


NI-488.2	Help
June	2008,	370003J-01
Use	this	help	file	for	function	information,	troubleshooting	your	program,
and	an	overall	summary	of	the	NI-488.2	software.
For	more	information	about	this	help	file,	refer	to	the	following	topics:
Using	Help
Related	Documentation
Glossary
Important	Information
Technical	Support	and	Professional	Services
To	comment	on	National	Instruments	documentation,	refer	to	the	National
Instruments	Web	site.
©	19992008	National	Instruments	Corporation.	All	rights	reserved.

javascript:WWW(WWW_Feedback)


Related	Documentation
The	following	documents	contain	information	that	you	may	find	helpful	as
you	use	this	help	file:

ANSI/IEEE	Standard	488.1-1987,	IEEE	Standard	Digital	Interface
for	Programmable	Instrumentation
ANSI/IEEE	Standard	488.1-2003,	IEEE	Standard	for	Higher
Performance	Protocol	for	the	Standard	Digital	Interface	for
Programmable	Instrumentation
ANSI/IEEE	Standard	488.2-1987,	IEEE	Standard	Codes,
Formats,	Protocols,	and	Common	Commands
ANSI/IEEE	Standard	488.2-1992,	IEEE	Standard	Codes,
Formats,	Protocols,	and	Common	Commands
Microsoft	Windows	help
Microsoft	Win32	Software	Development	Kit	for	Microsoft
Windows
Readme	file



Using	Help
Conventions
Navigating	Help
Searching	Help
Printing	Help	File	Topics



Conventions
This	help	file	uses	the	following	formatting	and	typographical
conventions:

<	> Angle	brackets	that	contain	numbers	separated	by	an
ellipsis	represent	a	range	of	values	associated	with	a	bit	or
signal	namefor	example,	AO	<0..3>.

[	] Square	brackets	enclose	optional	itemsfor	example,
[response].

» The	»	symbol	leads	you	through	nested	menu	items	and
dialog	box	options	to	a	final	action.	The	sequence
File»Page	Setup»Options	directs	you	to	pull	down	the	File
menu,	select	the	Page	Setup	item,	and	select	Options	from
the	last	dialog	box.
This	icon	denotes	a	tip,	which	alerts	you	to	advisory
information.
This	icon	denotes	a	note,	which	alerts	you	to	important
information.

bold Bold	text	denotes	items	that	you	must	select	or	click	in	the
software,	such	as	menu	items	and	dialog	box	options.	Bold
text	also	denotes	parameter	names.

green Underlined	text	in	this	color	denotes	a	link	to	a	help	topic,
help	file,	or	Web	address.

italic Italic	text	denotes	variables,	emphasis,	cross	references,	or
an	introduction	to	a	key	concept.	Italic	text	also	denotes	text
that	is	a	placeholder	for	a	word	or	value	that	you	must
supply.

monospace Text	in	this	font	denotes	text	or	characters	that	you	should
enter	from	the	keyboard,	sections	of	code,	programming
examples,	and	syntax	examples.	This	font	is	also	used	for
the	proper	names	of	disk	drives,	paths,	directories,
programs,	subprograms,	subroutines,	device	names,
functions,	operations,	variables,	filenames,	and	extensions.

monospace
bold

Bold	text	in	this	font	denotes	the	messages	and	responses
that	the	computer	automatically	prints	to	the	screen.	This



font	also	emphasizes	lines	of	code	that	are	different	from	the
other	examples.

monospace
italic

Italic	text	in	this	font	denotes	text	that	is	a	placeholder	for	a
word	or	value	that	you	must	supply.



Navigating	Help	(Windows	Only)
To	navigate	this	help	file,	use	the	Contents,	Index,	and	Search	tabs	to
the	left	of	this	window	or	use	the	following	toolbar	buttons	located	above
the	tabs:

Hide—Hides	the	navigation	pane	from	view.
Locate—Locates	the	currently	displayed	topic	in	the	Contents
tab,	allowing	you	to	view	related	topics.
Back—Displays	the	previously	viewed	topic.
Forward—Displays	the	topic	you	viewed	before	clicking	the
Back	button.
Options—Displays	a	list	of	commands	and	viewing	options	for
the	help	file.



Searching	Help	(Windows	Only)
Use	the	Search	tab	to	the	left	of	this	window	to	locate	content	in	this	help
file.	If	you	want	to	search	for	words	in	a	certain	order,	such	as	"related
documentation,"	add	quotation	marks	around	the	search	words	as	shown
in	the	example.	Searching	for	terms	on	the	Search	tab	allows	you	to
quickly	locate	specific	information	and	information	in	topics	that	are	not
included	on	the	Contents	tab.



Wildcards
You	also	can	search	using	asterisk	(*)	or	question	mark	(?)	wildcards.
Use	the	asterisk	wildcard	to	return	topics	that	contain	a	certain	string.	For
example,	a	search	for	"prog*"	lists	topics	that	contain	the	words
"program,"	"programmatically,"	"progress,"	and	so	on.
Use	the	question	mark	wildcard	as	a	substitute	for	a	single	character	in	a
search	term.	For	example,	"?ext"	lists	topics	that	contain	the	words
"next,"	"text,"	and	so	on.

Note		Wildcard	searching	will	not	work	on	Simplified	Chinese,
Traditional	Chinese,	Japanese,	and	Korean	systems.



Nested	Expressions
Use	nested	expressions	to	combine	searches	to	further	refine	a	search.
You	can	use	Boolean	expressions	and	wildcards	in	a	nested	expression.
For	example,	"example	AND	(program	OR	VI)"	lists	topics	that	contain
"example	program"	or	"example	VI."	You	cannot	nest	expressions	more
than	five	levels.



Boolean	Expressions
Click	the	 	button	to	add	Boolean	expressions	to	a	search.	The	following
Boolean	operators	are	available:

AND	(default)—Returns	topics	that	contain	both	search	terms.
You	do	not	need	to	specify	this	operator	unless	you	are	using
nested	expressions.
OR—Returns	topics	that	contain	either	the	first	or	second	term.
NOT—Returns	topics	that	contain	the	first	term	without	the
second	term.
NEAR—Returns	topics	that	contain	both	terms	within	eight	words
of	each	other.



Search	Options

Use	the	following	checkboxes	on	the	Search	tab	to	customize	a	search:
Search	previous	results—Narrows	the	results	from	a	search
that	returned	too	many	topics.	You	must	remove	the	checkmark
from	this	checkbox	to	search	all	topics.
Match	similar	words—Broadens	a	search	to	return	topics	that
contain	words	similar	to	the	search	terms.	For	example,	a	search
for	"program"	lists	topics	that	include	the	words	"programs,"
"programming,"	and	so	on.
Search	titles	only—Searches	only	in	the	titles	of	topics.



Printing	Help	File	Topics	(Windows	Only)
Complete	the	following	steps	to	print	an	entire	book	from	the	Contents
tab:

1.	 Right-click	the	book.
2.	 Select	Print	from	the	shortcut	menu	to	display	the	Print	Topics

dialog	box.
3.	 Select	the	Print	the	selected	heading	and	all	subtopics	option.

Note		Select	Print	the	selected	topic	if	you	want	to	print
the	single	topic	you	have	selected	in	the	Contents	tab.

4.	 Click	the	OK	button.



Printing	PDF	Documents
This	help	file	may	contain	links	to	PDF	documents.	To	print	PDF
documents,	click	the	print	button	located	on	the	Adobe	Acrobat	Viewer
toolbar.



Getting	Started	with	Your	Hardware	and
Software
To	use	your	GPIB	hardware	and	NI-488.2	software	to	communicate	with
an	instrument,	follow	these	steps:

1.	 Install	your	GPIB	hardware	according	to	the	instructions	in	the
getting	started	documentation	on	the	NI-488.2	for	Windows	CD.
For	more	information	about	the	documentation,	refer	to	Access
Additional	Help	and	Resources	for	GPIB.

2.	 Following	the	GPIB	configuration	requirements,	connect	an
instrument	to	your	GPIB	hardware	and	power	it	on.

3.	 Launch	Measurement	&	Automation	Explorer	by	selecting
Start»Programs»National	Instruments»Measurement	&
Automation	or	clicking	the	following	button.
>		Start	Measurement	&	Automation	Explorer.

4.	 In	Measurement	&	Automation	Explorer,	scan	for	instruments
connected	to	your	GPIB	hardware.	For	more	information,	refer	to
Scan	for	GPIB	Instruments.

5.	 Use	the	NI-488.2	Communicator	to	send	commands	to	and	read
responses	from	your	instrument.	For	more	information,	refer	to
Communicate	with	a	GPIB	Instrument.

Measurement	&	Automation	Explorer	also	gives	you	access	to	all	the	NI-
488.2	software	utilities.	You	can	access	online	help,	troubleshooting
assistance,	and	the	National	Instruments	Web	site	from	the
Measurement	&	Automation	Explorer	Help	menu.
For	an	overview	of	how	to	set	up	and	configure	your	system,	refer	to	the
Setting	up	and	Configuring	Your	System	topic.



Access	Additional	Help	and	Resources	for	GPIB
To	access	additional	help	and	resources	for	the	NI-488.2	software	and
your	GPIB	hardware,	you	can	refer	to	the	National	Instruments	GPIB
Web	site	or	the	NI-488.2	for	Windows	CD.



National	Instruments	GPIB	Web	Site
To	access	the	National	Instruments	Web	site	for	GPIB	in	Measurement	&
Automation	Explorer,	select	Help»National	Instruments	on	the
Web»GPIB	Home	Page.



NI-488.2	for	Windows	CD
The	following	NI-488.2	documentation	is	available	on	your	NI-488.2	for
Windows	CD:

The	GPIB	Installation	Guide	briefly	describes	how	to	install	the
NI-488.2	software	and	your	GPIB	hardware.
The	NI-488.2	User	Manual	describes	the	features	and	functions
of	the	NI-488.2	software.
The	GPIB	Hardware	Guide	contains	detailed	instructions	on	how
to	install	and	configure	your	GPIB	hardware.	This	guide	also
includes	hardware	specifications	and	compliance	information.
The	GPIB	Analyzer	User	Manual	contains	instructions	to	help	you
use	the	GPIB	analyzer	software.
The	NI-488.2	API	Quick	Reference	Card	lists	status	word
conditions,	error	codes,	functions,	board	options,	device	options,
multiline	interface	messages,	routines,	and	timeout	values	for	the
NI-488.2	API.

To	view	these	documents	online,	insert	your	NI-488.2	CD.	When	the	NI-
488.2	for	Windows	screen	appears,	select	View	Documentation.	The
documentation	utility	helps	you	find	the	documentation	you	want	to	view.
You	can	also	view	these	documents	on	our	Web	site.

javascript:WWW(WWW_Manuals)


Learning	More	about	GPIB
GPIB	Overview
Setting	up	and	Configuring	Your	System
Talkers,	Listeners,	and	Controllers
Controller-In-Charge	and	System	Controller
GPIB	Addresses
Sending	Messages	across	the	GPIB
IEEE	488	Command	Messages
Related	Documentation
Access	Additional	Help	and	Resources	for	GPIB
HS488	Overview



GPIB	Overview
The	ANSI/IEEE	Standard	488.1-1987,	also	known	as	GPIB,	describes	a
standard	interface	for	communication	between	instruments	and
controllers	from	various	vendors.	It	contains	information	about	electrical,
mechanical,	and	functional	specifications.	GPIB	is	a	digital,	8-bit	parallel
communications	interface	with	data	transfer	rates	of	1	Mbytes/s	and
higher,	using	a	three-wire	handshake.	The	bus	supports	one	System
Controller,	usually	a	computer,	and	up	to	14	additional	instruments.	The
ANSI/IEEE	Standard	488.2-2003	is	an	extension	of	IEEE	488.1	that
provides	a	means	for	achieving	significantly	higher	data	transfer	rates
(310	Mbytes/s)	while	maintaining	compatibility	with	existing	devices.	The
ANSI/IEEE	Standard	488.2-1992	extends	IEEE	488.1	by	defining	a	bus
communication	protocol,	a	common	set	of	data	codes	and	formats,	and	a
generic	set	of	common	device	commands.
For	more	information,	refer	to	HS488	Overview.



Setting	up	and	Configuring	Your	System
Devices	are	usually	connected	with	a	cable	assembly	consisting	of	a
shielded	24-conductor	cable	with	both	a	plug	and	receptacle	connector	at
each	end.	With	this	design,	you	can	link	devices	in	a	linear	configuration,
a	star	configuration,	or	a	combination	of	the	two	configurations.	The
following	illustration	shows	the	linear	and	star	configurations.

For	more	information,	refer	to	the	following	topics:
Controlling	More	Than	One	Interface
Configuration	Requirements



Controlling	More	Than	One	Interface
The	following	illustration	shows	an	example	of	a	multiboard	system
configuration.	gpib0	is	the	access	interface	for	the	voltmeter,	and	gpib1	is
the	access	interface	for	the	plotter	and	printer.	The	control	functions	of
the	devices	automatically	access	their	respective	interfaces.



Configuration	Requirements
To	achieve	the	high	data	transfer	rate	that	the	GPIB	was	designed	for,
you	must	limit	the	number	of	devices	on	the	bus	and	the	physical
distance	between	devices.	The	following	restrictions	are	typical:

A	maximum	separation	of	4	m	between	any	two	devices	and	an
average	separation	of	2	m	over	the	entire	bus.
A	maximum	total	cable	length	of	20	m.
A	maximum	of	15	devices	connected	to	each	bus,	with	at	least
two-thirds	powered	on.

For	high-speed	operation,	the	following	restrictions	apply:
All	devices	in	the	system	must	be	powered	on.
Cable	lengths	must	be	as	short	as	possible	with	up	to	a
maximum	of	15	m	of	cable	for	each	system.
There	must	be	at	least	one	equivalent	device	load	per	meter	of
cable.

If	you	want	to	exceed	these	limitations,	you	can	use	a	bus	extender	to
increase	the	cable	length	or	a	bus	expander	to	increase	the	number	of
device	loads.	You	can	order	bus	extenders	and	expanders	from	National
Instruments.



Talkers,	Listeners,	and	Controllers
GPIB	devices	can	be	Talkers,	Listeners,	or	Controllers.	A	Talker	sends
out	data	messages.	Listeners	receive	data	messages.	The	Controller,
usually	a	computer,	manages	the	flow	of	information	on	the	bus.	It
defines	the	communication	links	and	sends	GPIB	commands	to	devices.
Some	devices	are	capable	of	playing	more	than	one	role.	A	digital
voltmeter,	for	example,	can	be	a	Talker	and	a	Listener.	If	your	system	has
a	National	Instruments	GPIB	interface	and	software	installed,	it	can
function	as	a	Talker,	Listener,	and	Controller.

Related	Topics:
Communicating	with	Your	Instrument
FindLstn
GPIB	Addresses



Controller-In-Charge	and	System	Controller
You	can	have	multiple	Controllers	on	the	GPIB,	but	only	one	Controller	at
a	time	can	be	the	active	Controller,	or	Controller-In-Charge	(CIC).	The
CIC	can	be	either	active	or	inactive	(standby).	Control	can	pass	from	the
current	CIC	to	an	idle	Controller,	but	only	the	System	Controller,	usually	a
GPIB	interface,	can	make	itself	the	CIC.



GPIB	Addresses
All	GPIB	devices	and	boards	must	be	assigned	a	unique	GPIB	address.
A	GPIB	address	is	made	up	of	two	parts:	a	primary	address	and	an
optional	secondary	address.
Most	devices	just	use	primary	addressing.	The	GPIB	Controller	manages
the	communication	across	the	GPIB	by	using	the	addresses	to	designate
which	devices	should	be	listening	or	talking	at	any	given	moment.
Typically	your	computer	is	the	GPIB	Controller	and	it	manages
communication	with	your	GPIB	device	by	sending	messages	to	it	and
receiving	messages	from	it.
The	primary	address	is	a	number	in	the	range	0	to	30.	The	Controller
uses	this	address	to	form	a	talk	or	listen	address	that	is	sent	over	the
GPIB	when	communicating	with	a	device.
A	talk	address	is	formed	by	setting	bit	6,	the	TA	(Talk	Active)	bit	of	the
GPIB	address.	A	listen	address	is	formed	by	setting	bit	5,	the	LA	(Listen
Active)	bit	of	the	GPIB	address.	For	example,	if	a	device	is	at	address	1,
the	Controller	sends	hex	41	(address	1	with	bit	6	set)	to	make	the	device
a	Talker.	Because	the	Controller	is	usually	at	primary	address	0,	it	sends
hex	20	(address	0	with	bit	5	set)	to	make	itself	a	Listener.	The	following
table	shows	the	configuration	of	the	GPIB	address	bits.

Bit	Position 7 6 5 4 3 2 1 0
Meaning 0 TA LA GPIB	Primary	Address	(range	030)

With	some	devices,	you	can	use	secondary	addressing.	A	secondary
address	is	a	number	in	the	range	hex	60	to	hex	7E.	When	you	use
secondary	addressing,	the	Controller	sends	the	primary	talk	or	listen
address	of	the	device	followed	by	the	secondary	address	of	the	device.

Related	Topics:
Communicating	with	Your	Instrument
FindLstn
Talkers,	Listeners,	and	Controllers



Sending	Messages	across	the	GPIB
Devices	on	the	bus	communicate	by	sending	messages.	Signals	and
lines	transfer	these	messages	across	the	GPIB	interface,	which	consists
of	16	signal	lines	and	8	ground	return	(shield	drain)	lines.	The	following
sections	describe	the	16	signal	lines.



Data	Lines
Eight	data	lines,	DIO1	through	DIO8,	carry	both	data	and	command
messages.



Handshake	Lines
Three	hardware	handshake	lines	asynchronously	control	the	transfer	of
message	bytes	between	devices.	This	process	is	a	three-wire	interlocked
handshake,	and	it	guarantees	that	devices	send	and	receive	message
bytes	on	the	data	lines	without	transmission	error.	The	GPIB	Handshake
Lines	table	summarizes	the	GPIB	handshake	lines.



Interface	Management	Lines
Five	hardware	lines	manage	the	flow	of	information	across	the	bus.	The
GPIB	Interface	Management	Lines	table	summarizes	the	GPIB	interface
management	lines.



GPIB	Handshake	Lines
The	following	table	summarizes	the	GPIB	handshake	lines.

Line Description
NRFD	
(not
ready	for
data)

Listening	device	is	ready/not	ready	to	receive	a	message
byte.	Also	used	by	the	Talker	to	signal	high-speed	GPIB
transfers.

NDAC	
(not	data
accepted)

Listening	device	has/has	not	accepted	a	message	byte.

DAV	
(data
valid)

Talking	device	indicates	signals	on	data	lines	are	stable
(valid)	data.



GPIB	Interface	Management	Lines
The	following	table	summarizes	the	GPIB	interface	management	lines.

Line Description
ATN	
(attention)

Controller	drives	ATN	true	when	it	sends	commands	and
false	when	it	sends	data	messages.

IFC	
(interface
clear)

System	Controller	drives	the	IFC	line	to	initialize	the	bus	and
make	itself	CIC.

REN	
(remote
enable)

System	Controller	drives	the	REN	line	to	place	devices	in
remote	or	local	program	mode.

SRQ	
(service
request)

Any	device	can	drive	the	SRQ	line	to	asynchronously	request
service	from	the	Controller.

EOI	
(end	or
identify)

Talker	uses	the	EOI	line	to	mark	the	end	of	a	data	message.
Controller	uses	the	EOI	line	when	it	conducts	a	parallel	poll.



NI-488.2	Utilities
Troubleshooting	Tools
Measurement	&	Automation	Explorer
Interactive	Control	Utility
Analysis	Tools



Troubleshooting	Tools
You	can	use	the	following	tools	to	troubleshoot	any	problems	you
encounter	while	using	your	GPIB	hardware	and	the	NI-488.2	software.



NI-488.2	Troubleshooting	Utility
The	NI-488.2	Troubleshooting	Utility	helps	you	troubleshoot	any
problems	with	your	NI-488.2	software.	This	utility	verifies	that	your	GPIB
hardware	and	the	NI-488.2	software	are	installed	correctly	and	working
properly.
To	start	the	NI-488.2	Troubleshooting	Utility	from	within	Measurement	&
Automation	Explorer,	select	Help»Troubleshooting»NI-488.2
Troubleshooting	Utility	or	click	on	the	following	button.

	Start	the	NI-488.2	Troubleshooting
Utility.



Other	Tools
Analysis	Tools
Measurement	&	Automation	Explorer
Interactive	Control	Utility



Measurement	&	Automation	Explorer
You	can	perform	the	following	GPIB-related	tasks	in	Measurement	&
Automation	Explorer:

Launch	troubleshooting	tools	for	GPIB	and	NI-488.2	problems.
Scan	for	instruments	connected	to	your	GPIB	interface.
Establish	basic	communication	with	your	GPIB	instruments.
View	information	about	your	GPIB	hardware	and	the	NI-488.2
software.
Reconfigure	GPIB	interface	settings.
Launch	analysis	tools	to	monitor	NI-488.2	or	VISA	API	calls	to
GPIB	interfaces.

To	start	Measurement	&	Automation	Explorer,	select
Start»Programs»National	Instruments»Measurement	&	Automation
or	click	on	the	following	button.
>		Start	Measurement	&	Automation	Explorer.

Tip	To	view	the	NI-488.2	utilities	and	help	available	for	your	GPIB
interface,	expand	Devices	and	Interfaces	by	clicking	on	the	+
next	to	it.	Right-click	your	GPIB	interface	and	select	an	item	from
the	context	menu	that	appears.



Reconfigure	GPIB	Interface	Settings
In	Measurement	&	Automation	Explorer,	you	can	view	GPIB	hardware
information	and	change	default	settings	for	new	board	handles.

Note	The	default	settings	are	not	applied	to	new	board	handles
until	all	open	handles	are	closed.	Otherwise,	the	current	board
configuration	continues	to	be	used.

In	most	cases,	you	should	change	only	the	interface	ID	of	your	GPIB
hardware.	Applications	that	use	ibconfig	calls	instead	of	customized
default	settings	are	more	portable,	because	proper	execution	does	not
rely	on	a	specific	configuration.
For	more	information	about	GPIB	interface	settings,	refer	to	the	context
help	window	in	Measurement	&	Automation	Explorer.



Using	NI-488.2	Communicator
You	can	use	the	NI-488.2	Communicator	to	verify	that	you	can	establish
simple	communication	with	your	GPIB	instrument.	The	NI-488.2
Communicator	is	an	interactive	utility	that	allows	you	to	write	commands
to	your	instrument	and	read	responses	back	from	your	instrument.	It
provides	detailed	information	about	the	status	of	the	NI-488.2	calls	and
you	can	use	it	to	print	sample	C	source	code	that	performs	a	simple
query	to	a	GPIB	instrument.
To	start	NI-488.2	Communicator,	complete	the	following	steps:

1.	 >		Start	Measurement	&	Automation	Explorer.
2.	 In	Measurement	&	Automation	Explorer,	expand	the	Devices

and	Interfaces	directory	by	clicking	on	the	+	next	to	the	folder.
3.	 Right-click	on	the	GPIB	interface	that	your	GPIB	instrument	is

connected	to.
4.	 Select	Scan	for	Instruments	from	the	drop-down	menu	that

appears.
5.	 After	the	scan	is	complete,	select	your	GPIB	instrument	in	the	left

pane	of	the	Measurement	&	Automation	Explorer	window.
6.	 Right-click	on	your	instrument	and	select	Communicate	with

Instrument	from	the	drop-down	menu	that	appears.
The	NI-488.2	Communicator	dialog	box	appears.

7.	 Type	a	command	in	the	Send	String	field	and	do	one	of	the
following:

To	write	a	command	to	the	instrument	then	read	a
response	back,	click	on	the	Query	button.
To	write	a	command	to	the	instrument,	click	on	the	Write
button.
To	read	a	response	from	the	instrument,	click	on	the
Read	button.
To	configure	special	requirements	for	end	of	string	(EOS)
modes	for	your	device,	click	on	the	Configure	EOS
button.



Interactive	Control	Utility
Overview
Getting	Started
Using
Status	Reporting
Error	Information
Count	Return
Syntax	Rules
Auxiliary	Functions
Commands



Interactive	Control	Overview
With	the	Interactive	Control	utility,	you	communicate	with	the	GPIB
devices	through	calls	you	interactively	type	in	at	the	keyboard.	For
specific	information	about	communicating	with	your	particular	device,
refer	to	the	manual	that	came	with	the	device.	You	can	use	the
Interactive	Control	utility	to	practice	communication	with	the	instrument,
troubleshoot	problems,	and	develop	your	application.
The	Interactive	Control	helps	you	to	learn	about	your	instrument	and	to
troubleshoot	problems	by	displaying	the	following	information	on	your
screen	after	you	enter	a	command:

Results	of	the	status	word	(Ibsta)	in	hexadecimal	notation
Mnemonic	constant	of	each	bit	set	in	Ibsta
Mnemonic	value	of	the	error	variable	(Iberr)	if	an	error	exists	(the
ERR	bit	is	set	in	Ibsta)
Count	value	for	each	read,	write,	or	command	function
Data	received	from	your	instrument

You	can	access	help	in	Interactive	Control	by	entering	help	at	the	prompt,
or	you	can	get	help	on	a	specific	function	by	entering	help	<function>	at
the	prompt,	where	<function>	is	the	name	of	the	function	for	which	you
want	help.
To	start	Interactive	Control	within	Measurement	&	Automation	Explorer,
select	Tools»NI-488.2»Interactive	Control	or	click	on	the	following
button.

	Start	Interactive	Control.

Related	Topics:
Auxiliary	Functions	in	Interactive	Control
Count	Return	in	Interactive	Control



Error	Information	in	Interactive	Control
Getting	Started	with	Interactive	Control
Status	Reporting	in	Interactive	Control
Syntax	Rules	in	Interactive	Control.
Using	Interactive	Control.



Getting	Started	with	Interactive	Control
To	get	started	with	Interactive	Control,	complete	the	following	steps:

1.	 Within	Measurement	&	Automation	Explorer,	select	Tools»NI-
488.2»Interactive	Control	or	click	on	the	following	button.

	Start	Interactive	Control.
For	help	on	any	Interactive	Control	command,	type	help	followed
by	the	command.	For	example,	type	help	ibdev	or	help	devclear.

2.	 Open	either	a	board	handle	or	device	handle	to	use	for	further	NI-
488.2	calls.	Use	ibdev	to	open	a	device	handle,	ibfind	to	open	a
board	handle,	or	the	set	488.2	command	to	switch	to	a	488.2
prompt.
The	following	example	uses	ibdev	to	open	a	device,	assigns	it	to
access	board	gpib0,	chooses	a	primary	address	of	6	with	no
secondary	address,	sets	a	timeout	of	10	seconds,	enables	the
END	message,	and	disables	the	EOS	mode.

:ibdev
			enter	board	index:	0
			enter	primary	address:	6
			enter	secondary	address:	0
			enter	timeout:	13
			enter	'EOI	on	last	byte'	flag:	1
			enter	end-of-string	mode/byte:	0

ud0:

Note	If	you	type	a	command	and	no	parameters,
Interactive	Control	prompts	you	for	the	necessary
arguments.	If	you	already	know	the	required	arguments,



you	can	type	them	at	the	command	prompt,	as	follows:

:ibdev	0	6	0	13	1	0
ud0:

Note	If	you	do	not	know	the	primary	and	secondary
address	of	your	GPIB	instrument,	right-click	on	your	GPIB
interface	in	Measurement	&	Automation	Explorer	and
select	Scan	for	Instruments.	After	Measurement	&
Automation	Explorer	scans	your	interface,	it	displays	your
instrument	address	in	the	right	window	pane.

3.	 After	you	successfully	complete	ibdev,	you	have	a	ud	prompt.	The
new	prompt,	ud0,	represents	a	device-level	handle	that	you	can
use	for	further	NI-488.2	calls.	To	clear	the	device,	use	ibclr,	as
follows:

ud0:	ibclr
[0100]	(cmpl)

4.	 To	write	data	to	the	device,	use	ibwrt.	Make	sure	that	you	refer	to
the	instrument	user	manual	that	came	with	your	GPIB	instrument
for	recognized	command	messages.

ud0:	ibwrt
			enter	string:	"*IDN?"
[0100]	(cmpl)
count:	5

or,	equivalently:

ud0:	ibwrt	"*IDN?"
[0100]	(cmpl)
count:	5



5.	 To	read	data	from	your	device,	use	ibrd.	The	data	that	is	read
from	the	instrument	is	displayed.	For	example,	to	read	29	bytes,
enter	the	following:

ud0:	ibrd
			enter	byte	count:	29
[0100]	(cmpl)
count:	29
46	4C	55	4B	45	2C	20	34						FLUKE,	4
35	2C	20	34	37	39	30	31						5,	47901
37	33	2C	20	31	2E	36	20						73,	1.6	
44	31	2E	30	0A															D.10.

or,	equivalently:

ud0:	ibrd	29
[0100]	(cmpl)
count:	29
46	4C	55	4B	45	2C	20	34						FLUKE,	4
35	2C	20	34	37	39	30	31						5,	47901
37	33	2C	20	31	2E	36	20						73,	1.6	
44	31	2E	30	0A															D.10.

6.	 When	you	finish	communicating	with	the	device,	make	sure	you
put	it	offline	using	the	ibonl	command,	as	follows:

ud0:	ibonl	0
[0100]	(cmpl)

:

The	ibonl	command	properly	closes	the	device	handle	and	the
ud0	prompt	is	no	longer	available.



7.	 To	exit	Interactive	control,	type	q.

Related	Topics:
Auxiliary	Functions	in	Interactive	Control
Count	Return	in	Interactive	Control
Error	Information	in	Interactive	Control
Interactive	Control	Overview
Status	Reporting	in	Interactive	Control
Syntax	Rules	in	Interactive	Control.
Using	Interactive	Control.



Using	Interactive	Control
You	can	use	the	Interactive	Control	utility	to	practice	communication	with
the	instrument,	troubleshoot	problems,	and	develop	your	application.	For
more	information,	refer	to	the	Interactive	Control	Overview	topic.
To	start	Interactive	Control	within	Measurement	&	Automation	Explorer,
select	Tools»NI-488.2»Interactive	Control	or	click	on	the	following
button.

	Start	Interactive	Control.

Related	Topics:
Auxiliary	Functions	in	Interactive	Control
Count	Return	in	Interactive	Control
Error	Information	in	Interactive	Control
Getting	Started	with	Interactive	Control
Interactive	Control	Overview
Status	Reporting	in	Interactive	Control
Syntax	Rules	in	Interactive	Control.



Status	Reporting	in	Interactive	Control
In	the	Interactive	Control	utility,	all	NI-488.2	calls	(except	ibfind	and	ibdev)
return	the	status	word	Ibsta	in	two	forms:	a	hex	value	in	square	brackets
and	a	list	of	mnemonics	in	parentheses.	In	the	following	example,	the
status	word	is	on	the	second	line,	showing	that	the	write	operation
completed	successfully:
ud0:	ibwrt	"*IDN?"
[0100]	(cmpl)
count:	5
ud0:

Related	Topics:
Auxiliary	Functions	in	Interactive	Control
Count	Return	in	Interactive	Control
Error	Information	in	Interactive	Control
Getting	Started	with	Interactive	Control
Interactive	Control	Overview
Syntax	Rules	in	Interactive	Control.
Using	Interactive	Control.



Error	Information	in	Interactive	Control
If	an	NI-488.2	call	completes	with	an	error,	the	Interactive	Control	utility
displays	the	relevant	error	mnemonic.	In	the	following	example,	an	error
condition	EBUS	has	occurred	during	a	data	transfer.
ud0:	ibwrt	"*IDN?"
[8100]	(err	cmpl)
error:	EBUS
count:	1
ud0:
In	this	example,	the	addressing	command	bytes	could	not	be	transmitted
to	the	GPIB	device.	This	indicates	that	either	the	device	is	powered	off	or
the	GPIB	cable	is	disconnected.

Related	Topics:
Auxiliary	Functions	in	Interactive	Control
Count	Return	in	Interactive	Control
Getting	Started	with	Interactive	Control
Interactive	Control	Overview
Status	Reporting	in	Interactive	Control
Syntax	Rules	in	Interactive	Control.
Using	Interactive	Control.



Count	Return	in	Interactive	Control
When	an	I/O	function	completes,	the	Interactive	Control	utility	displays
the	actual	number	of	bytes	sent	or	received,	regardless	of	the	existence
of	an	error	condition.
If	one	of	the	addresses	in	an	address	list	is	invalid,	then	the	error	is
EARG	and	the	Interactive	Control	utility	displays	the	index	of	the	invalid
address	as	the	count.
The	count	has	a	different	meaning	depending	on	which	NI-488.2	call	is
made.	For	the	correct	interpretation	of	the	count	return,	refer	to	the	help
for	that	function,	which	you	can	access	through	the	Index	of	this	help	file.

Related	Topics:
Auxiliary	Functions	in	Interactive	Control
Error	Information	in	Interactive	Control
Getting	Started	with	Interactive	Control
Interactive	Control	Overview
Status	Reporting	in	Interactive	Control
Syntax	Rules	in	Interactive	Control.
Using	Interactive	Control.



Syntax	Rules	in	Interactive	Control
The	following	special	rules	apply	to	making	calls	from	the	Interactive
Control	utility:

The	ud	or	BoardId	parameter	is	implied	by	the	Interactive	Control
prompt,	therefore	it	is	never	included	in	the	call.
Except	for	reads,	the	count	parameter	to	calls	is	unnecessary
because	buffer	lengths	are	automatically	determined	by
Interactive	Control.
Function	return	values	are	handled	automatically	by	Interactive
Control.	In	addition	to	printing	out	the	return	Ibsta	value	for	the
function,	it	also	prints	other	return	values.
If	you	do	not	know	what	parameters	are	appropriate	to	pass	to	a
given	function	call,	type	in	the	function	name	and	press	<Enter>.
The	Interactive	Control	utility	then	prompts	you	for	each	required
parameter.

For	information	about	specific	syntax	rules,	refer	to	the	following	topics:
Number	Syntax
String	Syntax
Address	Syntax	in	Interactive	Control

Related	Topics:
Auxiliary	Functions	in	Interactive	Control
Count	Return	in	Interactive	Control
Error	Information	in	Interactive	Control
Getting	Started	with	Interactive	Control
Interactive	Control	Overview
Status	Reporting	in	Interactive	Control
Using	Interactive	Control.



Number	Syntax	in	Interactive	Control
You	can	enter	numbers	in	either	hexadecimal	or	decimal	format.
Hexadecimal	numbers:	You	must	prefix	hexadecimal	numbers	with	0x.
For	example,	ibpad	0x16	sets	the	primary	address	to	16	hexadecimal	(22
decimal).
Decimal	numbers:	Enter	the	number	only.	For	example,	ibpad	22	sets	the
primary	address	to	22	decimal.

Related	Topics:
Auxiliary	Functions	in	Interactive	Control
Count	Return	in	Interactive	Control
Error	Information	in	Interactive	Control
Getting	Started	with	Interactive	Control
Interactive	Control	Overview
Status	Reporting	in	Interactive	Control
Syntax	Rules	in	Interactive	Control.
Using	Interactive	Control.



String	Syntax	in	Interactive	Control
You	can	enter	strings	as	an	ASCII	character	sequence,	hex	bytes,	or
special	symbols.
ASCII	character	sequence:	You	must	enclose	the	entire	sequence	in
quotation	marks.
Hex	byte:	You	must	use	a	backslash	character	and	an	x	followed	by	the
hex	value.	For	example,	hex	40	is	represented	by	\x40.
Special	symbols:	Some	instruments	require	special	termination	or	end-of-
string	(EOS)	characters	that	indicate	to	the	device	that	a	transmission
has	ended.	The	two	most	common	EOS	characters	are	\r	and	\n.	\r
represents	a	carriage	return	character	and	\n	represents	a	linefeed
character.	You	can	use	these	special	characters	to	insert	the	carriage
return	and	linefeed	characters	into	a	string,	as	in	"F3R5T1\r\n".

Related	Topics:
Auxiliary	Functions	in	Interactive	Control
Count	Return	in	Interactive	Control
Error	Information	in	Interactive	Control
Getting	Started	with	Interactive	Control
Interactive	Control	Overview
Status	Reporting	in	Interactive	Control
Syntax	Rules	in	Interactive	Control.
Using	Interactive	Control.



Address	Syntax	in	Interactive	Control
Some	of	the	multi-device	NI-488.2	calls	have	an	address	or	address	list
parameter.	An	address	is	a	16-bit	representation	of	the	GPIB	device
address.	The	primary	address	is	stored	in	the	low	byte	and	the	secondary
address,	if	any,	is	stored	in	the	high	byte.	For	example,	a	device	at
primary	address	6	and	secondary	address	0x67	has	an	address	of
0x6706.	A	NULL	address	is	represented	as	0xffff.	An	address	list	is
represented	by	a	comma-separated	list	of	addresses,	such	as	1,2,3.

Related	Topics:
Auxiliary	Functions	in	Interactive	Control
Count	Return	in	Interactive	Control
Error	Information	in	Interactive	Control
Getting	Started	with	Interactive	Control
Interactive	Control	Overview
Status	Reporting	in	Interactive	Control
Syntax	Rules	in	Interactive	Control.
Using	Interactive	Control.



Auxiliary	Functions	in	Interactive	Control
Function Description

set
udname

Select	active	device	or	board	where	udname	is	the	symbolic
name	of	the	new	device	or	board	(for	example,	dev1	or	gpib0).
Call	ibfind	or	ibdev	initially	to	open	each	device	or	board.

set	488.2
v

Start	using	multi-device	NI-488.2	calls	for	board	v.

help Display	Interactive	Control	utility	help.
help
option

Display	help	information	about	<option>,	where	<option>	is
any	NI-488.2	or	auxiliary	call	(for	example	help	ibwrt	or	help
DevClear).

! Repeat	previous	function.
- Turn	OFF	display.
+ Turn	ON	display.
n	*
function

Execute	function	n	times	where	<function>	represents	the
correct	Interactive	Control	function	syntax.

n	*	! Execute	previous	function	n	times.
$
filename

Execute	indirect	file	where	<filename>	is	the	pathname	of	a
file	that	contains	Interactive	Control	calls	to	be	executed.

buffer
option

Set	type	of	display	used	for	buffers.	Valid	options	are	full,
brief,	ascii,	and	off.	Default	is	full.

q Exit	or	quit.
n	*	$
filename

Execute	indirect	file	n	times	where	<filename>	is	the
pathname	of	a	file	that	contains	Interactive	Control	calls	to	be
executed.

Related	Topics:
Count	Return	in	Interactive	Control
Error	Information	in	Interactive	Control
Getting	Started	with	Interactive	Control



Interactive	Control	Overview
Status	Reporting	in	Interactive	Control
Syntax	Rules	in	Interactive	Control.
Using	Interactive	Control.



Set	Udname	Interactive	Control	Function



Purpose
Select	active	device	or	board	where	<udname>	is	the	symbolic	name	of
the	new	device	or	board.	Call	ibfind	or	ibdev	initially	to	open	each	device
or	board.
This	function	is	available	only	in	the	Interactive	Control	utility.



Interactive	Control	Syntax
set	<udname>



Example
set	gpib0



Set	488.2	Interactive	Control	Function



Purpose
Start	using	multi-device	NI-488.2	calls	for	board	v.
This	function	is	available	only	in	the	Interactive	Control	utility.



Interactive	Control	Syntax
set	488.2	v



Example
set	488.2	0



Help	Interactive	Control	Function



Purpose
Display	this	help	file.
This	function	is	available	only	in	the	Interactive	Control	utility.



Interactive	Control	Syntax
help



Help	<option>	Interactive	Control	Function



Purpose
Display	a	help	topic	available	in	this	help	file,	where	<option>	is	any	NI-
488.2	or	auxiliary	call.
This	function	is	available	only	in	the	Interactive	Control	utility.



Interactive	Control	Syntax
help	<option>



Example
help	ibwrt



!	(Repeat	Previous	Function)	Interactive	Control
Function



Purpose
Repeat	the	most	recently	executed	function.
This	function	is	available	only	in	the	Interactive	Control	utility.



Interactive	Control	Syntax
!



-	(Turn	OFF	display)	Interactive	Control	Function



Purpose
Turn	OFF	display.
This	function	is	available	only	in	the	Interactive	Control	utility.



Interactive	Control	Syntax
-



Example
-



+	(Turn	ON	display)	Interactive	Control	Function



Purpose
Turn	ON	display.
This	function	is	available	only	in	the	Interactive	Control	utility.



Interactive	Control	Syntax
+



Example
+



n	*	(Execute	Function	n	Times)	Interactive
Control	Function



Purpose
Execute	function	n	times,	where	<function>	represents	the	correct
Interactive	Control	function	syntax.
This	function	is	available	only	in	the	Interactive	Control	utility.



Interactive	Control	Syntax
n	*	<function>



Example
20*ibwrt	"Hello"



n	*	!	(Execute	Previous	Function	n	Times)
Interactive	Control	Function



Purpose
Execute	most	recently	executed	function	n	times.
This	function	is	available	only	in	the	Interactive	Control	utility.



Interactive	Control	Syntax
n*	!



Example
20*	!



$	(Execute	Indirect	File)	Interactive	Control
Function



Purpose
Execute	an	indirect	file,	where	<filename>	is	the	pathname	of	a	file	that
contains	Interactive	Control	calls	to	be	executed.
This	function	is	available	only	in	the	Interactive	Control	utility.



Interactive	Control	Syntax
$	<filename>



Example
$	C:\MyDirectory\MyFile.txt



Buffer	<option>	Interactive	Control	Function



Purpose
Set	type	of	display	used	for	buffers.	Valid	options	are	full,	brief,	ascii,	and
off.
This	function	is	available	only	in	the	Interactive	Control	Utility



Interactive	Control	Syntax
buffer	<option>



Example
buffer	brief



q	(Quit)	Interactive	Control	Function



Purpose
Quit	the	Interactive	Control	utility.
This	function	is	available	only	in	the	Interactive	Control	utility.



Interactive	Control	Syntax
q



Interactive	Control	Commands
The	following	tables	summarize	commands	in	the	Interactive	Control
utility:

The	Syntax	tables	for	Device-Level	Traditional	NI-488.2	Calls	and
for	Board-Level	Traditional	NI-488.2	Calls	summarize	the	syntax
of	the	traditional	NI-488.2	calls	in	the	Interactive	Control	utility.
The	Syntax	table	for	Multi-Device	NI-488.2	Calls	summarizes	the
syntax	of	the	multi-device	NI-488.2	calls	in	the	Interactive	Control
utility.
The	Auxiliary	Functions	table	summarizes	the	auxiliary	functions
that	you	can	use	in	the	Interactive	Control	utility.	For	more
information	about	the	function	parameters,	use	the	help,	available
by	typing	help.	If	you	type	only	the	function	name,	the	Interactive
Control	utility	prompts	you	for	its	parameters.



Syntax	for	Board-Level	Traditional	NI-488.2	Calls
in	Interactive	Control

Syntax Description
ibask		option Return	configuration	information	where	option	is

a	mnemonic	for	a	configuration	parameter
ibcac		v Become	active	Controller
ibcmd		cmdbuf Send	commands
ibcmda		cmdbuf Send	commands	asynchronously
ibconfig	option	value Alter	configurable	parameters	where	option	is

mnemonic	for	a	configuration	parameter
ibdma		v Enable/disable	DMA
ibeos		v Change/disable	EOS	message
ibeot		v Enable/disable	END	message
ibfind		udname Return	unit	descriptor	where	udname	is	the

symbolic	name	of	interface	(for	example,	gpib0)
ibgts		v Go	from	Active	Controller	to	standby
ibist		v Set/clear	ist
iblck		v	LockWaitTime Acquire	or	release	an	exclusive	interface	lock	for

the	current	process
iblines Read	the	state	of	all	GPIB	control	lines
ibln		pad	sad Check	for	presence	of	device	on	the	GPIB	at

pad,	sad
ibloc Go	to	local
ibonl		v Place	device	online	or	offline
ibpad		v Change	primary	address
ibppc		v Parallel	poll	configure
ibrd		count Read	data	where	count	is	the	bytes	to	read
ibrda		count Read	data	asynchronously	where	count	is	the

bytes	to	read



ibrdf		flname Read	data	to	file	where	flname	is	pathname	of
file	to	read

ibrpp Conduct	a	parallel	poll
ibrsc		v Request/release	system	control
ibrsv		v Request	service
ibsad		v Change	secondary	address
ibsic Send	interface	clear
ibsre		v Set/clear	remote	enable	line
ibstop Abort	asynchronous	operation
ibtmo		v Change/disable	time	limit
ibwait		mask Wait	for	selected	event	where	mask	is	a	hex	or

decimal	integer	or	a	list	of	mask	bit	mnemonics,
such	as	ibwait	TIMO	CMPL

ibwrt		wrtbuf Write	data
ibwrta		wrtbuf Write	data	asynchronously
ibwrtf		flname Write	data	from	a	file	where	flname	is	pathname

of	file	to	write



Syntax	for	Device-Level	Traditional	NI-488.2
Calls	in	Interactive	Control

Syntax Description
ibask	option Return	configuration	information	where	option	is	a

mnemonic	for	a	configuration	parameter
ibclr Clear	specified	device
ibconfig	option
value

Alter	configurable	parameters	where	option	is	mnemonic
for	a	configuration	parameter

ibdev	BdIndx
pad	sad	tmo
eot	eos

Open	an	unused	device;	ibdev	parameters	are	BdIndx	pad
sad	tmo	eot	eos

ibeos	v Change/disable	EOS	message
ibeot	v Enable/disable	END	message
ibloc Go	to	local
ibonl	v Place	device	online	or	offline
ibpad	v Change	primary	address
ibpct Pass	control
ibppc	v Parallel	poll	configure
ibrd	count Read	data	where	count	is	the	bytes	to	read
ibrda	count Read	data	asynchronously	where	count	is	the	bytes	to

read
ibrdf	flname Read	data	to	file	where	flname	is	pathname	of	file	to	read
ibrpp Conduct	a	parallel	poll
ibrsp Return	serial	poll	byte
ibsad	v Change	secondary	address
ibstop Abort	asynchronous	operation
ibtmo	v Change/disable	time	limit
ibtrg Trigger	selected	device
ibwait	mask Wait	for	selected	event	where	mask	is	a	hex	or	decimal



integer	or	a	list	of	mask	bit	mnemonics,	such	as	ibwait
TIMO	CMPL

ibwrt	wrtbuf Write	data
ibwrta	wrtbuf Write	data	asynchronously
ibwrtf	flname Write	data	from	a	file	where	flname	is	pathname	of	file	to

write



Syntax	for	Multi-Device	NI-488.2	Calls	in
Interactive	Control

Syntax Description
AllSpoll	addrlist Serial	poll	multiple	devices
DevClear	address Clear	a	device
DevClearList	addrlist Clear	multiple	devices
EnableLocal	addrlist Enable	local	control
EnableRemote	addrlist Enable	remote	control
FindLstn	padlist	limit Find	all	Listeners
FindRQS	addrlist Find	device	asserting	SRQ
PassControl	address Pass	control	to	a	device
PPoll Parallel	poll	devices
PPollConfig	address	dataline
lineSense

Configure	device	for	parallel	poll

PPollUnconfig	addrlist Unconfigure	device	for	parallel	poll
RcvRespMsg	count	termination Receive	response	message
ReadStatusByte	address Serial	poll	a	device
Receive	address	count	termination Receive	data	from	a	device
ReceiveSetup	address Receive	setup
ResetSys	addrlist Reset	multiple	devices
Send	address	buffer	eotmode Send	data	to	a	device
SendCmds	buffer Send	command	bytes
SendDataBytes	buffer	eotmode Send	data	bytes
SendIFC Send	interface	clear
SendList	addrlist	buffer	eotmode Send	data	to	multiple	devices
SendLLO Put	devices	in	local	lockout
SendSetup	addrlist Send	setup
SetRWLS	addrlist Put	devices	in	remote	with	lockout



state
TestSRQ Test	for	service	request
TestSys	addrlist Cause	multiple	devices	to	perform	self-

tests
Trigger	address Trigger	a	device
TriggerList	addrlist Trigger	multiple	devices
WaitSRQ Wait	for	service	request



Analysis	Tools
NI	Spy
NI	Spy	monitors,	records,	and	displays	the	NI-488.2	calls	made	from	NI-
488.2	applications.	You	can	use	it	to	troubleshoot	errors	in	your
application	and	to	verify	the	communication	with	your	GPIB	instrument.
NI	Spy	shows	which	NI-488.2	calls	are	being	used	to	communicate	with
your	instrument.	If	your	application	is	not	working	properly,	you	can	use
NI	Spy	to	search	for	failed	NI-488.2	calls.	For	more	information,	refer	to
the	NI	Spy	help.
To	start	NI	Spy,	select	Start»Programs»National	Instruments»NI	Spy.
Or,	click	on	the	following	button.

	Start	NI	Spy.



GPIB	Analyzer
You	can	use	GPIB	Analyzer	to	test	and	debug	your	NI-488.2	application
by	monitoring	and	capturing	GPIB	events	while	your	application	is
running.	Analyzing	this	data	can	help	you	solve	many	of	the	difficulties
associated	with	GPIB	communication,	such	as	addressing
inconsistencies,	protocol	violations,	and	simple	bus	timeout	conditions.
For	more	information,	refer	to	the	GPIB	Analyzer	help.
To	start	GPIB	Analyzer	from	within	Measurement	&	Automation	Explorer,
select	Tools»NI-488.2»GPIB	Analyzer	or	click	on	the	following	button.

	Start	GPIB	Analyzer.

Tip		To	capture	GPIB	bus	activity,	the	GPIB	Analyzer	software
requires	special	National	Instruments	GPIB	Analyzer	hardware.



Application	Development	with	NI-488.2
Choosing	a	Development	Environment
Language-Specific	Programming	Instructions
General	Programming	Considerations
Advanced	Programming	Techniques
Tools	for	Developing	Your	Application



How	do	I	use	an	NI-488.2	application	interface?
Microsoft	C/C++	Application	Interface	Files
A	documentation	file,	readme.txt,	that	contains	information	about	the	C
application	interface.
An	include	file,	ni4882.h,	that	contains	traditional	and	multi-device	NI-
488.2	call	prototypes	and	various	predefined	constants.
A	32-bit	and	64-bit	C	application	interface	file,	ni4882.obj,	that	an
application	links	with	in	order	to	access	the	32-bit	DLL	and	64-bit	DLL.



Borland	C/C++	Application	Interface	Files
A	documentation	file,	readme.txt,	that	contains	information	about	the	C
application	interface.
An	include	file,	ni4882.h,	that	contains	traditional	and	multi-device	NI-
488.2	call	prototypes	and	various	predefined	constants.
A	32-bit	C	application	interface	file,	ni4882.obj,	that	an	application	links
with	in	order	to	access	the	32-bit	DLL.



Microsoft	Visual	Basic	Application	Interface	Files
A	documentation	file,	readme.txt,	that	contains	information	about	the
Visual	Basic	application	interface.
A	32-bit	Visual	Basic	global	module,	niglobal.bas,	that	contains	certain
predefined	constant	declarations.
A	32-bit	Visual	Basic	source	file,	vbib-32.bas,	that	contains	traditional	and
multi-device	NI-488.2	call	prototypes.



.NET	NI-488.2	Interface
With	the	Microsoft	.NET	Framework	version	1.1	or	later,	you	can	use	NI-
488.2	to	create	applications	using	Visual	C#	and	Visual	Basic	.NET	with
or	without	Measurement	Studio.
Refer	to	the	NI-488.2	.NET	Framework	Help	for	an	overview,	concepts,
and	a	function	reference.	To	view	the	help,	go	to
Start»Programs»National	Instruments»NI-488.2.
The	NI-488.2	.NET	Framework	Help	is	installed	if	the	Microsoft	.NET
Framework	version	1.1	or	later	is	on	the	system	during	NI-488.2
installation.	The	help	requires	a	viewer,	available	with	Visual	Studio	or
other	.NET	development	environments.	The	help	is	fully	integrated	into
the	Visual	Studio	.NET	documentation,	under	the	NI	Measurement	Studio
section	of	the	help	contents.



Other	Application	Development	Environments
If	you	are	using	a	programming	environment	that	is	not	listed	above,	you
need	to	use	direct	entry	to	access	the	NI-488.2	software.



