
MySQL	5.0	Reference	Manual
Copyright	1997-2006	MySQL	AB

This	documentation	is	NOT	distributed	under	a	GPL	license.	Use	of	this
documentation	is	subject	to	the	following	terms:	You	may	create	a	printed	copy
of	this	documentation	solely	for	your	own	personal	use.	Conversion	to	other
formats	is	allowed	as	long	as	the	actual	content	is	not	altered	or	edited	in	any
way.	You	shall	not	publish	or	distribute	this	documentation	in	any	form	or	on
any	media,	except	if	you	distribute	the	documentation	in	a	manner	similar	to
how	MySQL	disseminates	it	(that	is,	electronically	for	download	on	a	website
with	the	software)	or	on	a	CD-ROM	or	similar	medium,	provided	however	that
the	documentation	is	disseminated	together	with	the	software	on	the	same
medium.	Any	other	use,	such	as	any	dissemination	of	printed	copies	or	use	of
this	documentation,	in	whole	or	in	part,	in	another	publication,	requires	the	prior
written	consent	from	an	authorized	representative	of	MySQL	AB.	MySQL	AB
reserves	any	and	all	rights	to	this	documentation	not	expressly	granted	above.

Please	email	<docs@mysql.com>	for	more	information	or	if	you	are	interested	in
doing	a	translation.

Abstract

This	is	the	MySQL	Reference	Manual.	It	documents	MySQL	5.0	through	5.0.25.

Document	generated	on:	2006-08-11

Table	of	Contents

Preface

mailto:docs@mysql.com

1.	General	Information
1.1.	About	This	Manual
1.2.	Conventions	Used	in	This	Manual
1.3.	Overview	of	MySQL	AB
1.4.	Overview	of	the	MySQL	Database	Management	System

1.4.1.	History	of	MySQL
1.4.2.	The	Main	Features	of	MySQL
1.4.3.	MySQL	Stability
1.4.4.	How	Large	MySQL	Tables	Can	Be
1.4.5.	Year	2000	Compliance

1.5.	Overview	of	the	MaxDB	Database	Management	System
1.5.1.	What	is	MaxDB?
1.5.2.	History	of	MaxDB
1.5.3.	Features	of	MaxDB
1.5.4.	Licensing	and	Support
1.5.5.	Feature	Differences	Between	MaxDB	and	MySQL
1.5.6.	Interoperability	Features	Between	MaxDB	and	MySQL
1.5.7.	MaxDB-Related	Links

1.6.	MySQL	Development	Roadmap
1.6.1.	What's	New	in	MySQL	5.0

1.7.	MySQL	Information	Sources
1.7.1.	MySQL	Mailing	Lists
1.7.2.	MySQL	Community	Support	at	the	MySQL	Forums
1.7.3.	MySQL	Community	Support	on	Internet	Relay	Chat	(IRC)

1.8.	How	to	Report	Bugs	or	Problems
1.9.	MySQL	Standards	Compliance

1.9.1.	What	Standards	MySQL	Follows
1.9.2.	Selecting	SQL	Modes
1.9.3.	Running	MySQL	in	ANSI	Mode
1.9.4.	MySQL	Extensions	to	Standard	SQL
1.9.5.	MySQL	Differences	from	Standard	SQL
1.9.6.	How	MySQL	Deals	with	Constraints

2.	Installing	and	Upgrading	MySQL
2.1.	General	Installation	Issues

2.1.1.	Operating	Systems	Supported	by	MySQL
2.1.2.	Choosing	Which	MySQL	Distribution	to	Install
2.1.3.	How	to	Get	MySQL
2.1.4.	Verifying	Package	Integrity	Using	MD5	Checksums	or	GnuPG
2.1.5.	Installation	Layouts

2.2.	Standard	MySQL	Installation	Using	a	Binary	Distribution
2.3.	Installing	MySQL	on	Windows

2.3.1.	Choosing	An	Installation	Package
2.3.2.	Installing	MySQL	with	the	Automated	Installer
2.3.3.	Using	the	MySQL	Installation	Wizard
2.3.4.	Using	the	Configuration	Wizard
2.3.5.	Installing	MySQL	from	a	Noinstall	Zip	Archive
2.3.6.	Extracting	the	Install	Archive
2.3.7.	Creating	an	Option	File
2.3.8.	Selecting	a	MySQL	Server	type
2.3.9.	Starting	the	Server	for	the	First	Time
2.3.10.	Starting	MySQL	from	the	Windows	Command	Line
2.3.11.	Starting	MySQL	as	a	Windows	Service
2.3.12.	Testing	The	MySQL	Installation
2.3.13.	Troubleshooting	a	MySQL	Installation	Under	Windows
2.3.14.	Upgrading	MySQL	on	Windows
2.3.15.	MySQL	on	Windows	Compared	to	MySQL	on	Unix

2.4.	Installing	MySQL	on	Linux
2.5.	Installing	MySQL	on	Mac	OS	X
2.6.	Installing	MySQL	on	Solaris
2.7.	Installing	MySQL	on	NetWare
2.8.	Installing	MySQL	on	Other	Unix-Like	Systems
2.9.	MySQL	Installation	Using	a	Source	Distribution

2.9.1.	Source	Installation	Overview
2.9.2.	Typical	configure	Options
2.9.3.	Installing	from	the	Development	Source	Tree
2.9.4.	Dealing	with	Problems	Compiling	MySQL
2.9.5.	MIT-pthreads	Notes
2.9.6.	Installing	MySQL	from	Source	on	Windows
2.9.7.	Compiling	MySQL	Clients	on	Windows

2.10.	Post-Installation	Setup	and	Testing

2.10.1.	Windows	Post-Installation	Procedures
2.10.2.	Unix	Post-Installation	Procedures
2.10.3.	Securing	the	Initial	MySQL	Accounts

2.11.	Upgrading	MySQL
2.11.1.	Upgrading	from	MySQL	5.0	to	5.1
2.11.2.	Upgrading	from	MySQL	4.1	to	5.0
2.11.3.	Copying	MySQL	Databases	to	Another	Machine

2.12.	Downgrading	MySQL
2.12.1.	Downgrading	to	MySQL	4.1

2.13.	Operating	System-Specific	Notes
2.13.1.	Linux	Notes
2.13.2.	Mac	OS	X	Notes
2.13.3.	Solaris	Notes
2.13.4.	BSD	Notes
2.13.5.	Other	Unix	Notes
2.13.6.	OS/2	Notes

2.14.	Perl	Installation	Notes
2.14.1.	Installing	Perl	on	Unix
2.14.2.	Installing	ActiveState	Perl	on	Windows
2.14.3.	Problems	Using	the	Perl	DBI/DBD	Interface

3.	Tutorial
3.1.	Connecting	to	and	Disconnecting	from	the	Server
3.2.	Entering	Queries
3.3.	Creating	and	Using	a	Database

3.3.1.	Creating	and	Selecting	a	Database
3.3.2.	Creating	a	Table
3.3.3.	Loading	Data	into	a	Table
3.3.4.	Retrieving	Information	from	a	Table

3.4.	Getting	Information	About	Databases	and	Tables
3.5.	Using	mysql	in	Batch	Mode
3.6.	Examples	of	Common	Queries

3.6.1.	The	Maximum	Value	for	a	Column
3.6.2.	The	Row	Holding	the	Maximum	of	a	Certain	Column
3.6.3.	Maximum	of	Column	per	Group
3.6.4.	The	Rows	Holding	the	Group-wise	Maximum	of	a	Certain	Field
3.6.5.	Using	User-Defined	Variables
3.6.6.	Using	Foreign	Keys
3.6.7.	Searching	on	Two	Keys
3.6.8.	Calculating	Visits	Per	Day
3.6.9.	Using	AUTO_INCREMENT

3.7.	Queries	from	the	Twin	Project
3.7.1.	Find	All	Non-distributed	Twins
3.7.2.	Show	a	Table	of	Twin	Pair	Status

3.8.	Using	MySQL	with	Apache

4.	Using	MySQL	Programs
4.1.	Overview	of	MySQL	Programs
4.2.	Invoking	MySQL	Programs
4.3.	Specifying	Program	Options

4.3.1.	Using	Options	on	the	Command	Line
4.3.2.	Using	Option	Files
4.3.3.	Using	Environment	Variables	to	Specify	Options
4.3.4.	Using	Options	to	Set	Program	Variables

5.	Database	Administration
5.1.	Overview	of	Server-Side	Programs
5.2.	mysqld	—	The	MySQL	Server

5.2.1.	mysqld	Command	Options
5.2.2.	Server	System	Variables
5.2.3.	Using	System	Variables
5.2.4.	Server	Status	Variables
5.2.5.	The	Server	SQL	Mode
5.2.6.	The	MySQL	Server	Shutdown	Process
5.2.7.	MySQL	Server-Side	Help	Support

5.3.	The	mysqld-max	Extended	MySQL	Server
5.4.	MySQL	Server	Startup	Programs

5.4.1.	mysqld_safe	—	MySQL	Server	Startup	Script
5.4.2.	mysql.server	—	MySQL	Server	Startup	Script
5.4.3.	mysqld_multi	—	Manage	Multiple	MySQL	Servers

5.5.	mysqlmanager	—	The	MySQL	Instance	Manager
5.5.1.	Starting	the	MySQL	Server	with	MySQL	Instance	Manager
5.5.2.	Connecting	to	the	MySQL	Instance	Manager	and	Creating	User
Accounts
5.5.3.	MySQL	Instance	Manager	Command	Options
5.5.4.	MySQL	Instance	Manager	Configuration	Files
5.5.5.	Commands	Recognized	by	the	MySQL	Instance	Manager

5.6.	Installation-Related	Programs
5.6.1.	mysql_fix_privilege_tables	—	Upgrade	MySQL	System	Tables
5.6.2.	mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade

5.7.	General	Security	Issues
5.7.1.	General	Security	Guidelines
5.7.2.	Making	MySQL	Secure	Against	Attackers
5.7.3.	Security-Related	mysqld	Options
5.7.4.	Security	Issues	with	LOAD	DATA	LOCAL
5.7.5.	How	to	Run	MySQL	as	a	Normal	User

5.8.	The	MySQL	Access	Privilege	System
5.8.1.	What	the	Privilege	System	Does
5.8.2.	How	the	Privilege	System	Works
5.8.3.	Privileges	Provided	by	MySQL
5.8.4.	Connecting	to	the	MySQL	Server
5.8.5.	Access	Control,	Stage	1:	Connection	Verification
5.8.6.	Access	Control,	Stage	2:	Request	Verification

5.8.7.	When	Privilege	Changes	Take	Effect
5.8.8.	Causes	of	Access	denied	Errors
5.8.9.	Password	Hashing	as	of	MySQL	4.1

5.9.	MySQL	User	Account	Management
5.9.1.	MySQL	Usernames	and	Passwords
5.9.2.	Adding	New	User	Accounts	to	MySQL
5.9.3.	Removing	User	Accounts	from	MySQL
5.9.4.	Limiting	Account	Resources
5.9.5.	Assigning	Account	Passwords
5.9.6.	Keeping	Your	Password	Secure
5.9.7.	Using	Secure	Connections

5.10.	Backup	and	Recovery
5.10.1.	Database	Backups
5.10.2.	Example	Backup	and	Recovery	Strategy
5.10.3.	Point-in-Time	Recovery
5.10.4.	Table	Maintenance	and	Crash	Recovery

5.11.	MySQL	Localization	and	International	Usage
5.11.1.	The	Character	Set	Used	for	Data	and	Sorting
5.11.2.	Setting	the	Error	Message	Language
5.11.3.	Adding	a	New	Character	Set
5.11.4.	The	Character	Definition	Arrays
5.11.5.	String	Collating	Support
5.11.6.	Multi-Byte	Character	Support
5.11.7.	Problems	With	Character	Sets
5.11.8.	MySQL	Server	Time	Zone	Support

5.12.	MySQL	Server	Logs
5.12.1.	The	Error	Log
5.12.2.	The	General	Query	Log
5.12.3.	The	Binary	Log
5.12.4.	The	Slow	Query	Log
5.12.5.	Server	Log	Maintenance

5.13.	Running	Multiple	MySQL	Servers	on	the	Same	Machine
5.13.1.	Running	Multiple	Servers	on	Windows
5.13.2.	Running	Multiple	Servers	on	Unix
5.13.3.	Using	Client	Programs	in	a	Multiple-Server	Environment

5.14.	The	MySQL	Query	Cache
5.14.1.	How	the	Query	Cache	Operates
5.14.2.	Query	Cache	SELECT	Options
5.14.3.	Query	Cache	Configuration

5.14.4.	Query	Cache	Status	and	Maintenance

6.	Replication
6.1.	Introduction	to	Replication
6.2.	Replication	Implementation	Overview
6.3.	Replication	Implementation	Details

6.3.1.	Replication	Master	Thread	States
6.3.2.	Replication	Slave	I/O	Thread	States
6.3.3.	Replication	Slave	SQL	Thread	States
6.3.4.	Replication	Relay	and	Status	Files

6.4.	How	to	Set	Up	Replication
6.5.	Replication	Compatibility	Between	MySQL	Versions
6.6.	Upgrading	a	Replication	Setup

6.6.1.	Upgrading	Replication	to	5.0
6.7.	Replication	Features	and	Known	Problems
6.8.	Replication	Startup	Options
6.9.	How	Servers	Evaluate	Replication	Rules
6.10.	Replication	FAQ
6.11.	Troubleshooting	Replication
6.12.	How	to	Report	Replication	Bugs	or	Problems
6.13.	Auto-Increment	in	Multiple-Master	Replication

7.	Optimization
7.1.	Optimization	Overview

7.1.1.	MySQL	Design	Limitations	and	Tradeoffs
7.1.2.	Designing	Applications	for	Portability
7.1.3.	What	We	Have	Used	MySQL	For
7.1.4.	The	MySQL	Benchmark	Suite
7.1.5.	Using	Your	Own	Benchmarks

7.2.	Optimizing	SELECT	and	Other	Statements
7.2.1.	Optimizing	Queries	with	EXPLAIN
7.2.2.	Estimating	Query	Performance
7.2.3.	Speed	of	SELECT	Queries
7.2.4.	WHERE	Clause	Optimization
7.2.5.	Range	Optimization
7.2.6.	Index	Merge	Optimization
7.2.7.	IS	NULL	Optimization
7.2.8.	DISTINCT	Optimization
7.2.9.	LEFT	JOIN	and	RIGHT	JOIN	Optimization
7.2.10.	Nested	Join	Optimization
7.2.11.	Outer	Join	Simplification
7.2.12.	ORDER	BY	Optimization
7.2.13.	GROUP	BY	Optimization
7.2.14.	LIMIT	Optimization
7.2.15.	How	to	Avoid	Table	Scans
7.2.16.	Speed	of	INSERT	Statements
7.2.17.	Speed	of	UPDATE	Statements
7.2.18.	Speed	of	DELETE	Statements
7.2.19.	Other	Optimization	Tips

7.3.	Locking	Issues
7.3.1.	Locking	Methods
7.3.2.	Table	Locking	Issues
7.3.3.	Concurrent	Inserts

7.4.	Optimizing	Database	Structure
7.4.1.	Design	Choices
7.4.2.	Make	Your	Data	as	Small	as	Possible
7.4.3.	Column	Indexes
7.4.4.	Multiple-Column	Indexes
7.4.5.	How	MySQL	Uses	Indexes
7.4.6.	The	MyISAM	Key	Cache

7.4.7.	MyISAM	Index	Statistics	Collection
7.4.8.	How	MySQL	Opens	and	Closes	Tables
7.4.9.	Drawbacks	to	Creating	Many	Tables	in	the	Same	Database

7.5.	Optimizing	the	MySQL	Server
7.5.1.	System	Factors	and	Startup	Parameter	Tuning
7.5.2.	Tuning	Server	Parameters
7.5.3.	Controlling	Query	Optimizer	Performance
7.5.4.	How	Compiling	and	Linking	Affects	the	Speed	of	MySQL
7.5.5.	How	MySQL	Uses	Memory
7.5.6.	How	MySQL	Uses	DNS

7.6.	Disk	Issues
7.6.1.	Using	Symbolic	Links

8.	Client	and	Utility	Programs
8.1.	Overview	of	Client	and	Utility	Programs
8.2.	myisam_ftdump	—	Display	Full-Text	Index	information
8.3.	myisamchk	—	MyISAM	Table-Maintenance	Utility

8.3.1.	myisamchk	General	Options
8.3.2.	myisamchk	Check	Options
8.3.3.	myisamchk	Repair	Options
8.3.4.	Other	myisamchk	Options
8.3.5.	myisamchk	Memory	Usage

8.4.	myisamlog	—	Display	MyISAM	Log	File	Contents
8.5.	myisampack	—	Generate	Compressed,	Read-Only	MyISAM	Tables
8.6.	mysql	—	The	MySQL	Command-Line	Tool

8.6.1.	mysql	Options
8.6.2.	mysql	Commands
8.6.3.	mysql	Server-Side	Help
8.6.4.	Executing	SQL	Statements	from	a	Text	File
8.6.5.	mysql	Tips

8.7.	mysql_explain_log	—	Use	EXPLAIN	on	Statements	in	Query	Log
8.8.	mysqlaccess	—	Client	for	Checking	Access	Privileges
8.9.	mysqladmin	—	Client	for	Administering	a	MySQL	Server
8.10.	mysqlbinlog	—	Utility	for	Processing	Binary	Log	Files
8.11.	mysqlcheck	—	A	Table	Maintenance	and	Repair	Program
8.12.	mysqldump	—	A	Database	Backup	Program
8.13.	mysqlhotcopy	—	A	Database	Backup	Program
8.14.	mysqlimport	—	A	Data	Import	Program
8.15.	mysqlshow	—	Display	Database,	Table,	and	Column	Information
8.16.	mysql_zap	—	Kill	Processes	That	Match	a	Pattern
8.17.	perror	—	Explain	Error	Codes
8.18.	replace	—	A	String-Replacement	Utility

9.	Language	Structure
9.1.	Literal	Values

9.1.1.	Strings
9.1.2.	Numbers
9.1.3.	Hexadecimal	Values
9.1.4.	Boolean	Values
9.1.5.	Bit-Field	Values
9.1.6.	NULL	Values

9.2.	Database,	Table,	Index,	Column,	and	Alias	Names
9.2.1.	Identifier	Qualifiers
9.2.2.	Identifier	Case	Sensitivity

9.3.	User-Defined	Variables
9.4.	Comment	Syntax
9.5.	Treatment	of	Reserved	Words	in	MySQL

10.	Character	Set	Support
10.1.	Character	Sets	and	Collations	in	General
10.2.	Character	Sets	and	Collations	in	MySQL
10.3.	Specifying	Character	Sets	and	Collations

10.3.1.	Server	Character	Set	and	Collation
10.3.2.	Database	Character	Set	and	Collation
10.3.3.	Table	Character	Set	and	Collation
10.3.4.	Column	Character	Set	and	Collation
10.3.5.	Character	String	Literal	Character	Set	and	Collation
10.3.6.	National	Character	Set
10.3.7.	Examples	of	Character	Set	and	Collation	Assignment
10.3.8.	Compatibility	with	Other	DBMSs

10.4.	Connection	Character	Sets	and	Collations
10.5.	Collation	Issues

10.5.1.	Using	COLLATE	in	SQL	Statements
10.5.2.	COLLATE	Clause	Precedence
10.5.3.	BINARY	Operator
10.5.4.	Some	Special	Cases	Where	the	Collation	Determination	Is
Tricky
10.5.5.	Collations	Must	Be	for	the	Right	Character	Set
10.5.6.	An	Example	of	the	Effect	of	Collation

10.6.	Operations	Affected	by	Character	Set	Support
10.6.1.	Result	Strings
10.6.2.	CONVERT()	and	CAST()
10.6.3.	SHOW	Statements	and	INFORMATION_SCHEMA

10.7.	Unicode	Support
10.8.	UTF-8	for	Metadata
10.9.	Character	Sets	and	Collations	That	MySQL	Supports

10.9.1.	Unicode	Character	Sets
10.9.2.	West	European	Character	Sets
10.9.3.	Central	European	Character	Sets
10.9.4.	South	European	and	Middle	East	Character	Sets
10.9.5.	Baltic	Character	Sets
10.9.6.	Cyrillic	Character	Sets
10.9.7.	Asian	Character	Sets

10.10.	FAQ:	MySQL	Chinese,	Japanese,	and	Korean	Character	Sets
10.10.1.	SELECT	shows	non-Latin	characters	as	"?"s.	Why?
10.10.2.	Troubles	with	GB	character	sets	(Chinese)

10.10.3.	Troubles	with	big5	character	set	(Chinese)
10.10.4.	Troubles	with	character-set	conversions	(Japanese)
10.10.5.	The	Great	Yen	Sign	problem	(Japanese)
10.10.6.	Troubles	with	euckr	character	set	(Korean)
10.10.7.	The	“Data	truncated”	message
10.10.8.	Troubles	with	Access,	Perl,	PHP,	etc.
10.10.9.	How	can	I	get	old	MySQL	4.0	behaviour	back?
10.10.10.	Why	do	some	LIKE	and	FULLTEXT	searches	fail?
10.10.11.	What	CJK	character	sets	are	available?
10.10.12.	Is	character	X	available	in	all	character	sets?
10.10.13.	Strings	don't	sort	correctly	in	Unicode	(I)
10.10.14.	Strings	don't	sort	correctly	in	Unicode	(II)
10.10.15.	My	supplementary	characters	get	rejected
10.10.16.	Shouldn't	it	be	CJKV	(V	for	Vietnamese)?
10.10.17.	Will	MySQL	fix	any	CJK	problems	in	version	5.1?
10.10.18.	When	will	MySQL	translate	the	manual	again?
10.10.19.	Whom	can	I	talk	to?

11.	Data	Types
11.1.	Data	Type	Overview

11.1.1.	Overview	of	Numeric	Types
11.1.2.	Overview	of	Date	and	Time	Types
11.1.3.	Overview	of	String	Types
11.1.4.	Data	Type	Default	Values

11.2.	Numeric	Types
11.3.	Date	and	Time	Types

11.3.1.	The	DATETIME,	DATE,	and	TIMESTAMP	Types
11.3.2.	The	TIME	Type
11.3.3.	The	YEAR	Type
11.3.4.	Y2K	Issues	and	Date	Types

11.4.	String	Types
11.4.1.	The	CHAR	and	VARCHAR	Types
11.4.2.	The	BINARY	and	VARBINARY	Types
11.4.3.	The	BLOB	and	TEXT	Types
11.4.4.	The	ENUM	Type
11.4.5.	The	SET	Type

11.5.	Data	Type	Storage	Requirements
11.6.	Choosing	the	Right	Type	for	a	Column
11.7.	Using	Data	Types	from	Other	Database	Engines

12.	Functions	and	Operators
12.1.	Operators

12.1.1.	Operator	Precedence
12.1.2.	Type	Conversion	in	Expression	Evaluation
12.1.3.	Comparison	Functions	and	Operators
12.1.4.	Logical	Operators

12.2.	Control	Flow	Functions
12.3.	String	Functions

12.3.1.	String	Comparison	Functions
12.4.	Numeric	Functions

12.4.1.	Arithmetic	Operators
12.4.2.	Mathematical	Functions

12.5.	Date	and	Time	Functions
12.6.	What	Calendar	Is	Used	By	MySQL?
12.7.	Full-Text	Search	Functions

12.7.1.	Boolean	Full-Text	Searches
12.7.2.	Full-Text	Searches	with	Query	Expansion
12.7.3.	Full-Text	Stopwords
12.7.4.	Full-Text	Restrictions
12.7.5.	Fine-Tuning	MySQL	Full-Text	Search

12.8.	Cast	Functions	and	Operators
12.9.	Other	Functions

12.9.1.	Bit	Functions
12.9.2.	Encryption	and	Compression	Functions
12.9.3.	Information	Functions
12.9.4.	Miscellaneous	Functions

12.10.	Functions	and	Modifiers	for	Use	with	GROUP	BY	Clauses
12.10.1.	GROUP	BY	(Aggregate)	Functions
12.10.2.	GROUP	BY	Modifiers
12.10.3.	GROUP	BY	and	HAVING	with	Hidden	Fields

13.	SQL	Statement	Syntax
13.1.	Data	Definition	Statements

13.1.1.	ALTER	DATABASE	Syntax
13.1.2.	ALTER	TABLE	Syntax
13.1.3.	CREATE	DATABASE	Syntax
13.1.4.	CREATE	INDEX	Syntax
13.1.5.	CREATE	TABLE	Syntax
13.1.6.	DROP	DATABASE	Syntax
13.1.7.	DROP	INDEX	Syntax
13.1.8.	DROP	TABLE	Syntax
13.1.9.	RENAME	TABLE	Syntax

13.2.	Data	Manipulation	Statements
13.2.1.	DELETE	Syntax
13.2.2.	DO	Syntax
13.2.3.	HANDLER	Syntax
13.2.4.	INSERT	Syntax
13.2.5.	LOAD	DATA	INFILE	Syntax
13.2.6.	REPLACE	Syntax
13.2.7.	SELECT	Syntax
13.2.8.	Subquery	Syntax
13.2.9.	TRUNCATE	Syntax
13.2.10.	UPDATE	Syntax

13.3.	MySQL	Utility	Statements
13.3.1.	DESCRIBE	Syntax
13.3.2.	HELP	Syntax
13.3.3.	USE	Syntax

13.4.	MySQL	Transactional	and	Locking	Statements
13.4.1.	START	TRANSACTION,	COMMIT,	and	ROLLBACK	Syntax
13.4.2.	Statements	That	Cannot	Be	Rolled	Back
13.4.3.	Statements	That	Cause	an	Implicit	Commit
13.4.4.	SAVEPOINT	and	ROLLBACK	TO	SAVEPOINT	Syntax
13.4.5.	LOCK	TABLES	and	UNLOCK	TABLES	Syntax
13.4.6.	SET	TRANSACTION	Syntax
13.4.7.	XA	Transactions

13.5.	Database	Administration	Statements
13.5.1.	Account	Management	Statements
13.5.2.	Table	Maintenance	Statements
13.5.3.	SET	Syntax

13.5.4.	SHOW	Syntax
13.5.5.	Other	Administrative	Statements

13.6.	Replication	Statements
13.6.1.	SQL	Statements	for	Controlling	Master	Servers
13.6.2.	SQL	Statements	for	Controlling	Slave	Servers

13.7.	SQL	Syntax	for	Prepared	Statements

14.	Storage	Engines	and	Table	Types
14.1.	The	MyISAM	Storage	Engine

14.1.1.	MyISAM	Startup	Options
14.1.2.	Space	Needed	for	Keys
14.1.3.	MyISAM	Table	Storage	Formats
14.1.4.	MyISAM	Table	Problems

14.2.	The	InnoDB	Storage	Engine
14.2.1.	InnoDB	Overview
14.2.2.	InnoDB	Contact	Information
14.2.3.	InnoDB	Configuration
14.2.4.	InnoDB	Startup	Options	and	System	Variables
14.2.5.	Creating	the	InnoDB	Tablespace
14.2.6.	Creating	and	Using	InnoDB	Tables
14.2.7.	Adding	and	Removing	InnoDB	Data	and	Log	Files
14.2.8.	Backing	Up	and	Recovering	an	InnoDB	Database
14.2.9.	Moving	an	InnoDB	Database	to	Another	Machine
14.2.10.	InnoDB	Transaction	Model	and	Locking
14.2.11.	InnoDB	Performance	Tuning	Tips
14.2.12.	Implementation	of	Multi-Versioning
14.2.13.	InnoDB	Table	and	Index	Structures
14.2.14.	InnoDB	File	Space	Management	and	Disk	I/O
14.2.15.	InnoDB	Error	Handling
14.2.16.	Restrictions	on	InnoDB	Tables
14.2.17.	InnoDB	Troubleshooting

14.3.	The	MERGE	Storage	Engine
14.3.1.	MERGE	Table	Problems

14.4.	The	MEMORY	(HEAP)	Storage	Engine
14.5.	The	BDB	(BerkeleyDB)	Storage	Engine

14.5.1.	Operating	Systems	Supported	by	BDB
14.5.2.	Installing	BDB
14.5.3.	BDB	Startup	Options
14.5.4.	Characteristics	of	BDB	Tables
14.5.5.	Restrictions	on	BDB	Tables
14.5.6.	Errors	That	May	Occur	When	Using	BDB	Tables

14.6.	The	EXAMPLE	Storage	Engine
14.7.	The	FEDERATED	Storage	Engine

14.7.1.	Description	of	the	FEDERATED	Storage	Engine
14.7.2.	How	to	use	FEDERATED	Tables

14.7.3.	Limitations	of	the	FEDERATED	Storage	Engine
14.8.	The	ARCHIVE	Storage	Engine
14.9.	The	CSV	Storage	Engine
14.10.	The	BLACKHOLE	Storage	Engine

15.	MySQL	Cluster
15.1.	MySQL	Cluster	Overview
15.2.	Basic	MySQL	Cluster	Concepts

15.2.1.	MySQL	Cluster	Nodes,	Node	Groups,	Replicas,	and	Partitions
15.3.	Simple	Multi-Computer	How-To

15.3.1.	Hardware,	Software,	and	Networking
15.3.2.	Multi-Computer	Installation
15.3.3.	Multi-Computer	Configuration
15.3.4.	Initial	Startup
15.3.5.	Loading	Sample	Data	and	Performing	Queries
15.3.6.	Safe	Shutdown	and	Restart

15.4.	MySQL	Cluster	Configuration
15.4.1.	Building	MySQL	Cluster	from	Source	Code
15.4.2.	Installing	the	Software
15.4.3.	Quick	Test	Setup	of	MySQL	Cluster
15.4.4.	Configuration	File
15.4.5.	Overview	of	Cluster	Configuration	Parameters
15.4.6.	Configuring	Parameters	for	Local	Checkpoints

15.5.	Upgrading	and	Downgrading	MySQL	Cluster
15.5.1.	Performing	a	Rolling	Restart	of	the	Cluster
15.5.2.	Cluster	Upgrade	and	Downgrade	Compatibility

15.6.	Process	Management	in	MySQL	Cluster
15.6.1.	MySQL	Server	Process	Usage	for	MySQL	Cluster
15.6.2.	ndbd,	the	Storage	Engine	Node	Process
15.6.3.	ndb_mgmd,	the	Management	Server	Process
15.6.4.	ndb_mgm,	the	Management	Client	Process
15.6.5.	Command	Options	for	MySQL	Cluster	Processes

15.7.	Management	of	MySQL	Cluster
15.7.1.	MySQL	Cluster	Startup	Phases
15.7.2.	Commands	in	the	Management	Client
15.7.3.	Event	Reports	Generated	in	MySQL	Cluster
15.7.4.	Single-User	Mode

15.8.	On-line	Backup	of	MySQL	Cluster
15.8.1.	Cluster	Backup	Concepts
15.8.2.	Using	The	Management	Client	to	Create	a	Backup
15.8.3.	How	to	Restore	a	Cluster	Backup
15.8.4.	Configuration	for	Cluster	Backup
15.8.5.	Backup	Troubleshooting

15.9.	Using	High-Speed	Interconnects	with	MySQL	Cluster
15.9.1.	Configuring	MySQL	Cluster	to	use	SCI	Sockets
15.9.2.	Understanding	the	Impact	of	Cluster	Interconnects

15.10.	Known	Limitations	of	MySQL	Cluster
15.11.	MySQL	Cluster	Development	Roadmap

15.11.1.	MySQL	Cluster	Changes	in	MySQL	5.0
15.11.2.	MySQL	5.1	Development	Roadmap	for	MySQL	Cluster

15.12.	MySQL	Cluster	FAQ
15.13.	MySQL	Cluster	Glossary

16.	Spatial	Extensions
16.1.	Introduction	to	MySQL	Spatial	Support
16.2.	The	OpenGIS	Geometry	Model

16.2.1.	The	Geometry	Class	Hierarchy
16.2.2.	Class	Geometry
16.2.3.	Class	Point
16.2.4.	Class	Curve
16.2.5.	Class	LineString
16.2.6.	Class	Surface
16.2.7.	Class	Polygon
16.2.8.	Class	GeometryCollection
16.2.9.	Class	MultiPoint
16.2.10.	Class	MultiCurve
16.2.11.	Class	MultiLineString
16.2.12.	Class	MultiSurface
16.2.13.	Class	MultiPolygon

16.3.	Supported	Spatial	Data	Formats
16.3.1.	Well-Known	Text	(WKT)	Format
16.3.2.	Well-Known	Binary	(WKB)	Format

16.4.	Creating	a	Spatially	Enabled	MySQL	Database
16.4.1.	MySQL	Spatial	Data	Types
16.4.2.	Creating	Spatial	Values
16.4.3.	Creating	Spatial	Columns
16.4.4.	Populating	Spatial	Columns
16.4.5.	Fetching	Spatial	Data

16.5.	Analyzing	Spatial	Information
16.5.1.	Geometry	Format	Conversion	Functions
16.5.2.	Geometry	Functions
16.5.3.	Functions	That	Create	New	Geometries	from	Existing	Ones
16.5.4.	Functions	for	Testing	Spatial	Relations	Between	Geometric
Objects
16.5.5.	Relations	on	Geometry	Minimal	Bounding	Rectangles	(MBRs)
16.5.6.	Functions	That	Test	Spatial	Relationships	Between	Geometries

16.6.	Optimizing	Spatial	Analysis
16.6.1.	Creating	Spatial	Indexes
16.6.2.	Using	a	Spatial	Index

16.7.	MySQL	Conformance	and	Compatibility

17.	Stored	Procedures	and	Functions
17.1.	Stored	Routines	and	the	Grant	Tables
17.2.	Stored	Routine	Syntax

17.2.1.	CREATE	PROCEDURE	and	CREATE	FUNCTION	Syntax
17.2.2.	ALTER	PROCEDURE	and	ALTER	FUNCTION	Syntax
17.2.3.	DROP	PROCEDURE	and	DROP	FUNCTION	Syntax
17.2.4.	CALL	Statement	Syntax
17.2.5.	BEGIN	...	END	Compound	Statement	Syntax
17.2.6.	DECLARE	Statement	Syntax
17.2.7.	Variables	in	Stored	Routines
17.2.8.	Conditions	and	Handlers
17.2.9.	Cursors
17.2.10.	Flow	Control	Constructs

17.3.	Stored	Procedures,	Functions,	Triggers,	and	Replication:	Frequently
Asked	Questions
17.4.	Binary	Logging	of	Stored	Routines	and	Triggers

18.	Triggers
18.1.	CREATE	TRIGGER	Syntax
18.2.	DROP	TRIGGER	Syntax
18.3.	Using	Triggers

19.	Views
19.1.	ALTER	VIEW	Syntax
19.2.	CREATE	VIEW	Syntax
19.3.	DROP	VIEW	Syntax

20.	The	INFORMATION_SCHEMA	Database
20.1.	The	INFORMATION_SCHEMA	SCHEMATA	Table
20.2.	The	INFORMATION_SCHEMA	TABLES	Table
20.3.	The	INFORMATION_SCHEMA	COLUMNS	Table
20.4.	The	INFORMATION_SCHEMA	STATISTICS	Table
20.5.	The	INFORMATION_SCHEMA	USER_PRIVILEGES	Table
20.6.	The	INFORMATION_SCHEMA	SCHEMA_PRIVILEGES	Table
20.7.	The	INFORMATION_SCHEMA	TABLE_PRIVILEGES	Table
20.8.	The	INFORMATION_SCHEMA	COLUMN_PRIVILEGES	Table
20.9.	The	INFORMATION_SCHEMA	CHARACTER_SETS	Table
20.10.	The	INFORMATION_SCHEMA	COLLATIONS	Table
20.11.	The	INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY	Table
20.12.	The	INFORMATION_SCHEMA	TABLE_CONSTRAINTS	Table
20.13.	The	INFORMATION_SCHEMA	KEY_COLUMN_USAGE	Table
20.14.	The	INFORMATION_SCHEMA	ROUTINES	Table
20.15.	The	INFORMATION_SCHEMA	VIEWS	Table
20.16.	The	INFORMATION_SCHEMA	TRIGGERS	Table
20.17.	Other	INFORMATION_SCHEMA	Tables
20.18.	Extensions	to	SHOW	Statements

21.	Precision	Math
21.1.	Types	of	Numeric	Values
21.2.	DECIMAL	Data	Type	Changes
21.3.	Expression	Handling
21.4.	Rounding	Behavior
21.5.	Precision	Math	Examples

22.	APIs	and	Libraries
22.1.	libmysqld,	the	Embedded	MySQL	Server	Library
22.2.	MySQL	C	API

22.2.1.	C	API	Data	types
22.2.2.	C	API	Function	Overview
22.2.3.	C	API	Function	Descriptions
22.2.4.	C	API	Prepared	Statements
22.2.5.	C	API	Prepared	Statement	Data	types
22.2.6.	C	API	Prepared	Statement	Function	Overview
22.2.7.	C	API	Prepared	Statement	Function	Descriptions
22.2.8.	C	API	Prepared	statement	problems
22.2.9.	C	API	Handling	of	Multiple	Statement	Execution
22.2.10.	C	API	Handling	of	Date	and	Time	Values
22.2.11.	C	API	Threaded	Function	Descriptions
22.2.12.	C	API	Embedded	Server	Function	Descriptions
22.2.13.	Common	Questions	and	Problems	When	Using	the	C	API
22.2.14.	Building	Client	Programs
22.2.15.	How	to	Make	a	Threaded	Client

22.3.	MySQL	PHP	API
22.3.1.	Common	Problems	with	MySQL	and	PHP
22.3.2.	Enabling	Both	mysql	and	mysqli	in	PHP

22.4.	MySQL	Perl	API
22.5.	MySQL	C++	API

22.5.1.	Borland	C++
22.6.	MySQL	Python	API
22.7.	MySQL	Tcl	API
22.8.	MySQL	Eiffel	Wrapper
22.9.	MySQL	Program	Development	Utilities

22.9.1.	msql2mysql	—	Convert	mSQL	Programs	for	Use	with
MySQL
22.9.2.	mysql_config	—	Get	Compile	Options	for	Compiling	Clients

23.	Connectors
23.1.	MySQL	Connector/ODBC

23.1.1.	Introduction	to	MyODBC
23.1.2.	How	to	Install	MyODBC
23.1.3.	MyODBC	Configuration
23.1.4.	MyODBC	Examples
23.1.5.	MyODBC	Reference
23.1.6.	MyODBC	Notes	and	Tips
23.1.7.	MyODBC	Support

23.2.	Connector/NET
23.2.1.	Connector/NET	Versions
23.2.2.	How	to	install	Connector/NET
23.2.3.	Connector/NET	Examples
23.2.4.	Connector/NET	Reference
23.2.5.	Connector/NET	Notes	and	Tips
23.2.6.	Connector/NET	Support

23.3.	MySQL	Connector/J
23.3.1.	Connector/J	Versions
23.3.2.	Installing	Connector/J
23.3.3.	Connector/J	Examples
23.3.4.	Connector/J	(JDBC)	Reference
23.3.5.	Connector/J	Notes	and	Tips
23.3.6.	Connector/J	Support

23.4.	MySQL	Connector/MXJ
23.4.1.	Introduction	to	Connector/MXJ
23.4.2.	Installing	Connector/MXJ
23.4.3.	Connector/MXJ	Configuration
23.4.4.	Connector/MXJ	Reference
23.4.5.	Connector/MXJ	Notes	and	Tips
23.4.6.	Connector/MXJ	Support

23.5.	Connector/PHP

24.	Extending	MySQL
24.1.	MySQL	Internals

24.1.1.	MySQL	Threads
24.1.2.	MySQL	Test	Suite

24.2.	Adding	New	Functions	to	MySQL
24.2.1.	Features	of	the	User-Defined	Function	Interface
24.2.2.	CREATE	FUNCTION	Syntax
24.2.3.	DROP	FUNCTION	Syntax
24.2.4.	Adding	a	New	User-Defined	Function
24.2.5.	Adding	a	New	Native	Function

24.3.	Adding	New	Procedures	to	MySQL
24.3.1.	Procedure	Analyse
24.3.2.	Writing	a	Procedure

A.	Problems	and	Common	Errors
A.1.	How	to	Determine	What	Is	Causing	a	Problem
A.2.	Common	Errors	When	Using	MySQL	Programs

A.2.1.	Access	denied
A.2.2.	Can't	connect	to	[local]	MySQL	server
A.2.3.	Client	does	not	support	authentication	protocol
A.2.4.	Password	Fails	When	Entered	Interactively
A.2.5.	Host	'host_name'	is	blocked
A.2.6.	Too	many	connections
A.2.7.	Out	of	memory
A.2.8.	MySQL	server	has	gone	away
A.2.9.	Packet	too	large
A.2.10.	Communication	Errors	and	Aborted	Connections
A.2.11.	The	table	is	full
A.2.12.	Can't	create/write	to	file
A.2.13.	Commands	out	of	sync
A.2.14.	Ignoring	user
A.2.15.	Table	'tbl_name'	doesn't	exist
A.2.16.	Can't	initialize	character	set
A.2.17.	File	Not	Found

A.3.	Installation-Related	Issues
A.3.1.	Problems	Linking	to	the	MySQL	Client	Library
A.3.2.	Problems	with	File	Permissions

A.4.	Administration-Related	Issues
A.4.1.	How	to	Reset	the	Root	Password

A.4.2.	What	to	Do	If	MySQL	Keeps	Crashing
A.4.3.	How	MySQL	Handles	a	Full	Disk
A.4.4.	Where	MySQL	Stores	Temporary	Files
A.4.5.	How	to	Protect	or	Change	the	MySQL	Unix	Socket	File
A.4.6.	Time	Zone	Problems

A.5.	Query-Related	Issues
A.5.1.	Case	Sensitivity	in	Searches
A.5.2.	Problems	Using	DATE	Columns
A.5.3.	Problems	with	NULL	Values
A.5.4.	Problems	with	Column	Aliases
A.5.5.	Rollback	Failure	for	Non-Transactional	Tables
A.5.6.	Deleting	Rows	from	Related	Tables
A.5.7.	Solving	Problems	with	No	Matching	Rows
A.5.8.	Problems	with	Floating-Point	Comparisons

A.6.	Optimizer-Related	Issues
A.7.	Table	Definition-Related	Issues

A.7.1.	Problems	with	ALTER	TABLE
A.7.2.	How	to	Change	the	Order	of	Columns	in	a	Table
A.7.3.	TEMPORARY	TABLE	Problems

A.8.	Known	Issues	in	MySQL
A.8.1.	Open	Issues	in	MySQL

B.	Error	Codes	and	Messages
B.1.	Server	Error	Codes	and	Messages
B.2.	Client	Error	Codes	and	Messages

C.	Credits
C.1.	Developers	at	MySQL	AB
C.2.	Contributors	to	MySQL
C.3.	Documenters	and	translators
C.4.	Libraries	used	by	and	included	with	MySQL
C.5.	Packages	that	support	MySQL
C.6.	Tools	that	were	used	to	create	MySQL
C.7.	Supporters	of	MySQL

D.	MySQL	Change	History
D.1.	Changes	in	release	5.0.x	(Production)

D.1.1.	Changes	in	release	5.0.25	(Not	yet	released)
D.1.2.	Changes	in	release	5.0.24	(Not	yet	released)
D.1.3.	Changes	in	release	5.0.23	(Not	released)
D.1.4.	Changes	in	release	5.0.22	(24	May	2006)
D.1.5.	Changes	in	release	5.0.21	(02	May	2006)

D.1.6.	Changes	in	release	5.0.20a	(18	April	2006)
D.1.7.	Changes	in	release	5.0.20	(31	March	2006)
D.1.8.	Changes	in	release	5.0.19	(04	March	2006)
D.1.9.	Changes	in	release	5.0.18	(21	December	2005)
D.1.10.	Changes	in	release	5.0.17	(14	December	2005)
D.1.11.	Changes	in	release	5.0.16	(10	November	2005)
D.1.12.	Changes	in	release	5.0.15	(19	October	2005:	Production)
D.1.13.	Changes	in	release	5.0.14	(Not	released)
D.1.14.	Changes	in	release	5.0.13	(22	September	2005:	Release
Candidate)
D.1.15.	Changes	in	release	5.0.12	(02	September	2005)
D.1.16.	Changes	in	release	5.0.11	(06	August	2005)
D.1.17.	Changes	in	release	5.0.10	(27	July	2005)
D.1.18.	Changes	in	release	5.0.9	(15	July	2005)
D.1.19.	Changes	in	release	5.0.8	(Not	released)
D.1.20.	Changes	in	release	5.0.7	(10	June	2005)
D.1.21.	Changes	in	release	5.0.6	(26	May	2005)
D.1.22.	Changes	in	release	5.0.5	(Not	released)
D.1.23.	Changes	in	release	5.0.4	(16	April	2005)
D.1.24.	Changes	in	release	5.0.3	(23	March	2005:	Beta)
D.1.25.	Changes	in	release	5.0.2	(01	December	2004)
D.1.26.	Changes	in	release	5.0.1	(27	July	2004)
D.1.27.	Changes	in	release	5.0.0	(22	December	2003:	Alpha)

D.2.	Changes	in	MySQL	Cluster
D.2.1.	Changes	in	MySQL	Cluster-5.0.7	(10	June	2005)
D.2.2.	Changes	in	MySQL	Cluster-5.0.6	(26	May	2005)
D.2.3.	Changes	in	MySQL	Cluster-5.0.5	(Not	released)
D.2.4.	Changes	in	MySQL	Cluster-5.0.4	(16	April	2005)
D.2.5.	Changes	in	MySQL	Cluster-5.0.3	(23	March	2005:	Beta)
D.2.6.	Changes	in	MySQL	Cluster-5.0.1	(27	July	2004)
D.2.7.	Changes	in	MySQL	Cluster-4.1.13	(15	July	2005)
D.2.8.	Changes	in	MySQL	Cluster-4.1.12	(13	May	2005)
D.2.9.	Changes	in	MySQL	Cluster-4.1.11	(01	April	2005)
D.2.10.	Changes	in	MySQL	Cluster-4.1.10	(12	February	2005)
D.2.11.	Changes	in	MySQL	Cluster-4.1.9	(13	January	2005)
D.2.12.	Changes	in	MySQL	Cluster-4.1.8	(14	December	2004)
D.2.13.	Changes	in	MySQL	Cluster-4.1.7	(23	October	2004)
D.2.14.	Changes	in	MySQL	Cluster-4.1.6	(10	October	2004)
D.2.15.	Changes	in	MySQL	Cluster-4.1.5	(16	September	2004)

D.2.16.	Changes	in	MySQL	Cluster-4.1.4	(31	August	2004)
D.2.17.	Changes	in	MySQL	Cluster-4.1.3	(28	June	2004)

D.3.	MySQL	Connector/ODBC	(MyODBC)	Change	History
D.3.1.	Changes	in	MyODBC	3.51.13
D.3.2.	Changes	in	MyODBC	3.51.12
D.3.3.	Changes	in	MyODBC	3.51.11

D.4.	MySQL	Connector/NET	Change	History
D.4.1.	Version	1.0.8
D.4.2.	Version	1.0.7
D.4.3.	Version	1.0.6
D.4.4.	Version	1.0.5
D.4.5.	Version	1.0.4	1-20-05
D.4.6.	Version	1.0.3-gamma	12-10-04
D.4.7.	Version	1.0.2-gamma	04-11-15
D.4.8.	Version	1.0.1-beta2	04-10-27
D.4.9.	Version	1.0.0	04-09-01
D.4.10.	Version	0.9.0	04-08-30
D.4.11.	Version	0.76
D.4.12.	Version	0.75
D.4.13.	Version	0.74
D.4.14.	Version	0.71
D.4.15.	Version	0.70
D.4.16.	Version	0.68
D.4.17.	Version	0.65
D.4.18.	Version	0.60
D.4.19.	Version	0.50

D.5.	MySQL	Connector/J	Change	History
D.5.1.	Changes	in	MySQL	Connector/J	5.0.2-beta	(11	July	2006)
D.5.2.	Changes	in	MySQL	Connector/J	5.0.1-beta	(Not	Released)
D.5.3.	Changes	in	MySQL	Connector/J	5.0.0-beta	(22	December
2005)
D.5.4.	Changes	in	MySQL	Connector/J	3.1.14	(not	yet	released)
D.5.5.	Changes	in	MySQL	Connector/J	3.1.13	(26	May	2006)
D.5.6.	Changes	in	MySQL	Connector/J	3.1.12	(30	November	2005)
D.5.7.	Changes	in	MySQL	Connector/J	3.1.11-stable	(07	October
2005)
D.5.8.	Changes	in	MySQL	Connector/J	3.1.10-stable	(23	June	2005)
D.5.9.	Changes	in	MySQL	Connector/J	3.1.9-stable	(22	June	2005)
D.5.10.	Changes	in	MySQL	Connector/J	3.1.8-stable	(14	April	2005)

D.5.11.	Changes	in	MySQL	Connector/J	3.1.7-stable	(18	February
2005)
D.5.12.	Changes	in	MySQL	Connector/J	3.1.6-stable	(23	December
2004)
D.5.13.	Changes	in	MySQL	Connector/J	3.1.5-gamma	(02	December
2004)
D.5.14.	Changes	in	MySQL	Connector/J	3.1.4-beta	(04	September
2004)
D.5.15.	Changes	in	MySQL	Connector/J	3.1.3-beta	(07	July	2004)
D.5.16.	Changes	in	MySQL	Connector/J	3.1.2-alpha	(09	June	2004)
D.5.17.	Changes	in	MySQL	Connector/J	3.1.1-alpha	(14	February
2004)
D.5.18.	Changes	in	MySQL	Connector/J	3.1.0-alpha	(18	February
2003)
D.5.19.	Changes	in	MySQL	Connector/J	3.0.17-ga	(23	June	2005)
D.5.20.	Changes	in	MySQL	Connector/J	3.0.16-ga	(15	November
2004)
D.5.21.	Changes	in	MySQL	Connector/J	3.0.15-production	(04
September	2004)
D.5.22.	Changes	in	MySQL	Connector/J	3.0.14-production	(28	May
2004)
D.5.23.	Changes	in	MySQL	Connector/J	3.0.13-production	(27	May
2004)
D.5.24.	Changes	in	MySQL	Connector/J	3.0.12-production	(18	May
2004)
D.5.25.	Changes	in	MySQL	Connector/J	3.0.11-stable	(19	February
2004)
D.5.26.	Changes	in	MySQL	Connector/J	3.0.10-stable	(13	January
2004)
D.5.27.	Changes	in	MySQL	Connector/J	3.0.9-stable	(07	October
2003)
D.5.28.	Changes	in	MySQL	Connector/J	3.0.8-stable	(23	May	2003)
D.5.29.	Changes	in	MySQL	Connector/J	3.0.7-stable	(08	April	2003)
D.5.30.	Changes	in	MySQL	Connector/J	3.0.6-stable	(18	February
2003)
D.5.31.	Changes	in	MySQL	Connector/J	3.0.5-gamma	(22	January
2003)
D.5.32.	Changes	in	MySQL	Connector/J	3.0.4-gamma	(06	January
2003)

D.5.33.	Changes	in	MySQL	Connector/J	3.0.3-dev	(17	December
2002)
D.5.34.	Changes	in	MySQL	Connector/J	3.0.2-dev	(08	November
2002)
D.5.35.	Changes	in	MySQL	Connector/J	3.0.1-dev	(21	September
2002)
D.5.36.	Changes	in	MySQL	Connector/J	3.0.0-dev	(31	July	2002)
D.5.37.	Changes	in	MySQL	Connector/J	2.0.14	(16	May	2002)
D.5.38.	Changes	in	MySQL	Connector/J	2.0.13	(24	April	2002)
D.5.39.	Changes	in	MySQL	Connector/J	2.0.12	(07	April	2002)
D.5.40.	Changes	in	MySQL	Connector/J	2.0.11	(27	January	2002)
D.5.41.	Changes	in	MySQL	Connector/J	2.0.10	(24	January	2002)
D.5.42.	Changes	in	MySQL	Connector/J	2.0.9	(13	January	2002)
D.5.43.	Changes	in	MySQL	Connector/J	2.0.8	(25	November	2001)
D.5.44.	Changes	in	MySQL	Connector/J	2.0.7	(24	October	2001)
D.5.45.	Changes	in	MySQL	Connector/J	2.0.6	(16	June	2001)
D.5.46.	Changes	in	MySQL	Connector/J	2.0.5	(13	June	2001)
D.5.47.	Changes	in	MySQL	Connector/J	2.0.3	(03	December	2000)
D.5.48.	Changes	in	MySQL	Connector/J	2.0.1	(06	April	2000)
D.5.49.	Changes	in	MySQL	Connector/J	2.0.0pre5	(21	February	2000)
D.5.50.	Changes	in	MySQL	Connector/J	2.0.0pre4	(10	January	2000)
D.5.51.	Changes	in	MySQL	Connector/J	2.0.0pre	(17	August	1999)
D.5.52.	Changes	in	MySQL	Connector/J	1.2b	(04	July	1999)
D.5.53.	Changes	in	MySQL	Connector/J	1.2a	(14	April	1999)
D.5.54.	Changes	in	MySQL	Connector/J	1.1i	(24	March	1999)
D.5.55.	Changes	in	MySQL	Connector/J	1.1h	(08	March	1999)
D.5.56.	Changes	in	MySQL	Connector/J	1.1g	(19	February	1999)
D.5.57.	Changes	in	MySQL	Connector/J	1.1f	(31	December	1998)
D.5.58.	Changes	in	MySQL	Connector/J	1.1b	(03	November	1998)
D.5.59.	Changes	in	MySQL	Connector/J	1.1	(02	September	1998)
D.5.60.	Changes	in	MySQL	Connector/J	1.0	(24	August	1998)
D.5.61.	Changes	in	MySQL	Connector/J	0.9d	(04	August	1998)
D.5.62.	Changes	in	MySQL	Connector/J	0.9	(28	July	1998)
D.5.63.	Changes	in	MySQL	Connector/J	0.8	(06	July	1998)
D.5.64.	Changes	in	MySQL	Connector/J	0.7	(01	July	1998)
D.5.65.	Changes	in	MySQL	Connector/J	0.6	(21	May	1998)

E.	Porting	to	Other	Systems
E.1.	Debugging	a	MySQL	Server

E.1.1.	Compiling	MySQL	for	Debugging

E.1.2.	Creating	Trace	Files
E.1.3.	Debugging	mysqld	under	gdb
E.1.4.	Using	a	Stack	Trace
E.1.5.	Using	Server	Logs	to	Find	Causes	of	Errors	in	mysqld
E.1.6.	Making	a	Test	Case	If	You	Experience	Table	Corruption

E.2.	Debugging	a	MySQL	Client
E.3.	The	DBUG	Package
E.4.	Comments	about	RTS	Threads
E.5.	Differences	Between	Thread	Packages

F.	Environment	Variables
G.	Regular	Expressions
H.	Limits	in	MySQL

H.1.	Limits	of	Joins
I.	Feature	Restrictions

I.1.	Restrictions	on	Stored	Routines	and	Triggers
I.2.	Restrictions	on	Server-Side	Cursors
I.3.	Restrictions	on	Subqueries
I.4.	Restrictions	on	Views
I.5.	Restrictions	on	XA	Transactions

J.	GNU	General	Public	License
K.	MySQL	FLOSS	License	Exception

List	of	Tables

15.1.	Steps	for	Cluster	rolling	restarts	—	by	type

List	of	Examples

23.1.	Obtaining	a	connection	from	the	DriverManager
23.2.	Using	java.sql.Statement	to	execute	a	SELECT	query
23.3.	Stored	Procedures
23.4.	Using	Connection.prepareCall()
23.5.	Registering	output	parameters
23.6.	Setting	CallableStatement	input	parameters
23.7.	Retrieving	results	and	output	parameter	values
23.8.	Retrieving	AUTO_INCREMENT	column	values	using
Statement.getGeneratedKeys()

23.9.	Retrieving	AUTO_INCREMENT	column	values	using	SELECT
LAST_INSERT_ID()

23.10.	Retrieving	AUTO_INCREMENT	column	values	in	Updatable	ResultSets

23.11.	Using	a	connection	pool	with	a	J2EE	application	server
23.12.	Example	of	transaction	with	retry	logic

Preface

This	is	the	Reference	Manual	for	the	MySQL	Database	System,	version	5.0,	up
to	release	5.0.25.	It	is	not	intended	for	use	with	older	versions	of	the	MySQL
software	due	to	the	many	functional	and	other	differences	between	MySQL	5.0
and	previous	versions.	If	you	are	using	an	earlier	release	of	the	MySQL
software,	please	refer	to	the	MySQL	3.23,	4.0,	4.1	Reference	Manual,	which
provides	coverage	of	the	3.22,	3.23,	4.0,	and	4.1	series	of	MySQL	software
releases.	Differences	between	minor	versions	of	MySQL	5.0	are	noted	in	the
present	text	with	reference	to	release	numbers	(5.0.x).

Chapter	1.	General	Information

Table	of	Contents

1.1.	About	This	Manual
1.2.	Conventions	Used	in	This	Manual
1.3.	Overview	of	MySQL	AB
1.4.	Overview	of	the	MySQL	Database	Management	System

1.4.1.	History	of	MySQL
1.4.2.	The	Main	Features	of	MySQL
1.4.3.	MySQL	Stability
1.4.4.	How	Large	MySQL	Tables	Can	Be
1.4.5.	Year	2000	Compliance

1.5.	Overview	of	the	MaxDB	Database	Management	System
1.5.1.	What	is	MaxDB?
1.5.2.	History	of	MaxDB
1.5.3.	Features	of	MaxDB
1.5.4.	Licensing	and	Support
1.5.5.	Feature	Differences	Between	MaxDB	and	MySQL
1.5.6.	Interoperability	Features	Between	MaxDB	and	MySQL
1.5.7.	MaxDB-Related	Links

1.6.	MySQL	Development	Roadmap
1.6.1.	What's	New	in	MySQL	5.0

1.7.	MySQL	Information	Sources
1.7.1.	MySQL	Mailing	Lists
1.7.2.	MySQL	Community	Support	at	the	MySQL	Forums
1.7.3.	MySQL	Community	Support	on	Internet	Relay	Chat	(IRC)

1.8.	How	to	Report	Bugs	or	Problems
1.9.	MySQL	Standards	Compliance

1.9.1.	What	Standards	MySQL	Follows
1.9.2.	Selecting	SQL	Modes
1.9.3.	Running	MySQL	in	ANSI	Mode
1.9.4.	MySQL	Extensions	to	Standard	SQL
1.9.5.	MySQL	Differences	from	Standard	SQL
1.9.6.	How	MySQL	Deals	with	Constraints

The	MySQL®	software	delivers	a	very	fast,	multi-threaded,	multi-user,	and

robust	SQL	(Structured	Query	Language)	database	server.	MySQL	Server	is
intended	for	mission-critical,	heavy-load	production	systems	as	well	as	for
embedding	into	mass-deployed	software.	MySQL	is	a	registered	trademark	of
MySQL	AB.

The	MySQL	software	is	Dual	Licensed.	Users	can	choose	to	use	the	MySQL
software	as	an	Open	Source	product	under	the	terms	of	the	GNU	General	Public
License	(http://www.fsf.org/licenses/)	or	can	purchase	a	standard	commercial
license	from	MySQL	AB.	See	http://www.mysql.com/company/legal/licensing/
for	more	information	on	our	licensing	policies.

The	following	list	describes	some	sections	of	particular	interest	in	this	manual:

For	a	discussion	about	the	capabilities	of	the	MySQL	Database	Server,	see
Section	1.4.2,	“The	Main	Features	of	MySQL”.

For	installation	instructions,	see	Chapter	2,	Installing	and	Upgrading
MySQL.	For	information	about	upgrading	MySQL,	see	Section	2.11,
“Upgrading	MySQL”.

For	information	about	configuring	and	administering	MySQL	Server,	see
Chapter	5,	Database	Administration.

For	information	about	setting	up	replication	servers,	see	Chapter	6,
Replication.

For	tips	on	porting	the	MySQL	Database	Software	to	new	architectures	or
operating	systems,	see	Appendix	E,	Porting	to	Other	Systems.

For	a	tutorial	introduction	to	the	MySQL	Database	Server,	see	Chapter	3,
Tutorial.

For	benchmarking	information,	see	the	sql-bench	benchmarking	directory
in	your	MySQL	distribution.

For	a	history	of	new	features	and	bugfixes,	see	Appendix	D,	MySQL
Change	History.

For	a	list	of	currently	known	bugs	and	misfeatures,	see	Section	A.8,
“Known	Issues	in	MySQL”.

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/

For	future	plans,	see	Section	1.6,	“MySQL	Development	Roadmap”.

For	a	list	of	all	the	contributors	to	this	project,	see	Appendix	C,	Credits.

Important:

To	report	errors	(often	called	“bugs”),	please	use	the	instructions	at	Section	1.8,
“How	to	Report	Bugs	or	Problems”.

If	you	have	found	a	sensitive	security	bug	in	MySQL	Server,	please	let	us	know
immediately	by	sending	an	email	message	to	<security@mysql.com>.

mailto:security@mysql.com

1.1.	About	This	Manual

This	is	the	Reference	Manual	for	the	MySQL	Database	System,	version	5.0,
through	release	5.0.25.	It	is	not	intended	for	use	with	older	versions	of	the
MySQL	software	due	to	the	many	functional	and	other	differences	between
MySQL	5.0	and	previous	versions.	If	you	are	using	a	version	4.1	release	of	the
MySQL	software,	please	refer	to	the	MySQL	3.23,	4.0,	4.1	Reference	Manual,
which	covers	the	3.23,	4.0,	and	4.1	series	of	MySQL	software	releases.
Differences	between	minor	versions	of	MySQL	5.0	are	noted	in	the	present	text
with	reference	to	release	numbers	(5.0.x).

Because	this	manual	serves	as	a	reference,	it	does	not	provide	general	instruction
on	SQL	or	relational	database	concepts.	It	also	does	not	teach	you	how	to	use
your	operating	system	or	command-line	interpreter.

The	MySQL	Database	Software	is	under	constant	development,	and	the
Reference	Manual	is	updated	frequently	as	well.	The	most	recent	version	of	the
manual	is	available	online	in	searchable	form	at	http://dev.mysql.com/doc/.
Other	formats	also	are	available	there,	including	HTML,	PDF,	and	Windows
CHM	versions.

The	Reference	Manual	source	files	are	written	in	DocBook	XML	format.	The
HTML	version	and	other	formats	are	produced	automatically,	primarily	using	the
DocBook	XSL	stylesheets.	For	information	about	DocBook,	see
http://docbook.org/

The	DocBook	XML	sources	of	this	manual	are	available	from
http://dev.mysql.com/tech-resources/sources.html.	You	can	check	out	a	copy	of
the	documentation	repository	with	this	command:

svn	checkout	http://svn.mysql.com/svnpublic/mysqldoc/

If	you	have	any	suggestions	concerning	additions	or	corrections	to	this	manual,
please	send	them	to	the	documentation	team	at	<docs@mysql.com>.

This	manual	was	originally	written	by	David	Axmark	and	Michael	“Monty”
Widenius.	It	is	maintained	by	the	MySQL	Documentation	Team,	consisting	of
Paul	DuBois,	Stefan	Hinz,	Mike	Hillyer,	and	Jon	Stephens.	For	the	many	other

http://dev.mysql.com/doc/
http://docbook.org/
http://dev.mysql.com/tech-resources/sources.html
mailto:docs@mysql.com

contributors,	see	Appendix	C,	Credits.

The	copyright	to	this	manual	is	owned	by	the	Swedish	company	MySQL	AB.
MySQL®	and	the	MySQL	logo	are	registered	trademarks	of	MySQL	AB.	Other
trademarks	and	registered	trademarks	referred	to	in	this	manual	are	the	property
of	their	respective	owners,	and	are	used	for	identification	purposes	only.

1.2.	Conventions	Used	in	This	Manual

This	manual	uses	certain	typographical	conventions:

Text	in	this	style	is	used	for	SQL	statements;	database,	table,	and
column	names;	program	listings	and	source	code;	and	environment
variables.	Example:	“To	reload	the	grant	tables,	use	the	FLUSH	PRIVILEGES
statement.”

Text	in	this	style	indicates	input	that	you	type	in	examples.

Text	in	this	style	indicates	the	names	of	executable	programs	and	scripts,
examples	being	mysql	(the	MySQL	command	line	client	program)	and
mysqld	(the	MySQL	server	executable).

Text	in	this	style	is	used	for	variable	input	for	which	you	should
substitute	a	value	of	your	own	choosing.

Filenames	and	directory	names	are	written	like	this:	“The	global	my.cnf	file
is	located	in	the	/etc	directory.”

Character	sequences	are	written	like	this:	“To	specify	a	wildcard,	use	the	‘%’
character.”

Text	in	this	style	is	used	for	emphasis.

Text	in	this	style	is	used	in	table	headings	and	to	convey	especially	strong
emphasis.

When	commands	are	shown	that	are	meant	to	be	executed	from	within	a
particular	program,	the	prompt	shown	preceding	the	command	indicates	which
command	to	use.	For	example,	shell>	indicates	a	command	that	you	execute
from	your	login	shell,	and	mysql>	indicates	a	statement	that	you	execute	from
the	mysql	client	program:

shell>	type	a	shell	command	here

mysql>	type	a	mysql	statement	here

The	“shell”	is	your	command	interpreter.	On	Unix,	this	is	typically	a	program

such	as	sh,	csh,	or	bash.	On	Windows,	the	equivalent	program	is
command.com	or	cmd.exe,	typically	run	in	a	console	window.

When	you	enter	a	command	or	statement	shown	in	an	example,	do	not	type	the
prompt	shown	in	the	example.

Database,	table,	and	column	names	must	often	be	substituted	into	statements.	To
indicate	that	such	substitution	is	necessary,	this	manual	uses	db_name,	tbl_name,
and	col_name.	For	example,	you	might	see	a	statement	like	this:

mysql>	SELECT	col_name	FROM	db_name.tbl_name;

This	means	that	if	you	were	to	enter	a	similar	statement,	you	would	supply	your
own	database,	table,	and	column	names,	perhaps	like	this:

mysql>	SELECT	author_name	FROM	biblio_db.author_list;

SQL	keywords	are	not	case	sensitive	and	may	be	written	in	any	lettercase.	This
manual	uses	uppercase.

In	syntax	descriptions,	square	brackets	(‘[’	and	‘]’)	indicate	optional	words	or
clauses.	For	example,	in	the	following	statement,	IF	EXISTS	is	optional:

DROP	TABLE	[IF	EXISTS]	tbl_name

When	a	syntax	element	consists	of	a	number	of	alternatives,	the	alternatives	are
separated	by	vertical	bars	(‘|’).	When	one	member	from	a	set	of	choices	may	be
chosen,	the	alternatives	are	listed	within	square	brackets	(‘[’	and	‘]’):

TRIM([[BOTH	|	LEADING	|	TRAILING]	[remstr]	FROM]	str)

When	one	member	from	a	set	of	choices	must	be	chosen,	the	alternatives	are
listed	within	braces	(‘{’	and	‘}’):

{DESCRIBE	|	DESC}	tbl_name	[col_name	|	wild]

An	ellipsis	(...)	indicates	the	omission	of	a	section	of	a	statement,	typically	to
provide	a	shorter	version	of	more	complex	syntax.	For	example,	INSERT	...
SELECT	is	shorthand	for	the	form	of	INSERT	statement	that	is	followed	by	a
SELECT	statement.

An	ellipsis	can	also	indicate	that	the	preceding	syntax	element	of	a	statement

may	be	repeated.	In	the	following	example,	multiple	reset_option	values	may
be	given,	with	each	of	those	after	the	first	preceded	by	commas:

RESET	reset_option	[,reset_option]	...

Commands	for	setting	shell	variables	are	shown	using	Bourne	shell	syntax.	For
example,	the	sequence	to	set	the	CC	environment	variable	and	run	the	configure
command	looks	like	this	in	Bourne	shell	syntax:

shell>	CC=gcc	./configure

If	you	are	using	csh	or	tcsh,	you	must	issue	commands	somewhat	differently:

shell>	setenv	CC	gcc

shell>	./configure

1.3.	Overview	of	MySQL	AB

MySQL	AB	is	the	company	of	the	MySQL	founders	and	main	developers.
MySQL	AB	was	originally	established	in	Sweden	by	David	Axmark,	Allan
Larsson,	and	Michael	“Monty”	Widenius.

We	are	dedicated	to	developing	the	MySQL	database	software	and	promoting	it
to	new	users.	MySQL	AB	owns	the	copyright	to	the	MySQL	source	code,	the
MySQL	logo	and	(registered)	trademark,	and	this	manual.	See	Section	1.4,
“Overview	of	the	MySQL	Database	Management	System”.

The	MySQL	core	values	show	our	dedication	to	MySQL	and	Open	Source.

These	core	values	direct	how	MySQL	AB	works	with	the	MySQL	server
software:

To	be	the	best	and	the	most	widely	used	database	in	the	world

To	be	available	and	affordable	by	all

To	be	easy	to	use

To	be	continuously	improved	while	remaining	fast	and	safe

To	be	fun	to	use	and	improve

To	be	free	from	bugs

These	are	the	core	values	of	the	company	MySQL	AB	and	its	employees:

We	subscribe	to	the	Open	Source	philosophy	and	support	the	Open	Source
community

We	aim	to	be	good	citizens

We	prefer	partners	that	share	our	values	and	mindset

We	answer	email	and	provide	support

We	are	a	virtual	company,	networking	with	others

We	work	against	software	patents

The	MySQL	Web	site	(http://www.mysql.com/)	provides	the	latest	information
about	MySQL	and	MySQL	AB.

By	the	way,	the	“AB”	part	of	the	company	name	is	the	acronym	for	the	Swedish
“aktiebolag,”	or	“stock	company.”	It	translates	to	“MySQL,	Inc.”	In	fact,
MySQL,	Inc.	and	MySQL	GmbH	are	examples	of	MySQL	AB	subsidiaries.
They	are	located	in	the	United	States	and	Germany,	respectively.

http://www.mysql.com/

1.4.	Overview	of	the	MySQL	Database	Management
System

MySQL,	the	most	popular	Open	Source	SQL	database	management	system,	is
developed,	distributed,	and	supported	by	MySQL	AB.	MySQL	AB	is	a
commercial	company,	founded	by	the	MySQL	developers.	It	is	a	second
generation	Open	Source	company	that	unites	Open	Source	values	and
methodology	with	a	successful	business	model.

The	MySQL	Web	site	(http://www.mysql.com/)	provides	the	latest	information
about	MySQL	software	and	MySQL	AB.

MySQL	is	a	database	management	system.

A	database	is	a	structured	collection	of	data.	It	may	be	anything	from	a
simple	shopping	list	to	a	picture	gallery	or	the	vast	amounts	of	information
in	a	corporate	network.	To	add,	access,	and	process	data	stored	in	a
computer	database,	you	need	a	database	management	system	such	as
MySQL	Server.	Since	computers	are	very	good	at	handling	large	amounts
of	data,	database	management	systems	play	a	central	role	in	computing,	as
standalone	utilities,	or	as	parts	of	other	applications.

MySQL	is	a	relational	database	management	system.

A	relational	database	stores	data	in	separate	tables	rather	than	putting	all	the
data	in	one	big	storeroom.	This	adds	speed	and	flexibility.	The	SQL	part	of
“MySQL”	stands	for	“Structured	Query	Language.”	SQL	is	the	most
common	standardized	language	used	to	access	databases	and	is	defined	by
the	ANSI/ISO	SQL	Standard.	The	SQL	standard	has	been	evolving	since
1986	and	several	versions	exist.	In	this	manual,	“SQL-92”	refers	to	the
standard	released	in	1992,	“SQL:1999”	refers	to	the	standard	released	in
1999,	and	“SQL:2003”	refers	to	the	current	version	of	the	standard.	We	use
the	phrase	“the	SQL	standard”	to	mean	the	current	version	of	the	SQL
Standard	at	any	time.

MySQL	software	is	Open	Source.

Open	Source	means	that	it	is	possible	for	anyone	to	use	and	modify	the

http://www.mysql.com/

software.	Anybody	can	download	the	MySQL	software	from	the	Internet
and	use	it	without	paying	anything.	If	you	wish,	you	may	study	the	source
code	and	change	it	to	suit	your	needs.	The	MySQL	software	uses	the	GPL
(GNU	General	Public	License),	http://www.fsf.org/licenses/,	to	define	what
you	may	and	may	not	do	with	the	software	in	different	situations.	If	you
feel	uncomfortable	with	the	GPL	or	need	to	embed	MySQL	code	into	a
commercial	application,	you	can	buy	a	commercially	licensed	version	from
us.	See	the	MySQL	Licensing	Overview	for	more	information
(http://www.mysql.com/company/legal/licensing/).

The	MySQL	Database	Server	is	very	fast,	reliable,	and	easy	to	use.

If	that	is	what	you	are	looking	for,	you	should	give	it	a	try.	MySQL	Server
also	has	a	practical	set	of	features	developed	in	close	cooperation	with	our
users.	You	can	find	a	performance	comparison	of	MySQL	Server	with	other
database	managers	on	our	benchmark	page.	See	Section	7.1.4,	“The
MySQL	Benchmark	Suite”.

MySQL	Server	was	originally	developed	to	handle	large	databases	much
faster	than	existing	solutions	and	has	been	successfully	used	in	highly
demanding	production	environments	for	several	years.	Although	under
constant	development,	MySQL	Server	today	offers	a	rich	and	useful	set	of
functions.	Its	connectivity,	speed,	and	security	make	MySQL	Server	highly
suited	for	accessing	databases	on	the	Internet.

MySQL	Server	works	in	client/server	or	embedded	systems.

The	MySQL	Database	Software	is	a	client/server	system	that	consists	of	a
multi-threaded	SQL	server	that	supports	different	backends,	several
different	client	programs	and	libraries,	administrative	tools,	and	a	wide
range	of	application	programming	interfaces	(APIs).

We	also	provide	MySQL	Server	as	an	embedded	multi-threaded	library	that
you	can	link	into	your	application	to	get	a	smaller,	faster,	easier-to-manage
standalone	product.

A	large	amount	of	contributed	MySQL	software	is	available.

It	is	very	likely	that	your	favorite	application	or	language	supports	the
MySQL	Database	Server.

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/

The	official	way	to	pronounce	“MySQL”	is	“My	Ess	Que	Ell”	(not	“my
sequel”),	but	we	don't	mind	if	you	pronounce	it	as	“my	sequel”	or	in	some	other
localized	way.

1.4.1.	History	of	MySQL

We	started	out	with	the	intention	of	using	the	mSQL	database	system	to	connect	to
our	tables	using	our	own	fast	low-level	(ISAM)	routines.	However,	after	some
testing,	we	came	to	the	conclusion	that	mSQL	was	not	fast	enough	or	flexible
enough	for	our	needs.	This	resulted	in	a	new	SQL	interface	to	our	database	but
with	almost	the	same	API	interface	as	mSQL.	This	API	was	designed	to	allow
third-party	code	that	was	written	for	use	with	mSQL	to	be	ported	easily	for	use
with	MySQL.

The	derivation	of	the	name	MySQL	is	not	clear.	Our	base	directory	and	a	large
number	of	our	libraries	and	tools	have	had	the	prefix	“my”	for	well	over	10
years.	However,	co-founder	Monty	Widenius's	daughter	is	also	named	My.
Which	of	the	two	gave	its	name	to	MySQL	is	still	a	mystery,	even	for	us.

The	name	of	the	MySQL	Dolphin	(our	logo)	is	“Sakila,”	which	was	chosen	by
the	founders	of	MySQL	AB	from	a	huge	list	of	names	suggested	by	users	in	our
“Name	the	Dolphin”	contest.	The	winning	name	was	submitted	by	Ambrose
Twebaze,	an	Open	Source	software	developer	from	Swaziland,	Africa.
According	to	Ambrose,	the	feminine	name	Sakila	has	its	roots	in	SiSwati,	the
local	language	of	Swaziland.	Sakila	is	also	the	name	of	a	town	in	Arusha,
Tanzania,	near	Ambrose's	country	of	origin,	Uganda.

1.4.2.	The	Main	Features	of	MySQL

The	following	list	describes	some	of	the	important	characteristics	of	the	MySQL
Database	Software.	See	also	Section	1.6,	“MySQL	Development	Roadmap”,	for
more	information	about	current	and	upcoming	features.

Internals	and	Portability:

Written	in	C	and	C++.

Tested	with	a	broad	range	of	different	compilers.

Works	on	many	different	platforms.	See	Section	2.1.1,	“Operating	Systems
Supported	by	MySQL”.

Uses	GNU	Automake,	Autoconf,	and	Libtool	for	portability.

APIs	for	C,	C++,	Eiffel,	Java,	Perl,	PHP,	Python,	Ruby,	and	Tcl	are
available.	See	Chapter	22,	APIs	and	Libraries.

Fully	multi-threaded	using	kernel	threads.	It	can	easily	use	multiple	CPUs	if
they	are	available.

Provides	transactional	and	non-transactional	storage	engines.

Uses	very	fast	B-tree	disk	tables	(MyISAM)	with	index	compression.

Relatively	easy	to	add	other	storage	engines.	This	is	useful	if	you	want	to
add	an	SQL	interface	to	an	in-house	database.

A	very	fast	thread-based	memory	allocation	system.

Very	fast	joins	using	an	optimized	one-sweep	multi-join.

In-memory	hash	tables,	which	are	used	as	temporary	tables.

SQL	functions	are	implemented	using	a	highly	optimized	class	library	and
should	be	as	fast	as	possible.	Usually	there	is	no	memory	allocation	at	all
after	query	initialization.

The	MySQL	code	is	tested	with	Purify	(a	commercial	memory	leakage
detector)	as	well	as	with	Valgrind,	a	GPL	tool
(http://developer.kde.org/~sewardj/).

The	server	is	available	as	a	separate	program	for	use	in	a	client/server
networked	environment.	It	is	also	available	as	a	library	that	can	be
embedded	(linked)	into	standalone	applications.	Such	applications	can	be
used	in	isolation	or	in	environments	where	no	network	is	available.

Data	Types:

Many	data	types:	signed/unsigned	integers	1,	2,	3,	4,	and	8	bytes	long,

http://developer.kde.org/~sewardj/

FLOAT,	DOUBLE,	CHAR,	VARCHAR,	TEXT,	BLOB,	DATE,	TIME,	DATETIME,
TIMESTAMP,	YEAR,	SET,	ENUM,	and	OpenGIS	spatial	types.	See	Chapter	11,
Data	Types.

Fixed-length	and	variable-length	records.

Statements	and	Functions:

Full	operator	and	function	support	in	the	SELECT	and	WHERE	clauses	of
queries.	For	example:

mysql>	SELECT	CONCAT(first_name,	'	',	last_name)

				->	FROM	citizen

				->	WHERE	income/dependents	>	10000	AND	age	>	30;

Full	support	for	SQL	GROUP	BY	and	ORDER	BY	clauses.	Support	for	group
functions	(COUNT(),	COUNT(DISTINCT	...),	AVG(),	STD(),	SUM(),	MAX(),
MIN(),	and	GROUP_CONCAT()).

Support	for	LEFT	OUTER	JOIN	and	RIGHT	OUTER	JOIN	with	both	standard
SQL	and	ODBC	syntax.

Support	for	aliases	on	tables	and	columns	as	required	by	standard	SQL.

DELETE,	INSERT,	REPLACE,	and	UPDATE	return	the	number	of	rows	that	were
changed	(affected).	It	is	possible	to	return	the	number	of	rows	matched
instead	by	setting	a	flag	when	connecting	to	the	server.

The	MySQL-specific	SHOW	statement	can	be	used	to	retrieve	information
about	databases,	storage	engines,	tables,	and	indexes.

The	EXPLAIN	statement	can	be	used	to	determine	how	the	optimizer	resolves
a	query.

Function	names	do	not	clash	with	table	or	column	names.	For	example,	ABS
is	a	valid	column	name.	The	only	restriction	is	that	for	a	function	call,	no
spaces	are	allowed	between	the	function	name	and	the	‘(’	that	follows	it.
See	Section	9.5,	“Treatment	of	Reserved	Words	in	MySQL”.

You	can	mix	tables	from	different	databases	in	the	same	query	(as	of
MySQL	3.22).

Security:

A	privilege	and	password	system	that	is	very	flexible	and	secure,	and	that
allows	host-based	verification.	Passwords	are	secure	because	all	password
traffic	is	encrypted	when	you	connect	to	a	server.

Scalability	and	Limits:

Handles	large	databases.	We	use	MySQL	Server	with	databases	that	contain
50	million	records.	We	also	know	of	users	who	use	MySQL	Server	with
60,000	tables	and	about	5,000,000,000	rows.

Up	to	64	indexes	per	table	are	allowed	(32	before	MySQL	4.1.2).	Each
index	may	consist	of	1	to	16	columns	or	parts	of	columns.	The	maximum
index	width	is	1000	bytes	(767	for	InnoDB);	before	MySQL	4.1.2,	the	limit
is	500	bytes.	An	index	may	use	a	prefix	of	a	column	for	CHAR,	VARCHAR,
BLOB,	or	TEXT	column	types.

Connectivity:

Clients	can	connect	to	the	MySQL	server	using	TCP/IP	sockets	on	any
platform.	On	Windows	systems	in	the	NT	family	(NT,	2000,	XP,	2003,	or
Vista),	clients	can	connect	using	named	pipes.	On	Unix	systems,	clients	can
connect	using	Unix	domain	socket	files.

In	MySQL	4.1	and	higher,	Windows	servers	also	support	shared-memory
connections	if	started	with	the	--shared-memory	option.	Clients	can
connect	through	shared	memory	by	using	the	--protocol=memory	option.

The	Connector/ODBC	(MyODBC)	interface	provides	MySQL	support	for
client	programs	that	use	ODBC	(Open	Database	Connectivity)	connections.
For	example,	you	can	use	MS	Access	to	connect	to	your	MySQL	server.
Clients	can	be	run	on	Windows	or	Unix.	MyODBC	source	is	available.	All
ODBC	2.5	functions	are	supported,	as	are	many	others.	See	Chapter	23,
Connectors.

The	Connector/J	interface	provides	MySQL	support	for	Java	client
programs	that	use	JDBC	connections.	Clients	can	be	run	on	Windows	or
Unix.	Connector/J	source	is	available.	See	Chapter	23,	Connectors.

MySQL	Connector/NET	enables	developers	to	easily	create	.NET
applications	that	require	secure,	high-performance	data	connectivity	with
MySQL.	It	implements	the	required	ADO.NET	interfaces	and	integrates
into	ADO.NET	aware	tools.	Developers	can	build	applications	using	their
choice	of	.NET	languages.	MySQL	Connector/NET	is	a	fully	managed
ADO.NET	driver	written	in	100%	pure	C#.	See	Chapter	23,	Connectors.

Localization:

The	server	can	provide	error	messages	to	clients	in	many	languages.	See
Section	5.11.2,	“Setting	the	Error	Message	Language”.

Full	support	for	several	different	character	sets,	including	latin1	(cp1252),
german,	big5,	ujis,	and	more.	For	example,	the	Scandinavian	characters
‘å’,	‘ä’	and	‘ö’	are	allowed	in	table	and	column	names.	Unicode	support	is
available	as	of	MySQL	4.1.

All	data	is	saved	in	the	chosen	character	set.	All	comparisons	for	normal
string	columns	are	case-insensitive.

Sorting	is	done	according	to	the	chosen	character	set	(using	Swedish
collation	by	default).	It	is	possible	to	change	this	when	the	MySQL	server	is
started.	To	see	an	example	of	very	advanced	sorting,	look	at	the	Czech
sorting	code.	MySQL	Server	supports	many	different	character	sets	that	can
be	specified	at	compile	time	and	runtime.

Clients	and	Tools:

MySQL	Server	has	built-in	support	for	SQL	statements	to	check,	optimize,
and	repair	tables.	These	statements	are	available	from	the	command	line
through	the	mysqlcheck	client.	MySQL	also	includes	myisamchk,	a	very
fast	command-line	utility	for	performing	these	operations	on	MyISAM	tables.
See	Chapter	5,	Database	Administration.

All	MySQL	programs	can	be	invoked	with	the	--help	or	-?	options	to
obtain	online	assistance.

1.4.3.	MySQL	Stability

This	section	addresses	the	questions,	“How	stable	is	MySQL	Server?”	and,	“Can

I	depend	on	MySQL	Server	in	this	project?”	We	will	try	to	clarify	these	issues
and	answer	some	important	questions	that	concern	many	potential	users.	The
information	in	this	section	is	based	on	data	gathered	from	the	mailing	lists,
which	are	very	active	in	identifying	problems	as	well	as	reporting	types	of	use.

The	original	code	stems	back	to	the	early	1980s.	It	provides	a	stable	code	base,
and	the	ISAM	table	format	used	by	the	original	storage	engine	remains	backward-
compatible.	At	TcX,	the	predecessor	of	MySQL	AB,	MySQL	code	has	worked
in	projects	since	mid-1996,	without	any	problems.	When	the	MySQL	Database
Software	initially	was	released	to	a	wider	public,	our	new	users	quickly	found
some	pieces	of	untested	code.	Each	new	release	since	then	has	had	fewer
portability	problems,	even	though	each	new	release	has	also	had	many	new
features.

Each	release	of	the	MySQL	Server	has	been	usable.	Problems	have	occurred
only	when	users	try	code	from	the	“gray	zones.”	Naturally,	new	users	don't	know
what	the	gray	zones	are;	this	section	therefore	attempts	to	document	those	areas
that	are	currently	known.	The	descriptions	mostly	deal	with	Versions	3.23	and
later	of	MySQL	Server.	All	known	and	reported	bugs	are	fixed	in	the	latest
version,	with	the	exception	of	those	listed	in	the	bugs	section,	which	are	design-
related.	See	Section	A.8,	“Known	Issues	in	MySQL”.

The	MySQL	Server	design	is	multi-layered	with	independent	modules.	Some	of
the	newer	modules	are	listed	here	with	an	indication	of	how	well-tested	each	of
them	is:

Replication	(Stable)

Large	groups	of	servers	using	replication	are	in	production	use,	with	good
results.	Work	on	enhanced	replication	features	is	continuing.

InnoDB	tables	(Stable)

The	InnoDB	transactional	storage	engine	has	been	stable	since	version
3.23.49.	InnoDB	is	being	used	in	large,	heavy-load	production	systems.

Full-text	searches	(Stable)

Full-text	searching	is	widely	used.	Important	feature	enhancements	were
added	in	MySQL	4.0	and	4.1.

MyODBC	3.51	(Stable)

MyODBC	3.51	uses	ODBC	SDK	3.51	and	is	in	wide	production	use.	Some
issues	brought	up	appear	to	be	application-related	and	independent	of	the
ODBC	driver	or	underlying	database	server.

1.4.4.	How	Large	MySQL	Tables	Can	Be

MySQL	3.22	had	a	4GB	(4	gigabyte)	limit	on	table	size.	With	the	MyISAM	storage
engine	in	MySQL	3.23,	the	maximum	table	size	was	increased	to	65536
terabytes	(2567	–	1	bytes).	With	this	larger	allowed	table	size,	the	maximum
effective	table	size	for	MySQL	databases	is	usually	determined	by	operating
system	constraints	on	file	sizes,	not	by	MySQL	internal	limits.

The	InnoDB	storage	engine	maintains	InnoDB	tables	within	a	tablespace	that	can
be	created	from	several	files.	This	allows	a	table	to	exceed	the	maximum
individual	file	size.	The	tablespace	can	include	raw	disk	partitions,	which	allows
extremely	large	tables.	The	maximum	tablespace	size	is	64TB.

The	following	table	lists	some	examples	of	operating	system	file-size	limits.
This	is	only	a	rough	guide	and	is	not	intended	to	be	definitive.	For	the	most	up-
to-date	information,	be	sure	to	check	the	documentation	specific	to	your
operating	system.

Operating	System File-size	Limit
Linux	2.2-Intel	32-bit 2GB	(LFS:	4GB)
Linux	2.4+ (using	ext3	filesystem)	4TB
Solaris	9/10 16TB
NetWare	w/NSS	filesystem 8TB
Win32	w/	FAT/FAT32 2GB/4GB
Win32	w/	NTFS 2TB	(possibly	larger)
MacOS	X	w/	HFS+ 2TB

On	Linux	2.2,	you	can	get	MyISAM	tables	larger	than	2GB	in	size	by	using	the
Large	File	Support	(LFS)	patch	for	the	ext2	filesystem.	On	Linux	2.4,	patches
also	exist	for	ReiserFS	to	get	support	for	big	files	(up	to	2TB).	Most	current
Linux	distributions	are	based	on	kernel	2.4	or	higher	and	include	all	the	required

LFS	patches.	With	JFS	and	XFS,	petabyte	and	larger	files	are	possible	on	Linux.
However,	the	maximum	available	file	size	still	depends	on	several	factors,	one	of
them	being	the	filesystem	used	to	store	MySQL	tables.

For	a	detailed	overview	about	LFS	in	Linux,	have	a	look	at	Andreas	Jaeger's
Large	File	Support	in	Linux	page	at	http://www.suse.de/~aj/linux_lfs.html.

Windows	users	please	note:	FAT	and	VFAT	(FAT32)	are	not	considered	suitable
for	production	use	with	MySQL.	Use	NTFS	instead.

By	default,	MySQL	creates	MyISAM	tables	with	an	internal	structure	that	allows	a
maximum	size	of	about	4GB.	You	can	check	the	maximum	table	size	for	a
MyISAM	table	with	the	SHOW	TABLE	STATUS	statement	or	with	myisamchk	-dv
tbl_name.	See	Section	13.5.4,	“SHOW	Syntax”.

If	you	need	a	MyISAM	table	that	is	larger	than	4GB	and	your	operating	system
supports	large	files,	the	CREATE	TABLE	statement	supports	AVG_ROW_LENGTH	and
MAX_ROWS	options.	See	Section	13.1.5,	“CREATE	TABLE	Syntax”.	You	can	also
change	these	options	with	ALTER	TABLE	to	increase	a	table's	maximum	allowable
size	after	the	table	has	been	created.	See	Section	13.1.2,	“ALTER	TABLE	Syntax”.

Other	ways	to	work	around	file-size	limits	for	MyISAM	tables	are	as	follows:

If	your	large	table	is	read-only,	you	can	use	myisampack	to	compress	it.
myisampack	usually	compresses	a	table	by	at	least	50%,	so	you	can	have,
in	effect,	much	bigger	tables.	myisampack	also	can	merge	multiple	tables
into	a	single	table.	See	Section	8.5,	“myisampack	—	Generate
Compressed,	Read-Only	MyISAM	Tables”.

MySQL	includes	a	MERGE	library	that	allows	you	to	handle	a	collection	of
MyISAM	tables	that	have	identical	structure	as	a	single	MERGE	table.	See
Section	14.3,	“The	MERGE	Storage	Engine”.

1.4.5.	Year	2000	Compliance

The	MySQL	Server	itself	has	no	problems	with	Year	2000	(Y2K)	compliance:

MySQL	Server	uses	Unix	time	functions	that	handle	dates	into	the	year
2037	for	TIMESTAMP	values.	For	DATE	and	DATETIME	values,	dates	through
the	year	9999	are	accepted.

http://www.suse.de/~aj/linux_lfs.html

All	MySQL	date	functions	are	implemented	in	one	source	file,
sql/time.cc,	and	are	coded	very	carefully	to	be	year	2000-safe.

In	MySQL,	the	YEAR	data	type	can	store	the	years	0	and	1901	to	2155	in	one
byte	and	display	them	using	two	or	four	digits.	All	two-digit	years	are
considered	to	be	in	the	range	1970	to	2069,	which	means	that	if	you	store	01
in	a	YEAR	column,	MySQL	Server	treats	it	as	2001.

The	following	simple	demonstration	illustrates	that	MySQL	Server	has	no
problems	with	DATE	or	DATETIME	values	through	the	year	9999,	and	no	problems
with	TIMESTAMP	values	until	after	the	year	2030:

mysql>	DROP	TABLE	IF	EXISTS	y2k;

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	CREATE	TABLE	y2k	(date	DATE,

				->																			date_time	DATETIME,

				->																			time_stamp	TIMESTAMP);

Query	OK,	0	rows	affected	(0.01	sec)

mysql>	INSERT	INTO	y2k	VALUES

				->	('1998-12-31','1998-12-31	23:59:59','1998-12-31	23:59:59'),

				->	('1999-01-01','1999-01-01	00:00:00','1999-01-01	00:00:00'),

				->	('1999-09-09','1999-09-09	23:59:59','1999-09-09	23:59:59'),

				->	('2000-01-01','2000-01-01	00:00:00','2000-01-01	00:00:00'),

				->	('2000-02-28','2000-02-28	00:00:00','2000-02-28	00:00:00'),

				->	('2000-02-29','2000-02-29	00:00:00','2000-02-29	00:00:00'),

				->	('2000-03-01','2000-03-01	00:00:00','2000-03-01	00:00:00'),

				->	('2000-12-31','2000-12-31	23:59:59','2000-12-31	23:59:59'),

				->	('2001-01-01','2001-01-01	00:00:00','2001-01-01	00:00:00'),

				->	('2004-12-31','2004-12-31	23:59:59','2004-12-31	23:59:59'),

				->	('2005-01-01','2005-01-01	00:00:00','2005-01-01	00:00:00'),

				->	('2030-01-01','2030-01-01	00:00:00','2030-01-01	00:00:00'),

				->	('2040-01-01','2040-01-01	00:00:00','2040-01-01	00:00:00'),

				->	('9999-12-31','9999-12-31	23:59:59','9999-12-31	23:59:59');

Query	OK,	14	rows	affected,	2	warnings	(0.00	sec)

Records:	14		Duplicates:	0		Warnings:	2

mysql>	SELECT	*	FROM	y2k;

+------------+---------------------+---------------------+

|	date							|	date_time											|	time_stamp										|

+------------+---------------------+---------------------+

|	1998-12-31	|	1998-12-31	23:59:59	|	1998-12-31	23:59:59	|

|	1999-01-01	|	1999-01-01	00:00:00	|	1999-01-01	00:00:00	|

|	1999-09-09	|	1999-09-09	23:59:59	|	1999-09-09	23:59:59	|

|	2000-01-01	|	2000-01-01	00:00:00	|	2000-01-01	00:00:00	|

|	2000-02-28	|	2000-02-28	00:00:00	|	2000-02-28	00:00:00	|

|	2000-02-29	|	2000-02-29	00:00:00	|	2000-02-29	00:00:00	|

|	2000-03-01	|	2000-03-01	00:00:00	|	2000-03-01	00:00:00	|

|	2000-12-31	|	2000-12-31	23:59:59	|	2000-12-31	23:59:59	|

|	2001-01-01	|	2001-01-01	00:00:00	|	2001-01-01	00:00:00	|

|	2004-12-31	|	2004-12-31	23:59:59	|	2004-12-31	23:59:59	|

|	2005-01-01	|	2005-01-01	00:00:00	|	2005-01-01	00:00:00	|

|	2030-01-01	|	2030-01-01	00:00:00	|	2030-01-01	00:00:00	|

|	2040-01-01	|	2040-01-01	00:00:00	|	0000-00-00	00:00:00	|

|	9999-12-31	|	9999-12-31	23:59:59	|	0000-00-00	00:00:00	|

+------------+---------------------+---------------------+

14	rows	in	set	(0.00	sec)

The	final	two	TIMESTAMP	column	values	are	zero	because	the	year	values	(2040,
9999)	exceed	the	TIMESTAMP	maximum.	The	TIMESTAMP	data	type,	which	is	used
to	store	the	current	time,	supports	values	that	range	from	'1970-01-01
00:00:00'	to	'2030-01-01	00:00:00'	on	32-bit	machines	(signed	value).	On
64-bit	machines,	TIMESTAMP	handles	values	up	to	2106	(unsigned	value).

Although	MySQL	Server	itself	is	Y2K-safe,	you	may	run	into	problems	if	you
use	it	with	applications	that	are	not	Y2K-safe.	For	example,	many	old
applications	store	or	manipulate	years	using	two-digit	values	(which	are
ambiguous)	rather	than	four-digit	values.	This	problem	may	be	compounded	by
applications	that	use	values	such	as	00	or	99	as	“missing”	value	indicators.
Unfortunately,	these	problems	may	be	difficult	to	fix	because	different
applications	may	be	written	by	different	programmers,	each	of	whom	may	use	a
different	set	of	conventions	and	date-handling	functions.

Thus,	even	though	MySQL	Server	has	no	Y2K	problems,	it	is	the	application's
responsibility	to	provide	unambiguous	input.	See	Section	11.3.4,	“Y2K	Issues
and	Date	Types”,	for	MySQL	Server's	rules	for	dealing	with	ambiguous	date
input	data	that	contains	two-digit	year	values.

1.5.	Overview	of	the	MaxDB	Database	Management
System

MaxDB	is	a	heavy-duty	enterprise	database.	The	database	management	system
is	SAP-certified.

MaxDB	is	the	new	name	of	a	database	management	system	formerly	called	SAP
DB.	In	2003	SAP	AG	and	MySQL	AB	joined	a	partnership	and	re-branded	the
database	system	to	MaxDB.	The	development	of	MaxDB	has	continued	since
then	as	it	was	done	before—through	the	SAP	developer	team.

MySQL	AB	cooperates	closely	with	the	MaxDB	team	at	SAP	around	delivering
improvements	to	the	MaxDB	product.	Joint	efforts	include	development	of	new
native	drivers	to	enable	more	efficient	usage	of	MaxDB	in	the	Open	Source
community,	and	improvement	of	documentation	to	expand	the	MaxDB	user
base.	Interoperability	features	between	MySQL	and	MaxDB	database	also	are
seen	as	important.	For	example,	the	new	MaxDB	Synchronization	Manager
supports	data	synchronization	from	MaxDB	to	MySQL.

The	MaxDB	database	management	system	does	not	share	a	common	code-base
with	the	MySQL	database	management	system.	The	MaxDB	and	MySQL
database	management	systems	are	independent	products	provided	by	MySQL
AB.

MySQL	AB	offers	a	complete	portfolio	of	Professional	Services	for	MaxDB.

1.5.1.	What	is	MaxDB?

MaxDB	is	an	ANSI	SQL-92	(entry	level)	compliant	relational	database
management	system	(RDBMS)	from	SAP	AG,	that	is	delivered	by	MySQL	AB
as	well.	MaxDB	fulfills	the	needs	for	enterprise	usage:	safety,	scalability,	high
concurrency,	and	performance.	It	runs	on	all	major	operating	systems.	Over	the
years	it	has	proven	able	to	run	SAP	R/3	and	terabytes	of	data	in	24×7	operation.

The	database	development	started	in	1977	as	a	research	project	at	the	Technical
University	of	Berlin.	In	the	early	1980s	it	became	a	database	product	that
subsequently	was	owned	by	Nixdorf,	Siemens	Nixdorf,	Software	AG,	and	today

by	SAP	AG.	Along	the	way,	it	has	been	named	VDN,	Reflex,	Supra	2,	DDB/4,
Entire	SQL-DB-Server,	and	ADABAS	D.	In	1997,	SAP	took	over	the	software
from	Software	AG	and	renamed	it	to	SAP	DB.	Since	October	2000,	SAP	DB
sources	additionally	were	released	as	Open	Source	under	the	GNU	General
Public	License	(see	Appendix	J,	GNU	General	Public	License).

In	2003,	SAP	AG	and	MySQL	AB	formed	a	partnership	and	re-branded	the
database	system	to	MaxDB.

1.5.2.	History	of	MaxDB

The	history	of	MaxDB	goes	back	to	SAP	DB,	SAP	AG's	DBMS.	That	is,
MaxDB	is	a	re-branded	and	enhanced	version	of	SAP	DB.	For	many	years,
MaxDB	has	been	used	for	small,	medium,	and	large	installations	of	the	mySAP
Business	Suite	and	other	demanding	SQL	applications	requiring	an	enterprise-
class	DBMS	with	regard	to	the	number	of	users,	the	transactional	workload,	and
the	size	of	the	database.

SAP	DB	was	meant	to	provide	an	alternative	to	third-party	database	systems
such	as	Oracle,	Microsoft	SQL	Server,	and	DB2	by	IBM.	In	October	2000,	SAP
AG	released	SAP	DB	under	the	GNU	GPL	license	(see	Appendix	J,	GNU
General	Public	License),	thus	making	it	Open	Source	software.

Today,	MaxDB	is	used	in	about	3,500	SAP	customer	installations	worldwide.
Moreover,	the	majority	of	all	DBMS	installations	on	Unix	and	Linux	within
SAP’s	IT	department	rely	on	MaxDB.	MaxDB	is	tuned	toward	heavy-duty
online	transaction	processing	(OLTP)	with	several	thousand	users	and	database
sizes	ranging	from	several	hundred	GB	to	multiple	TB.

In	2003,	SAP	and	MySQL	concluded	a	partnership	and	development	cooperation
agreement.	As	a	result,	SAP's	database	system	SAP	DB	has	been	delivered	under
the	name	of	MaxDB	by	MySQL	since	the	release	of	version	7.5	(November
2003).

Version	7.5	of	MaxDB	is	a	direct	advancement	of	the	SAP	DB	7.4	code	base.
Therefore,	the	MaxDB	software	version	7.5	can	be	used	as	a	direct	upgrade	of
previous	SAP	DB	versions	starting	7.2.04	and	higher.

The	former	SAP	DB	development	team	at	SAP	AG	is	responsible,	now	as

before,	for	developing	and	supporting	MaxDB.	MySQL	AB	cooperates	closely
with	the	MaxDB	team	at	SAP	around	delivering	improvements	to	the	MaxDB
product,	see	Section	1.5,	“Overview	of	the	MaxDB	Database	Management
System”.	Both	SAP	AG	and	MySQL	AB	handle	the	sale	and	distribution	of
MaxDB.	The	advancement	of	MaxDB	and	the	MySQL	Server	leverages
synergies	that	benefit	both	product	lines.

MaxDB	is	subjected	to	SAP	AG's	complete	quality	assurance	process	before	it	is
shipped	with	SAP	solutions	or	provided	as	a	download	from	the	MySQL	site.

1.5.3.	Features	of	MaxDB

MaxDB	is	a	heavy-duty,	SAP-certified	Open	Source	database	for	OLTP	and
OLAP	usage	which	offers	high	reliability,	availability,	scalability,	and	a	very
comprehensive	feature	set.	It	is	targeted	for	large	mySAP	Business	Suite
environments	and	other	applications	that	require	maximum	enterprise-level
database	functionality	and	complements	the	MySQL	database	server.

MaxDB	operates	as	a	client/server	product.	It	was	developed	to	meet	the	needs
of	installations	in	OLTP	and	Data	Warehouse/OLAP/Decision	Support	scenarios
and	offers	these	benefits:

Easy	configuration	and	administration:	GUI-based	Installation	Manager
and	Database	Manager	as	single	administration	tools	for	DBMS	operations

Around-the-clock	operation,	no	planned	downtimes,	no	permanent
attendance	required:	Automatic	space	management,	no	need	for
reorganizations

Sophisticated	backup	and	restore	capabilities:	Online	and	incremental
backups,	recovery	wizard	to	guide	you	through	the	recovery	scenario

Supports	large	number	of	users,	database	sizes	in	the	terabytes,	and
demanding	workloads:	Proven	reliability,	performance,	and	scalability

High	availability:	Cluster	support,	standby	configuration,	hot	standby
configuration

1.5.4.	Licensing	and	Support

MaxDB	can	be	used	under	the	same	licenses	available	for	the	other	products
distributed	by	MySQL	AB.	Thus,	MaxDB	is	available	under	the	GNU	General
Public	License,	and	a	commercial	license.	For	more	information	on	licensing,
see	http://www.mysql.com/company/legal/licensing/.

MySQL	AB	offers	MaxDB	technical	support	to	non-SAP	customers.	MaxDB
support	is	available	on	various	levels	(Basic,	Silver,	and	Gold),	which	expand
from	unlimited	email/web-support	to	24×7	phone	support	for	business	critical
systems.

MySQL	AB	also	offers	Licenses	and	Support	for	MaxDB	when	used	with	SAP
Applications,	like	SAP	NetWeaver	and	mySAP	Business	Suite.	For	more
information	on	licenses	and	support	for	your	needs,	please	contact	MySQL	AB.
(See	http://www.mysql.com/company/contact/.)

Consulting	and	training	services	are	available.	MySQL	gives	classes	on	MaxDB
at	regular	intervals.	See	http://www.mysql.com/training/	for	a	list	of	classes.

1.5.5.	Feature	Differences	Between	MaxDB	and	MySQL

MaxDB	is	MySQL	AB's	SAP-certified	database.	The	MaxDB	database	server
complements	the	MySQL	AB	product	portfolio.	Some	MaxDB	features	are	not
available	on	the	MySQL	database	management	server	and	vice	versa.

The	following	list	summarizes	the	main	differences	between	MaxDB	and
MySQL;	it	is	not	complete.

MaxDB	runs	as	a	client/server	system.	MySQL	can	run	as	a	client/server
system	or	as	an	embedded	system.

MaxDB	might	not	run	on	all	platforms	supported	by	MySQL.

MaxDB	uses	a	proprietary	network	protocol	for	client/server
communication.	MySQL	uses	either	TCP/IP	(with	or	without	SSL
encryption),	sockets	(under	Unix-like	systems),	or	named	pipes	or	shared
memory	(under	Windows	NT-family	systems).

MaxDB	supports	stored	procedures	and	functions.	MySQL	5.0	and	up	also
supports	stored	procedures	and	functions.	MaxDB	supports	programming
of	triggers	through	an	SQL	extension.	MySQL	5.0	supports	triggers.

http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/contact/
http://www.mysql.com/training/

MaxDB	contains	a	debugger	for	stored	procedure	languages,	can	cascade
nested	triggers,	and	supports	multiple	triggers	per	action	and	row.

MaxDB	is	distributed	with	user	interfaces	that	are	text-based,	graphical,	or
Web-based.	MySQL	is	distributed	with	text-based	user	interfaces	only;
graphical	user	interfaces	such	as	MySQL	Query	Browser	or	MySQL
Administrator	are	shipped	separately	from	the	main	distributions.	Web-
based	user	interfaces	for	MySQL	are	offered	by	third	parties.

MaxDB	supports	a	number	of	programming	interfaces	that	also	are
supported	by	MySQL.	For	developing	with	MaxDB,	the	MaxDB	ODBC
Driver,	SQL	Database	Connectivity	(SQLDBC),	JDBC	Driver,	Perl	and
Python	modules	and	a	MaxDB	PHP	extension,	which	provides	access	to
MySQL	MaxDB	databases	using	PHP,	are	available.	Third	Party
Programming	Interfaces:	Support	for	OLE	DB,	ADO,	DAO,	RDO	and
.NET	through	ODBC.	MaxDB	supports	embedded	SQL	with	C/C++.

MaxDB	includes	administrative	features	that	MySQL	does	not	have:	job
scheduling	by	time	(included	in	MySQL	as	of	5.1),	event,	and	alert,	and
sending	messages	to	a	database	administrator	on	alert	thresholds.	(MySQL
has	scheduling	support	starting	with	version	5.1.6.)

1.5.6.	Interoperability	Features	Between	MaxDB	and	MySQL

MaxDB	and	MySQL	are	independent	database	management	servers.	The
interoperation	of	the	systems	is	possible	in	a	way	that	the	systems	can	exchange
their	data.	To	exchange	data	between	MaxDB	and	MySQL,	you	can	use	the
import	and	export	tools	of	the	systems	or	the	MaxDB	Synchronization	Manager.
The	import	and	export	tools	can	be	used	to	transfer	data	in	an	infrequent,	manual
fashion.	The	MaxDB	Synchronization	Manager	offers	faster,	automatic	data
transfer	capabilities.

The	MaxDB	Loader	can	be	used	to	export	data	and	object	definitions.	The
Loader	can	export	data	using	MaxDB	internal,	binary	formats	and	text	formats
(CSV).	Data	exported	from	MaxDB	in	text	formats	can	be	imported	into	MySQL
using	the	mysqlimport	client	program.	To	export	MySQL	data,	you	can	use
either	mysqldump	to	create	INSERT	statements	or	SELECT	...	INTO	OUTFILE	to
create	a	text	file	(CSV).	Use	the	MaxDB	Loader	to	import	the	data	files
generated	by	MySQL.

Object	definitions	can	be	exchanged	between	the	systems	using	MaxDB	Loader
and	the	MySQL	tool	mysqldump.	As	the	SQL	dialects	of	both	systems	differ
slightly	and	MaxDB	has	features	currently	not	supported	by	MySQL	like	SQL
constraints,	we	recommend	to	hand-tune	the	definition	files.	The	mysqldump
tool	offers	an	option	--compatible=maxdb	to	produce	output	that	is	compatible
with	MaxDB	to	make	porting	easier.

The	MaxDB	Synchronization	Manager	is	available	as	part	of	MaxDB	7.6.	The
Synchronization	Manager	supports	creation	of	asynchronous	replication
scenarios	between	several	MaxDB	instances.	However,	interoperability	features
also	are	planned,	so	that	the	Synchronization	Manager	supports	replication	to
and	from	a	MySQL	server.

1.5.7.	MaxDB-Related	Links

The	main	page	for	MaxDB	information	is
http://www.mysql.com/products/maxdb,	which	provides	details	about	the
features	of	the	MaxDB	database	management	systems	and	has	pointers	to
available	documentation.

The	MySQL	Reference	Manual	does	not	contain	any	MaxDB	documentation
other	than	the	introduction	given	in	this	section.	MaxDB	has	its	own
documentation,	which	is	called	the	MaxDB	library	and	is	available	at
http://dev.mysql.com/doc/maxdb/index.html.

MySQL	AB	runs	a	community	mailing	list	on	MaxDB;	see
http://lists.mysql.com/maxdb.	The	list	shows	a	vivid	community	discussion.
Many	of	the	core	developers	contribute	to	it.	Product	announcements	are	sent	to
the	list.

A	Web	forum	on	MaxDB	is	available	at	http://forums.mysql.com/.	The	forum
focuses	on	MaxDB	questions	not	related	to	SAP	applications.

http://www.mysql.com/products/maxdb
http://dev.mysql.com/doc/maxdb/index.html
http://lists.mysql.com/maxdb
http://forums.mysql.com/

1.6.	MySQL	Development	Roadmap

This	section	provides	a	snapshot	of	the	MySQL	development	roadmap,	including
major	features	implemented	in	or	planned	for	various	MySQL	releases.	The
following	sections	provide	information	for	each	release	series.

The	current	production	release	series	is	MySQL	5.0,	which	was	declared	stable
for	production	use	as	of	MySQL	5.0.15,	released	in	October	2005.	The	previous
production	release	series	was	MySQL	4.1,	which	was	declared	stable	for
production	use	as	of	MySQL	4.1.7,	released	in	October	2004.	“Production
status”	means	that	future	5.0	and	4.1	development	is	limited	only	to	bugfixes.
For	the	older	MySQL	4.0	and	3.23	series,	only	critical	bugfixes	are	made.

Active	MySQL	development	is	currently	taking	place	in	the	MySQL	5.0	and	5.1
release	series,	and	new	features	are	being	added	only	to	the	latter.

Before	upgrading	from	one	release	series	to	the	next,	please	see	the	notes	in
Section	2.11,	“Upgrading	MySQL”.

The	most	requested	features	and	the	versions	in	which	they	were	implemented	or
are	scheduled	for	implementation	are	summarized	in	the	following	table:

Feature MySQL	Series
Foreign	keys 3.23	(for	the	InnoDB	storage	engine)
Unions 4.0
Subqueries 4.1
R-trees 4.1	(for	the	MyISAM	storage	engine)
Stored	procedures 5.0
Views 5.0
Cursors 5.0
XA	transactions 5.0
Foreign	keys 5.2	(implemented	in	3.23	for	InnoDB)
Triggers 5.0	and	5.1
Partitioning 5.1

Pluggable	Storage	Engine	API 5.1
Row-Based	Replication 5.1

1.6.1.	What's	New	in	MySQL	5.0

The	following	features	are	implemented	in	MySQL	5.0.

BIT	Data	Type:	Can	be	used	to	store	numbers	in	binary	notation.	See
Section	11.1.1,	“Overview	of	Numeric	Types”.

Cursors:	Elementary	support	for	server-side	cursors.	For	information	about
using	cursors	within	stored	routines,	see	Section	17.2.9,	“Cursors”.	For
information	about	using	cursors	from	within	the	C	API,	see
Section	22.2.7.3,	“mysql_stmt_attr_set()”.

Information	Schema:	The	introduction	of	the	INFORMATION_SCHEMA
database	in	MySQL	5.0	provided	a	standards-compliant	means	for
accessing	the	MySQL	Server's	metadata;	that	is,	data	about	the	databases
(schemas)	on	the	server	and	the	objects	which	they	contain.	See	Chapter	20,
The	INFORMATION_SCHEMA	Database.

Instance	Manager:	Can	be	used	to	start	and	stop	the	MySQL	Server,	even
from	a	remote	host.	See	Section	5.5,	“mysqlmanager	—	The	MySQL
Instance	Manager”.

Precision	Math:	MySQL	5.0	introduced	stricter	criteria	for	acceptance	or
rejection	of	data,	and	implemented	a	new	library	for	fixed-point	arithmetic.
These	contributed	to	a	much	higher	degree	of	accuracy	for	mathematical
operations	and	greater	control	over	invalid	values.	See	Chapter	21,
Precision	Math.

Storage	Engines:	Storage	engines	added	in	MySQL	5.0	include	ARCHIVE
and	FEDERATED.	See	Section	14.8,	“The	ARCHIVE	Storage	Engine”,	and
Section	14.7,	“The	FEDERATED	Storage	Engine”.

Stored	Routines:	Support	for	named	stored	procedures	and	stored
functions	was	implemented	in	MySQL	5.0.	See	Chapter	17,	Stored
Procedures	and	Functions.

Strict	Mode	and	Standard	Error	Handling:	MySQL	5.0	added	a	strict
mode	where	by	it	follows	standard	SQL	in	a	number	of	ways	in	which	it	did
not	previously.	Support	for	standard	SQLSTATE	error	messages	was	also
implemented.	See	Section	5.2.5,	“The	Server	SQL	Mode”.

Triggers:	MySQL	5.0	added	limited	support	for	triggers.	See	Chapter	18,
Triggers,	and	Section	1.9.5.4,	“Stored	Routines	and	Triggers”.

VARCHAR	Data	Type:	The	maximum	effective	length	of	a	VARCHAR	column
was	increased	to	65,532	bytes,	and	stripping	of	trailing	whitespace	was
eliminated.	See	Section	11.4,	“String	Types”.

Views:	MySQL	5.0	added	support	for	named,	updatable	views.	See
Chapter	19,	Views,	and	Section	1.9.5.6,	“Views”.

XA	Transactions:	See	Section	13.4.7,	“XA	Transactions”.

Performance	enhancements:	A	number	of	improvements	were	made	in
MySQL	5.0	to	improve	the	speed	of	certain	types	of	queries	and	in	the
handling	of	certain	types.	These	include:

MySQL	5.0	introduces	a	new	“greedy”	optimizer	which	can	greatly
reduce	the	time	required	to	arrive	at	a	query	execution	plan.	This	is
particularly	noticeable	where	several	tables	are	to	be	joined	and	no
good	join	keys	can	otherwise	be	found.	Without	the	greedy	optimizer,
the	complexity	of	the	search	for	an	execution	plan	is	calculated	as	N!,
where	N	is	the	number	of	tables	to	be	joined.	The	greedy	optimizer
reduces	this	to	N!/(D-1)!,	where	D	is	the	depth	of	the	search.	Although
the	greedy	optimizer	does	not	guarantee	the	best	possible	of	all
execution	plans	(this	is	currently	being	worked	on),	it	can	reduce	the
time	spent	arriving	at	an	execution	plan	for	a	join	involving	a	great
many	tables	—	30,	40,	or	more	—	by	a	factor	of	as	much	as	1,000.
This	should	eliminate	most	if	not	all	situations	where	users	thought
that	the	optimizer	had	hung	when	trying	to	perform	joins	across	many
tables.

Use	of	the	Index	Merge	method	to	obtain	better	optimization	of	AND
and	OR	relations	over	different	keys.	(Previously,	these	were	optimized
only	where	both	relations	in	the	WHERE	clause	involved	the	same	key.)
This	also	applies	to	other	one-to-one	comparison	operators	(>,	<,	and

so	on),	including	=	and	the	IN	operator.	This	means	that	MySQL	can
use	multiple	indexes	in	retrieving	results	for	conditions	such	as	WHERE
key1	>	4	OR	key2	<	7	and	even	combinations	of	conditions	such	as
WHERE	(key1	>	4	OR	key2	<	7)	AND	(key3	>=	10	OR	key4	=	1).
See	Section	7.2.6,	“Index	Merge	Optimization”.

A	new	equality	detector	finds	and	optimizes	“hidden”	equalities	in
joins.	For	example,	a	WHERE	clause	such	as

t1.c1=t2.c2	AND	t2.c2=t3.c3	AND	t1.c1	<	5

implies	these	other	conditions

t1.c1=t3.c3	AND	t2.c2	<	5	AND	t3.c3	<	5

These	optimizations	can	be	applied	with	any	combination	of	AND	and
OR	operators.	See	Section	7.2.10,	“Nested	Join	Optimization”,	and
Section	7.2.11,	“Outer	Join	Simplification”.

Optimization	of	NOT	IN	and	NOT	BETWEEN	relations,	reducing	or
eliminating	table	scans	for	queries	making	use	of	them	by	mean	of
range	analysis.	The	performance	of	MySQL	with	regard	to	these
relations	now	matches	its	performance	with	regard	to	IN	and	BETWEEN.

The	VARCHAR	data	type	as	implemented	in	MySQL	5.0	is	more	efficient
than	in	previous	versions,	due	to	the	elimination	of	the	old	(and
nonstandard)	removal	of	trailing	spaces	during	retrieval.

The	addition	of	a	true	BIT	column	type;	this	type	is	much	more
efficient	for	storage	and	retrieval	of	Boolean	values	than	the
workarounds	required	in	MySQL	in	versions	previous	to	5.0.

Performance	Improvements	in	the	InnoDB	Storage	Engine:

New	compact	storage	format	which	can	save	up	to	20%	of	the
disk	space	required	in	previous	MySQL/InnoDB	versions.

Faster	recovery	from	a	failed	or	aborted	ALTER	TABLE.

Faster	implementation	of	TRUNCATE.

(See	Section	14.2,	“The	InnoDB	Storage	Engine”.)

Performance	Improvements	in	the	NDBCluster	Storage	Engine:

Faster	handling	of	queries	that	use	IN	and	BETWEEN.

Condition	pushdown:	In	cases	involving	the	comparison	of	an
unindexed	column	with	a	constant,	this	condition	is	“pushed
down”	to	the	cluster	where	it	is	evaluated	in	all	partitions
simultaneously,	eliminating	the	need	to	send	non-matching
records	over	the	network.	This	can	make	such	queries	10	to	100
times	faster	than	in	MySQL	4.1	Cluster.

See	Section	7.2.1,	“Optimizing	Queries	with	EXPLAIN”,	for	more
information.

(See	Chapter	15,	MySQL	Cluster.)

For	those	wishing	to	take	a	look	at	the	bleeding	edge	of	MySQL	development,
we	make	our	BitKeeper	repository	for	MySQL	publicly	available.	See
Section	2.9.3,	“Installing	from	the	Development	Source	Tree”.

1.7.	MySQL	Information	Sources

This	section	lists	sources	of	additional	information	that	you	may	find	helpful,
such	as	the	MySQL	mailing	lists	and	user	forums,	and	Internet	Relay	Chat.

1.7.1.	MySQL	Mailing	Lists

This	section	introduces	the	MySQL	mailing	lists	and	provides	guidelines	as	to
how	the	lists	should	be	used.	When	you	subscribe	to	a	mailing	list,	you	receive
all	postings	to	the	list	as	email	messages.	You	can	also	send	your	own	questions
and	answers	to	the	list.

To	subscribe	to	or	unsubscribe	from	any	of	the	mailing	lists	described	in	this
section,	visit	http://lists.mysql.com/.	For	most	of	them,	you	can	select	the	regular
version	of	the	list	where	you	get	individual	messages,	or	a	digest	version	where
you	get	one	large	message	per	day.

Please	do	not	send	messages	about	subscribing	or	unsubscribing	to	any	of	the
mailing	lists,	because	such	messages	are	distributed	automatically	to	thousands
of	other	users.

Your	local	site	may	have	many	subscribers	to	a	MySQL	mailing	list.	If	so,	the
site	may	have	a	local	mailing	list,	so	that	messages	sent	from	lists.mysql.com
to	your	site	are	propagated	to	the	local	list.	In	such	cases,	please	contact	your
system	administrator	to	be	added	to	or	dropped	from	the	local	MySQL	list.

If	you	wish	to	have	traffic	for	a	mailing	list	go	to	a	separate	mailbox	in	your	mail
program,	set	up	a	filter	based	on	the	message	headers.	You	can	use	either	the
List-ID:	or	Delivered-To:	headers	to	identify	list	messages.

The	MySQL	mailing	lists	are	as	follows:

announce

This	list	is	for	announcements	of	new	versions	of	MySQL	and	related
programs.	This	is	a	low-volume	list	to	which	all	MySQL	users	should
subscribe.

http://lists.mysql.com/

mysql

This	is	the	main	list	for	general	MySQL	discussion.	Please	note	that	some
topics	are	better	discussed	on	the	more-specialized	lists.	If	you	post	to	the
wrong	list,	you	may	not	get	an	answer.

bugs

This	list	is	for	people	who	want	to	stay	informed	about	issues	reported	since
the	last	release	of	MySQL	or	who	want	to	be	actively	involved	in	the
process	of	bug	hunting	and	fixing.	See	Section	1.8,	“How	to	Report	Bugs	or
Problems”.

internals

This	list	is	for	people	who	work	on	the	MySQL	code.	This	is	also	the	forum
for	discussions	on	MySQL	development	and	for	posting	patches.

mysqldoc

This	list	is	for	people	who	work	on	the	MySQL	documentation:	people
from	MySQL	AB,	translators,	and	other	community	members.

benchmarks

This	list	is	for	anyone	interested	in	performance	issues.	Discussions
concentrate	on	database	performance	(not	limited	to	MySQL),	but	also
include	broader	categories	such	as	performance	of	the	kernel,	filesystem,
disk	system,	and	so	on.

packagers

This	list	is	for	discussions	on	packaging	and	distributing	MySQL.	This	is
the	forum	used	by	distribution	maintainers	to	exchange	ideas	on	packaging
MySQL	and	on	ensuring	that	MySQL	looks	and	feels	as	similar	as	possible
on	all	supported	platforms	and	operating	systems.

java

This	list	is	for	discussions	about	the	MySQL	server	and	Java.	It	is	mostly

used	to	discuss	JDBC	drivers	such	as	MySQL	Connector/J.

win32

This	list	is	for	all	topics	concerning	the	MySQL	software	on	Microsoft
operating	systems,	such	as	Windows	9x,	Me,	NT,	2000,	XP,	and	2003.

myodbc

This	list	is	for	all	topics	concerning	connecting	to	the	MySQL	server	with
ODBC.

gui-tools

This	list	is	for	all	topics	concerning	MySQL	graphical	user	interface	tools
such	as	MySQL	Administrator	and	MySQL	Query	Browser.

cluster

This	list	is	for	discussion	of	MySQL	Cluster.

dotnet

This	list	is	for	discussion	of	the	MySQL	server	and	the	.NET	platform.	It	is
mostly	related	to	MySQL	Connector/Net.

plusplus

This	list	is	for	all	topics	concerning	programming	with	the	C++	API	for
MySQL.

perl

This	list	is	for	all	topics	concerning	Perl	support	for	MySQL	with
DBD::mysql.

If	you're	unable	to	get	an	answer	to	your	questions	from	a	MySQL	mailing	list	or
forum,	one	option	is	to	purchase	support	from	MySQL	AB.	This	puts	you	in
direct	contact	with	MySQL	developers.

The	following	table	shows	some	MySQL	mailing	lists	in	languages	other	than

English.	These	lists	are	not	operated	by	MySQL	AB.

<mysql-france-subscribe@yahoogroups.com>

A	French	mailing	list.

<list@tinc.net>

A	Korean	mailing	list.	To	subscribe,	email	subscribe	mysql
your@email.address	to	this	list.

<mysql-de-request@lists.4t2.com>

A	German	mailing	list.	To	subscribe,	email	subscribe	mysql-de
your@email.address	to	this	list.	You	can	find	information	about	this
mailing	list	at	http://www.4t2.com/mysql/.

<mysql-br-request@listas.linkway.com.br>

A	Portuguese	mailing	list.	To	subscribe,	email	subscribe	mysql-br
your@email.address	to	this	list.

<mysql-alta@elistas.net>

A	Spanish	mailing	list.	To	subscribe,	email	subscribe	mysql
your@email.address	to	this	list.

1.7.1.1.	Guidelines	for	Using	the	Mailing	Lists

Please	don't	post	mail	messages	from	your	browser	with	HTML	mode	turned	on.
Many	users	don't	read	mail	with	a	browser.

When	you	answer	a	question	sent	to	a	mailing	list,	if	you	consider	your	answer
to	have	broad	interest,	you	may	want	to	post	it	to	the	list	instead	of	replying
directly	to	the	individual	who	asked.	Try	to	make	your	answer	general	enough
that	people	other	than	the	original	poster	may	benefit	from	it.	When	you	post	to
the	list,	please	make	sure	that	your	answer	is	not	a	duplication	of	a	previous
answer.

Try	to	summarize	the	essential	part	of	the	question	in	your	reply.	Don't	feel

mailto:mysql-france-subscribe@yahoogroups.com
mailto:list@tinc.net
mailto:mysql-de-request@lists.4t2.com
http://www.4t2.com/mysql/
mailto:mysql-br-request@listas.linkway.com.br
mailto:mysql-alta@elistas.net

obliged	to	quote	the	entire	original	message.

When	answers	are	sent	to	you	individually	and	not	to	the	mailing	list,	it	is
considered	good	etiquette	to	summarize	the	answers	and	send	the	summary	to
the	mailing	list	so	that	others	may	have	the	benefit	of	responses	you	received
that	helped	you	solve	your	problem.

1.7.2.	MySQL	Community	Support	at	the	MySQL	Forums

The	forums	at	http://forums.mysql.com	are	an	important	community	resource.
Many	forums	are	available,	grouped	into	these	general	categories:

Migration

MySQL	Usage

MySQL	Connectors

Programming	Languages

Tools

3rd-Party	Applications

Storage	Engines

MySQL	Technology

SQL	Standards

Business

1.7.3.	MySQL	Community	Support	on	Internet	Relay	Chat	(IRC)

In	addition	to	the	various	MySQL	mailing	lists	and	forums,	you	can	find
experienced	community	people	on	Internet	Relay	Chat	(IRC).	These	are	the	best
networks/channels	currently	known	to	us:

freenode	(see	http://www.freenode.net/	for	servers)

http://forums.mysql.com
http://www.freenode.net/

#mysql	is	primarily	for	MySQL	questions,	but	other	database	and	general
SQL	questions	are	welcome.	Questions	about	PHP,	Perl,	or	C	in
combination	with	MySQL	are	also	common.

If	you	are	looking	for	IRC	client	software	to	connect	to	an	IRC	network,	take	a
look	at	xChat	(http://www.xchat.org/).	X-Chat	(GPL	licensed)	is	available	for
Unix	as	well	as	for	Windows	platforms	(a	free	Windows	build	of	X-Chat	is
available	at	http://www.silverex.org/download/).

http://www.xchat.org/
http://www.silverex.org/download/

1.8.	How	to	Report	Bugs	or	Problems

Before	posting	a	bug	report	about	a	problem,	please	try	to	verify	that	it	is	a	bug
and	that	it	has	not	been	reported	already:

Start	by	searching	the	MySQL	online	manual	at	http://dev.mysql.com/doc/.
We	try	to	keep	the	manual	up	to	date	by	updating	it	frequently	with
solutions	to	newly	found	problems.	The	change	history
(http://dev.mysql.com/doc/mysql/en/news.html)	can	be	particularly	useful
since	it	is	quite	possible	that	a	newer	version	contains	a	solution	to	your
problem.

If	you	get	a	parse	error	for	a	SQL	statement,	please	check	your	syntax
closely.	If	you	can't	find	something	wrong	with	it,	it's	extremely	likely	that
your	current	version	of	MySQL	Server	doesn't	support	the	syntax	you	are
using.	If	you	are	using	the	current	version	and	the	manual	doesn't	cover	the
syntax	that	you	are	using,	MySQL	Server	doesn't	support	your	statement.	In
this	case,	your	options	are	to	implement	the	syntax	yourself	or	email
<licensing@mysql.com>	and	ask	for	an	offer	to	implement	it.

If	the	manual	covers	the	syntax	you	are	using,	but	you	have	an	older
version	of	MySQL	Server,	you	should	check	the	MySQL	change	history	to
see	when	the	syntax	was	implemented.	In	this	case,	you	have	the	option	of
upgrading	to	a	newer	version	of	MySQL	Server.

For	solutions	to	some	common	problems,	see	Appendix	A,	Problems	and
Common	Errors.

Search	the	bugs	database	at	http://bugs.mysql.com/	to	see	whether	the	bug
has	been	reported	and	fixed.

Search	the	MySQL	mailing	list	archives	at	http://lists.mysql.com/.	See
Section	1.7.1,	“MySQL	Mailing	Lists”.

You	can	also	use	http://www.mysql.com/search/	to	search	all	the	Web	pages
(including	the	manual)	that	are	located	at	the	MySQL	AB	Web	site.

If	you	can't	find	an	answer	in	the	manual,	the	bugs	database,	or	the	mailing	list

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/mysql/en/news.html
mailto:licensing@mysql.com
http://bugs.mysql.com/
http://lists.mysql.com/
http://www.mysql.com/search/

archives,	check	with	your	local	MySQL	expert.	If	you	still	can't	find	an	answer
to	your	question,	please	use	the	following	guidelines	for	reporting	the	bug.

The	normal	way	to	report	bugs	is	to	visit	http://bugs.mysql.com/,	which	is	the
address	for	our	bugs	database.	This	database	is	public	and	can	be	browsed	and
searched	by	anyone.	If	you	log	in	to	the	system,	you	can	enter	new	reports.	If
you	have	no	Web	access,	you	can	generate	a	bug	report	by	using	the	mysqlbug
script	described	at	the	end	of	this	section.

Bugs	posted	in	the	bugs	database	at	http://bugs.mysql.com/	that	are	corrected	for
a	given	release	are	noted	in	the	change	history.

If	you	have	found	a	sensitive	security	bug	in	MySQL,	you	can	send	email	to
<security@mysql.com>.

To	discuss	problems	with	other	users,	you	can	use	one	of	the	MySQL	mailing
lists.	Section	1.7.1,	“MySQL	Mailing	Lists”.

Writing	a	good	bug	report	takes	patience,	but	doing	it	right	the	first	time	saves
time	both	for	us	and	for	yourself.	A	good	bug	report,	containing	a	full	test	case
for	the	bug,	makes	it	very	likely	that	we	will	fix	the	bug	in	the	next	release.	This
section	helps	you	write	your	report	correctly	so	that	you	don't	waste	your	time
doing	things	that	may	not	help	us	much	or	at	all.	Please	read	this	section
carefully	and	make	sure	that	all	the	information	described	here	is	included	in
your	report.

Preferably,	you	should	test	the	problem	using	the	latest	production	or
development	version	of	MySQL	Server	before	posting.	Anyone	should	be	able
to	repeat	the	bug	by	just	using	mysql	test	<	script_file	on	your	test	case	or
by	running	the	shell	or	Perl	script	that	you	include	in	the	bug	report.	Any	bug
that	we	are	able	to	repeat	has	a	high	chance	of	being	fixed	in	the	next	MySQL
release.

It	is	most	helpful	when	a	good	description	of	the	problem	is	included	in	the	bug
report.	That	is,	give	a	good	example	of	everything	you	did	that	led	to	the
problem	and	describe,	in	exact	detail,	the	problem	itself.	The	best	reports	are
those	that	include	a	full	example	showing	how	to	reproduce	the	bug	or	problem.
See	Section	E.1.6,	“Making	a	Test	Case	If	You	Experience	Table	Corruption”.

Remember	that	it	is	possible	for	us	to	respond	to	a	report	containing	too	much

http://bugs.mysql.com/
http://bugs.mysql.com/
mailto:security@mysql.com

information,	but	not	to	one	containing	too	little.	People	often	omit	facts	because
they	think	they	know	the	cause	of	a	problem	and	assume	that	some	details	don't
matter.	A	good	principle	to	follow	is	that	if	you	are	in	doubt	about	stating
something,	state	it.	It	is	faster	and	less	troublesome	to	write	a	couple	more	lines
in	your	report	than	to	wait	longer	for	the	answer	if	we	must	ask	you	to	provide
information	that	was	missing	from	the	initial	report.

The	most	common	errors	made	in	bug	reports	are	(a)	not	including	the	version
number	of	the	MySQL	distribution	that	you	use,	and	(b)	not	fully	describing	the
platform	on	which	the	MySQL	server	is	installed	(including	the	platform	type
and	version	number).	These	are	highly	relevant	pieces	of	information,	and	in	99
cases	out	of	100,	the	bug	report	is	useless	without	them.	Very	often	we	get
questions	like,	“Why	doesn't	this	work	for	me?”	Then	we	find	that	the	feature
requested	wasn't	implemented	in	that	MySQL	version,	or	that	a	bug	described	in
a	report	has	been	fixed	in	newer	MySQL	versions.	Errors	often	are	platform-
dependent.	In	such	cases,	it	is	next	to	impossible	for	us	to	fix	anything	without
knowing	the	operating	system	and	the	version	number	of	the	platform.

If	you	compiled	MySQL	from	source,	remember	also	to	provide	information
about	your	compiler	if	it	is	related	to	the	problem.	Often	people	find	bugs	in
compilers	and	think	the	problem	is	MySQL-related.	Most	compilers	are	under
development	all	the	time	and	become	better	version	by	version.	To	determine
whether	your	problem	depends	on	your	compiler,	we	need	to	know	what
compiler	you	used.	Note	that	every	compiling	problem	should	be	regarded	as	a
bug	and	reported	accordingly.

If	a	program	produces	an	error	message,	it	is	very	important	to	include	the
message	in	your	report.	If	we	try	to	search	for	something	from	the	archives,	it	is
better	that	the	error	message	reported	exactly	matches	the	one	that	the	program
produces.	(Even	the	lettercase	should	be	observed.)	It	is	best	to	copy	and	paste
the	entire	error	message	into	your	report.	You	should	never	try	to	reproduce	the
message	from	memory.

If	you	have	a	problem	with	Connector/ODBC	(MyODBC),	please	try	to	generate
a	trace	file	and	send	it	with	your	report.	See	the	MyODBC	section	of	Chapter	23,
Connectors.

If	your	report	includes	long	query	output	lines	from	test	cases	that	you	run	with
the	mysql	command-line	tool,	you	can	make	the	output	more	readable	by	using

the	--vertical	option	or	the	\G	statement	terminator.	The	EXPLAIN	SELECT
example	later	in	this	section	demonstrates	the	use	of	\G.

Please	include	the	following	information	in	your	report:

The	version	number	of	the	MySQL	distribution	you	are	using	(for	example,
MySQL	5.0.19).	You	can	find	out	which	version	you	are	running	by
executing	mysqladmin	version.	The	mysqladmin	program	can	be	found	in
the	bin	directory	under	your	MySQL	installation	directory.

The	manufacturer	and	model	of	the	machine	on	which	you	experience	the
problem.

The	operating	system	name	and	version.	If	you	work	with	Windows,	you
can	usually	get	the	name	and	version	number	by	double-clicking	your	My
Computer	icon	and	pulling	down	the	“Help/About	Windows”	menu.	For
most	Unix-like	operating	systems,	you	can	get	this	information	by
executing	the	command	uname	-a.

Sometimes	the	amount	of	memory	(real	and	virtual)	is	relevant.	If	in	doubt,
include	these	values.

If	you	are	using	a	source	distribution	of	the	MySQL	software,	include	the
name	and	version	number	of	the	compiler	that	you	used.	If	you	have	a
binary	distribution,	include	the	distribution	name.

If	the	problem	occurs	during	compilation,	include	the	exact	error	messages
and	also	a	few	lines	of	context	around	the	offending	code	in	the	file	where
the	error	occurs.

If	mysqld	died,	you	should	also	report	the	statement	that	crashed	mysqld.
You	can	usually	get	this	information	by	running	mysqld	with	query	logging
enabled,	and	then	looking	in	the	log	after	mysqld	crashes.	See
Section	E.1.5,	“Using	Server	Logs	to	Find	Causes	of	Errors	in	mysqld”.

If	a	database	table	is	related	to	the	problem,	include	the	output	from	the
SHOW	CREATE	TABLE	db_name.tbl_name	statement	in	the	bug	report.	This	is
a	very	easy	way	to	get	the	definition	of	any	table	in	a	database.	The
information	helps	us	create	a	situation	matching	the	one	that	you	have
experienced.

For	performance-related	bugs	or	problems	with	SELECT	statements,	you
should	always	include	the	output	of	EXPLAIN	SELECT	...,	and	at	least	the
number	of	rows	that	the	SELECT	statement	produces.	You	should	also
include	the	output	from	SHOW	CREATE	TABLE	tbl_name	for	each	table	that	is
involved.	The	more	information	you	provide	about	your	situation,	the	more
likely	it	is	that	someone	can	help	you.

The	following	is	an	example	of	a	very	good	bug	report.	The	statements	are
run	using	the	mysql	command-line	tool.	Note	the	use	of	the	\G	statement
terminator	for	statements	that	would	otherwise	provide	very	long	output
lines	that	are	difficult	to	read.

mysql>	SHOW	VARIABLES;

mysql>	SHOW	COLUMNS	FROM	...\G

							<output	from	SHOW	COLUMNS>

mysql>	EXPLAIN	SELECT	...\G

							<output	from	EXPLAIN>

mysql>	FLUSH	STATUS;

mysql>	SELECT	...;

							<A	short	version	of	the	output	from	SELECT,

							including	the	time	taken	to	run	the	query>

mysql>	SHOW	STATUS;

							<output	from	SHOW	STATUS>

If	a	bug	or	problem	occurs	while	running	mysqld,	try	to	provide	an	input
script	that	reproduces	the	anomaly.	This	script	should	include	any	necessary
source	files.	The	more	closely	the	script	can	reproduce	your	situation,	the
better.	If	you	can	make	a	reproducible	test	case,	you	should	upload	it	to	be
attached	to	the	bug	report.

If	you	can't	provide	a	script,	you	should	at	least	include	the	output	from
mysqladmin	variables	extended-status	processlist	in	your	report	to
provide	some	information	on	how	your	system	is	performing.

If	you	can't	produce	a	test	case	with	only	a	few	rows,	or	if	the	test	table	is
too	big	to	be	included	in	the	bug	report	(more	than	10	rows),	you	should
dump	your	tables	using	mysqldump	and	create	a	README	file	that	describes
your	problem.	Create	a	compressed	archive	of	your	files	using	tar	and	gzip
or	zip,	and	use	FTP	to	transfer	the	archive	to
ftp://ftp.mysql.com/pub/mysql/upload/.	Then	enter	the	problem	into	our
bugs	database	at	http://bugs.mysql.com/.

ftp://ftp.mysql.com/pub/mysql/upload/
http://bugs.mysql.com/

If	you	believe	that	the	MySQL	server	produces	a	strange	result	from	a
statement,	include	not	only	the	result,	but	also	your	opinion	of	what	the
result	should	be,	and	an	explanation	describing	the	basis	for	your	opinion.

When	you	provide	an	example	of	the	problem,	it's	better	to	use	the	table
names,	variable	names,	and	so	forth	that	exist	in	your	actual	situation	than
to	come	up	with	new	names.	The	problem	could	be	related	to	the	name	of	a
table	or	variable.	These	cases	are	rare,	perhaps,	but	it	is	better	to	be	safe
than	sorry.	After	all,	it	should	be	easier	for	you	to	provide	an	example	that
uses	your	actual	situation,	and	it	is	by	all	means	better	for	us.	If	you	have
data	that	you	don't	want	to	be	visible	to	others	in	the	bug	report,	you	can
use	FTP	to	transfer	it	to	ftp://ftp.mysql.com/pub/mysql/upload/.	If	the
information	is	really	top	secret	and	you	don't	want	to	show	it	even	to	us,	go
ahead	and	provide	an	example	using	other	names,	but	please	regard	this	as
the	last	choice.

Include	all	the	options	given	to	the	relevant	programs,	if	possible.	For
example,	indicate	the	options	that	you	use	when	you	start	the	mysqld
server,	as	well	as	the	options	that	you	use	to	run	any	MySQL	client
programs.	The	options	to	programs	such	as	mysqld	and	mysql,	and	to	the
configure	script,	are	often	key	to	resolving	problems	and	are	very	relevant.
It	is	never	a	bad	idea	to	include	them.	If	your	problem	involves	a	program
written	in	a	language	such	as	Perl	or	PHP,	please	include	the	language
processor's	version	number,	as	well	as	the	version	for	any	modules	that	the
program	uses.	For	example,	if	you	have	a	Perl	script	that	uses	the	DBI	and
DBD::mysql	modules,	include	the	version	numbers	for	Perl,	DBI,	and
DBD::mysql.

If	your	question	is	related	to	the	privilege	system,	please	include	the	output
of	mysqlaccess,	the	output	of	mysqladmin	reload,	and	all	the	error
messages	you	get	when	trying	to	connect.	When	you	test	your	privileges,
you	should	first	run	mysqlaccess.	After	this,	execute	mysqladmin	reload
version	and	try	to	connect	with	the	program	that	gives	you	trouble.
mysqlaccess	can	be	found	in	the	bin	directory	under	your	MySQL
installation	directory.

If	you	have	a	patch	for	a	bug,	do	include	it.	But	don't	assume	that	the	patch
is	all	we	need,	or	that	we	can	use	it,	if	you	don't	provide	some	necessary
information	such	as	test	cases	showing	the	bug	that	your	patch	fixes.	We

ftp://ftp.mysql.com/pub/mysql/upload/

might	find	problems	with	your	patch	or	we	might	not	understand	it	at	all.	If
so,	we	can't	use	it.

If	we	can't	verify	the	exact	purpose	of	the	patch,	we	won't	use	it.	Test	cases
help	us	here.	Show	that	the	patch	handles	all	the	situations	that	may	occur.
If	we	find	a	borderline	case	(even	a	rare	one)	where	the	patch	won't	work,	it
may	be	useless.

Guesses	about	what	the	bug	is,	why	it	occurs,	or	what	it	depends	on	are
usually	wrong.	Even	the	MySQL	team	can't	guess	such	things	without	first
using	a	debugger	to	determine	the	real	cause	of	a	bug.

Indicate	in	your	bug	report	that	you	have	checked	the	reference	manual	and
mail	archive	so	that	others	know	you	have	tried	to	solve	the	problem
yourself.

If	the	problem	is	that	your	data	appears	corrupt	or	you	get	errors	when	you
access	a	particular	table,	you	should	first	check	your	tables	and	then	try	to
repair	them	with	CHECK	TABLE	and	REPAIR	TABLE	or	with	myisamchk.	See
Chapter	5,	Database	Administration.

If	you	are	running	Windows,	please	verify	the	value	of
lower_case_table_names	using	the	SHOW	VARIABLES	LIKE
'lower_case_table_names'	command.	This	variable	affects	how	the	server
handles	lettercase	of	database	and	table	names.	Its	effect	for	a	given	value
should	be	as	described	in	Section	9.2.2,	“Identifier	Case	Sensitivity”.

If	you	often	get	corrupted	tables,	you	should	try	to	find	out	when	and	why
this	happens.	In	this	case,	the	error	log	in	the	MySQL	data	directory	may
contain	some	information	about	what	happened.	(This	is	the	file	with	the
.err	suffix	in	the	name.)	See	Section	5.12.1,	“The	Error	Log”.	Please
include	any	relevant	information	from	this	file	in	your	bug	report.	Normally
mysqld	should	never	crash	a	table	if	nothing	killed	it	in	the	middle	of	an
update.	If	you	can	find	the	cause	of	mysqld	dying,	it's	much	easier	for	us	to
provide	you	with	a	fix	for	the	problem.	See	Section	A.1,	“How	to
Determine	What	Is	Causing	a	Problem”.

If	possible,	download	and	install	the	most	recent	version	of	MySQL	Server
and	check	whether	it	solves	your	problem.	All	versions	of	the	MySQL
software	are	thoroughly	tested	and	should	work	without	problems.	We

believe	in	making	everything	as	backward-compatible	as	possible,	and	you
should	be	able	to	switch	MySQL	versions	without	difficulty.	See
Section	2.1.2,	“Choosing	Which	MySQL	Distribution	to	Install”.

If	you	have	no	Web	access	and	cannot	report	a	bug	by	visiting
http://bugs.mysql.com/,	you	can	use	the	mysqlbug	script	to	generate	a	bug
report	(or	a	report	about	any	problem).	mysqlbug	helps	you	generate	a	report	by
determining	much	of	the	following	information	automatically,	but	if	something
important	is	missing,	please	include	it	with	your	message.	mysqlbug	can	be
found	in	the	scripts	directory	(source	distribution)	and	in	the	bin	directory
under	your	MySQL	installation	directory	(binary	distribution).

http://bugs.mysql.com/

1.9.	MySQL	Standards	Compliance

This	section	describes	how	MySQL	relates	to	the	ANSI/ISO	SQL	standards.
MySQL	Server	has	many	extensions	to	the	SQL	standard,	and	here	you	can	find
out	what	they	are	and	how	to	use	them.	You	can	also	find	information	about
functionality	missing	from	MySQL	Server,	and	how	to	work	around	some	of	the
differences.

The	SQL	standard	has	been	evolving	since	1986	and	several	versions	exist.	In
this	manual,	“SQL-92”	refers	to	the	standard	released	in	1992,	“SQL:1999”
refers	to	the	standard	released	in	1999,	and	“SQL:2003”	refers	to	the	current
version	of	the	standard.	We	use	the	phrase	“the	SQL	standard”	or	“standard
SQL”	to	mean	the	current	version	of	the	SQL	Standard	at	any	time.

One	of	our	main	goals	with	the	product	is	to	continue	to	work	toward
compliance	with	the	SQL	standard,	but	without	sacrificing	speed	or	reliability.
We	are	not	afraid	to	add	extensions	to	SQL	or	support	for	non-SQL	features	if
this	greatly	increases	the	usability	of	MySQL	Server	for	a	large	segment	of	our
user	base.	The	HANDLER	interface	is	an	example	of	this	strategy.	See
Section	13.2.3,	“HANDLER	Syntax”.

We	continue	to	support	transactional	and	non-transactional	databases	to	satisfy
both	mission-critical	24/7	usage	and	heavy	Web	or	logging	usage.

MySQL	Server	was	originally	designed	to	work	with	medium-sized	databases
(10-100	million	rows,	or	about	100MB	per	table)	on	small	computer	systems.
Today	MySQL	Server	handles	terabyte-sized	databases,	but	the	code	can	also	be
compiled	in	a	reduced	version	suitable	for	hand-held	and	embedded	devices.	The
compact	design	of	the	MySQL	server	makes	development	in	both	directions
possible	without	any	conflicts	in	the	source	tree.

Currently,	we	are	not	targeting	real-time	support,	although	MySQL	replication
capabilities	offer	significant	functionality.

MySQL	supports	high-availability	database	clustering	using	the	NDBCluster
storage	engine.	See	Chapter	15,	MySQL	Cluster.

XML	support	is	to	be	implemented	in	a	future	version	of	the	database	server.

1.9.1.	What	Standards	MySQL	Follows

Our	aim	is	to	support	the	full	ANSI/ISO	SQL	standard,	but	without	making
concessions	to	speed	and	quality	of	the	code.

ODBC	levels	0-3.51.

1.9.2.	Selecting	SQL	Modes

The	MySQL	server	can	operate	in	different	SQL	modes,	and	can	apply	these
modes	differentially	for	different	clients.	This	capability	enables	each	application
to	tailor	the	server's	operating	mode	to	its	own	requirements.

SQL	modes	control	aspects	of	server	operation	such	as	what	SQL	syntax
MySQL	should	support	and	what	kind	of	data	validation	checks	it	should
perform.	This	makes	it	easier	to	use	MySQL	in	different	environments	and	to	use
MySQL	together	with	other	database	servers.

You	can	set	the	default	SQL	mode	by	starting	mysqld	with	the	--sql-
mode="mode_value"	option.	Beginning	with	MySQL	4.1,	you	can	also	change
the	mode	at	runtime	by	setting	the	sql_mode	system	variable	with	a	SET
[SESSION|GLOBAL]	sql_mode='mode_value'	statement.

For	more	information	on	setting	the	SQL	mode,	see	Section	5.2.5,	“The	Server
SQL	Mode”.

1.9.3.	Running	MySQL	in	ANSI	Mode

You	can	tell	mysqld	to	run	in	ANSI	mode	with	the	--ansi	startup	option.
Running	the	server	in	ANSI	mode	is	the	same	as	starting	it	with	the	following
options:

--transaction-isolation=SERIALIZABLE	--sql-mode=ANSI

As	of	MySQL	4.1.1,	you	can	achieve	the	same	effect	at	runtime	by	executing
these	two	statements:

SET	GLOBAL	TRANSACTION	ISOLATION	LEVEL	SERIALIZABLE;

SET	GLOBAL	sql_mode	=	'ANSI';

You	can	see	that	setting	the	sql_mode	system	variable	to	'ANSI'	enables	all	SQL
mode	options	that	are	relevant	for	ANSI	mode	as	follows:

mysql>	SET	GLOBAL	sql_mode='ANSI';

mysql>	SELECT	@@global.sql_mode;

								->	'REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ANSI'

Note	that	running	the	server	in	ANSI	mode	with	--ansi	is	not	quite	the	same	as
setting	the	SQL	mode	to	'ANSI'.	The	--ansi	option	affects	the	SQL	mode	and
also	sets	the	transaction	isolation	level.	Setting	the	SQL	mode	to	'ANSI'	has	no
effect	on	the	isolation	level.

See	Section	5.2.1,	“mysqld	Command	Options”,	and	Section	1.9.2,	“Selecting
SQL	Modes”.

1.9.4.	MySQL	Extensions	to	Standard	SQL

MySQL	Server	supports	some	extensions	that	you	probably	won't	find	in	other
SQL	DBMSs.	Be	warned	that	if	you	use	them,	your	code	won't	be	portable	to
other	SQL	servers.	In	some	cases,	you	can	write	code	that	includes	MySQL
extensions,	but	is	still	portable,	by	using	comments	of	the	following	form:

/*!	MySQL-specific	code	*/

In	this	case,	MySQL	Server	parses	and	executes	the	code	within	the	comment	as
it	would	any	other	SQL	statement,	but	other	SQL	servers	will	ignore	the
extensions.	For	example,	MySQL	Server	recognizes	the	STRAIGHT_JOIN
keyword	in	the	following	statement,	but	other	servers	will	not:

SELECT	/*!	STRAIGHT_JOIN	*/	col1	FROM	table1,table2	WHERE	...

If	you	add	a	version	number	after	the	‘!’	character,	the	syntax	within	the
comment	is	executed	only	if	the	MySQL	version	is	greater	than	or	equal	to	the
specified	version	number.	The	TEMPORARY	keyword	in	the	following	comment	is
executed	only	by	servers	from	MySQL	3.23.02	or	higher:

CREATE	/*!32302	TEMPORARY	*/	TABLE	t	(a	INT);

The	following	descriptions	list	MySQL	extensions,	organized	by	category.

Organization	of	data	on	disk

MySQL	Server	maps	each	database	to	a	directory	under	the	MySQL	data
directory,	and	maps	tables	within	a	database	to	filenames	in	the	database
directory.	This	has	a	few	implications:

	Database	and	table	names	are	case	sensitive	in	MySQL	Server	on
operating	systems	that	have	case-sensitive	filenames	(such	as	most
Unix	systems).	See	Section	9.2.2,	“Identifier	Case	Sensitivity”.

You	can	use	standard	system	commands	to	back	up,	rename,	move,
delete,	and	copy	tables	that	are	managed	by	the	MyISAM	storage	engine.
For	example,	it	is	possible	to	rename	a	MyISAM	table	by	renaming	the
.MYD,	.MYI,	and	.frm	files	to	which	the	table	corresponds.
(Nevertheless,	it	is	preferable	to	use	RENAME	TABLE	or	ALTER	TABLE
...	RENAME	and	let	the	server	rename	the	files.)

Database	and	table	names	cannot	contain	pathname	separator	characters
(‘/’,	‘\’).

General	language	syntax

By	default,	strings	can	be	enclosed	by	either	‘"’	or	‘'’,	not	just	by	‘'’.
(If	the	ANSI_QUOTES	SQL	mode	is	enabled,	strings	can	be	enclosed
only	by	‘'’	and	the	server	interprets	strings	enclosed	by	‘"’	as
identifiers.)

‘\’	is	the	escape	character	in	strings.

In	SQL	statements,	you	can	access	tables	from	different	databases	with
the	db_name.tbl_name	syntax.	Some	SQL	servers	provide	the	same
functionality	but	call	this	User	space.	MySQL	Server	doesn't	support
tablespaces	such	as	used	in	statements	like	this:	CREATE	TABLE
ralph.my_table	...	IN	my_tablespace.

SQL	statement	syntax

The	ANALYZE	TABLE,	CHECK	TABLE,	OPTIMIZE	TABLE,	and	REPAIR
TABLE	statements.

The	CREATE	DATABASE,	DROP	DATABASE,	and	ALTER	DATABASE
statements.	See	Section	13.1.3,	“CREATE	DATABASE	Syntax”,

Section	13.1.6,	“DROP	DATABASE	Syntax”,	and	Section	13.1.1,	“ALTER
DATABASE	Syntax”.

The	DO	statement.

EXPLAIN	SELECT	to	obtain	a	description	of	how	tables	are	processed	by
the	query	optimizer.

The	FLUSH	and	RESET	statements.

The	SET	statement.	See	Section	13.5.3,	“SET	Syntax”.

The	SHOW	statement.	See	Section	13.5.4,	“SHOW	Syntax”.	As	of	MySQL
5.0,	the	information	produced	by	many	of	the	MySQL-specific	SHOW
statements	can	be	obtained	in	more	standard	fashion	by	using	SELECT
to	query	INFORMATION_SCHEMA.	See	Chapter	20,	The
INFORMATION_SCHEMA	Database.

	Use	of	LOAD	DATA	INFILE.	In	many	cases,	this	syntax	is	compatible
with	Oracle's	LOAD	DATA	INFILE.	See	Section	13.2.5,	“LOAD	DATA
INFILE	Syntax”.

Use	of	RENAME	TABLE.	See	Section	13.1.9,	“RENAME	TABLE	Syntax”.

Use	of	REPLACE	instead	of	DELETE	plus	INSERT.	See	Section	13.2.6,
“REPLACE	Syntax”.

Use	of	CHANGE	col_name,	DROP	col_name,	or	DROP	INDEX,	IGNORE	or
RENAME	in	ALTER	TABLE	statements.	Use	of	multiple	ADD,	ALTER,	DROP,
or	CHANGE	clauses	in	an	ALTER	TABLE	statement.	See	Section	13.1.2,
“ALTER	TABLE	Syntax”.

Use	of	index	names,	indexes	on	a	prefix	of	a	column,	and	use	of	INDEX
or	KEY	in	CREATE	TABLE	statements.	See	Section	13.1.5,	“CREATE
TABLE	Syntax”.

Use	of	TEMPORARY	or	IF	NOT	EXISTS	with	CREATE	TABLE.

Use	of	IF	EXISTS	with	DROP	TABLE	and	DROP	DATABASE.

The	capability	of	dropping	multiple	tables	with	a	single	DROP	TABLE
statement.

The	ORDER	BY	and	LIMIT	clauses	of	the	UPDATE	and	DELETE	statements.

INSERT	INTO	tbl_name	SET	col_name	=	...	syntax.

The	DELAYED	clause	of	the	INSERT	and	REPLACE	statements.

The	LOW_PRIORITY	clause	of	the	INSERT,	REPLACE,	DELETE,	and	UPDATE
statements.

Use	of	INTO	OUTFILE	or	INTO	DUMPFILE	in	SELECT	statements.	See
Section	13.2.7,	“SELECT	Syntax”.

Options	such	as	STRAIGHT_JOIN	or	SQL_SMALL_RESULT	in	SELECT
statements.

You	don't	need	to	name	all	selected	columns	in	the	GROUP	BY	clause.
This	gives	better	performance	for	some	very	specific,	but	quite	normal
queries.	See	Section	12.10,	“Functions	and	Modifiers	for	Use	with
GROUP	BY	Clauses”.

You	can	specify	ASC	and	DESC	with	GROUP	BY,	not	just	with	ORDER	BY.

The	ability	to	set	variables	in	a	statement	with	the	:=	assignment
operator:

mysql>	SELECT	@a:=SUM(total),@b=COUNT(*),@a/@b	AS	avg

				->	FROM	test_table;

mysql>	SELECT	@t1:=(@t2:=1)+@t3:=4,@t1,@t2,@t3;

Data	types

The	MEDIUMINT,	SET,	and	ENUM	data	types,	and	the	various	BLOB	and
TEXT	data	types.

The	AUTO_INCREMENT,	BINARY,	NULL,	UNSIGNED,	and	ZEROFILL	data
type	attributes.

Functions	and	operators

To	make	it	easier	for	users	who	migrate	from	other	SQL	environments,
MySQL	Server	supports	aliases	for	many	functions.	For	example,	all
string	functions	support	both	standard	SQL	syntax	and	ODBC	syntax.

MySQL	Server	understands	the	||	and	&&	operators	to	mean	logical
OR	and	AND,	as	in	the	C	programming	language.	In	MySQL	Server,
||	and	OR	are	synonyms,	as	are	&&	and	AND.	Because	of	this	nice
syntax,	MySQL	Server	doesn't	support	the	standard	SQL	||	operator
for	string	concatenation;	use	CONCAT()	instead.	Because	CONCAT()
takes	any	number	of	arguments,	it's	easy	to	convert	use	of	the	||
operator	to	MySQL	Server.

Use	of	COUNT(DISTINCT	value_list)	where	value_list	has	more
than	one	element.

String	comparisons	are	case-insensitive	by	default,	with	sort	ordering
determined	by	collation	of	the	current	character	set,	which	is	latin1
(cp1252	West	European)	by	default.	If	you	don't	like	this,	you	should
declare	your	columns	with	the	BINARY	attribute	or	use	the	BINARY	cast,
which	causes	comparisons	to	be	done	using	the	underlying	character
code	values	rather	then	a	lexical	ordering.

	The	%	operator	is	a	synonym	for	MOD().	That	is,	N	%	M	is	equivalent	to
MOD(N,M).	%	is	supported	for	C	programmers	and	for	compatibility	with
PostgreSQL.

The	=,	<>,	<=,<,	>=,>,	<<,	>>,	<=>,	AND,	OR,	or	LIKE	operators	may	be
used	in	expressions	in	the	output	column	list	(to	the	left	of	the	FROM)	in
SELECT	statements.	For	example:

mysql>	SELECT	col1=1	AND	col2=2	FROM	my_table;

The	LAST_INSERT_ID()	function	returns	the	most	recent
AUTO_INCREMENT	value.	See	Section	12.9.3,	“Information	Functions”.

LIKE	is	allowed	on	numeric	values.

The	REGEXP	and	NOT	REGEXP	extended	regular	expression	operators.

CONCAT()	or	CHAR()	with	one	argument	or	more	than	two	arguments.

(In	MySQL	Server,	these	functions	can	take	a	variable	number	of
arguments.)

The	BIT_COUNT(),	CASE,	ELT(),	FROM_DAYS(),	FORMAT(),	IF(),
PASSWORD(),	ENCRYPT(),	MD5(),	ENCODE(),	DECODE(),	PERIOD_ADD(),
PERIOD_DIFF(),	TO_DAYS(),	and	WEEKDAY()	functions.

Use	of	TRIM()	to	trim	substrings.	Standard	SQL	supports	removal	of
single	characters	only.

The	GROUP	BY	functions	STD(),	BIT_OR(),	BIT_AND(),	BIT_XOR(),	and
GROUP_CONCAT().	See	Section	12.10,	“Functions	and	Modifiers	for	Use
with	GROUP	BY	Clauses”.

For	a	prioritized	list	indicating	when	new	extensions	are	added	to	MySQL
Server,	you	should	consult	the	online	MySQL	development	roadmap	at
http://dev.mysql.com/doc/mysql/en/roadmap.html.

1.9.5.	MySQL	Differences	from	Standard	SQL

We	try	to	make	MySQL	Server	follow	the	ANSI	SQL	standard	and	the	ODBC
SQL	standard,	but	MySQL	Server	performs	operations	differently	in	some	cases:

For	VARCHAR	columns,	trailing	spaces	are	removed	when	the	value	is	stored.
(This	is	fixed	in	MySQL	5.0.3).	See	Section	A.8,	“Known	Issues	in
MySQL”.

In	some	cases,	CHAR	columns	are	silently	converted	to	VARCHAR	columns
when	you	define	a	table	or	alter	its	structure.	(This	is	fixed	in	MySQL
5.0.3).	See	Section	13.1.5.1,	“Silent	Column	Specification	Changes”.

There	are	several	differences	between	the	MySQL	and	standard	SQL
privilege	systems.	For	example,	in	MySQL,	privileges	for	a	table	are	not
automatically	revoked	when	you	delete	a	table.	You	must	explicitly	issue	a
REVOKE	statement	to	revoke	privileges	for	a	table.	For	more	information,	see
Section	13.5.1.5,	“REVOKE	Syntax”.

The	CAST()	function	does	not	support	cast	to	REAL	or	BIGINT.	See
Section	12.8,	“Cast	Functions	and	Operators”.

http://dev.mysql.com/doc/mysql/en/roadmap.html

Standard	SQL	requires	that	a	HAVING	clause	in	a	SELECT	statement	be	able
to	refer	to	columns	in	the	GROUP	BY	clause.	This	cannot	be	done	before
MySQL	5.0.2.

1.9.5.1.	Subquery	Support

MySQL	4.1	and	up	supports	subqueries	and	derived	tables.	A	“subquery”	is	a
SELECT	statement	nested	within	another	statement.	A	“derived	table”	(an
unnamed	view)	is	a	subquery	in	the	FROM	clause	of	another	statement.	See
Section	13.2.8,	“Subquery	Syntax”.

For	MySQL	versions	older	than	4.1,	most	subqueries	can	be	rewritten	using
joins	or	other	methods.	See	Section	13.2.8.11,	“Rewriting	Subqueries	as	Joins
for	Earlier	MySQL	Versions”,	for	examples	that	show	how	to	do	this.

1.9.5.2.	SELECT	INTO	TABLE

MySQL	Server	doesn't	support	the	SELECT	...	INTO	TABLE	Sybase	SQL
extension.	Instead,	MySQL	Server	supports	the	INSERT	INTO	...	SELECT
standard	SQL	syntax,	which	is	basically	the	same	thing.	See	Section	13.2.4.1,
“INSERT	...	SELECT	Syntax”.	For	example:

INSERT	INTO	tbl_temp2	(fld_id)

				SELECT	tbl_temp1.fld_order_id

				FROM	tbl_temp1	WHERE	tbl_temp1.fld_order_id	>	100;

Alternatively,	you	can	use	SELECT	...	INTO	OUTFILE	or	CREATE	TABLE	...
SELECT.

As	of	MySQL	5.0,	you	can	use	SELECT	...	INTO	with	user-defined	variables.
The	same	syntax	can	also	be	used	inside	stored	routines	using	cursors	and	local
variables.	See	Section	17.2.7.3,	“SELECT	...	INTO	Statement”.

1.9.5.3.	Transactions	and	Atomic	Operations

MySQL	Server	(version	3.23-max	and	all	versions	4.0	and	above)	supports
transactions	with	the	InnoDB	and	BDB	transactional	storage	engines.	InnoDB
provides	full	ACID	compliance.	See	Chapter	14,	Storage	Engines	and	Table
Types.	For	information	about	InnoDB	differences	from	standard	SQL	with	regard

to	treatment	of	transaction	errors,	see	Section	14.2.15,	“InnoDB	Error	Handling”.

The	other	non-transactional	storage	engines	in	MySQL	Server	(such	as	MyISAM)
follow	a	different	paradigm	for	data	integrity	called	“atomic	operations.”	In
transactional	terms,	MyISAM	tables	effectively	always	operate	in	AUTOCOMMIT=1
mode.	Atomic	operations	often	offer	comparable	integrity	with	higher
performance.

Because	MySQL	Server	supports	both	paradigms,	you	can	decide	whether	your
applications	are	best	served	by	the	speed	of	atomic	operations	or	the	use	of
transactional	features.	This	choice	can	be	made	on	a	per-table	basis.

As	noted,	the	trade-off	for	transactional	versus	non-transactional	storage	engines
lies	mostly	in	performance.	Transactional	tables	have	significantly	higher
memory	and	disk	space	requirements,	and	more	CPU	overhead.	On	the	other
hand,	transactional	storage	engines	such	as	InnoDB	also	offer	many	significant
features.	MySQL	Server's	modular	design	allows	the	concurrent	use	of	different
storage	engines	to	suit	different	requirements	and	deliver	optimum	performance
in	all	situations.

But	how	do	you	use	the	features	of	MySQL	Server	to	maintain	rigorous	integrity
even	with	the	non-transactional	MyISAM	tables,	and	how	do	these	features
compare	with	the	transactional	storage	engines?

If	your	applications	are	written	in	a	way	that	is	dependent	on	being	able	to
call	ROLLBACK	rather	than	COMMIT	in	critical	situations,	transactions	are	more
convenient.	Transactions	also	ensure	that	unfinished	updates	or	corrupting
activities	are	not	committed	to	the	database;	the	server	is	given	the
opportunity	to	do	an	automatic	rollback	and	your	database	is	saved.

If	you	use	non-transactional	tables,	MySQL	Server	in	almost	all	cases
allows	you	to	resolve	potential	problems	by	including	simple	checks	before
updates	and	by	running	simple	scripts	that	check	the	databases	for
inconsistencies	and	automatically	repair	or	warn	if	such	an	inconsistency
occurs.	Note	that	just	by	using	the	MySQL	log	or	even	adding	one	extra
log,	you	can	normally	fix	tables	perfectly	with	no	data	integrity	loss.

More	often	than	not,	critical	transactional	updates	can	be	rewritten	to	be
atomic.	Generally	speaking,	all	integrity	problems	that	transactions	solve
can	be	done	with	LOCK	TABLES	or	atomic	updates,	ensuring	that	there	are	no

automatic	aborts	from	the	server,	which	is	a	common	problem	with
transactional	database	systems.

To	be	safe	with	MySQL	Server,	regardless	of	whether	you	use	transactional
tables,	you	only	need	to	have	backups	and	have	binary	logging	turned	on.
When	that	is	true,	you	can	recover	from	any	situation	that	you	could	with
any	other	transactional	database	system.	It	is	always	good	to	have	backups,
regardless	of	which	database	system	you	use.

The	transactional	paradigm	has	its	benefits	and	its	drawbacks.	Many	users	and
application	developers	depend	on	the	ease	with	which	they	can	code	around
problems	where	an	abort	appears	to	be	necessary,	or	is	necessary.	However,	even
if	you	are	new	to	the	atomic	operations	paradigm,	or	more	familiar	with
transactions,	do	consider	the	speed	benefit	that	non-transactional	tables	can	offer
on	the	order	of	three	to	five	times	the	speed	of	the	fastest	and	most	optimally
tuned	transactional	tables.

In	situations	where	integrity	is	of	highest	importance,	MySQL	Server	offers
transaction-level	reliability	and	integrity	even	for	non-transactional	tables.	If	you
lock	tables	with	LOCK	TABLES,	all	updates	stall	until	integrity	checks	are	made.	If
you	obtain	a	READ	LOCAL	lock	(as	opposed	to	a	write	lock)	for	a	table	that	allows
concurrent	inserts	at	the	end	of	the	table,	reads	are	allowed,	as	are	inserts	by
other	clients.	The	newly	inserted	records	are	not	be	seen	by	the	client	that	has	the
read	lock	until	it	releases	the	lock.	With	INSERT	DELAYED,	you	can	write	inserts
that	go	into	a	local	queue	until	the	locks	are	released,	without	having	the	client
wait	for	the	insert	to	complete.	See	Section	7.3.3,	“Concurrent	Inserts”,	and
Section	13.2.4.2,	“INSERT	DELAYED	Syntax”.

“Atomic,”	in	the	sense	that	we	mean	it,	is	nothing	magical.	It	only	means	that
you	can	be	sure	that	while	each	specific	update	is	running,	no	other	user	can
interfere	with	it,	and	there	can	never	be	an	automatic	rollback	(which	can	happen
with	transactional	tables	if	you	are	not	very	careful).	MySQL	Server	also
guarantees	that	there	are	no	dirty	reads.

Following	are	some	techniques	for	working	with	non-transactional	tables:

Loops	that	need	transactions	normally	can	be	coded	with	the	help	of	LOCK
TABLES,	and	you	don't	need	cursors	to	update	records	on	the	fly.

To	avoid	using	ROLLBACK,	you	can	employ	the	following	strategy:

1.	 Use	LOCK	TABLES	to	lock	all	the	tables	you	want	to	access.

2.	 Test	the	conditions	that	must	be	true	before	performing	the	update.

3.	 Update	if	the	conditions	are	satisfied.

4.	 Use	UNLOCK	TABLES	to	release	your	locks.

This	is	usually	a	much	faster	method	than	using	transactions	with	possible
rollbacks,	although	not	always.	The	only	situation	this	solution	doesn't
handle	is	when	someone	kills	the	threads	in	the	middle	of	an	update.	In	that
case,	all	locks	are	released	but	some	of	the	updates	may	not	have	been
executed.

You	can	also	use	functions	to	update	records	in	a	single	operation.	You	can
get	a	very	efficient	application	by	using	the	following	techniques:

Modify	columns	relative	to	their	current	value.

Update	only	those	columns	that	actually	have	changed.

For	example,	when	we	are	updating	customer	information,	we	update	only
the	customer	data	that	has	changed	and	test	only	that	none	of	the	changed
data,	or	data	that	depends	on	the	changed	data,	has	changed	compared	to
the	original	row.	The	test	for	changed	data	is	done	with	the	WHERE	clause	in
the	UPDATE	statement.	If	the	record	wasn't	updated,	we	give	the	client	a
message:	“Some	of	the	data	you	have	changed	has	been	changed	by	another
user.”	Then	we	show	the	old	row	versus	the	new	row	in	a	window	so	that
the	user	can	decide	which	version	of	the	customer	record	to	use.

This	gives	us	something	that	is	similar	to	column	locking	but	is	actually
even	better	because	we	only	update	some	of	the	columns,	using	values	that
are	relative	to	their	current	values.	This	means	that	typical	UPDATE
statements	look	something	like	these:

UPDATE	tablename	SET	pay_back=pay_back+125;

UPDATE	customer

		SET

				customer_date='current_date',

				address='new	address',

				phone='new	phone',

				money_owed_to_us=money_owed_to_us-125

		WHERE

				customer_id=id	AND	address='old	address'	AND	phone='old	phone';

This	is	very	efficient	and	works	even	if	another	client	has	changed	the
values	in	the	pay_back	or	money_owed_to_us	columns.

	In	many	cases,	users	have	wanted	LOCK	TABLES	or	ROLLBACK	for	the
purpose	of	managing	unique	identifiers.	This	can	be	handled	much	more
efficiently	without	locking	or	rolling	back	by	using	an	AUTO_INCREMENT
column	and	either	the	LAST_INSERT_ID()	SQL	function	or	the
mysql_insert_id()	C	API	function.	See	Section	12.9.3,	“Information
Functions”,	and	Section	22.2.3.36,	“mysql_insert_id()”.

You	can	generally	code	around	the	need	for	row-level	locking.	Some
situations	really	do	need	it,	and	InnoDB	tables	support	row-level	locking.
Otherwise,	with	MyISAM	tables,	you	can	use	a	flag	column	in	the	table	and
do	something	like	the	following:

UPDATE	tbl_name	SET	row_flag=1	WHERE	id=ID;

MySQL	returns	1	for	the	number	of	affected	rows	if	the	row	was	found	and
row_flag	wasn't	1	in	the	original	row.	You	can	think	of	this	as	though
MySQL	Server	changed	the	preceding	statement	to:

UPDATE	tbl_name	SET	row_flag=1	WHERE	id=ID	AND	row_flag	<>	1;

1.9.5.4.	Stored	Routines	and	Triggers

Stored	procedures	and	functions	are	implemented	beginning	with	MySQL	5.0.
See	Chapter	17,	Stored	Procedures	and	Functions.

Basic	trigger	functionality	is	implemented	beginning	with	MySQL	5.0.2,	with
further	development	planned	for	MySQL	5.1.	See	Chapter	18,	Triggers.

1.9.5.5.	Foreign	Keys

In	MySQL	Server	3.23.44	and	up,	the	InnoDB	storage	engine	supports	checking
of	foreign	key	constraints,	including	CASCADE,	ON	DELETE,	and	ON	UPDATE.	See

Section	14.2.6.4,	“FOREIGN	KEY	Constraints”.

For	storage	engines	other	than	InnoDB,	MySQL	Server	parses	the	FOREIGN	KEY
syntax	in	CREATE	TABLE	statements,	but	does	not	use	or	store	it.	In	the	future,	the
implementation	will	be	extended	to	store	this	information	in	the	table
specification	file	so	that	it	may	be	retrieved	by	mysqldump	and	ODBC.	At	a
later	stage,	foreign	key	constraints	will	be	implemented	for	MyISAM	tables	as
well.

Foreign	key	enforcement	offers	several	benefits	to	database	developers:

Assuming	proper	design	of	the	relationships,	foreign	key	constraints	make
it	more	difficult	for	a	programmer	to	introduce	an	inconsistency	into	the
database.

Centralized	checking	of	constraints	by	the	database	server	makes	it
unnecessary	to	perform	these	checks	on	the	application	side.	This
eliminates	the	possibility	that	different	applications	may	not	all	check	the
constraints	in	the	same	way.

Using	cascading	updates	and	deletes	can	simplify	the	application	code.

Properly	designed	foreign	key	rules	aid	in	documenting	relationships
between	tables.

Do	keep	in	mind	that	these	benefits	come	at	the	cost	of	additional	overhead	for
the	database	server	to	perform	the	necessary	checks.	Additional	checking	by	the
server	affects	performance,	which	for	some	applications	may	be	sufficiently
undesirable	as	to	be	avoided	if	possible.	(Some	major	commercial	applications
have	coded	the	foreign	key	logic	at	the	application	level	for	this	reason.)

MySQL	gives	database	developers	the	choice	of	which	approach	to	use.	If	you
don't	need	foreign	keys	and	want	to	avoid	the	overhead	associated	with
enforcing	referential	integrity,	you	can	choose	another	storage	engine	instead,
such	as	MyISAM.	(For	example,	the	MyISAM	storage	engine	offers	very	fast
performance	for	applications	that	perform	only	INSERT	and	SELECT	operations.	In
this	case,	the	table	has	no	holes	in	the	middle	and	the	inserts	can	be	performed
concurrently	with	retrievals.	See	Section	7.3.3,	“Concurrent	Inserts”.)

If	you	choose	not	to	take	advantage	of	referential	integrity	checks,	keep	the

following	considerations	in	mind:

In	the	absence	of	server-side	foreign	key	relationship	checking,	the
application	itself	must	handle	relationship	issues.	For	example,	it	must	take
care	to	insert	rows	into	tables	in	the	proper	order,	and	to	avoid	creating
orphaned	child	records.	It	must	also	be	able	to	recover	from	errors	that
occur	in	the	middle	of	multiple-record	insert	operations.

If	ON	DELETE	is	the	only	referential	integrity	capability	an	application	needs,
you	can	achieve	a	similar	effect	as	of	MySQL	Server	4.0	by	using	multiple-
table	DELETE	statements	to	delete	rows	from	many	tables	with	a	single
statement.	See	Section	13.2.1,	“DELETE	Syntax”.

A	workaround	for	the	lack	of	ON	DELETE	is	to	add	the	appropriate	DELETE
statements	to	your	application	when	you	delete	records	from	a	table	that	has
a	foreign	key.	In	practice,	this	is	often	as	quick	as	using	foreign	keys	and	is
more	portable.

Be	aware	that	the	use	of	foreign	keys	can	sometimes	lead	to	problems:

Foreign	key	support	addresses	many	referential	integrity	issues,	but	it	is	still
necessary	to	design	key	relationships	carefully	to	avoid	circular	rules	or
incorrect	combinations	of	cascading	deletes.

It	is	not	uncommon	for	a	DBA	to	create	a	topology	of	relationships	that
makes	it	difficult	to	restore	individual	tables	from	a	backup.	(MySQL
alleviates	this	difficulty	by	allowing	you	to	temporarily	disable	foreign	key
checks	when	reloading	a	table	that	depends	on	other	tables.	See
Section	14.2.6.4,	“FOREIGN	KEY	Constraints”.	As	of	MySQL	4.1.1,
mysqldump	generates	dump	files	that	take	advantage	of	this	capability
automatically	when	they	are	reloaded.)

Note	that	foreign	keys	in	SQL	are	used	to	check	and	enforce	referential	integrity,
not	to	join	tables.	If	you	want	to	get	results	from	multiple	tables	from	a	SELECT
statement,	you	do	this	by	performing	a	join	between	them:

SELECT	*	FROM	t1	INNER	JOIN	t2	ON	t1.id	=	t2.id;

See	Section	13.2.7.1,	“JOIN	Syntax”,	and	Section	3.6.6,	“Using	Foreign	Keys”.

The	FOREIGN	KEY	syntax	without	ON	DELETE	...	is	often	used	by	ODBC
applications	to	produce	automatic	WHERE	clauses.

1.9.5.6.	Views

Views	(including	updatable	views)	are	implemented	beginning	with	MySQL
Server	5.0.1.	See	Chapter	19,	Views.

Views	are	useful	for	allowing	users	to	access	a	set	of	relations	(tables)	as	if	it
were	a	single	table,	and	limiting	their	access	to	just	that.	Views	can	also	be	used
to	restrict	access	to	rows	(a	subset	of	a	particular	table).	For	access	control	to
columns,	you	can	also	use	the	sophisticated	privilege	system	in	MySQL	Server.
See	Section	5.8,	“The	MySQL	Access	Privilege	System”.

In	designing	an	implementation	of	views,	our	ambitious	goal,	as	much	as	is
possible	within	the	confines	of	SQL,	has	been	full	compliance	with	“Codd's	Rule
#6”	for	relational	database	systems:	“All	views	that	are	theoretically	updatable,
should	in	practice	also	be	updatable.”

1.9.5.7.	'--'	as	the	Start	of	a	Comment

Standard	SQL	uses	the	C	syntax	/*	this	is	a	comment	*/	for	comments,	and
MySQL	Server	supports	this	syntax	as	well.	MySQL	also	support	extensions	to
this	syntax	that	allow	MySQL-specific	SQL	to	be	embedded	in	the	comment,	as
described	in	Section	9.4,	“Comment	Syntax”.

Standard	SQL	uses	‘--’	as	a	start-comment	sequence.	MySQL	Server	uses	‘#’	as
the	start	comment	character.	MySQL	Server	3.23.3	and	up	also	supports	a
variant	of	the	‘--’	comment	style.	That	is,	the	‘--’	start-comment	sequence	must
be	followed	by	a	space	(or	by	a	control	character	such	as	a	newline).	The	space
is	required	to	prevent	problems	with	automatically	generated	SQL	queries	that
use	constructs	such	as	the	following,	where	we	automatically	insert	the	value	of
the	payment	for	payment:

UPDATE	account	SET	credit=credit-payment

Consider	about	what	happens	if	payment	has	a	negative	value	such	as	-1:

UPDATE	account	SET	credit=credit--1

credit--1	is	a	legal	expression	in	SQL,	but	‘--’	is	interpreted	as	the	start	of	a
comment,	part	of	the	expression	is	discarded.	The	result	is	a	statement	that	has	a
completely	different	meaning	than	intended:

UPDATE	account	SET	credit=credit

The	statement	produces	no	change	in	value	at	all.	This	illustrates	that	allowing
comments	to	start	with	‘--’	can	have	serious	consequences.

Using	our	implementation	requires	a	space	following	the	‘--’	in	order	for	it	to	be
recognized	as	a	start-comment	sequence	in	MySQL	Server	3.23.3	and	newer.
Therefore,	credit--1	is	safe	to	use.

Another	safe	feature	is	that	the	mysql	command-line	client	ignores	lines	that
start	with	‘--’.

The	following	information	is	relevant	only	if	you	are	running	a	MySQL	version
earlier	than	3.23.3:

If	you	have	an	SQL	script	in	a	text	file	that	contains	‘--’	comments,	you	should
use	the	replace	utility	as	follows	to	convert	the	comments	to	use	‘#’	characters
before	executing	the	script:

shell>	replace	"	--"	"	#"	<	text-file-with-funny-comments.sql	\

									|	mysql	db_name

That	is	safer	than	executing	the	script	in	the	usual	way:

shell>	mysql	db_name	<	text-file-with-funny-comments.sql

You	can	also	edit	the	script	file	“in	place”	to	change	the	‘--’	comments	to	‘#’
comments:

shell>	replace	"	--"	"	#"	--	text-file-with-funny-comments.sql

Change	them	back	with	this	command:

shell>	replace	"	#"	"	--"	--	text-file-with-funny-comments.sql

See	Section	8.18,	“replace	—	A	String-Replacement	Utility”.

1.9.6.	How	MySQL	Deals	with	Constraints

MySQL	allows	you	to	work	both	with	transactional	tables	that	allow	rollback
and	with	non-transactional	tables	that	do	not.	Because	of	this,	constraint
handling	is	a	bit	different	in	MySQL	than	in	other	DBMSs.	We	must	handle	the
case	when	you	have	inserted	or	updated	a	lot	of	rows	in	a	non-transactional	table
for	which	changes	cannot	be	rolled	back	when	an	error	occurs.

The	basic	philosophy	is	that	MySQL	Server	tries	to	produce	an	error	for
anything	that	it	can	detect	while	parsing	a	statement	to	be	executed,	and	tries	to
recover	from	any	errors	that	occur	while	executing	the	statement.	We	do	this	in
most	cases,	but	not	yet	for	all.

The	options	MySQL	has	when	an	error	occurs	are	to	stop	the	statement	in	the
middle	or	to	recover	as	well	as	possible	from	the	problem	and	continue.	By
default,	the	server	follows	the	latter	course.	This	means,	for	example,	that	the
server	may	coerce	illegal	values	to	the	closest	legal	values.

Beginning	with	MySQL	5.0.2,	several	SQL	mode	options	are	available	to
provide	greater	control	over	handling	of	bad	data	values	and	whether	to	continue
statement	execution	or	abort	when	errors	occur.	Using	these	options,	you	can
configure	MySQL	Server	to	act	in	a	more	traditional	fashion	that	is	like	other
DBMSs	that	reject	improper	input.	The	SQL	mode	can	be	set	globally	at	server
startup	to	affect	all	clients.	Individual	clients	can	set	the	SQL	mode	at	runtime,
which	enables	each	client	to	select	the	behavior	most	appropriate	for	its
requirements.	See	Section	5.2.5,	“The	Server	SQL	Mode”.

The	following	sections	describe	how	MySQL	Server	handles	different	types	of
constraints.

1.9.6.1.	PRIMARY	KEY	and	UNIQUE	Index	Constraints

Normally,	an	error	occurs	when	you	try	to	INSERT	or	UPDATE	a	row	that	causes	a
primary	key,	unique	key,	or	foreign	key	violation.	If	you	are	using	a	transactional
storage	engine	such	as	InnoDB,	MySQL	automatically	rolls	back	the	statement.	If
you	are	using	a	non-transactional	storage	engine,	MySQL	stops	processing	the
statement	at	the	row	for	which	the	error	occurred	and	leaves	any	remaining	rows
unprocessed.

If	you	want	to	ignore	such	key	violations,	MySQL	supports	an	IGNORE	keyword
for	INSERT	and	UPDATE.	In	this	case,	MySQL	ignores	any	key	violations	and

continues	processing	with	the	next	row.	See	Section	13.2.4,	“INSERT	Syntax”,
and	Section	13.2.10,	“UPDATE	Syntax”.

You	can	get	information	about	the	number	of	rows	actually	inserted	or	updated
with	the	mysql_info()	C	API	function.	In	MySQL	4.1	and	up,	you	also	can	use
the	SHOW	WARNINGS	statement.	See	Section	22.2.3.34,	“mysql_info()”,	and
Section	13.5.4.25,	“SHOW	WARNINGS	Syntax”.

Currently,	only	InnoDB	tables	support	foreign	keys.	See	Section	14.2.6.4,
“FOREIGN	KEY	Constraints”.	Foreign	key	support	in	MyISAM	tables	is	scheduled
for	implementation	in	MySQL	5.2.	See	Section	1.6,	“MySQL	Development
Roadmap”.

1.9.6.2.	Constraints	on	Invalid	Data

Before	MySQL	5.0.2,	MySQL	is	forgiving	of	illegal	or	improper	data	values	and
coerces	them	to	legal	values	for	data	entry.	In	MySQL	5.0.2	and	up,	that	remains
the	default	behavior,	but	you	can	change	the	server	SQL	mode	to	select	more
traditional	treatment	of	bad	values	such	that	the	server	rejects	them	and	aborts
the	statement	in	which	they	occur.	Section	5.2.5,	“The	Server	SQL	Mode”.

This	section	describes	the	default	(forgiving)	behavior	of	MySQL,	as	well	as	the
newer	strict	SQL	mode	and	how	it	differs.

If	you	are	not	using	strict	mode,	then	whenever	you	insert	an	“incorrect”	value
into	a	column,	such	as	a	NULL	into	a	NOT	NULL	column	or	a	too-large	numeric
value	into	a	numeric	column,	MySQL	sets	the	column	to	the	“best	possible
value”	instead	of	producing	an	error:	The	following	rules	describe	in	more	detail
how	this	works:

If	you	try	to	store	an	out	of	range	value	into	a	numeric	column,	MySQL
Server	instead	stores	zero,	the	smallest	possible	value,	or	the	largest
possible	value,	whichever	is	closest	to	the	invalid	value.

For	strings,	MySQL	stores	either	the	empty	string	or	as	much	of	the	string
as	can	be	stored	in	the	column.

If	you	try	to	store	a	string	that	doesn't	start	with	a	number	into	a	numeric
column,	MySQL	Server	stores	0.

Invalid	values	for	ENUM	and	SET	columns	ae	handled	as	described	in
Section	1.9.6.3,	“ENUM	and	SET	Constraints”.

MySQL	allows	you	to	store	certain	incorrect	date	values	into	DATE	and
DATETIME	columns	(such	as	'2000-02-31'	or	'2000-02-00').	The	idea	is
that	it's	not	the	job	of	the	SQL	server	to	validate	dates.	If	MySQL	can	store
a	date	value	and	retrieve	exactly	the	same	value,	MySQL	stores	it	as	given.
If	the	date	is	totally	wrong	(outside	the	server's	ability	to	store	it),	the
special	“zero”	date	value	'0000-00-00'	is	stored	in	the	column	instead.

If	you	try	to	store	NULL	into	a	column	that	doesn't	take	NULL	values,	an	error
occurs	for	single-row	INSERT	statements.	For	multiple-row	INSERT
statements	or	for	INSERT	INTO	...	SELECT	statements,	MySQL	Server
stores	the	implicit	default	value	for	the	column	data	type.	In	general,	this	is
0	for	numeric	types,	the	empty	string	('')	for	string	types,	and	the	“zero”
value	for	date	and	time	types.	Implicit	default	values	are	discussed	in
Section	11.1.4,	“Data	Type	Default	Values”.

If	an	INSERT	statement	specifies	no	value	for	a	column,	MySQL	inserts	its
default	value	if	the	column	definition	includes	an	explicit	DEFAULT	clause.	If
the	definition	has	no	such	DEFAULT	clause,	MySQL	inserts	the	implicit
default	value	for	the	column	data	type.

The	reason	for	using	the	preceding	rules	in	non-strict	mode	is	that	we	can't	check
these	conditions	until	the	statement	has	begun	executing.	We	can't	just	roll	back
if	we	encounter	a	problem	after	updating	a	few	rows,	because	the	storage	engine
may	not	support	rollback.	The	option	of	terminating	the	statement	is	not	that
good;	in	this	case,	the	update	would	be	“half	done,”	which	is	probably	the	worst
possible	scenario.	In	this	case,	it's	better	to	“do	the	best	you	can”	and	then
continue	as	if	nothing	happened.

In	MySQL	5.0.2	and	up,	you	can	select	stricter	treatment	of	input	values	by
using	the	STRICT_TRANS_TABLES	or	STRICT_ALL_TABLES	SQL	modes:

SET	sql_mode	=	'STRICT_TRANS_TABLES';

SET	sql_mode	=	'STRICT_ALL_TABLES';

STRICT_TRANS_TABLES	enables	strict	mode	for	transactional	storage	engines,	and
also	to	some	extent	for	non-transactional	engines.	It	works	like	this:

For	transactional	storage	engines,	bad	data	values	occurring	anywhere	in	a
statement	cause	the	statement	to	abort	and	roll	back.

For	non-transactional	storage	engines,	a	statement	aborts	if	the	error	occurs
in	the	first	row	to	be	inserted	or	updated.	(When	the	error	occurs	in	the	first
row,	the	statement	can	be	aborted	to	leave	the	table	unchanged,	just	as	for	a
transactional	table.)	Errors	in	rows	after	the	first	do	not	abort	the	statement,
because	the	table	has	already	been	changed	by	the	first	row.	Instead,	bad
data	values	are	adjusted	and	result	in	warnings	rather	than	errors.	In	other
words,	with	STRICT_TRANS_TABLES,	a	wrong	value	causes	MySQL	to	roll
back	all	updates	done	so	far,	if	that	can	be	done	without	changing	the	table.
But	once	the	table	has	been	changed,	further	errors	result	in	adjustments
and	warnings.

For	even	stricter	checking,	enable	STRICT_ALL_TABLES.	This	is	the	same	as
STRICT_TRANS_TABLES	except	that	for	non-transactional	storage	engines,	errors
abort	the	statement	even	for	bad	data	in	rows	following	the	first	row.	This	means
that	if	an	error	occurs	partway	through	a	multiple-row	insert	or	update	for	a	non-
transactional	table,	a	partial	update	results.	Earlier	rows	are	inserted	or	updated,
but	those	from	the	point	of	the	error	on	are	not.	To	avoid	this	for	non-
transactional	tables,	either	use	single-row	statements	or	else	use
STRICT_TRANS_TABLES	if	conversion	warnings	rather	than	errors	are	acceptable.
To	avoid	problems	in	the	first	place,	do	not	use	MySQL	to	check	column
content.	It	is	safest	(and	often	faster)	to	let	the	application	ensure	that	it	passes
only	legal	values	to	the	database.

With	either	of	the	strict	mode	options,	you	can	cause	errors	to	be	treated	as
warnings	by	using	INSERT	IGNORE	or	UPDATE	IGNORE	rather	than	INSERT	or
UPDATE	without	IGNORE.

1.9.6.3.	ENUM	and	SET	Constraints

ENUM	and	SET	columns	provide	an	efficient	way	to	define	columns	that	can
contain	only	a	given	set	of	values.	See	Section	11.4.4,	“The	ENUM	Type”,	and
Section	11.4.5,	“The	SET	Type”.	However,	before	MySQL	5.0.2,	ENUM	and	SET
columns	do	not	provide	true	constraints	on	entry	of	invalid	data:

ENUM	columns	always	have	a	default	value.	If	you	specify	no	default	value,
then	it	is	NULL	for	columns	that	can	have	NULL,	otherwise	it	is	the	first

enumeration	value	in	the	column	definition.

If	you	insert	an	incorrect	value	into	an	ENUM	column	or	if	you	force	a	value
into	an	ENUM	column	with	IGNORE,	it	is	set	to	the	reserved	enumeration	value
of	0,	which	is	displayed	as	an	empty	string	in	string	context.

If	you	insert	an	incorrect	value	into	a	SET	column,	the	incorrect	value	is
ignored.	For	example,	if	the	column	can	contain	the	values	'a',	'b',	and
'c',	an	attempt	to	assign	'a,x,b,y'	results	in	a	value	of	'a,b'.

As	of	MySQL	5.0.2,	you	can	configure	the	server	to	use	strict	SQL	mode.	See
Section	5.2.5,	“The	Server	SQL	Mode”.	With	strict	mode	enabled,	the	definition
of	a	ENUM	or	SET	column	does	act	as	a	constraint	on	values	entered	into	the
column.	An	error	occurs	for	values	that	do	not	satisfy	these	conditions:

An	ENUM	value	must	be	one	of	those	listed	in	the	column	definition,	or	the
internal	numeric	equivalent	thereof.	The	value	cannot	be	the	error	value
(that	is,	0	or	the	empty	string).	For	a	column	defined	as
ENUM('a','b','c'),	values	such	as	'',	'd',	or	'ax'	are	illegal	and	are
rejected.

A	SET	value	must	be	the	empty	string	or	a	value	consisting	only	of	the
values	listed	in	the	column	definition	separated	by	commas.	For	a	column
defined	as	SET('a','b','c'),	values	such	as	'd'	or	'a,b,c,d'	are	illegal
and	are	rejected.

Errors	for	invalid	values	can	be	suppressed	in	strict	mode	if	you	use	INSERT
IGNORE	or	UPDATE	IGNORE.	In	this	case,	a	warning	is	generated	rather	than	an
error.	For	ENUM,	the	value	is	inserted	as	the	error	member	(0).	For	SET,	the	value
is	inserted	as	given	except	that	any	invalid	substrings	are	deleted.	For	example,
'a,x,b,y'	results	in	a	value	of	'a,b'.

Chapter	2.	Installing	and	Upgrading	MySQL

Table	of	Contents

2.1.	General	Installation	Issues
2.1.1.	Operating	Systems	Supported	by	MySQL
2.1.2.	Choosing	Which	MySQL	Distribution	to	Install
2.1.3.	How	to	Get	MySQL
2.1.4.	Verifying	Package	Integrity	Using	MD5	Checksums	or	GnuPG
2.1.5.	Installation	Layouts

2.2.	Standard	MySQL	Installation	Using	a	Binary	Distribution
2.3.	Installing	MySQL	on	Windows

2.3.1.	Choosing	An	Installation	Package
2.3.2.	Installing	MySQL	with	the	Automated	Installer
2.3.3.	Using	the	MySQL	Installation	Wizard
2.3.4.	Using	the	Configuration	Wizard
2.3.5.	Installing	MySQL	from	a	Noinstall	Zip	Archive
2.3.6.	Extracting	the	Install	Archive
2.3.7.	Creating	an	Option	File
2.3.8.	Selecting	a	MySQL	Server	type
2.3.9.	Starting	the	Server	for	the	First	Time
2.3.10.	Starting	MySQL	from	the	Windows	Command	Line
2.3.11.	Starting	MySQL	as	a	Windows	Service
2.3.12.	Testing	The	MySQL	Installation
2.3.13.	Troubleshooting	a	MySQL	Installation	Under	Windows
2.3.14.	Upgrading	MySQL	on	Windows
2.3.15.	MySQL	on	Windows	Compared	to	MySQL	on	Unix

2.4.	Installing	MySQL	on	Linux
2.5.	Installing	MySQL	on	Mac	OS	X
2.6.	Installing	MySQL	on	Solaris
2.7.	Installing	MySQL	on	NetWare
2.8.	Installing	MySQL	on	Other	Unix-Like	Systems
2.9.	MySQL	Installation	Using	a	Source	Distribution

2.9.1.	Source	Installation	Overview
2.9.2.	Typical	configure	Options
2.9.3.	Installing	from	the	Development	Source	Tree
2.9.4.	Dealing	with	Problems	Compiling	MySQL

2.9.5.	MIT-pthreads	Notes
2.9.6.	Installing	MySQL	from	Source	on	Windows
2.9.7.	Compiling	MySQL	Clients	on	Windows

2.10.	Post-Installation	Setup	and	Testing
2.10.1.	Windows	Post-Installation	Procedures
2.10.2.	Unix	Post-Installation	Procedures
2.10.3.	Securing	the	Initial	MySQL	Accounts

2.11.	Upgrading	MySQL
2.11.1.	Upgrading	from	MySQL	5.0	to	5.1
2.11.2.	Upgrading	from	MySQL	4.1	to	5.0
2.11.3.	Copying	MySQL	Databases	to	Another	Machine

2.12.	Downgrading	MySQL
2.12.1.	Downgrading	to	MySQL	4.1

2.13.	Operating	System-Specific	Notes
2.13.1.	Linux	Notes
2.13.2.	Mac	OS	X	Notes
2.13.3.	Solaris	Notes
2.13.4.	BSD	Notes
2.13.5.	Other	Unix	Notes
2.13.6.	OS/2	Notes

2.14.	Perl	Installation	Notes
2.14.1.	Installing	Perl	on	Unix
2.14.2.	Installing	ActiveState	Perl	on	Windows
2.14.3.	Problems	Using	the	Perl	DBI/DBD	Interface

This	chapter	describes	how	to	obtain	and	install	MySQL.	A	summary	of	the
procedure	follows	and	later	sections	provide	the	details.	If	you	plan	to	upgrade
an	existing	version	of	MySQL	to	a	newer	version	rather	than	install	MySQL	for
the	first	time,	see	Section	2.11,	“Upgrading	MySQL”,	for	information	about
upgrade	procedures	and	about	issues	that	you	should	consider	before	upgrading.

1.	 Determine	whether	your	platform	is	supported.	Please	note	that	not	all
supported	systems	are	equally	suitable	for	running	MySQL.	On	some
platforms	it	is	much	more	robust	and	efficient	than	others.	See
Section	2.1.1,	“Operating	Systems	Supported	by	MySQL”,	for	details.

2.	 Choose	which	distribution	to	install.	Several	versions	of	MySQL	are
available,	and	most	are	available	in	several	distribution	formats.	You	can
choose	from	pre-packaged	distributions	containing	binary	(precompiled)

programs	or	source	code.	When	in	doubt,	use	a	binary	distribution.	We	also
provide	public	access	to	our	current	source	tree	for	those	who	want	to	see
our	most	recent	developments	and	help	us	test	new	code.	To	determine
which	version	and	type	of	distribution	you	should	use,	see	Section	2.1.2,
“Choosing	Which	MySQL	Distribution	to	Install”.

3.	 Download	the	distribution	that	you	want	to	install.	For	instructions,	see
Section	2.1.3,	“How	to	Get	MySQL”.	To	verify	the	integrity	of	the
distribution,	use	the	instructions	in	Section	2.1.4,	“Verifying	Package
Integrity	Using	MD5	Checksums	or	GnuPG”.

4.	 Install	the	distribution.	To	install	MySQL	from	a	binary	distribution,	use
the	instructions	in	Section	2.2,	“Standard	MySQL	Installation	Using	a
Binary	Distribution”.	To	install	MySQL	from	a	source	distribution	or	from
the	current	development	source	tree,	use	the	instructions	in	Section	2.9,
“MySQL	Installation	Using	a	Source	Distribution”.

If	you	encounter	installation	difficulties,	see	Section	2.13,	“Operating
System-Specific	Notes”,	for	information	on	solving	problems	for	particular
platforms.

5.	 Perform	any	necessary	post-installation	setup.	After	installing	MySQL,
read	Section	2.10,	“Post-Installation	Setup	and	Testing”.	This	section
contains	important	information	about	making	sure	the	MySQL	server	is
working	properly.	It	also	describes	how	to	secure	the	initial	MySQL	user
accounts,	which	have	no	passwords	until	you	assign	passwords.	The	section
applies	whether	you	install	MySQL	using	a	binary	or	source	distribution.

6.	 If	you	want	to	run	the	MySQL	benchmark	scripts,	Perl	support	for	MySQL
must	be	available.	See	Section	2.14,	“Perl	Installation	Notes”.

2.1.	General	Installation	Issues

Before	installing	MySQL,	you	should	do	the	following:

1.	 Determine	whether	MySQL	runs	on	your	platform.

2.	 Choose	a	distribution	to	install.

3.	 Download	the	distribution	and	verify	its	integrity.

This	section	contains	the	information	necessary	to	carry	out	these	steps.	After
doing	so,	you	can	use	the	instructions	in	later	sections	of	the	chapter	to	install	the
distribution	that	you	choose.

2.1.1.	Operating	Systems	Supported	by	MySQL

This	section	lists	the	operating	systems	on	which	you	can	expect	to	be	able	to
run	MySQL.

We	use	GNU	Autoconf,	so	it	is	possible	to	port	MySQL	to	all	modern	systems
that	have	a	C++	compiler	and	a	working	implementation	of	POSIX	threads.
(Thread	support	is	needed	for	the	server.	To	compile	only	the	client	code,	the
only	requirement	is	a	C++	compiler.)	We	use	and	develop	the	software	ourselves
primarily	on	Linux	(SuSE	and	Red	Hat),	FreeBSD,	and	Sun	Solaris	(versions	8
and	9).

MySQL	has	been	reported	to	compile	successfully	on	the	following
combinations	of	operating	system	and	thread	package.	Note	that	for	many
operating	systems,	native	thread	support	works	only	in	the	latest	versions.

AIX	4.x,	5.x	with	native	threads.	See	Section	2.13.5.3,	“IBM-AIX	notes”.

Amiga.

BSDI	2.x	with	the	MIT-pthreads	package.	See	Section	2.13.4.4,	“BSD/OS
Version	2.x	Notes”.

BSDI	3.0,	3.1	and	4.x	with	native	threads.	See	Section	2.13.4.4,	“BSD/OS

Version	2.x	Notes”.

Digital	Unix	4.x	with	native	threads.	See	Section	2.13.5.5,	“Alpha-DEC-
UNIX	Notes	(Tru64)”.

FreeBSD	2.x	with	the	MIT-pthreads	package.	See	Section	2.13.4.1,
“FreeBSD	Notes”.

FreeBSD	3.x	and	4.x	with	native	threads.	See	Section	2.13.4.1,	“FreeBSD
Notes”.

FreeBSD	4.x	with	LinuxThreads.	See	Section	2.13.4.1,	“FreeBSD	Notes”.

HP-UX	10.20	with	the	DCE	threads	or	the	MIT-pthreads	package.	See
Section	2.13.5.1,	“HP-UX	Version	10.20	Notes”.

HP-UX	11.x	with	the	native	threads.	See	Section	2.13.5.2,	“HP-UX	Version
11.x	Notes”.

Linux	2.0+	with	LinuxThreads	0.7.1+	or	glibc	2.0.7+	for	various	CPU
architectures.	See	Section	2.13.1,	“Linux	Notes”.

Mac	OS	X.	See	Section	2.13.2,	“Mac	OS	X	Notes”.

NetBSD	1.3/1.4	Intel	and	NetBSD	1.3	Alpha	(requires	GNU	make).	See
Section	2.13.4.2,	“NetBSD	Notes”.

Novell	NetWare	6.0	and	6.5.	See	Section	2.7,	“Installing	MySQL	on
NetWare”.

OpenBSD	2.5	and	with	native	threads.	OpenBSD	earlier	than	2.5	with	the
MIT-pthreads	package.	See	Section	2.13.4.3,	“OpenBSD	2.5	Notes”.

OS/2	Warp	3,	FixPack	29	and	OS/2	Warp	4,	FixPack	4.	See	Section	2.13.6,
“OS/2	Notes”.

SCO	OpenServer	5.0.X	with	a	recent	port	of	the	FSU	Pthreads	package.
See	Section	2.13.5.8,	“SCO	UNIX	and	OpenServer	5.0.x	Notes”.

SCO	Openserver	6.0.x.	See	Section	2.13.5.9,	“SCO	OpenServer	6.0.x

Notes”.

SCO	UnixWare	7.1.x.	See	Section	2.13.5.10,	“SCO	UnixWare	7.1.x	and
OpenUNIX	8.0.0	Notes”.

SGI	Irix	6.x	with	native	threads.	See	Section	2.13.5.7,	“SGI	Irix	Notes”.

Solaris	2.5	and	above	with	native	threads	on	SPARC	and	x86.	See
Section	2.13.3,	“Solaris	Notes”.

SunOS	4.x	with	the	MIT-pthreads	package.	See	Section	2.13.3,	“Solaris
Notes”.

Tru64	Unix.	See	Section	2.13.5.5,	“Alpha-DEC-UNIX	Notes	(Tru64)”.

Windows	9x,	Me,	NT,	2000,	XP,	and	Windows	Server	2003.	See
Section	2.3,	“Installing	MySQL	on	Windows”.

Not	all	platforms	are	equally	well-suited	for	running	MySQL.	How	well	a
certain	platform	is	suited	for	a	high-load	mission-critical	MySQL	server	is
determined	by	the	following	factors:

General	stability	of	the	thread	library.	A	platform	may	have	an	excellent
reputation	otherwise,	but	MySQL	is	only	as	stable	as	the	thread	library	it
calls,	even	if	everything	else	is	perfect.

The	capability	of	the	kernel	and	the	thread	library	to	take	advantage	of
symmetric	multi-processor	(SMP)	systems.	In	other	words,	when	a	process
creates	a	thread,	it	should	be	possible	for	that	thread	to	run	on	a	CPU
different	from	the	original	process.

The	capability	of	the	kernel	and	the	thread	library	to	run	many	threads	that
acquire	and	release	a	mutex	over	a	short	critical	region	frequently	without
excessive	context	switches.	If	the	implementation	of
pthread_mutex_lock()	is	too	anxious	to	yield	CPU	time,	this	hurts
MySQL	tremendously.	If	this	issue	is	not	taken	care	of,	adding	extra	CPUs
actually	makes	MySQL	slower.

General	filesystem	stability	and	performance.

If	your	tables	are	large,	performance	is	affected	by	the	ability	of	the
filesystem	to	deal	with	large	files	at	all	and	to	deal	with	them	efficiently.

Our	level	of	expertise	here	at	MySQL	AB	with	the	platform.	If	we	know	a
platform	well,	we	enable	platform-specific	optimizations	and	fixes	at
compile	time.	We	can	also	provide	advice	on	configuring	your	system
optimally	for	MySQL.

The	amount	of	testing	we	have	done	internally	for	similar	configurations.

The	number	of	users	that	have	run	MySQL	successfully	on	the	platform	in
similar	configurations.	If	this	number	is	high,	the	likelihood	of	encountering
platform-specific	surprises	is	much	smaller.

Based	on	the	preceding	criteria,	the	best	platforms	for	running	MySQL	at	this
point	are	x86	with	SuSE	Linux	using	a	2.4	or	2.6	kernel,	and	ReiserFS	(or	any
similar	Linux	distribution)	and	SPARC	with	Solaris	(2.7-9).	FreeBSD	comes
third,	but	we	really	hope	it	joins	the	top	club	once	the	thread	library	is	improved.
We	also	hope	that	at	some	point	we	are	able	to	include	into	the	top	category	all
other	platforms	on	which	MySQL	currently	compiles	and	runs,	but	not	quite
with	the	same	level	of	stability	and	performance.	This	requires	some	effort	on
our	part	in	cooperation	with	the	developers	of	the	operating	systems	and	library
components	that	MySQL	depends	on.	If	you	are	interested	in	improving	one	of
those	components,	are	in	a	position	to	influence	its	development,	and	need	more
detailed	instructions	on	what	MySQL	needs	to	run	better,	send	an	email	message
to	the	MySQL	internals	mailing	list.	See	Section	1.7.1,	“MySQL	Mailing
Lists”.

Please	note	that	the	purpose	of	the	preceding	comparison	is	not	to	say	that	one
operating	system	is	better	or	worse	than	another	in	general.	We	are	talking	only
about	choosing	an	OS	for	the	specific	purpose	of	running	MySQL.	With	this	in
mind,	the	result	of	this	comparison	might	be	different	if	other	factors	were
considered.	In	some	cases,	the	reason	one	OS	is	better	for	MySQL	than	another
might	simply	be	that	we	have	been	able	to	put	more	effort	into	testing	and
optimizing	for	a	particular	platform.	We	are	just	stating	our	observations	to	help
you	decide	which	platform	to	use	for	running	MySQL.

2.1.2.	Choosing	Which	MySQL	Distribution	to	Install

When	preparing	to	install	MySQL,	you	should	decide	which	version	to	use.
MySQL	development	occurs	in	several	release	series,	and	you	can	pick	the	one
that	best	fits	your	needs.	After	deciding	which	version	to	install,	you	can	choose
a	distribution	format.	Releases	are	available	in	binary	or	source	format.

2.1.2.1.	Choosing	Which	Version	of	MySQL	to	Install

The	first	decision	to	make	is	whether	you	want	to	use	a	production	(stable)
release	or	a	development	release.	In	the	MySQL	development	process,	multiple
release	series	co-exist,	each	at	a	different	stage	of	maturity:

MySQL	5.1	is	the	current	development	release	series.

MySQL	5.0	is	the	current	stable	(production-quality)	release	series.	New
releases	are	issued	for	bugfixes	only;	no	new	features	are	being	added	that
could	effect	stability.

MySQL	4.1	is	the	previous	stable	(production-quality)	release	series.	New
releases	are	issued	for	critical	bugfixes	and	security	fixes.	No	significant
new	features	are	to	be	added	to	this	series.

MySQL	4.0	and	3.23	are	the	old	stable	(production-quality)	release	series.
These	versions	are	now	retired,	so	new	releases	are	issued	only	to	fix
extremely	critical	bugs	(primarily	security	issues).

We	do	not	believe	in	a	complete	code	freeze	because	this	prevents	us	from
making	bugfixes	and	other	fixes	that	must	be	done.	By	“somewhat	frozen”	we
mean	that	we	may	add	small	things	that	should	not	affect	anything	that	currently
works	in	a	production	release.	Naturally,	relevant	bugfixes	from	an	earlier	series
propagate	to	later	series.

Normally,	if	you	are	beginning	to	use	MySQL	for	the	first	time	or	trying	to	port
it	to	some	system	for	which	there	is	no	binary	distribution,	we	recommend	going
with	the	production	release	series.	Currently,	this	is	MySQL	5.0.	All	MySQL
releases,	even	those	from	development	series,	are	checked	with	the	MySQL
benchmarks	and	an	extensive	test	suite	before	being	issued.

If	you	are	running	an	older	system	and	want	to	upgrade,	but	do	not	want	to	take
the	chance	of	having	a	non-seamless	upgrade,	you	should	upgrade	to	the	latest

version	in	the	same	release	series	you	are	using	(where	only	the	last	part	of	the
version	number	is	newer	than	yours).	We	have	tried	to	fix	only	fatal	bugs	and
make	only	small,	relatively	“safe”	changes	to	that	version.

If	you	want	to	use	new	features	not	present	in	the	production	release	series,	you
can	use	a	version	from	a	development	series.	Note	that	development	releases	are
not	as	stable	as	production	releases.

If	you	want	to	use	the	very	latest	sources	containing	all	current	patches	and
bugfixes,	you	can	use	one	of	our	BitKeeper	repositories.	These	are	not	“releases”
as	such,	but	are	available	as	previews	of	the	code	on	which	future	releases	are	to
be	based.

The	MySQL	naming	scheme	uses	release	names	that	consist	of	three	numbers
and	a	suffix;	for	example,	mysql-5.0.12-beta.	The	numbers	within	the	release
name	are	interpreted	as	follows:

The	first	number	(5)	is	the	major	version	and	describes	the	file	format.	All
MySQL	5	releases	have	the	same	file	format.

The	second	number	(0)	is	the	release	level.	Taken	together,	the	major
version	and	release	level	constitute	the	release	series	number.

The	third	number	(12)	is	the	version	number	within	the	release	series.	This
is	incremented	for	each	new	release.	Usually	you	want	the	latest	version	for
the	series	you	have	chosen.

For	each	minor	update,	the	last	number	in	the	version	string	is	incremented.
When	there	are	major	new	features	or	minor	incompatibilities	with	previous
versions,	the	second	number	in	the	version	string	is	incremented.	When	the	file
format	changes,	the	first	number	is	increased.

Release	names	also	include	a	suffix	to	indicates	the	stability	level	of	the	release.
Releases	within	a	series	progress	through	a	set	of	suffixes	to	indicate	how	the
stability	level	improves.	The	possible	suffixes	are:

alpha	indicates	that	the	release	contains	new	features	that	have	not	been
thoroughly	tested.	Known	bugs	should	be	documented	in	the	News	section.
See	Appendix	D,	MySQL	Change	History.	Most	alpha	releases	implement
new	commands	and	extensions.	Active	development	that	may	involve

major	code	changes	can	occur	in	an	alpha	release.	However,	we	do	conduct
testing	before	issuing	a	release.

beta	means	that	the	release	is	intended	to	be	feature-complete	and	that	all
new	code	has	been	tested.	No	major	new	features	that	are	added.	There
should	be	no	known	critical	bugs.	A	version	changes	from	alpha	to	beta
when	there	have	been	no	reported	fatal	bugs	within	an	alpha	version	for	at
least	a	month	and	we	have	no	plans	to	add	any	new	features	that	could
make	previously	implemented	features	unreliable.

All	APIs,	externally	visible	structures,	and	columns	for	SQL	statements	will
not	change	during	future	beta,	release	candidate,	or	production	releases.

rc	is	a	release	candidate;	that	is,	a	beta	that	has	been	around	for	a	while	and
seems	to	work	well.	Only	minor	fixes	are	added.	(A	release	candidate	is
what	formerly	was	known	as	a	gamma	release.)

If	there	is	no	suffix,	it	means	that	the	version	has	been	run	for	a	while	at
many	different	sites	with	no	reports	of	critical	repeatable	bugs	other	than
platform-specific	bugs.	Only	critical	bugfixes	are	applied	to	the	release.
This	is	what	we	call	a	production	(stable)	or	“General	Availability”	(GA)
release.

MySQL	uses	a	naming	scheme	that	is	slightly	different	from	most	other
products.	In	general,	it	is	usually	safe	to	use	any	version	that	has	been	out	for	a
couple	of	weeks	without	being	replaced	by	a	new	version	within	the	same
release	series.

All	releases	of	MySQL	are	run	through	our	standard	tests	and	benchmarks	to
ensure	that	they	are	relatively	safe	to	use.	Because	the	standard	tests	are
extended	over	time	to	check	for	all	previously	found	bugs,	the	test	suite	keeps
getting	better.

All	releases	have	been	tested	at	least	with	these	tools:

An	internal	test	suite

The	mysql-test	directory	contains	an	extensive	set	of	test	cases.	We	run
these	tests	for	virtually	every	server	binary.	See	Section	24.1.2,	“MySQL
Test	Suite”,	for	more	information	about	this	test	suite.

The	MySQL	benchmark	suite

This	suite	runs	a	range	of	common	queries.	It	is	also	a	test	to	determine
whether	the	latest	batch	of	optimizations	actually	made	the	code	faster.	See
Section	7.1.4,	“The	MySQL	Benchmark	Suite”.

The	crash-me	test

This	test	tries	to	determine	what	features	the	database	supports	and	what	its
capabilities	and	limitations	are.	See	Section	7.1.4,	“The	MySQL
Benchmark	Suite”.

We	also	test	the	newest	MySQL	version	in	our	internal	production	environment,
on	at	least	one	machine.	We	have	more	than	100GB	of	data	to	work	with.

2.1.2.2.	Choosing	a	Distribution	Format

After	choosing	which	version	of	MySQL	to	install,	you	should	decide	whether	to
use	a	binary	distribution	or	a	source	distribution.	In	most	cases,	you	should
probably	use	a	binary	distribution,	if	one	exists	for	your	platform.	Binary
distributions	are	available	in	native	format	for	many	platforms,	such	as	RPM
files	for	Linux	or	PKG	package	installers	for	Mac	OS	X	or	Solaris.	Distributions
also	are	available	as	Zip	archives	or	compressed	tar	files.

Reasons	to	choose	a	binary	distribution	include	the	following:

Binary	distributions	generally	are	easier	to	install	than	source	distributions.

To	satisfy	different	user	requirements,	we	provide	two	different	binary
versions.	One	is	compiled	with	the	core	feature	set.	The	other	(MySQL-
Max)	is	compiled	with	an	extended	feature	set.	Both	versions	are	compiled
from	the	same	source	distribution.	All	native	MySQL	clients	can	connect	to
servers	from	either	MySQL	version.

The	extended	MySQL	binary	distribution	is	identified	by	the	-max	suffix
and	is	configured	with	the	same	options	as	mysqld-max.	See	Section	5.3,
“The	mysqld-max	Extended	MySQL	Server”.

For	RPM	distributions,	if	you	want	to	use	the	MySQL-Max	RPM,	you	must

first	install	the	standard	MySQL-server	RPM.

Under	some	circumstances,	you	may	be	better	off	installing	MySQL	from	a
source	distribution:

You	want	to	install	MySQL	at	some	explicit	location.	The	standard	binary
distributions	are	ready	to	run	at	any	installation	location,	but	you	might
require	even	more	flexibility	to	place	MySQL	components	where	you	want.

You	want	to	configure	mysqld	to	ensure	that	features	are	available	that
might	not	be	included	in	the	standard	binary	distributions.	Here	is	a	list	of
the	most	common	extra	options	that	you	may	want	to	use	to	ensure	feature
availability:

--with-innodb

--with-berkeley-db	(not	available	on	all	platforms)

--with-libwrap

--with-named-z-libs	(this	is	done	for	some	of	the	binaries)

--with-debug[=full]

You	want	to	configure	mysqld	without	some	features	that	are	included	in
the	standard	binary	distributions.	For	example,	distributions	normally	are
compiled	with	support	for	all	character	sets.	If	you	want	a	smaller	MySQL
server,	you	can	recompile	it	with	support	for	only	the	character	sets	you
need.

You	have	a	special	compiler	(such	as	pgcc)	or	want	to	use	compiler	options
that	are	better	optimized	for	your	processor.	Binary	distributions	are
compiled	with	options	that	should	work	on	a	variety	of	processors	from	the
same	processor	family.

You	want	to	use	the	latest	sources	from	one	of	the	BitKeeper	repositories	to
have	access	to	all	current	bugfixes.	For	example,	if	you	have	found	a	bug
and	reported	it	to	the	MySQL	development	team,	the	bugfix	is	committed	to
the	source	repository	and	you	can	access	it	there.	The	bugfix	does	not
appear	in	a	release	until	a	release	actually	is	issued.

You	want	to	read	(or	modify)	the	C	and	C++	code	that	makes	up	MySQL.
For	this	purpose,	you	should	get	a	source	distribution,	because	the	source
code	is	always	the	ultimate	manual.

Source	distributions	contain	more	tests	and	examples	than	binary
distributions.

2.1.2.3.	How	and	When	Updates	Are	Released

MySQL	is	evolving	quite	rapidly	and	we	want	to	share	new	developments	with
other	MySQL	users.	We	try	to	produce	a	new	release	whenever	we	have	new	and
useful	features	that	others	also	seem	to	have	a	need	for.

We	also	try	to	help	users	who	request	features	that	are	easy	to	implement.	We
take	note	of	what	our	licensed	users	want,	and	we	especially	take	note	of	what
our	support	customers	want	and	try	to	help	them	in	this	regard.

No	one	is	required	to	download	a	new	release.	The	News	section	helps	you
determine	whether	the	new	release	has	something	you	really	want.	See
Appendix	D,	MySQL	Change	History.

We	use	the	following	policy	when	updating	MySQL:

Releases	are	issued	within	each	series.	For	each	release,	the	last	number	in
the	version	is	one	more	than	the	previous	release	within	the	same	series.

Production	(stable)	releases	are	meant	to	appear	about	1-2	times	a	year.
However,	if	small	bugs	are	found,	a	release	with	only	bugfixes	is	issued.

Working	releases/bugfixes	to	old	releases	are	meant	to	appear	about	every
4-8	weeks.

Binary	distributions	for	some	platforms	are	made	by	us	for	major	releases.
Other	people	may	make	binary	distributions	for	other	systems,	but	probably
less	frequently.

We	make	fixes	available	as	soon	as	we	have	identified	and	corrected	small
or	non-critical	but	annoying	bugs.	The	fixes	are	available	immediately	from
our	public	BitKeeper	repositories,	and	are	included	in	the	next	release.

If	by	any	chance	a	fatal	bug	is	found	in	a	release,	our	policy	is	to	fix	it	in	a
new	release	as	soon	as	possible.	(We	would	like	other	companies	to	do	this,
too!)

2.1.2.4.	Release	Philosophy—No	Known	Bugs	in	Releases

We	put	considerable	time	and	effort	into	making	our	releases	bug-free.	Our
policy	is	never	to	release	a	version	of	MySQL	intended	for	production	use	that
has	any	known	fatal,	repeatable	bugs.

We	have	documented	all	open	problems,	bugs,	and	issues	that	are	dependent	on
design	decisions.	See	Section	A.8,	“Known	Issues	in	MySQL”.

Our	aim	is	to	fix	everything	that	is	fixable	without	making	a	stable	MySQL
version	less	stable.	In	certain	cases,	this	means	we	can	fix	an	issue	in	the
development	versions,	but	not	in	the	stable	(production)	version.	Naturally,	we
document	such	issues	so	that	users	are	aware	of	them.

Here	is	a	description	of	our	build	process:

We	monitor	bugs	from	our	customer	support	list,	the	bugs	database	at
http://bugs.mysql.com/,	and	the	MySQL	external	mailing	lists.

All	reported	bugs	for	live	versions	are	entered	into	the	bugs	database.

When	we	fix	a	bug,	we	always	try	to	make	a	test	case	for	it	and	include	it
into	our	test	system	to	ensure	that	the	bug	can	never	recur	without	being
detected.	(About	90%	of	all	fixed	bugs	have	test	cases.)

We	create	test	cases	for	each	new	feature	that	we	add	to	MySQL.

Before	we	start	to	build	a	new	MySQL	release,	we	ensure	that	all	reported
repeatable	bugs	for	that	MySQL	version	(3.23.x,	4.0.x,	4.1.x,	5.0.x,	5.1.x,
and	so	on)	are	fixed.	If	something	is	impossible	to	fix	due	to	some	internal
design	decision	in	MySQL,	we	document	this	in	the	manual.	See
Section	A.8,	“Known	Issues	in	MySQL”.

We	do	a	build	on	all	platforms	for	which	we	support	binaries	and	run	our
test	suite	and	benchmark	suite	on	all	of	them.

http://bugs.mysql.com/

We	do	not	publish	a	binary	for	a	platform	for	which	the	test	or	benchmark
suite	fails.	If	the	problem	is	due	to	a	general	error	in	the	source,	we	fix	it
and	do	the	build	plus	tests	on	all	systems	again	from	scratch.

The	build	and	test	process	takes	a	week.	If	we	receive	a	report	regarding	a
fatal	bug	during	this	process	(for	example,	one	that	causes	a	core	dump),	we
fix	the	problem	and	restart	the	build	process.

After	publishing	the	binaries	on	http://dev.mysql.com/,	we	send	out	an
announcement	message	to	the	mysql	and	announce	mailing	lists.	See
Section	1.7.1,	“MySQL	Mailing	Lists”.	The	announcement	message
contains	a	list	of	all	changes	to	the	release	and	any	known	problems	with
the	release.	The	Known	Problems	section	in	the	release	notes	has	been
needed	for	only	a	handful	of	releases.

To	quickly	give	our	users	access	to	the	latest	MySQL	features,	we	try	to
produce	a	new	MySQL	release	every	4-8	weeks.	Source	code	snapshots	are
built	daily	and	are	available	at	http://downloads.mysql.com/snapshots.php.

If,	despite	our	best	efforts,	we	receive	any	bug	reports	after	a	release	is
issued	that	a	critical	problem	exists	for	the	build	on	a	specific	platform,	we
fix	it	at	once	and	build	a	new	'a'	release	for	that	platform.	Thanks	to	our
large	user	base,	problems	are	found	and	resolved	very	quickly.

Our	track	record	for	making	stable	releases	is	quite	good.	In	the	last	150
releases,	we	had	to	do	a	new	build	for	fewer	than	10	of	them.	In	three	of
these	cases,	the	bug	was	a	faulty	glibc	library	on	one	of	our	build	machines
that	took	us	a	long	time	to	track	down.

2.1.2.5.	MySQL	Binaries	Compiled	by	MySQL	AB

As	a	service	of	MySQL	AB,	we	provide	a	set	of	binary	distributions	of	MySQL
that	are	compiled	on	systems	at	our	site	or	on	systems	where	supporters	of
MySQL	kindly	have	given	us	access	to	their	machines.

In	addition	to	the	binaries	provided	in	platform-specific	package	formats,	we
offer	binary	distributions	for	a	number	of	platforms	in	the	form	of	compressed
tar	files	(.tar.gz	files).	See	Section	2.2,	“Standard	MySQL	Installation	Using	a
Binary	Distribution”.

http://dev.mysql.com/
http://downloads.mysql.com/snapshots.php

The	RPM	distributions	for	MySQL	5.0	releases	that	we	make	available	through
our	Web	site	are	generated	by	MySQL	AB.

For	Windows	distributions,	see	Section	2.3,	“Installing	MySQL	on	Windows”.

These	distributions	are	generated	using	the	script	Build-tools/Do-compile,
which	compiles	the	source	code	and	creates	the	binary	tar.gz	archive	using
scripts/make_binary_distribution.

These	binaries	are	configured	and	built	with	the	following	compilers	and
options.	This	information	can	also	be	obtained	by	looking	at	the	variables
COMP_ENV_INFO	and	CONFIGURE_LINE	inside	the	script	bin/mysqlbug	of	every
binary	tar	file	distribution.

Anyone	who	has	more	optimal	options	for	any	of	the	following	configure
commands	can	mail	them	to	the	MySQL	internals	mailing	list.	See
Section	1.7.1,	“MySQL	Mailing	Lists”.

If	you	want	to	compile	a	debug	version	of	MySQL,	you	should	add	--with-
debug	or	--with-debug=full	to	the	following	configure	commands	and	remove
any	-fomit-frame-pointer	options.

The	following	binaries	are	built	on	MySQL	AB	development	systems:

Linux	2.4.xx	x86	with	gcc	2.95.3:

CFLAGS="-O2	-mcpu=pentiumpro"	CXX=gcc	CXXFLAGS="-O2	-mcpu=pentiumpro

-felide-constructors"	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--enable-assembler	--disable-shared

--with-client-ldflags=-all-static	--with-mysqld-ldflags=-all-static

Linux	2.4.x	x86	with	icc	(Intel	C++	Compiler	8.1	or	later	releases):

CC=icc	CXX=icpc	CFLAGS="-O3	-unroll2	-ip	-mp	-no-gcc	-restrict"

CXXFLAGS="-O3	-unroll2	-ip	-mp	-no-gcc	-restrict"	./configure

--prefix=/usr/local/mysql	--localstatedir=/usr/local/mysql/data

--libexecdir=/usr/local/mysql/bin	--with-extra-charsets=complex

--enable-thread-safe-client	--enable-local-infile	--enable-assembler

--disable-shared	--with-client-ldflags=-all-static

--with-mysqld-ldflags=-all-static	--with-embedded-server	--with-innodb

Note	that	versions	8.1	and	newer	of	the	Intel	compiler	have	separate	drivers

for	'pure'	C	(icc)	and	C++	(icpc);	if	you	use	icc	version	8.0	or	older	for
building	MySQL,	you	will	need	to	set	CXX=icc.

Linux	2.4.xx	Intel	Itanium	2	with	ecc	(Intel	C++	Itanium	Compiler	7.0):

CC=ecc	CFLAGS="-O2	-tpp2	-ip	-nolib_inline"	CXX=ecc	CXXFLAGS="-O2

-tpp2	-ip	-nolib_inline"	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile

Linux	2.4.xx	Intel	Itanium	with	ecc	(Intel	C++	Itanium	Compiler	7.0):

CC=ecc	CFLAGS=-tpp1	CXX=ecc	CXXFLAGS=-tpp1	./configure

--prefix=/usr/local/mysql	--with-extra-charsets=complex

--enable-thread-safe-client	--enable-local-infile

Linux	2.4.xx	alpha	with	ccc	(Compaq	C	V6.2-505	/	Compaq	C++	V6.3-
006):

CC=ccc	CFLAGS="-fast	-arch	generic"	CXX=cxx	CXXFLAGS="-fast	-arch

generic	-noexceptions	-nortti"	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--with-mysqld-ldflags=-non_shared

--with-client-ldflags=-non_shared	--disable-shared

Linux	2.x.xx	ppc	with	gcc	2.95.4:

CC=gcc	CFLAGS="-O3	-fno-omit-frame-pointer"	CXX=gcc	CXXFLAGS="-O3

-fno-omit-frame-pointer	-felide-constructors	-fno-exceptions

-fno-rtti"	./configure	--prefix=/usr/local/mysql

--localstatedir=/usr/local/mysql/data	--libexecdir=/usr/local/mysql/bin

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--disable-shared	--with-embedded-server

--with-innodb

Linux	2.4.xx	s390	with	gcc	2.95.3:

CFLAGS="-O2"	CXX=gcc	CXXFLAGS="-O2	-felide-constructors"	./configure

--prefix=/usr/local/mysql	--with-extra-charsets=complex

--enable-thread-safe-client	--enable-local-infile	--disable-shared

--with-client-ldflags=-all-static	--with-mysqld-ldflags=-all-static

Linux	2.4.xx	x86_64	(AMD64)	with	gcc	3.2.1:

CXX=gcc	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--disable-shared

Sun	Solaris	8	x86	with	gcc	3.2.3:

CC=gcc	CFLAGS="-O3	-fno-omit-frame-pointer"	CXX=gcc	CXXFLAGS="-O3

-fno-omit-frame-pointer	-felide-constructors	-fno-exceptions

-fno-rtti"	./configure	--prefix=/usr/local/mysql

--localstatedir=/usr/local/mysql/data	--libexecdir=/usr/local/mysql/bin

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--disable-shared	--with-innodb

Sun	Solaris	8	SPARC	with	gcc	3.2:

CC=gcc	CFLAGS="-O3	-fno-omit-frame-pointer"	CXX=gcc	CXXFLAGS="-O3

-fno-omit-frame-pointer	-felide-constructors	-fno-exceptions

-fno-rtti"	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--enable-assembler	--with-named-z-libs=no

--with-named-curses-libs=-lcurses	--disable-shared

Sun	Solaris	8	SPARC	64-bit	with	gcc	3.2:

CC=gcc	CFLAGS="-O3	-m64	-fno-omit-frame-pointer"	CXX=gcc	CXXFLAGS="-O3

-m64	-fno-omit-frame-pointer	-felide-constructors	-fno-exceptions

-fno-rtti"	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--with-named-z-libs=no

--with-named-curses-libs=-lcurses	--disable-shared

Sun	Solaris	9	SPARC	with	gcc	2.95.3:

CC=gcc	CFLAGS="-O3	-fno-omit-frame-pointer"	CXX=gcc	CXXFLAGS="-O3

-fno-omit-frame-pointer	-felide-constructors	-fno-exceptions

-fno-rtti"	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--enable-assembler	--with-named-curses-libs=-lcurses

--disable-shared

Sun	Solaris	9	SPARC	with	cc-5.0	(Sun	Forte	5.0):

CC=cc-5.0	CXX=CC	ASFLAGS="-xarch=v9"	CFLAGS="-Xa	-xstrconst	-mt

-D_FORTEC_	-xarch=v9"	CXXFLAGS="-noex	-mt	-D_FORTEC_	-xarch=v9"

./configure	--prefix=/usr/local/mysql	--with-extra-charsets=complex

--enable-thread-safe-client	--enable-local-infile	--enable-assembler

--with-named-z-libs=no	--enable-thread-safe-client	--disable-shared

IBM	AIX	4.3.2	ppc	with	gcc	3.2.3:

CFLAGS="-O2	-mcpu=powerpc	-Wa,-many	"	CXX=gcc	CXXFLAGS="-O2

-mcpu=powerpc	-Wa,-many	-felide-constructors	-fno-exceptions

-fno-rtti"	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--with-named-z-libs=no	--disable-shared

IBM	AIX	4.3.3	ppc	with	xlC_r	(IBM	Visual	Age	C/C++	6.0):

CC=xlc_r	CFLAGS="-ma	-O2	-qstrict	-qoptimize=2	-qmaxmem=8192"

CXX=xlC_r	CXXFLAGS	="-ma	-O2	-qstrict	-qoptimize=2	-qmaxmem=8192"

./configure	--prefix=/usr/local/mysql	--localstatedir=/usr/local/mysql/data

--libexecdir=/usr/local/mysql/bin	--with-extra-charsets=complex

--enable-thread-safe-client	--enable-local-infile	--with-named-z-libs=no

--disable-shared	--with-innodb

IBM	AIX	5.1.0	ppc	with	gcc	3.3:

CFLAGS="-O2	-mcpu=powerpc	-Wa,-many"	CXX=gcc	CXXFLAGS="-O2	-mcpu=powerpc

-Wa,-many	-felide-constructors	-fno-exceptions	-fno-rtti"	./configure

--prefix=/usr/local/mysql	--with-extra-charsets=complex

--enable-thread-safe-client	--enable-local-infile	--with-named-z-libs=no

--disable-shared

IBM	AIX	5.2.0	ppc	with	xlC_r	(IBM	Visual	Age	C/C++	6.0):

CC=xlc_r	CFLAGS="-ma	-O2	-qstrict	-qoptimize=2	-qmaxmem=8192"

CXX=xlC_r	CXXFLAGS="-ma	-O2	-qstrict	-qoptimize=2	-qmaxmem=8192"

./configure	--prefix=/usr/local/mysql	--localstatedir=/usr/local/mysql/data

--libexecdir=/usr/local/mysql/bin	--with-extra-charsets=complex

--enable-thread-safe-client	--enable-local-infile	--with-named-z-libs=no

--disable-shared	--with-embedded-server	--with-innodb

HP-UX	10.20	pa-risc1.1	with	gcc	3.1:

CFLAGS="-DHPUX	-I/opt/dce/include	-O3	-fPIC"	CXX=gcc	CXXFLAGS="-DHPUX

-I/opt/dce	/include	-felide-constructors	-fno-exceptions	-fno-rtti

-O3	-fPIC"	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--with-pthread	--with-named-thread-libs=-ldce

--with-lib-ccflags=-fPIC	--disable-shared

HP-UX	11.00	pa-risc	with	aCC	(HP	ANSI	C++	B3910B	A.03.50):

CC=cc	CXX=aCC	CFLAGS=+DAportable	CXXFLAGS=+DAportable	./configure

--prefix=/usr/local/mysql	--localstatedir=/usr/local/mysql/data

--libexecdir=/usr/local/mysql/bin	--with-extra-charsets=complex

--enable-thread-safe-client	--enable-local-infile	--disable-shared

--with-embedded-server	--with-innodb

HP-UX	11.11	pa-risc2.0	64bit	with	aCC	(HP	ANSI	C++	B3910B	A.03.33):

CC=cc	CXX=aCC	CFLAGS=+DD64	CXXFLAGS=+DD64	./configure

--prefix=/usr/local/mysql	--with-extra-charsets=complex

--enable-thread-safe-client	--enable-local-infile	--disable-shared

HP-UX	11.11	pa-risc2.0	32bit	with	aCC	(HP	ANSI	C++	B3910B	A.03.33):

CC=cc	CXX=aCC	CFLAGS="+DAportable"	CXXFLAGS="+DAportable"	./configure

--prefix=/usr/local/mysql	--localstatedir=/usr/local/mysql/data

--libexecdir=/usr/local/mysql/bin	--with-extra-charsets=complex

--enable-thread-safe-client	--enable-local-infile	--disable-shared

--with-innodb

HP-UX	11.22	ia64	64bit	with	aCC	(HP	aC++/ANSI	C	B3910B	A.05.50):

CC=cc	CXX=aCC	CFLAGS="+DD64	+DSitanium2"	CXXFLAGS="+DD64	+DSitanium2"

./configure	--prefix=/usr/local/mysql	--localstatedir=/usr/local/mysql/data

--libexecdir=/usr/local/mysql/bin	--with-extra-charsets=complex

--enable-thread-safe-client	--enable-local-infile	--disable-shared

--with-embedded-server	--with-innodb

Apple	Mac	OS	X	10.2	powerpc	with	gcc	3.1:

CC=gcc	CFLAGS="-O3	-fno-omit-frame-pointer"	CXX=gcc	CXXFLAGS="-O3

-fno-omit-frame-pointer	-felide-constructors	-fno-exceptions

-fno-rtti"	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--disable-shared

FreeBSD	4.7	i386	with	gcc	2.95.4:

CFLAGS=-DHAVE_BROKEN_REALPATH	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--enable-assembler	--with-named-z-libs=not-used

--disable-shared

FreeBSD	4.7	i386	using	LinuxThreads	with	gcc	2.95.4:

CFLAGS="-DHAVE_BROKEN_REALPATH	-D__USE_UNIX98	-D_REENTRANT

-D_THREAD_SAFE	-I/usr/local/include/pthread/linuxthreads"

CXXFLAGS="-DHAVE_BROKEN_REALPATH	-D__USE_UNIX98	-D_REENTRANT

-D_THREAD_SAFE	-I/usr/local/include/pthread/linuxthreads"	./configure

--prefix=/usr/local/mysql	--localstatedir=/usr/local/mysql/data

--libexecdir=/usr/local/mysql/bin	--enable-thread-safe-client

--enable-local-infile	--enable-assembler

--with-named-thread-libs="-DHAVE_GLIBC2_STYLE_GETHOSTBYNAME_R

-D_THREAD_SAFE	-I	/usr/local/include/pthread/linuxthreads

-L/usr/local/lib	-llthread	-llgcc_r"	--disable-shared

--with-embedded-server	--with-innodb

QNX	Neutrino	6.2.1	i386	with	gcc	2.95.3qnx-nto	20010315:

CC=gcc	CFLAGS="-O3	-fno-omit-frame-pointer"	CXX=gcc	CXXFLAGS="-O3

-fno-omit-frame-pointer	-felide-constructors	-fno-exceptions

-fno-rtti"	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--disable-shared

The	following	binaries	are	built	on	third-party	systems	kindly	provided	to
MySQL	AB	by	other	users.	These	are	provided	only	as	a	courtesy;	MySQL	AB
does	not	have	full	control	over	these	systems,	so	we	can	provide	only	limited
support	for	the	binaries	built	on	them.

SCO	Unix	3.2v5.0.7	i386	with	gcc	2.95.3:

CFLAGS="-O3	-mpentium"	LDFLAGS=-static	CXX=gcc	CXXFLAGS="-O3	-mpentium

-felide-constructors"	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--with-named-z-libs=no	--enable-thread-safe-client

--disable-shared

SCO	UnixWare	7.1.4	i386	with	CC	3.2:

CC=cc	CFLAGS="-O"	CXX=CC	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--with-named-z-libs=no	--enable-thread-safe-client

--disable-shared	--with-readline

SCO	OpenServer	6.0.0	i386	with	CC	3.2:

CC=cc	CFLAGS="-O"	CXX=CC	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--with-named-z-libs=no	--enable-thread-safe-client

--disable-shared	--with-readline

Compaq	Tru64	OSF/1	V5.1	732	alpha	with	cc/cxx	(Compaq	C	V6.3-029i	/
DIGITAL	C++	V6.1-027):

CC="cc	-pthread"	CFLAGS="-O4	-ansi_alias	-ansi_args	-fast	-inline

speed	-speculate	all"	CXX="cxx	-pthread"	CXXFLAGS="-O4	-ansi_alias

-fast	-inline	speed	-speculate	all	-noexceptions	-nortti"	./configure

--prefix=/usr/local/mysql	--with-extra-charsets=complex

--enable-thread-safe-client	--enable-local-infile

--with-named-thread-libs="-lpthread	-lmach	-lexc	-lc"	--disable-shared

--with-mysqld-ldflags=-all-static

SGI	Irix	6.5	IP32	with	gcc	3.0.1:

CC=gcc	CFLAGS="-O3	-fno-omit-frame-pointer"	CXXFLAGS="-O3

-fno-omit-frame-pointer	-felide-constructors	-fno-exceptions

-fno-rtti"	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--disable-shared

FreeBSD/sparc64	5.0	with	gcc	3.2.1:

CFLAGS=-DHAVE_BROKEN_REALPATH	./configure	--prefix=/usr/local/mysql

--localstatedir=/usr/local/mysql/data	--libexecdir=/usr/local/mysql/bin

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--disable-shared	--with-innodb

The	following	compile	options	have	been	used	for	binary	packages	that	MySQL
AB	provided	in	the	past.	These	binaries	no	longer	are	being	updated,	but	the
compile	options	are	listed	here	for	reference	purposes.

Linux	2.2.xx	SPARC	with	egcs	1.1.2:

CC=gcc	CFLAGS="-O3	-fno-omit-frame-pointer"	CXX=gcc	CXXFLAGS="-O3

-fno-omit-frame-pointer	-felide-constructors	-fno-exceptions

-fno-rtti"	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex	--enable-thread-safe-client

--enable-local-infile	--enable-assembler	--disable-shared

Linux	2.2.x	with	x686	with	gcc	2.95.2:

CFLAGS="-O3	-mpentiumpro"	CXX=gcc	CXXFLAGS="-O3	-mpentiumpro

-felide-constructors	-fno-exceptions	-fno-rtti"	./configure

--prefix=/usr/local/mysql	--enable-assembler

--with-mysqld-ldflags=-all-static	--disable-shared

--with-extra-charsets=complex

SunOS	4.1.4	2	sun4c	with	gcc	2.7.2.1:

CC=gcc	CXX=gcc	CXXFLAGS="-O3	-felide-constructors"	./configure

--prefix=/usr/local/mysql	--disable-shared	--with-extra-charsets=complex

--enable-assembler

SunOS	5.5.1	(and	above)	sun4u	with	egcs	1.0.3a	or	2.90.27	or	gcc	2.95.2
and	newer:

CC=gcc	CFLAGS="-O3"	CXX=gcc	CXXFLAGS="-O3	-felide-constructors

-fno-exceptions	-fno-rtti"	./configure	--prefix=/usr/local/mysql

--with-low-memory	--with-extra-charsets=complex	--enable-assembler

SunOS	5.6	i86pc	with	gcc	2.8.1:

CC=gcc	CXX=gcc	CXXFLAGS=-O3	./configure	--prefix=/usr/local/mysql

--with-low-memory	--with-extra-charsets=complex

BSDI	BSD/OS	3.1	i386	with	gcc	2.7.2.1:

CC=gcc	CXX=gcc	CXXFLAGS=-O	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex

BSDI	BSD/OS	2.1	i386	with	gcc	2.7.2:

CC=gcc	CXX=gcc	CXXFLAGS=-O3	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex

AIX	4.2	with	gcc	2.7.2.2:

CC=gcc	CXX=gcc	CXXFLAGS=-O3	./configure	--prefix=/usr/local/mysql

--with-extra-charsets=complex

2.1.3.	How	to	Get	MySQL

Check	our	downloads	page	at	http://dev.mysql.com/downloads/	for	information
about	the	current	version	of	MySQL	and	for	downloading	instructions.	For	a
complete	up-to-date	list	of	MySQL	download	mirror	sites,	see
http://dev.mysql.com/downloads/mirrors.html.	You	can	also	find	information
there	about	becoming	a	MySQL	mirror	site	and	how	to	report	a	bad	or	out-of-
date	mirror.

Our	main	mirror	is	located	at	http://mirrors.sunsite.dk/mysql/.

2.1.4.	Verifying	Package	Integrity	Using	MD5	Checksums	or
GnuPG

After	you	have	downloaded	the	MySQL	package	that	suits	your	needs	and

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/mirrors.html
http://mirrors.sunsite.dk/mysql/

before	you	attempt	to	install	it,	you	should	make	sure	that	it	is	intact	and	has	not
been	tampered	with.	MySQL	AB	offers	three	means	of	integrity	checking:

MD5	checksums

Cryptographic	signatures	using	GnuPG,	the	GNU	Privacy	Guard

For	RPM	packages,	the	built-in	RPM	integrity	verification	mechanism

The	following	sections	describe	how	to	use	these	methods.

If	you	notice	that	the	MD5	checksum	or	GPG	signatures	do	not	match,	first	try
to	download	the	respective	package	one	more	time,	perhaps	from	another	mirror
site.	If	you	repeatedly	cannot	successfully	verify	the	integrity	of	the	package,
please	notify	us	about	such	incidents,	including	the	full	package	name	and	the
download	site	you	have	been	using,	at	<webmaster@mysql.com>	or
<build@mysql.com>.	Do	not	report	downloading	problems	using	the	bug-
reporting	system.

2.1.4.1.	Verifying	the	MD5	Checksum

After	you	have	downloaded	a	MySQL	package,	you	should	make	sure	that	its
MD5	checksum	matches	the	one	provided	on	the	MySQL	download	pages.	Each
package	has	an	individual	checksum	that	you	can	verify	with	the	following
command,	where	package_name	is	the	name	of	the	package	you	downloaded:

shell>	md5sum	package_name

Example:

shell>	md5sum	mysql-standard-5.0.25-linux-i686.tar.gz

aaab65abbec64d5e907dcd41b8699945		mysql-standard-5.0.25-linux-i686.tar.gz

You	should	verify	that	the	resulting	checksum	(the	string	of	hexadecimal	digits)
matches	the	one	displayed	on	the	download	page	immediately	below	the
respective	package.

Note:	Make	sure	to	verify	the	checksum	of	the	archive	file	(for	example,	the
.zip	or	.tar.gz	file)	and	not	of	the	files	that	are	contained	inside	of	the	archive.

mailto:webmaster@mysql.com
mailto:build@mysql.com

Note	that	not	all	operating	systems	support	the	md5sum	command.	On	some,	it
is	simply	called	md5,	and	others	do	not	ship	it	at	all.	On	Linux,	it	is	part	of	the
GNU	Text	Utilities	package,	which	is	available	for	a	wide	range	of	platforms.
You	can	download	the	source	code	from	http://www.gnu.org/software/textutils/
as	well.	If	you	have	OpenSSL	installed,	you	can	use	the	command	openssl	md5
package_name	instead.	A	Windows	implementation	of	the	md5	command	line
utility	is	available	from	http://www.fourmilab.ch/md5/.	winMd5Sum	is	a
graphical	MD5	checking	tool	that	can	be	obtained	from
http://www.nullriver.com/index/products/winmd5sum.

2.1.4.2.	Signature	Checking	Using	GnuPG

Another	method	of	verifying	the	integrity	and	authenticity	of	a	package	is	to	use
cryptographic	signatures.	This	is	more	reliable	than	using	MD5	checksums,	but
requires	more	work.

At	MySQL	AB,	we	sign	MySQL	downloadable	packages	with	GnuPG	(GNU
Privacy	Guard).	GnuPG	is	an	Open	Source	alternative	to	the	well-known	Pretty
Good	Privacy	(PGP)	by	Phil	Zimmermann.	See	http://www.gnupg.org/	for	more
information	about	GnuPG	and	how	to	obtain	and	install	it	on	your	system.	Most
Linux	distributions	ship	with	GnuPG	installed	by	default.	For	more	information
about	GnuPG,	see	http://www.openpgp.org/.

To	verify	the	signature	for	a	specific	package,	you	first	need	to	obtain	a	copy	of
MySQL	AB's	public	GPG	build	key,	which	you	can	download	from
http://www.keyserver.net/.	The	key	that	you	want	to	obtain	is	named
build@mysql.com.	Alternatively,	you	can	cut	and	paste	the	key	directly	from	the
following	text:

Key	ID:

pub		1024D/5072E1F5	2003-02-03

					MySQL	Package	signing	key	(www.mysql.com)	<build@mysql.com>

Fingerprint:	A4A9	4068	76FC	BD3C	4567		70C8	8C71	8D3B	5072	E1F5

Public	Key	(ASCII-armored):

-----BEGIN	PGP	PUBLIC	KEY	BLOCK-----

Version:	GnuPG	v1.0.6	(GNU/Linux)

Comment:	For	info	see	http://www.gnupg.org

mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bPlUWC3

RODjQReyCITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+OmSLN9brZ

http://www.gnu.org/software/textutils/
http://www.fourmilab.ch/md5/
http://www.nullriver.com/index/products/winmd5sum
http://www.gnupg.org/
http://www.openpgp.org/
http://www.keyserver.net/

fw2vOUgCmYv2hW0hyDHuvYlQA/BThQoADgj8AW6/0Lo7V1W9/8VuHP0gQwCgvzV3

BqOxRznNCRCRxAuAuVztHRcEAJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNW

hxwR9pRWVArNYJdDRT+rf2RUe3vpquKNQU/hnEIUHJRQqYHo8gTxvxXNQc7fJYLV

K2HtkrPbP72vwsEKMYhhr0eKCbtLGfls9krjJ6sBgACyP/Vb7hiPwxh6rDZ7ITnE

kYpXBACmWpP8NJTkamEnPCia2ZoOHODANwpUkP43I7jsDmgtobZX9qnrAXw+uNDI

QJEXM6FSbi0LLtZciNlYsafwAPEOMDKpMqAK6IyisNtPvaLd8lH0bPAnWqcyefep

rv0sxxqUEMcM3o7wwgfN83POkDasDbs3pjwPhxvhz6//62zQJ7Q7TXlTUUwgUGFj

a2FnZSBzaWduaW5nIGtleSAod3d3Lm15c3FsLmNvbSkgPGJ1aWxkQG15c3FsLmNv

bT6IXQQTEQIAHQUCPj6jDAUJCWYBgAULBwoDBAMVAwIDFgIBAheAAAoJEIxxjTtQ

cuH1cY4AnilUwTXn8MatQOiG0a/bPxrvK/gCAJ4oinSNZRYTnblChwFaazt7PF3q

zIhMBBMRAgAMBQI+PqPRBYMJZgC7AAoJEElQ4SqycpHyJOEAn1mxHijft00bKXvu

cSo/pECUmppiAJ41M9MRVj5VcdH/KN/KjRtW6tHFPYhMBBMRAgAMBQI+QoIDBYMJ

YiKJAAoJELb1zU3GuiQ/lpEAoIhpp6BozKI8p6eaabzF5MlJH58pAKCu/ROofK8J

Eg2aLos+5zEYrB/LsrkCDQQ+PqMdEAgA7+GJfxbMdY4wslPnjH9rF4N2qfWsEN/l

xaZoJYc3a6M02WCnHl6ahT2/tBK2w1QI4YFteR47gCvtgb6O1JHffOo2HfLmRDRi

Rjd1DTCHqeyX7CHhcghj/dNRlW2Z0l5QFEcmV9U0Vhp3aFfWC4Ujfs3LU+hkAWzE

7zaD5cH9J7yv/6xuZVw411x0h4UqsTcWMu0iM1BzELqX1DY7LwoPEb/O9Rkbf4fm

Le11EzIaCa4PqARXQZc4dhSinMt6K3X4BrRsKTfozBu74F47D8Ilbf5vSYHbuE5p

/1oIDznkg/p8kW+3FxuWrycciqFTcNz215yyX39LXFnlLzKUb/F5GwADBQf+Lwqq

a8CGrRfsOAJxim63CHfty5mUc5rUSnTslGYEIOCR1BeQauyPZbPDsDD9MZ1ZaSaf

anFvwFG6Llx9xkU7tzq+vKLoWkm4u5xf3vn55VjnSd1aQ9eQnUcXiL4cnBGoTbOW

I39EcyzgslzBdC++MPjcQTcA7p6JUVsP6oAB3FQWg54tuUo0Ec8bsM8b3Ev42Lmu

QT5NdKHGwHsXTPtl0klk4bQk4OajHsiy1BMahpT27jWjJlMiJc+IWJ0mghkKHt92

6s/ymfdf5HkdQ1cyvsz5tryVI3Fx78XeSYfQvuuwqp2H139pXGEkg0n6KdUOetdZ

Whe70YGNPw1yjWJT1IhMBBgRAgAMBQI+PqMdBQkJZgGAAAoJEIxxjTtQcuH17p4A

n3r1QpVC9yhnW2cSAjq+kr72GX0eAJ4295kl6NxYEuFApmr1+0uUq/SlsQ==

=YJkx

-----END	PGP	PUBLIC	KEY	BLOCK-----

To	import	the	build	key	into	your	personal	public	GPG	keyring,	use	gpg	--
import.	For	example,	if	you	have	saved	the	key	in	a	file	named
mysql_pubkey.asc,	the	import	command	looks	like	this:

shell>	gpg	--import	mysql_pubkey.asc

After	you	have	downloaded	and	imported	the	public	build	key,	download	your
desired	MySQL	package	and	the	corresponding	signature,	which	also	is
available	from	the	download	page.	The	signature	file	has	the	same	name	as	the
distribution	file	with	an	.asc	extension.	For	example:

Distribution	file mysql-standard-5.0.25-linux-i686.tar.gz

Signature	file mysql-standard-5.0.25-linux-i686.tar.gz.asc

Make	sure	that	both	files	are	stored	in	the	same	directory	and	then	run	the
following	command	to	verify	the	signature	for	the	distribution	file:

shell>	gpg	--verify	package_name.asc

Example:

shell>	gpg	--verify	mysql-standard-5.0.25-linux-i686.tar.gz.asc

gpg:	Signature	made	Tue	12	Jul	2005	23:35:41	EST	using	DSA	key	ID	5072E1F5

gpg:	Good	signature	from	"MySQL	Package	signing	key	(www.mysql.com)	<build@mysql.com>"

The	Good	signature	message	indicates	that	everything	is	all	right.	You	can
ignore	any	insecure	memory	warning	you	might	obtain.

See	the	GPG	documentation	for	more	information	on	how	to	work	with	public
keys.

2.1.4.3.	Signature	Checking	Using	RPM

For	RPM	packages,	there	is	no	separate	signature.	RPM	packages	have	a	built-in
GPG	signature	and	MD5	checksum.	You	can	verify	a	package	by	running	the
following	command:

shell>	rpm	--checksig	package_name.rpm

Example:

shell>	rpm	--checksig	MySQL-server-5.0.25-0.i386.rpm

MySQL-server-5.0.25-0.i386.rpm:	md5	gpg	OK

Note:	If	you	are	using	RPM	4.1	and	it	complains	about	(GPG)	NOT	OK	(MISSING
KEYS:	GPG#5072e1f5),	even	though	you	have	imported	the	MySQL	public	build
key	into	your	own	GPG	keyring,	you	need	to	import	the	key	into	the	RPM
keyring	first.	RPM	4.1	no	longer	uses	your	personal	GPG	keyring	(or	GPG
itself).	Rather,	it	maintains	its	own	keyring	because	it	is	a	system-wide
application	and	a	user's	GPG	public	keyring	is	a	user-specific	file.	To	import	the
MySQL	public	key	into	the	RPM	keyring,	first	obtain	the	key	as	described	in
Section	2.1.4.2,	“Signature	Checking	Using	GnuPG”.	Then	use	rpm	--import	to
import	the	key.	For	example,	if	you	have	saved	the	public	key	in	a	file	named
mysql_pubkey.asc,	import	it	using	this	command:

shell>	rpm	--import	mysql_pubkey.asc

If	you	need	to	obtain	the	MySQL	public	key,	see	Section	2.1.4.2,	“Signature

Checking	Using	GnuPG”.

2.1.5.	Installation	Layouts

This	section	describes	the	default	layout	of	the	directories	created	by	installing
binary	or	source	distributions	provided	by	MySQL	AB.	A	distribution	provided
by	another	vendor	might	use	a	layout	different	from	those	shown	here.

For	MySQL	5.0	on	Windows,	the	default	installation	directory	is	C:\Program
Files\MySQL\MySQL	Server	5.0.	(Some	Windows	users	prefer	to	install	in
C:\mysql,	the	directory	that	formerly	was	used	as	the	default.	However,	the
layout	of	the	subdirectories	remains	the	same.)	The	installation	directory	has	the
following	subdirectories:

Directory Contents	of	Directory
bin Client	programs	and	the	mysqld	server
data Log	files,	databases
Docs Documentation
examples Example	programs	and	scripts
include Include	(header)	files
lib Libraries
scripts Utility	scripts
share Error	message	files

Installations	created	from	MySQL	AB's	Linux	RPM	distributions	result	in	files
under	the	following	system	directories:

Directory Contents	of	Directory
/usr/bin Client	programs	and	scripts
/usr/sbin The	mysqld	server
/var/lib/mysql Log	files,	databases
/usr/share/doc/packages Documentation
/usr/include/mysql Include	(header)	files
/usr/lib/mysql Libraries
/usr/share/mysql

Error	message	and	character	set	files
/usr/share/sql-bench Benchmarks

On	Unix,	a	tar	file	binary	distribution	is	installed	by	unpacking	it	at	the
installation	location	you	choose	(typically	/usr/local/mysql)	and	creates	the
following	directories	in	that	location:

Directory Contents	of	Directory
bin Client	programs	and	the	mysqld	server
data Log	files,	databases
docs Documentation,	ChangeLog
include Include	(header)	files
lib Libraries
scripts mysql_install_db
share/mysql Error	message	files
sql-bench Benchmarks

A	source	distribution	is	installed	after	you	configure	and	compile	it.	By	default,
the	installation	step	installs	files	under	/usr/local,	in	the	following
subdirectories:

Directory Contents	of	Directory
bin Client	programs	and	scripts
include/mysql Include	(header)	files
info Documentation	in	Info	format
lib/mysql Libraries
libexec The	mysqld	server
share/mysql Error	message	files
sql-bench Benchmarks	and	crash-me	test
var Databases	and	log	files

Within	its	installation	directory,	the	layout	of	a	source	installation	differs	from
that	of	a	binary	installation	in	the	following	ways:

The	mysqld	server	is	installed	in	the	libexec	directory	rather	than	in	the
bin	directory.

The	data	directory	is	var	rather	than	data.

mysql_install_db	is	installed	in	the	bin	directory	rather	than	in	the
scripts	directory.

The	header	file	and	library	directories	are	include/mysql	and	lib/mysql
rather	than	include	and	lib.

You	can	create	your	own	binary	installation	from	a	compiled	source	distribution
by	executing	the	scripts/make_binary_distribution	script	from	the	top
directory	of	the	source	distribution.

2.2.	Standard	MySQL	Installation	Using	a	Binary
Distribution

The	next	several	sections	cover	the	installation	of	MySQL	on	platforms	where
we	offer	packages	using	the	native	packaging	format	of	the	respective	platform.
(This	is	also	known	as	performing	a	“binary	install.”)	However,	binary
distributions	of	MySQL	are	available	for	many	other	platforms	as	well.	See
Section	2.8,	“Installing	MySQL	on	Other	Unix-Like	Systems”,	for	generic
installation	instructions	for	these	packages	that	apply	to	all	platforms.

See	Section	2.1,	“General	Installation	Issues”,	for	more	information	on	what
other	binary	distributions	are	available	and	how	to	obtain	them.

2.3.	Installing	MySQL	on	Windows

A	native	Windows	distribution	of	MySQL	has	been	available	from	MySQL	AB
since	version	3.21	and	represents	a	sizable	percentage	of	the	daily	downloads	of
MySQL.	This	section	describes	the	process	for	installing	MySQL	on	Windows.

Note:	If	you	are	upgrading	MySQL	from	an	existing	installation	older	than
MySQL	4.1.5,	you	must	first	perform	the	the	procedure	described	in
Section	2.3.14,	“Upgrading	MySQL	on	Windows”.

To	run	MySQL	on	Windows,	you	need	the	following:

A	32-bit	Windows	operating	system	such	as	9x,	Me,	NT,	2000,	XP,	or
Windows	Server	2003.

A	Windows	NT-based	operating	system	(NT,	2000,	XP,	2003)	permits	you
to	run	the	MySQL	server	as	a	service.	The	use	of	a	Windows	NT-based
operating	system	is	strongly	recommended.	See	Section	2.3.11,	“Starting
MySQL	as	a	Windows	Service”.

Generally,	you	should	install	MySQL	on	Windows	using	an	account	that
has	administrator	rights.	Otherwise,	you	may	encounter	problems	with
certain	operations	such	as	editing	the	PATH	environment	variable	or
accessing	the	Service	Control	Manager.

TCP/IP	protocol	support.

Enough	space	on	the	hard	drive	to	unpack,	install,	and	create	the	databases
in	accordance	with	your	requirements	(generally	a	minimum	of	200
megabytes	is	recommended.)

There	may	also	be	other	requirements,	depending	on	how	you	plan	to	use
MySQL:

If	you	plan	to	connect	to	the	MySQL	server	via	ODBC,	you	need	a
Connector/ODBC	driver.	See	Chapter	23,	Connectors.

If	you	need	tables	with	a	size	larger	than	4GB,	install	MySQL	on	an	NTFS

or	newer	filesystem.	Don't	forget	to	use	MAX_ROWS	and	AVG_ROW_LENGTH
when	you	create	tables.	See	Section	13.1.5,	“CREATE	TABLE	Syntax”.

MySQL	for	Windows	is	available	in	several	distribution	formats:

Binary	distributions	are	available	that	contain	a	setup	program	that	installs
everything	you	need	so	that	you	can	start	the	server	immediately.	Another
binary	distribution	format	contains	an	archive	that	you	simply	unpack	in	the
installation	location	and	then	configure	yourself.	For	details,	see
Section	2.3.1,	“Choosing	An	Installation	Package”.

The	source	distribution	contains	all	the	code	and	support	files	for	building
the	executables	using	the	Visual	Studio	7.1	compiler	system.

Generally	speaking,	you	should	use	a	binary	distribution	that	includes	an
installer.	It	is	simpler	to	use	than	the	others,	and	you	need	no	additional	tools	to
get	MySQL	up	and	running.	The	installer	for	the	Windows	version	of	MySQL,
combined	with	a	GUI	Configuration	Wizard,	automatically	installs	MySQL,
creates	an	option	file,	starts	the	server,	and	secures	the	default	user	accounts.

The	following	section	describes	how	to	install	MySQL	on	Windows	using	a
binary	distribution.	To	use	an	installation	package	that	does	not	include	an
installer,	follow	the	procedure	described	in	Section	2.3.5,	“Installing	MySQL
from	a	Noinstall	Zip	Archive”.	To	install	using	a	source	distribution,	see
Section	2.9.6,	“Installing	MySQL	from	Source	on	Windows”.

MySQL	distributions	for	Windows	can	be	downloaded	from
http://dev.mysql.com/downloads/.	See	Section	2.1.3,	“How	to	Get	MySQL”.

2.3.1.	Choosing	An	Installation	Package

For	MySQL	5.0,	there	are	three	installation	packages	to	choose	from	when
installing	MySQL	on	Windows:

The	Essentials	Package:	This	package	has	a	filename	similar	to	mysql-
essential-5.0.25-win32.msi	and	contains	the	minimum	set	of	files
needed	to	install	MySQL	on	Windows,	including	the	Configuration	Wizard.
This	package	does	not	include	optional	components	such	as	the	embedded
server	and	benchmark	suite.

http://dev.mysql.com/downloads/

The	Complete	Package:	This	package	has	a	filename	similar	to	mysql-
5.0.25-win32.zip	and	contains	all	files	needed	for	a	complete	Windows
installation,	including	the	Configuration	Wizard.	This	package	includes
optional	components	such	as	the	embedded	server	and	benchmark	suite.

The	Noinstall	Archive:	This	package	has	a	filename	similar	to	mysql-
noinstall-5.0.25-win32.zip	and	contains	all	the	files	found	in	the
Complete	install	package,	with	the	exception	of	the	Configuration	Wizard.
This	package	does	not	include	an	automated	installer,	and	must	be	manually
installed	and	configured.

The	Essentials	package	is	recommended	for	most	users.	It	is	provided	as	an	.msi
file	for	use	with	the	Windows	Installer.	The	Complete	and	Noinstall	distributions
are	packaged	as	Zip	archives.	To	use	them,	you	must	have	a	tool	that	can	unpack
.zip	files.

Your	choice	of	install	package	affects	the	installation	process	you	must	follow.	If
you	choose	to	install	either	the	Essentials	or	Complete	install	packages,	see
Section	2.3.2,	“Installing	MySQL	with	the	Automated	Installer”.	If	you	choose
to	install	MySQL	from	the	Noinstall	archive,	see	Section	2.3.5,	“Installing
MySQL	from	a	Noinstall	Zip	Archive”.

2.3.2.	Installing	MySQL	with	the	Automated	Installer

New	MySQL	users	can	use	the	MySQL	Installation	Wizard	and	MySQL
Configuration	Wizard	to	install	MySQL	on	Windows.	These	are	designed	to
install	and	configure	MySQL	in	such	a	way	that	new	users	can	immediately	get
started	using	MySQL.

The	MySQL	Installation	Wizard	and	MySQL	Configuration	Wizard	are	available
in	the	Essentials	and	Complete	install	packages.	They	are	recommended	for	most
standard	MySQL	installations.	Exceptions	include	users	who	need	to	install
multiple	instances	of	MySQL	on	a	single	server	host	and	advanced	users	who
want	complete	control	of	server	configuration.

2.3.3.	Using	the	MySQL	Installation	Wizard

2.3.3.1.	Introduction	to	the	Installation	Wizard

MySQL	Installation	Wizard	is	an	installer	for	the	MySQL	server	that	uses	the
latest	installer	technologies	for	Microsoft	Windows.	The	MySQL	Installation
Wizard,	in	combination	with	the	MySQL	Configuration	Wizard,	allows	a	user	to
install	and	configure	a	MySQL	server	that	is	ready	for	use	immediately	after
installation.

The	MySQL	Installation	Wizard	is	the	standard	installer	for	all	MySQL	server
distributions,	version	4.1.5	and	higher.	Users	of	previous	versions	of	MySQL
need	to	shut	down	and	remove	their	existing	MySQL	installations	manually
before	installing	MySQL	with	the	MySQL	Installation	Wizard.	See
Section	2.3.3.7,	“Upgrading	MySQL	with	the	Installation	Wizard”,	for	more
information	on	upgrading	from	a	previous	version.

Microsoft	has	included	an	improved	version	of	their	Microsoft	Windows
Installer	(MSI)	in	the	recent	versions	of	Windows.	MSI	has	become	the	de-facto
standard	for	application	installations	on	Windows	2000,	Windows	XP,	and
Windows	Server	2003.	The	MySQL	Installation	Wizard	makes	use	of	this
technology	to	provide	a	smoother	and	more	flexible	installation	process.

The	Microsoft	Windows	Installer	Engine	was	updated	with	the	release	of
Windows	XP;	those	using	a	previous	version	of	Windows	can	reference	this
Microsoft	Knowledge	Base	article	for	information	on	upgrading	to	the	latest
version	of	the	Windows	Installer	Engine.

In	addition,	Microsoft	has	introduced	the	WiX	(Windows	Installer	XML)	toolkit
recently.	This	is	the	first	highly	acknowledged	Open	Source	project	from
Microsoft.	We	have	switched	to	WiX	because	it	is	an	Open	Source	project	and	it
allows	us	to	handle	the	complete	Windows	installation	process	in	a	flexible
manner	using	scripts.

Improving	the	MySQL	Installation	Wizard	depends	on	the	support	and	feedback
of	users	like	you.	If	you	find	that	the	MySQL	Installation	Wizard	is	lacking
some	feature	important	to	you,	or	if	you	discover	a	bug,	please	report	it	in	our
bugs	database	using	the	instructions	given	in	Section	1.8,	“How	to	Report	Bugs
or	Problems”.

2.3.3.2.	Downloading	and	Starting	the	MySQL	Installation	Wizard

The	MySQL	installation	packages	can	be	downloaded	from

http://support.microsoft.com/default.aspx?scid=kb;EN-US;292539

http://dev.mysql.com/downloads/.	If	the	package	you	download	is	contained
within	a	Zip	archive,	you	need	to	extract	the	archive	first.

