Val_FromCustomScale Units	a	custom

scale	specifies.	Use
customScaleName
to	specify	a	custom
scale.

startingEdge int32 Specifies	on	which	edge	to	begin	measuring	pulse	width.

Value Description
DAQmx_Val_Rising Rising	edge(s).
DAQmx_Val_Falling Falling	edge(s).

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateCISemiPeriodChan
int32	DAQmxCreateCISemiPeriodChan	(TaskHandle	taskHandle,	const	char

counter[],	const	char	nameToAssignToChannel[],	float64	minVal,
float64	maxVal,	int32	units,	const	char	customScaleName[]);



Purpose
Creates	a	channel	to	measure	the	time	between	state	transitions	of	a	digital	signal
and	adds	the	channel	to	the	task	you	specify	with	taskHandle.	You	can	create
only	one	counter	input	channel	at	a	time	with	this	function	because	a	task	can
include	only	one	counter	input	channel.	To	read	from	multiple	counters
simultaneously,	use	a	separate	task	for	each	counter.	Connect	the	input	signal	to
the	default	input	terminal	of	the	counter	unless	you	select	a	different	input	terminal.

javascript:launchSharedHelp('mxdevconsid.chm::/counters.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

counter const	char	[] The	name	of	the	counter	to	use	to	create	virtual	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not	specify	a
name,	NI-DAQmx	uses	the	physical	channel	name	as	the	virtual	channel	name.
If	you	specify	your	own	names	for	nameToAssignToChannel,	you	must	use	the
names	when	you	refer	to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Value Description
DAQmx_Val_Seconds seconds
DAQmx_Val_Ticks Timebase	ticks
DAQmx_Val_FromCustomScale Units	a	custom

scale	specifies.	Use
customScaleName
to	specify	a	custom
scale.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateCITwoEdgeSepChan
DAQmxCreateCITwoEdgeSepChan	(TaskHandle	taskHandle,	const	char

counter[],	const	char	nameToAssignToChannel[],	float64	minVal,
float64	maxVal,	int32	units,	int32	firstEdge,	int32	secondEdge,	const
char	customScaleName[]);



Purpose
Creates	a	channel	that	measures	the	amount	of	time	between	the	rising	or	falling
edge	of	one	digital	signal	and	the	rising	or	falling	edge	of	another	digital	signal.
You	can	create	only	one	counter	input	channel	at	a	time	with	this	function
because	a	task	can	include	only	one	counter	input	channel.	To	read	from	multiple
counters	simultaneously,	use	a	separate	task	for	each	counter.	Connect	the	input
signals	to	the	default	input	terminals	of	the	counter	unless	you	select	different	input
terminals.

javascript:launchSharedHelp('mxdevconsid.chm::/counters.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

counter const	char	[] The	name	of	the	counter	to	use	to	create	virtual	channels.

nameToAssignToChannel const	char	[] The	name	to	assign	to	the	created	virtual	channel.	If	you	specify	your	own	names
for	nameToAssignToChannel,	you	must	use	the	names	when	you	refer	to	these
channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

minVal float64 The	minimum	value,	in	units,	that	you	expect	to	measure.

maxVal float64 The	maximum	value,	in	units,	that	you	expect	to	measure.

units int32 The	units	to	use	to	return	the	measurement.

Value Description
DAQmx_Val_Seconds seconds
DAQmx_Val_Ticks Timebase	ticks
DAQmx_Val_FromCustomScale Units	a	custom

scale	specifies.	Use
customScaleName
to	specify	a	custom
scale.

firstEdge int32 Specifies	on	which	edge	of	the	first	signal	to	start	each	measurement.

Name Description
DAQmx_Val_Rising Start	each	measurement	on

the	rising	edge	of	the	first
signal.

DAQmx_Val_Falling Start	each	measurement	on
the	falling	edge	of	the	first
signal.

secondEdge int32 Specifies	on	which	edge	of	the	first	signal	to	stop	each	measurement.

Name Description
DAQmx_Val_Rising Stop	each	measurement	on

the	rising	edge	of	the

javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');
javascript:launchSharedHelp('measfunds.chm::/limitSettings.html');


second	signal.
DAQmx_Val_Falling Stop	each	measurement	on

the	falling	edge	of	the
second	signal.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateCILinEncoderChan
int32	DAQmxCreateCILinEncoderChan	(TaskHandle	taskHandle,	const	char

counter[],	const	char	nameToAssignToChannel[],	int32
decodingType,	bool32	ZidxEnable,	float64	ZidxVal,	int32	ZidxPhase,
int32	units,	float64	distPerPulse,	float64	initialPos,	const	char
customScaleName[]);



Purpose
Creates	a	channel	that	uses	a	linear	encoder	to	measure	linear	position.	You	can	create
only	one	counter	input	channel	at	a	time	with	this	function	because	a	task	can
include	only	one	counter	input	channel.	To	read	from	multiple	counters
simultaneously,	use	a	separate	task	for	each	counter.	Connect	the	input	signals	to
the	default	input	terminals	of	the	counter	unless	you	select	different	input	terminals.

javascript:launchSharedHelp('measfunds.chm::/twoPulse.html');
javascript:launchSharedHelp('mxdevconsid.chm::/counters.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

counter const	char	[] The	name	of	the	counter	to	use	to	create	virtual	channels.

nameToAssignToChannel const	char	[] The	name	to	assign	to	the	created	virtual	channel.	If	you	specify	your	own	names
for	nameToAssignToChannel,	you	must	use	the	names	when	you	refer	to	these
channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

decodingType int32 Specifies	how	to	count	and	interpret	the	pulses	that	the	encoder	generates	on
signal	A	and	signal	B.	DAQmx_Val_X1,	DAQmx_Val_X2,	and
DAQmx_Val_X4	are	valid	for	quadrature	encoders	only.
DAQmx_Val_TwoPulseCounting	is	valid	only	for	two-pulse	encoders.
DAQmx_Val_X2	and	DAQmx_Val_X4	decoding	are	more	sensitive	to	smaller
changes	in	position	than	DAQmx_Val_X1	encoding,	with	DAQmx_Val_X4
being	the	most	sensitive.	However,	more	sensitive	decoding	is	more	likely	to
produce	erroneous	measurements	if	there	is	vibration	in	the	encoder	or	other
noise	in	the	signals.

Value Description
DAQmx_Val_X1 If	signal	A	leads

signal	B,	count
the	rising	edges
of	signal	A.	If
signal	B	leads
signal	A,	count
the	falling
edges	of	signal
A.

DAQmx_Val_X2 Count	the	rising
and	falling
edges	of	signal
A.

DAQmx_Val_X4 Count	the	rising
and	falling
edges	of	both
signal	A	and
signal	B.

javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');


DAQmx_Val_TwoPulseCounting Increment	the
count	on	rising
edges	of	signal
A.	Decrement
the	count	on
rising	pulses	of
signal	B.

ZidxEnable bool32 Specifies	whether	to	enable	z	indexing	for	the	measurement.

ZidxVal float64 The	value,	in	units,	to	which	to	reset	the	measurement	when	signal	Z	is	high	and
signal	A	and	signal	B	are	at	the	states	you	specify	with	ZidxPhase.

ZidxPhase int32 The	states	at	which	signal	A	and	signal	B	must	be	while	signal	Z	is	high	for	NI-
DAQmx	to	reset	the	measurement.	If	signal	Z	is	never	high	while	the	signal	A
and	signal	B	are	high,	for	example,	you	must	choose	a	phase	other	than
DAQmx_Val_AHighBHigh.
When	signal	Z	goes	high	and	how	long	it	stays	high	varies	from	encoder	to
encoder.	Refer	to	the	documentation	for	the	encoder	to	determine	the	timing	of
signal	Z	with	respect	to	signal	A	and	signal	B.

Value Description
DAQmx_Val_AHighBHigh Reset	the

measurement	when
both	signal	A	and
signal	B	are	at	high
logic.

DAQmx_Val_AHighBLow Reset	the
measurement	when
signal	A	is	at	high
logic	and	signal	B	is
at	low	logic.

DAQmx_Val_ALowBHigh Reset	the
measurement	when
signal	A	is	at	low
logic	and	signal	B	is
at	high	logic.

DAQmx_Val_ALowBLow Reset	the
measurement	when
both	signal	A	and
signal	B	are	at	low
logic.

javascript:launchSharedHelp('measfunds.chm::/zIndexing.html');


units int32 The	units	to	use	to	return	linear	position	measurements	from	the	channel.

Name Description
DAQmx_Val_Meters Meters.
DAQmx_Val_Inches Inches.
DAQmx_Val_Ticks Timebase	Ticks.
DAQmx_Val_FromCustomScale Units	a	custom

scale	specifies.	Use
customScaleName
to	specify	a	custom
scale.

distPerPulse float64 The	distance	measured	for	each	pulse	the	encoder	generates.	Specify	this	value
in	units.

initialPos float64 The	position	of	the	encoder	when	the	measurement	begins.	This	value	is	in
units.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateCIAngEncoderChan
int32	DAQmxCreateCIAngEncoderChan	(TaskHandle	taskHandle,	const	char

counter[],	const	char	nameToAssignToChannel[],	int32
decodingType,	bool32	ZidxEnable,	float64	ZidxVal,	int32	ZidxPhase,
int32	units,	uInt32	pulsesPerRev,	float64	initialAngle,	const	char
customScaleName[]);



Purpose
Creates	a	channel	that	uses	an	angular	encoder	to	measure	angular	position.	You	can
create	only	one	counter	input	channel	at	a	time	with	this	function	because	a	task
can	include	only	one	counter	input	channel.	To	read	from	multiple	counters
simultaneously,	use	a	separate	task	for	each	counter.	Connect	the	input	signals	to
the	default	input	terminals	of	the	counter	unless	you	select	different	input	terminals.

javascript:launchSharedHelp('measfunds.chm::/quadEncoders.html');
javascript:launchSharedHelp('mxdevconsid.chm::/counters.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

counter const	char	[] The	name	of	the	counter	to	use	to	create	virtual	channels.

nameToAssignToChannel const	char	[] The	name	to	assign	to	the	created	virtual	channel.	If	you	specify	your	own	names
for	nameToAssignToChannel,	you	must	use	the	names	when	you	refer	to	these
channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,	you	can
specify	a	list	of	names	separated	by	commas.	If	you	provide	fewer	names	than
the	number	of	virtual	channels	you	create,	NI-DAQmx	automatically	assigns	names
the	virtual	channels.

decodingType int32 Specifies	how	to	count	and	interpret	the	pulses	that	the	encoder	generates	on
signal	A	and	signal	B.	DAQmx_Val_X1,	DAQmx_Val_X2,	and
DAQmx_Val_X4	are	valid	for	quadrature	encoders	only.
DAQmx_Val_TwoPulseCounting	is	valid	only	for	two-pulse	encoders.
DAQmx_Val_X2	and	DAQmx_Val_X4	decoding	are	more	sensitive	to	smaller
changes	in	position	than	DAQmx_Val_X1	encoding,	with	DAQmx_Val_X4
being	the	most	sensitive.	However,	more	sensitive	decoding	is	more	likely	to
produce	erroneous	measurements	if	there	is	vibration	in	the	encoder	or	other
noise	in	the	signals.

Value Description
DAQmx_Val_X1 If	signal	A	leads

signal	B,	count
the	rising	edges
of	signal	A.	If
signal	B	leads
signal	A,	count
the	falling
edges	of	signal
A.

DAQmx_Val_X2 Count	the	rising
and	falling
edges	of	signal
A.

DAQmx_Val_X4 Count	the	rising
and	falling
edges	of	both
signal	A	and
signal	B.

javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');


DAQmx_Val_TwoPulseCounting Increment	the
count	on	rising
edges	of	signal
A.	Decrement
the	count	on
rising	pulses	of
signal	B.

ZidxEnable bool32 Specifies	whether	to	enable	z	indexing	for	the	measurement.

ZidxVal float64 The	value,	in	units,	to	which	to	reset	the	measurement	when	signal	Z	is	high	and
signal	A	and	signal	B	are	at	the	states	you	specify	with	ZidxPhase.

ZidxPhase int32 The	states	at	which	signal	A	and	signal	B	must	be	while	signal	Z	is	high	for	NI-
DAQmx	to	reset	the	measurement.	If	signal	Z	is	never	high	while	the	signal	A
and	signal	B	are	high,	for	example,	you	must	choose	a	phase	other	than
DAQmx_Val_AHighBHigh.
When	signal	Z	goes	high	and	how	long	it	stays	high	varies	from	encoder	to
encoder.	Refer	to	the	documentation	for	the	encoder	to	determine	the	timing	of
signal	Z	with	respect	to	signal	A	and	signal	B.

Value Description
DAQmx_Val_AHighBHigh Reset	the

measurement	when
both	signal	A	and
signal	B	are	at	high
logic.

DAQmx_Val_AHighBLow Reset	the
measurement	when
signal	A	is	at	high
logic	and	signal	B	is
at	low	logic.

DAQmx_Val_ALowBHigh Reset	the
measurement	when
signal	A	is	at	low
logic	and	signal	B	is
at	high	logic.

DAQmx_Val_ALowBLow Reset	the
measurement	when
both	signal	A	and
signal	B	are	at	low
logic.

javascript:launchSharedHelp('measfunds.chm::/zIndexing.html');


units int32 The	units	to	use	to	return	angular	position	measurements	from	the	channel.

Value Description
DAQmx_Val_Degrees Degrees
DAQmx_Val_Radians Radians
DAQmx_Val_Ticks Timebase	ticks
DAQmx_Val_FromCustomScale Units	a	custom

scale	specifies.	Use
customScaleName
to	specify	a	custom
scale.

pulsesPerRev uInt32 The	number	of	pulses	the	encoder	generates	per	revolution.	This	value	is	the
number	of	pulses	on	one	of	either	A	signal	or	B	signal,	not	the	total	number	of
pulses	on	both	signal	A	and	signal	B.

initialAngle float64 The	starting	angle	of	the	encoder	when	the	measurement	begins.	Specify	this
value	in	units.

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this	parameter,	you
must	set	units	to	DAQmx_Val_FromCustomScale.	If	you	do	not	set	units
DAQmx_Val_FromCustomScale,	you	must	set	customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateCIGPSTimestampChan
int32	DAQmxCreateCIGPSTimestampChan	(TaskHandle	taskHandle,	const	char

counter[],	const	char	nameToAssignToChannel[],	int32	units,	int32
gpsSyncMethod,	const	char	custScaleName[]);



Purpose
Creates	a	channel	that	uses	a	special-purpose	counter	to	take	a	timestamp	and
synchronizes	that	counter	to	a	GPS	receiver.

javascript:launchSharedHelp('daqhelp.chm::/GPSStampMeas.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

counter const	char	[] The	name	of	the	counter	to	use	to	create	virtual	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer	to
these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

units int32 The	units	to	use	to	return	the	timestamp.

Value Description
DAQmx_Val_Seconds Seconds
DAQmx_Val_FromCustomScale From

custom
scale

gpsSyncMethod int32 The	method	to	use	to	synchronize	the	counter	to	a	GPS	receiver.

Value Description
DAQmx_Val_IRIGB IRIG-B
DAQmx_Val_PPS PPS
DAQmx_Val_None None

customScaleName const	char	[] The	name	of	a	custom	scale	to	apply	to	the	channel.	To	use	this
parameter,	you	must	set	units	to	DAQmx_Val_FromCustomScale.	If
you	do	not	set	units	to	DAQmx_Val_FromCustomScale,	you	must	set
customScaleName	to	NULL.

javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateCOPulseChanFreq
int32	DAQmxCreateCOPulseChanFreq	(TaskHandle	taskHandle,	const	char

counter[],	const	char	nameToAssignToChannel[],	int32	units,	int32
idleState,	float64	initialDelay,	float64	freq,	float64	dutyCycle);



Purpose
Creates	channel(s)	to	generate	digital	pulses	that	freq	and	dutyCycle	define	and	adds	the
channel	to	the	task	you	specify	with	taskHandle.	The	pulses	appear	on	the	default
output	terminal	of	the	counter	unless	you	select	a	different	output	terminal.

javascript:launchSharedHelp('daqhelp.chm::/Generating_Pulses.html');
javascript:launchSharedHelp('mxdevconsid.chm::/counters.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

counter const	char	[] The	name	of	the	counter	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer
to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

units int32 The	units	in	which	to	specify	freq.

Name Description
DAQmx_Val_Hz hertz

idleState int32 The	resting	state	of	the	output	terminal.

Value Description
DAQmx_Val_High High	state.
DAQmx_Val_Low Low	state.

initialDelay float64 The	amount	of	time	in	seconds	to	wait	before	generating	the	first
pulse.

freq float64 The	frequency	at	which	to	generate	pulses.

dutyCycle float64 The	width	of	the	pulse	divided	by	the	pulse	period.	NI-DAQmx	uses
this	ratio,	combined	with	frequency,	to	determine	pulse	width	and	the
interval	between	pulses.

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateCOPulseChanTicks
int32	DAQmxCreateCOPulseChanTicks	(TaskHandle	taskHandle,	const	char

counter[],	const	char	nameToAssignToChannel[],	const	char
sourceTerminal[],	int32	idleState,	int32	initialDelay,	int32	lowTicks,
int32	highTicks);



Purpose
Creates	channel(s)	to	generate	digital	pulses	defined	by	the	number	of	timebase	ticks	that
the	pulse	is	at	a	high	state	and	the	number	of	timebase	ticks	that	the	pulse	is	at	a
low	state	and	also	adds	the	channel	to	the	task	you	specify	with	taskHandle.
The	pulses	appear	on	the	default	output	terminal	of	the	counter	unless	you	select	a	different
output	terminal.

javascript:launchSharedHelp('daqhelp.chm::/Generating_Pulses.html');
javascript:launchSharedHelp('mxdevconsid.chm::/counters.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

counter const	char	[] The	name	of	the	counter	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer
to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

sourceTerminal const	char	[] The	terminal	to	which	you	connect	an	external	timebase.	You	also	can
specify	a	source	terminal	by	using	a	terminal	name.

idleState int32 The	resting	state	of	the	output	terminal.

Value Description
DAQmx_Val_High High	state.
DAQmx_Val_Low Low	state.

initialDelay int32 The	number	of	timebase	ticks	to	wait	before	generating	the	first	pulse.

lowTicks int32 The	number	of	timebase	ticks	that	the	pulse	is	low.

highTicks int32 The	number	of	timebase	ticks	that	the	pulse	is	high.

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');
javascript:launchSharedHelp('mxcncpts.chm::/terminal.html')
javascript:launchSharedHelp('mxcncpts.chm::/termnamesyntax.html')


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateCOPulseChanTime
int32	DAQmxCreateCOPulseChanTime	(TaskHandle	taskHandle,	const	char

counter[],	const	char	nameToAssignToChannel[],	int32	units,	int32
idleState,	float64	initialDelay,	float64	lowTime,	float64	highTime);



Purpose
Creates	channel(s)	to	generate	digital	pulses	defined	by	the	amount	of	time	the	pulse	is	at	a
high	state	and	the	amount	of	time	the	pulse	is	at	a	low	state	and	adds	the	channel
to	the	task	you	specify	with	taskHandle.	The	pulses	appear	on	the	default	output	terminal
of	the	counter	unless	you	select	a	different	output	terminal.

javascript:launchSharedHelp('daqhelp.chm::/Generating_Pulses.html');
javascript:launchSharedHelp('mxdevconsid.chm::/counters.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	which	to	add	the	channels	that	this	function	creates.

counter const	char	[] The	name	of	the	counter	to	use	to	create	virtual	channels.	You	can
specify	a	list	or	range	of	physical	channels.

nameToAssignToChannel const	char	[] The	name(s)	to	assign	to	the	created	virtual	channel(s).	If	you	do	not
specify	a	name,	NI-DAQmx	uses	the	physical	channel	name	as	the
virtual	channel	name.	If	you	specify	your	own	names	for
nameToAssignToChannel,	you	must	use	the	names	when	you	refer
to	these	channels	in	other	NI-DAQmx	functions.
If	you	create	multiple	virtual	channels	with	one	call	to	this	function,
you	can	specify	a	list	of	names	separated	by	commas.	If	you	provide
fewer	names	than	the	number	of	virtual	channels	you	create,	NI-
DAQmx	automatically	assigns	names	to	the	virtual	channels.

units int32 The	units	in	which	to	define	pulse	high	and	low	time.

Value Description
DAQmx_Val_Seconds Seconds

idleState int32 The	resting	state	of	the	output	terminal.

Value Description
DAQmx_Val_High High	state.
DAQmx_Val_Low Low	state.

initialDelay float64 The	amount	of	time	in	seconds	to	wait	before	generating	the	first
pulse.

lowTime float64 The	amount	of	time	the	pulse	is	low,	in	seconds.

highTime float64 The	amount	of	time	the	pulse	is	high,	in	seconds.

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/nameAssignment.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgBurstHandshakingTimingExportClock
int32	DAQmxCfgBurstHandshakingTimingExportClock	(TaskHandle

taskHandle,	int32	sampleMode,	uInt64	sampsPerChan,	float64
sampleClkRate,	const	char	sampleClkOutpTerm[],	int32
sampleClkPulsePolarity,	int32	pauseWhen,	int32
readyEventActiveLevel);



Purpose
Configures	when	the	DAQ	device	transfers	data	to	a	peripheral	device,	using	the
DAQ	device's	onboard	sample	clock	to	control	burst	handshaking	timing.

javascript:launchSharedHelp('mxcncpts.chm::/smpleTimingType.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

sampleMode int32 Specifies	whether	the	task	acquires	or	generates	samples	continuously	or	if	it
acquires	or	generates	a	finite	number	of	samples.

Value Description
DAQmx_Val_FiniteSamps Acquire	or

generate	a
finite
number	of
samples.

DAQmx_Val_ContSamps Acquire	or
generate
samples
until	you
stop	the
task.

DAQmx_Val_HWTimedSinglePoint Acquire	or
generate
samples
continuously
using
hardware
timing
without	a
buffer.	Hardware
timed	single	point

sample
mode	is
supported
only	for	the
sample
clock	and
change
detection
timing

javascript:launchSharedHelp('mxcncpts.chm::/HWTSPSampleMode.html');


types.

sampsPerChan uInt64 The	number	of	samples	to	acquire	from	each	channel	if	sampleMode	is
DAQmx_Val_FiniteSamps.	If	sampleMode	is	DAQmx_Val_ContSamps,
NI-DAQmx	uses	this	value	to	determine	the	buffer	size.

sampleClkRate float64 Specifies	the	sampling	rate	in	samples	per	channel	per	second.	If	you	use	an
external	source	for	the	Sample	Clock,	set	this	input	to	the	maximum
expected	rate	of	that	clock.

sampleClkOutpTerm const	char
[]

Specifies	the	terminal	to	which	to	route	the	Sample	Clock.

sampleClkPulsePolarity int32 Specifies	if	the	polarity	for	the	exported	sample	clock	is	active	high	or	active
low.

pauseWhen int32 Specifies	whether	the	task	pauses	while	the	signal	is	high	or	low.

readyEventActiveLevel int32 Specifies	the	polarity	for	the	Ready	for	Transfer	event.

javascript:launchSharedHelp('mxcncpts.chm::/bufferSize.html');
javascript:launchSharedHelp('mxcncpts.chm::/Events.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgBurstHandshakingTimingImportClock
int32	DAQmxCfgBurstHandshakingTimingImportClock	(TaskHandle

taskHandle,	int32	sampleMode,	uInt64	sampsPerChan,	float64
sampleClkRate,	const	char	sampleClkSrc[],	int32
sampleClkActiveEdge,	int32	pauseWhen,	int32
readyEventActiveLevel);



Purpose
Configures	when	the	DAQ	device	transfers	data	to	a	peripheral	device,	using	an
imported	sample	clock	to	control	burst	handshaking	timing.

javascript:launchSharedHelp('mxcncpts.chm::/smpleTimingType.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

sampleMode int32 Specifies	whether	the	task	acquires	or	generates	samples	continuously	or	if	it
acquires	or	generates	a	finite	number	of	samples.

Value Description
DAQmx_Val_FiniteSamps Acquire	or

generate	a
finite
number	of
samples.

DAQmx_Val_ContSamps Acquire	or
generate
samples
until	you
stop	the
task.

DAQmx_Val_HWTimedSinglePoint Acquire	or
generate
samples
continuously
using
hardware
timing
without	a
buffer.	Hardware
timed	single	point

sample
mode	is
supported
only	for	the
sample
clock	and
change
detection
timing

javascript:launchSharedHelp('mxcncpts.chm::/HWTSPSampleMode.html');


types.

sampsPerChan uInt64 The	number	of	samples	to	acquire	from	each	channel	if	sampleMode	is
DAQmx_Val_FiniteSamps.	If	sampleMode	is	DAQmx_Val_ContSamps,
NI-DAQmx	uses	this	value	to	determine	the	buffer	size.

sampleClkRate float64 Specifies	the	sampling	rate	in	samples	per	channel	per	second.	If	you	use	an
external	source	for	the	Sample	Clock,	set	this	input	to	the	maximum
expected	rate	of	that	clock.

sampleClkSrc const	char
[]

Specifies	the	terminal	of	the	signal	to	use	as	the	Sample	Clock.

sampleClkActiveEdge int32 Specifies	on	which	edge	of	a	clock	pulse	sampling	takes	place.	This	property
is	useful	primarily	when	the	signal	you	use	as	the	Sample	Clock	is	not	a
periodic	clock.

Value Description
DAQmx_Val_Rising Acquire	or	generate

samples	on	the	rising
edges	of	the	Sample
Clock.

DAQmx_Val_Falling Acquire	or	generate
samples	on	the	falling
edges	of	the	Sample
Clock.

pauseWhen int32 Specifies	whether	the	task	pauses	while	the	signal	is	high	or	low.

readyEventActiveLevel int32 Specifies	the	polarity	for	the	Ready	for	Transfer	event.

javascript:launchSharedHelp('mxcncpts.chm::/bufferSize.html');
javascript:launchSharedHelp('mxcncpts.chm::/Events.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgChangeDetectionTiming
int32	DAQmxCfgChangeDetectionTiming	(TaskHandle	taskHandle,	const	char

risingEdgeChan[],	const	char	fallingEdgeChan[],	int32	sampleMode,
uInt64	sampsPerChan);



Purpose
Configures	the	task	to	acquire	samples	on	the	rising	and/or	falling	edges	of	the
lines	or	ports	you	specify.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

risingEdgeChan const	char
[]

The	names	of	the	digital	lines	or	ports	on	which	to	detect	rising	edges.	You	can
specify	a	list	or	range	of	channels.

fallingEdgeChan const	char
[]

The	names	of	the	digital	lines	or	ports	on	which	to	detect	falling	edges.	You	can
specify	a	list	or	range	of	channels.

sampleMode int32 Specifies	whether	the	task	acquires	samples	continuously	or	if	it	acquires	a
finite	number	of	samples.

Value Description
DAQmx_Val_FiniteSamps Acquire	or

generate	a
finite
number	of
samples.

DAQmx_Val_ContSamps Acquire	or
generate
samples
until	you
stop	the
task.

DAQmx_Val_HWTimedSinglePoint Acquire	or
generate
samples
continuously
using
hardware
timing
without	a
buffer.	Hardware
timed	single	point

sample
mode	is
supported
only	for	the
sample

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/HWTSPSampleMode.html');


clock	and
change
detection
timing
types.

sampsPerChan uInt64 The	number	of	samples	to	acquire	from	each	channel	if	sampleMode	is
DAQmx_Val_FiniteSamps.	If	sampleMode	is	DAQmx_Val_ContSamps,	NI-
DAQmx	uses	this	value	to	determine	the	buffer	size.

javascript:launchSharedHelp('mxcncpts.chm::/bufferSize.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgHandshakingTiming
int32	DAQmxCfgHandshakingTiming	(TaskHandle	taskHandle,	int32

sampleMode,	uInt64	sampsPerChanToAcquire);



Purpose
Determines	the	number	of	digital	samples	to	acquire	or	generate	using	digital
handshaking	between	the	device	and	a	peripheral	device.

javascript:launchSharedHelp('mxcncpts.chm::/Handshaking.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

sampleMode int32 Specifies	whether	the	task	acquires	or	generates	samples	continuously	or	if	it
acquires	or	generates	a	finite	number	of	samples.