Developing	NI-488.2	Applications	with	LabVIEW,
LabWindows/CVI,	and	Measurement	Studio
National	Instruments	sells	two	application	development	environments,
LabWindows/CVI	and	LabVIEW,	and	a	suite	of	Visual	Studio	tools,
Measurement	Studio.	All	of	these	products	include	instrument	driver
libraries	that	make	it	easier	to	communicate	with	your	GPIB	instruments.
LabWindows/CVI	is	an	interactive	ANSI	C	development	environment	for
building	test	and	measurement	and	instrument	control	systems.	It
includes	interactive	code-generation	tools	and	a	graphical	editor	for
building	custom	user	interfaces.	It	also	includes	built-in	libraries	for	IEEE
488.2,	VXI,	RS-232	control,	and	plug-in	data	acquisition.	When	you	order
LabWindows/CVI,	you	also	get	more	than	300	complete	instrument
drivers,	which	are	modular,	source-code	programs	that	handle	the
communication	with	your	instrument	so	that	you	do	not	have	to	learn	the
programming	details.
LabVIEW	is	a	complete	programming	environment	that	departs	from	the
sequential	nature	of	traditional	programming	languages	and	features	a
graphical	programming	environment.	It	includes	all	the	tools	needed	for
instrument	control,	data	acquisition,	analysis,	and	presentation.	LabVIEW
also	includes	an	extensive	instrument	driver	library.
Measurement	Studio	is	an	integrated	suite	of	measurement	and
automation	controls,	tools,	and	class	libraries	for	Visual	Studio	6.0	and
Visual	Studio	.NET	2003	and	later.	Measurement	Studio	dramatically
reduces	application	development	time	with	ActiveX	and	.NET	controls,
object-oriented	measurement	hardware	interfaces,	advanced	analysis
libraries,	scientific	user	interface	controls,	measurement	data	networking,
wizards,	interactive	code	designers,	and	highly	extensible	classes.
For	more	information	about	Measurement	Studio,	LabWindows/CVI,	and
LabVIEW,	contact	National	Instruments.



Direct	Entry	with	C	Programming	Instructions
Direct	entry	is	available	for	only	the	32-bit	gpib-32.dll,	and	not	for
ni4882.dll.
gpib-32.dll	Exports
Directly	Accessing	the	gpib-32.dll	Exports
Compiling	Your	Win32	C	Application



gpib-32.dll	Exports
gpib-32.dll	exports	pointers	to	the	global	variables	and	all	of	the	NI-488.2
calls.	Pointers	to	the	global	variables	(ibsta,	iberr,	ibcnt,	and	ibcntl)	are
accessible	through	these	exported	variables:
int	*user_ibsta;
int	*user_iberr;
int	*user_ibcnt;
long	*user_ibcntl;
Except	for	the	calls	ibfind,	ibrdf,	and	ibwrtf,	all	the	NI-488.2	call	names
are	exported	from	gpib-32.dll.	Thus,	to	use	direct	entry	to	access	a
particular	function	and	to	get	a	pointer	to	the	exported	function,	you	need
to	call	GetProcAddress	passing	the	name	of	the	function	as	a	parameter.
For	more	information	about	the	parameters	that	you	use	when	you	invoke
the	function,	refer	to	the	help	for	that	function,	which	you	can	access
through	the	Index	of	this	help	file.
The	calls	ibfind,	ibrdf,	and	ibwrtf	all	require	an	argument	that	is	a	name.
ibfind	requires	a	board	or	device	name,	and	ibrdf	and	ibwrtf	take	a	file
name.	Because	Windows	supports	both	normal	(8-bit)	characters,	and
Unicode	(16-bit)	wide	characters,	gpib-32.dll	exports	two	versions	of	each
of	these	functions.	An	"ASCII"	version	is	for	8-bit	characters	(ibfindA,
ibrdA,	ibwrtA)	and	a	"wide"	version	for	16-bit	characters	(ibfindW,	ibrdW,
ibwrtW).
In	addition	to	pointers	to	the	status	variables	and	a	handle	to	the	loaded
gpib-32.dll,	you	must	define	the	direct	entry	prototypes	for	the	calls	you
use	in	your	application.	To	see	the	prototypes	for	each	function	exported
by	gpib-32.dll,	refer	to	the	help	for	that	function,	which	you	can	access
through	the	Index	of	this	help	file.	The	direct	entry	sample	programs
illustrate	how	to	use	direct	entry	to	access	gpib-32.dll.	For	more
information	about	direct	entry,	refer	to	the	help	that	is	built	into	your
development	environment.



Directly	Accessing	the	gpib-32.dll	Exports
Make	sure	that	the	following	lines	are	included	at	the	beginning	of	your
application:
#ifdef	__cplusplus
extern	"C"{

#include	<windows.h>
#include"	"ni488.h"
#ifdef	__cplusplus
}
In	your	Win32	application,	you	first	need	to	load	gpib-32.dll.	The	following
code	fragment	shows	you	how	to	call	the	LoadLibrary	function	and	check
for	an	error:
HINSTANCE	Gpib32Lib	=	NULL;
Gpib32Lib=LoadLibrary("GPIB-32.DLL");
if	(Gpib32Lib	==	NULL)	{
return	FALSE;

}
To	see	the	prototypes	for	each	function,	refer	to	the	help	for	that	function,
which	you	can	access	through	the	Index	of	this	help	file.
For	calls	that	return	an	integer	value,	like	ibdev	or	ibwrt,	the	pointer	to	the
function	needs	to	be	cast	as:
int	(_stdcall	*Pname)
where	*Pname	is	the	name	of	the	pointer	to	the	function.
For	calls	that	do	not	return	a	value,	like	FindLstn	or	SendList,	the	pointer
to	the	function	needs	to	be	cast	as:
void	(_stdcall	*Pname)
where	*Pname	is	the	name	of	the	pointer	to	the	function.	They	are
followed	by	the	function's	list	of	parameters	as	described	in	the	help	for
that	function,	which	you	can	access	through	the	Index	of	this	help	file.
An	example	of	how	to	cast	the	function	pointer	and	how	the	parameter
list	is	set	up	for	ibdev	and	ibonl	calls	follows:
int	(_stdcall	*Pibdev)(int	ud,	int	pad,	int	sad,	int	tmo,	int	eot,	int	eos);



int	(_stdcall	*Pibonl)(int	ud,	int	v);
Next,	your	Win32	application	needs	to	use	GetProcAddress	to	get	the
addresses	of	the	global	status	variables	and	calls	your	application	needs.
The	following	code	fragment	shows	you	how	to	get	the	addresses	of	the
pointers	to	the	status	variables	and	any	calls	your	application	needs:

/*	Pointers	to	NI-488.2	global	status	variables	*/
int	*Pibsta;
int	*Piberr;
long	*Pibcntl;
static	int(__stdcall	*Pibdev)
(int	ud,	int	pad,	int	sad,	int	tmo,	int	eot,
int	eos);

static	int(__stdcall	*Pibonl)
(int	ud,	int	v);

Pibsta	=	(int	*)	GetProcAddress(Gpib32Lib,
(LPCStr)"user_ibsta");

Piberr	=	(int	*)	GetProcAddress(Gpib32Lib,
(LPCStr)"user_iberr");

Pibcntl	=	(long	*)	GetProcAddress(Gpib32Lib,
(LPCStr)"user_ibcnt");

Pibdev	=	(int	(__stdcall	*)
(int,	int,	int,	int,	int,	int))
GetProcAddress(Gpib32Lib,	(LPCStr)"ibdev");

Pibonl	=	(int	(__stdcall	*)(int,	int))
GetProcAddress(Gpib32Lib,	(LPCStr)"ibonl");

If	GetProcAddress	fails,	it	returns	a	NULL	pointer.	The	following	code
fragment	shows	you	how	to	verify	that	none	of	the	calls	to	GetProcAddress
failed:

if	((Pibsta	==	NULL)	||
(Piberr	==	NULL)	||
(Pibcntl	==	NULL)	||
(Pibdev	==	NULL)	||



(Pibonl	==	NULL))	{
/*	Free	the	GPIB	library	*/
FreeLibrary(Gpib32Lib);

printf("GetProcAddress	failed.");
}

Your	Win32	application	needs	to	de-reference	the	pointer	to	access
either	the	status	variable	or	function.	The	following	code	shows	you	how
to	call	a	function	and	access	the	status	variable	from	within	your
application:

dvm	=	(*Pibdev)	(0,	1,	0,	T10s,	1,	0);
if	(*Pibsta	&	ERR)	{
printf("Call	failed");
}

Before	exiting	your	application,	you	need	to	free	gpib-32.dll	with	the
following	command:
FreeLibrary(Gpib32Lib);
For	more	examples	of	directly	accessing	gpib-32.dll,	refer	to	the	direct
entry	sample	programs	dlldevquery.c	and	dll4882query.c,	installed	with	the
NI-488.2	software.	For	more	information	about	direct	entry,	refer	to	the
Win32	SDK	(Software	Development	Kit)	help.



Compiling	Your	Win32	C	Application
Before	you	compile	your	Win32	C	application	that	uses	direct	entry,
include	the	following	lines	at	the	beginning	of	your	program:
#include	<windows.h>
#include	"ni488.h"
When	compiling	and	linking	an	application	in	a	DOS	shell,	you	can	use
the	"NIEXTCCOMPILERSUPP"	environment	variable,	which	is	provided
as	an	alias	to	the	location	of	C	application	support	files.



Microsoft	Visual	C/C++	Programming	Instructions	(Version
6.0	or	Later)
To	compile	and	link	a	Win32	console	application	named	cprog	that	uses
direct	entry	in	a	DOS	shell,	type	in	the	following	on	the	command	line:
cl	/I"%NIEXTCCOMPILERSUPP%\include"	cprog.c



Borland	C/C++	Programming	Instructions	(Version	5.02	or
Later)
To	compile	and	link	a	Win32	console	application	named	cprog	that	uses
direct	entry	in	a	DOS	shell,	type	in	the	following	on	the	command	line:
bcc32	-I"%NIEXTCCOMPILERSUPP%\include"	-w32	cprog.c



Language-Specific	Programming	Instructions
Microsoft	Visual	C/C++
Borland	C/C++
Microsoft	Visual	Basic
.NET



Microsoft	Visual	C/C++	Programming
Instructions	(Version	6.0	or	Later)
Before	you	compile	your	application,	include	the	following	line	at	the
beginning	of	your	program:
#include	"ni4882.h"
The	"NIEXTCCOMPILERSUPP"	environment	variable	is	provided	as	an
alias	to	the	location	of	C	language	support	files.	You	can	use	this	variable
when	compiling	and	linking	an	application.
With	Microsoft	Visual	C++	(Version	6.0	or	higher),	to	compile	and	link	a
Win32	console	application	named	cprog	in	a	DOS	shell	using	the
environment	variable,	"NIEXTCCOMPILERSUPP",	type	in	the	following	on
the	command	line:
cl	/I"%NIEXTCCOMPILERSUPP%\include"	cprog.c
"%NIEXTCCOMPILERSUPP%\lib32\msvc\ni4882.obj"	/MD
With	Microsoft	Visual	C++	(Version	8.0	or	higher),	to	compile	and	link	a
Win64	console	application	named	cprog	in	a	DOS	shell	using	the
environment	variable,	"NIEXTCCOMPILERSUPP",	type	in	the	following	on
the	command	line:
cl	/I"%NIEXTCCOMPILERSUPP%\include"	cprog.c
"%NIEXTCCOMPILERSUPP%\lib64\msvc\ni4882.obj"	/MD



Borland	C/C++	Programming	Instructions
(Version	5.02	or	Later)
Before	you	compile	your	Win32	C	application,	make	sure	that	the
following	line	is	included	at	the	beginning	of	your	program:
#include	"ni4882.h"
The	"NIEXTCCOMPILERSUPP"	environment	variable	is	provided	as	an
alias	to	the	location	of	C	language	support	files.	You	can	use	this	variable
when	compiling	and	linking	an	application.
To	compile	and	link	a	Win32	console	application	named	cprog	in	a	DOS
shell	using	the	environment	variable,	"NIEXTCCOMPILERSUPP",	type	in
the	following	on	the	command	line:
bcc32	-I"%NIEXTCCOMPILERSUPP%\include"	-w32	cprog.c
"%NIEXTCCOMPILERSUPP%\lib32\borland\ni4882.obj"
Borland/CodeGear	does	not	have	a	64-bit	compiler	at	time	of	writing.



Visual	Basic	Programming	Instructions	(Version
6.0)
With	Visual	Basic,	you	can	access	the	traditional	NI-488.2	calls	as
subroutines,	using	the	BASIC	keyword	CALL	followed	by	the	traditional
NI-488.2	call	name,	or	you	can	access	them	using	the	il	set	of	calls.	With
some	of	the	NI-488.2	calls	(for	example,	ibrd	and	Receive)	the	length	of
the	string	buffer	is	automatically	calculated	within	the	actual	function	or
subroutine,	which	eliminates	the	need	to	pass	in	the	length	as	an	extra
parameter.
To	see	the	Visual	Basic	syntax	for	any	function,	refer	to	the	help	for	that
function,	which	you	can	access	through	the	Index	of	this	help	file.
Before	you	run	your	Visual	Basic	application,	include	the	files	niglobal.bas
and	vbib-32.bas	in	your	application	project	file.



.NET	Programming	Instructions
Before	you	start	using	the	NI-488.2	.NET	API,	you	will	need	to	add	two
assembly	references	to	your	C#/VB.NET	project:

NationalInstruments.Common
NationalInstruments.NI4882

With	the	Microsoft	.NET	Framework	version	1.1	or	later,	you	can	use	NI-
488.2	to	create	applications	using	Visual	C#	and	Visual	Basic	.NET	with
or	without	Measurement	Studio.	You	need	Microsoft	Visual	Studio	.NET
2003	or	later	for	the	API	documentation	to	be	installed.
The	installed	documentation	contains	the	NI-488.2	API	overview,
concepts,	and	function	reference.	This	help	is	fully	integrated	into	the
Visual	Studio	.NET	documentation.
To	view	the	NI-488.2	.NET	documentation,	go	to
Start»Programs»National	Instruments»[Measurement
Studio]»Measurement	Studio	Documentation.	Under	Contents,
expand	NI	Measurement	Studio	Help»NI	Measurement	Studio	.NET
Class	Library»Reference»NationalInstruments.NI4882	to	view	the
function	reference.
Expand	NI	Measurement	Studio	Help»NI	Measurement	Studio	.NET
Class	Library»Using	the	Measurement	Studio	.NET	Class	Libraries
to	view	conceptual	topics	for	using	NI-488.2	with	Visual	C#	and	Visual
Basic	.NET.
To	get	to	the	same	help	topics	from	within	Visual	Studio	.NET	2003	or
later,	go	to	Help»Contents	and	expand	NI	Measurement	Studio	Help.
For	Visual	C#	and	Visual	Basic	.NET	examples,	go	to
Start»Programs»National	Instruments»[Measurement	Studio]».NET
Examples	and	follow	the	GPIB	shortcut.	Refer	to	the	Where	to	Find
Examples	topic	in	the	Measurement	Studio	documentation	under	NI
Measurement	Studio	Help	for	more	information.	The	GPIB	examples
folder	and	the	examples	in	it	are	added	when	you	select	the	.NET
Framework	Application	Support	feature	in	the	NI-488.2	Installer	for	the
version	of	the	.NET	Framework	you	have	installed.



General	Programming	Considerations
Communicating	with	Your	Instrument
Using	the	NI-488.2	API
Checking	Global	Status	After	Each	NI-488.2	Call



Communicating	with	Your	Instrument
Each	GPIB	instrument	has	a	specific	set	of	commands	that	you	use	to
program	it.	The	commands	are	always	transferred	over	the	GPIB	by	the
Controller,	but	the	exact	command	sequences	are	totally	dependent	on
the	particular	GPIB	instrument.	Your	GPIB	instrument	came	with
documentation	that	describes	the	command	sequences	that	you	must
use	to	get	it	to	work	properly.	Refer	to	that	documentation	to	determine
how	to	communicate	correctly	with	your	GPIB	instrument.
For	simple	instrument	communication,	use	the	NI-488.2	Communicator.
For	more	information,	refer	to	the	Using	NI-488.2	Communicator	topic.
Before	you	begin	writing	your	application,	you	might	want	to	use	the
Interactive	Control	utility	to	communicate	with	your	instruments
interactively	by	typing	in	commands	from	the	keyboard	rather	than	from
an	application.	You	can	use	it	to	learn	to	communicate	with	your
instruments	using	the	NI-488.2	API.	For	more	information,	refer	to	the
Interactive	Control	Overview	topic.
To	start	Interactive	Control	within	Measurement	&	Automation	Explorer,
select	Tools»NI-488.2»Interactive	Control	or	click	on	the	following
button.

	Start	Interactive	Control.

Related	Topics:
FindLstn
GPIB	Addresses
Talkers,	Listeners,	and	Controllers



Using	the	NI-488.2	API
Choosing	a	Method	to	Access	the	NI-488.2	Driver
Differences	Between	the	GPIB32	API	and	NI4882	API
Choosing	How	to	Use	the	NI-488.2	API
Communicating	with	a	Single	GPIB	Instrument
Communicating	with	Multiple	Instruments	and/or	Multiple	Interfaces
Header	Files
Examples
Programming	Model	for	Applications	that	Communicate	with	a	Single
GPIB	Instrument
Programming	Model	for	Applications	that	Communicate	with	Multiple
Instruments	and/or	Multiple	Interfaces



Choosing	a	Method	to	Access	the	NI-488.2
Driver
Applications	using	the	older	GPIB32	API	can	access	the	NI-488.2
dynamic	link	library	(DLL),	gpib-32.dll,	either	by	using	an	NI-488.2
application	interface	or	by	direct	access.
Applications	using	the	new	NI4882	API	can	access	the	NI-488.2	dynamic
link	library	(DLL),	ni42882.dll,	by	using	an	NI-488.2	application	interface
only.



NI-488.2	Application	Interfaces
You	can	use	an	application	interface	if	your	program	is	written	in
Microsoft	Visual	C/C++	(6.0	or	later),	Borland	C/C++	(5.02	or	later),
Microsoft	Visual	Basic	(6.0),	or	any	.NET	programming	language.
Otherwise,	you	must	access	gpib-32.dll	directly.
For	more	information	about	application	interfaces,	refer	to	NI-488.2
Application	Interface	Files.



Direct	Entry	Access
You	can	access	the	DLL	directly	from	any	programming	environment	that
allows	you	to	request	addresses	of	variables	and	calls	that	a	DLL
exports.	gpib-32.dll	exports	pointers	to	each	of	the	global	variables	and	all
the	NI-488.2	calls.
For	more	information	about	direct	entry	access,	refer	to	Directly
Accessing	the	gpib-32.dll	Exports.



Differences	Between	the	GPIB32	API	and	NI4882
API
The	NI-488.2	for	Windows	2.6	release	has	introduced	a	new	API	as	part
of	the	64-bit	application	interface.	Every	effort	has	been	made	to	have	the
new	NI4882	API	closely	match	the	existing	GPIB32	API	while
incorporating	API	design	best	practices.	To	use	the	new	API,	you	must
recompile	applications	using	the	new	header	and	object	files.	The
following	list	describes	the	major	changes	in	the	NI4882	API.

Judicious	application	of	the	const	keyword	has	been	added	where
appropriate.
Wide	variants	of	functions	now	use	the	wchar_t	instead	of
unsigned	short	type.
Functions	taking	in	parameters	that	describe	a	pointer	length	now
use	size_t	types.
Status	variables	now	use	the	unsigned	long	type.
ThreadIbcntl()	has	been	removed.	Macros	redirect	calls	to
ThreadIbcnt().
Global	status	functions	have	been	added.	These	are	Ibsta(),
Iberr(),	and	Ibcnt().	New	code	should	use	these	functions	instead
of	ibsta,	iberr,	or	ibcnt/ibcntl.
Long-term	deprecated	functions	have	been	completely	removed.
Most	functions	with	an	ibconfig	have	been	removed.	Using
ibconfig	is	recommended	for	new	code.	Existing	functions	redirect
to	using	ibconfig	using	macros.	These	are	the	affected	functions:

ibpad
ibsad
ibtmo
ibeot
ibrsc
ibsre
ibeos
ibdma
ibist
ibrsv



Many	macro	definitions	have	been	improved	for	programmatic
safety.

Modifying	existing	applications	to	use	the	NI4882	API	should	require
minimal	changes.	In	most	cases,	using	the	new	include	file	(ni4882.h
instead	of	windows.h	and	ni488.h)	and	linking	to	the	new	object	file
(ni4882.obj	instead	of	gpib-32.obj)	is	sufficient	to	compile	your	application.
There	may	still	be	warnings	due	to	changes	to	the	status	variable	type's
signed	property.
Complications	may	arise	in	several	uncommon	use	cases.	The	following
issues	have	been	encountered.

Storing	function	pointers	for	the	ibnotify	callback.	This	causes	a
type	mismatch	on	the	assignment.	To	solve	this,	fix	the	function
prototype	of	the	callback	to	use	unsigned	long	for	the	status
parameters.
Using	function	pointers	to	ibfind.	This	causes	a	preprocessor
error	because	the	ibfind	macro	requires	a	one-parameter
argument.	To	solve	this,	point	to	ibfindA	or	ibfindW,	depending	on
the	unicode	convention	in	your	application.
Configuration	functions	show	up	in	NI	Spy	as	ibconfig	calls.	This
is	because	macros	redirect	those	calls	to	use	ibconfig.	Avoid
confusion	by	using	ibconfig	directly.

In	most	cases,	applications	written	in	the	NI4882	API	will	continue	to
work	on	older	versions	of	the	NI-488.2	for	Windows	software,	back	to
version	1.7.	Certain	new	ibask	and	ibconfig	options	break	this	backwards
compatibility,	and	those	options	are	easily	avoidable	by	using	alternative
options.	Existing	applications	using	the	GPIB32	API	continue	to	execute
unchanged.	The	GPIB32	API	will	continue	to	exist,	but	are	available	only
for	32-bit	applications.	Applications	written	in	the	NI4882	API	compile	on
both	32-bit	and	64-bit	environments.	To	port	an	application	to	a	64-bit
environment	requires	that	the	application	migrate	to	the	NI4882	API	and
be	recompiled.
The	following	NI4882	API	constructs	break	API	compatibility	with	older
versions	of	NI-488.2	for	Windows.

ibask(IbaEOS)
ibconfig	(IbcEOS)



Choosing	How	to	Use	the	NI-488.2	API
The	NI-488.2	API	has	two	subsets	of	calls	to	meet	your	application
needs.	Both	of	these	sets,	the	traditional	calls	and	the	multi-device	calls,
are	compatible	across	computer	platforms	and	operating	systems,	so	you
can	port	applications	to	other	platforms	with	little	or	no	source	code
modification.	For	most	applications,	the	traditional	NI-488.2	calls	are
sufficient.	If	you	have	a	complex	configuration	with	one	or	more
interfaces	or	multiple	instruments,	you	should	use	the	multi-device	NI-
488.2	calls.	Whichever	you	choose,	bus	management	operations
necessary	for	device	communication	are	automatically	performed.
Communicating	with	a	Single	GPIB	Instrument
Communicating	with	Multiple	Instruments	and/or	Multiple	Interfaces



Communicating	with	a	Single	GPIB	Instrument
If	your	system	has	only	one	instrument	attached	to	each	interface,	the
traditional	NI-488.2	calls	are	probably	sufficient	for	your	programming
needs.	A	typical	GPIB	application	with	a	single	instrument	has	three
phases:

Initializationuse	ibdev	to	get	a	handle	and	use	ibclr	to	clear	the
instrument.
Device	Communicationuse	ibwrt,	ibrd,	ibtrg,	ibrsp,	and	ibwait	to
communicate	with	the	instrument.
Cleanupuse	ibonl	to	put	the	handle	offline.

For	a	detailed	list,	refer	to	the	Device-Level	Traditional	NI-488.2	Calls
topic.
For	NI-488.2	applications	that	need	to	control	the	GPIB	in	non-typical
ways,	for	example,	to	communicate	with	non-compliant	GPIB
instruments,	there	are	a	set	of	low-level	calls	that	perform	rudimentary
GPIB	applications.	If	you	use	these	calls,	you	need	to	understand	GPIB
management	details	like	how	to	address	talkers	and	listeners.	For	some
details	on	GPIB	management,	refer	to	the	Learning	More	about	GPIB
topic.
These	low-level	calls	are	called	board-level	calls.	They	access	the
interface	directly	and	require	you	to	handle	the	addressing	and	bus
management	protocol.	These	calls	give	you	the	flexibility	and	control	to
handle	situations	such	as	the	following:

Communicating	with	non-compliant	instruments
Altering	various	low-level	board	configurations
Managing	the	bus	in	non-typical	ways

Board-level	calls	that	an	NI-488.2	application	might	use	include	the
following:	ibcmd,	ibrd,	ibwrt,	and	ibconfig.	For	a	detailed	list,	refer	to	the
Board-Level	Traditional	NI-488.2	Calls	topic.



Communicating	with	Multiple	Instruments	and/or
Multiple	Interfaces
When	your	system	includes	an	interface	that	must	access	multiple
instruments,	use	the	multi-device	NI-488.2	calls,	which	can	perform	the
following	tasks	with	a	single	call:

Find	all	of	the	Listeners	on	the	bus	using	FindListn.
Find	an	instrument	requesting	service	using	FindRQS	or	AllSpoll.
Determine	the	state	of	the	SRQ	line,	or	wait	for	SRQ	to	be
asserted	using	TestSRQ	or	WaitSRQ.
Send	data	bytes	to	multiple	GPIB	instruments	using	SendList.

You	can	mix	board-level	traditional	NI-488.2	calls	with	the	multi-device
NI-488.2	calls	to	have	access	to	all	the	NI-488.2	functionality.



Header	Files
In	a	C	application,	include	the	header	file	ni4882.h.	The	ni4882.h	file
contains	prototypes	for	the	NI-488.2	calls	and	constants	that	you	can	use
in	your	application.



Examples
To	run	examples	for	the	various	NI-488.2	application	interfaces,	go	to	the
Users\Public\Documents\National	Instruments\NI-488.2\Examples	directory	on
Windows	Vista	and	the	Documents	and	Settings\All
Users\Documents\National	Instruments\NI-488.2\Examples	directory	on
Windows	2000	or	XP.	These	directories	allow	users	to	save	changes	or
add	files	to	the	examples.
The	directories	have	Readme	files	with	additional	details	for	compiling
and	running	the	examples.



Programming	Model	for	Applications	that
Communicate	with	a	Single	GPIB	Instrument
General	Program	Steps	and	Examples
Items	to	Include	in	Your	Application



General	Program	Steps	and	Examples	for	Your
Traditional	NI-488.2	Application
The	following	steps	show	you	how	to	use	the	device-level	traditional	NI-
488.2	calls	in	your	application.	The	NI-488.2	software	includes	the	source
code	for	an	example	written	in	C,	devquery.c,	and	the	source	code	for	the
example	written	to	use	direct	entry	to	access	gpib-32.dll,	dlldevquery.c.
The	NI-488.2	software	also	includes	a	sample	program	written	in	Visual
Basic,	devquery.frm.



Initialization
Step	1.	Open	a	Device
First	use	ibdev	to	open	a	device	handle.	The	ibdev	function	requires	the
following	parameters:

Connect	board	index	(typically	0,	for	GPIB0)
Primary	address	for	the	GPIB	instrument	(refer	to	your	instrument
user	manual)
Secondary	address	for	the	GPIB	instrument	(0	if	the	GPIB
instrument	does	not	use	secondary	addressing)
Timeout	period	(typically	set	to	T10s,	which	is	10	seconds)
End-of-transfer	mode	(typically	set	to	1	so	that	EOI	is	asserted
with	the	last	byte	of	writes)
EOS	detection	mode	(typically	0	if	the	GPIB	instrument	does	not
use	EOS	characters)

A	successful	ibdev	call	returns	a	device	handle	that	is	used	for	all	device-
level	traditional	NI-488.2	calls	that	communicate	with	the	GPIB
instrument.
Step	2.	Clear	the	Device
Use	ibclr	to	clear	the	device.	This	resets	the	device's	internal	functions	to
the	default	state.



Device	Communication
Step	3.	Communicate	with	the	Device
Communicate	with	the	device	by	sending	it	a	"*IDN?"	query	and	then
reading	back	the	response.	Many	devices	respond	to	this	query	by
returning	a	description	of	the	device.	You	must	refer	to	the	documentation
that	came	with	your	GPIB	device	to	see	specific	instructions	on	the
proper	way	to	communicate	with	it.
Step	3a.
Use	ibwrt	to	send	the	"*IDN?"	query	command	to	the	device.
Step	3b.
Use	ibrd	to	read	the	response	from	the	device.
Continue	communicating	with	the	GPIB	device	until	you	are	finished.



Cleanup
Step	4.	Place	the	Device	Offline	before	Exiting	Your	Application
Use	ibonl	to	put	the	device	handle	offline	before	you	exit	the	application.



Items	to	Include	in	Your	Traditional	NI-488.2
Application
You	should	include	the	following	items	in	your	application:

Header	filesIn	a	C	application,	include	the	header	file	ni4882.h.
The	ni4882.h	file	contains	prototypes	for	the	NI-488.2	calls	and
constants	that	you	can	use	in	your	application.
Error	checkingCheck	for	errors	after	each	NI-488.2	call.
Error	handlingDeclare	and	define	a	function	to	handle	NI-488.2
errors.	This	function	takes	the	instrument	offline	and	closes	the
application.	If	the	function	is	declared	as:
void	gpiberr	(const	char	*	msg);	/*function	prototype*/

Then,	your	application	invokes	it	as	follows:
if	(Ibsta()	&	ERR)	{	gpiberr("GPIB	error");	}



Programming	Model	for	Applications	that
Communicate	with	Multiple	Instruments	and/or
Multiple	Interfaces
General	Program	Steps	and	Examples
Items	to	Include	in	Your	Application



General	Program	Steps	and	Examples	for	Your
Multi-Device	Application
The	following	steps	show	you	how	to	use	the	multi-device	NI-488.2	calls
in	your	application.	The	NI-488.2	software	includes	the	source	code	for
an	example	written	in	C,	4882query.c,	and	the	source	code	for	the
example	written	to	use	direct	entry	to	access	the	gpib-32.dll,
dll4882query.c.	The	NI-488.2	software	also	includes	a	sample	program
written	in	Visual	Basic,	query4882.frm.



Initialization
Step	1.	Become	Controller-In-Charge	(CIC)
Use	SendIFC	to	initialize	the	bus	and	the	GPIB	interface	so	the	GPIB
interface	is	Controller-In-Charge	(CIC).	The	only	argument	of	SendIFC	is
the	GPIB	interface	number,	typically	0	for	GPIB0.
Step	2.	Determine	the	GPIB	Address	of	Your	Devices
Use	FindLstn	to	find	all	the	devices	attached	to	the	GPIB.	The	FindLstn
function	requires	the	following	parameters:

Interface	number	(typically	0	for	GPIB0)
A	list	of	primary	addresses,	terminated	with	the	NOADDR
constant
A	list	for	reported	GPIB	addresses	of	devices	found	listening	on
the	GPIB
Limit	which	is	the	number	of	the	GPIB	addresses	to	report

Use	FindLstn	to	test	for	the	presence	of	all	of	the	primary	addresses	in
the	list.	If	a	device	is	present	at	a	particular	primary	address,	then	the
primary	address	is	stored	in	the	GPIB	addresses	list.	Otherwise,	all
secondary	addresses	of	the	given	primary	address	are	tested,	and	the
GPIB	address	of	any	devices	found	are	stored	in	the	GPIB	addresses	list.
When	you	have	the	list	of	GPIB	addresses,	you	can	determine	which	one
corresponds	to	your	instrument	and	use	it	for	subsequent	calls.
Alternatively,	if	you	already	know	your	GPIB	device's	primary	and
secondary	address,	you	can	create	an	appropriate	GPIB	address	to	use
in	subsequent	NI-488.2	calls,	as	follows:	a	GPIB	address	is	a	16-bit	value
that	contains	the	primary	address	in	the	low	byte	and	the	secondary
address	in	the	high	byte.	If	you	are	not	using	secondary	addressing,	the
secondary	address	is	0.	For	example,	if	the	primary	address	is	1,	then
the	16-bit	value	is	0x01;	otherwise,	if	the	primary	address	is	1	and	the
secondary	address	is	0x67,	then	the	16-bit	value	is	0x6701.
Step	3.	Initialize	the	Devices
Use	DevClearList	to	clear	the	devices	on	the	GPIB.	The	first	argument	is
the	GPIB	interface	number.	The	second	argument	is	the	list	of	GPIB
addresses	that	were	found	to	be	listening	as	determined	in	step	2.



Device	Communication
Step	4.	Communicate	with	the	Devices
Communicate	with	the	devices	by	sending	them	a	"*IDN?"	query	and
then	reading	back	the	responses.	Many	devices	respond	to	this	query	by
returning	a	description	of	the	device.	You	must	refer	to	the	documentation
that	came	with	your	GPIB	devices	to	see	specific	instruction	on	the
proper	way	to	communicate	with	them.
Step	4a.
Use	SendList	to	send	the	"*IDN?"	query	command	to	multiple	GPIB
devices.	The	address	is	the	list	of	GPIB	devices	to	be	queried.	The	buffer
that	you	pass	to	SendList	is	the	command	message	to	the	device.
Step	4b.
Use	Receive	for	each	device	to	read	the	responses	from	each	device.
Continue	communicating	with	the	GPIB	devices	until	you	are	finished.



Items	to	Include	in	Your	Multi-Device	Application
You	should	include	the	following	items	in	your	application:

Header	filesIn	a	C	application,	include	the	header	file	ni4882.h.
The	ni4882.h	file	contains	prototypes	for	the	NI-488.2	calls	and
constants	that	you	can	use	in	your	application.
Error	checkingCheck	for	errors	after	each	NI-488.2	call.
Error	handlingDeclare	and	define	a	function	to	handle	NI-488.2
errors.	This	function	takes	the	instrument	offline	and	closes	the
application.	If	the	function	is	declared	as:

void	gpiberr	(const	char	*	msg);	/*function	prototype*/
Then,	your	application	invokes	it	as	follows:
if	(Ibsta()	&	ERR)	{
gpiberr("GPIB	error");

}



Checking	Global	Status	After	Each	NI-488.2	Call
For	applications	accessing	the	NI4882	API,	each	NI-488.2	call	updates
three	global	functions	to	reflect	the	status	of	the	device	or	board	that	you
are	using.	These	global	status	functions	are	the	status	word	(Ibsta),	the
error	function	(Iberr),	and	the	count	function	(Ibcnt).	They	contain	useful
information	about	the	performance	of	your	application.	Your	application
should	check	these	functions	after	each	NI-488.2	call.	For	more
information	about	each	status	function,	refer	to	the	following	sections.
For	applications	accessing	the	older	GPIB32	API	(including	the	Visual
Basic	6.0	application	interface),	use	the	equivalent	global	variables.
These	global	status	variables	are	the	status	word	(ibsta),	the	error
variable	(iberr),	and	the	count	variables	(ibcnt	and	ibcntl).	ibcnt	is	defined
to	be	the	type	int,	while	ibcntl	is	the	size	of	type	long	int.	For	all	cases,	if
the	sizes	of	ibcnt	and	ibcntl	are	the	same,	ibcnt	and	ibcntl	are	equal.	For
cross-platform	compatibility,	all	applications	should	use	ibcntl.
For	applications	accessing	the	newer	NI4882	API,	use	the	global	function
calls	rather	than	the	global	variables.	The	global	functions	replace	the
global	variables	with	the	newer	NI4882	API.

Note	If	you	are	writing	a	multithreaded	application,	use	the	thread-
specific	copies	of	the	status	functions	in	your	application.	To
access	the	thread-specific	copies,	use	the	ThreadIbsta,
ThreadIberr,	and	ThreadIbcnt	calls.



Status	Word	(Ibsta)
All	NI-488.2	calls	update	a	global	status	word,	Ibsta.	It	contains
information	about	the	state	of	the	GPIB	and	your	GPIB	hardware.	The
value	stored	in	Ibsta	is	the	return	value	of	all	the	traditional	NI-488.2	calls,
except	ibfind	and	ibdev.	You	can	examine	various	status	bits	in	Ibsta	and
use	that	information	to	determine	what	to	do	next	in	your	application.	For
more	information	about	the	status	bits	in	Ibsta,	refer	to	the	Ibsta	Status	Bit
Values	table.
The	language	header	file	which	is	installed	defines	each	of	the	Ibsta
status	bits.	You	can	test	for	an	Ibsta	status	bit	being	set	using	the	bitwise
AND	operator	(&	in	C/C++).	For	example,	the	Ibsta	ERR	bit	is	bit	15	of
Ibsta.	To	check	for	a	GPIB	error,	use	the	following	statement	after	each
GPIB	call:
if	(Ibsta()	&	ERR)
printf("GPIB	error	encountered");



Error	Function	(Iberr)
Iberr	is	the	NI-488.2	error	function.	If	a	call	failed	with	an	error,	the	ERR
bit	is	set	in	Ibsta.	The	Iberr	value	describes	the	NI-488.2	error	that
occurred.	For	more	information	about	the	Iberr	values,	refer	to	the	Error
Codes	and	Solutions	table.



Count	Function	(Ibcnt)
Ibcnt	is	the	count	function.	It	contains	information	about	the	number	of
bytes	that	went	across	the	GPIB	in	the	most	recent	I/O	operation.
The	count	function	is	updated	after	each	read,	write,	or	command
function.	In	addition,	Ibcnt	is	updated	after	specific	488.2-style	functions
in	certain	error	cases.
If	the	data	that	you	are	reading	contains	ASCII	characters,	you	can	use
Ibcnt	to	NULL	terminate	the	string	and	treat	it	like	any	other	ASCII	string.
For	example,	you	can	use	printf	to	print	the	result	to	the	screen:
char	rdbuf[21];
ibrd	(ud,	rdbuf,	20);
if	(!(Ibsta()	&	ERR)){
rdbuf[Ibcnt()]	=	'\0';
printf	("Read	in	string:	%s\n",	rdbuf);

}
else	{
//	GPIB	Error	encountered!

}



Advanced	Programming	Techniques
Serial	Polling
Terminating	Data	Transfers
Waiting	for	GPIB	Conditions
Multithreaded	NI-488.2	Applications
Device-Level	NI-488.2	Calls	and	Bus	Management
Talker/Listener	Applications
High-Speed	Data	Transfer	(HS488)
Asynchronous	Event	Notification
Parallel	Polling



Serial	Polling
Overview
Service	Requests	From	Devices
Serial	Polling	with	Traditional	NI-488.2	Calls
Serial	Polling	with	Multi-Device	NI-488.2	Calls
Automatic	Serial	Polling	Overview
Stuck	SRQ	State
Autopolling	and	Interrupts



Serial	Polling	Overview
You	can	use	serial	polling	to	obtain	specific	information	from	GPIB
devices	when	they	request	service.	When	the	GPIB	SRQ	line	is	asserted,
it	signals	the	Controller	that	a	service	request	is	pending.	The	Controller
must	then	determine	which	device	asserted	the	SRQ	line	and	respond
accordingly.	The	most	common	method	for	SRQ	detection	and	servicing
is	the	serial	poll.

Related	Topics:
AllSpoll
Automatic	Serial	Polling	Overview
FindRQS
IBRSP
IBRSV
Serial	Polling	with	Device-Level	Traditional	NI-488.2	Calls
Serial	Polling	with	Multi-Device	NI-488.2	Calls
Service	Requests	from	Devices



Service	Requests	From	Devices
IEEE	488	Devices
IEEE	488	devices	request	service	from	the	GPIB	Controller	by	asserting
the	GPIB	SRQ	line.	When	the	Controller	acknowledges	the	SRQ,	it	serial
polls	each	open	device	on	the	bus	to	determine	which	device	requested
service.	Any	device	requesting	service	returns	a	status	byte	with	bit	6	set
and	then	unasserts	the	SRQ	line.	Devices	not	requesting	service	return	a
status	byte	with	bit	6	cleared.	Manufacturers	of	IEEE	488	devices	use
lower	order	bits	to	communicate	the	reason	for	the	service	request	or	to
summarize	the	state	of	the	device.



IEEE	488.2	Devices
The	IEEE	488.2	standard	refined	the	bit	assignments	in	the	status	byte.
In	addition	to	setting	bit	6	when	requesting	service,	IEEE	488.2	devices
also	use	two	other	bits	to	specify	their	status.	Bit	4,	the	Message
Available	bit	(MAV),	is	set	when	the	device	is	ready	to	send	previously
queried	data.	Bit	5,	the	Event	Status	bit	(ESB),	is	set	if	one	or	more	of	the
enabled	IEEE	488.2	events	occurs.	These	events	include	power-on,	user
request,	command	error,	execution	error,	device	dependent	error,	query
error,	request	control,	and	operation	complete.	The	device	can	assert
SRQ	when	ESB	or	MAV	are	set,	or	when	a	manufacturer-defined
condition	occurs.

Related	Topics:
AllSpoll
Automatic	Serial	Polling	Overview
FindRQS
IBRSP
IBRSV
Serial	Polling	Overview
Serial	Polling	with	Device-Level	Traditional	NI-488.2	Calls
Serial	Polling	with	Multi-Device	NI-488.2	Calls



Serial	Polling	with	Device-Level	Traditional	NI-
488.2	Calls
You	can	use	the	device-level	traditional	NI-488.2	call	ibrsp	to	conduct	a
serial	poll.	ibrsp	conducts	a	single	serial	poll	and	returns	the	serial	poll
response	byte	to	the	application.	If	automatic	serial	polling	is	enabled,	the
application	can	use	ibwait	to	suspend	program	execution	until	RQS
appears	in	the	status	function,	Ibsta.	The	program	can	then	call	ibrsp	to
obtain	the	serial	poll	response	byte.
The	following	example	shows	you	how	to	use	the	ibwait	and	ibrsp	calls	in
a	typical	SRQ	servicing	situation	when	automatic	serial	polling	is
enabled.

char	GetSerialPollResponse	(	int	DeviceHandle	)
{
			char	SerialPollResponse	=	0;
			ibwait	(	DeviceHandle,	TIMO	|	RQS	);
			if	(	Ibsta()	&	RQS	)		{
						printf	(	"Device	asserted	SRQ.\n"	);
						/*	Use	ibrsp	to	retrieve	the	serial	poll	response.	*/
						ibrsp	(	DeviceHandle,	&SerialPollResponse	);
			}
			return	SerialPollResponse;
}

Related	Topics:
AllSpoll
Automatic	Serial	Polling	Overview
FindRQS
IBRSP
IBRSV
Serial	Polling	Overview
Serial	Polling	with	Multi-Device	NI-488.2	Calls
Service	Requests	from	Devices



Serial	Polling	with	Multi-Device	NI-488.2	Calls
The	NI-488.2	software	includes	a	set	of	multi-device	NI-488.2	calls	that
you	can	use	to	conduct	SRQ	servicing	and	serial	polling.	Calls	pertinent
to	SRQ	servicing	and	serial	polling	are	AllSpoll,	ReadStatusByte,	FindRQS,
TestSRQ,	and	WaitSRQ.	Following	are	descriptions	of	each	of	the	calls:

1.	 AllSpoll	can	serial	poll	multiple	devices	with	a	single	call.	It	places
the	status	bytes	from	each	polled	instrument	into	a	predefined
array.	Then	you	must	check	the	RQS	bit	of	each	status	byte	to
determine	whether	that	device	requested	service.

2.	 ReadStatusByte	is	similar	to	AllSpoll,	except	that	it	only	serial
polls	a	single	device.	It	is	also	similar	to	the	device-level
traditional	NI-488.2	call	ibrsp.

3.	 FindRQS	serial	polls	a	list	of	devices	until	it	finds	a	device	that	is
requesting	service	or	until	it	has	polled	all	of	the	devices	on	the
list.	The	call	returns	the	index	and	status	byte	value	of	the	device
requesting	service.

4.	 TestSRQ	determines	whether	the	SRQ	line	is	asserted,	and
returns	to	the	program	immediately.

5.	 WaitSRQ	is	similar	to	TestSRQ,	except	that	WaitSRQ	suspends	the
application	until	either	SRQ	is	asserted	or	the	timeout	period	is
exceeded.

The	following	examples	use	these	calls	to	detect	SRQ	and	then
determine	which	device	requested	service.	In	these	examples,	three
devices	are	present	on	the	GPIB	at	addresses	3,	4,	and	5,	and	the	GPIB
interface	is	designated	as	bus	index	0.	The	first	example	uses	FindRQS	to
determine	which	device	is	requesting	service	and	the	second	example
uses	AllSpoll	to	serial	poll	all	three	devices.	Both	examples	use	WaitSRQ
to	wait	for	the	GPIB	SRQ	line	to	be	asserted.

Example	1:	Using	FindRQS
Example	2:	Using	AllSpoll

Related	Topics:
AllSpoll
Automatic	Serial	Polling	Overview



FindRQS
IBRSP
IBRSV
Serial	Polling	Overview
Serial	Polling	with	Device-Level	Traditional	NI-488.2	Calls
Service	Requests	from	Devices



Example	1:	Using	FindRQS
This	example	shows	you	how	to	use	FindRQS	to	find	the	first	device	that
is	requesting	service.

void	GetASerialPollResponse	(	char	*DevicePad,	
																														char	*DeviceResponse	)
{
			char	SerialPollResponse	=	0;
			int	WaitResult;
			Addr4882_t	Addrlist[4]	=	{3,4,5,NOADDR};
			WaitSRQ	(0,	&WaitResult);
			if	(WaitResult)	{
						printf	("SRQ	is	asserted.\n");
						FindRQS	(	0,	AddrList,	&SerialPollResponse	);
						if	(!(Ibsta()	&	ERR))		{
									printf	("Device	at	pad	%x	returned	byte	%x.\n",
																	AddrList[Ibcnt()],(int)	
																	SerialPollResponse);
									*DevicePad	=	AddrList[ibcnt()];
									*DeviceResponse	=	SerialPollResponse;
						}
			}
			return;
}



Example	2:	Using	AllSpoll
This	example	shows	you	how	to	use	AllSpoll	to	serial	poll	three	devices
with	a	single	call.

void	GetAllSerialPollResponses	(	Addr4882_t	AddrList[],
																																	short	ResponseList[]	)
{
			int	WaitResult;
			WaitSRQ	(0,	&WaitResult);
			if	(	WaitResult	)	{
						printf	(	"SRQ	is	asserted.\n"	);
						AllSpoll	(	0,	AddrList,	ResponseList	);
						if	(!(Ibsta()	&	ERR))		{
									for	(i	=	0;	AddrList[i]	!=	NOADDR;	i++)		{
												printf	("Device	at	pad	%x	returned	byte	%x.\n",
															AddrList[i],
															ResponseList[i]	);
									}
						}
			}
			return;
}



Automatic	Serial	Polling	Overview
If	you	want	your	application	to	conduct	a	serial	poll	automatically	when
the	SRQ	line	is	asserted,	you	can	enable	automatic	serial	polling.	You
can	use	automatic	serial	polling	with	traditional	device-level	calls	only.
The	autopolling	procedure	occurs	as	follows:

1.	 Autopolling	is	enabled	by	default.	However,	if	you	want	to	disable
autopolling,	use	the	configuration	function,	ibconfig,	with	the
IbcAUTOPOLL	option,	or	Measurement	&	Automation	Explorer.

2.	 When	the	SRQ	line	is	asserted,	the	driver	automatically	serial
polls	the	open	devices.

3.	 Each	positive	serial	poll	response	(bit	6	or	hex	40	is	set)	is	stored
in	a	queue	associated	with	the	device	that	sent	it.	The	RQS	bit	of
the	device	status	word,	Ibsta,	is	set.

4.	 The	polling	continues	until	SRQ	is	unasserted	or	an	error
condition	is	detected.

5.	 To	empty	the	queue,	use	the	ibrsp	function.	ibrsp	returns	the	first
queued	response.	Other	responses	are	read	in	first-in-first-out
(FIFO)	fashion.	If	the	RQS	bit	of	the	status	word	is	not	set	when
ibrsp	is	called,	a	serial	poll	is	conducted	and	returns	the	response
received.	You	should	empty	the	queue	as	soon	as	an	automatic
serial	poll	occurs.

6.	 If	the	RQS	bit	of	the	status	word	is	still	set	after	ibrsp	is	called,	the
response	byte	queue	contains	at	least	one	more	response	byte.	If
this	happens,	you	should	continue	to	call	ibrsp	until	RQS	is
cleared.

Related	Topics:
AllSpoll
FindRQS
IBRSP
IBRSV
Serial	Polling	Overview
Serial	Polling	with	Device-Level	Traditional	NI-488.2	Calls
Serial	Polling	with	Multi-Device	NI-488.2	Calls



Service	Requests	from	Devices



Stuck	SRQ	State
If	autopolling	is	enabled	and	the	GPIB	interface	detects	an	SRQ,	the
driver	serial	polls	all	open	devices	connected	to	that	interface.	The	serial
poll	continues	until	either	SRQ	unasserts	or	all	the	devices	have	been
polled.
If	no	device	responds	positively	to	the	serial	poll,	or	if	SRQ	remains	in
effect	because	of	a	faulty	instrument	or	cable,	a	stuck	SRQ	state	is	in
effect.	If	this	happens	during	an	ibwait	for	RQS,	the	driver	reports	the
ESRQ	error.	If	the	stuck	SRQ	state	happens,	no	further	polls	are
attempted	until	an	ibwait	for	RQS	is	made.	When	ibwait	is	issued,	the
stuck	SRQ	state	is	terminated	and	the	driver	attempts	a	new	set	of	serial
polls.

Related	Topics:
Automatic	Serial	Polling	Overview
Autopolling	and	Interrupts



Autopolling	and	Interrupts
If	autopolling	and	interrupts	are	both	enabled,	the	NI-488.2	software	can
perform	autopolling	after	any	device-level	NI-488.2	call	provided	that	no
GPIB	I/O	is	currently	in	progress.	In	this	case,	an	automatic	serial	poll
can	occur	even	when	your	application	is	not	making	any	calls	to	the	NI-
488.2	software.	Autopolling	can	also	occur	when	a	device-level	ibwait	for
RQS	is	in	progress.	Autopolling	is	not	allowed	when	an	application	calls
board-level	traditional	or	multi-device	NI-488.2	calls,	or	the	stuck	SRQ
(ESRQ)	condition	occurs.

Related	Topics:
Automatic	Serial	Polling	Overview
Stuck	SRQ	State



Terminating	Data	Transfers
GPIB	data	transfers	are	terminated	either	when	the	GPIB	EOI	line	is
asserted	with	the	last	byte	of	a	transfer	or	when	a	preconfigured	end-of-
string	(EOS)	character	is	transmitted.	By	default,	EOI	is	asserted	with	the
last	byte	of	writes	and	the	EOS	modes	are	disabled.
You	can	use	the	ibconfig	function	(option	IbcEOT)	to	enable	or	disable
the	end	of	transmission	(EOT)	mode.	If	EOT	mode	is	enabled,	the	GPIB
EOI	line	is	asserted	when	the	last	byte	of	a	write	is	sent	out	on	the	GPIB.
If	it	is	disabled,	the	EOI	line	is	not	asserted	with	the	last	byte	of	a	write.
You	can	use	the	ibconfig	function	(option	IbcEOS)	to	enable,	disable,	or
configure	the	EOS	modes.	EOS	mode	configuration	includes	the
following	information:

A	7-bit	or	8-bit	EOS	byte.
EOS	comparison	methodThis	indicates	whether	the	EOS	byte
has	seven	or	eight	significant	bits.	For	a	7-bit	EOS	byte,	the
eighth	bit	of	the	EOS	byte	is	ignored.
EOS	write	methodIf	this	is	enabled,	the	GPIB	EOI	line	is
automatically	asserted	when	the	EOS	byte	is	written	to	the	GPIB.
If	the	buffer	passed	into	an	ibwrt	call	contains	five	occurrences	of
the	EOS	byte,	the	EOI	line	is	asserted	as	each	of	the	five	EOS
bytes	are	written	to	the	GPIB.	If	an	ibwrt	buffer	does	not	contain
an	occurrence	of	the	EOS	byte,	the	EOI	line	is	not	asserted
(unless	the	EOT	mode	is	enabled,	in	which	case	the	EOI	line	is
asserted	with	the	last	byte	of	the	write).
EOS	read	methodIf	this	is	enabled,	ibrd,	ibrda,	and	ibrdf	calls
are	terminated	when	the	EOS	byte	is	detected	on	the	GPIB,
when	the	GPIB	EOI	line	is	asserted,	or	when	the	specified	count
is	reached.	If	the	EOS	read	method	is	disabled,	ibrd,	ibrda,	and
ibrdf	calls	terminate	only	when	the	GPIB	EOI	line	is	asserted	or
the	specified	count	has	been	read.

You	can	use	the	ibconfig	function	to	configure	the	software	to	indicate
whether	the	GPIB	EOI	line	was	asserted	when	the	EOS	byte	was	read	in.
Use	the	IbcEndBitIsNormal	option	to	configure	the	software	to	report	only
the	END	bit	in	Ibsta	when	the	GPIB	EOI	line	is	asserted.	By	default,	END
is	reported	in	Ibsta	when	either	the	EOS	byte	is	read	in	or	the	EOI	line	is
asserted	during	a	read.



Waiting	for	GPIB	Conditions
You	can	use	the	ibwait	function	to	obtain	the	current	Ibsta	value	or	to
suspend	your	application	until	a	specified	condition	occurs	on	the	GPIB.
If	you	use	ibwait	with	a	parameter	of	zero,	it	immediately	updates	Ibsta
and	returns.	If	you	want	to	use	ibwait	to	wait	for	one	or	more	events	to
occur,	pass	a	wait	mask	to	the	function.	The	wait	mask	should	always
include	the	TIMO	event;	otherwise,	your	application	is	suspended
indefinitely	until	one	of	the	wait	mask	events	occurs.
You	can	also	wait	for	GPIB	conditions	asynchronously.	For	more
information,	refer	to	the	Asynchronous	Event	Notification	topic.



