
About	NDoc3
NDoc3	generates	class	libraries	documentation	from	.NET
assemblies	and	the	XML	documentation	files	generated	by	the	.NET
compiler.

NDoc3	uses	add-on	documenters	to	generate	documentation	in
several	different	formats,	including	the	MSDN-style	HTML	Help	format
(.chm)	and	MSDN-online	style	web	pages.

The	NDoc3	source	code	is	available	under	the	GNU	General	Public
License.	If	you	unfamiliar	with	this	license	or	have	questions	about	it,
here	is	a	FAQ.

We	welcome	everyone	to	use	our	software	in	the	hopes	that	they	can
provide	feedback,	submit	bug	reports	and	fixes,	or	even	join	us	as	a
developer!

http://www.opensource.org/licenses/gpl-license.php
http://www.gnu.org/licenses/gpl-faq.html

Before	You	Begin
Make	sure	you	have	read	Known	Issues.

Make	sure	you	have	the	necessary	Help	compilers.

What's	New	for	This	Release?

What's	new	in	NDoc3	1.0	?

NDoc3	Beta	4	incorporates	new	features	related	to	better
.NET	2.0,	3.0	and	3.5	support.

Highlights

Support	for	generics
Support	for	generic	constraints
Support	for	asymmetric	property	accessors

NDoc3	are	build	upon	the	NDoc	project	which	has	been
dead	for	some	time.	Below	are	listed	the	most	recent
changes	for	the	NDoc	project.

Please	be	adviced	that	some	of	the	features	in	NDoc	have
been	temporarily	disabled	in	NDoc3,	fx.	the	"VS.NET
2003"	Documenter.

What's	new	in	NDoc	2.0	?

NDoc	2.0	incorporates	a	very	large	number	of	new	and
enhanced	features	as	well	as	bug	fixes.

Highlights

NDoc	2.0	includes	many	new	features:

A	complete	re-implementation	of	the	Html	Help	2
documenter,	now	known	as	the	"VS.NET	2003"
documenter.
Support	for	new	code	commenting	tags	like
preliminary,	threadsafety	and	exclude.
Support	for	the	ObsoleteAttribute	and
FlagsAttribute	attributes.
An	extensibility	feature	that	allows	you	to	define	your
own	code	comment	tags	and	control	their	formatting.
User	interface	enhancements.
Major	performance	enhancements	in	both	reflection
and	document	production.
Better	consistency	between	NDoc	generated	topics
and	MSDN	topics.

"VS.NET	2003"	Documenter

The	new	"VS.NET	2003"	Documenter	creates	HTML

Help	2	documentation,	with	fully	populated	XML	data
islands,	resulting	in	much	better	integration	with	the
Visual	Studio	help	system.

The	new	documenter	produces	documentation	that	more
closely	matches	the	latest	MS	documentation	and
includes	features	such	as	language	filtering	of	syntax	and
outher	text	sections.

More	information	on	this	documenter	can	be	found	here

Performance

The	performance	of	all	documenters	has	been
significantly	improved.

The	XML	Merge	process	has	been	speeded-up
considerably,	and	is	now	only	a	small	percentage	of
the	total	processing	time	regardless	of	the	size	of	an
NDoc	project.
Page	production	time	has	decreased	by	20-50%.
Memory	usage	has	been	significantly	reduced.
Namespace	Hierarchies	are	produced	without
performance	or	stability	problems,	and	are	now
always	documented.

Assembly	Loading

A	number	of	improvements	have	been	made	to	Assembly
loading.

The	GUI	no	longer	has	to	be	restarted	to	reflect
changes	in	an	assembly.
Most	assemblies	may	now	be	loaded	from	network
shares.		However,	due	to	.NET	framework	limitations,
managed	C++	assemblies	must	reside	on	a	local	drive
or	else	security	exceptions	will	be	raised.
Assembly	resolution	has	been	improved,	it	is	now	far
less	likely	that	an	assembly	will	fail	to	be	found.

Internationalization

NDoc	can	now	process	assemblies	and	comments	with
non-english	characters.

Full	Unicode	(RTF-8)	support	is	available	in	all
documenters	except	MSDN	HtmlHelp.	There	are	some
known	problems	with	support	for	mixed	character-sets	in
the	HTML	Help	compiler,	however	these	are	out	of	our
control...

Note	that	while	we	support	other	character-sets,	NDoc
generated	text	such	as	section	headings	cannot	be
localized	in	this	release.

Concurrent	NDoc	runs

Multiple	instances	of	NDoc	can	now	be	run	concurrently.
Previous	problems	with	file	locking	have	been	resolved.

User	Interface

Drag	and	Drop.	Assemblies	may	be	added	to	a	project
by	drag	and	drop	from	explorer	to	the	assemblies	list
in	the	NDoc	GUI.
Error	Handling.	Error	Handling	has	been	considerably
improved.
Help	Compiler	Messages.	Help	compiler	messages
are	now	written	to	the	log,	and	error	messages	are
shown	if	an	error	occurs	during	compilation.
Property	Grid.	The	property	grid	has	been	enhanced
in	several	respects.
Assembly	Loading	Errors.
Assemblies	without	XML	docs	can	be	documented
Relative	Assembly	Paths

XML	Documentation	Tags

New	Tags

Tag Comments

<exclude/>
Directs	NDoc	to	exclude	the	tagged	type	or	member
from	the	documentation.
The	tag	overrides	all	visibility	options.
Marks	the	documentation	of	a	type	or	member	as
preliminary.	

<preliminary>

This	tag	can	include	text	and	block	tags	like	<para>
in	order	to	put	a	custom	warning	into	your	help
topics	about	preliminary	items.	
If	the	tag	is	empty,	preliminary	topics	will	include
the	default	message:	
[This	is	preliminary	documentation	and	subject	to
change.]	
It	is	also	possible	to	mark	an	entire	help	project	as
preliminary	using	the	Preliminary	project	setting.

<devdoc> 	

Enhanced	Tags

Tag Comments

<code>
"lang"	attribute
No	more	<include>	to	prevent	indent
"Escaped"	attribute

<see> langword

Settings

New	Settings

The	following	settings	have	been	added	to	all
documenters.

Setting Comments
Main	Settings

If	true,	intermediate	files	will
be	deleted	after	a	successful
build.	

CleanIntermediates
For	documenters	that	result	in
a	compiled	output,	like	the
MSDN	and	VS.NET
documenters,	intermediate
files	include	all	of	the	HTML
Help	project	files,	as	well	as
the	generated	HTML	files.

FeedbackEmailAddress

If	an	email	address	is	supplied,
a	mailto	link	will	be	placed	at
the	bottom	of	each	page	using
this	address.

Preliminary

If	true,	NDoc	will	mark	every
topic	as	being	preliminary
documentation.	
The	default	notice	is	[This	is
preliminary	documentation
and	subject	to	change.]

SdkDocVersion

Specifies	to	which	version	of
the	.NET	Framework	SDK
documentation	the	links	to
system	types	will	be	pointing.

SdkDocLanguage

Specifies	to	which	Language
of	the	.NET	Framework	SDK
documentation	the	links	to
system	types	will	be	pointing.

Show	Attributes

DocumentInheritedAttributes

If	true,	NDoc	will	document,
in	the	syntax	portion	of	topics,
the	attributes	inherited	from
base	types/members.

Visibility

DocumentedInheritedMembers
Determines	what	types	of
inherited	members	are
documented.

DocumentInheritedFrameworkMembers
If	true,	members	inherited
from	.Net	framework	classes
will	be	documented.

DocumentExplicitInterfaceImplementations

If	true,	members	which
explicitly	implement	interfaces
will	be	included	in	the
documentation.
Normally,	these	members	will
not	documented.

DocumentSealedProtected

If	false,	protected	members	of
sealed	classes	will	not	be
documented.	
Normally,	these	members	will
not	documented.

SkipNamespacesWithoutSummaries

If	true,	NDoc	will	not
document	namespaces	(nor
any	types	within	them)	if	an
associated	namespace
summary	does	not	exist.

Retired	Settings

The	following	settings	have	been	'retired'.

Setting Comments
Main	Settings

GetExternalSumeries

The	performance	of	the	Xml	merge	process
has	been	considerably	improved,	and	so
summary	information	for	inherited	members
is	now	always	included	(when	available).

IncludeNamespaceHierarchy

Performance	and	stability	problems	with
Namespace	hierarchies	have	been	resolved,
and	so	namespace	hierarchy	pages	are	now
always	generated.

MSDN	Documenter

New	Settings

The	following	settings	have	been	added.

Setting Comments
Main	Settings

BinaryToc

If	true,	the	documenter	will	produce
a	binary	TOC.	This	can	considerably
improve	the	performance	on	opening
a	chm	with	a	large	table-of-contents.	
Normally	this	is	set	to	true,	but	be
aware	that	there	are	a	few	limitations
imposed	if	using	binary	TOCs;	see
the	Html	Help	Workshop	help	for
more	details...

Title The	documentation	title	shown	in	the
banner	at	the	top	of	every	topic.

Extensibility
ExtensibilityStylesheet see	here	for	further	details.
HTML	Help	Options

AdditionalContentResourceDirectory

Directory	that	contains	resources
(images	etc.)	used	by	the	additional
content	pages.	This	directory	will	be
recursively	compiled	into	the	help
file.

LangID The	language	ID	of	the	locale	used
by	the	compiled	helpfile

Retired	Settings

The	following	settings	have	been	'retired'.

Setting Comments

Main	Settings

SortTOCByNamespace The	Table-of-contents	always	shows	Namespacesin	sorted	order.

SplitTOCs

This	setting	was	used	to	overcome	limitations	in
the	old	HtmlHelp2	documenter.	
With	the	introduction	of	the	VS.NET	documenter,
this	setting	is	no	longer	required.

DefaultTOC The	first	namespace	is	now	always	the	default
selected	item	in	the	Table-of-contents.

LinkToSdkDocVersion

This	setting	has	been	superseded	by
SdkDocVersion	and	SdkDocLanguage,	which	are
common	to	all	documenters.	
NDoc	will	still	read	this	setting,	but	the	GUI	will
convert	to	the	new	settings	on	save	of	a	project.

Improved	hypertext	linking	logic

When	a	<see>	reference	to	an	item	appears	more	than
one	time	within	a	section	on	a	page,	only	the	first
occurrence	is	linked,	the	following	are	just	highlighted	in
bold.		This	reduces	the	visual	'clutter'	on	a	page.

Table-of-Contents	Page	Icons

The	icons	used	in	the	Table-of-Contents	for
documentation	pages	are	now	'blank'	rather	than
containing	a	question	mark	(?).

Operators	and	Type	Conversions

Operators	and	Type	Conversions	are	now	correctly
handled	in	the	Table-of-Contents,	and	the	page	formatting
more	closely	matches	MSDN.

Attribute	Handling

ObsoleteAttribute

The	MSDN	and	VS.NET	documenters	will	automatically
add	text	to	indicate	that	a	type	has	the	ObsoleteAttribute.

On	Namespace	and	Type	Member	list	tables	the
summary	will	be	start	Obsolete.
On	Type	Overview	and	Member	Topics,	the	following
text	will	be	added	before	the	summary	description,
NOTE:	This	member_type	is	now	obsolete.
If	the	ObsoleteAttribute	description	property	is	set,
the	description	text	will	be	displayed	on	the	following
line.

FlagsAttribute

If	a	type	has	FlagsAttribute	applied,	the	MSDN	and
VS.NET	documenters	will	automatically	add	the
following	text	to	the	end	of	the	summary	on	the	type
overview	topic.

"This	enumeration	has	a	FlagsAttribute	attribute	that
allows	a	bitwise	combination	of	its	member	values."

Known	Issues	and	Limitations	in	NDoc3	1.0

Issue Description

Very	long	type	names NDoc3	creates	an	HTML	file	on
your	hard	drive	for	each	topic	it
generates.	Currently	the	name	of
this	file	is	derived	directly	from
the	full	name	of	the	type	or
member	being	documented.	If
the	total	number	of	characters	in
an	item's	full	name	(namespace
+	type	+	member	name)	exceed
the	value	of	_MAX_FNAME	(256
characters),	NDoc3	will	fail
because	it	attempts	to	create	a
file	with	a	name	that	is	longer
than	the	file	system	supports.	In
addition,	the	fully	qualified	path	to
a	file	cannot	exceed
_MAX_PATH	(260	characters).
For	fully	qualified	names	under
about	200	characters,	the	work
around	for	this	issue	is	to	set	the
OutputDirectory	setting	to	a
location	as	close	to	the	root	of	a
volume	as	possible.	This	will
reduce	the	likelyhood	of	the	full
path	to	the	html	files	exceeding
260	characters.

There	is	no	work	around	for
names	that	exceed	these
lengths.

We	will	address	this	issue	in	a
future	version	of	NDoc3.

Case-sensitivity When	the	MSDN	and	JavaDoc
documenters	create	files,
problems	can	arise	when	there
are	Types	or	Members	that	differ
only	by	case.

It	is	possible	to	work	around	this
problem	by	avoiding	types	and
members	that	differ	only	by	case;
for	example	use	public	property
Thing	and	private	field	_thing
instead	of	Thing	and	thing.
We	will	address	this	issue	in	a
future	version	of	NDoc3.

StrongNameIdentityPermissionAttribute Assemblies	decorated	with	the
StrongNameIdentityPermission
attribute	can	only	be	called	by
other	assemblies	that	are	marked
with	the	specified	key.	NDoc3	
fail	when	it	attempts	to	document
an	assembly	compiled	with	this
attribute.

To	work	around	this	issue,
conditionally	compile	a	version	of
the	assembly	that	does	not
include	the
StrongNameIdentityPermission
attribute.

Compact	Framework	incompatibilities When	an	assembly	compiled	to
run	on	the	.NET	Compact
Framework	is	added	to	an	NDoc3
project,	the	GUI	may	throw	an
exception,	especially	if	the
assembly	references
Microsoft.WindowsCE.Forms	or
SqlServerCe.