Value Description
DAQmx_Val_FiniteSamps Acquire	or

generate	a
finite
number	of
samples.

DAQmx_Val_ContSamps Acquire	or
generate
samples
until	you
stop	the
task.

DAQmx_Val_HWTimedSinglePoint Acquire	or
generate
samples
continuously
using
hardware
timing
without	a
buffer.	Hardware
timed	single	point

sample
mode	is
supported
only	for	the
sample
clock	and
change
detection
timing

javascript:launchSharedHelp('mxcncpts.chm::/HWTSPSampleMode.html');


types.

sampsPerChanToAcquire uInt64 The	number	of	samples	to	acquire	or	generate	for	each	channel	in	the	task	if
sampleMode	is	DAQmx_Val_FiniteSamps.	If	sampleMode	is
DAQmx_Val_ContSamps,	NI-DAQmx	uses	this	value	to	determine	the	buffer
size.

javascript:launchSharedHelp('mxcncpts.chm::/bufferSize.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgImplicitTiming
int32	DAQmxCfgImplicitTiming	(TaskHandle	taskHandle,	int32	sampleMode,

uInt64	sampsPerChanToAcquire);



Purpose
Sets	only	the	number	of	samples	to	acquire	or	generate	without	specifying
timing.	Typically,	you	should	use	this	function	when	the	task	does	not	require
sample	timing,	such	as	tasks	that	use	counters	for	buffered	frequency
measurement,	buffered	period	measurement,	or	pulse	train	generation.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

sampleMode int32 Specifies	whether	the	task	acquires	or	generates	samples	continuously	or	if	it
acquires	or	generates	a	finite	number	of	samples.

Value Description
DAQmx_Val_FiniteSamps Acquire	or

generate	a
finite
number	of
samples.

DAQmx_Val_ContSamps Acquire	or
generate
samples
until	you
stop	the
task.

DAQmx_Val_HWTimedSinglePoint Acquire	or
generate
samples
continuously
using
hardware
timing
without	a
buffer.	Hardware
timed	single	point

sample
mode	is
supported
only	for	the
sample
clock	and
change
detection
timing

javascript:launchSharedHelp('mxcncpts.chm::/HWTSPSampleMode.html');


types.

sampsPerChanToAcquire uInt64 The	number	of	samples	to	acquire	or	generate	for	each	channel	in	the	task	if
sampleMode	is	DAQmx_Val_FiniteSamps.	If	sampleMode	is
DAQmx_Val_ContSamps,	NI-DAQmx	uses	this	value	to	determine	the	buffer
size.

javascript:launchSharedHelp('mxcncpts.chm::/bufferSize.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgPipelinedSampClkTiming
int32	DAQmxCfgPipelinedSampClkTiming	(TaskHandle	taskHandle,	const	char

source[],	float64	rate,	int32	activeEdge,	int32	sampleMode,	uInt64
samplesPerChannel);



Purpose
Sets	the	source	of	the	Sample	Clock,	the	rate	of	the	Sample	Clock,	and	the	number	of
samples	to	acquire	or	generate.	The	device	acquires	or	generates	samples	on
each	Sample	Clock	edge,	but	does	not	respond	to	certain	triggers	until	a	few
Sample	Clock	edges	later.	Pipelining	allows	higher	data	transfer	rates	at	the	cost
of	increased	trigger	response	latency.	Refer	to	the	device	documentation	for
information	about	which	triggers	pipelining	affects.
This	timing	type	allows	handshaking	using	the	Pause	trigger,	the	Ready	for
Transfer	event,	or	the	Data	Active	event.	Refer	to	the	device	documentation	for
more	information.
This	timing	type	is	supported	only	by	the	NI	6536	and	NI	6537.

javascript:launchSharedHelp('mxcncpts.chm::/sampClock.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

source const	char	[] The	source	terminal	of	the	Sample	Clock.	To	use	the	internal	clock	of	the
device,	use	NULL	or	use	OnboardClock.

rate float64 The	sampling	rate	in	samples	per	second	per	channel.	If	you	use	an	external
source	for	the	Sample	Clock,	set	this	value	to	the	maximum	expected	rate	of
that	clock.

activeEdge int32 Specifies	on	which	edge	of	the	clock	to	acquire	or	generate	samples.

Value Description
DAQmx_Val_Rising Acquire	or	generate

samples	on	the	rising
edges	of	the	Sample
Clock.

DAQmx_Val_Falling Acquire	or	generate
samples	on	the	falling
edges	of	the	Sample
Clock.

sampleMode int32 Specifies	whether	the	task	acquires	or	generates	samples	continuously	or	if	it
acquires	or	generates	a	finite	number	of	samples.

Value Description
DAQmx_Val_FiniteSamps Acquire	or

generate	a
finite
number	of
samples.

DAQmx_Val_ContSamps Acquire	or
generate
samples
until	you
stop	the
task.

DAQmx_Val_HWTimedSinglePoint Acquire	or
generate
samples

javascript:launchSharedHelp('mxcncpts.chm::/termNames.html');
javascript:launchSharedHelp('measfunds.chm::/smpleRate.html');


continuously
using
hardware
timing
without	a
buffer.	Hardware
timed	single	point

sample
mode	is
supported
only	for	the
sample
clock	and
change
detection
timing
types.

sampsPerChanToAcquire uInt64 The	number	of	samples	to	acquire	or	generate	for	each	channel	in	the	task	if
sampleMode	is	DAQmx_Val_FiniteSamps.	If	sampleMode	is
DAQmx_Val_ContSamps,	NI-DAQmx	uses	this	value	to	determine	the	buffer
size.

javascript:launchSharedHelp('mxcncpts.chm::/HWTSPSampleMode.html');
javascript:launchSharedHelp('mxcncpts.chm::/bufferSize.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgSampClkTiming
int32	DAQmxCfgSampClkTiming	(TaskHandle	taskHandle,	const	char	source[],

float64	rate,	int32	activeEdge,	int32	sampleMode,	uInt64
sampsPerChanToAcquire);



Purpose
Sets	the	source	of	the	Sample	Clock,	the	rate	of	the	Sample	Clock,	and	the	number	of
samples	to	acquire	or	generate.

javascript:launchSharedHelp('mxcncpts.chm::/sampClock.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

source const	char	[] The	source	terminal	of	the	Sample	Clock.	To	use	the	internal	clock	of	the
device,	use	NULL	or	use	OnboardClock.

rate float64 The	sampling	rate	in	samples	per	second	per	channel.	If	you	use	an	external
source	for	the	Sample	Clock,	set	this	value	to	the	maximum	expected	rate	of
that	clock.

activeEdge int32 Specifies	on	which	edge	of	the	clock	to	acquire	or	generate	samples.

Value Description
DAQmx_Val_Rising Acquire	or	generate

samples	on	the	rising
edges	of	the	Sample
Clock.

DAQmx_Val_Falling Acquire	or	generate
samples	on	the	falling
edges	of	the	Sample
Clock.

sampleMode int32 Specifies	whether	the	task	acquires	or	generates	samples	continuously	or	if	it
acquires	or	generates	a	finite	number	of	samples.

Value Description
DAQmx_Val_FiniteSamps Acquire	or

generate	a
finite
number	of
samples.

DAQmx_Val_ContSamps Acquire	or
generate
samples
until	you
stop	the
task.

DAQmx_Val_HWTimedSinglePoint Acquire	or
generate
samples

javascript:launchSharedHelp('mxcncpts.chm::/termNames.html');
javascript:launchSharedHelp('measfunds.chm::/smpleRate.html');


continuously
using
hardware
timing
without	a
buffer.	Hardware
timed	single	point

sample
mode	is
supported
only	for	the
sample
clock	and
change
detection
timing
types.

sampsPerChanToAcquire uInt64 The	number	of	samples	to	acquire	or	generate	for	each	channel	in	the	task	if
sampleMode	is	DAQmx_Val_FiniteSamps.	If	sampleMode	is
DAQmx_Val_ContSamps,	NI-DAQmx	uses	this	value	to	determine	the	buffer
size.

javascript:launchSharedHelp('mxcncpts.chm::/HWTSPSampleMode.html');
javascript:launchSharedHelp('mxcncpts.chm::/bufferSize.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgAnlgEdgeStartTrig
int32	DAQmxCfgAnlgEdgeStartTrig	(TaskHandle	taskHandle,	const	char

triggerSource[],	int32	triggerSlope,	float64	triggerLevel);



Purpose
Configures	the	task	to	start	acquiring	or	generating	samples	when	an	analog
signal	crosses	the	level	you	specify.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

triggerSource const	char	[] The	name	of	a	channel	or	terminal	where	there	is	an	analog	signal	to	use	as	the
source	of	the	trigger.	For	E	Series	devices,	if	you	use	a	channel	name,	the	channel
must	be	the	first	channel	in	the	task.	The	only	terminal	you	can	use	for	E	Series
devices	is	PFI0.

triggerSlope int32 Specifies	on	which	slope	of	the	signal	to	start	acquiring	or	generating	samples
when	the	signal	crosses	triggerLevel.

Value Description
DAQmx_Val_RisingSlope Trigger	on	the	rising

slope	of	the	signal.
DAQmx_Val_FallingSlope Trigger	on	the	falling

slope	of	the	signal.

triggerLevel float64 The	threshold	at	which	to	start	acquiring	or	generating	samples.	Specify	this	value
in	the	units	of	the	measurement	or	generation.	Use	triggerSlope	to	specify	on
which	slope	to	trigger	at	this	threshold.

javascript:launchSharedHelp('mxcncpts.chm::/termNames.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgAnlgWindowStartTrig
int32	DAQmxCfgAnlgWindowStartTrig	(TaskHandle	taskHandle,	const	char

triggerSource[],	int32	triggerWhen,	float64	windowTop,	float64
windowBottom);



Purpose
Configures	the	task	to	start	acquiring	or	generating	samples	when	an	analog
signal	enters	or	leaves	a	range	you	specify.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

triggerSource const	char
[]

The	name	of	a	virtual	channel	or	terminal	where	there	is	an	analog	signal	to	use	as
the	source	of	the	trigger.
For	E	Series	devices,	if	you	use	a	virtual	channel,	it	must	be	the	first	channel	in
the	task.	The	only	terminal	you	can	use	for	E	Series	devices	is	PFI0.

triggerWhen int32 Specifies	whether	the	task	starts	measuring	or	generating	samples	when	the
signal	enters	the	window	or	when	it	leaves	the	window.	Use	windowBottom	and
windowTop	to	specify	the	limits	of	the	window.

Value Description
DAQmx_Val_EnteringWin Trigger	when	the

signal	enters	the
window.

DAQmx_Val_LeavingWin Trigger	when	the
signal	leaves	the
window.

windowTop float64 The	upper	limit	of	the	window.	Specify	this	value	in	the	units	of	the	measurement
or	generation.

windowBottom float64 The	lower	limit	of	the	window.	Specify	this	value	in	the	units	of	the	measurement
or	generation.

javascript:launchSharedHelp('mxcncpts.chm::/termNames.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgDigEdgeStartTrig
int32	DAQmxCfgDigEdgeStartTrig	(TaskHandle	taskHandle,	const	char

triggerSource[],	int32	triggerEdge);



Purpose
Configures	the	task	to	start	acquiring	or	generating	samples	on	a	rising	or	falling
edge	of	a	digital	signal.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

triggerSource const	char	[] The	name	of	a	terminal	where	there	is	a	digital	signal	to	use	as	the	source	of	the
trigger.

triggerEdge int32 Specifies	on	which	edge	of	a	digital	signal	to	start	acquiring	or	generating
samples.

Value Description
DAQmx_Val_Rising Rising	edge(s).
DAQmx_Val_Falling Falling	edge(s).

javascript:launchSharedHelp('mxcncpts.chm::/termNames.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgDigPatternStartTrig
int32	DAQmxCfgDigPatternStartTrig	(TaskHandle	taskHandle,	const	char

triggerSource[],	const	char	triggerPattern[],	int32	triggerWhen);



Purpose
Configures	a	task	to	start	acquiring	or	generating	samples	when	a	digital	pattern	is
matched.

javascript:launchSharedHelp('mxcncpts.chm::/digpattern.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

triggerSource const	char	[] Specifies	the	physical	channels	to	use	for	pattern	matching.	The	order	of	the
physical	channels	determines	the	order	of	the	pattern.	If	a	port	is	included,	the
order	of	the	physical	channels	within	the	port	is	in	ascending	order.

triggerPattern const	char	[] Specifies	the	digital	pattern	that	must	be	met	for	the	trigger	to	occur.

triggerWhen int32 Specifies	the	conditions	under	which	the	trigger	occurs.

Value Description
DAQmx_Val_PatternMatches Pattern

matches
DAQmx_Val_PatternDoesNotMatch Pattern	does

not	match

javascript:launchSharedHelp('mxcncpts.chm::/digpattern.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxDisableStartTrig
int32	DAQmxDisableStartTrig	(TaskHandle	taskHandle);



Purpose
Configures	the	task	to	start	acquiring	or	generating	samples	immediately	upon
starting	the	task.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgAnlgEdgeRefTrig
int32	DAQmxCfgAnlgEdgeRefTrig	(TaskHandle	taskHandle,	const	char

triggerSource[],	int32	triggerSlope,	float64	triggerLevel,	uInt32
pretriggerSamples);



Purpose
Configures	the	task	to	stop	the	acquisition	when	the	device	acquires	all
pretrigger	samples,	an	analog	signal	reaches	the	level	you	specify,	and	the	device
acquires	all	post-trigger	samples.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

triggerSource const	char	[] The	name	of	a	virtual	channel	or	terminal	where	there	is	an	analog	signal	to
use	as	the	source	of	the	trigger.
For	E	Series	devices,	if	you	use	a	virtual	channel,	it	must	be	the	only	channel
in	the	task.	The	only	terminal	you	can	use	for	E	Series	devices	is	PFI0.

triggerSlope int32 Specifies	on	which	slope	of	the	signal	the	Reference	Trigger	occurs.

Value Description
DAQmx_Val_RisingSlope Trigger	on	the

rising	slope	of	the
signal.

DAQmx_Val_FallingSlope Trigger	on	the
falling	slope	of	the
signal.

triggerLevel float64 Specifies	at	what	threshold	to	trigger.	Specify	this	value	in	the	units	of	the
measurement	or	generation.	Use	triggerSlope	to	specify	on	which	slope	to
trigger	at	this	threshold.

pretriggerSamples uInt32 The	minimum	number	of	samples	per	channel	to	acquire	before	recognizing
the	Reference	Trigger.	The	number	of	posttrigger	samples	per	channel	is
equal	to	number	of	samples	per	channel	in	the	NI-DAQmx	Timing	functions
minus	pretriggerSamples.

javascript:launchSharedHelp('mxcncpts.chm::/termNames.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgAnlgWindowRefTrig
int32	DAQmxCfgAnlgWindowRefTrig	(TaskHandle	taskHandle,	const	char

triggerSource[],	int32	triggerWhen,	float64	windowTop,	float64
windowBottom,	uInt32	pretriggerSamples);



Purpose
Configures	the	task	to	stop	the	acquisition	when	the	device	acquires	all
pretrigger	samples,	an	analog	signal	enters	or	leaves	a	range	you	specify,	and	the
device	acquires	all	post-trigger	samples.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

triggerSource const	char	[] The	name	of	a	virtual	channel	or	terminal	where	there	is	an	analog	signal	to
use	as	the	source	of	the	trigger.
For	E	Series	devices,	if	you	use	a	virtual	channel,	it	must	be	the	only	channel
in	the	task.	The	only	terminal	you	can	use	for	E	Series	devices	is	PFI0.

triggerWhen int32 Specifies	whether	the	Reference	Trigger	occurs	when	the	signal	enters	the
window	or	when	it	leaves	the	window.	Use	windowBottom	and	windowTop
to	specify	the	limits	of	the	window.

Value Description
DAQmx_Val_EnteringWin Trigger	when	the

signal	enters	the
window.

DAQmx_Val_LeavingWin Trigger	when	the
signal	leaves	the
window.

windowTop float64 The	upper	limit	of	the	window.	Specify	this	value	in	the	units	of	the
measurement	or	generation.

windowBottom float64 The	lower	limit	of	the	window.	Specify	this	value	in	the	units	of	the
measurement	or	generation.

pretriggerSamples uInt32 The	minimum	number	of	samples	per	channel	to	acquire	before	recognizing
the	Reference	Trigger.	The	number	of	posttrigger	samples	per	channel	is
equal	to	number	of	samples	per	channel	in	the	NI-DAQmx	Timing	functions
minus	pretriggerSamples.

javascript:launchSharedHelp('mxcncpts.chm::/termNames.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgDigEdgeRefTrig
int32	DAQmxCfgDigEdgeRefTrig	(TaskHandle	taskHandle,	const	char

triggerSource[],	int32	triggerEdge,	uInt32	pretriggerSamples);



Purpose
Configures	the	task	to	stop	the	acquisition	when	the	device	acquires	all
pretrigger	samples,	detects	a	rising	or	falling	edge	of	a	digital	signal,	and
acquires	all	posttrigger	samples.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

triggerSource const	char
[]

Specifies	the	name	of	a	terminal	where	there	is	a	digital	signal	to	use	as	the
source	of	the	trigger.

triggerEdge int32 Specifies	on	which	edge	of	the	digital	signal	the	Reference	Trigger	occurs.

Value Description
DAQmx_Val_Rising Rising	edge(s).
DAQmx_Val_Falling Falling	edge(s).

pretriggerSamples uInt32 The	minimum	number	of	samples	per	channel	to	acquire	before	recognizing
the	Reference	Trigger.	The	number	of	posttrigger	samples	per	channel	is
equal	to	number	of	samples	per	channel	in	the	NI-DAQmx	Timing	functions
minus	pretriggerSamples.

javascript:launchSharedHelp('mxcncpts.chm::/termNames.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgDigPatternRefTrig
int32	DAQmxCfgDigPatternRefTrig	(TaskHandle	taskHandle,	const	char

triggerSource[],	const	char	triggerPattern[],	int32	triggerWhen,	uInt32
pretriggerSamples);



Purpose
Configures	the	task	to	stop	the	acquisition	when	the	device	acquires	all
pretrigger	samples,	matches	or	does	not	match	a	digital	pattern,	and	acquires	all
posttrigger	samples.

javascript:launchSharedHelp('mxcncpts.chm::/digpattern.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

triggerSource const	char	[] Specifies	the	physical	channels	to	use	for	pattern	matching.	The	order	of	the
physical	channels	determines	the	order	of	the	pattern.	If	a	port	is	included,
the	order	of	the	physical	channels	within	the	port	is	in	ascending	order.

triggerPattern const	char	[] Specifies	the	digital	pattern	that	must	be	met	for	the	trigger	to	occur.

triggerWhen int32 Specifies	the	conditions	under	which	the	trigger	occurs.

Value Description
DAQmx_Val_PatternMatches Pattern

matches
DAQmx_Val_PatternDoesNotMatch Pattern	does

not	match

pretriggerSamples uInt32 The	minimum	number	of	samples	per	channel	to	acquire	before	recognizing
the	Reference	Trigger.	The	number	of	posttrigger	samples	per	channel	is
equal	to	number	of	samples	per	channel	in	the	NI-DAQmx	Timing	functions
minus	pretriggerSamples.

javascript:launchSharedHelp('mxcncpts.chm::/digpattern.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxDisableRefTrig
int32	DAQmxDisableRefTrig	(TaskHandle	taskHandle);



Purpose
Disables	reference	triggering	for	the	measurement	or	generation.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgDigEdgeAdvTrig
int32	DAQmxCfgDigEdgeAdvTrig	(TaskHandle	taskHandle,	const	char

triggerSource[],	int32	triggerEdge);



Purpose
Configures	a	switch	task	to	advance	to	the	next	entry	in	a	scan	list	on	a	rising	or
falling	edge	of	a	digital	signal.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

triggerSource const	char	[] The	terminal	where	there	is	a	digital	signal	to	use	as	the	source	of	the	trigger.

triggerEdge int32 Specifies	on	which	edge	of	a	digital	signal	to	advance	to	the	next	entry	in	the	scan
list.

Value Description
DAQmx_Val_Rising Rising	edge(s).
DAQmx_Val_Falling Falling	edge(s).

javascript:launchSharedHelp('mxcncpts.chm::/termNames.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxDisableAdvTrig
int32	DAQmxDisableAdvTrig	(TaskHandle	taskHandle);



Purpose
Disables	the	advance	triggering	for	the	task.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSendSoftwareTrigger
int32	DAQmxSendSoftwareTrigger	(TaskHandle	taskHandle,	int32	triggerID);



Purpose
Generates	the	specified	software	trigger.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

triggerID int32 Specifies	which	software	trigger	to	generate.

Value Description
DAQmx_Val_AdvanceTrigger Generate	the	advance

trigger



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxReadAnalogF64
int32	DAQmxReadAnalogF64	(TaskHandle	taskHandle,	int32

numSampsPerChan,	float64	timeout,	bool32	fillMode,	float64
readArray[],	uInt32	arraySizeInSamps,	int32	*sampsPerChanRead,
bool32	*reserved);



Purpose
Reads	multiple	floating-point	samples	from	a	task	that	contains	one	or	more
analog	input	channels.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	read	samples	from.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	read.	The	default	value	of	-1
(DAQmx_Val_Auto)	reads	all	available	samples.	If	readArray	does	not
contain	enough	space,	this	function	returns	as	many	samples	as	fit	in
readArray.
NI-DAQmx	determines	how	many	samples	to	read	based	on	whether	the
task	acquires	samples	continuously	or	acquires	a	finite	number	of	samples.
If	the	task	acquires	samples	continuously	and	you	set	this	parameter	to	-1,
this	function	reads	all	the	samples	currently	available	in	the	buffer.
If	the	task	acquires	a	finite	number	of	samples	and	you	set	this	parameter	to
-1,	the	function	waits	for	the	task	to	acquire	all	requested	samples,	then	reads
those	samples.	If	you	set	the	Read	All	Available	Samples	property	to	TRUE,
the	function	reads	the	samples	currently	available	in	the	buffer	and	does	not
wait	for	the	task	to	acquire	all	requested	samples.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	the	function	to	read	the
sample(s).	The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,
pass	-1	(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the
timeout	elapses.
A	value	of	0	indicates	to	try	once	to	read	the	requested	samples.	If	all	the
requested	samples	are	read,	the	function	is	successful.	Otherwise,	the
function	returns	a	timeout	error	and	returns	the	samples	that	were	actually
read.

fillMode bool32 Specifies	whether	or	not	the	samples	are	interleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(non-
interleaved)

DAQmx_Val_GroupByScanNumber Group	by
scan	number
(interleaved)

arraySizeInSamps uInt32 The	size	of	the	array,	in	samples,	into	which	samples	are	read.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

readArray float64	[] The	array	to	read	samples	into,	organized	according	to	fillMode.

sampsPerChanRead int32	* The	actual	number	of	samples	read	from	each	channel.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxReadAnalogScalarF64
int32	DAQmxReadAnalogScalarF64	(TaskHandle	taskHandle,	float64	timeout,

float64	*value,	bool32	*reserved);



Purpose
Reads	a	single	floating-point	sample	from	a	task	that	contains	a	single	analog
input	channel.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	read	the	sample	from.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	the	function	to	read	the	sample(s).	The
default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout	elapses.
A	value	of	0	indicates	to	try	once	to	read	the	requested	samples.	If	all	the	requested
samples	are	read,	the	function	is	successful.	Otherwise,	the	function	returns	a	timeout
error	and	returns	the	samples	that	were	actually	read.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

value float64	* The	sample	read	from	the	task.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxReadBinaryI16
int32	DAQmxReadBinaryI16	(TaskHandle	taskHandle,	int32

numSampsPerChan,	float64	timeout,	bool32	fillMode,	int16
readArray[],	uInt32	arraySizeInSamps,	int32	*sampsPerChanRead,
bool32	*reserved);



Purpose
Reads	multiple	unscaled,	signed	16-bit	integer	samples	from	a	task	that	contains	one
or	more	analog	input	channels.

javascript:launchSharedHelp('mxcncpts.chm::/unscaledData.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	read	samples	from.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	read.	The	default	value	of	-1
(DAQmx_Val_Auto)	reads	all	available	samples.	If	readArray	does	not
contain	enough	space,	this	function	returns	as	many	samples	as	fit	in
readArray.
NI-DAQmx	determines	how	many	samples	to	read	based	on	whether	the
task	acquires	samples	continuously	or	acquires	a	finite	number	of	samples.
If	the	task	acquires	samples	continuously	and	you	set	this	parameter	to	-1,
this	function	reads	all	the	samples	currently	available	in	the	buffer.
If	the	task	acquires	a	finite	number	of	samples	and	you	set	this	parameter	to
-1,	the	function	waits	for	the	task	to	acquire	all	requested	samples,	then	reads
those	samples.	If	you	set	the	Read	All	Available	Samples	property	to	TRUE,
the	function	reads	the	samples	currently	available	in	the	buffer	and	does	not
wait	for	the	task	to	acquire	all	requested	samples.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	the	function	to	read	the
sample(s).	The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,
pass	-1	(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the
timeout	elapses.
A	value	of	0	indicates	to	try	once	to	read	the	requested	samples.	If	all	the
requested	samples	are	read,	the	function	is	successful.	Otherwise,	the
function	returns	a	timeout	error	and	returns	the	samples	that	were	actually
read.

fillMode bool32 Specifies	whether	or	not	the	samples	are	interleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(non-
interleaved)

DAQmx_Val_GroupByScanNumber Group	by
scan	number
(interleaved)

arraySizeInSamps uInt32 The	size	of	the	array,	in	samples,	into	which	samples	are	read.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

readArray int16	[] The	array	to	read	samples	into,	organized	according	to	fillMode.

sampsPerChanRead int32	* The	actual	number	of	samples	read	from	each	channel.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxReadBinaryI32
int32	DAQmxReadBinaryI32	(TaskHandle	taskHandle,	int32

numSampsPerChan,	float64	timeout,	bool32	fillMode,	int32
readArray[],	uInt32	arraySizeInSamps,	int32	*sampsPerChanRead,
bool32	*reserved);



Purpose
Reads	one	or	more	unscaled	32-bit	signed	integer	samples	from	a	task	that	contains
one	or	more	analog	input	channels.

javascript:launchSharedHelp('mxcncpts.chm::/unscaledData.html');
javascript:launchSharedHelp('mxcncpts.chm::/virtChanTypes.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	read.	The	default	value	of	-1
(DAQmx_Val_Auto)	reads	all	available	samples.	If	readArray	does	not
contain	enough	space,	this	function	returns	as	many	samples	as	fit	in
readArray.
NI-DAQmx	determines	how	many	samples	to	read	based	on	whether	the
task	acquires	samples	continuously	or	acquires	a	finite	number	of	samples.
If	the	task	acquires	samples	continuously	and	you	set	this	parameter	to	-1,
this	function	reads	all	the	samples	currently	available	in	the	buffer.
If	the	task	acquires	a	finite	number	of	samples	and	you	set	this	parameter	to
-1,	the	function	waits	for	the	task	to	acquire	all	requested	samples,	then	reads
those	samples.	If	you	set	the	Read	All	Available	Samples	property	to	TRUE,
the	function	reads	the	samples	currently	available	in	the	buffer	and	does	not
wait	for	the	task	to	acquire	all	requested	samples.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	the	function	to	read	the
sample(s).	The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,
pass	-1	(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the
timeout	elapses.
A	value	of	0	indicates	to	try	once	to	read	the	requested	samples.	If	all	the
requested	samples	are	read,	the	function	is	successful.	Otherwise,	the
function	returns	a	timeout	error	and	returns	the	samples	that	were	actually
read.

fillMode bool32 Specifies	whether	or	not	the	samples	are	interleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(non-
interleaved)

DAQmx_Val_GroupByScanNumber Group	by
scan	number
(interleaved)

arraySizeInSamps uInt32 The	size	of	the	array,	in	samples,	into	which	samples	are	read.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

readArray int32	[] The	array	to	read	samples	into,	organized	according	to	fillMode.