Device-Level	NI-488.2	Calls	and	Bus
Management
The	device-level	traditional	NI-488.2	calls	are	designed	to	perform	all	of
the	GPIB	management	for	your	application.	However,	the	NI-488.2	driver
can	handle	bus	management	only	when	the	GPIB	interface	is	CIC
(Controller-In-Charge).	Only	the	CIC	is	able	to	send	command	bytes	to
the	devices	on	the	bus	to	perform	device	addressing	or	other	bus
management	activities.
If	your	GPIB	interface	is	configured	as	the	System	Controller	(default),	it
automatically	makes	itself	the	CIC	by	asserting	the	IFC	line	the	first	time
you	make	a	device-level	call.



Talker/Listener	Applications
Although	designed	for	Controller-In-Charge	applications,	you	can	also
use	the	NI-488.2	software	in	most	non-Controller	situations.	These
situations	are	known	as	Talker/Listener	applications	because	the
interface	is	not	the	GPIB	Controller.
A	Talker/Listener	application	typically	uses	ibwait	with	a	mask	of	0	to
monitor	the	status	of	the	interface.	Then,	based	on	the	status	bits	set	in
Ibsta,	the	application	takes	whatever	action	is	appropriate.	For	example,
the	application	could	monitor	the	status	bits	TACS	(Talker	Active	State)
and	LACS	(Listener	Active	State)	to	determine	when	to	send	data	to	or
receive	data	from	the	Controller.	The	application	could	also	monitor	the
DCAS	(Device	Clear	Active	State)	and	DTAS	(Device	Trigger	Active
State)	bits	to	determine	if	the	Controller	has	sent	the	device	clear	(DCL	or
SDC)	or	trigger	(GET)	messages	to	the	interface.	If	the	application
detects	a	device	clear	from	the	Controller,	it	might	reset	the	internal	state
of	message	buffers.	If	it	detects	a	trigger	message	from	the	Controller,
the	application	might	begin	an	operation,	such	as	taking	a	voltage
reading	if	the	application	is	actually	acting	as	a	voltmeter.



High-Speed	Data	Transfer	(HS488)
Overview
Enabling	HS488	Transfers
System	Configuration	Effects	on	HS488



HS488	Overview
National	Instruments	has	designed	a	high-speed	data	transfer	protocol
for	IEEE	488	called	HS488.	This	protocol	increases	performance	for
GPIB	reads	and	writes	up	to	8	Mbytes/s,	depending	on	your	system.
HS488	is	part	of	the	IEEE	488.1	2003	specification;	thus,	you	can	mix
IEEE	488.1,	IEEE	488.2,	and	HS488	devices	in	the	same	system.	If
HS488	is	enabled,	National	Instruments	GPIB	hardware	implements
high-speed	transfers	automatically	when	communicating	with	HS488
instruments.	If	you	attempt	to	enable	HS488	on	a	GPIB	interface	that
does	not	support	it,	the	ECAP	error	code	is	returned.

Related	Topics:
Enabling	HS488	Transfers
System	Configuration	Effects	on	HS488



Enabling	HS488	Transfers
To	enable	HS488	for	your	GPIB	interface,	use	the	ibconfig	function
(option	IbcHSCableLength).	The	value	passed	to	ibconfig	should	specify
the	number	of	meters	of	cable	in	your	NI-488.2	configuration.	If	you
specify	a	cable	length	that	is	much	smaller	than	what	you	actually	use,
the	transferred	data	could	become	corrupted.	If	you	specify	a	cable
length	longer	than	what	you	actually	use,	the	data	is	transferred
successfully,	but	more	slowly	than	if	you	specified	the	correct	cable
length.
In	addition	to	using	ibconfig	to	configure	your	GPIB	interface	for	HS488,
the	Controller-In-Charge	must	send	out	GPIB	command	bytes	(interface
messages)	to	configure	other	devices	for	HS488	transfers.
If	you	are	using	device-level	traditional	NI-488.2	calls,	the	NI-488.2
software	automatically	sends	the	HS488	configuration	message	to
devices.	If	you	set	the	HS488	cable	length	in	Measurement	&	Automation
Explorer	to	a	non-zero	value,	the	NI-488.2	software	sends	out	the	HS488
configuration	message	when	you	use	ibdev	to	bring	a	device	online.	If
you	call	ibconfig	to	change	the	GPIB	cable	length,	the	NI-488.2	software
sends	out	the	HS488	configuration	message	again,	the	next	time	you	call
a	device-level	function.
If	you	are	using	board-level	traditional	NI-488.2	calls	or	multi-device	NI-
488.2	calls	and	you	want	to	configure	devices	for	high-speed,	you	must
send	the	HS488	configuration	messages	using	ibcmd	or	SendCmds.	The
HS488	configuration	message	is	made	up	of	two	GPIB	command	bytes.
The	first	byte,	the	Configure	Enable	(CFE)	message	(hex	1F),	places	all
HS488	devices	into	their	configuration	mode.	Non-HS488	devices	should
ignore	this	message.	The	second	byte	is	a	GPIB	secondary	command
that	indicates	the	number	of	meters	of	cable	in	your	system.	It	is	called
the	Configure	(CFGn)	message.	Because	HS488	can	operate	only	with
cable	lengths	of	1	to	15	meters,	only	CFGn	values	of	1	through	15	(hex
61	through	6F)	are	valid.	If	the	cable	length	was	configured	properly	in
Measurement	&	Automation	Explorer,	you	can	determine	how	many
meters	of	cable	are	in	your	system	by	calling	ibask	(option
IbaHSCableLength)	in	your	application.	For	CFE	and	CFGn	messages,
refer	to	the	IEEE	488	Command	Messages	section.

Related	Topics:



HS488	Overview
System	Configuration	Effects	on	HS488



System	Configuration	Effects	on	HS488
Maximum	HS488	data	transfer	rates	can	be	limited	by	your	host
computer	and	GPIB	system	setup.	For	example,	when	using	a	PC-
compatible	computer	with	PCI	bus,	the	maximum	obtainable	transfer	rate
is	8	Mbytes/s,	but	when	using	another	bus,	such	as	USB	or	Ethernet,	the
maximum	data	transfer	rate	depends	on	the	maximum	transfer	rate	of
that	bus.
The	same	IEEE	488	cabling	constraints	for	a	350	ns	T1	delay	apply	to
HS488.	As	you	increase	the	amount	of	cable	in	your	NI-488.2
configuration,	the	maximum	data	transfer	rate	using	HS488	decreases.
For	example,	two	HS488	devices	connected	by	two	meters	of	cable	can
transfer	data	faster	than	four	HS488	devices	connected	by	four	meters	of
cable.

Related	Topics:
Enabling	HS488	Transfers
HS488	Overview



Asynchronous	Event	Notification
Overview
ibnotify	Usage
GpibNotify	Usage



Asynchronous	Event	Notification	Overview
NI-488.2	applications	can	asynchronously	receive	event	notifications
using	the	ibnotify	function.	This	function	is	useful	if	you	want	your
application	to	be	notified	asynchronously	about	the	occurrence	of	one	or
more	GPIB	events.	For	example,	you	might	choose	to	use	ibnotify	if	your
application	only	needs	to	interact	with	your	GPIB	device	when	it	is
requesting	service.	After	calling	ibnotify,	your	application	does	not	need
to	check	the	status	of	your	GPIB	device.	Then,	when	your	GPIB	device
requests	service,	the	NI-488.2	driver	automatically	notifies	your
application	that	the	event	has	occurred	by	invoking	a	callback	function.
The	callback	function	is	registered	with	the	NI-488.2	driver	when	the
ibnotify	call	is	made.
Both	board-level	and	device-level	ibnotify	calls	are	supported	by	the	NI-
488.2	driver.	If	you	are	using	device-level	calls,	you	call	ibnotify	with	a
device	handle	for	ud	and	a	mask	of	RQS,	CMPL,	END,	or	TIMO.	If	you
are	using	board-level	calls,	you	call	ibnotify	with	a	board	handle	for	ud
and	a	mask	of	any	value	except	RQS.	Note	that	the	ibnotify	mask	bits	are
identical	to	the	ibwait	mask	bits.	In	the	example	of	waiting	for	your	GPIB
device	to	request	service,	you	might	choose	to	pass	ibnotify	a	mask	with
RQS	(for	device-level)	or	SRQI	(for	board-level).	The	callback	function
that	you	register	with	the	ibnotify	call	is	invoked	by	the	NI-488.2	driver
when	one	or	more	of	the	mask	bits	passed	to	ibnotify	is	true.
For	more	information	about	usage,	please	refer	to	either	the	ibnotify
Usage	or	the	GpibNotify	Usage	section.	For	more	specific	information
about	ibnotify,	refer	to	the	ibnotify	function	definition.	For	more
information	about	the	GpibNotify	OLE	control,	refer	to	the	GpibNotify
function	definition.



ibnotify	Usage
The	ibnotify	function	is	passed	a	unit	descriptor,	the	bit	mask	of	the
desired	GPIB	events,	the	address	of	your	callback	function,	and	user-
defined	reference	data.	ibnotify	has	the	following	prototype:



C

unsigned	long	ibnotify	(int	ud,	int	mask,	GpibNotifyCallback_t
														Callback,	void	*	RefData)



Visual	Basic	(6.0)

CALL	ibnotify	(ud%,	mask%,	AddressOf	
															Callback&,	RefData$)

or

status%	=	ilnotify	(ud%,	mask%,	AddressOf	
																			Callback&,	RefData$)



Input	for	ibnotify
ud Board	or	device	descriptor
mask Bit	mask	of	GPIB	events	to	notice
Callback Pointer	to	the	Callback	function
RefData User-defined	reference	data	for	the	callback

The	ibnotify	callback	has	the	following	prototype:



C
int	__stdcall	Callback	(int	LocalUd,	unsigned	long	LocalIbsta,	unsigned	long
LocalIberr,	unsigned	long	LocalIbcnt,	void	*RefData)



Visual	Basic	(6.0)
Function	Callback	(LocalUd%,	LocalIbsta%,	LocalIberr%,	LocalIbcnt&,
RefData$)



Callback	Parameters
LocalUd Board	or	device	descriptor
LocalIbsta Value	of	Ibsta
LocalIberr Value	of	Iberr
LocalIbcnt Value	of	Ibcnt
RefData User-defined	reference	data	for	the	callback

The	Callback	function	is	passed	a	unit	descriptor,	the	current	values	of	the
NI-488.2	global	variables,	and	the	user-defined	reference	data	that	was
passed	to	the	original	ibnotify	call.	The	NI-488.2	driver	interprets	the
return	value	for	the	Callback	as	a	mask	value	that	is	used	to	automatically
rearm	the	callback	if	it	is	non-zero.
You	can	view	an	example	written	in	C	of	how	you	can	use	ibnotify	in	your
application.	Assume	that	your	GPIB	device	is	a	multimeter	that	you
program	to	acquire	a	reading	by	sending	it	"SEND	DATA".	The	multimeter
requests	service	when	it	has	a	reading	ready,	and	each	reading	is	a
floating	point	value.
In	this	example,	global	functions/variables	are	shared	by	the	Callback
thread	and	the	main	thread,	and	the	access	of	the	global
functions/variables	is	not	protected	by	synchronization.	In	this	case,
synchronization	of	access	to	these	global	functions/variables	is	not
necessary	because	of	the	way	they	are	used	in	the	application:	only	a
single	thread	is	writing	the	global	values	and	that	thread	always	just	adds
information	(increases	the	count	or	adds	another	reading	to	the	array	of
floats).
For	overview	information	about	asynchronous	event	notification	within	an
NI-488.2	application,	please	refer	to	the	Asynchronous	Event	Notification
Overview	section.	For	more	specific	information	about	ibnotify,	please
refer	to	the	ibnotify	function	definition.

Note	The	ibnotify	Callback	is	executed	in	a	separate	thread	of
execution	from	the	rest	of	your	application.	If	your	application
might	be	performing	other	NI-488.2	operations	while	it	is	using
ibnotify	,	you	should	use	the	per-thread	NI-488.2	global
functions/variables	that	are	provided	by	the	Thread	calls
(ThreadIbsta,	ThreadIberr,	and	ThreadIbcnt).	In	addition,	if	your



application	needs	to	share	global	functions/variables	with	the
Callback	,	you	should	use	a	synchronization	primitive	(for	example,
semaphore)	to	protect	access	to	any	global	variables.	For	more
information	about	the	use	of	synchronization	primitives,	refer	to	the
documentation	on	using	synchronization	objects	that	came	with
your	development	tools.

Related	Topics:
ibnotify	Usage	Example
ibnotify
GpibNotify
GpibNotify	Usage



GpibNotify	Usage
The	GpibNotify	OLE	control	is	implemented	using	a	method	called
SetupNotify	and	an	event	called	Notify.	The	SetupNotify	method	is	used	to
enable	the	NI-488.2	driver	to	look	for	one	or	more	GPIB	conditions	for	a
particular	GPIB	handle.	After	it	is	set	up,	the	OLE	control	fires	the	Notify
event	when	one	or	more	of	the	GPIB	conditions	is	TRUE.	A	user-defined
callback	is	invoked	when	the	Notify	event	is	fired.
This	section	covers	the	major	highlights	regarding	the	sample	program
that	uses	the	GpibNotify	control.	The	program	contains	three	buttons:
Run,	Message,	and	Quit.
Clicking	the	Run	button	sets	into	motion	a	chain	of	commands	that	read
ten	measurements	from	a	Fluke	45	multimeter.	First,	the	program	gets	a
handle	to	the	device.	Next,	it	sends	a	set	of	commands	that	initialize	the
Fluke	45	multimeter.	Then	a	trigger	command	is	sent.	Next	the	program
asks	the	device	to	send	data.	Lastly,	it	issues	a	SetupNotify	to	the
GpibNotify	OLE	control	with	a	mask	of	the	RQS	GPIB	condition.
When	the	RQS	GPIB	condition	is	TRUE,	the	Notify	event	is	fired	and	the
user-defined	callback	is	invoked.	Each	time	through	the	callback,	the
RearmMask	is	set	to	RQS	so	that	the	event	notification	is	rearmed	for	the
next	RQS	GPIB	condition.	After	the	callback	has	read	ten	measurements
from	the	Fluke	45	multimeter,	the	RearmMask	is	set	to	zero	in	order	to
disable	the	event	notification	mechanism.
Clicking	the	Message	button	causes	a	message	to	be	displayed	in	a	text
box	every	time	the	button	is	clicked.
Clicking	the	Quit	button	closes	the	program.
The	NI-488.2	software	includes	a	sample	Visual	Basic	program.	Please
refer	to	the	readme.txt	file	for	more	detailed	information	about	the	project,
classes,	and	code.
For	overview	information	about	asynchronous	event	notification	within	an
NI-488.2	application,	please	refer	to	the	Asynchronous	Event	Notification
Overview	section.	For	more	specific	information	about	the	GpibNotify
OLE	control,	please	refer	to	the	GpibNotify	function	definition.

Note	The	GpibNotify	OLE	control	is	implemented	using	the
apartment	model.	Therefore,	it	only	works	correctly	if	your
application	responds	to	Windows	messages	in	a	timely	fashion.



Parallel	Polling
Overview
Parallel	Polling	with	Traditional	NI-488.2	Calls
Parallel	Polling	with	Multi-Device	NI-488.2	Calls



Parallel	Polling	Overview
Although	parallel	polling	is	not	widely	used,	it	is	a	useful	method	for
obtaining	the	status	of	more	than	one	device	at	the	same	time.	The
advantage	of	parallel	polling	is	that	a	single	parallel	poll	can	easily	check
up	to	eight	individual	devices	at	once.	In	comparison,	eight	separate
serial	polls	would	be	required	to	check	eight	devices	for	their	serial	poll
response	bytes.	The	value	of	the	individual	status	bit	(ist)	determines	the
parallel	poll	response.
You	can	implement	parallel	polling	with	either	the	traditional	or	multi-
device	NI-488.2	calls.	If	you	use	multi-device	NI-488.2	calls	to	execute
parallel	polls,	you	do	not	need	extensive	knowledge	of	the	parallel	polling
messages.	However,	you	should	use	the	traditional	NI-488.2	calls	for
parallel	polling	when	the	GPIB	interface	is	not	the	Controller,	and	the
interface	must	configure	itself	for	a	parallel	poll	and	set	its	own	individual
status	bit	(ist).

Related	Topics:
IBIST
IBPPC
IBRPP
Parallel	Polling	with	Multi-Device	NI-488.2	Calls
Parallel	Polling	with	Traditional	NI-488.2	Calls
PPoll
PPollConfig
PPollUnconfig



Parallel	Polling	with	Traditional	NI-488.2	Calls
To	implement	parallel	polling	using	traditional	NI-488.2	calls,	complete
the	following	steps.	Each	step	contains	example	code.

1.	 Configure	the	device	for	parallel	polling	using	the	ibppc	function,
unless	the	device	can	configure	itself	for	parallel	polling.

ibppc	requires	an	8-bit	value	to	designate	the	data	line	number,
the	ist	sense,	and	whether	the	function	configures	the	device	for
the	parallel	poll.	The	bit	pattern	is	as	follows:

0	1	1	E	S	D2	D1	D0

E	is	1	to	disable	parallel	polling	and	0	to	enable	parallel	polling	for
that	particular	device.

S	is	1	if	the	device	is	to	assert	the	assigned	data	line	when	ist	is
1,	and	0	if	the	device	is	to	assert	the	assigned	data	line	when	ist
is	0.

D2	through	D0	determine	the	number	of	the	assigned	data	line.
The	physical	line	number	is	the	binary	line	number	plus	one.	For
example,	DIO3	has	a	binary	bit	pattern	of	010.

The	following	example	code	configures	a	device	for	parallel
polling	using	traditional	NI-488.2	calls.	The	device	asserts	DIO7	if
its	ist	is	0.

In	this	example,	the	ibdev	command	opens	a	device	that	has	a
primary	address	of	3,	has	no	secondary	address,	has	a	timeout
of	3	s,	asserts	EOI	with	the	last	byte	of	a	write	operation,	and	has
EOS	characters	disabled.

The	following	call	configures	the	device	to	respond	to	the	poll	on
DIO7	and	to	assert	the	line	in	the	case	when	its	ist	is	0.	Pass	the
binary	bit	pattern,	0110	0110	or	hex	66,	to	ibppc.

#include	"ni4882.h"



dev	=	ibdev(0,3,0,T3s,1,0);
ibppc(dev,	0x66);

If	the	GPIB	interface	configures	itself	for	a	parallel	poll,	you
should	still	use	the	ibppc	function.	Pass	the	board	index	or	a
board	unit	descriptor	value	as	the	first	argument	in	ibppc.	Also,	if
the	individual	status	bit	(ist)	of	the	interface	needs	to	be	changed,
use	the	ibist	function.

In	the	following	example,	the	GPIB	interface	is	to	configure	itself
to	participate	in	a	parallel	poll.	It	asserts	DIO5	when	ist	is	1	if	a
parallel	poll	is	conducted.

ibppc(0,	0x6C);
ibist(0,	1);

2.	 Conduct	the	parallel	poll	using	ibrpp	and	check	the	response	for
a	certain	value.	The	following	example	code	performs	the	parallel
poll	and	compares	the	response	to	hex	10,	which	corresponds	to
DIO5.	If	that	bit	is	set,	the	ist	of	the	device	is	1.

char	ppr;
ibrpp(dev,	&ppr);
if	(ppr	&	0x10)
			printf("ist	=	1\n");

3.	 Unconfigure	the	device	for	parallel	polling	with	ibppc.	Notice	that
any	value	having	the	parallel	poll	disable	bit	set	(bit	4)	in	the	bit
pattern	disables	the	configuration,	so	you	can	use	any	value
between	hex	70	and	7E.

ibppc(dev,	0x70);

Related	Topics:
IBIST
IBPPC
IBRPP



Parallel	Polling	overview
Parallel	Polling	with	Multi-Device	NI-488.2	Calls
PPoll
PPollConfig
PPollUnconfig



Parallel	Polling	with	Multi-Device	NI-488.2	Calls
To	implement	parallel	polling	using	multi-device	NI-488.2	calls,	complete
the	following	steps.	Each	step	contains	example	code.

1.	 Configure	the	device	for	parallel	polling	using	the	PPollConfig
call,	unless	the	device	can	configure	itself	for	parallel	polling.	The
following	example	configures	a	device	at	address	3	to	assert	data
line	5	(DIO5)	when	its	ist	value	is	1.
#include	"ni4882.h"	
char	response;
Addr4882_t	AddressList[2];

/*	The	following	command	clears	the	GPIB.	*/
SendIFC(0);
/*	The	value	of	sense	is	compared	with	the	ist	bit
of	the	device	and	determines	whether	the	data
line	is	asserted.	*/
PPollConfig(0,3,5,1);

2.	 Conduct	the	parallel	poll	using	the	PPoll	call,	store	the	response,
and	check	the	response	for	a	certain	value.	In	the	following
example,	because	DIO5	is	asserted	by	the	device	if	ist	is	1,	the
program	checks	bit	4	(hex	10)	in	the	response	to	determine	the
value	of	ist.

PPoll(0,	&response);

/*	If	response	has	bit	4	(hex	10)	set,	the	ist	bit	
			of	the	device	at	that	time	is	equal	to	1.	If	
			it	does	not	appear,	the	ist	bit	is	equal	to	0.	
			Check	the	bit	in	the	following	statement.	*/

if	(response	&	0x10)	{
				printf("The	ist	equals	1.\n");
else	{
				printf("The	ist	equals	0.\n");
}

3.	 Unconfigure	the	device	for	parallel	polling	using	the



PPollUnconfig	call,	as	shown	in	the	following	example.	In	this
example,	the	NOADDR	constant	must	appear	at	the	end	of	the
array	to	signal	the	end	of	the	address	list.	If	NOADDR	is	the	only
value	in	the	array,	all	devices	receive	the	parallel	poll	disable
message.
AddressList[0]	=	3;
AddressList[1]	=	NOADDR;
PPollUnconfig(0,	AddressList);

Related	Topics:
IBIST
IBPPC
IBRPP
Parallel	Polling	Overview
Parallel	Polling	with	Traditional	NI-488.2	Calls
PPoll
PPollConfig
PPollUnconfig



Tools	for	Developing	Your	Application
Monitoring	NI-488.2	Calls	Using	NI	Spy
Simple	Instrument	Communication	Using	NI-488.2	Communicator



Using	NI	Spy
NI	Spy	monitors,	records,	and	displays	the	NI-488.2	calls	made	from
applications.	You	can	use	it	to	troubleshoot	errors	in	your	application	and
to	verify	the	communication	with	your	GPIB	instrument.	NI	Spy	shows
which	NI-488.2	calls	are	being	used	to	communicate	with	your
instrument.	If	your	application	is	not	working	properly,	you	can	use	NI	Spy
to	search	for	failed	NI-488.2	calls.	For	more	information,	refer	to	its	help.
To	start	NI	Spy,	select	Start»Programs»National	Instruments»NI	Spy.
Or	click	on	the	following	button.

	Start	NI	Spy.



Using	NI-488.2	Communicator
You	can	use	the	NI-488.2	Communicator	to	verify	that	you	can	establish
simple	communication	with	your	GPIB	instrument.	The	NI-488.2
Communicator	is	an	interactive	utility	that	allows	you	to	write	commands
to	your	instrument	and	read	responses	back	from	your	instrument.	It
provides	detailed	information	about	the	status	of	the	NI-488.2	calls	and
you	can	use	it	to	print	sample	C	source	code	that	performs	a	simple
query	to	a	GPIB	instrument.
To	start	NI-488.2	Communicator,	complete	the	following	steps:

1.	 >		Start	Measurement	&	Automation	Explorer.
2.	 In	Measurement	&	Automation	Explorer,	expand	the	Devices

and	Interfaces	directory	by	clicking	on	the	+	next	to	the	folder.
3.	 Right-click	on	the	GPIB	interface	that	your	GPIB	instrument	is

connected	to.
4.	 Select	Scan	for	Instruments	from	the	drop-down	menu	that

appears.
5.	 After	the	scan	is	complete,	select	your	GPIB	instrument	in	the	left

pane	of	the	Measurement	&	Automation	Explorer	window.
6.	 Right-click	on	your	instrument	and	select	Communicate	with

Instrument	from	the	drop-down	menu	that	appears.
The	NI-488.2	Communicator	dialog	box	appears.

7.	 Type	a	command	in	the	Send	String	field	and	do	one	of	the
following:

To	write	a	command	to	the	instrument	then	read	a
response	back,	click	on	the	Query	button.
To	write	a	command	to	the	instrument,	click	on	the	Write
button.
To	read	a	response	from	the	instrument,	click	on	the
Read	button.
To	configure	special	requirements	for	end	of	string	(EOS)
modes	for	your	device,	click	on	the	Configure	EOS
button.



Troubleshooting	Problems
If	you	cannot	communicate	with	your	instrument,	use	the	NI-488.2
Troubleshooting	Utility.	This	utility	verifies	that	your	GPIB	hardware	and
the	NI-488.2	software	are	installed	correctly	and	working	properly.
To	start	the	NI-488.2	Troubleshooting	Utility	within	Measurement	&
Automation	Explorer,	select	Help»Troubleshooting»NI-488.2
Troubleshooting	Utility	or	click	on	the	following	button.

	Start	the	NI-488.2	Troubleshooting
Utility.
Otherwise,	refer	to	the	following	topics:
Troubleshooting	Tools
Troubleshooting	EDVR	Error	Conditions
Why	Can't	I	Communicate	with	My	GPIB	Instrument?
Why	Can't	I	Find	My	GPIB-ENET/100?
Debugging	an	NI-488.2	Application
Frequently	Asked	Questions



Troubleshooting	EDVR	Error	Conditions
In	some	cases,	NI-488.2	calls	may	return	with	the	ERR	bit	set	in	Ibsta
and	the	value	EDVR	in	Iberr.	The	value	stored	in	Ibcnt	is	useful	in
troubleshooting	the	error	condition.	When	Ibcnt	is	set	to	one	of	the
following	values,	you	can	troubleshoot	an	EDVR	error	as	follows:
0xE014002C	(-535560148)
0xE0140025	(-535560155)
0xE0140035	(-535560139)
0xE1080080	(-519569280)	or	0xE1080081	(-519569279)
0xE00A0047	(-536215481)
0XE1030043	(-519897021)
0XE1060075	(-519700363)
0XE1060078	(-519700360)



EDVR	Error	with	Ibcnt	Set	to	0xE014002C
(-535560148)
If	a	call	is	made	with	a	board	number	that	is	within	the	range	of	allowed
board	numbers,	but	which	has	not	been	assigned	to	a	GPIB	interface,	an
EDVR	error	condition	occurs	with	Ibcnt	set	to	0xE014002C.	You	can
assign	a	board	number	to	a	GPIB	interface	by	configuring	the	NI-488.2
software	and	selecting	an	interface	name.	For	information	about	how	to
configure	the	NI-488.2	software,	refer	to	the	Measurement	&	Automation
Explorer	topic.

Return	to	Troubleshooting	EDVR	Error	Conditions



EDVR	Error	with	Ibcnt	Set	to	0xE0140025
(-535560155)
If	a	call	is	made	with	a	board	number	that	is	not	within	the	range	of
allowed	board	numbers,	an	EDVR	error	condition	occurs	with	Ibcnt	set	to
0xE0140025.

Return	to	Troubleshooting	EDVR	Error	Conditions



EDVR	Error	with	Ibcnt	Set	to	0xE0140035
(-535560139)
If	a	call	is	made	with	a	device	name	that	is	not	listed	in	the	logical	device
templates	that	are	part	of	Measurement	&	Automation	Explorer,	an	EDVR
error	condition	occurs	with	Ibcnt	set	to	0xE0140035.

Return	to	Troubleshooting	EDVR	Error	Conditions



EDVR	Error	with	Ibcnt	Set	to	0xE1080080
(-519569280)	or	0xE1080081	(-519569279)
These	errors	are	returned	if	you	are	using	a	removable	interface	(for
example,	a	GPIB-USB-HS)	and	you	removed	or	ejected	the	interface
while	the	software	is	trying	to	communicate	with	it.

Return	to	Troubleshooting	EDVR	Error	Conditions



EDVR	Error	with	Ibcnt	Set	to	0xE00A0047
(-536215481)
This	error	is	returned	when	the	driver	encounters	an	access	violation
when	attempting	to	access	an	object	supplied	by	the	user.	This	can
happen	if	the	user's	buffer	does	not	have	appropriate	read/write
characteristics.	For	example,	this	error	is	returned	if	a	required	pointer
passed	to	a	call	is	NULL.

Return	to	Troubleshooting	EDVR	Error	Conditions



EDVR	Error	with	Ibcnt	Set	to	0xE1030043
(-519897021)
This	error	occurs	if	you	have	enabled	DOS	NI-488.2	support	and
attempted	to	run	an	existing	DOS	NI-488.2	application	that	was	compiled
with	an	older,	unsupported	DOS	application	interface.

Return	to	Troubleshooting	EDVR	Error	Conditions



EDVR	Error	with	Ibcnt	Set	to	0xE1060075
(-519700363)
This	error	is	returned	when	the	driver	is	unable	to	communicate	with	a
GPIB-ENET/100	during	an	ibfind	or	ibdev	call	for	one	of	the	following
reasons:

The	IP	address	is	incorrect
The	box	is	not	powered	on
The	box	did	not	pass	its	self-diagnostic	test
In	general,	the	box	is	not	configured	or	installed	correctly

Return	to	Troubleshooting	EDVR	Error	Conditions



EDVR	Error	with	Ibcnt	Set	to	0xE1060078
(-519700360)
This	error	occurs	if	you	are	using	a	GPIB-ENET/100	and	the	network	link
is	broken	between	the	host	and	the	GPIB-ENET/100	interface.	This	error
can	be	returned	for	one	of	the	following	reasons:

The	cables	are	broken	or	removed.
The	GPIB-ENET/100	is	switched	off	during	communication.
The	virtual	connection	between	your	host	computer	and	the
GPIB-ENET/100	has	encountered	unrecoverable	errors.

Return	to	Troubleshooting	EDVR	Error	Conditions



Why	Can't	I	Communicate	with	My	GPIB
Instrument?
The	answer	to	this	question	depends	on	the	type	of	behavior	you	are
seeing.	The	following	topics	describe	some	common	problems	and	their
solutions.	You	may	be	trying	to	communicate	with	your	instrument	from
Measurement	&	Automation	Explorer	(MAX),	using	Interactive	Control
(IBIC),	LabVIEW,	LabWindows/CVI,	or	another	application	program.
Usually,	to	establish	basic	communication,	you	are	trying	to	write	to	your
instrument	and	then	read	some	useful	data	from	that	instrument.
Cannot	Find	Your	Instrument	During	a	Scan	for	Instruments
Error	on	a	Write
Error	on	a	Read	and	No	Data	is	Returned



Cannot	Find	Your	Instrument	During	a	Scan	for
Instruments
The	Scan	for	GPIB	Instruments	functionality	of	Measurement	&
Automation	Explorer	can	be	helpful	in	quickly	testing	your	GPIB	setup.
Clicking	this	button	in	Measurement	&	Automation	Explorer	conducts	a
FindLstn	test	for	all	GPIB	addresses	031	to	find	active	listeners	on	the
bus.	Measurement	&	Automation	Explorer	attempts	to	identify	these
instruments	by	sending	them	*IDN?	queries	and	then	performing	reads.
While	not	all	instruments	respond	to	the	*IDN?	query,	most	should	be
detected	by	the	initial	FindLstn	test.
If	your	instruments	are	not	detected	during	this	scan:

Check	your	cabling.	GPIB	has	strict	distance	requirements.
(Refer	to	Configuration	Requirements.)	Make	sure	the	cable	is
securely	connected	to	both	your	instrument	and	your	GPIB
interface.	Try	another	cable	if	possible,	especially	a	shorter	one.
If	more	than	one	instrument	is	connected,	disconnect	all	but	one
instrument.	An	instrument	with	a	bad	GPIB	interface	could
prevent	other	instruments	from	communicating	on	the	bus.
Remember	that	GPIB	address	0	is	usually	reserved	for	the
controller	(National	Instruments	GPIB	boards	default	to	address
0),	so	if	your	controller	has	an	address	of	0,	make	sure	your
instrument	has	a	different	address.	You	must	set	the	address	of
your	instrument	on	its	front	panel	or	via	dip	switches	somewhere
on	the	instrument.	Refer	to	the	instrument	documentation	to	set
the	GPIB	address.



Error	on	a	Write
You	may	be	experiencing	an	NI-488.2	error	on	a	write.

For	EABO	and	other	write	errors,	make	sure	you	are	writing	to
the	correct	GPIB	address.	You	can	configure	most	instruments
for	any	GPIB	address	031.	In	Windows,	the	Scan	for	Instruments
functionality	of	Measurement	&	Automation	Explorer	usually
returns	the	valid	address	for	your	instrument.	This	is	especially
useful	if	you	are	unsure	of	its	current	setting.
An	EBUS	error	indicates	there	is	no	GPIB	cable	connected	or	no
active	devices	on	that	cable,	so	make	sure	the	cable	is	securely
connected	and	all	devices	are	powered	on.
Remember	that	GPIB	address	0	is	usually	reserved	for	the
controller	(National	Instruments	GPIB	boards	default	to	address
0).	If	your	controller	has	an	address	of	0,	make	sure	your
instrument	has	a	different	address.	Refer	to	the	instrument
documentation	to	set	the	GPIB	address.
If	you	are	using	advanced	board-level	calls	and	not	device-level
calls	such	as	ibdev,	make	sure	your	GPIB	program	is	correctly
addressing	the	instrument.	When	using	board	handles,	you	must
address	the	device	as	a	listener	and	the	board	as	a	talker	before
writing	data.



Error	on	a	Read	and	No	Data	is	Returned
If	you	wrote	to	your	instrument	without	the	write	returning	an	error,	you
can	reasonably	assume	your	written	message	was	properly	sent	to	the
instrument.	If	you	wrote	a	command	that	the	instrument	responds	to,	you
should	perform	a	read	(ibrd	function	call).	If	you	receive	an	error	on	a
read,	it	most	likely	is	an	EABO	(abort)	due	to	a	TIMO	(timeout)	condition.
This	indicates	the	GPIB	controller	board	was	waiting	for	a	response	from
the	instrument,	but	the	response	never	came.
To	correct	this	error,	check	the	following	items:

The	command	you	previously	wrote	to	your	instrument	may	not
be	valid.	If	you	wrote	an	invalid	command,	the	instrument	may
not	respond	with	anything	at	all.	Refer	to	your	instrument	user
manual	or	contact	the	manufacturer	for	a	simple	command	the
instrument	will	respond	to.	Many	instruments	respond	to	*IDN?	or
ID,	but	others	do	not	support	these	basic	identification
commands.
The	termination	method	used	on	your	write	string	may	be
incorrect.	There	are	two	main	ways	to	terminate	data	messages
sent	to	instruments:	assert	the	EOI	(End	or	Identify)	line	on	the
GPIB	with	the	last	byte	of	the	transmission,	or	send	an	EOS	(End
of	String)	character	at	the	end.	The	default	termination	for	the
National	Instruments	GPIB	driver	software	is	to	assert	the	EOI
line	with	the	last	character	sent	on	GPIB	writes.	If	your	device
requires	a	termination	character,	add	it	to	the	end	of	the	string
you	write	to	the	instrument.	You	can	change	the	EOI	setting	with
the	ibconfig	call,	or	in	Measurement	&	Automation	Explorer	on
Windows	or	GPIB	Explorer	on	other	operating	systems.

Refer	to	Iberr	Error	Codes	and	Solutions	for	a	complete	list	of	GPIB	error
codes	and	their	common	causes.	If	you	continue	to	have	difficulty
communicating	with	your	instrument,	contact	National	Instruments
technical	support.



Why	Can't	I	Find	My	GPIB-ENET/100?
Several	situations	might	prevent	the	Add	GPIB-ENET/100	Wizard	from
discovering	your	GPIB-ENET/100	hardware.



The	GPIB-ENET/100	is	Not	Properly	Connected
Make	sure	the	GPIB-ENET/100	is	plugged	in,	connected	to	the	network,
and	switched	on.	Both	the	PWR/RDY	and	LINK	10/100	lights	on	the	front
of	the	GPIB-ENET/100	must	be	lit	before	the	device	can	be	discovered.
The	PWR/RDY	light	on	the	front	of	the	unit	indicates	whether	it	is
powered	on,	and	a	green	or	amber	LINK	10/100	light	indicates	that	the
network	is	properly	connected.
The	LINK	10/100	light	will	not	turn	on	if	the	Ethernet	cable	you	are	using
is	damaged,	or	if	the	wrong	Ethernet	cable	type	(that	is,	standard	instead
of	crossover)	is	being	used.



The	GPIB-ENET/100	is	Outside	the	Subnet	Boundary
NI-488.2	uses	broadcast	packets	to	discover	GPIB-ENET/100	units,	but
most	routers	do	not	propagate	these	packets	across	subnet	boundaries.
If	the	GPIB-ENET/100	is	not	connected	to	the	computer's	subnet,	NI-
488.2	cannot	discover	it.
To	ensure	the	computer	running	NI-488.2	and	the	GPIB-ENET/100	are
on	the	same	subnet,	connect	both	of	them	to	the	same	Ethernet	hub.
Your	network	administrator	can	also	help	you	identify	your	subnet
boundary	and	connect	the	GPIB-ENET/100	inside	it.
Although	only	a	computer	on	the	same	subnet	can	discover	the	GPIB-
ENET/100	or	change	its	network	settings,	any	computer	can	use	it	as	a
GPIB	interface.	To	add	a	GPIB-ENET/100	that	is	outside	the	computer's
local	subnet,	specify	the	hostname	or	IP	address	in	the	Add	GPIB-
ENET/100	Wizard.



A	Firewall	is	Blocking	Communication
Firewalls	can	block	traffic	that	needs	to	pass	between	NI-488.2	and	a
GPIB-ENET/100.	Refer	to	the	firewall	documentation	for	instructions	on
opening	ports.	The	following	ports	should	be	open:

TCP	5000,	5003,	5005,	5010,	5015,	and	44516
UDP	1024	through	5000	and	44515



Debugging	an	NI-488.2	Application
Determining	Whether	an	NI-488.2	Call	Failed
Checking	Global	Status	Variables	to	Debug	Your	Application
Debugging	Existing	Applications
Solving	Errors



Determining	Whether	an	NI-488.2	Call	Failed
To	determine	whether	an	NI-488.2	call	failed,	you	can	check	the	global
status	functions.	You	can	also	use	NI	Spy	to	monitor	the	NI-488.2	calls
made	from	NI-488.2	applications.	If	your	application	is	not	working
properly,	you	can	use	NI	Spy	to	search	for	failed	NI-488.2	calls.	For	more
information,	refer	to	its	help.
To	start	NI	Spy,	select	Start»Programs»National	Instruments»NI	Spy.
Or,	click	on	the	following	button.

	Start	NI	Spy.



Checking	Global	Status	Functions	to	Debug
Your	Application
At	the	end	of	each	NI-488.2	call,	the	global	status	functions	(Ibsta,	Iberr,
and	Ibcnt)	are	updated.	If	you	are	developing	an	NI-488.2	application,	you
should	check	for	errors	after	each	NI-488.2	call.	If	an	NI-488.2	call	fails,
the	high	bit	of	Ibsta	(the	ERR	bit)	is	set.	For	a	failed	NI-488.2	call,	Iberr
contains	a	value	that	defines	the	error.	In	some	error	cases,	the	value	in
Ibcnt	contains	even	more	error	information.	For	more	information	about
the	global	status	functions,	refer	to	the	Checking	Global	Status	After
Each	NI-488.2	Call	topic.
You	can	use	NI	Spy	to	determine	which	NI-488.2	call	is	failing.	Once	you
know	which	NI-488.2	call	fails,	refer	to	the	Ibsta	Status	Bit	Values	and	the
Error	Codes	and	Solutions	topics	to	understand	why	the	NI-488.2	call
failed.

	Start	NI	Spy.



Checking	Global	Status	After	Each	NI-488.2	Call
For	applications	accessing	the	NI4882	API,	each	NI-488.2	call	updates
three	global	functions	to	reflect	the	status	of	the	device	or	board	that	you
are	using.	These	global	status	functions	are	the	status	word	(Ibsta),	the
error	function	(Iberr),	and	the	count	function	(Ibcnt).	They	contain	useful
information	about	the	performance	of	your	application.	Your	application
should	check	these	functions	after	each	NI-488.2	call.	For	more
information	about	each	status	function,	refer	to	the	following	sections.
For	applications	accessing	the	older	GPIB32	API	(including	the	Visual
Basic	6.0	application	interface),	use	the	equivalent	global	variables.
These	global	status	variables	are	the	status	word	(ibsta),	the	error
variable	(iberr),	and	the	count	variables	(ibcnt	and	ibcntl).	ibcnt	is	defined
to	be	the	type	int,	while	ibcntl	is	the	size	of	type	long	int.	For	all	cases,	if
the	sizes	of	ibcnt	and	ibcntl	are	the	same,	ibcnt	and	ibcntl	are	equal.	For
cross-platform	compatibility,	all	applications	should	use	ibcntl.
For	applications	accessing	the	newer	NI4882	API,	use	the	global	function
calls	rather	than	the	global	variables.	The	global	functions	replace	the
global	variables	with	the	newer	NI4882	API.

Note	If	you	are	writing	a	multithreaded	application,	use	the	thread-
specific	copies	of	the	status	functions	in	your	application.	To
access	the	thread-specific	copies,	use	the	ThreadIbsta,
ThreadIberr,	and	ThreadIbcnt	calls.



Status	Word	(Ibsta)
All	NI-488.2	calls	update	a	global	status	word,	Ibsta.	It	contains
information	about	the	state	of	the	GPIB	and	your	GPIB	hardware.	The
value	stored	in	Ibsta	is	the	return	value	of	all	the	traditional	NI-488.2	calls,
except	ibfind	and	ibdev.	You	can	examine	various	status	bits	in	Ibsta	and
use	that	information	to	determine	what	to	do	next	in	your	application.	For
more	information	about	the	status	bits	in	Ibsta,	refer	to	the	Ibsta	Status	Bit
Values	table.
The	language	header	file	which	is	installed	defines	each	of	the	Ibsta
status	bits.	You	can	test	for	an	Ibsta	status	bit	being	set	using	the	bitwise
AND	operator	(&	in	C/C++).	For	example,	the	Ibsta	ERR	bit	is	bit	15	of
Ibsta.	To	check	for	a	GPIB	error,	use	the	following	statement	after	each
GPIB	call:
if	(Ibsta()	&	ERR)
printf("GPIB	error	encountered");



Error	Function	(Iberr)
Iberr	is	the	NI-488.2	error	function.	If	a	call	failed	with	an	error,	the	ERR
bit	is	set	in	Ibsta.	The	Iberr	value	describes	the	NI-488.2	error	that
occurred.	For	more	information	about	the	Iberr	values,	refer	to	the	Error
Codes	and	Solutions	table.



Count	Function	(Ibcnt)
Ibcnt	is	the	count	function.	It	contains	information	about	the	number	of
bytes	that	went	across	the	GPIB	in	the	most	recent	I/O	operation.
The	count	function	is	updated	after	each	read,	write,	or	command
function.	In	addition,	Ibcnt	is	updated	after	specific	488.2-style	functions
in	certain	error	cases.
If	the	data	that	you	are	reading	contains	ASCII	characters,	you	can	use
Ibcnt	to	NULL	terminate	the	string	and	treat	it	like	any	other	ASCII	string.
For	example,	you	can	use	printf	to	print	the	result	to	the	screen:
char	rdbuf[21];
ibrd	(ud,	rdbuf,	20);
if	(!(Ibsta()	&	ERR)){
rdbuf[Ibcnt()]	=	'\0';
printf	("Read	in	string:	%s\n",	rdbuf);

}
else	{
//	GPIB	Error	encountered!

}



Ibsta()	or	ibsta	Status	Bit	Values
All	calls	update	a	global	status	function,	Ibsta,	which	contains	information
about	the	state	of	the	GPIB	and	your	GPIB	hardware.	You	can	examine
various	status	bits	in	Ibsta	and	use	that	information	to	make	decisions
about	continued	processing.	If	you	check	for	possible	errors	after	each
call	using	the	Ibsta	ERR	bit,	debugging	your	application	is	much	easier.
When	using	the	GPIB32	API,	ibsta	is	the	global	variable.
Each	bit	in	Ibsta	can	be	set	for	device-level	traditional	NI-488.2	calls
(dev),	board-level	traditional	NI-488.2	calls	and	multi-device	NI-488.2
calls	(brd),	or	all	(dev,	brd).	Ibsta	is	a	32-bit	value.	A	bit	value	of	one	(1)
indicates	that	a	certain	condition	is	in	effect.	A	bit	value	of	zero	(0)
indicates	that	the	condition	is	not	in	effect.

Mnemonic Bit Hex Type Description
ERR 15 8000 dev,	brd NI-488.2	error
TIMO 14 4000 dev,	brd Time	limit	exceeded
END 13 2000 dev,	brd END	or	EOS	detected
SRQI 12 1000 brd SRQ	interrupt	received
RQS 11 800 dev Device	requesting	service
CMPL 8 100 dev,	brd I/O	completed
LOK 7 80 brd Lockout	State
REM 6 40 brd Remote	State
CIC 5 20 brd Controller-In-Charge
ATN 4 10 brd Attention	is	asserted
TACS 3 8 brd Talker
LACS 2 4 brd Listener
DTAS 1 2 brd Device	Trigger	State
DCAS 0 1 brd Device	Clear	State



ATN	Status	Condition
ATN	indicates	the	state	of	the	GPIB	Attention	(ATN)	line.	ATN	is	set
whenever	the	GPIB	ATN	line	is	asserted,	and	it	is	cleared	when	the	ATN
line	is	unasserted.

Return	to	list	of	status	bit	values



CIC	Status	Condition
CIC	indicates	whether	the	GPIB	interface	is	the	Controller-In-Charge.
CIC	is	set	when	the	SendIFC	or	ibsic	call	is	executed	either	while	the
GPIB	interface	is	System	Controller	or	when	another	Controller	passes
control	to	the	GPIB	interface.	CIC	is	cleared	either	when	the	GPIB
interface	detects	Interface	Clear	(IFC)	from	the	System	Controller	or
when	the	GPIB	interface	passes	control	to	another	device.

Return	to	list	of	status	bit	values



CMPL	Status	Condition
CMPL	indicates	the	condition	of	I/O	operations.	It	is	set	when	an	I/O
operation	is	complete.	CMPL	is	cleared	while	an	I/O	operation	is	in
progress.

Return	to	list	of	status	bit	values



DCAS	Status	Condition
DCAS	indicates	whether	the	GPIB	interface	has	detected	a	device	clear
command.	DCAS	is	set	when	the	GPIB	interface	detects	that	the	Device
Clear	(DCL)	command	has	been	sent	by	another	Controller,	or	when	the
GPIB	interface	as	a	Listener	detects	that	the	Selected	Device	Clear
(SDC)	command	has	been	sent	by	another	Controller.
If	you	use	the	ibwait	or	ibnotify	function	to	wait	for	DCAS	and	the	wait	is
completed,	DCAS	is	cleared	from	Ibsta	after	the	next	NI-488.2	call.	The
same	is	true	of	reads	and	writes.	If	you	call	a	read	or	write	function,	such
as	ibwrt	or	Send,	and	DCAS	is	set	in	Ibsta,	the	I/O	operation	is	aborted.
DCAS	is	cleared	from	Ibsta	after	the	next	NI-488.2	call.

Return	to	list	of	status	bit	values



DTAS	Status	Condition
DTAS	indicates	whether	the	GPIB	interface	has	detected	a	device	trigger
command.	DTAS	is	set	when	the	GPIB	interface,	as	a	Listener,	detects
that	the	Group	Execute	Trigger	(GET)	command	has	been	sent	by
another	Controller.	DTAS	is	cleared	on	any	call	immediately	following	an
ibwait	or	ibnotify	call,	if	the	DTAS	bit	is	set	in	the	ibwait	mask	parameter.

Return	to	list	of	status	bit	values



END	Status	Condition
END	indicates	either	that	the	GPIB	EOI	line	has	been	asserted	or	that	the
EOS	byte	has	been	received,	if	the	software	is	configured	to	terminate	a
read	on	an	EOS	byte.	If	the	GPIB	interface	is	performing	a	shadow
handshake	as	a	result	of	the	ibgts	function,	any	other	function	can	return
a	status	word	with	the	END	bit	set	if	the	END	condition	occurs	before	or
during	that	call.	END	is	cleared	when	any	I/O	operation	is	initiated.
Some	applications	might	need	to	know	the	exact	I/O	read	termination
mode	of	a	read	operationEOI	by	itself,	the	EOS	character	by	itself,	or	EOI
plus	the	EOS	character.	You	can	use	the	ibconfig	function	(option
IbcEndBitIsNormal)	to	enable	a	mode	in	which	the	END	bit	is	set	only
when	EOI	is	asserted.	In	this	mode,	if	the	I/O	operation	completes
because	of	the	EOS	character	by	itself,	END	is	not	set.	The	application
should	check	the	last	byte	of	the	received	buffer	to	see	if	it	is	the	EOS
character.

Return	to	list	of	status	bit	values



ERR	Status	Condition
ERR	is	set	in	the	status	word	following	any	call	that	results	in	an	error.
You	can	determine	the	particular	error	by	examining	the	error	function
Iberr.	To	view	the	GPIB	error	codes,	refer	to	the	Error	codes	and
Solutions	topic.	ERR	is	cleared	following	any	call	that	does	not	result	in
an	error.

Return	to	list	of	status	bit	values



LACS	Status	Condition
LACS	indicates	whether	the	GPIB	interface	is	addressed	as	a	Listener.
LACS	is	set	when	the	GPIB	interface	detects	that	its	listen	address	(and
secondary	address,	if	enabled)	has	been	sent	either	by	the	GPIB
interface	itself	or	by	another	Controller.	LACS	is	also	set	when	the	GPIB
interface	shadow	handshakes	as	a	result	of	the	ibgts	function.	LACS	is
cleared	when	the	GPIB	interface	detects	the	Unlisten	(UNL)	command,
its	own	talk	address,	Interface	Clear	(IFC),	or	that	the	ibgts	function	has
been	called	without	shadow	handshake.

Return	to	list	of	status	bit	values



LOK	Status	Condition
LOK	indicates	whether	the	board	is	in	a	lockout	state.	While	LOK	is	set,
the	EnableLocal	or	ibloc	call	is	inoperative	for	that	board.	LOK	is	set
when	the	GPIB	interface	detects	that	the	Local	Lockout	(LLO)	message
has	been	sent	either	by	the	GPIB	interface	or	by	another	Controller.	LOK
is	cleared	when	the	System	Controller	unasserts	the	Remote	Enable
(REN)	GPIB	line.

Return	to	list	of	status	bit	values



REM	Status	Condition
REM	indicates	whether	the	board	is	in	the	remote	state.	REM	is	set	when
the	Remote	Enable	(REN)	GPIB	line	is	asserted	and	the	GPIB	interface
detects	that	its	listen	address	has	been	sent	either	by	the	GPIB	interface
or	by	another	Controller.	REM	is	cleared	in	the	following	situations:

When	REN	becomes	unasserted
When	the	GPIB	interface	as	a	Listener	detects	that	the	Go	to
Local	(GTL)	command	has	been	sent	either	by	the	GPIB
interface	or	by	another	Controller
When	the	ibloc	function	is	called	while	the	LOK	bit	is	cleared	in
the	status	word

Return	to	list	of	status	bit	values



RQS	Status	Condition
RQS	appears	in	the	status	word	only	after	a	device-level	call	and
indicates	that	the	device	is	requesting	service.	RQS	is	set	when	one	or
more	positive	serial	poll	response	bytes	have	been	received	from	the
device.	A	positive	serial	poll	response	byte	always	has	bit	6	asserted.
Automatic	serial	polling	must	be	enabled	(it	is	enabled	by	default)	for
RQS	to	automatically	appear	in	Ibsta.	You	can	also	wait	for	a	device	to
request	service	regardless	of	the	state	of	automatic	serial	polling	by
calling	ibwait	with	a	mask	that	contains	RQS.	Do	not	issue	an	ibwait	on
RQS	for	a	device	that	does	not	respond	to	serial	polls.	Use	ibrsp	to
acquire	the	serial	poll	response	byte	that	was	received.	RQS	is	cleared
when	all	of	the	stored	serial	poll	response	bytes	have	been	reported	to
you	through	the	ibrsp	function.

Return	to	list	of	status	bit	values



SRQI	Status	Condition
SRQI	indicates	that	a	GPIB	device	is	requesting	service.	SRQI	is	set
when	the	GPIB	interface	is	CIC	and	the	GPIB	SRQ	line	is	asserted.	SRQI
is	cleared	either	when	the	GPIB	interface	ceases	to	be	the	CIC	or	when
the	GPIB	SRQ	line	is	unasserted.