There	is	no	work	around	for	this
issue.

We	will	address	this	issue	in	a
future	version	of	NDoc3.

Localization NDoc3	does	not	currently	support
Localization	of	headings	and
predefined	text.

We	*may*	address	this	issue	in	a
future	version	of	NDoc3.

Online	SDK	Links	to	generic	classes NDoc3	does	not	handle	online
SDK	links	to	generic	classes
correctly,	and	therefor	the
generated	links	does	not	work.

This	issue	will	be	addressed	in	a
future	version	of	NDoc3.

There	are	some	additional	tools	you'll	need	to	get	in	order	to	produce
certain	kinds	of	help	titles.	These	tools	are	available	online.

HTML	Help	Compilers
The	necessary	HTML	Help	compilers	are	freely	available	from
Microsoft.

HTML	Help	Version	1
HTML	Help	1	titles	are	the	CHM	files	that	most	applications	use	for
their	help	file	format.	This	is	the	help	technology	used	by	MSDN	prior
to	the	release	of	Visual	Studio.NET.

If	you	plan	to	create	compiled	Html	Help	1	titles	(CHM	files),	you	will
need	to	make	sure	you	have	Microsoft's	HTML	Help	Workshop.	This
download	includes	the	compiler	capable	of	creating	CHM	help	titles.

HTML	Help	Version	2	(Not	tested	in	NDoc3)
HTML	Help	2	is	the	help	technology	the	Visual	Studio.NET	2003	and
higher,	and	the	current	versions	of	MSDN	uses.

If	you	plan	to	create	help	titles	that	integrate	with	the	VS.NET	help
system,	you	will	need	to	download	the	Visual	Studio	Help	Integration
Kit	(VSHIK).	This	download	includes	the	compiler	capable	of	creating
HxS	help	titles.

Latex	Compiler	(Not	included	in	this	release)
If	you	intend	to	use	the	LaTeX	documenter,	you	will	need	a	compiler
capable	of	generating	dvi	or	pdf	files.	You	can	download	a	free	one
from	http://www.miktex.org.

Other	Tools

H2Reg
Deploying	compiled	HTML	Help	2	titles	and	integrating	them	into	your
customers	Visual	Studio.NET	help	system	can	be	tricky.	The	VSHIK
download	includes	detailed	instructions	on	how	to	do	this	using
Windows	Installer	and	a	set	of	merge	modules	that	are	part	of	the
integration	kit	download.

An	alternative	method	is	to	use	the	H2Reg	utility	from	helpware.net.

H2Reg	is	a	shareware	executable	that	can	be	included	in	your	help

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/hwMicrosoftHTMLHelpDownloads.asp
http://www.microsoft.com/downloads/details.aspx?familyid=3eaeb657-98dd-4959-b946-9719fec3a3ce&displaylang=en
http://www.miktex.org
ms-help://ms.vshik.2003/dv_mshlpwrk/html/hxconRedistributingHelpFiles.htm
http://helpware.net/mshelp2/h2reg.htm
http://www.helpware.net

title	deployment	projects.	It	can	be	used	to	register	help	titles,	and
plug	them	into	the	VS.NET	help	system.
H2Reg	uses	an	INI	file	to	describe	the	help	title	and	to	control	how	it
is	registered	and	plugged	into	existing	help	collections.	The	VS.NET
Documenter	includes	an	option	that	will	generate	an	H2Reg
compatible	INI	file	for	your	NDoc3	created	HTML	Help	2	titles.

The	first	thing	you	want	to	do	is	make	sure	that	Visual	Studio.NET	is
creating	the	XML	documentation	file	each	time	it	recompiles	your
assembly	projects.	You	do	this	by	setting	the	"XML	Documentation
File"	property	in	the	project	setting	dialog.

While	not	absolutely	necessary,	it	is	best	to	name	the	XML
documentation	file	with	the	same	base	name	as	the	name	of	your
assembly

This	is	done	differently	in	Visual	Studio	2005	and	Visual	Studio	2008,
therefore	both	methods	will	be	described

Visual	Studio	2008	and	2010

Finding	the	assembly	name
	

Set	the	XML	Documentation	File	property	to	the	assembly	name,	but
with	the	.xml	extension.	do	not	forget	to	select	the	"All	Configurations"
option	before	you	set	this	property.	That	way	you	can	document	both
release	and	debug	builds.

	

Visual	Studio	2005

Finding	the	assembly	name

	

Set	the	XML	Documentation	File	property	to	the	assembly	name,	but
with	the	.xml	extension.	do	not	forget	to	select	the	"All	Configurations"
option	before	you	set	this	property.	That	way	you	can	document	both
release	and	debug	builds.

	

Setting	the	XML	Documentation	Property

	

Now,	each	time	VS.NET	compiles	your	assembly,	it	will	aggregate	all
of	the	code	comments	that	you	include	in	the	source	files,	in	the	XML
Documentation	File.

Non-Visual	Studio
If	you	do	not	use	Visual	Studio.NET,	make	sure	to	compile	your	C#
projects	using	the	/doc	compiler	option.

ms-help://MS.NETFrameworkSDKv1.1/cscomp/html/vcerrDocProcessDocumentationComments.htm

The	more,	the	better
The	more	code	comments	you	add	to	your	code,	the	more	descriptive
the	generated	help	topics	will	be.	That	makes	your	help	file	more
useful	to	the	users	of	your	assemblies.

At	a	minimum	each	public	type,	and	the	public	and	protected
members	of	your	public	types,	should	have	a	<summary>	item
describing	what	the	member	does	or	represents.

The	VS.NET	C#	code	editor	has	a	handy	feature	that	makes	it	easy
to	create	the	basic	code	comments	for	each	type	and	member:

For	the	following	code	snippet:
public	class	MyClass()	{

public	MyClass(string	s)	{	}

}

if	you	place	your	cursor	just	above	the	MyClass	constructor,	and	hit
the	'/'	character	three	times	in	a	row,	VS.NET	will	create	the	skeleton
of	a	code	comment	block	for	that	member:
public	class	MyClass()	{

///	<summary>

///

///	</summary>

///	<param	name="s"></param>

public	MyClass(string	s)	{	}

}

This	applies	to	any	type	or	member	that	can	have	code	comment	tags
associated	with	it.	Further	more,	once	you	have	a	code	comment
block,	when	you	hit	the	'<'	key	to	start	a	new	tag,	VS.NET	will	display
an	intellisense	selector	showing	the	appropriate	list	of	code	comment
tags.	Unfortunately	this	list	won't	include	the	additional	tags	that
NDoc3	supports,	but	you	can	still	add	them	by	hand.

NDoc3	includes	options	that	allow	you	to	generate	documentation	for
private	and	internal	items.	This	is	useful	when	you	are	using	NDoc3
to	generate	in-house	documentation.	If	you	plan	to	use	NDoc3	in	this
way	you	should	also	add	code	comments	to	types	and	members	that
would	not	normally	be	visible	outside	of	the	assembly.

The	MSDN	and	VS.NET	documenters	that	ship	with	NDoc3	support
all	the	xml	documentation	tags	defined	in	the	C#	Programmer's
Reference.

They	also	support	new	tags,	and	extended	syntax	for	some	standard
tags,	as	described	below.

Some	tags	may	only	be	used	on	certain	types	or	members,	see	the
Tag	Usage	Matrix	or	individual	tag	reference	pages	for	further	details.

Section	Tags
Section	tags	are	used	to	define	the	content	of	the	different	sections	of
the	documentation	of	a	type	or	member.

These	tags	are	used	as	top-level	tags.

Tag Description

<event>
[NDoc3	Only]

An	event	that	may	be	raised	by	a	member.

<inheritdoc	/>
[NDoc3	Only]

Indicates	that	the	documentation	should	be	inherited	from	the	base	type.

<example> An	example	of	how	to	use	a	type	or	member.

<exception> An	exception	that	may	be	thrown	by	a	member.

<exclude/>
[NDoc3	Only]

Directs	the	documentation	tool	to	exclude	the	tagged	type	or	

The	tag	overrides	all	visibility	options.

<include> References	an	xml	node	in	an	include	file	that	contains	one	or	more	

<overloads>
[NDoc3	Only]

Documentation	that	applies	to	all	the	overloads	of	a	member.	It	only	needs	to	be	
first	overload.

The	<overloads>	tag	can	have	two	forms:

http://msdn.microsoft.com/en-us/library/618ayhy6.aspx

In	the	short	form,	it	includes	only	one	or	more	text	blocks	that	are	treated	as	
summary.

In	the	long	form,	it	can	include	one	or	more	applicable	section	tags	(summary,
remarks	and	example).

Example:
///<overloads>This	method	has	two	overloads.</overloads>

///<summary>This	overload	just	says	hello.</summary>

public	void	SayHello()	{	...	}

///<summary>This	one	says	hello	to	someone.</summary>

public	void	SayHello(string	toSomeone)	{	...	}

<param> A	member	parameter.

<permission> Security	permissions	required	to	access	a	member.

<preliminary>
[NDoc3	Only]

Marks	the	documentation	of	a	type	or	member	as	preliminary.	This	tag	
<para>	in	order	to	put	a	custom	warning	into	your	help	topics	about	preliminary	items.
If	the	tag	is	empty,	preliminary	topics	will	include	the	default	message:

[This	is	preliminary	documentation	and	subject	to	change.]

It	is	also	possible	to	mark	an	entire	help	project	as	preliminary	using	the	
setting.

<remarks> Additional	information	about	a	type	or	member,	supplementing	the	description	in	

<returns> A	member's	return	value.

<seealso> Adds	a	link	to	the	See	Also	section.

Do	not	include	this	tag	in	the	<remarks>	section.
Alternate	syntax:

<seealso	href="url">[label]</seealso>

<seealso	cref="member">[label]</seealso>

<summary> A	short	description	of	a	type	or	member.

<threadsafety>
[NDoc3	Only]

Denotes	how	a	class	or	structure	behaves	in	multi-threaded	scenarios.

This	tag	has	2	attributes	static	and	instance	that	can	be	set	to	
is	that	static	members	are	thread	safe	and	instance	members	may	not	

Textual	content	can	be	included	as	the	inner	text	of	this	tag	in	order	to	
information	about	the	thread	safety	of	the	type.
///	<summary>This	overload	just	says	hello.</summary>

///	<threadsafety	static="true"	instance="true">

///				<para>More	information	about	using	this	class	across	thread</para>

///	</threadsafety>

public	class	SafeClass()	{	...	}

<value> Defines	a	property	value.

Block	Tags
Block	tags	format	text	within	the	top-level	tags.	They	are	typically
used	to	add	structure	to	the	text	inside	<remarks>	and	<example>
sections	.

Tag Description

<code> A	block	of	code.

<list> A	definition	list	or	table.

<note>
[NDoc3
Only]

A	formatted	note	block.

Example:
///	<summary>

///	<note>This	is	a	note	in	the	summary.</note>

///	</summary>

public	class	SomeClass()	{	...	}

gives,

Note	This	is	a	note	in	the	summary.

<para> Delimits	a	text	paragraph.

Inline	Tags
Inline	tags	are	typically	used	inside	<para>	blocks.

Tag Description

<c> Marks	inline	code.

<paramref> A	reference	to	a	parameter.

<see> An	Inline	reference	to	another	member	or	type.

Alternate	syntax:

<see	href="url">[label]

</see>

<see	cref="member">

[label]</see>

<see	langword="xxx"/>

where	xxx	is	null,	sealed,	static,
abstract	or	virtual

The	MSDN	and	VS.NET	documenters	that	ship	with	NDoc3	use	a
number	of	custom	attributes	to	augment	the	code	comment	tags
when	generating	documentation.

When	a	type	or	member	is	decorated	with	the	attributes	described
below,	NDoc3	will	use	this	information	in	order	to	make	the	help	file
more	descriptive.

Attribute Comments

ObsoleteAttribute Marks	program	elements	that	are
no	longer	in	use.

NDoc3	will	include	warning	text
for	each	item	that	is	marked	as
obsolete.

FlagsAttribute Indicates	that	an	enumeration
can	be	treated	as	a	bit	field;	that
is,	a	set	of	flags.

NDoc3	enhances	the
documentation	as	follows,

A	standard
sentence	is	added
after	the	summary
section.

"This	enumeration
has	a
FlagsAttribute
attribute	that	allows
a	bitwise
combination	of	its
member	values."

An	additional
column	is	added	to
the	member	table
to	document	the

http://msdn.microsoft.com/library/en-us/cpguide/html/cpconextendingmetadatausingattributes.asp
ms-help://MS.NETFrameworkSDKv1.1/cpref/html/frlrfsystemobsoleteattributeclasstopic.htm
ms-help://MS.NETFrameworkSDKv1.1/cpref/html/frlrfsystemflagsattributeclasstopic.htm

underlying	value	of
each	enumeration
member.

EditorBrowsableAttribute This	attribute	prevents	types	of
members	from	showing	up	in
editor	or	type	browsers.	If	the
project	setting
EditorBrowsableFilter	is	set	to
true,	then	no	documentation	will
be	generated	for	items	decorated
with	this	attribute.

The	<exclude/>	tag	is	the
preferred	mechanism	for
suppressing	the	documentation
of	types	or	members.

AssemblyVersionAttribute If	the	IncludeAssemblyVersion
project	setting	is	true,	then	the
assembly	version	will	be	included
on	each	topic	page.

ms-help://MS.NETFrameworkSDKv1.1/cpref/html/frlrfSystemComponentModelEditorBrowsableAttributeClassTopic.htm
ms-help://MS.NETFrameworkSDKv1.1/cpref/html/frlrfSystemReflectionAssemblyVersionAttributeClassTopic.htm

Creating	a	New	Project	and	Adding	Assemblies
If	you	use	Visual	Studio.NET	as	your	development	environment,	the
easiest	way	to	create	a	new	NDoc3	project	is	to	select	the	"New	From
Visual	Studio"	button	on	the	toolbar.