The	process	for	starting	the	wizard	depends	on	the	contents	of	the	installation
package	you	download.	If	there	is	a	setup.exe	file	present,	double-click	it	to
start	the	installation	process.	If	there	is	an	.msi	file	present,	double-click	it	to
start	the	installation	process.

2.3.3.3.	Choosing	an	Install	Type

There	are	three	installation	types	available:	Typical,	Complete,	and	Custom.

The	Typical	installation	type	installs	the	MySQL	server,	the	mysql	command-
line	client,	and	the	command-line	utilities.	The	command-line	clients	and
utilities	include	mysqldump,	myisamchk,	and	several	other	tools	to	help	you
manage	the	MySQL	server.

The	Complete	installation	type	installs	all	components	included	in	the
installation	package.	The	full	installation	package	includes	components	such	as
the	embedded	server	library,	the	benchmark	suite,	support	scripts,	and
documentation.

The	Custom	installation	type	gives	you	complete	control	over	which	packages
you	wish	to	install	and	the	installation	path	that	is	used.	See	Section	2.3.3.4,
“The	Custom	Install	Dialog”,	for	more	information	on	performing	a	custom
install.

If	you	choose	the	Typical	or	Complete	installation	types	and	click	the	Next
button,	you	advance	to	the	confirmation	screen	to	verify	your	choices	and	begin
the	installation.	If	you	choose	the	Custom	installation	type	and	click	the	Next
button,	you	advance	to	the	custom	installation	dialog,	described	in
Section	2.3.3.4,	“The	Custom	Install	Dialog”.

2.3.3.4.	The	Custom	Install	Dialog

If	you	wish	to	change	the	installation	path	or	the	specific	components	that	are
installed	by	the	MySQL	Installation	Wizard,	choose	the	Custom	installation
type.

http://dev.mysql.com/downloads/

A	tree	view	on	the	left	side	of	the	custom	install	dialog	lists	all	available
components.	Components	that	are	not	installed	have	a	red	X	icon;	components
that	are	installed	have	a	gray	icon.	To	change	whether	a	component	is	installed,
click	on	that	component's	icon	and	choose	a	new	option	from	the	drop-down	list
that	appears.

You	can	change	the	default	installation	path	by	clicking	the	Change...	button	to
the	right	of	the	displayed	installation	path.

After	choosing	your	installation	components	and	installation	path,	click	the	Next
button	to	advance	to	the	confirmation	dialog.

2.3.3.5.	The	Confirmation	Dialog

Once	you	choose	an	installation	type	and	optionally	choose	your	installation
components,	you	advance	to	the	confirmation	dialog.	Your	installation	type	and
installation	path	are	displayed	for	you	to	review.

To	install	MySQL	if	you	are	satisfied	with	your	settings,	click	the	Install	button.
To	change	your	settings,	click	the	Back	button.	To	exit	the	MySQL	Installation
Wizard	without	installing	MySQL,	click	the	Cancel	button.

After	installation	is	complete,	you	have	the	option	of	registering	with	the
MySQL	web	site.	Registration	gives	you	access	to	post	in	the	MySQL	forums	at
forums.mysql.com,	along	with	the	ability	to	report	bugs	at	bugs.mysql.com	and
to	subscribe	to	our	newsletter.	The	final	screen	of	the	installer	provides	a
summary	of	the	installation	and	gives	you	the	option	to	launch	the	MySQL
Configuration	Wizard,	which	you	can	use	to	create	a	configuration	file,	install
the	MySQL	service,	and	configure	security	settings.

2.3.3.6.	Changes	Made	by	MySQL	Installation	Wizard

Once	you	click	the	Install	button,	the	MySQL	Installation	Wizard	begins	the
installation	process	and	makes	certain	changes	to	your	system	which	are
described	in	the	sections	that	follow.

Changes	to	the	Registry

The	MySQL	Installation	Wizard	creates	one	Windows	registry	key	in	a	typical

http://forums.mysql.com
http://bugs.mysql.com

install	situation,	located	in	HKEY_LOCAL_MACHINE\SOFTWARE\MySQL	AB.

The	MySQL	Installation	Wizard	creates	a	key	named	after	the	major	version	of
the	server	that	is	being	installed,	such	as	MySQL	Server	5.0.	It	contains	two
string	values,	Location	and	Version.	The	Location	string	contains	the	path	to
the	installation	directory.	In	a	default	installation	it	contains	C:\Program
Files\MySQL\MySQL	Server	5.0\.	The	Version	string	contains	the	release
number.	For	example,	for	an	installation	of	MySQL	Server	5.0.25,	the	key
contains	a	value	of	5.0.25.

These	registry	keys	are	used	to	help	external	tools	identify	the	installed	location
of	the	MySQL	server,	preventing	a	complete	scan	of	the	hard-disk	to	determine
the	installation	path	of	the	MySQL	server.	The	registry	keys	are	not	required	to
run	the	server,	and	if	you	install	MySQL	using	the	noinstall	Zip	archive,	the
registry	keys	are	not	created.

Changes	to	the	Start	Menu

The	MySQL	Installation	Wizard	creates	a	new	entry	in	the	Windows	Start	menu
under	a	common	MySQL	menu	heading	named	after	the	major	version	of
MySQL	that	you	have	installed.	For	example,	if	you	install	MySQL	5.0,	the
MySQL	Installation	Wizard	creates	a	MySQL	Server	5.0	section	in	the	Start
menu.

The	following	entries	are	created	within	the	new	Start	menu	section:

MySQL	Command	Line	Client:	This	is	a	shortcut	to	the	mysql	command-
line	client	and	is	configured	to	connect	as	the	root	user.	The	shortcut
prompts	for	a	root	user	password	when	you	connect.

MySQL	Server	Instance	Config	Wizard:	This	is	a	shortcut	to	the	MySQL
Configuration	Wizard.	Use	this	shortcut	to	configure	a	newly	installed
server,	or	to	reconfigure	an	existing	server.

MySQL	Documentation:	This	is	a	link	to	the	MySQL	server	documentation
that	is	stored	locally	in	the	MySQL	server	installation	directory.	This	option
is	not	available	when	the	MySQL	server	is	installed	using	the	Essentials
installation	package.

Changes	to	the	File	System

The	MySQL	Installation	Wizard	by	default	installs	the	MySQL	5.0	server	to
C:\Program	Files\MySQL\MySQL	Server	5.0,	where	Program	Files	is	the
default	location	for	applications	in	your	system,	and	5.0	is	the	major	version	of
your	MySQL	server.	This	is	the	recommended	location	for	the	MySQL	server,
replacing	the	former	default	location	C:\mysql.

By	default,	all	MySQL	applications	are	stored	in	a	common	directory	at
C:\Program	Files\MySQL,	where	Program	Files	is	the	default	location	for
applications	in	your	Windows	installation.	A	typical	MySQL	installation	on	a
developer	machine	might	look	like	this:

C:\Program	Files\MySQL\MySQL	Server	5.0

C:\Program	Files\MySQL\MySQL	Administrator	1.0

C:\Program	Files\MySQL\MySQL	Query	Browser	1.0

This	approach	makes	it	easier	to	manage	and	maintain	all	MySQL	applications
installed	on	a	particular	system.

2.3.3.7.	Upgrading	MySQL	with	the	Installation	Wizard

The	MySQL	Installation	Wizard	can	perform	server	upgrades	automatically
using	the	upgrade	capabilities	of	MSI.	That	means	you	do	not	need	to	remove	a
previous	installation	manually	before	installing	a	new	release.	The	installer
automatically	shuts	down	and	removes	the	previous	MySQL	service	before
installing	the	new	version.

Automatic	upgrades	are	available	only	when	upgrading	between	installations
that	have	the	same	major	and	minor	version	numbers.	For	example,	you	can
upgrade	automatically	from	MySQL	4.1.5	to	MySQL	4.1.6,	but	not	from
MySQL	4.1	to	MySQL	5.0.

See	Section	2.3.14,	“Upgrading	MySQL	on	Windows”.

2.3.4.	Using	the	Configuration	Wizard

2.3.4.1.	Introduction	to	the	Configuration	Wizard

The	MySQL	Configuration	Wizard	helps	automate	the	process	of	configuring
your	server	under	Windows.	The	MySQL	Configuration	Wizard	creates	a

custom	my.ini	file	by	asking	you	a	series	of	questions	and	then	applying	your
responses	to	a	template	to	generate	a	my.ini	file	that	is	tuned	to	your
installation.

The	MySQL	Configuration	Wizard	is	included	with	the	MySQL	5.0	server,	and
is	currently	available	for	Windows	users	only.

The	MySQL	Configuration	Wizard	is	to	a	large	extent	the	result	of	feedback	that
MySQL	AB	has	received	from	many	users	over	a	period	of	several	years.
However,	if	you	find	that	it	lacks	some	feature	important	to	you,	please	report	it
in	our	bugs	database	using	the	instructions	given	in	Section	1.8,	“How	to	Report
Bugs	or	Problems”.

2.3.4.2.	Starting	the	MySQL	Configuration	Wizard

The	MySQL	Configuration	Wizard	is	typically	launched	from	the	MySQL
Installation	Wizard,	as	the	MySQL	Installation	Wizard	exits.	You	can	also
launch	the	MySQL	Configuration	Wizard	by	clicking	the	MySQL	Server
Instance	Config	Wizard	entry	in	the	MySQL	section	of	the	Windows	Start	menu.

Alternatively,	you	can	navigate	to	the	bin	directory	of	your	MySQL	installation
and	launch	the	MySQLInstanceConfig.exe	file	directly.

2.3.4.3.	Choosing	a	Maintenance	Option

If	the	MySQL	Configuration	Wizard	detects	an	existing	my.ini	file,	you	have
the	option	of	either	reconfiguring	your	existing	server,	or	removing	the	server
instance	by	deleting	the	my.ini	file	and	stopping	and	removing	the	MySQL
service.

To	reconfigure	an	existing	server,	choose	the	Re-configure	Instance	option	and
click	the	Next	button.	Your	existing	my.ini	file	is	renamed	to
mytimestamp.ini.bak,	where	timestamp	is	the	date	and	time	at	which	the	existing
my.ini	file	was	created.	To	remove	the	existing	server	instance,	choose	the
Remove	Instance	option	and	click	the	Next	button.

If	you	choose	the	Remove	Instance	option,	you	advance	to	a	confirmation
window.	Click	the	Execute	button.	The	MySQL	Configuration	Wizard	stops	and
removes	the	MySQL	service,	and	then	deletes	the	my.ini	file.	The	server

installation	and	its	data	folder	are	not	removed.

If	you	choose	the	Re-configure	Instance	option,	you	advance	to	the
Configuration	Type	dialog	where	you	can	choose	the	type	of	installation	that	you
wish	to	configure.

2.3.4.4.	Choosing	a	Configuration	Type

When	you	start	the	MySQL	Configuration	Wizard	for	a	new	MySQL
installation,	or	choose	the	Re-configure	Instance	option	for	an	existing
installation,	you	advance	to	the	Configuration	Type	dialog.

There	are	two	configuration	types	available:	Detailed	Configuration	and
Standard	Configuration.	The	Standard	Configuration	option	is	intended	for	new
users	who	want	to	get	started	with	MySQL	quickly	without	having	to	make
many	decisions	about	server	configuration.	The	Detailed	Configuration	option	is
intended	for	advanced	users	who	want	more	fine-grained	control	over	server
configuration.

If	you	are	new	to	MySQL	and	need	a	server	configured	as	a	single-user
developer	machine,	the	Standard	Configuration	should	suit	your	needs.
Choosing	the	Standard	Configuration	option	causes	the	MySQL	Configuration
Wizard	to	set	all	configuration	options	automatically	with	the	exception	of
Service	Options	and	Security	Options.

The	Standard	Configuration	sets	options	that	may	be	incompatible	with	systems
where	there	are	existing	MySQL	installations.	If	you	have	an	existing	MySQL
installation	on	your	system	in	addition	to	the	installation	you	wish	to	configure,
the	Detailed	Configuration	option	is	recommended.

To	complete	the	Standard	Configuration,	please	refer	to	the	sections	on	Service
Options	and	Security	Options	in	Section	2.3.4.11,	“The	Service	Options	Dialog”,
and	Section	2.3.4.12,	“The	Security	Options	Dialog”,	respectively.

2.3.4.5.	The	Server	Type	Dialog

There	are	three	different	server	types	available	to	choose	from.	The	server	type
that	you	choose	affects	the	decisions	that	the	MySQL	Configuration	Wizard
makes	with	regard	to	memory,	disk,	and	processor	usage.

Developer	Machine:	Choose	this	option	for	a	typical	desktop	workstation
where	MySQL	is	intended	only	for	personal	use.	It	is	assumed	that	many
other	desktop	applications	are	running.	The	MySQL	server	is	configured	to
use	minimal	system	resources.

Server	Machine:	Choose	this	option	for	a	server	machine	where	the	MySQL
server	is	running	alongside	other	server	applications	such	as	FTP,	email,
and	Web	servers.	The	MySQL	server	is	configured	to	use	a	moderate
portion	of	the	system	resources.

Dedicated	MySQL	Server	Machine:	Choose	this	option	for	a	server
machine	that	is	intended	to	run	only	the	MySQL	server.	It	is	assumed	that
no	other	applications	are	running.	The	MySQL	server	is	configured	to	use
all	available	system	resources.

2.3.4.6.	The	Database	Usage	Dialog

The	Database	Usage	dialog	allows	you	to	indicate	the	storage	engines	that	you
expect	to	use	when	creating	MySQL	tables.	The	option	you	choose	determines
whether	the	InnoDB	storage	engine	is	available	and	what	percentage	of	the	server
resources	are	available	to	InnoDB.

Multifunctional	Database:	This	option	enables	both	the	InnoDB	and	MyISAM
storage	engines	and	divides	resources	evenly	between	the	two.	This	option
is	recommended	for	users	who	use	both	storage	engines	on	a	regular	basis.

Transactional	Database	Only:	This	option	enables	both	the	InnoDB	and
MyISAM	storage	engines,	but	dedicates	most	server	resources	to	the	InnoDB
storage	engine.	This	option	is	recommended	for	users	who	use	InnoDB
almost	exclusively	and	make	only	minimal	use	of	MyISAM.

Non-Transactional	Database	Only:	This	option	disables	the	InnoDB	storage
engine	completely	and	dedicates	all	server	resources	to	the	MyISAM	storage
engine.	This	option	is	recommended	for	users	who	do	not	use	InnoDB.

2.3.4.7.	The	InnoDB	Tablespace	Dialog

Some	users	may	want	to	locate	the	InnoDB	tablespace	files	in	a	different	location
than	the	MySQL	server	data	directory.	Placing	the	tablespace	files	in	a	separate

location	can	be	desirable	if	your	system	has	a	higher	capacity	or	higher
performance	storage	device	available,	such	as	a	RAID	storage	system.

To	change	the	default	location	for	the	InnoDB	tablespace	files,	choose	a	new
drive	from	the	drop-down	list	of	drive	letters	and	choose	a	new	path	from	the
drop-down	list	of	paths.	To	create	a	custom	path,	click	the	...	button.

If	you	are	modifying	the	configuration	of	an	existing	server,	you	must	click	the
Modify	button	before	you	change	the	path.	In	this	situation	you	must	move	the
existing	tablespace	files	to	the	new	location	manually	before	starting	the	server.

2.3.4.8.	The	Concurrent	Connections	Dialog

To	prevent	the	server	from	running	out	of	resources,	it	is	important	to	limit	the
number	of	concurrent	connections	to	the	MySQL	server	that	can	be	established.
The	Concurrent	Connections	dialog	allows	you	to	choose	the	expected	usage	of
your	server,	and	sets	the	limit	for	concurrent	connections	accordingly.	It	is	also
possible	to	set	the	concurrent	connection	limit	manually.

Decision	Support	(DSS)/OLAP:	Choose	this	option	if	your	server	does	not
require	a	large	number	of	concurrent	connections.	The	maximum	number	of
connections	is	set	at	100,	with	an	average	of	20	concurrent	connections
assumed.

Online	Transaction	Processing	(OLTP):	Choose	this	option	if	your	server
requires	a	large	number	of	concurrent	connections.	The	maximum	number
of	connections	is	set	at	500.

Manual	Setting:	Choose	this	option	to	set	the	maximum	number	of
concurrent	connections	to	the	server	manually.	Choose	the	number	of
concurrent	connections	from	the	drop-down	box	provided,	or	enter	the
maximum	number	of	connections	into	the	drop-down	box	if	the	number
you	desire	is	not	listed.

2.3.4.9.	The	Networking	and	Strict	Mode	Options	Dialog

Use	the	Networking	Options	dialog	to	enable	or	disable	TCP/IP	networking	and
to	configure	the	port	number	that	is	used	to	connect	to	the	MySQL	server.

TCP/IP	networking	is	enabled	by	default.	To	disable	TCP/IP	networking,
uncheck	the	box	next	to	the	Enable	TCP/IP	Networking	option.

Port	3306	is	used	by	default.	To	change	the	port	used	to	access	MySQL,	choose
a	new	port	number	from	the	drop-down	box	or	type	a	new	port	number	directly
into	the	drop-down	box.	If	the	port	number	you	choose	is	in	use,	you	are
prompted	to	confirm	your	choice	of	port	number.

Set	the	Server	SQL	Mode	to	either	enable	or	disable	strict	mode.	Enabling	strict
mode	(default)	makes	MySQL	behave	more	like	other	database	management
systems.	If	you	run	applications	that	rely	on	MySQL's	old	“forgiving”	behavior,
make	sure	to	either	adapt	those	applications	or	to	disable	strict	mode.	For	more
information	about	strict	mode,	see	Section	5.2.5,	“The	Server	SQL	Mode”.

2.3.4.10.	The	Character	Set	Dialog

The	MySQL	server	supports	multiple	character	sets	and	it	is	possible	to	set	a
default	server	character	set	that	is	applied	to	all	tables,	columns,	and	databases
unless	overridden.	Use	the	Character	Set	dialog	to	change	the	default	character
set	of	the	MySQL	server.

Standard	Character	Set:	Choose	this	option	if	you	want	to	use	latin1	as	the
default	server	character	set.	latin1	is	used	for	English	and	many	Western
European	languages.

Best	Support	For	Multilingualism:	Choose	this	option	if	you	want	to	use
utf8	as	the	default	server	character	set.	This	is	a	Unicode	character	set	that
can	store	characters	from	many	different	languages.

Manual	Selected	Default	Character	Set	/	Collation:	Choose	this	option	if
you	want	to	pick	the	server's	default	character	set	manually.	Choose	the
desired	character	set	from	the	provided	drop-down	list.

2.3.4.11.	The	Service	Options	Dialog

On	Windows	NT-based	platforms,	the	MySQL	server	can	be	installed	as	a
Windows	service.	When	installed	this	way,	the	MySQL	server	can	be	started
automatically	during	system	startup,	and	even	restarted	automatically	by
Windows	in	the	event	of	a	service	failure.

The	MySQL	Configuration	Wizard	installs	the	MySQL	server	as	a	service	by
default,	using	the	service	name	MySQL.	If	you	do	not	wish	to	install	the	service,
uncheck	the	box	next	to	the	Install	As	Windows	Service	option.	You	can	change
the	service	name	by	picking	a	new	service	name	from	the	drop-down	box
provided	or	by	entering	a	new	service	name	into	the	drop-down	box.

To	install	the	MySQL	server	as	a	service	but	not	have	it	started	automatically	at
startup,	uncheck	the	box	next	to	the	Launch	the	MySQL	Server	Automatically
option.

2.3.4.12.	The	Security	Options	Dialog

It	is	strongly	recommended	that	you	set	a	root	password	for	your	MySQL	server,
and	the	MySQL	Configuration	Wizard	requires	by	default	that	you	do	so.	If	you
do	not	wish	to	set	a	root	password,	uncheck	the	box	next	to	the	Modify	Security
Settings	option.

To	set	the	root	password,	enter	the	desired	password	into	both	the	New	root
password	and	Confirm	boxes.	If	you	are	reconfiguring	an	existing	server,	you
need	to	enter	the	existing	root	password	into	the	Current	root	password	box.

To	prevent	root	logins	from	across	the	network,	check	the	box	next	to	the	Root
may	only	connect	from	localhost	option.	This	increases	the	security	of	your	root
account.

To	create	an	anonymous	user	account,	check	the	box	next	to	the	Create	An
Anonymous	Account	option.	Creating	an	anonymous	account	can	decrease
server	security	and	cause	login	and	permission	difficulties.	For	this	reason,	it	is
not	recommended.

2.3.4.13.	The	Confirmation	Dialog

The	final	dialog	in	the	MySQL	Configuration	Wizard	is	the	Confirmation
Dialog.	To	start	the	configuration	process,	click	the	Execute	button.	To	return	to
a	previous	dialog,	click	the	Back	button.	To	exit	the	MySQL	Configuration
Wizard	without	configuring	the	server,	click	the	Cancel	button.

After	you	click	the	Execute	button,	the	MySQL	Configuration	Wizard	performs
a	series	of	tasks	and	displays	the	progress	onscreen	as	the	tasks	are	performed.

The	MySQL	Configuration	Wizard	first	determines	configuration	file	options
based	on	your	choices	using	a	template	prepared	by	MySQL	AB	developers	and
engineers.	This	template	is	named	my-template.ini	and	is	located	in	your
server	installation	directory.

The	MySQL	Configuration	Wizard	then	writes	these	options	to	a	my.ini	file.
The	final	location	of	the	my.ini	file	is	displayed	next	to	the	Write	configuration
file	task.

If	you	chose	to	create	a	service	for	the	MySQL	server,	the	MySQL	Configuration
Wizard	creates	and	starts	the	service.	If	you	are	reconfiguring	an	existing
service,	the	MySQL	Configuration	Wizard	restarts	the	service	to	apply	your
configuration	changes.

If	you	chose	to	set	a	root	password,	the	MySQL	Configuration	Wizard	connects
to	the	server,	sets	your	new	root	password	and	applies	any	other	security
settings	you	may	have	selected.

After	the	MySQL	Configuration	Wizard	has	completed	its	tasks,	it	displays	a
summary.	Click	the	Finish	button	to	exit	the	MySQL	Configuration	Wizard.

2.3.4.14.	The	Location	of	the	my.ini	File

The	MySQL	Configuration	Wizard	places	the	my.ini	file	in	the	installation
directory	for	the	MySQL	server.	This	helps	associate	configuration	files	with
particular	server	instances.

To	ensure	that	the	MySQL	server	knows	where	to	look	for	the	my.ini	file,	an
argument	similar	to	this	is	passed	to	the	MySQL	server	as	part	of	the	service
installation:

--defaults-file="C:\Program	Files\MySQL\MySQL	Server	5.0\my.ini"

Here,	C:\Program	Files\MySQL\MySQL	Server	5.0	is	replaced	with	the
installation	path	to	the	MySQL	Server.	The	--defaults-file	option	instructs
the	MySQL	server	to	read	the	specified	file	for	configuration	options	when	it
starts.

2.3.4.15.	Editing	the	my.ini	File

To	modify	the	my.ini	file,	open	it	with	a	text	editor	and	make	any	necessary
changes.	You	can	also	modify	the	server	configuration	with	the	MySQL
Administrator	utility.

MySQL	clients	and	utilities	such	as	the	mysql	and	mysqldump	command-line
clients	are	not	able	to	locate	the	my.ini	file	located	in	the	server	installation
directory.	To	configure	the	client	and	utility	applications,	create	a	new	my.ini
file	in	the	C:\WINDOWS	or	C:\WINNT	directory	(whichever	is	applicable	to	your
Windows	version).

2.3.5.	Installing	MySQL	from	a	Noinstall	Zip	Archive

Users	who	are	installing	from	the	Noinstall	package	can	use	the	instructions	in
this	section	to	manually	install	MySQL.	The	process	for	installing	MySQL	from
a	Zip	archive	is	as	follows:

1.	 Extract	the	archive	to	the	desired	install	directory

2.	 Create	an	option	file

3.	 Choose	a	MySQL	server	type

4.	 Start	the	MySQL	server

5.	 Secure	the	default	user	accounts

This	process	is	described	in	the	sections	that	follow.

2.3.6.	Extracting	the	Install	Archive

To	install	MySQL	manually,	do	the	following:

1.	 If	you	are	upgrading	from	a	previous	version	please	refer	to	Section	2.3.14,
“Upgrading	MySQL	on	Windows”,	before	beginning	the	upgrade	process.

2.	 If	you	are	using	a	Windows	NT-based	operating	system	such	as	Windows
NT,	Windows	2000,	Windows	XP,	or	Windows	Server	2003,	make	sure	that
you	are	logged	in	as	a	user	with	administrator	privileges.

3.	 Choose	an	installation	location.	Traditionally,	the	MySQL	server	is	installed

http://www.mysql.com/products/administrator/

in	C:\mysql.	The	MySQL	Installation	Wizard	installs	MySQL	under
C:\Program	Files\MySQL.	If	you	do	not	install	MySQL	at	C:\mysql,	you
must	specify	the	path	to	the	install	directory	during	startup	or	in	an	option
file.	See	Section	2.3.7,	“Creating	an	Option	File”.

4.	 Extract	the	install	archive	to	the	chosen	installation	location	using	your
preferred	Zip	archive	tool.	Some	tools	may	extract	the	archive	to	a	folder
within	your	chosen	installation	location.	If	this	occurs,	you	can	move	the
contents	of	the	subfolder	into	the	chosen	installation	location.

2.3.7.	Creating	an	Option	File

If	you	need	to	specify	startup	options	when	you	run	the	server,	you	can	indicate
them	on	the	command	line	or	place	them	in	an	option	file.	For	options	that	are
used	every	time	the	server	starts,	you	may	find	it	most	convenient	to	use	an
option	file	to	specify	your	MySQL	configuration.	This	is	particularly	true	under
the	following	circumstances:

The	installation	or	data	directory	locations	are	different	from	the	default
locations	(C:\Program	Files\MySQL\MySQL	Server	5.0	and	C:\Program
Files\MySQL\MySQL	Server	5.0\data).

You	need	to	tune	the	server	settings.

When	the	MySQL	server	starts	on	Windows,	it	looks	for	options	in	two	files:	the
my.ini	file	in	the	Windows	directory,	and	the	C:\my.cnf	file.	The	Windows
directory	typically	is	named	something	like	C:\WINDOWS	or	C:\WINNT.	You	can
determine	its	exact	location	from	the	value	of	the	WINDIR	environment	variable
using	the	following	command:

C:\>	echo	%WINDIR%

MySQL	looks	for	options	first	in	the	my.ini	file,	and	then	in	the	my.cnf	file.
However,	to	avoid	confusion,	it's	best	if	you	use	only	one	file.	If	your	PC	uses	a
boot	loader	where	C:	is	not	the	boot	drive,	your	only	option	is	to	use	the	my.ini
file.	Whichever	option	file	you	use,	it	must	be	a	plain	text	file.

You	can	also	make	use	of	the	example	option	files	included	with	your	MySQL
distribution;	see	Section	4.3.2.1,	“Preconfigured	Option	Files”.

An	option	file	can	be	created	and	modified	with	any	text	editor,	such	as	Notepad.
For	example,	if	MySQL	is	installed	in	E:\mysql	and	the	data	directory	is	in
E:\mydata\data,	you	can	create	an	option	file	containing	a	[mysqld]	section	to
specify	values	for	the	basedir	and	datadir	parameters:

[mysqld]

#	set	basedir	to	your	installation	path

basedir=E:/mysql

#	set	datadir	to	the	location	of	your	data	directory

datadir=E:/mydata/data

Note	that	Windows	pathnames	are	specified	in	option	files	using	(forward)
slashes	rather	than	backslashes.	If	you	do	use	backslashes,	you	must	double
them:

[mysqld]

#	set	basedir	to	your	installation	path

basedir=E:\\mysql

#	set	datadir	to	the	location	of	your	data	directory

datadir=E:\\mydata\\data

On	Windows,	the	MySQL	installer	places	the	data	directory	directly	under	the
directory	where	you	install	MySQL.	If	you	would	like	to	use	a	data	directory	in	a
different	location,	you	should	copy	the	entire	contents	of	the	data	directory	to
the	new	location.	For	example,	if	MySQL	is	installed	in	C:\Program
Files\MySQL\MySQL	Server	5.0,	the	data	directory	is	by	default	in	C:\Program
Files\MySQL\MySQL	Server	5.0\data.	If	you	want	to	use	E:\mydata	as	the
data	directory	instead,	you	must	do	two	things:

1.	 Move	the	entire	data	directory	and	all	of	its	contents	from	C:\Program
Files\MySQL\MySQL	Server	5.0\data	to	E:\mydata.

2.	 Use	a	--datadir	option	to	specify	the	new	data	directory	location	each
time	you	start	the	server.

2.3.8.	Selecting	a	MySQL	Server	type

The	following	table	shows	the	available	servers	for	Windows	in	MySQL	5.0:

Binary Description
mysqld- Compiled	with	full	debugging	and	automatic	memory	allocation

debug checking,	as	well	as	InnoDB	and	BDB	support.
mysqld Optimized	binary	with	InnoDB	support.
mysqld-
nt

Optimized	binary	for	Windows	NT,	2000,	and	XP	with	support	for
named	pipes.

mysqld-
max Optimized	binary	with	InnoDB	and	BDB	support.

mysqld-
max-nt Like	mysqld-max,	but	compiled	with	support	for	named	pipes.

All	of	the	preceding	binaries	are	optimized	for	modern	Intel	processors,	but
should	work	on	any	Intel	i386-class	or	higher	processor.

All	Windows	MySQL	5.0	servers	have	support	for	symbolic	linking	of	database
directories.

MySQL	supports	TCP/IP	on	all	Windows	platforms.	The	mysqld-nt	and	mysql-
max-nt	servers	support	named	pipes	on	Windows	NT,	2000,	XP,	and	2003.
However,	the	default	is	to	use	TCP/IP	regardless	of	platform.	(Named	pipes	are
slower	than	TCP/IP	in	many	Windows	configurations.)

Use	of	named	pipes	is	subject	to	these	conditions:

Named	pipes	are	enabled	only	if	you	start	the	server	with	the	--enable-
named-pipe	option.	It	is	necessary	to	use	this	option	explicitly	because
some	users	have	experienced	problems	with	shutting	down	the	MySQL
server	when	named	pipes	were	used.

Named-pipe	connections	are	allowed	only	by	the	mysqld-nt	or	mysqld-
max-nt	servers,	and	only	if	the	server	is	run	on	a	version	of	Windows	that
supports	named	pipes	(NT,	2000,	XP,	2003).

These	servers	can	be	run	on	Windows	98	or	Me,	but	only	if	TCP/IP	is
installed;	named-pipe	connections	cannot	be	used.

These	servers	cannot	be	run	on	Windows	95.

Note:	Most	of	the	examples	in	this	manual	use	mysqld	as	the	server	name.	If
you	choose	to	use	a	different	server,	such	as	mysqld-nt,	make	the	appropriate
substitutions	in	the	commands	that	are	shown	in	the	examples.

2.3.9.	Starting	the	Server	for	the	First	Time

This	section	gives	a	general	overview	of	starting	the	MySQL	server.	The
following	sections	provide	more	specific	information	for	starting	the	MySQL
server	from	the	command	line	or	as	a	Windows	service.

The	information	here	applies	primarily	if	you	installed	MySQL	using	the
Noinstall	version,	or	if	you	wish	to	configure	and	test	MySQL	manually	rather
than	with	the	GUI	tools.

The	examples	in	these	sections	assume	that	MySQL	is	installed	under	the	default
location	of	C:\Program	Files\MySQL\MySQL	Server	5.0.	Adjust	the	pathnames
shown	in	the	examples	if	you	have	MySQL	installed	in	a	different	location.

On	NT-based	systems	such	as	Windows	NT,	2000,	XP,	or	2003,	clients	have	two
options.	They	can	use	TCP/IP,	or	they	can	use	a	named	pipe	if	the	server
supports	named-pipe	connections.	For	MySQL	to	work	with	TCP/IP	on
Windows	NT	4,	you	must	install	service	pack	3	(or	newer).

On	Windows	95,	98,	or	Me,	MySQL	clients	always	connect	to	the	server	using
TCP/IP.	(This	allows	any	machine	on	your	network	to	connect	to	your	MySQL
server.)	Because	of	this,	you	must	make	sure	that	TCP/IP	support	is	installed	on
your	machine	before	starting	MySQL.	You	can	find	TCP/IP	on	your	Windows
CD-ROM.

Note	that	if	you	are	using	an	old	Windows	95	release	(for	example,	OSR2),	it	is
likely	that	you	have	an	old	Winsock	package;	MySQL	requires	Winsock	2.	You
can	get	the	newest	Winsock	from	http://www.microsoft.com/.	Windows	98	has
the	new	Winsock	2	library,	so	it	is	unnecessary	to	update	the	library.

MySQL	for	Windows	also	supports	shared-memory	connections	if	the	server	is
started	with	the	--shared-memory	option.	Clients	can	connect	through	shared
memory	by	using	the	--protocol=memory	option.

For	information	about	which	server	binary	to	run,	see	Section	2.3.8,	“Selecting	a
MySQL	Server	type”.

Testing	is	best	done	from	a	command	prompt	in	a	console	window	(or	“DOS
window”).	In	this	way	you	can	have	the	server	display	status	messages	in	the
window	where	they	are	easy	to	see.	If	something	is	wrong	with	your

http://www.microsoft.com/

configuration,	these	messages	make	it	easier	for	you	to	identify	and	fix	any
problems.

To	start	the	server,	enter	this	command:

C:\>	"C:\Program	Files\MySQL\MySQL	Server	5.0\bin\mysqld"	--console

For	a	server	that	includes	InnoDB	support,	you	should	see	the	messages	similar	to
those	following	as	it	starts	(the	pathnames	and	sizes	may	differ):

InnoDB:	The	first	specified	datafile	c:\ibdata\ibdata1	did	not	exist:

InnoDB:	a	new	database	to	be	created!

InnoDB:	Setting	file	c:\ibdata\ibdata1	size	to	209715200

InnoDB:	Database	physically	writes	the	file	full:	wait...

InnoDB:	Log	file	c:\iblogs\ib_logfile0	did	not	exist:	new	to	be	created

InnoDB:	Setting	log	file	c:\iblogs\ib_logfile0	size	to	31457280

InnoDB:	Log	file	c:\iblogs\ib_logfile1	did	not	exist:	new	to	be	created

InnoDB:	Setting	log	file	c:\iblogs\ib_logfile1	size	to	31457280

InnoDB:	Log	file	c:\iblogs\ib_logfile2	did	not	exist:	new	to	be	created

InnoDB:	Setting	log	file	c:\iblogs\ib_logfile2	size	to	31457280

InnoDB:	Doublewrite	buffer	not	found:	creating	new

InnoDB:	Doublewrite	buffer	created

InnoDB:	creating	foreign	key	constraint	system	tables

InnoDB:	foreign	key	constraint	system	tables	created

011024	10:58:25		InnoDB:	Started

When	the	server	finishes	its	startup	sequence,	you	should	see	something	like
this,	which	indicates	that	the	server	is	ready	to	service	client	connections:

mysqld:	ready	for	connections

Version:	'5.0.25'		socket:	''		port:	3306

The	server	continues	to	write	to	the	console	any	further	diagnostic	output	it
produces.	You	can	open	a	new	console	window	in	which	to	run	client	programs.

If	you	omit	the	--console	option,	the	server	writes	diagnostic	output	to	the	error
log	in	the	data	directory	(C:\Program	Files\MySQL\MySQL	Server	5.0\data	by
default).	The	error	log	is	the	file	with	the	.err	extension.

Note:	The	accounts	that	are	listed	in	the	MySQL	grant	tables	initially	have	no
passwords.	After	starting	the	server,	you	should	set	up	passwords	for	them	using
the	instructions	in	Section	2.10,	“Post-Installation	Setup	and	Testing”.

2.3.10.	Starting	MySQL	from	the	Windows	Command	Line

The	MySQL	server	can	be	started	manually	from	the	command	line.	This	can	be
done	on	any	version	of	Windows.

To	start	the	mysqld	server	from	the	command	line,	you	should	start	a	console
window	(or	“DOS	window”)	and	enter	this	command:

C:\>	"C:\Program	Files\MySQL\MySQL	Server	5.0\bin\mysqld"

The	path	to	mysqld	may	vary	depending	on	the	install	location	of	MySQL	on
your	system.

On	non-NT	versions	of	Windows,	this	command	starts	mysqld	in	the
background.	That	is,	after	the	server	starts,	you	should	see	another	command
prompt.	If	you	start	the	server	this	way	on	Windows	NT,	2000,	XP,	or	2003,	the
server	runs	in	the	foreground	and	no	command	prompt	appears	until	the	server
exits.	Because	of	this,	you	should	open	another	console	window	to	run	client
programs	while	the	server	is	running.

You	can	stop	the	MySQL	server	by	executing	this	command:

C:\>	"C:\Program	Files\MySQL\MySQL	Server	5.0\bin\mysqladmin"	-u	root	shutdown

Note:	If	the	MySQL	root	user	account	has	a	password,	you	need	to	invoke
mysqladmin	with	the	-p	option	and	supply	the	password	when	prompted.

This	command	invokes	the	MySQL	administrative	utility	mysqladmin	to
connect	to	the	server	and	tell	it	to	shut	down.	The	command	connects	as	the
MySQL	root	user,	which	is	the	default	administrative	account	in	the	MySQL
grant	system.	Note	that	users	in	the	MySQL	grant	system	are	wholly
independent	from	any	login	users	under	Windows.

If	mysqld	doesn't	start,	check	the	error	log	to	see	whether	the	server	wrote	any
messages	there	to	indicate	the	cause	of	the	problem.	The	error	log	is	located	in
the	C:\Program	Files\MySQL\MySQL	Server	5.0\data	directory.	It	is	the	file
with	a	suffix	of	.err.	You	can	also	try	to	start	the	server	as	mysqld	--console;	in
this	case,	you	may	get	some	useful	information	on	the	screen	that	may	help	solve
the	problem.

The	last	option	is	to	start	mysqld	with	the	--standalone	and	--debug	options.
In	this	case,	mysqld	writes	a	log	file	C:\mysqld.trace	that	should	contain	the

reason	why	mysqld	doesn't	start.	See	Section	E.1.2,	“Creating	Trace	Files”.

Use	mysqld	--verbose	--help	to	display	all	the	options	that	mysqld	understands.

2.3.11.	Starting	MySQL	as	a	Windows	Service

On	the	NT	family	(Windows	NT,	2000,	XP,	2003),	the	recommended	way	to	run
MySQL	is	to	install	it	as	a	Windows	service,	whereby	MySQL	starts	and	stops
automatically	when	Windows	starts	and	stops.	A	MySQL	server	installed	as	a
service	can	also	be	controlled	from	the	command	line	using	NET	commands,	or
with	the	graphical	Services	utility.

The	Services	utility	(the	Windows	Service	Control	Manager)	can	be	found	in
the	Windows	Control	Panel	(under	Administrative	Tools	on	Windows	2000,	XP,
and	Server	2003).	To	avoid	conflicts,	it	is	advisable	to	close	the	Services	utility
while	performing	server	installation	or	removal	operations	from	the	command
line.

Before	installing	MySQL	as	a	Windows	service,	you	should	first	stop	the	current
server	if	it	is	running	by	using	the	following	command:

C:\>	"C:\Program	Files\MySQL\MySQL	Server	5.0\bin\mysqladmin"	-u	root	shutdown

Note:	If	the	MySQL	root	user	account	has	a	password,	you	need	to	invoke
mysqladmin	with	the	-p	option	and	supply	the	password	when	prompted.

This	command	invokes	the	MySQL	administrative	utility	mysqladmin	to
connect	to	the	server	and	tell	it	to	shut	down.	The	command	connects	as	the
MySQL	root	user,	which	is	the	default	administrative	account	in	the	MySQL
grant	system.	Note	that	users	in	the	MySQL	grant	system	are	wholly
independent	from	any	login	users	under	Windows.

Install	the	server	as	a	service	using	this	command:

C:\>	"C:\Program	Files\MySQL\MySQL	Server	5.0\bin\mysqld"	--install

The	service-installation	command	does	not	start	the	server.	Instructions	for	that
are	given	later	in	this	section.

To	make	it	easier	to	invoke	MySQL	programs,	you	can	add	the	pathname	of	the

MySQL	bin	directory	to	your	Windows	system	PATH	environment	variable:

On	the	Windows	desktop,	right-click	on	the	My	Computer	icon,	and	select
Properties

Next	select	the	Advanced	tab	from	the	System	Properties	menu	that
appears,	and	click	the	Environment	Variables	button.

Under	System	Variables,	select	Path,	and	then	click	the	Edit	button.	The
Edit	System	Variable	dialogue	should	appear.

Place	your	cursor	at	the	end	of	the	text	appearing	in	the	space	marked
Variable	Value.	(Use	the	End	key	to	ensure	that	your	cursor	is	positioned	at
the	very	end	of	the	text	in	this	space.)	Then	enter	the	complete	pathname	of
your	MySQL	bin	directory	(for	example,	C:\Program	Files\MySQL\MySQL
Server	5.0\bin),	Note	that	there	should	be	a	semicolon	separating	this
path	from	any	values	present	in	this	field.	Dismiss	this	dialogue,	and	each
dialogue	in	turn,	by	clicking	OK	until	all	of	the	dialogues	that	were	opened
have	been	dismissed.	You	should	now	be	able	to	invoke	any	MySQL
executable	program	by	typing	its	name	at	the	DOS	prompt	from	any
directory	on	the	system,	without	having	to	supply	the	path.	This	includes
the	servers,	the	mysql	client,	and	all	MySQL	command-line	utilities	such	as
mysqladmin	and	mysqldump.

You	should	not	add	the	MySQL	bin	directory	to	your	Windows	PATH	if	you
are	running	multiple	MySQL	servers	on	the	same	machine.

Warning:	You	must	exercise	great	care	when	editing	your	system	PATH	by	hand;
accidental	deletion	or	modification	of	any	portion	of	the	existing	PATH	value	can
leave	you	with	a	malfunctioning	or	even	unusable	system.

The	following	additional	arguments	can	be	used	in	MySQL	5.0	when	installing
the	service:

You	can	specify	a	service	name	immediately	following	the	--install
option.	The	default	service	name	is	MySQL.

If	a	service	name	is	given,	it	can	be	followed	by	a	single	option.	By
convention,	this	should	be	--defaults-file=file_name	to	specify	the
name	of	an	option	file	from	which	the	server	should	read	options	when	it

starts.

It	is	possible	to	use	a	single	option	other	than	--defaults-file,	but	this	is
discouraged.	--defaults-file	is	more	flexible	because	it	enables	you	to
specify	multiple	startup	options	for	the	server	by	placing	them	in	the	named
option	file.	Also,	in	MySQL	5.0,	use	of	an	option	different	from	--
defaults-file	is	not	supported	until	5.0.3.

As	of	MySQL	5.0.1,	you	can	also	specify	a	--local-service	option
following	the	service	name.	This	causes	the	server	to	run	using	the
LocalService	Windows	account	that	has	limited	system	privileges.	This
account	is	available	only	for	Windows	XP	or	newer.	If	both	--defaults-
file	and	--local-service	are	given	following	the	service	name,	they	can
be	in	any	order.

For	a	MySQL	server	that	is	installed	as	a	Windows	service,	the	following	rules
determine	the	service	name	and	option	files	that	the	server	uses:

If	the	service-installation	command	specifies	no	service	name	or	the	default
service	name	(MySQL)	following	the	--install	option,	the	server	uses	the	a
service	name	of	MySQL	and	reads	options	from	the	[mysqld]	group	in	the
standard	option	files.

If	the	service-installation	command	specifies	a	service	name	other	than
MySQL	following	the	--install	option,	the	server	uses	that	service	name.	It
reads	options	from	the	group	that	has	the	same	name	as	the	service,	and
reads	options	from	the	standard	option	files.

The	server	also	reads	options	from	the	[mysqld]	group	from	the	standard
option	files.	This	allows	you	to	use	the	[mysqld]	group	for	options	that
should	be	used	by	all	MySQL	services,	and	an	option	group	with	the	same
name	as	a	service	for	use	by	the	server	installed	with	that	service	name.

If	the	service-installation	command	specifies	a	--defaults-file	option
after	the	service	name,	the	server	reads	options	only	from	the	[mysqld]
group	of	the	named	file	and	ignores	the	standard	option	files.

As	a	more	complex	example,	consider	the	following	command:

C:\>	"C:\Program	Files\MySQL\MySQL	Server	5.0\bin\mysqld"

										--install	MySQL	--defaults-file=C:\my-opts.cnf

Here,	the	default	service	name	(MySQL)	is	given	after	the	--install	option.	If	no
--defaults-file	option	had	been	given,	this	command	would	have	the	effect	of
causing	the	server	to	read	the	[mysqld]	group	from	the	standard	option	files.
However,	because	the	--defaults-file	option	is	present,	the	server	reads
options	from	the	[mysqld]	option	group,	and	only	from	the	named	file.

You	can	also	specify	options	as	Start	parameters	in	the	Windows	Services	utility
before	you	start	the	MySQL	service.

Once	a	MySQL	server	has	been	installed	as	a	service,	Windows	starts	the	service
automatically	whenever	Windows	starts.	The	service	also	can	be	started
immediately	from	the	Services	utility,	or	by	using	a	NET	START	MySQL
command.	The	NET	command	is	not	case	sensitive.

When	run	as	a	service,	mysqld	has	no	access	to	a	console	window,	so	no
messages	can	be	seen	there.	If	mysqld	does	not	start,	check	the	error	log	to	see
whether	the	server	wrote	any	messages	there	to	indicate	the	cause	of	the
problem.	The	error	log	is	located	in	the	MySQL	data	directory	(for	example,
C:\Program	Files\MySQL\MySQL	Server	5.0\data).	It	is	the	file	with	a	suffix
of	.err.

When	a	MySQL	server	has	been	installed	as	a	service,	and	the	service	is	running,
Windows	stops	the	service	automatically	when	Windows	shuts	down.	The	server
also	can	be	stopped	manually	by	using	the	Services	utility,	the	NET	STOP
MySQL	command,	or	the	mysqladmin	shutdown	command.

You	also	have	the	choice	of	installing	the	server	as	a	manual	service	if	you	do
not	wish	for	the	service	to	be	started	automatically	during	the	boot	process.	To
do	this,	use	the	--install-manual	option	rather	than	the	--install	option:

C:\>	"C:\Program	Files\MySQL\MySQL	Server	5.0\bin\mysqld"	--install-manual

To	remove	a	server	that	is	installed	as	a	service,	first	stop	it	if	it	is	running	by
executing	NET	STOP	MySQL.	Then	use	the	--remove	option	to	remove	it:

C:\>	"C:\Program	Files\MySQL\MySQL	Server	5.0\bin\mysqld"	--remove

If	mysqld	is	not	running	as	a	service,	you	can	start	it	from	the	command	line.
For	instructions,	see	Section	2.3.10,	“Starting	MySQL	from	the	Windows

Command	Line”.

Please	see	Section	2.3.13,	“Troubleshooting	a	MySQL	Installation	Under
Windows”,	if	you	encounter	difficulties	during	installation.

2.3.12.	Testing	The	MySQL	Installation

You	can	test	whether	the	MySQL	server	is	working	by	executing	any	of	the
following	commands:

C:\>	"C:\Program	Files\MySQL\MySQL	Server	5.0\bin\mysqlshow"

C:\>	"C:\Program	Files\MySQL\MySQL	Server	5.0\bin\mysqlshow"	-u	root	mysql

C:\>	"C:\Program	Files\MySQL\MySQL	Server	5.0\bin\mysqladmin"	version	status	proc

C:\>	"C:\Program	Files\MySQL\MySQL	Server	5.0\bin\mysql"	test

If	mysqld	is	slow	to	respond	to	TCP/IP	connections	from	client	programs,	there
is	probably	a	problem	with	your	DNS.	In	this	case,	start	mysqld	with	the	--
skip-name-resolve	option	and	use	only	localhost	and	IP	numbers	in	the	Host
column	of	the	MySQL	grant	tables.

You	can	force	a	MySQL	client	to	use	a	named-pipe	connection	rather	than
TCP/IP	by	specifying	the	--pipe	or	--protocol=PIPE	option,	or	by	specifying	.
(period)	as	the	host	name.	Use	the	--socket	option	to	specify	the	name	of	the
pipe	if	you	do	not	want	to	use	the	default	pipe	name.

Note	that	if	you	have	set	a	password	for	the	root	account,	deleted	the
anonymous	account,	or	ceated	a	new	user	account,	then	you	must	use	the
appropriate	-u	and	-p	options	with	the	commands	shown	above	in	order	to
connect	with	the	MySQL	Server.	See	Section	5.8.4,	“Connecting	to	the	MySQL
Server”.

For	more	information	about	mysqlshow,	see	Section	8.15,	“mysqlshow	—
Display	Database,	Table,	and	Column	Information”.

2.3.13.	Troubleshooting	a	MySQL	Installation	Under	Windows

When	installing	and	running	MySQL	for	the	first	time,	you	may	encounter
certain	errors	that	prevent	the	MySQL	server	from	starting.	The	purpose	of	this
section	is	to	help	you	diagnose	and	correct	some	of	these	errors.

Your	first	resource	when	troubleshooting	server	issues	is	the	error	log.	The
MySQL	server	uses	the	error	log	to	record	information	relevant	to	the	error	that
prevents	the	server	from	starting.	The	error	log	is	located	in	the	data	directory
specified	in	your	my.ini	file.	The	default	data	directory	location	is	C:\Program
Files\MySQL\MySQL	Server	5.0\data.	See	Section	5.12.1,	“The	Error	Log”.

Another	source	of	information	regarding	possible	errors	is	the	console	messages
displayed	when	the	MySQL	service	is	starting.	Use	the	NET	START	MySQL
command	from	the	command	line	after	installing	mysqld	as	a	service	to	see	any
error	messages	regarding	the	starting	of	the	MySQL	server	as	a	service.	See
Section	2.3.11,	“Starting	MySQL	as	a	Windows	Service”.

The	following	examples	show	other	common	error	messages	you	may	encounter
when	installing	MySQL	and	starting	the	server	for	the	first	time:

If	the	MySQL	server	cannot	find	the	mysql	privileges	database	or	other
critical	files,	you	may	see	these	messsages:

System	error	1067	has	occurred.

Fatal	error:	Can't	open	privilege	tables:	Table	'mysql.host'	doesn't	exist

These	messages	often	occur	when	the	MySQL	base	or	data	directories	are
installed	in	different	locations	than	the	default	locations	(C:\Program
Files\MySQL\MySQL	Server	5.0	and	C:\Program	Files\MySQL\MySQL
Server	5.0\data,	respectively).

This	situation	may	occur	when	MySQL	is	upgraded	and	installed	to	a	new
location,	but	the	configuration	file	is	not	updated	to	reflect	the	new	location.
In	addition,	there	may	be	old	and	new	configuration	files	that	conflict.	Be
sure	to	delete	or	rename	any	old	configuration	files	when	upgrading
MySQL.

If	you	have	installed	MySQL	to	a	directory	other	than	C:\Program
Files\MySQL\MySQL	Server	5.0,	you	need	to	ensure	that	the	MySQL
server	is	aware	of	this	through	the	use	of	a	configuration	(my.ini)	file.	The
my.ini	file	needs	to	be	located	in	your	Windows	directory,	typically
C:\WINDOWS	or	C:\WINNT.	You	can	determine	its	exact	location	from	the
value	of	the	WINDIR	environment	variable	by	issuing	the	following
command	from	the	command	prompt:

C:\>	echo	%WINDIR%

An	option	file	can	be	created	and	modified	with	any	text	editor,	such	as
Notepad.	For	example,	if	MySQL	is	installed	in	E:\mysql	and	the	data
directory	is	D:\MySQLdata,	you	can	create	the	option	file	and	set	up	a
[mysqld]	section	to	specify	values	for	the	basedir	and	datadir
parameters:

[mysqld]

#	set	basedir	to	your	installation	path

basedir=E:/mysql

#	set	datadir	to	the	location	of	your	data	directory

datadir=D:/MySQLdata

Note	that	Windows	pathnames	are	specified	in	option	files	using	(forward)
slashes	rather	than	backslashes.	If	you	do	use	backslashes,	you	must	double
them:

[mysqld]

#	set	basedir	to	your	installation	path

basedir=C:\\Program	Files\\MySQL\\MySQL	Server	5.0

#	set	datadir	to	the	location	of	your	data	directory

datadir=D:\\MySQLdata

If	you	change	the	datadir	value	in	your	MySQL	configuration	file,	you
must	move	the	contents	of	the	existing	MySQL	data	directory	before
restarting	the	MySQL	server.

See	Section	2.3.7,	“Creating	an	Option	File”.

If	you	reinstall	or	upgrade	MySQL	without	first	stopping	and	removing	the
existing	MySQL	service	and	install	MySQL	using	the	MySQL
Configuration	Wizard,	you	may	see	this	error:

Error:	Cannot	create	Windows	service	for	MySql.	Error:	0

This	occurs	when	the	Configuration	Wizard	tries	to	install	the	service	and
finds	an	existing	service	with	the	same	name.

One	solution	to	this	problem	is	to	choose	a	service	name	other	than	mysql
when	using	the	configuration	wizard.	This	allows	the	new	service	to	be
installed	correctly,	but	leaves	the	outdated	service	in	place.	Although	this	is
harmless,	it	is	best	to	remove	old	services	that	are	no	longer	in	use.

To	permanently	remove	the	old	mysql	service,	execute	the	following
command	as	a	user	with	administrative	privileges,	on	the	command-line:

C:\>	sc	delete	mysql

[SC]	DeleteService	SUCCESS

If	the	sc	utility	is	not	available	for	your	version	of	Windows,	download	the
delsrv	utility	from
http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-
o.asp	and	use	the	delsrv	mysql	syntax.

2.3.14.	Upgrading	MySQL	on	Windows

This	section	lists	some	of	the	steps	you	should	take	when	upgrading	MySQL	on
Windows.

1.	 Review	Section	2.11,	“Upgrading	MySQL”,	for	additional	information	on
upgrading	MySQL	that	is	not	specific	to	Windows.

2.	 You	should	always	back	up	your	current	MySQL	installation	before
performing	an	upgrade.	See	Section	5.10.1,	“Database	Backups”.

3.	 Download	the	latest	Windows	distribution	of	MySQL	from
http://dev.mysql.com/downloads/.

4.	 Before	upgrading	MySQL,	you	must	stop	the	server.	If	the	server	is
installed	as	a	service,	stop	the	service	with	the	following	command	from	the
command	prompt:

C:\>	NET	STOP	MySQL

If	you	are	not	running	the	MySQL	server	as	a	service,	use	the	following
command	to	stop	it:

C:\>	"C:\Program	Files\MySQL\MySQL	Server	5.0\bin\mysqladmin"	-u	root	shutdown

Note:	If	the	MySQL	root	user	account	has	a	password,	you	need	to	invoke
mysqladmin	with	the	-p	option	and	supply	the	password	when	prompted.

5.	 When	upgrading	to	MySQL	5.0	from	a	version	previous	to	4.1.5,	or	when
upgrading	from	a	version	of	MySQL	installed	from	a	Zip	archive	to	a

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp
http://dev.mysql.com/downloads/

version	of	MySQL	installed	with	the	MySQL	Installation	Wizard,	you	must
manually	remove	the	previous	installation	and	MySQL	service	(if	the	server
is	installed	as	a	service).

To	remove	the	MySQL	service,	use	the	following	command:

C:\>	C:\mysql\bin\mysqld	--remove

If	you	do	not	remove	the	existing	service,	the	MySQL	Installation
Wizard	may	fail	to	properly	install	the	new	MySQL	service.

6.	 If	you	are	using	the	MySQL	Installation	Wizard,	start	the	wizard	as
described	in	Section	2.3.3,	“Using	the	MySQL	Installation	Wizard”.

7.	 If	you	are	installing	MySQL	from	a	Zip	archive,	extract	the	archive.	You
may	either	overwrite	your	existing	MySQL	installation	(usually	located	at
C:\mysql),	or	install	it	into	a	different	directory,	such	as	C:\mysql5.
Overwriting	the	existing	installation	is	recommended.

8.	 If	you	were	running	MySQL	as	a	Windows	service	and	you	had	to	remove
the	service	earlier	in	this	procedure,	reinstall	the	service.	(See
Section	2.3.11,	“Starting	MySQL	as	a	Windows	Service”.)

9.	 Restart	the	server.	For	example,	use	NET	START	MySQL	if	you	run
MySQL	as	a	service,	or	invoke	mysqld	directly	otherwise.

10.	 If	you	encounter	errors,	see	Section	2.3.13,	“Troubleshooting	a	MySQL
Installation	Under	Windows”.

2.3.15.	MySQL	on	Windows	Compared	to	MySQL	on	Unix

MySQL	for	Windows	has	proven	itself	to	be	very	stable.	The	Windows	version
of	MySQL	has	the	same	features	as	the	corresponding	Unix	version,	with	the
following	exceptions:

Windows	95	and	threads

Windows	95	leaks	about	200	bytes	of	main	memory	for	each	thread
creation.	Each	connection	in	MySQL	creates	a	new	thread,	so	you	shouldn't
run	mysqld	for	an	extended	time	on	Windows	95	if	your	server	handles

many	connections!	Newer	versions	of	Windows	don't	suffer	from	this	bug.

Limited	number	of	ports

Windows	systems	have	about	4,000	ports	available	for	client	connections,
and	after	a	connection	on	a	port	closes,	it	takes	two	to	four	minutes	before
the	port	can	be	reused.	In	situations	where	clients	connect	to	and	disconnect
from	the	server	at	a	high	rate,	it	is	possible	for	all	available	ports	to	be	used
up	before	closed	ports	become	available	again.	If	this	happens,	the	MySQL
server	appears	to	be	unresponsive	even	though	it	is	running.	Note	that	ports
may	be	used	by	other	applications	running	on	the	machine	as	well,	in	which
case	the	number	of	ports	available	to	MySQL	is	lower.

For	more	information	about	this	problem,	see
http://support.microsoft.com/default.aspx?scid=kb;en-us;196271.

Concurrent	reads

MySQL	depends	on	the	pread()	and	pwrite()	system	calls	to	be	able	to
mix	INSERT	and	SELECT.	Currently,	we	use	mutexes	to	emulate	pread()	and
pwrite().	We	intend	to	replace	the	file	level	interface	with	a	virtual
interface	in	the	future	so	that	we	can	use	the	readfile()/writefile()
interface	on	NT,	2000,	and	XP	to	get	more	speed.	The	current
implementation	limits	the	number	of	open	files	that	MySQL	5.0	can	use	to
2,048,	which	means	that	you	cannot	run	as	many	concurrent	threads	on
Windows	NT,	2000,	XP,	and	2003	as	on	Unix.

Blocking	read

MySQL	uses	a	blocking	read	for	each	connection.	That	has	the	following
implications	if	named-pipe	connections	are	enabled:

A	connection	is	not	disconnected	automatically	after	eight	hours,	as
happens	with	the	Unix	version	of	MySQL.

If	a	connection	hangs,	it	is	not	possible	to	break	it	without	killing
MySQL.

mysqladmin	kill	does	not	work	on	a	sleeping	connection.

http://support.microsoft.com/default.aspx?scid=kb;en-us;196271

mysqladmin	shutdown	cannot	abort	as	long	as	there	are	sleeping
connections.

We	plan	to	fix	this	problem	in	the	future.

ALTER	TABLE

While	you	are	executing	an	ALTER	TABLE	statement,	the	table	is	locked
from	being	used	by	other	threads.	This	has	to	do	with	the	fact	that	on
Windows,	you	can't	delete	a	file	that	is	in	use	by	another	thread.	In	the
future,	we	may	find	some	way	to	work	around	this	problem.

DROP	TABLE

DROP	TABLE	on	a	table	that	is	in	use	by	a	MERGE	table	does	not	work	on
Windows	because	the	MERGE	handler	does	the	table	mapping	hidden	from
the	upper	layer	of	MySQL.	Because	Windows	does	not	allow	dropping	files
that	are	open,	you	first	must	flush	all	MERGE	tables	(with	FLUSH	TABLES)	or
drop	the	MERGE	table	before	dropping	the	table.

DATA	DIRECTORY	and	INDEX	DIRECTORY

The	DATA	DIRECTORY	and	INDEX	DIRECTORY	options	for	CREATE	TABLE	are
ignored	on	Windows,	because	Windows	doesn't	support	symbolic	links.
These	options	also	are	ignored	on	systems	that	have	a	non-functional
realpath()	call.

DROP	DATABASE

You	cannot	drop	a	database	that	is	in	use	by	some	thread.

Killing	MySQL	from	the	Task	Manager

On	Windows	95,	you	cannot	kill	MySQL	from	the	Task	Manager	or	with
the	shutdown	utility.	You	must	stop	it	with	mysqladmin	shutdown.

Case-insensitive	names

Filenames	are	not	case	sensitive	on	Windows,	so	MySQL	database	and
table	names	are	also	not	case	sensitive	on	Windows.	The	only	restriction	is

that	database	and	table	names	must	be	specified	using	the	same	case
throughout	a	given	statement.	See	Section	9.2.2,	“Identifier	Case
Sensitivity”.

The	‘\’	pathname	separator	character

Pathname	components	in	Windows	are	separated	by	the	‘\’	character,	which
is	also	the	escape	character	in	MySQL.	If	you	are	using	LOAD	DATA	INFILE
or	SELECT	...	INTO	OUTFILE,	use	Unix-style	filenames	with	‘/’	characters:

mysql>	LOAD	DATA	INFILE	'C:/tmp/skr.txt'	INTO	TABLE	skr;

mysql>	SELECT	*	INTO	OUTFILE	'C:/tmp/skr.txt'	FROM	skr;

Alternatively,	you	must	double	the	‘\’	character:

mysql>	LOAD	DATA	INFILE	'C:\\tmp\\skr.txt'	INTO	TABLE	skr;

mysql>	SELECT	*	INTO	OUTFILE	'C:\\tmp\\skr.txt'	FROM	skr;

Problems	with	pipes

Pipes	do	not	work	reliably	from	the	Windows	command-line	prompt.	If	the
pipe	includes	the	character	^Z	/	CHAR(24),	Windows	thinks	that	it	has
encountered	end-of-file	and	aborts	the	program.

This	is	mainly	a	problem	when	you	try	to	apply	a	binary	log	as	follows:

C:\>	mysqlbinlog	binary_log_file	|	mysql	--user=root

If	you	have	a	problem	applying	the	log	and	suspect	that	it	is	because	of	a	^Z
/	CHAR(24)	character,	you	can	use	the	following	workaround:

C:\>	mysqlbinlog	binary_log_file	--result-file=/tmp/bin.sql

C:\>	mysql	--user=root	--execute	"source	/tmp/bin.sql"

The	latter	command	also	can	be	used	to	reliably	read	in	any	SQL	file	that
may	contain	binary	data.

Access	denied	for	user	error

If	MySQL	cannot	resolve	your	hostname	properly,	you	may	get	the
following	error	when	you	attempt	to	run	a	MySQL	client	program	to
connect	to	a	server	running	on	the	same	machine:

Access	denied	for	user	'some_user'@'unknown'

to	database	'mysql'

To	fix	this	problem,	you	should	create	a	file	named	\windows\hosts
containing	the	following	information:

127.0.0.1							localhost

Here	are	some	open	issues	for	anyone	who	might	want	to	help	us	improve
MySQL	on	Windows:

Add	macros	to	use	the	faster	thread-safe	increment/decrement	methods
provided	by	Windows.

2.4.	Installing	MySQL	on	Linux

The	recommended	way	to	install	MySQL	on	Linux	is	by	using	the	RPM
packages.	The	MySQL	RPMs	are	currently	built	on	a	SuSE	Linux	7.3	system,
but	should	work	on	most	versions	of	Linux	that	support	rpm	and	use	glibc.	To
obtain	RPM	packages,	see	Section	2.1.3,	“How	to	Get	MySQL”.

MySQL	AB	does	provide	some	platform-specific	RPMs;	the	difference	between
a	platform-specific	RPM	and	a	generic	RPM	is	that	a	platform-specific	RPM	is
built	on	the	targeted	platform	and	is	linked	dynamically	whereas	a	generic	RPM
is	linked	statically	with	LinuxThreads.

Note:	RPM	distributions	of	MySQL	often	are	provided	by	other	vendors.	Be
aware	that	they	may	differ	in	features	and	capabilities	from	those	built	by
MySQL	AB,	and	that	the	instructions	in	this	manual	do	not	necessarily	apply	to
installing	them.	The	vendor's	instructions	should	be	consulted	instead.

If	you	have	problems	with	an	RPM	file	(for	example,	if	you	receive	the	error
Sorry,	the	host	'xxxx'	could	not	be	looked	up),	see	Section	2.13.1.2,	“Linux
Binary	Distribution	Notes”.

In	most	cases,	you	need	to	install	only	the	MySQL-server	and	MySQL-client
packages	to	get	a	functional	MySQL	installation.	The	other	packages	are	not
required	for	a	standard	installation.	If	you	want	to	run	a	MySQL-Max	server	that
has	additional	capabilities,	you	should	also	install	the	MySQL-Max	RPM.
However,	you	should	do	so	only	after	installing	the	MySQL-server	RPM.	See
Section	5.3,	“The	mysqld-max	Extended	MySQL	Server”.

If	you	get	a	dependency	failure	when	trying	to	install	MySQL	packages	(for
example,	error:	removing	these	packages	would	break	dependencies:
libmysqlclient.so.10	is	needed	by	...),	you	should	also	install	the	MySQL-
shared-compat	package,	which	includes	both	the	shared	libraries	for	backward
compatibility	(libmysqlclient.so.12	for	MySQL	4.0	and
libmysqlclient.so.10	for	MySQL	3.23).

Some	Linux	distributions	still	ship	with	MySQL	3.23	and	they	usually	link
applications	dynamically	to	save	disk	space.	If	these	shared	libraries	are	in	a
separate	package	(for	example,	MySQL-shared),	it	is	sufficient	to	simply	leave

this	package	installed	and	just	upgrade	the	MySQL	server	and	client	packages
(which	are	statically	linked	and	do	not	depend	on	the	shared	libraries).	For
distributions	that	include	the	shared	libraries	in	the	same	package	as	the	MySQL
server	(for	example,	Red	Hat	Linux),	you	could	either	install	our	3.23	MySQL-
shared	RPM,	or	use	the	MySQL-shared-compat	package	instead.	(Do	not	install
both.)

The	following	RPM	packages	are	available:

MySQL-server-VERSION.i386.rpm

The	MySQL	server.	You	need	this	unless	you	only	want	to	connect	to	a
MySQL	server	running	on	another	machine.

Note:	Server	RPM	files	were	called	MySQL-VERSION.i386.rpm	before
MySQL	4.0.10.	That	is,	they	did	not	have	-server	in	the	name.

MySQL-Max-VERSION.i386.rpm

The	MySQL-Max	server.	This	server	has	additional	capabilities	that	the	one
provided	in	the	MySQL-server	RPM	does	not.	You	must	install	the	MySQL-
server	RPM	first,	because	the	MySQL-Max	RPM	depends	on	it.

MySQL-client-VERSION.i386.rpm

The	standard	MySQL	client	programs.	You	probably	always	want	to	install
this	package.

MySQL-bench-VERSION.i386.rpm

Tests	and	benchmarks.	Requires	Perl	and	the	DBI	and	DBD::mysql	modules.

MySQL-devel-VERSION.i386.rpm

The	libraries	and	include	files	that	are	needed	if	you	want	to	compile	other
MySQL	clients,	such	as	the	Perl	modules.

MySQL-shared-VERSION.i386.rpm

This	package	contains	the	shared	libraries	(libmysqlclient.so*)	that

certain	languages	and	applications	need	to	dynamically	load	and	use
MySQL.	It	contains	single-threaded	and	thread-safe	libraries.	If	you	install
this	package,	do	not	install	the	MySQL-shared-compat	package.

MySQL-shared-compat-VERSION.i386.rpm

This	package	includes	the	shared	libraries	for	MySQL	3.23,	4.0,	4.1,	and
5.0.	It	contains	single-threaded	and	thread-safe	libraries.	Install	this	package
instead	of	MySQL-shared	if	you	have	applications	installed	that	are
dynamically	linked	against	older	versions	of	MySQL	but	you	want	to
upgrade	to	the	current	version	without	breaking	the	library	dependencies.

MySQL-embedded-VERSION.i386.rpm

The	embedded	MySQL	server	library	(available	as	of	MySQL	4.0).

MySQL-VERSION.src.rpm

This	contains	the	source	code	for	all	of	the	previous	packages.	It	can	also	be
used	to	rebuild	the	RPMs	on	other	architectures	(for	example,	Alpha	or
SPARC).

To	see	all	files	in	an	RPM	package	(for	example,	a	MySQL-server	RPM),	run	a
commnd	like	this:

shell>	rpm	-qpl	MySQL-server-VERSION.i386.rpm

To	perform	a	standard	minimal	installation,	install	the	server	and	client	RPMs:

shell>	rpm	-i	MySQL-server-VERSION.i386.rpm

shell>	rpm	-i	MySQL-client-VERSION.i386.rpm

To	install	only	the	client	programs,	install	just	the	client	RPM:

shell>	rpm	-i	MySQL-client-VERSION.i386.rpm

RPM	provides	a	feature	to	verify	the	integrity	and	authenticity	of	packages
before	installing	them.	If	you	would	like	to	learn	more	about	this	feature,	see
Section	2.1.4,	“Verifying	Package	Integrity	Using	MD5	Checksums	or	GnuPG”.

The	server	RPM	places	data	under	the	/var/lib/mysql	directory.	The	RPM	also

creates	a	login	account	for	a	user	named	mysql	(if	one	does	not	exist)	to	use	for
running	the	MySQL	server,	and	creates	the	appropriate	entries	in	/etc/init.d/
to	start	the	server	automatically	at	boot	time.	(This	means	that	if	you	have
performed	a	previous	installation	and	have	made	changes	to	its	startup	script,
you	may	want	to	make	a	copy	of	the	script	so	that	you	don't	lose	it	when	you
install	a	newer	RPM.)	See	Section	2.10.2.2,	“Starting	and	Stopping	MySQL
Automatically”,	for	more	information	on	how	MySQL	can	be	started
automatically	on	system	startup.

If	you	want	to	install	the	MySQL	RPM	on	older	Linux	distributions	that	do	not
support	initialization	scripts	in	/etc/init.d	(directly	or	via	a	symlink),	you
should	create	a	symbolic	link	that	points	to	the	location	where	your	initialization
scripts	actually	are	installed.	For	example,	if	that	location	is	/etc/rc.d/init.d,
use	these	commands	before	installing	the	RPM	to	create	/etc/init.d	as	a
symbolic	link	that	points	there:

shell>	cd	/etc

shell>	ln	-s	rc.d/init.d	.

However,	all	current	major	Linux	distributions	should	support	the	new	directory
layout	that	uses	/etc/init.d,	because	it	is	required	for	LSB	(Linux	Standard
Base)	compliance.

If	the	RPM	files	that	you	install	include	MySQL-server,	the	mysqld	server
should	be	up	and	running	after	installation.	You	should	be	able	to	start	using
MySQL.

If	something	goes	wrong,	you	can	find	more	information	in	the	binary
installation	section.	See	Section	2.8,	“Installing	MySQL	on	Other	Unix-Like
Systems”.

Note:	The	accounts	that	are	listed	in	the	MySQL	grant	tables	initially	have	no
passwords.	After	starting	the	server,	you	should	set	up	passwords	for	them	using
the	instructions	in	Section	2.10,	“Post-Installation	Setup	and	Testing”.

2.5.	Installing	MySQL	on	Mac	OS	X

You	can	install	MySQL	on	Mac	OS	X	10.3.x	(“Panther”)	or	newer	using	a	Mac
OS	X	binary	package	in	PKG	format	instead	of	the	binary	tarball	distribution.
Please	note	that	older	versions	of	Mac	OS	X	(for	example,	10.1.x	or	10.2.x)	are
not	supported	by	this	package.

The	package	is	located	inside	a	disk	image	(.dmg)	file	that	you	first	need	to
mount	by	double-clicking	its	icon	in	the	Finder.	It	should	then	mount	the	image
and	display	its	contents.

To	obtain	MySQL,	see	Section	2.1.3,	“How	to	Get	MySQL”.

Note:	Before	proceeding	with	the	installation,	be	sure	to	shut	down	all	running
MySQL	server	instances	by	either	using	the	MySQL	Manager	Application	(on
Mac	OS	X	Server)	or	via	mysqladmin	shutdown	on	the	command	line.

To	actually	install	the	MySQL	PKG	file,	double-click	on	the	package	icon.	This
launches	the	Mac	OS	X	Package	Installer,	which	guides	you	through	the
installation	of	MySQL.

Due	to	a	bug	in	the	Mac	OS	X	package	installer,	you	may	see	this	error	message
in	the	destination	disk	selection	dialog:

You	cannot	install	this	software	on	this	disk.	(null)

If	this	error	occurs,	simply	click	the	Go	Back	button	once	to	return	to	the
previous	screen.	Then	click	Continue	to	advance	to	the	destination	disk	selection
again,	and	you	should	be	able	to	choose	the	destination	disk	correctly.	We	have
reported	this	bug	to	Apple	and	it	is	investigating	this	problem.

The	Mac	OS	X	PKG	of	MySQL	installs	itself	into	/usr/local/mysql-VERSION
and	also	installs	a	symbolic	link,	/usr/local/mysql,	that	points	to	the	new
location.	If	a	directory	named	/usr/local/mysql	exists,	it	is	renamed	to
/usr/local/mysql.bak	first.	Additionally,	the	installer	creates	the	grant	tables
in	the	mysql	database	by	executing	mysql_install_db.

The	installation	layout	is	similar	to	that	of	a	tar	file	binary	distribution;	all
MySQL	binaries	are	located	in	the	directory	/usr/local/mysql/bin.	The

MySQL	socket	file	is	created	as	/tmp/mysql.sock	by	default.	See	Section	2.1.5,
“Installation	Layouts”.

MySQL	installation	requires	a	Mac	OS	X	user	account	named	mysql.	A	user
account	with	this	name	should	exist	by	default	on	Mac	OS	X	10.2	and	up.

If	you	are	running	Mac	OS	X	Server,	a	version	of	MySQL	should	already	be
installed.	The	following	table	shows	the	versions	of	MySQL	that	ship	with	Mac
OS	X	Server	versions.

Mac	OS	X	Server	Version MySQL	Version
10.2-10.2.2 3.23.51
10.2.3-10.2.6 3.23.53
10.3 4.0.14
10.3.2 4.0.16
10.4.0 4.1.10a

This	manual	section	covers	the	installation	of	the	official	MySQL	Mac	OS	X
PKG	only.	Make	sure	to	read	Apple's	help	information	about	installing	MySQL:
Run	the	“Help	View”	application,	select	“Mac	OS	X	Server”	help,	do	a	search
for	“MySQL,”	and	read	the	item	entitled	“Installing	MySQL.”

For	pre-installed	versions	of	MySQL	on	Mac	OS	X	Server,	note	especially	that
you	should	start	mysqld	with	safe_mysqld	instead	of	mysqld_safe	if	MySQL	is
older	than	version	4.0.

If	you	previously	used	Marc	Liyanage's	MySQL	packages	for	Mac	OS	X	from
http://www.entropy.ch,	you	can	simply	follow	the	update	instructions	for
packages	using	the	binary	installation	layout	as	given	on	his	pages.

If	you	are	upgrading	from	Marc's	3.23.x	versions	or	from	the	Mac	OS	X	Server
version	of	MySQL	to	the	official	MySQL	PKG,	you	also	need	to	convert	the
existing	MySQL	privilege	tables	to	the	current	format,	because	some	new
security	privileges	have	been	added.	See	Section	5.6.2,	“mysql_upgrade	—
Check	Tables	for	MySQL	Upgrade”.

If	you	want	MySQL	to	start	automatically	during	system	startup,	you	also	need
to	install	the	MySQL	Startup	Item.	It	is	part	of	the	Mac	OS	X	installation	disk

http://www.entropy.ch

images	as	a	separate	installation	package.	Simply	double-click	the
MySQLStartupItem.pkg	icon	and	follow	the	instructions	to	install	it.	The	Startup
Item	need	be	installed	only	once.	There	is	no	need	to	install	it	each	time	you
upgrade	the	MySQL	package	later.

The	Startup	Item	for	MySQL	is	installed	into
/Library/StartupItems/MySQLCOM.	(Before	MySQL	4.1.2,	the	location	was
/Library/StartupItems/MySQL,	but	that	collided	with	the	MySQL	Startup	Item
installed	by	Mac	OS	X	Server.)	Startup	Item	installation	adds	a	variable
MYSQLCOM=-YES-	to	the	system	configuration	file	/etc/hostconfig.	If	you	want
to	disable	the	automatic	startup	of	MySQL,	simply	change	this	variable	to
MYSQLCOM=-NO-.

On	Mac	OS	X	Server,	the	default	MySQL	installation	uses	the	variable	MYSQL	in
the	/etc/hostconfig	file.	The	MySQL	AB	Startup	Item	installer	disables	this
variable	by	setting	it	to	MYSQL=-NO-.	This	avoids	boot	time	conflicts	with	the
MYSQLCOM	variable	used	by	the	MySQL	AB	Startup	Item.	However,	it	does	not
shut	down	a	running	MySQL	server.	You	should	do	that	yourself.

After	the	installation,	you	can	start	up	MySQL	by	running	the	following
commands	in	a	terminal	window.	You	must	have	administrator	privileges	to
perform	this	task.

If	you	have	installed	the	Startup	Item,	use	this	command:

shell>	sudo	/Library/StartupItems/MySQLCOM/MySQLCOM	start

(Enter	your	password,	if	necessary)

(Press	Control-D	or	enter	"exit"	to	exit	the	shell)

If	you	don't	use	the	Startup	Item,	enter	the	following	command	sequence:

shell>	cd	/usr/local/mysql

shell>	sudo	./bin/mysqld_safe

(Enter	your	password,	if	necessary)

(Press	Control-Z)

shell>	bg

(Press	Control-D	or	enter	"exit"	to	exit	the	shell)

You	should	be	able	to	connect	to	the	MySQL	server,	for	example,	by	running
/usr/local/mysql/bin/mysql.

Note:	The	accounts	that	are	listed	in	the	MySQL	grant	tables	initially	have	no

passwords.	After	starting	the	server,	you	should	set	up	passwords	for	them	using
the	instructions	in	Section	2.10,	“Post-Installation	Setup	and	Testing”.

You	might	want	to	add	aliases	to	your	shell's	resource	file	to	make	it	easier	to
access	commonly	used	programs	such	as	mysql	and	mysqladmin	from	the
command	line.	The	syntax	for	bash	is:

alias	mysql=/usr/local/mysql/bin/mysql

alias	mysqladmin=/usr/local/mysql/bin/mysqladmin

For	tcsh,	use:

alias	mysql	/usr/local/mysql/bin/mysql

alias	mysqladmin	/usr/local/mysql/bin/mysqladmin

Even	better,	add	/usr/local/mysql/bin	to	your	PATH	environment	variable.	For
example,	add	the	following	line	to	your	$HOME/.bashrc	file	if	your	shell	is	bash:

PATH=${PATH}:/usr/local/mysql/bin

Add	the	following	line	to	your	$HOME/.tcshrc	file	if	your	shell	is	tcsh:

setenv	PATH	${PATH}:/usr/local/mysql/bin

If	no	.bashrc	or	.tcshrc	file	exists	in	your	home	directory,	create	it	with	a	text
editor.

If	you	are	upgrading	an	existing	installation,	note	that	installing	a	new	MySQL
PKG	does	not	remove	the	directory	of	an	older	installation.	Unfortunately,	the
Mac	OS	X	Installer	does	not	yet	offer	the	functionality	required	to	properly
upgrade	previously	installed	packages.

To	use	your	existing	databases	with	the	new	installation,	you'll	need	to	copy	the
contents	of	the	old	data	directory	to	the	new	data	directory.	Make	sure	that
neither	the	old	server	nor	the	new	one	is	running	when	you	do	this.	After	you
have	copied	over	the	MySQL	database	files	from	the	previous	installation	and
have	successfully	started	the	new	server,	you	should	consider	removing	the	old
installation	files	to	save	disk	space.	Additionally,	you	should	also	remove	older
versions	of	the	Package	Receipt	directories	located	in
/Library/Receipts/mysql-VERSION.pkg.

2.6.	Installing	MySQL	on	Solaris

If	you	install	MySQL	using	a	binary	tarball	distribution	on	Solaris,	you	may	run
into	trouble	even	before	you	get	the	MySQL	distribution	unpacked,	as	the
Solaris	tar	cannot	handle	long	filenames.	This	means	that	you	may	see	errors
when	you	try	to	unpack	MySQL.

If	this	occurs,	you	must	use	GNU	tar	(gtar)	to	unpack	the	distribution.	You	can
find	a	precompiled	copy	for	Solaris	at	http://dev.mysql.com/downloads/os-
solaris.html.

You	can	install	MySQL	on	Solaris	using	a	binary	package	in	PKG	format	instead
of	the	binary	tarball	distribution.	Before	installing	using	the	binary	PKG	format,
you	should	create	the	mysql	user	and	group,	for	example:

groupadd	mysql

useradd	-g	mysql	mysql

Some	basic	PKG-handling	commands	follow:

To	add	a	package:

pkgadd	-d	package_name.pkg

To	remove	a	package:

pkgrm	package_name

To	get	a	full	list	of	installed	packages:

pkginfo

To	get	detailed	information	for	a	package:

pkginfo	-l	package_name

To	list	the	files	belonging	to	a	package:

pkgchk	-v	package_name

To	get	packaging	information	for	an	arbitrary	file:

http://dev.mysql.com/downloads/os-solaris.html

pkgchk	-l	-p	file_name

For	additional	information	about	installing	MySQL	on	Solaris,	see
Section	2.13.3,	“Solaris	Notes”.

2.7.	Installing	MySQL	on	NetWare

Porting	MySQL	to	NetWare	was	an	effort	spearheaded	by	Novell.	Novell
customers	should	be	pleased	to	note	that	NetWare	6.5	ships	with	bundled
MySQL	binaries,	complete	with	an	automatic	commercial	use	license	for	all
servers	running	that	version	of	NetWare.

MySQL	for	NetWare	is	compiled	using	a	combination	of	Metrowerks
CodeWarrior	for	NetWare	and	special	cross-compilation	versions	of	the	GNU
autotools.

The	latest	binary	packages	for	NetWare	can	be	obtained	at
http://dev.mysql.com/downloads/.	See	Section	2.1.3,	“How	to	Get	MySQL”.

To	host	MySQL,	the	NetWare	server	must	meet	these	requirements:

The	latest	Support	Pack	of	NetWare	6.5	must	be	installed.

The	system	must	meet	Novell's	minimum	requirements	to	run	the	respective
version	of	NetWare.

MySQL	data	and	the	program	binaries	must	be	installed	on	an	NSS	volume;
traditional	volumes	are	not	supported.

To	install	MySQL	for	NetWare,	use	the	following	procedure:

1.	 If	you	are	upgrading	from	a	prior	installation,	stop	the	MySQL	server.	This
is	done	from	the	server	console,	using	the	following	command:

SERVER:		mysqladmin	-u	root	shutdown

Note:	If	the	MySQL	root	user	account	has	a	password,	you	need	to	invoke
mysqladmin	with	the	-p	option	and	supply	the	password	when	prompted.

2.	 Log	on	to	the	target	server	from	a	client	machine	with	access	to	the	location
where	you	are	installing	MySQL.

3.	 Extract	the	binary	package	Zip	file	onto	the	server.	Be	sure	to	allow	the
paths	in	the	Zip	file	to	be	used.	It	is	safe	to	simply	extract	the	file	to	SYS:\.

http://dev.mysql.com/downloads/
http://support.novell.com/filefinder/18197/index.html

If	you	are	upgrading	from	a	prior	installation,	you	may	need	to	copy	the
data	directory	(for	example,	SYS:MYSQL\DATA),	as	well	as	my.cnf,	if	you
have	customized	it.	You	can	then	delete	the	old	copy	of	MySQL.

4.	 You	might	want	to	rename	the	directory	to	something	more	consistent	and
easy	to	use.	The	examples	in	this	manual	use	SYS:MYSQL	to	refer	to	the
installation	directory.

Note	that	MySQL	installation	on	NetWare	does	not	detect	if	a	version	of
MySQL	is	already	installed	outside	the	NetWare	release.	Therefore,	if	you
have	installed	the	latest	MySQL	version	from	the	Web	(for	example,
MySQL	4.1	or	later)	in	SYS:\MYSQL,	you	must	rename	the	folder	before
upgrading	the	NetWare	server;	otherwise,	files	in	SYS:\MySQL	are
overwritten	by	the	MySQL	version	present	in	NetWare	Support	Pack.

5.	 At	the	server	console,	add	a	search	path	for	the	directory	containing	the
MySQL	NLMs.	For	example:

SERVER:		SEARCH	ADD	SYS:MYSQL\BIN

6.	 Initialize	the	data	directory	and	the	grant	tables,	if	necessary,	by	executing
mysql_install_db	at	the	server	console.

7.	 Start	the	MySQL	server	using	mysqld_safe	at	the	server	console.

8.	 To	finish	the	installation,	you	should	also	add	the	following	commands	to
autoexec.ncf.	For	example,	if	your	MySQL	installation	is	in	SYS:MYSQL
and	you	want	MySQL	to	start	automatically,	you	could	add	these	lines:

#Starts	the	MySQL	5.0.x	database	server

SEARCH	ADD	SYS:MYSQL\BIN

MYSQLD_SAFE

If	you	are	running	MySQL	on	NetWare	6.0,	we	strongly	suggest	that	you
use	the	--skip-external-locking	option	on	the	command	line:

#Starts	the	MySQL	5.0.x	database	server

SEARCH	ADD	SYS:MYSQL\BIN

MYSQLD_SAFE	--skip-external-locking

It	is	also	necessary	to	use	CHECK	TABLE	and	REPAIR	TABLE	instead	of
myisamchk,	because	myisamchk	makes	use	of	external	locking.	External

locking	is	known	to	have	problems	on	NetWare	6.0;	the	problem	has	been
eliminated	in	NetWare	6.5.	Note	that	the	use	of	MySQL	on	Netware	6.0	is
not	officially	supported.

mysqld_safe	on	NetWare	provides	a	screen	presence.	When	you	unload
(shut	down)	the	mysqld_safe	NLM,	the	screen	does	not	go	away	by
default.	Instead,	it	prompts	for	user	input:

<NLM	has	terminated;	Press	any	key	to	close	the	screen>

If	you	want	NetWare	to	close	the	screen	automatically	instead,	use	the	--
autoclose	option	to	mysqld_safe.	For	example:

#Starts	the	MySQL	5.0.x	database	server

SEARCH	ADD	SYS:MYSQL\BIN

MYSQLD_SAFE	--autoclose

The	behavior	of	mysqld_safe	on	NetWare	is	described	further	in
Section	5.4.1,	“mysqld_safe	—	MySQL	Server	Startup	Script”.

9.	 When	installing	MySQL,	either	for	the	first	time	or	upgrading	from	a
previous	version,	download	and	install	the	latest	and	appropriate	Perl
module	and	PHP	extensions	for	NetWare:

Perl:
http://forge.novell.com/modules/xfcontent/downloads.php/perl/Modules/

PHP:
http://forge.novell.com/modules/xfcontent/downloads.php/php/Modules/

If	there	was	an	existing	installation	of	MySQL	on	the	NetWare	server,	be	sure	to
check	for	existing	MySQL	startup	commands	in	autoexec.ncf,	and	edit	or
delete	them	as	necessary.

Note:	The	accounts	that	are	listed	in	the	MySQL	grant	tables	initially	have	no
passwords.	After	starting	the	server,	you	should	set	up	passwords	for	them	using
the	instructions	in	Section	2.10,	“Post-Installation	Setup	and	Testing”.

http://forge.novell.com/modules/xfcontent/downloads.php/perl/Modules/
http://forge.novell.com/modules/xfcontent/downloads.php/php/Modules/

2.8.	Installing	MySQL	on	Other	Unix-Like	Systems

This	section	covers	the	installation	of	MySQL	binary	distributions	that	are
provided	for	various	platforms	in	the	form	of	compressed	tar	files	(files	with	a
.tar.gz	extension).	See	Section	2.1.2.5,	“MySQL	Binaries	Compiled	by
MySQL	AB”,	for	a	detailed	list.

To	obtain	MySQL,	see	Section	2.1.3,	“How	to	Get	MySQL”.

MySQL	tar	file	binary	distributions	have	names	of	the	form	mysql-VERSION-
OS.tar.gz,	where	VERSION	is	a	number	(for	example,	5.0.25),	and	OS	indicates	the
type	of	operating	system	for	which	the	distribution	is	intended	(for	example,	pc-
linux-i686).

In	addition	to	these	generic	packages,	we	also	offer	binaries	in	platform-specific
package	formats	for	selected	platforms.	See	Section	2.2,	“Standard	MySQL
Installation	Using	a	Binary	Distribution”,	for	more	information	on	how	to	install
these.

You	need	the	following	tools	to	install	a	MySQL	tar	file	binary	distribution:

GNU	gunzip	to	uncompress	the	distribution.

A	reasonable	tar	to	unpack	the	distribution.	GNU	tar	is	known	to	work.
Some	operating	systems	come	with	a	pre-installed	version	of	tar	that	is
known	to	have	problems.	For	example,	Mac	OS	X	tar	and	Sun	tar	are
known	to	have	problems	with	long	filenames.	On	Mac	OS	X,	you	can	use
the	pre-installed	gnutar	program.	On	other	systems	with	a	deficient	tar,
you	should	install	GNU	tar	first.

If	you	run	into	problems	and	need	to	file	a	bug	report,	please	use	the	instructions
in	Section	1.8,	“How	to	Report	Bugs	or	Problems”.

The	basic	commands	that	you	must	execute	to	install	and	use	a	MySQL	binary
distribution	are:

shell>	groupadd	mysql

shell>	useradd	-g	mysql	mysql

shell>	cd	/usr/local

shell>	gunzip	<	/path/to/mysql-VERSION-OS.tar.gz	|	tar	xvf	-

shell>	ln	-s	full-path-to-mysql-VERSION-OS	mysql

shell>	cd	mysql

shell>	scripts/mysql_install_db	--user=mysql

shell>	chown	-R	root		.

shell>	chown	-R	mysql	data

shell>	chgrp	-R	mysql	.

shell>	bin/mysqld_safe	--user=mysql	&

Note:	This	procedure	does	not	set	up	any	passwords	for	MySQL	accounts.	After
following	the	procedure,	proceed	to	Section	2.10,	“Post-Installation	Setup	and
Testing”.

A	more	detailed	version	of	the	preceding	description	for	installing	a	binary
distribution	follows:

1.	 Add	a	login	user	and	group	for	mysqld	to	run	as:

shell>	groupadd	mysql

shell>	useradd	-g	mysql	mysql

These	commands	add	the	mysql	group	and	the	mysql	user.	The	syntax	for
useradd	and	groupadd	may	differ	slightly	on	different	versions	of	Unix,	or
they	may	have	different	names	such	as	adduser	and	addgroup.

You	might	want	to	call	the	user	and	group	something	else	instead	of	mysql.
If	so,	substitute	the	appropriate	name	in	the	following	steps.

2.	 Pick	the	directory	under	which	you	want	to	unpack	the	distribution	and
change	location	into	it.	In	the	following	example,	we	unpack	the
distribution	under	/usr/local.	(The	instructions,	therefore,	assume	that
you	have	permission	to	create	files	and	directories	in	/usr/local.	If	that
directory	is	protected,	you	must	perform	the	installation	as	root.)

shell>	cd	/usr/local

3.	 Obtain	a	distribution	file	using	the	instructions	in	Section	2.1.3,	“How	to
Get	MySQL”.	For	a	given	release,	binary	distributions	for	all	platforms	are
built	from	the	same	MySQL	source	distribution.

4.	 Unpack	the	distribution,	which	creates	the	installation	directory.	Then
create	a	symbolic	link	to	that	directory:

shell>	gunzip	<	/path/to/mysql-VERSION-OS.tar.gz	|	tar	xvf	-

shell>	ln	-s	full-path-to-mysql-VERSION-OS	mysql

The	tar	command	creates	a	directory	named	mysql-VERSION-OS.	The	ln
command	makes	a	symbolic	link	to	that	directory.	This	lets	you	refer	more
easily	to	the	installation	directory	as	/usr/local/mysql.

With	GNU	tar,	no	separate	invocation	of	gunzip	is	necessary.	You	can
replace	the	first	line	with	the	following	alternative	command	to	uncompress
and	extract	the	distribution:

shell>	tar	zxvf	/path/to/mysql-VERSION-OS.tar.gz

5.	 Change	location	into	the	installation	directory:

shell>	cd	mysql

You	will	find	several	files	and	subdirectories	in	the	mysql	directory.	The
most	important	for	installation	purposes	are	the	bin	and	scripts
subdirectories:

The	bin	directory	contains	client	programs	and	the	server.	You	should
add	the	full	pathname	of	this	directory	to	your	PATH	environment
variable	so	that	your	shell	finds	the	MySQL	programs	properly.	See
Appendix	F,	Environment	Variables.

The	scripts	directory	contains	the	mysql_install_db	script	used	to
initialize	the	mysql	database	containing	the	grant	tables	that	store	the
server	access	permissions.

6.	 If	you	have	not	installed	MySQL	before,	you	must	create	the	MySQL	grant
tables:

shell>	scripts/mysql_install_db	--user=mysql

If	you	run	the	command	as	root,	you	must	use	the	--user	option	as	shown.
The	value	of	the	option	should	be	the	name	of	the	login	account	that	you
created	in	the	first	step	to	use	for	running	the	server.	If	you	run	the
command	while	logged	in	as	that	user,	you	can	omit	the	--user	option.

After	creating	or	updating	the	grant	tables,	you	need	to	restart	the	server

manually.

7.	 Change	the	ownership	of	program	binaries	to	root	and	ownership	of	the
data	directory	to	the	user	that	you	run	mysqld	as.	Assuming	that	you	are
located	in	the	installation	directory	(/usr/local/mysql),	the	commands
look	like	this:

shell>	chown	-R	root		.

shell>	chown	-R	mysql	data

shell>	chgrp	-R	mysql	.

The	first	command	changes	the	owner	attribute	of	the	files	to	the	root	user.
The	second	changes	the	owner	attribute	of	the	data	directory	to	the	mysql
user.	The	third	changes	the	group	attribute	to	the	mysql	group.

8.	 If	you	want	MySQL	to	start	automatically	when	you	boot	your	machine,
you	can	copy	support-files/mysql.server	to	the	location	where	your
system	has	its	startup	files.	More	information	can	be	found	in	the	support-
files/mysql.server	script	itself	and	in	Section	2.10.2.2,	“Starting	and
Stopping	MySQL	Automatically”.

9.	 	You	can	set	up	new	accounts	using	the	bin/mysql_setpermission	script	if
you	install	the	DBI	and	DBD::mysql	Perl	modules.	For	instructions,	see
Section	2.14,	“Perl	Installation	Notes”.

10.	 If	you	would	like	to	use	mysqlaccess	and	have	the	MySQL	distribution	in
some	non-standard	location,	you	must	change	the	location	where
mysqlaccess	expects	to	find	the	mysql	client.	Edit	the	bin/mysqlaccess
script	at	approximately	line	18.	Search	for	a	line	that	looks	like	this:

$MYSQL					=	'/usr/local/bin/mysql';				#	path	to	mysql	executable

Change	the	path	to	reflect	the	location	where	mysql	actually	is	stored	on
your	system.	If	you	do	not	do	this,	a	Broken	pipe	error	will	occur	when
you	run	mysqlaccess.

After	everything	has	been	unpacked	and	installed,	you	should	test	your
distribution.	To	start	the	MySQL	server,	use	the	following	command:

shell>	bin/mysqld_safe	--user=mysql	&

If	that	command	fails	immediately	and	prints	mysqld	ended,	you	can	find	some
information	in	the	host_name.err	file	in	the	data	directory.

More	information	about	mysqld_safe	is	given	in	Section	5.4.1,	“mysqld_safe
—	MySQL	Server	Startup	Script”.

Note:	The	accounts	that	are	listed	in	the	MySQL	grant	tables	initially	have	no
passwords.	After	starting	the	server,	you	should	set	up	passwords	for	them	using
the	instructions	in	Section	2.10,	“Post-Installation	Setup	and	Testing”.

2.9.	MySQL	Installation	Using	a	Source	Distribution

Before	you	proceed	with	an	installation	from	source,	first	check	whether	our
binary	is	available	for	your	platform	and	whether	it	works	for	you.	We	put	a
great	deal	of	effort	into	ensuring	that	our	binaries	are	built	with	the	best	possible
options.

To	obtain	a	source	distribution	for	MySQL,	Section	2.1.3,	“How	to	Get
MySQL”.

MySQL	source	distributions	are	provided	as	compressed	tar	archives	and	have
names	of	the	form	mysql-VERSION.tar.gz,	where	VERSION	is	a	number	like
5.0.25.

You	need	the	following	tools	to	build	and	install	MySQL	from	source:

GNU	gunzip	to	uncompress	the	distribution.

A	reasonable	tar	to	unpack	the	distribution.	GNU	tar	is	known	to	work.
Some	operating	systems	come	with	a	pre-installed	version	of	tar	that	is
known	to	have	problems.	For	example,	the	tar	provided	with	early	versions
of	Mac	OS	X	tar,	SunOS	4.x	and	Solaris	8	and	earlier	are	known	to	have
problems	with	long	filenames.	On	Mac	OS	X,	you	can	use	the	pre-installed
gnutar	program.	On	other	systems	with	a	deficient	tar,	you	should	install
GNU	tar	first.

A	working	ANSI	C++	compiler.	gcc	2.95.2	or	later,	egcs	1.0.2	or	later	or
egcs	2.91.66,	SGI	C++,	and	SunPro	C++	are	some	of	the	compilers	that	are
known	to	work.	libg++	is	not	needed	when	using	gcc.	gcc	2.7.x	has	a	bug
that	makes	it	impossible	to	compile	some	perfectly	legal	C++	files,	such	as
sql/sql_base.cc.	If	you	have	only	gcc	2.7.x,	you	must	upgrade	your	gcc
to	be	able	to	compile	MySQL.	gcc	2.8.1	is	also	known	to	have	problems	on
some	platforms,	so	it	should	be	avoided	if	a	new	compiler	exists	for	the
platform.

gcc	2.95.2	or	later	is	recommended	when	compiling	MySQL	3.23.x.

A	good	make	program.	GNU	make	is	always	recommended	and	is

sometimes	required.	If	you	have	problems,	we	recommend	GNU	make
3.75	or	newer.

If	you	are	using	a	version	of	gcc	recent	enough	to	understand	the	-fno-
exceptions	option,	it	is	very	important	that	you	use	this	option.	Otherwise,	you
may	compile	a	binary	that	crashes	randomly.	We	also	recommend	that	you	use	-
felide-constructors	and	-fno-rtti	along	with	-fno-exceptions.	When	in
doubt,	do	the	following:

CFLAGS="-O3"	CXX=gcc	CXXFLAGS="-O3	-felide-constructors	\

							-fno-exceptions	-fno-rtti"	./configure	\

							--prefix=/usr/local/mysql	--enable-assembler	\

							--with-mysqld-ldflags=-all-static

On	most	systems,	this	gives	you	a	fast	and	stable	binary.

If	you	run	into	problems	and	need	to	file	a	bug	report,	please	use	the	instructions
in	Section	1.8,	“How	to	Report	Bugs	or	Problems”.

2.9.1.	Source	Installation	Overview

The	basic	commands	that	you	must	execute	to	install	a	MySQL	source
distribution	are:

shell>	groupadd	mysql

shell>	useradd	-g	mysql	mysql

shell>	gunzip	<	mysql-VERSION.tar.gz	|	tar	-xvf	-

shell>	cd	mysql-VERSION

shell>	./configure	--prefix=/usr/local/mysql

shell>	make

shell>	make	install

shell>	cp	support-files/my-medium.cnf	/etc/my.cnf

shell>	cd	/usr/local/mysql

shell>	bin/mysql_install_db	--user=mysql

shell>	chown	-R	root		.

shell>	chown	-R	mysql	var

shell>	chgrp	-R	mysql	.

shell>	bin/mysqld_safe	--user=mysql	&

If	you	start	from	a	source	RPM,	do	the	following:

shell>	rpmbuild	--rebuild	--clean	MySQL-VERSION.src.rpm

This	makes	a	binary	RPM	that	you	can	install.	For	older	versions	of	RPM,	you

may	have	to	replace	the	command	rpmbuild	with	rpm	instead.

Note:	This	procedure	does	not	set	up	any	passwords	for	MySQL	accounts.	After
following	the	procedure,	proceed	to	Section	2.10,	“Post-Installation	Setup	and
Testing”,	for	post-installation	setup	and	testing.

A	more	detailed	version	of	the	preceding	description	for	installing	MySQL	from
a	source	distribution	follows:

1.	 Add	a	login	user	and	group	for	mysqld	to	run	as:

shell>	groupadd	mysql

shell>	useradd	-g	mysql	mysql

These	commands	add	the	mysql	group	and	the	mysql	user.	The	syntax	for
useradd	and	groupadd	may	differ	slightly	on	different	versions	of	Unix,	or
they	may	have	different	names	such	as	adduser	and	addgroup.

You	might	want	to	call	the	user	and	group	something	else	instead	of	mysql.
If	so,	substitute	the	appropriate	name	in	the	following	steps.

2.	 Pick	the	directory	under	which	you	want	to	unpack	the	distribution	and
change	location	into	it.

3.	 Obtain	a	distribution	file	using	the	instructions	in	Section	2.1.3,	“How	to
Get	MySQL”.

4.	 Unpack	the	distribution	into	the	current	directory:

shell>	gunzip	<	/path/to/mysql-VERSION.tar.gz	|	tar	xvf	-

This	command	creates	a	directory	named	mysql-VERSION.

With	GNU	tar,	no	separate	invocation	of	gunzip	is	necessary.	You	can	use
the	following	alternative	command	to	uncompress	and	extract	the
distribution:

shell>	tar	zxvf	/path/to/mysql-VERSION-OS.tar.gz

5.	 Change	location	into	the	top-level	directory	of	the	unpacked	distribution:

shell>	cd	mysql-VERSION

Note	that	currently	you	must	configure	and	build	MySQL	from	this	top-
level	directory.	You	cannot	build	it	in	a	different	directory.

6.	 Configure	the	release	and	compile	everything:

shell>	./configure	--prefix=/usr/local/mysql

shell>	make

When	you	run	configure,	you	might	want	to	specify	other	options.	Run
./configure	--help	for	a	list	of	options.	Section	2.9.2,	“Typical	configure
Options”,	discusses	some	of	the	more	useful	options.

If	configure	fails	and	you	are	going	to	send	mail	to	a	MySQL	mailing	list
to	ask	for	assistance,	please	include	any	lines	from	config.log	that	you
think	can	help	solve	the	problem.	Also	include	the	last	couple	of	lines	of
output	from	configure.	To	file	a	bug	report,	please	use	the	instructions	in
Section	1.8,	“How	to	Report	Bugs	or	Problems”.

If	the	compile	fails,	see	Section	2.9.4,	“Dealing	with	Problems	Compiling
MySQL”,	for	help.

7.	 Install	the	distribution:

shell>	make	install

If	you	want	to	set	up	an	option	file,	use	one	of	those	present	in	the
support-files	directory	as	a	template.	For	example:

shell>	cp	support-files/my-medium.cnf	/etc/my.cnf

You	might	need	to	run	these	commands	as	root.

If	you	want	to	configure	support	for	InnoDB	tables,	you	should	edit	the
/etc/my.cnf	file,	remove	the	#	character	before	the	option	lines	that	start
with	innodb_...,	and	modify	the	option	values	to	be	what	you	want.	See
Section	4.3.2,	“Using	Option	Files”,	and	Section	14.2.3,	“InnoDB
Configuration”.

8.	 Change	location	into	the	installation	directory:

shell>	cd	/usr/local/mysql

9.	 If	you	haven't	installed	MySQL	before,	you	must	create	the	MySQL	grant
tables:

shell>	bin/mysql_install_db	--user=mysql

If	you	run	the	command	as	root,	you	should	use	the	--user	option	as
shown.	The	value	of	the	option	should	be	the	name	of	the	login	account	that
you	created	in	the	first	step	to	use	for	running	the	server.	If	you	run	the
command	while	logged	in	as	that	user,	you	can	omit	the	--user	option.

After	using	mysql_install_db	to	create	the	grant	tables	for	MySQL,	you
must	restart	the	server	manually.	The	mysqld_safe	command	to	do	this	is
shown	in	a	later	step.

10.	 Change	the	ownership	of	program	binaries	to	root	and	ownership	of	the
data	directory	to	the	user	that	you	run	mysqld	as.	Assuming	that	you	are
located	in	the	installation	directory	(/usr/local/mysql),	the	commands
look	like	this:

shell>	chown	-R	root		.

shell>	chown	-R	mysql	var

shell>	chgrp	-R	mysql	.

The	first	command	changes	the	owner	attribute	of	the	files	to	the	root	user.
The	second	changes	the	owner	attribute	of	the	data	directory	to	the	mysql
user.	The	third	changes	the	group	attribute	to	the	mysql	group.

11.	 If	you	want	MySQL	to	start	automatically	when	you	boot	your	machine,
you	can	copy	support-files/mysql.server	to	the	location	where	your
system	has	its	startup	files.	More	information	can	be	found	in	the	support-
files/mysql.server	script	itself;	see	also	Section	2.10.2.2,	“Starting	and
Stopping	MySQL	Automatically”.

12.	 	You	can	set	up	new	accounts	using	the	bin/mysql_setpermission	script	if
you	install	the	DBI	and	DBD::mysql	Perl	modules.	For	instructions,	see
Section	2.14,	“Perl	Installation	Notes”.

After	everything	has	been	installed,	you	should	test	your	distribution.	To	start	the
MySQL	server,	use	the	following	command:

shell>	/usr/local/mysql/bin/mysqld_safe	--user=mysql	&

If	that	command	fails	immediately	and	prints	mysqld	ended,	you	can	find	some
information	in	the	host_name.err	file	in	the	data	directory.

More	information	about	mysqld_safe	is	given	in	Section	5.4.1,	“mysqld_safe
—	MySQL	Server	Startup	Script”.

Note:	The	accounts	that	are	listed	in	the	MySQL	grant	tables	initially	have	no
passwords.	After	starting	the	server,	you	should	set	up	passwords	for	them	using
the	instructions	in	Section	2.10,	“Post-Installation	Setup	and	Testing”.

2.9.2.	Typical	configure	Options

The	configure	script	gives	you	a	great	deal	of	control	over	how	you	configure	a
MySQL	source	distribution.	Typically	you	do	this	using	options	on	the
configure	command	line.	You	can	also	affect	configure	using	certain
environment	variables.	See	Appendix	F,	Environment	Variables.	For	a	list	of
options	supported	by	configure,	run	this	command:

shell>	./configure	--help

Some	of	the	more	commonly	used	configure	options	are	described	here:

To	compile	just	the	MySQL	client	libraries	and	client	programs	and	not	the
server,	use	the	--without-server	option:

shell>	./configure	--without-server

If	you	have	no	C++	compiler,	some	client	programs	such	as	mysql	cannot
be	compiled	because	they	require	C++..	In	this	case,	you	can	remove	the
code	in	configure	that	tests	for	the	C++	compiler	and	then	run	./configure
with	the	--without-server	option.	The	compile	step	should	still	try	to
build	all	clients,	but	you	can	ignore	any	warnings	about	files	such	as
mysql.cc.	(If	make	stops,	try	make	-k	to	tell	it	to	continue	with	the	rest	of
the	build	even	if	errors	occur.)

If	you	want	to	build	the	embedded	MySQL	library	(libmysqld.a),	use	the	-
-with-embedded-server	option.

If	you	don't	want	your	log	files	and	database	directories	located	under
/usr/local/var,	use	a	configure	command	something	like	one	of	these:

shell>	./configure	--prefix=/usr/local/mysql

shell>	./configure	--prefix=/usr/local	\

											--localstatedir=/usr/local/mysql/data

The	first	command	changes	the	installation	prefix	so	that	everything	is
installed	under	/usr/local/mysql	rather	than	the	default	of	/usr/local.
The	second	command	preserves	the	default	installation	prefix,	but	overrides
the	default	location	for	database	directories	(normally	/usr/local/var)	and
changes	it	to	/usr/local/mysql/data.

You	can	also	specify	the	installation	directory	and	data	directory	locations
at	server	startup	time	by	using	the	--basedir	and	--datadir	options.	These
can	be	given	on	the	command	line	or	in	an	MySQL	option	file,	although	it
is	more	common	to	use	an	option	file.	See	Section	4.3.2,	“Using	Option
Files”.

	If	you	are	using	Unix	and	you	want	the	MySQL	socket	file	location	to	be
somewhere	other	than	the	default	location	(normally	in	the	directory	/tmp
or	/var/run),	use	a	configure	command	like	this:

shell>	./configure	\

											--with-unix-socket-path=/usr/local/mysql/tmp/mysql.sock

The	socket	filename	must	be	an	absolute	pathname.	You	can	also	change
the	location	of	mysql.sock	at	server	startup	by	using	a	MySQL	option	file.
See	Section	A.4.5,	“How	to	Protect	or	Change	the	MySQL	Unix	Socket
File”.

	If	you	want	to	compile	statically	linked	programs	(for	example,	to	make	a
binary	distribution,	to	get	better	performance,	or	to	work	around	problems
with	some	Red	Hat	Linux	distributions),	run	configure	like	this:

shell>	./configure	--with-client-ldflags=-all-static	\

											--with-mysqld-ldflags=-all-static

	If	you	are	using	gcc	and	don't	have	libg++	or	libstdc++	installed,	you	can
tell	configure	to	use	gcc	as	your	C++	compiler:

shell>	CC=gcc	CXX=gcc	./configure

When	you	use	gcc	as	your	C++	compiler,	it	does	not	attempt	to	link	in
libg++	or	libstdc++.	This	may	be	a	good	thing	to	do	even	if	you	have

those	libraries	installed.	Some	versions	of	them	have	caused	strange
problems	for	MySQL	users	in	the	past.

The	following	list	indicates	some	compilers	and	environment	variable
settings	that	are	commonly	used	with	each	one.

gcc	2.7.2:

CC=gcc	CXX=gcc	CXXFLAGS="-O3	-felide-constructors"

egcs	1.0.3a:

CC=gcc	CXX=gcc	CXXFLAGS="-O3	-felide-constructors	\

-fno-exceptions	-fno-rtti"

gcc	2.95.2:

CFLAGS="-O3	-mpentiumpro"	CXX=gcc	CXXFLAGS="-O3	-mpentiumpro	\

-felide-constructors	-fno-exceptions	-fno-rtti"

pgcc	2.90.29	or	newer:

CFLAGS="-O3	-mpentiumpro	-mstack-align-double"	CXX=gcc	\

CXXFLAGS="-O3	-mpentiumpro	-mstack-align-double	\

-felide-constructors	-fno-exceptions	-fno-rtti"

In	most	cases,	you	can	get	a	reasonably	optimized	MySQL	binary	by	using
the	options	from	the	preceding	list	and	adding	the	following	options	to	the
configure	line:

--prefix=/usr/local/mysql	--enable-assembler	\

--with-mysqld-ldflags=-all-static

The	full	configure	line	would,	in	other	words,	be	something	like	the
following	for	all	recent	gcc	versions:

CFLAGS="-O3	-mpentiumpro"	CXX=gcc	CXXFLAGS="-O3	-mpentiumpro	\

-felide-constructors	-fno-exceptions	-fno-rtti"	./configure	\

--prefix=/usr/local/mysql	--enable-assembler	\

--with-mysqld-ldflags=-all-static

The	binaries	we	provide	on	the	MySQL	Web	site	at
http://dev.mysql.com/downloads/	are	all	compiled	with	full	optimization
and	should	be	perfect	for	most	users.	See	Section	2.1.2.5,	“MySQL	Binaries

http://dev.mysql.com/downloads/

Compiled	by	MySQL	AB”.	There	are	some	configuration	settings	you	can
tweak	to	build	an	even	faster	binary,	but	these	are	only	for	advanced	users.
See	Section	7.5.4,	“How	Compiling	and	Linking	Affects	the	Speed	of
MySQL”.

If	the	build	fails	and	produces	errors	about	your	compiler	or	linker	not
being	able	to	create	the	shared	library	libmysqlclient.so.N	(where	N	is	a
version	number),	you	can	work	around	this	problem	by	giving	the	--
disable-shared	option	to	configure.	In	this	case,	configure	does	not	build
a	shared	libmysqlclient.so.N	library.

	By	default,	MySQL	uses	the	latin1	(cp1252	West	European)	character	set.
To	change	the	default	set,	use	the	--with-charset	option:

shell>	./configure	--with-charset=CHARSET

CHARSET	may	be	one	of	big5,	cp1251,	cp1257,	czech,	danish,	dec8,	dos,
euc_kr,	gb2312,	gbk,	german1,	hebrew,	hp8,	hungarian,	koi8_ru,
koi8_ukr,	latin1,	latin2,	sjis,	swe7,	tis620,	ujis,	usa7,	or	win1251ukr.
See	Section	5.11.1,	“The	Character	Set	Used	for	Data	and	Sorting”.
(Additional	character	sets	might	be	available.	Check	the	output	from
./configure	--help	for	the	current	list.)

The	default	collation	may	also	be	specified.	MySQL	uses	the
latin1_swedish_ci	collation	by	default.	To	change	this,	use	the	--with-
collation	option:

shell>	./configure	--with-collation=COLLATION

To	change	both	the	character	set	and	the	collation,	use	both	the	--with-
charset	and	--with-collation	options.	The	collation	must	be	a	legal
collation	for	the	character	set.	(Use	the	SHOW	COLLATION	statement	to
determine	which	collations	are	available	for	each	character	set.)

Warning:	If	you	change	character	sets	after	having	created	any	tables,	you
must	run	myisamchk	-r	-q	--set-collation=collation_name	on	every
MyISAM	table.	Your	indexes	may	be	sorted	incorrectly	otherwise.	This	can
happen	if	you	install	MySQL,	create	some	tables,	and	then	reconfigure
MySQL	to	use	a	different	character	set	and	reinstall	it.

With	the	configure	option	--with-extra-charsets=LIST,	you	can	define
which	additional	character	sets	should	be	compiled	into	the	server.	LIST	is
one	of	the	following:

A	list	of	character	set	names	separated	by	spaces

complex	to	include	all	character	sets	that	can't	be	dynamically	loaded

all	to	include	all	character	sets	into	the	binaries

Clients	that	want	to	convert	characters	between	the	server	and	the	client
should	use	the	SET	NAMES	statement.	See	Section	13.5.3,	“SET	Syntax”,	and
Section	10.4,	“Connection	Character	Sets	and	Collations”.

To	configure	MySQL	with	debugging	code,	use	the	--with-debug	option:

shell>	./configure	--with-debug

This	causes	a	safe	memory	allocator	to	be	included	that	can	find	some
errors	and	that	provides	output	about	what	is	happening.	See	Section	E.1,
“Debugging	a	MySQL	Server”.

If	your	client	programs	are	using	threads,	you	must	compile	a	thread-safe
version	of	the	MySQL	client	library	with	the	--enable-thread-safe-
client	configure	option.	This	creates	a	libmysqlclient_r	library	with
which	you	should	link	your	threaded	applications.	See	Section	22.2.15,
“How	to	Make	a	Threaded	Client”.

It	is	possible	to	build	MySQL	5.0	with	large	table	support	using	the	--
with-big-tables	option,	beginning	with	MySQL	5.0.4.

This	option	causes	the	variables	that	store	table	row	counts	to	be	declared
as	unsigned	long	long	rather	than	unsigned	long.	This	enables	tables	to
hold	up	to	approximately	1.844E+19	((232)2)	rows	rather	than	232
(~4.295E+09)	rows.	Previously	it	was	necessary	to	pass	-DBIG_TABLES	to
the	compiler	manually	in	order	to	enable	this	feature.

See	Section	2.13,	“Operating	System-Specific	Notes”,	for	options	that
pertain	to	particular	operating	systems.

See	Section	5.9.7.2,	“Using	SSL	Connections”,	for	options	that	pertain	to
configuring	MySQL	to	support	secure	(encrypted)	connections.

2.9.3.	Installing	from	the	Development	Source	Tree

Caution:	You	should	read	this	section	only	if	you	are	interested	in	helping	us
test	our	new	code.	If	you	just	want	to	get	MySQL	up	and	running	on	your
system,	you	should	use	a	standard	release	distribution	(either	a	binary	or	source
distribution).

To	obtain	our	most	recent	development	source	tree,	first	download	and	install	the
BitKeeper	free	client	if	you	do	not	have	it.	The	client	can	be	obtained	from
http://www.bitmover.com/bk-client.shar.

To	install	the	BitKeeper	client	on	Unix,	use	these	commands:

shell>	sh	bk-client.shar

shell>	cd	bk_client-1.1

shell>	make	all

shell>	PATH=$PWD:$PATH

To	install	the	BitKeeper	client	on	Windows,	use	these	instructions:

1.	 Download	and	install	Cygwin	from	http://cygwin.com.

2.	 Make	sure	gcc	and	make	have	been	installed	under	Cygwin.	You	can	test
this	by	issuing	which	gcc	and	which	make	commands.	If	either	one	is	not
installed,	run	Cygwin's	package	manager,	select	gcc,	make,	or	both,	and
install	them.

3.	 Under	Cygwin,	execute	these	commands:

shell>	sh	bk-client.shar

shell>	cd	bk_client-1.1

Then	edit	the	Makefile	and	change	the	line	that	reads	$(CC)	$(CFLAGS)	-o
sfio	-lz	sfio.c	to	this:

$(CC)	$(CFLAGS)	-o	sfio	sfio.c	-lz

Now	run	the	make	command	and	set	the	path:

http://www.bitmover.com/bk-client.shar
http://cygwin.com/

shell>	make	all

shell>	PATH=$PWD:$PATH

The	BitKeeper	free	client	is	shipped	with	its	source	code.	The	only
documentation	available	for	the	free	client	is	the	source	code	itself.

After	you	have	installed	the	BitKeeper	client,	you	can	access	the	MySQL
development	source	tree:

1.	 Change	location	to	the	directory	you	want	to	work	from,	and	then	use	the
following	command	to	make	a	local	copy	of	the	MySQL	5.0	branch:

shell>	sfioball	-r+	bk://mysql.bkbits.net/mysql-5.0	mysql-5.0

In	the	preceding	example,	the	source	tree	is	set	up	in	the	mysql-5.0/
subdirectory	of	your	current	directory.

The	initial	download	of	the	source	tree	may	take	a	while,	depending	on	the
speed	of	your	connection.	Please	be	patient.

2.	 You	need	GNU	make,	autoconf	2.58	(or	newer),	automake	1.8,	libtool
1.5,	and	m4	to	run	the	next	set	of	commands.	Even	though	many	operating
systems	come	with	their	own	implementation	of	make,	chances	are	high
that	the	compilation	fails	with	strange	error	messages.	Therefore,	it	is
highly	recommended	that	you	use	GNU	make	(sometimes	named	gmake)
instead.

Fortunately,	a	large	number	of	operating	systems	ship	with	the	GNU
toolchain	preinstalled	or	supply	installable	packages	of	these.	In	any	case,
they	can	also	be	downloaded	from	the	following	locations:

http://www.gnu.org/software/autoconf/

http://www.gnu.org/software/automake/

http://www.gnu.org/software/libtool/

http://www.gnu.org/software/m4/

http://www.gnu.org/software/make/

http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/libtool/
http://www.gnu.org/software/m4/
http://www.gnu.org/software/make/

To	configure	MySQL	5.0,	you	also	need	GNU	bison	1.75	or	later.	Older
versions	of	bison	may	report	this	error:

sql_yacc.yy:#####:	fatal	error:	maximum	table	size	(32767)	exceeded

Note:	The	maximum	table	size	is	not	actually	exceeded;	the	error	is	caused
by	bugs	in	older	versions	of	bison.

The	following	example	shows	the	typical	commands	required	to	configure	a
source	tree.	The	first	cd	command	changes	location	into	the	top-level
directory	of	the	tree;	replace	mysql-5.0	with	the	appropriate	directory
name.

shell>	cd	mysql-5.0

shell>	(cd	bdb/dist;	sh	s_all)

shell>	(cd	innobase;	autoreconf	--force	--install)

shell>	autoreconf	--force	--install

shell>	./configure		#	Add	your	favorite	options	here

shell>	make

Or	you	can	use	BUILD/autorun.sh	as	a	shortcut	for	the	following
sequence	of	commands:

shell>	aclocal;	autoheader

shell>	libtoolize	--automake	--force

shell>	automake	--force	--add-missing;	autoconf

shell>	(cd	innobase;	aclocal;	autoheader;	autoconf;	automake)

shell>	(cd	bdb/dist;	sh	s_all)

The	command	lines	that	change	directory	into	the	innobase	and	bdb/dist
directories	are	used	to	configure	the	InnoDB	and	Berkeley	DB	(BDB)	storage
engines.	You	can	omit	these	command	lines	if	you	to	not	require	InnoDB	or
BDB	support.

If	you	get	some	strange	errors	during	this	stage,	verify	that	you	really	have
libtool	installed.

A	collection	of	our	standard	configuration	scripts	is	located	in	the	BUILD/
subdirectory.	You	may	find	it	more	convenient	to	use	the	BUILD/compile-
pentium-debug	script	than	the	preceding	set	of	shell	commands.	To
compile	on	a	different	architecture,	modify	the	script	by	removing	flags	that
are	Pentium-specific.

3.	 When	the	build	is	done,	run	make	install.	Be	careful	with	this	on	a
production	machine;	the	command	may	overwrite	your	live	release
installation.	If	you	have	another	installation	of	MySQL,	we	recommend	that
you	run	./configure	with	different	values	for	the	--prefix,	--with-tcp-
port,	and	--unix-socket-path	options	than	those	used	for	your	production
server.

4.	 Play	hard	with	your	new	installation	and	try	to	make	the	new	features	crash.
Start	by	running	make	test.	See	Section	24.1.2,	“MySQL	Test	Suite”.

5.	 If	you	have	gotten	to	the	make	stage,	but	the	distribution	does	not	compile,
please	enter	the	problem	into	our	bugs	database	using	the	instructions	given
in	Section	1.8,	“How	to	Report	Bugs	or	Problems”.	If	you	have	installed	the
latest	versions	of	the	required	GNU	tools,	and	they	crash	trying	to	process
our	configuration	files,	please	report	that	also.	However,	if	you	execute
aclocal	and	get	a	command	not	found	error	or	a	similar	problem,	do	not
report	it.	Instead,	make	sure	that	all	the	necessary	tools	are	installed	and
that	your	PATH	variable	is	set	correctly	so	that	your	shell	can	find	them.

6.	 After	initially	copying	the	repository	with	sfioball	to	obtain	the	source	tree,
you	should	use	update	periodically	to	update	your	local	copy.	To	do	this
any	time	after	you	have	set	up	the	repository,	use	this	command:

shell>	update	bk://mysql.bkbits.net/mysql-5.0

7.	 You	can	examine	the	change	history	for	the	tree	with	all	the	diffs	by
viewing	the	BK/ChangeLog	file	in	the	source	tree	and	looking	at	the
ChangeSet	descriptions	listed	there.	To	examine	a	particular	changeset,	you
would	have	to	use	the	sfioball	command	to	extract	two	particular	revisions
of	the	source	tree,	and	then	use	an	external	diff	command	to	compare	them.
If	you	see	some	funny	diffs	or	code	that	you	have	a	question	about,	do	not
hesitate	to	send	email	to	the	MySQL	internals	mailing	list.	See
Section	1.7.1,	“MySQL	Mailing	Lists”.	Also,	if	you	think	you	have	a	better
idea	on	how	to	do	something,	send	an	email	message	to	the	list	with	a
patch.

You	can	also	browse	changesets,	comments,	and	source	code	online.	To	browse
this	information	for	MySQL	5.0,	go	to	http://mysql.bkbits.net:8080/mysql-5.0.

http://mysql.bkbits.net:8080/mysql-5.0

2.9.4.	Dealing	with	Problems	Compiling	MySQL

All	MySQL	programs	compile	cleanly	for	us	with	no	warnings	on	Solaris	or
Linux	using	gcc.	On	other	systems,	warnings	may	occur	due	to	differences	in
system	include	files.	See	Section	2.9.5,	“MIT-pthreads	Notes”,	for	warnings	that
may	occur	when	using	MIT-pthreads.	For	other	problems,	check	the	following
list.

The	solution	to	many	problems	involves	reconfiguring.	If	you	do	need	to
reconfigure,	take	note	of	the	following:

If	configure	is	run	after	it	has	previously	been	run,	it	may	use	information
that	was	gathered	during	its	previous	invocation.	This	information	is	stored
in	config.cache.	When	configure	starts	up,	it	looks	for	that	file	and	reads
its	contents	if	it	exists,	on	the	assumption	that	the	information	is	still
correct.	That	assumption	is	invalid	when	you	reconfigure.

Each	time	you	run	configure,	you	must	run	make	again	to	recompile.
However,	you	may	want	to	remove	old	object	files	from	previous	builds
first	because	they	were	compiled	using	different	configuration	options.

To	prevent	old	configuration	information	or	object	files	from	being	used,	run
these	commands	before	re-running	configure:

shell>	rm	config.cache

shell>	make	clean

Alternatively,	you	can	run	make	distclean.

The	following	list	describes	some	of	the	problems	when	compiling	MySQL	that
have	been	found	to	occur	most	often:

If	you	get	errors	such	as	the	ones	shown	here	when	compiling
sql_yacc.cc,	you	probably	have	run	out	of	memory	or	swap	space:

Internal	compiler	error:	program	cc1plus	got	fatal	signal	11

Out	of	virtual	memory

Virtual	memory	exhausted

The	problem	is	that	gcc	requires	a	huge	amount	of	memory	to	compile
sql_yacc.cc	with	inline	functions.	Try	running	configure	with	the	--with-

low-memory	option:

shell>	./configure	--with-low-memory

This	option	causes	-fno-inline	to	be	added	to	the	compile	line	if	you	are
using	gcc	and	-O0	if	you	are	using	something	else.	You	should	try	the	--
with-low-memory	option	even	if	you	have	so	much	memory	and	swap
space	that	you	think	you	can't	possibly	have	run	out.	This	problem	has	been
observed	to	occur	even	on	systems	with	generous	hardware	configurations,
and	the	--with-low-memory	option	usually	fixes	it.

By	default,	configure	picks	c++	as	the	compiler	name	and	GNU	c++	links
with	-lg++.	If	you	are	using	gcc,	that	behavior	can	cause	problems	during
configuration	such	as	this:

configure:	error:	installation	or	configuration	problem:

C++	compiler	cannot	create	executables.

You	might	also	observe	problems	during	compilation	related	to	g++,
libg++,	or	libstdc++.

One	cause	of	these	problems	is	that	you	may	not	have	g++,	or	you	may
have	g++	but	not	libg++,	or	libstdc++.	Take	a	look	at	the	config.log	file.
It	should	contain	the	exact	reason	why	your	C++	compiler	didn't	work.	To
work	around	these	problems,	you	can	use	gcc	as	your	C++	compiler.	Try
setting	the	environment	variable	CXX	to	"gcc	-O3".	For	example:

shell>	CXX="gcc	-O3"	./configure

This	works	because	gcc	compiles	C++	source	files	as	well	as	g++	does,	but
does	not	link	in	libg++	or	libstdc++	by	default.

Another	way	to	fix	these	problems	is	to	install	g++,	libg++,	and
libstdc++.	However,	we	recommend	that	you	not	use	libg++	or	libstdc++
with	MySQL	because	this	only	increases	the	binary	size	of	mysqld	without
providing	any	benefits.	Some	versions	of	these	libraries	have	also	caused
strange	problems	for	MySQL	users	in	the	past.

If	your	compile	fails	with	errors	such	as	any	of	the	following,	you	must
upgrade	your	version	of	make	to	GNU	make:

making	all	in	mit-pthreads

make:	Fatal	error	in	reader:	Makefile,	line	18:

Badly	formed	macro	assignment

Or:

make:	file	`Makefile'	line	18:	Must	be	a	separator	(:

Or:

pthread.h:	No	such	file	or	directory

Solaris	and	FreeBSD	are	known	to	have	troublesome	make	programs.

GNU	make	3.75	is	known	to	work.

	If	you	want	to	define	flags	to	be	used	by	your	C	or	C++	compilers,	do	so
by	adding	the	flags	to	the	CFLAGS	and	CXXFLAGS	environment	variables.	You
can	also	specify	the	compiler	names	this	way	using	CC	and	CXX.	For
example:

shell>	CC=gcc

shell>	CFLAGS=-O3

shell>	CXX=gcc

shell>	CXXFLAGS=-O3

shell>	export	CC	CFLAGS	CXX	CXXFLAGS

See	Section	2.1.2.5,	“MySQL	Binaries	Compiled	by	MySQL	AB”,	for	a	list
of	flag	definitions	that	have	been	found	to	be	useful	on	various	systems.

If	you	get	errors	such	as	those	shown	here	when	compiling	mysqld,
configure	did	not	correctly	detect	the	type	of	the	last	argument	to
accept(),	getsockname(),	or	getpeername():

cxx:	Error:	mysqld.cc,	line	645:	In	this	statement,	the	referenced

					type	of	the	pointer	value	''length''	is	''unsigned	long'',

					which	is	not	compatible	with	''int''.

new_sock	=	accept(sock,	(struct	sockaddr	*)&cAddr,	&length);

To	fix	this,	edit	the	config.h	file	(which	is	generated	by	configure).	Look
for	these	lines:

/*	Define	as	the	base	type	of	the	last	arg	to	accept	*/

#define	SOCKET_SIZE_TYPE	XXX

Change	XXX	to	size_t	or	int,	depending	on	your	operating	system.	(You
must	do	this	each	time	you	run	configure	because	configure	regenerates
config.h.)

The	sql_yacc.cc	file	is	generated	from	sql_yacc.yy.	Normally,	the	build
process	does	not	need	to	create	sql_yacc.cc	because	MySQL	comes	with	a
pre-generated	copy.	However,	if	you	do	need	to	re-create	it,	you	might
encounter	this	error:

"sql_yacc.yy",	line	xxx	fatal:	default	action	causes	potential...

This	is	a	sign	that	your	version	of	yacc	is	deficient.	You	probably	need	to
install	bison	(the	GNU	version	of	yacc)	and	use	that	instead.

On	Debian	Linux	3.0,	you	need	to	install	gawk	instead	of	the	default	mawk	if
you	want	to	compile	MySQL	with	Berkeley	DB	support.

If	you	need	to	debug	mysqld	or	a	MySQL	client,	run	configure	with	the	--
with-debug	option,	and	then	recompile	and	link	your	clients	with	the	new
client	library.	See	Section	E.2,	“Debugging	a	MySQL	Client”.

If	you	get	a	compilation	error	on	Linux	(for	example,	SuSE	Linux	8.1	or
Red	Hat	Linux	7.3)	similar	to	the	following	one,	you	probably	do	not	have
g++	installed:

libmysql.c:1329:	warning:	passing	arg	5	of	`gethostbyname_r'	from

incompatible	pointer	type

libmysql.c:1329:	too	few	arguments	to	function	`gethostbyname_r'

libmysql.c:1329:	warning:	assignment	makes	pointer	from	integer

without	a	cast

make[2]:	***	[libmysql.lo]	Error	1

By	default,	the	configure	script	attempts	to	determine	the	correct	number	of
arguments	by	using	g++	(the	GNU	C++	compiler).	This	test	yields	incorrect
results	if	g++	is	not	installed.	There	are	two	ways	to	work	around	this
problem:

Make	sure	that	the	GNU	C++	g++	is	installed.	On	some	Linux
distributions,	the	required	package	is	called	gpp;	on	others,	it	is	named
gcc-c++.

Use	gcc	as	your	C++	compiler	by	setting	the	CXX	environment	variable
to	gcc:

export	CXX="gcc"

You	must	run	configure	again	after	making	either	of	those	changes.

2.9.5.	MIT-pthreads	Notes

This	section	describes	some	of	the	issues	involved	in	using	MIT-pthreads.

On	Linux,	you	should	not	use	MIT-pthreads.	Use	the	installed	LinuxThreads
implementation	instead.	See	Section	2.13.1,	“Linux	Notes”.

If	your	system	does	not	provide	native	thread	support,	you	should	build	MySQL
using	the	MIT-pthreads	package.	This	includes	older	FreeBSD	systems,	SunOS
4.x,	Solaris	2.4	and	earlier,	and	some	others.	See	Section	2.1.1,	“Operating
Systems	Supported	by	MySQL”.

MIT-pthreads	is	not	part	of	the	MySQL	5.0	source	distribution.	If	you	require
this	package,	you	need	to	download	it	separately	from
http://www.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz

After	downloading,	extract	this	source	archive	into	the	top	level	of	the	MySQL
source	directory.	It	creates	a	new	subdirectory	named	mit-pthreads.

On	most	systems,	you	can	force	MIT-pthreads	to	be	used	by	running
configure	with	the	--with-mit-threads	option:

shell>	./configure	--with-mit-threads

Building	in	a	non-source	directory	is	not	supported	when	using	MIT-
pthreads	because	we	want	to	minimize	our	changes	to	this	code.

The	checks	that	determine	whether	to	use	MIT-pthreads	occur	only	during
the	part	of	the	configuration	process	that	deals	with	the	server	code.	If	you
have	configured	the	distribution	using	--without-server	to	build	only	the
client	code,	clients	do	not	know	whether	MIT-pthreads	is	being	used	and
use	Unix	socket	file	connections	by	default.	Because	Unix	socket	files	do
not	work	under	MIT-pthreads	on	some	platforms,	this	means	you	need	to

http://www.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz

use	-h	or	--host	with	a	value	other	than	localhost	when	you	run	client
programs.

When	MySQL	is	compiled	using	MIT-pthreads,	system	locking	is	disabled
by	default	for	performance	reasons.	You	can	tell	the	server	to	use	system
locking	with	the	--external-locking	option.	This	is	needed	only	if	you
want	to	be	able	to	run	two	MySQL	servers	against	the	same	data	files,	but
that	is	not	recommended,	anyway.

Sometimes	the	pthread	bind()	command	fails	to	bind	to	a	socket	without
any	error	message	(at	least	on	Solaris).	The	result	is	that	all	connections	to
the	server	fail.	For	example:

shell>	mysqladmin	version

mysqladmin:	connect	to	server	at	''	failed;

error:	'Can't	connect	to	mysql	server	on	localhost	(146)'

The	solution	to	this	problem	is	to	kill	the	mysqld	server	and	restart	it.	This
has	happened	to	us	only	when	we	have	forcibly	stopped	the	server	and
restarted	it	immediately.

With	MIT-pthreads,	the	sleep()	system	call	isn't	interruptible	with	SIGINT
(break).	This	is	noticeable	only	when	you	run	mysqladmin	--sleep.	You
must	wait	for	the	sleep()	call	to	terminate	before	the	interrupt	is	served
and	the	process	stops.

When	linking,	you	might	receive	warning	messages	like	these	(at	least	on
Solaris);	they	can	be	ignored:

ld:	warning:	symbol	`_iob'	has	differing	sizes:

				(file	/my/local/pthreads/lib/libpthread.a(findfp.o)	value=0x4;

file	/usr/lib/libc.so	value=0x140);

				/my/local/pthreads/lib/libpthread.a(findfp.o)	definition	taken

ld:	warning:	symbol	`__iob'	has	differing	sizes:

				(file	/my/local/pthreads/lib/libpthread.a(findfp.o)	value=0x4;

file	/usr/lib/libc.so	value=0x140);

				/my/local/pthreads/lib/libpthread.a(findfp.o)	definition	taken

Some	other	warnings	also	can	be	ignored:

implicit	declaration	of	function	`int	strtoll(...)'

implicit	declaration	of	function	`int	strtoul(...)'

We	have	not	been	able	to	make	readline	work	with	MIT-pthreads.	(This	is
not	necessary,	but	may	be	of	interest	to	some.)

2.9.6.	Installing	MySQL	from	Source	on	Windows

These	instructions	describe	how	to	build	binaries	from	source	for	MySQL	5.0	on
Windows.	Instructions	are	provided	for	building	binaries	from	a	standard	source
distribution	or	from	the	BitKeeper	tree	that	contains	the	latest	development
source.

Note:	The	instructions	here	are	strictly	for	users	who	want	to	test	MySQL	on
Windows	from	the	latest	source	distribution	or	from	the	BitKeeper	tree.	For
production	use,	MySQL	AB	does	not	advise	using	a	MySQL	server	built	by
yourself	from	source.	Normally,	it	is	best	to	use	precompiled	binary	distributions
of	MySQL	that	are	built	specifically	for	optimal	performance	on	Windows	by
MySQL	AB.	Instructions	for	installing	a	binary	distributions	are	available	in
Section	2.3,	“Installing	MySQL	on	Windows”.

To	build	MySQL	on	Windows	from	source,	you	need	the	following	compiler	and
resources	available	on	your	Windows	system:

Visual	Studio	.Net	2003	(7.1)	compiler	system

Between	3GB	and	5GB	disk	space.

Windows	XP,	Windows	2000	or	higher.

The	exact	system	requirements	can	be	found	here:
http://msdn.microsoft.com/vstudio/Previous/2003/sysreqs/default.aspx

You	also	need	a	MySQL	source	distribution	for	Windows.	There	are	two	ways	to
obtain	a	source	distribution:

1.	 Obtain	a	Windows	source	distribution	packaged	by	MySQL	AB	for	the
particular	version	of	MySQL	in	which	you	are	interested.	These	are
available	from	http://dev.mysql.com/downloads/.

2.	 You	can	package	a	source	distribution	yourself	from	the	latest	BitKeeper
developer	source	tree.	If	you	plan	to	do	this,	you	must	create	the	package	on
a	Unix	system	and	then	transfer	it	to	your	Windows	system.	(Some	of	the

http://msdn.microsoft.com/vstudio/Previous/2003/sysreqs/default.aspx
http://dev.mysql.com/downloads/

configuration	and	build	steps	require	tools	that	work	only	on	Unix.)	The
BitKeeper	approach	thus	requires:

A	system	running	Unix,	or	a	Unix-like	system	such	as	Linux.

BitKeeper	installed	on	that	system.	See	Section	2.9.3,	“Installing	from
the	Development	Source	Tree”,	for	instructions	how	to	download	and
install	BitKeeper.

If	you	are	using	a	Windows	source	distribution,	you	can	go	directly	to
Section	2.9.6.1,	“Building	MySQL	Using	VC++”.	To	build	from	the	BitKeeper
tree,	proceed	to	Section	2.9.6.2,	“Creating	a	Windows	Source	Package	from	the
Latest	Development	Source”.

If	you	find	something	not	working	as	expected,	or	you	have	suggestions	about
ways	to	improve	the	current	build	process	on	Windows,	please	send	a	message	to
the	win32	mailing	list.	See	Section	1.7.1,	“MySQL	Mailing	Lists”.

2.9.6.1.	Building	MySQL	Using	VC++

Note:	VC++	workspace	files	for	MySQL	4.1	and	above	are	compatible	with
Microsoft	Visual	Studio	7.1	and	tested	by	MySQL	AB	staff	before	each	release.

Follow	this	procedure	to	build	MySQL:

1.	 Create	a	work	directory	(for	example,	C:\workdir).

2.	 Unpack	the	source	distribution	in	the	aforementioned	directory	using
WinZip	or	another	Windows	tool	that	can	read	.zip	files.

3.	 Start	Visual	Studio	.Net	2003	(7.1).

4.	 From	the	File	menu,	select	Open	Solution....

5.	 Open	the	mysql.sln	solution	you	find	in	the	work	directory.

6.	 From	the	Build	menu,	select	Configuration	Manager....

7.	 In	the	Active	Solution	Configuration	pop-up	menu,	select	the	configuration
to	use.	You	likely	want	to	use	one	of	nt	(normal	server,	not	for	Windows

98/ME),	Max	nt	(more	engines	and	features,	not	for	98/ME)	or	Debug
configuration.

8.	 From	the	Build	menu,	select	Build	Solution.

9.	 Debug	versions	of	the	programs	and	libraries	are	placed	in	the
client_debug	and	lib_debug	directories.	Release	versions	of	the	programs
and	libraries	are	placed	in	the	client_release	and	lib_release
directories.

10.	 Test	the	server.	The	server	built	using	the	preceding	instructions	expects
that	the	MySQL	base	directory	and	data	directory	are	C:\mysql	and
C:\mysql\data	by	default.	If	you	want	to	test	your	server	using	the	source
tree	root	directory	and	its	data	directory	as	the	base	directory	and	data
directory,	you	need	to	tell	the	server	their	pathnames.	You	can	either	do	this
on	the	command	line	with	the	--basedir	and	--datadir	options,	or	by
placing	appropriate	options	in	an	option	file.	(See	Section	4.3.2,	“Using
Option	Files”.)	If	you	have	an	existing	data	directory	elsewhere	that	you
want	to	use,	you	can	specify	its	pathname	instead.

11.	 Start	your	server	from	the	client_release	or	client_debug	directory,
depending	on	which	server	you	built	or	want	to	use.	The	general	server
startup	instructions	are	in	Section	2.3,	“Installing	MySQL	on	Windows”.
You	must	adapt	the	instructions	appropriately	if	you	want	to	use	a	different
base	directory	or	data	directory.

12.	 When	the	server	is	running	in	standalone	fashion	or	as	a	service	based	on
your	configuration,	try	to	connect	to	it	from	the	mysql	interactive
command-line	utility	that	exists	in	your	client_release	or	client_debug
directory.

When	you	are	satisfied	that	the	programs	you	have	built	are	working	correctly,
stop	the	server.	Then	install	MySQL	as	follows:

1.	 Create	the	directories	where	you	want	to	install	MySQL.	For	example,	to
install	into	C:\mysql,	use	these	commands:

C:\>	mkdir	C:\mysql

C:\>	mkdir	C:\mysql\bin

C:\>	mkdir	C:\mysql\data

C:\>	mkdir	C:\mysql\share

C:\>	mkdir	C:\mysql\scripts

If	you	want	to	compile	other	clients	and	link	them	to	MySQL,	you	should
also	create	several	additional	directories:

C:\>	mkdir	C:\mysql\include

C:\>	mkdir	C:\mysql\lib

C:\>	mkdir	C:\mysql\lib\debug

C:\>	mkdir	C:\mysql\lib\opt

If	you	want	to	benchmark	MySQL,	create	this	directory:

C:\>	mkdir	C:\mysql\sql-bench

Benchmarking	requires	Perl	support.	See	Section	2.14,	“Perl	Installation
Notes”.

2.	 From	the	workdir	directory,	copy	into	the	C:\mysql	directory	the	following
directories:

C:\>	cd	\workdir

C:\workdir>	copy	client_release*.exe	C:\mysql\bin

C:\workdir>	copy	client_debug\mysqld.exe	C:\mysql\bin\mysqld-debug.exe

C:\workdir>	xcopy	scripts*.*	C:\mysql\scripts	/E

C:\workdir>	xcopy	share*.*	C:\mysql\share	/E

If	you	want	to	compile	other	clients	and	link	them	to	MySQL,	you	should
also	copy	several	libraries	and	header	files:

C:\workdir>	copy	lib_debug\mysqlclient.lib	C:\mysql\lib\debug

C:\workdir>	copy	lib_debug\libmysql.*	C:\mysql\lib\debug

C:\workdir>	copy	lib_debug\zlib.*	C:\mysql\lib\debug

C:\workdir>	copy	lib_release\mysqlclient.lib	C:\mysql\lib\opt

C:\workdir>	copy	lib_release\libmysql.*	C:\mysql\lib\opt

C:\workdir>	copy	lib_release\zlib.*	C:\mysql\lib\opt

C:\workdir>	copy	include*.h	C:\mysql\include

C:\workdir>	copy	libmysql\libmysql.def	C:\mysql\include

If	you	want	to	benchmark	MySQL,	you	should	also	do	this:

C:\workdir>	xcopy	sql-bench*.*	C:\mysql\bench	/E

Set	up	and	start	the	server	in	the	same	way	as	for	the	binary	Windows
distribution.	See	Section	2.3,	“Installing	MySQL	on	Windows”.

2.9.6.2.	Creating	a	Windows	Source	Package	from	the	Latest	Development
Source

To	create	a	Windows	source	package	from	the	current	BitKeeper	source	tree,	use
the	instructions	here.	This	procedure	must	be	performed	on	a	system	running	a
Unix	or	Unix-like	operating	system	because	some	of	the	configuration	and	build
steps	require	tools	that	work	only	on	Unix.	For	example,	the	following	procedure
is	known	to	work	well	on	Linux.

1.	 Copy	the	BitKeeper	source	tree	for	MySQL	5.0.	For	instructions	on	how	to
do	this,	see	Section	2.9.3,	“Installing	from	the	Development	Source	Tree”.

2.	 Configure	and	build	the	distribution	so	that	you	have	a	server	binary	to
work	with.	One	way	to	do	this	is	to	run	the	following	command	in	the	top-
level	directory	of	your	source	tree:

shell>	./BUILD/compile-pentium-max

3.	 After	making	sure	that	the	build	process	completed	successfully,	run	the
following	utility	script	from	top-level	directory	of	your	source	tree:

shell>	./scripts/make_win_src_distribution

This	script	creates	a	Windows	source	package	to	be	used	on	your	Windows
system.	You	can	supply	different	options	to	the	script	based	on	your	needs.
It	accepts	the	following	options:

--help

Display	a	help	message.

--debug

Print	information	about	script	operations,	do	not	create	package.

--tmp

Specify	the	temporary	location.

--suffix

The	suffix	name	for	the	package.

--dirname

Directory	name	to	copy	files	(intermediate).

--silent

Do	not	print	verbose	list	of	files	processed.

--tar

Create	tar.gz	package	instead	of	.zip	package.

By	default,	make_win_src_distribution	creates	a	Zip-format	archive	with
the	name	mysql-VERSION-win-src.zip,	where	VERSION	represents	the	version
of	your	MySQL	source	tree.

4.	 Copy	or	upload	the	Windows	source	package	that	you	have	just	created	to
your	Windows	machine.	To	compile	it,	use	the	instructions	in
Section	2.9.6.1,	“Building	MySQL	Using	VC++”.

2.9.7.	Compiling	MySQL	Clients	on	Windows

In	your	source	files,	you	should	include	my_global.h	before	mysql.h:

#include	<my_global.h>

#include	<mysql.h>

my_global.h	includes	any	other	files	needed	for	Windows	compatibility	(such	as
windows.h)	if	you	compile	your	program	on	Windows.

You	can	either	link	your	code	with	the	dynamic	libmysql.lib	library,	which	is
just	a	wrapper	to	load	in	libmysql.dll	on	demand,	or	link	with	the	static
mysqlclient.lib	library.

The	MySQL	client	libraries	are	compiled	as	threaded	libraries,	so	you	should
also	compile	your	code	to	be	multi-threaded.

2.10.	Post-Installation	Setup	and	Testing

After	installing	MySQL,	there	are	some	issues	that	you	should	address.	For
example,	on	Unix,	you	should	initialize	the	data	directory	and	create	the	MySQL
grant	tables.	On	all	platforms,	an	important	security	concern	is	that	the	initial
accounts	in	the	grant	tables	have	no	passwords.	You	should	assign	passwords	to
prevent	unauthorized	access	to	the	MySQL	server.	Optionally,	you	can	create
time	zone	tables	to	enable	recognition	of	named	time	zones.

The	following	sections	include	post-installation	procedures	that	are	specific	to
Windows	systems	and	to	Unix	systems.	Another	section,	Section	2.10.2.3,
“Starting	and	Troubleshooting	the	MySQL	Server”,	applies	to	all	platforms;	it
describes	what	to	do	if	you	have	trouble	getting	the	server	to	start.
Section	2.10.3,	“Securing	the	Initial	MySQL	Accounts”,	also	applies	to	all
platforms.	You	should	follow	its	instructions	to	make	sure	that	you	have	properly
protected	your	MySQL	accounts	by	assigning	passwords	to	them.

When	you	are	ready	to	create	additional	user	accounts,	you	can	find	information
on	the	MySQL	access	control	system	and	account	management	in	Section	5.8,
“The	MySQL	Access	Privilege	System”,	and	Section	5.9,	“MySQL	User
Account	Management”.

2.10.1.	Windows	Post-Installation	Procedures

On	Windows,	the	data	directory	and	the	grant	tables	do	not	have	to	be	created.
MySQL	Windows	distributions	include	the	grant	tables	with	a	set	of
preinitialized	accounts	in	the	mysql	database	under	the	data	directory.	It	is
unnecessary	to	run	the	mysql_install_db	script	that	is	used	on	Unix.	Regarding
passwords,	if	you	installed	MySQL	using	the	Windows	Installation	Wizard,	you
may	have	already	assigned	passwords	to	the	accounts.	(See	Section	2.3.3,
“Using	the	MySQL	Installation	Wizard”.)	Otherwise,	use	the	password-
assignment	procedure	given	in	Section	2.10.3,	“Securing	the	Initial	MySQL
Accounts”.

Before	setting	up	passwords,	you	might	want	to	try	running	some	client
programs	to	make	sure	that	you	can	connect	to	the	server	and	that	it	is	operating
properly.	Make	sure	that	the	server	is	running	(see	Section	2.3.9,	“Starting	the

Server	for	the	First	Time”),	and	then	issue	the	following	commands	to	verify	that
you	can	retrieve	information	from	the	server.	The	output	should	be	similar	to
what	is	shown	here:

C:\>	C:\mysql\bin\mysqlshow

+-----------+

|	Databases	|

+-----------+

|	mysql					|

|	test						|

+-----------+

C:\>	C:\mysql\bin\mysqlshow	mysql

Database:	mysql

+---------------------------+

|										Tables											|

+---------------------------+

|	columns_priv														|

|	db																								|

|	func																						|

|	help_category													|

|	help_keyword														|

|	help_relation													|

|	help_topic																|

|	host																						|

|	proc																						|

|	procs_priv																|

|	tables_priv															|

|	time_zone																	|

|	time_zone_leap_second					|

|	time_zone_name												|

|	time_zone_transition						|

|	time_zone_transition_type	|

|	user																						|

+---------------------------+

C:\>	C:\mysql\bin\mysql	-e	"SELECT	Host,Db,User	FROM	db"	mysql

+------+-------+------+

|	host	|	db				|	user	|

+------+-------+------+

|	%				|	test%	|						|

+------+-------+------+

If	you	are	running	a	version	of	Windows	that	supports	services	and	you	want	the
MySQL	server	to	run	automatically	when	Windows	starts,	see	Section	2.3.11,
“Starting	MySQL	as	a	Windows	Service”.

2.10.2.	Unix	Post-Installation	Procedures

After	installing	MySQL	on	Unix,	you	need	to	initialize	the	grant	tables,	start	the
server,	and	make	sure	that	the	server	works	satisfactorily.	You	may	also	wish	to
arrange	for	the	server	to	be	started	and	stopped	automatically	when	your	system
starts	and	stops.	You	should	also	assign	passwords	to	the	accounts	in	the	grant
tables.

On	Unix,	the	grant	tables	are	set	up	by	the	mysql_install_db	program.	For	some
installation	methods,	this	program	is	run	for	you	automatically:

If	you	install	MySQL	on	Linux	using	RPM	distributions,	the	server	RPM
runs	mysql_install_db.

If	you	install	MySQL	on	Mac	OS	X	using	a	PKG	distribution,	the	installer
runs	mysql_install_db.

Otherwise,	you	will	need	to	run	mysql_install_db	yourself.

The	following	procedure	describes	how	to	initialize	the	grant	tables	(if	that	has
not	previously	been	done)	and	then	start	the	server.	It	also	suggests	some
commands	that	you	can	use	to	test	whether	the	server	is	accessible	and	working
properly.	For	information	about	starting	and	stopping	the	server	automatically,
see	Section	2.10.2.2,	“Starting	and	Stopping	MySQL	Automatically”.

After	you	complete	the	procedure	and	have	the	server	running,	you	should
assign	passwords	to	the	accounts	created	by	mysql_install_db.	Instructions	for
doing	so	are	given	in	Section	2.10.3,	“Securing	the	Initial	MySQL	Accounts”.

In	the	examples	shown	here,	the	server	runs	under	the	user	ID	of	the	mysql	login
account.	This	assumes	that	such	an	account	exists.	Either	create	the	account	if	it
does	not	exist,	or	substitute	the	name	of	a	different	existing	login	account	that
you	plan	to	use	for	running	the	server.

1.	 Change	location	into	the	top-level	directory	of	your	MySQL	installation,
represented	here	by	BASEDIR:

shell>	cd	BASEDIR

BASEDIR	is	likely	to	be	something	like	/usr/local/mysql	or	/usr/local.

The	following	steps	assume	that	you	are	located	in	this	directory.

2.	 If	necessary,	run	the	mysql_install_db	program	to	set	up	the	initial	MySQL
grant	tables	containing	the	privileges	that	determine	how	users	are	allowed
to	connect	to	the	server.	You'll	need	to	do	this	if	you	used	a	distribution	type
for	which	the	installation	procedure	doesn't	run	the	program	for	you.

Typically,	mysql_install_db	needs	to	be	run	only	the	first	time	you	install
MySQL,	so	you	can	skip	this	step	if	you	are	upgrading	an	existing
installation,	However,	mysql_install_db	does	not	overwrite	any	existing
privilege	tables,	so	it	should	be	safe	to	run	in	any	circumstances.

To	initialize	the	grant	tables,	use	one	of	the	following	commands,
depending	on	whether	mysql_install_db	is	located	in	the	bin	or	scripts
directory:

shell>	bin/mysql_install_db	--user=mysql

shell>	scripts/mysql_install_db	--user=mysql

The	mysql_install_db	script	creates	the	server's	data	directory.	Under	the
data	directory,	it	creates	directories	for	the	mysql	database	that	holds	all
database	privileges	and	the	test	database	that	you	can	use	to	test	MySQL.
The	script	also	creates	privilege	table	entries	for	root	and	anonymous-user
accounts.	The	accounts	have	no	passwords	initially.	A	description	of	their
initial	privileges	is	given	in	Section	2.10.3,	“Securing	the	Initial	MySQL
Accounts”.	Briefly,	these	privileges	allow	the	MySQL	root	user	to	do
anything,	and	allow	anybody	to	create	or	use	databases	with	a	name	of	test
or	starting	with	test_.

It	is	important	to	make	sure	that	the	database	directories	and	files	are	owned
by	the	mysql	login	account	so	that	the	server	has	read	and	write	access	to
them	when	you	run	it	later.	To	ensure	this,	the	--user	option	should	be	used
as	shown	if	you	run	mysql_install_db	as	root.	Otherwise,	you	should
execute	the	script	while	logged	in	as	mysql,	in	which	case	you	can	omit	the
--user	option	from	the	command.

mysql_install_db	creates	several	tables	in	the	mysql	database,	including
user,	db,	host,	tables_priv,	columns_priv,	func,	and	others.	See
Section	5.8,	“The	MySQL	Access	Privilege	System”,	for	a	complete	listing
and	description	of	these	tables.

If	you	don't	want	to	have	the	test	database,	you	can	remove	it	with
mysqladmin	-u	root	drop	test	after	starting	the	server.

If	you	have	trouble	with	mysql_install_db	at	this	point,	see
Section	2.10.2.1,	“Problems	Running	mysql_install_db”.

3.	 Start	the	MySQL	server:

shell>	bin/mysqld_safe	--user=mysql	&

It	is	important	that	the	MySQL	server	be	run	using	an	unprivileged	(non-
root)	login	account.	To	ensure	this,	the	--user	option	should	be	used	as
shown	if	you	run	mysql_safe	as	system	root.	Otherwise,	you	should
execute	the	script	while	logged	in	to	the	system	as	mysql,	in	which	case	you
can	omit	the	--user	option	from	the	command.

Further	instructions	for	running	MySQL	as	an	unprivileged	user	are	given
in	Section	5.7.5,	“How	to	Run	MySQL	as	a	Normal	User”.

If	you	neglected	to	create	the	grant	tables	before	proceeding	to	this	step,	the
following	message	appears	in	the	error	log	file	when	you	start	the	server:

mysqld:	Can't	find	file:	'host.frm'

If	you	have	other	problems	starting	the	server,	see	Section	2.10.2.3,
“Starting	and	Troubleshooting	the	MySQL	Server”.

4.	 Use	mysqladmin	to	verify	that	the	server	is	running.	The	following
commands	provide	simple	tests	to	check	whether	the	server	is	up	and
responding	to	connections:

shell>	bin/mysqladmin	version

shell>	bin/mysqladmin	variables

The	output	from	mysqladmin	version	varies	slightly	depending	on	your
platform	and	version	of	MySQL,	but	should	be	similar	to	that	shown	here:

shell>	bin/mysqladmin	version

mysqladmin		Ver	14.12	Distrib	5.0.25,	for	pc-linux-gnu	on	i686

Copyright	(C)	2000	MySQL	AB	&	MySQL	Finland	AB	&	TCX	DataKonsult	AB

This	software	comes	with	ABSOLUTELY	NO	WARRANTY.	This	is	free	software,

and	you	are	welcome	to	modify	and	redistribute	it	under	the	GPL	license

Server	version										5.0.25-Max

Protocol	version								10

Connection														Localhost	via	UNIX	socket

UNIX	socket													/var/lib/mysql/mysql.sock

Uptime:																	14	days	5	hours	5	min	21	sec

Threads:	1		Questions:	366		Slow	queries:	0

Opens:	0		Flush	tables:	1		Open	tables:	19

Queries	per	second	avg:	0.000

To	see	what	else	you	can	do	with	mysqladmin,	invoke	it	with	the	--help
option.

5.	 	Verify	that	you	can	shut	down	the	server:

shell>	bin/mysqladmin	-u	root	shutdown

6.	 Verify	that	you	can	start	the	server	again.	Do	this	by	using	mysqld_safe	or
by	invoking	mysqld	directly.	For	example:

shell>	bin/mysqld_safe	--user=mysql	--log	&

If	mysqld_safe	fails,	see	Section	2.10.2.3,	“Starting	and	Troubleshooting
the	MySQL	Server”.

7.	 Run	some	simple	tests	to	verify	that	you	can	retrieve	information	from	the
server.	The	output	should	be	similar	to	what	is	shown	here:

shell>	bin/mysqlshow

+-----------+

|	Databases	|

+-----------+

|	mysql					|

|	test						|

+-----------+

shell>	bin/mysqlshow	mysql

Database:	mysql

+---------------------------+

|										Tables											|

+---------------------------+

|	columns_priv														|

|	db																								|

|	func																						|

|	help_category													|

|	help_keyword														|

|	help_relation													|

|	help_topic																|

|	host																						|

|	proc																						|

|	procs_priv																|

|	tables_priv															|

|	time_zone																	|

|	time_zone_leap_second					|

|	time_zone_name												|

|	time_zone_transition						|

|	time_zone_transition_type	|

|	user																						|

+---------------------------+

shell>	bin/mysql	-e	"SELECT	Host,Db,User	FROM	db"	mysql

+------+--------+------+

|	host	|	db					|	user	|

+------+--------+------+

|	%				|	test			|						|

|	%				|	test_%	|						|

+------+--------+------+

8.	 There	is	a	benchmark	suite	in	the	sql-bench	directory	(under	the	MySQL
installation	directory)	that	you	can	use	to	compare	how	MySQL	performs
on	different	platforms.	The	benchmark	suite	is	written	in	Perl.	It	requires
the	Perl	DBI	module	that	provides	a	database-independent	interface	to	the
various	databases,	and	some	other	additional	Perl	modules:

DBI

DBD::mysql

Data::Dumper

Data::ShowTable

These	modules	can	be	obtained	from	CPAN	(http://www.cpan.org/).	See
also	Section	2.14.1,	“Installing	Perl	on	Unix”.

The	sql-bench/Results	directory	contains	the	results	from	many	runs
against	different	databases	and	platforms.	To	run	all	tests,	execute	these
commands:

shell>	cd	sql-bench

shell>	perl	run-all-tests

If	you	don't	have	the	sql-bench	directory,	you	probably	installed	MySQL
using	RPM	files	other	than	the	source	RPM.	(The	source	RPM	includes	the

http://www.cpan.org/

sql-bench	benchmark	directory.)	In	this	case,	you	must	first	install	the
benchmark	suite	before	you	can	use	it.	There	are	separate	benchmark	RPM
files	named	mysql-bench-VERSION-i386.rpm	that	contain	benchmark	code
and	data.

If	you	have	a	source	distribution,	there	are	also	tests	in	its	tests
subdirectory	that	you	can	run.	For	example,	to	run	auto_increment.tst,
execute	this	command	from	the	top-level	directory	of	your	source
distribution:

shell>	mysql	-vvf	test	<	./tests/auto_increment.tst

The	expected	result	of	the	test	can	be	found	in	the
./tests/auto_increment.res	file.

9.	 At	this	point,	you	should	have	the	server	running.	However,	none	of	the
initial	MySQL	accounts	have	a	password,	so	you	should	assign	passwords
using	the	instructions	found	in	Section	2.10.3,	“Securing	the	Initial	MySQL
Accounts”.

The	MySQL	5.0	installation	procedure	creates	time	zone	tables	in	the	mysql
database.	However,	you	must	populate	the	tables	manually	using	the	instructions
in	Section	5.11.8,	“MySQL	Server	Time	Zone	Support”.

2.10.2.1.	Problems	Running	mysql_install_db

The	purpose	of	the	mysql_install_db	script	is	to	generate	new	MySQL	privilege
tables.	It	does	not	overwrite	existing	MySQL	privilege	tables,	and	it	does	not
affect	any	other	data.

If	you	want	to	re-create	your	privilege	tables,	first	stop	the	mysqld	server	if	it's
running.	Then	rename	the	mysql	directory	under	the	data	directory	to	save	it,	and
then	run	mysql_install_db.	Suppose	that	your	current	directory	is	the	MySQL
installation	directory	and	that	mysql_install_db	is	located	in	the	bin	directory
and	the	data	directory	is	named	data.	To	rename	the	mysql	database	and	re-run
mysql_install_db,	use	these	commands.

shell>	mv	data/mysql	data/mysql.old

shell>	bin/mysql_install_db	--user=mysql

When	you	run	mysql_install_db,	you	might	encounter	the	following	problems:

mysql_install_db	fails	to	install	the	grant	tables

You	may	find	that	mysql_install_db	fails	to	install	the	grant	tables	and
terminates	after	displaying	the	following	messages:

Starting	mysqld	daemon	with	databases	from	XXXXXX

mysqld	ended

In	this	case,	you	should	examine	the	error	log	file	very	carefully.	The	log
should	be	located	in	the	directory	XXXXXX	named	by	the	error	message	and
should	indicate	why	mysqld	didn't	start.	If	you	do	not	understand	what
happened,	include	the	log	when	you	post	a	bug	report.	See	Section	1.8,
“How	to	Report	Bugs	or	Problems”.

There	is	a	mysqld	process	running

This	indicates	that	the	server	is	running,	in	which	case	the	grant	tables	have
probably	been	created	already.	If	so,	there	is	no	need	to	run
mysql_install_db	at	all	because	it	needs	to	be	run	only	once	(when	you
install	MySQL	the	first	time).

Installing	a	second	mysqld	server	does	not	work	when	one	server	is
running

This	can	happen	when	you	have	an	existing	MySQL	installation,	but	want
to	put	a	new	installation	in	a	different	location.	For	example,	you	might
have	a	production	installation,	but	you	want	to	create	a	second	installation
for	testing	purposes.	Generally	the	problem	that	occurs	when	you	try	to	run
a	second	server	is	that	it	tries	to	use	a	network	interface	that	is	in	use	by	the
first	server.	In	this	case,	you	should	see	one	of	the	following	error
messages:

Can't	start	server:	Bind	on	TCP/IP	port:

Address	already	in	use

Can't	start	server:	Bind	on	unix	socket...

For	instructions	on	setting	up	multiple	servers,	see	Section	5.13,	“Running
Multiple	MySQL	Servers	on	the	Same	Machine”.

	You	do	not	have	write	access	to	the	/tmp	directory

If	you	do	not	have	write	access	to	create	temporary	files	or	a	Unix	socket
file	in	the	default	location	(the	/tmp	directory),	an	error	occurs	when	you
run	mysql_install_db	or	the	mysqld	server.

You	can	specify	different	locations	for	the	temporary	directory	and	Unix
socket	file	by	executing	these	commands	prior	to	starting	mysql_install_db
or	mysqld,	where	some_tmp_dir	is	the	full	pathname	to	some	directory	for
which	you	have	write	permission:

shell>	TMPDIR=/some_tmp_dir/

shell>	MYSQL_UNIX_PORT=/some_tmp_dir/mysql.sock

shell>	export	TMPDIR	MYSQL_UNIX_PORT

Then	you	should	be	able	to	run	mysql_install_db	and	start	the	server	with
these	commands:

shell>	bin/mysql_install_db	--user=mysql

shell>	bin/mysqld_safe	--user=mysql	&

If	mysql_install_db	is	located	in	the	scripts	directory,	modify	the	first
command	to	scripts/mysql_install_db.

See	Section	A.4.5,	“How	to	Protect	or	Change	the	MySQL	Unix	Socket
File”,	and	Appendix	F,	Environment	Variables.

There	are	some	alternatives	to	running	the	mysql_install_db	script	provided	in
the	MySQL	distribution:

If	you	want	the	initial	privileges	to	be	different	from	the	standard	defaults,
you	can	modify	mysql_install_db	before	you	run	it.	However,	it	is
preferable	to	use	GRANT	and	REVOKE	to	change	the	privileges	after	the	grant
tables	have	been	set	up.	In	other	words,	you	can	run	mysql_install_db,	and
then	use	mysql	-u	root	mysql	to	connect	to	the	server	as	the	MySQL	root
user	so	that	you	can	issue	the	necessary	GRANT	and	REVOKE	statements.

If	you	want	to	install	MySQL	on	several	machines	with	the	same	privileges,
you	can	put	the	GRANT	and	REVOKE	statements	in	a	file	and	execute	the	file
as	a	script	using	mysql	after	running	mysql_install_db.	For	example:

shell>	bin/mysql_install_db	--user=mysql

shell>	bin/mysql	-u	root	<	your_script_file

By	doing	this,	you	can	avoid	having	to	issue	the	statements	manually	on
each	machine.

It	is	possible	to	re-create	the	grant	tables	completely	after	they	have
previously	been	created.	You	might	want	to	do	this	if	you're	just	learning
how	to	use	GRANT	and	REVOKE	and	have	made	so	many	modifications	after
running	mysql_install_db	that	you	want	to	wipe	out	the	tables	and	start
over.

To	re-create	the	grant	tables,	remove	all	the	.frm,	.MYI,	and	.MYD	files	in
the	mysql	database	directory.	Then	run	the	mysql_install_db	script	again.

You	can	start	mysqld	manually	using	the	--skip-grant-tables	option	and
add	the	privilege	information	yourself	using	mysql:

shell>	bin/mysqld_safe	--user=mysql	--skip-grant-tables	&

shell>	bin/mysql	mysql

From	mysql,	manually	execute	the	SQL	commands	contained	in
mysql_install_db.	Make	sure	that	you	run	mysqladmin	flush-privileges	or
mysqladmin	reload	afterward	to	tell	the	server	to	reload	the	grant	tables.

Note	that	by	not	using	mysql_install_db,	you	not	only	have	to	populate	the
grant	tables	manually,	you	also	have	to	create	them	first.

2.10.2.2.	Starting	and	Stopping	MySQL	Automatically

Generally,	you	start	the	mysqld	server	in	one	of	these	ways:

By	invoking	mysqld	directly.	This	works	on	any	platform.

By	running	the	MySQL	server	as	a	Windows	service.	This	can	be	done	on
versions	of	Windows	that	support	services	(such	as	NT,	2000,	XP,	and
2003).	The	service	can	be	set	to	start	the	server	automatically	when
Windows	starts,	or	as	a	manual	service	that	you	start	on	request.	For
instructions,	see	Section	2.3.11,	“Starting	MySQL	as	a	Windows	Service”.

By	invoking	mysqld_safe,	which	tries	to	determine	the	proper	options	for
mysqld	and	then	runs	it	with	those	options.	This	script	is	used	on	Unix	and
Unix-like	systems.	See	Section	5.4.1,	“mysqld_safe	—	MySQL	Server
Startup	Script”.

By	invoking	mysql.server.	This	script	is	used	primarily	at	system	startup
and	shutdown	on	systems	that	use	System	V-style	run	directories,	where	it
usually	is	installed	under	the	name	mysql.	The	mysql.server	script	starts
the	server	by	invoking	mysqld_safe.	See	Section	5.4.2,	“mysql.server	—
MySQL	Server	Startup	Script”.

On	Mac	OS	X,	you	can	install	a	separate	MySQL	Startup	Item	package	to
enable	the	automatic	startup	of	MySQL	on	system	startup.	The	Startup	Item
starts	the	server	by	invoking	mysql.server.	See	Section	2.5,	“Installing
MySQL	on	Mac	OS	X”,	for	details.

The	mysqld_safe	and	mysql.server	scripts	and	the	Mac	OS	X	Startup	Item	can
be	used	to	start	the	server	manually,	or	automatically	at	system	startup	time.
mysql.server	and	the	Startup	Item	also	can	be	used	to	stop	the	server.

To	start	or	stop	the	server	manually	using	the	mysql.server	script,	invoke	it	with
start	or	stop	arguments:

shell>	mysql.server	start

shell>	mysql.server	stop

Before	mysql.server	starts	the	server,	it	changes	location	to	the	MySQL
installation	directory,	and	then	invokes	mysqld_safe.	If	you	want	the	server	to
run	as	some	specific	user,	add	an	appropriate	user	option	to	the	[mysqld]	group
of	the	/etc/my.cnf	option	file,	as	shown	later	in	this	section.	(It	is	possible	that
you	will	need	to	edit	mysql.server	if	you've	installed	a	binary	distribution	of
MySQL	in	a	non-standard	location.	Modify	it	to	cd	into	the	proper	directory
before	it	runs	mysqld_safe.	If	you	do	this,	your	modified	version	of
mysql.server	may	be	overwritten	if	you	upgrade	MySQL	in	the	future,	so	you
should	make	a	copy	of	your	edited	version	that	you	can	reinstall.)

mysql.server	stop	stops	the	server	by	sending	a	signal	to	it.	You	can	also	stop
the	server	manually	by	executing	mysqladmin	shutdown.

To	start	and	stop	MySQL	automatically	on	your	server,	you	need	to	add	start	and

stop	commands	to	the	appropriate	places	in	your	/etc/rc*	files.

If	you	use	the	Linux	server	RPM	package	(MySQL-server-VERSION.rpm),	the
mysql.server	script	is	installed	in	the	/etc/init.d	directory	with	the	name
mysql.	You	need	not	install	it	manually.	See	Section	2.4,	“Installing	MySQL	on
Linux”,	for	more	information	on	the	Linux	RPM	packages.

Some	vendors	provide	RPM	packages	that	install	a	startup	script	under	a
different	name	such	as	mysqld.

If	you	install	MySQL	from	a	source	distribution	or	using	a	binary	distribution
format	that	does	not	install	mysql.server	automatically,	you	can	install	it
manually.	The	script	can	be	found	in	the	support-files	directory	under	the
MySQL	installation	directory	or	in	a	MySQL	source	tree.

To	install	mysql.server	manually,	copy	it	to	the	/etc/init.d	directory	with	the
name	mysql,	and	then	make	it	executable.	Do	this	by	changing	location	into	the
appropriate	directory	where	mysql.server	is	located	and	executing	these
commands:

shell>	cp	mysql.server	/etc/init.d/mysql

shell>	chmod	+x	/etc/init.d/mysql

Older	Red	Hat	systems	use	the	/etc/rc.d/init.d	directory	rather	than
/etc/init.d.	Adjust	the	preceding	commands	accordingly.	Alternatively,	first
create	/etc/init.d	as	a	symbolic	link	that	points	to	/etc/rc.d/init.d:

shell>	cd	/etc

shell>	ln	-s	rc.d/init.d	.

After	installing	the	script,	the	commands	needed	to	activate	it	to	run	at	system
startup	depend	on	your	operating	system.	On	Linux,	you	can	use	chkconfig:

shell>	chkconfig	--add	mysql

On	some	Linux	systems,	the	following	command	also	seems	to	be	necessary	to
fully	enable	the	mysql	script:

shell>	chkconfig	--level	345	mysql	on

On	FreeBSD,	startup	scripts	generally	should	go	in	/usr/local/etc/rc.d/.	The
rc(8)	manual	page	states	that	scripts	in	this	directory	are	executed	only	if	their

basename	matches	the	*.sh	shell	filename	pattern.	Any	other	files	or	directories
present	within	the	directory	are	silently	ignored.	In	other	words,	on	FreeBSD,
you	should	install	the	mysql.server	script	as
/usr/local/etc/rc.d/mysql.server.sh	to	enable	automatic	startup.

As	an	alternative	to	the	preceding	setup,	some	operating	systems	also	use
/etc/rc.local	or	/etc/init.d/boot.local	to	start	additional	services	on
startup.	To	start	up	MySQL	using	this	method,	you	could	append	a	command
like	the	one	following	to	the	appropriate	startup	file:

/bin/sh	-c	'cd	/usr/local/mysql;	./bin/mysqld_safe	--user=mysql	&'

For	other	systems,	consult	your	operating	system	documentation	to	see	how	to
install	startup	scripts.

You	can	add	options	for	mysql.server	in	a	global	/etc/my.cnf	file.	A	typical
/etc/my.cnf	file	might	look	like	this:

[mysqld]

datadir=/usr/local/mysql/var

socket=/var/tmp/mysql.sock

port=3306

user=mysql

[mysql.server]

basedir=/usr/local/mysql

The	mysql.server	script	understands	the	following	options:	basedir,	datadir,
and	pid-file.	If	specified,	they	must	be	placed	in	an	option	file,	not	on	the
command	line.	mysql.server	understands	only	start	and	stop	as	command-line
arguments.

The	following	table	shows	which	option	groups	the	server	and	each	startup	script
read	from	option	files:

Script Option	Groups
mysqld [mysqld],	[server],	[mysqld-major_version]
mysqld_safe [mysqld],	[server],	[mysqld_safe]
mysql.server [mysqld],	[mysql.server],	[server]

[mysqld-major_version]	means	that	groups	with	names	like	[mysqld-4.1]	and

[mysqld-5.0]	are	read	by	servers	having	versions	4.1.x,	5.0.x,	and	so	forth.	This
feature	can	be	used	to	specify	options	that	can	be	read	only	by	servers	within	a
given	release	series.

For	backward	compatibility,	mysql.server	also	reads	the	[mysql_server]	group
and	mysqld_safe	also	reads	the	[safe_mysqld]	group.	However,	you	should
update	your	option	files	to	use	the	[mysql.server]	and	[mysqld_safe]	groups
instead	when	using	MySQL	5.0.

See	Section	4.3.2,	“Using	Option	Files”.

2.10.2.3.	Starting	and	Troubleshooting	the	MySQL	Server

This	section	provides	troubleshooting	suggestions	for	problems	starting	the
server	on	Unix.	If	you	are	using	Windows,	see	Section	2.3.13,	“Troubleshooting
a	MySQL	Installation	Under	Windows”.

If	you	have	problems	starting	the	server,	here	are	some	things	to	try:

Check	the	error	log	to	see	why	the	server	does	not	start.

Specify	any	special	options	needed	by	the	storage	engines	you	are	using.

Make	sure	that	the	server	knows	where	to	find	the	data	directory.

Make	sure	that	the	server	can	access	the	data	directory.	The	ownership	and
permissions	of	the	data	directory	and	its	contents	must	be	set	such	that	the
server	can	read	and	modify	them.

Verify	that	the	network	interfaces	the	server	wants	to	use	are	available.

Some	storage	engines	have	options	that	control	their	behavior.	You	can	create	a
my.cnf	file	and	specify	startup	options	for	the	engines	that	you	plan	to	use.	If
you	are	going	to	use	storage	engines	that	support	transactional	tables	(InnoDB,
BDB,	NDB),	be	sure	that	you	have	them	configured	the	way	you	want	before
starting	the	server:

If	you	are	using	InnoDB	tables,	see	Section	14.2.3,	“InnoDB	Configuration”.

If	you	are	using	BDB	(Berkeley	DB)	tables,	see	Section	14.5.3,	“BDB	Startup

Options”.

If	you	are	using	MySQL	Cluster,	see	Section	15.4,	“MySQL	Cluster
Configuration”.

Storage	engines	will	use	default	option	values	if	you	specify	none,	but	it	is
recommended	that	you	review	the	available	options	and	specify	explicit	values
for	those	for	which	the	defaults	are	not	appropriate	for	your	installation.

When	the	mysqld	server	starts,	it	changes	location	to	the	data	directory.	This	is
where	it	expects	to	find	databases	and	where	it	expects	to	write	log	files.	The
server	also	writes	the	pid	(process	ID)	file	in	the	data	directory.

The	data	directory	location	is	hardwired	in	when	the	server	is	compiled.	This	is
where	the	server	looks	for	the	data	directory	by	default.	If	the	data	directory	is
located	somewhere	else	on	your	system,	the	server	will	not	work	properly.	You
can	determine	what	the	default	path	settings	are	by	invoking	mysqld	with	the	--
verbose	and	--help	options.

If	the	default	locations	don't	match	the	MySQL	installation	layout	on	your
system,	you	can	override	them	by	specifying	options	to	mysqld	or	mysqld_safe
on	the	command	line	or	in	an	option	file.

To	specify	the	location	of	the	data	directory	explicitly,	use	the	--datadir	option.
However,	normally	you	can	tell	mysqld	the	location	of	the	base	directory	under
which	MySQL	is	installed	and	it	looks	for	the	data	directory	there.	You	can	do
this	with	the	--basedir	option.

To	check	the	effect	of	specifying	path	options,	invoke	mysqld	with	those	options
followed	by	the	--verbose	and	--help	options.	For	example,	if	you	change
location	into	the	directory	where	mysqld	is	installed	and	then	run	the	following
command,	it	shows	the	effect	of	starting	the	server	with	a	base	directory	of
/usr/local:

shell>	./mysqld	--basedir=/usr/local	--verbose	--help

You	can	specify	other	options	such	as	--datadir	as	well,	but	--verbose	and	--
help	must	be	the	last	options.

Once	you	determine	the	path	settings	you	want,	start	the	server	without	--

verbose	and	--help.

If	mysqld	is	currently	running,	you	can	find	out	what	path	settings	it	is	using	by
executing	this	command:

shell>	mysqladmin	variables

Or:

shell>	mysqladmin	-h	host_name	variables

host_name	is	the	name	of	the	MySQL	server	host.

If	you	get	Errcode	13	(which	means	Permission	denied)	when	starting
mysqld,	this	means	that	the	privileges	of	the	data	directory	or	its	contents	do	not
allow	the	server	access.	In	this	case,	you	change	the	permissions	for	the	involved
files	and	directories	so	that	the	server	has	the	right	to	use	them.	You	can	also
start	the	server	as	root,	but	this	raises	security	issues	and	should	be	avoided.

On	Unix,	change	location	into	the	data	directory	and	check	the	ownership	of	the
data	directory	and	its	contents	to	make	sure	the	server	has	access.	For	example,
if	the	data	directory	is	/usr/local/mysql/var,	use	this	command:

shell>	ls	-la	/usr/local/mysql/var

If	the	data	directory	or	its	files	or	subdirectories	are	not	owned	by	the	login
account	that	you	use	for	running	the	server,	change	their	ownership	to	that
account.	If	the	account	is	named	mysql,	use	these	commands:

shell>	chown	-R	mysql	/usr/local/mysql/var

shell>	chgrp	-R	mysql	/usr/local/mysql/var

If	the	server	fails	to	start	up	correctly,	check	the	error	log.	Log	files	are	located
in	the	data	directory	(typically	C:\Program	Files\MySQL\MySQL	Server
5.0\data	on	Windows,	/usr/local/mysql/data	for	a	Unix	binary	distribution,
and	/usr/local/var	for	a	Unix	source	distribution).	Look	in	the	data	directory
for	files	with	names	of	the	form	host_name.err	and	host_name.log,	where
host_name	is	the	name	of	your	server	host.	Then	examine	the	last	few	lines	of
these	files.	On	Unix,	you	can	use	tail	to	display	them:

shell>	tail	host_name.err

shell>	tail	host_name.log

The	error	log	should	contain	information	that	indicates	why	the	server	couldn't
start.	For	example,	you	might	see	something	like	this	in	the	log:

000729	14:50:10		bdb:		Recovery	function	for	LSN	1	27595	failed

000729	14:50:10		bdb:		warning:	./test/t1.db:	No	such	file	or	directory

000729	14:50:10		Can't	init	databases

This	means	that	you	did	not	start	mysqld	with	the	--bdb-no-recover	option	and
Berkeley	DB	found	something	wrong	with	its	own	log	files	when	it	tried	to
recover	your	databases.	To	be	able	to	continue,	you	should	move	the	old
Berkeley	DB	log	files	from	the	database	directory	to	some	other	place,	where
you	can	later	examine	them.	The	BDB	log	files	are	named	in	sequence	beginning
with	log.0000000001,	where	the	number	increases	over	time.

If	you	are	running	mysqld	with	BDB	table	support	and	mysqld	dumps	core	at
startup,	this	could	be	due	to	problems	with	the	BDB	recovery	log.	In	this	case,	you
can	try	starting	mysqld	with	--bdb-no-recover.	If	that	helps,	you	should
remove	all	BDB	log	files	from	the	data	directory	and	try	starting	mysqld	again
without	the	--bdb-no-recover	option.

If	either	of	the	following	errors	occur,	it	means	that	some	other	program	(perhaps
another	mysqld	server)	is	using	the	TCP/IP	port	or	Unix	socket	file	that	mysqld
is	trying	to	use:

Can't	start	server:	Bind	on	TCP/IP	port:	Address	already	in	use

Can't	start	server:	Bind	on	unix	socket...

Use	ps	to	determine	whether	you	have	another	mysqld	server	running.	If	so,
shut	down	the	server	before	starting	mysqld	again.	(If	another	server	is	running,
and	you	really	want	to	run	multiple	servers,	you	can	find	information	about	how
to	do	so	in	Section	5.13,	“Running	Multiple	MySQL	Servers	on	the	Same
Machine”.)

If	no	other	server	is	running,	try	to	execute	the	command	telnet
your_host_name	tcp_ip_port_number.	(The	default	MySQL	port	number	is
3306.)	Then	press	Enter	a	couple	of	times.	If	you	don't	get	an	error	message	like
telnet:	Unable	to	connect	to	remote	host:	Connection	refused,	some
other	program	is	using	the	TCP/IP	port	that	mysqld	is	trying	to	use.	You'll	need
to	track	down	what	program	this	is	and	disable	it,	or	else	tell	mysqld	to	listen	to
a	different	port	with	the	--port	option.	In	this	case,	you'll	also	need	to	specify
the	port	number	for	client	programs	when	connecting	to	the	server	via	TCP/IP.

Another	reason	the	port	might	be	inaccessible	is	that	you	have	a	firewall	running
that	blocks	connections	to	it.	If	so,	modify	the	firewall	settings	to	allow	access	to
the	port.

If	the	server	starts	but	you	can't	connect	to	it,	you	should	make	sure	that	you
have	an	entry	in	/etc/hosts	that	looks	like	this:

127.0.0.1							localhost

This	problem	occurs	only	on	systems	that	do	not	have	a	working	thread	library
and	for	which	MySQL	must	be	configured	to	use	MIT-pthreads.

If	you	cannot	get	mysqld	to	start,	you	can	try	to	make	a	trace	file	to	find	the
problem	by	using	the	--debug	option.	See	Section	E.1.2,	“Creating	Trace	Files”.

2.10.3.	Securing	the	Initial	MySQL	Accounts

Part	of	the	MySQL	installation	process	is	to	set	up	the	mysql	database	that
contains	the	grant	tables:

Windows	distributions	contain	preinitialized	grant	tables	that	are	installed
automatically.

On	Unix,	the	grant	tables	are	populated	by	the	mysql_install_db	program.
Some	installation	methods	run	this	program	for	you.	Others	require	that	you
execute	it	manually.	For	details,	see	Section	2.10.2,	“Unix	Post-Installation
Procedures”.

The	grant	tables	define	the	initial	MySQL	user	accounts	and	their	access
privileges.	These	accounts	are	set	up	as	follows:

Accounts	with	the	username	root	are	created.	These	are	superuser	accounts
that	can	do	anything.	The	initial	root	account	passwords	are	empty,	so
anyone	can	connect	to	the	MySQL	server	as	root	—	without	a	password	—
and	be	granted	all	privileges.

On	Windows,	one	root	account	is	created;	this	account	allows
connecting	from	the	local	host	only.	The	Windows	installer	will
optionally	create	an	account	allowing	for	connections	from	any	host
only	if	the	user	selects	the	Enable	root	access	from	remote	machines

option	during	installation.

On	Unix,	both	root	accounts	are	for	connections	from	the	local	host.
Connections	must	be	made	from	the	local	host	by	specifying	a
hostname	of	localhost	for	one	of	the	accounts,	or	the	actual	hostname
or	IP	number	for	the	other.

	Two	anonymous-user	accounts	are	created,	each	with	an	empty	username.
The	anonymous	accounts	have	no	password,	so	anyone	can	use	them	to
connect	to	the	MySQL	server.

On	Windows,	one	anonymous	account	is	for	connections	from	the
local	host.	It	has	all	privileges,	just	like	the	root	accounts.	The	other	is
for	connections	from	any	host	and	has	all	privileges	for	the	test
database	and	for	other	databases	with	names	that	start	with	test.

On	Unix,	both	anonymous	accounts	are	for	connections	from	the	local
host.	Connections	must	be	made	from	the	local	host	by	specifying	a
hostname	of	localhost	for	one	of	the	accounts,	or	the	actual	hostname
or	IP	number	for	the	other.	These	accounts	have	all	privileges	for	the
test	database	and	for	other	databases	with	names	that	start	with
test_.

As	noted,	none	of	the	initial	accounts	have	passwords.	This	means	that	your
MySQL	installation	is	unprotected	until	you	do	something	about	it:

If	you	want	to	prevent	clients	from	connecting	as	anonymous	users	without
a	password,	you	should	either	assign	a	password	to	each	anonymous
account	or	else	remove	the	accounts.

You	should	assign	a	password	to	each	MySQL	root	account.

The	following	instructions	describe	how	to	set	up	passwords	for	the	initial
MySQL	accounts,	first	for	the	anonymous	accounts	and	then	for	the	root
accounts.	Replace	“newpwd”	in	the	examples	with	the	actual	password	that	you
want	to	use.	The	instructions	also	cover	how	to	remove	the	anonymous	accounts,
should	you	prefer	not	to	allow	anonymous	access	at	all.

You	might	want	to	defer	setting	the	passwords	until	later,	so	that	you	don't	need
to	specify	them	while	you	perform	additional	setup	or	testing.	However,	be	sure

to	set	them	before	using	your	installation	for	production	purposes.

Anonymous	Account	Password	Assignment

To	assign	passwords	to	the	anonymous	accounts,	connect	to	the	server	as	root
and	then	use	either	SET	PASSWORD	or	UPDATE.	In	either	case,	be	sure	to	encrypt
the	password	using	the	PASSWORD()	function.

To	use	SET	PASSWORD	on	Windows,	do	this:

shell>	mysql	-u	root

mysql>	SET	PASSWORD	FOR	''@'localhost'	=	PASSWORD('newpwd');

mysql>	SET	PASSWORD	FOR	''@'%'	=	PASSWORD('newpwd');

To	use	SET	PASSWORD	on	Unix,	do	this:

shell>	mysql	-u	root

mysql>	SET	PASSWORD	FOR	''@'localhost'	=	PASSWORD('newpwd');

mysql>	SET	PASSWORD	FOR	''@'host_name'	=	PASSWORD('newpwd');

In	the	second	SET	PASSWORD	statement,	replace	host_name	with	the	name	of	the
server	host.	This	is	the	name	that	is	specified	in	the	Host	column	of	the	non-
localhost	record	for	root	in	the	user	table.	If	you	don't	know	what	hostname
this	is,	issue	the	following	statement	before	using	SET	PASSWORD:

mysql>	SELECT	Host,	User	FROM	mysql.user;

Look	for	the	record	that	has	root	in	the	User	column	and	something	other	than
localhost	in	the	Host	column.	Then	use	that	Host	value	in	the	second	SET
PASSWORD	statement.

The	other	way	to	assign	passwords	to	the	anonymous	accounts	is	by	using
UPDATE	to	modify	the	user	table	directly.	Connect	to	the	server	as	root	and	issue
an	UPDATE	statement	that	assigns	a	value	to	the	Password	column	of	the
appropriate	user	table	records.	The	procedure	is	the	same	for	Windows	and
Unix.	The	following	UPDATE	statement	assigns	a	password	to	both	anonymous
accounts	at	once:

shell>	mysql	-u	root

mysql>	UPDATE	mysql.user	SET	Password	=	PASSWORD('newpwd')

				->					WHERE	User	=	'';

mysql>	FLUSH	PRIVILEGES;

After	you	update	the	passwords	in	the	user	table	directly	using	UPDATE,	you
must	tell	the	server	to	re-read	the	grant	tables	with	FLUSH	PRIVILEGES.
Otherwise,	the	change	goes	unnoticed	until	you	restart	the	server.

Anonymous	Account	Removal

If	you	prefer	to	remove	the	anonymous	accounts	instead,	do	so	as	follows:

shell>	mysql	-u	root

mysql>	DELETE	FROM	mysql.user	WHERE	User	=	'';

mysql>	FLUSH	PRIVILEGES;

The	DELETE	statement	applies	both	to	Windows	and	to	Unix.	On	Windows,	if
you	want	to	remove	only	the	anonymous	account	that	has	the	same	privileges	as
root,	do	this	instead:

shell>	mysql	-u	root

mysql>	DELETE	FROM	mysql.user	WHERE	Host='localhost'	AND	User='';

mysql>	FLUSH	PRIVILEGES;

That	account	allows	anonymous	access	but	has	full	privileges,	so	removing	it
improves	security.

root	Account	Password	Assignment

You	can	assign	passwords	to	the	root	accounts	in	several	ways.	The	following
discussion	demonstrates	three	methods:

Use	the	SET	PASSWORD	statement

Use	the	mysqladmin	command-line	client	program

Use	the	UPDATE	statement

To	assign	passwords	using	SET	PASSWORD,	connect	to	the	server	as	root	and
issue	two	SET	PASSWORD	statements.	Be	sure	to	encrypt	the	password	using	the
PASSWORD()	function.

For	Windows,	do	this:

shell>	mysql	-u	root

mysql>	SET	PASSWORD	FOR	'root'@'localhost'	=	PASSWORD('newpwd');

mysql>	SET	PASSWORD	FOR	'root'@'%'	=	PASSWORD('newpwd');

For	Unix,	do	this:

shell>	mysql	-u	root

mysql>	SET	PASSWORD	FOR	'root'@'localhost'	=	PASSWORD('newpwd');

mysql>	SET	PASSWORD	FOR	'root'@'host_name'	=	PASSWORD('newpwd');

In	the	second	SET	PASSWORD	statement,	replace	host_name	with	the	name	of	the
server	host.	This	is	the	same	hostname	that	you	used	when	you	assigned	the
anonymous	account	passwords.

To	assign	passwords	to	the	root	accounts	using	mysqladmin,	execute	the
following	commands:

shell>	mysqladmin	-u	root	password	"newpwd"

shell>	mysqladmin	-u	root	-h	host_name	password	"newpwd"

These	commands	apply	both	to	Windows	and	to	Unix.	In	the	second	command,
replace	host_name	with	the	name	of	the	server	host.	The	double	quotes	around
the	password	are	not	always	necessary,	but	you	should	use	them	if	the	password
contains	spaces	or	other	characters	that	are	special	to	your	command	interpreter.

You	can	also	use	UPDATE	to	modify	the	user	table	directly.	The	following	UPDATE
statement	assigns	a	password	to	both	root	accounts	at	once:

shell>	mysql	-u	root

mysql>	UPDATE	mysql.user	SET	Password	=	PASSWORD('newpwd')

				->					WHERE	User	=	'root';

mysql>	FLUSH	PRIVILEGES;

The	UPDATE	statement	applies	both	to	Windows	and	to	Unix.

After	the	passwords	have	been	set,	you	must	supply	the	appropriate	password
whenever	you	connect	to	the	server.	For	example,	if	you	want	to	use
mysqladmin	to	shut	down	the	server,	you	can	do	so	using	this	command:

shell>	mysqladmin	-u	root	-p	shutdown

Enter	password:	(enter	root	password	here)

Note:	If	you	forget	your	root	password	after	setting	it	up,	Section	A.4.1,	“How
to	Reset	the	Root	Password”,	covers	the	procedure	for	resetting	it.

To	set	up	additional	accounts,	you	can	use	the	GRANT	statement.	For	instructions,
see	Section	5.9.2,	“Adding	New	User	Accounts	to	MySQL”.

2.11.	Upgrading	MySQL

As	a	general	rule,	we	recommend	that	when	upgrading	from	one	release	series	to
another,	you	should	go	to	the	next	series	rather	than	skipping	a	series.	For
example,	if	you	currently	are	running	MySQL	3.23	and	wish	to	upgrade	to	a
newer	series,	upgrade	to	MySQL	4.0	rather	than	to	4.1	or	5.0.

The	following	items	form	a	checklist	of	things	that	you	should	do	whenever	you
perform	an	upgrade:

Before	upgrading	from	MySQL	4.1	to	5.0,	read	Section	2.11.2,	“Upgrading
from	MySQL	4.1	to	5.0”)	as	well	as	Appendix	D,	MySQL	Change	History.
These	provide	information	about	features	that	are	new	in	MySQL	5.0	or
differ	from	those	found	in	MySQL	4.1.	If	you	wish	to	upgrade	from	a
release	series	previous	to	MySQL	4.1,	you	should	upgrade	to	each
successive	release	series	in	turn	until	you	have	reached	MySQL	4.1,	and
then	proceed	with	the	upgrade	to	MySQL	5.0.	For	information	on
upgrading	from	MySQL	4.1	or	earlier	releases,	see	the	MySQL	3.23,	4.0,
4.1	Reference	Manual.

Before	you	perform	an	upgrade,	back	up	your	databases,	including	the
mysql	database	that	contains	the	grant	tables.

Some	releases	of	MySQL	introduce	incompatible	changes	to	tables.	(Our
aim	is	to	avoid	these	changes,	but	occasionally	they	are	necessary	to	correct
problems	that	would	be	worse	than	an	incompatibility	between	releases.)
Some	releases	of	MySQL	introduce	changes	to	the	structure	of	the	grant
tables	to	add	new	privileges	or	features.

To	avoid	problems	due	to	such	changes,	after	you	upgrade	to	a	new	version
of	MySQL,	you	should	run	mysql_upgrade	to	check	your	tables	(and
repair	them	if	necessary),	and	to	update	your	grant	tables	to	make	sure	that
they	have	the	current	structure	so	that	you	can	take	advantage	of	any	new
capabilities.	See	Section	5.6.2,	“mysql_upgrade	—	Check	Tables	for
MySQL	Upgrade”.

If	you	are	running	MySQL	Server	on	Windows,	see	Section	2.3.14,
“Upgrading	MySQL	on	Windows”.

If	you	are	using	replication,	see	Section	6.6,	“Upgrading	a	Replication
Setup”,	for	information	on	upgrading	your	replication	setup.

If	you	previously	installed	a	MySQL-Max	distribution	that	includes	a	server
named	mysqld-max,	and	then	upgrade	later	to	a	non-Max	version	of
MySQL,	mysqld_safe	still	attempts	to	run	the	old	mysqld-max	server.	If
you	perform	such	an	upgrade,	you	should	remove	the	old	mysqld-max
server	manually	to	ensure	that	mysqld_safe	runs	the	new	mysqld	server.

You	can	always	move	the	MySQL	format	files	and	data	files	between	different
versions	on	the	same	architecture	as	long	as	you	stay	within	versions	for	the
same	release	series	of	MySQL.	If	you	change	the	character	set	when	running
MySQL,	you	must	run	myisamchk	-r	-q	--set-collation=collation_name	on	all
MyISAM	tables.	Otherwise,	your	indexes	may	not	be	ordered	correctly,	because
changing	the	character	set	may	also	change	the	sort	order.

If	you	are	cautious	about	using	new	versions,	you	can	always	rename	your	old
mysqld	before	installing	a	newer	one.	For	example,	if	you	are	using	MySQL
4.1.13	and	want	to	upgrade	to	5.0.10,	rename	your	current	server	from	mysqld
to	mysqld-4.1.13.	If	your	new	mysqld	then	does	something	unexpected,	you	can
simply	shut	it	down	and	restart	with	your	old	mysqld.

If,	after	an	upgrade,	you	experience	problems	with	recompiled	client	programs,
such	as	Commands	out	of	sync	or	unexpected	core	dumps,	you	probably	have
used	old	header	or	library	files	when	compiling	your	programs.	In	this	case,	you
should	check	the	date	for	your	mysql.h	file	and	libmysqlclient.a	library	to
verify	that	they	are	from	the	new	MySQL	distribution.	If	not,	recompile	your
programs	with	the	new	headers	and	libraries.

If	problems	occur,	such	as	that	the	new	mysqld	server	does	not	start	or	that	you
cannot	connect	without	a	password,	verify	that	you	do	not	have	an	old	my.cnf
file	from	your	previous	installation.	You	can	check	this	with	the	--print-
defaults	option	(for	example,	mysqld	--print-defaults).	If	this	command
displays	anything	other	than	the	program	name,	you	have	an	active	my.cnf	file
that	affects	server	or	client	operation.

It	is	a	good	idea	to	rebuild	and	reinstall	the	Perl	DBD::mysql	module	whenever
you	install	a	new	release	of	MySQL.	The	same	applies	to	other	MySQL
interfaces	as	well,	such	as	the	PHP	mysql	extension	and	the	Python	MySQLdb

module.

2.11.1.	Upgrading	from	MySQL	5.0	to	5.1

When	upgrading	a	5.0	installation	to	5.0.10	or	above	note	that	it	is	necessary
to	upgrade	your	grant	tables.	Otherwise,	creating	stored	procedures	and
functions	might	not	work.	The	procedure	for	doing	this	is	described	in
Section	5.6.2,	“mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade”.

2.11.2.	Upgrading	from	MySQL	4.1	to	5.0

Note:	It	is	good	practice	to	back	up	your	data	before	installing	any	new	version
of	software.	Although	MySQL	works	very	hard	to	ensure	a	high	level	of	quality,
you	should	protect	your	data	by	making	a	backup.	MySQL	generally
recommends	that	you	dump	and	reload	your	tables	from	any	previous	version	to
upgrade	to	5.0.

In	general,	you	should	do	the	following	when	upgrading	from	MySQL	4.1	from
5.0:

Check	the	items	in	the	change	lists	found	later	in	this	section	to	see	whether
any	of	them	might	affect	your	applications.	Note	particularly	any	that	are
marked	Incompatible	change.	These	result	in	incompatibilities	with	earlier
versions	of	MySQL,	and	may	require	your	attention	before	you	upgrade.

Some	releases	of	MySQL	introduce	incompatible	changes	to	tables.	(Our
aim	is	to	avoid	these	changes,	but	occasionally	they	are	necessary	to	correct
problems	that	would	be	worse	than	an	incompatibility	between	releases.)
Some	releases	of	MySQL	introduce	changes	to	the	structure	of	the	grant
tables	to	add	new	privileges	or	features.

To	avoid	problems	due	to	such	changes,	after	you	upgrade	to	a	new	version
of	MySQL,	you	should	check	your	tables	(and	repair	them	if	necessary),
and	update	your	grant	tables	to	make	sure	that	they	have	the	current
structure	so	that	you	can	take	advantage	of	any	new	capabilities.	See
Section	5.6.2,	“mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade”.

Read	the	MySQL	5.0	change	history	to	see	what	significant	new	features
you	can	use	in	5.0.	See	Section	D.1,	“Changes	in	release	5.0.x

(Production)”.

If	you	are	running	MySQL	Server	on	Windows,	see	Section	2.3.14,
“Upgrading	MySQL	on	Windows”.

MySQL	5.0	adds	support	for	stored	procedures.	This	support	requires	the
mysql.proc	table.	To	create	this	table,	you	should	run	the	mysql_upgrade
program	as	described	in	Section	5.6.2,	“mysql_upgrade	—	Check	Tables
for	MySQL	Upgrade”.

MySQL	5.0	adds	support	for	views.	This	support	requires	extra	privilege
columns	in	the	mysql.user	and	mysql.db	tables.	To	create	these	columns,
you	should	run	the	mysql_upgrade	program	as	described	in	Section	5.6.2,
“mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade”.

If	you	are	using	replication,	see	Section	6.6,	“Upgrading	a	Replication
Setup”,	for	information	on	upgrading	your	replication	setup.

Several	visible	behaviors	have	changed	between	MySQL	4.1	and	MySQL	5.0	to
make	MySQL	more	compatible	with	standard	SQL.	These	changes	may	affect
your	applications.

The	following	lists	describe	changes	that	may	affect	applications	and	that	you
should	watch	out	for	when	upgrading	to	MySQL	5.0.

Server	Changes:

Incompatible	change:	The	indexing	order	for	end-space	in	TEXT	columns
for	InnoDB	and	MyISAM	tables	has	changed.	Starting	from	5.0.3,	TEXT
indexes	are	compared	as	space-padded	at	the	end	(just	as	MySQL	sorts
CHAR,	VARCHAR	and	TEXT	fields).	If	you	have	a	index	on	a	TEXT	column,	you
should	run	CHECK	TABLE	on	it.	If	the	check	reports	errors,	rebuild	the
indexes:	Dump	and	reload	the	table	if	it	is	an	InnoDB	table,	or	run	OPTIMIZE
TABLE	or	REPAIR	TABLE	if	it	is	a	MyISAM	table.

Warning:	Incompatible	change.	For	BINARY	columns,	the	pad	value	and
how	it	is	handled	has	changed	as	of	MySQL	5.0.15.	The	pad	value	for
inserts	now	is	0x00	rather	than	space,	and	there	is	no	stripping	of	the	pad
value	for	retrievals.	For	details,	see	Section	11.4.2,	“The	BINARY	and
VARBINARY	Types”.

Incompatible	change:	As	of	MySQL	5.0.3,	the	server	by	default	no	longer
loads	user-defined	functions	(UDFs)	unless	they	have	at	least	one	auxiliary
symbol	(for	example,	an	xxx_init	or	xxx_deinit	symbol)	defined	in
addition	to	the	main	function	symbol.	This	behavior	can	be	overridden	with
the	--allow-suspicious-udfs	option.	See	Section	24.2.4.6,	“User-Defined
Function	Security	Precautions”.

Incompatible	change:	The	update	log	has	been	removed	in	MySQL	5.0.	If
you	had	enabled	it	previously,	you	should	enable	the	binary	log	instead.

	Incompatible	change:	Support	for	the	ISAM	storage	engine	has	been
removed	in	MySQL	5.0.	If	you	have	any	ISAM	tables,	you	should	convert
them	before	upgrading.	For	example,	to	convert	an	ISAM	table	to	use	the
MyISAM	storage	engine,	use	this	statement:

ALTER	TABLE	tbl_name	ENGINE	=	MyISAM;

Use	a	similar	statement	for	every	ISAM	table	in	each	of	your	databases.

	Incompatible	change:	Support	for	RAID	options	in	MyISAM	tables	has	been
removed	in	MySQL	5.0.	If	you	have	tables	that	use	these	options,	you
should	convert	them	before	upgrading.	One	way	to	do	this	is	to	dump	them
with	mysqldump,	edit	the	dump	file	to	remove	the	RAID	options	in	the
CREATE	TABLE	statements,	and	reload	the	dump	file.	Another	possibility	is
to	use	CREATE	TABLE	new_tbl	...	SELECT	raid_tbl	to	create	a	new	table
from	the	RAID	table.	However,	the	CREATE	TABLE	part	of	the	statement	must
contain	sufficient	information	to	re-create	column	attributes	as	well	as
indexes,	or	column	attributes	may	be	lost	and	indexes	will	not	appear	in	the
new	table.	See	Section	13.1.5,	“CREATE	TABLE	Syntax”.

The	.MYD	files	for	RAID	tables	in	a	given	database	are	stored	under	the
database	directory	in	subdirectories	that	have	names	consisting	of	two	hex
digits	in	the	range	from	00	to	ff.	After	converting	all	tables	that	use	RAID
options,	these	RAID-related	subdirectories	still	will	exist	but	can	be
removed.	Verify	that	they	are	empty,	and	then	remove	them	manually.	(If
they	are	not	empty,	there	is	some	RAID	table	that	has	not	been	converted.)

In	MySQL	5.0.6,	binary	logging	of	stored	routines	and	triggers	was
changed.	This	change	has	implications	for	security,	replication,	and	data
recovery,	as	discussed	in	Section	17.4,	“Binary	Logging	of	Stored	Routines

and	Triggers”.

SQL	Changes:

Incompatible	change:	Beginning	with	MySQL	5.0.12,	natural	joins	and
joins	with	USING,	including	outer	join	variants,	are	processed	according	to
the	SQL:2003	standard.	The	changes	include	elimination	of	redundant
output	columns	for	NATURAL	joins	and	joins	specified	with	a	USING	clause
and	proper	ordering	of	output	columns.	The	precedence	of	the	comma
operator	also	now	is	lower	compared	to	JOIN,	LEFT	JOIN,	and	so	forth.

These	changes	make	MySQL	more	compliant	with	standard	SQL.	However,
they	can	result	in	different	output	columns	for	some	joins.	Also,	some
queries	that	appeared	to	work	correctly	prior	to	5.0.12	must	be	rewritten	to
comply	with	the	standard.	For	details	about	the	scope	of	the	changes	and
examples	that	show	what	query	rewrites	are	necessary,	see	Section	13.2.7.1,
“JOIN	Syntax”.

Incompatible	change:	Previously,	a	lock	wait	timeout	caused	InnoDB	to
roll	back	the	entire	current	transaction.	As	of	MySQL	5.0.13,	it	rolls	back
only	the	most	recent	SQL	statement.

Incompatible	change:	The	namespace	for	triggers	has	changed	in	MySQL
5.0.10.	Previously,	trigger	names	had	to	be	unique	per	table.	Now	they	must
be	unique	within	the	schema	(database).	An	implication	of	this	change	is
that	DROP	TRIGGER	syntax	now	uses	a	schema	name	instead	of	a	table	name
(schema	name	is	optional	and,	if	omitted,	the	current	schema	will	be	used).

When	upgrading	from	a	previous	version	of	MySQL	5	to	MySQL	5.0.10	or
newer,	you	must	drop	all	triggers	and	re-create	them	or	DROP	TRIGGER	will
not	work	after	the	upgrade.	Here	is	a	suggested	procedure	for	doing	this:

1.	 Upgrade	to	MySQL	5.0.10	or	later	to	be	able	to	access	trigger
information	in	the	INFORMATION_SCHEMA.TRIGGERS	table.	(It	should
work	even	for	pre-5.0.10	triggers.)

2.	 Dump	all	trigger	definitions	using	the	following	SELECT	statement:

SELECT	CONCAT('CREATE	TRIGGER	',	t.TRIGGER_SCHEMA,	'.',	t.TRIGGER_NAME,

														'	',	t.ACTION_TIMING,	'	',	t.EVENT_MANIPULATION,	'	ON	',

														t.EVENT_OBJECT_SCHEMA,	'.',	t.EVENT_OBJECT_TABLE,

														'	FOR	EACH	ROW	',	t.ACTION_STATEMENT,	'//')

INTO	OUTFILE	'/tmp/triggers.sql'

FROM	INFORMATION_SCHEMA.TRIGGERS	AS	t;

The	statement	uses	INTO	OUTFILE,	so	you	must	have	the	FILE
privilege.	The	file	will	be	created	on	the	server	host.	Use	a	different
filename	if	you	like.	To	be	100%	safe,	inspect	the	trigger	definitions	in
the	triggers.sql	file,	and	perhaps	make	a	backup	of	the	file.

3.	 Stop	the	server	and	drop	all	triggers	by	removing	all	.TRG	files	in	your
database	directories.	Change	location	to	your	data	directory	and	issue
this	command:

shell>	rm	*/*.TRG

4.	 Start	the	server	and	re-create	all	triggers	using	the	triggers.sql	file.
For	the	file	created	earlier,	use	these	commands	in	the	mysql	program:

mysql>	delimiter	//	;

mysql>	source	/tmp/triggers.sql	//

5.	 Use	the	SHOW	TRIGGERS	statement	to	check	that	all	triggers	were
created	successfully.

Incompatible	change:	As	of	MySQL	5.0.15,	the	CHAR()	function	returns	a
binary	string	rather	than	a	string	in	the	connection	character	set.	An
optional	USING	charset_name	clause	may	be	used	to	produce	a	result	in	a
specific	character	set	instead.	Also,	arguments	larger	than	256	produce
multiple	characters.	They	are	no	longer	interpreted	modulo	256	to	produce
a	single	character	each.	These	changes	may	cause	some	incompatibilities:

CHAR(ORD('A'))	=	'a'	is	no	longer	true:

mysql>	SELECT	CHAR(ORD('A'))	=	'a';

+----------------------+

|	CHAR(ORD('A'))	=	'a'	|

+----------------------+

|																				0	|

+----------------------+

To	perform	a	case-insensitive	comparison,	you	can	produce	a	result
string	in	a	non-binary	character	set	by	adding	a	USING	clause	or

converting	the	result:

mysql>	SELECT	CHAR(ORD('A')	USING	latin1)	=	'a';

+-----------------------------------+

|	CHAR(ORD('A')	USING	latin1)	=	'a'	|

+-----------------------------------+

|																																	1	|

+-----------------------------------+

mysql>	SELECT	CONVERT(CHAR(ORD('A'))	USING	latin1)	=	'a';

+--+

|	CONVERT(CHAR(ORD('A'))	USING	latin1)	=	'a'	|

+--+

|																																										1	|

+--+

CREATE	TABLE	...	SELECT	CHAR(...)	produces	a	VARBINARY	column,
not	a	VARCHAR	column.	To	produce	a	VARCHAR	column,	use	USING	or
CONVERT()	as	just	described	to	convert	the	CHAR()	result	into	a	non-
binary	character	set.

Previously,	the	following	statements	inserted	the	value	0x00410041
('AA'	as	a	ucs2	string)	into	the	table:

CREATE	TABLE	t	(ucs2_column	CHAR(2)	CHARACTER	SET	ucs2);

INSERT	INTO	t	VALUES	(CHAR(0x41,0x41));

As	of	MySQL	5.0.15,	the	statements	insert	a	single	ucs2	character
with	value	0x4141.

Incompatible	change:	By	default,	integer	subtraction	involving	an
unsigned	value	should	produce	an	unsigned	result.	Tracking	of	the
“unsignedness”	of	an	expression	was	improved	in	MySQL	5.0.13.	This
means	that,	in	some	cases	where	an	unsigned	subtraction	would	have
resulted	in	a	signed	integer,	it	now	results	in	an	unsigned	integer.	One
context	in	which	this	difference	manifests	itself	is	when	a	subtraction
involving	an	unsigned	operand	would	be	negative.

Suppose	that	i	is	a	TINYINT	UNSIGNED	column	and	has	a	value	of	0.	The
server	evaluates	the	following	expression	using	64-bit	unsigned	integer
arithmetic	with	the	following	result:

mysql>	SELECT	i	-	1	FROM	t;

+----------------------+

|	i	-	1																|

+----------------------+

|	18446744073709551615	|

+----------------------+

If	the	expression	is	used	in	an	UPDATE	t	SET	i	=	i	-	1	statement,	the
expression	is	evaluated	and	the	result	assigned	to	i	according	to	the	usual
rules	for	handling	values	outide	the	column	range	or	0	to	255.	That	is,	the
value	is	clipped	to	the	nearest	endpoint	of	the	range.	However,	the	result	is
version-specific:

Before	MySQL	5.0.13,	the	expression	is	evaluated	but	is	treated	as	the
equivalent	64-bit	signed	value	(–1)	for	the	assignment.	The	value	of	–1
is	clipped	to	the	nearest	endpoint	of	the	column	range,	resulting	in	a
value	of	0:

mysql>	UPDATE	t	SET	i	=	i	-	1;	SELECT	i	FROM	t;

+------+

|	i				|

+------+

|				0	|

+------+

As	of	MySQL	5.0.13,	the	expression	is	evaluated	and	retains	its
unsigned	attribute	for	the	assignment.	The	value	of
18446744073709551615	is	clipped	to	the	nearest	endpoint	of	the
column	range,	resulting	in	a	value	of	255:

mysql>	UPDATE	t	SET	i	=	i	-	1;	SELECT	i	FROM	t;

+------+

|	i				|

+------+

|		255	|

+------+

To	get	the	older	behavior,	use	CAST()	to	convert	the	expression	result	to	a
signed	value:

UPDATE	t	SET	i	=	CAST(i	-	1	AS	SIGNED);

Alternatively,	set	the	NO_UNSIGNED_SUBTRACTION	SQL	mode.	However,	this
will	affect	all	integer	subtractions	involving	unsigned	values.

Incompatible	change:	Before	MySQL	5.0.13,	NOW()	and	SYSDATE()	return

the	same	value	(the	time	at	which	the	statement	in	which	the	function
occurs	begins	executing).	As	of	MySQL	5.0.13,	SYSDATE()	returns	the	time
at	which	it	it	executes,	which	can	differ	from	the	value	returned	by	NOW().
For	information	about	the	implications	for	binary	logging	and	replication,
see	the	description	for	SYSDATE()	in	Section	12.5,	“Date	and	Time
Functions”	and	for	SET	TIMESTAMP	in	Section	13.5.3,	“SET	Syntax”.	To
restore	the	former	behavior	for	SYSDATE()	and	cause	it	to	be	an	alias	for
NOW(),	start	the	server	with	the	--sysdate-is-now	option	(available	as	of
MySQL	5.0.20).

Incompatible	change:	Before	MySQL	5.0.13,	GREATEST(x,NULL)	and
LEAST(x,NULL)	return	x	when	x	is	a	non-NULL	value.	As	of	5.0.3,	both
functions	return	NULL	if	any	argument	is	NULL,	the	same	as	Oracle.	This
change	can	cause	problems	for	applications	that	rely	on	the	old	behavior.

Incompatible	change:	Before	MySQL	4.1.13/5.0.8,	conversion	of
DATETIME	values	to	numeric	form	by	adding	zero	produced	a	result	in
YYYYMMDDHHMMSS	format.	The	result	of	DATETIME+0	is	now	in
YYYYMMDDHHMMSS.000000	format.

Incompatible	change:	In	MySQL	4.1.12/5.0.6,	the	behavior	of	LOAD	DATA
INFILE	and	SELECT	...	INTO	OUTFILE	has	changed	when	the	FIELDS
TERMINATED	BY	and	FIELDS	ENCLOSED	BY	values	both	are	empty.	Formerly,
a	column	was	read	or	written	the	display	width	of	the	column.	For	example,
INT(4)	was	read	or	written	using	a	field	with	a	width	of	4.	Now	columns
are	read	and	written	using	a	field	width	wide	enough	to	hold	all	values	in
the	field.	However,	data	files	written	before	this	change	was	made	might
not	be	reloaded	correctly	with	LOAD	DATA	INFILE	for	MySQL	4.1.12/5.0.6
and	up.	This	change	also	affects	data	files	read	by	mysqlimport	and	written
by	mysqldump	--tab,	which	use	LOAD	DATA	INFILE	and	SELECT	...	INTO
OUTFILE.	For	more	information,	see	Section	13.2.5,	“LOAD	DATA	INFILE
Syntax”.

Incompatible	change:	The	implementation	of	DECIMAL	has	changed	in
MySQL	5.0.3.	You	should	make	your	applications	aware	of	this	change.	For
information	about	this	change,	and	about	possible	incompatibilities	with	old
applications,	see	Chapter	21,	Precision	Math.

DECIMAL	columns	are	stored	in	a	more	efficient	format.	To	convert	a	table	to

use	the	new	DECIMAL	type,	you	should	do	an	ALTER	TABLE	on	it.	(The	ALTER
TABLE	also	will	change	the	table's	VARCHAR	columns	to	use	the	new	VARCHAR
data	type	properties,	described	in	a	separate	item.)

A	consequence	of	the	change	in	handling	of	the	DECIMAL	and	NUMERIC
fixed-point	data	types	is	that	the	server	is	more	strict	to	follow	standard
SQL.	For	example,	a	data	type	of	DECIMAL(3,1)	stores	a	maximum	value	of
99.9.	Before	MySQL	5.0.3,	the	server	allowed	larger	numbers	to	be	stored.
That	is,	it	stored	a	value	such	as	100.0	as	100.0.	As	of	MySQL	5.0.3,	the
server	clips	100.0	to	the	maximum	allowable	value	of	99.9.	If	you	have
tables	that	were	created	before	MySQL	5.0.3	and	that	contain	floating-point
data	not	strictly	legal	for	the	data	type,	you	should	alter	the	data	types	of
those	columns.	For	example:

ALTER	TABLE	tbl_name	MODIFY	col_name	DECIMAL(4,1);

The	behavior	used	by	the	server	for	DECIMAL	columns	in	a	table	depends	on
the	version	of	MySQL	used	to	create	the	table.	If	your	server	is	from
MySQL	5.0.3	or	higher,	but	you	have	DECIMAL	columns	in	tables	that	were
created	before	5.0.3,	the	old	behavior	still	applies	to	those	columns.	To
convert	the	tables	to	the	newer	DECIMAL	format,	dump	them	with
mysqldump	and	reload	them.

Incompatible	change:	MySQL	5.0.3	and	up	uses	precision	math	when
calculating	with	DECIMAL	and	integer	columns	(64	decimal	digits)	and	for
rounding	exact-value	numbers.	Rounding	behavior	is	well-defined,	not
dependent	on	the	implementation	of	the	underlying	C	library.	However,	this
might	result	in	incompatibilities	for	applications	that	rely	on	the	old
behavior.	(For	example,	inserting	.5	into	an	INT	column	results	in	1	as	of
MySQL	5.0.3,	but	might	be	0	in	older	versions.)	For	more	information
about	rounding	behavior,	see	Section	21.4,	“Rounding	Behavior”,	and
Section	21.5,	“Precision	Math	Examples”.

Incompatible	change:	MyISAM	and	InnoDB	tables	created	with	DECIMAL
columns	in	MySQL	5.0.3	to	5.0.5	will	appear	corrupt	after	an	upgrade	to
MySQL	5.0.6.	(The	same	incompatibility	will	occur	for	these	tables	created
in	MySQL	5.0.6	after	a	downgrade	to	MySQL	5.0.3	to	5.0.5.)	If	you	have
such	tables,	check	and	repair	them	with	mysql_upgrade	after	upgrading.
See	Section	5.6.2,	“mysql_upgrade	—	Check	Tables	for	MySQL
Upgrade”.

Incompatible	change:	Before	MySQL	5.0.2,	SHOW	STATUS	returned	global
status	values.	The	default	as	of	5.0.2	is	to	return	session	values,	which	is
incompatible	with	previous	versions.	To	issue	a	SHOW	STATUS	statement	that
will	retrieve	global	status	values	for	all	versions	of	MySQL,	write	it	like
this:

SHOW	/*!50002	GLOBAL	*/	STATUS;

Incompatible	change:	User	variables	are	not	case	sensitive	in	MySQL	5.0.
In	MySQL	4.1,	SET	@x	=	0;	SET	@X	=	1;	SELECT	@x;	created	two
variables	and	returned	0.	In	MySQL	5.0,	it	creates	one	variable	and	returns
1.	Replication	setups	that	rely	on	the	old	behavior	may	be	affected	by	this
change.

Some	keywords	are	reserved	in	MySQL	5.0	that	were	not	reserved	in
MySQL	4.1.	See	Section	9.5,	“Treatment	of	Reserved	Words	in	MySQL”.

As	of	MySQL	5.0.3,	trailing	spaces	no	longer	are	removed	from	values
stored	in	VARCHAR	and	VARBINARY	columns.	The	maximum	lengths	for
VARCHAR	and	VARBINARY	columns	in	MySQL	5.0.3	and	later	are	65,535
characters	and	65,535	bytes,	respectively.

When	a	binary	upgrade	(filesystem-level	copy	of	data	files)	to	MySQL	5.0
is	performed	for	a	table	with	a	VARBINARY	column,	the	column	is	space-
padded	to	the	full	allowable	width	of	the	column.	This	causes	values	in
VARBINARY	columns	that	do	not	occupy	the	full	width	of	the	column	to
include	extra	trailing	spaces	after	the	upgrade,	which	means	that	the	data	in
the	column	is	different.

In	addition,	new	rows	inserted	into	a	table	upgraded	in	this	way	will	be
space	padded	to	the	full	width	of	the	column.

This	issue	can	be	resolved	as	follows:

1.	 For	each	table	containing	VARBINARY	columns,	execute	the	statement

ALTER	TABLE	table_name	ENGINE=engine_name;

where	table_name	is	the	name	of	the	table	and	engine_name	is	the
name	of	the	storage	engine	currently	used	by	table_name.	In	other

words,	if	the	table	named	mytable	uses	the	MyISAM	storage	engine,
then	you	would	use	this	statement:

ALTER	TABLE	mytable	ENGINE=MYISAM;

This	rebuilds	the	table	so	that	it	uses	the	5.0	VARBINARY	format.

2.	 Then	you	must	remove	all	trailing	spaces	from	any	VARBINARY	column
values.	For	each	VARBINARY	column	varbinary_column,	you	should
perform	the	following	statement	(where	table_name	is	the	name	of	the
table	containing	the	VARBINARY	column):

UPDATE	table_name	SET	varbinary_column	=	RTRIM(varbinary_column

This	is	necessary	and	safe	because	trailing	spaces	are	stripped	before
5.0.3,	meaning	that	any	trailing	spaces	are	erroneous.

This	problem	does	not	occur	(and	thus	these	two	steps	are	not	required)	for
tables	upgraded	using	the	recommended	procedure	of	dumping	tables	prior
to	the	upgrade	and	reloading	them	afterwards.

Note:	If	you	create	a	table	with	new	VARCHAR	or	VARBINARY	columns	in
MySQL	5.0.3	or	later,	the	table	will	not	be	usable	if	you	downgrade	to	a
version	older	than	5.0.3.	Dump	the	table	with	mysqldump	before
downgrading	and	reload	it	after	downgrading.

Comparisons	made	between	FLOAT	or	DOUBLE	values	that	happened	to	work
in	MySQL	4.1	may	not	do	so	in	5.0.	Values	of	these	types	are	imprecise	in
all	MySQL	versions,	and	you	are	strongly	advised	to	avoid	such
comparisons	as	WHERE	col_name=some_double,	regardless	of	the	MySQL
version	you	are	using.	See	Section	A.5.8,	“Problems	with	Floating-Point
Comparisons”.

As	of	MySQL	5.0.3,	BIT	is	a	separate	data	type,	not	a	synonym	for
TINYINT(1).	See	Section	11.1.1,	“Overview	of	Numeric	Types”.

MySQL	5.0.2	adds	several	SQL	modes	that	allow	stricter	control	over
rejecting	records	that	have	invalid	or	missing	values.	See	Section	5.2.5,
“The	Server	SQL	Mode”,	and	Section	1.9.6.2,	“Constraints	on	Invalid
Data”.	If	you	want	to	enable	this	control	but	continue	to	use	MySQL's

capability	for	storing	incorrect	dates	such	as	'2004-02-31',	you	should
start	the	server	with	--sql_mode="TRADITIONAL,ALLOW_INVALID_DATES".

As	of	MySQL	5.0.2,	the	SCHEMA	and	SCHEMAS	keywords	are	accepted	as
synonyms	for	DATABASE	and	DATABASES,	respectively.	(While	“schemata”	is
grammatically	correct	and	even	appears	in	some	MySQL	5.0	system
database	and	table	names,	it	cannot	be	used	as	a	keyword.)

A	new	startup	option	named	innodb_table_locks	was	added	that	causes
LOCK	TABLE	to	also	acquire	InnoDB	table	locks.	This	option	is	enabled	by
default.	This	can	cause	deadlocks	in	applications	that	use	AUTOCOMMIT=1
and	LOCK	TABLES.	If	you	application	encounters	deadlocks	after	upgrading,
you	may	need	to	add	innodb_table_locks=0	to	your	my.cnf	file.

C	API	Changes:

Incompatible	change:	Because	the	MySQL	5.0	server	has	a	new
implementation	of	the	DECIMAL	data	type,	a	problem	may	occur	if	the	server
is	used	by	older	clients	that	still	are	linked	against	MySQL	4.1	client
libraries.	If	a	client	uses	the	binary	client/server	protocol	to	execute
prepared	statements	that	generate	result	sets	containing	numeric	values,	an
error	will	be	raised:	'Using	unsupported	buffer	type:	246'

This	error	occurs	because	the	4.1	client	libraries	do	not	support	the	new
MYSQL_TYPE_NEWDECIMAL	type	value	added	in	5.0.	There	is	no	way	to
disable	the	new	DECIMAL	data	type	on	the	server	side.	You	can	avoid	the
problem	by	relinking	the	application	with	the	client	libraries	from	MySQL
5.0.

Incompatible	change:	The	ER_WARN_DATA_TRUNCATED	warning	symbol	was
renamed	to	WARN_DATA_TRUNCATED	in	MySQL	5.0.3.

The	reconnect	flag	in	the	MYSQL	structure	is	set	to	0	by
mysql_real_connect().	Only	those	client	programs	which	did	not
explicitly	set	this	flag	to	0	or	1	after	mysql_real_connect()	experience	a
change.	Having	automatic	reconnection	enabled	by	default	was	considered
too	dangerous	(due	to	the	fact	that	table	locks,	temporary	tables,	user
variables,	and	session	variables	are	lost	after	reconnection).

2.11.3.	Copying	MySQL	Databases	to	Another	Machine

You	can	copy	the	.frm,	.MYI,	and	.MYD	files	for	MyISAM	tables	between	different
architectures	that	support	the	same	floating-point	format.	(MySQL	takes	care	of
any	byte-swapping	issues.)	See	Section	14.1,	“The	MyISAM	Storage	Engine”.

In	cases	where	you	need	to	transfer	databases	between	different	architectures,
you	can	use	mysqldump	to	create	a	file	containing	SQL	statements.	You	can
then	transfer	the	file	to	the	other	machine	and	feed	it	as	input	to	the	mysql	client.

Use	mysqldump	--help	to	see	what	options	are	available.	If	you	are	moving	the
data	to	a	newer	version	of	MySQL,	you	should	use	mysqldump	--opt	to	take
advantage	of	any	optimizations	that	result	in	a	dump	file	that	is	smaller	and	can
be	processed	more	quickly.

The	easiest	(although	not	the	fastest)	way	to	move	a	database	between	two
machines	is	to	run	the	following	commands	on	the	machine	on	which	the
database	is	located:

shell>	mysqladmin	-h	'other_hostname'	create	db_name

shell>	mysqldump	--opt	db_name	|	mysql	-h	'other_hostname'	db_name

If	you	want	to	copy	a	database	from	a	remote	machine	over	a	slow	network,	you
can	use	these	commands:

shell>	mysqladmin	create	db_name

shell>	mysqldump	-h	'other_hostname'	--opt	--compress	db_name	|	mysql	

You	can	also	store	the	dump	in	a	file,	transfer	the	file	to	the	target	machine,	and
then	load	the	file	into	the	database	there.	For	example,	you	can	dump	a	database
to	a	compressed	file	on	the	source	machine	like	this:

shell>	mysqldump	--quick	db_name	|	gzip	>	db_name.gz

Transfer	the	file	containing	the	database	contents	to	the	target	machine	and	run
these	commands	there:

shell>	mysqladmin	create	db_name

shell>	gunzip	<	db_name.gz	|	mysql	db_name

You	can	also	use	mysqldump	and	mysqlimport	to	transfer	the	database.	For

large	tables,	this	is	much	faster	than	simply	using	mysqldump.	In	the	following
commands,	DUMPDIR	represents	the	full	pathname	of	the	directory	you	use	to
store	the	output	from	mysqldump.

First,	create	the	directory	for	the	output	files	and	dump	the	database:

shell>	mkdir	DUMPDIR

shell>	mysqldump	--tab=DUMPDIR	db_name

Then	transfer	the	files	in	the	DUMPDIR	directory	to	some	corresponding	directory
on	the	target	machine	and	load	the	files	into	MySQL	there:

shell>	mysqladmin	create	db_name											#	create	database

shell>	cat	DUMPDIR/*.sql	|	mysql	db_name			#	create	tables	in	database

shell>	mysqlimport	db_name	DUMPDIR/*.txt			#	load	data	into	tables

Do	not	forget	to	copy	the	mysql	database	because	that	is	where	the	grant	tables
are	stored.	You	might	have	to	run	commands	as	the	MySQL	root	user	on	the
new	machine	until	you	have	the	mysql	database	in	place.

After	you	import	the	mysql	database	on	the	new	machine,	execute	mysqladmin
flush-privileges	so	that	the	server	reloads	the	grant	table	information.

2.12.	Downgrading	MySQL

This	section	describes	what	you	should	do	to	downgrade	to	an	older	MySQL
version	in	the	unlikely	case	that	the	previous	version	worked	better	than	the	new
one.

If	you	are	downgrading	within	the	same	release	series	(for	example,	from	4.1.13
to	4.1.12)	the	general	rule	is	that	you	just	have	to	install	the	new	binaries	on	top
of	the	old	ones.	There	is	no	need	to	do	anything	with	the	databases.	As	always,
however,	it	is	always	a	good	idea	to	make	a	backup.

The	following	items	form	a	checklist	of	things	you	should	do	whenever	you
perform	a	downgrade:

Read	the	upgrading	section	for	the	release	series	from	which	you	are
downgrading	to	be	sure	that	it	does	not	have	any	features	you	really	need.
Section	2.11,	“Upgrading	MySQL”.

If	there	is	a	downgrading	section	for	that	version,	you	should	read	that	as
well.

In	most	cases,	you	can	move	the	MySQL	format	files	and	data	files	between
different	versions	on	the	same	architecture	as	long	as	you	stay	within	versions
for	the	same	release	series	of	MySQL.

If	you	downgrade	from	one	release	series	to	another,	there	may	be
incompatibilities	in	table	storage	formats.	In	this	case,	you	can	use	mysqldump
to	dump	your	tables	before	downgrading.	After	downgrading,	reload	the	dump
file	using	mysql	or	mysqlimport	to	re-create	your	tables.	For	examples,	see
Section	2.11.3,	“Copying	MySQL	Databases	to	Another	Machine”.

The	normal	symptom	of	a	downward-incompatible	table	format	change	when
you	downgrade	is	that	you	can't	open	tables.	In	that	case,	use	the	following
procedure:

1.	 Stop	the	older	MySQL	server	that	you	are	downgrading	to.

2.	 Restart	the	newer	MySQL	server	you	are	downgrading	from.

3.	 Dump	any	tables	that	were	inaccessible	to	the	older	server	by	using
mysqldump	to	create	a	dump	file.

4.	 Stop	the	newer	MySQL	server	and	restart	the	older	one.

5.	 Reload	the	dump	file	into	the	older	server.	Your	tables	should	be	accessible.

2.12.1.	Downgrading	to	MySQL	4.1

MySQL	4.1	does	not	support	stored	routines	or	triggers.	If	your	databases
contain	stored	routines	or	triggers,	prevent	them	from	being	dumped	when	you
use	mysqldump	by	using	the	--skip-routines	and	--skip-triggers	options.
(See	Section	8.12,	“mysqldump	—	A	Database	Backup	Program”.)

MySQL	4.1	does	not	support	views.	If	your	databases	contain	views,	remove
them	with	DROP	VIEW	before	using	mysqldump.	(See	Section	19.3,	“DROP	VIEW
Syntax”.)

After	downgrading	from	MySQL	5.0,	you	may	see	the	following	information	in
the	mysql.err	file:

Incorrect	information	in	file:	'./mysql/user.frm'

In	this	case,	you	can	do	the	following:

1.	 Start	MySQL	5.0.4	(or	newer).

2.	 Run	mysql_fix_privilege_tables,	which	will	change	the	mysql.user	table
to	a	format	that	both	MySQL	4.1	and	5.0	can	use.

3.	 Stop	the	MySQL	server.

4.	 Start	MySQL	4.1.

If	the	preceding	procedure	fails,	you	should	be	able	to	do	the	following	instead:

1.	 Start	MySQL	5.0.4	(or	newer).

2.	 Run	mysqldump	--opt	--add-drop-table	mysql	>	/tmp/mysql.dump.

3.	 Stop	the	MySQL	server.

4.	 Start	MySQL	4.1	with	the	--skip-grant	option.

5.	 Run	mysql	mysql	<	/tmp/mysql.dump.

6.	 Run	mysqladmin	flush-privileges.

2.13.	Operating	System-Specific	Notes

2.13.1.	Linux	Notes

This	section	discusses	issues	that	have	been	found	to	occur	on	Linux.	The	first
few	subsections	describe	general	operating	system-related	issues,	problems	that
can	occur	when	using	binary	or	source	distributions,	and	post-installation	issues.
The	remaining	subsections	discuss	problems	that	occur	with	Linux	on	specific
platforms.

Note	that	most	of	these	problems	occur	on	older	versions	of	Linux.	If	you	are
running	a	recent	version,	you	may	see	none	of	them.

2.13.1.1.	Linux	Operating	System	Notes

MySQL	needs	at	least	Linux	version	2.0.

Warning:	We	have	seen	some	strange	problems	with	Linux	2.2.14	and	MySQL
on	SMP	systems.	We	also	have	reports	from	some	MySQL	users	that	they	have
encountered	serious	stability	problems	using	MySQL	with	kernel	2.2.14.	If	you
are	using	this	kernel,	you	should	upgrade	to	2.2.19	(or	newer)	or	to	a	2.4	kernel.
If	you	have	a	multiple-CPU	box,	you	should	seriously	consider	using	2.4
because	it	gives	you	a	significant	speed	boost.	Your	system	should	be	more
stable.

When	using	LinuxThreads,	you	should	see	a	minimum	of	three	mysqld
processes	running.	These	are	in	fact	threads.	There	is	one	thread	for	the
LinuxThreads	manager,	one	thread	to	handle	connections,	and	one	thread	to
handle	alarms	and	signals.

2.13.1.2.	Linux	Binary	Distribution	Notes

The	Linux-Intel	binary	and	RPM	releases	of	MySQL	are	configured	for	the
highest	possible	speed.	We	are	always	trying	to	use	the	fastest	stable	compiler
available.

The	binary	release	is	linked	with	-static,	which	means	you	do	not	normally

need	to	worry	about	which	version	of	the	system	libraries	you	have.	You	need
not	install	LinuxThreads,	either.	A	program	linked	with	-static	is	slightly	larger
than	a	dynamically	linked	program,	but	also	slightly	faster	(3-5%).	However,	one
problem	with	a	statically	linked	program	is	that	you	can't	use	user-defined
functions	(UDFs).	If	you	are	going	to	write	or	use	UDFs	(this	is	something	for	C
or	C++	programmers	only),	you	must	compile	MySQL	yourself	using	dynamic
linking.

A	known	issue	with	binary	distributions	is	that	on	older	Linux	systems	that	use
libc	(such	as	Red	Hat	4.x	or	Slackware),	you	get	some	(non-fatal)	issues	with
hostname	resolution.	If	your	system	uses	libc	rather	than	glibc2,	you	probably
will	encounter	some	difficulties	with	hostname	resolution	and	getpwnam().	This
happens	because	glibc	(unfortunately)	depends	on	some	external	libraries	to
implement	hostname	resolution	and	getpwent(),	even	when	compiled	with	-
static.	These	problems	manifest	themselves	in	two	ways:

You	may	see	the	following	error	message	when	you	run	mysql_install_db:

Sorry,	the	host	'xxxx'	could	not	be	looked	up

You	can	deal	with	this	by	executing	mysql_install_db	--force,	which	does
not	execute	the	resolveip	test	in	mysql_install_db.	The	downside	is	that
you	cannot	use	hostnames	in	the	grant	tables:	except	for	localhost,	you
must	use	IP	numbers	instead.	If	you	are	using	an	old	version	of	MySQL	that
does	not	support	--force,	you	must	manually	remove	the	resolveip	test	in
mysql_install	using	a	text	editor.

You	also	may	see	the	following	error	when	you	try	to	run	mysqld	with	the
--user	option:

getpwnam:	No	such	file	or	directory

To	work	around	this	problem,	start	mysqld	by	using	the	su	command	rather
than	by	specifying	the	--user	option.	This	causes	the	system	itself	to
change	the	user	ID	of	the	mysqld	process	so	that	mysqld	need	not	do	so.

Another	solution,	which	solves	both	problems,	is	not	to	use	a	binary	distribution.
Obtain	a	MySQL	source	distribution	(in	RPM	or	tar.gz	format)	and	install	that
instead.

On	some	Linux	2.2	versions,	you	may	get	the	error	Resource	temporarily
unavailable	when	clients	make	a	great	many	new	connections	to	a	mysqld
server	over	TCP/IP.	The	problem	is	that	Linux	has	a	delay	between	the	time	that
you	close	a	TCP/IP	socket	and	the	time	that	the	system	actually	frees	it.	There	is
room	for	only	a	finite	number	of	TCP/IP	slots,	so	you	encounter	the	resource-
unavailable	error	if	clients	attempt	too	many	new	TCP/IP	connections	over	a
short	period	of	time.	For	example,	you	may	see	the	error	when	you	run	the
MySQL	test-connect	benchmark	over	TCP/IP.

We	have	inquired	about	this	problem	a	few	times	on	different	Linux	mailing	lists
but	have	never	been	able	to	find	a	suitable	resolution.	The	only	known	“fix”	is
for	clients	to	use	persistent	connections,	or,	if	you	are	running	the	database
server	and	clients	on	the	same	machine,	to	use	Unix	socket	file	connections
rather	than	TCP/IP	connections.

2.13.1.3.	Linux	Source	Distribution	Notes

The	following	notes	regarding	glibc	apply	only	to	the	situation	when	you	build
MySQL	yourself.	If	you	are	running	Linux	on	an	x86	machine,	in	most	cases	it
is	much	better	for	you	to	use	our	binary.	We	link	our	binaries	against	the	best
patched	version	of	glibc	we	can	find	and	with	the	best	compiler	options,	in	an
attempt	to	make	it	suitable	for	a	high-load	server.	For	a	typical	user,	even	for
setups	with	a	lot	of	concurrent	connections	or	tables	exceeding	the	2GB	limit,
our	binary	is	the	best	choice	in	most	cases.	After	reading	the	following	text,	if
you	are	in	doubt	about	what	to	do,	try	our	binary	first	to	determine	whether	it
meets	your	needs.	If	you	discover	that	it	is	not	good	enough,	you	may	want	to	try
your	own	build.	In	that	case,	we	would	appreciate	a	note	about	it	so	that	we	can
build	a	better	binary	next	time.

MySQL	uses	LinuxThreads	on	Linux.	If	you	are	using	an	old	Linux	version	that
doesn't	have	glibc2,	you	must	install	LinuxThreads	before	trying	to	compile
MySQL.	You	can	obtain	LinuxThreads	from
http://dev.mysql.com/downloads/os-linux.html.

Note	that	glibc	versions	before	and	including	version	2.1.1	have	a	fatal	bug	in
pthread_mutex_timedwait()	handling,	which	is	used	when	INSERT	DELAYED
statements	are	issued.	We	recommend	that	you	not	use	INSERT	DELAYED	before
upgrading	glibc.

http://dev.mysql.com/downloads/os-linux.html

Note	that	Linux	kernel	and	the	LinuxThread	library	can	by	default	handle	a
maximum	of	1,024	threads.	If	you	plan	to	have	more	than	1,000	concurrent
connections,	you	need	to	make	some	changes	to	LinuxThreads,	as	follows:

Increase	PTHREAD_THREADS_MAX	in
sysdeps/unix/sysv/linux/bits/local_lim.h	to	4096	and	decrease
STACK_SIZE	in	linuxthreads/internals.h	to	256KB.	The	paths	are
relative	to	the	root	of	glibc.	(Note	that	MySQL	is	not	stable	with	600-1000
connections	if	STACK_SIZE	is	the	default	of	2MB.)

Recompile	LinuxThreads	to	produce	a	new	libpthread.a	library,	and
relink	MySQL	against	it.

Additional	information	about	circumventing	thread	limits	in	LinuxThreads	can
be	found	at	http://www.volano.com/linuxnotes.html.

There	is	another	issue	that	greatly	hurts	MySQL	performance,	especially	on
SMP	systems.	The	mutex	implementation	in	LinuxThreads	in	glibc	2.1	is	very
poor	for	programs	with	many	threads	that	hold	the	mutex	only	for	a	short	time.
This	produces	a	paradoxical	result:	If	you	link	MySQL	against	an	unmodified
LinuxThreads,	removing	processors	from	an	SMP	actually	improves	MySQL
performance	in	many	cases.	We	have	made	a	patch	available	for	glibc	2.1.3	to
correct	this	behavior	(http://www.mysql.com/Downloads/Linux/linuxthreads-
2.1-patch).

With	glibc	2.2.2,	MySQL	uses	the	adaptive	mutex,	which	is	much	better	than
even	the	patched	one	in	glibc	2.1.3.	Be	warned,	however,	that	under	some
conditions,	the	current	mutex	code	in	glibc	2.2.2	overspins,	which	hurts
MySQL	performance.	The	likelihood	that	this	condition	occurs	can	be	reduced
by	re-nicing	the	mysqld	process	to	the	highest	priority.	We	have	also	been	able
to	correct	the	overspin	behavior	with	a	patch,	available	at
http://www.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch.	It	combines
the	correction	of	overspin,	maximum	number	of	threads,	and	stack	spacing	all	in
one.	You	need	to	apply	it	in	the	linuxthreads	directory	with	patch	-p0
</tmp/linuxthreads-2.2.2.patch.	We	hope	it	is	included	in	some	form	in
future	releases	of	glibc	2.2.	In	any	case,	if	you	link	against	glibc	2.2.2,	you	still
need	to	correct	STACK_SIZE	and	PTHREAD_THREADS_MAX.	We	hope	that	the
defaults	is	corrected	to	some	more	acceptable	values	for	high-load	MySQL	setup
in	the	future,	so	that	the	commands	needed	to	produce	your	own	build	can	be

http://www.volano.com/linuxnotes.html
http://www.mysql.com/Downloads/Linux/linuxthreads-2.1-patch
http://www.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch

reduced	to	./configure;	make;	make	install.

We	recommend	that	you	use	these	patches	to	build	a	special	static	version	of
libpthread.a	and	use	it	only	for	statically	linking	against	MySQL.	We	know
that	these	patches	are	safe	for	MySQL	and	significantly	improve	its
performance,	but	we	cannot	say	anything	about	their	effects	on	other
applications.	If	you	link	other	applications	that	require	LinuxThreads	against	the
patched	static	version	of	the	library,	or	build	a	patched	shared	version	and	install
it	on	your	system,	you	do	so	at	your	own	risk.

If	you	experience	any	strange	problems	during	the	installation	of	MySQL,	or
with	some	common	utilities	hanging,	it	is	very	likely	that	they	are	either	library
or	compiler	related.	If	this	is	the	case,	using	our	binary	resolves	them.

If	you	link	your	own	MySQL	client	programs,	you	may	see	the	following	error
at	runtime:

ld.so.1:	fatal:	libmysqlclient.so.#:

open	failed:	No	such	file	or	directory

This	problem	can	be	avoided	by	one	of	the	following	methods:

Link	clients	with	the	-Wl,r/full/path/to/libmysqlclient.so	flag	rather
than	with	-Lpath).

Copy	libmysqclient.so	to	/usr/lib.

	Add	the	pathname	of	the	directory	where	libmysqlclient.so	is	located	to
the	LD_RUN_PATH	environment	variable	before	running	your	client.

If	you	are	using	the	Fujitsu	compiler	(fcc/FCC),	you	may	have	some	problems
compiling	MySQL	because	the	Linux	header	files	are	very	gcc	oriented.	The
following	configure	line	should	work	with	fcc/FCC:

CC=fcc	CFLAGS="-O	-K	fast	-K	lib	-K	omitfp	-Kpreex	-D_GNU_SOURCE	\

				-DCONST=const	-DNO_STRTOLL_PROTO"	\

CXX=FCC	CXXFLAGS="-O	-K	fast	-K	lib	\

				-K	omitfp	-K	preex	--no_exceptions	--no_rtti	-D_GNU_SOURCE	\

				-DCONST=const	-Dalloca=__builtin_alloca	-DNO_STRTOLL_PROTO	\

				'-D_EXTERN_INLINE=static	__inline'"	\

./configure	\

				--prefix=/usr/local/mysql	--enable-assembler	\

				--with-mysqld-ldflags=-all-static	--disable-shared	\

				--with-low-memory

2.13.1.4.	Linux	Post-Installation	Notes

mysql.server	can	be	found	in	the	support-files	directory	under	the	MySQL
installation	directory	or	in	a	MySQL	source	tree.	You	can	install	it	as
/etc/init.d/mysql	for	automatic	MySQL	startup	and	shutdown.	See
Section	2.10.2.2,	“Starting	and	Stopping	MySQL	Automatically”.

If	MySQL	cannot	open	enough	files	or	connections,	it	may	be	that	you	have	not
configured	Linux	to	handle	enough	files.

In	Linux	2.2	and	onward,	you	can	check	the	number	of	allocated	file	handles	as
follows:

shell>	cat	/proc/sys/fs/file-max

shell>	cat	/proc/sys/fs/dquot-max

shell>	cat	/proc/sys/fs/super-max

If	you	have	more	than	16MB	of	memory,	you	should	add	something	like	the
following	to	your	init	scripts	(for	example,	/etc/init.d/boot.local	on	SuSE
Linux):

echo	65536	>	/proc/sys/fs/file-max

echo	8192	>	/proc/sys/fs/dquot-max

echo	1024	>	/proc/sys/fs/super-max

You	can	also	run	the	echo	commands	from	the	command	line	as	root,	but	these
settings	are	lost	the	next	time	your	computer	restarts.

Alternatively,	you	can	set	these	parameters	on	startup	by	using	the	sysctl	tool,
which	is	used	by	many	Linux	distributions	(including	SuSE	Linux	8.0	and	later).
Put	the	following	values	into	a	file	named	/etc/sysctl.conf:

#	Increase	some	values	for	MySQL

fs.file-max	=	65536

fs.dquot-max	=	8192

fs.super-max	=	1024

You	should	also	add	the	following	to	/etc/my.cnf:

[mysqld_safe]

open-files-limit=8192

This	should	allow	the	server	a	limit	of	8,192	for	the	combined	number	of
connections	and	open	files.

The	STACK_SIZE	constant	in	LinuxThreads	controls	the	spacing	of	thread	stacks
in	the	address	space.	It	needs	to	be	large	enough	so	that	there	is	plenty	of	room
for	each	individual	thread	stack,	but	small	enough	to	keep	the	stack	of	some
threads	from	running	into	the	global	mysqld	data.	Unfortunately,	as	we	have
experimentally	discovered,	the	Linux	implementation	of	mmap()	successfully
unmaps	a	mapped	region	if	you	ask	it	to	map	out	an	address	currently	in	use,
zeroing	out	the	data	on	the	entire	page	instead	of	returning	an	error.	So,	the
safety	of	mysqld	or	any	other	threaded	application	depends	on	the
“gentlemanly”	behavior	of	the	code	that	creates	threads.	The	user	must	take
measures	to	make	sure	that	the	number	of	running	threads	at	any	given	time	is
sufficiently	low	for	thread	stacks	to	stay	away	from	the	global	heap.	With
mysqld,	you	should	enforce	this	behavior	by	setting	a	reasonable	value	for	the
max_connections	variable.

If	you	build	MySQL	yourself,	you	can	patch	LinuxThreads	for	better	stack	use.
See	Section	2.13.1.3,	“Linux	Source	Distribution	Notes”.	If	you	do	not	want	to
patch	LinuxThreads,	you	should	set	max_connections	to	a	value	no	higher	than
500.	It	should	be	even	less	if	you	have	a	large	key	buffer,	large	heap	tables,	or
some	other	things	that	make	mysqld	allocate	a	lot	of	memory,	or	if	you	are
running	a	2.2	kernel	with	a	2GB	patch.	If	you	are	using	our	binary	or	RPM
version,	you	can	safely	set	max_connections	at	1500,	assuming	no	large	key
buffer	or	heap	tables	with	lots	of	data.	The	more	you	reduce	STACK_SIZE	in
LinuxThreads	the	more	threads	you	can	safely	create.	We	recommend	values
between	128KB	and	256KB.

If	you	use	a	lot	of	concurrent	connections,	you	may	suffer	from	a	“feature”	in	the
2.2	kernel	that	attempts	to	prevent	fork	bomb	attacks	by	penalizing	a	process	for
forking	or	cloning	a	child.	This	causes	MySQL	not	to	scale	well	as	you	increase
the	number	of	concurrent	clients.	On	single-CPU	systems,	we	have	seen	this
manifest	as	very	slow	thread	creation;	it	may	take	a	long	time	to	connect	to
MySQL	(as	long	as	one	minute),	and	it	may	take	just	as	long	to	shut	it	down.	On
multiple-CPU	systems,	we	have	observed	a	gradual	drop	in	query	speed	as	the
number	of	clients	increases.	In	the	process	of	trying	to	find	a	solution,	we	have
received	a	kernel	patch	from	one	of	our	users	who	claimed	it	helped	for	his	site.

This	patch	is	available	at	http://www.mysql.com/Downloads/Patches/linux-
fork.patch.	We	have	done	rather	extensive	testing	of	this	patch	on	both
development	and	production	systems.	It	has	significantly	improved	MySQL
performance	without	causing	any	problems	and	we	recommend	it	to	our	users
who	still	run	high-load	servers	on	2.2	kernels.

This	issue	has	been	fixed	in	the	2.4	kernel,	so	if	you	are	not	satisfied	with	the
current	performance	of	your	system,	rather	than	patching	your	2.2	kernel,	it
might	be	easier	to	upgrade	to	2.4.	On	SMP	systems,	upgrading	also	gives	you	a
nice	SMP	boost	in	addition	to	fixing	the	fairness	bug.

We	have	tested	MySQL	on	the	2.4	kernel	on	a	two-CPU	machine	and	found
MySQL	scales	much	better.	There	was	virtually	no	slowdown	on	query
throughput	all	the	way	up	to	1,000	clients,	and	the	MySQL	scaling	factor
(computed	as	the	ratio	of	maximum	throughput	to	the	throughput	for	one	client)
was	180%.	We	have	observed	similar	results	on	a	four-CPU	system:	Virtually	no
slowdown	as	the	number	of	clients	was	increased	up	to	1,000,	and	a	300%
scaling	factor.	Based	on	these	results,	for	a	high-load	SMP	server	using	a	2.2
kernel,	we	definitely	recommend	upgrading	to	the	2.4	kernel	at	this	point.

We	have	discovered	that	it	is	essential	to	run	the	mysqld	process	with	the
highest	possible	priority	on	the	2.4	kernel	to	achieve	maximum	performance.
This	can	be	done	by	adding	a	renice	-20	$$	command	to	mysqld_safe.	In	our
testing	on	a	four-CPU	machine,	increasing	the	priority	resulted	in	a	60%
throughput	increase	with	400	clients.

We	are	currently	also	trying	to	collect	more	information	on	how	well	MySQL
performs	with	a	2.4	kernel	on	four-way	and	eight-way	systems.	If	you	have
access	such	a	system	and	have	done	some	benchmarks,	please	send	an	email
message	to	<benchmarks@mysql.com>	with	the	results.	We	will	review	them	for
inclusion	in	the	manual.

If	you	see	a	dead	mysqld	server	process	with	ps,	this	usually	means	that	you
have	found	a	bug	in	MySQL	or	you	have	a	corrupted	table.	See	Section	A.4.2,
“What	to	Do	If	MySQL	Keeps	Crashing”.

To	get	a	core	dump	on	Linux	if	mysqld	dies	with	a	SIGSEGV	signal,	you	can	start
mysqld	with	the	--core-file	option.	Note	that	you	also	probably	need	to	raise
the	core	file	size	by	adding	ulimit	-c	1000000	to	mysqld_safe	or	starting

http://www.mysql.com/Downloads/Patches/linux-fork.patch
mailto:benchmarks@mysql.com

mysqld_safe	with	--core-file-size=1000000.	See	Section	5.4.1,
“mysqld_safe	—	MySQL	Server	Startup	Script”.

2.13.1.5.	Linux	x86	Notes

MySQL	requires	libc	5.4.12	or	newer.	It	is	known	to	work	with	libc	5.4.46.
glibc	2.0.6	and	later	should	also	work.	There	have	been	some	problems	with	the
glibc	RPMs	from	Red	Hat,	so	if	you	have	problems,	check	whether	there	are
any	updates.	The	glibc	2.0.7-19	and	2.0.7-29	RPMs	are	known	to	work.

If	you	are	using	Red	Hat	8.0	or	a	new	glibc	2.2.x	library,	you	may	see	mysqld
die	in	gethostbyaddr().	This	happens	because	the	new	glibc	library	requires	a
stack	size	greater	than	128KB	for	this	call.	To	fix	the	problem,	start	mysqld	with
the	--thread-stack=192K	option.	(Use	-O	thread_stack=192K	before	MySQL
4.)	This	stack	size	is	the	default	on	MySQL	4.0.10	and	above,	so	you	should	not
see	the	problem.

If	you	are	using	gcc	3.0	and	above	to	compile	MySQL,	you	must	install	the
libstdc++v3	library	before	compiling	MySQL;	if	you	don't	do	this,	you	get	an
error	about	a	missing	__cxa_pure_virtual	symbol	during	linking.

On	some	older	Linux	distributions,	configure	may	produce	an	error	like	this:

Syntax	error	in	sched.h.	Change	_P	to	__P	in	the

/usr/include/sched.h	file.

See	the	Installation	chapter	in	the	Reference	Manual.

Just	do	what	the	error	message	says.	Add	an	extra	underscore	to	the	_P	macro
name	that	has	only	one	underscore,	and	then	try	again.

You	may	get	some	warnings	when	compiling.	Those	shown	here	can	be	ignored:

mysqld.cc	-o	objs-thread/mysqld.o

mysqld.cc:	In	function	`void	init_signals()':

mysqld.cc:315:	warning:	assignment	of	negative	value	`-1'	to

`long	unsigned	int'

mysqld.cc:	In	function	`void	*	signal_hand(void	*)':

mysqld.cc:346:	warning:	assignment	of	negative	value	`-1'	to

`long	unsigned	int'

If	mysqld	always	dumps	core	when	it	starts,	the	problem	may	be	that	you	have
an	old	/lib/libc.a.	Try	renaming	it,	and	then	remove	sql/mysqld	and	do	a	new

make	install	and	try	again.	This	problem	has	been	reported	on	some	Slackware
installations.

If	you	get	the	following	error	when	linking	mysqld,	it	means	that	your	libg++.a
is	not	installed	correctly:

/usr/lib/libc.a(putc.o):	In	function	`_IO_putc':

putc.o(.text+0x0):	multiple	definition	of	`_IO_putc'

You	can	avoid	using	libg++.a	by	running	configure	like	this:

shell>	CXX=gcc	./configure

2.13.1.6.	Linux	SPARC	Notes

In	some	implementations,	readdir_r()	is	broken.	The	symptom	is	that	the	SHOW
DATABASES	statement	always	returns	an	empty	set.	This	can	be	fixed	by	removing
HAVE_READDIR_R	from	config.h	after	configuring	and	before	compiling.

2.13.1.7.	Linux	Alpha	Notes

We	have	tested	MySQL	5.0	on	Alpha	with	our	benchmarks	and	test	suite,	and	it
appears	to	work	well.

We	currently	build	the	MySQL	binary	packages	on	SuSE	Linux	7.0	for	AXP,
kernel	2.4.4-SMP,	Compaq	C	compiler	(V6.2-505)	and	Compaq	C++	compiler
(V6.3-006)	on	a	Compaq	DS20	machine	with	an	Alpha	EV6	processor.

You	can	find	the	preceding	compilers	at	http://www.support.compaq.com/alpha-
tools/.	By	using	these	compilers	rather	than	gcc,	we	get	about	9-14%	better
MySQL	performance.

For	MySQL	on	Alpha,	we	use	the	-arch	generic	flag	to	our	compile	options,
which	ensures	that	the	binary	runs	on	all	Alpha	processors.	We	also	compile
statically	to	avoid	library	problems.	The	configure	command	looks	like	this:

CC=ccc	CFLAGS="-fast	-arch	generic"	CXX=cxx	\

CXXFLAGS="-fast	-arch	generic	-noexceptions	-nortti"	\

./configure	--prefix=/usr/local/mysql	--disable-shared	\

				--with-extra-charsets=complex	--enable-thread-safe-client	\

				--with-mysqld-ldflags=-non_shared	--with-client-ldflags=-non_shared

http://www.support.compaq.com/alpha-tools/

If	you	want	to	use	egcs,	the	following	configure	line	worked	for	us:

CFLAGS="-O3	-fomit-frame-pointer"	CXX=gcc	\

CXXFLAGS="-O3	-fomit-frame-pointer	-felide-constructors	\

				-fno-exceptions	-fno-rtti"	\

./configure	--prefix=/usr/local/mysql	--disable-shared

Some	known	problems	when	running	MySQL	on	Linux-Alpha:

Debugging	threaded	applications	like	MySQL	does	not	work	with	gdb
4.18.	You	should	use	gdb	5.1	instead.

If	you	try	linking	mysqld	statically	when	using	gcc,	the	resulting	image
dumps	core	at	startup	time.	In	other	words,	do	not	use	--with-mysqld-
ldflags=-all-static	with	gcc.

2.13.1.8.	Linux	PowerPC	Notes

MySQL	should	work	on	MkLinux	with	the	newest	glibc	package	(tested	with
glibc	2.0.7).

2.13.1.9.	Linux	MIPS	Notes

To	get	MySQL	to	work	on	Qube2	(Linux	Mips),	you	need	the	newest	glibc
libraries.	glibc-2.0.7-29C2	is	known	to	work.	You	must	also	use	the	egcs	C++
compiler	(egcs	1.0.2-9,	gcc	2.95.2	or	newer).

2.13.1.10.	Linux	IA-64	Notes

To	get	MySQL	to	compile	on	Linux	IA-64,	we	use	the	following	configure
command	for	building	with	gcc	2.96:

CC=gcc	\

CFLAGS="-O3	-fno-omit-frame-pointer"	\

CXX=gcc	\

CXXFLAGS="-O3	-fno-omit-frame-pointer	-felide-constructors	\

				-fno-exceptions	-fno-rtti"	\

				./configure	--prefix=/usr/local/mysql	\

				"--with-comment=Official	MySQL	binary"	\

				--with-extra-charsets=complex

On	IA-64,	the	MySQL	client	binaries	use	shared	libraries.	This	means	that	if	you
install	our	binary	distribution	at	a	location	other	than	/usr/local/mysql,	you
need	to	add	the	path	of	the	directory	where	you	have	libmysqlclient.so
installed	either	to	the	/etc/ld.so.conf	file	or	to	the	value	of	your
LD_LIBRARY_PATH	environment	variable.

See	Section	A.3.1,	“Problems	Linking	to	the	MySQL	Client	Library”.

2.13.1.11.	SELinux	Notes

RHEL4	comes	with	SELinux,	which	supports	tighter	access	control	for
processes.	If	SELinux	is	enabled	(SELINUX	in	/etc/selinux/config	is	set	to
enforcing,	SELINUXTYPE	is	set	to	either	targeted	or	strict),	you	might
encounter	problems	installing	MySQL	AB	RPM	packages.

Red	Hat	has	an	update	that	solves	this.	It	involves	an	update	of	the	“security
policy”	specification	to	handle	the	install	structure	of	the	RPMs	provided	by
MySQL	AB.	For	further	information,	see
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=167551	and
http://rhn.redhat.com/errata/RHBA-2006-0049.html.

2.13.2.	Mac	OS	X	Notes

On	Mac	OS	X,	tar	cannot	handle	long	filenames.	If	you	need	to	unpack	a
.tar.gz	distribution,	use	gnutar	instead.

2.13.2.1.	Mac	OS	X	10.x	(Darwin)

MySQL	should	work	without	major	problems	on	Mac	OS	X	10.x	(Darwin).

Known	issues:

If	you	have	problems	with	performance	under	heavy	load,	try	using	the	--
skip-thread-priority	option	to	mysqld.	This	runs	all	threads	with	the
same	priority.	On	Mac	OS	X,	this	gives	better	performance,	at	least	until
Apple	fixes	its	thread	scheduler.

The	connection	times	(wait_timeout,	interactive_timeout	and
net_read_timeout)	values	are	not	honored.

https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=167551
http://rhn.redhat.com/errata/RHBA-2006-0049.html

This	is	probably	a	signal	handling	problem	in	the	thread	library	where	the
signal	doesn't	break	a	pending	read	and	we	hope	that	a	future	update	to	the
thread	libraries	will	fix	this.

Our	binary	for	Mac	OS	X	is	compiled	on	Darwin	6.3	with	the	following
configure	line:

CC=gcc	CFLAGS="-O3	-fno-omit-frame-pointer"	CXX=gcc	\

CXXFLAGS="-O3	-fno-omit-frame-pointer	-felide-constructors	\

				-fno-exceptions	-fno-rtti"	\

				./configure	--prefix=/usr/local/mysql	\

				--with-extra-charsets=complex	--enable-thread-safe-client	\

				--enable-local-infile	--disable-shared

See	Section	2.5,	“Installing	MySQL	on	Mac	OS	X”.

2.13.2.2.	Mac	OS	X	Server	1.2	(Rhapsody)

For	current	versions	of	Mac	OS	X	Server,	no	operating	system	changes	are
necessary	before	compiling	MySQL.	Compiling	for	the	Server	platform	is	the
same	as	for	the	client	version	of	Mac	OS	X.

For	older	versions	(Mac	OS	X	Server	1.2,	a.k.a.	Rhapsody),	you	must	first	install
a	pthread	package	before	trying	to	configure	MySQL.

See	Section	2.5,	“Installing	MySQL	on	Mac	OS	X”.

2.13.3.	Solaris	Notes

For	information	about	installing	MySQL	on	Solaris	using	PKG	distributions,	see
Section	2.6,	“Installing	MySQL	on	Solaris”.

On	Solaris,	you	may	run	into	trouble	even	before	you	get	the	MySQL
distribution	unpacked,	as	the	Solaris	tar	cannot	handle	long	filenames.	This
means	that	you	may	see	errors	when	you	try	to	unpack	MySQL.

If	this	occurs,	you	must	use	GNU	tar	(gtar)	to	unpack	the	distribution.	You	can
find	a	precompiled	copy	for	Solaris	at	http://dev.mysql.com/downloads/os-
solaris.html.

Sun	native	threads	work	only	on	Solaris	2.5	and	higher.	For	Solaris	2.4	and

http://dev.mysql.com/downloads/os-solaris.html

earlier,	MySQL	automatically	uses	MIT-pthreads.	See	Section	2.9.5,	“MIT-
pthreads	Notes”.

If	you	get	the	following	error	from	configure,	it	means	that	you	have	something
wrong	with	your	compiler	installation:

checking	for	restartable	system	calls...	configure:	error	can	not

run	test	programs	while	cross	compiling

In	this	case,	you	should	upgrade	your	compiler	to	a	newer	version.	You	may	also
be	able	to	solve	this	problem	by	inserting	the	following	row	into	the
config.cache	file:

ac_cv_sys_restartable_syscalls=${ac_cv_sys_restartable_syscalls='no'}

If	you	are	using	Solaris	on	a	SPARC,	the	recommended	compiler	is	gcc	2.95.2	or
3.2.	You	can	find	this	at	http://gcc.gnu.org/.	Note	that	egcs	1.1.1	and	gcc	2.8.1	do
not	work	reliably	on	SPARC.

The	recommended	configure	line	when	using	gcc	2.95.2	is:

CC=gcc	CFLAGS="-O3"	\

CXX=gcc	CXXFLAGS="-O3	-felide-constructors	-fno-exceptions	-fno-rtti"	\

./configure	--prefix=/usr/local/mysql	--with-low-memory	\

				--enable-assembler

If	you	have	an	UltraSPARC	system,	you	can	get	4%	better	performance	by
adding	-mcpu=v8	-Wa,-xarch=v8plusa	to	the	CFLAGS	and	CXXFLAGS
environment	variables.

If	you	have	Sun's	Forte	5.0	(or	newer)	compiler,	you	can	run	configure	like	this:

CC=cc	CFLAGS="-Xa	-fast	-native	-xstrconst	-mt"	\

CXX=CC	CXXFLAGS="-noex	-mt"	\

./configure	--prefix=/usr/local/mysql	--enable-assembler

To	create	a	64-bit	binary	with	Sun's	Forte	compiler,	use	the	following
configuration	options:

CC=cc	CFLAGS="-Xa	-fast	-native	-xstrconst	-mt	-xarch=v9"	\

CXX=CC	CXXFLAGS="-noex	-mt	-xarch=v9"	ASFLAGS="-xarch=v9"	\

./configure	--prefix=/usr/local/mysql	--enable-assembler

http://gcc.gnu.org/

To	create	a	64-bit	Solaris	binary	using	gcc,	add	-m64	to	CFLAGS	and	CXXFLAGS
and	remove	--enable-assembler	from	the	configure	line.

In	the	MySQL	benchmarks,	we	obtained	a	4%	speed	increase	on	UltraSPARC
when	using	Forte	5.0	in	32-bit	mode,	as	compared	to	using	gcc	3.2	with	the	-
mcpu	flag.

If	you	create	a	64-bit	mysqld	binary,	it	is	4%	slower	than	the	32-bit	binary,	but
can	handle	more	threads	and	memory.

When	using	Solaris	10	for	x86_64,	you	should	mount	any	filesystems	on	which
you	intend	to	store	InnoDB	files	with	the	forcedirectio	option.	(By	default
mounting	is	done	without	this	option.)	Failing	to	do	so	will	cause	a	significant
drop	in	performance	when	using	the	InnoDB	storage	engine	on	this	platform.

If	you	get	a	problem	with	fdatasync	or	sched_yield,	you	can	fix	this	by	adding
LIBS=-lrt	to	the	configure	line

For	compilers	older	than	WorkShop	5.3,	you	might	have	to	edit	the	configure
script.	Change	this	line:

#if	!defined(__STDC__)	||	__STDC__	!=	1

To	this:

#if	!defined(__STDC__)

If	you	turn	on	__STDC__	with	the	-Xc	option,	the	Sun	compiler	can't	compile
with	the	Solaris	pthread.h	header	file.	This	is	a	Sun	bug	(broken	compiler	or
broken	include	file).

If	mysqld	issues	the	following	error	message	when	you	run	it,	you	have	tried	to
compile	MySQL	with	the	Sun	compiler	without	enabling	the	-mt	multi-thread
option:

libc	internal	error:	_rmutex_unlock:	rmutex	not	held

Add	-mt	to	CFLAGS	and	CXXFLAGS	and	recompile.

If	you	are	using	the	SFW	version	of	gcc	(which	comes	with	Solaris	8),	you	must
add	/opt/sfw/lib	to	the	environment	variable	LD_LIBRARY_PATH	before	running

configure.

If	you	are	using	the	gcc	available	from	sunfreeware.com,	you	may	have	many
problems.	To	avoid	this,	you	should	recompile	gcc	and	GNU	binutils	on	the
machine	where	you	are	running	them.