Return	to	list	of	status	bit	values



TACS	Status	Condition
TACS	indicates	whether	the	GPIB	interface	is	addressed	as	a	Talker.
TACS	is	set	when	the	GPIB	interface	detects	that	its	talk	address	(and
secondary	address,	if	enabled)	has	been	sent	either	by	the	GPIB
interface	itself	or	by	another	Controller.	TACS	is	cleared	when	the	GPIB
interface	detects	the	Untalk	(UNT)	command,	its	own	listen	address,	a
talk	address	other	than	its	own	talk	address,	or	Interface	Clear	(IFC).

Return	to	list	of	status	bit	values



TIMO	Status	Condition
TIMO	indicates	that	the	timeout	period	has	been	exceeded.	TIMO	is	set
in	the	status	word	following	an	ibwait	or	ibnotify	call	if	the	TIMO	bit	of	the
mask	parameter	is	set	and	the	time	limit	expires.	TIMO	is	also	set
following	any	synchronous	I/O	calls	(for	example,	ibcmd,	ibrd,	ibwrt,
Receive,	Send,	and	SendCmds)	if	a	timeout	occurs	during	one	of	these
calls.	TIMO	is	cleared	in	all	other	circumstances.

Return	to	list	of	status	bit	values



Debugging	Existing	Applications
If	the	application	does	not	have	built-in	error	detection	handling,	you	can
use	NI	Spy	to	determine	which	NI-488.2	call	is	failing.
The	NI	Spy	utility	monitors	NI-488.2	calls	made	by	NI-488.2	applications.
It	records	NI-488.2	input	and	output	values	for	all	NI-488.2	applications.
For	more	information	about	NI	Spy,	refer	to	its	help.
To	start	NI	Spy,	select	Start»Programs»National	Instruments»NI	Spy.
Or,	click	on	the	following	button.

	Start	NI	Spy.
After	you	have	an	NI	Spy	capture	file,	you	can	use	NI	Spy	to	search	for
failed	NI-488.2	calls	by	searching	for	calls	with	the	ERR	bit	set.	When
you	determine	which	NI-488.2	call	failed,	refer	to	the	Ibsta	Status	Bit
Values	and	the	Error	Codes	and	Solutions	topics	to	understand	why	the
NI-488.2	call	failed.



Solving	Errors
Iberr	Error	Codes	and	Solutions
Configuration	Errors
Communication	Errors
Timing	Errors
Other	Errors



Iberr()	or	iberr	Error	Codes	and	Solutions
Iberr	is	the	NI-488.2	error	function.	If	a	call	failed	within	an	error,	the	Iberr
value	describes	the	NI-488.2	error	that	occurred.	When	using	the	GPIB32
API,	iberr	is	the	global	variable.
The	following	table	lists	the	NI-488.2	error	codes.	Remember	that	the
error	function	is	meaningful	only	when	the	ERR	bit	in	the	status	function,
Ibsta,	is	set.	For	a	detailed	description	of	each	error	and	possible
solutions,	click	on	the	error	mnemonic.

Mnemonic Value Meaning

EDVR 0 System	error
ECIC 1 Function	requires	GPIB	interface	to	be	CIC
ENOL 2 No	Listeners	on	the	GPIB
EADR 3 GPIB	interface	not	addressed	correctly
EARG 4 Invalid	argument	to	function	call
ESAC 5 GPIB	interface	not	System	Controller	as	required
EABO 6 I/O	operation	aborted	(timeout)
ENEB 7 Nonexistent	GPIB	interface
EDMA 8 DMA	error
EOIP 10 Asynchronous	I/O	in	progress
ECAP 11 No	capability	for	operation
EFSO 12 File	system	error
EBUS 14 GPIB	bus	error
ESRQ 16 SRQ	stuck	in	ON	position
ETAB 20 Table	problem
ELCK 21 Interface	is	locked
EARM 22 ibnotify	callback	failed	to	rearm
EHDL 23 Input	handle	is	invalid
EWIP 26 Wait	in	progress	on	specified	input	handle



ERST 27 The	event	notification	was	cancelled	due	to	a	reset	of
the	interface

EPWR 28 The	interface	lost	power



EABO	Error	Code
EABO	indicates	that	an	I/O	operation	has	been	canceled,	usually	due	to
a	timeout	condition.	Other	causes	are	calling	ibstop	or	receiving	the
Device	Clear	message	from	the	CIC	while	performing	an	I/O	operation.
Frequently,	the	I/O	is	not	progressing	(the	Listener	is	not	continuing	to
handshake	or	the	Talker	has	stopped	talking),	or	the	byte	count	in	the	call
which	timed	out	was	more	than	the	other	device	was	expecting.



Solutions
Use	the	correct	byte	count	in	input	calls	or	have	the	Talker	use	the	END
message	to	signify	the	end	of	the	transfer.
Lengthen	the	timeout	period	for	the	I/O	operation	using	the	IbcTMO
option	for	ibconfig.
Make	sure	that	you	have	configured	your	device	to	send	data	before	you
request	data.

Return	to	list	of	error	codes



EADR	Error	Code
EADR	occurs	when	the	GPIB	interface	is	CIC	and	is	not	properly
addressing	itself	before	read	and	write	calls.	This	error	is	usually
associated	with	board-level	calls.
EADR	is	also	returned	by	the	function	ibgts	when	the	shadow-handshake
feature	is	requested	and	the	GPIB	ATN	line	is	already	unasserted.	In	this
case,	the	shadow	handshake	is	not	possible	and	the	error	is	returned	to
notify	you	of	that	fact.



Solutions
Make	sure	that	the	GPIB	interface	is	addressed	correctly	before	calling
ibrd,	ibwrt,	RcvRespMsg,	or	SendDataBytes.
Avoid	calling	ibgts	except	immediately	after	an	ibcmd	call.	(ibcmd	causes
ATN	to	be	asserted.)

Return	to	list	of	error	codes



EARG	Error	Code
EARG	results	when	an	invalid	argument	is	passed	to	a	function	call.	The
following	are	some	examples:

ibconfig	with	the	IbcTMO	option	called	with	a	value	not	in	the
range	0	through	17.
ibconfig	with	the	IbcEOS	option	called	with	meaningless	bits	set
in	the	high	byte	of	the	second	parameter.
ibconfig	with	the	IbcPAD	or	IbcSAD	option	called	with	invalid
addresses.
ibppc	called	with	invalid	parallel	poll	configurations.
A	multi-device	NI-488.2	call	made	with	an	invalid	address.
PPollConfig	called	with	an	invalid	data	line	or	sense	bit.



Solutions
Make	sure	that	the	parameters	passed	to	the	NI-488.2	call	are	valid.

Return	to	list	of	error	codes



EARM	Error	code
EARM	indicates	that	ibnotify's	asynchronous	event	notification
mechanism	failed	to	rearm	itself.	This	generally	occurs	when	an	ibnotify
Callback	has	attempted	to	rearm	itself	by	returning	an	illegal	value	or
when	a	fatal	driver	error	(EDVR)	has	occurred.



Solutions
Ensure	that	the	value	being	returned	by	your	Callback	function	is	a	valid
ibnotify	mask	value.
Return	a	zero	value	from	your	Callback	function	to	unregister	the
asynchronous	event	notification	mechanism.	Then	call	ibnotify	to	re-
enable	notification.

Return	to	list	of	error	codes



EBUS	Error	Code
EBUS	results	when	certain	GPIB	bus	errors	occur	during	device	calls.	All
device	calls	send	command	bytes	to	perform	addressing	and	other	bus
management.	Devices	are	expected	to	accept	these	command	bytes
within	the	time	limit	specified	by	the	default	configuration	or	the	IbcTMO
option	for	ibconfig.	EBUS	results	if	a	timeout	occurred	while	sending
these	command	bytes.



Solutions
Verify	that	the	instrument	is	operating	correctly.
Check	for	loose	or	faulty	cabling	or	several	powered-off	instruments	on
the	GPIB.
If	the	timeout	period	is	too	short	for	the	driver	to	send	command	bytes,
increase	the	timeout	period.

Return	to	list	of	error	codes



ECAP	Error	Code
ECAP	results	when	your	GPIB	interface	cannot	carry	out	an	operation	or
when	a	particular	capability	has	been	disabled	in	the	software	and	a	call
is	made	that	requires	the	capability.



Solutions
Check	the	validity	of	the	call.
Make	sure	your	GPIB	interface	and	the	driver	both	have	the	needed
capability.

Return	to	list	of	error	codes



ECIC	Error	Code
ECIC	is	returned	when	one	of	the	following	calls	is	made	while	the	board
is	not	CIC:

Any	device-level	traditional	NI-488.2	calls	that	affect	the	GPIB
Any	board-level	traditional	NI-488.2	calls	that	issue	GPIB
command	bytes	(ibcmd,	ibcmda,	ibln,	and	ibrpp)
ibcac	and	ibgts
Any	multi-device	NI-488.2	calls	that	issue	GPIB	command	bytes
(SendCmds,	PPoll,	Send,	and	Receive)



Solutions
Use	ibsic	or	SendIFC	to	make	the	GPIB	interface	become	CIC	on	the
GPIB.
Use	the	IbcSC	option	in	ibconfig	to	make	sure	your	GPIB	interface	is
configured	as	System	Controller.
In	multiple	CIC	situations,	always	make	sure	the	CIC	bit	appears	in	the
status	word	Ibsta	before	attempting	these	calls.	If	it	does	not	appear,	you
can	perform	an	ibwait	(for	CIC)	call	to	delay	further	processing	until
control	is	passed	to	the	board.

Return	to	list	of	error	codes



EDMA	Error	Code
EDMA	occurs	if	a	system	DMA	error	is	encountered	when	the	NI-488.2
software	attempts	to	transfer	data	over	the	GPIB	using	DMA.



Solutions
You	can	correct	the	EDMA	problem	in	the	software	by	using	ibconfig	with
the	IbcDMA	option	to	disable	DMA.

Return	to	list	of	error	codes



EDVR	Error	Code
EDVR	is	returned	when	the	board	or	device	name	passed	to	ibfind,	or	the
board	index	passed	to	ibdev,	cannot	be	accessed.	The	global	function
Ibcnt	contains	an	error	code.	This	error	occurs	when	you	try	to	access	a
board	or	device	that	is	not	installed	or	configured	properly.
EDVR	is	also	returned	if	there	is	an	internal	driver	error.



Solutions
Use	ibdev	to	open	a	device	without	specifying	its	symbolic	name.
Use	only	device	or	board	names	that	are	configured	in	the	GPIB
Configuration	utility	or	Measurement	&	Automation	Explorer	as
parameters	to	the	ibfind	function.
To	ensure	that	each	board	you	want	to	access	is	working	properly,	use
the	NI-488.2	Troubleshooting	Utility.	This	utility	verifies	that	your	GPIB
hardware	and	the	NI-488.2	software	are	installed	correctly	and	working
properly.
To	start	the	NI-488.2	Troubleshooting	Utility	within	Measurement	&
Automation	Explorer,	select	Help»Troubleshooting»NI-488.2
Troubleshooting	Utility	or	click	on	the	following	button.

	Start	the	NI-488.2	Troubleshooting
Utility.
Use	the	unit	descriptor	returned	from	ibdev	or	ibfind	as	the	first	parameter
in	subsequent	traditional	NI-488.2	calls.	Examine	the	variable	before	the
failing	function	to	make	sure	its	value	has	not	been	corrupted.
For	more	troubleshooting	information,	refer	to	the	EDVR	Error	Conditions
topic.

Return	to	list	of	error	codes



EFSO	Error	code
EFSO	results	when	an	ibrdf	or	ibwrtf	call	encounters	a	problem
performing	a	file	operation.	Specifically,	this	error	indicates	that	the
function	is	unable	to	open,	create,	seek,	write,	or	close	the	file	being
accessed.



Solutions
Make	sure	the	filename,	path,	and	drive	that	you	specified	are	correct.
Make	sure	that	the	access	mode	of	the	file	is	correct.
Make	sure	there	is	enough	room	on	the	disk	to	hold	the	file.

Return	to	list	of	error	codes



EHDL	Error	code
EHDL	results	when	an	invalid	handle	is	passed	to	a	function	call.	The
following	are	some	examples:

A	valid	board	handle	is	passed	in	as	a	handle	parameter	to	a
device-level	NI-488	function	or	a	valid	device	handle	is	passed	in
as	a	handle	parameter	to	a	board-level	NI-488	function.
An	invalid	board	or	device	unit	descriptor	is	passed	as	input	to
any	NI-488	function.
A	boardID	outside	the	range	of	099	is	passed	in	to	a	traditional	NI-
488	board-level	function	or	NI-488.2	routine.
ibconfig	or	ibask	is	called	with	a	device	unit	descriptor	and	a
board-only	configuration	option,	or	with	a	board	unit	descriptor
and	a	device-only	configuration	option.



Solutions
Do	not	use	a	device	descriptor	in	a	board	function	or	vice-versa.
Make	sure	that	the	board	index	passed	to	the	NI-488.2	call	is	valid.

Return	to	list	of	error	codes



ELCK	Error	code
ELCK	indicates	that	the	requested	operation	could	not	be	performed
because	of	an	existing	lock	by	another	process	accessing	the	same
interface.	ELCK	is	also	returned	when	a	process	attempts	to	unlock	an
interface	for	which	it	currently	has	no	lock.



Solutions
Call	iblck	to	lock	the	interface.	If	iblck	continues	to	return	ELCK,	lengthen
the	LockWaitTime	and	wait	for	the	other	process	to	relinquish	its	interface
lock.
Ensure	that	you	have	successfully	locked	the	interface	prior	to	unlocking
it.

Return	to	list	of	error	codes



ENEB	Error	code
ENEB	occurs	when	no	GPIB	interface	exists	at	the	I/O	address	specified
in	the	configuration	program.	This	occurs	when	the	board	is	not
physically	plugged	into	the	system,	the	I/O	address	specified	during
configuration	does	not	match	the	actual	board	setting,	or	there	is	a
system	conflict	with	the	base	I/O	address.



Solutions
Make	sure	there	is	a	GPIB	interface	in	your	computer	that	is	properly
configured	both	in	hardware	and	software	using	a	valid	base	I/O	address
by	running	the	NI-488.2	Troubleshooting	Utility.
To	start	the	NI-488.2	Troubleshooting	Utility	within	Measurement	&
Automation	Explorer,	select	Help»Troubleshooting»NI-488.2
Troubleshooting	Utility	or	click	on	the	following	button.

	Start	the	NI-488.2	Troubleshooting
Utility.

Return	to	list	of	error	codes



ENOL	Error	code
ENOL	usually	occurs	when	a	write	operation	is	attempted	with	no
Listeners	addressed.	For	a	device	write,	ENOL	indicates	that	the	GPIB
address	configured	for	that	device	in	the	software	does	not	match	the
GPIB	address	of	any	device	connected	to	the	bus,	that	the	GPIB	cable	is
not	connected	to	the	device,	or	that	the	device	is	not	powered	on.
ENOL	can	occur	in	situations	where	the	GPIB	interface	is	not	the	CIC
and	the	Controller	asserts	ATN	before	the	write	call	in	progress	has
ended.



Solutions
Make	sure	that	the	GPIB	address	of	your	device	matches	the	GPIB
address	of	the	device	to	which	you	want	to	write	data.
Use	the	appropriate	hex	code	in	ibcmd	to	address	your	device.
Check	your	cable	connections	and	make	sure	at	least	two-thirds	of	your
devices	are	powered	on.
Call	ibconfig	with	the	IbcPAD	(or	IbcSAD,	if	necessary)	options	to	match
the	configured	address	to	the	device	switch	settings.

Return	to	list	of	error	codes



EOIP	Error	code
EOIP	occurs	when	an	asynchronous	I/O	operation	has	not	finished
before	some	other	call	is	made.	During	asynchronous	I/O,	you	can	only
use	ibstop,	ibnotify,	ibwait,	and	ibonl,	or	perform	other	non-GPIB
operations.	If	any	other	call	is	attempted,	EOIP	is	returned.



Solutions
Resynchronize	the	driver	and	the	application	before	making	any	further
NI-488.2	calls.	Resynchronization	is	accomplished	by	using	one	of	the
following	calls:

ibnotifyIf	the	Ibsta	value	passed	to	the	ibnotify	callback	contains
CMPL,	the	driver	and	application	are	resynchronized.
ibwaitIf	the	returned	Ibsta	contains	CMPL,	the	driver	and
application	are	resynchronized.
ibstopThe	I/O	is	canceled;	the	driver	and	application	are
resynchronized.
ibonlThe	I/O	is	canceled	and	the	interface	is	reset;	the	driver	and
application	are	resynchronized.

Return	to	list	of	error	codes



EPWR	Error	code
EPWR	results	when	an	interface	loses	power.	This	often	results	when	the
system	goes	to	and	returns	from	a	standby	state.



Solutions
Take	all	handles	offline	and	reinitialize	the	application.
Quit	the	application	and	restart.
Disable	standby	and	hibernate	modes	on	the	PC.

Return	to	list	of	error	codes



ERST	Error	code
ERST	results	when	an	event	notification	was	cancelled	due	to	a	reset	of
the	interface.
An	ibwait	call	pending	in	the	driver	returns	ERST	in	the	following
situations:

Another	thread	in	the	same	process	calls	ibonl	using	the	same
unit	descriptor	as	ibwait.
Another	thread	or	another	process	issues	a	board-level	ibonl	1.

An	ibnotify	Callback	may	be	invoked	with	ERST	in	the	following
situations:

Another	process	issues	a	board-level	ibonl	1.



Solutions
Do	not	call	ibonl	with	ibwait	calls	still	pending	in	the	driver.
Prevent	other	applications	from	calling	ibonl	by	locking	the	interface	with
iblck.

Return	to	list	of	error	codes



ESAC	Error	code
ESAC	results	when	ibsic,	ibsre,	SendIFC,	EnableRemote,	or	the	IbcSRE
option	in	ibconfig	is	called	when	the	GPIB	interface	does	not	have
System	Controller	capability.



Solutions
Give	the	GPIB	interface	System	Controller	capability	by	calling	the	IbcSC
option	in	ibconfig	or	by	using	Measurement	&	Automation	Explorer	to
configure	that	capability	into	the	software.

Return	to	list	of	error	codes



ESRQ	Error	code
ESRQ	can	be	returned	by	a	device-level	ibwait	call	with	RQS	set	in	the
mask.	ESRQ	indicates	that	a	wait	for	RQS	is	not	possible	because	the
GPIB	SRQ	line	is	stuck	on.	This	situation	can	be	caused	by	the	following
events:
Usually,	a	device	unknown	to	the	software	is	asserting	SRQ.	Because	the
software	does	not	know	of	this	device,	it	can	never	serial	poll	the	device
and	unassert	SRQ.
A	GPIB	bus	tester	or	similar	equipment	might	be	forcing	the	SRQ	line	to
be	asserted.
A	cable	problem	might	exist	involving	the	SRQ	line.
Although	the	occurrence	of	ESRQ	warns	you	of	a	definite	GPIB	problem,
it	does	not	affect	GPIB	operations,	except	that	you	cannot	depend	on	the
Ibsta	RQS	bit	while	the	condition	lasts.



Solutions
Check	to	see	if	other	devices	not	used	by	your	application	are	asserting
SRQ.	Disconnect	them	from	the	GPIB	if	necessary.

Return	to	list	of	error	codes



ETAB	Error	code
ETAB	occurs	only	during	the	FindLstn	and	FindRQS	calls.	ETAB	indicates
that	there	was	some	problem	with	a	table	used	by	these	calls,	as	follows:
In	the	case	of	FindLstn,	ETAB	means	that	the	given	table	did	not	have
enough	room	to	hold	all	the	addresses	of	the	Listeners	found.
In	the	case	of	FindRQS,	ETAB	means	that	none	of	the	devices	in	the
given	table	were	requesting	service.



Solutions
In	the	case	of	FindLstn,	increase	the	size	of	result	arrays.
In	the	case	of	FindRQS,	check	to	see	if	other	devices	not	used	by	your
application	are	asserting	SRQ.	Disconnect	them	from	the	GPIB	if
necessary.

Return	to	list	of	error	codes



EWIP	Error	code
EWIP	indicates	that	an	ibwait	call	is	already	in	progress	on	the	specified
unit	descriptor.	This	error	occurs	when	one	thread	within	a	process	calls
ibwait	on	a	given	descriptor	when	another	thread	within	the	same	process
is	already	performing	an	ibwait	using	that	same	descriptor.



Solutions
Make	sure	that	for	any	given	unit	descriptor	only	one	thread	calls	ibwait	at
a	time	using	that	descriptor.

Return	to	list	of	error	codes



Configuration	Errors
Some	applications	require	customized	configuration	of	the	NI-488.2
driver.	For	example,	you	might	want	to	terminate	reads	on	a	special	end-
of-string	character,	or	you	might	require	secondary	addressing.	In	these
cases,	you	can	either	reconfigure	from	your	application	using	the	ibconfig
function	or	reconfigure	using	Measurement	&	Automation	Explorer.

Note	Configuring	the	NI-488.2	driver	from	within	your	application
facilitates	application	portability	when	used	with	additional
computers	or	hardware.



Communication	Errors
Repeat	Addressing
Devices	adhering	to	the	IEEE	488.2	standard	should	remain	in	their
current	state	until	specific	commands	are	sent	across	the	GPIB	to
change	their	state.	However,	some	devices	require	GPIB	addressing
before	any	GPIB	activity.	Therefore,	you	might	need	to	configure	your	NI-
488.2	driver	to	perform	repeat	addressing	if	your	device	does	not	remain
in	its	currently	addressed	state.	You	can	either	reconfigure	from	your
application	using	ibconfig,	or	reconfigure	using	Measurement	&
Automation	Explorer.

Note	National	Instruments	recommends	using	ibconfig	to	modify
the	configuration.



Termination	Method
You	should	be	aware	of	the	data	termination	method	that	your	device
uses.	By	default,	your	NI-488.2	software	is	configured	to	send	EOI	on
writes	and	terminate	reads	on	EOI	or	a	specific	byte	count.	If	you	send	a
command	string	to	your	device	and	it	does	not	respond,	it	might	not	be
recognizing	the	end	of	the	command.	In	that	case,	you	need	to	send	a
termination	message,	such	as	<CR>	<LF>,	after	a	write	command,	as
follows:
ibwrt(dev,"COMMAND\x0D\x0A",9);
Refer	to	your	instrument's	documentation	to	determine	which,	if	any,
termination	characters	to	use.



Timing	Errors
If	your	application	fails,	but	the	same	calls	issued	interactively	in	the
Interactive	Control	utility	are	successful,	your	program	might	be	issuing
the	NI-488.2	calls	too	quickly	for	your	device	to	process	and	respond	to
them.	This	problem	can	also	result	in	corrupted	or	incomplete	data.	This
is	only	a	problem	with	older,	non-standard	GPIB	devices.
To	start	Interactive	Control	within	Measurement	&	Automation	Explorer,
select	Tools»NI-488.2»Interactive	Control	or	click	on	the	following
button.

	Start	Interactive	Control.
A	well-behaved	IEEE	488	device	does	not	experience	timing	errors.	If
your	device	is	not	well-behaved,	you	can	test	for	and	resolve	the	timing
error	by	single-stepping	through	your	program	and	inserting	finite	delays
between	each	NI-488.2	call.	One	way	to	do	this	is	to	have	your	device
communicate	its	status	whenever	possible.	Although	this	method	is	not
possible	with	many	devices,	it	is	usually	the	best	option.	Your	delays	will
be	controlled	by	the	device	and	your	application	can	adjust	itself	and
work	independently	on	any	platform.	Other	delay	mechanisms	probably
exhibit	differing	behaviors	on	different	platforms	and	thus	may	not
eliminate	timing	errors.



Other	Errors
If	you	experience	other	errors	in	your	application,	refer	to	the
Troubleshooting	Problems	topic.



How	to
Add	a	New	GPIB	Interface
Remove	a	GPIB	Interface
Scan	for	GPIB	Instruments
View	GPIB	Instrument	Information
Communicate	with	a	GPIB	Instrument
Set	Network	Settings	for	the	GPIB-ENET/100
Use	Static	IP	Address	Settings	Suggested	for	the	GPIB-ENET/100
View	NI-488.2	Software	Version
Enable/Disable	NI-488.2	DOS	Support
Access	Additional	Help	and	Resources	for	GPIB



Add	a	New	GPIB	Interface



Plug	and	Play	Hardware
Windows	automatically	detects	Plug	and	Play	hardware.	Install	your
GPIB	hardware	according	to	the	instructions	in	the	getting	started
documentation	on	the	NI-488.2	for	Windows	CD.	For	more	information
about	the	documentation,	refer	to	Access	Additional	Help	and	Resources
for	GPIB.



GPIB-ENET/100
To	add	a	new	GPIB-ENET/100	to	your	system,	complete	the	following
steps:

1.	 Select	Start»Programs»National	Instruments»NI-488.2»Add
GPIB-ENET-100	Wizard.

	Click	here	to	run	the	Add
GPIB-ENET/100	Wizard.

2.	 The	Add	GPIB-ENET/100	Wizard	appears.	Follow	the
instructions	in	the	wizard	to	add	a	new	GPIB	interface.

3.	 Open	Measurement	&	Automation	Explorer	or	select
View»Refresh	to	update	the	list	of	GPIB	interfaces	in
Measurement	&	Automation	Explorer.
>		Start	Measurement	&	Automation	Explorer.



Remove	a	GPIB	Interface
To	remove	a	Plug	and	Play	interface	from	your	computer,	disconnect	it,
making	sure	to	turn	off	the	computer	if	the	interface	requires	it.
To	remove	a	GPIB-ENET/100	interface	from	your	computer,	you	must
manually	delete	it	from	within	Measurement	&	Automation	Explorer.

1.	 >		Start	Measurement	&	Automation	Explorer.
2.	 Expand	Devices	and	Interfaces	by	clicking	the	+	next	to	the

folder.
3.	 Right-click	on	your	GPIB-ENET/100	interface	and	select	Delete

from	the	context	menu.
4.	 When	prompted,	confirm	your	selection.
5.	 Select	View»Refresh	to	update	the	list	of	interfaces	in

Measurement	&	Automation	Explorer.



Scan	for	GPIB	Instruments
To	scan	for	instruments	connected	to	your	GPIB	interface,	complete	the
following	steps:

1.	 Make	sure	that	your	instrument	is	powered	on	and	connected	to
your	GPIB	interface.

2.	 >		Start	Measurement	&	Automation	Explorer.
3.	 In	Measurement	&	Automation	Explorer,	expand	the	Devices

and	Interfaces	directory	by	clicking	on	the	+	next	to	the	folder.
4.	 Right-click	on	your	GPIB	interface	and	select	Scan	for

Instruments	from	the	drop-down	menu	that	appears.
Measurement	&	Automation	Explorer	displays	the	connected
instruments	in	the	right	window	pane.



Instruments	Not	Found
If	the	Instruments	not	Found	message	appears	in	the	right	window	pane,
Measurement	&	Automation	Explorer	did	not	find	any	instruments.	To
solve	this	problem,	make	sure	that	your	GPIB	instruments	are	powered
on	and	properly	connected	to	the	GPIB	interface	with	a	GPIB	cable.
Then,	scan	for	instruments	again,	as	described	in	the	previous	section.



Too	Many	Listeners
If	the	Too	Many	Listeners	message	appears	in	the	right	window	pane,
Measurement	&	Automation	Explorer	found	too	many	Listeners	on	the
GPIB.	To	solve	this	problem,	refer	to	the	following	possible	solutions:
If	you	are	using	an	analyzer	card	on	the	GPIB,	and	it	is	set	to	participate
in	the	acceptor	handshake,	your	instruments	will	not	be	found.	Stop
capturing	with	the	analyzer	and	retry	the	scan	for	instruments.
If	you	have	a	GPIB	extender	in	your	system,	Measurement	&	Automation
Explorer	cannot	detect	any	instruments	connected	to	your	GPIB
interface.	Instead,	you	can	verify	communication	with	your	instruments
using	the	Interactive	Control	utility.
To	do	so,	select	Tools»NI-488.2»Interactive	Control	or	click	here	

	to	start	the	Interactive	Control	utility.
For	more	information	about	verifying	instrument	communication,	type	help
"Interactive	Control:getting	started"	at	the	Interactive	Control	command
prompt.



View	GPIB	Instrument	Information
To	view	information	about	your	GPIB	interfaces,	complete	the	following
steps:

1.	 If	you	have	not	already	done	so,	scan	for	connected	instruments.
2.	 In	Measurement	&	Automation	Explorer,	expand	the	Devices

and	Interfaces	directory	by	clicking	on	the	+	next	to	the	folder.
3.	 Select	your	GPIB	interface.

Measurement	&	Automation	Explorer	displays	the	connected
instruments	in	the	right	window	pane.

4.	 Double-click	on	the	instrument	displayed	in	the	right	window
pane.
Measurement	&	Automation	Explorer	lists	all	the	attributes	for	the
instrument,	such	as	the	primary	address,	the	secondary	address
(if	applicable),	the	instrument's	response	to	the	identification
query	(*IDN?),	and	the	GPIB	interface	number	to	which	the
device	is	connected.

>		Start	Measurement	&	Automation	Explorer.



Communicate	with	a	GPIB	Instrument
To	establish	basic	or	advanced	communication	with	your	instruments,
refer	to	the	following	sections.
For	more	information	about	instrument	communication	and	a	list	of	the
commands	that	your	instrument	understands,	refer	to	the	documentation
that	came	with	your	GPIB	instrument.	Most	instruments	respond	to	the
*IDN?	command	by	returning	an	identification	string.



Basic	Communication	(Query/Write/Read)
To	establish	basic	communication	with	your	instrument,	use	the	NI-488.2
Communicator,	as	follows:

1.	 If	you	have	not	already	done	so,	scan	for	connected	instruments.
2.	 >		Start	Measurement	&	Automation	Explorer.
3.	 In	Measurement	&	Automation	Explorer,	expand	the	Devices

and	Interfaces	directory	by	clicking	on	the	+	next	to	the	folder.
4.	 Select	your	GPIB	interface.

Measurement	&	Automation	Explorer	displays	the	connected
instruments	in	the	right	window	pane.

5.	 Right-click	on	your	GPIB	instrument	and	select	Communicate
with	Instrument	from	the	drop-down	menu	that	appears.
The	NI-488.2	Communicator	dialog	box	appears.

6.	 Type	a	command	in	the	Send	String	field	and	do	one	of	the
following:

To	write	a	command	to	the	instrument	then	read	a
response	back,	click	on	the	Query	button.
To	write	a	command	to	the	instrument,	click	on	the	Write
button.
To	read	a	response	from	the	instrument,	click	on	the
Read	button.
To	configure	special	requirements	for	end	of	string	(EOS)
modes	for	your	device,	click	on	the	Configure	EOS
button.

To	view	sample	C/C++	code	that	performs	a	simple	query	of	a	GPIB
instrument,	click	on	the	Show	Sample	button.



Advanced	Communication
For	advanced	interactive	communication	with	GPIB	instruments,	use	the
Interactive	Control	utility,	as	follows:

1.	 In	Measurement	&	Automation	Explorer,	select	Tools»NI-
488.2»Interactive	Control	from	the	menu.

2.	 At	the	command	prompt,	type	NI-488.2	API	calls	to	communicate
interactively	with	your	instrument.	For	example,	you	might	use
ibdev,	ibclr,	ibwrt,	ibrd,	and	ibonl.

To	view	the	help	for	Interactive	Control,	type	help	at	the	Interactive
Control	command	prompt.



Set	Network	Settings	for	the	GPIB-ENET/100
To	view	or	change	the	network	settings	of	your	GPIB-ENET/100,	refer	to
the	following	sections.	For	more	information	about	your	GPIB-ENET/100
network	settings,	refer	to	the	GPIB	Hardware	Guide,	which	was	installed
with	your	NI-488.2	software.

	Click	here	to	open	the	GPIB	Hardware
Guide.



Configure	Ethernet	Settings
Use	the	NI	Ethernet	Device	Configuration	utility	if	you	need	to	manually
configure	the	network	parameters	of	the	GPIB-ENET/100.	If	your	network
uses	DHCP,	the	network	configuration	is	performed	automatically	at
startup	and	you	do	not	need	to	run	this	utility	unless	you	want	to	change
the	hostname.	Consult	your	network	administrator	if	you	do	not	know
whether	your	network	uses	DHCP.

	Click	here	to	start	the	NI	Ethernet
Device	Configuration	utility.
Refer	to	the	GPIB	Hardware	Guide	for	information	about	using	the	utility
to	configure	the	network	settings	for	your	GPIB-ENET/100.



Update	GPIB-ENET/100	Firmware
You	can	run	the	Firmware	Update	utility	in	Measurement	&	Automation
Explorer,	as	follows:

1.	 	Start	Measurement	&
Automation	Explorer.

2.	 In	Measurement	&	Automation	Explorer,	expand	the	Devices
and	Interfaces	directory	by	clicking	on	the	+	next	to	the	folder.

3.	 Right-click	on	your	GPIB-ENET/100	interface	and	select	Update
Firmware	from	the	drop-down	menu	that	appears.

For	more	information	on	how	to	use	the	Firmware	Update	utility,	refer	to
the	GPIB	Hardware	Guide.



Use	Static	IP	Address	Settings	Suggested	for
the	GPIB-ENET/100
The	best	way	to	assign	your	GPIB-ENET/100	a	static	IP	address	is	to
work	with	your	network	administrator,	as	network	problems	can	occur	if
improper	settings	are	selected.	However,	if	you	are	using	an	unmanaged
network	or	a	crossover	cable,	the	IP	address	settings	suggested	by	the
Add	GPIB-ENET/100	Wizard	may	be	useful.
When	you	use	the	Suggest	Values	button	in	the	Add	GPIB-ENET/100
Wizard	to	get	suggested	static	IP	address	settings,	your	computer
network	settings	are	used	as	a	basis	for	the	suggestions.	If	the	GPIB-
ENET/100	will	use	the	same	subnet	as	your	computer,	you	most	likely
can	reuse	the	Gateway,	DNS	Server,	and	Subnet	Mask	settings.	The	IP
Address	field,	however,	must	be	changed.	For	a	more	detailed
description	of	these	fields,	refer	to	Static	IP	Parameters.



IP	Address	Selection
The	initially	suggested	static	IP	address	is	the	subnet	address	of	the
network	your	computer	is	using	and	cannot	be	used	for	your	GPIB-
ENET/100.	This	address	was	generated	by	combining	your	computer's	IP
address	and	subnet	mask	values,	and	is	separated	into	four	numbers,	or
octets.
To	generate	a	valid	IP	address	inside	the	subnet	range,	use	the
suggested	IP	address	and	the	subnet	mask	from	the	Add	GPIB-
ENET/100	Wizard.	If	an	octet	in	the	subnet	mask	is	255,	you	should	not
change	the	corresponding	octet	in	the	suggested	IP	address.	If	the
subnet	mask	octet	is	0,	you	can	give	the	corresponding	octet	in	the
suggested	IP	address	a	value	in	the	range	1254.	For	other	subnet	mask
octet	values,	consult	your	network	administrator	or	an	IP	address
reference	to	determine	a	range	of	values	that	can	be	used.	When	you
have	determined	a	value	for	each	octet	in	the	IP	address,	make	sure	the
entire	address	is	unique	on	your	network.



Multihomed	Computers
Computers	with	more	than	one	network	interface	are	known	as
multihomed.	The	suggested	IP	address	values	are	generated	from	the
first	active	network	interface	discovered,	and	not	necessarily	the	interface
by	which	the	GPIB-ENET/100	is	connected	to	your	computer.	Be	sure	the
settings	are	correct	for	the	GPIB-ENET/100	network.



Assigning	Static	IP	Addresses	on	a	DHCP	Network
Assigning	a	static	IP	address	on	a	dynamically	configured	network	is	not
recommended.	If	you	are	using	a	static	IP	address	anyway,	be	sure	to
work	with	your	network	administrator	to	assign	an	address	that	the	DHCP
server	will	not	also	assign.



Static	IP	Parameters
To	set	a	static	IP	address,	you	must	provide	the	GPIB-ENET/100	with
several	important	network	parameters.	These	parameters	are	listed
below.

IP	addressThe	unique,	computer-readable	address	of	a	device
on	your	network.	An	IP	address	typically	is	represented	as	four
decimal	numbers	separated	by	periods	(for	example,
130.164.54.215).
Subnet	maskA	code	that	helps	the	network	device	determine
whether	another	device	is	on	the	same	network	or	a	different
network.
Gateway	IPThe	IP	address	of	a	device	that	acts	as	a	gateway,
which	is	a	connection	between	two	networks.	If	your	network
does	not	have	a	gateway,	set	this	parameter	to	0.0.0.0.
DNS	server The	IP	address	of	a	network	device	that	stores
hostnames	and	translates	them	into	IP	addresses.	If	your	network
does	not	have	a	DNS	server,	set	this	parameter	to	0.0.0.0.

The	Add	GPIB-ENET/100	Wizard	can	suggest	values	for	these	network
parameters	based	on	your	computer	configuration.

	Click	here	to	run	the	Add	GPIB-
ENET/100	Wizard.



View	NI-488.2	Software	Version
To	determine	which	version	of	the	NI-488.2	software	version	you	have
installed,	complete	the	following	steps:

1.	 >		Start	Measurement	&	Automation	Explorer.
2.	 Expand	the	Software	directory	by	clicking	on	the	+	next	to	the

folder.
3.	 Click	on	NI-488.2	

Measurement	&	Automation	Explorer	displays	the	version
number	of	the	NI-488.2	software	in	the	right	window	pane.



Enable/Disable	NI-488.2	DOS	Support
NI-488.2	DOS	support	allows	GPIB	programs	compiled	for	MS-DOS	to
run	on	Windows	2000/XP.

Note	DOS	support	is	not	available	on	Windows	Vista	or	later.

To	enable	or	disable	NI-488.2	DOS	support,	complete	the	following	steps:

1.	 	Start	Measurement	&
Automation	Explorer.

2.	 In	Measurement	&	Automation	Explorer,	select	Tools»NI-
488.2»DOS	Support...	from	the	Tools	menu.

3.	 Enable	or	disable	DOS	support	in	the	NI-488.2	Settings	dialog
box	and	click	the	OK	button.

4.	 If	you	are	prompted	to	do	so,	restart	your	system.



Require	Administrator	Privileges
NI-488.2	allows	administrators	to	allow	non-administrators	to	make
changes	to	GPIB	settings.	This	is	controlled	using	the	Measurement	&
Automation	Explorer	Tools»NI-488.2»Require	Administrator
Privileges...	menu.	This	menu	is	enabled	only	if	MAX	has	been	run	as
administrator.	In	either	case,	a	check	next	to	the	menu	indicates	that
GPIB	setting	changes	can	be	made	only	when	MAX	is	run	as
administrator.
To	toggle	between	different	modes,	complete	the	following	steps:

Run	MAX	as	administrator.
In	MAX,	select	Tools»NI-488.2»Require	Administrator
Privileges...	from	the	menu.
Enable	or	disable	the	requirement	in	the	NI-488.2	Settings	dialog
box	and	click	the	OK	button.



Access	Additional	Help	and	Resources	for	GPIB
To	access	additional	help	and	resources	for	the	NI-488.2	software	and
your	GPIB	hardware,	you	can	refer	to	the	National	Instruments	GPIB
Web	site	or	the	NI-488.2	for	Windows	CD.



National	Instruments	GPIB	Web	Site
To	access	the	National	Instruments	Web	site	for	GPIB	in	Measurement	&
Automation	Explorer,	select	Help»National	Instruments	on	the
Web»GPIB	Home	Page.



NI-488.2	for	Windows	CD
The	following	NI-488.2	documentation	is	available	on	your	NI-488.2	for
Windows	CD:

The	GPIB	Installation	Guide	briefly	describes	how	to	install	the
NI-488.2	software	and	your	GPIB	hardware.
The	NI-488.2	User	Manual	describes	the	features	and	functions
of	the	NI-488.2	software.
The	GPIB	Hardware	Guide	contains	detailed	instructions	on	how
to	install	and	configure	your	GPIB	hardware.	This	guide	also
includes	hardware	specifications	and	compliance	information.
The	GPIB	Analyzer	User	Manual	contains	instructions	to	help	you
use	the	GPIB	analyzer	software.
The	NI-488.2	API	Quick	Reference	Card	lists	status	word
conditions,	error	codes,	functions,	board	options,	device	options,
multiline	interface	messages,	routines,	and	timeout	values	for	the
NI-488.2	API.

To	view	these	documents	online,	insert	your	NI-488.2	CD.	When	the	NI-
488.2	for	Windows	screen	appears,	select	View	Documentation.	The
documentation	utility	helps	you	find	the	documentation	you	want	to	view.
You	can	also	view	these	documents	on	our	Web	site.

javascript:WWW(WWW_Manuals)


Frequently	Asked	Questions
How	do	I	get	error	information	about	failed	NI-488.2	calls?
How	do	I	communicate	with	my	instrument?
How	do	I	change	a	GPIB	device	template?
How	can	I	NULL	terminate	an	ASCII	response	from	my	instrument?
Are	interrupts	required	for	the	NI-488.2	software?
Is	DMA	required	for	the	NI-488.2	software?
Is	my	instrument	488.1	or	488.2	compliant?
How	can	I	determine	which	type	of	GPIB	hardware	I	have	installed?
How	do	I	use	an	NI-488.2	application	interface?



How	do	I	get	error	information	about	failed	NI-
488.2	calls?
Each	NI-488.2	call	updates	three	global	functions	to	reflect	the	status	of
the	device	or	board	that	you	are	using.	These	global	status	functions	are
the	status	word	(Ibsta),	the	error	function	(Iberr),	and	the	count	function
(Ibcnt).	They	contain	useful	information	about	the	last	NI-488.2	call	that
was	executed	for	any	given	process.	Your	application	should	check	these
functions	after	each	NI-488.2	call.	For	more	information	about	each
status	function,	refer	to	the	following	sections.
If	you	are	writing	a	multithreaded	application,	use	the	thread-specific
copies	of	the	status	functions	in	your	application.	To	access	the	thread-
specific	copies,	use	the	ThreadIbsta,	ThreadIberr,	and	ThreadIbcnt	calls.



Status	Word	(Ibsta)
Ibsta	is	the	GPIB	status	word.	It	contains	information	about	the	state	of
the	GPIB	and	your	GPIB	hardware.	The	value	stored	in	Ibsta	is	the	return
value	of	all	of	the	traditional	NI-488.2	calls,	except	ibfind	and	ibdev.	You
can	examine	various	status	bits	in	Ibsta	and	use	that	information	to
determine	what	to	do	next	in	your	application.	For	more	information	about
the	status	bits	in	Ibsta,	refer	to	the	Ibsta	Status	Bit	Values	table.
To	check	for	errors	after	each	NI-488.2	call,	use	the	ERR	bit	in	Ibsta,	as
follows:
if	(Ibsta()	&	ERR)
printf("GPIB	error	encountered");



Error	Function	(Iberr)
Iberr	is	the	GPIB	error	variable.	If	a	call	failed	with	an	error,	the	ERR	bit	is
set	in	Ibsta.	The	Iberr	value	describes	the	GPIB	error	that	occurred.	For
more	information	about	the	Iberr	values,	refer	to	the	Error	Codes	and
Solutions	table.



Count	Function	(Ibcnt)
Ibcnt	is	the	count	function.	It	contains	information	about	the	number	of
bytes	that	went	across	the	GPIB	in	the	most	recent	I/O	operation.
The	count	function	is	updated	after	all	I/O	operations	like	ibrd,	ibwrt,
SendList,	and	SendCmds.	If	you	are	reading	data,	the	count	function
indicates	the	number	of	bytes	read.	If	you	are	sending	data	or
commands,	the	count	variables	reflect	the	number	of	data	or	command
bytes	sent.
If	the	data	that	you	are	reading	contains	ASCII	characters,	you	can	use
Ibcnt	to	NULL	terminate	the	string	and	treat	it	like	any	other	ASCII	string.
For	example,	you	can	use	printf	to	print	the	result	to	the	screen:
char	rdbuf[21];
ibrd	(ud,	rdbuf,	20);
if	(!(Ibsta()	&	ERR)){
rdbuf[Ibcnt()]	=	'\0';
printf	("Read	in	string:	%s\n",	rdbuf);

}
else	{
//	GPIB	Error	encountered!

}
In	addition,	Ibcnt	may	return	information	from	non-I/O	functions,	such	as
EDVR	error	codes.

Return	to	Frequently	Asked	Questions



Iberr()	or	iberr	Error	Codes	and	Solutions
Iberr	is	the	NI-488.2	error	function.	If	a	call	failed	within	an	error,	the	Iberr
value	describes	the	NI-488.2	error	that	occurred.	When	using	the	GPIB32
API,	iberr	is	the	global	variable.
The	following	table	lists	the	NI-488.2	error	codes.	Remember	that	the
error	function	is	meaningful	only	when	the	ERR	bit	in	the	status	function,
Ibsta,	is	set.	For	a	detailed	description	of	each	error	and	possible
solutions,	click	on	the	error	mnemonic.

Mnemonic Value Meaning

EDVR 0 System	error
ECIC 1 Function	requires	GPIB	interface	to	be	CIC
ENOL 2 No	Listeners	on	the	GPIB
EADR 3 GPIB	interface	not	addressed	correctly
EARG 4 Invalid	argument	to	function	call
ESAC 5 GPIB	interface	not	System	Controller	as	required
EABO 6 I/O	operation	aborted	(timeout)
ENEB 7 Nonexistent	GPIB	interface
EDMA 8 DMA	error
EOIP 10 Asynchronous	I/O	in	progress
ECAP 11 No	capability	for	operation
EFSO 12 File	system	error
EBUS 14 GPIB	bus	error
ESRQ 16 SRQ	stuck	in	ON	position
ETAB 20 Table	problem
ELCK 21 Interface	is	locked
EARM 22 ibnotify	callback	failed	to	rearm
EHDL 23 Input	handle	is	invalid
EWIP 26 Wait	in	progress	on	specified	input	handle



ERST 27 The	event	notification	was	cancelled	due	to	a	reset	of
the	interface

EPWR 28 The	interface	lost	power



Ibsta()	or	ibsta	Status	Bit	Values
All	calls	update	a	global	status	function,	Ibsta,	which	contains	information
about	the	state	of	the	GPIB	and	your	GPIB	hardware.	You	can	examine
various	status	bits	in	Ibsta	and	use	that	information	to	make	decisions
about	continued	processing.	If	you	check	for	possible	errors	after	each
call	using	the	Ibsta	ERR	bit,	debugging	your	application	is	much	easier.
When	using	the	GPIB32	API,	ibsta	is	the	global	variable.
Each	bit	in	Ibsta	can	be	set	for	device-level	traditional	NI-488.2	calls
(dev),	board-level	traditional	NI-488.2	calls	and	multi-device	NI-488.2
calls	(brd),	or	all	(dev,	brd).	Ibsta	is	a	32-bit	value.	A	bit	value	of	one	(1)
indicates	that	a	certain	condition	is	in	effect.	A	bit	value	of	zero	(0)
indicates	that	the	condition	is	not	in	effect.

Mnemonic Bit Hex Type Description
ERR 15 8000 dev,	brd NI-488.2	error
TIMO 14 4000 dev,	brd Time	limit	exceeded
END 13 2000 dev,	brd END	or	EOS	detected
SRQI 12 1000 brd SRQ	interrupt	received
RQS 11 800 dev Device	requesting	service
CMPL 8 100 dev,	brd I/O	completed
LOK 7 80 brd Lockout	State
REM 6 40 brd Remote	State
CIC 5 20 brd Controller-In-Charge
ATN 4 10 brd Attention	is	asserted
TACS 3 8 brd Talker
LACS 2 4 brd Listener
DTAS 1 2 brd Device	Trigger	State
DCAS 0 1 brd Device	Clear	State



How	do	I	communicate	with	my	instrument?
Refer	to	the	documentation	provided	by	your	GPIB	instrument
manufacturer.	The	command	sequences	for	GPIB	instrument
communication	are	specific	to	each	GPIB	instrument.	The	documentation
for	your	GPIB	instrument	should	include	the	GPIB	commands	that	you
need	to	use	to	communicate	with	your	instrument.
In	most	cases,	device-level	traditional	NI-488.2	calls	are	sufficient	for
instrument	communication.	Typically,	you	will	use	ibdev	to	open	a	handle
to	your	GPIB	instrument.	Once	you	have	a	handle,	you	can	use	ibwrt	to
send	commands	to	your	instrument	and	ibrd	to	get	data	from	your
instrument.	When	you	are	finished,	use	ibonl	to	close	the	handle.
For	simple	instrument	communication,	use	the	NI-488.2	Communicator.
For	more	information,	refer	to	the	Using	NI-488.2	Communicator	topic.
To	view	an	example	of	the	Interactive	Control	utility	communicating	with	a
GPIB	instrument,	refer	to	the	Getting	Started	with	Interactive	Control
topic.
For	instructions	on	how	to	develop	your	application,	refer	to	the
Developing	Your	NI-488.2	Application	topic.

Return	to	Frequently	Asked	Questions



How	do	I	change	a	GPIB	device	template?
Some	NI-488.2	applications	require	you	to	configure	a	device	template
before	you	can	successfully	run	the	application.	Refer	to	the
documentation	provided	with	your	NI-488.2	application	to	determine
whether	you	need	to	change	a	device	template.

Note	If	you	are	developing	a	new	application,	use	ibdev	to	find	a
device	handle	instead	of	ibfind.	The	ibdev	function	is	more	flexible,
easier	to	use,	and	frees	the	application	from	unnecessary	device
name	requirements.

If	you	must	change	a	device	template,	complete	the	following	steps:

1.	 	Start	the	GPIB	Configuration
utility.

2.	 Double-click	the	device	template	that	you	want	to	modify,	such	as
DEV1.

3.	 Modify	the	device	template	as	described	in	your	application
documentation.

4.	 Click	on	the	OK	button	twice	to	save	your	changes	and	exit.
If	you	are	using	NI-488.2	DOS	support	to	run	a	GPIB	program	compiled
for	MS-DOS,	you	must	also	run	the	updatdos.exe	program	to	update	the
device	templates	for	the	DOS	driver.	Updatdos.exe	is	in	the	DOSWIN16
directory	of	your	NI-488.2	installation.

Note	DOS	support	is	not	available	on	Windows	Vista	or	later.

Return	to	Frequently	Asked	Questions



How	can	I	NULL	terminate	an	ASCII	response
from	my	instrument?
If	your	instrument	sends	you	ASCII	data,	you	can	convert	the	string	that
is	returned	from	a	read	operation	(like	ibrd	or	Receive)	to	a	NULL-
terminated	string	that	can	be	passed	to	string	calls	like	printf.	After	a
successful	read	operation,	Ibcnt	contains	the	number	of	bytes	read.	To
create	a	NULL-terminated	string,	add	a	NULL	byte	onto	the	end	of	the
string	as	shown	in	the	following	C/C++	code:
char	ReadBuffer[101];
ibrd	(handle,	ReadBuffer,	100);
if	(!(Ibsta()	&	ERR))	{
ReadBuffer[Ibcnt()]	=	'\0';
printf	("Read	string	from	instrument:	%s",

ReadBuffer);
}

Return	to	Frequently	Asked	Questions



Are	interrupts	required	for	the	NI-488.2
software?
Generally,	plug-in	interface	cards,	such	as	the	PCI-GPIB,	require
interrupt	resources	in	your	computer.	Remote	interfaces,	such	as	the
GPIB-USB	and	GPIB-ENET	products,	do	not	require	interrupt	resources
in	your	computer.	There	may	be	exceptions	to	this	statement.	Refer	to
the	general	readme	file,	Readme.txt,	located	on	your	installation	CD	or	in
the	installation	directory,	for	the	latest	interface	options	supported	by	the
current	version	of	NI-488.2.

Return	to	Frequently	Asked	Questions



Is	DMA	required	for	the	NI-488.2	software?
No,	DMA	is	not	required.

Return	to	Frequently	Asked	Questions



Is	my	instrument	488.1	or	488.2	compliant?
Refer	to	the	documentation	that	came	with	your	GPIB	instrument	to
determine	whether	your	instrument	is	IEEE	488.2	compliant.	The	NI-
488.2	software	works	with	both	488.1	and	488.2	GPIB	instruments.

Return	to	Frequently	Asked	Questions



How	can	I	determine	which	type	of	GPIB
hardware	I	have	installed?
Select	Start»Programs»National	Instruments»Measurement	&
Automation	or	click	on	the	following	button.
>		Start	Measurement	&	Automation	Explorer.
Expand	the	Devices	and	Interfaces	directory	by	clicking	on	the	+	next	to
the	folder.	Measurement	&	Automation	Explorer	lists	your	installed	GPIB
hardware	under	Devices	and	Interfaces.