	

After	browsing	to	your	solution	file,	you	will	be	asked	to	select	a
configuration	within	the	solution.	This	determines	what	assemblies
(debug	or	release	versions)	will	be	used	to	generate	your
documentation.

	

The	Configuration	Selection	Dialog

	

Once	you	select	a	configuration,	the	NDoc3	project	designer	will	add
all	of	the	managed	assembly	projects	from	that	solution	to	your	new
NDoc3	project.

If	you	don't	use	Visual	Studio.NET,	you	can	add	assemblies	to	your
project	either	by	browsing	for	them	with	the	Add	button,	or	dragging
them	into	the	assembly	list	view	directly	from	Window	Explorer.	Make
sure	that	you	are	generating	XML	documentation	during	your
compiles,	otherwise	NDoc3	will	only	be	able	to	produce	minimal
documentation...

Choosing	a	Documenter
NDoc3	ships	with	a	number	of	different	options	for	generating
documentation	for	your	code.	Each	different	format	is	referred	to	as	a
Documenter.	Each	Documenter	determines	it	own	layout,	formatting,
and	in	some	cases	content	for	the	generated	documentation.

The	two	most	popular	documenters	are	the	MSDN	documenter,	which
generate	compiled	CHM	type	documentation	similar	to	MSDN	online
help,	and	the	VS.NET	documenter,	which	generates	compiled	html
help	compatible	with	Visual	Studio.NET.

	

NDoc3	Documenters

	

All	documenters	share	certain	settings,	such	as	what	types	of
members	to	document.	Each	documenter	also	has	its	own	set	of
custom	settings	which	you	can	use	to	control	the	exact	content	of
your	documentation.

For	more	details	about	configuring	documenters,	refer	to	the
Documenters	section.

Building	the	Documentation
Once	you've	chosen	a	Documenter,	and	configured	it	to	your	liking,
hit	the	Build	Button	to	create	your	documentation.	As	the	project
builds	and	compiles,	you	will	see	build	status	in	the	Output	Window	at
the	bottom	of	the	Designer	Screen,	as	well	as	in	a	progress	indicator
on	the	status	bar.

NDoc3	Build	Progress

Viewing	the	Documentation
Once	the	build	completes,	you	can	view	the	resulting	documentation
by	clicking	the	View	button.

Overview
The	assemblies	that	you	want	to	document	are	organized	in	a	project
file.	The	project	file	keeps	the	list	of	assemblies	as	well	as	the
settings	you	set	that	determine	how	your	documentation	will	appear.

The	NDoc3	Project	Designer

	

Creating	a	new	NDoc3	project	is	merely	a	matter	of	selecting	the

assemblies	that	will	be	included,	selecting	a	documentation	style,	and
setting	the	properties	of	your	documentation.

Namespace	Summaries
The	standard	C#	documentation	tags	don't	include	any	way	to	provide
a	summary	for	a	namespace.	NDoc3	supports	two	mechanisms	for
specifying	namespace	summaries.	One	is	by	supplying	them	in	a
special	code	file	within	your	project.	The	other	is	via	the	project
designer.

In	the	project	designer,	click	the	"Namespace	Summaries"	button	and
you	will	be	presented	with	a	dialog	that	allows	you	to	set	a
namespace	summary	for	each	namespace	in	your	project.

These	summaries	will	be	included	in	the	compiled	documentation

The	Namespace	Summary	Dialog

Documenter	Settings
Each	Documenter	shares	some	basic	settings,	like	what	types	of
members	to	document	and	where	to	create	the	final	output.	Each
Documenter	also	has	its	own	specific	settings	that	govern	its
operation.	These	settings	can	be	modified	in	the	Project	Designer	and
saved	as	part	of	your	project.

Settings	are	organized	by	category.	When	you	select	a	setting	in	the
property	control,	you	will	see	a	short	explanation	of	what	the	setting
does.	This	is	a	good	way	to	familiarize	yourself	with	how	each
Documenter	works	and	what	it	is	capable	of.

For	a	complete	list	of	the	documenters	and	their	settings,	refer	to	the
Documenters	Topic.

Option	Descriptions

Option Description
ShowProgressOnBuild If	true,	the	build	progress

window	will	automatically	be
shown	whenever	a	build	starts.

LoadLastProjectOnStartup If	true,	NDoc	will	load	the	last
project	when	it	starts.	This	is	a
per	user	setting.

MRUSize The	number	of	items	to	display
in	the	most	recently	used
project	list.

HtmlHelpWorkshopLocation This	option	only	applies	to
using	the	MSDN	documenter.
By	Default	NDoc	will	look	in	a
couple	of	well	known	locations
for	the	Html	Help	v1	compiler
(HHC.EXE).	If	you	have	the
help	compiler	installed	in	a
non-standard	location,	and
NDoc	is	telling	you	that	it
cannot	find	the	Html	Help
Workshop,	set	this	property	to
the	path	where	you	have	the
compiler	located.

This	setting	is	a	machine
specific	setting	and	will	apply
to	any	user	logged	in.

Overview
The	NDoc3	console	application	(NDoc3Console.exe)	exposes	the
full	building	capability	of	the	GUI	application	and	designed	to	be
integrated	into	automated	build	process.

Syntax
The	console	application	uses	a	simple	name-value-pair	syntax	for
specifying	options.	Named	options	are	prefixed	with	a	dash	in	the
following	fashion:	-name=value,	with	no	white-space	after	the	dash	or
around	the	equals	sign.	All	parameters	described	below	that	are
enclosed	in	square	brackets	are	optional.	Paths	containing	spaces
need	to	be	quoted.

Usage	1
	NDoc3Console		assembly[,xmldoc]	[assembly[,xmldoc]]...

																				[[-referencepath=dir]	[-referencepath=dir]...]

																				[-namespacesummaries=filename]

																				[-documenter=documenter_name]

																				[[-property=value]	[-property=value]...]

																				[-verbose]

where:

assembly	is	the	full	path	to	an	assembly	to	be
documented

xmldoc	is	the	full	path	to	the	compiler	generated	/doc
file

if	not	specified,	NDoc3	will	look	(in	the	same	directory
as	assembly)	for	a	file	with	the	name	of	the	assembly
but	with	an	extension	of	.xml	instead	of	.dll	or	.exe

referencepath	is	the	full	path	to	a	directory	where
referenced	assemblies	can	be	located

namespacesummaries	is	the	full	path	to	a	namespace
summary	XML	document

documenter	is	the	name	of	the	documenter	to	use

if	not	specified,	the	MSDN	documenter	will	be	used

property	is	the	case	sensitive	name	of	a	property	to	set
on	documenter
value	is	the	value	to	set	property	to
verbose	causes	full	progress	information	to	be
displayed	during	the	build

Usage	2
NDoc3Console	-recurse=dir[,maxDepth]

	 	 [[-referencepath=dir]

	 	 [-referencepath=dir]...]

	 	 [-namespacesummaries=filename]	

	 	 [-documenter=documenter_name]

	 	 [[-property=value]	[-property=value]...]	

	 	 [-verbose]	

where:

recurse	will	document	all	assemblies	in	the	specified
directory	if	they	have	a	/doc	XML	file	named	with	the
name	of	the	assembly	but	with	an	extension	of	.xml
instead	of	.dll	or	.exe

maxDepth	is	the	maximum	depth	of	sub-directories
below	dir	to	search
referencepath	is	the	full	path	to	a	directory	where
referenced	assemblies	can	be	located

namespacesummaries	is	the	full	path	to	a	namespace
summary	XML	document

documenter	is	the	name	of	the	documenter	to	use
if	not	specified,	the	MSDN	documenter	will	be	used

property	is	the	case	sensitive	name	of	a	property	to	set
on	documenter
value	is	the	value	to	set	property	to
verbose	causes	full	progress	information	to	be

displayed	during	the	build

Usage	3
NDoc3Console	[-documenter=documenter_name]

	 							-project=ndocfile	

	 							[-verbose]

where:

documenter	is	the	name	of	the	documenter	to	use
if	not	specified,	the	MSDN	documenter	will	be	used

project	is	the	full	path	to	an	NDoc3	project	file
verbose	causes	full	progress	information	to	be
displayed	during	the	build

Usage	4
NDoc3Console	[-help]

	 							[documenter_name	[property_name]]

where:

help	displays	help	information	
if	documenter_name	is	not	specified,	basic	usage
syntax	will	be	displayed

documenter_name	displays	help	about	a	specific
documenter

if	property_name	is	not	specified	a	list	of	all	the
settable	properties	on	documenter_name	will	be
displayed

property_name	is	the	name	of	the	property	on
documenter_name	to	display	help	about

Available	Documenters
The	currently	supported	documenter	names	are:	JavaDoc,	LaTeX,
LinearHtml,	MSDN,	VS.NET_2003,	and	XML.

Namespace	Summaries	File	Syntax
<namespaces>

	 <namespace	name="My.NameSpace">My	summary.</namespace>

	 <namespace	name="My.OtherNameSpace">My	other	summary.</namespace>

	 ...

</namespaces>

Using	NAnt
No	tutorial	available	yet.	You	can	contribute	a	tutorial	by	sending	a
mail.

Using	VS.NET	Build	Events
Build	events	can	be	used	to	invoke	NDoc3	when	build	a	VS.NET
solution.	Because	NDoc3	builds	can	be	time	consuming	it	is
recommended	that	they	only	be	included	in	Release	builds	or	in	a
special	documentation	build	configuration.

Because	build	events	for	C#	projects	are	not	configuration	based,	it	is
necessary	to	check	the	configuration	name	if	you	do	not	want	NDoc3
to	run	every	time	a	build	occurs.	This	can	be	accomplished	using
VS.NET's	built	in	build	variables:
	 if	$(ConfigurationName)	==	Release

Because	specifying	all	of	NDoc3's	command	line	paramters	directly	in
the	build	event	editing	window	can	be	difficult	and	error	prone,	calling
a	batch	file	can	be	easier	to	manage	and	maintain.	Use	the	Post-
Build	event	for	the	last	project	in	the	solution	that	will	be	built	or	for
each	project	for	which	you	want	seperate	documentation.

mailto:ndoc3-helpfeedback@lists.sourceforge.net?subject=NDoc3 NAnt Tutorial Contrib

Calling	a	batch	file	from	the	post-build	event

For	simple	solutions	the	following	batch	file	will	invoke	NDoc3	for
each	Release	build.

IF	NOT	%1	==	Release	GOTO	end

"%ProgramFiles%\NDoc3\bin\NDoc3Console.exe"	-recurse="%2bin\%1"

:end

More	complex	solutions	may	require	additional	parameters	such	as
reference	directories	etc.

Using	Other	Build	Tools
NDoc3	can	be	included	in	builds	orchestrated	by	any	build	tool	that
supports	executing	command	line	applications.	The	exact	mechanism
will	be	specific	to	the	tool,	but	most	(if	not	all)	support	arbitrary
execution	of	executables	with	paramters.

Overview
A	Documenter	represents	a	particular	method	of	creating,	organizing,
formatting	and	packaging	your	documentation.	NDoc3	ships	with	six
Documenters:

VS.NET

MSDN

XML

JavaDoc

LinearHtml

LaTeX

NDoc3	uses	a	pluggable	architecture,	so	it	is	also	possible	to
generate	your	own,	custom,	documenters.

Generating	the	documentation	consists	of	two	basic	steps:

1.	 Merging	the	/doc	XML	summary	with	reflected	meta-
data	from	the	assemblies.

2.	 Transforming	that	merged	XML	into	the	documentation
(HTML	for	the	MSDN	and	VS.NET	documenters).

The	settings	below	govern	how	exactly	the	XML	summary	data	is
merged	with	the	reflected	meta-data	and	therefore	govern	what	items
will	and	will	not	appear	in	the	final	documentation.

These	settings	are	shared	by	all	of	the	current	NDoc3	documenters.
Particular	documenters	might	include	additional	steps	like	compiling
the	transformed	HTML	into	compiled	help	files.	They	will	have
additional	settings	that	govern	the	details	specific	to	the	documenter's
format.

Settings

Setting Description
(Global)
ReferencePaths The	directories	used	to	resolve	assembly

references.

Documentation	Main	Settings
AssemblyVersionInfo Determines	what	type	of	Assembly	Version

information	is	documented	(if	any).

Valid	values	are,

None

Assembly	Version

File	Version

AutoDocumentConstructors If	true,	automatic	summary	documentation	for
default	constructors	will	be	enabled.	If	no
summary	for	a	parameter-less	
present,	the	default	constructor	summary	of
Initializes	a	new	instance	of	the	
class	is	inserted.

AutoPropertyBackerSummaries If	true,	the	documenter	will	automatically	add	a
summary	for	fields	which	look	like	they	back	(hold

the	value	for)	a	property.	
added	if	there	is	no	existing	summary,	which
gives	you	a	way	to	opt	out	of	this	
particular	cases.		Currently	the	naming
conventions	supported	are	such	that	fields
_Length	and	length	will	be	inferred	to	property
Length.

CleanIntermediates If	true,	intermediate	files	will	be	deleted	after	a
successful	build.

For	documenters	that	result	in	a	compiled	
like	the	MSDN	and	VS.NET	documenters,
intermediate	files	include	all	of	the	HTML	Help
project	files,	as	well	as	

CopyrightHref The	URI	of	a	copyright	notice.	A	link	to	this	URI
will	be	included	with	each	topic.

CopyrightText A	textual	copyright	notice	that	will	be	included
with	each	topic.

FeedbackEmailAddress If	an	email	address	is	supplied,	a	
be	placed	at	the	bottom	of	each	page,	pointing	to
this	address.

Preliminary If	true,	NDoc3	will	mark	every	topic	as	being
preliminary	documentation.	Each	topic	will
include	a	notice	that	the	documentation	is
preliminary

The	default	notice	is:	[This	is	preliminary
documentation	and	subject	

SdkDocLanguge Specifies	to	which	language	version	of	the	.NET
Framework	SDK	documentation	the	links	to
system	types	will	be	pointing.