sampsPerChanRead int32	* The	actual	number	of	samples	read	from	each	channel.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxReadBinaryU16
int32	DAQmxReadBinaryU16	(TaskHandle	taskHandle,	int32

numSampsPerChan,	float64	timeout,	bool32	fillMode,	uInt16
readArray[],	uInt32	arraySizeInSamps,	int32	*sampsPerChanRead,
bool32	*reserved);



Purpose
Reads	multiple	unscaled,	unsigned	16-bit	integer	samples	from	a	task	that	contains
one	or	more	analog	input	channels.

javascript:launchSharedHelp('mxcncpts.chm::/unscaledData.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	read	samples	from.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	read.	The	default	value	of	-1
(DAQmx_Val_Auto)	reads	all	available	samples.	If	readArray	does	not
contain	enough	space,	this	function	returns	as	many	samples	as	fit	in
readArray.
NI-DAQmx	determines	how	many	samples	to	read	based	on	whether	the
task	acquires	samples	continuously	or	acquires	a	finite	number	of	samples.
If	the	task	acquires	samples	continuously	and	you	set	this	parameter	to	-1,
this	function	reads	all	the	samples	currently	available	in	the	buffer.
If	the	task	acquires	a	finite	number	of	samples	and	you	set	this	parameter	to
-1,	the	function	waits	for	the	task	to	acquire	all	requested	samples,	then	reads
those	samples.	If	you	set	the	Read	All	Available	Samples	property	to	TRUE,
the	function	reads	the	samples	currently	available	in	the	buffer	and	does	not
wait	for	the	task	to	acquire	all	requested	samples.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	the	function	to	read	the
sample(s).	The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,
pass	-1	(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the
timeout	elapses.
A	value	of	0	indicates	to	try	once	to	read	the	requested	samples.	If	all	the
requested	samples	are	read,	the	function	is	successful.	Otherwise,	the
function	returns	a	timeout	error	and	returns	the	samples	that	were	actually
read.

fillMode bool32 Specifies	whether	or	not	the	samples	are	interleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(non-
interleaved)

DAQmx_Val_GroupByScanNumber Group	by
scan	number
(interleaved)

arraySizeInSamps uInt32 The	size	of	the	array,	in	samples,	into	which	samples	are	read.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

readArray uInt16	[] The	array	to	read	samples	into,	organized	according	to	fillMode.

sampsPerChanRead int32	* The	actual	number	of	samples	read	from	each	channel.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxReadBinaryU32
int32	DAQmxReadBinaryU32	(TaskHandle	taskHandle,	int32

numSampsPerChan,	float64	timeout,	bool32	fillMode,	uInt32
readArray[],	uInt32	arraySizeInSamps,	int32	*sampsPerChanRead,
bool32	*reserved);



Purpose
Reads	one	or	more	unscaled	32-bit	unsigned	integer	samples	from	a	task	that
contains	one	or	more	analog	input	channels.

javascript:launchSharedHelp('mxcncpts.chm::/unscaledData.html');
javascript:launchSharedHelp('mxcncpts.chm::/virtChanTypes.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	read.	The	default	value	of	-1
(DAQmx_Val_Auto)	reads	all	available	samples.	If	readArray	does	not
contain	enough	space,	this	function	returns	as	many	samples	as	fit	in
readArray.
NI-DAQmx	determines	how	many	samples	to	read	based	on	whether	the
task	acquires	samples	continuously	or	acquires	a	finite	number	of	samples.
If	the	task	acquires	samples	continuously	and	you	set	this	parameter	to	-1,
this	function	reads	all	the	samples	currently	available	in	the	buffer.
If	the	task	acquires	a	finite	number	of	samples	and	you	set	this	parameter	to
-1,	the	function	waits	for	the	task	to	acquire	all	requested	samples,	then	reads
those	samples.	If	you	set	the	Read	All	Available	Samples	property	to	TRUE,
the	function	reads	the	samples	currently	available	in	the	buffer	and	does	not
wait	for	the	task	to	acquire	all	requested	samples.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	the	function	to	read	the
sample(s).	The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,
pass	-1	(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the
timeout	elapses.
A	value	of	0	indicates	to	try	once	to	read	the	requested	samples.	If	all	the
requested	samples	are	read,	the	function	is	successful.	Otherwise,	the
function	returns	a	timeout	error	and	returns	the	samples	that	were	actually
read.

fillMode bool32 Specifies	whether	or	not	the	samples	are	interleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(non-
interleaved)

DAQmx_Val_GroupByScanNumber Group	by
scan	number
(interleaved)

arraySizeInSamps uInt32 The	size	of	the	array,	in	samples,	into	which	samples	are	read.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

readArray uInt32	[] The	array	to	read	samples	into,	organized	according	to	fillMode.

sampsPerChanRead int32	* The	actual	number	of	samples	read	from	each	channel.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxReadCounterF64
int32	DAQmxReadCounterF64	(TaskHandle	taskHandle,	int32

numSampsPerChan,	float64	timeout,	float64	readArray[],	uInt32
arraySizeInSamps,	int32	*sampsPerChanRead,	bool32	*reserved);



Purpose
Reads	multiple	floating-point	samples	from	a	counter	task.	Use	this	function
when	counter	samples	are	scaled	to	a	floating-point	value,	such	as	for	frequency
and	period	measurements.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	read	samples	from.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	read.	The	default	value	of	-1
(DAQmx_Val_Auto)	reads	all	available	samples.	If	readArray	does	not
contain	enough	space,	this	function	returns	as	many	samples	as	fit	in
readArray.
NI-DAQmx	determines	how	many	samples	to	read	based	on	whether	the
task	acquires	samples	continuously	or	acquires	a	finite	number	of	samples.
If	the	task	acquires	samples	continuously	and	you	set	this	parameter	to	-1,
this	function	reads	all	the	samples	currently	available	in	the	buffer.
If	the	task	acquires	a	finite	number	of	samples	and	you	set	this	parameter	to
-1,	the	function	waits	for	the	task	to	acquire	all	requested	samples,	then
reads	those	samples.	If	you	set	the	Read	All	Available	Samples	property	to
TRUE,	the	function	reads	the	samples	currently	available	in	the	buffer	and
does	not	wait	for	the	task	to	acquire	all	requested	samples.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	the	function	to	read	the
sample(s).	The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,
pass	-1	(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the
timeout	elapses.
A	value	of	0	indicates	to	try	once	to	read	the	requested	samples.	If	all	the
requested	samples	are	read,	the	function	is	successful.	Otherwise,	the
function	returns	a	timeout	error	and	returns	the	samples	that	were	actually
read.

arraySizeInSamps uInt32 The	size	of	the	array,	in	samples,	into	which	samples	are	read.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

readArray float64	[] The	array	to	read	samples	into.

sampsPerChanRead int32	* The	actual	number	of	samples	read	from	each	channel.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxReadCounterScalarF64
int32	DAQmxReadCounterScalarF64	(TaskHandle	taskHandle,	float64	timeout,

float64	*value,	bool32	*reserved);



Purpose
Reads	a	single	floating-point	sample	from	a	counter	task.	Use	this	function	when
the	counter	sample	is	scaled	to	a	floating-point	value,	such	as	for	frequency	and
period	measurement.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	read	the	sample	from.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	the	function	to	read	the	sample(s).	The
default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout	elapses.
A	value	of	0	indicates	to	try	once	to	read	the	requested	samples.	If	all	the	requested
samples	are	read,	the	function	is	successful.	Otherwise,	the	function	returns	a	timeout
error	and	returns	the	samples	that	were	actually	read.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

value float64	* The	sample	read	from	the	task.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxReadCounterScalarU32
int32	DAQmxReadCounterScalarU32	(TaskHandle	taskHandle,	float64	timeout,

uInt32	*value,	bool32	*reserved);



Purpose
Reads	a	32-bit	integer	sample	from	a	counter	task.	Use	this	function	when	the
counter	sample	is	returned	unscaled,	such	as	for	edge	counting.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	read	the	sample	from.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	the	function	to	read	the	sample(s).	The
default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout	elapses.
A	value	of	0	indicates	to	try	once	to	read	the	requested	samples.	If	all	the	requested
samples	are	read,	the	function	is	successful.	Otherwise,	the	function	returns	a	timeout
error	and	returns	the	samples	that	were	actually	read.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

value uInt32	* The	sample	read	from	the	task.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxReadCounterU32
int32	DAQmxReadCounterU32	(TaskHandle	taskHandle,	int32

numSampsPerChan,	float64	timeout,	uInt32	readArray[],	uInt32
arraySizeInSamps,	int32	*sampsPerChanRead,	bool32	*reserved);



Purpose
Reads	multiple	32-bit	integer	samples	from	a	counter	task.	Use	this	function
when	counter	samples	are	returned	unscaled,	such	as	for	edge	counting.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	read	samples	from.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	read.	The	default	value	of	-1
(DAQmx_Val_Auto)	reads	all	available	samples.	If	readArray	does	not
contain	enough	space,	this	function	returns	as	many	samples	as	fit	in
readArray.
NI-DAQmx	determines	how	many	samples	to	read	based	on	whether	the
task	acquires	samples	continuously	or	acquires	a	finite	number	of	samples.
If	the	task	acquires	samples	continuously	and	you	set	this	parameter	to	-1,
this	function	reads	all	the	samples	currently	available	in	the	buffer.
If	the	task	acquires	a	finite	number	of	samples	and	you	set	this	parameter	to
-1,	the	function	waits	for	the	task	to	acquire	all	requested	samples,	then
reads	those	samples.	If	you	set	the	Read	All	Available	Samples	property	to
TRUE,	the	function	reads	the	samples	currently	available	in	the	buffer	and
does	not	wait	for	the	task	to	acquire	all	requested	samples.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	the	function	to	read	the
sample(s).	The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,
pass	-1	(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the
timeout	elapses.
A	value	of	0	indicates	to	try	once	to	read	the	requested	samples.	If	all	the
requested	samples	are	read,	the	function	is	successful.	Otherwise,	the
function	returns	a	timeout	error	and	returns	the	samples	that	were	actually
read.

arraySizeInSamps uInt32 The	size	of	the	array,	in	samples,	into	which	samples	are	read.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

readArray uInt32	[] The	array	to	read	samples	into.

sampsPerChanRead int32	* The	actual	number	of	samples	read	from	each	channel.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxReadDigitalLines
int32	DAQmxReadDigitalLines	(TaskHandle	taskHandle,	int32

numSampsPerChan,	float64	timeout,	bool32	fillMode,	uInt8
readArray[],	uInt32	arraySizeInBytes,	int32	*sampsPerChanRead,
int32	*numBytesPerSamp,	bool32	*reserved);



Purpose
Reads	multiple	samples	from	each	digital	line	in	a	task.	Each	line	in	a	channel
gets	one	byte	per	sample.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	read	samples	from.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	read.	The	default	value	of	-1
(DAQmx_Val_Auto)	reads	all	available	samples.	If	readArray	does	not
contain	enough	space,	this	function	returns	as	many	samples	as	fit	in
readArray.
NI-DAQmx	determines	how	many	samples	to	read	based	on	whether	the
task	acquires	samples	continuously	or	acquires	a	finite	number	of	samples.
If	the	task	acquires	samples	continuously	and	you	set	this	parameter	to	-1,
this	function	reads	all	the	samples	currently	available	in	the	buffer.
If	the	task	acquires	a	finite	number	of	samples	and	you	set	this	parameter	to
-1,	the	function	waits	for	the	task	to	acquire	all	requested	samples,	then	reads
those	samples.	If	you	set	the	Read	All	Available	Data	property	to	TRUE,	the
function	reads	the	samples	currently	available	in	the	buffer	and	does	not	wait
for	the	task	to	acquire	all	requested	samples.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	the	function	to	read	the
sample(s).	The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,
pass	-1	(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the
timeout	elapses.
A	value	of	0	indicates	to	try	once	to	read	the	requested	samples.	If	all	the
requested	samples	are	read,	the	function	is	successful.	Otherwise,	the
function	returns	a	timeout	error	and	returns	the	samples	that	were	actually
read.

fillMode bool32 Specifies	whether	or	not	the	samples	are	interleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(non-
interleaved)

DAQmx_Val_GroupByScanNumber Group	by
scan	number
(interleaved)

arraySizeInBytes uInt32 The	size	of	the	array,	in	samples,	into	which	samples	are	read.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

readArray uInt8	[] The	array	to	read	samples	into.	Each	numBytesPerSamp	corresponds	to
one	sample	per	channel,	with	each	element	in	that	grouping	corresponding	to
a	line	in	that	channel,	up	to	the	number	of	lines	contained	in	the	channel.

sampsPerChanRead int32	* The	actual	number	of	samples	read	from	each	channel.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


numBytesPerSamp int32	* The	number	of	elements	in	readArray	that	constitutes	a	sample	per	channel.
For	each	sample	per	channel,	numBytesPerSamp	is	the	number	of	bytes
that	channel	consists	of.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxReadDigitalScalarU32
int32	DAQmxReadDigitalScalarU32	(TaskHandle	taskHandle,	float64	timeout,

uInt32	*value,	bool32	*reserved);



Purpose
Reads	a	single	32-bit	integer	sample	from	a	task	that	contains	a	single	digital	input
channel.	Use	this	function	for	devices	with	up	to	32	lines	per	port.	The	sample	is
returned	in	unsigned	integer	format.

javascript:launchSharedHelp('mxcncpts.chm::/virtChanTypes.html');
javascript:launchSharedHelp('mxcncpts.chm::/digitaldata.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	read	the	sample	from.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	the	function	to	read	the	sample.	The
default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout	elapses.
A	value	of	0	indicates	to	try	once	to	read	the	requested	sample.	If	the	entire	requested
sample	is	read,	the	function	is	successful.	Otherwise,	the	function	returns	a	timeout
error	and	returns	what	was	actually	read.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

value uInt32	* The	sample	read	from	the	task.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxReadDigitalU8
int32	DAQmxReadDigitalU8	(TaskHandle	taskHandle,	int32

numSampsPerChan,	float64	timeout,	bool32	fillMode,	uInt8
readArray[],	uInt32	arraySizeInSamps,	int32	*sampsPerChanRead,
bool32	*reserved);



Purpose
Reads	multiple	8-bit	integer	samples	from	a	task	that	has	one	or	more	multiple
digital	input	channels.	Use	this	function	for	devices	with	up	to	8	lines	per	port.	The
samples	are	returned	in	unsigned	byte	format.

javascript:launchSharedHelp('mxcncpts.chm::/virtChanTypes.html');
javascript:launchSharedHelp('mxcncpts.chm::/digitaldata.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	samples	to.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	read.	The	default	value	of	-1
(DAQmx_Val_Auto)	reads	all	available	samples.	If	readArray	does	not
contain	enough	space,	this	function	returns	as	many	samples	as	fit	in
readArray.
NI-DAQmx	determines	how	many	samples	to	read	based	on	whether	the
task	acquires	samples	continuously	or	acquires	a	finite	number	of	samples.
If	the	task	acquires	samples	continuously	and	you	set	this	parameter	to	-1,
this	function	reads	all	the	samples	currently	available	in	the	buffer.
If	the	task	acquires	a	finite	number	of	samples	and	you	set	this	parameter	to
-1,	the	function	waits	for	the	task	to	acquire	all	requested	samples,	then	reads
those	samples.	If	you	set	the	Read	All	Available	Samples	property	to	TRUE,
the	function	reads	the	samples	currently	available	in	the	buffer	and	does	not
wait	for	the	task	to	acquire	all	requested	samples.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	the	function	to	read	the
sample(s).	The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,
pass	-1	(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the
timeout	elapses.
A	value	of	0	indicates	to	try	once	to	read	the	requested	samples.	If	all	the
requested	samples	are	read,	the	function	is	successful.	Otherwise,	the
function	returns	a	timeout	error	and	returns	the	samples	that	were	actually
read.

fillMode bool32 Specifies	whether	or	not	the	samples	are	interleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(non-
interleaved)

DAQmx_Val_GroupByScanNumber Group	by
scan	number
(interleaved)

arraySizeInSamps uInt32 The	size	of	the	array,	in	samples,	into	which	samples	are	read.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

readArray uInt8	[] The	array	to	read	samples	into,	organized	according	to	fillMode.

sampsPerChanRead int32	* The	actual	number	of	samples	read	from	each	channel.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxReadDigitalU16
int32	DAQmxReadDigitalU16	(TaskHandle	taskHandle,	int32

numSampsPerChan,	float64	timeout,	bool32	fillMode,	uInt16
readArray[],	uInt32	arraySizeInSamps,	int32	*sampsPerChanRead,
bool32	*reserved);



Purpose
Reads	multiple	16-bit	integer	samples	from	a	task	that	contains	one	or	more	digital
input	channels.	Use	this	function	for	devices	with	up	to	16	lines	per	port.	The	samples
are	returned	in	unsigned	integer	format.

javascript:launchSharedHelp('mxcncpts.chm::/virtChanTypes.html');
javascript:launchSharedHelp('mxcncpts.chm::/digitaldata.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	read	samples	from.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	read.	The	default	value	of	-1
(DAQmx_Val_Auto)	reads	all	available	samples.	If	readArray	does	not
contain	enough	space,	this	function	returns	as	many	samples	as	fit	in
readArray.
NI-DAQmx	determines	how	many	samples	to	read	based	on	whether	the
task	acquires	samples	continuously	or	acquires	a	finite	number	of	samples.
If	the	task	acquires	samples	continuously	and	you	set	this	parameter	to	-1,
this	function	reads	all	the	samples	currently	available	in	the	buffer.
If	the	task	acquires	a	finite	number	of	samples	and	you	set	this	parameter	to
-1,	the	function	waits	for	the	task	to	acquire	all	requested	samples,	then	reads
those	samples.	If	you	set	the	Read	All	Available	Samples	property	to	TRUE,
the	function	reads	the	samples	currently	available	in	the	buffer	and	does	not
wait	for	the	task	to	acquire	all	requested	samples.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	the	function	to	read	the
sample(s).	The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,
pass	-1	(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the
timeout	elapses.
A	value	of	0	indicates	to	try	once	to	read	the	requested	samples.	If	all	the
requested	samples	are	read,	the	function	is	successful.	Otherwise,	the
function	returns	a	timeout	error	and	returns	the	samples	that	were	actually
read.

fillMode bool32 Specifies	whether	or	not	the	samples	are	interleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(non-
interleaved)

DAQmx_Val_GroupByScanNumber Group	by
scan	number
(interleaved)

arraySizeInSamps uInt32 The	size	of	the	array,	in	samples,	into	which	samples	are	read.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

readArray uInt16	[] The	array	to	read	samples	into,	organized	according	to	fillMode.

sampsPerChanRead int32	* The	actual	number	of	samples	read	from	each	channel.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxReadDigitalU32
int32	DAQmxReadDigitalU32	(TaskHandle	taskHandle,	int32

numSampsPerChan,	float64	timeout,	bool32	fillMode,	uInt32
readArray[],	uInt32	arraySizeInSamps,	int32	*sampsPerChanRead,
bool32	*reserved);



Purpose
Reads	multiple	32-bit	integer	samples	from	a	task	that	contains	one	or	more	digital
input	channels.	Use	this	function	for	devices	with	up	to	32	lines	per	port.	The	samples
are	returned	in	unsigned	integer	format.

javascript:launchSharedHelp('mxcncpts.chm::/virtChanTypes.html');
javascript:launchSharedHelp('mxcncpts.chm::/digitaldata.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	read	samples	from.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	read.	The	default	value	of	-1
(DAQmx_Val_Auto)	reads	all	available	samples.	If	readArray	does	not
contain	enough	space,	this	function	returns	as	many	samples	as	fit	in
readArray.
NI-DAQmx	determines	how	many	samples	to	read	based	on	whether	the
task	acquires	samples	continuously	or	acquires	a	finite	number	of	samples.
If	the	task	acquires	samples	continuously	and	you	set	this	parameter	to	-1,
this	function	reads	all	the	samples	currently	available	in	the	buffer.
If	the	task	acquires	a	finite	number	of	samples	and	you	set	this	parameter	to
-1,	the	function	waits	for	the	task	to	acquire	all	requested	samples,	then	reads
those	samples.	If	you	set	the	Read	All	Available	Samples	property	to	TRUE,
the	function	reads	the	samples	currently	available	in	the	buffer	and	does	not
wait	for	the	task	to	acquire	all	requested	samples.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	the	function	to	read	the
sample(s).	The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,
pass	-1	(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the
timeout	elapses.
A	value	of	0	indicates	to	try	once	to	read	the	requested	samples.	If	all	the
requested	samples	are	read,	the	function	is	successful.	Otherwise,	the
function	returns	a	timeout	error	and	returns	the	samples	that	were	actually
read.

fillMode bool32 Specifies	whether	or	not	the	samples	are	interleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(non-
interleaved)

DAQmx_Val_GroupByScanNumber Group	by
scan	number
(interleaved)

arraySizeInSamps uInt32 The	size	of	the	array,	in	samples,	into	which	samples	are	read.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

readArray uInt32	[] The	array	to	read	samples	into,	organized	according	to	fillMode.

sampsPerChanRead int32	* The	actual	number	of	samples	read	from	each	channel.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxGetNthTaskReadChannel
int32	DAQmxGetNthTaskReadChannel	(TaskHandle	taskHandle,	uInt32	index,

char	buffer[],	int32	bufferSize);



Purpose
Takes	a	task,	an	index,	and	a	user	declared	buffer	with	size.	It	fills	out	the	buffer
with	the	Nth	channel	as	requested	by	the	user	in	the	index.	This	comes	from	all
the	channels	in	the	task.	Indexing	starts	at	1.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

index uInt32 The	Nth	channel	to	return.	The	index	starts	at	1.

bufferSize int32 The	size,	in	bytes,	of	buffer.	If	you	pass	0,	this	function	returns	the	number	of	bytes
needed	to	allocate.

Output

buffer char	[] The	Nth	channel	in	the	index.	If	you	pass	NULL,	this	function	returns	the	number	of
bytes	needed	to	allocate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	negative	value	indicates	an	error.
For	this	function,	if	you	pass	NULL	for	the	buffer	or	0	for	the	buffer	size,	this	function	returns	the
number	of	bytes	needed	to	allocate.



DAQmxReadRaw
int32	DAQmxReadRaw	(TaskHandle	taskHandle,	int32	numSampsPerChan,

float64	timeout,	void	*readArray,	uInt32	arraySizeInBytes,	int32
*sampsRead,	int32	*numBytesPerSamp,	bool32	*reserved);



Purpose
Reads	raw	samples	directly	from	the	input	lines.	There	is	no	scaling,	parsing,	or
separation	of	the	samples.	Refer	to	the	specifications	for	your	device	to
determine	the	format	of	the	incoming	samples.

javascript:launchSharedHelp('mxcncpts.chm::/rawdata.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	read	samples	from.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	read.	If	you	set	this	parameter	to	-1
(DAQmx_Val_Auto),	NI-DAQmx	determines	how	many	samples	to	read
based	on	whether	the	task	acquires	samples	continuously	or	acquires	a	finite
number	of	samples.
If	the	task	acquires	samples	continuously	and	you	set	this	parameter	to	-1,
this	function	reads	all	the	samples	currently	available	in	the	buffer.	If
readArray	does	not	contain	enough	space,	this	function	returns	as	many
samples	as	fit	in	readArray.
If	the	task	acquires	a	finite	number	of	samples	and	you	set	this	parameter	to
-1,	the	function	waits	for	the	task	to	acquire	all	requested	samples,	then
reads	those	samples.	If	you	set	the	Read	All	Available	Data	property	to
TRUE,	the	function	reads	the	samples	currently	available	in	the	buffer	and
does	not	wait	for	the	task	to	acquire	all	requested	samples.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	the	function	to	read	the
sample(s).	The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,
pass	-1	(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the
timeout	elapses.
A	value	of	0	indicates	to	try	once	to	read	the	requested	samples.	If	all	the
requested	samples	are	read,	the	function	is	successful.	Otherwise,	the
function	returns	a	timeout	error	and	returns	the	samples	that	were	actually
read.

arraySizeInBytes uInt32 The	size	of	the	array	into	which	samples	are	read.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

readArray void	* The	array	into	which	samples	are	read.

sampsRead int32	* The	actual	number	of	bytes	read	into	the	array	per	scan.

numBytesPerSamp int32	* The	number	of	elements	in	readArray	that	constitutes	a	sample.	This	value
takes	into	account	all	channels	that	are	read.	For	example,	five	channels
giving	12	bytes	for	one	entire	scan	return	12	bytes.	The	value	is	not	divided
along	channel	lines.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteAnalogF64
int32	DAQmxWriteAnalogF64	(TaskHandle	taskHandle,	int32

numSampsPerChan,	bool32	autoStart,	float64	timeout,	bool32
dataLayout,	float64	writeArray[],	int32	*sampsPerChanWritten,
bool32	*reserved);



Purpose
Writes	multiple	floating-point	samples	to	a	task	that	contains	one	or	more	analog
output	channels.

Note	If	you	configured	timing	for	your	task,	your	write	is	considered	a	buffered	write.	Buffered	writes
require	a	minimum	buffer	size	of	2	samples.	If	you	do	not	configure	the	buffer	size	using
DAQmxCfgOutputBuffer,	NI-DAQmx	automatically	configures	the	buffer	when	you	configure	sample
timing.	If	you	attempt	to	write	one	sample	for	a	buffered	write	without	configuring	the	buffer,	you	will
receive	an	error.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	samples	to.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	write.	You	must	pass	in	a	value	of	0	or
more	in	order	for	the	sample	to	write.	If	you	pass	a	negative	number,	this	function
returns	an	error.

autoStart bool32 Specifies	whether	or	not	this	function	automatically	starts	the	task	if	you	do	not
start	it.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	this	function	to	write	all	the	samples.
The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout
elapses.
A	value	of	0	indicates	to	try	once	to	write	the	submitted	samples.	If	this	function
successfully	writes	all	submitted	samples,	it	does	not	return	an	error.	Otherwise,
the	function	returns	a	timeout	error	and	returns	the	number	of	samples	actually
written.

dataLayout bool32 Specifies	how	the	samples	are	arranged,	either	interleaved	or	noninterleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(noninterleaved)

DAQmx_Val_GroupByScanNumber Group	by
sample
(interleaved)

writeArray float64	[] The	array	of	64-bit	samples	to	write	to	the	task.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

sampsPerChanWritten int32	* The	actual	number	of	samples	per	channel	successfully	written	to	the	buffer.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteAnalogScalarF64
int32	DAQmxWriteAnalogScalarF64	(TaskHandle	taskHandle,	bool32	autoStart,

float64	timeout,	float64	value,	bool32	*reserved);



Purpose
Writes	a	floating-point	sample	to	a	task	that	contains	a	single	analog	output
channel.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	the	sample	to.

autoStart bool32 Specifies	whether	or	not	this	function	automatically	starts	the	task	if	you	do	not	start
it.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	this	function	to	write	the	value.	The
default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout	elapses.
A	value	of	0	indicates	to	try	once	to	write	the	value.	If	this	function	successfully
writes	the	value,	it	does	not	return	an	error.	Otherwise,	the	function	returns	a	timeout
error.

value float64 A	64-bit	sample	to	write	to	the	task.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteBinaryI16
int32	DAQmxWriteBinaryI16	(TaskHandle	taskHandle,	int32

numSampsPerChan,	bool32	autoStart,	float64	timeout,	bool32
dataLayout,	int16	writeArray[],	int32	*sampsPerChanWritten,	bool32
*reserved);



Purpose
Writes	unscaled	signed	integer	samples	to	the	task.