If	you	get	the	following	error	when	compiling	MySQL	with	gcc,	it	means	that
your	gcc	is	not	configured	for	your	version	of	Solaris:

shell>	gcc	-O3	-g	-O2	-DDBUG_OFF		-o	thr_alarm	...

./thr_alarm.c:	In	function	`signal_hand':

./thr_alarm.c:556:	too	many	arguments	to	function	`sigwait'

The	proper	thing	to	do	in	this	case	is	to	get	the	newest	version	of	gcc	and
compile	it	with	your	current	gcc	compiler.	At	least	for	Solaris	2.5,	almost	all
binary	versions	of	gcc	have	old,	unusable	include	files	that	break	all	programs
that	use	threads,	and	possibly	other	programs	as	well.

Solaris	does	not	provide	static	versions	of	all	system	libraries	(libpthreads	and
libdl),	so	you	cannot	compile	MySQL	with	--static.	If	you	try	to	do	so,	you
get	one	of	the	following	errors:

ld:	fatal:	library	-ldl:	not	found

undefined	reference	to	`dlopen'

cannot	find	-lrt

If	you	link	your	own	MySQL	client	programs,	you	may	see	the	following	error
at	runtime:

ld.so.1:	fatal:	libmysqlclient.so.#:

open	failed:	No	such	file	or	directory

This	problem	can	be	avoided	by	one	of	the	following	methods:

Link	clients	with	the	-Wl,r/full/path/to/libmysqlclient.so	flag	rather
than	with	-Lpath).

Copy	libmysqclient.so	to	/usr/lib.

	Add	the	pathname	of	the	directory	where	libmysqlclient.so	is	located	to
the	LD_RUN_PATH	environment	variable	before	running	your	client.

If	you	have	problems	with	configure	trying	to	link	with	-lz	when	you	don't
have	zlib	installed,	you	have	two	options:

If	you	want	to	be	able	to	use	the	compressed	communication	protocol,	you
need	to	get	and	install	zlib	from	ftp.gnu.org.

Run	configure	with	the	--with-named-z-libs=no	option	when	building
MySQL.

If	you	are	using	gcc	and	have	problems	with	loading	user-defined	functions
(UDFs)	into	MySQL,	try	adding	-lgcc	to	the	link	line	for	the	UDF.

If	you	would	like	MySQL	to	start	automatically,	you	can	copy	support-
files/mysql.server	to	/etc/init.d	and	create	a	symbolic	link	to	it	named
/etc/rc3.d/S99mysql.server.

If	too	many	processes	try	to	connect	very	rapidly	to	mysqld,	you	should	see	this
error	in	the	MySQL	log:

Error	in	accept:	Protocol	error

You	might	try	starting	the	server	with	the	--back_log=50	option	as	a
workaround	for	this.	(Use	-O	back_log=50	before	MySQL	4.)

Solaris	doesn't	support	core	files	for	setuid()	applications,	so	you	can't	get	a
core	file	from	mysqld	if	you	are	using	the	--user	option.

2.13.3.1.	Solaris	2.7/2.8	Notes

Normally,	you	can	use	a	Solaris	2.6	binary	on	Solaris	2.7	and	2.8.	Most	of	the
Solaris	2.6	issues	also	apply	for	Solaris	2.7	and	2.8.

MySQL	should	be	able	to	detect	new	versions	of	Solaris	automatically	and
enable	workarounds	for	the	following	problems.

Solaris	2.7	/	2.8	has	some	bugs	in	the	include	files.	You	may	see	the	following
error	when	you	use	gcc:

/usr/include/widec.h:42:	warning:	`getwc'	redefined

/usr/include/wchar.h:326:	warning:	this	is	the	location	of	the	previous

definition

If	this	occurs,	you	can	fix	the	problem	by	copying	/usr/include/widec.h	to
.../lib/gcc-lib/os/gcc-version/include	and	changing	line	41	from	this:

#if					!defined(lint)	&&	!defined(__lint)

To	this:

#if					!defined(lint)	&&	!defined(__lint)	&&	!defined(getwc)

Alternatively,	you	can	edit	/usr/include/widec.h	directly.	Either	way,	after
you	make	the	fix,	you	should	remove	config.cache	and	run	configure	again.

If	you	get	the	following	errors	when	you	run	make,	it's	because	configure	didn't
detect	the	curses.h	file	(probably	because	of	the	error	in
/usr/include/widec.h):

In	file	included	from	mysql.cc:50:

/usr/include/term.h:1060:	syntax	error	before	`,'

/usr/include/term.h:1081:	syntax	error	before	`;'

The	solution	to	this	problem	is	to	do	one	of	the	following:

Configure	with	CFLAGS=-DHAVE_CURSES_H	CXXFLAGS=-DHAVE_CURSES_H
./configure.

Edit	/usr/include/widec.h	as	indicated	in	the	preceding	discussion	and
re-run	configure.

Remove	the	#define	HAVE_TERM	line	from	the	config.h	file	and	run	make
again.

If	your	linker	cannot	find	-lz	when	linking	client	programs,	the	problem	is
probably	that	your	libz.so	file	is	installed	in	/usr/local/lib.	You	can	fix	this
problem	by	one	of	the	following	methods:

Add	/usr/local/lib	to	LD_LIBRARY_PATH.

Add	a	link	to	libz.so	from	/lib.

If	you	are	using	Solaris	8,	you	can	install	the	optional	zlib	from	your
Solaris	8	CD	distribution.

Run	configure	with	the	--with-named-z-libs=no	option	when	building
MySQL.

2.13.3.2.	Solaris	x86	Notes

On	Solaris	8	on	x86,	mysqld	dumps	core	if	you	remove	the	debug	symbols
using	strip.

If	you	are	using	gcc	or	egcs	on	Solaris	x86	and	you	experience	problems	with
core	dumps	under	load,	you	should	use	the	following	configure	command:

CC=gcc	CFLAGS="-O3	-fomit-frame-pointer	-DHAVE_CURSES_H"	\

CXX=gcc	\

CXXFLAGS="-O3	-fomit-frame-pointer	-felide-constructors	\

				-fno-exceptions	-fno-rtti	-DHAVE_CURSES_H"	\

./configure	--prefix=/usr/local/mysql

This	avoids	problems	with	the	libstdc++	library	and	with	C++	exceptions.

If	this	doesn't	help,	you	should	compile	a	debug	version	and	run	it	with	a	trace
file	or	under	gdb.	See	Section	E.1.3,	“Debugging	mysqld	under	gdb”.

2.13.4.	BSD	Notes

This	section	provides	information	about	using	MySQL	on	variants	of	BSD	Unix.

2.13.4.1.	FreeBSD	Notes

FreeBSD	4.x	or	newer	is	recommended	for	running	MySQL,	because	the	thread
package	is	much	more	integrated.	To	get	a	secure	and	stable	system,	you	should
use	only	FreeBSD	kernels	that	are	marked	-RELEASE.

The	easiest	(and	preferred)	way	to	install	MySQL	is	to	use	the	mysql-server	and
mysql-client	ports	available	at	http://www.freebsd.org/.	Using	these	ports	gives
you	the	following	benefits:

A	working	MySQL	with	all	optimizations	enabled	that	are	known	to	work
on	your	version	of	FreeBSD.

Automatic	configuration	and	build.

http://www.freebsd.org/

Startup	scripts	installed	in	/usr/local/etc/rc.d.

The	ability	to	use	pkg_info	-L	to	see	which	files	are	installed.

The	ability	to	use	pkg_delete	to	remove	MySQL	if	you	no	longer	want	it
on	your	machine.

It	is	recommended	you	use	MIT-pthreads	on	FreeBSD	2.x,	and	native	threads	on
FreeBSD	3	and	up.	It	is	possible	to	run	with	native	threads	on	some	late	2.2.x
versions,	but	you	may	encounter	problems	shutting	down	mysqld.

Unfortunately,	certain	function	calls	on	FreeBSD	are	not	yet	fully	thread-safe.
Most	notably,	this	includes	the	gethostbyname()	function,	which	is	used	by
MySQL	to	convert	hostnames	into	IP	addresses.	Under	certain	circumstances,
the	mysqld	process	suddenly	causes	100%	CPU	load	and	is	unresponsive.	If	you
encounter	this	problem,	try	to	start	MySQL	using	the	--skip-name-resolve
option.

Alternatively,	you	can	link	MySQL	on	FreeBSD	4.x	against	the	LinuxThreads
library,	which	avoids	a	few	of	the	problems	that	the	native	FreeBSD	thread
implementation	has.	For	a	very	good	comparison	of	LinuxThreads	versus	native
threads,	see	Jeremy	Zawodny's	article	FreeBSD	or	Linux	for	your	MySQL
Server?	at	http://jeremy.zawodny.com/blog/archives/000697.html.

Known	problem	when	using	LinuxThreads	on	FreeBSD	is:

The	connection	times	(wait_timeout,	interactive_timeout	and
net_read_timeout)	values	are	not	honored.	The	symptom	is	that	persistent
connections	can	hang	for	a	very	long	time	without	getting	closed	down	and
that	a	'kill'	for	a	thread	will	not	take	affect	until	the	thread	does	it	a	new
command

This	is	probably	a	signal	handling	problem	in	the	thread	library	where	the
signal	doesn't	break	a	pending	read.	This	is	supposed	to	be	fixed	in
FreeBSD	5.0

The	MySQL	build	process	requires	GNU	make	(gmake)	to	work.	If	GNU	make
is	not	available,	you	must	install	it	first	before	compiling	MySQL.

The	recommended	way	to	compile	and	install	MySQL	on	FreeBSD	with	gcc

http://jeremy.zawodny.com/blog/archives/000697.html

(2.95.2	and	up)	is:

CC=gcc	CFLAGS="-O2	-fno-strength-reduce"	\

				CXX=gcc	CXXFLAGS="-O2	-fno-rtti	-fno-exceptions	\

				-felide-constructors	-fno-strength-reduce"	\

				./configure	--prefix=/usr/local/mysql	--enable-assembler

gmake

gmake	install

cd	/usr/local/mysql

bin/mysql_install_db	--user=mysql

bin/mysqld_safe	&

If	you	notice	that	configure	uses	MIT-pthreads,	you	should	read	the	MIT-
pthreads	notes.	See	Section	2.9.5,	“MIT-pthreads	Notes”.

If	you	get	an	error	from	make	install	that	it	can't	find	/usr/include/pthreads,
configure	didn't	detect	that	you	need	MIT-pthreads.	To	fix	this	problem,	remove
config.cache,	and	then	re-run	configure	with	the	--with-mit-threads	option.

Be	sure	that	your	name	resolver	setup	is	correct.	Otherwise,	you	may	experience
resolver	delays	or	failures	when	connecting	to	mysqld.	Also	make	sure	that	the
localhost	entry	in	the	/etc/hosts	file	is	correct.	The	file	should	start	with	a
line	similar	to	this:

127.0.0.1							localhost	localhost.your.domain

FreeBSD	is	known	to	have	a	very	low	default	file	handle	limit.	See
Section	A.2.17,	“File	Not	Found”.	Start	the	server	by	using	the	--open-files-
limit	option	for	mysqld_safe,	or	raise	the	limits	for	the	mysqld	user	in
/etc/login.conf	and	rebuild	it	with	cap_mkdb	/etc/login.conf.	Also	be	sure
that	you	set	the	appropriate	class	for	this	user	in	the	password	file	if	you	are	not
using	the	default	(use	chpass	mysqld-user-name).	See	Section	5.4.1,
“mysqld_safe	—	MySQL	Server	Startup	Script”.

FreeBSD	limits	the	size	of	a	process	to	512MB,	even	if	you	have	much	more
RAM	available	on	the	system.	So	you	may	get	an	error	such	as	this:

Out	of	memory	(Needed	16391	bytes)

In	current	versions	of	FreeBSD	(at	least	4.x	and	greater),	you	may	increase	this
limit	by	adding	the	following	entries	to	the	/boot/loader.conf	file	and
rebooting	the	machine	(these	are	not	settings	that	can	be	changed	at	run	time

with	the	sysctl	command):

kern.maxdsiz="1073741824"	#	1GB

kern.dfldsiz="1073741824"	#	1GB

kern.maxssiz="134217728"	#	128MB

For	older	versions	of	FreeBSD,	you	must	recompile	your	kernel	to	change	the
maximum	data	segment	size	for	a	process.	In	this	case,	you	should	look	at	the
MAXDSIZ	option	in	the	LINT	config	file	for	more	information.

If	you	get	problems	with	the	current	date	in	MySQL,	setting	the	TZ	variable
should	help.	See	Appendix	F,	Environment	Variables.

2.13.4.2.	NetBSD	Notes

To	compile	on	NetBSD,	you	need	GNU	make.	Otherwise,	the	build	process	fails
when	make	tries	to	run	lint	on	C++	files.

2.13.4.3.	OpenBSD	2.5	Notes

On	OpenBSD	2.5,	you	can	compile	MySQL	with	native	threads	with	the
following	options:

CFLAGS=-pthread	CXXFLAGS=-pthread	./configure	--with-mit-threads=no

2.13.4.4.	BSD/OS	Version	2.x	Notes

If	you	get	the	following	error	when	compiling	MySQL,	your	ulimit	value	for
virtual	memory	is	too	low:

item_func.h:	In	method

`Item_func_ge::Item_func_ge(const	Item_func_ge	&)':

item_func.h:28:	virtual	memory	exhausted

make[2]:	***	[item_func.o]	Error	1

Try	using	ulimit	-v	80000	and	run	make	again.	If	this	doesn't	work	and	you	are
using	bash,	try	switching	to	csh	or	sh;	some	BSDI	users	have	reported	problems
with	bash	and	ulimit.

If	you	are	using	gcc,	you	may	also	use	have	to	use	the	--with-low-memory	flag

for	configure	to	be	able	to	compile	sql_yacc.cc.

If	you	get	problems	with	the	current	date	in	MySQL,	setting	the	TZ	variable
should	help.	See	Appendix	F,	Environment	Variables.

2.13.4.5.	BSD/OS	Version	3.x	Notes

Upgrade	to	BSD/OS	3.1.	If	that	is	not	possible,	install	BSDIpatch	M300-038.

Use	the	following	command	when	configuring	MySQL:

env	CXX=shlicc++	CC=shlicc2	\

./configure	\

				--prefix=/usr/local/mysql	\

				--localstatedir=/var/mysql	\

				--without-perl	\

				--with-unix-socket-path=/var/mysql/mysql.sock

The	following	is	also	known	to	work:

env	CC=gcc	CXX=gcc	CXXFLAGS=-O3	\

./configure	\

				--prefix=/usr/local/mysql	\

				--with-unix-socket-path=/var/mysql/mysql.sock

You	can	change	the	directory	locations	if	you	wish,	or	just	use	the	defaults	by
not	specifying	any	locations.

If	you	have	problems	with	performance	under	heavy	load,	try	using	the	--skip-
thread-priority	option	to	mysqld.	This	runs	all	threads	with	the	same	priority.
On	BSDI	3.1,	this	gives	better	performance,	at	least	until	BSDI	fixes	its	thread
scheduler.

If	you	get	the	error	virtual	memory	exhausted	while	compiling,	you	should	try
using	ulimit	-v	80000	and	running	make	again.	If	this	doesn't	work	and	you	are
using	bash,	try	switching	to	csh	or	sh;	some	BSDI	users	have	reported	problems
with	bash	and	ulimit.

2.13.4.6.	BSD/OS	Version	4.x	Notes

BSDI	4.x	has	some	thread-related	bugs.	If	you	want	to	use	MySQL	on	this,	you

should	install	all	thread-related	patches.	At	least	M400-023	should	be	installed.

On	some	BSDI	4.x	systems,	you	may	get	problems	with	shared	libraries.	The
symptom	is	that	you	can't	execute	any	client	programs,	for	example,
mysqladmin.	In	this	case,	you	need	to	reconfigure	not	to	use	shared	libraries
with	the	--disable-shared	option	to	configure.

Some	customers	have	had	problems	on	BSDI	4.0.1	that	the	mysqld	binary	after
a	while	can't	open	tables.	This	occurs	because	some	library/system-related	bug
causes	mysqld	to	change	current	directory	without	having	asked	for	that	to
happen.

The	fix	is	to	either	upgrade	MySQL	to	at	least	version	3.23.34	or,	after	running
configure,	remove	the	line	#define	HAVE_REALPATH	from	config.h	before
running	make.

Note	that	this	means	that	you	can't	symbolically	link	a	database	directories	to
another	database	directory	or	symbolic	link	a	table	to	another	database	on	BSDI.
(Making	a	symbolic	link	to	another	disk	is	okay).

2.13.5.	Other	Unix	Notes

2.13.5.1.	HP-UX	Version	10.20	Notes

There	are	a	couple	of	small	problems	when	compiling	MySQL	on	HP-UX.	We
recommend	that	you	use	gcc	instead	of	the	HP-UX	native	compiler,	because	gcc
produces	better	code.

We	recommend	using	gcc	2.95	on	HP-UX.	Don't	use	high	optimization	flags
(such	as	-O6)	because	they	may	not	be	safe	on	HP-UX.

The	following	configure	line	should	work	with	gcc	2.95:

CFLAGS="-I/opt/dce/include	-fpic"	\

CXXFLAGS="-I/opt/dce/include	-felide-constructors	-fno-exceptions	\

-fno-rtti"	\

CXX=gcc	\

./configure	--with-pthread	\

				--with-named-thread-libs='-ldce'	\

				--prefix=/usr/local/mysql	--disable-shared

The	following	configure	line	should	work	with	gcc	3.1:

CFLAGS="-DHPUX	-I/opt/dce/include	-O3	-fPIC"	CXX=gcc	\

CXXFLAGS="-DHPUX	-I/opt/dce/include	-felide-constructors	\

				-fno-exceptions	-fno-rtti	-O3	-fPIC"	\

./configure	--prefix=/usr/local/mysql	\

				--with-extra-charsets=complex	--enable-thread-safe-client	\

				--enable-local-infile		--with-pthread	\

				--with-named-thread-libs=-ldce	--with-lib-ccflags=-fPIC

				--disable-shared

2.13.5.2.	HP-UX	Version	11.x	Notes

Because	of	some	critical	bugs	in	the	standard	HP-UX	libraries,	you	should
install	the	following	patches	before	trying	to	run	MySQL	on	HP-UX	11.0:

PHKL_22840	Streams	cumulative

PHNE_22397	ARPA	cumulative

This	solves	the	problem	of	getting	EWOULDBLOCK	from	recv()	and	EBADF	from
accept()	in	threaded	applications.

If	you	are	using	gcc	2.95.1	on	an	unpatched	HP-UX	11.x	system,	you	may	get
the	following	error:

In	file	included	from	/usr/include/unistd.h:11,

																	from	../include/global.h:125,

																	from	mysql_priv.h:15,

																	from	item.cc:19:

/usr/include/sys/unistd.h:184:	declaration	of	C	function	...

/usr/include/sys/pthread.h:440:	previous	declaration	...

In	file	included	from	item.h:306,

																	from	mysql_priv.h:158,

																	from	item.cc:19:

The	problem	is	that	HP-UX	does	not	define	pthreads_atfork()	consistently.	It
has	conflicting	prototypes	in	/usr/include/sys/unistd.h:184	and
/usr/include/sys/pthread.h:440.

One	solution	is	to	copy	/usr/include/sys/unistd.h	into	mysql/include	and
edit	unistd.h	and	change	it	to	match	the	definition	in	pthread.h.	Look	for	this
line:

extern	int	pthread_atfork(void	(*prepare)(),	void	(*parent)(),

																																										void	(*child)());

Change	it	to	look	like	this:

extern	int	pthread_atfork(void	(*prepare)(void),	void	(*parent)(void),

																																										void	(*child)(void));

After	making	the	change,	the	following	configure	line	should	work:

CFLAGS="-fomit-frame-pointer	-O3	-fpic"	CXX=gcc	\

CXXFLAGS="-felide-constructors	-fno-exceptions	-fno-rtti	-O3"	\

./configure	--prefix=/usr/local/mysql	--disable-shared

If	you	are	using	HP-UX	compiler,	you	can	use	the	following	command	(which
has	been	tested	with	cc	B.11.11.04):

CC=cc	CXX=aCC	CFLAGS=+DD64	CXXFLAGS=+DD64	./configure	\

				--with-extra-character-set=complex

You	can	ignore	any	errors	of	the	following	type:

aCC:	warning	901:	unknown	option:	`-3':	use	+help	for	online

documentation

If	you	get	the	following	error	from	configure,	verify	that	you	don't	have	the	path
to	the	K&R	compiler	before	the	path	to	the	HP-UX	C	and	C++	compiler:

checking	for	cc	option	to	accept	ANSI	C...	no

configure:	error:	MySQL	requires	an	ANSI	C	compiler	(and	a	C++	compiler).

Try	gcc.	See	the	Installation	chapter	in	the	Reference	Manual.

Another	reason	for	not	being	able	to	compile	is	that	you	didn't	define	the	+DD64
flags	as	just	described.

Another	possibility	for	HP-UX	11	is	to	use	the	MySQL	binaries	provided	at
http://dev.mysql.com/downloads/,	which	we	have	built	and	tested	ourselves.	We
have	also	received	reports	that	the	HP-UX	10.20	binaries	supplied	by	MySQL
can	be	run	successfully	on	HP-UX	11.	If	you	encounter	problems,	you	should	be
sure	to	check	your	HP-UX	patch	level.

2.13.5.3.	IBM-AIX	notes

Automatic	detection	of	xlC	is	missing	from	Autoconf,	so	a	number	of	variables

http://dev.mysql.com/downloads/

need	to	be	set	before	running	configure.	The	following	example	uses	the	IBM
compiler:

export	CC="xlc_r	-ma	-O3	-qstrict	-qoptimize=3	-qmaxmem=8192	"

export	CXX="xlC_r	-ma	-O3	-qstrict	-qoptimize=3	-qmaxmem=8192"

export	CFLAGS="-I	/usr/local/include"

export	LDFLAGS="-L	/usr/local/lib"

export	CPPFLAGS=$CFLAGS

export	CXXFLAGS=$CFLAGS

./configure	--prefix=/usr/local	\

																--localstatedir=/var/mysql	\

																--sbindir='/usr/local/bin'	\

																--libexecdir='/usr/local/bin'	\

																--enable-thread-safe-client	\

																--enable-large-files

The	preceding	options	are	used	to	compile	the	MySQL	distribution	that	can	be
found	at	http://www-frec.bull.com/.

If	you	change	the	-O3	to	-O2	in	the	preceding	configure	line,	you	must	also
remove	the	-qstrict	option.	This	is	a	limitation	in	the	IBM	C	compiler.

If	you	are	using	gcc	or	egcs	to	compile	MySQL,	you	must	use	the	-fno-
exceptions	flag,	because	the	exception	handling	in	gcc/egcs	is	not	thread-safe!
(This	is	tested	with	egcs	1.1.)	There	are	also	some	known	problems	with	IBM's
assembler	that	may	cause	it	to	generate	bad	code	when	used	with	gcc.

We	recommend	the	following	configure	line	with	egcs	and	gcc	2.95	on	AIX:

CC="gcc	-pipe	-mcpu=power	-Wa,-many"	\

CXX="gcc	-pipe	-mcpu=power	-Wa,-many"	\

CXXFLAGS="-felide-constructors	-fno-exceptions	-fno-rtti"	\

./configure	--prefix=/usr/local/mysql	--with-low-memory

The	-Wa,-many	option	is	necessary	for	the	compile	to	be	successful.	IBM	is
aware	of	this	problem	but	is	in	no	hurry	to	fix	it	because	of	the	workaround	that
is	available.	We	don't	know	if	the	-fno-exceptions	is	required	with	gcc	2.95,
but	because	MySQL	doesn't	use	exceptions	and	the	option	generates	faster	code,
we	recommend	that	you	should	always	use	it	with	egcs	/	gcc.

If	you	get	a	problem	with	assembler	code,	try	changing	the	-mcpu=xxx	option	to
match	your	CPU.	Typically	power2,	power,	or	powerpc	may	need	to	be	used.

http://www-frec.bull.com/

Alternatively,	you	might	need	to	use	604	or	604e.	We	are	not	positive	but	suspect
that	power	would	likely	be	safe	most	of	the	time,	even	on	a	power2	machine.

If	you	don't	know	what	your	CPU	is,	execute	a	uname	-m	command.	It	produces
a	string	that	looks	like	000514676700,	with	a	format	of	xxyyyyyymmss	where	xx
and	ss	are	always	00,	yyyyyy	is	a	unique	system	ID	and	mm	is	the	ID	of	the	CPU
Planar.	A	chart	of	these	values	can	be	found	at
http://www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/uname.htm.

This	gives	you	a	machine	type	and	a	machine	model	you	can	use	to	determine
what	type	of	CPU	you	have.

If	you	have	problems	with	signals	(MySQL	dies	unexpectedly	under	high	load),
you	may	have	found	an	OS	bug	with	threads	and	signals.	In	this	case,	you	can
tell	MySQL	not	to	use	signals	by	configuring	as	follows:

CFLAGS=-DDONT_USE_THR_ALARM	CXX=gcc	\

CXXFLAGS="-felide-constructors	-fno-exceptions	-fno-rtti	\

-DDONT_USE_THR_ALARM"	\

./configure	--prefix=/usr/local/mysql	--with-debug	\

				--with-low-memory

This	doesn't	affect	the	performance	of	MySQL,	but	has	the	side	effect	that	you
can't	kill	clients	that	are	“sleeping”	on	a	connection	with	mysqladmin	kill	or
mysqladmin	shutdown.	Instead,	the	client	dies	when	it	issues	its	next
command.

On	some	versions	of	AIX,	linking	with	libbind.a	makes	getservbyname()
dump	core.	This	is	an	AIX	bug	and	should	be	reported	to	IBM.

For	AIX	4.2.1	and	gcc,	you	have	to	make	the	following	changes.

After	configuring,	edit	config.h	and	include/my_config.h	and	change	the	line
that	says	this:

#define	HAVE_SNPRINTF	1

to	this:

#undef	HAVE_SNPRINTF

And	finally,	in	mysqld.cc,	you	need	to	add	a	prototype	for	initgroups().

http://www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/uname.htm

#ifdef	_AIX41

extern	"C"	int	initgroups(const	char	*,int);

#endif

If	you	need	to	allocate	a	lot	of	memory	to	the	mysqld	process,	it's	not	enough	to
just	use	ulimit	-d	unlimited.	You	may	also	have	to	modify	mysqld_safe	to	add
a	line	something	like	this:

export	LDR_CNTRL='MAXDATA=0x80000000'

You	can	find	more	information	about	using	a	lot	of	memory	at
http://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm

Users	of	AIX	4.3	should	use	gmake	instead	of	the	make	utility	included	with
AIX.

As	of	AIX	4.1,	the	C	compiler	has	been	unbundled	from	AIX	as	a	separate
product.	We	recommend	using	gcc	3.3.2,	which	can	be	obtained	here:
ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/gcc/

The	steps	for	compiling	MySQL	on	AIX	with	gcc	3.3.2	are	similar	to	those	for
using	gcc	2.95	(in	particular,	the	need	to	edit	config.h	and	my_config.h	after
running	configure).	However,	before	running	configure,	you	should	also	patch
the	curses.h	file	as	follows:

/opt/freeware/lib/gcc-lib/powerpc-ibm-aix5.2.0.0/3.3.2/include/curses.h.ORIG

							Mon	Dec	26	02:17:28	2005

---	/opt/freeware/lib/gcc-lib/powerpc-ibm-aix5.2.0.0/3.3.2/include/curses.h

Mon	Dec	26	02:40:13	2005

***	2023,2029	****

		#endif	/*	_AIX32_CURSES	*/

!	#if	defined(__USE_FIXED_PROTOTYPES__)	||	defined(__cplusplus)	||	defined

(__STRICT_ANSI__)

		extern	int	delwin	(WINDOW	*);

		extern	int	endwin	(void);

		extern	int	getcurx	(WINDOW	*);

---	2023,2029	----

		#endif	/*	_AIX32_CURSES	*/

!	#if	0	&&	(defined(__USE_FIXED_PROTOTYPES__)	||	defined(__cplusplus)

||	defined

http://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm
ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/gcc/

(__STRICT_ANSI__))

		extern	int	delwin	(WINDOW	*);

		extern	int	endwin	(void);

		extern	int	getcurx	(WINDOW	*);

2.13.5.4.	SunOS	4	Notes

On	SunOS	4,	MIT-pthreads	is	needed	to	compile	MySQL.	This	in	turn	means
you	need	GNU	make.

Some	SunOS	4	systems	have	problems	with	dynamic	libraries	and	libtool.	You
can	use	the	following	configure	line	to	avoid	this	problem:

./configure	--disable-shared	--with-mysqld-ldflags=-all-static

When	compiling	readline,	you	may	get	warnings	about	duplicate	defines.
These	can	be	ignored.

When	compiling	mysqld,	there	are	some	implicit	declaration	of	function
warnings.	These	can	be	ignored.

2.13.5.5.	Alpha-DEC-UNIX	Notes	(Tru64)

If	you	are	using	egcs	1.1.2	on	Digital	Unix,	you	should	upgrade	to	gcc	2.95.2,
because	egcs	on	DEC	has	some	serious	bugs!

When	compiling	threaded	programs	under	Digital	Unix,	the	documentation
recommends	using	the	-pthread	option	for	cc	and	cxx	and	the	-lmach	-lexc
libraries	(in	addition	to	-lpthread).	You	should	run	configure	something	like
this:

CC="cc	-pthread"	CXX="cxx	-pthread	-O"	\

./configure	--with-named-thread-libs="-lpthread	-lmach	-lexc	-lc"

When	compiling	mysqld,	you	may	see	a	couple	of	warnings	like	this:

mysqld.cc:	In	function	void	handle_connections()':

mysqld.cc:626:	passing	long	unsigned	int	*'	as	argument	3	of

accept(int,sockadddr	*,	int	*)'

You	can	safely	ignore	these	warnings.	They	occur	because	configure	can	detect

only	errors,	not	warnings.

If	you	start	the	server	directly	from	the	command	line,	you	may	have	problems
with	it	dying	when	you	log	out.	(When	you	log	out,	your	outstanding	processes
receive	a	SIGHUP	signal.)	If	so,	try	starting	the	server	like	this:

nohup	mysqld	[options]	&

nohup	causes	the	command	following	it	to	ignore	any	SIGHUP	signal	sent	from
the	terminal.	Alternatively,	start	the	server	by	running	mysqld_safe,	which
invokes	mysqld	using	nohup	for	you.	See	Section	5.4.1,	“mysqld_safe	—
MySQL	Server	Startup	Script”.

If	you	get	a	problem	when	compiling	mysys/get_opt.c,	just	remove	the
#define	_NO_PROTO	line	from	the	start	of	that	file.

If	you	are	using	Compaq's	CC	compiler,	the	following	configure	line	should
work:

CC="cc	-pthread"

CFLAGS="-O4	-ansi_alias	-ansi_args	-fast	-inline	speed	\

								-speculate	all	-arch	host"

CXX="cxx	-pthread"

CXXFLAGS="-O4	-ansi_alias	-ansi_args	-fast	-inline	speed	\

										-speculate	all	-arch	host	-noexceptions	-nortti"

export	CC	CFLAGS	CXX	CXXFLAGS

./configure	\

				--prefix=/usr/local/mysql	\

				--with-low-memory	\

				--enable-large-files	\

				--enable-shared=yes	\

				--with-named-thread-libs="-lpthread	-lmach	-lexc	-lc"

gnumake

If	you	get	a	problem	with	libtool	when	compiling	with	shared	libraries	as	just
shown,	when	linking	mysql,	you	should	be	able	to	get	around	this	by	issuing
these	commands:

cd	mysql

/bin/sh	../libtool	--mode=link	cxx	-pthread		-O3	-DDBUG_OFF	\

				-O4	-ansi_alias	-ansi_args	-fast	-inline	speed	\

				-speculate	all	\	-arch	host		-DUNDEF_HAVE_GETHOSTBYNAME_R	\

				-o	mysql		mysql.o	readline.o	sql_string.o	completion_hash.o	\

				../readline/libreadline.a	-lcurses	\

				../libmysql/.libs/libmysqlclient.so		-lm

cd	..

gnumake

gnumake	install

scripts/mysql_install_db

2.13.5.6.	Alpha-DEC-OSF/1	Notes

If	you	have	problems	compiling	and	have	DEC	CC	and	gcc	installed,	try
running	configure	like	this:

CC=cc	CFLAGS=-O	CXX=gcc	CXXFLAGS=-O3	\

./configure	--prefix=/usr/local/mysql

If	you	get	problems	with	the	c_asm.h	file,	you	can	create	and	use	a	'dummy'
c_asm.h	file	with:

touch	include/c_asm.h

CC=gcc	CFLAGS=-I./include	\

CXX=gcc	CXXFLAGS=-O3	\

./configure	--prefix=/usr/local/mysql

Note	that	the	following	problems	with	the	ld	program	can	be	fixed	by
downloading	the	latest	DEC	(Compaq)	patch	kit	from:
http://ftp.support.compaq.com/public/unix/.

On	OSF/1	V4.0D	and	compiler	"DEC	C	V5.6-071	on	Digital	Unix	V4.0	(Rev.
878),"	the	compiler	had	some	strange	behavior	(undefined	asm	symbols).
/bin/ld	also	appears	to	be	broken	(problems	with	_exit	undefined	errors
occurring	while	linking	mysqld).	On	this	system,	we	have	managed	to	compile
MySQL	with	the	following	configure	line,	after	replacing	/bin/ld	with	the
version	from	OSF	4.0C:

CC=gcc	CXX=gcc	CXXFLAGS=-O3	./configure	--prefix=/usr/local/mysql

With	the	Digital	compiler	"C++	V6.1-029,"	the	following	should	work:

CC=cc	-pthread

CFLAGS=-O4	-ansi_alias	-ansi_args	-fast	-inline	speed	\

							-speculate	all	-arch	host

CXX=cxx	-pthread

CXXFLAGS=-O4	-ansi_alias	-ansi_args	-fast	-inline	speed	\

									-speculate	all	-arch	host	-noexceptions	-nortti

http://ftp.support.compaq.com/public/unix/

export	CC	CFLAGS	CXX	CXXFLAGS

./configure	--prefix=/usr/mysql/mysql	\

												--with-mysqld-ldflags=-all-static	--disable-shared	\

												--with-named-thread-libs="-lmach	-lexc	-lc"

In	some	versions	of	OSF/1,	the	alloca()	function	is	broken.	Fix	this	by
removing	the	line	in	config.h	that	defines	'HAVE_ALLOCA'.

The	alloca()	function	also	may	have	an	incorrect	prototype	in
/usr/include/alloca.h.	This	warning	resulting	from	this	can	be	ignored.

configure	uses	the	following	thread	libraries	automatically:	--with-named-
thread-libs="-lpthread	-lmach	-lexc	-lc".

When	using	gcc,	you	can	also	try	running	configure	like	this:

CFLAGS=-D_PTHREAD_USE_D4	CXX=gcc	CXXFLAGS=-O3	./configure	...

If	you	have	problems	with	signals	(MySQL	dies	unexpectedly	under	high	load),
you	may	have	found	an	OS	bug	with	threads	and	signals.	In	this	case,	you	can
tell	MySQL	not	to	use	signals	by	configuring	with:

CFLAGS=-DDONT_USE_THR_ALARM	\

CXXFLAGS=-DDONT_USE_THR_ALARM	\

./configure	...

This	does	not	affect	the	performance	of	MySQL,	but	has	the	side	effect	that	you
can't	kill	clients	that	are	“sleeping”	on	a	connection	with	mysqladmin	kill	or
mysqladmin	shutdown.	Instead,	the	client	dies	when	it	issues	its	next
command.

With	gcc	2.95.2,	you	may	encounter	the	following	compile	error:

sql_acl.cc:1456:	Internal	compiler	error	in	`scan_region',

at	except.c:2566

Please	submit	a	full	bug	report.

To	fix	this,	you	should	change	to	the	sql	directory	and	do	a	cut-and-paste	of	the
last	gcc	line,	but	change	-O3	to	-O0	(or	add	-O0	immediately	after	gcc	if	you
don't	have	any	-O	option	on	your	compile	line).	After	this	is	done,	you	can	just
change	back	to	the	top-level	directory	and	run	make	again.

2.13.5.7.	SGI	Irix	Notes

If	you	are	using	Irix	6.5.3	or	newer,	mysqld	is	able	to	create	threads	only	if	you
run	it	as	a	user	that	has	CAP_SCHED_MGT	privileges	(such	as	root)	or	give	the
mysqld	server	this	privilege	with	the	following	shell	command:

chcap	"CAP_SCHED_MGT+epi"	/opt/mysql/libexec/mysqld

You	may	have	to	undefine	some	symbols	in	config.h	after	running	configure
and	before	compiling.

In	some	Irix	implementations,	the	alloca()	function	is	broken.	If	the	mysqld
server	dies	on	some	SELECT	statements,	remove	the	lines	from	config.h	that
define	HAVE_ALLOC	and	HAVE_ALLOCA_H.	If	mysqladmin	create	doesn't	work,
remove	the	line	from	config.h	that	defines	HAVE_READDIR_R.	You	may	have	to
remove	the	HAVE_TERM_H	line	as	well.

SGI	recommends	that	you	install	all	the	patches	on	this	page	as	a	set:
http://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html

At	the	very	minimum,	you	should	install	the	latest	kernel	rollup,	the	latest	rld
rollup,	and	the	latest	libc	rollup.

You	definitely	need	all	the	POSIX	patches	on	this	page,	for	pthreads	support:

http://support.sgi.com/surfzone/patches/patchset/6.2_posix.rps.html

If	you	get	the	something	like	the	following	error	when	compiling	mysql.cc:

"/usr/include/curses.h",	line	82:	error(1084):

invalid	combination	of	type

Type	the	following	in	the	top-level	directory	of	your	MySQL	source	tree:

extra/replace	bool	curses_bool	<	/usr/include/curses.h	>	include/curses.h

make

There	have	also	been	reports	of	scheduling	problems.	If	only	one	thread	is
running,	performance	is	slow.	Avoid	this	by	starting	another	client.	This	may
lead	to	a	two-to-tenfold	increase	in	execution	speed	thereafter	for	the	other
thread.	This	is	a	poorly	understood	problem	with	Irix	threads;	you	may	have	to

http://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html
http://support.sgi.com/surfzone/patches/patchset/6.2_posix.rps.html

improvise	to	find	solutions	until	this	can	be	fixed.

If	you	are	compiling	with	gcc,	you	can	use	the	following	configure	command:

CC=gcc	CXX=gcc	CXXFLAGS=-O3	\

./configure	--prefix=/usr/local/mysql	--enable-thread-safe-client	\

				--with-named-thread-libs=-lpthread

On	Irix	6.5.11	with	native	Irix	C	and	C++	compilers	ver.	7.3.1.2,	the	following	is
reported	to	work

CC=cc	CXX=CC	CFLAGS='-O3	-n32	-TARG:platform=IP22	-I/usr/local/include	\

-L/usr/local/lib'	CXXFLAGS='-O3	-n32	-TARG:platform=IP22	\

-I/usr/local/include	-L/usr/local/lib'	\

./configure	--prefix=/usr/local/mysql	--with-innodb	--with-berkeley-db	\

				--with-libwrap=/usr/local	\

				--with-named-curses-libs=/usr/local/lib/libncurses.a

2.13.5.8.	SCO	UNIX	and	OpenServer	5.0.x	Notes

The	current	port	is	tested	only	on	sco3.2v5.0.5,	sco3.2v5.0.6,	and
sco3.2v5.0.7	systems.	There	has	also	been	progress	on	a	port	to	sco3.2v4.2.
Open	Server	5.0.8	(Legend)	has	native	threads	and	allows	files	greater	than
2GB.	The	current	maximum	file	size	is	2GB.

We	have	been	able	to	compile	MySQL	with	the	following	configure	command
on	OpenServer	with	gcc	2.95.3.

CC=gcc	CFLAGS="-D_FILE_OFFSET_BITS=64	-O3"	\

CXX=gcc	CXXFLAGS="-D_FILE_OFFSET_BITS=64	-O3"	\

./configure	--prefix=/usr/local/mysql	\

				--enable-thread-safe-client	--with-innodb	\

				--with-openssl	--with-vio	--with-extra-charsets=complex

gcc	is	available	at	ftp://ftp.sco.com/pub/openserver5/opensrc/gnutools-5.0.7Kj.

This	development	system	requires	the	OpenServer	Execution	Environment
Supplement	oss646B	on	OpenServer	5.0.6	and	oss656B	and	The	OpenSource
libraries	found	in	gwxlibs.	All	OpenSource	tools	are	in	the	opensrc	directory.
They	are	available	at	ftp://ftp.sco.com/pub/openserver5/opensrc/.

We	recommend	using	the	latest	production	release	of	MySQL.

ftp://ftp.sco.com/pub/openserver5/opensrc/gnutools-5.0.7Kj
ftp://ftp.sco.com/pub/openserver5/opensrc/

SCO	provides	operating	system	patches	at	ftp://ftp.sco.com/pub/openserver5	for
OpenServer	5.0.[0-6]	and	ftp://ftp.sco.com/pub/openserverv5/507	for
OpenServer	5.0.7.

SCO	provides	information	about	security	fixes	at
ftp://ftp.sco.com/pub/security/OpenServer	for	OpenServer	5.0.x.

The	maximum	file	size	on	an	OpenSever	5.0.x	system	is	2GB.

The	total	memory	which	can	be	allocated	for	streams	buffers,	clists,	and	lock
records	cannot	exceed	60MB	on	OpenServer	5.0.x.

Streams	buffers	are	allocated	in	units	of	4096	byte	pages,	clists	are	70	bytes
each,	and	lock	records	are	64	bytes	each,	so:

(NSTRPAGES	×	4096)	+	(NCLIST	×	70)	+	(MAX_FLCKREC	×	64)	<=	62914560

Follow	this	procedure	to	configure	the	Database	Services	option.	If	you	are
unsure	whether	an	application	requires	this,	see	the	documentation	provided	with
the	application.

1.	 Log	in	as	root.

2.	 Enable	the	SUDS	driver	by	editing	the	/etc/conf/sdevice.d/suds	file.
Change	the	N	in	the	second	field	to	a	Y.

3.	 Use	mkdev	aio	or	the	Hardware/Kernel	Manager	to	enable	support	for
asynchronous	I/O	and	relink	the	kernel.	To	allow	users	to	lock	down
memory	for	use	with	this	type	of	I/O,	update	the	aiomemlock(F)	file.	This
file	should	be	updated	to	include	the	names	of	users	that	can	use	AIO	and
the	maximum	amounts	of	memory	they	can	lock	down.

4.	 Many	applications	use	setuid	binaries	so	that	you	need	to	specify	only	a
single	user.	See	the	documentation	provided	with	the	application	to
determine	whether	this	is	the	case	for	your	application.

After	you	complete	this	process,	reboot	the	system	to	create	a	new	kernel
incorporating	these	changes.

By	default,	the	entries	in	/etc/conf/cf.d/mtune	are	set	as	follows:

ftp://ftp.sco.com/pub/openserver5
ftp://ftp.sco.com/pub/openserverv5/507
ftp://ftp.sco.com/pub/security/OpenServer

Value											Default									Min													Max

-----											-------									---													---

NBUF												0															24														450000

NHBUF											0															32														524288

NMPBUF										0															12														512

MAX_INODE							0															100													64000

MAX_FILE								0															100													64000

CTBUFSIZE							128													0															256

MAX_PROC								0															50														16000

MAX_REGION						0															500													160000

NCLIST										170													120													16640

MAXUP											100													15														16000

NOFILES									110													60														11000

NHINODE									128													64														8192

NAUTOUP									10														0															60

NGROUPS									8															0															128

BDFLUSHR								30														1															300

MAX_FLCKREC					0															50														16000

PUTBUFSZ								8000												2000												20000

MAXSLICE								100													25														100

ULIMIT										4194303									2048												4194303

*	Streams	Parameters

NSTREAM									64														1															32768

NSTRPUSH								9															9															9

NMUXLINK								192													1															4096

STRMSGSZ								16384											4096												524288

STRCTLSZ								1024												1024												1024

STRMAXBLK							524288										4096												524288

NSTRPAGES							500													0															8000

STRSPLITFRAC				80														50														100

NLOG												3															3															3

NUMSP											64														1															256

NUMTIM										16														1															8192

NUMTRW										16														1															8192

*	Semaphore	Parameters

SEMMAP										10														10														8192

SEMMNI										10														10														8192

SEMMNS										60														60														8192

SEMMNU										30														10														8192

SEMMSL										25														25														150

SEMOPM										10														10														1024

SEMUME										10														10														25

SEMVMX										32767											32767											32767

SEMAEM										16384											16384											16384

*	Shared	Memory	Parameters

SHMMAX										524288										131072										2147483647

SHMMIN										1															1															1

SHMMNI										100													100													2000

FILE												0															100													64000

NMOUNT										0															4															256

NPROC											0															50														16000

NREGION									0															500													160000

We	recommend	setting	these	values	as	follows:

NOFILES	should	be	4096	or	2048.

MAXUP	should	be	2048.

To	make	changes	to	the	kernel,	use	the	idtune	name	parameter	command.
idtune	modifies	the	/etc/conf/cf.d/stune	file	for	you.	For	example,	to	change
SEMMS	to	200,	execute	this	command	as	root:

#	/etc/conf/bin/idtune	SEMMNS	200

Then	rebuild	and	reboot	the	kernel	by	issuing	this	command:

#	/etc/conf/bin/idbuild	-B	&&	init	6

We	recommend	tuning	the	system,	but	the	proper	parameter	values	to	use	depend
on	the	number	of	users	accessing	the	application	or	database	and	size	the	of	the
database	(that	is,	the	used	buffer	pool).	The	following	kernel	parameters	can	be
set	with	idtune:

SHMMAX	(recommended	setting:	128MB)	and	SHMSEG	(recommended	setting:
15).	These	parameters	have	an	influence	on	the	MySQL	database	engine	to
create	user	buffer	pools.

NOFILES	and	MAXUP	should	be	set	to	at	least	2048.

MAXPROC	should	be	set	to	at	least	3000/4000	(depends	on	number	of	users)
or	more.

We	also	recommend	using	the	following	formulas	to	calculate	values	for
SEMMSL,	SEMMNS,	and	SEMMNU:

SEMMSL	=	13

13	is	what	has	been	found	to	be	the	best	for	both	Progress	and	MySQL.

SEMMNS	=	SEMMSL	×	number	of	db	servers	to	be	run	on	the	system

Set	SEMMNS	to	the	value	of	SEMMSL	multiplied	by	the	number	of	database
servers	(maximum)	that	you	are	running	on	the	system	at	one	time.

SEMMNU	=	SEMMNS

Set	the	value	of	SEMMNU	to	equal	the	value	of	SEMMNS.	You	could	probably
set	this	to	75%	of	SEMMNS,	but	this	is	a	conservative	estimate.

You	need	to	at	least	install	the	SCO	OpenServer	Linker	and	Application
Development	Libraries	or	the	OpenServer	Development	System	to	use	gcc.	You
cannot	use	the	GCC	Dev	system	without	installing	one	of	these.

You	should	get	the	FSU	Pthreads	package	and	install	it	first.	This	can	be	found	at
http://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz.	You	can	also
get	a	precompiled	package	from	ftp://ftp.zenez.com/pub/zenez/prgms/FSU-
threads-3.14.tar.gz.

FSU	Pthreads	can	be	compiled	with	SCO	Unix	4.2	with	tcpip,	or	using
OpenServer	3.0	or	Open	Desktop	3.0	(OS	3.0	ODT	3.0)	with	the	SCO
Development	System	installed	using	a	good	port	of	GCC	2.5.x.	For	ODT	or	OS
3.0,	you	need	a	good	port	of	GCC	2.5.x.	There	are	a	lot	of	problems	without	a
good	port.	The	port	for	this	product	requires	the	SCO	Unix	Development	system.
Without	it,	you	are	missing	the	libraries	and	the	linker	that	is	needed.	You	also
need	SCO-3.2v4.2-includes.tar.gz.	This	file	contains	the	changes	to	the	SCO
Development	include	files	that	are	needed	to	get	MySQL	to	build.	You	need	to
replace	the	existing	system	include	files	with	these	modified	header	files.	They
can	be	obtained	from	ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-
includes.tar.gz.

To	build	FSU	Pthreads	on	your	system,	all	you	should	need	to	do	is	run	GNU
make.	The	Makefile	in	FSU-threads-3.14.tar.gz	is	set	up	to	make	FSU-threads.

You	can	run	./configure	in	the	threads/src	directory	and	select	the	SCO
OpenServer	option.	This	command	copies	Makefile.SCO5	to	Makefile.	Then
run	make.

To	install	in	the	default	/usr/include	directory,	log	in	as	root,	and	then	cd	to
the	thread/src	directory	and	run	make	install.

Remember	that	you	must	use	GNU	make	to	build	MySQL.

http://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz
ftp://ftp.zenez.com/pub/zenez/prgms/FSU-threads-3.14.tar.gz
ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz

Note:	If	you	don't	start	mysqld_safe	as	root,	you	should	get	only	the	default
110	open	files	per	process.	mysqld	writes	a	note	about	this	in	the	log	file.

With	SCO	3.2V4.2,	you	should	use	FSU	Pthreads	version	3.14	or	newer.	The
following	configure	command	should	work:

CFLAGS="-D_XOPEN_XPG4"	CXX=gcc	CXXFLAGS="-D_XOPEN_XPG4"	\

./configure	\

				--prefix=/usr/local/mysql	\

				--with-named-thread-libs="-lgthreads	-lsocket	-lgen	-lgthreads"	\

				--with-named-curses-libs="-lcurses"

You	may	have	problems	with	some	include	files.	In	this	case,	you	can	find	new
SCO-specific	include	files	at	ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-
includes.tar.gz.

You	should	unpack	this	file	in	the	include	directory	of	your	MySQL	source	tree.

SCO	development	notes:

MySQL	should	automatically	detect	FSU	Pthreads	and	link	mysqld	with	-
lgthreads	-lsocket	-lgthreads.

The	SCO	development	libraries	are	re-entrant	in	FSU	Pthreads.	SCO	claims
that	its	library	functions	are	re-entrant,	so	they	must	be	re-entrant	with	FSU
Pthreads.	FSU	Pthreads	on	OpenServer	tries	to	use	the	SCO	scheme	to
make	re-entrant	libraries.

FSU	Pthreads	(at	least	the	version	at	ftp::/ftp.zenez.com)	comes	linked	with
GNU	malloc.	If	you	encounter	problems	with	memory	usage,	make	sure
that	gmalloc.o	is	included	in	libgthreads.a	and	libgthreads.so.

In	FSU	Pthreads,	the	following	system	calls	are	pthreads-aware:	read(),
write(),	getmsg(),	connect(),	accept(),	select(),	and	wait().

The	CSSA-2001-SCO.35.2	(the	patch	is	listed	in	custom	as	erg711905-
dscr_remap	security	patch	(version	2.0.0))	breaks	FSU	threads	and	makes
mysqld	unstable.	You	have	to	remove	this	one	if	you	want	to	run	mysqld
on	an	OpenServer	5.0.6	machine.

If	you	use	SCO	OpenServer	5,	you	may	need	to	recompile	FSU	pthreads

ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz
ftp::/ftp.zenez.com

with	-DDRAFT7	in	CFLAGS.	Otherwise,	InnoDB	may	hang	at	a	mysqld	startup.

SCO	provides	operating	system	patches	at
ftp://ftp.sco.com/pub/openserver5	for	OpenServer	5.0.x.

SCO	provides	security	fixes	and	libsocket.so.2	at
ftp://ftp.sco.com/pub/security/OpenServer	and
ftp://ftp.sco.com/pub/security/sse	for	OpenServer	5.0.x.

Pre-OSR506	security	fixes.	Also,	the	telnetd	fix	at
ftp://stage.caldera.com/pub/security/openserver/	or
ftp://stage.caldera.com/pub/security/openserver/CSSA-2001-SCO.10/	as
both	libsocket.so.2	and	libresolv.so.1	with	instructions	for	installing
on	pre-OSR506	systems.

It's	probably	a	good	idea	to	install	these	patches	before	trying	to
compile/use	MySQL.

Beginning	with	Legend/OpenServer	6.0.0,	there	are	native	threads	and	no	2GB
file	size	limit.

2.13.5.9.	SCO	OpenServer	6.0.x	Notes

OpenServer	6	includes	these	key	improvements:

Larger	file	support	up	to	1	TB

Multiprocessor	support	increased	from	4	to	32	processors

Increased	memory	support	up	to	64GB

Extending	the	power	of	UnixWare	into	OpenServer	6

Dramatic	performance	improvement

OpenServer	6.0.0	commands	are	organized	as	follows:

/bin	is	for	commands	that	behave	exactly	the	same	as	on	OpenServer	5.0.x.

/u95/bin	is	for	commands	that	have	better	standards	conformance,	for

ftp://ftp.sco.com/pub/openserver5
ftp://ftp.sco.com/pub/security/OpenServer
ftp://ftp.sco.com/pub/security/sse
ftp://stage.caldera.com/pub/security/openserver/
ftp://stage.caldera.com/pub/security/openserver/CSSA-2001-SCO.10/

example	Large	File	System	(LFS)	support.

/udk/bin	is	for	commands	that	behave	the	same	as	on	UnixWare	7.1.4.	The
default	is	for	the	LFS	support.

The	following	is	a	guide	to	setting	PATH	on	OpenServer	6.	If	the	user	wants	the
traditional	OpenServer	5.0.x	then	PATH	should	be	/bin	first.	If	the	user	wants
LFS	support,	the	path	should	be	/u95/bin:/bin.	If	the	user	wants	UnixWare	7
support	first,	the	path	would	be	/udk/bin:/u95/bin:/bin:.

We	recommend	using	the	latest	production	release	of	MySQL.	Should	you
choose	to	use	an	older	release	of	MySQL	on	OpenServer	6.0.x,	you	must	use	a
version	of	MySQL	at	least	as	recent	as	3.22.13	to	get	fixes	for	some	portability
and	OS	problems.

MySQL	distribution	files	with	names	of	the	following	form	are	tar	archives	of
media	are	tar	archives	of	media	images	suitable	for	installation	with	the	SCO
Software	Manager	(/etc/custom)	on	SCO	OpenServer	6:

mysql-PRODUCT-5.0.25-sco-osr6-i686.VOLS.tar

A	distribution	where	PRODUCT	is	pro-cert	is	the	Commercially	licensed	MySQL
Pro	Certified	server.	A	distribution	where	PRODUCT	is	pro-gpl-cert	is	the
MySQL	Pro	Certified	server	licensed	under	the	terms	of	the	General	Public
License	(GPL).

Select	whichever	distribution	you	wish	to	install	and,	after	download,	extract	the
tar	archive	into	an	empty	directory.	For	example:

shell>	mkdir	/tmp/mysql-pro

shell>	cd	/tmp/mysql-pro

shell>	tar	xf	/tmp/mysql-pro-cert-5.0.25-sco-osr6-i686.VOLS.tar

Prior	to	installation,	back	up	your	data	in	accordance	with	the	procedures
outlined	in	Section	2.11,	“Upgrading	MySQL”.

Remove	any	previously	installed	pkgadd	version	of	MySQL:

shell>	pkginfo	mysql	2>&1	>	/dev/null	&&	pkgrm	mysql

Install	MySQL	Pro	from	media	images	using	the	SCO	Software	Manager:

shell>	/etc/custom	-p	SCO:MySQL	-i	-z	/tmp/mysql-pro

Alternatively,	the	SCO	Software	Manager	can	be	displayed	graphically	by
clicking	on	the	Software	Manager	icon	on	the	desktop,	selecting	Software	->
Install	New,	selecting	the	host,	selecting	Media	Images	for	the	Media	Device,
and	entering	/tmp/mysql-pro	as	the	Image	Directory.

After	installation,	run	mkdev	mysql	as	the	root	user	to	configure	your	newly
installed	MySQL	Pro	Certified	server.

Note:	The	installation	procedure	for	VOLS	packages	does	not	create	the	mysql
user	and	group	that	the	package	uses	by	default.	You	should	either	create	the
mysql	user	and	group,	or	else	select	a	different	user	and	group	using	an	option	in
mkdev	mysql.

If	you	wish	to	configure	your	MySQL	Pro	server	to	interface	with	the	Apache
Web	server	via	PHP,	download	and	install	the	PHP	update	from	SCO	at
ftp://ftp.sco.com/pub/updates/OpenServer/SCOSA-2006.17/.

We	have	been	able	to	compile	MySQL	with	the	following	configure	command
on	OpenServer	6.0.x:

CC=cc	CFLAGS="-D_FILE_OFFSET_BITS=64	-O3"	\

CXX=CC	CXXFLAGS="-D_FILE_OFFSET_BITS=64	-O3"	\

./configure	--prefix=/usr/local/mysql	\

				--enable-thread-safe-client	--with-berkeley-db	\

				--with-extra-charsets=complex	\

				--build=i686-unknown-sysv5SCO_SV6.0.0

If	you	use	gcc,	you	must	use	gcc	2.95.3	or	newer.

CC=gcc	CXX=g++/configure	...

The	version	of	Berkeley	DB	that	comes	with	either	UnixWare	7.1.4	or
OpenServer	6.0.0	is	not	used	when	building	MySQL.	MySQL	instead	uses	its
own	version	of	Berkeley	DB.	The	configure	command	needs	to	build	both	a
static	and	a	dynamic	library	in	src_directory/bdb/build_unix/,	but	it	does	not
with	MySQL's	own	BDB	version.	The	workaround	is	as	follows.

1.	 Configure	as	normal	for	MySQL.

2.	 cd	bdb/build_unix/

ftp://ftp.sco.com/pub/updates/OpenServer/SCOSA-2006.17/

3.	 cp	-p	Makefile	Makefile.sav

4.	 Use	same	options	and	run	../dist/configure.

5.	 Run	gmake.

6.	 cp	-p	Makefile.sav	Makefile

7.	 Change	location	to	the	top	source	directory	and	run	gmake.

This	allows	both	the	shared	and	dynamic	libraries	to	be	made	and	work.

SCO	provides	OpenServer	6	operating	system	patches	at
ftp://ftp.sco.com/pub/openserver6.

SCO	provides	information	about	security	fixes	at
ftp://ftp.sco.com/pub/security/OpenServer.

By	default,	the	maximum	file	size	on	a	OpenServer	6.0.0	system	is	1TB.	Some
operating	system	utilities	have	a	limitation	of	2GB.	The	maximum	possible	file
size	on	UnixWare	7	is	1TB	with	VXFS	or	HTFS.

OpenServer	6	can	be	configured	for	large	file	support	(file	sizes	greater	than
2GB)	by	tuning	the	UNIX	kernel.

By	default,	the	entries	in	/etc/conf/cf.d/mtune	are	set	as	follows:

Value											Default									Min													Max

-----											-------									---													---

SVMMLIM									0x9000000							0x1000000							0x7FFFFFFF

HVMMLIM									0x9000000							0x1000000							0x7FFFFFFF

To	make	changes	to	the	kernel,	use	the	idtune	name	parameter	command.
idtune	modifies	the	/etc/conf/cf.d/stune	file	for	you.	We	recommend	setting
the	kernel	values	by	executing	the	following	commands	as	root:

#	/etc/conf/bin/idtune	SDATLIM	0x7FFFFFFF

#	/etc/conf/bin/idtune	HDATLIM	0x7FFFFFFF

#	/etc/conf/bin/idtune	SVMMLIM	0x7FFFFFFF

#	/etc/conf/bin/idtune	HVMMLIM	0x7FFFFFFF

#	/etc/conf/bin/idtune	SFNOLIM	2048

#	/etc/conf/bin/idtune	HFNOLIM	2048

ftp://ftp.sco.com/pub/openserver6
ftp://ftp.sco.com/pub/security/OpenServer

Then	rebuild	and	reboot	the	kernel	by	issuing	this	command:

#	/etc/conf/bin/idbuild	-B	&&	init	6

We	recommend	tuning	the	system,	but	the	proper	parameter	values	to	use	depend
on	the	number	of	users	accessing	the	application	or	database	and	size	the	of	the
database	(that	is,	the	used	buffer	pool).	The	following	kernel	parameters	can	be
set	with	idtune:

SHMMAX	(recommended	setting:	128MB)	and	SHMSEG	(recommended	setting:
15).	These	parameters	have	an	influence	on	the	MySQL	database	engine	to
create	user	buffer	pools.

SFNOLIM	and	HFNOLIM	should	be	at	maximum	2048.

NPROC	should	be	set	to	at	least	3000/4000	(depends	on	number	of	users).

We	also	recommend	using	the	following	formulas	to	calculate	values	for
SEMMSL,	SEMMNS,	and	SEMMNU:

SEMMSL	=	13

13	is	what	has	been	found	to	be	the	best	for	both	Progress	and	MySQL.

SEMMNS	=	SEMMSL	×	number	of	db	servers	to	be	run	on	the	system

Set	SEMMNS	to	the	value	of	SEMMSL	multiplied	by	the	number	of	database
servers	(maximum)	that	you	are	running	on	the	system	at	one	time.

SEMMNU	=	SEMMNS

Set	the	value	of	SEMMNU	to	equal	the	value	of	SEMMNS.	You	could	probably
set	this	to	75%	of	SEMMNS,	but	this	is	a	conservative	estimate.

2.13.5.10.	SCO	UnixWare	7.1.x	and	OpenUNIX	8.0.0	Notes

We	recommend	using	the	latest	production	release	of	MySQL.	Should	you
choose	to	use	an	older	release	of	MySQL	on	UnixWare	7.1.x,	you	must	use	a
version	of	MySQL	at	least	as	recent	as	3.22.13	to	get	fixes	for	some	portability
and	OS	problems.

We	have	been	able	to	compile	MySQL	with	the	following	configure	command
on	UnixWare	7.1.x:

CC="cc"	CFLAGS="-I/usr/local/include"	\

CXX="CC"	CXXFLAGS="-I/usr/local/include"	\

./configure	--prefix=/usr/local/mysql	\

				--enable-thread-safe-client	--with-berkeley-db=./bdb	\

				--with-innodb	--with-openssl	--with-extra-charsets=complex

If	you	want	to	use	gcc,	you	must	use	gcc	2.95.3	or	newer.

CC=gcc	CXX=g++/configure	...

The	version	of	Berkeley	DB	that	comes	with	either	UnixWare	7.1.4	or
OpenServer	6.0.0	is	not	used	when	building	MySQL.	MySQL	instead	uses	its
own	version	of	Berkeley	DB.	The	configure	command	needs	to	build	both	a
static	and	a	dynamic	library	in	src_directory/bdb/build_unix/,	but	it	does	not
with	MySQL's	own	BDB	version.	The	workaround	is	as	follows.

1.	 Configure	as	normal	for	MySQL.

2.	 cd	bdb/build_unix/

3.	 cp	-p	Makefile	Makefile.sav

4.	 Use	same	options	and	run	../dist/configure.

5.	 Run	gmake.

6.	 cp	-p	Makefile.sav	Makefile

7.	 Change	to	top	source	directory	and	run	gmake.

This	allows	both	the	shared	and	dynamic	libraries	to	be	made	and	work.

SCO	provides	operating	system	patches	at	ftp://ftp.sco.com/pub/unixware7	for
UnixWare	7.1.1,	ftp://ftp.sco.com/pub/unixware7/713/	for	UnixWare	7.1.3,
ftp://ftp.sco.com/pub/unixware7/714/	for	UnixWare	7.1.4,	and
ftp://ftp.sco.com/pub/openunix8	for	OpenUNIX	8.0.0.

SCO	provides	information	about	security	fixes	at
ftp://ftp.sco.com/pub/security/OpenUNIX	for	OpenUNIX	and

ftp://ftp.sco.com/pub/unixware7
ftp://ftp.sco.com/pub/unixware7/713/
ftp://ftp.sco.com/pub/unixware7/714/
ftp://ftp.sco.com/pub/openunix8
ftp://ftp.sco.com/pub/security/OpenUNIX

ftp://ftp.sco.com/pub/security/UnixWare	for	UnixWare.

The	UnixWare	7	file	size	limit	is	1	TB	with	VXFS.	Some	OS	utilities	have	a
limitation	of	2GB.

On	UnixWare	7.1.4	you	do	not	need	to	do	anything	to	get	large	file	support,	but
to	enable	large	file	support	on	prior	versions	of	UnixWare	7.1.x,	run	fsadm.

#	fsadm	-Fvxfs	-o	largefiles	/

#	fsadm	/									*	Note

#	ulimit	unlimited

#	/etc/conf/bin/idtune	SFSZLIM	0x7FFFFFFF					**	Note

#	/etc/conf/bin/idtune	HFSZLIM	0x7FFFFFFF					**	Note

#	/etc/conf/bin/idbuild	-B

*	This	should	report	"largefiles".

**	0x7FFFFFFF	represents	infinity	for	these	values.

Reboot	the	system	using	shutdown.

By	default,	the	entries	in	/etc/conf/cf.d/mtune	are	set	as	follows:

Value											Default									Min													Max

-----											-------									---													---

SVMMLIM									0x9000000							0x1000000							0x7FFFFFFF

HVMMLIM									0x9000000							0x1000000							0x7FFFFFFF

To	make	changes	to	the	kernel,	use	the	idtune	name	parameter	command.
idtune	modifies	the	/etc/conf/cf.d/stune	file	for	you.	We	recommend	setting
the	kernel	values	by	executing	the	following	commands	as	root:

#	/etc/conf/bin/idtune	SDATLIM	0x7FFFFFFF

#	/etc/conf/bin/idtune	HDATLIM	0x7FFFFFFF

#	/etc/conf/bin/idtune	SVMMLIM	0x7FFFFFFF

#	/etc/conf/bin/idtune	HVMMLIM	0x7FFFFFFF

#	/etc/conf/bin/idtune	SFNOLIM	2048

#	/etc/conf/bin/idtune	HFNOLIM	2048

Then	rebuild	and	reboot	the	kernel	by	issuing	this	command:

#	/etc/conf/bin/idbuild	-B	&&	init	6

We	recommend	tuning	the	system,	but	the	proper	parameter	values	to	use	depend
on	the	number	of	users	accessing	the	application	or	database	and	size	the	of	the

ftp://ftp.sco.com/pub/security/UnixWare

database	(that	is,	the	used	buffer	pool).	The	following	kernel	parameters	can	be
set	with	idtune:

SHMMAX	(recommended	setting:	128MB)	and	SHMSEG	(recommended	setting:
15).	These	parameters	have	an	influence	on	the	MySQL	database	engine	to
create	user	buffer	pools.

SFNOLIM	and	HFNOLIM	should	be	at	maximum	2048.

NPROC	should	be	set	to	at	least	3000/4000	(depends	on	number	of	users).

We	also	recommend	using	the	following	formulas	to	calculate	values	for
SEMMSL,	SEMMNS,	and	SEMMNU:

SEMMSL	=	13

13	is	what	has	been	found	to	be	the	best	for	both	Progress	and	MySQL.

SEMMNS	=	SEMMSL	×	number	of	db	servers	to	be	run	on	the	system

Set	SEMMNS	to	the	value	of	SEMMSL	multiplied	by	the	number	of	database
servers	(maximum)	that	you	are	running	on	the	system	at	one	time.

SEMMNU	=	SEMMNS

Set	the	value	of	SEMMNU	to	equal	the	value	of	SEMMNS.	You	could	probably
set	this	to	75%	of	SEMMNS,	but	this	is	a	conservative	estimate.

2.13.6.	OS/2	Notes

MySQL	uses	quite	a	few	open	files.	Because	of	this,	you	should	add	something
like	the	following	to	your	CONFIG.SYS	file:

SET	EMXOPT=-c	-n	-h1024

If	you	do	not	do	this,	you	may	encounter	the	following	error:

File	'xxxx'	not	found	(Errcode:	24)

When	using	MySQL	with	OS/2	Warp	3,	FixPack	29	or	above	is	required.	With
OS/2	Warp	4,	FixPack	4	or	above	is	required.	This	is	a	requirement	of	the

Pthreads	library.	MySQL	must	be	installed	on	a	partition	with	a	type	that
supports	long	filenames,	such	as	HPFS,	FAT32,	and	so	on.

The	INSTALL.CMD	script	must	be	run	from	OS/2's	own	CMD.EXE	and	may
not	work	with	replacement	shells	such	as	4OS2.EXE.

The	scripts/mysql-install-db	script	has	been	renamed.	It	is	called
install.cmd	and	is	a	REXX	script,	which	sets	up	the	default	MySQL	security
settings	and	creates	the	WorkPlace	Shell	icons	for	MySQL.

Dynamic	module	support	is	compiled	in	but	not	fully	tested.	Dynamic	modules
should	be	compiled	using	the	Pthreads	runtime	library.

gcc	-Zdll	-Zmt	-Zcrtdll=pthrdrtl	-I../include	-I../regex	-I..	\

				-o	example	udf_example.cc	-L../lib	-lmysqlclient	udf_example.def

mv	example.dll	example.udf

Note:	Due	to	limitations	in	OS/2,	UDF	module	name	stems	must	not	exceed
eight	characters.	Modules	are	stored	in	the	/mysql2/udf	directory;	the	safe-
mysqld.cmd	script	puts	this	directory	in	the	BEGINLIBPATH	environment	variable.
When	using	UDF	modules,	specified	extensions	are	ignored---it	is	assumed	to	be
.udf.	For	example,	in	Unix,	the	shared	module	might	be	named	example.so	and
you	would	load	a	function	from	it	like	this:

mysql>	CREATE	FUNCTION	metaphon	RETURNS	STRING	SONAME	'example.so';

In	OS/2,	the	module	would	be	named	example.udf,	but	you	would	not	specify
the	module	extension:

mysql>	CREATE	FUNCTION	metaphon	RETURNS	STRING	SONAME	'example';

2.14.	Perl	Installation	Notes

Perl	support	for	MySQL	is	provided	by	means	of	the	DBI/DBD	client	interface.
The	interface	requires	Perl	5.6.1	or	later.	It	does	not	work	if	you	have	an	older
version	of	Perl.

If	you	want	to	use	transactions	with	Perl	DBI,	you	need	to	have	DBD::mysql
version	1.2216	or	newer.	DBD::mysql	2.9003	or	newer	is	recommended.

If	you	are	using	the	MySQL	4.1	or	newer	client	library,	you	must	use
DBD::mysql	2.9003	or	newer.

Perl	support	is	not	included	with	MySQL	distributions.	You	can	obtain	the
necessary	modules	from	http://search.cpan.org	for	Unix,	or	by	using	the
ActiveState	ppm	program	on	Windows.	The	following	sections	describe	how	to
do	this.

Perl	support	for	MySQL	must	be	installed	if	you	want	to	run	the	MySQL
benchmark	scripts.	See	Section	7.1.4,	“The	MySQL	Benchmark	Suite”.

2.14.1.	Installing	Perl	on	Unix

MySQL	Perl	support	requires	that	you	have	installed	MySQL	client
programming	support	(libraries	and	header	files).	Most	installation	methods
install	the	necessary	files.	However,	if	you	installed	MySQL	from	RPM	files	on
Linux,	be	sure	that	you've	installed	the	developer	RPM.	The	client	programs	are
in	the	client	RPM,	but	client	programming	support	is	in	the	developer	RPM.

If	you	want	to	install	Perl	support,	the	files	you	need	can	be	obtained	from	the
CPAN	(Comprehensive	Perl	Archive	Network)	at	http://search.cpan.org.

The	easiest	way	to	install	Perl	modules	on	Unix	is	to	use	the	CPAN	module.	For
example:

shell>	perl	-MCPAN	-e	shell

cpan>	install	DBI

cpan>	install	DBD::mysql

The	DBD::mysql	installation	runs	a	number	of	tests.	These	tests	attempt	to

http://search.cpan.org
http://search.cpan.org

connect	to	the	local	MySQL	server	using	the	default	username	and	password.
(The	default	username	is	your	login	name	on	Unix,	and	ODBC	on	Windows.	The
default	password	is	“no	password.”)	If	you	cannot	connect	to	the	server	with
those	values	(for	example,	if	your	account	has	a	password),	the	tests	fail.	You
can	use	force	install	DBD::mysql	to	ignore	the	failed	tests.

DBI	requires	the	Data::Dumper	module.	It	may	be	installed;	if	not,	you	should
install	it	before	installing	DBI.

It	is	also	possible	to	download	the	module	distributions	in	the	form	of
compressed	tar	archives	and	build	the	modules	manually.	For	example,	to
unpack	and	build	a	DBI	distribution,	use	a	procedure	such	as	this:

1.	 Unpack	the	distribution	into	the	current	directory:

shell>	gunzip	<	DBI-VERSION.tar.gz	|	tar	xvf	-

This	command	creates	a	directory	named	DBI-VERSION.

2.	 Change	location	into	the	top-level	directory	of	the	unpacked	distribution:

shell>	cd	DBI-VERSION

3.	 Build	the	distribution	and	compile	everything:

shell>	perl	Makefile.PL

shell>	make

shell>	make	test

shell>	make	install

The	make	test	command	is	important	because	it	verifies	that	the	module	is
working.	Note	that	when	you	run	that	command	during	the	DBD::mysql
installation	to	exercise	the	interface	code,	the	MySQL	server	must	be	running	or
the	test	fails.

It	is	a	good	idea	to	rebuild	and	reinstall	the	DBD::mysql	distribution	whenever
you	install	a	new	release	of	MySQL,	particularly	if	you	notice	symptoms	such	as
that	all	your	DBI	scripts	fail	after	you	upgrade	MySQL.

If	you	do	not	have	access	rights	to	install	Perl	modules	in	the	system	directory	or
if	you	want	to	install	local	Perl	modules,	the	following	reference	may	be	useful:
http://servers.digitaldaze.com/extensions/perl/modules.html#modules

http://servers.digitaldaze.com/extensions/perl/modules.html#modules

Look	under	the	heading	“Installing	New	Modules	that	Require	Locally	Installed
Modules.”

2.14.2.	Installing	ActiveState	Perl	on	Windows

On	Windows,	you	should	do	the	following	to	install	the	MySQL	DBD	module
with	ActiveState	Perl:

1.	 Get	ActiveState	Perl	from	http://www.activestate.com/Products/ActivePerl/
and	install	it.

2.	 Open	a	console	window	(a	“DOS	window”).

3.	 If	necessary,	set	the	HTTP_proxy	variable.	For	example,	you	might	try	a
setting	like	this:

set	HTTP_proxy=my.proxy.com:3128

4.	 Start	the	PPM	program:

C:\>	C:\perl\bin\ppm.pl

5.	 If	you	have	not	previously	done	so,	install	DBI:

ppm>	install	DBI

6.	 If	this	succeeds,	run	the	following	command:

ppm>	install	\

		ftp://ftp.de.uu.net/pub/CPAN/authors/id/JWIED/DBD-mysql-1.2212.x86.ppd

This	procedure	should	work	with	ActiveState	Perl	5.6	or	newer.

If	you	cannot	get	the	procedure	to	work,	you	should	install	the	MyODBC	driver
instead	and	connect	to	the	MySQL	server	through	ODBC:

use	DBI;

$dbh=	DBI->connect("DBI:ODBC:$dsn",$user,$password)	||

		die	"Got	error	$DBI::errstr	when	connecting	to	$dsn\n";

2.14.3.	Problems	Using	the	Perl	DBI/DBD	Interface

http://www.activestate.com/Products/ActivePerl/

If	Perl	reports	that	it	cannot	find	the	../mysql/mysql.so	module,	the	problem	is
probably	that	Perl	cannot	locate	the	libmysqlclient.so	shared	library.	You
should	be	able	to	fix	this	problem	by	one	of	the	following	methods:

Compile	the	DBD::mysql	distribution	with	perl	Makefile.PL	-static	-
config	rather	than	perl	Makefile.PL.

Copy	libmysqlclient.so	to	the	directory	where	your	other	shared	libraries
are	located	(probably	/usr/lib	or	/lib).

Modify	the	-L	options	used	to	compile	DBD::mysql	to	reflect	the	actual
location	of	libmysqlclient.so.

On	Linux,	you	can	add	the	pathname	of	the	directory	where
libmysqlclient.so	is	located	to	the	/etc/ld.so.conf	file.

	Add	the	pathname	of	the	directory	where	libmysqlclient.so	is	located	to
the	LD_RUN_PATH	environment	variable.	Some	systems	use
LD_LIBRARY_PATH	instead.

Note	that	you	may	also	need	to	modify	the	-L	options	if	there	are	other	libraries
that	the	linker	fails	to	find.	For	example,	if	the	linker	cannot	find	libc	because	it
is	in	/lib	and	the	link	command	specifies	-L/usr/lib,	change	the	-L	option	to	-
L/lib	or	add	-L/lib	to	the	existing	link	command.

If	you	get	the	following	errors	from	DBD::mysql,	you	are	probably	using	gcc	(or
using	an	old	binary	compiled	with	gcc):

/usr/bin/perl:	can't	resolve	symbol	'__moddi3'

/usr/bin/perl:	can't	resolve	symbol	'__divdi3'

Add	-L/usr/lib/gcc-lib/...	-lgcc	to	the	link	command	when	the	mysql.so
library	gets	built	(check	the	output	from	make	for	mysql.so	when	you	compile
the	Perl	client).	The	-L	option	should	specify	the	pathname	of	the	directory
where	libgcc.a	is	located	on	your	system.

Another	cause	of	this	problem	may	be	that	Perl	and	MySQL	are	not	both
compiled	with	gcc.	In	this	case,	you	can	solve	the	mismatch	by	compiling	both
with	gcc.

You	may	see	the	following	error	from	DBD::mysql	when	you	run	the	tests:

t/00base............install_driver(mysql)	failed:

Can't	load	'../blib/arch/auto/DBD/mysql/mysql.so'	for	module	DBD::mysql:

../blib/arch/auto/DBD/mysql/mysql.so:	undefined	symbol:

uncompress	at	/usr/lib/perl5/5.00503/i586-linux/DynaLoader.pm	line	169.

This	means	that	you	need	to	include	the	-lz	compression	library	on	the	link	line.
That	can	be	done	by	changing	the	following	line	in	the	file
lib/DBD/mysql/Install.pm:

$sysliblist	.=	"	-lm";

Change	that	line	to:

$sysliblist	.=	"	-lm	-lz";

After	this,	you	must	run	make	realclean	and	then	proceed	with	the	installation
from	the	beginning.

If	you	want	to	install	DBI	on	SCO,	you	have	to	edit	the	Makefile	in	DBI-xxx
and	each	subdirectory.	Note	that	the	following	assumes	gcc	2.95.2	or	newer:

OLD:																																		NEW:

CC	=	cc																															CC	=	gcc

CCCDLFLAGS	=	-KPIC	-W1,-Bexport							CCCDLFLAGS	=	-fpic

CCDLFLAGS	=	-wl,-Bexport														CCDLFLAGS	=

LD	=	ld																															LD	=	gcc	-G	-fpic

LDDLFLAGS	=	-G	-L/usr/local/lib							LDDLFLAGS	=	-L/usr/local/lib

LDFLAGS	=	-belf	-L/usr/local/lib						LDFLAGS	=	-L/usr/local/lib

LD	=	ld																															LD	=	gcc	-G	-fpic

OPTIMISE	=	-Od																								OPTIMISE	=	-O1

OLD:

CCCFLAGS	=	-belf	-dy	-w0	-U	M_XENIX	-DPERL_SCO5	-I/usr/local/include

NEW:

CCFLAGS	=	-U	M_XENIX	-DPERL_SCO5	-I/usr/local/include

These	changes	are	necessary	because	the	Perl	dynaloader	does	not	load	the	DBI
modules	if	they	were	compiled	with	icc	or	cc.

If	you	want	to	use	the	Perl	module	on	a	system	that	does	not	support	dynamic
linking	(such	as	SCO),	you	can	generate	a	static	version	of	Perl	that	includes	DBI

and	DBD::mysql.	The	way	this	works	is	that	you	generate	a	version	of	Perl	with
the	DBI	code	linked	in	and	install	it	on	top	of	your	current	Perl.	Then	you	use
that	to	build	a	version	of	Perl	that	additionally	has	the	DBD	code	linked	in,	and
install	that.

On	SCO,	you	must	have	the	following	environment	variables	set:

LD_LIBRARY_PATH=/lib:/usr/lib:/usr/local/lib:/usr/progressive/lib

Or:

LD_LIBRARY_PATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\

				/usr/progressive/lib:/usr/skunk/lib

LIBPATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\

				/usr/progressive/lib:/usr/skunk/lib

MANPATH=scohelp:/usr/man:/usr/local1/man:/usr/local/man:\

				/usr/skunk/man:

First,	create	a	Perl	that	includes	a	statically	linked	DBI	module	by	running	these
commands	in	the	directory	where	your	DBI	distribution	is	located:

shell>	perl	Makefile.PL	-static	-config

shell>	make

shell>	make	install

shell>	make	perl

Then	you	must	install	the	new	Perl.	The	output	of	make	perl	indicates	the	exact
make	command	you	need	to	execute	to	perform	the	installation.	On	SCO,	this	is
make	-f	Makefile.aperl	inst_perl	MAP_TARGET=perl.

Next,	use	the	just-created	Perl	to	create	another	Perl	that	also	includes	a
statically	linked	DBD::mysql	by	running	these	commands	in	the	directory	where
your	DBD::mysql	distribution	is	located:

shell>	perl	Makefile.PL	-static	-config

shell>	make

shell>	make	install

shell>	make	perl

Finally,	you	should	install	this	new	Perl.	Again,	the	output	of	make	perl
indicates	the	command	to	use.

Chapter	3.	Tutorial

Table	of	Contents

3.1.	Connecting	to	and	Disconnecting	from	the	Server
3.2.	Entering	Queries
3.3.	Creating	and	Using	a	Database

3.3.1.	Creating	and	Selecting	a	Database
3.3.2.	Creating	a	Table
3.3.3.	Loading	Data	into	a	Table
3.3.4.	Retrieving	Information	from	a	Table

3.4.	Getting	Information	About	Databases	and	Tables
3.5.	Using	mysql	in	Batch	Mode
3.6.	Examples	of	Common	Queries

3.6.1.	The	Maximum	Value	for	a	Column
3.6.2.	The	Row	Holding	the	Maximum	of	a	Certain	Column
3.6.3.	Maximum	of	Column	per	Group
3.6.4.	The	Rows	Holding	the	Group-wise	Maximum	of	a	Certain	Field
3.6.5.	Using	User-Defined	Variables
3.6.6.	Using	Foreign	Keys
3.6.7.	Searching	on	Two	Keys
3.6.8.	Calculating	Visits	Per	Day
3.6.9.	Using	AUTO_INCREMENT

3.7.	Queries	from	the	Twin	Project
3.7.1.	Find	All	Non-distributed	Twins
3.7.2.	Show	a	Table	of	Twin	Pair	Status

3.8.	Using	MySQL	with	Apache

This	chapter	provides	a	tutorial	introduction	to	MySQL	by	showing	how	to	use
the	mysql	client	program	to	create	and	use	a	simple	database.	mysql	(sometimes
referred	to	as	the	“terminal	monitor”	or	just	“monitor”)	is	an	interactive	program
that	allows	you	to	connect	to	a	MySQL	server,	run	queries,	and	view	the	results.
mysql	may	also	be	used	in	batch	mode:	you	place	your	queries	in	a	file
beforehand,	then	tell	mysql	to	execute	the	contents	of	the	file.	Both	ways	of
using	mysql	are	covered	here.

To	see	a	list	of	options	provided	by	mysql,	invoke	it	with	the	--help	option:

shell>	mysql	--help

This	chapter	assumes	that	mysql	is	installed	on	your	machine	and	that	a	MySQL
server	is	available	to	which	you	can	connect.	If	this	is	not	true,	contact	your
MySQL	administrator.	(If	you	are	the	administrator,	you	need	to	consult	the
relevant	portions	of	this	manual,	such	as	Chapter	5,	Database	Administration.)

This	chapter	describes	the	entire	process	of	setting	up	and	using	a	database.	If
you	are	interested	only	in	accessing	an	existing	database,	you	may	want	to	skip
over	the	sections	that	describe	how	to	create	the	database	and	the	tables	it
contains.

Because	this	chapter	is	tutorial	in	nature,	many	details	are	necessarily	omitted.
Consult	the	relevant	sections	of	the	manual	for	more	information	on	the	topics
covered	here.

3.1.	Connecting	to	and	Disconnecting	from	the	Server

To	connect	to	the	server,	you	will	usually	need	to	provide	a	MySQL	user	name
when	you	invoke	mysql	and,	most	likely,	a	password.	If	the	server	runs	on	a
machine	other	than	the	one	where	you	log	in,	you	will	also	need	to	specify	a	host
name.	Contact	your	administrator	to	find	out	what	connection	parameters	you
should	use	to	connect	(that	is,	what	host,	user	name,	and	password	to	use).	Once
you	know	the	proper	parameters,	you	should	be	able	to	connect	like	this:

shell>	mysql	-h	host	-u	user	-p

Enter	password:	********

host	and	user	represent	the	host	name	where	your	MySQL	server	is	running	and
the	user	name	of	your	MySQL	account.	Substitute	appropriate	values	for	your
setup.	The	********	represents	your	password;	enter	it	when	mysql	displays	the
Enter	password:	prompt.

If	that	works,	you	should	see	some	introductory	information	followed	by	a
mysql>	prompt:

shell>	mysql	-h	host	-u	user	-p

Enter	password:	********

Welcome	to	the	MySQL	monitor.		Commands	end	with	;	or	\g.

Your	MySQL	connection	id	is	25338	to	server	version:	5.0.25-standard

Type	'help;'	or	'\h'	for	help.	Type	'\c'	to	clear	the	buffer.

mysql>

The	mysql>	prompt	tells	you	that	mysql	is	ready	for	you	to	enter	commands.

If	you	are	logging	in	on	the	same	machine	that	MySQL	is	running	on,	you	can
omit	the	host,	and	simply	use	the	following:

shell<	mysql	-u	user	-p

If,	when	you	attempt	to	log	in,	you	get	an	error	message	such	as	ERROR	2002
(HY000):	Can't	connect	to	local	MySQL	server	through	socket	'/tmp/mysql.sock'
(2),	it	means	that	that	MySQL	server	daemon	(Unix)	or	service	(Windows)	is	not
running.	Consult	the	administrator	or	see	the	section	of	Chapter	2,	Installing	and
Upgrading	MySQL	that	is	appropriate	to	your	operating	system.

For	help	with	other	problems	often	encountered	when	trying	to	log	in,	see
Section	A.2,	“Common	Errors	When	Using	MySQL	Programs”.

Some	MySQL	installations	allow	users	to	connect	as	the	anonymous	(unnamed)
user	to	the	server	running	on	the	local	host.	If	this	is	the	case	on	your	machine,
you	should	be	able	to	connect	to	that	server	by	invoking	mysql	without	any
options:

shell>	mysql

After	you	have	connected	successfully,	you	can	disconnect	any	time	by	typing
QUIT	(or	\q)	at	the	mysql>	prompt:

mysql>	QUIT

Bye

On	Unix,	you	can	also	disconnect	by	pressing	Control-D.

Most	examples	in	the	following	sections	assume	that	you	are	connected	to	the
server.	They	indicate	this	by	the	mysql>	prompt.

3.2.	Entering	Queries

Make	sure	that	you	are	connected	to	the	server,	as	discussed	in	the	previous
section.	Doing	so	does	not	in	itself	select	any	database	to	work	with,	but	that's
okay.	At	this	point,	it's	more	important	to	find	out	a	little	about	how	to	issue
queries	than	to	jump	right	in	creating	tables,	loading	data	into	them,	and
retrieving	data	from	them.	This	section	describes	the	basic	principles	of	entering
commands,	using	several	queries	you	can	try	out	to	familiarize	yourself	with
how	mysql	works.

Here's	a	simple	command	that	asks	the	server	to	tell	you	its	version	number	and
the	current	date.	Type	it	in	as	shown	here	following	the	mysql>	prompt	and	press
Enter:

mysql>	SELECT	VERSION(),	CURRENT_DATE;

+----------------+--------------+

|	VERSION()						|	CURRENT_DATE	|

+----------------+--------------+

|	5.0.7-beta-Max	|	2005-07-11			|

+----------------+--------------+

1	row	in	set	(0.01	sec)

mysql>

This	query	illustrates	several	things	about	mysql:

A	command	normally	consists	of	an	SQL	statement	followed	by	a
semicolon.	(There	are	some	exceptions	where	a	semicolon	may	be	omitted.
QUIT,	mentioned	earlier,	is	one	of	them.	We'll	get	to	others	later.)

When	you	issue	a	command,	mysql	sends	it	to	the	server	for	execution	and
displays	the	results,	then	prints	another	mysql>	prompt	to	indicate	that	it	is
ready	for	another	command.

mysql	displays	query	output	in	tabular	form	(rows	and	columns).	The	first
row	contains	labels	for	the	columns.	The	rows	following	are	the	query
results.	Normally,	column	labels	are	the	names	of	the	columns	you	fetch
from	database	tables.	If	you're	retrieving	the	value	of	an	expression	rather
than	a	table	column	(as	in	the	example	just	shown),	mysql	labels	the
column	using	the	expression	itself.

mysql	shows	how	many	rows	were	returned	and	how	long	the	query	took	to
execute,	which	gives	you	a	rough	idea	of	server	performance.	These	values
are	imprecise	because	they	represent	wall	clock	time	(not	CPU	or	machine
time),	and	because	they	are	affected	by	factors	such	as	server	load	and
network	latency.	(For	brevity,	the	“rows	in	set”	line	is	sometimes	not	shown
in	the	remaining	examples	in	this	chapter.)

Keywords	may	be	entered	in	any	lettercase.	The	following	queries	are
equivalent:

mysql>	SELECT	VERSION(),	CURRENT_DATE;

mysql>	select	version(),	current_date;

mysql>	SeLeCt	vErSiOn(),	current_DATE;

Here's	another	query.	It	demonstrates	that	you	can	use	mysql	as	a	simple
calculator:

mysql>	SELECT	SIN(PI()/4),	(4+1)*5;

+------------------+---------+

|	SIN(PI()/4)						|	(4+1)*5	|

+------------------+---------+

|	0.70710678118655	|						25	|

+------------------+---------+

1	row	in	set	(0.02	sec)

The	queries	shown	thus	far	have	been	relatively	short,	single-line	statements.
You	can	even	enter	multiple	statements	on	a	single	line.	Just	end	each	one	with	a
semicolon:

mysql>	SELECT	VERSION();	SELECT	NOW();

+----------------+

|	VERSION()						|

+----------------+

|	5.0.7-beta-Max	|

+----------------+

1	row	in	set	(0.00	sec)

+---------------------+

|	NOW()															|

+---------------------+

|	2005-07-11	17:59:36	|

+---------------------+		

1	row	in	set	(0.00	sec)

A	command	need	not	be	given	all	on	a	single	line,	so	lengthy	commands	that

require	several	lines	are	not	a	problem.	mysql	determines	where	your	statement
ends	by	looking	for	the	terminating	semicolon,	not	by	looking	for	the	end	of	the
input	line.	(In	other	words,	mysql	accepts	free-format	input:	it	collects	input
lines	but	does	not	execute	them	until	it	sees	the	semicolon.)

Here's	a	simple	multiple-line	statement:

mysql>	SELECT

				->	USER()

				->	,

				->	CURRENT_DATE;

+---------------+--------------+

|	USER()								|	CURRENT_DATE	|

+---------------+--------------+

|	jon@localhost	|	2005-07-11			|

+---------------+--------------+

In	this	example,	notice	how	the	prompt	changes	from	mysql>	to	->	after	you
enter	the	first	line	of	a	multiple-line	query.	This	is	how	mysql	indicates	that	it
has	not	yet	seen	a	complete	statement	and	is	waiting	for	the	rest.	The	prompt	is
your	friend,	because	it	provides	valuable	feedback.	If	you	use	that	feedback,	you
can	always	be	aware	of	what	mysql	is	waiting	for.

If	you	decide	you	do	not	want	to	execute	a	command	that	you	are	in	the	process
of	entering,	cancel	it	by	typing	\c:

mysql>	SELECT

				->	USER()

				->	\c

mysql>

Here,	too,	notice	the	prompt.	It	switches	back	to	mysql>	after	you	type	\c,
providing	feedback	to	indicate	that	mysql	is	ready	for	a	new	command.

The	following	table	shows	each	of	the	prompts	you	may	see	and	summarizes
what	they	mean	about	the	state	that	mysql	is	in:

Prompt Meaning
mysql> Ready	for	new	command.
-> Waiting	for	next	line	of	multiple-line	command.

'>
Waiting	for	next	line,	waiting	for	completion	of	a	string	that	began
with	a	single	quote	(‘'’).

">
Waiting	for	next	line,	waiting	for	completion	of	a	string	that	began
with	a	double	quote	(‘"’).

`>
Waiting	for	next	line,	waiting	for	completion	of	an	identifier	that
began	with	a	backtick	(‘`’).

/*>
Waiting	for	next	line,	waiting	for	completion	of	a	comment	that	began
with	/*.

In	the	MySQL	5.0	series,	the	/*>	prompt	was	implemented	in	MySQL	5.0.6.

Multiple-line	statements	commonly	occur	by	accident	when	you	intend	to	issue	a
command	on	a	single	line,	but	forget	the	terminating	semicolon.	In	this	case,
mysql	waits	for	more	input:

mysql>	SELECT	USER()

				->

If	this	happens	to	you	(you	think	you've	entered	a	statement	but	the	only
response	is	a	->	prompt),	most	likely	mysql	is	waiting	for	the	semicolon.	If	you
don't	notice	what	the	prompt	is	telling	you,	you	might	sit	there	for	a	while	before
realizing	what	you	need	to	do.	Enter	a	semicolon	to	complete	the	statement,	and
mysql	executes	it:

mysql>	SELECT	USER()

				->	;

+---------------+

|	USER()								|

+---------------+

|	jon@localhost	|

+---------------+

The	'>	and	">	prompts	occur	during	string	collection	(another	way	of	saying	that
MySQL	is	waiting	for	completion	of	a	string).	In	MySQL,	you	can	write	strings
surrounded	by	either	‘'’	or	‘"’	characters	(for	example,	'hello'	or	"goodbye"),
and	mysql	lets	you	enter	strings	that	span	multiple	lines.	When	you	see	a	'>	or
">	prompt,	it	means	that	you	have	entered	a	line	containing	a	string	that	begins
with	a	‘'’	or	‘"’	quote	character,	but	have	not	yet	entered	the	matching	quote	that
terminates	the	string.	This	often	indicates	that	you	have	inadvertently	left	out	a
quote	character.	For	example:

mysql>	SELECT	*	FROM	my_table	WHERE	name	=	'Smith	AND	age	<	30;

				'>

If	you	enter	this	SELECT	statement,	then	press	Enter	and	wait	for	the	result,
nothing	happens.	Instead	of	wondering	why	this	query	takes	so	long,	notice	the
clue	provided	by	the	'>	prompt.	It	tells	you	that	mysql	expects	to	see	the	rest	of
an	unterminated	string.	(Do	you	see	the	error	in	the	statement?	The	string	'Smith
is	missing	the	second	single	quote	mark.)

At	this	point,	what	do	you	do?	The	simplest	thing	is	to	cancel	the	command.
However,	you	cannot	just	type	\c	in	this	case,	because	mysql	interprets	it	as	part
of	the	string	that	it	is	collecting.	Instead,	enter	the	closing	quote	character	(so
mysql	knows	you've	finished	the	string),	then	type	\c:

mysql>	SELECT	*	FROM	my_table	WHERE	name	=	'Smith	AND	age	<	30;

				'>	'\c

mysql>

The	prompt	changes	back	to	mysql>,	indicating	that	mysql	is	ready	for	a	new
command.

The	`>	prompt	is	similar	to	the	'>	and	">	prompts,	but	indicates	that	you	have
begun	but	not	completed	a	backtick-quoted	identifier.

It	is	important	to	know	what	the	'>,	">,	and	`>	prompts	signify,	because	if	you
mistakenly	enter	an	unterminated	string,	any	further	lines	you	type	appear	to	be
ignored	by	mysql	—	including	a	line	containing	QUIT.	This	can	be	quite
confusing,	especially	if	you	do	not	know	that	you	need	to	supply	the	terminating
quote	before	you	can	cancel	the	current	command.

3.3.	Creating	and	Using	a	Database

Once	you	know	how	to	enter	commands,	you	are	ready	to	access	a	database.

Suppose	that	you	have	several	pets	in	your	home	(your	menagerie)	and	you
would	like	to	keep	track	of	various	types	of	information	about	them.	You	can	do
so	by	creating	tables	to	hold	your	data	and	loading	them	with	the	desired
information.	Then	you	can	answer	different	sorts	of	questions	about	your
animals	by	retrieving	data	from	the	tables.	This	section	shows	you	how	to:

Create	a	database

Create	a	table

Load	data	into	the	table

Retrieve	data	from	the	table	in	various	ways

Use	multiple	tables

The	menagerie	database	is	simple	(deliberately),	but	it	is	not	difficult	to	think	of
real-world	situations	in	which	a	similar	type	of	database	might	be	used.	For
example,	a	database	like	this	could	be	used	by	a	farmer	to	keep	track	of
livestock,	or	by	a	veterinarian	to	keep	track	of	patient	records.	A	menagerie
distribution	containing	some	of	the	queries	and	sample	data	used	in	the
following	sections	can	be	obtained	from	the	MySQL	Web	site.	It	is	available	in
both	compressed	tar	file	and	Zip	formats	at	http://dev.mysql.com/doc/.

Use	the	SHOW	statement	to	find	out	what	databases	currently	exist	on	the	server:

mysql>	SHOW	DATABASES;

+----------+

|	Database	|

+----------+

|	mysql				|

|	test					|

|	tmp						|

+----------+

The	list	of	databases	is	probably	different	on	your	machine,	but	the	mysql	and

http://dev.mysql.com/doc/

test	databases	are	likely	to	be	among	them.	The	mysql	database	is	required
because	it	describes	user	access	privileges.	The	test	database	is	often	provided
as	a	workspace	for	users	to	try	things	out.

Note	that	you	may	not	see	all	databases	if	you	do	not	have	the	SHOW	DATABASES
privilege.	See	Section	13.5.1.3,	“GRANT	Syntax”.

If	the	test	database	exists,	try	to	access	it:

mysql>	USE	test

Database	changed

Note	that	USE,	like	QUIT,	does	not	require	a	semicolon.	(You	can	terminate	such
statements	with	a	semicolon	if	you	like;	it	does	no	harm.)	The	USE	statement	is
special	in	another	way,	too:	it	must	be	given	on	a	single	line.

You	can	use	the	test	database	(if	you	have	access	to	it)	for	the	examples	that
follow,	but	anything	you	create	in	that	database	can	be	removed	by	anyone	else
with	access	to	it.	For	this	reason,	you	should	probably	ask	your	MySQL
administrator	for	permission	to	use	a	database	of	your	own.	Suppose	that	you
want	to	call	yours	menagerie.	The	administrator	needs	to	execute	a	command
like	this:

mysql>	GRANT	ALL	ON	menagerie.*	TO	'your_mysql_name'@'your_client_host';

where	your_mysql_name	is	the	MySQL	user	name	assigned	to	you	and
your_client_host	is	the	host	from	which	you	connect	to	the	server.

3.3.1.	Creating	and	Selecting	a	Database

If	the	administrator	creates	your	database	for	you	when	setting	up	your
permissions,	you	can	begin	using	it.	Otherwise,	you	need	to	create	it	yourself:

mysql>	CREATE	DATABASE	menagerie;

Under	Unix,	database	names	are	case	sensitive	(unlike	SQL	keywords),	so	you
must	always	refer	to	your	database	as	menagerie,	not	as	Menagerie,	MENAGERIE,
or	some	other	variant.	This	is	also	true	for	table	names.	(Under	Windows,	this
restriction	does	not	apply,	although	you	must	refer	to	databases	and	tables	using
the	same	lettercase	throughout	a	given	query.	However,	for	a	variety	of	reasons,
our	recommended	best	practice	is	always	to	use	the	same	lettercase	that	was

used	when	the	database	was	created.)

Note:	If	you	get	an	error	such	as	ERROR	1044	(42000):	Access	denied	for	user
'monty'@'localhost'	to	database	'menagerie'	when	attempting	to	create	a
database,	this	means	that	your	user	account	does	not	have	the	necessary
privileges	to	do	so.	Discuss	this	with	the	administrator	or	see	Section	5.8,	“The
MySQL	Access	Privilege	System”.

Creating	a	database	does	not	select	it	for	use;	you	must	do	that	explicitly.	To
make	menagerie	the	current	database,	use	this	command:

mysql>	USE	menagerie;

Database	changed

Your	database	needs	to	be	created	only	once,	but	you	must	select	it	for	use	each
time	you	begin	a	mysql	session.	You	can	do	this	by	issuing	a	USE	statement	as
shown	in	the	example.	Alternatively,	you	can	select	the	database	on	the
command	line	when	you	invoke	mysql.	Just	specify	its	name	after	any
connection	parameters	that	you	might	need	to	provide.	For	example:

shell>	mysql	-h	host	-u	user	-p	menagerie

Enter	password:	********

Note	that	menagerie	in	the	command	just	shown	is	not	your	password.	If	you
want	to	supply	your	password	on	the	command	line	after	the	-p	option,	you	must
do	so	with	no	intervening	space	(for	example,	as	-pmypassword,	not	as	-p
mypassword).	However,	putting	your	password	on	the	command	line	is	not
recommended,	because	doing	so	exposes	it	to	snooping	by	other	users	logged	in
on	your	machine.

3.3.2.	Creating	a	Table

Creating	the	database	is	the	easy	part,	but	at	this	point	it's	empty,	as	SHOW	TABLES
tells	you:

mysql>	SHOW	TABLES;

Empty	set	(0.00	sec)

The	harder	part	is	deciding	what	the	structure	of	your	database	should	be:	what
tables	you	need	and	what	columns	should	be	in	each	of	them.

You	want	a	table	that	contains	a	record	for	each	of	your	pets.	This	can	be	called
the	pet	table,	and	it	should	contain,	as	a	bare	minimum,	each	animal's	name.
Because	the	name	by	itself	is	not	very	interesting,	the	table	should	contain	other
information.	For	example,	if	more	than	one	person	in	your	family	keeps	pets,
you	might	want	to	list	each	animal's	owner.	You	might	also	want	to	record	some
basic	descriptive	information	such	as	species	and	sex.

How	about	age?	That	might	be	of	interest,	but	it's	not	a	good	thing	to	store	in	a
database.	Age	changes	as	time	passes,	which	means	you'd	have	to	update	your
records	often.	Instead,	it's	better	to	store	a	fixed	value	such	as	date	of	birth.
Then,	whenever	you	need	age,	you	can	calculate	it	as	the	difference	between	the
current	date	and	the	birth	date.	MySQL	provides	functions	for	doing	date
arithmetic,	so	this	is	not	difficult.	Storing	birth	date	rather	than	age	has	other
advantages,	too:

You	can	use	the	database	for	tasks	such	as	generating	reminders	for
upcoming	pet	birthdays.	(If	you	think	this	type	of	query	is	somewhat	silly,
note	that	it	is	the	same	question	you	might	ask	in	the	context	of	a	business
database	to	identify	clients	to	whom	you	need	to	send	out	birthday	greetings
in	the	current	week	or	month,	for	that	computer-assisted	personal	touch.)

You	can	calculate	age	in	relation	to	dates	other	than	the	current	date.	For
example,	if	you	store	death	date	in	the	database,	you	can	easily	calculate
how	old	a	pet	was	when	it	died.

You	can	probably	think	of	other	types	of	information	that	would	be	useful	in	the
pet	table,	but	the	ones	identified	so	far	are	sufficient:	name,	owner,	species,	sex,
birth,	and	death.

Use	a	CREATE	TABLE	statement	to	specify	the	layout	of	your	table:

mysql>	CREATE	TABLE	pet	(name	VARCHAR(20),	owner	VARCHAR(20),

				->	species	VARCHAR(20),	sex	CHAR(1),	birth	DATE,	death	DATE);

VARCHAR	is	a	good	choice	for	the	name,	owner,	and	species	columns	because	the
column	values	vary	in	length.	The	lengths	in	those	column	definitions	need	not
all	be	the	same,	and	need	not	be	20.	You	can	normally	pick	any	length	from	1	to
65535,	whatever	seems	most	reasonable	to	you.	(Note:	Prior	to	MySQL	5.0.3,
the	upper	limit	was	255.)	If	you	make	a	poor	choice	and	it	turns	out	later	that
you	need	a	longer	field,	MySQL	provides	an	ALTER	TABLE	statement.

Several	types	of	values	can	be	chosen	to	represent	sex	in	animal	records,	such	as
'm'	and	'f',	or	perhaps	'male'	and	'female'.	It	is	simplest	to	use	the	single
characters	'm'	and	'f'.

The	use	of	the	DATE	data	type	for	the	birth	and	death	columns	is	a	fairly
obvious	choice.

Once	you	have	created	a	table,	SHOW	TABLES	should	produce	some	output:

mysql>	SHOW	TABLES;

+---------------------+

|	Tables	in	menagerie	|

+---------------------+

|	pet																	|

+---------------------+

To	verify	that	your	table	was	created	the	way	you	expected,	use	a	DESCRIBE
statement:

mysql>	DESCRIBE	pet;

+---------+-------------+------+-----+---------+-------+

|	Field			|	Type								|	Null	|	Key	|	Default	|	Extra	|

+---------+-------------+------+-----+---------+-------+

|	name				|	varchar(20)	|	YES		|					|	NULL				|							|

|	owner			|	varchar(20)	|	YES		|					|	NULL				|							|

|	species	|	varchar(20)	|	YES		|					|	NULL				|							|

|	sex					|	char(1)					|	YES		|					|	NULL				|							|

|	birth			|	date								|	YES		|					|	NULL				|							|

|	death			|	date								|	YES		|					|	NULL				|							|

+---------+-------------+------+-----+---------+-------+

You	can	use	DESCRIBE	any	time,	for	example,	if	you	forget	the	names	of	the
columns	in	your	table	or	what	types	they	have.

For	more	information	about	MySQL	data	types,	see	Chapter	11,	Data	Types.

3.3.3.	Loading	Data	into	a	Table

After	creating	your	table,	you	need	to	populate	it.	The	LOAD	DATA	and	INSERT
statements	are	useful	for	this.

Suppose	that	your	pet	records	can	be	described	as	shown	here.	(Observe	that
MySQL	expects	dates	in	'YYYY-MM-DD'	format;	this	may	be	different	from	what

you	are	used	to.)

name owner species sex birth death
Fluffy Harold cat f 1993-02-04 	
Claws Gwen cat m 1994-03-17 	
Buffy Harold dog f 1989-05-13 	
Fang Benny dog m 1990-08-27 	
Bowser Diane dog m 1979-08-31 1995-07-29
Chirpy Gwen bird f 1998-09-11 	
Whistler Gwen bird 	 1997-12-09 	
Slim Benny snake m 1996-04-29 	

Because	you	are	beginning	with	an	empty	table,	an	easy	way	to	populate	it	is	to
create	a	text	file	containing	a	row	for	each	of	your	animals,	then	load	the
contents	of	the	file	into	the	table	with	a	single	statement.

You	could	create	a	text	file	pet.txt	containing	one	record	per	line,	with	values
separated	by	tabs,	and	given	in	the	order	in	which	the	columns	were	listed	in	the
CREATE	TABLE	statement.	For	missing	values	(such	as	unknown	sexes	or	death
dates	for	animals	that	are	still	living),	you	can	use	NULL	values.	To	represent
these	in	your	text	file,	use	\N	(backslash,	capital-N).	For	example,	the	record	for
Whistler	the	bird	would	look	like	this	(where	the	whitespace	between	values	is	a
single	tab	character):

Whistler								Gwen				bird				\N						1997-12-09						\N

To	load	the	text	file	pet.txt	into	the	pet	table,	use	this	command:

mysql>	LOAD	DATA	LOCAL	INFILE	'/path/pet.txt'	INTO	TABLE	pet;

Note	that	if	you	created	the	file	on	Windows	with	an	editor	that	uses	\r\n	as	a
line	terminator,	you	should	use:

mysql>	LOAD	DATA	LOCAL	INFILE	'/path/pet.txt'	INTO	TABLE	pet

				->	LINES	TERMINATED	BY	'\r\n';

(On	an	Apple	machine	running	OS	X,	you	would	likely	want	to	use	LINES
TERMINATED	BY	'\r'.)

You	can	specify	the	column	value	separator	and	end	of	line	marker	explicitly	in
the	LOAD	DATA	statement	if	you	wish,	but	the	defaults	are	tab	and	linefeed.	These
are	sufficient	for	the	statement	to	read	the	file	pet.txt	properly.

If	the	statement	fails,	it	is	likely	that	your	MySQL	installation	does	not	have
local	file	capability	enabled	by	default.	See	Section	5.7.4,	“Security	Issues	with
LOAD	DATA	LOCAL”,	for	information	on	how	to	change	this.

When	you	want	to	add	new	records	one	at	a	time,	the	INSERT	statement	is	useful.
In	its	simplest	form,	you	supply	values	for	each	column,	in	the	order	in	which
the	columns	were	listed	in	the	CREATE	TABLE	statement.	Suppose	that	Diane	gets
a	new	hamster	named	“Puffball.”	You	could	add	a	new	record	using	an	INSERT
statement	like	this:

mysql>	INSERT	INTO	pet

				->	VALUES	('Puffball','Diane','hamster','f','1999-03-30',NULL);

Note	that	string	and	date	values	are	specified	as	quoted	strings	here.	Also,	with
INSERT,	you	can	insert	NULL	directly	to	represent	a	missing	value.	You	do	not	use
\N	like	you	do	with	LOAD	DATA.

From	this	example,	you	should	be	able	to	see	that	there	would	be	a	lot	more
typing	involved	to	load	your	records	initially	using	several	INSERT	statements
rather	than	a	single	LOAD	DATA	statement.

3.3.4.	Retrieving	Information	from	a	Table

The	SELECT	statement	is	used	to	pull	information	from	a	table.	The	general	form
of	the	statement	is:

SELECT	what_to_select

FROM	which_table

WHERE	conditions_to_satisfy;

what_to_select	indicates	what	you	want	to	see.	This	can	be	a	list	of	columns,
or	*	to	indicate	“all	columns.”	which_table	indicates	the	table	from	which	you
want	to	retrieve	data.	The	WHERE	clause	is	optional.	If	it	is	present,
conditions_to_satisfy	specifies	one	or	more	conditions	that	rows	must	satisfy
to	qualify	for	retrieval.

3.3.4.1.	Selecting	All	Data

The	simplest	form	of	SELECT	retrieves	everything	from	a	table:

mysql>	SELECT	*	FROM	pet;

+----------+--------+---------+------+------------+------------+

|	name					|	owner		|	species	|	sex		|	birth						|	death						|

+----------+--------+---------+------+------------+------------+

|	Fluffy			|	Harold	|	cat					|	f				|	1993-02-04	|	NULL							|

|	Claws				|	Gwen			|	cat					|	m				|	1994-03-17	|	NULL							|

|	Buffy				|	Harold	|	dog					|	f				|	1989-05-13	|	NULL							|

|	Fang					|	Benny		|	dog					|	m				|	1990-08-27	|	NULL							|

|	Bowser			|	Diane		|	dog					|	m				|	1979-08-31	|	1995-07-29	|

|	Chirpy			|	Gwen			|	bird				|	f				|	1998-09-11	|	NULL							|

|	Whistler	|	Gwen			|	bird				|	NULL	|	1997-12-09	|	NULL							|

|	Slim					|	Benny		|	snake			|	m				|	1996-04-29	|	NULL							|

|	Puffball	|	Diane		|	hamster	|	f				|	1999-03-30	|	NULL							|

+----------+--------+---------+------+------------+------------+

This	form	of	SELECT	is	useful	if	you	want	to	review	your	entire	table,	for
example,	after	you've	just	loaded	it	with	your	initial	dataset.	For	example,	you
may	happen	to	think	that	the	birth	date	for	Bowser	doesn't	seem	quite	right.
Consulting	your	original	pedigree	papers,	you	find	that	the	correct	birth	year
should	be	1989,	not	1979.

There	are	at	least	two	ways	to	fix	this:

Edit	the	file	pet.txt	to	correct	the	error,	then	empty	the	table	and	reload	it
using	DELETE	and	LOAD	DATA:

mysql>	DELETE	FROM	pet;

mysql>	LOAD	DATA	LOCAL	INFILE	'pet.txt'	INTO	TABLE	pet;

However,	if	you	do	this,	you	must	also	re-enter	the	record	for	Puffball.

Fix	only	the	erroneous	record	with	an	UPDATE	statement:

mysql>	UPDATE	pet	SET	birth	=	'1989-08-31'	WHERE	name	=	'Bowser';

The	UPDATE	changes	only	the	record	in	question	and	does	not	require	you	to
reload	the	table.

3.3.4.2.	Selecting	Particular	Rows

As	shown	in	the	preceding	section,	it	is	easy	to	retrieve	an	entire	table.	Just	omit
the	WHERE	clause	from	the	SELECT	statement.	But	typically	you	don't	want	to	see
the	entire	table,	particularly	when	it	becomes	large.	Instead,	you're	usually	more
interested	in	answering	a	particular	question,	in	which	case	you	specify	some
constraints	on	the	information	you	want.	Let's	look	at	some	selection	queries	in
terms	of	questions	about	your	pets	that	they	answer.

You	can	select	only	particular	rows	from	your	table.	For	example,	if	you	want	to
verify	the	change	that	you	made	to	Bowser's	birth	date,	select	Bowser's	record
like	this:

mysql>	SELECT	*	FROM	pet	WHERE	name	=	'Bowser';

+--------+-------+---------+------+------------+------------+

|	name			|	owner	|	species	|	sex		|	birth						|	death						|

+--------+-------+---------+------+------------+------------+

|	Bowser	|	Diane	|	dog					|	m				|	1989-08-31	|	1995-07-29	|

+--------+-------+---------+------+------------+------------+

The	output	confirms	that	the	year	is	correctly	recorded	as	1989,	not	1979.

String	comparisons	normally	are	case-insensitive,	so	you	can	specify	the	name
as	'bowser',	'BOWSER',	and	so	forth.	The	query	result	is	the	same.

You	can	specify	conditions	on	any	column,	not	just	name.	For	example,	if	you
want	to	know	which	animals	were	born	during	or	after	1998,	test	the	birth
column:

mysql>	SELECT	*	FROM	pet	WHERE	birth	>=	'1998-1-1';

+----------+-------+---------+------+------------+-------+

|	name					|	owner	|	species	|	sex		|	birth						|	death	|

+----------+-------+---------+------+------------+-------+

|	Chirpy			|	Gwen		|	bird				|	f				|	1998-09-11	|	NULL		|

|	Puffball	|	Diane	|	hamster	|	f				|	1999-03-30	|	NULL		|

+----------+-------+---------+------+------------+-------+

You	can	combine	conditions,	for	example,	to	locate	female	dogs:

mysql>	SELECT	*	FROM	pet	WHERE	species	=	'dog'	AND	sex	=	'f';

+-------+--------+---------+------+------------+-------+

|	name		|	owner		|	species	|	sex		|	birth						|	death	|

+-------+--------+---------+------+------------+-------+

|	Buffy	|	Harold	|	dog					|	f				|	1989-05-13	|	NULL		|

+-------+--------+---------+------+------------+-------+

The	preceding	query	uses	the	AND	logical	operator.	There	is	also	an	OR	operator:

mysql>	SELECT	*	FROM	pet	WHERE	species	=	'snake'	OR	species	=	'bird';

+----------+-------+---------+------+------------+-------+

|	name					|	owner	|	species	|	sex		|	birth						|	death	|

+----------+-------+---------+------+------------+-------+

|	Chirpy			|	Gwen		|	bird				|	f				|	1998-09-11	|	NULL		|

|	Whistler	|	Gwen		|	bird				|	NULL	|	1997-12-09	|	NULL		|

|	Slim					|	Benny	|	snake			|	m				|	1996-04-29	|	NULL		|

+----------+-------+---------+------+------------+-------+

AND	and	OR	may	be	intermixed,	although	AND	has	higher	precedence	than	OR.	If
you	use	both	operators,	it	is	a	good	idea	to	use	parentheses	to	indicate	explicitly
how	conditions	should	be	grouped:

mysql>	SELECT	*	FROM	pet	WHERE	(species	=	'cat'	AND	sex	=	'm')

				->	OR	(species	=	'dog'	AND	sex	=	'f');

+-------+--------+---------+------+------------+-------+

|	name		|	owner		|	species	|	sex		|	birth						|	death	|

+-------+--------+---------+------+------------+-------+

|	Claws	|	Gwen			|	cat					|	m				|	1994-03-17	|	NULL		|

|	Buffy	|	Harold	|	dog					|	f				|	1989-05-13	|	NULL		|

+-------+--------+---------+------+------------+-------+

3.3.4.3.	Selecting	Particular	Columns

If	you	do	not	want	to	see	entire	rows	from	your	table,	just	name	the	columns	in
which	you	are	interested,	separated	by	commas.	For	example,	if	you	want	to
know	when	your	animals	were	born,	select	the	name	and	birth	columns:

mysql>	SELECT	name,	birth	FROM	pet;

+----------+------------+

|	name					|	birth						|

+----------+------------+

|	Fluffy			|	1993-02-04	|

|	Claws				|	1994-03-17	|

|	Buffy				|	1989-05-13	|

|	Fang					|	1990-08-27	|

|	Bowser			|	1989-08-31	|

|	Chirpy			|	1998-09-11	|

|	Whistler	|	1997-12-09	|

|	Slim					|	1996-04-29	|

|	Puffball	|	1999-03-30	|

+----------+------------+

To	find	out	who	owns	pets,	use	this	query:

mysql>	SELECT	owner	FROM	pet;

+--------+

|	owner		|

+--------+

|	Harold	|

|	Gwen			|

|	Harold	|

|	Benny		|

|	Diane		|

|	Gwen			|

|	Gwen			|

|	Benny		|

|	Diane		|

+--------+

Notice	that	the	query	simply	retrieves	the	owner	column	from	each	record,	and
some	of	them	appear	more	than	once.	To	minimize	the	output,	retrieve	each
unique	output	record	just	once	by	adding	the	keyword	DISTINCT:

mysql>	SELECT	DISTINCT	owner	FROM	pet;

+--------+

|	owner		|

+--------+

|	Benny		|

|	Diane		|

|	Gwen			|

|	Harold	|

+--------+

You	can	use	a	WHERE	clause	to	combine	row	selection	with	column	selection.	For
example,	to	get	birth	dates	for	dogs	and	cats	only,	use	this	query:

mysql>	SELECT	name,	species,	birth	FROM	pet

				->	WHERE	species	=	'dog'	OR	species	=	'cat';

+--------+---------+------------+

|	name			|	species	|	birth						|

+--------+---------+------------+

|	Fluffy	|	cat					|	1993-02-04	|

|	Claws		|	cat					|	1994-03-17	|

|	Buffy		|	dog					|	1989-05-13	|

|	Fang			|	dog					|	1990-08-27	|

|	Bowser	|	dog					|	1989-08-31	|

+--------+---------+------------+

3.3.4.4.	Sorting	Rows

You	may	have	noticed	in	the	preceding	examples	that	the	result	rows	are
displayed	in	no	particular	order.	It's	often	easier	to	examine	query	output	when
the	rows	are	sorted	in	some	meaningful	way.	To	sort	a	result,	use	an	ORDER	BY
clause.

Here	are	animal	birthdays,	sorted	by	date:

mysql>	SELECT	name,	birth	FROM	pet	ORDER	BY	birth;

+----------+------------+

|	name					|	birth						|

+----------+------------+

|	Buffy				|	1989-05-13	|

|	Bowser			|	1989-08-31	|

|	Fang					|	1990-08-27	|

|	Fluffy			|	1993-02-04	|

|	Claws				|	1994-03-17	|

|	Slim					|	1996-04-29	|

|	Whistler	|	1997-12-09	|

|	Chirpy			|	1998-09-11	|

|	Puffball	|	1999-03-30	|

+----------+------------+

On	character	type	columns,	sorting	—	like	all	other	comparison	operations	—	is
normally	performed	in	a	case-insensitive	fashion.	This	means	that	the	order	is
undefined	for	columns	that	are	identical	except	for	their	case.	You	can	force	a
case-sensitive	sort	for	a	column	by	using	BINARY	like	so:	ORDER	BY	BINARY
col_name.

The	default	sort	order	is	ascending,	with	smallest	values	first.	To	sort	in	reverse
(descending)	order,	add	the	DESC	keyword	to	the	name	of	the	column	you	are
sorting	by:

mysql>	SELECT	name,	birth	FROM	pet	ORDER	BY	birth	DESC;

+----------+------------+

|	name					|	birth						|

+----------+------------+

|	Puffball	|	1999-03-30	|

|	Chirpy			|	1998-09-11	|

|	Whistler	|	1997-12-09	|

|	Slim					|	1996-04-29	|

|	Claws				|	1994-03-17	|

|	Fluffy			|	1993-02-04	|

|	Fang					|	1990-08-27	|

|	Bowser			|	1989-08-31	|

|	Buffy				|	1989-05-13	|

+----------+------------+

You	can	sort	on	multiple	columns,	and	you	can	sort	different	columns	in
different	directions.	For	example,	to	sort	by	type	of	animal	in	ascending	order,
then	by	birth	date	within	animal	type	in	descending	order	(youngest	animals
first),	use	the	following	query:

mysql>	SELECT	name,	species,	birth	FROM	pet

				->	ORDER	BY	species,	birth	DESC;

+----------+---------+------------+

|	name					|	species	|	birth						|

+----------+---------+------------+

|	Chirpy			|	bird				|	1998-09-11	|

|	Whistler	|	bird				|	1997-12-09	|

|	Claws				|	cat					|	1994-03-17	|

|	Fluffy			|	cat					|	1993-02-04	|

|	Fang					|	dog					|	1990-08-27	|

|	Bowser			|	dog					|	1989-08-31	|

|	Buffy				|	dog					|	1989-05-13	|

|	Puffball	|	hamster	|	1999-03-30	|

|	Slim					|	snake			|	1996-04-29	|

+----------+---------+------------+

Note	that	the	DESC	keyword	applies	only	to	the	column	name	immediately
preceding	it	(birth);	it	does	not	affect	the	species	column	sort	order.

3.3.4.5.	Date	Calculations

MySQL	provides	several	functions	that	you	can	use	to	perform	calculations	on
dates,	for	example,	to	calculate	ages	or	extract	parts	of	dates.

To	determine	how	many	years	old	each	of	your	pets	is,	compute	the	difference	in
the	year	part	of	the	current	date	and	the	birth	date,	then	subtract	one	if	the
current	date	occurs	earlier	in	the	calendar	year	than	the	birth	date.	The	following
query	shows,	for	each	pet,	the	birth	date,	the	current	date,	and	the	age	in	years.

mysql>	SELECT	name,	birth,	CURDATE(),

				->	(YEAR(CURDATE())-YEAR(birth))

				->	-	(RIGHT(CURDATE(),5)<RIGHT(birth,5))

				->	AS	age

				->	FROM	pet;

+----------+------------+------------+------+

|	name					|	birth						|	CURDATE()		|	age		|

+----------+------------+------------+------+

|	Fluffy			|	1993-02-04	|	2003-08-19	|			10	|

|	Claws				|	1994-03-17	|	2003-08-19	|				9	|

|	Buffy				|	1989-05-13	|	2003-08-19	|			14	|

|	Fang					|	1990-08-27	|	2003-08-19	|			12	|

|	Bowser			|	1989-08-31	|	2003-08-19	|			13	|

|	Chirpy			|	1998-09-11	|	2003-08-19	|				4	|

|	Whistler	|	1997-12-09	|	2003-08-19	|				5	|

|	Slim					|	1996-04-29	|	2003-08-19	|				7	|

|	Puffball	|	1999-03-30	|	2003-08-19	|				4	|

+----------+------------+------------+------+

Here,	YEAR()	pulls	out	the	year	part	of	a	date	and	RIGHT()	pulls	off	the	rightmost
five	characters	that	represent	the	MM-DD	(calendar	year)	part	of	the	date.	The	part
of	the	expression	that	compares	the	MM-DD	values	evaluates	to	1	or	0,	which
adjusts	the	year	difference	down	a	year	if	CURDATE()	occurs	earlier	in	the	year
than	birth.	The	full	expression	is	somewhat	ungainly,	so	an	alias	(age)	is	used
to	make	the	output	column	label	more	meaningful.

The	query	works,	but	the	result	could	be	scanned	more	easily	if	the	rows	were
presented	in	some	order.	This	can	be	done	by	adding	an	ORDER	BY	name	clause	to
sort	the	output	by	name:

mysql>	SELECT	name,	birth,	CURDATE(),

				->	(YEAR(CURDATE())-YEAR(birth))

				->	-	(RIGHT(CURDATE(),5)<RIGHT(birth,5))

				->	AS	age

				->	FROM	pet	ORDER	BY	name;

+----------+------------+------------+------+

|	name					|	birth						|	CURDATE()		|	age		|

+----------+------------+------------+------+

|	Bowser			|	1989-08-31	|	2003-08-19	|			13	|

|	Buffy				|	1989-05-13	|	2003-08-19	|			14	|

|	Chirpy			|	1998-09-11	|	2003-08-19	|				4	|

|	Claws				|	1994-03-17	|	2003-08-19	|				9	|

|	Fang					|	1990-08-27	|	2003-08-19	|			12	|

|	Fluffy			|	1993-02-04	|	2003-08-19	|			10	|

|	Puffball	|	1999-03-30	|	2003-08-19	|				4	|

|	Slim					|	1996-04-29	|	2003-08-19	|				7	|

|	Whistler	|	1997-12-09	|	2003-08-19	|				5	|

+----------+------------+------------+------+

To	sort	the	output	by	age	rather	than	name,	just	use	a	different	ORDER	BY	clause:

mysql>	SELECT	name,	birth,	CURDATE(),

				->	(YEAR(CURDATE())-YEAR(birth))

				->	-	(RIGHT(CURDATE(),5)<RIGHT(birth,5))

				->	AS	age

				->	FROM	pet	ORDER	BY	age;

+----------+------------+------------+------+

|	name					|	birth						|	CURDATE()		|	age		|

+----------+------------+------------+------+

|	Chirpy			|	1998-09-11	|	2003-08-19	|				4	|

|	Puffball	|	1999-03-30	|	2003-08-19	|				4	|

|	Whistler	|	1997-12-09	|	2003-08-19	|				5	|

|	Slim					|	1996-04-29	|	2003-08-19	|				7	|

|	Claws				|	1994-03-17	|	2003-08-19	|				9	|

|	Fluffy			|	1993-02-04	|	2003-08-19	|			10	|

|	Fang					|	1990-08-27	|	2003-08-19	|			12	|

|	Bowser			|	1989-08-31	|	2003-08-19	|			13	|

|	Buffy				|	1989-05-13	|	2003-08-19	|			14	|

+----------+------------+------------+------+

A	similar	query	can	be	used	to	determine	age	at	death	for	animals	that	have	died.
You	determine	which	animals	these	are	by	checking	whether	the	death	value	is
NULL.	Then,	for	those	with	non-NULL	values,	compute	the	difference	between	the
death	and	birth	values:

mysql>	SELECT	name,	birth,	death,

				->	(YEAR(death)-YEAR(birth))	-	(RIGHT(death,5)<RIGHT(birth,5))

				->	AS	age

				->	FROM	pet	WHERE	death	IS	NOT	NULL	ORDER	BY	age;

+--------+------------+------------+------+

|	name			|	birth						|	death						|	age		|

+--------+------------+------------+------+

|	Bowser	|	1989-08-31	|	1995-07-29	|				5	|

+--------+------------+------------+------+

The	query	uses	death	IS	NOT	NULL	rather	than	death	<>	NULL	because	NULL	is
a	special	value	that	cannot	be	compared	using	the	usual	comparison	operators.
This	is	discussed	later.	See	Section	3.3.4.6,	“Working	with	NULL	Values”.

What	if	you	want	to	know	which	animals	have	birthdays	next	month?	For	this
type	of	calculation,	year	and	day	are	irrelevant;	you	simply	want	to	extract	the
month	part	of	the	birth	column.	MySQL	provides	several	functions	for
extracting	parts	of	dates,	such	as	YEAR(),	MONTH(),	and	DAYOFMONTH().	MONTH()
is	the	appropriate	function	here.	To	see	how	it	works,	run	a	simple	query	that
displays	the	value	of	both	birth	and	MONTH(birth):

mysql>	SELECT	name,	birth,	MONTH(birth)	FROM	pet;

+----------+------------+--------------+

|	name					|	birth						|	MONTH(birth)	|

+----------+------------+--------------+

|	Fluffy			|	1993-02-04	|												2	|

|	Claws				|	1994-03-17	|												3	|

|	Buffy				|	1989-05-13	|												5	|

|	Fang					|	1990-08-27	|												8	|

|	Bowser			|	1989-08-31	|												8	|

|	Chirpy			|	1998-09-11	|												9	|

|	Whistler	|	1997-12-09	|											12	|

|	Slim					|	1996-04-29	|												4	|

|	Puffball	|	1999-03-30	|												3	|

+----------+------------+--------------+

Finding	animals	with	birthdays	in	the	upcoming	month	is	also	simple.	Suppose
that	the	current	month	is	April.	Then	the	month	value	is	4	and	you	can	look	for
animals	born	in	May	(month	5)	like	this:

mysql>	SELECT	name,	birth	FROM	pet	WHERE	MONTH(birth)	=	5;

+-------+------------+

|	name		|	birth						|

+-------+------------+

|	Buffy	|	1989-05-13	|

+-------+------------+

There	is	a	small	complication	if	the	current	month	is	December.	You	cannot
merely	add	one	to	the	month	number	(12)	and	look	for	animals	born	in	month
13,	because	there	is	no	such	month.	Instead,	you	look	for	animals	born	in
January	(month	1).

You	can	write	the	query	so	that	it	works	no	matter	what	the	current	month	is,	so
that	you	do	not	have	to	use	the	number	for	a	particular	month.	DATE_ADD()
allows	you	to	add	a	time	interval	to	a	given	date.	If	you	add	a	month	to	the	value
of	CURDATE(),	then	extract	the	month	part	with	MONTH(),	the	result	produces	the
month	in	which	to	look	for	birthdays:

mysql>	SELECT	name,	birth	FROM	pet

				->	WHERE	MONTH(birth)	=	MONTH(DATE_ADD(CURDATE(),INTERVAL	1	MONTH));

A	different	way	to	accomplish	the	same	task	is	to	add	1	to	get	the	next	month
after	the	current	one	after	using	the	modulo	function	(MOD)	to	wrap	the	month
value	to	0	if	it	is	currently	12:

mysql>	SELECT	name,	birth	FROM	pet

				->	WHERE	MONTH(birth)	=	MOD(MONTH(CURDATE()),	12)	+	1;

Note	that	MONTH	returns	a	number	between	1	and	12.	And	MOD(something,12)
returns	a	number	between	0	and	11.	So	the	addition	has	to	be	after	the	MOD(),
otherwise	we	would	go	from	November	(11)	to	January	(1).

3.3.4.6.	Working	with	NULL	Values

The	NULL	value	can	be	surprising	until	you	get	used	to	it.	Conceptually,	NULL
means	“a	missing	unknown	value”	and	it	is	treated	somewhat	differently	from
other	values.	To	test	for	NULL,	you	cannot	use	the	arithmetic	comparison
operators	such	as	=,	<,	or	<>.	To	demonstrate	this	for	yourself,	try	the	following
query:

mysql>	SELECT	1	=	NULL,	1	<>	NULL,	1	<	NULL,	1	>	NULL;

+----------+-----------+----------+----------+

|	1	=	NULL	|	1	<>	NULL	|	1	<	NULL	|	1	>	NULL	|

+----------+-----------+----------+----------+

|					NULL	|						NULL	|					NULL	|					NULL	|

+----------+-----------+----------+----------+

Clearly	you	get	no	meaningful	results	from	these	comparisons.	Use	the	IS	NULL
and	IS	NOT	NULL	operators	instead:

mysql>	SELECT	1	IS	NULL,	1	IS	NOT	NULL;

+-----------+---------------+

|	1	IS	NULL	|	1	IS	NOT	NULL	|

+-----------+---------------+

|									0	|													1	|

+-----------+---------------+

Note	that	in	MySQL,	0	or	NULL	means	false	and	anything	else	means	true.	The
default	truth	value	from	a	boolean	operation	is	1.

This	special	treatment	of	NULL	is	why,	in	the	previous	section,	it	was	necessary	to
determine	which	animals	are	no	longer	alive	using	death	IS	NOT	NULL	instead
of	death	<>	NULL.

Two	NULL	values	are	regarded	as	equal	in	a	GROUP	BY.

When	doing	an	ORDER	BY,	NULL	values	are	presented	first	if	you	do	ORDER	BY
...	ASC	and	last	if	you	do	ORDER	BY	...	DESC.

A	common	error	when	working	with	NULL	is	to	assume	that	it	is	not	possible	to

insert	a	zero	or	an	empty	string	into	a	column	defined	as	NOT	NULL,	but	this	is
not	the	case.	These	are	in	fact	values,	whereas	NULL	means	“not	having	a	value.”
You	can	test	this	easily	enough	by	using	IS	[NOT]	NULL	as	shown:

mysql>	SELECT	0	IS	NULL,	0	IS	NOT	NULL,	''	IS	NULL,	''	IS	NOT	NULL;

+-----------+---------------+------------+----------------+

|	0	IS	NULL	|	0	IS	NOT	NULL	|	''	IS	NULL	|	''	IS	NOT	NULL	|

+-----------+---------------+------------+----------------+

|									0	|													1	|										0	|														1	|

+-----------+---------------+------------+----------------+

Thus	it	is	entirely	possible	to	insert	a	zero	or	empty	string	into	a	NOT	NULL
column,	as	these	are	in	fact	NOT	NULL.	See	Section	A.5.3,	“Problems	with	NULL
Values”.

3.3.4.7.	Pattern	Matching

MySQL	provides	standard	SQL	pattern	matching	as	well	as	a	form	of	pattern
matching	based	on	extended	regular	expressions	similar	to	those	used	by	Unix
utilities	such	as	vi,	grep,	and	sed.

SQL	pattern	matching	allows	you	to	use	‘_’	to	match	any	single	character	and	‘%’
to	match	an	arbitrary	number	of	characters	(including	zero	characters).	In
MySQL,	SQL	patterns	are	case-insensitive	by	default.	Some	examples	are	shown
here.	Note	that	you	do	not	use	=	or	<>	when	you	use	SQL	patterns;	use	the	LIKE
or	NOT	LIKE	comparison	operators	instead.

To	find	names	beginning	with	‘b’:

mysql>	SELECT	*	FROM	pet	WHERE	name	LIKE	'b%';

+--------+--------+---------+------+------------+------------+

|	name			|	owner		|	species	|	sex		|	birth						|	death						|

+--------+--------+---------+------+------------+------------+

|	Buffy		|	Harold	|	dog					|	f				|	1989-05-13	|	NULL							|

|	Bowser	|	Diane		|	dog					|	m				|	1989-08-31	|	1995-07-29	|

+--------+--------+---------+------+------------+------------+

To	find	names	ending	with	‘fy’:

mysql>	SELECT	*	FROM	pet	WHERE	name	LIKE	'%fy';

+--------+--------+---------+------+------------+-------+

|	name			|	owner		|	species	|	sex		|	birth						|	death	|

+--------+--------+---------+------+------------+-------+

|	Fluffy	|	Harold	|	cat					|	f				|	1993-02-04	|	NULL		|

|	Buffy		|	Harold	|	dog					|	f				|	1989-05-13	|	NULL		|

+--------+--------+---------+------+------------+-------+

To	find	names	containing	a	‘w’:

mysql>	SELECT	*	FROM	pet	WHERE	name	LIKE	'%w%';

+----------+-------+---------+------+------------+------------+

|	name					|	owner	|	species	|	sex		|	birth						|	death						|

+----------+-------+---------+------+------------+------------+

|	Claws				|	Gwen		|	cat					|	m				|	1994-03-17	|	NULL							|

|	Bowser			|	Diane	|	dog					|	m				|	1989-08-31	|	1995-07-29	|

|	Whistler	|	Gwen		|	bird				|	NULL	|	1997-12-09	|	NULL							|

+----------+-------+---------+------+------------+------------+

To	find	names	containing	exactly	five	characters,	use	five	instances	of	the	‘_’
pattern	character:

mysql>	SELECT	*	FROM	pet	WHERE	name	LIKE	'_____';

+-------+--------+---------+------+------------+-------+

|	name		|	owner		|	species	|	sex		|	birth						|	death	|

+-------+--------+---------+------+------------+-------+

|	Claws	|	Gwen			|	cat					|	m				|	1994-03-17	|	NULL		|

|	Buffy	|	Harold	|	dog					|	f				|	1989-05-13	|	NULL		|

+-------+--------+---------+------+------------+-------+

The	other	type	of	pattern	matching	provided	by	MySQL	uses	extended	regular
expressions.	When	you	test	for	a	match	for	this	type	of	pattern,	use	the	REGEXP
and	NOT	REGEXP	operators	(or	RLIKE	and	NOT	RLIKE,	which	are	synonyms).

Some	characteristics	of	extended	regular	expressions	are:

‘.’	matches	any	single	character.

A	character	class	‘[...]’	matches	any	character	within	the	brackets.	For
example,	‘[abc]’	matches	‘a’,	‘b’,	or	‘c’.	To	name	a	range	of	characters,
use	a	dash.	‘[a-z]’	matches	any	letter,	whereas	‘[0-9]’	matches	any	digit.

‘*’	matches	zero	or	more	instances	of	the	thing	preceding	it.	For	example,
‘x*’	matches	any	number	of	‘x’	characters,	‘[0-9]*’	matches	any	number	of
digits,	and	‘.*’	matches	any	number	of	anything.

A	REGEXP	pattern	match	succeeds	if	the	pattern	matches	anywhere	in	the
value	being	tested.	(This	differs	from	a	LIKE	pattern	match,	which	succeeds

only	if	the	pattern	matches	the	entire	value.)

To	anchor	a	pattern	so	that	it	must	match	the	beginning	or	end	of	the	value
being	tested,	use	‘^’	at	the	beginning	or	‘$’	at	the	end	of	the	pattern.

To	demonstrate	how	extended	regular	expressions	work,	the	LIKE	queries	shown
previously	are	rewritten	here	to	use	REGEXP.

To	find	names	beginning	with	‘b’,	use	‘^’	to	match	the	beginning	of	the	name:

mysql>	SELECT	*	FROM	pet	WHERE	name	REGEXP	'^b';

+--------+--------+---------+------+------------+------------+

|	name			|	owner		|	species	|	sex		|	birth						|	death						|

+--------+--------+---------+------+------------+------------+

|	Buffy		|	Harold	|	dog					|	f				|	1989-05-13	|	NULL							|

|	Bowser	|	Diane		|	dog					|	m				|	1989-08-31	|	1995-07-29	|

+--------+--------+---------+------+------------+------------+

If	you	really	want	to	force	a	REGEXP	comparison	to	be	case	sensitive,	use	the
BINARY	keyword	to	make	one	of	the	strings	a	binary	string.	This	query	matches
only	lowercase	‘b’	at	the	beginning	of	a	name:

mysql>	SELECT	*	FROM	pet	WHERE	name	REGEXP	BINARY	'^b';

To	find	names	ending	with	‘fy’,	use	‘$’	to	match	the	end	of	the	name:

mysql>	SELECT	*	FROM	pet	WHERE	name	REGEXP	'fy$';

+--------+--------+---------+------+------------+-------+

|	name			|	owner		|	species	|	sex		|	birth						|	death	|

+--------+--------+---------+------+------------+-------+

|	Fluffy	|	Harold	|	cat					|	f				|	1993-02-04	|	NULL		|

|	Buffy		|	Harold	|	dog					|	f				|	1989-05-13	|	NULL		|

+--------+--------+---------+------+------------+-------+

To	find	names	containing	a	‘w’,	use	this	query:

mysql>	SELECT	*	FROM	pet	WHERE	name	REGEXP	'w';

+----------+-------+---------+------+------------+------------+

|	name					|	owner	|	species	|	sex		|	birth						|	death						|

+----------+-------+---------+------+------------+------------+

|	Claws				|	Gwen		|	cat					|	m				|	1994-03-17	|	NULL							|

|	Bowser			|	Diane	|	dog					|	m				|	1989-08-31	|	1995-07-29	|

|	Whistler	|	Gwen		|	bird				|	NULL	|	1997-12-09	|	NULL							|

+----------+-------+---------+------+------------+------------+

Because	a	regular	expression	pattern	matches	if	it	occurs	anywhere	in	the	value,
it	is	not	necessary	in	the	previous	query	to	put	a	wildcard	on	either	side	of	the
pattern	to	get	it	to	match	the	entire	value	like	it	would	be	if	you	used	an	SQL
pattern.

To	find	names	containing	exactly	five	characters,	use	‘^’	and	‘$’	to	match	the
beginning	and	end	of	the	name,	and	five	instances	of	‘.’	in	between:

mysql>	SELECT	*	FROM	pet	WHERE	name	REGEXP	'^.....$';

+-------+--------+---------+------+------------+-------+

|	name		|	owner		|	species	|	sex		|	birth						|	death	|

+-------+--------+---------+------+------------+-------+

|	Claws	|	Gwen			|	cat					|	m				|	1994-03-17	|	NULL		|

|	Buffy	|	Harold	|	dog					|	f				|	1989-05-13	|	NULL		|

+-------+--------+---------+------+------------+-------+

You	could	also	write	the	previous	query	using	the	{n}	(“repeat-n-times”)
operator:

mysql>	SELECT	*	FROM	pet	WHERE	name	REGEXP	'^.{5}$';

+-------+--------+---------+------+------------+-------+

|	name		|	owner		|	species	|	sex		|	birth						|	death	|

+-------+--------+---------+------+------------+-------+

|	Claws	|	Gwen			|	cat					|	m				|	1994-03-17	|	NULL		|

|	Buffy	|	Harold	|	dog					|	f				|	1989-05-13	|	NULL		|

+-------+--------+---------+------+------------+-------+

Appendix	G,	Regular	Expressions,	provides	more	information	about	the	syntax
for	regular	expressions.

3.3.4.8.	Counting	Rows

Databases	are	often	used	to	answer	the	question,	“How	often	does	a	certain	type
of	data	occur	in	a	table?”	For	example,	you	might	want	to	know	how	many	pets
you	have,	or	how	many	pets	each	owner	has,	or	you	might	want	to	perform
various	kinds	of	census	operations	on	your	animals.

Counting	the	total	number	of	animals	you	have	is	the	same	question	as	“How
many	rows	are	in	the	pet	table?”	because	there	is	one	record	per	pet.	COUNT(*)
counts	the	number	of	rows,	so	the	query	to	count	your	animals	looks	like	this:

mysql>	SELECT	COUNT(*)	FROM	pet;

+----------+

|	COUNT(*)	|

+----------+

|								9	|

+----------+

Earlier,	you	retrieved	the	names	of	the	people	who	owned	pets.	You	can	use
COUNT()	if	you	want	to	find	out	how	many	pets	each	owner	has:

mysql>	SELECT	owner,	COUNT(*)	FROM	pet	GROUP	BY	owner;

+--------+----------+

|	owner		|	COUNT(*)	|

+--------+----------+

|	Benny		|								2	|

|	Diane		|								2	|

|	Gwen			|								3	|

|	Harold	|								2	|

+--------+----------+

Note	the	use	of	GROUP	BY	to	group	all	records	for	each	owner.	Without	it,	all	you
get	is	an	error	message:

mysql>	SELECT	owner,	COUNT(*)	FROM	pet;

ERROR	1140	(42000):	Mixing	of	GROUP	columns	(MIN(),MAX(),COUNT(),...)	

with	no	GROUP	columns	is	illegal	if	there	is	no	GROUP	BY	clause

COUNT()	and	GROUP	BY	are	useful	for	characterizing	your	data	in	various	ways.
The	following	examples	show	different	ways	to	perform	animal	census
operations.

Number	of	animals	per	species:

mysql>	SELECT	species,	COUNT(*)	FROM	pet	GROUP	BY	species;

+---------+----------+

|	species	|	COUNT(*)	|

+---------+----------+

|	bird				|								2	|

|	cat					|								2	|

|	dog					|								3	|

|	hamster	|								1	|

|	snake			|								1	|

+---------+----------+

Number	of	animals	per	sex:

mysql>	SELECT	sex,	COUNT(*)	FROM	pet	GROUP	BY	sex;

+------+----------+

|	sex		|	COUNT(*)	|

+------+----------+

|	NULL	|								1	|

|	f				|								4	|

|	m				|								4	|

+------+----------+

(In	this	output,	NULL	indicates	that	the	sex	is	unknown.)

Number	of	animals	per	combination	of	species	and	sex:

mysql>	SELECT	species,	sex,	COUNT(*)	FROM	pet	GROUP	BY	species,	sex;

+---------+------+----------+

|	species	|	sex		|	COUNT(*)	|

+---------+------+----------+

|	bird				|	NULL	|								1	|

|	bird				|	f				|								1	|

|	cat					|	f				|								1	|

|	cat					|	m				|								1	|

|	dog					|	f				|								1	|

|	dog					|	m				|								2	|

|	hamster	|	f				|								1	|

|	snake			|	m				|								1	|

+---------+------+----------+

You	need	not	retrieve	an	entire	table	when	you	use	COUNT().	For	example,	the
previous	query,	when	performed	just	on	dogs	and	cats,	looks	like	this:

mysql>	SELECT	species,	sex,	COUNT(*)	FROM	pet

				->	WHERE	species	=	'dog'	OR	species	=	'cat'

				->	GROUP	BY	species,	sex;

+---------+------+----------+

|	species	|	sex		|	COUNT(*)	|

+---------+------+----------+

|	cat					|	f				|								1	|

|	cat					|	m				|								1	|

|	dog					|	f				|								1	|

|	dog					|	m				|								2	|

+---------+------+----------+

Or,	if	you	wanted	the	number	of	animals	per	sex	only	for	animals	whose	sex	is
known:

mysql>	SELECT	species,	sex,	COUNT(*)	FROM	pet

				->	WHERE	sex	IS	NOT	NULL

				->	GROUP	BY	species,	sex;

+---------+------+----------+

|	species	|	sex		|	COUNT(*)	|

+---------+------+----------+

|	bird				|	f				|								1	|

|	cat					|	f				|								1	|

|	cat					|	m				|								1	|

|	dog					|	f				|								1	|

|	dog					|	m				|								2	|

|	hamster	|	f				|								1	|

|	snake			|	m				|								1	|

+---------+------+----------+

3.3.4.9.	Using	More	Than	one	Table

The	pet	table	keeps	track	of	which	pets	you	have.	If	you	want	to	record	other
information	about	them,	such	as	events	in	their	lives	like	visits	to	the	vet	or	when
litters	are	born,	you	need	another	table.	What	should	this	table	look	like?	It
needs:

To	contain	the	pet	name	so	that	you	know	which	animal	each	event	pertains
to.

A	date	so	that	you	know	when	the	event	occurred.

A	field	to	describe	the	event.

An	event	type	field,	if	you	want	to	be	able	to	categorize	events.

Given	these	considerations,	the	CREATE	TABLE	statement	for	the	event	table
might	look	like	this:

mysql>	CREATE	TABLE	event	(name	VARCHAR(20),	date	DATE,

				->	type	VARCHAR(15),	remark	VARCHAR(255));

As	with	the	pet	table,	it's	easiest	to	load	the	initial	records	by	creating	a	tab-
delimited	text	file	containing	the	information:

name date type remark
Fluffy 1995-05-15 litter 4	kittens,	3	female,	1	male
Buffy 1993-06-23 litter 5	puppies,	2	female,	3	male
Buffy 1994-06-19 litter 3	puppies,	3	female
Chirpy 1999-03-21 vet needed	beak	straightened

Slim 1997-08-03 vet broken	rib
Bowser 1991-10-12 kennel 	
Fang 1991-10-12 kennel 	
Fang 1998-08-28 birthday Gave	him	a	new	chew	toy
Claws 1998-03-17 birthday Gave	him	a	new	flea	collar
Whistler 1998-12-09 birthday First	birthday

Load	the	records	like	this:

mysql>	LOAD	DATA	LOCAL	INFILE	'event.txt'	INTO	TABLE	event;

Based	on	what	you	have	learned	from	the	queries	that	you	have	run	on	the	pet
table,	you	should	be	able	to	perform	retrievals	on	the	records	in	the	event	table;
the	principles	are	the	same.	But	when	is	the	event	table	by	itself	insufficient	to
answer	questions	you	might	ask?

Suppose	that	you	want	to	find	out	the	ages	at	which	each	pet	had	its	litters.	We
saw	earlier	how	to	calculate	ages	from	two	dates.	The	litter	date	of	the	mother	is
in	the	event	table,	but	to	calculate	her	age	on	that	date	you	need	her	birth	date,
which	is	stored	in	the	pet	table.	This	means	the	query	requires	both	tables:

mysql>	SELECT	pet.name,

				->	(YEAR(date)-YEAR(birth))	-	(RIGHT(date,5)<RIGHT(birth,5))	AS	age,

				->	remark

				->	FROM	pet	INNER	JOIN	event

				->			ON	pet.name	=	event.name

				->	WHERE	event.type	=	'litter';

+--------+------+-----------------------------+

|	name			|	age		|	remark																						|

+--------+------+-----------------------------+

|	Fluffy	|				2	|	4	kittens,	3	female,	1	male	|

|	Buffy		|				4	|	5	puppies,	2	female,	3	male	|

|	Buffy		|				5	|	3	puppies,	3	female									|

+--------+------+-----------------------------+

There	are	several	things	to	note	about	this	query:

The	FROM	clause	joins	two	tables	because	the	query	needs	to	pull
information	from	both	of	them.

When	combining	(joining)	information	from	multiple	tables,	you	need	to

specify	how	records	in	one	table	can	be	matched	to	records	in	the	other.
This	is	easy	because	they	both	have	a	name	column.	The	query	uses	WHERE
clause	to	match	up	records	in	the	two	tables	based	on	the	name	values.

The	query	uses	an	INNER	JOIN	to	combine	the	tables.	An	INNER	JOIN
allows	for	rows	from	either	table	to	appear	in	the	result	if	and	only	if	both
tables	meet	the	conditions	specified	in	the	ON	clause.	In	this	example,	the	ON
clause	specifies	that	the	name	column	in	the	pet	table	must	match	the	name
column	in	the	event	table.	If	a	name	appears	in	one	table	but	not	the	other,
the	row	will	not	appear	in	the	result	because	the	condition	in	the	ON	clause
fails.

Because	the	name	column	occurs	in	both	tables,	you	must	be	specific	about
which	table	you	mean	when	referring	to	the	column.	This	is	done	by
prepending	the	table	name	to	the	column	name.

You	need	not	have	two	different	tables	to	perform	a	join.	Sometimes	it	is	useful
to	join	a	table	to	itself,	if	you	want	to	compare	records	in	a	table	to	other	records
in	that	same	table.	For	example,	to	find	breeding	pairs	among	your	pets,	you	can
join	the	pet	table	with	itself	to	produce	candidate	pairs	of	males	and	females	of
like	species:

mysql>	SELECT	p1.name,	p1.sex,	p2.name,	p2.sex,	p1.species

				->	FROM	pet	AS	p1	INNER	JOIN	pet	AS	p2

				->			ON	p1.species	=	p2.species	AND	p1.sex	=	'f'	AND	p2.sex	=	'm';

+--------+------+--------+------+---------+

|	name			|	sex		|	name			|	sex		|	species	|

+--------+------+--------+------+---------+

|	Fluffy	|	f				|	Claws		|	m				|	cat					|

|	Buffy		|	f				|	Fang			|	m				|	dog					|

|	Buffy		|	f				|	Bowser	|	m				|	dog					|

+--------+------+--------+------+---------+

In	this	query,	we	specify	aliases	for	the	table	name	to	refer	to	the	columns	and
keep	straight	which	instance	of	the	table	each	column	reference	is	associated
with.

3.4.	Getting	Information	About	Databases	and	Tables

What	if	you	forget	the	name	of	a	database	or	table,	or	what	the	structure	of	a
given	table	is	(for	example,	what	its	columns	are	called)?	MySQL	addresses	this
problem	through	several	statements	that	provide	information	about	the	databases
and	tables	it	supports.

You	have	previously	seen	SHOW	DATABASES,	which	lists	the	databases	managed
by	the	server.	To	find	out	which	database	is	currently	selected,	use	the
DATABASE()	function:

mysql>	SELECT	DATABASE();

+------------+

|	DATABASE()	|

+------------+

|	menagerie		|

+------------+

If	you	have	not	yet	selected	any	database,	the	result	is	NULL.

To	find	out	what	tables	the	default	database	contains	(for	example,	when	you	are
not	sure	about	the	name	of	a	table),	use	this	command:

mysql>	SHOW	TABLES;

+---------------------+

|	Tables	in	menagerie	|

+---------------------+

|	event															|

|	pet																	|

+---------------------+

If	you	want	to	find	out	about	the	structure	of	a	table,	the	DESCRIBE	command	is
useful;	it	displays	information	about	each	of	a	table's	columns:

mysql>	DESCRIBE	pet;

+---------+-------------+------+-----+---------+-------+

|	Field			|	Type								|	Null	|	Key	|	Default	|	Extra	|

+---------+-------------+------+-----+---------+-------+

|	name				|	varchar(20)	|	YES		|					|	NULL				|							|

|	owner			|	varchar(20)	|	YES		|					|	NULL				|							|

|	species	|	varchar(20)	|	YES		|					|	NULL				|							|

|	sex					|	char(1)					|	YES		|					|	NULL				|							|

|	birth			|	date								|	YES		|					|	NULL				|							|

|	death			|	date								|	YES		|					|	NULL				|							|

+---------+-------------+------+-----+---------+-------+

Field	indicates	the	column	name,	Type	is	the	data	type	for	the	column,	NULL
indicates	whether	the	column	can	contain	NULL	values,	Key	indicates	whether	the
column	is	indexed,	and	Default	specifies	the	column's	default	value.

If	you	have	indexes	on	a	table,	SHOW	INDEX	FROM	tbl_name	produces
information	about	them.

3.5.	Using	mysql	in	Batch	Mode

In	the	previous	sections,	you	used	mysql	interactively	to	enter	queries	and	view
the	results.	You	can	also	run	mysql	in	batch	mode.	To	do	this,	put	the	commands
you	want	to	run	in	a	file,	then	tell	mysql	to	read	its	input	from	the	file:

shell>	mysql	<	batch-file

If	you	are	running	mysql	under	Windows	and	have	some	special	characters	in
the	file	that	cause	problems,	you	can	do	this:

C:\>	mysql	-e	"source	batch-file"

If	you	need	to	specify	connection	parameters	on	the	command	line,	the
command	might	look	like	this:

shell>	mysql	-h	host	-u	user	-p	<	batch-file

Enter	password:	********

When	you	use	mysql	this	way,	you	are	creating	a	script	file,	then	executing	the
script.

If	you	want	the	script	to	continue	even	if	some	of	the	statements	in	it	produce
errors,	you	should	use	the	--force	command-line	option.

Why	use	a	script?	Here	are	a	few	reasons:

If	you	run	a	query	repeatedly	(say,	every	day	or	every	week),	making	it	a
script	allows	you	to	avoid	retyping	it	each	time	you	execute	it.

You	can	generate	new	queries	from	existing	ones	that	are	similar	by
copying	and	editing	script	files.

Batch	mode	can	also	be	useful	while	you're	developing	a	query,	particularly
for	multiple-line	commands	or	multiple-statement	sequences	of	commands.
If	you	make	a	mistake,	you	don't	have	to	retype	everything.	Just	edit	your
script	to	correct	the	error,	then	tell	mysql	to	execute	it	again.

If	you	have	a	query	that	produces	a	lot	of	output,	you	can	run	the	output
through	a	pager	rather	than	watching	it	scroll	off	the	top	of	your	screen:

shell>	mysql	<	batch-file	|	more

You	can	catch	the	output	in	a	file	for	further	processing:

shell>	mysql	<	batch-file	>	mysql.out

You	can	distribute	your	script	to	other	people	so	that	they	can	also	run	the
commands.

Some	situations	do	not	allow	for	interactive	use,	for	example,	when	you	run
a	query	from	a	cron	job.	In	this	case,	you	must	use	batch	mode.

The	default	output	format	is	different	(more	concise)	when	you	run	mysql	in
batch	mode	than	when	you	use	it	interactively.	For	example,	the	output	of
SELECT	DISTINCT	species	FROM	pet	looks	like	this	when	mysql	is	run
interactively:

+---------+

|	species	|

+---------+

|	bird				|

|	cat					|

|	dog					|

|	hamster	|

|	snake			|

+---------+

In	batch	mode,	the	output	looks	like	this	instead:

species

bird

cat

dog

hamster

snake

If	you	want	to	get	the	interactive	output	format	in	batch	mode,	use	mysql	-t.	To
echo	to	the	output	the	commands	that	are	executed,	use	mysql	-vvv.

You	can	also	use	scripts	from	the	mysql	prompt	by	using	the	source	or	\.
command:

mysql>	source	filename;

mysql>	\.	filename

3.6.	Examples	of	Common	Queries

Here	are	examples	of	how	to	solve	some	common	problems	with	MySQL.

Some	of	the	examples	use	the	table	shop	to	hold	the	price	of	each	article	(item
number)	for	certain	traders	(dealers).	Supposing	that	each	trader	has	a	single
fixed	price	per	article,	then	(article,	dealer)	is	a	primary	key	for	the	records.

Start	the	command-line	tool	mysql	and	select	a	database:

shell>	mysql	your-database-name

(In	most	MySQL	installations,	you	can	use	the	database	named	test).

You	can	create	and	populate	the	example	table	with	these	statements:

mysql>	CREATE	TABLE	shop	(

				->	article	INT(4)	UNSIGNED	ZEROFILL	DEFAULT	'0000'	NOT	NULL,

				->	dealer		CHAR(20)																	DEFAULT	''					NOT	NULL,

				->	price			DOUBLE(16,2)													DEFAULT	'0.00'	NOT	NULL,

				->	PRIMARY	KEY(article,	dealer));

mysql>	INSERT	INTO	shop	VALUES

				->	(1,'A',3.45),(1,'B',3.99),(2,'A',10.99),(3,'B',1.45),

				->	(3,'C',1.69),(3,'D',1.25),(4,'D',19.95);

After	issuing	the	statements,	the	table	should	have	the	following	contents:

mysql>	SELECT	*	FROM	shop;

+---------+--------+-------+

|	article	|	dealer	|	price	|

+---------+--------+-------+

|				0001	|	A						|		3.45	|

|				0001	|	B						|		3.99	|

|				0002	|	A						|	10.99	|

|				0003	|	B						|		1.45	|

|				0003	|	C						|		1.69	|

|				0003	|	D						|		1.25	|

|				0004	|	D						|	19.95	|

+---------+--------+-------+

3.6.1.	The	Maximum	Value	for	a	Column

“What's	the	highest	item	number?”

SELECT	MAX(article)	AS	article	FROM	shop;

+---------+

|	article	|

+---------+

|							4	|

+---------+

3.6.2.	The	Row	Holding	the	Maximum	of	a	Certain	Column

Task:	Find	the	number,	dealer,	and	price	of	the	most	expensive	article.

This	is	easily	done	with	a	subquery:

SELECT	article,	dealer,	price

FROM			shop

WHERE		price=(SELECT	MAX(price)	FROM	shop);

Another	solution	is	to	sort	all	rows	descending	by	price	and	get	only	the	first	row
using	the	MySQL-specific	LIMIT	clause:

SELECT	article,	dealer,	price

FROM	shop

ORDER	BY	price	DESC

LIMIT	1;

Note:	If	there	were	several	most	expensive	articles,	each	with	a	price	of	19.95,
the	LIMIT	solution	would	show	only	one	of	them.

3.6.3.	Maximum	of	Column	per	Group

Task:	Find	the	highest	price	per	article.

SELECT	article,	MAX(price)	AS	price

FROM			shop

GROUP	BY	article

+---------+-------+

|	article	|	price	|

+---------+-------+

|				0001	|		3.99	|

|				0002	|	10.99	|

|				0003	|		1.69	|

|				0004	|	19.95	|

+---------+-------+

3.6.4.	The	Rows	Holding	the	Group-wise	Maximum	of	a	Certain
Field

Task:	For	each	article,	find	the	dealer	or	dealers	with	the	most	expensive	price.

This	problem	can	be	solved	with	a	subquery	like	this	one:

SELECT	article,	dealer,	price

FROM			shop	s1

WHERE		price=(SELECT	MAX(s2.price)

														FROM	shop	s2

														WHERE	s1.article	=	s2.article);

3.6.5.	Using	User-Defined	Variables

You	can	employ	MySQL	user	variables	to	remember	results	without	having	to
store	them	in	temporary	variables	in	the	client.	(See	Section	9.3,	“User-Defined
Variables”.)

For	example,	to	find	the	articles	with	the	highest	and	lowest	price	you	can	do
this:

mysql>	SELECT	@min_price:=MIN(price),@max_price:=MAX(price)	FROM	shop;

mysql>	SELECT	*	FROM	shop	WHERE	price=@min_price	OR	price=@max_price;

+---------+--------+-------+

|	article	|	dealer	|	price	|

+---------+--------+-------+

|				0003	|	D						|		1.25	|

|				0004	|	D						|	19.95	|

+---------+--------+-------+

3.6.6.	Using	Foreign	Keys

In	MySQL,	InnoDB	tables	support	checking	of	foreign	key	constraints.	See
Section	14.2,	“The	InnoDB	Storage	Engine”,	and	Section	1.9.5.5,	“Foreign
Keys”.

A	foreign	key	constraint	is	not	required	merely	to	join	two	tables.	For	storage
engines	other	than	InnoDB,	it	is	possible	when	defining	a	column	to	use	a
REFERENCES	tbl_name(col_name)	clause,	which	has	no	actual	effect,	and	serves
only	as	a	memo	or	comment	to	you	that	the	column	which	you	are	currently
defining	is	intended	to	refer	to	a	column	in	another	table.	It	is	extremely

important	to	realize	when	using	this	syntax	that:

MySQL	does	not	perform	any	sort	of	CHECK	to	make	sure	that	col_name
actually	exists	in	tbl_name	(or	even	that	tbl_name	itself	exists).

MySQL	does	not	perform	any	sort	of	action	on	tbl_name	such	as	deleting
rows	in	response	to	actions	taken	on	rows	in	the	table	which	you	are
defining;	in	other	words,	this	syntax	induces	no	ON	DELETE	or	ON	UPDATE
behavior	whatsoever.	(Although	you	can	write	an	ON	DELETE	or	ON	UPDATE
clause	as	part	of	the	REFERENCES	clause,	it	is	also	ignored.)

This	syntax	creates	a	column;	it	does	not	create	any	sort	of	index	or	key.

This	syntax	will	cause	an	error	if	used	in	trying	to	define	an	InnoDB	table.

You	can	use	a	column	so	created	as	a	join	column,	as	shown	here:

CREATE	TABLE	person	(

				id	SMALLINT	UNSIGNED	NOT	NULL	AUTO_INCREMENT,

				name	CHAR(60)	NOT	NULL,

				PRIMARY	KEY	(id)

);

CREATE	TABLE	shirt	(

				id	SMALLINT	UNSIGNED	NOT	NULL	AUTO_INCREMENT,

				style	ENUM('t-shirt',	'polo',	'dress')	NOT	NULL,

				color	ENUM('red',	'blue',	'orange',	'white',	'black')	NOT	NULL,

				owner	SMALLINT	UNSIGNED	NOT	NULL	REFERENCES	person(id),

				PRIMARY	KEY	(id)

);

INSERT	INTO	person	VALUES	(NULL,	'Antonio	Paz');

SELECT	@last	:=	LAST_INSERT_ID();

INSERT	INTO	shirt	VALUES

(NULL,	'polo',	'blue',	@last),

(NULL,	'dress',	'white',	@last),

(NULL,	't-shirt',	'blue',	@last);

INSERT	INTO	person	VALUES	(NULL,	'Lilliana	Angelovska');

SELECT	@last	:=	LAST_INSERT_ID();

INSERT	INTO	shirt	VALUES

(NULL,	'dress',	'orange',	@last),

(NULL,	'polo',	'red',	@last),

(NULL,	'dress',	'blue',	@last),

(NULL,	't-shirt',	'white',	@last);

SELECT	*	FROM	person;

+----+---------------------+

|	id	|	name																|

+----+---------------------+

|		1	|	Antonio	Paz									|

|		2	|	Lilliana	Angelovska	|

+----+---------------------+

SELECT	*	FROM	shirt;

+----+---------+--------+-------+

|	id	|	style			|	color		|	owner	|

+----+---------+--------+-------+

|		1	|	polo				|	blue			|					1	|

|		2	|	dress			|	white		|					1	|

|		3	|	t-shirt	|	blue			|					1	|

|		4	|	dress			|	orange	|					2	|

|		5	|	polo				|	red				|					2	|

|		6	|	dress			|	blue			|					2	|

|		7	|	t-shirt	|	white		|					2	|

+----+---------+--------+-------+

SELECT	s.*	FROM	person	p	INNER	JOIN	shirt	s

			ON	s.owner	=	p.id

	WHERE	p.name	LIKE	'Lilliana%'

			AND	s.color	<>	'white';

+----+-------+--------+-------+

|	id	|	style	|	color		|	owner	|

+----+-------+--------+-------+

|		4	|	dress	|	orange	|					2	|

|		5	|	polo		|	red				|					2	|

|		6	|	dress	|	blue			|					2	|

+----+-------+--------+-------+

When	used	in	this	fashion,	the	REFERENCES	clause	is	not	displayed	in	the	output
of	SHOW	CREATE	TABLE	or	DESCRIBE:

SHOW	CREATE	TABLE	shirt\G

***************************	1.	row	***************************

Table:	shirt

Create	Table:	CREATE	TABLE	`shirt`	(

`id`	smallint(5)	unsigned	NOT	NULL	auto_increment,

`style`	enum('t-shirt','polo','dress')	NOT	NULL,

`color`	enum('red','blue','orange','white','black')	NOT	NULL,

`owner`	smallint(5)	unsigned	NOT	NULL,

PRIMARY	KEY		(`id`)

)	ENGINE=MyISAM	DEFAULT	CHARSET=latin1

The	use	of	REFERENCES	in	this	way	as	a	comment	or	“reminder”	in	a	column
definition	works	with	both	MyISAM	and	BerkeleyDB	tables.

3.6.7.	Searching	on	Two	Keys

An	OR	using	a	single	key	is	well	optimized,	as	is	the	handling	of	AND.

The	one	tricky	case	is	that	of	searching	on	two	different	keys	combined	with	OR:

SELECT	field1_index,	field2_index	FROM	test_table

WHERE	field1_index	=	'1'	OR		field2_index	=	'1'

This	case	is	optimized	from	MySQL	5.0.0.	See	Section	7.2.6,	“Index	Merge
Optimization”.

You	can	also	solve	the	problem	efficiently	by	using	a	UNION	that	combines	the
output	of	two	separate	SELECT	statements.	See	Section	13.2.7.2,	“UNION	Syntax”.

Each	SELECT	searches	only	one	key	and	can	be	optimized:

SELECT	field1_index,	field2_index

				FROM	test_table	WHERE	field1_index	=	'1'

UNION

SELECT	field1_index,	field2_index

				FROM	test_table	WHERE	field2_index	=	'1';

3.6.8.	Calculating	Visits	Per	Day

The	following	example	shows	how	you	can	use	the	bit	group	functions	to
calculate	the	number	of	days	per	month	a	user	has	visited	a	Web	page.

CREATE	TABLE	t1	(year	YEAR(4),	month	INT(2)	UNSIGNED	ZEROFILL,

													day	INT(2)	UNSIGNED	ZEROFILL);

INSERT	INTO	t1	VALUES(2000,1,1),(2000,1,20),(2000,1,30),(2000,2,2),

												(2000,2,23),(2000,2,23);

The	example	table	contains	year-month-day	values	representing	visits	by	users
to	the	page.	To	determine	how	many	different	days	in	each	month	these	visits
occur,	use	this	query:

SELECT	year,month,BIT_COUNT(BIT_OR(1<<day))	AS	days	FROM	t1

							GROUP	BY	year,month;

Which	returns:

+------+-------+------+

|	year	|	month	|	days	|

+------+-------+------+

|	2000	|				01	|				3	|

|	2000	|				02	|				2	|

+------+-------+------+

The	query	calculates	how	many	different	days	appear	in	the	table	for	each
year/month	combination,	with	automatic	removal	of	duplicate	entries.

3.6.9.	Using	AUTO_INCREMENT

The	AUTO_INCREMENT	attribute	can	be	used	to	generate	a	unique	identity	for	new
rows:

CREATE	TABLE	animals	(

					id	MEDIUMINT	NOT	NULL	AUTO_INCREMENT,

					name	CHAR(30)	NOT	NULL,

					PRIMARY	KEY	(id)

);

INSERT	INTO	animals	(name)	VALUES	

				('dog'),('cat'),('penguin'),

				('lax'),('whale'),('ostrich');

SELECT	*	FROM	animals;

Which	returns:

+----+---------+

|	id	|	name				|

+----+---------+

|		1	|	dog					|

|		2	|	cat					|

|		3	|	penguin	|

|		4	|	lax					|

|		5	|	whale			|

|		6	|	ostrich	|

+----+---------+

You	can	retrieve	the	most	recent	AUTO_INCREMENT	value	with	the

LAST_INSERT_ID()	SQL	function	or	the	mysql_insert_id()	C	API	function.
These	functions	are	connection-specific,	so	their	return	values	are	not	affected
by	another	connection	which	is	also	performing	inserts.

Note:	For	a	multiple-row	insert,	LAST_INSERT_ID()	and	mysql_insert_id()
actually	return	the	AUTO_INCREMENT	key	from	the	first	of	the	inserted	rows.	This
allows	multiple-row	inserts	to	be	reproduced	correctly	on	other	servers	in	a
replication	setup.

For	MyISAM	and	BDB	tables	you	can	specify	AUTO_INCREMENT	on	a	secondary
column	in	a	multiple-column	index.	In	this	case,	the	generated	value	for	the
AUTO_INCREMENT	column	is	calculated	as	MAX(auto_increment_column)	+	1
WHERE	prefix=given-prefix.	This	is	useful	when	you	want	to	put	data	into
ordered	groups.

CREATE	TABLE	animals	(

				grp	ENUM('fish','mammal','bird')	NOT	NULL,

				id	MEDIUMINT	NOT	NULL	AUTO_INCREMENT,

				name	CHAR(30)	NOT	NULL,

				PRIMARY	KEY	(grp,id)

);

INSERT	INTO	animals	(grp,name)	VALUES	

				('mammal','dog'),('mammal','cat'),

				('bird','penguin'),('fish','lax'),('mammal','whale'),

				('bird','ostrich');

SELECT	*	FROM	animals	ORDER	BY	grp,id;

Which	returns:

+--------+----+---------+

|	grp				|	id	|	name				|

+--------+----+---------+

|	fish			|		1	|	lax					|

|	mammal	|		1	|	dog					|

|	mammal	|		2	|	cat					|

|	mammal	|		3	|	whale			|

|	bird			|		1	|	penguin	|

|	bird			|		2	|	ostrich	|

+--------+----+---------+

Note	that	in	this	case	(when	the	AUTO_INCREMENT	column	is	part	of	a	multiple-
column	index),	AUTO_INCREMENT	values	are	reused	if	you	delete	the	row	with	the

biggest	AUTO_INCREMENT	value	in	any	group.	This	happens	even	for	MyISAM
tables,	for	which	AUTO_INCREMENT	values	normally	are	not	reused.

If	the	AUTO_INCREMENT	column	is	part	of	multiple	indexes,	MySQL	will	generate
sequence	values	using	the	index	that	begins	with	the	AUTO_INCREMENT	column,	if
there	is	one.	For	example,	if	the	animals	table	contained	indexes	PRIMARY	KEY
(grp,	id)	and	INDEX	(id),	MySQL	would	ignore	the	PRIMARY	KEY	for
generating	sequence	values.	As	a	result,	the	table	would	contain	a	single
sequence,	not	a	sequence	per	grp	value.

To	start	with	an	AUTO_INCREMENT	value	other	than	1,	you	can	set	that	value	with
CREATE	TABLE	or	ALTER	TABLE,	like	this:

mysql>	ALTER	TABLE	tbl	AUTO_INCREMENT	=	100;

More	information	about	AUTO_INCREMENT	is	available	here:

How	to	assign	the	AUTO_INCREMENT	attribute	to	a	column:	Section	13.1.5,
“CREATE	TABLE	Syntax”,	and	Section	13.1.2,	“ALTER	TABLE	Syntax”.

How	AUTO_INCREMENT	behaves	depending	on	the	SQL	mode:	Section	5.2.5,
“The	Server	SQL	Mode”.

Find	the	row	that	contains	the	most	recent	AUTO_INCREMENT	value:
Section	12.1.3,	“Comparison	Functions	and	Operators”.

Set	the	AUTO_INCREMENT	value	to	be	used:	Section	13.5.3,	“SET	Syntax”.

AUTO_INCREMENT	and	replication:	Section	6.7,	“Replication	Features	and
Known	Problems”.

Server-system	variables	related	to	AUTO_INCREMENT
(auto_increment_increment	and	auto_increment_offset)	that	can	be
used	for	replication:	Section	5.2.2,	“Server	System	Variables”.

3.7.	Queries	from	the	Twin	Project

At	Analytikerna	and	Lentus,	we	have	been	doing	the	systems	and	field	work	for
a	big	research	project.	This	project	is	a	collaboration	between	the	Institute	of
Environmental	Medicine	at	Karolinska	Institutet	Stockholm	and	the	Section	on
Clinical	Research	in	Aging	and	Psychology	at	the	University	of	Southern
California.

The	project	involves	a	screening	part	where	all	twins	in	Sweden	older	than	65
years	are	interviewed	by	telephone.	Twins	who	meet	certain	criteria	are	passed
on	to	the	next	stage.	In	this	latter	stage,	twins	who	want	to	participate	are	visited
by	a	doctor/nurse	team.	Some	of	the	examinations	include	physical	and
neuropsychological	examination,	laboratory	testing,	neuroimaging,
psychological	status	assessment,	and	family	history	collection.	In	addition,	data
are	collected	on	medical	and	environmental	risk	factors.

More	information	about	Twin	studies	can	be	found	at:
http://www.mep.ki.se/twinreg/index_en.html

The	latter	part	of	the	project	is	administered	with	a	Web	interface	written	using
Perl	and	MySQL.

Each	night	all	data	from	the	interviews	is	moved	into	a	MySQL	database.

3.7.1.	Find	All	Non-distributed	Twins

The	following	query	is	used	to	determine	who	goes	into	the	second	part	of	the
project:

SELECT

				CONCAT(p1.id,	p1.tvab)	+	0	AS	tvid,

				CONCAT(p1.christian_name,	'	',	p1.surname)	AS	Name,

				p1.postal_code	AS	Code,

				p1.city	AS	City,

				pg.abrev	AS	Area,

				IF(td.participation	=	'Aborted',	'A',	'	')	AS	A,

				p1.dead	AS	dead1,

				l.event	AS	event1,

				td.suspect	AS	tsuspect1,

				id.suspect	AS	isuspect1,

http://www.mep.ki.se/twinreg/index_en.html

				td.severe	AS	tsevere1,

				id.severe	AS	isevere1,

				p2.dead	AS	dead2,

				l2.event	AS	event2,

				h2.nurse	AS	nurse2,

				h2.doctor	AS	doctor2,

				td2.suspect	AS	tsuspect2,

				id2.suspect	AS	isuspect2,

				td2.severe	AS	tsevere2,

				id2.severe	AS	isevere2,

				l.finish_date

FROM

				twin_project	AS	tp

				/*	For	Twin	1	*/

				LEFT	JOIN	twin_data	AS	td	ON	tp.id	=	td.id

														AND	tp.tvab	=	td.tvab

				LEFT	JOIN	informant_data	AS	id	ON	tp.id	=	id.id

														AND	tp.tvab	=	id.tvab

				LEFT	JOIN	harmony	AS	h	ON	tp.id	=	h.id

														AND	tp.tvab	=	h.tvab

				LEFT	JOIN	lentus	AS	l	ON	tp.id	=	l.id

														AND	tp.tvab	=	l.tvab

				/*	For	Twin	2	*/

				LEFT	JOIN	twin_data	AS	td2	ON	p2.id	=	td2.id

														AND	p2.tvab	=	td2.tvab

				LEFT	JOIN	informant_data	AS	id2	ON	p2.id	=	id2.id

														AND	p2.tvab	=	id2.tvab

				LEFT	JOIN	harmony	AS	h2	ON	p2.id	=	h2.id

														AND	p2.tvab	=	h2.tvab

				LEFT	JOIN	lentus	AS	l2	ON	p2.id	=	l2.id

														AND	p2.tvab	=	l2.tvab,

				person_data	AS	p1,

				person_data	AS	p2,

				postal_groups	AS	pg

WHERE

				/*	p1	gets	main	twin	and	p2	gets	his/her	twin.	*/

				/*	ptvab	is	a	field	inverted	from	tvab	*/

				p1.id	=	tp.id	AND	p1.tvab	=	tp.tvab	AND

				p2.id	=	p1.id	AND	p2.ptvab	=	p1.tvab	AND

				/*	Just	the	screening	survey	*/

				tp.survey_no	=	5	AND

				/*	Skip	if	partner	died	before	65	but	allow	emigration	(dead=9)	*/

				(p2.dead	=	0	OR	p2.dead	=	9	OR

					(p2.dead	=	1	AND

						(p2.death_date	=	0	OR

							(((TO_DAYS(p2.death_date)	-	TO_DAYS(p2.birthday))	/	365)

								>=	65))))

				AND

				(

				/*	Twin	is	suspect	*/

				(td.future_contact	=	'Yes'	AND	td.suspect	=	2)	OR

				/*	Twin	is	suspect	-	Informant	is	Blessed	*/

				(td.future_contact	=	'Yes'	AND	td.suspect	=	1

																															AND	id.suspect	=	1)	OR

				/*	No	twin	-	Informant	is	Blessed	*/

				(ISNULL(td.suspect)	AND	id.suspect	=	1

																								AND	id.future_contact	=	'Yes')	OR

				/*	Twin	broken	off	-	Informant	is	Blessed	*/

				(td.participation	=	'Aborted'

					AND	id.suspect	=	1	AND	id.future_contact	=	'Yes')	OR

				/*	Twin	broken	off	-	No	inform	-	Have	partner	*/

				(td.participation	=	'Aborted'	AND	ISNULL(id.suspect)

																																		AND	p2.dead	=	0))

				AND

				l.event	=	'Finished'

				/*	Get	at	area	code	*/

				AND	SUBSTRING(p1.postal_code,	1,	2)	=	pg.code

				/*	Not	already	distributed	*/

				AND	(h.nurse	IS	NULL	OR	h.nurse=00	OR	h.doctor=00)

				/*	Has	not	refused	or	been	aborted	*/

				AND	NOT	(h.status	=	'Refused'	OR	h.status	=	'Aborted'

				OR	h.status	=	'Died'	OR	h.status	=	'Other')

ORDER	BY

				tvid;

Some	explanations:

CONCAT(p1.id,	p1.tvab)	+	0	AS	tvid

We	want	to	sort	on	the	concatenated	id	and	tvab	in	numerical	order.
Adding	0	to	the	result	causes	MySQL	to	treat	the	result	as	a	number.

column	id

This	identifies	a	pair	of	twins.	It	is	a	key	in	all	tables.

column	tvab

This	identifies	a	twin	in	a	pair.	It	has	a	value	of	1	or	2.

column	ptvab

This	is	an	inverse	of	tvab.	When	tvab	is	1	this	is	2,	and	vice	versa.	It	exists
to	save	typing	and	to	make	it	easier	for	MySQL	to	optimize	the	query.

This	query	demonstrates,	among	other	things,	how	to	do	lookups	on	a	table	from
the	same	table	with	a	join	(p1	and	p2).	In	the	example,	this	is	used	to	check
whether	a	twin's	partner	died	before	the	age	of	65.	If	so,	the	row	is	not	returned.

All	of	the	above	exist	in	all	tables	with	twin-related	information.	We	have	a	key
on	both	id,tvab	(all	tables),	and	id,ptvab	(person_data)	to	make	queries
faster.

On	our	production	machine	(A	200MHz	UltraSPARC),	this	query	returns	about
150-200	rows	and	takes	less	than	one	second.

The	current	number	of	records	in	the	tables	used	in	the	query:

Table Rows
person_data 71074
lentus 5291
twin_project 5286
twin_data 2012
informant_data 663
harmony 381
postal_groups 100

3.7.2.	Show	a	Table	of	Twin	Pair	Status

Each	interview	ends	with	a	status	code	called	event.	The	query	shown	here	is
used	to	display	a	table	over	all	twin	pairs	combined	by	event.	This	indicates	in
how	many	pairs	both	twins	are	finished,	in	how	many	pairs	one	twin	is	finished
and	the	other	refused,	and	so	on.

SELECT

								t1.event,

								t2.event,

								COUNT(*)

FROM

								lentus	AS	t1,

								lentus	AS	t2,

								twin_project	AS	tp

WHERE

								/*	We	are	looking	at	one	pair	at	a	time	*/

								t1.id	=	tp.id

								AND	t1.tvab=tp.tvab

								AND	t1.id	=	t2.id

								/*	Just	the	screening	survey	*/

								AND	tp.survey_no	=	5

								/*	This	makes	each	pair	only	appear	once	*/

								AND	t1.tvab='1'	AND	t2.tvab='2'

GROUP	BY

								t1.event,	t2.event;

3.8.	Using	MySQL	with	Apache

There	are	programs	that	let	you	authenticate	your	users	from	a	MySQL	database
and	also	let	you	write	your	log	files	into	a	MySQL	table.

You	can	change	the	Apache	logging	format	to	be	easily	readable	by	MySQL	by
putting	the	following	into	the	Apache	configuration	file:

LogFormat	\

								"\"%h\",%{%Y%m%d%H%M%S}t,%>s,\"%b\",\"%{Content-Type}o\",		\

								\"%U\",\"%{Referer}i\",\"%{User-Agent}i\""

To	load	a	log	file	in	that	format	into	MySQL,	you	can	use	a	statement	something
like	this:

LOAD	DATA	INFILE	'/local/access_log'	INTO	TABLE	tbl_name

FIELDS	TERMINATED	BY	','	OPTIONALLY	ENCLOSED	BY	'"'	ESCAPED	BY	'\\'

The	named	table	should	be	created	to	have	columns	that	correspond	to	those	that
the	LogFormat	line	writes	to	the	log	file.

Chapter	4.	Using	MySQL	Programs

Table	of	Contents

4.1.	Overview	of	MySQL	Programs
4.2.	Invoking	MySQL	Programs
4.3.	Specifying	Program	Options

4.3.1.	Using	Options	on	the	Command	Line
4.3.2.	Using	Option	Files
4.3.3.	Using	Environment	Variables	to	Specify	Options
4.3.4.	Using	Options	to	Set	Program	Variables

This	chapter	provides	a	brief	overview	of	the	command-line	programs	provided
by	MySQL	AB	and	discusses	the	general	syntax	for	specifying	options	when
you	run	these	programs.	Most	programs	have	options	that	are	specific	to	their
own	operation,	but	the	option	syntax	is	similar	for	all	of	them.	Later	chapters
provide	more	detailed	descriptions	of	individual	programs,	including	which
options	they	recognize.

MySQL	AB	also	provides	three	GUI	client	programs	for	use	with	MySQL
Server:

MySQL	Administrator:	This	tool	is	used	for	administering	MySQL	servers,
databases,	tables,	and	user	accounts.

MySQL	Query	Browser:	This	graphical	tool	is	provided	by	MySQL	AB	for
creating,	executing,	and	optimizing	queries	on	MySQL	databases.

MySQL	Migration	Toolkit:	This	tool	helps	you	migrate	schemas	and	data
from	other	relational	database	management	systems	for	use	with	MySQL.

These	GUI	programs	each	have	their	own	manuals	that	you	can	access	at
http://dev.mysql.com/doc/.

http://dev.mysql.com/doc/

4.1.	Overview	of	MySQL	Programs

MySQL	AB	provides	several	types	of	programs:

The	MySQL	server	and	server	startup	scripts:

mysqld	is	the	MySQL	server.

mysqld_safe,	mysql.server,	and	mysqld_multi	are	server	startup
scripts.

mysql_install_db	initializes	the	data	directory	and	the	initial
databases.

MySQL	Instance	Manager	monitors	and	manages	MySQL	Server
instances.

Chapter	5,	Database	Administration,	discusses	these	programs	further

Client	programs	that	access	the	server:

mysql	is	a	command-line	client	for	executing	SQL	statements
interactively	or	in	batch	mode.

mysqladmin	is	an	administrative	client.

mysqlcheck	performs	table	maintenance	operations.

mysqldump	and	mysqlhotcopy	make	database	backups.

mysqlimport	imports	data	files.

mysqlshow	displays	information	about	databases	and	tables.

Chapter	8,	Client	and	Utility	Programs,	discusses	these	programs	further

Utility	programs	that	operate	independently	of	the	server:

myisamchk	performs	table	maintenance	operations.

myisampack	produces	compressed,	read-only	tables.

mysqlbinlog	is	a	tool	for	processing	binary	log	files.

perror	displays	the	meaning	of	error	codes.

Chapter	8,	Client	and	Utility	Programs,	discusses	these	programs	further

Most	MySQL	distributions	include	all	of	these	programs,	except	for	those
programs	that	are	platform-specific.	(For	example,	the	server	startup	scripts	are
not	used	on	Windows.)	The	exception	is	that	RPM	distributions	are	more
specialized.	There	is	one	RPM	for	the	server,	another	for	client	programs,	and	so
forth.	If	you	appear	to	be	missing	one	or	more	programs,	see	Chapter	2,
Installing	and	Upgrading	MySQL,	for	information	on	types	of	distributions	and
what	they	contain.	It	may	be	that	you	have	a	distribution	that	does	not	include	all
programs	and	you	need	to	install	something	else.

4.2.	Invoking	MySQL	Programs

To	invoke	a	MySQL	program	from	the	command	line	(that	is,	from	your	shell	or
command	prompt),	enter	the	program	name	followed	by	any	options	or	other
arguments	needed	to	instruct	the	program	what	you	want	it	to	do.	The	following
commands	show	some	sample	program	invocations.	“shell>”	represents	the
prompt	for	your	command	interpreter;	it	is	not	part	of	what	you	type.	The
particular	prompt	you	see	depends	on	your	command	interpreter.	Typical
prompts	are	$	for	sh	or	bash,	%	for	csh	or	tcsh,	and	C:\>	for	the	Windows
command.com	or	cmd.exe	command	interpreters.

shell>	mysql	-u	root	test

shell>	mysqladmin	extended-status	variables

shell>	mysqlshow	--help

shell>	mysqldump	--user=root	personnel

Arguments	that	begin	with	a	single	or	double	dash	(‘-’,	‘--’)	are	option
arguments.	Options	typically	specify	the	type	of	connection	a	program	should
make	to	the	server	or	affect	its	operational	mode.	Option	syntax	is	described	in
Section	4.3,	“Specifying	Program	Options”.

Non-option	arguments	(arguments	with	no	leading	dash)	provide	additional
information	to	the	program.	For	example,	the	mysql	program	interprets	the	first
non-option	argument	as	a	database	name,	so	the	command	mysql	-u	root	test
indicates	that	you	want	to	use	the	test	database.

Later	sections	that	describe	individual	programs	indicate	which	options	a
program	understands	and	describe	the	meaning	of	any	additional	non-option
arguments.

Some	options	are	common	to	a	number	of	programs.	The	most	common	of	these
are	the	--host	(or	-h),	--user	(or	-u),	and	--password	(or	-p)	options	that
specify	connection	parameters.	They	indicate	the	host	where	the	MySQL	server
is	running,	and	the	username	and	password	of	your	MySQL	account.	All
MySQL	client	programs	understand	these	options;	they	allow	you	to	specify
which	server	to	connect	to	and	the	account	to	use	on	that	server.

Other	connection	options	are	--port	(or	-P)	to	specify	a	TCP/IP	port	number
and	--socket	(or	-S)	to	specify	a	Unix	socket	file	on	Unix	(or	named	pipe	name

on	Windows).

The	default	hostname	is	localhost.	For	client	programs	on	Unix,	the	hostname
localhost	is	special.	It	causes	the	client	to	connect	to	the	MySQL	server
through	a	Unix	socket	file.	This	occurs	even	if	a	--port	or	-P	option	is	given	to
specify	a	port	number.	To	ensure	that	the	client	makes	a	TCP/IP	connection	to
the	local	server,	use	--host	or	-h	to	specify	a	hostname	value	of	127.0.0.1,	or
the	IP	address	or	name	of	the	local	server.	You	can	also	specify	the	connection
protocol	explicitly,	even	for	localhost,	by	using	the	--protocol=tcp	option.

You	may	find	it	necessary	to	invoke	MySQL	programs	using	the	pathname	to	the
bin	directory	in	which	they	are	installed.	This	is	likely	to	be	the	case	if	you	get	a
“program	not	found”	error	whenever	you	attempt	to	run	a	MySQL	program	from
any	directory	other	than	the	bin	directory.	To	make	it	more	convenient	to	use
MySQL,	you	can	add	the	pathname	of	the	bin	directory	to	your	PATH
environment	variable	setting.	That	enables	you	to	run	a	program	by	typing	only
its	name,	not	its	entire	pathname.	For	example,	if	mysql	is	installed	in
/usr/local/mysql/bin,	you'll	be	able	to	run	it	by	invoking	it	as	mysql;	it	will
not	be	necessary	to	invoke	it	as	/usr/local/mysql/bin/mysql.

Consult	the	documentation	for	your	command	interpreter	for	instructions	on
setting	your	PATH	variable.	The	syntax	for	setting	environment	variables	is
interpreter-specific.	(Some	information	is	given	in	Section	4.3.3,	“Using
Environment	Variables	to	Specify	Options”.)

4.3.	Specifying	Program	Options

There	are	several	ways	to	specify	options	for	MySQL	programs:

List	the	options	on	the	command	line	following	the	program	name.	This	is
most	common	for	options	that	apply	to	a	specific	invocation	of	the
program.

List	the	options	in	an	option	file	that	the	program	reads	when	it	starts.	This
is	common	for	options	that	you	want	the	program	to	use	each	time	it	runs.

List	the	options	in	environment	variables.	This	method	is	useful	for	options
that	you	want	to	apply	each	time	the	program	runs.	In	practice,	option	files
are	used	more	commonly	for	this	purpose.	However,	Section	5.13.2,
“Running	Multiple	Servers	on	Unix”,	discusses	one	situation	in	which
environment	variables	can	be	very	helpful.	It	describes	a	handy	technique
that	uses	such	variables	to	specify	the	TCP/IP	port	number	and	Unix	socket
file	for	both	the	server	and	client	programs.

MySQL	programs	determine	which	options	are	given	first	by	examining
environment	variables,	then	by	reading	option	files,	and	then	by	checking	the
command	line.	This	means	that	environment	variables	have	the	lowest
precedence	and	command-line	options	the	highest.

Because	options	are	processed	in	order,	if	an	option	is	specified	multiple	times,
the	last	occurrence	takes	precedence.	The	following	command	causes	mysql	to
connect	to	the	server	running	on	localhost:

shell>	mysql	-h	example.com	-h	localhost

If	conflicting	or	related	options	are	given,	later	options	take	precedence	over
earlier	options.	The	following	command	runs	mysql	in	“no	column	names”
mode:

shell>	mysql	--column-names	--skip-column-names

An	option	can	be	specified	by	writing	it	in	full	or	as	any	unambiguous	prefix.
For	example,	the	--compress	option	can	be	given	to	mysqldump	as	--compr,
but	not	as	--comp	because	that	is	ambiguous:

shell>	mysqldump	--comp

mysqldump:	ambiguous	option	'--comp'	(compatible,	compress)

Be	aware	that	the	use	of	option	prefixes	can	cause	problems	in	the	event	that
new	options	are	implemented	for	a	program.	A	prefix	that	is	unambigious	now
might	become	ambiguous	in	the	future.

You	can	take	advantage	of	the	way	that	MySQL	programs	process	options	by
specifying	default	values	for	a	program's	options	in	an	option	file.	That	enables
you	to	avoid	typing	them	each	time	you	run	the	program,	but	also	allows	you	to
override	the	defaults	if	necessary	by	using	command-line	options.

4.3.1.	Using	Options	on	the	Command	Line

Program	options	specified	on	the	command	line	follow	these	rules:

Options	are	given	after	the	command	name.

An	option	argument	begins	with	one	dash	or	two	dashes,	depending	on
whether	it	has	a	short	name	or	a	long	name.	Many	options	have	both	forms.
For	example,	-?	and	--help	are	the	short	and	long	forms	of	the	option	that
instructs	a	MySQL	program	to	display	its	help	message.

Option	names	are	case	sensitive.	-v	and	-V	are	both	legal	and	have	different
meanings.	(They	are	the	corresponding	short	forms	of	the	--verbose	and	--
version	options.)

Some	options	take	a	value	following	the	option	name.	For	example,	-h
localhost	or	--host=localhost	indicate	the	MySQL	server	host	to	a	client
program.	The	option	value	tells	the	program	the	name	of	the	host	where	the
MySQL	server	is	running.

For	a	long	option	that	takes	a	value,	separate	the	option	name	and	the	value
by	an	‘=’	sign.	For	a	short	option	that	takes	a	value,	the	option	value	can
immediately	follow	the	option	letter,	or	there	can	be	a	space	between:	-
hlocalhost	and	-h	localhost	are	equivalent.	An	exception	to	this	rule	is
the	option	for	specifying	your	MySQL	password.	This	option	can	be	given
in	long	form	as	--password=pass_val	or	as	--password.	In	the	latter	case
(with	no	password	value	given),	the	program	prompts	you	for	the	password.
The	password	option	also	may	be	given	in	short	form	as	-ppass_val	or	as	-

p.	However,	for	the	short	form,	if	the	password	value	is	given,	it	must
follow	the	option	letter	with	no	intervening	space.	The	reason	for	this	is	that
if	a	space	follows	the	option	letter,	the	program	has	no	way	to	tell	whether	a
following	argument	is	supposed	to	be	the	password	value	or	some	other
kind	of	argument.	Consequently,	the	following	two	commands	have	two
completely	different	meanings:

shell>	mysql	-ptest

shell>	mysql	-p	test

The	first	command	instructs	mysql	to	use	a	password	value	of	test,	but
specifies	no	default	database.	The	second	instructs	mysql	to	prompt	for	the
password	value	and	to	use	test	as	the	default	database.

Some	options	control	behavior	that	can	be	turned	on	or	off.	For	example,	the
mysql	client	supports	a	--column-names	option	that	determines	whether	or	not
to	display	a	row	of	column	names	at	the	beginning	of	query	results.	By	default,
this	option	is	enabled.	However,	you	may	want	to	disable	it	in	some	instances,
such	as	when	sending	the	output	of	mysql	into	another	program	that	expects	to
see	only	data	and	not	an	initial	header	line.

To	disable	column	names,	you	can	specify	the	option	using	any	of	these	forms:

--disable-column-names

--skip-column-names

--column-names=0

The	--disable	and	--skip	prefixes	and	the	=0	suffix	all	have	the	same	effect:
They	turn	the	option	off.

The	“enabled”	form	of	the	option	may	be	specified	in	any	of	these	ways:

--column-names

--enable-column-names

--column-names=1

If	an	option	is	prefixed	by	--loose,	a	program	does	not	exit	with	an	error	if	it
does	not	recognize	the	option,	but	instead	issues	only	a	warning:

shell>	mysql	--loose-no-such-option

mysql:	WARNING:	unknown	option	'--no-such-option'

The	--loose	prefix	can	be	useful	when	you	run	programs	from	multiple
installations	of	MySQL	on	the	same	machine	and	list	options	in	an	option	file,
An	option	that	may	not	be	recognized	by	all	versions	of	a	program	can	be	given
using	the	--loose	prefix	(or	loose	in	an	option	file).	Versions	of	the	program
that	recognize	the	option	process	it	normally,	and	versions	that	do	not	recognize
it	issue	a	warning	and	ignore	it.

Another	option	that	may	occasionally	be	useful	with	mysql	is	the	--execute	or
-e	option,	which	can	be	used	to	pass	SQL	statements	to	the	server.	The
statements	must	be	enclosed	by	single	or	double	quotation	marks.	If	you	wish	to
use	quoted	values	within	a	statement,	you	should	use	double	quotes	for	the
statement,	and	single	quotes	for	any	quoted	values	within	the	statement.	When
this	option	is	used,	mysql	executes	the	statements	and	exits.

For	example,	you	can	use	the	following	command	to	obtain	a	list	of	user
accounts:

shell>	mysql	-u	root	-p	--execute="SELECT	User,	Host	FROM	user"	mysql

Enter	password:	******

+------+-----------+

|	User	|	Host						|

+------+-----------+

|						|	gigan					|

|	root	|	gigan					|

|						|	localhost	|

|	jon		|	localhost	|

|	root	|	localhost	|

+------+-----------+

shell>

Note	that	the	long	form	(--execute)	is	followed	by	an	equals	sign	(=).

In	the	preceding	example,	the	name	of	the	mysql	database	was	passed	as	a
separate	argument.	However,	the	same	statement	could	have	been	executed	using
this	command,	which	specifies	no	default	database:

mysql>	mysql	-u	root	-p	--execute="SELECT	User,	Host	FROM	mysql.user"

Multiple	SQL	statements	may	be	passed	on	the	command	line,	separated	by
semicolons:

shell>	mysql	-u	root	-p	-e	"SELECT	VERSION();SELECT	NOW()"

Enter	password:	******

+------------+

|	VERSION()		|

+------------+

|	5.0.19-log	|

+------------+

+---------------------+

|	NOW()															|

+---------------------+

|	2006-01-05	21:19:04	|

+---------------------+

The	--execute	or	-e	option	may	also	be	used	to	pass	commands	in	an	analogous
fashion	to	the	ndb_mgm	management	client	for	MySQL	Cluster.	See
Section	15.3.6,	“Safe	Shutdown	and	Restart”,	for	an	example.

4.3.2.	Using	Option	Files

Most	MySQL	programs	can	read	startup	options	from	option	files	(also
sometimes	called	configuration	files).	Option	files	provide	a	convenient	way	to
specify	commonly	used	options	so	that	they	need	not	be	entered	on	the
command	line	each	time	you	run	a	program.	For	the	MySQL	server,	MySQL
provides	a	number	of	preconfigured	option	files.

To	determine	whether	a	program	reads	option	files,	invoke	it	with	the	--help
option	(--verbose	and	--help	for	mysqld).	If	the	program	reads	option	files,
the	help	message	indicates	which	files	it	looks	for	and	which	option	groups	it
recognizes.

Note:	Option	files	used	with	MySQL	Cluster	programs	are	covered	in
Section	15.4,	“MySQL	Cluster	Configuration”.

On	Windows,	MySQL	programs	read	startup	options	from	the	following	files:

Filename Purpose
WINDIR\my.ini Global	options
C:\my.cnf Global	options
INSTALLDIR\my.ini Global	Options
defaults-extra-

file

The	file	specified	with	--defaults-extra-file=path,	if
any

WINDIR	represents	the	location	of	your	Windows	directory.	This	is	commonly
C:\WINDOWS	or	C:\WINNT.	You	can	determine	its	exact	location	from	the	value	of
the	WINDIR	environment	variable	using	the	following	command:

C:\>	echo	%WINDIR%

INSTALLDIR	represents	the	installation	directory	of	MySQL.	This	is	typically
C:\PROGRAMDIR\MySQL\MySQL	5.0	Server	where	PROGRAMDIR	represents	the
programs	directory	(usually	Program	Files	on	English-language	versions	of
Windows),	when	MySQL	5.0	has	been	installed	using	the	installation	and
configuration	wizards.	See	Section	2.3.4.14,	“The	Location	of	the	my.ini	File”.

On	Unix,	MySQL	programs	read	startup	options	from	the	following	files:

Filename Purpose
/etc/my.cnf Global	options
$MYSQL_HOME/my.cnf Server-specific	options
defaults-extra-

file

The	file	specified	with	--defaults-extra-file=path,	if
any

~/.my.cnf User-specific	options

MYSQL_HOME	is	an	environment	variable	containing	the	path	to	the	directory	in
which	the	server-specific	my.cnf	file	resides.	(This	was	DATADIR	prior	to	MySQL
version	5.0.3.)

If	MYSQL_HOME	is	not	set	and	you	start	the	server	using	the	mysqld_safe	program,
mysqld_safe	attempts	to	set	MYSQL_HOME	as	follows:

Let	BASEDIR	and	DATADIR	represent	the	pathnames	of	the	MySQL	base
directory	and	data	directory,	respectively.

If	there	is	a	my.cnf	file	in	DATADIR	but	not	in	BASEDIR,	mysqld_safe	sets
MYSQL_HOME	to	DATADIR.

Otherwise,	if	MYSQL_HOME	is	not	set	and	there	is	no	my.cnf	file	in	DATADIR,
mysqld_safe	sets	MYSQL_HOME	to	BASEDIR.

In	MySQL	,	use	of	DATADIR	as	the	location	for	my.cnf	is	deprecated.	BASEDIR	is
a	better	location.

Typically,	DATADIR	is	/usr/local/mysql/data	for	a	binary	installation	or
/usr/local/var	for	a	source	installation.	Note	that	this	is	the	data	directory
location	that	was	specified	at	configuration	time,	not	the	one	specified	with	the	-
-datadir	option	when	mysqld	starts.	Use	of	--datadir	at	runtime	has	no	effect
on	where	the	server	looks	for	option	files,	because	it	looks	for	them	before
processing	any	options.

MySQL	looks	for	option	files	in	the	order	just	described	and	reads	any	that	exist.
If	an	option	file	that	you	want	to	use	does	not	exist,	create	it	with	a	plain	text
editor.

If	multiple	instances	of	a	given	option	are	found,	the	last	instance	takes
precedence.	There	is	one	exception:	For	mysqld,	the	first	instance	of	the	--user
option	is	used	as	a	security	precaution,	to	prevent	a	user	specified	in	an	option
file	from	being	overridden	on	the	command	line.

Note:	On	Unix	platforms,	MySQL	ignores	configuration	files	that	are	world-
writable.	This	is	intentional,	and	acts	as	a	security	measure.

Any	long	option	that	may	be	given	on	the	command	line	when	running	a
MySQL	program	can	be	given	in	an	option	file	as	well.	To	get	the	list	of
available	options	for	a	program,	run	it	with	the	--help	option.

The	syntax	for	specifying	options	in	an	option	file	is	similar	to	command-line
syntax,	except	that	you	omit	the	leading	two	dashes.	For	example,	--quick	or	--
host=localhost	on	the	command	line	should	be	specified	as	quick	or
host=localhost	in	an	option	file.	To	specify	an	option	of	the	form	--loose-
opt_name	in	an	option	file,	write	it	as	loose-opt_name.

Empty	lines	in	option	files	are	ignored.	Non-empty	lines	can	take	any	of	the
following	forms:

#comment,	;comment

Comment	lines	start	with	‘#’	or	‘;’.	A	‘#’	comment	can	start	in	the	middle
of	a	line	as	well.

[group]

group	is	the	name	of	the	program	or	group	for	which	you	want	to	set

options.	After	a	group	line,	any	option-setting	lines	apply	to	the	named
group	until	the	end	of	the	option	file	or	another	group	line	is	given.

opt_name

This	is	equivalent	to	--opt_name	on	the	command	line.

opt_name=value

This	is	equivalent	to	--opt_name=value	on	the	command	line.	In	an	option
file,	you	can	have	spaces	around	the	‘=’	character,	something	that	is	not	true
on	the	command	line.	You	can	enclose	the	value	within	single	quotes	or
double	quotes,	which	is	useful	if	the	value	contains	a	‘#’	comment	character
or	whitespace.

For	options	that	take	a	numeric	value,	the	value	can	be	given	with	a	suffix	of	K,
M,	or	G	(either	uppercase	or	lowercase)	to	indicate	a	multiplier	of	1024,	10242	or
10243.	For	example,	the	following	command	tells	mysqladmin	to	ping	the
server	1024	times,	sleeping	10	seconds	between	each	ping:

mysql>	mysqladmin	--count=1K	--sleep=10	ping

Leading	and	trailing	blanks	are	automatically	deleted	from	option	names	and
values.	You	may	use	the	escape	sequences	‘\b’,	‘\t’,	‘\n’,	‘\r’,	‘\\’,	and	‘\s’	in
option	values	to	represent	the	backspace,	tab,	newline,	carriage	return,
backslash,	and	space	characters.

Because	the	‘\\’	escape	sequence	represents	a	single	backslash,	you	must	write
each	‘\’	as	‘\\’.	Alternatively,	you	can	specify	the	value	using	‘/’	rather	than	‘\’
as	the	pathname	separator.

If	an	option	group	name	is	the	same	as	a	program	name,	options	in	the	group
apply	specifically	to	that	program.	For	example,	the	[mysqld]	and	[mysql]
groups	apply	to	the	mysqld	server	and	the	mysql	client	program,	respectively.

The	[client]	option	group	is	read	by	all	client	programs	(but	not	by	mysqld).
This	allows	you	to	specify	options	that	apply	to	all	clients.	For	example,
[client]	is	the	perfect	group	to	use	to	specify	the	password	that	you	use	to
connect	to	the	server.	(But	make	sure	that	the	option	file	is	readable	and	writable
only	by	yourself,	so	that	other	people	cannot	find	out	your	password.)	Be	sure

not	to	put	an	option	in	the	[client]	group	unless	it	is	recognized	by	all	client
programs	that	you	use.	Programs	that	do	not	understand	the	option	quit	after
displaying	an	error	message	if	you	try	to	run	them.

Here	is	a	typical	global	option	file:

[client]

port=3306

socket=/tmp/mysql.sock

[mysqld]

port=3306

socket=/tmp/mysql.sock

key_buffer_size=16M

max_allowed_packet=8M

[mysqldump]

quick

The	preceding	option	file	uses	var_name=value	syntax	for	the	lines	that	set	the
key_buffer_size	and	max_allowed_packet	variables.

Here	is	a	typical	user	option	file:

[client]

#	The	following	password	will	be	sent	to	all	standard	MySQL	clients

password="my_password"

[mysql]

no-auto-rehash

connect_timeout=2

[mysqlhotcopy]

interactive-timeout

If	you	want	to	create	option	groups	that	should	be	read	by	mysqld	servers	from	a
specific	MySQL	release	series	only,	you	can	do	this	by	using	groups	with	names
of	[mysqld-4.1],	[mysqld-5.0],	and	so	forth.	The	following	group	indicates
that	the	--new	option	should	be	used	only	by	MySQL	servers	with	5.0.x	version
numbers:

[mysqld-5.0]

new

Beginning	with	MySQL	5.0.4,	it	is	possible	to	use	!include	directives	in	option

files	to	include	other	option	files	and	!includedir	to	search	specific	directories
for	option	files.	For	example,	to	include	the	/home/mydir/myopt.cnf	file,	you
can	use	the	following	directive:

!include	/home/me/myopt.cnf

To	search	the	/home/mydir	directory	and	read	option	files	found	there,	you
would	use	this	directive:

!includedir	/home/mydir

Note:	Currently,	any	files	to	be	found	and	included	using	the	!includedir
directive	on	Unix	operating	systems	must	have	filenames	ending	in	.cnf.	On
Windows,	this	directive	checks	for	files	with	the	.ini	or	.cnf	extension.

Note	that	options	read	from	included	files	are	applied	in	the	context	of	the
current	option	group.	Suppose	that	you	were	to	write	the	following	lines	in
my.cnf:

[mysqld]

!include	/home/mydir/myopt.cnf

In	this	case,	the	myopt.cnf	file	is	processed	only	for	the	server,	and	the
!include	directive	is	ignored	by	any	client	applications.	However,	if	you	were
to	use	the	following	lines,	the	directory	/home/mydir/my-dump-options	is
checked	for	option	files	by	mysqldump	only,	and	not	by	the	server	or	by	any
other	client	applications:

[mysqldump]

!includedir	/home/mydir/my-dump-options

If	you	have	a	source	distribution,	you	can	find	sample	option	files	named	my-
xxxx.cnf	in	the	support-files	directory.	If	you	have	a	binary	distribution,	look
in	the	support-files	directory	under	your	MySQL	installation	directory.	On
Windows,	the	sample	option	files	may	be	located	in	the	MySQL	installation
directory	(see	earlier	in	this	section	or	Chapter	2,	Installing	and	Upgrading
MySQL,	if	you	do	not	know	where	this	is).	Currently,	there	are	sample	option
files	for	small,	medium,	large,	and	very	large	systems.	To	experiment	with	one
of	these	files,	copy	it	to	C:\my.cnf	on	Windows	or	to	.my.cnf	in	your	home
directory	on	Unix.

Note:	On	Windows,	the	.cnf	option	file	extension	might	not	be	displayed.

All	MySQL	programs	that	support	option	files	handle	the	following	options.
They	affect	option-file	handling,	so	they	must	be	given	on	the	command	line	and
not	in	an	option	file.	To	work	properly,	each	of	these	options	must	immediately
follow	the	command	name,	with	the	exception	that	--print-defaults	may	be
used	immediately	after	--defaults-file	or	--defaults-extra-file.

	--no-defaults

Don't	read	any	option	files.

	--print-defaults

Print	the	program	name	and	all	options	that	it	gets	from	option	files.

	--defaults-file=file_name

Use	only	the	given	option	file.	file_name	is	the	full	pathname	to	the	file.

	--defaults-extra-file=file_name

Read	this	option	file	after	the	global	option	file	but	(on	Unix)	before	the
user	option	file.	file_name	is	the	full	pathname	to	the	file.	As	of	MySQL
5.0.6,	if	the	file	does	not	exist	or	is	otherwise	inaccessible,	the	program	will
exit	with	an	error.

	--defaults-group-suffix=str

If	this	option	is	given,	the	program	reads	not	only	its	usual	option	groups,
but	also	groups	with	the	usual	names	and	a	suffix	of	str.	For	example,	the
mysql	client	normally	reads	the	[client]	and	[mysql]	groups.	If	the	--
default-group-suffix=_other	option	is	given,	mysql	also	reads	the
[client_other]	and	[mysql_other]	groups.	This	option	was	added	in
MySQL	5.0.10.

In	shell	scripts,	you	can	use	the	my_print_defaults	program	to	parse	option	files
and	see	what	options	would	be	used	by	a	given	program.	The	following	example
shows	the	output	that	my_print_defaults	might	produce	when	asked	to	show
the	options	found	in	the	[client]	and	[mysql]	groups:

shell>	my_print_defaults	client	mysql

--port=3306

--socket=/tmp/mysql.sock

--no-auto-rehash

Note	for	developers:	Option	file	handling	is	implemented	in	the	C	client	library
simply	by	processing	all	options	in	the	appropriate	group	or	groups	before	any
command-line	arguments.	This	works	well	for	programs	that	use	the	last
instance	of	an	option	that	is	specified	multiple	times.	If	you	have	a	C	or	C++
program	that	handles	multiply	specified	options	this	way	but	that	doesn't	read
option	files,	you	need	add	only	two	lines	to	give	it	that	capability.	Check	the
source	code	of	any	of	the	standard	MySQL	clients	to	see	how	to	do	this.

Several	other	language	interfaces	to	MySQL	are	based	on	the	C	client	library,
and	some	of	them	provide	a	way	to	access	option	file	contents.	These	include
Perl	and	Python.	For	details,	see	the	documentation	for	your	preferred	interface.

4.3.2.1.	Preconfigured	Option	Files

MySQL	provides	a	number	of	preconfigured	option	files	that	can	be	used	as	a
basis	for	tuning	the	MySQL	server.	Look	in	your	installation	directory	for	files
such	as	my-small.cnf,	my-medium.cnf,	my-large.cnf,	and	my-huge.cnf,	which
you	can	rename	and	copy	to	the	appropriate	location	for	use	as	a	base
configuration	file.	Regarding	names	and	appropriate	location,	see	the	general
information	provided	in	Section	4.3.2,	“Using	Option	Files”.	On	Windows,	those
files	have	a	.ini	rather	than	a	.cnf	extension.

4.3.3.	Using	Environment	Variables	to	Specify	Options

To	specify	an	option	using	an	environment	variable,	set	the	variable	using	the
syntax	appropriate	for	your	command	processor.	For	example,	on	Windows	or
NetWare,	you	can	set	the	USER	variable	to	specify	your	MySQL	account	name.
To	do	so,	use	this	syntax:

SET	USER=your_name

The	syntax	on	Unix	depends	on	your	shell.	Suppose	that	you	want	to	specify	the
TCP/IP	port	number	using	the	MYSQL_TCP_PORT	variable.	Typical	syntax	(such	as
for	sh,	bash,	zsh,	and	so	on)	is	as	follows:

MYSQL_TCP_PORT=3306

export	MYSQL_TCP_PORT

The	first	command	sets	the	variable,	and	the	export	command	exports	the
variable	to	the	shell	environment	so	that	its	value	becomes	accessible	to	MySQL
and	other	processes.

For	csh	and	tcsh,	use	setenv	to	make	the	shell	variable	available	to	the
environment:

setenv	MYSQL_TCP_PORT	3306

The	commands	to	set	environment	variables	can	be	executed	at	your	command
prompt	to	take	effect	immediately,	but	the	settings	persist	only	until	you	log	out.
To	have	the	settings	take	effect	each	time	you	log	in,	place	the	appropriate
command	or	commands	in	a	startup	file	that	your	command	interpreter	reads
each	time	it	starts.	Typical	startup	files	are	AUTOEXEC.BAT	for	Windows,
.bash_profile	for	bash,	or	.tcshrc	for	tcsh.	Consult	the	documentation	for
your	command	interpreter	for	specific	details.

Appendix	F,	Environment	Variables,	lists	all	environment	variables	that	affect
MySQL	program	operation.

4.3.4.	Using	Options	to	Set	Program	Variables

Many	MySQL	programs	have	internal	variables	that	can	be	set	at	runtime.
Program	variables	are	set	the	same	way	as	any	other	long	option	that	takes	a
value.	For	example,	mysql	has	a	max_allowed_packet	variable	that	controls	the
maximum	size	of	its	communication	buffer.	To	set	the	max_allowed_packet
variable	for	mysql	to	a	value	of	16MB,	use	either	of	the	following	commands:

shell>	mysql	--max_allowed_packet=16777216

shell>	mysql	--max_allowed_packet=16M

The	first	command	specifies	the	value	in	bytes.	The	second	specifies	the	value	in
megabytes.	For	variables	that	take	a	numeric	value,	the	value	can	be	given	with	a
suffix	of	K,	M,	or	G	(either	uppercase	or	lowercase)	to	indicate	a	multiplier	of
1024,	10242	or	10243.	(For	example,	when	used	to	set	max_allowed_packet,	the
suffixes	indicate	units	of	kilobytes,	megabytes,	or	gigabygtes.)

In	an	option	file,	variable	settings	are	given	without	the	leading	dashes:

[mysql]

max_allowed_packet=16777216

Or:

[mysql]

max_allowed_packet=16M

If	you	like,	underscores	in	a	variable	name	can	be	specified	as	dashes.	The
following	option	groups	are	equivalent.	Both	set	the	size	of	the	server's	key
buffer	to	512MB:

[mysqld]

key_buffer_size=512M

[mysqld]

key-buffer-size=512M

Note:	Before	MySQL	4.0.2,	the	only	syntax	for	setting	program	variables	was	--
set-variable=option=value	(or	set-variable=option=value	in	option	files).
This	syntax	still	is	recognized,	but	is	deprecated	as	of	MySQL	4.0.2.

Many	server	system	variables	can	also	be	set	at	runtime.	For	details,	see
Section	5.2.3.2,	“Dynamic	System	Variables”.

Chapter	5.	Database	Administration

Table	of	Contents

5.1.	Overview	of	Server-Side	Programs
5.2.	mysqld	—	The	MySQL	Server

5.2.1.	mysqld	Command	Options
5.2.2.	Server	System	Variables
5.2.3.	Using	System	Variables
5.2.4.	Server	Status	Variables
5.2.5.	The	Server	SQL	Mode
5.2.6.	The	MySQL	Server	Shutdown	Process
5.2.7.	MySQL	Server-Side	Help	Support

5.3.	The	mysqld-max	Extended	MySQL	Server
5.4.	MySQL	Server	Startup	Programs

5.4.1.	mysqld_safe	—	MySQL	Server	Startup	Script
5.4.2.	mysql.server	—	MySQL	Server	Startup	Script
5.4.3.	mysqld_multi	—	Manage	Multiple	MySQL	Servers

5.5.	mysqlmanager	—	The	MySQL	Instance	Manager
5.5.1.	Starting	the	MySQL	Server	with	MySQL	Instance	Manager
5.5.2.	Connecting	to	the	MySQL	Instance	Manager	and	Creating	User
Accounts
5.5.3.	MySQL	Instance	Manager	Command	Options
5.5.4.	MySQL	Instance	Manager	Configuration	Files
5.5.5.	Commands	Recognized	by	the	MySQL	Instance	Manager

5.6.	Installation-Related	Programs
5.6.1.	mysql_fix_privilege_tables	—	Upgrade	MySQL	System	Tables
5.6.2.	mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade

5.7.	General	Security	Issues
5.7.1.	General	Security	Guidelines
5.7.2.	Making	MySQL	Secure	Against	Attackers
5.7.3.	Security-Related	mysqld	Options
5.7.4.	Security	Issues	with	LOAD	DATA	LOCAL
5.7.5.	How	to	Run	MySQL	as	a	Normal	User

5.8.	The	MySQL	Access	Privilege	System
5.8.1.	What	the	Privilege	System	Does
5.8.2.	How	the	Privilege	System	Works

5.8.3.	Privileges	Provided	by	MySQL
5.8.4.	Connecting	to	the	MySQL	Server
5.8.5.	Access	Control,	Stage	1:	Connection	Verification
5.8.6.	Access	Control,	Stage	2:	Request	Verification
5.8.7.	When	Privilege	Changes	Take	Effect
5.8.8.	Causes	of	Access	denied	Errors
5.8.9.	Password	Hashing	as	of	MySQL	4.1

5.9.	MySQL	User	Account	Management
5.9.1.	MySQL	Usernames	and	Passwords
5.9.2.	Adding	New	User	Accounts	to	MySQL
5.9.3.	Removing	User	Accounts	from	MySQL
5.9.4.	Limiting	Account	Resources
5.9.5.	Assigning	Account	Passwords
5.9.6.	Keeping	Your	Password	Secure
5.9.7.	Using	Secure	Connections

5.10.	Backup	and	Recovery
5.10.1.	Database	Backups
5.10.2.	Example	Backup	and	Recovery	Strategy
5.10.3.	Point-in-Time	Recovery
5.10.4.	Table	Maintenance	and	Crash	Recovery

5.11.	MySQL	Localization	and	International	Usage
5.11.1.	The	Character	Set	Used	for	Data	and	Sorting
5.11.2.	Setting	the	Error	Message	Language
5.11.3.	Adding	a	New	Character	Set
5.11.4.	The	Character	Definition	Arrays
5.11.5.	String	Collating	Support
5.11.6.	Multi-Byte	Character	Support
5.11.7.	Problems	With	Character	Sets
5.11.8.	MySQL	Server	Time	Zone	Support

5.12.	MySQL	Server	Logs
5.12.1.	The	Error	Log
5.12.2.	The	General	Query	Log
5.12.3.	The	Binary	Log
5.12.4.	The	Slow	Query	Log
5.12.5.	Server	Log	Maintenance

5.13.	Running	Multiple	MySQL	Servers	on	the	Same	Machine
5.13.1.	Running	Multiple	Servers	on	Windows
5.13.2.	Running	Multiple	Servers	on	Unix
5.13.3.	Using	Client	Programs	in	a	Multiple-Server	Environment

5.14.	The	MySQL	Query	Cache
5.14.1.	How	the	Query	Cache	Operates
5.14.2.	Query	Cache	SELECT	Options
5.14.3.	Query	Cache	Configuration
5.14.4.	Query	Cache	Status	and	Maintenance

This	chapter	covers	topics	that	deal	with	administering	a	MySQL	installation:

Configuring	the	server

Managing	user	accounts

Performing	backups

The	server	log	files

The	query	cache

5.1.	Overview	of	Server-Side	Programs

The	MySQL	server,	mysqld,	is	the	main	program	that	does	most	of	the	work	in	a
MySQL	installation.	The	server	is	accompanied	by	several	related	scripts	that
perform	setup	operations	when	you	install	MySQL	or	that	assist	you	in	starting
and	stopping	the	server.	This	section	provides	an	overview	of	the	server	and
related	programs.	The	following	sections	provide	more	detailed	information
about	each	of	these	programs.

Each	MySQL	program	takes	many	different	options.	Most	programs	provide	a	-
-help	option	that	you	can	use	to	get	a	description	of	the	program's	different
options.	For	example,	try	mysqld	--help.

You	can	override	default	option	values	for	MySQL	programs	by	specifying
options	on	the	command	line	or	in	an	option	file.	Section	4.3,	“Specifying
Program	Options”.

The	following	list	briefly	describes	the	MySQL	server	and	server-related
programs:

	mysqld

The	SQL	daemon	(that	is,	the	MySQL	server).	To	use	client	programs,
mysqld	must	be	running,	because	clients	gain	access	to	databases	by
connecting	to	the	server.	See	Section	5.2,	“mysqld	—	The	MySQL	Server”.

	mysqld-max

A	version	of	the	server	that	includes	additional	features.	See	Section	5.3,
“The	mysqld-max	Extended	MySQL	Server”.

	mysqld_safe

A	server	startup	script.	mysqld_safe	attempts	to	start	mysqld-max	if	it
exists,	and	mysqld	otherwise.	See	Section	5.4.1,	“mysqld_safe	—	MySQL
Server	Startup	Script”.

	mysql.server

A	server	startup	script.	This	script	is	used	on	systems	that	use	System	V-
style	run	directories	containing	scripts	that	start	system	services	for
particular	run	levels.	It	invokes	mysqld_safe	to	start	the	MySQL	server.
See	Section	5.4.2,	“mysql.server	—	MySQL	Server	Startup	Script”.

	mysqld_multi

A	server	startup	script	that	can	start	or	stop	multiple	servers	installed	on	the
system.	See	Section	5.4.3,	“mysqld_multi	—	Manage	Multiple	MySQL
Servers”.	As	of	MySQL	5.0.3	(Unix-like	systems)	or	5.0.13	(Windows),	an
alternative	to	mysqld_multi	is	mysqlmanager,	the	MySQL	Instance
Manager.	See	Section	5.5,	“mysqlmanager	—	The	MySQL	Instance
Manager”.

	mysql_install_db

This	script	creates	the	MySQL	database	and	initializes	the	grant	tables	with
default	privileges.	It	is	usually	executed	only	once,	when	first	installing
MySQL	on	a	system.	See	Section	2.10.2,	“Unix	Post-Installation
Procedures”.

	mysql_fix_privilege_tables

This	program	is	used	after	a	MySQL	upgrade	operation.	It	updates	the	grant
tables	with	any	changes	that	have	been	made	in	newer	versions	of	MySQL.
See	Section	5.6.1,	“mysql_fix_privilege_tables	—	Upgrade	MySQL
System	Tables”.

Note:	As	of	MySQL	5.0.19,	this	program	has	been	superseded	by
mysql_upgrade.

	mysql_upgrade

This	program	is	used	after	a	MySQL	upgrade	operation.	It	checks	tables	for
incompatibilities	and	repairs	them	if	necessary,	and	updates	the	grant	tables
with	any	changes	that	have	been	made	in	newer	versions	of	MySQL.	See
Section	5.6.2,	“mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade”.

	mysqlmanager

The	MySQL	Instance	Manager,	a	program	for	monitoring	and	managing
MySQL	servers.	See	Section	5.5,	“mysqlmanager	—	The	MySQL	Instance
Manager”.

There	are	several	other	programs	that	are	run	on	the	server	host:

	make_binary_distribution

This	program	makes	a	binary	release	of	a	compiled	MySQL.	This	could	be
sent	by	FTP	to	/pub/mysql/upload/	on	ftp.mysql.com	for	the
convenience	of	other	MySQL	users.

5.2.	mysqld	—	The	MySQL	Server

mysqld	is	the	MySQL	server.	The	following	discussion	covers	these	MySQL
server	configuration	topics:

Startup	options	that	the	server	supports

Server	system	variables

Server	status	variables

How	to	set	the	server	SQL	mode

The	server	shutdown	process

5.2.1.	mysqld	Command	Options

When	you	start	the	mysqld	server,	you	can	specify	program	options	using	any	of
the	methods	described	in	Section	4.3,	“Specifying	Program	Options”.	The	most
common	methods	are	to	provide	options	in	an	option	file	or	on	the	command
line.	However,	in	most	cases	it	is	desirable	to	make	sure	that	the	server	uses	the
same	options	each	time	it	runs.	The	best	way	to	ensure	this	is	to	list	them	in	an
option	file.	See	Section	4.3.2,	“Using	Option	Files”.

mysqld	reads	options	from	the	[mysqld]	and	[server]	groups.	mysqld_safe
reads	options	from	the	[mysqld],	[server],	[mysqld_safe],	and
[safe_mysqld]	groups.	mysql.server	reads	options	from	the	[mysqld]	and
[mysql.server]	groups.

An	embedded	MySQL	server	usually	reads	options	from	the	[server],
[embedded],	and	[xxxxx_SERVER]	groups,	where	xxxxx	is	the	name	of	the
application	into	which	the	server	is	embedded.

mysqld	accepts	many	command	options.	For	a	brief	summary,	execute	mysqld	-
-help.	To	see	the	full	list,	use	mysqld	--verbose	--help.

The	following	list	shows	some	of	the	most	common	server	options.	Additional
options	are	described	in	other	sections:

Options	that	affect	security:	See	Section	5.7.3,	“Security-Related	mysqld
Options”.

SSL-related	options:	See	Section	5.9.7.3,	“SSL	Command	Options”.

Binary	log	control	options:	See	Section	5.12.3,	“The	Binary	Log”.

Replication-related	options:	See	Section	6.8,	“Replication	Startup	Options”.

Options	specific	to	particular	storage	engines:	See	Section	14.1.1,	“MyISAM
Startup	Options”,	Section	14.5.3,	“BDB	Startup	Options”,	Section	14.2.4,
“InnoDB	Startup	Options	and	System	Variables”,	and	Section	15.6.5.1,
“MySQL	Cluster-Related	Command	Options	for	mysqld”.

You	can	also	set	the	values	of	server	system	variables	by	using	variable	names	as
options,	as	described	later	in	this	section.

	--help,	-?

Display	a	short	help	message	and	exit.	Use	both	the	--verbose	and	--help
options	to	see	the	full	message.

	--allow-suspicious-udfs

This	option	controls	whether	user-defined	functions	that	have	only	an	xxx
symbol	for	the	main	function	can	be	loaded.	By	default,	the	option	is	off
and	only	UDFs	that	have	at	least	one	auxiliary	symbol	can	be	loaded;	this
prevents	attempts	at	loading	functions	from	shared	object	files	other	than
those	containing	legitimate	UDFs.	This	option	was	added	in	version	5.0.3.
See	Section	24.2.4.6,	“User-Defined	Function	Security	Precautions”.

	--ansi

Use	standard	(ANSI)	SQL	syntax	instead	of	MySQL	syntax.	For	more
precise	control	over	the	server	SQL	mode,	use	the	--sql-mode	option
instead.	See	Section	1.9.3,	“Running	MySQL	in	ANSI	Mode”,	and
Section	5.2.5,	“The	Server	SQL	Mode”.

	--basedir=path,	-b	path

The	path	to	the	MySQL	installation	directory.	All	paths	are	usually	resolved
relative	to	this	directory.

	--bind-address=IP

The	IP	address	to	bind	to.

	--bootstrap

This	option	is	used	by	the	mysql_install_db	script	to	create	the	MySQL
privilege	tables	without	having	to	start	a	full	MySQL	server.

	--character-sets-dir=path

The	directory	where	character	sets	are	installed.	See	Section	5.11.1,	“The
Character	Set	Used	for	Data	and	Sorting”.

	--character-set-client-handshake

Don't	ignore	character	set	information	sent	by	the	client.	To	ignore	client
information	and	use	the	default	server	character	set,	use	--skip-
character-set-client-handshake;	this	makes	MySQL	behave	like
MySQL	4.0.

	--character-set-filesystem=charset_name

The	filesystem	character	set.	This	option	sets	the
character_set_filesystem	system	variable.	It	was	added	in	MySQL
5.0.19.

	--character-set-server=charset_name,	-C	charset_name

Use	charset_name	as	the	default	server	character	set.	See	Section	5.11.1,
“The	Character	Set	Used	for	Data	and	Sorting”.

	--chroot=path

Put	the	mysqld	server	in	a	closed	environment	during	startup	by	using	the
chroot()	system	call.	This	is	a	recommended	security	measure.	Note	that
use	of	this	option	somewhat	limits	LOAD	DATA	INFILE	and	SELECT	...

INTO	OUTFILE.

	--collation-server=collation_name

Use	collation_name	as	the	default	server	collation.	See	Section	5.11.1,
“The	Character	Set	Used	for	Data	and	Sorting”.

	--console

(Windows	only.)	Write	error	log	messages	to	stderr	and	stdout	even	if	--
log-error	is	specified.	mysqld	does	not	close	the	console	window	if	this
option	is	used.

	--core-file

Write	a	core	file	if	mysqld	dies.	For	some	systems,	you	must	also	specify
the	--core-file-size	option	to	mysqld_safe.	See	Section	5.4.1,
“mysqld_safe	—	MySQL	Server	Startup	Script”.	Note	that	on	some
systems,	such	as	Solaris,	you	do	not	get	a	core	file	if	you	are	also	using	the
--user	option.

	--datadir=path,	-h	path

The	path	to	the	data	directory.

	--debug[=debug_options],	-#	[debug_options]

If	MySQL	is	configured	with	--with-debug,	you	can	use	this	option	to	get
a	trace	file	of	what	mysqld	is	doing.	The	debug_options	string	often	is
'd:t:o,file_name'.	The	default	is	'd:t:i:o,mysqld.trace'.	See
Section	E.1.2,	“Creating	Trace	Files”.

	--default-character-set=charset_name	(DEPRECATED)

Use	charset_name	as	the	default	character	set.	This	option	is	deprecated	in
favor	of	--character-set-server.	See	Section	5.11.1,	“The	Character	Set
Used	for	Data	and	Sorting”.

	--default-collation=collation_name

Use	collation_name	as	the	default	collation.	This	option	is	deprecated	in
favor	of	--collation-server.	See	Section	5.11.1,	“The	Character	Set	Used
for	Data	and	Sorting”.

	--default-storage-engine=type

Set	the	default	storage	engine	(table	type)	for	tables.	See	Chapter	14,
Storage	Engines	and	Table	Types.

	--default-table-type=type

This	option	is	a	synonym	for	--default-storage-engine.

	--default-time-zone=timezone

Set	the	default	server	time	zone.	This	option	sets	the	global	time_zone
system	variable.	If	this	option	is	not	given,	the	default	time	zone	is	the	same
as	the	system	time	zone	(given	by	the	value	of	the	system_time_zone
system	variable.

	--delay-key-write[={OFF|ON|ALL}]

Specify	how	to	use	delayed	key	writes.	Delayed	key	writing	causes	key
buffers	not	to	be	flushed	between	writes	for	MyISAM	tables.	OFF	disables
delayed	key	writes.	ON	enables	delayed	key	writes	for	those	tables	that	were
created	with	the	DELAY_KEY_WRITE	option.	ALL	delays	key	writes	for	all
MyISAM	tables.	See	Section	7.5.2,	“Tuning	Server	Parameters”,	and
Section	14.1.1,	“MyISAM	Startup	Options”.

Note:	If	you	set	this	variable	to	ALL,	you	should	not	use	MyISAM	tables	from
within	another	program	(such	as	another	MySQL	server	or	myisamchk)
when	the	tables	are	in	use.	Doing	so	leads	to	index	corruption.

	--des-key-file=file_name

Read	the	default	DES	keys	from	this	file.	These	keys	are	used	by	the
DES_ENCRYPT()	and	DES_DECRYPT()	functions.

	--enable-named-pipe

Enable	support	for	named	pipes.	This	option	applies	only	on	Windows	NT,
2000,	XP,	and	2003	systems,	and	can	be	used	only	with	the	mysqld-nt	and
mysqld-max-nt	servers	that	support	named-pipe	connections.

	--exit-info[=flags],	-T	[flags]

This	is	a	bit	mask	of	different	flags	that	you	can	use	for	debugging	the
mysqld	server.	Do	not	use	this	option	unless	you	know	exactly	what	it
does!

	--external-locking

Enable	external	locking	(system	locking),	which	is	disabled	by	default	as	of
MySQL	4.0.	Note	that	if	you	use	this	option	on	a	system	on	which	lockd
does	not	fully	work	(such	as	Linux),	it	is	easy	for	mysqld	to	deadlock.	This
option	previously	was	named	--enable-locking.

Note:	If	you	use	this	option	to	enable	updates	to	MyISAM	tables	from	many
MySQL	processes,	you	must	ensure	that	the	following	conditions	are
satisfied:

You	should	not	use	the	query	cache	for	queries	that	use	tables	that	are
updated	by	another	process.

You	should	not	use	--delay-key-write=ALL	or	DELAY_KEY_WRITE=1
on	any	shared	tables.

The	easiest	way	to	ensure	this	is	to	always	use	--external-locking
together	with	--delay-key-write=OFF	and	--query-cache-size=0.	(This
is	not	done	by	default	because	in	many	setups	it	is	useful	to	have	a	mixture
of	the	preceding	options.)

	--flush

Flush	(synchronize)	all	changes	to	disk	after	each	SQL	statement.
Normally,	MySQL	does	a	write	of	all	changes	to	disk	only	after	each	SQL
statement	and	lets	the	operating	system	handle	the	synchronizing	to	disk.
See	Section	A.4.2,	“What	to	Do	If	MySQL	Keeps	Crashing”.

	--init-file=file_name

Read	SQL	statements	from	this	file	at	startup.	Each	statement	must	be	on	a
single	line	and	should	not	include	comments.

	--innodb-safe-binlog

Adds	consistency	guarantees	between	the	content	of	InnoDB	tables	and	the
binary	log.	See	Section	5.12.3,	“The	Binary	Log”.	This	option	was	removed
in	MySQL	5.0.3,	having	been	made	obsolete	by	the	introduction	of	XA
transaction	support.

--innodb-xxx

The	InnoDB	options	are	listed	in	Section	14.2.4,	“InnoDB	Startup	Options
and	System	Variables”.

	--language=lang_name,	-L	lang_name

Return	client	error	messages	in	the	given	language.	lang_name	can	be	given
as	the	language	name	or	as	the	full	pathname	to	the	directory	where	the
language	files	are	installed.	See	Section	5.11.2,	“Setting	the	Error	Message
Language”.

	--large-pages

Some	hardware/operating	system	architectures	support	memory	pages
greater	than	the	default	(usually	4KB).	The	actual	implementation	of	this
support	depends	on	the	underlying	hardware	and	OS.	Applications	that
perform	a	lot	of	memory	accesses	may	obtain	performance	improvements
by	using	large	pages	due	to	reduced	Translation	Lookaside	Buffer	(TLB)
misses.

Currently,	MySQL	supports	only	the	Linux	implementation	of	large	pages
support	(which	is	called	HugeTLB	in	Linux).	We	have	plans	to	extend	this
support	to	FreeBSD,	Solaris	and	possibly	other	platforms.

Before	large	pages	can	be	used	on	Linux,	it	is	necessary	to	configure	the
HugeTLB	memory	pool.	For	reference,	consult	the	hugetlbpage.txt	file	in
the	Linux	kernel	source.

This	option	is	disabled	by	default.	It	was	added	in	MySQL	5.0.3.

	--log[=file_name],	-l	[file_name]

Log	connections	and	SQL	statements	received	from	clients	to	this	file.	See
Section	5.12.2,	“The	General	Query	Log”.	If	you	omit	the	filename,
MySQL	uses	host_name.log	as	the	filename.

	--log-bin[=base_name]

Enable	binary	logging.	The	server	logs	all	statements	that	change	data	to
the	binary	log,	which	is	used	for	backup	and	replication.	See	Section	5.12.3,
“The	Binary	Log”.

The	option	value,	if	given,	is	the	basename	for	the	log	sequence.	The	server
creates	binary	log	files	in	sequence	by	adding	a	numeric	suffix	to	the
basename.	It	is	recommended	that	you	specify	a	basename	(see
Section	A.8.1,	“Open	Issues	in	MySQL”,	for	the	reason).	Otherwise,
MySQL	uses	host_name-bin	as	the	basename.

	--log-bin-index[=file_name]

The	index	file	for	binary	log	filenames.	See	Section	5.12.3,	“The	Binary
Log”.	If	you	omit	the	filename,	and	if	you	didn't	specify	one	with	--log-
bin,	MySQL	uses	host_name-bin.index	as	the	filename.

	--log-bin-trust-function-creators[={0|1}]

With	no	argument	or	an	argument	of	1,	this	option	sets	the
log_bin_trust_function_creators	system	variable	to	1.	With	an
argument	of	0,	this	option	sets	the	system	variable	to	0.
log_bin_trust_function_creators	affects	how	MySQL	enforces
restrictions	on	stored	function	creation.	See	Section	17.4,	“Binary	Logging
of	Stored	Routines	and	Triggers”.

This	option	was	added	in	MySQL	5.0.16.

	--log-bin-trust-routine-creators[={0|1}]

This	is	the	old	name	for	--log-bin-trust-function-creators.	Before
MySQL	5.0.16,	it	also	applies	to	stored	procedures,	not	just	stored	functions
and	sets	the	log_bin_trust_routine_creators	system	variable.	As	of

5.0.16,	this	option	is	deprecated.	It	is	recognized	for	backward
compatibility	but	its	use	results	in	a	warning.

This	option	was	added	in	MySQL	5.0.6.

	--log-error[=file_name]

Log	errors	and	startup	messages	to	this	file.	See	Section	5.12.1,	“The	Error
Log”.	If	you	omit	the	filename,	MySQL	uses	host_name.err.	If	the	filename
has	no	extension,	the	server	adds	an	extension	of	.err.

	--log-isam[=file_name]

Log	all	MyISAM	changes	to	this	file	(used	only	when	debugging	MyISAM).

	--log-long-format	(DEPRECATED)

Log	extra	information	to	the	update	log,	binary	update	log,	and	slow	query
log,	if	they	have	been	activated.	For	example,	the	username	and	timestamp
are	logged	for	all	queries.	This	option	is	deprecated,	as	it	now	represents	the
default	logging	behavior.	(See	the	description	for	--log-short-format.)
The	--log-queries-not-using-indexes	option	is	available	for	the
purpose	of	logging	queries	that	do	not	use	indexes	to	the	slow	query	log.

	--log-queries-not-using-indexes

If	you	are	using	this	option	with	--log-slow-queries,	queries	that	do	not
use	indexes	are	logged	to	the	slow	query	log.	See	Section	5.12.4,	“The
Slow	Query	Log”.

	--log-short-format

Log	less	information	to	the	update	log,	binary	update	log,	and	slow	query
log,	if	they	have	been	activated.	For	example,	the	username	and	timestamp
are	not	logged	for	queries.

	--log-slow-admin-statements

Log	slow	administrative	statements	such	as	OPTIMIZE	TABLE,	ANALYZE
TABLE,	and	ALTER	TABLE	to	the	slow	query	log.

	--log-slow-queries[=file_name]

Log	all	queries	that	have	taken	more	than	long_query_time	seconds	to
execute	to	this	file.	See	Section	5.12.4,	“The	Slow	Query	Log”.	See	the
descriptions	of	the	--log-long-format	and	--log-short-format	options
for	details.

	--log-warnings[=level],	-W	[level]

Print	out	warnings	such	as	Aborted	connection...	to	the	error	log.
Enabling	this	option	is	recommended,	for	example,	if	you	use	replication
(you	get	more	information	about	what	is	happening,	such	as	messages	about
network	failures	and	reconnections).	This	option	is	enabled	(1)	by	default,
and	the	default	level	value	if	omitted	is	1.	To	disable	this	option,	use	--
log-warnings=0.	Aborted	connections	are	not	logged	to	the	error	log	unless
the	value	is	greater	than	1.	See	Section	A.2.10,	“Communication	Errors	and
Aborted	Connections”.

	--low-priority-updates

Give	table-modifying	operations	(INSERT,	REPLACE,	DELETE,	UPDATE)	lower
priority	than	selects.	This	can	also	be	done	via	{INSERT	|	REPLACE	|
DELETE	|	UPDATE}	LOW_PRIORITY	...	to	lower	the	priority	of	only	one
query,	or	by	SET	LOW_PRIORITY_UPDATES=1	to	change	the	priority	in	one
thread.	See	Section	7.3.2,	“Table	Locking	Issues”.

	--memlock

Lock	the	mysqld	process	in	memory.	This	works	on	systems	such	as
Solaris	that	support	the	mlockall()	system	call.	This	might	help	if	you
have	a	problem	where	the	operating	system	is	causing	mysqld	to	swap	on
disk.	Note	that	use	of	this	option	requires	that	you	run	the	server	as	root,
which	is	normally	not	a	good	idea	for	security	reasons.	See	Section	5.7.5,
“How	to	Run	MySQL	as	a	Normal	User”.

	--myisam-recover[=option[,option]...]]

Set	the	MyISAM	storage	engine	recovery	mode.	The	option	value	is	any
combination	of	the	values	of	DEFAULT,	BACKUP,	FORCE,	or	QUICK.	If	you
specify	multiple	values,	separate	them	by	commas.	You	can	also	use	a	value

of	""	to	disable	this	option.	If	this	option	is	used,	each	time	mysqld	opens	a
MyISAM	table,	it	checks	whether	the	table	is	marked	as	crashed	or	wasn't
closed	properly.	(The	last	option	works	only	if	you	are	running	with
external	locking	disabled.)	If	this	is	the	case,	mysqld	runs	a	check	on	the
table.	If	the	table	was	corrupted,	mysqld	attempts	to	repair	it.

The	following	options	affect	how	the	repair	works:

Option Description
DEFAULT The	same	as	not	giving	any	option	to	--myisam-recover.

BACKUP
If	the	data	file	was	changed	during	recovery,	save	a	backup	of	the
tbl_name.MYD	file	as	tbl_name-datetime.BAK.

FORCE
Run	recovery	even	if	we	would	lose	more	than	one	row	from	the
.MYD	file.

QUICK Don't	check	the	rows	in	the	table	if	there	aren't	any	delete	blocks.

Before	the	server	automatically	repairs	a	table,	it	writes	a	note	about	the
repair	to	the	error	log.	If	you	want	to	be	able	to	recover	from	most	problems
without	user	intervention,	you	should	use	the	options	BACKUP,FORCE.	This
forces	a	repair	of	a	table	even	if	some	rows	would	be	deleted,	but	it	keeps
the	old	data	file	as	a	backup	so	that	you	can	later	examine	what	happened.

See	Section	14.1.1,	“MyISAM	Startup	Options”.

	--ndb-connectstring=connect_string

When	using	the	NDB	storage	engine,	it	is	possible	to	point	out	the
management	server	that	distributes	the	cluster	configuration	by	setting	the
connect	string	option.	See	Section	15.4.4.2,	“The	Cluster	connectstring”,
for	syntax.

	--ndbcluster

If	the	binary	includes	support	for	the	NDB	Cluster	storage	engine,	this
option	enables	the	engine,	which	is	disabled	by	default.	See	Chapter	15,
MySQL	Cluster.

	--old-passwords

Force	the	server	to	generate	short	(pre-4.1)	password	hashes	for	new
passwords.	This	is	useful	for	compatibility	when	the	server	must	support
older	client	programs.	See	Section	5.8.9,	“Password	Hashing	as	of	MySQL
4.1”.

	--one-thread

Only	use	one	thread	(for	debugging	under	Linux).	This	option	is	available
only	if	the	server	is	built	with	debugging	enabled.	See	Section	E.1,
“Debugging	a	MySQL	Server”.

	--open-files-limit=count

Change	the	number	of	file	descriptors	available	to	mysqld.	If	this	option	is
not	set	or	is	set	to	0,	mysqld	uses	the	value	to	reserve	file	descriptors	with
setrlimit().	If	the	value	is	0,	mysqld	reserves	max_connections×5	or
max_connections	+	table_open_cache×2	files	(whichever	is	larger).	You
should	try	increasing	this	value	if	mysqld	gives	you	the	error	Too	many
open	files.

	--pid-file=path

The	pathname	of	the	process	ID	file.	This	file	is	used	by	other	programs
such	as	mysqld_safe	to	determine	the	server's	process	ID.

	--port=port_num,	-P	port_num

The	port	number	to	use	when	listening	for	TCP/IP	connections.	The	port
number	must	be	1024	or	higher	unless	the	server	is	started	by	the	root
system	user.

	--port-open-timeout=num

On	some	systems,	when	the	server	is	stopped,	the	TCP/IP	port	might	not
become	available	immediately.	If	the	server	is	restarted	quickly	afterward,
its	attempt	to	reopen	the	port	can	fail.	This	option	indicates	how	many
seconds	the	server	should	wait	for	the	TCP/IP	port	to	become	free	if	it
cannot	be	opened.	The	default	is	not	to	wait.	This	option	was	added	in
MySQL	5.0.19.

	--safe-mode

Skip	some	optimization	stages.

	--safe-show-database	(DEPRECATED)

See	Section	5.8.3,	“Privileges	Provided	by	MySQL”.

	--safe-user-create

If	this	option	is	enabled,	a	user	cannot	create	new	MySQL	users	by	using
the	GRANT	statement,	if	the	user	doesn't	have	the	INSERT	privilege	for	the
mysql.user	table	or	any	column	in	the	table.

	--secure-auth

Disallow	authentication	by	clients	that	attempt	to	use	accounts	that	have	old
(pre-4.1)	passwords.

	--shared-memory

Enable	shared-memory	connections	by	local	clients.	This	option	is	available
only	on	Windows.

	--shared-memory-base-name=name

The	name	of	shared	memory	to	use	for	shared-memory	connections.	This
option	is	available	only	on	Windows.	The	default	name	is	MYSQL.	The	name
is	case	sensitive.

	--skip-bdb

Disable	the	BDB	storage	engine.	This	saves	memory	and	might	speed	up
some	operations.	Do	not	use	this	option	if	you	require	BDB	tables.

	--skip-concurrent-insert

Turn	off	the	ability	to	select	and	insert	at	the	same	time	on	MyISAM	tables.
(This	is	to	be	used	only	if	you	think	you	have	found	a	bug	in	this	feature.)
See	Section	7.3.3,	“Concurrent	Inserts”.

	--skip-external-locking

Do	not	use	external	locking	(system	locking).	With	external	locking
disabled,	you	must	shut	down	the	server	to	use	myisamchk.	(See
Section	1.4.3,	“MySQL	Stability”.)	To	avoid	this	requirement,	use	the
CHECK	TABLE	and	REPAIR	TABLE	statements	to	check	and	repair	MyISAM
tables.

External	locking	has	been	disabled	by	default	since	MySQL	4.0.

	--skip-grant-tables

This	option	causes	the	server	not	to	use	the	privilege	system	at	all,	which
gives	anyone	with	access	to	the	server	unrestricted	access	to	all	databases.
You	can	cause	a	running	server	to	start	using	the	grant	tables	again	by
executing	mysqladmin	flush-privileges	or	mysqladmin	reload	command
from	a	system	shell,	or	by	issuing	a	MySQL	FLUSH	PRIVILEGES	statement
after	connecting	to	the	server.	This	option	also	suppresses	loading	of	user-
defined	functions	(UDFs).

	--skip-host-cache

Do	not	use	the	internal	hostname	cache	for	faster	name-to-IP	resolution.
Instead,	query	the	DNS	server	every	time	a	client	connects.	See
Section	7.5.6,	“How	MySQL	Uses	DNS”.

	--skip-innodb

Disable	the	InnoDB	storage	engine.	This	saves	memory	and	disk	space	and
might	speed	up	some	operations.	Do	not	use	this	option	if	you	require
InnoDB	tables.

	--skip-merge

Disable	the	MERGE	storage	engine.	This	option	was	added	in	MySQL	5.0.24.
It	can	be	used	if	the	following	behavior	is	undesirable:	If	a	user	has	access
to	MyISAM	table	t,	that	user	can	create	a	MERGE	table	m	that	accesses	t.
However,	if	the	user's	privileges	on	t	are	subsequently	revoked,	the	user
can	continue	to	access	t	by	doing	so	through	m.

	--skip-name-resolve

Do	not	resolve	hostnames	when	checking	client	connections.	Use	only	IP
numbers.	If	you	use	this	option,	all	Host	column	values	in	the	grant	tables
must	be	IP	numbers	or	localhost.	See	Section	7.5.6,	“How	MySQL	Uses
DNS”.

	--skip-ndbcluster

Disable	the	NDB	Cluster	storage	engine.	This	is	the	default	for	binaries	that
were	built	with	NDB	Cluster	storage	engine	support;	the	server	allocates
memory	and	other	resources	for	this	storage	engine	only	if	the	--
ndbcluster	option	is	given	explicitly.	See	Section	15.4.3,	“Quick	Test
Setup	of	MySQL	Cluster”,	for	an	example	of	usage.

	--skip-networking

Don't	listen	for	TCP/IP	connections	at	all.	All	interaction	with	mysqld	must
be	made	via	named	pipes	or	shared	memory	(on	Windows)	or	Unix	socket
files	(on	Unix).	This	option	is	highly	recommended	for	systems	where	only
local	clients	are	allowed.	See	Section	7.5.6,	“How	MySQL	Uses	DNS”.

	--ssl*

Options	that	begin	with	--ssl	specify	whether	to	allow	clients	to	connect
via	SSL	and	indicate	where	to	find	SSL	keys	and	certificates.	See
Section	5.9.7.3,	“SSL	Command	Options”.

	--standalone

Available	on	Windows	NT-based	systems	only;	instructs	the	MySQL	server
not	to	run	as	a	service.

	--symbolic-links,	--skip-symbolic-links

Enable	or	disable	symbolic	link	support.	This	option	has	different	effects	on
Windows	and	Unix:

On	Windows,	enabling	symbolic	links	allows	you	to	establish	a
symbolic	link	to	a	database	directory	by	creating	a	db_name.sym	file

that	contains	the	path	to	the	real	directory.	See	Section	7.6.1.3,	“Using
Symbolic	Links	for	Databases	on	Windows”.

On	Unix,	enabling	symbolic	links	means	that	you	can	link	a	MyISAM
index	file	or	data	file	to	another	directory	with	the	INDEX	DIRECTORY
or	DATA	DIRECTORY	options	of	the	CREATE	TABLE	statement.	If	you
delete	or	rename	the	table,	the	files	that	its	symbolic	links	point	to	also
are	deleted	or	renamed.	See	Section	7.6.1.2,	“Using	Symbolic	Links
for	Tables	on	Unix”.

	--skip-safemalloc

If	MySQL	is	configured	with	--with-debug=full,	all	MySQL	programs
check	for	memory	overruns	during	each	memory	allocation	and	memory
freeing	operation.	This	checking	is	very	slow,	so	for	the	server	you	can
avoid	it	when	you	don't	need	it	by	using	the	--skip-safemalloc	option.

	--skip-show-database

With	this	option,	the	SHOW	DATABASES	statement	is	allowed	only	to	users
who	have	the	SHOW	DATABASES	privilege,	and	the	statement	displays	all
database	names.	Without	this	option,	SHOW	DATABASES	is	allowed	to	all
users,	but	displays	each	database	name	only	if	the	user	has	the	SHOW
DATABASES	privilege	or	some	privilege	for	the	database.	Note	that	any
global	privilege	is	considered	a	privilege	for	the	database.

	--skip-stack-trace

Don't	write	stack	traces.	This	option	is	useful	when	you	are	running	mysqld
under	a	debugger.	On	some	systems,	you	also	must	use	this	option	to	get	a
core	file.	See	Section	E.1,	“Debugging	a	MySQL	Server”.

	--skip-thread-priority

Disable	using	thread	priorities	for	faster	response	time.

	--socket=path

On	Unix,	this	option	specifies	the	Unix	socket	file	to	use	when	listening	for
local	connections.	The	default	value	is	/tmp/mysql.sock.	On	Windows,	the

option	specifies	the	pipe	name	to	use	when	listening	for	local	connections
that	use	a	named	pipe.	The	default	value	is	MySQL	(not	case	sensitive).

	--sql-mode=value[,value[,value...]]

Set	the	SQL	mode.	See	Section	5.2.5,	“The	Server	SQL	Mode”.

	--sysdate-is-now

As	of	MySQL	5.0.13,	SYSDATE()	by	default	returns	the	time	at	which	it
executes,	not	the	time	at	which	the	statement	in	which	it	occurs	begins
executing.	This	differs	from	the	behavior	of	NOW().	This	option	causes
SYSDATE()	to	be	an	alias	for	NOW().	For	information	about	the	implications
for	binary	logging	and	replication,	see	the	description	for	SYSDATE()	in
Section	12.5,	“Date	and	Time	Functions”	and	for	SET	TIMESTAMP	in
Section	13.5.3,	“SET	Syntax”.

This	option	was	added	in	MySQL	5.0.20.

	--temp-pool

This	option	causes	most	temporary	files	created	by	the	server	to	use	a	small
set	of	names,	rather	than	a	unique	name	for	each	new	file.	This	works
around	a	problem	in	the	Linux	kernel	dealing	with	creating	many	new	files
with	different	names.	With	the	old	behavior,	Linux	seems	to	“leak”
memory,	because	it	is	being	allocated	to	the	directory	entry	cache	rather
than	to	the	disk	cache.

	--transaction-isolation=level

Sets	the	default	transaction	isolation	level.	The	level	value	can	be	READ-
UNCOMMITTED,	READ-COMMITTED,	REPEATABLE-READ,	or	SERIALIZABLE.	See
Section	13.4.6,	“SET	TRANSACTION	Syntax”.

	--tmpdir=path,	-t	path

The	path	of	the	directory	to	use	for	creating	temporary	files.	It	might	be
useful	if	your	default	/tmp	directory	resides	on	a	partition	that	is	too	small
to	hold	temporary	tables.	This	option	accepts	several	paths	that	are	used	in
round-robin	fashion.	Paths	should	be	separated	by	colon	characters	(‘:’)	on

Unix	and	semicolon	characters	(‘;’)	on	Windows,	NetWare,	and	OS/2.	If
the	MySQL	server	is	acting	as	a	replication	slave,	you	should	not	set	--
tmpdir	to	point	to	a	directory	on	a	memory-based	filesystem	or	to	a
directory	that	is	cleared	when	the	server	host	restarts.	For	more	information
about	the	storage	location	of	temporary	files,	see	Section	A.4.4,	“Where
MySQL	Stores	Temporary	Files”.	A	replication	slave	needs	some	of	its
temporary	files	to	survive	a	machine	restart	so	that	it	can	replicate
temporary	tables	or	LOAD	DATA	INFILE	operations.	If	files	in	the	temporary
file	directory	are	lost	when	the	server	restarts,	replication	fails.

	--user={user_name|user_id},	-u	{user_name|user_id}

Run	the	mysqld	server	as	the	user	having	the	name	user_name	or	the
numeric	user	ID	user_id.	(“User”	in	this	context	refers	to	a	system	login
account,	not	a	MySQL	user	listed	in	the	grant	tables.)

This	option	is	mandatory	when	starting	mysqld	as	root.	The	server
changes	its	user	ID	during	its	startup	sequence,	causing	it	to	run	as	that
particular	user	rather	than	as	root.	See	Section	5.7.1,	“General	Security
Guidelines”.

To	avoid	a	possible	security	hole	where	a	user	adds	a	--user=root	option
to	a	my.cnf	file	(thus	causing	the	server	to	run	as	root),	mysqld	uses	only
the	first	--user	option	specified	and	produces	a	warning	if	there	are
multiple	--user	options.	Options	in	/etc/my.cnf	and	$MYSQL_HOME/my.cnf
are	processed	before	command-line	options,	so	it	is	recommended	that	you
put	a	--user	option	in	/etc/my.cnf	and	specify	a	value	other	than	root.
The	option	in	/etc/my.cnf	is	found	before	any	other	--user	options,	which
ensures	that	the	server	runs	as	a	user	other	than	root,	and	that	a	warning
results	if	any	other	--user	option	is	found.

	--version,	-V

Display	version	information	and	exit.

You	can	assign	a	value	to	a	server	system	variable	by	using	an	option	of	the	form
--var_name=value.	For	example,	--key_buffer_size=32M	sets	the
key_buffer_size	variable	to	a	value	of	32MB.

Note	that	when	you	assign	a	value	to	a	variable,	MySQL	might	automatically

correct	the	value	to	stay	within	a	given	range,	or	adjust	the	value	to	the	closest
allowable	value	if	only	certain	values	are	allowed.

If	you	want	to	restrict	the	maximum	value	to	which	a	variable	can	be	set	at
runtime	with	SET,	you	can	define	this	by	using	the	--maximum-var_name=value
command-line	option.

It	is	also	possible	to	set	variables	by	using	--set-variable=var_name=value	or
-O	var_name=value	syntax.	This	syntax	is	deprecated.

You	can	change	the	values	of	most	system	variables	for	a	running	server	with	the
SET	statement.	See	Section	13.5.3,	“SET	Syntax”.

Section	5.2.2,	“Server	System	Variables”,	provides	a	full	description	for	all
variables,	and	additional	information	for	setting	them	at	server	startup	and
runtime.	Section	7.5.2,	“Tuning	Server	Parameters”,	includes	information	on
optimizing	the	server	by	tuning	system	variables.

5.2.2.	Server	System	Variables

The	mysql	server	maintains	many	system	variables	that	indicate	how	it	is
configured.	Each	system	variable	has	a	default	value.	System	variables	can	be
set	at	server	startup	using	options	on	the	command	line	or	in	an	option	file.	Most
of	them	can	be	changed	dynamically	while	the	server	is	running	by	means	of	the
SET	statement,	which	enables	you	to	modify	operation	of	the	server	without
having	to	stop	and	restart	it.	You	can	refer	to	system	variable	values	in
expressions.

There	are	several	ways	to	see	the	names	and	values	of	system	variables:

To	see	the	values	that	a	server	will	use	based	on	its	compiled-in	defaults
and	any	option	files	that	it	reads,	use	this	command:

mysqld	--verbose	--help

To	see	the	values	that	a	server	will	use	based	on	its	compiled-in	defaults,
ignoring	the	settings	in	any	option	files,	use	this	command:

mysqld	--no-defaults	--verbose	--help

To	see	the	current	values	used	by	a	running	server,	use	the	SHOW	VARIABLES
statement.

This	section	provides	a	description	of	each	system	variable.	Variables	with	no
version	indicated	are	present	in	all	MySQL	5.0	releases.	For	historical
information	concerning	their	implementation,	please	see	MySQL	3.23,	4.0,	4.1
Reference	Manual.

For	additional	system	variable	information,	see	these	sections:

Section	5.2.3,	“Using	System	Variables”,	discusses	the	syntax	for	setting
and	displaying	system	variable	values.

Section	5.2.3.2,	“Dynamic	System	Variables”,	lists	the	variables	that	can	be
set	at	runtime.

Information	on	tuning	sytem	variables	can	be	found	in	Section	7.5.2,
“Tuning	Server	Parameters”.

Section	14.2.4,	“InnoDB	Startup	Options	and	System	Variables”,	lists
InnoDB	system	variables.

Note:	Some	of	the	following	variable	descriptions	refer	to	“enabling”	or
“disabling”	a	variable.	These	variables	can	be	enabled	with	the	SET	statement	by
setting	them	to	ON	or	1,	or	disabled	by	setting	them	to	OFF	or	0.	However,	to	set
such	a	variable	on	the	command	line	or	in	an	option	file,	you	must	set	it	to	1	or
0;	setting	it	to	ON	or	OFF	will	not	work.	For	example,	on	the	command	line,	--
delay_key_write=1	works	but	--delay_key_write=ON	does	not.

Values	for	buffer	sizes,	lengths,	and	stack	sizes	are	given	in	bytes	unless
otherwise	specified.

auto_increment_increment

auto_increment_increment	and	auto_increment_offset	are	intended	for
use	with	master-to-master	replication,	and	can	be	used	to	control	the
operation	of	AUTO_INCREMENT	columns.	Both	variables	can	be	set	globally
or	locally,	and	each	can	assume	an	integer	value	between	1	and	65,535
inclusive.	Setting	the	value	of	either	of	these	two	variables	to	0	causes	its
value	to	be	set	to	1	instead.	Attempting	to	set	the	value	of	either	of	these

two	variables	to	an	integer	greater	than	65,535	or	less	than	0	causes	its
value	to	be	set	to	65,535	instead.	Attempting	to	set	the	value	of
auto_increment_increment	or	auto_increment_offset	to	a	non-integer
value	gives	rise	to	an	error,	and	the	actual	value	of	the	variable	remains
unchanged.

These	two	variables	affect	AUTO_INCREMENT	column	behavior	as	follows:

auto_increment_increment	controls	the	interval	between	successive
column	values.	For	example:

mysql>	SHOW	VARIABLES	LIKE	'auto_inc%';

+--------------------------+-------+

|	Variable_name												|	Value	|

+--------------------------+-------+

|	auto_increment_increment	|	1					|

|	auto_increment_offset				|	1					|

+--------------------------+-------+

2	rows	in	set	(0.00	sec)

mysql>	CREATE	TABLE	autoinc1

				->	(col	INT	NOT	NULL	AUTO_INCREMENT	PRIMARY	KEY);

		Query	OK,	0	rows	affected	(0.04	sec)

mysql>	SET	@@auto_increment_increment=10;

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	SHOW	VARIABLES	LIKE	'auto_inc%';

+--------------------------+-------+

|	Variable_name												|	Value	|

+--------------------------+-------+

|	auto_increment_increment	|	10				|

|	auto_increment_offset				|	1					|

+--------------------------+-------+

2	rows	in	set	(0.01	sec)

mysql>	INSERT	INTO	autoinc1	VALUES	(NULL),	(NULL),	(NULL),	(NULL);

Query	OK,	4	rows	affected	(0.00	sec)

Records:	4		Duplicates:	0		Warnings:	0

mysql>	SELECT	col	FROM	autoinc1;

+-----+

|	col	|

+-----+

|			1	|

|		11	|

|		21	|

|		31	|

+-----+

4	rows	in	set	(0.00	sec)

(Note	how	SHOW	VARIABLES	is	used	here	to	obtain	the	current	values
for	these	variables.)

auto_increment_offset	determines	the	starting	point	for	the
AUTO_INCREMENT	column	value.	Consider	the	following,	assuming	that
these	statements	are	executed	during	the	same	session	as	the	example
given	in	the	description	for	auto_increment_increment:

mysql>	SET	@@auto_increment_offset=5;

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	SHOW	VARIABLES	LIKE	'auto_inc%';

+--------------------------+-------+

|	Variable_name												|	Value	|

+--------------------------+-------+

|	auto_increment_increment	|	10				|

|	auto_increment_offset				|	5					|

+--------------------------+-------+

2	rows	in	set	(0.00	sec)

mysql>	CREATE	TABLE	autoinc2

				->	(col	INT	NOT	NULL	AUTO_INCREMENT	PRIMARY	KEY);

Query	OK,	0	rows	affected	(0.06	sec)

mysql>	INSERT	INTO	autoinc2	VALUES	(NULL),	(NULL),	(NULL),	(NULL);

Query	OK,	4	rows	affected	(0.00	sec)

Records:	4		Duplicates:	0		Warnings:	0

mysql>	SELECT	col	FROM	autoinc2;

+-----+

|	col	|

+-----+

|			5	|

|		15	|

|		25	|

|		35	|

+-----+

4	rows	in	set	(0.02	sec)

If	the	value	of	auto_increment_offset	is	greater	than	that	of
auto_increment_increment,	the	value	of	auto_increment_offset	is
ignored.

Should	one	or	both	of	these	variables	be	changed	and	then	new	rows
inserted	into	a	table	containing	an	AUTO_INCREMENT	column,	the	results	may
seem	counterintuitive	because	the	series	of	AUTO_INCREMENT	values	is
calculated	without	regard	to	any	values	already	present	in	the	column,	and
the	next	value	inserted	is	the	least	value	in	the	series	that	is	greater	than	the
maximum	existing	value	in	the	AUTO_INCREMENT	column.	In	other	words,
the	series	is	calculated	like	so:

auto_increment_offset	+	N	×	auto_increment_increment

where	N	is	a	positive	integer	value	in	the	series	[1,	2,	3,	...].	For	example:

mysql>	SHOW	VARIABLES	LIKE	'auto_inc%';

+--------------------------+-------+

|	Variable_name												|	Value	|

+--------------------------+-------+

|	auto_increment_increment	|	10				|

|	auto_increment_offset				|	5					|

+--------------------------+-------+

2	rows	in	set	(0.00	sec)

mysql>	SELECT	col	FROM	autoinc1;

+-----+

|	col	|

+-----+

|			1	|

|		11	|

|		21	|

|		31	|

+-----+

4	rows	in	set	(0.00	sec)

mysql>	INSERT	INTO	autoinc1	VALUES	(NULL),	(NULL),	(NULL),	(NULL);

Query	OK,	4	rows	affected	(0.00	sec)

Records:	4		Duplicates:	0		Warnings:	0

mysql>	SELECT	col	FROM	autoinc1;

+-----+

|	col	|

+-----+

|			1	|

|		11	|

|		21	|

|		31	|

|		35	|

|		45	|

|		55	|

|		65	|

+-----+

8	rows	in	set	(0.00	sec)

The	values	shown	for	auto_increment_increment	and
auto_increment_offset	generate	the	series	5	+	N	×	10,	that	is,	[5,	15,	25,
35,	45,	...].	The	greatest	value	present	in	the	col	column	prior	to	the	INSERT
is	31,	and	the	next	available	value	in	the	AUTO_INCREMENT	series	is	35,	so
the	inserted	values	for	col	begin	at	that	point	and	the	results	are	as	shown
for	the	SELECT	query.

It	is	important	to	remember	that	it	is	not	possible	to	confine	the	effects	of
these	two	variables	to	a	single	table,	and	thus	they	do	not	take	the	place	of
the	sequences	offered	by	some	other	database	management	systems;	these
variables	control	the	behavior	of	all	AUTO_INCREMENT	columns	in	all	tables
on	the	MySQL	server.	If	one	of	these	variables	is	set	globally,	its	effects
persist	until	the	global	value	is	changed	or	overridden	by	setting	them
locally,	or	until	mysqld	is	restarted.	If	set	locally,	the	new	value	affects
AUTO_INCREMENT	columns	for	all	tables	into	which	new	rows	are	inserted	by
the	current	user	for	the	duration	of	the	session,	unless	the	values	are
changed	during	that	session.

The	auto_increment_increment	variable	was	added	in	MySQL	5.0.2.	Its
default	value	is	1.	See	Section	6.13,	“Auto-Increment	in	Multiple-Master
Replication”.

auto_increment_offset

This	variable	was	introduced	in	MySQL	5.0.2.	Its	default	value	is	1.	For
particulars,	see	the	description	for	auto_increment_increment.

back_log

The	number	of	outstanding	connection	requests	MySQL	can	have.	This
comes	into	play	when	the	main	MySQL	thread	gets	very	many	connection
requests	in	a	very	short	time.	It	then	takes	some	time	(although	very	little)
for	the	main	thread	to	check	the	connection	and	start	a	new	thread.	The
back_log	value	indicates	how	many	requests	can	be	stacked	during	this
short	time	before	MySQL	momentarily	stops	answering	new	requests.	You
need	to	increase	this	only	if	you	expect	a	large	number	of	connections	in	a

short	period	of	time.