SdkDocVersion Specifies	to	which	version	of	the	.NET
Framework	SDK	documentation	the	links	to
system	types	will	be	pointing.

UseNamespaceDocSummaries If	true,	the	documenter	will	look	for	a	class	with

the	name	NamespaceDoc
The	summary	from	that	class	will	then	be	used	as
the	namespace	summary.	The	class	itself	will	not
show	up	in	the	resulting	

You	may	want	to	use	#if
conditional	compilation	constants	to	exclude	the
NamespaceDoc	classes	from	release	build
assemblies.

UseNDocXmlFile When	set,	NDoc3	will	use	the	specified	XML	file
as	input	instead	of	reflecting	the	list	of	assemblies
specified	on	the	project.

Very	useful	for	debugging	documenters.	
empty	for	normal	usage.

Show	Attributes
DocumentAttributes If	true,	custom	attributes	applied	to	types	and

members	are	documented	the	syntax	portion	of
topics.

DocumentedAttributes When	DocumentAttributes
specifies	which	attributes/properties	are	visible.
Empty	to	show	all.

Format:	'<attribute-name-starts-with>,<property-
to-show>,<property-to-show>|	<attribute-name-
starts-with>,<property-to-show>,<property-to-
show>|(etc...)'.

DocumentInheritedAttributes When	DocumentAttributes
specifies	whether	attributes	inherited	from	base
classes	are	visible

ShowTypeIdInAttributes Set	this	to	true	in	order	to	output	the	
property	in	the	attributes.

Show	Missing	Documentation
ShowMissingParams If	true,	all	parameters	without	/doc	

comments	will	contain	the	

Documentation	in	the	generated	documentation.

ShowMissingRemarks If	true,	all	members	without	/doc	
comments	will	contain	the	
Documentation	in	the	generated	documentation.

ShowMissingReturns If	true,	all	members	without	/doc	
comments	will	contain	the	
Documentation	in	the	generated	documentation.

ShowMissingSummaries If	true,	all	members	without	/doc	
comments	will	contain	the	
Documentation	in	the	generated	documentation.

ShowMissingValues If	true,	all	properties	without	/doc	
comments	will	contain	the	
Documentation	in	the	generated	documentation.

Visibility
DocumentEmptyNamespaces If	true,	empty	namespaces	will	be	included	in	the

documentation.	Normally,	empty	namespaces	are
not	documented.

DocumentExplicitInterfaceImplementations If	true,	members	that	explicitly	implement
interfaces	will	be	included	in	the	documentation.
Normally,	these	members	are	not	documented.

DocumentInheritedFrameworkMembers If	true,	members	inherited	from	.Net	framework
classes	will	be	included	in	the	documentation.	By
convention,	these	members	are	normally
documented.

Note:	if	DocumentInheritedMembers
this	setting	will	be	ignored.

DocumentInheritedMembers If	true,	inherited	members	will	be	included	in	the
documentation.	By	convention,	
are	normally	documented.

DocumentInternals If	true,	types	and	members	marked	as	internal
will	be	included	in	the	documentation.

Normally,	internal	items	are	not	documented.

DocumentPrivates If	true,	types	and	members	marked	as	private	will
be	included	in	the	documentation.		This	is	useful
when	using	NDoc3	to	create	documentation
intended	for	internal	use.

Normally,	private	items	are	not	documented.

DocumentProtected If	true,	protected	members	will	be	included	in	the
documentation.

Since	protected	members	of	non-internal	types
can	be	accessed	outside	of	an	assembly,	this	is
true	by	default.

DocumentProtectedInternalAsProtected If	true,	NDoc3	will	treat	"protected	internal"
members	as	"protected"	only.

DocumentSealedProtected If	true,	protected	instance	members	of	sealed
classes	will	be	documented.	

Note:	For	this	setting	to	have	any	effect,
DocumentProtected	must	also	be	

EditorBrowsableFilter Sets	the	level	of	filtering	to	apply	on
types/members	marked	with	the
EditorBrowsable	attribute.
Warning:	enabling	this	filter	might	result	in
invalid	links	in	the	documentation.

SkipNamespacesWithoutSummaries If	true,	NDoc3	will	not	document	namespaces
that	do	not	have	an	associated	namespace
summary.

Overview
The	VS.NET	documenter	creates	compiled	Html	Help	version	2	titles
similar	in	format	to	the	.NET	Framework	SDK	collection.	Html	Help	2
is	the	help	technology	used	by	the	Visual	Studio.NET	help	system	as
well	as	by	newer	version	of	MSDN	and	the	SDK	documentation.

Documentation	generated	with	this	documenter	can	be	integrated	into
Visual	Studio	and	MSDN.	This	entails	inclusion	in	the	combined	table
of	contents,	index	and	search	functions,	as	well	as	context	sensitive
and	dynamic	help	from	with	the	Visual	Studio	IDE.

Settings
All	documenters	share	a	common	set	of	documenter	settings.

Setting Description
AboutPageIconPage HTML	file	that	displays	the

Help	About	image.

AboutPageInfo Displays	product	information	in
Help	About.

AdditionalContentResourceDirectory Directory	that	contains
resources	(images	etc.)	used
by	the	additional	content
pages.	This	directory	will	be
recursively	compiled	into	the
help	file.

BuildSeparateIndexFile If	true	a	separate	index	file	is
generated,	otherwise	it	is
compiled	into	the	HxS
(recommended).

CharacterSet The	character	set	that	will	be
used	when	compiling	the	help
file

CollectionNamespace The	Html	Help	2	registry
namespace	(avoid	spaces).

Used	in	conjunction	with
GenerateCollectionFiles	and
RegisterTitleWithNamespace

CollectionTOCStyle Determines	how	the	collection
table	of	contents	will	appear	in
the	help	browser.

CreateFullTextIndex If	true,	creates	a	full	text	index
for	the	help	file.

DocSetList A	comma-separated	list	of
DocSet	filter	identifiers	in	which
topics	in	this	title	will	be
included.

EmptyIndexTermPage Displays	when	a	user	chooses
a	keyword	index	term	that	has
sub	keywords	but	is	not	directly
associated	with	a	topic	itself.

ExtensibilityStylesheet Path	to	an	XSLT	stylesheet	that
contains	templates	for
documenting	extensibility	tags.

FooterHtml Raw	HTML	that	is	used	as	a
page	footer	instead	of	the
default	footer.	%FILE_NAME%
is	dynamically	replaced	by	the
name	of	the	file	for	the	current
html	page.
%ASSEMBLY_NAME%	is
dynamically	replaced	by	the
name	of	the	assembly	for	the
current	page.
%ASSEMBLY_VERSION%	is
dynamically	replaced	by	the
version	of	the	assembly	for	the
current	page.
%TOPIC_TITLE%	is
dynamically	replaced	by	the
title	of	the	current	page.

ms-help://ms.vshik.2003/dv_vshik_2/html/vhconDynamicHelpAttributeConventions.htm#vhcondocsetattribute

GenerateCollectionFiles If	true,	creates	collection	files
to	contain	the	help	title.	These
all	the	title	to	be	plugged	into
the	Visual	Studio	help
namespace	during	deployment.

HeaderHtml Raw	HTML	that	is	used	as	a
page	header	instead	of	the
default	blue	banner.
%FILE_NAME%\"	is
dynamically	replaced	by	the
name	of	the	file	for	the	current
html	page.	%TOPIC_TITLE%\"
is	dynamically	replaced	by	the
title	of	the	current	page.

HtmlHelpName The	HTML	Help	project	file	and
the	compiled	HTML	Help	file
use	this	property	plus	the
appropriate	extension	as
names.

IncludeDefaultStopWordList If	true,	the	default	stop-word
list	is	compiled	into	the	help	file.
(A	stop-word	list	is	a	list	of
words	that	will	be	ignored
during	a	full	text	search)

IntroductionPage An	HTML	page	that	will	be
displayed	when	the	root	TOC
node	is	selected.

LangID The	language	ID	of	the	locale
used	by	the	compiled	help	file

LinkToSdkDocVersion Specifies	to	which	version	of
the	.NET	Framework	SDK
documentation	the	links	to
system	types	will	be	pointing.

NavFailPage Page	that	opens	if	a	link	to	a
topic	or	URL	is	broken.

OmitSyntaxSection If	true,	the	syntax	section	on
member	topics	will	not	be
generated	(improves
performance)

OutputDirectory The	directory	in	which	.html
files	and	the	.Hx*	files	will	be
generated.

PlugInNamespace If	GenerateCollectionFiles	is
true,	the	resulting	collection	will
be	plugged	into	this
namespace	during	deployment

RegisterTitleAsCollection If	true	,	the	HxS	title	will	be
registered	as	a	collection	after
a	successful	compilation	of	the
documentation.	(ignored	if
RegisterTitleWithNamespace
is	true)

Note:	This	is	a	development	aid
and	only	applies	to	the	machine
where	the	build	is	run.

RegisterTitleWithNamespace Should	the	compiled	Html	2	title
be	registered	on	this	machine
after	it	is	compiled.	Good	for
testing.	(If	true
CollectionNamespace	is
required)

Note:	This	is	a	development	aid
and	only	applies	to	the	machine
where	the	build	is	run.

Title This	is	the	title	displayed	at	the
top	of	every	page.

UseHelpNamespaceMappingFile If	the	documentation	includes
references	to	types	registered
in	a	separate	html	help	2

namespace,	supplying	a
mapping	file	allows	XLinks	to
be	created	to	topics	within	that
namespace.

Version The	version	number	for	the
help	file	(#.#.#.#)

XLinks
Unlike	Html	Help	1,	which	uses	HTML	<A>	links,	Html	Help	2	uses	an
implementation	of	XLinks	to	reference	topics	in	external	help	titles.	An
XLink	is	much	like	an	HTML	<A>	link	but	allows	for	additional	linking
meta-data	and	more	complex	types	of	links.	Html	Help	2	uses	XLinks
to	look-up	topic	by	keyword,	rather	than	by	file	name.	This	de-couples
the	link	from	the	physical	layout	of	the	target	help	title.

NDoc	generates	XLinks	to	topics	in	the	.NET	framework.	The
following	is	an	NDoc	generated	link	to	the	Framework	SDK	topic	on
System.Void:

<MSHelp:link

keywords="frlrfSystemVoidClassTopic"

indexMoniker="!DefaultAssociativeIndex"

namespace="ms-
help://MS.NETFrameworkSDKv1.1">void</MSHelp:link>
Example	XLink

The	three	attributes	on	the	above	link	tell	the	Html	Help	2	system
exactly	how	to	resolve	the	desired	topic.	The	first	item	required	is	a
namespace.	Each	help	collection	registered	on	a	machine	has	a
unique	namespace.	The	namespace	above	identifies	the	.NET
Framework	1.1	SDK	documentation.	The	indexMoniker	identifies	a
specific	type	of	index	within	that	namespace.	There	can	be	numerous
types	of	indices	within	a	help	collection,	but	the
DefaultAssociativeIndex	is	used	to	create	associations	between
topics.	Finally,	the	keyword	attribute	identifies	the	specific	topic
desired	within	the	index.

Keywords	are	defined	within	a	help	topic	as	part	of	the	embedded
XML	data	that	is	generated	in	the	HTML	header.	The	keyword	for
System.Void	is	declared	as	follows	within	the	Html	Help	for	that
topic:

<MSHelp:Keyword	Index="A"
Term="frlrfSystemVoidMembersTopic"/>

http://www.w3.org/XML/Linking

Links	to	Framework	Topics
Framework	keywords	are	generated	from	the	full	name	of	the	type	or
member.	NDoc	generates	links	to	framework	topics,	either	through
inheritance	or	via	the	<see>	tag,	by	determining	the	keyword	identifier
from	the	item	being	linked	to	and	within	the	framework	SDK	help
namespace.

Links	to	Non-Framework	Topics
It	is	also	possible	to	create	links	to	your	own	Html	Help	2	titles	using
the	same	XLinking	mechanism.	For	NDoc	to	properly	generate	an
XLink	to	an	external	title,	it	needs	to	know	both	the	help	namespace
and	the	keyword	value	within	the	DefaultAssociativeIndex.
When	NDoc	generates	an	Html	Help	2	topic,	it	includes	an	XML	data
island	that	includes	an	associative	index	term	similar	to	those	that
appear	within	framework	topics.	Since	NDoc	can	document	private
and	internal	members,	the	index	generated	is	slightly	more
complicated	than	framework	keywords,	but	the	keyword	value	is
generated	deterministically.

The	thing	that	cannot	be	determined	is	the	value	of	the	help
namespace.	The	mapping	between	managed	type	names	and	help
namespaces	is	provided	by	specifying	a	mapping	file	via	the
UseHelpNamespaceMappingFile	setting.	This	setting	points	to	an
XML	file	that	conforms	to	the	namespace	map	XSD	schema.

<namespaceMap	xmlns="urn:ndoc-sourceforge-
net:documenters.NativeHtmlHelp2.schemas.namespaceMap">

							<helpNamespace	ns="ms-help://companyX.sharedhelpcollection">

														<managedNamespace	ns="CompanyX"/>

							</helpNamespace>

							<helpNamespace	ns="ms-help://companyX.producthelpcollection">

														<managedNamespace	ns="CompanyX.Product1"/>

														<managedNamespace	ns="CompanyX.Product2"/>

</helpNamespace>				

</namespaceMap>

This	file	specifies	the	managed	namespace	to	help	namespace
mapping	that	will	be	used	when	creating	XLinks	to	managed	types
that	are	not	part	of	the	documentation	set	being	processed.	Each
helpNamespace	entry	can	contain	1..n	managedNamespace
entries.	When	resolving	the	help	namespace	of	a	managed	type,	the
most	specific	managedNamespace	entry	will	be	used	to	select	the
appropriate	help	namespace.