Return	to	Frequently	Asked	Questions



Function	Reference
Traditional	NI-488.2	Calls
Multi-Device	NI-488.2	Calls
Supplemental	Calls	for	Multithreaded	NI-488.2	Applications



Traditional	NI-488.2	Calls
List	of	Board-Level	NI-488.2	Calls
List	of	Device-Level	NI-488.2	Calls



Board-Level	Traditional	NI-488.2	Calls
ibask Return	information	about	software	configuration	parameters
ibcac Become	Active	Controller
ibcmd Send	GPIB	commands
ibcmda Send	GPIB	commands	asynchronously
ibconfig Change	the	software	configuration	parameters
ibdma Enable	or	disable	DMA	(see	the	IbcDMA	option	in	ibconfig)
ibeos Configure	the	end-of-string	(EOS)	termination	mode	or

character	(see	the	IbcEOS	option	in	ibconfig)
ibeot Enable	or	disable	the	automatic	assertion	of	the	GPIB	EOI	line

at	the	end	of	write	I/O	operations	(see	the	IbcEOT	option	in
ibconfig)

ibfind Open	and	initialize	an	interface	or	a	user-configured	instrument
descriptor

ibgts Go	from	Active	Controller	to	Standby
ibist Set	or	clear	the	board	individual	status	bit	for	parallel	polls	(see

the	IbcIst	option	in	ibconfig)
iblck Acquire	or	release	an	exclusive	interface	lock	for	the	current

process
iblines Return	the	status	of	the	eight	GPIB	control	lines
ibln Check	for	the	presence	of	a	device	on	the	bus
ibloc Go	to	Local
ibnotify Notify	user	of	one	or	more	GPIB	events	by	invoking	the	user

callback
ibonl Place	the	interface	online	or	offline
ibpad Change	the	primary	address	(see	the	IbcPAD	option	in

ibconfig)
ibppc Parallel	poll	configure
ibrd Read	data	from	an	instrument	into	a	user	buffer
ibrda Read	data	asynchronously	from	an	instrument	into	a	user

buffer



ibrdf Read	data	from	an	instrument	into	a	file
ibrpp Conduct	a	parallel	poll
ibrsc Request	or	release	system	control	(see	the	IbcSC	option	in

ibconfig)
ibrsv Request	service	and	change	the	serial	poll	status	byte	(see	the

IbcRSV	option	in	ibconfig)
ibsad Change	or	disable	the	secondary	address	(see	the	IbcSAD

option	in	ibconfig)
ibsic Assert	interface	clear
ibsre Set	or	clear	the	Remote	Enable	(REN)	line	(see	the	IbcSRE

option	in	ibconfig)
ibstop Abort	asynchronous	I/O	operation
ibtmo Change	or	disable	the	I/O	timeout	period	(see	the	IbcTMO

option	in	ibconfig)
ibwait Wait	for	GPIB	events
ibwrt Write	data	to	an	instrument	from	a	user	buffer
ibwrta Write	data	asynchronously	to	an	instrument	from	a	user	buffer
ibwrtf Write	data	to	an	instrument	from	a	file



Device-Level	Traditional	NI-488.2	Calls
ibask Return	information	about	software	configuration	parameters
ibclr Clear	a	specific	instrument
ibconfig Change	the	software	configuration	parameters
ibdev Open	and	initialize	an	instrument
ibeos Configure	the	end-of-string	(EOS)	termination	mode	or

character	(see	the	IbcEOS	option	in	ibconfig)
ibeot Enable	or	disable	the	automatic	assertion	of	GPIB	EOI	line	at

the	end	of	write	I/O	operations	(see	the	IbcEOT	option	in
ibconfig)

ibfind Open	and	initialize	a	board	or	a	user-configured	device
descriptor.

ibloc Go	to	Local
ibnotify Notify	user	of	one	or	more	GPIB	events	by	invoking	the	user

callback
ibonl Place	the	instrument	online	or	offline
ibpad Change	the	primary	address	(see	the	IbcPAD	option	in

ibconfig)
ibpct Pass	control	to	another	GPIB	instrument	with	Controller

capability
ibppc Parallel	poll	configure
ibrd Read	data	from	an	instrument	into	a	user	buffer
ibrda Read	data	asynchronously	from	an	instrument	into	a	user

buffer
ibrdf Read	data	from	an	instrument	into	a	file
ibrpp Conduct	a	parallel	poll
ibrsp Conduct	a	serial	poll
ibsad Change	or	disable	the	secondary	address	(see	the	IbcSAD

option	in	ibconfig)
ibstop Abort	asynchronous	I/O	operation
ibtmo Change	or	disable	the	I/O	timeout	period	(see	the	IbcTMO



option	in	ibconfig)
ibtrg Trigger	selected	instrument
ibwait Wait	for	GPIB	events
ibwrt Write	data	to	an	instrument	from	a	user	buffer
ibwrta Write	data	asynchronously	to	an	instrument	from	a	user	buffer
ibwrtf Write	data	to	an	instrument	from	a	file



IBASK
Board-Level/Device-Level



Purpose
Return	information	about	software	configuration	parameters.



Format
C
unsigned	long	ibask	(int	ud,	int	option,	int	*value)



Visual	Basic
CALL	ibask	(ud%,	option%,	value%)

or

status%	=	ilask	(ud%,	option%,	value%)



Interactive	Control	(Usage	Notes)
ibask	option



Input
ud Board	or	device	unit	descriptor
option Selects	the	configuration	item	whose	value	is	being	requested



Output
value Current	value	of	the	selected	configuration	item
Function	Return The	value	of	Ibsta.



Description
ibask	returns	the	current	value	of	various	configuration	parameters	for	the
specified	board	or	device.	The	current	value	of	the	selected	configuration
item	is	returned	in	the	integer	value.	Refer	to	the	table	with	valid
configuration	parameter	options	for	ibask.



Possible	Errors
EARG option	is	not	a	valid	configuration	parameter.	See	ibask	Board

Configuration	Parameter	Options	and	ibask	Device	Configuration
Parameter	Options.

ECAP option	is	not	supported	by	the	driver	or	the	interface	is	not
configured	correctly.

EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not
properly	installed.

EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



ibask	Board	Configuration	Parameter	Options
You	can	use	the	following	options	with	ibask	when	ud	is	a	board
descriptor	or	a	board	index.

IbaAUTOPOLL
IbaDMA
IbaEndBitIsNormal
IbaEOS
IbaEOSchar
IbaEOScmp
IbaEOSrd
IbaEOSwrt
IbaEOT
IbaHSCableLength
IbaIst
IbaIRQ

IbaLON
IbaPAD
IbaPP2
IbaPPC
IbaPPollTime
IbaRsv
IbaSAD
IbaSC
IbaSendLLO
IbaSRE
IbaTIMING
IbaTMO

Return	to	ibask



IbaAUTOPOLL	(ibask	Board	Configuration
Option)
Options
(Constants) Value Description

IbaAUTOPOLL zero Automatic	serial	polling	is	disabled.
non-zero Automatic	serial	polling	is	enabled.



IbaDMA	(ibask	Board	Configuration	Option)
Options
(Constants) Value Description

IbaDMA zero The	board	will	not	use	DMA	for	GPIB	transfers.
non-zero The	board	will	use	DMA	for	GPIB	transfers.



IbaEndBitIsNormal	(ibask	Board	Configuration
Option)
Options
(Constants) Value Description

IbaEndBitIsNormal zero The	END	bit	of	Ibsta	is	set	only	when	EOI	or
EOI	plus	the	EOS	character	is	received.	If	the
EOS	character	is	received	without	EOI,	the
END	bit	is	not	set.

non-
zero

The	END	bit	is	set	whenever	EOI,	EOS,	or
EOI	plus	EOS	is	received.



IbaEOS	(ibask	Board	Configuration	Option)
Using	this	option	makes	your	application	break	backwards	compatibility
with	older	drivers.	Consider	using	IbaEOSchar,	IbaEOScmp,	IbaEOSrd,	and
IbaEOSwrt	separately	instead.
IbaEOS	is	the	current	EOS	termination	mode	and	character	for	the	board.
The	lower	byte	of	the	value	returned	is	the	EOS	character.	For	the	upper
byte,	the	third	bit	flags,	terminating	the	read	when	EOS	is	detected,	the
fourth	bit	flags,	setting	EOI	with	EOS	on	write	functions,	and	the	fifth	bit
flags,	comparing	all	8	bits	of	the	EOS	byte	instead	of	comparing	the	lower
7	bits.	The	following	table	describes	the	different	EOS	configurations:

Value	of	v

Bit Configuration High
Byte

Low
Byte

A Terminate	read	when	EOS	is	detected. 00000100 EOS
character

B Set	EOI	with	EOS	on	write	function. 00001000 EOS
character

C Compare	all	8	bits	of	EOS	byte	rather	than	low
7	bits	(all	read	and	write	calls).

00010000 EOS
character



IbaEOSchar	(ibask	Board	Configuration	Option)
Options
(Constants) Description

IbaEOSchar The	current	EOS	character	of	the	board.



IbaEOScmp	(ibask	Board	Configuration	Option)
Options
(Constants) Value Description

IbaEOScmp zero A	7-bit	compare	is	used	for	all	EOS	comparisons.
non-
zero

An	8-bit	compare	is	used	for	all	EOS
comparisons.



IbaEOSrd	(ibask	Board	Configuration	Option)
Options
(Constants) Value Description

IbaEOSrd zero The	EOS	character	is	ignored	during	read
operations.

non-
zero

Read	operations	are	terminated	by	the	EOS
character.



IbaEOSwrt	(ibask	Board	Configuration	Option)
Options
(Constants) Value Description

IbaEOSwrt zero The	EOI	line	is	not	asserted	when	the	EOS
character	is	sent	during	a	write	operation.

non-
zero

The	EOI	line	is	asserted	when	the	EOS	character	is
sent	during	a	write	operation.



IbaEOT	(ibask	Board	Configuration	Option)
Options
(Constants) Value Description

IbaEOT zero The	GPIB	EOI	line	is	not	asserted	at	the	end	of
write	operations.

non-
zero

EOI	is	asserted	at	end	of	writes.



IbaHSCableLength	(ibask	Board	Configuration
Option)
Options
(Constants) Value Description

IbaHSCableLength 0 High-speed	(HS488)	data	transfer	is	disabled.
1	to
15

High-speed	(HS488)	data	transfer	is	enabled.
The	number	returned	represents	the	number
of	meters	of	GPIB	cable	in	your	system.



IbaIRQ	(ibask	Board	Configuration	Option)
Options
(Constants) Value Description

IbaIRQ zero Do	not	use	interrupts.
non-zero Use	interrupts.



IbaIst	(ibask	Board	Configuration	Option)
Options
(Constants) Value Description

IbaIst zero The	board's	ist	bit	is	cleared.
non-zero The	board's	ist	bit	is	set.



IbaLON	(ibask	Board	Configuration	Option)
Options
(Constants) Value Description

IbaLON zero (Default)	Do	not	enable	listen-only	mode.
non-
zero

Enable	listen-only	mode.	In	this	mode,	which
persists	until	ibonl	is	called,	the	board	is	forced	to
listen.	While	in	listen-only	mode,	the	board-level
functions	ibrd,	ibrda,	ibrdf,	ibwait,	and	ibtmo
function	in	the	usual	manner.	The	behavior	of	all
other	functions	is	undefined.



IbaPAD	(ibask	Board	Configuration	Option)
Options
(Constants) Description

IbaPAD The	current	primary	address	of	the	board.



IbaPP2	(ibask	Board	Configuration	Option)
Options
(Constants) Value Description

IbaPP2 zero The	board	is	in	PP1	moderemote	parallel	poll
configuration.

non-
zero

The	board	is	in	PP2	modelocal	parallel	poll
configuration.



IbaPPC	(ibask	Board	Configuration	Option)
Options
(Constants) Description

IbaPPC The	current	parallel	poll	configuration	information	of	the
board.



IbaPPollTime	(ibask	Board	Configuration
Option)
Options
(Constants) Value Description

IbaPPollTime 0 The	board	uses	the	standard	duration	( 	2	µs)	when
conducting	a	parallel	poll.

1	to
17

The	board	uses	a	variable	length	duration	when
conducting	a	parallel	poll.	The	duration	values
correspond	to	the	ibtmo	timing	values.



IbaRsv	(ibask	Board	Configuration	Option)
Options
(Constants) Description

IbaRsv The	current	serial	poll	status	byte	of	the	board.



IbaSAD	(ibask	Board	Configuration	Option)
Options
(Constants) Description

IbaSAD The	current	secondary	address	of	the	board.



IbaSC	(ibask	Board	Configuration	Option)
Options
(Constants) Value Description

IbaSC zero The	board	is	not	the	System	Controller.
non-zero The	board	is	the	System	Controller.



IbaSendLLO	(ibask	Board	Configuration	Option)
Options
(Constants) Value Description

IbaSendLLO zero The	GPIB	LLO	command	is	not	sent	when	a	device
is	put	onlineibfind	or	ibdev.

non-
zero

The	LLO	command	is	sent.



IbaSRE	(ibask	Board	Configuration	Option)
Options
(Constants) Value Description

IbaSRE zero The	board	is	not	asserting	the	REN	line.
non-zero The	board	is	asserting	the	REN	line.



IbaTIMING	(ibask	Board	Configuration	Option)
Options
(Constants) Value Description

IbaTIMING The	current	bus	timing	of	the	board.
1 Normal	timing	(T1	delay	of	2	µs).
2 High-speed	timing	(T1	delay	of	500	ns).
3 Very	high-speed	timing	(T1	delay	of	350	ns).



IbaTMO	(ibask	Board	Configuration	Option)
Options
(Constants) Description

IbaTMO The	current	I/O	timeout	period	of	the	board.



ibask	Device	Configuration	Parameter	Options
You	can	use	the	following	options	with	ibask	when	ud	is	a	device
descriptor.

IbaEOS
IbaEOSchar
IbaEOScmp
IbaEOSrd
IbaEOSwrt
IbaEOT

IbaPAD
IbaREADDR
IbaSAD
IbaSPollTime
IbaTMO
IbaUnAddr

Return	to	ibask



IbaEOS	(ibask	Device	Configuration	Option)
Using	this	option	makes	your	application	break	backwards	compatibility
with	older	drivers.	Consider	using	IbaEOSchar,	IbaEOScmp,	IbaEOSrd,	and
IbaEOSwrt	separately	instead.
IbaEOS	is	the	current	EOS	termination	mode	and	character	for	the
device.	The	lower	byte	of	the	value	returned	is	the	EOS	character.	For
the	upper	byte,	the	third	bit	flags,	terminating	the	read	when	EOS	is
detected,	the	fourth	bit	flags,	setting	EOI	with	EOS	on	write	functions,
and	the	fifth	bit	flags,	comparing	all	8	bits	of	the	EOS	byte	instead	of
comparing	the	lower	7	bits.	The	following	table	describes	the	different
EOS	configurations:

Value	of	v

Bit Configuration High
Byte

Low
Byte

A Terminate	read	when	EOS	is	detected. 00000100 EOS
character

B Set	EOI	with	EOS	on	write	function. 00001000 EOS
character

C Compare	all	8	bits	of	EOS	byte	rather	than	low
7	bits	(all	read	and	write	calls).

00010000 EOS
character



IbaEOSchar	(ibask	Device	Configuration	Option)
Options
(Constants) Description

IbaEOSchar The	current	EOS	character	of	the	device.



IbaEOScmp	(ibask	Device	Configuration	Option)
Options
(Constants) Value Description

IbaEOScmp zero A	7-bit	compare	is	used	for	all	EOS	comparisons.
non-
zero

An	8-bit	compare	is	used	for	all	EOS
comparisons.



IbaEOSrd	(ibask	Device	Configuration	Option)
Options
(Constants) Value Description

IbaEOSrd zero The	EOS	character	is	ignored	during	read
operations.

non-
zero

Read	operations	are	terminated	by	the	EOS
character.



IbaEOSwrt	(ibask	Device	Configuration	Option)
Options
(Constants) Value Description

IbaEOSwrt zero The	EOI	line	is	not	asserted	when	the	EOS
character	is	sent	during	a	write	operation.

non-
zero

The	EOI	line	is	asserted	when	the	EOS	character	is
sent	during	a	write	operation.



IbaEOT	(ibask	Device	Configuration	Option)
Options
(Constants) Value Description

IbaEOT zero The	GPIB	EOI	line	will	not	be	asserted	at	the	end
of	a	write	operation.

non-
zero

EOI	will	be	asserted	at	the	end	of	a	write.



IbaPAD	(ibask	Device	Configuration	Option)
Options
(Constants) Description

IbaPAD The	current	primary	address	of	the	device.



IbaREADDR	(ibask	Device	Configuration	Option)
Options
(Constants) Value Description

IbaREADDR zero No	unnecessary	addressing	is	performed	between
device-level	read	and	write	operations.

non-
zero

Addressing	is	always	performed	before	a	device-
level	read	or	write	operation.



IbaSAD	(ibask	Device	Configuration	Option)
Options
(Constants) Description

IbaSAD The	current	secondary	address	of	the	device.



IbaSPollTime	(ibask	Device	Configuration
Option)
Options
(Constants) Description

IbaSPollTime The	length	of	time	the	driver	waits	for	a	serial	poll
response	when	polling	the	device.	The	length	of	time	is
represented	by	the	ibtmo	timing	values.



IbaTMO	(ibask	Device	Configuration	Option)
Options
(Constants) Description

IbaTMO The	current	I/O	timeout	period	of	the	device.



IbaUnAddr	(ibask	Device	Configuration	Option)
Options
(Constants) Value Description

IbaUnAddr zero The	GPIB	commands	Untalk	(UNT)	and	Unlisten
(UNL)	are	not	sent	after	each	device-level	read	and
write	operation.

non-
zero

The	UNT	and	UNL	commands	are	sent	after	each
device-level	read	and	write.



IBCAC
Board-Level



Purpose
Become	Active	Controller.



Format
C
unsigned	long	ibcac	(int	ud,	int	v)



Visual	Basic
CALL	ibcac	(ud%,	v%)

or

status%	=	ilcac	(ud%,	v%)



Interactive	Control	(Usage	Notes)
ibcac	v



Input
ud A	board	unit	descriptor
v Determines	if	control	is	to	be	taken	asynchronously	or	synchronously



Output
Function	Return The	value	of	Ibsta



Description
Using	ibcac,	the	designated	GPIB	interface	attempts	to	become	the
Active	Controller	by	asserting	ATN.	If	v	is	zero,	the	GPIB	interface	takes
control	asynchronously;	if	v	is	non-zero,	the	GPIB	interface	takes	control
synchronously.	Before	you	call	ibcac,	the	GPIB	interface	must	already	be
CIC.	To	make	the	board	CIC,	use	the	ibsic	function.
To	take	control	synchronously,	the	GPIB	interface	attempts	to	assert	the
ATN	signal	without	corrupting	transferred	data.	If	this	is	not	possible,	the
board	takes	control	asynchronously.
To	take	control	asynchronously,	the	GPIB	interface	asserts	ATN
immediately	without	regard	for	any	data	transfer	currently	in	progress.
Most	applications	do	not	need	to	use	ibcac.	Calls	that	require	ATN	to	be
asserted,	such	as	ibcmd,	do	so	automatically.



Possible	Errors
EARG ud	is	valid	but	does	not	refer	to	an	interface.
ECIC The	interface	is	not	Controller-In-Charge.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBCLR
Device-Level



Purpose
Clear	a	specific	device.



Format
C
unsigned	long	ibclr	(int	ud)



Visual	Basic
CALL	ibclr	(ud%)

or

status%	=	ilclr	(ud%)



Interactive	Control	(Usage	Notes)
ibclr



Input
ud A	device	unit	descriptor



Output
Function	Return The	value	of	Ibsta



Description
ibclr	sends	the	GPIB	Selected	Device	Clear	(SDC)	message	to	the
device	described	by	ud.



Possible	Errors
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	access	board	is	not	CIC.	Refer	to	Device-Level	Calls	and

Bus	Management.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBCMD
Board-Level



Purpose
Send	GPIB	commands.



Format
C
unsigned	long	ibcmd	(int	ud,	const	void	*cmdbuf,	size_t	count)



Visual	Basic
CALL	ibcmd	(ud%,	cmdbuf$)

or

status%	=	ilcmd	(ud%,	cmdbuf$,	count&)



Interactive	Control	(Usage	Notes)
ibcmd	cmdbuf



Input
ud A	board	unit	descriptor
cmdbuf Buffer	of	command	bytes	to	send
count Number	of	command	bytes	to	send



Output
Function	Return The	value	of	Ibsta



Description
ibcmd	sends	count	bytes	from	cmdbuf	over	the	GPIB	as	command	bytes
(interface	messages).	The	number	of	command	bytes	transferred	is
returned	in	the	global	function,	Ibcnt.	Refer	to	the	list	of	IEEE	488
command	messages	for	defined	interface	messages.
Command	bytes	are	used	to	configure	the	state	of	the	GPIB.	They	are
not	used	to	send	instructions	to	GPIB	devices.	Use	ibwrt	to	send	device-
specific	instructions.



Possible	Errors
EABO The	timeout	period	expired	before	all	of	the	command	bytes

were	sent.
ECIC The	interface	is	not	Controller-In-Charge.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
ENOL No	Listeners	are	on	the	GPIB.
EOIP Asynchronous	I/O	is	in	progress.



IBCMDA
Board-Level



Purpose
Send	GPIB	commands	asynchronously.



Format
C
unsigned	long	ibcmda	(int	ud,	const	void	*cmdbuf,	size_t	count)



Visual	Basic
CALL	ibcmda	(ud%,	cmdbuf$)

or

status%	=	ilcmda	(ud%,	cmdbuf$,	count&)



Interactive	Control	(Usage	Notes)
ibcmda	cmdbuf



Input
ud A	board	unit	descriptor
cmdbuf Buffer	of	command	bytes	to	send
count Number	of	command	bytes	to	send



Output
Function	Return The	value	of	Ibsta



Description
ibcmda	sends	count	bytes	from	cmdbuf	over	the	GPIB	as	command	bytes
(interface	messages).	The	number	of	command	bytes	transferred	is
returned	in	the	global	function,	Ibcnt.	Refer	to	the	list	of	IEEE	488
command	messages	for	defined	interface	messages.
Command	bytes	are	used	to	configure	the	state	of	the	GPIB.	They	are
not	used	to	send	instructions	to	GPIB	devices.	Use	ibwrt	to	send	device-
specific	instructions.
The	asynchronous	I/O	calls	(ibcmda,	ibrda,	ibwrta	)	are	designed	so	that
applications	can	perform	other	non-GPIB	operations	while	the	I/O	is	in
progress.	Once	the	asynchronous	I/O	begins,	further	NI-488.2	calls	are
strictly	limited.	Any	calls	that	would	interfere	with	the	I/O	in	progress	are
not	allowed;	the	driver	returns	EOIP	in	this	case.
Once	the	I/O	is	complete,	the	application	must	resynchronize	with	the	NI-
488.2	driver.	Resynchronization	is	accomplished	by	using	one	of	the
following	calls:

ibwait If	the	returned	Ibsta	contains	CMPL,	the	driver	and	application
are	resynchronized.

ibnotify If	the	Ibsta	value	passed	to	the	ibnotify	callback	contains	CMPL,
the	driver	and	application	are	resynchronized.

ibstop The	I/O	is	canceled;	the	driver	and	application	are
resynchronized.

ibonl The	I/O	is	canceled	and	the	interface	is	reset;	the	driver	and
application	are	resynchronized.



Possible	Errors
ECIC The	interface	is	not	Controller-In-Charge.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
ENOL No	Listeners	are	on	the	GPIB.
EOIP Asynchronous	I/O	is	in	progress.



IBCONFIG
Board-Level/Device-Level



Purpose
Change	the	software	configuration	input.



Format
C
unsigned	long	ibconfig	(int	ud,	int	option,	int	value)



Visual	Basic
CALL	ibconfig	(ud%,	option%,	value%)

or

status%	=	ilconfig	(ud%,	option%,	value%)



Interactive	Control	(Usage	Notes)
ibconfig	option	value



Input
ud Board	or	device	unit	descriptor
option A	parameter	that	selects	the	software	configuration	item
value The	value	to	which	the	selected	configuration	item	is	to	be

changed



Output
Function	Return The	value	of	Ibsta



Description
ibconfig	changes	a	configuration	item	to	the	specified	value	for	the
selected	board	or	device.	option	can	be	any	of	the	defined	options	(see
ibconfig	Board	Configuration	Parameter	Options	or	ibconfig	Device
Configuration	Parameter	Options).	value	must	be	valid	for	the	parameter
that	you	are	configuring.	The	previous	setting	of	the	configured	item	is
returned	in	Iberr.



Possible	Errors
EARG Either	option	or	value	is	not	valid.	The	ibconfig	Board

Configuration	Parameter	Options	table	lists	the	valid	options.
ECAP The	driver	is	not	able	to	make	the	requested	change.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.
ESAC The	board	does	not	have	System	Controller	capability.



ibconfig	Board	Configuration	Parameter	Options
You	can	use	the	following	options	with	ibconfig	when	ud	is	a	board
descriptor	or	a	board	index.

IbcAUTOPOLL
IbcDMA
IbcEndBitIsNormal
IbcEOS
IbcEOSchar
IbcEOScmp
IbcEOSrd
IbcEOSwrt
IbcEOT
IbcHSCableLength
IbcIRQ
IbcIst

IbcLON
IbcPAD
IbcPP2
IbcPPC
IbcPPollTime
IbcRsv
IbcSAD
IbcSC
IbcSendLLO
IbcSRE
IbcTIMING
IbcTMO

Return	to	ibconfig



IbcAUTOPOLL	(ibconfig	Board	Configuration
Option)
Options
(Constants) Value Description

IbcAUTOPOLL zero Disable	automatic	serial	polling.
non-zero Enable	automatic	serial	polling.
Default	determined	by	Measurement	&	Automation
Explorer.



IbcDMA	(ibconfig	Board	Configuration	Option)
Options
(Constants) Value Description

IbcDMA zero The	board	will	not	use	DMA	for	GPIB	transfers.
non-zero The	board	will	use	DMA	for	GPIB	transfers.

This	option	enables	or	disables	DMA	transfers	for	the	board,	according	to
v.	If	v	is	zero,	DMA	is	not	used	for	GPIB	I/O	transfers.	If	v	is	non-zero,
DMA	is	used	for	GPIB	I/O	transfers.



IbcEndBitIsNormal	(ibconfig	Board
Configuration	Option)
Options
(Constants) Value Description

IbcEndBitIsNormal zero The	END	bit	of	Ibsta	is	set	only	when	EOI	is
received.	If	the	EOS	character	is	received	with
EOI,	the	END	bit	is	not	set.

non-
zero

(Default)	The	END	bit	is	set	whenever	EOI	or
EOS	is	received.



IbcEOS	(ibconfig	Board	Configuration	Option)
Using	this	option	makes	your	application	break	backwards	compatibility
with	older	drivers.	Consider	using	IbcEOSchar,	IbcEOScmp,	IbcEOSrd,
and	IbcEOSwrt	separately	instead.
IbcEOS	is	the	parameter	that	describes	the	new	EOS	configuration	to
use.	If	v	is	zero,	the	EOS	configuration	is	disabled.	Otherwise,	the	low
byte	is	the	EOS	character	and	the	upper	byte	contains	flags	that	define
the	EOS	mode.	For	the	upper	byte,	the	third	bit	flags,	terminating	the
read	when	EOS	is	detected,	the	fourth	bit	flags,	setting	EOI	with	EOS	on
write	functions,	and	the	fifth	bit	flags,	comparing	all	8	bits	of	the	EOS	byte
instead	of	comparing	the	lower	7	bits.	The	following	table	describes	the
different	EOS	configurations:

Value	of	v

Bit Configuration High
Byte

Low
Byte

A Terminate	read	when	EOS	is	detected. 00000100 EOS
character

B Set	EOI	with	EOS	on	write	function. 00001000 EOS
character

C Compare	all	8	bits	of	EOS	byte	rather	than	low
7	bits	(all	read	and	write	calls).

00010000 EOS
character

Configuration	bits	A	and	C	determine	how	to	terminate	read	I/O
operations.	If	bit	A	is	set	and	bit	C	is	clear,	a	read	ends	when	a	byte	that
matches	the	low	seven	bits	of	the	EOS	character	is	received.	If	bits	A	and
C	are	both	set,	a	read	ends	when	a	byte	that	matches	all	eight	bits	of	the
EOS	character	is	received.
Configuration	bits	B	and	C	determine	when	a	write	I/O	operation	asserts
the	GPIB	EOI	line.	If	bit	B	is	set	and	bit	C	is	clear,	EOI	is	asserted	when
the	written	character	matches	the	low	seven	bits	of	the	EOS	character.	If
bits	B	and	C	are	both	set,	EOI	is	asserted	when	the	written	character
matches	all	eight	bits	of	the	EOS	character.
Refer	to	Terminating	Data	Transfers	for	more	information	about	EOS	and
EOI	termination	methods.



Examples

ibconfig	(ud,	IbcEOS	0x140A);
/*	Configure	the	software	to	end	reads	on
			newline	character	(hex	0A)	for	the	unit
			descriptor,	ud	*/
ibconfig	(ud,	IbcEOS	0x180A);
/*	Configure	the	software	to	assert	the	GPIB	
			EOI	line	whenever	the	newline	character
			(hex	0A)	is	written	out	by	the	unit
			descriptor,	ud	*/



IbcEOSchar	(ibconfig	Board	Configuration
Option)
Options
(Constants) Description

IbcEOSchar Any	8-bit	value.	This	byte	becomes	the	new	EOS
character.
Default	determined	by	Measurement	&	Automation
Explorer.



IbcEOScmp	(ibconfig	Board	Configuration
Option)
Options
(Constants) Value Description

IbcEOScmp zero Use	7	bits	for	the	EOS	character	comparison.
non-zero Use	8	bits	for	the	EOS	character	comparison.
Default	determined	by	Measurement	&	Automation
Explorer.



IbcEOSrd	(ibconfig	Board	Configuration	Option)
Options
(Constants) Value Description

IbcEOSrd zero Ignore	EOS	character	during	read	operations.
non-
zero

Terminate	reads	when	the	EOS	character	is
read.

Default	determined	by	Measurement	&	Automation
Explorer.



IbcEOSwrt	(ibconfig	Board	Configuration
Option)
Options
(Constants) Value Description

IbcEOSwrt zero Do	not	assert	the	EOI	line	when	the	EOS	character
is	sent	during	write	operations.

non-
zero

Assert	the	EOI	line	when	the	EOS	character	is	sent
during	write	operations.

Default	determined	by	Measurement	&	Automation
Explorer.



IbcEOT	(ibconfig	Board	Configuration	Option)
Options
(Constants) Value Description

IbcEOT zero The	GPIB	EOI	line	is	not	asserted	at	the	end	of
write	operations.

non-
zero

EOI	is	asserted	at	end	of	writes.

Default	determined	by	Measurement	&	Automation
Explorer.

This	option	enables	or	disables	the	assertion	of	the	EOI	line	at	the	end	of
write	I/O	operations	for	the	board	or	device	described	by	ud.	If	v	is	non-
zero,	EOI	is	asserted	when	the	last	byte	of	a	GPIB	write	is	sent.	If	v	is
zero,	nothing	occurs	when	the	last	byte	is	sent.	If	no	error	occurs	during
the	call,	the	previous	value	of	EOT	is	returned	in	Iberr.
Refer	to	Terminating	Data	Transfers	for	more	information	about	EOS	and
EOI	termination	methods.



IbcHSCableLength	(ibconfig	Board
Configuration	Option)
Options
(Constants) Value Description

IbcHSCableLength 0 High-speed	(HS488)	data	transfer	is	disabled.
1	to
15

The	number	of	meters	of	GPIB	cable	in	your
system.	The	NI-488.2	software	uses	this
information	to	select	the	appropriate	high-
speed	(HS488)	data	transfer	mode.

Default	determined	by	Measurement	&	Automation
Explorer.



IbcIRQ	(ibconfig	Board	Configuration	Option)
Options
(Constants) Value Description

IbcIRQ zero Do	not	use	interrupts.
non-zero Use	interrupts.



IbcIst	(ibconfig	Board	Configuration	Option)
Options
(Constants) Value Description

IbcIst zero The	board's	ist	bit	is	cleared.
non-zero The	board's	ist	bit	is	set.

This	option	sets	the	interface	ist	(individual	status)	bit	according	to	v.	If	v
is	zero,	the	ist	bit	is	cleared;	if	v	is	non-zero,	the	ist	bit	is	set.	The	previous
value	of	the	ist	bit	is	returned	in	Iberr.
For	more	information	about	parallel	polling,	refer	to	the	Parallel	Polling
topic.



IbcLON	(ibconfig	Board	Configuration	Option)
Options
(Constants) Value Description

IbcLON zero (Default)	Do	not	enable	listen-only	mode.
non-
zero

Enable	listen-only	mode.	In	this	mode,	which
persists	until	ibonl	is	called,	the	board	is	forced	to
listen.	While	in	listen-only	mode,	the	board-level
functions	ibrd,	ibrda,	ibrdf,	ibwait,	and	ibtmo
function	in	the	usual	manner.	The	behavior	of	all
other	functions	is	undefined.



IbcPAD	(ibconfig	Board	Configuration	Option)
Options
(Constants) Description

IbcPAD Changes	the	primary	address	of	the	board.
Default	determined	by	Measurement	&	Automation
Explorer.

This	option	sets	the	primary	GPIB	address	of	the	board	or	device	to	v,	an
integer	ranging	from	0	to	30.	If	no	error	occurs	during	the	call,	Iberr
contains	the	previous	GPIB	primary	address.



IbcPP2	(ibconfig	Board	Configuration	Option)
Options
(Constants) Value Description

IbcPP2 zero (Default)	PP1	moderemote	parallel	poll
configuration.

non-
zero

PP2	modelocal	parallel	poll	configuration.



IbcPPC	(ibconfig	Board	Configuration	Option)
Options
(Constants) Description

IbcPPC Configures	the	board	for	parallel	polls.	Identical	to	board-
level	ibppc.



IbcPPollTime	(ibconfig	Board	Configuration
Option)
Options
(Constants) Value Description

IbcPPollTime 0 (Default)	Use	the	standard	duration	(2	µs)	when
conducting	a	parallel	poll.

1	to
17

Use	a	variable	length	duration	when	conducting	a
parallel	poll.	The	duration	represented	by	1	to	17
corresponds	to	the	IbcTMO	values.



IbcRsv	(ibconfig	Board	Configuration	Option)
Options
(Constants) Description

IbcRsv Sets	the	serial	poll	status	byte	of	the	board.

This	option	is	used	to	request	service	from	the	Controller	and	to	provide
the	Controller	with	an	application-dependent	status	byte	when	the
Controller	serial	polls	the	GPIB	interface.
The	value	v	is	the	status	byte	that	the	GPIB	interface	returns	when	serial
polled	by	the	Controller-In-Charge.	If	bit	6	(hex	40)	is	set	in	v,	the	GPIB
interface	requests	service	from	the	Controller	by	asserting	the	GPIB	SRQ
line.	When	IbcRsv	is	called	and	an	error	does	not	occur,	the	previous
status	byte	is	returned	in	Iberr.



IbcSAD	(ibconfig	Board	Configuration	Option)
Options
(Constants) Description

IbcSAD Changes	the	secondary	address	of	the	board.
Default	determined	by	Measurement	&	Automation
Explorer.

This	option	changes	the	secondary	GPIB	address	of	the	given	board	or
device	to	v,	an	integer	in	the	range	96	to	126	(hex	60	to	hex	7E)	or	zero.
If	v	is	zero,	secondary	addressing	is	disabled.	If	no	error	occurs	during
the	call,	the	previous	value	of	the	GPIB	secondary	address	is	returned	in
Iberr.



IbcSC	(ibconfig	Board	Configuration	Option)
Options
(Constants) Value Description

IbcSC zero The	board	is	not	the	System	Controller.
non-
zero

The	board	is	the	System	Controller.

Default	determined	by	Measurement	&
Automation	Explorer.

This	option	requests	or	releases	the	capability	to	send	Interface	Clear
(IFC)	and	Remote	Enable	(REN)	messages	to	devices.	If	v	is	zero,	the
board	releases	system	control,	and	calls	requiring	System	Controller
capability	are	not	allowed.	If	v	is	non-zero,	calls	requiring	System
Controller	capability	are	subsequently	allowed.	If	no	error	occurs	during
the	call,	Iberr	contains	the	previous	System	Controller	state	of	the	board.



IbcSendLLO	(ibconfig	Board	Configuration
Option)
Options
(Constants) Value Description

IbcSendLLO zero (Default)	Do	not	send	LLO	when	putting	a	device
onlineibfind	or	ibdev.

non-
zero

Send	LLO	when	putting	a	device	onlineibfind	or
ibdev.

When	this	option	is	set	to	zero,	it	does	not	send	the	GPIB	Local	Lockout
(LLO)	message	when	placing	a	device	online.	Otherwise,	when	this
option	is	set	to	non-zero,	it	sends	the	GPIB	Lockout	(LLO)	message
when	placing	a	device	online.	While	Local	Lockout	is	in	effect,	only	the
Controller-In-Charge	can	alter	the	state	of	the	device	by	sending
appropriate	GPIB	messages.	The	IbcSendLLO	option	is	reserved	for	use
in	unusual	local/remote	situations.



IbcSRE	(ibconfig	Board	Configuration	Option)
Options
(Constants) Value Description

IbcSRE zero The	board	is	not	asserting	the	REN	line.
non-zero The	board	is	asserting	the	REN	line.

If	this	option	is	non-zero,	the	GPIB	Remote	Enable	(REN)	line	is
asserted.	If	v	is	zero,	REN	is	unasserted.	The	previous	value	of	REN	is
returned	in	Iberr.
REN	is	used	by	devices	to	choose	between	local	and	remote	modes	of
operation.	A	device	should	not	actually	enter	remote	mode	until	it
receives	its	listen	address	and	REN	is	asserted.



IbcTIMING	(ibconfig	Board	Configuration
Option)
Options
(Constants) Value Description

IbcTIMING 1 Normal	timing	(T1	delay	of	2	µs).
2 High-speed	timing	(T1	delay	of	500	ns).
3 Very	high-speed	timing	(T1	delay	of	350	ns).
Default	determined	by	Measurement	&	Automation
Explorer.
The	T1	delay	is	the	GPIB	Source	Handshake	timing.



IbcTMO	(ibconfig	Board	Configuration	Option)
Options
(Constants) Description

IbcTMO Changes	the	timeout	period	of	the	board.
Default	determined	by	Measurement	&	Automation
Explorer.

This	option	sets	the	timeout	period	of	the	board	or	device	to	v.	The
timeout	period	is	used	to	select	the	maximum	duration	allowed	for	a
synchronous	I/O	operation	(for	example,	ibrd	and	ibwrt)	or	for	an	ibwait	or
ibnotify	operation	with	TIMO	in	the	wait	mask.	If	the	operation	does	not
complete	before	the	timeout	period	elapses,	the	operation	is	aborted	and
TIMO	is	returned	in	Ibsta.	The	timeout	values	listed	below	represent	the
minimum	timeout	period.	The	actual	period	could	be	longer.



Timeout	Code	Values
Constant Value	of	v Minimum	Timeout

TNONE 0 disabled	(no	timeout)
T10µs 1 10	µs
T30µs 2 30	µs
T100µs 3 100	µs
T300µs 4 300	µs
T1ms 5 1	ms
T3ms 6 3	ms
T10ms 7 10	ms
T30ms 8 30	ms
T100ms 9 100	ms
T300ms 10 300	ms
T1s 11 1	s
T3s 12 3	s
T10s 13 10	s
T30s 14 30	s
T100s 15 100	s
T300s 16 300	s
T1000s 17 1000	s



ibconfig	Device	Configuration	Parameter
Options
You	can	use	the	following	options	with	ibconfig	when	ud	is	a	device
descriptor.

IbcEOS
IbcEOSchar
IbcEOScmp
IbcEOSrd
IbcEOSwrt
IbcEOT

IbcPAD
IbcREADDR
IbcSAD
IbcSPollTime
IbcTMO
IbcUnAddr

Return	to	ibconfig



IbcEOS	(ibconfig	Device	Configuration	Option)
Using	this	option	makes	your	application	break	backwards	compatibility
with	older	drivers.	Consider	using	IbcEOSchar,	IbcEOScmp,	IbcEOSrd,
and	IbcEOSwrt	separately	instead.
IbcEOS	is	the	parameter	that	describes	the	new	EOS	configuration	to
use.	If	v	is	zero,	the	EOS	configuration	is	disabled.	Otherwise,	the	low
byte	is	the	EOS	character	and	the	upper	byte	contains	flags	that	define
the	EOS	mode.	For	the	upper	byte,	the	third	bit	flags,	terminating	the
read	when	EOS	is	detected,	the	fourth	bit	flags,	setting	EOI	with	EOS	on
write	functions,	and	the	fifth	bit	flags,	comparing	all	8	bits	of	the	EOS	byte
instead	of	comparing	the	lower	7	bits.	The	following	table	describes	the
different	EOS	configurations:

Value	of	v

Bit Configuration High
Byte

Low
Byte

A Terminate	read	when	EOS	is	detected. 00000100 EOS
character

B Set	EOI	with	EOS	on	write	function. 00001000 EOS
character

C Compare	all	8	bits	of	EOS	byte	rather	than	low
7	bits	(all	read	and	write	calls).

00010000 EOS
character

Configuration	bits	A	and	C	determine	how	to	terminate	read	I/O
operations.	If	bit	A	is	set	and	bit	C	is	clear,	a	read	ends	when	a	byte	that
matches	the	low	seven	bits	of	the	EOS	character	is	received.	If	bits	A	and
C	are	both	set,	a	read	ends	when	a	byte	that	matches	all	eight	bits	of	the
EOS	character	is	received.
Configuration	bits	B	and	C	determine	when	a	write	I/O	operation	asserts
the	GPIB	EOI	line.	If	bit	B	is	set	and	bit	C	is	clear,	EOI	is	asserted	when
the	written	character	matches	the	low	seven	bits	of	the	EOS	character.	If
bits	B	and	C	are	both	set,	EOI	is	asserted	when	the	written	character
matches	all	eight	bits	of	the	EOS	character.
Refer	to	Terminating	Data	Transfers	for	more	information	about	EOS	and
EOI	termination	methods.



Examples

ibconfig	(ud,	IbcEOS	0x140A);
/*	Configure	the	software	to	end	reads	on
			newline	character	(hex	0A)	for	the	unit
			descriptor,	ud	*/
ibconfig	(ud,	IbcEOS	0x180A);
/*	Configure	the	software	to	assert	the	GPIB	
			EOI	line	whenever	the	newline	character
			(hex	0A)	is	written	out	by	the	unit
			descriptor,	ud	*/



IbcEOSchar	(ibconfig	Device	Configuration
Option)
Options
(Constants) Description

IbcEOSchar Any	8-bit	value.	This	byte	becomes	the	new	EOS
character.



IbcEOScmp	(ibconfig	Device	Configuration
Option)
Options
(Constants) Value Description

IbcEOScmp zero Use	7	bits	for	the	EOS	character	comparison.
non-zero Use	8	bits	for	the	EOS	character	comparison.



IbcEOSrd	(ibconfig	Device	Configuration	Option)
Options
(Constants) Value Description

IbcEOSrd zero Ignore	EOS	character	during	read	operations.
non-
zero

Terminate	reads	when	the	EOS	character	is
read.



IbcEOSwrt	(ibconfig	Device	Configuration
Option)
Options
(Constants) Value Description

IbcEOSwrt zero Do	not	assert	the	EOI	line	when	the	EOS	character
is	sent	during	write	operations.

non-
zero

Assert	the	EOI	line	when	the	EOS	character	is	sent
during	write	operations.



IbcEOT	(ibconfig	Device	Configuration	Option)
Options
(Constants) Value Description

IbcEOT zero The	GPIB	EOI	line	will	not	be	asserted	at	the	end
of	a	write	operation.

non-
zero

EOI	will	be	asserted	at	the	end	of	a	write.

This	option	enables	or	disables	the	assertion	of	the	EOI	line	at	the	end	of
write	I/O	operations	for	the	board	or	device	described	by	ud.	If	v	is	non-
zero,	EOI	is	asserted	when	the	last	byte	of	a	GPIB	write	is	sent.	If	v	is
zero,	nothing	occurs	when	the	last	byte	is	sent.	If	no	error	occurs	during
the	call,	the	previous	value	of	EOT	is	returned	in	Iberr.
Refer	to	Terminating	Data	Transfers	for	more	information	about	EOS	and
EOI	termination	methods.



IbcPAD	(ibconfig	Device	Configuration	Option)
Options
(Constants) Description

IbcPAD Changes	the	primary	address	of	the	device.

This	option	sets	the	primary	GPIB	address	of	the	board	or	device	to	v,	an
integer	ranging	from	0	to	30.	If	no	error	occurs	during	the	call,	Iberr
contains	the	previous	GPIB	primary	address.



IbcREADDR	(ibconfig	Device	Configuration
Option)
Options
(Constants) Value Description

IbcREADDR zero No	unnecessary	re-addressing	is	performed
between	device-level	reads	and	writes.

non-
zero

Addressing	is	always	performed	before	a	device-
level	read	or	write.



IbcSAD	(ibconfig	Device	Configuration	Option)
Options
(Constants) Description

IbcSAD Changes	the	secondary	address	of	the	device.

This	option	changes	the	secondary	GPIB	address	of	the	given	board	or
device	to	v,	an	integer	in	the	range	96	to	126	(hex	60	to	hex	7E)	or	zero.
If	v	is	zero,	secondary	addressing	is	disabled.	If	no	error	occurs	during
the	call,	the	previous	value	of	the	GPIB	secondary	address	is	returned	in
Iberr.



IbcSPollTime	(ibconfig	Device	Configuration
Option)
Options
(Constants) Value Description

IbcSPollTime 0	to
17

Sets	the	length	of	time	the	driver	waits	for	a	serial
poll	response	byte	when	polling	the	given	device.
The	length	of	time	represented	by	0	to	17
corresponds	to	the	ibtmo	values.

11 Default.



IbcTMO	(ibconfig	Device	Configuration	Option)
Options
(Constants) Description

IbcTMO Changes	the	timeout	period	of	the	device.

This	option	sets	the	timeout	period	of	the	board	or	device	to	v.	The
timeout	period	is	used	to	select	the	maximum	duration	allowed	for	a
synchronous	I/O	operation	(for	example,	ibrd	and	ibwrt)	or	for	an	ibwait	or
ibnotify	operation	with	TIMO	in	the	wait	mask.	If	the	operation	does	not
complete	before	the	timeout	period	elapses,	the	operation	is	aborted	and
TIMO	is	returned	in	Ibsta.	The	timeout	values	listed	below	represent	the
minimum	timeout	period.	The	actual	period	could	be	longer.



Timeout	Code	Values
Constant Value	of	v Minimum	Timeout

TNONE 0 disabled	(no	timeout)
T10µs 1 10	µs
T30µs 2 30	µs
T100µs 3 100	µs
T300µs 4 300	µs
T1ms 5 1	ms
T3ms 6 3	ms
T10ms 7 10	ms
T30ms 8 30	ms
T100ms 9 100	ms
T300ms 10 300	ms
T1s 11 1	s
T3s 12 3	s
T10s 13 10	s
T30s 14 30	s
T100s 15 100	s
T300s 16 300	s
T1000s 17 1000	s



IbcUnAddr	(ibconfig	Device	Configuration
Option)
Options
(Constants) Value Description

IbcUnAddr zero (Default)	Do	not	send	Untalk	(UNT)	and	Unlisten
(UNL)	at	the	end	of	device-level	reads	and	writes.

non-
zero

Send	UNT	and	UNL	at	the	end	of	device-level	reads
and	writes.



IBDEV
Device-Level



Purpose
Open	and	initialize	a	device	descriptor.



Format
C
int	ibdev	(int	BdIndx,	int	pad,	int	sad,	int	tmo,	int	eot,	int	eos)



Visual	Basic
CALL	ibdev	(BdIndx%,	pad%,	sad%,	tmo%,	eot%,	eos%,	ud%)

or

ud%	=	ildev	(BdIndx%,	pad%,	sad%,	tmo%,	eot%,	eos%)



Interactive	Control	(Usage	Notes)
ibdev	BdIndx	pad	sad	tmo	eot	eos



Input
BdIndx Index	of	the	access	board	for	the	device
pad The	primary	GPIB	address	of	the	device
sad The	secondary	GPIB	address	of	the	device
tmo The	I/O	timeout	value
eot EOI	mode	of	the	device
eos EOS	character	and	modes



Output
Function	Return The	device	descriptor	or	a	-1



Description
ibdev	acquires	a	device	descriptor	to	use	in	subsequent	device-level
traditional	NI-488.2	calls.	It	opens	and	initializes	a	device	descriptor,	and
configures	it	according	to	the	input	parameters.
For	more	details	on	the	meaning	and	effect	of	each	input	parameter,	see
the	IbcPAD,	IbcSAD,	IbcTMO,	IbcEOT,	and	IbcEOS	options	in	ibconfig.
If	ibdev	is	unable	to	get	a	valid	device	descriptor,	a	-1	is	returned;	the
ERR	bit	is	set	in	Ibsta	and	Iberr	contains	EDVR.

Note	Unit	descriptors	are	allocated	on	a	per	process	basis,	so	it	is
not	possible	to	share	them	between	processes.	If	you	pass	a	unit
descriptor	from	one	process	to	a	second	process,	all	NI-488.2	calls
using	that	descriptor	in	the	second	process	will	return	EDVR.



Possible	Errors
EARG pad,	sad,	tmo,	eot,	or	eos	is	invalid.	See	the	IbcPAD,	IbcSAD,

IbcTMO,	IbcEOT,	and	IbcEOS	options	in	ibconfig	for	details	on
setting	these	parameters.

EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	access	board	is	not	CIC.	Refer	to	Device-Level	Calls	and

Bus	Management.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBDMA
Board-Level

Note	ibdma	is	deprecated.	Use	ibconfig	(IbcDMA)	instead.



Purpose
Enable	or	disable	DMA.



Format
C
unsigned	long	ibdma	(int	ud,	int	v)



Visual	Basic
CALL	ibdma	(ud%,	v%)
or
status%	=	ildma	(ud%,	v%)



Interactive	Control	(Usage	Notes)
ibdma	v



Input
ud Board	descriptor
v Enable	or	disable	the	use	of	DMA



Output
Function	Return The	value	of	Ibsta



Description
ibdma	enables	or	disables	DMA	transfers	for	the	board,	according	to	v.	If
v	is	zero,	DMA	is	not	used	for	GPIB	I/O	transfers.	If	v	is	non-zero,	DMA	is
used	for	GPIB	I/O	transfers.



Possible	Errors
ECAP The	interface	is	not	configured	to	use	a	DMA	channel.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBEOS
Board-Level/Device-Level

Note	ibeos	is	deprecated.	Use	ibconfig	(IbcEOS)	instead.



Purpose
Configure	the	end-of-string	(EOS)	termination	mode	or	character.



Format
C
unsigned	long	ibeos	(int	ud,	int	v)



Visual	Basic
CALL	ibeos	(ud%,	v%)
or
status%	=	ileos	(ud%,	v%)



Interactive	Control	(Usage	Notes)
ibeos	v



Input
ud Board	or	device	descriptor
v EOS	mode	and	character	information



Output
Function	Return The	value	of	Ibsta



Description
ibeos	configures	the	EOS	termination	mode	or	EOS	character	for	the
board	or	device.	The	parameter	v	describes	the	new	end-of-string	(EOS)
configuration	to	use.	If	v	is	zero,	the	EOS	configuration	is	disabled.
Otherwise,	the	low	byte	is	the	EOS	character	and	the	upper	byte	contains
flags	which	define	the	EOS	mode.

Note	Defining	an	EOS	byte	does	not	cause	the	driver	to
automatically	send	that	byte	at	the	end	of	write	I/O	operations.
Your	application	is	responsible	for	placing	the	EOS	byte	at	the	end
of	the	data	strings	that	it	defines.

The	following	table	describes	the	different	EOS	configurations	and	the
corresponding	values	of	v.	If	no	error	occurs	during	the	call,	the	value	of
the	previous	EOS	setting	is	returned	in	Iberr.

Value	of	v

Bit Configuration High
Byte

Low
Byte

A Terminate	read	when	EOS	is	detected. 00000100 EOS
character

B Set	EOI	with	EOS	on	write	function. 00001000 EOS
character

C Compare	all	8	bits	of	EOS	byte	rather	than	low
7	bits	(all	read	and	write	calls).

00010000 EOS
character

Configuration	bits	A	and	C	determine	how	to	terminate	read	I/O
operations.	If	bit	A	is	set	and	bit	C	is	clear,	a	read	ends	when	a	byte	that
matches	the	low	seven	bits	of	the	EOS	character	is	received.	If	bits	A	and
C	are	both	set,	a	read	ends	when	a	byte	that	matches	all	eight	bits	of	the
EOS	character	is	received.
Configuration	bits	B	and	C	determine	when	a	write	I/O	operation	asserts
the	GPIB	EOI	line.	If	bit	B	is	set	and	bit	C	is	clear,	EOI	is	asserted	when
the	written	character	matches	the	low	seven	bits	of	the	EOS	character.	If
bits	B	and	C	are	both	set,	EOI	is	asserted	when	the	written	character
matches	all	eight	bits	of	the	EOS	character.
Refer	to	Terminating	Data	Transfers	for	more	information	about	EOS	and
EOI	termination	methods.