In	other	words,	this	value	is	the	size	of	the	listen	queue	for	incoming
TCP/IP	connections.	Your	operating	system	has	its	own	limit	on	the	size	of
this	queue.	The	manual	page	for	the	Unix	listen()	system	call	should	have
more	details.	Check	your	OS	documentation	for	the	maximum	value	for	this
variable.	back_log	cannot	be	set	higher	than	your	operating	system	limit.

basedir

The	MySQL	installation	base	directory.	This	variable	can	be	set	with	the	--
basedir	option.

bdb_cache_size

The	size	of	the	buffer	that	is	allocated	for	caching	indexes	and	rows	for	BDB
tables.	If	you	don't	use	BDB	tables,	you	should	start	mysqld	with	--skip-
bdb	to	not	allocate	memory	for	this	cache.

bdb_home

The	base	directory	for	BDB	tables.	This	should	be	assigned	the	same	value	as
the	datadir	variable.

bdb_log_buffer_size

The	size	of	the	buffer	that	is	allocated	for	caching	indexes	and	rows	for	BDB
tables.	If	you	don't	use	BDB	tables,	you	should	set	this	to	0	or	start	mysqld
with	--skip-bdb	to	not	allocate	memory	for	this	cache.

bdb_logdir

The	directory	where	the	BDB	storage	engine	writes	its	log	files.	This	variable
can	be	set	with	the	--bdb-logdir	option.

bdb_max_lock

The	maximum	number	of	locks	that	can	be	active	for	a	BDB	table	(10,000	by
default).	You	should	increase	this	value	if	errors	such	as	the	following	occur
when	you	perform	long	transactions	or	when	mysqld	has	to	examine	many

rows	to	calculate	a	query:

bdb:	Lock	table	is	out	of	available	locks

Got	error	12	from	...

bdb_shared_data

This	is	ON	if	you	are	using	--bdb-shared-data	to	start	Berkeley	DB	in
multi-process	mode.	(Do	not	use	DB_PRIVATE	when	initializing	Berkeley
DB.)

bdb_tmpdir

The	BDB	temporary	file	directory.

binlog_cache_size

The	size	of	the	cache	to	hold	the	SQL	statements	for	the	binary	log	during	a
transaction.	A	binary	log	cache	is	allocated	for	each	client	if	the	server
supports	any	transactional	storage	engines	and	if	the	server	has	the	binary
log	enabled	(--log-bin	option).	If	you	often	use	large,	multiple-statement
transactions,	you	can	increase	this	cache	size	to	get	more	performance.	The
Binlog_cache_use	and	Binlog_cache_disk_use	status	variables	can	be
useful	for	tuning	the	size	of	this	variable.	See	Section	5.12.3,	“The	Binary
Log”.

bulk_insert_buffer_size

MyISAM	uses	a	special	tree-like	cache	to	make	bulk	inserts	faster	for	INSERT
...	SELECT,	INSERT	...	VALUES	(...),	(...),	...,	and	LOAD	DATA
INFILE	when	adding	data	to	non-empty	tables.	This	variable	limits	the	size
of	the	cache	tree	in	bytes	per	thread.	Setting	it	to	0	disables	this
optimization.	The	default	value	is	8MB.

character_set_client

The	character	set	for	statements	that	arrive	from	the	client.

character_set_connection

The	character	set	used	for	literals	that	do	not	have	a	character	set	introducer

and	for	number-to-string	conversion.

character_set_database

The	character	set	used	by	the	default	database.	The	server	sets	this	variable
whenever	the	default	database	changes.	If	there	is	no	default	database,	the
variable	has	the	same	value	as	character_set_server.

character_set_filesystem

The	filesystem	character	set.	This	variable	is	used	to	interpret	string	literals
that	refer	to	filenames,	such	as	in	the	LOAD	DATA	INFILE	and	SELECT	...
INTO	OUTFILE	statements	and	the	LOAD_FILE()	function.	Such	filenames
are	converted	from	character_set_client	to	character_set_filesystem
before	the	file	opening	attempt	occurs.	The	default	value	is	binary,	which
means	that	no	conversion	occurs.	For	systems	on	which	multi-byte
filenames	are	allowed,	a	different	value	may	be	more	appropriate.	For
example,	if	the	system	represents	filenames	using	UTF-8,	set
character_set_filesytem	to	'utf8'.	This	variable	was	added	in	MySQL
5.0.19.

character_set_results

The	character	set	used	for	returning	query	results	to	the	client.

character_set_server

The	server's	default	character	set.

character_set_system

The	character	set	used	by	the	server	for	storing	identifiers.	The	value	is
always	utf8.

character_sets_dir

The	directory	where	character	sets	are	installed.

collation_connection

The	collation	of	the	connection	character	set.

collation_database

The	collation	used	by	the	default	database.	The	server	sets	this	variable
whenever	the	default	database	changes.	If	there	is	no	default	database,	the
variable	has	the	same	value	as	collation_server.

collation_server

The	server's	default	collation.

completion_type

The	transaction	completion	type:

If	the	value	is	0	(the	default),	COMMIT	and	ROLLBACK	are	unaffected.

If	the	value	is	1,	COMMIT	and	ROLLBACK	are	equivalent	to	COMMIT	AND
CHAIN	and	ROLLBACK	AND	CHAIN,	respectively.	(A	new	transaction
starts	immediately	with	the	same	isolation	level	as	the	just-terminated
transaction.)

If	the	value	is	2,	COMMIT	and	ROLLBACK	are	equivalent	to	COMMIT
RELEASE	and	ROLLBACK	RELEASE,	respectively.	(The	server	disconnects
after	terminating	the	transaction.)

This	variable	was	added	in	MySQL	5.0.3

concurrent_insert

If	ON	(the	default),	MySQL	allows	INSERT	and	SELECT	statements	to	run
concurrently	for	MyISAM	tables	that	have	no	free	blocks	in	the	middle.	You
can	turn	this	option	off	by	starting	mysqld	with	--safe	or	--skip-new.

In	MySQL	5.0.6,	this	variable	was	changed	to	take	three	integer	values:

Value Description
0 Off

1 (Default)	Enables	concurrent	insert	for	MyISAM	tables	that	don't

have	holes

2

Enables	concurrent	inserts	for	all	MyISAM	tables.	If	table	has	a	hole
and	is	in	use	by	another	thread	the	new	row	will	be	inserted	at	end
of	table.	If	table	is	not	in	use,	MySQL	does	a	normal	read	lock	and
inserts	the	new	row	into	the	hole.

See	also	Section	7.3.3,	“Concurrent	Inserts”.

	connect_timeout

The	number	of	seconds	that	the	mysqld	server	waits	for	a	connect	packet
before	responding	with	Bad	handshake.

datadir

The	MySQL	data	directory.	This	variable	can	be	set	with	the	--datadir
option.

date_format

This	variable	is	not	implemented.

datetime_format

This	variable	is	not	implemented.

default_week_format

The	default	mode	value	to	use	for	the	WEEK()	function.	See	Section	12.5,
“Date	and	Time	Functions”.

delay_key_write

This	option	applies	only	to	MyISAM	tables.	It	can	have	one	of	the	following
values	to	affect	handling	of	the	DELAY_KEY_WRITE	table	option	that	can	be
used	in	CREATE	TABLE	statements.

Option Description
OFF DELAY_KEY_WRITE	is	ignored.

ON MySQL	honors	any	DELAY_KEY_WRITE	option	specified	in	CREATE
TABLE	statements.	This	is	the	default	value.

ALL
All	new	opened	tables	are	treated	as	if	they	were	created	with	the
DELAY_KEY_WRITE	option	enabled.

If	DELAY_KEY_WRITE	is	enabled	for	a	table,	the	key	buffer	is	not	flushed	for
the	table	on	every	index	update,	but	only	when	the	table	is	closed.	This
speeds	up	writes	on	keys	a	lot,	but	if	you	use	this	feature,	you	should	add
automatic	checking	of	all	MyISAM	tables	by	starting	the	server	with	the	--
myisam-recover	option	(for	example,	--myisam-recover=BACKUP,FORCE).
See	Section	5.2.1,	“mysqld	Command	Options”,	and	Section	14.1.1,
“MyISAM	Startup	Options”.

Note	that	enabling	external	locking	with	--external-locking	offers	no
protection	against	index	corruption	for	tables	that	use	delayed	key	writes.

delayed_insert_limit

After	inserting	delayed_insert_limit	delayed	rows,	the	INSERT	DELAYED
handler	thread	checks	whether	there	are	any	SELECT	statements	pending.	If
so,	it	allows	them	to	execute	before	continuing	to	insert	delayed	rows.

delayed_insert_timeout

How	many	seconds	an	INSERT	DELAYED	handler	thread	should	wait	for
INSERT	statements	before	terminating.

delayed_queue_size

This	is	a	per-table	limit	on	the	number	of	rows	to	queue	when	handling
INSERT	DELAYED	statements.	If	the	queue	becomes	full,	any	client	that
issues	an	INSERT	DELAYED	statement	waits	until	there	is	room	in	the	queue
again.

div_precision_increment

This	variable	indicates	the	number	of	digits	of	precision	by	which	to
increase	the	result	of	division	operations	performed	with	the	/	operator.	The
default	value	is	4.	The	minimum	and	maximum	values	are	0	and	30,

respectively.	The	following	example	illustrates	the	effect	of	increasing	the
default	value.

mysql>	SELECT	1/7;

+--------+

|	1/7				|

+--------+

|	0.1429	|

+--------+

mysql>	SET	div_precision_increment	=	12;

mysql>	SELECT	1/7;

+----------------+

|	1/7												|

+----------------+

|	0.142857142857	|

+----------------+

This	variable	was	added	in	MySQL	5.0.6.

engine_condition_pushdown

This	variable	applies	to	NDB.	By	default	it	is	0	(OFF):	If	you	execute	a
query	such	as	SELECT	*	FROM	t	WHERE	mycol	=	42,	where	mycol	is	a	non-
indexed	column,	the	query	is	executed	as	a	full	table	scan	on	every	NDB
node.	Each	node	sends	every	row	to	the	MySQL	server,	which	applies	the
WHERE	condition.	If	engine_condition_pushdown	is	set	to	1	(ON),	the
condition	is	“pushed	down”	to	the	storage	engine	and	sent	to	the	NDB
nodes.	Each	node	uses	the	condition	to	perform	the	scan,	and	only	sends
back	to	the	MySQL	server	the	rows	that	match	the	condition.

This	variable	was	added	in	MySQL	5.0.3.	Before	that,	the	default	NDB
behavior	is	the	same	as	for	a	value	of	OFF.

expire_logs_days

The	number	of	days	for	automatic	binary	log	removal.	The	default	is	0,
which	means	“no	automatic	removal.”	Possible	removals	happen	at	startup
and	at	binary	log	rotation.

flush

If	ON,	the	server	flushes	(synchronizes)	all	changes	to	disk	after	each	SQL
statement.	Normally,	MySQL	does	a	write	of	all	changes	to	disk	only	after

each	SQL	statement	and	lets	the	operating	system	handle	the	synchronizing
to	disk.	See	Section	A.4.2,	“What	to	Do	If	MySQL	Keeps	Crashing”.	This
variable	is	set	to	ON	if	you	start	mysqld	with	the	--flush	option.

flush_time

If	this	is	set	to	a	non-zero	value,	all	tables	are	closed	every	flush_time
seconds	to	free	up	resources	and	synchronize	unflushed	data	to	disk.	We
recommend	that	this	option	be	used	only	on	Windows	9x	or	Me,	or	on
systems	with	minimal	resources.

ft_boolean_syntax

The	list	of	operators	supported	by	boolean	full-text	searches	performed
using	IN	BOOLEAN	MODE.	See	Section	12.7.1,	“Boolean	Full-Text	Searches”.

The	default	variable	value	is	'+	-><()~*:""&|'.	The	rules	for	changing	the
value	are	as	follows:

Operator	function	is	determined	by	position	within	the	string.

The	replacement	value	must	be	14	characters.

Each	character	must	be	an	ASCII	non-alphanumeric	character.

Either	the	first	or	second	character	must	be	a	space.

No	duplicates	are	allowed	except	the	phrase	quoting	operators	in
positions	11	and	12.	These	two	characters	are	not	required	to	be	the
same,	but	they	are	the	only	two	that	may	be.

Positions	10,	13,	and	14	(which	by	default	are	set	to	‘:’,	‘&’,	and	‘|’)
are	reserved	for	future	extensions.

ft_max_word_len

The	maximum	length	of	the	word	to	be	included	in	a	FULLTEXT	index.

Note:	FULLTEXT	indexes	must	be	rebuilt	after	changing	this	variable.	Use
REPAIR	TABLE	tbl_name	QUICK.

ft_min_word_len

The	minimum	length	of	the	word	to	be	included	in	a	FULLTEXT	index.

Note:	FULLTEXT	indexes	must	be	rebuilt	after	changing	this	variable.	Use
REPAIR	TABLE	tbl_name	QUICK.

ft_query_expansion_limit

The	number	of	top	matches	to	use	for	full-text	searches	performed	using
WITH	QUERY	EXPANSION.

ft_stopword_file

The	file	from	which	to	read	the	list	of	stopwords	for	full-text	searches.	All
the	words	from	the	file	are	used;	comments	are	not	honored.	By	default,	a
built-in	list	of	stopwords	is	used	(as	defined	in	the	myisam/ft_static.c
file).	Setting	this	variable	to	the	empty	string	('')	disables	stopword
filtering.

Note:	FULLTEXT	indexes	must	be	rebuilt	after	changing	this	variable	or	the
contents	of	the	stopword	file.	Use	REPAIR	TABLE	tbl_name	QUICK.

group_concat_max_len

The	maximum	allowed	result	length	for	the	GROUP_CONCAT()	function.	The
default	is	1024.

have_archive

YES	if	mysqld	supports	ARCHIVE	tables,	NO	if	not.

have_bdb

YES	if	mysqld	supports	BDB	tables.	DISABLED	if	--skip-bdb	is	used.

have_blackhole_engine

YES	if	mysqld	supports	BLACKHOLE	tables,	NO	if	not.

have_compress

YES	if	the	zlib	compression	library	is	available	to	the	server,	NO	if	not.	If
not,	the	COMPRESS()	and	UNCOMPRESS()	functions	cannot	be	used.

have_crypt

YES	if	the	crypt()	system	call	is	available	to	the	server,	NO	if	not.	If	not,	the
ENCRYPT()	function	cannot	be	used.

have_csv

YES	if	mysqld	supports	ARCHIVE	tables,	NO	if	not.

have_example_engine

YES	if	mysqld	supports	EXAMPLE	tables,	NO	if	not.

have_federated_engine

YES	if	mysqld	supports	FEDERATED	tables,	NO	if	not.	This	variable	was	added
in	MySQL	5.0.3.

have_geometry

YES	if	the	server	supports	spatial	data	types,	NO	if	not.

have_innodb

YES	if	mysqld	supports	InnoDB	tables.	DISABLED	if	--skip-innodb	is	used.

have_isam

In	MySQL	5.0,	this	variable	appears	only	for	reasons	of	backward
compatibility.	It	is	always	NO	because	ISAM	tables	are	no	longer	supported.

have_ndbcluster

YES	if	mysqld	supports	NDB	Cluster	tables.	DISABLED	if	--skip-
ndbcluster	is	used.

have_openssl

YES	if	mysqld	supports	SSL	connections,	NO	if	not.

have_query_cache

YES	if	mysqld	supports	the	query	cache,	NO	if	not.

have_raid

In	MySQL	5.0,	this	variable	appears	only	for	reasons	of	backward
compatibility.	It	is	always	NO	because	RAID	tables	are	no	longer	supported.

have_rtree_keys

YES	if	RTREE	indexes	are	available,	NO	if	not.	(These	are	used	for	spatial
indexes	in	MyISAM	tables.)

have_symlink

YES	if	symbolic	link	support	is	enabled,	NO	if	not.	This	is	required	on	Unix
for	support	of	the	DATA	DIRECTORY	and	INDEX	DIRECTORY	table	options,	and
on	Windows	for	support	of	data	directory	symlinks.

init_connect

A	string	to	be	executed	by	the	server	for	each	client	that	connects.	The
string	consists	of	one	or	more	SQL	statements.	To	specify	multiple
statements,	separate	them	by	semicolon	characters.	For	example,	each	client
begins	by	default	with	autocommit	mode	enabled.	There	is	no	global
system	variable	to	specify	that	autocommit	should	be	disabled	by	default,
but	init_connect	can	be	used	to	achieve	the	same	effect:

SET	GLOBAL	init_connect='SET	AUTOCOMMIT=0';

This	variable	can	also	be	set	on	the	command	line	or	in	an	option	file.	To
set	the	variable	as	just	shown	using	an	option	file,	include	these	lines:

[mysqld]

init_connect='SET	AUTOCOMMIT=0'

Note	that	the	content	of	init_connect	is	not	executed	for	users	that	have
the	SUPER	privilege.	This	is	done	so	that	an	erroneous	value	for

init_connect	does	not	prevent	all	clients	from	connecting.	For	example,
the	value	might	contain	a	statement	that	has	a	syntax	error,	thus	causing
client	connections	to	fail.	Not	executing	init_connect	for	users	that	have
the	SUPER	privilege	enables	them	to	open	a	connection	and	fix	the
init_connect	value.

init_file

The	name	of	the	file	specified	with	the	--init-file	option	when	you	start
the	server.	This	should	be	a	file	containing	SQL	statements	that	you	want
the	server	to	execute	when	it	starts.	Each	statement	must	be	on	a	single	line
and	should	not	include	comments.

init_slave

This	variable	is	similar	to	init_connect,	but	is	a	string	to	be	executed	by	a
slave	server	each	time	the	SQL	thread	starts.	The	format	of	the	string	is	the
same	as	for	the	init_connect	variable.

innodb_xxx

InnoDB	system	variables	are	listed	in	Section	14.2.4,	“InnoDB	Startup
Options	and	System	Variables”.

interactive_timeout

The	number	of	seconds	the	server	waits	for	activity	on	an	interactive
connection	before	closing	it.	An	interactive	client	is	defined	as	a	client	that
uses	the	CLIENT_INTERACTIVE	option	to	mysql_real_connect().	See	also
wait_timeout.

join_buffer_size

The	size	of	the	buffer	that	is	used	for	joins	that	do	not	use	indexes	and	thus
perform	full	table	scans.	Normally,	the	best	way	to	get	fast	joins	is	to	add
indexes.	Increase	the	value	of	join_buffer_size	to	get	a	faster	full	join
when	adding	indexes	is	not	possible.	One	join	buffer	is	allocated	for	each
full	join	between	two	tables.	For	a	complex	join	between	several	tables	for
which	indexes	are	not	used,	multiple	join	buffers	might	be	necessary.

	key_buffer_size

Index	blocks	for	MyISAM	tables	are	buffered	and	are	shared	by	all	threads.
key_buffer_size	is	the	size	of	the	buffer	used	for	index	blocks.	The	key
buffer	is	also	known	as	the	key	cache.

The	maximum	allowable	setting	for	key_buffer_size	is	4GB.	The
effective	maximum	size	might	be	less,	depending	on	your	available
physical	RAM	and	per-process	RAM	limits	imposed	by	your	operating
system	or	hardware	platform.

Increase	the	value	to	get	better	index	handling	(for	all	reads	and	multiple
writes)	to	as	much	as	you	can	afford.	Using	a	value	that	is	25%	of	total
memory	on	a	machine	that	mainly	runs	MySQL	is	quite	common.	However,
if	you	make	the	value	too	large	(for	example,	more	than	50%	of	your	total
memory)	your	system	might	start	to	page	and	become	extremely	slow.
MySQL	relies	on	the	operating	system	to	perform	filesystem	caching	for
data	reads,	so	you	must	leave	some	room	for	the	filesystem	cache.	Consider
also	the	memory	requirements	of	other	storage	engines.

For	even	more	speed	when	writing	many	rows	at	the	same	time,	use	LOCK
TABLES.	See	Section	7.2.16,	“Speed	of	INSERT	Statements”.

You	can	check	the	performance	of	the	key	buffer	by	issuing	a	SHOW	STATUS
statement	and	examining	the	Key_read_requests,	Key_reads,
Key_write_requests,	and	Key_writes	status	variables.	(See
Section	13.5.4,	“SHOW	Syntax”.)	The	Key_reads/Key_read_requests	ratio
should	normally	be	less	than	0.01.	The	Key_writes/Key_write_requests
ratio	is	usually	near	1	if	you	are	using	mostly	updates	and	deletes,	but	might
be	much	smaller	if	you	tend	to	do	updates	that	affect	many	rows	at	the	same
time	or	if	you	are	using	the	DELAY_KEY_WRITE	table	option.

The	fraction	of	the	key	buffer	in	use	can	be	determined	using
key_buffer_size	in	conjunction	with	the	Key_blocks_unused	status
variable	and	the	buffer	block	size,	which	is	available	from	the
key_cache_block_size	system	variable:

1	-	((Key_blocks_unused	×	key_cache_block_size)	/	key_buffer_size)

This	value	is	an	approximation	because	some	space	in	the	key	buffer	may

be	allocated	internally	for	administrative	structures.

It	is	possible	to	create	multiple	MyISAM	key	caches.	The	size	limit	of	4GB
applies	to	each	cache	individually,	not	as	a	group.	See	Section	7.4.6,	“The
MyISAM	Key	Cache”.

key_cache_age_threshold

This	value	controls	the	demotion	of	buffers	from	the	hot	sub-chain	of	a	key
cache	to	the	warm	sub-chain.	Lower	values	cause	demotion	to	happen	more
quickly.	The	minimum	value	is	100.	The	default	value	is	300.	See
Section	7.4.6,	“The	MyISAM	Key	Cache”.

key_cache_block_size

The	size	in	bytes	of	blocks	in	the	key	cache.	The	default	value	is	1024.	See
Section	7.4.6,	“The	MyISAM	Key	Cache”.

key_cache_division_limit

The	division	point	between	the	hot	and	warm	sub-chains	of	the	key	cache
buffer	chain.	The	value	is	the	percentage	of	the	buffer	chain	to	use	for	the
warm	sub-chain.	Allowable	values	range	from	1	to	100.	The	default	value	is
100.	See	Section	7.4.6,	“The	MyISAM	Key	Cache”.

language

The	language	used	for	error	messages.

large_file_support

Whether	mysqld	was	compiled	with	options	for	large	file	support.

large_pages

Whether	large	page	support	is	enabled.	This	variable	was	added	in	MySQL
5.0.3.

license

The	type	of	license	the	server	has.

local_infile

Whether	LOCAL	is	supported	for	LOAD	DATA	INFILE	statements.	See
Section	5.7.4,	“Security	Issues	with	LOAD	DATA	LOCAL”.

locked_in_memory

Whether	mysqld	was	locked	in	memory	with	--memlock.

log

Whether	logging	of	all	statements	to	the	general	query	log	is	enabled.	See
Section	5.12.2,	“The	General	Query	Log”.

log_bin

Whether	the	binary	log	is	enabled.	See	Section	5.12.3,	“The	Binary	Log”.

log_bin_trust_function_creators

This	variable	applies	when	binary	logging	is	enabled.	It	controls	whether
stored	function	creators	can	be	trusted	not	to	create	stored	functions	that
will	cause	unsafe	events	to	be	written	to	the	binary	log.	If	set	to	0	(the
default),	users	are	not	allowed	to	create	or	alter	stored	functions	unless	they
have	the	SUPER	privilege	in	addition	to	the	CREATE	ROUTINE	or	ALTER
ROUTINE	privilege.	A	setting	of	0	also	enforces	the	restriction	that	a	function
must	be	declared	with	the	DETERMINISTIC	characteristic,	or	with	the	READS
SQL	DATA	or	NO	SQL	characteristic.	If	the	variable	is	set	to	1,	MySQL	does
not	enforce	these	restrictions	on	stored	function	creation.	See	Section	17.4,
“Binary	Logging	of	Stored	Routines	and	Triggers”.

This	variable	was	added	in	MySQL	5.0.16.

log_bin_trust_routine_creators

This	is	the	old	name	for	log_bin_trust_function_creators.	Before
MySQL	5.0.16,	it	also	applies	to	stored	procedures,	not	just	stored
functions.	As	of	5.0.16,	this	variable	is	deprecated.	It	is	recognized	for
backward	compatibility	but	its	use	results	in	a	warning.

This	variable	was	added	in	MySQL	5.0.6.

log_error

The	location	of	the	error	log.

log_queries_not_using_indexes

Whether	queries	that	do	not	use	indexes	are	logged	to	the	slow	query	log.
See	Section	5.12.4,	“The	Slow	Query	Log”.	This	variable	was	added	in
MySQL	5.0.23.

log_slave_updates

Whether	updates	received	by	a	slave	server	from	a	master	server	should	be
logged	to	the	slave's	own	binary	log.	Binary	logging	must	be	enabled	on	the
slave	for	this	variable	to	have	any	effect.	See	Section	6.8,	“Replication
Startup	Options”.

log_slow_queries

Whether	slow	queries	should	be	logged.	“Slow”	is	determined	by	the	value
of	the	long_query_time	variable.	See	Section	5.12.4,	“The	Slow	Query
Log”.

log_warnings

Whether	to	produce	additional	warning	messages.	It	is	enabled	(1)	by
default.	Aborted	connections	are	not	logged	to	the	error	log	unless	the	value
is	greater	than	1.

long_query_time

If	a	query	takes	longer	than	this	many	seconds,	the	server	increments	the
Slow_queries	status	variable.	If	you	are	using	the	--log-slow-queries
option,	the	query	is	logged	to	the	slow	query	log	file.	This	value	is
measured	in	real	time,	not	CPU	time,	so	a	query	that	is	under	the	threshold
on	a	lightly	loaded	system	might	be	above	the	threshold	on	a	heavily	loaded
one.	The	minimum	value	is	1.	The	default	is	10.	See	Section	5.12.4,	“The
Slow	Query	Log”.

low_priority_updates

If	set	to	1,	all	INSERT,	UPDATE,	DELETE,	and	LOCK	TABLE	WRITE	statements
wait	until	there	is	no	pending	SELECT	or	LOCK	TABLE	READ	on	the	affected
table.	This	variable	previously	was	named	sql_low_priority_updates.

lower_case_file_system

This	variable	describes	the	case	sensitivity	of	filenames	on	the	filesystem
where	the	data	directory	is	located.	OFF	means	filenames	are	case	sensitive,
ON	means	they	are	not	case	sensitive.

lower_case_table_names

If	set	to	1,	table	names	are	stored	in	lowercase	on	disk	and	table	name
comparisons	are	not	case	sensitive.	If	set	to	2	table	names	are	stored	as
given	but	compared	in	lowercase.	This	option	also	applies	to	database
names	and	table	aliases.	See	Section	9.2.2,	“Identifier	Case	Sensitivity”.

If	you	are	using	InnoDB	tables,	you	should	set	this	variable	to	1	on	all
platforms	to	force	names	to	be	converted	to	lowercase.

You	should	not	set	this	variable	to	0	if	you	are	running	MySQL	on	a	system
that	does	not	have	case-sensitive	filenames	(such	as	Windows	or	Mac	OS
X).	If	this	variable	is	not	set	at	startup	and	the	filesystem	on	which	the	data
directory	is	located	does	not	have	case-sensitive	filenames,	MySQL
automatically	sets	lower_case_table_names	to	2.

max_allowed_packet

The	maximum	size	of	one	packet	or	any	generated/intermediate	string.

The	packet	message	buffer	is	initialized	to	net_buffer_length	bytes,	but
can	grow	up	to	max_allowed_packet	bytes	when	needed.	This	value	by
default	is	small,	to	catch	large	(possibly	incorrect)	packets.

You	must	increase	this	value	if	you	are	using	large	BLOB	columns	or	long
strings.	It	should	be	as	big	as	the	largest	BLOB	you	want	to	use.	The	protocol
limit	for	max_allowed_packet	is	1GB.

max_binlog_cache_size

If	a	multiple-statement	transaction	requires	more	than	this	amount	of
memory,	the	server	generates	a	Multi-statement	transaction	required
more	than	'max_binlog_cache_size'	bytes	of	storage	error.

max_binlog_size

If	a	write	to	the	binary	log	causes	the	current	log	file	size	to	exceed	the
value	of	this	variable,	the	server	rotates	the	binary	logs	(closes	the	current
file	and	opens	the	next	one).	You	cannot	set	this	variable	to	more	than	1GB
or	to	less	than	4096	bytes.	The	default	value	is	1GB.

A	transaction	is	written	in	one	chunk	to	the	binary	log,	so	it	is	never	split
between	several	binary	logs.	Therefore,	if	you	have	big	transactions,	you
might	see	binary	logs	larger	than	max_binlog_size.

If	max_relay_log_size	is	0,	the	value	of	max_binlog_size	applies	to	relay
logs	as	well.

max_connect_errors

If	there	are	more	than	this	number	of	interrupted	connections	from	a	host,
that	host	is	blocked	from	further	connections.	You	can	unblock	blocked
hosts	with	the	FLUSH	HOSTS	statement.

max_connections

The	number	of	simultaneous	client	connections	allowed.	Increasing	this
value	increases	the	number	of	file	descriptors	that	mysqld	requires.	See
Section	7.4.8,	“How	MySQL	Opens	and	Closes	Tables”,	for	comments	on
file	descriptor	limits.	See	also	Section	A.2.6,	“Too	many	connections”.

max_delayed_threads

Do	not	start	more	than	this	number	of	threads	to	handle	INSERT	DELAYED
statements.	If	you	try	to	insert	data	into	a	new	table	after	all	INSERT
DELAYED	threads	are	in	use,	the	row	is	inserted	as	if	the	DELAYED	attribute
wasn't	specified.	If	you	set	this	to	0,	MySQL	never	creates	a	thread	to
handle	DELAYED	rows;	in	effect,	this	disables	DELAYED	entirely.

max_error_count

The	maximum	number	of	error,	warning,	and	note	messages	to	be	stored	for
display	by	the	SHOW	ERRORS	and	SHOW	WARNINGS	statements.

max_heap_table_size

This	variable	sets	the	maximum	size	to	which	MEMORY	tables	are	allowed	to
grow.	The	value	of	the	variable	is	used	to	calculate	MEMORY	table	MAX_ROWS
values.	Setting	this	variable	has	no	effect	on	any	existing	MEMORY	table,
unless	the	table	is	re-created	with	a	statement	such	as	CREATE	TABLE	or
altered	with	ALTER	TABLE	or	TRUNCATE	TABLE.

max_insert_delayed_threads

This	variable	is	a	synonym	for	max_delayed_threads.

max_join_size

Do	not	allow	SELECT	statements	that	probably	need	to	examine	more	than
max_join_size	rows	(for	single-table	statements)	or	row	combinations	(for
multiple-table	statements)	or	that	are	likely	to	do	more	than	max_join_size
disk	seeks.	By	setting	this	value,	you	can	catch	SELECT	statements	where
keys	are	not	used	properly	and	that	would	probably	take	a	long	time.	Set	it
if	your	users	tend	to	perform	joins	that	lack	a	WHERE	clause,	that	take	a	long
time,	or	that	return	millions	of	rows.

Setting	this	variable	to	a	value	other	than	DEFAULT	resets	the	value	of
SQL_BIG_SELECTS	to	0.	If	you	set	the	SQL_BIG_SELECTS	value	again,	the
max_join_size	variable	is	ignored.

If	a	query	result	is	in	the	query	cache,	no	result	size	check	is	performed,
because	the	result	has	previously	been	computed	and	it	does	not	burden	the
server	to	send	it	to	the	client.

This	variable	previously	was	named	sql_max_join_size.

max_length_for_sort_data

The	cutoff	on	the	size	of	index	values	that	determines	which	filesort

algorithm	to	use.	See	Section	7.2.12,	“ORDER	BY	Optimization”.

max_prepared_stmt_count

This	variable	limits	the	total	number	of	prepared	statements	in	the	server.	It
can	be	used	in	environments	where	there	is	the	potential	for	denial-of-
service	attacks	based	on	running	the	server	out	of	memory	by	preparing
huge	numbers	of	statements.	The	default	value	is	16,382.	The	allowable
range	of	values	is	from	0	to	1	milliion.	If	the	value	is	set	lower	than	the
current	number	of	prepared	statements,	existing	statements	are	not	affected
and	can	be	used,	but	no	new	statements	can	be	prepared	until	the	current
number	drops	below	the	limit.	This	variable	was	added	in	MySQL	5.0.21.

max_relay_log_size

If	a	write	by	a	replication	slave	to	its	relay	log	causes	the	current	log	file
size	to	exceed	the	value	of	this	variable,	the	slave	rotates	the	relay	logs
(closes	the	current	file	and	opens	the	next	one).	If	max_relay_log_size	is
0,	the	server	uses	max_binlog_size	for	both	the	binary	log	and	the	relay
log.	If	max_relay_log_size	is	greater	than	0,	it	constrains	the	size	of	the
relay	log,	which	enables	you	to	have	different	sizes	for	the	two	logs.	You
must	set	max_relay_log_size	to	between	4096	bytes	and	1GB	(inclusive),
or	to	0.	The	default	value	is	0.	See	Section	6.3,	“Replication
Implementation	Details”.

max_seeks_for_key

Limit	the	assumed	maximum	number	of	seeks	when	looking	up	rows	based
on	a	key.	The	MySQL	optimizer	assumes	that	no	more	than	this	number	of
key	seeks	are	required	when	searching	for	matching	rows	in	a	table	by
scanning	an	index,	regardless	of	the	actual	cardinality	of	the	index	(see
Section	13.5.4.13,	“SHOW	INDEX	Syntax”).	By	setting	this	to	a	low	value
(say,	100),	you	can	force	MySQL	to	prefer	indexes	instead	of	table	scans.

max_sort_length

The	number	of	bytes	to	use	when	sorting	BLOB	or	TEXT	values.	Only	the	first
max_sort_length	bytes	of	each	value	are	used;	the	rest	are	ignored.

max_sp_recursion_depth

The	number	of	times	that	a	stored	procedure	may	call	itself.	The	default
value	for	this	option	is	0,	which	completely	disallows	recursion	in	stored
procedures.	The	maximum	value	is	255.

This	variable	can	be	set	globally	and	per	session.

max_tmp_tables

The	maximum	number	of	temporary	tables	a	client	can	keep	open	at	the
same	time.	(This	option	does	not	yet	do	anything.)

max_user_connections

The	maximum	number	of	simultaneous	connections	allowed	to	any	given
MySQL	account.	A	value	of	0	means	“no	limit.”

Before	MySQL	5.0.3,	this	variable	has	only	global	scope.	Beginning	with
MySQL	5.0.3,	it	also	has	a	read-only	session	scope.	The	session	variable
has	the	same	value	as	the	global	variable	unless	the	current	account	has	a
non-zero	MAX_USER_CONNECTIONS	resource	limit.	In	that	case,	the	session
value	reflects	the	account	limit.

max_write_lock_count

After	this	many	write	locks,	allow	some	pending	read	lock	requests	to	be
processed	in	between.

myisam_data_pointer_size

The	default	pointer	size	in	bytes,	to	be	used	by	CREATE	TABLE	for	MyISAM
tables	when	no	MAX_ROWS	option	is	specified.	This	variable	cannot	be	less
than	2	or	larger	than	7.	The	default	value	is	6	(4	before	MySQL	5.0.6).	This
variable	was	added	in	MySQL	4.1.2.	See	Section	A.2.11,	“The	table	is
full”.

myisam_max_extra_sort_file_size	(DEPRECATED)

If	the	temporary	file	used	for	fast	MyISAM	index	creation	would	be	larger
than	using	the	key	cache	by	the	amount	specified	here,	prefer	the	key	cache
method.	This	is	mainly	used	to	force	long	character	keys	in	large	tables	to

use	the	slower	key	cache	method	to	create	the	index.	The	value	is	given	in
bytes.

Note:	This	variable	was	removed	in	MySQL	5.0.6.

myisam_max_sort_file_size

The	maximum	size	of	the	temporary	file	that	MySQL	is	allowed	to	use
while	re-creating	a	MyISAM	index	(during	REPAIR	TABLE,	ALTER	TABLE,	or
LOAD	DATA	INFILE).	If	the	file	size	would	be	larger	than	this	value,	the
index	is	created	using	the	key	cache	instead,	which	is	slower.	The	value	is
given	in	bytes.

myisam_recover_options

The	value	of	the	--myisam-recover	option.	See	Section	5.2.1,	“mysqld
Command	Options”.

myisam_repair_threads

If	this	value	is	greater	than	1,	MyISAM	table	indexes	are	created	in	parallel
(each	index	in	its	own	thread)	during	the	Repair	by	sorting	process.	The
default	value	is	1.

Note:	Multi-threaded	repair	is	still	beta-quality	code.

myisam_sort_buffer_size

The	size	of	the	buffer	that	is	allocated	when	sorting	MyISAM	indexes	during
a	REPAIR	TABLE	or	when	creating	indexes	with	CREATE	INDEX	or	ALTER
TABLE.

myisam_stats_method

How	the	server	treats	NULL	values	when	collecting	statistics	about	the
distribution	of	index	values	for	MyISAM	tables.	This	variable	has	two
possible	values,	nulls_equal	and	nulls_unequal.	For	nulls_equal,	all
NULL	index	values	are	considered	equal	and	form	a	single	value	group	that
has	a	size	equal	to	the	number	of	NULL	values.	For	nulls_unequal,	NULL
values	are	considered	unequal,	and	each	NULL	forms	a	distinct	value	group

of	size	1.

The	method	that	is	used	for	generating	table	statistics	influences	how	the
optimizer	chooses	indexes	for	query	execution,	as	described	in
Section	7.4.7,	“MyISAM	Index	Statistics	Collection”.

This	variable	was	added	in	MySQL	5.0.14.	For	older	versions,	the	statistics
collection	method	is	equivalent	to	nulls_equal.

multi_read_range

Specifies	the	maximum	number	of	ranges	to	send	to	a	storage	engine	during
range	selects.	The	default	value	is	256.	Sending	multiple	ranges	to	an
engine	is	a	feature	that	can	improve	the	performance	of	certain	selects
dramatically,	particularly	for	NDBCLUSTER.	This	engine	needs	to	send	the
range	requests	to	all	nodes,	and	sending	many	of	those	requests	at	once
reduces	the	communication	costs	significantly.	This	variable	was	added	in
MySQL	5.0.3.

named_pipe

(Windows	only.)	Indicates	whether	the	server	supports	connections	over
named	pipes.

ndb_autoincrement_prefetch_sz

Determines	the	probability	of	gaps	in	an	autoincremented	column.	Set	to	1
to	minimize	this.	Set	to	a	high	value	for	optimization	—	makes	inserts
faster,	but	decreases	the	likelihood	that	consecutive	autoincrement	numbers
will	be	used	in	a	batch	of	inserts.	Default	value:	32.	Mimimum	value:	1.

ndb_cache_check_time

The	number	of	milliseconds	to	wait	before	checking	the	NDB	query	cache.
Setting	this	to	0	(the	default	and	minimum	value)	means	that	the	NDB	query
cache	will	be	checked	for	validation	on	every	query.

The	recommended	maximum	value	for	this	variable	is	1000,	which	means
that	the	query	cache	is	checked	once	per	second.	A	larger	value	means	the
NDB	query	cache	is	less	often	checked	and	invalidated	due	to	updates	on	a

different	mysqld.	It	is	generally	not	desirable	to	set	this	to	a	value	greater
than	2000.

ndb_force_send

Forces	sending	of	buffers	to	NDB	immediately,	without	waiting	for	other
threads.	Defaults	to	ON.

ndb_index_stat_cache_entries

Sets	the	granularity	of	the	statistics	by	determining	the	number	of	starting
and	ending	keys	to	store	in	the	statistics	memory	cache.	Zero	means	no
caching	takes	place;	in	this	case,	the	data	nodes	are	always	queries	directly.
Default	value:	32.

ndb_index_stat_enable

Use	NDB	index	statistics	in	query	optimization.	Defaults	to	ON.

ndb_index_stat_update_freq

How	often	to	query	data	nodes	instead	of	the	statistics	cache.	For	example,
a	value	of	20	(the	default)	means	to	direct	every	20th	query	to	the	data
nodes.

ndb_report_thresh_binlog_epoch_slip

This	is	a	threshold	on	the	number	of	epochs	to	be	behind	before	reporting
binlog	status.	For	example,	a	value	of	3	(the	default)	means	that	if	the
difference	between	which	epoch	has	been	received	from	the	storage	nodes
and	which	epoch	has	been	applied	to	the	binlog	is	3	or	more,	a	status
message	will	be	sent	to	the	cluster	log.

ndb_report_thresh_binlog_mem_usage

This	is	a	threshold	on	the	percentage	of	free	memory	remaining	before
reporting	binlog	status.	For	example,	a	value	of	10	(the	default)	means	that
if	the	amount	of	available	memory	for	receiving	binlog	data	from	the	data
nodes	falls	below	10%,	a	status	message	will	be	sent	to	the	cluster	log.

ndb_use_exact_count

Forces	NDB	to	use	an	count	of	records	during	SELECT	COUNT(*)	query
planning	to	speed	up	this	type	of	query.	The	default	value	is	ON.	For	faster
queries	overall,	disable	this	feature	by	setting	the	value	of
ndb_use_exact_count	to	OFF.

ndb_use_transactions

You	can	disable	NDB	transaction	support	by	setting	this	variable's	values	to
OFF	(not	recommended).	The	default	is	ON.

net_buffer_length

The	communication	buffer	is	reset	to	this	size	between	SQL	statements.
This	variable	should	not	normally	be	changed,	but	if	you	have	very	little
memory,	you	can	set	it	to	the	expected	length	of	statements	sent	by	clients.
If	statements	exceed	this	length,	the	buffer	is	automatically	enlarged,	up	to
max_allowed_packet	bytes.

net_read_timeout

The	number	of	seconds	to	wait	for	more	data	from	a	connection	before
aborting	the	read.	This	timeout	applies	only	to	TCP/IP	connections,	not	to
connections	made	via	Unix	socket	files,	named	pipes,	or	shared	memory.
When	the	server	is	reading	from	the	client,	net_read_timeout	is	the
timeout	value	controlling	when	to	abort.	When	the	server	is	writing	to	the
client,	net_write_timeout	is	the	timeout	value	controlling	when	to	abort.
See	also	slave_net_timeout.

net_retry_count

If	a	read	on	a	communication	port	is	interrupted,	retry	this	many	times
before	giving	up.	This	value	should	be	set	quite	high	on	FreeBSD	because
internal	interrupts	are	sent	to	all	threads.

net_write_timeout

The	number	of	seconds	to	wait	for	a	block	to	be	written	to	a	connection
before	aborting	the	write.	This	timeout	applies	only	to	TCP/IP	connections,

not	to	connections	made	via	Unix	socket	files,	named	pipes,	or	shared
memory.	See	also	net_read_timeout.

new

This	variable	was	used	in	MySQL	4.0	to	turn	on	some	4.1	behaviors,	and	is
retained	for	backward	compatibility.	In	MySQL	5.0,	its	value	is	always	OFF.

old_passwords

Whether	the	server	should	use	pre-4.1-style	passwords	for	MySQL	user
accounts.	See	Section	A.2.3,	“Client	does	not	support	authentication
protocol”.

one_shot

This	is	not	a	variable,	but	it	can	be	used	when	setting	some	variables.	It	is
described	in	Section	13.5.3,	“SET	Syntax”.

open_files_limit

The	number	of	files	that	the	operating	system	allows	mysqld	to	open.	This
is	the	real	value	allowed	by	the	system	and	might	be	different	from	the
value	you	gave	using	the	--open-files-limit	option	to	mysqld	or
mysqld_safe.	The	value	is	0	on	systems	where	MySQL	can't	change	the
number	of	open	files.

optimizer_prune_level

Controls	the	heuristics	applied	during	query	optimization	to	prune	less-
promising	partial	plans	from	the	optimizer	search	space.	A	value	of	0
disables	heuristics	so	that	the	optimizer	performs	an	exhaustive	search.	A
value	of	1	causes	the	optimizer	to	prune	plans	based	on	the	number	of	rows
retrieved	by	intermediate	plans.	This	variable	was	added	in	MySQL	5.0.1.

optimizer_search_depth

The	maximum	depth	of	search	performed	by	the	query	optimizer.	Values
larger	than	the	number	of	relations	in	a	query	result	in	better	query	plans,
but	take	longer	to	generate	an	execution	plan	for	a	query.	Values	smaller

than	the	number	of	relations	in	a	query	return	an	execution	plan	quicker,	but
the	resulting	plan	may	be	far	from	being	optimal.	If	set	to	0,	the	system
automatically	picks	a	reasonable	value.	If	set	to	the	maximum	number	of
tables	used	in	a	query	plus	2,	the	optimizer	switches	to	the	algorithm	used
in	MySQL	5.0.0	(and	previous	versions)	for	performing	searches.	This
variable	was	added	in	MySQL	5.0.1.

pid_file

The	pathname	of	the	process	ID	(PID)	file.	This	variable	can	be	set	with	the
--pid-file	option.

port

The	number	of	the	port	on	which	the	server	listens	for	TCP/IP	connections.
This	variable	can	be	set	with	the	--port	option.

preload_buffer_size

The	size	of	the	buffer	that	is	allocated	when	preloading	indexes.

prepared_stmt_count

The	current	number	of	prepared	statements.	(The	maximum	number	of
statements	is	given	by	the	max_prepared_stmt_count	system	variable.)
This	variable	was	added	in	MySQL	5.0.21.

protocol_version

The	version	of	the	client/server	protocol	used	by	the	MySQL	server.

query_alloc_block_size

The	allocation	size	of	memory	blocks	that	are	allocated	for	objects	created
during	statement	parsing	and	execution.	If	you	have	problems	with	memory
fragmentation,	it	might	help	to	increase	this	a	bit.

query_cache_limit

Don't	cache	results	that	are	larger	than	this	number	of	bytes.	The	default

value	is	1MB.

query_cache_min_res_unit

The	minimum	size	(in	bytes)	for	blocks	allocated	by	the	query	cache.	The
default	value	is	4096	(4KB).	Tuning	information	for	this	variable	is	given	in
Section	5.14.3,	“Query	Cache	Configuration”.

query_cache_size

The	amount	of	memory	allocated	for	caching	query	results.	The	default
value	is	0,	which	disables	the	query	cache.	The	allowable	values	are
multiples	of	1024;	other	values	are	rounded	down	to	the	nearest	multiple.
Note	that	query_cache_size	bytes	of	memory	are	allocated	even	if
query_cache_type	is	set	to	0.	See	Section	5.14.3,	“Query	Cache
Configuration”,	for	more	information.

query_cache_type

Set	the	query	cache	type.	Setting	the	GLOBAL	value	sets	the	type	for	all
clients	that	connect	thereafter.	Individual	clients	can	set	the	SESSION	value
to	affect	their	own	use	of	the	query	cache.	Possible	values	are	shown	in	the
following	table:

Option Description

0	or
OFF

Don't	cache	results	in	or	retrieve	results	from	the	query	cache.
Note	that	this	does	not	deallocate	the	query	cache	buffer.	To	do
that,	you	should	set	query_cache_size	to	0.

1	or	ON Cache	all	query	results	except	for	those	that	begin	with	SELECT
SQL_NO_CACHE.

2	or
DEMAND

Cache	results	only	for	queries	that	begin	with	SELECT	SQL_CACHE.

This	variable	defaults	to	ON.

query_cache_wlock_invalidate

Normally,	when	one	client	acquires	a	WRITE	lock	on	a	MyISAM	table,	other
clients	are	not	blocked	from	issuing	statements	that	read	from	the	table	if

the	query	results	are	present	in	the	query	cache.	Setting	this	variable	to	1
causes	acquisition	of	a	WRITE	lock	for	a	table	to	invalidate	any	queries	in	the
query	cache	that	refer	to	the	table.	This	forces	other	clients	that	attempt	to
access	the	table	to	wait	while	the	lock	is	in	effect.

query_prealloc_size

The	size	of	the	persistent	buffer	used	for	statement	parsing	and	execution.
This	buffer	is	not	freed	between	statements.	If	you	are	running	complex
queries,	a	larger	query_prealloc_size	value	might	be	helpful	in	improving
performance,	because	it	can	reduce	the	need	for	the	server	to	perform
memory	allocation	during	query	execution	operations.

range_alloc_block_size

The	size	of	blocks	that	are	allocated	when	doing	range	optimization.

read_buffer_size

Each	thread	that	does	a	sequential	scan	allocates	a	buffer	of	this	size	(in
bytes)	for	each	table	it	scans.	If	you	do	many	sequential	scans,	you	might
want	to	increase	this	value,	which	defaults	to	131072.

read_only

When	the	variable	is	set	to	ON	for	a	replication	slave	server,	it	causes	the
slave	to	allow	no	updates	except	from	slave	threads	or	from	users	that	have
the	SUPER	privilege.	This	can	be	useful	to	ensure	that	a	slave	server	accepts
updates	only	from	its	master	server	and	not	from	clients.	As	of	MySQL
5.0.16,	this	variable	does	not	apply	to	TEMPORARY	tables.

relay_log_purge

Disables	or	enables	automatic	purging	of	relay	log	files	as	soon	as	they	are
not	needed	any	more.	The	default	value	is	1	(ON).

read_rnd_buffer_size

When	reading	rows	in	sorted	order	following	a	key-sorting	operation,	the
rows	are	read	through	this	buffer	to	avoid	disk	seeks.	Setting	the	variable	to

a	large	value	can	improve	ORDER	BY	performance	by	a	lot.	However,	this	is
a	buffer	allocated	for	each	client,	so	you	should	not	set	the	global	variable
to	a	large	value.	Instead,	change	the	session	variable	only	from	within	those
clients	that	need	to	run	large	queries.

rpl_recovery_rank

This	variable	is	unused.

secure_auth

If	the	MySQL	server	has	been	started	with	the	--secure-auth	option,	it
blocks	connections	from	all	accounts	that	have	passwords	stored	in	the	old
(pre-4.1)	format.	In	that	case,	the	value	of	this	variable	is	ON,	otherwise	it	is
OFF.

You	should	enable	this	option	if	you	want	to	prevent	all	use	of	passwords
employing	the	old	format	(and	hence	insecure	communication	over	the
network).

Server	startup	fails	with	an	error	if	this	option	is	enabled	and	the	privilege
tables	are	in	pre-4.1	format.	See	Section	A.2.3,	“Client	does	not	support
authentication	protocol”.

server_id

The	server	ID.	This	value	is	set	by	the	--server-id	option.	It	is	used	for
replication	to	enable	master	and	slave	servers	to	identify	themselves
uniquely.

shared_memory

(Windows	only.)	Whether	the	server	allows	shared-memory	connections.

shared_memory_base_name

(Windows	only.)	The	name	of	shared	memory	to	use	for	shared-memory
connections.	This	is	useful	when	running	multiple	MySQL	instances	on	a
single	physical	machine.	The	default	name	is	MYSQL.	The	name	is	case
sensitive.

	skip_external_locking

This	is	OFF	if	mysqld	uses	external	locking,	ON	if	external	locking	is
disabled.

skip_networking

This	is	ON	if	the	server	allows	only	local	(non-TCP/IP)	connections.	On
Unix,	local	connections	use	a	Unix	socket	file.	On	Windows,	local
connections	use	a	named	pipe	or	shared	memory.	On	NetWare,	only	TCP/IP
connections	are	supported,	so	do	not	set	this	variable	to	ON.	This	variable
can	be	set	to	ON	with	the	--skip-networking	option.

skip_show_database

This	prevents	people	from	using	the	SHOW	DATABASES	statement	if	they	do
not	have	the	SHOW	DATABASES	privilege.	This	can	improve	security	if	you
have	concerns	about	users	being	able	to	see	databases	belonging	to	other
users.	Its	effect	depends	on	the	SHOW	DATABASES	privilege:	If	the	variable
value	is	ON,	the	SHOW	DATABASES	statement	is	allowed	only	to	users	who
have	the	SHOW	DATABASES	privilege,	and	the	statement	displays	all	database
names.	If	the	value	is	OFF,	SHOW	DATABASES	is	allowed	to	all	users,	but
displays	the	names	of	only	those	databases	for	which	the	user	has	the	SHOW
DATABASES	or	other	privilege.

slave_compressed_protocol

Whether	to	use	compression	of	the	slave/master	protocol	if	both	the	slave
and	the	master	support	it.

slave_load_tmpdir

The	name	of	the	directory	where	the	slave	creates	temporary	files	for
replicating	LOAD	DATA	INFILE	statements.

slave_net_timeout

The	number	of	seconds	to	wait	for	more	data	from	a	master/slave
connection	before	aborting	the	read.	This	timeout	applies	only	to	TCP/IP
connections,	not	to	connections	made	via	Unix	socket	files,	named	pipes,	or

shared	memory.

slave_skip_errors

The	replication	errors	that	the	slave	should	skip	(ignore).

slave_transaction_retries

If	a	replication	slave	SQL	thread	fails	to	execute	a	transaction	because	of	an
InnoDB	deadlock	or	exceeded	InnoDB's	innodb_lock_wait_timeout	or
NDBCluster's	TransactionDeadlockDetectionTimeout	or
TransactionInactiveTimeout,	it	automatically	retries
slave_transaction_retries	times	before	stopping	with	an	error.	The
default	priot	to	MySQL	4.0.3	is	0.	You	must	explicitly	set	the	value	greater
than	0	to	enable	the	“retry”	behavior,	which	is	probably	a	good	idea.	In
MySQL	5.0.3	or	newer,	the	default	is	10.

slow_launch_time

If	creating	a	thread	takes	longer	than	this	many	seconds,	the	server
increments	the	Slow_launch_threads	status	variable.

socket

On	Unix	platforms,	this	variable	is	the	name	of	the	socket	file	that	is	used
for	local	client	connections.	The	default	is	/tmp/mysql.sock.	(For	some
distribution	formats,	the	directory	might	be	different,	such	as
/var/lib/mysql	for	RPMs.)

On	Windows,	this	variable	is	the	name	of	the	named	pipe	that	is	used	for
local	client	connections.	The	default	value	is	MySQL	(not	case	sensitive).

sort_buffer_size

Each	thread	that	needs	to	do	a	sort	allocates	a	buffer	of	this	size.	Increase
this	value	for	faster	ORDER	BY	or	GROUP	BY	operations.	See	Section	A.4.4,
“Where	MySQL	Stores	Temporary	Files”.

sql_mode

The	current	server	SQL	mode,	which	can	be	set	dynamically.	See
Section	5.2.5,	“The	Server	SQL	Mode”.

sql_slave_skip_counter

The	number	of	events	from	the	master	that	a	slave	server	should	skip.	See
Section	13.6.2.6,	“SET	GLOBAL	SQL_SLAVE_SKIP_COUNTER	Syntax”.

ssl_ca

The	path	to	a	file	with	a	list	of	trusted	SSL	CAs.	This	variable	was	added	in
MySQL	5.0.23.

ssl_capath

The	path	to	a	directory	that	contains	trusted	SSL	CA	certificates	in	PEM
format.	This	variable	was	added	in	MySQL	5.0.23.

ssl_cert

The	name	of	the	SSL	certificate	file	to	use	for	establishing	a	secure
connection.	This	variable	was	added	in	MySQL	5.0.23.

ssl_cipher

A	list	of	allowable	ciphers	to	use	for	SSL	encryption.	The	cipher	list	has	the
same	format	as	the	openssl	ciphers	command.	This	variable	was	added	in
MySQL	5.0.23.

ssl_key

The	name	of	the	SSL	key	file	to	use	for	establishing	a	secure	connection.
This	variable	was	added	in	MySQL	5.0.23.

storage_engine

The	default	storage	engine	(table	type).	To	set	the	storage	engine	at	server
startup,	use	the	--default-storage-engine	option.	See	Section	5.2.1,
“mysqld	Command	Options”.

sync_binlog

If	the	value	of	this	variable	is	positive,	the	MySQL	server	synchronizes	its
binary	log	to	disk	(using	fdatasync())	after	every	sync_binlog	writes	to
the	binary	log.	Note	that	there	is	one	write	to	the	binary	log	per	statement	if
autocommit	is	enabled,	and	one	write	per	transaction	otherwise.	The	default
value	is	0,	which	does	no	synchronizing	to	disk.	A	value	of	1	is	the	safest
choice,	because	in	the	event	of	a	crash	you	lose	at	most	one	statement	or
transaction	from	the	binary	log.	However,	it	is	also	the	slowest	choice
(unless	the	disk	has	a	battery-backed	cache,	which	makes	synchronization
very	fast).

If	the	value	of	sync_binlog	is	0	(the	default),	no	extra	flushing	is	done.	The
server	relies	on	the	operating	system	to	flush	the	file	contents	occasionaly
as	for	any	other	file.

sync_frm

If	this	variable	is	set	to	1,	when	any	non-temporary	table	is	created	its	.frm
file	is	synchronized	to	disk	(using	fdatasync()).	This	is	slower	but	safer	in
case	of	a	crash.	The	default	is	1.

system_time_zone

The	server	system	time	zone.	When	the	server	begins	executing,	it	inherits	a
time	zone	setting	from	the	machine	defaults,	possibly	modified	by	the
environment	of	the	account	used	for	running	the	server	or	the	startup	script.
The	value	is	used	to	set	system_time_zone.	Typically	the	time	zone	is
specified	by	the	TZ	environment	variable.	It	also	can	be	specified	using	the
--timezone	option	of	the	mysqld_safe	script.

The	system_time_zone	variable	differs	from	time_zone.	Although	they
might	have	the	same	value,	the	latter	variable	is	used	to	initialize	the	time
zone	for	each	client	that	connects.	See	Section	5.11.8,	“MySQL	Server
Time	Zone	Support”.

table_cache

The	number	of	open	tables	for	all	threads.	Increasing	this	value	increases
the	number	of	file	descriptors	that	mysqld	requires.	You	can	check	whether
you	need	to	increase	the	table	cache	by	checking	the	Opened_tables	status
variable.	See	Section	5.2.4,	“Server	Status	Variables”.	If	the	value	of

Opened_tables	is	large	and	you	don't	do	FLUSH	TABLES	often	(which	just
forces	all	tables	to	be	closed	and	reopened),	then	you	should	increase	the
value	of	the	table_cache	variable.	For	more	information	about	the	table
cache,	see	Section	7.4.8,	“How	MySQL	Opens	and	Closes	Tables”.

table_lock_wait_timeout

Specifies	a	wait	timeout	for	table-level	locks,	in	seconds.	The	default
timeout	is	50	seconds.	The	timeout	is	active	only	if	the	connection	has	open
cursors.	This	variable	can	also	be	set	globally	at	runtime	(you	need	the
SUPER	privilege	to	do	this).	It's	available	as	of	MySQL	5.0.10.

table_type

This	variable	is	a	synonym	for	storage_engine.	In	MySQL	5.0,
storage_engine	is	the	preferred	name.

thread_cache_size

How	many	threads	the	server	should	cache	for	reuse.	When	a	client
disconnects,	the	client's	threads	are	put	in	the	cache	if	there	are	fewer	than
thread_cache_size	threads	there.	Requests	for	threads	are	satisfied	by
reusing	threads	taken	from	the	cache	if	possible,	and	only	when	the	cache	is
empty	is	a	new	thread	created.	This	variable	can	be	increased	to	improve
performance	if	you	have	a	lot	of	new	connections.	(Normally,	this	doesn't
provide	a	notable	performance	improvement	if	you	have	a	good	thread
implementation.)	By	examining	the	difference	between	the	Connections
and	Threads_created	status	variables,	you	can	see	how	efficient	the	thread
cache	is.	For	details,	see	Section	5.2.4,	“Server	Status	Variables”.

thread_concurrency

On	Solaris,	mysqld	calls	thr_setconcurrency()	with	this	value.	This
function	enables	applications	to	give	the	threads	system	a	hint	about	the
desired	number	of	threads	that	should	be	run	at	the	same	time.

thread_stack

The	stack	size	for	each	thread.	Many	of	the	limits	detected	by	the	crash-me
test	are	dependent	on	this	value.	The	default	is	large	enough	for	normal

operation.	See	Section	7.1.4,	“The	MySQL	Benchmark	Suite”.	The	default
is	192KB.

time_format

This	variable	is	not	implemented.

time_zone

The	current	time	zone.	This	variable	is	used	to	initialize	the	tome	zone	for
each	client	that	connects.	By	default,	the	initial	value	of	this	is	'SYSTEM'
(which	means,	“use	the	value	of	system_time_zone”).	The	value	can	be
specified	explicitly	at	server	startup	with	the	--default-time-zone	option.
See	Section	5.11.8,	“MySQL	Server	Time	Zone	Support”.

tmp_table_size

The	maximum	size	of	in-memory	temporary	tables.	(The	actual	limit	is
determined	as	the	smaller	of	max_heap_table_size	and	tmp_table_size.)
If	an	in-memory	temporary	table	exceeds	the	limit,	MySQL	automatically
converts	it	to	an	on-disk	MyISAM	table.	Increase	the	value	of
tmp_table_size	(and	max_heap_table_size	if	necessary)	if	you	do	many
advanced	GROUP	BY	queries	and	you	have	lots	of	memory.

tmpdir

The	directory	used	for	temporary	files	and	temporary	tables.	This	variable
can	be	set	to	a	list	of	several	paths	that	are	used	in	round-robin	fashion.
Paths	should	be	separated	by	colon	characters	(‘:’)	on	Unix	and	semicolon
characters	(‘;’)	on	Windows,	NetWare,	and	OS/2.

The	multiple-directory	feature	can	be	used	to	spread	the	load	between
several	physical	disks.	If	the	MySQL	server	is	acting	as	a	replication	slave,
you	should	not	set	tmpdir	to	point	to	a	directory	on	a	memory-based
filesystem	or	to	a	directory	that	is	cleared	when	the	server	host	restarts.	A
replication	slave	needs	some	of	its	temporary	files	to	survive	a	machine
restart	so	that	it	can	replicate	temporary	tables	or	LOAD	DATA	INFILE
operations.	If	files	in	the	temporary	file	directory	are	lost	when	the	server
restarts,	replication	fails.	However,	if	you	are	using	MySQL	4.0.0	or	later,
you	can	set	the	slave's	temporary	directory	using	the	slave_load_tmpdir

variable.	In	that	case,	the	slave	won't	use	the	general	tmpdir	value	and	you
can	set	tmpdir	to	a	non-permanent	location.

transaction_alloc_block_size

The	amount	in	bytes	by	which	to	increase	a	per-transaction	memory	pool
which	needs	memory.	See	the	description	of	transaction_prealloc_size.

transaction_prealloc_size

There	is	a	per-transaction	memory	pool	from	which	various	transaction-
related	allocations	take	memory.	The	initial	size	of	the	pool	in	bytes	is
transaction_prealloc_size.	For	every	allocation	that	cannot	be	satisfied
from	the	pool	because	it	has	insufficient	memory	available,	the	pool	is
increased	by	transaction_alloc_block_size	bytes.	When	the	transaction
ends,	the	pool	is	truncated	to	transaction_prealloc_size	bytes.

By	making	transaction_prealloc_size	sufficiently	large	to	contain	all
statements	within	a	single	transaction,	you	can	avoid	many	malloc()	calls.

tx_isolation

The	default	transaction	isolation	level.	Defaults	to	REPEATABLE-READ.

This	variable	is	set	by	the	SET	TRANSACTION	ISOLATION	LEVEL	statement.
See	Section	13.4.6,	“SET	TRANSACTION	Syntax”.	If	you	set	tx_isolation
directly	to	an	isolation	level	name	that	contains	a	space,	the	name	should	be
enclosed	within	quotes,	with	the	space	replaced	by	a	dash.	For	example:

SET	tx_isolation	=	'READ-COMMITTED';

updatable_views_with_limit

This	variable	controls	whether	updates	to	a	view	can	be	made	when	the
view	does	not	contain	all	columns	of	the	primary	key	defined	in	the
underlying	table,	if	the	update	statement	contains	a	LIMIT	clause.	(Such
updates	often	are	generated	by	GUI	tools.)	An	update	is	an	UPDATE	or
DELETE	statement.	Primary	key	here	means	a	PRIMARY	KEY,	or	a	UNIQUE
index	in	which	no	column	can	contain	NULL.

The	variable	can	have	two	values:

1	or	YES:	Issue	a	warning	only	(not	an	error	message).	This	is	the
default	value.

0	or	NO:	Prohibit	the	update.

This	variable	was	added	in	MySQL	5.0.2.

version

The	version	number	for	the	server.

version_bdb

The	BDB	storage	engine	version.

version_comment

The	configure	script	has	a	--with-comment	option	that	allows	a	comment
to	be	specified	when	building	MySQL.	This	variable	contains	the	value	of
that	comment.

version_compile_machine

The	type	of	machine	or	architecture	on	which	MySQL	was	built.

version_compile_os

The	type	of	operating	system	on	which	MySQL	was	built.

wait_timeout

The	number	of	seconds	the	server	waits	for	activity	on	a	non-interactive
connection	before	closing	it.	This	timeout	applies	only	to	TCP/IP
connections,	not	to	connections	made	via	Unix	socket	files,	named	pipes,	or
shared	memory.

On	thread	startup,	the	session	wait_timeout	value	is	initialized	from	the
global	wait_timeout	value	or	from	the	global	interactive_timeout	value,
depending	on	the	type	of	client	(as	defined	by	the	CLIENT_INTERACTIVE

connect	option	to	mysql_real_connect()).	See	also
interactive_timeout.

5.2.3.	Using	System	Variables

The	mysql	server	maintains	many	system	variables	that	indicate	how	it	is
configured.	Section	5.2.2,	“Server	System	Variables”,	describes	the	meaning	of
these	variables.	Each	system	variable	has	a	default	value.	System	variables	can
be	set	at	server	startup	using	options	on	the	command	line	or	in	an	option	file.
Most	of	them	can	be	changed	dynamically	while	the	server	is	running	by	means
of	the	SET	statement,	which	enables	you	to	modify	operation	of	the	server
without	having	to	stop	and	restart	it.	You	can	refer	to	system	variable	values	in
expressions.

The	server	maintains	two	kinds	of	system	variables.	Global	variables	affect	the
overall	operation	of	the	server.	Session	variables	affect	its	operation	for
individual	client	connections.	A	given	system	variable	can	have	both	a	global
and	a	session	value.	Global	and	session	system	variables	are	related	as	follows:

When	the	server	starts,	it	initializes	all	global	variables	to	their	default
values.	These	defaults	can	be	changed	by	options	specified	on	the	command
line	or	in	an	option	file.	(See	Section	4.3,	“Specifying	Program	Options”.)

The	server	also	maintains	a	set	of	session	variables	for	each	client	that
connects.	The	client's	session	variables	are	initialized	at	connect	time	using
the	current	values	of	the	corresponding	global	variables.	For	example,	the
client's	SQL	mode	is	controlled	by	the	session	sql_mode	value,	which	is
initialized	when	the	client	connects	to	the	value	of	the	global	sql_mode
value.

System	variable	values	can	be	set	globally	at	server	startup	by	using	options	on
the	command	line	or	in	an	option	file.	When	you	use	a	startup	option	to	set	a
variable	that	takes	a	numeric	value,	the	value	can	be	given	with	a	suffix	of	K,	M,
or	G	(either	uppercase	or	lowercase)	to	indicate	a	multiplier	of	1024,	10242	or
10243;	that	is,	units	of	kilobytes,	megabytes,	or	gigabygtes,	respectively.	Thus,
the	following	command	starts	the	server	with	a	query	cache	size	of	16
megabytes	and	a	maximum	packet	size	of	one	gigabyte:

mysqld	--query_cache_size=16M	--max_allowed_packet=1G

Within	an	option	file,	those	variables	are	set	like	this:

[mysqld]

query_cache_size=16M

max_allowed_packet=1G

The	lettercase	of	suffix	letters	does	not	matter;	16M	and	16m	are	equivalent,	as	are
1G	and	1g.

If	you	want	to	restrict	the	maximum	value	to	which	a	system	variable	can	be	set
at	runtime	with	the	SET	statement,	you	can	specify	this	maximum	by	using	an
option	of	the	form	--maximum-var_name=value	at	server	startup.	For	example,
to	prevent	the	value	of	query_cache_size	from	being	increased	to	more	than
32MB	at	runtime,	use	the	option	--maximum-query_cache_size=32M.

Many	system	variables	are	dynamic	and	can	be	changed	while	the	server	runs	by
using	the	SET	statement.	For	a	list,	see	Section	5.2.3.2,	“Dynamic	System
Variables”.	To	change	a	system	variable	with	SET,	refer	to	it	as	var_name,
optionally	preceded	by	a	modifier:

To	indicate	explicitly	that	a	variable	is	a	global	variable,	precede	its	name
by	GLOBAL	or	@@global..	The	SUPER	privilege	is	required	to	set	global
variables.

To	indicate	explicitly	that	a	variable	is	a	session	variable,	precede	its	name
by	SESSION,	@@session.,	or	@@.	Setting	a	session	variable	requires	no
special	privilege,	but	a	client	can	change	only	its	own	session	variables,	not
those	of	any	other	client.

LOCAL	and	@@local.	are	synonyms	for	SESSION	and	@@session..

If	no	modifier	is	present,	SET	changes	the	session	variable.

A	SET	statement	can	contain	multiple	variable	assignments,	separated	by
commas.	If	you	set	several	system	variables,	the	most	recent	GLOBAL	or	SESSION
modifier	in	the	statement	is	used	for	following	variables	that	have	no	modifier
specified.

Examples:

SET	sort_buffer_size=10000;

SET	@@local.sort_buffer_size=10000;

SET	GLOBAL	sort_buffer_size=1000000,	SESSION	sort_buffer_size=1000000;

SET	@@sort_buffer_size=1000000;

SET	@@global.sort_buffer_size=1000000,	@@local.sort_buffer_size=1000000;

When	you	assign	a	value	to	a	system	variable	with	SET,	you	cannot	use	suffix
letters	in	the	value	(as	can	be	done	with	startup	options).	However,	the	value	can
take	the	form	of	an	expression:

SET	sort_buffer_size	=	10	*	1024	*	1024;

The	@@var_name	syntax	for	system	variables	is	supported	for	compatibility	with
some	other	database	systems.

If	you	change	a	session	system	variable,	the	value	remains	in	effect	until	your
session	ends	or	until	you	change	the	variable	to	a	different	value.	The	change	is
not	visible	to	other	clients.

If	you	change	a	global	system	variable,	the	value	is	remembered	and	used	for
new	connections	until	the	server	restarts.	(To	make	a	global	system	variable
setting	permanent,	you	should	set	it	in	an	option	file.)	The	change	is	visible	to
any	client	that	accesses	that	global	variable.	However,	the	change	affects	the
corresponding	session	variable	only	for	clients	that	connect	after	the	change.	The
global	variable	change	does	not	affect	the	session	variable	for	any	client	that	is
currently	connected	(not	even	that	of	the	client	that	issues	the	SET	GLOBAL
statement).

To	prevent	incorrect	usage,	MySQL	produces	an	error	if	you	use	SET	GLOBAL
with	a	variable	that	can	only	be	used	with	SET	SESSION	or	if	you	do	not	specify
GLOBAL	(or	@@global.)	when	setting	a	global	variable.

To	set	a	SESSION	variable	to	the	GLOBAL	value	or	a	GLOBAL	value	to	the	compiled-
in	MySQL	default	value,	use	the	DEFAULT	keyword.	For	example,	the	following
two	statements	are	identical	in	setting	the	session	value	of	max_join_size	to	the
global	value:

SET	max_join_size=DEFAULT;

SET	@@session.max_join_size=@@global.max_join_size;

Not	all	system	variables	can	be	set	to	DEFAULT.	In	such	cases,	use	of	DEFAULT
results	in	an	error.

You	can	refer	to	the	values	of	specific	global	or	sesson	system	variables	in
expressions	by	using	one	of	the	@@-modifiers.	For	example,	you	can	retrieve
values	in	a	SELECT	statement	like	this:

SELECT	@@global.sql_mode,	@@session.sql_mode,	@@sql_mode;

When	you	refer	to	a	system	variable	in	an	expression	as	@@var_name	(that	is,
when	you	do	not	specify	@@global.	or	@@session.),	MySQL	returns	the	session
value	if	it	exists	and	the	global	value	otherwise.	(This	differs	from	SET
@@var_name	=	value,	which	always	refers	to	the	session	value.)

Note:	Some	system	variables	can	be	enabled	with	the	SET	statement	by	setting
them	to	ON	or	1,	or	disabled	by	setting	them	to	OFF	or	0.	However,	to	set	such	a
variable	on	the	command	line	or	in	an	option	file,	you	must	set	it	to	1	or	0;
setting	it	to	ON	or	OFF	will	not	work.	For	example,	on	the	command	line,	--
delay_key_write=1	works	but	--delay_key_write=ON	does	not.

To	display	system	variable	names	and	values,	use	the	SHOW	VARIABLES
statement.

mysql>	SHOW	VARIABLES;

+--------+--+

|	Variable_name																			|	Value																															|

+--------+--+

|	auto_increment_increment								|	1																																			|

|	auto_increment_offset											|	1																																			|

|	automatic_sp_privileges									|	ON																																		|

|	back_log																								|	50																																		|

|	basedir																									|	/																																			|

|	bdb_cache_size																		|	8388600																													|

|	bdb_home																								|	/var/lib/mysql/																					|

|	bdb_log_buffer_size													|	32768																															|

|	bdb_logdir																						|																																					|

|	bdb_max_lock																				|	10000																															|

|	bdb_shared_data																	|	OFF																																	|

|	bdb_tmpdir																						|	/tmp/																															|

|	binlog_cache_size															|	32768																															|

|	bulk_insert_buffer_size									|	8388608																													|

|	character_set_client												|	latin1																														|

|	character_set_connection								|	latin1																														|

|	character_set_database										|	latin1																														|

|	character_set_results											|	latin1																														|

|	character_set_server												|	latin1																														|

|	character_set_system												|	utf8																																|

|	character_sets_dir														|	/usr/share/mysql/charsets/										|

|	collation_connection												|	latin1_swedish_ci																			|

|	collation_database														|	latin1_swedish_ci																			|

|	collation_server																|	latin1_swedish_ci																			|

...

|	innodb_additional_mem_pool_size	|	1048576																													|

|	innodb_autoextend_increment					|	8																																			|

|	innodb_buffer_pool_awe_mem_mb			|	0																																			|

|	innodb_buffer_pool_size									|	8388608																													|

|	innodb_checksums																|	ON																																		|

|	innodb_commit_concurrency							|	0																																			|

|	innodb_concurrency_tickets						|	500																																	|

|	innodb_data_file_path											|	ibdata1:10M:autoextend														|

|	innodb_data_home_dir												|																																					|

...

|	version																									|	5.0.19-Max																										|

|	version_comment																	|	MySQL	Community	Edition	-	Max	(GPL)	|

|	version_compile_machine									|	i686																																|

|	version_compile_os														|	pc-linux-gnu																								|

|	wait_timeout																				|	28800																															|

+--------+--+

With	a	LIKE	clause,	the	statement	displays	only	those	variables	that	match	the
pattern.	To	obtain	a	specific	variable	name,	use	a	LIKE	clause	as	shown:

SHOW	VARIABLES	LIKE	'max_join_size';

SHOW	SESSION	VARIABLES	LIKE	'max_join_size';

To	get	a	list	of	variables	whose	name	match	a	pattern,	use	the	‘%’	wildcard
character	in	a	LIKE	clause:

SHOW	VARIABLES	LIKE	'%size%';

SHOW	GLOBAL	VARIABLES	LIKE	'%size%';

Wildcard	characters	can	be	used	in	any	position	within	the	pattern	to	be	matched.
Strictly	speaking,	because	‘_’	is	a	wildcard	that	matches	any	single	character,
you	should	escape	it	as	‘_’	to	match	it	literally.	In	practice,	this	is	rarely
necessary.

For	SHOW	VARIABLES,	if	you	specify	neither	GLOBAL	nor	SESSION,	MySQL	returns
SESSION	values.

The	reason	for	requiring	the	GLOBAL	keyword	when	setting	GLOBAL-only
variables	but	not	when	retrieving	them	is	to	prevent	problems	in	the	future.	If	we
were	to	remove	a	SESSION	variable	that	has	the	same	name	as	a	GLOBAL	variable,
a	client	with	the	SUPER	privilege	might	accidentally	change	the	GLOBAL	variable

rather	than	just	the	SESSION	variable	for	its	own	connection.	If	we	add	a	SESSION
variable	with	the	same	name	as	a	GLOBAL	variable,	a	client	that	intends	to	change
the	GLOBAL	variable	might	find	only	its	own	SESSION	variable	changed.

5.2.3.1.	Structured	System	Variables

A	structured	variable	differs	from	a	regular	system	variable	in	two	respects:

Its	value	is	a	structure	with	components	that	specify	server	parameters
considered	to	be	closely	related.

There	might	be	several	instances	of	a	given	type	of	structured	variable.
Each	one	has	a	different	name	and	refers	to	a	different	resource	maintained
by	the	server.

MySQL	5.0	supports	one	structured	variable	type,	which	specifies	parameters
governing	the	operation	of	key	caches.	A	key	cache	structured	variable	has	these
components:

key_buffer_size

key_cache_block_size

key_cache_division_limit

key_cache_age_threshold

This	section	describes	the	syntax	for	referring	to	structured	variables.	Key	cache
variables	are	used	for	syntax	examples,	but	specific	details	about	how	key
caches	operate	are	found	elsewhere,	in	Section	7.4.6,	“The	MyISAM	Key	Cache”.

To	refer	to	a	component	of	a	structured	variable	instance,	you	can	use	a
compound	name	in	instance_name.component_name	format.	Examples:

hot_cache.key_buffer_size

hot_cache.key_cache_block_size

cold_cache.key_cache_block_size

For	each	structured	system	variable,	an	instance	with	the	name	of	default	is
always	predefined.	If	you	refer	to	a	component	of	a	structured	variable	without

any	instance	name,	the	default	instance	is	used.	Thus,
default.key_buffer_size	and	key_buffer_size	both	refer	to	the	same	system
variable.

Structured	variable	instances	and	components	follow	these	naming	rules:

For	a	given	type	of	structured	variable,	each	instance	must	have	a	name	that
is	unique	within	variables	of	that	type.	However,	instance	names	need	not
be	unique	across	structured	variable	types.	For	example,	each	structured
variable	has	an	instance	named	default,	so	default	is	not	unique	across
variable	types.

The	names	of	the	components	of	each	structured	variable	type	must	be
unique	across	all	system	variable	names.	If	this	were	not	true	(that	is,	if	two
different	types	of	structured	variables	could	share	component	member
names),	it	would	not	be	clear	which	default	structured	variable	to	use	for
references	to	member	names	that	are	not	qualified	by	an	instance	name.

If	a	structured	variable	instance	name	is	not	legal	as	an	unquoted	identifier,
refer	to	it	as	a	quoted	identifier	using	backticks.	For	example,	hot-cache	is
not	legal,	but	`hot-cache`	is.

global,	session,	and	local	are	not	legal	instance	names.	This	avoids	a
conflict	with	notation	such	as	@@global.var_name	for	referring	to	non-
structured	system	variables.

Currently,	the	first	two	rules	have	no	possibility	of	being	violated	because	the
only	structured	variable	type	is	the	one	for	key	caches.	These	rules	will	assume
greater	significance	if	some	other	type	of	structured	variable	is	created	in	the
future.

With	one	exception,	you	can	refer	to	structured	variable	components	using
compound	names	in	any	context	where	simple	variable	names	can	occur.	For
example,	you	can	assign	a	value	to	a	structured	variable	using	a	command-line
option:

shell>	mysqld	--hot_cache.key_buffer_size=64K

In	an	option	file,	use	this	syntax:

[mysqld]

hot_cache.key_buffer_size=64K

If	you	start	the	server	with	this	option,	it	creates	a	key	cache	named	hot_cache
with	a	size	of	64KB	in	addition	to	the	default	key	cache	that	has	a	default	size	of
8MB.

Suppose	that	you	start	the	server	as	follows:

shell>	mysqld	--key_buffer_size=256K	\

									--extra_cache.key_buffer_size=128K	\

									--extra_cache.key_cache_block_size=2048

In	this	case,	the	server	sets	the	size	of	the	default	key	cache	to	256KB.	(You
could	also	have	written	--default.key_buffer_size=256K.)	In	addition,	the
server	creates	a	second	key	cache	named	extra_cache	that	has	a	size	of	128KB,
with	the	size	of	block	buffers	for	caching	table	index	blocks	set	to	2048	bytes.

The	following	example	starts	the	server	with	three	different	key	caches	having
sizes	in	a	3:1:1	ratio:

shell>	mysqld	--key_buffer_size=6M	\

									--hot_cache.key_buffer_size=2M	\

									--cold_cache.key_buffer_size=2M

Structured	variable	values	may	be	set	and	retrieved	at	runtime	as	well.	For
example,	to	set	a	key	cache	named	hot_cache	to	a	size	of	10MB,	use	either	of
these	statements:

mysql>	SET	GLOBAL	hot_cache.key_buffer_size	=	10*1024*1024;

mysql>	SET	@@global.hot_cache.key_buffer_size	=	10*1024*1024;

To	retrieve	the	cache	size,	do	this:

mysql>	SELECT	@@global.hot_cache.key_buffer_size;

However,	the	following	statement	does	not	work.	The	variable	is	not	interpreted
as	a	compound	name,	but	as	a	simple	string	for	a	LIKE	pattern-matching
operation:

mysql>	SHOW	GLOBAL	VARIABLES	LIKE	'hot_cache.key_buffer_size';

This	is	the	exception	to	being	able	to	use	structured	variable	names	anywhere	a

simple	variable	name	may	occur.

5.2.3.2.	Dynamic	System	Variables

Many	server	system	variables	are	dynamic	and	can	be	set	at	runtime	using	SET
GLOBAL	or	SET	SESSION.	You	can	also	obtain	their	values	using	SELECT.	See
Section	5.2.3,	“Using	System	Variables”.

The	following	table	shows	the	full	list	of	all	dynamic	system	variables.	The	last
column	indicates	for	each	variable	whether	GLOBAL	or	SESSION	(or	both)	apply.
The	table	also	lists	session	options	that	can	be	set	with	the	SET	statement.
Section	13.5.3,	“SET	Syntax”,	discusses	these	options.

Variables	that	have	a	type	of	“string”	take	a	string	value.	Variables	that	have	a
type	of	“numeric”	take	a	numeric	value.	Variables	that	have	a	type	of	“boolean”
can	be	set	to	0,	1,	ON	or	OFF.	(If	you	set	them	on	the	command	line	or	in	an
option	file,	use	the	numeric	values.)	Variables	that	are	marked	as	“enumeration”
normally	should	be	set	to	one	of	the	available	values	for	the	variable,	but	can
also	be	set	to	the	number	that	corresponds	to	the	desired	enumeration	value.	For
enumerated	system	variables,	the	first	enumeration	value	corresponds	to	0.	This
differs	from	ENUM	columns,	for	which	the	first	enumeration	value	corresponds	to
1.

Variable	Name Value	Type Type
autocommit boolean SESSION

big_tables boolean SESSION

binlog_cache_size numeric GLOBAL

bulk_insert_buffer_size numeric GLOBAL	|	SESSION
character_set_client string GLOBAL	|	SESSION
character_set_connection string GLOBAL	|	SESSION
character_set_filesystem string GLOBAL	|	SESSION
character_set_results string GLOBAL	|	SESSION
character_set_server string GLOBAL	|	SESSION
collation_connection string GLOBAL	|	SESSION
collation_server string GLOBAL	|	SESSION

completion_type numeric GLOBAL	|	SESSION
concurrent_insert numeric GLOBAL

connect_timeout numeric GLOBAL

default_week_format numeric GLOBAL	|	SESSION
delay_key_write OFF	|	ON	|	ALL GLOBAL

delayed_insert_limit numeric GLOBAL

delayed_insert_timeout numeric GLOBAL

delayed_queue_size numeric GLOBAL

div_precision_increment numeric GLOBAL	|	SESSION
engine_condition_pushdown boolean GLOBAL	|	SESSION
error_count numeric SESSION

expire_logs_days numeric GLOBAL

flush boolean GLOBAL

flush_time numeric GLOBAL

foreign_key_checks boolean SESSION

ft_boolean_syntax numeric GLOBAL

group_concat_max_len numeric GLOBAL	|	SESSION
identity numeric SESSION

innodb_autoextend_increment numeric GLOBAL

innodb_commit_concurrency numeric GLOBAL

innodb_concurrency_tickets numeric GLOBAL

innodb_max_dirty_pages_pct numeric GLOBAL

innodb_max_purge_lag numeric GLOBAL

innodb_support_xa boolean GLOBAL	|	SESSION
innodb_sync_spin_loops numeric GLOBAL

innodb_table_locks boolean GLOBAL	|	SESSION
innodb_thread_concurrency numeric GLOBAL

innodb_thread_sleep_delay numeric GLOBAL

insert_id boolean SESSION

interactive_timeout numeric GLOBAL	|	SESSION
join_buffer_size numeric GLOBAL	|	SESSION

key_buffer_size numeric GLOBAL

last_insert_id numeric SESSION

local_infile boolean GLOBAL

log_queries_not_using_indexes boolean GLOBAL

log_warnings numeric GLOBAL

long_query_time numeric GLOBAL	|	SESSION
low_priority_updates boolean GLOBAL	|	SESSION
max_allowed_packet numeric GLOBAL	|	SESSION
max_binlog_cache_size numeric GLOBAL

max_binlog_size numeric GLOBAL

max_connect_errors numeric GLOBAL

max_connections numeric GLOBAL

max_delayed_threads numeric GLOBAL

max_error_count numeric GLOBAL	|	SESSION
max_heap_table_size numeric GLOBAL	|	SESSION
max_insert_delayed_threads numeric GLOBAL

max_join_size numeric GLOBAL	|	SESSION
max_prepared_stmt_count numeric GLOBAL

max_relay_log_size numeric GLOBAL

max_seeks_for_key numeric GLOBAL	|	SESSION
max_sort_length numeric GLOBAL	|	SESSION
max_tmp_tables numeric GLOBAL	|	SESSION
max_user_connections numeric GLOBAL

max_write_lock_count numeric GLOBAL

myisam_stats_method enum GLOBAL	|	SESSION
multi_read_range numeric GLOBAL	|	SESSION
myisam_data_pointer_size numeric GLOBAL

log_bin_trust_function_creators boolean GLOBAL

myisam_max_sort_file_size numeric GLOBAL	|	SESSION
myisam_repair_threads numeric GLOBAL	|	SESSION
myisam_sort_buffer_size numeric GLOBAL	|	SESSION

net_buffer_length numeric GLOBAL	|	SESSION
net_read_timeout numeric GLOBAL	|	SESSION
net_retry_count numeric GLOBAL	|	SESSION
net_write_timeout numeric GLOBAL	|	SESSION
old_passwords numeric GLOBAL	|	SESSION
optimizer_prune_level numeric GLOBAL	|	SESSION
optimizer_search_depth numeric GLOBAL	|	SESSION
preload_buffer_size numeric GLOBAL	|	SESSION
query_alloc_block_size numeric GLOBAL	|	SESSION
query_cache_limit numeric GLOBAL

query_cache_size numeric GLOBAL

query_cache_type enumeration GLOBAL	|	SESSION
query_cache_wlock_invalidate boolean GLOBAL	|	SESSION
query_prealloc_size numeric GLOBAL	|	SESSION
range_alloc_block_size numeric GLOBAL	|	SESSION
read_buffer_size numeric GLOBAL	|	SESSION
read_only numeric GLOBAL

read_rnd_buffer_size numeric GLOBAL	|	SESSION
rpl_recovery_rank numeric GLOBAL

safe_show_database boolean GLOBAL

secure_auth boolean GLOBAL

server_id numeric GLOBAL

slave_compressed_protocol boolean GLOBAL

slave_net_timeout numeric GLOBAL

slave_transaction_retries numeric GLOBAL

slow_launch_time numeric GLOBAL

sort_buffer_size numeric GLOBAL	|	SESSION
sql_auto_is_null boolean SESSION

sql_big_selects boolean SESSION

sql_big_tables boolean SESSION

sql_buffer_result boolean SESSION

sql_log_bin boolean SESSION

sql_log_off boolean SESSION

sql_log_update boolean SESSION

sql_low_priority_updates boolean GLOBAL	|	SESSION
sql_max_join_size numeric GLOBAL	|	SESSION
sql_mode enumeration GLOBAL	|	SESSION
sql_notes boolean SESSION

sql_quote_show_create boolean SESSION

sql_safe_updates boolean SESSION

sql_select_limit numeric SESSION

sql_slave_skip_counter numeric GLOBAL

updatable_views_with_limit enumeration GLOBAL	|	SESSION
sql_warnings boolean SESSION

sync_binlog numeric GLOBAL

sync_frm boolean GLOBAL

storage_engine enumeration GLOBAL	|	SESSION
table_cache numeric GLOBAL

table_type enumeration GLOBAL	|	SESSION
thread_cache_size numeric GLOBAL

time_zone string GLOBAL	|	SESSION
timestamp boolean SESSION

tmp_table_size enumeration GLOBAL	|	SESSION
transaction_alloc_block_size numeric GLOBAL	|	SESSION
transaction_prealloc_size numeric GLOBAL	|	SESSION
tx_isolation enumeration GLOBAL	|	SESSION
unique_checks boolean SESSION

wait_timeout numeric GLOBAL	|	SESSION
warning_count numeric SESSION

5.2.4.	Server	Status	Variables

The	server	maintains	many	status	variables	that	provide	information	about	its
operation.	You	can	view	these	variables	and	their	values	by	using	the	SHOW
STATUS	statement:

mysql>	SHOW	STATUS;

+-----------------------------------+------------+

|	Variable_name																					|	Value						|

+-----------------------------------+------------+

|	Aborted_clients																			|	0										|

|	Aborted_connects																		|	0										|

|	Bytes_received																				|	155372598		|

|	Bytes_sent																								|	1176560426	|

...

|	Connections																							|	30023						|

|	Created_tmp_disk_tables											|	0										|

|	Created_tmp_files																	|	3										|

|	Created_tmp_tables																|	2										|

...

|	Threads_created																			|	217								|

|	Threads_running																			|	88									|

|	Uptime																												|	1389872				|

+-----------------------------------+------------+

Many	status	variables	are	reset	to	0	by	the	FLUSH	STATUS	statement.

The	status	variables	have	the	following	meanings.	Variables	with	no	version
indicated	were	already	present	prior	to	MySQL	5.0.	For	information	regarding
their	implementation	history,	see	MySQL	3.23,	4.0,	4.1	Reference	Manual.

Aborted_clients

The	number	of	connections	that	were	aborted	because	the	client	died
without	closing	the	connection	properly.	See	Section	A.2.10,
“Communication	Errors	and	Aborted	Connections”.

Aborted_connects

The	number	of	failed	attempts	to	connect	to	the	MySQL	server.	See
Section	A.2.10,	“Communication	Errors	and	Aborted	Connections”.

Binlog_cache_disk_use

The	number	of	transactions	that	used	the	temporary	binary	log	cache	but

that	exceeded	the	value	of	binlog_cache_size	and	used	a	temporary	file	to
store	statements	from	the	transaction.

Binlog_cache_use

The	number	of	transactions	that	used	the	temporary	binary	log	cache.

Bytes_received

The	number	of	bytes	received	from	all	clients.

Bytes_sent

The	number	of	bytes	sent	to	all	clients.

Com_xxx

The	Com_xxx	statement	counter	variables	indicate	the	number	of	times	each
xxx	statement	has	been	executed.	There	is	one	status	variable	for	each	type
of	statement.	For	example,	Com_delete	and	Com_insert	count	DELETE	and
INSERT	statements,	respectively.

All	of	the	Com_stmt_xxx	variables	are	increased	even	if	a	prepared
statement	argument	is	unknown	or	an	error	occurred	during	execution.	In
other	words,	their	values	correspond	to	the	number	of	requests	issued,	not
to	the	number	of	requests	successfully	completed.

The	Com_stmt_xxx	status	variables	were	added	in	5.0.8:

Com_stmt_prepare

Com_stmt_execute

Com_stmt_fetch

Com_stmt_send_long_data

Com_stmt_reset

Com_stmt_close

Those	variables	stand	for	prepared	statement	commands.	Their	names	refer
to	the	COM_xxx	command	set	used	in	the	network	layer.	In	other	words,	their
values	increase	whenever	prepared	statement	API	calls	such	as
mysql_stmt_prepare(),	mysql_stmt_execute(),	and	so	forth	are	executed.
However,	Com_stmt_prepare,	Com_stmt_execute	and	Com_stmt_close	also
increase	for	PREPARE,	EXECUTE,	or	DEALLOCATE	PREPARE,	respectively.
Additionally,	the	values	of	the	older	(available	since	MySQL	4.1.3)
statement	counter	variables	Com_prepare_sql,	Com_execute_sql,	and
Com_dealloc_sql	increase	for	the	PREPARE,	EXECUTE,	and	DEALLOCATE
PREPARE	statements.	Com_stmt_fetch	stands	for	the	total	number	of
network	round-trips	issued	when	fetching	from	cursors.

Compression

Whether	the	client	connection	uses	compression	in	the	client/server
protocol.	Added	in	MySQL	5.0.16.

Connections

The	number	of	connection	attempts	(successful	or	not)	to	the	MySQL
server.

Created_tmp_disk_tables

The	number	of	temporary	tables	on	disk	created	automatically	by	the	server
while	executing	statements.

Created_tmp_files

How	many	temporary	files	mysqld	has	created.

Created_tmp_tables

The	number	of	in-memory	temporary	tables	created	automatically	by	the
server	while	executing	statements.	If	Created_tmp_disk_tables	is	large,
you	may	want	to	increase	the	tmp_table_size	value	to	cause	temporary
tables	to	be	memory-based	instead	of	disk-based.

Delayed_errors

The	number	of	rows	written	with	INSERT	DELAYED	for	which	some	error
occurred	(probably	duplicate	key).

Delayed_insert_threads

The	number	of	INSERT	DELAYED	handler	threads	in	use.

Delayed_writes

The	number	of	INSERT	DELAYED	rows	written.

Flush_commands

The	number	of	executed	FLUSH	statements.

Handler_commit

The	number	of	internal	COMMIT	statements.

Handler_delete

The	number	of	times	that	rows	have	been	deleted	from	tables.

Handler_discover

The	MySQL	server	can	ask	the	NDB	Cluster	storage	engine	if	it	knows
about	a	table	with	a	given	name.	This	is	called	discovery.
Handler_discover	indicates	the	number	of	times	that	tables	have	been
discovered	via	this	mechanism.

Handler_prepare

A	counter	for	the	prepare	phase	of	two-phase	commit	operations.	Added	in
MySQL	5.0.3.

Handler_read_first

The	number	of	times	the	first	entry	was	read	from	an	index.	If	this	value	is
high,	it	suggests	that	the	server	is	doing	a	lot	of	full	index	scans;	for
example,	SELECT	col1	FROM	foo,	assuming	that	col1	is	indexed.

Handler_read_key

The	number	of	requests	to	read	a	row	based	on	a	key.	If	this	value	is	high,	it
is	a	good	indication	that	your	tables	are	properly	indexed	for	your	queries.

Handler_read_next

The	number	of	requests	to	read	the	next	row	in	key	order.	This	value	is
incremented	if	you	are	querying	an	index	column	with	a	range	constraint	or
if	you	are	doing	an	index	scan.

Handler_read_prev

The	number	of	requests	to	read	the	previous	row	in	key	order.	This	read
method	is	mainly	used	to	optimize	ORDER	BY	...	DESC.

Handler_read_rnd

The	number	of	requests	to	read	a	row	based	on	a	fixed	position.	This	value
is	high	if	you	are	doing	a	lot	of	queries	that	require	sorting	of	the	result.
You	probably	have	a	lot	of	queries	that	require	MySQL	to	scan	entire	tables
or	you	have	joins	that	don't	use	keys	properly.

Handler_read_rnd_next

The	number	of	requests	to	read	the	next	row	in	the	data	file.	This	value	is
high	if	you	are	doing	a	lot	of	table	scans.	Generally	this	suggests	that	your
tables	are	not	properly	indexed	or	that	your	queries	are	not	written	to	take
advantage	of	the	indexes	you	have.

Handler_rollback

The	number	of	requests	for	a	storage	engine	to	perform	a	rollback
operation.

Handler_savepoint

The	number	of	requests	for	a	storage	engine	to	place	a	savepoint.	Added	in
MySQL	5.0.3.

Handler_savepoint_rollback

The	number	of	requests	for	a	storage	engine	to	roll	back	to	a	savepoint.
Added	in	MySQL	5.0.3.

Handler_update

The	number	of	requests	to	update	a	row	in	a	table.

Handler_write

The	number	of	requests	to	insert	a	row	in	a	table.

Innodb_buffer_pool_pages_data

The	number	of	pages	containing	data	(dirty	or	clean).	Added	in	MySQL
5.0.2.

Innodb_buffer_pool_pages_dirty

The	number	of	pages	currently	dirty.	Added	in	MySQL	5.0.2.

Innodb_buffer_pool_pages_flushed

The	number	of	buffer	pool	page-flush	requests.	Added	in	MySQL	5.0.2.

Innodb_buffer_pool_pages_free

The	number	of	free	pages.	Added	in	MySQL	5.0.2.

Innodb_buffer_pool_pages_latched

The	number	of	latched	pages	in	InnoDB	buffer	pool.	These	are	pages
currently	being	read	or	written	or	that	cannot	be	flushed	or	removed	for
some	other	reason.	Added	in	MySQL	5.0.2.

Innodb_buffer_pool_pages_misc

The	number	of	pages	that	are	busy	because	they	have	been	allocated	for
administrative	overhead	such	as	row	locks	or	the	adaptive	hash	index.	This
value	can	also	be	calculated	as	Innodb_buffer_pool_pages_total	–

Innodb_buffer_pool_pages_free	–	Innodb_buffer_pool_pages_data.
Added	in	MySQL	5.0.2.

Innodb_buffer_pool_pages_total

The	total	size	of	buffer	pool,	in	pages.	Added	in	MySQL	5.0.2.

Innodb_buffer_pool_read_ahead_rnd

The	number	of	“random”	read-aheads	initiated	by	InnoDB.	This	happens
when	a	query	scans	a	large	portion	of	a	table	but	in	random	order.	Added	in
MySQL	5.0.2.

Innodb_buffer_pool_read_ahead_seq

The	number	of	sequential	read-aheads	initiated	by	InnoDB.	This	happens
when	InnoDB	does	a	sequential	full	table	scan.	Added	in	MySQL	5.0.2.

Innodb_buffer_pool_read_requests

The	number	of	logical	read	requests	InnoDB	has	done.	Added	in	MySQL
5.0.2.

Innodb_buffer_pool_reads

The	number	of	logical	reads	that	InnoDB	could	not	satisfy	from	the	buffer
pool	and	had	to	do	a	single-page	read.	Added	in	MySQL	5.0.2.

Innodb_buffer_pool_wait_free

Normally,	writes	to	the	InnoDB	buffer	pool	happen	in	the	background.
However,	if	it	is	necessary	to	read	or	create	a	page	and	no	clean	pages	are
available,	it	is	also	necessary	to	wait	for	pages	to	be	flushed	first.	This
counter	counts	instances	of	these	waits.	If	the	buffer	pool	size	has	been	set
properly,	this	value	should	be	small.	Added	in	MySQL	5.0.2.

Innodb_buffer_pool_write_requests

The	number	writes	done	to	the	InnoDB	buffer	pool.	Added	in	MySQL	5.0.2.

Innodb_data_fsyncs

The	number	of	fsync()	operations	so	far.	Added	in	MySQL	5.0.2.

Innodb_data_pending_fsyncs

The	current	number	of	pending	fsync()	operations.	Added	in	MySQL
5.0.2.

Innodb_data_pending_reads

The	current	number	of	pending	reads.	Added	in	MySQL	5.0.2.

Innodb_data_pending_writes

The	current	number	of	pending	writes.	Added	in	MySQL	5.0.2.

Innodb_data_read

The	amount	of	data	read	so	far,	in	bytes.	Added	in	MySQL	5.0.2.

Innodb_data_reads

The	total	number	of	data	reads.	Added	in	MySQL	5.0.2.

Innodb_data_writes

The	total	number	of	data	writes.	Added	in	MySQL	5.0.2.

Innodb_data_written

The	amount	of	data	written	so	far,	in	bytes.	Added	in	MySQL	5.0.2.

Innodb_dblwr_writes,	Innodb_dblwr_pages_written

The	number	of	doublewrite	operations	that	have	been	performed	and	the
number	of	pages	that	have	been	written	for	this	purpose.	Added	in	MySQL
5.0.2.	See	Section	14.2.14.1,	“InnoDB	Disk	I/O”.

Innodb_log_waits

The	number	of	times	that	the	log	buffer	was	too	small	and	a	wait	was
required	for	it	to	be	flushed	before	continuing.	Added	in	MySQL	5.0.2.

Innodb_log_write_requests

The	number	of	log	write	requests.	Added	in	MySQL	5.0.2.

Innodb_log_writes

The	number	of	physical	writes	to	the	log	file.	Added	in	MySQL	5.0.2.

Innodb_os_log_fsyncs

The	number	of	fsync()	writes	done	to	the	log	file.	Added	in	MySQL	5.0.2.

Innodb_os_log_pending_fsyncs

The	number	of	pending	log	file	fsync()	operations.	Added	in	MySQL
5.0.2.

Innodb_os_log_pending_writes

The	number	of	pending	log	file	writes.	Added	in	MySQL	5.0.2.

Innodb_os_log_written

The	number	of	bytes	written	to	the	log	file.	Added	in	MySQL	5.0.2.

Innodb_page_size

The	compiled-in	InnoDB	page	size	(default	16KB).	Many	values	are
counted	in	pages;	the	page	size	allows	them	to	be	easily	converted	to	bytes.
Added	in	MySQL	5.0.2.

Innodb_pages_created

The	number	of	pages	created.	Added	in	MySQL	5.0.2.

Innodb_pages_read

The	number	of	pages	read.	Added	in	MySQL	5.0.2.

Innodb_pages_written

The	number	of	pages	written.	Added	in	MySQL	5.0.2.

Innodb_row_lock_current_waits

The	number	of	row	locks	currently	being	waited	for.	Added	in	MySQL
5.0.3.

Innodb_row_lock_time

The	total	time	spent	in	acquiring	row	locks,	in	milliseconds.	Added	in
MySQL	5.0.3.

Innodb_row_lock_time_avg

The	average	time	to	acquire	a	row	lock,	in	milliseconds.	Added	in	MySQL
5.0.3.

Innodb_row_lock_time_max

The	maximum	time	to	acquire	a	row	lock,	in	milliseconds.	Added	in
MySQL	5.0.3.

Innodb_row_lock_waits

The	number	of	times	a	row	lock	had	to	be	waited	for.	Added	in	MySQL
5.0.3.

Innodb_rows_deleted

The	number	of	rows	deleted	from	InnoDB	tables.	Added	in	MySQL	5.0.2.

Innodb_rows_inserted

The	number	of	rows	inserted	into	InnoDB	tables.	Added	in	MySQL	5.0.2.

Innodb_rows_read

The	number	of	rows	read	from	InnoDB	tables.	Added	in	MySQL	5.0.2.

Innodb_rows_updated

The	number	of	rows	updated	in	InnoDB	tables.	Added	in	MySQL	5.0.2.

Key_blocks_not_flushed

The	number	of	key	blocks	in	the	key	cache	that	have	changed	but	have	not
yet	been	flushed	to	disk.

Key_blocks_unused

The	number	of	unused	blocks	in	the	key	cache.	You	can	use	this	value	to
determine	how	much	of	the	key	cache	is	in	use;	see	the	discussion	of
key_buffer_size	in	Section	5.2.2,	“Server	System	Variables”.

Key_blocks_used

The	number	of	used	blocks	in	the	key	cache.	This	value	is	a	high-water
mark	that	indicates	the	maximum	number	of	blocks	that	have	ever	been	in
use	at	one	time.

Key_read_requests

The	number	of	requests	to	read	a	key	block	from	the	cache.

Key_reads

The	number	of	physical	reads	of	a	key	block	from	disk.	If	Key_reads	is
large,	then	your	key_buffer_size	value	is	probably	too	small.	The	cache
miss	rate	can	be	calculated	as	Key_reads/Key_read_requests.

Key_write_requests

The	number	of	requests	to	write	a	key	block	to	the	cache.

Key_writes

The	number	of	physical	writes	of	a	key	block	to	disk.

Last_query_cost

The	total	cost	of	the	last	compiled	query	as	computed	by	the	query
optimizer.	This	is	useful	for	comparing	the	cost	of	different	query	plans	for

the	same	query.	The	default	value	of	0	means	that	no	query	has	been
compiled	yet.	This	variable	was	added	in	MySQL	5.0.1,	with	a	default
value	of	-1.	In	MySQL	5.0.7,	the	default	was	changed	to	0;	also	in	version
5.0.7,	the	scope	of	Last_query_cost	was	changed	to	session	rather	than
global.

Prior	to	MySQL	5.0.16,	this	variable	was	not	updated	for	queries	served
from	the	query	cache.

Max_used_connections

The	maximum	number	of	connections	that	have	been	in	use	simultaneously
since	the	server	started.

Ndb_cluster_node_id

If	the	server	is	acting	as	a	MySQL	Cluster	node,	then	the	value	of	this
variable	its	node	ID	in	the	cluster.

If	the	server	is	not	part	of	of	a	MySQL	Cluster,	then	the	value	of	this
variable	is	0.

Ndb_config_from_host

If	the	server	is	part	of	a	MySQL	Cluster,	the	value	of	this	variable	is	the
hostname	or	IP	address	of	the	Cluster	management	server	from	which	it
gets	its	configuration	data.

If	the	server	is	not	part	of	of	a	MySQL	Cluster,	then	the	value	of	this
variable	is	an	empty	string.

Prior	to	MySQL	5.0.23,	this	variable	was	named	Ndb_connected_host.

Ndb_config_from_port

If	the	server	is	part	of	a	MySQL	Cluster,	the	value	of	this	variable	is	the
number	of	the	port	through	which	it	is	connected	to	the	CLuster
management	server	from	which	it	gets	its	configuration	data.

If	the	server	is	not	part	of	of	a	MySQL	Cluster,	then	the	value	of	this

variable	is	0.

Prior	to	MySQL	5.0.23,	this	variable	was	named	Ndb_connected_port.

Ndb_number_of_storage_nodes

If	the	server	is	part	of	a	MySQL	Cluster,	the	value	of	this	variable	is	the
number	of	data	nodes	in	the	cluster.

If	the	server	is	not	part	of	of	a	MySQL	Cluster,	then	the	value	of	this
variable	is	0.

Not_flushed_delayed_rows

The	number	of	rows	waiting	to	be	written	in	INSERT	DELAY	queues.

Open_files

The	number	of	files	that	are	open.

Open_streams

The	number	of	streams	that	are	open	(used	mainly	for	logging).

Open_tables

The	number	of	tables	that	are	open.

Opened_tables

The	number	of	tables	that	have	been	opened.	If	Opened_tables	is	big,	your
table_cache	value	is	probably	too	small.

Qcache_free_blocks

The	number	of	free	memory	blocks	in	the	query	cache.

Qcache_free_memory

The	amount	of	free	memory	for	the	query	cache.

Qcache_hits

The	number	of	query	cache	hits.

Qcache_inserts

The	number	of	queries	added	to	the	query	cache.

Qcache_lowmem_prunes

The	number	of	queries	that	were	deleted	from	the	query	cache	because	of
low	memory.

Qcache_not_cached

The	number	of	non-cached	queries	(not	cacheable,	or	not	cached	due	to	the
query_cache_type	setting).

Qcache_queries_in_cache

The	number	of	queries	registered	in	the	query	cache.

Qcache_total_blocks

The	total	number	of	blocks	in	the	query	cache.

Questions

The	number	of	statements	that	clients	have	sent	to	the	server.

Rpl_status

The	status	of	fail-safe	replication	(not	yet	implemented).

Select_full_join

The	number	of	joins	that	perform	table	scans	because	they	do	not	use
indexes.	If	this	value	is	not	0,	you	should	carefully	check	the	indexes	of
your	tables.

Select_full_range_join

The	number	of	joins	that	used	a	range	search	on	a	reference	table.

Select_range

The	number	of	joins	that	used	ranges	on	the	first	table.	This	is	normally	not
a	critical	issue	even	if	the	value	is	quite	large.

Select_range_check

The	number	of	joins	without	keys	that	check	for	key	usage	after	each	row.
If	this	is	not	0,	you	should	carefully	check	the	indexes	of	your	tables.

Select_scan

The	number	of	joins	that	did	a	full	scan	of	the	first	table.

Slave_open_temp_tables

The	number	of	temporary	tables	that	the	slave	SQL	thread	currently	has
open.

Slave_running

This	is	ON	if	this	server	is	a	slave	that	is	connected	to	a	master.

Slave_retried_transactions

The	total	number	of	times	since	startup	that	the	replication	slave	SQL
thread	has	retried	transactions.	This	variable	was	added	in	version	5.0.4.

Slow_launch_threads

The	number	of	threads	that	have	taken	more	than	slow_launch_time
seconds	to	create.

Slow_queries

The	number	of	queries	that	have	taken	more	than	long_query_time
seconds.	See	Section	5.12.4,	“The	Slow	Query	Log”.

Sort_merge_passes

The	number	of	merge	passes	that	the	sort	algorithm	has	had	to	do.	If	this
value	is	large,	you	should	consider	increasing	the	value	of	the
sort_buffer_size	system	variable.

Sort_range

The	number	of	sorts	that	were	done	using	ranges.

Sort_rows

The	number	of	sorted	rows.

Sort_scan

The	number	of	sorts	that	were	done	by	scanning	the	table.

Ssl_xxx

Variables	used	for	SSL	connections.

Table_locks_immediate

The	number	of	times	that	a	table	lock	was	acquired	immediately.

Table_locks_waited

The	number	of	times	that	a	table	lock	could	not	be	acquired	immediately
and	a	wait	was	needed.	If	this	is	high	and	you	have	performance	problems,
you	should	first	optimize	your	queries,	and	then	either	split	your	table	or
tables	or	use	replication.

Threads_cached

The	number	of	threads	in	the	thread	cache.

Threads_connected

The	number	of	currently	open	connections.

Threads_created

The	number	of	threads	created	to	handle	connections.	If	Threads_created
is	big,	you	may	want	to	increase	the	thread_cache_size	value.	The	cache
miss	rate	can	be	calculated	as	Threads_created/Connections.

Threads_running

The	number	of	threads	that	are	not	sleeping.

Uptime

The	number	of	seconds	that	the	server	has	been	up.

5.2.5.	The	Server	SQL	Mode

The	MySQL	server	can	operate	in	different	SQL	modes,	and	can	apply	these
modes	differently	for	different	clients.	This	capability	enables	each	application
to	tailor	the	server's	operating	mode	to	its	own	requirements.

Modes	define	what	SQL	syntax	MySQL	should	support	and	what	kind	of	data
validation	checks	it	should	perform.	This	makes	it	easier	to	use	MySQL	in
different	environments	and	to	use	MySQL	together	with	other	database	servers.

You	can	set	the	default	SQL	mode	by	starting	mysqld	with	the	--sql-
mode="modes"	option.	modes	is	a	list	of	different	modes	separated	by	comma
(‘,’)	characters.	The	default	value	is	empty	(no	modes	set).	The	modes	value	also
can	be	empty	(--sql-mode="")	if	you	want	to	clear	it	explicitly.

You	can	change	the	SQL	mode	at	runtime	by	using	a	SET	[GLOBAL|SESSION]
sql_mode='modes'	statement	to	set	the	sql_mode	system	value.	Setting	the
GLOBAL	variable	requires	the	SUPER	privilege	and	affects	the	operation	of	all
clients	that	connect	from	that	time	on.	Setting	the	SESSION	variable	affects	only
the	current	client.	Any	client	can	change	its	own	session	sql_mode	value	at	any
time.

You	can	retrieve	the	current	global	or	session	sql_mode	value	with	the	following
statements:

SELECT	@@global.sql_mode;

SELECT	@@session.sql_mode;

The	most	important	sql_mode	values	are	probably	these:

	ANSI

Change	syntax	and	behavior	to	be	more	conformant	to	standard	SQL.

	STRICT_TRANS_TABLES

If	a	value	could	not	be	inserted	as	given	into	a	transactional	table,	abort	the
statement.	For	a	non-transactional	table,	abort	the	statement	if	the	value
occurs	in	a	single-row	statement	or	the	first	row	of	a	multiple-row
statement.	More	detail	is	given	later	in	this	section.	(Implemented	in
MySQL	5.0.2)

	TRADITIONAL

Make	MySQL	behave	like	a	“traditional”	SQL	database	system.	A	simple
description	of	this	mode	is	“give	an	error	instead	of	a	warning”	when
inserting	an	incorrect	value	into	a	column.	Note:	The	INSERT/UPDATE	aborts
as	soon	as	the	error	is	noticed.	This	may	not	be	what	you	want	if	you	are
using	a	non-transactional	storage	engine,	because	data	changes	made	prior
to	the	error	are	not	be	rolled	back,	resulting	in	a	“partially	done”	update.
(Added	in	MySQL	5.0.2)

When	this	manual	refers	to	“strict	mode,”	it	means	a	mode	where	at	least	one	of
STRICT_TRANS_TABLES	or	STRICT_ALL_TABLES	is	enabled.

The	following	list	describes	all	supported	modes:

	ALLOW_INVALID_DATES

Don't	do	full	checking	of	dates.	Check	only	that	the	month	is	in	the	range
from	1	to	12	and	the	day	is	in	the	range	from	1	to	31.	This	is	very
convenient	for	Web	applications	where	you	obtain	year,	month,	and	day	in
three	different	fields	and	you	want	to	store	exactly	what	the	user	inserted
(without	date	validation).	This	mode	applies	to	DATE	and	DATETIME
columns.	It	does	not	apply	TIMESTAMP	columns,	which	always	require	a
valid	date.

This	mode	is	implemented	in	MySQL	5.0.2.	Before	5.0.2,	this	was	the

default	MySQL	date-handling	mode.	As	of	5.0.2,	the	server	requires	that
month	and	day	values	be	legal,	and	not	merely	in	the	range	1	to	12	and	1	to
31,	respectively.	With	strict	mode	disabled,	invalid	dates	such	as	'2004-04-
31'	are	converted	to	'0000-00-00'	and	a	warning	is	generated.	With	strict
mode	enabled,	invalid	dates	generate	an	error.	To	allow	such	dates,	enable
ALLOW_INVALID_DATES.

	ANSI_QUOTES

Treat	‘"’	as	an	identifier	quote	character	(like	the	‘`’	quote	character)	and
not	as	a	string	quote	character.	You	can	still	use	‘`’	to	quote	identifiers	with
this	mode	enabled.	With	ANSI_QUOTES	enabled,	you	cannot	use	double
quotes	to	quote	literal	strings,	because	it	is	interpreted	as	an	identifier.

	ERROR_FOR_DIVISION_BY_ZERO

Produce	an	error	in	strict	mode	(otherwise	a	warning)	when	a	division	by
zero	(or	MOD(X,0))	occurs	during	an	INSERT	or	UPDATE.	If	this	mode	is	not
enabled,	MySQL	instead	returns	NULL	for	divisions	by	zero.	For	INSERT
IGNORE	or	UPDATE	IGNORE,	MySQL	generates	a	warning	for	divisions	by
zero,	but	the	result	of	the	operation	is	NULL.	(Implemented	in	MySQL	5.0.2)

	HIGH_NOT_PRECEDENCE

From	MySQL	5.0.2	on,	the	precedence	of	the	NOT	operator	is	such	that
expressions	such	as	NOT	a	BETWEEN	b	AND	c	are	parsed	as	NOT	(a
BETWEEN	b	AND	c).	Before	MySQL	5.0.2,	the	expression	is	parsed	as	(NOT
a)	BETWEEN	b	AND	c.	The	old	higher-precedence	behavior	can	be	obtained
by	enabling	the	HIGH_NOT_PRECEDENCE	SQL	mode.	(Added	in	MySQL
5.0.2)

mysql>	SET	sql_mode	=	'';

mysql>	SELECT	NOT	1	BETWEEN	-5	AND	5;

								->	0

mysql>	SET	sql_mode	=	'broken_not';

mysql>	SELECT	NOT	1	BETWEEN	-5	AND	5;

								->	1

	IGNORE_SPACE

Allow	spaces	between	a	function	name	and	the	‘(’	character.	This	forces	all

function	names	to	be	treated	as	reserved	words.	As	a	result,	if	you	want	to
access	any	database,	table,	or	column	name	that	is	a	reserved	word,	you
must	quote	it.	For	example,	because	there	is	a	USER()	function,	the	name	of
the	user	table	in	the	mysql	database	and	the	User	column	in	that	table
become	reserved,	so	you	must	quote	them:

SELECT	"User"	FROM	mysql."user";

The	IGNORE_SPACE	SQL	mode	applies	to	built-in	functions,	not	to	stored
routines.	it	is	always	allowable	to	have	spaces	after	a	routine	name,
regardless	of	whether	IGNORE_SPACE	is	enabled.

	NO_AUTO_CREATE_USER

Prevent	GRANT	from	automatically	creating	new	users	if	it	would	otherwise
do	so,	unless	a	non-empty	password	also	is	specified.	(Added	in	MySQL
5.0.2)

	NO_AUTO_VALUE_ON_ZERO

NO_AUTO_VALUE_ON_ZERO	affects	handling	of	AUTO_INCREMENT	columns.
Normally,	you	generate	the	next	sequence	number	for	the	column	by
inserting	either	NULL	or	0	into	it.	NO_AUTO_VALUE_ON_ZERO	suppresses	this
behavior	for	0	so	that	only	NULL	generates	the	next	sequence	number.

This	mode	can	be	useful	if	0	has	been	stored	in	a	table's	AUTO_INCREMENT
column.	(Storing	0	is	not	a	recommended	practice,	by	the	way.)	For
example,	if	you	dump	the	table	with	mysqldump	and	then	reload	it,
MySQL	normally	generates	new	sequence	numbers	when	it	encounters	the
0	values,	resulting	in	a	table	with	contents	different	from	the	one	that	was
dumped.	Enabling	NO_AUTO_VALUE_ON_ZERO	before	reloading	the	dump	file
solves	this	problem.	mysqldump	now	automatically	includes	in	its	output	a
statement	that	enables	NO_AUTO_VALUE_ON_ZERO,	to	avoid	this	problem.

	NO_BACKSLASH_ESCAPES

Disable	the	use	of	the	backslash	character	(‘\’)	as	an	escape	character
within	strings.	With	this	mode	enabled,	backslash	becomes	an	ordinary
character	like	any	other.	(Implemented	in	MySQL	5.0.1)

	NO_DIR_IN_CREATE

When	creating	a	table,	ignore	all	INDEX	DIRECTORY	and	DATA	DIRECTORY
directives.	This	option	is	useful	on	slave	replication	servers.

NO_ENGINE_SUBSTITUTION

Prevents	automatic	substitution	of	the	default	storage	engine	when	a
statement	such	as	CREATE	TABLE	specifies	a	storage	engine	that	is	disabled
or	not	compiled	in.	(Implemented	in	MySQL	5.0.8)

	NO_FIELD_OPTIONS

Do	not	print	MySQL-specific	column	options	in	the	output	of	SHOW	CREATE
TABLE.	This	mode	is	used	by	mysqldump	in	portability	mode.

	NO_KEY_OPTIONS

Do	not	print	MySQL-specific	index	options	in	the	output	of	SHOW	CREATE
TABLE.	This	mode	is	used	by	mysqldump	in	portability	mode.

	NO_TABLE_OPTIONS

Do	not	print	MySQL-specific	table	options	(such	as	ENGINE)	in	the	output
of	SHOW	CREATE	TABLE.	This	mode	is	used	by	mysqldump	in	portability
mode.

	NO_UNSIGNED_SUBTRACTION

In	integer	subtraction	operations,	do	not	mark	the	result	as	UNSIGNED	if	one
of	the	operands	is	unsigned.	Note	that	this	makes	BIGINT	UNSIGNED	not
100%	usable	in	all	contexts.	See	Section	12.8,	“Cast	Functions	and
Operators”.

mysql>t;	SET	sql_mode	=	'';

mysql>t;	SELECT	CAST(0	AS	UNSIGNED)	-	1;

+-------------------------+

|	CAST(0	AS	UNSIGNED)	-	1	|

+-------------------------+

|				18446744073709551615	|

+-------------------------+

mysql>t;	SET	sql_mode	=	'NO_UNSIGNED_SUBTRACTION';

mysql>t;	SELECT	CAST(0	AS	UNSIGNED)	-	1;

+-------------------------+

|	CAST(0	AS	UNSIGNED)	-	1	|

+-------------------------+

|																						-1	|

+-------------------------+

	NO_ZERO_DATE

In	strict	mode,	don't	allow	'0000-00-00'	as	a	valid	date.	You	can	still	insert
zero	dates	with	the	IGNORE	option.	When	not	in	strict	mode,	the	date	is
accepted	but	a	warning	is	generated.	(Added	in	MySQL	5.0.2)

	NO_ZERO_IN_DATE

In	strict	mode,	don't	accept	dates	where	the	month	or	day	part	is	0.	If	used
with	the	IGNORE	option,	MySQL	inserts	a	'0000-00-00'	date	for	any	such
date.	When	not	in	strict	mode,	the	date	is	accepted	but	a	warning	is
generated.	(Added	in	MySQL	5.0.2)

	ONLY_FULL_GROUP_BY

Do	not	allow	queries	for	which	the	SELECT	list	refers	to	non-aggregated
columns	that	are	not	named	in	the	GROUP	BY	clause.	The	following	query	is
invalid	with	this	mode	enabled	because	address	is	not	named	in	the	GROUP
BY	clause:

SELECT	name,	address,	MAX(age)	FROM	t	GROUP	BY	name;

As	of	MySQL	5.0.23,	this	mode	also	restricts	references	to	non-aggregated
columns	in	the	HAVING	clause	that	are	not	named	in	the	GROUP	BY	clause.

	PIPES_AS_CONCAT

Treat	||	as	a	string	concatenation	operator	(same	as	CONCAT())	rather	than
as	a	synonym	for	OR.

	REAL_AS_FLOAT

Treat	REAL	as	a	synonym	for	FLOAT.	By	default,	MySQL	treats	REAL	as	a
synonym	for	DOUBLE.

	STRICT_ALL_TABLES

Enable	strict	mode	for	all	storage	engines.	Invalid	data	values	are	rejected.
Additional	detail	follows.	(Added	in	MySQL	5.0.2)

	STRICT_TRANS_TABLES

Enable	strict	mode	for	transactional	storage	engines,	and	when	possible	for
non-transactional	storage	engines.	Additional	details	follow.	(Implemented
in	MySQL	5.0.2)

Strict	mode	controls	how	MySQL	handles	input	values	that	are	invalid	or
missing.	A	value	can	be	invalid	for	several	reasons.	For	example,	it	might	have
the	wrong	data	type	for	the	column,	or	it	might	be	out	of	range.	A	value	is
missing	when	a	new	row	to	be	inserted	does	not	contain	a	value	for	a	column
that	has	no	explicit	DEFAULT	clause	in	its	definition.

For	transactional	tables,	an	error	occurs	for	invalid	or	missing	values	in	a
statement	when	either	of	the	STRICT_ALL_TABLES	or	STRICT_TRANS_TABLES
modes	are	enabled.	The	statement	is	aborted	and	rolled	back.

For	non-transactional	tables,	the	behavior	is	the	same	for	either	mode,	if	the	bad
value	occurs	in	the	first	row	to	be	inserted	or	updated.	The	statement	is	aborted
and	the	table	remains	unchanged.	If	the	statement	inserts	or	modifies	multiple
rows	and	the	bad	value	occurs	in	the	second	or	later	row,	the	result	depends	on
which	strict	option	is	enabled:

For	STRICT_ALL_TABLES,	MySQL	returns	an	error	and	ignores	the	rest	of
the	rows.	However,	in	this	case,	the	earlier	rows	still	have	been	inserted	or
updated.	This	means	that	you	might	get	a	partial	update,	which	might	not	be
what	you	want.	To	avoid	this,	it's	best	to	use	single-row	statements	because
these	can	be	aborted	without	changing	the	table.

For	STRICT_TRANS_TABLES,	MySQL	converts	an	invalid	value	to	the	closest
valid	value	for	the	column	and	insert	the	adjusted	value.	If	a	value	is
missing,	MySQL	inserts	the	implicit	default	value	for	the	column	data	type.
In	either	case,	MySQL	generates	a	warning	rather	than	an	error	and
continues	processing	the	statement.	Implicit	defaults	are	described	in
Section	11.1.4,	“Data	Type	Default	Values”.

Strict	mode	disallows	invalid	date	values	such	as	'2004-04-31'.	It	does	not
disallow	dates	with	zero	parts	such	as	'2004-04-00'	or	“zero”	dates.	To	disallow
these	as	well,	enable	the	NO_ZERO_IN_DATE	and	NO_ZERO_DATE	SQL	modes	in
addition	to	strict	mode.

If	you	are	not	using	strict	mode	(that	is,	neither	STRICT_TRANS_TABLES	nor
STRICT_ALL_TABLES	is	enabled),	MySQL	inserts	adjusted	values	for	invalid	or
missing	values	and	produces	warnings.	In	strict	mode,	you	can	produce	this
behavior	by	using	INSERT	IGNORE	or	UPDATE	IGNORE.	See	Section	13.5.4.25,
“SHOW	WARNINGS	Syntax”.

The	following	special	modes	are	provided	as	shorthand	for	combinations	of
mode	values	from	the	preceding	list.	All	are	available	in	MySQL	5.0	beginning
with	version	5.0.0,	except	for	TRADITIONAL,	which	was	implemented	in	MySQL
5.0.2.

The	descriptions	include	all	mode	values	that	are	available	in	the	most	recent
version	of	MySQL.	For	older	versions,	a	combination	mode	does	not	include
individual	mode	values	that	are	not	available	except	in	newer	versions.

	ANSI

Equivalent	to	REAL_AS_FLOAT,	PIPES_AS_CONCAT,	ANSI_QUOTES,
IGNORE_SPACE.	Before	MySQL	5.0.3,	ANSI	also	includes
ONLY_FULL_GROUP_BY.	See	Section	1.9.3,	“Running	MySQL	in	ANSI
Mode”.

	DB2

Equivalent	to	PIPES_AS_CONCAT,	ANSI_QUOTES,	IGNORE_SPACE,
NO_KEY_OPTIONS,	NO_TABLE_OPTIONS,	NO_FIELD_OPTIONS.

	MAXDB

Equivalent	to	PIPES_AS_CONCAT,	ANSI_QUOTES,	IGNORE_SPACE,
NO_KEY_OPTIONS,	NO_TABLE_OPTIONS,	NO_FIELD_OPTIONS,
NO_AUTO_CREATE_USER.

	MSSQL

Equivalent	to	PIPES_AS_CONCAT,	ANSI_QUOTES,	IGNORE_SPACE,
NO_KEY_OPTIONS,	NO_TABLE_OPTIONS,	NO_FIELD_OPTIONS.

	MYSQL323

Equivalent	to	NO_FIELD_OPTIONS,	HIGH_NOT_PRECEDENCE.

	MYSQL40

Equivalent	to	NO_FIELD_OPTIONS,	HIGH_NOT_PRECEDENCE.

	ORACLE

Equivalent	to	PIPES_AS_CONCAT,	ANSI_QUOTES,	IGNORE_SPACE,
NO_KEY_OPTIONS,	NO_TABLE_OPTIONS,	NO_FIELD_OPTIONS,
NO_AUTO_CREATE_USER.

	POSTGRESQL

Equivalent	to	PIPES_AS_CONCAT,	ANSI_QUOTES,	IGNORE_SPACE,
NO_KEY_OPTIONS,	NO_TABLE_OPTIONS,	NO_FIELD_OPTIONS.

	TRADITIONAL

Equivalent	to	STRICT_TRANS_TABLES,	STRICT_ALL_TABLES,
NO_ZERO_IN_DATE,	NO_ZERO_DATE,	ERROR_FOR_DIVISION_BY_ZERO,
NO_AUTO_CREATE_USER.

5.2.6.	The	MySQL	Server	Shutdown	Process

The	server	shutdown	process	takes	place	as	follows:

1.	 The	shutdown	process	is	initiated.

Server	shutdown	can	be	initiated	several	ways.	For	example,	a	user	with	the
SHUTDOWN	privilege	can	execute	a	mysqladmin	shutdown	command.
mysqladmin	can	be	used	on	any	platform	supported	by	MySQL.	Other
operating	system-specific	shutdown	initiation	methods	are	possible	as	well:
The	server	shuts	down	on	Unix	when	it	receives	a	SIGTERM	signal.	A	server
running	as	a	service	on	Windows	shuts	down	when	the	services	manager

tells	it	to.

2.	 The	server	creates	a	shutdown	thread	if	necessary.

Depending	on	how	shutdown	was	initiated,	the	server	might	create	a	thread
to	handle	the	shutdown	process.	If	shutdown	was	requested	by	a	client,	a
shutdown	thread	is	created.	If	shutdown	is	the	result	of	receiving	a	SIGTERM
signal,	the	signal	thread	might	handle	shutdown	itself,	or	it	might	create	a
separate	thread	to	do	so.	If	the	server	tries	to	create	a	shutdown	thread	and
cannot	(for	example,	if	memory	is	exhausted),	it	issues	a	diagnostic
message	that	appears	in	the	error	log:

Error:	Can't	create	thread	to	kill	server

3.	 The	server	stops	accepting	new	connections.

To	prevent	new	activity	from	being	initiated	during	shutdown,	the	server
stops	accepting	new	client	connections.	It	does	this	by	closing	the	network
connections	to	which	it	normally	listens	for	connections:	the	TCP/IP	port,
the	Unix	socket	file,	the	Windows	named	pipe,	and	shared	memory	on
Windows.

4.	 The	server	terminates	current	activity.

For	each	thread	that	is	associated	with	a	client	connection,	the	connection	to
the	client	is	broken	and	the	thread	is	marked	as	killed.	Threads	die	when
they	notice	that	they	are	so	marked.	Threads	for	idle	connections	die
quickly.	Threads	that	currently	are	processing	statements	check	their	state
periodically	and	take	longer	to	die.	For	additional	information	about	thread
termination,	see	Section	13.5.5.3,	“KILL	Syntax”,	in	particular	for	the
instructions	about	killed	REPAIR	TABLE	or	OPTIMIZE	TABLE	operations	on
MyISAM	tables.

For	threads	that	have	an	open	transaction,	the	transaction	is	rolled	back.
Note	that	if	a	thread	is	updating	a	non-transactional	table,	an	operation	such
as	a	multiple-row	UPDATE	or	INSERT	may	leave	the	table	partially	updated,
because	the	operation	can	terminate	before	completion.

If	the	server	is	a	master	replication	server,	threads	associated	with	currently
connected	slaves	are	treated	like	other	client	threads.	That	is,	each	one	is

marked	as	killed	and	exits	when	it	next	checks	its	state.

If	the	server	is	a	slave	replication	server,	the	I/O	and	SQL	threads,	if	active,
are	stopped	before	client	threads	are	marked	as	killed.	The	SQL	thread	is
allowed	to	finish	its	current	statement	(to	avoid	causing	replication
problems),	and	then	stops.	If	the	SQL	thread	was	in	the	middle	of	a
transaction	at	this	point,	the	transaction	is	rolled	back.

5.	 Storage	engines	are	shut	down	or	closed.

At	this	stage,	the	table	cache	is	flushed	and	all	open	tables	are	closed.

Each	storage	engine	performs	any	actions	necessary	for	tables	that	it
manages.	For	example,	MyISAM	flushes	any	pending	index	writes	for	a	table.
InnoDB	flushes	its	buffer	pool	to	disk	(starting	from	5.0.5:	unless
innodb_fast_shutdown	is	2),	writes	the	current	LSN	to	the	tablespace,	and
terminates	its	own	internal	threads.

6.	 The	server	exits.

5.2.7.	MySQL	Server-Side	Help	Support

MySQL	Server	supports	a	HELP	statement	that	returns	online	information	from
the	MySQL	Reference	manual	(see	Section	13.3.2,	“HELP	Syntax”).	The	proper
operation	of	this	statement	requires	that	the	help	tables	in	the	mysql	database	be
initialized	with	help	topic	information,	which	is	done	by	processing	the	contents
of	the	fill_help_tables.sql	script.

For	a	MySQL	binary	distribution	on	Unix,	help	table	setup	occurs	when	you	run
mysql_install_db.	For	an	RPM	distribution	on	Linux	or	binary	distribution	on
Windows,	help	table	setup	occurs	as	part	of	the	MySQL	installation	process.

For	a	MySQL	source	distribution,	you	can	find	the	fill_help_tables_sql	file
in	the	scripts	directory.	To	load	the	file	manually,	make	sure	that	you	have
initialized	the	mysql	database	by	running	mysql_install_db,	and	then	process
the	file	with	the	mysql	client	as	follows:

shell>	mysql	-u	root	mysql	<	fill_help_tables.sql

If	you	are	working	with	BitKeeper	and	a	MySQL	development	source	tree,	the

tree	doesn't	contain	fill_help_tables.sql.	You	can	download	the	proper	file
for	your	version	of	MySQL	from	http://dev.mysql.com/doc/.	After	downloading
and	uncompressing	the	file,	process	it	with	mysql	as	just	described.

http://dev.mysql.com/doc/

5.3.	The	mysqld-max	Extended	MySQL	Server

A	MySQL-Max	server	is	a	version	of	the	mysqld	MySQL	server	that	has	been
built	to	include	additional	features.	The	MySQL-Max	distribution	to	use	depends
on	your	platform:

For	Windows,	MySQL	binary	distributions	include	both	the	standard	server
(mysqld.exe)	and	the	MySQL-Max	server	(mysqld-max.exe),	so	no
special	distribution	is	needed.	Just	use	a	regular	Windows	distribution.	See
Section	2.3,	“Installing	MySQL	on	Windows”.

For	Linux,	if	you	install	MySQL	using	RPM	distributions,	the	MySQL-Max
RPM	presupposes	that	you	have	already	installed	the	regular	server	RPM.
Use	the	regular	MySQL-server	RPM	first	to	install	a	standard	server	named
mysqld,	and	then	use	the	MySQL-Max	RPM	to	install	a	server	named
mysqld-max.	See	Section	2.4,	“Installing	MySQL	on	Linux”,	for	more
information	on	the	Linux	RPM	packages.

All	other	MySQL-Max	distributions	contain	a	single	server	that	is	named
mysqld	but	that	has	the	additional	features	included.

You	can	find	the	MySQL-Max	binaries	on	the	MySQL	AB	Web	site	at
http://dev.mysql.com/downloads/.

MySQL	AB	builds	the	MySQL-Max	servers	by	using	the	following	configure
options:

--with-server-suffix=-max

This	option	adds	a	-max	suffix	to	the	mysqld	version	string.

--with-innodb

This	option	enables	support	for	the	InnoDB	storage	engine.	MySQL-Max
servers	always	include	InnoDB	support.	From	MySQL	4.0	onward,	InnoDB
is	included	by	default	in	all	binary	distributions,	so	a	MySQL-Max	server	is
not	needed	to	obtain	InnoDB	support.

http://dev.mysql.com/downloads/

--with-bdb

This	option	enables	support	for	the	Berkeley	DB	(BDB)	storage	engine	on
those	platforms	for	which	BDB	is	available.	(See	notes	in	the	following
discussion.)

--with-blackhole-storage-engine

This	option	enables	support	for	the	BLACKHOLE	storage	engine.

--with-csv-storage-engine

This	option	enables	support	for	the	CSV	storage	engine.

--with-example-storage-engine

This	option	enables	support	for	the	EXAMPLE	storage	engine.

--with-federated-storage-engine

This	option	enables	support	for	the	FEDERATED	storage	engine.

--with-ndbcluster

This	option	enables	support	for	the	NDB	Cluster	storage	engine	on	those
platforms	for	which	Cluster	is	available.	(See	notes	in	the	following
discussion.)

USE_SYMDIR

This	define	is	enabled	to	turn	on	database	symbolic	link	support	for
Windows.	From	MySQL	4.0	onward,	symbolic	link	support	is	enabled	for
all	Windows	servers,	so	a	MySQL-Max	server	is	not	needed	to	take
advantage	of	this	feature.

MySQL-Max	binary	distributions	are	a	convenience	for	those	who	wish	to
install	precompiled	programs.	If	you	build	MySQL	using	a	source	distribution,
you	can	build	your	own	Max-like	server	by	enabling	the	same	features	at
configuration	time	that	the	MySQL-Max	binary	distributions	are	built	with.

MySQL-Max	servers	include	the	BerkeleyDB	(BDB)	storage	engine	whenever

possible,	but	not	all	platforms	support	BDB.

Currently,	MySQL	Cluster	is	supported	on	Linux	(on	most	platforms),	Solaris,
Mac	OS	X,	and	HP-UX	only.	Some	users	have	reported	success	in	using	MySQL
Cluster	built	from	source	on	BSD	operating	systems,	but	these	are	not	officially
supported	at	this	time.	Note	that,	even	for	servers	compiled	with	Cluster	support,
the	NDB	Cluster	storage	engine	is	not	enabled	by	default.	You	must	start	the
server	with	the	--ndbcluster	option	to	use	it	as	part	of	a	MySQL	Cluster.	(For
details,	see	Section	15.4,	“MySQL	Cluster	Configuration”.)

The	following	table	shows	the	platforms	for	which	MySQL-Max	binaries
include	support	for	BDB	and	NDB	Cluster.

System BDB	Support NDB	Support
AIX	5.2 N N
HP-UX Y Y
Linux-IA-64 N Y
Linux-Intel Y Y
Mac	OS	X N Y
NetWare N N
SCO	6 N N
Solaris-SPARC Y Y
Solaris-Intel N Y
Solaris-AMD	64 Y Y
Windows	NT/2000/XP Y N

To	find	out	which	storage	engines	your	server	supports,	use	the	SHOW	ENGINES
statement.	(See	Section	13.5.4.10,	“SHOW	ENGINES	Syntax”.)	For	example:

mysql>	SHOW	ENGINES\G

***************************	1.	row	***************************

	Engine:	MyISAM

Support:	DEFAULT

Comment:	Default	engine	as	of	MySQL	3.23	with	great	performance

***************************	2.	row	***************************

	Engine:	MEMORY

Support:	YES

Comment:	Hash	based,	stored	in	memory,	useful	for	temporary	tables

***************************	3.	row	***************************

	Engine:	InnoDB

Support:	YES

Comment:	Supports	transactions,	row-level	locking,	and	foreign	keys

***************************	4.	row	***************************

	Engine:	BerkeleyDB

Support:	NO

Comment:	Supports	transactions	and	page-level	locking

***************************	5.	row	***************************

	Engine:	BLACKHOLE

Support:	YES

Comment:	/dev/null	storage	engine	(anything	you	write	to	it	disappears)

...

The	precise	output	from	SHOW	ENGINES	may	vary	according	to	the	MySQL
version	used	(and	the	features	that	are	enabled).	The	Support	values	in	the
output	indicate	the	server's	level	of	support	for	each	feature,	as	shown	here:

Value Meaning
YES The	feature	is	supported	and	is	active.
NO The	feature	is	not	supported.
DISABLED The	feature	is	supported	but	has	been	disabled.

A	value	of	NO	means	that	the	server	was	compiled	without	support	for	the
feature,	so	it	cannot	be	activated	at	runtime.

A	value	of	DISABLED	occurs	either	because	the	server	was	started	with	an	option
that	disables	the	feature,	or	because	not	all	options	required	to	enable	it	were
given.	In	the	latter	case,	the	error	log	file	should	contain	a	reason	indicating	why
the	option	is	disabled.	See	Section	5.12.1,	“The	Error	Log”.

You	might	also	see	DISABLED	for	a	storage	engine	if	the	server	was	compiled	to
support	it,	but	was	started	with	a	--skip-engine	option.	For	example,	--skip-
innodb	disables	the	InnoDB	engine.	For	the	NDB	Cluster	storage	engine,
DISABLED	means	the	server	was	compiled	with	support	for	MySQL	Cluster,	but
was	not	started	with	the	--ndb-cluster	option.

All	MySQL	servers	support	MyISAM	tables,	because	MyISAM	is	the	default	storage
engine.

5.4.	MySQL	Server	Startup	Programs

This	section	describes	several	programs	that	are	used	to	start	mysqld,	the
MySQL	server.

5.4.1.	mysqld_safe	—	MySQL	Server	Startup	Script

mysqld_safe	is	the	recommended	way	to	start	a	mysqld	server	on	Unix	and
NetWare.	mysqld_safe	adds	some	safety	features	such	as	restarting	the	server
when	an	error	occurs	and	logging	runtime	information	to	an	error	log	file.
NetWare-specific	behaviors	are	listed	later	in	this	section.

Note:	To	preserve	backward	compatibility	with	older	versions	of	MySQL,
MySQL	binary	distributions	still	include	safe_mysqld	as	a	symbolic	link	to
mysqld_safe.	However,	you	should	not	rely	on	this	because	it	is	removed	as	of
MySQL	5.1.

By	default,	mysqld_safe	tries	to	start	an	executable	named	mysqld-max	if	it
exists,	and	mysqld	otherwise.	Be	aware	of	the	implications	of	this	behavior:

On	Linux,	the	MySQL-Max	RPM	relies	on	this	mysqld_safe	behavior.	The
RPM	installs	an	executable	named	mysqld-max,	which	causes
mysqld_safe	to	automatically	use	that	executable	rather	than	mysqld	from
that	point	on.

If	you	install	a	MySQL-Max	distribution	that	includes	a	server	named
mysqld-max,	and	then	upgrade	later	to	a	non-Max	version	of	MySQL,
mysqld_safe	will	still	attempt	to	run	the	old	mysqld-max	server.	If	you
perform	such	an	upgrade,	you	should	manually	remove	the	old	mysqld-
max	server	to	ensure	that	mysqld_safe	runs	the	new	mysqld	server.

To	override	the	default	behavior	and	specify	explicitly	the	name	of	the	server
you	want	to	run,	specify	a	--mysqld	or	--mysqld-version	option	to
mysqld_safe.	You	can	also	use	--ledir	to	indicate	the	directory	where
mysqld_safe	should	look	for	the	server.

Many	of	the	options	to	mysqld_safe	are	the	same	as	the	options	to	mysqld.	See
Section	5.2.1,	“mysqld	Command	Options”.

All	options	specified	to	mysqld_safe	on	the	command	line	are	passed	to
mysqld.	If	you	want	to	use	any	options	that	are	specific	to	mysqld_safe	and	that
mysqld	doesn't	support,	do	not	specify	them	on	the	command	line.	Instead,	list
them	in	the	[mysqld_safe]	group	of	an	option	file.	See	Section	4.3.2,	“Using
Option	Files”.

mysqld_safe	reads	all	options	from	the	[mysqld],	[server],	and
[mysqld_safe]	sections	in	option	files.	For	backward	compatibility,	it	also	reads
[safe_mysqld]	sections,	although	you	should	rename	such	sections	to
[mysqld_safe]	in	MySQL	5.0	installations.

mysqld_safe	supports	the	following	options:

	--help

Display	a	help	message	and	exit.	(Added	in	MySQL	5.0.3)

	--autoclose

(NetWare	only)	On	NetWare,	mysqld_safe	provides	a	screen	presence.
When	you	unload	(shut	down)	the	mysqld_safe	NLM,	the	screen	does	not
by	default	go	away.	Instead,	it	prompts	for	user	input:

<NLM	has	terminated;	Press	any	key	to	close	the	screen>

If	you	want	NetWare	to	close	the	screen	automatically	instead,	use	the	--
autoclose	option	to	mysqld_safe.

	--basedir=path

The	path	to	the	MySQL	installation	directory.

	--core-file-size=size

The	size	of	the	core	file	that	mysqld	should	be	able	to	create.	The	option
value	is	passed	to	ulimit	-c.

	--datadir=path

The	path	to	the	data	directory.

	--defaults-extra-file=path

The	name	of	an	option	file	to	be	read	in	addition	to	the	usual	option	files.
This	must	be	the	first	option	on	the	command	line	if	it	is	used.	As	of
MySQL	5.0.6,	if	the	file	does	not	exist	or	is	otherwise	inaccessible,	the
server	will	exit	with	an	error.

	--defaults-file=file_name

The	name	of	an	option	file	to	be	read	instead	of	the	usual	option	files.	This
must	be	the	first	option	on	the	command	line	if	it	is	used.

	--ledir=path

If	mysqld_safe	cannot	find	the	server,	use	this	option	to	indicate	the
pathname	to	the	directory	where	the	server	is	located.

	--log-error=file_name

Write	the	error	log	to	the	given	file.	See	Section	5.12.1,	“The	Error	Log”.

	--mysqld=prog_name

The	name	of	the	server	program	(in	the	ledir	directory)	that	you	want	to
start.	This	option	is	needed	if	you	use	the	MySQL	binary	distribution	but
have	the	data	directory	outside	of	the	binary	distribution.	If	mysqld_safe
cannot	find	the	server,	use	the	--ledir	option	to	indicate	the	pathname	to
the	directory	where	the	server	is	located.

	--mysqld-version=suffix

This	option	is	similar	to	the	--mysqld	option,	but	you	specify	only	the
suffix	for	the	server	program	name.	The	basename	is	assumed	to	be
mysqld.	For	example,	if	you	use	--mysqld-version=max,	mysqld_safe
starts	the	mysqld-max	program	in	the	ledir	directory.	If	the	argument	to	-
-mysqld-version	is	empty,	mysqld_safe	uses	mysqld	in	the	ledir
directory.

	--nice=priority

Use	the	nice	program	to	set	the	server's	scheduling	priority	to	the	given
value.

	--no-defaults

Do	not	read	any	option	files.	This	must	be	the	first	option	on	the	command
line	if	it	is	used.

	--open-files-limit=count

The	number	of	files	that	mysqld	should	be	able	to	open.	The	option	value	is
passed	to	ulimit	-n.	Note	that	you	need	to	start	mysqld_safe	as	root	for
this	to	work	properly!

	--pid-file=file_name

The	pathname	of	the	process	ID	file.

	--port=port_num

The	port	number	that	the	server	should	use	when	listening	for	TCP/IP
connections.	The	port	number	must	be	1024	or	higher	unless	the	server	is
started	by	the	root	system	user.

	--socket=path

The	Unix	socket	file	that	the	server	should	use	when	listening	for	local
connections.

	--timezone=timezone

Set	the	TZ	time	zone	environment	variable	to	the	given	option	value.
Consult	your	operating	system	documentation	for	legal	time	zone
specification	formats.

	--user={user_name|user_id}

Run	the	mysqld	server	as	the	user	having	the	name	user_name	or	the
numeric	user	ID	user_id.	(“User”	in	this	context	refers	to	a	system	login
account,	not	a	MySQL	user	listed	in	the	grant	tables.)

If	you	execute	mysqld_safe	with	the	--defaults-file	or	--defaults-extra-
option	option	to	name	an	option	file,	the	option	must	be	the	first	one	given	on
the	command	line	or	the	option	file	will	not	be	used.	For	example,	this	command
will	not	use	the	named	option	file:

mysql>	mysqld_safe	--port=port_num	--defaults-file=file_name

Instead,	use	the	following	command:

mysql>	mysqld_safe	--defaults-file=file_name	--port=port_num

The	mysqld_safe	script	is	written	so	that	it	normally	can	start	a	server	that	was
installed	from	either	a	source	or	a	binary	distribution	of	MySQL,	even	though
these	types	of	distributions	typically	install	the	server	in	slightly	different
locations.	(See	Section	2.1.5,	“Installation	Layouts”.)	mysqld_safe	expects	one
of	the	following	conditions	to	be	true:

The	server	and	databases	can	be	found	relative	to	the	working	directory	(the
directory	from	which	mysqld_safe	is	invoked).	For	binary	distributions,
mysqld_safe	looks	under	its	working	directory	for	bin	and	data
directories.	For	source	distributions,	it	looks	for	libexec	and	var
directories.	This	condition	should	be	met	if	you	execute	mysqld_safe	from
your	MySQL	installation	directory	(for	example,	/usr/local/mysql	for	a
binary	distribution).

If	the	server	and	databases	cannot	be	found	relative	to	the	working
directory,	mysqld_safe	attempts	to	locate	them	by	absolute	pathnames.
Typical	locations	are	/usr/local/libexec	and	/usr/local/var.	The
actual	locations	are	determined	from	the	values	configured	into	the
distribution	at	the	time	it	was	built.	They	should	be	correct	if	MySQL	is
installed	in	the	location	specified	at	configuration	time.

Because	mysqld_safe	tries	to	find	the	server	and	databases	relative	to	its	own
working	directory,	you	can	install	a	binary	distribution	of	MySQL	anywhere,	as
long	as	you	run	mysqld_safe	from	the	MySQL	installation	directory:

shell>	cd	mysql_installation_directory

shell>	bin/mysqld_safe	&

If	mysqld_safe	fails,	even	when	invoked	from	the	MySQL	installation	directory,
you	can	specify	the	--ledir	and	--datadir	options	to	indicate	the	directories	in

which	the	server	and	databases	are	located	on	your	system.

Normally,	you	should	not	edit	the	mysqld_safe	script.	Instead,	configure
mysqld_safe	by	using	command-line	options	or	options	in	the	[mysqld_safe]
section	of	a	my.cnf	option	file.	In	rare	cases,	it	might	be	necessary	to	edit
mysqld_safe	to	get	it	to	start	the	server	properly.	However,	if	you	do	this,	your
modified	version	of	mysqld_safe	might	be	overwritten	if	you	upgrade	MySQL
in	the	future,	so	you	should	make	a	copy	of	your	edited	version	that	you	can
reinstall.

On	NetWare,	mysqld_safe	is	a	NetWare	Loadable	Module	(NLM)	that	is	ported
from	the	original	Unix	shell	script.	It	starts	the	server	as	follows:

1.	 Runs	a	number	of	system	and	option	checks.

2.	 Runs	a	check	on	MyISAM	tables.

3.	 Provides	a	screen	presence	for	the	MySQL	server.

4.	 Starts	mysqld,	monitors	it,	and	restarts	it	if	it	terminates	in	error.

5.	 Sends	error	messages	from	mysqld	to	the	host_name.err	file	in	the	data
directory.

6.	 Sends	mysqld_safe	screen	output	to	the	host_name.safe	file	in	the	data
directory.

5.4.2.	mysql.server	—	MySQL	Server	Startup	Script

MySQL	distributions	on	Unix	include	a	script	named	mysql.server.	It	can	be
used	on	systems	such	as	Linux	and	Solaris	that	use	System	V-style	run
directories	to	start	and	stop	system	services.	It	is	also	used	by	the	Mac	OS	X
Startup	Item	for	MySQL.

mysql.server	can	be	found	in	the	support-files	directory	under	your	MySQL
installation	directory	or	in	a	MySQL	source	distribution.

If	you	use	the	Linux	server	RPM	package	(MySQL-server-VERSION.rpm),	the
mysql.server	script	will	be	installed	in	the	/etc/init.d	directory	with	the	name
mysql.	You	need	not	install	it	manually.	See	Section	2.4,	“Installing	MySQL	on

Linux”,	for	more	information	on	the	Linux	RPM	packages.

Some	vendors	provide	RPM	packages	that	install	a	startup	script	under	a
different	name	such	as	mysqld.

If	you	install	MySQL	from	a	source	distribution	or	using	a	binary	distribution
format	that	does	not	install	mysql.server	automatically,	you	can	install	it
manually.	Instructions	are	provided	in	Section	2.10.2.2,	“Starting	and	Stopping
MySQL	Automatically”.

mysql.server	reads	options	from	the	[mysql.server]	and	[mysqld]	sections	of
option	files.	For	backward	compatibility,	it	also	reads	[mysql_server]	sections,
although	you	should	rename	such	sections	to	[mysql.server]	when	using
MySQL	5.0.

5.4.3.	mysqld_multi	—	Manage	Multiple	MySQL	Servers

mysqld_multi	is	designed	to	manage	several	mysqld	processes	that	listen	for
connections	on	different	Unix	socket	files	and	TCP/IP	ports.	It	can	start	or	stop
servers,	or	report	their	current	status.	The	MySQL	Instance	Manager	is	an
alternative	means	of	managing	multiple	servers	(see	Section	5.5,
“mysqlmanager	—	The	MySQL	Instance	Manager”).

mysqld_multi	searches	for	groups	named	[mysqldN]	in	my.cnf	(or	in	the	file
named	by	the	--config-file	option).	N	can	be	any	positive	integer.	This	number
is	referred	to	in	the	following	discussion	as	the	option	group	number,	or	GNR.
Group	numbers	distinguish	option	groups	from	one	another	and	are	used	as
arguments	to	mysqld_multi	to	specify	which	servers	you	want	to	start,	stop,	or
obtain	a	status	report	for.	Options	listed	in	these	groups	are	the	same	that	you
would	use	in	the	[mysqld]	group	used	for	starting	mysqld.	(See,	for	example,
Section	2.10.2.2,	“Starting	and	Stopping	MySQL	Automatically”.)	However,
when	using	multiple	servers,	it	is	necessary	that	each	one	use	its	own	value	for
options	such	as	the	Unix	socket	file	and	TCP/IP	port	number.	For	more
information	on	which	options	must	be	unique	per	server	in	a	multiple-server
environment,	see	Section	5.13,	“Running	Multiple	MySQL	Servers	on	the	Same
Machine”.

To	invoke	mysqld_multi,	use	the	following	syntax:

shell>	mysqld_multi	[options]	{start|stop|report}	[GNR[,GNR]	...]

start,	stop,	and	report	indicate	which	operation	to	perform.	You	can	perform
the	designated	operation	for	a	single	server	or	multiple	servers,	depending	on	the
GNR	list	that	follows	the	option	name.	If	there	is	no	list,	mysqld_multi	performs
the	operation	for	all	servers	in	the	option	file.

Each	GNR	value	represents	an	option	group	number	or	range	of	group	numbers.
The	value	should	be	the	number	at	the	end	of	the	group	name	in	the	option	file.
For	example,	the	GNR	for	a	group	named	[mysqld17]	is	17.	To	specify	a	range	of
numbers,	separate	the	first	and	last	numbers	by	a	dash.	The	GNR	value	10-13
represents	groups	[mysqld10]	through	[mysqld13].	Multiple	groups	or	group
ranges	can	be	specified	on	the	command	line,	separated	by	commas.	There	must
be	no	whitespace	characters	(spaces	or	tabs)	in	the	GNR	list;	anything	after	a
whitespace	character	is	ignored.

This	command	starts	a	single	server	using	option	group	[mysqld17]:

shell>	mysqld_multi	start	17

This	command	stops	several	servers,	using	option	groups	[mysqld8]	and
[mysqld10]	through	[mysqld13]:

shell>	mysqld_multi	stop	8,10-13

For	an	example	of	how	you	might	set	up	an	option	file,	use	this	command:

shell>	mysqld_multi	--example

mysqld_multi	supports	the	following	options:

	--help

Display	a	help	message	and	exit.

	--config-file=file_name

Specify	the	name	of	an	alternative	option	file.	This	affects	where
mysqld_multi	looks	for	[mysqldN]	option	groups.	Without	this	option,	all
options	are	read	from	the	usual	my.cnf	file.	The	option	does	not	affect
where	mysqld_multi	reads	its	own	options,	which	are	always	taken	from
the	[mysqld_multi]	group	in	the	usual	my.cnf	file.

	--example

Display	a	sample	option	file.

	--log=file_name

Specify	the	name	of	the	log	file.	If	the	file	exists,	log	output	is	appended	to
it.

	--mysqladmin=prog_name

The	mysqladmin	binary	to	be	used	to	stop	servers.

	--mysqld=prog_name

The	mysqld	binary	to	be	used.	Note	that	you	can	specify	mysqld_safe	as
the	value	for	this	option	also.	If	you	use	mysqld_safe	to	start	the	server,
you	can	include	the	mysqld	or	ledir	options	in	the	corresponding
[mysqldN]	option	group.	These	options	indicate	the	name	of	the	server	that
mysqld_safe	should	start	and	the	pathname	of	the	directory	where	the
server	is	located.	(See	the	descriptions	for	these	options	in	Section	5.4.1,
“mysqld_safe	—	MySQL	Server	Startup	Script”.)	Example:

[mysqld38]

mysqld	=	mysqld-max

ledir		=	/opt/local/mysql/libexec

	--no-log

Print	log	information	to	stdout	rather	than	to	the	log	file.	By	default,	output
goes	to	the	log	file.

	--password=password

The	password	of	the	MySQL	account	to	use	when	invoking	mysqladmin.
Note	that	the	password	value	is	not	optional	for	this	option,	unlike	for	other
MySQL	programs.

	--silent

Silent	mode;	disable	warnings.

	--tcp-ip

Connect	to	each	MySQL	server	via	the	TCP/IP	port	instead	of	the	Unix
socket	file.	(If	a	socket	file	is	missing,	the	server	might	still	be	running,	but
accessible	only	via	the	TCP/IP	port.)	By	default,	connections	are	made
using	the	Unix	socket	file.	This	option	affects	stop	and	report	operations.

	--user=user_name

The	username	of	the	MySQL	account	to	use	when	invoking	mysqladmin.

	--verbose

Be	more	verbose.

	--version

Display	version	information	and	exit.

Some	notes	about	mysqld_multi:

Most	important:	Before	using	mysqld_multi	be	sure	that	you	understand
the	meanings	of	the	options	that	are	passed	to	the	mysqld	servers	and	why
you	would	want	to	have	separate	mysqld	processes.	Beware	of	the	dangers
of	using	multiple	mysqld	servers	with	the	same	data	directory.	Use	separate
data	directories,	unless	you	know	what	you	are	doing.	Starting	multiple
servers	with	the	same	data	directory	does	not	give	you	extra	performance	in
a	threaded	system.	See	Section	5.13,	“Running	Multiple	MySQL	Servers	on
the	Same	Machine”.

Important:	Make	sure	that	the	data	directory	for	each	server	is	fully
accessible	to	the	Unix	account	that	the	specific	mysqld	process	is	started
as.	Do	not	use	the	Unix	root	account	for	this,	unless	you	know	what	you
are	doing.	See	Section	5.7.5,	“How	to	Run	MySQL	as	a	Normal	User”.

Make	sure	that	the	MySQL	account	used	for	stopping	the	mysqld	servers
(with	the	mysqladmin	program)	has	the	same	username	and	password	for
each	server.	Also,	make	sure	that	the	account	has	the	SHUTDOWN	privilege.	If
the	servers	that	you	want	to	manage	have	different	usernames	or	passwords
for	the	administrative	accounts,	you	might	want	to	create	an	account	on

each	server	that	has	the	same	username	and	password.	For	example,	you
might	set	up	a	common	multi_admin	account	by	executing	the	following
commands	for	each	server:

shell>	mysql	-u	root	-S	/tmp/mysql.sock	-p

Enter	password:

mysql>	GRANT	SHUTDOWN	ON	*.*

				->	TO	'multi_admin'@'localhost'	IDENTIFIED	BY	'multipass';

See	Section	5.8.2,	“How	the	Privilege	System	Works”.	You	have	to	do	this
for	each	mysqld	server.	Change	the	connection	parameters	appropriately
when	connecting	to	each	one.	Note	that	the	hostname	part	of	the	account
name	must	allow	you	to	connect	as	multi_admin	from	the	host	where	you
want	to	run	mysqld_multi.

The	Unix	socket	file	and	the	TCP/IP	port	number	must	be	different	for
every	mysqld.

The	--pid-file	option	is	very	important	if	you	are	using	mysqld_safe	to
start	mysqld	(for	example,	--mysqld=mysqld_safe)	Every	mysqld	should
have	its	own	process	ID	file.	The	advantage	of	using	mysqld_safe	instead
of	mysqld	is	that	mysqld_safe	monitors	its	mysqld	process	and	restarts	it	if
the	process	terminates	due	to	a	signal	sent	using	kill	-9	or	for	other
reasons,	such	as	a	segmentation	fault.	Please	note	that	the	mysqld_safe
script	might	require	that	you	start	it	from	a	certain	place.	This	means	that
you	might	have	to	change	location	to	a	certain	directory	before	running
mysqld_multi.	If	you	have	problems	starting,	please	see	the	mysqld_safe
script.	Check	especially	the	lines:

--

MY_PWD=`pwd`

#	Check	if	we	are	starting	this	relative	(for	the	binary	release)

if	test	-d	$MY_PWD/data/mysql	-a	-f	./share/mysql/english/errmsg.sys	-a	\

	-x	./bin/mysqld

--

The	test	performed	by	these	lines	should	be	successful,	or	you	might
encounter	problems.	See	Section	5.4.1,	“mysqld_safe	—	MySQL	Server
Startup	Script”.

You	might	want	to	use	the	--user	option	for	mysqld,	but	to	do	this	you
need	to	run	the	mysqld_multi	script	as	the	Unix	root	user.	Having	the

option	in	the	option	file	doesn't	matter;	you	just	get	a	warning	if	you	are	not
the	superuser	and	the	mysqld	processes	are	started	under	your	own	Unix
account.

The	following	example	shows	how	you	might	set	up	an	option	file	for	use	with
mysqld_multi.	The	order	in	which	the	mysqld	programs	are	started	or	stopped
depends	on	the	order	in	which	they	appear	in	the	option	file.	Group	numbers
need	not	form	an	unbroken	sequence.	The	first	and	fifth	[mysqldN]	groups	were
intentionally	omitted	from	the	example	to	illustrate	that	you	can	have	“gaps”	in
the	option	file.	This	gives	you	more	flexibility.

#	This	file	should	probably	be	in	your	home	dir	(~/.my.cnf)

#	or	/etc/my.cnf

#	Version	2.1	by	Jani	Tolonen

[mysqld_multi]

mysqld					=	/usr/local/bin/mysqld_safe

mysqladmin	=	/usr/local/bin/mysqladmin

user							=	multi_admin

password			=	multipass

[mysqld2]

socket					=	/tmp/mysql.sock2

port							=	3307

pid-file			=	/usr/local/mysql/var2/hostname.pid2

datadir				=	/usr/local/mysql/var2

language			=	/usr/local/share/mysql/english

user							=	john

[mysqld3]

socket					=	/tmp/mysql.sock3

port							=	3308

pid-file			=	/usr/local/mysql/var3/hostname.pid3

datadir				=	/usr/local/mysql/var3

language			=	/usr/local/share/mysql/swedish

user							=	monty

[mysqld4]

socket					=	/tmp/mysql.sock4

port							=	3309

pid-file			=	/usr/local/mysql/var4/hostname.pid4

datadir				=	/usr/local/mysql/var4

language			=	/usr/local/share/mysql/estonia

user							=	tonu

[mysqld6]

socket					=	/tmp/mysql.sock6

port							=	3311

pid-file			=	/usr/local/mysql/var6/hostname.pid6

datadir				=	/usr/local/mysql/var6

language			=	/usr/local/share/mysql/japanese

user							=	jani

See	Section	4.3.2,	“Using	Option	Files”.

5.5.	mysqlmanager	—	The	MySQL	Instance	Manager

mysqlmanager	is	the	MySQL	Instance	Manager	(IM).	This	program	is	a
daemon	running	on	a	TCP/IP	port	that	serves	to	monitor	and	manage	MySQL
Database	Server	instances.	MySQL	Instance	Manager	is	available	for	Unix-like
operating	systems,	and	also	on	Windows	as	of	MySQL	5.0.13.

MySQL	Instance	Manager	is	included	in	MySQL	distributions	from	version
5.0.3,	and	can	be	used	in	place	of	the	mysqld_safe	script	to	start	and	stop	the
MySQL	Server,	even	from	a	remote	host.	MySQL	Instance	Manager	also
implements	the	functionality	(and	most	of	the	syntax)	of	the	mysqld_multi
script.	A	more	detailed	description	of	MySQL	Instance	Manager	follows.

5.5.1.	Starting	the	MySQL	Server	with	MySQL	Instance	Manager

Normally,	the	mysqld	MySQL	Database	Server	is	started	with	the	mysql.server
script,	which	usually	resides	in	the	/etc/init.d/	folder.	In	MySQL	5.0.3,	this
script	invokes	mysqlmanager	(the	MySQL	Instance	Manager	binary)	to	start
MySQL.	(In	prior	versions	of	MySQL	the	mysqld_safe	script	is	used	for	this
purpose.)	Starting	from	MySQL	5.0.4,	the	behavior	of	the	startup	script	was
changed	again	to	incorporate	both	setup	schemes.	In	version	5.0.4,	the	startup
script	uses	the	old	scheme	(invoking	mysqld_safe)	by	default,	but	one	can	set
the	use_mysqld_safe	variable	in	the	script	to	0	(zero)	to	use	the	MySQL
Instance	Manager	to	start	a	server.

Starting	with	MySQL	5.0.19,	you	can	instead	modify	the	my.cnf	file	by	adding
use-manager	to	the	[mysql.server]	section:

[mysql.server]

use-manager

The	Instance	Manager's	behavior	in	this	case	depends	on	the	options	given	in	the
MySQL	configuration	file.	If	there	is	no	configuration	file,	the	MySQL	Instance
Manager	creates	a	server	instance	named	mysqld	and	attempts	to	start	it	with
default	(compiled-in)	configuration	values.	This	means	that	the	IM	cannot	guess
the	placement	of	mysqld	if	it	is	not	installed	in	the	default	location.	If	you	have
installed	the	MySQL	server	in	a	non-standard	location,	you	should	use	a
configuration	file.	See	Section	2.1.5,	“Installation	Layouts”.

If	there	is	a	configuration	file,	the	IM	reads	it	to	find	[mysqldN]	sections	(for
example,	[mysqld1],	[mysqld2],	and	so	forth).	Each	such	section	specifies	an
instance.	When	it	starts,	the	Instance	Manager	attempts	to	start	all	server
instances	that	it	finds.	By	default,	the	Instance	Manager	stops	all	server	instances
when	it	shuts	down.

Warning

The	[mysqld]	section	name	causes	unpredictable	results	when	used
in	conjunction	with	the	Instance	Manager.	When	using	the	Instance
Manager,	check	that	no	section	is	named	[mysqld].

Note	that	there	is	a	special	--mysqld-path=path-to-mysqld-binary	option	that
is	recognized	only	by	the	IM.	Use	this	variable	to	let	the	IM	know	where	the
mysqld	binary	resides.	You	should	also	set	basedir	and	datadir	options	for	the
server.

The	typical	startup/shutdown	cycle	for	a	MySQL	server	with	the	MySQL
Instance	Manager	enabled	is	as	follows:

1.	 The	MySQL	Instance	Manager	is	started	with	/etc/init.d/mysql	script.

2.	 The	MySQL	Instance	Manager	starts	all	instances	and	monitors	them.

3.	 If	a	server	instance	fails	the	MySQL	Instance	Manager	restarts	it.

4.	 If	the	MySQL	Instance	Manager	is	shut	down	(for	instance	with	the
/etc/init.d/mysql	stop	command),	all	instances	are	shut	down	by	the
MySQL	Instance	Manager.

5.5.2.	Connecting	to	the	MySQL	Instance	Manager	and	Creating
User	Accounts

Communication	with	the	MySQL	Instance	Manager	is	handled	using	the
MySQL	client-server	protocol.	As	such,	you	can	connect	to	the	IM	using	the
standard	mysql	client	program,	as	well	as	the	MySQL	C	API.	The	IM	supports
the	version	of	the	MySQL	client-server	protocol	used	by	the	client	tools	and
libraries	distributed	along	with	MySQL	4.1	or	later.

5.5.2.1.	Instance	Manager	Users	and	Passwords

The	Instance	Manager	stores	its	user	information	in	a	password	file.	The	default
name	of	the	password	file	is	/etc/mysqlmanager.passwd.

Password	entries	have	the	following	format:

petr:*35110DC9B4D8140F5DE667E28C72DD2597B5C848

If	there	are	no	entries	in	the	/etc/mysqlmanager.passwd	file,	you	cannot
connect	to	the	Instance	Manager.

To	generate	a	new	entry,	invoke	Instance	Manager	with	the	--passwd	option.
Then	the	output	can	be	appended	to	the	/etc/mysqlmanager.passwd	file	to	add	a
new	user.	Here	is	an	example:

shell>	mysqlmanager	--passwd	>>	/etc/mysqlmanager.passwd

Creating	record	for	new	user.

Enter	user	name:	mike

Enter	password:	password

Re-type	password:	password

The	preceding	command	causes	the	following	line	to	be	added	to
/etc/mysqlmanager.passwd:

mike:*00A51F3F48415C7D4E8908980D443C29C69B60C9

Note

The	Instance	Manager	must	be	restarted	after	adding/changing
passwords.

5.5.2.2.	MySQL	Server	Accounts	for	Status	Monitoring

To	monitor	server	status,	the	MySQL	Instance	Manager	will	attempt	to	connect
to	the	MySQL	server	instance	at	regular	intervals	using	the
MySQL_Instance_Manager@localhost	user	account	with	a	password	of
check_connection.

You	are	not	required	to	create	a	MySQL_Instance_M@localhost	user	account	in
order	for	the	MySQL	Instance	Manager	to	monitor	server	status,	as	a	login

failure	is	sufficient	to	identify	that	the	server	is	operational.	However,	if	the
account	does	not	exist,	failed	connection	attempts	are	logged	by	the	server	to	its
general	query	log	(see	Section	5.12.2,	“The	General	Query	Log”).

5.5.3.	MySQL	Instance	Manager	Command	Options

The	MySQL	Instance	Manager	supports	a	number	of	command	line	options.	For
a	brief	listing,	invoke	mysqlmanager	with	the	--help	option.

mysqlmanager	supports	the	following	options:

	--help,	-?

Display	a	help	message	and	exit.

	--angel-pid-file=file_name

The	file	in	which	the	angel	process	records	its	process	ID	when
mysqlmanager	runs	in	daemon	mode.	By	default,	this	file	is	named
mysqlmanager.angel.pid.	If	the	--pid-file	option	is	given,	the	default
angel	PID	file	becomes	the	same	except	that	any	extension	is	replaced	with
an	extension	of	.angel.pid.	This	option	was	added	in	MySQL	5.0.23.

	--bind-address=IP

The	IP	address	to	bind	to.

	--default-mysqld-path=path

On	Unix,	the	pathname	of	the	MySQL	Server	binary,	if	no	path	was
provided	in	the	instance	section.	Example:	--default-mysqld-
path=/usr/sbin/mysqld

	--defaults-file=file_name

Read	Instance	Manager	and	MySQL	Server	settings	from	the	given	file.	All
configuration	changes	by	the	Instance	Manager	will	be	made	to	this	file.
This	must	be	the	first	option	on	the	command	line	if	it	is	used.

	--install

On	Windows,	install	Instance	Manager	as	a	Windows	service.	This	option
was	added	in	MySQL	5.0.11.

	--log=file_name

The	path	to	the	IM	log	file.	This	is	used	with	the	--run-as-service	option.

	--monitoring-interval=seconds

The	interval	in	seconds	for	monitoring	instances.	The	default	value	is	20
seconds.	Instance	Manager	tries	to	connect	to	each	monitored	instance
using	the	non-existing	MySQL_Instance_Manager	user	account	to	check
whether	it	is	alive/not	hanging.	In	the	case	of	a	failure	to	connect,	IM
performs	several	attempts	to	restart	the	instance.	The	nonguarded	option	in
the	appropriate	instance	section	disables	this	behavior	for	a	particular
instance.	The	monitoring	process	will	produce	messages	in	the	general
query	log	similar	to	the	following:

Access	denied	for	user	'MySQL_Instance_M'@'localhost'	(using	password:	YES)

	--passwd,	-P

Prepare	an	entry	for	the	password	file	and	exit.

	--password-file=file_name

Look	for	the	Instance	Manager	users	and	passwords	in	this	file.	The	default
file	is	/etc/mysqlmanager.passwd.

	--pid-file=file_name

The	process	ID	file	to	use.	By	default,	this	file	is	named
mysqlmanager.pid.

	--port=port_num

The	TCP/IP	port	number	to	use	for	incoming	connections.	(The	default	port
number	assigned	by	IANA	is	2273).

	--print-defaults

Print	the	current	defaults	and	exit.	This	must	be	the	first	option	on	the
command	line	if	it	is	used.

	--remove

On	Windows,	removes	Instance	Manager	as	a	Windows	service.	This
assumes	that	Instance	Manager	has	been	run	with	--install	previously.
This	option	was	added	in	MySQL	5.0.11.

	--run-as-service

On	Unix,	daemonize	and	start	the	angel	process.	The	angel	process	is
simple	and	unlikely	to	crash.	It	will	restart	the	Instance	Manager	itself	in
case	of	a	failure.

	--socket=path

On	Unix,	the	socket	file	to	use	for	incoming	connections.	By	default,	the
file	is	named	/tmp/mysqlmanager.sock.

	--standalone

On	Windows,	run	Instance	Manager	in	standalone	mode.	This	option	was
added	in	MySQL	5.0.13.

	--user=user_name

On	Unix,	the	username	to	start	and	run	the	mysqlmanager	under.	It	is
recommended	to	run	mysqlmanager	under	the	same	user	account	used	to
run	the	mysqld	server.	(“User”	in	this	context	refers	to	a	system	login
account,	not	a	MySQL	user	listed	in	the	grant	tables.)

	--version,	-V

Output	version	information	and	exit.

	--wait-timeout=N

The	number	of	seconds	to	wait	for	activity	on	a	connection	befoe	closing	it.
The	default	is	28800	seconds	(8	hours).

This	option	was	added	in	MySQL	5.0.19.	Before	that,	the	timeout	is	30
seconds	and	cannot	be	changed.

5.5.4.	MySQL	Instance	Manager	Configuration	Files

Instance	Manager	uses	the	standard	my.cnf	file.	It	uses	the	[manager]	section	to
read	options	for	itself	and	the	[mysqldN]	sections	to	create	instances.	The
[manager]	section	contains	any	of	the	options	listed	in	Section	5.5.3,	“MySQL
Instance	Manager	Command	Options”.	Here	is	an	example	[manager]	section:

#	MySQL	Instance	Manager	options	section

[manager]

default-mysqld-path	=	/usr/local/mysql/libexec/mysqld

socket=/tmp/manager.sock

pid-file=/tmp/manager.pid

password-file	=	/home/cps/.mysqlmanager.passwd

monitoring-interval	=	2

port	=	1999

bind-address	=	192.168.1.5

Warning

The	[mysqld]	section	name	is	deprecated	and	should	not	be	used	in
a	configuration	file,	instead	[mysqldN]	sections	such	as	[mysqld1]
should	be	used	for	specific	instances.

Prior	to	MySQL	5.0.10,	the	MySQL	Instance	Manager	read	the	same
configuration	files	as	the	MySQL	Server,	including	/etc/my.cnf,	~/.my.cnf,
etc.	As	of	MySQL	5.0.10,	the	MySQL	Instance	Manager	reads	and	manages	the
/etc/my.cnf	file	only	on	Unix.	On	Windows,	MySQL	Instance	Manager	reads
the	my.ini	file	in	the	directory	where	Instance	Manager	is	installed.	The	default
option	file	location	can	be	changed	with	the	--defaults-file=file_name
option.

Instance	sections	specify	options	given	to	each	instance	at	startup.	These	are
mainly	common	MySQL	server	options,	but	there	are	some	IM-specific	options:

mysqld-path	=	path

The	pathname	to	the	mysqld	server	binary.

shutdown-delay	=	seconds

The	number	of	seconds	IM	should	wait	for	the	instance	to	shut	down.	The
default	value	is	35	seconds.	After	the	delay	expires,	the	IM	assumes	that	the
instance	is	hanging	and	attempts	to	terminate	it.	If	you	use	InnoDB	with
large	tables,	you	should	increase	this	value.

nonguarded

This	option	should	be	specified	if	you	want	to	disable	IM	monitoring
functionality	for	a	certain	instance.

Here	are	some	sample	instance	sections:

[mysqld1]

mysqld-path=/usr/local/mysql/libexec/mysqld

socket=/tmp/mysql.sock

port=3307

server_id=1

skip-stack-trace

core-file

skip-bdb

log-bin

log-error

log=mylog

log-slow-queries

[mysqld2]

nonguarded

port=3308

server_id=2

mysqld-path=	/home/cps/mysql/trees/mysql-5.0/sql/mysqld

socket					=	/tmp/mysql.sock5

pid-file			=	/tmp/hostname.pid5

datadir=	/home/cps/mysql_data/data_dir1

language=/home/cps/mysql/trees/mysql-5.0/sql/share/english

log-bin

log=/tmp/fordel.log

5.5.5.	Commands	Recognized	by	the	MySQL	Instance	Manager

Once	you've	set	up	a	password	file	for	the	MySQL	Instance	Manager	and	the	IM
is	running,	you	can	connect	to	it.	You	can	use	the	mysql	client	tool	connect
through	a	standard	MySQL	API:

mysql	--port=2273	--host=mydomain.org	--user=mysql	-p

The	following	list	of	commands	shows	the	MySQL	Instance	Manager	currently
accepts,	with	samples.

START	INSTANCE	instance_name

This	command	attempts	to	start	an	instance.

mysql>	START	INSTANCE	mysqld4;

Query	OK,	0	rows	affected	(0,00	sec)

STOP	INSTANCE	instance_name

This	command	attempts	to	stop	an	instance.

mysql>	STOP	INSTANCE	mysqld4;

Query	OK,	0	rows	affected	(0,00	sec)

SHOW	INSTANCES

Shows	the	names	of	all	loaded	instances.

mysql>	SHOW	INSTANCES;

+---------------+---------+

|	instance_name	|	status		|

+---------------+---------+

|	mysqld3							|	offline	|

|	mysqld4							|	online		|

|	mysqld2							|	offline	|

+---------------+---------+

3	rows	in	set	(0,04	sec)

SHOW	INSTANCE	STATUS	instance_name

Shows	the	status	and	the	version	information	for	an	instance.

mysql>	SHOW	INSTANCE	STATUS	mysqld3;

+---------------+--------+---------+

|	instance_name	|	status	|	version	|

+---------------+--------+---------+

|	mysqld3							|	online	|	unknown	|

+---------------+--------+---------+

1	row	in	set	(0.00	sec)

SHOW	INSTANCE	OPTIONS	instance_name

Shows	the	options	used	by	an	instance.

mysql>	SHOW	INSTANCE	OPTIONS	mysqld3;

+---------------+---+

|	option_name			|	value																																													|

+---------------+---+

|	instance_name	|	mysqld3																																											|

|	mysqld-path			|	/home/cps/mysql/trees/mysql-4.1/sql/mysqld								|

|	port										|	3309																																														|

|	socket								|	/tmp/mysql.sock3																																		|

|	pid-file						|	hostname.pid3																																					|

|	datadir							|	/home/cps/mysql_data/data_dir1/																			|

|	language						|	/home/cps/mysql/trees/mysql-4.1/sql/share/english	|

+---------------+---+

7	rows	in	set	(0.01	sec)

SHOW	instance_name	LOG	FILES

The	command	lists	all	log	files	used	by	the	instance.	The	result	set	contains
the	path	to	the	log	file	and	the	log	file	size.	If	no	log	file	path	is	specified	in
the	configuration	file	(for	example,	log=/var/mysql.log),	the	Instance
Manager	tries	to	guess	its	placement.	If	the	IM	is	unable	to	guess	the	logfile
placement	you	should	specify	the	log	file	location	explicitly	by	using	the
appropriate	log	option	in	the	instance	section	of	the	configuration	file.

mysql>	SHOW	mysqld	LOG	FILES;

+-------------+------------------------------------+----------+

|	Logfile					|	Path																															|	Filesize	|

+-------------+------------------------------------+----------+

|	ERROR	LOG			|	/home/cps/var/mysql/owlet.err						|	9186					|

|	GENERAL	LOG	|	/home/cps/var/mysql/owlet.log						|	471503			|

|	SLOW	LOG				|	/home/cps/var/mysql/owlet-slow.log	|	4463					|

+-------------+------------------------------------+----------+

3	rows	in	set	(0.01	sec)

SHOW	instance_name	LOG	{ERROR	|	SLOW	|	GENERAL}
size[,offset_from_end]

This	command	retrieves	a	portion	of	the	specified	log	file.	Because	most
users	are	interested	in	the	latest	log	messages,	the	size	parameter	defines
the	number	of	bytes	you	would	like	to	retrieve	starting	from	the	log	end.
You	can	retrieve	data	from	the	middle	of	the	log	file	by	specifying	the

optional	offset_from_end	parameter.	The	following	example	retrieves	21
bytes	of	data,	starting	23	bytes	from	the	end	of	the	log	file	and	ending	2
bytes	from	the	end	of	the	log	file:

mysql>	SHOW	mysqld	LOG	GENERAL	21,	2;

+---------------------+

|	Log																	|

+---------------------+

|	using	password:	YES	|

+---------------------+

1	row	in	set	(0.00	sec)

SET	instance_name.option_name=option_value

This	command	edits	the	specified	instance's	configuration	file	to	change	or
add	instance	options.	The	IM	assumes	that	the	configuration	file	is	located
at	/etc/my.cnf.	You	should	check	that	the	file	exists	and	has	appropriate
permissions.

mysql>	SET	mysqld2.port=3322;

Query	OK,	0	rows	affected	(0.00	sec)

Changes	made	to	the	configuration	file	do	not	take	effect	until	the	MySQL
server	is	restarted.	In	addition,	these	changes	are	not	stored	in	the	instance
manager's	local	cache	of	instance	settings	until	a	FLUSH	INSTANCES
command	is	executed.

UNSET	instance_name.option_name

This	command	removes	an	option	from	an	instance's	configuration	file.

mysql>	UNSET	mysqld2.port;

Query	OK,	0	rows	affected	(0.00	sec)

Changes	made	to	the	configuration	file	do	not	take	effect	until	the	MySQL
server	is	restarted.	In	addition,	these	changes	are	not	stored	in	the	instance
manager's	local	cache	of	instance	settings	until	a	FLUSH	INSTANCES
command	is	executed.

FLUSH	INSTANCES

This	command	forces	IM	to	reread	the	configuration	file	and	to	refresh

internal	structures.	This	command	should	be	performed	after	editing	the
configuration	file.	The	command	does	not	restart	instances.

mysql>	FLUSH	INSTANCES;

Query	OK,	0	rows	affected	(0.04	sec)

5.6.	Installation-Related	Programs

5.6.1.	mysql_fix_privilege_tables	—	Upgrade	MySQL	System
Tables

Some	releases	of	MySQL	introduce	changes	to	the	structure	of	the	system	tables
in	the	mysql	database	to	add	new	privileges	or	support	new	features.	When	you
update	to	a	new	version	of	MySQL,	you	should	update	your	system	tables	as
well	to	make	sure	that	their	structure	is	up	to	date.	Otherwise,	there	might	be
capabilities	that	you	cannot	take	advantage	of.	First,	make	a	backup	of	your
mysql	database,	and	then	use	the	following	procedure.

Note:	As	of	MySQL	5.0.19,	mysql_fix_privilege_tables	is	superseded	by
mysql_upgrade,	which	should	be	used	instead.	See	Section	5.6.2,
“mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade”.

On	Unix	or	Unix-like	systems,	update	the	system	tables	by	running	the
mysql_fix_privilege_tables	script:

shell>	mysql_fix_privilege_tables

You	must	run	this	script	while	the	server	is	running.	It	attempts	to	connect	to	the
server	running	on	the	local	host	as	root.	If	your	root	account	requires	a
password,	indicate	the	password	on	the	command	line	like	this:

shell>	mysql_fix_privilege_tables	--password=root_password

The	mysql_fix_privilege_tables	script	performs	any	actions	necessary	to
convert	your	system	tables	to	the	current	format.	You	might	see	some	Duplicate
column	name	warnings	as	it	runs;	you	can	ignore	them.

After	running	the	script,	stop	the	server	and	restart	it.

On	Windows	systems,	MySQL	distributions	include	a
mysql_fix_privilege_tables.sql	SQL	script	that	you	can	run	using	the	mysql
client.	For	example,	if	your	MySQL	installation	is	located	at	C:\Program
Files\MySQL\MySQL	Server	5.0,	the	commands	look	like	this:

C:\>	cd	"C:\Program	Files\MySQL\MySQL	Server	5.0"

C:\>	bin\mysql	-u	root	-p	mysql

mysql>	SOURCE	scripts/mysql_fix_privilege_tables.sql

The	mysql	command	will	prompt	you	for	the	root	password;	enter	it	when
prompted.

If	your	installation	is	located	in	some	other	directory,	adjust	the	pathnames
appropriately.

As	with	the	Unix	procedure,	you	might	see	some	Duplicate	column	name
warnings	as	mysql	processes	the	statements	in	the
mysql_fix_privilege_tables.sql	script;	you	can	ignore	them.

After	running	the	script,	stop	the	server	and	restart	it.

5.6.2.	mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade

mysql_upgrade	should	be	executed	each	time	you	upgrade	MySQL.	It	checks
all	tables	in	all	databases	for	incompatibilities	with	the	current	version	of
MySQL	Server.	If	a	table	is	found	to	have	a	possible	incompatibility,	it	is
checked.	If	any	problems	are	found,	the	table	is	repaired.	mysql_upgrade	also
upgrades	the	system	tables	so	that	you	can	take	advantage	of	new	privileges	or
capabilities	that	might	have	been	added.

All	checked	and	repaired	tables	are	marked	with	the	current	MySQL	version
number.	This	ensures	that	next	time	you	run	mysql_upgrade	with	the	same
version	of	the	server,	it	can	tell	whether	there	is	any	need	to	check	or	repair	the
table	again.

mysql_upgrade	also	saves	the	MySQL	version	number	in	a	file	named
mysql_upgrade.info	in	the	data	directory.	This	is	used	to	quickly	check	if	all
tables	have	been	checked	for	this	release	so	that	table-checking	can	be	skipped.
To	ignore	this	file,	use	the	--force	option.

To	check	and	repair	tables	and	to	upgrade	the	system	tables,	mysql_upgrade
executes	the	following	commands:

mysqlcheck	--check-upgrade	--all-databases	--auto-repair

mysql_fix_privilege_tables

mysql_upgrade	supersedes	the	older	mysql_fix_privilege_tables	script.	In

MySQL	5.0.19,	mysql_upgrade	was	added	as	a	shell	script	and	worked	only	for
Unix	systems.	As	of	MySQL	5.0.23,	mysql_upgrade	is	an	executable	binary
and	is	available	on	all	systems.	On	systems	older	than	those	supporting
mysql_upgrade,	you	can	execute	the	mysqlcheck	command	manually,	and	then
upgrade	your	system	tables	as	described	in	Section	5.6.1,
“mysql_fix_privilege_tables	—	Upgrade	MySQL	System	Tables”.

For	details	about	what	is	checked,	see	the	description	of	the	FOR	UPGRADE	option
of	the	CHECK	TABLE	statement	(see	Section	13.5.2.3,	“CHECK	TABLE	Syntax”).

To	use	mysql_upgrade,	make	sure	that	the	server	is	running,	and	then	invoke	it
like	this:

shell>	mysql_upgrade	[options]

mysql_upgrade	reads	options	from	the	command	line	and	fromm	the	[mysqld]
and	[mysql_upgrade]	groups	in	option	files.	It	supports	the	following	options:

	--help

Display	a	short	help	message	and	exit.

	--basedir=path

The	path	to	the	MySQL	installation	directory.

	--datadir=path

The	path	to	the	data	directory.

	--force

Force	execution	of	mysqlcheck	even	if	mysql_upgrade	has	already	been
executed	for	the	current	version	of	MySQL.	(In	other	words,	this	option
causes	the	mysql_upgrade.info	file	to	be	ignored.)

	--user=user_name,	-u	user_name

The	MySQL	username	to	use	when	connecting	to	the	server.	The	default
username	is	root.

	--verbose

Verbose	mode.	Print	more	information	about	what	the	program	does.

Other	options	are	passed	to	mysqlcheck	and	to	mysql_fix_privilege_tables.	For
example,	it	might	be	necessary	to	specify	the	--password[=password]	option.

5.7.	General	Security	Issues

This	section	describes	some	general	security	issues	to	be	aware	of	and	what	you
can	do	to	make	your	MySQL	installation	more	secure	against	attack	or	misuse.
For	information	specifically	about	the	access	control	system	that	MySQL	uses
for	setting	up	user	accounts	and	checking	database	access,	see	Section	5.8,	“The
MySQL	Access	Privilege	System”.

5.7.1.	General	Security	Guidelines

Anyone	using	MySQL	on	a	computer	connected	to	the	Internet	should	read	this
section	to	avoid	the	most	common	security	mistakes.

In	discussing	security,	we	emphasize	the	necessity	of	fully	protecting	the	entire
server	host	(not	just	the	MySQL	server)	against	all	types	of	applicable	attacks:
eavesdropping,	altering,	playback,	and	denial	of	service.	We	do	not	cover	all
aspects	of	availability	and	fault	tolerance	here.

MySQL	uses	security	based	on	Access	Control	Lists	(ACLs)	for	all	connections,
queries,	and	other	operations	that	users	can	attempt	to	perform.	There	is	also
support	for	SSL-encrypted	connections	between	MySQL	clients	and	servers.
Many	of	the	concepts	discussed	here	are	not	specific	to	MySQL	at	all;	the	same
general	ideas	apply	to	almost	all	applications.

When	running	MySQL,	follow	these	guidelines	whenever	possible:

Do	not	ever	give	anyone	(except	MySQL	root	accounts)	access	to	the
user	table	in	the	mysql	database!	This	is	critical.

Learn	the	MySQL	access	privilege	system.	The	GRANT	and	REVOKE
statements	are	used	for	controlling	access	to	MySQL.	Do	not	grant	more
privileges	than	necessary.	Never	grant	privileges	to	all	hosts.

Checklist:

Try	mysql	-u	root.	If	you	are	able	to	connect	successfully	to	the
server	without	being	asked	for	a	password,	anyone	can	connect	to	your
MySQL	server	as	the	MySQL	root	user	with	full	privileges!	Review

the	MySQL	installation	instructions,	paying	particular	attention	to	the
information	about	setting	a	root	password.	See	Section	2.10.3,
“Securing	the	Initial	MySQL	Accounts”.

Use	the	SHOW	GRANTS	statement	to	check	which	accounts	have	access
to	what.	Then	use	the	REVOKE	statement	to	remove	those	privileges	that
are	not	necessary.

Do	not	store	any	plain-text	passwords	in	your	database.	If	your	computer
becomes	compromised,	the	intruder	can	take	the	full	list	of	passwords	and
use	them.	Instead,	use	MD5(),	SHA1(),	or	some	other	one-way	hashing
function	and	store	the	hash	value.

Do	not	choose	passwords	from	dictionaries.	Special	programs	exist	to	break
passwords.	Even	passwords	like	“xfish98”	are	very	bad.	Much	better	is
“duag98”	which	contains	the	same	word	“fish”	but	typed	one	key	to	the	left
on	a	standard	QWERTY	keyboard.	Another	method	is	to	use	a	password
that	is	taken	from	the	first	characters	of	each	word	in	a	sentence	(for
example,	“Mary	had	a	little	lamb”	results	in	a	password	of	“Mhall”).	The
password	is	easy	to	remember	and	type,	but	difficult	to	guess	for	someone
who	does	not	know	the	sentence.

Invest	in	a	firewall.	This	protects	you	from	at	least	50%	of	all	types	of
exploits	in	any	software.	Put	MySQL	behind	the	firewall	or	in	a
demilitarized	zone	(DMZ).

Checklist:

Try	to	scan	your	ports	from	the	Internet	using	a	tool	such	as	nmap.
MySQL	uses	port	3306	by	default.	This	port	should	not	be	accessible
from	untrusted	hosts.	Another	simple	way	to	check	whether	or	not
your	MySQL	port	is	open	is	to	try	the	following	command	from	some
remote	machine,	where	server_host	is	the	hostname	or	IP	number	of
the	host	on	which	your	MySQL	server	runs:

shell>	telnet	server_host	3306

If	you	get	a	connection	and	some	garbage	characters,	the	port	is	open,
and	should	be	closed	on	your	firewall	or	router,	unless	you	really	have
a	good	reason	to	keep	it	open.	If	telnet	hangs	or	the	connection	is

refused,	the	port	is	blocked,	which	is	how	you	want	it	to	be.

Do	not	trust	any	data	entered	by	users	of	your	applications.	They	can	try	to
trick	your	code	by	entering	special	or	escaped	character	sequences	in	Web
forms,	URLs,	or	whatever	application	you	have	built.	Be	sure	that	your
application	remains	secure	if	a	user	enters	something	like	“;	DROP
DATABASE	mysql;”.	This	is	an	extreme	example,	but	large	security	leaks
and	data	loss	might	occur	as	a	result	of	hackers	using	similar	techniques,	if
you	do	not	prepare	for	them.

A	common	mistake	is	to	protect	only	string	data	values.	Remember	to
check	numeric	data	as	well.	If	an	application	generates	a	query	such	as
SELECT	*	FROM	table	WHERE	ID=234	when	a	user	enters	the	value	234,	the
user	can	enter	the	value	234	OR	1=1	to	cause	the	application	to	generate	the
query	SELECT	*	FROM	table	WHERE	ID=234	OR	1=1.	As	a	result,	the	server
retrieves	every	row	in	the	table.	This	exposes	every	row	and	causes
excessive	server	load.	The	simplest	way	to	protect	from	this	type	of	attack
is	to	use	single	quotes	around	the	numeric	constants:	SELECT	*	FROM	table
WHERE	ID='234'.	If	the	user	enters	extra	information,	it	all	becomes	part	of
the	string.	In	a	numeric	context,	MySQL	automatically	converts	this	string
to	a	number	and	strips	any	trailing	non-numeric	characters	from	it.

Sometimes	people	think	that	if	a	database	contains	only	publicly	available
data,	it	need	not	be	protected.	This	is	incorrect.	Even	if	it	is	allowable	to
display	any	row	in	the	database,	you	should	still	protect	against	denial	of
service	attacks	(for	example,	those	that	are	based	on	the	technique	in	the
preceding	paragraph	that	causes	the	server	to	waste	resources).	Otherwise,
your	server	becomes	unresponsive	to	legitimate	users.

Checklist:

Try	to	enter	single	and	double	quote	marks	(‘'’	and	‘"’)	in	all	of	your
Web	forms.	If	you	get	any	kind	of	MySQL	error,	investigate	the
problem	right	away.

Try	to	modify	dynamic	URLs	by	adding	%22	(‘"’),	%23	(‘#’),	and	%27
(‘'’)	to	them.

Try	to	modify	data	types	in	dynamic	URLs	from	numeric	to	character
types	using	the	characters	shown	in	the	previous	examples.	Your

application	should	be	safe	against	these	and	similar	attacks.

Try	to	enter	characters,	spaces,	and	special	symbols	rather	than
numbers	in	numeric	fields.	Your	application	should	remove	them
before	passing	them	to	MySQL	or	else	generate	an	error.	Passing
unchecked	values	to	MySQL	is	very	dangerous!

Check	the	size	of	data	before	passing	it	to	MySQL.

Have	your	application	connect	to	the	database	using	a	username
different	from	the	one	you	use	for	administrative	purposes.	Do	not
give	your	applications	any	access	privileges	they	do	not	need.

Many	application	programming	interfaces	provide	a	means	of	escaping
special	characters	in	data	values.	Properly	used,	this	prevents	application
users	from	entering	values	that	cause	the	application	to	generate	statements
that	have	a	different	effect	than	you	intend:

MySQL	C	API:	Use	the	mysql_real_escape_string()	API	call.

MySQL++:	Use	the	escape	and	quote	modifiers	for	query	streams.

PHP:	Use	the	mysql_real_escape_string()	function	(available	as	of
PHP	4.3.0,	prior	to	that	PHP	version	use	mysql_escape_string(),	and
prior	to	PHP	4.0.3,	use	addslashes()).	Note	that	only
mysql_real_escape_string()	is	character	set-aware;	the	other
functions	can	be	“bypassed”	when	using	(invalid)	multi-byte	character
sets.	In	PHP	5,	you	can	use	the	mysqli	extension,	which	supports	the
improved	MySQL	authentication	protocol	and	passwords,	as	well	as
prepared	statements	with	placeholders.

Perl	DBI:	Use	placeholders	or	the	quote()	method.

Ruby	DBI:	Use	placeholders	or	the	quote()	method.

Java	JDBC:	Use	a	PreparedStatement	object	and	placeholders.

Other	programming	interfaces	might	have	similar	capabilities.

Do	not	transmit	plain	(unencrypted)	data	over	the	Internet.	This	information

is	accessible	to	everyone	who	has	the	time	and	ability	to	intercept	it	and	use
it	for	their	own	purposes.	Instead,	use	an	encrypted	protocol	such	as	SSL	or
SSH.	MySQL	supports	internal	SSL	connections	as	of	version	4.0.	Another
technique	is	to	use	SSH	port-forwarding	to	create	an	encrypted	(and
compressed)	tunnel	for	the	communication.

Learn	to	use	the	tcpdump	and	strings	utilities.	In	most	cases,	you	can
check	whether	MySQL	data	streams	are	unencrypted	by	issuing	a	command
like	the	following:

shell>	tcpdump	-l	-i	eth0	-w	-	src	or	dst	port	3306	|	strings

(This	works	under	Linux	and	should	work	with	small	modifications	under
other	systems.)	Warning:	If	you	do	not	see	plaintext	data,	this	doesn't
always	mean	that	the	information	actually	is	encrypted.	If	you	need	high
security,	you	should	consult	with	a	security	expert.

5.7.2.	Making	MySQL	Secure	Against	Attackers

When	you	connect	to	a	MySQL	server,	you	should	use	a	password.	The
password	is	not	transmitted	in	clear	text	over	the	connection.	Password	handling
during	the	client	connection	sequence	was	upgraded	in	MySQL	4.1.1	to	be	very
secure.	If	you	are	still	using	pre-4.1.1-style	passwords,	the	encryption	algorithm
is	not	as	strong	as	the	newer	algorithm.	With	some	effort,	a	clever	attacker	who
can	sniff	the	traffic	between	the	client	and	the	server	can	crack	the	password.
(See	Section	5.8.9,	“Password	Hashing	as	of	MySQL	4.1”,	for	a	discussion	of
the	different	password	handling	methods.)

All	other	information	is	transferred	as	text,	and	can	be	read	by	anyone	who	is
able	to	watch	the	connection.	If	the	connection	between	the	client	and	the	server
goes	through	an	untrusted	network,	and	you	are	concerned	about	this,	you	can
use	the	compressed	protocol	to	make	traffic	much	more	difficult	to	decipher.	You
can	also	use	MySQL's	internal	SSL	support	to	make	the	connection	even	more
secure.	See	Section	5.9.7,	“Using	Secure	Connections”.	Alternatively,	use	SSH
to	get	an	encrypted	TCP/IP	connection	between	a	MySQL	server	and	a	MySQL
client.	You	can	find	an	Open	Source	SSH	client	at	http://www.openssh.org/,	and
a	commercial	SSH	client	at	http://www.ssh.com/.

To	make	a	MySQL	system	secure,	you	should	strongly	consider	the	following

http://www.openssh.org/
http://www.ssh.com/

suggestions:

Require	all	MySQL	accounts	to	have	a	password.	A	client	program	does	not
necessarily	know	the	identity	of	the	person	running	it.	It	is	common	for
client/server	applications	that	the	user	can	specify	any	username	to	the
client	program.	For	example,	anyone	can	use	the	mysql	program	to	connect
as	any	other	person	simply	by	invoking	it	as	mysql	-u	other_user
db_name	if	other_user	has	no	password.	If	all	account	have	a	password,
connecting	using	another	user's	account	becomes	much	more	difficult.

For	a	discussion	of	methods	for	setting	passwords,	see	Section	5.9.5,
“Assigning	Account	Passwords”.

Never	run	the	MySQL	server	as	the	Unix	root	user.	This	is	extremely
dangerous,	because	any	user	with	the	FILE	privilege	is	able	to	cause	the
server	to	create	files	as	root	(for	example,	~root/.bashrc).	To	prevent
this,	mysqld	refuses	to	run	as	root	unless	that	is	specified	explicitly	using
the	--user=root	option.

mysqld	can	(and	should)	be	run	as	an	ordinary,	unprivileged	user	instead.
You	can	create	a	separate	Unix	account	named	mysql	to	make	everything
even	more	secure.	Use	this	account	only	for	administering	MySQL.	To	start
mysqld	as	a	different	Unix	user,	add	a	user	option	that	specifies	the
username	in	the	[mysqld]	group	of	the	my.cnf	option	file	where	you
specify	server	options.	For	example:

[mysqld]

user=mysql

This	causes	the	server	to	start	as	the	designated	user	whether	you	start	it
manually	or	by	using	mysqld_safe	or	mysql.server.	For	more	details,	see
Section	5.7.5,	“How	to	Run	MySQL	as	a	Normal	User”.

Running	mysqld	as	a	Unix	user	other	than	root	does	not	mean	that	you
need	to	change	the	root	username	in	the	user	table.	Usernames	for	MySQL
accounts	have	nothing	to	do	with	usernames	for	Unix	accounts.

Do	not	allow	the	use	of	symlinks	to	tables.	(This	capability	can	be	disabled
with	the	--skip-symbolic-links	option.)	This	is	especially	important	if
you	run	mysqld	as	root,	because	anyone	that	has	write	access	to	the

server's	data	directory	then	could	delete	any	file	in	the	system!	See
Section	7.6.1.2,	“Using	Symbolic	Links	for	Tables	on	Unix”.

Make	sure	that	the	only	Unix	user	with	read	or	write	privileges	in	the
database	directories	is	the	user	that	mysqld	runs	as.

Do	not	grant	the	PROCESS	or	SUPER	privilege	to	non-administrative	users.
The	output	of	mysqladmin	processlist	and	SHOW	PROCESSLIST	shows	the
text	of	any	statements	currently	being	executed,	so	any	user	who	is	allowed
to	see	the	server	process	list	might	be	able	to	see	statements	issued	by	other
users	such	as	UPDATE	user	SET	password=PASSWORD('not_secure').

mysqld	reserves	an	extra	connection	for	users	who	have	the	SUPER
privilege,	so	that	a	MySQL	root	user	can	log	in	and	check	server	activity
even	if	all	normal	connections	are	in	use.

The	SUPER	privilege	can	be	used	to	terminate	client	connections,	change
server	operation	by	changing	the	value	of	system	variables,	and	control
replication	servers.

Do	not	grant	the	FILE	privilege	to	non-administrative	users.	Any	user	that
has	this	privilege	can	write	a	file	anywhere	in	the	filesystem	with	the
privileges	of	the	mysqld	daemon.	To	make	this	a	bit	safer,	files	generated
with	SELECT	...	INTO	OUTFILE	do	not	overwrite	existing	files	and	are
writable	by	everyone.

The	FILE	privilege	may	also	be	used	to	read	any	file	that	is	world-readable
or	accessible	to	the	Unix	user	that	the	server	runs	as.	With	this	privilege,
you	can	read	any	file	into	a	database	table.	This	could	be	abused,	for
example,	by	using	LOAD	DATA	to	load	/etc/passwd	into	a	table,	which	then
can	be	displayed	with	SELECT.

If	you	do	not	trust	your	DNS,	you	should	use	IP	numbers	rather	than
hostnames	in	the	grant	tables.	In	any	case,	you	should	be	very	careful	about
creating	grant	table	entries	using	hostname	values	that	contain	wildcards.

If	you	want	to	restrict	the	number	of	connections	allowed	to	a	single
account,	you	can	do	so	by	setting	the	max_user_connections	variable	in
mysqld.	The	GRANT	statement	also	supports	resource	control	options	for
limiting	the	extent	of	server	use	allowed	to	an	account.	See

Section	13.5.1.3,	“GRANT	Syntax”.

	--ssl*

Options	that	begin	with	--ssl	specify	whether	to	allow	clients	to	connect
via	SSL	and	indicate	where	to	find	SSL	keys	and	certificates.	See
Section	5.9.7.3,	“SSL	Command	Options”.

5.7.3.	Security-Related	mysqld	Options

The	following	mysqld	options	affect	security:

	--allow-suspicious-udfs

This	option	controls	whether	user-defined	functions	that	have	only	an	xxx
symbol	for	the	main	function	can	be	loaded.	By	default,	the	option	is	off
and	only	UDFs	that	have	at	least	one	auxiliary	symbol	can	be	loaded;	this
prevents	attempts	at	loading	functions	from	shared	object	files	other	than
those	containing	legitimate	UDFs.	For	MySQL	5.0,	this	option	was	added
in	MySQL	5.0.3.	See	Section	24.2.4.6,	“User-Defined	Function	Security
Precautions”.

	--local-infile[={0|1}]

If	you	start	the	server	with	--local-infile=0,	clients	cannot	use	LOCAL	in
LOAD	DATA	statements.	See	Section	5.7.4,	“Security	Issues	with	LOAD	DATA
LOCAL”.

	--old-passwords

Force	the	server	to	generate	short	(pre-4.1)	password	hashes	for	new
passwords.	This	is	useful	for	compatibility	when	the	server	must	support
older	client	programs.	See	Section	5.8.9,	“Password	Hashing	as	of	MySQL
4.1”.

	--safe-show-database	(OBSOLETE)

In	previous	versions	of	MySQL,	this	option	caused	the	SHOW	DATABASES
statement	to	display	the	names	of	only	those	databases	for	which	the	user
had	some	kind	of	privilege.	In	MySQL	5.0,	this	option	is	no	longer

available	as	this	is	now	the	default	behavior,	and	there	is	a	SHOW	DATABASES
privilege	that	can	be	used	to	control	access	to	database	names	on	a	per-
account	basis.	See	Section	13.5.1.3,	“GRANT	Syntax”.

	--safe-user-create

If	this	option	is	enabled,	a	user	cannot	create	new	MySQL	users	by	using
the	GRANT	statement	unless	the	user	has	the	INSERT	privilege	for	the
mysql.user	table.	If	you	want	a	user	to	have	the	ability	to	create	new	users
that	have	those	privileges	that	the	user	has	right	to	grant,	you	should	grant
the	user	the	following	privilege:

GRANT	INSERT(user)	ON	mysql.user	TO	'user_name'@'host_name';

This	ensures	that	the	user	cannot	change	any	privilege	columns	directly,	but
has	to	use	the	GRANT	statement	to	give	privileges	to	other	users.

	--secure-auth

Disallow	authentication	for	accounts	that	have	old	(pre-4.1)	passwords.

The	mysql	client	also	has	a	--secure-auth	option,	which	prevents
connections	to	a	server	if	the	server	requires	a	password	in	old	format	for
the	client	account.

	--skip-grant-tables

This	option	causes	the	server	not	to	use	the	privilege	system	at	all.	This
gives	anyone	with	access	to	the	server	unrestricted	access	to	all	databases.
You	can	cause	a	running	server	to	start	using	the	grant	tables	again	by
executing	mysqladmin	flush-privileges	or	mysqladmin	reload	command
from	a	system	shell,	or	by	issuing	a	MySQL	FLUSH	PRIVILEGES	statement.
This	option	also	suppresses	loading	of	user-defined	functions	(UDFs).

	--skip-name-resolve

Hostnames	are	not	resolved.	All	Host	column	values	in	the	grant	tables
must	be	IP	numbers	or	localhost.

	--skip-networking

Do	not	allow	TCP/IP	connections	over	the	network.	All	connections	to
mysqld	must	be	made	via	Unix	socket	files.

	--skip-show-database

With	this	option,	the	SHOW	DATABASES	statement	is	allowed	only	to	users
who	have	the	SHOW	DATABASES	privilege,	and	the	statement	displays	all
database	names.	Without	this	option,	SHOW	DATABASES	is	allowed	to	all
users,	but	displays	each	database	name	only	if	the	user	has	the	SHOW
DATABASES	privilege	or	some	privilege	for	the	database.	Note	that	any
global	privilege	is	a	privilege	for	the	database.

5.7.4.	Security	Issues	with	LOAD	DATA	LOCAL

The	LOAD	DATA	statement	can	load	a	file	that	is	located	on	the	server	host,	or	it
can	load	a	file	that	is	located	on	the	client	host	when	the	LOCAL	keyword	is
specified.

There	are	two	potential	security	issues	with	supporting	the	LOCAL	version	of	LOAD
DATA	statements:

The	transfer	of	the	file	from	the	client	host	to	the	server	host	is	initiated	by
the	MySQL	server.	In	theory,	a	patched	server	could	be	built	that	would	tell
the	client	program	to	transfer	a	file	of	the	server's	choosing	rather	than	the
file	named	by	the	client	in	the	LOAD	DATA	statement.	Such	a	server	could
access	any	file	on	the	client	host	to	which	the	client	user	has	read	access.

In	a	Web	environment	where	the	clients	are	connecting	from	a	Web	server,
a	user	could	use	LOAD	DATA	LOCAL	to	read	any	files	that	the	Web	server
process	has	read	access	to	(assuming	that	a	user	could	run	any	command
against	the	SQL	server).	In	this	environment,	the	client	with	respect	to	the
MySQL	server	actually	is	the	Web	server,	not	the	remote	program	being	run
by	the	user	who	connects	to	the	Web	server.

To	deal	with	these	problems,	we	changed	how	LOAD	DATA	LOCAL	is	handled	as	of
MySQL	3.23.49	and	MySQL	4.0.2	(4.0.13	on	Windows):

By	default,	all	MySQL	clients	and	libraries	in	binary	distributions	are
compiled	with	the	--enable-local-infile	option,	to	be	compatible	with

MySQL	3.23.48	and	before.

If	you	build	MySQL	from	source	but	do	not	invoke	configure	with	the	--
enable-local-infile	option,	LOAD	DATA	LOCAL	cannot	be	used	by	any
client	unless	it	is	written	explicitly	to	invoke	mysql_options(...
MYSQL_OPT_LOCAL_INFILE,	0).	See	Section	22.2.3.48,	“mysql_options()”.

You	can	disable	all	LOAD	DATA	LOCAL	commands	from	the	server	side	by
starting	mysqld	with	the	--local-infile=0	option.

For	the	mysql	command-line	client,	LOAD	DATA	LOCAL	can	be	enabled	by
specifying	the	--local-infile[=1]	option,	or	disabled	with	the	--local-
infile=0	option.	Similarly,	for	mysqlimport,	the	--local	or	-L	option
enables	local	data	file	loading.	In	any	case,	successful	use	of	a	local	loading
operation	requires	that	the	server	is	enabled	to	allow	it.

If	you	use	LOAD	DATA	LOCAL	in	Perl	scripts	or	other	programs	that	read	the
[client]	group	from	option	files,	you	can	add	the	local-infile=1	option
to	that	group.	However,	to	keep	this	from	causing	problems	for	programs
that	do	not	understand	local-infile,	specify	it	using	the	loose-	prefix:

[client]

loose-local-infile=1

If	LOAD	DATA	LOCAL	INFILE	is	disabled,	either	in	the	server	or	the	client,	a
client	that	attempts	to	issue	such	a	statement	receives	the	following	error
message:

ERROR	1148:	The	used	command	is	not	allowed	with	this	MySQL	version

5.7.5.	How	to	Run	MySQL	as	a	Normal	User

On	Windows,	you	can	run	the	server	as	a	Windows	service	using	a	normal	user
account.

On	Unix,	the	MySQL	server	mysqld	can	be	started	and	run	by	any	user.
However,	you	should	avoid	running	the	server	as	the	Unix	root	user	for	security
reasons.	To	change	mysqld	to	run	as	a	normal	unprivileged	Unix	user
user_name,	you	must	do	the	following:

1.	 Stop	the	server	if	it's	running	(use	mysqladmin	shutdown).

2.	 Change	the	database	directories	and	files	so	that	user_name	has	privileges
to	read	and	write	files	in	them	(you	might	need	to	do	this	as	the	Unix	root
user):

shell>	chown	-R	user_name	/path/to/mysql/datadir

If	you	do	not	do	this,	the	server	will	not	be	able	to	access	databases	or
tables	when	it	runs	as	user_name.

If	directories	or	files	within	the	MySQL	data	directory	are	symbolic	links,
you'll	also	need	to	follow	those	links	and	change	the	directories	and	files
they	point	to.	chown	-R	might	not	follow	symbolic	links	for	you.

3.	 Start	the	server	as	user	user_name.	If	you	are	using	MySQL	3.22	or	later,
another	alternative	is	to	start	mysqld	as	the	Unix	root	user	and	use	the	--
user=user_name	option.	mysqld	starts	up,	then	switches	to	run	as	the	Unix
user	user_name	before	accepting	any	connections.

4.	 To	start	the	server	as	the	given	user	automatically	at	system	startup	time,
specify	the	username	by	adding	a	user	option	to	the	[mysqld]	group	of	the
/etc/my.cnf	option	file	or	the	my.cnf	option	file	in	the	server's	data
directory.	For	example:

[mysqld]

user=user_name

If	your	Unix	machine	itself	isn't	secured,	you	should	assign	passwords	to	the
MySQL	root	accounts	in	the	grant	tables.	Otherwise,	any	user	with	a	login
account	on	that	machine	can	run	the	mysql	client	with	a	--user=root	option	and
perform	any	operation.	(It	is	a	good	idea	to	assign	passwords	to	MySQL
accounts	in	any	case,	but	especially	so	when	other	login	accounts	exist	on	the
server	host.)	See	Section	2.10,	“Post-Installation	Setup	and	Testing”.

5.8.	The	MySQL	Access	Privilege	System

MySQL	has	an	advanced	but	non-standard	security	and	privilege	system.	The
following	discussion	describes	how	it	works.

5.8.1.	What	the	Privilege	System	Does

The	primary	function	of	the	MySQL	privilege	system	is	to	authenticate	a	user
who	connects	from	a	given	host	and	to	associate	that	user	with	privileges	on	a
database	such	as	SELECT,	INSERT,	UPDATE,	and	DELETE.

Additional	functionality	includes	the	ability	to	have	anonymous	users	and	to
grant	privileges	for	MySQL-specific	functions	such	as	LOAD	DATA	INFILE	and
administrative	operations.

5.8.2.	How	the	Privilege	System	Works

The	MySQL	privilege	system	ensures	that	all	users	may	perform	only	the
operations	allowed	to	them.	As	a	user,	when	you	connect	to	a	MySQL	server,
your	identity	is	determined	by	the	host	from	which	you	connect	and	the
username	you	specify.	When	you	issue	requests	after	connecting,	the	system
grants	privileges	according	to	your	identity	and	what	you	want	to	do.

MySQL	considers	both	your	hostname	and	username	in	identifying	you	because
there	is	little	reason	to	assume	that	a	given	username	belongs	to	the	same	person
everywhere	on	the	Internet.	For	example,	the	user	joe	who	connects	from
office.example.com	need	not	be	the	same	person	as	the	user	joe	who	connects
from	home.example.com.	MySQL	handles	this	by	allowing	you	to	distinguish
users	on	different	hosts	that	happen	to	have	the	same	name:	You	can	grant	one
set	of	privileges	for	connections	by	joe	from	office.example.com,	and	a
different	set	of	privileges	for	connections	by	joe	from	home.example.com.

MySQL	access	control	involves	two	stages	when	you	run	a	client	program	that
connects	to	the	server:

Stage	1:	The	server	checks	whether	it	should	allow	you	to	connect.

Stage	2:	Assuming	that	you	can	connect,	the	server	checks	each	statement

you	issue	to	determine	whether	you	have	sufficient	privileges	to	perform	it.
For	example,	if	you	try	to	select	rows	from	a	table	in	a	database	or	drop	a
table	from	the	database,	the	server	verifies	that	you	have	the	SELECT
privilege	for	the	table	or	the	DROP	privilege	for	the	database.

If	your	privileges	are	changed	(either	by	yourself	or	someone	else)	while	you	are
connected,	those	changes	do	not	necessarily	take	effect	immediately	for	the	next
statement	that	you	issue.	See	Section	5.8.7,	“When	Privilege	Changes	Take
Effect”,	for	details.

The	server	stores	privilege	information	in	the	grant	tables	of	the	mysql	database
(that	is,	in	the	database	named	mysql).	The	MySQL	server	reads	the	contents	of
these	tables	into	memory	when	it	starts	and	re-reads	them	under	the
circumstances	indicated	in	Section	5.8.7,	“When	Privilege	Changes	Take
Effect”.	Access-control	decisions	are	based	on	the	in-memory	copies	of	the	grant
tables.

Normally,	you	manipulate	the	contents	of	the	grant	tables	indirectly	by	using
statements	such	as	GRANT	and	REVOKE	to	set	up	accounts	and	control	the
privileges	available	to	each	one.	See	Section	13.5.1,	“Account	Management
Statements”.	The	discussion	here	describes	the	underlying	structure	of	the	grant
tables	and	how	the	server	uses	their	contents	when	interacting	with	clients.

The	server	uses	the	user,	db,	and	host	tables	in	the	mysql	database	at	both
stages	of	access	control.	The	columns	in	the	user	and	db	tables	are	shown	here.
The	host	table	is	similar	to	the	db	table	but	has	a	specialized	use	as	described	in
Section	5.8.6,	“Access	Control,	Stage	2:	Request	Verification”.

Table	Name user db
Scope	columns Host Host

	 User Db

	 Password User

Privilege	columns Select_priv Select_priv

	 Insert_priv Insert_priv

	 Update_priv Update_priv

	 Delete_priv Delete_priv

	 Index_priv Index_priv

	 Alter_priv Alter_priv

	 Create_priv Create_priv

	 Drop_priv Drop_priv

	 Grant_priv Grant_priv

	 Create_view_priv Create_view_priv

	 Show_view_priv Show_view_priv

	 Create_routine_priv Create_routine_priv

	 Alter_routine_priv Alter_routine_priv

	 Execute_priv Execute_priv

	 Create_tmp_table_priv Create_tmp_table_priv

	 Lock_tables_priv Lock_tables_priv

	 References_priv References_priv

	 Reload_priv 	
	 Shutdown_priv 	
	 Process_priv 	
	 File_priv 	
	 Show_db_priv 	
	 Super_priv 	
	 Repl_slave_priv 	
	 Repl_client_priv 	
Security	columns ssl_type 	
	 ssl_cipher 	
	 x509_issuer 	
	 x509_subject 	
Resource	control	columns max_questions 	
	 max_updates 	
	 max_connections 	
	 max_user_connections 	

Execute_priv	was	present	in	MySQL	5.0.0,	but	did	not	become	operational	until
MySQL	5.0.3.

The	Create_view_priv	and	Show_view_priv	columns	were	added	in	MySQL
5.0.1.

The	Create_routine_priv,	Alter_routine_priv,	and	max_user_connections
columns	were	added	in	MySQL	5.0.3.

During	the	second	stage	of	access	control,	the	server	performs	request
verification	to	make	sure	that	each	client	has	sufficient	privileges	for	each
request	that	it	issues.	In	addition	to	the	user,	db,	and	host	grant	tables,	the	server
may	also	consult	the	tables_priv	and	columns_priv	tables	for	requests	that
involve	tables.	The	tables_priv	and	columns_priv	tables	provide	finer
privilege	control	at	the	table	and	column	levels.	They	have	the	following
columns:

Table	Name tables_priv columns_priv
Scope	columns Host Host

	 Db Db

	 User User

	 Table_name Table_name

	 	 Column_name

Privilege	columns Table_priv Column_priv

	 Column_priv 	
Other	columns Timestamp Timestamp

	 Grantor 	

The	Timestamp	and	Grantor	columns	currently	are	unused	and	are	discussed	no
further	here.

For	verification	of	requests	that	involve	stored	routines,	the	server	may	consult
the	procs_priv	table.	This	table	has	the	following	columns:

Table	Name procs_priv
Scope	columns Host

	 Db

	 User

Routine_name

	
	 Routine_type

Privilege	columns Proc_priv
Other	columns Timestamp

	 Grantor

The	procs_priv	table	exists	as	of	MySQL	5.0.3.	The	Routine_type	column	was
added	in	MySQL	5.0.6.	It	is	an	ENUM	column	with	values	of	'FUNCTION'	or
'PROCEDURE'	to	indicate	the	type	of	routine	the	row	refers	to.	This	column
allows	privileges	to	be	granted	separately	for	a	function	and	a	procedure	with	the
same	name.

The	Timestamp	and	Grantor	columns	currently	are	unused	and	are	discussed	no
further	here.

Each	grant	table	contains	scope	columns	and	privilege	columns:

Scope	columns	determine	the	scope	of	each	row	(entry)	in	the	tables;	that
is,	the	context	in	which	the	row	applies.	For	example,	a	user	table	row	with
Host	and	User	values	of	'thomas.loc.gov'	and	'bob'	would	be	used	for
authenticating	connections	made	to	the	server	from	the	host
thomas.loc.gov	by	a	client	that	specifies	a	username	of	bob.	Similarly,	a	db
table	row	with	Host,	User,	and	Db	column	values	of	'thomas.loc.gov',
'bob'	and	'reports'	would	be	used	when	bob	connects	from	the	host
thomas.loc.gov	to	access	the	reports	database.	The	tables_priv	and
columns_priv	tables	contain	scope	columns	indicating	tables	or
table/column	combinations	to	which	each	row	applies.	The	procs_priv
scope	columns	indicate	the	stored	routine	to	which	each	row	applies.

Privilege	columns	indicate	which	privileges	are	granted	by	a	table	row;	that
is,	what	operations	can	be	performed.	The	server	combines	the	information
in	the	various	grant	tables	to	form	a	complete	description	of	a	user's
privileges.	Section	5.8.6,	“Access	Control,	Stage	2:	Request	Verification”,
describes	the	rules	that	are	used	to	do	this.

Scope	columns	contain	strings.	They	are	declared	as	shown	here;	the	default
value	for	each	is	the	empty	string:

Column	Name Type
Host CHAR(60)

User CHAR(16)

Password CHAR(16)

Db CHAR(64)

Table_name CHAR(64)

Column_name CHAR(64)

Routine_name CHAR(64)

For	access-checking	purposes,	comparisons	of	Host	values	are	case-insensitive.
User,	Password,	Db,	and	Table_name	values	are	case	sensitive.	Column_name	and
Routine_name	values	are	case	insensitive.

In	the	user,	db,	and	host	tables,	each	privilege	is	listed	in	a	separate	column	that
is	declared	as	ENUM('N','Y')	DEFAULT	'N'.	In	other	words,	each	privilege	can
be	disabled	or	enabled,	with	the	default	being	disabled.

In	the	tables_priv,	columns_priv,	and	procs_priv	tables,	the	privilege
columns	are	declared	as	SET	columns.	Values	in	these	columns	can	contain	any
combination	of	the	privileges	controlled	by	the	table:

Table	Name Column
Name Possible	Set	Elements

tables_priv Table_priv

'Select',	'Insert',	'Update',	'Delete',

'Create',	'Drop',	'Grant',	'References',

'Index',	'Alter',	'Create	View',	'Show

view'

tables_priv Column_priv 'Select',	'Insert',	'Update',	'References'

columns_priv Column_priv 'Select',	'Insert',	'Update',	'References'

procs_priv Proc_priv 'Execute',	'Alter	Routine',	'Grant'

Briefly,	the	server	uses	the	grant	tables	in	the	following	manner:

The	user	table	scope	columns	determine	whether	to	reject	or	allow
incoming	connections.	For	allowed	connections,	any	privileges	granted	in
the	user	table	indicate	the	user's	global	(superuser)	privileges.	Any
privilege	granted	in	this	table	applies	to	all	databases	on	the	server.

Note:	Because	any	global	privilege	is	considered	a	privilege	for	all
databases,	any	global	privilege	enables	a	user	to	see	all	database	names
with	SHOW	DATABASES	or	by	examining	the	SCHEMATA	table	of
INFORMATION_SCHEMA.

The	db	table	scope	columns	determine	which	users	can	access	which
databases	from	which	hosts.	The	privilege	columns	determine	which
operations	are	allowed.	A	privilege	granted	at	the	database	level	applies	to
the	database	and	to	all	its	tables.

The	host	table	is	used	in	conjunction	with	the	db	table	when	you	want	a
given	db	table	row	to	apply	to	several	hosts.	For	example,	if	you	want	a
user	to	be	able	to	use	a	database	from	several	hosts	in	your	network,	leave
the	Host	value	empty	in	the	user's	db	table	row,	then	populate	the	host	table
with	a	row	for	each	of	those	hosts.	This	mechanism	is	described	more	detail
in	Section	5.8.6,	“Access	Control,	Stage	2:	Request	Verification”.

Note:	The	host	table	must	be	modified	directly	with	statements	such	as
INSERT,	UPDATE,	and	DELETE.	It	is	not	affected	by	statements	such	as	GRANT
and	REVOKE	that	modify	the	grant	tables	indirectly.	Most	MySQL
installations	need	not	use	this	table	at	all.

The	tables_priv	and	columns_priv	tables	are	similar	to	the	db	table,	but
are	more	fine-grained:	They	apply	at	the	table	and	column	levels	rather	than
at	the	database	level.	A	privilege	granted	at	the	table	level	applies	to	the
table	and	to	all	its	columns.	A	privilege	granted	at	the	column	level	applies
only	to	a	specific	column.

The	procs_priv	table	applies	to	stored	routines.	A	privilege	granted	at	the
routine	level	applies	only	to	a	single	routine.

Administrative	privileges	(such	as	RELOAD	or	SHUTDOWN)	are	specified	only	in	the
user	table.	The	reason	for	this	is	that	administrative	operations	are	operations	on
the	server	itself	and	are	not	database-specific,	so	there	is	no	reason	to	list	these
privileges	in	the	other	grant	tables.	In	fact,	to	determine	whether	you	can
perform	an	administrative	operation,	the	server	need	consult	only	the	user	table.

The	FILE	privilege	also	is	specified	only	in	the	user	table.	It	is	not	an
administrative	privilege	as	such,	but	your	ability	to	read	or	write	files	on	the
server	host	is	independent	of	the	database	you	are	accessing.

The	mysqld	server	reads	the	contents	of	the	grant	tables	into	memory	when	it
starts.	You	can	tell	it	to	re-read	the	tables	by	issuing	a	FLUSH	PRIVILEGES
statement	or	executing	a	mysqladmin	flush-privileges	or	mysqladmin	reload
command.	Changes	to	the	grant	tables	take	effect	as	indicated	in	Section	5.8.7,
“When	Privilege	Changes	Take	Effect”.

When	you	modify	the	contents	of	the	grant	tables,	it	is	a	good	idea	to	make	sure
that	your	changes	set	up	privileges	the	way	you	want.	To	check	the	privileges	for
a	given	account,	use	the	SHOW	GRANTS	statement.	(See	Section	13.5.4.12,	“SHOW
GRANTS	Syntax”.)	For	example,	to	determine	the	privileges	that	are	granted	to	an
account	with	Host	and	User	values	of	pc84.example.com	and	bob,	issue	this
statement:

SHOW	GRANTS	FOR	'bob'@'pc84.example.com';

For	additional	help	in	diagnosing	privilege-related	problems,	see	Section	5.8.8,
“Causes	of	Access	denied	Errors”.	For	general	advice	on	security	issues,	see
Section	5.7,	“General	Security	Issues”.

5.8.3.	Privileges	Provided	by	MySQL

Information	about	account	privileges	is	stored	in	the	user,	db,	host,
tables_priv,	columns_priv,	and	procs_priv	tables	in	the	mysql	database.	The
MySQL	server	reads	the	contents	of	these	tables	into	memory	when	it	starts	and
re-reads	them	under	the	circumstances	indicated	in	Section	5.8.7,	“When
Privilege	Changes	Take	Effect”.	Access-control	decisions	are	based	on	the	in-
memory	copies	of	the	grant	tables.

The	names	used	in	the	GRANT	and	REVOKE	statements	to	refer	to	privileges	are
shown	in	the	following	table,	along	with	the	column	name	associated	with	each
privilege	in	the	grant	tables	and	the	context	in	which	the	privilege	applies.
Further	information	about	the	meaning	of	each	privilege	may	be	found	at
Section	13.5.1.3,	“GRANT	Syntax”.

Privilege Column Context
CREATE Create_priv databases,	tables,	or	indexes
DROP Drop_priv databases	or	tables

GRANT	OPTION Grant_priv

databases,	tables,	or	stored

routines
REFERENCES References_priv databases	or	tables
ALTER Alter_priv tables
DELETE Delete_priv tables
INDEX Index_priv tables
INSERT Insert_priv tables
SELECT Select_priv tables
UPDATE Update_priv tables
CREATE	VIEW Create_view_priv views
SHOW	VIEW Show_view_priv views
ALTER	ROUTINE Alter_routine_priv stored	routines
CREATE	ROUTINE Create_routine_priv stored	routines
EXECUTE Execute_priv stored	routines
FILE File_priv file	access	on	server	host
CREATE	TEMPORARY

TABLES
Create_tmp_table_priv server	administration

LOCK	TABLES Lock_tables_priv server	administration
CREATE	USER Create_user_priv server	administration
PROCESS Process_priv server	administration
RELOAD Reload_priv server	administration
REPLICATION	CLIENT Repl_client_priv server	administration
REPLICATION	SLAVE Repl_slave_priv server	administration
SHOW	DATABASES Show_db_priv server	administration
SHUTDOWN Shutdown_priv server	administration
SUPER Super_priv server	administration

Some	releases	of	MySQL	introduce	changes	to	the	structure	of	the	grant	tables	to
add	new	privileges	or	features.	Whenever	you	update	to	a	new	version	of
MySQL,	you	should	update	your	grant	tables	to	make	sure	that	they	have	the
current	structure	so	that	you	can	take	advantage	of	any	new	capabilities.	See
Section	5.6.2,	“mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade”.

CREATE	VIEW	and	SHOW	VIEW	were	added	in	MySQL	5.0.1.	CREATE	USER,	CREATE

ROUTINE,	and	ALTER	ROUTINE	were	added	in	MySQL	5.0.3.	Although	EXECUTE
was	present	in	MySQL	5.0.0,	it	did	not	become	operational	until	MySQL	5.0.3.

To	create	or	alter	stored	routines	if	binary	logging	is	enabled,	you	may	also	need
the	SUPER	privilege,	as	described	in	Section	17.4,	“Binary	Logging	of	Stored
Routines	and	Triggers”.

The	CREATE	and	DROP	privileges	allow	you	to	create	new	databases	and	tables,	or
to	drop	(remove)	existing	databases	and	tables.	If	you	grant	the	DROP	privilege
for	the	mysql	database	to	a	user,	that	user	can	drop	the	database	in	which	the
MySQL	access	privileges	are	stored.

The	SELECT,	INSERT,	UPDATE,	and	DELETE	privileges	allow	you	to	perform
operations	on	rows	in	existing	tables	in	a	database.	INSERT	is	also	required	for
the	ANALYZE	TABLE,	OPTIMIZE	TABLE,	and	REPAIR	TABLE	table-maintenance
statements.

SELECT	statements	require	the	SELECT	privilege	only	if	they	actually	retrieve
rows	from	a	table.	Some	SELECT	statements	do	not	access	tables	and	can	be
executed	without	permission	for	any	database.	For	example,	you	can	use	the
mysql	client	as	a	simple	calculator	to	evaluate	expressions	that	make	no
reference	to	tables:

SELECT	1+1;

SELECT	PI()*2;

The	INDEX	privilege	enables	you	to	create	or	drop	(remove)	indexes.	INDEX
applies	to	existing	tables.	If	you	have	the	CREATE	privilege	for	a	table,	you	can
include	index	definitions	in	the	CREATE	TABLE	statement.

The	ALTER	privilege	enables	you	to	use	ALTER	TABLE	to	change	the	structure	of
or	rename	tables.

The	CREATE	ROUTINE	privilege	is	needed	for	creating	stored	routines	(functions
and	procedures).	ALTER	ROUTINE	privilege	is	needed	for	altering	or	dropping
stored	routines,	and	EXECUTE	is	needed	for	executing	stored	routines.

The	GRANT	privilege	enables	you	to	give	to	other	users	those	privileges	that	you
yourself	possess.	It	can	be	used	for	databases,	tables,	and	stored	routines.

The	FILE	privilege	gives	you	permission	to	read	and	write	files	on	the	server
host	using	the	LOAD	DATA	INFILE	and	SELECT	...	INTO	OUTFILE	statements.	A
user	who	has	the	FILE	privilege	can	read	any	file	on	the	server	host	that	is	either
world-readable	or	readable	by	the	MySQL	server.	(This	implies	the	user	can	read
any	file	in	any	database	directory,	because	the	server	can	access	any	of	those
files.)	The	FILE	privilege	also	enables	the	user	to	create	new	files	in	any
directory	where	the	MySQL	server	has	write	access.	As	a	security	measure,	the
server	will	not	overwrite	existing	files.

The	remaining	privileges	are	used	for	administrative	operations.	Many	of	them
can	be	performed	by	using	the	mysqladmin	program	or	by	issuing	SQL
statements.	The	following	table	shows	which	mysqladmin	commands	each
administrative	privilege	enables	you	to	execute:

Privilege Commands	Permitted	to	Privilege	Holders

RELOAD
flush-hosts,	flush-logs,	flush-privileges,	flush-status,
flush-tables,	flush-threads,	refresh,	reload

SHUTDOWN shutdown

PROCESS processlist

SUPER kill

The	reload	command	tells	the	server	to	re-read	the	grant	tables	into	memory.
flush-privileges	is	a	synonym	for	reload.	The	refresh	command	closes	and
reopens	the	log	files	and	flushes	all	tables.	The	other	flush-xxx	commands
perform	functions	similar	to	refresh,	but	are	more	specific	and	may	be
preferable	in	some	instances.	For	example,	if	you	want	to	flush	just	the	log	files,
flush-logs	is	a	better	choice	than	refresh.

The	shutdown	command	shuts	down	the	server.	There	is	no	corresponding	SQL
statement.

The	processlist	command	displays	information	about	the	threads	executing
within	the	server	(that	is,	information	about	the	statements	being	executed	by
clients).	The	kill	command	terminates	server	threads.	You	can	always	display
or	kill	your	own	threads,	but	you	need	the	PROCESS	privilege	to	display	threads
initiated	by	other	users	and	the	SUPER	privilege	to	kill	them.	See
Section	13.5.5.3,	“KILL	Syntax”.

The	CREATE	TEMPORARY	TABLES	privilege	enables	the	use	of	the	keyword

TEMPORARY	in	CREATE	TABLE	statements.

The	LOCK	TABLES	privilege	enables	the	use	of	explicit	LOCK	TABLES	statements
to	lock	tables	for	which	you	have	the	SELECT	privilege.	This	includes	the	use	of
write	locks,	which	prevents	anyone	else	from	reading	the	locked	table.

The	REPLICATION	CLIENT	privilege	enables	the	use	of	SHOW	MASTER	STATUS	and
SHOW	SLAVE	STATUS.

The	REPLICATION	SLAVE	privilege	should	be	granted	to	accounts	that	are	used	by
slave	servers	to	connect	to	the	current	server	as	their	master.	Without	this
privilege,	the	slave	cannot	request	updates	that	have	been	made	to	databases	on
the	master	server.

The	SHOW	DATABASES	privilege	allows	the	account	to	see	database	names	by
issuing	the	SHOW	DATABASE	statement.	Accounts	that	do	not	have	this	privilege
see	only	databases	for	which	they	have	some	privileges,	and	cannot	use	the
statement	at	all	if	the	server	was	started	with	the	--skip-show-database	option.
Note	that	any	global	privilege	is	a	privilege	for	the	database.

It	is	a	good	idea	to	grant	to	an	account	only	those	privileges	that	it	needs.	You
should	exercise	particular	caution	in	granting	the	FILE	and	administrative
privileges:

The	FILE	privilege	can	be	abused	to	read	into	a	database	table	any	files	that
the	MySQL	server	can	read	on	the	server	host.	This	includes	all	world-
readable	files	and	files	in	the	server's	data	directory.	The	table	can	then	be
accessed	using	SELECT	to	transfer	its	contents	to	the	client	host.

The	GRANT	privilege	enables	users	to	give	their	privileges	to	other	users.
Two	users	that	have	different	privileges	and	with	the	GRANT	privilege	are
able	to	combine	privileges.

The	ALTER	privilege	may	be	used	to	subvert	the	privilege	system	by
renaming	tables.

The	SHUTDOWN	privilege	can	be	abused	to	deny	service	to	other	users
entirely	by	terminating	the	server.

The	PROCESS	privilege	can	be	used	to	view	the	plain	text	of	currently

executing	statements,	including	statements	that	set	or	change	passwords.

The	SUPER	privilege	can	be	used	to	terminate	other	clients	or	change	how
the	server	operates.

Privileges	granted	for	the	mysql	database	itself	can	be	used	to	change
passwords	and	other	access	privilege	information.	Passwords	are	stored
encrypted,	so	a	malicious	user	cannot	simply	read	them	to	know	the	plain
text	password.	However,	a	user	with	write	access	to	the	user	table
Password	column	can	change	an	account's	password,	and	then	connect	to
the	MySQL	server	using	that	account.

There	are	some	things	that	you	cannot	do	with	the	MySQL	privilege	system:

You	cannot	explicitly	specify	that	a	given	user	should	be	denied	access.
That	is,	you	cannot	explicitly	match	a	user	and	then	refuse	the	connection.

You	cannot	specify	that	a	user	has	privileges	to	create	or	drop	tables	in	a
database	but	not	to	create	or	drop	the	database	itself.

A	password	applies	globally	to	an	account.	You	cannot	associate	a	password
with	a	specific	object	such	as	a	database,	table,	or	routine.

5.8.4.	Connecting	to	the	MySQL	Server

MySQL	client	programs	generally	expect	you	to	specify	certain	connection
parameters	when	you	want	to	access	a	MySQL	server:

The	name	of	the	host	where	the	MySQL	server	is	running

Your	username

Your	password

For	example,	the	mysql	client	can	be	started	as	follows	from	a	command-line
prompt	(indicated	here	by	shell>):

shell>	mysql	-h	host_name	-u	user_name	-pyour_pass

Alternative	forms	of	the	-h,	-u,	and	-p	options	are	--host=host_name,	--

user=user_name,	and	--password=your_pass.	Note	that	there	is	no	space
between	-p	or	--password=	and	the	password	following	it.

If	you	use	a	-p	or	--password	option	but	do	not	specify	the	password	value,	the
client	program	prompts	you	to	enter	the	password.	The	password	is	not
displayed	as	you	enter	it.	This	is	more	secure	than	giving	the	password	on	the
command	line.	Any	user	on	your	system	may	be	able	to	see	a	password	specified
on	the	command	line	by	executing	a	command	such	as	ps	auxww.	See
Section	5.9.6,	“Keeping	Your	Password	Secure”.

MySQL	client	programs	use	default	values	for	any	connection	parameter	option
that	you	do	not	specify:

The	default	hostname	is	localhost.

The	default	username	is	ODBC	on	Windows	and	your	Unix	login	name	on
Unix.

No	password	is	supplied	if	neither	-p	nor	--passwordis	given.

Thus,	for	a	Unix	user	with	a	login	name	of	joe,	all	of	the	following	commands
are	equivalent:

shell>	mysql	-h	localhost	-u	joe

shell>	mysql	-h	localhost

shell>	mysql	-u	joe

shell>	mysql

Other	MySQL	clients	behave	similarly.

You	can	specify	different	default	values	to	be	used	when	you	make	a	connection
so	that	you	need	not	enter	them	on	the	command	line	each	time	you	invoke	a
client	program.	This	can	be	done	in	a	couple	of	ways:

	You	can	specify	connection	parameters	in	the	[client]	section	of	an
option	file.	The	relevant	section	of	the	file	might	look	like	this:

[client]

host=host_name

user=user_name

password=your_pass

Section	4.3.2,	“Using	Option	Files”,	discusses	option	files	further.

	You	can	specify	some	connection	parameters	using	environment	variables.
The	host	can	be	specified	for	mysql	using	MYSQL_HOST.	The	MySQL
username	can	be	specified	using	USER	(this	is	for	Windows	and	NetWare
only).	The	password	can	be	specified	using	MYSQL_PWD,	although	this	is
insecure;	see	Section	5.9.6,	“Keeping	Your	Password	Secure”.	For	a	list	of
variables,	see	Appendix	F,	Environment	Variables.

5.8.5.	Access	Control,	Stage	1:	Connection	Verification

When	you	attempt	to	connect	to	a	MySQL	server,	the	server	accepts	or	rejects
the	connection	based	on	your	identity	and	whether	you	can	verify	your	identity
by	supplying	the	correct	password.	If	not,	the	server	denies	access	to	you
completely.	Otherwise,	the	server	accepts	the	connection,	and	then	enters	Stage	2
and	waits	for	requests.

Your	identity	is	based	on	two	pieces	of	information:

The	client	host	from	which	you	connect

Your	MySQL	username

Identity	checking	is	performed	using	the	three	user	table	scope	columns	(Host,
User,	and	Password).	The	server	accepts	the	connection	only	if	the	Host	and
User	columns	in	some	user	table	row	match	the	client	hostname	and	username
and	the	client	supplies	the	password	specified	in	that	row.

Host	values	in	the	user	table	may	be	specified	as	follows:

A	Host	value	may	be	a	hostname	or	an	IP	number,	or	'localhost'	to
indicate	the	local	host.

	You	can	use	the	wildcard	characters	‘%’	and	‘_’	in	Host	column	values.
These	have	the	same	meaning	as	for	pattern-matching	operations	performed
with	the	LIKE	operator.	For	example,	a	Host	value	of	'%'	matches	any
hostname,	whereas	a	value	of	'%.mysql.com'	matches	any	host	in	the
mysql.com	domain.

	For	Host	values	specified	as	IP	numbers,	you	can	specify	a	netmask

indicating	how	many	address	bits	to	use	for	the	network	number.	For
example:

GRANT	ALL	PRIVILEGES	ON	db.*	TO	david@'192.58.197.0/255.255.255.0';

This	allows	david	to	connect	from	any	client	host	having	an	IP	number
client_ip	for	which	the	following	condition	is	true:

client_ip	&	netmask	=	host_ip

That	is,	for	the	GRANT	statement	just	shown:

client_ip	&	255.255.255.0	=	192.58.197.0

IP	numbers	that	satisfy	this	condition	and	can	connect	to	the	MySQL	server
are	those	in	the	range	from	192.58.197.0	to	192.58.197.255.

Note:	The	netmask	can	only	be	used	to	tell	the	server	to	use	8,	16,	24,	or	32
bits	of	the	address.	Examples:

192.0.0.0/255.0.0.0:	anything	on	the	192	class	A	network

192.168.0.0/255.255.0.0:	anything	on	the	192.168	class	B	network

192.168.1.0/255.255.255.0:	anything	on	the	192.168.1	class	C
network

192.168.1.1:	only	this	specific	IP

The	following	netmask	(28	bits)	will	not	work:

192.168.0.1/255.255.255.240

A	blank	Host	value	in	a	db	table	row	means	that	its	privileges	should	be
combined	with	those	in	the	row	in	the	host	table	that	matches	the	client
hostname.	The	privileges	are	combined	using	an	AND	(intersection)
operation,	not	OR	(union).	Section	5.8.6,	“Access	Control,	Stage	2:	Request
Verification”,	discusses	use	of	the	host	table	further.

A	blank	Host	value	in	the	other	grant	tables	is	the	same	as	'%'.

Because	you	can	use	IP	wildcard	values	in	the	Host	column	(for	example,

'144.155.166.%'	to	match	every	host	on	a	subnet),	someone	could	try	to	exploit
this	capability	by	naming	a	host	144.155.166.somewhere.com.	To	foil	such
attempts,	MySQL	disallows	matching	on	hostnames	that	start	with	digits	and	a
dot.	Thus,	if	you	have	a	host	named	something	like	1.2.foo.com,	its	name	never
matches	the	Host	column	of	the	grant	tables.	An	IP	wildcard	value	can	match
only	IP	numbers,	not	hostnames.

In	the	User	column,	wildcard	characters	are	not	allowed,	but	you	can	specify	a
blank	value,	which	matches	any	name.	If	the	user	table	row	that	matches	an
incoming	connection	has	a	blank	username,	the	user	is	considered	to	be	an
anonymous	user	with	no	name,	not	a	user	with	the	name	that	the	client	actually
specified.	This	means	that	a	blank	username	is	used	for	all	further	access
checking	for	the	duration	of	the	connection	(that	is,	during	Stage	2).

The	Password	column	can	be	blank.	This	is	not	a	wildcard	and	does	not	mean
that	any	password	matches.	It	means	that	the	user	must	connect	without
specifying	a	password.

Non-blank	Password	values	in	the	user	table	represent	encrypted	passwords.
MySQL	does	not	store	passwords	in	plaintext	form	for	anyone	to	see.	Rather,	the
password	supplied	by	a	user	who	is	attempting	to	connect	is	encrypted	(using	the
PASSWORD()	function).	The	encrypted	password	then	is	used	during	the
connection	process	when	checking	whether	the	password	is	correct.	(This	is
done	without	the	encrypted	password	ever	traveling	over	the	connection.)	From
MySQL's	point	of	view,	the	encrypted	password	is	the	real	password,	so	you
should	never	give	anyone	access	to	it.	In	particular,	do	not	give	non-
administrative	users	read	access	to	tables	in	the	mysql	database.

MySQL	5.0	employs	the	stronger	authentication	method	(first	implemented	in
MySQL	4.1)	that	has	better	password	protection	during	the	connection	process
than	in	earlier	versions.	It	is	secure	even	if	TCP/IP	packets	are	sniffed	or	the
mysql	database	is	captured.	Section	5.8.9,	“Password	Hashing	as	of	MySQL
4.1”,	discusses	password	encryption	further.

The	following	table	shows	how	various	combinations	of	Host	and	User	values	in
the	user	table	apply	to	incoming	connections.

Host	Value
User

Value Allowable	Connections

'thomas.loc.gov' 'fred' fred,	connecting	from
thomas.loc.gov

'thomas.loc.gov' ''
Any	user,	connecting	from
thomas.loc.gov

'%' 'fred' fred,	connecting	from	any	host
'%' '' Any	user,	connecting	from	any	host

'%.loc.gov' 'fred'
fred,	connecting	from	any	host	in
the	loc.gov	domain

'x.y.%' 'fred'

fred,	connecting	from	x.y.net,
x.y.com,	x.y.edu,	and	so	on	(this	is
probably	not	useful)

'144.155.166.177' 'fred'
fred,	connecting	from	the	host	with
IP	address	144.155.166.177

'144.155.166.%' 'fred'
fred,	connecting	from	any	host	in
the	144.155.166	class	C	subnet

'144.155.166.0/255.255.255.0' 'fred' Same	as	previous	example

It	is	possible	for	the	client	hostname	and	username	of	an	incoming	connection	to
match	more	than	one	row	in	the	user	table.	The	preceding	set	of	examples
demonstrates	this:	Several	of	the	entries	shown	match	a	connection	from
thomas.loc.gov	by	fred.

When	multiple	matches	are	possible,	the	server	must	determine	which	of	them	to
use.	It	resolves	this	issue	as	follows:

Whenever	the	server	reads	the	user	table	into	memory,	it	sorts	the	rows.

When	a	client	attempts	to	connect,	the	server	looks	through	the	rows	in
sorted	order.

The	server	uses	the	first	row	that	matches	the	client	hostname	and
username.

To	see	how	this	works,	suppose	that	the	user	table	looks	like	this:

+-----------+----------+-

|	Host						|	User					|	...

+-----------+----------+-

|	%									|	root					|	...

|	%									|	jeffrey		|	...

|	localhost	|	root					|	...

|	localhost	|										|	...

+-----------+----------+-

When	the	server	reads	the	table	into	memory,	it	orders	the	rows	with	the	most-
specific	Host	values	first.	Literal	hostnames	and	IP	numbers	are	the	most
specific.	The	pattern	'%'	means	“any	host”	and	is	least	specific.	Rows	with	the
same	Host	value	are	ordered	with	the	most-specific	User	values	first	(a	blank
User	value	means	“any	user”	and	is	least	specific).	For	the	user	table	just
shown,	the	result	after	sorting	looks	like	this:

+-----------+----------+-

|	Host						|	User					|	...

+-----------+----------+-

|	localhost	|	root					|	...

|	localhost	|										|	...

|	%									|	jeffrey		|	...

|	%									|	root					|	...

+-----------+----------+-

When	a	client	attempts	to	connect,	the	server	looks	through	the	sorted	rows	and
uses	the	first	match	found.	For	a	connection	from	localhost	by	jeffrey,	two	of
the	rows	from	the	table	match:	the	one	with	Host	and	User	values	of
'localhost'	and	'',	and	the	one	with	values	of	'%'	and	'jeffrey'.	The
'localhost'	row	appears	first	in	sorted	order,	so	that	is	the	one	the	server	uses.

Here	is	another	example.	Suppose	that	the	user	table	looks	like	this:

+----------------+----------+-

|	Host											|	User					|	...

+----------------+----------+-

|	%														|	jeffrey		|	...

|	thomas.loc.gov	|										|	...

+----------------+----------+-

The	sorted	table	looks	like	this:

+----------------+----------+-

|	Host											|	User					|	...

+----------------+----------+-

|	thomas.loc.gov	|										|	...

|	%														|	jeffrey		|	...

+----------------+----------+-

A	connection	by	jeffrey	from	thomas.loc.gov	is	matched	by	the	first	row,
whereas	a	connection	by	jeffrey	from	whitehouse.gov	is	matched	by	the
second.

It	is	a	common	misconception	to	think	that,	for	a	given	username,	all	rows	that
explicitly	name	that	user	are	used	first	when	the	server	attempts	to	find	a	match
for	the	connection.	This	is	simply	not	true.	The	previous	example	illustrates	this,
where	a	connection	from	thomas.loc.gov	by	jeffrey	is	first	matched	not	by	the
row	containing	'jeffrey'	as	the	User	column	value,	but	by	the	row	with	no
username.	As	a	result,	jeffrey	is	authenticated	as	an	anonymous	user,	even
though	he	specified	a	username	when	connecting.

If	you	are	able	to	connect	to	the	server,	but	your	privileges	are	not	what	you
expect,	you	probably	are	being	authenticated	as	some	other	account.	To	find	out
what	account	the	server	used	to	authenticate	you,	use	the	CURRENT_USER()
function.	(See	Section	12.9.3,	“Information	Functions”.)	It	returns	a	value	in
user_name@host_name	format	that	indicates	the	User	and	Host	values	from	the
matching	user	table	row.	Suppose	that	jeffrey	connects	and	issues	the
following	query:

mysql>	SELECT	CURRENT_USER();

+----------------+

|	CURRENT_USER()	|

+----------------+

|	@localhost					|

+----------------+

The	result	shown	here	indicates	that	the	matching	user	table	row	had	a	blank
User	column	value.	In	other	words,	the	server	is	treating	jeffrey	as	an
anonymous	user.

Another	thing	you	can	do	to	diagnose	authentication	problems	is	to	print	out	the
user	table	and	sort	it	by	hand	to	see	where	the	first	match	is	being	made.

5.8.6.	Access	Control,	Stage	2:	Request	Verification

After	you	establish	a	connection,	the	server	enters	Stage	2	of	access	control.	For
each	request	that	you	issue	via	that	connection,	the	server	determines	what
operation	you	want	to	perform,	then	checks	whether	you	have	sufficient
privileges	to	do	so.	This	is	where	the	privilege	columns	in	the	grant	tables	come

into	play.	These	privileges	can	come	from	any	of	the	user,	db,	host,
tables_priv,	columns_priv,	or	procs_priv	tables.	(You	may	find	it	helpful	to
refer	to	Section	5.8.2,	“How	the	Privilege	System	Works”,	which	lists	the
columns	present	in	each	of	the	grant	tables.)

The	user	table	grants	privileges	that	are	assigned	to	you	on	a	global	basis	and
that	apply	no	matter	what	the	default	database	is.	For	example,	if	the	user	table
grants	you	the	DELETE	privilege,	you	can	delete	rows	from	any	table	in	any
database	on	the	server	host!	In	other	words,	user	table	privileges	are	superuser
privileges.	It	is	wise	to	grant	privileges	in	the	user	table	only	to	superusers	such
as	database	administrators.	For	other	users,	you	should	leave	all	privileges	in	the
user	table	set	to	'N'	and	grant	privileges	at	more	specific	levels	only.	You	can
grant	privileges	for	particular	databases,	tables,	columns,	or	routines.

The	db	and	host	tables	grant	database-specific	privileges.	Values	in	the	scope
columns	of	these	tables	can	take	the	following	forms:

The	wildcard	characters	‘%’	and	‘_’	can	be	used	in	the	Host	and	Db	columns
of	either	table.	These	have	the	same	meaning	as	for	pattern-matching
operations	performed	with	the	LIKE	operator.	If	you	want	to	use	either
character	literally	when	granting	privileges,	you	must	escape	it	with	a
backslash.	For	example,	to	include	the	underscore	character	(‘_’)	as	part	of
a	database	name,	specify	it	as	‘_’	in	the	GRANT	statement.

A	'%'	Host	value	in	the	db	table	means	“any	host.”	A	blank	Host	value	in
the	db	table	means	“consult	the	host	table	for	further	information”	(a
process	that	is	described	later	in	this	section).

A	'%'	or	blank	Host	value	in	the	host	table	means	“any	host.”

A	'%'	or	blank	Db	value	in	either	table	means	“any	database.”

A	blank	User	value	in	either	table	matches	the	anonymous	user.

The	server	reads	the	db	and	host	tables	into	memory	and	sorts	them	at	the	same
time	that	it	reads	the	user	table.	The	server	sorts	the	db	table	based	on	the	Host,
Db,	and	User	scope	columns,	and	sorts	the	host	table	based	on	the	Host	and	Db
scope	columns.	As	with	the	user	table,	sorting	puts	the	most-specific	values	first
and	least-specific	values	last,	and	when	the	server	looks	for	matching	entries,	it
uses	the	first	match	that	it	finds.

The	tables_priv	columns_priv,	and	procs_priv	tables	grant	table-specific,
column-specific,	and	routine-specific	privileges.	Values	in	the	scope	columns	of
these	tables	can	take	the	following	forms:

The	wildcard	characters	‘%’	and	‘_’	can	be	used	in	the	Host	column.	These
have	the	same	meaning	as	for	pattern-matching	operations	performed	with
the	LIKE	operator.

A	'%'	or	blank	Host	value	means	“any	host.”

The	Db,	Table_name,	and	Column_name	columns	cannot	contain	wildcards	or
be	blank.

The	server	sorts	the	tables_priv,	columns_priv,	and	procs_priv	tables	based
on	the	Host,	Db,	and	User	columns.	This	is	similar	to	db	table	sorting,	but
simpler	because	only	the	Host	column	can	contain	wildcards.

The	server	uses	the	sorted	tables	to	verify	each	request	that	it	receives.	For
requests	that	require	administrative	privileges	such	as	SHUTDOWN	or	RELOAD,	the
server	checks	only	the	user	table	row	because	that	is	the	only	table	that	specifies
administrative	privileges.	The	server	grants	access	if	the	row	allows	the
requested	operation	and	denies	access	otherwise.	For	example,	if	you	want	to
execute	mysqladmin	shutdown	but	your	user	table	row	doesn't	grant	the
SHUTDOWN	privilege	to	you,	the	server	denies	access	without	even	checking	the	db
or	host	tables.	(They	contain	no	Shutdown_priv	column,	so	there	is	no	need	to
do	so.)

For	database-related	requests	(INSERT,	UPDATE,	and	so	on),	the	server	first	checks
the	user's	global	(superuser)	privileges	by	looking	in	the	user	table	row.	If	the
row	allows	the	requested	operation,	access	is	granted.	If	the	global	privileges	in
the	user	table	are	insufficient,	the	server	determines	the	user's	database-specific
privileges	by	checking	the	db	and	host	tables:

1.	 The	server	looks	in	the	db	table	for	a	match	on	the	Host,	Db,	and	User
columns.	The	Host	and	User	columns	are	matched	to	the	connecting	user's
hostname	and	MySQL	username.	The	Db	column	is	matched	to	the	database
that	the	user	wants	to	access.	If	there	is	no	row	for	the	Host	and	User,
access	is	denied.

2.	 If	there	is	a	matching	db	table	row	and	its	Host	column	is	not	blank,	that

row	defines	the	user's	database-specific	privileges.

3.	 If	the	matching	db	table	row's	Host	column	is	blank,	it	signifies	that	the
host	table	enumerates	which	hosts	should	be	allowed	access	to	the
database.	In	this	case,	a	further	lookup	is	done	in	the	host	table	to	find	a
match	on	the	Host	and	Db	columns.	If	no	host	table	row	matches,	access	is
denied.	If	there	is	a	match,	the	user's	database-specific	privileges	are
computed	as	the	intersection	(not	the	union!)	of	the	privileges	in	the	db	and
host	table	entries;	that	is,	the	privileges	that	are	'Y'	in	both	entries.	(This
way	you	can	grant	general	privileges	in	the	db	table	row	and	then
selectively	restrict	them	on	a	host-by-host	basis	using	the	host	table
entries.)

After	determining	the	database-specific	privileges	granted	by	the	db	and	host
table	entries,	the	server	adds	them	to	the	global	privileges	granted	by	the	user
table.	If	the	result	allows	the	requested	operation,	access	is	granted.	Otherwise,
the	server	successively	checks	the	user's	table	and	column	privileges	in	the
tables_priv	and	columns_priv	tables,	adds	those	to	the	user's	privileges,	and
allows	or	denies	access	based	on	the	result.	For	stored	routine	operations,	the
server	uses	the	procs_priv	table	rather	than	tables_priv	and	columns_priv.

Expressed	in	boolean	terms,	the	preceding	description	of	how	a	user's	privileges
are	calculated	may	be	summarized	like	this:

global	privileges

OR	(database	privileges	AND	host	privileges)

OR	table	privileges

OR	column	privileges

OR	routine	privileges

It	may	not	be	apparent	why,	if	the	global	user	row	privileges	are	initially	found
to	be	insufficient	for	the	requested	operation,	the	server	adds	those	privileges	to
the	database,	table,	and	column	privileges	later.	The	reason	is	that	a	request
might	require	more	than	one	type	of	privilege.	For	example,	if	you	execute	an
INSERT	INTO	...	SELECT	statement,	you	need	both	the	INSERT	and	the	SELECT
privileges.	Your	privileges	might	be	such	that	the	user	table	row	grants	one
privilege	and	the	db	table	row	grants	the	other.	In	this	case,	you	have	the
necessary	privileges	to	perform	the	request,	but	the	server	cannot	tell	that	from
either	table	by	itself;	the	privileges	granted	by	the	entries	in	both	tables	must	be
combined.

The	host	table	is	not	affected	by	the	GRANT	or	REVOKE	statements,	so	it	is	unused
in	most	MySQL	installations.	If	you	modify	it	directly,	you	can	use	it	for	some
specialized	purposes,	such	as	to	maintain	a	list	of	secure	servers.	For	example,	at
TcX,	the	host	table	contains	a	list	of	all	machines	on	the	local	network.	These
are	granted	all	privileges.

You	can	also	use	the	host	table	to	indicate	hosts	that	are	not	secure.	Suppose	that
you	have	a	machine	public.your.domain	that	is	located	in	a	public	area	that
you	do	not	consider	secure.	You	can	allow	access	to	all	hosts	on	your	network
except	that	machine	by	using	host	table	entries	like	this:

+--------------------+----+-

|	Host															|	Db	|	...

+--------------------+----+-

|	public.your.domain	|	%		|	...	(all	privileges	set	to	'N')

|	%.your.domain						|	%		|	...	(all	privileges	set	to	'Y')

+--------------------+----+-

Naturally,	you	should	always	test	your	changes	to	the	grant	tables	(for	example,
by	using	SHOW	GRANTS)	to	make	sure	that	your	access	privileges	are	actually	set
up	the	way	you	think	they	are.

5.8.7.	When	Privilege	Changes	Take	Effect

When	mysqld	starts,	it	reads	all	grant	table	contents	into	memory.	The	in-
memory	tables	become	effective	for	access	control	at	that	point.

When	the	server	reloads	the	grant	tables,	privileges	for	existing	client
connections	are	affected	as	follows:

Table	and	column	privilege	changes	take	effect	with	the	client's	next
request.

Database	privilege	changes	take	effect	at	the	next	USE	db_name	statement.

Note:	Client	applications	may	cache	the	database	name;	thus,	this	effect
may	not	be	visible	to	them	without	actually	changing	to	a	different	database
or	executing	a	FLUSH	PRIVILEGES	statement.

Changes	to	global	privileges	and	passwords	take	effect	the	next	time	the
client	connects.

If	you	modify	the	grant	tables	indirectly	using	statements	such	as	GRANT,	REVOKE,
or	SET	PASSWORD,	the	server	notices	these	changes	and	loads	the	grant	tables	into
memory	again	immediately.

If	you	modify	the	grant	tables	directly	using	statements	such	as	INSERT,	UPDATE,
or	DELETE,	your	changes	have	no	effect	on	privilege	checking	until	you	either
restart	the	server	or	tell	it	to	reload	the	tables.	To	reload	the	grant	tables
manually,	issue	a	FLUSH	PRIVILEGES	statement	or	execute	a	mysqladmin	flush-
privileges	or	mysqladmin	reload	command.

If	you	change	the	grant	tables	directly	but	forget	to	reload	them,	your	changes
have	no	effect	until	you	restart	the	server.	This	may	leave	you	wondering	why
your	changes	do	not	seem	to	make	any	difference!

5.8.8.	Causes	of	Access	denied	Errors

If	you	encounter	problems	when	you	try	to	connect	to	the	MySQL	server,	the
following	items	describe	some	courses	of	action	you	can	take	to	correct	the
problem.

Make	sure	that	the	server	is	running.	If	it	is	not	running,	you	cannot	connect
to	it.	For	example,	if	you	attempt	to	connect	to	the	server	and	see	a	message
such	as	one	of	those	following,	one	cause	might	be	that	the	server	is	not
running:

shell>	mysql

ERROR	2003:	Can't	connect	to	MySQL	server	on	'host_name'	(111)

shell>	mysql

ERROR	2002:	Can't	connect	to	local	MySQL	server	through	socket

'/tmp/mysql.sock'	(111)

It	might	also	be	that	the	server	is	running,	but	you	are	trying	to	connect
using	a	TCP/IP	port,	named	pipe,	or	Unix	socket	file	different	from	the	one
on	which	the	server	is	listening.	To	correct	this	when	you	invoke	a	client
program,	specify	a	--port	option	to	indicate	the	proper	port	number,	or	a	-
-socket	option	to	indicate	the	proper	named	pipe	or	Unix	socket	file.	To
find	out	where	the	socket	file	is,	you	can	use	this	command:

shell>	netstat	-ln	|	grep	mysql

The	grant	tables	must	be	properly	set	up	so	that	the	server	can	use	them	for

access	control.	For	some	distribution	types	(such	as	binary	distributions	on
Windows,	or	RPM	distributions	on	Linux),	the	installation	process
initializes	the	mysql	database	containing	the	grant	tables.	For	distributions
that	do	not	do	this,	you	must	initialize	the	grant	tables	manually	by	running
the	mysql_install_db	script.	For	details,	see	Section	2.10.2,	“Unix	Post-
Installation	Procedures”.

One	way	to	determine	whether	you	need	to	initialize	the	grant	tables	is	to
look	for	a	mysql	directory	under	the	data	directory.	(The	data	directory
normally	is	named	data	or	var	and	is	located	under	your	MySQL
installation	directory.)	Make	sure	that	you	have	a	file	named	user.MYD	in
the	mysql	database	directory.	If	you	do	not,	execute	the	mysql_install_db
script.	After	running	this	script	and	starting	the	server,	test	the	initial
privileges	by	executing	this	command:

shell>	mysql	-u	root	test

The	server	should	let	you	connect	without	error.

After	a	fresh	installation,	you	should	connect	to	the	server	and	set	up	your
users	and	their	access	permissions:

shell>	mysql	-u	root	mysql

The	server	should	let	you	connect	because	the	MySQL	root	user	has	no
password	initially.	That	is	also	a	security	risk,	so	setting	the	password	for
the	root	accounts	is	something	you	should	do	while	you're	setting	up	your
other	MySQL	accounts.	For	instructions	on	setting	the	initial	passwords,
see	Section	2.10.3,	“Securing	the	Initial	MySQL	Accounts”.

	If	you	have	updated	an	existing	MySQL	installation	to	a	newer	version,	did
you	run	the	mysql_upgrade	script?	If	not,	do	so.	The	structure	of	the	grant
tables	changes	occasionally	when	new	capabilities	are	added,	so	after	an
upgrade	you	should	always	make	sure	that	your	tables	have	the	current
structure.	For	instructions,	see	Section	5.6.2,	“mysql_upgrade	—	Check
Tables	for	MySQL	Upgrade”.

If	a	client	program	receives	the	following	error	message	when	it	tries	to
connect,	it	means	that	the	server	expects	passwords	in	a	newer	format	than
the	client	is	capable	of	generating:

shell>	mysql

Client	does	not	support	authentication	protocol	requested

by	server;	consider	upgrading	MySQL	client

For	information	on	how	to	deal	with	this,	see	Section	5.8.9,	“Password
Hashing	as	of	MySQL	4.1”,	and	Section	A.2.3,	“Client	does	not
support	authentication	protocol”.

If	you	try	to	connect	as	root	and	get	the	following	error,	it	means	that	you
do	not	have	a	row	in	the	user	table	with	a	User	column	value	of	'root'	and
that	mysqld	cannot	resolve	the	hostname	for	your	client:

Access	denied	for	user	''@'unknown'	to	database	mysql

In	this	case,	you	must	restart	the	server	with	the	--skip-grant-tables
option	and	edit	your	/etc/hosts	file	or	\windows\hosts	file	to	add	an
entry	for	your	host.

	Remember	that	client	programs	use	connection	parameters	specified	in
option	files	or	environment	variables.	If	a	client	program	seems	to	be
sending	incorrect	default	connection	parameters	when	you	have	not
specified	them	on	the	command	line,	check	your	environment	and	any
applicable	option	files.	For	example,	if	you	get	Access	denied	when	you
run	a	client	without	any	options,	make	sure	that	you	have	not	specified	an
old	password	in	any	of	your	option	files!

You	can	suppress	the	use	of	option	files	by	a	client	program	by	invoking	it
with	the	--no-defaults	option.	For	example:

shell>	mysqladmin	--no-defaults	-u	root	version

The	option	files	that	clients	use	are	listed	in	Section	4.3.2,	“Using	Option
Files”.	Environment	variables	are	listed	in	Appendix	F,	Environment
Variables.

If	you	get	the	following	error,	it	means	that	you	are	using	an	incorrect	root
password:

shell>	mysqladmin	-u	root	-pxxxx	ver

Access	denied	for	user	'root'@'localhost'	(using	password:	YES)

If	the	preceding	error	occurs	even	when	you	have	not	specified	a	password,

it	means	that	you	have	an	incorrect	password	listed	in	some	option	file.	Try
the	--no-defaults	option	as	described	in	the	previous	item.

For	information	on	changing	passwords,	see	Section	5.9.5,	“Assigning
Account	Passwords”.

If	you	have	lost	or	forgotten	the	root	password,	you	can	restart	mysqld
with	--skip-grant-tables	to	change	the	password.	See	Section	A.4.1,
“How	to	Reset	the	Root	Password”.