The	managed	type	CompanyX.Product2.Class1	would	map	to	ms-
help://companyX.producthelpcollection,	while
CompanyX.Core.Class1	would	map	to	ms-
help://companyX.sharedhelpcollection.

See	Also
The	VS.NET	Documenter,	Namespace	Map	Schema

Visual	Studio	Integration
Each	Html	Help	2	topic	includes	an	XML	data	island,	that	is	used	by
the	help	system	for	creating	indices,	linking	topics,	looking	up
keywords,	filtering	topics	and	a	number	of	other	features.	A	typical
XML	data	island	looks	like:

<xml>

<MSHelp:TOCTitle	Title="Object	Class"/>

<MSHelp:RLTitle	Title="Object	Class"/>

<MSHelp:Keyword	Index="K"	Term="Object	class,	about	Object
class"/>

<MSHelp:Keyword	Index="A"
Term="frlrfSystemObjectClassTopic"/>

<MSHelp:Keyword	Index="F"	Term="System.Object"/>

<MSHelp:Attr	Name="DocSet"	Value="NETFramework"/>

<MSHelp:Attr	Name="TopicType"	Value="kbSyntax"/>

<MSHelp:Attr	Name="DevLang"	Value="CSharp"/>

<MSHelp:Attr	Name="DevLang"	Value="VB"/>

<MSHelp:Attr	Name="DevLang"	Value="C++"/>

<MSHelp:Attr	Name="DevLang"	Value="JScript"/>

<MSHelp:Attr	Name="DevLang"	Value="VJ#"/>

<MSHelp:Attr	Name="Technology"	Value="WFC"/>

<MSHelp:Attr	Name="Technology"	Value="ManagedC"/>

<MSHelp:Attr	Name="TechnologyVers"	Value="kbWFC"/>

<MSHelp:Attr	Name="TechnologyVers"	Value="kbManagedC"/>

<MSHelp:Attr	Name="Locale"	Value="kbEnglish"/>

<MSHelp:Attr	Name="DocSet"	Value="NETCompactFramework"/>

<MSHelp:Attr	Name="TechnologyVers"	Value="kbProfile2NETCF"/>

<MSHelp:Attr	Name="HelpPriority"	Value="2"/>

</xml>

When	NDoc	generates	an	Html	Help	2	topic,	it	creates	an	XML	data
island	similar.	This	allows	the	help	title	to	be	integrated	into	Visual
Studio.NET	in	such	a	way	that	your	topics	will	show	up	in	the	help
index,	the	help	contents,	the	search	pane,	the	dynamic	help	pane	and
even	in	context	sensitive	help	from	the	code	editor.	This	level	of
integration	makes	it	very	easy	for	consumers	of	your	code	to	get	the
information	they	need	right	from	the	development	environment	and	is
one	of	the	most	valuable	features	of	Html	Help	2.

Requirements
Even	though	NDoc	generates	the	necessary	XML	data	island	for	each
topic,	the	nature	of	the	Html	Help	2	system	requires	some	additional
information	in	order	to	integrate	generated	help	with	VS.NET.

1.	 The	help	title	must	be	part	of	a	collection.

Html	Help	2	defines	two	levels	of	containment	for	help
sets:	collections	and	titles.	A	title	is	a	single	set	of
related	Html	Help	topics,	compiled	into	an	HxS	file.	A
collection	is	one	or	more	related	sets	of	help	title.
(Confusing	the	issue:	help	titles	can	also	be	treated	as
collections,	but	not	vice-a-versa).	Each	help	collection
must	be	assigned	a	unique	namespace.

Only	help	collections	can	be	integrated	into	the	VS.NET
help	system.

2.	 The	collection	must	be	registered	on	each	machine.

The	Html	Help	2	system	maintains	a	registry	(not	to	be
confused	with	the	windows	registry)	of	all	of	the	help
topics	currently	installed	on	the	machine.	This	registry	is
used	when	traversing	links,	doing	searches,	displaying
indices	etc.	It	is	an	essential	part	of	the	implementation
of	Html	Help	2.	For	this	reason	the	help	collection	needs
to	be	registered	when	it	is	deployed,	otherwise	it	will	not
be	accessible	from	VS.NET.

3.	 The	registered	help	collection	must	be	"plugged-in"	to
the	VS.NET	help	namespace.

Any	registered	help	collection	can	be	referenced	from
any	other	registered	help	collection.	This	allows	one
collection	to	include	the	title	in	another	collection,	even
though	those	titles	are	not	directly	part	of	the	parent
collection.	It	is	via	this	"plug-in"	mechanism	that	third
party	help	collections	can	be	added	to	the	VS.NET	help
system.

The	namespace	for	the	VS.NET	2003	help	collection	is:
MS.VSCC.2003

Confused	yet?
Html	Help	2	is	fairly	complex	technology.	Further	information	can	be
found	in	the	VSHIK	documentation.	The	website	helpware.net	also
has	a	lot	of	useful	information	and	tutorials	on	Html	Help	2.	HelpWare
also	has	a	shareware	tool	by	the	name	of	FAR	that	will	prove
invaluable	for	exploring	the	capabilities	of	the	Html	Help	2	system.

The	VS.NET	documenter	has	a	number	of	settings	meant	to	simplify
this	entire	process.

First,	make	sure	that	GenerateCollectionFiles	is	set	to
true.	This	will	generate	the	necessary	Html	Help	2
collection	meta	data	files	that	will	allow	you	to	plug	into
VS.NET.

Second,	supply	a	value	for	CollectionNamespace.	Don't
use	spaces	or	any	URI	special	characters.	It	is	also	a
good	idea	to	make	an	effort	to	assure	that	this
namespace	will	be	globally	unique.	The	same	rules	you
use	to	generate	unique	managed	namespaces	also
work	well	here.

Third,	make	sure	you	supply	the	correct	value	for
PlugInNamespace.	This	makes	sure	that	when	you
deploy	your	help	files	with	h2reg.exe,	they	will	be
plugged	into	VS.NET.	(The	default	value	of	ms.vscc
allows	h2reg	to	decide	at	install	time	whether	VS.NET
2002	or	2003	should	be	used.)

Filters

ms-help://ms.vshik.2003/dv_vshik_2/html/vsoriVSHIK2.htm
http://www.helpware.net
http://helpware.net/FAR/index.html

Each	help	topic's	XML	data	island	can	have	one	or	more	DocSet
values.	The	DocSet	is	what	VS.NET	uses	when	it	filters	the	help
index	and	search	panes.	DocSets	are	defined	at	the	collection	level,
and	then	individual	topics	can	be	included	in	a	DocSet	via	its	XML
data	island.

MSDN	defines	a	number	of	set	filters	as	follows:

Windows	Client	SDK,						 Query:	"DocSet"="WCSDK"

NET	Framework,													 Query:	("DocSet"="NETFramework"	OR	"DocSet"	=	"NETFrameworkExtender")	OR	(("DocSet"="C#"	OR	"DocSet"="Visual	Basic"	OR		"DocSet"="Visual	C++"	OR	"DocSet"="VBA"	OR	"DocSet"="VJ#"	OR	"DocSet"="Visual	Studio")	AND	"Technology"="ManagedCode")

Visual	Studio	Macros,					 Query:	"DocSet"	=	"VSM"	OR	"DocSet"	=	"NETFramework"

Visual	Basic,															 Query:	"DocSet"	=	"Visual	Basic"	OR	"DocSet"	=	"NETFramework"	OR	"DocSet"	=	"NETFrameworkExtender"	OR	"DocSet"	=	"DHTML"	OR	"DocSet"	=	"XML"	OR	("DocSet"	=	"kbmsdn"	AND	"ProductVers"	=	"kbVBp700")

Visual	C++,																	 Query:	"DevLang"	=	"C"	OR	"DevLang"	=	"C++"	OR	"Product"	=	"VC"	OR	"DocSet"	=	"PSDK"	OR	"DocSet"	=	"NETFramework"	OR	("DocSet"	=	"kbmsdn"	AND	"ProductVers"	=	"kbVC700")

Platform	SDK,															 Query:	"DocSet"	=	"PSDK"

(no	filter),																 Query:	

Enterprise	Servers,									 Query:	"DocSet"	=	"NETEnterpriseServers"	OR	"DocSet"	=	"SQL	Server"

Internet	Development,							 Query:	"DocSet"	=	"DHTML"	OR	"DocSet"	=	"XML"	OR	"DevLang"	=	"DHTML"	OR	"DevLang"	=	"HTML"	OR	"DevLang"	=	"VBScript"	OR	"DevLang"	=	"JScript"	OR	"DevLang"	=	"ASP"	OR	"Technology"	=	"kbSOAP"	OR	"Technology"	=	"ASPNET"	OR	"Technology"	=	"HPS"

Visual	Studio,														 Query:	"DocSet"	=	"Visual	Studio"	OR	"DocSet"	=	"Visual	Studio	SDK"	OR	"DocSet"	=	"CrystalReports"	OR	"DocSet"	=	"Visual	Source	Safe"	OR	"DocSet"	=		"VSAnalyzer"	OR	"DocSet"	=	"PSDK"	OR	"DocSet"	=	"NETFramework"	OR	"DocSet"	=	"NETFrameworkExtender"	OR	"DocSet"	=	"NETEnterpriseServers"	OR	("DocSet"	=	"kbmsdn"	AND	"ProductVers"	=	"kbVS700")

Visual	C#,																		 Query:	"DocSet"	=	"C#"	OR	"DocSet"	=	"NETFramework"	OR	"DocSet"	=	"NETFrameworkExtender"	OR	"DocSet"	=	"DHTML"	OR	"DocSet"	=	"XML"	OR	("DocSet"	=	"kbmsdn"	AND	"ProductVers"	=	"C#")

Samples,																				 Query:	"TopicType"="kbSampleProd"

Visual	FoxPro,														 Query:	"DocSet"	=	"Visual	FoxPro"	OR	("DocSet"	=	"kbmsdn"	AND	"ProductVers"	=	"kbVFP700")

Knowledge	Base,													 Query:	"DocSet"	=	"kbKB"

Visual	J#,																		 Query:	"DocSet"	=	"VJ#"	OR	"DocSet"	=	"NETFramework"	OR	"DocSet"	=	"NETFrameworkExtender"	OR	"DocSet"	=	"DHTML"	OR	"DocSet"	=	"XML"	OR	("DocSet"	=	"kbmsdn"	AND	"ProductVers"	=	"VJ#")

.NET	Compact	Framework,					 Query:	"DocSet"="Smart	Devices"	OR	"DocSet"="NetCompactFramework"

Adding	your	collection	to	any	of	the	above	sets	is	as	easy	as
supplying	a	comma	separated	list	via	the	DocSetList	property.	An
entry	will	be	made	in	each	topic's	data	island	for	each	item	in	this	list.
When	you	deploy	your	help,	your	topics	will	show	up	when	the	user	is
filtering	by	sets	which	you	have	defined.

NDoc	will	however	create	and	register	a	single	DocSet	filter
corresponding	to	the	value	of	HtmlHelpName,	and	each	topic	will	be
included	in	that	set.	Defining	additional	custom	filters	is	possible,	but
is	outside	of	the	scope	of	NDoc.	To	do	so	you	will	need	to	delve	more
deeply	into	the	deployment	and	registration	process	as	described	in
VSHIK.

See	Also

The	VS.NET	Documenter,	VSHIK	documentation,	Deploying	Html
Help	2

ms-help://ms.vshik.2003/dv_vshik_2/html/vsoriVSHIK2.htm

Deploying	Html	Help	2
The	Html	Help	2	system	maintains	a	registry	of	all	help	collections
and	titles	currently	installed	on	a	machine.	This	registry	determines
what	help	titles	are	included	in	each	help	collection	as	well	as
maintains	references	between	help	collections.

In	order	to	view	an	Html	Help	2	title	or	collection	it	is	required	that	it
be	registered.	This	makes	deploying	Html	Help	2	documentation
more	complex	than	simply	delivering	a	single	file	as	with	CHM	based
help.

Windows	Installer
It	is	possible	to	create	Windows	Installer	packages	to	deploy	and
properly	register	help	collections	and	titles.	VSHIK	includes	detailed
instructions	on	how	to	go	about	this	as	well	as	a	set	of	merge
modules	that	contain	the	registration	actions.	Unfortunately,	it	is	a
rather	involved	process	that	includes	a	number	of	manual	steps	to
create	the	proper	records	in	the	installer	database.	There	is	currently
no	way	to	automate	the	generation	of	Windows	Installer	packages	for
Html	Help	2	files.

H2Reg
Another	option	is	to	use	the	shareware	tool	H2Reg.exe	from
helpware.net.	H2Reg	is	a	command	line	utility	that	will	register	help
collections	and	titles	during	installation.	It	can	be	included	in	scripted
installer	as	well	as	Windows	Installer	packages	as	a	custom	action.

If	the	setting	GenerateCollectionFiles	is	true,	NDoc	will	create	an
H2Reg	compatible	INI	file	that	contains	the	proper	values	to	register
the	generated	help	title,	as	well	as	plug	it	into	the	VS.NET	help
collection.

In	order	to	deploy	the	NDoc	generated	Html	Help	2	files	with	H2Reg,
follow	these	steps:

1.	 Set	GenerateCollectionFiles	to	true
2.	 Include	all	of	the	generated	help	files	as	well	as	the

generated	INI	file	in	your	installer.

ms-help://ms.vshik.2003/dv_mshlpwrk/html/hxconRedistributingHelpFiles.htm
http://helpware.net/mshelp2/h2reg.htm
http://www.helpware.net

3.	 Include	the	H2Reg	executable	as	well	as	the	file
H2Reg.ini	(located	in	the	directory	where	you	installed
H2Reg)	in	your	installer.