Note	If	you	configured	timing	for	your	task,	your	write	is	considered	a	buffered	write.	Buffered	writes
require	a	minimum	buffer	size	of	2	samples.	If	you	do	not	configure	the	buffer	size	using
DAQmxCfgOutputBuffer,	NI-DAQmx	automatically	configures	the	buffer	when	you	configure	sample
timing.	If	you	attempt	to	write	one	sample	for	a	buffered	write	without	configuring	the	buffer,	you	will
receive	an	error.

javascript:launchSharedHelp('mxcncpts.chm::/unscaledData.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	samples	to.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	write.	You	must	pass	in	a	value	of	0	or
more	in	order	for	the	sample	to	write.	If	you	pass	a	negative	number,	this	function
returns	an	error.

autoStart bool32 Specifies	whether	or	not	this	function	automatically	starts	the	task	if	you	do	not
start	it.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	this	function	to	write	all	the	samples.
The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout
elapses.
A	value	of	0	indicates	to	try	once	to	write	the	submitted	samples.	If	this	function
successfully	writes	all	submitted	samples,	it	does	not	return	an	error.	Otherwise,
the	function	returns	a	timeout	error	and	returns	the	number	of	samples	actually
written.

dataLayout bool32 Specifies	how	the	samples	are	arranged,	either	interleaved	or	noninterleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(noninterleaved)

DAQmx_Val_GroupByScanNumber Group	by
sample
(interleaved)

writeArray int16	[] The	array	of	16-bit	samples	to	write	to	the	task.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

sampsPerChanWritten int32	* The	actual	number	of	samples	per	channel	successfully	written	to	the	buffer.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteBinaryU16
int32	DAQmxWriteBinaryU16	(TaskHandle	taskHandle,	int32

numSampsPerChan,	bool32	autoStart,	float64	timeout,	bool32
dataLayout,	uInt16	writeArray[],	int32	*sampsPerChanWritten,
bool32	*reserved);



Purpose
Writes	unscaled,	unsigned	16-bit	integer	samples	to	the	task.

Note	If	you	configured	timing	for	your	task,	your	write	is	considered	a	buffered	write.	Buffered	writes
require	a	minimum	buffer	size	of	2	samples.	If	you	do	not	configure	the	buffer	size	using
DAQmxCfgOutputBuffer,	NI-DAQmx	automatically	configures	the	buffer	when	you	configure	sample
timing.	If	you	attempt	to	write	one	sample	for	a	buffered	write	without	configuring	the	buffer,	you	will
receive	an	error.

javascript:launchSharedHelp('mxcncpts.chm::/unscaledData.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	samples	to.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	write.	You	must	pass	in	a	value	of	0	or
more	in	order	for	the	sample	to	write.	If	you	pass	a	negative	number,	this	function
returns	an	error.

autoStart bool32 Specifies	whether	or	not	this	function	automatically	starts	the	task	if	you	do	not
start	it.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	this	function	to	write	all	the	samples.
The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout
elapses.
A	value	of	0	indicates	to	try	once	to	write	the	submitted	samples.	If	this	function
successfully	writes	all	submitted	samples,	it	does	not	return	an	error.	Otherwise,
the	function	returns	a	timeout	error	and	returns	the	number	of	samples	actually
written.

dataLayout bool32 Specifies	how	the	samples	are	arranged,	either	interleaved	or	noninterleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(noninterleaved)

DAQmx_Val_GroupByScanNumber Group	by
sample
(interleaved)

writeArray uInt16	[] The	array	of	16-bit	samples	to	write	to	the	task.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

sampsPerChanWritten int32	* The	actual	number	of	samples	per	channel	successfully	written	to	the	buffer.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteCtrFreq
int32	DAQmxWriteCtrFreq	(TaskHandle	taskHandle,	int32	numSampsPerChan,

bool32	autoStart,	float64	timeout,	bool32	dataLayout,	float64
frequency[],	float64	dutyCycle[],	int32	*numSampsPerChanWritten,
bool32	*reserved);



Purpose
Writes	a	new	pulse	frequency	and	duty	cycle	to	each	channel	in	a	continuous
counter	output	task	that	contains	one	or	more	channels.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	samples	to.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	write.	You	must	pass	in	a	value	of	0	or
more	in	order	for	the	sample	to	write.	If	you	pass	a	negative	number,	this	function
returns	an	error.

autoStart bool32 Specifies	whether	or	not	this	function	automatically	starts	the	task	if	you	do	not
start	it.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	this	function	to	write	all	the	samples.
The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout
elapses.
A	value	of	0	indicates	to	try	once	to	write	the	submitted	samples.	If	this	function
successfully	writes	all	submitted	samples,	it	does	not	return	an	error.	Otherwise,
the	function	returns	a	timeout	error	and	returns	the	number	of	samples	actually
written.

dataLayout bool32 Specifies	how	the	samples	are	arranged,	either	interleaved	or	noninterleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(noninterleaved)

DAQmx_Val_GroupByScanNumber Group	by
sample
(interleaved)

frequency float64	[] Specifies	at	what	frequency	to	generate	pulses.

dutyCycle float64	[] The	width	of	the	pulse	divided	by	the	pulse	period.	NI-DAQmx	uses	this	ratio,
combined	with	frequency,	to	determine	both	pulse	width	and	pulse	delay.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

numSampsPerChanWritten int32	* The	actual	number	of	samples	per	channel	successfully	written	to	the	buffer.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteCtrFreqScalar
int32	DAQmxWriteCtrFreqScalar	(TaskHandle	taskHandle,	bool32	autoStart,

float64	timeout,	float64	frequency,	float64	dutyCycle,	bool32
*reserved);



Purpose
Writes	a	new	pulse	frequency	and	duty	cycle	to	a	continuous	counter	output	task
that	contains	a	single	channel.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	the	sample	to.

autoStart bool32 Specifies	whether	or	not	this	function	automatically	starts	the	task	if	you	do	not	start
it.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	this	function	to	write	all	the	samples.	The
default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout	elapses.
A	value	of	0	indicates	to	try	once	to	write	the	submitted	samples.	If	this	function
successfully	writes	all	submitted	samples,	it	does	not	return	an	error.	Otherwise,	the
function	returns	a	timeout	error	and	returns	the	number	of	samples	actually	written.

frequency float64 Specifies	at	what	frequency	to	generate	pulses.

dutyCycle float64 The	width	of	the	pulse	divided	by	the	pulse	period.	NI-DAQmx	uses	this	ratio,
combined	with	frequency,	to	determine	both	pulse	width	and	pulse	delay.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteCtrTicks
int32	DAQmxWriteCtrTicks	(TaskHandle	taskHandle,	int32	numSampsPerChan,

bool32	autoStart,	float64	timeout,	bool32	dataLayout,	uInt32
highTicks[],	uInt32	lowTicks[],	int32	*numSampsPerChanWritten,
bool32	*reserved);



Purpose
Writes	new	pulse	high	tick	counts	and	low	tick	counts	to	each	channel	in	a
continuous	counter	output	task	that	contains	one	or	more	channels.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	samples	to.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	write.	You	must	pass	in	a	value	of	0	or
more	in	order	for	the	sample	to	write.	If	you	pass	a	negative	number,	this	function
returns	an	error.

autoStart bool32 Specifies	whether	or	not	this	function	automatically	starts	the	task	if	you	do	not
start	it.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	this	function	to	write	all	the	samples.
The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout
elapses.
A	value	of	0	indicates	to	try	once	to	write	the	submitted	samples.	If	this	function
successfully	writes	all	submitted	samples,	it	does	not	return	an	error.	Otherwise,
the	function	returns	a	timeout	error	and	returns	the	number	of	samples	actually
written.

dataLayout bool32 Specifies	how	the	samples	are	arranged,	either	interleaved	or	noninterleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(noninterleaved)

DAQmx_Val_GroupByScanNumber Group	by
sample
(interleaved)

highTicks uInt32	[] The	number	of	timebase	ticks	the	pulse	is	high.

lowTicks uInt32	[] The	number	of	timebase	ticks	the	pulse	is	low.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

numSampsPerChanWritten int32	* The	actual	number	of	samples	per	channel	successfully	written	to	the	buffer.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteCtrTicksScalar
int32	DAQmxWriteCtrTicksScalar	(TaskHandle	taskHandle,	bool32	autoStart,

float64	timeout,	uInt32	highTicks,	uInt32	lowTicks,	bool32
*reserved);



Purpose
Writes	a	new	pulse	high	tick	count	and	low	tick	count	to	a	continuous	counter
output	task	that	contains	a	single	channel.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	the	sample	to.

autoStart bool32 Specifies	whether	or	not	this	function	automatically	starts	the	task	if	you	do	not	start
it.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	this	function	to	write	all	the	samples.	The
default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout	elapses.
A	value	of	0	indicates	to	try	once	to	write	the	submitted	samples.	If	this	function
successfully	writes	all	submitted	samples,	it	does	not	return	an	error.	Otherwise,	the
function	returns	a	timeout	error	and	returns	the	number	of	samples	actually	written.

highTicks uInt32 The	number	of	timebase	ticks	the	pulse	is	high.

lowTicks uInt32 The	number	of	timebase	ticks	the	pulse	is	low.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteCtrTime
int32	DAQmxWriteCtrTime	(TaskHandle	taskHandle,	int32	numSampsPerChan,

bool32	autoStart,	float64	timeout,	bool32	dataLayout,	float64
highTime[],	float64	lowTime[],	int32	*numSampsPerChanWritten,
bool32	*reserved);



Purpose
Writes	a	new	pulse	high	time	and	low	time	to	each	channel	in	a	continuous
counter	output	task	that	contains	one	or	more	channels.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	samples	to.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	write.	You	must	pass	in	a	value	of	0	or
more	in	order	for	the	sample	to	write.	If	you	pass	a	negative	number,	this	function
returns	an	error.

autoStart bool32 Specifies	whether	or	not	this	function	automatically	starts	the	task	if	you	do	not
start	it.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	this	function	to	write	all	the	samples.
The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout
elapses.
A	value	of	0	indicates	to	try	once	to	write	the	submitted	samples.	If	this	function
successfully	writes	all	submitted	samples,	it	does	not	return	an	error.	Otherwise,
the	function	returns	a	timeout	error	and	returns	the	number	of	samples	actually
written.

dataLayout bool32 Specifies	how	the	samples	are	arranged,	either	interleaved	or	noninterleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(noninterleaved)

DAQmx_Val_GroupByScanNumber Group	by
sample
(interleaved)

highTime float64	[] The	amount	of	time	the	pulse	is	high.

lowTime float64	[] The	amount	of	time	the	pulse	is	low.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

numSampsPerChanWritten int32	* The	actual	number	of	samples	per	channel	successfully	written	to	the	buffer.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteCtrTimeScalar
int32	DAQmxWriteCtrTimeScalar	(TaskHandle	taskHandle,	bool32	autoStart,

float64	timeout,	float64	highTime,	float64	lowTime,	bool32
*reserved);



Purpose
Writes	a	new	pulse	high	time	and	low	time	to	a	continuous	counter	output	task
that	contains	a	single	channel.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	the	sample	to.

autoStart bool32 Specifies	whether	or	not	this	function	automatically	starts	the	task	if	you	do	not	start
it.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	this	function	to	write	all	the	samples.	The
default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout	elapses.
A	value	of	0	indicates	to	try	once	to	write	the	submitted	samples.	If	this	function
successfully	writes	all	submitted	samples,	it	does	not	return	an	error.	Otherwise,	the
function	returns	a	timeout	error	and	returns	the	number	of	samples	actually	written.

highTime float64 The	amount	of	time	the	pulse	is	high.

lowTime float64 The	amount	of	time	the	pulse	is	low.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteDigitalLines
int32	DAQmxWriteDigitalLines	(TaskHandle	taskHandle,	int32

numSampsPerChan,	bool32	autoStart,	float64	timeout,	bool32
dataLayout,	uInt8	writeArray[],	int32	*sampsPerChanWritten,	bool32
*reserved);



Purpose
Writes	multiple	samples	to	each	digital	line	in	a	task.	When	you	create	your
write	array,	each	sample	per	channel	must	contain	the	number	of	bytes	returned
by	the	DAQmx_Read_DigitalLines_BytesPerChan	property.

Note	If	you	configured	timing	for	your	task,	your	write	is	considered	a	buffered	write.	Buffered	writes
require	a	minimum	buffer	size	of	2	samples.	If	you	do	not	configure	the	buffer	size	using
DAQmxCfgOutputBuffer,	NI-DAQmx	automatically	configures	the	buffer	when	you	configure	sample
timing.	If	you	attempt	to	write	one	sample	for	a	buffered	write	without	configuring	the	buffer,	you	will
receive	an	error.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	samples	to.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	write.	You	must	pass	in	a	value	of	0	or
more	in	order	for	the	sample	to	write.	If	you	pass	a	negative	number,	this	function
returns	an	error.

autoStart bool32 Specifies	whether	or	not	this	function	automatically	starts	the	task	if	you	do	not
start	it.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	this	function	to	write	all	the	samples.
The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout
elapses.
A	value	of	0	indicates	to	try	once	to	write	the	submitted	samples.	If	this	function
successfully	writes	all	submitted	samples,	it	does	not	return	an	error.	Otherwise,
the	function	returns	a	timeout	error	and	returns	the	number	of	samples	actually
written.

dataLayout bool32 Specifies	how	the	samples	are	arranged,	either	interleaved	or	noninterleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(noninterleaved)

DAQmx_Val_GroupByScanNumber Group	by
sample
(interleaved)

writeArray uInt8	[] The	samples	to	write	to	the	task.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

sampsPerChanWritten int32	* The	actual	number	of	samples	per	channel	successfully	written	to	the	buffer.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteDigitalScalarU32
int32	DAQmxWriteDigitalScalarU32	(TaskHandle	taskHandle,	bool32	autoStart,

float64	timeout,	uInt32	value,	bool32	*reserved);



Purpose
Writes	a	single	32-bit	unsigned	integer	sample	to	a	task	that	contains	a	single	digital	output
channel.	Use	this	format	for	devices	with	up	to	32	lines	per	port.

javascript:launchSharedHelp('mxcncpts.chm::/digitaldata.html');
javascript:launchSharedHelp('mxcncpts.chm::/virtChanTypes.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	the	sample	to.

autoStart bool32 Specifies	whether	or	not	this	function	automatically	starts	the	task	if	you	do	not	start
it.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	this	function	to	write	the	value.	The
default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout	elapses.
A	value	of	0	indicates	to	try	once	to	write	the	value.	If	this	function	successfully
writes	the	value,	it	does	not	return	an	error.	Otherwise,	the	function	returns	a	timeout
error.

value uInt32 A	32-bit	integer	sample	to	write	to	the	task.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

javascript:launchSharedHelp('mxcncpts.chm::/digitaldata.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteDigitalU8
int32	DAQmxWriteDigitalU8	(TaskHandle	taskHandle,	int32

numSampsPerChan,	bool32	autoStart,	float64	timeout,	bool32
dataLayout,	uInt8	writeArray[],	int32	*sampsPerChanWritten,	bool32
*reserved);



Purpose
Writes	multiple	8-bit	unsigned	integer	samples	to	a	task	that	contains	one	or	more	digital
output	channels.	Use	this	format	for	devices	with	up	to	8	lines	per	port.

Note	If	you	configured	timing	for	your	task,	your	write	is	considered	a	buffered	write.	Buffered	writes
require	a	minimum	buffer	size	of	two	samples.	If	you	do	not	configure	the	buffer	size	using
DAQmxCfgOutputBuffer,	NI-DAQmx	automatically	configures	the	buffer	when	you	configure	sample
timing.	If	you	attempt	to	write	one	sample	for	a	buffered	write	without	configuring	the	buffer,	you	will
receive	an	error.

javascript:launchSharedHelp('mxcncpts.chm::/digitaldata.html');
javascript:launchSharedHelp('mxcncpts.chm::/virtChanTypes.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	samples	to.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	write.	You	must	pass	in	a	value	of	0	or
more	in	order	for	the	sample	to	write.	If	you	pass	a	negative	number,	this	function
returns	an	error.

autoStart bool32 Specifies	whether	or	not	this	function	automatically	starts	the	task	if	you	do	not
start	it.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	this	function	to	write	all	the	samples.
The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout
elapses.
A	value	of	0	indicates	to	try	once	to	write	the	submitted	samples.	If	this	function
successfully	writes	all	submitted	samples,	it	does	not	return	an	error.	Otherwise,
the	function	returns	a	timeout	error	and	returns	the	number	of	samples	actually
written.

dataLayout bool32 Specifies	how	the	samples	are	arranged,	either	interleaved	or	noninterleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(noninterleaved)

DAQmx_Val_GroupByScanNumber Group	by
sample
(interleaved)

writeArray uInt8	[] The	array	of	8-bit	integer	samples	to	write	to	the	task.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

sampsPerChanWritten int32	* The	actual	number	of	samples	per	channel	successfully	written	to	the	buffer.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteDigitalU16
int32	DAQmxWriteDigitalU16	(TaskHandle	taskHandle,	int32

numSampsPerChan,	bool32	autoStart,	float64	timeout,	bool32
dataLayout,	uInt16	writeArray[],	int32	*sampsPerChanWritten,
bool32	*reserved);



Purpose
Writes	multiple	16-bit	unsigned	integer	samples	to	a	task	that	contains	one	or	more	digital
output	channels.	Use	this	format	for	devices	with	up	to	16	lines	per	port.

Note	If	you	configured	timing	for	your	task,	your	write	is	considered	a	buffered	write.	Buffered	writes
require	a	minimum	buffer	size	of	two	samples.	If	you	do	not	configure	the	buffer	size	using
DAQmxCfgOutputBuffer,	NI-DAQmx	automatically	configures	the	buffer	when	you	configure	sample
timing.	If	you	attempt	to	write	one	sample	for	a	buffered	write	without	configuring	the	buffer,	you	will
receive	an	error.

javascript:launchSharedHelp('mxcncpts.chm::/digitaldata.html');
javascript:launchSharedHelp('mxcncpts.chm::/virtChanTypes.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	samples	to.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	write.	You	must	pass	in	a	value	of	0	or
more	in	order	for	the	sample	to	write.	If	you	pass	a	negative	number,	this	function
returns	an	error.

autoStart bool32 Specifies	whether	or	not	this	function	automatically	starts	the	task	if	you	do	not
start	it.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	this	function	to	write	all	the	samples.
The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout
elapses.
A	value	of	0	indicates	to	try	once	to	write	the	submitted	samples.	If	this	function
successfully	writes	all	submitted	samples,	it	does	not	return	an	error.	Otherwise,
the	function	returns	a	timeout	error	and	returns	the	number	of	samples	actually
written.

dataLayout bool32 Specifies	how	the	samples	are	arranged,	either	interleaved	or	noninterleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(noninterleaved)

DAQmx_Val_GroupByScanNumber Group	by
sample
(interleaved)

writeArray uInt16	[] The	array	of	16-bit	integer	samples	to	write	to	the	task.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

sampsPerChanWritten int32	* The	actual	number	of	samples	per	channel	successfully	written	to	the	buffer.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteDigitalU32
int32	DAQmxWriteDigitalU32	(TaskHandle	taskHandle,	int32

numSampsPerChan,	bool32	autoStart,	float64	timeout,	bool32
dataLayout,	uInt32	writeArray[],	int32	*sampsPerChanWritten,
bool32	*reserved);



Purpose
Writes	multiple	32-bit	unsigned	integer	samples	to	a	task	that	contains	one	or	more	digital
output	channels.	Use	this	format	for	devices	with	up	to	32	lines	per	port.

Note	If	you	configured	timing	for	your	task,	your	write	is	considered	a	buffered	write.	Buffered	writes
require	a	minimum	buffer	size	of	two	samples.	If	you	do	not	configure	the	buffer	size	using
DAQmxCfgOutputBuffer,	NI-DAQmx	automatically	configures	the	buffer	when	you	configure	sample
timing.	If	you	attempt	to	write	one	sample	for	a	buffered	write	without	configuring	the	buffer,	you	will
receive	an	error.

javascript:launchSharedHelp('mxcncpts.chm::/digitaldata.html');
javascript:launchSharedHelp('mxcncpts.chm::/virtChanTypes.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	samples	to.

numSampsPerChan int32 The	number	of	samples,	per	channel,	to	write.	You	must	pass	in	a	value	of	0	or
more	in	order	for	the	sample	to	write.	If	you	pass	a	negative	number,	this	function
returns	an	error.

autoStart bool32 Specifies	whether	or	not	this	function	automatically	starts	the	task	if	you	do	not
start	it.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	this	function	to	write	all	the	samples.
The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,	pass	-1
(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if	the	timeout
elapses.
A	value	of	0	indicates	to	try	once	to	write	the	submitted	samples.	If	this	function
successfully	writes	all	submitted	samples,	it	does	not	return	an	error.	Otherwise,
the	function	returns	a	timeout	error	and	returns	the	number	of	samples	actually
written.

dataLayout bool32 Specifies	how	the	samples	are	arranged,	either	interleaved	or	noninterleaved.

Value Description
DAQmx_Val_GroupByChannel Group	by

channel
(noninterleaved)

DAQmx_Val_GroupByScanNumber Group	by
sample
(interleaved)

writeArray uInt32	[] The	array	of	32-bit	integer	samples	to	write	to	the	task.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

sampsPerChanWritten int32	* The	actual	number	of	samples	per	channel	successfully	written	to	the	buffer.

javascript:launchSharedHelp('mxcncpts.chm::/interleaving.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteRaw
int32	DAQmxWriteRaw	(TaskHandle	taskHandle,	int32	numSamps,	bool32

autoStart,	float64	timeout,	void	*writeArray,	int32
*sampsPerChanWritten,	bool32	*reserved);



Purpose
Writes	raw	samples	to	a	task.	There	is	no	scaling,	parsing,	or	separation	of	the
samples.	Refer	to	the	specifications	for	your	instrument	to	determine	the	format
of	the	incoming	samples.

Note	If	you	configured	timing	for	your	task,	your	write	is	considered	a	buffered	write.	Buffered	writes
require	a	minimum	buffer	size	of	2	samples.	If	you	do	not	configure	the	buffer	size	using
DAQmxCfgOutputBuffer,	NI-DAQmx	automatically	configures	the	buffer	when	you	configure	sample
timing.	If	you	attempt	to	write	one	sample	for	a	buffered	write	without	configuring	the	buffer,	you	will
receive	an	error.

javascript:launchSharedHelp('mxcncpts.chm::/rawdata.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	write	samples	to.

numSamps int32 The	number	of	samples	per	channel	to	write.	You	must	pass	in	a	value	of
0	or	more	in	order	for	the	sample	to	write.	If	you	pass	a	negative	number,
you	will	receive	an	error.

autoStart bool32 Specifies	whether	or	not	this	function	automatically	starts	the	task	if	you
do	not	start	it.

timeout float64 The	amount	of	time,	in	seconds,	to	wait	for	this	function	to	write	all	the
samples.	The	default	value	is	10.0	seconds.	To	specify	an	infinite	wait,
pass	-1	(DAQmx_Val_WaitInfinitely).	This	function	returns	an	error	if
the	timeout	elapses.
A	value	of	0	indicates	to	try	once	to	write	the	submitted	samples.	If	this
function	successfully	writes	all	submitted	samples,	it	does	not	return	an
error.	Otherwise,	the	function	returns	a	timeout	error	and	returns	the
number	of	samples	actually	written.

writeArray void	* The	raw	samples	to	write	to	the	task.

reserved bool32	* Reserved	for	future	use.	Pass	NULL	to	this	parameter.

Output

Name Type Description

sampsPerChanWritten int32	* The	actual	number	of	samples	per	channel	successfully	written	to	the
buffer.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxExportSignal
int32	DAQmxExportSignal	(TaskHandle	taskHandle,	int32	signalID,	const	char

outputTerminal[]);



Purpose
Routes	a	control	signal	to	the	specified	terminal.	The	output	terminal	can	reside	on	the
device	that	generates	the	control	signal	or	on	a	different	device.	Use	this	function
to	share	clocks	and	triggers	between	multiple	tasks	and	devices.	The	routes
created	by	this	function	are	task-based	routes.

javascript:launchSharedHelp('mxcncpts.chm::/timeTrig.html');
javascript:launchSharedHelp('mxcncpts.chm::/termNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/taskBasedRouting.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

signalID int32 The	name	of	the	trigger,	clock,	or	event	to	export.

Value Description
DAQmx_Val_AIConvertClock Clock	that

causes	an
analog-to-
digital
conversion
on	an	E
Series	or	M
Series
device.	One
conversion
corresponds
to	a	single
sample	from
one	channel.

DAQmx_Val_10MHzRefClock Output	of	an
oscillator
that	you	can
use	to
synchronize
multiple
devices.

DAQmx_Val_20MHzTimebaseClock Output	of	an
oscillator
that	is	the
onboard
source	of	the
Master
Timebase.
Other
timebases



are	derived
from	this
clock.

DAQmx_Val_SampleClock Clock	the
device	uses
to	time	each
sample.

DAQmx_Val_AdvanceTrigger Trigger	that
moves	a
switch	to	the
next	entry	in
a	scan	list.

DAQmx_Val_ReferenceTrigger Trigger	that
establishes
the	reference
point
between
pretrigger
and
posttrigger
samples.

DAQmx_Val_StartTrigger Trigger	that
begins	a
measurement
or
generation.

DAQmx_Val_AdvCmpltEvent Signal	that	a
switch
product
generates
after	it	both
executes	the
command(s)
in	a	scan	list
entry	and
waits	for	the
settling	time



to	elapse.
DAQmx_Val_AIHoldCmpltEvent Signal	that

an	E	Series
or	M	Series
device
generates
when	the
device
latches
analog	input
data	(the
ADC	enters
"hold"
mode)	and	it
is	safe	for
any	external
switching
hardware	to
remove	the
signal	and
replace	it
with	the	next
signal.	This
event	does
not	indicate
the
completion
of	the	actual
analog-to-
digital
conversion.

DAQmx_Val_CounterOutputEvent Signal	that	a
counter
generates.
Each	time
the	counter
reaches
terminal



count,	this
signal
toggles	or
pulses.

DAQmx_Val_ChangeDetectionEvent Signal	that	a
static	DIO
device
generates
when	the
device
detects	a
rising	or
falling	edge
on	any	of	the
lines	or	ports
you	selected
when	you
configured
change
detection
timing.

DAQmx_Val_WDTExpiredEvent Signal	that	a
static	DIO
device
generates
when	the
watchdog
timer
expires.

outputTerminal const	char	[] The	destination	terminal	of	the	exported	signal.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCalculateReversePolyCoeff
int32	DAQmxCalculateReversePolyCoeff	(float64	forwardCoeffs[],	uInt32

numForwardCoeffsIn,	float64	minValX,	float64	maxValX,	int32
numPointsToCompute,	int32	reversePolyOrder,	float64
reverseCoeffs[]);



Purpose
Computes	a	set	of	coefficients	for	a	polynomial	that	approximates	the	inverse	of
the	polynomial	with	the	coefficients	you	specify	with	forwardCoeffs.	The
function	generates	a	table	of	x	versus	y	values	over	the	range	of	x.	The	function
then	finds	a	polynomial	fit,	using	the	least	squares	method	to	compute	a
polynomial	that	computes	an	x	given	a	y.



Parameters
Input

Name Type Description

forwardCoeffs float64	[] The	array	of	the	forward	coefficients	for	the	polynomial	that	computes	y
given	a	value	of	x.	Each	element	of	the	array	corresponds	to	a	term	of	the
equation.	For	example,	if	index	3	of	the	array	is	9,	the	fourth	term	of	the
equation	is	9x3.

numForwardCoeffsIn uInt32 The	number	of	elements	in	forwardCoeff.

minValX float64 The	minimum	value	of	x	for	which	you	use	the	polynomial.	This	is	the
smallest	value	of	x	for	which	the	function	generates	a	y	value	in	the	table.

maxValX float64 The	maximum	value	of	x	for	which	you	use	the	polynomial.	This	is	the
largest	value	of	x	for	which	the	function	generates	a	y	value	in	the	table.

numPointsToCompute int32 The	number	of	points	in	the	table	of	x	versus	y	values.	The	function	spaces
the	values	evenly	between	minValX	and	maxValX.

reversePolyOrder int32 The	order	of	the	reverse	polynomial	to	compute.	For	example,	an	input	of	3
indicates	a	3rd	order	polynomial.	An	input	of	-1	indicates	to	compute	a
reverse	polynomial	of	the	same	order	as	the	forward	polynomial.