Examples

ibeos	(ud,	0x140A);
/*	Configure	the	software	to	end	reads	on
			newline	character	(hex	0A)	for	the	unit
			descriptor,	ud	*/
ibeos	(ud,	0x180A);
/*	Configure	the	software	to	assert	the	GPIB	
			EOI	line	whenever	the	newline	character
			(hex	0A)	is	written	out	by	the	unit
			descriptor,	ud	*/



Possible	Errors
EARG The	high	byte	of	v	contains	invalid	bits.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBEOT
Board-Level/Device-Level

Note	ibeot	is	deprecated.	Use	ibconfig	(IbcEOT)	instead.



Purpose
Enable	or	disable	the	automatic	assertion	of	the	GPIB	EOI	line	at	the	end
of	write	I/O	operations.



Format
C
unsigned	long	ibeot	(int	ud,	int	v)



Visual	Basic
CALL	ibeot	(ud%,	v%)
or
status%	=	ileot	(ud%,	v%)



Interactive	Control	(Usage	Notes)
ibeot	v



Input
ud Board	or	device	descriptor
v Enables	or	disables	the	end	of	transmission	assertion	of	EOI



Output
Function	Return The	value	of	Ibsta



Description
ibeot	enables	or	disables	the	assertion	of	the	EOI	line	at	the	end	of	write
I/O	operations	for	the	board	or	device	described	by	ud.	If	v	is	non-zero,
EOI	is	asserted	when	the	last	byte	of	a	GPIB	write	is	sent.	If	v	is	zero,
nothing	occurs	when	the	last	byte	is	sent.	If	no	error	occurs	during	the
call,	the	previous	value	of	EOT	is	returned	in	Iberr.
Refer	to	Terminating	Data	Transfers	for	more	information	about	EOS	and
EOI	termination	methods.



Possible	Errors
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBFIND
Board-Level/Device-Level



Purpose
Open	and	initialize	a	board	or	a	user-configured	device	descriptor.



Format
C
int	ibfind	(const	char	*udname)



Visual	Basic
CALL	ibfind	(udname$,	ud%)

or

ud%	=	ilfind	(udname$)



Interactive	Control	(Usage	Notes)
ibfind	udname



Input
udname A	user-configured	device	or	board	name



Output
Function	Return The	board	or	device	descriptor,	or	a	-1



Description
ibfind	is	used	to	acquire	a	descriptor	for	a	board	or	user-configured
device;	this	board	or	device	descriptor	can	be	used	in	subsequent
traditional	NI-488.2	calls.
ibfind	performs	the	equivalent	of	an	ibonl	1	to	initialize	the	board	or	device
descriptor.	The	unit	descriptor	returned	by	ibfind	remains	valid	until	the
board	or	device	is	put	offline	using	ibonl	0.
If	ibfind	is	unable	to	get	a	valid	descriptor,	a	-1	is	returned;	the	ERR	bit	is
set	in	Ibsta	and	Iberr	contains	EDVR.

Note	Unit	descriptors	are	allocated	on	a	per	process	basis,	so	it	is
not	possible	to	share	them	between	processes.	If	you	pass	a	unit
descriptor	from	one	process	to	a	second	process,	all	NI-488.2	calls
using	that	descriptor	in	the	second	process	will	return	EDVR.

Using	ibfind	to	obtain	device	descriptors	is	useful	only	for	compatibility
with	existing	applications.	New	applications	should	use	ibdev	instead	of
ibfind.	ibdev	is	more	flexible,	easier	to	use,	and	frees	the	application	from
unnecessary	device	name	requirements.



Possible	Errors
EBUS Device-level:	No	devices	are	connected	to	the	GPIB.
ECIC Device-level:	The	access	board	is	not	CIC.	See	Device-Level

Calls	and	Bus	Management.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
ELCK Another	process	has	an	existing	lock	on	the	interface.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.



IBGTS
Board-Level



Purpose
Go	from	Active	Controller	to	Standby.



Format
C
unsigned	long	ibgts	(int	ud,	int	v)



Visual	Basic
CALL	ibgts	(ud%,	v%)
or
status%	=	ilgts	(ud%,	v%)



Interactive	Control	(Usage	Notes)
ibgts	v



Input
ud Board	descriptor
v Determines	whether	to	perform	acceptor	handshaking



Output
Function	Return The	value	of	Ibsta



Description
ibgts	causes	the	GPIB	interface	at	ud	to	go	to	Standby	Controller	and	the
GPIB	ATN	line	to	be	unasserted.	If	v	is	non-zero,	acceptor	handshaking
or	shadow	handshaking	is	performed	until	END	occurs	or	until	ATN	is
reasserted	by	a	subsequent	ibcac	call.	With	this	option,	the	GPIB
interface	can	participate	in	data	handshake	as	an	acceptor	without
actually	reading	data.	If	END	is	detected,	the	interface	enters	a	Not
Ready	For	Data	(NRFD)	handshake	holdoff	state	which	results	in	hold	off
of	subsequent	GPIB	transfers.	If	v	is	0,	no	acceptor	handshaking	or
holdoff	is	performed.
Before	performing	an	ibgts	with	shadow	handshake,	call	the	IbcEOS
option	in	ibconfig	to	establish	proper	EOS	modes.
For	details	on	the	IEEE	488.1	handshake	protocol,	refer	to	the
ANSI/IEEE	Standard	488.1-1987,	IEEE	Standard	Digital	Interface	for
Programmable	Instrumentation	and	ANSI/IEEE	Standard	488.1-2003,
IEEE	Standard	for	Higher	Performance	Protocol	for	the	Standard	Digital
Interface	for	Programmable	Instrumentation.



Possible	Errors
EADR v	is	non-zero,	and	either	ATN	is	low	or	the	interface	is	a	Talker	or

a	Listener.
ECIC The	interface	is	not	Controller-In-Charge.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBIST
Board-Level

Note	ibist	is	deprecated.	Use	ibconfig	(IbcIst)	instead.



Purpose
Set	or	clear	the	board	individual	status	bit	for	parallel	polls.



Format
C
unsigned	long	ibist	(int	ud,	int	v)



Visual	Basic
CALL	ibist	(ud%,	v%)
or
status%	=	ilist	(ud%,	v%)



Interactive	Control	(Usage	Notes)
ibist	v



Input
ud Board	descriptor
v Indicates	whether	to	set	or	clear	the	ist	bit



Output
Function	Return The	value	of	Ibsta



Description
ibist	sets	the	interface	ist	(individual	status)	bit	according	to	v.	If	v	is	zero,
the	ist	bit	is	cleared;	if	v	is	non-zero,	the	ist	bit	is	set.	The	previous	value
of	the	ist	bit	is	returned	in	Iberr.
For	more	information	about	parallel	polling,	refer	to	the	Parallel	Polling
topic.



Possible	Errors
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBLCK
Board-Level



Purpose
Acquire	or	release	an	exclusive	interface	lock	for	the	current	process.



Format
C
unsigned	long	iblck	(int	ud,	int	v,	unsigned	int	LockWaitTime,	void	*	Reserved)



Visual	Basic
CALL	iblck	(ud%,	v%,	LockWaitTime&)
or
status%	=	illck	(ud%,	v%,	LockWaitTime&)



Interactive	Control	(Usage	Notes)
iblck	v	LockWaitTime



Input
ud Board	unit	descriptor	or	board	index	descriptor
v Indicates	whether	to	acquire	or	release	the	interface	lock
LockWaitTime Time	period	(in	milliseconds)	to	wait	for	an	exclusive	lock

before	returning	ELCK
Reserved Reserved	for	future	use;	must	be	NULL



Output
Function	Return The	value	of	Ibsta



Description
If	v	is	1,	the	driver	attempts	to	acquire	an	exclusive	lock	on	the	interface
for	the	current	process.	The	call	fails	with	ELCK	(that	is,	the	call	returns
with	ERR	set	in	Ibsta	and	Iberr	set	to	ELCK)	if	the	lock	could	not	be
acquired	within	the	timeout	period	specified	by	LockWaitTime.
If	v	is	0,	a	lock	previously	acquired	by	the	current	process	is	released.
Only	the	process	that	acquired	an	interface	lock	can	release	a	lock.	If	v	is
zero,	and	no	lock	exists	for	the	process,	the	call	fails	with	ELCK.
LockWaitTime	is	ignored	when	using	iblck	to	release	interface	locks.
If	a	process	has	acquired	a	lock,	all	GPIB	calls	by	that	process	for	that
interface	occur	normally.
If	a	process	has	acquired	a	lock,	all	GPIB	calls	(except	iblck	and	board-
level	ibfind)	by	other	processes	for	that	interface	fail	immediately	with
ELCK.	iblck	calls	by	other	processes	attempt	to	acquire	a	lock;	the	call
fails	with	ELCK	only	after	the	timeout	period	has	elapsed.	Board-level
ibfind	fails	with	ELCK	but	returns	a	valid	unit	descriptor.
Interface	locks	are	exclusive	and	are	not	shareable	among	processes.	If
a	process	has	a	lock	for	an	interface,	no	other	process	can	acquire	a	lock
associated	with	that	interface.
A	process	may	acquire	multiple	(redundant)	locks	on	an	interface.	The
driver	maintains	a	reference	count	of	the	number	of	outstanding	locks	per
interface	and	does	not	unlock	the	interface	until	the	reference	count	is	0.
If	the	iblck	call	is	successful,	that	is,	if	ERR	is	not	set	in	Ibsta,	Ibcnt
contains	the	number	of	locks	remaining	in	effect	for	ud,	regardless	of	the
value	of	v.
An	interface	lock	is	associated	with	a	process	and	a	GPIB	interface.	An
acquired	lock	remains	in	effect	until	the	lock	is	released.	Each	successful
call	to	acquire	a	lock	should	have	a	corresponding	call	to	release	the
lock.	Calling	ibonl	(0	or	1)	releases	all	interface	locks	held	by	that	process
for	the	interface	described	by	ud.
A	LockWaitTime	of	0	specifies	a	0	ms	wait	period.	If	the	interface	is	locked
by	another	process,	then	iblck	returns	immediately	with	ELCK.	Otherwise
the	process	acquires	the	lock	and	returns.



Possible	Errors
EARG v	is	not	0	or	1,	or	Reserved	is	not	NULL.
ECAP Unable	to	acquire	the	requested	lock	because	the	maximum	lock

reference	count	for	ud	has	been	reached.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK Unable	to	acquire	the	requested	lock	within	the	timeout	period

because	a	different	process	owns	a	lock	on	that	interface.	Or,
unable	to	release	a	lock	because	the	process	currently	has	no
lock	for	ud.

ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBLINES
Board-Level



Purpose
Return	the	status	of	the	eight	GPIB	control	lines.



Format
C
unsigned	long	iblines	(int	ud,	short	*clines)



Visual	Basic
CALL	iblines	(ud%,	clines%)

or

status%	=	illines	(ud%,	clines%)



Interactive	Control	(Usage	Notes)
iblines



Input
ud Board	descriptor



Output
clines Returns	GPIB	control	line	state	information
Function	Return The	value	of	Ibsta



Description
iblines	returns	the	state	of	the	GPIB	control	lines	in	clines.	The	low-order
byte	(bits	0	through	7)	of	clines	contains	a	mask	indicating	the	capability
of	the	GPIB	interface	to	sense	the	status	of	each	GPIB	control	line.	The
upper	byte	(bits	8	through	15)	contains	the	GPIB	control	line	state
information.	The	following	is	a	pattern	of	each	byte.

7 6 5 4 3 2 1 0
EOI ATN SRQ REN IFC NRFD NDAC DAV

To	determine	if	a	GPIB	control	line	is	asserted,	first	check	the	appropriate
bit	in	the	lower	byte	to	determine	if	the	line	can	be	monitored.	If	the	line
can	be	monitored	(indicated	by	a	1	in	the	appropriate	bit	position),	check
the	corresponding	bit	in	the	upper	byte.	If	the	bit	is	set	(1),	the
corresponding	control	line	is	asserted.	If	the	bit	is	clear	(0),	the	control
line	is	unasserted.



Example

short	lines;
iblines	(ud,	&lines);
if	(lines	&	ValidREN)	{		
			/*	check	to	see	if	REN	is	asserted	*/
			if	(lines	&	BusREN)	{
						printf	("REN	is	asserted");
			}
}



Possible	Errors
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBLN
Board-Level



Purpose
Check	for	the	presence	of	a	device	on	the	bus.



Format
C
unsigned	long	ibln	(int	ud,	int	pad,	int	sad,	short	*listen)



Visual	Basic
CALL	ibln	(ud%,	pad%,	sad%,	listen%)

or

status%	=	illn	(ud%,	pad%,	sad%,	listen%)



Interactive	Control	(Usage	Notes)
ibln	pad	sad



Input
ud Board	descriptor
pad The	primary	GPIB	address	of	the	device
sad The	secondary	GPIB	address	of	the	device



Output
listen Indicates	if	a	device	is	present	or	not
Function	Return The	value	of	Ibsta



Description
ibln	determines	whether	there	is	a	listening	device	at	the	GPIB	address
designated	by	the	pad	and	sad	parameters.	The	bus	associated	with	the
board	is	tested	for	Listeners.	If	a	Listener	is	detected,	a	non-zero	value	is
returned	in	listen.	If	no	Listener	is	found,	zero	is	returned.
The	pad	parameter	can	be	any	valid	primary	address	(a	value	between	0
and	30).	The	sad	parameter	can	be	any	valid	secondary	address	(a	value
between	96	to	126),	or	one	of	the	constants	NO_SAD	or	ALL_SAD.	The
constant	NO_SAD	designates	that	no	secondary	address	is	to	be	tested
(only	a	primary	address	is	tested).	The	constant	ALL_SAD	designates
that	all	secondary	addresses	are	to	be	tested.



Possible	Errors
EARG Either	the	pad	or	sad	argument	is	invalid.
ECIC The	access	board	is	not	CIC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBLOC
Board-Level/Device-Level



Purpose
Go	to	Local.



Format
C
unsigned	long	ibloc	(int	ud)



Visual	Basic
CALL	ibloc	(ud%)
or
status%	=	illoc	(ud%)



Interactive	Control	(Usage	Notes)
ibloc



Input
ud Board	or	device	descriptor



Output
Function	Return The	value	of	Ibsta



Description
Board-Level
ibloc	places	the	board	in	local	mode	if	it	is	not	in	a	lockout	state.	The
board	is	in	a	lockout	state	if	LOK	appears	in	the	status	word	Ibsta.	If	the
board	is	in	a	lockout	state,	the	call	has	no	effect.
The	ibloc	function	is	used	to	simulate	a	front	panel	RTL	(Return	to	Local)
switch	if	the	computer	is	used	as	an	instrument.



Device-Level
Unless	the	REN	(Remote	Enable)	line	has	been	unasserted	with	the
IbcSRE	option	in	ibconfig,	all	device-level	calls	automatically	place	the
specified	device	in	remote	program	mode.	ibloc	is	used	to	move	devices
temporarily	from	a	remote	program	mode	to	a	local	mode	until	the	next
device	function	is	executed	on	that	device.



Possible	Errors
EBUS Device-level:	No	devices	are	connected	to	the	GPIB.
ECIC Device-level:	The	access	board	is	not	CIC.	See	Device-Level

Calls	and	Bus	Management.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBNOTIFY
Board-Level/Device-Level



Purpose
Notify	user	of	one	or	more	GPIB	events	by	invoking	the	user	callback.



Format	for	ibnotify
C

unsigned	long	ibnotify	(int	ud,	int	mask,	GpibNotifyCallback_t	Callback,	void	*	RefData)



Visual	Basic	(6.0)

CALL	ibnotify	(ud%,	mask%,	AddressOf	Callback&,	RefData$)

or

status%	=	ilnotify	(ud%,	mask%,	AddressOf	Callback&,	RefData$)



Interactive	Control
Not	supported



Input	for	ibnotify
ud Board	or	device	descriptor
mask Bit	mask	of	GPIB	events	to	notice
Callback Pointer	to	the	callback	function	(see	following	prototype)
RefData User-defined	reference	data	for	the	callback



Output	for	ibnotify
Function	Return The	value	of	Ibsta



Description	of	ibnotify
If	mask	is	non-zero,	ibnotify	monitors	the	events	specified	by	mask,	and
when	one	or	more	of	the	events	is	true,	the	Callback	is	invoked.	For	a
board-level	ibnotify	call,	all	mask	bits	are	valid	except	for	ERR	and	RQS.
For	a	device-level	ibnotify	call,	the	only	valid	mask	bits	are	CMPL,	TIMO,
END,	and	RQS.	If	TIMO	is	set	in	the	notify	mask,	ibnotify	calls	the
callback	function	when	the	timeout	period	has	elapsed,	if	one	or	more	of
the	other	specified	events	have	not	already	occurred.	If	TIMO	is	not	set	in
the	notify	mask,	the	callback	is	not	called	until	one	or	more	of	the
specified	events	occur.

Note	Notification	is	performed	when	the	state	of	one	or	more	of	the
mask	bits	is	true,	so	if	a	request	is	made	to	be	notified	when	CMPL
is	true,	and	CMPL	is	currently	true,	the	Callback	is	invoked
immediately.

For	device-level	usage,	notification	on	RQS	is	not	guaranteed	to	work	if
automatic	serial	polling	is	disabled.	By	default,	automatic	serial	polling	is
enabled.
A	given	ud	can	have	only	one	outstanding	ibnotify	call	at	any	one	time.	If
a	current	ibnotify	is	in	effect	for	ud,	it	is	replaced	by	a	subsequent	ibnotify
call.	An	outstanding	ibnotify	call	for	ud	can	be	canceled	by	a	subsequent
ibnotify	call	for	ud	that	has	a	mask	of	zero.
If	an	ibnotify	call	is	outstanding	and	one	or	more	of	the	GPIB	events	it	is
waiting	on	become	true,	the	Callback	is	invoked.
Before	placing	a	board	or	device	(and	thus	the	ud)	offline,	all	outstanding
ibnotify	calls	must	be	cancelled	by	a	subsequent	ibnotify	call	for	ud	that
has	a	mask	of	zero.



Callback	Prototype	for	ibnotify
C
int	__stdcall	Callback	(int	LocalUd,	unsigned	long	LocalIbsta,	unsigned	long
LocalIberr,	unsigned	long	LocalIbcnt,	void	*RefData)

Visual	Basic	(6.0)
Function	Callback	(LocalUd%,	LocalIbsta%,	LocalIberr%,	LocalIbcnt&,
RefData$)



Callback	Parameters
LocalUd Board	or	device	descriptor
LocalIbsta Value	of	Ibsta
LocalIberr Value	of	Iberr
LocalIbcnt Value	of	Ibcnt
RefData User-defined	reference	data	for	the	callback



Callback	Return	Value
Bit	mask	of	the	GPIB	events	to	notice	next.
The	Callback	function	executes	in	a	separate	thread	in	your	process.
Therefore,	it	has	access	to	any	process	global	data,	but	no	access	to
thread	local	data.	If	the	Callback	needs	to	access	global	data,	you	must
protect	that	access	using	a	synchronization	primitive	(for	example,
semaphore)	because	the	Callback	is	running	in	a	different	thread	context.
Alternatively,	the	issue	of	data	protection	can	be	avoided	entirely	if	the
Callback	simply	posts	a	message	to	your	application	using	the	Windows
PostMessage()	function.	The	Callback	function	can	call	any	of	the	NI-488.2
API	with	the	exception	of	ibnotify.	When	the	Callback	is	invoked,	the
values	of	the	NI-488.2	global	functions	(Ibsta,	Iberr,	Ibcnt)	are	undefined.
The	status	variables	passed	to	Callback	should	be	examined,	instead	of
the	NI-488.2	globals,	to	determine	why	the	Callback	was	invoked.	Notice
that	it	is	possible	that	the	Callback	may	be	invoked	because	of	an	error
condition	rather	than	because	of	the	setting	of	one	or	more	of	the
requested	mask	bits.
The	return	value	of	the	Callback	is	interpreted	as	a	mask	value,	which	is
used	to	automatically	rearm	the	asynchronous	event	notification
mechanism.	If	the	return	value	is	zero,	it	is	not	rearmed.	If	the	return
value	is	non-zero,	the	asynchronous	event	notification	mechanism	is
rearmed	with	the	return	mask	value.	If	the	Callback	rearm	fails	due	to	an
error,	the	Callback	is	invoked	with	ERR	set	in	LocalIbsta	and	LocalIberr	set
to	EARM.
Like	ibwait,	ibstop,	and	ibonl,	the	invocation	of	the	ibnotify	Callback	can
cause	the	resynchronization	of	the	handler	after	an	asynchronous	I/O
operation	has	completed.	In	this	case,	the	global	variables	passed	into
the	Callback	after	I/O	has	completed	contain	the	status	of	the	I/O
operation.
For	an	overview	of	asynchronous	event	notification	in	an	NI-488.2
application,	refer	to	the	Asynchronous	Event	Notification	section.	For
more	information	about	usage,	refer	to	the	ibnotify	Usage	section.



Possible	Errors	for	ibnotify
EARG A	bit	set	in	mask	is	invalid.
ECAP ibnotify	has	been	invoked	from	within	an	ibnotify	Callback

function,	or	the	handler	cannot	perform	notification	on	one	or
more	of	the	specified	mask	bits.

EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not
properly	installed.	Ibcnt	contains	a	system-dependent	error	code.

EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.



Possible	Errors	for	ibnotify	Callback
EARM The	Callback	return	failed	to	rearm	the	Callback.
ERST The	event	notification	was	cancelled	due	to	a	reset	of	the

interface.

Related	Topics:
ibnotify	Usage
ibnotify	Usage	Example
GpibNotify
GpibNotify	Usage



ibnotify	Usage
The	ibnotify	function	is	passed	a	unit	descriptor,	the	bit	mask	of	the
desired	GPIB	events,	the	address	of	your	callback	function,	and	user-
defined	reference	data.	ibnotify	has	the	following	prototype:



C

unsigned	long	ibnotify	(int	ud,	int	mask,	GpibNotifyCallback_t
														Callback,	void	*	RefData)



Visual	Basic	(6.0)

CALL	ibnotify	(ud%,	mask%,	AddressOf	
															Callback&,	RefData$)

or

status%	=	ilnotify	(ud%,	mask%,	AddressOf	
																			Callback&,	RefData$)



Input	for	ibnotify
ud Board	or	device	descriptor
mask Bit	mask	of	GPIB	events	to	notice
Callback Pointer	to	the	Callback	function
RefData User-defined	reference	data	for	the	callback

The	ibnotify	callback	has	the	following	prototype:



C
int	__stdcall	Callback	(int	LocalUd,	unsigned	long	LocalIbsta,	unsigned	long
LocalIberr,	unsigned	long	LocalIbcnt,	void	*RefData)



Visual	Basic	(6.0)
Function	Callback	(LocalUd%,	LocalIbsta%,	LocalIberr%,	LocalIbcnt&,
RefData$)



Callback	Parameters
LocalUd Board	or	device	descriptor
LocalIbsta Value	of	Ibsta
LocalIberr Value	of	Iberr
LocalIbcnt Value	of	Ibcnt
RefData User-defined	reference	data	for	the	callback

The	Callback	function	is	passed	a	unit	descriptor,	the	current	values	of	the
NI-488.2	global	variables,	and	the	user-defined	reference	data	that	was
passed	to	the	original	ibnotify	call.	The	NI-488.2	driver	interprets	the
return	value	for	the	Callback	as	a	mask	value	that	is	used	to	automatically
rearm	the	callback	if	it	is	non-zero.
You	can	view	an	example	written	in	C	of	how	you	can	use	ibnotify	in	your
application.	Assume	that	your	GPIB	device	is	a	multimeter	that	you
program	to	acquire	a	reading	by	sending	it	"SEND	DATA".	The	multimeter
requests	service	when	it	has	a	reading	ready,	and	each	reading	is	a
floating	point	value.
In	this	example,	global	functions/variables	are	shared	by	the	Callback
thread	and	the	main	thread,	and	the	access	of	the	global
functions/variables	is	not	protected	by	synchronization.	In	this	case,
synchronization	of	access	to	these	global	functions/variables	is	not
necessary	because	of	the	way	they	are	used	in	the	application:	only	a
single	thread	is	writing	the	global	values	and	that	thread	always	just	adds
information	(increases	the	count	or	adds	another	reading	to	the	array	of
floats).
For	overview	information	about	asynchronous	event	notification	within	an
NI-488.2	application,	please	refer	to	the	Asynchronous	Event	Notification
Overview	section.	For	more	specific	information	about	ibnotify,	please
refer	to	the	ibnotify	function	definition.

Note	The	ibnotify	Callback	is	executed	in	a	separate	thread	of
execution	from	the	rest	of	your	application.	If	your	application
might	be	performing	other	NI-488.2	operations	while	it	is	using
ibnotify	,	you	should	use	the	per-thread	NI-488.2	global
functions/variables	that	are	provided	by	the	Thread	calls
(ThreadIbsta,	ThreadIberr,	and	ThreadIbcnt).	In	addition,	if	your



application	needs	to	share	global	functions/variables	with	the
Callback	,	you	should	use	a	synchronization	primitive	(for	example,
semaphore)	to	protect	access	to	any	global	variables.	For	more
information	about	the	use	of	synchronization	primitives,	refer	to	the
documentation	on	using	synchronization	objects	that	came	with
your	development	tools.

Related	Topics:
ibnotify	Usage	Example
ibnotify
GpibNotify
GpibNotify	Usage



ibnotify	Usage	Example

int	__stdcall	MyCallback	(int	LocalUd,	unsigned	long	LocalIbsta,	unsigned	long	LocalIberr,	unsigned	long	LocalIbcnt,	void	*RefData);
int	ReadingsTaken	=	0;
float	Readings[1000];
BOOL	DeviceError	=	FALSE;
char	expectedResponse	=	0x43;

int	main()	
{
			int	ud;

			//	Assign	a	unique	identifier	to	the	device	and	store	it	in	the	
			//	variable	ud.	ibdev	opens	an	available	device	and	assigns	it	to	
			//	access	GPIB0	with	a	primary	address	of	1,	a	secondary	address	of	0,
			//	a	timeout	of	10	seconds,	the	END	message	enabled,	and	the	EOS	mode	
			//	disabled.	If	ud	is	less	than	zero,	then	print	an	error	message	
			//	that	the	call	failed	and	exit	the	program.
			ud	=	ibdev			(0,			//	connect	board
																	1,			//	primary	address	of	GPIB	device
																	0,			//	secondary	address	of	GPIB	device
																	T10s,			//	10	second	I/O	timeout
																	1,			//	EOT	mode	turned	on
																	0);			//	EOS	mode	disabled

			if	(ud	<	0)		{
						printf	("ibdev	failed.\n");
						return	0;
			}

			//	Issue	a	request	to	the	device	to	send	the	data.	If	the	ERR	bit	
			//	is	set	in	Ibsta,	then	print	an	error	message	that	the	call	failed	
			//	and	exit	the	program.
			ibwrt	(ud,	"SEND	DATA",	9L);
			if	(Ibsta()	&	ERR)		{
						printf	("unable	to	write	to	device.\n");
						return	0;



			}
			//	set	up	the	asynchronous	event	notification	on	RQS
			ibnotify	(ud,	RQS,	MyCallback,	NULL);
			if	(Ibsta()	&	ERR)		{
						printf	("ibnotify	call	failed.\n");
						return	0;
			}

			while	((ReadingsTaken	<	1000)	&&	!(DeviceError))		{
						//	Your	application	does	useful	work	here.	For	example,	it
						//	might	process	the	device	readings	or	do	any	other	useful	work.
			}
			
			//	disable	notification
			ibnotify	(ud,	0,	NULL,	NULL);

			//	Call	the	ibonl	function	to	disable	the	hardware	and	software.
			ibonl	(ud,	0);
			return	1;

}

int	__stdcall	MyCallback	(int	LocalUd,	unsigned	long	LocalIbsta,	unsigned	long	LocalIberr,	
						unsigned	long	LocalIbcnt,	void	*RefData)
{
			char	SpollByte;
			char	ReadBuffer[40];
			//	If	the	ERR	bit	is	set	in	LocalIbsta,	then	print	an	error	message	
			//	and	return.
			if	(LocalIbsta	&	ERR)		{
						printf	("GPIB	error	%d	has	occurred.	No	more	callbacks.\n",	
									LocalIberr);
						DeviceError	=	TRUE;
						return	0;
			}
			
			//	Read	the	serial	poll	byte	from	the	device.	If	the	ERR	bit	is	set
			//	in	LocalIbsta,	then	print	an	error	message	and	return.
			LocalIbsta	=	ibrsp	(LocalUd,	&SpollByte);



			if	(LocalIbsta	&	ERR)		{
						printf	("ibrsp	failed.	No	more	callbacks.\n");
						DeviceError	=	TRUE;
						return	0;
			}

			//	If	the	returned	status	byte	equals	the	expected	response,	then	
			//	the	device	has	valid	data	to	send;	otherwise	it	has	a	fault	
			//	condition	to	report.
			if	(SpollByte	!=	expectedResponse)			{
						printf	("Device	returned	invalid	response.	Status	byte	=	0x%x\n",	
												SpollByte);
						DeviceError	=	TRUE;
						return	0;
			}

			//	Read	the	data	from	the	device.	If	the	ERR	bit	is	set	in	LocalIbsta,	
			//	then	print	an	error	message	and	return.
			LocalIbsta	=	ibrd	(LocalUd,	ReadBuffer,	40L);
			if	(LocalIbsta	&	ERR)		{
						printf	("ibrd	failed.	No	more	callbacks.\n");
						DeviceError	=	TRUE;
						return	0;
			}

			//	The	string	returned	by	ibrd	is	a	binary	string	whose	length	is	
			//	specified	by	the	byte	count	in	Ibcnt.	However,	many	GPIB
			//	instruments	return	ASCII	data	strings	and	this	example	makes	this
			//	assumption.	Because	of	this,	it	is	possible	to	add	a	NULL
			//	character	to	the	end	of	the	data	received	and	use	the	printf()
			//	function	to	display	the	ASCII	data.	The	following	code
			//	illustrates	that.
			ReadBuffer[LocalIbcnt()]	=	'\0';

			//	Convert	the	data	into	a	numeric	value.
			sscanf	(ReadBuffer,	"%f",	&Readings[ReadingsTaken]);

			//	Display	the	data.
			Printf	("Reading	:	%f\n",	Readings	[ReadingsTaken]);



			ReadingsTaken	+=	1;
			if	(ReadingsTaken	>=	1000)		{
						return	0;
			}
			else		{

						//	Issue	a	request	to	the	device	to	send	the	data	and	rearm
						//	callback	on	RQS.
						LocalIbsta	=	ibwrt	(LocalUd,	"SEND	DATA",	9L);
						if	(LocalIbsta	&	ERR)		{
									printf	("ibwrt	failed.	No	more	callbacks.\n");
									DeviceError	=	TRUE;
									return	0;
						}
						else		{
									return	RQS;
						}
			}
}

Related	Topics:
ibnotify	Usage
ibnotify
GpibNotify
GpibNotify	Usage



Notify	Mask	Layout
Mnemonic Bit

Pos
Hex
Value Description

TIMO 14 4000 Use	the	timeout	period	(see	ibconfig,	option
IbcTMO)	to	limit	the	notify	period

END 13 2000 END	or	EOS	is	detected
SRQI 12 1000 SRQ	is	asserted	(board-level	only)
RQS 11 800 Device	requested	service	(device-level	only)
CMPL 8 100 I/O	is	complete
LOK 7 80 GPIB	interface	is	in	Lockout	State	(board-level

only)
REM 6 40 GPIB	interface	is	in	Remote	State	(board-level

only)
CIC 5 20 GPIB	interface	is	CIC	(board-level	only)
ATN 4 10 Attention	is	asserted	(board-level	only)
TACS 3 8 GPIB	interface	is	Talker	(board-level	only)
LACS 2 4 GPIB	interface	is	Listener	(board-level	only)
DTAS 1 2 GPIB	interface	is	in	Device	Trigger	State

(board-level	only)
DCAS 0 1 GPIB	interface	is	in	Device	Clear	State	(board-

level	only)

	Return	to	ibnotify

	Return	to	GpibNotify



GpibNotify	Usage
The	GpibNotify	OLE	control	is	implemented	using	a	method	called
SetupNotify	and	an	event	called	Notify.	The	SetupNotify	method	is	used	to
enable	the	NI-488.2	driver	to	look	for	one	or	more	GPIB	conditions	for	a
particular	GPIB	handle.	After	it	is	set	up,	the	OLE	control	fires	the	Notify
event	when	one	or	more	of	the	GPIB	conditions	is	TRUE.	A	user-defined
callback	is	invoked	when	the	Notify	event	is	fired.
This	section	covers	the	major	highlights	regarding	the	sample	program
that	uses	the	GpibNotify	control.	The	program	contains	three	buttons:
Run,	Message,	and	Quit.
Clicking	the	Run	button	sets	into	motion	a	chain	of	commands	that	read
ten	measurements	from	a	Fluke	45	multimeter.	First,	the	program	gets	a
handle	to	the	device.	Next,	it	sends	a	set	of	commands	that	initialize	the
Fluke	45	multimeter.	Then	a	trigger	command	is	sent.	Next	the	program
asks	the	device	to	send	data.	Lastly,	it	issues	a	SetupNotify	to	the
GpibNotify	OLE	control	with	a	mask	of	the	RQS	GPIB	condition.
When	the	RQS	GPIB	condition	is	TRUE,	the	Notify	event	is	fired	and	the
user-defined	callback	is	invoked.	Each	time	through	the	callback,	the
RearmMask	is	set	to	RQS	so	that	the	event	notification	is	rearmed	for	the
next	RQS	GPIB	condition.	After	the	callback	has	read	ten	measurements
from	the	Fluke	45	multimeter,	the	RearmMask	is	set	to	zero	in	order	to
disable	the	event	notification	mechanism.
Clicking	the	Message	button	causes	a	message	to	be	displayed	in	a	text
box	every	time	the	button	is	clicked.
Clicking	the	Quit	button	closes	the	program.
The	NI-488.2	software	includes	a	sample	Visual	Basic	program.	Please
refer	to	the	readme.txt	file	for	more	detailed	information	about	the	project,
classes,	and	code.
For	overview	information	about	asynchronous	event	notification	within	an
NI-488.2	application,	please	refer	to	the	Asynchronous	Event	Notification
Overview	section.	For	more	specific	information	about	the	GpibNotify
OLE	control,	please	refer	to	the	GpibNotify	function	definition.

Note	The	GpibNotify	OLE	control	is	implemented	using	the
apartment	model.	Therefore,	it	only	works	correctly	if	your
application	responds	to	Windows	messages	in	a	timely	fashion.



IBONL
Board-Level/Device-Level



Purpose
Place	the	device	or	interface	online	or	offline.



Format
C
unsigned	long	ibonl	(int	ud,	int	v)



Visual	Basic
CALL	ibonl	(ud%,	v%)
or
status%	=	ilonl	(ud%,	v%)



Interactive	Control	(Usage	Notes)
ibonl	v



Input
ud Board	or	device	descriptor
v Indicates	whether	the	board	or	device	is	to	be	placed	online	or	offline



Output
Function	Return The	value	of	Ibsta



Description
ibonl	resets	the	board	or	device	and	places	all	its	software	configuration
parameters	in	their	pre-configured	state.	In	addition,	if	v	is	zero,	the
device	or	interface	is	placed	offline.	If	v	is	non-zero,	the	device	or
interface	is	left	operational,	or	online.
If	a	device	or	an	interface	is	taken	offline,	the	board	or	device	descriptor
(ud)	is	no	longer	valid.	You	must	execute	an	ibdev	or	ibfind	to	access	the
board	or	device	again.



Possible	Errors
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.



IBPAD
Board-Level/Device-Level

Note	ibpad	is	deprecated.	Use	ibconfig	(IbcPAD)	instead.



Purpose
Change	the	primary	address.



Format
C
unsigned	long	ibpad	(int	ud,	int	v)



Visual	Basic
CALL	ibpad	(ud%,	v%)
or
status%	=	ilpad	(ud%,	v%)



Interactive	Control	(Usage	Notes)
ibpad	v



Input
ud Board	or	device	descriptor
v GPIB	primary	address



Output
Function	Return The	value	of	Ibsta



Description
ibpad	sets	the	primary	GPIB	address	of	the	board	or	device	to	v,	an
integer	ranging	from	0	to	30.	If	no	error	occurs	during	the	call,	Iberr
contains	the	previous	GPIB	primary	address.



Possible	Errors
EARG v	is	not	a	valid	primary	GPIB	address;	it	must	be	in	the	range	0

to	30.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBPCT
Device-Level



Purpose
Pass	control	to	another	GPIB	device	with	Controller	capability.



Format
C
unsigned	long	ibpct	(int	ud)



Visual	Basic
CALL	ibpct	(ud%)
or
status%	=	ilpct	(ud%)



Interactive	Control	(Usage	Notes)
ibpct



Input
ud Device	descriptor



Output
Function	Return The	value	of	Ibsta



Description
ibpct	passes	Controller-in-Charge	(CIC)	status	to	the	device	indicated	by
ud.	The	access	board	automatically	unasserts	the	ATN	line	and	goes	to
Controller	Idle	State	(CIDS).	This	function	assumes	that	the	device	has
Controller	capability.



Possible	Errors
EARG ud	is	valid	but	does	not	refer	to	a	device.
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	access	board	is	not	CIC.	See	Device-Level	Calls	and	Bus

Management.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBPPC
Board-Level/Device-Level



Purpose
Parallel	poll	configure.



Format
C
unsigned	long	ibppc	(int	ud,	int	v)



Visual	Basic
CALL	ibppc	(ud%,	v%)
or
status%	=	ilppc	(ud%,	v%)



Interactive	Control	(Usage	Notes)
ibppc	v



Input
ud Board	or	device	descriptor
v Parallel	poll	enable/disable	value



Output
Function	Return The	value	of	Ibsta



Description
Device-Level
If	ud	is	a	device	descriptor,	ibppc	enables	or	disables	the	device	from
responding	to	parallel	polls.	The	device	is	addressed	and	sent	the
appropriate	parallel	poll	messageParallel	Poll	Enable	(PPE)	or	Disable
(PPD).	Valid	parallel	poll	messages	are	96	to	126	(hex	60	to	hex	7E)	or
zero	to	send	PPD.



Board-Level
If	ud	is	a	board	descriptor,	ibppc	performs	a	local	parallel	poll
configuration	using	the	parallel	poll	configuration	value	v.	Valid	parallel
poll	messages	are	96	to	126	(hex	60	to	hex	7E)	or	zero	to	send	PPD.	If
no	error	occurs	during	the	call,	Iberr	contains	the	previous	value	of	the
local	parallel	poll	configuration.
For	more	information	about	parallel	polling,	refer	to	the	Parallel	Polling
section.	See	IEEE	488	command	messages	for	parallel	poll	messages.



Possible	Errors
EARG v	does	not	contain	a	valid	PPE	or	PPD	message.
EBUS Device-level:	No	devices	are	connected	to	the	GPIB.
ECAP Board-level:	The	board	is	not	configured	to	perform	local	parallel

poll	configuration.	(See	ibconfig,	option	IbcPP2.)
ECIC Device-level:	The	access	board	is	not	CIC.	See	Device-Level

Calls	and	Bus	Management.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBRD
Board-Level/Device-Level



Purpose
Read	data	from	a	device	into	a	user	buffer.



Format
C
unsigned	long	ibrd	(int	ud,	void	*rdbuf,	size_t	count)



Visual	Basic
CALL	ibrd	(ud%,	rdbuf$)
or
status%	=	ilrd	(ud%,	rdbuf$,	count&)



Interactive	Control	(Usage	Notes)
ibrd	count



Input
ud Board	or	device	descriptor
count Number	of	bytes	to	be	read	from	the	GPIB



Output
rdbuf Address	of	buffer	into	which	data	is	read
Function	Return The	value	of	Ibsta



Description
Device-Level
If	ud	is	a	device	descriptor,	ibrd	addresses	the	GPIB,	reads	up	to	count
bytes	of	data,	and	places	the	data	into	the	buffer	specified	by	rdbuf.	The
operation	terminates	normally	when	count	bytes	have	been	received	or
END	is	received.	The	operation	terminates	with	an	error	if	the	transfer
could	not	complete	within	the	timeout	period.	The	actual	number	of	bytes
transferred	is	returned	in	the	global	function	Ibcnt.



Board-Level
If	ud	is	a	board	descriptor,	ibrd	reads	up	to	count	bytes	of	data	and	places
the	data	into	the	buffer	specified	by	rdbuf.	A	board-level	ibrd	assumes	that
the	GPIB	is	already	properly	addressed.	The	operation	terminates
normally	when	count	bytes	have	been	received	or	END	is	received.	The
operation	terminates	with	an	error	if	the	transfer	could	not	complete
within	the	timeout	period	or,	if	the	board	is	not	CIC,	the	CIC	sends	a
Device	Clear	on	the	GPIB.	The	actual	number	of	bytes	transferred	is
returned	in	the	global	function	Ibcnt.



Possible	Errors
EABO Either	count	bytes	or	END	was	not	received	within	the	timeout

period	or	a	Device	Clear	message	was	received	after	the	read
operation	began.

EADR Board-level:	The	GPIB	is	not	correctly	addressed;	use	ibcmd	to
address	the	GPIB.
Device-level:	A	conflict	exists	between	the	device	GPIB	address
and	the	GPIB	address	of	the	device	access	board.	Use	ibconfig,
options	IbcPAD	and	IbcSAD.

EARG Either	the	buffer	or	the	count	is	invalid.
EBUS Device-level:	No	devices	are	connected	to	the	GPIB.
ECIC Device-level:	The	access	board	is	not	CIC.	See	Device-Level

Calls	and	Bus	Management.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBRDA
Board-Level/Device-Level



Purpose
Read	data	asynchronously	from	a	device	into	a	user	buffer.



Format
C
unsigned	long	ibrda	(int	ud,	void	*rdbuf,	size_t	count)



Visual	Basic
CALL	ibrda	(ud%,	rdbuf$)

or

status%	=	ilrda	(ud%,	rdbuf$,	count&)



Interactive	Control	(Usage	Notes)
ibrda	count



Input
ud Board	or	device	unit	descriptor
count Number	of	bytes	to	be	read	from	the	GPIB



Output
rdbuf Address	of	buffer	into	which	data	is	read
Function	Return The	value	of	Ibsta



Description
Device-Level
If	ud	is	a	device	descriptor,	ibrda	addresses	the	GPIB,	begins	an
asynchronous	read	of	up	to	count	bytes	of	data	from	a	GPIB	device,	and
places	the	data	into	the	buffer	specified	by	rdbuf.	The	operation
terminates	normally	when	count	bytes	have	been	received	or	END	is
received.	The	actual	number	of	bytes	transferred	is	returned	in	the	global
function	Ibcnt.



Board-Level
If	ud	is	a	board	descriptor,	ibrda	reads	up	to	count	bytes	of	data	from	a
GPIB	device	and	places	the	data	into	the	buffer	specified	by	rdbuf.	A
board-level	ibrda	assumes	that	the	GPIB	is	already	properly	addressed.
The	operation	terminates	normally	when	count	bytes	have	been	received
or	END	is	received.	The	operation	terminates	with	an	error	if	the	board	is
not	the	CIC,	and	the	CIC	sends	a	Device	Clear	on	the	GPIB.	The	actual
number	of	bytes	transferred	is	returned	in	the	global	function	Ibcnt.



Board-	and	Device-Level
The	asynchronous	I/O	calls	(ibcmda,	ibrda,	ibwrta)	are	designed	so	that
applications	can	perform	other	non-GPIB	operations	while	the	I/O	is	in
progress.	Once	the	asynchronous	I/O	has	begun,	further	NI-488.2	calls
are	strictly	limited.	Any	calls	that	would	interfere	with	the	I/O	in	progress
are	not	allowed;	the	driver	returns	EOIP	in	this	case.
Once	the	I/O	is	complete,	the	application	must	resynchronize	with	the	NI-
488.2	driver.	Resynchronization	is	accomplished	by	using	one	of	the
following	calls:

ibwait If	the	returned	Ibsta	contains	CMPL,	the	driver	and	application
are	resynchronized.

ibnotify If	the	Ibsta	value	passed	to	the	ibnotify	callback	contains	CMPL,
the	driver	and	application	are	resynchronized.

ibstop The	I/O	is	canceled;	the	driver	and	application	are
resynchronized.

ibonl The	I/O	is	canceled	and	the	interface	is	reset;	the	driver	and
application	are	resynchronized.



Possible	Errors
EABO Board-level:	a	Device	Clear	message	was	received	from	the

CIC.
EADR Board-level:	The	GPIB	is	not	correctly	addressed;	use	ibcmd	to

address	the	GPIB.
Device-level:	A	conflict	exists	between	the	device	GPIB	address
and	the	GPIB	address	of	the	device	access	board.	Use	ibconfig,
options	IbcPAD	and	IbcSAD.

EARG Either	the	buffer	or	the	count	is	invalid.
EBUS Device-level:	No	devices	are	connected	to	the	GPIB.
ECIC Device-level:	The	access	board	is	not	CIC.	See	Device-Level

Calls	and	Bus	Management.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBRDF
Board-Level/Device-Level



Purpose
Read	data	from	a	device	into	a	file.



Format
C
unsigned	long	ibrdf	(int	ud,	const	char	*flname)



Visual	Basic
CALL	ibrdf	(ud%,	flname$)
or
status%	=	ilrdf	(ud%,	flname$)



Interactive	Control	(Usage	Notes)
ibrdf	flname



Input
ud Board	or	device	descriptor
flname Name	of	file	into	which	data	is	read



Output
Function	Return The	value	of	Ibsta



Description
Device-Level
If	ud	is	a	device	descriptor,	ibrdf	addresses	the	GPIB,	reads	data	from	a
GPIB	device,	and	places	the	data	into	the	file	specified	by	flname.	The
operation	terminates	normally	when	END	is	received.	The	operation
terminates	with	an	error	if	the	transfer	could	not	complete	within	the
timeout	period.	The	actual	number	of	bytes	transferred	is	returned	in	the
global	function	Ibcnt.
Board-Level
If	ud	is	a	board	descriptor,	ibrdf	reads	data	from	a	GPIB	device	and
places	the	data	into	the	file	specified	by	flname.	A	board-level	ibrdf
assumes	that	the	GPIB	is	already	properly	addressed.	The	operation
terminates	normally	when	END	is	received.	The	operation	terminates
with	an	error	if	the	transfer	could	not	complete	within	the	timeout	period
or,	if	the	board	is	not	CIC,	the	CIC	sends	a	Device	Clear	on	the	GPIB.
The	actual	number	of	bytes	transferred	is	returned	in	the	global	function
Ibcnt.



Possible	Errors
EABO END	was	not	received	within	the	timeout	period,	or	ud	is	a	board

descriptor	and	Device	Clear	was	received	after	the	read
operation	began.

EADR Board-level:	The	GPIB	is	not	correctly	addressed;	use	ibcmd	to
address	the	GPIB.
Device-level:	A	conflict	exists	between	the	device	GPIB	address
and	the	GPIB	address	of	the	device	access	board.	Use	ibconfig,
options	IbcPAD	and	IbcSAD.

EARG flname	is	invalid.
EBUS Device-level:	No	devices	are	connected	to	the	GPIB.
ECIC Device-level:	The	access	board	is	not	CIC.	See	Device-Level

Calls	and	Bus	Management.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EFSO ibrdf	could	not	access	flname.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBRPP
Board-Level/Device-Level



Purpose
Conduct	a	parallel	poll.



Format
C
unsigned	long	ibrpp	(int	ud,	char	*ppr)



Visual	Basic
CALL	ibrpp	(ud%,	ppr%)
or
status%	=	ilrpp	(ud%,	ppr%)



Interactive	Control	(Usage	Notes)
ibrpp



Input
ud Board	or	device	descriptor



Output
ppr Parallel	poll	response	byte
Function	Return The	value	of	Ibsta



Description
ibrpp	parallel	polls	all	the	devices	on	the	GPIB.	The	result	of	this	poll	is
returned	in	ppr.
For	more	information	about	parallel	polling,	refer	to	the	Parallel	Polling
Overview.



Possible	Errors
EBUS Device-level:	No	devices	are	connected	to	the	GPIB.
ECIC Device-level:	The	access	board	is	not	CIC.	See	Device-Level

Calls	and	Bus	Management.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBRSC
Board-Level

Note	ibrsc	is	deprecated.	Use	ibconfig	(IbcSC)	instead.



Purpose
Request	or	release	system	control.



Format
C
unsigned	long	ibrsc	(int	ud,	int	v)



Visual	Basic
CALL	ibrsc	(ud%,	v%)
or
status%	=	ilrsc	(ud%,	v%)



Interactive	Control	(Usage	Notes)
ibrsc	v



Input
ud Board	or	device	descriptor
v Determines	if	system	control	is	to	be	requested	or	released



Output
Function	Return The	value	of	Ibsta



Description
ibrsc	requests	or	releases	the	capability	to	send	Interface	Clear	(IFC)	and
Remote	Enable	(REN)	messages	to	devices.	If	v	is	zero,	the	board
releases	system	control,	and	calls	requiring	System	Controller	capability
are	not	allowed.	If	v	is	non-zero,	calls	requiring	System	Controller
capability	are	subsequently	allowed.	If	no	error	occurs	during	the	call,
Iberr	contains	the	previous	System	Controller	state	of	the	board.



Possible	Errors
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBRSP
Device-Level



Purpose
Conduct	a	serial	poll.



Format
C
unsigned	long	ibrsp	(int	ud,	char	*spr)



Visual	Basic
CALL	ibrsp	(ud%,	spr%)
or
status%	=	ilrsp	(ud%,	spr%)



Interactive	Control	(Usage	Notes)
ibrsp



Input
ud Device	descriptor



Output
spr Serial	poll	response	byte
Function	Return The	value	of	Ibsta



Description
The	ibrsp	function	is	used	to	serial	poll	the	device	ud.	The	serial	poll
response	byte	is	returned	in	spr.	If	bit	6	(hex	40)	of	the	response	is	set,
the	device	is	requesting	service.	When	the	automatic	serial	polling
feature	is	enabled,	the	device	might	have	already	been	polled.	In	this
case,	ibrsp	returns	the	previously	acquired	status	byte.
For	more	information	about	serial	polling,	refer	to	the	Serial	Polling
Overview.



Possible	Errors
EABO The	serial	poll	response	could	not	be	read	within	the	serial	poll

timeout	period.
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	access	board	is	not	CIC.	See	Device-Level	Calls	and	Bus

Management.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBRSV
Board-Level

Note	ibrsv	is	deprecated.	Use	ibconfig	(IbcRSV)	instead.



Purpose
Request	service	and	change	the	serial	poll	status	byte.



Format
C
unsigned	long	ibrsv	(int	ud,	int	v)



Visual	Basic
CALL	ibrsv	(ud%,	v%)
or
status%	=	ilrsv	(ud%,	v%)



Interactive	Control	(Usage	Notes)
ibrsv	v



Input
ud Board	descriptor
v Serial	poll	status	byte



Output
Function	Return The	value	of	Ibsta



Description
ibrsv	is	used	to	request	service	from	the	Controller	and	to	provide	the
Controller	with	an	application-dependent	status	byte	when	the	Controller
serial	polls	the	GPIB	interface.
The	value	v	is	the	status	byte	that	the	GPIB	interface	returns	when	serial
polled	by	the	Controller-In-Charge.	If	bit	6	(hex	40)	is	set	in	v,	the	GPIB
interface	requests	service	from	the	Controller	by	asserting	the	GPIB	SRQ
line.	When	ibrsv	is	called	and	an	error	does	not	occur,	the	previous	status
byte	is	returned	in	Iberr.



Possible	Errors
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBSAD
Board-Level/Device-Level

Note	ibsad	is	deprecated.	Use	ibconfig	(IbcSAD)	instead.



Purpose
Change	or	disable	the	secondary	address.



Format
C
unsigned	long	ibsad	(int	ud,	int	v)



Visual	Basic
CALL	ibsad	(ud%,	v%)
or
status%	=	ilsad	(ud%,	v%)



Interactive	Control	(Usage	Notes)
ibsad	v



Input
ud Board	or	device	descriptor
v GPIB	secondary	address



Output
Function	Return The	value	of	Ibsta



Description
ibsad	changes	the	secondary	GPIB	address	of	the	given	board	or	device
to	v,	an	integer	in	the	range	96	to	126	(hex	60	to	hex	7E)	or	zero.	If	v	is
zero,	secondary	addressing	is	disabled.	If	no	error	occurs	during	the	call,
the	previous	value	of	the	GPIB	secondary	address	is	returned	in	Iberr.



Possible	Errors
EARG v	is	non-zero	and	outside	the	legal	range	96	to	126.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBSIC
Board-Level



Purpose
Assert	interface	clear.