4.	 During	installation	copy	the	help	files	as	well	as	the
generated	INI	file	to	there	final	location.

5.	 Execute	H2Reg	with	the	following	syntax:
H2reg	-r	"CmdFile=<full	path	to	the

generated	INI	file>"

6.	 During	uninstallation,	before	the	help	files	are	removed,
execute	H2Reg	with	the	following	syntax:
H2reg	-u	"CmdFile=<full	path	to	the

generated	INI	file>"

See	Also
The	VS.NET	Documenter,	GenerateCollectionFiles,	VSHIK
Deployment	Instructions,	H2Reg	online

ms-help://ms.vshik.2003/dv_mshlpwrk/html/hxconRedistributingHelpFiles.htm
http://www.helpware.net

Overview

Settings
All	documenters	share	a	common	set	of	documenter	settings.

Setting Description
BinaryTOC Create	a	binary	table-of-

contents	file.	This	can
significantly	reduce	the
amount	of	time	required	to
load	a	very	large	help
document.

ExtensibilityStylesheet Path	to	an	xslt	stylesheet	that
contains	templates	for
documenting	extensibility
tags.

FilesToInclude Specifies	external	files	that
must	be	included	in	the
compiled	CHM	file.	Multiple
files	must	be	separated	by	a
pipe	('|').

FooterHtml Raw	HTML	that	is	used	as	a
page	footer	instead	of	the
default	footer.
"%FILE_NAME%\"	is
dynamically	replaced	by	the
name	of	the	file	for	the
current	html	page.
"%ASSEMBLY_NAME%\"	is
dynamically	replaced	by	the
name	of	the	assembly	for	the
current	page.
"%ASSEMBLY_VERSION%\"
is	dynamically	replaced	by
the	version	of	the	assembly

for	the	current	page.
"%TOPIC_TITLE%\"	is
dynamically	replaced	by	the
title	of	the	current	page.

HeaderHtml Raw	HTML	that	is	used	as	a
page	header	instead	of	the
default	blue	banner.
"%FILE_NAME%\"	is
dynamically	replaced	by	the
name	of	the	file	for	the
current	html	page.
"%TOPIC_TITLE%\"	is
dynamically	replaced	by	the
title	of	the	current	page.

HtmlHelpName The	HTML	Help	project	file
and	the	compiled	HTML	Help
file	use	this	property	plus	the
appropriate	extension	as
names.

IncludeFavorites Turning	this	flag	on	will
include	a	Favorites	tab	in	the
HTML	Help	file.

OutputDirectory The	directory	in	which	.html
files	and	the	.chm	file	will	be
generated.

OutputTarget Sets	the	output	type	to	HTML
Help	(.chm)	or	Web	or	both.

RootPageContainsNamespaces If	true,	the	Root	Page	will	be
made	the	container	of	the
namespaces	in	the	table-of-
contents.	If	false,	the	Root
Page	will	be	made	a	peer	of
the	namespaces	in	the	table-
of-contents.

RootPageFileName The	name	of	an	html	file	to

be	included	as	the	root	home
page.	SplitTOCs	is	disabled
when	this	property	is	set.

RootPageTOCName The	name	for	the	table-of-
contents	entry	corresponding
to	the	root	page.	If	this	is	not
specified	and
RootPageFileName	is,	then
the	TOC	entry	will	be
'Overview'.

SdkLinksOnWeb If	true,	links	to	system	types
and	members	will	point	to	the
online	MSDN	library.

ShowVisualBasic This	is	a	temporary	property
until	we	get	a	working
language	filter	in	the	output
like	MSDN.

Title This	is	the	title	displayed	at
the	top	of	every	page.

Overview
The	XML	Documenter	is	the	simplest	of	the	NDoc3	Documenters.	It	is
primarily	a	development	tool.	

As	part	of	the	documentation	compile	process,	NDoc3	merges	the
type	information	in	the	assemblies	being	documented	with	the	code
comment	summary	XML	document	that	the	/doc	compiler	option
emits.	The	XML	Documenter	allows	you	to	save	this	merged	set	of
data	for	curiosity's	sake	or	debugging	purposes.

Used	in	conjunction	with	the	UseNDocXmlFile	setting,	this	is
especially	useful	when	you	are	working	on	your	own	documenters.

IMPORTANT:			The	XML	produced	by	this	documenter	is	an
internal	implementation	detail	and	as	such	is	not	guaranteed	to
remain	constant,	or	even	remain	back-backward	compatible
between	released	versions.

Settings
All	documenters	share	a	common	set	of	documenter	settings.

Setting Description
OutputFile This	is	the	path	and	filename	of	the	file

where	the	merged	documentation	will	be
written.	This	can	be	absolute	or	relative
from	the	.ndoc	project	file.

ms-help://MS.NETFrameworkSDKv1.1/cscomp/html/vcerrDocProcessDocumentationComments.htm

Overview
The	JavaDoc	documenter	is	used	to	make	a	set	of	HTML
documentation	similar	in	format	and	layout	to	the	documentation
created	by	Java's	JavaDoc	technology.

Due	to	lack	of	interest,	this	documenter	is	not	under	active
development.	If	you	are	interested	in	updating	this	documenter,
please	contact	one	of	the	NDoc3	Admins.

Settings
All	documenters	share	a	common	set	of	documenter	settings.

Setting Description
Title The	name	of	the	JavaDoc	project.

OutputDirectory The	folder	where	the	root	of	the	HTML
set	will	be	located.	This	can	be	absolute
or	relative	from	the	.ndoc	project	file.

http://sourceforge.net/projects/ndoc3/

Overview

Settings
All	documenters	share	a	common	set	of	documenter	settings.

Setting Description
OutputFile This	is	the	path	and	filename	of	the	file

where	the	merged	documentation	will	be
written.	This	can	be	absolute	or	relative
from	the	.ndoc	project	file.

Overview
The	LaTeX	documenter	can	be	used	to	create	dvi	or	postscript
documents.

This	documenter	requires	that	a	LaTeX	compiler	be	installed.	You	can
download	a	free	one	from	www.MiKTeX.org.

Settings
All	documenters	share	a	common	set	of	documenter	settings.

Setting Description
OutputDirectory The	folder	documentation	will	be	created.

This	can	be	absolute	or	relative	from	the
.ndoc	project	file.

LatexCompiler Path	to	the	LaTeX	compiler	executable
(Set	to	empty	if	you	do	not	have	LaTeX
installed).

TexFileBaseName Name	of	the	LaTeX	document,	excluding
the	file	extension.

http://www.miktex.org

The	following	table	indicates	where	top-level	tags	can	be	used.

Tag Namespace Class Structure Interface Enum
<inheritdoc	/> 	 	 	 	 	
<event> 	 	 	 	 	
<example> 	 l l l l
<exception> 	 	 	 	 	
<exclude/> 	 l l l l
<include> 	 l l l l
<overloads> 	 	 	 	 	
<param> 	 	 	 	 	
<permission> 	 	 	 	 	
<preliminary> 	 l l l l
<remarks> 	 l l l l
<returns> 	 	 	 	 	
<seealso> 	 l l l l
<summary> l l l l l
<threadsafety> 	 l l 	 	
<value> 	 	 	 	 	

The	<c>	tag	is	used	to	indicate	that	text	within	a	description	should	be
marked	as	code.

<c>text</c>

where:

text
The	text	you	would	like	to	indicate	as	code.

Applies	To
Can	be	used	inline	within	any	other	markup.

Remarks
Use	<code>	to	indicate	multiple	lines	as	code.

Example
[C#]
public	class	MyClass	

{

			///	<summary>

			///	<c>MyMethod</c>	is	a	method	in	the	<c>MyClass</c>	class.

			///	</summary>

			public	static	void	MyMethod(int	Int1)	

			{

			}

}

See	Also
Tag	Usage	|	NDoc3	Tags	|	<code>	|	Microsoft's	definition

ms-help://MS.NETFrameworkSDKv1.1/csref/html/vclrfc.htm

The	<code>	is	used	to	indicate	multiple	lines	as	code.

<code	[lang="language"][escaped="true"]>content

where:

lang="language"	[NDoc3	extension]
Applies	a	filter	for	this	language.	(Optional)

escaped="true"	[NDoc3	extension]
Escapes	all	reserved	characters	within	content.	(Optional)

content
The	text	you	want	marked	as	code.

Applies	To
Can	be	used	inline	within	any	other	markup.

Remarks
A	language	filter	can	be	attached	using	the	optional	lang	attribute.
Standard	languages	are	Visual	Basic,	C#,	C++	and	JScript.	Multiple
languages	can	be	specified	as	a	comma	separated	list	such	as
"Visual	Basic,	C#,	C++".

The	escaped	attribute	can	be	used	to	escape	all	reserved	characters
within	the	text.

Note:		All	content	within	xml	comments	must	be	well-formed!!!

Example
Note	how,	in	the	following	comments,	the	xml	text	can	be	entered
verbatim	because	the	escaped="true"	attribute	has	been	applied.

			[C#]
			///	<summary>

			///	Loads	the	XML.

			///	</summary>

			///	<example>	The	XML	should	have	the	following	format.

			///	<code	escaped="true">

			///			<root>

			///					<member	name="name"/>

			///			</root>

			///	</code>

			///	</example>

			public	void	LoadXml(string	xml)	

			{

						//do	something	here...

			}

See	Also
Tag	Usage	|	NDoc3	Tags	|	<c>	|	Microsoft's	definition

ms-help://MS.NETFrameworkSDKv1.1/csref/html/vclrfcode.htm

The	<event>	tag	describes	which	events	can	be	raised	by	the	current
method.

<event	cref="member">description</event>

where:

cref	=	"member"
A	reference	to	an	event	that	is	available	from	the	current
compilation	environment.		The	compiler	checks	that	the	given
event	exists	and	translates	member	to	the	canonical	element
name	in	the	output	XML.	member	must	appear	within	double
quotation	marks	("	").

description
A	description.

Applies	To
Method.

Remarks
	

Example

See	Also
Tag	Usage	|	NDoc3	Tags

The	<example>	tag	describes	an	example	of	how	to	use	a	type	or
member.

<example>description</example>

where:

description
A	description	of	the	code	sample.

Applies	To
All	types	and	members.

Remarks
Commonly,	this	tag	is	used	with	the	<code>	tag.

Example
[C#]
public	class	MyClass	

{

			///	<summary>

			///	The	GetZero	method.

			///	</summary>

			///	<example>	This	sample	shows	how	to	call	the	GetZero	method.

			///	<code>

			///			class	MyClass	

			///			{

			///						public	static	int	Main()	

			///						{

			///									return	GetZero();

			///						}

			///			}

			///	</code>

			///	</example>

			public	static	int	GetZero()	

			{

						return	0;

			}

}

See	Also
Tag	Usage	|	NDoc3	Tags	|	<code>		|	Microsoft's	definition

ms-help://MS.NETFrameworkSDKv1.1/csref/html/vclrfExample.htm

The	<exception>	tag		describes	which	exceptions	can	be	thrown	by	a
member.

<exception	cref="member">description</exception>

where:

cref	=	"member"
A	reference	to	an	exception	that	is	available	from	the	current
compilation	environment.	The	compiler	checks	that	the	given
exception	exists	and	translates	member	to	the	canonical	element
name	in	the	output	XML.	member	must	appear	within	double
quotation	marks	("	").

description
A	description.

Applies	To
Property,	Method,	Event,	Operator,	Type	Conversion

Remarks
This	tag	is	applied	to	a	method	definition.

Example
[C#]
using	System;

///	comment	for	class

public	class	EClass	:	Exception	

{

			//	class	definition	...

}

///	<exception	cref="System.Exception">Thrown	when...	.</exception>

class	TestClass	

{

			public	static	void	Main()	

			{

						try	

						{

						}

						catch(EClass)	

						{

						}

			}

}

See	Also
Tag	Usage	|	NDoc3	Tags	|	Microsoft's	definition

ms-help://MS.NETFrameworkSDKv1.1/csref/html/vclrfexception.htm

The	<exclude/>	tag	directs	NDoc3	to	exclude	the	current	item	from
documentation.

<exclude/>

Applies	To
All	Types	and	Members.

Remarks
This	tag	takes	precedence	over	any	visibility	options.

Examples

See	Also
Tag	Usage	|	NDoc3	Tags

The	<include>	tag	lets	you	refer	to	comments	in	another	file	that
describe	the	types	and	members	in	your	source	code.

<include	file='filename'	path='tagpath[@name="

where:

filename
The	name	of	the	file	containing	the	documentation.	The	file	name
can	be	qualified	with	a	path.	Enclose	filename	in	single	quotation
marks	('	').

tagpath
The	path	of	the	tags	in	filename	that	leads	to	the	tag	name.
Enclose	the	path	in	single	quotation	marks	('	').

name
The	name	specifier	in	the	tag	that	precedes	the	comments;	name
will	have	an	id.

id
The	ID	for	the	tag	that	precedes	the	comments.	Enclose	the	ID	in
double	quotation	marks	("	").

Applies	To
All	Types	and	Members.

Remarks
This	is	an	alternative	to	placing	documentation	comments	directly	in
your	source	code	file.

The	<include>	tag	uses	the	XML	XPath	syntax.	Refer	to	XPath
documentation	for	ways	to	customize	your	<include>	use.

Example
This	is	a	multi-file	example.	The	first	file,	which	uses	<include>,	is
listed	below:
[C#]
///	<include	file='xml_include_tag.doc'	path='MyDocs/MyMembers[@name="test"]/*'	/>

class	Test

{

			public	static	void	Main()

			{

			}

}

///	<include	file='xml_include_tag.doc'	path='MyDocs/MyMembers[@name="test2"]/*'	/>

class	Test2

{

			public	void	Test()

			{

			}

}

The	second	file,	xml_include_tag.doc,	contains	the	following
documentation	comments:
<MyDocs>

<MyMembers	name="test">

<summary>

The	summary	for	this	type.

</summary>

</MyMembers>

<MyMembers	name="test2">

<summary>

The	summary	for	this	other	type.