Output

reverseCoeffs float64	[] The	array	of	the	reverse	coefficients	of	the	polynomial.	Each	element	of	the
array	corresponds	to	a	term	of	the	equation.	For	example,	if	index	3	of	the
array	is	9,	the	fourth	term	of	the	equation	is	9y3.
reverseCoeffs	will	be	one	greater	than	what	you	passed	for
reversePolyOrder.	If	you	pass	-1	for	reversePolyOrder,	the	array	must	be
the	size	of	forwardCoeffs.	Otherwise,	the	behavior	is	undefined.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateLinScale
int32	DAQmxCreateLinScale	(const	char	name[],	float64	slope,	float64

yIntercept,	int32	preScaledUnits,	const	char	scaledUnits[]);



Purpose
Creates	and	configures	a	scale	that	uses	the	equation	y=mx+b,	where	x	is	the
prescaled	value	and	y	is	the	scaled	value.	The	equation	is	identical	for	input	and
output.	If	your	equation	is	in	the	form	x=my+b,	you	must	first	solve	for	y	in
terms	of	x.



Parameters
Input

Name Type Description

name const	char	[] Identifies	the	custom	scale	for	later	use,	such	as	when	you	create	channels.

slope float64 The	slope,	m,	in	the	equation.

yIntercept float64 The	y-intercept,	b,	in	the	equation.

preScaledUnits int32 The	units	of	the	values	to	scale.

Value Description
DAQmx_Val_Volts volts
DAQmx_Val_Amps amperes
DAQmx_Val_DegF degrees	Fahrenheit
DAQmx_Val_DegC degrees	Celsius
DAQmx_Val_DegR degrees	Rankine
DAQmx_Val_Kelvins kelvins
DAQmx_Val_Strain strain
DAQmx_Val_Ohms ohms
DAQmx_Val_Hz hertz
DAQmx_Val_Seconds seconds
DAQmx_Val_Meters meters
DAQmx_Val_Inches inches
DAQmx_Val_Degrees degrees
DAQmx_Val_Radians radians
DAQmx_Val_g G.	1	g	is	approximately

equal	to	9.81	m/s2.

DAQmx_Val_Pascals pascals
DAQmx_Val_FromTEDS Units	defined	by	TEDS

information	associated
with	the	channel.

scaledUnits const	char	[] The	units	you	want	to	use	for	the	scaled	value.	You	can	use	an	arbitrary	value.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateMapScale
int32	DAQmxCreateMapScale	(const	char	name[],	float64	prescaledMin,	float64

prescaledMax,	float64	scaledMin,	float64	scaledMax,	int32
preScaledUnits,	const	char	scaledUnits[]);



Purpose
Creates	and	configures	a	scale	that	scales	values	proportionally	from	a	range	of
prescaled	values	to	a	range	of	scaled	values.



Parameters
Input

Name Type Description

name const	char	[] Identifies	the	custom	scale	for	later	use,	such	as	when	you	create	channels.

prescaledMin float64 The	smallest	value	in	the	range	of	prescaled	values.	NI-DAQmx	maps	this	value
to	scaledMin.

prescaledMax float64 The	largest	value	in	the	range	of	prescaled	values.	NI-DAQmx	maps	this	value
to	scaledMax.

scaledMin float64 The	smallest	value	in	the	range	of	scaled	values.	NI-DAQmx	maps	this	value	to
prescaledMin.	Read	operations	clip	samples	that	are	smaller	than	this	value.
Write	operations	generate	errors	for	samples	that	are	smaller	than	this	value.

scaledMax float64 The	largest	value	in	the	range	of	scaled	values.	NI-DAQmx	maps	this	value	to
prescaledMax.	Read	operations	clip	samples	that	are	larger	than	this	value.
Write	operations	generate	errors	for	samples	that	are	larger	than	this	value.

preScaledUnits int32 The	units	of	the	values	to	scale.

Value Description
DAQmx_Val_Volts volts
DAQmx_Val_Amps amperes
DAQmx_Val_DegF degrees	Fahrenheit
DAQmx_Val_DegC degrees	Celsius
DAQmx_Val_DegR degrees	Rankine
DAQmx_Val_Kelvins kelvins
DAQmx_Val_Strain strain
DAQmx_Val_Ohms ohms
DAQmx_Val_Hz hertz
DAQmx_Val_Seconds seconds
DAQmx_Val_Meters meters
DAQmx_Val_Inches inches
DAQmx_Val_Degrees degrees
DAQmx_Val_Radians radians
DAQmx_Val_g G.	1	g	is	approximately

equal	to	9.81	m/s2.

DAQmx_Val_Pascals pascals



DAQmx_Val_FromTEDS Units	defined	by	TEDS
information	associated
with	the	channel.

scaledUnits const	char	[] The	units	you	want	to	use	for	the	scaled	value.	You	can	use	an	arbitrary	value.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreatePolynomialScale
int32	DAQmxCreatePolynomialScale	(const	char	name[],	float64

forwardCoeffs[],	uInt32	numForwardCoeffsIn,	float64
reverseCoeffs[],	uInt32	numReverseCoeffsIn,	int32	preScaledUnits,
const	char	scaledUnits[]);



Purpose
Creates	and	configures	a	scale	that	uses	an	nth	order	polynomial	equation.	NI-
DAQmx	requires	both	a	polynomial	to	convert	prescaled	values	to	scaled	values
(forward)	and	a	polynomial	to	convert	scaled	values	to	prescaled	values
(reverse).	If	you	know	only	one	set	of	coefficients,	use	DAQmxCalculateReversePolyCoeff	to
generate	the	other	set.



Parameters
Input

Name Type Description

name const	char	[] Identifies	the	custom	scale	for	later	use,	such	as	when	you	create
channels.

forwardCoeffs float64	[] An	array	of	coefficients	for	the	polynomial	that	converts	prescaled	values
to	scaled	values.	Each	element	of	the	array	corresponds	to	a	term	of	the
equation.	For	example,	if	index	3	of	the	array	is	9,	the	fourth	term	of	the
equation	is	9x3.

numForwardCoeffsIn uInt32 The	number	of	elements	in	forwardCoeff.

reverseCoeffs float64	[] An	array	of	coefficients	for	the	polynomial	that	converts	scaled	values	to
prescaled	values.	Each	element	of	the	array	corresponds	to	a	term	of	the
equation.	For	example,	if	index	3	of	the	array	is	9,	the	fourth	term	of	the
equation	is	9y3.

numReverseCoeffsIn uInt32 The	number	of	elements	in	reverseCoeff.

preScaledUnits int32 The	units	of	the	values	to	scale.

Value Description
DAQmx_Val_Volts volts
DAQmx_Val_Amps amperes
DAQmx_Val_DegF degrees

Fahrenheit
DAQmx_Val_DegC degrees	Celsius
DAQmx_Val_DegR degrees	Rankine
DAQmx_Val_Kelvins kelvins
DAQmx_Val_Strain strain
DAQmx_Val_Ohms ohms
DAQmx_Val_Hz hertz
DAQmx_Val_Seconds seconds
DAQmx_Val_Meters meters
DAQmx_Val_Inches inches
DAQmx_Val_Degrees degrees
DAQmx_Val_Radians radians
DAQmx_Val_g G.	1	g	is

approximately



equal	to	9.81	m/s2.

DAQmx_Val_Pascals pascals
DAQmx_Val_FromTEDS Units	defined	by

TEDS	information
associated	with
the	channel.

scaledUnits const	char	[] The	units	you	want	to	use	for	the	scaled	value.	You	can	use	an	arbitrary
value.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateTableScale
int32	DAQmxCreateTableScale	(const	char	name[],	float64	prescaledVals[],

uInt32	numPrescaledValsIn,	float64	scaledVals[],	uInt32
numScaledValsIn,	int32	preScaledUnits,	const	char	scaledUnits[]);



Purpose
Creates	and	configures	a	scale	that	maps	an	array	of	prescaled	values	to	an	array
of	corresponding	scaled	values.	NI-DAQmx	applies	linear	interpolation	to	values
that	fall	between	the	values	in	the	table.	Read	operations	clip	scaled	samples	that
are	outside	the	maximum	and	minimum	scaled	values	found	in	the	table.	Write
operations	generate	errors	for	samples	that	are	outside	the	minimum	and
maximum	scaled	values	found	in	the	table.



Parameters
Input

Name Type Description

name const	char	[] Identifies	the	custom	scale	for	later	use,	such	as	when	you	create	channels.

prescaledVals float64	[] An	array	of	prescaled	values.	These	values	map	directly	to	the	values	in
scaledVals.

numPrescaledValsIn uInt32 The	number	of	elements	in	prescaledVals.

scaledVals float64	[] An	array	of	scaled	values.	These	values	map	directly	to	the	values	in
prescaledVals.

numScaledValsIn uInt32 The	number	of	elements	in	scaledVals.

preScaledUnits int32 The	units	of	the	values	to	scale.

Value Description
DAQmx_Val_Volts volts
DAQmx_Val_Amps amperes
DAQmx_Val_DegF degrees	Fahrenheit
DAQmx_Val_DegC degrees	Celsius
DAQmx_Val_DegR degrees	Rankine
DAQmx_Val_Kelvins kelvins
DAQmx_Val_Strain strain
DAQmx_Val_Ohms ohms
DAQmx_Val_Hz hertz
DAQmx_Val_Seconds seconds
DAQmx_Val_Meters meters
DAQmx_Val_Inches inches
DAQmx_Val_Degrees degrees
DAQmx_Val_Radians radians
DAQmx_Val_g G.	1	g	is

approximately
equal	to	9.81	m/s2.

DAQmx_Val_Pascals pascals

DAQmx_Val_FromTEDS Units	defined	by



TEDS	information
associated	with	the
channel.

scaledUnits const	char	[] The	units	you	want	to	use	for	the	scaled	value.	You	can	use	an	arbitrary
value.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgInputBuffer
int32	DAQmxCfgInputBuffer	(TaskHandle	taskHandle,	uInt32

numSampsPerChan);



Purpose
Overrides	the	automatic	input	buffer	allocation	that	NI-DAQmx	performs.

javascript:launchSharedHelp('mxcncpts.chm::/bufferSize.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

numSampsPerChan uInt32 The	number	of	samples	the	buffer	can	hold	for	each	channel	in	the	task.
Zero	indicates	no	buffer	should	be	allocated.	Use	a	buffer	size	of	0	to
perform	a	hardware-timed	operation	without	using	a	buffer.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCfgOutputBuffer
int32	DAQmxCfgOutputBuffer	(TaskHandle	taskHandle,	uInt32

numSampsPerChan);



Purpose
Overrides	the	automatic	output	buffer	allocation	that	NI-DAQmx	performs.

javascript:launchSharedHelp('mxcncpts.chm::/bufferSize.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

numSampsPerChan uInt32 The	number	of	samples	the	buffer	can	hold	for	each	channel	in	the	task.
Zero	indicates	no	buffer	should	be	allocated.	Use	a	buffer	size	of	0	to
perform	a	hardware-timed	operation	without	using	a	buffer.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWaitForNextSampleClock
int32	DAQmxWaitForNextSampleClock	(TaskHandle	taskHandle,	float64

timeout,	bool32	*isLate);



Purpose
Waits	until	the	next	pulse	of	the	Sample	Clock	occurs.	If	an	extra	Sample	Clock	pulse
occurs	between	calls	to	this	function,	the	second	call	returns	an	error	or	warning
and	waits	for	the	next	Sample	Clock	pulse.	Use	the	get/set/reset	functions	for	the
RealTimeConvLateErrorsToWarnings	property	to	specify	whether	this	function	returns	errors	or
warnings.
Use	this	function	to	ensure	I/O	cycles	complete	within	Sample	Clock	periods.
National	Instruments	recommends	you	use	this	function	for	certain	applica	tions	only.
Use	the	DAQmx	Real-Time	properties	to	configure	error	reporting	and	waiting	options.

javascript:launchSharedHelp('mxcncpts.chm::/sampClock.html');
mxcprop.chm::/Attr22EE.html
javascript:launchSharedHelp('mxcncpts.chm::/iocycles.html');
javascript:launchSharedHelp('mxcncpts.chm::/readwritelate.html');
mxcprop.chm::/AttributeClassReal- Time.html


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

timeout float64 The	maximum	amount	of	time,	in	seconds,	to	wait	for	the	next	Sample	Clock	pulse.
If	the	time	elapses,	this	VI	returns	an	error.	The	default	timeout	is	10	seconds.	If	you
set	timeout	to	-1,	this	VI	waits	indefinitely.

Output

Name Type Description

isLate int32 A	value	of	0	indicates	the	read	or	write	function	executed	in	real	time.	A	value	of	1
indicates	the	function	did	not	execute	in	real	time.



Return	Value
Name Type Description

isLate int32 Indicates	if	this	function	detected	an	extra	Sample	Clock	pulse	after	the	specified	number	of
warmup	iterations	execute.	If	you	are	using	the	C	API,	use	DAQmxSetRealTimeNumOfWarmupIters	to
specify	the	number	of	warmup	iterations.	If	you	are	using	the	CVI	API,	use
DAQmxSetRealTimeAttribute	to	specify	the	number	of	iterations.	This	output	is	always	FALSE
until	that	number	of	loop	iterations	execute.

mxcprop.chm::/Attr22ED.html


DAQmxWaitUntilTaskDone
int32	DAQmxWaitUntilTaskDone	(TaskHandle	taskHandle,	float64

timeToWait);



Purpose
Waits	for	the	measurement	or	generation	to	complete.	Use	this	function	to	ensure	that
the	specified	operation	is	complete	before	you	stop	the	task.

javascript:launchSharedHelp('mxcncpts.chm::/waitUntilDone.html');


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

timeToWait float64 The	maximum	amount	of	time,	in	seconds,	to	wait	for	the	measurement	or
generation	to	complete.	The	function	returns	an	error	if	the	time	elapses	before	the
measurement	or	generation	is	complete.
A	value	of	-1	(DAQmx_Val_WaitInfinitely)	means	to	wait	indefinitely.
If	you	set	timeToWait	to	0,	the	function	checks	once	and	returns	an	error	if	the
measurement	or	generation	is	not	done.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



Obsolete
This	function	is	obsolete	and	now	always	returns	zero.	The	information
below	no	longer	applies	but	is	provided	for	reference.



DAQmxIsReadOrWriteLate
bool32	DAQmxIsReadOrWriteLate	(int32	errorCode);



Purpose
Returns	TRUE	if	a	DAQmx	Read	function	or	DAQmx	Write	function	did	not
execute	in	real	time.



Parameters
Input

Name Type Description

errorCode int32 An	error	code	or	warning	returned	by	one	of	the	NI-DAQmx	Library	Read	or	Write
functions.



Return	Value
Name Type Description

isLate int32 A	value	of	0	indicates	the	read	or	write	function	executed	in	real	time.	A	value	of	1	indicates	the
function	did	not	execute	in	real	time.



DAQmxSwitchCloseRelays
int32	DAQmxSwitchCloseRelays	(const	char	relays[],	bool32	waitForSettling);



Purpose
Closes	the	specified	relays.	If	you	set	waitForSettling	to	TRUE,	this	function
waits	only	after	closing	all	relays.	If	you	want	to	wait	for	settling	after	closing
each	relay,	use	this	function	multiple	times	to	close	each	relay	separately.
When	you	operate	relays	directly,	you	circumvent	the	protection	that	channel
usage	types	offer.	Avoid	using	this	function	when	you	use	the	DAQmxSwitchConnect
function	or	the	DAQmxSwitchDisconnect	function.	This	function	does	not	pass	the	changes
you	make	to	those	functions.



Parameters
Input

Name Type Description

relays const	char	[] A	set	of	relays	to	close.

waitForSettling bool32 If	TRUE,	this	function	waits	for	the	switches	to	settle	before	returning.	If
FALSE,	the	function	returns	immediately	after	the	operation.

javascript:launchSharedHelp('mxcncpts.chm::/switchChanStrings.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSwitchConnect
int32	DAQmxSwitchConnect	(const	char	switchChannel1[],	const	char

switchChannel2[],	bool32	waitForSettling);



Purpose
Makes	a	connection	between	two	switch	channels.	When	using	this	function,
specify	only	the	two	connection	endpoints	using	switchChannel1	and
switchChannel2.	The	function	then	attempts	to	find	an	available	path	between
the	two	channels.



Parameters
Input

Name Type Description

switchChannel1 const	char	[] The	first	channel	to	connect.

switchChannel2 const	char	[] The	second	channel	to	connect.

waitForSettling bool32 If	TRUE,	this	function	waits	for	the	switches	to	settle	before	returning.	If
FALSE,	the	function	returns	immediately	after	the	operation.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSwitchConnectMulti
int32	DAQmxSwitchConnectMulti	(const	char	connectionList[],	bool32

waitForSettling);



Purpose
Makes	one	or	more	connections	specified	by	a	connection	list.	You	can	specify	only	the
two	endpoints,	or	you	can	specify	the	explicit	path	between	two	endpoints.	This
function	can	make	connections	on	multiple	devices,	but	each	connection	must
reside	on	a	single	device.	In	the	event	of	an	error,	connecting	stops	at	the	point	in
the	list	where	the	error	occurred.	If	you	set	waitForSettling	to	TRUE,	this
function	returns	only	after	making	all	connections.	If	you	want	to	wait	for
settling	between	connections,	use	this	function	multiple	times	to	make
connections	separately.

javascript:launchSharedHelp('mxcncpts.chm::/ConDisconSyntax.html');


Parameters
Input

Name Type Description

connectionList const	char	[] A	list	of	connections,	using	a	special	syntax,	to	make	between	switch	channels.

waitForSettling bool32 If	TRUE,	this	function	waits	for	the	switches	to	settle	before	returning.	If
FALSE,	the	function	returns	immediately	after	the	operation.

javascript:launchSharedHelp('mxcncpts.chm::/ConDisconSyntax.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSwitchCreateScanList
int32	DAQmxSwitchCreateScanList	(const	char	scanList[],	TaskHandle

*taskHandle);



Purpose
Creates	a	new	switch	scanning	task	that	uses	the	specified	scan	list	and	applies	it
to	the	specified	task.



Parameters
Input

Name Type Description

scanList const	char	[] Uses	a	special	syntax	to	specify	the	sequence	of	connections	and	disconnections	for
the	task.

Output

Name Type Description

taskHandle TaskHandle	* The	task	created	by	this	function.

javascript:launchSharedHelp('mxcncpts.chm::/scanSyntax.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSwitchDisconnect
int32	DAQmxSwitchDisconnect	(const	char	switchChannel1[],	const	char

switchChannel2[],	bool32	waitForSettling);



Purpose
Disconnects	two	switch	channels.	When	using	this	function,	specify	only	the	two
connection	endpoints	switchChannel1	and	switchChannel2.



Parameters
Input

Name Type Description

switchChannel1 const	char	[] The	first	channel	to	disconnect.

switchChannel2 const	char	[] The	second	channel	to	disconnect.

waitForSettling bool32 If	TRUE,	this	function	waits	for	the	switches	to	settle	before	returning.	If
FALSE,	the	function	returns	immediately	after	the	operation.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSwitchDisconnectAll
int32	DAQmxSwitchDisconnectAll	(const	char	deviceName[],	bool32

waitForSettling);



Purpose
Terminates	all	active	connections	on	the	device,	which	places	the	relays	into	the
topology	reset	state.	You	can	use	this	function	to	terminate	connections	made	by
DAQmxSwitchConnect,	DAQmxSwitchOpenRelays,	or	DAQmxSwitchCloseRelays.	This	function	does	not	alter
the	settling	time	or	channel	usage	settings.	To	reset	those	settings,	use
DAQmxResetDevice	or	DAQmxSwitchSetTopologyAndReset.
If	you	set	waitForSettling	to	TRUE,	this	function	returns	only	after	terminating
all	connections.	If	you	want	to	wait	for	settling	between	disconnections,	use	the
DAQmxSwitchDisconnect	function	multiple	times	to	terminate	connections	separately.



Parameters
Input

Name Type Description

deviceName const	char	[] The	name	of	the	device,	as	configured	in	Measurement	&	Automation	Explorer
(MAX),	to	which	this	operation	applies.

waitForSettling bool32 If	TRUE,	this	function	waits	for	the	switches	to	settle	before	returning.	If
FALSE,	the	function	returns	immediately	after	the	operation.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSwitchDisconnectMulti
int32	DAQmxSwitchDisconnectMulti	(const	char	connectionList[],	bool32

waitForSettling);



Purpose
Terminates	one	or	more	connections	specified	by	a	connection	list.	This	function	can
terminate	connections	on	multiple	devices.	In	the	event	of	an	error,	the	function
stops	at	the	point	in	the	list	where	the	error	occurred.	If	you	set	waitForSettling
to	TRUE,	this	function	returns	only	after	terminating	all	connections.	If	you
want	to	wait	for	settling	between	disconnections,	use	this	function	multiple	times
to	terminate	connections	separately.

javascript:launchSharedHelp('mxcncpts.chm::/ConDisconSyntax.html');


Parameters
Input

Name Type Description

connectionList const	char	[] Uses	a	special	syntax	to	specify	the	list	of	switch	connections	to	terminate.

waitForSettling bool32 If	TRUE,	this	function	waits	for	the	switches	to	settle	before	returning.	If
FALSE,	the	function	returns	immediately	after	the	operation.

javascript:launchSharedHelp('mxcncpts.chm::/ConDisconSyntax.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSwitchFindPath
int32	DAQmxSwitchFindPath	(const	char	switchChannel1[],	const	char

switchChannel2[],	char	path[],	uInt32	pathBufferSize,	int32
*pathStatus);



Purpose
Returns	information	about	the	path	between	switchChannel1	and
switchChannel2.	If	the	channels	are	connected,	this	function	returns	the	path	by
which	they	are	connected.	If	the	channels	are	not	connected,	the	function	returns
a	path	by	which	they	could	be	connected,	if	one	is	available.



Parameters
Input

Name Type Description

switchChannel1 const	char	[] The	first	channel	to	connect.

switchChannel2 const	char	[] The	second	channel	to	connect.

pathBufferSize uInt32 The	size	of	path.	If	you	pass	0,	this	function	returns	the	size	of	the	buffer	needed	to	allocate.

Output

Name Type Description

path char	[] The	existing	path	or	an	available	path	between	switchChannel1	and	switchChannel2
the	same	syntax	as	a	connection	or	disconnection	list.	If	you	pass	NULL,	this	function	returns	the	size
of	the	buffer	needed	to	allocate.

pathStatus int32	* The	status	of	the	requested	path.	The	following	values	can	be	returned:

Value
DAQmx_Val_PathStatus_Available

DAQmx_Val_PathStatus_AlreadyExists

DAQmx_Val_PathStatus_Unsupported

javascript:launchSharedHelp('mxcncpts.chm::/ConDisconSyntax.html');


DAQmx_Val_PathStatus_ChannelInUse

DAQmx_Val_PathStatus_SourceChannelConflict

DAQmx_Val_PathStatus_ChannelReservedForRouting



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	negative	value	indicates	an	error.
For	this	function,	if	you	pass	NULL	for	the	buffer	or	0	for	the	buffer	size,	this	function	returns	the
number	of	bytes	needed	to	allocate.



DAQmxSwitchGetMultiRelayCount
int32	DAQmxSwitchGetMultiRelayCount	(const	char	relayList[],	uInt32

count[],	uInt32	countArraySize,	uInt32	*numRelayCountsRead);



Purpose
Returns	the	number	of	times	a	set	of	relays	have	been	actuated.	Use	this	function
to	track	relay	lifetime	and	usage.	You	must	set	the	waitForSettling	parameter	of
Switch	functions	to	TRUE	to	obtain	an	accurate	relay	count.



Parameters
Input

Name Type Description

relayList const	char	[] The	set	of	relays	you	want	to	query.

countArraySize uInt32 The	size	of	count.	If	you	pass	0,	this	function	returns	the	number	of
samples	needed	to	allocate.

Output

Name Type Description

count uInt32	[] Number	of	times	each	specified	relay	has	been	actuated.	The	order	of
this	array	depends	on	the	order	of	relayList.	If	you	pass	NULL,	this
function	returns	the	number	of	samples	needed	to	allocate.

numRelayCountsRead uInt32	* The	number	of	relay	counts	read	by	the	function.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	negative	value	indicates	an	error.
For	this	function,	if	you	pass	NULL	for	the	buffer	or	0	for	the	buffer	size,	this	function	returns	the
number	of	samples	needed	to	allocate.
For	example,
malloc	(n*sizeof(uInt32));



DAQmxSwitchGetMultiRelayPos
int32	DAQmxSwitchGetMultiRelayPos	(const	char	relayList[],	uInt32

relayPos[],	uInt32	relayPosArraySize,	uInt32	*numRelayPosRead);



Purpose
Returns	the	current	position	of	a	set	of	relays.



Parameters
Input

Name Type Description

relayList const	char	[] The	set	of	relays	you	want	to	query.

relayPosArraySize uInt32 The	size	of	relayPos.	If	you	pass	0,	this	function	returns	the	number	of
samples	needed	to	allocate.

Output

Name Type Description

relayPos uInt32	[] The	position	of	each	specified	relay.	The	order	of	this	array	corresponds	to
the	order	of	relayList.	If	you	pass	NULL,	this	function	returns	the	number
of	samples	needed	to	allocate.

Value Description
DAQmx_Val_Open Relay	is	open.
DAQmx_Val_Closed Relay	is	closed.

numRelayPosRead uInt32	* The	number	of	relay	positions	read	by	the	function.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	negative	value	indicates	an	error.
For	this	function,	if	you	pass	NULL	for	the	buffer	or	0	for	the	buffer	size,	this	function	returns	the
number	of	samples	needed	to	allocate.
For	example,
malloc	(n*sizeof(uInt32));



DAQmxSwitchGetSingleRelayCount
int32	DAQmxSwitchGetSingleRelayCount	(const	char	relayName[],	uInt32

*count);



Purpose
Returns	the	number	of	times	a	single	relay	has	been	actuated.	Use	this	function
to	track	relay	lifetime	and	usage.	You	must	set	the	waitForSettling	parameter	of
Switch	functions	to	TRUE	to	obtain	an	accurate	relay	count.



Parameters
Input

Name Type Description

relayName const	char	[] The	relay	you	want	to	query.

Output

Name Type Description

count uInt32	* The	number	of	times	the	relay	has	been	actuated.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSwitchGetSingleRelayPos
int32	DAQmxSwitchGetSingleRelayPos	(const	char	relayName[],	uInt32

*relayPos);



Purpose
Returns	the	current	position	of	a	single	relay.



Parameters
Input

Name Type Description

relayName const	char	[] The	relay	you	want	to	query.

Output

Name Type Description

relayPos uInt32	* The	position	of	the	relay.

Value Description
DAQmx_Val_Open Relay	is	open.
DAQmx_Val_Closed Relay	is	closed.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSwitchOpenRelays
int32	DAQmxSwitchOpenRelays	(const	char	relays[],	bool32	waitForSettling);



Purpose
Opens	the	specified	relays.	If	you	set	waitForSettling	to	TRUE,	this	function
waits	only	after	opening	all	relays.	If	you	want	to	wait	for	settling	after	opening
each	relay,	use	this	function	multiple	times	to	open	each	relay	separately.
When	you	operate	relays	directly,	you	circumvent	the	protection	offered	channel
usage	types.	Avoid	using	this	function	when	you	use	DAQmxSwitchConnect	and	DAQmxSwitchDisconnect.
This	function	does	not	pass	the	changes	you	make	to	those	functions.

javascript:launchSharedHelp('mxcncpts.chm::/ChanUsage.html');


Parameters
Input

Name Type Description

relays const	char	[] A	set	of	relays	to	open.

waitForSettling bool32 If	TRUE,	this	function	waits	for	the	switches	to	settle	before	returning.	If
FALSE,	the	function	returns	immediately	after	the	operation.

javascript:launchSharedHelp('mxcncpts.chm::/switchChanStrings.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSwitchSetTopologyAndReset
int32	DAQmxSwitchSetTopologyAndReset	(const	char	deviceName[],	const

char	newTopology[]);



Purpose
Resets	a	switch	device	and	sets	its	topology	to	the	one	specified	with
newTopology.	Use	this	function	to	initialize	a	switch	device	before	scanning	or
making	connections	to	ensure	the	initial	state	of	that	switch.
This	function	differs	from	DAQmxResetDevice	because	it	uses	the	input	topology	name
rather	than	the	one	you	specify	in	MAX.	This	function	does	not	modify	the
channel	usage	defaults	you	configure	in	MAX.