Format
C
unsigned	long	ibsic	(int	ud)



Visual	Basic
CALL	ibsic	(ud%)
or
status%	=	ilsic	(ud%)



Interactive	Control	(Usage	Notes)
ibsic



Input
ud Board	descriptor



Output
Function	Return The	value	of	Ibsta



Description
ibsic	asserts	the	GPIB	interface	clear	(IFC)	line	for	at	least	100	µs,	then
unasserts	IFC.	Asserting	IFC	unaddresses	all	devices	on	the	bus	and
makes	the	interface	board	CIC.
The	IFC	signal	resets	only	the	GPIB	interface	calls	of	bus	devices	and
not	the	internal	device	calls.	Consult	your	device	documentation	to
determine	how	to	reset	the	internal	calls	of	your	device.



Possible	Errors
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.
ESAC The	board	does	not	have	System	Controller	capability.



IBSRE
Board-Level

Note	ibsre	is	deprecated.	Use	ibconfig	(IbcSRE)	instead.



Purpose
Set	or	clear	the	Remote	Enable	(REN)	line.



Format
C
unsigned	long	ibsre	(int	ud,	int	v)



Visual	Basic
CALL	ibsre	(ud%,	v%)
or
status%	=	ilsre	(ud%,	v%)



Interactive	Control	(Usage	Notes)
ibsre	v



Input
ud Board	descriptor
v Indicates	whether	to	set	or	clear	the	REN	line



Output
Function	Return The	value	of	Ibsta



Description
If	v	is	non-zero,	the	GPIB	Remote	Enable	(REN)	line	is	asserted.	If	v	is
zero,	REN	is	unasserted.	The	previous	value	of	REN	is	returned	in	Iberr.
REN	is	used	by	devices	to	choose	between	local	and	remote	modes	of
operation.	A	device	should	not	actually	enter	remote	mode	until	it
receives	its	listen	address	and	REN	is	asserted.



Possible	Errors
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.
ESAC The	board	does	not	have	System	Controller	capability.



IBSTOP
Board-Level/Device-Level



Purpose
Abort	asynchronous	I/O	operation.



Format
C
unsigned	long	ibstop	(int	ud)



Visual	Basic
CALL	ibstop	(ud%)
or
status%	=	ilstop	(ud%)



Interactive	Control	(Usage	Notes)
ibstop



Input
ud Board	or	device	descriptor



Output
Function	Return The	value	of	Ibsta



Description
The	ibstop	function	aborts	any	asynchronous	read,	write,	or	command
operation	that	is	in	progress	and	resynchronizes	the	application	with	the
driver.	If	asynchronous	I/O	is	in	progress,	the	error	bit	is	set	in	the	status
word,	Ibsta,	and	EABO	is	returned,	indicating	that	the	I/O	was
successfully	stopped.



Possible	Errors
EABO Asynchronous	I/O	was	successfully	stopped.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.



IBTMO
Board-Level/Device-Level

Note	ibtmo	is	deprecated.	Use	ibconfig	(IbcTMO)	instead.



Purpose
Change	or	disable	the	timeout	period.



Format
C
unsigned	long	ibtmo	(int	ud,	int	v)



Visual	Basic
CALL	ibtmo	(ud%,	v%)
or
status%	=	iltmo	(ud%,	v%)



Interactive	Control	(Usage	Notes)
ibtmo	v



Input
ud Board	or	device	descriptor
v Timeout	duration	code



Output
Function	Return The	value	of	Ibsta



Description
ibtmo	sets	the	timeout	period	of	the	board	or	device	to	v.	The	timeout
period	is	used	to	select	the	maximum	duration	allowed	for	a	synchronous
I/O	operation	(for	example,	ibrd	and	ibwrt)	or	for	an	ibwait	or	ibnotify
operation	with	TIMO	in	the	wait	mask.	If	the	operation	does	not	complete
before	the	timeout	period	elapses,	the	operation	is	aborted	and	TIMO	is
returned	in	Ibsta.	The	timeout	values	represent	the	minimum	timeout
period.	The	actual	period	could	be	longer.



Possible	Errors
EARG v	is	invalid.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



Timeout	Code	Values
Constant Value	of	v Minimum	Timeout

TNONE 0 disabled	(no	timeout)
T10µs 1 10	µs
T30µs 2 30	µs
T100µs 3 100	µs
T300µs 4 300	µs
T1ms 5 1	ms
T3ms 6 3	ms
T10ms 7 10	ms
T30ms 8 30	ms
T100ms 9 100	ms
T300ms 10 300	ms
T1s 11 1	s
T3s 12 3	s
T10s 13 10	s
T30s 14 30	s
T100s 15 100	s
T300s 16 300	s
T1000s 17 1000	s

Return	to	ibtmo



IBTRG
Device-Level



Purpose
Trigger	selected	device.



Format
C
unsigned	long	ibtrg	(int	ud)



Visual	Basic
CALL	ibtrg	(ud%)
or
status%	=	iltrg	(ud%)



Interactive	Control	(Usage	Notes)
ibtrg



Input
ud Device	descriptor



Output
Function	Return The	value	of	Ibsta



Description
ibtrg	sends	the	Group	Execute	Trigger	(GET)	message	to	the	device
described	by	ud.



Possible	Errors
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	access	board	is	not	CIC.	See	Device-Level	Calls	and	Bus

Management.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



IBWAIT
Board-Level/Device-Level



Purpose
Wait	for	GPIB	events.



Format
C
unsigned	long	ibwait	(int	ud,	int	mask)



Visual	Basic
CALL	ibwait	(ud%,	mask%)
or
status%	=	ilwait	(ud%,	mask%)



Interactive	Control	(Usage	Notes)
ibwait	mask



Input
ud Board	or	device	descriptor
mask Bit	mask	of	GPIB	events	to	wait	for



Output
Function	Return The	value	of	Ibsta



Description
ibwait	monitors	the	events	specified	by	mask	and	delays	processing	until
one	or	more	of	the	events	occurs.	If	the	wait	mask	is	zero,	ibwait	returns
immediately	with	the	updated	Ibsta	status	word.	If	TIMO	is	set	in	the	wait
mask,	ibwait	returns	when	the	timeout	period	has	elapsed,	if	one	or	more
of	the	other	specified	events	have	not	already	occurred.	If	TIMO	is	not	set
in	the	wait	mask,	the	function	waits	indefinitely	for	one	or	more	of	the
specified	events	to	occur.	The	existing	ibwait	mask	bits	are	identical	to
the	Ibsta	bits.	If	ud	is	a	device	descriptor,	the	only	valid	wait	mask	bits	are
TIMO,	END,	RQS,	and	CMPL.	If	ud	is	a	board	descriptor,	all	wait	mask
bits	are	valid	except	for	RQS.	You	can	configure	the	timeout	period	using
the	ibconfig	function	(option	IbcTMO).



Possible	Errors
EARG The	bit	set	in	mask	is	invalid.
EBUS Device-level:	No	devices	are	connected	to	the	GPIB.
ECIC Device-level:	The	access	board	is	not	CIC.	See	Device-Level

Calls	and	Bus	Management.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
ESRQ Device-level:	If	RQS	is	set	in	the	wait	mask,	ESRQ	indicates	that

the	Stuck	SRQ	condition	exists.	For	more	information	about
serial	polling,	refer	to	the	Serial	Polling	Overview.

EWIP An	ibwait	call	is	already	in	progress	on	the	specified	unit
descriptor.

ERST The	event	notification	was	cancelled	due	to	a	reset	of	the
interface.



Wait	Mask	Layout
Mnemonic Bit

Pos
Hex
Value Description

TIMO 14 4000 Use	the	timeout	period	(see	ibconfig,	option
IbcTMO)	to	limit	the	notify	period

END 13 2000 END	or	EOS	is	detected
SRQI 12 1000 SRQ	is	asserted	(board-level	only)
RQS 11 800 Device	requested	service	(device-level	only)
CMPL 8 100 I/O	is	completed
LOK 7 80 GPIB	interface	is	in	Lockout	State	(board-level

only)
REM 6 40 GPIB	interface	is	in	Remote	State	(board-level

only)
CIC 5 20 GPIB	interface	is	CIC	(board-level	only)
ATN 4 10 Attention	is	asserted	(board-level	only)
TACS 3 8 GPIB	interface	is	Talker	(board-level	only)
LACS 2 4 GPIB	interface	is	Listener	(board-level	only)
DTAS 1 2 GPIB	interface	is	in	Device	Trigger	State

(board-level	only)
DCAS 0 1 GPIB	interface	is	in	Device	Clear	State	(board-

level	only)

Return	to	ibwait



IBWRT
Board-Level/Device-Level



Purpose
Write	data	to	a	device	from	a	user	buffer.



Format
C
unsigned	long	ibwrt	(int	ud,	const	void	*wrtbuf,	size_t	count)



Visual	Basic
CALL	ibwrt	(ud%,	wrtbuf$)
or
status%	=	ilwrt	(ud%,	wrtbuf$,	count&)



Interactive	Control	(Usage	Notes)
ibwrt	wrtbuf



Input
ud Board	or	device	descriptor
wrtbuf Address	of	the	buffer	containing	the	bytes	to	write
count Number	of	bytes	to	be	written



Output
Function	Return The	value	of	Ibsta



Description
Device-Level
If	ud	is	a	device	descriptor,	ibwrt	addresses	the	GPIB	and	writes	count
bytes	from	the	memory	location	specified	by	wrtbuf	to	a	GPIB	device.	The
operation	terminates	normally	when	count	bytes	have	been	sent.	The
operation	terminates	with	an	error	if	count	bytes	could	not	be	sent	within
the	timeout	period.	The	actual	number	of	bytes	transferred	is	returned	in
the	global	function	Ibcnt.



Board-Level
If	ud	is	a	board	descriptor,	ibwrt	writes	count	bytes	of	data	from	the	buffer
specified	by	wrtbuf	to	a	GPIB	device;	a	board-level	ibwrt	assumes	that
the	GPIB	is	already	properly	addressed.	The	operation	terminates
normally	when	count	bytes	have	been	sent.	The	operation	terminates	with
an	error	if	count	bytes	could	not	be	sent	within	the	timeout	period	or,	if	the
board	is	not	CIC,	the	CIC	sends	Device	Clear	on	the	GPIB.	The	actual
number	of	bytes	transferred	is	returned	in	the	global	function	Ibcnt.



Possible	Errors
EABO Either	count	bytes	were	not	sent	within	the	timeout	period,	or	a

Device	Clear	message	was	received	after	the	write	operation
began.

EADR Board-level:	The	GPIB	is	not	correctly	addressed;	use	ibcmd	to
address	the	GPIB.
Device-level:	A	conflict	exists	between	the	device	GPIB	address
and	the	GPIB	address	of	the	device	access	board.	Use	the
IbcPAD	and	IbcSAD	options	in	ibconfig.

EARG Either	the	buffer	or	the	count	is	invalid.
EBUS Device-level:	No	devices	are	connected	to	the	GPIB.
ECIC Device-level:	The	access	board	is	not	CIC.	See	Device-Level

Calls	and	Bus	Management.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
ENOL No	Listeners	were	detected	on	the	bus.
EOIP Asynchronous	I/O	is	in	progress.



IBWRTA
Board-Level/Device-Level



Purpose
Write	data	asynchronously	to	a	device	from	a	user	buffer.



Format
C
unsigned	long	ibwrta	(int	ud,	const	void	*wrtbuf,	size_t	count)



Visual	Basic
CALL	ibwrta	(ud%,	wrtbuf$)
or
status%	=	ilwrta	(ud%,	wrtbuf$,	count&)



Interactive	Control	(Usage	Notes)
ibwrta	wrtbuf



Input
ud Board	or	device	descriptor
wrtbuf Address	of	the	buffer	containing	the	bytes	to	write
count Number	of	bytes	to	be	written



Output
Function	Return The	value	of	Ibsta



Description
Device-Level
If	ud	is	a	device	descriptor,	ibwrta	addresses	the	GPIB	properly	and	writes
count	bytes	from	wrtbuf	to	a	GPIB	device.	The	operation	terminates
normally	when	count	bytes	have	been	sent.	The	actual	number	of	bytes
transferred	is	returned	in	the	global	function	Ibcnt.



Board-Level
If	ud	is	a	board	descriptor,	ibwrta	begins	an	asynchronous	write	of	count
bytes	of	data	from	wrtbuf	to	a	GPIB	device.	A	board-level	ibwrta	assumes
that	the	GPIB	is	already	properly	addressed.	The	operation	terminates
normally	when	count	bytes	have	been	sent.	The	operation	terminates	with
an	error	if	the	board	is	not	the	CIC,	and	the	CIC	sends	a	Device	Clear	on
the	GPIB.	The	actual	number	of	bytes	transferred	is	returned	in	the	global
function	Ibcnt.



Board-	and	Device-Level
The	asynchronous	I/O	calls	(ibcmda,	ibrda,	ibwrta)	are	designed	so	that
applications	can	perform	other	non-GPIB	operations	with	the	I/O	in
progress.	Once	the	asynchronous	I/O	begins,	further	NI-488.2	calls	are
strictly	limited.	Any	calls	that	would	interfere	with	the	I/O	in	progress	are
not	allowed;	the	driver	returns	EOIP	in	this	case.
Once	the	I/O	is	complete,	the	application	must	resynchronize	with	the	NI-
488.2	driver.	Resynchronization	is	accomplished	by	using	one	of	the
following	calls:

ibwait If	the	returned	Ibsta	contains	CMPL,	the	driver	and	application
are	resynchronized.

ibnotify If	the	Ibsta	value	passed	to	the	ibnotify	callback	contains	CMPL,
the	driver	and	application	are	resynchronized.

ibstop The	I/O	is	canceled;	the	driver	and	application	are
resynchronized.

ibonl The	I/O	is	canceled	and	the	interface	is	reset;	the	driver	and
application	are	resynchronized.



Possible	Errors
EABO Board-level:	A	Device	Clear	message	was	received	from	the

CIC.
EADR Board-level:	The	GPIB	is	not	correctly	addressed;	use	ibcmd	to

address	the	GPIB.
Device-level:	A	conflict	exists	between	the	device	GPIB	address
and	the	GPIB	address	of	the	device	access	board.	Use	the
IbcPAD	and	IbcSAD	options	in	ibconfig.

EARG Either	the	buffer	or	the	count	is	invalid.
EBUS Device-level:	No	devices	are	connected	to	the	GPIB.
ECIC Device-level:	The	access	board	is	not	CIC.	See	Device-Level

Calls	and	Bus	Management.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
ENOL No	Listeners	were	detected	on	the	bus.
EOIP Asynchronous	I/O	is	in	progress.



IBWRTF
Board-Level/Device-Level



Purpose
Write	data	to	a	device	from	a	file.



Format
C
unsigned	long	ibwrtf	(int	ud,	const	char	*flname)



Visual	Basic
CALL	ibwrtf	(ud%,	flname$)
or
status%	=	ilwrtf	(ud%,	flname$)



Interactive	Control	(Usage	Notes)
ibwrtf	flname



Input
ud Board	or	device	descriptor
flname Name	of	file	containing	the	data	to	be	written



Output
Function	Return The	value	of	Ibsta



Description
Device-Level
If	ud	is	a	device	descriptor,	ibwrtf	addresses	the	GPIB	and	writes	all	of
the	bytes	from	the	file	flname	to	a	GPIB	device.	The	operation	terminates
normally	when	all	of	the	bytes	have	been	sent.	The	operation	terminates
with	an	error	if	all	of	the	bytes	could	not	be	sent	within	the	timeout	period.
The	actual	number	of	bytes	transferred	is	returned	in	the	global	function
Ibcnt.



Board-Level
If	ud	is	a	board	descriptor,	ibwrtf	writes	all	of	the	bytes	of	data	from	the
file	flname	to	a	GPIB	device.	A	board-level	ibwrtf	assumes	that	the	GPIB
is	already	properly	addressed.	The	operation	terminates	normally	when
all	of	the	bytes	have	been	sent.	The	operation	terminates	with	an	error	if
all	of	the	bytes	could	not	be	sent	within	the	timeout	period,	or	if	the	board
is	not	CIC,	the	CIC	sends	a	Device	Clear	on	the	GPIB.	The	actual
number	of	bytes	transferred	is	returned	in	the	global	function	Ibcnt.



Possible	Errors
EABO Either	the	file	could	not	be	transferred	within	the	timeout	period,

or	a	Device	Clear	message	was	received	after	the	write
operation	began.

EADR Board-level:	The	GPIB	is	not	correctly	addressed;	use	ibcmd	to
address	the	GPIB.
Device-level:	A	conflict	exists	between	the	device	GPIB	address
and	the	GPIB	address	of	the	device	access	board.	Use	the
IbcPAD	and	IbcSAD	options	in	ibconfig.

EARG flname	is	invalid.
EBUS Device-level:	No	devices	are	connected	to	the	GPIB.
ECIC Device-level:	The	access	board	is	not	CIC.	See	Device-Level

Calls	and	Bus	Management.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EFSO ibwrtf	could	not	access	flname.
EHDL ud	is	invalid	or	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



Multi-Device	NI-488.2	Calls
AllSpoll Serial	poll	all	instruments
DevClear Clear	a	single	instrument
DevClearList Clear	multiple	instruments
EnableLocal Enable	operations	from	the	front	panel	of	instruments

(leave	remote	programming	mode)
EnableRemote Enable	remote	GPIB	programming	for	instruments
FindLstn Find	listening	instruments	on	the	GPIB
FindRQS Determine	which	instrument	is	requesting	service
PassControl Pass	control	to	another	instrument	with	Controller

capability
PPoll Perform	a	parallel	poll	on	the	GPIB
PPollConfig Configure	an	instrument	to	respond	to	parallel	polls
PPollUnconfig Unconfigure	instruments	for	parallel	polls
RcvRespMsg Read	data	bytes	from	an	instrument	that	is	already

addressed	to	talk
ReadStatusByte Serial	poll	a	single	instrument
Receive Read	data	bytes	from	an	instrument
ReceiveSetup Address	an	instrument	to	be	a	Talker	and	the	interface

to	be	a	Listener	in	preparation	for	RcvRespMsg
ResetSys Reset	and	initialize	IEEE	488.2-compliant	instruments
Send Send	data	bytes	to	an	instrument
SendCmds Send	GPIB	command	bytes
SendDataBytes Send	data	bytes	to	instruments	that	are	already

addressed	to	listen
SendIFC Reset	the	GPIB	by	sending	interface	clear
SendList Send	data	bytes	to	multiple	GPIB	instruments
SendLLO Send	the	Local	Lockout	(LLO)	message	to	all

instruments



SendSetup Set	up	instruments	to	receive	data	in	preparation	for
SendDataBytes

SetRWLS Place	instruments	in	Remote	With	Lockout	State
TestSRQ Determine	the	current	state	of	the	GPIB	Service

Request	(SRQ)	line
TestSys Cause	IEEE	488.2-compliant	instruments	to	conduct

self	tests
Trigger Trigger	an	instrument
TriggerList Trigger	multiple	instruments
WaitSRQ Wait	until	an	instrument	asserts	the	GPIB	Service

Request	(SRQ)



Supplemental	Calls	for	Multithreaded	NI-488.2
Applications
If	you	are	writing	a	multithreaded	NI-488.2	application	and	you	plan	to
make	all	of	your	NI-488.2	calls	from	a	single	thread,	you	can	safely
continue	to	use	the	NI-488.2	global	functions	(Ibsta,	Iberr,	Ibcnt).	The	NI-
488.2	global	functions	are	defined	on	a	per-process	basis,	so	each
process	accesses	its	own	private	copy	of	the	NI-488.2	global	functions.
If	you	are	writing	a	multithreaded	NI-488.2	application	and	you	plan	to
make	NI-488.2	calls	from	more	than	a	single	thread,	you	cannot	safely
continue	to	use	the	NI-488.2	global	functions	without	some	form	of
synchronization	(for	example,	a	semaphore).	To	understand	why	this	is
true,	take	a	look	at	the	following	example.
Assume	that	a	process	has	two	separate	threads	that	make	NI-488.2
calls,	thread	1	and	thread	2.	Just	as	thread	1	is	about	to	examine	one	of
the	NI-488.2	global	functions,	it	gets	preempted	and	thread	2	is	allowed
to	run.	Thread	2	proceeds	to	make	several	NI-488.2	calls	that
automatically	update	the	NI-488.2	global	functions.	Later,	when	thread	1
is	allowed	to	run,	the	NI-488.2	global	that	it	is	ready	to	examine	is	no
longer	in	a	known	state	and	its	value	is	no	longer	reliable.
This	example	illustrates	a	well-known	multithreading	problem.	It	is	unsafe
to	access	process-global	functions	from	multiple	threads	of	execution.
You	can	avoid	this	problem	in	two	ways:
Use	synchronization	to	protect	access	to	process-global	functions.
Do	not	use	process-global	functions.
If	you	choose	to	implement	the	synchronization	solution,	you	must	ensure
that	code	making	NI-488.2	calls	and	examining	the	NI-488.2	global
functions	modified	by	an	NI-488.2	call	is	protected	by	a	synchronization
primitive.	For	example,	each	thread	might	acquire	a	semaphore	before
making	an	NI-488.2	call	and	then	release	the	semaphore	after	examining
the	NI-488.2	global	functions	modified	by	the	call.	For	more	information
about	the	use	of	synchronization	primitives,	refer	to	the	documentation	on
using	Windows	synchronization	objects	that	came	with	your	development
tools.
If	you	choose	not	to	use	process-global	functions,	you	can	access	per-
thread	copies	of	the	NI-488.2	global	functions	using	a	special	set	of	NI-



488.2	calls.	Whenever	a	thread	makes	an	NI-488.2	call,	the	driver	keeps
a	private	copy	of	the	NI-488.2	global	functions	for	that	thread.	The	driver
keeps	a	separate	private	copy	for	each	thread.	The	following	code	shows
the	set	of	calls	you	can	use	to	access	these	per-thread	NI-488.2	global
functions.
unsigned	long	ThreadIbsta();	//	return	thread-specific	Ibsta()
unsigned	long	ThreadIberr();	//	return	thread-specific	Iberr()
unsigned	long	ThreadIbcnt();	//	return	thread-specific	Ibcnt()
In	your	application,	instead	of	accessing	the	per-process	NI-488.2	global
functions,	substitute	a	call	to	get	the	corresponding	per-thread	NI-488.2
global.	For	example,	the	line	of	code
if	(Ibsta()	&	ERR)
could	be	replaced	by
if	(ThreadIbsta()	&	ERR)

Note	If	you	are	using	ibnotify	in	your	application,	the	ibnotify
callback	is	executed	in	a	separate	thread	that	is	created	by	the	NI-
488.2	driver.	Therefore,	if	your	application	makes	NI-488.2	calls
from	the	ibnotify	callback	function	and	makes	NI-488.2	calls	from
other	places,	you	must	use	the	per-thread	NI-488.2	global
functions	through	ThreadIbsta	,	ThreadIberr	,	and	ThreadIbcnt	,
instead	of	the	per-process	NI-488.2	global	functions.



IEEE	488	Command	Messages
These	multiline	interface	messages	are	sent	and	received	with	ATN
asserted.
For	more	information	about	these	messages,	refer	to	the	ANSI/IEEE
Standard	488.1-1987,	IEEE	Standard	Digital	Interface	for	Programmable
Instrumentation,	and	ANSI/IEEE	Standard	488.1-2003,	IEEE	Standard
for	Higher	Performance	Protocol	for	the	Standard	Digital	Interface	for
Programmable	Instrumentation.
Multiline	Interface	Message	Definitions

Hex Decimal ASCII Message
00 0 NUL
01 1 SOH GTL
02 2 STX
03 3 ETX
04 4 EOT SDC
05 5 ENQ PPC
06 6 ACK
07 7 BEL
08 8 BS GET
09 9 HT TCT
0A 10 LF
0B 11 VT
0C 12 FF
0D 13 CR
0E 14 SO
0F 15 SI
10 16 DLE
11 17 DC1 LLO
12 18 DC2



13 19 DC3
14 20 DC4 DCL
15 21 NAK PPU
16 22 SYN
17 23 ETB
18 24 CAN SPE
19 25 EM SPD
1A 26 SUB
1B 27 ESC
1C 28 FS
1D 29 GS
1E 30 RS
1F 31 US CFE
20 32 SP MLA0
21 33 ! MLA1
22 34 " MLA2
23 35 # MLA3
24 36 $ MLA4
25 37 % MLA5
26 38 & MLA6
27 39 ' MLA7
28 40 ( MLA8
29 41 ) MLA9
2A 42 * MLA10
2B 43 + MLA11
2C 44 , MLA12
2D 45 - MLA13
2E 46 . MLA14
2F 47 / MLA15



30 48 0 MLA16
31 49 1 MLA17
32 50 2 MLA18
33 51 3 MLA19
34 52 4 MLA20
35 53 5 MLA21
36 54 6 MLA22
37 55 7 MLA23
38 56 8 MLA24
39 57 9 MLA25
3A 58 : MLA26
3B 59 ; MLA27
3C 60 < MLA28
3D 61 = MLA29
3E 62 > MLA30
3F 63 ? UNL
40 64 @ MTA0
41 65 A MTA1
42 66 B MTA2
43 67 C MTA3
44 68 D MTA4
45 69 E MTA5
46 70 F MTA6
47 71 G MTA7
48 72 H MTA8
49 73 I MTA9
4A 74 J MTA10
4B 75 K MTA11
4C 76 L MTA12



4D 77 M MTA13
4E 78 N MTA14
4F 79 O MTA15
50 80 P MTA16
51 81 Q MTA17
52 82 R MTA18
53 83 S MTA19
54 84 T MTA20
55 85 U MTA21
56 86 V MTA22
57 87 W MTA23
58 88 X MTA24
59 89 Y MTA25
5A 90 Z MTA26
5B 91 [ MTA27
5C 92 \ MTA28
5D 93 ] MTA29
5E 94 ^ MTA30
5F 95 _ UNT
60 96 ` MSA0,	PPE
61 97 a MSA1,	PPE,	CFG1
62 98 b MSA2,	PPE,	CFG2
63 99 c MSA3,	PPE,	CFG3
64 100 d MSA4,	PPE,	CFG4
65 101 e MSA5,	PPE,	CFG5
66 102 f MSA6,	PPE,	CFG6
67 103 g MSA7,	PPE,	CFG7
68 104 h MSA8,	PPE,	CFG8
69 105 i MSA9,	PPE,	CFG9



6A 106 j MSA10,	PPE,	CFG10
6B 107 k MSA11,	PPE,	CFG11
6C 108 l MSA12,	PPE,	CFG12
6D 109 m MSA13,	PPE,	CFG13
6E 110 n MSA14,	PPE,	CFG14
6F 111 o MSA15,	PPE,	CFG15
70 112 p MSA16,	PPD
71 113 q MSA17,	PPD
72 114 r MSA18,	PPD
73 115 s MSA19,	PPD
74 116 t MSA20,	PPD
75 117 u MSA21,	PPD
76 118 v MSA22,	PPD
77 119 w MSA23,	PPD
78 120 x MSA24,	PPD
79 121 y MSA25,	PPD
7A 122 z MSA26,	PPD
7B 123 { MSA27,	PPD
7C 124 | MSA28,	PPD
7D 125 } MSA29,	PPD
7E 126 ~ MSA30,	PPD
7F 127 DEL



Multiline	Interface	Message	Definitions
CFE Configuration	Enable	(This	multiline	interface	message	is	part	of

the	IEEE	488.1-2003	specification	and	supports	the	HS488	high-
speed	protocol.)

CFG Configure	(This	multiline	interface	message	is	part	of	the	IEEE
488.1-2003	specification	and	supports	the	HS488	high-speed
protocol.)

DCL Device	Clear
GET Group	Execute	Trigger
GTL Go	To	Local
LLO Local	Lockout
MLA My	Listen	Address
MSA My	Secondary	Address
MTA My	Talk	Address
PPC Parallel	Poll	Configure
PPD Parallel	Poll	Disable
PPE Parallel	Poll	Enable
PPU Parallel	Poll	Unconfigure
SDC Selected	Device	Clear
SPD Serial	Poll	Disable
SPE Serial	Poll	Enable
TCT Take	Control
UNL Unlisten
UNT Untalk



Glossary
Prefixes 	 A 	 B 	 C 	 D 	 E 	 G 	 H 	 I 	 L 	 M 	 N 	 P 	 R 	 S 	 T 	

U



Prefixes
Symbol Prefix Value
p pico 10	-12

n nano 10	-9

µ micro 10	-6

m milli 10	-3

k kilo 10	3

M mega 10	6

G giga 10	9

T tera 10	12



A
acceptor
handshake

Listeners	use	this	GPIB	interface	function	to	receive
data,	and	all	devices	use	it	to	receive	commands.	See
source	handshake	and	handshake.

access	board The	GPIB	interface	that	controls	and	communicates	with
the	devices	on	the	bus	that	are	attached	to	it.

ANSI American	National	Standards	Institute.
API Application	Programming	Interface.
application
interface

Formerly	called	language	interface.	Code	that	enables
an	application	program	that	uses	NI-488.2	calls	to
access	the	driver.

ASCII American	Standard	Code	for	Information	Interchange.
asynchronous An	action	or	event	that	occurs	at	an	unpredictable	time

with	respect	to	the	execution	of	a	program.
automatic
serial	polling

A	feature	of	the	NI-488.2	software	in	which	serial	polls
are	executed	automatically	by	the	driver	whenever	a
device	asserts	the	GPIB	SRQ	line.



B
base	I/O	address See	I/O	address.
BIOS Basic	Input/Output	System.
board-level
function

A	rudimentary	function	that	performs	a	single
operation.



C
CFE Configuration	Enable.	The	GPIB	command	which	precedes

CFGn	and	is	used	to	place	devices	into	their	configuration	mode.
CFGn These	GPIB	commands	(CFG1	through	CFG15)	follow	CFE	and

are	used	to	configure	all	devices	for	the	number	of	meters	of
cable	in	the	system	so	that	HS488	transfers	occur	without	errors.

CIC Controller-In-Charge.	The	device	that	manages	the	GPIB	by
sending	interface	messages	to	other	devices.

CPU Central	processing	unit.



D
DAV Data	Valid.	One	of	the	three	GPIB	handshake	lines.	See

handshake.
DCL Device	Clear.	The	GPIB	command	used	to	reset	the	device	or

internal	functions	of	all	devices.	See	SDC.
device-
level
function

A	function	that	combines	several	rudimentary	board	operations
into	one	function	so	that	the	user	does	not	have	to	be
concerned	with	bus	management	or	other	GPIB	protocol
matters.

DIO1
through
DIO8

The	GPIB	lines	that	are	used	to	transmit	command	or	data
bytes	from	one	device	to	another.

DLL Dynamic	link	library.
DMA Direct	memory	access.	High-speed	data	transfer	between	the

GPIB	interface	and	memory	that	is	not	handled	directly	by	the
CPU.	Not	available	on	some	systems.	See	programmed	I/O.

driver Device	driver	software	installed	within	the	operating	system.



E
END	or
END
Message

A	message	that	signals	the	end	of	a	data	string.	END	is	sent
by	asserting	the	GPIB	End	or	Identify	(EOI)	line	with	the	last
data	byte.

EOI A	GPIB	line	that	is	used	to	signal	either	the	last	byte	of	a	data
message	(END)	or	the	parallel	poll	Identify	(IDY)	message.

EOS	or
EOS	Byte

A	7-	or	8-bit	end-of-string	character	that	is	sent	as	the	last
byte	of	a	data	message.

EOT End	of	transmission.
ESB The	Event	Status	bit	is	part	of	the	IEEE	488.2-defined	status

byte	which	is	received	from	a	device	responding	to	a	serial
poll.



G
GET Group	Execute	Trigger.	It	is	the	GPIB	command	used	to

trigger	a	device	or	internal	function	of	an	addressed	Listener.
GPIB General	Purpose	Interface	Bus	is	the	common	name	for	the

communications	interface	system	defined	in	ANSI/IEEE
Standard	488.1-1987,	ANSI/IEEE	Standard	488.1-2003,
ANSI/IEEE	Standard	488.2-1987,	and	ANSI/IEEE	Standard
488.2-1992.

GPIB
address

The	address	of	a	device	on	the	GPIB,	composed	of	a	primary
address	(MLA	and	MTA)	and	perhaps	a	secondary	address
(MSA).	The	GPIB	interface	has	both	a	GPIB	address	and	an
I/O	address.

GPIB
interface

Refers	to	the	National	Instruments	family	of	GPIB	interfaces.

GTL Go	To	Local.	It	is	the	GPIB	command	used	to	place	an
addressed	Listener	in	local	(front	panel)	control	mode.



H
handshake The	mechanism	used	to	transfer	bytes	from	the	Source

Handshake	function	of	one	device	to	the	Acceptor
Handshake	function	of	another	device.	The	three	GPIB	lines
DAV,	NRFD,	and	NDAC	are	used	in	an	interlocked	fashion
to	signal	the	phases	of	the	transfer,	so	that	bytes	can	be
sent	asynchronously	(for	example,	without	a	clock)	at	the
speed	of	the	slowest	device.	For	more	information	about
handshaking,	refer	to	the	ANSI/IEEE	Standard	488.1-1987
and	ANSI/IEEE	Standard	488.1-2003.

hex Hexadecimal;	a	number	represented	in	base	16.	For
example,	decimal	16	=	hex	10.

high-level
function

See	device-level	function.

HS488 High-speed	data	transfer	protocol,	part	of	the	IEEE	488.1-
2003	specification.

Hz Hertz.



I
ibcnt After	each	NI-488.2	I/O	call,	this	global	variable	contains	the

actual	number	of	bytes	transmitted.	On	systems	with	a	16-bit
integer,	such	as	MS-DOS,	ibcnt	is	a	16-bit	integer,	and	ibcntl
is	a	32-bit	integer.	For	cross-platform	compatibility,	use	ibcntl,
unless	using	the	newer	NI4882	API.	For	accessing	the	newer
NI4882	API,	use	the	global	function,	Ibcnt,	instead.

Ibcnt After	each	NI-488.2	call,	this	global	function	contains	the
actual	number	of	bytes	transmitted.	The	Ibcnt	function	returns
a	32-bit	integer.	For	accessing	the	newer	NI4882	API,	this
function	is	recommended	instead	of	the	global	variables,	ibcnt
and	ibcntl.

ibcntl After	each	NI-488.2	I/O	call,	this	global	variable	contains	the
actual	number	of	bytes	transmitted.	On	systems	with	a	16-bit
integer,	such	as	MS-DOS,	ibcnt	is	a	16-bit	integer,	and	ibcntl	is
a	32-bit	integer.	For	cross-platform	compatibility,	use	ibcntl,
unless	using	the	newer	NI4882	API.	For	accessing	the	newer
NI4882	API,	use	the	global	function,	Ibcnt,	instead.

iberr A	global	variable	that	contains	the	specific	error	code
associated	with	a	function	call	that	failed.	For	accessing	the
newer	NI4882	API,	use	the	global	function,	Iberr,	instead.

Iberr A	global	function	that	contains	the	specific	error	code
associated	with	a	function	call	that	failed.	For	accessing	the
newer	NI4882	API,	this	function	is	recommended	instead	of
the	global	variable,	iberr.

ibsta At	the	end	of	each	function	call,	this	global	variable	(status
word)	contains	status	information.	For	accessing	the	newer
NI4882	API,	use	the	global	function,	Ibsta,	instead.

Ibsta At	the	end	of	each	function	call,	this	global	function	contains
status	information.	For	accessing	the	newer	NI4882	API,	this
function	is	recommended	instead	of	the	global	variable,	ibsta.

IEEE Institute	of	Electrical	and	Electronic	Engineers.
interface
message

A	broadcast	message	sent	from	the	Controller	to	all	devices
and	used	to	manage	the	GPIB.



I/O Input/output.	In	the	context	of	this	documentation,	the
transmission	of	commands	or	messages	between	the
computer	through	the	GPIB	interface	and	other	devices	on	the
GPIB.

I/O
address

The	address	of	the	GPIB	interface	from	the	point	of	view	of
the	CPU,	as	opposed	to	the	GPIB	address	of	the	GPIB
interface.	Also	called	port	address	or	board	address.

ist An	Individual	Status	bit	of	the	status	byte	used	in	the	Parallel
Poll	Configure	function.



L
LAD Listen	address.	See	MLA.
Listener A	GPIB	device	that	receives	data	messages	from	a	Talker.
LLO Local	Lockout.	The	GPIB	command	used	to	tell	all	devices	that

they	may	or	should	ignore	remote	(GPIB)	data	messages	or
local	(front	panel)	controls,	depending	on	whether	the	device	is
in	local	or	remote	program	mode.

low-
level
function

A	rudimentary	board	or	device	function	that	performs	a	single
operation.



M
m Meters.
MAV The	Message	Available	bit	is	part	of	the	IEEE	488.2-

defined	status	byte	which	is	received	from	a	device
responding	to	a	serial	poll.

MLA My	Listen	Address.	A	GPIB	command	used	to	address	a
device	to	be	a	Listener.	It	can	be	any	one	of	the	31	primary
addresses.

MSA My	Secondary	Address.	The	GPIB	command	used	to
address	a	device	to	be	a	Listener	or	a	Talker	when
extended	(two	byte)	addressing	is	used.	The	complete
address	is	a	MLA	or	MTA	address	followed	by	an	MSA
address.	There	are	31	secondary	addresses	for	a	total	of
961	distinct	listen	or	talk	addresses	for	devices.

MTA My	Talk	Address.	A	GPIB	command	used	to	address	a
device	to	be	a	Talker.	It	can	be	any	one	of	the	31	primary
addresses.

multitasking The	concurrent	processing	of	more	than	one	program	or
task.



N
NDAC Not	Data	Accepted.	One	of	the	three	GPIB	handshake	lines.	See

handshake.
NRFD Not	Ready	For	Data.	One	of	the	three	GPIB	handshake	lines.

See	handshake.



P
parallel	poll The	process	of	polling	all	configured	devices	at	once	and

reading	a	composite	poll	response.	See	serial	poll.
PIO See	programmed	I/O.
PPC Parallel	Poll	Configure.	It	is	the	GPIB	command	used	to

configure	an	addressed	Listener	to	participate	in	polls.
PPD Parallel	Poll	Disable.	It	is	the	GPIB	command	used	to

disable	a	configured	device	from	participating	in	polls.
There	are	16	PPD	commands.

PPE Parallel	Poll	Enable.	It	is	the	GPIB	command	used	to
enable	a	configured	device	to	participate	in	polls	and	to
assign	a	DIO	response	line.	There	are	16	PPE
commands.

PPU Parallel	Poll	Unconfigure.	It	is	the	GPIB	command	used	to
disable	any	device	from	participating	in	polls.

programmed
I/O

Low-speed	data	transfer	between	the	GPIB	interface	and
memory	in	which	the	CPU	moves	each	data	byte
according	to	program	instructions.	See	DMA.



R
resynchronize The	NI-488.2	software	and	the	user	application	must

resynchronize	after	asynchronous	I/O	operations	have
completed.

RQS Request	Service.



S
s Seconds.
SDC Selected	Device	Clear.	The	GPIB	command	used	to	reset

internal	or	device	functions	of	an	addressed	Listener.	See
DCL.

semaphore An	object	that	maintains	a	count	between	zero	and	some
maximum	value,	limiting	the	number	of	threads	that	are
simultaneously	accessing	a	shared	resource.

serial	poll The	process	of	polling	and	reading	the	status	byte	of	one
device	at	a	time.	See	parallel	poll.

service
request

See	SRQ.

source
handshake

The	GPIB	interface	function	that	transmits	data	and
commands.	Talkers	use	this	function	to	send	data,	and	the
Controller	uses	it	to	send	commands.	See	acceptor
handshake	and	handshake.

SPD Serial	Poll	Disable.	The	GPIB	command	used	to	cancel	an
SPE	command.

SPE Serial	Poll	Enable.	The	GPIB	command	used	to	enable	a
specific	device	to	be	polled.	That	device	must	also	be
addressed	to	talk.	See	SPD.

SRQ Service	Request.	The	GPIB	line	that	a	device	asserts	to
notify	the	CIC	that	the	device	needs	servicing.

status	byte The	IEEE	488.2-defined	data	byte	sent	by	a	device	when
it	is	serially	polled.

status	word See	Ibsta.
synchronous Refers	to	the	relationship	between	the	NI-488.2	calls	and

a	process	when	executing	driver	calls	is	predictable;	the
process	is	blocked	until	the	driver	completes	the	function.

System
Controller

The	single	designated	Controller	that	can	assert	control
(become	CIC	of	the	GPIB)	by	sending	the	Interface	Clear
(IFC)	message.	Other	devices	can	become	CIC	only	by
having	control	passed	to	them.



T
TAD Talk	Address.	See	MTA.
Talker A	GPIB	device	that	sends	data	messages	to	Listeners.
TCT Take	Control.	The	GPIB	command	used	to	pass	control	of	the

bus	from	the	current	Controller	to	an	addressed	Talker.
timeout A	feature	of	the	NI-488.2	driver	that	prevents	I/O	calls	from

hanging	indefinitely	when	there	is	a	problem	on	the	GPIB.
TLC An	integrated	circuit	that	implements	most	of	the	GPIB	Talker,

Listener,	and	Controller	functions	in	hardware.



U
ud Unit	descriptor.	A	variable	name	and	first	argument	of	each

function	call	that	contains	the	unit	descriptor	of	the	GPIB	interface
or	other	GPIB	device	that	is	the	object	of	the	function.

UNL Unlisten.	The	GPIB	command	used	to	unaddress	any	active
Listeners.

UNT Untalk.	The	GPIB	command	used	to	unaddress	an	active	Talker.



Warranty
The	media	on	which	you	receive	National	Instruments	software	are
warranted	not	to	fail	to	execute	programming	instructions,	due	to	defects
in	materials	and	workmanship,	for	a	period	of	90	days	from	date	of
shipment,	as	evidenced	by	receipts	or	other	documentation.	National
Instruments	will,	at	its	option,	repair	or	replace	software	media	that	do	not
execute	programming	instructions	if	National	Instruments	receives	notice
of	such	defects	during	the	warranty	period.	National	Instruments	does	not
warrant	that	the	operation	of	the	software	shall	be	uninterrupted	or	error
free.
A	Return	Material	Authorization	(RMA)	number	must	be	obtained	from
the	factory	and	clearly	marked	on	the	outside	of	the	package	before	any
equipment	will	be	accepted	for	warranty	work.	National	Instruments	will
pay	the	shipping	costs	of	returning	to	the	owner	parts	which	are	covered
by	warranty.
National	Instruments	believes	that	the	information	in	this	document	is
accurate.	The	document	has	been	carefully	reviewed	for	technical
accuracy.	In	the	event	that	technical	or	typographical	errors	exist,
National	Instruments	reserves	the	right	to	make	changes	to	subsequent
editions	of	this	document	without	prior	notice	to	holders	of	this	edition.
The	reader	should	consult	National	Instruments	if	errors	are	suspected.
In	no	event	shall	National	Instruments	be	liable	for	any	damages	arising
out	of	or	related	to	this	document	or	the	information	contained	in	it.
EXCEPT	AS	SPECIFIED	HEREIN,	NATIONAL	INSTRUMENTS	MAKES
NO	WARRANTIES,	EXPRESS	OR	IMPLIED,	AND	SPECIFICALLY
DISCLAIMS	ANY	WARRANTY	OF	MERCHANTABILITY	OR	FITNESS
FOR	A	PARTICULAR	PURPOSE.	CUSTOMER'S	RIGHT	TO	RECOVER
DAMAGES	CAUSED	BY	FAULT	OR	NEGLIGENCE	ON	THE	PART	OF
NATIONAL	INSTRUMENTS	SHALL	BE	LIMITED	TO	THE	AMOUNT
THERETOFORE	PAID	BY	THE	CUSTOMER.	NATIONAL
INSTRUMENTS	WILL	NOT	BE	LIABLE	FOR	DAMAGES	RESULTING
FROM	LOSS	OF	DATA,	PROFITS,	USE	OF	PRODUCTS,	OR
INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES,	EVEN	IF	ADVISED	OF
THE	POSSIBILITY	THEREOF.	This	limitation	of	the	liability	of	National
Instruments	will	apply	regardless	of	the	form	of	action,	whether	in
contract	or	tort,	including	negligence.	Any	action	against	National
Instruments	must	be	brought	within	one	year	after	the	cause	of	action



accrues.	National	Instruments	shall	not	be	liable	for	any	delay	in
performance	due	to	causes	beyond	its	reasonable	control.	The	warranty
provided	herein	does	not	cover	damages,	defects,	malfunctions,	or
service	failures	caused	by	owner's	failure	to	follow	the	National
Instruments	installation,	operation,	or	maintenance	instructions;	owner's
modification	of	the	product;	owner's	abuse,	misuse,	or	negligent	acts;
and	power	failure	or	surges,	fire,	flood,	accident,	actions	of	third	parties,
or	other	events	outside	reasonable	control.



Copyright
Under	the	copyright	laws,	this	publication	may	not	be	reproduced	or
transmitted	in	any	form,	electronic	or	mechanical,	including	photocopying,
recording,	storing	in	an	information	retrieval	system,	or	translating,	in
whole	or	in	part,	without	the	prior	written	consent	of	National	Instruments
Corporation.
National	Instruments	respects	the	intellectual	property	of	others,	and	we
ask	our	users	to	do	the	same.	NI	software	is	protected	by	copyright	and
other	intellectual	property	laws.	Where	NI	software	may	be	used	to
reproduce	software	or	other	materials	belonging	to	others,	you	may	use
NI	software	only	to	reproduce	materials	that	you	may	reproduce	in
accordance	with	the	terms	of	any	applicable	license	or	other	legal
restriction.



Trademarks
National	Instruments,	NI,	ni.com,	and	LabVIEW	are	trademarks	of
National	Instruments	Corporation.	Refer	to	the	Terms	of	Use	section	on
ni.com/legal	for	more	information	about	National	Instruments	trademarks.
FireWire®	is	the	registered	trademark	of	Apple	Computer,	Inc.
Handle	Graphics®,	MATLAB®,	Real-Time	Workshop®,	Simulink®,
Stateflow®,	and	xPC	TargetBox®	are	registered	trademarks,	and
TargetBox™	and	Target	Language	Compiler™	are	trademarks	of	The
MathWorks,	Inc.
Tektronix®	and	Tek	are	registered	trademarks	of	Tektronix,	Inc.
The	Bluetooth®	word	mark	is	a	registered	trademark	owned	by	the
Bluetooth	SIG,	Inc.
Other	product	and	company	names	mentioned	herein	are	trademarks	or
trade	names	of	their	respective	companies.
Members	of	the	National	Instruments	Alliance	Partner	Program	are
business	entities	independent	from	National	Instruments	and	have	no
agency,	partnership,	or	joint-venture	relationship	with	National
Instruments.

javascript:WWW(WWW_Trademark)


Patents
For	patents	covering	National	Instruments	products,	refer	to	the
appropriate	location:	Help»Patents	in	your	software,	the	patents.txt	file	on
your	media,	or	ni.com/patents.

javascript:WWW(WWW_Patents)


Technical	Support	and	Professional	Services
Visit	the	following	sections	of	the	award-winning	National	Instruments
Web	site	at	ni.com	for	technical	support	and	professional	services:

Support—Technical	support	resources	at	ni.com/support	include
the	following:

Self-Help	Resources—For	answers	and	solutions,	visit
ni.com/support	for	software	drivers	and	updates,	a
searchable	KnowledgeBase,	product	manuals,	step-by-
step	troubleshooting	wizards,	thousands	of	example
programs,	tutorials,	application	notes,	instrument	drivers,
and	so	on.	Registered	users	also	receive	access	to	the	NI
Discussion	Forums	at	ni.com/forums.	NI	Applications
Engineers	make	sure	every	question	submitted	online
receives	an	answer.
Standard	Service	Program	Membership—This
program	entitles	members	to	direct	access	to	NI
Applications	Engineers	via	phone	and	email	for	one-to-
one	technical	support,	as	well	as	exclusive	access	to	on
demand	training	modules	via	the	Services	Resource
Center.	NI	offers	complementary	membership	for	a	full
year	after	purchase,	after	which	you	may	renew	to
continue	your	benefits.
For	information	about	other	technical	support	options	in
your	area,	visit	ni.com/services	or	contact	your	local	office
at	ni.com/contact.

Training	and	Certification—Visit	ni.com/training	for	self-paced
training,	eLearning	virtual	classrooms,	interactive	CDs,	and
Certification	program	information.	You	also	can	register	for
instructor-led,	hands-on	courses	at	locations	around	the	world.
System	Integration—If	you	have	time	constraints,	limited	in-
house	technical	resources,	or	other	project	challenges,	National
Instruments	Alliance	Partner	members	can	help.	To	learn	more,
call	your	local	NI	office	or	visit	ni.com/alliance.

If	you	searched	ni.com	and	could	not	find	the	answers	you	need,	contact
your	local	office	or	NI	corporate	headquarters.	You	also	can	visit	the
Worldwide	Offices	section	of	ni.com/niglobal	to	access	the	branch	office

javascript:WWW(WWW_Support)
javascript:WWW(WWW_KB)
javascript:WWW(WWW_Manuals)
javascript:WWW(WWW_Exchange)
javascript:WWW(WWW_SRC)
javascript:WWW(WWW_Service)
javascript:WWW(WWW_Contact)
javascript:WWW(WWW_Customer_Education)
javascript:WWW(WWW_Integration)
javascript:WWW(WWW_Global)


Web	sites,	which	provide	up-to-date	contact	information,	support	phone
numbers,	email	addresses,	and	current	events.



FindLstn



Purpose
Find	listening	devices	on	the	GPIB.



Format
C
void	FindLstn	(int	boardID,	const	Addr4882_t	*padlist,	short	*resultlist,	size_t
limit)



Visual	Basic
CALL	FindLstn	(boardID%,	padlist%(),	resultlist%(),	limit%)



Interactive	Control	(Usage	Notes)
FindLstn	padlist	limit



Input
boardID The	interface	number
padlist A	list	of	primary	addresses	that	is	terminated	by	NOADDR
limit Total	number	of	entries	that	can	be	placed	in	resultlist



Output
resultlist Addresses	of	all	listening	devices	found	by	FindLstn	are	placed

in	this	array



Description
FindLstn	tests	all	of	the	primary	addresses	in	padlist	as	follows:	If	a	device
is	present	at	a	primary	address	given	in	padlist,	the	primary	address	is
stored	in	resultlist.	Otherwise,	all	secondary	addresses	of	the	primary
address	are	tested,	and	the	addresses	of	any	devices	found	are	stored	in
resultlist.	No	more	than	limit	addresses	are	stored	in	resultlist.	Ibcnt
contains	the	actual	number	of	addresses	stored	in	resultlist.



Possible	Errors
EARG An	invalid	primary	address	appears	in	padlist;	Ibcnt	is	the	index	of

the	first	invalid	address	in	the	padlist	array.
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.
ETAB The	number	of	devices	found	on	the	GPIB	exceed	limit.



AllSpoll
Purpose
Serial	poll	all	devices.



Format
C
void	AllSpoll	(int	boardID,	const	Addr4882_t	*addrlist,	short	*resultlist)



Visual	Basic
CALL	AllSpoll	(boardID%,	addrlist%(),	resultlist%())



Interactive	Control	(Usage	Notes)
AllSpoll	addrlist



Input
boardID The	interface	number
addrlist A	list	of	device	addresses	terminated	by	NOADDR



Output
resultlist A	list	of	serial	poll	response	bytes	corresponding	to	device

addresses	in	addrlist



Description
AllSpoll	serial	polls	all	of	the	devices	described	by	addrlist.	It	stores	the
poll	responses	in	resultlist	and	the	number	of	responses	in	Ibcnt.	For	more
information	about	serial	polling,	refer	to	the	Serial	Polling	Overview.



Possible	Errors
EABO One	of	the	devices	timed	out	instead	of	responding	to	the	serial

poll;	Ibcnt	contains	the	index	of	the	timed-out	device.
EARG An	invalid	address	appears	in	addrlist;	Ibcnt	is	the	index	of	the

first	invalid	address	in	the	addrlist	array.
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



DevClear



Purpose
Clear	a	single	device.



Format
C
void	DevClear	(int	boardID,	Addr4882_t	address)



Visual	Basic
CALL	DevClear	(boardID%,	address%)



Interactive	Control	(Usage	Notes)
DevClear	address



Input
boardID The	interface	number
address Address	of	the	device	you	want	to	clear



Description
DevClear	sends	the	Selected	Device	Clear	(SDC)	GPIB	message	to	the
device	described	by	address.	If	address	is	the	constant	NOADDR,	the
Universal	Device	Clear	(DCL)	message	is	sent	to	all	devices.



Possible	Errors
EARG The	address	parameter	does	not	contain	a	valid	address.
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



DevClearList



Purpose
Clear	multiple	devices.



Format
C
void	DevClearList	(int	boardID,	const	Addr4882_t	*addrlist)



Visual	Basic
CALL	DevClearList	(boardID%,	addrlist%())



Interactive	Control	(Usage	Notes)
DevClearList	addrlist



Input
boardID The	interface	number
addrlist A	list	of	device	addresses	terminated	by	NOADDR	that	you

want	to	clear



Description
DevClearList	sends	the	Selected	Device	Clear	(SDC)	GPIB	message	to
all	the	device	addresses	described	by	addrlist.	If	addrlist	contains	only	the
constant	NOADDR,	the	Universal	Device	Clear	(DCL)	message	is	sent	to
all	the	devices	on	the	bus.