</summary>

</MyMembers>

</MyDocs>

Compiler	XML	Output
<?xml	version="1.0"?>

<doc>

				<assembly>

								<name>t2</name>

				</assembly>

				<members>

								<member	name="T:Test">

												<summary>

The	summary	for	this	type.

</summary>

								</member>

								<member	name="T:Test2">

												<summary>

The	summary	for	this	other	type.

</summary>

								</member>

				</members>

</doc>

See	Also
Tag	Usage	|	NDoc3	Tags	|	Microsoft's	definition

ms-help://MS.NETFrameworkSDKv1.1/csref/html/vclrfinclude.htm

The	<inheritdoc	/>	are	used	to	indicate	that	documentaion	should	be
inherited	from	the	base	type.

<inheritdoc	/>

Applies	To
Any	inherited	member.

See	Also
Tag	Usage	|	NDoc3	Tags

The	<list>	tag	describes	a	numbered	or	bulleted	list,	a	definition	list	or
a	table.

<list	type="bullet"	|	"number"	|	"table"	|	"definition">

			<listheader>

						<term>term</term>

						<description>description</description>

			</listheader>

			<item>

						<term>term</term>

						<description>description</description>

			</item>

</list>

where:

term
A	term	to	define,	which	will	be	defined	in	description.

description
Either	an	item	in	a	bullet	or	numbered	list	or	the	definition	of	a
term.

Remarks
The	<listheader>	block	is	used	to	define	the	heading	row	of	a
table.		When	defining	a	table,	you	only	need	to	supply	an	entry	for
term	in	the	heading.

Each	item	in	the	list	is	specified	with	an	<item>	block.	When	creating
a	definition	list,	you	will	need	to	specify	both	term	and	description.
However,	for	a	table,	bulleted	list,	or	numbered	list,	you	only	need	to
supply	an	entry	for	description.

A	list	or	table	can	have	as	many	<item>	blocks	as	needed.

Examples

See	Also
Tag	Usage	|	NDoc3	Tags	|	Microsoft's	definition

ms-help://MS.NETFrameworkSDKv1.1/csref/html/vclrflist.htm

The	<note>	tag	produces	a	formatted	note	block.

<note	type="caution"	|	"inheritinfo"	|	"implementnotes">

			description

</note>

where:

description
Either	an	item	in	a	bullet	or	numbered	list	or	the	definition	of	a
term.

Applies	To
Can	be	used	inline	within	any	other	markup.

Remarks

Examples

See	Also
Tag	Usage	|	NDoc3	Tags

The	<overloads>	tag	provides	documentation	that	applies	to	all	the
overloads	of	a	member.

Short 	Form
<overloads>

			summary_description

</overloads>

Expanded	Form
<overloads>

			<summary>summary_description</summary>

			[<remarks>remarks_description</remarks>]

			[<example>examples_description</example>]

</overloads>

where:

term
A	term	to	define,	which	will	be	defined	in	description.

description
Either	an	item	in	a	bullet	or	numbered	list	or	the	definition	of	a
term.

Applies	To
Property,	Method,	Event,	Operator.

Remarks
This	tag	only	needs	to	be	specified	on	the	first	overload.

The	tag	can	have	two	forms:

In	the	short	form,	it	includes	only	one	or	more	text
blocks	that	are	treated	as	the	summary.

In	the	expanded	form,	it	can	include	one	or	more
applicable	section	tags	(summary,	remarks	and
example).

Examples

See	Also
Tag	Usage	|	NDoc3	Tags	|	<summary>	|	<remarks>	|	<example>

The	<para>	tag	is	used	to	add	structure	to	text.

<para	[lang="language"]>content</para>

where:

lang="language"	[NDoc3	extension]
Applies	a	filter	for	this	language.	(Optional)

content
The	text	of	the	paragraph.

Applies	To
Can	be	used	inline	within	any	other	markup.

Remarks
This	tag	is	for	use	inside	a	tag,	such	as	<summary>,	<remarks>,	or
<returns>,	and	lets	you	add	structure	to	the	text.

A	language	filter	can	be	attached	using	the	optional	lang	attribute.
Standard	languages	are	Visual	Basic,	C#,	C++	and	JScript.	Multiple
languages	can	be	specified	as	a	comma	separated	list	such	as
"Visual	Basic,	C#,	C++".

ExampleV
See	<summary>	for	an	example	of	using	this	tag.

See	Also
Tag	Usage	|	NDoc3	Tags	|	Microsoft's	definition

ms-help://MS.NETFrameworkSDKv1.1/csref/html/vclrfpara.htm

The	<param>	tag	describes	one	of	the	parameters	for	the	method.

<param	name='name'>description</param>

where:

name
The	name	of	a	method	parameter.	Enclose	the	name	in	single
quotation	marks	('	').

description
A	description	for	the	parameter.

Applies	To
Property,	Method,	Event,	Operator.

Remarks

Example
[C#]
///	text	for	class	MyClass

public	class	MyClass	

{

			///	<param	name="Int1">Used	to	indicate	status.</param>

			public	static	void	MyMethod(int	Int1)	

			{

			}

			///	text	for	Main

			public	static	void	Main	()	

			{

			}

}

See	Also
Tag	Usage	|	NDoc3	Tags	|	Microsoft's	definition

ms-help://MS.NETFrameworkSDKv1.1/csref/html/vclrfparam.htm

The	<paramref>	tag	indicates	that	a	word	is	a	parameter.

<paramref	name="name"/>

where:

name
The	name	of	the	parameter	to	refer	to.	Enclose	the	name	in
double	quotation	marks	("	").

Applies	To
Can	be	used	inline	within	any	other	markup.

Remarks

Example
[C#]
///	text	for	class	MyClass

public	class	MyClass

{

			///	<remarks>MyMethod	is	a	method	in	the	MyClass	class.		

			///	The	<paramref	name="Int1"/>	parameter	takes	a	number.

			///	</remarks>

			public	static	void	MyMethod(int	Int1)

			{

			}

			///	text	for	Main

			public	static	void	Main	()

			{

			}

}

See	Also
Tag	Usage	|	NDoc3	Tags	|	Microsoft's	definition

ms-help://MS.NETFrameworkSDKv1.1/csref/html/vclrfparamref.htm

The	<permission>	tag	lets	you	document	the	security	access	of	a
member.

<permission	cref="member">description</permission>

where:

cref	=	"member"
A	reference	to	a	member	or	field	that	is	available	to	be	called	from
the	current	compilation	environment.	The	compiler	checks	that	the
given	code	element	exists	and	translates	member	to	the	canonical
element	name	in	the	output	XML.	member	must	appear	within
double	quotation	marks	("	").

description
A	description	of	the	access	to	the	member.

Applies	To
All	Members.

Remarks
The	System.Security.PermissionSet	lets	you	specify	access	to	a
member.

Example
[C#]
using	System;

class	TestClass

{

			///	<permission	cref="System.Security.PermissionSet">Everyone	can	access	this	method.</permission>

			public	static	void	Test()

			{

			}

			public	static	void	Main()

			{

			}

}

See	Also
Tag	Usage	|	NDoc3	Tags	|	Microsoft's	definition

ms-help://MS.NETFrameworkSDKv1.1/csref/html/vclrfpermission.htm

The	<preliminary>	tags	marks	the	documentation	for	the	current	item
as	preliminary.

<preliminary>[description]</preliminary>

where:

description
An	optional	textual	message	or	warning	that	replaces	the	default
preliminary	warning.

Applies	To
All	Types	and	Members.

Remarks
If	the	empty	form	of	this	tag	is	used	(<preliminary/>)	the	default
message	of	"[This	is	preliminary	documentation	and	subject	to
change.]"	will	be	included	in	the	generated	help	topic.

If	a	value	is	supplied	for	the	content	of	this	tag,	that	value	will	appear
in	the	help	topic,	replacing	the	default	message.	You	can	format	the
message	text	using	the	para	and	list	tags,	but	this	is	not	required.

Entire	help	titles	can	marked	preliminary	using	the	Preliminary
documenter	setting.

Examples
[C#]
//	The	class	summary	will	get	the	default	message

///	<preliminary/>

public	class	MyClass

{

			///	<preliminary>

			///	<para>This	method	is	just	for	testing	right	now.	It	might	be	removed	in	the	near	future</para>

			///	</preliminary>

			public	void	Dump	()

			{

			}

}

See	Also
Tag	Usage	|	NDoc3	Tags

The	<remarks>	tag	describes	additional	information	about	a	type	or
member..

<remarks>description</remarks>

where:

description
Additional	information	regarding	the	type	or	member.

Applies	To
All	Types	and	Members.

Remarks
The	<remarks>	tag	is	used	to	add	additional	information	about	a	type
or	member,	supplementing	the	information	specified	with	<summary>.

Example
[C#]
///	<summary>

///	You	may	have	some	primary	information	about	this	class.

///	</summary>

///	<remarks>

///	You	may	have	some	additional	information	about	this	class.

///	</remarks>

public	class	MyClass

{

			///	text	for	Main

			public	static	void	Main	()

			{

			}

}

See	Also
Tag	Usage	|	NDoc3	Tags	|	Microsoft's	definition

ms-help://MS.NETFrameworkSDKv1.1/csref/html/vclrfremarks.htm

The	<returns>	tag	describes	the	return	value	of	a	method.

<returns>description</returns>

where:

description
A	description	of	the	return	value.

Applies	To
Method.

Remarks

Example
[C#]
///	text	for	class	MyClass

public	class	MyClass

{

			///	<returns>Returns	zero.</returns>

			public	static	int	GetZero()

			{

						return	0;

			}

			///	text	for	Main

			public	static	void	Main	()

			{

			}

}

See	Also
Tag	Usage	|	NDoc3	Tags	|	Microsoft's	definition

ms-help://MS.NETFrameworkSDKv1.1/csref/html/vclrfreturns.htm

The	<see>	tag	specifies	a	link	to	other	documentation	from	within
text.

<see	cref="member">[label]</see>

OR

<see	href="URL">[label]</see>

OR

<see	langword="null	|	sealed	

|	static	|	abstract	|	virtual	|	true	|	false"/>

where:

label
text	to	display	as	the	link

cref	=	"member"
A	reference	to	a	member	or	field	that	is	available	to	be	called	from
the	current	compilation	environment.	The	compiler	checks	that	the
given	code	element	exists	and	passes	member	to	the	element
name	in	the	output	XML.	member	must	appear	within	double
quotation	marks	("	").

href	=	"URL"	[NDoc3	extension]
A	reference	to	an	external	resource	at	the	address	given	by	the
URL.

langword	[NDoc3	extension]
A	common	.NET	language	keyword.	These	keywords	are
highlighted,	and,	in	some	cases,	expanded	into	descriptive
phrases	(see	remarks	for	further	details).	Note	that	although	the
syntax	above	only	shows	the	common	keywords,	any	word
specified	will	be	highlighted.

Applies	To
Can	be	used	inline	within	any	other	markup.

Remarks
Use	<seealso>	to	indicate	text	that	you	might	want	to	appear	in	a	See
Also	section.

Note:	As	of	release	1.3,	the	MSDN	and	VS.NET	documenters	will
only	create	a	link	on	the	first	occurrence	of	each	unique	cref
specified	within	a	documentation	section;	further	<see>	tags	will	just
be	highlighted.		This	improves	the	readability	of	the	documentation.

langword	expansions
keyword expansion
null null	reference	(Nothing	in	Visual	Basic)
sealed sealed	(NotInheritable	in	Visual	Basic)
static static	(Shared	in	Visual	Basic)
abstract abstract	(MustInherit	in	Visual	Basic)
virtual virtual	(CanOverride	in	Visual	Basic)

Example
See	<summary>	for	an	example	of	using	<see>.

See	Also
Tag	Usage	|	NDoc3	Tags	|	<seealso>	|	Microsoft's	definition

ms-help://MS.NETFrameworkSDKv1.1/csref/html/vclrfsee.htm

The	<seealso>	tag	is	used	to	specify	links	appearing	in	a	See	Also
section.

<seealso	cref="member">[label]</seealso>

OR

<seealso	href="URL">[label]</seealso>

where:

label
text	to	display	as	the	link

cref	=	"member"
A	reference	to	a	member	or	field	that	is	available	to	be	called	from
the	current	compilation	environment.	The	compiler	checks	that	the
given	code	element	exists	and	passes	member	to	the	element
name	in	the	output	XML.	member	must	appear	within	double
quotation	marks	("	").

href	=	"URL"	[NDoc3	extension]
A	reference	to	a	member	or	field	that	is	available	to	be	called	from
the	current	compilation	environment.	The	compiler	checks	that	the
given	code	element	exists	and	passes	member	to	the	element
name	in	the	output	XML.	member	must	appear	within	double
quotation	marks	("	").

Applies	To
All	Types	and	Members.

Remarks
Use	<see>	to	specify	an	in-line	link	within	text.

This	is	a	'top-level'	tag.	Do	not	nest	this	within	other	tags.

Note:	Do	not	apply	this	tag	to	enumeration	members.	In	the
MSDN-style	documenters,	enumeration	members	are	listed	in	a
table	on	the	enumeration	type	topic	rather	than	individual	topics,
and	any	<seealso>	tags	will	be	ignored.

Example

See	<summary>	for	an	example	of	using	<seealso>.

See	Also
Tag	Usage	|	NDoc3	Tags	|	<see>	|	Microsoft's	definition

ms-help://MS.NETFrameworkSDKv1.1/csref/html/vclrfseealso.htm

The	<summary>	tag	is	used	to	provide	a	short	description	of	a	type	or
member.

<summary>description</summary>

where:

description
A	summary	of	the	object.

Applies	To
All	Types	and	Members.

Remarks
This	tag	should	be	treated	as	mandatory	for	all	publicly	accesible
types	and	members.	It	is	the	primary	description	used	by	IntelliSense
and	the	Object	Browser	in	VisualStudio,	and	most	other	development
tools.

Use	<remarks>	to	add	supplemental	information	to	a	type	or	member
description.