Parameters
Input

Name Type Description

deviceName const	char	[] The	name	of	the	device,	as	configured	in	Measurement	&	Automation	Explorer	(MAX),	to	which	this	operation	applies.

newTopology const	char	[] The	switch	topology	to	use	on	the	device.	The	following	table	lists	examples.	

Value
DAQmx_Val_Switch_Topology_1127_1_Wire_64x1_Mux

DAQmx_Val_Switch_Topology_1127_2_Wire_32x1_Mux

DAQmx_Val_Switch_Topology_1127_2_Wire_4x8_Matrix

DAQmx_Val_Switch_Topology_1127_4_Wire_16x1_Mux

DAQmx_Val_Switch_Topology_1127_Independent
DAQmx_Val_Switch_Topology_1128_1_Wire_64x1_Mux

DAQmx_Val_Switch_Topology_1128_2_Wire_32x1_Mux

DAQmx_Val_Switch_Topology_1128_2_Wire_4x8_Matrix

DAQmx_Val_Switch_Topology_1128_4_Wire_16x1_Mux

DAQmx_Val_Switch_Topology_1128_Independent
DAQmx_Val_Switch_Topology_1129_2_Wire_16x16_Matrix

DAQmx_Val_Switch_Topology_1129_2_Wire_8x32_Matrix

DAQmx_Val_Switch_Topology_1129_2_Wire_4x64_Matrix

DAQmx_Val_Switch_Topology_1129_2_Wire_Dual_8x16_Matrix



DAQmx_Val_Switch_Topology_1129_2_Wire_Dual_4x32_Matrix

DAQmx_Val_Switch_Topology_1129_2_Wire_Quad_4x16_Matrix

DAQmx_Val_Switch_Topology_1130_1_Wire_256x1_Mux

DAQmx_Val_Switch_Topology_1130_1_Wire_Dual_128x1_Mux

DAQmx_Val_Switch_Topology_1130_2_Wire_128x1_Mux

DAQmx_Val_Switch_Topology_1130_4_Wire_64x1_Mux

DAQmx_Val_Switch_Topology_1130_1_Wire_4x64_Matrix

DAQmx_Val_Switch_Topology_1130_1_Wire_8x32_Matrix

DAQmx_Val_Switch_Topology_1130_1_Wire_Octal_32x1_Mux

DAQmx_Val_Switch_Topology_1130_1_Wire_Quad_64x1_Mux

DAQmx_Val_Switch_Topology_1130_1_Wire_Sixteen_16x1_Mux

DAQmx_Val_Switch_Topology_1130_2_Wire_4x32_Matrix

DAQmx_Val_Switch_Topology_1130_2_Wire_Octal_16x1_Mux

DAQmx_Val_Switch_Topology_1130_2_Wire_Quad_32x1_Mux

DAQmx_Val_Switch_Topology_1130_4_Wire_Quad_16x1_Mux

DAQmx_Val_Switch_Topology_1130_Independent



DAQmx_Val_Switch_Topology_1160_16_SPDT
DAQmx_Val_Switch_Topology_1161_8_SPDT
DAQmx_Val_Switch_Topology_1163R_Octal_4x1_Mux

DAQmx_Val_Switch_Topology_1166_32_SPDT
DAQmx_Val_Switch_Topology_1167_Independent
DAQmx_Val_Switch_Topology_1169_100_SPST
DAQmx_Val_Switch_Topology_1175_1_Wire_196x1_Mux

DAQmx_Val_Switch_Topology_1175_2_Wire_98x1_Mux

DAQmx_Val_Switch_Topology_1175_2_Wire_95x1_Mux

DAQmx_Val_Switch_Topology_1190_Quad_4x1_Mux

DAQmx_Val_Switch_Topology_1191_Quad_4x1_Mux

DAQmx_Val_Switch_Topology_1192_8_SPDT
DAQmx_Val_Switch_Topology_1193_32x1_Mux
DAQmx_Val_Switch_Topology_1193_Dual_16x1_Mux

DAQmx_Val_Switch_Topology_1193_Quad_8x1_Mux

DAQmx_Val_Switch_Topology_1193_16x1_Terminated_Mux

DAQmx_Val_Switch_Topology_1193_Dual_8x1_Terminated_Mux

DAQmx_Val_Switch_Topology_1193_Quad_4x1_Terminated_Mux

DAQmx_Val_Switch_Topology_1193_Independent
DAQmx_Val_Switch_Topology_1194_Quad_4x1_Mux



DAQmx_Val_Switch_Topology_1195_Quad_4x1_Mux

DAQmx_Val_Switch_Topology_2501_1_Wire_48x1_Mux

DAQmx_Val_Switch_Topology_2501_1_Wire_48x1_Amplified_Mux

DAQmx_Val_Switch_Topology_2501_2_Wire_24x1_Mux

DAQmx_Val_Switch_Topology_2501_2_Wire_24x1_Amplified_Mux

DAQmx_Val_Switch_Topology_2501_2_Wire_Dual_12x1_Mux

DAQmx_Val_Switch_Topology_2501_2_Wire_Quad_6x1_Mux

DAQmx_Val_Switch_Topology_2501_2_Wire_4x6_Matrix

DAQmx_Val_Switch_Topology_2501_4_Wire_12x1_Mux

DAQmx_Val_Switch_Topology_2503_1_Wire_48x1_Mux

DAQmx_Val_Switch_Topology_2503_2_Wire_24x1_Mux

DAQmx_Val_Switch_Topology_2503_2_Wire_Dual_12x1_Mux

DAQmx_Val_Switch_Topology_2503_2_Wire_Quad_6x1_Mux

DAQmx_Val_Switch_Topology_2503_2_Wire_4x6_Matrix

DAQmx_Val_Switch_Topology_2503_4_Wire_12x1_Mux

DAQmx_Val_Switch_Topology_2527_1_Wire_64x1_Mux



DAQmx_Val_Switch_Topology_2527_1_Wire_Dual_32x1_Mux

DAQmx_Val_Switch_Topology_2527_2_Wire_32x1_Mux

DAQmx_Val_Switch_Topology_2527_2_Wire_Dual_16x1_Mux

DAQmx_Val_Switch_Topology_2527_4_Wire_16x1_Mux

DAQmx_Val_Switch_Topology_2527_Independent
DAQmx_Val_Switch_Topology_2529_2_Wire_8x16_Matrix

DAQmx_Val_Switch_Topology_2529_2_Wire_4x32_Matrix

DAQmx_Val_Switch_Topology_2529_2_Wire_Dual_4x16_Matrix

DAQmx_Val_Switch_Topology_2530_1_Wire_128x1_Mux

DAQmx_Val_Switch_Topology_2530_1_Wire_Dual_64x1_Mux

DAQmx_Val_Switch_Topology_2530_2_Wire_64x1_Mux

DAQmx_Val_Switch_Topology_2530_4_Wire_32x1_Mux

DAQmx_Val_Switch_Topology_2530_1_Wire_4x32_Matrix

DAQmx_Val_Switch_Topology_2530_1_Wire_8x16_Matrix

DAQmx_Val_Switch_Topology_2530_1_Wire_Octal_16x1_Mux

DAQmx_Val_Switch_Topology_2530_1_Wire_Quad_32x1_Mux

DAQmx_Val_Switch_Topology_2530_2_Wire_4x16_Matrix



DAQmx_Val_Switch_Topology_2530_2_Wire_Dual_32x1_Mux

DAQmx_Val_Switch_Topology_2530_2_Wire_Quad_16x1_Mux

DAQmx_Val_Switch_Topology_2530_4_Wire_Dual_16x1_Mux

DAQmx_Val_Switch_Topology_2530_Independent
DAQmx_Val_Switch_Topology_2532_1_Wire_16x32_Matrix

DAQmx_Val_Switch_Topology_2532_1_Wire_4x128_Matrix

DAQmx_Val_Switch_Topology_2532_1_Wire_8x64_Matrix

DAQmx_Val_Switch_Topology_2532_1_Wire_Dual_16x16_Matrix

DAQmx_Val_Switch_Topology_2532_1_Wire_Dual_4x64_Matrix

DAQmx_Val_Switch_Topology_2532_1_Wire_Dual_8x32_Matrix

DAQmx_Val_Switch_Topology_2532_1_Wire_Sixteen_2x16_Matrix

DAQmx_Val_Switch_Topology_2532_2_Wire_16x16_Matrix

DAQmx_Val_Switch_Topology_2532_2_Wire_4x64_Matrix

DAQmx_Val_Switch_Topology_2532_2_Wire_8x32_Matrix

DAQmx_Val_Switch_Topology_2564_16_SPST
DAQmx_Val_Switch_Topology_2565_16_SPST
DAQmx_Val_Switch_Topology_2566_16_SPDT



DAQmx_Val_Switch_Topology_2567_Independent
DAQmx_Val_Switch_Topology_2568_31_SPST
DAQmx_Val_Switch_Topology_2569_100_SPST
DAQmx_Val_Switch_Topology_2570_40_SPDT
DAQmx_Val_Switch_Topology_2575_1_Wire_196x1_Mux

DAQmx_Val_Switch_Topology_2575_2_Wire_98x1_Mux

DAQmx_Val_Switch_Topology_2575_2_Wire_95x1_Mux

DAQmx_Val_Switch_Topology_2576_2_Wire_64x1_Mux

DAQmx_Val_Switch_Topology_2576_2_Wire_Dual_32x1_Mux

DAQmx_Val_Switch_Topology_2576_2_Wire_Octal_8x1_Mux

DAQmx_Val_Switch_Topology_2576_2_Wire_Quad_16x1_Mux

DAQmx_Val_Switch_Topology_2576_2_Wire_Sixteen_4x1_Mux

DAQmx_Val_Switch_Topology_2576_Independent
DAQmx_Val_Switch_Topology_2585_1_Wire_10x1_Mux

DAQmx_Val_Switch_Topology_2586_10_SPST
DAQmx_Val_Switch_Topology_2590_4x1_Mux
DAQmx_Val_Switch_Topology_2591_4x1_Mux
DAQmx_Val_Switch_Topology_2593_16x1_Mux
DAQmx_Val_Switch_Topology_2593_Dual_8x1_Mux

DAQmx_Val_Switch_Topology_2593_8x1_Terminated_Mux

DAQmx_Val_Switch_Topology_2593_Dual_4x1_Terminated_Mux



DAQmx_Val_Switch_Topology_2593_Independent
DAQmx_Val_Switch_Topology_2594_4x1_Mux
DAQmx_Val_Switch_Topology_2595_4x1_Mux
DAQmx_Val_Switch_Topology_2596_Dual_6x1_Mux

DAQmx_Val_Switch_Topology_2597_6x1_Terminated_Mux

DAQmx_Val_Switch_Topology_2598_Dual_Transfer

DAQmx_Val_Switch_Topology_2599_2_SPDT



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSwitchWaitForSettling
int32	DAQmxSwitchWaitForSettling	(const	char	deviceName[]);



Purpose
Waits	for	the	settling	time	on	the	device	to	expire.	The	device	resets	this	time
and	begins	counting	down	again	when	the	device	performs	an	operation.	This
function	can	return	immediately	if	no	operation	happened	recently.



Parameters
Input

Name Type Description

deviceName const	char	[] The	name	of	the	device,	as	configured	in	Measurement	&	Automation	Explorer
(MAX),	to	which	this	operation	applies.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxConnectTerms
int32	DAQmxConnectTerms	(const	char	sourceTerminal[],	const	char

destinationTerminal[],	int32	signalModifiers);



Purpose
Creates	a	route	between	a	source	and	destination	terminal.	The	route	can	carry	a
variety	of	digital	signals,	such	as	triggers,	clocks,	and	hardware	events.
These	source	and	destination	terminals	can	be	on	different	devices	as	long	as	a
connecting	public	bus,	such	as	RTSI	or	the	PXI	backplane,	is	available.
DAQmxConnectTerms	does	not	modify	a	task.	When	DAQmxConnectTerms
runs,	the	route	is	immediately	reserved	and	committed	to	hardware.	This	type	of
routing	is	called	immediate	routing.

javascript:launchSharedHelp('mxcncpts.chm::/termNames.html');
javascript:launchSharedHelp('mxcncpts.chm::/immediateRouting.html');


Parameters
Input

Name Type Description

sourceTerminal const	char	[] The	originating	terminal	of	the	route.	You	can	specify	a	terminal	name.

destinationTerminal const	char	[] The	receiving	terminal	of	the	route.	You	can	specify	a	terminal	name.

signalModifiers int32 Specifies	whether	or	not	to	invert	the	signal	routed	from	the
sourceTerminal	to	the	destinationTerminal.	If	the	device	is	not	capable	of
signal	inversion	or	if	a	previous	route	reserved	the	inversion	circuitry	in	an
incompatible	configuration,	attempting	to	invert	the	signal	causes	an	error.

Value Description
DAQmx_Val_DoNotInvertPolarity Do	not

invert	the
signal.

DAQmx_Val_InvertPolarity Invert	the
signal.

javascript:launchSharedHelp('mxcncpts.chm::/terminal.html');
javascript:launchSharedHelp('mxcncpts.chm::/termnamesyntax.html');
javascript:launchSharedHelp('mxcncpts.chm::/terminal.html');
javascript:launchSharedHelp('mxcncpts.chm::/termnamesyntax.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxDisconnectTerms
int32	DAQmxDisconnectTerms	(const	char	sourceTerminal[],	const	char

destinationTerminal[]);



Purpose
Removes	signal	routes	previously	created	using	DAQmxConnectTerms.
DAQmxDisconnectTerms	cannot	remove	task-based	routes,	such	as	those
created	through	timing	and	triggering	configuration.
When	this	function	executes,	the	route	is	unreserved	immediately.	For	this
reason,	this	type	of	routing	is	called	immediate	routing.

javascript:launchSharedHelp('mxcncpts.chm::/immediateRouting.html');


Parameters
Input

Name Type Description

sourceTerminal const	char	[] The	originating	terminal	of	the	route.	You	can	specify	a	terminal	name.

destinationTerminal const	char	[] The	receiving	terminal	of	the	route.	You	can	specify	a	terminal	name.

javascript:launchSharedHelp('mxcncpts.chm::/terminal.html');
javascript:launchSharedHelp('mxcncpts.chm::/termnamesyntax.html');
javascript:launchSharedHelp('mxcncpts.chm::/terminal.html');
javascript:launchSharedHelp('mxcncpts.chm::/termnamesyntax.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxTristateOutputTerm
int32	DAQmxTristateOutputTerm	(const	char	outputTerminal[]);



Purpose
Sets	a	terminal	to	high-impedance	state.	If	you	connect	an	external	signal	to	a	terminal	on
the	I/O	connector,	the	terminal	must	be	in	high-impedance	state.	Otherwise,	the
device	could	double-drive	the	terminal	and	damage	the	hardware.	If	you	use	this
function	on	a	terminal	in	an	active	route,	the	function	fails	and	returns	an	error.
DAQmxResetDevice	sets	all	terminals	on	the	I/O	connector	to	high-impedance	state	but
aborts	any	running	tasks	associated	with	the	device.

javascript:launchSharedHelp('mxcncpts.chm::/triStating.html');


Parameters
Input

Name Type Description

outputTerminal const	char	[] The	terminal	on	the	I/O	connector	to	set	to	high-impedance	state.	You	can
specify	a	terminal	name.

javascript:launchSharedHelp('mxcncpts.chm::/termnamesyntax.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxResetDevice
int32	DAQmxResetDevice	(const	char	deviceName[]);



Purpose
Immediately	aborts	all	tasks	associated	with	a	device	and	returns	the	device	to	an
initialized	state.	Aborting	a	task	stops	and	releases	any	resources	the	task	reserved.

javascript:launchSharedHelp('mxdevconsid.chm::/initstates.html');


Parameters
Input

Name Type Description

deviceName const	char	[] The	name	of	the	device,	as	configured	in	Measurement	&	Automation	Explorer
(MAX),	to	which	this	operation	applies.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxControlWatchdogTask
int32	DAQmxControlWatchdogTask	(TaskHandle	taskHandle,	int32	action);



Purpose
Controls	the	watchdog	task	according	to	the	action	you	specify.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

action int32 Specifies	how	to	control	the	watchdog	task.

Value Description
DAQmx_Val_ResetTimer Resets	the	internal

timer	to	0.	You	must
continually	reset	the
internal	timer	to
prevent	it	from	timing
out	and	locking	out
the	device.

DAQmx_Val_ClearExpiration Unlocks	a	device
whose	watchdog
expired.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCreateWatchdogTimerTask
int32	DAQmxCreateWatchdogTimerTask	(const	char	deviceName[],	const	char

taskName[],	TaskHandle	*taskHandle,	float64	timeout,	const	char
channelName[],	int32	expState,	...);



Purpose
Creates	and	configures	a	task	that	controls	the	watchdog	timer	of	a	device.	The
timer	activates	when	you	start	the	task.



Parameters
Input

Name Type Description

deviceName const	char	[] The	name	of	the	device,	as	configured	in	Measurement	&
Automation	Explorer	(MAX),	to	which	this	operation	applies.

taskName const	char	[] The	name	to	assign	to	the	task.	If	you	use	this	function	in	a	loop	and
specify	a	name	for	the	task,	you	must	use	DAQmxClearTask	within	the
loop	after	you	are	finished	with	the	task.	Otherwise,	NI-DAQmx
attempts	to	create	multiple	tasks	with	the	same	name,	which	results
in	an	error.

timeout float64 The	time,	in	seconds,	until	the	watchdog	timer	expires.	A	value	of
DAQmx_Val_WaitInfinitely	indicates	that	the	internal	timer	never
expires.	Use	DAQmx_Val_WaitInfinitely	when	you	use	a	trigger	to
signal	an	expiration	of	the	timer.	If	this	time	elapses,	the	device	sets
the	physical	channels	to	the	states	you	specify	in	expState.
Use	DAQmxControlWatchdogTask	with	action	set	to
DAQmx_Val_ResetTimer	to	prevent	the	watchdog	timer	from
expiring.

channelName const	char	[] The	digital	line	or	port	to	modify.	You	cannot	modify	dedicated
digital	input	lines.	You	can	specify	a	list	or	range	of	physical	channels

expState int32 The	state	to	which	to	set	the	digital	physical	channel	when	the
watchdog	timer	expires.

Value Description
DAQmx_Val_High High	logic
DAQmx_Val_Low Low	logic
DAQmx_Val_Tristate High-

impedance
state.	You	can
select	this	state
only	on	devices
with
bidirectional
ports,	and	you
can	select	it
only	for	entire
ports.	You
cannot	select
this	state	for
dedicated	digital
output	lines.

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');


DAQmx_Val_NoChange Expiration	does
not	affect	the
port.	Do	not
change	the	state
of	any	lines	in
the	port,	and	do
not	lock	the
port.	For
example,	if	a
line	is	high
when	the	timer
expires,	that	line
stays	high,	and
you	can	write
new	values	to
the	line.	You
can	select	this
value	only	for
entire	ports.

moreChannelsAndStates any	type
(passed	by
value)

Pairs	of	additional	channels	and	the	states	to	set	the	channels	to	when
the	device	powers	up	or	when	the	device	is	reset.	You	must	pass
NULL	at	the	end	of	the	argument	list.
If	you	do	not	want	to	pass	additional	channels	and	states,	the
function	call	can	be	similar	to	the	following	example:
DAQmxCreateWatchdogTimerTask	("Dev1",	"myTask",
*taskHandle,	DAQmx_Val_WaitInfinitely,	"Dev1/do0",
DAQmx_Val_High,	NULL);	
If	you	pass	additional	channels	and	states,	the	function	call	can	be
similar	to	the	following	example:
DAQmxCreateWatchdogTimerTask	("Dev1",	"myTask",
*taskHandle,	DAQmx_Val_WaitInfinitely,	"Dev1/do0",
DAQmx_Val_High,	"Dev1/do1",	DAQmx_Val_Tristate,	NULL);

Output

taskHandle TaskHandle	* A	reference	to	the	new	task.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAOSeriesCalAdjust
DAQmxAOSeriesCalAdjust	(uInt32	calHandle,	float64	referenceVoltage);



Purpose
Adjusts	the	external	calibration	constants	on	an	AO	Series	device.	You	must	supply	a	known	voltage
to	the	device	and	specify	that	voltage	with	referenceVoltage.

javascript:launchSharedHelp('mxcncpts.chm::/calibration.html');
javascript:launchSharedHelp('mxdevconsid.chm::/calSigAOSeries.html');


Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

referenceVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.	This	voltage
should	be	between	+6.000	V	and	+9.999	V.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxESeriesCalAdjust
int32	DAQmxESeriesCalAdjust	(uInt32	calHandle,	float64	referenceVoltage);



Purpose
Adjusts	the	external	calibration	constants	on	an	E-Series	device.	You	must	supply	a	known	voltage	to
the	device	and	specify	that	voltage	with	referenceVoltage.

javascript:launchSharedHelp('mxcncpts.chm::/calibration.html');
javascript:launchSharedHelp('mxdevconsid.chm::/calSigESeries.html');


Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

referenceVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.	This	voltage
should	be	between	+6.000	V	and	+9.999	V.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxGetAIChanCalCalDate
int32	DAQmxGetAIChanCalCalDate	(TaskHandle	taskHandle,	const	char

channelName[],	uInt32	*year,	uInt32	*month,	uInt32	*day,	uInt32
*hour,	uInt32	*minute);



Purpose
Indicates	the	last	date	and	time	that	the	channel	underwent	a	channel	calibration.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

channelName const	char
[]

Name	of	the	local	or	global	channel	to	query	calibration	for.

Output

Name Type Description

year uInt32	* The	last	year	that	the	channel	underwent	a	channel	calibration.

month uInt32	* The	last	month	that	the	channel	underwent	a	channel	calibration.

day uInt32	* The	last	day	that	the	channel	underwent	a	channel	calibration.

hour uInt32	* The	last	hour,	on	a	24-hour	clock,	that	the	channel	underwent	a	channel
calibration.

minute uInt32	* The	last	minute	that	the	channel	underwent	a	channel	calibration.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxGetAIChanCalExpDate
int32	DAQmxGetAIChanCalExpDate	(TaskHandle	taskHandle,	const	char

channelName[],	uInt32	*year,	uInt32	*month,	uInt32	*day,	uInt32
*hour,	uInt32	*minute);



Purpose
Indicates	the	last	date	and	time	that	the	channel	underwent	an	external	channel
calibration.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

channelName const	char
[]

Name	of	the	local	or	global	channel	to	query	calibration	for.

Output

Name Type Description

year uInt32	* The	last	year	that	the	channel	underwent	an	external	channel	calibration.

month uInt32	* The	last	month	that	the	channel	underwent	an	external	channel	calibration.

day uInt32	* The	last	day	that	the	channel	underwent	an	external	channel	calibration.

hour uInt32	* The	last	hour,	on	a	24-hour	clock,	that	the	channel	underwent	an	external	channel
calibration.

minute uInt32	* The	last	minute	that	the	channel	underwent	an	external	channel	calibration.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxGetExtCalLastDateAndTime
int32	DAQmxGetExtCalLastDateAndTime	(const	char	deviceName[],	uInt32

*year,	uInt32	*month,	uInt32	*day,	uInt32	*hour,	uInt32	*minute);



Purpose
Indicates	the	last	date	and	time	that	the	device	underwent	an	external	calibration.



Parameters
Input

Name Type Description

deviceName const	char	[] The	name	of	the	device,	as	configured	in	Measurement	&	Automation	Explorer
(MAX),	to	which	this	operation	applies.

Output

Name Type Description

year uInt32	* The	last	year	that	the	device	underwent	an	external	calibration.

month uInt32	* The	last	month	that	the	device	underwent	an	external	calibration.

day uInt32	* The	last	day	that	the	device	underwent	an	external	calibration.

hour uInt32	* The	last	hour,	on	a	24-hour	clock,	that	the	device	underwent	an	external	calibration.

minute uInt32	* The	last	minute	that	the	device	underwent	an	external	calibration.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxGetSelfCalLastDateAndTime
int32	DAQmxGetSelfCalLastDateAndTime	(const	char	deviceName[],	uInt32

*year,	uInt32	*month,	uInt32	*day,	uInt32	*hour,	uInt32	*minute);



Purpose
Indicates	the	last	date	and	time	that	the	device	underwent	a	self	calibration.



Parameters
Input

Name Type Description

deviceName const	char	[] The	name	of	the	device,	as	configured	in	Measurement	&	Automation	Explorer
(MAX),	to	which	this	operation	applies.

Output

Name Type Description

year uInt32	* The	last	year	that	the	device	underwent	a	self-calibration.

month uInt32	* The	last	month	that	the	device	underwent	a	self-calibration.

day uInt32	* The	last	day	that	the	device	underwent	a	self-calibration.

hour uInt32	* The	last	hour,	on	a	24-hour	clock,	that	the	device	underwent	a	self-calibration.

minute uInt32	* The	last	minute	that	the	device	underwent	a	self-calibration.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxMSeriesCalAdjust
int32	DAQmxMSeriesCalAdjust	(uInt32	calHandle,	float64	referenceVoltage);



Purpose
Adjusts	the	external	calibration	constants	for	an	M	Series	device.	You	must	connect	a
known	voltage	to	the	device	and	specify	that	voltage	with	referenceVoltage.

javascript:launchSharedHelp('mxcncpts.chm::/calibration.html');


Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

referenceVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.	This	voltage
should	be	between	+6.000	V	and	+9.999	V.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxPerformBridgeOffsetNullingCal
int32	DAQmxPerformBridgeOffsetNullingCal	(TaskHandle	taskHandle,	const

char	channel[])



Purpose
Performs	a	bridge	offset	nulling	calibration	on	the	channels	in	the	task.	If	the
task	measures	both	bridge-based	sensors	and	non-bridge-based	sensors,	specify
the	names	of	the	channels	that	measure	bridge-based	sensors	in	the	channel
parameter.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

channel const	char	[] A	subset	of	virtual	channels	in	the	task	that	you	want	to	calibrate.	Use	this	parameter
if	you	do	not	want	to	calibrate	all	the	channels	in	the	task	or	if	some	channels	in	the
task	measure	non-bridge-based	sensors.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxPerformBridgeOffsetNullingCalEx
int32	DAQmxPerformBridgeOffsetNullingCalEx	(TaskHandle	taskHandle,	const

char	channel[],	bool32	skipUnsupportedChannels)



Purpose
Performs	a	bridge	offset	nulling	calibration	on	the	channels	in	the	task.	If	the
task	measures	both	bridge-based	sensors	and	non-bridge-based	sensors,	specify
the	names	of	the	channels	that	measure	bridge-based	sensors	in	the	channel
parameter.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

channel const	char	[] A	subset	of	virtual	channels	in	the	task	that	you	want	to	calibrate.
Use	this	parameter	if	you	do	not	want	to	calibrate	all	the	channels	in
the	task	or	if	some	channels	in	the	task	measure	non-bridge-based
sensors.

skipUnsupportedChannels bool32 Specifies	whether	or	not	to	skip	channels	that	do	not	support
calibration.	If	skipUnsupportedChannels	is	TRUE,	calibration	will
be	performed	only	on	supported	channels.	If	FALSE,	calibration	will
be	performed	on	channels	specified	by	channel.	The	default	is
FALSE.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxPerformBridgeShuntCal
int32	DAQmxPerformBridgeShuntCal	(TaskHandle	taskHandle,	const	char

channel[],	float64	shuntResistorValue,	int32	shuntResistorLocation,
float64	bridgeResistance,	bool32	skipUnsupportedChannels);



Purpose
Performs	shunt	calibration	for	the	specified	channels	using	a	bridge	sensor.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

channel const	char
[]

A	subset	of	virtual	channels	in	the	task	that	you	want	to	calibrate.
Use	this	parameter	if	you	do	not	want	to	calibrate	all	the	channels	in
the	task	or	if	some	channels	in	the	task	measure	non-bridge-based
sensors.	If	the	input	is	empty,	the	function	will	attempt	to	perform
shunt	calibration	on	all	the	channels	in	the	task.

shuntResistorValue float64 The	resistance,	in	ohms,	of	the	shunt	resistor.

shuntResistorLocation int32 The	location	of	the	shunt	resistor.	Refer	to	the	NI-DAQmx	Help	for
more	information	on	bridge	configurations.