If	you	change	a	password	by	using	SET	PASSWORD,	INSERT,	or	UPDATE,	you
must	encrypt	the	password	using	the	PASSWORD()	function.	If	you	do	not	use
PASSWORD()	for	these	statements,	the	password	will	not	work.	For	example,
the	following	statement	sets	a	password,	but	fails	to	encrypt	it,	so	the	user	is
not	able	to	connect	afterward:

SET	PASSWORD	FOR	'abe'@'host_name'	=	'eagle';

Instead,	set	the	password	like	this:

SET	PASSWORD	FOR	'abe'@'host_name'	=	PASSWORD('eagle');

The	PASSWORD()	function	is	unnecessary	when	you	specify	a	password
using	the	GRANT	or	(beginning	with	MySQL	5.0.2)	CREATE	USER	statements,
or	the	mysqladmin	password	command.	Each	of	those	automatically	uses
PASSWORD()	to	encrypt	the	password.	See	Section	5.9.5,	“Assigning
Account	Passwords”,	and	Section	13.5.1.1,	“CREATE	USER	Syntax”.

localhost	is	a	synonym	for	your	local	hostname,	and	is	also	the	default
host	to	which	clients	try	to	connect	if	you	specify	no	host	explicitly.

To	avoid	this	problem	on	such	systems,	you	can	use	a	--host=127.0.0.1
option	to	name	the	server	host	explicitly.	This	will	make	a	TCP/IP
connection	to	the	local	mysqld	server.	You	can	also	use	TCP/IP	by
specifying	a	--host	option	that	uses	the	actual	hostname	of	the	local	host.
In	this	case,	the	hostname	must	be	specified	in	a	user	table	row	on	the
server	host,	even	though	you	are	running	the	client	program	on	the	same
host	as	the	server.

If	you	get	an	Access	denied	error	when	trying	to	connect	to	the	database

with	mysql	-u	user_name,	you	may	have	a	problem	with	the	user	table.
Check	this	by	executing	mysql	-u	root	mysql	and	issuing	this	SQL
statement:

SELECT	*	FROM	user;

The	result	should	include	a	row	with	the	Host	and	User	columns	matching
your	computer's	hostname	and	your	MySQL	username.

The	Access	denied	error	message	tells	you	who	you	are	trying	to	log	in	as,
the	client	host	from	which	you	are	trying	to	connect,	and	whether	you	were
using	a	password.	Normally,	you	should	have	one	row	in	the	user	table	that
exactly	matches	the	hostname	and	username	that	were	given	in	the	error
message.	For	example,	if	you	get	an	error	message	that	contains	using
password:	NO,	it	means	that	you	tried	to	log	in	without	a	password.

If	the	following	error	occurs	when	you	try	to	connect	from	a	host	other	than
the	one	on	which	the	MySQL	server	is	running,	it	means	that	there	is	no
row	in	the	user	table	with	a	Host	value	that	matches	the	client	host:

Host	...	is	not	allowed	to	connect	to	this	MySQL	server

You	can	fix	this	by	setting	up	an	account	for	the	combination	of	client
hostname	and	username	that	you	are	using	when	trying	to	connect.

If	you	do	not	know	the	IP	number	or	hostname	of	the	machine	from	which
you	are	connecting,	you	should	put	a	row	with	'%'	as	the	Host	column
value	in	the	user	table.	After	trying	to	connect	from	the	client	machine,	use
a	SELECT	USER()	query	to	see	how	you	really	did	connect.	(Then	change
the	'%'	in	the	user	table	row	to	the	actual	hostname	that	shows	up	in	the
log.	Otherwise,	your	system	is	left	insecure	because	it	allows	connections
from	any	host	for	the	given	username.)

On	Linux,	another	reason	that	this	error	might	occur	is	that	you	are	using	a
binary	MySQL	version	that	is	compiled	with	a	different	version	of	the
glibc	library	than	the	one	you	are	using.	In	this	case,	you	should	either
upgrade	your	operating	system	or	glibc,	or	download	a	source	distribution
of	MySQL	version	and	compile	it	yourself.	A	source	RPM	is	normally
trivial	to	compile	and	install,	so	this	is	not	a	big	problem.

If	you	specify	a	hostname	when	trying	to	connect,	but	get	an	error	message
where	the	hostname	is	not	shown	or	is	an	IP	number,	it	means	that	the
MySQL	server	got	an	error	when	trying	to	resolve	the	IP	number	of	the
client	host	to	a	name:

shell>	mysqladmin	-u	root	-pxxxx	-h	some_hostname	ver

Access	denied	for	user	'root'@''	(using	password:	YES)

This	indicates	a	DNS	problem.	To	fix	it,	execute	mysqladmin	flush-hosts
to	reset	the	internal	DNS	hostname	cache.	See	Section	7.5.6,	“How	MySQL
Uses	DNS”.

Some	permanent	solutions	are:

Determine	what	is	wrong	with	your	DNS	server	and	fix	it.

Specify	IP	numbers	rather	than	hostnames	in	the	MySQL	grant	tables.

Put	an	entry	for	the	client	machine	name	in	/etc/hosts	or
\windows\hosts.

Start	mysqld	with	the	--skip-name-resolve	option.

Start	mysqld	with	the	--skip-host-cache	option.

On	Unix,	if	you	are	running	the	server	and	the	client	on	the	same
machine,	connect	to	localhost.	Unix	connections	to	localhost	use	a
Unix	socket	file	rather	than	TCP/IP.

On	Windows,	if	you	are	running	the	server	and	the	client	on	the	same
machine	and	the	server	supports	named	pipe	connections,	connect	to
the	hostname	.	(period).	Connections	to	.	use	a	named	pipe	rather	than
TCP/IP.

If	mysql	-u	root	test	works	but	mysql	-h	your_hostname	-u	root	test
results	in	Access	denied	(where	your_hostname	is	the	actual	hostname	of
the	local	host),	you	may	not	have	the	correct	name	for	your	host	in	the	user
table.	A	common	problem	here	is	that	the	Host	value	in	the	user	table	row
specifies	an	unqualified	hostname,	but	your	system's	name	resolution
routines	return	a	fully	qualified	domain	name	(or	vice	versa).	For	example,
if	you	have	an	entry	with	host	'tcx'	in	the	user	table,	but	your	DNS	tells

MySQL	that	your	hostname	is	'tcx.subnet.se',	the	entry	does	not	work.
Try	adding	an	entry	to	the	user	table	that	contains	the	IP	number	of	your
host	as	the	Host	column	value.	(Alternatively,	you	could	add	an	entry	to	the
user	table	with	a	Host	value	that	contains	a	wildcard;	for	example,
'tcx.%'.	However,	use	of	hostnames	ending	with	‘%’	is	insecure	and	is	not
recommended!)

If	mysql	-u	user_name	test	works	but	mysql	-u	user_name
other_db_name	does	not,	you	have	not	granted	database	access	for
other_db_name	to	the	given	user.

If	mysql	-u	user_name	works	when	executed	on	the	server	host,	but	mysql
-h	host_name	-u	user_name	does	not	work	when	executed	on	a	remote
client	host,	you	have	not	enabled	access	to	the	server	for	the	given
username	from	the	remote	host.

If	you	cannot	figure	out	why	you	get	Access	denied,	remove	from	the
user	table	all	entries	that	have	Host	values	containing	wildcards	(entries
that	contain	‘%’	or	‘_’).	A	very	common	error	is	to	insert	a	new	entry	with
Host='%'	and	User='some_user',	thinking	that	this	allows	you	to	specify
localhost	to	connect	from	the	same	machine.	The	reason	that	this	does	not
work	is	that	the	default	privileges	include	an	entry	with	Host='localhost'
and	User=''.	Because	that	entry	has	a	Host	value	'localhost'	that	is	more
specific	than	'%',	it	is	used	in	preference	to	the	new	entry	when	connecting
from	localhost!	The	correct	procedure	is	to	insert	a	second	entry	with
Host='localhost'	and	User='some_user',	or	to	delete	the	entry	with
Host='localhost'	and	User=''.	After	deleting	the	entry,	remember	to
issue	a	FLUSH	PRIVILEGES	statement	to	reload	the	grant	tables.

If	you	get	the	following	error,	you	may	have	a	problem	with	the	db	or	host
table:

Access	to	database	denied

If	the	entry	selected	from	the	db	table	has	an	empty	value	in	the	Host
column,	make	sure	that	there	are	one	or	more	corresponding	entries	in	the
host	table	specifying	which	hosts	the	db	table	entry	applies	to.

If	you	are	able	to	connect	to	the	MySQL	server,	but	get	an	Access	denied
message	whenever	you	issue	a	SELECT	...	INTO	OUTFILE	or	LOAD	DATA

INFILE	statement,	your	entry	in	the	user	table	does	not	have	the	FILE
privilege	enabled.

If	you	change	the	grant	tables	directly	(for	example,	by	using	INSERT,
UPDATE,	or	DELETE	statements)	and	your	changes	seem	to	be	ignored,
remember	that	you	must	execute	a	FLUSH	PRIVILEGES	statement	or	a
mysqladmin	flush-privileges	command	to	cause	the	server	to	re-read	the
privilege	tables.	Otherwise,	your	changes	have	no	effect	until	the	next	time
the	server	is	restarted.	Remember	that	after	you	change	the	root	password
with	an	UPDATE	command,	you	won't	need	to	specify	the	new	password
until	after	you	flush	the	privileges,	because	the	server	won't	know	you've
changed	the	password	yet!

If	your	privileges	seem	to	have	changed	in	the	middle	of	a	session,	it	may
be	that	a	MySQL	administrator	has	changed	them.	Reloading	the	grant
tables	affects	new	client	connections,	but	it	also	affects	existing	connections
as	indicated	in	Section	5.8.7,	“When	Privilege	Changes	Take	Effect”.

If	you	have	access	problems	with	a	Perl,	PHP,	Python,	or	ODBC	program,
try	to	connect	to	the	server	with	mysql	-u	user_name	db_name	or	mysql	-u
user_name	-pyour_pass	db_name.	If	you	are	able	to	connect	using	the
mysql	client,	the	problem	lies	with	your	program,	not	with	the	access
privileges.	(There	is	no	space	between	-p	and	the	password;	you	can	also
use	the	--password=your_pass	syntax	to	specify	the	password.	If	you	use
the	-p	--passwordoption	with	no	password	value,	MySQL	prompts	you	for
the	password.)

For	testing,	start	the	mysqld	server	with	the	--skip-grant-tables	option.
Then	you	can	change	the	MySQL	grant	tables	and	use	the	mysqlaccess
script	to	check	whether	your	modifications	have	the	desired	effect.	When
you	are	satisfied	with	your	changes,	execute	mysqladmin	flush-privileges
to	tell	the	mysqld	server	to	start	using	the	new	grant	tables.	(Reloading	the
grant	tables	overrides	the	--skip-grant-tables	option.	This	enables	you
to	tell	the	server	to	begin	using	the	grant	tables	again	without	stopping	and
restarting	it.)

If	everything	else	fails,	start	the	mysqld	server	with	a	debugging	option	(for
example,	--debug=d,general,query).	This	prints	host	and	user
information	about	attempted	connections,	as	well	as	information	about	each

command	issued.	See	Section	E.1.2,	“Creating	Trace	Files”.

If	you	have	any	other	problems	with	the	MySQL	grant	tables	and	feel	you
must	post	the	problem	to	the	mailing	list,	always	provide	a	dump	of	the
MySQL	grant	tables.	You	can	dump	the	tables	with	the	mysqldump	mysql
command.	To	file	a	bug	report,	see	the	instructions	at	Section	1.8,	“How	to
Report	Bugs	or	Problems”.	In	some	cases,	you	may	need	to	restart	mysqld
with	--skip-grant-tables	to	run	mysqldump.

5.8.9.	Password	Hashing	as	of	MySQL	4.1

MySQL	user	accounts	are	listed	in	the	user	table	of	the	mysql	database.	Each
MySQL	account	is	assigned	a	password,	although	what	is	stored	in	the	Password
column	of	the	user	table	is	not	the	plaintext	version	of	the	password,	but	a	hash
value	computed	from	it.	Password	hash	values	are	computed	by	the	PASSWORD()
function.

MySQL	uses	passwords	in	two	phases	of	client/server	communication:

When	a	client	attempts	to	connect	to	the	server,	there	is	an	initial
authentication	step	in	which	the	client	must	present	a	password	that	has	a
hash	value	matching	the	hash	value	stored	in	the	user	table	for	the	account
that	the	client	wants	to	use.

After	the	client	connects,	it	can	(if	it	has	sufficient	privileges)	set	or	change
the	password	hashes	for	accounts	listed	in	the	user	table.	The	client	can	do
this	by	using	the	PASSWORD()	function	to	generate	a	password	hash,	or	by
using	the	GRANT	or	SET	PASSWORD	statements.

In	other	words,	the	server	uses	hash	values	during	authentication	when	a	client
first	attempts	to	connect.	The	server	generates	hash	values	if	a	connected	client
invokes	the	PASSWORD()	function	or	uses	a	GRANT	or	SET	PASSWORD	statement	to
set	or	change	a	password.

The	password	hashing	mechanism	was	updated	in	MySQL	4.1	to	provide	better
security	and	to	reduce	the	risk	of	passwords	being	intercepted.	However,	this
new	mechanism	is	understood	only	by	MySQL	4.1	(and	newer)	servers	and
clients,	which	can	result	in	some	compatibility	problems.	A	4.1	or	newer	client
can	connect	to	a	pre-4.1	server,	because	the	client	understands	both	the	old	and

new	password	hashing	mechanisms.	However,	a	pre-4.1	client	that	attempts	to
connect	to	a	4.1	or	newer	server	may	run	into	difficulties.	For	example,	a	3.23
mysql	client	that	attempts	to	connect	to	a	5.0	server	may	fail	with	the	following
error	message:

shell>	mysql	-h	localhost	-u	root

Client	does	not	support	authentication	protocol	requested

by	server;	consider	upgrading	MySQL	client

Another	common	example	of	this	phenomenon	occurs	for	attempts	to	use	the
older	PHP	mysql	extension	after	upgrading	to	MySQL	4.1	or	newer.	(See
Section	22.3.1,	“Common	Problems	with	MySQL	and	PHP”.)

The	following	discussion	describes	the	differences	between	the	old	and	new
password	mechanisms,	and	what	you	should	do	if	you	upgrade	your	server	but
need	to	maintain	backward	compatibility	with	pre-4.1	clients.	Additional
information	can	be	found	in	Section	A.2.3,	“Client	does	not	support
authentication	protocol”.	This	information	is	of	particular	importance	to
PHP	programmers	migrating	MySQL	databases	from	version	4.0	or	lower	to
version	4.1	or	higher.

Note:	This	discussion	contrasts	4.1	behavior	with	pre-4.1	behavior,	but	the	4.1
behavior	described	here	actually	begins	with	4.1.1.	MySQL	4.1.0	is	an	“odd”
release	because	it	has	a	slightly	different	mechanism	than	that	implemented	in
4.1.1	and	up.	Differences	between	4.1.0	and	more	recent	versions	are	described
further	in	MySQL	3.23,	4.0,	4.1	Reference	Manual.

Prior	to	MySQL	4.1,	password	hashes	computed	by	the	PASSWORD()	function	are
16	bytes	long.	Such	hashes	look	like	this:

mysql>	SELECT	PASSWORD('mypass');

+--------------------+

|	PASSWORD('mypass')	|

+--------------------+

|	6f8c114b58f2ce9e			|

+--------------------+

The	Password	column	of	the	user	table	(in	which	these	hashes	are	stored)	also	is
16	bytes	long	before	MySQL	4.1.

As	of	MySQL	4.1,	the	PASSWORD()	function	has	been	modified	to	produce	a
longer	41-byte	hash	value:

mysql>	SELECT	PASSWORD('mypass');

+---+

|	PASSWORD('mypass')																								|

+---+

|	*6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4	|

+---+

Accordingly,	the	Password	column	in	the	user	table	also	must	be	41	bytes	long
to	store	these	values:

If	you	perform	a	new	installation	of	MySQL	5.0,	the	Password	column	is
made	41	bytes	long	automatically.

Upgrading	from	MySQL	4.1	(4.1.1	or	later	in	the	4.1	series)	to	MySQL	5.0
should	not	give	rise	to	any	issues	in	this	regard	because	both	versions	use
the	same	password	hashing	mechanism.	If	you	wish	to	upgrade	an	older
release	of	MySQL	to	version	5.0,	you	should	upgrade	to	version	4.1	first,
then	upgrade	the	4.1	installation	to	5.0.

A	widened	Password	column	can	store	password	hashes	in	both	the	old	and	new
formats.	The	format	of	any	given	password	hash	value	can	be	determined	two
ways:

The	obvious	difference	is	the	length	(16	bytes	versus	41	bytes).

A	second	difference	is	that	password	hashes	in	the	new	format	always	begin
with	a	‘*’	character,	whereas	passwords	in	the	old	format	never	do.

The	longer	password	hash	format	has	better	cryptographic	properties,	and	client
authentication	based	on	long	hashes	is	more	secure	than	that	based	on	the	older
short	hashes.

The	differences	between	short	and	long	password	hashes	are	relevant	both	for
how	the	server	uses	passwords	during	authentication	and	for	how	it	generates
password	hashes	for	connected	clients	that	perform	password-changing
operations.

The	way	in	which	the	server	uses	password	hashes	during	authentication	is
affected	by	the	width	of	the	Password	column:

If	the	column	is	short,	only	short-hash	authentication	is	used.

If	the	column	is	long,	it	can	hold	either	short	or	long	hashes,	and	the	server
can	use	either	format:

Pre-4.1	clients	can	connect,	although	because	they	know	only	about
the	old	hashing	mechanism,	they	can	authenticate	only	using	accounts
that	have	short	hashes.

4.1	and	later	clients	can	authenticate	using	accounts	that	have	short	or
long	hashes.

Even	for	short-hash	accounts,	the	authentication	process	is	actually	a	bit	more
secure	for	4.1	and	later	clients	than	for	older	clients.	In	terms	of	security,	the
gradient	from	least	to	most	secure	is:

Pre-4.1	client	authenticating	with	short	password	hash

4.1	or	later	client	authenticating	with	short	password	hash

4.1	or	later	client	authenticating	with	long	password	hash

The	way	in	which	the	server	generates	password	hashes	for	connected	clients	is
affected	by	the	width	of	the	Password	column	and	by	the	--old-passwords
option.	A	4.1	or	later	server	generates	long	hashes	only	if	certain	conditions	are
met:	The	Password	column	must	be	wide	enough	to	hold	long	values	and	the	--
old-passwords	option	must	not	be	given.	These	conditions	apply	as	follows:

The	Password	column	must	be	wide	enough	to	hold	long	hashes	(41	bytes).
If	the	column	has	not	been	updated	and	still	has	the	pre-4.1	width	of	16
bytes,	the	server	notices	that	long	hashes	cannot	fit	into	it	and	generates
only	short	hashes	when	a	client	performs	password-changing	operations
using	PASSWORD(),	GRANT,	or	SET	PASSWORD.	This	is	the	behavior	that	occurs
if	you	have	upgraded	to	4.1	but	have	not	yet	run	the
mysql_fix_privilege_tables	script	to	widen	the	Password	column.

If	the	Password	column	is	wide,	it	can	store	either	short	or	long	password
hashes.	In	this	case,	PASSWORD(),	GRANT,	and	SET	PASSWORD	generate	long
hashes	unless	the	server	was	started	with	the	--old-passwords	option.	That
option	forces	the	server	to	generate	short	password	hashes	instead.

The	purpose	of	the	--old-passwords	option	is	to	enable	you	to	maintain

backward	compatibility	with	pre-4.1	clients	under	circumstances	where	the
server	would	otherwise	generate	long	password	hashes.	The	option	doesn't	affect
authentication	(4.1	and	later	clients	can	still	use	accounts	that	have	long
password	hashes),	but	it	does	prevent	creation	of	a	long	password	hash	in	the
user	table	as	the	result	of	a	password-changing	operation.	Were	that	to	occur,	the
account	no	longer	could	be	used	by	pre-4.1	clients.	Without	the	--old-
passwords	option,	the	following	undesirable	scenario	is	possible:

An	old	client	connects	to	an	account	that	has	a	short	password	hash.

The	client	changes	its	own	password.	Without	--old-passwords,	this
results	in	the	account	having	a	long	password	hash.

The	next	time	the	old	client	attempts	to	connect	to	the	account,	it	cannot,
because	the	account	has	a	long	password	hash	that	requires	the	new	hashing
mechanism	during	authentication.	(Once	an	account	has	a	long	password
hash	in	the	user	table,	only	4.1	and	later	clients	can	authenticate	for	it,
because	pre-4.1	clients	do	not	understand	long	hashes.)

This	scenario	illustrates	that,	if	you	must	support	older	pre-4.1	clients,	it	is
dangerous	to	run	a	4.1	or	newer	server	without	using	the	--old-passwords
option.	By	running	the	server	with	--old-passwords,	password-changing
operations	do	not	generate	long	password	hashes	and	thus	do	not	cause	accounts
to	become	inaccessible	to	older	clients.	(Those	clients	cannot	inadvertently	lock
themselves	out	by	changing	their	password	and	ending	up	with	a	long	password
hash.)

The	downside	of	the	--old-passwords	option	is	that	any	passwords	you	create
or	change	use	short	hashes,	even	for	4.1	clients.	Thus,	you	lose	the	additional
security	provided	by	long	password	hashes.	If	you	want	to	create	an	account	that
has	a	long	hash	(for	example,	for	use	by	4.1	clients),	you	must	do	so	while
running	the	server	without	--old-passwords.

The	following	scenarios	are	possible	for	running	a	4.1	or	later	server:

Scenario	1:	Short	Password	column	in	user	table:

Only	short	hashes	can	be	stored	in	the	Password	column.

The	server	uses	only	short	hashes	during	client	authentication.

For	connected	clients,	password	hash-generating	operations	involving
PASSWORD(),	GRANT,	or	SET	PASSWORD	use	short	hashes	exclusively.	Any
change	to	an	account's	password	results	in	that	account	having	a	short
password	hash.

The	--old-passwords	option	can	be	used	but	is	superfluous	because	with	a
short	Password	column,	the	server	generates	only	short	password	hashes
anyway.

Scenario	2:	Long	Password	column;	server	not	started	with	--old-passwords
option:

Short	or	long	hashes	can	be	stored	in	the	Password	column.

4.1	and	later	clients	can	authenticate	using	accounts	that	have	short	or	long
hashes.

Pre-4.1	clients	can	authenticate	only	using	accounts	that	have	short	hashes.

For	connected	clients,	password	hash-generating	operations	involving
PASSWORD(),	GRANT,	or	SET	PASSWORD	use	long	hashes	exclusively.	A
change	to	an	account's	password	results	in	that	account	having	a	long
password	hash.

As	indicated	earlier,	a	danger	in	this	scenario	is	that	it	is	possible	for	accounts
that	have	a	short	password	hash	to	become	inaccessible	to	pre-4.1	clients.	A
change	to	such	an	account's	password	made	via	GRANT,	PASSWORD(),	or	SET
PASSWORD	results	in	the	account	being	given	a	long	password	hash.	From	that
point	on,	no	pre-4.1	client	can	authenticate	to	that	account	until	the	client
upgrades	to	4.1.

To	deal	with	this	problem,	you	can	change	a	password	in	a	special	way.	For
example,	normally	you	use	SET	PASSWORD	as	follows	to	change	an	account
password:

SET	PASSWORD	FOR	'some_user'@'some_host'	=	PASSWORD('mypass');

To	change	the	password	but	create	a	short	hash,	use	the	OLD_PASSWORD()
function	instead:

SET	PASSWORD	FOR	'some_user'@'some_host'	=	OLD_PASSWORD('mypass');

OLD_PASSWORD()	is	useful	for	situations	in	which	you	explicitly	want	to	generate
a	short	hash.

Scenario	3:	Long	Password	column;	4.1	or	newer	server	started	with	--old-
passwords	option:

Short	or	long	hashes	can	be	stored	in	the	Password	column.

4.1	and	later	clients	can	authenticate	for	accounts	that	have	short	or	long
hashes	(but	note	that	it	is	possible	to	create	long	hashes	only	when	the
server	is	started	without	--old-passwords).

Pre-4.1	clients	can	authenticate	only	for	accounts	that	have	short	hashes.

For	connected	clients,	password	hash-generating	operations	involving
PASSWORD(),	GRANT,	or	SET	PASSWORD	use	short	hashes	exclusively.	Any
change	to	an	account's	password	results	in	that	account	having	a	short
password	hash.

In	this	scenario,	you	cannot	create	accounts	that	have	long	password	hashes,
because	the	--old-passwords	option	prevents	generation	of	long	hashes.	Also,
if	you	create	an	account	with	a	long	hash	before	using	the	--old-passwords
option,	changing	the	account's	password	while	--old-passwords	is	in	effect
results	in	the	account	being	given	a	short	password,	causing	it	to	lose	the
security	benefits	of	a	longer	hash.

The	disadvantages	for	these	scenarios	may	be	summarized	as	follows:

In	scenario	1,	you	cannot	take	advantage	of	longer	hashes	that	provide	more
secure	authentication.

In	scenario	2,	accounts	with	short	hashes	become	inaccessible	to	pre-4.1	clients
if	you	change	their	passwords	without	explicitly	using	OLD_PASSWORD().

In	scenario	3,	--old-passwords	prevents	accounts	with	short	hashes	from
becoming	inaccessible,	but	password-changing	operations	cause	accounts	with
long	hashes	to	revert	to	short	hashes,	and	you	cannot	change	them	back	to	long
hashes	while	--old-passwords	is	in	effect.

5.8.9.1.	Implications	of	Password	Hashing	Changes	for	Application
Programs

An	upgrade	to	MySQL	version	4.1	or	later	can	cause	compatibility	issues	for
applications	that	use	PASSWORD()	to	generate	passwords	for	their	own	purposes.
Applications	really	should	not	do	this,	because	PASSWORD()	should	be	used	only
to	manage	passwords	for	MySQL	accounts.	But	some	applications	use
PASSWORD()	for	their	own	purposes	anyway.

If	you	upgrade	to	4.1	or	later	from	a	pre-4.1	version	of	MySQL	and	run	the
server	under	conditions	where	it	generates	long	password	hashes,	an	application
using	PASSWORD()	for	its	own	passwords	breaks.	The	recommended	course	of
action	in	such	cases	is	to	modify	the	application	to	use	another	function,	such	as
SHA1()	or	MD5(),	to	produce	hashed	values.	If	that	is	not	possible,	you	can	use
the	OLD_PASSWORD()	function,	which	is	provided	for	generate	short	hashes	in	the
old	format.	However,	you	should	note	that	OLD_PASSWORD()	may	one	day	no
longer	be	supported.

If	the	server	is	running	under	circumstances	where	it	generates	short	hashes,
OLD_PASSWORD()	is	available	but	is	equivalent	to	PASSWORD().

PHP	programmers	migrating	their	MySQL	databases	from	version	4.0	or	lower
to	version	4.1	or	higher	should	see	Section	22.3,	“MySQL	PHP	API”.

5.9.	MySQL	User	Account	Management

This	section	describes	how	to	set	up	accounts	for	clients	of	your	MySQL	server.
It	discusses	the	following	topics:

The	meaning	of	account	names	and	passwords	as	used	in	MySQL	and	how
that	compares	to	names	and	passwords	used	by	your	operating	system

How	to	set	up	new	accounts	and	remove	existing	accounts

How	to	change	passwords

Guidelines	for	using	passwords	securely

How	to	use	secure	connections	with	SSL

5.9.1.	MySQL	Usernames	and	Passwords

A	MySQL	account	is	defined	in	terms	of	a	username	and	the	client	host	or	hosts
from	which	the	user	can	connect	to	the	server.	The	account	also	has	a	password.
There	are	several	distinctions	between	the	way	usernames	and	passwords	are
used	by	MySQL	and	the	way	they	are	used	by	your	operating	system:

Usernames,	as	used	by	MySQL	for	authentication	purposes,	have	nothing	to
do	with	usernames	(login	names)	as	used	by	Windows	or	Unix.	On	Unix,
most	MySQL	clients	by	default	try	to	log	in	using	the	current	Unix
username	as	the	MySQL	username,	but	that	is	for	convenience	only.	The
default	can	be	overridden	easily,	because	client	programs	allow	any
username	to	be	specified	with	a	-u	or	--user	option.	Because	this	means
that	anyone	can	attempt	to	connect	to	the	server	using	any	username,	you
cannot	make	a	database	secure	in	any	way	unless	all	MySQL	accounts	have
passwords.	Anyone	who	specifies	a	username	for	an	account	that	has	no
password	is	able	to	connect	successfully	to	the	server.

MySQL	usernames	can	be	up	to	a	maximum	of	16	characters	long.	This
limit	is	hard-coded	in	the	MySQL	servers	and	clients,	and	trying	to
circumvent	it	by	modifying	the	definitions	of	the	tables	in	the	mysql
database	does	not	work.

Note:	You	should	never	alter	any	of	the	tables	in	the	mysql	database	in	any
manner	whatsoever	except	by	means	of	the	procedure	prescribed	by	MySQL
AB	that	is	described	in	Section	5.6.2,	“mysql_upgrade	—	Check	Tables	for
MySQL	Upgrade”.	Attempting	to	redefine	MySQL's	system	tables	in	any
other	fashion	results	in	undefined	(and	unsupported!)	behavior.

Operating	system	usernames	are	completely	unrelated	to	MySQL
usernames	and	may	even	be	of	a	different	maximum	length.	For	example,
Unix	usernames	typically	are	limited	to	eight	characters.

MySQL	passwords	have	nothing	to	do	with	passwords	for	logging	in	to
your	operating	system.	There	is	no	necessary	connection	between	the
password	you	use	to	log	in	to	a	Windows	or	Unix	machine	and	the
password	you	use	to	access	the	MySQL	server	on	that	machine.

MySQL	encrypts	passwords	using	its	own	algorithm.	This	encryption	is
different	from	that	used	during	the	Unix	login	process.	MySQL	password
encryption	is	the	same	as	that	implemented	by	the	PASSWORD()	SQL
function.	Unix	password	encryption	is	the	same	as	that	implemented	by	the
ENCRYPT()	SQL	function.	See	the	descriptions	of	the	PASSWORD()	and
ENCRYPT()	functions	in	Section	12.9.2,	“Encryption	and	Compression
Functions”.	From	version	4.1	on,	MySQL	employs	a	stronger
authentication	method	that	has	better	password	protection	during	the
connection	process	than	in	earlier	versions.	It	is	secure	even	if	TCP/IP
packets	are	sniffed	or	the	mysql	database	is	captured.	(In	earlier	versions,
even	though	passwords	are	stored	in	encrypted	form	in	the	user	table,
knowledge	of	the	encrypted	password	value	could	be	used	to	connect	to	the
MySQL	server.)

When	you	install	MySQL,	the	grant	tables	are	populated	with	an	initial	set	of
accounts.	These	accounts	have	names	and	access	privileges	that	are	described	in
Section	2.10.3,	“Securing	the	Initial	MySQL	Accounts”,	which	also	discusses
how	to	assign	passwords	to	them.	Thereafter,	you	normally	set	up,	modify,	and
remove	MySQL	accounts	using	statements	such	as	GRANT	and	REVOKE.	See
Section	13.5.1,	“Account	Management	Statements”.

When	you	connect	to	a	MySQL	server	with	a	command-line	client,	you	should
specify	the	username	and	password	for	the	account	that	you	want	to	use:

shell>	mysql	--user=monty	--password=guess	db_name

If	you	prefer	short	options,	the	command	looks	like	this:

shell>	mysql	-u	monty	-pguess	db_name

There	must	be	no	space	between	the	-p	option	and	the	following	password
value.	See	Section	5.8.4,	“Connecting	to	the	MySQL	Server”.

The	preceding	commands	include	the	password	value	on	the	command	line,
which	can	be	a	security	risk.	See	Section	5.9.6,	“Keeping	Your	Password
Secure”.	To	avoid	this	problem,	specify	the	--password	or	-p	option	without	any
following	password	value:

shell>	mysql	--user=monty	--password	db_name

shell>	mysql	-u	monty	-p	db_name

When	the	password	option	has	no	password	value,	the	client	program	prints	a
prompt	and	waits	for	you	to	enter	the	password.	(In	these	examples,	db_name	is
not	interpreted	as	a	password	because	it	is	separated	from	the	preceding
password	option	by	a	space.)

On	some	systems,	the	library	routine	that	MySQL	uses	to	prompt	for	a	password
automatically	limits	the	password	to	eight	characters.	That	is	a	problem	with	the
system	library,	not	with	MySQL.	Internally,	MySQL	doesn't	have	any	limit	for
the	length	of	the	password.	To	work	around	the	problem,	change	your	MySQL
password	to	a	value	that	is	eight	or	fewer	characters	long,	or	put	your	password
in	an	option	file.

5.9.2.	Adding	New	User	Accounts	to	MySQL

You	can	create	MySQL	accounts	in	two	ways:

By	using	statements	intended	for	creating	accounts,	such	as	CREATE	USER	or
GRANT

By	manipulating	the	MySQL	grant	tables	directly	with	statements	such	as
INSERT,	UPDATE,	or	DELETE

The	preferred	method	is	to	use	account-creation	statements	because	they	are
more	concise	and	less	error-prone.	CREATE	USER	and	GRANT	are	described	in
Section	13.5.1.1,	“CREATE	USER	Syntax”,	and	Section	13.5.1.3,	“GRANT	Syntax”.

Another	option	for	creating	accounts	is	to	use	one	of	several	available	third-party
programs	that	offer	capabilities	for	MySQL	account	administration.	phpMyAdmin
is	one	such	program.

The	following	examples	show	how	to	use	the	mysql	client	program	to	set	up
new	users.	These	examples	assume	that	privileges	are	set	up	according	to	the
defaults	described	in	Section	2.10.3,	“Securing	the	Initial	MySQL	Accounts”.
This	means	that	to	make	changes,	you	must	connect	to	the	MySQL	server	as	the
MySQL	root	user,	and	the	root	account	must	have	the	INSERT	privilege	for	the
mysql	database	and	the	RELOAD	administrative	privilege.

First,	use	the	mysql	program	to	connect	to	the	server	as	the	MySQL	root	user:

shell>	mysql	--user=root	mysql

If	you	have	assigned	a	password	to	the	root	account,	you'll	also	need	to	supply	a
--password	or	-p	option	for	this	mysql	command	and	also	for	those	later	in	this
section.

After	connecting	to	the	server	as	root,	you	can	add	new	accounts.	The	following
statements	use	GRANT	to	set	up	four	new	accounts:

mysql>	GRANT	ALL	PRIVILEGES	ON	*.*	TO	'monty'@'localhost'

				->					IDENTIFIED	BY	'some_pass'	WITH	GRANT	OPTION;

mysql>	GRANT	ALL	PRIVILEGES	ON	*.*	TO	'monty'@'%'

				->					IDENTIFIED	BY	'some_pass'	WITH	GRANT	OPTION;

mysql>	GRANT	RELOAD,PROCESS	ON	*.*	TO	'admin'@'localhost';

mysql>	GRANT	USAGE	ON	*.*	TO	'dummy'@'localhost';

The	accounts	created	by	these	GRANT	statements	have	the	following	properties:

Two	of	the	accounts	have	a	username	of	monty	and	a	password	of
some_pass.	Both	accounts	are	superuser	accounts	with	full	privileges	to	do
anything.	One	account	('monty'@'localhost')	can	be	used	only	when
connecting	from	the	local	host.	The	other	('monty'@'%')	can	be	used	to
connect	from	any	other	host.	Note	that	it	is	necessary	to	have	both	accounts
for	monty	to	be	able	to	connect	from	anywhere	as	monty.	Without	the
localhost	account,	the	anonymous-user	account	for	localhost	that	is
created	by	mysql_install_db	would	take	precedence	when	monty	connects
from	the	local	host.	As	a	result,	monty	would	be	treated	as	an	anonymous
user.	The	reason	for	this	is	that	the	anonymous-user	account	has	a	more

specific	Host	column	value	than	the	'monty'@'%'	account	and	thus	comes
earlier	in	the	user	table	sort	order.	(user	table	sorting	is	discussed	in
Section	5.8.5,	“Access	Control,	Stage	1:	Connection	Verification”.)

One	account	has	a	username	of	admin	and	no	password.	This	account	can
be	used	only	by	connecting	from	the	local	host.	It	is	granted	the	RELOAD	and
PROCESS	administrative	privileges.	These	privileges	allow	the	admin	user	to
execute	the	mysqladmin	reload,	mysqladmin	refresh,	and	mysqladmin
flush-xxx	commands,	as	well	as	mysqladmin	processlist	.	No	privileges
are	granted	for	accessing	any	databases.	You	could	add	such	privileges	later
by	issuing	additional	GRANT	statements.

One	account	has	a	username	of	dummy	and	no	password.	This	account	can
be	used	only	by	connecting	from	the	local	host.	No	privileges	are	granted.
The	USAGE	privilege	in	the	GRANT	statement	enables	you	to	create	an	account
without	giving	it	any	privileges.	It	has	the	effect	of	setting	all	the	global
privileges	to	'N'.	It	is	assumed	that	you	will	grant	specific	privileges	to	the
account	later.

As	an	alternative	to	GRANT,	you	can	create	the	same	accounts	directly	by	issuing
INSERT	statements	and	then	telling	the	server	to	reload	the	grant	tables	using
FLUSH	PRIVILEGES:

shell>	mysql	--user=root	mysql

mysql>	INSERT	INTO	user

				->					VALUES('localhost','monty',PASSWORD('some_pass'),

				->					'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y');

mysql>	INSERT	INTO	user

				->					VALUES('%','monty',PASSWORD('some_pass'),

				->					'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y');

mysql>	INSERT	INTO	user	SET	Host='localhost',User='admin',

				->					Reload_priv='Y',	Process_priv='Y';

mysql>	INSERT	INTO	user	(Host,User,Password)

				->					VALUES('localhost','dummy','');

mysql>	FLUSH	PRIVILEGES;

The	reason	for	using	FLUSH	PRIVILEGES	when	you	create	accounts	with	INSERT
is	to	tell	the	server	to	re-read	the	grant	tables.	Otherwise,	the	changes	go
unnoticed	until	you	restart	the	server.	With	GRANT,	FLUSH	PRIVILEGES	is
unnecessary.

The	reason	for	using	the	PASSWORD()	function	with	INSERT	is	to	encrypt	the

password.	The	GRANT	statement	encrypts	the	password	for	you,	so	PASSWORD()	is
unnecessary.

The	'Y'	values	enable	privileges	for	the	accounts.	Depending	on	your	MySQL
version,	you	may	have	to	use	a	different	number	of	'Y'	values	in	the	first	two
INSERT	statements.	For	the	admin	account,	you	may	also	employ	the	more
readable	extended	INSERT	syntax	using	SET.

In	the	INSERT	statement	for	the	dummy	account,	only	the	Host,	User,	and
Password	columns	in	the	user	table	row	are	assigned	values.	None	of	the
privilege	columns	are	set	explicitly,	so	MySQL	assigns	them	all	the	default	value
of	'N'.	This	is	equivalent	to	what	GRANT	USAGE	does.

Note	that	to	set	up	a	superuser	account,	it	is	necessary	only	to	create	a	user	table
entry	with	the	privilege	columns	set	to	'Y'.	user	table	privileges	are	global,	so
no	entries	in	any	of	the	other	grant	tables	are	needed.

The	next	examples	create	three	accounts	and	give	them	access	to	specific
databases.	Each	of	them	has	a	username	of	custom	and	password	of	obscure.

To	create	the	accounts	with	GRANT,	use	the	following	statements:

shell>	mysql	--user=root	mysql

mysql>	GRANT	SELECT,INSERT,UPDATE,DELETE,CREATE,DROP

				->					ON	bankaccount.*

				->					TO	'custom'@'localhost'

				->					IDENTIFIED	BY	'obscure';

mysql>	GRANT	SELECT,INSERT,UPDATE,DELETE,CREATE,DROP

				->					ON	expenses.*

				->					TO	'custom'@'whitehouse.gov'

				->					IDENTIFIED	BY	'obscure';

mysql>	GRANT	SELECT,INSERT,UPDATE,DELETE,CREATE,DROP

				->					ON	customer.*

				->					TO	'custom'@'server.domain'

				->					IDENTIFIED	BY	'obscure';

The	three	accounts	can	be	used	as	follows:

The	first	account	can	access	the	bankaccount	database,	but	only	from	the
local	host.

The	second	account	can	access	the	expenses	database,	but	only	from	the
host	whitehouse.gov.

The	third	account	can	access	the	customer	database,	but	only	from	the	host
server.domain.

To	set	up	the	custom	accounts	without	GRANT,	use	INSERT	statements	as	follows
to	modify	the	grant	tables	directly:

shell>	mysql	--user=root	mysql

mysql>	INSERT	INTO	user	(Host,User,Password)

				->					VALUES('localhost','custom',PASSWORD('obscure'));

mysql>	INSERT	INTO	user	(Host,User,Password)

				->					VALUES('whitehouse.gov','custom',PASSWORD('obscure'));

mysql>	INSERT	INTO	user	(Host,User,Password)

				->					VALUES('server.domain','custom',PASSWORD('obscure'));

mysql>	INSERT	INTO	db

				->					(Host,Db,User,Select_priv,Insert_priv,

				->					Update_priv,Delete_priv,Create_priv,Drop_priv)

				->					VALUES('localhost','bankaccount','custom',

				->					'Y','Y','Y','Y','Y','Y');

mysql>	INSERT	INTO	db

				->					(Host,Db,User,Select_priv,Insert_priv,

				->					Update_priv,Delete_priv,Create_priv,Drop_priv)

				->					VALUES('whitehouse.gov','expenses','custom',

				->					'Y','Y','Y','Y','Y','Y');

mysql>	INSERT	INTO	db

				->					(Host,Db,User,Select_priv,Insert_priv,

				->					Update_priv,Delete_priv,Create_priv,Drop_priv)

				->					VALUES('server.domain','customer','custom',

				->					'Y','Y','Y','Y','Y','Y');

mysql>	FLUSH	PRIVILEGES;

The	first	three	INSERT	statements	add	user	table	entries	that	allow	the	user
custom	to	connect	from	the	various	hosts	with	the	given	password,	but	grant	no
global	privileges	(all	privileges	are	set	to	the	default	value	of	'N').	The	next
three	INSERT	statements	add	db	table	entries	that	grant	privileges	to	custom	for
the	bankaccount,	expenses,	and	customer	databases,	but	only	when	accessed
from	the	proper	hosts.	As	usual	when	you	modify	the	grant	tables	directly,	you
must	tell	the	server	to	reload	them	with	FLUSH	PRIVILEGES	so	that	the	privilege
changes	take	effect.

If	you	want	to	give	a	specific	user	access	from	all	machines	in	a	given	domain
(for	example,	mydomain.com),	you	can	issue	a	GRANT	statement	that	uses	the	‘%’
wildcard	character	in	the	host	part	of	the	account	name:

mysql>	GRANT	...

				->					ON	*.*

				->					TO	'myname'@'%.mydomain.com'

				->					IDENTIFIED	BY	'mypass';

To	do	the	same	thing	by	modifying	the	grant	tables	directly,	do	this:

mysql>	INSERT	INTO	user	(Host,User,Password,...)

				->					VALUES('%.mydomain.com','myname',PASSWORD('mypass'),...);

mysql>	FLUSH	PRIVILEGES;

5.9.3.	Removing	User	Accounts	from	MySQL

To	remove	an	account,	use	the	DROP	USER	statement,	which	is	described	in
Section	13.5.1.2,	“DROP	USER	Syntax”.

5.9.4.	Limiting	Account	Resources

One	means	of	limiting	use	of	MySQL	server	resources	is	to	set	the
max_user_connections	system	variable	to	a	non-zero	value.	However,	this
method	is	strictly	global,	and	does	not	allow	for	management	of	individual
accounts.	In	addition,	it	limits	only	the	number	of	simultaneous	connections
made	using	a	single	account,	and	not	what	a	client	can	do	once	connected.	Both
types	of	control	are	interest	to	many	MySQL	administrators,	particularly	those
working	for	Internet	Service	Providers.

In	MySQL	5.0,	you	can	limit	the	following	server	resources	for	individual
accounts:

The	number	of	queries	that	an	account	can	issue	per	hour

The	number	of	updates	that	an	account	can	issue	per	hour

The	number	of	times	an	account	can	connect	to	the	server	per	hour

Any	statement	that	a	client	can	issue	counts	against	the	query	limit.	Only
statements	that	modify	databases	or	tables	count	against	the	update	limit.

From	MySQL	5.0.3	on,	it	is	also	possible	to	limit	the	number	of	simultaneous
connections	to	the	server	on	a	per-account	basis.

An	account	in	this	context	is	a	single	row	in	the	user	table.	Each	account	is
uniquely	identified	by	its	User	and	Host	column	values.

As	a	prerequisite	for	using	this	feature,	the	user	table	in	the	mysql	database	must
contain	the	resource-related	columns.	Resource	limits	are	stored	in	the
max_questions,	max_updates,	max_connections,	and	max_user_connections
columns.	If	your	user	table	doesn't	have	these	columns,	it	must	be	upgraded;	see
Section	5.6.2,	“mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade”.

To	set	resource	limits	with	a	GRANT	statement,	use	a	WITH	clause	that	names	each
resource	to	be	limited	and	a	per-hour	count	indicating	the	limit	value.	For
example,	to	create	a	new	account	that	can	access	the	customer	database,	but
only	in	a	limited	fashion,	issue	this	statement:

mysql>	GRANT	ALL	ON	customer.*	TO	'francis'@'localhost'

				->					IDENTIFIED	BY	'frank'

				->					WITH	MAX_QUERIES_PER_HOUR	20

				->										MAX_UPDATES_PER_HOUR	10

				->										MAX_CONNECTIONS_PER_HOUR	5

				->										MAX_USER_CONNECTIONS	2;

The	limit	types	need	not	all	be	named	in	the	WITH	clause,	but	those	named	can	be
present	in	any	order.	The	value	for	each	per-hour	limit	should	be	an	integer
representing	a	count	per	hour.	If	the	GRANT	statement	has	no	WITH	clause,	the
limits	are	each	set	to	the	default	value	of	zero	(that	is,	no	limit).	For
MAX_USER_CONNECTIONS,	the	limit	is	an	integer	indicating	the	maximum	number
of	simultaneous	connections	the	account	can	make	at	any	one	time.	If	the	limit	is
set	to	the	default	value	of	zero,	the	max_user_connections	system	variable
determines	the	number	of	simultaneous	connections	for	the	account.

To	set	or	change	limits	for	an	existing	account,	use	a	GRANT	USAGE	statement	at
the	global	level	(ON	*.*).	The	following	statement	changes	the	query	limit	for
francis	to	100:

mysql>	GRANT	USAGE	ON	*.*	TO	'francis'@'localhost'

				->					WITH	MAX_QUERIES_PER_HOUR	100;

This	statement	leaves	the	account's	existing	privileges	unchanged	and	modifies
only	the	limit	values	specified.

To	remove	an	existing	limit,	set	its	value	to	zero.	For	example,	to	remove	the
limit	on	how	many	times	per	hour	francis	can	connect,	use	this	statement:

mysql>	GRANT	USAGE	ON	*.*	TO	'francis'@'localhost'

				->					WITH	MAX_CONNECTIONS_PER_HOUR	0;

Resource-use	counting	takes	place	when	any	account	has	a	non-zero	limit	placed
on	its	use	of	any	of	the	resources.

As	the	server	runs,	it	counts	the	number	of	times	each	account	uses	resources.	If
an	account	reaches	its	limit	on	number	of	connections	within	the	last	hour,
further	connections	for	the	account	are	rejected	until	that	hour	is	up.	Similarly,	if
the	account	reaches	its	limit	on	the	number	of	queries	or	updates,	further	queries
or	updates	are	rejected	until	the	hour	is	up.	In	all	such	cases,	an	appropriate	error
message	is	issued.

Resource	counting	is	done	per	account,	not	per	client.	For	example,	if	your
account	has	a	query	limit	of	50,	you	cannot	increase	your	limit	to	100	by	making
two	simultaneous	client	connections	to	the	server.	Queries	issued	on	both
connections	are	counted	together.

The	current	per-hour	resource-use	counts	can	be	reset	globally	for	all	accounts,
or	individually	for	a	given	account:

To	reset	the	current	counts	to	zero	for	all	accounts,	issue	a	FLUSH
USER_RESOURCES	statement.	The	counts	also	can	be	reset	by	reloading	the
grant	tables	(for	example,	with	a	FLUSH	PRIVILEGES	statement	or	a
mysqladmin	reload	command).

The	counts	for	an	individual	account	can	be	set	to	zero	by	re-granting	it	any
of	its	limits.	To	do	this,	use	GRANT	USAGE	as	described	earlier	and	specify	a
limit	value	equal	to	the	value	that	the	account	currently	has.

Counter	resets	do	not	affect	the	MAX_USER_CONNECTIONS	limit.

All	counts	begin	at	zero	when	the	server	starts;	counts	are	not	carried	over
through	a	restart.

5.9.5.	Assigning	Account	Passwords

Passwords	may	be	assigned	from	the	command	line	by	using	the	mysqladmin
command:

shell>	mysqladmin	-u	user_name	-h	host_name	password	"newpwd"

The	account	for	which	this	command	resets	the	password	is	the	one	with	a	user

table	row	that	matches	user_name	in	the	User	column	and	the	client	host	from
which	you	connect	in	the	Host	column.

Another	way	to	assign	a	password	to	an	account	is	to	issue	a	SET	PASSWORD
statement:

mysql>	SET	PASSWORD	FOR	'jeffrey'@'%'	=	PASSWORD('biscuit');

Only	users	such	as	root	that	have	update	access	to	the	mysql	database	can
change	the	password	for	other	users.	If	you	are	not	connected	as	an	anonymous
user,	you	can	change	your	own	password	by	omitting	the	FOR	clause:

mysql>	SET	PASSWORD	=	PASSWORD('biscuit');

You	can	also	use	a	GRANT	USAGE	statement	at	the	global	level	(ON	*.*)	to	assign
a	password	to	an	account	without	affecting	the	account's	current	privileges:

mysql>	GRANT	USAGE	ON	*.*	TO	'jeffrey'@'%'	IDENTIFIED	BY	'biscuit';

Although	it	is	generally	preferable	to	assign	passwords	using	one	of	the
preceding	methods,	you	can	also	do	so	by	modifying	the	user	table	directly:

To	establish	a	password	when	creating	a	new	account,	provide	a	value	for
the	Password	column:

shell>	mysql	-u	root	mysql

mysql>	INSERT	INTO	user	(Host,User,Password)

				->	VALUES('%','jeffrey',PASSWORD('biscuit'));

mysql>	FLUSH	PRIVILEGES;

To	change	the	password	for	an	existing	account,	use	UPDATE	to	set	the
Password	column	value:

shell>	mysql	-u	root	mysql

mysql>	UPDATE	user	SET	Password	=	PASSWORD('bagel')

				->	WHERE	Host	=	'%'	AND	User	=	'francis';

mysql>	FLUSH	PRIVILEGES;

When	you	assign	an	account	a	non-empty	password	using	SET	PASSWORD,
INSERT,	or	UPDATE,	you	must	use	the	PASSWORD()	function	to	encrypt	it.
PASSWORD()	is	necessary	because	the	user	table	stores	passwords	in	encrypted
form,	not	as	plaintext.	If	you	forget	that	fact,	you	are	likely	to	set	passwords	like
this:

shell>	mysql	-u	root	mysql

mysql>	INSERT	INTO	user	(Host,User,Password)

				->	VALUES('%','jeffrey','biscuit');

mysql>	FLUSH	PRIVILEGES;

The	result	is	that	the	literal	value	'biscuit'	is	stored	as	the	password	in	the
user	table,	not	the	encrypted	value.	When	jeffrey	attempts	to	connect	to	the
server	using	this	password,	the	value	is	encrypted	and	compared	to	the	value
stored	in	the	user	table.	However,	the	stored	value	is	the	literal	string
'biscuit',	so	the	comparison	fails	and	the	server	rejects	the	connection:

shell>	mysql	-u	jeffrey	-pbiscuit	test

Access	denied

If	you	assign	passwords	using	the	GRANT	...	IDENTIFIED	BY	statement	or	the
mysqladmin	password	command,	they	both	take	care	of	encrypting	the
password	for	you.	In	these	cases,	using	PASSWORD()	function	is	unnecessary.

Note:	PASSWORD()	encryption	is	different	from	Unix	password	encryption.	See
Section	5.9.1,	“MySQL	Usernames	and	Passwords”.

5.9.6.	Keeping	Your	Password	Secure

On	an	administrative	level,	you	should	never	grant	access	to	the	user	grant	table
to	any	non-administrative	accounts.

When	you	run	a	client	program	to	connect	to	the	MySQL	server,	it	is	inadvisable
to	specify	your	password	in	a	way	that	exposes	it	to	discovery	by	other	users.
The	methods	you	can	use	to	specify	your	password	when	you	run	client
programs	are	listed	here,	along	with	an	assessment	of	the	risks	of	each	method:

Use	a	-pyour_pass	or	--password=your_pass	option	on	the	command	line.
For	example:

shell>	mysql	-u	francis	-pfrank	db_name

This	is	convenient	but	insecure,	because	your	password	becomes	visible	to
system	status	programs	such	as	ps	that	may	be	invoked	by	other	users	to
display	command	lines.	MySQL	clients	typically	overwrite	the	command-
line	password	argument	with	zeros	during	their	initialization	sequence.
However,	there	is	still	a	brief	interval	during	which	the	value	is	visible.	On

some	systems	this	strategy	is	ineffective,	anyway,	and	the	password	remains
visible	to	ps.	(SystemV	Unix	systems	and	perhaps	others	are	subject	to	this
problem.)

Use	the	-p	or	--password	option	with	no	password	value	specified.	In	this
case,	the	client	program	solicits	the	password	from	the	terminal:

shell>	mysql	-u	francis	-p	db_name

Enter	password:	********

The	‘*’	characters	indicate	where	you	enter	your	password.	The	password	is
not	displayed	as	you	enter	it.

It	is	more	secure	to	enter	your	password	this	way	than	to	specify	it	on	the
command	line	because	it	is	not	visible	to	other	users.	However,	this	method
of	entering	a	password	is	suitable	only	for	programs	that	you	run
interactively.	If	you	want	to	invoke	a	client	from	a	script	that	runs	non-
interactively,	there	is	no	opportunity	to	enter	the	password	from	the
terminal.	On	some	systems,	you	may	even	find	that	the	first	line	of	your
script	is	read	and	interpreted	(incorrectly)	as	your	password.

	Store	your	password	in	an	option	file.	For	example,	on	Unix	you	can	list
your	password	in	the	[client]	section	of	the	.my.cnf	file	in	your	home
directory:

[client]

password=your_pass

If	you	store	your	password	in	.my.cnf,	the	file	should	not	be	accessible	to
anyone	but	yourself.	To	ensure	this,	set	the	file	access	mode	to	400	or	600.
For	example:

shell>	chmod	600	.my.cnf

Section	4.3.2,	“Using	Option	Files”,	discusses	option	files	in	more	detail.

Store	your	password	in	the	MYSQL_PWD	environment	variable.	This	method
of	specifying	your	MySQL	password	must	be	considered	extremely
insecure	and	should	not	be	used.	Some	versions	of	ps	include	an	option	to
display	the	environment	of	running	processes.	If	you	set	MYSQL_PWD,	your
password	is	exposed	to	any	other	user	who	runs	ps.	Even	on	systems

without	such	a	version	of	ps,	it	is	unwise	to	assume	that	there	are	no	other
methods	by	which	users	can	examine	process	environments.	See
Appendix	F,	Environment	Variables.

All	in	all,	the	safest	methods	are	to	have	the	client	program	prompt	for	the
password	or	to	specify	the	password	in	a	properly	protected	option	file.

5.9.7.	Using	Secure	Connections

MySQL	supports	secure	(encrypted)	connections	between	MySQL	clients	and
the	server	using	the	Secure	Sockets	Layer	(SSL)	protocol.	This	section	discusses
how	to	use	SSL	connections.	It	also	describes	a	way	to	set	up	SSH	on	Windows.
For	information	on	requiring	users	to	use	SSL	connections,	see	Section	13.5.1.3,
“GRANT	Syntax”.

The	standard	configuration	of	MySQL	is	intended	to	be	as	fast	as	possible,	so
encrypted	connections	are	not	used	by	default.	Doing	so	would	make	the
client/server	protocol	much	slower.	Encrypting	data	is	a	CPU-intensive	operation
that	requires	the	computer	to	do	additional	work	and	can	delay	other	MySQL
tasks.	For	applications	that	require	the	security	provided	by	encrypted
connections,	the	extra	computation	is	warranted.

MySQL	allows	encryption	to	be	enabled	on	a	per-connection	basis.	You	can
choose	a	normal	unencrypted	connection	or	a	secure	encrypted	SSL	connection
according	the	requirements	of	individual	applications.

Secure	connections	are	based	on	the	OpenSSL	API	and	are	available	through	the
MySQL	C	API.	Replication	uses	the	C	API,	so	secure	connections	can	be	used
between	master	and	slave	servers.

5.9.7.1.	Basic	SSL	Concepts

To	understand	how	MySQL	uses	SSL,	it	is	necessary	to	explain	some	basic	SSL
and	X509	concepts.	People	who	are	familiar	with	these	can	skip	this	part	of	the
discussion.

By	default,	MySQL	uses	unencrypted	connections	between	the	client	and	the
server.	This	means	that	someone	with	access	to	the	network	could	watch	all	your
traffic	and	look	at	the	data	being	sent	or	received.	They	could	even	change	the

data	while	it	is	in	transit	between	client	and	server.	To	improve	security	a	little,
you	can	compress	client/server	traffic	by	using	the	--compress	option	when
invoking	client	programs.	However,	this	does	not	foil	a	determined	attacker.

When	you	need	to	move	information	over	a	network	in	a	secure	fashion,	an
unencrypted	connection	is	unacceptable.	Encryption	is	the	way	to	make	any	kind
of	data	unreadable.	In	fact,	today's	practice	requires	many	additional	security
elements	from	encryption	algorithms.	They	should	resist	many	kind	of	known
attacks	such	as	changing	the	order	of	encrypted	messages	or	replaying	data
twice.

SSL	is	a	protocol	that	uses	different	encryption	algorithms	to	ensure	that	data
received	over	a	public	network	can	be	trusted.	It	has	mechanisms	to	detect	any
data	change,	loss,	or	replay.	SSL	also	incorporates	algorithms	that	provide
identity	verification	using	the	X509	standard.

X509	makes	it	possible	to	identify	someone	on	the	Internet.	It	is	most	commonly
used	in	e-commerce	applications.	In	basic	terms,	there	should	be	some	company
called	a	“Certificate	Authority”	(or	CA)	that	assigns	electronic	certificates	to
anyone	who	needs	them.	Certificates	rely	on	asymmetric	encryption	algorithms
that	have	two	encryption	keys	(a	public	key	and	a	secret	key).	A	certificate
owner	can	show	the	certificate	to	another	party	as	proof	of	identity.	A	certificate
consists	of	its	owner's	public	key.	Any	data	encrypted	with	this	public	key	can	be
decrypted	only	using	the	corresponding	secret	key,	which	is	held	by	the	owner	of
the	certificate.

If	you	need	more	information	about	SSL,	X509,	or	encryption,	use	your	favorite
Internet	search	engine	to	search	for	the	keywords	in	which	you	are	interested.

5.9.7.2.	Using	SSL	Connections

To	use	SSL	connections	between	the	MySQL	server	and	client	programs,	your
system	must	support	either	OpenSSL	or	yaSSL	and	your	version	of	MySQL
must	be	built	with	SSL	support.

To	make	it	easier	to	use	secure	connections,	MySQL	is	bundled	with	yaSSL	as	of
MySQL	5.0.10.	(MySQL	and	yaSSL	employ	the	same	licensing	model,	whereas
OpenSSL	uses	an	Apache-style	license.)	yaSSL	support	initially	was	available
only	for	a	few	platforms,	but	now	it	is	available	on	all	platforms	supported	by

MySQL	AB.

To	get	secure	connections	to	work	with	MySQL	and	SSL,	you	must	do	the
following:

1.	 If	you	are	not	using	a	binary	(precompiled)	version	of	MySQL	that	has	been
built	with	SSL	support,	and	you	are	going	to	use	OpenSSL	rather	than	the
bundled	yaSSL	library,	install	OpenSSL	if	it	has	not	already	been	installed.
We	have	tested	MySQL	with	OpenSSL	0.9.6.	To	obtain	OpenSSL,	visit
http://www.openssl.org.

2.	 If	you	are	not	using	a	binary	(precompiled)	version	of	MySQL	that	has	been
built	with	SSL	support,	configure	a	MySQL	source	distribution	to	use	SSL.
When	you	configure	MySQL,	invoke	the	configure	script	with	the
appropriate	option	to	select	the	SSL	library	that	you	want	to	use.

For	yaSSL:

shell>	./configure	--with-yassl

For	OpenSSL:

shell>	./configure	--with-openssl

Before	MySQL	5.0,	it	was	also	neccessary	to	use	--with-vio,	but	that
option	is	no	longer	required.

Note	that	yaSSL	support	on	Unix	platforms	requires	that	either
/dev/urandom	or	/dev/random	be	installed	to	retrieve	true	random
numbers.	For	additional	information	(especially	regarding	yaSSL	on	Solaris
versions	prior	to	2.8	and	HP-UX),	see	Bug	#13164.

3.	 Make	sure	that	you	have	upgraded	your	grant	tables	to	include	the	SSL-
related	columns	in	the	mysql.user	table.	This	is	necessary	if	your	grant
tables	date	from	a	version	of	MySQL	older	than	4.0.	The	upgrade	procedure
is	described	in	Section	5.6.2,	“mysql_upgrade	—	Check	Tables	for
MySQL	Upgrade”.

4.	 To	check	whether	a	server	binary	is	compiled	with	SSL	support,	invoke	it
with	the	--ssl	option.	An	error	will	occur	if	the	server	does	not	support
SSL:

http://www.openssl.org

shell>	mysqld	--ssl	--help

060525	14:18:52	[ERROR]	mysqld:	unknown	option	'--ssl'

To	check	whether	a	running	mysqld	server	supports	SSL,	examine	the
value	of	the	have_openssl	system	variable:

mysql>	SHOW	VARIABLES	LIKE	'have_openssl';

+---------------+-------+

|	Variable_name	|	Value	|

+---------------+-------+

|	have_openssl		|	YES			|

+---------------+-------+

If	the	value	is	YES,	the	server	supports	SSL	connections.	If	the	value	is
DISABLED,	the	server	supports	SSL	connections	but	was	not	started	with	the
appropriate	--ssl-xxx	options	(described	later	in	this	section).	If	the	value
is	YES,	the	server	supports	SSL	connections.

To	start	the	MySQL	server	so	that	it	allows	clients	to	connect	via	SSL,	use	the
options	that	identify	the	key	and	certificate	files	the	server	needs	when
establishing	a	secure	connection:

shell>	mysqld	--ssl-ca=cacert.pem	\

							--ssl-cert=server-cert.pem	\

							--ssl-key=server-key.pem

--ssl-ca	identifies	the	Certificate	Authority	(CA)	certificate.

--ssl-cert	identifies	the	server	public	key.	This	can	be	sent	to	the	client
and	authenticated	against	the	CA	certificate	that	it	has.

--ssl-key	identifies	the	server	private	key.

To	establish	a	secure	connection	to	a	MySQL	server	with	yaSSL	support,	start	a
client	like	this:

shell>	mysql	--ssl-ca=cacert.pem	\

							--ssl-cert=client-cert.pem	\

							--ssl-key=client-key.pem

In	other	words,	the	options	are	similar	to	those	used	for	the	server.	Note	that	the
Certificate	Authority	certificate	has	to	be	the	same.

A	client	can	determine	whether	the	current	connection	with	the	server	uses	SSL
by	checking	the	value	of	the	Ssl_cipher	status	variable.	The	value	of
Ssl_cipher	is	non-empty	if	SSL	is	used,	and	empty	otherwise.	For	example:

mysql>	SHOW	STATUS	LIKE	'Ssl_cipher';

+---------------+--------------------+

|	Variable_name	|	Value														|

+---------------+--------------------+

|	Ssl_cipher				|	DHE-RSA-AES256-SHA	|

+---------------+--------------------+

For	the	mysql	client,	you	can	use	the	STATUS	or	\s	command	and	check	the	SSL
line:

mysql>	\s

...

SSL:																				Not	in	use

...

Or:

mysql>	\s

...

SSL:																				Cipher	in	use	is	DHE-RSA-AES256-SHA

...

To	establish	a	secure	connection	from	within	an	application	program,	use	the
mysql_ssl_set()	C	API	function	to	set	the	appropriate	certificate	options	before
calling	mysql_real_connect().	See	Section	22.2.3.66,	“mysql_ssl_set()”.

5.9.7.3.	SSL	Command	Options

The	following	list	describes	options	that	are	used	for	specifying	the	use	of	SSL,
certificate	files,	and	key	files.	They	can	be	given	on	the	command	line	or	in	an
option	file.

These	options	are	not	available	unless	MySQL	has	been	built	with	SSL	support.
See	Section	5.9.7.2,	“Using	SSL	Connections”.

	--ssl

For	the	server,	this	option	specifies	that	the	server	allows	SSL	connections.
For	a	client	program,	it	allows	the	client	to	connect	to	the	server	using	SSL.

This	option	is	not	sufficient	in	itself	to	cause	an	SSL	connection	to	be	used.
You	must	also	specify	the	--ssl-ca,	--ssl-cert,	and	--ssl-key	options.

This	option	is	more	often	used	in	its	opposite	form	to	override	any	other
SSL	options	and	indicate	that	SSL	should	not	be	used.	To	do	this,	specify
the	option	as	--skip-ssl	or	--ssl=0.

Note	that	use	of	--ssl	does	not	require	an	SSL	connection.	For	example,	if
the	server	or	client	is	compiled	without	SSL	support,	a	normal	unencrypted
connection	is	used.

The	secure	way	to	ensure	that	an	SSL	connection	is	used	is	to	create	an
account	on	the	server	that	includes	a	REQUIRE	SSL	clause	in	the	GRANT
statement.	Then	use	this	account	to	connect	to	the	server,	with	both	a	server
and	client	that	have	SSL	support	enabled.

	--ssl-ca=file_name

The	path	to	a	file	with	a	list	of	trusted	SSL	CAs.

	--ssl-capath=directory_name

The	path	to	a	directory	that	contains	trusted	SSL	CA	certificates	in	PEM
format.

	--ssl-cert=file_name

The	name	of	the	SSL	certificate	file	to	use	for	establishing	a	secure
connection.

	--ssl-cipher=cipher_list

A	list	of	allowable	ciphers	to	use	for	SSL	encryption.	cipher_list	has	the
same	format	as	the	openssl	ciphers	command.

Example:	--ssl-cipher=ALL:-AES:-EXP

	--ssl-key=file_name

The	name	of	the	SSL	key	file	to	use	for	establishing	a	secure	connection.

	--ssl-verify-server-cert

This	option	is	available	for	client	programs.	It	causes	the	server's	Common
Name	value	in	its	certificate	to	be	verified	against	the	hostname	used	when
connecting	to	the	server,	and	the	connection	is	rejected	if	there	is	a
mismatch.	This	feature	can	be	used	to	prevent	man-in-the-middle	attacks.
Verification	is	disabled	by	default.	This	option	was	added	in	MySQL
5.0.23.

5.9.7.4.	Setting	Up	SSL	Certificates	for	MySQL

Here	is	an	example	of	setting	up	SSL	certificates	for	MySQL	using	OpenSSL:

DIR=`pwd`/openssl

PRIV=$DIR/private

mkdir	$DIR	$PRIV	$DIR/newcerts

cp	/usr/share/ssl/openssl.cnf	$DIR

replace	./demoCA	$DIR	--	$DIR/openssl.cnf

#	Create	necessary	files:	$database,	$serial	and	$new_certs_dir

#	directory	(optional)

touch	$DIR/index.txt

echo	"01"	>	$DIR/serial

#

#	Generation	of	Certificate	Authority(CA)

#

openssl	req	-new	-x509	-keyout	$PRIV/cakey.pem	-out	$DIR/cacert.pem	\

				-config	$DIR/openssl.cnf

#	Sample	output:

#	Using	configuration	from	/home/monty/openssl/openssl.cnf

#	Generating	a	1024	bit	RSA	private	key

#++++++

#++++++

#	writing	new	private	key	to	'/home/monty/openssl/private/cakey.pem'

#	Enter	PEM	pass	phrase:

#	Verifying	password	-	Enter	PEM	pass	phrase:

#	-----

#	You	are	about	to	be	asked	to	enter	information	that	will	be

#	incorporated	into	your	certificate	request.

#	What	you	are	about	to	enter	is	what	is	called	a	Distinguished	Name

#	or	a	DN.

#	There	are	quite	a	few	fields	but	you	can	leave	some	blank

#	For	some	fields	there	will	be	a	default	value,

#	If	you	enter	'.',	the	field	will	be	left	blank.

#	-----

#	Country	Name	(2	letter	code)	[AU]:FI

#	State	or	Province	Name	(full	name)	[Some-State]:.

#	Locality	Name	(eg,	city)	[]:

#	Organization	Name	(eg,	company)	[Internet	Widgits	Pty	Ltd]:MySQL	AB

#	Organizational	Unit	Name	(eg,	section)	[]:

#	Common	Name	(eg,	YOUR	name)	[]:MySQL	admin

#	Email	Address	[]:

#

#	Create	server	request	and	key

#

openssl	req	-new	-keyout	$DIR/server-key.pem	-out	\

				$DIR/server-req.pem	-days	3600	-config	$DIR/openssl.cnf

#	Sample	output:

#	Using	configuration	from	/home/monty/openssl/openssl.cnf

#	Generating	a	1024	bit	RSA	private	key

#	..++++++

#++++++

#	writing	new	private	key	to	'/home/monty/openssl/server-key.pem'

#	Enter	PEM	pass	phrase:

#	Verifying	password	-	Enter	PEM	pass	phrase:

#	-----

#	You	are	about	to	be	asked	to	enter	information	that	will	be

#	incorporated	into	your	certificate	request.

#	What	you	are	about	to	enter	is	what	is	called	a	Distinguished	Name

#	or	a	DN.

#	There	are	quite	a	few	fields	but	you	can	leave	some	blank

#	For	some	fields	there	will	be	a	default	value,

#	If	you	enter	'.',	the	field	will	be	left	blank.

#	-----

#	Country	Name	(2	letter	code)	[AU]:FI

#	State	or	Province	Name	(full	name)	[Some-State]:.

#	Locality	Name	(eg,	city)	[]:

#	Organization	Name	(eg,	company)	[Internet	Widgits	Pty	Ltd]:MySQL	AB

#	Organizational	Unit	Name	(eg,	section)	[]:

#	Common	Name	(eg,	YOUR	name)	[]:MySQL	server

#	Email	Address	[]:

#

#	Please	enter	the	following	'extra'	attributes

#	to	be	sent	with	your	certificate	request

#	A	challenge	password	[]:

#	An	optional	company	name	[]:

#

#	Remove	the	passphrase	from	the	key	(optional)

#

openssl	rsa	-in	$DIR/server-key.pem	-out	$DIR/server-key.pem

#

#	Sign	server	cert

#

openssl	ca		-policy	policy_anything	-out	$DIR/server-cert.pem	\

				-config	$DIR/openssl.cnf	-infiles	$DIR/server-req.pem

#	Sample	output:

#	Using	configuration	from	/home/monty/openssl/openssl.cnf

#	Enter	PEM	pass	phrase:

#	Check	that	the	request	matches	the	signature

#	Signature	ok

#	The	Subjects	Distinguished	Name	is	as	follows

#	countryName											:PRINTABLE:'FI'

#	organizationName						:PRINTABLE:'MySQL	AB'

#	commonName												:PRINTABLE:'MySQL	admin'

#	Certificate	is	to	be	certified	until	Sep	13	14:22:46	2003	GMT

#	(365	days)

#	Sign	the	certificate?	[y/n]:y

#

#

#	1	out	of	1	certificate	requests	certified,	commit?	[y/n]y

#	Write	out	database	with	1	new	entries

#	Data	Base	Updated

#

#	Create	client	request	and	key

#

openssl	req	-new	-keyout	$DIR/client-key.pem	-out	\

				$DIR/client-req.pem	-days	3600	-config	$DIR/openssl.cnf

#	Sample	output:

#	Using	configuration	from	/home/monty/openssl/openssl.cnf

#	Generating	a	1024	bit	RSA	private	key

#++++++

#	...++++++

#	writing	new	private	key	to	'/home/monty/openssl/client-key.pem'

#	Enter	PEM	pass	phrase:

#	Verifying	password	-	Enter	PEM	pass	phrase:

#	-----

#	You	are	about	to	be	asked	to	enter	information	that	will	be

#	incorporated	into	your	certificate	request.

#	What	you	are	about	to	enter	is	what	is	called	a	Distinguished	Name

#	or	a	DN.

#	There	are	quite	a	few	fields	but	you	can	leave	some	blank

#	For	some	fields	there	will	be	a	default	value,

#	If	you	enter	'.',	the	field	will	be	left	blank.

#	-----

#	Country	Name	(2	letter	code)	[AU]:FI

#	State	or	Province	Name	(full	name)	[Some-State]:.

#	Locality	Name	(eg,	city)	[]:

#	Organization	Name	(eg,	company)	[Internet	Widgits	Pty	Ltd]:MySQL	AB

#	Organizational	Unit	Name	(eg,	section)	[]:

#	Common	Name	(eg,	YOUR	name)	[]:MySQL	user

#	Email	Address	[]:

#

#	Please	enter	the	following	'extra'	attributes

#	to	be	sent	with	your	certificate	request

#	A	challenge	password	[]:

#	An	optional	company	name	[]:

#

#	Remove	a	passphrase	from	the	key	(optional)

#

openssl	rsa	-in	$DIR/client-key.pem	-out	$DIR/client-key.pem

#

#	Sign	client	cert

#

openssl	ca		-policy	policy_anything	-out	$DIR/client-cert.pem	\

				-config	$DIR/openssl.cnf	-infiles	$DIR/client-req.pem

#	Sample	output:

#	Using	configuration	from	/home/monty/openssl/openssl.cnf

#	Enter	PEM	pass	phrase:

#	Check	that	the	request	matches	the	signature

#	Signature	ok

#	The	Subjects	Distinguished	Name	is	as	follows

#	countryName											:PRINTABLE:'FI'

#	organizationName						:PRINTABLE:'MySQL	AB'

#	commonName												:PRINTABLE:'MySQL	user'

#	Certificate	is	to	be	certified	until	Sep	13	16:45:17	2003	GMT

#	(365	days)

#	Sign	the	certificate?	[y/n]:y

#

#

#	1	out	of	1	certificate	requests	certified,	commit?	[y/n]y

#	Write	out	database	with	1	new	entries

#	Data	Base	Updated

#

#	Create	a	my.cnf	file	that	you	can	use	to	test	the	certificates

#

cnf=""

cnf="$cnf	[client]"

cnf="$cnf	ssl-ca=$DIR/cacert.pem"

cnf="$cnf	ssl-cert=$DIR/client-cert.pem"

cnf="$cnf	ssl-key=$DIR/client-key.pem"

cnf="$cnf	[mysqld]"

cnf="$cnf	ssl-ca=$DIR/cacert.pem"

cnf="$cnf	ssl-cert=$DIR/server-cert.pem"

cnf="$cnf	ssl-key=$DIR/server-key.pem"

echo	$cnf	|	replace	"	"	'

'	>	$DIR/my.cnf

To	test	SSL	connections,	start	the	server	as	follows,	where	$DIR	is	the	pathname
to	the	directory	where	the	sample	my.cnf	option	file	is	located:

shell>	mysqld	--defaults-file=$DIR/my.cnf	&

Then	invoke	a	client	program	using	the	same	option	file:

shell>	mysql	--defaults-file=$DIR/my.cnf

If	you	have	a	MySQL	source	distribution,	you	can	also	test	your	setup	by
modifying	the	preceding	my.cnf	file	to	refer	to	the	demonstration	certificate	and
key	files	in	the	SSL	directory	of	the	distribution.

5.9.7.5.	Connecting	to	MySQL	Remotely	from	Windows	with	SSH

Here	is	a	note	that	describes	how	to	get	a	secure	connection	to	a	remote	MySQL
server	with	SSH	(by	David	Carlson	<dcarlson@mplcomm.com>):

1.	 Install	an	SSH	client	on	your	Windows	machine.	As	a	user,	the	best	non-
free	one	I	have	found	is	from	SecureCRT	from	http://www.vandyke.com/.
Another	option	is	f-secure	from	http://www.f-secure.com/.	You	can	also
find	some	free	ones	on	Google	at
http://directory.google.com/Top/Computers/Security/Products_and_Tools/Cryptography/SSH/Clients/Windows/

2.	 Start	your	Windows	SSH	client.	Set	Host_Name	=
yourmysqlserver_URL_or_IP.	Set	userid=your_userid	to	log	in	to	your
server.	This	userid	value	might	not	be	the	same	as	the	username	of	your
MySQL	account.

mailto:dcarlson@mplcomm.com
http://www.vandyke.com/
http://www.f-secure.com/
http://directory.google.com/Top/Computers/Security/Products_and_Tools/Cryptography/SSH/Clients/Windows/

3.	 Set	up	port	forwarding.	Either	do	a	remote	forward	(Set	local_port:	3306,
remote_host:	yourmysqlservername_or_ip,	remote_port:	3306)	or	a
local	forward	(Set	port:	3306,	host:	localhost,	remote	port:	3306).

4.	 Save	everything,	otherwise	you	will	have	to	redo	it	the	next	time.

5.	 Log	in	to	your	server	with	the	SSH	session	you	just	created.

6.	 On	your	Windows	machine,	start	some	ODBC	application	(such	as	Access).

7.	 Create	a	new	file	in	Windows	and	link	to	MySQL	using	the	ODBC	driver
the	same	way	you	normally	do,	except	type	in	localhost	for	the	MySQL
host	server,	not	yourmysqlservername.

At	this	point,	you	should	have	an	ODBC	connection	to	MySQL,	encrypted	using
SSH.

5.10.	Backup	and	Recovery

This	section	discusses	how	to	make	database	backups	(full	and	incremental)	and
how	to	perform	table	maintenance.	The	syntax	of	the	SQL	statements	described
here	is	given	in	Chapter	13,	SQL	Statement	Syntax.	Much	of	the	information	here
pertains	primarily	to	MyISAM	tables.	Additional	information	about	InnoDB	backup
procedures	is	given	in	Section	14.2.8,	“Backing	Up	and	Recovering	an	InnoDB
Database”.

5.10.1.	Database	Backups

Because	MySQL	tables	are	stored	as	files,	it	is	easy	to	do	a	backup.	To	get	a
consistent	backup,	do	a	LOCK	TABLES	on	the	relevant	tables,	followed	by	FLUSH
TABLES	for	the	tables.	See	Section	13.4.5,	“LOCK	TABLES	and	UNLOCK	TABLES
Syntax”,	and	Section	13.5.5.2,	“FLUSH	Syntax”.	You	need	only	a	read	lock;	this
allows	other	clients	to	continue	to	query	the	tables	while	you	are	making	a	copy
of	the	files	in	the	database	directory.	The	FLUSH	TABLES	statement	is	needed	to
ensure	that	the	all	active	index	pages	are	written	to	disk	before	you	start	the
backup.

To	make	an	SQL-level	backup	of	a	table,	you	can	use	SELECT	INTO	...
OUTFILE.	For	this	statement,	the	output	file	cannot	already	exist	because
allowing	files	to	be	overwritten	would	constitute	a	security	risk.	See
Section	13.2.7,	“SELECT	Syntax”.

Another	technique	for	backing	up	a	database	is	to	use	the	mysqldump	program
or	the	mysqlhotcopy	script.	See	Section	8.12,	“mysqldump	—	A	Database
Backup	Program”,	and	Section	8.13,	“mysqlhotcopy	—	A	Database	Backup
Program”.

1.	 Create	a	full	backup	of	your	database:

shell>	mysqldump	--tab=/path/to/some/dir	--opt	db_name

Or:

shell>	mysqlhotcopy	db_name	/path/to/some/dir

You	can	also	create	a	binary	backup	simply	by	copying	all	table	files
(*.frm,	*.MYD,	and	*.MYI	files),	as	long	as	the	server	isn't	updating
anything.	The	mysqlhotcopy	script	uses	this	method.	(But	note	that	these
methods	do	not	work	if	your	database	contains	InnoDB	tables.	InnoDB	does
not	store	table	contents	in	database	directories,	and	mysqlhotcopy	works
only	for	MyISAM	tables.)

2.	 	Stop	mysqld	if	it	is	running,	then	start	it	with	the	--log-bin[=file_name]
option.	See	Section	5.12.3,	“The	Binary	Log”.	The	binary	log	files	provide
you	with	the	information	you	need	to	replicate	changes	to	the	database	that
are	made	subsequent	to	the	point	at	which	you	executed	mysqldump.

For	InnoDB	tables,	it	is	possible	to	perform	an	online	backup	that	takes	no	locks
on	tables;	see	Section	8.12,	“mysqldump	—	A	Database	Backup	Program”.

MySQL	supports	incremental	backups:	You	need	to	start	the	server	with	the	--
log-bin	option	to	enable	binary	logging;	see	Section	5.12.3,	“The	Binary	Log”.
At	the	moment	you	want	to	make	an	incremental	backup	(containing	all	changes
that	happened	since	the	last	full	or	incremental	backup),	you	should	rotate	the
binary	log	by	using	FLUSH	LOGS.	This	done,	you	need	to	copy	to	the	backup
location	all	binary	logs	which	range	from	the	one	of	the	moment	of	the	last	full
or	incremental	backup	to	the	last	but	one.	These	binary	logs	are	the	incremental
backup;	at	restore	time,	you	apply	them	as	explained	further	below.	The	next
time	you	do	a	full	backup,	you	should	also	rotate	the	binary	log	using	FLUSH
LOGS,	mysqldump	--flush-logs,	or	mysqlhotcopy	--flushlog.	See
Section	8.12,	“mysqldump	—	A	Database	Backup	Program”,	and	Section	8.13,
“mysqlhotcopy	—	A	Database	Backup	Program”.

If	your	MySQL	server	is	a	slave	replication	server,	then	regardless	of	the	backup
method	you	choose,	you	should	also	back	up	the	master.info	and	relay-
log.info	files	when	you	back	up	your	slave's	data.	These	files	are	always
needed	to	resume	replication	after	you	restore	the	slave's	data.	If	your	slave	is
subject	to	replicating	LOAD	DATA	INFILE	commands,	you	should	also	back	up
any	SQL_LOAD-*	files	that	may	exist	in	the	directory	specified	by	the	--slave-
load-tmpdir	option.	(This	location	defaults	to	the	value	of	the	tmpdir	variable	if
not	specified.)	The	slave	needs	these	files	to	resume	replication	of	any
interrupted	LOAD	DATA	INFILE	operations.

If	you	have	to	restore	MyISAM	tables,	try	to	recover	them	using	REPAIR	TABLE	or

myisamchk	-r	first.	That	should	work	in	99.9%	of	all	cases.	If	myisamchk	fails,
try	the	following	procedure.	Note	that	it	works	only	if	you	have	enabled	binary
logging	by	starting	MySQL	with	the	--log-bin	option.

1.	 Restore	the	original	mysqldump	backup,	or	binary	backup.

2.	 Execute	the	following	command	to	re-run	the	updates	in	the	binary	logs:

shell>	mysqlbinlog	binlog.[0-9]*	|	mysql

In	some	cases,	you	may	want	to	re-run	only	certain	binary	logs,	from
certain	positions	(usually	you	want	to	re-run	all	binary	logs	from	the	date	of
the	restored	backup,	excepting	possibly	some	incorrect	statements).	See
Section	8.10,	“mysqlbinlog	—	Utility	for	Processing	Binary	Log	Files”,	for
more	information	on	the	mysqlbinlog	utility	and	how	to	use	it.

You	can	also	make	selective	backups	of	individual	files:

To	dump	the	table,	use	SELECT	*	INTO	OUTFILE	'file_name'	FROM
tbl_name.

To	reload	the	table,	use	LOAD	DATA	INFILE	'file_name'	REPLACE	To
avoid	duplicate	rows,	the	table	must	have	a	PRIMARY	KEY	or	a	UNIQUE	index.
The	REPLACE	keyword	causes	old	rows	to	be	replaced	with	new	ones	when	a
new	row	duplicates	an	old	row	on	a	unique	key	value.

If	you	have	performance	problems	with	your	server	while	making	backups,	one
strategy	that	can	help	is	to	set	up	replication	and	perform	backups	on	the	slave
rather	than	on	the	master.	See	Section	6.1,	“Introduction	to	Replication”.

If	you	are	using	a	Veritas	filesystem,	you	can	make	a	backup	like	this:

1.	 From	a	client	program,	execute	FLUSH	TABLES	WITH	READ	LOCK.

2.	 From	another	shell,	execute	mount	vxfs	snapshot.

3.	 From	the	first	client,	execute	UNLOCK	TABLES.

4.	 Copy	files	from	the	snapshot.

5.	 Unmount	the	snapshot.

5.10.2.	Example	Backup	and	Recovery	Strategy

This	section	discusses	a	procedure	for	performing	backups	that	allows	you	to
recover	data	after	several	types	of	crashes:

Operating	system	crash

Power	failure

Filesystem	crash

Hardware	problem	(hard	drive,	motherboard,	and	so	forth)

The	example	commands	do	not	include	options	such	as	--user	and	--password
for	the	mysqldump	and	mysql	programs.	You	should	include	such	options	as
necessary	so	that	the	MySQL	server	allows	you	to	connect	to	it.

We	assume	that	data	is	stored	in	the	InnoDB	storage	engine,	which	has	support
for	transactions	and	automatic	crash	recovery.	We	also	assume	that	the	MySQL
server	is	under	load	at	the	time	of	the	crash.	If	it	were	not,	no	recovery	would
ever	be	needed.

For	cases	of	operating	system	crashes	or	power	failures,	we	can	assume	that
MySQL's	disk	data	is	available	after	a	restart.	The	InnoDB	data	files	might	not
contain	consistent	data	due	to	the	crash,	but	InnoDB	reads	its	logs	and	finds	in
them	the	list	of	pending	committed	and	non-committed	transactions	that	have
not	been	flushed	to	the	data	files.	InnoDB	automatically	rolls	back	those
transactions	that	were	not	committed,	and	flushes	to	its	data	files	those	that	were
committed.	Information	about	this	recovery	process	is	conveyed	to	the	user
through	the	MySQL	error	log.	The	following	is	an	example	log	excerpt:

InnoDB:	Database	was	not	shut	down	normally.

InnoDB:	Starting	recovery	from	log	files...

InnoDB:	Starting	log	scan	based	on	checkpoint	at

InnoDB:	log	sequence	number	0	13674004

InnoDB:	Doing	recovery:	scanned	up	to	log	sequence	number	0	13739520

InnoDB:	Doing	recovery:	scanned	up	to	log	sequence	number	0	13805056

InnoDB:	Doing	recovery:	scanned	up	to	log	sequence	number	0	13870592

InnoDB:	Doing	recovery:	scanned	up	to	log	sequence	number	0	13936128

...

InnoDB:	Doing	recovery:	scanned	up	to	log	sequence	number	0	20555264

InnoDB:	Doing	recovery:	scanned	up	to	log	sequence	number	0	20620800

InnoDB:	Doing	recovery:	scanned	up	to	log	sequence	number	0	20664692

InnoDB:	1	uncommitted	transaction(s)	which	must	be	rolled	back

InnoDB:	Starting	rollback	of	uncommitted	transactions

InnoDB:	Rolling	back	trx	no	16745

InnoDB:	Rolling	back	of	trx	no	16745	completed

InnoDB:	Rollback	of	uncommitted	transactions	completed

InnoDB:	Starting	an	apply	batch	of	log	records	to	the	database...

InnoDB:	Apply	batch	completed

InnoDB:	Started

mysqld:	ready	for	connections

For	the	cases	of	filesystem	crashes	or	hardware	problems,	we	can	assume	that
the	MySQL	disk	data	is	not	available	after	a	restart.	This	means	that	MySQL
fails	to	start	successfully	because	some	blocks	of	disk	data	are	no	longer
readable.	In	this	case,	it	is	necessary	to	reformat	the	disk,	install	a	new	one,	or
otherwise	correct	the	underlying	problem.	Then	it	is	necessary	to	recover	our
MySQL	data	from	backups,	which	means	that	we	must	already	have	made
backups.	To	make	sure	that	is	the	case,	we	should	design	a	backup	policy.

5.10.2.1.	Backup	Policy

We	all	know	that	backups	must	be	scheduled	periodically.	A	full	backups	(a
snapshot	of	the	data	at	a	point	in	time)	can	be	done	in	MySQL	with	several	tools.
For	example,	InnoDB	Hot	Backup	provides	online	non-blocking	physical	backup
of	the	InnoDB	data	files,	and	mysqldump	provides	online	logical	backup.	This
discussion	uses	mysqldump.

Assume	that	we	make	a	backup	on	Sunday	at	1	p.m.,	when	load	is	low.	The
following	command	makes	a	full	backup	of	all	our	InnoDB	tables	in	all
databases:

shell>	mysqldump	--single-transaction	--all-databases	>	backup_sunday_1_PM.sql

This	is	an	online,	non-blocking	backup	that	does	not	disturb	the	reads	and	writes
on	the	tables.	We	assumed	earlier	that	our	tables	are	InnoDB	tables,	so	--single-
transaction	uses	a	consistent	read	and	guarantees	that	data	seen	by
mysqldump	does	not	change.	(Changes	made	by	other	clients	to	InnoDB	tables
are	not	seen	by	the	mysqldump	process.)	If	we	do	also	have	other	types	of
tables,	we	must	assume	that	they	are	not	changed	during	the	backup.	For
example,	for	the	MyISAM	tables	in	the	mysql	database,	we	must	assume	that	no
administrative	changes	are	being	made	to	MySQL	accounts	during	the	backup.

The	resulting	.sql	file	produced	by	mysqldump	contains	a	set	of	SQL	INSERT
statements	that	can	be	used	to	reload	the	dumped	tables	at	a	later	time.

Full	backups	are	necessary,	but	they	are	not	always	convenient.	They	produce
large	backup	files	and	take	time	to	generate.	They	are	not	optimal	in	the	sense
that	each	successive	full	backup	includes	all	data,	even	that	part	that	has	not
changed	since	the	previous	full	backup.	After	we	have	made	the	initial	full
backup,	it	is	more	efficient	to	make	incremental	backups.	They	are	smaller	and
take	less	time	to	produce.	The	tradeoff	is	that,	at	recovery	time,	you	cannot
restore	your	data	just	by	reloading	the	full	backup.	You	must	also	process	the
incremental	backups	to	recover	the	incremental	changes.

To	make	incremental	backups,	we	need	to	save	the	incremental	changes.	The
MySQL	server	should	always	be	started	with	the	--log-bin	option	so	that	it
stores	these	changes	in	a	file	while	it	updates	data.	This	option	enables	binary
logging,	so	that	the	server	writes	each	SQL	statement	that	updates	data	into	a	file
called	a	MySQL	binary	log.	Looking	at	the	data	directory	of	a	MySQL	server
that	was	started	with	the	--log-bin	option	and	that	has	been	running	for	some
days,	we	find	these	MySQL	binary	log	files:

-rw-rw----	1	guilhem		guilhem			1277324	Nov	10	23:59	gbichot2-bin.000001

-rw-rw----	1	guilhem		guilhem									4	Nov	10	23:59	gbichot2-bin.000002

-rw-rw----	1	guilhem		guilhem								79	Nov	11	11:06	gbichot2-bin.000003

-rw-rw----	1	guilhem		guilhem							508	Nov	11	11:08	gbichot2-bin.000004

-rw-rw----	1	guilhem		guilhem	220047446	Nov	12	16:47	gbichot2-bin.000005

-rw-rw----	1	guilhem		guilhem				998412	Nov	14	10:08	gbichot2-bin.000006

-rw-rw----	1	guilhem		guilhem							361	Nov	14	10:07	gbichot2-bin.index

Each	time	it	restarts,	the	MySQL	server	creates	a	new	binary	log	file	using	the
next	number	in	the	sequence.	While	the	server	is	running,	you	can	also	tell	it	to
close	the	current	binary	log	file	and	begin	a	new	one	manually	by	issuing	a
FLUSH	LOGS	SQL	statement	or	with	a	mysqladmin	flush-logs	command.
mysqldump	also	has	an	option	to	flush	the	logs.	The	.index	file	in	the	data
directory	contains	the	list	of	all	MySQL	binary	logs	in	the	directory.	This	file	is
used	for	replication.

The	MySQL	binary	logs	are	important	for	recovery	because	they	form	the	set	of
incremental	backups.	If	you	make	sure	to	flush	the	logs	when	you	make	your	full
backup,	then	any	binary	log	files	created	afterward	contain	all	the	data	changes
made	since	the	backup.	Let's	modify	the	previous	mysqldump	command	a	bit	so
that	it	flushes	the	MySQL	binary	logs	at	the	moment	of	the	full	backup,	and	so

that	the	dump	file	contains	the	name	of	the	new	current	binary	log:

shell>	mysqldump	--single-transaction	--flush-logs	--master-data=2	\

									--all-databases	>	backup_sunday_1_PM.sql

After	executing	this	command,	the	data	directory	contains	a	new	binary	log	file,
gbichot2-bin.000007.	The	resulting	.sql	file	includes	these	lines:

--	Position	to	start	replication	or	point-in-time	recovery	from

--	CHANGE	MASTER	TO	MASTER_LOG_FILE='gbichot2-bin.000007',MASTER_LOG_POS=4;

Because	the	mysqldump	command	made	a	full	backup,	those	lines	mean	two
things:

The	.sql	file	contains	all	changes	made	before	any	changes	written	to	the
gbichot2-bin.000007	binary	log	file	or	newer.

All	data	changes	logged	after	the	backup	are	not	present	in	the	.sql,	but	are
present	in	the	gbichot2-bin.000007	binary	log	file	or	newer.

On	Monday	at	1	p.m.,	we	can	create	an	incremental	backup	by	flushing	the	logs
to	begin	a	new	binary	log	file.	For	example,	executing	a	mysqladmin	flush-logs
command	creates	gbichot2-bin.000008.	All	changes	between	the	Sunday	1
p.m.	full	backup	and	Monday	1	p.m.	will	be	in	the	gbichot2-bin.000007	file.
This	incremental	backup	is	important,	so	it	is	a	good	idea	to	copy	it	to	a	safe
place.	(For	example,	back	it	up	on	tape	or	DVD,	or	copy	it	to	another	machine.)
On	Tuesday	at	1	p.m.,	execute	another	mysqladmin	flush-logs	command.	All
changes	between	Monday	1	p.m.	and	Tuesday	1	p.m.	will	be	in	the	gbichot2-
bin.000008	file	(which	also	should	be	copied	somewhere	safe).

The	MySQL	binary	logs	take	up	disk	space.	To	free	up	space,	purge	them	from
time	to	time.	One	way	to	do	this	is	by	deleting	the	binary	logs	that	are	no	longer
needed,	such	as	when	we	make	a	full	backup:

shell>	mysqldump	--single-transaction	--flush-logs	--master-data=2	\

									--all-databases	--delete-master-logs	>	backup_sunday_1_PM.sql

Note:	Deleting	the	MySQL	binary	logs	with	mysqldump	--delete-master-logs
can	be	dangerous	if	your	server	is	a	replication	master	server,	because	slave
servers	might	not	yet	fully	have	processed	the	contents	of	the	binary	log.	The
description	for	the	PURGE	MASTER	LOGS	statement	explains	what	should	be

verified	before	deleting	the	MySQL	binary	logs.	See	Section	13.6.1.1,	“PURGE
MASTER	LOGS	Syntax”.

5.10.2.2.	Using	Backups	for	Recovery

Now,	suppose	that	we	have	a	catastrophic	crash	on	Wednesday	at	8	a.m.	that
requires	recovery	from	backups.	To	recover,	first	we	restore	the	last	full	backup
we	have	(the	one	from	Sunday	1	p.m.).	The	full	backup	file	is	just	a	set	of	SQL
statements,	so	restoring	it	is	very	easy:

shell>	mysql	<	backup_sunday_1_PM.sql

At	this	point,	the	data	is	restored	to	its	state	as	of	Sunday	1	p.m..	To	restore	the
changes	made	since	then,	we	must	use	the	incremental	backups;	that	is,	the
gbichot2-bin.000007	and	gbichot2-bin.000008	binary	log	files.	Fetch	the
files	if	necessary	from	where	they	were	backed	up,	and	then	process	their
contents	like	this:

shell>	mysqlbinlog	gbichot2-bin.000007	gbichot2-bin.000008	|	mysql

We	now	have	recovered	the	data	to	its	state	as	of	Tuesday	1	p.m.,	but	still	are
missing	the	changes	from	that	date	to	the	date	of	the	crash.	To	not	lose	them,	we
would	have	needed	to	have	the	MySQL	server	store	its	MySQL	binary	logs	into
a	safe	location	(RAID	disks,	SAN,	...)	different	from	the	place	where	it	stores	its
data	files,	so	that	these	logs	were	not	on	the	destroyed	disk.	(That	is,	we	can	start
the	server	with	a	--log-bin	option	that	specifies	a	location	on	a	different
physical	device	from	the	one	on	which	the	data	directory	resides.	That	way,	the
logs	are	safe	even	if	the	device	containing	the	directory	is	lost.)	If	we	had	done
this,	we	would	have	the	gbichot2-bin.000009	file	at	hand,	and	we	could	apply
it	using	mysqlbinlog	and	mysql	to	restore	the	most	recent	data	changes	with	no
loss	up	to	the	moment	of	the	crash.

5.10.2.3.	Backup	Strategy	Summary

In	case	of	an	operating	system	crash	or	power	failure,	InnoDB	itself	does	all	the
job	of	recovering	data.	But	to	make	sure	that	you	can	sleep	well,	observe	the
following	guidelines:

Always	run	the	MySQL	server	with	the	--log-bin	option,	or	even	--log-

bin=log_name,	where	the	log	file	name	is	located	on	some	safe	media
different	from	the	drive	on	which	the	data	directory	is	located.	If	you	have
such	safe	media,	this	technique	can	also	be	good	for	disk	load	balancing
(which	results	in	a	performance	improvement).

Make	periodic	full	backups,	using	the	mysqldump	command	shown	earlier
in	Section	5.10.2.1,	“Backup	Policy”,	that	makes	an	online,	non-blocking
backup.

Make	periodic	incremental	backups	by	flushing	the	logs	with	FLUSH	LOGS
or	mysqladmin	flush-logs.

5.10.3.	Point-in-Time	Recovery

If	a	MySQL	server	was	started	with	the	--log-bin	option	to	enable	binary
logging,	you	can	use	the	mysqlbinlog	utility	to	recover	data	from	the	binary	log
files,	starting	from	a	specified	point	in	time	(for	example,	since	your	last	backup)
until	the	present	or	another	specified	point	in	time.	For	information	on	enabling
the	binary	log	and	using	mysqlbinlog,	see	Section	5.12.3,	“The	Binary	Log”,
and	Section	8.10,	“mysqlbinlog	—	Utility	for	Processing	Binary	Log	Files”.

To	restore	data	from	a	binary	log,	you	must	know	the	location	and	name	of	the
current	binary	log	file.	By	default,	the	server	creates	binary	log	files	in	the	data
directory,	but	a	pathname	can	be	specified	with	the	--log-bin	option	to	place
the	files	in	a	different	location.	Typically	the	option	is	given	in	an	option	file
(that	is,	my.cnf	or	my.ini,	depending	on	your	system).	It	can	also	be	given	on
the	command	line	when	the	server	is	started.	To	determine	the	name	of	the
current	binary	log	file,	issue	the	following	statement:

mysql>	SHOW	BINLOG	EVENTS\G

If	you	prefer,	you	can	execute	the	following	command	from	the	command	line
instead:

shell>	mysql	-u	root	-p	-E	-e	"SHOW	BINLOG	EVENTS"

Enter	the	root	password	for	your	server	when	mysql	prompts	you	for	it.

5.10.3.1.	Specifying	Times	for	Recovery

To	indicate	the	start	and	end	times	for	recovery,	specify	the	--start-date	and	-
-stop-date	options	for	mysqlbinlog,	in	DATETIME	format.	As	an	example,
suppose	that	exactly	at	10:00	a.m.	on	April	20,	2005	an	SQL	statement	was
executed	that	deleted	a	large	table.	To	restore	the	table	and	data,	you	could
restore	the	previous	night's	backup,	and	then	execute	the	following	command:

shell>	mysqlbinlog	--stop-date="2005-04-20	9:59:59"	\

									/var/log/mysql/bin.123456	|	mysql	-u	root	-p

This	command	recovers	all	of	the	data	up	until	the	date	and	time	given	by	the	--
stop-date	option.	If	you	did	not	detect	the	erroneous	SQL	statement	that	was
entered	until	hours	later,	you	will	probably	also	want	to	recover	the	activity	that
occurred	afterward.	Based	on	this,	you	could	run	mysqlbinlog	again	with	a	start
date	and	time,	like	so:

shell>	mysqlbinlog	--start-date="2005-04-20	10:01:00"	\

									/var/log/mysql/bin.123456	|	mysql	-u	root	-p

In	this	command,	the	SQL	statements	logged	from	10:01	a.m.	on	will	be	re-
executed.	The	combination	of	restoring	of	the	previous	night's	dump	file	and	the
two	mysqlbinlog	commands	restores	everything	up	until	one	second	before
10:00	a.m.	and	everything	from	10:01	a.m.	on.	You	should	examine	the	log	to	be
sure	of	the	exact	times	to	specify	for	the	commands.	To	display	the	log	file
contents	without	executing	them,	use	this	command:

shell>	mysqlbinlog	/var/log/mysql/bin.123456	>	/tmp/mysql_restore.sql

Then	open	the	file	with	a	text	editor	to	examine	it.

5.10.3.2.	Specifying	Positions	for	Recovery

Instead	of	specifying	dates	and	times,	the	--start-position	and	--stop-
position	options	for	mysqlbinlog	can	be	used	for	specifying	log	positions.
They	work	the	same	as	the	start	and	stop	date	options,	except	that	you	specify
log	position	numbers	rather	than	dates.	Using	positions	may	enable	you	to	be
more	precise	about	which	part	of	the	log	to	recover,	especially	if	many
transactions	occurred	around	the	same	time	as	a	damaging	SQL	statement.	To
determine	the	position	numbers,	run	mysqlbinlog	for	a	range	of	times	near	the
time	when	the	unwanted	transaction	was	executed,	but	redirect	the	results	to	a
text	file	for	examination.	This	can	be	done	like	so:

shell>	mysqlbinlog	--start-date="2005-04-20	9:55:00"	\

									--stop-date="2005-04-20	10:05:00"	\

									/var/log/mysql/bin.123456	>	/tmp/mysql_restore.sql

This	command	creates	a	small	text	file	in	the	/tmp	directory	that	contains	the
SQL	statements	around	the	time	that	the	deleterious	SQL	statement	was
executed.	Open	this	file	with	a	text	editor	and	look	for	the	statement	that	you
don't	want	to	repeat.	Determine	the	positions	in	the	binary	log	for	stopping	and
resuming	the	recovery	and	make	note	of	them.	Positions	are	labeled	as	log_pos
followed	by	a	number.	After	restoring	the	previous	backup	file,	use	the	position
numbers	to	process	the	binary	log	file.	For	example,	you	would	use	commands
something	like	these:

shell>	mysqlbinlog	--stop-position="368312"	/var/log/mysql/bin.123456	\

									|	mysql	-u	root	-p

shell>	mysqlbinlog	--start-position="368315"	/var/log/mysql/bin.123456	\

									|	mysql	-u	root	-p

The	first	command	recovers	all	the	transactions	up	until	the	stop	position	given.
The	second	command	recovers	all	transactions	from	the	starting	position	given
until	the	end	of	the	binary	log.	Because	the	output	of	mysqlbinlog	includes	SET
TIMESTAMP	statements	before	each	SQL	statement	recorded,	the	recovered	data
and	related	MySQL	logs	will	reflect	the	original	times	at	which	the	transactions
were	executed.

5.10.4.	Table	Maintenance	and	Crash	Recovery

This	section	discusses	how	to	use	myisamchk	to	check	or	repair	MyISAM	tables
(tables	that	have	.MYD	and	.MYI	files	for	storing	data	and	indexes).	For	general
myisamchk	background,	see	Section	8.3,	“myisamchk	—	MyISAM	Table-
Maintenance	Utility”.

You	can	use	myisamchk	to	get	information	about	your	database	tables	or	to
check,	repair,	or	optimize	them.	The	following	sections	describe	how	to	perform
these	operations	and	how	to	set	up	a	table	maintenance	schedule.

Even	though	table	repair	with	myisamchk	is	quite	secure,	it	is	always	a	good
idea	to	make	a	backup	before	doing	a	repair	or	any	maintenance	operation	that
could	make	a	lot	of	changes	to	a	table

myisamchk	operations	that	affect	indexes	can	cause	FULLTEXT	indexes	to	be
rebuilt	with	full-text	parameters	that	are	incompatible	with	the	values	used	by
the	MySQL	server.	To	avoid	this	problem,	follow	the	guidelines	in	Section	8.3.1,
“myisamchk	General	Options”.

In	many	cases,	you	may	find	it	simpler	to	do	MyISAM	table	maintenance	using	the
SQL	statements	that	perform	operations	that	myisamchk	can	do:

To	check	or	repair	MyISAM	tables,	use	CHECK	TABLE	or	REPAIR	TABLE.

To	optimize	MyISAM	tables,	use	OPTIMIZE	TABLE.

To	analyze	MyISAM	tables,	use	ANALYZE	TABLE.

These	statements	can	be	used	directly	or	by	means	of	the	mysqlcheck	client
program.	One	advantage	of	these	statements	over	myisamchk	is	that	the	server
does	all	the	work.	With	myisamchk,	you	must	make	sure	that	the	server	does	not
use	the	tables	at	the	same	time	so	that	there	is	no	unwanted	interaction	between
myisamchk	and	the	server.	See	Section	13.5.2.1,	“ANALYZE	TABLE	Syntax”,
Section	13.5.2.3,	“CHECK	TABLE	Syntax”,	Section	13.5.2.5,	“OPTIMIZE	TABLE
Syntax”,	and	Section	13.5.2.6,	“REPAIR	TABLE	Syntax”.

5.10.4.1.	Using	myisamchk	for	Crash	Recovery

This	section	describes	how	to	check	for	and	deal	with	data	corruption	in	MySQL
databases.	If	your	tables	become	corrupted	frequently,	you	should	try	to	find	the
reason	why.	See	Section	A.4.2,	“What	to	Do	If	MySQL	Keeps	Crashing”.

For	an	explanation	of	how	MyISAM	tables	can	become	corrupted,	see
Section	14.1.4,	“MyISAM	Table	Problems”.

If	you	run	mysqld	with	external	locking	disabled	(which	is	the	default	as	of
MySQL	4.0),	you	cannot	reliably	use	myisamchk	to	check	a	table	when	mysqld
is	using	the	same	table.	If	you	can	be	certain	that	no	one	will	access	the	tables
through	mysqld	while	you	run	myisamchk,	you	only	have	to	execute
mysqladmin	flush-tables	before	you	start	checking	the	tables.	If	you	cannot
guarantee	this,	you	must	stop	mysqld	while	you	check	the	tables.	If	you	run
myisamchk	to	check	tables	that	mysqld	is	updating	at	the	same	time,	you	may
get	a	warning	that	a	table	is	corrupt	even	when	it	is	not.

If	the	server	is	run	with	external	locking	enabled,	you	can	use	myisamchk	to
check	tables	at	any	time.	In	this	case,	if	the	server	tries	to	update	a	table	that
myisamchk	is	using,	the	server	will	wait	for	myisamchk	to	finish	before	it
continues.

If	you	use	myisamchk	to	repair	or	optimize	tables,	you	must	always	ensure	that
the	mysqld	server	is	not	using	the	table	(this	also	applies	if	external	locking	is
disabled).	If	you	don't	stop	mysqld,	you	should	at	least	do	a	mysqladmin	flush-
tables	before	you	run	myisamchk.	Your	tables	may	become	corrupted	if	the
server	and	myisamchk	access	the	tables	simultaneously.

When	performing	crash	recovery,	it	is	important	to	understand	that	each	MyISAM
table	tbl_name	in	a	database	corresponds	to	three	files	in	the	database	directory:

File Purpose
tbl_name.frm Definition	(format)	file
tbl_name.MYD Data	file
tbl_name.MYI Index	file

Each	of	these	three	file	types	is	subject	to	corruption	in	various	ways,	but
problems	occur	most	often	in	data	files	and	index	files.

myisamchk	works	by	creating	a	copy	of	the	.MYD	data	file	row	by	row.	It	ends
the	repair	stage	by	removing	the	old	.MYD	file	and	renaming	the	new	file	to	the
original	file	name.	If	you	use	--quick,	myisamchk	does	not	create	a	temporary
.MYD	file,	but	instead	assumes	that	the	.MYD	file	is	correct	and	generates	only	a
new	index	file	without	touching	the	.MYD	file.	This	is	safe,	because	myisamchk
automatically	detects	whether	the	.MYD	file	is	corrupt	and	aborts	the	repair	if	it	is.
You	can	also	specify	the	--quick	option	twice	to	myisamchk.	In	this	case,
myisamchk	does	not	abort	on	some	errors	(such	as	duplicate-key	errors)	but
instead	tries	to	resolve	them	by	modifying	the	.MYD	file.	Normally	the	use	of	two
--quick	options	is	useful	only	if	you	have	too	little	free	disk	space	to	perform	a
normal	repair.	In	this	case,	you	should	at	least	make	a	backup	of	the	table	before
running	myisamchk.

5.10.4.2.	How	to	Check	MyISAM	Tables	for	Errors

To	check	a	MyISAM	table,	use	the	following	commands:

myisamchk	tbl_name

This	finds	99.99%	of	all	errors.	What	it	cannot	find	is	corruption	that
involves	only	the	data	file	(which	is	very	unusual).	If	you	want	to	check	a
table,	you	should	normally	run	myisamchk	without	options	or	with	the	-s
(silent)	option.

myisamchk	-m	tbl_name

This	finds	99.999%	of	all	errors.	It	first	checks	all	index	entries	for	errors
and	then	reads	through	all	rows.	It	calculates	a	checksum	for	all	key	values
in	the	rows	and	verifies	that	the	checksum	matches	the	checksum	for	the
keys	in	the	index	tree.

myisamchk	-e	tbl_name

This	does	a	complete	and	thorough	check	of	all	data	(-e	means	“extended
check”).	It	does	a	check-read	of	every	key	for	each	row	to	verify	that	they
indeed	point	to	the	correct	row.	This	may	take	a	long	time	for	a	large	table
that	has	many	indexes.	Normally,	myisamchk	stops	after	the	first	error	it
finds.	If	you	want	to	obtain	more	information,	you	can	add	the	-v	(verbose)
option.	This	causes	myisamchk	to	keep	going,	up	through	a	maximum	of
20	errors.

myisamchk	-e	-i	tbl_name

This	is	like	the	previous	command,	but	the	-i	option	tells	myisamchk	to
print	additional	statistical	information.

In	most	cases,	a	simple	myisamchk	command	with	no	arguments	other	than	the
table	name	is	sufficient	to	check	a	table.

5.10.4.3.	How	to	Repair	Tables

The	discussion	in	this	section	describes	how	to	use	myisamchk	on	MyISAM	tables
(extensions	.MYI	and	.MYD).

You	can	also	(and	should,	if	possible)	use	the	CHECK	TABLE	and	REPAIR	TABLE
statements	to	check	and	repair	MyISAM	tables.	See	Section	13.5.2.3,	“CHECK

TABLE	Syntax”,	and	Section	13.5.2.6,	“REPAIR	TABLE	Syntax”.

Symptoms	of	corrupted	tables	include	queries	that	abort	unexpectedly	and
observable	errors	such	as	these:

tbl_name.frm	is	locked	against	change

Can't	find	file	tbl_name.MYI	(Errcode:	nnn)

Unexpected	end	of	file

Record	file	is	crashed

Got	error	nnn	from	table	handler

To	get	more	information	about	the	error,	run	perror	nnn,	where	nnn	is	the	error
number.	The	following	example	shows	how	to	use	perror	to	find	the	meanings
for	the	most	common	error	numbers	that	indicate	a	problem	with	a	table:

shell>	perror	126	127	132	134	135	136	141	144	145

126	=	Index	file	is	crashed	/	Wrong	file	format

127	=	Record-file	is	crashed

132	=	Old	database	file

134	=	Record	was	already	deleted	(or	record	file	crashed)

135	=	No	more	room	in	record	file

136	=	No	more	room	in	index	file

141	=	Duplicate	unique	key	or	constraint	on	write	or	update

144	=	Table	is	crashed	and	last	repair	failed

145	=	Table	was	marked	as	crashed	and	should	be	repaired

Note	that	error	135	(no	more	room	in	record	file)	and	error	136	(no	more	room
in	index	file)	are	not	errors	that	can	be	fixed	by	a	simple	repair.	In	this	case,	you
must	use	ALTER	TABLE	to	increase	the	MAX_ROWS	and	AVG_ROW_LENGTH	table
option	values:

ALTER	TABLE	tbl_name	MAX_ROWS=xxx	AVG_ROW_LENGTH=yyy;

If	you	do	not	know	the	current	table	option	values,	use	SHOW	CREATE	TABLE.

For	the	other	errors,	you	must	repair	your	tables.	myisamchk	can	usually	detect
and	fix	most	problems	that	occur.

The	repair	process	involves	up	to	four	stages,	described	here.	Before	you	begin,

you	should	change	location	to	the	database	directory	and	check	the	permissions
of	the	table	files.	On	Unix,	make	sure	that	they	are	readable	by	the	user	that
mysqld	runs	as	(and	to	you,	because	you	need	to	access	the	files	you	are
checking).	If	it	turns	out	you	need	to	modify	files,	they	must	also	be	writable	by
you.

This	section	is	for	the	cases	where	a	table	check	fails	(such	as	those	described	in
Section	5.10.4.2,	“How	to	Check	MyISAM	Tables	for	Errors”),	or	you	want	to	use
the	extended	features	that	myisamchk	provides.

The	options	that	you	can	use	for	table	maintenance	with	myisamchk	are
described	in	Section	8.3,	“myisamchk	—	MyISAM	Table-Maintenance	Utility”.

If	you	are	going	to	repair	a	table	from	the	command	line,	you	must	first	stop	the
mysqld	server.	Note	that	when	you	do	mysqladmin	shutdown	on	a	remote
server,	the	mysqld	server	is	still	alive	for	a	while	after	mysqladmin	returns,
until	all	statement-processing	has	stopped	and	all	index	changes	have	been
flushed	to	disk.

Stage	1:	Checking	your	tables

Run	myisamchk	*.MYI	or	myisamchk	-e	*.MYI	if	you	have	more	time.	Use
the	-s	(silent)	option	to	suppress	unnecessary	information.

If	the	mysqld	server	is	stopped,	you	should	use	the	--update-state	option	to
tell	myisamchk	to	mark	the	table	as	“checked.”

You	have	to	repair	only	those	tables	for	which	myisamchk	announces	an	error.
For	such	tables,	proceed	to	Stage	2.

If	you	get	unexpected	errors	when	checking	(such	as	out	of	memory	errors),	or
if	myisamchk	crashes,	go	to	Stage	3.

Stage	2:	Easy	safe	repair

First,	try	myisamchk	-r	-q	tbl_name	(-r	-q	means	“quick	recovery	mode”).
This	attempts	to	repair	the	index	file	without	touching	the	data	file.	If	the	data
file	contains	everything	that	it	should	and	the	delete	links	point	at	the	correct
locations	within	the	data	file,	this	should	work,	and	the	table	is	fixed.	Start
repairing	the	next	table.	Otherwise,	use	the	following	procedure:

1.	 Make	a	backup	of	the	data	file	before	continuing.

2.	 Use	myisamchk	-r	tbl_name	(-r	means	“recovery	mode”).	This	removes
incorrect	rows	and	deleted	rows	from	the	data	file	and	reconstructs	the
index	file.

3.	 If	the	preceding	step	fails,	use	myisamchk	--safe-recover	tbl_name.	Safe
recovery	mode	uses	an	old	recovery	method	that	handles	a	few	cases	that
regular	recovery	mode	does	not	(but	is	slower).

Note:	If	you	want	a	repair	operation	to	go	much	faster,	you	should	set	the	values
of	the	sort_buffer_size	and	key_buffer_size	variables	each	to	about	25%	of
your	available	memory	when	running	myisamchk.

If	you	get	unexpected	errors	when	repairing	(such	as	out	of	memory	errors),	or
if	myisamchk	crashes,	go	to	Stage	3.

Stage	3:	Difficult	repair

You	should	reach	this	stage	only	if	the	first	16KB	block	in	the	index	file	is
destroyed	or	contains	incorrect	information,	or	if	the	index	file	is	missing.	In	this
case,	it	is	necessary	to	create	a	new	index	file.	Do	so	as	follows:

1.	 Move	the	data	file	to	a	safe	place.

2.	 Use	the	table	description	file	to	create	new	(empty)	data	and	index	files:

shell>	mysql	db_name

mysql>	SET	AUTOCOMMIT=1;

mysql>	TRUNCATE	TABLE	tbl_name;

mysql>	quit

3.	 Copy	the	old	data	file	back	onto	the	newly	created	data	file.	(Do	not	just
move	the	old	file	back	onto	the	new	file.	You	want	to	retain	a	copy	in	case
something	goes	wrong.)

Go	back	to	Stage	2.	myisamchk	-r	-q	should	work.	(This	should	not	be	an
endless	loop.)

You	can	also	use	the	REPAIR	TABLE	tbl_name	USE_FRM	SQL	statement,	which
performs	the	whole	procedure	automatically.	There	is	also	no	possibility	of

unwanted	interaction	between	a	utility	and	the	server,	because	the	server	does	all
the	work	when	you	use	REPAIR	TABLE.	See	Section	13.5.2.6,	“REPAIR	TABLE
Syntax”.

Stage	4:	Very	difficult	repair

You	should	reach	this	stage	only	if	the	.frm	description	file	has	also	crashed.
That	should	never	happen,	because	the	description	file	is	not	changed	after	the
table	is	created:

1.	 Restore	the	description	file	from	a	backup	and	go	back	to	Stage	3.	You	can
also	restore	the	index	file	and	go	back	to	Stage	2.	In	the	latter	case,	you
should	start	with	myisamchk	-r.

2.	 If	you	do	not	have	a	backup	but	know	exactly	how	the	table	was	created,
create	a	copy	of	the	table	in	another	database.	Remove	the	new	data	file,
and	then	move	the	.frm	description	and	.MYI	index	files	from	the	other
database	to	your	crashed	database.	This	gives	you	new	description	and
index	files,	but	leaves	the	.MYD	data	file	alone.	Go	back	to	Stage	2	and
attempt	to	reconstruct	the	index	file.

5.10.4.4.	Table	Optimization

To	coalesce	fragmented	rows	and	eliminate	wasted	space	that	results	from
deleting	or	updating	rows,	run	myisamchk	in	recovery	mode:

shell>	myisamchk	-r	tbl_name

You	can	optimize	a	table	in	the	same	way	by	using	the	OPTIMIZE	TABLE	SQL
statement.	OPTIMIZE	TABLE	does	a	table	repair	and	a	key	analysis,	and	also	sorts
the	index	tree	so	that	key	lookups	are	faster.	There	is	also	no	possibility	of
unwanted	interaction	between	a	utility	and	the	server,	because	the	server	does	all
the	work	when	you	use	OPTIMIZE	TABLE.	See	Section	13.5.2.5,	“OPTIMIZE
TABLE	Syntax”.

myisamchk	has	a	number	of	other	options	that	you	can	use	to	improve	the
performance	of	a	table:

--analyze,	-a

--sort-index,	-S

--sort-records=index_num,	-R	index_num

For	a	full	description	of	all	available	options,	see	Section	8.3,	“myisamchk	—
MyISAM	Table-Maintenance	Utility”.

5.10.4.5.	Getting	Information	About	a	Table

To	obtain	a	description	of	a	table	or	statistics	about	it,	use	the	commands	shown
here.	We	explain	some	of	the	information	in	more	detail	later.

myisamchk	-d	tbl_name

Runs	myisamchk	in	“describe	mode”	to	produce	a	description	of	your
table.	If	you	start	the	MySQL	server	with	external	locking	disabled,
myisamchk	may	report	an	error	for	a	table	that	is	updated	while	it	runs.
However,	because	myisamchk	does	not	change	the	table	in	describe	mode,
there	is	no	risk	of	destroying	data.

myisamchk	-d	-v	tbl_name

Adding	-v	runs	myisamchk	in	verbose	mode	so	that	it	produces	more
information	about	what	it	is	doing.

myisamchk	-eis	tbl_name

Shows	only	the	most	important	information	from	a	table.	This	operation	is
slow	because	it	must	read	the	entire	table.

myisamchk	-eiv	tbl_name

This	is	like	-eis,	but	tells	you	what	is	being	done.

Sample	output	for	some	of	these	commands	follows.	They	are	based	on	a	table
with	these	data	and	index	file	sizes:

-rw-rw-r--			1	monty				tcx					317235748	Jan	12	17:30	company.MYD

-rw-rw-r--			1	davida			tcx						96482304	Jan	12	18:35	company.MYI

Example	of	myisamchk	-d	output:

MyISAM	file:					company.MYI

Record	format:			Fixed	length

Data	records:				1403698		Deleted	blocks:									0

Recordlength:				226

table	description:

Key	Start	Len	Index			Type

1			2					8			unique		double

2			15				10		multip.	text	packed	stripped

3			219			8			multip.	double

4			63				10		multip.	text	packed	stripped

5			167			2			multip.	unsigned	short

6			177			4			multip.	unsigned	long

7			155			4			multip.	text

8			138			4			multip.	unsigned	long

9			177			4			multip.	unsigned	long

				193			1											text

Example	of	myisamchk	-d	-v	output:

MyISAM	file:									company

Record	format:							Fixed	length

File-version:								1

Creation	time:							1999-10-30	12:12:51

Recover	time:								1999-10-31	19:13:01

Status:														checked

Data	records:												1403698		Deleted	blocks:														0

Datafile	parts:										1403698		Deleted	data:																0

Datafile	pointer	(bytes):						3		Keyfile	pointer	(bytes):					3

Max	datafile	length:		3791650815		Max	keyfile	length:	4294967294

Recordlength:																226

table	description:

Key	Start	Len	Index			Type																		Rec/key					Root	Blocksize

1			2					8			unique		double																						1	15845376						1024

2			15				10		multip.	text	packed	stripped								2	25062400						1024

3			219			8			multip.	double																					73	40907776						1024

4			63				10		multip.	text	packed	stripped								5	48097280						1024

5			167			2			multip.	unsigned	short											4840	55200768						1024

6			177			4			multip.	unsigned	long												1346	65145856						1024

7			155			4			multip.	text																					4995	75090944						1024

8			138			4			multip.	unsigned	long														87	85036032						1024

9			177			4			multip.	unsigned	long													178	96481280						1024

				193			1											text

Example	of	myisamchk	-eis	output:

Checking	MyISAM	file:	company

Key:		1:		Keyblocks	used:		97%		Packed:				0%		Max	levels:		4

Key:		2:		Keyblocks	used:		98%		Packed:			50%		Max	levels:		4

Key:		3:		Keyblocks	used:		97%		Packed:				0%		Max	levels:		4

Key:		4:		Keyblocks	used:		99%		Packed:			60%		Max	levels:		3

Key:		5:		Keyblocks	used:		99%		Packed:				0%		Max	levels:		3

Key:		6:		Keyblocks	used:		99%		Packed:				0%		Max	levels:		3

Key:		7:		Keyblocks	used:		99%		Packed:				0%		Max	levels:		3

Key:		8:		Keyblocks	used:		99%		Packed:				0%		Max	levels:		3

Key:		9:		Keyblocks	used:		98%		Packed:				0%		Max	levels:		4

Total:				Keyblocks	used:		98%		Packed:			17%

Records:										1403698				M.recordlength:					226

Packed:													0%

Recordspace	used:					100%			Empty	space:										0%

Blocks/Record:			1.00

Record	blocks:				1403698				Delete	blocks:								0

Recorddata:					317235748				Deleted	data:									0

Lost	space:													0				Linkdata:													0

User	time	1626.51,	System	time	232.36

Maximum	resident	set	size	0,	Integral	resident	set	size	0

Non	physical	pagefaults	0,	Physical	pagefaults	627,	Swaps	0

Blocks	in	0	out	0,	Messages	in	0	out	0,	Signals	0

Voluntary	context	switches	639,	Involuntary	context	switches	28966

Example	of	myisamchk	-eiv	output:

Checking	MyISAM	file:	company

Data	records:	1403698			Deleted	blocks:							0

-	check	file-size

-	check	delete-chain

block_size	1024:

index		1:

index		2:

index		3:

index		4:

index		5:

index		6:

index		7:

index		8:

index		9:

No	recordlinks

-	check	index	reference

-	check	data	record	references	index:	1

Key:		1:		Keyblocks	used:		97%		Packed:				0%		Max	levels:		4

-	check	data	record	references	index:	2

Key:		2:		Keyblocks	used:		98%		Packed:			50%		Max	levels:		4

-	check	data	record	references	index:	3

Key:		3:		Keyblocks	used:		97%		Packed:				0%		Max	levels:		4

-	check	data	record	references	index:	4

Key:		4:		Keyblocks	used:		99%		Packed:			60%		Max	levels:		3

-	check	data	record	references	index:	5

Key:		5:		Keyblocks	used:		99%		Packed:				0%		Max	levels:		3

-	check	data	record	references	index:	6

Key:		6:		Keyblocks	used:		99%		Packed:				0%		Max	levels:		3

-	check	data	record	references	index:	7

Key:		7:		Keyblocks	used:		99%		Packed:				0%		Max	levels:		3

-	check	data	record	references	index:	8

Key:		8:		Keyblocks	used:		99%		Packed:				0%		Max	levels:		3

-	check	data	record	references	index:	9

Key:		9:		Keyblocks	used:		98%		Packed:				0%		Max	levels:		4

Total:				Keyblocks	used:			9%		Packed:			17%

-	check	records	and	index	references

***	LOTS	OF	ROW	NUMBERS	DELETED	***

Records:									1403698			M.recordlength:			226			Packed:											0%

Recordspace	used:				100%		Empty	space:								0%		Blocks/Record:	1.00

Record	blocks:			1403698			Delete	blocks:						0

Recorddata:				317235748			Deleted	data:							0

Lost	space:												0			Linkdata:											0

User	time	1639.63,	System	time	251.61

Maximum	resident	set	size	0,	Integral	resident	set	size	0

Non	physical	pagefaults	0,	Physical	pagefaults	10580,	Swaps	0

Blocks	in	4	out	0,	Messages	in	0	out	0,	Signals	0

Voluntary	context	switches	10604,	Involuntary	context	switches	122798

Explanations	for	the	types	of	information	myisamchk	produces	are	given	here.
“Keyfile”	refers	to	the	index	file.	“Record”	and	“row”	are	synonymous.

MyISAM	file

Name	of	the	MyISAM	(index)	file.

File-version

Version	of	MyISAM	format.	Currently	always	2.

Creation	time

When	the	data	file	was	created.

Recover	time

When	the	index/data	file	was	last	reconstructed.

Data	records

How	many	rows	are	in	the	table.

Deleted	blocks

How	many	deleted	blocks	still	have	reserved	space.	You	can	optimize	your
table	to	minimize	this	space.	See	Section	5.10.4.4,	“Table	Optimization”.

Datafile	parts

For	dynamic-row	format,	this	indicates	how	many	data	blocks	there	are.	For
an	optimized	table	without	fragmented	rows,	this	is	the	same	as	Data
records.

Deleted	data

How	many	bytes	of	unreclaimed	deleted	data	there	are.	You	can	optimize
your	table	to	minimize	this	space.	See	Section	5.10.4.4,	“Table
Optimization”.

Datafile	pointer

The	size	of	the	data	file	pointer,	in	bytes.	It	is	usually	2,	3,	4,	or	5	bytes.
Most	tables	manage	with	2	bytes,	but	this	cannot	be	controlled	from
MySQL	yet.	For	fixed	tables,	this	is	a	row	address.	For	dynamic	tables,	this
is	a	byte	address.

Keyfile	pointer

The	size	of	the	index	file	pointer,	in	bytes.	It	is	usually	1,	2,	or	3	bytes.
Most	tables	manage	with	2	bytes,	but	this	is	calculated	automatically	by
MySQL.	It	is	always	a	block	address.

Max	datafile	length

How	long	the	table	data	file	can	become,	in	bytes.

Max	keyfile	length

How	long	the	table	index	file	can	become,	in	bytes.

Recordlength

How	much	space	each	row	takes,	in	bytes.

Record	format

The	format	used	to	store	table	rows.	The	preceding	examples	use	Fixed
length.	Other	possible	values	are	Compressed	and	Packed.

table	description

A	list	of	all	keys	in	the	table.	For	each	key,	myisamchk	displays	some	low-
level	information:

Key

This	key's	number.

Start

Where	in	the	row	this	portion	of	the	index	starts.

Len

How	long	this	portion	of	the	index	is.	For	packed	numbers,	this	should
always	be	the	full	length	of	the	column.	For	strings,	it	may	be	shorter
than	the	full	length	of	the	indexed	column,	because	you	can	index	a
prefix	of	a	string	column.

Index

Whether	a	key	value	can	exist	multiple	times	in	the	index.	Possible
values	are	unique	or	multip.	(multiple).

Type

What	data	type	this	portion	of	the	index	has.	This	is	a	MyISAM	data	type
with	the	possible	values	packed,	stripped,	or	empty.

Root

Address	of	the	root	index	block.

Blocksize

The	size	of	each	index	block.	By	default	this	is	1024,	but	the	value
may	be	changed	at	compile	time	when	MySQL	is	built	from	source.

Rec/key

This	is	a	statistical	value	used	by	the	optimizer.	It	tells	how	many	rows
there	are	per	value	for	this	index.	A	unique	index	always	has	a	value	of
1.	This	may	be	updated	after	a	table	is	loaded	(or	greatly	changed)
with	myisamchk	-a.	If	this	is	not	updated	at	all,	a	default	value	of	30
is	given.

For	the	table	shown	in	the	examples,	there	are	two	table	description
lines	for	the	ninth	index.	This	indicates	that	it	is	a	multiple-part	index	with
two	parts.

Keyblocks	used

What	percentage	of	the	keyblocks	are	used.	When	a	table	has	just	been
reorganized	with	myisamchk,	as	for	the	table	in	the	examples,	the	values
are	very	high	(very	near	the	theoretical	maximum).

Packed

MySQL	tries	to	pack	key	values	that	have	a	common	suffix.	This	can	only
be	used	for	indexes	on	CHAR	and	VARCHAR	columns.	For	long	indexed	strings
that	have	similar	leftmost	parts,	this	can	significantly	reduce	the	space	used.
In	the	third	of	the	preceding	examples,	the	fourth	key	is	10	characters	long
and	a	60%	reduction	in	space	is	achieved.

Max	levels

How	deep	the	B-tree	for	this	key	is.	Large	tables	with	long	key	values	get
high	values.

Records

How	many	rows	are	in	the	table.

M.recordlength

The	average	row	length.	This	is	the	exact	row	length	for	tables	with	fixed-
length	rows,	because	all	rows	have	the	same	length.

Packed

MySQL	strips	spaces	from	the	end	of	strings.	The	Packed	value	indicates
the	percentage	of	savings	achieved	by	doing	this.

Recordspace	used

What	percentage	of	the	data	file	is	used.

Empty	space

What	percentage	of	the	data	file	is	unused.

Blocks/Record

Average	number	of	blocks	per	row	(that	is,	how	many	links	a	fragmented
row	is	composed	of).	This	is	always	1.0	for	fixed-format	tables.	This	value
should	stay	as	close	to	1.0	as	possible.	If	it	gets	too	large,	you	can
reorganize	the	table.	See	Section	5.10.4.4,	“Table	Optimization”.

Recordblocks

How	many	blocks	(links)	are	used.	For	fixed-format	tables,	this	is	the	same
as	the	number	of	rows.

Deleteblocks

How	many	blocks	(links)	are	deleted.

Recorddata

How	many	bytes	in	the	data	file	are	used.

Deleted	data

How	many	bytes	in	the	data	file	are	deleted	(unused).

Lost	space

If	a	row	is	updated	to	a	shorter	length,	some	space	is	lost.	This	is	the	sum	of
all	such	losses,	in	bytes.

Linkdata

When	the	dynamic	table	format	is	used,	row	fragments	are	linked	with
pointers	(4	to	7	bytes	each).	Linkdata	is	the	sum	of	the	amount	of	storage
used	by	all	such	pointers.

If	a	table	has	been	compressed	with	myisampack,	myisamchk	-d	prints
additional	information	about	each	table	column.	See	Section	8.5,	“myisampack
—	Generate	Compressed,	Read-Only	MyISAM	Tables”,	for	an	example	of	this
information	and	a	description	of	what	it	means.

5.10.4.6.	Setting	Up	a	Table	Maintenance	Schedule

It	is	a	good	idea	to	perform	table	checks	on	a	regular	basis	rather	than	waiting
for	problems	to	occur.	One	way	to	check	and	repair	MyISAM	tables	is	with	the
CHECK	TABLE	and	REPAIR	TABLE	statements.	See	Section	13.5.2.3,	“CHECK	TABLE
Syntax”,	and	Section	13.5.2.6,	“REPAIR	TABLE	Syntax”.

Another	way	to	check	tables	is	to	use	myisamchk.	For	maintenance	purposes,
you	can	use	myisamchk	-s.	The	-s	option	(short	for	--silent)	causes
myisamchk	to	run	in	silent	mode,	printing	messages	only	when	errors	occur.

It	is	also	a	good	idea	to	enable	automatic	MyISAM	table	checking.	For	example,
whenever	the	machine	has	done	a	restart	in	the	middle	of	an	update,	you	usually
need	to	check	each	table	that	could	have	been	affected	before	it	is	used	further.
(These	are	“expected	crashed	tables.”)	To	check	MyISAM	tables	automatically,
start	the	server	with	the	--myisam-recover	option.	See	Section	5.2.1,	“mysqld
Command	Options”.

You	should	also	check	your	tables	regularly	during	normal	system	operation.	At

MySQL	AB,	we	run	a	cron	job	to	check	all	our	important	tables	once	a	week,
using	a	line	like	this	in	a	crontab	file:

35	0	*	*	0	/path/to/myisamchk	--fast	--silent	/path/to/datadir/*/*.MYI

This	prints	out	information	about	crashed	tables	so	that	we	can	examine	and
repair	them	when	needed.

Because	we	have	not	had	any	unexpectedly	crashed	tables	(tables	that	become
corrupted	for	reasons	other	than	hardware	trouble)	for	several	years,	once	a	week
is	more	than	sufficient	for	us.

We	recommend	that	to	start	with,	you	execute	myisamchk	-s	each	night	on	all
tables	that	have	been	updated	during	the	last	24	hours,	until	you	come	to	trust
MySQL	as	much	as	we	do.

Normally,	MySQL	tables	need	little	maintenance.	If	you	are	performing	many
updates	to	MyISAM	tables	with	dynamic-sized	rows	(tables	with	VARCHAR,	BLOB,	or
TEXT	columns)	or	have	tables	with	many	deleted	rows	you	may	want	to
defragment/reclaim	space	from	the	tables	from	time	to	time.	You	can	do	this	by
using	OPTIMIZE	TABLE	on	the	tables	in	question.	Alternatively,	if	you	can	stop
the	mysqld	server	for	a	while,	change	location	into	the	data	directory	and	use
this	command	while	the	server	is	stopped:

shell>	myisamchk	-r	-s	--sort-index	--sort_buffer_size=16M	*/*.MYI

5.11.	MySQL	Localization	and	International	Usage

This	section	describes	how	to	configure	the	server	to	use	different	character	sets.
It	also	discusses	how	to	set	the	server's	time	zone	and	enable	per-connection	time
zone	support.

5.11.1.	The	Character	Set	Used	for	Data	and	Sorting

By	default,	MySQL	uses	the	latin1	(cp1252	West	European)	character	set	and
the	latin1_swedish_ci	collation	that	sorts	according	to	Swedish/Finnish	rules.
These	defaults	are	suitable	for	the	United	States	and	most	of	Western	Europe.

All	MySQL	binary	distributions	are	compiled	with	--with-extra-
charsets=complex.	This	adds	code	to	all	standard	programs	that	enables	them	to
handle	latin1	and	all	multi-byte	character	sets	within	the	binary.	Other
character	sets	are	loaded	from	a	character-set	definition	file	when	needed.

The	character	set	determines	what	characters	are	allowed	in	identifiers.	The
collation	determines	how	strings	are	sorted	by	the	ORDER	BY	and	GROUP	BY
clauses	of	the	SELECT	statement.

You	can	change	the	default	server	character	set	and	collation	with	the	--
character-set-server	and	--collation-server	options	when	you	start	the
server.	The	collation	must	be	a	legal	collation	for	the	default	character	set.	(Use
the	SHOW	COLLATION	statement	to	determine	which	collations	are	available	for
each	character	set.)	See	Section	5.2.1,	“mysqld	Command	Options”.

The	character	sets	available	depend	on	the	--with-charset=charset_name	and
--with-extra-charsets=list-of-charsets	|	complex	|	all	|	none	options	to
configure,	and	the	character	set	configuration	files	listed	in
SHAREDIR/charsets/Index.	See	Section	2.9.2,	“Typical	configure	Options”.

If	you	change	the	character	set	when	running	MySQL,	that	may	also	change	the
sort	order.	Consequently,	you	must	run	myisamchk	-r	-q	--set-
collation=collation_name	on	all	MyISAM	tables,	or	your	indexes	may	not	be
ordered	correctly.

When	a	client	connects	to	a	MySQL	server,	the	server	indicates	to	the	client

what	the	server's	default	character	set	is.	The	client	switches	to	this	character	set
for	this	connection.

You	should	use	mysql_real_escape_string()	when	escaping	strings	for	an
SQL	query.	mysql_real_escape_string()	is	identical	to	the	old
mysql_escape_string()	function,	except	that	it	takes	the	MYSQL	connection
handle	as	the	first	parameter	so	that	the	appropriate	character	set	can	be	taken
into	account	when	escaping	characters.

If	the	client	is	compiled	with	paths	that	differ	from	where	the	server	is	installed
and	the	user	who	configured	MySQL	didn't	include	all	character	sets	in	the
MySQL	binary,	you	must	tell	the	client	where	it	can	find	the	additional	character
sets	it	needs	if	the	server	runs	with	a	different	character	set	from	the	client.	You
can	do	this	by	specifying	a	--character-sets-dir	option	to	indicate	the	path	to
the	directory	in	which	the	dynamic	MySQL	character	sets	are	stored.	For
example,	you	can	put	the	following	in	an	option	file:

[client]

character-sets-dir=/usr/local/mysql/share/mysql/charsets

You	can	force	the	client	to	use	specific	character	set	as	follows:

[client]

default-character-set=charset_name

This	is	normally	unnecessary,	however.

5.11.1.1.	Using	the	German	Character	Set

In	MySQL	5.0,	character	set	and	collation	are	specified	separately.	This	means
that	if	you	want	German	sort	order,	you	should	select	the	latin1	character	set
and	either	the	latin1_german1_ci	or	latin1_german2_ci	collation.	For
example,	to	start	the	server	with	the	latin1_german1_ci	collation,	use	the	--
character-set-server=latin1	and	--collation-server=latin1_german1_ci
options.

For	information	on	the	differences	between	these	two	collations,	see
Section	10.9.2,	“West	European	Character	Sets”.

5.11.2.	Setting	the	Error	Message	Language

By	default,	mysqld	produces	error	messages	in	English,	but	they	can	also	be
displayed	in	any	of	these	other	languages:	Czech,	Danish,	Dutch,	Estonian,
French,	German,	Greek,	Hungarian,	Italian,	Japanese,	Korean,	Norwegian,
Norwegian-ny,	Polish,	Portuguese,	Romanian,	Russian,	Slovak,	Spanish,	or
Swedish.

To	start	mysqld	with	a	particular	language	for	error	messages,	use	the	--
language	or	-L	option.	The	option	value	can	be	a	language	name	or	the	full	path
to	the	error	message	file.	For	example:

shell>	mysqld	--language=swedish

Or:

shell>	mysqld	--language=/usr/local/share/swedish

The	language	name	should	be	specified	in	lowercase.

By	default,	the	language	files	are	located	in	the	share/LANGUAGE	directory	under
the	MySQL	base	directory.

You	can	also	change	the	content	of	the	error	messages	produced	by	the	server.
Details	can	be	found	in	the	MySQL	Internals	manual,	available	at
http://dev.mysql.com/doc/.	If	you	upgrade	to	a	newer	version	of	MySQL	after
changing	the	error	messages,	remember	to	repeat	your	changes	after	the	upgrade.

5.11.3.	Adding	a	New	Character	Set

This	section	discusses	the	procedure	for	adding	a	new	character	set	to	MySQL.
You	must	have	a	MySQL	source	distribution	to	use	these	instructions.	To	choose
the	proper	procedure,	determine	whether	the	character	set	is	simple	or	complex:

If	the	character	set	does	not	need	to	use	special	string	collating	routines	for
sorting	and	does	not	need	multi-byte	character	support,	it	is	simple.

If	it	needs	either	of	those	features,	it	is	complex.

For	example,	latin1	and	danish	are	simple	character	sets,	whereas	big5	and
czech	are	complex	character	sets.

http://dev.mysql.com/doc/

In	the	following	instructions,	the	name	of	the	character	set	is	represented	by
MYSET.

For	a	simple	character	set,	do	the	following:

1.	 Add	MYSET	to	the	end	of	the	sql/share/charsets/Index	file.	Assign	a
unique	number	to	it.

2.	 Create	the	file	sql/share/charsets/MYSET.conf.	(You	can	use	a	copy	of
sql/share/charsets/latin1.conf	as	the	basis	for	this	file.)

The	syntax	for	the	file	is	very	simple:

Comments	start	with	a	‘#’	character	and	continue	to	the	end	of	the	line.

Words	are	separated	by	arbitrary	amounts	of	whitespace.

When	defining	the	character	set,	every	word	must	be	a	number	in
hexadecimal	format.

The	ctype	array	takes	up	the	first	257	words.	The	to_lower[],
to_upper[]	and	sort_order[]	arrays	take	up	256	words	each	after
that.

See	Section	5.11.4,	“The	Character	Definition	Arrays”.

3.	 Add	the	character	set	name	to	the	CHARSETS_AVAILABLE	and
COMPILED_CHARSETS	lists	in	configure.in.

4.	 Reconfigure,	recompile,	and	test.

For	a	complex	character	set,	do	the	following:

1.	 Create	the	file	strings/ctype-MYSET.c	in	the	MySQL	source	distribution.

2.	 Add	MYSET	to	the	end	of	the	sql/share/charsets/Index	file.	Assign	a
unique	number	to	it.

3.	 Look	at	one	of	the	existing	ctype-*.c	files	(such	as	strings/ctype-
big5.c)	to	see	what	needs	to	be	defined.	Note	that	the	arrays	in	your	file
must	have	names	like	ctype_MYSET,	to_lower_MYSET,	and	so	on.	These

correspond	to	the	arrays	for	a	simple	character	set.	See	Section	5.11.4,	“The
Character	Definition	Arrays”.

4.	 Near	the	top	of	the	file,	place	a	special	comment	like	this:

/*

	*	This	comment	is	parsed	by	configure	to	create	ctype.c,

	*	so	don't	change	it	unless	you	know	what	you	are	doing.

	*

	*	.configure.	number_MYSET=MYNUMBER

	*	.configure.	strxfrm_multiply_MYSET=N

	*	.configure.	mbmaxlen_MYSET=N

	*/

The	configure	program	uses	this	comment	to	include	the	character	set	into
the	MySQL	library	automatically.

The	strxfrm_multiply	and	mbmaxlen	lines	are	explained	in	the	following
sections.	You	need	include	them	only	if	you	need	the	string	collating
functions	or	the	multi-byte	character	set	functions,	respectively.

5.	 You	should	then	create	some	of	the	following	functions:

my_strncoll_MYSET()

my_strcoll_MYSET()

my_strxfrm_MYSET()

my_like_range_MYSET()

See	Section	5.11.5,	“String	Collating	Support”.

6.	 Add	the	character	set	name	to	the	CHARSETS_AVAILABLE	and
COMPILED_CHARSETS	lists	in	configure.in.

7.	 Reconfigure,	recompile,	and	test.

The	sql/share/charsets/README	file	includes	additional	instructions.

If	you	want	to	have	the	character	set	included	in	the	MySQL	distribution,	mail	a
patch	to	the	MySQL	internals	mailing	list.	See	Section	1.7.1,	“MySQL

Mailing	Lists”.

5.11.4.	The	Character	Definition	Arrays

to_lower[]	and	to_upper[]	are	simple	arrays	that	hold	the	lowercase	and
uppercase	characters	corresponding	to	each	member	of	the	character	set.	For
example:

to_lower['A']	should	contain	'a'

to_upper['a']	should	contain	'A'

sort_order[]	is	a	map	indicating	how	characters	should	be	ordered	for
comparison	and	sorting	purposes.	Quite	often	(but	not	for	all	character	sets)	this
is	the	same	as	to_upper[],	which	means	that	sorting	is	case-insensitive.	MySQL
sorts	characters	based	on	the	values	of	sort_order[]	elements.	For	more
complicated	sorting	rules,	see	the	discussion	of	string	collating	in	Section	5.11.5,
“String	Collating	Support”.

ctype[]	is	an	array	of	bit	values,	with	one	element	for	one	character.	(Note	that
to_lower[],	to_upper[],	and	sort_order[]	are	indexed	by	character	value,	but
ctype[]	is	indexed	by	character	value	+	1.	This	is	an	old	legacy	convention	for
handling	EOF.)

You	can	find	the	following	bitmask	definitions	in	m_ctype.h:

#define	_U						01						/*	Uppercase	*/

#define	_L						02						/*	Lowercase	*/

#define	_N						04						/*	Numeral	(digit)	*/

#define	_S						010					/*	Spacing	character	*/

#define	_P						020					/*	Punctuation	*/

#define	_C						040					/*	Control	character	*/

#define	_B						0100				/*	Blank	*/

#define	_X						0200				/*	heXadecimal	digit	*/

The	ctype[]	entry	for	each	character	should	be	the	union	of	the	applicable
bitmask	values	that	describe	the	character.	For	example,	'A'	is	an	uppercase
character	(_U)	as	well	as	a	hexadecimal	digit	(_X),	so	ctype['A'+1]	should
contain	the	value:

_U	+	_X	=	01	+	0200	=	0201

5.11.5.	String	Collating	Support

If	the	sorting	rules	for	your	language	are	too	complex	to	be	handled	with	the
simple	sort_order[]	table,	you	need	to	use	the	string	collating	functions.

The	best	documentation	for	this	is	the	existing	character	sets.	Look	at	the	big5,
czech,	gbk,	sjis,	and	tis160	character	sets	for	examples.

You	must	specify	the	strxfrm_multiply_MYSET=N	value	in	the	special	comment
at	the	top	of	the	file.	N	should	be	set	to	the	maximum	ratio	the	strings	may	grow
during	my_strxfrm_MYSET	(it	must	be	a	positive	integer).

5.11.6.	Multi-Byte	Character	Support

If	you	want	to	add	support	for	a	new	character	set	that	includes	multi-byte
characters,	you	need	to	use	the	multi-byte	character	functions.

The	best	documentation	for	this	is	the	existing	character	sets.	Look	at	the
euc_kr,	gb2312,	gbk,	sjis,	and	ujis	character	sets	for	examples.	These	are
implemented	in	the	ctype-charset_name.c	files	in	the	strings	directory.

You	must	specify	the	mbmaxlen_MYSET=N	value	in	the	special	comment	at	the	top
of	the	source	file.	N	should	be	set	to	the	size	in	bytes	of	the	largest	character	in
the	set.

5.11.7.	Problems	With	Character	Sets

If	you	try	to	use	a	character	set	that	is	not	compiled	into	your	binary,	you	might
run	into	the	following	problems:

Your	program	uses	an	incorrect	path	to	determine	where	the	character	sets
are	stored.	(Default	/usr/local/mysql/share/mysql/charsets).	This	can
be	fixed	by	using	the	--character-sets-dir	option	when	you	run	the
program	in	question.

The	character	set	is	a	multi-byte	character	set	that	cannot	be	loaded
dynamically.	In	this	case,	you	must	recompile	the	program	with	support	for
the	character	set.

The	character	set	is	a	dynamic	character	set,	but	you	do	not	have	a
configure	file	for	it.	In	this	case,	you	should	install	the	configure	file	for	the

character	set	from	a	new	MySQL	distribution.

If	your	Index	file	does	not	contain	the	name	for	the	character	set,	your
program	displays	the	following	error	message:

ERROR	1105:	File	'/usr/local/share/mysql/charsets/?.conf'

not	found	(Errcode:	2)

In	this	case,	you	should	either	get	a	new	Index	file	or	manually	add	the
name	of	any	missing	character	sets	to	the	current	file.

For	MyISAM	tables,	you	can	check	the	character	set	name	and	number	for	a	table
with	myisamchk	-dvv	tbl_name.

5.11.8.	MySQL	Server	Time	Zone	Support

The	MySQL	server	maintains	several	time	zone	settings:

The	system	time	zone.	When	the	server	starts,	it	attempts	to	determine	the
time	zone	of	the	host	machine	and	uses	it	to	set	the	system_time_zone
system	variable.	The	value	does	not	change	thereafter.

The	server's	current	time	zone.	The	global	time_zone	system	variable
indicates	the	time	zone	the	server	currently	is	operating	in.	The	initial	value
for	time_zone	is	'SYSTEM',	which	indicates	that	the	server	time	zone	is	the
same	as	the	system	time	zone.	The	initial	value	can	be	specified	explicitly
with	the	--default-time-zone=timezone	option.	If	you	have	the	SUPER
privilege,	you	can	set	the	global	value	at	runtime	with	this	statement:

mysql>	SET	GLOBAL	time_zone	=	timezone;

Per-connection	time	zones.	Each	client	that	connects	has	its	own	time	zone
setting,	given	by	the	session	time_zone	variable.	Initially,	the	session
variable	takes	its	value	from	the	global	time_zone	variable,	but	the	client
can	change	its	own	time	zone	with	this	statement:

mysql>	SET	time_zone	=	timezone;

The	current	values	of	the	global	and	client-specific	time	zones	can	be	retrieved
like	this:

mysql>	SELECT	@@global.time_zone,	@@session.time_zone;

timezone	values	can	be	given	as	strings	indicating	an	offset	from	UTC,	such	as
'+10:00'	or	'-6:00'.	If	the	time	zone	information	tables	in	the	mysql	database
have	been	created	and	populated,	you	can	also	use	named	time	zones,	such	as
'Europe/Helsinki',	'US/Eastern',	or	'MET'.	The	value	'SYSTEM'	can	be	used
to	indicate	that	the	time	zone	should	be	the	same	as	the	system	time	zone.	Time
zone	names	are	not	case	sensitive.

The	MySQL	installation	procedure	creates	the	time	zone	tables	in	the	mysql
database,	but	does	not	load	them.	You	must	do	so	manually.	(If	you	are
upgrading	to	MySQL	4.1.3	or	later	from	an	earlier	version,	you	should	create	the
tables	by	upgrading	your	mysql	database.	Use	the	instructions	in	Section	5.6.2,
“mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade”.)

If	your	system	has	its	own	zoneinfo	database	(the	set	of	files	describing	time
zones),	you	should	use	the	mysql_tzinfo_to_sql	program	for	filling	the	time
zone	tables.	Examples	of	such	systems	are	Linux,	FreeBSD,	Sun	Solaris,	and
Mac	OS	X.	One	likely	location	for	these	files	is	the	/usr/share/zoneinfo
directory.	If	your	system	does	not	have	a	zoneinfo	database,	you	can	use	the
downloadable	package	described	later	in	this	section.

The	mysql_tzinfo_to_sql	program	is	used	to	load	the	time	zone	tables.	On	the
command	line,	pass	the	zoneinfo	directory	pathname	to	mysql_tzinfo_to_sql
and	send	the	output	into	the	mysql	program.	For	example:

shell>	mysql_tzinfo_to_sql	/usr/share/zoneinfo	|	mysql	-u	root	mysql

mysql_tzinfo_to_sql	reads	your	system's	time	zone	files	and	generates	SQL
statements	from	them.	mysql	processes	those	statements	to	load	the	time	zone
tables.

mysql_tzinfo_to_sql	also	can	be	used	to	load	a	single	time	zone	file,	and	to
generate	leap	second	information:

To	load	a	single	time	zone	file	tz_file	that	corresponds	to	a	time	zone
name	tz_name,	invoke	mysql_tzinfo_to_sql	like	this:

shell>	mysql_tzinfo_to_sql	tz_file	tz_name	|	mysql	-u	root	mysql

If	your	time	zone	needs	to	account	for	leap	seconds,	initialize	the	leap

second	information	like	this,	where	tz_file	is	the	name	of	your	time	zone
file:

shell>	mysql_tzinfo_to_sql	--leap	tz_file	|	mysql	-u	root	mysql

If	your	system	doesn't	have	a	zoneinfo	database	(for	example,	Windows	or	HP-
UX),	you	can	use	the	package	of	pre-built	time	zone	tables	that	is	available	for
download	at	http://dev.mysql.com/downloads/timezones.html.	This	package
contains	.frm,	.MYD,	and	.MYI	files	for	the	MyISAM	time	zone	tables.	These	tables
should	be	part	of	the	mysql	database,	so	you	should	place	the	files	in	the	mysql
subdirectory	of	your	MySQL	server's	data	directory.	The	server	should	be
stopped	while	you	do	this.

Warning:	Please	don't	use	the	downloadable	package	if	your	system	has	a
zoneinfo	database.	Use	the	mysql_tzinfo_to_sql	utility	instead.	Otherwise,	you
may	cause	a	difference	in	datetime	handling	between	MySQL	and	other
applications	on	your	system.

For	information	about	time	zone	settings	in	replication	setup,	please	see
Section	6.7,	“Replication	Features	and	Known	Problems”.

http://dev.mysql.com/downloads/timezones.html

5.12.	MySQL	Server	Logs

MySQL	has	several	different	log	files	that	can	help	you	find	out	what	is	going	on
inside	mysqld:

Log	Type Information	Written	to	Log
The	error	log Problems	encountered	starting,	running,	or	stopping	mysqld
The	general
query	log

Established	client	connections	and	statements	received	from
clients

The	binary	log All	statements	that	change	data	(also	used	for	replication)

The	slow	log All	queries	that	took	more	than	long_query_time	seconds	to
execute	or	didn't	use	indexes

By	default,	all	log	files	are	created	in	the	mysqld	data	directory.	You	can	force
mysqld	to	close	and	reopen	the	log	files	(or	in	some	cases	switch	to	a	new	log)
by	flushing	the	logs.	Log	flushing	occurs	when	you	issue	a	FLUSH	LOGS
statement	or	execute	mysqladmin	flush-logs	or	mysqladmin	refresh.	See
Section	13.5.5.2,	“FLUSH	Syntax”.

If	you	are	using	MySQL	replication	capabilities,	slave	replication	servers
maintain	additional	log	files	called	relay	logs.	These	are	discussed	in	Chapter	6,
Replication.

5.12.1.	The	Error	Log

The	error	log	file	contains	information	indicating	when	mysqld	was	started	and
stopped	and	also	any	critical	errors	that	occur	while	the	server	is	running.	If
mysqld	notices	a	table	that	needs	to	be	automatically	checked	or	repaired,	it
writes	a	message	to	the	error	log.

On	some	operating	systems,	the	error	log	contains	a	stack	trace	if	mysqld	dies.
The	trace	can	be	used	to	determine	where	mysqld	died.	See	Section	E.1.4,
“Using	a	Stack	Trace”.

If	mysqld	dies	unexpectedly	and	mysqld_safe	needs	to	restart	it,	mysqld_safe
writes	a	restarted	mysqld	message	to	the	error	log.

You	can	specify	where	mysqld	stores	the	error	log	file	with	the	--log-
error[=file_name]	option.	If	no	file_name	value	is	given,	mysqld	uses	the
name	host_name.err	and	writes	the	file	in	the	data	directory.	If	you	execute
FLUSH	LOGS,	the	error	log	is	renamed	with	the	suffix	-old	and	mysqld	creates	a
new	empty	log	file.	(No	renaming	occurs	if	the	--log-error	option	was	not
given.)

If	you	do	not	specify	--log-error,	or	(on	Windows)	if	you	use	the	--console
option,	errors	are	written	to	stderr,	the	standard	error	output.	Usually	this	is
your	terminal.

On	Windows,	error	output	is	always	written	to	the	.err	file	if	--console	is	not
given.

5.12.2.	The	General	Query	Log

The	general	query	log	is	a	general	record	of	what	mysqld	is	doing.	The	server
writes	information	to	this	log	when	clients	connect	or	disconnect,	and	it	logs
each	SQL	statement	received	from	clients.	The	general	query	log	can	be	very
useful	when	you	suspect	an	error	in	a	client	and	want	to	know	exactly	what	the
client	sent	to	mysqld.

mysqld	writes	statements	to	the	query	log	in	the	order	that	it	receives	them.	This
may	be	different	from	the	order	in	which	they	are	executed.	This	is	in	contrast	to
the	the	binary	log,	for	which	statements	are	written	after	they	are	executed,	but
before	any	locks	are	released.	(Also,	the	query	log	contains	all	statements,
whereas	the	binary	log	does	not	contain	statements	that	only	select	data.)

To	enable	the	general	query	log,	start	mysqld	with	the	--log[=file_name]	or	-l
[file_name]	option.	If	no	file_name	value	is	given,	the	default	name	is
host_name.log	in	the	data	directory.

Server	restarts	and	log	flushing	do	not	cause	a	new	general	query	log	file	to	be
generated	(although	flushing	closes	and	reopens	it).	On	Unix,	you	can	rename
the	file	and	create	a	new	one	by	using	the	following	commands:

shell>	mv	host_name.log	host_name-old.log

shell>	mysqladmin	flush-logs

shell>	cp	host_name-old.log	backup-directory

shell>	rm	host_name-old.log

On	Windows,	you	cannot	rename	the	log	file	while	the	server	has	it	open.	You
must	stop	the	server	and	rename	the	file,	and	then	restart	the	server	to	create	a
new	log	file.

5.12.3.	The	Binary	Log

The	binary	log	contains	all	statements	that	update	data	or	potentially	could	have
updated	it	(for	example,	a	DELETE	which	matched	no	rows).	Statements	are
stored	in	the	form	of	“events”	that	describe	the	modifications.	The	binary	log
also	contains	information	about	how	long	each	statement	took	that	updated	data.

Note:	The	binary	log	has	replaced	the	old	update	log,	which	is	no	longer
available	as	of	MySQL	5.0.	The	binary	log	contains	all	information	that	is
available	in	the	update	log	in	a	more	efficient	format	and	in	a	manner	that	is
transaction-safe.	If	you	are	using	transactions,	you	must	use	the	MySQL	binary
log	for	backups	instead	of	the	old	update	log.

The	binary	log	does	not	contain	statements	that	do	not	modify	any	data.	If	you
want	to	log	all	statements	(for	example,	to	identify	a	problem	query),	use	the
general	query	log.	See	Section	5.12.2,	“The	General	Query	Log”.

The	primary	purpose	of	the	binary	log	is	to	be	able	to	update	databases	during	a
restore	operation	as	fully	as	possible,	because	the	binary	log	contains	all	updates
done	after	a	backup	was	made.	The	binary	log	is	also	used	on	master	replication
servers	as	a	record	of	the	statements	to	be	sent	to	slave	servers.	See	Chapter	6,
Replication.

Running	the	server	with	the	binary	log	enabled	makes	performance	about	1%
slower.	However,	the	benefits	of	the	binary	log	for	restore	operations	and	in
allowing	you	to	set	up	replication	generally	outweigh	this	minor	performance
decrement.

When	started	with	the	--log-bin[=base_name]	option,	mysqld	writes	a	log	file
containing	all	SQL	commands	that	update	data.	If	no	base_name	value	is	given,
the	default	name	is	the	name	of	the	host	machine	followed	by	-bin.	If	the
basename	is	given,	but	not	as	an	absolute	pathname,	the	server	writes	the	file	in
the	data	directory.	It	is	recommended	that	you	specify	a	basename;	see
Section	A.8.1,	“Open	Issues	in	MySQL”,	for	the	reason.

If	you	supply	an	extension	in	the	log	name	(for	example,	--log-
bin=base_name.extension),	the	extension	is	silently	removed	and	ignored.

mysqld	appends	a	numeric	extension	to	the	binary	log	basename.	The	number
increases	each	time	the	server	creates	a	new	log	file,	thus	creating	an	ordered
series	of	files.	The	server	creates	a	new	binary	log	file	each	time	it	starts	or
flushes	the	logs.	The	server	also	creates	a	new	binary	log	file	automatically	when
the	current	log's	size	reaches	max_binlog_size.	A	binary	log	file	may	become
larger	than	max_binlog_size	if	you	are	using	large	transactions	because	a
transaction	is	written	to	the	file	in	one	piece,	never	split	between	files.

To	keep	track	of	which	binary	log	files	have	been	used,	mysqld	also	creates	a
binary	log	index	file	that	contains	the	names	of	all	used	binary	log	files.	By
default	this	has	the	same	basename	as	the	binary	log	file,	with	the	extension
'.index'.	You	can	change	the	name	of	the	binary	log	index	file	with	the	--log-
bin-index[=file_name]	option.	You	should	not	manually	edit	this	file	while
mysqld	is	running;	doing	so	would	confuse	mysqld.

Writes	to	the	binary	log	file	and	binary	log	index	file	are	handled	in	the	same
way	as	writes	to	MyISAM	tables.	See	Section	A.4.3,	“How	MySQL	Handles	a	Full
Disk”.

You	can	delete	all	binary	log	files	with	the	RESET	MASTER	statement,	or	a	subset
of	them	with	PURGE	MASTER	LOGS.	See	Section	13.5.5.5,	“RESET	Syntax”,	and
Section	13.6.1,	“SQL	Statements	for	Controlling	Master	Servers”.

The	binary	log	format	has	some	known	limitations	that	can	affect	recovery	from
backups.	See	Section	6.7,	“Replication	Features	and	Known	Problems”.

Binary	logging	for	stored	routines	and	triggers	is	done	as	described	in
Section	17.4,	“Binary	Logging	of	Stored	Routines	and	Triggers”.

You	can	use	the	following	options	to	mysqld	to	affect	what	is	logged	to	the
binary	log.	See	also	the	discussion	that	follows	this	option	list.

If	you	are	using	replication,	the	options	described	here	affect	which	statements
are	sent	by	a	master	server	to	its	slaves.	There	are	also	options	for	slave	servers
that	control	which	statements	received	from	the	master	to	execute	or	ignore.	For
details,	see	Section	6.8,	“Replication	Startup	Options”.

	--binlog-do-db=db_name

Tell	the	server	to	restrict	binary	logging	to	updates	for	which	the	default
database	is	db_name	(that	is,	the	database	selected	by	USE).	All	other
databases	that	are	not	explicitly	mentioned	are	ignored.	If	you	use	this
option,	you	should	ensure	that	you	do	updates	only	in	the	default	database.

There	is	an	exception	to	this	for	CREATE	DATABASE,	ALTER	DATABASE,	and
DROP	DATABASE	statements.	The	server	uses	the	database	named	in	the
statement	(not	the	default	database)	to	decide	whether	it	should	log	the
statement.

An	example	of	what	does	not	work	as	you	might	expect:	If	the	server	is
started	with	binlog-do-db=sales,	and	you	run	USE	prices;	UPDATE
sales.january	SET	amount=amount+1000;,	this	statement	is	not	written
into	the	binary	log.

To	log	multiple	databases,	use	multiple	options,	specifying	the	option	once
for	each	database.

	--binlog-ignore-db=db_name

Tell	the	server	to	suppress	binary	logging	of	updates	for	which	the	default
database	is	db_name	(that	is,	the	database	selected	by	USE).	If	you	use	this
option,	you	should	ensure	that	you	do	updates	only	in	the	default	database.

As	with	the	--binlog-do-db	option,	there	is	an	exception	for	the	CREATE
DATABASE,	ALTER	DATABASE,	and	DROP	DATABASE	statements.	The	server
uses	the	database	named	in	the	statement	(not	the	default	database)	to
decide	whether	it	should	log	the	statement.

An	example	of	what	does	not	work	as	you	might	expect:	If	the	server	is
started	with	binlog-ignore-db=sales,	and	you	run	USE	prices;	UPDATE
sales.january	SET	amount=amount+1000;,	this	statement	is	written	into
the	binary	log.

To	ignore	multiple	databases,	use	multiple	options,	specifying	the	option
once	for	each	database.

The	server	evaluates	the	options	for	logging	or	ignoring	updates	to	the	binary	log

according	to	the	following	rules.	As	described	previously,	there	is	an	exception
for	the	CREATE	DATABASE,	ALTER	DATABASE,	and	DROP	DATABASE	statements.	In
those	cases,	the	database	being	created,	altered,	or	dropped	replaces	the	default
database	in	the	following	rules.

1.	 Are	there	--binlog-do-db	or	--binlog-ignore-db	rules?

No:	Write	the	statement	to	the	binary	log	and	exit.

Yes:	Go	to	the	next	step.

2.	 There	are	some	rules	(--binlog-do-db,	--binlog-ignore-db,	or	both).	Is
there	a	default	database	(has	any	database	been	selected	by	USE?)?

No:	Do	not	write	the	statement,	and	exit.

Yes:	Go	to	the	next	step.

3.	 There	is	a	default	database.	Are	there	some	--binlog-do-db	rules?

Yes:	Does	the	default	database	match	any	of	the	--binlog-do-db
rules?

Yes:	Write	the	statement	and	exit.

No:	Do	not	write	the	statement,	and	exit.

No:	Go	to	the	next	step.

4.	 There	are	some	--binlog-ignore-db	rules.	Does	the	default	database
match	any	of	the	--binlog-ignore-db	rules?

Yes:	Do	not	write	the	statement,	and	exit.

No:	Write	the	query	and	exit.

For	example,	a	slave	running	with	only	--binlog-do-db=sales	does	not	write	to
the	binary	log	any	statement	for	which	the	default	database	is	different	from
sales	(in	other	words,	--binlog-do-db	can	sometimes	mean	“ignore	other
databases”).

If	you	are	using	replication,	you	should	not	delete	old	binary	log	files	until	you
are	sure	that	no	slave	still	needs	to	use	them.	For	example,	if	your	slaves	never
run	more	than	three	days	behind,	once	a	day	you	can	execute	mysqladmin
flush-logs	on	the	master	and	then	remove	any	logs	that	are	more	than	three	days
old.	You	can	remove	the	files	manually,	but	it	is	preferable	to	use	PURGE	MASTER
LOGS,	which	also	safely	updates	the	binary	log	index	file	for	you	(and	which	can
take	a	date	argument).	See	Section	13.6.1,	“SQL	Statements	for	Controlling
Master	Servers”.

A	client	that	has	the	SUPER	privilege	can	disable	binary	logging	of	its	own
statements	by	using	a	SET	SQL_LOG_BIN=0	statement.	See	Section	13.5.3,	“SET
Syntax”.

You	can	display	the	contents	of	binary	log	files	with	the	mysqlbinlog	utility.
This	can	be	useful	when	you	want	to	reprocess	statements	in	the	log.	For
example,	you	can	update	a	MySQL	server	from	the	binary	log	as	follows:

shell>	mysqlbinlog	log_file	|	mysql	-h	server_name

See	Section	8.10,	“mysqlbinlog	—	Utility	for	Processing	Binary	Log	Files”,	for
more	information	on	the	mysqlbinlog	utility	and	how	to	use	it.	mysqlbinlog
also	can	be	used	with	relay	log	files	because	they	are	written	using	the	same
format	as	binary	log	files.

Binary	logging	is	done	immediately	after	a	statement	completes	but	before	any
locks	are	released	or	any	commit	is	done.	This	ensures	that	the	log	is	logged	in
execution	order.

Updates	to	non-transactional	tables	are	stored	in	the	binary	log	immediately	after
execution.	Within	an	uncommitted	transaction,	all	updates	(UPDATE,	DELETE,	or
INSERT)	that	change	transactional	tables	such	as	BDB	or	InnoDB	tables	are	cached
until	a	COMMIT	statement	is	received	by	the	server.	At	that	point,	mysqld	writes
the	entire	transaction	to	the	binary	log	before	the	COMMIT	is	executed.	When	the
thread	that	handles	the	transaction	starts,	it	allocates	a	buffer	of
binlog_cache_size	to	buffer	statements.	If	a	statement	is	bigger	than	this,	the
thread	opens	a	temporary	file	to	store	the	transaction.	The	temporary	file	is
deleted	when	the	thread	ends.

Modifications	to	non-transactional	tables	cannot	be	rolled	back.	If	a	transaction
that	is	rolled	back	includes	modifications	to	non-transactional	tables,	the	entire

transaction	is	logged	with	a	ROLLBACK	statement	at	the	end	to	ensure	that	the
modifications	to	those	tables	are	replicated.

The	Binlog_cache_use	status	variable	shows	the	number	of	transactions	that
used	this	buffer	(and	possibly	a	temporary	file)	for	storing	statements.	The
Binlog_cache_disk_use	status	variable	shows	how	many	of	those	transactions
actually	had	to	use	a	temporary	file.	These	two	variables	can	be	used	for	tuning
binlog_cache_size	to	a	large	enough	value	that	avoids	the	use	of	temporary
files.

The	max_binlog_cache_size	system	variable	(default	4GB)	can	be	used	to
restrict	the	total	size	used	to	cache	a	multiple-statement	transaction.	If	a
transaction	is	larger	than	this,	it	fails	and	rolls	back.

If	you	are	using	the	binary	log,	concurrent	inserts	are	converted	to	normal	inserts
for	CREATE	...	SELECT	or	INSERT	...	SELECT	statement.	This	is	done	to	ensure
that	you	can	re-create	an	exact	copy	of	your	tables	by	applying	the	log	during	a
backup	operation.

Note	that	the	binary	log	format	is	different	in	MySQL	5.0	from	previous
versions	of	MySQL,	due	to	enhancements	in	replication.	See	Section	6.5,
“Replication	Compatibility	Between	MySQL	Versions”.

By	default,	the	binary	log	is	not	synchronized	to	disk	at	each	write.	So	if	the
operating	system	or	machine	(not	only	the	MySQL	server)	crashes,	there	is	a
chance	that	the	last	statements	of	the	binary	log	are	lost.	To	prevent	this,	you	can
make	the	binary	log	be	synchronized	to	disk	after	every	N	writes	to	the	binary
log,	with	the	sync_binlog	system	variable.	See	Section	5.2.2,	“Server	System
Variables”.	1	is	the	safest	value	for	sync_binlog,	but	also	the	slowest.	Even	with
sync_binlog	set	to	1,	there	is	still	the	chance	of	an	inconsistency	between	the
table	content	and	binary	log	content	in	case	of	a	crash.	For	example,	if	you	are
using	InnoDB	tables	and	the	MySQL	server	processes	a	COMMIT	statement,	it
writes	the	whole	transaction	to	the	binary	log	and	then	commits	this	transaction
into	InnoDB.	If	the	server	crashes	between	those	two	operations,	the	transaction
is	rolled	back	by	InnoDB	at	restart	but	still	exists	in	the	binary	log.	This	problem
can	be	solved	with	the	--innodb-safe-binlog	option,	which	adds	consistency
between	the	content	of	InnoDB	tables	and	the	binary	log.	(Note:	--innodb-safe-
binlog	is	unneeded	as	of	MySQL	5.0;	it	was	made	obsolete	by	the	introduction
of	XA	transaction	support.)

For	this	option	to	provide	a	greater	degree	of	safety,	the	MySQL	server	should
also	be	configured	to	synchronize	the	binary	log	and	the	InnoDB	logs	to	disk	at
every	transaction.	The	InnoDB	logs	are	synchronized	by	default,	and
sync_binlog=1	can	be	used	to	synchronize	the	binary	log.	The	effect	of	this
option	is	that	at	restart	after	a	crash,	after	doing	a	rollback	of	transactions,	the
MySQL	server	cuts	rolled	back	InnoDB	transactions	from	the	binary	log.	This
ensures	that	the	binary	log	reflects	the	exact	data	of	InnoDB	tables,	and	so,	that
the	slave	remains	in	synchrony	with	the	master	(not	receiving	a	statement	which
has	been	rolled	back).

Note	that	--innodb-safe-binlog	can	be	used	even	if	the	MySQL	server	updates
other	storage	engines	than	InnoDB.	Only	statements	and	transactions	that	affect
InnoDB	tables	are	subject	to	removal	from	the	binary	log	at	InnoDB's	crash
recovery.	If	the	MySQL	server	discovers	at	crash	recovery	that	the	binary	log	is
shorter	than	it	should	have	been,	it	lacks	at	least	one	successfully	committed
InnoDB	transaction.	This	should	not	happen	if	sync_binlog=1	and	the
disk/filesystem	do	an	actual	sync	when	they	are	requested	to	(some	don't),	so	the
server	prints	an	error	message	The	binary	log	<name>	is	shorter	than	its
expected	size.	In	this	case,	this	binary	log	is	not	correct	and	replication	should
be	restarted	from	a	fresh	snapshot	of	the	master's	data.

5.12.4.	The	Slow	Query	Log

The	slow	query	log	consists	of	all	SQL	statements	that	took	more	than
long_query_time	seconds	to	execute.	The	time	to	acquire	the	initial	table	locks
is	not	counted	as	execution	time.	The	minimum	and	default	values	of
long_query_time	are	1	and	10,	respectively.

mysqld	writes	a	statement	to	the	slow	query	log	after	it	has	been	executed	and
after	all	locks	have	been	released.	Log	order	may	be	different	from	execution
order.

To	enable	the	slow	query	log,	start	mysqld	with	the	--log-slow-
queries[=file_name]	option.

If	no	file_name	value	is	given,	the	default	is	the	name	of	the	host	machine	with
a	suffix	of	-slow.log.	If	a	filename	is	given,	but	not	as	an	absolute	pathname,
the	server	writes	the	file	in	the	data	directory.

The	slow	query	log	can	be	used	to	find	queries	that	take	a	long	time	to	execute
and	are	therefore	candidates	for	optimization.	However,	examining	a	long	slow
query	log	can	become	a	difficult	task.	To	make	this	easier,	you	can	process	the
slow	query	log	using	the	mysqldumpslow	command	to	summarize	the	queries
that	appear	in	the	log.	Use	mysqldumpslow	--help	to	see	the	options	that	this
command	supports.

In	MySQL	5.0,	queries	that	do	not	use	indexes	are	logged	in	the	slow	query	log
if	the	--log-queries-not-using-indexes	option	is	specified.	See	Section	5.2.1,
“mysqld	Command	Options”.

In	MySQL	5.0,	the	--log-slow-admin-statements	server	option	enables	you	to
request	logging	of	slow	administrative	statements	such	as	OPTIMIZE	TABLE,
ANALYZE	TABLE,	and	ALTER	TABLE	to	the	slow	query	log.

Queries	handled	by	the	query	cache	are	not	added	to	the	slow	query	log,	nor	are
queries	that	would	not	benefit	from	the	presence	of	an	index	because	the	table
has	zero	rows	or	one	row.

5.12.5.	Server	Log	Maintenance

MySQL	Server	can	create	a	number	of	different	log	files	that	make	it	easy	to	see
what	is	going	on.	See	Section	5.12,	“MySQL	Server	Logs”.	However,	you	must
clean	up	these	files	regularly	to	ensure	that	the	logs	do	not	take	up	too	much	disk
space.

When	using	MySQL	with	logging	enabled,	you	may	want	to	back	up	and
remove	old	log	files	from	time	to	time	and	tell	MySQL	to	start	logging	to	new
files.	See	Section	5.10.1,	“Database	Backups”.

On	a	Linux	(Red	Hat)	installation,	you	can	use	the	mysql-log-rotate	script	for
this.	If	you	installed	MySQL	from	an	RPM	distribution,	this	script	should	have
been	installed	automatically.	You	should	be	careful	with	this	script	if	you	are
using	the	binary	log	for	replication.	You	should	not	remove	binary	logs	until	you
are	certain	that	their	contents	have	been	processed	by	all	slaves.

On	other	systems,	you	must	install	a	short	script	yourself	that	you	start	from
cron	(or	its	equivalent)	for	handling	log	files.

You	can	force	MySQL	to	start	using	new	log	files	by	using	mysqladmin	flush-
logs	or	by	using	the	SQL	statement	FLUSH	LOGS.

A	log	flushing	operation	does	the	following:

If	general	query	logging	(--log)	or	slow	query	logging	(--log-slow-
queries)	is	used,	the	server	closes	and	reopens	the	general	query	log	file	or
slow	query	log	file.

If	binary	logging	(--log-bin)	is	used,	the	server	closes	the	current	log	file
and	opens	a	new	log	file	with	the	next	sequence	number.

The	server	creates	a	new	binary	log	file	when	you	flush	the	logs.	However,	it	just
closes	and	reopens	the	general	and	slow	query	log	files.	To	cause	new	files	to	be
created	on	Unix,	rename	the	current	logs	before	flushing	them.	At	flush	time,	the
server	will	open	new	logs	with	the	original	names.	For	example,	if	the	general
and	slow	query	logs	are	named	mysql.log	and	mysql-slow.log,	you	can	use	a
series	of	commands	like	this:

shell>	cd	mysql-data-directory

shell>	mv	mysql.log	mysql.old

shell>	mv	mysql-slow.log	mysql-slow.old

shell>	mysqladmin	flush-logs

At	this	point,	you	can	make	a	backup	of	mysql.old	and	mysql-slow.log	and
then	remove	them	from	disk.

On	Windows,	you	cannot	rename	log	files	while	the	server	has	them	open.	You
must	stop	the	server	and	rename	them,	and	then	restart	the	server	to	create	new
logs.

5.13.	Running	Multiple	MySQL	Servers	on	the	Same
Machine

In	some	cases,	you	might	want	to	run	multiple	mysqld	servers	on	the	same
machine.	You	might	want	to	test	a	new	MySQL	release	while	leaving	your
existing	production	setup	undisturbed.	Or	you	might	want	to	give	different	users
access	to	different	mysqld	servers	that	they	manage	themselves.	(For	example,
you	might	be	an	Internet	Service	Provider	that	wants	to	provide	independent
MySQL	installations	for	different	customers.)

To	run	multiple	servers	on	a	single	machine,	each	server	must	have	unique
values	for	several	operating	parameters.	These	can	be	set	on	the	command	line
or	in	option	files.	See	Section	4.3,	“Specifying	Program	Options”.

At	least	the	following	options	must	be	different	for	each	server:

--port=port_num

--port	controls	the	port	number	for	TCP/IP	connections.

--socket=path

--socket	controls	the	Unix	socket	file	path	on	Unix	and	the	name	of	the
named	pipe	on	Windows.	On	Windows,	it	is	necessary	to	specify	distinct
pipe	names	only	for	those	servers	that	support	named-pipe	connections.

--shared-memory-base-name=name

This	option	currently	is	used	only	on	Windows.	It	designates	the	shared-
memory	name	used	by	a	Windows	server	to	allow	clients	to	connect	via
shared	memory.	It	is	necessary	to	specify	distinct	shared-memory	names
only	for	those	servers	that	support	shared-memory	connections.

--pid-file=file_name

This	option	is	used	only	on	Unix.	It	indicates	the	pathname	of	the	file	in
which	the	server	writes	its	process	ID.

If	you	use	the	following	log	file	options,	they	must	be	different	for	each	server:

--log=file_name

--log-bin=file_name

--log-update=file_name

--log-error=file_name

--bdb-logdir=file_name

Section	5.12.5,	“Server	Log	Maintenance”,	discusses	the	log	file	options	further.

For	better	performance,	you	can	specify	the	following	options	differently	for
each	server,	to	spread	the	load	between	several	physical	disks:

--tmpdir=path

--bdb-tmpdir=path

Having	different	temporary	directories	is	also	recommended	to	make	it	easier	to
determine	which	MySQL	server	created	any	given	temporary	file.

With	very	limited	exceptions,	each	server	should	use	a	different	data	directory,
which	is	specified	using	the	--datadir=path	option.

Warning:	Normally,	you	should	never	have	two	servers	that	update	data	in	the
same	databases.	This	may	lead	to	unpleasant	surprises	if	your	operating	system
does	not	support	fault-free	system	locking.	If	(despite	this	warning)	you	run
multiple	servers	using	the	same	data	directory	and	they	have	logging	enabled,
you	must	use	the	appropriate	options	to	specify	log	filenames	that	are	unique	to
each	server.	Otherwise,	the	servers	try	to	log	to	the	same	files.	Please	note	that
this	kind	of	setup	only	works	with	MyISAM	and	MERGE	tables,	and	not	with	any	of
the	other	storage	engines.

The	warning	against	sharing	a	data	directory	among	servers	also	applies	in	an
NFS	environment.	Allowing	multiple	MySQL	servers	to	access	a	common	data
directory	over	NFS	is	a	very	bad	idea.

The	primary	problem	is	that	NFS	is	the	speed	bottleneck.	It	is	not	meant	for
such	use.

Another	risk	with	NFS	is	that	you	must	devise	a	way	to	ensure	that	two	or
more	servers	do	not	interfere	with	each	other.	Usually	NFS	file	locking	is
handled	by	the	lockd	daemon,	but	at	the	moment	there	is	no	platform	that
performs	locking	100%	reliably	in	every	situation.

Make	it	easy	for	yourself:	Forget	about	sharing	a	data	directory	among	servers
over	NFS.	A	better	solution	is	to	have	one	computer	that	contains	several	CPUs
and	use	an	operating	system	that	handles	threads	efficiently.

If	you	have	multiple	MySQL	installations	in	different	locations,	you	can	specify
the	base	installation	directory	for	each	server	with	the	--basedir=path	option	to
cause	each	server	to	use	a	different	data	directory,	log	files,	and	PID	file.	(The
defaults	for	all	these	values	are	determined	relative	to	the	base	directory).	In	that
case,	the	only	other	options	you	need	to	specify	are	the	--socket	and	--port
options.	For	example,	suppose	that	you	install	different	versions	of	MySQL
using	tar	file	binary	distributions.	These	install	in	different	locations,	so	you	can
start	the	server	for	each	installation	using	the	command	bin/mysqld_safe	under
its	corresponding	base	directory.	mysqld_safe	determines	the	proper	--basedir
option	to	pass	to	mysqld,	and	you	need	specify	only	the	--socket	and	--port
options	to	mysqld_safe.

As	discussed	in	the	following	sections,	it	is	possible	to	start	additional	servers	by
setting	environment	variables	or	by	specifying	appropriate	command-line
options.	However,	if	you	need	to	run	multiple	servers	on	a	more	permanent
basis,	it	is	more	convenient	to	use	option	files	to	specify	for	each	server	those
option	values	that	must	be	unique	to	it.	The	--defaults-file	option	is	useful
for	this	purpose.

5.13.1.	Running	Multiple	Servers	on	Windows

You	can	run	multiple	servers	on	Windows	by	starting	them	manually	from	the
command	line,	each	with	appropriate	operating	parameters.	On	Windows	NT-
based	systems,	you	also	have	the	option	of	installing	several	servers	as	Windows
services	and	running	them	that	way.	General	instructions	for	running	MySQL
servers	from	the	command	line	or	as	services	are	given	in	Section	2.3,
“Installing	MySQL	on	Windows”.	This	section	describes	how	to	make	sure	that

you	start	each	server	with	different	values	for	those	startup	options	that	must	be
unique	per	server,	such	as	the	data	directory.	These	options	are	described	in
Section	5.13,	“Running	Multiple	MySQL	Servers	on	the	Same	Machine”.

5.13.1.1.	Starting	Multiple	Windows	Servers	at	the	Command	Line

To	start	multiple	servers	manually	from	the	command	line,	you	can	specify	the
appropriate	options	on	the	command	line	or	in	an	option	file.	It	is	more
convenient	to	place	the	options	in	an	option	file,	but	it	is	necessary	to	make	sure
that	each	server	gets	its	own	set	of	options.	To	do	this,	create	an	option	file	for
each	server	and	tell	the	server	the	filename	with	a	--defaults-file	option
when	you	run	it.

Suppose	that	you	want	to	run	mysqld	on	port	3307	with	a	data	directory	of
C:\mydata1,	and	mysqld-max	on	port	3308	with	a	data	directory	of	C:\mydata2.
(To	do	this,	make	sure	that	before	you	start	the	servers,	each	data	directory	exists
and	has	its	own	copy	of	the	mysql	database	that	contains	the	grant	tables.)	Then
create	two	option	files.	For	example,	create	one	file	named	C:\my-opts1.cnf
that	looks	like	this:

[mysqld]

datadir	=	C:/mydata1

port	=	3307

Create	a	second	file	named	C:\my-opts2.cnf	that	looks	like	this:

[mysqld]

datadir	=	C:/mydata2

port	=	3308

Then	start	each	server	with	its	own	option	file:

C:\>	C:\mysql\bin\mysqld	--defaults-file=C:\my-opts1.cnf

C:\>	C:\mysql\bin\mysqld-max	--defaults-file=C:\my-opts2.cnf

On	NT,	each	server	starts	in	the	foreground	(no	new	prompt	appears	until	the
server	exits	later),	so	you	will	need	to	issue	those	two	commands	in	separate
console	windows.

To	shut	down	the	servers,	you	must	connect	to	each	using	the	appropriate	port
number:

C:\>	C:\mysql\bin\mysqladmin	--port=3307	shutdown

C:\>	C:\mysql\bin\mysqladmin	--port=3308	shutdown

Servers	configured	as	just	described	allow	clients	to	connect	over	TCP/IP.	If
your	version	of	Windows	supports	named	pipes	and	you	also	want	to	allow
named-pipe	connections,	use	the	mysqld-nt	or	mysqld-max-nt	servers	and
specify	options	that	enable	the	named	pipe	and	specify	its	name.	Each	server	that
supports	named-pipe	connections	must	use	a	unique	pipe	name.	For	example,	the
C:\my-opts1.cnf	file	might	be	written	like	this:

[mysqld]

datadir	=	C:/mydata1

port	=	3307

enable-named-pipe

socket	=	mypipe1

Then	start	the	server	this	way:

C:\>	C:\mysql\bin\mysqld-nt	--defaults-file=C:\my-opts1.cnf

Modify	C:\my-opts2.cnf	similarly	for	use	by	the	second	server.

A	similar	procedure	applies	for	servers	that	you	want	to	support	shared-memory
connections.	Enable	such	connections	with	the	--shared-memory	option	and
specify	a	unique	shared-memory	name	for	each	server	with	the	--shared-
memory-base-name	option.

5.13.1.2.	Starting	Multiple	Windows	Servers	as	Services

On	NT-based	systems,	a	MySQL	server	can	run	as	a	Windows	service.	The
procedures	for	installing,	controlling,	and	removing	a	single	MySQL	service	are
described	in	Section	2.3.11,	“Starting	MySQL	as	a	Windows	Service”.

You	can	also	install	multiple	MySQL	servers	as	services.	In	this	case,	you	must
make	sure	that	each	server	uses	a	different	service	name	in	addition	to	all	the
other	parameters	that	must	be	unique	for	each	server.

For	the	following	instructions,	assume	that	you	want	to	run	the	mysqld-nt	server
from	two	different	versions	of	MySQL	that	are	installed	at	C:\mysql-4.1.8	and
C:\mysql-5.0.25,	respectively.	(This	might	be	the	case	if	you're	running	4.1.8
as	your	production	server,	but	also	want	to	conduct	tests	using	5.0.25.)

The	following	principles	apply	when	installing	a	MySQL	service	with	the	--
install	or	--install-manual	option:

If	you	specify	no	service	name,	the	server	uses	the	default	service	name	of
MySQL	and	the	server	reads	options	from	the	[mysqld]	group	in	the	standard
option	files.

If	you	specify	a	service	name	after	the	--install	option,	the	server	ignores
the	[mysqld]	option	group	and	instead	reads	options	from	the	group	that
has	the	same	name	as	the	service.	The	server	reads	options	from	the
standard	option	files.

If	you	specify	a	--defaults-file	option	after	the	service	name,	the	server
ignores	the	standard	option	files	and	reads	options	only	from	the	[mysqld]
group	of	the	named	file.

Note:	Before	MySQL	4.0.17,	only	a	server	installed	using	the	default	service
name	(MySQL)	or	one	installed	explicitly	with	a	service	name	of	mysqld	read	the
[mysqld]	group	in	the	standard	option	files.	As	of	4.0.17,	all	servers	read	the
[mysqld]	group	if	they	read	the	standard	option	files,	even	if	they	are	installed
using	another	service	name.	This	allows	you	to	use	the	[mysqld]	group	for
options	that	should	be	used	by	all	MySQL	services,	and	an	option	group	named
after	each	service	for	use	by	the	server	installed	with	that	service	name.

Based	on	the	preceding	information,	you	have	several	ways	to	set	up	multiple
services.	The	following	instructions	describe	some	examples.	Before	trying	any
of	them,	be	sure	that	you	shut	down	and	remove	any	existing	MySQL	services
first.

Approach	1:	Specify	the	options	for	all	services	in	one	of	the	standard
option	files.	To	do	this,	use	a	different	service	name	for	each	server.
Suppose	that	you	want	to	run	the	4.1.8	mysqld-nt	using	the	service	name	of
mysqld1	and	the	5.0.25	mysqld-nt	using	the	service	name	mysqld2.	In	this
case,	you	can	use	the	[mysqld1]	group	for	4.1.8	and	the	[mysqld2]	group
for	5.0.25.	For	example,	you	can	set	up	C:\my.cnf	like	this:

#	options	for	mysqld1	service

[mysqld1]

basedir	=	C:/mysql-4.1.8

port	=	3307

enable-named-pipe

socket	=	mypipe1

#	options	for	mysqld2	service

[mysqld2]

basedir	=	C:/mysql-5.0.25

port	=	3308

enable-named-pipe

socket	=	mypipe2

Install	the	services	as	follows,	using	the	full	server	pathnames	to	ensure	that
Windows	registers	the	correct	executable	program	for	each	service:

C:\>	C:\mysql-4.1.8\bin\mysqld-nt	--install	mysqld1

C:\>	C:\mysql-5.0.25\bin\mysqld-nt	--install	mysqld2

To	start	the	services,	use	the	services	manager,	or	use	NET	START	with
the	appropriate	service	names:

C:\>	NET	START	mysqld1

C:\>	NET	START	mysqld2

To	stop	the	services,	use	the	services	manager,	or	use	NET	STOP	with	the
appropriate	service	names:

C:\>	NET	STOP	mysqld1

C:\>	NET	STOP	mysqld2

Approach	2:	Specify	options	for	each	server	in	separate	files	and	use	--
defaults-file	when	you	install	the	services	to	tell	each	server	what	file	to
use.	In	this	case,	each	file	should	list	options	using	a	[mysqld]	group.

With	this	approach,	to	specify	options	for	the	4.1.8	mysqld-nt,	create	a	file
C:\my-opts1.cnf	that	looks	like	this:

[mysqld]

basedir	=	C:/mysql-4.1.8

port	=	3307

enable-named-pipe

socket	=	mypipe1

For	the	5.0.25	mysqld-nt,	create	a	file	C:\my-opts2.cnf	that	looks	like
this:

[mysqld]

basedir	=	C:/mysql-5.0.25

port	=	3308

enable-named-pipe

socket	=	mypipe2

Install	the	services	as	follows	(enter	each	command	on	a	single	line):

C:\>	C:\mysql-4.1.8\bin\mysqld-nt	--install	mysqld1

											--defaults-file=C:\my-opts1.cnf

C:\>	C:\mysql-5.0.25\bin\mysqld-nt	--install	mysqld2

											--defaults-file=C:\my-opts2.cnf

To	use	a	--defaults-file	option	when	you	install	a	MySQL	server	as	a
service,	you	must	precede	the	option	with	the	service	name.

After	installing	the	services,	start	and	stop	them	the	same	way	as	in	the
preceding	example.

To	remove	multiple	services,	use	mysqld	--remove	for	each	one,	specifying	a
service	name	following	the	--remove	option.	If	the	service	name	is	the	default
(MySQL),	you	can	omit	it.

5.13.2.	Running	Multiple	Servers	on	Unix

The	easiest	way	is	to	run	multiple	servers	on	Unix	is	to	compile	them	with
different	TCP/IP	ports	and	Unix	socket	files	so	that	each	one	is	listening	on
different	network	interfaces.	Compiling	in	different	base	directories	for	each
installation	also	results	automatically	in	a	separate,	compiled-in	data	directory,
log	file,	and	PID	file	location	for	each	server.

Assume	that	an	existing	4.1.8	server	is	configured	for	the	default	TCP/IP	port
number	(3306)	and	Unix	socket	file	(/tmp/mysql.sock).	To	configure	a	new
5.0.25	server	to	have	different	operating	parameters,	use	a	configure	command
something	like	this:

shell>	./configure	--with-tcp-port=port_number	\

													--with-unix-socket-path=file_name	\

													--prefix=/usr/local/mysql-5.0.25

Here,	port_number	and	file_name	must	be	different	from	the	default	TCP/IP
port	number	and	Unix	socket	file	pathname,	and	the	--prefix	value	should
specify	an	installation	directory	different	from	the	one	under	which	the	existing
MySQL	installation	is	located.

If	you	have	a	MySQL	server	listening	on	a	given	port	number,	you	can	use	the
following	command	to	find	out	what	operating	parameters	it	is	using	for	several
important	configurable	variables,	including	the	base	directory	and	Unix	socket
filename:

shell>	mysqladmin	--host=host_name	--port=port_number	variables

With	the	information	displayed	by	that	command,	you	can	tell	what	option
values	not	to	use	when	configuring	an	additional	server.

Note	that	if	you	specify	localhost	as	a	hostname,	mysqladmin	defaults	to	using
a	Unix	socket	file	connection	rather	than	TCP/IP.	From	MySQL	4.1	onward,	you
can	explicitly	specify	the	connection	protocol	to	use	by	using	the	--protocol=
{TCP|SOCKET|PIPE|MEMORY}	option.

You	don't	have	to	compile	a	new	MySQL	server	just	to	start	with	a	different
Unix	socket	file	and	TCP/IP	port	number.	It	is	also	possible	to	use	the	same
server	binary	and	start	each	invocation	of	it	with	different	parameter	values	at
runtime.	One	way	to	do	so	is	by	using	command-line	options:

shell>	mysqld_safe	--socket=file_name	--port=port_number

To	start	a	second	server,	provide	different	--socket	and	--port	option	values,
and	pass	a	--datadir=path	option	to	mysqld_safe	so	that	the	server	uses	a
different	data	directory.

Another	way	to	achieve	a	similar	effect	is	to	use	environment	variables	to	set	the
Unix	socket	filename	and	TCP/IP	port	number:

shell>	MYSQL_UNIX_PORT=/tmp/mysqld-new.sock

shell>	MYSQL_TCP_PORT=3307

shell>	export	MYSQL_UNIX_PORT	MYSQL_TCP_PORT

shell>	mysql_install_db	--user=mysql

shell>	mysqld_safe	--datadir=/path/to/datadir	&

This	is	a	quick	way	of	starting	a	second	server	to	use	for	testing.	The	nice	thing
about	this	method	is	that	the	environment	variable	settings	apply	to	any	client
programs	that	you	invoke	from	the	same	shell.	Thus,	connections	for	those
clients	are	automatically	directed	to	the	second	server.

Appendix	F,	Environment	Variables,	includes	a	list	of	other	environment

variables	you	can	use	to	affect	mysqld.

For	automatic	server	execution,	the	startup	script	that	is	executed	at	boot	time
should	execute	the	following	command	once	for	each	server	with	an	appropriate
option	file	path	for	each	command:

shell>	mysqld_safe	--defaults-file=file_name

Each	option	file	should	contain	option	values	specific	to	a	given	server.

On	Unix,	the	mysqld_multi	script	is	another	way	to	start	multiple	servers.	See
Section	5.4.3,	“mysqld_multi	—	Manage	Multiple	MySQL	Servers”.

5.13.3.	Using	Client	Programs	in	a	Multiple-Server	Environment

To	connect	with	a	client	program	to	a	MySQL	server	that	is	listening	to	different
network	interfaces	from	those	compiled	into	your	client,	you	can	use	one	of	the
following	methods:

Start	the	client	with	--host=host_name	--port=port_number	to	connect	via
TCP/IP	to	a	remote	server,	with	--host=127.0.0.1	--port=port_number
to	connect	via	TCP/IP	to	a	local	server,	or	with	--host=localhost	--
socket=file_name	to	connect	to	a	local	server	via	a	Unix	socket	file	or	a
Windows	named	pipe.

As	of	MySQL	4.1,	start	the	client	with	--protocol=tcp	to	connect	via
TCP/IP,	--protocol=socket	to	connect	via	a	Unix	socket	file,	--
protocol=pipe	to	connect	via	a	named	pipe,	or	--protocol=memory	to
connect	via	shared	memory.	For	TCP/IP	connections,	you	may	also	need	to
specify	--host	and	--port	options.	For	the	other	types	of	connections,	you
may	need	to	specify	a	--socket	option	to	specify	a	Unix	socket	file	or
Windows	named-pipe	name,	or	a	--shared-memory-base-name	option	to
specify	the	shared-memory	name.	Shared-memory	connections	are
supported	only	on	Windows.

	On	Unix,	set	the	MYSQL_UNIX_PORT	and	MYSQL_TCP_PORT	environment
variables	to	point	to	the	Unix	socket	file	and	TCP/IP	port	number	before
you	start	your	clients.	If	you	normally	use	a	specific	socket	file	or	port
number,	you	can	place	commands	to	set	these	environment	variables	in
your	.login	file	so	that	they	apply	each	time	you	log	in.	See	Appendix	F,

Environment	Variables.

	Specify	the	default	Unix	socket	file	and	TCP/IP	port	number	in	the
[client]	group	of	an	option	file.	For	example,	you	can	use	C:\my.cnf	on
Windows,	or	the	.my.cnf	file	in	your	home	directory	on	Unix.	See
Section	4.3.2,	“Using	Option	Files”.

In	a	C	program,	you	can	specify	the	socket	file	or	port	number	arguments	in
the	mysql_real_connect()	call.	You	can	also	have	the	program	read	option
files	by	calling	mysql_options().	See	Section	22.2.3,	“C	API	Function
Descriptions”.

If	you	are	using	the	Perl	DBD::mysql	module,	you	can	read	options	from
MySQL	option	files.	For	example:

$dsn	=	"DBI:mysql:test;mysql_read_default_group=client;"

								.	"mysql_read_default_file=/usr/local/mysql/data/my.cnf";

$dbh	=	DBI->connect($dsn,	$user,	$password);

See	Section	22.4,	“MySQL	Perl	API”.

Other	programming	interfaces	may	provide	similar	capabilities	for	reading
option	files.

5.14.	The	MySQL	Query	Cache

The	query	cache	stores	the	text	of	a	SELECT	statement	together	with	the
corresponding	result	that	was	sent	to	the	client.	If	an	identical	statement	is
received	later,	the	server	retrieves	the	results	from	the	query	cache	rather	than
parsing	and	executing	the	statement	again.

The	query	cache	is	extremely	useful	in	an	environment	where	you	have	tables
that	do	not	change	very	often	and	for	which	the	server	receives	many	identical
queries.	This	is	a	typical	situation	for	many	Web	servers	that	generate	many
dynamic	pages	based	on	database	content.

Note:	The	query	cache	does	not	return	stale	data.	When	tables	are	modified,	any
relevant	entries	in	the	query	cache	are	flushed.

Note:	The	query	cache	does	not	work	in	an	environment	where	you	have
multiple	mysqld	servers	updating	the	same	MyISAM	tables.

Note:	The	query	cache	is	not	used	for	server-side	prepared	statements.	If	you're
using	server-side	prepared	statements	consider	that	these	statement	won't	be
satisfied	by	the	query	cache.	See	Section	22.2.4,	“C	API	Prepared	Statements”.

Some	performance	data	for	the	query	cache	follows.	These	results	were
generated	by	running	the	MySQL	benchmark	suite	on	a	Linux	Alpha	2×500MHz
system	with	2GB	RAM	and	a	64MB	query	cache.

If	all	the	queries	you	are	performing	are	simple	(such	as	selecting	a	row
from	a	table	with	one	row),	but	still	differ	so	that	the	queries	cannot	be
cached,	the	overhead	for	having	the	query	cache	active	is	13%.	This	could
be	regarded	as	the	worst	case	scenario.	In	real	life,	queries	tend	to	be	much
more	complicated,	so	the	overhead	normally	is	significantly	lower.

Searches	for	a	single	row	in	a	single-row	table	are	238%	faster	with	the
query	cache	than	without	it.	This	can	be	regarded	as	close	to	the	minimum
speedup	to	be	expected	for	a	query	that	is	cached.

To	disable	the	query	cache	at	server	startup,	set	the	query_cache_size	system
variable	to	0.	By	disabling	the	query	cache	code,	there	is	no	noticeable	overhead.

If	you	build	MySQL	from	source,	query	cache	capabilities	can	be	excluded	from
the	server	entirely	by	invoking	configure	with	the	--without-query-cache
option.

5.14.1.	How	the	Query	Cache	Operates

This	section	describes	how	the	query	cache	works	when	it	is	operational.
Section	5.14.3,	“Query	Cache	Configuration”,	describes	how	to	control	whether
it	is	operational.

Incoming	queries	are	compared	to	those	in	the	query	cache	before	parsing,	so	the
following	two	queries	are	regarded	as	different	by	the	query	cache:

SELECT	*	FROM	tbl_name

Select	*	from	tbl_name

Queries	must	be	exactly	the	same	(byte	for	byte)	to	be	seen	as	identical.	In
addition,	query	strings	that	are	identical	may	be	treated	as	different	for	other
reasons.	Queries	that	use	different	databases,	different	protocol	versions,	or
different	default	character	sets	are	considered	different	queries	and	are	cached
separately.

Before	a	query	result	is	fetched	from	the	query	cache,	MySQL	checks	that	the
user	has	SELECT	privilege	for	all	databases	and	tables	involved.	If	this	is	not	the
case,	the	cached	result	is	not	used.

If	a	query	result	is	returned	from	query	cache,	the	server	increments	the
Qcache_hits	status	variable,	not	Com_select.	See	Section	5.14.4,	“Query	Cache
Status	and	Maintenance”.

If	a	table	changes,	all	cached	queries	that	use	the	table	become	invalid	and	are
removed	from	the	cache.	This	includes	queries	that	use	MERGE	tables	that	map	to
the	changed	table.	A	table	can	be	changed	by	many	types	of	statements,	such	as
INSERT,	UPDATE,	DELETE,	TRUNCATE,	ALTER	TABLE,	DROP	TABLE,	or	DROP
DATABASE.

Transactional	InnoDB	tables	that	have	been	changed	are	invalidated	when	a
COMMIT	is	performed.

The	query	cache	also	works	within	transactions	when	using	InnoDB	tables,

making	use	of	the	table	version	number	to	detect	whether	its	contents	are	still
current.

In	MySQL	5.0,	queries	generated	by	views	are	cached.

Before	MySQL	5.0,	a	query	that	began	with	a	leading	comment	could	be	cached,
but	could	not	be	fetched	from	the	cache.	This	problem	is	fixed	in	MySQL	5.0.

The	query	cache	works	for	SELECT	SQL_CALC_FOUND_ROWS	...	and	SELECT
FOUND_ROWS()	type	queries.	FOUND_ROWS()	returns	the	correct	value	even	if	the
preceding	query	was	fetched	from	the	cache	because	the	number	of	found	rows
is	also	stored	in	the	cache.

A	query	cannot	be	cached	if	it	contains	any	of	the	functions	shown	in	the
following	table.

BENCHMARK() CONNECTION_ID() CURDATE()

CURRENT_DATE() CURRENT_TIME() CURRENT_TIMESTAMP()

CURTIME() DATABASE()
ENCRYPT()	with	one
parameter

FOUND_ROWS() GET_LOCK() LAST_INSERT_ID()

LOAD_FILE() MASTER_POS_WAIT() NOW()

RAND() RELEASE_LOCK() SYSDATE()

UNIX_TIMESTAMP()	with	no
parameters

USER() 	

A	query	also	is	not	cached	under	these	conditions:

It	refers	to	user-defined	functions	(UDFs).

It	refers	to	user	variables.

It	refers	to	tables	in	the	mysql	system	database.

It	is	of	any	of	the	following	forms:

SELECT	...	IN	SHARE	MODE

SELECT	...	FOR	UPDATE

SELECT	...	INTO	OUTFILE	...

SELECT	...	INTO	DUMPFILE	...

SELECT	*	FROM	...	WHERE	autoincrement_col	IS	NULL

The	last	form	is	not	cached	because	it	is	used	as	the	ODBC	workaround	for
obtaining	the	last	insert	ID	value.	See	the	MyODBC	section	of	Chapter	23,
Connectors.

It	was	issued	as	a	prepared	statement,	even	if	no	placeholders	were
employed.	For	example,	the	query	used	here	is	not	cached:

char	*my_sql_stmt	=	"SELECT	a,	b	FROM	table_c";

/*	...	*/

mysql_stmt_prepare(stmt,	my_sql_stmt,	strlen(my_sql_stmt));

See	Section	22.2.4,	“C	API	Prepared	Statements”.

It	uses	TEMPORARY	tables.

It	does	not	use	any	tables.

The	user	has	a	column-level	privilege	for	any	of	the	involved	tables.

5.14.2.	Query	Cache	SELECT	Options

Two	query	cache-related	options	may	be	specified	in	SELECT	statements:

	SQL_CACHE

The	query	result	is	cached	if	the	value	of	the	query_cache_type	system
variable	is	ON	or	DEMAND.

SQL_NO_CACHE

The	query	result	is	not	cached.

Examples:

SELECT	SQL_CACHE	id,	name	FROM	customer;

SELECT	SQL_NO_CACHE	id,	name	FROM	customer;

5.14.3.	Query	Cache	Configuration

The	have_query_cache	server	system	variable	indicates	whether	the	query	cache
is	available:

mysql>	SHOW	VARIABLES	LIKE	'have_query_cache';

+------------------+-------+

|	Variable_name				|	Value	|

+------------------+-------+

|	have_query_cache	|	YES			|

+------------------+-------+

When	using	a	standard	MySQL	binary,	this	value	is	always	YES,	even	if	query
caching	is	disabled.

Several	other	system	variables	control	query	cache	operation.	These	can	be	set	in
an	option	file	or	on	the	command	line	when	starting	mysqld.	The	query	cache
system	variables	all	have	names	that	begin	with	query_cache_.	They	are
described	briefly	in	Section	5.2.2,	“Server	System	Variables”,	with	additional
configuration	information	given	here.

To	set	the	size	of	the	query	cache,	set	the	query_cache_size	system	variable.
Setting	it	to	0	disables	the	query	cache.	The	default	size	is	0,	so	the	query	cache
is	disabled	by	default.

When	you	set	query_cache_size	to	a	non-zero	value,	keep	in	mind	that	the
query	cache	needs	a	minimum	size	of	about	40KB	to	allocate	its	structures.	(The
exact	size	depends	on	system	architecture.)	If	you	set	the	value	too	small,	you'll
get	a	warning,	as	in	this	example:

mysql>	SET	GLOBAL	query_cache_size	=	40000;

Query	OK,	0	rows	affected,	1	warning	(0.00	sec)

mysql>	SHOW	WARNINGS\G

***************************	1.	row	***************************

		Level:	Warning

			Code:	1282

Message:	Query	cache	failed	to	set	size	39936;	new	query	cache	size	is	0

mysql>	SET	GLOBAL	query_cache_size	=	41984;

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	SHOW	VARIABLES	LIKE	'query_cache_size';

+------------------+-------+

|	Variable_name				|	Value	|

+------------------+-------+

|	query_cache_size	|	41984	|

+------------------+-------+

If	the	query	cache	size	is	greater	than	0,	the	query_cache_type	variable
influences	how	it	works.	This	variable	can	be	set	to	the	following	values:

A	value	of	0	or	OFF	prevents	caching	or	retrieval	of	cached	results.

A	value	of	1	or	ON	allows	caching	except	of	those	statements	that	begin	with
SELECT	SQL_NO_CACHE.

A	value	of	2	or	DEMAND	causes	caching	of	only	those	statements	that	begin
with	SELECT	SQL_CACHE.

Setting	the	GLOBAL	query_cache_type	value	determines	query	cache	behavior
for	all	clients	that	connect	after	the	change	is	made.	Individual	clients	can
control	cache	behavior	for	their	own	connection	by	setting	the	SESSION
query_cache_type	value.	For	example,	a	client	can	disable	use	of	the	query
cache	for	its	own	queries	like	this:

mysql>	SET	SESSION	query_cache_type	=	OFF;

To	control	the	maximum	size	of	individual	query	results	that	can	be	cached,	set
the	query_cache_limit	system	variable.	The	default	value	is	1MB.

When	a	query	that	is	to	be	cached,	its	result	(the	data	sent	to	the	client)	is	stored
in	the	query	cache	during	result	retrieval.	Therefore	the	data	usually	is	not
handled	in	one	big	chunk.	The	query	cache	allocates	blocks	for	storing	this	data
on	demand,	so	when	one	block	is	filled,	a	new	block	is	allocated.	Because
memory	allocation	operation	is	costly	(timewise),	the	query	cache	allocates
blocks	with	a	minimum	size	given	by	the	query_cache_min_res_unit	system
variable.	When	a	query	is	executed,	the	last	result	block	is	trimmed	to	the	actual
data	size	so	that	unused	memory	is	freed.	Depending	on	the	types	of	queries
your	server	executes,	you	might	find	it	helpful	to	tune	the	value	of
query_cache_min_res_unit:

The	default	value	of	query_cache_min_res_unit	is	4KB.	This	should	be
adequate	for	most	cases.

If	you	have	a	lot	of	queries	with	small	results,	the	default	block	size	may
lead	to	memory	fragmentation,	as	indicated	by	a	large	number	of	free

blocks.	Fragmentation	can	force	the	query	cache	to	prune	(delete)	queries
from	the	cache	due	to	lack	of	memory.	In	this	case,	you	should	decrease	the
value	of	query_cache_min_res_unit.	The	number	of	free	blocks	and
queries	removed	due	to	pruning	are	given	by	the	values	of	the
Qcache_free_blocks	and	Qcache_lowmem_prunes	status	variables.

If	most	of	your	queries	have	large	results	(check	the	Qcache_total_blocks
and	Qcache_queries_in_cache	status	variables),	you	can	increase
performance	by	increasing	query_cache_min_res_unit.	However,	be
careful	to	not	make	it	too	large	(see	the	previous	item).

5.14.4.	Query	Cache	Status	and	Maintenance

You	can	check	whether	the	query	cache	is	present	in	your	MySQL	server	using
the	following	statement:

mysql>	SHOW	VARIABLES	LIKE	'have_query_cache';

+------------------+-------+

|	Variable_name				|	Value	|

+------------------+-------+

|	have_query_cache	|	YES			|

+------------------+-------+

You	can	defragment	the	query	cache	to	better	utilize	its	memory	with	the	FLUSH
QUERY	CACHE	statement.	The	statement	does	not	remove	any	queries	from	the
cache.

The	RESET	QUERY	CACHE	statement	removes	all	query	results	from	the	query
cache.	The	FLUSH	TABLES	statement	also	does	this.

To	monitor	query	cache	performance,	use	SHOW	STATUS	to	view	the	cache	status
variables:

mysql>	SHOW	STATUS	LIKE	'Qcache%';

+-------------------------+--------+

|	Variable_name											|	Value		|

+-------------------------+--------+

|	Qcache_free_blocks						|	36					|

|	Qcache_free_memory						|	138488	|

|	Qcache_hits													|	79570		|

|	Qcache_inserts										|	27087		|

|	Qcache_lowmem_prunes				|	3114			|

|	Qcache_not_cached							|	22989		|

|	Qcache_queries_in_cache	|	415				|

|	Qcache_total_blocks					|	912				|

+-------------------------+--------+

Descriptions	of	each	of	these	variables	are	given	in	Section	5.2.4,	“Server	Status
Variables”.	Some	uses	for	them	are	described	here.

The	total	number	of	SELECT	queries	is	given	by	this	formula:

		Com_select

+	Qcache_hits

+	queries	with	errors	found	by	parser

The	Com_select	value	is	given	by	this	formula:

		Qcache_inserts

+	Qcache_not_cached

+	queries	with	errors	found	during	the	column-privileges	check

The	query	cache	uses	variable-length	blocks,	so	Qcache_total_blocks	and
Qcache_free_blocks	may	indicate	query	cache	memory	fragmentation.	After
FLUSH	QUERY	CACHE,	only	a	single	free	block	remains.

Every	cached	query	requires	a	minimum	of	two	blocks	(one	for	the	query	text
and	one	or	more	for	the	query	results).	Also,	every	table	that	is	used	by	a	query
requires	one	block.	However,	if	two	or	more	queries	use	the	same	table,	only	one
table	block	needs	to	be	allocated.

The	information	provided	by	the	Qcache_lowmem_prunes	status	variable	can	help
you	tune	the	query	cache	size.	It	counts	the	number	of	queries	that	have	been
removed	from	the	cache	to	free	up	memory	for	caching	new	queries.	The	query
cache	uses	a	least	recently	used	(LRU)	strategy	to	decide	which	queries	to
remove	from	the	cache.	Tuning	information	is	given	in	Section	5.14.3,	“Query
Cache	Configuration”.

Chapter	6.	Replication

Table	of	Contents

6.1.	Introduction	to	Replication
6.2.	Replication	Implementation	Overview
6.3.	Replication	Implementation	Details

6.3.1.	Replication	Master	Thread	States
6.3.2.	Replication	Slave	I/O	Thread	States
6.3.3.	Replication	Slave	SQL	Thread	States
6.3.4.	Replication	Relay	and	Status	Files

6.4.	How	to	Set	Up	Replication
6.5.	Replication	Compatibility	Between	MySQL	Versions
6.6.	Upgrading	a	Replication	Setup

6.6.1.	Upgrading	Replication	to	5.0
6.7.	Replication	Features	and	Known	Problems
6.8.	Replication	Startup	Options
6.9.	How	Servers	Evaluate	Replication	Rules
6.10.	Replication	FAQ
6.11.	Troubleshooting	Replication
6.12.	How	to	Report	Replication	Bugs	or	Problems
6.13.	Auto-Increment	in	Multiple-Master	Replication

This	chapter	describes	the	various	replication	features	provided	by	MySQL.	It
introduces	replication	concepts,	shows	how	to	set	up	replication	servers,	and
serves	as	a	reference	to	the	available	replication	options.	It	also	provides	a	list	of
frequently	asked	questions	(with	answers),	and	troubleshooting	advice	for
solving	replication	problems.

For	a	description	of	the	syntax	of	replication-related	SQL	statements,	see
Section	13.6,	“Replication	Statements”.

6.1.	Introduction	to	Replication

MySQL	features	support	for	one-way,	asynchronous	replication,	in	which	one
server	acts	as	the	master,	while	one	or	more	other	servers	act	as	slaves.	This	is	in
contrast	to	the	synchronous	replication	which	is	a	characteristic	of	MySQL
Cluster	(see	Chapter	15,	MySQL	Cluster).

In	single-master	replication,	the	master	server	writes	updates	to	its	binary	log
files	and	maintains	an	index	of	those	files	to	keep	track	of	log	rotation.	The
binary	log	files	serve	as	a	record	of	updates	to	be	sent	to	any	slave	servers.	When
a	slave	connects	to	its	master,	it	informs	the	master	of	the	position	up	to	which
the	slave	read	the	logs	at	its	last	successful	update.	The	slave	receives	any
updates	that	have	taken	place	since	that	time,	and	then	blocks	and	waits	for	the
master	to	notify	it	of	new	updates.

A	slave	server	can	itself	serve	as	a	master	if	you	want	to	set	up	chained
replication	servers.

Multiple-master	replication	is	possible,	but	raises	issues	not	present	in	single-
master	replication.	See	Section	6.13,	“Auto-Increment	in	Multiple-Master
Replication”.

When	you	are	using	replication,	all	updates	to	the	tables	that	are	replicated
should	be	performed	on	the	master	server.	Otherwise,	you	must	always	be
careful	to	avoid	conflicts	between	updates	that	users	make	to	tables	on	the
master	and	updates	that	they	make	to	tables	on	the	slave.

Replication	offers	benefits	for	robustness,	speed,	and	system	administration:

Robustness	is	increased	with	a	master/slave	setup.	In	the	event	of	problems
with	the	master,	you	can	switch	to	the	slave	as	a	backup.

Better	response	time	for	clients	can	be	achieved	by	splitting	the	load	for
processing	client	queries	between	the	master	and	slave	servers.	SELECT
queries	may	be	sent	to	the	slave	to	reduce	the	query	processing	load	of	the
master.	Statements	that	modify	data	should	still	be	sent	to	the	master	so	that
the	master	and	slave	do	not	get	out	of	synchrony.	This	load-balancing
strategy	is	effective	if	non-updating	queries	dominate,	but	that	is	the	normal

case.

Another	benefit	of	using	replication	is	that	you	can	perform	database
backups	using	a	slave	server	without	disturbing	the	master.	The	master
continues	to	process	updates	while	the	backup	is	being	made.	See
Section	5.10.1,	“Database	Backups”.

6.2.	Replication	Implementation	Overview

MySQL	replication	is	based	on	the	master	server	keeping	track	of	all	changes	to
your	databases	(updates,	deletes,	and	so	on)	in	its	binary	logs.	Therefore,	to	use
replication,	you	must	enable	binary	logging	on	the	master	server.	See
Section	5.12.3,	“The	Binary	Log”.

Each	slave	server	receives	from	the	master	the	saved	updates	that	the	master	has
recorded	in	its	binary	log,	so	that	the	slave	can	execute	the	same	updates	on	its
copy	of	the	data.

It	is	extremely	important	to	realize	that	the	binary	log	is	simply	a	record	starting
from	the	fixed	point	in	time	at	which	you	enable	binary	logging.	Any	slaves	that
you	set	up	need	copies	of	the	databases	on	your	master	as	they	existed	at	the
moment	you	enabled	binary	logging	on	the	master.	If	you	start	your	slaves	with
databases	that	are	not	in	the	same	state	as	those	on	the	master	when	the	binary
log	was	started,	your	slaves	are	quite	likely	to	fail.

One	way	to	copy	the	master's	data	to	the	slave	is	to	use	the	LOAD	DATA	FROM
MASTER	statement.	However,	LOAD	DATA	FROM	MASTER	works	only	if	all	the
tables	on	the	master	use	the	MyISAM	storage	engine.	In	addition,	this	statement
acquires	a	global	read	lock,	so	no	updates	on	the	master	are	possible	while	the
tables	are	being	transferred	to	the	slave.	When	we	implement	lock-free	hot	table
backup,	this	global	read	lock	will	no	longer	be	necessary.

Due	to	these	limitations,	we	recommend	that	at	this	point	you	use	LOAD	DATA
FROM	MASTER	only	if	the	dataset	on	the	master	is	relatively	small,	or	if	a
prolonged	read	lock	on	the	master	is	acceptable.	Although	the	actual	speed	of
LOAD	DATA	FROM	MASTER	may	vary	from	system	to	system,	a	good	rule	of	thumb
for	how	long	it	takes	is	1	second	per	1MB	of	data.	This	is	a	rough	estimate,	but
you	should	find	it	fairly	accurate	if	both	master	and	slave	are	equivalent	to
700MHz	Pentium	CPUs	in	performance	and	are	connected	through	a	100Mbps
network.

After	the	slave	has	been	set	up	with	a	copy	of	the	master's	data,	it	connects	to	the
master	and	waits	for	updates	to	process.	If	the	master	fails,	or	the	slave	loses
connectivity	with	your	master,	the	slave	keeps	trying	to	connect	periodically
until	it	is	able	to	resume	listening	for	updates.	The	--master-connect-retry

option	controls	the	retry	interval.	The	default	is	60	seconds.

Each	slave	keeps	track	of	where	it	left	off	when	it	last	read	from	its	master
server.	The	master	has	no	knowledge	of	how	many	slaves	it	has	or	which	ones
are	up	to	date	at	any	given	time.

6.3.	Replication	Implementation	Details

MySQL	replication	capabilities	are	implemented	using	three	threads	(one	on	the
master	server	and	two	on	the	slave).	When	a	START	SLAVE	statement	is	issued	on
a	slave	server,	the	slave	creates	an	I/O	thread,	which	connects	to	the	master	and
asks	it	to	send	the	updates	recorded	in	its	binary	logs.	The	master	creates	a
thread	to	send	the	binary	log	contents	to	the	slave.	This	thread	can	be	identified
as	the	Binlog	Dump	thread	in	the	output	of	SHOW	PROCESSLIST	on	the	master.
The	slave	I/O	thread	reads	the	updates	that	the	master	Binlog	Dump	thread	sends
and	copies	them	to	local	files,	known	as	relay	logs,	in	the	slave's	data	directory.
The	third	thread	is	the	SQL	thread,	which	the	slave	creates	to	read	the	relay	logs
and	to	execute	the	updates	they	contain.

In	the	preceding	description,	there	are	three	threads	per	master/slave	connection.
A	master	that	has	multiple	slaves	creates	one	thread	for	each	currently-connected
slave,	and	each	slave	has	its	own	I/O	and	SQL	threads.

The	slave	uses	two	threads	so	that	reading	updates	from	the	master	and
executing	them	can	be	separated	into	two	independent	tasks.	Thus,	the	task	of
reading	statements	is	not	slowed	down	if	statement	execution	is	slow.	For
example,	if	the	slave	server	has	not	been	running	for	a	while,	its	I/O	thread	can
quickly	fetch	all	the	binary	log	contents	from	the	master	when	the	slave	starts,
even	if	the	SQL	thread	lags	far	behind.	If	the	slave	stops	before	the	SQL	thread
has	executed	all	the	fetched	statements,	the	I/O	thread	has	at	least	fetched
everything	so	that	a	safe	copy	of	the	statements	is	stored	locally	in	the	slave's
relay	logs,	ready	for	execution	the	next	time	that	the	slave	starts.	This	enables
the	master	server	to	purge	its	binary	logs	sooner	because	it	no	longer	needs	to
wait	for	the	slave	to	fetch	their	contents.

The	SHOW	PROCESSLIST	statement	provides	information	that	tells	you	what	is
happening	on	the	master	and	on	the	slave	regarding	replication.	The	following
example	illustrates	how	the	three	threads	show	up	in	the	output	from	SHOW
PROCESSLIST.

On	the	master	server,	the	output	from	SHOW	PROCESSLIST	looks	like	this:

mysql>	SHOW	PROCESSLIST\G

***************************	1.	row	***************************

					Id:	2

			User:	root

			Host:	localhost:32931

					db:	NULL

Command:	Binlog	Dump

			Time:	94

		State:	Has	sent	all	binlog	to	slave;	waiting	for	binlog	to

									be	updated

			Info:	NULL

Here,	thread	2	is	a	Binlog	Dump	replication	thread	for	a	connected	slave.	The
State	information	indicates	that	all	outstanding	updates	have	been	sent	to	the
slave	and	that	the	master	is	waiting	for	more	updates	to	occur.	If	you	see	no
Binlog	Dump	threads	on	a	master	server,	this	means	that	replication	is	not
running	—	that	is,	that	no	slaves	are	currently	connected.

On	the	slave	server,	the	output	from	SHOW	PROCESSLIST	looks	like	this:

mysql>	SHOW	PROCESSLIST\G

***************************	1.	row	***************************

					Id:	10

			User:	system	user

			Host:

					db:	NULL

Command:	Connect

			Time:	11

		State:	Waiting	for	master	to	send	event

			Info:	NULL

***************************	2.	row	***************************

					Id:	11

			User:	system	user

			Host:

					db:	NULL

Command:	Connect

			Time:	11

		State:	Has	read	all	relay	log;	waiting	for	the	slave	I/O

									thread	to	update	it

			Info:	NULL

This	information	indicates	that	thread	10	is	the	I/O	thread	that	is	communicating
with	the	master	server,	and	thread	11	is	the	SQL	thread	that	is	processing	the
updates	stored	in	the	relay	logs.	At	the	time	that	the	SHOW	PROCESSLIST	was	run,
both	threads	were	idle,	waiting	for	further	updates.

The	value	in	the	Time	column	can	show	how	late	the	slave	is	compared	to	the
master.	See	Section	6.10,	“Replication	FAQ”.

6.3.1.	Replication	Master	Thread	States

The	following	list	shows	the	most	common	states	you	may	see	in	the	State
column	for	the	master's	Binlog	Dump	thread.	If	you	see	no	Binlog	Dump	threads
on	a	master	server,	this	means	that	replication	is	not	running	—	that	is,	that	no
slaves	are	currently	connected.

Sending	binlog	event	to	slave

Binary	logs	consist	of	events,	where	an	event	is	usually	an	update	plus	some
other	information.	The	thread	has	read	an	event	from	the	binary	log	and	is
now	sending	it	to	the	slave.

Finished	reading	one	binlog;	switching	to	next	binlog

The	thread	has	finished	reading	a	binary	log	file	and	is	opening	the	next	one
to	send	to	the	slave.

Has	sent	all	binlog	to	slave;	waiting	for	binlog	to	be	updated

The	thread	has	read	all	outstanding	updates	from	the	binary	logs	and	sent
them	to	the	slave.	The	thread	is	now	idle,	waiting	for	new	events	to	appear
in	the	binary	log	resulting	from	new	updates	occurring	on	the	master.

Waiting	to	finalize	termination

A	very	brief	state	that	occurs	as	the	thread	is	stopping.

6.3.2.	Replication	Slave	I/O	Thread	States

The	following	list	shows	the	most	common	states	you	see	in	the	State	column
for	a	slave	server	I/O	thread.	This	state	also	appears	in	the	Slave_IO_State
column	displayed	by	SHOW	SLAVE	STATUS,	so	you	can	get	a	good	view	of	what	is
happening	by	using	that	statement.

Connecting	to	master

The	thread	is	attempting	to	connect	to	the	master.

Checking	master	version

A	state	that	occurs	very	briefly,	after	the	connection	to	the	master	is
established.

Registering	slave	on	master

A	state	that	occurs	very	briefly	after	the	connection	to	the	master	is
established.

Requesting	binlog	dump

A	state	that	occurs	very	briefly,	after	the	connection	to	the	master	is
established.	The	thread	sends	to	the	master	a	request	for	the	contents	of	its
binary	logs,	starting	from	the	requested	binary	log	filename	and	position.

Waiting	to	reconnect	after	a	failed	binlog	dump	request

If	the	binary	log	dump	request	failed	(due	to	disconnection),	the	thread	goes
into	this	state	while	it	sleeps,	then	tries	to	reconnect	periodically.	The
interval	between	retries	can	be	specified	using	the	--master-connect-
retry	option.

Reconnecting	after	a	failed	binlog	dump	request

The	thread	is	trying	to	reconnect	to	the	master.

Waiting	for	master	to	send	event

The	thread	has	connected	to	the	master	and	is	waiting	for	binary	log	events
to	arrive.	This	can	last	for	a	long	time	if	the	master	is	idle.	If	the	wait	lasts
for	slave_read_timeout	seconds,	a	timeout	occurs.	At	that	point,	the
thread	considers	the	connection	to	be	broken	and	makes	an	attempt	to
reconnect.

Queueing	master	event	to	the	relay	log

The	thread	has	read	an	event	and	is	copying	it	to	the	relay	log	so	that	the
SQL	thread	can	process	it.

Waiting	to	reconnect	after	a	failed	master	event	read

An	error	occurred	while	reading	(due	to	disconnection).	The	thread	is
sleeping	for	master-connect-retry	seconds	before	attempting	to
reconnect.

Reconnecting	after	a	failed	master	event	read

The	thread	is	trying	to	reconnect	to	the	master.	When	connection	is
established	again,	the	state	becomes	Waiting	for	master	to	send	event.

Waiting	for	the	slave	SQL	thread	to	free	enough	relay	log	space

You	are	using	a	non-zero	relay_log_space_limit	value,	and	the	relay	logs
have	grown	large	enough	that	their	combined	size	exceeds	this	value.	The
I/O	thread	is	waiting	until	the	SQL	thread	frees	enough	space	by	processing
relay	log	contents	so	that	it	can	delete	some	relay	log	files.

Waiting	for	slave	mutex	on	exit

A	state	that	occurs	briefly	as	the	thread	is	stopping.

6.3.3.	Replication	Slave	SQL	Thread	States

The	following	list	shows	the	most	common	states	you	may	see	in	the	State
column	for	a	slave	server	SQL	thread:

Reading	event	from	the	relay	log

The	thread	has	read	an	event	from	the	relay	log	so	that	the	event	can	be
processed.

Has	read	all	relay	log;	waiting	for	the	slave	I/O	thread	to

update	it

The	thread	has	processed	all	events	in	the	relay	log	files,	and	is	now	waiting
for	the	I/O	thread	to	write	new	events	to	the	relay	log.

Waiting	for	slave	mutex	on	exit

A	very	brief	state	that	occurs	as	the	thread	is	stopping.

The	State	column	for	the	I/O	thread	may	also	show	the	text	of	a	statement.	This
indicates	that	the	thread	has	read	an	event	from	the	relay	log,	extracted	the
statement	from	it,	and	is	executing	it.

6.3.4.	Replication	Relay	and	Status	Files

By	default,	relay	logs	filenames	have	the	form	host_name-relay-bin.nnnnnn,
where	host_name	is	the	name	of	the	slave	server	host	and	nnnnnn	is	a	sequence
number.	Successive	relay	log	files	are	created	using	successive	sequence
numbers,	beginning	with	000001.	The	slave	uses	an	index	file	to	track	the	relay
log	files	currently	in	use.	The	default	relay	log	index	filename	is	host_name-
relay-bin.index.	By	default,	the	slave	server	creates	relay	log	files	in	its	data
directory.	The	default	filenames	can	be	overridden	with	the	--relay-log	and	--
relay-log-index	server	options.	See	Section	6.8,	“Replication	Startup
Options”.

Relay	logs	have	the	same	format	as	binary	logs	and	can	be	read	using
mysqlbinlog.	The	SQL	thread	automatically	deletes	each	relay	log	file	as	soon
as	it	has	executed	all	events	in	the	file	and	no	longer	needs	it.	There	is	no	explicit
mechanism	for	deleting	relay	logs	because	the	SQL	thread	takes	care	of	doing
so.	However,	FLUSH	LOGS	rotates	relay	logs,	which	influences	when	the	SQL
thread	deletes	them.

A	slave	server	creates	a	new	relay	log	file	under	the	following	conditions:

Each	time	the	I/O	thread	starts.

When	the	logs	are	flushed;	for	example,	with	FLUSH	LOGS	or	mysqladmin
flush-logs.

When	the	size	of	the	current	relay	log	file	becomes	too	large.	The	meaning
of	“too	large”	is	determined	as	follows:

If	the	value	of	max_relay_log_size	is	greater	than	0,	that	is	the
maximum	relay	log	file	size.

If	the	value	of	max_relay_log_size	is	0,	max_binlog_size
determines	the	maximum	relay	log	file	size.

A	slave	replication	server	creates	two	additional	small	files	in	the	data	directory.

These	status	files	are	named	master.info	and	relay-log.info	by	default.	Their
names	can	be	changed	by	using	the	--master-info-file	and	--relay-log-
info-file	options.	See	Section	6.8,	“Replication	Startup	Options”.

The	two	status	files	contain	information	like	that	shown	in	the	output	of	the	SHOW
SLAVE	STATUS	statement,	which	is	discussed	in	Section	13.6.2,	“SQL	Statements
for	Controlling	Slave	Servers”.	Because	the	status	files	are	stored	on	disk,	they
survive	a	slave	server's	shutdown.	The	next	time	the	slave	starts	up,	it	reads	the
two	files	to	determine	how	far	it	has	proceeded	in	reading	binary	logs	from	the
master	and	in	processing	its	own	relay	logs.

The	I/O	thread	updates	the	master.info	file.	The	following	table	shows	the
correspondence	between	the	lines	in	the	file	and	the	columns	displayed	by	SHOW
SLAVE	STATUS.

Line Description
1 Number	of	lines	in	the	file
2 Master_Log_File

3 Read_Master_Log_Pos

4 Master_Host

5 Master_User

6 Password	(not	shown	by	SHOW	SLAVE	STATUS)
7 Master_Port

8 Connect_Retry

9 Master_SSL_Allowed

10 Master_SSL_CA_File

11 Master_SSL_CA_Path

12 Master_SSL_Cert

13 Master_SSL_Cipher

14 Master_SSL_Key

The	SQL	thread	updates	the	relay-log.info	file.	The	following	table	shows	the
correspondence	between	the	lines	in	the	file	and	the	columns	displayed	by	SHOW
SLAVE	STATUS.

Line Description
1 Relay_Log_File

2 Relay_Log_Pos

3 Relay_Master_Log_File

4 Exec_Master_Log_Pos

When	you	back	up	the	slave's	data,	you	should	back	up	these	two	status	files	as
well,	along	with	the	relay	log	files.	They	are	needed	to	resume	replication	after
you	restore	the	slave's	data.	If	you	lose	the	relay	logs	but	still	have	the	relay-
log.info	file,	you	can	check	it	to	determine	how	far	the	SQL	thread	has
executed	in	the	master	binary	logs.	Then	you	can	use	CHANGE	MASTER	TO	with
the	MASTER_LOG_FILE	and	MASTER_LOG_POS	options	to	tell	the	slave	to	re-read	the
binary	logs	from	that	point.	Of	course,	this	requires	that	the	binary	logs	still	exist
on	the	master	server.

If	your	slave	is	subject	to	replicating	LOAD	DATA	INFILE	statements,	you	should
also	back	up	any	SQL_LOAD-*	files	that	exist	in	the	directory	that	the	slave	uses
for	this	purpose.	The	slave	needs	these	files	to	resume	replication	of	any
interrupted	LOAD	DATA	INFILE	operations.	The	directory	location	is	specified
using	the	--slave-load-tmpdir	option.	If	this	option	is	not	specified,	the
directory	location	is	the	value	of	the	tmpdir	system	variable.

6.4.	How	to	Set	Up	Replication

This	section	briefly	describes	how	to	set	up	complete	replication	of	a	MySQL
server.	It	assumes	that	you	want	to	replicate	all	databases	on	the	master	and	have
not	previously	configured	replication.	You	must	shut	down	your	master	server
briefly	to	complete	the	steps	outlined	here.

This	procedure	is	written	in	terms	of	setting	up	a	single	slave,	but	you	can	repeat
it	to	set	up	multiple	slaves.

Although	this	method	is	the	most	straightforward	way	to	set	up	a	slave,	it	is	not
the	only	one.	For	example,	if	you	have	a	snapshot	of	the	master's	data,	and	the
master	already	has	its	server	ID	set	and	binary	logging	enabled,	you	can	set	up	a
slave	without	shutting	down	the	master	or	even	blocking	updates	to	it.	For	more
details,	please	see	Section	6.10,	“Replication	FAQ”.

If	you	want	to	administer	a	MySQL	replication	setup,	we	suggest	that	you	read
this	entire	chapter	through	and	try	all	statements	mentioned	in	Section	13.6.1,
“SQL	Statements	for	Controlling	Master	Servers”,	and	Section	13.6.2,	“SQL
Statements	for	Controlling	Slave	Servers”.	You	should	also	familiarize	yourself
with	the	replication	startup	options	described	in	Section	6.8,	“Replication	Startup
Options”.

Note:	This	procedure	and	some	of	the	replication	SQL	statements	shown	in	later
sections	require	the	SUPER	privilege.

1.	 Make	sure	that	the	versions	of	MySQL	installed	on	the	master	and	slave	are
compatible	according	to	the	table	shown	in	Section	6.5,	“Replication
Compatibility	Between	MySQL	Versions”.	Ideally,	you	should	use	the	most
recent	version	of	MySQL	on	both	master	and	slave.

If	you	encounter	a	problem,	please	do	not	report	it	as	a	bug	until	you	have
verified	that	the	problem	is	present	in	the	latest	MySQL	release.

2.	 Set	up	an	account	on	the	master	server	that	the	slave	server	can	use	to
connect.	This	account	must	be	given	the	REPLICATION	SLAVE	privilege.	If
the	account	is	used	only	for	replication	(which	is	recommended),	you	don't
need	to	grant	any	additional	privileges.

Suppose	that	your	domain	is	mydomain.com	and	that	you	want	to	create	an
account	with	a	username	of	repl	such	that	slave	servers	can	use	the	account
to	access	the	master	server	from	any	host	in	your	domain	using	a	password
of	slavepass.	To	create	the	account,	use	this	GRANT	statement:

mysql>	GRANT	REPLICATION	SLAVE	ON	*.*

				->	TO	'repl'@'%.mydomain.com'	IDENTIFIED	BY	'slavepass';

If	you	plan	to	use	the	LOAD	TABLE	FROM	MASTER	or	LOAD	DATA	FROM
MASTER	statements	from	the	slave	host,	you	must	grant	this	account
additional	privileges:

Grant	the	account	the	SUPER	and	RELOAD	global	privileges.

Grant	the	SELECT	privilege	for	all	tables	that	you	want	to	load.	Any
master	tables	from	which	the	account	cannot	SELECT	will	be	ignored
by	LOAD	DATA	FROM	MASTER.

For	additional	information	about	setting	up	user	accounts	and	privileges,
see	Section	5.9,	“MySQL	User	Account	Management”.

3.	 Flush	all	the	tables	and	block	write	statements	by	executing	a	FLUSH
TABLES	WITH	READ	LOCK	statement:

mysql>	FLUSH	TABLES	WITH	READ	LOCK;

For	InnoDB	tables,	note	that	FLUSH	TABLES	WITH	READ	LOCK	also	blocks
COMMIT	operations.	When	you	have	acquired	a	global	read	lock,	you	can
start	a	filesystem	snapshot	of	your	InnoDB	tables.	Internally	(inside	the
InnoDB	storage	engine)	the	snapshot	won't	be	consistent	(because	the
InnoDB	caches	are	not	flushed),	but	this	is	not	a	cause	for	concern,	because
InnoDB	resolves	this	at	startup	and	delivers	a	consistent	result.	This	means
that	InnoDB	can	perform	crash	recovery	when	started	on	this	snapshot,
without	corruption.	However,	there	is	no	way	to	stop	the	MySQL	server
while	insuring	a	consistent	snapshot	of	your	InnoDB	tables.

Leave	running	the	client	from	which	you	issue	the	FLUSH	TABLES	statement
so	that	the	read	lock	remains	in	effect.	(If	you	exit	the	client,	the	lock	is
released.)	Then	take	a	snapshot	of	the	data	on	your	master	server.

The	easiest	way	to	create	a	snapshot	is	to	use	an	archiving	program	to	make

a	binary	backup	of	the	databases	in	your	master's	data	directory.	For
example,	use	tar	on	Unix,	or	PowerArchiver,	WinRAR,	WinZip,	or	any
similar	software	on	Windows.	To	use	tar	to	create	an	archive	that	includes
all	databases,	change	location	into	the	master	server's	data	directory,	then
execute	this	command:

shell>	tar	-cvf	/tmp/mysql-snapshot.tar	.

If	you	want	the	archive	to	include	only	a	database	called	this_db,	use	this
command	instead:

shell>	tar	-cvf	/tmp/mysql-snapshot.tar	./this_db

Then	copy	the	archive	file	to	the	/tmp	directory	on	the	slave	server	host.	On
that	machine,	change	location	into	the	slave's	data	directory,	and	unpack	the
archive	file	using	this	command:

shell>	tar	-xvf	/tmp/mysql-snapshot.tar

You	may	not	want	to	replicate	the	mysql	database	if	the	slave	server	has	a
different	set	of	user	accounts	from	those	that	exist	on	the	master.	In	this
case,	you	should	exclude	it	from	the	archive.	You	also	need	not	include	any
log	files	in	the	archive,	or	the	master.info	or	relay-log.info	files.

While	the	read	lock	placed	by	FLUSH	TABLES	WITH	READ	LOCK	is	in	effect,
read	the	value	of	the	current	binary	log	name	and	offset	on	the	master:

mysql	>	SHOW	MASTER	STATUS;

+---------------+----------+--------------+------------------+

|	File										|	Position	|	Binlog_Do_DB	|	Binlog_Ignore_DB	|

+---------------+----------+--------------+------------------+

|	mysql-bin.003	|	73							|	test									|	manual,mysql					|

+---------------+----------+--------------+------------------+

The	File	column	shows	the	name	of	the	log	and	Position	shows	the	offset
within	the	file.	In	this	example,	the	binary	log	file	is	mysql-bin.003	and	the
offset	is	73.	Record	these	values.	You	need	them	later	when	you	are	setting
up	the	slave.	They	represent	the	replication	coordinates	at	which	the	slave
should	begin	processing	new	updates	from	the	master.

If	the	master	has	been	running	previously	without	binary	logging	enabled,
the	log	name	and	position	values	displayed	by	SHOW	MASTER	STATUS	or

mysqldump	--master-data	will	be	empty.	In	that	case,	the	values	that	you
need	to	use	later	when	specifying	the	slave's	log	file	and	position	are	the
empty	string	('')	and	4.

After	you	have	taken	the	snapshot	and	recorded	the	log	name	and	offset,
you	can	re-enable	write	activity	on	the	master:

mysql>	UNLOCK	TABLES;

If	you	are	using	InnoDB	tables,	ideally	you	should	use	the	InnoDB	Hot
Backup	tool,	which	takes	a	consistent	snapshot	without	acquiring	any	locks
on	the	master	server,	and	records	the	log	name	and	offset	corresponding	to
the	snapshot	to	be	later	used	on	the	slave.	Hot	Backup	is	an	additional	non-
free	(commercial)	tool	that	is	not	included	in	the	standard	MySQL
distribution.	See	the	InnoDB	Hot	Backup	home	page	at
http://www.innodb.com/manual.php	for	detailed	information.

Without	the	Hot	Backup	tool,	the	quickest	way	to	take	a	binary	snapshot	of
InnoDB	tables	is	to	shut	down	the	master	server	and	copy	the	InnoDB	data
files,	log	files,	and	table	format	files	(.frm	files).	To	record	the	current	log
file	name	and	offset,	you	should	issue	the	following	statements	before	you
shut	down	the	server:

mysql>	FLUSH	TABLES	WITH	READ	LOCK;

mysql>	SHOW	MASTER	STATUS;

Then	record	the	log	name	and	the	offset	from	the	output	of	SHOW	MASTER
STATUS	as	was	shown	earlier.	After	recording	the	log	name	and	the	offset,
shut	down	the	server	without	unlocking	the	tables	to	make	sure	that	the
server	goes	down	with	the	snapshot	corresponding	to	the	current	log	file
and	offset:

shell>	mysqladmin	-u	root	shutdown

An	alternative	that	works	for	both	MyISAM	and	InnoDB	tables	is	to	take	an
SQL	dump	of	the	master	instead	of	a	binary	copy	as	described	in	the
preceding	discussion.	For	this,	you	can	use	mysqldump	--master-data	on
your	master	and	later	load	the	SQL	dump	file	into	your	slave.	However,	this
is	slower	than	doing	a	binary	copy.

4.	 Make	sure	that	the	[mysqld]	section	of	the	my.cnf	file	on	the	master	host

http://www.innodb.com/manual.php

includes	a	log-bin	option.	The	section	should	also	have	a	server-
id=master_id	option,	where	master_id	must	be	a	positive	integer	value
from	1	to	232	–	1.	For	example:

[mysqld]

log-bin=mysql-bin

server-id=1

If	those	options	are	not	present,	add	them	and	restart	the	server.	The	server
cannot	act	as	a	replication	master	unless	binary	logging	is	enabled.

Note:	For	the	greatest	possible	durability	and	consistency	in	a	replication
setup	using	InnoDB	with	transactions,	you	should	use
innodb_flush_log_at_trx_commit=1,	sync_binlog=1,	and,	before
MySQL	5.0.3,	innodb_safe_binlog,	in	the	master	my.cnf	file.
(innodb_safe_binlog	is	not	needed	from	5.0.3	on.)

5.	 Stop	the	server	that	is	to	be	used	as	a	slave	and	add	the	following	lines	to	its
my.cnf	file:

[mysqld]

server-id=slave_id

The	slave_id	value,	like	the	master_id	value,	must	be	a	positive	integer
value	from	1	to	232	–	1.	In	addition,	it	is	necessary	that	the	ID	of	the	slave
be	different	from	the	ID	of	the	master.	For	example:

[mysqld]

server-id=2

If	you	are	setting	up	multiple	slaves,	each	one	must	have	a	unique	server-
id	value	that	differs	from	that	of	the	master	and	from	each	of	the	other
slaves.	Think	of	server-id	values	as	something	similar	to	IP	addresses:
These	IDs	uniquely	identify	each	server	instance	in	the	community	of
replication	partners.

If	you	do	not	specify	a	server-id	value,	it	is	set	to	1	if	you	have	not
defined	master-host;	otherwise	it	is	set	to	2.	Note	that	in	the	case	of
server-id	omission,	a	master	refuses	connections	from	all	slaves,	and	a
slave	refuses	to	connect	to	a	master.	Thus,	omitting	server-id	is	good	only
for	backup	with	a	binary	log.

6.	 If	you	made	a	binary	backup	of	the	master	server's	data,	copy	it	to	the	slave
server's	data	directory	before	starting	the	slave.	Make	sure	that	the
privileges	on	the	files	and	directories	are	correct.	The	system	account	that
you	use	to	run	the	slave	server	must	be	able	to	read	and	write	the	files,	just
as	on	the	master.

If	you	made	a	backup	using	mysqldump,	start	the	slave	first.	The	dump	file
is	loaded	in	a	later	step.

7.	 Start	the	slave	server.	If	it	has	been	replicating	previously,	start	the	slave
server	with	the	--skip-slave-start	option	so	that	it	doesn't	immediately
try	to	connect	to	its	master.	You	also	may	want	to	start	the	slave	server	with
the	--log-warnings	option	to	get	more	messages	in	the	error	log	about
problems	(for	example,	network	or	connection	problems).	The	option	is
enabled	by	default,	but	aborted	connections	are	not	logged	to	the	error	log
unless	the	option	value	is	greater	than	1.

8.	 If	you	made	a	backup	of	the	master	server's	data	using	mysqldump,	load
the	dump	file	into	the	slave	server:

shell>	mysql	-u	root	-p	<	dump_file.sql

9.	 Execute	the	following	statement	on	the	slave,	replacing	the	option	values
with	the	actual	values	relevant	to	your	system:

mysql>	CHANGE	MASTER	TO

				->					MASTER_HOST='master_host_name',

				->					MASTER_USER='replication_user_name',

				->					MASTER_PASSWORD='replication_password',

				->					MASTER_LOG_FILE='recorded_log_file_name',

				->					MASTER_LOG_POS=recorded_log_position;

The	following	table	shows	the	maximum	allowable	length	for	the	string-
valued	options:

MASTER_HOST 60
MASTER_USER 16
MASTER_PASSWORD 32
MASTER_LOG_FILE 255

10.	 Start	the	slave	threads:

mysql>	START	SLAVE;

After	you	have	performed	this	procedure,	the	slave	should	connect	to	the	master
and	catch	up	on	any	updates	that	have	occurred	since	the	snapshot	was	taken.

If	you	have	forgotten	to	set	the	server-id	option	for	the	master,	slaves	cannot
connect	to	it.

If	you	have	forgotten	to	set	the	server-id	option	for	the	slave,	you	get	the
following	error	in	the	slave's	error	log:

Warning:	You	should	set	server-id	to	a	non-0	value	if	master_host

is	set;	we	will	force	server	id	to	2,	but	this	MySQL	server	will

not	act	as	a	slave.

You	also	find	error	messages	in	the	slave's	error	log	if	it	is	not	able	to	replicate
for	any	other	reason.

Once	a	slave	is	replicating,	you	can	find	in	its	data	directory	one	file	named
master.info	and	another	named	relay-log.info.	The	slave	uses	these	two	files
to	keep	track	of	how	much	of	the	master's	binary	log	it	has	processed.	Do	not
remove	or	edit	these	files	unless	you	know	exactly	what	you	are	doing	and	fully
understand	the	implications.	Even	in	that	case,	it	is	preferred	that	you	use	the
CHANGE	MASTER	TO	statement	to	change	replication	parameters.	The	slave	will
use	the	values	specified	in	the	statement	to	update	the	status	files	automatically.

Note:	The	content	of	master.info	overrides	some	of	the	server	options
specified	on	the	command	line	or	in	my.cnf.	See	Section	6.8,	“Replication
Startup	Options”,	for	more	details.

Once	you	have	a	snapshot	of	the	master,	you	can	use	it	to	set	up	other	slaves	by
following	the	slave	portion	of	the	procedure	just	described.	You	do	not	need	to
take	another	snapshot	of	the	master;	you	can	use	the	same	one	for	each	slave.

6.5.	Replication	Compatibility	Between	MySQL
Versions

The	binary	log	format	as	implemented	in	MySQL	5.0	is	considerably	different
from	that	used	in	previous	versions.	Major	changes	were	made	in	MySQL	5.0.3
(for	improvements	to	handling	of	character	sets	and	LOAD	DATA	INFILE)	and
5.0.4	(for	improvements	to	handling	of	time	zones).

We	recommend	using	the	most	recent	MySQL	version	available	because
replication	capabilities	are	continually	being	improved.	We	also	recommend
using	the	same	version	for	both	the	master	and	the	slave.	We	recommend
upgrading	masters	and	slaves	running	alpha	or	beta	versions	to	new	(production)
versions.	Replication	from	a	5.0.3	master	to	a	5.0.2	slave	will	fail;	from	a	5.0.4
master	to	a	5.0.3	slave	will	also	fail.	In	general,	slaves	running	MySQL	5.0.x
may	be	used	with	older	masters	(even	those	running	MySQL	3.23,	4.0,	or	4.1),
but	not	the	reverse.	For	more	information	on	potential	issues,	see	Section	6.7,
“Replication	Features	and	Known	Problems”.

Note:	You	cannot	replicate	from	a	master	that	uses	a	newer	binary	log	format	to
a	slave	that	uses	an	older	format	(for	example,	from	MySQL	5.0	to	MySQL	4.1.)
This	has	significant	implications	for	upgrading	replication	servers,	as	described
in	Section	6.6,	“Upgrading	a	Replication	Setup”.

The	preceding	information	pertains	to	replication	compatibility	at	the	protocol
level.	However,	there	can	be	other	constraints,	such	as	SQL-level	compatibility
issues.	For	example,	a	5.0	master	cannot	replicate	to	a	4.1	slave	if	the	replicated
statements	use	SQL	features	available	in	5.0	but	not	in	4.1.	These	and	other
issues	are	discussed	in	Section	6.7,	“Replication	Features	and	Known
Problems”.

6.6.	Upgrading	a	Replication	Setup

When	you	upgrade	servers	that	participate	in	a	replication	setup,	the	procedure
for	upgrading	depends	on	the	current	server	versions	and	the	version	to	which
you	are	upgrading.

6.6.1.	Upgrading	Replication	to	5.0

This	section	applies	to	upgrading	replication	from	MySQL	3.23,	4.0,	or	4.1	to
MySQL	5.0.	A	4.0	server	should	be	4.0.3	or	newer.

When	you	upgrade	a	master	to	5.0	from	an	earlier	MySQL	release	series,	you
should	first	ensure	that	all	the	slaves	of	this	master	are	using	the	same	5.0.x
release.	If	this	is	not	the	case,	you	should	first	upgrade	the	slaves.	To	upgrade
each	slave,	shut	it	down,	upgrade	it	to	the	appropriate	5.0.x	version,	restart	it,
and	restart	replication.	The	5.0	slave	is	able	to	read	the	old	relay	logs	written
prior	to	the	upgrade	and	to	execute	the	statements	they	contain.	Relay	logs
created	by	the	slave	after	the	upgrade	are	in	5.0	format.

After	the	slaves	have	been	upgraded,	shut	down	the	master,	upgrade	it	to	the
same	5.0.x	release	as	the	slaves,	and	restart	it.	The	5.0	master	is	able	to	read	the
old	binary	logs	written	prior	to	the	upgrade	and	to	send	them	to	the	5.0	slaves.
The	slaves	recognize	the	old	format	and	handle	it	properly.	Binary	logs	created
by	the	master	following	the	upgrade	are	in	5.0	format.	These	too	are	recognized
by	the	5.0	slaves.

In	other	words,	there	are	no	measures	to	take	when	upgrading	to	MySQL	5.0,
except	that	the	slaves	must	be	MySQL	5.0	before	you	can	upgrade	the	master	to
5.0.	Note	that	downgrading	from	5.0	to	older	versions	does	not	work	so	simply:
You	must	ensure	that	any	5.0	binary	logs	or	relay	logs	have	been	fully	processed,
so	that	you	can	remove	them	before	proceeding	with	the	downgrade.

6.7.	Replication	Features	and	Known	Problems

In	general,	replication	compatibility	at	the	SQL	level	requires	that	any	features
used	be	supported	by	both	the	master	and	the	slave	servers.	If	you	use	a	feature
on	a	master	server	that	is	available	only	as	of	a	given	version	of	MySQL,	you
cannot	replicate	to	a	slave	that	is	older	than	that	version.	Such	incompatibilities
are	likely	to	occur	between	series,	so	that,	for	example,	you	cannot	replicate
from	MySQL	5.0	to	4.1.	However,	these	incompatibilities	also	can	occur	for
within-series	replication.	For	example,	the	SLEEP()	function	is	available	in
MySQL	5.0.12	and	up.	If	you	use	this	function	on	the	master	server,	you	cannot
replicate	to	a	slave	server	that	is	older	than	MySQL	5.0.12.

If	you	are	planning	to	use	replication	between	5.0	and	a	previous	version	of
MySQL	you	should	consult	the	edition	of	the	MySQL	Reference	Manual
corresponding	to	the	earlier	release	series	for	information	regarding	the
replication	characteristics	of	that	series.

The	following	list	provides	details	about	what	is	supported	and	what	is	not.
Additional	InnoDB-specific	information	about	replication	is	given	in
Section	14.2.6.5,	“InnoDB	and	MySQL	Replication”.

Replication	issues	with	regard	to	stored	routines	and	triggers	is	described	in
Section	17.4,	“Binary	Logging	of	Stored	Routines	and	Triggers”.

Known	issue:	In	MySQL	5.0.17,	the	syntax	for	CREATE	TRIGGER	changed
to	include	a	DEFINER	clause	for	specifying	which	access	privileges	to	check
at	trigger	invocation	time.	(See	Section	18.1,	“CREATE	TRIGGER	Syntax”,	for
more	information.)	However,	if	you	attempt	to	replicate	from	a	master
server	older	than	MySQL	5.0.17	to	a	slave	running	MySQL	5.0.17	through
5.0.19,	replication	of	CREATE	TRIGGER	statements	fails	on	the	slave	with	a
Definer	not	fully	qualified	error.	A	workaround	is	to	create	triggers
on	the	master	using	a	version-specific	comment	embedded	in	each	CREATE
TRIGGER	statement:

CREATE	/*!50017	DEFINER	=	'root'@'localhost'	*/	TRIGGER	...	;

CREATE	TRIGGER	statements	written	this	way	will	replicate	to	newer	slaves,
which	pick	up	the	DEFINER	clause	from	the	comment	and	execute

successfully.

This	slave	problem	is	fixed	as	of	MySQL	5.0.20.

Replication	of	AUTO_INCREMENT,	LAST_INSERT_ID(),	and	TIMESTAMP	values
is	done	correctly.

However,	adding	an	AUTO_INCREMENT	column	to	a	table	with	ALTER	TABLE
might	not	produce	the	same	ordering	of	the	rows	on	the	slave	and	the
master.	This	occurs	because	the	order	in	which	the	rows	are	numbered
depends	on	the	specific	storage	engine	used	for	the	table	and	the	order	in
which	the	rows	were	inserted.	If	it	is	important	to	have	the	same	order	on
the	master	and	slave,	the	rows	must	be	ordered	before	assigning	an
AUTO_INCREMENT	number.	Assuming	that	you	want	to	add	an
AUTO_INCREMENT	column	to	the	table	t1,	the	following	statements	produce	a
new	table	t2	identical	to	t1	but	with	an	AUTO_INCREMENT	column:

CREATE	TABLE	t2	(id	INT	AUTO_INCREMENT	PRIMARY	KEY)	

SELECT	*	FROM	t1	ORDER	BY	col1,	col2;

This	assumes	that	the	table	t1	has	columns	col1	and	col2.

This	set	of	statements	will	also	produce	a	new	table	t2	identical	to	t1,	with
the	addition	of	an	AUTO_INCREMENT	column:

CREATE	TABLE	t2	LIKE	t1;

ALTER	TABLE	T2	ADD	id	INT	AUTO_INCREMENT	PRIMARY	KEY;

INSERT	INTO	t2	SELECT	*	FROM	t1	ORDER	BY	col1,	col2;

Important:	To	guarantee	the	same	ordering	on	both	master	and	slave,	all
columns	of	t1	must	be	referenced	in	the	ORDER	BY	clause.

Regardless	of	the	method	used	to	create	and	populate	the	copy	having	the
AUTO_INCREMENT	column,	the	final	step	is	to	drop	the	original	table	and	then
rename	the	copy:

DROP	t1;

ALTER	TABLE	t2	RENAME	t1;

See	also	Section	A.7.1,	“Problems	with	ALTER	TABLE”.

The	USER(),	UUID(),	and	LOAD_FILE()	functions	are	replicated	without

change	and	thus	do	not	work	reliably	on	the	slave.

As	of	MySQL	5.0.13,	the	SYSDATE()	function	is	no	longer	equivalent	to
NOW().	Implications	are	that	SYSDATE()	is	not	replication-safe	because	it	is
not	affected	by	SET	TIMESTAMP	statements	in	the	binary	log	and	is	non-
deterministic.	To	avoid	this,	you	can	start	the	server	with	the	--sysdate-
is-now	option	to	cause	SYSDATE()	to	be	an	alias	for	NOW().

User	privileges	are	replicated	only	if	the	mysql	database	is	replicated.	That
is,	the	GRANT,	REVOKE,	SET	PASSWORD,	CREATE	USER,	and	DROP	USER
statements	take	effect	on	the	slave	only	if	the	replication	setup	includes	the
mysql	database.

If	you're	replicating	all	databases,	but	don't	want	statements	that	affect	user
privileges	to	be	replicated,	set	up	the	slave	to	not	replicate	the	mysql
database,	using	the	--replicate-wild-ignore-table=mysql.%	option.	The
slave	will	recognize	that	issuing	privilege-related	SQL	statements	won't
have	an	effect,	and	thus	not	execute	those	statements.

The	GET_LOCK(),	RELEASE_LOCK(),	IS_FREE_LOCK(),	and	IS_USED_LOCK()
functions	that	handle	user-level	locks	are	replicated	without	the	slave
knowing	the	concurrency	context	on	master.	Therefore,	these	functions
should	not	be	used	to	insert	into	a	master's	table	because	the	content	on	the
slave	would	differ.	(For	example,	do	not	issue	a	statement	such	as	INSERT
INTO	mytable	VALUES(GET_LOCK(...)).)

The	FOREIGN_KEY_CHECKS,	SQL_MODE,	UNIQUE_CHECKS,	and
SQL_AUTO_IS_NULL	variables	are	all	replicated	in	MySQL	5.0.	The
storage_engine	system	variable	(also	known	as	table_type)	is	not	yet
replicated,	which	is	a	good	thing	for	replication	between	different	storage
engines.

Starting	from	MySQL	5.0.3	(master	and	slave),	replication	works	even	if
the	master	and	slave	have	different	global	character	set	variables.	Starting
from	MySQL	5.0.4	(master	and	slave),	replication	works	even	if	the	master
and	slave	have	different	global	time	zone	variables.

The	following	applies	to	replication	between	MySQL	servers	that	use
different	character	sets:

1.	 If	the	master	uses	MySQL	4.1,	you	must	always	use	the	same	global
character	set	and	collation	on	the	master	and	the	slave,	regardless	of
the	MySQL	version	running	on	the	slave.	(These	are	controlled	by	the
--character-set-server	and	--collation-server	options.)
Otherwise,	you	may	get	duplicate-key	errors	on	the	slave,	because	a
key	that	is	unique	in	the	master	character	set	might	not	be	unique	in
the	slave	character	set.	Note	that	this	is	not	a	cause	for	concern	when
master	and	slave	are	both	MySQL	5.0	or	later.

2.	 If	the	master	is	older	than	MySQL	4.1.3,	the	character	set	of	any	client
should	never	be	made	different	from	its	global	value	because	this
character	set	change	is	not	known	to	the	slave.	In	other	words,	clients
should	not	use	SET	NAMES,	SET	CHARACTER	SET,	and	so	forth.	If	both
the	master	and	the	slave	are	4.1.3	or	newer,	clients	can	freely	set
session	values	for	character	set	variables	because	these	settings	are
written	to	the	binary	log	and	so	are	known	to	the	slave.	That	is,	clients
can	use	SET	NAMES	or	SET	CHARACTER	SET	or	can	set	variables	such	as
collation_client	or	collation_server.	However,	clients	are
prevented	from	changing	the	global	value	of	these	variables;	as	stated
previously,	the	master	and	slave	must	always	have	identical	global
character	set	values.

3.	 If	you	have	databases	on	the	master	with	character	sets	that	differ	from
the	global	character_set_server	value,	you	should	design	your
CREATE	TABLE	statements	so	that	tables	in	those	databases	do	not
implicitly	rely	on	the	database	default	character	set	(see	Bug	#2326).	A
good	workaround	is	to	state	the	character	set	and	collation	explicitly	in
CREATE	TABLE	statements.

If	the	master	uses	MySQL	4.1,	the	same	system	time	zone	should	be	set	for
both	master	and	slave.	Otherwise	some	statements	will	not	be	replicated
properly,	such	as	statements	that	use	the	NOW()	or	FROM_UNIXTIME()
functions.	You	can	set	the	time	zone	in	which	MySQL	server	runs	by	using
the	--timezone=timezone_name	option	of	the	mysqld_safe	script	or	by
setting	the	TZ	environment	variable.	Both	master	and	slave	should	also	have
the	same	default	connection	time	zone	setting;	that	is,	the	--default-time-
zone	parameter	should	have	the	same	value	for	both	master	and	slave.	Note
that	this	is	not	necessary	when	the	master	is	MySQL	5.0	or	later.

CONVERT_TZ(...,...,@@global.time_zone)	is	not	properly	replicated.
CONVERT_TZ(...,...,@@session.time_zone)	is	properly	replicated	only	if
the	master	and	slave	are	from	MySQL	5.0.4	or	newer.

Session	variables	are	not	replicated	properly	when	used	in	statements	that
update	tables.	For	example,	SET	MAX_JOIN_SIZE=1000	followed	by	INSERT
INTO	mytable	VALUES(@@MAX_JOIN_SIZE)	will	not	insert	the	same	data	on
the	master	and	the	slave.	This	does	not	apply	to	the	common	sequence	of
SET	TIME_ZONE=...	followed	by	INSERT	INTO	mytable
VALUES(CONVERT_TZ(...,...,@@time_zone)),	which	replicates	correctly
as	of	MySQL	5.0.4.

It	is	possible	to	replicate	transactional	tables	on	the	master	using	non-
transactional	tables	on	the	slave.	For	example,	you	can	replicate	an	InnoDB
master	table	as	a	MyISAM	slave	table.	However,	if	you	do	this,	there	are
problems	if	the	slave	is	stopped	in	the	middle	of	a	BEGIN/COMMIT	block
because	the	slave	restarts	at	the	beginning	of	the	BEGIN	block.

Update	statements	that	refer	to	user-defined	variables	(that	is,	variables	of
the	form	@var_name)	are	replicated	correctly	in	MySQL	5.0.	However,	this
is	not	true	for	versions	prior	to	4.1.	Note	that	user	variable	names	are	case
insensitive	starting	in	MySQL	5.0.	You	should	take	this	into	account	when
setting	up	replication	between	MySQL	5.0	and	older	versions.

Slaves	can	connect	to	masters	using	SSL.

Views	are	always	replicated	to	slaves.	Views	are	filtered	by	their	own	name,
not	by	the	tables	they	refer	to.	This	means	that	a	view	can	be	replicated	to
the	slave	even	if	the	view	contains	a	table	that	would	normally	be	filtered
out	by	replication-ignore-table	rules.	Care	should	therefore	be	taken	to
ensure	that	views	do	not	replicate	table	data	that	would	normally	be	filtered
for	security	reasons.

In	MySQL	5.0	(starting	from	5.0.3),	there	is	a	global	system	variable
slave_transaction_retries:	If	the	replication	slave	SQL	thread	fails	to
execute	a	transaction	because	of	an	InnoDB	deadlock	or	because	it	exceeded
the	InnoDB	innodb_lock_wait_timeout	or	the	NDBCluster
TransactionDeadlockDetectionTimeout	or
TransactionInactiveTimeout	value,	the	transaction	automatically	retries

slave_transaction_retries	times	before	stopping	with	an	error.	The
default	value	is	10.	Starting	from	MySQL	5.0.4,	the	total	retry	count	can	be
seen	in	the	output	of	SHOW	STATUS;	see	Section	5.2.4,	“Server	Status
Variables”.

If	a	DATA	DIRECTORY	or	INDEX	DIRECTORY	table	option	is	used	in	a	CREATE
TABLE	statement	on	the	master	server,	the	table	option	is	also	used	on	the
slave.	This	can	cause	problems	if	no	corresponding	directory	exists	in	the
slave	host	filesystem	or	if	it	exists	but	is	not	accessible	to	the	slave	server.
MySQL	supports	an	sql_mode	option	called	NO_DIR_IN_CREATE.	If	the	slave
server	is	run	with	this	SQL	mode	enabled,	it	ignores	the	DATA	DIRECTORY
and	INDEX	DIRECTORY	table	options	when	replicating	CREATE	TABLE
statements.	The	result	is	that	MyISAM	data	and	index	files	are	created	in	the
table's	database	directory.

It	is	possible	for	the	data	on	the	master	and	slave	to	become	different	if	a
statement	is	designed	in	such	a	way	that	the	data	modification	is	non-
deterministic;	that	is,	left	to	the	will	of	the	query	optimizer.	(This	is	in
general	not	a	good	practice,	even	outside	of	replication.)	For	a	detailed
explanation	of	this	issue,	see	Section	A.8.1,	“Open	Issues	in	MySQL”.

Using	LOAD	TABLE	FROM	MASTER	where	the	master	is	running	MySQL	4.1
and	the	slave	is	running	MySQL	5.0	may	corrupt	the	table	data,	and	is	not
supported.	(Bug	#16261)

The	following	applies	only	if	either	the	master	or	the	slave	is	running
MySQL	version	5.0.3	or	older:	If	on	the	master	a	LOAD	DATA	INFILE	is
interrupted	(integrity	constraint	violation,	killed	connection,	and	so	on),	the
slave	skips	the	LOAD	DATA	INFILE	entirely.	This	means	that	if	this
command	permanently	inserted	or	updated	table	records	before	being
interrupted,	these	modifications	are	not	replicated	to	the	slave.