Example
[C#]
///	text	for	class	MyClass

public	class	MyClass

{

			///	<summary>MyMethod	is	a	method	in	the	MyClass	class.

			///	<para>Here's	how	you	could	make	a	second	paragraph	in	a	description.	<see	cref="System.Console.WriteLine"/>	for	information	about	output	statements.</para>

			///	<seealso	cref="MyClass.Main"/>

			///	</summary>

			public	static	void	MyMethod(int	Int1)

			{

			}

			///	text	for	Main

			public	static	void	Main	()

			{

			}

}

See	Also
Tag	Usage	|	NDoc3	Tags	|	<remarks>	|	Microsoft's	definition

ms-help://MS.NETFrameworkSDKv1.1/csref/html/vclrfsummary.htm

The	<threadsafety>	tag	is	used	to	describe	how	a	class	or	structure
behaves	in	multi-threaded	scenarios.

<threadsafety	static="true|false"	instance="true|false"/>

where:

static="true|false"
indicates	whether	static	member	of	this	class	are	safe	for	multi-
threaded	operations.

instance="true|false"
indicates	whether	members	of	instances	of	this	type	are	safe	for
multi-threaded	operations.

Applies	To
Class,	Structure.

Remarks

Examples
[C#]
///	<threadsafety	static="true"	instance="false"/>

public	class	MyClass

{

			///	not	safe	across	threads

			public	void	InstanceMethod()

			{

			}

			

			///	safe	across	threads

			public	static	void	StaticMethod()

			{

			}

}

See	Also
Tag	Usage	|	NDoc3	Tags

The	<value>	tag	is	used	to	describe	the	value	of	a	property.

<value>property-description</value>

where:

property-description
A	description	for	the	property.

Applies	To
Property.

Remarks
By	convention,	properties	should	always	have	a	<value>	tag.

For	read-only	properties,	the	text	in	the	<value>	tag	will	often	be
substantially	the	same	as	that	in	the	<summary>	tag.

Example
[C#]
///	text	for	class	MyClass

public	class	MyClass

{

			///	<summary>MyProperty	is	a	property	in	the	MyClass	class.</summary>

			///	<value>A	string	containing	the	text	"MyProperty	String".</value>

			public	string	MyProperty()

			{

							get

							{

											return	"MyProperty	String";

							}

			}

}

See	Also
Tag	Usage	|	NDoc3	Tags	|	<summary>	|	Microsoft's	definition

ms-help://MS.NETFrameworkSDKv1.1/csref/html/vclrfvalue.htm

NDoc3	Extensibility
Both	the	MSDN	and	VS.NET	documenters	support	an	extensibility
model	that	allows	you	to	define	your	own	tags	and	control	where	and
how	they	appear	in	the	documentation.	NDoc3	relies	heavily	on	XSLT
to	generate	documentation	and	the	extensibility	model	is	based	on
XSLT	as	well.

1.	 The	first	step	is	to	add	your	custom	tag	to	the	code
comments	in	your	C#	files:
[C#]

///	<myTag>This	is	a	custom	tag</myTag>

///	<summary>

///			When	processed	by	the	VS.NET	or	MSDN	documenters,	

///			using	the	stylesheet	"extend-ndoc.xslt"	as	the	ExtensibilityStylesheet	

///			property	will	result	in	end-user	defined	tags	being	displayed	in	the	

///			final	help	output	topics	

///	</summary>

///	<remarks>This	is	a	test	of	an	inline	<null/>	tag</remarks>

public	class	ABunchOfCustomTags

{

}

When	the	compiler	generates	the	/doc	summary	file,	it
will	include	your	custom	tag	in	the	XML.

2.	 Next	create	an	XSLT	file	with	templates	that	control
where	and	how	your	tag	will	be	displayed:

<xsl:stylesheet	version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:MSHelp="http://msdn.microsoft.com/mshelp">

							<xsl:template	match="node()"	mode="xml-data-island"
priority="1">

														<MSHelp:Attr	Name="TargetOS"
Value="Windows"/>

							</xsl:template>								

http://www.w3.org/1999/XSL/Transform

							<xsl:template	match="ndoc"	mode="header-section">

														<style	type="text/css">

																					.green

																					{

																												color:green;

																					}

														</style>

							</xsl:template>								<xsl:template	match="myTag"
mode="seealso-section">

														<h1	class="green">

																					<xsl:apply-templates	select="./node()"
mode="slashdoc"/>

														</h1>

							</xsl:template>					

							<xsl:template	match="null"	mode="slashdoc">

														<xsl:text>	null	reference	(Nothing	in	Visual	Basic)
</xsl:text>

							</xsl:template>

</xsl:stylesheet>

This	stylesheet	must	be	valid	XSLT	markup,	and	must
also	include	the	XSLT	namespace.

The	templates	in	this	stylesheet	need	to	be	written	to
match	the	names	of	your	tags.	The	match	attribute	is
an	XPath	query	that	defines	the	context	at	which	your
template	will	execute.	The	most	common	usage	is	to
simply	match	the	name	of	your	custom	tag,	but	it	is	also
possible	to	change	the	behavior	of	your	tag	based	on
what	sort	of	code	artifact	it	is	associated	with.

Note:	If	you	want	NDoc3	to	perform	standard
processing	of	tags	within	your	tags	(for	example,

expanding	in-line	tags	such	as	<see>)	you	must
include	the	following	within	your	processing

<xsl:apply-templates	select="."	mode="slashdoc"/>

The	header-section	template	allows	you	to	specify
additional	content	in	the	<head>	of	the	generated	html.
This	allows	stylesheet	authors	to	define	custom	css
styles	or	override	NDoc3's	default	styles.

The	mode	attribute	is	used	to	specify	where	in	the
documentation	your	tag	will	be	displayed.	There	are	two
types	of	extensibility	tags	that	can	be	defined:

1.	 Section	Tags	-	These	are	block	tags	that
will	be	rendered	in	a	particular	section	of
the	documentation.	For	a	section	tag,	the
mode	of	the	template	needs	to	correspond
to	a	predefined	list	of	section	names.
Refer	to	the	section	topic	for	a	complete
list	of	sections	and	their	descriptions.

2.	 Inline	Tags	-	These	are	tags	that	appear
inline	with	text	and	other	tags	within	a
comment.	To	define	an	inline	tag,	the
mode	of	its	template	should	be	set	to
"slashdoc".	These	templates	will	then	be
executed	whenever	the	tag	is	encountered
within	a	block	of	text.

If	a	template	matches	any	of	the	generic	XPath
selections:	node(),	text(),	*,	or	@*	you	will	need	to
supply	a	priority	attribute	on	the	template	with	a	value
greater	than	0.5.	This	forces	XSLT	to	use	your
templates	rather	than	the	default	templates	that	NDoc3
includes	for	the	various	extensibility	sections.

Remember:	XSLT	is	case	sensitive;	so	both	the	match
pattern	and	the	mode	names	must	be	the	correct	case
or	your	templates	will	be	ignored.

3.	 Next,	set	the	ExtensibilityStylesheet	property	of	your
MSDN	or	VS.NET	project	to	the	path	to	your	stylesheet.
When	NDoc3	builds	the	documentation,	it	will	include
this	stylesheet	and	display	your	tags	according	to	the
rules	you	specify	in	the	XSLT	templates.

The	resulting	overview	page	for	this	topic	will	look	like:

Example	Extensibility	Output

See	Also
Extensibility	Sections

Extensibility	Sections
Below	are	the	names	of	the	documentation	sections	where	custom
tags	can	be	displayed.	These	names	are	used	as	the	mode	attribute
in	extensibility	stylesheet	templates.

Section	Name Description

header-section Templates	in	the	header-section	will	be
output	within	the	html	<head>	tag.

preliminary-
section

This	is	the	notification	that	it	output	for
items	marked	with	the	<preliminary>	tag
or	projects	compiled	with	the	Preliminary
setting	equal	to	true.

summary-section The	section	corresponding	to	the
<summary>	tag.

thread-safety-
section

The	section	where	thread	safety
information	is	displayed.

syntax-section The	section	where	item	syntax	is
displayed.

value-section The	section	corresponding	to	the	<value>
tag.

parameter-section The	section	corresponding	to	the
<param>	tag.

returnvalue-
section

The	section	corresponding	to	the
<returns>	tag.

implements-
section

	

remarks-section The	section	corresponding	to	the
<remarks>	tag.

after-remarks-
section

A	section	after	the	section	corresponding
to	the	<remarks>	tag.

Note:	This	extension	section	will	be

processed	regardless	of	whether
<remarks>	exist	or	not...

obsolete-section The	section	denoting	that	an	item	is
decorated	with	the	ObsoleteAttribute.

events-section The	section	corresponding	to	the	<event>
tag.

exceptions-
section

The	section	corresponding	to	the
<exception>	tag.

example-section The	section	corresponding	to	the
<example>	tag.

member-
requirements-
section

	

type-
requirements-
section

	

seealso-section The	list	of	See	Also	links	at	the	bottom	of
a	topic.

enumeration-
members-section

The	section	where	an	enumeration's
members	are	listed.

footer-row The	footer	row	at	the	bottom	of	each
topic.

title-row The	title	row	at	the	top	of	each	topic.

overloads-
remarks-section

	

overloads-
example-section

	

overloads-
summary-section

	

xml-data-island The	embedded	XML	data	island	used	by
Html	Help	2	to	include	meta-data	about	a
topic.	Applies	only	to	the	VS.NET	2003

documenter.

See	Also
NDoc3	Extensibility

Contribute	to	the	Success	of	NDoc3
There	are	many	ways	you	can	become	involved	in	the	NDoc3
development	effort.

Participating	in	the	ndoc3-users	email	list	is	the	easiest
way	to	share	your	tips	and	tricks	for	using	NDoc3	with
other	users.

If	you	find	bugs	please	use	the	NDoc3	bug	tracker
database,	and	if	you	have	suggestions	for	new	features
please	use	the	NDoc3	feature	request	tracker	database
so	that	we	can	keep	current	with	our	user's	needs.

If	you	have	some	time	to	spare,	become	part	of	the
NDoc3	developer	team.	There	are	plenty	of	new
features	we	are	working	on	implementing,	and	there	are
always	bugs	to	fix,	and	the	more	people	we	have
working	on	NDoc3,	the	better	it	becomes.	To	join	the
effort,	contact	one	of	the	project	admins	via	the	NDoc3
SourceForge	foundry,	and	we	will	get	you	set	up.

Thanks	for	using	NDoc3.

http://lists.sourceforge.net/lists/listinfo/ndoc3-users
https://sourceforge.net/tracker/?group_id=212352&atid=1021403
https://sourceforge.net/tracker/?group_id=212352&atid=1021406
http://sourceforge.net/projects/ndoc3/

There	are	numerous	place	online	to	get	NDoc	support.

The	best	place	to	start	is	often	the	support	archive	at	the	NDoc
SourceForge	foundry	where	you	will	often	turn	up	the	answer	you	are
looking	for.

The	NDoc3	Users's	Mailing	List
You	can	also	search	the	the	archives	or	send	a	message	to	the
ndoc3-users	mailing	list.

The	NDoc3	Tracker	Database
If	you	still	can	not	find	the	answer	you	are	looking	for,	NDoc3
maintains	a	Tracker	database	at	SourceForge.net.

To	submit	a	support	request,	visit	the	NDoc	support
page	at	SourceForge.net.

To	submit	a	bug	report,	visit	the	NDoc	bug	tracker	page
at	SourceForge.net.

If	there	is	a	feature	you'd	like	to	suggest,	let	us	know	at
the	Request	For	Enhancement	page	at
SourceForge.net.

Articles	About	NDoc
There	are	also	a	number	of	good	articles	online,	although	they	may
be	somewhat	out-of-date	as	most	were	written	some	time	ago...

[Documenting	C#	with	XML	comments],	by	Ollie	Cornes

[Using	NDoc:	Adding	World-Class	Documentation	to
Your	.NET	Components],	by	Shawn	Van	Ness

[Fixing	NDoc	to	emit	links	for	Everett's	MSDN	docs],	by
Shawn	Van	Ness

[Integrate	NDoc	HTML	Help	2	in	Visual	Studio.NET],	by
Fons	Sonnemans

[Creating	class	documentation	with	NDoc],	by	Rick
Harris

http://sourceforge.net/projects/ndoc3/
http://sourceforge.net/mailarchive/forum.php?forum_name=ndoc3-users
http://sourceforge.net/tracker/?group_id=212352&atid=1021404
http://sourceforge.net/tracker/?group_id=212352&atid=1021403
http://sourceforge.net/tracker/?group_id=212352&atid=1021406
http://www.squiffler.com/squiffler/article.aspx?id=1
http://www.ondotnet.com/pub/a/dotnet/2002/12/09/ndoc.html
http://dotnetweblogs.com/savanness/posts/6996.aspx
http://www.reflectionit.nl/NDoc.aspx
http://www.fogwater.com/Dotnet/Creatingclassdocumentatio.html

[Integrating	Help	into	Visual	Studio.NET],	by	Sune
Trudslev

http://www.codeproject.com/useritems/VSHelpIntegration.asp

	Welcome
	What's New
	Known Issues

	Getting Started
	Setting up Your C# Projects
	Decorating Your Code
	Code Comments
	Attributes

	Creating an NDoc Project

	Project Designer
	Options

	Console Application
	Build Process

	Documenters
	VS.NET
	Linking to Other Titles
	Integrating with Visual Studio
	Deploying

	MSDN
	XML
	JavaDoc
	Linear
	Latex

	Tag Reference
	Tag Usage Matrix
	c
	code
	event
	example
	exception
	exclude
	include
	inheritdoc
	list
	note
	overloads
	para
	param
	paramref
	permission
	preliminary
	remarks
	returns
	see
	seealso
	summary
	threadsafety
	value

	Defining Your Own Tags
	Sections

	Getting Involved
	Getting Support