Value Description
DAQmx_Val_R1	(12465) R1
DAQmx_Val_R2	(12466) R2
DAQmx_Val_R3	(12467) R3
DAQmx_Val_R4	(14813) R4

bridgeResistance float64 The	resistance,	in	ohms,	of	the	bridge	sensor.

skipUnsupportedChannels bool32 Specifies	whether	or	not	to	skip	channels	that	do	not	support	shunt
calibration.	If	skipUnsupportedChannels	is	TRUE,	shunt
calibration	will	be	performed	only	on	supported	channels.	If	FALSE,
shunt	calibration	will	be	performed	on	channels	specified	by
channelNames.	The	default	is	FALSE.

javascript:launchSharedHelp('measfunds.chm::/bridgeConfig.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxPerformStrainShuntCal
int32	DAQmxPerformStrainShuntCal	(TaskHandle	taskHandle,	const	char

channel[],	float64	shuntResistorValue,	int32	shuntResistorLocation,
bool32	skipUnsupportedChannels);



Purpose
Performs	shunt	calibration	for	the	specified	channels	using	a	strain	gage	sensor.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

channel const	char
[]

A	subset	of	virtual	channels	in	the	task	that	you	want	to	calibrate.
Use	this	parameter	if	you	do	not	want	to	calibrate	all	the	channels	in
the	task	or	if	some	channels	in	the	task	measure	non-bridge-based
sensors.	If	the	input	is	empty,	the	function	will	attempt	to	perform
shunt	calibration	on	all	the	channels	in	the	task.

shuntResistorValue float64 The	resistance,	in	ohms,	of	the	shunt	resistor.

shuntResistorLocation int32 The	location	of	the	shunt	resistor.	Refer	to	the	NI-DAQmx	Help	for
more	information	on	bridge	configurations.

Value Description
DAQmx_Val_R1	(12465) R1
DAQmx_Val_R2	(12466) R2
DAQmx_Val_R3	(12467) R3
DAQmx_Val_R4	(14813) R4

skipUnsupportedChannels bool32 Specifies	whether	or	not	to	skip	channels	that	do	not	support	shunt
calibration.	If	skipUnsupportedChannels	is	TRUE,	shunt
calibration	will	be	performed	only	on	supported	channels.	If	FALSE,
shunt	calibration	will	be	performed	on	channels	specified	by
channelNames.	The	default	is	FALSE.

javascript:launchSharedHelp('measfunds.chm::/bridgeConfig.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxRestoreLastExtCalConst
int32	DAQmxRestoreLastExtCalConst	(const	char	deviceName[]);



Purpose
Sets	the	self	calibration	constants	of	the	device	to	the	the	current	external	calibration	constants.	National
Instruments	sets	the	external	calibration	constants	at	the	factory,	and	those
constants	remain	in	effect	until	you	perform	a	new	external	calibration	on	the
device.
This	function	nullifies	any	self	calibration	you	perform	on	the	device.	If	you
have	never	performed	a	self	calibration	on	the	device,	this	function	has	no	effect.

javascript:launchSharedHelp('mxcncpts.chm::/calibration.html');
javascript:launchSharedHelp('mxcncpts.chm::/calibration.html');


Parameters
Input

Name Type Description

deviceName const	char	[] The	name	of	the	device,	as	configured	in	Measurement	&	Automation	Explorer
(MAX),	to	which	this	operation	applies.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSCBaseboardCalAdjust
int32	DAQmxSCBaseboardCalAdjust	(uInt32	calHandle,	float64

referenceVoltage);



Purpose
Adjusts	the	external	calibration	constants	on	for	the	baseboard	of	an	SC	Series	device.
You	must	connect	a	known	voltage	to	the	device	and	specify	that	voltage	with
referenceVoltage.

javascript:launchSharedHelp('mxcncpts.chm::/calibration.html');


Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

referenceVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.	This	voltage
should	be	between	+6.000	V	and	+9.999	V.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSelfCal
int32	DAQmxSelfCal	(const	char	deviceName[]);



Purpose
Measures	the	onboard	reference	voltage	of	the	device	and	adjusts	the	self-calibration
constants	to	account	for	any	errors	caused	by	short-term	fluctuations	in	the
operating	environment.	When	you	self	calibrate	a	device,	no	external	signal
connections	are	necessary.

javascript:launchSharedHelp('mxcncpts.chm::/calibration.html');


Parameters
Input

Name Type Description

deviceName const	char	[] The	name	of	the	device,	as	configured	in	Measurement	&	Automation	Explorer
(MAX),	to	which	this	operation	applies.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetAIChanCalCalDate
int32	DAQmxSetAIChanCalCalDate	(TaskHandle	taskHandle,	const	char

channelName[],	uInt32	*year,	uInt32	*month,	uInt32	*day,	uInt32
*hour,	uInt32	*minute);



Purpose
Sets	the	date	and	time	that	the	channel	underwent	a	channel	calibration.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

channelName const	char
[]

Name	of	the	local	or	global	channel	to	calibrate.

year uInt32 The	last	year	that	the	channel	underwent	a	channel	calibration.

month uInt32 The	last	month	that	the	channel	underwent	a	channel	calibration.

day uInt32 The	last	day	that	the	channel	underwent	a	channel	calibration.

hour uInt32 The	last	hour,	on	a	24-hour	clock,	that	the	channel	underwent	a	channel
calibration.

minute uInt32 The	last	minute	that	the	channel	underwent	a	channel	calibration.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetAIChanCalExpDate
int32	DAQmxSetAIChanCalExpDate	(TaskHandle	taskHandle,	const	char

channelName[],	uInt32	*year,	uInt32	*month,	uInt32	*day,	uInt32
*hour,	uInt32	*minute);



Purpose
Sets	the	date	and	time	that	the	channel	underwent	an	external	channel
calibration.



Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	used	in	this	function.

channelName const	char
[]

Name	of	the	local	or	global	channel	to	calibrate.

year uInt32 The	last	year	that	the	channel	underwent	an	external	channel	calibration.

month uInt32 The	last	month	that	the	channel	underwent	an	external	channel	calibration.

day uInt32 The	last	day	that	the	channel	underwent	an	external	channel	calibration.

hour uInt32 The	last	hour,	on	a	24-hour	clock,	that	the	channel	underwent	an	external	channel
calibration.

minute uInt32 The	last	minute	that	the	channel	underwent	an	external	channel	calibration.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSSeriesCalAdjust
int32	DAQmxSSeriesCalAdjust	(uInt32	calHandle,	float64	referenceVoltage);



Purpose
Adjusts	the	external	calibration	constants	for	an	S	Series	device.	You	must	connect	a
known	voltage	to	the	device	and	specify	that	voltage	with	referenceVoltage.

javascript:launchSharedHelp('mxcncpts.chm::/calibration.html');


Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

referenceVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.	This	voltage
should	be	between	+6.000	V	and	+9.999	V.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxChangeExtCalPassword
int32	DAQmxChangeExtCalPassword	(const	char	deviceName[],	const	char

password[],	const	char	newPassword[]);



Purpose
Changes	the	external	calibration	password	of	the	device.



Parameters
Input

Name Type Description

deviceName const	char	[] The	name	of	the	device,	as	configured	in	Measurement	&	Automation	Explorer
(MAX),	to	which	this	operation	applies.

password const	char	[] The	current	calibration	password	for	the	device.	This	password	is	case	sensitive.
The	default	password	for	all	NI	products	is	NI.

newPassword const	char	[] The	new	password	for	the	device.	This	password	can	be	no	longer	than	four
characters.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxCloseExtCal
int32	DAQmxCloseExtCal	(uInt32	calHandle,	int32	action);



Purpose
Closes	an	open	external	calibration	session.

javascript:launchSharedHelp('mxcncpts.chm::/calibration.html');


Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal	function.

action int32 Specifies	how	to	close	the	calibration	session.

Value Description
DAQmx_Val_Action_Commit Saves	the	calibration

changes	made	in	the
session

DAQmx_Val_Action_Cancel Closes	the	session	without
saving	any	calibration
changes



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxInitExtCal
int32	DAQmxInitExtCal	(const	char	deviceName[],	const	char	password[],

uInt32	*calHandle);



Purpose
Starts	an	external	calibration	session	on	a	device.

javascript:launchSharedHelp('mxcncpts.chm::/calibration.html');


Parameters
Input

Name Type Description

deviceName const	char	[] The	name	of	the	device,	as	configured	in	Measurement	&	Automation	Explorer
(MAX),	to	which	this	operation	applies.

password const	char	[] The	current	calibration	password	for	the	device.	This	password	is	case	sensitive.
The	default	password	for	all	NI	products	is	NI.

Output

Name Type Description

calHandle uInt32	* A	reference	to	the	calibration	session.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjustDSAAICal
int32	DAQmxAdjustDSAAICal	(uInt32	calHandle,	float64	referenceVoltage);



Purpose
Adjusts	the	external	calibration	constants	for	the	analog	input	section	of	a	DSA	device.
You	must	connect	a	known	voltage	to	the	device	and	specify	that	voltage	with
the	referenceVoltage	parameter.

javascript:launchSharedHelp('mxcncpts.chm::/calibration.html');


Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

referenceVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.	This	voltage
should	be	between	+4.9	V	and	+9.1	V.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjustDSAAOCal
int32	DAQmxAdjustDSAAOCal	(uInt32	calHandle,	uInt32	channel,	float64

requestedLowVoltage,	float64	actualLowVoltage,	float64
requestedHighVoltage,	float64	actualHighVoltage,	float64
gainSetting);



Purpose
Adjusts	the	external	calibration	constants	for	the	analog	output	section	of	a	DSA	device.
You	must	use	the	device	to	generate	a	high	voltage	and	low	voltage	at	a	specified
gain,	measure	the	high	and	low	voltages,	then	specify	the	requested	high	voltage,
low	voltage,	and	gain	along	with	the	actual	high	voltage	and	low	voltage.

javascript:launchSharedHelp('mxcncpts.chm::/calibration.html');


Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the
DAQmxInitExtCal	function.

channel uInt32 The	number	of	the	channel	to	calibrate.	This	number	is	the	numeric	portion	of
the	physical	channel	name,	not	the	full	physical	channel	name.

requestedLowVoltage float64 The	low	voltage	you	attempted	to	generate	at	the	gain	setting	you	specified.

actualLowVoltage float64 The	actual	low	voltage	as	measured	by	an	external	sensor.

requestedHighVoltage float64 The	high	voltage	you	attempted	to	generate	at	the	gain	setting	you	specified.

actualHighVoltage float64 The	actual	high	voltage	as	measured	by	an	external	sensor.

gainSetting float64 The	gain	setting	you	used	when	you	attempted	to	generate	the	requested	high
voltage	and	requested	low	voltage.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjustDSATimebaseCal
int32	DAQmxAdjustDSATimebaseCal	(uInt32	calHandle,	float64

referenceFrequency);



Purpose
Adjusts	the	external	calibration	constant	for	the	timebase	of	a	DSA	device	with	an
adjustable	oscillator.	You	must	connect	a	sinusoidal	signal	with	a	known
frequency	to	the	device	and	specify	that	frequency	with	referenceFrequency.

javascript:launchSharedHelp('mxcncpts.chm::/calibration.html');


Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the
DAQmxInitExtCal	function.

referenceFrequency float64 The	frequency,	in	hertz,	of	the	signal	to	use	as	a	reference	for	calibration.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust4204Cal
int32	DAQmxAdjust4204Cal	(uInt32	calHandle,	const	char	channelNames[],

float64	lowPassFreq,	bool32	trackHoldEnabled,	float64	inputVal);



Purpose
Adjusts	the	internal	and	external	calibration	constants	for	the	SCMP	pod	on	the
PXI-4204	device.	You	must	supply	a	known	voltage	to	the	device	and	specify
that	voltage	with	inputVal.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the
DAQmxInitExtCal	function.

channelNames const	char
[]

The	physical	channel(s)	to	calibrate.

lowPassFreq float64 The	low	pass	cutoff	frequency,	in	hertz,	(6	or	10000)	on	the	SCMP	pod	to
calibrate.

trackHoldEnabled bool32 Specifies	whether	calibrating	for	trackHold	is	enabled	or	disabled.

inputVal float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust4220Cal
int32	DAQmxAdjust4220Cal	(uInt32	calHandle,	const	char	channelNames[],

float64	gain,	float64	inputVal);



Purpose
Adjusts	the	internal	and	external	calibration	constants	for	the	SCMP	pod	on	the
PXI-4220	device.	You	must	supply	a	known	voltage	to	the	device	and	specify
that	voltage	with	inputVal.
This	device	needs	reference	signals	of	0.0	volts	at	gains	of	1,	15,	20,	and	310	on
a	particular	channel	in	order	to	perform	an	offset	calibration	for	that	channel.	If
those	points	are	not	manually	supplied,	they	will	be	automatically	measured
internally	with	sample	and	hold	enabled.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channelNames const	char
[]

The	physical	channel(s)	to	calibrate.

gain float64 The	gain	value	on	the	SCMP	pod	to	calibrate.

inputVal float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust4224Cal
int32	DAQmxAdjust4224Cal	(uInt32	calHandle,	const	char	channelNames[],

float64	gain,	float64	inputVal);



Purpose
Adjusts	the	internal	and	external	calibration	constants	for	the	SCMP	pod	on	the
PXI-4224	device.	You	must	supply	a	known	voltage	to	the	device	and	specify
that	voltage	with	inputVal.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channelNames const	char
[]

The	physical	channel(s)	to	calibrate.

gain float64 The	gain	value	on	the	SCMP	pod	to	calibrate.

inputVal float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust1102Cal
int32	DAQmxAdjust1102Cal	(uInt32	calHandle,	float64	refVoltage,	float64

measOutput);



Purpose
Adjusts	the	external	calibration	constants	for	the	SCXI-1102	module.	You	must
supply	a	known	voltage	to	the	device	and	specify	that	voltage	with	refVoltage.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

refVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.

measOutput float64 The	voltage	measured	at	the	output	of	the	module.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust1104Cal
int32	DAQmxAdjust1104Cal	(uInt32	calHandle,	float64	refVoltage,	float64

measOutput);



Purpose
Adjusts	the	calibration	constants	for	the	SCXI-1104	module.	You	must	measure
the	voltage	generated	by	a	previous	call	to	the	DAQmxSetup1104Cal	function
and	specify	the	measurement	with	measured	output.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

refVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.

measOutput float64 The	voltage	measured	at	the	output	of	the	module.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust1112Cal
int32	DAQmxAdjust1112Cal	(uInt32	calHandle,	float64	refVoltage,	float64

measOutput);



Purpose
Adjusts	the	calibration	constants	for	the	SCXI-1112	module.	You	must	measure
the	voltage	generated	by	a	previous	call	to	the	DAQmxSetup1112Cal	function
and	specify	the	measurement	with	measOutput.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

refVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.

measOutput float64 The	voltage	measured	at	the	output	of	the	module.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust1122Cal
int32	DAQmxAdjust1122Cal	(uInt32	calHandle,	float64	refVoltage,	float64

measOutput);



Purpose
Adjusts	the	calibration	constants	for	the	SCXI-1122	module.	You	must	measure
the	voltage	or	current	generated	by	a	previous	call	to	the	DAQmxSetup1122Cal
function	and	specify	the	measurement	with	measOutput.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

refVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.

measOutput float64 The	voltage	or	current	measured	at	the	output	channel	specified	in	a	previous	call	to	the
DAQmxSetup1122Cal	function.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust1124Cal
int32	DAQmxAdjust1124Cal	(uInt32	calHandle,	float64	measOutput);



Purpose
Adjusts	the	calibration	constants	for	the	SCXI-1124	module.	You	must	measure
the	voltage	or	current	generated	by	a	previous	call	to	the	DAQmxSetup1124Cal
function	and	specify	the	measurement	with	measOutput.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

measOutput float64 The	voltage	or	current	measured	at	the	output	channel	specified	in	a	previous	call	to	the
DAQmxSetup1124Cal	function.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust1125Cal
int32	DAQmxAdjust1125Cal	(uInt32	calHandle,	float64	refVoltage,	float64

measOutput);



Purpose
Adjusts	the	external	calibration	constants	for	the	SCXI-1125	module.	You	must
supply	a	known	voltage	to	the	device	and	specify	that	voltage	with	refVoltage.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

refVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.

measOutput float64 The	voltage	measured	at	the	output	of	the	module.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust1126Cal
int32	DAQmxAdjust1126Cal	(uInt32	calHandle,	float64	refFreq,	float64

measOutput);



Purpose
Adjusts	the	calibration	constants	for	the	SCXI-1126	module.	You	must	measure
the	voltage	generated	by	a	previous	call	to	the	DAQmxSetup1126Cal	function
and	specify	the	measurement	with	measOutput.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

refFreq float64 The	known	frequency,	in	hertz,	to	use	as	a	reference	for	calibration.

measOutput float64 The	voltage	measured	at	the	output	of	the	module.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust1141Cal
int32	DAQmxAdjust1141Cal	(uInt32	calHandle,	float64	refVoltage,	float64

measOutput);



Purpose
Adjusts	the	external	calibration	constants	for	the	SCXI-1141	module.	You	must
supply	a	known	voltage	to	the	device	and	specify	that	voltage	with	refVoltage.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

refVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.

measOutput float64 The	voltage	measured	at	the	output	of	the	module.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust1142Cal
int32	DAQmxAdjust1142Cal	(uInt32	calHandle,	float64	refVoltage,	float64

measOutput);



Purpose
Adjusts	the	external	calibration	constants	for	the	SCXI-1142	module.	You	must
supply	a	known	voltage	to	the	device	and	specify	that	voltage	with	refVoltage.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

refVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.

measOutput float64 The	voltage	measured	at	the	output	of	the	module.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust1143Cal
int32	DAQmxAdjust1143Cal	(uInt32	calHandle,	float64	refVoltage,	float64

measOutput);



Purpose
Adjusts	the	external	calibration	constants	for	the	SCXI-1143	module.	You	must
supply	a	known	voltage	to	the	device	and	specify	that	voltage	with	refVoltage.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

refVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.

measOutput float64 The	voltage	measured	at	the	output	of	the	module.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust1502Cal
int32	DAQmxAdjust1502Cal	(uInt32	calHandle,	float64	refVoltage,	float64

measOutput);



Purpose
Adjusts	the	calibration	constants	for	the	SCXI-1502	module.	You	must	supply	a
known	voltage	to	the	device	and	specify	that	voltage	with	refVoltage.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

refVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.

measOutput float64 The	voltage	measured	at	the	output	of	the	module.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust1503Cal
int32	DAQmxAdjust1503Cal	(uInt32	calHandle,	float64	refVoltage,	float64

measOutput);



Purpose
Adjusts	the	calibration	constants	for	the	SCXI-1503	module.	You	must	supply	a
known	voltage	to	the	device	and	specify	that	voltage	with	refVoltage.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

refVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.

measOutput float64 The	voltage	measured	at	the	output	of	the	module.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust1503CurrentCal
int32	DAQmxAdjust1503CurrentCal	(uInt32	calHandle,	const	char

channelName[],	float64	measOutput);



Purpose
Adjusts	the	current	calibration	constants	for	the	SCXI-1503	module.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channelName const	char
[]

The	physical	channel	to	calibrate.

measOutput float64 The	current	measured	at	the	output	of	the	module.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust1520Cal
int32	DAQmxAdjust1520Cal	(uInt32	calHandle,	float64	refVoltage,	float64

measOutput);



Purpose
Adjusts	the	external	calibration	constants	for	the	SCXI-1520	module.	You	must
supply	a	known	voltage	to	the	device	and	specify	that	voltage	with	refVoltage.
This	device	needs	reference	signals	of	0.0	volts	at	gains	of	1,	15,	20,	and	310	on
a	particular	channel	in	order	to	perform	an	offset	calibration	for	that	channel.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

refVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.

measOutput float64 The	voltage	measured	at	the	output	of	the	module.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust1521Cal
int32	DAQmxAdjust1521Cal	(uInt32	calHandle,	float64	refVoltage,	float64

measOutput);



Purpose
Adjusts	the	calibration	constants	for	the	SCXI-1521	module.	You	must	measure
the	voltage	generated	by	a	previous	call	to	the	DAQmxSetup1521Cal	function
and	specify	the	measurement	with	measOutput.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

refVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.

measOutput float64 The	voltage	measured	at	the	output	of	the	module.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust153xCal
int32	DAQmxAdjust153xCal	(uInt32	calHandle,	float64	refVoltage,	float64

measOutput);



Purpose
Adjusts	the	external	calibration	constants	for	the	SCXI-153x	module.	You	must
supply	a	known	voltage	to	the	device	and	specify	that	voltage	with	refVoltage.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

refVoltage float64 The	known	voltage,	in	volts,	to	use	as	a	reference	for	calibration.	Both	refVoltage	and
measOutput	must	be	of	the	same	measurement	type,	either	RMS	voltage	or	peak-to-
peak	voltage.

measOutput float64 The	voltage	measured	at	the	output	of	the	module.	Both	refVoltage	and	measOutput
must	be	of	the	same	measurement	type,	either	RMS	voltage	or	peak-to-peak	voltage.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxAdjust1540Cal
int32	DAQmxAdjust1540Cal	(uInt32	calHandle,	float64	refVoltage,	float64

measOutput,	int32	inputCalSource);



Purpose
Adjusts	the	calibration	constants	for	the	SCXI-1540	module.	You	must	measure
the	voltage	generated	by	a	previous	call	to	the	DAQmxSetup1540Cal	function
and	specify	the	measurement	with	measOutput.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

refVoltage float64 The	excitation	RMS	voltage	measured	from	the	front	of	the	module.

measOutput float64 The	voltage	measured	at	the	output	of	the	module.

inputCalSource int32 The	calibration	input	source	selection.

Value Description
DAQmx_Val_Loopback0 Loopback	the	internal

excitation	voltage	with	0
degree	phase	shift.

DAQmx_Val_Loopback180 Loopback	the	internal
excitation	voltage	with
180	degree	phase	shift.

DAQmx_Val_Ground Connect	the	channel	to
ground.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetup1102Cal
int32	DAQmxSetup1102Cal	(uInt32	calHandle,	const	char	channelNames[],

float64	gain);



Purpose
Sets	the	SCXI-1102	module	to	the	specified	gain	value.	Calibration	input/output
points	can	be	measured	by	supplying	reference	signals	to	the	specified	channel
and	measuring	the	outputs.	Each	of	these	points	should	be	specified	using	the
DAQmxAdjust1102Cal	function.

Note	The	terminal	where	module	output	is	measured	will	depend	on	the	configuration	of	the	module	in
MAX.	National	Instruments	recommends	cabling	the	module	to	the	digitizer	so	that	the	output	appears	on
the	MCH0+/-	pins	of	the	rear	signal	connector.	Please	refer	to	the	module	user	manual	for	more
information	on	the	routing	of	module	output.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channelNames const	char
[]

The	physical	channel(s)	to	calibrate.

gain float64 The	gain	value	to	calibrate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetup1104Cal
int32	DAQmxSetup1104Cal	(uInt32	calHandle,	const	char	channel[]);



Purpose
Specifies	the	channel	on	the	SCXI-1104	module	for	calibration.	Measure
calibration	input/output	points	by	supplying	reference	signals	to	the	specified
channel	and	measuring	the	outputs.	Specify	each	of	these	points	using	the
DAQmxAdjust1104Cal	function.

Note	The	terminal	where	module	output	is	measured	depends	on	the	configuration	of	the	module	in	MAX.
National	Instruments	recommends	cabling	the	module	to	the	digitizer	so	that	the	output	appears	on	the
MCH0+/-	pins	of	the	rear	signal	connector.	Refer	to	the	module	user	manual	for	more	information	on	the
routing	of	module	output.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channel const	char
[]

The	physical	channel	to	calibrate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetup1112Cal
int32	DAQmxSetup1112Cal	(uInt32	calHandle,	const	char	channel[]);



Purpose
Specifies	the	channel	on	the	SCXI-1112	module	for	calibration.	Measure
calibration	input/output	points	by	supplying	reference	signals	to	the	specified
channel	and	measuring	the	outputs.	Specify	each	of	these	points	using	the
DAQmxAdjust1112Cal	function.

Note	The	terminal	where	module	output	is	measured	depends	on	the	configuration	of	the	module	in	MAX.
National	Instruments	recommends	cabling	the	module	to	the	digitizer	so	that	the	output	appears	on	the
MCH0+/-	pins	of	the	rear	signal	connector.	Refer	to	the	module	user	manual	for	more	information	on	the
routing	of	module	output.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channel const	char
[]

The	physical	channel	to	calibrate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetup1122Cal
int32	DAQmxSetup1122Cal	(uInt32	calHandle,	const	char	channel[],	float64

gain);



Purpose
Sets	the	SCXI-1122	module	to	the	specified	gain	value.	Calibration	I/O	points
can	be	measured	by	supplying	reference	signals	to	the	device	and	measuring	the
outputs.	Specify	each	of	these	points	using	the	DAQmxAdjust1122Cal	function.

Note	The	terminal	where	module	output	is	measured	depends	on	the	configuration	of	the	module	in	MAX.
National	Instruments	recommends	cabling	the	module	to	the	digitizer	so	that	the	output	appears	on	the
MCH0±	pins	of	the	rear	signal	connector.	Refer	to	the	module	user	manual	for	more	information	on	the
routing	of	module	output.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channel const	char
[]

The	physical	channel	to	calibrate.

gain float64 The	gain	value	to	calibrate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetup1124Cal
int32	DAQmxSetup1124Cal	(uInt32	calHandle,	const	char	channelName[],	int32

range,	uInt32	dacValue);



Purpose
Writes	the	specified	binary	value	to	the	D/A	circuitry	on	the	specified	channel	at
the	specified	range.	Measure	and	specify	the	voltage	or	current	generated	in	a
subsequent	call	to	the	DAQmxAdjust1124Cal	function.

Note	Specify	at	least	two	calibration	points	for	each	channel/range	being	calibrated.	The	recommended
binary	data	to	use	for	voltage	ranges	are	0	and	4095.	The	recommended	binary	data	to	use	for	the	current
range	is	255	and	4095.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channelName const	char
[]

The	physical	channel	to	calibrate.

range int32 The	range	to	calibrate.

dacValue uInt32 The	binary	number	to	write	to	the	DAC	circuitry.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetup1125Cal
int32	DAQmxSetup1125Cal	(uInt32	calHandle,	const	char	channelNames[],

float64	gain);



Purpose
Sets	the	SCXI-1125	module	to	the	specified	gain	value.	Calibration	input/output
points	can	be	measured	by	supplying	reference	signals	to	the	specified	channel
and	measuring	the	outputs.	Each	of	these	points	should	be	specified	using	the
DAQmxAdjust1125Cal	function.

Note	The	terminal	where	module	output	is	measured	will	depend	on	the	configuration	of	the	module	in
MAX.	National	Instruments	recommends	cabling	the	module	to	the	digitizer	so	that	the	output	appears	on
the	MCH0+/-	pins	of	the	rear	signal	connector.	Please	refer	to	the	module	user	manual	for	more
information	on	the	routing	of	module	output.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channelNames const	char
[]

The	physical	channel(s)	to	calibrate.

gain float64 The	gain	value	to	calibrate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetup1126Cal
int32	DAQmxSetup1126Cal	(uInt32	calHandle,	const	char	channelName[],

float64	upperFreqLimit);



Purpose
Specifies	the	channel	and	upper	frequency	limit	on	the	SCXI-1126	module	for
calibration.	Calibration	input/output	points	can	be	measured	by	supplying
reference	signals	to	the	specified	channel	and	measuring	the	outputs.	Specify
each	of	these	points	using	the	DAQmxAdjust1126Cal	function.