Some	forms	of	the	FLUSH	statement	are	not	logged	because	they	could	cause
problems	if	replicated	to	a	slave:	FLUSH	LOGS,	FLUSH	MASTER,	FLUSH	SLAVE,
and	FLUSH	TABLES	WITH	READ	LOCK.	For	a	syntax	example,	see
Section	13.5.5.2,	“FLUSH	Syntax”.	The	FLUSH	TABLES,	ANALYZE	TABLE,
OPTIMIZE	TABLE,	and	REPAIR	TABLE	statements	are	written	to	the	binary
log	and	thus	replicated	to	slaves.	This	is	not	normally	a	problem	because
these	statements	do	not	modify	table	data.	However,	this	can	cause

difficulties	under	certain	circumstances.	If	you	replicate	the	privilege	tables
in	the	mysql	database	and	update	those	tables	directly	without	using	GRANT,
you	must	issue	a	FLUSH	PRIVILEGES	on	the	slaves	to	put	the	new	privileges
into	effect.	In	addition,	if	you	use	FLUSH	TABLES	when	renaming	a	MyISAM
table	that	is	part	of	a	MERGE	table,	you	must	issue	FLUSH	TABLES	manually
on	the	slaves.	These	statements	are	written	to	the	binary	log	unless	you
specify	NO_WRITE_TO_BINLOG	or	its	alias	LOCAL.

MySQL	supports	only	one	master	and	many	slaves.	In	the	future	we	plan	to
add	a	voting	algorithm	for	changing	the	master	automatically	in	the	event	of
problems	with	the	current	master.	We	also	plan	to	introduce	agent	processes
to	help	perform	load	balancing	by	sending	SELECT	queries	to	different
slaves.

When	a	server	shuts	down	and	restarts,	its	MEMORY	(HEAP	tables	become
empty.	The	master	replicates	this	effect	to	slaves	as	follows:	The	first	time
that	the	master	uses	each	MEMORY	table	after	startup,	it	logs	an	event	that
notifies	the	slaves	that	the	table	needs	to	be	emptied	by	writing	a	DELETE
statement	for	that	table	to	the	binary	log.	See	Section	14.4,	“The	MEMORY
(HEAP)	Storage	Engine”,	for	more	information.

Temporary	tables	are	replicated	except	in	the	case	where	you	shut	down	the
slave	server	(not	just	the	slave	threads)	and	you	have	replicated	temporary
tables	that	are	used	in	updates	that	have	not	yet	been	executed	on	the	slave.
If	you	shut	down	the	slave	server,	the	temporary	tables	needed	by	those
updates	are	no	longer	available	when	the	slave	is	restarted.	To	avoid	this
problem,	do	not	shut	down	the	slave	while	it	has	temporary	tables	open.
Instead,	use	the	following	procedure:

1.	 Issue	a	STOP	SLAVE	statement.

2.	 Use	SHOW	STATUS	to	check	the	value	of	the	Slave_open_temp_tables
variable.

3.	 If	the	value	is	0,	issue	a	mysqladmin	shutdown	command	to	stop	the
slave.

4.	 If	the	value	is	not	0,	restart	the	slave	threads	with	START	SLAVE.

5.	 Repeat	the	procedure	later	until	the	Slave_open_temp_tables	variable

is	0	and	you	can	stop	the	slave.

The	syntax	for	multiple-table	DELETE	statements	that	use	table	aliases
changed	between	MySQL	4.0	and	4.1.	In	MySQL	4.0,	you	should	use	the
true	table	name	to	refer	to	any	table	from	which	rows	should	be	deleted:

DELETE	test	FROM	test	AS	t1,	test2	WHERE	...

In	MySQL	4.1,	you	must	use	the	alias:

DELETE	t1	FROM	test	AS	t1,	test2	WHERE	...

If	you	use	such	DELETE	statements,	the	change	in	syntax	means	that	a	4.0
master	cannot	replicate	to	4.1	(or	higher)	slaves.

It	is	safe	to	connect	servers	in	a	circular	master/slave	relationship	if	you	use
the	--log-slave-updates	option.	That	means	that	you	can	create	a	setup
such	as	this:

A	->	B	->	C	->	A

However,	many	statements	do	not	work	correctly	in	this	kind	of	setup
unless	your	client	code	is	written	to	take	care	of	the	potential	problems	that
can	occur	from	updates	that	occur	in	different	sequence	on	different	servers.

Server	IDs	are	encoded	in	binary	log	events,	so	server	A	knows	when	an
event	that	it	reads	was	originally	created	by	itself	and	does	not	execute	the
event	(unless	server	A	was	started	with	the	--replicate-same-server-id
option,	which	is	meaningful	only	in	rare	cases).	Thus,	there	are	no	infinite
loops.	This	type	of	circular	setup	works	only	if	you	perform	no	conflicting
updates	between	the	tables.	In	other	words,	if	you	insert	data	in	both	A	and
C,	you	should	never	insert	a	row	in	A	that	may	have	a	key	that	conflicts
with	a	row	inserted	in	C.	You	should	also	not	update	the	same	rows	on	two
servers	if	the	order	in	which	the	updates	are	applied	is	significant.

If	a	statement	on	a	slave	produces	an	error,	the	slave	SQL	thread	terminates,
and	the	slave	writes	a	message	to	its	error	log.	You	should	then	connect	to
the	slave	manually	and	determine	the	cause	of	the	problem.	(SHOW	SLAVE
STATUS	is	useful	for	this.)	Then	fix	the	problem	(for	example,	you	might
need	to	create	a	non-existent	table)	and	run	START	SLAVE.

It	is	safe	to	shut	down	a	master	server	and	restart	it	later.	When	a	slave	loses
its	connection	to	the	master,	the	slave	tries	to	reconnect	immediately	and
retries	periodically	if	that	fails.	The	default	is	to	retry	every	60	seconds.
This	may	be	changed	with	the	--master-connect-retry	option.	A	slave
also	is	able	to	deal	with	network	connectivity	outages.	However,	the	slave
notices	the	network	outage	only	after	receiving	no	data	from	the	master	for
slave_net_timeout	seconds.	If	your	outages	are	short,	you	may	want	to
decrease	slave_net_timeout.	See	Section	5.2.2,	“Server	System
Variables”.

Shutting	down	the	slave	(cleanly)	is	also	safe	because	it	keeps	track	of
where	it	left	off.	Unclean	shutdowns	might	produce	problems,	especially	if
the	disk	cache	was	not	flushed	to	disk	before	the	system	went	down.	Your
system	fault	tolerance	is	greatly	increased	if	you	have	a	good
uninterruptible	power	supply.	Unclean	shutdowns	of	the	master	may	cause
inconsistencies	between	the	content	of	tables	and	the	binary	log	in	master;
this	can	be	avoided	by	using	InnoDB	tables	and	the	--innodb-safe-binlog
option	on	the	master.	See	Section	5.12.3,	“The	Binary	Log”.

Note:	--innodb-safe-binlog	is	unneeded	as	of	MySQL	5.0.3,	having	been
made	obsolete	by	the	introduction	of	XA	transaction	support.

A	crash	on	the	master	side	can	result	in	the	master's	binary	log	having	a
final	position	less	than	the	most	recent	position	read	by	the	slave,	due	to	the
master's	binary	log	file	not	being	flushed.	This	can	cause	the	slave	not	to	be
able	to	replicate	when	the	master	comes	back	up.	Setting	sync_binlog=1	in
the	master	my.cnf	file	helps	to	minimize	this	problem	because	it	causes	the
master	to	flush	its	binary	log	more	frequently.

Due	to	the	non-transactional	nature	of	MyISAM	tables,	it	is	possible	to	have	a
statement	that	only	partially	updates	a	table	and	returns	an	error	code.	This
can	happen,	for	example,	on	a	multiple-row	insert	that	has	one	row
violating	a	key	constraint,	or	if	a	long	update	statement	is	killed	after
updating	some	of	the	rows.	If	that	happens	on	the	master,	the	slave	thread
exits	and	waits	for	the	database	administrator	to	decide	what	to	do	about	it
unless	the	error	code	is	legitimate	and	execution	of	the	statement	results	in
the	same	error	code	on	the	slave.	If	this	error	code	validation	behavior	is
not	desirable,	some	or	all	errors	can	be	masked	out	(ignored)	with	the	--
slave-skip-errors	option.

If	you	update	transactional	tables	from	non-transactional	tables	inside	a
BEGIN/COMMIT	sequence,	updates	to	the	binary	log	may	be	out	of	synchrony
with	table	states	if	the	non-transactional	table	is	updated	before	the
transaction	commits.	This	occurs	because	the	transaction	is	written	to	the
binary	log	only	when	it	is	committed.

In	situations	where	transactions	mix	updates	to	transactional	and	non-
transactional	tables,	the	order	of	statements	in	the	binary	log	is	correct,	and
all	needed	statements	are	written	to	the	binary	log	even	in	case	of	a
ROLLBACK.	However,	when	a	second	connection	updates	the	non-
transactional	table	before	the	first	connection's	transaction	is	complete,
statements	can	be	logged	out	of	order,	because	the	second	connection's
update	is	written	immediately	after	it	is	performed,	regardless	of	the	state	of
the	transaction	being	performed	by	the	first	connection.

Floating-point	values	are	approximate,	so	comparisons	involving	them	are
inexact.	This	is	true	for	operations	that	use	floating-point	values	explicitly,
or	values	that	are	converted	to	floating-point	implicitly.	Comparisons	of
floating-point	values	might	yield	different	results	on	master	and	slave
servers	due	to	differences	in	computer	architecture,	the	compiler	used	to
build	MySQL,	and	so	forth.	See	Section	12.1.2,	“Type	Conversion	in
Expression	Evaluation”,	and	Section	A.5.8,	“Problems	with	Floating-Point
Comparisons”.

6.8.	Replication	Startup	Options

This	section	describes	the	options	that	you	can	use	on	slave	replication	servers.
You	can	specify	these	options	either	on	the	command	line	or	in	an	option	file.

On	the	master	and	each	slave,	you	must	use	the	server-id	option	to	establish	a
unique	replication	ID.	For	each	server,	you	should	pick	a	unique	positive	integer
in	the	range	from	1	to	232	–	1,	and	each	ID	must	be	different	from	every	other
ID.	Example:	server-id=3

Options	that	you	can	use	on	the	master	server	for	controlling	binary	logging	are
described	in	Section	5.12.3,	“The	Binary	Log”.

Some	slave	server	replication	options	are	handled	in	a	special	way,	in	the	sense
that	each	is	ignored	if	a	master.info	file	exists	when	the	slave	starts	and
contains	a	value	for	the	option.	The	following	options	are	handled	this	way:

--master-host

--master-user

--master-password

--master-port

--master-connect-retry

--master-ssl

--master-ssl-ca

--master-ssl-capath

--master-ssl-cert

--master-ssl-cipher

--master-ssl-key

The	master.info	file	format	in	MySQL	5.0	includes	values	corresponding	to	the
SSL	options.	In	addition,	the	file	format	includes	as	its	first	line	the	number	of
lines	in	the	file.	(See	Section	6.3.4,	“Replication	Relay	and	Status	Files”.)	If	you
upgrade	an	older	server	(before	MySQL	4.1.1)	to	a	newer	version,	the	new
server	upgrades	the	master.info	file	to	the	new	format	automatically	when	it
starts.	However,	if	you	downgrade	a	newer	server	to	an	older	version,	you	should
remove	the	first	line	manually	before	starting	the	older	server	for	the	first	time.

If	no	master.info	file	exists	when	the	slave	server	starts,	it	uses	the	values	for
those	options	that	are	specified	in	option	files	or	on	the	command	line.	This
occurs	when	you	start	the	server	as	a	replication	slave	for	the	very	first	time,	or
when	you	have	run	RESET	SLAVE	and	then	have	shut	down	and	restarted	the
slave.

If	the	master.info	file	exists	when	the	slave	server	starts,	the	server	uses	its
contents	and	ignores	any	options	that	correspond	to	the	values	listed	in	the	file.
Thus,	if	you	start	the	slave	server	with	different	values	of	the	startup	options	that
correspond	to	values	in	the	master.info	file,	the	different	values	have	no	effect,
because	the	server	continues	to	use	the	master.info	file.	To	use	different	values,
you	must	either	restart	after	removing	the	master.info	file	or	(preferably)	use
the	CHANGE	MASTER	TO	statement	to	reset	the	values	while	the	slave	is	running.

Suppose	that	you	specify	this	option	in	your	my.cnf	file:

[mysqld]

master-host=some_host

The	first	time	you	start	the	server	as	a	replication	slave,	it	reads	and	uses	that
option	from	the	my.cnf	file.	The	server	then	records	the	value	in	the
master.info	file.	The	next	time	you	start	the	server,	it	reads	the	master	host
value	from	the	master.info	file	only	and	ignores	the	value	in	the	option	file.	If
you	modify	the	my.cnf	file	to	specify	a	different	master	host	of
some_other_host,	the	change	still	has	no	effect.	You	should	use	CHANGE	MASTER
TO	instead.

Because	the	server	gives	an	existing	master.info	file	precedence	over	the
startup	options	just	described,	you	might	prefer	not	to	use	startup	options	for
these	values	at	all,	and	instead	specify	them	by	using	the	CHANGE	MASTER	TO
statement.	See	Section	13.6.2.1,	“CHANGE	MASTER	TO	Syntax”.

This	example	shows	a	more	extensive	use	of	startup	options	to	configure	a	slave
server:

[mysqld]

server-id=2

master-host=db-master.mycompany.com

master-port=3306

master-user=pertinax

master-password=freitag

master-connect-retry=60

report-host=db-slave.mycompany.com

The	following	list	describes	startup	options	for	controlling	replication.	Many	of
these	options	can	be	reset	while	the	server	is	running	by	using	the	CHANGE
MASTER	TO	statement.	Others,	such	as	the	--replicate-*	options,	can	be	set
only	when	the	slave	server	starts.

	--log-slave-updates

Normally,	a	slave	does	not	log	to	its	own	binary	log	any	updates	that	are
received	from	a	master	server.	This	option	tells	the	slave	to	log	the	updates
performed	by	its	SQL	thread	to	its	own	binary	log.	For	this	option	to	have
any	effect,	the	slave	must	also	be	started	with	the	--log-bin	option	to
enable	binary	logging.	--log-slave-updates	is	used	when	you	want	to
chain	replication	servers.	For	example,	you	might	want	to	set	up	replication
servers	using	this	arrangement:

A	->	B	->	C

Here,	A	serves	as	the	master	for	the	slave	B,	and	B	serves	as	the	master	for
the	slave	C.	For	this	to	work,	B	must	be	both	a	master	and	a	slave.	You
must	start	both	A	and	B	with	--log-bin	to	enable	binary	logging,	and	B
with	the	--log-slave-updates	option	so	that	updates	received	from	A	are
logged	by	B	to	its	binary	log.

	--log-warnings[=level]

This	option	causes	a	server	to	print	more	messages	to	the	error	log	about
what	it	is	doing.	With	respect	to	replication,	the	server	generates	warnings
that	it	succeeded	in	reconnecting	after	a	network/connection	failure,	and
informs	you	as	to	how	each	slave	thread	started.	This	option	is	enabled	by
default;	to	disable	it,	use	--skip-log-warnings.	Aborted	connections	are

not	logged	to	the	error	log	unless	the	value	is	greater	than	1.

	--master-connect-retry=seconds

The	number	of	seconds	that	the	slave	thread	sleeps	before	trying	to
reconnect	to	the	master	in	case	the	master	goes	down	or	the	connection	is
lost.	The	value	in	the	master.info	file	takes	precedence	if	it	can	be	read.	If
not	set,	the	default	is	60.

	--master-host=host_name

The	hostname	or	IP	number	of	the	master	replication	server.	The	value	in
master.info	takes	precedence	if	it	can	be	read.	If	no	master	host	is
specified,	the	slave	thread	does	not	start.

	--master-info-file=file_name

The	name	to	use	for	the	file	in	which	the	slave	records	information	about
the	master.	The	default	name	is	master.info	in	the	data	directory.

	--master-password=password

The	password	of	the	account	that	the	slave	thread	uses	for	authentication
when	it	connects	to	the	master.	The	value	in	the	master.info	file	takes
precedence	if	it	can	be	read.	If	not	set,	an	empty	password	is	assumed.

	--master-port=port_number

The	TCP/IP	port	number	that	the	master	is	listening	on.	The	value	in	the
master.info	file	takes	precedence	if	it	can	be	read.	If	not	set,	the	compiled-
in	setting	is	assumed	(normally	3306).

	--master-retry-count=count

The	number	of	times	that	the	slave	tries	to	connect	to	the	master	before
giving	up.

	--master-ssl,	--master-ssl-ca=file_name,	--master-ssl-
capath=directory_name,	--master-ssl-cert=file_name,	--master-ssl-
cipher=cipher_list,	--master-ssl-key=file_name

These	options	are	used	for	setting	up	a	secure	replication	connection	to	the
master	server	using	SSL.	Their	meanings	are	the	same	as	the	corresponding
--ssl,	--ssl-ca,	--ssl-capath,	--ssl-cert,	--ssl-cipher,	--ssl-key
options	that	are	described	in	Section	5.9.7.3,	“SSL	Command	Options”.	The
values	in	the	master.info	file	take	precedence	if	they	can	be	read.

	--master-user=user_name

The	username	of	the	account	that	the	slave	thread	uses	for	authentication
when	it	connects	to	the	master.	This	account	must	have	the	REPLICATION
SLAVE	privilege.	The	value	in	the	master.info	file	takes	precedence	if	it
can	be	read.	If	the	master	username	is	not	set,	the	name	test	is	assumed.

	--max-relay-log-size=size

The	size	at	which	the	server	rotates	relay	log	files	automatically.	For	more
information,	see	Section	6.3.4,	“Replication	Relay	and	Status	Files”.

	--read-only

Cause	the	slave	to	allow	no	updates	except	from	slave	threads	or	from	users
having	the	SUPER	privilege.	This	enables	you	to	ensure	that	a	slave	server
accepts	no	updates	from	clients.	As	of	MySQL	5.0.16,	this	option	does	not
apply	to	TEMPORARY	tables.

	--relay-log=file_name

The	name	for	the	relay	log.	The	default	name	is	host_name-relay-
bin.nnnnnn,	where	host_name	is	the	name	of	the	slave	server	host	and
nnnnnn	indicates	that	relay	logs	are	created	in	numbered	sequence.	You	can
specify	the	option	to	create	hostname-independent	relay	log	names,	or	if
your	relay	logs	tend	to	be	big	(and	you	don't	want	to	decrease
max_relay_log_size)	and	you	need	to	put	them	in	some	area	different
from	the	data	directory,	or	if	you	want	to	increase	speed	by	balancing	load
between	disks.

	--relay-log-index=file_name

The	name	to	use	for	the	relay	log	index	file.	The	default	name	is
host_name-relay-bin.index	in	the	data	directory,	where	host_name	is	the

name	of	the	slave	server.

	--relay-log-info-file=file_name

The	name	to	use	for	the	file	in	which	the	slave	records	information	about
the	relay	logs.	The	default	name	is	relay-log.info	in	the	data	directory.

	--relay-log-purge={0|1}

Disable	or	enable	automatic	purging	of	relay	logs	as	soon	as	they	are	not
needed	any	more.	The	default	value	is	1	(enabled).	This	is	a	global	variable
that	can	be	changed	dynamically	with	SET	GLOBAL	relay_log_purge	=	N.

	--relay-log-space-limit=size

This	option	places	an	upper	limit	on	the	total	size	in	bytes	of	all	relay	logs
on	the	slave.	A	value	of	0	means	“no	limit.”	This	is	useful	for	a	slave	server
host	that	has	limited	disk	space.	When	the	limit	is	reached,	the	I/O	thread
stops	reading	binary	log	events	from	the	master	server	until	the	SQL	thread
has	caught	up	and	deleted	some	unused	relay	logs.	Note	that	this	limit	is	not
absolute:	There	are	cases	where	the	SQL	thread	needs	more	events	before	it
can	delete	relay	logs.	In	that	case,	the	I/O	thread	exceeds	the	limit	until	it
becomes	possible	for	the	SQL	thread	to	delete	some	relay	logs,	because	not
doing	so	would	cause	a	deadlock.	You	should	not	set	--relay-log-space-
limit	to	less	than	twice	the	value	of	--max-relay-log-size	(or	--max-
binlog-size	if	--max-relay-log-size	is	0).	In	that	case,	there	is	a	chance
that	the	I/O	thread	waits	for	free	space	because	--relay-log-space-limit
is	exceeded,	but	the	SQL	thread	has	no	relay	log	to	purge	and	is	unable	to
satisfy	the	I/O	thread.	This	forces	the	I/O	thread	to	temporarily	ignore	--
relay-log-space-limit.

	--replicate-do-db=db_name

Tell	the	slave	to	restrict	replication	to	statements	where	the	default	database
(that	is,	the	one	selected	by	USE)	is	db_name.	To	specify	more	than	one
database,	use	this	option	multiple	times,	once	for	each	database.	Note	that
this	does	not	replicate	cross-database	statements	such	as	UPDATE
some_db.some_table	SET	foo='bar'	while	having	selected	a	different
database	or	no	database.

An	example	of	what	does	not	work	as	you	might	expect:	If	the	slave	is
started	with	--replicate-do-db=sales	and	you	issue	the	following
statements	on	the	master,	the	UPDATE	statement	is	not	replicated:

USE	prices;

UPDATE	sales.january	SET	amount=amount+1000;

The	main	reason	for	this	“just	check	the	default	database”	behavior	is	that	it
is	difficult	from	the	statement	alone	to	know	whether	it	should	be	replicated
(for	example,	if	you	are	using	multiple-table	DELETE	statements	or	multiple-
table	UPDATE	statements	that	act	across	multiple	databases).	It	is	also	faster
to	check	only	the	default	database	rather	than	all	databases	if	there	is	no
need.

If	you	need	cross-database	updates	to	work,	use	--replicate-wild-do-
table=db_name.%	instead.	See	Section	6.9,	“How	Servers	Evaluate
Replication	Rules”.

	--replicate-do-table=db_name.tbl_name

Tell	the	slave	thread	to	restrict	replication	to	the	specified	table.	To	specify
more	than	one	table,	use	this	option	multiple	times,	once	for	each	table.
This	works	for	cross-database	updates,	in	contrast	to	--replicate-do-db.
See	Section	6.9,	“How	Servers	Evaluate	Replication	Rules”.

	--replicate-ignore-db=db_name

Tells	the	slave	to	not	replicate	any	statement	where	the	default	database
(that	is,	the	one	selected	by	USE)	is	db_name.	To	specify	more	than	one
database	to	ignore,	use	this	option	multiple	times,	once	for	each	database.
You	should	not	use	this	option	if	you	are	using	cross-database	updates	and
you	do	not	want	these	updates	to	be	replicated.	See	Section	6.9,	“How
Servers	Evaluate	Replication	Rules”.

An	example	of	what	does	not	work	as	you	might	expect:	If	the	slave	is
started	with	--replicate-ignore-db=sales	and	you	issue	the	following
statements	on	the	master,	the	UPDATE	statement	is	not	replicated:

USE	prices;

UPDATE	sales.january	SET	amount=amount+1000;

If	you	need	cross-database	updates	to	work,	use	--replicate-wild-
ignore-table=db_name.%	instead.	See	Section	6.9,	“How	Servers	Evaluate
Replication	Rules”.

	--replicate-ignore-table=db_name.tbl_name

Tells	the	slave	thread	to	not	replicate	any	statement	that	updates	the
specified	table,	even	if	any	other	tables	might	be	updated	by	the	same
statement.	To	specify	more	than	one	table	to	ignore,	use	this	option	multiple
times,	once	for	each	table.	This	works	for	cross-database	updates,	in
contrast	to	--replicate-ignore-db.	See	Section	6.9,	“How	Servers
Evaluate	Replication	Rules”.

	--replicate-rewrite-db=from_name->to_name

Tells	the	slave	to	translate	the	default	database	(that	is,	the	one	selected	by
USE)	to	to_name	if	it	was	from_name	on	the	master.	Only	statements
involving	tables	are	affected	(not	statements	such	as	CREATE	DATABASE,
DROP	DATABASE,	and	ALTER	DATABASE),	and	only	if	from_name	is	the	default
database	on	the	master.	This	does	not	work	for	cross-database	updates.	The
database	name	translation	is	done	before	the	--replicate-*	rules	are
tested.

If	you	use	this	option	on	the	command	line	and	the	‘>’	character	is	special
to	your	command	interpreter,	quote	the	option	value.	For	example:

shell>	mysqld	--replicate-rewrite-db="olddb->newdb"

	--replicate-same-server-id

To	be	used	on	slave	servers.	Usually	you	should	use	the	default	setting	of	0,
to	prevent	infinite	loops	caused	by	circular	replication.	If	set	to	1,	the	slave
does	not	skip	events	having	its	own	server	ID.	Normally,	this	is	useful	only
in	rare	configurations.	Cannot	be	set	to	1	if	--log-slave-updates	is	used.
Note	that	by	default	the	slave	I/O	thread	does	not	even	write	binary	log
events	to	the	relay	log	if	they	have	the	slave's	server	id	(this	optimization
helps	save	disk	usage).	So	if	you	want	to	use	--replicate-same-server-
id,	be	sure	to	start	the	slave	with	this	option	before	you	make	the	slave	read
its	own	events	that	you	want	the	slave	SQL	thread	to	execute.

	--replicate-wild-do-table=db_name.tbl_name

Tells	the	slave	thread	to	restrict	replication	to	statements	where	any	of	the
updated	tables	match	the	specified	database	and	table	name	patterns.
Patterns	can	contain	the	‘%’	and	‘_’	wildcard	characters,	which	have	the
same	meaning	as	for	the	LIKE	pattern-matching	operator.	To	specify	more
than	one	table,	use	this	option	multiple	times,	once	for	each	table.	This
works	for	cross-database	updates.	See	Section	6.9,	“How	Servers	Evaluate
Replication	Rules”.

Example:	--replicate-wild-do-table=foo%.bar%	replicates	only	updates
that	use	a	table	where	the	database	name	starts	with	foo	and	the	table	name
starts	with	bar.

If	the	table	name	pattern	is	%,	it	matches	any	table	name	and	the	option	also
applies	to	database-level	statements	(CREATE	DATABASE,	DROP	DATABASE,
and	ALTER	DATABASE).	For	example,	if	you	use	--replicate-wild-do-
table=foo%.%,	database-level	statements	are	replicated	if	the	database
name	matches	the	pattern	foo%.

To	include	literal	wildcard	characters	in	the	database	or	table	name	patterns,
escape	them	with	a	backslash.	For	example,	to	replicate	all	tables	of	a
database	that	is	named	my_own%db,	but	not	replicate	tables	from	the
my1ownAABCdb	database,	you	should	escape	the	‘_’	and	‘%’	characters	like
this:	--replicate-wild-do-table=my_own\%db.	If	you're	using	the	option
on	the	command	line,	you	might	need	to	double	the	backslashes	or	quote
the	option	value,	depending	on	your	command	interpreter.	For	example,
with	the	bash	shell,	you	would	need	to	type	--replicate-wild-do-
table=my_own\\%db.

	--replicate-wild-ignore-table=db_name.tbl_name

Tells	the	slave	thread	not	to	replicate	a	statement	where	any	table	matches
the	given	wildcard	pattern.	To	specify	more	than	one	table	to	ignore,	use
this	option	multiple	times,	once	for	each	table.	This	works	for	cross-
database	updates.	See	Section	6.9,	“How	Servers	Evaluate	Replication
Rules”.

Example:	--replicate-wild-ignore-table=foo%.bar%	does	not	replicate
updates	that	use	a	table	where	the	database	name	starts	with	foo	and	the

table	name	starts	with	bar.

For	information	about	how	matching	works,	see	the	description	of	the	--
replicate-wild-do-table	option.	The	rules	for	including	literal	wildcard
characters	in	the	option	value	are	the	same	as	for	--replicate-wild-
ignore-table	as	well.

	--report-host=slave_name

The	hostname	or	IP	number	of	the	slave	to	be	reported	to	the	master	during
slave	registration.	This	value	appears	in	the	output	of	SHOW	SLAVE	HOSTS	on
the	master	server.	Leave	the	value	unset	if	you	do	not	want	the	slave	to
register	itself	with	the	master.	Note	that	it	is	not	sufficient	for	the	master	to
simply	read	the	IP	number	of	the	slave	from	the	TCP/IP	socket	after	the
slave	connects.	Due	to	NAT	and	other	routing	issues,	that	IP	may	not	be
valid	for	connecting	to	the	slave	from	the	master	or	other	hosts.

	--report-port=slave_port_num

The	TCP/IP	port	number	for	connecting	to	the	slave,	to	be	reported	to	the
master	during	slave	registration.	Set	this	only	if	the	slave	is	listening	on	a
non-default	port	or	if	you	have	a	special	tunnel	from	the	master	or	other
clients	to	the	slave.	If	you	are	not	sure,	do	not	use	this	option.

	--skip-slave-start

Tells	the	slave	server	not	to	start	the	slave	threads	when	the	server	starts.	To
start	the	threads	later,	use	a	START	SLAVE	statement.

	--slave_compressed_protocol={0|1}

If	this	option	is	set	to	1,	use	compression	for	the	slave/master	protocol	if
both	the	slave	and	the	master	support	it.

	--slave-load-tmpdir=file_name

The	name	of	the	directory	where	the	slave	creates	temporary	files.	This
option	is	by	default	equal	to	the	value	of	the	tmpdir	system	variable.	When
the	slave	SQL	thread	replicates	a	LOAD	DATA	INFILE	statement,	it	extracts
the	file	to	be	loaded	from	the	relay	log	into	temporary	files,	and	then	loads

these	into	the	table.	If	the	file	loaded	on	the	master	is	huge,	the	temporary
files	on	the	slave	are	huge,	too.	Therefore,	it	might	be	advisable	to	use	this
option	to	tell	the	slave	to	put	temporary	files	in	a	directory	located	in	some
filesystem	that	has	a	lot	of	available	space.	In	that	case,	the	relay	logs	are
huge	as	well,	so	you	might	also	want	to	use	the	--relay-log	option	to
place	the	relay	logs	in	that	filesystem.

The	directory	specified	by	this	option	should	be	located	in	a	disk-based
filesystem	(not	a	memory-based	filesystem)	because	the	temporary	files
used	to	replicate	LOAD	DATA	INFILE	must	survive	machine	restarts.	The
directory	also	should	not	be	one	that	is	cleared	by	the	operating	system
during	the	system	startup	process.

	--slave-net-timeout=seconds

The	number	of	seconds	to	wait	for	more	data	from	the	master	before	the
slave	considers	the	connection	broken,	aborts	the	read,	and	tries	to
reconnect.	The	first	retry	occurs	immediately	after	the	timeout.	The	interval
between	retries	is	controlled	by	the	--master-connect-retry	option.

	--slave-skip-errors=[err_code1,err_code2,...|all]

Normally,	replication	stops	when	an	error	occurs	on	the	slave.	This	gives
you	the	opportunity	to	resolve	the	inconsistency	in	the	data	manually.	This
option	tells	the	slave	SQL	thread	to	continue	replication	when	a	statement
returns	any	of	the	errors	listed	in	the	option	value.

Do	not	use	this	option	unless	you	fully	understand	why	you	are	getting
errors.	If	there	are	no	bugs	in	your	replication	setup	and	client	programs,
and	no	bugs	in	MySQL	itself,	an	error	that	stops	replication	should	never
occur.	Indiscriminate	use	of	this	option	results	in	slaves	becoming
hopelessly	out	of	synchrony	with	the	master,	with	you	having	no	idea	why
this	has	occurred.

For	error	codes,	you	should	use	the	numbers	provided	by	the	error	message
in	your	slave	error	log	and	in	the	output	of	SHOW	SLAVE	STATUS.
Appendix	B,	Error	Codes	and	Messages,	lists	server	error	codes.

You	can	also	(but	should	not)	use	the	very	non-recommended	value	of	all
to	cause	the	slave	to	ignore	all	error	messages	and	keeps	going	regardless	of

what	happens.	Needless	to	say,	if	you	use	all,	there	are	no	guarantees
regarding	the	integrity	of	your	data.	Please	do	not	complain	(or	file	bug
reports)	in	this	case	if	the	slave's	data	is	not	anywhere	close	to	what	it	is	on
the	master.	You	have	been	warned.

Examples:

--slave-skip-errors=1062,1053

--slave-skip-errors=all

6.9.	How	Servers	Evaluate	Replication	Rules

If	a	master	server	does	not	write	a	statement	to	its	binary	log,	the	statement	is	not
replicated.	If	the	server	does	log	the	statement,	the	statement	is	sent	to	all	slaves
and	each	slave	determines	whether	to	execute	it	or	ignore	it.

On	the	master	side,	decisions	about	which	statements	to	log	are	based	on	the	--
binlog-do-db	and	--binlog-ignore-db	options	that	control	binary	logging.	For
a	description	of	the	rules	that	servers	use	in	evaluating	these	options,	see
Section	5.12.3,	“The	Binary	Log”.

On	the	slave	side,	decisions	about	whether	to	execute	or	ignore	statements
received	from	the	master	are	made	according	to	the	--replicate-*	options	that
the	slave	was	started	with.	(See	Section	6.8,	“Replication	Startup	Options”.)	The
slave	evaluates	these	options	using	the	following	procedure,	which	first	checks
the	database-level	options	and	then	the	table-level	options.

In	the	simplest	case,	when	there	are	no	--replicate-*	options,	the	procedure
yields	the	result	that	the	slave	executes	all	statements	that	it	receives	from	the
master.	Otherwise,	the	result	depends	on	the	particular	options	given.	In	general,
to	make	it	easier	to	determine	what	effect	an	option	set	will	have,	it	is
recommended	that	you	avoid	mixing	“do”	and	“ignore”	options,	or	wildcard	and
non-wildcard	options.

Stage	1.	Check	the	database	options.

At	this	stage,	the	slave	checks	whether	there	are	any	--replicate-do-db	or	--
replicate-ignore-db	options	that	specify	database-specific	conditions:

No:	Permit	the	statement	and	proceed	to	the	table-checking	stage.

Yes:	Test	the	options	using	the	same	rules	as	for	the	--binlog-do-db	and	--
binlog-ignore-db	options	to	determine	whether	to	permit	or	ignore	the
statement.	What	is	the	result	of	the	test?

Permit:	Do	not	execute	the	statement	immediately.	Defer	the	decision
and	proceed	to	the	table-checking	stage.

Ignore:	Ignore	the	statement	and	exit.

This	stage	can	permit	a	statement	for	further	option-checking,	or	cause	it	to	be
ignored.	However,	statements	that	are	permitted	at	this	stage	are	not	actually
executed	yet.	Instead,	they	pass	to	the	following	stage	that	checks	the	table
options.

Stage	2.	Check	the	table	options.

First,	as	a	preliminary	condition,	the	slave	checks	whether	the	statement	occurs
within	a	stored	function	or	(prior	to	MySQL	5.0.12)	a	stored	procedure.	If	so,
execute	the	statement	and	exit.	(Stored	procedures	are	exempt	from	this	test	as	of
MySQL	5.0.12	because	procedure	logging	occurs	at	the	level	of	statements	that
are	executed	within	the	routine	rather	than	at	the	CALL	level.)

Next,	the	slave	checks	for	table	options	and	evaluates	them.	If	the	server	reaches
this	point,	it	executes	all	statements	if	there	are	no	table	options.	If	there	are	“do”
table	options,	the	statement	must	match	one	of	them	if	it	is	to	be	executed;
otherwise,	it	is	ignored.	If	there	are	any	“ignore”	options,	all	statements	are
executed	except	those	that	match	any	ignore	option.	The	following	steps
describe	how	this	evaluation	occurs	in	more	detail.

1.	 Are	there	any	--replicate-*-table	options?

No:	There	are	no	table	restrictions,	so	all	statements	match.	Execute
the	statement	and	exit.

Yes:	There	are	table	restrictions.	Evaluate	the	tables	to	be	updated
against	them.	There	might	be	multiple	tables	to	update,	so	loop
through	the	following	steps	for	each	table	looking	for	a	matching
option	(first	the	non-wild	options,	and	then	the	wild	options).	Only
tables	that	are	to	be	updated	are	compared	to	the	options.	For	example,
if	the	statement	is	INSERT	INTO	sales	SELECT	*	FROM	prices,	only
sales	is	compared	to	the	options).	If	several	tables	are	to	be	updated
(multiple-table	statement),	the	first	table	that	matches	“do”	or	“ignore”
wins.	That	is,	the	server	checks	the	first	table	against	the	options.	If	no
decision	could	be	made,	it	checks	the	second	table	against	the	options,
and	so	on.

2.	 Are	there	any	--replicate-do-table	options?

No:	Proceed	to	the	next	step.

Yes:	Does	the	table	match	any	of	them?

No:	Proceed	to	the	next	step.

Yes:	Execute	the	statement	and	exit.

3.	 Are	there	any	--replicate-ignore-table	options?

No:	Proceed	to	the	next	step.

Yes:	Does	the	table	match	any	of	them?

No:	Proceed	to	the	next	step.

Yes:	Ignore	the	statement	and	exit.

4.	 Are	there	any	--replicate-wild-do-table	options?

No:	Proceed	to	the	next	step.

Yes:	Does	the	table	match	any	of	them?

No:	Proceed	to	the	next	step.

Yes:	Execute	the	statement	and	exit.

5.	 Are	there	any	--replicate-wild-ignore-table	options?

No:	Proceed	to	the	next	step.

Yes:	Does	the	table	match	any	of	them?

No:	Proceed	to	the	next	step.

Yes:	Ignore	the	statement	and	exit.

6.	 No	--replicate-*-table	option	was	matched.	Is	there	another	table	to	test
against	these	options?

No:	We	have	now	tested	all	tables	to	be	updated	and	could	not	match
any	option.	Are	there	--replicate-do-table	or	--replicate-wild-
do-table	options?

No:	There	were	no	“do”	table	options,	so	no	explicit	“do”	match
is	required.	Execute	the	statement	and	exit.

Yes:	There	were	“do”	table	options,	so	the	statement	is	executed
only	with	an	explicit	match	to	one	of	them.	Ignore	the	statement
and	exit.

Yes:	Loop.

Examples:

No	--replicate-*	options	at	all

The	slave	executes	all	statements	that	it	receives	from	the	master.

--replicate-*-db	options,	but	no	table	options

The	slave	permits	or	ignores	statements	using	the	database	options.	Then	it
executes	all	statements	permitted	by	those	options	because	there	are	no
table	restrictions.

--replicate-*-table	options,	but	no	database	options

All	statements	are	permitted	at	the	database-checking	stage	because	there
are	no	database	conditions.	The	slave	executes	or	ignores	statements	based
on	the	table	options.

A	mix	of	database	and	table	options

The	slave	permits	or	ignores	statements	using	the	database	options.	Then	it
evaluates	all	statements	permitted	by	those	options	according	to	the	table
options.	In	some	cases,	this	process	can	yield	what	might	seem	a
counterintuitive	result.	Consider	the	following	set	of	options:

[mysqld]

replicate-do-db				=	db1

replicate-do-table	=	db2.mytbl2

Suppose	that	db1	is	the	default	database	and	the	slave	receives	this
statement:

INSERT	INTO	mytbl1	VALUES(1,2,3);

The	database	is	db1,	which	matches	the	--replicate-do-db	option	at	the
database-checking	stage.	The	algorithm	then	proceeds	to	the	table-checking
stage.	If	there	were	no	table	options,	the	statement	would	be	executed.
However,	because	the	options	include	a	“do”	table	option,	the	statement
must	match	if	it	is	to	be	executed.	The	statement	does	not	match,	so	it	is
ignored.	(The	same	would	happen	for	any	table	in	db1.)

6.10.	Replication	FAQ

Q:	How	do	I	configure	a	slave	if	the	master	is	running	and	I	do	not	want	to	stop
it?

A:	There	are	several	possibilities.	If	you	have	taken	a	snapshot	backup	of	the
master	at	some	point	and	recorded	the	binary	log	filename	and	offset	(from	the
output	of	SHOW	MASTER	STATUS)	corresponding	to	the	snapshot,	use	the
following	procedure:

1.	 Make	sure	that	the	slave	is	assigned	a	unique	server	ID.

2.	 Execute	the	following	statement	on	the	slave,	filling	in	appropriate	values
for	each	option:

mysql>	CHANGE	MASTER	TO

				->					MASTER_HOST='master_host_name',

				->					MASTER_USER='master_user_name',

				->					MASTER_PASSWORD='master_pass',

				->					MASTER_LOG_FILE='recorded_log_file_name',

				->					MASTER_LOG_POS=recorded_log_position;

3.	 Execute	START	SLAVE	on	the	slave.

If	you	do	not	have	a	backup	of	the	master	server,	here	is	a	quick	procedure	for
creating	one.	All	steps	should	be	performed	on	the	master	host.

1.	 Issue	this	statement	to	acquire	a	global	read	lock:

mysql>	FLUSH	TABLES	WITH	READ	LOCK;

2.	 With	the	lock	still	in	place,	execute	this	command	(or	a	variation	of	it):

shell>	tar	zcf	/tmp/backup.tar.gz	/var/lib/mysql

3.	 Issue	this	statement	and	record	the	output,	which	you	will	need	later:

mysql>	SHOW	MASTER	STATUS;

4.	 Release	the	lock:

mysql>	UNLOCK	TABLES;

An	alternative	to	using	the	preceding	procedure	to	make	a	binary	copy	is	to
make	an	SQL	dump	of	the	master.	To	do	this,	you	can	use	mysqldump	--
master-data	on	your	master	and	later	load	the	SQL	dump	into	your	slave.
However,	this	is	slower	than	making	a	binary	copy.

Regardless	of	which	of	the	two	methods	you	use,	afterward	follow	the
instructions	for	the	case	when	you	have	a	snapshot	and	have	recorded	the	log
filename	and	offset.	You	can	use	the	same	snapshot	to	set	up	several	slaves.
Once	you	have	the	snapshot	of	the	master,	you	can	wait	to	set	up	a	slave	as	long
as	the	binary	logs	of	the	master	are	left	intact.	The	two	practical	limitations	on
the	length	of	time	you	can	wait	are	the	amount	of	disk	space	available	to	retain
binary	logs	on	the	master	and	the	length	of	time	it	takes	the	slave	to	catch	up.

You	can	also	use	LOAD	DATA	FROM	MASTER.	This	is	a	convenient	statement	that
transfers	a	snapshot	to	the	slave	and	adjusts	the	log	filename	and	offset	all	at
once.	Be	warned,	however,	that	it	works	only	for	MyISAM	tables	and	it	may	hold	a
read	lock	for	a	long	time.	It	is	not	yet	implemented	as	efficiently	as	we	would
like.	If	you	have	large	tables,	the	preferred	method	is	still	to	make	a	binary
snapshot	on	the	master	server	after	executing	FLUSH	TABLES	WITH	READ	LOCK.

Q:	Does	the	slave	need	to	be	connected	to	the	master	all	the	time?

A:	No,	it	does	not.	The	slave	can	go	down	or	stay	disconnected	for	hours	or	even
days,	and	then	reconnect	and	catch	up	on	updates.	For	example,	you	can	set	up	a
master/slave	relationship	over	a	dial-up	link	where	the	link	is	up	only
sporadically	and	for	short	periods	of	time.	The	implication	of	this	is	that,	at	any
given	time,	the	slave	is	not	guaranteed	to	be	in	synchrony	with	the	master	unless
you	take	some	special	measures.

Q:	How	do	I	know	how	late	a	slave	is	compared	to	the	master?	In	other	words,
how	do	I	know	the	date	of	the	last	statement	replicated	by	the	slave?

A:	You	can	read	the	Seconds_Behind_Master	column	in	SHOW	SLAVE	STATUS.
See	Section	6.3,	“Replication	Implementation	Details”.

When	the	slave	SQL	thread	executes	an	event	read	from	the	master,	it	modifies
its	own	time	to	the	event	timestamp.	(This	is	why	TIMESTAMP	is	well	replicated.)
In	the	Time	column	in	the	output	of	SHOW	PROCESSLIST,	the	number	of	seconds

displayed	for	the	slave	SQL	thread	is	the	number	of	seconds	between	the
timestamp	of	the	last	replicated	event	and	the	real	time	of	the	slave	machine.
You	can	use	this	to	determine	the	date	of	the	last	replicated	event.	Note	that	if
your	slave	has	been	disconnected	from	the	master	for	one	hour,	and	then
reconnects,	you	may	immediately	see	Time	values	like	3600	for	the	slave	SQL
thread	in	SHOW	PROCESSLIST.	This	is	because	the	slave	is	executing	statements
that	are	one	hour	old.

Q:	How	do	I	force	the	master	to	block	updates	until	the	slave	catches	up?

A:	Use	the	following	procedure:

1.	 On	the	master,	execute	these	statements:

mysql>	FLUSH	TABLES	WITH	READ	LOCK;

mysql>	SHOW	MASTER	STATUS;

Record	the	replication	cooredinates	(the	log	filename	and	offset)	from	the
output	of	the	SHOW	statement.

2.	 On	the	slave,	issue	the	following	statement,	where	the	arguments	to	the
MASTER_POS_WAIT()	function	are	the	replication	coordinate	values	obtained
in	the	previous	step:

mysql>	SELECT	MASTER_POS_WAIT('log_name',	log_offset);

The	SELECT	statement	blocks	until	the	slave	reaches	the	specified	log	file
and	offset.	At	that	point,	the	slave	is	in	synchrony	with	the	master	and	the
statement	returns.

3.	 On	the	master,	issue	the	following	statement	to	allow	the	master	to	begin
processing	updates	again:

mysql>	UNLOCK	TABLES;

Q:	What	issues	should	I	be	aware	of	when	setting	up	two-way	replication?

A:	MySQL	replication	currently	does	not	support	any	locking	protocol	between
master	and	slave	to	guarantee	the	atomicity	of	a	distributed	(cross-server)
update.	In	other	words,	it	is	possible	for	client	A	to	make	an	update	to	co-master
1,	and	in	the	meantime,	before	it	propagates	to	co-master	2,	client	B	could	make

an	update	to	co-master	2	that	makes	the	update	of	client	A	work	differently	than
it	did	on	co-master	1.	Thus,	when	the	update	of	client	A	makes	it	to	co-master	2,
it	produces	tables	that	are	different	from	what	you	have	on	co-master	1,	even
after	all	the	updates	from	co-master	2	have	also	propagated.	This	means	that	you
should	not	chain	two	servers	together	in	a	two-way	replication	relationship
unless	you	are	sure	that	your	updates	can	safely	happen	in	any	order,	or	unless
you	take	care	of	mis-ordered	updates	somehow	in	the	client	code.

You	should	also	realize	that	two-way	replication	actually	does	not	improve
performance	very	much	(if	at	all)	as	far	as	updates	are	concerned.	Each	server
must	do	the	same	number	of	updates,	just	as	you	would	have	a	single	server	do.
The	only	difference	is	that	there	is	a	little	less	lock	contention,	because	the
updates	originating	on	another	server	are	serialized	in	one	slave	thread.	Even	this
benefit	might	be	offset	by	network	delays.

Q:	How	can	I	use	replication	to	improve	performance	of	my	system?

A:	You	should	set	up	one	server	as	the	master	and	direct	all	writes	to	it.	Then
configure	as	many	slaves	as	you	have	the	budget	and	rackspace	for,	and
distribute	the	reads	among	the	master	and	the	slaves.	You	can	also	start	the
slaves	with	the	--skip-innodb,	--skip-bdb,	--low-priority-updates,	and	--
delay-key-write=ALL	options	to	get	speed	improvements	on	the	slave	end.	In
this	case,	the	slave	uses	non-transactional	MyISAM	tables	instead	of	InnoDB	and
BDB	tables	to	get	more	speed	by	eliminating	transactional	overhead.

Q:	What	should	I	do	to	prepare	client	code	in	my	own	applications	to	use
performance-enhancing	replication?

A:	If	the	part	of	your	code	that	is	responsible	for	database	access	has	been
properly	abstracted/modularized,	converting	it	to	run	with	a	replicated	setup
should	be	very	smooth	and	easy.	Change	the	implementation	of	your	database
access	to	send	all	writes	to	the	master,	and	to	send	reads	to	either	the	master	or	a
slave.	If	your	code	does	not	have	this	level	of	abstraction,	setting	up	a	replicated
system	gives	you	the	opportunity	and	motivation	to	it	clean	up.	Start	by	creating
a	wrapper	library	or	module	that	implements	the	following	functions:

safe_writer_connect()

safe_reader_connect()

safe_reader_statement()

safe_writer_statement()

safe_	in	each	function	name	means	that	the	function	takes	care	of	handling	all
error	conditions.	You	can	use	different	names	for	the	functions.	The	important
thing	is	to	have	a	unified	interface	for	connecting	for	reads,	connecting	for
writes,	doing	a	read,	and	doing	a	write.

Then	convert	your	client	code	to	use	the	wrapper	library.	This	may	be	a	painful
and	scary	process	at	first,	but	it	pays	off	in	the	long	run.	All	applications	that	use
the	approach	just	described	are	able	to	take	advantage	of	a	master/slave
configuration,	even	one	involving	multiple	slaves.	The	code	is	much	easier	to
maintain,	and	adding	troubleshooting	options	is	trivial.	You	need	modify	only
one	or	two	functions;	for	example,	to	log	how	long	each	statement	took,	or
which	statement	among	those	issued	gave	you	an	error.

If	you	have	written	a	lot	of	code,	you	may	want	to	automate	the	conversion	task
by	using	the	replace	utility	that	comes	with	standard	MySQL	distributions,	or
write	your	own	conversion	script.	Ideally,	your	code	uses	consistent
programming	style	conventions.	If	not,	then	you	are	probably	better	off	rewriting
it	anyway,	or	at	least	going	through	and	manually	regularizing	it	to	use	a
consistent	style.

Q:	When	and	how	much	can	MySQL	replication	improve	the	performance	of	my
system?

A:	MySQL	replication	is	most	beneficial	for	a	system	that	processes	frequent
reads	and	infrequent	writes.	In	theory,	by	using	a	single-master/multiple-slave
setup,	you	can	scale	the	system	by	adding	more	slaves	until	you	either	run	out	of
network	bandwidth,	or	your	update	load	grows	to	the	point	that	the	master
cannot	handle	it.

To	determine	how	many	slaves	you	can	use	before	the	added	benefits	begin	to
level	out,	and	how	much	you	can	improve	performance	of	your	site,	you	need	to
know	your	query	patterns,	and	to	determine	empirically	by	benchmarking	the
relationship	between	the	throughput	for	reads	(reads	per	second,	or	reads)	and
for	writes	(writes)	on	a	typical	master	and	a	typical	slave.	The	example	here
shows	a	rather	simplified	calculation	of	what	you	can	get	with	replication	for	a
hypothetical	system.

Let's	say	that	system	load	consists	of	10%	writes	and	90%	reads,	and	we	have
determined	by	benchmarking	that	reads	is	1200	–	2	×	writes.	In	other	words,
the	system	can	do	1,200	reads	per	second	with	no	writes,	the	average	write	is
twice	as	slow	as	the	average	read,	and	the	relationship	is	linear.	Let	us	suppose
that	the	master	and	each	slave	have	the	same	capacity,	and	that	we	have	one
master	and	N	slaves.	Then	we	have	for	each	server	(master	or	slave):

reads	=	1200	–	2	×	writes

reads	=	9	×	writes	/	(N	+	1)	(reads	are	split,	but	writes	go	to	all	servers)

9	×	writes	/	(N	+	1)	+	2	×	writes	=	1200

writes	=	1200	/	(2	+	9/(N+1))

The	last	equation	indicates	the	maximum	number	of	writes	for	N	slaves,	given	a
maximum	possible	read	rate	of	1,200	per	minute	and	a	ratio	of	nine	reads	per
write.

This	analysis	yields	the	following	conclusions:

If	N	=	0	(which	means	we	have	no	replication),	our	system	can	handle	about
1200/11	=	109	writes	per	second.

If	N	=	1,	we	get	up	to	184	writes	per	second.

If	N	=	8,	we	get	up	to	400	writes	per	second.

If	N	=	17,	we	get	up	to	480	writes	per	second.

Eventually,	as	N	approaches	infinity	(and	our	budget	negative	infinity),	we
can	get	very	close	to	600	writes	per	second,	increasing	system	throughput
about	5.5	times.	However,	with	only	eight	servers,	we	increase	it	nearly
four	times.

Note	that	these	computations	assume	infinite	network	bandwidth	and	neglect
several	other	factors	that	could	be	significant	on	your	system.	In	many	cases,
you	may	not	be	able	to	perform	a	computation	similar	to	the	one	just	shown	that
accurately	predicts	what	will	happen	on	your	system	if	you	add	N	replication
slaves.	However,	answering	the	following	questions	should	help	you	decide

whether	and	by	how	much	replication	will	improve	the	performance	of	your
system:

What	is	the	read/write	ratio	on	your	system?

How	much	more	write	load	can	one	server	handle	if	you	reduce	the	reads?

For	how	many	slaves	do	you	have	bandwidth	available	on	your	network?

Q:	How	can	I	use	replication	to	provide	redundancy	or	high	availability?

A:	With	the	currently	available	features,	you	would	have	to	set	up	a	master	and	a
slave	(or	several	slaves),	and	to	write	a	script	that	monitors	the	master	to	check
whether	it	is	up.	Then	instruct	your	applications	and	the	slaves	to	change	master
in	case	of	failure.	Some	suggestions:

To	tell	a	slave	to	change	its	master,	use	the	CHANGE	MASTER	TO	statement.

A	good	way	to	keep	your	applications	informed	as	to	the	location	of	the
master	is	by	having	a	dynamic	DNS	entry	for	the	master.	With	bind	you
can	use	nsupdate	to	dynamically	update	your	DNS.

Run	your	slaves	with	the	--log-bin	option	and	without	--log-slave-
updates.	In	this	way,	the	slave	is	ready	to	become	a	master	as	soon	as	you
issue	STOP	SLAVE;	RESET	MASTER,	and	CHANGE	MASTER	TO	statement	on	the
other	slaves.	For	example,	assume	that	you	have	the	following	setup:

							WC

								\

									v

	WC---->	M

							/	|	\

						/		|		\

					v			v			v

				S1			S2		S3

In	this	diagram,	M	means	the	master,	S	the	slaves,	WC	the	clients	issuing
database	writes	and	reads;	clients	that	issue	only	database	reads	are	not
represented,	because	they	need	not	switch.	S1,	S2,	and	S3	are	slaves	running
with	--log-bin	and	without	--log-slave-updates.	Because	updates
received	by	a	slave	from	the	master	are	not	logged	in	the	binary	log	unless	-
-log-slave-updates	is	specified,	the	binary	log	on	each	slave	is	empty

initially.	If	for	some	reason	M	becomes	unavailable,	you	can	pick	one	of	the
slaves	to	become	the	new	master.	For	example,	if	you	pick	S1,	all	WC	should
be	redirected	to	S1,	which	will	log	updates	to	its	binary	log.	S2	and	S3
should	then	replicate	from	S1.

The	reason	for	running	the	slave	without	--log-slave-updates	is	to
prevent	slaves	from	receiving	updates	twice	in	case	you	cause	one	of	the
slaves	to	become	the	new	master.	Suppose	that	S1	has	--log-slave-
updates	enabled.	Then	it	will	write	updates	that	it	receives	from	M	to	its
own	binary	log.	When	S2	changes	from	M	to	S1	as	its	master,	it	may	receive
updates	from	S1	that	it	has	already	received	from	M

Make	sure	that	all	slaves	have	processed	any	statements	in	their	relay	log.
On	each	slave,	issue	STOP	SLAVE	IO_THREAD,	then	check	the	output	of	SHOW
PROCESSLIST	until	you	see	Has	read	all	relay	log.	When	this	is	true	for
all	slaves,	they	can	be	reconfigured	to	the	new	setup.	On	the	slave	S1	being
promoted	to	become	the	master,	issue	STOP	SLAVE	and	RESET	MASTER.

On	the	other	slaves	S2	and	S3,	use	STOP	SLAVE	and	CHANGE	MASTER	TO
MASTER_HOST='S1'	(where	'S1'	represents	the	real	hostname	of	S1).	To
CHANGE	MASTER,	add	all	information	about	how	to	connect	to	S1	from	S2	or
S3	(user,	password,	port).	In	CHANGE	MASTER,	there	is	no	need	to	specify
the	name	of	S1's	binary	log	or	binary	log	position	to	read	from:	We	know	it
is	the	first	binary	log	and	position	4,	which	are	the	defaults	for	CHANGE
MASTER.	Finally,	use	START	SLAVE	on	S2	and	S3.

Then	instruct	all	WC	to	direct	their	statements	to	S1.	From	that	point	on,	all
updates	statements	sent	by	WC	to	S1	are	written	to	the	binary	log	of	S1,
which	then	contains	every	update	statement	sent	to	S1	since	M	died.

The	result	is	this	configuration:

							WC

						/

						|

	WC			|		M(unavailable)

		\			|

			\		|

				v	v

					S1<--S2		S3

						^							|

						+-------+

When	M	is	up	again,	you	must	issue	on	it	the	same	CHANGE	MASTER	as	that
issued	on	S2	and	S3,	so	that	M	becomes	a	slave	of	S1	and	picks	up	all	the	WC
writes	that	it	missed	while	it	was	down.	To	make	M	a	master	again	(because
it	is	the	most	powerful	machine,	for	example),	use	the	preceding	procedure
as	if	S1	was	unavailable	and	M	was	to	be	the	new	master.	During	this
procedure,	do	not	forget	to	run	RESET	MASTER	on	M	before	making	S1,	S2,
and	S3	slaves	of	M.	Otherwise,	they	may	pick	up	old	WC	writes	from	before
the	point	at	which	M	became	unavailable.

Note	that	there	is	no	synchronization	between	the	different	slaves	to	a
master.	Some	slaves	might	be	ahead	of	others.	This	means	that	the	concept
outlined	in	the	previous	example	might	not	work.	In	practice,	however,	the
relay	logs	of	different	slaves	will	most	likely	not	be	far	behind	the	master,
so	it	would	work,	anyway	(but	there	is	no	guarantee).

Q:	How	do	I	prevent	GRANT	and	REVOKE	statements	from	replicating	to
slave	machines?

A:	Start	the	server	with	the	--replicate-wild-ignore-table=mysql.%	option.

Q:	Does	replication	work	on	mixed	operating	systems	(for	example,	the	master
runs	on	Linux	while	slaves	run	on	Mac	OS	X	and	Windows)?

A:	Yes.

Q:	Does	replication	work	on	mixed	hardware	architectures	(for	example,	the
master	runs	on	a	64-bit	machine	while	slaves	run	on	32-bit	machines)?

A:	Yes.

6.11.	Troubleshooting	Replication

If	you	have	followed	the	instructions,	and	your	replication	setup	is	not	working,
the	first	thing	to	do	is	check	the	error	log	for	messages.	Many	users	have	lost
time	by	not	doing	this	soon	enough	after	encountering	problems.

If	you	cannot	tell	from	the	error	log	what	the	problem	was,	try	the	following
techniques:

Verify	that	the	master	has	binary	logging	enabled	by	issuing	a	SHOW	MASTER
STATUS	statement.	If	logging	is	enabled,	Position	is	non-zero.	If	binary
logging	is	not	enabled,	verify	that	you	are	running	the	master	with	the	--
log-bin	and	--server-id	options.

Verify	that	the	slave	is	running.	Use	SHOW	SLAVE	STATUS	to	check	whether
the	Slave_IO_Running	and	Slave_SQL_Running	values	are	both	Yes.	If	not,
verify	the	options	that	were	used	when	starting	the	slave	server.	For
example,	--skip-slave-start	prevents	the	slave	threads	from	starting
until	you	issue	a	START	SLAVE	statement.

If	the	slave	is	running,	check	whether	it	established	a	connection	to	the
master.	Use	SHOW	PROCESSLIST,	find	the	I/O	and	SQL	threads	and	check
their	State	column	to	see	what	they	display.	See	Section	6.3,	“Replication
Implementation	Details”.	If	the	I/O	thread	state	says	Connecting	to
master,	verify	the	privileges	for	the	replication	user	on	the	master,	the
master	hostname,	your	DNS	setup,	whether	the	master	is	actually	running,
and	whether	it	is	reachable	from	the	slave.

If	the	slave	was	running	previously	but	has	stopped,	the	reason	usually	is
that	some	statement	that	succeeded	on	the	master	failed	on	the	slave.	This
should	never	happen	if	you	have	taken	a	proper	snapshot	of	the	master,	and
never	modified	the	data	on	the	slave	outside	of	the	slave	thread.	If	the	slave
stops	unexpectedly,	it	is	a	bug	or	you	have	encountered	one	of	the	known
replication	limitations	described	in	Section	6.7,	“Replication	Features	and
Known	Problems”.	If	it	is	a	bug,	see	Section	6.12,	“How	to	Report
Replication	Bugs	or	Problems”,	for	instructions	on	how	to	report	it.

If	a	statement	that	succeeded	on	the	master	refuses	to	run	on	the	slave,	try

the	following	procedure	if	it	is	not	feasible	to	do	a	full	database
resynchronization	by	deleting	the	slave's	databases	and	copying	a	new
snapshot	from	the	master:

1.	 Determine	whether	the	affected	table	on	the	slave	is	different	from	the
master	table.	Try	to	understand	how	this	happened.	Then	make	the
slave's	table	identical	to	the	master's	and	run	START	SLAVE.

2.	 If	the	preceding	step	does	not	work	or	does	not	apply,	try	to	understand
whether	it	would	be	safe	to	make	the	update	manually	(if	needed)	and
then	ignore	the	next	statement	from	the	master.

3.	 If	you	decide	that	you	can	skip	the	next	statement	from	the	master,
issue	the	following	statements:

mysql>	SET	GLOBAL	SQL_SLAVE_SKIP_COUNTER	=	N;

mysql>	START	SLAVE;

The	value	of	N	should	be	1	if	the	next	statement	from	the	master	does
not	use	AUTO_INCREMENT	or	LAST_INSERT_ID().	Otherwise,	the	value
should	be	2.	The	reason	for	using	a	value	of	2	for	statements	that	use
AUTO_INCREMENT	or	LAST_INSERT_ID()	is	that	they	take	two	events	in
the	binary	log	of	the	master.

4.	 If	you	are	sure	that	the	slave	started	out	perfectly	synchronized	with
the	master,	and	that	no	one	has	updated	the	tables	involved	outside	of
the	slave	thread,	then	presumably	the	discrepancy	is	the	result	of	a
bug.	If	you	are	running	the	most	recent	version	of	MySQL,	please
report	the	problem.	If	you	are	running	an	older	version,	try	upgrading
to	the	latest	production	release	to	determine	whether	the	problem
persists.

6.12.	How	to	Report	Replication	Bugs	or	Problems

When	you	have	determined	that	there	is	no	user	error	involved,	and	replication
still	either	does	not	work	at	all	or	is	unstable,	it	is	time	to	send	us	a	bug	report.
We	need	to	obtain	as	much	information	as	possible	from	you	to	be	able	to	track
down	the	bug.	Please	spend	some	time	and	effort	in	preparing	a	good	bug	report.

If	you	have	a	repeatable	test	case	that	demonstrates	the	bug,	please	enter	it	into
our	bugs	database	using	the	instructions	given	in	Section	1.8,	“How	to	Report
Bugs	or	Problems”.	If	you	have	a	“phantom”	problem	(one	that	you	cannot
duplicate	at	will),	use	the	following	procedure:

1.	 Verify	that	no	user	error	is	involved.	For	example,	if	you	update	the	slave
outside	of	the	slave	thread,	the	data	goes	out	of	synchrony,	and	you	can
have	unique	key	violations	on	updates.	In	this	case,	the	slave	thread	stops
and	waits	for	you	to	clean	up	the	tables	manually	to	bring	them	into
synchrony.	This	is	not	a	replication	problem.	It	is	a	problem	of	outside
interference	causing	replication	to	fail.

2.	 Run	the	slave	with	the	--log-slave-updates	and	--log-bin	options.
These	options	cause	the	slave	to	log	the	updates	that	it	receives	from	the
master	into	its	own	binary	logs.

3.	 Save	all	evidence	before	resetting	the	replication	state.	If	we	have	no
information	or	only	sketchy	information,	it	becomes	difficult	or	impossible
for	us	to	track	down	the	problem.	The	evidence	you	should	collect	is:

All	binary	logs	from	the	master

All	binary	logs	from	the	slave

The	output	of	SHOW	MASTER	STATUS	from	the	master	at	the	time	you
discovered	the	problem

The	output	of	SHOW	SLAVE	STATUS	from	the	slave	at	the	time	you
discovered	the	problem

Error	logs	from	the	master	and	the	slave

4.	 Use	mysqlbinlog	to	examine	the	binary	logs.	The	following	should	be
helpful	to	find	the	problem	statement.	log_pos	and	log_file	are	the
Master_Log_File	and	Read_Master_Log_Pos	values	from	SHOW	SLAVE
STATUS.

shell>	mysqlbinlog	-j	log_pos	log_file	|	head

After	you	have	collected	the	evidence	for	the	problem,	try	to	isolate	it	as	a
separate	test	case	first.	Then	enter	the	problem	with	as	much	information	as
possible	into	our	bugs	database	using	the	instructions	at	Section	1.8,	“How	to
Report	Bugs	or	Problems”.

6.13.	Auto-Increment	in	Multiple-Master	Replication

When	multiple	servers	are	configured	as	replication	masters,	special	steps	must
be	taken	to	prevent	key	collisions	when	using	AUTO_INCREMENT	columns,
otherwise	multiple	masters	may	attempt	to	use	the	same	AUTO_INCREMENT	value
when	inserting	rows.

The	auto_increment_increment	and	auto_increment_offset	system	variables
help	to	accommodate	multiple-master	replication	with	AUTO_INCREMENT
columns.	Each	of	these	variables	has	a	default	and	minimum	value	of	1,	and	a
maximum	value	of	65,535.	They	were	introduced	in	MySQL	5.0.2.

These	two	variables	effect	AUTO_INCREMENT	column	behavior	as	follows:

auto_increment_increment	controls	the	increment	between	successive
AUTO_INCREMENT	values.

auto_increment_offset	determines	the	starting	point	for	AUTO_INCREMENT
column	values.

By	choosing	non-conflicting	values	for	these	variables	on	different	masters,
servers	in	a	multiple-master	configuration	will	not	use	conflicting
AUTO_INCREMENT	values	when	inserting	new	rows	into	the	same	table.	To	set	up	N
master	servers,	set	the	variables	like	this:

Set	auto_increment_increment	to	N	on	each	master.

Set	each	of	the	N	masters	to	have	a	different	auto_increment_offset,	using
the	values	1,	2,	…,	N.

For	additional	information	about	auto_increment_increment	and
auto_increment_offset,	see	Section	5.2.2,	“Server	System	Variables”.

Chapter	7.	Optimization

Table	of	Contents

7.1.	Optimization	Overview
7.1.1.	MySQL	Design	Limitations	and	Tradeoffs
7.1.2.	Designing	Applications	for	Portability
7.1.3.	What	We	Have	Used	MySQL	For
7.1.4.	The	MySQL	Benchmark	Suite
7.1.5.	Using	Your	Own	Benchmarks

7.2.	Optimizing	SELECT	and	Other	Statements
7.2.1.	Optimizing	Queries	with	EXPLAIN
7.2.2.	Estimating	Query	Performance
7.2.3.	Speed	of	SELECT	Queries
7.2.4.	WHERE	Clause	Optimization
7.2.5.	Range	Optimization
7.2.6.	Index	Merge	Optimization
7.2.7.	IS	NULL	Optimization
7.2.8.	DISTINCT	Optimization
7.2.9.	LEFT	JOIN	and	RIGHT	JOIN	Optimization
7.2.10.	Nested	Join	Optimization
7.2.11.	Outer	Join	Simplification
7.2.12.	ORDER	BY	Optimization
7.2.13.	GROUP	BY	Optimization
7.2.14.	LIMIT	Optimization
7.2.15.	How	to	Avoid	Table	Scans
7.2.16.	Speed	of	INSERT	Statements
7.2.17.	Speed	of	UPDATE	Statements
7.2.18.	Speed	of	DELETE	Statements
7.2.19.	Other	Optimization	Tips

7.3.	Locking	Issues
7.3.1.	Locking	Methods
7.3.2.	Table	Locking	Issues
7.3.3.	Concurrent	Inserts

7.4.	Optimizing	Database	Structure
7.4.1.	Design	Choices
7.4.2.	Make	Your	Data	as	Small	as	Possible

7.4.3.	Column	Indexes
7.4.4.	Multiple-Column	Indexes
7.4.5.	How	MySQL	Uses	Indexes
7.4.6.	The	MyISAM	Key	Cache
7.4.7.	MyISAM	Index	Statistics	Collection
7.4.8.	How	MySQL	Opens	and	Closes	Tables
7.4.9.	Drawbacks	to	Creating	Many	Tables	in	the	Same	Database

7.5.	Optimizing	the	MySQL	Server
7.5.1.	System	Factors	and	Startup	Parameter	Tuning
7.5.2.	Tuning	Server	Parameters
7.5.3.	Controlling	Query	Optimizer	Performance
7.5.4.	How	Compiling	and	Linking	Affects	the	Speed	of	MySQL
7.5.5.	How	MySQL	Uses	Memory
7.5.6.	How	MySQL	Uses	DNS

7.6.	Disk	Issues
7.6.1.	Using	Symbolic	Links

Optimization	is	a	complex	task	because	ultimately	it	requires	understanding	of
the	entire	system	to	be	optimized.	Although	it	may	be	possible	to	perform	some
local	optimizations	with	little	knowledge	of	your	system	or	application,	the	more
optimal	you	want	your	system	to	become,	the	more	you	must	know	about	it.

This	chapter	tries	to	explain	and	give	some	examples	of	different	ways	to
optimize	MySQL.	Remember,	however,	that	there	are	always	additional	ways	to
make	the	system	even	faster,	although	they	may	require	increasing	effort	to
achieve.

7.1.	Optimization	Overview

The	most	important	factor	in	making	a	system	fast	is	its	basic	design.	You	must
also	know	what	kinds	of	processing	your	system	is	doing,	and	what	its
bottlenecks	are.	In	most	cases,	system	bottlenecks	arise	from	these	sources:

Disk	seeks.	It	takes	time	for	the	disk	to	find	a	piece	of	data.	With	modern
disks,	the	mean	time	for	this	is	usually	lower	than	10ms,	so	we	can	in
theory	do	about	100	seeks	a	second.	This	time	improves	slowly	with	new
disks	and	is	very	hard	to	optimize	for	a	single	table.	The	way	to	optimize
seek	time	is	to	distribute	the	data	onto	more	than	one	disk.

Disk	reading	and	writing.	When	the	disk	is	at	the	correct	position,	we	need
to	read	the	data.	With	modern	disks,	one	disk	delivers	at	least	10–20MB/s
throughput.	This	is	easier	to	optimize	than	seeks	because	you	can	read	in
parallel	from	multiple	disks.

CPU	cycles.	When	we	have	the	data	in	main	memory,	we	need	to	process	it
to	get	our	result.	Having	small	tables	compared	to	the	amount	of	memory	is
the	most	common	limiting	factor.	But	with	small	tables,	speed	is	usually	not
the	problem.

Memory	bandwidth.	When	the	CPU	needs	more	data	than	can	fit	in	the
CPU	cache,	main	memory	bandwidth	becomes	a	bottleneck.	This	is	an
uncommon	bottleneck	for	most	systems,	but	one	to	be	aware	of.

7.1.1.	MySQL	Design	Limitations	and	Tradeoffs

When	using	the	MyISAM	storage	engine,	MySQL	uses	extremely	fast	table
locking	that	allows	multiple	readers	or	a	single	writer.	The	biggest	problem	with
this	storage	engine	occurs	when	you	have	a	steady	stream	of	mixed	updates	and
slow	selects	on	a	single	table.	If	this	is	a	problem	for	certain	tables,	you	can	use
another	storage	engine	for	them.	See	Chapter	14,	Storage	Engines	and	Table
Types.

MySQL	can	work	with	both	transactional	and	non-transactional	tables.	To	make
it	easier	to	work	smoothly	with	non-transactional	tables	(which	cannot	roll	back
if	something	goes	wrong),	MySQL	has	the	following	rules.	Note	that	these	rules

apply	only	when	not	running	in	strict	SQL	mode	or	if	you	use	the	IGNORE
specifier	for	INSERT	or	UPDATE.

All	columns	have	default	values.

If	you	insert	an	inappropriate	or	out-of-range	value	into	a	column,	MySQL
sets	the	column	to	the	“best	possible	value”	instead	of	reporting	an	error.
For	numerical	values,	this	is	0,	the	smallest	possible	value	or	the	largest
possible	value.	For	strings,	this	is	either	the	empty	string	or	as	much	of	the
string	as	can	be	stored	in	the	column.

All	calculated	expressions	return	a	value	that	can	be	used	instead	of
signaling	an	error	condition.	For	example,	1/0	returns	NULL.

To	change	the	preceding	behaviors,	you	can	enable	stricter	data	handling	by
setting	the	server	SQL	mode	appropriately.	For	more	information	about	data
handling,	see	Section	1.9.6,	“How	MySQL	Deals	with	Constraints”,
Section	5.2.5,	“The	Server	SQL	Mode”,	and	Section	13.2.4,	“INSERT	Syntax”.

7.1.2.	Designing	Applications	for	Portability

Because	all	SQL	servers	implement	different	parts	of	standard	SQL,	it	takes
work	to	write	portable	database	applications.	It	is	very	easy	to	achieve
portability	for	very	simple	selects	and	inserts,	but	becomes	more	difficult	the
more	capabilities	you	require.	If	you	want	an	application	that	is	fast	with	many
database	systems,	it	becomes	even	more	difficult.

All	database	systems	have	some	weak	points.	That	is,	they	have	different	design
compromises	that	lead	to	different	behavior.

To	make	a	complex	application	portable,	you	need	to	determine	which	SQL
servers	it	must	work	with,	and	then	determine	what	features	those	servers
support.	You	can	use	the	MySQL	crash-me	program	to	find	functions,	types,
and	limits	that	you	can	use	with	a	selection	of	database	servers.	crash-me	does
not	check	for	every	possible	feature,	but	it	is	still	reasonably	comprehensive,
performing	about	450	tests.	An	example	of	the	type	of	information	crash-me
can	provide	is	that	you	should	not	use	column	names	that	are	longer	than	18
characters	if	you	want	to	be	able	to	use	Informix	or	DB2.

The	crash-me	program	and	the	MySQL	benchmarks	are	all	very	database
independent.	By	taking	a	look	at	how	they	are	written,	you	can	get	a	feeling	for
what	you	must	do	to	make	your	own	applications	database	independent.	The
programs	can	be	found	in	the	sql-bench	directory	of	MySQL	source
distributions.	They	are	written	in	Perl	and	use	the	DBI	database	interface.	Use	of
DBI	in	itself	solves	part	of	the	portability	problem	because	it	provides	database-
independent	access	methods.	See	Section	7.1.4,	“The	MySQL	Benchmark
Suite”.

If	you	strive	for	database	independence,	you	need	to	get	a	good	feeling	for	each
SQL	server's	bottlenecks.	For	example,	MySQL	is	very	fast	in	retrieving	and
updating	rows	for	MyISAM	tables,	but	has	a	problem	in	mixing	slow	readers	and
writers	on	the	same	table.	Oracle,	on	the	other	hand,	has	a	big	problem	when	you
try	to	access	rows	that	you	have	recently	updated	(until	they	are	flushed	to	disk).
Transactional	database	systems	in	general	are	not	very	good	at	generating
summary	tables	from	log	tables,	because	in	this	case	row	locking	is	almost
useless.

To	make	your	application	really	database	independent,	you	should	define	an
easily	extendable	interface	through	which	you	manipulate	your	data.	For
example,	C++	is	available	on	most	systems,	so	it	makes	sense	to	use	a	C++
class-based	interface	to	the	databases.

If	you	use	some	feature	that	is	specific	to	a	given	database	system	(such	as	the
REPLACE	statement,	which	is	specific	to	MySQL),	you	should	implement	the
same	feature	for	other	SQL	servers	by	coding	an	alternative	method.	Although
the	alternative	might	be	slower,	it	enables	the	other	servers	to	perform	the	same
tasks.

With	MySQL,	you	can	use	the	/*!	*/	syntax	to	add	MySQL-specific	keywords
to	a	statement.	The	code	inside	/*	*/	is	treated	as	a	comment	(and	ignored)	by
most	other	SQL	servers.	For	information	about	writing	comments,	see
Section	9.4,	“Comment	Syntax”.

If	high	performance	is	more	important	than	exactness,	as	for	some	Web
applications,	it	is	possible	to	create	an	application	layer	that	caches	all	results	to
give	you	even	higher	performance.	By	letting	old	results	expire	after	a	while,
you	can	keep	the	cache	reasonably	fresh.	This	provides	a	method	to	handle	high
load	spikes,	in	which	case	you	can	dynamically	increase	the	cache	size	and	set

the	expiration	timeout	higher	until	things	get	back	to	normal.

In	this	case,	the	table	creation	information	should	contain	information	about	the
initial	cache	size	and	how	often	the	table	should	normally	be	refreshed.

An	attractive	alternative	to	implementing	an	application	cache	is	to	use	the
MySQL	query	cache.	By	enabling	the	query	cache,	the	server	handles	the	details
of	determining	whether	a	query	result	can	be	reused.	This	simplifies	your
application.	See	Section	5.14,	“The	MySQL	Query	Cache”.

7.1.3.	What	We	Have	Used	MySQL	For

This	section	describes	an	early	application	for	MySQL.

During	MySQL	initial	development,	the	features	of	MySQL	were	made	to	fit	our
largest	customer,	which	handled	data	warehousing	for	a	couple	of	the	largest
retailers	in	Sweden.

From	all	stores,	we	got	weekly	summaries	of	all	bonus	card	transactions,	and
were	expected	to	provide	useful	information	for	the	store	owners	to	help	them
find	how	their	advertising	campaigns	were	affecting	their	own	customers.

The	volume	of	data	was	quite	huge	(about	seven	million	summary	transactions
per	month),	and	we	had	data	for	4–10	years	that	we	needed	to	present	to	the
users.	We	got	weekly	requests	from	our	customers,	who	wanted	instant	access	to
new	reports	from	this	data.

We	solved	this	problem	by	storing	all	information	per	month	in	compressed
“transaction	tables.”	We	had	a	set	of	simple	macros	that	generated	summary
tables	grouped	by	different	criteria	(product	group,	customer	id,	store,	and	so	on)
from	the	tables	in	which	the	transactions	were	stored.	The	reports	were	Web
pages	that	were	dynamically	generated	by	a	small	Perl	script.	This	script	parsed
a	Web	page,	executed	the	SQL	statements	in	it,	and	inserted	the	results.	We
would	have	used	PHP	or	mod_perl	instead,	but	they	were	not	available	at	the
time.

For	graphical	data,	we	wrote	a	simple	tool	in	C	that	could	process	SQL	query
results	and	produce	GIF	images	based	on	those	results.	This	tool	also	was
dynamically	executed	from	the	Perl	script	that	parses	the	Web	pages.

In	most	cases,	a	new	report	could	be	created	simply	by	copying	an	existing	script
and	modifying	the	SQL	query	that	it	used.	In	some	cases,	we	needed	to	add	more
columns	to	an	existing	summary	table	or	generate	a	new	one.	This	also	was	quite
simple	because	we	kept	all	transaction-storage	tables	on	disk.	(This	amounted	to
about	50GB	of	transaction	tables	and	200GB	of	other	customer	data.)

We	also	let	our	customers	access	the	summary	tables	directly	with	ODBC	so	that
the	advanced	users	could	experiment	with	the	data	themselves.

This	system	worked	well	and	we	had	no	problems	handling	the	data	with	quite
modest	Sun	Ultra	SPARCstation	hardware	(2×200MHz).	Eventually	the	system
was	migrated	to	Linux.

7.1.4.	The	MySQL	Benchmark	Suite

This	benchmark	suite	is	meant	to	tell	any	user	what	operations	a	given	SQL
implementation	performs	well	or	poorly.	You	can	get	a	good	idea	for	how	the
benchmarks	work	by	looking	at	the	code	and	results	in	the	sql-bench	directory
in	any	MySQL	source	distribution.

Note	that	this	benchmark	is	single-threaded,	so	it	measures	the	minimum	time
for	the	operations	performed.	We	plan	to	add	multi-threaded	tests	to	the
benchmark	suite	in	the	future.

To	use	the	benchmark	suite,	the	following	requirements	must	be	satisfied:

The	benchmark	suite	is	provided	with	MySQL	source	distributions.	You	can
either	download	a	released	distribution	from
http://dev.mysql.com/downloads/,	or	use	the	current	development	source
tree.	(See	Section	2.9.3,	“Installing	from	the	Development	Source	Tree”.)

The	benchmark	scripts	are	written	in	Perl	and	use	the	Perl	DBI	module	to
access	database	servers,	so	DBI	must	be	installed.	You	also	need	the	server-
specific	DBD	drivers	for	each	of	the	servers	you	want	to	test.	For	example,
to	test	MySQL,	PostgreSQL,	and	DB2,	you	must	have	the	DBD::mysql,
DBD::Pg,	and	DBD::DB2	modules	installed.	See	Section	2.14,	“Perl
Installation	Notes”.

After	you	obtain	a	MySQL	source	distribution,	you	can	find	the	benchmark	suite

http://dev.mysql.com/downloads/

located	in	its	sql-bench	directory.	To	run	the	benchmark	tests,	build	MySQL,
and	then	change	location	into	the	sql-bench	directory	and	execute	the	run-all-
tests	script:

shell>	cd	sql-bench

shell>	perl	run-all-tests	--server=server_name

server_name	should	be	the	name	of	one	of	the	supported	servers.	To	get	a	list	of
all	options	and	supported	servers,	invoke	this	command:

shell>	perl	run-all-tests	--help

The	crash-me	script	also	is	located	in	the	sql-bench	directory.	crash-me	tries	to
determine	what	features	a	database	system	supports	and	what	its	capabilities	and
limitations	are	by	actually	running	queries.	For	example,	it	determines:

What	data	types	are	supported

How	many	indexes	are	supported

What	functions	are	supported

How	big	a	query	can	be

How	big	a	VARCHAR	column	can	be

You	can	find	the	results	from	crash-me	for	many	different	database	servers	at
http://dev.mysql.com/tech-resources/crash-me.php.	For	more	information	about
benchmark	results,	visit	http://dev.mysql.com/tech-resources/benchmarks/.

7.1.5.	Using	Your	Own	Benchmarks

You	should	definitely	benchmark	your	application	and	database	to	find	out
where	the	bottlenecks	are.	After	fixing	one	bottleneck	(or	by	replacing	it	with	a
“dummy”	module),	you	can	proceed	to	identify	the	next	bottleneck.	Even	if	the
overall	performance	for	your	application	currently	is	acceptable,	you	should	at
least	make	a	plan	for	each	bottleneck	and	decide	how	to	solve	it	if	someday	you
really	need	the	extra	performance.

For	examples	of	portable	benchmark	programs,	look	at	those	in	the	MySQL
benchmark	suite.	See	Section	7.1.4,	“The	MySQL	Benchmark	Suite”.	You	can

http://dev.mysql.com/tech-resources/crash-me.php
http://dev.mysql.com/tech-resources/benchmarks/

take	any	program	from	this	suite	and	modify	it	for	your	own	needs.	By	doing
this,	you	can	try	different	solutions	to	your	problem	and	test	which	really	is
fastest	for	you.

Another	free	benchmark	suite	is	the	Open	Source	Database	Benchmark,
available	at	http://osdb.sourceforge.net/.

It	is	very	common	for	a	problem	to	occur	only	when	the	system	is	very	heavily
loaded.	We	have	had	many	customers	who	contact	us	when	they	have	a	(tested)
system	in	production	and	have	encountered	load	problems.	In	most	cases,
performance	problems	turn	out	to	be	due	to	issues	of	basic	database	design	(for
example,	table	scans	are	not	good	under	high	load)	or	problems	with	the
operating	system	or	libraries.	Most	of	the	time,	these	problems	would	be	much
easier	to	fix	if	the	systems	were	not	already	in	production.

To	avoid	problems	like	this,	you	should	put	some	effort	into	benchmarking	your
whole	application	under	the	worst	possible	load.	You	can	use	Super	Smack,
available	at	http://jeremy.zawodny.com/mysql/super-smack/.	As	suggested	by	its
name,	it	can	bring	a	system	to	its	knees,	so	make	sure	to	use	it	only	on	your
development	systems.

http://osdb.sourceforge.net/
http://jeremy.zawodny.com/mysql/super-smack/

7.2.	Optimizing	SELECT	and	Other	Statements

First,	one	factor	affects	all	statements:	The	more	complex	your	permissions
setup,	the	more	overhead	you	have.	Using	simpler	permissions	when	you	issue
GRANT	statements	enables	MySQL	to	reduce	permission-checking	overhead	when
clients	execute	statements.	For	example,	if	you	do	not	grant	any	table-level	or
column-level	privileges,	the	server	need	not	ever	check	the	contents	of	the
tables_priv	and	columns_priv	tables.	Similarly,	if	you	place	no	resource	limits
on	any	accounts,	the	server	does	not	have	to	perform	resource	counting.	If	you
have	a	very	high	statement-processing	load,	it	may	be	worth	the	time	to	use	a
simplified	grant	structure	to	reduce	permission-checking	overhead.

If	your	problem	is	with	a	specific	MySQL	expression	or	function,	you	can
perform	a	timing	test	by	invoking	the	BENCHMARK()	function	using	the	mysql
client	program.	Its	syntax	is	BENCHMARK(loop_count,expression).	The	return
value	is	always	zero,	but	mysql	prints	a	line	displaying	approximately	how	long
the	statement	took	to	execute.	For	example:

mysql>	SELECT	BENCHMARK(1000000,1+1);

+------------------------+

|	BENCHMARK(1000000,1+1)	|

+------------------------+

|																						0	|

+------------------------+

1	row	in	set	(0.32	sec)

This	result	was	obtained	on	a	Pentium	II	400MHz	system.	It	shows	that	MySQL
can	execute	1,000,000	simple	addition	expressions	in	0.32	seconds	on	that
system.

All	MySQL	functions	should	be	highly	optimized,	but	there	may	be	some
exceptions.	BENCHMARK()	is	an	excellent	tool	for	finding	out	if	some	function	is	a
problem	for	your	queries.

7.2.1.	Optimizing	Queries	with	EXPLAIN

EXPLAIN	tbl_name

Or:

EXPLAIN	[EXTENDED]	SELECT	select_options

The	EXPLAIN	statement	can	be	used	either	as	a	synonym	for	DESCRIBE	or	as	a
way	to	obtain	information	about	how	MySQL	executes	a	SELECT	statement:

EXPLAIN	tbl_name	is	synonymous	with	DESCRIBE	tbl_name	or	SHOW
COLUMNS	FROM	tbl_name.

When	you	precede	a	SELECT	statement	with	the	keyword	EXPLAIN,	MySQL
displays	information	from	the	optimizer	about	the	query	execution	plan.
That	is,	MySQL	explains	how	it	would	process	the	SELECT,	including
information	about	how	tables	are	joined	and	in	which	order.

This	section	describes	the	second	use	of	EXPLAIN	for	obtaining	query	execution
plan	information.	For	a	description	of	the	DESCRIBE	and	SHOW	COLUMNS
statements,	see	Section	13.3.1,	“DESCRIBE	Syntax”,	and	Section	13.5.4.3,	“SHOW
COLUMNS	Syntax”.

With	the	help	of	EXPLAIN,	you	can	see	where	you	should	add	indexes	to	tables	to
get	a	faster	SELECT	that	uses	indexes	to	find	rows.	You	can	also	use	EXPLAIN	to
check	whether	the	optimizer	joins	the	tables	in	an	optimal	order.	To	force	the
optimizer	to	use	a	join	order	corresponding	to	the	order	in	which	the	tables	are
named	in	the	SELECT	statement,	begin	the	statement	with	SELECT
STRAIGHT_JOIN	rather	than	just	SELECT.

If	you	have	a	problem	with	indexes	not	being	used	when	you	believe	that	they
should	be,	you	should	run	ANALYZE	TABLE	to	update	table	statistics	such	as
cardinality	of	keys,	that	can	affect	the	choices	the	optimizer	makes.	See
Section	13.5.2.1,	“ANALYZE	TABLE	Syntax”.

EXPLAIN	returns	a	row	of	information	for	each	table	used	in	the	SELECT
statement.	The	tables	are	listed	in	the	output	in	the	order	that	MySQL	would	read
them	while	processing	the	query.	MySQL	resolves	all	joins	using	a	single-sweep
multi-join	method.	This	means	that	MySQL	reads	a	row	from	the	first	table,	and
then	finds	a	matching	row	in	the	second	table,	the	third	table,	and	so	on.	When
all	tables	are	processed,	MySQL	outputs	the	selected	columns	and	backtracks
through	the	table	list	until	a	table	is	found	for	which	there	are	more	matching
rows.	The	next	row	is	read	from	this	table	and	the	process	continues	with	the
next	table.

When	the	EXTENDED	keyword	is	used,	EXPLAIN	produces	extra	information	that
can	be	viewed	by	issuing	a	SHOW	WARNINGS	statement	following	the	EXPLAIN
statement.	This	information	displays	how	the	optimizer	qualifies	table	and
column	names	in	the	SELECT	statement,	what	the	SELECT	looks	like	after	the
application	of	rewriting	and	optimization	rules,	and	possibly	other	notes	about
the	optimization	process.

Each	output	row	from	EXPLAIN	provides	information	about	one	table,	and	each
row	contains	the	following	columns:

id

The	SELECT	identifier.	This	is	the	sequential	number	of	the	SELECT	within
the	query.

select_type

The	type	of	SELECT,	which	can	be	any	of	those	shown	in	the	following
table:

SIMPLE Simple	SELECT	(not	using	UNION	or	subqueries)
PRIMARY Outermost	SELECT
UNION Second	or	later	SELECT	statement	in	a	UNION
DEPENDENT

UNION

Second	or	later	SELECT	statement	in	a	UNION,	dependent
on	outer	query

UNION	RESULT Result	of	a	UNION.
SUBQUERY First	SELECT	in	subquery
DEPENDENT

SUBQUERY
First	SELECT	in	subquery,	dependent	on	outer	query

DERIVED Derived	table	SELECT	(subquery	in	FROM	clause)

DEPENDENT	typically	signifies	the	use	of	a	correlated	subquery.	See
Section	13.2.8.7,	“Correlated	Subqueries”.

table

The	table	to	which	the	row	of	output	refers.

type

The	join	type.	The	different	join	types	are	listed	here,	ordered	from	the	best
type	to	the	worst:

	system

The	table	has	only	one	row	(=	system	table).	This	is	a	special	case	of
the	const	join	type.

	const

The	table	has	at	most	one	matching	row,	which	is	read	at	the	start	of
the	query.	Because	there	is	only	one	row,	values	from	the	column	in
this	row	can	be	regarded	as	constants	by	the	rest	of	the	optimizer.
const	tables	are	very	fast	because	they	are	read	only	once.

const	is	used	when	you	compare	all	parts	of	a	PRIMARY	KEY	or	UNIQUE
index	to	constant	values.	In	the	following	queries,	tbl_name	can	be
used	as	a	const	table:

SELECT	*	FROM	tbl_name	WHERE	primary_key=1;

SELECT	*	FROM	tbl_name

		WHERE	primary_key_part1=1	AND	primary_key_part2=2;

eq_ref

One	row	is	read	from	this	table	for	each	combination	of	rows	from	the
previous	tables.	Other	than	the	system	and	const	types,	this	is	the	best
possible	join	type.	It	is	used	when	all	parts	of	an	index	are	used	by	the
join	and	the	index	is	a	PRIMARY	KEY	or	UNIQUE	index.

eq_ref	can	be	used	for	indexed	columns	that	are	compared	using	the	=
operator.	The	comparison	value	can	be	a	constant	or	an	expression	that
uses	columns	from	tables	that	are	read	before	this	table.	In	the
following	examples,	MySQL	can	use	an	eq_ref	join	to	process
ref_table:

SELECT	*	FROM	ref_table,other_table

		WHERE	ref_table.key_column=other_table.column;

SELECT	*	FROM	ref_table,other_table

		WHERE	ref_table.key_column_part1=other_table.column

		AND	ref_table.key_column_part2=1;

ref

All	rows	with	matching	index	values	are	read	from	this	table	for	each
combination	of	rows	from	the	previous	tables.	ref	is	used	if	the	join
uses	only	a	leftmost	prefix	of	the	key	or	if	the	key	is	not	a	PRIMARY
KEY	or	UNIQUE	index	(in	other	words,	if	the	join	cannot	select	a	single
row	based	on	the	key	value).	If	the	key	that	is	used	matches	only	a	few
rows,	this	is	a	good	join	type.

ref	can	be	used	for	indexed	columns	that	are	compared	using	the	=	or
<=>	operator.	In	the	following	examples,	MySQL	can	use	a	ref	join	to
process	ref_table:

SELECT	*	FROM	ref_table	WHERE	key_column=expr;

SELECT	*	FROM	ref_table,other_table

		WHERE	ref_table.key_column=other_table.column;

SELECT	*	FROM	ref_table,other_table

		WHERE	ref_table.key_column_part1=other_table.column

		AND	ref_table.key_column_part2=1;

ref_or_null

This	join	type	is	like	ref,	but	with	the	addition	that	MySQL	does	an
extra	search	for	rows	that	contain	NULL	values.	This	join	type
optimization	is	used	most	often	in	resolving	subqueries.	In	the
following	examples,	MySQL	can	use	a	ref_or_null	join	to	process
ref_table:

SELECT	*	FROM	ref_table

		WHERE	key_column=expr	OR	key_column	IS	NULL;

See	Section	7.2.7,	“IS	NULL	Optimization”.

index_merge

This	join	type	indicates	that	the	Index	Merge	optimization	is	used.	In
this	case,	the	key	column	in	the	output	row	contains	a	list	of	indexes

used,	and	key_len	contains	a	list	of	the	longest	key	parts	for	the
indexes	used.	For	more	information,	see	Section	7.2.6,	“Index	Merge
Optimization”.

unique_subquery

This	type	replaces	ref	for	some	IN	subqueries	of	the	following	form:

value	IN	(SELECT	primary_key	FROM	single_table	WHERE	some_expr

unique_subquery	is	just	an	index	lookup	function	that	replaces	the
subquery	completely	for	better	efficiency.

index_subquery

This	join	type	is	similar	to	unique_subquery.	It	replaces	IN
subqueries,	but	it	works	for	non-unique	indexes	in	subqueries	of	the
following	form:

value	IN	(SELECT	key_column	FROM	single_table	WHERE	some_expr

range

Only	rows	that	are	in	a	given	range	are	retrieved,	using	an	index	to
select	the	rows.	The	key	column	in	the	output	row	indicates	which
index	is	used.	The	key_len	contains	the	longest	key	part	that	was	used.
The	ref	column	is	NULL	for	this	type.

range	can	be	used	when	a	key	column	is	compared	to	a	constant	using
any	of	the	=,	<>,	>,	>=,	<,	<=,	IS	NULL,	<=>,	BETWEEN,	or	IN	operators:

SELECT	*	FROM	tbl_name

		WHERE	key_column	=	10;

SELECT	*	FROM	tbl_name

		WHERE	key_column	BETWEEN	10	and	20;

SELECT	*	FROM	tbl_name

		WHERE	key_column	IN	(10,20,30);

SELECT	*	FROM	tbl_name

		WHERE	key_part1=	10	AND	key_part2	IN	(10,20,30);

index

This	join	type	is	the	same	as	ALL,	except	that	only	the	index	tree	is
scanned.	This	usually	is	faster	than	ALL	because	the	index	file	usually
is	smaller	than	the	data	file.

MySQL	can	use	this	join	type	when	the	query	uses	only	columns	that
are	part	of	a	single	index.

ALL

A	full	table	scan	is	done	for	each	combination	of	rows	from	the
previous	tables.	This	is	normally	not	good	if	the	table	is	the	first	table
not	marked	const,	and	usually	very	bad	in	all	other	cases.	Normally,
you	can	avoid	ALL	by	adding	indexes	that	allow	row	retrieval	from	the
table	based	on	constant	values	or	column	values	from	earlier	tables.

possible_keys

The	possible_keys	column	indicates	which	indexes	MySQL	can	choose
from	use	to	find	the	rows	in	this	table.	Note	that	this	column	is	totally
independent	of	the	order	of	the	tables	as	displayed	in	the	output	from
EXPLAIN.	That	means	that	some	of	the	keys	in	possible_keys	might	not	be
usable	in	practice	with	the	generated	table	order.

If	this	column	is	NULL,	there	are	no	relevant	indexes.	In	this	case,	you	may
be	able	to	improve	the	performance	of	your	query	by	examining	the	WHERE
clause	to	check	whether	it	refers	to	some	column	or	columns	that	would	be
suitable	for	indexing.	If	so,	create	an	appropriate	index	and	check	the	query
with	EXPLAIN	again.	See	Section	13.1.2,	“ALTER	TABLE	Syntax”.

To	see	what	indexes	a	table	has,	use	SHOW	INDEX	FROM	tbl_name.

key

The	key	column	indicates	the	key	(index)	that	MySQL	actually	decided	to
use.	The	key	is	NULL	if	no	index	was	chosen.	To	force	MySQL	to	use	or
ignore	an	index	listed	in	the	possible_keys	column,	use	FORCE	INDEX,	USE
INDEX,	or	IGNORE	INDEX	in	your	query.	See	Section	13.2.7,	“SELECT
Syntax”.

For	MyISAM	and	BDB	tables,	running	ANALYZE	TABLE	helps	the	optimizer
choose	better	indexes.	For	MyISAM	tables,	myisamchk	--analyze	does	the
same.	See	Section	13.5.2.1,	“ANALYZE	TABLE	Syntax”,	and	Section	5.10.4,
“Table	Maintenance	and	Crash	Recovery”.

key_len

The	key_len	column	indicates	the	length	of	the	key	that	MySQL	decided	to
use.	The	length	is	NULL	if	the	key	column	says	NULL.	Note	that	the	value	of
key_len	enables	you	to	determine	how	many	parts	of	a	multiple-part	key
MySQL	actually	uses.

ref

The	ref	column	shows	which	columns	or	constants	are	compared	to	the
index	named	in	the	key	column	to	select	rows	from	the	table.

rows

The	rows	column	indicates	the	number	of	rows	MySQL	believes	it	must
examine	to	execute	the	query.

Extra

This	column	contains	additional	information	about	how	MySQL	resolves
the	query.	Here	is	an	explanation	of	the	values	that	can	appear	in	this
column:

Distinct

MySQL	is	looking	for	distinct	values,	so	it	stops	searching	for	more
rows	for	the	current	row	combination	after	it	has	found	the	first
matching	row.

Not	exists

MySQL	was	able	to	do	a	LEFT	JOIN	optimization	on	the	query	and
does	not	examine	more	rows	in	this	table	for	the	previous	row
combination	after	it	finds	one	row	that	matches	the	LEFT	JOIN	criteria.
Here	is	an	example	of	the	type	of	query	that	can	be	optimized	this

way:

SELECT	*	FROM	t1	LEFT	JOIN	t2	ON	t1.id=t2.id

		WHERE	t2.id	IS	NULL;

Assume	that	t2.id	is	defined	as	NOT	NULL.	In	this	case,	MySQL	scans
t1	and	looks	up	the	rows	in	t2	using	the	values	of	t1.id.	If	MySQL
finds	a	matching	row	in	t2,	it	knows	that	t2.id	can	never	be	NULL,	and
does	not	scan	through	the	rest	of	the	rows	in	t2	that	have	the	same	id
value.	In	other	words,	for	each	row	in	t1,	MySQL	needs	to	do	only	a
single	lookup	in	t2,	regardless	of	how	many	rows	actually	match	in
t2.

range	checked	for	each	record	(index	map:	N)

MySQL	found	no	good	index	to	use,	but	found	that	some	of	indexes
might	be	used	after	column	values	from	preceding	tables	are	known.
For	each	row	combination	in	the	preceding	tables,	MySQL	checks
whether	it	is	possible	to	use	a	range	or	index_merge	access	method	to
retrieve	rows.	This	is	not	very	fast,	but	is	faster	than	performing	a	join
with	no	index	at	all.	The	applicability	criteria	are	as	described	in
Section	7.2.5,	“Range	Optimization”,	and	Section	7.2.6,	“Index	Merge
Optimization”,	with	the	exception	that	all	column	values	for	the
preceding	table	are	known	and	considered	to	be	constants.

Using	filesort

MySQL	must	do	an	extra	pass	to	find	out	how	to	retrieve	the	rows	in
sorted	order.	The	sort	is	done	by	going	through	all	rows	according	to
the	join	type	and	storing	the	sort	key	and	pointer	to	the	row	for	all
rows	that	match	the	WHERE	clause.	The	keys	then	are	sorted	and	the
rows	are	retrieved	in	sorted	order.	See	Section	7.2.12,	“ORDER	BY
Optimization”.

Using	index

The	column	information	is	retrieved	from	the	table	using	only
information	in	the	index	tree	without	having	to	do	an	additional	seek	to
read	the	actual	row.	This	strategy	can	be	used	when	the	query	uses
only	columns	that	are	part	of	a	single	index.

Using	temporary

To	resolve	the	query,	MySQL	needs	to	create	a	temporary	table	to	hold
the	result.	This	typically	happens	if	the	query	contains	GROUP	BY	and
ORDER	BY	clauses	that	list	columns	differently.

Using	where

A	WHERE	clause	is	used	to	restrict	which	rows	to	match	against	the	next
table	or	send	to	the	client.	Unless	you	specifically	intend	to	fetch	or
examine	all	rows	from	the	table,	you	may	have	something	wrong	in
your	query	if	the	Extra	value	is	not	Using	where	and	the	table	join
type	is	ALL	or	index.

If	you	want	to	make	your	queries	as	fast	as	possible,	you	should	look
out	for	Extra	values	of	Using	filesort	and	Using	temporary.

Using	sort_union(...),	Using	union(...),	Using	intersect(...)

These	indicate	how	index	scans	are	merged	for	the	index_merge	join
type.	See	Section	7.2.6,	“Index	Merge	Optimization”,	for	more
information.

Using	index	for	group-by

Similar	to	the	Using	index	way	of	accessing	a	table,	Using	index
for	group-by	indicates	that	MySQL	found	an	index	that	can	be	used
to	retrieve	all	columns	of	a	GROUP	BY	or	DISTINCT	query	without	any
extra	disk	access	to	the	actual	table.	Additionally,	the	index	is	used	in
the	most	efficient	way	so	that	for	each	group,	only	a	few	index	entries
are	read.	For	details,	see	Section	7.2.13,	“GROUP	BY	Optimization”.

Using	where	with	pushed	condition

This	item	applies	to	NDB	Cluster	tables	only.	It	means	that	MySQL
Cluster	is	using	condition	pushdown	to	improve	the	efficiency	of	a
direct	comparison	(=)	between	a	non-indexed	column	and	a	constant.
In	such	cases,	the	condition	is	“pushed	down”	to	the	cluster's	data
nodes	where	it	is	evaluated	in	all	partitions	simultaneously.	This
eliminates	the	need	to	send	non-matching	rows	over	the	network,	and

can	speed	up	such	queries	by	a	factor	of	5	to	10	times	over	cases
where	condition	pushdown	could	be	but	is	not	used.

Suppose	that	you	have	a	Cluster	table	defined	as	follows:

CREATE	TABLE	t1	(

				a	INT,	

				b	INT,	

				KEY(a)

)	ENGINE=NDBCLUSTER;

In	this	case,	condition	pushdown	can	be	used	with	a	query	such	as	this
one:

SELECT	a,b	FROM	t1	WHERE	b	=	10;

This	can	be	seen	in	the	output	of	EXPLAIN	SELECT,	as	shown	here:

mysql>	EXPLAIN	SELECT	a,b	FROM	t1	WHERE	b	=	10\G

***************************	1.	row	***************************

											id:	1

		select_type:	SIMPLE

								table:	t1

									type:	ALL

possible_keys:	NULL

										key:	NULL

						key_len:	NULL

										ref:	NULL

									rows:	10

								Extra:	Using	where	with	pushed	condition

Condition	pushdown	cannot	be	used	with	either	of	these	two	queries:

SELECT	a,b	FROM	t1	WHERE	a	=	10;

SELECT	a,b	FROM	t1	WHERE	b	+	1	=	10;

With	regard	to	the	first	of	these	two	queries,	condition	pushdown	is	not
applicable	because	an	index	exists	on	column	a.	In	the	case	of	the
second	query,	a	condition	pushdown	cannot	be	employed	because	the
comparison	involving	the	non-indexed	column	b	is	an	indirect	one.
(However,	it	would	apply	if	you	were	to	reduce	b	+	1	=	10	to	b	=	9
in	the	WHERE	clause.)

However,	a	condition	pushdown	may	also	be	employed	when	an

indexed	column	column	is	compared	with	a	constant	using	a	>	or	<
operator:

mysql>	EXPLAIN	SELECT	a,b	FROM	t1	WHERE	a<2\G

***************************	1.	row	***************************

											id:	1

		select_type:	SIMPLE

								table:	t1

									type:	range

possible_keys:	a

										key:	a

						key_len:	5

										ref:	NULL

									rows:	2

								Extra:	Using	where	with	pushed	condition

With	regard	to	condition	pushdown,	keep	in	mind	that:

Condition	pushdown	is	relevant	to	MySQL	Cluster	only,	and	does
not	occur	when	executing	queries	against	tables	using	any	other
storage	engine.

Condition	pushdown	capability	is	not	used	by	default.	To	enable
it,	you	can	start	mysqld	with	the	--engine-condition-pushdown
option,	or	execute	the	following	statement:

SET	engine_condition_pushdown=On;

Note:	Condition	pushdown	is	not	supported	for	columns	of	any	of
the	BLOB	or	TEXT	types.

Condition	pushdown,	Using	where	with	pushed	condition,	and
engine_condition_pushdown	were	all	introduced	in	MySQL	5.0
Cluster.

You	can	get	a	good	indication	of	how	good	a	join	is	by	taking	the	product	of	the
values	in	the	rows	column	of	the	EXPLAIN	output.	This	should	tell	you	roughly
how	many	rows	MySQL	must	examine	to	execute	the	query.	If	you	restrict
queries	with	the	max_join_size	system	variable,	this	row	product	also	is	used	to
determine	which	multiple-table	SELECT	statements	to	execute	and	which	to	abort.
See	Section	7.5.2,	“Tuning	Server	Parameters”.

The	following	example	shows	how	a	multiple-table	join	can	be	optimized

progressively	based	on	the	information	provided	by	EXPLAIN.

Suppose	that	you	have	the	SELECT	statement	shown	here	and	that	you	plan	to
examine	it	using	EXPLAIN:

EXPLAIN	SELECT	tt.TicketNumber,	tt.TimeIn,

															tt.ProjectReference,	tt.EstimatedShipDate,

															tt.ActualShipDate,	tt.ClientID,

															tt.ServiceCodes,	tt.RepetitiveID,

															tt.CurrentProcess,	tt.CurrentDPPerson,

															tt.RecordVolume,	tt.DPPrinted,	et.COUNTRY,

															et_1.COUNTRY,	do.CUSTNAME

								FROM	tt,	et,	et	AS	et_1,	do

								WHERE	tt.SubmitTime	IS	NULL

										AND	tt.ActualPC	=	et.EMPLOYID

										AND	tt.AssignedPC	=	et_1.EMPLOYID

										AND	tt.ClientID	=	do.CUSTNMBR;

For	this	example,	make	the	following	assumptions:

The	columns	being	compared	have	been	declared	as	follows:

Table Column Data	Type
tt ActualPC CHAR(10)

tt AssignedPC CHAR(10)

tt ClientID CHAR(10)

et EMPLOYID CHAR(15)

do CUSTNMBR CHAR(15)

The	tables	have	the	following	indexes:

Table Index
tt ActualPC

tt AssignedPC

tt ClientID

et EMPLOYID	(primary	key)
do CUSTNMBR	(primary	key)

The	tt.ActualPC	values	are	not	evenly	distributed.

Initially,	before	any	optimizations	have	been	performed,	the	EXPLAIN	statement

produces	the	following	information:

table	type	possible_keys	key		key_len	ref		rows		Extra

et				ALL		PRIMARY							NULL	NULL				NULL	74

do				ALL		PRIMARY							NULL	NULL				NULL	2135

et_1		ALL		PRIMARY							NULL	NULL				NULL	74

tt				ALL		AssignedPC,			NULL	NULL				NULL	3872

											ClientID,

											ActualPC

						range	checked	for	each	record	(key	map:	35)

Because	type	is	ALL	for	each	table,	this	output	indicates	that	MySQL	is
generating	a	Cartesian	product	of	all	the	tables;	that	is,	every	combination	of
rows.	This	takes	quite	a	long	time,	because	the	product	of	the	number	of	rows	in
each	table	must	be	examined.	For	the	case	at	hand,	this	product	is	74	×	2135	×
74	×	3872	=	45,268,558,720	rows.	If	the	tables	were	bigger,	you	can	only
imagine	how	long	it	would	take.

One	problem	here	is	that	MySQL	can	use	indexes	on	columns	more	efficiently	if
they	are	declared	as	the	same	type	and	size.	In	this	context,	VARCHAR	and	CHAR
are	considered	the	same	if	they	are	declared	as	the	same	size.	tt.ActualPC	is
declared	as	CHAR(10)	and	et.EMPLOYID	is	CHAR(15),	so	there	is	a	length
mismatch.

To	fix	this	disparity	between	column	lengths,	use	ALTER	TABLE	to	lengthen
ActualPC	from	10	characters	to	15	characters:

mysql>	ALTER	TABLE	tt	MODIFY	ActualPC	VARCHAR(15);

Now	tt.ActualPC	and	et.EMPLOYID	are	both	VARCHAR(15).	Executing	the
EXPLAIN	statement	again	produces	this	result:

table	type			possible_keys	key					key_len	ref									rows				Extra

tt				ALL				AssignedPC,			NULL				NULL				NULL								3872				Using

													ClientID,																																									where

													ActualPC

do				ALL				PRIMARY							NULL				NULL				NULL								2135

						range	checked	for	each	record	(key	map:	1)

et_1		ALL				PRIMARY							NULL				NULL				NULL								74

						range	checked	for	each	record	(key	map:	1)

et				eq_ref	PRIMARY							PRIMARY	15						tt.ActualPC	1

This	is	not	perfect,	but	is	much	better:	The	product	of	the	rows	values	is	less	by	a
factor	of	74.	This	version	executes	in	a	couple	of	seconds.

A	second	alteration	can	be	made	to	eliminate	the	column	length	mismatches	for
the	tt.AssignedPC	=	et_1.EMPLOYID	and	tt.ClientID	=	do.CUSTNMBR
comparisons:

mysql>	ALTER	TABLE	tt	MODIFY	AssignedPC	VARCHAR(15),

				->																MODIFY	ClientID			VARCHAR(15);

After	that	modification,	EXPLAIN	produces	the	output	shown	here:

table	type			possible_keys	key						key_len	ref											rows	Extra

et				ALL				PRIMARY							NULL					NULL				NULL										74

tt				ref				AssignedPC,			ActualPC	15						et.EMPLOYID			52			Using

													ClientID,																																									where

													ActualPC

et_1		eq_ref	PRIMARY							PRIMARY		15						tt.AssignedPC	1

do				eq_ref	PRIMARY							PRIMARY		15						tt.ClientID			1

At	this	point,	the	query	is	optimized	almost	as	well	as	possible.	The	remaining
problem	is	that,	by	default,	MySQL	assumes	that	values	in	the	tt.ActualPC
column	are	evenly	distributed,	and	that	is	not	the	case	for	the	tt	table.
Fortunately,	it	is	easy	to	tell	MySQL	to	analyze	the	key	distribution:

mysql>	ANALYZE	TABLE	tt;

With	the	additional	index	information,	the	join	is	perfect	and	EXPLAIN	produces
this	result:

table	type			possible_keys	key					key_len	ref											rows	Extra

tt				ALL				AssignedPC				NULL				NULL				NULL										3872	Using

													ClientID,																																								where

													ActualPC

et				eq_ref	PRIMARY							PRIMARY	15						tt.ActualPC			1

et_1		eq_ref	PRIMARY							PRIMARY	15						tt.AssignedPC	1

do				eq_ref	PRIMARY							PRIMARY	15						tt.ClientID			1

Note	that	the	rows	column	in	the	output	from	EXPLAIN	is	an	educated	guess	from
the	MySQL	join	optimizer.	You	should	check	whether	the	numbers	are	even
close	to	the	truth	by	comparing	the	rows	product	with	the	actual	number	of	rows
that	the	query	returns.	If	the	numbers	are	quite	different,	you	might	get	better
performance	by	using	STRAIGHT_JOIN	in	your	SELECT	statement	and	trying	to	list
the	tables	in	a	different	order	in	the	FROM	clause.

7.2.2.	Estimating	Query	Performance

In	most	cases,	you	can	estimate	query	performance	by	counting	disk	seeks.	For
small	tables,	you	can	usually	find	a	row	in	one	disk	seek	(because	the	index	is
probably	cached).	For	bigger	tables,	you	can	estimate	that,	using	B-tree	indexes,
you	need	this	many	seeks	to	find	a	row:	log(row_count)	/
log(index_block_length	/	3	×	2	/	(index_length	+	data_pointer_length))	+
1.

In	MySQL,	an	index	block	is	usually	1,024	bytes	and	the	data	pointer	is	usually
four	bytes.	For	a	500,000-row	table	with	an	index	length	of	three	bytes	(the	size
of	MEDIUMINT),	the	formula	indicates	log(500,000)/log(1024/3×2/(3+4))	+	1
=	4	seeks.

This	index	would	require	storage	of	about	500,000	×	7	×	3/2	=	5.2MB	(assuming
a	typical	index	buffer	fill	ratio	of	2/3),	so	you	probably	have	much	of	the	index
in	memory	and	so	need	only	one	or	two	calls	to	read	data	to	find	the	row.

For	writes,	however,	you	need	four	seek	requests	to	find	where	to	place	a	new
index	value	and	normally	two	seeks	to	update	the	index	and	write	the	row.

Note	that	the	preceding	discussion	does	not	mean	that	your	application
performance	slowly	degenerates	by	log	N.	As	long	as	everything	is	cached	by	the
OS	or	the	MySQL	server,	things	become	only	marginally	slower	as	the	table	gets
bigger.	After	the	data	gets	too	big	to	be	cached,	things	start	to	go	much	slower
until	your	applications	are	bound	only	by	disk	seeks	(which	increase	by	log	N).
To	avoid	this,	increase	the	key	cache	size	as	the	data	grows.	For	MyISAM	tables,
the	key	cache	size	is	controlled	by	the	key_buffer_size	system	variable.	See
Section	7.5.2,	“Tuning	Server	Parameters”.

7.2.3.	Speed	of	SELECT	Queries

In	general,	when	you	want	to	make	a	slow	SELECT	...	WHERE	query	faster,	the
first	thing	to	check	is	whether	you	can	add	an	index.	All	references	between
different	tables	should	usually	be	done	with	indexes.	You	can	use	the	EXPLAIN
statement	to	determine	which	indexes	are	used	for	a	SELECT.	See	Section	7.2.1,
“Optimizing	Queries	with	EXPLAIN”,	and	Section	7.4.5,	“How	MySQL	Uses
Indexes”.

Some	general	tips	for	speeding	up	queries	on	MyISAM	tables:

To	help	MySQL	better	optimize	queries,	use	ANALYZE	TABLE	or	run
myisamchk	--analyze	on	a	table	after	it	has	been	loaded	with	data.	This
updates	a	value	for	each	index	part	that	indicates	the	average	number	of
rows	that	have	the	same	value.	(For	unique	indexes,	this	is	always	1.)
MySQL	uses	this	to	decide	which	index	to	choose	when	you	join	two	tables
based	on	a	non-constant	expression.	You	can	check	the	result	from	the	table
analysis	by	using	SHOW	INDEX	FROM	tbl_name	and	examining	the
Cardinality	value.	myisamchk	--description	--verbose	shows	index
distribution	information.

To	sort	an	index	and	data	according	to	an	index,	use	myisamchk	--sort-
index	--sort-records=1	(assuming	that	you	want	to	sort	on	index	1).	This	is
a	good	way	to	make	queries	faster	if	you	have	a	unique	index	from	which
you	want	to	read	all	rows	in	order	according	to	the	index.	The	first	time	you
sort	a	large	table	this	way,	it	may	take	a	long	time.

7.2.4.	WHERE	Clause	Optimization

This	section	discusses	optimizations	that	can	be	made	for	processing	WHERE
clauses.	The	examples	use	SELECT	statements,	but	the	same	optimizations	apply
for	WHERE	clauses	in	DELETE	and	UPDATE	statements.

Work	on	the	MySQL	optimizer	is	ongoing,	so	this	section	is	incomplete.	MySQL
performs	a	great	many	optimizations,	not	all	of	which	are	documented	here.

Some	of	the	optimizations	performed	by	MySQL	follow:

Removal	of	unnecessary	parentheses:

			((a	AND	b)	AND	c	OR	(((a	AND	b)	AND	(c	AND	d))))

->	(a	AND	b	AND	c)	OR	(a	AND	b	AND	c	AND	d)

Constant	folding:

			(a<b	AND	b=c)	AND	a=5

->	b>5	AND	b=c	AND	a=5

Constant	condition	removal	(needed	because	of	constant	folding):

			(B>=5	AND	B=5)	OR	(B=6	AND	5=5)	OR	(B=7	AND	5=6)

->	B=5	OR	B=6

Constant	expressions	used	by	indexes	are	evaluated	only	once.

COUNT(*)	on	a	single	table	without	a	WHERE	is	retrieved	directly	from	the
table	information	for	MyISAM	and	MEMORY	tables.	This	is	also	done	for	any
NOT	NULL	expression	when	used	with	only	one	table.

Early	detection	of	invalid	constant	expressions.	MySQL	quickly	detects	that
some	SELECT	statements	are	impossible	and	returns	no	rows.

HAVING	is	merged	with	WHERE	if	you	do	not	use	GROUP	BY	or	aggregate
functions	(COUNT(),	MIN(),	and	so	on).

For	each	table	in	a	join,	a	simpler	WHERE	is	constructed	to	get	a	fast	WHERE
evaluation	for	the	table	and	also	to	skip	rows	as	soon	as	possible.

	All	constant	tables	are	read	first	before	any	other	tables	in	the	query.	A
constant	table	is	any	of	the	following:

An	empty	table	or	a	table	with	one	row.

A	table	that	is	used	with	a	WHERE	clause	on	a	PRIMARY	KEY	or	a	UNIQUE
index,	where	all	index	parts	are	compared	to	constant	expressions	and
are	defined	as	NOT	NULL.

All	of	the	following	tables	are	used	as	constant	tables:

SELECT	*	FROM	t	WHERE	primary_key=1;

SELECT	*	FROM	t1,t2

		WHERE	t1.primary_key=1	AND	t2.primary_key=t1.id;

The	best	join	combination	for	joining	the	tables	is	found	by	trying	all
possibilities.	If	all	columns	in	ORDER	BY	and	GROUP	BY	clauses	come	from
the	same	table,	that	table	is	preferred	first	when	joining.

If	there	is	an	ORDER	BY	clause	and	a	different	GROUP	BY	clause,	or	if	the
ORDER	BY	or	GROUP	BY	contains	columns	from	tables	other	than	the	first
table	in	the	join	queue,	a	temporary	table	is	created.

If	you	use	the	SQL_SMALL_RESULT	option,	MySQL	uses	an	in-memory
temporary	table.

Each	table	index	is	queried,	and	the	best	index	is	used	unless	the	optimizer
believes	that	it	is	more	efficient	to	use	a	table	scan.	At	one	time,	a	scan	was
used	based	on	whether	the	best	index	spanned	more	than	30%	of	the	table,
but	a	fixed	percentage	no	longer	determines	the	choice	between	using	an
index	or	a	scan.	The	optimizer	now	is	more	complex	and	bases	its	estimate
on	additional	factors	such	as	table	size,	number	of	rows,	and	I/O	block	size.

In	some	cases,	MySQL	can	read	rows	from	the	index	without	even
consulting	the	data	file.	If	all	columns	used	from	the	index	are	numeric,
only	the	index	tree	is	used	to	resolve	the	query.

Before	each	row	is	output,	those	that	do	not	match	the	HAVING	clause	are
skipped.

Some	examples	of	queries	that	are	very	fast:

SELECT	COUNT(*)	FROM	tbl_name;

SELECT	MIN(key_part1),MAX(key_part1)	FROM	tbl_name;

SELECT	MAX(key_part2)	FROM	tbl_name

		WHERE	key_part1=constant;

SELECT	...	FROM	tbl_name

		ORDER	BY	key_part1,key_part2,...	LIMIT	10;

SELECT	...	FROM	tbl_name

		ORDER	BY	key_part1	DESC,	key_part2	DESC,	...	LIMIT	10;

MySQL	resolves	the	following	queries	using	only	the	index	tree,	assuming	that
the	indexed	columns	are	numeric:

SELECT	key_part1,key_part2	FROM	tbl_name	WHERE	key_part1=val;

SELECT	COUNT(*)	FROM	tbl_name

		WHERE	key_part1=val1	AND	key_part2=val2;

SELECT	key_part2	FROM	tbl_name	GROUP	BY	key_part1;

The	following	queries	use	indexing	to	retrieve	the	rows	in	sorted	order	without	a
separate	sorting	pass:

SELECT	...	FROM	tbl_name

		ORDER	BY	key_part1,key_part2,...	;

SELECT	...	FROM	tbl_name

		ORDER	BY	key_part1	DESC,	key_part2	DESC,	...	;

7.2.5.	Range	Optimization

The	range	access	method	uses	a	single	index	to	retrieve	a	subset	of	table	rows
that	are	contained	within	one	or	several	index	value	intervals.	It	can	be	used	for	a
single-part	or	multiple-part	index.	The	following	sections	give	a	detailed
description	of	how	intervals	are	extracted	from	the	WHERE	clause.

7.2.5.1.	The	Range	Access	Method	for	Single-Part	Indexes

For	a	single-part	index,	index	value	intervals	can	be	conveniently	represented	by
corresponding	conditions	in	the	WHERE	clause,	so	we	speak	of	range	conditions
rather	than	“intervals.”

The	definition	of	a	range	condition	for	a	single-part	index	is	as	follows:

For	both	BTREE	and	HASH	indexes,	comparison	of	a	key	part	with	a	constant
value	is	a	range	condition	when	using	the	=,	<=>,	IN,	IS	NULL,	or	IS	NOT
NULL	operators.

For	BTREE	indexes,	comparison	of	a	key	part	with	a	constant	value	is	a
range	condition	when	using	the	>,	<,	>=,	<=,	BETWEEN,	!=,	or	<>	operators,	or
LIKE	'pattern'	(where	'pattern'	does	not	start	with	a	wildcard).

For	all	types	of	indexes,	multiple	range	conditions	combined	with	OR	or	AND
form	a	range	condition.

“Constant	value”	in	the	preceding	descriptions	means	one	of	the	following:

A	constant	from	the	query	string

A	column	of	a	const	or	system	table	from	the	same	join

The	result	of	an	uncorrelated	subquery

Any	expression	composed	entirely	from	subexpressions	of	the	preceding
types

Here	are	some	examples	of	queries	with	range	conditions	in	the	WHERE	clause:

SELECT	*	FROM	t1

		WHERE	key_col	>	1	

		AND	key_col	<	10;

SELECT	*	FROM	t1	

		WHERE	key_col	=	1	

		OR	key_col	IN	(15,18,20);

SELECT	*	FROM	t1	

		WHERE	key_col	LIKE	'ab%'	

		OR	key_col	BETWEEN	'bar'	AND	'foo';

Note	that	some	non-constant	values	may	be	converted	to	constants	during	the
constant	propagation	phase.

MySQL	tries	to	extract	range	conditions	from	the	WHERE	clause	for	each	of	the
possible	indexes.	During	the	extraction	process,	conditions	that	cannot	be	used
for	constructing	the	range	condition	are	dropped,	conditions	that	produce
overlapping	ranges	are	combined,	and	conditions	that	produce	empty	ranges	are
removed.

Consider	the	following	statement,	where	key1	is	an	indexed	column	and	nonkey
is	not	indexed:

SELECT	*	FROM	t1	WHERE

		(key1	<	'abc'	AND	(key1	LIKE	'abcde%'	OR	key1	LIKE	'%b'))	OR

		(key1	<	'bar'	AND	nonkey	=	4)	OR

		(key1	<	'uux'	AND	key1	>	'z');

The	extraction	process	for	key	key1	is	as	follows:

1.	 Start	with	original	WHERE	clause:

(key1	<	'abc'	AND	(key1	LIKE	'abcde%'	OR	key1	LIKE	'%b'))	OR

(key1	<	'bar'	AND	nonkey	=	4)	OR

(key1	<	'uux'	AND	key1	>	'z')

2.	 Remove	nonkey	=	4	and	key1	LIKE	'%b'	because	they	cannot	be	used	for
a	range	scan.	The	correct	way	to	remove	them	is	to	replace	them	with	TRUE,
so	that	we	do	not	miss	any	matching	rows	when	doing	the	range	scan.
Having	replaced	them	with	TRUE,	we	get:

(key1	<	'abc'	AND	(key1	LIKE	'abcde%'	OR	TRUE))	OR

(key1	<	'bar'	AND	TRUE)	OR

(key1	<	'uux'	AND	key1	>	'z')

3.	 Collapse	conditions	that	are	always	true	or	false:

(key1	LIKE	'abcde%'	OR	TRUE)	is	always	true

(key1	<	'uux'	AND	key1	>	'z')	is	always	false

Replacing	these	conditions	with	constants,	we	get:

(key1	<	'abc'	AND	TRUE)	OR	(key1	<	'bar'	AND	TRUE)	OR	(FALSE)

Removing	unnecessary	TRUE	and	FALSE	constants,	we	obtain:

(key1	<	'abc')	OR	(key1	<	'bar')

4.	 Combining	overlapping	intervals	into	one	yields	the	final	condition	to	be
used	for	the	range	scan:

(key1	<	'bar')

In	general	(and	as	demonstrated	by	the	preceding	example),	the	condition	used
for	a	range	scan	is	less	restrictive	than	the	WHERE	clause.	MySQL	performs	an
additional	check	to	filter	out	rows	that	satisfy	the	range	condition	but	not	the	full
WHERE	clause.

The	range	condition	extraction	algorithm	can	handle	nested	AND/OR	constructs	of
arbitrary	depth,	and	its	output	does	not	depend	on	the	order	in	which	conditions
appear	in	WHERE	clause.

7.2.5.2.	The	Range	Access	Method	for	Multiple-Part	Indexes

Range	conditions	on	a	multiple-part	index	are	an	extension	of	range	conditions
for	a	single-part	index.	A	range	condition	on	a	multiple-part	index	restricts	index
rows	to	lie	within	one	or	several	key	tuple	intervals.	Key	tuple	intervals	are
defined	over	a	set	of	key	tuples,	using	ordering	from	the	index.

For	example,	consider	a	multiple-part	index	defined	as	key1(key_part1,
key_part2,	key_part3),	and	the	following	set	of	key	tuples	listed	in	key	order:

key_part1		key_part2		key_part3

		NULL							1										'abc'

		NULL							1										'xyz'

		NULL							2										'foo'

			1									1										'abc'

			1									1										'xyz'

			1									2										'abc'

			2									1										'aaa'

The	condition	key_part1	=	1	defines	this	interval:

(1,-inf,-inf)	<=	(key_part1,key_part2,key_part3)	<	(1,+inf,+inf)

The	interval	covers	the	4th,	5th,	and	6th	tuples	in	the	preceding	data	set	and	can
be	used	by	the	range	access	method.

By	contrast,	the	condition	key_part3	=	'abc'	does	not	define	a	single	interval	and
cannot	be	used	by	the	range	access	method.

The	following	descriptions	indicate	how	range	conditions	work	for	multiple-part
indexes	in	greater	detail.

For	HASH	indexes,	each	interval	containing	identical	values	can	be	used.
This	means	that	the	interval	can	be	produced	only	for	conditions	in	the
following	form:

				key_part1	cmp	const1

AND	key_part2	cmp	const2

AND	...

AND	key_partN	cmp	constN;

Here,	const1,	const2,	…	are	constants,	cmp	is	one	of	the	=,	<=>,	or	IS	NULL
comparison	operators,	and	the	conditions	cover	all	index	parts.	(That	is,
there	are	N	conditions,	one	for	each	part	of	an	N-part	index.)	For	example,
the	following	is	a	range	condition	for	a	three-part	HASH	index:

key_part1	=	1	AND	key_part2	IS	NULL	AND	key_part3	=	'foo'

For	the	definition	of	what	is	considered	to	be	a	constant,	see
Section	7.2.5.1,	“The	Range	Access	Method	for	Single-Part	Indexes”.

For	a	BTREE	index,	an	interval	might	be	usable	for	conditions	combined
with	AND,	where	each	condition	compares	a	key	part	with	a	constant	value

using	=,	<=>,	IS	NULL,	>,	<,	>=,	<=,	!=,	<>,	BETWEEN,	or	LIKE	'pattern'
(where	'pattern'	does	not	start	with	a	wildcard).	An	interval	can	be	used	as
long	as	it	is	possible	to	determine	a	single	key	tuple	containing	all	rows	that
match	the	condition	(or	two	intervals	if	<>	or	!=	is	used).	For	example,	for
this	condition:

key_part1	=	'foo'	AND	key_part2	>=	10	AND	key_part3	>	10

The	single	interval	is:

('foo',10,10)	<	(key_part1,key_part2,key_part3)	<	('foo',+inf,+inf)

It	is	possible	that	the	created	interval	contains	more	rows	than	the	initial
condition.	For	example,	the	preceding	interval	includes	the	value	('foo',
11,	0),	which	does	not	satisfy	the	original	condition.

If	conditions	that	cover	sets	of	rows	contained	within	intervals	are
combined	with	OR,	they	form	a	condition	that	covers	a	set	of	rows	contained
within	the	union	of	their	intervals.	If	the	conditions	are	combined	with	AND,
they	form	a	condition	that	covers	a	set	of	rows	contained	within	the
intersection	of	their	intervals.	For	example,	for	this	condition	on	a	two-part
index:

(key_part1	=	1	AND	key_part2	<	2)	OR	(key_part1	>	5)

The	intervals	are:

(1,-inf)	<	(key_part1,key_part2)	<	(1,2)

(5,-inf)	<	(key_part1,key_part2)

In	this	example,	the	interval	on	the	first	line	uses	one	key	part	for	the	left
bound	and	two	key	parts	for	the	right	bound.	The	interval	on	the	second	line
uses	only	one	key	part.	The	key_len	column	in	the	EXPLAIN	output
indicates	the	maximum	length	of	the	key	prefix	used.

In	some	cases,	key_len	may	indicate	that	a	key	part	was	used,	but	that
might	be	not	what	you	would	expect.	Suppose	that	key_part1	and
key_part2	can	be	NULL.	Then	the	key_len	column	displays	two	key	part
lengths	for	the	following	condition:

key_part1	>=	1	AND	key_part2	<	2

But,	in	fact,	the	condition	is	converted	to	this:

key_part1	>=	1	AND	key_part2	IS	NOT	NULL

Section	7.2.5.1,	“The	Range	Access	Method	for	Single-Part	Indexes”,	describes
how	optimizations	are	performed	to	combine	or	eliminate	intervals	for	range
conditions	on	a	single-part	index.	Analogous	steps	are	performed	for	range
conditions	on	multiple-part	indexes.

7.2.6.	Index	Merge	Optimization

The	Index	Merge	method	is	used	to	retrieve	rows	with	several	range	scans	and
to	merge	their	results	into	one.	The	merge	can	produce	unions,	intersections,	or
unions-of-intersections	of	its	underlying	scans.

Note:	If	you	have	upgraded	from	a	previous	version	of	MySQL,	you	should	be
aware	that	this	type	of	join	optimization	is	first	introduced	in	MySQL	5.0,	and
represents	a	significant	change	in	behavior	with	regard	to	indexes.	(Formerly,
MySQL	was	able	to	use	at	most	only	one	index	for	each	referenced	table.)

In	EXPLAIN	output,	the	Index	Merge	method	appears	as	index_merge	in	the	type
column.	In	this	case,	the	key	column	contains	a	list	of	indexes	used,	and	key_len
contains	a	list	of	the	longest	key	parts	for	those	indexes.

Examples:

SELECT	*	FROM	tbl_name	WHERE	key_part1	=	10	OR	key_part2	=	20;

SELECT	*	FROM	tbl_name

		WHERE	(key_part1	=	10	OR	key_part2	=	20)	AND	non_key_part=30;

SELECT	*	FROM	t1,	t2

		WHERE	(t1.key1	IN	(1,2)	OR	t1.key2	LIKE	'value%')

		AND	t2.key1=t1.some_col;

SELECT	*	FROM	t1,	t2

		WHERE	t1.key1=1

		AND	(t2.key1=t1.some_col	OR	t2.key2=t1.some_col2);

The	Index	Merge	method	has	several	access	algorithms	(seen	in	the	Extra	field
of	EXPLAIN	output):

Using	intersect(...)

Using	union(...)

Using	sort_union(...)

The	following	sections	describe	these	methods	in	greater	detail.

Note:	The	Index	Merge	optimization	algorithm	has	the	following	known
deficiencies:

If	a	range	scan	is	possible	on	some	key,	an	Index	Merge	is	not	considered.
For	example,	consider	this	query:

SELECT	*	FROM	t1	WHERE	(goodkey1	<	10	OR	goodkey2	<	20)	AND	badkey	<	30;

For	this	query,	two	plans	are	possible:

An	Index	Merge	scan	using	the	(goodkey1	<	10	OR	goodkey2	<	20)
condition.

A	range	scan	using	the	badkey	<	30	condition.

However,	the	optimizer	considers	only	the	second	plan.	If	that	is	not	what
you	want,	you	can	make	the	optimizer	consider	Index	Merge	by	using
IGNORE	INDEX	or	FORCE	INDEX.	The	following	queries	are	executed	using
Index	Merge:

SELECT	*	FROM	t1	FORCE	INDEX(index_for_goodkey1,index_for_goodkey2)

		WHERE	(goodkey1	<	10	OR	goodkey2	<	20)	AND	badkey	<	30;

SELECT	*	FROM	t1	IGNORE	INDEX(index_for_badkey)

		WHERE	(goodkey1	<	10	OR	goodkey2	<	20)	AND	badkey	<	30;

If	your	query	has	a	complex	WHERE	clause	with	deep	AND/OR	nesting	and
MySQL	doesn't	choose	the	optimal	plan,	try	distributing	terms	using	the
following	identity	laws:

(x	AND	y)	OR	z	=	(x	OR	z)	AND	(y	OR	z)

(x	OR	y)	AND	z	=	(x	AND	z)	OR	(y	AND	z)

Index	Merge	is	not	applicable	to	fulltext	indexes.	We	plan	to	extend	it	to

cover	these	in	a	future	MySQL	release.

The	choice	between	different	possible	variants	of	the	Index	Merge	access
method	and	other	access	methods	is	based	on	cost	estimates	of	various	available
options.

7.2.6.1.	The	Index	Merge	Intersection	Access	Algorithm

This	access	algorithm	can	be	employed	when	a	WHERE	clause	was	converted	to
several	range	conditions	on	different	keys	combined	with	AND,	and	each
condition	is	one	of	the	following:

In	this	form,	where	the	index	has	exactly	N	parts	(that	is,	all	index	parts	are
covered):

key_part1=const1	AND	key_part2=const2	...	AND	key_partN=constN

Any	range	condition	over	a	primary	key	of	an	InnoDB	or	BDB	table.

Examples:

SELECT	*	FROM	innodb_table	WHERE	primary_key	<	10	AND	key_col1=20;

SELECT	*	FROM	tbl_name

		WHERE	(key1_part1=1	AND	key1_part2=2)	AND	key2=2;

The	Index	Merge	intersection	algorithm	performs	simultaneous	scans	on	all	used
indexes	and	produces	the	intersection	of	row	sequences	that	it	receives	from	the
merged	index	scans.

If	all	columns	used	in	the	query	are	covered	by	the	used	indexes,	full	table	rows
are	not	retrieved	(EXPLAIN	output	contains	Using	index	in	Extra	field	in	this
case).	Here	is	an	example	of	such	a	query:

SELECT	COUNT(*)	FROM	t1	WHERE	key1=1	AND	key2=1;

If	the	used	indexes	don't	cover	all	columns	used	in	the	query,	full	rows	are
retrieved	only	when	the	range	conditions	for	all	used	keys	are	satisfied.

If	one	of	the	merged	conditions	is	a	condition	over	a	primary	key	of	an	InnoDB
or	BDB	table,	it	is	not	used	for	row	retrieval,	but	is	used	to	filter	out	rows

retrieved	using	other	conditions.

7.2.6.2.	The	Index	Merge	Union	Access	Algorithm

The	applicability	criteria	for	this	algorithm	are	similar	to	those	for	the	Index
Merge	method	intersection	algorithm.	The	algorithm	can	be	employed	when	the
table's	WHERE	clause	was	converted	to	several	range	conditions	on	different	keys
combined	with	OR,	and	each	condition	is	one	of	the	following:

In	this	form,	where	the	index	has	exactly	N	parts	(that	is,	all	index	parts	are
covered):

key_part1=const1	AND	key_part2=const2	...	AND	key_partN=constN

Any	range	condition	over	a	primary	key	of	an	InnoDB	or	BDB	table.

A	condition	for	which	the	Index	Merge	method	intersection	algorithm	is
applicable.

Examples:

SELECT	*	FROM	t1	WHERE	key1=1	OR	key2=2	OR	key3=3;

SELECT	*	FROM	innodb_table	WHERE	(key1=1	AND	key2=2)	OR

		(key3='foo'	AND	key4='bar')	AND	key5=5;

7.2.6.3.	The	Index	Merge	Sort-Union	Access	Algorithm

This	access	algorithm	is	employed	when	the	WHERE	clause	was	converted	to
several	range	conditions	combined	by	OR,	but	for	which	the	Index	Merge	method
union	algorithm	is	not	applicable.

Examples:

SELECT	*	FROM	tbl_name	WHERE	key_col1	<	10	OR	key_col2	<	20;

SELECT	*	FROM	tbl_name

		WHERE	(key_col1	>	10	OR	key_col2	=	20)	AND	nonkey_col=30;

The	difference	between	the	sort-union	algorithm	and	the	union	algorithm	is	that
the	sort-union	algorithm	must	first	fetch	row	IDs	for	all	rows	and	sort	them

before	returning	any	rows.

7.2.7.	IS	NULL	Optimization

MySQL	can	perform	the	same	optimization	on	col_name	IS	NULL	that	it	can	use
for	col_name	=	constant_value.	For	example,	MySQL	can	use	indexes	and
ranges	to	search	for	NULL	with	IS	NULL.

Examples:

SELECT	*	FROM	tbl_name	WHERE	key_col	IS	NULL;

SELECT	*	FROM	tbl_name	WHERE	key_col	<=>	NULL;

SELECT	*	FROM	tbl_name

		WHERE	key_col=const1	OR	key_col=const2	OR	key_col	IS	NULL;

If	a	WHERE	clause	includes	a	col_name	IS	NULL	condition	for	a	column	that	is
declared	as	NOT	NULL,	that	expression	is	optimized	away.	This	optimization	does
not	occur	in	cases	when	the	column	might	produce	NULL	anyway;	for	example,	if
it	comes	from	a	table	on	the	right	side	of	a	LEFT	JOIN.

MySQL	can	also	optimize	the	combination	col_name	=	expr	AND	col_name	IS
NULL,	a	form	that	is	common	in	resolved	subqueries.	EXPLAIN	shows
ref_or_null	when	this	optimization	is	used.

This	optimization	can	handle	one	IS	NULL	for	any	key	part.

Some	examples	of	queries	that	are	optimized,	assuming	that	there	is	an	index	on
columns	a	and	b	of	table	t2:

SELECT	*	FROM	t1	WHERE	t1.a=expr	OR	t1.a	IS	NULL;

SELECT	*	FROM	t1,	t2	WHERE	t1.a=t2.a	OR	t2.a	IS	NULL;

SELECT	*	FROM	t1,	t2

		WHERE	(t1.a=t2.a	OR	t2.a	IS	NULL)	AND	t2.b=t1.b;

SELECT	*	FROM	t1,	t2

		WHERE	t1.a=t2.a	AND	(t2.b=t1.b	OR	t2.b	IS	NULL);

SELECT	*	FROM	t1,	t2

		WHERE	(t1.a=t2.a	AND	t2.a	IS	NULL	AND	...)

		OR	(t1.a=t2.a	AND	t2.a	IS	NULL	AND	...);

ref_or_null	works	by	first	doing	a	read	on	the	reference	key,	and	then	a
separate	search	for	rows	with	a	NULL	key	value.

Note	that	the	optimization	can	handle	only	one	IS	NULL	level.	In	the	following
query,	MySQL	uses	key	lookups	only	on	the	expression	(t1.a=t2.a	AND	t2.a
IS	NULL)	and	is	not	able	to	use	the	key	part	on	b:

SELECT	*	FROM	t1,	t2

		WHERE	(t1.a=t2.a	AND	t2.a	IS	NULL)

		OR	(t1.b=t2.b	AND	t2.b	IS	NULL);

7.2.8.	DISTINCT	Optimization

DISTINCT	combined	with	ORDER	BY	needs	a	temporary	table	in	many	cases.

Because	DISTINCT	may	use	GROUP	BY,	you	should	be	aware	of	how	MySQL
works	with	columns	in	ORDER	BY	or	HAVING	clauses	that	are	not	part	of	the
selected	columns.	See	Section	12.10.3,	“GROUP	BY	and	HAVING	with	Hidden
Fields”.

In	most	cases,	a	DISTINCT	clause	can	be	considered	as	a	special	case	of	GROUP
BY.	For	example,	the	following	two	queries	are	equivalent:

SELECT	DISTINCT	c1,	c2,	c3	FROM	t1	WHERE	c1	>	const;

SELECT	c1,	c2,	c3	FROM	t1	WHERE	c1	>	const	GROUP	BY	c1,	c2,	c3;

Due	to	this	equivalence,	the	optimizations	applicable	to	GROUP	BY	queries	can	be
also	applied	to	queries	with	a	DISTINCT	clause.	Thus,	for	more	details	on	the
optimization	possibilities	for	DISTINCT	queries,	see	Section	7.2.13,	“GROUP	BY
Optimization”.

When	combining	LIMIT	row_count	with	DISTINCT,	MySQL	stops	as	soon	as	it
finds	row_count	unique	rows.

If	you	do	not	use	columns	from	all	tables	named	in	a	query,	MySQL	stops
scanning	any	unused	tables	as	soon	as	it	finds	the	first	match.	In	the	following
case,	assuming	that	t1	is	used	before	t2	(which	you	can	check	with	EXPLAIN),
MySQL	stops	reading	from	t2	(for	any	particular	row	in	t1)	when	it	finds	the
first	row	in	t2:

SELECT	DISTINCT	t1.a	FROM	t1,	t2	where	t1.a=t2.a;

7.2.9.	LEFT	JOIN	and	RIGHT	JOIN	Optimization

MySQL	implements	an	A	LEFT	JOIN	B	join_condition	as	follows:

Table	B	is	set	to	depend	on	table	A	and	all	tables	on	which	A	depends.

Table	A	is	set	to	depend	on	all	tables	(except	B)	that	are	used	in	the	LEFT
JOIN	condition.

The	LEFT	JOIN	condition	is	used	to	decide	how	to	retrieve	rows	from	table
B.	(In	other	words,	any	condition	in	the	WHERE	clause	is	not	used.)

All	standard	join	optimizations	are	performed,	with	the	exception	that	a
table	is	always	read	after	all	tables	on	which	it	depends.	If	there	is	a	circular
dependence,	MySQL	issues	an	error.

All	standard	WHERE	optimizations	are	performed.

If	there	is	a	row	in	A	that	matches	the	WHERE	clause,	but	there	is	no	row	in	B
that	matches	the	ON	condition,	an	extra	B	row	is	generated	with	all	columns
set	to	NULL.

If	you	use	LEFT	JOIN	to	find	rows	that	do	not	exist	in	some	table	and	you
have	the	following	test:	col_name	IS	NULL	in	the	WHERE	part,	where
col_name	is	a	column	that	is	declared	as	NOT	NULL,	MySQL	stops	searching
for	more	rows	(for	a	particular	key	combination)	after	it	has	found	one	row
that	matches	the	LEFT	JOIN	condition.

The	implementation	of	RIGHT	JOIN	is	analogous	to	that	of	LEFT	JOIN	with	the
roles	of	the	tables	reversed.

The	join	optimizer	calculates	the	order	in	which	tables	should	be	joined.	The
table	read	order	forced	by	LEFT	JOIN	or	STRAIGHT_JOIN	helps	the	join	optimizer
do	its	work	much	more	quickly,	because	there	are	fewer	table	permutations	to
check.	Note	that	this	means	that	if	you	do	a	query	of	the	following	type,	MySQL
does	a	full	scan	on	b	because	the	LEFT	JOIN	forces	it	to	be	read	before	d:

SELECT	*

		FROM	a	JOIN	b	LEFT	JOIN	c	ON	(c.key=a.key)	LEFT	JOIN	d	ON	(d.key=a.key)

		WHERE	b.key=d.key;

The	fix	in	this	case	is	reverse	the	order	in	which	a	and	b	are	listed	in	the	FROM
clause:

SELECT	*

		FROM	b	JOIN	a	LEFT	JOIN	c	ON	(c.key=a.key)	LEFT	JOIN	d	ON	(d.key=a.key)

		WHERE	b.key=d.key;

For	a	LEFT	JOIN,	if	the	WHERE	condition	is	always	false	for	the	generated	NULL
row,	the	LEFT	JOIN	is	changed	to	a	normal	join.	For	example,	the	WHERE	clause
would	be	false	in	the	following	query	if	t2.column1	were	NULL:

SELECT	*	FROM	t1	LEFT	JOIN	t2	ON	(column1)	WHERE	t2.column2=5;

Therefore,	it	is	safe	to	convert	the	query	to	a	normal	join:

SELECT	*	FROM	t1,	t2	WHERE	t2.column2=5	AND	t1.column1=t2.column1;

This	can	be	made	faster	because	MySQL	can	use	table	t2	before	table	t1	if
doing	so	would	result	in	a	better	query	plan.	To	force	a	specific	table	order,	use
STRAIGHT_JOIN.

7.2.10.	Nested	Join	Optimization

As	of	MySQL	5.0.1,	the	syntax	for	expressing	joins	allows	nested	joins.	The
following	discussion	refers	to	the	join	syntax	described	in	Section	13.2.7.1,
“JOIN	Syntax”.

The	syntax	of	table_factor	is	extended	in	comparison	with	the	SQL	Standard.
The	latter	accepts	only	table_reference,	not	a	list	of	them	inside	a	pair	of
parentheses.	This	is	a	conservative	extension	if	we	consider	each	comma	in	a	list
of	table_reference	items	as	equivalent	to	an	inner	join.	For	example:

SELECT	*	FROM	t1	LEFT	JOIN	(t2,	t3,	t4)

																	ON	(t2.a=t1.a	AND	t3.b=t1.b	AND	t4.c=t1.c)

is	equivalent	to:

SELECT	*	FROM	t1	LEFT	JOIN	(t2	CROSS	JOIN	t3	CROSS	JOIN	t4)

																	ON	(t2.a=t1.a	AND	t3.b=t1.b	AND	t4.c=t1.c)

In	MySQL,	CROSS	JOIN	is	a	syntactic	equivalent	to	INNER	JOIN	(they	can
replace	each	other).	In	standard	SQL,	they	are	not	equivalent.	INNER	JOIN	is
used	with	an	ON	clause;	CROSS	JOIN	is	used	otherwise.

In	versions	of	MySQL	prior	to	5.0.1,	parentheses	in	table_references	were	just
omitted	and	all	join	operations	were	grouped	to	the	left.	In	general,	parentheses
can	be	ignored	in	join	expressions	containing	only	inner	join	operations.

After	removing	parentheses	and	grouping	operations	to	the	left,	the	join
expression:

t1	LEFT	JOIN	(t2	LEFT	JOIN	t3	ON	t2.b=t3.b	OR	t2.b	IS	NULL)

			ON	t1.a=t2.a

transforms	into	the	expression:

(t1	LEFT	JOIN	t2	ON	t1.a=t2.a)	LEFT	JOIN	t3

				ON	t2.b=t3.b	OR	t2.b	IS	NULL

Yet,	the	two	expressions	are	not	equivalent.	To	see	this,	suppose	that	the	tables
t1,	t2,	and	t3	have	the	following	state:

Table	t1	contains	rows	(1),	(2)

Table	t2	contains	row	(1,101)

Table	t3	contains	row	(101)

In	this	case,	the	first	expression	returns	a	result	set	including	the	rows
(1,1,101,101),	(2,NULL,NULL,NULL),	whereas	the	second	expression	returns
the	rows	(1,1,101,101),	(2,NULL,NULL,101):

mysql>	SELECT	*

				->	FROM	t1

				->						LEFT	JOIN

				->						(t2	LEFT	JOIN	t3	ON	t2.b=t3.b	OR	t2.b	IS	NULL)

				->						ON	t1.a=t2.a;

+------+------+------+------+

|	a				|	a				|	b				|	b				|

+------+------+------+------+

|				1	|				1	|		101	|		101	|

|				2	|	NULL	|	NULL	|	NULL	|

+------+------+------+------+

mysql>	SELECT	*

				->	FROM	(t1	LEFT	JOIN	t2	ON	t1.a=t2.a)

				->						LEFT	JOIN	t3

				->						ON	t2.b=t3.b	OR	t2.b	IS	NULL;

+------+------+------+------+

|	a				|	a				|	b				|	b				|

+------+------+------+------+

|				1	|				1	|		101	|		101	|

|				2	|	NULL	|	NULL	|		101	|

+------+------+------+------+

In	the	following	example,	an	outer	join	operation	is	used	together	with	an	inner
join	operation:

t1	LEFT	JOIN	(t2,	t3)	ON	t1.a=t2.a

That	expression	cannot	be	transformed	into	the	following	expression:

t1	LEFT	JOIN	t2	ON	t1.a=t2.a,	t3.

For	the	given	table	states,	the	two	expressions	return	different	sets	of	rows:

mysql>	SELECT	*

				->	FROM	t1	LEFT	JOIN	(t2,	t3)	ON	t1.a=t2.a;

+------+------+------+------+

|	a				|	a				|	b				|	b				|

+------+------+------+------+

|				1	|				1	|		101	|		101	|

|				2	|	NULL	|	NULL	|	NULL	|

+------+------+------+------+

mysql>	SELECT	*

				->	FROM	t1	LEFT	JOIN	t2	ON	t1.a=t2.a,	t3;

+------+------+------+------+

|	a				|	a				|	b				|	b				|

+------+------+------+------+

|				1	|				1	|		101	|		101	|

|				2	|	NULL	|	NULL	|		101	|

+------+------+------+------+

Therefore,	if	we	omit	parentheses	in	a	join	expression	with	outer	join	operators,
we	might	change	the	result	set	for	the	original	expression.

More	exactly,	we	cannot	ignore	parentheses	in	the	right	operand	of	the	left	outer
join	operation	and	in	the	left	operand	of	a	right	join	operation.	In	other	words,
we	cannot	ignore	parentheses	for	the	inner	table	expressions	of	outer	join

operations.	Parentheses	for	the	other	operand	(operand	for	the	outer	table)	can	be
ignored.

The	following	expression:

(t1,t2)	LEFT	JOIN	t3	ON	P(t2.b,t3.b)

is	equivalent	to	this	expression:

t1,	t2	LEFT	JOIN	t3	ON	P(t2.b,t3.b)

for	any	tables	t1,t2,t3	and	any	condition	P	over	attributes	t2.b	and	t3.b.

Whenever	the	order	of	execution	of	the	join	operations	in	a	join	expression
(join_table)	is	not	from	left	to	right,	we	talk	about	nested	joins.	Consider	the
following	queries:

SELECT	*	FROM	t1	LEFT	JOIN	(t2	LEFT	JOIN	t3	ON	t2.b=t3.b)	ON	t1.a=t2.a

		WHERE	t1.a	>	1

SELECT	*	FROM	t1	LEFT	JOIN	(t2,	t3)	ON	t1.a=t2.a

		WHERE	(t2.b=t3.b	OR	t2.b	IS	NULL)	AND	t1.a	>	1

Those	queries	are	considered	to	contain	these	nested	joins:

t2	LEFT	JOIN	t3	ON	t2.b=t3.b

t2,	t3

The	nested	join	is	formed	in	the	first	query	with	a	left	join	operation,	whereas	in
the	second	query	it	is	formed	with	an	inner	join	operation.

In	the	first	query,	the	parentheses	can	be	omitted:	The	grammatical	structure	of
the	join	expression	will	dictate	the	same	order	of	execution	for	join	operations.
For	the	second	query,	the	parentheses	cannot	be	omitted,	although	the	join
expression	here	can	be	interpreted	unambiguously	without	them.	(In	our
extended	syntax	the	parentheses	in	(t2,	t3)	of	the	second	query	are	required,
although	theoretically	the	query	could	be	parsed	without	them:	We	still	would
have	unambiguous	syntactical	structure	for	the	query	because	LEFT	JOIN	and	ON
would	play	the	role	of	the	left	and	right	delimiters	for	the	expression	(t2,t3).)

The	preceding	examples	demonstrate	these	points:

For	join	expressions	involving	only	inner	joins	(and	not	outer	joins),
parentheses	can	be	removed.	You	can	remove	parentheses	and	evaluate	left
to	right	(or,	in	fact,	you	can	evaluate	the	tables	in	any	order).

The	same	is	not	true,	in	general,	for	outer	joins	or	for	outer	joins	mixed
with	inner	joins.	Removal	of	parentheses	may	change	the	result.

Queries	with	nested	outer	joins	are	executed	in	the	same	pipeline	manner	as
queries	with	inner	joins.	More	exactly,	a	variation	of	the	nested-loop	join
algorithm	is	exploited.	Recall	by	what	algorithmic	schema	the	nested-loop	join
executes	a	query.	Suppose	that	we	have	a	join	query	over	3	tables	T1,T2,T3	of
the	form:

SELECT	*	FROM	T1	INNER	JOIN	T2	ON	P1(T1,T2)

																	INNER	JOIN	T3	ON	P2(T2,T3)

		WHERE	P(T1,T2,T3).

Here,	P1(T1,T2)	and	P2(T3,T3)	are	some	join	conditions	(on	expressions),
whereas	P(t1,t2,t3)	is	a	condition	over	columns	of	tables	T1,T2,T3.

The	nested-loop	join	algorithm	would	execute	this	query	in	the	following
manner:

FOR	each	row	t1	in	T1	{

		FOR	each	row	t2	in	T2	such	that	P1(t1,t2)	{

				FOR	each	row	t3	in	T3	such	that	P2(t2,t3)	{

						IF	P(t1,t2,t3)	{

									t:=t1||t2||t3;	OUTPUT	t;

						}

				}

		}

}

The	notation	t1||t2||t3	means	“a	row	constructed	by	concatenating	the
columns	of	rows	t1,	t2,	and	t3.”	In	some	of	the	following	examples,	NULL	where
a	row	name	appears	means	that	NULL	is	used	for	each	column	of	that	row.	For
example,	t1||t2||NULL	means	“a	row	constructed	by	concatenating	the	columns
of	rows	t1	and	t2,	and	NULL	for	each	column	of	t3.”

Now	let's	consider	a	query	with	nested	outer	joins:

SELECT	*	FROM	T1	LEFT	JOIN

														(T2	LEFT	JOIN	T3	ON	P2(T2,T3))

														ON	P1(T1,T2)

		WHERE	P(T1,T2,T3).

For	this	query,	we	modify	the	nested-loop	pattern	to	get:

FOR	each	row	t1	in	T1	{

		BOOL	f1:=FALSE;

		FOR	each	row	t2	in	T2	such	that	P1(t1,t2)	{

				BOOL	f2:=FALSE;

				FOR	each	row	t3	in	T3	such	that	P2(t2,t3)	{

						IF	P(t1,t2,t3)	{

								t:=t1||t2||t3;	OUTPUT	t;

						}

						f2=TRUE;

						f1=TRUE;

				}

				IF	(!f2)	{

						IF	P(t1,t2,NULL)	{

								t:=t1||t2||NULL;	OUTPUT	t;

						}

						f1=TRUE;

				}

		}

		IF	(!f1)	{

				IF	P(t1,NULL,NULL)	{

						t:=t1||NULL||NULL;	OUTPUT	t;

				}

		}

}

In	general,	for	any	nested	loop	for	the	first	inner	table	in	an	outer	join	operation,
a	flag	is	introduced	that	is	turned	off	before	the	loop	and	is	checked	after	the
loop.	The	flag	is	turned	on	when	for	the	current	row	from	the	outer	table	a	match
from	the	table	representing	the	inner	operand	is	found.	If	at	the	end	of	the	loop
cycle	the	flag	is	still	off,	no	match	has	been	found	for	the	current	row	of	the
outer	table.	In	this	case,	the	row	is	complemented	by	NULL	values	for	the
columns	of	the	inner	tables.	The	result	row	is	passed	to	the	final	check	for	the
output	or	into	the	next	nested	loop,	but	only	if	the	row	satisfies	the	join	condition
of	all	embedded	outer	joins.

In	our	example,	the	outer	join	table	expressed	by	the	following	expression	is
embedded:

(T2	LEFT	JOIN	T3	ON	P2(T2,T3))

Note	that	for	the	query	with	inner	joins,	the	optimizer	could	choose	a	different
order	of	nested	loops,	such	as	this	one:

FOR	each	row	t3	in	T3	{

		FOR	each	row	t2	in	T2	such	that	P2(t2,t3)	{

				FOR	each	row	t1	in	T1	such	that	P1(t1,t2)	{

						IF	P(t1,t2,t3)	{

									t:=t1||t2||t3;	OUTPUT	t;

						}

				}

		}

}

For	the	queries	with	outer	joins,	the	optimizer	can	choose	only	such	an	order
where	loops	for	outer	tables	precede	loops	for	inner	tables.	Thus,	for	our	query
with	outer	joins,	only	one	nesting	order	is	possible.	For	the	following	query,	the
optimizer	will	evaluate	two	different	nestings:

SELECT	*	T1	LEFT	JOIN	(T2,T3)	ON	P1(T1,T2)	AND	P2(T1,T3)

		WHERE	P(T1,T2,T3)

The	nestings	are	these:

FOR	each	row	t1	in	T1	{

		BOOL	f1:=FALSE;

		FOR	each	row	t2	in	T2	such	that	P1(t1,t2)	{

				FOR	each	row	t3	in	T3	such	that	P2(t1,t3)	{

						IF	P(t1,t2,t3)	{

								t:=t1||t2||t3;	OUTPUT	t;

						}

						f1:=TRUE

				}

		}

		IF	(!f1)	{

				IF	P(t1,NULL,NULL)	{

						t:=t1||NULL||NULL;	OUTPUT	t;

				}

		}

}

and:

FOR	each	row	t1	in	T1	{

		BOOL	f1:=FALSE;

		FOR	each	row	t3	in	T3	such	that	P2(t1,t3)	{

				FOR	each	row	t2	in	T2	such	that	P1(t1,t2)	{

						IF	P(t1,t2,t3)	{

								t:=t1||t2||t3;	OUTPUT	t;

						}

						f1:=TRUE

				}

		}

		IF	(!f1)	{

				IF	P(t1,NULL,NULL)	{

						t:=t1||NULL||NULL;	OUTPUT	t;

				}

		}

}

In	both	nestings,	T1	must	be	processed	in	the	outer	loop	because	it	is	used	in	an
outer	join.	T2	and	T3	are	used	in	an	inner	join,	so	that	join	must	be	processed	in
the	inner	loop.	However,	because	the	join	is	an	inner	join,	T2	and	T3	can	be
processed	in	either	order.

When	discussing	the	nested-loop	algorithm	for	inner	joins,	we	omitted	some
details	whose	impact	on	the	performance	of	query	execution	may	be	huge.	We
did	not	mention	so-called	“pushed-down”	conditions.	Suppose	that	our	WHERE
condition	P(T1,T2,T3)	can	be	represented	by	a	conjunctive	formula:

P(T1,T2,T2)	=	C1(T1)	AND	C2(T2)	AND	C3(T3).

In	this	case,	MySQL	actually	uses	the	following	nested-loop	schema	for	the
execution	of	the	query	with	inner	joins:

FOR	each	row	t1	in	T1	such	that	C1(t1)	{

		FOR	each	row	t2	in	T2	such	that	P1(t1,t2)	AND	C2(t2)		{

				FOR	each	row	t3	in	T3	such	that	P2(t2,t3)	AND	C3(t3)	{

						IF	P(t1,t2,t3)	{

									t:=t1||t2||t3;	OUTPUT	t;

						}

				}

		}

}

You	see	that	each	of	the	conjuncts	C1(T1),	C2(T2),	C3(T3)	are	pushed	out	of	the
most	inner	loop	to	the	most	outer	loop	where	it	can	be	evaluated.	If	C1(T1)	is	a
very	restrictive	condition,	this	condition	pushdown	may	greatly	reduce	the
number	of	rows	from	table	T1	passed	to	the	inner	loops.	As	a	result,	the
execution	time	for	the	query	may	improve	immensely.

For	a	query	with	outer	joins,	the	WHERE	condition	is	to	be	checked	only	after	it

has	been	found	that	the	current	row	from	the	outer	table	has	a	match	in	the	inner
tables.	Thus,	the	optimization	of	pushing	conditions	out	of	the	inner	nested	loops
cannot	be	applied	directly	to	queries	with	outer	joins.	Here	we	have	to	introduce
conditional	pushed-down	predicates	guarded	by	the	flags	that	are	turned	on
when	a	match	has	been	encountered.

For	our	example	with	outer	joins	with:

P(T1,T2,T3)=C1(T1)	AND	C(T2)	AND	C3(T3)

the	nested-loop	schema	using	guarded	pushed-down	conditions	looks	like	this:

FOR	each	row	t1	in	T1	such	that	C1(t1)	{

		BOOL	f1:=FALSE;

		FOR	each	row	t2	in	T2

						such	that	P1(t1,t2)	AND	(f1?C2(t2):TRUE)	{

				BOOL	f2:=FALSE;

				FOR	each	row	t3	in	T3

								such	that	P2(t2,t3)	AND	(f1&&f2?C3(t3):TRUE)	{

						IF	(f1&&f2?TRUE:(C2(t2)	AND	C3(t3)))	{

								t:=t1||t2||t3;	OUTPUT	t;

						}

						f2=TRUE;

						f1=TRUE;

				}

				IF	(!f2)	{

						IF	(f1?TRUE:C2(t2)	&&	P(t1,t2,NULL))	{

								t:=t1||t2||NULL;	OUTPUT	t;

						}

						f1=TRUE;

				}

		}

		IF	(!f1	&&	P(t1,NULL,NULL))	{

						t:=t1||NULL||NULL;	OUTPUT	t;

		}

}

In	general,	pushed-down	predicates	can	be	extracted	from	join	conditions	such
as	P1(T1,T2)	and	P(T2,T3).	In	this	case,	a	pushed-down	predicate	is	guarded
also	by	a	flag	that	prevents	checking	the	predicate	for	the	NULL-complemented
row	generated	by	the	corresponding	outer	join	operation.

Note	that	access	by	key	from	one	inner	table	to	another	in	the	same	nested	join	is
prohibited	if	it	is	induced	by	a	predicate	from	the	WHERE	condition.	(We	could	use
conditional	key	access	in	this	case,	but	this	technique	is	not	employed	yet	in

MySQL	5.0.)

7.2.11.	Outer	Join	Simplification

Table	expressions	in	the	FROM	clause	of	a	query	are	simplified	in	many	cases.

At	the	parser	stage,	queries	with	right	outer	joins	operations	are	converted	to
equivalent	queries	containing	only	left	join	operations.	In	the	general	case,	the
conversion	is	performed	according	to	the	following	rule:

(T1,	...)	RIGHT	JOIN	(T2,...)	ON	P(T1,...,T2,...)	=

(T2,	...)	LEFT	JOIN	(T1,...)	ON	P(T1,...,T2,...)

All	inner	join	expressions	of	the	form	T1	INNER	JOIN	T2	ON	P(T1,T2)	are
replaced	by	the	list	T1,T2,	P(T1,T2)	being	joined	as	a	conjunct	to	the	WHERE
condition	(or	to	the	join	condition	of	the	embedding	join,	if	there	is	any).

When	the	optimizer	evaluates	plans	for	join	queries	with	outer	join	operation,	it
takes	into	consideration	only	the	plans	where,	for	each	such	operation,	the	outer
tables	are	accessed	before	the	inner	tables.	The	optimizer	options	are	limited
because	only	such	plans	enables	us	to	execute	queries	with	outer	joins	operations
by	the	nested	loop	schema.

Suppose	that	we	have	a	query	of	the	form:

SELECT	*	T1	LEFT	JOIN	T2	ON	P1(T1,T2)

		WHERE	P(T1,T2)	AND	R(T2)

with	R(T2)	narrowing	greatly	the	number	of	matching	rows	from	table	T2.	If	we
executed	the	query	as	it	is,	the	optimizer	would	have	no	other	choice	besides	to
access	table	T1	before	table	T2	that	may	lead	to	a	very	inefficient	execution	plan.

Fortunately,	MySQL	converts	such	a	query	into	a	query	without	an	outer	join
operation	if	the	WHERE	condition	is	null-rejected.	A	condition	is	called	null-
rejected	for	an	outer	join	operation	if	it	evaluates	to	FALSE	or	to	UNKNOWN	for	any
NULL-complemented	row	built	for	the	operation.

Thus,	for	this	outer	join:

T1	LEFT	JOIN	T2	ON	T1.A=T2.A

Conditions	such	as	these	are	null-rejected:

T2.B	IS	NOT	NULL,

T2.B	>	3,

T2.C	<=	T1.C,

T2.B	<	2	OR	T2.C	>	1

Conditions	such	as	these	are	not	null-rejected:

T2.B	IS	NULL,

T1.B	<	3	OR	T2.B	IS	NOT	NULL,

T1.B	<	3	OR	T2.B	>	3

The	general	rules	for	checking	whether	a	condition	is	null-rejected	for	an	outer
join	operation	are	simple.	A	condition	is	null-rejected	in	the	following	cases:

If	it	is	of	the	form	A	IS	NOT	NULL,	where	A	is	an	attribute	of	any	of	the
inner	tables

If	it	is	a	predicate	containing	a	reference	to	an	inner	table	that	evaluates	to
UNKNOWN	when	one	of	its	arguments	is	NULL

If	it	is	a	conjunction	containing	a	null-rejected	condition	as	a	conjunct

If	it	is	a	disjunction	of	null-rejected	conditions

A	condition	can	be	null-rejected	for	one	outer	join	operation	in	a	query	and	not
null-rejected	for	another.	In	the	query:

SELECT	*	FROM	T1	LEFT	JOIN	T2	ON	T2.A=T1.A

																	LEFT	JOIN	T3	ON	T3.B=T1.B

		WHERE	T3.C	>	0

the	WHERE	condition	is	null-rejected	for	the	second	outer	join	operation	but	is	not
null-rejected	for	the	first	one.

If	the	WHERE	condition	is	null-rejected	for	an	outer	join	operation	in	a	query,	the
outer	join	operation	is	replaced	by	an	inner	join	operation.

For	example,	the	preceding	query	is	replaced	with	the	query:

SELECT	*	FROM	T1	LEFT	JOIN	T2	ON	T2.A=T1.A

																	INNER	JOIN	T3	ON	T3.B=T1.B

		WHERE	T3.C	>	0

For	the	original	query,	the	optimizer	would	evaluate	plans	compatible	with	only
one	access	order	T1,T2,T3.	For	the	replacing	query,	it	additionally	considers	the
access	sequence	T3,T1,T2.

A	conversion	of	one	outer	join	operation	may	trigger	a	conversion	of	another.
Thus,	the	query:

SELECT	*	FROM	T1	LEFT	JOIN	T2	ON	T2.A=T1.A

																	LEFT	JOIN	T3	ON	T3.B=T2.B

		WHERE	T3.C	>	0

will	be	first	converted	to	the	query:

SELECT	*	FROM	T1	LEFT	JOIN	T2	ON	T2.A=T1.A

																	INNER	JOIN	T3	ON	T3.B=T2.B

		WHERE	T3.C	>	0

which	is	equivalent	to	the	query:

SELECT	*	FROM	(T1	LEFT	JOIN	T2	ON	T2.A=T1.A),	T3

		WHERE	T3.C	>	0	AND	T3.B=T2.B

Now	the	remaining	outer	join	operation	can	be	replaced	by	an	inner	join,	too,
because	the	condition	T3.B=T2.B	is	null-rejected	and	we	get	a	query	without
outer	joins	at	all:

SELECT	*	FROM	(T1	INNER	JOIN	T2	ON	T2.A=T1.A),	T3

		WHERE	T3.C	>	0	AND	T3.B=T2.B

Sometimes	we	succeed	in	replacing	an	embedded	outer	join	operation,	but
cannot	convert	the	embedding	outer	join.	The	following	query:

SELECT	*	FROM	T1	LEFT	JOIN

														(T2	LEFT	JOIN	T3	ON	T3.B=T2.B)

														ON	T2.A=T1.A

		WHERE	T3.C	>	0

is	converted	to:

SELECT	*	FROM	T1	LEFT	JOIN

														(T2	INNER	JOIN	T3	ON	T3.B=T2.B)

														ON	T2.A=T1.A

		WHERE	T3.C	>	0,

That	can	be	rewritten	only	to	the	form	still	containing	the	embedding	outer	join
operation:

SELECT	*	FROM	T1	LEFT	JOIN

														(T2,T3)

														ON	(T2.A=T1.A	AND	T3.B=T2.B)

		WHERE	T3.C	>	0.

When	trying	to	convert	an	embedded	outer	join	operation	in	a	query,	we	must
take	into	account	the	join	condition	for	the	embedding	outer	join	together	with
the	WHERE	condition.	In	the	query:

SELECT	*	FROM	T1	LEFT	JOIN

														(T2	LEFT	JOIN	T3	ON	T3.B=T2.B)

														ON	T2.A=T1.A	AND	T3.C=T1.C

		WHERE	T3.D	>	0	OR	T1.D	>	0

the	WHERE	condition	is	not	null-rejected	for	the	embedded	outer	join,	but	the	join
condition	of	the	embedding	outer	join	T2.A=T1.A	AND	T3.C=T1.C	is	null-
rejected.	So	the	query	can	be	converted	to:

SELECT	*	FROM	T1	LEFT	JOIN

														(T2,	T3)

														ON	T2.A=T1.A	AND	T3.C=T1.C	AND	T3.B=T2.B

		WHERE	T3.D	>	0	OR	T1.D	>	0

The	algorithm	that	converts	outer	join	operations	into	inner	joins	was
implemented	in	full	measure,	as	it	has	been	described	here,	in	MySQL	5.0.1.
MySQL	4.1	performs	only	some	simple	conversions.

7.2.12.	ORDER	BY	Optimization

In	some	cases,	MySQL	can	use	an	index	to	satisfy	an	ORDER	BY	clause	without
doing	any	extra	sorting.

The	index	can	also	be	used	even	if	the	ORDER	BY	does	not	match	the	index
exactly,	as	long	as	all	of	the	unused	portions	of	the	index	and	all	the	extra	ORDER
BY	columns	are	constants	in	the	WHERE	clause.	The	following	queries	use	the
index	to	resolve	the	ORDER	BY	part:

SELECT	*	FROM	t1	

		ORDER	BY	key_part1,key_part2,...	;

				

SELECT	*	FROM	t1	

		WHERE	key_part1=constant	

		ORDER	BY	key_part2;

				

SELECT	*	FROM	t1	

		ORDER	BY	key_part1	DESC,	key_part2	DESC;

				

SELECT	*	FROM	t1

		WHERE	key_part1=1	

		ORDER	BY	key_part1	DESC,	key_part2	DESC;

In	some	cases,	MySQL	cannot	use	indexes	to	resolve	the	ORDER	BY,	although	it
still	uses	indexes	to	find	the	rows	that	match	the	WHERE	clause.	These	cases
include	the	following:

You	use	ORDER	BY	on	different	keys:

SELECT	*	FROM	t1	ORDER	BY	key1,	key2;

You	use	ORDER	BY	on	non-consecutive	parts	of	a	key:

SELECT	*	FROM	t1	WHERE	key2=constant	ORDER	BY	key_part2;

You	mix	ASC	and	DESC:

SELECT	*	FROM	t1	ORDER	BY	key_part1	DESC,	key_part2	ASC;

The	key	used	to	fetch	the	rows	is	not	the	same	as	the	one	used	in	the	ORDER
BY:

SELECT	*	FROM	t1	WHERE	key2=constant	ORDER	BY	key1;

You	are	joining	many	tables,	and	the	columns	in	the	ORDER	BY	are	not	all
from	the	first	non-constant	table	that	is	used	to	retrieve	rows.	(This	is	the
first	table	in	the	EXPLAIN	output	that	does	not	have	a	const	join	type.)

You	have	different	ORDER	BY	and	GROUP	BY	expressions.

The	type	of	table	index	used	does	not	store	rows	in	order.	For	example,	this
is	true	for	a	HASH	index	in	a	MEMORY	table.

With	EXPLAIN	SELECT	...	ORDER	BY,	you	can	check	whether	MySQL	can	use

indexes	to	resolve	the	query.	It	cannot	if	you	see	Using	filesort	in	the	Extra
column.	See	Section	7.2.1,	“Optimizing	Queries	with	EXPLAIN”.

A	filesort	optimization	is	used	that	records	not	only	the	sort	key	value	and	row
position,	but	the	columns	required	for	the	query	as	well.	This	avoids	reading	the
rows	twice.	The	filesort	algorithm	works	like	this:

1.	 Read	the	rows	that	match	the	WHERE	clause.

2.	 For	each	row,	record	a	tuple	of	values	consisting	of	the	sort	key	value	and
row	position,	and	also	the	columns	required	for	the	query.

3.	 Sort	the	tuples	by	sort	key	value

4.	 Retrieve	the	rows	in	sorted	order,	but	read	the	required	columns	directly
from	the	sorted	tuples	rather	than	by	accessing	the	table	a	second	time.

This	algorithm	represents	a	significant	improvement	over	that	used	in	some
older	versions	of	MySQL.

To	avoid	a	slowdown,	this	optimization	is	used	only	if	the	total	size	of	the	extra
columns	in	the	sort	tuple	does	not	exceed	the	value	of	the
max_length_for_sort_data	system	variable.	(A	symptom	of	setting	the	value	of
this	variable	too	high	is	that	you	should	see	high	disk	activity	and	low	CPU
activity.)

If	you	want	to	increase	ORDER	BY	speed,	check	whether	you	can	get	MySQL	to
use	indexes	rather	than	an	extra	sorting	phase.	If	this	is	not	possible,	you	can	try
the	following	strategies:

Increase	the	size	of	the	sort_buffer_size	variable.

Increase	the	size	of	the	read_rnd_buffer_size	variable.

Change	tmpdir	to	point	to	a	dedicated	filesystem	with	large	amounts	of
empty	space.	This	option	accepts	several	paths	that	are	used	in	round-robin
fashion.	Paths	should	be	separated	by	colon	characters	(‘:’)	on	Unix	and
semicolon	characters	(‘;’)	on	Windows,	NetWare,	and	OS/2.	You	can	use
this	feature	to	spread	the	load	across	several	directories.	Note:	The	paths
should	be	for	directories	in	filesystems	that	are	located	on	different	physical

disks,	not	different	partitions	on	the	same	disk.

By	default,	MySQL	sorts	all	GROUP	BY	col1,	col2,	...	queries	as	if	you	specified
ORDER	BY	col1,	col2,	...	in	the	query	as	well.	If	you	include	an	ORDER	BY	clause
explicitly	that	contains	the	same	column	list,	MySQL	optimizes	it	away	without
any	speed	penalty,	although	the	sorting	still	occurs.	If	a	query	includes	GROUP	BY
but	you	want	to	avoid	the	overhead	of	sorting	the	result,	you	can	suppress
sorting	by	specifying	ORDER	BY	NULL.	For	example:

INSERT	INTO	foo

SELECT	a,	COUNT(*)	FROM	bar	GROUP	BY	a	ORDER	BY	NULL;

7.2.13.	GROUP	BY	Optimization

The	most	general	way	to	satisfy	a	GROUP	BY	clause	is	to	scan	the	whole	table	and
create	a	new	temporary	table	where	all	rows	from	each	group	are	consecutive,
and	then	use	this	temporary	table	to	discover	groups	and	apply	aggregate
functions	(if	any).	In	some	cases,	MySQL	is	able	to	do	much	better	than	that	and
to	avoid	creation	of	temporary	tables	by	using	index	access.

The	most	important	preconditions	for	using	indexes	for	GROUP	BY	are	that	all
GROUP	BY	columns	reference	attributes	from	the	same	index,	and	that	the	index
stores	its	keys	in	order	(for	example,	this	is	a	BTREE	index	and	not	a	HASH	index).
Whether	use	of	temporary	tables	can	be	replaced	by	index	access	also	depends
on	which	parts	of	an	index	are	used	in	a	query,	the	conditions	specified	for	these
parts,	and	the	selected	aggregate	functions.

There	are	two	ways	to	execute	a	GROUP	BY	query	via	index	access,	as	detailed	in
the	following	sections.	In	the	first	method,	the	grouping	operation	is	applied
together	with	all	range	predicates	(if	any).	The	second	method	first	performs	a
range	scan,	and	then	groups	the	resulting	tuples.

7.2.13.1.	Loose	index	scan

The	most	efficient	way	to	process	GROUP	BY	is	when	the	index	is	used	to	directly
retrieve	the	group	fields.	With	this	access	method,	MySQL	uses	the	property	of
some	index	types	that	the	keys	are	ordered	(for	example,	BTREE).	This	property
enables	use	of	lookup	groups	in	an	index	without	having	to	consider	all	keys	in
the	index	that	satisfy	all	WHERE	conditions.	This	access	method	considers	only	a

fraction	of	the	keys	in	an	index,	so	it	is	called	a	loose	index	scan.	When	there	is
no	WHERE	clause,	a	loose	index	scan	reads	as	many	keys	as	the	number	of	groups,
which	may	be	a	much	smaller	number	than	that	of	all	keys.	If	the	WHERE	clause
contains	range	predicates	(see	the	discussion	of	the	range	join	type	in
Section	7.2.1,	“Optimizing	Queries	with	EXPLAIN”),	a	loose	index	scan	looks	up
the	first	key	of	each	group	that	satisfies	the	range	conditions,	and	again	reads	the
least	possible	number	of	keys.	This	is	possible	under	the	following	conditions:

The	query	is	over	a	single	table.

The	GROUP	BY	includes	the	first	consecutive	parts	of	the	index.	(If,	instead
of	GROUP	BY,	the	query	has	a	DISTINCT	clause,	all	distinct	attributes	refer	to
the	beginning	of	the	index.)

The	only	aggregate	functions	used	(if	any)	are	MIN()	and	MAX(),	and	all	of
them	refer	to	the	same	column.

Any	other	parts	of	the	index	than	those	from	the	GROUP	BY	referenced	in	the
query	must	be	constants	(that	is,	they	must	be	referenced	in	equalities	with
constants),	except	for	the	argument	of	MIN()	or	MAX()	functions.

The	EXPLAIN	output	for	such	queries	shows	Using	index	for	group-by	in	the
Extra	column.

The	following	queries	fall	into	this	category,	assuming	that	there	is	an	index
idx(c1,c2,c3)	on	table	t1(c1,c2,c3,c4):

SELECT	c1,	c2	FROM	t1	GROUP	BY	c1,	c2;

SELECT	DISTINCT	c1,	c2	FROM	t1;

SELECT	c1,	MIN(c2)	FROM	t1	GROUP	BY	c1;

SELECT	c1,	c2	FROM	t1	WHERE	c1	<	const	GROUP	BY	c1,	c2;

SELECT	MAX(c3),	MIN(c3),	c1,	c2	FROM	t1	WHERE	c2	>	const	GROUP	BY	c1,	c2;

SELECT	c2	FROM	t1	WHERE	c1	<	const	GROUP	BY	c1,	c2;

SELECT	c1,	c2	FROM	t1	WHERE	c3	=	const	GROUP	BY	c1,	c2;

The	following	queries	cannot	be	executed	with	this	quick	select	method,	for	the
reasons	given:

There	are	aggregate	functions	other	than	MIN()	or	MAX(),	for	example:

SELECT	c1,	SUM(c2)	FROM	t1	GROUP	BY	c1;

The	fields	in	the	GROUP	BY	clause	do	not	refer	to	the	beginning	of	the	index,
as	shown	here:

SELECT	c1,c2	FROM	t1	GROUP	BY	c2,	c3;

The	query	refers	to	a	part	of	a	key	that	comes	after	the	GROUP	BY	part,	and
for	which	there	is	no	equality	with	a	constant,	an	example	being:

SELECT	c1,c3	FROM	t1	GROUP	BY	c1,	c2;

7.2.13.2.	Tight	index	scan

A	tight	index	scan	may	be	either	a	full	index	scan	or	a	range	index	scan,
depending	on	the	query	conditions.

When	the	conditions	for	a	loose	index	scan	are	not	met,	it	is	still	possible	to
avoid	creation	of	temporary	tables	for	GROUP	BY	queries.	If	there	are	range
conditions	in	the	WHERE	clause,	this	method	reads	only	the	keys	that	satisfy	these
conditions.	Otherwise,	it	performs	an	index	scan.	Because	this	method	reads	all
keys	in	each	range	defined	by	the	WHERE	clause,	or	scans	the	whole	index	if	there
are	no	range	conditions,	we	term	it	a	tight	index	scan.	Notice	that	with	a	tight
index	scan,	the	grouping	operation	is	performed	only	after	all	keys	that	satisfy
the	range	conditions	have	been	found.

For	this	method	to	work,	it	is	sufficient	that	there	is	a	constant	equality	condition
for	all	columns	in	a	query	referring	to	parts	of	the	key	coming	before	or	in
between	parts	of	the	GROUP	BY	key.	The	constants	from	the	equality	conditions
fill	in	any	“gaps”	in	the	search	keys	so	that	it	is	possible	to	form	complete
prefixes	of	the	index.	These	index	prefixes	then	can	be	used	for	index	lookups.	If
we	require	sorting	of	the	GROUP	BY	result,	and	it	is	possible	to	form	search	keys
that	are	prefixes	of	the	index,	MySQL	also	avoids	extra	sorting	operations
because	searching	with	prefixes	in	an	ordered	index	already	retrieves	all	the	keys
in	order.

The	following	queries	do	not	work	with	the	loose	index	scan	access	method
described	earlier,	but	still	work	with	the	tight	index	scan	access	method
(assuming	that	there	is	an	index	idx(c1,c2,c3)	on	table	t1(c1,c2,c3,c4)).

There	is	a	gap	in	the	GROUP	BY,	but	it	is	covered	by	the	condition	c2	=	'a':

SELECT	c1,	c2,	c3	FROM	t1	WHERE	c2	=	'a'	GROUP	BY	c1,	c3;

The	GROUP	BY	does	not	begin	with	the	first	part	of	the	key,	but	there	is	a
condition	that	provides	a	constant	for	that	part:

SELECT	c1,	c2,	c3	FROM	t1	WHERE	c1	=	'a'	GROUP	BY	c2,	c3;

7.2.14.	LIMIT	Optimization

In	some	cases,	MySQL	handles	a	query	differently	when	you	are	using	LIMIT
row_count	and	not	using	HAVING:

If	you	are	selecting	only	a	few	rows	with	LIMIT,	MySQL	uses	indexes	in
some	cases	when	normally	it	would	prefer	to	do	a	full	table	scan.

If	you	use	LIMIT	row_count	with	ORDER	BY,	MySQL	ends	the	sorting	as
soon	as	it	has	found	the	first	row_count	rows	of	the	sorted	result,	rather
than	sorting	the	entire	result.	If	ordering	is	done	by	using	an	index,	this	is
very	fast.	If	a	filesort	must	be	done,	all	rows	that	match	the	query	without
the	LIMIT	clause	must	be	selected,	and	most	or	all	of	them	must	be	sorted,
before	it	can	be	ascertained	that	the	first	row_count	rows	have	been	found.
In	either	case,	after	the	initial	rows	have	been	found,	there	is	no	need	to	sort
any	remainder	of	the	result	set,	and	MySQL	does	not	do	so.

When	combining	LIMIT	row_count	with	DISTINCT,	MySQL	stops	as	soon
as	it	finds	row_count	unique	rows.

In	some	cases,	a	GROUP	BY	can	be	resolved	by	reading	the	key	in	order	(or
doing	a	sort	on	the	key)	and	then	calculating	summaries	until	the	key	value
changes.	In	this	case,	LIMIT	row_count	does	not	calculate	any	unnecessary
GROUP	BY	values.

As	soon	as	MySQL	has	sent	the	required	number	of	rows	to	the	client,	it
aborts	the	query	unless	you	are	using	SQL_CALC_FOUND_ROWS.

LIMIT	0	quickly	returns	an	empty	set.	This	can	be	useful	for	checking	the
validity	of	a	query.	When	using	one	of	the	MySQL	APIs,	it	can	also	be
employed	for	obtaining	the	types	of	the	result	columns.	(This	trick	does	not
work	in	the	MySQL	Monitor	(the	mysql	program),	which	merely	displays
Empty	set	in	such	cases;	you	should	instead	use	SHOW	COLUMNS	or

DESCRIBE	for	this	purpose.)

When	the	server	uses	temporary	tables	to	resolve	the	query,	it	uses	the
LIMIT	row_count	clause	to	calculate	how	much	space	is	required.

7.2.15.	How	to	Avoid	Table	Scans

The	output	from	EXPLAIN	shows	ALL	in	the	type	column	when	MySQL	uses	a
table	scan	to	resolve	a	query.	This	usually	happens	under	the	following
conditions:

The	table	is	so	small	that	it	is	faster	to	perform	a	table	scan	than	to	bother
with	a	key	lookup.	This	is	common	for	tables	with	fewer	than	10	rows	and	a
short	row	length.

There	are	no	usable	restrictions	in	the	ON	or	WHERE	clause	for	indexed
columns.

You	are	comparing	indexed	columns	with	constant	values	and	MySQL	has
calculated	(based	on	the	index	tree)	that	the	constants	cover	too	large	a	part
of	the	table	and	that	a	table	scan	would	be	faster.	See	Section	7.2.4,	“WHERE
Clause	Optimization”.

You	are	using	a	key	with	low	cardinality	(many	rows	match	the	key	value)
through	another	column.	In	this	case,	MySQL	assumes	that	by	using	the
key	it	probably	will	do	many	key	lookups	and	that	a	table	scan	would	be
faster.

For	small	tables,	a	table	scan	often	is	appropriate	and	the	performance	impact	is
negligible.	For	large	tables,	try	the	following	techniques	to	avoid	having	the
optimizer	incorrectly	choose	a	table	scan:

Use	ANALYZE	TABLE	tbl_name	to	update	the	key	distributions	for	the
scanned	table.	See	Section	13.5.2.1,	“ANALYZE	TABLE	Syntax”.

Use	FORCE	INDEX	for	the	scanned	table	to	tell	MySQL	that	table	scans	are
very	expensive	compared	to	using	the	given	index:

SELECT	*	FROM	t1,	t2	FORCE	INDEX	(index_for_column)

		WHERE	t1.col_name=t2.col_name;

See	Section	13.2.7,	“SELECT	Syntax”.

Start	mysqld	with	the	--max-seeks-for-key=1000	option	or	use	SET
max_seeks_for_key=1000	to	tell	the	optimizer	to	assume	that	no	key	scan
causes	more	than	1,000	key	seeks.	See	Section	5.2.2,	“Server	System
Variables”.

7.2.16.	Speed	of	INSERT	Statements

The	time	required	for	inserting	a	row	is	determined	by	the	following	factors,
where	the	numbers	indicate	approximate	proportions:

Connecting:	(3)

Sending	query	to	server:	(2)

Parsing	query:	(2)

Inserting	row:	(1	×	size	of	row)

Inserting	indexes:	(1	×	number	of	indexes)

Closing:	(1)

This	does	not	take	into	consideration	the	initial	overhead	to	open	tables,	which	is
done	once	for	each	concurrently	running	query.

The	size	of	the	table	slows	down	the	insertion	of	indexes	by	log	N,	assuming	B-
tree	indexes.

You	can	use	the	following	methods	to	speed	up	inserts:

If	you	are	inserting	many	rows	from	the	same	client	at	the	same	time,	use
INSERT	statements	with	multiple	VALUES	lists	to	insert	several	rows	at	a
time.	This	is	considerably	faster	(many	times	faster	in	some	cases)	than
using	separate	single-row	INSERT	statements.	If	you	are	adding	data	to	a
non-empty	table,	you	can	tune	the	bulk_insert_buffer_size	variable	to
make	data	insertion	even	faster.	See	Section	5.2.2,	“Server	System
Variables”.

If	you	are	inserting	a	lot	of	rows	from	different	clients,	you	can	get	higher
speed	by	using	the	INSERT	DELAYED	statement.	See	Section	13.2.4.2,
“INSERT	DELAYED	Syntax”.

For	a	MyISAM	table,	you	can	use	concurrent	inserts	to	add	rows	at	the	same
time	that	SELECT	statements	are	running	if	there	are	no	deleted	rows	in
middle	of	the	table.	See	Section	7.3.3,	“Concurrent	Inserts”.

When	loading	a	table	from	a	text	file,	use	LOAD	DATA	INFILE.	This	is
usually	20	times	faster	than	using	INSERT	statements.	See	Section	13.2.5,
“LOAD	DATA	INFILE	Syntax”.

With	some	extra	work,	it	is	possible	to	make	LOAD	DATA	INFILE	run	even
faster	for	a	MyISAM	table	when	the	table	has	many	indexes.	Use	the
following	procedure:

1.	 Optionally	create	the	table	with	CREATE	TABLE.

2.	 Execute	a	FLUSH	TABLES	statement	or	a	mysqladmin	flush-tables
command.

3.	 Use	myisamchk	--keys-used=0	-rq	/path/to/db/tbl_name.	This
removes	all	use	of	indexes	for	the	table.

4.	 Insert	data	into	the	table	with	LOAD	DATA	INFILE.	This	does	not	update
any	indexes	and	therefore	is	very	fast.

5.	 If	you	intend	only	to	read	from	the	table	in	the	future,	use
myisampack	to	compress	it.	See	Section	14.1.3.3,	“Compressed	Table
Characteristics”.

6.	 Re-create	the	indexes	with	myisamchk	-rq	/path/to/db/tbl_name.
This	creates	the	index	tree	in	memory	before	writing	it	to	disk,	which
is	much	faster	that	updating	the	index	during	LOAD	DATA	INFILE
because	it	avoids	lots	of	disk	seeks.	The	resulting	index	tree	is	also
perfectly	balanced.

7.	 Execute	a	FLUSH	TABLES	statement	or	a	mysqladmin	flush-tables
command.

Note	that	LOAD	DATA	INFILE	performs	the	preceding	optimization
automatically	if	the	MyISAM	table	into	which	you	insert	data	is	empty.	The
main	difference	is	that	you	can	let	myisamchk	allocate	much	more
temporary	memory	for	the	index	creation	than	you	might	want	the	server	to
allocate	for	index	re-creation	when	it	executes	the	LOAD	DATA	INFILE
statement.

You	can	also	disable	or	enable	the	indexes	for	a	MyISAM	table	by	using	the
following	statements	rather	than	myisamchk.	If	you	use	these	statements,
you	can	skip	the	FLUSH	TABLE	operations:

ALTER	TABLE	tbl_name	DISABLE	KEYS;

ALTER	TABLE	tbl_name	ENABLE	KEYS;

To	speed	up	INSERT	operations	that	are	performed	with	multiple	statements
for	non-transactional	tables,	lock	your	tables:

LOCK	TABLES	a	WRITE;

INSERT	INTO	a	VALUES	(1,23),(2,34),(4,33);

INSERT	INTO	a	VALUES	(8,26),(6,29);

...

UNLOCK	TABLES;

This	benefits	performance	because	the	index	buffer	is	flushed	to	disk	only
once,	after	all	INSERT	statements	have	completed.	Normally,	there	would	be
as	many	index	buffer	flushes	as	there	are	INSERT	statements.	Explicit
locking	statements	are	not	needed	if	you	can	insert	all	rows	with	a	single
INSERT.

To	obtain	faster	insertions,	for	transactional	tables,	you	should	use	START
TRANSACTION	and	COMMIT	instead	of	LOCK	TABLES.

Locking	also	lowers	the	total	time	for	multiple-connection	tests,	although
the	maximum	wait	time	for	individual	connections	might	go	up	because
they	wait	for	locks.	For	example:

1.	 Connection	1	does	1000	inserts

2.	 Connections	2,	3,	and	4	do	1	insert

3.	 Connection	5	does	1000	inserts

If	you	do	not	use	locking,	connections	2,	3,	and	4	finish	before	1	and	5.	If
you	use	locking,	connections	2,	3,	and	4	probably	do	not	finish	before	1	or
5,	but	the	total	time	should	be	about	40%	faster.

INSERT,	UPDATE,	and	DELETE	operations	are	very	fast	in	MySQL,	but	you
can	obtain	better	overall	performance	by	adding	locks	around	everything
that	does	more	than	about	five	inserts	or	updates	in	a	row.	If	you	do	very
many	inserts	in	a	row,	you	could	do	a	LOCK	TABLES	followed	by	an	UNLOCK
TABLES	once	in	a	while	(each	1,000	rows	or	so)	to	allow	other	threads
access	to	the	table.	This	would	still	result	in	a	nice	performance	gain.

INSERT	is	still	much	slower	for	loading	data	than	LOAD	DATA	INFILE,	even
when	using	the	strategies	just	outlined.

To	increase	performance	for	MyISAM	tables,	for	both	LOAD	DATA	INFILE	and
INSERT,	enlarge	the	key	cache	by	increasing	the	key_buffer_size	system
variable.	See	Section	7.5.2,	“Tuning	Server	Parameters”.

7.2.17.	Speed	of	UPDATE	Statements

An	update	statement	is	optimized	like	a	SELECT	query	with	the	additional
overhead	of	a	write.	The	speed	of	the	write	depends	on	the	amount	of	data	being
updated	and	the	number	of	indexes	that	are	updated.	Indexes	that	are	not
changed	do	not	get	updated.

Another	way	to	get	fast	updates	is	to	delay	updates	and	then	do	many	updates	in
a	row	later.	Performing	multiple	updates	together	is	much	quicker	than	doing
one	at	a	time	if	you	lock	the	table.

For	a	MyISAM	table	that	uses	dynamic	row	format,	updating	a	row	to	a	longer
total	length	may	split	the	row.	If	you	do	this	often,	it	is	very	important	to	use
OPTIMIZE	TABLE	occasionally.	See	Section	13.5.2.5,	“OPTIMIZE	TABLE	Syntax”.

7.2.18.	Speed	of	DELETE	Statements

The	time	required	to	delete	individual	rows	is	exactly	proportional	to	the	number
of	indexes.	To	delete	rows	more	quickly,	you	can	increase	the	size	of	the	key
cache	by	increasing	the	key_buffer_size	system	variable.	See	Section	7.5.2,
“Tuning	Server	Parameters”.

To	delete	all	rows	from	a	table,	TRUNCATE	TABLE	tbl_name	if	faster	than	than
DELETE	FROM	tbl_name.	See	Section	13.2.9,	“TRUNCATE	Syntax”.

7.2.19.	Other	Optimization	Tips

This	section	lists	a	number	of	miscellaneous	tips	for	improving	query	processing
speed:

Use	persistent	connections	to	the	database	to	avoid	connection	overhead.	If
you	cannot	use	persistent	connections	and	you	are	initiating	many	new
connections	to	the	database,	you	may	want	to	change	the	value	of	the
thread_cache_size	variable.	See	Section	7.5.2,	“Tuning	Server
Parameters”.

Always	check	whether	all	your	queries	really	use	the	indexes	that	you	have
created	in	the	tables.	In	MySQL,	you	can	do	this	with	the	EXPLAIN
statement.	See	Section	7.2.1,	“Optimizing	Queries	with	EXPLAIN”.

Try	to	avoid	complex	SELECT	queries	on	MyISAM	tables	that	are	updated
frequently,	to	avoid	problems	with	table	locking	that	occur	due	to
contention	between	readers	and	writers.

With	MyISAM	tables	that	have	no	deleted	rows	in	the	middle,	you	can	insert
rows	at	the	end	at	the	same	time	that	another	query	is	reading	from	the
table.	If	it	is	important	to	be	able	to	do	this,	you	should	consider	using	the
table	in	ways	that	avoid	deleting	rows.	Another	possibility	is	to	run
OPTIMIZE	TABLE	to	defragment	the	table	after	you	have	deleted	a	lot	of
rows	from	it.	See	Section	14.1,	“The	MyISAM	Storage	Engine”.

To	fix	any	compression	issues	that	may	have	occurred	with	ARCHIVE	tables,
you	can	use	OPTIMIZE	TABLE.	See	Section	14.8,	“The	ARCHIVE	Storage
Engine”.

Use	ALTER	TABLE	...	ORDER	BY	expr1,	expr2,	...	if	you	usually	retrieve
rows	in	expr1,	expr2,	...	order.	By	using	this	option	after	extensive	changes
to	the	table,	you	may	be	able	to	get	higher	performance.

In	some	cases,	it	may	make	sense	to	introduce	a	column	that	is	“hashed”
based	on	information	from	other	columns.	If	this	column	is	short	and

reasonably	unique,	it	may	be	much	faster	than	a	“wide”	index	on	many
columns.	In	MySQL,	it	is	very	easy	to	use	this	extra	column:

SELECT	*	FROM	tbl_name

		WHERE	hash_col=MD5(CONCAT(col1,col2))

		AND	col1='constant'	AND	col2='constant';

For	MyISAM	tables	that	change	frequently,	you	should	try	to	avoid	all
variable-length	columns	(VARCHAR,	BLOB,	and	TEXT).	The	table	uses	dynamic
row	format	if	it	includes	even	a	single	variable-length	column.	See
Chapter	14,	Storage	Engines	and	Table	Types.

It	is	normally	not	useful	to	split	a	table	into	different	tables	just	because	the
rows	become	large.	In	accessing	a	row,	the	biggest	performance	hit	is	the
disk	seek	needed	to	find	the	first	byte	of	the	row.	After	finding	the	data,
most	modern	disks	can	read	the	entire	row	fast	enough	for	most
applications.	The	only	cases	where	splitting	up	a	table	makes	an	appreciable
difference	is	if	it	is	a	MyISAM	table	using	dynamic	row	format	that	you	can
change	to	a	fixed	row	size,	or	if	you	very	often	need	to	scan	the	table	but	do
not	need	most	of	the	columns.	See	Chapter	14,	Storage	Engines	and	Table
Types.

If	you	often	need	to	calculate	results	such	as	counts	based	on	information
from	a	lot	of	rows,	it	may	be	preferable	to	introduce	a	new	table	and	update
the	counter	in	real	time.	An	update	of	the	following	form	is	very	fast:

UPDATE	tbl_name	SET	count_col=count_col+1	WHERE	key_col=constant

This	is	very	important	when	you	use	MySQL	storage	engines	such	as
MyISAM	that	has	only	table-level	locking	(multiple	readers	with	single
writers).	This	also	gives	better	performance	with	most	database	systems,
because	the	row	locking	manager	in	this	case	has	less	to	do.

If	you	need	to	collect	statistics	from	large	log	tables,	use	summary	tables
instead	of	scanning	the	entire	log	table.	Maintaining	the	summaries	should
be	much	faster	than	trying	to	calculate	statistics	“live.”	Regenerating	new
summary	tables	from	the	logs	when	things	change	(depending	on	business
decisions)	is	faster	than	changing	the	running	application.

If	possible,	you	should	classify	reports	as	“live”	or	as	“statistical,”	where
data	needed	for	statistical	reports	is	created	only	from	summary	tables	that

are	generated	periodically	from	the	live	data.

Take	advantage	of	the	fact	that	columns	have	default	values.	Insert	values
explicitly	only	when	the	value	to	be	inserted	differs	from	the	default.	This
reduces	the	parsing	that	MySQL	must	do	and	improves	the	insert	speed.

In	some	cases,	it	is	convenient	to	pack	and	store	data	into	a	BLOB	column.	In
this	case,	you	must	provide	code	in	your	application	to	pack	and	unpack
information,	but	this	may	save	a	lot	of	accesses	at	some	stage.	This	is
practical	when	you	have	data	that	does	not	conform	well	to	a	rows-and-
columns	table	structure.

Normally,	you	should	try	to	keep	all	data	non-redundant	(observing	what	is
referred	to	in	database	theory	as	third	normal	form).	However,	there	may	be
situations	in	which	it	can	be	advantageous	to	duplicate	information	or
create	summary	tables	to	gain	more	speed.

Stored	routines	or	UDFs	(user-defined	functions)	may	be	a	good	way	to
gain	performance	for	some	tasks.	See	Chapter	17,	Stored	Procedures	and
Functions,	and	Section	24.2,	“Adding	New	Functions	to	MySQL”,	for	more
information.

You	can	always	gain	something	by	caching	queries	or	answers	in	your
application	and	then	performing	many	inserts	or	updates	together.	If	your
database	system	supports	table	locks	(as	do	MySQL	and	Oracle),	this
should	help	to	ensure	that	the	index	cache	is	only	flushed	once	after	all
updates.	You	can	also	take	advantage	of	MySQL's	query	cache	to	achieve
similar	results;	see	Section	5.14,	“The	MySQL	Query	Cache”.

Use	INSERT	DELAYED	when	you	do	not	need	to	know	when	your	data	is
written.	This	reduces	the	overall	insertion	impact	because	many	rows	can
be	written	with	a	single	disk	write.

Use	INSERT	LOW_PRIORITY	when	you	want	to	give	SELECT	statements
higher	priority	than	your	inserts.

Use	SELECT	HIGH_PRIORITY	to	get	retrievals	that	jump	the	queue.	That	is,
the	SELECT	is	executed	even	if	there	is	another	client	waiting	to	do	a	write.

Use	multiple-row	INSERT	statements	to	store	many	rows	with	one	SQL

statement.	Many	SQL	servers	support	this,	including	MySQL.

Use	LOAD	DATA	INFILE	to	load	large	amounts	of	data.	This	is	faster	than
using	INSERT	statements.

Use	AUTO_INCREMENT	columns	to	generate	unique	values.

Use	OPTIMIZE	TABLE	once	in	a	while	to	avoid	fragmentation	with	dynamic-
format	MyISAM	tables.	See	Section	14.1.3,	“MyISAM	Table	Storage	Formats”.

Use	MEMORY	(HEAP)	tables	when	possible	to	get	more	speed.	See
Section	14.4,	“The	MEMORY	(HEAP)	Storage	Engine”.	MEMORY	tables	are	useful
for	non-critical	data	that	is	accessed	often,	such	as	information	about	the
last	displayed	banner	for	users	who	don't	have	cookies	enabled	in	their	Web
browser.	User	sessions	are	another	alternative	available	in	many	Web
application	environments	for	handling	volatile	state	data.

With	Web	servers,	images	and	other	binary	assets	should	normally	be	stored
as	files.	That	is,	store	only	a	reference	to	the	file	rather	than	the	file	itself	in
the	database.	Most	Web	servers	are	better	at	caching	files	than	database
contents,	so	using	files	is	generally	faster.

Columns	with	identical	information	in	different	tables	should	be	declared	to
have	identical	data	types	so	that	joins	based	on	the	corresponding	columns
will	be	faster.

Try	to	keep	column	names	simple.	For	example,	in	a	table	named	customer,
use	a	column	name	of	name	instead	of	customer_name.	To	make	your	names
portable	to	other	SQL	servers,	you	should	keep	them	shorter	than	18
characters.

If	you	need	really	high	speed,	you	should	take	a	look	at	the	low-level
interfaces	for	data	storage	that	the	different	SQL	servers	support.	For
example,	by	accessing	the	MySQL	MyISAM	storage	engine	directly,	you
could	get	a	speed	increase	of	two	to	five	times	compared	to	using	the	SQL
interface.	To	be	able	to	do	this,	the	data	must	be	on	the	same	server	as	the
application,	and	usually	it	should	only	be	accessed	by	one	process	(because
external	file	locking	is	really	slow).	One	could	eliminate	these	problems	by
introducing	low-level	MyISAM	commands	in	the	MySQL	server	(this	could
be	one	easy	way	to	get	more	performance	if	needed).	By	carefully

designing	the	database	interface,	it	should	be	quite	easy	to	support	this	type
of	optimization.

If	you	are	using	numerical	data,	it	is	faster	in	many	cases	to	access
information	from	a	database	(using	a	live	connection)	than	to	access	a	text
file.	Information	in	the	database	is	likely	to	be	stored	in	a	more	compact
format	than	in	the	text	file,	so	accessing	it	involves	fewer	disk	accesses.
You	also	save	code	in	your	application	because	you	need	not	parse	your	text
files	to	find	line	and	column	boundaries.

Replication	can	provide	a	performance	benefit	for	some	operations.	You
can	distribute	client	retrievals	among	replication	servers	to	split	up	the	load.
To	avoid	slowing	down	the	master	while	making	backups,	you	can	make
backups	using	a	slave	server.	See	Chapter	6,	Replication.

Declaring	a	MyISAM	table	with	the	DELAY_KEY_WRITE=1	table	option	makes
index	updates	faster	because	they	are	not	flushed	to	disk	until	the	table	is
closed.	The	downside	is	that	if	something	kills	the	server	while	such	a	table
is	open,	you	should	ensure	that	the	table	is	okay	by	running	the	server	with
the	--myisam-recover	option,	or	by	running	myisamchk	before	restarting
the	server.	(However,	even	in	this	case,	you	should	not	lose	anything	by
using	DELAY_KEY_WRITE,	because	the	key	information	can	always	be
generated	from	the	data	rows.)

7.3.	Locking	Issues

7.3.1.	Locking	Methods

MySQL	uses	table-level	locking	for	MyISAM	and	MEMORY	tables,	page-level
locking	for	BDB	tables,	and	row-level	locking	for	InnoDB	tables.

In	many	cases,	you	can	make	an	educated	guess	about	which	locking	type	is	best
for	an	application,	but	generally	it	is	difficult	to	say	that	a	given	lock	type	is
better	than	another.	Everything	depends	on	the	application	and	different	parts	of
an	application	may	require	different	lock	types.

To	decide	whether	you	want	to	use	a	storage	engine	with	row-level	locking,	you
should	look	at	what	your	application	does	and	what	mix	of	select	and	update
statements	it	uses.	For	example,	most	Web	applications	perform	many	selects,
relatively	few	deletes,	updates	based	mainly	on	key	values,	and	inserts	into	a	few
specific	tables.	The	base	MySQL	MyISAM	setup	is	very	well	tuned	for	this.

Table	locking	in	MySQL	is	deadlock-free	for	storage	engines	that	use	table-level
locking.	Deadlock	avoidance	is	managed	by	always	requesting	all	needed	locks
at	once	at	the	beginning	of	a	query	and	always	locking	the	tables	in	the	same
order.

The	table-locking	method	MySQL	uses	for	WRITE	locks	works	as	follows:

If	there	are	no	locks	on	the	table,	put	a	write	lock	on	it.

Otherwise,	put	the	lock	request	in	the	write	lock	queue.

The	table-locking	method	MySQL	uses	for	READ	locks	works	as	follows:

If	there	are	no	write	locks	on	the	table,	put	a	read	lock	on	it.

Otherwise,	put	the	lock	request	in	the	read	lock	queue.

When	a	lock	is	released,	the	lock	is	made	available	to	the	threads	in	the	write
lock	queue	and	then	to	the	threads	in	the	read	lock	queue.	This	means	that	if	you
have	many	updates	for	a	table,	SELECT	statements	wait	until	there	are	no	more

updates.

You	can	analyze	the	table	lock	contention	on	your	system	by	checking	the
Table_locks_waited	and	Table_locks_immediate	status	variables:

mysql>	SHOW	STATUS	LIKE	'Table%';

+-----------------------+---------+

|	Variable_name									|	Value			|

+-----------------------+---------+

|	Table_locks_immediate	|	1151552	|

|	Table_locks_waited				|	15324			|

+-----------------------+---------+

If	a	MyISAM	table	contains	no	free	blocks	in	the	middle,	rows	always	are	inserted
at	the	end	of	the	data	file.	In	this	case,	you	can	freely	mix	concurrent	INSERT	and
SELECT	statements	for	a	MyISAM	table	without	locks.	That	is,	you	can	insert	rows
into	a	MyISAM	table	at	the	same	time	other	clients	are	reading	from	it.	(Holes	can
result	from	rows	having	been	deleted	from	or	updated	in	the	middle	of	the	table.
If	there	are	holes,	concurrent	inserts	are	disabled	but	are	re-enabled
automatically	when	all	holes	have	been	filled	with	new	data.)

If	you	want	to	perform	many	INSERT	and	SELECT	operations	on	a	table	when
concurrent	inserts	are	not	possible,	you	can	insert	rows	in	a	temporary	table	and
update	the	real	table	with	the	rows	from	the	temporary	table	once	in	a	while.
This	can	be	done	with	the	following	code:

mysql>	LOCK	TABLES	real_table	WRITE,	insert_table	WRITE;

mysql>	INSERT	INTO	real_table	SELECT	*	FROM	insert_table;

mysql>	TRUNCATE	TABLE	insert_table;

mysql>	UNLOCK	TABLES;

InnoDB	uses	row	locks	and	BDB	uses	page	locks.	For	these	two	storage	engines,
deadlocks	are	possible	because	they	automatically	acquire	locks	during	the
processing	of	SQL	statements,	not	at	the	start	of	the	transaction.

Advantages	of	row-level	locking:

Fewer	lock	conflicts	when	accessing	different	rows	in	many	threads.

Fewer	changes	for	rollbacks.

Possible	to	lock	a	single	row	for	a	long	time.

Disadvantages	of	row-level	locking:

Requires	more	memory	than	page-level	or	table-level	locks.

Slower	than	page-level	or	table-level	locks	when	used	on	a	large	part	of	the
table	because	you	must	acquire	many	more	locks.

Definitely	much	slower	than	other	locks	if	you	often	do	GROUP	BY
operations	on	a	large	part	of	the	data	or	if	you	must	scan	the	entire	table
frequently.

Table	locks	are	superior	to	page-level	or	row-level	locks	in	the	following	cases:

Most	statements	for	the	table	are	reads.

A	mix	of	reads	and	writes,	where	writes	are	updates	or	deletes	for	a	single
row	that	can	be	fetched	with	one	key	read:

UPDATE	tbl_name	SET	column=value	WHERE	unique_key_col=key_value;

DELETE	FROM	tbl_name	WHERE	unique_key_col=key_value;

SELECT	combined	with	concurrent	INSERT	statements,	and	very	few	UPDATE
or	DELETE	statements.

Many	scans	or	GROUP	BY	operations	on	the	entire	table	without	any	writers.

With	higher-level	locks,	you	can	more	easily	tune	applications	by	supporting
locks	of	different	types,	because	the	lock	overhead	is	less	than	for	row-level
locks.

Options	other	than	row-level	or	page-level	locking:

Versioning	(such	as	that	used	in	MySQL	for	concurrent	inserts)	where	it	is
possible	to	have	one	writer	at	the	same	time	as	many	readers.	This	means
that	the	database	or	table	supports	different	views	for	the	data	depending	on
when	access	begins.	Other	common	terms	for	this	are	“time	travel,”	“copy
on	write,”	or	“copy	on	demand.”

Copy	on	demand	is	in	many	cases	superior	to	page-level	or	row-level
locking.	However,	in	the	worst	case,	it	can	use	much	more	memory	than
using	normal	locks.

Instead	of	using	row-level	locks,	you	can	employ	application-level	locks,
such	as	GET_LOCK()	and	RELEASE_LOCK()	in	MySQL.	These	are	advisory
locks,	so	they	work	only	in	well-behaved	applications.	(See	Section	12.9.4,
“Miscellaneous	Functions”.)

7.3.2.	Table	Locking	Issues

To	achieve	a	very	high	lock	speed,	MySQL	uses	table	locking	(instead	of	page,
row,	or	column	locking)	for	all	storage	engines	except	InnoDB	and	BDB.

For	InnoDB	and	BDB	tables,	MySQL	uses	only	table	locking	if	you	explicitly	lock
the	table	with	LOCK	TABLES.	For	these	storage	engines,	we	recommend	that	you
not	use	LOCK	TABLES	at	all,	because	InnoDB	uses	automatic	row-level	locking
and	BDB	uses	page-level	locking	to	ensure	transaction	isolation.

For	large	tables,	table	locking	is	much	better	than	row	locking	for	most
applications,	but	there	are	some	pitfalls:

Table	locking	enables	many	threads	to	read	from	a	table	at	the	same	time,
but	if	a	thread	wants	to	write	to	a	table,	it	must	first	get	exclusive	access.
During	the	update,	all	other	threads	that	want	to	access	this	particular	table
must	wait	until	the	update	is	done.

Table	updates	normally	are	considered	to	be	more	important	than	table
retrievals,	so	they	are	given	higher	priority.	This	should	ensure	that	updates
to	a	table	are	not	“starved”	even	if	there	is	heavy	SELECT	activity	for	the
table.

Table	locking	causes	problems	in	cases	such	as	when	a	thread	is	waiting
because	the	disk	is	full	and	free	space	needs	to	become	available	before	the
thread	can	proceed.	In	this	case,	all	threads	that	want	to	access	the	problem
table	are	also	put	in	a	waiting	state	until	more	disk	space	is	made	available.

Table	locking	is	also	disadvantageous	under	the	following	scenario:

A	client	issues	a	SELECT	that	takes	a	long	time	to	run.

Another	client	then	issues	an	UPDATE	on	the	same	table.	This	client	waits
until	the	SELECT	is	finished.

Another	client	issues	another	SELECT	statement	on	the	same	table.	Because
UPDATE	has	higher	priority	than	SELECT,	this	SELECT	waits	for	the	UPDATE	to
finish,	and	for	the	first	SELECT	to	finish.

The	following	items	describe	some	ways	to	avoid	or	reduce	contention	caused
by	table	locking:

Try	to	get	the	SELECT	statements	to	run	faster	so	that	they	lock	tables	for	a
shorter	time.	You	might	have	to	create	some	summary	tables	to	do	this.

Start	mysqld	with	--low-priority-updates.	This	gives	all	statements	that
update	(modify)	a	table	lower	priority	than	SELECT	statements.	In	this	case,
the	second	SELECT	statement	in	the	preceding	scenario	would	execute
before	the	UPDATE	statement,	and	would	not	need	to	wait	for	the	first	SELECT
to	finish.

You	can	specify	that	all	updates	issued	in	a	specific	connection	should	be
done	with	low	priority	by	using	the	SET	LOW_PRIORITY_UPDATES=1
statement.	See	Section	13.5.3,	“SET	Syntax”.

You	can	give	a	specific	INSERT,	UPDATE,	or	DELETE	statement	lower	priority
with	the	LOW_PRIORITY	attribute.

You	can	give	a	specific	SELECT	statement	higher	priority	with	the
HIGH_PRIORITY	attribute.	See	Section	13.2.7,	“SELECT	Syntax”.

You	can	start	mysqld	with	a	low	value	for	the	max_write_lock_count
system	variable	to	force	MySQL	to	temporarily	elevate	the	priority	of	all
SELECT	statements	that	are	waiting	for	a	table	after	a	specific	number	of
inserts	to	the	table	occur.	This	allows	READ	locks	after	a	certain	number	of
WRITE	locks.

If	you	have	problems	with	INSERT	combined	with	SELECT,	you	might	want
to	consider	switching	to	MyISAM	tables,	which	support	concurrent	SELECT
and	INSERT	statements.	(See	Section	7.3.3,	“Concurrent	Inserts”.)

If	you	mix	inserts	and	deletes	on	the	same	table,	INSERT	DELAYED	may	be	of
great	help.	See	Section	13.2.4.2,	“INSERT	DELAYED	Syntax”.

If	you	have	problems	with	mixed	SELECT	and	DELETE	statements,	the	LIMIT

option	to	DELETE	may	help.	See	Section	13.2.1,	“DELETE	Syntax”.

Using	SQL_BUFFER_RESULT	with	SELECT	statements	can	help	to	make	the
duration	of	table	locks	shorter.	See	Section	13.2.7,	“SELECT	Syntax”.

You	could	change	the	locking	code	in	mysys/thr_lock.c	to	use	a	single
queue.	In	this	case,	write	locks	and	read	locks	would	have	the	same	priority,
which	might	help	some	applications.

Here	are	some	tips	concerning	table	locks	in	MySQL:

Concurrent	users	are	not	a	problem	if	you	do	not	mix	updates	with	selects
that	need	to	examine	many	rows	in	the	same	table.

You	can	use	LOCK	TABLES	to	increase	speed,	because	many	updates	within	a
single	lock	is	much	faster	than	updating	without	locks.	Splitting	table
contents	into	separate	tables	may	also	help.

If	you	encounter	speed	problems	with	table	locks	in	MySQL,	you	may	be
able	to	improve	performance	by	converting	some	of	your	tables	to	InnoDB
or	BDB	tables.	See	Section	14.2,	“The	InnoDB	Storage	Engine”,	and
Section	14.5,	“The	BDB	(BerkeleyDB)	Storage	Engine”.

7.3.3.	Concurrent	Inserts

For	a	MyISAM	table,	you	can	use	concurrent	inserts	to	add	rows	at	the	same	time
that	SELECT	statements	are	running	if	there	are	no	deleted	rows	in	middle	of	the
table.

Under	circumstances	where	concurrent	inserts	can	be	used,	there	is	seldom	any
need	to	use	the	DELAYED	modifier	for	INSERT	statements.	See	Section	13.2.4.2,
“INSERT	DELAYED	Syntax”.

If	you	are	using	the	binary	log,	concurrent	inserts	are	converted	to	normal	inserts
for	CREATE	...	SELECT	or	INSERT	...	SELECT	statements.	This	is	done	to
ensure	that	you	can	re-create	an	exact	copy	of	your	tables	by	applying	the	log
during	a	backup	operation.

With	LOAD	DATA	INFILE,	if	you	specify	CONCURRENT	with	a	MyISAM	table	that
satisfies	the	condition	for	concurrent	inserts	(that	is,	it	contains	no	free	blocks	in

the	middle),	other	threads	can	retrieve	data	from	the	table	while	LOAD	DATA	is
executing.	Using	this	option	affects	the	performance	of	LOAD	DATA	a	bit,	even	if
no	other	thread	is	using	the	table	at	the	same	time.

7.4.	Optimizing	Database	Structure

7.4.1.	Design	Choices

MySQL	keeps	row	data	and	index	data	in	separate	files.	Many	(almost	all)	other
database	systems	mix	row	and	index	data	in	the	same	file.	We	believe	that	the
MySQL	choice	is	better	for	a	very	wide	range	of	modern	systems.

Another	way	to	store	the	row	data	is	to	keep	the	information	for	each	column	in
a	separate	area	(examples	are	SDBM	and	Focus).	This	causes	a	performance	hit
for	every	query	that	accesses	more	than	one	column.	Because	this	degenerates	so
quickly	when	more	than	one	column	is	accessed,	we	believe	that	this	model	is
not	good	for	general-purpose	databases.

The	more	common	case	is	that	the	index	and	data	are	stored	together	(as	in
Oracle/Sybase,	et	al).	In	this	case,	you	find	the	row	information	at	the	leaf	page
of	the	index.	The	good	thing	with	this	layout	is	that	it,	in	many	cases,	depending
on	how	well	the	index	is	cached,	saves	a	disk	read.	The	bad	things	with	this
layout	are:

Table	scanning	is	much	slower	because	you	have	to	read	through	the
indexes	to	get	at	the	data.

You	cannot	use	only	the	index	table	to	retrieve	data	for	a	query.

You	use	more	space	because	you	must	duplicate	indexes	from	the	nodes
(you	cannot	store	the	row	in	the	nodes).

Deletes	degenerate	the	table	over	time	(because	indexes	in	nodes	are
usually	not	updated	on	delete).

It	is	more	difficult	to	cache	only	the	index	data.

7.4.2.	Make	Your	Data	as	Small	as	Possible

One	of	the	most	basic	optimizations	is	to	design	your	tables	to	take	as	little	space
on	the	disk	as	possible.	This	can	result	in	huge	improvements	because	disk	reads
are	faster,	and	smaller	tables	normally	require	less	main	memory	while	their

contents	are	being	actively	processed	during	query	execution.	Indexing	also	is	a
lesser	resource	burden	if	done	on	smaller	columns.

MySQL	supports	many	different	storage	engines	(table	types)	and	row	formats.
For	each	table,	you	can	decide	which	storage	and	indexing	method	to	use.
Choosing	the	proper	table	format	for	your	application	may	give	you	a	big
performance	gain.	See	Chapter	14,	Storage	Engines	and	Table	Types.

You	can	get	better	performance	for	a	table	and	minimize	storage	space	by	using
the	techniques	listed	here:

Use	the	most	efficient	(smallest)	data	types	possible.	MySQL	has	many
specialized	types	that	save	disk	space	and	memory.	For	example,	use	the
smaller	integer	types	if	possible	to	get	smaller	tables.	MEDIUMINT	is	often	a
better	choice	than	INT	because	a	MEDIUMINT	column	uses	25%	less	space.

Declare	columns	to	be	NOT	NULL	if	possible.	It	makes	everything	faster	and
you	save	one	bit	per	column.	If	you	really	need	NULL	in	your	application,
you	should	definitely	use	it.	Just	avoid	having	it	on	all	columns	by	default.

For	MyISAM	tables,	if	you	do	not	have	any	variable-length	columns
(VARCHAR,	TEXT,	or	BLOB	columns),	a	fixed-size	row	format	is	used.	This	is
faster	but	unfortunately	may	waste	some	space.	See	Section	14.1.3,	“MyISAM
Table	Storage	Formats”.	You	can	hint	that	you	want	to	have	fixed	length
rows	even	if	you	have	VARCHAR	columns	with	the	CREATE	TABLE	option
ROW_FORMAT=FIXED.

Starting	with	MySQL	5.0.3,	InnoDB	tables	use	a	more	compact	storage
format.	In	earlier	versions	of	MySQL,	InnoDB	rows	contain	some	redundant
information,	such	as	the	number	of	columns	and	the	length	of	each	column,
even	for	fixed-size	columns.	By	default,	tables	are	created	in	the	compact
format	(ROW_FORMAT=COMPACT).	If	you	wish	to	downgrade	to	older	versions
of	MySQL,	you	can	request	the	old	format	with	ROW_FORMAT=REDUNDANT.

The	compact	InnoDB	format	also	changes	how	CHAR	columns	containing
UTF-8	data	are	stored.	With	ROW_FORMAT=REDUNDANT,	a	UTF-8	CHAR(N)
occupies	3	×	N	bytes,	given	that	the	maximum	length	of	a	UTF-8	encoded
character	is	three	bytes.	Many	languages	can	be	written	primarily	using
single-byte	UTF-8	characters,	so	a	fixed	storage	length	often	wastes	space.
With	ROW_FORMAT=COMPACT	format,	InnoDB	allocates	a	variable	amount	of

storage	in	the	range	from	N	to	3	×	N	bytes	for	these	columns	by	stripping
trailing	spaces	if	necessary.	The	minimum	storage	length	is	kept	as	N	bytes
to	facilitate	in-place	updates	in	typical	cases.

The	primary	index	of	a	table	should	be	as	short	as	possible.	This	makes
identification	of	each	row	easy	and	efficient.

Create	only	the	indexes	that	you	really	need.	Indexes	are	good	for	retrieval
but	bad	when	you	need	to	store	data	quickly.	If	you	access	a	table	mostly	by
searching	on	a	combination	of	columns,	create	an	index	on	them.	The	first
part	of	the	index	should	be	the	column	most	used.	If	you	always	use	many
columns	when	selecting	from	the	table,	you	should	use	the	column	with
more	duplicates	first	to	obtain	better	compression	of	the	index.

If	it	is	very	likely	that	a	string	column	has	a	unique	prefix	on	the	first
number	of	characters,	it's	better	to	index	only	this	prefix,	using	MySQL's
support	for	creating	an	index	on	the	leftmost	part	of	the	column	(see
Section	13.1.4,	“CREATE	INDEX	Syntax”).	Shorter	indexes	are	faster,	not
only	because	they	require	less	disk	space,	but	because	they	give	also	you
more	hits	in	the	index	cache,	and	thus	fewer	disk	seeks.	See	Section	7.5.2,
“Tuning	Server	Parameters”.

In	some	circumstances,	it	can	be	beneficial	to	split	into	two	a	table	that	is
scanned	very	often.	This	is	especially	true	if	it	is	a	dynamic-format	table
and	it	is	possible	to	use	a	smaller	static	format	table	that	can	be	used	to	find
the	relevant	rows	when	scanning	the	table.

7.4.3.	Column	Indexes

All	MySQL	data	types	can	be	indexed.	Use	of	indexes	on	the	relevant	columns	is
the	best	way	to	improve	the	performance	of	SELECT	operations.

The	maximum	number	of	indexes	per	table	and	the	maximum	index	length	is
defined	per	storage	engine.	See	Chapter	14,	Storage	Engines	and	Table	Types.
All	storage	engines	support	at	least	16	indexes	per	table	and	a	total	index	length
of	at	least	256	bytes.	Most	storage	engines	have	higher	limits.

With	col_name(N)	syntax	in	an	index	specification,	you	can	create	an	index	that
uses	only	the	first	N	characters	of	a	string	column.	Indexing	only	a	prefix	of

column	values	in	this	way	can	make	the	index	file	much	smaller.	When	you
index	a	BLOB	or	TEXT	column,	you	must	specify	a	prefix	length	for	the	index.	For
example:

CREATE	TABLE	test	(blob_col	BLOB,	INDEX(blob_col(10)));

Prefixes	can	be	up	to	1000	bytes	long	(767	bytes	for	InnoDB	tables).	Note	that
prefix	limits	are	measured	in	bytes,	whereas	the	prefix	length	in	CREATE	TABLE
statements	is	interpreted	as	number	of	characters.	Be	sure	to	take	this	into
account	when	specifying	a	prefix	length	for	a	column	that	uses	a	multi-byte
character	set.

You	can	also	create	FULLTEXT	indexes.	These	are	used	for	full-text	searches.
Only	the	MyISAM	storage	engine	supports	FULLTEXT	indexes	and	only	for	CHAR,
VARCHAR,	and	TEXT	columns.	Indexing	always	takes	place	over	the	entire	column
and	partial	(column	prefix)	indexing	is	not	supported.	For	details,	see
Section	12.7,	“Full-Text	Search	Functions”.

You	can	also	create	indexes	on	spatial	data	types.	Currently,	only	MyISAM
supports	R-tree	indexes	on	spatial	types.	As	of	MySQL	5.0.16,	other	storage
engines	use	B-trees	for	indexing	spatial	types	(except	for	ARCHIVE	and
NDBCLUSTER,	which	do	not	support	spatial	type	indexing).

The	MEMORY	storage	engine	uses	HASH	indexes	by	default,	but	also	supports	BTREE
indexes.

7.4.4.	Multiple-Column	Indexes

MySQL	can	create	composite	indexes	(that	is,	indexes	on	multiple	columns).	An
index	may	consist	of	up	to	15	columns.	For	certain	data	types,	you	can	index	a
prefix	of	the	column	(see	Section	7.4.3,	“Column	Indexes”).

A	multiple-column	index	can	be	considered	a	sorted	array	containing	values	that
are	created	by	concatenating	the	values	of	the	indexed	columns.

MySQL	uses	multiple-column	indexes	in	such	a	way	that	queries	are	fast	when
you	specify	a	known	quantity	for	the	first	column	of	the	index	in	a	WHERE	clause,
even	if	you	do	not	specify	values	for	the	other	columns.

Suppose	that	a	table	has	the	following	specification:

CREATE	TABLE	test	(

				id									INT	NOT	NULL,

				last_name		CHAR(30)	NOT	NULL,

				first_name	CHAR(30)	NOT	NULL,

				PRIMARY	KEY	(id),

				INDEX	name	(last_name,first_name)

);

The	name	index	is	an	index	over	the	last_name	and	first_name	columns.	The
index	can	be	used	for	queries	that	specify	values	in	a	known	range	for
last_name,	or	for	both	last_name	and	first_name.	Therefore,	the	name	index	is
used	in	the	following	queries:

SELECT	*	FROM	test	WHERE	last_name='Widenius';

SELECT	*	FROM	test

		WHERE	last_name='Widenius'	AND	first_name='Michael';

SELECT	*	FROM	test

		WHERE	last_name='Widenius'

		AND	(first_name='Michael'	OR	first_name='Monty');

SELECT	*	FROM	test

		WHERE	last_name='Widenius'

		AND	first_name	>='M'	AND	first_name	<	'N';

However,	the	name	index	is	not	used	in	the	following	queries:

SELECT	*	FROM	test	WHERE	first_name='Michael';

SELECT	*	FROM	test

		WHERE	last_name='Widenius'	OR	first_name='Michael';

The	manner	in	which	MySQL	uses	indexes	to	improve	query	performance	is
discussed	further	in	Section	7.4.5,	“How	MySQL	Uses	Indexes”.

7.4.5.	How	MySQL	Uses	Indexes

Indexes	are	used	to	find	rows	with	specific	column	values	quickly.	Without	an
index,	MySQL	must	begin	with	the	first	row	and	then	read	through	the	entire
table	to	find	the	relevant	rows.	The	larger	the	table,	the	more	this	costs.	If	the
table	has	an	index	for	the	columns	in	question,	MySQL	can	quickly	determine
the	position	to	seek	to	in	the	middle	of	the	data	file	without	having	to	look	at	all
the	data.	If	a	table	has	1,000	rows,	this	is	at	least	100	times	faster	than	reading

sequentially.	If	you	need	to	access	most	of	the	rows,	it	is	faster	to	read
sequentially,	because	this	minimizes	disk	seeks.

Most	MySQL	indexes	(PRIMARY	KEY,	UNIQUE,	INDEX,	and	FULLTEXT)	are	stored
in	B-trees.	Exceptions	are	that	indexes	on	spatial	data	types	use	R-trees,	and	that
MEMORY	tables	also	support	hash	indexes.

Strings	are	automatically	prefix-	and	end-space	compressed.	See	Section	13.1.4,
“CREATE	INDEX	Syntax”.

In	general,	indexes	are	used	as	described	in	the	following	discussion.
Characteristics	specific	to	hash	indexes	(as	used	in	MEMORY	tables)	are	described
at	the	end	of	this	section.

MySQL	uses	indexes	for	these	operations:

To	find	the	rows	matching	a	WHERE	clause	quickly.

To	eliminate	rows	from	consideration.	If	there	is	a	choice	between	multiple
indexes,	MySQL	normally	uses	the	index	that	finds	the	smallest	number	of
rows.

To	retrieve	rows	from	other	tables	when	performing	joins.

To	find	the	MIN()	or	MAX()	value	for	a	specific	indexed	column	key_col.
This	is	optimized	by	a	preprocessor	that	checks	whether	you	are	using
WHERE	key_part_N	=	constant	on	all	key	parts	that	occur	before	key_col
in	the	index.	In	this	case,	MySQL	does	a	single	key	lookup	for	each	MIN()
or	MAX()	expression	and	replaces	it	with	a	constant.	If	all	expressions	are
replaced	with	constants,	the	query	returns	at	once.	For	example:

SELECT	MIN(key_part2),MAX(key_part2)

		FROM	tbl_name	WHERE	key_part1=10;

To	sort	or	group	a	table	if	the	sorting	or	grouping	is	done	on	a	leftmost
prefix	of	a	usable	key	(for	example,	ORDER	BY	key_part1,	key_part2).	If
all	key	parts	are	followed	by	DESC,	the	key	is	read	in	reverse	order.	See
Section	7.2.12,	“ORDER	BY	Optimization”.

In	some	cases,	a	query	can	be	optimized	to	retrieve	values	without
consulting	the	data	rows.	If	a	query	uses	only	columns	from	a	table	that	are

numeric	and	that	form	a	leftmost	prefix	for	some	key,	the	selected	values
may	be	retrieved	from	the	index	tree	for	greater	speed:

SELECT	key_part3	FROM	tbl_name	

		WHERE	key_part1=1

Suppose	that	you	issue	the	following	SELECT	statement:

mysql>	SELECT	*	FROM	tbl_name	WHERE	col1=val1	AND	col2=val2;

If	a	multiple-column	index	exists	on	col1	and	col2,	the	appropriate	rows	can	be
fetched	directly.	If	separate	single-column	indexes	exist	on	col1	and	col2,	the
optimizer	tries	to	find	the	most	restrictive	index	by	deciding	which	index	finds
fewer	rows	and	using	that	index	to	fetch	the	rows.

If	the	table	has	a	multiple-column	index,	any	leftmost	prefix	of	the	index	can	be
used	by	the	optimizer	to	find	rows.	For	example,	if	you	have	a	three-column
index	on	(col1,	col2,	col3),	you	have	indexed	search	capabilities	on	(col1),
(col1,	col2),	and	(col1,	col2,	col3).

MySQL	cannot	use	a	partial	index	if	the	columns	do	not	form	a	leftmost	prefix
of	the	index.	Suppose	that	you	have	the	SELECT	statements	shown	here:

SELECT	*	FROM	tbl_name	WHERE	col1=val1;

SELECT	*	FROM	tbl_name	WHERE	col1=val1	AND	col2=val2;

SELECT	*	FROM	tbl_name	WHERE	col2=val2;

SELECT	*	FROM	tbl_name	WHERE	col2=val2	AND	col3=val3;

If	an	index	exists	on	(col1,	col2,	col3),	only	the	first	two	queries	use	the
index.	The	third	and	fourth	queries	do	involve	indexed	columns,	but	(col2)	and
(col2,	col3)	are	not	leftmost	prefixes	of	(col1,	col2,	col3).

A	B-tree	index	can	be	used	for	column	comparisons	in	expressions	that	use	the	=,
>,	>=,	<,	<=,	or	BETWEEN	operators.	The	index	also	can	be	used	for	LIKE
comparisons	if	the	argument	to	LIKE	is	a	constant	string	that	does	not	start	with	a
wildcard	character.	For	example,	the	following	SELECT	statements	use	indexes:

SELECT	*	FROM	tbl_name	WHERE	key_col	LIKE	'Patrick%';

SELECT	*	FROM	tbl_name	WHERE	key_col	LIKE	'Pat%_ck%';

In	the	first	statement,	only	rows	with	'Patrick'	<=	key_col	<	'Patricl'	are

considered.	In	the	second	statement,	only	rows	with	'Pat'	<=	key_col	<	'Pau'
are	considered.

The	following	SELECT	statements	do	not	use	indexes:

SELECT	*	FROM	tbl_name	WHERE	key_col	LIKE	'%Patrick%';

SELECT	*	FROM	tbl_name	WHERE	key_col	LIKE	other_col;

In	the	first	statement,	the	LIKE	value	begins	with	a	wildcard	character.	In	the
second	statement,	the	LIKE	value	is	not	a	constant.

If	you	use	...	LIKE	'%string%'	and	string	is	longer	than	three	characters,
MySQL	uses	the	Turbo	Boyer-Moore	algorithm	to	initialize	the	pattern	for	the
string	and	then	uses	this	pattern	to	perform	the	search	more	quickly.

A	search	using	col_name	IS	NULL	employs	indexes	if	col_name	is	indexed.

Any	index	that	does	not	span	all	AND	levels	in	the	WHERE	clause	is	not	used	to
optimize	the	query.	In	other	words,	to	be	able	to	use	an	index,	a	prefix	of	the
index	must	be	used	in	every	AND	group.

The	following	WHERE	clauses	use	indexes:

...	WHERE	index_part1=1	AND	index_part2=2	AND	other_column=3

				/*	index	=	1	OR	index	=	2	*/

...	WHERE	index=1	OR	A=10	AND	index=2

				/*	optimized	like	"index_part1='hello'"	*/

...	WHERE	index_part1='hello'	AND	index_part3=5

				/*	Can	use	index	on	index1	but	not	on	index2	or	index3	*/

...	WHERE	index1=1	AND	index2=2	OR	index1=3	AND	index3=3;

These	WHERE	clauses	do	not	use	indexes:

				/*	index_part1	is	not	used	*/

...	WHERE	index_part2=1	AND	index_part3=2

				/*		Index	is	not	used	in	both	parts	of	the	WHERE	clause		*/

...	WHERE	index=1	OR	A=10

				/*	No	index	spans	all	rows		*/

...	WHERE	index_part1=1	OR	index_part2=10

Sometimes	MySQL	does	not	use	an	index,	even	if	one	is	available.	One
circumstance	under	which	this	occurs	is	when	the	optimizer	estimates	that	using

the	index	would	require	MySQL	to	access	a	very	large	percentage	of	the	rows	in
the	table.	(In	this	case,	a	table	scan	is	likely	to	be	much	faster	because	it	requires
fewer	seeks.)	However,	if	such	a	query	uses	LIMIT	to	retrieve	only	some	of	the
rows,	MySQL	uses	an	index	anyway,	because	it	can	much	more	quickly	find	the
few	rows	to	return	in	the	result.

Hash	indexes	have	somewhat	different	characteristics	from	those	just	discussed:

They	are	used	only	for	equality	comparisons	that	use	the	=	or	<=>	operators
(but	are	very	fast).	They	are	not	used	for	comparison	operators	such	as	<
that	find	a	range	of	values.

The	optimizer	cannot	use	a	hash	index	to	speed	up	ORDER	BY	operations.
(This	type	of	index	cannot	be	used	to	search	for	the	next	entry	in	order.)

MySQL	cannot	determine	approximately	how	many	rows	there	are	between
two	values	(this	is	used	by	the	range	optimizer	to	decide	which	index	to
use).	This	may	affect	some	queries	if	you	change	a	MyISAM	table	to	a	hash-
indexed	MEMORY	table.

Only	whole	keys	can	be	used	to	search	for	a	row.	(With	a	B-tree	index,	any
leftmost	prefix	of	the	key	can	be	used	to	find	rows.)

7.4.6.	The	MyISAM	Key	Cache

To	minimize	disk	I/O,	the	MyISAM	storage	engine	exploits	a	strategy	that	is	used
by	many	database	management	systems.	It	employs	a	cache	mechanism	to	keep
the	most	frequently	accessed	table	blocks	in	memory:

For	index	blocks,	a	special	structure	called	the	key	cache	(or	key	buffer)	is
maintained.	The	structure	contains	a	number	of	block	buffers	where	the
most-used	index	blocks	are	placed.

For	data	blocks,	MySQL	uses	no	special	cache.	Instead	it	relies	on	the
native	operating	system	filesystem	cache.

This	section	first	describes	the	basic	operation	of	the	MyISAM	key	cache.	Then	it
discusses	features	that	improve	key	cache	performance	and	that	enable	you	to
better	control	cache	operation:

Access	to	the	key	cache	no	longer	is	serialized	among	threads.	Multiple
threads	can	access	the	cache	concurrently.

You	can	set	up	multiple	key	caches	and	assign	table	indexes	to	specific
caches.

To	control	the	size	of	the	key	cache,	use	the	key_buffer_size	system	variable.
If	this	variable	is	set	equal	to	zero,	no	key	cache	is	used.	The	key	cache	also	is
not	used	if	the	key_buffer_size	value	is	too	small	to	allocate	the	minimal
number	of	block	buffers	(8).

When	the	key	cache	is	not	operational,	index	files	are	accessed	using	only	the
native	filesystem	buffering	provided	by	the	operating	system.	(In	other	words,
table	index	blocks	are	accessed	using	the	same	strategy	as	that	employed	for
table	data	blocks.)

An	index	block	is	a	contiguous	unit	of	access	to	the	MyISAM	index	files.	Usually
the	size	of	an	index	block	is	equal	to	the	size	of	nodes	of	the	index	B-tree.
(Indexes	are	represented	on	disk	using	a	B-tree	data	structure.	Nodes	at	the
bottom	of	the	tree	are	leaf	nodes.	Nodes	above	the	leaf	nodes	are	non-leaf
nodes.)

All	block	buffers	in	a	key	cache	structure	are	the	same	size.	This	size	can	be
equal	to,	greater	than,	or	less	than	the	size	of	a	table	index	block.	Usually	one
these	two	values	is	a	multiple	of	the	other.

When	data	from	any	table	index	block	must	be	accessed,	the	server	first	checks
whether	it	is	available	in	some	block	buffer	of	the	key	cache.	If	it	is,	the	server
accesses	data	in	the	key	cache	rather	than	on	disk.	That	is,	it	reads	from	the
cache	or	writes	into	it	rather	than	reading	from	or	writing	to	disk.	Otherwise,	the
server	chooses	a	cache	block	buffer	containing	a	different	table	index	block	(or
blocks)	and	replaces	the	data	there	by	a	copy	of	required	table	index	block.	As
soon	as	the	new	index	block	is	in	the	cache,	the	index	data	can	be	accessed.

If	it	happens	that	a	block	selected	for	replacement	has	been	modified,	the	block
is	considered	“dirty.”	In	this	case,	prior	to	being	replaced,	its	contents	are	flushed
to	the	table	index	from	which	it	came.

Usually	the	server	follows	an	LRU	(Least	Recently	Used)	strategy:	When
choosing	a	block	for	replacement,	it	selects	the	least	recently	used	index	block.

To	make	this	choice	easier,	the	key	cache	module	maintains	a	special	queue
(LRU	chain)	of	all	used	blocks.	When	a	block	is	accessed,	it	is	placed	at	the	end
of	the	queue.	When	blocks	need	to	be	replaced,	blocks	at	the	beginning	of	the
queue	are	the	least	recently	used	and	become	the	first	candidates	for	eviction.

7.4.6.1.	Shared	Key	Cache	Access

Threads	can	access	key	cache	buffers	simultaneously,	subject	to	the	following
conditions:

A	buffer	that	is	not	being	updated	can	be	accessed	by	multiple	threads.

A	buffer	that	is	being	updated	causes	threads	that	need	to	use	it	to	wait	until
the	update	is	complete.

Multiple	threads	can	initiate	requests	that	result	in	cache	block
replacements,	as	long	as	they	do	not	interfere	with	each	other	(that	is,	as
long	as	they	need	different	index	blocks,	and	thus	cause	different	cache
blocks	to	be	replaced).

Shared	access	to	the	key	cache	enables	the	server	to	improve	throughput
significantly.

7.4.6.2.	Multiple	Key	Caches

Shared	access	to	the	key	cache	improves	performance	but	does	not	eliminate
contention	among	threads	entirely.	They	still	compete	for	control	structures	that
manage	access	to	the	key	cache	buffers.	To	reduce	key	cache	access	contention
further,	MySQL	also	provides	multiple	key	caches.	This	feature	enables	you	to
assign	different	table	indexes	to	different	key	caches.

Where	there	are	multiple	key	caches,	the	server	must	know	which	cache	to	use
when	processing	queries	for	a	given	MyISAM	table.	By	default,	all	MyISAM	table
indexes	are	cached	in	the	default	key	cache.	To	assign	table	indexes	to	a	specific
key	cache,	use	the	CACHE	INDEX	statement	(see	Section	13.5.5.1,	“CACHE	INDEX
Syntax”).	For	example,	the	following	statement	assigns	indexes	from	the	tables
t1,	t2,	and	t3	to	the	key	cache	named	hot_cache:

mysql>	CACHE	INDEX	t1,	t2,	t3	IN	hot_cache;

+---------+--------------------+----------+----------+

|	Table			|	Op																	|	Msg_type	|	Msg_text	|

+---------+--------------------+----------+----------+

|	test.t1	|	assign_to_keycache	|	status			|	OK							|

|	test.t2	|	assign_to_keycache	|	status			|	OK							|

|	test.t3	|	assign_to_keycache	|	status			|	OK							|

+---------+--------------------+----------+----------+

The	key	cache	referred	to	in	a	CACHE	INDEX	statement	can	be	created	by	setting
its	size	with	a	SET	GLOBAL	parameter	setting	statement	or	by	using	server	startup
options.	For	example:

mysql>	SET	GLOBAL	keycache1.key_buffer_size=128*1024;

To	destroy	a	key	cache,	set	its	size	to	zero:

mysql>	SET	GLOBAL	keycache1.key_buffer_size=0;

Note	that	you	cannot	destroy	the	default	key	cache.	Any	attempt	to	do	this	will
be	ignored:

mysql>	SET	GLOBAL	key_buffer_size	=	0;

mysql>	SHOW	VARIABLES	LIKE	'key_buffer_size';

+-----------------+---------+

|	Variable_name			|	Value			|

+-----------------+---------+

|	key_buffer_size	|	8384512	|

+-----------------+---------+

Key	cache	variables	are	structured	system	variables	that	have	a	name	and
components.	For	keycache1.key_buffer_size,	keycache1	is	the	cache	variable
name	and	key_buffer_size	is	the	cache	component.	See	Section	5.2.3.1,
“Structured	System	Variables”,	for	a	description	of	the	syntax	used	for	referring
to	structured	key	cache	system	variables.

By	default,	table	indexes	are	assigned	to	the	main	(default)	key	cache	created	at
the	server	startup.	When	a	key	cache	is	destroyed,	all	indexes	assigned	to	it	are
reassigned	to	the	default	key	cache.

For	a	busy	server,	we	recommend	a	strategy	that	uses	three	key	caches:

A	“hot”	key	cache	that	takes	up	20%	of	the	space	allocated	for	all	key
caches.	Use	this	for	tables	that	are	heavily	used	for	searches	but	that	are	not

updated.

A	“cold”	key	cache	that	takes	up	20%	of	the	space	allocated	for	all	key
caches.	Use	this	cache	for	medium-sized,	intensively	modified	tables,	such
as	temporary	tables.

A	“warm”	key	cache	that	takes	up	60%	of	the	key	cache	space.	Employ	this
as	the	default	key	cache,	to	be	used	by	default	for	all	other	tables.

One	reason	the	use	of	three	key	caches	is	beneficial	is	that	access	to	one	key
cache	structure	does	not	block	access	to	the	others.	Statements	that	access	tables
assigned	to	one	cache	do	not	compete	with	statements	that	access	tables	assigned
to	another	cache.	Performance	gains	occur	for	other	reasons	as	well:

The	hot	cache	is	used	only	for	retrieval	queries,	so	its	contents	are	never
modified.	Consequently,	whenever	an	index	block	needs	to	be	pulled	in
from	disk,	the	contents	of	the	cache	block	chosen	for	replacement	need	not
be	flushed	first.

For	an	index	assigned	to	the	hot	cache,	if	there	are	no	queries	requiring	an
index	scan,	there	is	a	high	probability	that	the	index	blocks	corresponding
to	non-leaf	nodes	of	the	index	B-tree	remain	in	the	cache.

An	update	operation	most	frequently	executed	for	temporary	tables	is
performed	much	faster	when	the	updated	node	is	in	the	cache	and	need	not
be	read	in	from	disk	first.	If	the	size	of	the	indexes	of	the	temporary	tables
are	comparable	with	the	size	of	cold	key	cache,	the	probability	is	very	high
that	the	updated	node	is	in	the	cache.

CACHE	INDEX	sets	up	an	association	between	a	table	and	a	key	cache,	but	the
association	is	lost	each	time	the	server	restarts.	If	you	want	the	association	to
take	effect	each	time	the	server	starts,	one	way	to	accomplish	this	is	to	use	an
option	file:	Include	variable	settings	that	configure	your	key	caches,	and	an
init-file	option	that	names	a	file	containing	CACHE	INDEX	statements	to	be
executed.	For	example:

key_buffer_size	=	4G

hot_cache.key_buffer_size	=	2G

cold_cache.key_buffer_size	=	2G

init_file=/path/to/data-directory/mysqld_init.sql

The	statements	in	mysqld_init.sql	are	executed	each	time	the	server	starts.	The
file	should	contain	one	SQL	statement	per	line.	The	following	example	assigns
several	tables	each	to	hot_cache	and	cold_cache:

CACHE	INDEX	db1.t1,	db1.t2,	db2.t3	IN	hot_cache

CACHE	INDEX	db1.t4,	db2.t5,	db2.t6	IN	cold_cache

7.4.6.3.	Midpoint	Insertion	Strategy

By	default,	the	key	cache	management	system	uses	the	LRU	strategy	for
choosing	key	cache	blocks	to	be	evicted,	but	it	also	supports	a	more
sophisticated	method	called	the	midpoint	insertion	strategy.

When	using	the	midpoint	insertion	strategy,	the	LRU	chain	is	divided	into	two
parts:	a	hot	sub-chain	and	a	warm	sub-chain.	The	division	point	between	two
parts	is	not	fixed,	but	the	key	cache	management	system	takes	care	that	the
warm	part	is	not	“too	short,”	always	containing	at	least
key_cache_division_limit	percent	of	the	key	cache	blocks.
key_cache_division_limit	is	a	component	of	structured	key	cache	variables,
so	its	value	is	a	parameter	that	can	be	set	per	cache.

When	an	index	block	is	read	from	a	table	into	the	key	cache,	it	is	placed	at	the
end	of	the	warm	sub-chain.	After	a	certain	number	of	hits	(accesses	of	the
block),	it	is	promoted	to	the	hot	sub-chain.	At	present,	the	number	of	hits
required	to	promote	a	block	(3)	is	the	same	for	all	index	blocks.

A	block	promoted	into	the	hot	sub-chain	is	placed	at	the	end	of	the	chain.	The
block	then	circulates	within	this	sub-chain.	If	the	block	stays	at	the	beginning	of
the	sub-chain	for	a	long	enough	time,	it	is	demoted	to	the	warm	chain.	This	time
is	determined	by	the	value	of	the	key_cache_age_threshold	component	of	the
key	cache.

The	threshold	value	prescribes	that,	for	a	key	cache	containing	N	blocks,	the
block	at	the	beginning	of	the	hot	sub-chain	not	accessed	within	the	last	N	×
key_cache_age_threshold	/	100	hits	is	to	be	moved	to	the	beginning	of	the	warm
sub-chain.	It	then	becomes	the	first	candidate	for	eviction,	because	blocks	for
replacement	always	are	taken	from	the	beginning	of	the	warm	sub-chain.

The	midpoint	insertion	strategy	allows	you	to	keep	more-valued	blocks	always
in	the	cache.	If	you	prefer	to	use	the	plain	LRU	strategy,	leave	the

key_cache_division_limit	value	set	to	its	default	of	100.

The	midpoint	insertion	strategy	helps	to	improve	performance	when	execution	of
a	query	that	requires	an	index	scan	effectively	pushes	out	of	the	cache	all	the
index	blocks	corresponding	to	valuable	high-level	B-tree	nodes.	To	avoid	this,
you	must	use	a	midpoint	insertion	strategy	with	the	key_cache_division_limit
set	to	much	less	than	100.	Then	valuable	frequently	hit	nodes	are	preserved	in
the	hot	sub-chain	during	an	index	scan	operation	as	well.

7.4.6.4.	Index	Preloading

If	there	are	enough	blocks	in	a	key	cache	to	hold	blocks	of	an	entire	index,	or	at
least	the	blocks	corresponding	to	its	non-leaf	nodes,	it	makes	sense	to	preload
the	key	cache	with	index	blocks	before	starting	to	use	it.	Preloading	allows	you
to	put	the	table	index	blocks	into	a	key	cache	buffer	in	the	most	efficient	way:	by
reading	the	index	blocks	from	disk	sequentially.

Without	preloading,	the	blocks	are	still	placed	into	the	key	cache	as	needed	by
queries.	Although	the	blocks	will	stay	in	the	cache,	because	there	are	enough
buffers	for	all	of	them,	they	are	fetched	from	disk	in	random	order,	and	not
sequentially.

To	preload	an	index	into	a	cache,	use	the	LOAD	INDEX	INTO	CACHE	statement.
For	example,	the	following	statement	preloads	nodes	(index	blocks)	of	indexes
of	the	tables	t1	and	t2:

mysql>	LOAD	INDEX	INTO	CACHE	t1,	t2	IGNORE	LEAVES;

+---------+--------------+----------+----------+

|	Table			|	Op											|	Msg_type	|	Msg_text	|

+---------+--------------+----------+----------+

|	test.t1	|	preload_keys	|	status			|	OK							|

|	test.t2	|	preload_keys	|	status			|	OK							|

+---------+--------------+----------+----------+

The	IGNORE	LEAVES	modifier	causes	only	blocks	for	the	non-leaf	nodes	of	the
index	to	be	preloaded.	Thus,	the	statement	shown	preloads	all	index	blocks	from
t1,	but	only	blocks	for	the	non-leaf	nodes	from	t2.

If	an	index	has	been	assigned	to	a	key	cache	using	a	CACHE	INDEX	statement,
preloading	places	index	blocks	into	that	cache.	Otherwise,	the	index	is	loaded
into	the	default	key	cache.

7.4.6.5.	Key	Cache	Block	Size

It	is	possible	to	specify	the	size	of	the	block	buffers	for	an	individual	key	cache
using	the	key_cache_block_size	variable.	This	permits	tuning	of	the
performance	of	I/O	operations	for	index	files.

The	best	performance	for	I/O	operations	is	achieved	when	the	size	of	read
buffers	is	equal	to	the	size	of	the	native	operating	system	I/O	buffers.	But	setting
the	size	of	key	nodes	equal	to	the	size	of	the	I/O	buffer	does	not	always	ensure
the	best	overall	performance.	When	reading	the	big	leaf	nodes,	the	server	pulls
in	a	lot	of	unnecessary	data,	effectively	preventing	reading	other	leaf	nodes.

Currently,	you	cannot	control	the	size	of	the	index	blocks	in	a	table.	This	size	is
set	by	the	server	when	the	.MYI	index	file	is	created,	depending	on	the	size	of	the
keys	in	the	indexes	present	in	the	table	definition.	In	most	cases,	it	is	set	equal	to
the	I/O	buffer	size.

7.4.6.6.	Restructuring	a	Key	Cache

A	key	cache	can	be	restructured	at	any	time	by	updating	its	parameter	values.
For	example:

mysql>	SET	GLOBAL	cold_cache.key_buffer_size=4*1024*1024;

If	you	assign	to	either	the	key_buffer_size	or	key_cache_block_size	key
cache	component	a	value	that	differs	from	the	component's	current	value,	the
server	destroys	the	cache's	old	structure	and	creates	a	new	one	based	on	the	new
values.	If	the	cache	contains	any	dirty	blocks,	the	server	saves	them	to	disk
before	destroying	and	re-creating	the	cache.	Restructuring	does	not	occur	if	you
change	other	key	cache	parameters.

When	restructuring	a	key	cache,	the	server	first	flushes	the	contents	of	any	dirty
buffers	to	disk.	After	that,	the	cache	contents	become	unavailable.	However,
restructuring	does	not	block	queries	that	need	to	use	indexes	assigned	to	the
cache.	Instead,	the	server	directly	accesses	the	table	indexes	using	native
filesystem	caching.	Filesystem	caching	is	not	as	efficient	as	using	a	key	cache,
so	although	queries	execute,	a	slowdown	can	be	anticipated.	After	the	cache	has
been	restructured,	it	becomes	available	again	for	caching	indexes	assigned	to	it,
and	the	use	of	filesystem	caching	for	the	indexes	ceases.

7.4.7.	MyISAM	Index	Statistics	Collection

Storage	engines	collect	statistics	about	tables	for	use	by	the	optimizer.	Table
statistics	are	based	on	value	groups,	where	a	value	group	is	a	set	of	rows	with	the
same	key	prefix	value.	For	optimizer	purposes,	an	important	statistic	is	the
average	value	group	size.

MySQL	uses	the	average	value	group	size	in	the	following	ways:

To	estimate	how	may	rows	must	be	read	for	each	ref	access

To	estimate	how	many	row	a	partial	join	will	produce;	that	is,	the	number	of
rows	that	an	operation	of	this	form	will	produce:

(...)	JOIN	tbl_name	ON	tbl_name.key	=	expr

As	the	average	value	group	size	for	an	index	increases,	the	index	is	less	useful
for	those	two	purposes	because	the	average	number	of	rows	per	lookup
increases:	For	the	index	to	be	good	for	optimization	purposes,	it	is	best	that	each
index	value	target	a	small	number	of	rows	in	the	table.	When	a	given	index	value
yields	a	large	number	of	rows,	the	index	is	less	useful	and	MySQL	is	less	likely
to	use	it.

The	average	value	group	size	is	related	to	table	cardinality,	which	is	the	number
of	value	groups.	The	SHOW	INDEX	statement	displays	a	cardinality	value	based	on
N/S,	where	N	is	the	number	of	rows	in	the	table	and	S	is	the	average	value	group
size.	That	ratio	yields	an	approximate	number	of	value	groups	in	the	table.

For	a	join	based	on	the	<=>	comparison	operator,	NULL	is	not	treated	differently
from	any	other	value:	NULL	<=>	NULL,	just	as	N	<=>	N	for	any	other	N.

However,	for	a	join	based	on	the	=	operator,	NULL	is	different	from	non-NULL
values:	expr1	=	expr2	is	not	true	when	expr1	or	expr2	(or	both)	are	NULL.	This
affects	ref	accesses	for	comparisons	of	the	form	tbl_name.key	=	expr:	MySQL
will	not	access	the	table	if	the	current	value	of	expr	is	NULL,	because	the
comparison	cannot	be	true.

For	=	comparisons,	it	does	not	matter	how	many	NULL	values	are	in	the	table.	For
optimization	purposes,	the	relevant	value	is	the	average	size	of	the	non-NULL
value	groups.	However,	MySQL	does	not	currently	allow	that	average	size	to	be

collected	or	used.

For	MyISAM	tables,	you	have	some	control	over	collection	of	table	statistics	by
means	of	the	myisam_stats_method	system	variable.	This	variable	has	two
possible	values,	which	differ	as	follows:

When	myisam_stats_method	is	nulls_equal,	all	NULL	values	are	treated	as
identical	(that	is,	they	all	form	a	single	value	group).

If	the	NULL	value	group	size	is	much	higher	than	the	average	non-NULL
value	group	size,	this	method	skews	the	average	value	group	size	upward.
This	makes	index	appear	to	the	optimizer	to	be	less	useful	than	it	really	is
for	joins	that	look	for	non-NULL	values.	Consequently,	the	nulls_equal
method	may	cause	the	optimizer	not	to	use	the	index	for	ref	accesses	when
it	should.

When	myisam_stats_method	is	nulls_unequal,	NULL	values	are	not
considered	the	same.	Instead,	each	NULL	value	forms	a	separate	value	group
of	size	1.

If	you	have	many	NULL	values,	this	method	skews	the	average	value	group
size	downward.	If	the	average	non-NULL	value	group	size	is	large,	counting
NULL	values	each	as	a	group	of	size	1	causes	the	optimizer	to	overestimate
the	value	of	the	index	for	joins	that	look	for	non-NULL	values.	Consequently,
the	nulls_unequal	method	may	cause	the	optimizer	to	use	this	index	for
ref	lookups	when	other	methods	may	be	better.

If	you	tend	to	use	many	joins	that	use	<=>	rather	than	=,	NULL	values	are	not
special	in	comparisons	and	one	NULL	is	equal	to	another.	In	this	case,
nulls_equal	is	the	appropriate	statistics	method.

The	myisam_stats_method	system	variable	has	global	and	session	values.
Setting	the	global	value	affects	MyISAM	statistics	collection	for	all	MyISAM	tables.
Setting	the	session	value	affects	statistics	collection	only	for	the	current	client
connection.	This	means	that	you	can	force	a	table's	statistics	to	be	regenerated
with	a	given	method	without	affecting	other	clients	by	setting	the	session	value
of	myisam_stats_method.

To	regenerate	table	statistics,	you	can	use	any	of	the	following	methods:

Set	myisam_stats_method,	and	then	issue	a	CHECK	TABLE	statement

Execute	myisamchk	--stats_method=method_name	--analyze

Change	the	table	to	cause	its	statistics	to	go	out	of	date	(for	example,	insert
a	row	and	then	delete	it),	and	then	set	myisam_stats_method	and	issue	an
ANALYZE	TABLE	statement

Some	caveats	regarding	the	use	of	myisam_stats_method:

You	can	force	table	statistics	to	be	collected	explicitly,	as	just	described.
However,	MySQL	may	also	collect	statistics	automatically.	For	example,	if
during	the	course	of	executing	statements	for	a	table,	some	of	those
statements	modify	the	table,	MySQL	may	collect	statistics.	(This	may	occur
for	bulk	inserts	or	deletes,	or	some	ALTER	TABLE	statements,	for	example.)
If	this	happens,	the	statistics	are	collected	using	whatever	value
myisam_stats_method	has	at	the	time.	Thus,	if	you	collect	statistics	using
one	method,	but	myisam_stats_method	is	set	to	the	other	method	when	a
table's	statistics	are	collected	automatically	later,	the	other	method	will	be
used.

There	is	no	way	to	tell	which	method	was	used	to	generate	statistics	for	a
given	MyISAM	table.

myisam_stats_method	applies	only	to	MyISAM	tables.	Other	storage	engines
have	only	one	method	for	collecting	table	statistics.	Usually	it	is	closer	to
the	nulls_equal	method.

7.4.8.	How	MySQL	Opens	and	Closes	Tables

When	you	execute	a	mysqladmin	status	command,	you	should	see	something
like	this:

Uptime:	426	Running	threads:	1	Questions:	11082

Reloads:	1	Open	tables:	12

The	Open	tables	value	of	12	can	be	somewhat	puzzling	if	you	have	only	six
tables.

MySQL	is	multi-threaded,	so	there	may	be	many	clients	issuing	queries	for	a

given	table	simultaneously.	To	minimize	the	problem	with	multiple	client	threads
having	different	states	on	the	same	table,	the	table	is	opened	independently	by
each	concurrent	thread.	This	uses	additional	memory	but	normally	increases
performance.	With	MyISAM	tables,	one	extra	file	descriptor	is	required	for	the
data	file	for	each	client	that	has	the	table	open.	(By	contrast,	the	index	file
descriptor	is	shared	between	all	threads.)

The	table_cache,	max_connections,	and	max_tmp_tables	system	variables
affect	the	maximum	number	of	files	the	server	keeps	open.	If	you	increase	one	or
more	of	these	values,	you	may	run	up	against	a	limit	imposed	by	your	operating
system	on	the	per-process	number	of	open	file	descriptors.	Many	operating
systems	allow	you	to	increase	the	open-files	limit,	although	the	method	varies
widely	from	system	to	system.	Consult	your	operating	system	documentation	to
determine	whether	it	is	possible	to	increase	the	limit	and	how	to	do	so.

table_cache	is	related	to	max_connections.	For	example,	for	200	concurrent
running	connections,	you	should	have	a	table	cache	size	of	at	least	200	×	N,
where	N	is	the	maximum	number	of	tables	per	join	in	any	of	the	queries	which
you	execute.	You	must	also	reserve	some	extra	file	descriptors	for	temporary
tables	and	files.

Make	sure	that	your	operating	system	can	handle	the	number	of	open	file
descriptors	implied	by	the	table_cache	setting.	If	table_cache	is	set	too	high,
MySQL	may	run	out	of	file	descriptors	and	refuse	connections,	fail	to	perform
queries,	and	be	very	unreliable.	You	also	have	to	take	into	account	that	the
MyISAM	storage	engine	needs	two	file	descriptors	for	each	unique	open	table.	You
can	increase	the	number	of	file	descriptors	available	to	MySQL	using	the	--
open-files-limit	startup	option	to	mysqld.	See	Section	A.2.17,	“File	Not
Found”.

The	cache	of	open	tables	is	kept	at	a	level	of	table_cache	entries.	The	default
value	is	64;	this	can	be	changed	with	the	--table_cache	option	to	mysqld.	Note
that	MySQL	may	temporarily	open	more	tables	than	this	to	execute	queries.

MySQL	closes	an	unused	table	and	removes	it	from	the	table	cache	under	the
following	circumstances:

When	the	cache	is	full	and	a	thread	tries	to	open	a	table	that	is	not	in	the
cache.

When	the	cache	contains	more	than	table_cache	entries	and	a	table	in	the
cache	is	no	longer	being	used	by	any	threads.

When	a	table	flushing	operation	occurs.	This	happens	when	someone	issues
a	FLUSH	TABLES	statement	or	executes	a	mysqladmin	flush-tables	or
mysqladmin	refresh	command.

When	the	table	cache	fills	up,	the	server	uses	the	following	procedure	to	locate	a
cache	entry	to	use:

Tables	that	are	not	currently	in	use	are	released,	beginning	with	the	table
least	recently	used.

If	a	new	table	needs	to	be	opened,	but	the	cache	is	full	and	no	tables	can	be
released,	the	cache	is	temporarily	extended	as	necessary.

When	the	cache	is	in	a	temporarily	extended	state	and	a	table	goes	from	a	used
to	unused	state,	the	table	is	closed	and	released	from	the	cache.

A	table	is	opened	for	each	concurrent	access.	This	means	the	table	needs	to	be
opened	twice	if	two	threads	access	the	same	table	or	if	a	thread	accesses	the
table	twice	in	the	same	query	(for	example,	by	joining	the	table	to	itself).	Each
concurrent	open	requires	an	entry	in	the	table	cache.	The	first	open	of	any
MyISAM	table	takes	two	file	descriptors:	one	for	the	data	file	and	one	for	the	index
file.	Each	additional	use	of	the	table	takes	only	one	file	descriptor	for	the	data
file.	The	index	file	descriptor	is	shared	among	all	threads.

If	you	are	opening	a	table	with	the	HANDLER	tbl_name	OPEN	statement,	a
dedicated	table	object	is	allocated	for	the	thread.	This	table	object	is	not	shared
by	other	threads	and	is	not	closed	until	the	thread	calls	HANDLER	tbl_name
CLOSE	or	the	thread	terminates.	When	this	happens,	the	table	is	put	back	in	the
table	cache	(if	the	cache	is	not	full).	See	Section	13.2.3,	“HANDLER	Syntax”.

You	can	determine	whether	your	table	cache	is	too	small	by	checking	the
mysqld	status	variable	Opened_tables:

mysql>	SHOW	STATUS	LIKE	'Opened_tables';

+---------------+-------+

|	Variable_name	|	Value	|

+---------------+-------+

|	Opened_tables	|	2741		|

+---------------+-------+

If	the	value	is	very	large,	even	when	you	have	not	issued	many	FLUSH	TABLES
statements,	you	should	increase	the	table	cache	size.	See	Section	5.2.2,	“Server
System	Variables”,	and	Section	5.2.4,	“Server	Status	Variables”.

7.4.9.	Drawbacks	to	Creating	Many	Tables	in	the	Same	Database

If	you	have	many	MyISAM	tables	in	the	same	database	directory,	open,	close,	and
create	operations	are	slow.	If	you	execute	SELECT	statements	on	many	different
tables,	there	is	a	little	overhead	when	the	table	cache	is	full,	because	for	every
table	that	has	to	be	opened,	another	must	be	closed.	You	can	reduce	this
overhead	by	making	the	table	cache	larger.

7.5.	Optimizing	the	MySQL	Server

7.5.1.	System	Factors	and	Startup	Parameter	Tuning

We	start	with	system-level	factors,	because	some	of	these	decisions	must	be
made	very	early	to	achieve	large	performance	gains.	In	other	cases,	a	quick	look
at	this	section	may	suffice.	However,	it	is	always	nice	to	have	a	sense	of	how
much	can	be	gained	by	changing	factors	that	apply	at	this	level.

The	operating	system	to	use	is	very	important.	To	get	the	best	use	of	multiple-
CPU	machines,	you	should	use	Solaris	(because	its	threads	implementation
works	well)	or	Linux	(because	the	2.4	and	later	kernels	have	good	SMP	support).
Note	that	older	Linux	kernels	have	a	2GB	filesize	limit	by	default.	If	you	have
such	a	kernel	and	a	need	for	files	larger	than	2GB,	you	should	get	the	Large	File
Support	(LFS)	patch	for	the	ext2	filesystem.	Other	filesystems	such	as	ReiserFS
and	XFS	do	not	have	this	2GB	limitation.