Possible	Errors
EARG An	invalid	address	appears	in	addrlist;	Ibcnt	is	the	index	of	the

first	invalid	address	in	the	addrlist	array.
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



EnableLocal



Purpose
Enable	operations	from	the	front	panel	of	devices	(leave	remote
programming	mode).



Format
C
void	EnableLocal	(int	boardID,	const	Addr4882_t	*addrlist)



Visual	Basic
CALL	EnableLocal	(boardID%,	addrlist%())



Interactive	Control	(Usage	Notes)
EnableLocal	addrlist



Input
boardID The	interface	number
addrlist A	list	of	device	addresses	that	is	terminated	by	NOADDR



Description
EnableLocal	sends	the	Go	To	Local	(GTL)	GPIB	message	to	all	the
devices	described	by	addrlist.	This	places	the	devices	into	local	mode.	If
addrlist	contains	only	the	constant	NOADDR,	the	Remote	Enable	(REN)
GPIB	line	is	unasserted.



Possible	Errors
EARG An	invalid	address	appears	in	addrlist;	Ibcnt	is	the	index	of	the

first	invalid	address	in	the	addrlist	array.
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.
ESAC The	interface	is	not	configured	as	System	Controller.



EnableRemote



Purpose
Enable	remote	GPIB	programming	for	devices.



Format
C
void	EnableRemote	(int	boardID,	const	Addr4882_t	*addrlist)



Visual	Basic
CALL	EnableRemote	(boardID%,	addrlist%())



Interactive	Control	(Usage	Notes)
EnableRemote	addrlist



Input
boardID The	interface	number
addrlist A	list	of	device	addresses	that	is	terminated	by	NOADDR



Description
EnableRemote	asserts	the	Remote	Enable	(REN)	GPIB	line.	All	devices
described	by	addrlist	are	put	into	a	listen-active	state.



Possible	Errors
EARG An	invalid	address	appears	in	addrlist;	Ibcnt	is	the	index	of	the

first	invalid	address	in	the	addrlist	array.
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.
ESAC The	interface	is	not	configured	as	System	Controller.



FindRQS



Purpose
Determine	which	device	is	requesting	service.



Format
C
void	FindRQS	(int	boardID,	const	Addr4882_t	*addrlist,	short	*result)



Visual	Basic
CALL	FindRQS	(boardID%,	addrlist%(),	result%)



Interactive	Control	(Usage	Notes)
FindRQS	addrlist



Input
boardID The	interface	number
addrlist List	of	device	addresses	that	is	terminated	by	NOADDR



Output
result Serial	poll	response	byte	of	the	device	that	is	requesting	service



Description
FindRQS	serial	polls	the	devices	described	by	addrlist,	in	order,	until	it
finds	a	device	which	is	requesting	service.	The	serial	poll	response	byte
is	then	placed	in	result.	Ibcnt	contains	the	index	of	the	device	requesting
service	in	addrlist.	If	none	of	the	devices	are	requesting	service,	the	index
corresponding	to	NOADDR	in	addrlist	is	returned	in	Ibcnt	and	ETAB	is
returned	in	Iberr.	For	more	information	about	serial	polling,	refer	to	the
Serial	Polling	Overview.



Possible	Errors
EARG An	invalid	address	appears	in	addrlist;	Ibcnt	is	the	index	of	the

first	invalid	address	in	the	addrlist	array.
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.
ETAB None	of	the	devices	in	addrlist	are	requesting	service	or	addrlist

contains	only	NOADDR.	Ibcnt	contains	the	index	of	NOADDR	in
addrlist.



PassControl



Purpose
Pass	control	to	another	device	with	Controller	capability.



Format
C
void	PassControl	(int	boardID,	Addr4882_t	address)



Visual	Basic
CALL	PassControl	(boardID%,	address%)



Interactive	Control	(Usage	Notes)
PassControl	address



Input
boardID The	interface	number
address Address	of	the	device	to	which	you	want	to	pass	control



Description
PassControl	sends	the	Take	Control	(TCT)	GPIB	message	to	the	device
described	by	address.	The	device	becomes	Controller-In-Charge	(CIC)
and	the	interface	is	no	longer	CIC.



Possible	Errors
EARG The	address	parameter	is	invalid.	It	must	be	a	valid

primary/secondary	address	pair.	It	cannot	be	the	constant
NOADDR.

EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



PPoll



Purpose
Perform	a	parallel	poll	on	the	GPIB.



Format
C
void	PPoll	(int	boardID,	short	*result)



Visual	Basic
CALL	PPoll	(boardID%,	result%)



Interactive	Control	(Usage	Notes)
PPoll



Input
boardID The	interface	number



Output
result The	parallel	poll	result



Description
PPoll	conducts	a	parallel	poll	and	the	result	is	placed	in	result.	Each	of	the
eight	bits	of	result	represents	the	status	information	for	each	device
configured	for	a	parallel	poll.	The	interpretation	of	the	status	information
is	based	on	the	latest	parallel	poll	configuration	command	sent	to	each
device	(see	PPollConfig	and	PPollUnconfig).	The	Controller	can	use
parallel	polling	to	obtain	one-bit,	device-dependent	status	messages	from
up	to	eight	devices	simultaneously.
For	more	information	about	parallel	polling,	refer	to	the	Parallel	Polling
Overview.



Possible	Errors
EARG result	does	not	point	to	a	valid	memory	location.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



PPollConfig



Purpose
Configure	a	device	to	respond	to	parallel	polls.



Format
C
void	PPollConfig	(int	boardID,	Addr4882_t	address,	int	dataline,	int	lineSense)



Visual	Basic
CALL	PPollConfig	(boardID%,	address%,	dataline%,	lineSense%)



Interactive	Control	(Usage	Notes)
PPollConfig	address	dataline	lineSense



Input
boardID The	interface	number
address Address	of	the	device	to	be	configured
dataline Data	line	(a	value	in	the	range	of	1	to	8)	on	which	the	device

responds	to	parallel	polls
lineSense Sense	(either	0	or	1)	of	the	parallel	poll	response



Description
PPollConfig	configures	the	device	described	by	address	to	respond	to
parallel	polls	by	asserting	or	not	asserting	the	GPIB	data	line,	dataline.	If
lineSense	equals	the	individual	status	(ist)	bit	of	the	device,	the	assigned
GPIB	data	line	is	asserted	during	a	parallel	poll.	Otherwise,	the	data	line
is	not	asserted	during	a	parallel	poll.	The	Controller	can	use	parallel
polling	to	obtain	1-bit,	device-dependent	status	messages	from	up	to
eight	devices	simultaneously.
For	more	information	about	parallel	polling,	refer	to	the	Parallel	Polling
Overview.



Possible	Errors
EARG Either	the	address	parameter	is	invalid,	dataline	is	not	in	the	range

1	to	8,	or	lineSense	is	not	0	or	1.	The	address	must	be	a	valid
primary/secondary	address	pair.	It	cannot	be	the	constant
NOADDR.

EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



PPollUnconfig



Purpose
Unconfigure	devices	for	parallel	polls.



Format
C
void	PPollUnconfig	(int	boardID,	const	Addr4882_t	*addrlist)



Visual	Basic
CALL	PPollUnconfig	(boardID%,	addrlist%())



Interactive	Control	(Usage	Notes)
PPollUnconfig	addrlist



Input
boardID The	interface	number
addrlist A	list	of	device	addresses	that	is	terminated	by	NOADDR



Description
PPollUnconfig	unconfigures	all	the	devices	described	by	addrlist	for
parallel	polls.	If	addrlist	contains	only	the	constant	NOADDR,	the	Parallel
Poll	Unconfigure	(PPU)	GPIB	message	is	sent	to	all	GPIB	devices.	The
devices	unconfigured	by	this	function	do	not	participate	in	subsequent
parallel	polls.
For	more	information	about	parallel	polling,	refer	to	the	Parallel	Polling
Overview.



Possible	Errors
EARG An	invalid	address	appears	in	addrlist;	Ibcnt	is	the	index	of	the

first	invalid	address	in	the	addrlist	array.
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



RcvRespMsg



Purpose
Read	data	bytes	from	a	device	that	is	already	addressed	to	talk.



Format
C
void	RcvRespMsg	(int	boardID,	void	*buffer,	size_t	count,	int	termination)



Visual	Basic
CALL	RcvRespMsg	(boardID%,	buffer$,	termination%)



Interactive	Control	(Usage	Notes)
RcvRespMsg	count	termination



Input
boardID The	interface	number
count Number	of	bytes	read
termination Description	of	the	data	termination	mode	(STOPend	or	an	8-

bit	EOS	character)



Output
buffer Stores	the	received	data	bytes



Description
RcvRespMsg	reads	up	to	count	bytes	from	the	GPIB	and	places	these
bytes	into	buffer.	Data	bytes	are	read	until	either	count	data	bytes	have
been	read	or	the	termination	condition	is	detected.	If	the	termination
condition	is	STOPend,	the	read	is	stopped	when	a	byte	is	received	with
the	EOI	line	asserted.	Otherwise,	the	read	is	stopped	when	the	8-bit	EOS
character	is	detected.	The	actual	number	of	bytes	transferred	is	returned
in	the	global	function,	Ibcnt.
RcvRespMsg	assumes	that	the	interface	is	already	in	its	listen-active	state
and	a	device	is	already	addressed	to	be	a	Talker	(see	ReceiveSetup	or
Receive).



Possible	Errors
EABO The	I/O	timeout	period	elapsed	before	all	the	bytes	were

received.
EADR The	interface	is	not	in	the	listen-active	state;	use	ReceiveSetup

to	address	the	GPIB	properly.
EARG The	termination	parameter	is	invalid.	It	must	be	either	STOPend	or

an	8-bit	EOS	character.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



ReadStatusByte



Purpose
Serial	poll	a	single	device.



Format
C
void	ReadStatusByte	(int	boardID,	Addr4882_t	address,	short	*result)



Visual	Basic
CALL	ReadStatusByte	(boardID%,	address%,	result%)



Interactive	Control	(Usage	Notes)
ReadStatusByte	address



Input
boardID The	interface	number
address A	device	address



Output
result Serial	poll	response	byte



Description
ReadStatusByte	serial	polls	the	device	described	by	address.	The	response
byte	is	stored	in	result.



Possible	Errors
EABO The	device	times	out	instead	of	responding	to	the	serial	poll.
EARG The	address	parameter	is	invalid.
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



Receive



Purpose
Read	data	bytes	from	a	device.



Format
C
void	Receive	(int	boardID,	Addr4882_t	address,	void	*buffer,	size_t	count,	int
termination)



Visual	Basic
CALL	Receive	(boardID%,	address%,	buffer$,	termination%)



Interactive	Control	(Usage	Notes)
Receive	address	count	termination



Input
boardID The	interface	number
address Address	of	a	device	to	receive	data
count Number	of	bytes	to	read
termination Description	of	the	data	termination	mode	(STOPend	or	an

EOS	character)



Output
buffer Stores	the	received	data	bytes



Description
Receive	addresses	the	device	described	by	address	to	talk	and	the
interface	to	listen.	Then	up	to	count	bytes	are	read	and	placed	into	the
buffer.	Data	bytes	are	read	until	either	count	bytes	have	been	read	or	the
termination	condition	is	detected.	If	the	termination	condition	is	STOPend,
the	read	is	stopped	when	a	byte	is	received	with	the	EOI	line	asserted.
Otherwise,	the	read	is	stopped	when	an	8-bit	EOS	character	is	detected.
The	actual	number	of	bytes	transferred	is	returned	in	the	global	function,
Ibcnt.



Possible	Errors
EABO The	I/O	timeout	period	elapsed	before	all	the	bytes	were

received.
EARG The	address	or	termination	parameter	is	invalid.	The	address	must

be	a	valid	primary/secondary	address	pair.	It	cannot	be	the
constant	NOADDR.

EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



ReceiveSetup



Purpose
Address	a	device	to	be	a	Talker	and	the	interface	to	be	a	Listener	in
preparation	for	RcvRespMsg.



Format
C
void	ReceiveSetup	(int	boardID,	Addr4882_t	address)



Visual	Basic
CALL	ReceiveSetup	(boardID%,	address%)



Interactive	Control	(Usage	Notes)
ReceiveSetup	address



Input
boardID The	interface	number
address Address	of	a	device	to	be	talk	addressed



Description
ReceiveSetup	makes	the	device	described	by	address	talk-active,	and
makes	the	interface	listen-active.	This	call	is	usually	followed	by	a	call	to
RcvRespMsg	to	transfer	data	from	the	device	to	the	interface.	This	call	is
particularly	useful	to	make	multiple	calls	to	RcvRspMsg;	it	eliminates	the
need	to	readdress	the	device	to	receive	every	block	of	data.



Possible	Errors
EARG The	address	parameter	is	invalid.
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



ResetSys



Purpose
Reset	and	initialize	IEEE	488.2-compliant	devices.



Format
C
void	ResetSys	(int	boardID,	const	Addr4882_t	*addrlist)



Visual	Basic
CALL	ResetSys	(boardID%,	addrlist%())



Interactive	Control	(Usage	Notes)
ResetSys	addrlist



Input
boardID The	interface	number
addrlist A	list	of	device	addresses	that	is	terminated	by	NOADDR



Description
The	reset	and	initialization	take	place	in	three	steps.	The	first	step	resets
the	GPIB	by	asserting	the	Remote	Enable	(REN)	line	and	then	the
Interface	Clear	(IFC)	line.	The	second	step	clears	all	of	the	devices	by
sending	the	Universal	Device	Clear	(DCL)	GPIB	message.	The	final	step
causes	IEEE	488.2-compliant	devices	to	perform	device-specific	reset
and	initialization.	This	step	is	accomplished	by	sending	the	message
"*RST\n"	to	the	devices	described	by	addrlist.



Possible	Errors
EABO I/O	operation	is	aborted
EARG Either	an	invalid	address	appears	in	addrlist	or	addrlist	is	empty;

Ibcnt	is	the	index	of	the	first	invalid	address	in	the	addrlist	array.
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
ENOL No	Listeners	are	on	the	GPIB.
EOIP Asynchronous	I/O	is	in	progress.
ESAC The	board	is	not	System	Controller.



Send



Purpose
Send	data	bytes	to	a	device.



Format
C
void	Send	(int	boardID,	Addr4882_t	address,	const	void	*buffer,	size_t	count,
int	eotmode)



Visual	Basic
CALL	Send	(boardID%,	address%,	buffer$,	eotmode%)



Interactive	Control	(Usage	Notes)
Send	address	buffer	eotmode



Input
boardID The	interface	number
address Address	of	a	device	to	which	data	is	sent
buffer The	data	bytes	to	be	sent
count Number	of	bytes	to	be	sent
eotmode The	data	termination	mode:	DABend,	NULLend,	or	NLend



Description
Send	addresses	the	device	described	by	address	to	listen	and	the	interface
to	talk.	Then	count	bytes	from	buffer	are	sent	to	the	device.	The	last	byte
is	sent	with	the	EOI	line	asserted	if	eotmode	is	DABend.	The	last	byte	is
sent	without	the	EOI	line	asserted	if	eotmode	is	NULLend.	If	eotmode	is
NLend	then	a	new	line	character	('\n')	is	sent	with	the	EOI	line	asserted
after	the	last	byte	of	buffer.	The	actual	number	of	bytes	transferred	is
returned	in	the	global	function,	Ibcnt.



Possible	Errors
EABO The	I/O	timeout	period	has	expired	before	all	of	the	bytes	were

sent.
EARG Either	the	address	parameter	or	eotmode	parameter	is	invalid,	or

the	buffer	is	empty	and	eotmode	is	DABend.	The	address	must	be
a	valid	primary/secondary	address	pair;	it	cannot	be	the	constant
NOADDR.	The	eotmode	parameter	can	only	be	DABend,
NULLend,	or	NLend.

EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
ENOL No	Listeners	are	on	the	GPIB	to	accept	the	data	bytes.
EOIP Asynchronous	I/O	is	in	progress.



SendCmds



Purpose
Send	GPIB	command	bytes.



Format
C
void	SendCmds	(int	boardID,	const	void	*buffer,	size_t	count)



Visual	Basic
CALL	SendCmds	(boardID%,	buffer$)



Interactive	Control	(Usage	Notes)
SendCmds	buffer



Input
boardID The	interface	number
buffer Command	bytes	to	be	sent
count Number	of	bytes	to	be	sent



Description
SendCmds	sends	count	command	bytes	from	buffer	over	the	GPIB	as
command	bytes	(interface	messages).	The	number	of	command	bytes
transferred	is	returned	in	the	global	function	Ibcnt.	Refer	to	the	IEEE	488
command	messages	for	defined	interface	messages.
Use	command	bytes	to	configure	the	state	of	the	GPIB,	not	to	send
instructions	to	GPIB	devices.	Use	Send	or	SendList	to	send	device-
specific	instructions.



Possible	Errors
EABO The	I/O	timeout	period	expired	before	all	of	the	command	bytes

were	sent.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
ENOL No	devices	are	connected	to	the	GPIB.
EOIP Asynchronous	I/O	is	in	progress.



SendDataBytes



Purpose
Send	data	bytes	to	devices	that	are	already	addressed	to	listen.



Format
C
void	SendDataBytes	(int	boardID,	const	void	*buffer,	size_t	count,	int
eotmode)



Visual	Basic
CALL	SendDataBytes	(boardID%,	buffer$,	eotmode%)



Interactive	Control	(Usage	Notes)
SendDataBytes	buffer	eotmode



Input
boardID The	interface	number
buffer The	data	bytes	to	be	sent
count Number	of	bytes	to	be	sent
eotmode The	data	termination	mode:	DABend,	NULLend,	or	NLend



Description
SendDataBytes	sends	count	number	of	bytes	from	the	buffer	to	devices
which	are	already	addressed	to	listen.	The	last	byte	is	sent	with	the	EOI
line	asserted	if	eotmode	is	DABend;	the	last	byte	is	sent	without	the	EOI
line	asserted	if	eotmode	is	NULLend.	If	eotmode	is	NLend	then	a	new	line
character	('\n')	is	sent	with	the	EOI	line	asserted	after	the	last	byte.	The
actual	number	of	bytes	transferred	is	returned	in	the	global	function,
Ibcnt.
SendDataBytes	assumes	that	the	interface	is	in	talk-active	state	and	that
devices	are	already	addressed	as	Listeners	on	the	GPIB	(see
SendSetup,	Send,	or	SendList).



Possible	Errors
EABO The	I/O	timeout	period	expired	before	all	of	the	bytes	were	sent.
EADR The	interface	is	not	talk-active;	use	SendSetup	to	address	the

GPIB	properly.
EARG Either	the	eotmode	parameter	is	invalid	(it	can	only	be	DABend,

NULLend,	or	NLend),	or	the	buffer	is	empty	and	the	eotmode	is
DABend.

EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not
properly	installed.

EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
ENOL No	Listeners	are	on	the	GPIB	to	accept	the	data	bytes;	use

SendSetup	to	address	the	GPIB	properly.
EOIP Asynchronous	I/O	is	in	progress.



SendIFC



Purpose
Reset	the	GPIB	by	sending	interface	clear.



Format
C
void	SendIFC	(int	boardID)



Visual	Basic
CALL	SendIFC	(boardID%)



Interactive	Control	(Usage	Notes)
SendIFC



Input
boardID The	interface	number



Description
SendIFC	is	used	as	part	of	GPIB	initialization.	It	forces	the	interface	to	be
Controller-In-Charge	of	the	GPIB.	It	also	ensures	that	the	connected
devices	are	all	un-addressed	and	that	the	interface	calls	of	the	devices
are	in	their	idle	states.



Possible	Errors
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.
ESAC The	interface	is	not	configured	as	the	System	Controller;	see

ibconfig,	option	IbcSC.



SendList



Purpose
Send	data	bytes	to	multiple	GPIB	devices.



Format
C
void	SendList	(int	boardID,	const	Addr4882_t	*addrlist,	const	void	*buffer,
size_t	count,	int	eotmode)



Visual	Basic
CALL	SendList	(boardID%,	addrlist%(),	buffer$,	eotmode%)



Interactive	Control	(Usage	Notes)
SendList	addrlist	buffer	eotmode



Input
boardID The	interface	number
addrlist A	list	of	device	addresses	to	send	data
buffer The	data	bytes	to	be	sent
count Number	of	bytes	transmitted
eotmode The	data	termination	mode:	DABend,	NULLend,	or	NLend



Description
SendList	addresses	the	devices	described	by	addrlist	to	listen	and	the
interface	to	talk.	Then,	count	bytes	from	buffer	are	sent	to	the	devices.
The	last	byte	is	sent	with	the	EOI	line	asserted	if	eotmode	is	DABend.	The
last	byte	is	sent	without	the	EOI	line	asserted	if	eotmode	is	NULLend.	If
eotmode	is	NLend,	a	new	line	character	('\n')	is	sent	with	the	EOI	line
asserted	after	the	last	byte.	The	actual	number	of	bytes	transferred	is
returned	in	the	global	function,	Ibcnt.



Possible	Errors
EABO The	I/O	timeout	period	expired	before	all	of	the	bytes	were	sent.
EARG Either	an	invalid	address	appears	in	addrlist	or	the	addrlist	is

empty	(Ibcnt	is	the	index	of	the	first	invalid	address),	or	the
eotmode	parameter	is	invalid.	The	eotmode	parameter	can	only	be
DABend,	NULLend,	or	NLend.	If	the	buffer	is	empty,	an	eotmode	of
DABend	is	disallowed.

EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



SendLLO



Purpose
Send	the	Local	Lockout	(LLO)	message	to	all	devices.



Format
C
void	SendLLO	(int	boardID)



Visual	Basic
CALL	SendLLO	(boardID%)



Interactive	Control	(Usage	Notes)
SendLLO



Input
boardID The	interface	number



Description
SendLLO	sends	the	GPIB	Local	Lockout	(LLO)	message	to	all	devices.
While	Local	Lockout	is	in	effect,	only	the	Controller-In-Charge	can	alter
the	state	of	the	devices	by	sending	appropriate	GPIB	messages.
SendLLO	is	reserved	for	use	in	unusual	local/remote	situations.	In	the
typical	case	of	placing	the	devices	in	Remote	With	Local	Lockout,	use
SetRWLS.



Possible	Errors
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.
ESAC The	interface	is	not	configured	as	System	Controller.



SendSetup



Purpose
Set	up	devices	to	receive	data	in	preparation	for	SendDataBytes.



Format
C
void	SendSetup	(int	boardID,	const	Addr4882_t	*addrlist)



Visual	Basic
CALL	SendSetup	(boardID%,	addrlist%())



Interactive	Control	(Usage	Notes)
Send	addrlist



Input
boardID The	interface	number
addrlist A	list	of	device	addresses	that	is	terminated	by	NOADDR



Description
SendSetup	makes	the	devices	described	by	addrlist	listen-active	and
makes	the	interface	talk-active.	This	call	is	usually	followed	by
SendDataBytes	to	actually	transfer	data	from	the	interface	to	the	devices.
SendSetup	is	particularly	useful	to	set	up	the	addressing	before	making
multiple	calls	to	SendDataBytes;	it	eliminates	the	need	to	readdress	the
devices	for	every	block	of	data.



Possible	Errors
EARG Either	an	invalid	address	appears	in	addrlist	or	the	addrlist	is

empty;	Ibcnt	is	the	index	of	the	first	invalid	address	in	the	addrlist
array.

EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



SetRWLS



Purpose
Place	devices	in	Remote	With	Lockout	State.



Format
C
void	SetRWLS	(int	boardID,	const	Addr4882_t	*addrlist)



Visual	Basic
CALL	SetRWLS	(boardID%,	addrlist%())



Interactive	Control	(Usage	Notes)
SetRWLS	addrlist



Input
boardID The	interface	number
addrlist List	of	device	addresses	that	is	terminated	by	NOADDR



Description
SetRWLS	places	the	devices	described	by	addrlist	in	remote	mode	by
asserting	the	Remote	Enable	(REN)	GPIB	line.	Then	those	devices	are
placed	in	lockout	state	by	the	Local	Lockout	(LLO)	GPIB	message.	You
cannot	program	those	devices	locally	until	the	Controller-In-Charge
releases	the	Local	Lockout	by	way	of	the	EnableLocal	call.



Possible	Errors
EARG Either	an	invalid	address	appears	in	addrlist	or	the	addrlist	is

empty;	Ibcnt	is	the	index	of	the	first	invalid	address	in	the	addrlist
array.

EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.
ESAC The	interface	is	not	configured	as	System	Controller.



TestSRQ



Purpose
Determine	the	current	state	of	the	GPIB	Service	Request	(SRQ)	line.



Format
C
void	TestSRQ	(int	boardID,	short	*result)



Visual	Basic
CALL	TestSRQ	(boardID%,	result%)



Interactive	Control	(Usage	Notes)
TestSRQ



Input
boardID The	interface	number



Output
result State	of	the	SRQ	line:	non-zero	if	the	line	is	asserted,	zero	if	the

line	is	not	asserted



Description
TestSRQ	returns	the	current	state	of	the	GPIB	SRQ	line	in	result.	If	SRQ	is
asserted,	result	contains	a	non-zero	value.	Otherwise,	result	contains	a
zero.	Use	TestSRQ	to	get	the	current	state	of	the	GPIB	SRQ	line.	Use
WaitSRQ	to	wait	until	SRQ	is	asserted.



Possible	Errors
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



TestSys



Purpose
Cause	IEEE	488.2-compliant	devices	to	conduct	self	tests.



Format
C
void	TestSys	(int	boardID,	const	Addr4882_t	*addrlist,	short	*resultlist)



Visual	Basic
CALL	TestSys	(boardID%,	addrlist%(),	resultlist%())



Interactive	Control	(Usage	Notes)
TestSys	addrlist



Input
boardID The	interface	number
addrlist A	list	of	device	addresses	terminated	by	NOADDR



Output
resultlist A	list	of	test	results;	each	entry	corresponds	to	an	address	in

addrlist



Description
TestSys	sends	the	"*TST?"	message	to	the	IEEE	488.2-compliant	devices
described	by	addrlist.	The	"*TST?"	message	instructs	them	to	conduct
their	self-test	procedures.	A	16-bit	test	result	code	is	read	from	each
device	and	stored	in	resultlist.	A	test	result	of	0\n	indicates	that	the	device
passed	its	self	test.	Refer	to	the	documentation	that	came	with	the	device
to	determine	the	meaning	of	the	failure	code.	Any	other	value	indicates
that	the	device	failed	its	self	test.	If	the	function	returns	without	an	error
(that	is,	the	ERR	bit	is	not	set	in	Ibsta),	Ibcnt	contains	the	number	of
services	that	failed.	Otherwise,	the	meaning	of	Ibcnt	depends	on	the	error
returned.	If	a	device	fails	to	send	a	response	before	the	timeout	period
expires,	a	test	result	of	1	is	reported	for	it,	and	the	error	EABO	is
returned.



Possible	Errors
EABO The	interface	timed	out	before	receiving	a	result	from	a	device;

Ibcnt	contains	the	index	of	the	timed-out	device.	-1	is	stored	as
the	test	result	for	the	timed-out	device.

EARG Either	an	invalid	address	appears	in	addrlist	or	the	addrlist	is
empty;	Ibcnt	is	the	index	of	the	first	invalid	address	in	the	addrlist
array.

EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
ENOL No	Listeners	are	on	the	GPIB.
EOIP Asynchronous	I/O	is	in	progress.



Trigger



Purpose
Trigger	a	device.



Format
C
void	Trigger	(int	boardID,	Addr4882_t	address)



Visual	Basic
CALL	Trigger	(boardID%,	address%)



Interactive	Control	(Usage	Notes)
Trigger	address



Input
boardID The	interface	number
address Address	of	a	device	to	be	triggered



Description
Trigger	sends	the	Group	Execute	Trigger	(GET)	GPIB	message	to	the
device	described	by	address.	If	address	is	the	constant	NOADDR,	the
GET	message	is	sent	to	all	devices	that	are	currently	listen-active	on	the
GPIB.



Possible	Errors
EARG The	address	parameter	is	invalid.
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



TriggerList



Purpose
Trigger	multiple	devices.



Format
C
void	TriggerList	(int	boardID,	const	Addr4882_t	*addrlist)



Visual	Basic
CALL	TriggerList	(boardID%,	addrlist%())



Interactive	Control	(Usage	Notes)
TriggerList	addrlist



Input
boardID The	interface	number
addrlist A	list	of	device	addresses	terminated	by	NOADDR



Description
TriggerList	sends	the	Group	Execute	Trigger	(GET)	GPIB	message	to	the
devices	described	by	addrlist.	If	the	only	address	in	addrlist	is	the	constant
NOADDR,	no	addressing	is	performed	and	the	GET	message	is	sent	to
all	devices	that	are	currently	listen-active	on	the	GPIB.



Possible	Errors
EARG An	invalid	address	appears	in	addrlist;	Ibcnt	is	the	index	of	the

first	invalid	address	in	the	addrlist	array.
EBUS No	devices	are	connected	to	the	GPIB.
ECIC The	interface	is	not	the	Controller-In-Charge;	see	SendIFC.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



WaitSRQ



Purpose
Wait	until	a	device	asserts	the	GPIB	Service	Request	(SRQ)	line.



Format
C
void	WaitSRQ	(int	boardID,	short	*result)



Visual	Basic
CALL	WaitSRQ	(boardID%,	result%)



Interactive	Control	(Usage	Notes)
WaitSRQ



Input
boardID The	interface	number



Output
result State	of	the	SRQ	line:	non-zero	if	line	is	asserted,	zero	if	line	is

not	asserted



Description
WaitSRQ	waits	until	either	the	GPIB	SRQ	line	is	asserted	or	the	timeout
period	has	expired	(see	ibconfig,	option	IbcTMO).	When	WaitSRQ	returns,
result	contains	a	non-zero	if	SRQ	is	asserted.	Otherwise,	result	contains	a
zero.	Use	TestSRQ	to	get	the	current	state	of	the	GPIB	SRQ	line.	Use
WaitSRQ	to	wait	until	SRQ	is	asserted.



Possible	Errors
ECIC The	interface	is	not	able	to	detect	the	state	of	the	SRQ	line

because	it	is	not	the	Controller-In-Charge.
EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not

properly	installed.
EHDL boardID	is	out	of	range.
ELCK The	requested	operation	could	not	be	performed	because	of	an

existing	lock	by	another	process.
ENEB The	interface	is	not	installed	or	is	not	properly	configured.
EOIP Asynchronous	I/O	is	in	progress.



ThreadIbsta



Purpose
Return	the	value	of	the	thread-specific	Ibsta	.



Format
C
unsigned	long	ThreadIbsta	()



Visual	Basic
rc%	=	ThreadIbsta	()



Input
none No	input	parameters



Output
Function	Return Value	of	Ibsta	for	the	calling	thread



Description
ThreadIbsta	returns	the	current	value	of	Ibsta	for	a	particular	thread	of
execution.	The	global	NI-488.2	status	functions	(Ibsta,	Iberr,	Ibcnt)	are
maintained	on	a	per	process	basis,	which	means	that	their	values	are
updated	whenever	any	thread	in	that	process	makes	NI-488.2	calls.	The
thread	NI-488.2	status	variables	are	maintained	on	a	per	thread	basis,
which	means	that	their	values	are	updated	whenever	that	particular
thread	makes	NI-488.2	calls.	If	your	application	performs	NI-488.2
operations	in	multiple	threads,	your	application	should	examine	the
thread	NI-488.2	status	functions	using	ThreadIbsta,	ThreadIberr,	and
ThreadIbcnt	instead	of	the	global	NI-488.2	status	functions.

Return	to	Supplemental	Calls	for	Multithreaded	NI-488.2	Applications

Related	Topics:
ibnotify
GpibNotify
ThreadIbcnt
ThreadIberr



ThreadIberr



Purpose
Return	the	value	of	the	thread-specific	Iberr.



Format
C
unsigned	long	ThreadIberr	()



Visual	Basic
rc%	=	ThreadIberr	()



Input
none No	input	parameters



Output
Function	Return Value	of	Iberr	for	the	calling	thread



Description
ThreadIberr	returns	the	current	value	of	Iberr	for	a	particular	thread	of
execution.	The	global	NI-488.2	status	functions	(Ibsta,	Iberr,	Ibcnt)	are
maintained	on	a	per	process	basis,	which	means	that	their	values	are
updated	whenever	any	thread	in	that	process	makes	NI-488.2	calls.	The
thread	NI-488.2	status	variables	are	maintained	on	a	per	thread	basis,
which	means	that	their	values	are	updated	whenever	that	particular
thread	makes	NI-488.2	calls.	If	your	application	performs	NI-488.2
operations	in	multiple	threads,	your	application	should	examine	the
thread	NI-488.2	status	functions	using	ThreadIbsta,	ThreadIberr,	and
ThreadIbcnt	instead	of	the	global	NI-488.2	status	functions.

Return	to	Supplemental	Calls	for	Multithreaded	NI-488.2	Applications

Related	Topics:
ibnotify
GpibNotify
ThreadIbcnt
ThreadIbsta



ThreadIbcnt



Purpose
Return	the	value	of	the	thread-specific	Ibcnt.



Format
C
unsigned	long	ThreadIbcnt	()



Visual	Basic
rc%	=	ThreadIbcnt	()



Input
none No	input	parameters



Output
Function	Return Value	of	Ibcnt	for	the	calling	thread



Description
ThreadIbcnt	returns	the	current	value	of	Ibcnt	for	a	particular	thread	of
execution.	The	global	NI-488.2	status	functions	(Ibsta,	Iberr,	Ibcnt)	are
maintained	on	a	per	process	basis,	which	means	that	their	values	are
updated	whenever	any	thread	in	that	process	makes	NI-488.2	calls.	The
thread	NI-488.2	status	functions	are	maintained	on	a	per-thread	basis,
which	means	that	their	values	are	updated	whenever	that	particular
thread	makes	NI-488.2	calls.	If	your	application	performs	NI-488.2
operations	in	multiple	threads,	your	application	should	examine	the
thread	NI-488.2	status	functions	using	ThreadIbsta	,	ThreadIberr	,	and
ThreadIbcnt	instead	of	the	global	NI-488.2	status	functions.

Return	to	Supplemental	Calls	for	Multithreaded	NI-488.2	Applications

Related	Topics:
ibnotify
GpibNotify
ThreadIberr
ThreadIbsta



Multithreaded	NI-488.2	Applications
Multithreading	issues	are	beyond	the	scope	of	this	help	file.	For
information	on	this	topic,	please	refer	to	the	application	note,	Developing
Multithreaded	GPIB	Applications	Using	NI-488.2,	on	the	NI	Developer
Zone	at	zone.ni.com.

javascript:WWW(WWW_Zone)


GpibNotify
Board-Level/Device-Level



Purpose
Notify	user	of	one	or	more	GPIB	events	by	invoking	the	user	callback.
GpibNotify	is	an	OLE	control.



Format	for	the	GpibNotify	OLE	Control
Visual	Basic
status&	=	GpibNotify<x>.SetupNotify	ud%,	mask%
where	<x>	is	the	instance	of	the	GpibNotify	OLE	control.



Interactive	Control
Not	supported



Input	for	the	GpibNotify	OLE	Control
ud Board	or	device	descriptor
mask Bit	mask	of	GPIB	events	to	notice

The	mask	parameter	is	optional.	Alternative	ways	to	set	the	mask	value
include	using	the	SetSetupMask	method	or	changing	its	value	on	the
SetupMask	page	of	the	GpibNotify	control	properties.



Output	for	the	GpibNotify	OLE	Control
Function	Return The	value	of	Ibsta



Description	of	the	GpibNotify	OLE	Control
If	mask	is	non-zero,	GpibNotify	monitors	the	events	specified	by	mask,
and	when	one	or	more	of	the	events	is	true,	the	Callback	is	invoked.	For	a
board-level	GpibNotify	call,	all	mask	bits	are	valid	except	for	ERR	and
RQS.	For	a	device-level	GpibNotify	call,	the	only	valid	mask	bits	are
CMPL,	TIMO,	END,	and	RQS.

Note	Notification	is	performed	when	the	state	of	one	or	more	of	the
mask	bits	is	true,	so	if	a	request	is	made	to	be	notified	when	CMPL
is	true,	and	CMPL	is	currently	true,	the	Callback	is	invoked
immediately.

For	device-level	usage,	notification	on	RQS	is	not	guaranteed	to	work	if
automatic	serial	polling	is	disabled.	By	default,	automatic	serial	polling	is
enabled.
A	given	ud	can	have	only	one	outstanding	GpibNotify	call	at	any	one	time.
If	a	current	GpibNotify	is	in	effect	for	ud,	it	is	replaced	by	a	subsequent
GpibNotify	call.	An	outstanding	GpibNotify	call	for	ud	can	be	canceled	by
a	subsequent	GpibNotify	call	for	ud	that	has	a	mask	of	zero.
If	a	GpibNotify	call	is	outstanding	and	one	or	more	of	the	GPIB	events	it
is	waiting	on	become	true,	the	Callback	is	invoked.

Note	After	you	make	a	SetupNotify	call,	the	global	NI-488.2	status
functions	(	Ibsta	,	Iberr	,	and	Ibcnt	)	are	undefined.	Instead,	use
the	thread-specific	NI-488.2	status	variable	calls	(ThreadIbsta,
ThreadIberr,	and	ThreadIbcnt),	to	examine	the	NI-488.2	status
variables	returned	by	the	SetupNotify	call.	This	restriction	applies
only	to	the	SetupNotify	call;	for	the	rest	of	the	NI-488.2	calls,	you
can	continue	to	examine	Ibsta	,	Iberr	,	and	Ibcnt	.

Visual	Basic	exhibits	odd	behavior	if	the	GpibNotify	control	is	destroyed
before	the	Callback	has	been	executed.	For	this	reason,	cancel	any
outstanding	Callbacks	by	calling	SetupNotify	with	a	mask	of	zero	before
the	control	is	destroyed.	In	addition,	your	application	should	give	any
blocked	Callback	threads	an	opportunity	to	run	before	destroying	the
control	by	executing	a	Sleep	0	call.



Callback	Prototype	for	the	GpibNotify	OLE	Control
Private	Sub	GpibNotify<x>_Notify(ByVal	LocalUd	As	Long,	
ByVal	LocalIbsta	As	Long,	ByVal	LocalIberr	As	Long,	
ByVal	LocalIbcnt	As	Long,	RearmMask	As	Long)

where	<x>	is	the	instance	of	the	Notify	callback	routine.	Each	GpibNotify
call	has	its	own	Callback	routine.



Callback	Parameters
LocalUd Board	or	device	descriptor
LocalIbsta Value	of	Ibsta
LocalIberr Value	of	Iberr
LocalIbcnt Value	of	Ibcnt
RearmMask Bit	mask	of	the	GPIB	events	to	notice	next

The	Callback	function	can	call	any	of	the	NI-488.2	calls	with	the	exception
of	GpibNotify.	When	the	Callback	is	invoked,	the	values	of	the	NI-488.2
global	functions	(Ibsta,	Iberr,	and	Ibcnt)	are	undefined.	The	status
functions	passed	to	Callback	should	be	examined,	instead	of	the	NI-488.2
globals,	to	determine	why	the	Callback	was	invoked.	Notice	that	it	is
possible	that	the	Callback	may	be	invoked	because	of	an	error	condition
rather	than	because	of	the	setting	of	one	or	more	of	the	requested	mask
bits.
The	RearmMask	is	interpreted	as	a	mask	value	that	the	NI-488.2	software
uses	to	automatically	rearm	the	asynchronous	event	notification
mechanism.	If	RearmMask	is	set	to	zero,	the	Callback	is	not	rearmed.	If
RearmMask	is	set	to	non-zero,	the	Callback	is	rearmed	with	the	RearmMask
value.	If	the	Callback	rearm	fails	due	to	an	error,	the	Callback	is	invoked
with	ERR	set	in	LocalIbsta	and	LocalIberr	set	to	EARM.
Like	ibwait,	ibstop,	and	ibonl,	the	invocation	of	the	GpibNotify	Callback
can	cause	the	resynchronization	of	the	handler	after	an	asynchronous	I/O
operation	has	completed.	In	this	case,	the	global	variables	passed	into
the	Callback	after	I/O	has	completed	contain	the	status	of	the	I/O
operation.
For	an	overview	of	asynchronous	event	notification	in	an	NI-488.2
application,	refer	to	the	Asynchronous	Event	Notification	section.	For
more	information	about	usage,	refer	to	the	GpibNotify	Usage	section.



Possible	Errors	for	the	GpibNotify	OLE	Control
EARG A	bit	set	in	mask	is	invalid.
ECAP GpibNotify	has	been	invoked	from	within	an	GpibNotify	Callback

function,	or	the	handler	cannot	perform	notification	on	one	or
more	of	the	specified	mask	bits.

EDVR The	NI-488.2	driver	is	either	configured	incorrectly	or	is	not
properly	installed.	Ibcnt	contains	a	system-dependent	error	code.

ENEB The	interface	is	not	installed	or	is	not	properly	configured.



Possible	Errors	for	the	GpibNotify	OLE	Control	Callback
EARM The	GpibNotify	OLE	control	was	unable	to	rearm	the	Callback.

Related	Topics:
ibnotify
ibnotify	Usage
ibnotify	Usage	Example



Using	NI	Spy
NI	Spy	monitors,	records,	and	displays	the	NI-488.2	calls	made	from
applications.	You	can	use	it	to	troubleshoot	errors	in	your	application	and
to	verify	the	communication	with	your	GPIB	instrument.	NI	Spy	shows
which	NI-488.2	calls	are	being	used	to	communicate	with	your
instrument.	If	your	application	is	not	working	properly,	you	can	use	NI	Spy
to	search	for	failed	NI-488.2	calls.	For	more	information,	refer	to	its	help.
To	start	NI	Spy,	select	Start»Programs»National	Instruments»NI	Spy.
Or	click	on	the	following	button.

	Start	NI	Spy.



Branch	Offices
Office Telephone	Number
Australia 1800	300	800
Austria 43	662	457990-0
Belgium 32	(0)	2	757	0020
Brazil 55	11	3262	3599
Canada 800	433	3488
China 86	21	5050	9800
Czech	Republic 420	224	235	774
Denmark 45	45	76	26	00
Finland 358	(0)	9	725	72511
France 33	(0)	1	57	66	24	24
Germany 49	89	7413130
India 91	80	41190000
Israel 972	0	3	6393737
Italy 39	02	41309277
Japan 0120-527196	/	81	3	5472	2970
Korea 82	02	3451	3400
Lebanon 961	(0)	1	33	28	28
Malaysia 1800	887710
Mexico 01	800	010	0793
Netherlands 31	(0)	348	433	466
New	Zealand 0800	553	322
Norway 47	(0)	66	90	76	60
Poland 48	22	3390150
Portugal 351	210	311	210
Russia 7	495	783	6851
Singapore 1800	226	5886
Slovenia 386	3	425	42	00



South	Africa 27	0	11	805	8197
Spain 34	91	640	0085
Sweden 46	(0)	8	587	895	00
Switzerland 41	56	2005151
Taiwan 886	02	2377	2222
Thailand 662	278	6777
Turkey 90	212	279	3031
United	Kingdom 44	(0)	1635	523545
United	States	(Corporate) 512	683	0100


	NI-488.2 Help
	Related Documentation
	Using Help
	Conventions
	Navigating Help
	Searching Help
	Printing Help File Topics

	Getting Started with GPIB
	Access Additional Help and Resources for GPIB

	Learning More about GPIB
	GPIB Overview
	Setting up and Configuring Your System
	Controlling More Than One Interface
	Configuration Requirements

	Talkers, Listeners, and Controllers
	Controller-In-Charge and System Controller
	GPIB Addresses
	Sending Messages across the GPIB
	GPIB Handshake Lines
	GPIB Interface Management Lines


	NI-488.2 Utilities
	Troubleshooting Tools
	Measurement & Automation Explorer
	Reconfigure GPIB Interface Settings
	NI-488.2 Communicator

	Interactive Control Utility
	Overview
	Getting Started
	Using
	Status Reporting
	Error Information
	Count Return
	Syntax Rules
	Number Syntax
	String Syntax
	Address Syntax

	Auxiliary Functions
	Set Udname
	Set 488.2
	Help
	Help <option> Interactive Control Function
	! (Repeat Previous Function)
	- (Turn OFF display)
	+ (Turn ON display)
	n * (Execute Function n Times)
	n * ! (Execute Previous Function n Times)
	$ (Execute Indirect File)
	Buffer <option> Interactive Control Function
	q (Quit)

	Commands
	Syntax for Board-Level Traditional NI-488.2 Calls in Interactive Control
	Syntax for Device-Level Traditional NI-488.2 Calls in Interactive Control
	Syntax for Multi-Device NI-488.2 Calls in Interactive Control


	Analysis Tools

	Application Development with NI-488.2
	Choosing a Development Environment
	Developing NI-488.2 Applications with LabVIEW and LabWindows/CVI
	Direct Entry with C Programming Instructions
	gpib-32.dll Exports
	Directly Accessing the gpib-32.dll Exports
	Compiling Your Win32 C Application


	Language-Specific Programming Instructions
	Microsoft Visual C/C++ Programming Instructions (Version 6.0 or Later)
	Borland C/C++ Programming Instructions (Version 5.02 or Higher)
	Visual Basic Programming Instructions (Version 6.0)
	.NET Programming Instructions

	General Programming Considerations
	Communicating with Your Instrument
	Using the NI-488.2 API
	Choosing a Method to Access the NI-488.2 Driver
	Differences Between the GPIB32 API and NI4882 API
	Choosing How to Use the NI-488.2 API
	Communicating with a Single GPIB Instrument
	Communicating with Multiple Instruments and/or Multiple Interfaces
	Header Files
	Examples
	Programming Model for Applications that Communicate with a Single GPIB Instrument
	General Program Steps and Examples for Your Traditional NI-488.2 Application
	Items to Include in Your Traditional NI-488.2 Application

	Programming Model for Applications that Communicate with Multiple Instruments and/or Multiple Interfaces
	General Program Steps and Examples for Your Multi-Device Application
	Items to Include in Your Multi-Device Application


	Checking Global Status After Each NI-488.2 Call

	Advanced Programming Techniques
	Serial Polling
	Serial Polling Overview
	Service Requests From Devices
	Serial Polling with Device-Level Traditional NI-488.2 Calls
	Serial Polling with Multi-Device NI-488.2 Calls
	Example 1: Using FindRQS
	Example 2: Using AllSpoll

	Automatic Serial Polling Overview
	Stuck SRQ State
	Autopolling and Interrupts

	Terminating Data Transfers
	Waiting for GPIB Conditions
	Device-Level NI-488.2 Calls and Bus Management
	Talker/Listener Applications
	High-Speed Data Transfer (HS488)
	HS488 Overview
	Enabling HS488 Transfers
	System Configuration Effects on HS488

	Asynchronous Event Notification
	Asynchronous Event Notification Overview
	ibnotify Usage
	GpibNotify Usage

	Parallel Polling
	Parallel Polling Overview
	Parallel Polling with Traditional NI-488.2 Calls
	Parallel Polling with Multi-Device NI-488.2 Calls


	Tools for Developing Your Application
	Monitoring GPIB Calls Using NI Spy
	Simple Instrument Communication Using NI-488.2 Communicator


	Troubleshooting Problems
	Troubleshooting Tools
	Troubleshooting EDVR Error Conditions
	Ibcnt() Set to 0xE014002C (-535560148)
	Ibcnt() Set to 0xE0140025 (-535560155)
	Ibcnt() Set to 0xE0140035 (-535560139)
	Ibcnt() Set to 0xE1080080 (-519569280) or 0xE1080081 (-519569279)
	Ibcnt() Set to 0xE00A0047 (-536215481)
	Ibcnt() Set to 0xE1030043 (-519897021)
	Ibcnt() Set to 0xE1060075 (-519700363)
	Ibcnt() Set to 0xE1060078 (-519700360)

	Why Can't I Communicate with My GPIB Instrument?
	Cannot Find Your Instrument During a Scan for Instruments
	Error on a Write
	Error on a Read and No Data Is Returned

	Why Can't I Find My GPIB-ENET/100?
	Debugging an NI-488.2 Application
	Determine Whether an NI-488.2 Call Failed
	Checking Global Status Functions to Debug Your Application
	Checking Global Status After Each NI-488.2 Call
	Ibsta() or ibsta Status Bit Values
	ATN Status Condition
	CIC Status Condition
	CMPL Status Condition
	DCAS Status Condition
	DTAS Status Condition
	END Status Condition
	ERR Status Condition
	LACS Status Condition
	LOK Status Condition
	REM Status Condition
	RQS Status Condition
	SRQI Status Condition
	TACS Status Condition
	TIMO Status Condition


	Debugging Existing Applications
	Solving Errors
	Iberr() or iberr Error Codes and Solutions
	EABO
	EADR
	EARG
	EARM
	EBUS
	ECAP
	ECIC
	EDMA
	EDVR
	EFSO
	EHDL
	ELCK
	ENEB
	ENOL
	EOIP
	EPWR
	ERST
	ESAC
	ESRQ
	ETAB
	EWIP

	Configuration Errors
	Communication Errors
	Timing Errors
	Other Errors



	How to
	Add a New GPIB Interface
	Remove a GPIB Interface
	Scan for GPIB Instruments
	View GPIB Instrument Information
	Communicate with a GPIB Instrument
	Set Network Settings for the GPIB-ENET/100
	Use Static IP Address Settings Suggested for the GPIB-ENET/100
	Static IP Parameters

	View NI-488.2 Software Version
	Enable/Disable NI-488.2 DOS Support
	Require Administrator Privileges
	Access Additional Help and Resources for GPIB

	Frequently Asked Questions
	How do I get error information about failed NI-488 calls?
	Iberr() or iberr Error Codes and Solutions
	Ibsta() or ibsta Status Bit Values

	How do I communicate with my instrument?
	How do I change a GPIB device template?
	How can I NULL terminate an ASCII response from my instrument?
	Are interrupts required for the NI-488.2 software?
	Is DMA required for the NI-488.2 software?
	Is my instrument 488.1 or 488.2 compliant?
	How can I determine which type of GPIB hardware I have installed?
	How do I use an NI-488.2 application interface?

	Function Reference
	Traditional NI-488.2 Calls
	Board-Level
	Device-Level
	IBASK
	ibask Board Configuration Parameter Options
	IbaAUTOPOLL
	IbaDMA
	IbaEndBitIsNormal
	IbaEOS
	IbaEOSchar
	IbaEOScmp
	IbaEOSrd
	IbaEOSwrt
	IbaEOT
	IbaHSCableLength
	IbaIRQ
	IbaIst
	IbaLON
	IbaPAD
	IbaPP2
	IbaPPC
	IbaPPollTime
	IbaRsv
	IbaSAD
	IbaSC
	IbaSendLLO
	IbaSRE
	IbaTIMING
	IbaTMO

	ibask Device Configuration Parameter Options
	IbaEOS
	IbaEOSchar
	IbaEOScmp
	IbaEOSrd
	IbaEOSwrt
	IbaEOT
	IbaPAD
	IbaREADDR
	IbaSAD
	IbaSPollTime
	IbaTMO
	IbaUnAddr


	IBCAC
	IBCLR
	IBCMD
	IBCMDA
	IBCONFIG
	ibconfig Board Configuration Parameter Options
	IbcAUTOPOLL
	IbcDMA
	IbcEndBitIsNormal
	IbcEOS
	IbcEOSchar
	IbcEOScmp
	IbcEOSrd
	IbcEOSwrt
	IbcEOT
	IbcHSCableLength
	IbcIRQ
	IbcIst
	IbcLON
	IbcPAD
	IbcPP2
	IbcPPC
	IbcPPollTime
	IbcRsv
	IbcSAD
	IbcSC
	IbcSendLLO
	IbcSRE
	IbcTIMING
	IbcTMO

	ibconfig Device Configuration Parameter Options
	IbcEOS
	IbcEOSchar
	IbcEOScmp
	IbcEOSrd
	IbcEOSwrt
	IbcEOT
	IbcPAD
	IbcREADDR
	IbcSAD
	IbcSPollTime
	IbcTMO
	IbcUnAddr


	IBDEV
	IBDMA
	IBEOS
	IBEOT
	IBFIND
	IBGTS
	IBIST
	IBLCK
	IBLINES
	IBLN
	IBLOC
	IBNOTIFY
	ibnotify Usage
	ibnotify Usage Example
	Notify Mask Layout
	GpibNotify Usage

	IBONL
	IBPAD
	IBPCT
	IBPPC
	IBRD
	IBRDA
	IBRDF
	IBRPP
	IBRSC
	IBRSP
	IBRSV
	IBSAD
	IBSIC
	IBSRE
	IBSTOP
	IBTMO
	Timeout Code Values

	IBTRG
	IBWAIT
	Wait Mask Layout

	IBWRT
	IBWRTA
	IBWRTF

	Multi-Device NI-488.2 Calls
	Supplemental Calls for Multithreaded NI-488.2 Applications

	IEEE 488 Command Messages
	Multiline Interface Message Definitions

	Glossary
	Technical Support and Professional Services