Note	The	terminal	where	the	module	output	is	measured	depends	on	the	configuration	of	the	module	in
MAX.	National	Instruments	recommends	cabling	the	module	to	the	digitizer	so	that	the	output	appears	on
the	MCH0±	pins	of	the	rear	signal	connector.	Refer	to	the	module	user	manual	for	more	information	on
the	routing	of	module	output.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channelName const
char	[]

The	physical	channel	to	calibrate.

upperFreqLimit float64 The	high	frequency	limit	in	hertz,	with	0	Hz	as	the	low	frequency	limit,	which	most
closely	encapsulates	the	ranges	to	be	calibrated.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetup1141Cal
int32	DAQmxSetup1141Cal	(uInt32	calHandle,	const	char	channelName[],

float64	gain);



Purpose
Sets	the	SCXI-1141	module	to	the	specified	gain	value.	Calibration	input/output
points	can	be	measured	by	supplying	reference	signals	to	the	specified	channel
and	measuring	the	outputs.	Each	of	these	points	should	be	specified	using	the
DAQmxAdjust1141Cal	function.

Note	The	terminal	where	the	module	output	is	measured	depends	on	the	configuration	of	the	module	in
MAX.	National	Instruments	recommends	cabling	the	module	to	the	digitizer	so	that	the	output	appears	on
the	MCH0±	pins	of	the	rear	signal	connector.	Refer	to	the	module	user	manual	for	more	information	on
the	routing	of	module	output.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channelName const	char
[]

The	physical	channel	to	calibrate.

gain float64 The	gain	value	to	calibrate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetup1142Cal
int32	DAQmxSetup1142Cal	(uInt32	calHandle,	const	char	channelName[],

float64	gain);



Purpose
Sets	the	SCXI-1142	module	to	the	specified	gain	value.	Calibration	input/output
points	can	be	measured	by	supplying	reference	signals	to	the	specified	channel
and	measuring	the	outputs.	Each	of	these	points	should	be	specified	using	the
DAQmxAdjust1142Cal	function.

Note	The	terminal	where	the	module	output	is	measured	depends	on	the	configuration	of	the	module	in
MAX.	National	Instruments	recommends	cabling	the	module	to	the	digitizer	so	that	the	output	appears	on
the	MCH0±	pins	of	the	rear	signal	connector.	Refer	to	the	module	user	manual	for	more	information	on
the	routing	of	module	output.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channelName const	char
[]

The	physical	channel	to	calibrate.

gain float64 The	gain	value	to	calibrate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetup1143Cal
int32	DAQmxSetup1143Cal	(uInt32	calHandle,	const	char	channelName[],

float64	gain);



Purpose
Sets	the	SCXI-1143	module	to	the	specified	gain	value.	Calibration	input/output
points	can	be	measured	by	supplying	reference	signals	to	the	specified	channel
and	measuring	the	outputs.	Each	of	these	points	should	be	specified	using	the
DAQmxAdjust1143Cal	function.

Note	The	terminal	where	the	module	output	is	measured	depends	on	the	configuration	of	the	module	in
MAX.	National	Instruments	recommends	cabling	the	module	to	the	digitizer	so	that	the	output	appears	on
the	MCH0±	pins	of	the	rear	signal	connector.	Refer	to	the	module	user	manual	for	more	information	on
the	routing	of	module	output.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channelName const	char
[]

The	physical	channel	to	calibrate.

gain float64 The	gain	value	to	calibrate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetup1502Cal
int32	DAQmxSetup1502Cal	(uInt32	calHandle,	const	char	channelName[],

float64	gain);



Purpose
Sets	the	SCXI-1502	module	to	the	specified	gain	value.	Calibration	I/O	points
can	be	measured	by	supplying	reference	signals	to	the	specified	channel	and
measuring	the	outputs.	Specify	each	of	these	points	using	the
DAQmxAdjust1502Cal	function.

Note	The	terminal	where	the	module	output	is	measured	depends	on	the	configuration	of	the	module	in
MAX.	National	Instruments	recommends	cabling	the	module	to	the	digitizer	so	that	the	output	appears	on
the	MCH0±	pins	of	the	rear	signal	connector.	Refer	to	the	module	user	manual	for	more	information	on
the	routing	of	module	output.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channelName const	char
[]

The	physical	channel	to	calibrate.

gain float64 The	gain	value	to	calibrate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetup1503Cal
int32	DAQmxSetup1503Cal	(uInt32	calHandle,	const	char	channelName[],

float64	gain);



Purpose
Sets	the	SCXI-1503	module	to	the	specified	gain	value.	Calibration	I/O	points
can	be	measured	by	supplying	reference	signals	to	the	specified	channel	and
measuring	the	outputs.	Specify	each	of	these	points	using	the
DAQmxAdjust1503Cal	function.

Note	The	terminal	where	the	module	output	is	measured	depends	on	the	configuration	of	the	module	in
MAX.	National	Instruments	recommends	cabling	the	module	to	the	digitizer	so	that	the	output	appears	on
the	MCH0±	pins	of	the	rear	signal	connector.	Refer	to	the	module	user	manual	for	more	information	on
the	routing	of	module	output.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channelName const	char
[]

The	physical	channel	to	calibrate.

gain float64 The	gain	value	to	calibrate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetup1520Cal
int32	DAQmxSetup1520Cal	(uInt32	calHandle,	const	char	channelNames[],

float64	gain);



Purpose
Sets	the	SCXI-1520	module	to	the	specified	gain	value.	Calibration	input/output
points	can	be	measured	by	supplying	reference	signals	to	the	specified	channel
and	measuring	the	outputs.	Each	of	these	points	should	be	specified	using	the
DAQmxAdjust1520Cal	function.	This	function	will	also	disable	sample	and	hold
on	the	module	so	that	the	output	can	be	measured	by	external	devices	that	cannot
supply	the	appropriate	sample	and	hold	timing	signals.

Note	The	terminal	where	module	output	is	measured	will	depend	on	the	configuration	of	the	module	in
MAX.	National	Instruments	recommends	cabling	the	module	to	the	digitizer	so	that	the	output	appears	on
the	MCH0+/-	pins	of	the	rear	signal	connector.	Please	refer	to	the	module	user	manual	for	more
information	on	the	routing	of	module	output.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channelNames const	char
[]

The	physical	channel(s)	to	calibrate.

gain float64 The	gain	value	to	calibrate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetup153xCal
int32	DAQmxSetup153xCal	(uInt32	calHandle,	const	char	channelName[],

float64	gain);



Purpose
Sets	the	SCXI-153x	module	to	the	specified	gain	value.	Calibration	input/output
points	can	be	measured	by	supplying	reference	signals	to	the	specified	channel
and	measuring	the	outputs.	Each	of	these	points	should	be	specified	using	the
DAQmxAdjust153xCal	function.

Note	The	terminal	where	the	module	output	is	measured	depends	on	the	configuration	of	the	module	in
MAX.	National	Instruments	recommends	cabling	the	module	to	the	digitizer	so	that	the	output	appears	on
the	MCH0±	pins	of	the	rear	signal	connector.	Refer	to	the	module	user	manual	for	more	information	on
the	routing	of	module	output.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the	DAQmxInitExtCal
function.

channelName const	char
[]

The	physical	channel	to	calibrate.

gain float64 The	gain	value	to	calibrate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetup1540Cal
int32	DAQmxSetup1540Cal	(uInt32	calHandle,	const	char	channel[],	float64

excitationVoltage,	float64	excitationFreq);



Purpose
Sets	the	SCXI-1540	module	to	the	specified	gain	value.	Calibration	input/output
points	can	be	measured	by	supplying	reference	signals	to	the	specified	channel
and	measuring	the	outputs.	Each	of	these	points	should	be	specified	using	the
DAQmxAdjust1540Cal	function.

Note	The	terminal	where	the	module	output	is	measured	depends	on	the	configuration	of	the	module	in
MAX.	National	Instruments	recommends	cabling	the	module	to	the	digitizer	so	that	the	output	appears	on
the	MCH0±	pins	of	the	rear	signal	connector.	Refer	to	the	module	user	manual	for	more	information	on
the	routing	of	module	output.



Parameters
Input

Name Type Description

calHandle uInt32 A	reference	to	the	calibration	session	that	you	created	using	the
DAQmxInitExtCal	function.

channelName const	char
[]

The	physical	channel	to	calibrate.

excitationVoltage float64 The	RMS	value	of	the	internal	AC	excitation	voltage.

excitationFreq float64 The	frequency	of	the	internal	AC	excitation	voltage.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxDeleteSavedGlobalChan
int32	DAQmxDeleteSavedGlobalChan	(const	char	channelName[]);



Purpose
Deletes	the	specified	global	virtual	channel	from	MAX.	This	function	does	not	remove	the
global	virtual	channel	from	tasks	that	use	it.

javascript:launchSharedHelp('mxcncpts.chm::/Chans.html');
javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

channelName const	char	[] Name	of	the	global	virtual	channel	to	delete.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxDeleteSavedScale
int32	DAQmxDeleteSavedScale	(const	char	scaleName[]);



Purpose
Deletes	the	specified	custom	scale	from	MAX.	This	function	does	not	remove	the
custom	scale	from	virtual	channels	that	use	it.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');
javascript:launchSharedHelp('mxcncpts.chm::/Chans.html');


Parameters
Input

Name Type Description

scaleName const	char	[] Name	of	the	custom	scale	to	delete.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxDeleteSavedTask
int32	DAQmxDeleteSavedTask	(const	char	taskName[]);



Purpose
Deletes	the	specified	task	from	MAX.	This	function	does	not	clear	the	copy	of	the
task	stored	in	memory.	Use	DAQmxClearTask	to	clear	the	copy	of	the	task.

javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');


Parameters
Input

Name Type Description

taskName const	char	[] Name	of	the	task	to	delete.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSaveGlobalChan
int32	DAQmxSaveGlobalChan	(TaskHandle	taskHandle,	const	char

channelName[],	const	char	saveAs[],	const	char	author[],	uInt32
options);



Purpose
Saves	the	specified	local	or	global	virtual	channel	to	MAX	as	a	global	virtual	channel.	You
must	specify	both	the	local	or	global	virtual	channel	to	save	and	a	task	that
contains	that	channel.
Programmatically	saved	global	virtual	channels	cannot	be	viewed	in	the	DAQ
Assistant	for	versions	of	NI-DAQ	earlier	than	7.4.	To	view	a	programmatically
saved	global	virtual	channel	in	an	earlier	version	of	NI-DAQ,	first	use	the	DAQ
Assistant	in	NI-DAQ	7.4	or	later	to	save	the	global	virtual	channel.
Visit	the	DAQmx	Professional	Developer	Tools	website	for	more	information	and	examples	of
programmatically	saving	global	virtual	channels.

javascript:launchSharedHelp('mxcncpts.chm::/Chans.html');
javascript:WWW(WWW_DAQMXPRO)


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	that	contains	the	local	or	global	virtual	channel	you	want	to	save.

channelName const	char
[]

Name	of	the	local	or	global	virtual	channel	to	save.

saveAs const	char
[]

Name	to	save	the	global	virtual	channel	as.	If	you	pass	an	empty	string	("")	or	NULL,	the
name	currently	assigned	to	the	global	virtual	channel	will	be	used.

author const	char
[]

Name	to	store	with	the	global	virtual	channel.

options uInt32 Use	this	parameter	to	set	certain	options.	You	can	combine	options	with	the	bitwise-OR
operator	('|')	to	set	multiple	options.	Pass	a	value	of	zero	if	no	options	need	to	be	set.

Value Description
DAQmx_Val_Save_Overwrite Overwrite	a

global
virtual
channel	of
the	same
name	if	one
is	already
saved	in
MAX.	If
you	do	not
set	this	flag
and	a	global
virtual
channel	of
the	same
name	is
already
saved	in
MAX,	the
function
returns	an
error.

DAQmx_Val_Save_AllowInteractiveEditing Allow	the
global
virtual



channel	to
be	edited	in
the	DAQ
Assistant.	If
you	set	this
flag,	the
DAQ
Assistant
must
support	all
global
virtual
channel
settings.

DAQmx_Val_Save_AllowInteractiveDeletion Allow	the
global
virtual
channel	to
be	deleted
through
MAX.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSaveScale
int32	DAQmxSaveScale	(const	char	scaleName[],	const	char	saveAs[],	const

char	author[],	uInt32	options);



Purpose
Saves	the	specified	custom	scale	to	MAX.
Visit	the	DAQmx	Professional	Developer	Tools	website	for	more	information	and	examples	of
programmatically	saving	global	channels.

javascript:launchSharedHelp('mxcncpts.chm::/customScales.html');
javascript:WWW(WWW_DAQMXPRO)


Parameters
Input

Name Type Description

scaleName const
char	[]

Name	of	the	custom	scale	to	save.

saveAs const
char	[]

Name	to	save	the	custom	scale	as.	If	you	pass	an	empty	string	("")	or	NULL,	the	name
currently	assigned	to	the	scale	is	used.

author const
char	[]

Name	to	store	with	the	custom	scale.

options uInt32 Use	this	parameter	to	set	certain	options.	You	can	combine	options	with	the	bitwise-OR
operator	('|')	to	set	multiple	options.	Pass	a	value	of	zero	if	no	options	need	to	be	set.

Value Description
DAQmx_Val_Save_Overwrite Overwrite	a

custom
scale	of	the
same	name
if	one	is
already
saved	in
MAX.	If
you	do	not
set	this	flag
and	a
custom
scale	of	the
same	name
is	already
saved	in
MAX,	the
function
returns	an
error.

DAQmx_Val_Save_AllowInteractiveEditing Allow	the
custom
scale	to	be
edited	in	the
DAQ
Assistant.



DAQmx_Val_Save_AllowInteractiveDeletion Allow	the
custom
scale	to	be
deleted
through
MAX.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSaveTask
int32	DAQmxSaveTask	(TaskHandle	taskHandle,	const	char	saveAs[],	const

char	author[],	uInt32	options);



Purpose
Saves	the	specified	task	and	any	local	channels	it	contains	to	MAX.	This	function	does
not	save	global	channels.	Use	DAQmxSaveGlobalChan	to	save	global	channels.
Programmatically	saved	tasks	cannot	be	viewed	in	the	DAQ	Assistant	for
versions	of	NI-DAQ	earlier	than	7.4.	To	view	a	programmatically	saved	task	in
an	earlier	version	of	NI-DAQ,	first	use	the	DAQ	Assistant	in	NI-DAQ	7.4	or
later	to	save	the	task.
Visit	the	DAQmx	Professional	Developer	Tools	website	for	more	information	and	examples	of
programmatically	saving	global	channels.

javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html');
javascript:launchSharedHelp('mxcncpts.chm::/Chans.html');
javascript:WWW(WWW_DAQMXPRO)


Parameters
Input

Name Type Description

taskHandle TaskHandle The	task	to	save.

saveAs const	char
[]

Name	to	save	the	task	as.	If	you	pass	an	empty	string	("")	or	NULL,	the	name	currently
assigned	to	the	task	will	be	used.

author const	char
[]

Name	to	store	with	the	task.

options uInt32 Use	this	parameter	to	set	certain	options.	You	can	combine	options	with	the	bitwise-OR
operator	('|')	to	set	multiple	options.	Pass	a	value	of	zero	if	no	options	need	to	be	set.

Value Description
DAQmx_Val_Save_Overwrite Overwrite	a

task	of	the
same	name
if	one	is
already
saved	in
MAX.	If
you	do	not
set	this	flag
and	a	task
of	the	same
name	is
already
saved	in
MAX,	the
function
returns	an
error.

DAQmx_Val_Save_AllowInteractiveEditing Allow	the
task	to	be
edited	in	the
DAQ
Assistant.	If
you	set	this
flag,	the
DAQ



Assistant
must
support	all
task
settings.

DAQmx_Val_Save_AllowInteractiveDeletion Allow	the
task	to	be
deleted
through
MAX.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxClearTEDS
int32	DAQmxClearTEDS	(const	char	physicalChannel[]);



Purpose
Removes	TEDS	information	from	the	physical	channel	you	specify.	This
function	temporarily	overrides	any	TEDS	configuration	for	the	physical	channel
that	you	performed	in	MAX.



Parameters
Input

Name Type Description

physicalChannel const	char[] The	name	of	the	physical	channel	you	want	to	clear.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxConfigureTEDS
int32	DAQmxConfigureTEDS	(const	char	physicalChannel[],	const	char

filePath[]);



Purpose
Associates	TEDS	information	with	the	physical	channel	you	specify.	If	you	do
not	specify	the	filename	of	a	data	sheet	in	the	filePath	parameter,	this	function
attempts	to	find	a	TEDS	sensor	connected	to	the	physical	channel.	This	function
temporarily	overrides	any	TEDS	configuration	for	the	physical	channel	that	you
performed	in	MAX.



Parameters
Input

Name Type Description

physicalChannel const
char
[]

The	name	of	the	physical	channel	you	want	to	configure.

filePath const
char
[]

The	path	to	a	Virtual	TEDS	data	sheet	that	you	want	to	associate	with	the	physical
channel.	If	you	do	not	specify	the	filename	of	a	data	sheet,	this	function	attempts	to
find	a	TEDS	sensor	connected	to	the	physical	channel.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteToTEDSFromArray
int32	DAQmxWriteToTEDSFromArray	(const	char	physicalChannel[],	uInt8

bitstream[],	uInt32	arraySize,	int32	basicTEDSOptions);



Purpose
Writes	TEDS	data,	stored	as	a	1D	array	of	8-bit	unsigned	integers,	to	the	sensor
connected	to	the	physical	channel	you	specify.

javascript:launchSharedHelp('measfunds.chm::/TEDS.html');


Parameters
Input

Name Type Description

physicalChannel const
char	[]

The	name	of	the	physical	channel	you	want	to	configure.

bitstream uInt8 Represents	the	TEDS	bitstream	to	write	to	the	sensor.	This	bitstream	must	be
constructed	according	to	the	IEEE	1451.4	specification.

arraySize uInt32 Number	of	bytes	in	the	bitstream.

basicTEDSOptions int32 Specifies	how	to	handle	basic	TEDS	data	in	the	bitstream.

Value Description
Do	Not
Write

Ignore	basic	TEDS	data.

Write	to
EEPROM

Write	basic	TEDS	data	to	the	EEPROM,
even	if	the	sensor	includes	a	PROM.
You	cannot	write	basic	TEDS	data	if	the
PROM	contains	data.

Write	to
PROM

Write	basic	TEDS	data	to	the	PROM.
Any	subsequent	attempts	to	write	basic
TEDS	data	result	in	an	error.

javascript:launchSharedHelp('measfunds.chm::/writingTEDS.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxWriteToTEDSFromFile
int32	DAQmxWriteToTEDSFromFile	(const	char	physicalChannel[],	const	char

filePath[],	int32	basicTEDSOptions);



Purpose
Writes	TEDS	data	from	a	virtual	TEDS	file	to	the	sensor	connected	to	the	physical
channel	you	specify.

javascript:launchSharedHelp('measfunds.chm::/TEDS.html');


Parameters
Input

Name Type Description

physicalChannel const
char
[]

The	name	of	the	physical	channel	you	want	to	configure.

filePath const
char
[]

Specifies	the	filename	of	a	virtual	TEDS	file	that	contains	the	bitstream	to	write.

basicTEDSOptions int32 Specifies	how	to	handle	basic	TEDS	data	in	the	bitstream.

Value Description
Do	Not
Write

Ignore	basic	TEDS	data.

Write	to
EEPROM

Write	basic	TEDS	data	to	the	EEPROM,
even	if	the	sensor	includes	a	PROM.	You
cannot	write	basic	TEDS	data	if	the
PROM	contains	data.

Write	to
PROM

Write	basic	TEDS	data	to	the	PROM.
Any	subsequent	attempts	to	write	basic
TEDS	data	result	in	an	error.

javascript:launchSharedHelp('measfunds.chm::/writingTEDS.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetAnalogPowerUpStates
int32	DAQmxSetAnalogPowerUpStates	(const	char	deviceName[],	const	char

channelNames[],	float64	state,	int32	channelType,	...);



Purpose
Updates	the	states	that	analog	physical	channels	on	a	device	are	set	to	when	the
device	powers	up	or	when	the	device	is	reset.	Power-up	states	are	stored	in
EEPROMs	that	you	can	write	to	only	a	limited	number	of	times.	Therefore,	you
should	use	this	function	as	infrequently	as	possible.	This	function	writes	to	the
EEPROM	only	if	a	setting	you	request	is	different	from	the	one	currently	stored
on	the	EEPROM.	This	function	writes	power-up	states	in	sequential	order.
Therefore,	if	a	physical	channel	has	multiple	entries,	the	last	entry	is	used.



Parameters
Input

Name Type Description

deviceName const	char	[] The	name	of	the	device,	as	configured	in	Measurement	&
Automation	Explorer	(MAX),	to	which	this	operation	applies.

channelNames const	char	[] The	physical	channel	to	modify.	You	can	specify	a	list	or	range	of
channels.

state float64 The	power-up	state	to	set	for	the	channel(s)	in	channelNames.

channelType int32 The	channel	type	for	the	channel(s)	in	channelNames.

Value Description
DAQmx_Val_ChannelVoltage Voltage

output.	You
can	set
voltage
power-up
states	only
for	physical
channels
that	support
voltage
output.

DAQmx_Val_ChannelCurrent Current
output.	You
can	set
current
power-up
states	only
for	physical
channels
that	support
current
output.

moreChannelsStatesAndTypes any	type
(passed	by
value)

Combinations	of	additional	channels	and	states	and	types	to	set	the
channels	to	when	the	device	powers	up	or	when	the	device	is	reset.
You	must	pass	NULL	at	the	end	of	the	argument	list.
If	you	do	not	want	to	pass	additional	channels	and	states,	the
function	call	can	be	similar	to	the	following	example:
DAQmxSetAnalogPowerUpStates	("Dev1",	"Dev1/ao0",	0.0,

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');


DAQmx_Val_ChannelVoltage,	NULL);	
If	you	pass	additional	channels	and	states,	the	function	call	can	be
similar	to	the	following	example:
DAQmxSetAnalogPowerUpStates	("Dev1",	"Dev1/ao0",	0.0,
DAQmx_Val_ChannelVoltage,	"Dev1/ao1",	1.0,
DAQmx_Val_ChannelCurrent,	NULL);



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetDigitalLogicFamilyPowerUpState
int32	DAQmxSetDigitalLogicFamilyPowerUpState	(const	char	deviceName[],

int32	logicFamily);



Purpose
Sets	the	digital	logic	family	to	use	when	the	device	powers	up.



Parameters
Input

Name Type Description

deviceName const	char	[] The	name	of	the	device,	as	configured	in	Measurement	&	Automation	Explorer
(MAX),	to	which	this	operation	applies.

logicFamily int32 Specifies	the	logic	family	to	set	the	device	to	when	it	powers	up.	A	logic	family
corresponds	to	voltage	thresholds	that	are	compatible	with	a	group	of	voltage
standards.	Refer	to	device	documentation	for	information	on	the	logic	high	and
logic	low	voltages	for	these	logic	families.

Value Description
DAQmx_Val_2point5V 2.5	V	(compatible	with

CMOS	signals)
DAQmx_Val_3point3V 3.3	V	(compatible	with

LVTTL	and	LVCMOS
signals)

DAQmx_Val_5V 5	V	(compatible	with	TTL
and	CMOS	signals)



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxSetDigitalPowerUpStates
int32	DAQmxSetDigitalPowerUpStates	(const	char	deviceName[],	const	char

channelNames[],	int32	state,	...);



Purpose
Updates	the	state	that	digital	physical	channels	on	static	DIO	devices	are	set	to
when	the	device	powers	up	or	when	the	device	is	reset.	Power-up	states	are
stored	in	EEPROMs	that	you	can	write	to	only	a	limited	number	of	times.
Therefore,	you	should	use	this	function	as	infrequently	as	possible.	This	function
writes	to	the	EEPROM	only	if	a	setting	you	request	is	different	from	the	one
currently	stored	on	the	EEPROM.	This	function	writes	power-up	states	in
sequential	order.	Therefore,	if	a	physical	channel	has	multiple	entries,	the	last
entry	is	used.



Parameters
Input

Name Type Description

deviceName const	char	[] The	name	of	the	device,	as	configured	in	Measurement	&	Automation
Explorer	(MAX),	to	which	this	operation	applies.

channelNames const	char	[] The	digital	line	or	port	to	modify.	You	cannot	set	power-up	states	for
dedicated	digital	input	lines.	You	can	specify	a	list	or	range	of	channels.

state int32 The	power-up	state	to	set	for	the	channel(s)	in	channelNames.

Value Description
DAQmx_Val_High High	logic
DAQmx_Val_Low Low	logic
DAQmx_Val_Tristate High-impedance

state.	You	can	select
this	state	only	on
devices	with
bidirectional	ports,
and	you	can	select	it
only	for	entire	ports.
You	cannot	select
this	state	for
dedicated	digital
output	lines.

moreChannelsAndStates any	type
(passed	by
value)

Pairs	of	additional	channels	and	the	states	to	set	the	channels	to	when
the	device	powers	up	or	when	the	device	is	reset.	You	must	pass
NULL	at	the	end	of	the	argument	list.
If	you	do	not	want	to	pass	additional	channels	and	states,	the	function
call	can	be	similar	to	the	following	example:
DAQmxSetDigitalPowerUpStates	("Dev1",	"Dev1/do0",
DAQmx_Val_High,	NULL);	
If	you	pass	additional	channels	and	states,	the	function	call	can	be
similar	to	the	following	example:
DAQmxSetDigitalPowerUpStates	("Dev1",	"Dev1/do0",
DAQmx_Val_High,	"Dev1/do1",	DAQmx_Val_Tristate,	NULL);

javascript:launchSharedHelp('mxcncpts.chm::/physChanNames.html');


Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	positive	value	indicates	a	warning.	A	negative	value	indicates	an	error.



DAQmxGetErrorString
int32	DAQmxGetErrorString	(int32	errorCode,	char	errorString[],	uInt32

bufferSize);



Purpose
Converts	the	error	number	returned	by	an	NI-DAQmx	function	into	a
meaningful	error	message.
If	you	pass	in	a	valid	value	for	errorString	and	its	bufferSize,	this	function
returns	as	much	of	the	available	data	as	possible.
If	you	pass	NULL	for	errorString	or	0	for	bufferSize,	this	function	returns	the
number	of	bytes	you	need	to	allocate.



Parameters
Input

Name Type Description

errorCode int32 An	error	code	or	warning	returned	by	one	of	the	NI-DAQmx	Library	functions.

bufferSize uInt32 The	size,	in	bytes,	of	the	buffer	passed	in	the	errorString.	If	you	pass	0,	this	function
returns	the	number	of	bytes	you	need	to	allocate.

Output

errorString char	[] The	meaningful	error	message	for	the	error	number.	If	you	pass	NULL,	this	function
returns	the	number	of	bytes	you	need	to	allocate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	negative	value	indicates	an	error.
If	you	pass	in	a	valid	value	for	errorString	and	its	bufferSize,	this	function	returns	as	much	of
the	available	data	as	possible.
If	you	pass	NULL	for	errorString	or	0	for	bufferSize,	this	function	returns	the	number	of	bytes
you	need	to	allocate.



DAQmxGetExtendedErrorInfo
int32	DAQmxGetExtendedErrorInfo	(char	errorString[],	uInt32	bufferSize);



Purpose
Returns	dynamic,	specific	error	information.	This	function	is	valid	only	for	the
last	function	that	failed;	additional	NI-DAQmx	calls	may	invalidate	this
information.
If	you	pass	valid	values	for	errorString	and	bufferSize,	this	function	returns	as
much	of	the	available	data	as	possible.
If	you	pass	NULL	for	errorString	or	0	for	bufferSize,	this	function	returns	the
number	of	bytes	you	need	to	allocate.



Parameters
Input

Name Type Description

bufferSize uInt32 The	size,	in	bytes,	of	errorString.	If	you	pass	0,	this	function	returns	the	number	of	bytes
you	need	to	allocate.

Output

Name Type Description

errorString char	[] Dynamic	error	information.	If	you	pass	NULL,	this	function	returns	the	number	of	bytes
you	need	to	allocate.



Return	Value
Name Type Description

status int32 The	error	code	returned	by	the	function	in	the	event	of	an	error	or	warning.	A	value	of	0	indicates
success.	A	negative	value	indicates	an	error.
If	you	pass	in	a	valid	value	for	errorString	and	its	bufferSize,	this	function	returns	as	much	of
the	available	data	as	possible.
If	you	pass	NULL	for	errorString	or	0	for	bufferSize,	this	function	returns	the	number	of	bytes
you	need	to	allocate.