Before	using	MySQL	in	production,	we	advise	you	to	test	it	on	your	intended
platform.

Other	tips:

If	you	have	enough	RAM,	you	could	remove	all	swap	devices.	Some
operating	systems	use	a	swap	device	in	some	contexts	even	if	you	have	free
memory.

Avoid	external	locking.	Since	MySQL	4.0,	the	default	has	been	for	external
locking	to	be	disabled	on	all	systems.	The	--external-locking	and	--
skip-external-locking	options	explicitly	enable	and	disable	external
locking.

Note	that	disabling	external	locking	does	not	affect	MySQL's	functionality
as	long	as	you	run	only	one	server.	Just	remember	to	take	down	the	server
(or	lock	and	flush	the	relevant	tables)	before	you	run	myisamchk.	On	some
systems	it	is	mandatory	to	disable	external	locking	because	it	does	not
work,	anyway.

The	only	case	in	which	you	cannot	disable	external	locking	is	when	you	run

multiple	MySQL	servers	(not	clients)	on	the	same	data,	or	if	you	run
myisamchk	to	check	(not	repair)	a	table	without	telling	the	server	to	flush
and	lock	the	tables	first.	Note	that	using	multiple	MySQL	servers	to	access
the	same	data	concurrently	is	generally	not	recommended,	except	when
using	MySQL	Cluster.

The	LOCK	TABLES	and	UNLOCK	TABLES	statements	use	internal	locking,	so
you	can	use	them	even	if	external	locking	is	disabled.

7.5.2.	Tuning	Server	Parameters

You	can	determine	the	default	buffer	sizes	used	by	the	mysqld	server	using	this
command:

shell>	mysqld	--verbose	--help

This	command	produces	a	list	of	all	mysqld	options	and	configurable	system
variables.	The	output	includes	the	default	variable	values	and	looks	something
like	this:

back_log																										50

binlog_cache_size																	32768

bulk_insert_buffer_size											8388608

connect_timeout																			5

date_format																							(No	default	value)

datetime_format																			(No	default	value)

default_week_format															0

delayed_insert_limit														100

delayed_insert_timeout												300

delayed_queue_size																1000

expire_logs_days																		0

flush_time																								1800

ft_max_word_len																			84

ft_min_word_len																			4

ft_query_expansion_limit										20

ft_stopword_file																		(No	default	value)

group_concat_max_len														1024

innodb_additional_mem_pool_size			1048576

innodb_autoextend_increment							8

innodb_buffer_pool_awe_mem_mb					0

innodb_buffer_pool_size											8388608

innodb_concurrency_tickets								500

innodb_file_io_threads												4

innodb_force_recovery													0

innodb_lock_wait_timeout										50

innodb_log_buffer_size												1048576

innodb_log_file_size														5242880

innodb_log_files_in_group									2

innodb_mirrored_log_groups								1

innodb_open_files																	300

innodb_sync_spin_loops												20

innodb_thread_concurrency									8

innodb_thread_sleep_delay									10000

interactive_timeout															28800

join_buffer_size																		131072

key_buffer_size																			8388600

key_cache_age_threshold											300

key_cache_block_size														1024

key_cache_division_limit										100

long_query_time																			10

lower_case_table_names												1

max_allowed_packet																1048576

max_binlog_cache_size													4294967295

max_binlog_size																			1073741824

max_connect_errors																10

max_connections																			100

max_delayed_threads															20

max_error_count																			64

max_heap_table_size															16777216

max_join_size																					4294967295

max_length_for_sort_data										1024

max_relay_log_size																0

max_seeks_for_key																	4294967295

max_sort_length																			1024

max_tmp_tables																				32

max_user_connections														0

max_write_lock_count														4294967295

multi_range_count																	256

myisam_block_size																	1024

myisam_data_pointer_size										6

myisam_max_extra_sort_file_size			2147483648

myisam_max_sort_file_size									2147483647

myisam_repair_threads													1

myisam_sort_buffer_size											8388608

net_buffer_length																	16384

net_read_timeout																		30

net_retry_count																			10

net_write_timeout																	60

open_files_limit																		0

optimizer_prune_level													1

optimizer_search_depth												62

preload_buffer_size															32768

query_alloc_block_size												8192

query_cache_limit																	1048576

query_cache_min_res_unit										4096

query_cache_size																		0

query_cache_type																		1

query_cache_wlock_invalidate						FALSE

query_prealloc_size															8192

range_alloc_block_size												2048

read_buffer_size																		131072

read_only																									FALSE

read_rnd_buffer_size														262144

div_precision_increment											4

record_buffer																					131072

relay_log_purge																			TRUE

relay_log_space_limit													0

slave_compressed_protocol									FALSE

slave_net_timeout																	3600

slave_transaction_retries									10

slow_launch_time																		2

sort_buffer_size																		2097144

sync-binlog																							0

sync-frm																										TRUE

sync-replication																		0

sync-replication-slave-id									0

sync-replication-timeout										10

table_cache																							64

thread_cache_size																	0

thread_concurrency																10

thread_stack																						196608

time_format																							(No	default	value)

tmp_table_size																				33554432

transaction_alloc_block_size						8192

transaction_prealloc_size									4096

updatable_views_with_limit								1

wait_timeout																						28800

For	a	mysqld	server	that	is	currently	running,	you	can	see	the	current	values	of
its	system	variables	by	connecting	to	it	and	issuing	this	statement:

mysql>	SHOW	VARIABLES;

You	can	also	see	some	statistical	and	status	indicators	for	a	running	server	by
issuing	this	statement:

mysql>	SHOW	STATUS;

System	variable	and	status	information	also	can	be	obtained	using	mysqladmin:

shell>	mysqladmin	variables

shell>	mysqladmin	extended-status

For	a	full	description	of	all	system	and	status	variables,	see	Section	5.2.2,
“Server	System	Variables”,	and	Section	5.2.4,	“Server	Status	Variables”.

MySQL	uses	algorithms	that	are	very	scalable,	so	you	can	usually	run	with	very
little	memory.	However,	normally	you	get	better	performance	by	giving	MySQL
more	memory.

When	tuning	a	MySQL	server,	the	two	most	important	variables	to	configure	are
key_buffer_size	and	table_cache.	You	should	first	feel	confident	that	you
have	these	set	appropriately	before	trying	to	change	any	other	variables.

The	following	examples	indicate	some	typical	variable	values	for	different
runtime	configurations.

If	you	have	at	least	256MB	of	memory	and	many	tables	and	want
maximum	performance	with	a	moderate	number	of	clients,	you	should	use
something	like	this:

shell>	mysqld_safe	--key_buffer_size=64M	--table_cache=256	\

											--sort_buffer_size=4M	--read_buffer_size=1M	&

If	you	have	only	128MB	of	memory	and	only	a	few	tables,	but	you	still	do
a	lot	of	sorting,	you	can	use	something	like	this:

shell>	mysqld_safe	--key_buffer_size=16M	--sort_buffer_size=1M

If	there	are	very	many	simultaneous	connections,	swapping	problems	may
occur	unless	mysqld	has	been	configured	to	use	very	little	memory	for	each
connection.	mysqld	performs	better	if	you	have	enough	memory	for	all
connections.

With	little	memory	and	lots	of	connections,	use	something	like	this:

shell>	mysqld_safe	--key_buffer_size=512K	--sort_buffer_size=100K	\

											--read_buffer_size=100K	&

Or	even	this:

shell>	mysqld_safe	--key_buffer_size=512K	--sort_buffer_size=16K	\

											--table_cache=32	--read_buffer_size=8K	\

											--net_buffer_length=1K	&

If	you	are	performing	GROUP	BY	or	ORDER	BY	operations	on	tables	that	are	much
larger	than	your	available	memory,	you	should	increase	the	value	of
read_rnd_buffer_size	to	speed	up	the	reading	of	rows	following	sorting
operations.

You	can	make	use	of	the	example	option	files	included	with	your	MySQL
distribution;	see	Section	4.3.2.1,	“Preconfigured	Option	Files”.

If	you	specify	an	option	on	the	command	line	for	mysqld	or	mysqld_safe,	it
remains	in	effect	only	for	that	invocation	of	the	server.	To	use	the	option	every
time	the	server	runs,	put	it	in	an	option	file.

To	see	the	effects	of	a	parameter	change,	do	something	like	this:

shell>	mysqld	--key_buffer_size=32M	--verbose	--help

The	variable	values	are	listed	near	the	end	of	the	output.	Make	sure	that	the	--
verbose	and	--help	options	are	last.	Otherwise,	the	effect	of	any	options	listed
after	them	on	the	command	line	are	not	reflected	in	the	output.

For	information	on	tuning	the	InnoDB	storage	engine,	see	Section	14.2.11,
“InnoDB	Performance	Tuning	Tips”.

7.5.3.	Controlling	Query	Optimizer	Performance

The	task	of	the	query	optimizer	is	to	find	an	optimal	plan	for	executing	an	SQL
query.	Because	the	difference	in	performance	between	“good”	and	“bad”	plans
can	be	orders	of	magnitude	(that	is,	seconds	versus	hours	or	even	days),	most
query	optimizers,	including	that	of	MySQL,	perform	a	more	or	less	exhaustive
search	for	an	optimal	plan	among	all	possible	query	evaluation	plans.	For	join
queries,	the	number	of	possible	plans	investigated	by	the	MySQL	optimizer
grows	exponentially	with	the	number	of	tables	referenced	in	a	query.	For	small
numbers	of	tables	(typically	less	than	7–10)	this	is	not	a	problem.	However,
when	larger	queries	are	submitted,	the	time	spent	in	query	optimization	may
easily	become	the	major	bottleneck	in	the	server's	performance.

MySQL	5.0.1	introduces	a	more	flexible	method	for	query	optimization	that
allows	the	user	to	control	how	exhaustive	the	optimizer	is	in	its	search	for	an
optimal	query	evaluation	plan.	The	general	idea	is	that	the	fewer	plans	that	are
investigated	by	the	optimizer,	the	less	time	it	spends	in	compiling	a	query.	On

the	other	hand,	because	the	optimizer	skips	some	plans,	it	may	miss	finding	an
optimal	plan.

The	behavior	of	the	optimizer	with	respect	to	the	number	of	plans	it	evaluates
can	be	controlled	via	two	system	variables:

The	optimizer_prune_level	variable	tells	the	optimizer	to	skip	certain
plans	based	on	estimates	of	the	number	of	rows	accessed	for	each	table.	Our
experience	shows	that	this	kind	of	“educated	guess”	rarely	misses	optimal
plans,	and	may	dramatically	reduce	query	compilation	times.	That	is	why
this	option	is	on	(optimizer_prune_level=1)	by	default.	However,	if	you
believe	that	the	optimizer	missed	a	better	query	plan,	this	option	can	be
switched	off	(optimizer_prune_level=0)	with	the	risk	that	query
compilation	may	take	much	longer.	Note	that,	even	with	the	use	of	this
heuristic,	the	optimizer	still	explores	a	roughly	exponential	number	of
plans.

The	optimizer_search_depth	variable	tells	how	far	into	the	“future”	of
each	incomplete	plan	the	optimizer	should	look	to	evaluate	whether	it
should	be	expanded	further.	Smaller	values	of	optimizer_search_depth
may	result	in	orders	of	magnitude	smaller	query	compilation	times.	For
example,	queries	with	12,	13,	or	more	tables	may	easily	require	hours	and
even	days	to	compile	if	optimizer_search_depth	is	close	to	the	number	of
tables	in	the	query.	At	the	same	time,	if	compiled	with
optimizer_search_depth	equal	to	3	or	4,	the	optimizer	may	compile	in
less	than	a	minute	for	the	same	query.	If	you	are	unsure	of	what	a
reasonable	value	is	for	optimizer_search_depth,	this	variable	can	be	set	to
0	to	tell	the	optimizer	to	determine	the	value	automatically.

7.5.4.	How	Compiling	and	Linking	Affects	the	Speed	of	MySQL

Most	of	the	following	tests	were	performed	on	Linux	with	the	MySQL
benchmarks,	but	they	should	give	some	indication	for	other	operating	systems
and	workloads.

You	obtain	the	fastest	executables	when	you	link	with	-static.

On	Linux,	it	is	best	to	compile	the	server	with	pgcc	and	-O3.	You	need	about
200MB	memory	to	compile	sql_yacc.cc	with	these	options,	because	gcc	or

pgcc	needs	a	great	deal	of	memory	to	make	all	functions	inline.	You	should	also
set	CXX=gcc	when	configuring	MySQL	to	avoid	inclusion	of	the	libstdc++
library,	which	is	not	needed.	Note	that	with	some	versions	of	pgcc,	the	resulting
binary	runs	only	on	true	Pentium	processors,	even	if	you	use	the	compiler	option
indicating	that	you	want	the	resulting	code	to	work	on	all	x586-type	processors
(such	as	AMD).

By	using	a	better	compiler	and	compilation	options,	you	can	obtain	a	10–30%
speed	increase	in	applications.	This	is	particularly	important	if	you	compile	the
MySQL	server	yourself.

When	we	tested	both	the	Cygnus	CodeFusion	and	Fujitsu	compilers,	neither	was
sufficiently	bug-free	to	allow	MySQL	to	be	compiled	with	optimizations
enabled.

The	standard	MySQL	binary	distributions	are	compiled	with	support	for	all
character	sets.	When	you	compile	MySQL	yourself,	you	should	include	support
only	for	the	character	sets	that	you	are	going	to	use.	This	is	controlled	by	the	--
with-charset	option	to	configure.

Here	is	a	list	of	some	measurements	that	we	have	made:

If	you	use	pgcc	and	compile	everything	with	-O6,	the	mysqld	server	is	1%
faster	than	with	gcc	2.95.2.

If	you	link	dynamically	(without	-static),	the	result	is	13%	slower	on
Linux.	Note	that	you	still	can	use	a	dynamically	linked	MySQL	library	for
your	client	applications.	It	is	the	server	that	is	most	critical	for	performance.

For	a	connection	from	a	client	to	a	server	running	on	the	same	host,	if	you
connect	using	TCP/IP	rather	than	a	Unix	socket	file,	performance	is	7.5%
slower.	(On	Unix,	if	you	connect	to	the	hostname	localhost,	MySQL	uses
a	socket	file	by	default.)

For	TCP/IP	connections	from	a	client	to	a	server,	connecting	to	a	remote
server	on	another	host	is	8–11%	slower	than	connecting	to	a	server	on	the
same	host,	even	for	connections	over	100Mb/s	Ethernet.

When	running	our	benchmark	tests	using	secure	connections	(all	data
encrypted	with	internal	SSL	support)	performance	was	55%	slower	than

with	unencrypted	connections.

If	you	compile	with	--with-debug=full,	most	queries	are	20%	slower.
Some	queries	may	take	substantially	longer;	for	example,	the	MySQL
benchmarks	run	35%	slower.	If	you	use	--with-debug	(without	=full),	the
speed	decrease	is	only	15%.	For	a	version	of	mysqld	that	has	been
compiled	with	--with-debug=full,	you	can	disable	memory	checking	at
runtime	by	starting	it	with	the	--skip-safemalloc	option.	The	execution
speed	should	then	be	close	to	that	obtained	when	configuring	with	--with-
debug.

On	a	Sun	UltraSPARC-IIe,	a	server	compiled	with	Forte	5.0	is	4%	faster
than	one	compiled	with	gcc	3.2.

On	a	Sun	UltraSPARC-IIe,	a	server	compiled	with	Forte	5.0	is	4%	faster	in
32-bit	mode	than	in	64-bit	mode.

Compiling	with	gcc	2.95.2	for	UltraSPARC	with	the	-mcpu=v8	-Wa,-
xarch=v8plusa	options	gives	4%	more	performance.

On	Solaris	2.5.1,	MIT-pthreads	is	8–12%	slower	than	Solaris	native	threads
on	a	single	processor.	With	greater	loads	or	more	CPUs,	the	difference
should	be	larger.

Compiling	on	Linux-x86	using	gcc	without	frame	pointers	(-fomit-frame-
pointer	or	-fomit-frame-pointer	-ffixed-ebp)	makes	mysqld	1–4%
faster.

Binary	MySQL	distributions	for	Linux	that	are	provided	by	MySQL	AB	used	to
be	compiled	with	pgcc.	We	had	to	go	back	to	regular	gcc	due	to	a	bug	in	pgcc
that	would	generate	binaries	that	do	not	run	on	AMD.	We	will	continue	using
gcc	until	that	bug	is	resolved.	In	the	meantime,	if	you	have	a	non-AMD
machine,	you	can	build	a	faster	binary	by	compiling	with	pgcc.	The	standard
MySQL	Linux	binary	is	linked	statically	to	make	it	faster	and	more	portable.

7.5.5.	How	MySQL	Uses	Memory

The	following	list	indicates	some	of	the	ways	that	the	mysqld	server	uses
memory.	Where	applicable,	the	name	of	the	system	variable	relevant	to	the

memory	use	is	given:

The	key	buffer	(variable	key_buffer_size)	is	shared	by	all	threads;	other
buffers	used	by	the	server	are	allocated	as	needed.	See	Section	7.5.2,
“Tuning	Server	Parameters”.

Each	connection	uses	some	thread-specific	space:

A	stack	(default	192KB,	variable	thread_stack)

A	connection	buffer	(variable	net_buffer_length)

A	result	buffer	(variable	net_buffer_length)

The	connection	buffer	and	result	buffer	are	dynamically	enlarged	up	to
max_allowed_packet	when	needed.	While	a	query	is	running,	a	copy	of	the
current	query	string	is	also	allocated.

All	threads	share	the	same	base	memory.

When	a	thread	is	no	longer	needed,	the	memory	allocated	to	it	is	released
and	returned	to	the	system	unless	the	thread	goes	back	into	the	thread
cache.	In	that	case,	the	memory	remains	allocated.

Only	compressed	MyISAM	tables	are	memory	mapped.	This	is	because	the
32-bit	memory	space	of	4GB	is	not	large	enough	for	most	big	tables.	When
systems	with	a	64-bit	address	space	become	more	common,	we	may	add
general	support	for	memory	mapping.

Each	request	that	performs	a	sequential	scan	of	a	table	allocates	a	read
buffer	(variable	read_buffer_size).

When	reading	rows	in	an	arbitrary	sequence	(for	example,	following	a	sort),
a	random-read	buffer	(variable	read_rnd_buffer_size)	may	be	allocated
in	order	to	avoid	disk	seeks.

All	joins	are	executed	in	a	single	pass,	and	most	joins	can	be	done	without
even	using	a	temporary	table.	Most	temporary	tables	are	memory-based
hash	tables.	Temporary	tables	with	a	large	row	length	(calculated	as	the	sum
of	all	column	lengths)	or	that	contain	BLOB	columns	are	stored	on	disk.

If	an	internal	heap	table	exceeds	the	size	of	tmp_table_size,	MySQL
handles	this	automatically	by	changing	the	in-memory	heap	table	to	a	disk-
based	MyISAM	table	as	necessary.	You	can	also	increase	the	temporary	table
size	by	setting	the	tmp_table_size	option	to	mysqld,	or	by	setting	the	SQL
option	SQL_BIG_TABLES	in	the	client	program.	See	Section	13.5.3,	“SET
Syntax”.

Most	requests	that	perform	a	sort	allocate	a	sort	buffer	and	zero	to	two
temporary	files	depending	on	the	result	set	size.	See	Section	A.4.4,	“Where
MySQL	Stores	Temporary	Files”.

Almost	all	parsing	and	calculating	is	done	in	a	local	memory	store.	No
memory	overhead	is	needed	for	small	items,	so	the	normal	slow	memory
allocation	and	freeing	is	avoided.	Memory	is	allocated	only	for
unexpectedly	large	strings.	This	is	done	with	malloc()	and	free().

For	each	MyISAM	table	that	is	opened,	the	index	file	is	opened	once;	the	data
file	is	opened	once	for	each	concurrently	running	thread.	For	each
concurrent	thread,	a	table	structure,	column	structures	for	each	column,	and
a	buffer	of	size	3	×	N	are	allocated	(where	N	is	the	maximum	row	length,
not	counting	BLOB	columns).	A	BLOB	column	requires	five	to	eight	bytes
plus	the	length	of	the	BLOB	data.	The	MyISAM	storage	engine	maintains	one
extra	row	buffer	for	internal	use.

For	each	table	having	BLOB	columns,	a	buffer	is	enlarged	dynamically	to
read	in	larger	BLOB	values.	If	you	scan	a	table,	a	buffer	as	large	as	the	largest
BLOB	value	is	allocated.

Handler	structures	for	all	in-use	tables	are	saved	in	a	cache	and	managed	as
a	FIFO.	By	default,	the	cache	has	64	entries.	If	a	table	has	been	used	by	two
running	threads	at	the	same	time,	the	cache	contains	two	entries	for	the
table.	See	Section	7.4.8,	“How	MySQL	Opens	and	Closes	Tables”.

A	FLUSH	TABLES	statement	or	mysqladmin	flush-tables	command	closes
all	tables	that	are	not	in	use	at	once	and	marks	all	in-use	tables	to	be	closed
when	the	currently	executing	thread	finishes.	This	effectively	frees	most	in-
use	memory.	FLUSH	TABLES	does	not	return	until	all	tables	have	been
closed.

ps	and	other	system	status	programs	may	report	that	mysqld	uses	a	lot	of

memory.	This	may	be	caused	by	thread	stacks	on	different	memory	addresses.
For	example,	the	Solaris	version	of	ps	counts	the	unused	memory	between
stacks	as	used	memory.	You	can	verify	this	by	checking	available	swap	with
swap	-s.	We	test	mysqld	with	several	memory-leakage	detectors	(both
commercial	and	Open	Source),	so	there	should	be	no	memory	leaks.

7.5.6.	How	MySQL	Uses	DNS

When	a	new	client	connects	to	mysqld,	mysqld	spawns	a	new	thread	to	handle
the	request.	This	thread	first	checks	whether	the	hostname	is	in	the	hostname
cache.	If	not,	the	thread	attempts	to	resolve	the	hostname:

If	the	operating	system	supports	the	thread-safe	gethostbyaddr_r()	and
gethostbyname_r()	calls,	the	thread	uses	them	to	perform	hostname
resolution.

If	the	operating	system	does	not	support	the	thread-safe	calls,	the	thread
locks	a	mutex	and	calls	gethostbyaddr()	and	gethostbyname()	instead.	In
this	case,	no	other	thread	can	resolve	hostnames	that	are	not	in	the
hostname	cache	until	the	first	thread	unlocks	the	mutex.

You	can	disable	DNS	hostname	lookups	by	starting	mysqld	with	the	--skip-
name-resolve	option.	However,	in	this	case,	you	can	use	only	IP	numbers	in	the
MySQL	grant	tables.

If	you	have	a	very	slow	DNS	and	many	hosts,	you	can	get	more	performance	by
either	disabling	DNS	lookups	with	--skip-name-resolve	or	by	increasing	the
HOST_CACHE_SIZE	define	(default	value:	128)	and	recompiling	mysqld.

You	can	disable	the	hostname	cache	by	starting	the	server	with	the	--skip-
host-cache	option.	To	clear	the	hostname	cache,	issue	a	FLUSH	HOSTS	statement
or	execute	the	mysqladmin	flush-hosts	command.

To	disallow	TCP/IP	connections	entirely,	start	mysqld	with	the	--skip-
networking	option.

7.6.	Disk	Issues

Disk	seeks	are	a	huge	performance	bottleneck.	This	problem	becomes	more
apparent	when	the	amount	of	data	starts	to	grow	so	large	that	effective
caching	becomes	impossible.	For	large	databases	where	you	access	data
more	or	less	randomly,	you	can	be	sure	that	you	need	at	least	one	disk	seek
to	read	and	a	couple	of	disk	seeks	to	write	things.	To	minimize	this
problem,	use	disks	with	low	seek	times.

Increase	the	number	of	available	disk	spindles	(and	thereby	reduce	the	seek
overhead)	by	either	symlinking	files	to	different	disks	or	striping	the	disks:

Using	symbolic	links

This	means	that,	for	MyISAM	tables,	you	symlink	the	index	file	and	data
files	from	their	usual	location	in	the	data	directory	to	another	disk	(that
may	also	be	striped).	This	makes	both	the	seek	and	read	times	better,
assuming	that	the	disk	is	not	used	for	other	purposes	as	well.	See
Section	7.6.1,	“Using	Symbolic	Links”.

	Striping

Striping	means	that	you	have	many	disks	and	put	the	first	block	on	the
first	disk,	the	second	block	on	the	second	disk,	and	the	N-th	block	on
the	(N	MOD	number_of_disks)	disk,	and	so	on.	This	means	if	your
normal	data	size	is	less	than	the	stripe	size	(or	perfectly	aligned),	you
get	much	better	performance.	Striping	is	very	dependent	on	the
operating	system	and	the	stripe	size,	so	benchmark	your	application
with	different	stripe	sizes.	See	Section	7.1.5,	“Using	Your	Own
Benchmarks”.

The	speed	difference	for	striping	is	very	dependent	on	the	parameters.
Depending	on	how	you	set	the	striping	parameters	and	number	of
disks,	you	may	get	differences	measured	in	orders	of	magnitude.	You
have	to	choose	to	optimize	for	random	or	sequential	access.

For	reliability,	you	may	want	to	use	RAID	0+1	(striping	plus	mirroring),	but
in	this	case,	you	need	2	×	N	drives	to	hold	N	drives	of	data.	This	is	probably

the	best	option	if	you	have	the	money	for	it.	However,	you	may	also	have	to
invest	in	some	volume-management	software	to	handle	it	efficiently.

A	good	option	is	to	vary	the	RAID	level	according	to	how	critical	a	type	of
data	is.	For	example,	store	semi-important	data	that	can	be	regenerated	on	a
RAID	0	disk,	but	store	really	important	data	such	as	host	information	and
logs	on	a	RAID	0+1	or	RAID	N	disk.	RAID	N	can	be	a	problem	if	you	have
many	writes,	due	to	the	time	required	to	update	the	parity	bits.

On	Linux,	you	can	get	much	more	performance	by	using	hdparm	to
configure	your	disk's	interface.	(Up	to	100%	under	load	is	not	uncommon.)
The	following	hdparm	options	should	be	quite	good	for	MySQL,	and
probably	for	many	other	applications:

hdparm	-m	16	-d	1

Note	that	performance	and	reliability	when	using	this	command	depend	on
your	hardware,	so	we	strongly	suggest	that	you	test	your	system	thoroughly
after	using	hdparm.	Please	consult	the	hdparm	manual	page	for	more
information.	If	hdparm	is	not	used	wisely,	filesystem	corruption	may	result,
so	back	up	everything	before	experimenting!

You	can	also	set	the	parameters	for	the	filesystem	that	the	database	uses:

If	you	do	not	need	to	know	when	files	were	last	accessed	(which	is	not
really	useful	on	a	database	server),	you	can	mount	your	filesystems	with	the
-o	noatime	option.	That	skips	updates	to	the	last	access	time	in	inodes	on
the	filesystem,	which	avoids	some	disk	seeks.

On	many	operating	systems,	you	can	set	a	filesystem	to	be	updated
asynchronously	by	mounting	it	with	the	-o	async	option.	If	your	computer
is	reasonably	stable,	this	should	give	you	more	performance	without
sacrificing	too	much	reliability.	(This	flag	is	on	by	default	on	Linux.)

7.6.1.	Using	Symbolic	Links

You	can	move	tables	and	databases	from	the	database	directory	to	other	locations
and	replace	them	with	symbolic	links	to	the	new	locations.	You	might	want	to	do
this,	for	example,	to	move	a	database	to	a	file	system	with	more	free	space	or
increase	the	speed	of	your	system	by	spreading	your	tables	to	different	disk.

The	recommended	way	to	do	this	is	simply	to	symlink	databases	to	a	different
disk.	Symlink	tables	only	as	a	last	resort.

7.6.1.1.	Using	Symbolic	Links	for	Databases	on	Unix

On	Unix,	the	way	to	symlink	a	database	is	first	to	create	a	directory	on	some
disk	where	you	have	free	space	and	then	to	create	a	symlink	to	it	from	the
MySQL	data	directory.

shell>	mkdir	/dr1/databases/test

shell>	ln	-s	/dr1/databases/test	/path/to/datadir

MySQL	does	not	support	linking	one	directory	to	multiple	databases.	Replacing
a	database	directory	with	a	symbolic	link	works	as	long	as	you	do	not	make	a
symbolic	link	between	databases.	Suppose	that	you	have	a	database	db1	under
the	MySQL	data	directory,	and	then	make	a	symlink	db2	that	points	to	db1:

shell>	cd	/path/to/datadir

shell>	ln	-s	db1	db2

The	result	is	that,	or	any	table	tbl_a	in	db1,	there	also	appears	to	be	a	table
tbl_a	in	db2.	If	one	client	updates	db1.tbl_a	and	another	client	updates
db2.tbl_a,	problems	are	likely	to	occur.

However,	if	you	really	need	to	do	this,	it	is	possible	by	altering	the	source	file
mysys/my_symlink.c,	in	which	you	should	look	for	the	following	statement:

if	(!(MyFlags	&	MY_RESOLVE_LINK)	||

				(!lstat(filename,&stat_buff)	&&	S_ISLNK(stat_buff.st_mode)))

Change	the	statement	to	this:

if	(1)

7.6.1.2.	Using	Symbolic	Links	for	Tables	on	Unix

You	should	not	symlink	tables	on	systems	that	do	not	have	a	fully	operational
realpath()	call.	(Linux	and	Solaris	support	realpath()).	You	can	check
whether	your	system	supports	symbolic	links	by	issuing	a	SHOW	VARIABLES	LIKE
'have_symlink'	statement.

Symlinks	are	fully	supported	only	for	MyISAM	tables.	For	files	used	by	tables	for
other	storage	engines,	you	may	get	strange	problems	if	you	try	to	use	symbolic
links.

The	handling	of	symbolic	links	for	MyISAM	tables	works	as	follows:

In	the	data	directory,	you	always	have	the	table	format	(.frm)	file,	the	data
(.MYD)	file,	and	the	index	(.MYI)	file.	The	data	file	and	index	file	can	be
moved	elsewhere	and	replaced	in	the	data	directory	by	symlinks.	The
format	file	cannot.

You	can	symlink	the	data	file	and	the	index	file	independently	to	different
directories.

You	can	instruct	a	running	MySQL	server	to	perform	the	symlinking	by
using	the	DATA	DIRECTORY	and	INDEX	DIRECTORY	options	to	CREATE	TABLE.
See	Section	13.1.5,	“CREATE	TABLE	Syntax”.	Alternatively,	symlinking	can
be	accomplished	manually	from	the	command	line	using	ln	-s	if	mysqld	is
not	running.

myisamchk	does	not	replace	a	symlink	with	the	data	file	or	index	file.	It
works	directly	on	the	file	to	which	the	symlink	points.	Any	temporary	files
are	created	in	the	directory	where	the	data	file	or	index	file	is	located.

Note:	When	you	drop	a	table	that	is	using	symlinks,	both	the	symlink	and
the	file	to	which	the	symlink	points	are	dropped.	This	is	an	extremely	good
reason	why	you	should	not	run	mysqld	as	the	system	root	or	allow	system
users	to	have	write	access	to	MySQL	database	directories.

If	you	rename	a	table	with	ALTER	TABLE	...	RENAME	and	you	do	not	move
the	table	to	another	database,	the	symlinks	in	the	database	directory	are
renamed	to	the	new	names	and	the	data	file	and	index	file	are	renamed
accordingly.

If	you	use	ALTER	TABLE	...	RENAME	to	move	a	table	to	another	database,
the	table	is	moved	to	the	other	database	directory.	The	old	symlinks	and	the
files	to	which	they	pointed	are	deleted.	In	other	words,	the	new	table	is	not
symlinked.

If	you	are	not	using	symlinks,	you	should	use	the	--skip-symbolic-links

option	to	mysqld	to	ensure	that	no	one	can	use	mysqld	to	drop	or	rename	a
file	outside	of	the	data	directory.

Table	symlink	operations	that	are	not	yet	supported:

ALTER	TABLE	ignores	the	DATA	DIRECTORY	and	INDEX	DIRECTORY	table
options.

BACKUP	TABLE	and	RESTORE	TABLE	do	not	respect	symbolic	links.

The	.frm	file	must	never	be	a	symbolic	link	(as	indicated	previously,	only
the	data	and	index	files	can	be	symbolic	links).	Attempting	to	do	this	(for
example,	to	make	synonyms)	produces	incorrect	results.	Suppose	that	you
have	a	database	db1	under	the	MySQL	data	directory,	a	table	tbl1	in	this
database,	and	in	the	db1	directory	you	make	a	symlink	tbl2	that	points	to
tbl1:

shell>	cd	/path/to/datadir/db1

shell>	ln	-s	tbl1.frm	tbl2.frm

shell>	ln	-s	tbl1.MYD	tbl2.MYD

shell>	ln	-s	tbl1.MYI	tbl2.MYI

Problems	result	if	one	thread	reads	db1.tbl1	and	another	thread	updates
db1.tbl2:

The	query	cache	is	“fooled”	(it	has	no	way	of	knowing	that	tbl1	has
not	been	updated,	so	it	returns	outdated	results).

ALTER	statements	on	tbl2	fail.

7.6.1.3.	Using	Symbolic	Links	for	Databases	on	Windows

Symbolic	links	are	enabled	by	default	for	all	Windows	servers.	This	enables	you
to	put	a	database	directory	on	a	different	disk	by	setting	up	a	symbolic	link	to	it.
This	is	similar	to	the	way	that	database	symbolic	links	work	on	Unix,	although
the	procedure	for	setting	up	the	link	is	different.	If	you	do	not	need	symbolic
links,	you	can	disable	them	using	the	--skip-symbolic-links	option.

On	Windows,	create	a	symbolic	link	to	a	MySQL	database	by	creating	a	file	in
the	data	directory	that	contains	the	path	to	the	destination	directory.	The	file

should	be	named	db_name.sym,	where	db_name	is	the	database	name.

Suppose	that	the	MySQL	data	directory	is	C:\mysql\data	and	you	want	to	have
database	foo	located	at	D:\data\foo.	Set	up	a	symlink	using	this	procedure

1.	 Make	sure	that	the	D:\data\foo	directory	exists	by	creating	it	if	necessary.
If	you	already	have	a	database	directory	named	foo	in	the	data	directory,
you	should	move	it	to	D:\data.	Otherwise,	the	symbolic	link	will	be
ineffective.	To	avoid	problems,	make	sure	that	the	server	is	not	running
when	you	move	the	database	directory.

2.	 Create	a	text	file	C:\mysql\data\foo.sym	that	contains	the	pathname
D:\data\foo\.

After	this,	all	tables	created	in	the	database	foo	are	created	in	D:\data\foo.	Note
that	the	symbolic	link	is	not	used	if	a	directory	with	the	same	name	as	the
database	exists	in	the	MySQL	data	directory.

Chapter	8.	Client	and	Utility	Programs

Table	of	Contents

8.1.	Overview	of	Client	and	Utility	Programs
8.2.	myisam_ftdump	—	Display	Full-Text	Index	information
8.3.	myisamchk	—	MyISAM	Table-Maintenance	Utility

8.3.1.	myisamchk	General	Options
8.3.2.	myisamchk	Check	Options
8.3.3.	myisamchk	Repair	Options
8.3.4.	Other	myisamchk	Options
8.3.5.	myisamchk	Memory	Usage

8.4.	myisamlog	—	Display	MyISAM	Log	File	Contents
8.5.	myisampack	—	Generate	Compressed,	Read-Only	MyISAM	Tables
8.6.	mysql	—	The	MySQL	Command-Line	Tool

8.6.1.	mysql	Options
8.6.2.	mysql	Commands
8.6.3.	mysql	Server-Side	Help
8.6.4.	Executing	SQL	Statements	from	a	Text	File
8.6.5.	mysql	Tips

8.7.	mysql_explain_log	—	Use	EXPLAIN	on	Statements	in	Query	Log
8.8.	mysqlaccess	—	Client	for	Checking	Access	Privileges
8.9.	mysqladmin	—	Client	for	Administering	a	MySQL	Server
8.10.	mysqlbinlog	—	Utility	for	Processing	Binary	Log	Files
8.11.	mysqlcheck	—	A	Table	Maintenance	and	Repair	Program
8.12.	mysqldump	—	A	Database	Backup	Program
8.13.	mysqlhotcopy	—	A	Database	Backup	Program
8.14.	mysqlimport	—	A	Data	Import	Program
8.15.	mysqlshow	—	Display	Database,	Table,	and	Column	Information
8.16.	mysql_zap	—	Kill	Processes	That	Match	a	Pattern
8.17.	perror	—	Explain	Error	Codes
8.18.	replace	—	A	String-Replacement	Utility

There	are	many	different	MySQL	client	programs	that	connect	to	the	server	to
access	databases	or	perform	administrative	tasks.	Other	utilities	are	available	as
well.	These	do	not	establish	a	client	connection	with	the	server	but	perform
MySQL-related	operations.

This	chapter	provides	a	brief	overview	of	these	programs	and	then	a	more
detailed	description	of	each	one.	Each	program's	description	indicates	its
invocation	syntax	and	the	options	that	it	understands.	See	Chapter	4,	Using
MySQL	Programs,	for	general	information	on	invoking	programs	and	specifying
program	options.

8.1.	Overview	of	Client	and	Utility	Programs

The	following	list	briefly	describes	the	MySQL	client	programs	and	utilities:

	myisam_ftdump

A	utility	that	displays	information	about	full-text	indexes	in	MyISAM	tables.
See	Section	8.2,	“myisam_ftdump	—	Display	Full-Text	Index
information”.

	myisamchk

A	utility	to	describe,	check,	optimize,	and	repair	MyISAM	tables.	See
Section	8.3,	“myisamchk	—	MyISAM	Table-Maintenance	Utility”.

	myisamlog

A	utility	that	processes	the	contents	of	a	MyISAM	log	file.	See	Section	8.4,
“myisamlog	—	Display	MyISAM	Log	File	Contents”.

	myisampack

A	utility	that	compresses	MyISAM	tables	to	produce	smaller	read-only	tables.
See	Section	8.5,	“myisampack	—	Generate	Compressed,	Read-Only
MyISAM	Tables”.

	mysql

The	command-line	tool	for	interactively	entering	SQL	statements	or
executing	them	from	a	file	in	batch	mode.	See	Section	8.6,	“mysql	—	The
MySQL	Command-Line	Tool”.

	mysql_explain_log

A	utility	that	analyzes	queries	in	the	MySQL	query	log	using	EXPLAIN	See
Section	8.7,	“mysql_explain_log	—	Use	EXPLAIN	on	Statements	in
Query	Log”.

	mysqlaccess

A	script	that	checks	the	access	privileges	for	a	hostname,	username,	and
database	combination.	See	Section	8.8,	“mysqlaccess	—	Client	for
Checking	Access	Privileges”.

	mysqladmin

A	client	that	performs	administrative	operations,	such	as	creating	or
dropping	databases,	reloading	the	grant	tables,	flushing	tables	to	disk,	and
reopening	log	files.	mysqladmin	can	also	be	used	to	retrieve	version,
process,	and	status	information	from	the	server.	See	Section	8.9,
“mysqladmin	—	Client	for	Administering	a	MySQL	Server”.

	mysqlbinlog

A	utility	for	reading	statements	from	a	binary	log.	The	log	of	executed
statements	contained	in	the	binary	log	files	can	be	used	to	help	recover
from	a	crash.	See	Section	8.10,	“mysqlbinlog	—	Utility	for	Processing
Binary	Log	Files”.

	mysqlcheck

A	table-maintenance	client	that	checks,	repairs,	analyzes,	and	optimizes
tables.	See	Section	8.11,	“mysqlcheck	—	A	Table	Maintenance	and	Repair
Program”.

	mysqldump

A	client	that	dumps	a	MySQL	database	into	a	file	as	SQL	statements	or	as
tab-separated	text	files.	See	Section	8.12,	“mysqldump	—	A	Database
Backup	Program”.

	mysqlhotcopy

A	utility	that	quickly	makes	backups	of	MyISAM	tables	while	the	server	is
running.	See	Section	8.13,	“mysqlhotcopy	—	A	Database	Backup
Program”.

	mysqlimport

A	client	that	imports	text	files	into	their	respective	tables	using	LOAD	DATA

INFILE.	See	Section	8.14,	“mysqlimport	—	A	Data	Import	Program”.

	mysqlshow

A	client	that	displays	information	about	databases,	tables,	columns,	and
indexes.	See	Section	8.15,	“mysqlshow	—	Display	Database,	Table,	and
Column	Information”.

	mysql_zap

A	utility	that	kills	processes	that	match	a	pattern.	Section	8.16,	“mysql_zap
—	Kill	Processes	That	Match	a	Pattern”.

	perror

A	utility	that	displays	the	meaning	of	system	or	MySQL	error	codes.	See
Section	8.17,	“perror	—	Explain	Error	Codes”.

	replace

A	utility	program	that	performs	string	replacement	in	the	input	text.	See
Section	8.18,	“replace	—	A	String-Replacement	Utility”.

MySQL	AB	also	provides	a	number	of	GUI	tools	for	administering	and
otherwise	working	with	MySQL	servers.	For	basic	information	about	these,	see
Chapter	4,	Using	MySQL	Programs.

Each	MySQL	program	takes	many	different	options.	Most	programs	provide	a	-
-help	option	that	you	can	use	to	get	a	full	description	of	the	program's	different
options.	For	example,	try	mysql	--help.

MySQL	client	programs	that	communicate	with	the	server	using	the	MySQL
client/server	library	use	the	following	environment	variables:

MYSQL_UNIX_PORT The	default	Unix	socket	file;	used	for	connections	to
localhost

MYSQL_TCP_PORT The	default	port	number;	used	for	TCP/IP	connections
MYSQL_PWD The	default	password
MYSQL_DEBUG Debug	trace	options	when	debugging

TMPDIR The	directory	where	temporary	tables	and	files	are	created

Use	of	MYSQL_PWD	is	insecure.	See	Section	5.9.6,	“Keeping	Your	Password
Secure”.

You	can	override	the	default	option	values	or	values	specified	in	environment
variables	for	all	standard	programs	by	specifying	options	in	an	option	file	or	on
the	command	line.	See	Section	4.3,	“Specifying	Program	Options”.

8.2.	myisam_ftdump	—	Display	Full-Text	Index
information

myisam_ftdump	displays	information	about	FULLTEXT	indexes	in	MyISAM	tables.
It	reads	the	MyISAM	index	file	directly,	so	it	must	be	run	on	the	server	host	where
the	table	is	located

Invoke	myisam_ftdump	like	this:

shell>	myisam_ftdump	[options]	tbl_name	index_num

The	tbl_name	argument	should	be	the	name	of	a	MyISAM	table.	You	can	also
specify	a	table	by	naming	its	index	file	(the	file	with	the	.MYI	suffix).	If	you	do
not	invoke	myisam_ftdump	in	the	directory	where	the	table	files	are	located,
the	table	or	index	file	name	name	must	be	preceded	by	the	pathname	to	the
table's	database	directory.	Index	numbers	begin	with	0.

Example:	Suppose	that	the	test	database	contains	a	table	named	mytexttablel
that	has	the	following	definition:

CREATE	TABLE	mytexttable

(

		id			INT	NOT	NULL,

		txt		TEXT	NOT	NULL,

		PRIMARY	KEY	(id),

		FULLTEXT	(txt)

);

The	index	on	id	is	index	0	and	the	FULLTEXT	index	on	txt	is	index	1.	If	your
working	directory	is	the	test	database	directory,	invoke	myisam_ftdump	as
follows:

shell>	myisam_ftdump	mytexttable	1

If	the	pathname	to	the	test	database	directory	is	/usr/local/mysql/data/test,
you	can	also	specify	the	table	name	argument	using	that	pathname.	This	is	useful
if	you	do	not	invoke	myisam_ftdump	in	the	database	directory:

shell>	myisam_ftdump	/usr/local/mysql/data/test/mytexttable	1

myisam_ftdump	understands	the	following	options:

	--help,	-h	-?

Display	a	help	message	and	exit.

	--count,	-c

Calculate	per-word	statistics	(counts	and	global	weights).

	--dump,	-d

Dump	the	index,	including	data	offsets	and	word	weights.

	--length,	-l

Report	the	length	distribution.

	--stats,	-s

Report	global	index	statistics.	This	is	the	default	operation	if	no	other
operation	is	specified.

	--verbose,	-v

Verbose	mode.	Print	more	output	about	what	the	program	does.

8.3.	myisamchk	—	MyISAM	Table-Maintenance
Utility

The	myisamchk	utility	gets	information	about	your	database	tables	or	checks,
repairs,	or	optimizes	them.	myisamchk	works	with	MyISAM	tables	(tables	that
have	.MYD	and	.MYI	files	for	storing	data	and	indexes).

Invoke	myisamchk	like	this:

shell>	myisamchk	[options]	tbl_name	...

The	options	specify	what	you	want	myisamchk	to	do.	They	are	described	in	the
following	sections.	You	can	also	get	a	list	of	options	by	invoking	myisamchk	--
help.

With	no	options,	myisamchk	simply	checks	your	table	as	the	default	operation.
To	get	more	information	or	to	tell	myisamchk	to	take	corrective	action,	specify
options	as	described	in	the	following	discussion.

tbl_name	is	the	database	table	you	want	to	check	or	repair.	If	you	run
myisamchk	somewhere	other	than	in	the	database	directory,	you	must	specify
the	path	to	the	database	directory,	because	myisamchk	has	no	idea	where	the
database	is	located.	In	fact,	myisamchk	doesn't	actually	care	whether	the	files
you	are	working	on	are	located	in	a	database	directory.	You	can	copy	the	files
that	correspond	to	a	database	table	into	some	other	location	and	perform
recovery	operations	on	them	there.

You	can	name	several	tables	on	the	myisamchk	command	line	if	you	wish.	You
can	also	specify	a	table	by	naming	its	index	file	(the	file	with	the	.MYI	suffix).
This	allows	you	to	specify	all	tables	in	a	directory	by	using	the	pattern	*.MYI.
For	example,	if	you	are	in	a	database	directory,	you	can	check	all	the	MyISAM
tables	in	that	directory	like	this:

shell>	myisamchk	*.MYI

If	you	are	not	in	the	database	directory,	you	can	check	all	the	tables	there	by
specifying	the	path	to	the	directory:

shell>	myisamchk	/path/to/database_dir/*.MYI

You	can	even	check	all	tables	in	all	databases	by	specifying	a	wildcard	with	the
path	to	the	MySQL	data	directory:

shell>	myisamchk	/path/to/datadir/*/*.MYI

The	recommended	way	to	quickly	check	all	MyISAM	tables	is:

shell>	myisamchk	--silent	--fast	/path/to/datadir/*/*.MYI

If	you	want	to	check	all	MyISAM	tables	and	repair	any	that	are	corrupted,	you	can
use	the	following	command:

shell>	myisamchk	--silent	--force	--fast	--update-state	\

										--key_buffer_size=64M	--sort_buffer_size=64M	\

										--read_buffer_size=1M	--write_buffer_size=1M	\

										/path/to/datadir/*/*.MYI

This	command	assumes	that	you	have	more	than	64MB	free.	For	more
information	about	memory	allocation	with	myisamchk,	see	Section	8.3.5,
“myisamchk	Memory	Usage”.

You	must	ensure	that	no	other	program	is	using	the	tables	while	you	are	running
myisamchk.	Otherwise,	when	you	run	myisamchk,	it	may	display	the	following
error	message:

warning:	clients	are	using	or	haven't	closed	the	table	properly

This	means	that	you	are	trying	to	check	a	table	that	has	been	updated	by	another
program	(such	as	the	mysqld	server)	that	hasn't	yet	closed	the	file	or	that	has
died	without	closing	the	file	properly.

If	mysqld	is	running,	you	must	force	it	to	flush	any	table	modifications	that	are
still	buffered	in	memory	by	using	FLUSH	TABLES.	You	should	then	ensure	that	no
one	is	using	the	tables	while	you	are	running	myisamchk.	The	easiest	way	to
avoid	this	problem	is	to	use	CHECK	TABLE	instead	of	myisamchk	to	check	tables.

8.3.1.	myisamchk	General	Options

The	options	described	in	this	section	can	be	used	for	any	type	of	table
maintenance	operation	performed	by	myisamchk.	The	sections	following	this
one	describe	options	that	pertain	only	to	specific	operations,	such	as	table

checking	or	repairing.

	--help,	-?

Display	a	help	message	and	exit.

	--debug=debug_options,	-#	debug_options

Write	a	debugging	log.	The	debug_options	string	often	is
'd:t:o,file_name'.

	--silent,	-s

Silent	mode.	Write	output	only	when	errors	occur.	You	can	use	-s	twice	(-
ss)	to	make	myisamchk	very	silent.

	--verbose,	-v

Verbose	mode.	Print	more	information	about	what	the	program	does.	This
can	be	used	with	-d	and	-e.	Use	-v	multiple	times	(-vv,	-vvv)	for	even
more	output.

	--version,	-V

Display	version	information	and	exit.

	--wait,	-w

Instead	of	terminating	with	an	error	if	the	table	is	locked,	wait	until	the
table	is	unlocked	before	continuing.	Note	that	if	you	are	running	mysqld
with	external	locking	disabled,	the	table	can	be	locked	only	by	another
myisamchk	command.

You	can	also	set	the	following	variables	by	using	--var_name=value	syntax:

Variable Default	Value
decode_bits 9
ft_max_word_len version-dependent
ft_min_word_len 4

ft_stopword_file built-in	list
key_buffer_size 523264
myisam_block_size 1024
read_buffer_size 262136
sort_buffer_size 2097144
sort_key_blocks 16
stats_method nulls_unequal
write_buffer_size 262136

The	possible	myisamchk	variables	and	their	default	values	can	be	examined
with	myisamchk	--help:

sort_buffer_size	is	used	when	the	keys	are	repaired	by	sorting	keys,	which	is
the	normal	case	when	you	use	--recover.

key_buffer_size	is	used	when	you	are	checking	the	table	with	--extend-check
or	when	the	keys	are	repaired	by	inserting	keys	row	by	row	into	the	table	(like
when	doing	normal	inserts).	Repairing	through	the	key	buffer	is	used	in	the
following	cases:

You	use	--safe-recover.

The	temporary	files	needed	to	sort	the	keys	would	be	more	than	twice	as
big	as	when	creating	the	key	file	directly.	This	is	often	the	case	when	you
have	large	key	values	for	CHAR,	VARCHAR,	or	TEXT	columns,	because	the	sort
operation	needs	to	store	the	complete	key	values	as	it	proceeds.	If	you	have
lots	of	temporary	space	and	you	can	force	myisamchk	to	repair	by	sorting,
you	can	use	the	--sort-recover	option.

Repairing	through	the	key	buffer	takes	much	less	disk	space	than	using	sorting,
but	is	also	much	slower.

If	you	want	a	faster	repair,	set	the	key_buffer_size	and	sort_buffer_size
variables	to	about	25%	of	your	available	memory.	You	can	set	both	variables	to
large	values,	because	only	one	of	them	is	used	at	a	time.

myisam_block_size	is	the	size	used	for	index	blocks.

stats_method	influences	how	NULL	values	are	treated	for	index	statistics
collection	when	the	--analyze	option	is	given.	It	acts	like	the
myisam_stats_method	system	variable.	For	more	information,	see	the
description	of	myisam_stats_method	in	Section	5.2.2,	“Server	System
Variables”,	and	Section	7.4.7,	“MyISAM	Index	Statistics	Collection”.	For	MySQL
5.0,	stats_method	was	added	in	MySQL	5.0.14.	For	older	versions,	the	statistics
collection	method	is	equivalent	to	nulls_equal.

ft_min_word_len	and	ft_max_word_len	indicate	the	minimum	and	maximum
word	length	for	FULLTEXT	indexes.	ft_stopword_file	names	the	stopword	file.
These	need	to	be	set	under	the	following	circumstances.

If	you	use	myisamchk	to	perform	an	operation	that	modifies	table	indexes	(such
as	repair	or	analyze),	the	FULLTEXT	indexes	are	rebuilt	using	the	default	full-text
parameter	values	for	minimum	and	maximum	word	length	and	the	stopword	file
unless	you	specify	otherwise.	This	can	result	in	queries	failing.

The	problem	occurs	because	these	parameters	are	known	only	by	the	server.
They	are	not	stored	in	MyISAM	index	files.	To	avoid	the	problem	if	you	have
modified	the	minimum	or	maximum	word	length	or	the	stopword	file	in	the
server,	specify	the	same	ft_min_word_len,	ft_max_word_len,	and
ft_stopword_file	values	to	myisamchk	that	you	use	for	mysqld.	For	example,
if	you	have	set	the	minimum	word	length	to	3,	you	can	repair	a	table	with
myisamchk	like	this:

shell>	myisamchk	--recover	--ft_min_word_len=3	tbl_name.MYI

To	ensure	that	myisamchk	and	the	server	use	the	same	values	for	full-text
parameters,	you	can	place	each	one	in	both	the	[mysqld]	and	[myisamchk]
sections	of	an	option	file:

[mysqld]

ft_min_word_len=3

[myisamchk]

ft_min_word_len=3

An	alternative	to	using	myisamchk	is	to	use	the	REPAIR	TABLE,	ANALYZE	TABLE,
OPTIMIZE	TABLE,	or	ALTER	TABLE.	These	statements	are	performed	by	the	server,
which	knows	the	proper	full-text	parameter	values	to	use.

8.3.2.	myisamchk	Check	Options

myisamchk	supports	the	following	options	for	table	checking	operations:

	--check,	-c

Check	the	table	for	errors.	This	is	the	default	operation	if	you	specify	no
option	that	selects	an	operation	type	explicitly.

	--check-only-changed,	-C

Check	only	tables	that	have	changed	since	the	last	check.

	--extend-check,	-e

Check	the	table	very	thoroughly.	This	is	quite	slow	if	the	table	has	many
indexes.	This	option	should	only	be	used	in	extreme	cases.	Normally,
myisamchk	or	myisamchk	--medium-check	should	be	able	to	determine
whether	there	are	any	errors	in	the	table.

If	you	are	using	--extend-check	and	have	plenty	of	memory,	setting	the
key_buffer_size	variable	to	a	large	value	helps	the	repair	operation	run
faster.

	--fast,	-F

Check	only	tables	that	haven't	been	closed	properly.

	--force,	-f

Do	a	repair	operation	automatically	if	myisamchk	finds	any	errors	in	the
table.	The	repair	type	is	the	same	as	that	specified	with	the	--recover	or	-r
option.

	--information,	-i

Print	informational	statistics	about	the	table	that	is	checked.

	--medium-check,	-m

Do	a	check	that	is	faster	than	an	--extend-check	operation.	This	finds	only
99.99%	of	all	errors,	which	should	be	good	enough	in	most	cases.

	--read-only,	-T

Don't	mark	the	table	as	checked.	This	is	useful	if	you	use	myisamchk	to
check	a	table	that	is	in	use	by	some	other	application	that	doesn't	use
locking,	such	as	mysqld	when	run	with	external	locking	disabled.

	--update-state,	-U

Store	information	in	the	.MYI	file	to	indicate	when	the	table	was	checked
and	whether	the	table	crashed.	This	should	be	used	to	get	full	benefit	of	the
--check-only-changed	option,	but	you	shouldn't	use	this	option	if	the
mysqld	server	is	using	the	table	and	you	are	running	it	with	external
locking	disabled.

8.3.3.	myisamchk	Repair	Options

myisamchk	supports	the	following	options	for	table	repair	operations:

	--backup,	-B

Make	a	backup	of	the	.MYD	file	as	file_name-time.BAK

	--character-sets-dir=path

The	directory	where	character	sets	are	installed.	See	Section	5.11.1,	“The
Character	Set	Used	for	Data	and	Sorting”.

	--correct-checksum

Correct	the	checksum	information	for	the	table.

	--data-file-length=len,	-D	len

Maximum	length	of	the	data	file	(when	re-creating	data	file	when	it	is
“full”).

	--extend-check,	-e

Do	a	repair	that	tries	to	recover	every	possible	row	from	the	data	file.
Normally,	this	also	finds	a	lot	of	garbage	rows.	Don't	use	this	option	unless
you	are	desperate.

	--force,	-f

Overwrite	old	intermediate	files	(files	with	names	like	tbl_name.TMD)
instead	of	aborting.

	--keys-used=val,	-k	val

For	myisamchk,	the	option	value	is	a	bit-value	that	indicates	which	indexes
to	update.	Each	binary	bit	of	the	option	value	corresponds	to	a	table	index,
where	the	first	index	is	bit	0.	An	option	value	of	0	disables	updates	to	all
indexes,	which	can	be	used	to	get	faster	inserts.	Deactivated	indexes	can	be
reactivated	by	using	myisamchk	-r.

	--max-record-length=len

Skip	rows	larger	than	the	given	length	if	myisamchk	cannot	allocate
memory	to	hold	them.

	--parallel-recover,	-p

Uses	the	same	technique	as	-r	and	-n,	but	creates	all	the	keys	in	parallel,
using	different	threads.	This	is	beta-quality	code.	Use	at	your	own	risk!

	--quick,	-q

Achieve	a	faster	repair	by	not	modifying	the	data	file.	You	can	specify	this
option	twice	to	force	myisamchk	to	modify	the	original	data	file	in	case	of
duplicate	keys.

	--recover,	-r

Do	a	repair	that	can	fix	almost	any	problem	except	unique	keys	that	aren't
unique	(which	is	an	extremely	unlikely	error	with	MyISAM	tables).	If	you
want	to	recover	a	table,	this	is	the	option	to	try	first.	You	should	try	--safe-
recover	only	if	myisamchk	reports	that	the	table	can't	be	recovered	using	-
-recover.	(In	the	unlikely	case	that	--recover	fails,	the	data	file	remains

intact.)

If	you	have	lots	of	memory,	you	should	increase	the	value	of
sort_buffer_size.

	--safe-recover,	-o

Do	a	repair	using	an	old	recovery	method	that	reads	through	all	rows	in
order	and	updates	all	index	trees	based	on	the	rows	found.	This	is	an	order
of	magnitude	slower	than	--recover,	but	can	handle	a	couple	of	very
unlikely	cases	that	--recover	cannot.	This	recovery	method	also	uses	much
less	disk	space	than	--recover.	Normally,	you	should	repair	first	with	--
recover,	and	then	with	--safe-recover	only	if	--recover	fails.

If	you	have	lots	of	memory,	you	should	increase	the	value	of
key_buffer_size.

--set-character-set=name

Change	the	character	set	used	by	the	table	indexes.	This	option	was
replaced	by	--set-collation	in	MySQL	5.0.3.

	--set-collation=name

Specify	the	collation	to	use	for	sorting	table	indexes.	The	character	set
name	is	implied	by	the	first	part	of	the	collation	name.	This	option	was
added	in	MySQL	5.0.3.

	--sort-recover,	-n

Force	myisamchk	to	use	sorting	to	resolve	the	keys	even	if	the	temporary
files	would	be	very	large.

	--tmpdir=path,	-t	path

Path	of	the	directory	to	be	used	for	storing	temporary	files.	If	this	is	not	set,
myisamchk	uses	the	value	of	the	TMPDIR	environment	variable.	tmpdir	can
be	set	to	a	list	of	directory	paths	that	are	used	successively	in	round-robin
fashion	for	creating	temporary	files.	The	separator	character	between
directory	names	is	the	colon	(‘:’)	on	Unix	and	the	semicolon	(‘;’)	on

Windows,	NetWare,	and	OS/2.

	--unpack,	-u

Unpack	a	table	that	was	packed	with	myisampack.

8.3.4.	Other	myisamchk	Options

myisamchk	supports	the	following	options	for	actions	other	than	table	checks
and	repairs:

	--analyze,	-a

Analyze	the	distribution	of	key	values.	This	improves	join	performance	by
enabling	the	join	optimizer	to	better	choose	the	order	in	which	to	join	the
tables	and	which	indexes	it	should	use.	To	obtain	information	about	the	key
distribution,	use	a	myisamchk	--description	--verbose	tbl_name	command
or	the	SHOW	INDEX	FROM	tbl_name	statement.

	--block-search=offset,	-b	offset

Find	the	record	that	a	block	at	the	given	offset	belongs	to.

	--description,	-d

Print	some	descriptive	information	about	the	table.

	--set-auto-increment[=value],	-A[value]

Force	AUTO_INCREMENT	numbering	for	new	records	to	start	at	the	given
value	(or	higher,	if	there	are	existing	records	with	AUTO_INCREMENT	values
this	large).	If	value	is	not	specified,	AUTO_INCREMENT	numbers	for	new
records	begin	with	the	largest	value	currently	in	the	table,	plus	one.

	--sort-index,	-S

Sort	the	index	tree	blocks	in	high-low	order.	This	optimizes	seeks	and
makes	table	scans	that	use	indexes	faster.

	--sort-records=N,	-R	N

Sort	records	according	to	a	particular	index.	This	makes	your	data	much
more	localized	and	may	speed	up	range-based	SELECT	and	ORDER	BY
operations	that	use	this	index.	(The	first	time	you	use	this	option	to	sort	a
table,	it	may	be	very	slow.)	To	determine	a	table's	index	numbers,	use	SHOW
INDEX,	which	displays	a	table's	indexes	in	the	same	order	that	myisamchk
sees	them.	Indexes	are	numbered	beginning	with	1.

If	keys	are	not	packed	(PACK_KEYS=0)),	they	have	the	same	length,	so	when
myisamchk	sorts	and	moves	records,	it	just	overwrites	record	offsets	in	the
index.	If	keys	are	packed	(PACK_KEYS=1),	myisamchk	must	unpack	key
blocks	first,	then	re-create	indexes	and	pack	the	key	blocks	again.	(In	this
case,	re-creating	indexes	is	faster	than	updating	offsets	for	each	index.)

8.3.5.	myisamchk	Memory	Usage

Memory	allocation	is	important	when	you	run	myisamchk.	myisamchk	uses	no
more	memory	than	its	memory-related	variables	are	set	to.	If	you	are	going	to
use	myisamchk	on	very	large	tables,	you	should	first	decide	how	much	memory
you	want	it	to	use.	The	default	is	to	use	only	about	3MB	to	perform	repairs.	By
using	larger	values,	you	can	get	myisamchk	to	operate	faster.	For	example,	if
you	have	more	than	32MB	RAM,	you	could	use	options	such	as	these	(in
addition	to	any	other	options	you	might	specify):

shell>	myisamchk	--sort_buffer_size=16M	--key_buffer_size=16M	\

											--read_buffer_size=1M	--write_buffer_size=1M	...

Using	--sort_buffer_size=16M	should	probably	be	enough	for	most	cases.

Be	aware	that	myisamchk	uses	temporary	files	in	TMPDIR.	If	TMPDIR	points	to	a
memory	filesystem,	you	may	easily	get	out	of	memory	errors.	If	this	happens,
run	myisamchk	with	the	--tmpdir=path	option	to	specify	some	directory
located	on	a	filesystem	that	has	more	space.

When	repairing,	myisamchk	also	needs	a	lot	of	disk	space:

Double	the	size	of	the	data	file	(the	original	file	and	a	copy).	This	space	is
not	needed	if	you	do	a	repair	with	--quick;	in	this	case,	only	the	index	file
is	re-created.	This	space	is	needed	on	the	same	filesystem	as	the	original
data	file!	(The	copy	is	created	in	the	same	directory	as	the	original.)

Space	for	the	new	index	file	that	replaces	the	old	one.	The	old	index	file	is
truncated	at	the	start	of	the	repair	operation,	so	you	usually	ignore	this
space.	This	space	is	needed	on	the	same	filesystem	as	the	original	index
file!

When	using	--recover	or	--sort-recover	(but	not	when	using	--safe-
recover),	you	need	space	for	a	sort	buffer.	The	following	formula	yields	the
amount	of	space	required:

(largest_key	+	row_pointer_length)	×	number_of_rows	×	2

You	can	check	the	length	of	the	keys	and	the	row_pointer_length	with
myisamchk	-dv	tbl_name.	This	space	is	allocated	in	the	temporary
directory	(specified	by	TMPDIR	or	--tmpdir=path).

If	you	have	a	problem	with	disk	space	during	repair,	you	can	try	--safe-
recover	instead	of	--recover.

8.4.	myisamlog	—	Display	MyISAM	Log	File
Contents

myisamlog	processes	the	contents	of	a	MyISAM	log	file.

Invoke	myisamlog	like	this:

shell>	myisamlog	[options]	[log_file	[tbl_name]	...]

The	default	operation	is	update	(-u).	If	a	recovery	is	done	(-r),	all	writes	and
possibly	updates	and	deletes	are	done	and	errors	are	only	counted.	The	default
log	file	name	is	myisam.log	if	no	log_file	argument	is	given,	If	tables	are
named	on	the	command	line,	only	those	tables	are	updated.

myisamlog	understands	the	following	options:

-?,	-I

Display	a	help	message	and	exit.

-c	N

Execute	only	N	commands.

-f	N

Specify	the	maximum	number	of	open	files.

-i

Display	extra	information	before	exiting.

-o	offset

Specify	the	starting	offset.

-p	N

Remove	N	components	from	path.

-r

Perform	a	recovery	operation.

-R	record_pos_file	record_pos

Specify	record	position	file	and	record	position.

-u

Perform	an	update	operation.

-v

Verbose	mode.	Print	more	output	about	what	the	program	does.	This	option
can	be	given	multiple	times	to	produce	more	and	more	output.

-w	write_file

Specify	the	write	file.

-V

Display	version	information.

8.5.	myisampack	—	Generate	Compressed,	Read-
Only	MyISAM	Tables

The	myisampack	utility	compresses	MyISAM	tables.	myisampack	works	by
compressing	each	column	in	the	table	separately.	Usually,	myisampack	packs
the	data	file	40%-70%.

When	the	table	is	used	later,	the	server	reads	into	memory	the	information
needed	to	decompress	columns.	This	results	in	much	better	performance	when
accessing	individual	rows,	because	you	only	have	to	uncompress	exactly	one
row.

MySQL	uses	mmap()	when	possible	to	perform	memory	mapping	on	compressed
tables.	If	mmap()	does	not	work,	MySQL	falls	back	to	normal	read/write	file
operations.

Please	note	the	following:

If	the	mysqld	server	was	invoked	with	external	locking	disabled,	it	is	not	a
good	idea	to	invoke	myisampack	if	the	table	might	be	updated	by	the
server	during	the	packing	process.	It	is	safest	to	compress	tables	with	the
server	stopped.

After	packing	a	table,	it	becomes	read-only.	This	is	generally	intended	(such
as	when	accessing	packed	tables	on	a	CD).	Allowing	writes	to	a	packed
table	is	on	our	TODO	list,	but	with	low	priority.

myisampack	can	pack	BLOB	or	TEXT	columns.	(The	older	pack_isam
program	for	ISAM	tables	did	not	have	this	capability.)

Invoke	myisampack	like	this:

shell>	myisampack	[options]	file_name	...

Each	filename	argument	should	be	the	name	of	an	index	(.MYI)	file.	If	you	are
not	in	the	database	directory,	you	should	specify	the	pathname	to	the	file.	It	is
permissible	to	omit	the	.MYI	extension.

After	you	compress	a	table	with	myisampack,	you	should	use	myisamchk	-rq
to	rebuild	its	indexes.	Section	8.3,	“myisamchk	—	MyISAM	Table-
Maintenance	Utility”.

myisampack	supports	the	following	options:

	--help,	-?

Display	a	help	message	and	exit.

	--backup,	-b

Make	a	backup	of	each	table's	data	file	using	the	name	tbl_name.OLD.

	--character-sets-dir=path

The	directory	where	character	sets	are	installed.	See	Section	5.11.1,	“The
Character	Set	Used	for	Data	and	Sorting”.

	--debug[=debug_options],	-#	[debug_options]

Write	a	debugging	log.	The	debug_options	string	often	is
'd:t:o,file_name'.

	--force,	-f

Produce	a	packed	table	even	if	it	becomes	larger	than	the	original	or	if	the
intermediate	file	from	an	earlier	invocation	of	myisampack	exists.
(myisampack	creates	an	intermediate	file	named	tbl_name.TMD	in	the
database	directory	while	it	compresses	the	table.	If	you	kill	myisampack,
the	.TMD	file	might	not	be	deleted.)	Normally,	myisampack	exits	with	an
error	if	it	finds	that	tbl_name.TMD	exists.	With	--force,	myisampack
packs	the	table	anyway.

	--join=big_tbl_name,	-j	big_tbl_name

Join	all	tables	named	on	the	command	line	into	a	single	table
big_tbl_name.	All	tables	that	are	to	be	combined	must	have	identical
structure	(same	column	names	and	types,	same	indexes,	and	so	forth).

	--packlength=len,	-p	len

Specify	the	row	length	storage	size,	in	bytes.	The	value	should	be	1,	2,	or	3.
myisampack	stores	all	rows	with	length	pointers	of	1,	2,	or	3	bytes.	In	most
normal	cases,	myisampack	can	determine	the	correct	length	value	before	it
begins	packing	the	file,	but	it	may	notice	during	the	packing	process	that	it
could	have	used	a	shorter	length.	In	this	case,	myisampack	prints	a	note
that	you	could	use	a	shorter	row	length	the	next	time	you	pack	the	same
file.

	--silent,	-s

Silent	mode.	Write	output	only	when	errors	occur.

	--test,	-t

Do	not	actually	pack	the	table,	just	test	packing	it.

	--tmpdir=path,	-T	path

Use	the	named	directory	as	the	location	where	myisampack	creates
temporary	files.

	--verbose,	-v

Verbose	mode.	Write	information	about	the	progress	of	the	packing
operation	and	its	result.

	--version,	-V

Display	version	information	and	exit.

	--wait,	-w

Wait	and	retry	if	the	table	is	in	use.	If	the	mysqld	server	was	invoked	with
external	locking	disabled,	it	is	not	a	good	idea	to	invoke	myisampack	if	the
table	might	be	updated	by	the	server	during	the	packing	process.

The	following	sequence	of	commands	illustrates	a	typical	table	compression
session:

shell>	ls	-l	station.*

-rw-rw-r--			1	monty				my									994128	Apr	17	19:00	station.MYD

-rw-rw-r--			1	monty				my										53248	Apr	17	19:00	station.MYI

-rw-rw-r--			1	monty				my											5767	Apr	17	19:00	station.frm

shell>	myisamchk	-dvv	station

MyISAM	file:					station

Isam-version:		2

Creation	time:	1996-03-13	10:08:58

Recover	time:		1997-02-02		3:06:43

Data	records:														1192		Deleted	blocks:														0

Datafile	parts:												1192		Deleted	data:																0

Datafile	pointer	(bytes):					2		Keyfile	pointer	(bytes):					2

Max	datafile	length:			54657023		Max	keyfile	length:			33554431

Recordlength:															834

Record	format:	Fixed	length

table	description:

Key	Start	Len	Index			Type																	Root		Blocksize				Rec/key

1			2					4			unique		unsigned	long								1024							1024										1

2			32				30		multip.	text																10240							1024										1

Field	Start	Length	Type

1					1					1

2					2					4

3					6					4

4					10				1

5					11				20

6					31				1

7					32				30

8					62				35

9					97				35

10				132			35

11				167			4

12				171			16

13				187			35

14				222			4

15				226			16

16				242			20

17				262			20

18				282			20

19				302			30

20				332			4

21				336			4

22				340			1

23				341			8

24				349			8

25				357			8

26				365			2

27				367			2

28				369			4

29				373			4

30				377			1

31				378			2

32				380			8

33				388			4

34				392			4

35				396			4

36				400			4

37				404			1

38				405			4

39				409			4

40				413			4

41				417			4

42				421			4

43				425			4

44				429			20

45				449			30

46				479			1

47				480			1

48				481			79

49				560			79

50				639			79

51				718			79

52				797			8

53				805			1

54				806			1

55				807			20

56				827			4

57				831			4

shell>	myisampack	station.MYI

Compressing	station.MYI:	(1192	records)

-	Calculating	statistics

normal:					20		empty-space:			16		empty-zero:					12		empty-fill:		11

pre-space:			0		end-space:					12		table-lookups:			5		zero:									7

Original	trees:		57		After	join:	17

-	Compressing	file

87.14%

Remember	to	run	myisamchk	-rq	on	compressed	tables

shell>	ls	-l	station.*

-rw-rw-r--			1	monty				my									127874	Apr	17	19:00	station.MYD

-rw-rw-r--			1	monty				my										55296	Apr	17	19:04	station.MYI

-rw-rw-r--			1	monty				my											5767	Apr	17	19:00	station.frm

shell>	myisamchk	-dvv	station

MyISAM	file:					station

Isam-version:		2

Creation	time:	1996-03-13	10:08:58

Recover	time:		1997-04-17	19:04:26

Data	records:															1192		Deleted	blocks:														0

Datafile	parts:													1192		Deleted	data:																0

Datafile	pointer	(bytes):						3		Keyfile	pointer	(bytes):					1

Max	datafile	length:				16777215		Max	keyfile	length:					131071

Recordlength:																834

Record	format:	Compressed

table	description:

Key	Start	Len	Index			Type																	Root		Blocksize				Rec/key

1			2					4			unique		unsigned	long							10240							1024										1

2			32				30		multip.	text																54272							1024										1

Field	Start	Length	Type																									Huff	tree		Bits

1					1					1						constant																													1					0

2					2					4						zerofill(1)																										2					9

3					6					4						no	zeros,	zerofill(1)																2					9

4					10				1																																											3					9

5					11				20					table-lookup																									4					0

6					31				1																																											3					9

7					32				30					no	endspace,	not_always														5					9

8					62				35					no	endspace,	not_always,	no	empty				6					9

9					97				35					no	empty																													7					9

10				132			35					no	endspace,	not_always,	no	empty				6					9

11				167			4						zerofill(1)																										2					9

12				171			16					no	endspace,	not_always,	no	empty				5					9

13				187			35					no	endspace,	not_always,	no	empty				6					9

14				222			4						zerofill(1)																										2					9

15				226			16					no	endspace,	not_always,	no	empty				5					9

16				242			20					no	endspace,	not_always														8					9

17				262			20					no	endspace,	no	empty																8					9

18				282			20					no	endspace,	no	empty																5					9

19				302			30					no	endspace,	no	empty																6					9

20				332			4						always	zero																										2					9

21				336			4						always	zero																										2					9

22				340			1																																											3					9

23				341			8						table-lookup																									9					0

24				349			8						table-lookup																								10					0

25				357			8						always	zero																										2					9

26				365			2																																											2					9

27				367			2						no	zeros,	zerofill(1)																2					9

28				369			4						no	zeros,	zerofill(1)																2					9

29				373			4						table-lookup																								11					0

30				377			1																																											3					9

31				378			2						no	zeros,	zerofill(1)																2					9

32				380			8						no	zeros																													2					9

33				388			4						always	zero																										2					9

34				392			4						table-lookup																								12					0

35				396			4						no	zeros,	zerofill(1)															13					9

36				400			4						no	zeros,	zerofill(1)																2					9

37				404			1																																											2					9

38				405			4						no	zeros																													2					9

39				409			4						always	zero																										2					9

40				413			4						no	zeros																													2					9

41				417			4						always	zero																										2					9

42				421			4						no	zeros																													2					9

43				425			4						always	zero																										2					9

44				429			20					no	empty																													3					9

45				449			30					no	empty																													3					9

46				479			1																																										14					4

47				480			1																																										14					4

48				481			79					no	endspace,	no	empty															15					9

49				560			79					no	empty																													2					9

50				639			79					no	empty																													2					9

51				718			79					no	endspace																									16					9

52				797			8						no	empty																													2					9

53				805			1																																										17					1

54				806			1																																											3					9

55				807			20					no	empty																													3					9

56				827			4						no	zeros,	zerofill(2)																2					9

57				831			4						no	zeros,	zerofill(1)																2					9

myisampack	displays	the	following	kinds	of	information:

normal

The	number	of	columns	for	which	no	extra	packing	is	used.

empty-space

The	number	of	columns	containing	values	that	are	only	spaces.	These
occupy	one	bit.

empty-zero

The	number	of	columns	containing	values	that	are	only	binary	zeros.	These
occupy	one	bit.

empty-fill

The	number	of	integer	columns	that	do	not	occupy	the	full	byte	range	of
their	type.	These	are	changed	to	a	smaller	type.	For	example,	a	BIGINT

column	(eight	bytes)	can	be	stored	as	a	TINYINT	column	(one	byte)	if	all	its
values	are	in	the	range	from	-128	to	127.

pre-space

The	number	of	decimal	columns	that	are	stored	with	leading	spaces.	In	this
case,	each	value	contains	a	count	for	the	number	of	leading	spaces.

end-space

The	number	of	columns	that	have	a	lot	of	trailing	spaces.	In	this	case,	each
value	contains	a	count	for	the	number	of	trailing	spaces.

table-lookup

The	column	had	only	a	small	number	of	different	values,	which	were
converted	to	an	ENUM	before	Huffman	compression.

zero

The	number	of	columns	for	which	all	values	are	zero.

Original	trees

The	initial	number	of	Huffman	trees.

After	join

The	number	of	distinct	Huffman	trees	left	after	joining	trees	to	save	some
header	space.

After	a	table	has	been	compressed,	myisamchk	-dvv	prints	additional
information	about	each	column:

Type

The	data	type.	The	value	may	contain	any	of	the	following	descriptors:

constant

All	rows	have	the	same	value.

no	endspace

Do	not	store	endspace.

no	endspace,	not_always

Do	not	store	endspace	and	do	not	do	endspace	compression	for	all
values.

no	endspace,	no	empty

Do	not	store	endspace.	Do	not	store	empty	values.

table-lookup

The	column	was	converted	to	an	ENUM.

zerofill(N)

The	most	significant	N	bytes	in	the	value	are	always	0	and	are	not
stored.

no	zeros

Do	not	store	zeros.

always	zero

Zero	values	are	stored	using	one	bit.

Huff	tree

The	number	of	the	Huffman	tree	associated	with	the	column.

Bits

The	number	of	bits	used	in	the	Huffman	tree.

After	you	run	myisampack,	you	must	run	myisamchk	to	re-create	any	indexes.
At	this	time,	you	can	also	sort	the	index	blocks	and	create	statistics	needed	for
the	MySQL	optimizer	to	work	more	efficiently:

shell>	myisamchk	-rq	--sort-index	--analyze	tbl_name.MYI

After	you	have	installed	the	packed	table	into	the	MySQL	database	directory,
you	should	execute	mysqladmin	flush-tables	to	force	mysqld	to	start	using	the
new	table.

To	unpack	a	packed	table,	use	the	--unpack	option	to	myisamchk.

8.6.	mysql	—	The	MySQL	Command-Line	Tool

mysql	is	a	simple	SQL	shell	(with	GNU	readline	capabilities).	It	supports
interactive	and	non-interactive	use.	When	used	interactively,	query	results	are
presented	in	an	ASCII-table	format.	When	used	non-interactively	(for	example,
as	a	filter),	the	result	is	presented	in	tab-separated	format.	The	output	format	can
be	changed	using	command	options.

If	you	have	problems	due	to	insufficient	memory	for	large	result	sets,	use	the	--
quick	option.	This	forces	mysql	to	retrieve	results	from	the	server	a	row	at	a
time	rather	than	retrieving	the	entire	result	set	and	buffering	it	in	memory	before
displaying	it.	This	is	done	by	returning	the	result	set	using	the
mysql_use_result()	C	API	function	in	the	client/server	library	rather	than
mysql_store_result().

Using	mysql	is	very	easy.	Invoke	it	from	the	prompt	of	your	command
interpreter	as	follows:

shell>	mysql	db_name

Or:

shell>	mysql	--user=user_name	--password=your_password	db_name

Then	type	an	SQL	statement,	end	it	with	‘;’,	\g,	or	\G	and	press	Enter.

You	can	execute	SQL	statements	in	a	script	file	(batch	file)	like	this:

shell>	mysql	db_name	<	script.sql	>	output.tab

8.6.1.	mysql	Options

mysql	supports	the	following	options:

	--help,	-?

Display	a	help	message	and	exit.

	--auto-rehash

Enable	automatic	rehashing.	This	option	is	on	by	default,	which	enables
table	and	column	name	completion.	Use	--skip-auto-rehash	to	disable
rehashing.	That	causes	mysql	to	start	faster,	but	you	must	issue	the	rehash
command	if	you	want	to	use	table	and	column	name	completion.

	--batch,	-B

Print	results	using	tab	as	the	column	separator,	with	each	row	on	a	new	line.
With	this	option,	mysql	does	not	use	the	history	file.

	--character-sets-dir=path

The	directory	where	character	sets	are	installed.	See	Section	5.11.1,	“The
Character	Set	Used	for	Data	and	Sorting”.

	--column-names

Write	column	names	in	results.

	--compress,	-C

Compress	all	information	sent	between	the	client	and	the	server	if	both
support	compression.

	--database=db_name,	-D	db_name

The	database	to	use.	This	is	useful	primarily	in	an	option	file.

	--debug[=debug_options],	-#	[debug_options]

Write	a	debugging	log.	The	debug_options	string	often	is
'd:t:o,file_name'.	The	default	is	'd:t:o,/tmp/mysql.trace'.

	--debug-info,	-T

Print	some	debugging	information	when	the	program	exits.

	--default-character-set=charset_name

Use	charset_name	as	the	default	character	set.	See	Section	5.11.1,	“The
Character	Set	Used	for	Data	and	Sorting”.

	--delimiter=str

Set	the	statement	delimiter.	The	default	is	the	semicolon	character	(‘;’).

	--execute=statement,	-e	statement

Execute	the	statement	and	quit.	The	default	output	format	is	like	that
produced	with	--batch.	See	Section	4.3.1,	“Using	Options	on	the
Command	Line”,	for	some	examples.

	--force,	-f

Continue	even	if	an	SQL	error	occurs.

	--host=host_name,	-h	host_name

Connect	to	the	MySQL	server	on	the	given	host.

	--html,	-H

Produce	HTML	output.

	--ignore-spaces,	-i

Ignore	spaces	after	function	names.	The	effect	of	this	is	described	in	the
discussion	for	the	IGNORE_SPACE	SQL	mode	(see	Section	5.2.5,	“The	Server
SQL	Mode”).

	--line-numbers

Write	line	numbers	for	errors.	Disable	this	with	--skip-line-numbers.

	--local-infile[={0|1}]

Enable	or	disable	LOCAL	capability	for	LOAD	DATA	INFILE.	With	no	value,
the	option	enables	LOCAL.	The	option	may	be	given	as	--local-infile=0
or	--local-infile=1	to	explicitly	disable	or	enable	LOCAL.	Enabling	LOCAL
has	no	effect	if	the	server	does	not	also	support	it.

	--named-commands,	-G

Enable	named	mysql	commands.	Long-format	commands	are	allowed,	not
just	short-format	commands.	For	example,	quit	and	\q	both	are	recognized.
Use	--skip-named-commands	to	disable	named	commands.	See
Section	8.6.2,	“mysql	Commands”.

	--no-auto-rehash,	-A

Deprecated	form	of	-skip-auto-rehash.	See	the	description	for	--auto-
rehash.

	--no-beep,	-b

Do	not	beep	when	errors	occur.

	--no-named-commands,	-g

Disable	named	commands.	Use	the	*	form	only,	or	use	named	commands
only	at	the	beginning	of	a	line	ending	with	a	semicolon	(‘;’).	mysql	starts
with	this	option	enabled	by	default.	However,	even	with	this	option,	long-
format	commands	still	work	from	the	first	line.	See	Section	8.6.2,	“mysql
Commands”.

	--no-pager

Deprecated	form	of	--skip-pager.	See	the	--pager	option.

	--no-tee

Do	not	copy	output	to	a	file.	Section	8.6.2,	“mysql	Commands”,	discusses
tee	files	further.

	--one-database,	-o

Ignore	statements	except	those	for	the	default	database	named	on	the
command	line.	This	is	useful	for	skipping	updates	to	other	databases	in	the
binary	log.

	--pager[=command]

Use	the	given	command	for	paging	query	output.	If	the	command	is

omitted,	the	default	pager	is	the	value	of	your	PAGER	environment	variable.
Valid	pagers	are	less,	more,	cat	[>	filename],	and	so	forth.	This	option
works	only	on	Unix.	It	does	not	work	in	batch	mode.	To	disable	paging,	use
--skip-pager.	Section	8.6.2,	“mysql	Commands”,	discusses	output	paging
further.

	--password[=password],	-p[password]

The	password	to	use	when	connecting	to	the	server.	If	you	use	the	short
option	form	(-p),	you	cannot	have	a	space	between	the	option	and	the
password.	If	you	omit	the	password	value	following	the	--password	or	-p
option	on	the	command	line,	you	are	prompted	for	one.

Specifying	a	password	on	the	command	line	should	be	considered	insecure.
See	Section	5.9.6,	“Keeping	Your	Password	Secure”.

	--port=port_num,	-P	port_num

The	TCP/IP	port	number	to	use	for	the	connection.

	--prompt=format_str

Set	the	prompt	to	the	specified	format.	The	default	is	mysql>.	The	special
sequences	that	the	prompt	can	contain	are	described	in	Section	8.6.2,
“mysql	Commands”.

	--protocol={TCP|SOCKET|PIPE|MEMORY}

The	connection	protocol	to	use.

	--quick,	-q

Do	not	cache	each	query	result,	print	each	row	as	it	is	received.	This	may
slow	down	the	server	if	the	output	is	suspended.	With	this	option,	mysql
does	not	use	the	history	file.

	--raw,	-r

Write	column	values	without	escape	conversion.	Often	used	with	the	--
batch	option.

	--reconnect

If	the	connection	to	the	server	is	lost,	automatically	try	to	reconnect.	A
single	reconnect	attempt	is	made	each	time	the	connection	is	lost.	To
suppress	reconnection	behavior,	use	--skip-reconnect.

	--safe-updates,	--i-am-a-dummy,	-U

Allow	only	those	UPDATE	and	DELETE	statements	that	specify	which	rows	to
modify	by	using	key	values.	If	you	have	set	this	option	in	an	option	file,
you	can	override	it	by	using	--safe-updates	on	the	command	line.	See
Section	8.6.5,	“mysql	Tips”,	for	more	information	about	this	option.

	--secure-auth

Do	not	send	passwords	to	the	server	in	old	(pre-4.1.1)	format.	This	prevents
connections	except	for	servers	that	use	the	newer	password	format.

	--show-warnings

Cause	warnings	to	be	shown	after	each	statement	if	there	are	any.	This
option	applies	to	interactive	and	batch	mode.	This	option	was	added	in
MySQL	5.0.6.

	--sigint-ignore

Ignore	SIGINT	signals	(typically	the	result	of	typing	Control-C).

	--silent,	-s

Silent	mode.	Produce	less	output.	This	option	can	be	given	multiple	times
to	produce	less	and	less	output.

	--skip-column-names,	-N

Do	not	write	column	names	in	results.

	--skip-line-numbers,	-L

Do	not	write	line	numbers	for	errors.	Useful	when	you	want	to	compare
result	files	that	include	error	messages.

	--socket=path,	-S	path

For	connections	to	localhost,	the	Unix	socket	file	to	use,	or,	on	Windows,
the	name	of	the	named	pipe	to	use.

	--ssl*

Options	that	begin	with	--ssl	specify	whether	to	connect	to	the	server	via
SSL	and	indicate	where	to	find	SSL	keys	and	certificates.	See
Section	5.9.7.3,	“SSL	Command	Options”.

	--table,	-t

Display	output	in	table	format.	This	is	the	default	for	interactive	use,	but
can	be	used	to	produce	table	output	in	batch	mode.

	--tee=file_name

Append	a	copy	of	output	to	the	given	file.	This	option	does	not	work	in
batch	mode.	in	Section	8.6.2,	“mysql	Commands”,	discusses	tee	files
further.

	--unbuffered,	-n

Flush	the	buffer	after	each	query.

	--user=user_name,	-u	user_name

The	MySQL	username	to	use	when	connecting	to	the	server.

	--verbose,	-v

Verbose	mode.	Produce	more	output	about	what	the	program	does.	This
option	can	be	given	multiple	times	to	produce	more	and	more	output.	(For
example,	-v	-v	-v	produces	table	output	format	even	in	batch	mode.)

	--version,	-V

Display	version	information	and	exit.

	--vertical,	-E

Print	query	output	rows	vertically	(one	line	per	column	value).	Without	this
option,	you	can	specify	vertical	output	for	individual	statements	by
terminating	them	with	\G.

	--wait,	-w

If	the	connection	cannot	be	established,	wait	and	retry	instead	of	aborting.

	--xml,	-X

Produce	XML	output.

You	can	also	set	the	following	variables	by	using	--var_name=value	syntax:

	connect_timeout

The	number	of	seconds	before	connection	timeout.	(Default	value	is	0.)

	max_allowed_packet

The	maximum	packet	length	to	send	to	or	receive	from	the	server.	(Default
value	is	16MB.)

	max_join_size

The	automatic	limit	for	rows	in	a	join	when	using	--safe-updates.
(Default	value	is	1,000,000.)

	net_buffer_length

The	buffer	size	for	TCP/IP	and	socket	communication.	(Default	value	is
16KB.)

	select_limit

The	automatic	limit	for	SELECT	statements	when	using	--safe-updates.
(Default	value	is	1,000.)

It	is	also	possible	to	set	variables	by	using	--set-variable=var_name=value	or
-O	var_name=value	syntax.	This	syntax	is	deprecated.

On	Unix,	the	mysql	client	writes	a	record	of	executed	statements	to	a	history
file.	By	default,	the	history	file	is	named	.mysql_history	and	is	created	in	your
home	directory.	To	specify	a	different	file,	set	the	value	of	the	MYSQL_HISTFILE
environment	variable.

If	you	do	not	want	to	maintain	a	history	file,	first	remove	.mysql_history	if	it
exists,	and	then	use	either	of	the	following	techniques:

Set	the	MYSQL_HISTFILE	variable	to	/dev/null.	To	cause	this	setting	to	take
effect	each	time	you	log	in,	put	the	setting	in	one	of	your	shell's	startup
files.

Create	.mysql_history	as	a	symbolic	link	to	/dev/null:

shell>	ln	-s	/dev/null	$HOME/.mysql_history

You	need	do	this	only	once.

8.6.2.	mysql	Commands

mysql	sends	each	SQL	statement	that	you	issue	to	the	server	to	be	executed.
There	is	also	a	set	of	commands	that	mysql	itself	interprets.	For	a	list	of	these
commands,	type	help	or	\h	at	the	mysql>	prompt:

mysql>	help

List	of	all	MySQL	commands:

Note	that	all	text	commands	must	be	first	on	line	and	end	with	';'

?									(\?)	Synonym	for	`help'.

clear					(\c)	Clear	command.

connect			(\r)	Reconnect	to	the	server.	Optional	arguments	are	db	and	host.

delimiter	(\d)	Set	statement	delimiter.	NOTE:	Takes	the	rest	of	the	line	as

															new	delimiter.

edit						(\e)	Edit	command	with	$EDITOR.

ego							(\G)	Send	command	to	mysql	server,	display	result	vertically.

exit						(\q)	Exit	mysql.	Same	as	quit.

go								(\g)	Send	command	to	mysql	server.

help						(\h)	Display	this	help.

nopager			(\n)	Disable	pager,	print	to	stdout.

notee					(\t)	Don't	write	into	outfile.

pager					(\P)	Set	PAGER	[to_pager].	Print	the	query	results	via	PAGER.

print					(\p)	Print	current	command.

prompt				(\R)	Change	your	mysql	prompt.

quit						(\q)	Quit	mysql.

rehash				(\#)	Rebuild	completion	hash.

source				(\.)	Execute	an	SQL	script	file.	Takes	a	file	name	as	an	argument.

status				(\s)	Get	status	information	from	the	server.

system				(\!)	Execute	a	system	shell	command.

tee							(\T)	Set	outfile	[to_outfile].	Append	everything	into	given

															outfile.

use							(\u)	Use	another	database.	Takes	database	name	as	argument.

charset			(\C)	Switch	to	another	charset.	Might	be	needed	for	processing	binlog	with	multi-byte	charsets.

warnings		(\W)	Show	warnings	after	every	statement.

nowarning	(\w)	Don't	show	warnings	after	every	statement.

For	server	side	help,	type	'help	contents'

Each	command	has	both	a	long	and	short	form.	The	long	form	is	not	case
sensitive;	the	short	form	is.	The	long	form	can	be	followed	by	an	optional
semicolon	terminator,	but	the	short	form	should	not.

If	you	provide	an	argument	to	the	help	command,	mysql	uses	it	as	a	search
string	to	access	server-side	help	from	the	contents	of	the	MySQL	Reference
Manual.	For	more	information,	see	Section	8.6.3,	“mysql	Server-Side	Help”.

In	the	delimiter	command,	you	should	avoid	the	use	of	the	backslash	(‘\’)
character	because	that	is	the	escape	character	for	MySQL.

The	edit,	nopager,	pager,	and	system	commands	work	only	in	Unix.

The	status	command	provides	some	information	about	the	connection	and	the
server	you	are	using.	If	you	are	running	in	--safe-updates	mode,	status	also
prints	the	values	for	the	mysql	variables	that	affect	your	queries.

To	log	queries	and	their	output,	use	the	tee	command.	All	the	data	displayed	on
the	screen	is	appended	into	a	given	file.	This	can	be	very	useful	for	debugging
purposes	also.	You	can	enable	this	feature	on	the	command	line	with	the	--tee
option,	or	interactively	with	the	tee	command.	The	tee	file	can	be	disabled
interactively	with	the	notee	command.	Executing	tee	again	re-enables	logging.
Without	a	parameter,	the	previous	file	is	used.	Note	that	tee	flushes	query	results
to	the	file	after	each	statement,	just	before	mysql	prints	its	next	prompt.

By	using	the	--pager	option,	it	is	possible	to	browse	or	search	query	results	in
interactive	mode	with	Unix	programs	such	as	less,	more,	or	any	other	similar
program.	If	you	specify	no	value	for	the	option,	mysql	checks	the	value	of	the
PAGER	environment	variable	and	sets	the	pager	to	that.	Output	paging	can	be

enabled	interactively	with	the	pager	command	and	disabled	with	nopager.	The
command	takes	an	optional	argument;	if	given,	the	paging	program	is	set	to	that.
With	no	argument,	the	pager	is	set	to	the	pager	that	was	set	on	the	command	line,
or	stdout	if	no	pager	was	specified.

Output	paging	works	only	in	Unix	because	it	uses	the	popen()	function,	which
does	not	exist	on	Windows.	For	Windows,	the	tee	option	can	be	used	instead	to
save	query	output,	although	this	is	not	as	convenient	as	pager	for	browsing
output	in	some	situations.

Here	are	a	few	tips	about	the	pager	command:

You	can	use	it	to	write	to	a	file	and	the	results	go	only	to	the	file:

mysql>	pager	cat	>	/tmp/log.txt

You	can	also	pass	any	options	for	the	program	that	you	want	to	use	as	your
pager:

mysql>	pager	less	-n	-i	-S

In	the	preceding	example,	note	the	-S	option.	You	may	find	it	very	useful
for	browsing	wide	query	results.	Sometimes	a	very	wide	result	set	is
difficult	to	read	on	the	screen.	The	-S	option	to	less	can	make	the	result	set
much	more	readable	because	you	can	scroll	it	horizontally	using	the	left-
arrow	and	right-arrow	keys.	You	can	also	use	-S	interactively	within	less	to
switch	the	horizontal-browse	mode	on	and	off.	For	more	information,	read
the	less	manual	page:

shell>	man	less

You	can	specify	very	complex	pager	commands	for	handling	query	output:

mysql>	pager	cat	|	tee	/dr1/tmp/res.txt	\

										|	tee	/dr2/tmp/res2.txt	|	less	-n	-i	-S

In	this	example,	the	command	would	send	query	results	to	two	files	in	two
different	directories	on	two	different	filesystems	mounted	on	/dr1	and
/dr2,	yet	still	display	the	results	onscreen	via	less.

You	can	also	combine	the	tee	and	pager	functions.	Have	a	tee	file	enabled	and

pager	set	to	less,	and	you	are	able	to	browse	the	results	using	the	less	program
and	still	have	everything	appended	into	a	file	the	same	time.	The	difference
between	the	Unix	tee	used	with	the	pager	command	and	the	mysql	built-in	tee
command	is	that	the	built-in	tee	works	even	if	you	do	not	have	the	Unix	tee
available.	The	built-in	tee	also	logs	everything	that	is	printed	on	the	screen,
whereas	the	Unix	tee	used	with	pager	does	not	log	quite	that	much.
Additionally,	tee	file	logging	can	be	turned	on	and	off	interactively	from	within
mysql.	This	is	useful	when	you	want	to	log	some	queries	to	a	file,	but	not	others.

The	default	mysql>	prompt	can	be	reconfigured.	The	string	for	defining	the
prompt	can	contain	the	following	special	sequences:

Option Description
\v The	server	version
\d The	default	database
\h The	server	host
\p The	current	TCP/IP	port	or	socket	file
\u Your	username
\U Your	full	user_name@host_name	account	name
\\ A	literal	‘\’	backslash	character
\n A	newline	character
\t A	tab	character
\ A	space	(a	space	follows	the	backslash)
_ A	space
\R The	current	time,	in	24-hour	military	time	(0-23)
\r The	current	time,	standard	12-hour	time	(1-12)
\m Minutes	of	the	current	time
\y The	current	year,	two	digits
\Y The	current	year,	four	digits
\D The	full	current	date
\s Seconds	of	the	current	time
\w The	current	day	of	the	week	in	three-letter	format	(Mon,	Tue,	…)
\P am/pm

\o The	current	month	in	numeric	format
\O The	current	month	in	three-letter	format	(Jan,	Feb,	…)
\c A	counter	that	increments	for	each	statement	you	issue
\l The	current	delimiter.	(New	in	5.0.25)
\S Semicolon
\' Single	quote
\" Double	quote

‘\’	followed	by	any	other	letter	just	becomes	that	letter.

If	you	specify	the	prompt	command	with	no	argument,	mysql	resets	the	prompt
to	the	default	of	mysql>.

You	can	set	the	prompt	in	several	ways:

Use	an	environment	variable.	You	can	set	the	MYSQL_PS1	environment
variable	to	a	prompt	string.	For	example:

shell>	export	MYSQL_PS1="(\u@\h)	[\d]>	"

Use	a	command-line	option.	You	can	set	the	--prompt	option	on	the
command	line	to	mysql.	For	example:

shell>	mysql	--prompt="(\u@\h)	[\d]>	"

(user@host)	[database]>

Use	an	option	file.	You	can	set	the	prompt	option	in	the	[mysql]	group	of
any	MySQL	option	file,	such	as	/etc/my.cnf	or	the	.my.cnf	file	in	your
home	directory.	For	example:

[mysql]

prompt=(\\u@\\h)	[\\d]>_

In	this	example,	note	that	the	backslashes	are	doubled.	If	you	set	the	prompt
using	the	prompt	option	in	an	option	file,	it	is	advisable	to	double	the
backslashes	when	using	the	special	prompt	options.	There	is	some	overlap
in	the	set	of	allowable	prompt	options	and	the	set	of	special	escape
sequences	that	are	recognized	in	option	files.	(These	sequences	are	listed	in
Section	4.3.2,	“Using	Option	Files”.)	The	overlap	may	cause	you	problems

if	you	use	single	backslashes.	For	example,	\s	is	interpreted	as	a	space
rather	than	as	the	current	seconds	value.	The	following	example	shows	how
to	define	a	prompt	within	an	option	file	to	include	the	current	time	in
HH:MM:SS>	format:

[mysql]

prompt="\\r:\\m:\\s>	"

Set	the	prompt	interactively.	You	can	change	your	prompt	interactively	by
using	the	prompt	(or	\R)	command.	For	example:

mysql>	prompt	(\u@\h)	[\d]>_

PROMPT	set	to	'(\u@\h)	[\d]>_'

(user@host)	[database]>

(user@host)	[database]>	prompt

Returning	to	default	PROMPT	of	mysql>

mysql>

8.6.3.	mysql	Server-Side	Help

mysql>	help	search_string

If	you	provide	an	argument	to	the	help	command,	mysql	uses	it	as	a	search
string	to	access	server-side	help	from	the	contents	of	the	MySQL	Reference
Manual.	The	proper	operation	of	this	command	requires	that	the	help	tables	in
the	mysql	database	be	initialized	with	help	topic	information	(see	Section	5.2.7,
“MySQL	Server-Side	Help	Support”).

If	there	is	no	match	for	the	search	string,	the	search	fails:

mysql>	help	me

Nothing	found

Please	try	to	run	'help	contents'	for	a	list	of	all	accessible	topics

Use	help	contents	to	see	a	list	of	the	help	categories:

mysql>	help	contents

You	asked	for	help	about	help	category:	"Contents"

For	more	information,	type	'help	<item>',	where	<item>	is	one	of	the

following	categories:

			Account	Management

			Administration

			Data	Definition

			Data	Manipulation

			Data	Types

			Functions

			Functions	and	Modifiers	for	Use	with	GROUP	BY

			Geographic	Features

			Language	Structure

			Storage	Engines

			Stored	Routines

			Table	Maintenance

			Transactions

			Triggers

If	the	search	string	matches	multiple	items,	mysql	shows	a	list	of	matching
topics:

mysql>	help	logs

Many	help	items	for	your	request	exist.

To	make	a	more	specific	request,	please	type	'help	<item>',

where	<item>	is	one	of	the	following	topics:

			SHOW

			SHOW	BINARY	LOGS

			SHOW	ENGINE

			SHOW	LOGS

Use	a	topic	as	the	search	string	to	see	the	help	entry	for	that	topic:

mysql>	help	show	binary	logs

Name:	'SHOW	BINARY	LOGS'

Description:

Syntax:

SHOW	BINARY	LOGS

SHOW	MASTER	LOGS

Lists	the	binary	log	files	on	the	server.	This	statement	is	used	as

part	of	the	procedure	described	in	[purge-master-logs],	that	shows	how

to	determine	which	logs	can	be	purged.

mysql>	SHOW	BINARY	LOGS;

+---------------+-----------+

|	Log_name						|	File_size	|

+---------------+-----------+

|	binlog.000015	|				724935	|

|	binlog.000016	|				733481	|

+---------------+-----------+

8.6.4.	Executing	SQL	Statements	from	a	Text	File

The	mysql	client	typically	is	used	interactively,	like	this:

shell>	mysql	db_name

However,	it	is	also	possible	to	put	your	SQL	statements	in	a	file	and	then	tell
mysql	to	read	its	input	from	that	file.	To	do	so,	create	a	text	file	text_file	that
contains	the	statements	you	wish	to	execute.	Then	invoke	mysql	as	shown	here:

shell>	mysql	db_name	<	text_file

If	you	place	a	USE	db_name	statement	as	the	first	statement	in	the	file,	it	is
unnecessary	to	specify	the	database	name	on	the	command	line:

shell>	mysql	<	text_file

If	you	are	already	running	mysql,	you	can	execute	an	SQL	script	file	using	the
source	or	\.	command:

mysql>	source	file_name

mysql>	\.	file_name

Sometimes	you	may	want	your	script	to	display	progress	information	to	the	user.
For	this	you	can	insert	statements	like	this:

SELECT	'<info_to_display>'	AS	'	';

The	statement	shown	outputs	<info_to_display>.

For	more	information	about	batch	mode,	see	Section	3.5,	“Using	mysql	in	Batch
Mode”.

8.6.5.	mysql	Tips

This	section	describes	some	techniques	that	can	help	you	use	mysql	more
effectively.

8.6.5.1.	Displaying	Query	Results	Vertically

Some	query	results	are	much	more	readable	when	displayed	vertically,	instead	of
in	the	usual	horizontal	table	format.	Queries	can	be	displayed	vertically	by
terminating	the	query	with	\G	instead	of	a	semicolon.	For	example,	longer	text

values	that	include	newlines	often	are	much	easier	to	read	with	vertical	output:

mysql>	SELECT	*	FROM	mails	WHERE	LENGTH(txt)	<	300	LIMIT	300,1\G

***************************	1.	row	***************************

		msg_nro:	3068

					date:	2000-03-01	23:29:50

time_zone:	+0200

mail_from:	Monty

				reply:	monty@no.spam.com

		mail_to:	"Thimble	Smith"	<tim@no.spam.com>

						sbj:	UTF-8

						txt:	>>>>>	"Thimble"	==	Thimble	Smith	writes:

Thimble>	Hi.		I	think	this	is	a	good	idea.		Is	anyone	familiar

Thimble>	with	UTF-8	or	Unicode?	Otherwise,	I'll	put	this	on	my

Thimble>	TODO	list	and	see	what	happens.

Yes,	please	do	that.

Regards,

Monty

					file:	inbox-jani-1

					hash:	190402944

1	row	in	set	(0.09	sec)

8.6.5.2.	Using	the	--safe-updates	Option

For	beginners,	a	useful	startup	option	is	--safe-updates	(or	--i-am-a-dummy,
which	has	the	same	effect).	It	is	helpful	for	cases	when	you	might	have	issued	a
DELETE	FROM	tbl_name	statement	but	forgotten	the	WHERE	clause.	Normally,
such	a	statement	deletes	all	rows	from	the	table.	With	--safe-updates,	you	can
delete	rows	only	by	specifying	the	key	values	that	identify	them.	This	helps
prevent	accidents.

When	you	use	the	--safe-updates	option,	mysql	issues	the	following	statement
when	it	connects	to	the	MySQL	server:

SET	SQL_SAFE_UPDATES=1,SQL_SELECT_LIMIT=1000,	SQL_MAX_JOIN_SIZE=1000000;

See	Section	13.5.3,	“SET	Syntax”.

The	SET	statement	has	the	following	effects:

You	are	not	allowed	to	execute	an	UPDATE	or	DELETE	statement	unless	you

specify	a	key	constraint	in	the	WHERE	clause	or	provide	a	LIMIT	clause	(or
both).	For	example:

UPDATE	tbl_name	SET	not_key_column=val	WHERE	key_column=val;

UPDATE	tbl_name	SET	not_key_column=val	LIMIT	1;

The	server	limits	all	large	SELECT	results	to	1,000	rows	unless	the	statement
includes	a	LIMIT	clause.

The	server	aborts	multiple-table	SELECT	statements	that	probably	need	to
examine	more	than	1,000,000	row	combinations.

To	specify	limits	different	from	1,000	and	1,000,000,	you	can	override	the
defaults	by	using	the	--select_limit	and	--max_join_size	options:

shell>	mysql	--safe-updates	--select_limit=500	--max_join_size=10000

8.6.5.3.	Disabling	mysql	Auto-Reconnect

If	the	mysql	client	loses	its	connection	to	the	server	while	sending	a	query,	it
immediately	and	automatically	tries	to	reconnect	once	to	the	server	and	send	the
query	again.	However,	even	if	mysql	succeeds	in	reconnecting,	your	first
connection	has	ended	and	all	your	previous	session	objects	and	settings	are	lost:
temporary	tables,	the	autocommit	mode,	and	user-defined	and	session	variables.
Also,	any	current	transaction	rolls	back.	This	behavior	may	be	dangerous	for
you,	as	in	the	following	example	where	the	server	was	shut	down	and	restarted
without	you	knowing	it:

mysql>	SET	@a=1;

Query	OK,	0	rows	affected	(0.05	sec)

mysql>	INSERT	INTO	t	VALUES(@a);

ERROR	2006:	MySQL	server	has	gone	away

No	connection.	Trying	to	reconnect...

Connection	id:				1

Current	database:	test

Query	OK,	1	row	affected	(1.30	sec)

mysql>	SELECT	*	FROM	t;

+------+

|	a				|

+------+

|	NULL	|

+------+

1	row	in	set	(0.05	sec)

The	@a	user	variable	has	been	lost	with	the	connection,	and	after	the
reconnection	it	is	undefined.	If	it	is	important	to	have	mysql	terminate	with	an
error	if	the	connection	has	been	lost,	you	can	start	the	mysql	client	with	the	--
skip-reconnect	option.

8.7.	mysql_explain_log	—	Use	EXPLAIN	on
Statements	in	Query	Log

mysql_explain_log	reads	its	standard	input	for	query	log	contents.	It	uses
EXPLAIN	to	analyze	SELECT	statements	found	in	the	input.	UPDATE	statements	are
rewritten	to	SELECT	statements	and	also	analyzed	with	EXPLAIN.
mysql_explain_log	then	displays	a	summary	of	its	results.

The	results	may	assist	you	in	determining	which	queries	result	in	table	scans	and
where	it	would	be	beneficial	to	add	indexes	to	your	tables.

Invoke	mysql_explain_log	like	this,	where	log_file	contains	all	or	part	of	a
MySQL	query	log:

shell>	mysql_explain_log	[options]	<	log_file

mysql_explain_log	understands	the	following	options:

	--date=YYMMDD,	-d	YYMMDD

Select	entries	from	the	log	only	for	the	given	date.

	--host=host_name,	-h	host_name

Connect	to	the	MySQL	server	on	the	given	host.

	--password=password,	-ppassword

The	password	to	use	when	connecting	to	the	server.

Specifying	a	password	on	the	command	line	should	be	considered	insecure.
See	Section	5.9.6,	“Keeping	Your	Password	Secure”.

	--printerror=1,	-e	1

Enable	error	output.

	--socket=path,	-S	path

For	connections	to	localhost,	the	Unix	socket	file	to	use,	or,	on	Windows,
the	name	of	the	named	pipe	to	use.

	--user=user_name,	-u	user_name

The	MySQL	username	to	use	when	connecting	to	the	server.

8.8.	mysqlaccess	—	Client	for	Checking	Access
Privileges

mysqlaccess	is	a	diagnostic	tool	that	Yves	Carlier	has	provided	for	the	MySQL
distribution.	It	checks	the	access	privileges	for	a	hostname,	username,	and
database	combination.	Note	that	mysqlaccess	checks	access	using	only	the	user,
db,	and	host	tables.	It	does	not	check	table,	column,	or	routine	privileges
specified	in	the	tables_priv,	columns_priv,	or	procs_priv	tables.

Invoke	mysqlaccess	like	this:

shell>	mysqlaccess	[host_name	[user_name	[db_name]]]	[options]

mysqlaccess	understands	the	following	options:

	--help,	-?

Display	a	help	message	and	exit.

	--brief,	-b

Generate	reports	in	single-line	tabular	format.

	--commit

Copy	the	new	access	privileges	from	the	temporary	tables	to	the	original
grant	tables.	The	grant	tables	must	be	flushed	for	the	new	privileges	to	take
effect.	(For	example,	execute	a	mysqladmin	reload	command.)

	--copy

Reload	the	temporary	grant	tables	from	original	ones.

	--db=db_name,	-d	db_name

Specify	the	database	name.

	--debug=N

Specify	the	debug	level.	N	can	be	an	integer	from	0	to	3.

	--host=host_name,	-h	host_name

The	hostname	to	use	in	the	access	privileges.

	--howto

Display	some	examples	that	show	how	to	use	mysqlaccess.

	--old_server

Assume	that	the	server	is	an	old	MySQL	server	(before	MySQL	3.21)	that
does	not	yet	know	how	to	handle	full	WHERE	clauses.

	--password[=password],	-p[password]

The	password	to	use	when	connecting	to	the	server.	If	you	omit	the
password	value	following	the	--password	or	-p	option	on	the	command
line,	you	are	prompted	for	one.

Specifying	a	password	on	the	command	line	should	be	considered	insecure.
See	Section	5.9.6,	“Keeping	Your	Password	Secure”.

	--plan

Display	suggestions	and	ideas	for	future	releases.

	--preview

Show	the	privilege	differences	after	making	changes	to	the	temporary	grant
tables.

	--relnotes

Display	the	release	notes.

	--rhost=host_name,	-H	host_name

Connect	to	the	MySQL	server	on	the	given	host.

	--rollback

Undo	the	most	recent	changes	to	the	temporary	grant	tables.

	--spassword[=password],	-P[password]

The	password	to	use	when	connecting	to	the	server	as	the	superuser.	If	you
omit	the	password	value	following	the	--password	or	-p	option	on	the
command	line,	you	are	prompted	for	one.

Specifying	a	password	on	the	command	line	should	be	considered	insecure.
See	Section	5.9.6,	“Keeping	Your	Password	Secure”.

	--superuser=user_name,	-U	user_name

Specify	the	username	for	connecting	as	the	superuser.

	--table,	-t

Generate	reports	in	table	format.

	--user=user_name,	-u	user_name

The	username	to	use	in	the	access	privileges.

	--version,	-v

Display	version	information	and	exit.

If	your	MySQL	distribution	is	installed	in	some	non-standard	location,	you	must
change	the	location	where	mysqlaccess	expects	to	find	the	mysql	client.	Edit	the
mysqlaccess	script	at	approximately	line	18.	Search	for	a	line	that	looks	like
this:

$MYSQL					=	'/usr/local/bin/mysql';				#	path	to	mysql	executable

Change	the	path	to	reflect	the	location	where	mysql	actually	is	stored	on	your
system.	If	you	do	not	do	this,	a	Broken	pipe	error	will	occur	when	you	run
mysqlaccess.

8.9.	mysqladmin	—	Client	for	Administering	a
MySQL	Server

mysqladmin	is	a	client	for	performing	administrative	operations.	You	can	use	it
to	check	the	server's	configuration	and	current	status,	to	create	and	drop
databases,	and	more.

Invoke	mysqladmin	like	this:

shell>	mysqladmin	[options]	command	[command-arg]	[command	[command-arg

mysqladmin	supports	the	commands	described	in	the	following	list.	Some	of	the
commands	take	an	argument	following	the	command	name.

create	db_name

Create	a	new	database	named	db_name.

debug

Tell	the	server	to	write	debug	information	to	the	error	log.

drop	db_name

Delete	the	database	named	db_name	and	all	its	tables.

extended-status

Display	the	server	status	variables	and	their	values.

flush-hosts

Flush	all	information	in	the	host	cache.

flush-logs

Flush	all	logs.

flush-privileges

Reload	the	grant	tables	(same	as	reload).

flush-status

Clear	status	variables.

flush-tables

Flush	all	tables.

flush-threads

Flush	the	thread	cache.

kill	id,id,...

Kill	server	threads.	If	multiple	thread	ID	values	are	given,	there	must	be	no
spaces	in	the	list.

old-password	new-password

This	is	like	the	password	command	but	stores	the	password	using	the	old
(pre-4.1)	password-hashing	format.	(See	Section	5.8.9,	“Password	Hashing
as	of	MySQL	4.1”.)

password	new-password

Set	a	new	password.	This	changes	the	password	to	new-password	for	the
account	that	you	use	with	mysqladmin	for	connecting	to	the	server.	Thus,
the	next	time	you	invoke	mysqladmin	(or	any	other	client	program)	using
the	same	account,	you	will	need	to	specify	the	new	password.

If	the	new-password	value	contains	spaces	or	other	characters	that	are
special	to	your	command	interpreter,	you	need	to	enclose	it	within	quotes.
On	Windows,	be	sure	to	use	double	quotes	rather	than	single	quotes;	single
quotes	are	not	stripped	from	the	password,	but	rather	are	interpreted	as	part
of	the	password.	For	example:

shell>	mysqladmin	password	"my	new	password"

ping

Check	whether	the	server	is	alive.	The	return	status	from	mysqladmin	is	0
if	the	server	is	running,	1	if	it	is	not.	This	is	0	even	in	case	of	an	error	such
as	Access	denied,	because	this	means	that	the	server	is	running	but	refused
the	connection,	which	is	different	from	the	server	not	running.

processlist

Show	a	list	of	active	server	threads.	This	is	like	the	output	of	the	SHOW
PROCESSLIST	statement.	If	the	--verbose	option	is	given,	the	output	is	like
that	of	SHOW	FULL	PROCESSLIST.	(See	Section	13.5.4.19,	“SHOW
PROCESSLIST	Syntax”.)

reload

Reload	the	grant	tables.

refresh

Flush	all	tables	and	close	and	open	log	files.

shutdown

Stop	the	server.

start-slave

Start	replication	on	a	slave	server.

status

Display	a	short	server	status	message.

stop-slave

Stop	replication	on	a	slave	server.

variables

Display	the	server	system	variables	and	their	values.

version

Display	version	information	from	the	server.

All	commands	can	be	shortened	to	any	unique	prefix.	For	example:

shell>	mysqladmin	proc	stat

+----+-------+-----------+----+---------+------+-------+------------------+

|	Id	|	User		|	Host						|	db	|	Command	|	Time	|	State	|	Info													|

+----+-------+-----------+----+---------+------+-------+------------------+

|	51	|	monty	|	localhost	|				|	Query			|	0				|							|	show	processlist	|

+----+-------+-----------+----+---------+------+-------+------------------+

Uptime:	1473624		Threads:	1		Questions:	39487		

Slow	queries:	0		Opens:	541		Flush	tables:	1		

Open	tables:	19		Queries	per	second	avg:	0.0268

The	mysqladmin	status	command	result	displays	the	following	values:

	Uptime

The	number	of	seconds	the	MySQL	server	has	been	running.

	Threads

The	number	of	active	threads	(clients).

	Questions

The	number	of	questions	(queries)	from	clients	since	the	server	was	started.

	Slow	queries

The	number	of	queries	that	have	taken	more	than	long_query_time
seconds.	See	Section	5.12.4,	“The	Slow	Query	Log”.

	Opens

The	number	of	tables	the	server	has	opened.

	Flush	tables

The	number	of	flush-*,	refresh,	and	reload	commands	the	server	has
executed.

	Open	tables

The	number	of	tables	that	currently	are	open.

	Memory	in	use

The	amount	of	memory	allocated	directly	by	mysqld.	This	value	is
displayed	only	when	MySQL	has	been	compiled	with	--with-debug=full.

	Maximum	memory	used

The	maximum	amount	of	memory	allocated	directly	by	mysqld.	This	value
is	displayed	only	when	MySQL	has	been	compiled	with	--with-
debug=full.

If	you	execute	mysqladmin	shutdown	when	connecting	to	a	local	server	using	a
Unix	socket	file,	mysqladmin	waits	until	the	server's	process	ID	file	has	been
removed,	to	ensure	that	the	server	has	stopped	properly.

mysqladmin	supports	the	following	options:

	--help,	-?

Display	a	help	message	and	exit.

	--character-sets-dir=path

The	directory	where	character	sets	are	installed.	See	Section	5.11.1,	“The
Character	Set	Used	for	Data	and	Sorting”.

	--compress,	-C

Compress	all	information	sent	between	the	client	and	the	server	if	both
support	compression.

	--count=N,	-c	N

The	number	of	iterations	to	make	for	repeated	command	execution.	This
works	only	with	the	--sleep	option.

	--debug[=debug_options],	-#	[debug_options]

Write	a	debugging	log.	The	debug_options	string	often	is

'd:t:o,file_name'.	The	default	is	'd:t:o,/tmp/mysqladmin.trace'.

	--default-character-set=charset_name

Use	charset_name	as	the	default	character	set.	See	Section	5.11.1,	“The
Character	Set	Used	for	Data	and	Sorting”.

	--force,	-f

Do	not	ask	for	confirmation	for	the	drop	db_name	command.	With	multiple
commands,	continue	even	if	an	error	occurs.

	--host=host_name,	-h	host_name

Connect	to	the	MySQL	server	on	the	given	host.

	--password[=password],	-p[password]

The	password	to	use	when	connecting	to	the	server.	If	you	use	the	short
option	form	(-p),	you	cannot	have	a	space	between	the	option	and	the
password.	If	you	omit	the	password	value	following	the	--password	or	-p
option	on	the	command	line,	you	are	prompted	for	one.

Specifying	a	password	on	the	command	line	should	be	considered	insecure.
See	Section	5.9.6,	“Keeping	Your	Password	Secure”.

	--port=port_num,	-P	port_num

The	TCP/IP	port	number	to	use	for	the	connection.

	--protocol={TCP|SOCKET|PIPE|MEMORY}

The	connection	protocol	to	use.

	--relative,	-r

Show	the	difference	between	the	current	and	previous	values	when	used
with	the	--sleep	option.	Currently,	this	option	works	only	with	the
extended-status	command.

	--silent,	-s

Exit	silently	if	a	connection	to	the	server	cannot	be	established.

	--sleep=delay,	-i	delay

Execute	commands	repeatedly,	sleeping	for	delay	seconds	in	between.	The
--count	option	determines	the	number	of	iterations.

	--socket=path,	-S	path

For	connections	to	localhost,	the	Unix	socket	file	to	use,	or,	on	Windows,
the	name	of	the	named	pipe	to	use.

	--ssl*

Options	that	begin	with	--ssl	specify	whether	to	connect	to	the	server	via
SSL	and	indicate	where	to	find	SSL	keys	and	certificates.	See
Section	5.9.7.3,	“SSL	Command	Options”.

	--user=user_name,	-u	user_name

The	MySQL	username	to	use	when	connecting	to	the	server.

	--verbose,	-v

Verbose	mode.	Print	more	information	about	what	the	program	does.

	--version,	-V

Display	version	information	and	exit.

	--vertical,	-E

Print	output	vertically.	This	is	similar	to	--relative,	but	prints	output
vertically.

	--wait[=count],	-w[count]

If	the	connection	cannot	be	established,	wait	and	retry	instead	of	aborting.
If	a	count	value	is	given,	it	indicates	the	number	of	times	to	retry.	The
default	is	one	time.

You	can	also	set	the	following	variables	by	using	--var_name=value	syntax:

	connect_timeout

The	maximum	number	of	seconds	before	connection	timeout.	The	default
value	is	43200	(12	hours).

	shutdown_timeout

The	maximum	number	of	seconds	to	wait	for	server	shutdown.	The	default
value	is	3600	(1	hour).

It	is	also	possible	to	set	variables	by	using	--set-variable=var_name=value	or
-O	var_name=value	syntax.	This	syntax	is	deprecated.

8.10.	mysqlbinlog	—	Utility	for	Processing	Binary	Log
Files

The	binary	log	files	that	the	server	generates	are	written	in	binary	format.	To
examine	these	files	in	text	format,	use	the	mysqlbinlog	utility.	You	can	also	use
mysqlbinlog	to	read	relay	log	files	written	by	a	slave	server	in	a	replication
setup.	Relay	logs	have	the	same	format	as	binary	log	files.

Invoke	mysqlbinlog	like	this:

shell>	mysqlbinlog	[options]	log_file	...

For	example,	to	display	the	contents	of	the	binary	log	file	named
binlog.000003,	use	this	command:

shell>	mysqlbinlog	binlog.0000003

The	output	includes	all	events	contained	in	binlog.000003.	Event	information
includes	the	statement	executed,	the	time	the	statement	took,	the	thread	ID	of	the
client	that	issued	it,	the	timestamp	when	it	was	executed,	and	so	forth.

The	output	from	mysqlbinlog	can	be	re-executed	(for	example,	by	using	it	as
input	to	mysql)	to	reapply	the	statements	in	the	log.	This	is	useful	for	recovery
operations	after	a	server	crash.	For	other	usage	examples,	see	the	discussion	later
in	this	section.

Normally,	you	use	mysqlbinlog	to	read	binary	log	files	directly	and	apply	them
to	the	local	MySQL	server.	It	is	also	possible	to	read	binary	logs	from	a	remote
server	by	using	the	--read-from-remote-server	option.	When	you	read	remote
binary	logs,	the	connection	parameter	options	can	be	given	to	indicate	how	to
connect	to	the	server.	These	options	are	--host,	--password,	--port,	--
protocol,	--socket,	and	--user;	they	are	ignored	except	when	you	also	use	the
--read-from-remote-server	option.

Binary	logs	and	relay	logs	are	discussed	further	in	Section	5.12.3,	“The	Binary
Log”,	and	Section	6.3.4,	“Replication	Relay	and	Status	Files”.

mysqlbinlog	supports	the	following	options:

	--help,	-?

Display	a	help	message	and	exit.

	--character-sets-dir=path

The	directory	where	character	sets	are	installed.	See	Section	5.11.1,	“The
Character	Set	Used	for	Data	and	Sorting”.

	--database=db_name,	-d	db_name

List	entries	for	just	this	database	(local	log	only).	You	can	only	specify	one
database	with	this	option	-	if	you	specify	multiple	--database	options,	only
the	last	one	is	used.	This	option	forces	mysqlbinlog	to	output	entries	from
the	binary	log	where	the	default	database	(that	is,	the	one	selected	by	USE)
is	db_name.	Note	that	this	does	not	replicate	cross-database	statements	such
as	UPDATE	some_db.some_table	SET	foo='bar'	while	having	selected	a
different	database	or	no	database.

	--debug[=debug_options],	-#	[debug_options]

Write	a	debugging	log.	A	typical	debug_options	string	is	often
'd:t:o,file_name'.

	--disable-log-bin,	-D

Disable	binary	logging.	This	is	useful	for	avoiding	an	endless	loop	if	you
use	the	--to-last-log	option	and	are	sending	the	output	to	the	same
MySQL	server.	This	option	also	is	useful	when	restoring	after	a	crash	to
avoid	duplication	of	the	statements	you	have	logged.

This	option	requires	that	you	have	the	SUPER	privilege.	It	causes
mysqlbinlog	to	include	a	SET	SQL_LOG_BIN=0	statement	in	its	output	to
disable	binary	logging	of	the	remaining	output.	The	SET	statement	is
ineffective	unless	you	have	the	SUPER	privilege.

	--force-read,	-f

With	this	option,	if	mysqlbinlog	reads	a	binary	log	event	that	it	does	not
recognize,	it	prints	a	warning,	ignores	the	event,	and	continues.	Without	this

option,	mysqlbinlog	stops	if	it	reads	such	an	event.

	--hexdump,	-H

Display	a	hex	dump	of	the	log	in	comments.	This	output	can	be	helpful	for
replication	debugging.	Hex	dump	format	is	discussed	later	in	this	section.
This	option	was	added	in	MySQL	5.0.16.

	--host=host_name,	-h	host_name

Get	the	binary	log	from	the	MySQL	server	on	the	given	host.

	--local-load=path,	-l	path

Prepare	local	temporary	files	for	LOAD	DATA	INFILE	in	the	specified
directory.

	--offset=N,	-o	N

Skip	the	first	N	entries	in	the	log.

	--password[=password],	-p[password]

The	password	to	use	when	connecting	to	the	server.	If	you	use	the	short
option	form	(-p),	you	cannot	have	a	space	between	the	option	and	the
password.	If	you	omit	the	password	value	following	the	--password	or	-p
option	on	the	command	line,	you	are	prompted	for	one.

Specifying	a	password	on	the	command	line	should	be	considered	insecure.
See	Section	5.9.6,	“Keeping	Your	Password	Secure”.

	--port=port_num,	-P	port_num

The	TCP/IP	port	number	to	use	for	connecting	to	a	remote	server.

	--position=N,	-j	N

Deprecated.	Use	--start-position	instead.

	--protocol={TCP|SOCKET|PIPE|MEMORY}

The	connection	protocol	to	use.

	--read-from-remote-server,	-R

Read	the	binary	log	from	a	MySQL	server	rather	than	reading	a	local	log
file.	Any	connection	parameter	options	are	ignored	unless	this	option	is
given	as	well.	These	options	are	--host,	--password,	--port,	--protocol,
--socket,	and	--user.

	--result-file=name,	-r	name

Direct	output	to	the	given	file.

	--set-charset=charset_name

Add	a	SET	NAMES	charset_name	statement	to	the	output	to	specify	the
character	set	to	be	used	for	processing	log	files.	This	option	was	added	in
MySQL	5.0.23.

	--short-form,	-s

Display	only	the	statements	contained	in	the	log,	without	any	extra
information.

	--socket=path,	-S	path

For	connections	to	localhost,	the	Unix	socket	file	to	use,	or,	on	Windows,
the	name	of	the	named	pipe	to	use.

	--start-datetime=datetime

Start	reading	the	binary	log	at	the	first	event	having	a	timestamp	equal	to	or
later	than	the	datetime	argument.	The	datetime	value	is	relative	to	the
local	time	zone	on	the	machine	where	you	run	mysqlbinlog.	The	value
should	be	in	a	format	accepted	for	the	DATETIME	or	TIMESTAMP	data	types.
For	example:

shell>	mysqlbinlog	--start-datetime="2005-12-25	11:25:56"	binlog.000003

This	option	is	useful	for	point-in-time	recovery.	See	Section	5.10.2,
“Example	Backup	and	Recovery	Strategy”.

	--stop-datetime=datetime

Stop	reading	the	binary	log	at	the	first	event	having	a	timestamp	equal	or
posterior	to	the	datetime	argument.	This	option	is	useful	for	point-in-time
recovery.	See	the	description	of	the	--start-datetime	option	for
information	about	the	datetime	value.

	--start-position=N

Start	reading	the	binary	log	at	the	first	event	having	a	position	equal	to	the	N
argument.	This	option	applies	to	the	first	log	file	named	on	the	command
line.

	--stop-position=N

Stop	reading	the	binary	log	at	the	first	event	having	a	position	equal	or
greater	than	the	N	argument.	This	option	applies	to	the	last	log	file	named
on	the	command	line.

	--to-last-log,	-t

Do	not	stop	at	the	end	of	the	requested	binary	log	from	a	MySQL	server,
but	rather	continue	printing	until	the	end	of	the	last	binary	log.	If	you	send
the	output	to	the	same	MySQL	server,	this	may	lead	to	an	endless	loop.
This	option	requires	--read-from-remote-server.

	--user=user_name,	-u	user_name

The	MySQL	username	to	use	when	connecting	to	a	remote	server.

	--version,	-V

Display	version	information	and	exit.

You	can	also	set	the	following	variable	by	using	--var_name=value	syntax:

	open_files_limit

Specify	the	number	of	open	file	descriptors	to	reserve.

It	is	also	possible	to	set	variables	by	using	--set-variable=var_name=value	or

-O	var_name=value	syntax.	This	syntax	is	deprecated.

You	can	pipe	the	output	of	mysqlbinlog	into	the	mysql	client	to	execute	the
statements	contained	in	the	binary	log.	This	is	used	to	recover	from	a	crash	when
you	have	an	old	backup	(see	Section	5.10.1,	“Database	Backups”).	For	example:

shell>	mysqlbinlog	binlog.000001	|	mysql

Or:

shell>	mysqlbinlog	binlog.[0-9]*	|	mysql

You	can	also	redirect	the	output	of	mysqlbinlog	to	a	text	file	instead,	if	you	need
to	modify	the	statement	log	first	(for	example,	to	remove	statements	that	you	do
not	want	to	execute	for	some	reason).	After	editing	the	file,	execute	the
statements	that	it	contains	by	using	it	as	input	to	the	mysql	program.

mysqlbinlog	has	the	--start-position	option,	which	prints	only	those
statements	with	an	offset	in	the	binary	log	greater	than	or	equal	to	a	given
position	(the	given	position	must	match	the	start	of	one	event).	It	also	has
options	to	stop	and	start	when	it	sees	an	event	with	a	given	date	and	time.	This
enables	you	to	perform	point-in-time	recovery	using	the	--stop-datetime
option	(to	be	able	to	say,	for	example,	“roll	forward	my	databases	to	how	they
were	today	at	10:30	a.m.”).

If	you	have	more	than	one	binary	log	to	execute	on	the	MySQL	server,	the	safe
method	is	to	process	them	all	using	a	single	connection	to	the	server.	Here	is	an
example	that	demonstrates	what	may	be	unsafe:

shell>	mysqlbinlog	binlog.000001	|	mysql	#	DANGER!!

shell>	mysqlbinlog	binlog.000002	|	mysql	#	DANGER!!

Processing	binary	logs	this	way	using	different	connections	to	the	server	causes
problems	if	the	first	log	file	contains	a	CREATE	TEMPORARY	TABLE	statement	and
the	second	log	contains	a	statement	that	uses	the	temporary	table.	When	the	first
mysql	process	terminates,	the	server	drops	the	temporary	table.	When	the
second	mysql	process	attempts	to	use	the	table,	the	server	reports	“unknown
table.”

To	avoid	problems	like	this,	use	a	single	connection	to	execute	the	contents	of	all
binary	logs	that	you	want	to	process.	Here	is	one	way	to	do	so:

shell>	mysqlbinlog	binlog.000001	binlog.000002	|	mysql

Another	approach	is	to	write	all	the	logs	to	a	single	file	and	then	process	the	file:

shell>	mysqlbinlog	binlog.000001	>		/tmp/statements.sql

shell>	mysqlbinlog	binlog.000002	>>	/tmp/statements.sql

shell>	mysql	-e	"source	/tmp/statements.sql"

mysqlbinlog	can	produce	output	that	reproduces	a	LOAD	DATA	INFILE	operation
without	the	original	data	file.	mysqlbinlog	copies	the	data	to	a	temporary	file
and	writes	a	LOAD	DATA	LOCAL	INFILE	statement	that	refers	to	the	file.	The
default	location	of	the	directory	where	these	files	are	written	is	system-specific.
To	specify	a	directory	explicitly,	use	the	--local-load	option.

Because	mysqlbinlog	converts	LOAD	DATA	INFILE	statements	to	LOAD	DATA
LOCAL	INFILE	statements	(that	is,	it	adds	LOCAL),	both	the	client	and	the	server
that	you	use	to	process	the	statements	must	be	configured	to	allow	LOCAL
capability.	See	Section	5.7.4,	“Security	Issues	with	LOAD	DATA	LOCAL”.

Warning:	The	temporary	files	created	for	LOAD	DATA	LOCAL	statements	are	not
automatically	deleted	because	they	are	needed	until	you	actually	execute	those
statements.	You	should	delete	the	temporary	files	yourself	after	you	no	longer
need	the	statement	log.	The	files	can	be	found	in	the	temporary	file	directory	and
have	names	like	original_file_name-#-#.

The	--hexdump	option	produces	a	hex	dump	of	the	log	contents	in	comments:

shell>	mysqlbinlog	--hexdump	master-bin.000001

With	the	preceding	command,	the	output	might	look	like	this:

/*!40019	SET	@@session.max_insert_delayed_threads=0*/;

/*!50003	SET	@OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;

#	at	4

#051024	17:24:13	server	id	1		end_log_pos	98

#	Position		Timestamp			Type			Master	ID								Size						Master	Pos				Flags

#	00000004	9d	fc	5c	43			0f			01	00	00	00			5e	00	00	00			62	00	00	00			00	00

#	00000017	04	00	35	2e	30	2e	31	35		2d	64	65	62	75	67	2d	6c	|..5.0.15.debug.l|

#	00000027	6f	67	00	00	00	00	00	00		00	00	00	00	00	00	00	00	|og..............|

#	00000037	00	00	00	00	00	00	00	00		00	00	00	00	00	00	00	00	|................|

#	00000047	00	00	00	00	9d	fc	5c	43		13	38	0d	00	08	00	12	00	|.......C.8......|

#	00000057	04	04	04	04	12	00	00	4b		00	04	1a																|.......K...|

#							Start:	binlog	v	4,	server	v	5.0.15-debug-log	created	051024	17:24:13

#							at	startup

ROLLBACK;

Hex	dump	output	currently	contains	the	following	elements.	This	format	might
change	in	the	future.

Position:	The	byte	position	within	the	log	file.

Timestamp:	The	event	timestamp.	In	the	example	shown,	'9d	fc	5c	43'	is
the	representation	of	'051024	17:24:13'	in	hexadecimal.

Type:	The	type	of	the	log	event.	In	the	example	shown,	'0f'	means	that	the
example	event	is	a	FORMAT_DESCRIPTION_EVENT.	The	following	table	lists
the	possible	types.

Type Name Meaning

00 UNKNOWN_EVENT
This	event	should	never	be	present	in
the	log.

01 START_EVENT_V3
This	indicates	the	start	of	a	log	file
written	by	MySQL	4	or	earlier.

02 QUERY_EVENT

The	most	common	type	of	events.
These	contain	statements	executed	on
the	master.

03 STOP_EVENT Indicates	that	master	has	stopped.

04 ROTATE_EVENT
Written	when	the	master	switches	to	a
new	log	file.

05 INTVAR_EVENT

Used	mainly	for	AUTO_INCREMENT
values	and	when	the
LAST_INSERT_ID()	function	is	used	in
the	statement.

06 LOAD_EVENT
Used	for	LOAD	DATA	INFILE	in
MySQL	3.23.

07 SLAVE_EVENT Reserved	for	future	use.

08 CREATE_FILE_EVENT

Used	for	LOAD	DATA	INFILE
statements.	This	indicates	the	start	of
execution	of	such	a	statement.	A
temporary	file	is	created	on	the	slave.
Used	in	MySQL	4	only.

09 APPEND_BLOCK_EVENT

Contains	data	for	use	in	a	LOAD	DATA
INFILE	statement.	The	data	is	stored	in
the	temporary	file	on	the	slave.

0a EXEC_LOAD_EVENT

Used	for	LOAD	DATA	INFILE
statements.	The	contents	of	the
temporary	file	is	stored	in	the	table	on
the	slave.	Used	in	MySQL	4	only.

0b DELETE_FILE_EVENT

Rollback	of	a	LOAD	DATA	INFILE
statement.	The	temporary	file	should
be	deleted	on	slave.

0c NEW_LOAD_EVENT
Used	for	LOAD	DATA	INFILE	in
MySQL	4	and	earlier.

0d RAND_EVENT

Used	to	send	information	about
random	values	if	the	RAND()	function	is
used	in	the	statement.

0e USER_VAR_EVENT Used	to	replicate	user	variables.

0f FORMAT_DESCRIPTION_EVENT
This	indicates	the	start	of	a	log	file
written	by	MySQL	5	or	later.

10 XID_EVENT
Event	indicating	commit	of	an	XA
transaction.

11 BEGIN_LOAD_QUERY_EVENT
Used	for	LOAD	DATA	INFILE
statements	in	MySQL	5	and	later.

12 EXECUTE_LOAD_QUERY_EVENT
Used	for	LOAD	DATA	INFILE
statements	in	MySQL	5	and	later.

13 TABLE_MAP_EVENT Reserved	for	future	use.
14 WRITE_ROWS_EVENT Reserved	for	future	use.
15 UPDATE_ROWS_EVENT Reserved	for	future	use.
16 DELETE_ROWS_EVENT Reserved	for	future	use.

Master	ID:	The	server	id	of	the	master	that	created	the	event.

Size:	The	size	in	bytes	of	the	event.

Master	Pos:	The	position	of	the	event	in	the	original	master	log	file.

Flags:	16	flags.	Currently,	the	following	flags	are	used.	The	others	are

reserved	for	the	future.

Flag Name Meaning

01 LOG_EVENT_BINLOG_IN_USE_F

Log	file	correctly	closed.	(Used
only	in
FORMAT_DESCRIPTION_EVENT.)	If
this	flag	is	set	(if	the	flags	are,	for
example,	'01	00')	in	a
FORMAT_DESCRIPTION_EVENT,	the
log	file	has	not	been	properly
closed.	Most	probably	this	is
because	of	a	master	crash	(for
example,	due	to	power	failure).

02 	 Reserved	for	future	use.

04 LOG_EVENT_THREAD_SPECIFIC_F

Set	if	the	event	is	dependent	on	the
connection	it	was	executed	in	(for
example,	'04	00'),	for	example,	if
the	event	uses	temporary	tables.

08 LOG_EVENT_SUPPRESS_USE_F

Set	in	some	circumstances	when	the
event	is	not	dependent	on	the
default	database.

The	other	flags	are	reserved	for	future	use.

8.11.	mysqlcheck	—	A	Table	Maintenance	and	Repair
Program

The	mysqlcheck	client	checks,	repairs,	optimizes,	and	analyzes	tables.

mysqlcheck	is	similar	in	function	to	myisamchk,	but	works	differently.	The
main	operational	difference	is	that	mysqlcheck	must	be	used	when	the	mysqld
server	is	running,	whereas	myisamchk	should	be	used	when	it	is	not.	The
benefit	of	using	mysqlcheck	is	that	you	do	not	have	to	stop	the	server	to	check
or	repair	your	tables.

mysqlcheck	uses	the	SQL	statements	CHECK	TABLE,	REPAIR	TABLE,	ANALYZE
TABLE,	and	OPTIMIZE	TABLE	in	a	convenient	way	for	the	user.	It	determines
which	statements	to	use	for	the	operation	you	want	to	perform,	and	then	sends
the	statements	to	the	server	to	be	executed.	For	details	about	which	storage
engines	each	statement	works	with,	see	the	descriptions	for	those	statements	in
Chapter	13,	SQL	Statement	Syntax.

The	MyISAM	storage	engine	supports	all	four	statements,	so	mysqlcheck	can	be
used	to	perform	all	four	operations	on	MyISAM	tables.	Other	storage	engines	do
not	necessarily	support	all	operations.	In	such	cases,	an	error	message	is
displayed.	For	example,	if	test.t	is	a	MEMORY	table,	an	attempt	to	check	it
produces	this	result:

shell>	mysqlcheck	test	t

test.t

note					:	The	storage	engine	for	the	table	doesn't	support	check

There	are	three	general	ways	to	invoke	mysqlcheck:

shell>	mysqlcheck	[options]	db_name	[tables]

shell>	mysqlcheck	[options]	--databases	db_name1	[db_name2	db_name3...]

shell>	mysqlcheck	[options]	--all-databases

If	you	do	not	name	any	tables	following	db_name	or	if	you	use	the	--databases
or	--all-databases	option,	entire	databases	are	checked.

mysqlcheck	has	a	special	feature	compared	to	other	client	programs.	The	default
behavior	of	checking	tables	(--check)	can	be	changed	by	renaming	the	binary.	If

you	want	to	have	a	tool	that	repairs	tables	by	default,	you	should	just	make	a
copy	of	mysqlcheck	named	mysqlrepair,	or	make	a	symbolic	link	to
mysqlcheck	named	mysqlrepair.	If	you	invoke	mysqlrepair,	it	repairs	tables.

The	following	names	can	be	used	to	change	mysqlcheck	default	behavior:

mysqlrepair The	default	option	is	--repair
mysqlanalyze The	default	option	is	--analyze
mysqloptimize The	default	option	is	--optimize

mysqlcheck	supports	the	following	options:

	--help,	-?

Display	a	help	message	and	exit.

	--all-databases,	-A

Check	all	tables	in	all	databases.	This	is	the	same	as	using	the	--databases
option	and	naming	all	the	databases	on	the	command	line.

	--all-in-1,	-1

Instead	of	issuing	a	statement	for	each	table,	execute	a	single	statement	for
each	database	that	names	all	the	tables	from	that	database	to	be	processed.

	--analyze,	-a

Analyze	the	tables.

	--auto-repair

If	a	checked	table	is	corrupted,	automatically	fix	it.	Any	necessary	repairs
are	done	after	all	tables	have	been	checked.

	--character-sets-dir=path

The	directory	where	character	sets	are	installed.	See	Section	5.11.1,	“The
Character	Set	Used	for	Data	and	Sorting”.

	--check,	-c

Check	the	tables	for	errors.	This	is	the	default	operation.

	--check-only-changed,	-C

Check	only	tables	that	have	changed	since	the	last	check	or	that	have	not
been	closed	properly.

	--check-upgrade,	-g

Invoke	CHECK	TABLE	with	the	FOR	UPGRADE	option	to	check	tables	for
incompatibilities	with	the	current	version	of	the	server.	This	option	was
added	in	MySQL	5.0.19.

	--compress

Compress	all	information	sent	between	the	client	and	the	server	if	both
support	compression.

	--databases,	-B

Process	all	tables	in	the	named	databases.	Normally,	mysqlcheck	treats	the
first	name	argument	on	the	command	line	as	a	database	name	and	following
names	as	table	names.	With	this	option,	it	treats	all	name	arguments	as
database	names.

	--debug[=debug_options],	-#	[debug_options]

Write	a	debugging	log.	A	typical	debug_options	string	is	often
'd:t:o,file_name'.

	--default-character-set=charset_name

Use	charset_name	as	the	default	character	set.	See	Section	5.11.1,	“The
Character	Set	Used	for	Data	and	Sorting”.

	--extended,	-e

If	you	are	using	this	option	to	check	tables,	it	ensures	that	they	are	100%
consistent	but	takes	a	long	time.

If	you	are	using	this	option	to	repair	tables,	it	runs	an	extended	repair	that
may	not	only	take	a	long	time	to	execute,	but	may	produce	a	lot	of	garbage
rows	also!

	--fast,	-F

Check	only	tables	that	have	not	been	closed	properly.

	--force,	-f

Continue	even	if	an	SQL	error	occurs.

	--host=host_name,	-h	host_name

Connect	to	the	MySQL	server	on	the	given	host.

	--medium-check,	-m

Do	a	check	that	is	faster	than	an	--extended	operation.	This	finds	only
99.99%	of	all	errors,	which	should	be	good	enough	in	most	cases.

	--optimize,	-o

Optimize	the	tables.

	--password[=password],	-p[password]

The	password	to	use	when	connecting	to	the	server.	If	you	use	the	short
option	form	(-p),	you	cannot	have	a	space	between	the	option	and	the
password.	If	you	omit	the	password	value	following	the	--password	or	-p
option	on	the	command	line,	you	are	prompted	for	one.

Specifying	a	password	on	the	command	line	should	be	considered	insecure.
See	Section	5.9.6,	“Keeping	Your	Password	Secure”.

	--port=port_num,	-P	port_num

The	TCP/IP	port	number	to	use	for	the	connection.

	--protocol={TCP|SOCKET|PIPE|MEMORY}

The	connection	protocol	to	use.

	--quick,	-q

If	you	are	using	this	option	to	check	tables,	it	prevents	the	check	from
scanning	the	rows	to	check	for	incorrect	links.	This	is	the	fastest	check
method.

If	you	are	using	this	option	to	repair	tables,	it	tries	to	repair	only	the	index
tree.	This	is	the	fastest	repair	method.

	--repair,	-r

Perform	a	repair	that	can	fix	almost	anything	except	unique	keys	that	are
not	unique.

	--silent,	-s

Silent	mode.	Print	only	error	messages.

	--socket=path,	-S	path

For	connections	to	localhost,	the	Unix	socket	file	to	use,	or,	on	Windows,
the	name	of	the	named	pipe	to	use.

	--ssl*

Options	that	begin	with	--ssl	specify	whether	to	connect	to	the	server	via
SSL	and	indicate	where	to	find	SSL	keys	and	certificates.	See
Section	5.9.7.3,	“SSL	Command	Options”.

	--tables

Overrides	the	--databases	or	-B	option.	All	name	arguments	following	the
option	are	regarded	as	table	names.

	--use-frm

For	repair	operations	on	MyISAM	tables,	get	the	table	structure	from	the	.frm
file	so	that	the	table	can	be	repaired	even	if	the	.MYI	header	is	corrupted.

	--user=user_name,	-u	user_name

The	MySQL	username	to	use	when	connecting	to	the	server.

	--verbose,	-v

Verbose	mode.	Print	information	about	the	various	stages	of	program
operation.

	--version,	-V

Display	version	information	and	exit.

8.12.	mysqldump	—	A	Database	Backup	Program

The	mysqldump	client	is	a	backup	program	originally	written	by	Igor
Romanenko.	It	can	be	used	to	dump	a	database	or	a	collection	of	databases	for
backup	or	for	transferring	the	data	to	another	SQL	server	(not	necessarily	a
MySQL	server).	The	dump	contains	SQL	statements	to	create	the	table	or
populate	it,	or	both.

If	you	are	doing	a	backup	on	the	server,	and	your	tables	all	are	MyISAM	tables,
consider	using	the	mysqlhotcopy	instead	because	it	can	accomplish	faster
backups	and	faster	restores.	See	Section	8.13,	“mysqlhotcopy	—	A	Database
Backup	Program”.

There	are	three	general	ways	to	invoke	mysqldump:

shell>	mysqldump	[options]	db_name	[tables]

shell>	mysqldump	[options]	--databases	db_name1	[db_name2	db_name3...]

shell>	mysqldump	[options]	--all-databases

If	you	do	not	name	any	tables	following	db_name	or	if	you	use	the	--databases
or	--all-databases	option,	entire	databases	are	dumped.

To	get	a	list	of	the	options	your	version	of	mysqldump	supports,	execute
mysqldump	--help.

If	you	run	mysqldump	without	the	--quick	or	--opt	option,	mysqldump	loads
the	whole	result	set	into	memory	before	dumping	the	result.	This	can	be	a
problem	if	you	are	dumping	a	big	database.	The	--opt	option	is	enabled	by
default,	but	can	be	disabled	with	--skip-opt.

If	you	are	using	a	recent	copy	of	the	mysqldump	program	to	generate	a	dump	to
be	reloaded	into	a	very	old	MySQL	server,	you	should	not	use	the	--opt	or	--
extended-insert	option.	Use	--skip-opt	instead.

mysqldump	supports	the	following	options:

	--help,	-?

Display	a	help	message	and	exit.

	--add-drop-database

Add	a	DROP	DATABASE	statement	before	each	CREATE	DATABASE	statement.

	--add-drop-table

Add	a	DROP	TABLE	statement	before	each	CREATE	TABLE	statement.

	--add-locks

Surround	each	table	dump	with	LOCK	TABLES	and	UNLOCK	TABLES
statements.	This	results	in	faster	inserts	when	the	dump	file	is	reloaded.	See
Section	7.2.16,	“Speed	of	INSERT	Statements”.

	--all-databases,	-A

Dump	all	tables	in	all	databases.	This	is	the	same	as	using	the	--databases
option	and	naming	all	the	databases	on	the	command	line.

	--allow-keywords

Allow	creation	of	column	names	that	are	keywords.	This	works	by
prefixing	each	column	name	with	the	table	name.

	--character-sets-dir=path

The	directory	where	character	sets	are	installed.	See	Section	5.11.1,	“The
Character	Set	Used	for	Data	and	Sorting”.

	--comments,	-i

Write	additional	information	in	the	dump	file	such	as	program	version,
server	version,	and	host.	.	This	option	is	enabled	by	default.	To	suppress
additional,	use	--skip-comments.

	--compact

Produce	less	verbose	output.	This	option	suppresses	comments	and	enables
the	--skip-add-drop-table,	--no-set-names,	--skip-disable-keys,	and
--skip-add-locks	options.

	--compatible=name

Produce	output	that	is	more	compatible	with	other	database	systems	or	with
older	MySQL	servers.	The	value	of	name	can	be	ansi,	mysql323,	mysql40,
postgresql,	oracle,	mssql,	db2,	maxdb,	no_key_options,
no_table_options,	or	no_field_options.	To	use	several	values,	separate
them	by	commas.	These	values	have	the	same	meaning	as	the
corresponding	options	for	setting	the	server	SQL	mode.	See	Section	5.2.5,
“The	Server	SQL	Mode”.

This	option	does	not	guarantee	compatibility	with	other	servers.	It	only
enables	those	SQL	mode	values	that	are	currently	available	for	making
dump	output	more	compatible.	For	example,	--compatible=oracle	does
not	map	data	types	to	Oracle	types	or	use	Oracle	comment	syntax.

	--complete-insert,	-c

Use	complete	INSERT	statements	that	include	column	names.

	--compress,	-C

Compress	all	information	sent	between	the	client	and	the	server	if	both
support	compression.

	--create-options

Include	all	MySQL-specific	table	options	in	the	CREATE	TABLE	statements.

	--databases,	-B

Dump	several	databases.	Normally,	mysqldump	treats	the	first	name
argument	on	the	command	line	as	a	database	name	and	following	names	as
table	names.	With	this	option,	it	treats	all	name	arguments	as	database
names.	CREATE	DATABASE	and	USE	statements	are	included	in	the	output
before	each	new	database.

	--debug[=debug_options],	-#	[debug_options]

Write	a	debugging	log.	The	debug_options	string	is	often
'd:t:o,file_name'.	The	default	is	'd:t:o,/tmp/mysqldump.trace'.

	--default-character-set=charset_name

Use	charset_name	as	the	default	character	set.	See	Section	5.11.1,	“The
Character	Set	Used	for	Data	and	Sorting”.	If	not	specified,	mysqldump
uses	utf8.

	--delayed-insert

Write	INSERT	DELAYED	statements	rather	than	INSERT	statements.

	--delete-master-logs

On	a	master	replication	server,	delete	the	binary	logs	after	performing	the
dump	operation.	This	option	automatically	enables	--master-data.

	--disable-keys,	-K

For	each	table,	surround	the	INSERT	statements	with	/*!40000	ALTER
TABLE	tbl_name	DISABLE	KEYS	*/;	and	/*!40000	ALTER	TABLE
tbl_name	ENABLE	KEYS	*/;	statements.	This	makes	loading	the	dump
file	faster	because	the	indexes	are	created	after	all	rows	are	inserted.	This
option	is	effective	for	MyISAM	tables	only.

	--extended-insert,	-e

Use	multiple-row	INSERT	syntax	that	include	several	VALUES	lists.	This
results	in	a	smaller	dump	file	and	speeds	up	inserts	when	the	file	is
reloaded.

--fields-terminated-by=...,	--fields-enclosed-by=...,	--fields-
optionally-enclosed-by=...,	--fields-escaped-by=...,	--lines-
terminated-by=...

These	options	are	used	with	the	-T	option	and	have	the	same	meaning	as	the
corresponding	clauses	for	LOAD	DATA	INFILE.	See	Section	13.2.5,	“LOAD
DATA	INFILE	Syntax”.

	--first-slave,	-x

Deprecated.	Now	renamed	to	--lock-all-tables.

	--flush-logs,	-F

Flush	the	MySQL	server	log	files	before	starting	the	dump.	This	option
requires	the	RELOAD	privilege.	Note	that	if	you	use	this	option	in
combination	with	the	--all-databases	(or	-A)	option,	the	logs	are	flushed
for	each	database	dumped.	The	exception	is	when	using	--lock-all-
tables	or	--master-data:	In	this	case,	the	logs	are	flushed	only	once,
corresponding	to	the	moment	that	all	tables	are	locked.	If	you	want	your
dump	and	the	log	flush	to	happen	at	exactly	the	same	moment,	you	should
use	--flush-logs	together	with	either	--lock-all-tables	or	--master-
data.

	--force,	-f

Continue	even	if	an	SQL	error	occurs	during	a	table	dump.

One	use	for	this	option	is	to	cause	mysqldump	to	continue	executing	even
when	it	encounters	a	view	that	has	become	invalid	because	the	defintion
refers	to	a	table	that	has	been	dropped.	Without	--force,	mysqldump	exits
with	an	error	message.	With	--force,	mysqldump	prints	the	error	message,
but	it	also	writes	a	SQL	comment	containing	the	view	definition	to	the
dump	output	and	continues	executing.

	--host=host_name,	-h	host_name

Dump	data	from	the	MySQL	server	on	the	given	host.	The	default	host	is
localhost.

	--hex-blob

Dump	binary	columns	using	hexadecimal	notation	(for	example,	'abc'
becomes	0x616263).	The	affected	data	types	are	BINARY,	VARBINARY,	and
BLOB.	As	of	MySQL	5.0.13,	BIT	columns	are	affected	as	well.

	--ignore-table=db_name.tbl_name

Do	not	dump	the	given	table,	which	must	be	specified	using	both	the
database	and	table	names.	To	ignore	multiple	tables,	use	this	option
multiple	times.

	--insert-ignore

Write	INSERT	statements	with	the	IGNORE	option.

	--lock-all-tables,	-x

Lock	all	tables	across	all	databases.	This	is	achieved	by	acquiring	a	global
read	lock	for	the	duration	of	the	whole	dump.	This	option	automatically
turns	off	--single-transaction	and	--lock-tables.

	--lock-tables,	-l

Lock	all	tables	before	starting	the	dump.	The	tables	are	locked	with	READ
LOCAL	to	allow	concurrent	inserts	in	the	case	of	MyISAM	tables.	For
transactional	tables	such	as	InnoDB	and	BDB,	--single-transaction	is	a
much	better	option,	because	it	does	not	need	to	lock	the	tables	at	all.

Please	note	that	when	dumping	multiple	databases,	--lock-tables	locks
tables	for	each	database	separately.	So,	this	option	does	not	guarantee	that
the	tables	in	the	dump	file	are	logically	consistent	between	databases.
Tables	in	different	databases	may	be	dumped	in	completely	different	states.

	--master-data[=value]

Write	the	binary	log	filename	and	position	to	the	output.	This	option
requires	the	RELOAD	privilege	and	the	binary	log	must	be	enabled.	If	the
option	value	is	equal	to	1,	the	position	and	filename	are	written	to	the	dump
output	in	the	form	of	a	CHANGE	MASTER	statement	that	makes	a	slave	server
start	from	the	correct	position	in	the	master's	binary	logs	if	you	use	this
SQL	dump	of	the	master	to	set	up	a	slave.	If	the	option	value	is	equal	to	2,
the	CHANGE	MASTER	statement	is	written	as	an	SQL	comment.	This	is	the
default	action	if	value	is	omitted.

The	--master-data	option	turns	on	--lock-all-tables,	unless	--single-
transaction	also	is	specified	(in	which	case,	a	global	read	lock	is	only
acquired	a	short	time	at	the	beginning	of	the	dump.	See	also	the	description
for	--single-transaction.	In	all	cases,	any	action	on	logs	happens	at	the
exact	moment	of	the	dump.	This	option	automatically	turns	off	--lock-
tables.

	--no-autocommit

Enclose	the	INSERT	statements	for	each	dumped	table	within	SET
AUTOCOMMIT=0	and	COMMIT	statements.

	--no-create-db,	-n

This	option	suppresses	the	CREATE	DATABASE	statements	that	are	otherwise
included	in	the	output	if	the	--databases	or	--all-databases	option	is
given.

	--no-create-info,	-t

Do	not	write	CREATE	TABLE	statements	that	re-create	each	dumped	table.

	--no-data,	-d

Do	not	write	any	row	information	for	the	table.	This	is	very	useful	if	you
want	to	dump	only	the	CREATE	TABLE	statement	for	the	table.

	--opt

This	option	is	shorthand;	it	is	the	same	as	specifying	--add-drop-table	--
add-locks	--create-options	--disable-keys	--extended-insert	--

lock-tables	--quick	--set-charset.	It	should	give	you	a	fast	dump
operation	and	produce	a	dump	file	that	can	be	reloaded	into	a	MySQL
server	quickly.

The	--opt	option	is	enabled	by	default.	To	disable	the	options	that	it
enables,	use	--skip-opt.	To	disable	only	certain	of	the	options	enabled	by
--opt,	use	their	--skip	forms;	for	example,	--skip-add-drop-table	or	--
skip-quick.	Alternatively,	use	--skip-opt	to	disable	the	options	enabled
by	--opt,	followed	by	options	to	enable	the	features	that	you	want.	Options
are	processed	in	order,	so	the	options	to	enable	features	must	follow	--
skip-opt.	For	example,	--skip-opt	--extended-insert	enables	extended
inserts,	but	--extended-insert	--skip-opt	does	not.

	--order-by-primary

Sorts	each	table's	rows	by	its	primary	key,	or	its	first	unique	index,	if	such

an	index	exists.	This	is	useful	when	dumping	a	MyISAM	table	to	be	loaded
into	an	InnoDB	table,	but	will	make	the	dump	itself	take	considerably
longer.

	--password[=password],	-p[password]

The	password	to	use	when	connecting	to	the	server.	If	you	use	the	short
option	form	(-p),	you	cannot	have	a	space	between	the	option	and	the
password.	If	you	omit	the	password	value	following	the	--password	or	-p
option	on	the	command	line,	you	are	prompted	for	one.

Specifying	a	password	on	the	command	line	should	be	considered	insecure.
See	Section	5.9.6,	“Keeping	Your	Password	Secure”.

	--port=port_num,	-P	port_num

The	TCP/IP	port	number	to	use	for	the	connection.

	--protocol={TCP|SOCKET|PIPE|MEMORY}

The	connection	protocol	to	use.

	--quick,	-q

This	option	is	useful	for	dumping	large	tables.	It	forces	mysqldump	to
retrieve	rows	for	a	table	from	the	server	a	row	at	a	time	rather	than
retrieving	the	entire	row	set	and	buffering	it	in	memory	before	writing	it
out.

	--quote-names,	-Q

Quote	database,	table,	and	column	names	within	‘`’	characters.	If	the
ANSI_QUOTES	SQL	mode	is	enabled,	names	are	quoted	within	‘"’	characters.
This	option	is	enabled	by	default.	It	can	be	disabled	with	--skip-quote-
names,	but	this	option	should	be	given	after	any	option	such	as	--
compatible	that	may	enable	--quote-names.

	--result-file=file,	-r	file

Direct	output	to	a	given	file.	This	option	should	be	used	on	Windows	to

prevent	newline	‘\n’	characters	from	being	converted	to	‘\r\n’	carriage
return/newline	sequences.	The	result	file	is	created	and	its	contents
overwritten,	even	if	an	error	occurs	while	generating	the	dump.	The
previous	contents	are	lost.

	--routines,	-R

Dump	stored	routines	(functions	and	procedures)	from	the	dumped
databases.	The	output	generated	by	using	--routines	contains	CREATE
PROCEDURE	and	CREATE	FUNCTION	statements	to	re-create	the	routines.
However,	these	statements	do	not	include	attributes	such	as	the	routine
creation	and	modification	timestamps.	This	means	that	when	the	routines
are	reloaded,	they	will	be	created	with	the	timestamps	equal	to	the	reload
time.

If	you	require	routines	to	be	re-created	with	their	original	timestamp
attributes,	do	not	use	--routines.	Instead,	dump	and	reload	the	contents	of
the	mysql.proc	table	directly,	using	a	MySQL	account	that	has	appropriate
privileges	for	the	mysql	database.

This	option	was	added	in	MySQL	5.0.13.	Before	that,	stored	routines	are
not	dumped.	Routine	DEFINER	values	are	not	dumped	until	MySQL	5.0.20.
This	means	that	before	5.0.20,	when	routines	are	reloaded,	they	will	be
created	with	the	definer	set	to	the	reloading	user.	If	you	require	routines	to
be	re-created	with	their	original	definer,	dump	and	load	the	contents	of	the
mysql.proc	table	directly	as	described	earlier.

	--set-charset

Add	SET	NAMES	default_character_set	to	the	output.	This	option	is
enabled	by	default.	To	suppress	the	SET	NAMES	statement,	use	--skip-set-
charset.

	--single-transaction

This	option	issues	a	BEGIN	SQL	statement	before	dumping	data	from	the
server.	It	is	useful	only	with	transactional	tables	such	as	InnoDB	and	BDB,
because	then	it	dumps	the	consistent	state	of	the	database	at	the	time	when
BEGIN	was	issued	without	blocking	any	applications.

When	using	this	option,	you	should	keep	in	mind	that	only	InnoDB	tables
are	dumped	in	a	consistent	state.	For	example,	any	MyISAM	or	MEMORY	tables
dumped	while	using	this	option	may	still	change	state.

The	--single-transaction	option	and	the	--lock-tables	option	are
mutually	exclusive,	because	LOCK	TABLES	causes	any	pending	transactions
to	be	committed	implicitly.

This	option	is	not	supported	for	MySQL	Cluster	tables;	the	results	cannot
be	guaranteed	to	be	consistent	due	to	the	fact	that	the	NDBCluster	storage
engine	supports	only	the	READ_COMMITTED	transaction	isolation	level.	You
should	always	use	NDB	backup	and	restore	instead.

To	dump	big	tables,	you	should	combine	this	option	with	--quick.

	--skip-opt

See	the	description	for	the	--opt	option.

	--socket=path,	-S	path

For	connections	to	localhost,	the	Unix	socket	file	to	use,	or,	on	Windows,
the	name	of	the	named	pipe	to	use.

	--skip-comments

See	the	description	for	the	--comments	option.

	--ssl*

Options	that	begin	with	--ssl	specify	whether	to	connect	to	the	server	via
SSL	and	indicate	where	to	find	SSL	keys	and	certificates.	See
Section	5.9.7.3,	“SSL	Command	Options”.

	--tab=path,	-T	path

Produce	tab-separated	data	files.	For	each	dumped	table,	mysqldump
creates	a	tbl_name.sql	file	that	contains	the	CREATE	TABLE	statement	that
creates	the	table,	and	a	tbl_name.txt	file	that	contains	its	data.	The	option
value	is	the	directory	in	which	to	write	the	files.

By	default,	the	.txt	data	files	are	formatted	using	tab	characters	between
column	values	and	a	newline	at	the	end	of	each	line.	The	format	can	be
specified	explicitly	using	the	--fields-xxx	and	--lines--xxx	options.

Note:	This	option	should	be	used	only	when	mysqldump	is	run	on	the
same	machine	as	the	mysqld	server.	You	must	have	the	FILE	privilege,	and
the	server	must	have	permission	to	write	files	in	the	directory	that	you
specify.

	--tables

Override	the	--databases	or	-B	option.	All	name	arguments	following	the
option	are	regarded	as	table	names.

	--triggers

Dump	triggers	for	each	dumped	table.	This	option	is	enabled	by	default;
disable	it	with	--skip-triggers.	This	option	was	added	in	MySQL	5.0.11.
Before	that,	triggers	are	not	dumped.

	--tz-utc

Add	SET	TIME_ZONE='+00:00'	to	the	dump	file	so	that	TIMESTAMP	columns
can	be	dumped	and	reloaded	between	servers	in	different	time	zones.
Without	this	option,	TIMESTAMP	columns	are	dumped	and	reloaded	in	the
time	zones	local	to	the	source	and	destination	servers,	which	can	cause	the
values	to	change.	--tz-utc	also	protects	against	changes	due	to	daylight
saving	time.	--tz-utc	is	enabled	by	default.	To	disable	it,	use	--skip-tz-
utc.	This	option	was	added	in	MySQL	5.0.15.

	--user=user_name,	-u	user_name

The	MySQL	username	to	use	when	connecting	to	the	server.

	--verbose,	-v

Verbose	mode.	Print	more	information	about	what	the	program	does.

	--version,	-V

Display	version	information	and	exit.

	--where='where_condition',	-w	'where_condition'

Dump	only	rows	selected	by	the	given	WHERE	condition.	Note	that	quotes
around	the	condition	are	mandatory	if	it	contains	spaces	or	other	characters
that	are	special	to	your	command	interpreter.

Examples:

--where="user='jimf'"

-w"userid>1"

-w"userid<1"

	--xml,	-X

Write	dump	output	as	well-formed	XML.

You	can	also	set	the	following	variables	by	using	--var_name=value	syntax:

max_allowed_packet

The	maximum	size	of	the	buffer	for	client/server	communication.	The
maximum	is	1GB.

net_buffer_length

The	initial	size	of	the	buffer	for	client/server	communication.	When
creating	multiple-row-insert	statements	(as	with	option	--extended-insert
or	--opt),	mysqldump	creates	rows	up	to	net_buffer_length	length.	If
you	increase	this	variable,	you	should	also	ensure	that	the
net_buffer_length	variable	in	the	MySQL	server	is	at	least	this	large.

It	is	also	possible	to	set	variables	by	using	--set-variable=var_name=value	or
-O	var_name=value	syntax.	This	syntax	is	deprecated.

The	most	common	use	of	mysqldump	is	probably	for	making	a	backup	of	an
entire	database:

shell>	mysqldump	--opt	db_name	>	backup-file.sql

You	can	read	the	dump	file	back	into	the	server	like	this:

shell>	mysql	db_name	<	backup-file.sql

Or	like	this:

shell>	mysql	-e	"source	/path-to-backup/backup-file.sql"	db_name

mysqldump	is	also	very	useful	for	populating	databases	by	copying	data	from
one	MySQL	server	to	another:

shell>	mysqldump	--opt	db_name	|	mysql	--host=remote_host	-C	db_name

It	is	possible	to	dump	several	databases	with	one	command:

shell>	mysqldump	--databases	db_name1	[db_name2	...]	>	my_databases.sql

To	dump	all	databases,	use	the	--all-databases	option:

shell>	mysqldump	--all-databases	>	all_databases.sql

For	InnoDB	tables,	mysqldump	provides	a	way	of	making	an	online	backup:

shell>	mysqldump	--all-databases	--single-transaction	>	all_databases.sql

This	backup	just	needs	to	acquire	a	global	read	lock	on	all	tables	(using	FLUSH
TABLES	WITH	READ	LOCK)	at	the	beginning	of	the	dump.	As	soon	as	this	lock	has
been	acquired,	the	binary	log	coordinates	are	read	and	the	lock	is	released.	If	and
only	if	one	long	updating	statement	is	running	when	the	FLUSH	statement	is
issued,	the	MySQL	server	may	get	stalled	until	that	long	statement	finishes,	and
then	the	dump	becomes	lock-free.	If	the	update	statements	that	the	MySQL
server	receives	are	short	(in	terms	of	execution	time),	the	initial	lock	period
should	not	be	noticeable,	even	with	many	updates.

For	point-in-time	recovery	(also	known	as	“roll-forward,”	when	you	need	to
restore	an	old	backup	and	replay	the	changes	that	happened	since	that	backup),	it
is	often	useful	to	rotate	the	binary	log	(see	Section	5.12.3,	“The	Binary	Log”)	or
at	least	know	the	binary	log	coordinates	to	which	the	dump	corresponds:

shell>	mysqldump	--all-databases	--master-data=2	>	all_databases.sql

Or:

shell>	mysqldump	--all-databases	--flush-logs	--master-data=2

														>	all_databases.sql

The	simultaneous	use	of	--master-data	and	--single-transaction	provides	a
convenient	way	to	make	an	online	backup	suitable	for	point-in-time	recovery	if
tables	are	stored	in	the	InnoDB	storage	engine.

For	more	information	on	making	backups,	see	Section	5.10.1,	“Database
Backups”,	and	Section	5.10.2,	“Example	Backup	and	Recovery	Strategy”.

8.13.	mysqlhotcopy	—	A	Database	Backup	Program

mysqlhotcopy	is	a	Perl	script	that	was	originally	written	and	contributed	by	Tim
Bunce.	It	uses	LOCK	TABLES,	FLUSH	TABLES,	and	cp	or	scp	to	make	a	database
backup	quickly.	It	is	the	fastest	way	to	make	a	backup	of	the	database	or	single
tables,	but	it	can	be	run	only	on	the	same	machine	where	the	database	directories
are	located.	mysqlhotcopy	works	only	for	backing	up	MyISAM	and	ARCHIVE
tables.	It	runs	on	Unix	and	NetWare.

shell>	mysqlhotcopy	db_name	[/path/to/new_directory]

shell>	mysqlhotcopy	db_name_1	...	db_name_n	/path/to/new_directory

Back	up	tables	in	the	given	database	that	match	a	regular	expression:

shell>	mysqlhotcopy	db_name./regex/

The	regular	expression	for	the	table	name	can	be	negated	by	prefixing	it	with	a
tilde	(‘~’):

shell>	mysqlhotcopy	db_name./~regex/

mysqlhotcopy	supports	the	following	options:

	--help,	-?

Display	a	help	message	and	exit.

	--addtodest

Do	not	rename	target	directory	(if	it	exists);	merely	add	files	to	it.

	--allowold

Do	not	abort	if	a	target	exists;	rename	it	by	adding	an	_old	suffix.

	--checkpoint=db_name.tbl_name

Insert	checkpoint	entries	into	the	specified	database	db_name	and	table
tbl_name.

	--chroot=path

Base	directory	of	the	chroot	jail	in	which	mysqld	operates.	The	path	value
should	match	that	of	the	--chroot	option	given	to	mysqld.

	--debug

Enable	debug	output.

	--dryrun,	-n

Report	actions	without	performing	them.

	--flushlog

Flush	logs	after	all	tables	are	locked.

	--host=host_name,	-h	host_name

The	hostname	of	the	local	host	to	use	for	making	a	TCP/IP	connection	to
the	local	server.	By	default,	the	connection	is	made	to	localhost	using	a
Unix	socket	file.

	--keepold

Do	not	delete	previous	(renamed)	target	when	done.

	--method=command

The	method	for	copying	files	(cp	or	scp).

	--noindices

Do	not	include	full	index	files	in	the	backup.	This	makes	the	backup
smaller	and	faster.	The	indexes	for	reloaded	tables	can	be	reconstructed
later	with	myisamchk	-rq.

	--password=password,	-ppassword

The	password	to	use	when	connecting	to	the	server.	Note	that	the	password
value	is	not	optional	for	this	option,	unlike	for	other	MySQL	programs.	You

can	use	an	option	file	to	avoid	giving	the	password	on	the	command	line.

Specifying	a	password	on	the	command	line	should	be	considered	insecure.
See	Section	5.9.6,	“Keeping	Your	Password	Secure”.

	--port=port_num,	-P	port_num

The	TCP/IP	port	number	to	use	when	connecting	to	the	local	server.

	--quiet,	-q

Be	silent	except	for	errors.

	--record_log_pos=db_name.tbl_name

Record	master	and	slave	status	in	the	specified	database	db_name	and	table
tbl_name.

	--regexp=expr

Copy	all	databases	with	names	that	match	the	given	regular	expression.

	--resetmaster

Reset	the	binary	log	after	locking	all	the	tables.

	--resetslave

Reset	the	master.info	file	after	locking	all	the	tables.

	--socket=path,	-S	path

The	Unix	socket	file	to	use	for	the	connection.

	--suffix=str

The	suffix	for	names	of	copied	databases.

	--tmpdir=path

The	temporary	directory.	The	default	is	/tmp.

	--user=user_name,	-u	user_name

The	MySQL	username	to	use	when	connecting	to	the	server.

mysqlhotcopy	reads	the	[client]	and	[mysqlhotcopy]	option	groups	from
option	files.

To	execute	mysqlhotcopy,	you	must	have	access	to	the	files	for	the	tables	that
you	are	backing	up,	the	SELECT	privilege	for	those	tables,	the	RELOAD	privilege
(to	be	able	to	execute	FLUSH	TABLES),	and	the	LOCK	TABLES	privilege	(to	be	able
to	lock	the	tables).

Use	perldoc	for	additional	mysqlhotcopy	documentation,	including	information
about	the	structure	of	the	tables	needed	for	the	--checkpoint	and	--
record_log_pos	options:

shell>	perldoc	mysqlhotcopy

8.14.	mysqlimport	—	A	Data	Import	Program

The	mysqlimport	client	provides	a	command-line	interface	to	the	LOAD	DATA
INFILE	SQL	statement.	Most	options	to	mysqlimport	correspond	directly	to
clauses	of	LOAD	DATA	INFILE	syntax.	See	Section	13.2.5,	“LOAD	DATA	INFILE
Syntax”.

Invoke	mysqlimport	like	this:

shell>	mysqlimport	[options]	db_name	textfile1	[textfile2	...]

For	each	text	file	named	on	the	command	line,	mysqlimport	strips	any
extension	from	the	filename	and	uses	the	result	to	determine	the	name	of	the
table	into	which	to	import	the	file's	contents.	For	example,	files	named
patient.txt,	patient.text,	and	patient	all	would	be	imported	into	a	table
named	patient.

mysqlimport	supports	the	following	options:

	--help,	-?

Display	a	help	message	and	exit.

	--character-sets-dir=path

The	directory	where	character	sets	are	installed.	See	Section	5.11.1,	“The
Character	Set	Used	for	Data	and	Sorting”.

	--columns=column_list,	-c	column_list

This	option	takes	a	comma-separated	list	of	column	names	as	its	value.	The
order	of	the	column	names	indicates	how	to	match	data	file	columns	with
table	columns.

	--compress,	-C

Compress	all	information	sent	between	the	client	and	the	server	if	both
support	compression.

	--debug[=debug_options],	-#	[debug_options]

Write	a	debugging	log.	The	debug_options	string	often	is
'd:t:o,file_name'.

	--default-character-set=charset_name

Use	charset_name	as	the	default	character	set.	See	Section	5.11.1,	“The
Character	Set	Used	for	Data	and	Sorting”.

	--delete,	-D

Empty	the	table	before	importing	the	text	file.

--fields-terminated-by=...,	--fields-enclosed-by=...,	--fields-
optionally-enclosed-by=...,	--fields-escaped-by=...,	--lines-
terminated-by=...

These	options	have	the	same	meaning	as	the	corresponding	clauses	for	LOAD
DATA	INFILE.	For	example,	to	import	Windows	files	that	have	lines
terminated	with	carriage	return/linefeed	pairs,	use	--lines-terminated-
by="\r\n".	(You	might	have	to	double	the	backslashes,	depending	on	the
escaping	conventions	of	your	command	interpreter.)	See	Section	13.2.5,
“LOAD	DATA	INFILE	Syntax”.

	--force,	-f

Ignore	errors.	For	example,	if	a	table	for	a	text	file	does	not	exist,	continue
processing	any	remaining	files.	Without	--force,	mysqlimport	exits	if	a
table	does	not	exist.

	--host=host_name,	-h	host_name

Import	data	to	the	MySQL	server	on	the	given	host.	The	default	host	is
localhost.

	--ignore,	-i

See	the	description	for	the	--replace	option.

	--ignore-lines=N

Ignore	the	first	N	lines	of	the	data	file.

	--local,	-L

Read	input	files	locally	from	the	client	host.

	--lock-tables,	-l

Lock	all	tables	for	writing	before	processing	any	text	files.	This	ensures
that	all	tables	are	synchronized	on	the	server.

	--low-priority

Use	LOW_PRIORITY	when	loading	the	table.

	--password[=password],	-p[password]

The	password	to	use	when	connecting	to	the	server.	If	you	use	the	short
option	form	(-p),	you	cannot	have	a	space	between	the	option	and	the
password.	If	you	omit	the	password	value	following	the	--password	or	-p
option	on	the	command	line,	you	are	prompted	for	one.

Specifying	a	password	on	the	command	line	should	be	considered	insecure.
See	Section	5.9.6,	“Keeping	Your	Password	Secure”.

	--port=port_num,	-P	port_num

The	TCP/IP	port	number	to	use	for	the	connection.

	--protocol={TCP|SOCKET|PIPE|MEMORY}

The	connection	protocol	to	use.

	--replace,	-r

The	--replace	and	--ignore	options	control	handling	of	input	rows	that
duplicate	existing	rows	on	unique	key	values.	If	you	specify	--replace,
new	rows	replace	existing	rows	that	have	the	same	unique	key	value.	If	you
specify	--ignore,	input	rows	that	duplicate	an	existing	row	on	a	unique	key
value	are	skipped.	If	you	do	not	specify	either	option,	an	error	occurs	when
a	duplicate	key	value	is	found,	and	the	rest	of	the	text	file	is	ignored.

	--silent,	-s

Silent	mode.	Produce	output	only	when	errors	occur.

	--socket=path,	-S	path

For	connections	to	localhost,	the	Unix	socket	file	to	use,	or,	on	Windows,
the	name	of	the	named	pipe	to	use.

	--ssl*

Options	that	begin	with	--ssl	specify	whether	to	connect	to	the	server	via
SSL	and	indicate	where	to	find	SSL	keys	and	certificates.	See
Section	5.9.7.3,	“SSL	Command	Options”.

	--user=user_name,	-u	user_name

The	MySQL	username	to	use	when	connecting	to	the	server.

	--verbose,	-v

Verbose	mode.	Print	more	information	about	what	the	program	does.

	--version,	-V

Display	version	information	and	exit.

Here	is	a	sample	session	that	demonstrates	use	of	mysqlimport:

shell>	mysql	-e	'CREATE	TABLE	imptest(id	INT,	n	VARCHAR(30))'	test

shell>	ed

a

100					Max	Sydow

101					Count	Dracula

.

w	imptest.txt

32

q

shell>	od	-c	imptest.txt

0000000			1			0			0		\t			M			a			x							S			y			d			o			w		\n			1			0

0000020			1		\t			C			o			u			n			t							D			r			a			c			u			l			a		\n

0000040

shell>	mysqlimport	--local	test	imptest.txt

test.imptest:	Records:	2		Deleted:	0		Skipped:	0		Warnings:	0

shell>	mysql	-e	'SELECT	*	FROM	imptest'	test

+------+---------------+

|	id			|	n													|

+------+---------------+

|		100	|	Max	Sydow					|

|		101	|	Count	Dracula	|

+------+---------------+

8.15.	mysqlshow	—	Display	Database,	Table,	and
Column	Information

The	mysqlshow	client	can	be	used	to	quickly	see	which	databases	exist,	their
tables,	or	a	table's	columns	or	indexes.

mysqlshow	provides	a	command-line	interface	to	several	SQL	SHOW	statements.
See	Section	13.5.4,	“SHOW	Syntax”.	The	same	information	can	be	obtained	by
using	those	statements	directly.	For	example,	you	can	issue	them	from	the	mysql
client	program.

Invoke	mysqlshow	like	this:

shell>	mysqlshow	[options]	[db_name	[tbl_name	[col_name]]]

If	no	database	is	given,	a	list	of	database	names	is	shown.

If	no	table	is	given,	all	matching	tables	in	the	database	are	shown.

If	no	column	is	given,	all	matching	columns	and	column	types	in	the	table
are	shown.

The	output	displays	only	the	names	of	those	databases,	tables,	or	columns	for
which	you	have	some	privileges.

If	the	last	argument	contains	shell	or	SQL	wildcard	characters	(‘*’,	‘?’,	‘%’,	or
‘_’),	only	those	names	that	are	matched	by	the	wildcard	are	shown.	If	a	database
name	contains	any	underscores,	those	should	be	escaped	with	a	backslash	(some
Unix	shells	require	two)	to	get	a	list	of	the	proper	tables	or	columns.	‘*’	and	‘?’
characters	are	converted	into	SQL	‘%’	and	‘_’	wildcard	characters.	This	might
cause	some	confusion	when	you	try	to	display	the	columns	for	a	table	with	a	‘_’
in	the	name,	because	in	this	case,	mysqlshow	shows	you	only	the	table	names
that	match	the	pattern.	This	is	easily	fixed	by	adding	an	extra	‘%’	last	on	the
command	line	as	a	separate	argument.

mysqlshow	supports	the	following	options:

	--help,	-?

Display	a	help	message	and	exit.

	--character-sets-dir=path

The	directory	where	character	sets	are	installed.	See	Section	5.11.1,	“The
Character	Set	Used	for	Data	and	Sorting”.

	--compress,	-C

Compress	all	information	sent	between	the	client	and	the	server	if	both
support	compression.

	--count

Show	the	number	of	rows	per	table.	This	can	be	slow	for	non-MyISAM
tables.	This	option	was	added	in	MySQL	5.0.6.

	--debug[=debug_options],	-#	[debug_options]

Write	a	debugging	log.	The	debug_options	string	often	is
'd:t:o,file_name'.

	--default-character-set=charset_name

Use	charset_name	as	the	default	character	set.	See	Section	5.11.1,	“The
Character	Set	Used	for	Data	and	Sorting”.

	--host=host_name,	-h	host_name

Connect	to	the	MySQL	server	on	the	given	host.

	--keys,	-k

Show	table	indexes.

	--password[=password],	-p[password]

The	password	to	use	when	connecting	to	the	server.	If	you	use	the	short
option	form	(-p),	you	cannot	have	a	space	between	the	option	and	the
password.	If	you	omit	the	password	value	following	the	--password	or	-p
option	on	the	command	line,	you	are	prompted	for	one.

Specifying	a	password	on	the	command	line	should	be	considered	insecure.
See	Section	5.9.6,	“Keeping	Your	Password	Secure”.

	--port=port_num,	-P	port_num

The	TCP/IP	port	number	to	use	for	the	connection.

	--protocol={TCP|SOCKET|PIPE|MEMORY}

The	connection	protocol	to	use.

	--show-table-type,	-t

Show	a	column	indicating	the	table	type,	as	in	SHOW	FULL	TABLES.	The	type
is	BASE	TABLE	or	VIEW.	This	option	was	added	in	MySQL	5.0.4.

	--socket=path,	-S	path

For	connections	to	localhost,	the	Unix	socket	file	to	use,	or,	on	Windows,
the	name	of	the	named	pipe	to	use.

	--ssl*

Options	that	begin	with	--ssl	specify	whether	to	connect	to	the	server	via
SSL	and	indicate	where	to	find	SSL	keys	and	certificates.	See
Section	5.9.7.3,	“SSL	Command	Options”.

	--status,	-i

Display	extra	information	about	each	table.

	--user=user_name,	-u	user_name

The	MySQL	username	to	use	when	connecting	to	the	server.

	--verbose,	-v

Verbose	mode.	Print	more	information	about	what	the	program	does.	This
option	can	be	used	multiple	times	to	increase	the	amount	of	information.

	--version,	-V

Display	version	information	and	exit.

8.16.	mysql_zap	—	Kill	Processes	That	Match	a
Pattern

mysql_zap	kills	processes	that	match	a	pattern.	It	uses	the	ps	command	and
Unix	signals,	so	it	runs	on	Unix	and	Unix-like	systems.

Invoke	mysql_zap	like	this:

shell>	mysql_zap	[-signal]	[-?Ift]	pattern

A	process	matches	if	its	output	line	from	the	ps	command	contains	the	pattern.
By	default,	mysql_zap	asks	for	confirmation	for	each	process.	Respond	y	to	kill
the	process,	or	q	to	exit	mysql_zap.	For	any	other	response,	mysql_zap	does	not
attempt	to	kill	the	process.

If	the	-signal	option	is	given,	it	specifies	the	name	or	number	of	the	signal	to
send	to	each	process.	Otherwise,	mysql_zap	tries	first	with	TERM	(signal	15)	and
then	with	KILL	(signal	9).

mysql_zap	understands	the	following	additional	options:

--help,	-?,	-I

Display	a	help	message	and	exit.

-f

Force	mode.	mysql_zap	attempts	to	kill	each	process	without	confirmation.

-t

Test	mode.	Display	information	about	each	process	but	do	not	kill	it.

8.17.	perror	—	Explain	Error	Codes

For	most	system	errors,	MySQL	displays,	in	addition	to	an	internal	text	message,
the	system	error	code	in	one	of	the	following	styles:

message	...	(errno:	#)

message	...	(Errcode:	#)

You	can	find	out	what	the	error	code	means	by	examining	the	documentation	for
your	system	or	by	using	the	perror	utility.

perror	prints	a	description	for	a	system	error	code	or	for	a	storage	engine	(table
handler)	error	code.

Invoke	perror	like	this:

shell>	perror	[options]	errorcode	...

Example:

shell>	perror	13	64

Error	code		13:		Permission	denied

Error	code		64:		Machine	is	not	on	the	network

To	obtain	the	error	message	for	a	MySQL	Cluster	error	code,	invoke	perror	with
the	--ndb	option:

shell>	perror	--ndb	errorcode

Note	that	the	meaning	of	system	error	messages	may	be	dependent	on	your
operating	system.	A	given	error	code	may	mean	different	things	on	different
operating	systems.

perror	supports	the	following	options:

	--help,	--info,	-I,	-?

Display	a	help	message	and	exit.

	--ndb

Print	the	error	message	for	a	MySQL	Cluster	error	code.

	--silent,	-s

Silent	mode.	Print	only	the	error	message.

	--verbose,	-v

Verbose	mode.	Print	error	code	and	message.	This	is	the	default	behavior.

	--version,	-V

Display	version	information	and	exit.

8.18.	replace	—	A	String-Replacement	Utility

The	replace	utility	program	changes	strings	in	place	in	files	or	on	the	standard
input.

Invoke	replace	in	one	of	the	following	ways:

shell>	replace	from	to	[from	to]	...	--	file	[file]	...

shell>	replace	from	to	[from	to]	...	<	file

from	represents	a	string	to	look	for	and	to	represents	its	replacement.	There	can
be	one	or	more	pairs	of	strings.

Use	the	--	option	to	indicate	where	the	string-replacement	list	ends	and	the
filenames	begin.	In	this	case,	any	file	named	on	the	command	line	is	modified	in
place,	so	you	may	want	to	make	a	copy	of	the	original	before	converting	it.
replace	prints	a	message	indicating	which	of	the	input	files	it	actually	modifies.

If	the	--	option	is	not	given,	replace	reads	the	standard	input	and	writes	to	the
standard	output.

replace	uses	a	finite	state	machine	to	match	longer	strings	first.	It	can	be	used	to
swap	strings.	For	example,	the	following	command	swaps	a	and	b	in	the	given
files,	file1	and	file2:

shell>	replace	a	b	b	a	--	file1	file2	...

The	replace	program	is	used	by	msql2mysql.	See	Section	22.9.1,	“msql2mysql
—	Convert	mSQL	Programs	for	Use	with	MySQL”.

replace	supports	the	following	options:

-?,	-I

Display	a	help	message	and	exit.

-#	debug_options

Write	a	debugging	log.	The	debug_options	string	often	is

'd:t:o,file_name'.

-s

Silent	mode.	Print	less	information	what	the	program	does.

-v

Verbose	mode.	Print	more	information	about	what	the	program	does.

-V

Display	version	information	and	exit.

Chapter	9.	Language	Structure

Table	of	Contents

9.1.	Literal	Values
9.1.1.	Strings
9.1.2.	Numbers
9.1.3.	Hexadecimal	Values
9.1.4.	Boolean	Values
9.1.5.	Bit-Field	Values
9.1.6.	NULL	Values

9.2.	Database,	Table,	Index,	Column,	and	Alias	Names
9.2.1.	Identifier	Qualifiers
9.2.2.	Identifier	Case	Sensitivity

9.3.	User-Defined	Variables
9.4.	Comment	Syntax
9.5.	Treatment	of	Reserved	Words	in	MySQL

This	chapter	discusses	the	rules	for	writing	the	following	elements	of	SQL
statements	when	using	MySQL:

Literal	values	such	as	strings	and	numbers

Identifiers	such	as	database,	table,	and	column	names

User-defined	and	system	variables

Comments

Reserved	words

9.1.	Literal	Values

This	section	describes	how	to	write	literal	values	in	MySQL.	These	include
strings,	numbers,	hexadecimal	values,	boolean	values,	and	NULL.	The	section
also	covers	the	various	nuances	and	“gotchas”	that	you	may	run	into	when
dealing	with	these	basic	types	in	MySQL.

9.1.1.	Strings

A	string	is	a	sequence	of	bytes	or	characters,	enclosed	within	either	single	quote
(‘'’)	or	double	quote	(‘"’)	characters.	Examples:

'a	string'

"another	string"

If	the	ANSI_QUOTES	SQL	mode	is	enabled,	string	literals	can	be	quoted	only
within	single	quotes	because	a	string	quoted	within	double	quotes	is	interpreted
as	an	identifier.

A	binary	string	is	a	string	of	bytes	that	has	no	character	set	or	collation.	A	non-
binary	string	is	a	string	of	characters	that	has	a	character	set	and	collation.	For
both	types	of	strings,	comparisons	are	based	on	the	numeric	values	of	the	string
unit.	For	binary	strings,	the	unit	is	the	byte.	For	non-binary	strings	the	unit	is	the
character	and	some	character	sets	allow	multi-byte	characters.	Character	value
ordering	is	a	function	of	the	string	collation.

String	literals	may	have	an	optional	character	set	introducer	and	COLLATE	clause:

[_charset_name]'string'	[COLLATE	collation_name]

Examples:

SELECT	_latin1'string';

SELECT	_latin1'string'	COLLATE	latin1_danish_ci;

For	more	information	about	these	forms	of	string	syntax,	see	Section	10.3.5,
“Character	String	Literal	Character	Set	and	Collation”.

Within	a	string,	certain	sequences	have	special	meaning.	Each	of	these

sequences	begins	with	a	backslash	(‘\’),	known	as	the	escape	character.	MySQL
recognizes	the	following	escape	sequences:

\0 An	ASCII	0	(NUL)	character.
\' A	single	quote	(‘'’)	character.
\" A	double	quote	(‘"’)	character.
\b A	backspace	character.
\n A	newline	(linefeed)	character.
\r A	carriage	return	character.
\t A	tab	character.
\Z ASCII	26	(Control-Z).	See	note	following	the	table.
\\ A	backslash	(‘\’)	character.
\% A	‘%’	character.	See	note	following	the	table.
_ A	‘_’	character.	See	note	following	the	table.

For	all	other	escape	sequences,	backslash	is	ignored.	That	is,	the	escaped
character	is	interpreted	as	if	it	was	not	escaped.	For	example,	‘\x’	is	just	‘x’.

These	sequences	are	case	sensitive.	For	example,	‘\b’	is	interpreted	as	a
backspace,	but	‘\B’	is	interpreted	as	‘B’.

The	ASCII	26	character	can	be	encoded	as	‘\Z’	to	enable	you	to	work	around	the
problem	that	ASCII	26	stands	for	END-OF-FILE	on	Windows.	ASCII	26	within
a	file	causes	problems	if	you	try	to	use	mysql	db_name	<	file_name.

The	‘\%’	and	‘_’	sequences	are	used	to	search	for	literal	instances	of	‘%’	and	‘_’
in	pattern-matching	contexts	where	they	would	otherwise	be	interpreted	as
wildcard	characters.	See	the	description	of	the	LIKE	operator	in	Section	12.3.1,
“String	Comparison	Functions”.	If	you	use	‘\%’	or	‘_’	in	non-pattern-matching
contexts,	they	evaluate	to	the	strings	‘\%’	and	‘_’,	not	to	‘%’	and	‘_’.

There	are	several	ways	to	include	quote	characters	within	a	string:

A	‘'’	inside	a	string	quoted	with	‘'’	may	be	written	as	‘''’.

A	‘"’	inside	a	string	quoted	with	‘"’	may	be	written	as	‘""’.

Precede	the	quote	character	by	an	escape	character	(‘\’).

A	‘'’	inside	a	string	quoted	with	‘"’	needs	no	special	treatment	and	need	not
be	doubled	or	escaped.	In	the	same	way,	‘"’	inside	a	string	quoted	with	‘'’
needs	no	special	treatment.

The	following	SELECT	statements	demonstrate	how	quoting	and	escaping	work:

mysql>	SELECT	'hello',	'"hello"',	'""hello""',	'hel''lo',	'\'hello';

+-------+---------+-----------+--------+--------+

|	hello	|	"hello"	|	""hello""	|	hel'lo	|	'hello	|

+-------+---------+-----------+--------+--------+

mysql>	SELECT	"hello",	"'hello'",	"''hello''",	"hel""lo",	"\"hello";

+-------+---------+-----------+--------+--------+

|	hello	|	'hello'	|	''hello''	|	hel"lo	|	"hello	|

+-------+---------+-----------+--------+--------+

mysql>	SELECT	'This\nIs\nFour\nLines';

+--------------------+

|	This

Is

Four

Lines	|

+--------------------+

mysql>	SELECT	'disappearing\	backslash';

+------------------------+

|	disappearing	backslash	|

+------------------------+

If	you	want	to	insert	binary	data	into	a	string	column	(such	as	a	BLOB	column),
the	following	characters	must	be	represented	by	escape	sequences:

NUL
NUL	byte	(ASCII	0).	Represent	this	character	by	‘\0’	(a	backslash	followed
by	an	ASCII	‘0’	character).

\ Backslash	(ASCII	92).	Represent	this	character	by	‘\\’.
' Single	quote	(ASCII	39).	Represent	this	character	by	‘\'’.
" Double	quote	(ASCII	34).	Represent	this	character	by	‘\"’.

When	writing	application	programs,	any	string	that	might	contain	any	of	these
special	characters	must	be	properly	escaped	before	the	string	is	used	as	a	data
value	in	an	SQL	statement	that	is	sent	to	the	MySQL	server.	You	can	do	this	in

two	ways:

Process	the	string	with	a	function	that	escapes	the	special	characters.	In	a	C
program,	you	can	use	the	mysql_real_escape_string()	C	API	function	to
escape	characters.	See	Section	22.2.3.52,	“mysql_real_escape_string()”.
The	Perl	DBI	interface	provides	a	quote	method	to	convert	special
characters	to	the	proper	escape	sequences.	See	Section	22.4,	“MySQL	Perl
API”.	Other	language	interfaces	may	provide	a	similar	capability.

As	an	alternative	to	explicitly	escaping	special	characters,	many	MySQL
APIs	provide	a	placeholder	capability	that	enables	you	to	insert	special
markers	into	a	statement	string,	and	then	bind	data	values	to	them	when	you
issue	the	statement.	In	this	case,	the	API	takes	care	of	escaping	special
characters	in	the	values	for	you.

9.1.2.	Numbers

Integers	are	represented	as	a	sequence	of	digits.	Floats	use	‘.’	as	a	decimal
separator.	Either	type	of	number	may	be	preceded	by	‘-’	or	‘+’	to	indicate	a
negative	or	positive	value,	respectively

Examples	of	valid	integers:

1221

0

-32

Examples	of	valid	floating-point	numbers:

294.42

-32032.6809e+10

148.00

An	integer	may	be	used	in	a	floating-point	context;	it	is	interpreted	as	the
equivalent	floating-point	number.

9.1.3.	Hexadecimal	Values

MySQL	supports	hexadecimal	values.	In	numeric	contexts,	these	act	like
integers	(64-bit	precision).	In	string	contexts,	these	act	like	binary	strings,	where
each	pair	of	hex	digits	is	converted	to	a	character:

mysql>	SELECT	x'4D7953514C';

								->	'MySQL'

mysql>	SELECT	0xa+0;

								->	10

mysql>	SELECT	0x5061756c;

								->	'Paul'

The	default	type	of	a	hexadecimal	value	is	a	string.	If	you	want	to	ensure	that	the
value	is	treated	as	a	number,	you	can	use	CAST(...	AS	UNSIGNED):

mysql>	SELECT	0x41,	CAST(0x41	AS	UNSIGNED);

								->	'A',	65

The	x'hexstring'	syntax	is	based	on	standard	SQL.	The	0x	syntax	is	based	on
ODBC.	Hexadecimal	strings	are	often	used	by	ODBC	to	supply	values	for	BLOB
columns.

You	can	convert	a	string	or	a	number	to	a	string	in	hexadecimal	format	with	the
HEX()	function:

mysql>	SELECT	HEX('cat');

								->	'636174'

mysql>	SELECT	0x636174;

								->	'cat'

9.1.4.	Boolean	Values

The	constants	TRUE	and	FALSE	evaluate	to	1	and	0,	respectively.	The	constant
names	can	be	written	in	any	lettercase.

mysql>	SELECT	TRUE,	true,	FALSE,	false;

								->	1,	1,	0,	0

9.1.5.	Bit-Field	Values

Beginning	with	MySQL	5.0.3,	bit-field	values	can	be	written	using	b'value'
notation.	value	is	a	binary	value	written	using	zeros	and	ones.

Bit-field	notation	is	convenient	for	specifying	values	to	be	assigned	to	BIT
columns:

mysql>	CREATE	TABLE	t	(b	BIT(8));

mysql>	INSERT	INTO	t	SET	b	=	b'11111111';

mysql>	INSERT	INTO	t	SET	b	=	b'1010';

+------+----------+----------+----------+

|	b+0		|	BIN(b+0)	|	OCT(b+0)	|	HEX(b+0)	|

+------+----------+----------+----------+

|		255	|	11111111	|	377						|	FF							|

|			10	|	1010					|	12							|	A								|

+------+----------+----------+----------+

9.1.6.	NULL	Values

The	NULL	value	means	“no	data.”	NULL	can	be	written	in	any	lettercase.

Be	aware	that	the	NULL	value	is	different	from	values	such	as	0	for	numeric	types
or	the	empty	string	for	string	types.	See	Section	A.5.3,	“Problems	with	NULL
Values”.

For	text	file	import	or	export	operations	performed	with	LOAD	DATA	INFILE	or
SELECT	...	INTO	OUTFILE,	NULL	is	represented	by	the	\N	sequence.	See
Section	13.2.5,	“LOAD	DATA	INFILE	Syntax”.

9.2.	Database,	Table,	Index,	Column,	and	Alias	Names

Database,	table,	index,	column,	and	alias	names	are	identifiers.	This	section
describes	the	allowable	syntax	for	identifiers	in	MySQL.

The	following	table	describes	the	maximum	length	for	each	type	of	identifier.

Identifier Maximum	Length
Database 64
Table 64
Column 64
Index 64
Alias 255

There	are	some	restrictions	on	the	characters	that	may	appear	in	identifiers:

No	identifier	can	contain	ASCII	0	(0x00)	or	a	byte	with	a	value	of	255.

The	use	of	identifier	quote	characters	in	identifiers	is	permitted,	although	it
is	best	to	avoid	doing	so	if	possible.

Database,	table,	and	column	names	should	not	end	with	space	characters.

Database	names	cannot	contain	‘/’,	‘\’,	‘.’,	or	characters	that	are	not
allowed	in	a	directory	name.

Table	names	cannot	contain	‘/’,	‘\’,	‘.’,	or	characters	that	are	not	allowed
in	a	filename.

Identifiers	are	stored	using	Unicode	(UTF-8).	This	applies	to	identifiers	in	table
definitions	that	are	stored	in	.frm	files	and	to	identifiers	stored	in	the	grant	tables
in	the	mysql	database.	The	sizes	of	the	string	columns	in	the	grant	tables	(and	in
any	other	tables)	in	MySQL	5.0	are	given	as	number	of	characters.	This	means
that	(unlike	some	earlier	versions	of	MySQL)	you	can	use	multi-byte	characters
without	reducing	the	number	of	characters	allowed	for	values	stored	in	these
columns.

An	identifier	may	be	quoted	or	unquoted.	If	an	identifier	is	a	reserved	word	or
contains	special	characters,	you	must	quote	it	whenever	you	refer	to	it.
(Exception:	A	word	that	follows	a	period	in	a	qualified	name	must	be	an
identifier,	so	it	is	not	necessary	to	quote	it,	even	if	it	is	a	reserved	word.)	For	a
list	of	reserved	words,	see	Section	9.5,	“Treatment	of	Reserved	Words	in
MySQL”.	Special	characters	are	those	outside	the	set	of	alphanumeric	characters
from	the	current	character	set,	‘_’,	and	‘$’.

The	identifier	quote	character	is	the	backtick	(‘`’):

mysql>	SELECT	*	FROM	`select`	WHERE	`select`.id	>	100;

If	the	ANSI_QUOTES	SQL	mode	is	enabled,	it	is	also	allowable	to	quote	identifiers
within	double	quotes:

mysql>	CREATE	TABLE	"test"	(col	INT);

ERROR	1064:	You	have	an	error	in	your	SQL	syntax.	(...)

mysql>	SET	sql_mode='ANSI_QUOTES';

mysql>	CREATE	TABLE	"test"	(col	INT);

Query	OK,	0	rows	affected	(0.00	sec)

Note:	Because	the	ANSI_QUOTES	mode	causes	the	server	to	interpret	double-
quoted	strings	as	identifiers,	string	literals	must	be	enclosed	within	single	quotes
when	this	mode	is	enabled.	They	cannot	be	enclosed	within	double	quotes.

The	server	SQL	mode	is	controlled	as	described	in	Section	5.2.5,	“The	Server
SQL	Mode”.

Identifier	quote	characters	can	be	included	within	an	identifier	if	you	quote	the
identifier.	If	the	character	to	be	included	within	the	identifier	is	the	same	as	that
used	to	quote	the	identifier	itself,	then	you	need	to	double	the	character.	The
following	statement	creates	a	table	named	a`b	that	contains	a	column	named
c"d:

mysql>	CREATE	TABLE	`a``b`	(`c"d`	INT);

It	is	recommended	that	you	do	not	use	names	of	the	form	Me	or	MeN,	where	M	and
N	are	integers.	For	example,	avoid	using	1e	or	2e2	as	identifiers,	because	an
expression	such	as	1e+3	is	ambiguous.	Depending	on	context,	it	might	be
interpreted	as	the	expression	1e	+	3	or	as	the	number	1e+3.

Be	careful	when	using	MD5()	to	produce	table	names	because	it	can	produce
names	in	illegal	or	ambiguous	formats	such	as	those	just	described.

9.2.1.	Identifier	Qualifiers

MySQL	allows	names	that	consist	of	a	single	identifier	or	multiple	identifiers.
The	components	of	a	multiple-part	name	should	be	separated	by	period	(‘.’)
characters.	The	initial	parts	of	a	multiple-part	name	act	as	qualifiers	that	affect
the	context	within	which	the	final	identifier	is	interpreted.

In	MySQL	you	can	refer	to	a	column	using	any	of	the	following	forms:

Column	Reference Meaning

col_name

The	column	col_name	from	whichever	table
used	in	the	statement	contains	a	column	of	that
name.

tbl_name.col_name
The	column	col_name	from	table	tbl_name	of
the	default	database.

db_name.tbl_name.col_name
The	column	col_name	from	table	tbl_name	of
the	database	db_name.

If	any	components	of	a	multiple-part	name	require	quoting,	quote	them
individually	rather	than	quoting	the	name	as	a	whole.	For	example,	write	`my-
table`.`my-column`,	not	`my-table.my-column`.

You	need	not	specify	a	tbl_name	or	db_name.tbl_name	prefix	for	a	column
reference	in	a	statement	unless	the	reference	would	be	ambiguous.	Suppose	that
tables	t1	and	t2	each	contain	a	column	c,	and	you	retrieve	c	in	a	SELECT
statement	that	uses	both	t1	and	t2.	In	this	case,	c	is	ambiguous	because	it	is	not
unique	among	the	tables	used	in	the	statement.	You	must	qualify	it	with	a	table
name	as	t1.c	or	t2.c	to	indicate	which	table	you	mean.	Similarly,	to	retrieve
from	a	table	t	in	database	db1	and	from	a	table	t	in	database	db2	in	the	same
statement,	you	must	refer	to	columns	in	those	tables	as	db1.t.col_name	and
db2.t.col_name.

A	word	that	follows	a	period	in	a	qualified	name	must	be	an	identifier,	so	it	is	not
necessary	to	quote	it,	even	if	it	is	a	reserved	word.

The	syntax	.tbl_name	means	the	table	tbl_name	in	the	default	database.	This
syntax	is	accepted	for	ODBC	compatibility	because	some	ODBC	programs
prefix	table	names	with	a	‘.’	character.

9.2.2.	Identifier	Case	Sensitivity

In	MySQL,	databases	correspond	to	directories	within	the	data	directory.	Each
table	within	a	database	corresponds	to	at	least	one	file	within	the	database
directory	(and	possibly	more,	depending	on	the	storage	engine).	Consequently,
the	case	sensitivity	of	the	underlying	operating	system	determines	the	case
sensitivity	of	database	and	table	names.	This	means	database	and	table	names
are	case	sensitive	in	most	varieties	of	Unix,	and	not	case	sensitive	in	Windows.
One	notable	exception	is	Mac	OS	X,	which	is	Unix-based	but	uses	a	default
filesystem	type	(HFS+)	that	is	not	case	sensitive.	However,	Mac	OS	X	also
supports	UFS	volumes,	which	are	case	sensitive	just	as	on	any	Unix.	See
Section	1.9.4,	“MySQL	Extensions	to	Standard	SQL”.	The
lower_case_table_names	system	variable	also	affects	how	the	server	handles
identifier	case	sensitivity,	as	described	later	in	this	section.

Note:	Although	database	and	table	names	are	not	case	sensitive	on	some
platforms,	you	should	not	refer	to	a	given	database	or	table	using	different	cases
within	the	same	statement.	The	following	statement	would	not	work	because	it
refers	to	a	table	both	as	my_table	and	as	MY_TABLE:

mysql>	SELECT	*	FROM	my_table	WHERE	MY_TABLE.col=1;

Column,	index	and	stored	routine	names	are	not	case	sensitive	on	any	platform,
nor	are	column	aliases.	Trigger	names	are	case	sensitive.

By	default,	table	aliases	are	case	sensitive	on	Unix,	but	not	so	on	Windows	or
Mac	OS	X.	The	following	statement	would	not	work	on	Unix,	because	it	refers
to	the	alias	both	as	a	and	as	A:

mysql>	SELECT	col_name	FROM	tbl_name	AS	a

				->	WHERE	a.col_name	=	1	OR	A.col_name	=	2;

However,	this	same	statement	is	permitted	on	Windows.	To	avoid	problems
caused	by	such	differences,	it	is	best	to	adopt	a	consistent	convention,	such	as
always	creating	and	referring	to	databases	and	tables	using	lowercase	names.
This	convention	is	recommended	for	maximum	portability	and	ease	of	use.

How	table	and	database	names	are	stored	on	disk	and	used	in	MySQL	is	affected
by	the	lower_case_table_names	system	variable,	which	you	can	set	when
starting	mysqld.	lower_case_table_names	can	take	the	values	shown	in	the
following	table.	On	Unix,	the	default	value	of	lower_case_table_names	is	0.	On
Windows	the	default	value	is	1.	On	Mac	OS	X,	the	default	value	is	2.

Value Meaning

0

Table	and	database	names	are	stored	on	disk	using	the	lettercase
specified	in	the	CREATE	TABLE	or	CREATE	DATABASE	statement.	Name
comparisons	are	case	sensitive.	Note	that	if	you	force	this	variable	to	0
with	--lower-case-table-names=0	on	a	case-insensitive	filesystem	and
access	MyISAM	tablenames	using	different	lettercases,	index	corruption
may	result.

1

Table	names	are	stored	in	lowercase	on	disk	and	name	comparisons	are
not	case	sensitive.	MySQL	converts	all	table	names	to	lowercase	on
storage	and	lookup.	This	behavior	also	applies	to	database	names	and
table	aliases.

2

Table	and	database	names	are	stored	on	disk	using	the	lettercase
specified	in	the	CREATE	TABLE	or	CREATE	DATABASE	statement,	but
MySQL	converts	them	to	lowercase	on	lookup.	Name	comparisons	are
not	case	sensitive.	Note:	This	works	only	on	filesystems	that	are	not	case
sensitive!	InnoDB	table	names	are	stored	in	lowercase,	as	for
lower_case_table_names=1.

If	you	are	using	MySQL	on	only	one	platform,	you	don't	normally	have	to
change	the	lower_case_table_names	variable.	However,	you	may	encounter
difficulties	if	you	want	to	transfer	tables	between	platforms	that	differ	in
filesystem	case	sensitivity.	For	example,	on	Unix,	you	can	have	two	different
tables	named	my_table	and	MY_TABLE,	but	on	Windows	these	two	names	are
considered	identical.	To	avoid	data	transfer	problems	stemming	from	lettercase
of	database	or	table	names,	you	have	two	options:

Use	lower_case_table_names=1	on	all	systems.	The	main	disadvantage
with	this	is	that	when	you	use	SHOW	TABLES	or	SHOW	DATABASES,	you	don't
see	the	names	in	their	original	lettercase.

Use	lower_case_table_names=0	on	Unix	and	lower_case_table_names=2
on	Windows.	This	preserves	the	lettercase	of	database	and	table	names.	The

disadvantage	of	this	is	that	you	must	ensure	that	your	statements	always
refer	to	your	database	and	table	names	with	the	correct	lettercase	on
Windows.	If	you	transfer	your	statements	to	Unix,	where	lettercase	is
significant,	they	do	not	work	if	the	lettercase	is	incorrect.

Exception:	If	you	are	using	InnoDB	tables,	you	should	set
lower_case_table_names	to	1	on	all	platforms	to	force	names	to	be
converted	to	lowercase.

Note	that	if	you	plan	to	set	the	lower_case_table_names	system	variable	to	1	on
Unix,	you	must	first	convert	your	old	database	and	table	names	to	lowercase
before	restarting	mysqld	with	the	new	variable	setting.

9.3.	User-Defined	Variables

You	can	store	a	value	in	a	user-defined	variable	and	then	refer	to	it	later.	This
enables	you	to	pass	values	from	one	statement	to	another.	User-defined	variables
are	connection-specific.	That	is,	a	user	variable	defined	by	one	client	cannot	be
seen	or	used	by	other	clients.	All	variables	for	a	given	client	connection	are
automatically	freed	when	that	client	exits.

User	variables	are	written	as	@var_name,	where	the	variable	name	var_name	may
consist	of	alphanumeric	characters	from	the	current	character	set,	‘.’,	‘_’,	and
‘$’.	The	default	character	set	is	latin1	(cp1252	West	European).	This	may	be
changed	with	the	--default-character-set	option	to	mysqld.	See
Section	5.11.1,	“The	Character	Set	Used	for	Data	and	Sorting”.	A	user	variable
name	can	contain	other	characters	if	you	quote	it	as	a	string	or	identifier	(for
example,	@'my-var',	@"my-var",	or	@`my-var`).

Note:	User	variable	names	are	case	sensitive	before	MySQL	5.0	and	not	case
sensitive	in	MySQL	5.0	and	up.

One	way	to	set	a	user-defined	variable	is	by	issuing	a	SET	statement:

SET	@var_name	=	expr	[,	@var_name	=	expr]	...

For	SET,	either	=	or	:=	can	be	used	as	the	assignment	operator.	The	expr
assigned	to	each	variable	can	evaluate	to	an	integer,	real,	string,	or	NULL	value.
However,	if	the	value	of	the	variable	is	selected	in	a	result	set,	it	is	returned	to
the	client	as	a	string.

You	can	also	assign	a	value	to	a	user	variable	in	statements	other	than	SET.	In
this	case,	the	assignment	operator	must	be	:=	and	not	=	because	=	is	treated	as	a
comparison	operator	in	non-SET	statements:

mysql>	SET	@t1=0,	@t2=0,	@t3=0;

mysql>	SELECT	@t1:=(@t2:=1)+@t3:=4,@t1,@t2,@t3;

+----------------------+------+------+------+

|	@t1:=(@t2:=1)+@t3:=4	|	@t1		|	@t2		|	@t3		|

+----------------------+------+------+------+

|																				5	|				5	|				1	|				4	|

+----------------------+------+------+------+

User	variables	may	be	used	in	contexts	where	expressions	are	allowed.	This	does
not	currently	include	contexts	that	explicitly	require	a	literal	value,	such	as	in	the
LIMIT	clause	of	a	SELECT	statement,	or	the	IGNORE	N	LINES	clause	of	a	LOAD
DATA	statement.

If	a	user	variable	is	assigned	a	string	value,	it	has	the	same	character	set	and
collation	as	the	string.	The	coercibility	of	user	variables	is	implicit	as	of	MySQL
5.0.3.	(This	is	the	same	coercibility	as	for	table	column	values.)

Note:	In	a	SELECT	statement,	each	expression	is	evaluated	only	when	sent	to	the
client.	This	means	that	in	a	HAVING,	GROUP	BY,	or	ORDER	BY	clause,	you	cannot
refer	to	an	expression	that	involves	variables	that	are	set	in	the	SELECT	list.	For
example,	the	following	statement	does	not	work	as	expected:

mysql>	SELECT	(@aa:=id)	AS	a,	(@aa+3)	AS	b	FROM	tbl_name	HAVING	b=5;

The	reference	to	b	in	the	HAVING	clause	refers	to	an	alias	for	an	expression	in	the
SELECT	list	that	uses	@aa.	This	does	not	work	as	expected:	@aa	contains	the	value
of	id	from	the	previous	selected	row,	not	from	the	current	row.

The	order	of	evaluation	for	user	variables	is	undefined	and	may	change	based	on
the	elements	contained	within	a	given	query.	In	SELECT	@a,	@a	:=	@a+1	...,
you	might	think	that	MySQL	will	evaluate	@a	first	and	then	do	an	assignment
second,	but	changing	the	query	(for	example,	by	adding	a	GROUP	BY,	HAVING,	or
ORDER	BY	clause)	may	change	the	order	of	evaluation.

The	general	rule	is	to	never	assign	a	value	to	a	user	variable	in	one	part	of	a
statement	and	use	the	same	variable	in	some	other	part	the	same	statement.	You
might	get	the	results	you	expect,	but	this	is	not	guaranteed.

Another	issue	with	setting	a	variable	and	using	it	in	the	same	statement	is	that
the	default	result	type	of	a	variable	is	based	on	the	type	of	the	variable	at	the
start	of	the	statement.	The	following	example	illustrates	this:

mysql>	SET	@a='test';

mysql>	SELECT	@a,(@a:=20)	FROM	tbl_name;

For	this	SELECT	statement,	MySQL	reports	to	the	client	that	column	one	is	a
string	and	converts	all	accesses	of	@a	to	strings,	even	though	@a	is	set	to	a
number	for	the	second	row.	After	the	SELECT	statement	executes,	@a	is	regarded

as	a	number	for	the	next	statement.

To	avoid	problems	with	this	behavior,	either	do	not	set	and	use	the	same	variable
within	a	single	statement,	or	else	set	the	variable	to	0,	0.0,	or	''	to	define	its
type	before	you	use	it.

If	you	refer	to	a	variable	that	has	not	been	initialized,	it	has	a	value	of	NULL	and	a
type	of	string.

9.4.	Comment	Syntax

MySQL	Server	supports	three	comment	styles:

From	a	‘#’	character	to	the	end	of	the	line.

From	a	‘--	’	sequence	to	the	end	of	the	line.	In	MySQL,	the	‘--	’	(double-
dash)	comment	style	requires	the	second	dash	to	be	followed	by	at	least	one
whitespace	or	control	character	(such	as	a	space,	tab,	newline,	and	so	on).
This	syntax	differs	slightly	from	standard	SQL	comment	syntax,	as
discussed	in	Section	1.9.5.7,	“'--'	as	the	Start	of	a	Comment”.

From	a	/*	sequence	to	the	following	*/	sequence,	as	in	the	C	programming
language.	This	syntax	allows	a	comment	to	extend	over	multiple	lines
because	the	beginning	and	closing	sequences	need	not	be	on	the	same	line.

The	following	example	demonstrates	all	three	comment	styles:

mysql>	SELECT	1+1;					#	This	comment	continues	to	the	end	of	line

mysql>	SELECT	1+1;					--	This	comment	continues	to	the	end	of	line

mysql>	SELECT	1	/*	this	is	an	in-line	comment	*/	+	1;

mysql>	SELECT	1+

/*

this	is	a

multiple-line	comment

*/

1;

MySQL	Server	supports	some	variants	of	C-style	comments.	These	enable	you
to	write	code	that	includes	MySQL	extensions,	but	is	still	portable,	by	using
comments	of	the	following	form:

/*!	MySQL-specific	code	*/

In	this	case,	MySQL	Server	parses	and	executes	the	code	within	the	comment	as
it	would	any	other	SQL	statement,	but	other	SQL	servers	will	ignore	the
extensions.	For	example,	MySQL	Server	recognizes	the	STRAIGHT_JOIN
keyword	in	the	following	statement,	but	other	servers	will	not:

SELECT	/*!	STRAIGHT_JOIN	*/	col1	FROM	table1,table2	WHERE	...

If	you	add	a	version	number	after	the	‘!’	character,	the	syntax	within	the
comment	is	executed	only	if	the	MySQL	version	is	greater	than	or	equal	to	the
specified	version	number.	The	TEMPORARY	keyword	in	the	following	comment	is
executed	only	by	servers	from	MySQL	3.23.02	or	higher:

CREATE	/*!32302	TEMPORARY	*/	TABLE	t	(a	INT);

The	comment	syntax	just	described	applies	to	how	the	mysqld	server	parses
SQL	statements.	The	mysql	client	program	also	performs	some	parsing	of
statements	before	sending	them	to	the	server.	(It	does	this	to	determine	statement
boundaries	within	a	multiple-statement	input	line.)

9.5.	Treatment	of	Reserved	Words	in	MySQL

A	common	problem	stems	from	trying	to	use	an	identifier	such	as	a	table	or
column	name	that	is	a	reserved	word	such	as	SELECT	or	the	name	of	a	built-in
MySQL	data	type	or	function	such	as	TIMESTAMP	or	GROUP.

If	an	identifier	is	a	reserved	word,	you	must	quote	it	as	described	in	Section	9.2,
“Database,	Table,	Index,	Column,	and	Alias	Names”.	Exception:	A	word	that
follows	a	period	in	a	qualified	name	must	be	an	identifier,	so	it	is	not	necessary
to	quote	it,	even	if	it	is	a	reserved	word.

You	are	permitted	to	use	function	names	as	identifiers.	For	example,	ABS	is
acceptable	as	a	column	name.	However,	by	default,	no	whitespace	is	allowed	in
function	invocations	between	the	function	name	and	the	following	‘(’	character.
This	requirement	allows	a	function	call	to	be	distinguished	from	a	reference	to	a
column	name.

A	side	effect	of	this	behavior	is	that	omitting	a	space	in	some	contexts	causes	an
identifier	to	be	interpreted	as	a	function	name.	For	example,	this	statement	is
legal:

mysql>	CREATE	TABLE	abs	(val	INT);

But	omitting	the	space	after	abs	causes	a	syntax	error	because	the	statement	then
appears	to	invoke	the	ABS()	function:

mysql>	CREATE	TABLE	abs(val	INT);

ERROR	1064	(42000)	at	line	2:	You	have	an	error	in	your	SQL

syntax	...	near	'abs(val	INT)'

If	the	IGNORE_SPACE	SQL	mode	is	enabled,	the	server	allows	function
invocations	to	have	whitespace	between	a	function	name	and	the	following	‘(’
character.	This	causes	function	names	to	be	treated	as	reserved	words.	As	a
result,	identifiers	that	are	the	same	as	function	names	must	be	quoted	as
described	in	Section	9.2,	“Database,	Table,	Index,	Column,	and	Alias	Names”.
The	server	SQL	mode	is	controlled	as	described	in	Section	5.2.5,	“The	Server
SQL	Mode”.

The	words	in	the	following	table	are	explicitly	reserved	in	MySQL	5.0.	At	some

point,	you	might	update	to	a	higher	version,	so	it's	a	good	idea	to	have	a	look	at
future	reserved	words,	too.	You	can	find	these	in	the	manuals	that	cover	higher
versions	of	MySQL.	Most	of	the	words	in	the	table	are	forbidden	by	standard
SQL	as	column	or	table	names	(for	example,	GROUP).	A	few	are	reserved	because
MySQL	needs	them	and	(currently)	uses	a	yacc	parser.	A	reserved	word	can	be
used	as	an	identifier	if	you	quote	it.

ADD ALL ALTER
ANALYZE AND AS
ASC ASENSITIVE BEFORE
BETWEEN BIGINT BINARY
BLOB BOTH BY
CALL CASCADE CASE
CHANGE CHAR CHARACTER
CHECK COLLATE COLUMN
CONDITION CONNECTION CONSTRAINT
CONTINUE CONVERT CREATE
CROSS CURRENT_DATE CURRENT_TIME
CURRENT_TIMESTAMP CURRENT_USER CURSOR
DATABASE DATABASES DAY_HOUR
DAY_MICROSECOND DAY_MINUTE DAY_SECOND
DEC DECIMAL DECLARE
DEFAULT DELAYED DELETE
DESC DESCRIBE DETERMINISTIC
DISTINCT DISTINCTROW DIV
DOUBLE DROP DUAL
EACH ELSE ELSEIF
ENCLOSED ESCAPED EXISTS
EXIT EXPLAIN FALSE
FETCH FLOAT FLOAT4
FLOAT8 FOR FORCE
FOREIGN FROM FULLTEXT

GRANT GROUP HAVING
HIGH_PRIORITY HOUR_MICROSECOND HOUR_MINUTE

HOUR_SECOND IF IGNORE
IN INDEX INFILE
INNER INOUT INSENSITIVE
INSERT INT INT1
INT2 INT3 INT4
INT8 INTEGER INTERVAL
INTO IS ITERATE
JOIN KEY KEYS
KILL LEADING LEAVE
LEFT LIKE LIMIT
LINES LOAD LOCALTIME
LOCALTIMESTAMP LOCK LONG
LONGBLOB LONGTEXT LOOP
LOW_PRIORITY MATCH MEDIUMBLOB
MEDIUMINT MEDIUMTEXT MIDDLEINT
MINUTE_MICROSECOND MINUTE_SECOND MOD
MODIFIES NATURAL NOT
NO_WRITE_TO_BINLOG NULL NUMERIC
ON OPTIMIZE OPTION
OPTIONALLY OR ORDER
OUT OUTER OUTFILE
PRECISION PRIMARY PROCEDURE
PURGE RAID0 READ
READS REAL REFERENCES
REGEXP RELEASE RENAME
REPEAT REPLACE REQUIRE
RESTRICT RETURN REVOKE
RIGHT RLIKE SCHEMA
SCHEMAS SECOND_MICROSECOND SELECT

SENSITIVE SEPARATOR SET
SHOW SMALLINT SONAME
SPATIAL SPECIFIC SQL
SQLEXCEPTION SQLSTATE SQLWARNING
SQL_BIG_RESULT SQL_CALC_FOUND_ROWS SQL_SMALL_RESULT
SSL STARTING STRAIGHT_JOIN
TABLE TERMINATED THEN
TINYBLOB TINYINT TINYTEXT
TO TRAILING TRIGGER
TRUE UNDO UNION
UNIQUE UNLOCK UNSIGNED
UPDATE UPGRADE USAGE
USE USING UTC_DATE
UTC_TIME UTC_TIMESTAMP VALUES
VARBINARY VARCHAR VARCHARACTER
VARYING WHEN WHERE
WHILE WITH WRITE
X509 XOR YEAR_MONTH
ZEROFILL 	 	

The	following	are	new	reserved	words	in	MySQL	5.0:	ASENSITIVE,	CALL,
CONDITION,	CONNECTION,	CONTINUE,	CURSOR,	DECLARE,	DETERMINISTIC,	EACH,
ELSEIF,	EXIT,	FETCH,	GOTO,	INOUT,	INSENSITIVE,	ITERATE,	LABEL,	LEAVE,	LOOP,
MODIFIES,	OUT,	READS,	RELEASE,	REPEAT,	RETURN,	SCHEMA,	SCHEMAS,	SENSITIVE,
SPECIFIC,	SQL,	SQLEXCEPTION,	SQLSTATE,	SQLWARNING,	TRIGGER,	UNDO,	UPGRADE,
WHILE.

MySQL	allows	some	keywords	to	be	used	as	unquoted	identifiers	because	many
people	previously	used	them.	Examples	are	those	in	the	following	list:

ACTION

BIT

DATE

ENUM

NO

TEXT

TIME

TIMESTAMP

Chapter	10.	Character	Set	Support

Table	of	Contents

10.1.	Character	Sets	and	Collations	in	General
10.2.	Character	Sets	and	Collations	in	MySQL
10.3.	Specifying	Character	Sets	and	Collations

10.3.1.	Server	Character	Set	and	Collation
10.3.2.	Database	Character	Set	and	Collation
10.3.3.	Table	Character	Set	and	Collation
10.3.4.	Column	Character	Set	and	Collation
10.3.5.	Character	String	Literal	Character	Set	and	Collation
10.3.6.	National	Character	Set
10.3.7.	Examples	of	Character	Set	and	Collation	Assignment
10.3.8.	Compatibility	with	Other	DBMSs

10.4.	Connection	Character	Sets	and	Collations
10.5.	Collation	Issues

10.5.1.	Using	COLLATE	in	SQL	Statements
10.5.2.	COLLATE	Clause	Precedence
10.5.3.	BINARY	Operator
10.5.4.	Some	Special	Cases	Where	the	Collation	Determination	Is	Tricky
10.5.5.	Collations	Must	Be	for	the	Right	Character	Set
10.5.6.	An	Example	of	the	Effect	of	Collation

10.6.	Operations	Affected	by	Character	Set	Support
10.6.1.	Result	Strings
10.6.2.	CONVERT()	and	CAST()
10.6.3.	SHOW	Statements	and	INFORMATION_SCHEMA

10.7.	Unicode	Support
10.8.	UTF-8	for	Metadata
10.9.	Character	Sets	and	Collations	That	MySQL	Supports

10.9.1.	Unicode	Character	Sets
10.9.2.	West	European	Character	Sets
10.9.3.	Central	European	Character	Sets
10.9.4.	South	European	and	Middle	East	Character	Sets
10.9.5.	Baltic	Character	Sets
10.9.6.	Cyrillic	Character	Sets
10.9.7.	Asian	Character	Sets

10.10.	FAQ:	MySQL	Chinese,	Japanese,	and	Korean	Character	Sets
10.10.1.	SELECT	shows	non-Latin	characters	as	"?"s.	Why?
10.10.2.	Troubles	with	GB	character	sets	(Chinese)
10.10.3.	Troubles	with	big5	character	set	(Chinese)
10.10.4.	Troubles	with	character-set	conversions	(Japanese)
10.10.5.	The	Great	Yen	Sign	problem	(Japanese)
10.10.6.	Troubles	with	euckr	character	set	(Korean)
10.10.7.	The	“Data	truncated”	message
10.10.8.	Troubles	with	Access,	Perl,	PHP,	etc.
10.10.9.	How	can	I	get	old	MySQL	4.0	behaviour	back?
10.10.10.	Why	do	some	LIKE	and	FULLTEXT	searches	fail?
10.10.11.	What	CJK	character	sets	are	available?
10.10.12.	Is	character	X	available	in	all	character	sets?
10.10.13.	Strings	don't	sort	correctly	in	Unicode	(I)
10.10.14.	Strings	don't	sort	correctly	in	Unicode	(II)
10.10.15.	My	supplementary	characters	get	rejected
10.10.16.	Shouldn't	it	be	CJKV	(V	for	Vietnamese)?
10.10.17.	Will	MySQL	fix	any	CJK	problems	in	version	5.1?
10.10.18.	When	will	MySQL	translate	the	manual	again?
10.10.19.	Whom	can	I	talk	to?

MySQL	includes	character	set	support	that	enables	you	to	store	data	using	a
variety	of	character	sets	and	perform	comparisons	according	to	a	variety	of
collations.	You	can	specify	character	sets	at	the	server,	database,	table,	and
column	level.	MySQL	supports	the	use	of	character	sets	for	the	MyISAM,	MEMORY,
NDBCluster,	and	InnoDB	storage	engines.

This	chapter	discusses	the	following	topics:

What	are	character	sets	and	collations?

The	multiple-level	default	system	for	character	set	assignment

Syntax	for	specifying	character	sets	and	collations

Affected	functions	and	operations

Unicode	support

The	character	sets	and	collations	that	are	available,	with	notes

Character	set	issues	affect	data	storage,	but	also	communication	between	client
programs	and	the	MySQL	server.	If	you	want	the	client	program	to	communicate
with	the	server	using	a	character	set	different	from	the	default,	you'll	need	to
indicate	which	one.	For	example,	to	use	the	utf8	Unicode	character	set,	issue
this	statement	after	connecting	to	the	server:

SET	NAMES	'utf8';

For	more	information	about	character	set-related	issues	in	client/server
communication,	see	Section	10.4,	“Connection	Character	Sets	and	Collations”.

10.1.	Character	Sets	and	Collations	in	General

A	character	set	is	a	set	of	symbols	and	encodings.	A	collation	is	a	set	of	rules	for
comparing	characters	in	a	character	set.	Let's	make	the	distinction	clear	with	an
example	of	an	imaginary	character	set.

Suppose	that	we	have	an	alphabet	with	four	letters:	‘A’,	‘B’,	‘a’,	‘b’.	We	give
each	letter	a	number:	‘A’	=	0,	‘B’	=	1,	‘a’	=	2,	‘b’	=	3.	The	letter	‘A’	is	a	symbol,
the	number	0	is	the	encoding	for	‘A’,	and	the	combination	of	all	four	letters	and
their	encodings	is	a	character	set.

Suppose	that	we	want	to	compare	two	string	values,	‘A’	and	‘B’.	The	simplest
way	to	do	this	is	to	look	at	the	encodings:	0	for	‘A’	and	1	for	‘B’.	Because	0	is
less	than	1,	we	say	‘A’	is	less	than	‘B’.	What	we've	just	done	is	apply	a	collation
to	our	character	set.	The	collation	is	a	set	of	rules	(only	one	rule	in	this	case):
“compare	the	encodings.”	We	call	this	simplest	of	all	possible	collations	a	binary
collation.

But	what	if	we	want	to	say	that	the	lowercase	and	uppercase	letters	are
equivalent?	Then	we	would	have	at	least	two	rules:	(1)	treat	the	lowercase	letters
‘a’	and	‘b’	as	equivalent	to	‘A’	and	‘B’;	(2)	then	compare	the	encodings.	We	call
this	a	case-insensitive	collation.	It's	a	little	more	complex	than	a	binary	collation.

In	real	life,	most	character	sets	have	many	characters:	not	just	‘A’	and	‘B’	but
whole	alphabets,	sometimes	multiple	alphabets	or	eastern	writing	systems	with
thousands	of	characters,	along	with	many	special	symbols	and	punctuation
marks.	Also	in	real	life,	most	collations	have	many	rules,	not	just	for	whether	to
distinguish	lettercase,	but	also	for	whether	to	distinguish	accents	(an	“accent”	is
a	mark	attached	to	a	character	as	in	German	‘Ö’),	and	for	multiple-character
mappings	(such	as	the	rule	that	‘Ö’	=	‘OE’	in	one	of	the	two	German	collations).

MySQL	can	do	these	things	for	you:

Store	strings	using	a	variety	of	character	sets

Compare	strings	using	a	variety	of	collations

Mix	strings	with	different	character	sets	or	collations	in	the	same	server,	the

same	database,	or	even	the	same	table

Allow	specification	of	character	set	and	collation	at	any	level

In	these	respects,	MySQL	is	far	ahead	of	most	other	database	management
systems.	However,	to	use	these	features	effectively,	you	need	to	know	what
character	sets	and	collations	are	available,	how	to	change	the	defaults,	and	how
they	affect	the	behavior	of	string	operators	and	functions.

10.2.	Character	Sets	and	Collations	in	MySQL

The	MySQL	server	can	support	multiple	character	sets.	To	list	the	available
character	sets,	use	the	SHOW	CHARACTER	SET	statement.	A	partial	listing	follows.
For	more	complete	information,	see	Section	10.9,	“Character	Sets	and	Collations
That	MySQL	Supports”.

mysql>	SHOW	CHARACTER	SET;

+----------+-----------------------------+---------------------+--------+

|	Charset		|	Description																	|	Default	collation			|	Maxlen	|

+----------+-----------------------------+---------------------+--------+

|	big5					|	Big5	Traditional	Chinese				|	big5_chinese_ci					|						2	|

|	dec8					|	DEC	West	European											|	dec8_swedish_ci					|						1	|

|	cp850				|	DOS	West	European											|	cp850_general_ci				|						1	|

|	hp8						|	HP	West	European												|	hp8_english_ci						|						1	|

|	koi8r				|	KOI8-R	Relcom	Russian							|	koi8r_general_ci				|						1	|

|	latin1			|	cp1252	West	European								|	latin1_swedish_ci			|						1	|

|	latin2			|	ISO	8859-2	Central	European	|	latin2_general_ci			|						1	|

|	swe7					|	7bit	Swedish																|	swe7_swedish_ci					|						1	|

|	ascii				|	US	ASCII																				|	ascii_general_ci				|						1	|

|	ujis					|	EUC-JP	Japanese													|	ujis_japanese_ci				|						3	|

|	sjis					|	Shift-JIS	Japanese										|	sjis_japanese_ci				|						2	|

|	hebrew			|	ISO	8859-8	Hebrew											|	hebrew_general_ci			|						1	|

|	tis620			|	TIS620	Thai																	|	tis620_thai_ci						|						1	|

|	euckr				|	EUC-KR	Korean															|	euckr_korean_ci					|						2	|

|	koi8u				|	KOI8-U	Ukrainian												|	koi8u_general_ci				|						1	|

|	gb2312			|	GB2312	Simplified	Chinese			|	gb2312_chinese_ci			|						2	|

|	greek				|	ISO	8859-7	Greek												|	greek_general_ci				|						1	|

|	cp1250			|	Windows	Central	European				|	cp1250_general_ci			|						1	|

|	gbk						|	GBK	Simplified	Chinese						|	gbk_chinese_ci						|						2	|

|	latin5			|	ISO	8859-9	Turkish										|	latin5_turkish_ci			|						1	|

...

Any	given	character	set	always	has	at	least	one	collation.	It	may	have	several
collations.	To	list	the	collations	for	a	character	set,	use	the	SHOW	COLLATION
statement.	For	example,	to	see	the	collations	for	the	latin1	(cp1252	West
European)	character	set,	use	this	statement	to	find	those	collation	names	that
begin	with	latin1:

mysql>	SHOW	COLLATION	LIKE	'latin1%';

+---------------------+---------+----+---------+----------+---------+

|	Collation											|	Charset	|	Id	|	Default	|	Compiled	|	Sortlen	|

+---------------------+---------+----+---------+----------+---------+

|	latin1_german1_ci			|	latin1		|		5	|									|										|							0	|

|	latin1_swedish_ci			|	latin1		|		8	|	Yes					|	Yes						|							1	|

|	latin1_danish_ci				|	latin1		|	15	|									|										|							0	|

|	latin1_german2_ci			|	latin1		|	31	|									|	Yes						|							2	|

|	latin1_bin										|	latin1		|	47	|									|	Yes						|							1	|

|	latin1_general_ci			|	latin1		|	48	|									|										|							0	|

|	latin1_general_cs			|	latin1		|	49	|									|										|							0	|

|	latin1_spanish_ci			|	latin1		|	94	|									|										|							0	|

+---------------------+---------+----+---------+----------+---------+

The	latin1	collations	have	the	following	meanings:

Collation Meaning
latin1_german1_ci German	DIN-1
latin1_swedish_ci Swedish/Finnish
latin1_danish_ci Danish/Norwegian
latin1_german2_ci German	DIN-2
latin1_bin Binary	according	to	latin1	encoding
latin1_general_ci Multilingual	(Western	European)
latin1_general_cs Multilingual	(ISO	Western	European),	case	sensitive
latin1_spanish_ci Modern	Spanish

Collations	have	these	general	characteristics:

Two	different	character	sets	cannot	have	the	same	collation.

Each	character	set	has	one	collation	that	is	the	default	collation.	For
example,	the	default	collation	for	latin1	is	latin1_swedish_ci.	The
output	for	SHOW	CHARACTER	SET	indicates	which	collation	is	the	default	for
each	displayed	character	set.

There	is	a	convention	for	collation	names:	They	start	with	the	name	of	the
character	set	with	which	they	are	associated,	they	usually	include	a
language	name,	and	they	end	with	_ci	(case	insensitive),	_cs	(case
sensitive),	or	_bin	(binary).

10.3.	Specifying	Character	Sets	and	Collations

There	are	default	settings	for	character	sets	and	collations	at	four	levels:	server,
database,	table,	and	column.	The	following	description	may	appear	complex,	but
it	has	been	found	in	practice	that	multiple-level	defaulting	leads	to	natural	and
obvious	results.

CHARACTER	SET	is	used	in	clauses	that	specify	a	character	set.	CHARSET	may	be
used	as	a	synonym	for	CHARACTER	SET.

10.3.1.	Server	Character	Set	and	Collation

MySQL	Server	has	a	server	character	set	and	a	server	collation.	These	can	be	set
at	server	startup	and	changed	at	runtime.

Initially,	the	server	character	set	and	collation	depend	on	the	options	that	you	use
when	you	start	mysqld.	You	can	use	--character-set-server	for	the	character
set.	Along	with	it,	you	can	add	--collation-server	for	the	collation.	If	you
don't	specify	a	character	set,	that	is	the	same	as	saying	--character-set-
server=latin1.	If	you	specify	only	a	character	set	(for	example,	latin1)	but	not
a	collation,	that	is	the	same	as	saying	--character-set-server=latin1	--
collation-server=latin1_swedish_ci	because	latin1_swedish_ci	is	the
default	collation	for	latin1.	Therefore,	the	following	three	commands	all	have
the	same	effect:

shell>	mysqld

shell>	mysqld	--character-set-server=latin1

shell>	mysqld	--character-set-server=latin1	\

											--collation-server=latin1_swedish_ci

One	way	to	change	the	settings	is	by	recompiling.	If	you	want	to	change	the
default	server	character	set	and	collation	when	building	from	sources,	use:	--
with-charset	and	--with-collation	as	arguments	for	configure.	For	example:

shell>	./configure	--with-charset=latin1

Or:

shell>	./configure	--with-charset=latin1	\

											--with-collation=latin1_german1_ci

Both	mysqld	and	configure	verify	that	the	character	set/collation	combination	is
valid.	If	not,	each	program	displays	an	error	message	and	terminates.

The	current	server	character	set	and	collation	can	be	determined	from	the	values
of	the	character_set_server	and	collation_server	system	variables.	These
variables	can	be	changed	at	runtime.

10.3.2.	Database	Character	Set	and	Collation

Every	database	has	a	database	character	set	and	a	database	collation.	The	CREATE
DATABASE	and	ALTER	DATABASE	statements	have	optional	clauses	for	specifying
the	database	character	set	and	collation:

CREATE	DATABASE	db_name

				[[DEFAULT]	CHARACTER	SET	charset_name]

				[[DEFAULT]	COLLATE	collation_name]

ALTER	DATABASE	db_name

				[[DEFAULT]	CHARACTER	SET	charset_name]

				[[DEFAULT]	COLLATE	collation_name]

The	keyword	SCHEMA	can	be	used	instead	of	DATABASE.

All	database	options	are	stored	in	a	text	file	named	db.opt	that	can	be	found	in
the	database	directory.

The	CHARACTER	SET	and	COLLATE	clauses	make	it	possible	to	create	databases
with	different	character	sets	and	collations	on	the	same	MySQL	server.

Example:

CREATE	DATABASE	db_name	CHARACTER	SET	latin1	COLLATE	latin1_swedish_ci;

MySQL	chooses	the	database	character	set	and	database	collation	in	the
following	manner:

If	both	CHARACTER	SET	X	and	COLLATE	Y	were	specified,	then	character	set
X	and	collation	Y.

If	CHARACTER	SET	X	was	specified	without	COLLATE,	then	character	set	X

and	its	default	collation.

If	COLLATE	Y	was	specified	without	CHARACTER	SET,	then	the	character	set
associated	with	Y	and	collation	Y.

Otherwise,	the	server	character	set	and	server	collation.

The	database	character	set	and	collation	are	used	as	default	values	if	the	table
character	set	and	collation	are	not	specified	in	CREATE	TABLE	statements.	They
have	no	other	purpose.

The	character	set	and	collation	for	the	default	database	can	be	determined	from
the	values	of	the	character_set_database	and	collation_database	system
variables.	The	server	sets	these	variables	whenever	the	default	database	changes.
If	there	is	no	default	database,	the	variables	have	the	same	value	as	the
corresponding	server-level	system	variables,	character_set_server	and
collation_server.

10.3.3.	Table	Character	Set	and	Collation

Every	table	has	a	table	character	set	and	a	table	collation.	The	CREATE	TABLE	and
ALTER	TABLE	statements	have	optional	clauses	for	specifying	the	table	character
set	and	collation:

CREATE	TABLE	tbl_name	(column_list)

				[[DEFAULT]	CHARACTER	SET	charset_name]	[COLLATE	collation_name]]

ALTER	TABLE	tbl_name

				[[DEFAULT]	CHARACTER	SET	charset_name]	[COLLATE	collation_name]

Example:

CREATE	TABLE	t1	(...)	CHARACTER	SET	latin1	COLLATE	latin1_danish_ci;

MySQL	chooses	the	table	character	set	and	collation	in	the	following	manner:

If	both	CHARACTER	SET	X	and	COLLATE	Y	were	specified,	then	character	set
X	and	collation	Y.

If	CHARACTER	SET	X	was	specified	without	COLLATE,	then	character	set	X
and	its	default	collation.

If	COLLATE	Y	was	specified	without	CHARACTER	SET,	then	the	character	set
associated	with	Y	and	collation	Y.

Otherwise,	the	database	character	set	and	collation.

The	table	character	set	and	collation	are	used	as	default	values	if	the	column
character	set	and	collation	are	not	specified	in	individual	column	definitions.	The
table	character	set	and	collation	are	MySQL	extensions;	there	are	no	such	things
in	standard	SQL.

10.3.4.	Column	Character	Set	and	Collation

Every	“character”	column	(that	is,	a	column	of	type	CHAR,	VARCHAR,	or	TEXT)	has
a	column	character	set	and	a	column	collation.	Column	definition	syntax	has
optional	clauses	for	specifying	the	column	character	set	and	collation:

col_name	{CHAR	|	VARCHAR	|	TEXT}	(col_length)

				[CHARACTER	SET	charset_name]	[COLLATE	collation_name]

Example:

CREATE	TABLE	Table1

(

				column1	VARCHAR(5)	CHARACTER	SET	latin1	COLLATE	latin1_german1_ci

);

MySQL	chooses	the	column	character	set	and	collation	in	the	following	manner:

If	both	CHARACTER	SET	X	and	COLLATE	Y	were	specified,	then	character	set
X	and	collation	Y	are	used.

If	CHARACTER	SET	X	was	specified	without	COLLATE,	then	character	set	X
and	its	default	collation	are	used.

If	COLLATE	Y	was	specified	without	CHARACTER	SET,	then	the	character	set
associated	with	Y	and	collation	Y.

Otherwise,	the	table	character	set	and	collation	are	used.

The	CHARACTER	SET	and	COLLATE	clauses	are	standard	SQL.

10.3.5.	Character	String	Literal	Character	Set	and	Collation

Every	character	string	literal	has	a	character	set	and	a	collation.

A	character	string	literal	may	have	an	optional	character	set	introducer	and
COLLATE	clause:

[_charset_name]'string'	[COLLATE	collation_name]

Examples:

SELECT	'string';

SELECT	_latin1'string';

SELECT	_latin1'string'	COLLATE	latin1_danish_ci;

For	the	simple	statement	SELECT	'string',	the	string	has	the	character	set	and
collation	defined	by	the	character_set_connection	and
collation_connection	system	variables.

The	_charset_name	expression	is	formally	called	an	introducer.	It	tells	the
parser,	“the	string	that	is	about	to	follow	uses	character	set	X.”	Because	this	has
confused	people	in	the	past,	we	emphasize	that	an	introducer	does	not	cause	any
conversion;	it	is	strictly	a	signal	that	does	not	change	the	string's	value.	An
introducer	is	also	legal	before	standard	hex	literal	and	numeric	hex	literal
notation	(x'literal'	and	0xnnnn)>.

Examples:

SELECT	_latin1	x'AABBCC';

SELECT	_latin1	0xAABBCC;

MySQL	determines	a	literal's	character	set	and	collation	in	the	following
manner:

If	both	_X	and	COLLATE	Y	were	specified,	then	character	set	X	and	collation
Y	are	used.

If	_X	is	specified	but	COLLATE	is	not	specified,	then	character	set	X	and	its
default	collation	are	used.

Otherwise,	the	character	set	and	collation	given	by	the

character_set_connection	and	collation_connection	system	variables
are	used.

Examples:

A	string	with	latin1	character	set	and	latin1_german1_ci	collation:

SELECT	_latin1'Müller'	COLLATE	latin1_german1_ci;

A	string	with	latin1	character	set	and	its	default	collation	(that	is,
latin1_swedish_ci):

SELECT	_latin1'Müller';

A	string	with	the	connection	default	character	set	and	collation:

SELECT	'Müller';

Character	set	introducers	and	the	COLLATE	clause	are	implemented	according	to
standard	SQL	specifications.

10.3.6.	National	Character	Set

Standard	SQL	defines	NCHAR	or	NATIONAL	CHAR	as	a	way	to	indicate	that	a	CHAR
column	should	use	some	predefined	character	set.	MySQL	5.0	uses	utf8	as	this
predefined	character	set.	For	example,	these	data	type	declarations	are
equivalent:

CHAR(10)	CHARACTER	SET	utf8

NATIONAL	CHARACTER(10)

NCHAR(10)

As	are	these:

VARCHAR(10)	CHARACTER	SET	utf8

NATIONAL	VARCHAR(10)

NCHAR	VARCHAR(10)

NATIONAL	CHARACTER	VARYING(10)

NATIONAL	CHAR	VARYING(10)

You	can	use	N'literal'	to	create	a	string	in	the	national	character	set.	These	two
statements	are	equivalent:

SELECT	N'some	text';

SELECT	_utf8'some	text';

For	information	on	upgrading	character	sets	to	MySQL	5.0	from	versions	prior
to	4.1,	see	the	MySQL	3.23,	4.0,	4.1	Reference	Manual.

10.3.7.	Examples	of	Character	Set	and	Collation	Assignment

The	following	examples	show	how	MySQL	determines	default	character	set	and
collation	values.

Example	1:	Table	and	Column	Definition

CREATE	TABLE	t1

(

				c1	CHAR(10)	CHARACTER	SET	latin1	COLLATE	latin1_german1_ci

)	DEFAULT	CHARACTER	SET	latin2	COLLATE	latin2_bin;

Here	we	have	a	column	with	a	latin1	character	set	and	a	latin1_german1_ci
collation.	The	definition	is	explicit,	so	that's	straightforward.	Notice	that	there	is
no	problem	with	storing	a	latin1	column	in	a	latin2	table.

Example	2:	Table	and	Column	Definition

CREATE	TABLE	t1

(

				c1	CHAR(10)	CHARACTER	SET	latin1

)	DEFAULT	CHARACTER	SET	latin1	COLLATE	latin1_danish_ci;

This	time	we	have	a	column	with	a	latin1	character	set	and	a	default	collation.
Although	it	might	seem	natural,	the	default	collation	is	not	taken	from	the	table
level.	Instead,	because	the	default	collation	for	latin1	is	always
latin1_swedish_ci,	column	c1	has	a	collation	of	latin1_swedish_ci	(not
latin1_danish_ci).

Example	3:	Table	and	Column	Definition

CREATE	TABLE	t1

(

				c1	CHAR(10)

)	DEFAULT	CHARACTER	SET	latin1	COLLATE	latin1_danish_ci;

We	have	a	column	with	a	default	character	set	and	a	default	collation.	In	this

circumstance,	MySQL	checks	the	table	level	to	determine	the	column	character
set	and	collation.	Consequently,	the	character	set	for	column	c1	is	latin1	and	its
collation	is	latin1_danish_ci.

Example	4:	Database,	Table,	and	Column	Definition

CREATE	DATABASE	d1

				DEFAULT	CHARACTER	SET	latin2	COLLATE	latin2_czech_ci;

USE	d1;

CREATE	TABLE	t1

(

				c1	CHAR(10)

);

We	create	a	column	without	specifying	its	character	set	and	collation.	We're	also
not	specifying	a	character	set	and	a	collation	at	the	table	level.	In	this
circumstance,	MySQL	checks	the	database	level	to	determine	the	table	settings,
which	thereafter	become	the	column	settings.)	Consequently,	the	character	set
for	column	c1	is	latin2	and	its	collation	is	latin2_czech_ci.

10.3.8.	Compatibility	with	Other	DBMSs

For	MaxDB	compatibility	these	two	statements	are	the	same:

CREATE	TABLE	t1	(f1	CHAR(N)	UNICODE);

CREATE	TABLE	t1	(f1	CHAR(N)	CHARACTER	SET	ucs2);

10.4.	Connection	Character	Sets	and	Collations

Several	character	set	and	collation	system	variables	relate	to	a	client's	interaction
with	the	server.	Some	of	these	have	been	mentioned	in	earlier	sections:

The	server	character	set	and	collation	can	be	determined	from	the	values	of
the	character_set_server	and	collation_server	system	variables.

The	character	set	and	collation	of	the	default	database	can	be	determined
from	the	values	of	the	character_set_database	and	collation_database
system	variables.

Additional	character	set	and	collation	system	variables	are	involved	in	handling
traffic	for	the	connection	between	a	client	and	the	server.	Every	client	has
connection-related	character	set	and	collation	system	variables.

Consider	what	a	“connection”	is:	It's	what	you	make	when	you	connect	to	the
server.	The	client	sends	SQL	statements,	such	as	queries,	over	the	connection	to
the	server.	The	server	sends	responses,	such	as	result	sets,	over	the	connection
back	to	the	client.	This	leads	to	several	questions	about	character	set	and
collation	handling	for	client	connections,	each	of	which	can	be	answered	in
terms	of	system	variables:

What	character	set	is	the	statement	in	when	it	leaves	the	client?

The	server	takes	the	character_set_client	system	variable	to	be	the
character	set	in	which	statements	are	sent	by	the	client.

What	character	set	should	the	server	translate	a	statement	to	after	receiving
it?

For	this,	the	server	uses	the	character_set_connection	and
collation_connection	system	variables.	It	converts	statements	sent	by	the
client	from	character_set_client	to	character_set_connection	(except
for	string	literals	that	have	an	introducer	such	as	_latin1	or	_utf8).
collation_connection	is	important	for	comparisons	of	literal	strings.	For
comparisons	of	strings	with	column	values,	collation_connection	does
not	matter	because	columns	have	their	own	collation,	which	has	a	higher

collation	precedence.

What	character	set	should	the	server	translate	to	before	shipping	result	sets
or	error	messages	back	to	the	client?

The	character_set_results	system	variable	indicates	the	character	set	in
which	the	server	returns	query	results	to	the	client.	This	includes	result	data
such	as	column	values,	and	result	metadata	such	as	column	names.

You	can	fine-tune	the	settings	for	these	variables,	or	you	can	depend	on	the
defaults	(in	which	case,	you	can	skip	the	rest	of	this	section).

There	are	two	statements	that	affect	the	connection	character	sets:

SET	NAMES	'charset_name'

SET	CHARACTER	SET	charset_name

SET	NAMES	indicates	what	character	set	the	client	will	use	to	send	SQL
statements	to	the	server.	Thus,	SET	NAMES	'cp1251'	tells	the	server	“future
incoming	messages	from	this	client	are	in	character	set	cp1251.”	It	also	specifies
the	character	set	that	the	server	should	use	for	sending	results	back	to	the	client.
(For	example,	it	indicates	what	character	set	to	use	for	column	values	if	you	use
a	SELECT	statement.)

A	SET	NAMES	'x'	statement	is	equivalent	to	these	three	statements:

SET	character_set_client	=	x;

SET	character_set_results	=	x;

SET	character_set_connection	=	x;

Setting	character_set_connection	to	x	also	sets	collation_connection	to	the
default	collation	for	x.	To	specify	one	of	the	character	set's	collations	explicitly,
use	the	optional	COLLATE	clause:

SET	NAMES	'charset_name'	COLLATE	'collation_name'

SET	CHARACTER	SET	is	similar	to	SET	NAMES	but	sets	the	connection	character	set
and	collation	to	be	those	of	the	default	database.	A	SET	CHARACTER	SET	x
statement	is	equivalent	to	these	three	statements:

SET	character_set_client	=	x;

SET	character_set_results	=	x;

SET	collation_connection	=	@@collation_database;

Setting	collation_connection	also	sets	character_set_connection	to	the
character	set	associated	with	the	collation.

When	a	client	connects,	it	sends	to	the	server	the	name	of	the	character	set	that	it
wants	to	use.	The	server	uses	the	name	to	set	the	character_set_client,
character_set_results,	and	character_set_connection	system	variables.	In
effect,	the	server	performs	a	SET	NAMES	operation	using	the	character	set	name.

With	the	mysql	client,	it	is	not	necessary	to	execute	SET	NAMES	every	time	you
start	up	if	you	want	to	use	a	character	set	different	from	the	default.	You	can	add
the	--default-character-set	option	setting	to	your	mysql	statement	line,	or	in
your	option	file.	For	example,	the	following	option	file	setting	changes	the	three
character	set	variables	set	to	koi8r	each	time	you	invoke	mysql:

[mysql]

default-character-set=koi8r

Example:	Suppose	that	column1	is	defined	as	CHAR(5)	CHARACTER	SET	latin2.
If	you	do	not	say	SET	NAMES	or	SET	CHARACTER	SET,	then	for	SELECT	column1
FROM	t,	the	server	sends	back	all	the	values	for	column1	using	the	character	set
that	the	client	specified	when	it	connected.	On	the	other	hand,	if	you	say	SET
NAMES	'latin1'	or	SET	CHARACTER	SET	latin1	before	issuing	the	SELECT
statement,	the	server	converts	the	latin2	values	to	latin1	just	before	sending
results	back.	Conversion	may	be	lossy	if	there	are	characters	that	are	not	in	both
character	sets.

If	you	do	not	want	the	server	to	perform	any	conversion	of	result	sets,	set
character_set_results	to	NULL:

SET	character_set_results	=	NULL;

Note:	Currently,	UCS-2	cannot	be	used	as	a	client	character	set,	which	means
that	SET	NAMES	'ucs2'	does	not	work.

To	see	the	values	of	the	character	set	and	collation	system	variables	that	apply	to
your	connection,	use	these	statements:

SHOW	VARIABLES	LIKE	'character_set%';

SHOW	VARIABLES	LIKE	'collation%';

10.5.	Collation	Issues

The	following	sections	various	aspects	of	character	set	collations.

10.5.1.	Using	COLLATE	in	SQL	Statements

With	the	COLLATE	clause,	you	can	override	whatever	the	default	collation	is	for	a
comparison.	COLLATE	may	be	used	in	various	parts	of	SQL	statements.	Here	are
some	examples:

With	ORDER	BY:

SELECT	k

FROM	t1

ORDER	BY	k	COLLATE	latin1_german2_ci;

With	AS:

SELECT	k	COLLATE	latin1_german2_ci	AS	k1

FROM	t1

ORDER	BY	k1;

With	GROUP	BY:

SELECT	k

FROM	t1

GROUP	BY	k	COLLATE	latin1_german2_ci;

With	aggregate	functions:

SELECT	MAX(k	COLLATE	latin1_german2_ci)

FROM	t1;

With	DISTINCT:

SELECT	DISTINCT	k	COLLATE	latin1_german2_ci

FROM	t1;

With	WHERE:

					SELECT	*

					FROM	t1

					WHERE	_latin1	'Müller'	COLLATE	latin1_german2_ci	=	k;

					SELECT	*

					FROM	t1

					WHERE	k	LIKE	_latin1	'Müller'	COLLATE	latin1_german2_ci;

With	HAVING:

SELECT	k

FROM	t1

GROUP	BY	k

HAVING	k	=	_latin1	'Müller'	COLLATE	latin1_german2_ci;

10.5.2.	COLLATE	Clause	Precedence

The	COLLATE	clause	has	high	precedence	(higher	than	||),	so	the	following	two
expressions	are	equivalent:

x	||	y	COLLATE	z

x	||	(y	COLLATE	z)

10.5.3.	BINARY	Operator

The	BINARY	operator	casts	the	string	following	it	to	a	binary	string.	This	is	an
easy	way	to	force	a	comparison	to	be	done	byte	by	byte	rather	than	character	by
character.	BINARY	also	causes	trailing	spaces	to	be	significant.

mysql>	SELECT	'a'	=	'A';

								->	1

mysql>	SELECT	BINARY	'a'	=	'A';

								->	0

mysql>	SELECT	'a'	=	'a	';

								->	1

mysql>	SELECT	BINARY	'a'	=	'a	';

								->	0

BINARY	str	is	shorthand	for	CAST(str	AS	BINARY).

The	BINARY	attribute	in	character	column	definitions	has	a	different	effect.	A
character	column	defined	with	the	BINARY	attribute	is	assigned	the	binary
collation	of	the	column's	character	set.	Every	character	set	has	a	binary	collation.
For	example,	the	binary	collation	for	the	latin1	character	set	is	latin1_bin,	so
if	the	table	default	character	set	is	latin1,	these	two	column	definitions	are

equivalent:

CHAR(10)	BINARY

CHAR(10)	CHARACTER	SET	latin1	COLLATE	latin1_bin

The	effect	of	BINARY	as	a	column	attribute	differs	from	its	effect	prior	to	MySQL
4.1.	Formerly,	BINARY	resulted	in	a	column	that	was	treated	as	a	binary	string.	A
binary	string	is	a	string	of	bytes	that	has	no	character	set	or	collation,	which
differs	from	a	non-binary	character	string	that	has	a	binary	collation.	For	both
types	of	strings,	comparisons	are	based	on	the	numeric	values	of	the	string	unit,
but	for	non-binary	strings	the	unit	is	the	character	and	some	character	sets	allow
multi-byte	characters.	Section	11.4.2,	“The	BINARY	and	VARBINARY	Types”.

The	use	of	CHARACTER	SET	binary	in	the	definition	of	a	CHAR,	VARCHAR,	or	TEXT
column	causes	the	column	to	be	treated	as	a	binary	data	type.	For	example,	the
following	pairs	of	definitions	are	equivalent:

CHAR(10)	CHARACTER	SET	binary

BINARY(10)

VARCHAR(10)	CHARACTER	SET	binary

VARBINARY(10)

TEXT	CHARACTER	SET	binary

BLOB

10.5.4.	Some	Special	Cases	Where	the	Collation	Determination	Is
Tricky

In	the	great	majority	of	statements,	it	is	obvious	what	collation	MySQL	uses	to
resolve	a	comparison	operation.	For	example,	in	the	following	cases,	it	should	be
clear	that	the	collation	is	the	collation	of	column	x:

SELECT	x	FROM	T	ORDER	BY	x;

SELECT	x	FROM	T	WHERE	x	=	x;

SELECT	DISTINCT	x	FROM	T;

However,	when	multiple	operands	are	involved,	there	can	be	ambiguity.	For
example:

SELECT	x	FROM	T	WHERE	x	=	'Y';

Should	this	query	use	the	collation	of	the	column	x,	or	of	the	string	literal	'Y'?

Standard	SQL	resolves	such	questions	using	what	used	to	be	called
“coercibility”	rules.	Basically,	this	means:	Both	x	and	'Y'	have	collations,	so
which	collation	takes	precedence?	This	can	be	difficult	to	resolve,	but	the
following	rules	cover	most	situations:

An	explicit	COLLATE	clause	has	a	coercibility	of	0.	(Not	coercible	at	all.)

The	concatenation	of	two	strings	with	different	collations	has	a	coercibility
of	1.

The	collation	of	a	column	or	a	stored	routine	parameter	or	local	variable	has
a	coercibility	of	2.

A	“system	constant”	(the	string	returned	by	functions	such	as	USER()	or
VERSION())	has	a	coercibility	of	3.

A	literal's	collation	has	a	coercibility	of	4.

NULL	or	an	expression	that	is	derived	from	NULL	has	a	coercibility	of	5.

The	preceding	coercibility	values	are	current	as	of	MySQL	5.0.3.	In	MySQL	5.0
prior	to	5.0.3,	there	is	no	system	constant	or	ignorable	coercibility.	Functions
such	as	USER()	have	a	coercibility	of	2	rather	than	3,	and	literals	have	a
coercibility	of	3	rather	than	4.

Those	rules	resolve	ambiguities	in	the	following	manner:

Use	the	collation	with	the	lowest	coercibility	value.

If	both	sides	have	the	same	coercibility,	then	it	is	an	error	if	the	collations
aren't	the	same.

Examples:

column1	=	'A' Use	collation	of	column1
column1	=	'A'	COLLATE	x Use	collation	of	'A'	COLLATE	x
column1	COLLATE	x	=	'A'	COLLATE	y Error

The	COERCIBILITY()	function	can	be	used	to	determine	the	coercibility	of	a
string	expression:

mysql>	SELECT	COERCIBILITY('A'	COLLATE	latin1_swedish_ci);

								->	0

mysql>	SELECT	COERCIBILITY(VERSION());

								->	3

mysql>	SELECT	COERCIBILITY('A');

								->	4

See	Section	12.9.3,	“Information	Functions”.

10.5.5.	Collations	Must	Be	for	the	Right	Character	Set

Each	character	set	has	one	or	more	collations,	but	each	collation	is	associated
with	one	and	only	one	character	set.	Therefore,	the	following	statement	causes
an	error	message	because	the	latin2_bin	collation	is	not	legal	with	the	latin1
character	set:

mysql>	SELECT	_latin1	'x'	COLLATE	latin2_bin;

ERROR	1253	(42000):	COLLATION	'latin2_bin'	is	not	valid

for	CHARACTER	SET	'latin1'

10.5.6.	An	Example	of	the	Effect	of	Collation

Suppose	that	column	X	in	table	T	has	these	latin1	column	values:

Muffler

Müller

MX	Systems

MySQL

Suppose	also	that	the	column	values	are	retrieved	using	the	following	statement:

SELECT	X	FROM	T	ORDER	BY	X	COLLATE	collation_name;

The	following	table	shows	the	resulting	order	of	the	values	if	we	use	ORDER	BY
with	different	collations:

latin1_swedish_ci latin1_german1_ci latin1_german2_ci

Muffler Muffler Müller
MX	Systems Müller Muffler

Müller MX	Systems MX	Systems
MySQL MySQL MySQL

The	character	that	causes	the	different	sort	orders	in	this	example	is	the	U	with
two	dots	over	it	(ü),	which	the	Germans	call	“U-umlaut.”

The	first	column	shows	the	result	of	the	SELECT	using	the	Swedish/Finnish
collating	rule,	which	says	that	U-umlaut	sorts	with	Y.

The	second	column	shows	the	result	of	the	SELECT	using	the	German	DIN-1
rule,	which	says	that	U-umlaut	sorts	with	U.

The	third	column	shows	the	result	of	the	SELECT	using	the	German	DIN-2
rule,	which	says	that	U-umlaut	sorts	with	UE.

10.6.	Operations	Affected	by	Character	Set	Support

This	section	describes	operations	that	take	character	set	information	into
account.

10.6.1.	Result	Strings

MySQL	has	many	operators	and	functions	that	return	a	string.	This	section
answers	the	question:	What	is	the	character	set	and	collation	of	such	a	string?

For	simple	functions	that	take	string	input	and	return	a	string	result	as	output,	the
output's	character	set	and	collation	are	the	same	as	those	of	the	principal	input
value.	For	example,	UPPER(X)	returns	a	string	whose	character	string	and
collation	are	the	same	as	that	of	X.	The	same	applies	for	INSTR(),	LCASE(),
LOWER(),	LTRIM(),	MID(),	REPEAT(),	REPLACE(),	REVERSE(),	RIGHT(),	RPAD(),
RTRIM(),	SOUNDEX(),	SUBSTRING(),	TRIM(),	UCASE(),	and	UPPER().

Note:	The	REPLACE()	function,	unlike	all	other	functions,	always	ignores	the
collation	of	the	string	input	and	performs	a	case-sensitive	comparison.

If	a	string	input	or	function	result	is	a	binary	string,	the	string	has	no	character
set	or	collation.	This	can	be	check	by	using	the	CHARSET()	and	COLLATION()
functions,	both	of	which	return	binary	to	indicate	that	their	argument	is	a	binary
string:

mysql>	SELECT	CHARSET(BINARY	'a'),	COLLATION(BINARY	'a');

+---------------------+-----------------------+

|	CHARSET(BINARY	'a')	|	COLLATION(BINARY	'a')	|

+---------------------+-----------------------+

|	binary														|	binary																|

+---------------------+-----------------------+

For	operations	that	combine	multiple	string	inputs	and	return	a	single	string
output,	the	“aggregation	rules”	of	standard	SQL	apply	for	determining	the
collation	of	the	result:

If	an	explicit	COLLATE	X	occurs,	use	X.

If	explicit	COLLATE	X	and	COLLATE	Y	occur,	raise	an	error.

Otherwise,	if	all	collations	are	X,	use	X.

Otherwise,	the	result	has	no	collation.

For	example,	with	CASE	...	WHEN	a	THEN	b	WHEN	b	THEN	c	COLLATE	X	END,
the	resulting	collation	is	X.	The	same	applies	for	UNION,	||,	CONCAT(),	ELT(),
GREATEST(),	IF(),	and	LEAST().

For	operations	that	convert	to	character	data,	the	character	set	and	collation	of
the	strings	that	result	from	the	operations	are	defined	by	the
character_set_connection	and	collation_connection	system	variables.	This
applies	to	CAST(),	CONV(),	FORMAT(),	HEX(),	SPACE().	Before	MySQL	5.0.15,	it
also	applies	to	CHAR().

10.6.2.	CONVERT()	and	CAST()

CONVERT()	provides	a	way	to	convert	data	between	different	character	sets.	The
syntax	is:

CONVERT(expr	USING	transcoding_name)

In	MySQL,	transcoding	names	are	the	same	as	the	corresponding	character	set
names.

Examples:

SELECT	CONVERT(_latin1'Müller'	USING	utf8);

INSERT	INTO	utf8table	(utf8column)

				SELECT	CONVERT(latin1field	USING	utf8)	FROM	latin1table;

CONVERT(...	USING	...)	is	implemented	according	to	the	standard	SQL
specification.

You	may	also	use	CAST()	to	convert	a	string	to	a	different	character	set.	The
syntax	is:

CAST(character_string	AS	character_data_type	CHARACTER	SET	charset_name

Example:

SELECT	CAST(_latin1'test'	AS	CHAR	CHARACTER	SET	utf8);

If	you	use	CAST()	without	specifying	CHARACTER	SET,	the	resulting	character	set
and	collation	are	defined	by	the	character_set_connection	and
collation_connection	system	variables.	If	you	use	CAST()	with	CHARACTER
SET	X,	the	resulting	character	set	and	collation	are	X	and	the	default	collation	of
X.

You	may	not	use	a	COLLATE	clause	inside	a	CAST(),	but	you	may	use	it	outside.
That	is,	CAST(...	COLLATE	...)	is	illegal,	but	CAST(...)	COLLATE	...	is	legal.

Example:

SELECT	CAST(_latin1'test'	AS	CHAR	CHARACTER	SET	utf8)	COLLATE	utf8_bin;

10.6.3.	SHOW	Statements	and	INFORMATION_SCHEMA

Several	SHOW	statements	provide	additional	character	set	information.	These
include	SHOW	CHARACTER	SET,	SHOW	COLLATION,	SHOW	CREATE	DATABASE,	SHOW
CREATE	TABLE	and	SHOW	COLUMNS.	These	statements	are	described	here	briefly.
For	more	information,	see	Section	13.5.4,	“SHOW	Syntax”.

INFORMATION_SCHEMA	has	several	tables	that	contain	information	similar	to	that
displayed	by	the	SHOW	statements.	For	example,	the	CHARACTER_SETS	and
COLLATIONS	tables	contain	the	information	displayed	by	SHOW	CHARACTER	SET
and	SHOW	COLLATION.	Chapter	20,	The	INFORMATION_SCHEMA	Database.

The	SHOW	CHARACTER	SET	command	shows	all	available	character	sets.	It	takes
an	optional	LIKE	clause	that	indicates	which	character	set	names	to	match.	For
example:

mysql>	SHOW	CHARACTER	SET	LIKE	'latin%';

+---------+-----------------------------+-------------------+--------+

|	Charset	|	Description																	|	Default	collation	|	Maxlen	|

+---------+-----------------------------+-------------------+--------+

|	latin1		|	cp1252	West	European								|	latin1_swedish_ci	|						1	|

|	latin2		|	ISO	8859-2	Central	European	|	latin2_general_ci	|						1	|

|	latin5		|	ISO	8859-9	Turkish										|	latin5_turkish_ci	|						1	|

|	latin7		|	ISO	8859-13	Baltic										|	latin7_general_ci	|						1	|

+---------+-----------------------------+-------------------+--------+

The	output	from	SHOW	COLLATION	includes	all	available	character	sets.	It	takes	an
optional	LIKE	clause	that	indicates	which	collation	names	to	match.	For
example:

mysql>	SHOW	COLLATION	LIKE	'latin1%';

+-------------------+---------+----+---------+----------+---------+

|	Collation									|	Charset	|	Id	|	Default	|	Compiled	|	Sortlen	|

+-------------------+---------+----+---------+----------+---------+

|	latin1_german1_ci	|	latin1		|		5	|									|										|							0	|

|	latin1_swedish_ci	|	latin1		|		8	|	Yes					|	Yes						|							0	|

|	latin1_danish_ci		|	latin1		|	15	|									|										|							0	|

|	latin1_german2_ci	|	latin1		|	31	|									|	Yes						|							2	|

|	latin1_bin								|	latin1		|	47	|									|	Yes						|							0	|

|	latin1_general_ci	|	latin1		|	48	|									|										|							0	|

|	latin1_general_cs	|	latin1		|	49	|									|										|							0	|

|	latin1_spanish_ci	|	latin1		|	94	|									|										|							0	|

+-------------------+---------+----+---------+----------+---------+

SHOW	CREATE	DATABASE	displays	the	CREATE	DATABASE	statement	that	creates	a
given	database:

mysql>	SHOW	CREATE	DATABASE	test;

+----------+---+

|	Database	|	Create	Database																																																	|

+----------+---+

|	test					|	CREATE	DATABASE	`test`	/*!40100	DEFAULT	CHARACTER	SET	latin1	*/	|

+----------+---+

If	no	COLLATE	clause	is	shown,	the	default	collation	for	the	character	set	applies.

SHOW	CREATE	TABLE	is	similar,	but	displays	the	CREATE	TABLE	statement	to
create	a	given	table.	The	column	definitions	indicate	any	character	set
specifications,	and	the	table	options	include	character	set	information.

The	SHOW	COLUMNS	statement	displays	the	collations	of	a	table's	columns	when
invoked	as	SHOW	FULL	COLUMNS.	Columns	with	CHAR,	VARCHAR,	or	TEXT	data
types	have	collations.	Numeric	and	other	non-character	types	have	no	collation
(indicated	by	NULL	as	the	Collation	value).	For	example:

mysql>	SHOW	FULL	COLUMNS	FROM	person\G

***************************	1.	row	***************************

					Field:	id

						Type:	smallint(5)	unsigned

	Collation:	NULL

						Null:	NO

							Key:	PRI

			Default:	NULL

					Extra:	auto_increment

Privileges:	select,insert,update,references

			Comment:

***************************	2.	row	***************************

					Field:	name

						Type:	char(60)

	Collation:	latin1_swedish_ci

						Null:	NO

							Key:

			Default:

					Extra:

Privileges:	select,insert,update,references

			Comment:

The	character	set	is	not	part	of	the	display	but	is	implied	by	the	collation	name.

10.7.	Unicode	Support

MySQL	5.0	supports	two	character	sets	for	storing	Unicode	data:

ucs2,	the	UCS-2	Unicode	character	set.

utf8,	the	UTF-8	encoding	of	the	Unicode	character	set.

In	UCS-2	(binary	Unicode	representation),	every	character	is	represented	by	a
two-byte	Unicode	code	with	the	most	significant	byte	first.	For	example:	LATIN
CAPITAL	LETTER	A	has	the	code	0x0041	and	it	is	stored	as	a	two-byte	sequence:
0x00	0x41.	CYRILLIC	SMALL	LETTER	YERU	(Unicode	0x044B)	is	stored	as	a	two-
byte	sequence:	0x04	0x4B.	For	Unicode	characters	and	their	codes,	please	refer
to	the	Unicode	Home	Page.

Currently,	UCS-2	cannot	be	used	as	a	client	character	set,	which	means	that	SET
NAMES	'ucs2'	does	not	work.

The	UTF-8	character	set	(transform	Unicode	representation)	is	an	alternative
way	to	store	Unicode	data.	It	is	implemented	according	to	RFC	3629.	The	idea
of	the	UTF-8	character	set	is	that	various	Unicode	characters	are	encoded	using
byte	sequences	of	different	lengths:

Basic	Latin	letters,	digits,	and	punctuation	signs	use	one	byte.

Most	European	and	Middle	East	script	letters	fit	into	a	two-byte	sequence:
extended	Latin	letters	(with	tilde,	macron,	acute,	grave	and	other	accents),
Cyrillic,	Greek,	Armenian,	Hebrew,	Arabic,	Syriac,	and	others.

Korean,	Chinese,	and	Japanese	ideographs	use	three-byte	sequences.

RFC	3629	describes	encoding	sequences	that	take	from	one	to	four	bytes.
Currently,	MySQL	support	for	UTF-8	does	not	include	four-byte	sequences.	(An
older	standard	for	UTF-8	encoding	is	given	by	RFC	2279,	which	describes	UTF-
8	sequences	that	take	from	one	to	six	bytes.	RFC	3629	renders	RFC	2279
obsolete;	for	this	reason,	sequences	with	five	and	six	bytes	are	no	longer	used.)

Tip:	To	save	space	with	UTF-8,	use	VARCHAR	instead	of	CHAR.	Otherwise,

http://www.unicode.org/

MySQL	must	reserve	three	bytes	for	each	character	in	a	CHAR	CHARACTER	SET
utf8	column	because	that	is	the	maximum	possible	length.	For	example,
MySQL	must	reserve	30	bytes	for	a	CHAR(10)	CHARACTER	SET	utf8	column.

10.8.	UTF-8	for	Metadata

Metadata	is	“the	data	about	the	data.”	Anything	that	describes	the	database	—	as
opposed	to	being	the	contents	of	the	database	—	is	metadata.	Thus	column
names,	database	names,	usernames,	version	names,	and	most	of	the	string	results
from	SHOW	are	metadata.	This	is	also	true	of	the	contents	of	tables	in
INFORMATION_SCHEMA,	because	those	tables	by	definition	contain	information
about	database	objects.

Representation	of	metadata	must	satisfy	these	requirements:

All	metadata	must	be	in	the	same	character	set.	Otherwise,	neither	the	SHOW
commands	nor	SELECT	statements	for	tables	in	INFORMATION_SCHEMA	would
work	properly	because	different	rows	in	the	same	column	of	the	results	of
these	operations	would	be	in	different	character	sets.

Metadata	must	include	all	characters	in	all	languages.	Otherwise,	users
would	not	be	able	to	name	columns	and	tables	using	their	own	languages.

To	satisfy	both	requirements,	MySQL	stores	metadata	in	a	Unicode	character	set,
namely	UTF-8.	This	does	not	cause	any	disruption	if	you	never	use	accented	or
non-Latin	characters.	But	if	you	do,	you	should	be	aware	that	metadata	is	in
UTF-8.

The	metadata	requirements	mean	that	the	return	values	of	the	USER(),
CURRENT_USER(),	SESSION_USER(),	SYSTEM_USER(),	DATABASE(),	and	VERSION()
functions	have	the	UTF-8	character	set	by	default.

The	server	sets	the	character_set_system	system	variable	to	the	name	of	the
metadata	character	set:

mysql>	SHOW	VARIABLES	LIKE	'character_set_system';

+----------------------+-------+

|	Variable_name								|	Value	|

+----------------------+-------+

|	character_set_system	|	utf8		|

+----------------------+-------+

Storage	of	metadata	using	Unicode	does	not	mean	that	the	server	returns	headers

of	columns	and	the	results	of	DESCRIBE	functions	in	the	character_set_system
character	set	by	default.	When	you	use	SELECT	column1	FROM	t,	the	name
column1	itself	is	returned	from	the	server	to	the	client	in	the	character	set
determined	by	the	value	of	the	character_set_results	system	variable,	which
has	a	default	value	of	latin1.	If	you	want	the	server	to	pass	metadata	results
back	in	a	different	character	set,	use	the	SET	NAMES	statement	to	force	the	server
to	perform	character	set	conversion.	SET	NAMES	sets	the
character_set_results	and	other	related	system	variables.	(See	Section	10.4,
“Connection	Character	Sets	and	Collations”.)	Alternatively,	a	client	program	can
perform	the	conversion	after	receiving	the	result	from	the	server.	It	is	more
efficient	for	the	client	perform	the	conversion,	but	this	option	is	not	always
available	for	all	clients.

If	character_set_results	is	set	to	NULL,	no	conversion	is	performed	and	the
server	returns	metadata	using	its	original	character	set	(the	set	indicated	by
character_set_system).

Error	messages	returned	from	the	server	to	the	client	are	converted	to	the	client
character	set	automatically,	as	with	metadata.

If	you	are	using	(for	example)	the	USER()	function	for	comparison	or	assignment
within	a	single	statement,	don't	worry.	MySQL	performs	some	automatic
conversion	for	you.

SELECT	*	FROM	Table1	WHERE	USER()	=	latin1_column;

This	works	because	the	contents	of	latin1_column	are	automatically	converted
to	UTF-8	before	the	comparison.

INSERT	INTO	Table1	(latin1_column)	SELECT	USER();

This	works	because	the	contents	of	USER()	are	automatically	converted	to
latin1	before	the	assignment.	Automatic	conversion	is	not	fully	implemented
yet,	but	should	work	correctly	in	a	later	version.

Although	automatic	conversion	is	not	in	the	SQL	standard,	the	SQL	standard
document	does	say	that	every	character	set	is	(in	terms	of	supported	characters)	a
“subset”	of	Unicode.	Because	it	is	a	well-known	principle	that	“what	applies	to	a
superset	can	apply	to	a	subset,”	we	believe	that	a	collation	for	Unicode	can	apply
for	comparisons	with	non-Unicode	strings.

10.9.	Character	Sets	and	Collations	That	MySQL
Supports

MySQL	supports	70+	collations	for	30+	character	sets.	This	section	indicates
which	character	sets	MySQL	supports.	There	is	one	subsection	for	each	group	of
related	character	sets.	For	each	character	set,	the	allowable	collations	are	listed.

You	can	always	list	the	available	character	sets	and	their	default	collations	with
the	SHOW	CHARACTER	SET	statement:

mysql>	SHOW	CHARACTER	SET;

+----------+-----------------------------+---------------------+

|	Charset		|	Description																	|	Default	collation			|

+----------+-----------------------------+---------------------+

|	big5					|	Big5	Traditional	Chinese				|	big5_chinese_ci					|

|	dec8					|	DEC	West	European											|	dec8_swedish_ci					|

|	cp850				|	DOS	West	European											|	cp850_general_ci				|

|	hp8						|	HP	West	European												|	hp8_english_ci						|

|	koi8r				|	KOI8-R	Relcom	Russian							|	koi8r_general_ci				|

|	latin1			|	cp1252	West	European								|	latin1_swedish_ci			|

|	latin2			|	ISO	8859-2	Central	European	|	latin2_general_ci			|

|	swe7					|	7bit	Swedish																|	swe7_swedish_ci					|

|	ascii				|	US	ASCII																				|	ascii_general_ci				|

|	ujis					|	EUC-JP	Japanese													|	ujis_japanese_ci				|

|	sjis					|	Shift-JIS	Japanese										|	sjis_japanese_ci				|

|	hebrew			|	ISO	8859-8	Hebrew											|	hebrew_general_ci			|

|	tis620			|	TIS620	Thai																	|	tis620_thai_ci						|

|	euckr				|	EUC-KR	Korean															|	euckr_korean_ci					|

|	koi8u				|	KOI8-U	Ukrainian												|	koi8u_general_ci				|

|	gb2312			|	GB2312	Simplified	Chinese			|	gb2312_chinese_ci			|

|	greek				|	ISO	8859-7	Greek												|	greek_general_ci				|

|	cp1250			|	Windows	Central	European				|	cp1250_general_ci			|

|	gbk						|	GBK	Simplified	Chinese						|	gbk_chinese_ci						|

|	latin5			|	ISO	8859-9	Turkish										|	latin5_turkish_ci			|

|	armscii8	|	ARMSCII-8	Armenian										|	armscii8_general_ci	|

|	utf8					|	UTF-8	Unicode															|	utf8_general_ci					|

|	ucs2					|	UCS-2	Unicode															|	ucs2_general_ci					|

|	cp866				|	DOS	Russian																	|	cp866_general_ci				|

|	keybcs2		|	DOS	Kamenicky	Czech-Slovak		|	keybcs2_general_ci		|

|	macce				|	Mac	Central	European								|	macce_general_ci				|

|	macroman	|	Mac	West	European											|	macroman_general_ci	|

|	cp852				|	DOS	Central	European								|	cp852_general_ci				|

|	latin7			|	ISO	8859-13	Baltic										|	latin7_general_ci			|

|	cp1251			|	Windows	Cyrillic												|	cp1251_general_ci			|

|	cp1256			|	Windows	Arabic														|	cp1256_general_ci			|

|	cp1257			|	Windows	Baltic														|	cp1257_general_ci			|

|	binary			|	Binary	pseudo	charset							|	binary														|

|	geostd8		|	GEOSTD8	Georgian												|	geostd8_general_ci		|

|	cp932				|	SJIS	for	Windows	Japanese			|	cp932_japanese_ci			|

|	eucjpms		|	UJIS	for	Windows	Japanese			|	eucjpms_japanese_ci	|

+----------+-----------------------------+---------------------+

10.9.1.	Unicode	Character	Sets

MySQL	has	two	Unicode	character	sets.	You	can	store	text	in	about	650
languages	using	these	character	sets.

ucs2	(UCS-2	Unicode)	collations:

ucs2_bin

ucs2_czech_ci

ucs2_danish_ci

ucs2_esperanto_ci

ucs2_estonian_ci

ucs2_general_ci	(default)

ucs2_hungarian_ci

ucs2_icelandic_ci

ucs2_latvian_ci

ucs2_lithuanian_ci

ucs2_persian_ci

ucs2_polish_ci

ucs2_roman_ci

ucs2_romanian_ci

ucs2_slovak_ci

ucs2_slovenian_ci

ucs2_spanish2_ci

ucs2_spanish_ci

ucs2_swedish_ci

ucs2_turkish_ci

ucs2_unicode_ci

utf8	(UTF-8	Unicode)	collations:

utf8_bin

utf8_czech_ci

utf8_danish_ci

utf8_esperanto_ci

utf8_estonian_ci

utf8_general_ci	(default)

utf8_hungarian_ci

utf8_icelandic_ci

utf8_latvian_ci

utf8_lithuanian_ci

utf8_persian_ci

utf8_polish_ci

utf8_roman_ci

utf8_romanian_ci

utf8_slovak_ci

utf8_slovenian_ci

utf8_spanish2_ci

utf8_spanish_ci

utf8_swedish_ci

utf8_turkish_ci

utf8_unicode_ci

Note	that	in	the	ucs2_roman_ci	and	utf8_roman_ci	collations,	I	and	J	compare
as	equals,	and	U	and	V	compare	as	equals.

The	ucs2_esperanto_ci	and	utf8_esperanto_ci	collations	were	added	in
MySQL	5.0.13.	The	ucs2_hungarian_ci	and	utf8_hungarian_ci	collations
were	added	in	MySQL	5.0.19.

MySQL	implements	the	utf8_unicode_ci	collation	according	to	the	Unicode
Collation	Algorithm	(UCA)	described	at	http://www.unicode.org/reports/tr10/.
The	collation	uses	the	version-4.0.0	UCA	weight	keys:
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt.	The	following
discussion	uses	utf8_unicode_ci,	but	it	is	also	true	for	ucs2_unicode_ci.

Currently,	the	utf8_unicode_ci	collation	has	only	partial	support	for	the
Unicode	Collation	Algorithm.	Some	characters	are	not	supported	yet.	Also,
combining	marks	are	not	fully	supported.	This	affects	primarily	Vietnamese	and
some	minority	languages	in	Russia	such	as	Udmurt,	Tatar,	Bashkir,	and	Mari.

The	most	significant	feature	in	utf8_unicode_ci	is	that	it	supports	expansions;
that	is,	when	one	character	compares	as	equal	to	combinations	of	other
characters.	For	example,	in	German	and	some	other	languages	‘ß’	is	equal	to
‘ss’.

utf8_general_ci	is	a	legacy	collation	that	does	not	support	expansions.	It	can

http://www.unicode.org/reports/tr10/
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

make	only	one-to-one	comparisons	between	characters.	This	means	that
comparisons	for	the	utf8_general_ci	collation	are	faster,	but	slightly	less
correct,	than	comparisons	for	utf8_unicode_ci.

For	example,	the	following	equalities	hold	in	both	utf8_general_ci	and
utf8_unicode_ci:

Ä	=	A

Ö	=	O

Ü	=	U

A	difference	between	the	collations	is	that	this	is	true	for	utf8_general_ci:

ß	=	s

Whereas	this	is	true	for	utf8_unicode_ci:

ß	=	ss

MySQL	implements	language-specific	collations	for	the	utf8	character	set	only
if	the	ordering	with	utf8_unicode_ci	does	not	work	well	for	a	language.	For
example,	utf8_unicode_ci	works	fine	for	German	and	French,	so	there	is	no
need	to	create	special	utf8	collations	for	these	two	languages.

utf8_general_ci	also	is	satisfactory	for	both	German	and	French,	except	that
‘ß’	is	equal	to	‘s’,	and	not	to	‘ss’.	If	this	is	acceptable	for	your	application,	then
you	should	use	utf8_general_ci	because	it	is	faster.	Otherwise,	use
utf8_unicode_ci	because	it	is	more	accurate.

utf8_swedish_ci,	like	other	utf8	language-specific	collations,	is	derived	from
utf8_unicode_ci	with	additional	language	rules.	For	example,	in	Swedish,	the
following	relationship	holds,	which	is	not	something	expected	by	a	German	or
French	speaker:

Ü	=	Y	<	Ö

The	utf8_spanish_ci	and	utf8_spanish2_ci	collations	correspond	to	modern
Spanish	and	traditional	Spanish,	respectively.	In	both	collations,	‘ñ’	(n-tilde)	is	a
separate	letter	between	‘n’	and	‘o’.	In	addition,	for	traditional	Spanish,	‘ch’	is	a
separate	letter	between	‘c’	and	‘d’,	and	‘ll’	is	a	separate	letter	between	‘l’	and
‘m’

10.9.2.	West	European	Character	Sets

Western	European	character	sets	cover	most	West	European	languages,	such	as
French,	Spanish,	Catalan,	Basque,	Portuguese,	Italian,	Albanian,	Dutch,
German,	Danish,	Swedish,	Norwegian,	Finnish,	Faroese,	Icelandic,	Irish,
Scottish,	and	English.

ascii	(US	ASCII)	collations:

ascii_bin

ascii_general_ci	(default)

cp850	(DOS	West	European)	collations:

cp850_bin

cp850_general_ci	(default)

dec8	(DEC	Western	European)	collations:

dec8_bin

dec8_swedish_ci	(default)

hp8	(HP	Western	European)	collations:

hp8_bin

hp8_english_ci	(default)

latin1	(cp1252	West	European)	collations:

latin1_bin

latin1_danish_ci

latin1_general_ci

latin1_general_cs

latin1_german1_ci

latin1_german2_ci

latin1_spanish_ci

latin1_swedish_ci	(default)

latin1	is	the	default	character	set.	MySQL's	latin1	is	the	same	as	the
Windows	cp1252	character	set.	This	means	it	is	the	same	as	the	official	ISO
8859-1	or	IANA	(Internet	Assigned	Numbers	Authority)	latin1,	but	IANA
latin1	treats	the	code	points	between	0x80	and	0x9f	as	“undefined,”
whereas	cp1252,	and	therefore	MySQL's	latin1,	assign	characters	for
those	positions.	For	example,	0x80	is	the	Euro	sign.	For	the	“undefined”
entries	in	cp1252,	MySQL	translates	0x81	to	Unicode	0x0081,	0x8d	to
0x008d,	0x8f	to	0x008f,	0x90	to	0x0090,	and	0x9d	to	0x009d.

The	latin1_swedish_ci	collation	is	the	default	that	probably	is	used	by	the
majority	of	MySQL	customers.	Although	it	is	frequently	said	that	it	is
based	on	the	Swedish/Finnish	collation	rules,	there	are	Swedes	and	Finns
who	disagree	with	this	statement.

The	latin1_german1_ci	and	latin1_german2_ci	collations	are	based	on
the	DIN-1	and	DIN-2	standards,	where	DIN	stands	for	Deutsches	Institut
für	Normung	(the	German	equivalent	of	ANSI).	DIN-1	is	called	the
“dictionary	collation”	and	DIN-2	is	called	the	“phone	book	collation.”

latin1_german1_ci	(dictionary)	rules:

Ä	=	A

Ö	=	O

Ü	=	U

ß	=	s

latin1_german2_ci	(phone-book)	rules:

Ä	=	AE

Ö	=	OE

Ü	=	UE

ß	=	ss

In	the	latin1_spanish_ci	collation,	‘ñ’	(n-tilde)	is	a	separate	letter

between	‘n’	and	‘o’.

macroman	(Mac	West	European)	collations:

macroman_bin

macroman_general_ci	(default)

swe7	(7bit	Swedish)	collations:

swe7_bin

swe7_swedish_ci	(default)

10.9.3.	Central	European	Character	Sets

MySQL	provides	some	support	for	character	sets	used	in	the	Czech	Republic,
Slovakia,	Hungary,	Romania,	Slovenia,	Croatia,	and	Poland.

cp1250	(Windows	Central	European)	collations:

cp1250_bin

cp1250_croatian_ci

cp1250_czech_cs

cp1250_general_ci	(default)

cp852	(DOS	Central	European)	collations:

cp852_bin

cp852_general_ci	(default)

keybcs2	(DOS	Kamenicky	Czech-Slovak)	collations:

keybcs2_bin

keybcs2_general_ci	(default)

latin2	(ISO	8859-2	Central	European)	collations:

latin2_bin

latin2_croatian_ci

latin2_czech_cs

latin2_general_ci	(default)

latin2_hungarian_ci

macce	(Mac	Central	European)	collations:

macce_bin

macce_general_ci	(default)

10.9.4.	South	European	and	Middle	East	Character	Sets

South	European	and	Middle	Eastern	character	sets	supported	by	MySQL	include
Armenian,	Arabic,	Georgian,	Greek,	Hebrew,	and	Turkish.

armscii8	(ARMSCII-8	Armenian)	collations:

armscii8_bin

armscii8_general_ci	(default)

cp1256	(Windows	Arabic)	collations:

cp1256_bin

cp1256_general_ci	(default)

geostd8	(GEOSTD8	Georgian)	collations:

geostd8_bin

geostd8_general_ci	(default)

greek	(ISO	8859-7	Greek)	collations:

greek_bin

greek_general_ci	(default)

hebrew	(ISO	8859-8	Hebrew)	collations:

hebrew_bin

hebrew_general_ci	(default)

latin5	(ISO	8859-9	Turkish)	collations:

latin5_bin

latin5_turkish_ci	(default)

10.9.5.	Baltic	Character	Sets

The	Baltic	character	sets	cover	Estonian,	Latvian,	and	Lithuanian	languages.

cp1257	(Windows	Baltic)	collations:

cp1257_bin

cp1257_general_ci	(default)

cp1257_lithuanian_ci

latin7	(ISO	8859-13	Baltic)	collations:

latin7_bin

latin7_estonian_cs

latin7_general_ci	(default)

latin7_general_cs

10.9.6.	Cyrillic	Character	Sets

The	Cyrillic	character	sets	and	collations	are	for	use	with	Belarusian,	Bulgarian,
Russian,	and	Ukrainian	languages.

cp1251	(Windows	Cyrillic)	collations:

cp1251_bin

cp1251_bulgarian_ci

cp1251_general_ci	(default)

cp1251_general_cs

cp1251_ukrainian_ci

cp866	(DOS	Russian)	collations:

cp866_bin

cp866_general_ci	(default)

koi8r	(KOI8-R	Relcom	Russian)	collations:

koi8r_bin

koi8r_general_ci	(default)

koi8u	(KOI8-U	Ukrainian)	collations:

koi8u_bin

koi8u_general_ci	(default)

10.9.7.	Asian	Character	Sets

The	Asian	character	sets	that	we	support	include	Chinese,	Japanese,	Korean,	and
Thai.	These	can	be	complicated.	For	example,	the	Chinese	sets	must	allow	for
thousands	of	different	characters.	See	Section	10.9.7.1,	“The	cp932	Character
Set”,	for	additional	information	about	the	cp932	and	sjis	character	sets.

big5	(Big5	Traditional	Chinese)	collations:

big5_bin

big5_chinese_ci	(default)

cp932	(SJIS	for	Windows	Japanese)	collations:

cp932_bin

cp932_japanese_ci	(default)

eucjpms	(UJIS	for	Windows	Japanese)	collations:

eucjpms_bin

eucjpms_japanese_ci	(default)

euckr	(EUC-KR	Korean)	collations:

euckr_bin

euckr_korean_ci	(default)

gb2312	(GB2312	Simplified	Chinese)	collations:

gb2312_bin

gb2312_chinese_ci	(default)

gbk	(GBK	Simplified	Chinese)	collations:

gbk_bin

gbk_chinese_ci	(default)

sjis	(Shift-JIS	Japanese)	collations:

sjis_bin

sjis_japanese_ci	(default)

tis620	(TIS620	Thai)	collations:

tis620_bin

tis620_thai_ci	(default)

ujis	(EUC-JP	Japanese)	collations:

ujis_bin

ujis_japanese_ci	(default)

10.9.7.1.	The	cp932	Character	Set

Why	is	cp932	needed?

In	MySQL,	the	sjis	character	set	corresponds	to	the	Shift_JIS	character	set
defined	by	IANA,	which	supports	JIS	X0201	and	JIS	X0208	characters.	(See
http://www.iana.org/assignments/character-sets.)

However,	the	meaning	of	“SHIFT	JIS”	as	a	descriptive	term	has	become	very
vague	and	it	often	includes	the	extensions	to	Shift_JIS	that	are	defined	by
various	vendors.

For	example,	“SHIFT	JIS”	used	in	Japanese	Windows	environments	is	a
Microsoft	extension	of	Shift_JIS	and	its	exact	name	is	Microsoft	Windows
Codepage	:	932	or	cp932.	In	addition	to	the	characters	supported	by	Shift_JIS,
cp932	supports	extension	characters	such	as	NEC	special	characters,	NEC
selected	—	IBM	extended	characters,	and	IBM	extended	characters.

Many	Japanese	users	have	experienced	problems	using	these	extension
characters.	These	problems	stem	from	the	following	factors:

MySQL	automatically	converts	character	sets.

Character	sets	are	converted	via	Unicode	(ucs2).

The	sjis	character	set	does	not	support	the	conversion	of	these	extension
characters.

There	are	several	conversion	rules	from	so-called	“SHIFT	JIS”	to	Unicode,
and	some	characters	are	converted	to	Unicode	differently	depending	on	the

http://www.iana.org/assignments/character-sets

conversion	rule.	MySQL	supports	only	one	of	these	rules	(described	later).

The	MySQL	cp932	character	set	is	designed	to	solve	these	problems.	It	is
available	as	of	MySQL	5.0.3.

Because	MySQL	supports	character	set	conversion,	it	is	important	to	separate
IANA	Shift_JIS	and	cp932	into	two	different	character	sets	because	they
provide	different	conversion	rules.

How	does	cp932	differ	from	sjis?

The	cp932	character	set	differs	from	sjis	in	the	following	ways:

cp932	supports	NEC	special	characters,	NEC	selected	—	IBM	extended
characters,	and	IBM	selected	characters.

Some	cp932	characters	have	two	different	code	points,	both	of	which
convert	to	the	same	Unicode	code	point.	When	converting	from	Unicode
back	to	cp932,	one	of	the	code	points	must	be	selected.	For	this	“round	trip
conversion,”	the	rule	recommended	by	Microsoft	is	used.	(See
http://support.microsoft.com/kb/170559/EN-US/.)

The	conversion	rule	works	like	this:

If	the	character	is	in	both	JIS	X	0208	and	NEC	special	characters,	use
the	code	point	of	JIS	X	0208.

If	the	character	is	in	both	NEC	special	characters	and	IBM	selected
characters,	use	the	code	point	of	NEC	special	characters.

If	the	character	is	in	both	IBM	selected	characters	and	NEC	selected
—	IBM	extended	characters,	use	the	code	point	of	IBM	extended
characters.

The	table	shown	at
http://www.microsoft.com/globaldev/reference/dbcs/932.htm	provides
information	about	the	Unicode	values	of	cp932	characters.	For	cp932	table
entries	with	characters	under	which	a	four-digit	number	appears,	the
number	represents	the	corresponding	Unicode	(ucs2)	encoding.	For	table
entries	with	an	underlined	two-digit	value	appears,	there	is	a	range	of	cp932

http://support.microsoft.com/kb/170559/EN-US/
http://www.microsoft.com/globaldev/reference/dbcs/932.htm

character	values	that	begin	with	those	two	digits.	Clicking	such	a	table
entry	takes	you	to	a	page	that	displays	the	Unicode	value	for	each	of	the
cp932	characters	that	begin	with	those	digits.

The	following	links	are	of	special	interest.	They	correspond	to	the
encodings	for	the	following	sets	of	characters:

NEC	special	characters:

http://www.microsoft.com/globaldev/reference/dbcs/932/932_87.htm

NEC	selected	—	IBM	extended	characters:

http://www.microsoft.com/globaldev/reference/dbcs/932/932_ED.htm

http://www.microsoft.com/globaldev/reference/dbcs/932/932_EE.htm

IBM	selected	characters:

http://www.microsoft.com/globaldev/reference/dbcs/932/932_FA.htm

http://www.microsoft.com/globaldev/reference/dbcs/932/932_FB.htm

http://www.microsoft.com/globaldev/reference/dbcs/932/932_FC.htm

Starting	from	version	5.0.3,	cp932	supports	conversion	of	user-defined
characters	in	combination	with	eucjpms,	and	solves	the	problems	with
sjis/ujis	conversion.	For	details,	please	refer	to
http://www.opengroup.or.jp/jvc/cde/sjis-euc-e.html.

For	some	characters,	conversion	to	and	from	ucs2	is	different	for	sjis	and
cp932.	The	following	tables	illustrate	these	differences.

Conversion	to	ucs2:

sjis/cp932	Value sjis	->	ucs2	Conversion cp932	->	ucs2	Conversion
5C 005C 005C
7E 007E 007E
815C 2015 2015
815F 005C FF3C
8160 301C FF5E
8161 2016 2225

http://www.microsoft.com/globaldev/reference/dbcs/932/932_87.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_ED.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_EE.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FA.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FB.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FC.htm
http://www.opengroup.or.jp/jvc/cde/sjis-euc-e.html

817C 2212 FF0D
8191 00A2 FFE0
8192 00A3 FFE1
81CA 00AC FFE2

Conversion	from	ucs2:

ucs2	value ucs2	->	sjis	Conversion ucs2	->	cp932	Conversion
005C 815F 5C
007E 7E 7E
00A2 8191 3F
00A3 8192 3F
00AC 81CA 3F
2015 815C 815C
2016 8161 3F
2212 817C 3F
2225 3F 8161
301C 8160 3F
FF0D 3F 817C
FF3C 3F 815F
FF5E 3F 8160
FFE0 3F 8191
FFE1 3F 8192
FFE2 3F 81CA

Users	of	any	Japanese	character	sets	should	be	aware	that	using	--character-
set-client-handshake	(or	--skip-character-set-client-handshake)	has	an
important	effect.	See	Section	5.2.1,	“mysqld	Command	Options”.

10.10.	FAQ:	MySQL	Chinese,	Japanese,	and	Korean
Character	Sets

This	Frequently-Asked-Questions	section	comes	from	the	experiences	of
MySQL's	Support	and	Development	groups,	after	handling	many	enquiries	about
CJK	(Chinese	Japanese	Korean)	issues.

10.10.1.	SELECT	shows	non-Latin	characters	as	"?"s.	Why?

You	inserted	CJK	characters	with	INSERT,	but	when	you	do	a	SELECT,	they	all
look	like	“?”.	It	usually	is	a	setting	in	MySQL	that	doesn't	match	the	settings	for
the	application	program	or	the	operating	system.	These	are	common
troubleshooting	steps:

Find	out:	what	version	do	you	have?	The	statement	SELECT	VERSION();
will	tell	you.	This	FAQ	is	for	MySQL	version	5,	so	some	of	the	answers
here	will	not	apply	to	you	if	you	have	version	4.0	or	4.1.

Find	out:	what	character	set	is	the	database	column	really	in?	Too
frequently,	people	think	that	the	character	set	will	be	the	same	as	the
server's	set	(false),	or	the	set	used	for	display	purposes	(false).	Make	sure,
by	saying	SHOW	CREATE	TABLE	tablename,	or	better	yet	by	saying	this:

SELECT	character_set_name,	collation_name

FROM			information_schema.columns	WHERE		table_schema	=	your_database_name

AND				table_name	=	your_table_name

AND				column_name	=	your_column_name;

Find	out:	what	is	the	hexadecimal	value?

SELECT	HEX(your_column_name)

FROM	your_table_name;

If	you	see	3F,	then	that	really	is	the	encoding	for	?,	so	no	wonder	you	see
“?”.	Probably	this	happened	because	of	a	problem	converting	a	particular
character	from	your	client	character	set	to	the	target	character	set.

Find	out:	is	a	literal	round	trip	possible,	that	is,	if	you	select	“literal”	(or
“_introducer	hexadecimal-value”)	do	you	get	“literal”	as	a	result?	For

example,	with	the	Japanese	Katakana	Letter	Pe,	which	looks	like	' ,	and
which	exists	in	all	CJK	character	sets,	and	which	has	the	code	point	value
(hexadecimal	coding)	0x30da,	enter:

SELECT	''	AS	``;									/*	or	SELECT	_ucs2	0x30da;	*/

If	the	result	doesn't	look	like	,	a	round	trip	failed.	For	bug	reports,	we	might
ask	people	to	follow	up	with	SELECT	hex(''); .	Then	we	can	see	whether
the	client	encoding	is	right.

Find	out:	is	it	the	browser	or	application?	Just	use	mysql	(the	MySQL	client
program,	which	on	Windows	will	be	mysql.exe).	If	mysql	displays
correctly	but	your	application	doesn't,	then	your	problem	is	probably
“Settings”,	but	consult	also	the	question	about	“Troubles	with	Access	(or
Perl)	(or	PHP)	(etc.)”	much	later	in	this	FAQ.

To	find	your	settings,	the	statement	you	need	here	is	SHOW	VARIABLES.	For
example:

mysql>	SHOW	VARIABLES	LIKE	'char%';

+--------------------------+--+

|	Variable_name												|	Value																																		|

+--------------------------+--+

|	character_set_client					|	utf8																																			|

|	character_set_connection	|	utf8																																			|

|	character_set_database			|	latin1																																	|

|	character_set_filesystem	|	binary																																	|

|	character_set_results				|	utf8																																			|

|	character_set_server					|	latin1																																	|

|	character_set_system					|	utf8																																			|

|	character_sets_dir							|	/usr/local/mysql/share/mysql/charsets/	|

+--------------------------+--+

8	rows	in	set	(0.03	sec)

The	above	are	typical	character-set	settings	for	an	international-oriented
client	(notice	the	use	of	utf8	Unicode)	connected	to	a	server	in	the	West
(latin1	is	a	West	Europe	character	set	and	a	default	for	MySQL).

Although	Unicode	(usually	the	utf8	variant	on	Unix,	usually	the	ucs2
variant	on	Windows)	is	better	than	“latin”,	it's	often	not	what	your	operating
system	utilities	support	best.	Many	Windows	users	find	that	a	Microsoft
character	set,	such	as	cp932	for	Japanese	Windows,	is	what's	suitable.

If	you	can't	control	the	server	settings,	and	you	have	no	idea	what	your
underlying	computer	is	about,	then	try	changing	to	a	common	character	set
for	the	country	that	you're	in	(euckr	=	Korea,	gb2312	or	gbk	=	People's
Republic	of	China,	big5	=	other	China,	sjis	or	ujis	or	cp932	or	eucjpms	=
Japan,	ucs2	or	utf8	=	anywhere).	Usually	it	is	only	necessary	to	change	the
client	and	connection	and	results	settings,	and	there	is	a	simple	statement
which	changes	all	three	at	once,	namely	SET	NAMES.	For	example:

SET	NAMES	'big5';

Once	you	get	the	correct	setting,	you	can	make	it	permanent	by	editing
my.cnf	or	my.ini.	For	example	you	might	add	lines	looking	like	this:

[mysqld]

character-set-server=big5

[client]

default-character-set=big5

10.10.2.	Troubles	with	GB	character	sets	(Chinese)

MySQL	supports	the	two	common	variants	of	the	GB	(“Guojia	Biaozhun”	or
“National	Standard”)	character	sets	which	are	official	in	the	People's	Republic	of
China:	gb2312	and	gbk.	Sometimes	people	try	to	insert	gbk	characters	into
gb2312,	and	it	works	most	of	the	time	because	gbk	is	a	superset	of	gb2312.	But
eventually	they	try	to	insert	a	rarer	Chinese	character	and	it	doesn't	work.
(Example:	bug	#16072	in	our	bugs	database,	http://bugs.mysql.com/bug.php?
id=16072).	So	we'll	try	to	clarify	here	exactly	what	characters	are	legitimate	in
gb2312	or	gbk,	with	reference	to	the	official	documents.	Please	check	these
references	before	reporting	gb2312	or	gbk	bugs.	We	now	have	a	graphic	listing
of	the	gbk	characters,	currently	on	the	site	of	Mr	Alexander	Barkov	(MySQL's
principal	programmer	for	character	set	issues).	The	chart	is	in	order	according	to
the	gb2312_chinese_ci	collation:
http://d.udm.net/bar/~bar/charts/gb2312_chinese_ci.html.	MySQL's	gbk	is	in
reality	“Microsoft	code	page	936”.	This	differs	from	the	official	gbk	for
characters	A1A4	(middle	dot),	A1AA	(em	dash),	A6E0-A6F5,	and	A8BB-A8C0.	For	a
listing	of	the	differences,	see	http://recode.progiciels-bpi.ca/showfile.html?
name=dist/libiconv/gbk.h.	For	a	listing	of	gbk/Unicode	mappings,	see
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT
For	MySQL's	listing	of	gbk	characters,	see
http://d.udm.net/bar/~bar/charts/gbk_chinese_ci.html.

http://bugs.mysql.com/bug.php?id=16072
http://d.udm.net/bar/~bar/charts/gb2312_chinese_ci.html
http://recode.progiciels-bpi.ca/showfile.html?name=dist/libiconv/gbk.h
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT
http://d.udm.net/bar/~bar/charts/gbk_chinese_ci.html

10.10.3.	Troubles	with	big5	character	set	(Chinese)

MySQL	supports	the	Big5	character	set	which	is	common	in	Hong	Kong	and	the
Republic	of	China	(Taiwan).	MySQL's	big5	is	in	reality	“Microsoft	code	page
950”,	which	is	very	similar	to	the	original	big5	character	set.	This	is	a	recent
change,	starting	with	MySQL	version	4.1.16	/	5.0.16.	We	made	the	change	as	a
result	of	a	bug	report,	bug	#12476	in	our	bugs	database,
http://bugs.mysql.com/bug.php?id=12476	(title:	“Some	big5	codes	are	still
missing	...”).	For	example,	the	following	statements	work	in	the	current	version
of	MySQL,	but	not	in	old	versions:

mysql>	create	table	big5	(big5	char(1)	character	set	big5);

Query	OK,	0	rows	affected	(0.13	sec)

mysql>	insert	into	big5	values	(0xf9dc);

Query	OK,	1	row	affected	(0.00	sec)

mysql>	select	*	from	big5;

+------+

|	big5	|

+------+

|			|

+------+

1	row	in	set	(0.02	sec)

There	is	a	feature	request	for	adding	HKSCS	extensions	(bug	#13577	in	our
bugs	database,	http://bugs.mysql.com/bug.php?id=13577).	People	who	need	the
extension	may	find	the	suggested	patch	for	bug	#13577	is	of	interest.

10.10.4.	Troubles	with	character-set	conversions	(Japanese)

MySQL	supports	the	sjis,	ujis,	cp932,	and	eucjpms	character	sets,	as	well	as
Unicode.	A	common	need	is	to	convert	between	character	sets.	For	example,
there	might	be	a	Unix	server	(typically	with	sjis	or	ujis)	and	a	Windows	client
(typically	with	cp932).	But	conversions	can	seem	to	fail.	Here's	why.	In	this
conversion	table,	the	ucs2	column	is	the	source,	and	the
sjis/cp932/ujis/eucjpms	columns	are	the	destination,	that	is,	what	the
hexadecimal	result	would	be	if	we	used	CONVERT(ucs2)	or	if	we	assigned	a	ucs2
column	containing	the	value	to	an	sjis/cp932/ujis/eucjpms	column.

character	name									ucs2	sjis		cp932	ujis			eucjpms

--------------									----	----		----		----			-------

http://bugs.mysql.com/bug.php?id=12476
http://bugs.mysql.com/bug.php?id=13577)

BROKEN	BAR													00A6			3F				3F		8FA2C3			3F

FULLWIDTH	BROKEN	BAR			FFE4			3F		FA55				3F			8FA2

YEN	SIGN															00A5			3F				3F				20					3F

FULLWIDTH	YEN	SIGN					FFE5	818F		818F		A1EF					3F

TILDE																		007E			7E				7E				7E					7E

OVERLINE															203E			3F				3F				20					3F

HORIZONTAL	BAR									2015	815C		815C		A1BD			A1BD

EM	DASH																2014			3F				3F				3F					3F

REVERSE	SOLIDUS								005C	815F				5C				5C					5C

FULLWIDTH	""											FF3C			3F		815F				3F			A1C0

WAVE	DASH														301C	8160				3F		A1C1					3F

FULLWIDTH	TILDE								FF5E			3F		8160				3F			A1C1

DOUBLE	VERTICAL	LINE			2016	8161				3F		A1C2					3F

PARALLEL	TO												2225			3F		8161				3F			A1C2

MINUS	SIGN													2212	817C				3F		A1DD					3F

FULLWIDTH	HYPHEN-MINUS	FF0D			3F		817C				3F			A1DD

CENT	SIGN														00A2	8191				3F		A1F1					3F

FULLWIDTH	CENT	SIGN				FFE0			3F		8191				3F			A1F1

POUND	SIGN													00A3	8192				3F		A1F2					3F

FULLWIDTH	POUND	SIGN			FFE1			3F		8192				3F			A1F2

NOT	SIGN															00AC	81CA				3F		A2CC					3F

FULLWIDTH	NOT	SIGN					FFE2			3F		81CA				3F			A2CC

For	example,	consider	this	extract	from	the	table:

																							ucs2	sjis	cp932

																							----	----	-----

NOT	SIGN															00AC	81CA				3F

FULLWIDTH	NOT	SIGN					FFE2			3F		81CA

It	means	“for	NOT	SIGN	which	is	Unicode	U+00AC,	MySQL	converts	to	sjis
code	point	0x81CA	and	to	cp932	code	point	3F”.	(3F	is	question	mark	(“?”)	and
is	what	we	always	use	when	we	can't	convert.)	Now,	what	should	we	do	if	we
want	to	convert	sjis	81CA	to	cp932?	Our	answer	is:	“?”.	There	are	serious
complaints	about	this,	many	people	would	prefer	a	“loose”	conversion,	so	that
81CA	(NOT	SIGN)	in	sjis	becomes	81CA	(FULLWIDTH	NOT	SIGN)	in	cp932.	We

are	considering	changing.

10.10.5.	The	Great	Yen	Sign	problem	(Japanese)

In	SJIS	the	code	for	Yen	Sign	(¥)	is	5C.	In	SJIS	the	code	for	Reverse	Solidus	(\)
is	5C.	Since	the	above	statements	are	contradictory,	confusion	often	results.	Well,
to	put	it	more	seriously,	some	versions	of	Japanese	character	sets	(both	sjis	and
euc)	have	treated	5C	as	a	reverse	solidus,	also	known	as	a	backslash,	and	others
have	treated	it	as	a	yen	sign.	There's	nothing	we	can	do,	except	take	sides:
MySQL	follows	only	one	version	of	the	JIS	(Japanese	Industrial	Standards)
standard	description,	and	5C	is	Reverse	Solidus,	always.	Should	we	make	a
separate	character	set	where	5C	is	Yen	Sign,	as	another	DBMS	(Oracle)	does?
We	haven't	decided.	Certainly	not	in	version	5.1	or	5.2.	But	if	people	keep
complaining	about	The	Great	Yen	Sign	Problem,	that's	one	possible	solution.

10.10.6.	Troubles	with	euckr	character	set	(Korean)

MySQL	supports	the	euckr	(Extended	Unix	Code	Korea)	character	set	which	is
common	in	South	Korea.	In	theory,	problems	could	arise	because	there	have
been	several	versions	of	this	character	set.	So	far,	only	one	problem	has	been
noted,	for	Korea's	currency	symbol.	We	use	the	“ASCII”	variant	of	EUC-KR,	in
which	the	code	point	0x5c	is	REVERSE	SOLIDUS,	that	is	\,	instead	of	the	“KS-
Roman”	variant	of	EUC-KR,	in	which	the	code	point	0x5c	is	WON	SIGN,	that
is	“₩”.	You	can't	convert	Unicode	U+20A9	WON	SIGN	to	euckr:

mysql>	SELECT	CONVERT('₩'	USING	euckr)	AS	euckr,

->	HEX(CONVERT('₩'	USING	euckr))	AS	hexeuckr;

+-------+----------+

|	euckr	|	hexeuckr	|

+-------+----------+

|	?					|	3F							|

+-------+----------+

1	row	in	set	(0.00	sec)

MySQL's	graphic	Korean	chart	is	here:
http://d.udm.net/bar/~bar/charts/euckr_korean_ci.html.

10.10.7.	The	“Data	truncated”	message

For	illustration,	we'll	make	a	table	with	one	Unicode	(ucs2)	column	and	one

http://d.udm.net/bar/~bar/charts/euckr_korean_ci.html

Chinese	(gb2312)	column.

mysql>	CREATE	TABLE	ch

				->	(ucs2	CHAR(3)	CHARACTER	SET	ucs2,

				->	gb2312	CHAR(3)	CHARACTER	SET	gb2312);

Query	OK,	0	rows	affected	(0.05	sec)	

We'll	try	to	place	the	rare	character		in	both	columns.

mysql>	INSERT	INTO	ch	VALUES	('AB','AB');

Query	OK,	1	row	affected,	1	warning	(0.00	sec)	

Ah,	there's	a	warning.	Let's	see	what	it	is.

mysql>	SHOW	WARNINGS;

+---------+------+---+

|	Level			|	Code	|	Message																																					|

+---------+------+---+

|	Warning	|	1265	|	Data	truncated	for	column	'gb2312'	at	row	1	|

+---------+------+---+

1	row	in	set	(0.00	sec)

So	it's	a	warning	about	the	gb2312	column	only.

mysql>	SELECT	ucs2,HEX(ucs2),gb2312,HEX(gb2312)	FROM	ch;

+-------+--------------+--------+-------------+

|	ucs2		|	HEX(ucs2)				|	gb2312	|	HEX(gb2312)	|

+-------+--------------+--------+-------------+

|	AB	|	00416C4C0042	|	A?B				|	413F42						|

+-------+--------------+--------+-------------+

1	row	in	set	(0.00	sec)

There	are	several	things	that	need	explanation	here.

1.	 The	fact	that	it's	a	“warning”	rather	than	an	“error”	is	characteristic	of
MySQL.	We	like	to	try	to	do	what	we	can,	to	get	the	best	fit,	rather	than
give	up.

2.	 The		character	isn't	in	the	gb2312	character	set.	We	described	that	problem
earlier.

3.	 Admittedly	the	message	is	misleading.	We	didn't	“truncate”	in	this	case,	we
replaced	with	a	question	mark.	We've	had	a	complaint	about	this	message
(bug	#9337).	But	until	we	come	up	with	something	better,	just	accept	that

error/warning	code	2165	can	mean	a	variety	of	things.

4.	 With	SQL_MODE=TRADITIONAL,	there	would	be	an	error	message,	but	instead
of	error	2165	you	would	see:	ERROR	1406	(22001):	Data	too	long	for
column	'gb2312'	at	row	1.

10.10.8.	Troubles	with	Access,	Perl,	PHP,	etc.

You	can't	get	things	to	look	right	with	your	special	program	for	a	GUI	front	end
or	browser?	Get	a	direct	connection	to	the	server	(with	mysql	on	Unix	or	with
mysql.exe	on	Windows)	and	try	the	same	query	there.	If	mysql	is	okay,	then	the
trouble	is	probably	that	your	application	interface	needs	some	initializing.	Use
mysql	to	tell	you	what	character	set(s)	it	uses,	by	saying	SHOW	VARIABLES	LIKE
'char%';.	If	it's	Access,	you're	probably	connecting	with	MyODBC.	So	you'll
want	to	check	out	the	Reference	Manual	page	for	configuring	an	ODBC	DSN,
and	pay	attention	particularly	to	the	illustrations	for	“SQL	command	on
connect”.	You	should	enter	SET	NAMES	'big5'	(supposing	that	you	use	big5)
(you	don't	need	a	;	here).	If	it's	ASP,	you	might	need	to	add	SET	NAMES	in	the
code.	Here	is	an	example	that	has	worked	in	the	past:

<%

Session.CodePage=0

Dim	strConnection

Dim	Conn

strConnection="driver={MySQL	ODBC	3.51	Driver};server=yourserver;uid=yourusername;"	\	

								&	"pwd=yourpassword;database=yourdatabase;stmt=SET	NAMES	'big5';"

Set	Conn	=	Server.CreateObject(“ADODB.Connection”)	

Conn.Open	strConnection

%>	

If	it's	PHP,	here's	a	slightly	different	user	suggestion:

<?php	

		$link	=	mysql_connect($host,$usr,$pwd);	

		mysql_select_db($db);	

		if	(mysql_error())	{	print	"Database	ERROR:	"	.	mysql_error();	}	

		mysql_query("SET	CHARACTER	SET	utf8",	$link);	

		mysql_query("SET	NAMES	'utf8'",	$link);	

?>

In	this	case,	the	tipper	used	SET	CHARACTER	SET	statement	to	change
character_set_client	and	character_set_result,	and	used	SET	NAMES	to
change	character_set_client	and	character_set_connection	and

character_set_results.	So	actually	the	SET	CHARACTER	SET	statement	is
redundant.	(Incidentally,	MySQL	people	encourage	the	use	of	the	mysqli
extension,	rather	than	the	mysql	example	that	this	example	uses.)	Another	thing
to	check	with	PHP	is	the	browser	assumptions.	Sometimes	a	meta	tag	change	in
the	heading	area	suffices,	for	example:	<meta	http-equiv="Content-Type"
content="text/html;	charset=utf-8">

For	Connector/J	tips,	see	the	manual	section	in	the	Connectors	chapter	titled
“Using	Character	Sets	and	Unicode”.

10.10.9.	How	can	I	get	old	MySQL	4.0	behaviour	back?

In	the	old	days,	with	MySQL	Version	4.0,	there	was	a	single	“global”	character
set	for	both	server	and	client	sides,	and	the	decision	was	made	by	the	server
administrator.	We	changed	that	starting	with	MySQL	Version	4.1.	What	happens
now	is	a	“handshake”.	The	MySQL	Reference	Manual	describes	it	thus:

When	a	client	connects,	it	sends	to	the	server	the	name	of	the	character	set
that	it	wants	to	use.	The	server	uses	the	name	to	set	the
character_set_client,	character_set_results,	and
character_set_connection	system	variables.	In	effect,	the	server
performs	a	SET	NAMES	operation	using	the	character	set	name.

The	effect	of	this	is:	you	can't	control	the	client	character	set	by	saying	mysqld	-
-character-set-server=utf8.	But	some	Asian	customers	said	that	they	don't
like	that,	they	want	the	MySQL	4.0	behaviour.	So	we	added	a	mysqld	switch,	--
character-set-client-handshake,	which	(and	this	is	the	interesting	part)	can
be	turned	off	with	--skip-character-set-client-handshake.	If	you	start
mysqld	with	--skip-character-set-client-handshake,	then	the	behaviour	is
like	this:	When	a	client	connects,	it	sends	to	the	server	the	name	of	the	character
set	that	it	wants	to	use.	The	server	ignores	it!	Here	is	an	illustration	with	the
handshake	switch	on	or	off.	Pretend	that	your	favourite	server	character	set	is
latin1	(of	course	that's	unlikely	in	a	CJK	area	but	it's	MySQL's	default	if	there's
no	my.ini	or	my.cnf	file).	Pretend	that	the	client	operates	with	utf8	because
that's	what	the	client's	operating	system	supports.	Start	the	server	with	a	default
character	set,	latin1:

mysqld	--character-set-server=latin1

Start	the	client	with	a	default	character	set,	utf8:

mysql	--default-character-set=utf8

Show	what	the	current	settings	are:

mysql>	SHOW	VARIABLES	LIKE	'char%';

+--------------------------+--+

|	Variable_name												|	Value																																		|

+--------------------------+--+

|	character_set_client					|	utf8																																			|

|	character_set_connection	|	utf8																																			|

|	character_set_database			|	latin1																																	|

|	character_set_filesystem	|	binary																																	|

|	character_set_results				|	utf8																																			|

|	character_set_server					|	latin1																																	|

|	character_set_system					|	utf8																																			|

|	character_sets_dir							|	/usr/local/mysql/share/mysql/charsets/	|

+--------------------------+--+

8	rows	in	set	(0.01	sec)

Stop	the	client.	Stop	the	server	with	mysqladmin.	Start	the	server	again	but	this
time	say	“skip	the	handshake”:

mysqld	--character-set-server=utf8	--skip-character-set-client-handshake

Start	the	client	with	a	default	character	set,	utf8,	again.	Show	what	the	current
settings	are,	again:

mysql>	SHOW	VARIABLES	LIKE	'char%';

+--------------------------+--+

|	Variable_name												|	Value																																		|

+--------------------------+--+

|	character_set_client					|	latin1																																	|

|	character_set_connection	|	latin1																																	|

|	character_set_database			|	latin1																																	|

|	character_set_filesystem	|	binary																																	|

|	character_set_results				|	latin1																																	|

|	character_set_server					|	latin1																																	|

|	character_set_system					|	utf8																																			|

|	character_sets_dir							|	/usr/local/mysql/share/mysql/charsets/	|

+--------------------------+--+

8	rows	in	set	(0.01	sec)

As	you	can	see	by	comparing	the	SHOW	VARIABLES	results,	the	server	ignores	the
client's	initial	settings	if	the	--skip-character-set-client-handshake	is	used.

10.10.10.	Why	do	some	LIKE	and	FULLTEXT	searches	fail?

There	is	a	simple	problem	with	LIKE	searches	on	BINARY	and	BLOB	columns:	we
need	to	know	the	end	of	a	character.	With	multi-byte	character	sets,	different
characters	might	have	different	octet	lengths.	For	example,	in	utf8,	A	requires
one	byte	but		requires	three	bytes.	Illustration:

								+-------------------------+---------------------------+

								|	octet_length(_utf8	'A')	|	octet_length(_utf8	'')	|

								+-------------------------+---------------------------+

								|																							1	|																									3	|

								+-------------------------+---------------------------+

								1	row	in	set	(0.00	sec)

						

If	we	don't	know	where	the	first	character	ends,	then	we	don't	know	where	the
second	character	begins,	and	even	simple-looking	searches	like	LIKE	'_A%'	will
fail.	The	solution	is	to	use	a	regular	CJK	character	set	in	the	first	place,	or
convert	to	a	CJK	character	character	set	before	comparing.	Incidentally,	this	is
one	reason	why	MySQL	cannot	allow	encodings	of	nonexistent	characters:	It
must	be	strict	about	rejecting	bad	input,	or	it	won't	know	where	characters	end.
There	is	a	simple	problem	with	FULLTEXT:	we	need	to	know	the	end	of	a	word.
With	Western	writing	this	is	rarely	a	problem	because	there	are	spaces	between
words.	With	Asian	writing	this	is	not	the	case.	We	could	use	half-good	solutions,
like	saying	that	all	Han	characters	represent	words,	or	depending	on	(Japanese)
changes	from	Katakana	to	Hiragana	which	are	due	to	grammatical	endings.	But
the	only	good	solution	requires	a	dictionary,	and	we	haven't	found	a	good	open-
source	dictionary.

10.10.11.	What	CJK	character	sets	are	available?

The	list	of	CJK	character	sets	may	vary	depending	on	version.	For	example,	the
eucjpms	character	set	is	a	recent	addition.	But	the	language	name	appears	in	the
DESCRIPTION	column	for	every	entry	in	information_schema.character_sets.
Therefore,	to	get	a	current	list	of	all	the	non-Unicode	CJK	character	sets,	say:

mysql>	SELECT	character_set_name,	description

				->	FROM	information_schema.character_sets

				->	WHERE	description	LIKE	'%Chinese%'

				->	OR				description	LIKE	'%Japanese%'

				->	OR				description	LIKE	'%Korean%'

				->	ORDER	BY	character_set_name;

+--------------------+---------------------------+

|	character_set_name	|	description															|

+--------------------+---------------------------+

|	big5															|	Big5	Traditional	Chinese		|

|	cp932														|	SJIS	for	Windows	Japanese	|

|	eucjpms												|	UJIS	for	Windows	Japanese	|

|	euckr														|	EUC-KR	Korean													|

|	gb2312													|	GB2312	Simplified	Chinese	|

|	gbk																|	GBK	Simplified	Chinese				|

|	sjis															|	Shift-JIS	Japanese								|

|	ujis															|	EUC-JP	Japanese											|

+--------------------+---------------------------+

8	rows	in	set	(0.01	sec)

10.10.12.	Is	character	X	available	in	all	character	sets?

The	majority	of	everyday-use	Chinese/Japanese	characters	(simplified	Chinese
and	basic	non-halfwidth	Kana	Japanese)	appear	in	all	CJK	character	sets.	Here	is
a	stored	procedure	which	accepts	a	UCS-2	Unicode	character,	converts	it	to	all
other	character	sets,	and	displays	the	results	in	hexadecimal.

DELIMITER	//

CREATE	PROCEDURE	p_convert	(ucs2_char	CHAR(1)	CHARACTER	SET	ucs2)

BEGIN

CREATE	TABLE	tj

													(ucs2	CHAR(1)	character	set	ucs2,

														utf8	CHAR(1)	character	set	utf8,

														big5	CHAR(1)	character	set	big5,

														cp932	CHAR(1)	character	set	cp932,

														eucjpms	CHAR(1)	character	set	eucjpms,

														euckr	CHAR(1)	character	set	euckr,

														gb2312	CHAR(1)	character	set	gb2312,

														gbk	CHAR(1)	character	set	gbk,

														sjis	CHAR(1)	character	set	sjis,

														ujis	CHAR(1)	character	set	ujis);

INSERT	INTO	tj	(ucs2)	VALUES	(ucs2_char);

UPDATE	tj	SET	utf8=ucs2,

														big5=ucs2,

														cp932=ucs2,

														eucjpms=ucs2,

														euckr=ucs2,

														gb2312=ucs2,

														gbk=ucs2,

														sjis=ucs2,

														ujis=ucs2;

/*	If	there's	a	conversion	problem,	UPDATE	will	produce	a	warning.	*/

SELECT	hex(ucs2)	AS	ucs2,

							hex(utf8)	AS	utf8,

							hex(big5)	AS	big5,

							hex(cp932)	AS	cp932,

							hex(eucjpms)	AS	eucjpms,

							hex(euckr)	AS	euckr,

							hex(gb2312)	AS	gb2312,

							hex(gbk)	AS	gbk,

							hex(sjis)	AS	sjis,

							hex(ujis)	AS	ujis

FROM	tj;

DROP	TABLE	tj;

END//

The	input	can	be	any	single	ucs2	character,	or	it	can	be	the	code	point	value
(hexadecimal	representation)	of	that	character.	Here's	an	example	of	what
P_CONVERT()	can	do.	An	earlier	answer	said	that	the	character	“Katakana	Letter
Pe”	appears	in	all	CJK	character	sets.	We	know	that	the	code	point	value	of
Katakana	Letter	Pe	is	0x30da.	(By	the	way,	we	got	the	name	from	Unicode's	list
of	ucs2	encodings	and	names:
http://www.unicode.org/Public/UNIDATA/UnicodeData.txt.)	So	we'll	say:

mysql>	CALL	P_CONVERT(0x30da)//

+------+--------+------+-------+---------+-------+--------+------+------+------+

|	ucs2	|	utf8			|	big5	|	cp932	|	eucjpms	|	euckr	|	gb2312	|	gbk		|	sjis	|	ujis	|

+------+--------+------+-------+---------+-------+--------+------+------+------+

|	30DA	|	E3839A	|	C772	|	8379		|	A5DA				|	ABDA		|	A5DA			|	A5DA	|	8379	|	A5DA	|

+------+--------+------+-------+---------+-------+--------+------+------+------+

1	row	in	set	(0.04	sec)

Since	none	of	the	column	values	is	3F,	we	know	that	every	conversion	worked.

10.10.13.	Strings	don't	sort	correctly	in	Unicode	(I)

Sometimes	people	observe	that	the	result	of	a	utf8_unicode_ci	or
ucs2_unicode_ci	search	or	ORDER	BY	sort	is	not	what	they	think	a	native	would
expect.	Although	we	never	rule	out	the	chance	that	there	is	a	bug,	we	have	found
in	the	past	that	people	are	not	correctly	reading	the	standard	table	of	weights	for
the	Unicode	Collation	Algorithm.	So,	here's	how	to	check	whether	we're	using

http://www.unicode.org/Public/UNIDATA/UnicodeData.txt

the	right	collation.	The	correct	table	for	MySQL	is	this	one:
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt.	This	is	different
from	the	first	table	you	will	find	by	navigating	from	the	unicode.org	home
page.	MySQL	deliberately	uses	the	older	4.0.0	“allkeys”	table,	instead	of	the
current	4.1.0	table.	We	are	very	wary	about	changing	ordering	which	affects
indexes.	Here	is	an	example	of	a	problem	that	we	handled	recently,	for	a
complaint	in	our	bugs	database,	http://bugs.mysql.com/bug.php?id=16526:

mysql>	CREATE	TABLE	tj	(s1	CHAR(1)	CHARACTER	SET	utf8	COLLATE	utf8_unicode_ci);

Query	OK,	0	rows	affected	(0.05	sec)

mysql>	INSERT	INTO	tj	VALUES	(''),('');

Query	OK,	2	rows	affected	(0.00	sec)

Records:	2		Duplicates:	0		Warnings:	0

mysql>	SELECT	*	FROM	tj	WHERE	s1	=	'';

+------+

|	s1			|

+------+

|			|

|			|

+------+

2	rows	in	set	(0.00	sec)

If	your	eyes	are	sharp,	you'll	see	that	the	character	in	the	first	result	row	isn't	the
one	that	we	searched	for.	Why	did	MySQL	retrieve	it?	First	we	look	for	the
Unicode	code	point	value,	which	is	possible	by	reading	the	hexadecimal	number
for	the	ucs2	version	of	the	characters:

mysql>	SELECT	s1,HEX(CONVERT(s1	USING	ucs2))	FROM	tj;

+------+-----------------------------+

|	s1			|	HEX(CONVERT(s1	USING	ucs2))	|

+------+-----------------------------+

|			|	304C																								|

|			|	304B																								|

+------+-----------------------------+

2	rows	in	set	(0.03	sec)

Now	let's	search	for	304B	and	304C	in	the	4.0.0	allkeys	table.	We'll	find	these
lines:

304B		;	[.1E57.0020.000E.304B]	#	HIRAGANA	LETTER	KA

304C		;	[.1E57.0020.000E.304B][.0000.0140.0002.3099]	#	HIRAGANA	LETTER	GA;	QQCM

The	official	Unicode	names	(following	the	“#”	mark)	are	informative;	they	tell

http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://bugs.mysql.com/bug.php?id=16526

us	the	Japanese	syllabary	(Hiragana),	the	informal	classification	(letter	instead	of
digit	or	punctuation),	and	the	Western	identifier	(KA	or	GA,	which	happen	to	be
voiced/unvoiced	components	of	the	same	letter	pair).	More	importantly,	the
Primary	Weight	(the	first	hexadecimal	number	inside	the	square	brackets)	is
1E57	on	both	lines.	For	comparisons	in	both	searching	and	sorting,	MySQL	pays
attention	only	to	the	Primary	Weight,	it	ignores	all	the	other	numbers.	So	now
we	know	that	we're	sorting		and		correctly	according	to	the	Unicode
specification.	If	we	wanted	to	distinguish	them,	we'd	have	to	use	a	non-Unicode-
Collation-Algorithm	collation	(utf8_unicode_bin	or	utf8_general_ci),	or
compare	the	HEX()	values,	or	say	ORDER	BY	CONVERT(s1	USING	sjis).	Being
correct	“according	to	Unicode”	isn't	enough,	of	course:	the	person	who
submitted	the	bug	was	equally	correct.	We	plan	to	add	another	collation	for
Japanese	according	to	the	JIS	X	4061	standard,	where	voiced/unvoiced	letters
like	KA/GA	are	distinguishable	for	ordering	purposes.

10.10.14.	Strings	don't	sort	correctly	in	Unicode	(II)

You're	using	Unicode	(ucs2	or	utf8),	and	you	know	what	the	Unicode	sort	order
is	(see	the	previous	question	and	answer),	but	MySQL	still	seems	to	sort	your
table	wrong?	This	might	be	easy.

mysql>	SHOW	CREATE	TABLE	t\G

********************	1.	row	******************

Table:	t

Create	Table:	CREATE	TABLE	`t`	(

`s1`	char(1)	CHARACTER	SET	ucs2	DEFAULT	NULL

)	ENGINE=MyISAM	DEFAULT	CHARSET=latin1

1	row	in	set	(0.00	sec)

Hmm,	the	character	set	looks	okay.	Let's	look	at	the	information_schema	for
this	column.

mysql>	SELECT	column_name,	character_set_name,	collation_name

				->	FROM	information_schema.columns

				->	WHERE	column_name	=	's1'

				->	AND	table_name	=	't';

+-------------+--------------------+-----------------+

|	column_name	|	character_set_name	|	collation_name		|

+-------------+--------------------+-----------------+

|	s1										|	ucs2															|	ucs2_general_ci	|

+-------------+--------------------+-----------------+

1	row	in	set	(0.01	sec)

Oops,	the	collation	is	ucs2_general_ci	instead	of	ucs2_unicode_ci!	Here's
why:

mysql>	SHOW	CHARSET	LIKE	'ucs2%';

+---------+---------------+-------------------+--------+

|	Charset	|	Description			|	Default	collation	|	Maxlen	|

+---------+---------------+-------------------+--------+

|	ucs2				|	UCS-2	Unicode	|	ucs2_general_ci			|						2	|

+---------+---------------+-------------------+--------+

1	row	in	set	(0.00	sec)

For	ucs2	and	utf8,	the	“general”	collation	is	the	default.	To	specify	that	you
wanted	a	“unicode”	collation,	you	should	have	specified	COLLATE
ucs2_unicode_ci.

10.10.15.	My	supplementary	characters	get	rejected

Right.	MySQL	doesn't	support	supplementary	characters	(characters	which	need
more	than	3	bytes	with	UTF-8).	We	support	only	what	Unicode	calls	the	Basic
Multilingual	Plane	/	Plane	0.	Only	a	few	very	rare	Han	characters	are
supplementary;	support	for	them	is	uncommon.	This	has	led	to	bug	#12600
(http://bugs.mysql.com/bug.php?id=12600)	which	we	rejected	as	“not	a	bug”.
With	utf8,	we	must	truncate	an	input	string	when	we	encounter	bytes	that	we
don't	understand.	Otherwise,	we	wouldn't	know	how	long	the	bad	multi-byte
character	is.	A	workaround	is:	if	you	use	ucs2	instead	of	utf8,	then	the	bad
characters	will	change	to	question	marks,	but	there	will	be	no	truncation.	Or
change	the	data	type	to	BLOB	or	BINARY,	which	have	no	validity	checking.	In	our
bugs	database,	bug	#14052	(http://bugs.mysql.com/bug.php?id=14052)	is	a
feature	request	for	Wikipedia,	asking	us	to	support	supplementary	characters
extending	ucs2	as	well	as	utf8.

10.10.16.	Shouldn't	it	be	CJKV	(V	for	Vietnamese)?

No.	The	term	CJKV	(Chinese	Japanese	Korean	Vietnamese)	refers	to	character
sets	which	contain	Han	(originally	Chinese)	characters.	MySQL	has	no	plan	to
support	the	old	Vietnamese	script	using	Han	characters.	MySQL	does	of	course
support	the	modern	Vietnamese	script	with	Western	characters.	Another	question
that	has	come	up	(once)	is	a	request	for	specialized	Vietnamese	collation,	see
http://bugs.mysql.com/bug.php?id=4745.	We	might	do	something	about	it
someday,	if	many	more	requests	arise.

http://bugs.mysql.com/bug.php?id=12600
http://bugs.mysql.com/bug.php?id=14052
http://bugs.mysql.com/bug.php?id=4745

10.10.17.	Will	MySQL	fix	any	CJK	problems	in	version	5.1?

Yes.	We're	changing	the	names	of	files	and	directories.	Here's	an	example,	using
mysql	as	root	under	Linux:

1.	 Create	a	table	with	a	name	containing	a	Han	character:

mysql>	CREATE	TABLE	tab_	(s1	INT);

Query	OK,	0	rows	affected	(0.07	sec)

2.	 Find	out	where	MySQL	stores	database	files:

mysql>	SHOW	VARIABLES	LIKE	'datadir';

+---------------+-----------------------+

|	Variable_name	|	Value																	|

+---------------+-----------------------+

|	datadir							|	/usr/local/mysql/var/	|

+---------------+-----------------------+

1	row	in	set	(0.00	sec)

3.	 Look	at	the	directory	to	see	the	MyISAM	table	files:

#	cd	/usr/local/mysql/var/dba

#	dir	tab_*

-rw-rw----		1	root	root				0	2006-05-16	10:22	tab_@696e.MYD

-rw-rw----		1	root	root	1024	2006-05-16	10:22	tab_@696e.MYI

-rw-rw----		1	root	root	8556	2006-05-16	10:22	tab_@696e.frm

Notice	that	MySQL	has	converted	the	Han	character	to	@	+	(Unicode	value	of
Han	character),	that	is,	to	a	purely	ASCII	representation.	This	solves	an	old
problem,	that	database	files	weren't	portable,	because	some	computers	wouldn't
allow		in	a	file	name.	Conversion	to	the	new	file	names	will	be	automatic	when
you	upgrade	to	version	5.1.	This	should	take	care	of	bug	#6313	in	our	bugs
database,	http://bugs.mysql.com/bug.php?id=6313.

10.10.18.	When	will	MySQL	translate	the	manual	again?

A	Beijing-based	group	has	produced	a	Simplified	Chinese	version	for	us	under
contract.	It's	complete	and	can	be	found	on	http://dev.mysql.com/doc/#chinese-
5.1.	It's	up	to	date	as	of	version	5.1.2.	The	Japanese	manual	can	be	downloaded
from	http://dev.mysql.com/doc/#japanese-4.1.	It	is	still	for	version	4.1.

http://bugs.mysql.com/bug.php?id=6313
http://dev.mysql.com/doc/#chinese-5.1
http://dev.mysql.com/doc/#japanese-4.1

10.10.19.	Whom	can	I	talk	to?

Check	http://dev.mysql.com/user-groups/	to	see	if	there	is	a	MySQL	user	group
near	you.	If	there	isn't:	why	not	start	one	yourself?	To	contact	a	sales	engineer	in
MySQL	KK's	Japan	office:

Tel:	+81(0)3-5326-3133

Fax:	+81(0)3-5326-3001

Email:	dsaito@mysql.com

To	see	feature	requests	about	language	issues:

Go	to	http://bugs.mysql.com.

Click	Advanced	Search.

In	the	Severity	dropdown	box,	click	S4	(Feature	Request).

In	the	list	box	beside	Category,	click	Character	Sets.

Click	the	Search	button.

You	can	post	CJK	questions,	or	see	previous	answers,	on	MySQL's	“Character
Sets,	Collation,	Unicode”	forum:	http://forums.mysql.com/list.php?103.	MySQL
plans	to	add	native-language	forums	on	http://forums.mysql.com/	very	soon.

http://dev.mysql.com/user-groups/
http://bugs.mysql.com
http://forums.mysql.com/list.php?103
http://forums.mysql.com/

Chapter	11.	Data	Types

Table	of	Contents

11.1.	Data	Type	Overview
11.1.1.	Overview	of	Numeric	Types
11.1.2.	Overview	of	Date	and	Time	Types
11.1.3.	Overview	of	String	Types
11.1.4.	Data	Type	Default	Values

11.2.	Numeric	Types
11.3.	Date	and	Time	Types

11.3.1.	The	DATETIME,	DATE,	and	TIMESTAMP	Types
11.3.2.	The	TIME	Type
11.3.3.	The	YEAR	Type
11.3.4.	Y2K	Issues	and	Date	Types

11.4.	String	Types
11.4.1.	The	CHAR	and	VARCHAR	Types
11.4.2.	The	BINARY	and	VARBINARY	Types
11.4.3.	The	BLOB	and	TEXT	Types
11.4.4.	The	ENUM	Type
11.4.5.	The	SET	Type

11.5.	Data	Type	Storage	Requirements
11.6.	Choosing	the	Right	Type	for	a	Column
11.7.	Using	Data	Types	from	Other	Database	Engines

MySQL	supports	a	number	of	data	types	in	several	categories:	numeric	types,
date	and	time	types,	and	string	(character)	types.	This	chapter	first	gives	an
overview	of	these	data	types,	and	then	provides	a	more	detailed	description	of
the	properties	of	the	types	in	each	category,	and	a	summary	of	the	data	type
storage	requirements.	The	initial	overview	is	intentionally	brief.	The	more
detailed	descriptions	later	in	the	chapter	should	be	consulted	for	additional
information	about	particular	data	types,	such	as	the	allowable	formats	in	which
you	can	specify	values.

MySQL	also	supports	extensions	for	handing	spatial	data.	Chapter	16,	Spatial
Extensions,	provides	information	about	these	data	types.

Several	of	the	data	type	descriptions	use	these	conventions:

	M	indicates	the	maximum	display	width	for	integer	types.	For	floating-point
and	fixed-point	types,	M	is	the	total	number	of	digits.	For	string	types,	M	is
the	maximum	length.	The	maximum	allowable	value	of	M	depends	on	the
data	type.

	D	applies	to	floating-point	and	fixed-point	types	and	indicates	the	number
of	digits	following	the	decimal	point.	The	maximum	possible	value	is	30,
but	should	be	no	greater	than	M–2.

	Square	brackets	(‘[’	and	‘]’)	indicate	optional	parts	of	type	definitions.

11.1.	Data	Type	Overview

11.1.1.	Overview	of	Numeric	Types

A	summary	of	the	numeric	data	types	follows.	For	additional	information,	see
Section	11.2,	“Numeric	Types”.	Storage	requirements	are	given	in	Section	11.5,
“Data	Type	Storage	Requirements”.

M	indicates	the	maximum	display	width.	The	maximum	legal	display	width	is
255.	Display	width	is	unrelated	to	the	storage	size	or	range	of	values	a	type	can
contain,	as	described	in	Section	11.2,	“Numeric	Types”.

If	you	specify	ZEROFILL	for	a	numeric	column,	MySQL	automatically	adds	the
UNSIGNED	attribute	to	the	column.

SERIAL	is	an	alias	for	BIGINT	UNSIGNED	NOT	NULL	AUTO_INCREMENT	UNIQUE.

SERIAL	DEFAULT	VALUE	in	the	definition	of	an	integer	column	is	an	alias	for	NOT
NULL	AUTO_INCREMENT	UNIQUE.

Warning:	When	you	use	subtraction	between	integer	values	where	one	is	of	type
UNSIGNED,	the	result	is	unsigned	unless	the	NO_UNSIGNED_SUBTRACTION	SQL
mode	is	enabled.	See	Section	12.8,	“Cast	Functions	and	Operators”.

	BIT[(M)]

A	bit-field	type.	M	indicates	the	number	of	bits	per	value,	from	1	to	64.	The
default	is	1	if	M	is	omitted.

This	data	type	was	added	in	MySQL	5.0.3	for	MyISAM,	and	extended	in	5.0.5
to	MEMORY,	InnoDB,	and	BDB.	Before	5.0.3,	BIT	is	a	synonym	for
TINYINT(1).

	TINYINT[(M)]	[UNSIGNED]	[ZEROFILL]

A	very	small	integer.	The	signed	range	is	-128	to	127.	The	unsigned	range
is	0	to	255.

	BOOL,	BOOLEAN

These	types	are	synonyms	for	TINYINT(1).	A	value	of	zero	is	considered
false.	Non-zero	values	are	considered	true:

mysql>	SELECT	IF(0,	'true',	'false');

+------------------------+

|	IF(0,	'true',	'false')	|

+------------------------+

|	false																		|

+------------------------+

mysql>	SELECT	IF(1,	'true',	'false');

+------------------------+

|	IF(1,	'true',	'false')	|

+------------------------+

|	true																			|

+------------------------+

mysql>	SELECT	IF(2,	'true',	'false');

+------------------------+

|	IF(2,	'true',	'false')	|

+------------------------+

|	true																			|

+------------------------+

However,	the	values	TRUE	and	FALSE	are	merely	aliases	for	1	and	0,
respectively,	as	shown	here:

mysql>	SELECT	IF(0	=	FALSE,	'true',	'false');

+--------------------------------+

|	IF(0	=	FALSE,	'true',	'false')	|

+--------------------------------+

|	true																											|

+--------------------------------+

mysql>	SELECT	IF(1	=	TRUE,	'true',	'false');

+-------------------------------+

|	IF(1	=	TRUE,	'true',	'false')	|

+-------------------------------+

|	true																										|

+-------------------------------+

mysql>	SELECT	IF(2	=	TRUE,	'true',	'false');

+-------------------------------+

|	IF(2	=	TRUE,	'true',	'false')	|

+-------------------------------+

|	false																									|

+-------------------------------+

mysql>	SELECT	IF(2	=	FALSE,	'true',	'false');

+--------------------------------+

|	IF(2	=	FALSE,	'true',	'false')	|

+--------------------------------+

|	false																										|

+--------------------------------+

The	last	two	statements	display	the	results	shown	because	2	is	equal	to
neither	1	nor	0.

We	intend	to	implement	full	boolean	type	handling,	in	accordance	with
standard	SQL,	in	a	future	MySQL	release.

	SMALLINT[(M)]	[UNSIGNED]	[ZEROFILL]

A	small	integer.	The	signed	range	is	-32768	to	32767.	The	unsigned	range	is
0	to	65535.

	MEDIUMINT[(M)]	[UNSIGNED]	[ZEROFILL]

A	medium-sized	integer.	The	signed	range	is	-8388608	to	8388607.	The
unsigned	range	is	0	to	16777215.

	INT[(M)]	[UNSIGNED]	[ZEROFILL]

A	normal-size	integer.	The	signed	range	is	-2147483648	to	2147483647.
The	unsigned	range	is	0	to	4294967295.

	INTEGER[(M)]	[UNSIGNED]	[ZEROFILL]

This	type	is	a	synonym	for	INT.

	BIGINT[(M)]	[UNSIGNED]	[ZEROFILL]

A	large	integer.	The	signed	range	is	-9223372036854775808	to
9223372036854775807.	The	unsigned	range	is	0	to	18446744073709551615.

Some	things	you	should	be	aware	of	with	respect	to	BIGINT	columns:

	All	arithmetic	is	done	using	signed	BIGINT	or	DOUBLE	values,	so	you

should	not	use	unsigned	big	integers	larger	than	9223372036854775807
(63	bits)	except	with	bit	functions!	If	you	do	that,	some	of	the	last
digits	in	the	result	may	be	wrong	because	of	rounding	errors	when
converting	a	BIGINT	value	to	a	DOUBLE.

MySQL	can	handle	BIGINT	in	the	following	cases:

When	using	integers	to	store	large	unsigned	values	in	a	BIGINT
column.

In	MIN(col_name)	or	MAX(col_name),	where	col_name	refers	to	a
BIGINT	column.

When	using	operators	(+,	-,	*,	and	so	on)	where	both	operands
are	integers.

You	can	always	store	an	exact	integer	value	in	a	BIGINT	column	by
storing	it	using	a	string.	In	this	case,	MySQL	performs	a	string-to-
number	conversion	that	involves	no	intermediate	double-precision
representation.

The	-,	+,	and	*	operators	use	BIGINT	arithmetic	when	both	operands
are	integer	values.	This	means	that	if	you	multiply	two	big	integers	(or
results	from	functions	that	return	integers),	you	may	get	unexpected
results	when	the	result	is	larger	than	9223372036854775807.

	FLOAT[(M,D)]	[UNSIGNED]	[ZEROFILL]

A	small	(single-precision)	floating-point	number.	Allowable	values	are
-3.402823466E+38	to	-1.175494351E-38,	0,	and	1.175494351E-38	to
3.402823466E+38.	These	are	the	theoretical	limits,	based	on	the	IEEE
standard.	The	actual	range	might	be	slightly	smaller	depending	on	your
hardware	or	operating	system.

M	is	the	total	number	of	decimal	digits	and	D	is	the	number	of	digits
following	the	decimal	point.	If	M	and	D	are	omitted,	values	are	stored	to	the
limits	allowed	by	the	hardware.	A	single-precision	floating-point	number	is
accurate	to	approximately	7	decimal	places.

UNSIGNED,	if	specified,	disallows	negative	values.

Using	FLOAT	might	give	you	some	unexpected	problems	because	all
calculations	in	MySQL	are	done	with	double	precision.	See	Section	A.5.7,
“Solving	Problems	with	No	Matching	Rows”.

	DOUBLE[(M,D)]	[UNSIGNED]	[ZEROFILL]

A	normal-size	(double-precision)	floating-point	number.	Allowable	values
are	-1.7976931348623157E+308	to	-2.2250738585072014E-308,	0,	and
2.2250738585072014E-308	to	1.7976931348623157E+308.	These	are	the
theoretical	limits,	based	on	the	IEEE	standard.	The	actual	range	might	be
slightly	smaller	depending	on	your	hardware	or	operating	system.

M	is	the	total	number	of	decimal	digits	and	D	is	the	number	of	digits
following	the	decimal	point.	If	M	and	D	are	omitted,	values	are	stored	to	the
limits	allowed	by	the	hardware.	A	double-precision	floating-point	number	is
accurate	to	approximately	15	decimal	places.

UNSIGNED,	if	specified,	disallows	negative	values.

	DOUBLE	PRECISION[(M,D)]	[UNSIGNED]	[ZEROFILL],	REAL[(M,D)]
[UNSIGNED]	[ZEROFILL]

These	types	are	synonyms	for	DOUBLE.	Exception:	If	the	REAL_AS_FLOAT
SQL	mode	is	enabled,	REAL	is	a	synonym	for	FLOAT	rather	than	DOUBLE.

	FLOAT(p)	[UNSIGNED]	[ZEROFILL]

A	floating-point	number.	p	represents	the	precision	in	bits,	but	MySQL	uses
this	value	only	to	determine	whether	to	use	FLOAT	or	DOUBLE	for	the
resulting	data	type.	If	p	is	from	0	to	24,	the	data	type	becomes	FLOAT	with
no	M	or	D	values.	If	p	is	from	25	to	53,	the	data	type	becomes	DOUBLE	with
no	M	or	D	values.	The	range	of	the	resulting	column	is	the	same	as	for	the
single-precision	FLOAT	or	double-precision	DOUBLE	data	types	described
earlier	in	this	section.

FLOAT(p)	syntax	is	provided	for	ODBC	compatibility.

	DECIMAL[(M[,D])]	[UNSIGNED]	[ZEROFILL]

For	MySQL	5.0.3	and	above:

A	packed	“exact”	fixed-point	number.	M	is	the	total	number	of	decimal
digits	(the	precision)	and	D	is	the	number	of	digits	after	the	decimal	point
(the	scale).	The	decimal	point	and	(for	negative	numbers)	the	‘-’	sign	are
not	counted	in	M.	If	D	is	0,	values	have	no	decimal	point	or	fractional	part.
The	maximum	number	of	digits	(M)	for	DECIMAL	is	65	(64	from	5.0.3	to
5.0.5).	The	maximum	number	of	supported	decimals	(D)	is	30.	If	D	is
omitted,	the	default	is	0.	If	M	is	omitted,	the	default	is	10.

UNSIGNED,	if	specified,	disallows	negative	values.

All	basic	calculations	(+,	-,	*,	/)	with	DECIMAL	columns	are	done	with	a
precision	of	65	digits.

Before	MySQL	5.0.3:

An	unpacked	fixed-point	number.	Behaves	like	a	CHAR	column;	“unpacked”
means	the	number	is	stored	as	a	string,	using	one	character	for	each	digit	of
the	value.	M	is	the	total	number	of	digits	and	D	is	the	number	of	digits	after
the	decimal	point.	The	decimal	point	and	(for	negative	numbers)	the	‘-’
sign	are	not	counted	in	M,	although	space	for	them	is	reserved.	If	D	is	0,
values	have	no	decimal	point	or	fractional	part.	The	maximum	range	of
DECIMAL	values	is	the	same	as	for	DOUBLE,	but	the	actual	range	for	a	given
DECIMAL	column	may	be	constrained	by	the	choice	of	M	and	D.	If	D	is
omitted,	the	default	is	0.	If	M	is	omitted,	the	default	is	10.

UNSIGNED,	if	specified,	disallows	negative	values.

The	behavior	used	by	the	server	for	DECIMAL	columns	in	a	table	depends	on
the	version	of	MySQL	used	to	create	the	table.	If	your	server	is	from
MySQL	5.0.3	or	higher,	but	you	have	DECIMAL	columns	in	tables	that	were
created	before	5.0.3,	the	old	behavior	still	applies	to	those	columns.	To
convert	the	tables	to	the	newer	DECIMAL	format,	dump	them	with
mysqldump	and	reload	them.

	DEC[(M[,D])]	[UNSIGNED]	[ZEROFILL],	NUMERIC[(M[,D])]	[UNSIGNED]
[ZEROFILL],	FIXED[(M[,D])]	[UNSIGNED]	[ZEROFILL]

These	types	are	synonyms	for	DECIMAL.	The	FIXED	synonym	is	available	for
compatibility	with	other	database	systems.

11.1.2.	Overview	of	Date	and	Time	Types

A	summary	of	the	temporal	data	types	follows.	For	additional	information,	see
Section	11.3,	“Date	and	Time	Types”.	Storage	requirements	are	given	in
Section	11.5,	“Data	Type	Storage	Requirements”.

For	the	DATETIME	and	DATE	range	descriptions,	“supported”	means	that	although
earlier	values	might	work,	there	is	no	guarantee.

The	SUM()	and	AVG()	aggregate	functions	do	not	work	with	temporal	values.
(They	convert	the	values	to	numbers,	which	loses	the	part	after	the	first	non-
numeric	character.)	To	work	around	this	problem,	you	can	convert	to	numeric
units,	perform	the	aggregate	operation,	and	convert	back	to	a	temporal	value.
Examples:

SELECT	SEC_TO_TIME(SUM(TIME_TO_SEC(time_col)))	FROM	tbl_name;

SELECT	FROM_DAYS(SUM(TO_DAYS(date_col)))	FROM	tbl_name;

	DATE

A	date.	The	supported	range	is	'1000-01-01'	to	'9999-12-31'.	MySQL
displays	DATE	values	in	'YYYY-MM-DD'	format,	but	allows	you	to	assign
values	to	DATE	columns	using	either	strings	or	numbers.

	DATETIME

A	date	and	time	combination.	The	supported	range	is	'1000-01-01
00:00:00'	to	'9999-12-31	23:59:59'.	MySQL	displays	DATETIME	values
in	'YYYY-MM-DD	HH:MM:SS'	format,	but	allows	you	to	assign	values	to
DATETIME	columns	using	either	strings	or	numbers.

	TIMESTAMP

A	timestamp.	The	range	is	'1970-01-01	00:00:00'	to	partway	through	the
year	2037.

A	TIMESTAMP	column	is	useful	for	recording	the	date	and	time	of	an	INSERT
or	UPDATE	operation.	By	default,	the	first	TIMESTAMP	column	in	a	table	is
automatically	set	to	the	date	and	time	of	the	most	recent	operation	if	you	do
not	assign	it	a	value	yourself.	You	can	also	set	any	TIMESTAMP	column	to	the

current	date	and	time	by	assigning	it	a	NULL	value.	Variations	on	automatic
initialization	and	update	properties	are	described	in	Section	11.3.1.1,
“TIMESTAMP	Properties	as	of	MySQL	4.1”.

A	TIMESTAMP	value	is	returned	as	a	string	in	the	format	'YYYY-MM-DD
HH:MM:SS'	with	a	display	width	fixed	at	19	characters.	To	obtain	the	value
as	a	number,	you	should	add	+0	to	the	timestamp	column.

Note:	The	TIMESTAMP	format	that	was	used	prior	to	MySQL	4.1	is	not
supported	in	MySQL	5.0;	see	MySQL	3.23,	4.0,	4.1	Reference	Manual	for
information	regarding	the	old	format.

	TIME

A	time.	The	range	is	'-838:59:59'	to	'838:59:59'.	MySQL	displays	TIME
values	in	'HH:MM:SS'	format,	but	allows	you	to	assign	values	to	TIME
columns	using	either	strings	or	numbers.

	YEAR[(2|4)]

A	year	in	two-digit	or	four-digit	format.	The	default	is	four-digit	format.	In
four-digit	format,	the	allowable	values	are	1901	to	2155,	and	0000.	In	two-
digit	format,	the	allowable	values	are	70	to	69,	representing	years	from
1970	to	2069.	MySQL	displays	YEAR	values	in	YYYY	format,	but	allows	you
to	assign	values	to	YEAR	columns	using	either	strings	or	numbers.

11.1.3.	Overview	of	String	Types

A	summary	of	the	string	data	types	follows.	For	additional	information,	see
Section	11.4,	“String	Types”.	Storage	requirements	are	given	in	Section	11.5,
“Data	Type	Storage	Requirements”.

In	some	cases,	MySQL	may	change	a	string	column	to	a	type	different	from	that
given	in	a	CREATE	TABLE	or	ALTER	TABLE	statement.	See	Section	13.1.5.1,
“Silent	Column	Specification	Changes”.

In	MySQL	4.1	and	up,	string	data	types	include	some	features	that	you	may	not
have	encountered	in	working	with	versions	of	MySQL	prior	to	4.1:

MySQL	interprets	length	specifications	in	character	column	definitions	in

character	units.	(Before	MySQL	4.1,	column	lengths	were	interpreted	in
bytes.)	This	applies	to	CHAR,	VARCHAR,	and	the	TEXT	types.

Column	definitions	for	many	string	data	types	can	include	attributes	that
specify	the	character	set	or	collation	of	the	column.	These	attributes	apply
to	the	CHAR,	VARCHAR,	the	TEXT	types,	ENUM,	and	SET	data	types:

The	CHARACTER	SET	attribute	specifies	the	character	set,	and	the
COLLATE	attribute	specifies	a	collation	for	the	the	character	set.	For
example:

CREATE	TABLE	t

(

				c1	VARCHAR(20)	CHARACTER	SET	utf8,

				c2	TEXT	CHARACTER	SET	latin1	COLLATE	latin1_general_cs

);

This	table	definition	creates	a	column	named	c1	that	has	a	character	set
of	utf8	with	the	default	collation	for	that	character	set,	and	a	column
named	c2	that	has	a	character	set	of	latin1	and	a	case-sensitive
collation.

CHARSET	is	a	synonym	for	CHARACTER	SET.

The	ASCII	attribute	is	shorthand	for	CHARACTER	SET	latin1.

The	UNICODE	attribute	is	shorthand	for	CHARACTER	SET	ucs2.

The	BINARY	attribute	is	shorthand	for	specifying	the	binary	collation	of
the	column	character	set.	In	this	case,	sorting	and	comparison	are
based	on	numeric	character	values.	(Before	MySQL	4.1,	BINARY
caused	a	column	to	store	binary	strings	and	sorting	and	comparison
were	based	on	numeric	byte	values.	This	is	the	same	as	using	character
values	for	single-byte	character	sets,	but	not	for	multi-byte	character
sets.)

Character	column	sorting	and	comparison	are	based	on	the	character	set
assigned	to	the	column.	(Before	MySQL	4.1,	sorting	and	comparison	were
based	on	the	collation	of	the	server	character	set.)	For	the	CHAR,	VARCHAR,
TEXT,	ENUM,	and	SET	data	types,	you	can	declare	a	column	with	a	binary
collation	or	the	BINARY	attribute	to	cause	sorting	and	comparison	to	use	the

underlying	character	code	values	rather	than	a	lexical	ordering.

Chapter	10,	Character	Set	Support,	provides	additional	information	about	use	of
character	sets	in	MySQL.

	[NATIONAL]	CHAR(M)	[CHARACTER	SET	charset_name]	[COLLATE
collation_name]

A	fixed-length	string	that	is	always	right-padded	with	spaces	to	the
specified	length	when	stored.	M	represents	the	column	length.	The	range	of
M	is	0	to	255	characters.

Note:	Trailing	spaces	are	removed	when	CHAR	values	are	retrieved.

Before	MySQL	5.0.3,	a	CHAR	column	with	a	length	specification	greater
than	255	is	converted	to	the	smallest	TEXT	type	that	can	hold	values	of	the
given	length.	For	example,	CHAR(500)	is	converted	to	TEXT,	and
CHAR(200000)	is	converted	to	MEDIUMTEXT.	This	is	a	compatibility	feature.
However,	this	conversion	causes	the	column	to	become	a	variable-length
column,	and	also	affects	trailing-space	removal.

In	MySQL	5.0.3	and	later,	if	you	attempt	to	set	the	length	of	a	CHAR	greater
than	255,	the	CREATE	TABLE	or	ALTER	TABLE	statement	in	which	this	is	done
fails	with	an	error:

mysql>	CREATE	TABLE	c1	(col1	INT,	col2	CHAR(500));

ERROR	1074	(42000):	Column	length	too	big	for	column	'col'	(max	=	255);

use	BLOB	or	TEXT	instead

mysql>	SHOW	CREATE	TABLE	c1;

ERROR	1146	(42S02):	Table	'test.c1'	doesn't	exist

CHAR	is	shorthand	for	CHARACTER.	NATIONAL	CHAR	(or	its	equivalent	short
form,	NCHAR)	is	the	standard	SQL	way	to	define	that	a	CHAR	column	should
use	some	predefined	character	set.	MySQL	4.1	and	up	uses	utf8	as	this
predefined	character	set.	Section	10.3.6,	“National	Character	Set”.

The	CHAR	BYTE	data	type	is	an	alias	for	the	BINARY	data	type.	This	is	a
compatibility	feature.

MySQL	allows	you	to	create	a	column	of	type	CHAR(0).	This	is	useful
primarily	when	you	have	to	be	compliant	with	old	applications	that	depend

on	the	existence	of	a	column	but	that	do	not	actually	use	its	value.	CHAR(0)
is	also	quite	nice	when	you	need	a	column	that	can	take	only	two	values:	A
column	that	is	defined	as	CHAR(0)	NULL	occupies	only	one	bit	and	can	take
only	the	values	NULL	and	''	(the	empty	string).

CHAR	[CHARACTER	SET	charset_name]	[COLLATE	collation_name]

This	type	is	a	synonym	for	CHAR(1).

	[NATIONAL]	VARCHAR(M)	[CHARACTER	SET	charset_name]	[COLLATE
collation_name]

A	variable-length	string.	M	represents	the	maximum	column	length.	In
MySQL	5.0,	the	range	of	M	is	0	to	255	before	MySQL	5.0.3,	and	0	to	65,535
in	MySQL	5.0.3	and	later.	(The	actual	maximum	length	of	a	VARCHAR	in
MySQL	5.0	is	determined	by	the	maximum	row	size	and	the	character	set
you	use.	The	maximum	effective	length	starting	with	MySQL	5.0.3	is
65,532	bytes.)

Note:	Before	5.0.3,	trailing	spaces	were	removed	when	VARCHAR	values
were	stored,	which	differs	from	the	standard	SQL	specification.

Prior	to	MySQL	5.0.3,	a	VARCHAR	column	with	a	length	specification	greater
than	255	was	converted	to	the	smallest	TEXT	type	that	could	hold	values	of
the	given	length.	For	example,	VARCHAR(500)	was	converted	to	TEXT,	and
VARCHAR(200000)	was	converted	to	MEDIUMTEXT.	This	was	a	compatibility
feature.	However,	this	conversion	affected	trailing-space	removal.

VARCHAR	is	shorthand	for	CHARACTER	VARYING.

VARCHAR	values	are	stored	using	as	many	characters	as	are	needed,	plus	one
byte	to	record	the	length	(two	bytes	for	columns	that	are	declared	with	a
length	longer	than	255).

	BINARY(M)

The	BINARY	type	is	similar	to	the	CHAR	type,	but	stores	binary	byte	strings
rather	than	non-binary	character	strings.

	VARBINARY(M)

The	VARBINARY	type	is	similar	to	the	VARCHAR	type,	but	stores	binary	byte
strings	rather	than	non-binary	character	strings.

	TINYBLOB

A	BLOB	column	with	a	maximum	length	of	255	(28	–	1)	bytes.

	TINYTEXT	[CHARACTER	SET	charset_name]	[COLLATE	collation_name]

A	TEXT	column	with	a	maximum	length	of	255	(28	–	1)	characters.

	BLOB[(M)]

A	BLOB	column	with	a	maximum	length	of	65,535	(216	–	1)	bytes.

An	optional	length	M	can	be	given	for	this	type.	If	this	is	done,	MySQL
creates	the	column	as	the	smallest	BLOB	type	large	enough	to	hold	values	M
bytes	long.

	TEXT[(M)]	[CHARACTER	SET	charset_name]	[COLLATE
collation_name]

A	TEXT	column	with	a	maximum	length	of	65,535	(216	–	1)	characters.

An	optional	length	M	can	be	given	for	this	type.	If	this	is	done,	MySQL
creates	the	column	as	the	smallest	TEXT	type	large	enough	to	hold	values	M
characters	long.

	MEDIUMBLOB

A	BLOB	column	with	a	maximum	length	of	16,777,215	(224	–	1)	bytes.

	MEDIUMTEXT	[CHARACTER	SET	charset_name]	[COLLATE
collation_name]

A	TEXT	column	with	a	maximum	length	of	16,777,215	(224	–	1)	characters.

	LONGBLOB

A	BLOB	column	with	a	maximum	length	of	4,294,967,295	or	4GB	(232	–	1)

bytes.	The	maximum	effective	(permitted)	length	of	LONGBLOB	columns
depends	on	the	configured	maximum	packet	size	in	the	client/server
protocol	and	available	memory.

	LONGTEXT	[CHARACTER	SET	charset_name]	[COLLATE	collation_name]

A	TEXT	column	with	a	maximum	length	of	4,294,967,295	or	4GB	(232	–	1)
characters.	The	maximum	effective	(permitted)	length	of	LONGTEXT	columns
depends	on	the	configured	maximum	packet	size	in	the	client/server
protocol	and	available	memory.

	ENUM('value1','value2',...)	[CHARACTER	SET	charset_name]
[COLLATE	collation_name]

An	enumeration.	A	string	object	that	can	have	only	one	value,	chosen	from
the	list	of	values	'value1',	'value2',	...,	NULL	or	the	special	''	error	value.
An	ENUM	column	can	have	a	maximum	of	65,535	distinct	values.	ENUM
values	are	represented	internally	as	integers.

	SET('value1','value2',...)	[CHARACTER	SET	charset_name]
[COLLATE	collation_name]

A	set.	A	string	object	that	can	have	zero	or	more	values,	each	of	which	must
be	chosen	from	the	list	of	values	'value1',	'value2',	...	A	SET	column	can
have	a	maximum	of	64	members.	SET	values	are	represented	internally	as
integers.

11.1.4.	Data	Type	Default	Values

The	DEFAULT	value	clause	in	a	data	type	specification	indicates	a	default	value
for	a	column.	With	one	exception,	the	default	value	must	be	a	constant;	it	cannot
be	a	function	or	an	expression.	This	means,	for	example,	that	you	cannot	set	the
default	for	a	date	column	to	be	the	value	of	a	function	such	as	NOW()	or
CURRENT_DATE.	The	exception	is	that	you	can	specify	CURRENT_TIMESTAMP	as	the
default	for	a	TIMESTAMP	column.	See	Section	11.3.1.1,	“TIMESTAMP	Properties	as
of	MySQL	4.1”.

Prior	to	MySQL	5.0.2,	if	a	column	definition	includes	no	explicit	DEFAULT	value,
MySQL	determines	the	default	value	as	follows:

If	the	column	can	take	NULL	as	a	value,	the	column	is	defined	with	an	explicit
DEFAULT	NULL	clause.

If	the	column	cannot	take	NULL	as	the	value,	MySQL	defines	the	column	with	an
explicit	DEFAULT	clause,	using	the	implicit	default	value	for	the	column	data
type.	Implicit	defaults	are	defined	as	follows:

For	numeric	types	other	than	integer	types	declared	with	the
AUTO_INCREMENT	attribute,	the	default	is	0.	For	an	AUTO_INCREMENT	column,
the	default	value	is	the	next	value	in	the	sequence.

For	date	and	time	types	other	than	TIMESTAMP,	the	default	is	the	appropriate
“zero”	value	for	the	type.	For	the	first	TIMESTAMP	column	in	a	table,	the
default	value	is	the	current	date	and	time.	See	Section	11.3,	“Date	and	Time
Types”.

For	string	types	other	than	ENUM,	the	default	value	is	the	empty	string.	For
ENUM,	the	default	is	the	first	enumeration	value.

BLOB	and	TEXT	columns	cannot	be	assigned	a	default	value.

As	of	MySQL	5.0.2,	if	a	column	definition	includes	no	explicit	DEFAULT	value,
MySQL	determines	the	default	value	as	follows:

If	the	column	can	take	NULL	as	a	value,	the	column	is	defined	with	an	explicit
DEFAULT	NULL	clause.	This	is	the	same	as	before	5.0.2.

If	the	column	cannot	take	NULL	as	the	value,	MySQL	defines	the	column	with	no
explicit	DEFAULT	clause.	For	data	entry,	if	an	INSERT	or	REPLACE	statement
includes	no	value	for	the	column,	MySQL	handles	the	column	according	to	the
SQL	mode	in	effect	at	the	time:

If	strict	SQL	mode	is	not	enabled,	MySQL	sets	the	column	to	the	implicit
default	value	for	the	column	data	type.

If	strict	mode	is	enabled,	an	error	occurs	for	transactional	tables	and	the
statement	is	rolled	back.	For	non-transactional	tables,	an	error	occurs,	but	if
this	happens	for	the	second	or	subsequent	row	of	a	multiple-row	statement,
the	preceding	rows	will	have	been	inserted.

Suppose	that	a	table	t	is	defined	as	follows:

CREATE	TABLE	t	(i	INT	NOT	NULL);

In	this	case,	i	has	no	explicit	default,	so	in	strict	mode	each	of	the	following
statements	produce	an	error	and	no	row	is	inserted.	When	not	using	strict	mode,
only	the	third	statement	produces	an	error;	the	implicit	default	is	inserted	for	the
first	two	statements,	but	the	third	fails	because	DEFAULT(i)	cannot	produce	a
value:

INSERT	INTO	t	VALUES();

INSERT	INTO	t	VALUES(DEFAULT);

INSERT	INTO	t	VALUES(DEFAULT(i));

See	Section	5.2.5,	“The	Server	SQL	Mode”.

For	a	given	table,	you	can	use	the	SHOW	CREATE	TABLE	statement	to	see	which
columns	have	an	explicit	DEFAULT	clause.

11.2.	Numeric	Types

MySQL	supports	all	of	the	standard	SQL	numeric	data	types.	These	types
include	the	exact	numeric	data	types	(INTEGER,	SMALLINT,	DECIMAL,	and
NUMERIC),	as	well	as	the	approximate	numeric	data	types	(FLOAT,	REAL,	and
DOUBLE	PRECISION).	The	keyword	INT	is	a	synonym	for	INTEGER,	and	the
keyword	DEC	is	a	synonym	for	DECIMAL.	For	numeric	type	storage	requirements,
see	Section	11.5,	“Data	Type	Storage	Requirements”.

As	of	MySQL	5.0.3,	a	BIT	data	type	is	available	for	storing	bit-field	values.
(Before	5.0.3,	MySQL	interprets	BIT	as	TINYINT(1).)	In	MySQL	5.0.3,	BIT	is
supported	only	for	MyISAM.	MySQL	5.0.5	extends	BIT	support	to	MEMORY,
InnoDB,	and	BDB.

As	an	extension	to	the	SQL	standard,	MySQL	also	supports	the	integer	types
TINYINT,	MEDIUMINT,	and	BIGINT.	The	following	table	shows	the	required
storage	and	range	for	each	of	the	integer	types.

Type Bytes Minimum	Value Maximum	Value
	 	 (Signed/Unsigned) (Signed/Unsigned)
TINYINT 1 -128 127

	 	 0 255

SMALLINT 2 -32768 32767

	 	 0 65535

MEDIUMINT 3 -8388608 8388607

	 	 0 16777215

INT 4 -2147483648 2147483647

	 	 0 4294967295

BIGINT 8 -9223372036854775808 9223372036854775807

	 	 0 18446744073709551615

Another	extension	is	supported	by	MySQL	for	optionally	specifying	the	display
width	of	an	integer	value	in	parentheses	following	the	base	keyword	for	the	type
(for	example,	INT(4)).	This	optional	display	width	specification	is	used	to	left-

pad	the	display	of	values	having	a	width	less	than	the	width	specified	for	the
column.

The	display	width	does	not	constrain	the	range	of	values	that	can	be	stored	in	the
column,	nor	the	number	of	digits	that	are	displayed	for	values	having	a	width
exceeding	that	specified	for	the	column.

When	used	in	conjunction	with	the	optional	extension	attribute	ZEROFILL,	the
default	padding	of	spaces	is	replaced	with	zeros.	For	example,	for	a	column
declared	as	INT(5)	ZEROFILL,	a	value	of	4	is	retrieved	as	00004.	Note	that	if	you
store	larger	values	than	the	display	width	in	an	integer	column,	you	may
experience	problems	when	MySQL	generates	temporary	tables	for	some
complicated	joins,	because	in	these	cases	MySQL	assumes	that	the	data	fits	into
the	original	column	width.

Note:	The	ZEROFILL	attribute	is	stripped	when	a	column	is	involved	in
expressions	or	UNION	queries.

All	integer	types	can	have	an	optional	(non-standard)	attribute	UNSIGNED.
Unsigned	values	can	be	used	when	you	want	to	allow	only	non-negative
numbers	in	a	column	and	you	need	a	larger	upper	numeric	range	for	the	column.
For	example,	if	an	INT	column	is	UNSIGNED,	the	size	of	the	column's	range	is	the
same	but	its	endpoints	shift	from	-2147483648	and	2147483647	up	to	0	and
4294967295.

Floating-point	and	fixed-point	types	also	can	be	UNSIGNED.	As	with	integer
types,	this	attribute	prevents	negative	values	from	being	stored	in	the	column.
However,	unlike	the	integer	types,	the	upper	range	of	column	values	remains	the
same.

If	you	specify	ZEROFILL	for	a	numeric	column,	MySQL	automatically	adds	the
UNSIGNED	attribute	to	the	column.

For	floating-point	data	types,	MySQL	uses	four	bytes	for	single-precision	values
and	eight	bytes	for	double-precision	values.

The	FLOAT	and	DOUBLE	data	types	are	used	to	represent	approximate	numeric	data
values.	For	FLOAT	the	SQL	standard	allows	an	optional	specification	of	the
precision	(but	not	the	range	of	the	exponent)	in	bits	following	the	keyword
FLOAT	in	parentheses.	MySQL	also	supports	this	optional	precision	specification,

but	the	precision	value	is	used	only	to	determine	storage	size.	A	precision	from	0
to	23	results	in	a	four-byte	single-precision	FLOAT	column.	A	precision	from	24
to	53	results	in	an	eight-byte	double-precision	DOUBLE	column.

MySQL	allows	a	non-standard	syntax:	FLOAT(M,D)	or	REAL(M,D)	or	DOUBLE
PRECISION(M,D).	Here,	“(M,D)”	means	than	values	are	displayed	with	up	to	M
digits	in	total,	of	which	D	digits	may	be	after	the	decimal	point.	For	example,	a
column	defined	as	FLOAT(7,4)	will	look	like	-999.9999	when	displayed.
MySQL	performs	rounding	when	storing	values,	so	if	you	insert	999.00009	into
a	FLOAT(7,4)	column,	the	approximate	result	is	999.0001.

MySQL	treats	DOUBLE	as	a	synonym	for	DOUBLE	PRECISION	(a	non-standard
extension).	MySQL	also	treats	REAL	as	a	synonym	for	DOUBLE	PRECISION	(a	non-
standard	variation),	unless	the	REAL_AS_FLOAT	SQL	mode	is	enabled.

For	maximum	portability,	code	requiring	storage	of	approximate	numeric	data
values	should	use	FLOAT	or	DOUBLE	PRECISION	with	no	specification	of	precision
or	number	of	digits.

The	DECIMAL	and	NUMERIC	data	types	are	used	to	store	exact	numeric	data	values.
In	MySQL,	NUMERIC	is	implemented	as	DECIMAL.	These	types	are	used	to	store
values	for	which	it	is	important	to	preserve	exact	precision,	for	example	with
monetary	data.

As	of	MySQL	5.0.3,	DECIMAL	and	NUMERIC	values	are	stored	in	binary	format.
Previously,	they	were	stored	as	strings,	with	one	character	used	for	each	digit	of
the	value,	the	decimal	point	(if	the	scale	is	greater	than	0),	and	the	‘-’	sign	(for
negative	numbers).	See	Chapter	21,	Precision	Math.

When	declaring	a	DECIMAL	or	NUMERIC	column,	the	precision	and	scale	can	be
(and	usually	is)	specified;	for	example:

salary	DECIMAL(5,2)

In	this	example,	5	is	the	precision	and	2	is	the	scale.	The	precision	represents	the
number	of	significant	digits	that	are	stored	for	values,	and	the	scale	represents
the	number	of	digits	that	can	be	stored	following	the	decimal	point.	If	the	scale	is
0,	DECIMAL	and	NUMERIC	values	contain	no	decimal	point	or	fractional	part.

Standard	SQL	requires	that	the	salary	column	be	able	to	store	any	value	with

five	digits	and	two	decimals.	In	this	case,	therefore,	the	range	of	values	that	can
be	stored	in	the	salary	column	is	from	-999.99	to	999.99.	MySQL	enforces	this
limit	as	of	MySQL	5.0.3.	Before	5.0.3,	on	the	positive	end	of	the	range,	the
column	could	actually	store	numbers	up	to	9999.99.	(For	positive	numbers,
MySQL	5.0.2	and	earlier	used	the	byte	reserved	for	the	sign	to	extend	the	upper
end	of	the	range.)

In	standard	SQL,	the	syntax	DECIMAL(M)	is	equivalent	to	DECIMAL(M,0).	Similarly,
the	syntax	DECIMAL	is	equivalent	to	DECIMAL(M,0),	where	the	implementation	is
allowed	to	decide	the	value	of	M.	MySQL	supports	both	of	these	variant	forms	of
the	DECIMAL	and	NUMERIC	syntax.	The	default	value	of	M	is	10.

The	maximum	number	of	digits	for	DECIMAL	or	NUMERIC	is	65	(64	from	MySQL
5.0.3	to	5.0.5).	Before	MySQL	5.0.3,	the	maximum	range	of	DECIMAL	and
NUMERIC	values	is	the	same	as	for	DOUBLE,	but	the	actual	range	for	a	given
DECIMAL	or	NUMERIC	column	can	be	constrained	by	the	precision	or	scale	for	a
given	column.	When	such	a	column	is	assigned	a	value	with	more	digits
following	the	decimal	point	than	are	allowed	by	the	specified	scale,	the	value	is
converted	to	that	scale.	(The	precise	behavior	is	operating	system-specific,	but
generally	the	effect	is	truncation	to	the	allowable	number	of	digits.)

As	of	MySQL	5.0.3,	the	BIT	data	type	is	used	to	store	bit-field	values.	A	type	of
BIT(M)	allows	for	storage	of	M-bit	values.	M	can	range	from	1	to	64.

To	specify	bit	values,	b'value'	notation	can	be	used.	value	is	a	binary	value
written	using	zeros	and	ones.	For	example,	b'111'	and	b'10000000'	represent	7
and	128,	respectively.	See	Section	9.1.5,	“Bit-Field	Values”.

If	you	assign	a	value	to	a	BIT(M)	column	that	is	less	than	M	bits	long,	the	value	is
padded	on	the	left	with	zeros.	For	example,	assigning	a	value	of	b'101'	to	a
BIT(6)	column	is,	in	effect,	the	same	as	assigning	b'000101'.

When	asked	to	store	a	value	in	a	numeric	column	that	is	outside	the	data	type's
allowable	range,	MySQL's	behavior	depends	on	the	SQL	mode	in	effect	at	the
time.	For	example,	if	no	restrictive	modes	are	enabled,	MySQL	clips	the	value	to
the	appropriate	endpoint	of	the	range	and	stores	the	resulting	value	instead.
However,	if	the	mode	is	set	to	TRADITIONAL,	MySQL	rejects	a	value	that	is	out	of
range	with	an	error,	and	the	insert	fails,	in	accordance	with	the	SQL	standard.

In	non-strict	mode,	when	an	out-of-range	value	is	assigned	to	an	integer	column,

MySQL	stores	the	value	representing	the	corresponding	endpoint	of	the	column
data	type	range.	If	you	store	256	into	a	TINYINT	or	TINYINT	UNSIGNED	column,
MySQL	stores	127	or	255,	respectively.	When	a	floating-point	or	fixed-point
column	is	assigned	a	value	that	exceeds	the	range	implied	by	the	specified	(or
default)	precision	and	scale,	MySQL	stores	the	value	representing	the
corresponding	endpoint	of	that	range.

Conversions	that	occur	due	to	clipping	when	MySQL	is	not	operating	in	strict
mode	are	reported	as	warnings	for	ALTER	TABLE,	LOAD	DATA	INFILE,	UPDATE,
and	multiple-row	INSERT	statements.	When	MySQL	is	operating	in	strict	mode,
these	statements	fail,	and	some	or	all	of	the	values	will	not	be	inserted	or
changed,	depending	on	whether	the	table	is	a	transactional	table	and	other
factors.	For	details,	see	Section	5.2.5,	“The	Server	SQL	Mode”.

11.3.	Date	and	Time	Types

The	date	and	time	types	for	representing	temporal	values	are	DATETIME,	DATE,
TIMESTAMP,	TIME,	and	YEAR.	Each	temporal	type	has	a	range	of	legal	values,	as
well	as	a	“zero”	value	that	may	be	used	when	you	specify	an	illegal	value	that
MySQL	cannot	represent.	The	TIMESTAMP	type	has	special	automatic	updating
behavior,	described	later	on.	For	temporary	type	storage	requirements,	see
Section	11.5,	“Data	Type	Storage	Requirements”.

Starting	from	MySQL	5.0.2,	MySQL	gives	warnings	or	errors	if	you	try	to	insert
an	illegal	date.	By	setting	the	SQL	mode	to	the	appropriate	value,	you	can
specify	more	exactly	what	kind	of	dates	you	want	MySQL	to	support.	(See
Section	5.2.5,	“The	Server	SQL	Mode”.)	You	can	get	MySQL	to	accept	certain
dates,	such	as	'1999-11-31',	by	using	the	ALLOW_INVALID_DATES	SQL	mode.
(Before	5.0.2,	this	mode	was	the	default	behavior	for	MySQL.)	This	is	useful
when	you	want	to	store	a	“possibly	wrong”	value	which	the	user	has	specified
(for	example,	in	a	web	form)	in	the	database	for	future	processing.	Under	this
mode,	MySQL	verifies	only	that	the	month	is	in	the	range	from	0	to	12	and	that
the	day	is	in	the	range	from	0	to	31.	These	ranges	are	defined	to	include	zero
because	MySQL	allows	you	to	store	dates	where	the	day	or	month	and	day	are
zero	in	a	DATE	or	DATETIME	column.	This	is	extremely	useful	for	applications	that
need	to	store	a	birthdate	for	which	you	do	not	know	the	exact	date.	In	this	case,
you	simply	store	the	date	as	'1999-00-00'	or	'1999-01-00'.	If	you	store	dates
such	as	these,	you	should	not	expect	to	get	correct	results	for	functions	such	as
DATE_SUB()	or	DATE_ADD	that	require	complete	dates.	(If	you	do	not	want	to
allow	zero	in	dates,	you	can	use	the	NO_ZERO_IN_DATE	SQL	mode).

MySQL	also	allows	you	to	store	'0000-00-00'	as	a	“dummy	date”	(if	you	are
not	using	the	NO_ZERO_DATE	SQL	mode).	This	is	in	some	cases	is	more
convenient	(and	uses	less	space	in	data	and	index)	than	using	NULL	values.

Here	are	some	general	considerations	to	keep	in	mind	when	working	with	date
and	time	types:

MySQL	retrieves	values	for	a	given	date	or	time	type	in	a	standard	output
format,	but	it	attempts	to	interpret	a	variety	of	formats	for	input	values	that
you	supply	(for	example,	when	you	specify	a	value	to	be	assigned	to	or
compared	to	a	date	or	time	type).	Only	the	formats	described	in	the

following	sections	are	supported.	It	is	expected	that	you	supply	legal
values.	Unpredictable	results	may	occur	if	you	use	values	in	other	formats.

Dates	containing	two-digit	year	values	are	ambiguous	because	the	century
is	unknown.	MySQL	interprets	two-digit	year	values	using	the	following
rules:

Year	values	in	the	range	70-99	are	converted	to	1970-1999.

Year	values	in	the	range	00-69	are	converted	to	2000-2069.

Although	MySQL	tries	to	interpret	values	in	several	formats,	dates	always
must	be	given	in	year-month-day	order	(for	example,	'98-09-04'),	rather
than	in	the	month-day-year	or	day-month-year	orders	commonly	used
elsewhere	(for	example,	'09-04-98',	'04-09-98').

MySQL	automatically	converts	a	date	or	time	type	value	to	a	number	if	the
value	is	used	in	a	numeric	context	and	vice	versa.

By	default,	when	MySQL	encounters	a	value	for	a	date	or	time	type	that	is
out	of	range	or	otherwise	illegal	for	the	type	(as	described	at	the	beginning
of	this	section),	it	converts	the	value	to	the	“zero”	value	for	that	type.	The
exception	is	that	out-of-range	TIME	values	are	clipped	to	the	appropriate
endpoint	of	the	TIME	range.

The	following	table	shows	the	format	of	the	“zero”	value	for	each	type.
Note	that	the	use	of	these	values	produces	warnings	if	the	NO_ZERO_DATE
SQL	mode	is	enabled.

Data	Type “Zero”	Value
DATETIME '0000-00-00	00:00:00'

DATE '0000-00-00'

TIMESTAMP '0000-00-00	00:00:00'

TIME '00:00:00'

YEAR 0000

The	“zero”	values	are	special,	but	you	can	store	or	refer	to	them	explicitly
using	the	values	shown	in	the	table.	You	can	also	do	this	using	the	values
'0'	or	0,	which	are	easier	to	write.

“Zero”	date	or	time	values	used	through	MyODBC	are	converted
automatically	to	NULL	in	MyODBC	2.50.12	and	above,	because	ODBC
cannot	handle	such	values.

11.3.1.	The	DATETIME,	DATE,	and	TIMESTAMP	Types

The	DATETIME,	DATE,	and	TIMESTAMP	types	are	related.	This	section	describes
their	characteristics,	how	they	are	similar,	and	how	they	differ.

The	DATETIME	type	is	used	when	you	need	values	that	contain	both	date	and	time
information.	MySQL	retrieves	and	displays	DATETIME	values	in	'YYYY-MM-DD
HH:MM:SS'	format.	The	supported	range	is	'1000-01-01	00:00:00'	to	'9999-
12-31	23:59:59'.

The	DATE	type	is	used	when	you	need	only	a	date	value,	without	a	time	part.
MySQL	retrieves	and	displays	DATE	values	in	'YYYY-MM-DD'	format.	The
supported	range	is	'1000-01-01'	to	'9999-12-31'.

For	the	DATETIME	and	DATE	range	descriptions,	“supported”	means	that	although
earlier	values	might	work,	there	is	no	guarantee.

The	TIMESTAMP	data	type	has	varying	properties,	depending	on	the	MySQL
version	and	the	SQL	mode	the	server	is	running	in.	These	properties	are
described	later	in	this	section.

You	can	specify	DATETIME,	DATE,	and	TIMESTAMP	values	using	any	of	a	common
set	of	formats:

As	a	string	in	either	'YYYY-MM-DD	HH:MM:SS'	or	'YY-MM-DD	HH:MM:SS'
format.	A	“relaxed”	syntax	is	allowed:	Any	punctuation	character	may	be
used	as	the	delimiter	between	date	parts	or	time	parts.	For	example,	'98-
12-31	11:30:45',	'98.12.31	11+30+45',	'98/12/31	11*30*45',	and
'98@12@31	11^30^45'	are	equivalent.

As	a	string	in	either	'YYYY-MM-DD'	or	'YY-MM-DD'	format.	A	“relaxed”
syntax	is	allowed	here,	too.	For	example,	'98-12-31',	'98.12.31',
'98/12/31',	and	'98@12@31'	are	equivalent.

As	a	string	with	no	delimiters	in	either	'YYYYMMDDHHMMSS'	or
'YYMMDDHHMMSS'	format,	provided	that	the	string	makes	sense	as	a	date.	For

example,	'19970523091528'	and	'970523091528'	are	interpreted	as	'1997-
05-23	09:15:28',	but	'971122129015'	is	illegal	(it	has	a	nonsensical
minute	part)	and	becomes	'0000-00-00	00:00:00'.

As	a	string	with	no	delimiters	in	either	'YYYYMMDD'	or	'YYMMDD'	format,
provided	that	the	string	makes	sense	as	a	date.	For	example,	'19970523'
and	'970523'	are	interpreted	as	'1997-05-23',	but	'971332'	is	illegal	(it
has	nonsensical	month	and	day	parts)	and	becomes	'0000-00-00'.

As	a	number	in	either	YYYYMMDDHHMMSS	or	YYMMDDHHMMSS	format,	provided
that	the	number	makes	sense	as	a	date.	For	example,	19830905132800	and
830905132800	are	interpreted	as	'1983-09-05	13:28:00'.

As	a	number	in	either	YYYYMMDD	or	YYMMDD	format,	provided	that	the	number
makes	sense	as	a	date.	For	example,	19830905	and	830905	are	interpreted	as
'1983-09-05'.

As	the	result	of	a	function	that	returns	a	value	that	is	acceptable	in	a
DATETIME,	DATE,	or	TIMESTAMP	context,	such	as	NOW()	or	CURRENT_DATE.

Illegal	DATETIME,	DATE,	or	TIMESTAMP	values	are	converted	to	the	“zero”	value	of
the	appropriate	type	('0000-00-00	00:00:00'	or	'0000-00-00').

For	values	specified	as	strings	that	include	date	part	delimiters,	it	is	not
necessary	to	specify	two	digits	for	month	or	day	values	that	are	less	than	10.
'1979-6-9'	is	the	same	as	'1979-06-09'.	Similarly,	for	values	specified	as
strings	that	include	time	part	delimiters,	it	is	not	necessary	to	specify	two	digits
for	hour,	minute,	or	second	values	that	are	less	than	10.	'1979-10-30	1:2:3'	is
the	same	as	'1979-10-30	01:02:03'.

Values	specified	as	numbers	should	be	6,	8,	12,	or	14	digits	long.	If	a	number	is
8	or	14	digits	long,	it	is	assumed	to	be	in	YYYYMMDD	or	YYYYMMDDHHMMSS	format
and	that	the	year	is	given	by	the	first	4	digits.	If	the	number	is	6	or	12	digits
long,	it	is	assumed	to	be	in	YYMMDD	or	YYMMDDHHMMSS	format	and	that	the	year	is
given	by	the	first	2	digits.	Numbers	that	are	not	one	of	these	lengths	are
interpreted	as	though	padded	with	leading	zeros	to	the	closest	length.

Values	specified	as	non-delimited	strings	are	interpreted	using	their	length	as
given.	If	the	string	is	8	or	14	characters	long,	the	year	is	assumed	to	be	given	by
the	first	4	characters.	Otherwise,	the	year	is	assumed	to	be	given	by	the	first	2

characters.	The	string	is	interpreted	from	left	to	right	to	find	year,	month,	day,
hour,	minute,	and	second	values,	for	as	many	parts	as	are	present	in	the	string.
This	means	you	should	not	use	strings	that	have	fewer	than	6	characters.	For
example,	if	you	specify	'9903',	thinking	that	represents	March,	1999,	MySQL
inserts	a	“zero”	date	value	into	your	table.	This	occurs	because	the	year	and
month	values	are	99	and	03,	but	the	day	part	is	completely	missing,	so	the	value
is	not	a	legal	date.	However,	you	can	explicitly	specify	a	value	of	zero	to
represent	missing	month	or	day	parts.	For	example,	you	can	use	'990300'	to
insert	the	value	'1999-03-00'.

You	can	to	some	extent	assign	values	of	one	date	type	to	an	object	of	a	different
date	type.	However,	there	may	be	some	alteration	of	the	value	or	loss	of
information:

If	you	assign	a	DATE	value	to	a	DATETIME	or	TIMESTAMP	object,	the	time	part
of	the	resulting	value	is	set	to	'00:00:00'	because	the	DATE	value	contains
no	time	information.

If	you	assign	a	DATETIME	or	TIMESTAMP	value	to	a	DATE	object,	the	time	part
of	the	resulting	value	is	deleted	because	the	DATE	type	stores	no	time
information.

Remember	that	although	DATETIME,	DATE,	and	TIMESTAMP	values	all	can	be
specified	using	the	same	set	of	formats,	the	types	do	not	all	have	the	same
range	of	values.	For	example,	TIMESTAMP	values	cannot	be	earlier	than	1970
or	later	than	2037.	This	means	that	a	date	such	as	'1968-01-01',	while
legal	as	a	DATETIME	or	DATE	value,	is	not	valid	as	a	TIMESTAMP	value	and	is
converted	to	0.

Be	aware	of	certain	pitfalls	when	specifying	date	values:

The	relaxed	format	allowed	for	values	specified	as	strings	can	be	deceiving.
For	example,	a	value	such	as	'10:11:12'	might	look	like	a	time	value
because	of	the	‘:’	delimiter,	but	if	used	in	a	date	context	is	interpreted	as	the
year	'2010-11-12'.	The	value	'10:45:15'	is	converted	to	'0000-00-00'
because	'45'	is	not	a	legal	month.

As	of	5.0.2,	the	server	requires	that	month	and	day	values	be	legal,	and	not
merely	in	the	range	1	to	12	and	1	to	31,	respectively.	With	strict	mode
disabled,	invalid	dates	such	as	'2004-04-31'	are	converted	to	'0000-00-

00'	and	a	warning	is	generated.	With	strict	mode	enabled,	invalid	dates
generate	an	error.	To	allow	such	dates,	enable	ALLOW_INVALID_DATES.	See
Section	5.2.5,	“The	Server	SQL	Mode”,	for	more	information.

Before	MySQL	5.0.2,	the	MySQL	server	performs	only	basic	checking	on
the	validity	of	a	date:	The	ranges	for	year,	month,	and	day	are	1000	to	9999,
00	to	12,	and	00	to	31,	respectively.	Any	date	containing	parts	not	within
these	ranges	is	subject	to	conversion	to	'0000-00-00'.	Please	note	that	this
still	allows	you	to	store	invalid	dates	such	as	'2002-04-31'.	To	ensure	that
a	date	is	valid,	you	should	perform	a	check	in	your	application.

Dates	containing	two-digit	year	values	are	ambiguous	because	the	century
is	unknown.	MySQL	interprets	two-digit	year	values	using	the	following
rules:

Year	values	in	the	range	00-69	are	converted	to	2000-2069.

Year	values	in	the	range	70-99	are	converted	to	1970-1999.

11.3.1.1.	TIMESTAMP	Properties	as	of	MySQL	4.1

Note:	In	older	versions	of	MySQL	(prior	to	4.1),	the	properties	of	the	TIMESTAMP
data	type	differed	significantly	in	many	ways	from	what	is	described	in	this
section.	If	you	need	to	convert	older	TIMESTAMP	data	to	work	with	MySQL	5.0,
be	sure	to	see	the	MySQL	3.23,	4.0,	4.1	Reference	Manual	for	details.

TIMESTAMP	columns	are	displayed	in	the	same	format	as	DATETIME	columns.	In
other	words,	the	display	width	is	fixed	at	19	characters,	and	the	format	is	YYYY-
MM-DD	HH:MM:SS.

The	MySQL	server	can	be	also	be	run	with	the	MAXDB	SQL	mode	enabled.	When
the	server	runs	with	this	mode	enabled,	TIMESTAMP	is	identical	with	DATETIME.
That	is,	if	this	mode	is	enabled	at	the	time	that	a	table	is	created,	TIMESTAMP
columns	are	created	as	DATETIME	columns.	As	a	result,	such	columns	use
DATETIME	display	format,	have	the	same	range	of	values,	and	there	is	no
automatic	initialization	or	updating	to	the	current	date	and	time.

To	enable	MAXDB	mode,	set	the	server	SQL	mode	to	MAXDB	at	startup	using	the	--
sql-mode=MAXDB	server	option	or	by	setting	the	global	sql_mode	variable	at

runtime:

mysql>	SET	GLOBAL	sql_mode=MAXDB;

A	client	can	cause	the	server	to	run	in	MAXDB	mode	for	its	own	connection	as
follows:

mysql>	SET	SESSION	sql_mode=MAXDB;

Note	that	the	information	in	the	following	discussion	applies	to	TIMESTAMP
columns	only	for	tables	not	created	with	MAXDB	mode	enabled,	because	such
columns	are	created	as	DATETIME	columns.

As	of	MySQL	5.0.2,	MySQL	does	not	accept	timestamp	values	that	include	a
zero	in	the	day	or	month	column	or	values	that	are	not	a	valid	date.	The	sole
exception	to	this	rule	is	the	special	value	'0000-00-00	00:00:00'.

You	have	considerable	flexibility	in	determining	when	automatic	TIMESTAMP
initialization	and	updating	occur	and	which	column	should	have	those	behaviors:

For	one	TIMESTAMP	column	in	a	table,	you	can	assign	the	current	timestamp
as	the	default	value	and	the	auto-update	value.	It	is	possible	to	have	the
current	timestamp	be	the	default	value	for	initializing	the	column,	for	the
auto-update	value,	or	both.	It	is	not	possible	to	have	the	current	timestamp
be	the	default	value	for	one	column	and	the	auto-update	value	for	another
column.

You	can	specify	which	TIMESTAMP	column	to	automatically	initialize	or
update	to	the	current	date	and	time.	This	need	not	be	the	first	TIMESTAMP
column.

The	following	rules	govern	initialization	and	updating	of	TIMESTAMP	columns:

If	a	DEFAULT	value	is	specified	for	the	first	TIMESTAMP	column	in	a	table,	it
is	not	ignored.	The	default	can	be	CURRENT_TIMESTAMP	or	a	constant	date
and	time	value.

DEFAULT	NULL	is	the	same	as	DEFAULT	CURRENT_TIMESTAMP	for	the	first
TIMESTAMP	column.	For	any	other	TIMESTAMP	column,	DEFAULT	NULL	is
treated	as	DEFAULT	0.

Any	single	TIMESTAMP	column	in	a	table	can	be	used	as	the	one	that	is
initialized	to	the	current	timestamp	or	updated	automatically.

In	a	CREATE	TABLE	statement,	the	first	TIMESTAMP	column	can	be	declared
in	any	of	the	following	ways:

With	both	DEFAULT	CURRENT_TIMESTAMP	and	ON	UPDATE
CURRENT_TIMESTAMP	clauses,	the	column	has	the	current	timestamp	for
its	default	value,	and	is	automatically	updated.

With	neither	DEFAULT	nor	ON	UPDATE	clauses,	it	is	the	same	as	DEFAULT
CURRENT_TIMESTAMP	ON	UPDATE	CURRENT_TIMESTAMP.

With	a	DEFAULT	CURRENT_TIMESTAMP	clause	and	no	ON	UPDATE	clause,
the	column	has	the	current	timestamp	for	its	default	value	but	is	not
automatically	updated.

With	no	DEFAULT	clause	and	with	an	ON	UPDATE	CURRENT_TIMESTAMP
clause,	the	column	has	a	default	of	0	and	is	automatically	updated.

With	a	constant	DEFAULT	value,	the	column	has	the	given	default.	If	the
column	has	an	ON	UPDATE	CURRENT_TIMESTAMP	clause,	it	is
automatically	updated,	otherwise	not.

In	other	words,	you	can	use	the	current	timestamp	for	both	the	initial	value
and	the	auto-update	value,	or	either	one,	or	neither.	(For	example,	you	can
specify	ON	UPDATE	to	enable	auto-update	without	also	having	the	column
auto-initialized.)

CURRENT_TIMESTAMP	or	any	of	its	synonyms	(CURRENT_TIMESTAMP(),	NOW(),
LOCALTIME,	LOCALTIME(),	LOCALTIMESTAMP,	or	LOCALTIMESTAMP())	can	be
used	in	the	DEFAULT	and	ON	UPDATE	clauses.	They	all	mean	“the	current
timestamp.”	(UTC_TIMESTAMP	is	not	allowed.	Its	range	of	values	does	not
align	with	those	of	the	TIMESTAMP	column	anyway	unless	the	current	time
zone	is	UTC.)

The	order	of	the	DEFAULT	and	ON	UPDATE	attributes	does	not	matter.	If	both
DEFAULT	and	ON	UPDATE	are	specified	for	a	TIMESTAMP	column,	either	can
precede	the	other.	For	example,	these	statements	are	equivalent:

CREATE	TABLE	t	(ts	TIMESTAMP);

CREATE	TABLE	t	(ts	TIMESTAMP	DEFAULT	CURRENT_TIMESTAMP

																													ON	UPDATE	CURRENT_TIMESTAMP);

CREATE	TABLE	t	(ts	TIMESTAMP	ON	UPDATE	CURRENT_TIMESTAMP

																													DEFAULT	CURRENT_TIMESTAMP);

To	specify	automatic	default	or	updating	for	a	TIMESTAMP	column	other	than
the	first	one,	you	must	suppress	the	automatic	initialization	and	update
behaviors	for	the	first	TIMESTAMP	column	by	explicitly	assigning	it	a
constant	DEFAULT	value	(for	example,	DEFAULT	0	or	DEFAULT	'2003-01-01
00:00:00').	Then,	for	the	other	TIMESTAMP	column,	the	rules	are	the	same
as	for	the	first	TIMESTAMP	column,	except	that	if	you	omit	both	of	the
DEFAULT	and	ON	UPDATE	clauses,	no	automatic	initialization	or	updating
occurs.

Example.	These	statements	are	equivalent:

CREATE	TABLE	t	(

				ts1	TIMESTAMP	DEFAULT	0,

				ts2	TIMESTAMP	DEFAULT	CURRENT_TIMESTAMP

																		ON	UPDATE	CURRENT_TIMESTAMP);

CREATE	TABLE	t	(

				ts1	TIMESTAMP	DEFAULT	0,

				ts2	TIMESTAMP	ON	UPDATE	CURRENT_TIMESTAMP

																		DEFAULT	CURRENT_TIMESTAMP);

You	can	set	the	current	time	zone	on	a	per-connection	basis,	as	described	in
Section	5.11.8,	“MySQL	Server	Time	Zone	Support”.	TIMESTAMP	values	are
stored	in	UTC,	being	converted	from	the	current	time	zone	for	storage,	and
converted	back	to	the	current	time	zone	upon	retrieval.	As	long	as	the	time	zone
setting	remains	constant,	you	get	back	the	same	value	you	store.	If	you	store	a
TIMESTAMP	value,	and	then	change	the	time	zone	and	retrieve	the	value,	the
retrieved	value	is	different	than	the	value	you	stored.	This	occurs	because	the
same	time	zone	was	not	used	for	conversion	in	both	directions.	The	current	time
zone	is	available	as	the	value	of	the	time_zone	system	variable.

You	can	include	the	NULL	attribute	in	the	definition	of	a	TIMESTAMP	column	to
allow	the	column	to	contain	NULL	values.	For	example:

CREATE	TABLE	t

(

		ts1	TIMESTAMP	NULL	DEFAULT	NULL,

		ts2	TIMESTAMP	NULL	DEFAULT	0,

		ts3	TIMESTAMP	NULL	DEFAULT	CURRENT_TIMESTAMP

);

If	the	NULL	attribute	is	not	specified,	setting	the	column	to	NULL	sets	it	to	the
current	timestamp.	Note	that	a	TIMESTAMP	column	which	allows	NULL	values	will
not	take	on	the	current	timestamp	except	under	one	of	the	following	conditions:

Its	default	value	is	defined	as	CURRENT_TIMESTAMP

NOW()	or	CURRENT_TIMESTAMP	is	inserted	into	the	column

In	other	words,	a	TIMESTAMP	column	defined	as	NULL	will	auto-initialize	only	if	it
is	created	using	a	definition	such	as	the	following:

CREATE	TABLE	t	(ts	TIMESTAMP	NULL	DEFAULT	CURRENT_TIMESTAMP);

Otherwise	—	that	is,	if	the	TIMESTAMP	column	is	defined	to	allow	NULL	values
but	not	using	DEFAULT	TIMESTAMP,	as	shown	here…

CREATE	TABLE	t1	(ts	TIMESTAMP	NULL	DEFAULT	NULL);

CREATE	TABLE	t2	(ts	TIMESTAMP	NULL	DEFAULT	'0000-00-00	00:00:00');

…then	you	must	explicitly	insert	a	value	corresponding	to	the	current	date	and
time.	For	example:

INSERT	INTO	t1	VALUES	(NOW());

INSERT	INTO	t2	VALUES	(CURRENT_TIMESTAMP);

11.3.2.	The	TIME	Type

MySQL	retrieves	and	displays	TIME	values	in	'HH:MM:SS'	format	(or
'HHH:MM:SS'	format	for	large	hours	values).	TIME	values	may	range	from
'-838:59:59'	to	'838:59:59'.	The	hours	part	may	be	so	large	because	the	TIME
type	can	be	used	not	only	to	represent	a	time	of	day	(which	must	be	less	than	24
hours),	but	also	elapsed	time	or	a	time	interval	between	two	events	(which	may
be	much	greater	than	24	hours,	or	even	negative).

You	can	specify	TIME	values	in	a	variety	of	formats:

As	a	string	in	'D	HH:MM:SS.fraction'	format.	You	can	also	use	one	of	the
following	“relaxed”	syntaxes:	'HH:MM:SS.fraction',	'HH:MM:SS',

'HH:MM',	'D	HH:MM:SS',	'D	HH:MM',	'D	HH',	or	'SS'.	Here	D	represents
days	and	can	have	a	value	from	0	to	34.	Note	that	MySQL	does	not	store
the	fraction	part.

As	a	string	with	no	delimiters	in	'HHMMSS'	format,	provided	that	it	makes
sense	as	a	time.	For	example,	'101112'	is	understood	as	'10:11:12',	but
'109712'	is	illegal	(it	has	a	nonsensical	minute	part)	and	becomes
'00:00:00'.

As	a	number	in	HHMMSS	format,	provided	that	it	makes	sense	as	a	time.	For
example,	101112	is	understood	as	'10:11:12'.	The	following	alternative
formats	are	also	understood:	SS,	MMSS,	HHMMSS,	HHMMSS.fraction.	Note	that
MySQL	does	not	store	the	fraction	part.

As	the	result	of	a	function	that	returns	a	value	that	is	acceptable	in	a	TIME
context,	such	as	CURRENT_TIME.

For	TIME	values	specified	as	strings	that	include	a	time	part	delimiter,	it	is	not
necessary	to	specify	two	digits	for	hours,	minutes,	or	seconds	values	that	are	less
than	10.	'8:3:2'	is	the	same	as	'08:03:02'.

Be	careful	about	assigning	abbreviated	values	to	a	TIME	column.	Without	colons,
MySQL	interprets	values	using	the	assumption	that	the	two	rightmost	digits
represent	seconds.	(MySQL	interprets	TIME	values	as	elapsed	time	rather	than	as
time	of	day.)	For	example,	you	might	think	of	'1112'	and	1112	as	meaning
'11:12:00'	(12	minutes	after	11	o'clock),	but	MySQL	interprets	them	as
'00:11:12'	(11	minutes,	12	seconds).	Similarly,	'12'	and	12	are	interpreted	as
'00:00:12'.	TIME	values	with	colons,	by	contrast,	are	always	treated	as	time	of
the	day.	That	is,	'11:12'	mean	'11:12:00',	not	'00:11:12'.

By	default,	values	that	lie	outside	the	TIME	range	but	are	otherwise	legal	are
clipped	to	the	closest	endpoint	of	the	range.	For	example,	'-850:00:00'	and
'850:00:00'	are	converted	to	'-838:59:59'	and	'838:59:59'.	Illegal	TIME
values	are	converted	to	'00:00:00'.	Note	that	because	'00:00:00'	is	itself	a
legal	TIME	value,	there	is	no	way	to	tell,	from	a	value	of	'00:00:00'	stored	in	a
table,	whether	the	original	value	was	specified	as	'00:00:00'	or	whether	it	was
illegal.

For	more	restrictive	treatment	of	invalid	TIME	values,	enable	strict	SQL	mode	to
cause	errors	to	occur.	See	Section	5.2.5,	“The	Server	SQL	Mode”.

11.3.3.	The	YEAR	Type

The	YEAR	type	is	a	one-byte	type	used	for	representing	years.

MySQL	retrieves	and	displays	YEAR	values	in	YYYY	format.	The	range	is	1901	to
2155.

You	can	specify	YEAR	values	in	a	variety	of	formats:

As	a	four-digit	string	in	the	range	'1901'	to	'2155'.

As	a	four-digit	number	in	the	range	1901	to	2155.

As	a	two-digit	string	in	the	range	'00'	to	'99'.	Values	in	the	ranges	'00'	to
'69'	and	'70'	to	'99'	are	converted	to	YEAR	values	in	the	ranges	2000	to
2069	and	1970	to	1999.

As	a	two-digit	number	in	the	range	1	to	99.	Values	in	the	ranges	1	to	69	and
70	to	99	are	converted	to	YEAR	values	in	the	ranges	2001	to	2069	and	1970	to
1999.	Note	that	the	range	for	two-digit	numbers	is	slightly	different	from
the	range	for	two-digit	strings,	because	you	cannot	specify	zero	directly	as	a
number	and	have	it	be	interpreted	as	2000.	You	must	specify	it	as	a	string
'0'	or	'00'	or	it	is	interpreted	as	0000.

As	the	result	of	a	function	that	returns	a	value	that	is	acceptable	in	a	YEAR
context,	such	as	NOW().

Illegal	YEAR	values	are	converted	to	0000.

11.3.4.	Y2K	Issues	and	Date	Types

As	discussed	in	Section	1.4.5,	“Year	2000	Compliance”,	MySQL	itself	is	year
2000	(Y2K)	safe.	However,	particular	input	values	presented	to	MySQL	may	not
be	Y2K	safe.	Any	value	containing	a	two-digit	year	is	ambiguous,	because	the
century	is	unknown.	Such	values	must	be	interpreted	into	four-digit	form
because	MySQL	stores	years	internally	using	four	digits.

For	DATETIME,	DATE,	TIMESTAMP,	and	YEAR	types,	MySQL	interprets	dates	with
ambiguous	year	values	using	the	following	rules:

Year	values	in	the	range	00-69	are	converted	to	2000-2069.

Year	values	in	the	range	70-99	are	converted	to	1970-1999.

Remember	that	these	rules	are	only	heuristics	that	provide	reasonable	guesses	as
to	what	your	data	values	mean.	If	the	rules	used	by	MySQL	do	not	produce	the
correct	values,	you	should	provide	unambiguous	input	containing	four-digit	year
values.

ORDER	BY	properly	sorts	YEAR	values	that	have	two-digit	years.

Some	functions	like	MIN()	and	MAX()	convert	a	YEAR	to	a	number.	This	means
that	a	value	with	a	two-digit	year	does	not	work	properly	with	these	functions.
The	fix	in	this	case	is	to	convert	the	TIMESTAMP	or	YEAR	to	four-digit	year	format.

11.4.	String	Types

The	string	types	are	CHAR,	VARCHAR,	BINARY,	VARBINARY,	BLOB,	TEXT,	ENUM,	and
SET.	This	section	describes	how	these	types	work	and	how	to	use	them	in	your
queries.	For	string	type	storage	requirements,	see	Section	11.5,	“Data	Type
Storage	Requirements”.

11.4.1.	The	CHAR	and	VARCHAR	Types

The	CHAR	and	VARCHAR	types	are	similar,	but	differ	in	the	way	they	are	stored	and
retrieved.	As	of	MySQL	5.0.3,	they	also	differ	in	maximum	length	and	in
whether	trailing	spaces	are	retained.

The	CHAR	and	VARCHAR	types	are	declared	with	a	length	that	indicates	the
maximum	number	of	characters	you	want	to	store.	For	example,	CHAR(30)	can
hold	up	to	30	characters.

The	length	of	a	CHAR	column	is	fixed	to	the	length	that	you	declare	when	you
create	the	table.	The	length	can	be	any	value	from	0	to	255.	When	CHAR	values
are	stored,	they	are	right-padded	with	spaces	to	the	specified	length.	When	CHAR
values	are	retrieved,	trailing	spaces	are	removed.

Values	in	VARCHAR	columns	are	variable-length	strings.	The	length	can	be
specified	as	a	value	from	0	to	255	before	MySQL	5.0.3,	and	0	to	65,535	in	5.0.3
and	later	versions.	(The	maximum	effective	length	of	a	VARCHAR	in	MySQL	5.0.3
and	later	is	determined	by	the	maximum	row	size	and	the	character	set	used.	The
maximum	length	overall	is	65,532	bytes.)

In	contrast	to	CHAR,	VARCHAR	values	are	stored	using	only	as	many	characters	as
are	needed,	plus	one	byte	to	record	the	length	(two	bytes	for	columns	that	are
declared	with	a	length	longer	than	255).

VARCHAR	values	are	not	padded	when	they	are	stored.	Handling	of	trailing	spaces
is	version-dependent.	As	of	MySQL	5.0.3,	trailing	spaces	are	retained	when
values	are	stored	and	retrieved,	in	conformance	with	standard	SQL.	Before
MySQL	5.0.3,	trailing	spaces	are	removed	from	values	when	they	are	stored	into
a	VARCHAR	column;	this	means	that	the	spaces	also	are	absent	from	retrieved
values.

If	you	assign	a	value	to	a	CHAR	or	VARCHAR	column	that	exceeds	the	column's
maximum	length,	the	value	is	truncated	to	fit.	If	the	truncated	characters	are	not
spaces,	a	warning	is	generated.	For	truncation	of	non-space	characters,	you	can
cause	an	error	to	occur	(rather	than	a	warning)	and	suppress	insertion	of	the
value	by	using	strict	SQL	mode.	See	Section	5.2.5,	“The	Server	SQL	Mode”.

Before	MySQL	5.0.3,	if	you	need	a	data	type	for	which	trailing	spaces	are	not
removed,	consider	using	a	BLOB	or	TEXT	type.	Also,	if	you	want	to	store	binary
values	such	as	results	from	an	encryption	or	compression	function	that	might
contain	arbitrary	byte	values,	use	a	BLOB	column	rather	than	a	CHAR	or	VARCHAR
column,	to	avoid	potential	problems	with	trailing	space	removal	that	would
change	data	values.

The	following	table	illustrates	the	differences	between	CHAR	and	VARCHAR	by
showing	the	result	of	storing	various	string	values	into	CHAR(4)	and	VARCHAR(4)
columns:

Value CHAR(4) Storage	Required VARCHAR(4) Storage	Required
'' '				' 4	bytes '' 1	byte
'ab' 'ab		' 4	bytes 'ab' 3	bytes
'abcd' 'abcd' 4	bytes 'abcd' 5	bytes
'abcdefgh' 'abcd' 4	bytes 'abcd' 5	bytes

Note	that	the	values	shown	as	stored	in	the	last	row	of	the	table	apply	only	when
not	using	strict	mode;	if	MySQL	is	running	in	strict	mode,	values	that	exceed	the
column	length	are	not	stored,	and	an	error	results.

If	a	given	value	is	stored	into	the	CHAR(4)	and	VARCHAR(4)	columns,	the	values
retrieved	from	the	columns	are	not	always	the	same	because	trailing	spaces	are
removed	from	CHAR	columns	upon	retrieval.	The	following	example	illustrates
this	difference:

mysql>	CREATE	TABLE	vc	(v	VARCHAR(4),	c	CHAR(4));

Query	OK,	0	rows	affected	(0.01	sec)

mysql>	INSERT	INTO	vc	VALUES	('ab		',	'ab		');

Query	OK,	1	row	affected	(0.00	sec)

mysql>	SELECT	CONCAT('(',	v,	')'),	CONCAT('(',	c,	')')	FROM	vc;

+---------------------+---------------------+

|	CONCAT('(',	v,	')')	|	CONCAT('(',	c,	')')	|

+---------------------+---------------------+

|	(ab)														|	(ab)																|

+---------------------+---------------------+

1	row	in	set	(0.06	sec)

Values	in	CHAR	and	VARCHAR	columns	are	sorted	and	compared	according	to	the
character	set	collation	assigned	to	the	column.

Note	that	all	MySQL	collations	are	of	type	PADSPACE.	This	means	that	all	CHAR
and	VARCHAR	values	in	MySQL	are	compared	without	regard	to	any	trailing
spaces.	For	example:

mysql>	CREATE	TABLE	names	(myname	CHAR(10),	yourname	VARCHAR(10));

Query	OK,	0	rows	affected	(0.09	sec)

mysql>	INSERT	INTO	names	VALUES	('Monty	',	'Monty	');

Query	OK,	1	row	affected	(0.00	sec)

mysql>	SELECT	myname	=	'Monty		',	yourname	=	'Monty		'	FROM	names;

+--------------------+----------------------+

|	myname	=	'Monty		'	|	yourname	=	'Monty		'	|

+--------------------+----------------------+

|																		1	|																				1	|

+--------------------+----------------------+

1	row	in	set	(0.00	sec)

Note	that	this	is	true	for	all	MySQL	versions,	and	it	makes	no	difference	whether
your	version	trims	trailing	spaces	from	VARCHAR	values	before	storing	them.	Nor
does	the	server	SQL	mode	make	any	difference	in	this	regard.

For	those	cases	where	trailing	pad	characters	are	stripped	or	comparisons	ignore
them,	if	a	column	has	an	index	that	requires	unique	values,	inserting	into	the
column	values	that	differ	only	in	number	of	trailing	pad	characters	will	result	in
a	duplicate-key	error.	For	example,	if	a	table	contains	'a',	an	attempt	to	store
'a	'	causes	a	duplicate-key	error.

11.4.2.	The	BINARY	and	VARBINARY	Types

The	BINARY	and	VARBINARY	types	are	similar	to	CHAR	and	VARCHAR,	except	that
they	contain	binary	strings	rather	than	non-binary	strings.	That	is,	they	contain
byte	strings	rather	than	character	strings.	This	means	that	they	have	no	character
set,	and	sorting	and	comparison	are	based	on	the	numeric	values	of	the	bytes	in

the	values.

The	allowable	maximum	length	is	the	same	for	BINARY	and	VARBINARY	as	it	is	for
CHAR	and	VARCHAR,	except	that	the	length	for	BINARY	and	VARBINARY	is	a	length	in
bytes	rather	than	in	characters.

The	BINARY	and	VARBINARY	data	types	are	distinct	from	the	CHAR	BINARY	and
VARCHAR	BINARY	data	types.	For	the	latter	types,	the	BINARY	attribute	does	not
cause	the	column	to	be	treated	as	a	binary	string	column.	Instead,	it	causes	the
binary	collation	for	the	column	character	set	to	be	used,	and	the	column	itself
contains	non-binary	character	strings	rather	than	binary	byte	strings.	For
example,	CHAR(5)	BINARY	is	treated	as	CHAR(5)	CHARACTER	SET	latin1
COLLATE	latin1_bin,	assuming	that	the	default	character	set	is	latin1.	This
differs	from	BINARY(5),	which	stores	5-bytes	binary	strings	that	have	no
character	set	or	collation.

When	BINARY	values	are	stored,	they	are	right-padded	with	the	pad	value	to	the
specified	length.	The	pad	value	and	how	it	is	handled	is	version	specific:

As	of	MySQL	5.0.15,	the	pad	value	is	0x00	(the	zero	byte).	Values	are
right-padded	with	0x00	on	insert,	and	no	trailing	bytes	are	removed	on
select.	All	bytes	are	significant	in	comparisons,	including	ORDER	BY	and
DISTINCT	operations.	0x00	bytes	and	spaces	are	different	in	comparisons,
with	0x00	<	space.

Example:	For	a	BINARY(3)	column,	'a	'	becomes	'a	\0'	when	inserted.
'a\0'	becomes	'a\0\0'	when	inserted.	Both	inserted	values	remain
unchanged	when	selected.

Before	MySQL	5.0.15,	the	pad	value	is	space.	Values	are	right-padded	with
space	on	insert,	and	trailing	spaces	are	removed	on	select.	Trailing	spaces
are	ignored	in	comparisons,	including	ORDER	BY	and	DISTINCT	operations.
0x00	bytes	and	spaces	are	different	in	comparisons,	with	0x00	<	space.

Example:	For	a	BINARY(3)	column,	'a	'	becomes	'a		'	when	inserted	and
'a'	when	selected.	'a\0'	becomes	'a\0	'	when	inserted	and	'a\0'	when
selected.

For	VARBINARY,	there	is	no	padding	on	insert	and	no	bytes	are	stripped	on	select.
All	bytes	are	significant	in	comparisons,	including	ORDER	BY	and	DISTINCT

operations.	0x00	bytes	and	spaces	are	different	in	comparisons,	with	0x00	<
space.	(Exceptions:	Before	MySQL	5.0.3,	trailing	spaces	are	removed	when
values	are	stored.	Before	MySQL	5.0.15,	trailing	0x00	bytes	are	removed	for
ORDER	BY	operations.)

Note:	The	InnoDB	storage	engine	continues	to	preserve	trailing	spaces	in	BINARY
and	VARBINARY	column	values	through	MySQL	5.0.18.	Beginning	with	MySQL
5.0.19,	InnoDB	uses	trailing	space	characters	in	making	comparisons	as	do	other
MySQL	storage	engines.

For	those	cases	where	trailing	pad	bytes	are	stripped	or	comparisons	ignore
them,	if	a	column	has	an	index	that	requires	unique	values,	inserting	into	the
column	values	that	differ	only	in	number	of	trailing	pad	bytes	will	result	in	a
duplicate-key	error.	For	example,	if	a	table	contains	'a',	an	attempt	to	store
'a\0'	causes	a	duplicate-key	error.

You	should	consider	the	preceding	padding	and	stripping	characteristics
carefully	if	you	plan	to	use	the	BINARY	data	type	for	storing	binary	data	and	you
require	that	the	value	retrieved	be	exactly	the	same	as	the	value	stored.	The
following	example	illustrates	how	0x00-padding	of	BINARY	values	affects
column	value	comparisons:

mysql>	CREATE	TABLE	t	(c	BINARY(3));

Query	OK,	0	rows	affected	(0.01	sec)

mysql>	INSERT	INTO	t	SET	c	=	'a';

Query	OK,	1	row	affected	(0.01	sec)

mysql>	SELECT	HEX(c),	c	=	'a',	c	=	'a\0\0'	from	t;

+--------+---------+-------------+

|	HEX(c)	|	c	=	'a'	|	c	=	'a\0\0'	|

+--------+---------+-------------+

|	610000	|							0	|											1	|

+--------+---------+-------------+

1	row	in	set	(0.09	sec)

If	the	value	retrieved	must	be	the	same	as	the	value	specified	for	storage	with	no
padding,	it	might	be	preferable	to	use	VARBINARY	or	one	of	the	BLOB	data	types
instead.

11.4.3.	The	BLOB	and	TEXT	Types

A	BLOB	is	a	binary	large	object	that	can	hold	a	variable	amount	of	data.	The	four
BLOB	types	are	TINYBLOB,	BLOB,	MEDIUMBLOB,	and	LONGBLOB.	These	differ	only	in
the	maximum	length	of	the	values	they	can	hold.	The	four	TEXT	types	are
TINYTEXT,	TEXT,	MEDIUMTEXT,	and	LONGTEXT.	These	correspond	to	the	four	BLOB
types	and	have	the	same	maximum	lengths	and	storage	requirements.	See
Section	11.5,	“Data	Type	Storage	Requirements”.	No	lettercase	conversion	for
TEXT	or	BLOB	columns	takes	place	during	storage	or	retrieval.

BLOB	columns	are	treated	as	binary	strings	(byte	strings).	TEXT	columns	are
treated	as	non-binary	strings	(character	strings).	BLOB	columns	have	no	character
set,	and	sorting	and	comparison	are	based	on	the	numeric	values	of	the	bytes	in
column	values.	TEXT	columns	have	a	character	set,	and	values	are	sorted	and
compared	based	on	the	collation	of	the	character	set.

If	a	TEXT	column	is	indexed,	index	entry	comparisons	are	space-padded	at	the
end.	This	means	that,	if	the	index	requires	unique	values,	duplicate-key	errors
will	occur	for	values	that	differ	only	in	the	number	of	trailing	spaces.	For
example,	if	a	table	contains	'a',	an	attempt	to	store	'a	'	causes	a	duplicate-key
error.	This	is	not	true	for	BLOB	columns.

When	not	running	in	strict	mode,	if	you	assign	a	value	to	a	BLOB	or	TEXT	column
that	exceeds	the	data	type's	maximum	length,	the	value	is	truncated	to	fit.	If	the
truncated	characters	are	not	spaces,	a	warning	is	generated.	You	can	cause	an
error	to	occur	and	the	value	to	be	rejected	rather	than	to	be	truncated	with	a
warning	by	using	strict	SQL	mode.	See	Section	5.2.5,	“The	Server	SQL	Mode”.

In	most	respects,	you	can	regard	a	BLOB	column	as	a	VARBINARY	column	that	can
be	as	large	as	you	like.	Similarly,	you	can	regard	a	TEXT	column	as	a	VARCHAR
column.	BLOB	and	TEXT	differ	from	VARBINARY	and	VARCHAR	in	the	following
ways:

There	is	no	trailing-space	removal	for	BLOB	and	TEXT	columns	when	values
are	stored	or	retrieved.	Before	MySQL	5.0.3,	this	differs	from	VARBINARY
and	VARCHAR,	for	which	trailing	spaces	are	removed	when	values	are	stored.

Note	that	TEXT	is	on	comparison	space	extended	to	fit	the	compared	object,
exactly	like	CHAR	and	VARCHAR.

For	indexes	on	BLOB	and	TEXT	columns,	you	must	specify	an	index	prefix
length.	For	CHAR	and	VARCHAR,	a	prefix	length	is	optional.	See	Section	7.4.3,

“Column	Indexes”.

	BLOB	and	TEXT	columns	cannot	have	DEFAULT	values.

LONG	and	LONG	VARCHAR	map	to	the	MEDIUMTEXT	data	type.	This	is	a	compatibility
feature.	If	you	use	the	BINARY	attribute	with	a	TEXT	data	type,	the	column	is
assigned	the	binary	collation	of	the	column	character	set.

MySQL	Connector/ODBC	defines	BLOB	values	as	LONGVARBINARY	and	TEXT
values	as	LONGVARCHAR.

Because	BLOB	and	TEXT	values	can	be	extremely	long,	you	might	encounter	some
constraints	in	using	them:

Only	the	first	max_sort_length	bytes	of	the	column	are	used	when	sorting.
The	default	value	of	max_sort_length	is	1024.	This	value	can	be	changed
using	the	--max_sort_length=N	option	when	starting	the	mysqld	server.
See	Section	5.2.2,	“Server	System	Variables”.

You	can	make	more	bytes	significant	in	sorting	or	grouping	by	increasing
the	value	of	max_sort_length	at	runtime.	Any	client	can	change	the	value
of	its	session	max_sort_length	variable:

mysql>	SET	max_sort_length	=	2000;

mysql>	SELECT	id,	comment	FROM	t

				->	ORDER	BY	comment;

Another	way	to	use	GROUP	BY	or	ORDER	BY	on	a	BLOB	or	TEXT	column
containing	long	values	when	you	want	more	than	max_sort_length	bytes
to	be	significant	is	to	convert	the	column	value	into	a	fixed-length	object.
The	standard	way	to	do	this	is	with	the	SUBSTRING()	function.	For	example,
the	following	statement	causes	2000	bytes	of	the	comment	column	to	be
taken	into	account	for	sorting:

mysql>	SELECT	id,	SUBSTRING(comment,1,2000)	FROM	t

				->	ORDER	BY	SUBSTRING(comment,1,2000);

The	maximum	size	of	a	BLOB	or	TEXT	object	is	determined	by	its	type,	but
the	largest	value	you	actually	can	transmit	between	the	client	and	server	is
determined	by	the	amount	of	available	memory	and	the	size	of	the
communications	buffers.	You	can	change	the	message	buffer	size	by

changing	the	value	of	the	max_allowed_packet	variable,	but	you	must	do
so	for	both	the	server	and	your	client	program.	For	example,	both	mysql
and	mysqldump	allow	you	to	change	the	client-side	max_allowed_packet
value.	See	Section	7.5.2,	“Tuning	Server	Parameters”,	Section	8.6,	“mysql
—	The	MySQL	Command-Line	Tool”,	and	Section	8.12,	“mysqldump	—
A	Database	Backup	Program”.

Each	BLOB	or	TEXT	value	is	represented	internally	by	a	separately	allocated
object.	This	is	in	contrast	to	all	other	data	types,	for	which	storage	is	allocated
once	per	column	when	the	table	is	opened.

In	some	cases,	it	may	be	desirable	to	store	binary	data	such	as	media	files	in
BLOB	or	TEXT	columns.	You	may	find	MySQL's	string	handling	functions	useful
for	working	with	such	data.	See	Section	12.3,	“String	Functions”.	For	security
and	other	reasons,	it	is	usually	preferable	to	do	so	using	application	code	rather
than	allowing	application	users	the	FILE	privilege.	You	can	discuss	specifics	for
various	languages	and	platforms	in	the	MySQL	Forums
(http://forums.mysql.com/).

11.4.4.	The	ENUM	Type

An	ENUM	is	a	string	object	with	a	value	chosen	from	a	list	of	allowed	values	that
are	enumerated	explicitly	in	the	column	specification	at	table	creation	time.

An	enumeration	value	must	be	a	quoted	string	literal;	it	may	not	be	an
expression,	even	one	that	evaluates	to	a	string	value.	This	means	that	you	also
may	not	employ	a	user	variable	as	an	enumeration	value.

For	example,	you	can	create	a	table	with	an	ENUM	column	like	this:

CREATE	TABLE	sizes	(

				name	ENUM('small',	'medium',	'large')

);

However,	this	version	of	the	previous	CREATE	TABLE	statement	does	not	work:

CREATE	TABLE	sizes	(

				c1	ENUM('small',	CONCAT('med','ium'),	'large')

);

You	also	may	not	employ	a	user	variable	as	an	enumeration	value.	This	pair	of

http://forums.mysql.com/

statements	do	not	work:

SET	@mysize	=	'medium';

CREATE	TABLE	sizes	(

				name	ENUM('small',	@mysize,	'large')

);

If	you	wish	to	use	a	number	as	an	enumeration	value,	you	must	enclose	it	in
quotes.

The	value	may	also	be	the	empty	string	('')	or	NULL	under	certain
circumstances:

If	you	insert	an	invalid	value	into	an	ENUM	(that	is,	a	string	not	present	in	the
list	of	allowed	values),	the	empty	string	is	inserted	instead	as	a	special	error
value.	This	string	can	be	distinguished	from	a	“normal”	empty	string	by	the
fact	that	this	string	has	the	numerical	value	0.	More	about	this	later.

If	strict	SQL	mode	is	enabled,	attempts	to	insert	invalid	ENUM	values	result
in	an	error.

If	an	ENUM	column	is	declared	to	allow	NULL,	the	NULL	value	is	a	legal	value
for	the	column,	and	the	default	value	is	NULL.	If	an	ENUM	column	is	declared
NOT	NULL,	its	default	value	is	the	first	element	of	the	list	of	allowed	values.

Each	enumeration	value	has	an	index:

Values	from	the	list	of	allowable	elements	in	the	column	specification	are
numbered	beginning	with	1.

The	index	value	of	the	empty	string	error	value	is	0.	This	means	that	you
can	use	the	following	SELECT	statement	to	find	rows	into	which	invalid
ENUM	values	were	assigned:

mysql>	SELECT	*	FROM	tbl_name	WHERE	enum_col=0;

The	index	of	the	NULL	value	is	NULL.

The	term	“index”	here	refers	only	to	position	within	the	list	of	enumeration
values.	It	has	nothing	to	do	with	table	indexes.

For	example,	a	column	specified	as	ENUM('one',	'two',	'three')	can	have
any	of	the	values	shown	here.	The	index	of	each	value	is	also	shown:

Value Index
NULL NULL

'' 0
'one' 1
'two' 2
'three' 3

An	enumeration	can	have	a	maximum	of	65,535	elements.

Trailing	spaces	are	automatically	deleted	from	ENUM	member	values	in	the	table
definition	when	a	table	is	created.

When	retrieved,	values	stored	into	an	ENUM	column	are	displayed	using	the
lettercase	that	was	used	in	the	column	definition.	Note	that	ENUM	columns	can	be
assigned	a	character	set	and	collation.	For	binary	or	case-sensitive	collations,
lettercase	is	taken	into	account	when	assigning	values	to	the	column.

If	you	retrieve	an	ENUM	value	in	a	numeric	context,	the	column	value's	index	is
returned.	For	example,	you	can	retrieve	numeric	values	from	an	ENUM	column
like	this:

mysql>	SELECT	enum_col+0	FROM	tbl_name;

If	you	store	a	number	into	an	ENUM	column,	the	number	is	treated	as	an	index,
and	the	value	stored	is	the	enumeration	member	with	that	index.	(However,	this
does	not	work	with	LOAD	DATA,	which	treats	all	input	as	strings.)	It	is	not
advisable	to	define	an	ENUM	column	with	enumeration	values	that	look	like
numbers,	because	this	can	easily	become	confusing.	For	example,	the	following
column	has	enumeration	members	with	string	values	of	'0',	'1',	and	'2',	but
numeric	index	values	of	1,	2,	and	3:

numbers	ENUM('0','1','2')

ENUM	values	are	sorted	according	to	the	order	in	which	the	enumeration	members
were	listed	in	the	column	specification.	(In	other	words,	ENUM	values	are	sorted
according	to	their	index	numbers.)	For	example,	'a'	sorts	before	'b'	for

ENUM('a',	'b'),	but	'b'	sorts	before	'a'	for	ENUM('b',	'a').	The	empty
string	sorts	before	non-empty	strings,	and	NULL	values	sort	before	all	other
enumeration	values.	To	prevent	unexpected	results,	specify	the	ENUM	list	in
alphabetical	order.	You	can	also	use	GROUP	BY	CAST(col	AS	CHAR)	or	GROUP	BY
CONCAT(col)	to	make	sure	that	the	column	is	sorted	lexically	rather	than	by
index	number.

If	you	want	to	determine	all	possible	values	for	an	ENUM	column,	use	SHOW
COLUMNS	FROM	tbl_name	LIKE	enum_col	and	parse	the	ENUM	definition	in	the
Type	column	of	the	output.

11.4.5.	The	SET	Type

A	SET	is	a	string	object	that	can	have	zero	or	more	values,	each	of	which	must	be
chosen	from	a	list	of	allowed	values	specified	when	the	table	is	created.	SET
column	values	that	consist	of	multiple	set	members	are	specified	with	members
separated	by	commas	(‘,’).	A	consequence	of	this	is	that	SET	member	values
should	not	themselves	contain	commas.

For	example,	a	column	specified	as	SET('one',	'two')	NOT	NULL	can	have	any
of	these	values:

''

'one'

'two'

'one,two'

A	SET	can	have	a	maximum	of	64	different	members.

Trailing	spaces	are	automatically	deleted	from	SET	member	values	in	the	table
definition	when	a	table	is	created.

When	retrieved,	values	stored	in	a	SET	column	are	displayed	using	the	lettercase
that	was	used	in	the	column	definition.	Note	that	SET	columns	can	be	assigned	a
character	set	and	collation.	For	binary	or	case-sensitive	collations,	lettercase	is
taken	into	account	when	assigning	values	to	the	column.

MySQL	stores	SET	values	numerically,	with	the	low-order	bit	of	the	stored	value
corresponding	to	the	first	set	member.	If	you	retrieve	a	SET	value	in	a	numeric
context,	the	value	retrieved	has	bits	set	corresponding	to	the	set	members	that

make	up	the	column	value.	For	example,	you	can	retrieve	numeric	values	from	a
SET	column	like	this:

mysql>	SELECT	set_col+0	FROM	tbl_name;

If	a	number	is	stored	into	a	SET	column,	the	bits	that	are	set	in	the	binary
representation	of	the	number	determine	the	set	members	in	the	column	value.
For	a	column	specified	as	SET('a','b','c','d'),	the	members	have	the
following	decimal	and	binary	values:

SET	Member Decimal	Value Binary	Value
'a' 1 0001

'b' 2 0010

'c' 4 0100

'd' 8 1000

If	you	assign	a	value	of	9	to	this	column,	that	is	1001	in	binary,	so	the	first	and
fourth	SET	value	members	'a'	and	'd'	are	selected	and	the	resulting	value	is
'a,d'.

For	a	value	containing	more	than	one	SET	element,	it	does	not	matter	what	order
the	elements	are	listed	in	when	you	insert	the	value.	It	also	does	not	matter	how
many	times	a	given	element	is	listed	in	the	value.	When	the	value	is	retrieved
later,	each	element	in	the	value	appears	once,	with	elements	listed	according	to
the	order	in	which	they	were	specified	at	table	creation	time.	For	example,
suppose	that	a	column	is	specified	as	SET('a','b','c','d'):

mysql>	CREATE	TABLE	myset	(col	SET('a',	'b',	'c',	'd'));

If	you	insert	the	values	'a,d',	'd,a',	'a,d,d',	'a,d,a',	and	'd,a,d':

mysql>	INSERT	INTO	myset	(col)	VALUES	

->	('a,d'),	('d,a'),	('a,d,a'),	('a,d,d'),	('d,a,d');

Query	OK,	5	rows	affected	(0.01	sec)

Records:	5		Duplicates:	0		Warnings:	0

Then	all	of	these	values	appear	as	'a,d'	when	retrieved:

mysql>	SELECT	col	FROM	myset;

+------+

|	col		|

+------+

|	a,d		|

|	a,d		|

|	a,d		|

|	a,d		|

|	a,d		|

+------+

5	rows	in	set	(0.04	sec)

If	you	set	a	SET	column	to	an	unsupported	value,	the	value	is	ignored	and	a
warning	is	issued:

mysql>	INSERT	INTO	myset	(col)	VALUES	('a,d,d,s');

Query	OK,	1	row	affected,	1	warning	(0.03	sec)

mysql>	SHOW	WARNINGS;

+---------+------+--+

|	Level			|	Code	|	Message																																		|

+---------+------+--+

|	Warning	|	1265	|	Data	truncated	for	column	'col'	at	row	1	|

+---------+------+--+

1	row	in	set	(0.04	sec)

mysql>	SELECT	col	FROM	myset;

+------+

|	col		|

+------+

|	a,d		|

|	a,d		|

|	a,d		|

|	a,d		|

|	a,d		|

|	a,d		|

+------+

6	rows	in	set	(0.01	sec)

If	strict	SQL	mode	is	enabled,	attempts	to	insert	invalid	SET	values	result	in	an
error.

SET	values	are	sorted	numerically.	NULL	values	sort	before	non-NULL	SET	values.

Normally,	you	search	for	SET	values	using	the	FIND_IN_SET()	function	or	the
LIKE	operator:

mysql>	SELECT	*	FROM	tbl_name	WHERE	FIND_IN_SET('value',set_col)>0;

mysql>	SELECT	*	FROM	tbl_name	WHERE	set_col	LIKE	'%value%';

The	first	statement	finds	rows	where	set_col	contains	the	value	set	member.

The	second	is	similar,	but	not	the	same:	It	finds	rows	where	set_col	contains
value	anywhere,	even	as	a	substring	of	another	set	member.

The	following	statements	also	are	legal:

mysql>	SELECT	*	FROM	tbl_name	WHERE	set_col	&	1;

mysql>	SELECT	*	FROM	tbl_name	WHERE	set_col	=	'val1,val2';

The	first	of	these	statements	looks	for	values	containing	the	first	set	member.
The	second	looks	for	an	exact	match.	Be	careful	with	comparisons	of	the	second
type.	Comparing	set	values	to	'val1,val2'	returns	different	results	than
comparing	values	to	'val2,val1'.	You	should	specify	the	values	in	the	same
order	they	are	listed	in	the	column	definition.

If	you	want	to	determine	all	possible	values	for	a	SET	column,	use	SHOW	COLUMNS
FROM	tbl_name	LIKE	set_col	and	parse	the	SET	definition	in	the	Type	column
of	the	output.

11.5.	Data	Type	Storage	Requirements

The	storage	requirements	for	each	of	the	data	types	supported	by	MySQL	are
listed	here	by	category.

The	maximum	size	of	a	row	in	a	MyISAM	table	is	65,534	bytes.	Each	BLOB	and
TEXT	column	accounts	for	only	five	to	nine	bytes	toward	this	size.

Important:	For	tables	using	the	NDBCluster	storage	engine,	there	is	the	factor	of
4-byte	alignment	to	be	taken	into	account	when	calculating	storage	requirements.
This	means	that	all	NDB	data	storage	is	done	in	multiples	of	4	bytes.	Thus,	a
column	value	that	—	in	a	table	using	a	storage	engine	other	than	NDB	—	would
take	15	bytes	for	storage,	requires	16	bytes	in	an	NDB	table.	This	requirement
applies	in	addition	to	any	other	considerations	that	are	discussed	in	this	section.
For	example,	in	NDBCluster	tables,	the	TINYINT,	SMALLINT,	MEDIUMINT,	and
INTEGER	(INT)	column	types	each	require	4	bytes	storage	per	record.

In	addition,	when	calculating	storage	requirements	for	Cluster	tables,	you	must
remember	that	every	table	using	the	NDBCluster	storage	engine	requires	a
primary	key;	if	no	primary	key	is	defined	by	the	user,	then	a	“hidden”	primary
key	will	be	created	by	NDB.	This	hidden	primary	key	consumes	31-35	bytes	per
table	record.

When	calculating	Cluster	memory	requirements,	you	may	find	useful	the
ndb_size.pl	utility	which	is	available	on	MySQLForge.	This	Perl	script
connects	to	a	current	MySQL	(non-Cluster)	database	and	creates	a	report	on	how
much	space	that	database	would	require	if	it	used	the	NDBCluster	storage
engine.

Storage	Requirements	for	Numeric	Types

Data	Type Storage	Required
TINYINT 1	byte
SMALLINT 2	bytes
MEDIUMINT 3	bytes
INT,	INTEGER 4	bytes
BIGINT

http://forge.mysql.com/

8	bytes
FLOAT(p) 4	bytes	if	0	<=	p	<=	24,	8	bytes	if	25	<=	p	<=	53

FLOAT 4	bytes
DOUBLE	[PRECISION],	REAL 8	bytes
DECIMAL(M,D),	NUMERIC(M,D) Varies;	see	following	discussion
BIT(M) approximately	(M+7)/8	bytes

The	storage	requirements	for	DECIMAL	(and	NUMERIC)	are	version-specific:

As	of	MySQL	5.0.3,	values	for	DECIMAL	columns	are	represented	using	a	binary
format	that	packs	nine	decimal	(base	10)	digits	into	four	bytes.	Storage	for	the
integer	and	fractional	parts	of	each	value	are	determined	separately.	Each
multiple	of	nine	digits	requires	four	bytes,	and	the	“leftover”	digits	require	some
fraction	of	four	bytes.	The	storage	required	for	excess	digits	is	given	by	the
following	table:

Leftover	Digits Number	of	Bytes
0 0
1 1
2 1
3 2
4 2
5 3
6 3
7 4
8 4
9 4

Before	MySQL	5.0.3,	DECIMAL	columns	are	represented	as	strings	and	storage
requirements	are:	M+2	bytes	if	D	>	0,	M+1	bytes	if	D	=	0	(D+2,	if	M	<	D)

Storage	Requirements	for	Date	and	Time	Types

Data	Type Storage	Required

DATE 3	bytes
DATETIME 8	bytes

TIMESTAMP 4	bytes
TIME 3	bytes
YEAR 1	byte

Storage	Requirements	for	String	Types

Data	Type Storage	Required
CHAR(M) M	bytes,	0	<=	M	<=	255

VARCHAR(M)

Prior	to	MySQL	5.0.3:	L	+	1	bytes,	where	L	<=	M
and	0	<=	M	<=	255.	MySQL	5.0.3	and	later:	L	+	1
bytes,	where	L	<=	M	and	0	<=	M	<=	255	or	L	+	2
bytes,	where	L	<=	M	and	256	<=	M	<=	65535	(see
note	below).

BINARY(M) M	bytes,	0	<=	M	<=	255

VARBINARY(M)

Prior	to	MySQL	5.0.3:	L	+	1	bytes,	where	L	<=	M
and	0	<=	M	<=	255.	MySQL	5.0.3	and	later:	L	+	1
bytes,	where	L	<=	M	and	0	<=	M	<=	255	or	L	+	2
bytes,	where	L	<=	M	and	256	<=	M	<=	65535	(see
note	below).

TINYBLOB,	TINYTEXT L+1	byte,	where	L	<	28

BLOB,	TEXT L+2	bytes,	where	L	<	216

MEDIUMBLOB,	MEDIUMTEXT L+3	bytes,	where	L	<	224

LONGBLOB,	LONGTEXT L+4	bytes,	where	L	<	232

ENUM('value1','value2',...) 1	or	2	bytes,	depending	on	the	number	ofenumeration	values	(65,535	values	maximum)

SET('value1','value2',...) 1,	2,	3,	4,	or	8	bytes,	depending	on	the	number	of
set	members	(64	members	maximum)

For	the	CHAR,	VARCHAR,	and	TEXT	types,	the	values	L	and	M	in	the	preceding	table
should	be	interpreted	as	number	of	characters,	and	lengths	for	these	types	in
column	specifications	indicate	the	number	of	characters.	For	example,	to	store	a
TINYTEXT	value	requires	L	characters	plus	one	byte.

VARCHAR,	VARBINARY,	and	the	BLOB	and	TEXT	types	are	variable-length	types.	For
each,	the	storage	requirements	depend	on	these	factors:

The	actual	length	of	the	column	value

The	column's	maximum	possible	length

The	character	set	used	for	the	column

For	example,	a	VARCHAR(10)	column	can	hold	a	string	with	a	maximum	length	of
10.	Assuming	that	the	column	uses	the	latin1	character	set	(one	byte	per
character),	the	actual	storage	required	is	the	length	of	the	string	(L),	plus	one
byte	to	record	the	length	of	the	string.	For	the	string	'abcd',	L	is	4	and	the
storage	requirement	is	five	bytes.	If	the	same	column	was	instead	declared	as
VARCHAR(500),	the	string	'abcd'	requires	4	+	2	=	6	bytes.	Two	bytes	rather	than
one	are	required	for	the	prefix	because	the	length	of	the	column	is	greater	than
255	characters.

To	calculate	the	number	of	bytes	used	to	store	a	particular	CHAR,	VARCHAR,	or
TEXT	column	value,	you	must	take	into	account	the	character	set	used	for	that
column.	In	particular,	when	using	the	utf8	Unicode	character	set,	you	must	keep
in	mind	that	not	all	utf8	characters	use	the	same	number	of	bytes.	For	a
breakdown	of	the	storage	used	for	different	categories	of	utf8	characters,	see
Section	10.7,	“Unicode	Support”.

Note:	In	MySQL	5.0.3	and	later,	the	effective	maximum	length	for	a	VARCHAR	or
VARBINARY	column	is	65,532.

As	of	MySQL	5.0.3,	the	NDBCLUSTER	engine	supports	only	fixed-width	columns.
This	means	that	a	VARCHAR	column	from	a	table	in	a	MySQL	Cluster	will	behave
as	follows:

If	the	size	of	the	column	is	fewer	than	256	characters,	the	column	requires
one	byte	extra	storage	per	row.

If	the	size	of	the	column	is	256	characters	or	more,	the	column	requires	two
bytes	extra	storage	per	row.

Note	that	the	number	of	bytes	required	per	character	varies	according	to	the
character	set	used.	For	example,	if	a	VARCHAR(100)	column	in	a	Cluster	table

uses	the	utf8	character	set,	then	each	character	requires	3	bytes	storage.	This
means	that	each	record	in	such	a	column	takes	up	100	×	3	+	1	=	301	bytes	for
storage,	regardless	of	the	length	of	the	string	actually	stored	in	any	given	record.
For	a	VARCHAR(1000)	column	in	a	table	using	the	NDBCLUSTER	storage	engine
with	the	utf8	character	set,	each	record	will	use	1000	×	3	+	2	=	3002	bytes
storage;	that	is,	the	column	is	1,000	characters	wide,	each	character	requires	3
bytes	storage,	and	each	record	has	a	2-byte	overhead	because	1,000	>	256.

The	BLOB	and	TEXT	types	require	1,	2,	3,	or	4	bytes	to	record	the	length	of	the
column	value,	depending	on	the	maximum	possible	length	of	the	type.	See
Section	11.4.3,	“The	BLOB	and	TEXT	Types”.

TEXT	and	BLOB	columns	are	implemented	differently	in	the	NDB	Cluster	storage
engine,	wherein	each	row	in	a	TEXT	column	is	made	up	of	two	separate	parts.
One	of	these	is	of	fixed	size	(256	bytes),	and	is	actually	stored	in	the	original
table.	The	other	consists	of	any	data	in	excess	of	256	bytes,	which	stored	in	a
hidden	table.	The	rows	in	this	second	table	are	always	2,000	bytes	long.	This
means	that	the	size	of	a	TEXT	column	is	256	if	size	<=	256	(where	size
represents	the	size	of	the	row);	otherwise,	the	size	is	256	+	size	+	(2000	–	(size
–	256)	%	2000).

The	size	of	an	ENUM	object	is	determined	by	the	number	of	different	enumeration
values.	One	byte	is	used	for	enumerations	with	up	to	255	possible	values.	Two
bytes	are	used	for	enumerations	having	between	256	and	65,535	possible	values.
See	Section	11.4.4,	“The	ENUM	Type”.

The	size	of	a	SET	object	is	determined	by	the	number	of	different	set	members.	If
the	set	size	is	N,	the	object	occupies	(N+7)/8	bytes,	rounded	up	to	1,	2,	3,	4,	or	8
bytes.	A	SET	can	have	a	maximum	of	64	members.	See	Section	11.4.5,	“The	SET
Type”.

11.6.	Choosing	the	Right	Type	for	a	Column

For	optimum	storage,	you	should	try	to	use	the	most	precise	type	in	all	cases.
For	example,	if	an	integer	column	is	used	for	values	in	the	range	from	1	to
99999,	MEDIUMINT	UNSIGNED	is	the	best	type.	Of	the	types	that	represent	all	the
required	values,	this	type	uses	the	least	amount	of	storage.

Tables	created	in	MySQL	5.0.3	and	above	uses	a	new	storage	format	for	DECIMAL
columns.	All	basic	calculation	(+,-,*,/)	with	DECIMAL	columns	are	done	with
precision	of	65	decimal	(base	10)	digits.	See	Section	11.1.1,	“Overview	of
Numeric	Types”.

Prior	to	MySQL	5.0.3,	calculations	on	DECIMAL	values	are	performed	using
double-precision	operations.	If	accuracy	is	not	too	important	or	if	speed	is	the
highest	priority,	the	DOUBLE	type	may	be	good	enough.	For	high	precision,	you
can	always	convert	to	a	fixed-point	type	stored	in	a	BIGINT.	This	allows	you	to
do	all	calculations	with	64-bit	integers	and	then	convert	results	back	to	floating-
point	values	as	necessary.

11.7.	Using	Data	Types	from	Other	Database	Engines

To	facilitate	the	use	of	code	written	for	SQL	implementations	from	other
vendors,	MySQL	maps	data	types	as	shown	in	the	following	table.	These
mappings	make	it	easier	to	import	table	definitions	from	other	database	systems
into	MySQL:

Other	Vendor	Type MySQL	Type
BOOL, TINYINT

BOOLEAN TINYINT

CHAR	VARYING(M) VARCHAR(M)
DEC DECIMAL

FIXED DECIMAL

FLOAT4 FLOAT

FLOAT8 DOUBLE

INT1 TINYINT

INT2 SMALLINT

INT3 MEDIUMINT

INT4 INT

INT8 BIGINT

LONG	VARBINARY MEDIUMBLOB

LONG	VARCHAR MEDIUMTEXT

LONG MEDIUMTEXT

MIDDLEINT MEDIUMINT

NUMERIC DECIMAL

Data	type	mapping	occurs	at	table	creation	time,	after	which	the	original	type
specifications	are	discarded.	If	you	create	a	table	with	types	used	by	other
vendors	and	then	issue	a	DESCRIBE	tbl_name	statement,	MySQL	reports	the
table	structure	using	the	equivalent	MySQL	types.	For	example:

mysql>	CREATE	TABLE	t	(a	BOOL,	b	FLOAT8,	c	LONG	VARCHAR,	d	NUMERIC);

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	DESCRIBE	t;

+-------+---------------+------+-----+---------+-------+

|	Field	|	Type										|	Null	|	Key	|	Default	|	Extra	|

+-------+---------------+------+-----+---------+-------+

|	a					|	tinyint(1)				|	YES		|					|	NULL				|							|

|	b					|	double								|	YES		|					|	NULL				|							|

|	c					|	mediumtext				|	YES		|					|	NULL				|							|

|	d					|	decimal(10,0)	|	YES		|					|	NULL				|							|

+-------+---------------+------+-----+---------+-------+

4	rows	in	set	(0.01	sec)

Chapter	12.	Functions	and	Operators

Table	of	Contents

12.1.	Operators
12.1.1.	Operator	Precedence
12.1.2.	Type	Conversion	in	Expression	Evaluation
12.1.3.	Comparison	Functions	and	Operators
12.1.4.	Logical	Operators

12.2.	Control	Flow	Functions
12.3.	String	Functions

12.3.1.	String	Comparison	Functions
12.4.	Numeric	Functions

12.4.1.	Arithmetic	Operators
12.4.2.	Mathematical	Functions

12.5.	Date	and	Time	Functions
12.6.	What	Calendar	Is	Used	By	MySQL?
12.7.	Full-Text	Search	Functions

12.7.1.	Boolean	Full-Text	Searches
12.7.2.	Full-Text	Searches	with	Query	Expansion
12.7.3.	Full-Text	Stopwords
12.7.4.	Full-Text	Restrictions
12.7.5.	Fine-Tuning	MySQL	Full-Text	Search

12.8.	Cast	Functions	and	Operators
12.9.	Other	Functions

12.9.1.	Bit	Functions
12.9.2.	Encryption	and	Compression	Functions
12.9.3.	Information	Functions
12.9.4.	Miscellaneous	Functions

12.10.	Functions	and	Modifiers	for	Use	with	GROUP	BY	Clauses
12.10.1.	GROUP	BY	(Aggregate)	Functions
12.10.2.	GROUP	BY	Modifiers
12.10.3.	GROUP	BY	and	HAVING	with	Hidden	Fields

Expressions	can	be	used	at	several	points	in	SQL	statements,	such	as	in	the
ORDER	BY	or	HAVING	clauses	of	SELECT	statements,	in	the	WHERE	clause	of	a
SELECT,	DELETE,	or	UPDATE	statement,	or	in	SET	statements.	Expressions	can	be

written	using	literal	values,	column	values,	NULL,	built-in	functions,	stored
functions,	user-defined	functions,	and	operators.	This	chapter	describes	the
functions	and	operators	that	are	allowed	for	writing	expressions	in	MySQL.
Instructions	for	writing	stored	functions	and	user-defined	functions	are	given	in
Chapter	17,	Stored	Procedures	and	Functions,	and	Section	24.2,	“Adding	New
Functions	to	MySQL”.

An	expression	that	contains	NULL	always	produces	a	NULL	value	unless	otherwise
indicated	in	the	documentation	for	a	particular	function	or	operator.

Note:	By	default,	there	must	be	no	whitespace	between	a	function	name	and	the
parenthesis	following	it.	This	helps	the	MySQL	parser	distinguish	between
function	calls	and	references	to	tables	or	columns	that	happen	to	have	the	same
name	as	a	function.	However,	spaces	around	function	arguments	are	permitted.

You	can	tell	the	MySQL	server	to	accept	spaces	after	function	names	by	starting
it	with	the	--sql-mode=IGNORE_SPACE	option.	(See	Section	5.2.5,	“The	Server
SQL	Mode”.)	Individual	client	programs	can	request	this	behavior	by	using	the
CLIENT_IGNORE_SPACE	option	for	mysql_real_connect().	In	either	case,	all
function	names	become	reserved	words.

For	the	sake	of	brevity,	most	examples	in	this	chapter	display	the	output	from	the
mysql	program	in	abbreviated	form.	Rather	than	showing	examples	in	this
format:

mysql>	SELECT	MOD(29,9);

+-----------+

|	mod(29,9)	|

+-----------+

|									2	|

+-----------+

1	rows	in	set	(0.00	sec)

This	format	is	used	instead:

mysql>	SELECT	MOD(29,9);

								->	2

12.1.	Operators

12.1.1.	Operator	Precedence

Operator	precedences	are	shown	in	the	following	list,	from	lowest	precedence	to
the	highest.	Operators	that	are	shown	together	on	a	line	have	the	same
precedence.

:=

||,	OR,	XOR

&&,	AND

NOT

BETWEEN,	CASE,	WHEN,	THEN,	ELSE

=,	<=>,	>=,	>,	<=,	<,	<>,	!=,	IS,	LIKE,	REGEXP,	IN

|

&

<<,	>>

-,	+

*,	/,	DIV,	%,	MOD

^

-	(unary	minus),	~	(unary	bit	inversion)

!

BINARY,	COLLATE

The	precedence	shown	for	NOT	is	as	of	MySQL	5.0.2.	For	earlier	versions,	or
from	5.0.2	on	if	the	HIGH_NOT_PRECEDENCE	SQL	mode	is	enabled,	the	precedence
of	NOT	is	the	same	as	that	of	the	!	operator.	See	Section	5.2.5,	“The	Server	SQL
Mode”.

The	precedence	of	operators	determines	the	order	of	evaluation	of	terms	in	an
expression.	To	override	this	order	and	group	terms	explicitly,	use	parentheses.
For	example:

mysql>	SELECT	1+2*3;

								->	7

mysql>	SELECT	(1+2)*3;

								->	9

12.1.2.	Type	Conversion	in	Expression	Evaluation

When	an	operator	is	used	with	operands	of	different	types,	type	conversion
occurs	to	make	the	operands	compatible.	Some	conversions	occur	implicitly.	For

example,	MySQL	automatically	converts	numbers	to	strings	as	necessary,	and
vice	versa.

mysql>	SELECT	1+'1';

								->	2

mysql>	SELECT	CONCAT(2,'	test');

								->	'2	test'

It	is	also	possible	to	perform	explicit	conversions.	If	you	want	to	convert	a
number	to	a	string	explicitly,	use	the	CAST()	or	CONCAT()	function	(CAST()	is
preferable):

mysql>	SELECT	38.8,	CAST(38.8	AS	CHAR);

								->	38.8,	'38.8'

mysql>	SELECT	38.8,	CONCAT(38.8);

								->	38.8,	'38.8'

The	following	rules	describe	how	conversion	occurs	for	comparison	operations:

If	one	or	both	arguments	are	NULL,	the	result	of	the	comparison	is	NULL,
except	for	the	NULL-safe	<=>	equality	comparison	operator.	For	NULL	<=>
NULL,	the	result	is	true.

If	both	arguments	in	a	comparison	operation	are	strings,	they	are	compared
as	strings.

If	both	arguments	are	integers,	they	are	compared	as	integers.

Hexadecimal	values	are	treated	as	binary	strings	if	not	compared	to	a
number.

	If	one	of	the	arguments	is	a	TIMESTAMP	or	DATETIME	column	and	the	other
argument	is	a	constant,	the	constant	is	converted	to	a	timestamp	before	the
comparison	is	performed.	This	is	done	to	be	more	ODBC-friendly.	Note
that	this	is	not	done	for	the	arguments	to	IN()!	To	be	safe,	always	use
complete	datetime,	date,	or	time	strings	when	doing	comparisons.

In	all	other	cases,	the	arguments	are	compared	as	floating-point	(real)
numbers.

The	following	examples	illustrate	conversion	of	strings	to	numbers	for
comparison	operations:

mysql>	SELECT	1	>	'6x';

								->	0

mysql>	SELECT	7	>	'6x';

								->	1

mysql>	SELECT	0	>	'x6';

								->	0

mysql>	SELECT	0	=	'x6';

								->	1

Note	that	when	you	are	comparing	a	string	column	with	a	number,	MySQL
cannot	use	an	index	on	the	column	to	look	up	the	value	quickly.	If	str_col	is	an
indexed	string	column,	the	index	cannot	be	used	when	performing	the	lookup	in
the	following	statement:

SELECT	*	FROM	tbl_name	WHERE	str_col=1;

The	reason	for	this	is	that	there	are	many	different	strings	that	may	convert	to	the
value	1,	such	as	'1',	'	1',	or	'1a'.

Comparisons	that	use	floating-point	numbers	(or	values	that	are	converted	to
floating-point	numbers)	are	approximate	because	such	numbers	are	inexact.	This
might	lead	to	results	that	appear	inconsistent:

mysql>	SELECT	'18015376320243458'	=	18015376320243458;

								->	1

mysql>	SELECT	'18015376320243459'	=	18015376320243459;

								->	0

Such	results	can	occur	because	the	values	are	converted	to	floating-point
numbers,	which	have	only	53	bits	of	precision	and	are	subject	to	rounding:

mysql>	SELECT	'18015376320243459'+0.0;

								->	1.8015376320243e+16

Furthermore,	the	conversion	from	string	to	floating-point	and	from	integer	to
floating-point	do	not	necessarily	occur	the	same	way.	The	integer	may	be
converted	to	floating-point	by	the	CPU,	whereas	the	string	is	converted	digit	by
digit	in	an	operation	that	involves	floating-point	multiplications.

The	results	shown	will	vary	on	different	systems,	and	can	be	affected	by	factors
such	as	computer	architecture	or	the	compiler	version	or	optimization	level.	One
way	to	avoid	such	problems	is	to	use	CAST()	so	that	a	value	will	not	be
converted	implicitly	to	a	float-point	number:

mysql>	SELECT	CAST('18015376320243459'	AS	UNSIGNED)	=	18015376320243459;

								->	1

For	more	information	about	floating-point	comparisons,	see	Section	A.5.8,
“Problems	with	Floating-Point	Comparisons”.

12.1.3.	Comparison	Functions	and	Operators

Comparison	operations	result	in	a	value	of	1	(TRUE),	0	(FALSE),	or	NULL.	These
operations	work	for	both	numbers	and	strings.	Strings	are	automatically
converted	to	numbers	and	numbers	to	strings	as	necessary.

Some	of	the	functions	in	this	section	(such	as	LEAST()	and	GREATEST())	return
values	other	than	1	(TRUE),	0	(FALSE),	or	NULL.	However,	the	value	they	return	is
based	on	comparison	operations	performed	according	to	the	rules	described	in
Section	12.1.2,	“Type	Conversion	in	Expression	Evaluation”.

To	convert	a	value	to	a	specific	type	for	comparison	purposes,	you	can	use	the
CAST()	function.	String	values	can	be	converted	to	a	different	character	set	using
CONVERT().	See	Section	12.8,	“Cast	Functions	and	Operators”.

By	default,	string	comparisons	are	not	case	sensitive	and	use	the	current
character	set.	The	default	is	latin1	(cp1252	West	European),	which	also	works
well	for	English.

	=

Equal:

mysql>	SELECT	1	=	0;

								->	0

mysql>	SELECT	'0'	=	0;

								->	1

mysql>	SELECT	'0.0'	=	0;

								->	1

mysql>	SELECT	'0.01'	=	0;

								->	0

mysql>	SELECT	'.01'	=	0.01;

								->	1

	<=>

NULL-safe	equal.	This	operator	performs	an	equality	comparison	like	the	=
operator,	but	returns	1	rather	than	NULL	if	both	operands	are	NULL,	and	0
rather	than	NULL	if	one	operand	is	NULL.

mysql>	SELECT	1	<=>	1,	NULL	<=>	NULL,	1	<=>	NULL;

								->	1,	1,	0

mysql>	SELECT	1	=	1,	NULL	=	NULL,	1	=	NULL;

								->	1,	NULL,	NULL

	<>,	!=

Not	equal:

mysql>	SELECT	'.01'	<>	'0.01';

								->	1

mysql>	SELECT	.01	<>	'0.01';

								->	0

mysql>	SELECT	'zapp'	<>	'zappp';

								->	1

	<=

Less	than	or	equal:

mysql>	SELECT	0.1	<=	2;

								->	1

	<

Less	than:

mysql>	SELECT	2	<	2;

								->	0

	>=

Greater	than	or	equal:

mysql>	SELECT	2	>=	2;

								->	1

	>

Greater	than:

mysql>	SELECT	2	>	2;

								->	0

	IS	boolean_value,	IS	NOT	boolean_value

Tests	a	value	against	a	boolean	value,	where	boolean_value	can	be	TRUE,
FALSE,	or	UNKNOWN.

mysql>	SELECT	1	IS	TRUE,	0	IS	FALSE,	NULL	IS	UNKNOWN;

								->	1,	1,	1

mysql>	SELECT	1	IS	NOT	UNKNOWN,	0	IS	NOT	UNKNOWN,	NULL	IS	NOT	UNKNOWN;

								->	1,	1,	0

IS	[NOT]	boolean_value	syntax	was	added	in	MySQL	5.0.2.

	IS	NULL,	IS	NOT	NULL

Tests	whether	a	value	is	or	is	not	NULL.

mysql>	SELECT	1	IS	NULL,	0	IS	NULL,	NULL	IS	NULL;

								->	0,	0,	1

mysql>	SELECT	1	IS	NOT	NULL,	0	IS	NOT	NULL,	NULL	IS	NOT	NULL;

								->	1,	1,	0

To	work	well	with	ODBC	programs,	MySQL	supports	the	following	extra
features	when	using	IS	NULL:

You	can	find	the	row	that	contains	the	most	recent	AUTO_INCREMENT
value	by	issuing	a	statement	of	the	following	form	immediately	after
generating	the	value:

SELECT	*	FROM	tbl_name	WHERE	auto_col	IS	NULL

This	behavior	can	be	disabled	by	setting	SQL_AUTO_IS_NULL=0.	See
Section	13.5.3,	“SET	Syntax”.

For	DATE	and	DATETIME	columns	that	are	declared	as	NOT	NULL,	you
can	find	the	special	date	'0000-00-00'	by	using	a	statement	like	this:

SELECT	*	FROM	tbl_name	WHERE	date_column	IS	NULL

This	is	needed	to	get	some	ODBC	applications	to	work	because
ODBC	does	not	support	a	'0000-00-00'	date	value.

	expr	BETWEEN	min	AND	max

If	expr	is	greater	than	or	equal	to	min	and	expr	is	less	than	or	equal	to	max,
BETWEEN	returns	1,	otherwise	it	returns	0.	This	is	equivalent	to	the
expression	(min	<=	expr	AND	expr	<=	max)	if	all	the	arguments	are	of	the
same	type.	Otherwise	type	conversion	takes	place	according	to	the	rules
described	in	Section	12.1.2,	“Type	Conversion	in	Expression	Evaluation”,
but	applied	to	all	the	three	arguments.

mysql>	SELECT	1	BETWEEN	2	AND	3;

								->	0

mysql>	SELECT	'b'	BETWEEN	'a'	AND	'c';

								->	1

mysql>	SELECT	2	BETWEEN	2	AND	'3';

								->	1

mysql>	SELECT	2	BETWEEN	2	AND	'x-3';

								->	0

	expr	NOT	BETWEEN	min	AND	max

This	is	the	same	as	NOT	(expr	BETWEEN	min	AND	max).

	COALESCE(value,...)

Returns	the	first	non-NULL	value	in	the	list,	or	NULL	if	there	are	no	non-NULL
values.

mysql>	SELECT	COALESCE(NULL,1);

								->	1

mysql>	SELECT	COALESCE(NULL,NULL,NULL);

								->	NULL

	GREATEST(value1,value2,...)

With	two	or	more	arguments,	returns	the	largest	(maximum-valued)
argument.	The	arguments	are	compared	using	the	same	rules	as	for
LEAST().

mysql>	SELECT	GREATEST(2,0);

								->	2

mysql>	SELECT	GREATEST(34.0,3.0,5.0,767.0);

								->	767.0

mysql>	SELECT	GREATEST('B','A','C');

								->	'C'

Before	MySQL	5.0.13,	GREATEST()	returns	NULL	only	if	all	arguments	are
NULL.	As	of	5.0.13,	it	returns	NULL	if	any	argument	is	NULL.

	expr	IN	(value,...)

Returns	1	if	expr	is	equal	to	any	of	the	values	in	the	IN	list,	else	returns	0.	If
all	values	are	constants,	they	are	evaluated	according	to	the	type	of	expr
and	sorted.	The	search	for	the	item	then	is	done	using	a	binary	search.	This
means	IN	is	very	quick	if	the	IN	value	list	consists	entirely	of	constants.
Otherwise,	type	conversion	takes	place	according	to	the	rules	described	in
Section	12.1.2,	“Type	Conversion	in	Expression	Evaluation”,	but	applied	to
all	the	arguments.

mysql>	SELECT	2	IN	(0,3,5,7);

								->	0

mysql>	SELECT	'wefwf'	IN	('wee','wefwf','weg');

								->	1

You	should	never	mix	quoted	and	unquoted	values	in	an	IN	list	because	the
comparison	rules	for	quoted	values	(such	as	strings)	and	unquoted	values
(such	as	numbers)	differ.	Mixing	types	may	therefore	lead	to	inconsistent
results.	For	example,	do	not	write	an	IN	expression	like	this:

SELECT	val1	FROM	tbl1	WHERE	val1	IN	(1,2,'a');

Instead,	write	it	like	this:

SELECT	val1	FROM	tbl1	WHERE	val1	IN	('1','2','a');

The	number	of	values	in	the	IN	list	is	only	limited	by	the
max_allowed_packet	value.

To	comply	with	the	SQL	standard,	IN	returns	NULL	not	only	if	the
expression	on	the	left	hand	side	is	NULL,	but	also	if	no	match	is	found	in	the
list	and	one	of	the	expressions	in	the	list	is	NULL.

IN()	syntax	can	also	be	used	to	write	certain	types	of	subqueries.	See
Section	13.2.8.3,	“Subqueries	with	ANY,	IN,	and	SOME”.

	expr	NOT	IN	(value,...)

This	is	the	same	as	NOT	(expr	IN	(value,...)).

	ISNULL(expr)

If	expr	is	NULL,	ISNULL()	returns	1,	otherwise	it	returns	0.

mysql>	SELECT	ISNULL(1+1);

								->	0

mysql>	SELECT	ISNULL(1/0);

								->	1

ISNULL()	can	be	used	instead	of	=	to	test	whether	a	value	is	NULL.
(Comparing	a	value	to	NULL	using	=	always	yields	false.)

The	ISNULL()	function	shares	some	special	behaviors	with	the	IS	NULL
comparison	operator.	See	the	description	of	IS	NULL.

	INTERVAL(N,N1,N2,N3,...)

Returns	0	if	N	<	N1,	1	if	N	<	N2	and	so	on	or	-1	if	N	is	NULL.	All	arguments
are	treated	as	integers.	It	is	required	that	N1	<	N2	<	N3	<	...	<	Nn	for	this
function	to	work	correctly.	This	is	because	a	binary	search	is	used	(very
fast).

mysql>	SELECT	INTERVAL(23,	1,	15,	17,	30,	44,	200);

								->	3

mysql>	SELECT	INTERVAL(10,	1,	10,	100,	1000);

								->	2

mysql>	SELECT	INTERVAL(22,	23,	30,	44,	200);

								->	0

	LEAST(value1,value2,...)

With	two	or	more	arguments,	returns	the	smallest	(minimum-valued)
argument.	The	arguments	are	compared	using	the	following	rules:

If	the	return	value	is	used	in	an	INTEGER	context	or	all	arguments	are
integer-valued,	they	are	compared	as	integers.

If	the	return	value	is	used	in	a	REAL	context	or	all	arguments	are	real-
valued,	they	are	compared	as	reals.

If	any	argument	is	a	case-sensitive	string,	the	arguments	are	compared
as	case-sensitive	strings.

In	all	other	cases,	the	arguments	are	compared	as	case-insensitive
strings.

Before	MySQL	5.0.13,	LEAST()	returns	NULL	only	if	all	arguments	are	NULL.
As	of	5.0.13,	it	returns	NULL	if	any	argument	is	NULL.

mysql>	SELECT	LEAST(2,0);

								->	0

mysql>	SELECT	LEAST(34.0,3.0,5.0,767.0);

								->	3.0

mysql>	SELECT	LEAST('B','A','C');

								->	'A'

Note	that	the	preceding	conversion	rules	can	produce	strange	results	in
some	borderline	cases:

mysql>	SELECT	CAST(LEAST(3600,	9223372036854775808.0)	as	SIGNED);

								->	-9223372036854775808

This	happens	because	MySQL	reads	9223372036854775808.0	in	an	integer
context.	The	integer	representation	is	not	good	enough	to	hold	the	value,	so
it	wraps	to	a	signed	integer.

12.1.4.	Logical	Operators

In	SQL,	all	logical	operators	evaluate	to	TRUE,	FALSE,	or	NULL	(UNKNOWN).	In
MySQL,	these	are	implemented	as	1	(TRUE),	0	(FALSE),	and	NULL.	Most	of	this	is
common	to	different	SQL	database	servers,	although	some	servers	may	return
any	non-zero	value	for	TRUE.

	NOT,	!

Logical	NOT.	Evaluates	to	1	if	the	operand	is	0,	to	0	if	the	operand	is	non-
zero,	and	NOT	NULL	returns	NULL.

mysql>	SELECT	NOT	10;

								->	0

mysql>	SELECT	NOT	0;

								->	1

mysql>	SELECT	NOT	NULL;

								->	NULL

mysql>	SELECT	!	(1+1);

								->	0

mysql>	SELECT	!	1+1;

								->	1

The	last	example	produces	1	because	the	expression	evaluates	the	same	way
as	(!1)+1.

Note	that	the	precedence	of	the	NOT	operator	changed	in	MySQL	5.0.2.	See
Section	12.1.1,	“Operator	Precedence”.

	AND,	&&

Logical	AND.	Evaluates	to	1	if	all	operands	are	non-zero	and	not	NULL,	to	0
if	one	or	more	operands	are	0,	otherwise	NULL	is	returned.

mysql>	SELECT	1	&&	1;

								->	1

mysql>	SELECT	1	&&	0;

								->	0

mysql>	SELECT	1	&&	NULL;

								->	NULL

mysql>	SELECT	0	&&	NULL;

								->	0

mysql>	SELECT	NULL	&&	0;

								->	0

	OR,	||

Logical	OR.	When	both	operands	are	non-NULL,	the	result	is	1	if	any
operand	is	non-zero,	and	0	otherwise.	With	a	NULL	operand,	the	result	is	1	if
the	other	operand	is	non-zero,	and	NULL	otherwise.	If	both	operands	are
NULL,	the	result	is	NULL.

mysql>	SELECT	1	||	1;

								->	1

mysql>	SELECT	1	||	0;

								->	1

mysql>	SELECT	0	||	0;

								->	0

mysql>	SELECT	0	||	NULL;

								->	NULL

mysql>	SELECT	1	||	NULL;

								->	1

	XOR

Logical	XOR.	Returns	NULL	if	either	operand	is	NULL.	For	non-NULL
operands,	evaluates	to	1	if	an	odd	number	of	operands	is	non-zero,
otherwise	0	is	returned.

mysql>	SELECT	1	XOR	1;

								->	0

mysql>	SELECT	1	XOR	0;

								->	1

mysql>	SELECT	1	XOR	NULL;

								->	NULL

mysql>	SELECT	1	XOR	1	XOR	1;

								->	1

a	XOR	b	is	mathematically	equal	to	(a	AND	(NOT	b))	OR	((NOT	a)	and
b).

12.2.	Control	Flow	Functions

	CASE	value	WHEN	[compare_value]	THEN	result	[WHEN
[compare_value]	THEN	result	...]	[ELSE	result]	END

CASE	WHEN	[condition]	THEN	result	[WHEN	[condition]	THEN
result	...]	[ELSE	result]	END

The	first	version	returns	the	result	where	value=compare_value.	The
second	version	returns	the	result	for	the	first	condition	that	is	true.	If	there
was	no	matching	result	value,	the	result	after	ELSE	is	returned,	or	NULL	if
there	is	no	ELSE	part.

mysql>	SELECT	CASE	1	WHEN	1	THEN	'one'

				->					WHEN	2	THEN	'two'	ELSE	'more'	END;

								->	'one'

mysql>	SELECT	CASE	WHEN	1>0	THEN	'true'	ELSE	'false'	END;

								->	'true'

mysql>	SELECT	CASE	BINARY	'B'

				->					WHEN	'a'	THEN	1	WHEN	'b'	THEN	2	END;

								->	NULL

The	default	return	type	of	a	CASE	expression	is	the	compatible	aggregated
type	of	all	return	values,	but	also	depends	on	the	context	in	which	it	is	used.
If	used	in	a	string	context,	the	result	is	returned	as	a	string.	If	used	in	a
numeric	context,	then	the	result	is	returned	as	a	decimal,	real,	or	integer
value.

Note:	The	syntax	of	the	CASE	expression	shown	here	differs	slightly	from
that	of	the	SQL	CASE	statement	described	in	Section	17.2.10.2,	“CASE
Statement”,	for	use	inside	stored	routines.	The	CASE	statement	cannot	have
an	ELSE	NULL	clause,	and	it	is	terminated	with	END	CASE	instead	of	END.

	IF(expr1,expr2,expr3)

If	expr1	is	TRUE	(expr1	<>	0	and	expr1	<>	NULL)	then	IF()	returns
expr2;	otherwise	it	returns	expr3.	IF()	returns	a	numeric	or	string	value,
depending	on	the	context	in	which	it	is	used.

mysql>	SELECT	IF(1>2,2,3);

								->	3

mysql>	SELECT	IF(1<2,'yes','no');

								->	'yes'

mysql>	SELECT	IF(STRCMP('test','test1'),'no','yes');

								->	'no'

If	only	one	of	expr2	or	expr3	is	explicitly	NULL,	the	result	type	of	the	IF()
function	is	the	type	of	the	non-NULL	expression.

expr1	is	evaluated	as	an	integer	value,	which	means	that	if	you	are	testing
floating-point	or	string	values,	you	should	do	so	using	a	comparison
operation.

mysql>	SELECT	IF(0.1,1,0);

								->	0

mysql>	SELECT	IF(0.1<>0,1,0);

								->	1

In	the	first	case	shown,	IF(0.1)	returns	0	because	0.1	is	converted	to	an
integer	value,	resulting	in	a	test	of	IF(0).	This	may	not	be	what	you	expect.
In	the	second	case,	the	comparison	tests	the	original	floating-point	value	to
see	whether	it	is	non-zero.	The	result	of	the	comparison	is	used	as	an
integer.

The	default	return	type	of	IF()	(which	may	matter	when	it	is	stored	into	a
temporary	table)	is	calculated	as	follows:

Expression Return	Value
expr2	or	expr3	returns	a	string string
expr2	or	expr3	returns	a	floating-point	value floating-point
expr2	or	expr3	returns	an	integer integer

If	expr2	and	expr3	are	both	strings,	the	result	is	case	sensitive	if	either
string	is	case	sensitive.

Note:	There	is	also	an	IF	statement,	which	differs	from	the	IF()	function
described	here.	See	Section	17.2.10.1,	“IF	Statement”.

	IFNULL(expr1,expr2)

If	expr1	is	not	NULL,	IFNULL()	returns	expr1;	otherwise	it	returns	expr2.

IFNULL()	returns	a	numeric	or	string	value,	depending	on	the	context	in
which	it	is	used.

mysql>	SELECT	IFNULL(1,0);

								->	1

mysql>	SELECT	IFNULL(NULL,10);

								->	10

mysql>	SELECT	IFNULL(1/0,10);

								->	10

mysql>	SELECT	IFNULL(1/0,'yes');

								->	'yes'

The	default	result	value	of	IFNULL(expr1,expr2)	is	the	more	“general”	of
the	two	expressions,	in	the	order	STRING,	REAL,	or	INTEGER.	Consider	the
case	of	a	table	based	on	expressions	or	where	MySQL	must	internally	store
a	value	returned	by	IFNULL()	in	a	temporary	table:

mysql>	CREATE	TABLE	tmp	SELECT	IFNULL(1,'test')	AS	test;

mysql>	DESCRIBE	tmp;

+-------+---------+------+-----+---------+-------+

|	Field	|	Type				|	Null	|	Key	|	Default	|	Extra	|

+-------+---------+------+-----+---------+-------+

|	test		|	char(4)	|						|					|									|							|

+-------+---------+------+-----+---------+-------+

In	this	example,	the	type	of	the	test	column	is	CHAR(4).

	NULLIF(expr1,expr2)

Returns	NULL	if	expr1	=	expr2	is	true,	otherwise	returns	expr1.	This	is	the
same	as	CASE	WHEN	expr1	=	expr2	THEN	NULL	ELSE	expr1	END.

mysql>	SELECT	NULLIF(1,1);

								->	NULL

mysql>	SELECT	NULLIF(1,2);

								->	1

Note	that	MySQL	evaluates	expr1	twice	if	the	arguments	are	not	equal.

12.3.	String	Functions

String-valued	functions	return	NULL	if	the	length	of	the	result	would	be	greater
than	the	value	of	the	max_allowed_packet	system	variable.	See	Section	7.5.2,
“Tuning	Server	Parameters”.

For	functions	that	operate	on	string	positions,	the	first	position	is	numbered	1.

	ASCII(str)

Returns	the	numeric	value	of	the	leftmost	character	of	the	string	str.
Returns	0	if	str	is	the	empty	string.	Returns	NULL	if	str	is	NULL.	ASCII()
works	for	characters	with	numeric	values	from	0	to	255.

mysql>	SELECT	ASCII('2');

								->	50

mysql>	SELECT	ASCII(2);

								->	50

mysql>	SELECT	ASCII('dx');

								->	100

See	also	the	ORD()	function.

	BIN(N)

Returns	a	string	representation	of	the	binary	value	of	N,	where	N	is	a
longlong	(BIGINT)	number.	This	is	equivalent	to	CONV(N,10,2).	Returns	NULL
if	N	is	NULL.

mysql>	SELECT	BIN(12);

								->	'1100'

	BIT_LENGTH(str)

Returns	the	length	of	the	string	str	in	bits.

mysql>	SELECT	BIT_LENGTH('text');

								->	32

	CHAR(N,...	[USING	charset_name])

CHAR()	interprets	each	argument	N	as	an	integer	and	returns	a	string
consisting	of	the	characters	given	by	the	code	values	of	those	integers.	NULL
values	are	skipped.

mysql>	SELECT	CHAR(77,121,83,81,'76');

								->	'MySQL'

mysql>	SELECT	CHAR(77,77.3,'77.3');

								->	'MMM'

As	of	MySQL	5.0.15,	CHAR()	arguments	larger	than	255	are	converted	into
multiple	result	bytes.	For	example,	CHAR(256)	is	equivalent	to	CHAR(1,0),
and	CHAR(256*256)	is	equivalent	to	CHAR(1,0,0):

mysql>	SELECT	HEX(CHAR(1,0)),	HEX(CHAR(256));

+----------------+----------------+

|	HEX(CHAR(1,0))	|	HEX(CHAR(256))	|

+----------------+----------------+

|	0100											|	0100											|

+----------------+----------------+

mysql>	SELECT	HEX(CHAR(1,0,0)),	HEX(CHAR(256*256));

+------------------+--------------------+

|	HEX(CHAR(1,0,0))	|	HEX(CHAR(256*256))	|

+------------------+--------------------+

|	010000											|	010000													|

+------------------+--------------------+

By	default,	CHAR()	returns	a	binary	string.	To	produce	a	string	in	a	given
character	set,	use	the	optional	USING	clause:

mysql>	SELECT	CHARSET(CHAR(0x65)),	CHARSET(CHAR(0x65	USING	utf8));

+---------------------+--------------------------------+

|	CHARSET(CHAR(0x65))	|	CHARSET(CHAR(0x65	USING	utf8))	|

+---------------------+--------------------------------+

|	binary														|	utf8																											|

+---------------------+--------------------------------+

If	USING	is	given	and	the	result	string	is	illegal	for	the	given	character	set,	a
warning	is	issued.	Also,	if	strict	SQL	mode	is	enabled,	the	result	from
CHAR()	becomes	NULL.

Before	MySQL	5.0.15,	CHAR()	returns	a	string	in	the	connection	character
set	and	the	USING	clause	is	unavailable.	In	addition,	each	argument	is
interpreted	modulo	256,	so	CHAR(256)	and	CHAR(256*256)	both	are
equivalent	to	CHAR(0).

	CHAR_LENGTH(str)

Returns	the	length	of	the	string	str,	measured	in	characters.	A	multi-byte
character	counts	as	a	single	character.	This	means	that	for	a	string
containing	five	two-byte	characters,	LENGTH()	returns	10,	whereas
CHAR_LENGTH()	returns	5.

	CHARACTER_LENGTH(str)

CHARACTER_LENGTH()	is	a	synonym	for	CHAR_LENGTH().

	CONCAT(str1,str2,...)

Returns	the	string	that	results	from	concatenating	the	arguments.	May	have
one	or	more	arguments.	If	all	arguments	are	non-binary	strings,	the	result	is
a	non-binary	string.	If	the	arguments	include	any	binary	strings,	the	result	is
a	binary	string.	A	numeric	argument	is	converted	to	its	equivalent	binary
string	form;	if	you	want	to	avoid	that,	you	can	use	an	explicit	type	cast,	as
in	this	example:

SELECT	CONCAT(CAST(int_col	AS	CHAR),	char_col);

CONCAT()	returns	NULL	if	any	argument	is	NULL.

mysql>	SELECT	CONCAT('My',	'S',	'QL');

								->	'MySQL'

mysql>	SELECT	CONCAT('My',	NULL,	'QL');

								->	NULL

mysql>	SELECT	CONCAT(14.3);

								->	'14.3'

	CONCAT_WS(separator,str1,str2,...)

CONCAT_WS()	stands	for	Concatenate	With	Separator	and	is	a	special	form
of	CONCAT().	The	first	argument	is	the	separator	for	the	rest	of	the
arguments.	The	separator	is	added	between	the	strings	to	be	concatenated.
The	separator	can	be	a	string,	as	can	the	rest	of	the	arguments.	If	the
separator	is	NULL,	the	result	is	NULL.

mysql>	SELECT	CONCAT_WS(',','First	name','Second	name','Last	Name');

								->	'First	name,Second	name,Last	Name'

mysql>	SELECT	CONCAT_WS(',','First	name',NULL,'Last	Name');

								->	'First	name,Last	Name'

CONCAT_WS()	does	not	skip	empty	strings.	However,	it	does	skip	any	NULL
values	after	the	separator	argument.

	CONV(N,from_base,to_base)

Converts	numbers	between	different	number	bases.	Returns	a	string
representation	of	the	number	N,	converted	from	base	from_base	to	base
to_base.	Returns	NULL	if	any	argument	is	NULL.	The	argument	N	is
interpreted	as	an	integer,	but	may	be	specified	as	an	integer	or	a	string.	The
minimum	base	is	2	and	the	maximum	base	is	36.	If	to_base	is	a	negative
number,	N	is	regarded	as	a	signed	number.	Otherwise,	N	is	treated	as
unsigned.	CONV()	works	with	64-bit	precision.

mysql>	SELECT	CONV('a',16,2);

								->	'1010'

mysql>	SELECT	CONV('6E',18,8);

								->	'172'

mysql>	SELECT	CONV(-17,10,-18);

								->	'-H'

mysql>	SELECT	CONV(10+'10'+'10'+0xa,10,10);

								->	'40'

	ELT(N,str1,str2,str3,...)

Returns	str1	if	N	=	1,	str2	if	N	=	2,	and	so	on.	Returns	NULL	if	N	is	less	than
1	or	greater	than	the	number	of	arguments.	ELT()	is	the	complement	of
FIELD().

mysql>	SELECT	ELT(1,	'ej',	'Heja',	'hej',	'foo');

								->	'ej'

mysql>	SELECT	ELT(4,	'ej',	'Heja',	'hej',	'foo');

								->	'foo'

	EXPORT_SET(bits,on,off[,separator[,number_of_bits]])

Returns	a	string	such	that	for	every	bit	set	in	the	value	bits,	you	get	an	on
string	and	for	every	reset	bit,	you	get	an	off	string.	Bits	in	bits	are
examined	from	right	to	left	(from	low-order	to	high-order	bits).	Strings	are
added	to	the	result	from	left	to	right,	separated	by	the	separator	string	(the
default	being	the	comma	character	‘,’).	The	number	of	bits	examined	is
given	by	number_of_bits	(defaults	to	64).

mysql>	SELECT	EXPORT_SET(5,'Y','N',',',4);

								->	'Y,N,Y,N'

mysql>	SELECT	EXPORT_SET(6,'1','0',',',10);

								->	'0,1,1,0,0,0,0,0,0,0'

	FIELD(str,str1,str2,str3,...)

Returns	the	index	(position)	of	str	in	the	str1,	str2,	str3,	...	list.	Returns
0	if	str	is	not	found.

If	all	arguments	to	FIELD()	are	strings,	all	arguments	are	compared	as
strings.	If	all	arguments	are	numbers,	they	are	compared	as	numbers.
Otherwise,	the	arguments	are	compared	as	double.

If	str	is	NULL,	the	return	value	is	0	because	NULL	fails	equality	comparison
with	any	value.	FIELD()	is	the	complement	of	ELT().

mysql>	SELECT	FIELD('ej',	'Hej',	'ej',	'Heja',	'hej',	'foo');

								->	2

mysql>	SELECT	FIELD('fo',	'Hej',	'ej',	'Heja',	'hej',	'foo');

								->	0

	FIND_IN_SET(str,strlist)

Returns	a	value	in	the	range	of	1	to	N	if	the	string	str	is	in	the	string	list
strlist	consisting	of	N	substrings.	A	string	list	is	a	string	composed	of
substrings	separated	by	‘,’	characters.	If	the	first	argument	is	a	constant
string	and	the	second	is	a	column	of	type	SET,	the	FIND_IN_SET()	function
is	optimized	to	use	bit	arithmetic.	Returns	0	if	str	is	not	in	strlist	or	if
strlist	is	the	empty	string.	Returns	NULL	if	either	argument	is	NULL.	This
function	does	not	work	properly	if	the	first	argument	contains	a	comma
(‘,’)	character.

mysql>	SELECT	FIND_IN_SET('b','a,b,c,d');

								->	2

	FORMAT(X,D)

Formats	the	number	X	to	a	format	like	'#,###,###.##',	rounded	to	D
decimal	places,	and	returns	the	result	as	a	string.	If	D	is	0,	the	result	has	no
decimal	point	or	fractional	part.

mysql>	SELECT	FORMAT(12332.123456,	4);

								->	'12,332.1235'

mysql>	SELECT	FORMAT(12332.1,4);

								->	'12,332.1000'

mysql>	SELECT	FORMAT(12332.2,0);

								->	'12,332'

	HEX(N_or_S)

If	N_or_S	is	a	number,	returns	a	string	representation	of	the	hexadecimal
value	of	N,	where	N	is	a	longlong	(BIGINT)	number.	This	is	equivalent	to
CONV(N,10,16).

If	N_or_S	is	a	string,	returns	a	hexadecimal	string	representation	of	N_or_S
where	each	character	in	N_or_S	is	converted	to	two	hexadecimal	digits.

mysql>	SELECT	HEX(255);

								->	'FF'

mysql>	SELECT	0x616263;

								->	'abc'

mysql>	SELECT	HEX('abc');

								->	616263

	INSERT(str,pos,len,newstr)

Returns	the	string	str,	with	the	substring	beginning	at	position	pos	and	len
characters	long	replaced	by	the	string	newstr.	Returns	the	original	string	if
pos	is	not	within	the	length	of	the	string.	Replaces	the	rest	of	the	string
from	position	pos	is	len	is	not	within	the	length	of	the	rest	of	the	string.
Returns	NULL	if	any	argument	is	NULL.

mysql>	SELECT	INSERT('Quadratic',	3,	4,	'What');

								->	'QuWhattic'

mysql>	SELECT	INSERT('Quadratic',	-1,	4,	'What');

								->	'Quadratic'

mysql>	SELECT	INSERT('Quadratic',	3,	100,	'What');

								->	'QuWhat'

This	function	is	multi-byte	safe.

	INSTR(str,substr)

Returns	the	position	of	the	first	occurrence	of	substring	substr	in	string
str.	This	is	the	same	as	the	two-argument	form	of	LOCATE(),	except	that	the

order	of	the	arguments	is	reversed.

mysql>	SELECT	INSTR('foobarbar',	'bar');

								->	4

mysql>	SELECT	INSTR('xbar',	'foobar');

								->	0

This	function	is	multi-byte	safe,	and	is	case	sensitive	only	if	at	least	one
argument	is	a	binary	string.

	LCASE(str)

LCASE()	is	a	synonym	for	LOWER().

	LEFT(str,len)

Returns	the	leftmost	len	characters	from	the	string	str,	or	NULL	if	any
argument	is	NULL.

mysql>	SELECT	LEFT('foobarbar',	5);

								->	'fooba'

	LENGTH(str)

Returns	the	length	of	the	string	str,	measured	in	bytes.	A	multi-byte
character	counts	as	multiple	bytes.	This	means	that	for	a	string	containing
five	two-byte	characters,	LENGTH()	returns	10,	whereas	CHAR_LENGTH()
returns	5.

mysql>	SELECT	LENGTH('text');

								->	4

	LOAD_FILE(file_name)

Reads	the	file	and	returns	the	file	contents	as	a	string.	To	use	this	function,
the	file	must	be	located	on	the	server	host,	you	must	specify	the	full
pathname	to	the	file,	and	you	must	have	the	FILE	privilege.	The	file	must	be
readable	by	all	and	its	size	less	than	max_allowed_packet	bytes.

If	the	file	does	not	exist	or	cannot	be	read	because	one	of	the	preceding
conditions	is	not	satisfied,	the	function	returns	NULL.

As	of	MySQL	5.0.19,	the	character_set_filesystem	system	variable
controls	interpretation	of	filenames	that	are	given	as	literal	strings.

mysql>	UPDATE	t

												SET	blob_col=LOAD_FILE('/tmp/picture')

												WHERE	id=1;

	LOCATE(substr,str),	LOCATE(substr,str,pos)

The	first	syntax	returns	the	position	of	the	first	occurrence	of	substring
substr	in	string	str.	The	second	syntax	returns	the	position	of	the	first
occurrence	of	substring	substr	in	string	str,	starting	at	position	pos.
Returns	0	if	substr	is	not	in	str.

mysql>	SELECT	LOCATE('bar',	'foobarbar');

								->	4

mysql>	SELECT	LOCATE('xbar',	'foobar');

								->	0

mysql>	SELECT	LOCATE('bar',	'foobarbar',	5);

								->	7

This	function	is	multi-byte	safe,	and	is	case-sensitive	only	if	at	least	one
argument	is	a	binary	string.

	LOWER(str)

Returns	the	string	str	with	all	characters	changed	to	lowercase	according	to
the	current	character	set	mapping.	The	default	is	latin1	(cp1252	West
European).

mysql>	SELECT	LOWER('QUADRATICALLY');

								->	'quadratically'

This	function	is	multi-byte	safe.

	LPAD(str,len,padstr)

Returns	the	string	str,	left-padded	with	the	string	padstr	to	a	length	of	len
characters.	If	str	is	longer	than	len,	the	return	value	is	shortened	to	len
characters.

mysql>	SELECT	LPAD('hi',4,'??');

								->	'??hi'

mysql>	SELECT	LPAD('hi',1,'??');

								->	'h'

	LTRIM(str)

Returns	the	string	str	with	leading	space	characters	removed.

mysql>	SELECT	LTRIM('		barbar');

								->	'barbar'

This	function	is	multi-byte	safe.

	MAKE_SET(bits,str1,str2,...)

Returns	a	set	value	(a	string	containing	substrings	separated	by	‘,’
characters)	consisting	of	the	strings	that	have	the	corresponding	bit	in	bits
set.	str1	corresponds	to	bit	0,	str2	to	bit	1,	and	so	on.	NULL	values	in	str1,
str2,	...	are	not	appended	to	the	result.

mysql>	SELECT	MAKE_SET(1,'a','b','c');

								->	'a'

mysql>	SELECT	MAKE_SET(1	|	4,'hello','nice','world');

								->	'hello,world'

mysql>	SELECT	MAKE_SET(1	|	4,'hello','nice',NULL,'world');

								->	'hello'

mysql>	SELECT	MAKE_SET(0,'a','b','c');

								->	''

	MID(str,pos,len)

MID(str,pos,len)	is	a	synonym	for	SUBSTRING(str,pos,len).

	OCT(N)

Returns	a	string	representation	of	the	octal	value	of	N,	where	N	is	a	longlong
(BIGINT)	number.	This	is	equivalent	to	CONV(N,10,8).	Returns	NULL	if	N	is
NULL.

mysql>	SELECT	OCT(12);

								->	'14'

	OCTET_LENGTH(str)

OCTET_LENGTH()	is	a	synonym	for	LENGTH().

	ORD(str)

If	the	leftmost	character	of	the	string	str	is	a	multi-byte	character,	returns
the	code	for	that	character,	calculated	from	the	numeric	values	of	its
constituent	bytes	using	this	formula:

		(1st	byte	code)

+	(2nd	byte	code	×	256)

+	(3rd	byte	code	×	2562)	...

If	the	leftmost	character	is	not	a	multi-byte	character,	ORD()	returns	the
same	value	as	the	ASCII()	function.

mysql>	SELECT	ORD('2');

								->	50

	POSITION(substr	IN	str)

POSITION(substr	IN	str)	is	a	synonym	for	LOCATE(substr,str).

	QUOTE(str)

Quotes	a	string	to	produce	a	result	that	can	be	used	as	a	properly	escaped
data	value	in	an	SQL	statement.	The	string	is	returned	enclosed	by	single
quotes	and	with	each	instance	of	single	quote	(‘'’),	backslash	(‘\’),	ASCII
NUL,	and	Control-Z	preceded	by	a	backslash.	If	the	argument	is	NULL,	the
return	value	is	the	word	“NULL”	without	enclosing	single	quotes.

mysql>	SELECT	QUOTE('Don\'t!');

								->	'Don\'t!'

mysql>	SELECT	QUOTE(NULL);

								->	NULL

	REPEAT(str,count)

Returns	a	string	consisting	of	the	string	str	repeated	count	times.	If	count
is	less	than	1,	returns	an	empty	string.	Returns	NULL	if	str	or	count	are
NULL.

mysql>	SELECT	REPEAT('MySQL',	3);

								->	'MySQLMySQLMySQL'

	REPLACE(str,from_str,to_str)

Returns	the	string	str	with	all	occurrences	of	the	string	from_str	replaced
by	the	string	to_str.	REPLACE()	performs	a	case-sensitive	match	when
searching	for	from_str.

mysql>	SELECT	REPLACE('www.mysql.com',	'w',	'Ww');

								->	'WwWwWw.mysql.com'

This	function	is	multi-byte	safe.

	REVERSE(str)

Returns	the	string	str	with	the	order	of	the	characters	reversed.

mysql>	SELECT	REVERSE('abc');

								->	'cba'

This	function	is	multi-byte	safe.

	RIGHT(str,len)

Returns	the	rightmost	len	characters	from	the	string	str,	or	NULL	if	any
argument	is	NULL.

mysql>	SELECT	RIGHT('foobarbar',	4);

								->	'rbar'

This	function	is	multi-byte	safe.

	RPAD(str,len,padstr)

Returns	the	string	str,	right-padded	with	the	string	padstr	to	a	length	of
len	characters.	If	str	is	longer	than	len,	the	return	value	is	shortened	to
len	characters.

mysql>	SELECT	RPAD('hi',5,'?');

								->	'hi???'

mysql>	SELECT	RPAD('hi',1,'?');

								->	'h'

This	function	is	multi-byte	safe.

	RTRIM(str)

Returns	the	string	str	with	trailing	space	characters	removed.

mysql>	SELECT	RTRIM('barbar			');

								->	'barbar'

This	function	is	multi-byte	safe.

	SOUNDEX(str)

Returns	a	soundex	string	from	str.	Two	strings	that	sound	almost	the	same
should	have	identical	soundex	strings.	A	standard	soundex	string	is	four
characters	long,	but	the	SOUNDEX()	function	returns	an	arbitrarily	long
string.	You	can	use	SUBSTRING()	on	the	result	to	get	a	standard	soundex
string.	All	non-alphabetic	characters	in	str	are	ignored.	All	international
alphabetic	characters	outside	the	A-Z	range	are	treated	as	vowels.

mysql>	SELECT	SOUNDEX('Hello');

								->	'H400'

mysql>	SELECT	SOUNDEX('Quadratically');

								->	'Q36324'

Note:	This	function	implements	the	original	Soundex	algorithm,	not	the
more	popular	enhanced	version	(also	described	by	D.	Knuth).	The
difference	is	that	original	version	discards	vowels	first	and	duplicates
second,	whereas	the	enhanced	version	discards	duplicates	first	and	vowels
second.

	expr1	SOUNDS	LIKE	expr2

This	is	the	same	as	SOUNDEX(expr1)	=	SOUNDEX(expr2).

	SPACE(N)

Returns	a	string	consisting	of	N	space	characters.

mysql>	SELECT	SPACE(6);

								->	'						'

	SUBSTRING(str,pos),	SUBSTRING(str	FROM	pos),
SUBSTRING(str,pos,len),	SUBSTRING(str	FROM	pos	FOR	len)

The	forms	without	a	len	argument	return	a	substring	from	string	str
starting	at	position	pos.	The	forms	with	a	len	argument	return	a	substring
len	characters	long	from	string	str,	starting	at	position	pos.	The	forms	that
use	FROM	are	standard	SQL	syntax.	It	is	also	possible	to	use	a	negative	value
for	pos.	In	this	case,	the	beginning	of	the	substring	is	pos	characters	from
the	end	of	the	string,	rather	than	the	beginning.	A	negative	value	may	be
used	for	pos	in	any	of	the	forms	of	this	function.

mysql>	SELECT	SUBSTRING('Quadratically',5);

								->	'ratically'

mysql>	SELECT	SUBSTRING('foobarbar'	FROM	4);

								->	'barbar'

mysql>	SELECT	SUBSTRING('Quadratically',5,6);

								->	'ratica'								

mysql>	SELECT	SUBSTRING('Sakila',	-3);

								->	'ila'								

mysql>	SELECT	SUBSTRING('Sakila',	-5,	3);

								->	'aki'

mysql>	SELECT	SUBSTRING('Sakila'	FROM	-4	FOR	2);

								->	'ki'

This	function	is	multi-byte	safe.

If	len	is	less	than	1,	the	result	is	the	empty	string.

SUBSTR()	is	a	synonym	for	SUBSTRING().

	SUBSTRING_INDEX(str,delim,count)

Returns	the	substring	from	string	str	before	count	occurrences	of	the
delimiter	delim.	If	count	is	positive,	everything	to	the	left	of	the	final
delimiter	(counting	from	the	left)	is	returned.	If	count	is	negative,
everything	to	the	right	of	the	final	delimiter	(counting	from	the	right)	is
returned.	SUBSTRING_INDEX()	performs	a	case-sensitive	match	when
searching	for	delim.

mysql>	SELECT	SUBSTRING_INDEX('www.mysql.com',	'.',	2);

								->	'www.mysql'

mysql>	SELECT	SUBSTRING_INDEX('www.mysql.com',	'.',	-2);

								->	'mysql.com'

This	function	is	multi-byte	safe.

	TRIM([{BOTH	|	LEADING	|	TRAILING}	[remstr]	FROM]	str),
TRIM([remstr	FROM]	str)

Returns	the	string	str	with	all	remstr	prefixes	or	suffixes	removed.	If	none
of	the	specifiers	BOTH,	LEADING,	or	TRAILING	is	given,	BOTH	is	assumed.
remstr	is	optional	and,	if	not	specified,	spaces	are	removed.

mysql>	SELECT	TRIM('		bar			');

								->	'bar'

mysql>	SELECT	TRIM(LEADING	'x'	FROM	'xxxbarxxx');

								->	'barxxx'

mysql>	SELECT	TRIM(BOTH	'x'	FROM	'xxxbarxxx');

								->	'bar'

mysql>	SELECT	TRIM(TRAILING	'xyz'	FROM	'barxxyz');

								->	'barx'

This	function	is	multi-byte	safe.

	UCASE(str)

UCASE()	is	a	synonym	for	UPPER().

	UNHEX(str)

Performs	the	inverse	operation	of	HEX(str).	That	is,	it	interprets	each	pair
of	hexadecimal	digits	in	the	argument	as	a	number	and	converts	it	to	the
character	represented	by	the	number.	The	resulting	characters	are	returned
as	a	binary	string.

mysql>	SELECT	UNHEX('4D7953514C');

								->	'MySQL'

mysql>	SELECT	0x4D7953514C;

								->	'MySQL'

mysql>	SELECT	UNHEX(HEX('string'));

								->	'string'

mysql>	SELECT	HEX(UNHEX('1267'));

								->	'1267'

	UPPER(str)

Returns	the	string	str	with	all	characters	changed	to	uppercase	according	to
the	current	character	set	mapping.	The	default	is	latin1	(cp1252	West
European).

mysql>	SELECT	UPPER('Hej');

								->	'HEJ'

This	function	is	multi-byte	safe.

12.3.1.	String	Comparison	Functions

If	a	string	function	is	given	a	binary	string	as	an	argument,	the	resulting	string	is
also	a	binary	string.	A	number	converted	to	a	string	is	treated	as	a	binary	string.
This	affects	only	comparisons.

Normally,	if	any	expression	in	a	string	comparison	is	case	sensitive,	the
comparison	is	performed	in	case-sensitive	fashion.

	expr	LIKE	pat	[ESCAPE	'escape_char']

Pattern	matching	using	SQL	simple	regular	expression	comparison.	Returns
1	(TRUE)	or	0	(FALSE).	If	either	expr	or	pat	is	NULL,	the	result	is	NULL.

The	pattern	need	not	be	a	literal	string.	For	example,	it	can	be	specified	as	a
string	expression	or	table	column.

Per	the	SQL	standard,	LIKE	performs	matching	on	a	per-character	basis,
thus	it	can	produce	results	different	from	the	=	comparison	operator:

mysql>	SELECT	'ä'	LIKE	'ae'	COLLATE	latin1_german2_ci;

+---+

|	'ä'	LIKE	'ae'	COLLATE	latin1_german2_ci	|

+---+

|																																							0	|

+---+

mysql>	SELECT	'ä'	=	'ae'	COLLATE	latin1_german2_ci;

+--------------------------------------+

|	'ä'	=	'ae'	COLLATE	latin1_german2_ci	|

+--------------------------------------+

|																																				1	|

+--------------------------------------+

With	LIKE	you	can	use	the	following	two	wildcard	characters	in	the	pattern:

Character Description
% Matches	any	number	of	characters,	even	zero	characters

_ Matches	exactly	one	character

mysql>	SELECT	'David!'	LIKE	'David_';

								->	1

mysql>	SELECT	'David!'	LIKE	'%D%v%';

								->	1

To	test	for	literal	instances	of	a	wildcard	character,	precede	it	by	the	escape
character.	If	you	do	not	specify	the	ESCAPE	character,	‘\’	is	assumed.

String Description
\% Matches	one	‘%’	character
_ Matches	one	‘_’	character

mysql>	SELECT	'David!'	LIKE	'David_';

								->	0

mysql>	SELECT	'David_'	LIKE	'David_';

								->	1

To	specify	a	different	escape	character,	use	the	ESCAPE	clause:

mysql>	SELECT	'David_'	LIKE	'David|_'	ESCAPE	'|';

								->	1

The	escape	sequence	should	be	empty	or	one	character	long.	As	of	MySQL
5.0.16,	if	the	NO_BACKSLASH_ESCAPES	SQL	mode	is	enabled,	the	sequence
cannot	be	empty.

The	following	two	statements	illustrate	that	string	comparisons	are	not	case
sensitive	unless	one	of	the	operands	is	a	binary	string:

mysql>	SELECT	'abc'	LIKE	'ABC';

								->	1

mysql>	SELECT	'abc'	LIKE	BINARY	'ABC';

								->	0

In	MySQL,	LIKE	is	allowed	on	numeric	expressions.	(This	is	an	extension
to	the	standard	SQL	LIKE.)

mysql>	SELECT	10	LIKE	'1%';

								->	1

Note:	Because	MySQL	uses	C	escape	syntax	in	strings	(for	example,	‘\n’	to

represent	a	newline	character),	you	must	double	any	‘\’	that	you	use	in	LIKE
strings.	For	example,	to	search	for	‘\n’,	specify	it	as	‘\\n’.	To	search	for
‘\’,	specify	it	as	‘\\\\’;	this	is	because	the	backslashes	are	stripped	once	by
the	parser	and	again	when	the	pattern	match	is	made,	leaving	a	single
backslash	to	be	matched	against.	(Exception:	At	the	end	of	the	pattern
string,	backslash	can	be	specified	as	‘\\’.	At	the	end	of	the	string,	backslash
stands	for	itself	because	there	is	nothing	following	to	escape.)

	expr	NOT	LIKE	pat	[ESCAPE	'escape_char']

This	is	the	same	as	NOT	(expr	LIKE	pat	[ESCAPE	'escape_char']).

	expr	NOT	REGEXP	pat,	expr	NOT	RLIKE	pat

This	is	the	same	as	NOT	(expr	REGEXP	pat).

	expr	REGEXP	pat	expr	RLIKE	pat

Performs	a	pattern	match	of	a	string	expression	expr	against	a	pattern	pat.
The	pattern	can	be	an	extended	regular	expression.	The	syntax	for	regular
expressions	is	discussed	in	Appendix	G,	Regular	Expressions.	Returns	1	if
expr	matches	pat;	otherwise	it	returns	0.	If	either	expr	or	pat	is	NULL,	the
result	is	NULL.	RLIKE	is	a	synonym	for	REGEXP,	provided	for	mSQL
compatibility.

The	pattern	need	not	be	a	literal	string.	For	example,	it	can	be	specified	as	a
string	expression	or	table	column.

Note:	Because	MySQL	uses	the	C	escape	syntax	in	strings	(for	example,
‘\n’	to	represent	the	newline	character),	you	must	double	any	‘\’	that	you
use	in	your	REGEXP	strings.

REGEXP	is	not	case	sensitive,	except	when	used	with	binary	strings.

mysql>	SELECT	'Monty!'	REGEXP	'm%y%%';

								->	0

mysql>	SELECT	'Monty!'	REGEXP	'.*';

								->	1

mysql>	SELECT	'new*\n*line'	REGEXP	'new*.*line';

								->	1

mysql>	SELECT	'a'	REGEXP	'A',	'a'	REGEXP	BINARY	'A';

								->	1		0

mysql>	SELECT	'a'	REGEXP	'^[a-d]';

								->	1

REGEXP	and	RLIKE	use	the	current	character	set	when	deciding	the	type	of	a
character.	The	default	is	latin1	(cp1252	West	European).	Warning:	These
operators	are	not	multi-byte	safe.

	STRCMP(expr1,expr2)

STRCMP()	returns	0	if	the	strings	are	the	same,	-1	if	the	first	argument	is
smaller	than	the	second	according	to	the	current	sort	order,	and	1	otherwise.

mysql>	SELECT	STRCMP('text',	'text2');

								->	-1

mysql>	SELECT	STRCMP('text2',	'text');

								->	1

mysql>	SELECT	STRCMP('text',	'text');

								->	0

STRCMP()	uses	the	current	character	set	when	performing	comparisons.	This
makes	the	default	comparison	behavior	case	insensitive	unless	one	or	both
of	the	operands	are	binary	strings.

12.4.	Numeric	Functions

12.4.1.	Arithmetic	Operators

The	usual	arithmetic	operators	are	available.	The	precision	of	the	result	is
determined	according	to	the	following	rules:

Note	that	in	the	case	of	-,	+,	and	*,	the	result	is	calculated	with	BIGINT	(64-
bit)	precision	if	both	arguments	are	integers.

If	one	of	the	arguments	is	an	unsigned	integer,	and	the	other	argument	is
also	an	integer,	the	result	is	an	unsigned	integer.

If	any	of	the	operands	of	a	+,	-,	/,	*,	%	is	a	real	or	string	value,	then	the
precision	of	the	result	is	the	precision	of	the	argument	with	the	maximum
precision.

In	multiplication	and	division,	the	precision	of	the	result	when	using	two
integer	values	is	the	precision	of	the	first	argument	+	the	value	of	the
div_precision_increment	global	variable.	For	example,	the	expression
5.05	/	0.0014	would	have	a	precision	of	six	decimal	places	(4.047976).

These	rules	are	applied	for	each	operation,	such	that	nested	calculations	imply
the	precision	of	each	component.	Hence,	(14620	/	9432456)	/	(24250	/
9432456),	would	resolve	first	to	(0.0014)	/	(0.0026),	with	the	final	result
having	8	decimal	places	(0.57692308).

Because	of	these	rules	and	the	method	they	are	applied,	care	should	be	taken	to
ensure	that	components	and	sub-components	of	a	calculation	use	the	appropriate
level	of	precision.	See	Section	12.8,	“Cast	Functions	and	Operators”.

	+

Addition:

mysql>	SELECT	3+5;

								->	8

	-

Subtraction:

mysql>	SELECT	3-5;

								->	-2

	-

Unary	minus.	This	operator	changes	the	sign	of	the	argument.

mysql>	SELECT	-	2;

								->	-2

Note:	If	this	operator	is	used	with	a	BIGINT,	the	return	value	is	also	a
BIGINT.	This	means	that	you	should	avoid	using	–	on	integers	that	may
have	the	value	of	–263.

	*

Multiplication:

mysql>	SELECT	3*5;

								->	15

mysql>	SELECT	18014398509481984*18014398509481984.0;

								->	324518553658426726783156020576256.0

mysql>	SELECT	18014398509481984*18014398509481984;

								->	0

The	result	of	the	last	expression	is	incorrect	because	the	result	of	the	integer
multiplication	exceeds	the	64-bit	range	of	BIGINT	calculations.	(See
Section	11.2,	“Numeric	Types”.)

	/

Division:

mysql>	SELECT	3/5;

								->	0.60

Division	by	zero	produces	a	NULL	result:

mysql>	SELECT	102/(1-1);

								->	NULL

A	division	is	calculated	with	BIGINT	arithmetic	only	if	performed	in	a

context	where	its	result	is	converted	to	an	integer.

	DIV

Integer	division.	Similar	to	FLOOR(),	but	is	safe	with	BIGINT	values.

mysql>	SELECT	5	DIV	2;

								->	2

12.4.2.	Mathematical	Functions

All	mathematical	functions	return	NULL	in	the	event	of	an	error.

	ABS(X)

Returns	the	absolute	value	of	X.

mysql>	SELECT	ABS(2);

								->	2

mysql>	SELECT	ABS(-32);

								->	32

This	function	is	safe	to	use	with	BIGINT	values.

	ACOS(X)

Returns	the	arc	cosine	of	X,	that	is,	the	value	whose	cosine	is	X.	Returns
NULL	if	X	is	not	in	the	range	-1	to	1.

mysql>	SELECT	ACOS(1);

								->	0

mysql>	SELECT	ACOS(1.0001);

								->	NULL

mysql>	SELECT	ACOS(0);

								->	1.5707963267949

	ASIN(X)

Returns	the	arc	sine	of	X,	that	is,	the	value	whose	sine	is	X.	Returns	NULL	if	X
is	not	in	the	range	-1	to	1.

mysql>	SELECT	ASIN(0.2);

								->	0.20135792079033

mysql>	SELECT	ASIN('foo');

+-------------+

|	ASIN('foo')	|

+-------------+

|											0	|

+-------------+

1	row	in	set,	1	warning	(0.00	sec)

mysql>	SHOW	WARNINGS;

+---------+------+---+

|	Level			|	Code	|	Message																																	|

+---------+------+---+

|	Warning	|	1292	|	Truncated	incorrect	DOUBLE	value:	'foo'	|

+---------+------+---+

	ATAN(X)

Returns	the	arc	tangent	of	X,	that	is,	the	value	whose	tangent	is	X.

mysql>	SELECT	ATAN(2);

								->	1.1071487177941

mysql>	SELECT	ATAN(-2);

								->	-1.1071487177941

	ATAN(Y,X),	ATAN2(Y,X)

Returns	the	arc	tangent	of	the	two	variables	X	and	Y.	It	is	similar	to
calculating	the	arc	tangent	of	Y	/	X,	except	that	the	signs	of	both	arguments
are	used	to	determine	the	quadrant	of	the	result.

mysql>	SELECT	ATAN(-2,2);

								->	-0.78539816339745

mysql>	SELECT	ATAN2(PI(),0);

								->	1.5707963267949

	CEILING(X),	CEIL(X)

Returns	the	smallest	integer	value	not	less	than	X.

mysql>	SELECT	CEILING(1.23);

								->	2

mysql>	SELECT	CEIL(-1.23);

								->	-1

These	two	functions	are	synonymous.	Note	that	the	return	value	is

converted	to	a	BIGINT.

	COS(X)

Returns	the	cosine	of	X,	where	X	is	given	in	radians.

mysql>	SELECT	COS(PI());

								->	-1

	COT(X)

Returns	the	cotangent	of	X.

mysql>	SELECT	COT(12);

								->	-1.5726734063977

mysql>	SELECT	COT(0);

								->	NULL

	CRC32(expr)

Computes	a	cyclic	redundancy	check	value	and	returns	a	32-bit	unsigned
value.	The	result	is	NULL	if	the	argument	is	NULL.	The	argument	is	expected
to	be	a	string	and	(if	possible)	is	treated	as	one	if	it	is	not.

mysql>	SELECT	CRC32('MySQL');

								->	3259397556

mysql>	SELECT	CRC32('mysql');

								->	2501908538

	DEGREES(X)

Returns	the	argument	X,	converted	from	radians	to	degrees.

mysql>	SELECT	DEGREES(PI());

								->	180

mysql>	SELECT	DEGREES(PI()	/	2);

								->	90

	EXP(X)

Returns	the	value	of	e	(the	base	of	natural	logarithms)	raised	to	the	power
of	X.

mysql>	SELECT	EXP(2);

								->	7.3890560989307

mysql>	SELECT	EXP(-2);

								->	0.13533528323661

mysql>	SELECT	EXP(0);

								->	1

	FLOOR(X)

Returns	the	largest	integer	value	not	greater	than	X.

mysql>	SELECT	FLOOR(1.23);

								->	1

mysql>	SELECT	FLOOR(-1.23);

								->	-2

Note	that	the	return	value	is	converted	to	a	BIGINT.

FORMAT(X,D)

Formats	the	number	X	to	a	format	like	'#,###,###.##',	rounded	to	D
decimal	places,	and	returns	the	result	as	a	string.	For	details,	see
Section	12.3,	“String	Functions”.

	LN(X)

Returns	the	natural	logarithm	of	X;	that	is,	the	base-e	logarithm	of	X.

mysql>	SELECT	LN(2);

								->	0.69314718055995

mysql>	SELECT	LN(-2);

								->	NULL

This	function	is	synonymous	with	LOG(X).

	LOG(X),	LOG(B,X)

If	called	with	one	parameter,	this	function	returns	the	natural	logarithm	of	X.

mysql>	SELECT	LOG(2);

								->	0.69314718055995

mysql>	SELECT	LOG(-2);

								->	NULL

If	called	with	two	parameters,	this	function	returns	the	logarithm	of	X	for	an

arbitrary	base	B.

mysql>	SELECT	LOG(2,65536);

								->	16

mysql>	SELECT	LOG(10,100);

								->	2

LOG(B,X)	is	equivalent	to	LOG(X)	/	LOG(B).

	LOG2(X)

Returns	the	base-2	logarithm	of	X.

mysql>	SELECT	LOG2(65536);

								->	16

mysql>	SELECT	LOG2(-100);

								->	NULL

LOG2()	is	useful	for	finding	out	how	many	bits	a	number	requires	for
storage.	This	function	is	equivalent	to	the	expression	LOG(X)	/	LOG(2).

	LOG10(X)

Returns	the	base-10	logarithm	of	X.

mysql>	SELECT	LOG10(2);

								->	0.30102999566398

mysql>	SELECT	LOG10(100);

								->	2

mysql>	SELECT	LOG10(-100);

								->	NULL

LOG10(X)	is	equivalent	to	LOG(10,X).

	MOD(N,M),	N	%	M,	N	MOD	M

Modulo	operation.	Returns	the	remainder	of	N	divided	by	M.

mysql>	SELECT	MOD(234,	10);

								->	4

mysql>	SELECT	253	%	7;

								->	1

mysql>	SELECT	MOD(29,9);

								->	2

mysql>	SELECT	29	MOD	9;

								->	2

This	function	is	safe	to	use	with	BIGINT	values.

MOD()	also	works	on	values	that	have	a	fractional	part	and	returns	the	exact
remainder	after	division:

mysql>	SELECT	MOD(34.5,3);

								->	1.5

	PI()

Returns	the	value	of	π	(pi).	The	default	number	of	decimal	places	displayed
is	seven,	but	MySQL	uses	the	full	double-precision	value	internally.

mysql>	SELECT	PI();

								->	3.141593

mysql>	SELECT	PI()+0.000000000000000000;

								->	3.141592653589793116

	POW(X,Y),	POWER(X,Y)

Returns	the	value	of	X	raised	to	the	power	of	Y.

mysql>	SELECT	POW(2,2);

								->	4

mysql>	SELECT	POW(2,-2);

								->	0.25

	RADIANS(X)

Returns	the	argument	X,	converted	from	degrees	to	radians.	(Note	that	π
radians	equals	180	degrees.)

mysql>	SELECT	RADIANS(90);

								->	1.5707963267949

	RAND(),	RAND(N)

Returns	a	random	floating-point	value	v	between	0	and	1	inclusive	(that	is,
in	the	range	0	<=	v	<=	1.0).	If	an	integer	argument	N	is	specified,	it	is	used
as	the	seed	value,	which	produces	a	repeatable	sequence.

mysql>	SELECT	RAND();

								->	0.9233482386203

mysql>	SELECT	RAND(20);

								->	0.15888261251047

mysql>	SELECT	RAND(20);

								->	0.15888261251047

mysql>	SELECT	RAND();

								->	0.63553050033332

mysql>	SELECT	RAND();

								->	0.70100469486881

mysql>	SELECT	RAND(20);

								->	0.15888261251047

To	obtain	a	random	integer	R	in	the	range	i	<=	R	<=	j,	use	the	expression
FLOOR(i	+	RAND()	*	(j	–	i).	For	example,	to	obtain	a	random	integer	in
the	range	of	7	to	12	inclusive,	you	could	use	the	following	statement:

SELECT	FLOOR(7	+	(RAND()	*	5));

You	cannot	use	a	column	with	RAND()	values	in	an	ORDER	BY	clause,
because	ORDER	BY	would	evaluate	the	column	multiple	times.	However,	you
can	retrieve	rows	in	random	order	like	this:

mysql>	SELECT	*	FROM	tbl_name	ORDER	BY	RAND();

ORDER	BY	RAND()	combined	with	LIMIT	is	useful	for	selecting	a	random
sample	from	a	set	of	rows:

mysql>	SELECT	*	FROM	table1,	table2	WHERE	a=b	AND	c<d	->	ORDER	BY	RAND()	LIMIT	1000;

Note	that	RAND()	in	a	WHERE	clause	is	re-evaluated	every	time	the	WHERE	is
executed.

RAND()	is	not	meant	to	be	a	perfect	random	generator,	but	instead	is	a	fast
way	to	generate	ad	hoc	random	numbers	which	is	portable	between
platforms	for	the	same	MySQL	version.

	ROUND(X),	ROUND(X,D)

Returns	the	argument	X,	rounded	to	the	nearest	integer.	With	two	arguments,
returns	X	rounded	to	D	decimal	places.	D	can	be	negative	to	cause	D	digits
left	of	the	decimal	point	of	the	value	X	to	become	zero.

mysql>	SELECT	ROUND(-1.23);

								->	-1

mysql>	SELECT	ROUND(-1.58);

								->	-2

mysql>	SELECT	ROUND(1.58);

								->	2

mysql>	SELECT	ROUND(1.298,	1);

								->	1.3

mysql>	SELECT	ROUND(1.298,	0);

								->	1

mysql>	SELECT	ROUND(23.298,	-1);

								->	20

The	return	type	is	the	same	type	as	that	of	the	first	argument	(assuming	that
it	is	integer,	double,	or	decimal).	This	means	that	for	an	integer	argument,
the	result	is	an	integer	(no	decimal	places).

Before	MySQL	5.0.3,	the	behavior	of	ROUND()	when	the	argument	is
halfway	between	two	integers	depends	on	the	C	library	implementation.
Different	implementations	round	to	the	nearest	even	number,	always	up,
always	down,	or	always	toward	zero.	If	you	need	one	kind	of	rounding,	you
should	use	a	well-defined	function	such	as	TRUNCATE()	or	FLOOR()	instead.

As	of	MySQL	5.0.3,	ROUND()	uses	the	precision	math	library	for	exact-
value	arguments	when	the	first	argument	is	a	decimal	value:

For	exact-value	numbers,	ROUND()	uses	the	“round	half	up”	or	“round
toward	nearest”	rule:	A	value	with	a	fractional	part	of	.5	or	greater	is
rounded	up	to	the	next	integer	if	positive	or	down	to	the	next	integer	if
negative.	(In	other	words,	it	is	rounded	away	from	zero.)	A	value	with
a	fractional	part	less	than	.5	is	rounded	down	to	the	next	integer	if
positive	or	up	to	the	next	integer	if	negative.

For	approximate-value	numbers,	the	result	depends	on	the	C	library.
On	many	systems,	this	means	that	ROUND()	uses	the	"round	to	nearest
even"	rule:	A	value	with	any	fractional	part	is	rounded	to	the	nearest
even	integer.

The	following	example	shows	how	rounding	differs	for	exact	and
approximate	values:

mysql>	SELECT	ROUND(2.5),	ROUND(25E-1);

+------------+--------------+

|	ROUND(2.5)	|	ROUND(25E-1)	|

+------------+--------------+

|	3										|												2	|

+------------+--------------+

For	more	information,	see	Chapter	21,	Precision	Math.

	SIGN(X)

Returns	the	sign	of	the	argument	as	-1,	0,	or	1,	depending	on	whether	X	is
negative,	zero,	or	positive.

mysql>	SELECT	SIGN(-32);

								->	-1

mysql>	SELECT	SIGN(0);

								->	0

mysql>	SELECT	SIGN(234);

								->	1

	SIN(X)

Returns	the	sine	of	X,	where	X	is	given	in	radians.

mysql>	SELECT	SIN(PI());

								->	1.2246063538224e-16

mysql>	SELECT	ROUND(SIN(PI()));

								->	0

	SQRT(X)

Returns	the	square	root	of	a	non-negative	number	X.

mysql>	SELECT	SQRT(4);

								->	2

mysql>	SELECT	SQRT(20);

								->	4.4721359549996

mysql>	SELECT	SQRT(-16);

								->	NULL								

	TAN(X)

Returns	the	tangent	of	X,	where	X	is	given	in	radians.

mysql>	SELECT	TAN(PI());

								->	-1.2246063538224e-16

mysql>	SELECT	TAN(PI()+1);

								->	1.5574077246549

	TRUNCATE(X,D)

Returns	the	number	X,	truncated	to	D	decimal	places.	If	D	is	0,	the	result	has
no	decimal	point	or	fractional	part.	D	can	be	negative	to	cause	D	digits	left	of
the	decimal	point	of	the	value	X	to	become	zero.

mysql>	SELECT	TRUNCATE(1.223,1);

								->	1.2

mysql>	SELECT	TRUNCATE(1.999,1);

								->	1.9

mysql>	SELECT	TRUNCATE(1.999,0);

								->	1

mysql>	SELECT	TRUNCATE(-1.999,1);

								->	-1.9

mysql>	SELECT	TRUNCATE(122,-2);

							->	100

mysql>	SELECT	TRUNCATE(10.28*100,0);

							->	1028

All	numbers	are	rounded	toward	zero.

12.5.	Date	and	Time	Functions

This	section	describes	the	functions	that	can	be	used	to	manipulate	temporal
values.	See	Section	11.3,	“Date	and	Time	Types”,	for	a	description	of	the	range
of	values	each	date	and	time	type	has	and	the	valid	formats	in	which	values	may
be	specified.

Here	is	an	example	that	uses	date	functions.	The	following	query	selects	all	rows
with	a	date_col	value	from	within	the	last	30	days:

mysql>	SELECT	something	FROM	tbl_name

				->	WHERE	DATE_SUB(CURDATE(),INTERVAL	30	DAY)	<=	date_col;

Note	that	the	query	also	selects	rows	with	dates	that	lie	in	the	future.

Functions	that	expect	date	values	usually	accept	datetime	values	and	ignore	the
time	part.	Functions	that	expect	time	values	usually	accept	datetime	values	and
ignore	the	date	part.

Functions	that	return	the	current	date	or	time	each	are	evaluated	only	once	per
query	at	the	start	of	query	execution.	This	means	that	multiple	references	to	a
function	such	as	NOW()	within	a	single	query	always	produce	the	same	result	(for
our	purposes	a	single	query	also	includes	a	call	to	a	stored	routine	or	trigger	and
all	sub-routines	called	by	that	routine/trigger).	This	principle	also	applies	to
CURDATE(),	CURTIME(),	UTC_DATE(),	UTC_TIME(),	UTC_TIMESTAMP(),	and	to	any
of	their	synonyms.

The	CURRENT_TIMESTAMP(),	CURRENT_TIME(),	CURRENT_DATE(),	and
FROM_UNIXTIME()	functions	return	values	in	the	connection's	current	time	zone,
which	is	available	as	the	value	of	the	time_zone	system	variable.	In	addition,
UNIX_TIMESTAMP()	assumes	that	its	argument	is	a	datetime	value	in	the	current
time	zone.	See	Section	5.11.8,	“MySQL	Server	Time	Zone	Support”.

Some	date	functions	can	be	used	with	“zero”	dates	or	incomplete	dates	such	as
'2001-11-00',	whereas	others	cannot.	Functions	that	extract	parts	of	dates
typically	work	with	incomplete	dates.	For	example:

mysql>	SELECT	DAYOFMONTH('2001-11-00'),	MONTH('2005-00-00');

								->	0,	0

Other	functions	expect	complete	dates	and	return	NULL	for	incomplete	dates.
These	include	functions	that	perform	date	arithmetic	or	that	map	parts	of	dates	to
names.	For	example:

mysql>	SELECT	DATE_ADD('2006-05-00',INTERVAL	1	DAY);

								->	NULL

mysql>	SELECT	DAYNAME('2006-05-00');

								->	NULL

	ADDDATE(date,INTERVAL	expr	unit),	ADDDATE(expr,days)

When	invoked	with	the	INTERVAL	form	of	the	second	argument,	ADDDATE()
is	a	synonym	for	DATE_ADD().	The	related	function	SUBDATE()	is	a	synonym
for	DATE_SUB().	For	information	on	the	INTERVAL	unit	argument,	see	the
discussion	for	DATE_ADD().

mysql>	SELECT	DATE_ADD('1998-01-02',	INTERVAL	31	DAY);

								->	'1998-02-02'

mysql>	SELECT	ADDDATE('1998-01-02',	INTERVAL	31	DAY);

								->	'1998-02-02'

When	invoked	with	the	days	form	of	the	second	argument,	MySQL	treats	it
as	an	integer	number	of	days	to	be	added	to	expr.

mysql>	SELECT	ADDDATE('1998-01-02',	31);

								->	'1998-02-02'

	ADDTIME(expr1,expr2)

ADDTIME()	adds	expr2	to	expr1	and	returns	the	result.	expr1	is	a	time	or
datetime	expression,	and	expr2	is	a	time	expression.

mysql>	SELECT	ADDTIME('1997-12-31	23:59:59.999999',

				->																'1	1:1:1.000002');

								->	'1998-01-02	01:01:01.000001'

mysql>	SELECT	ADDTIME('01:00:00.999999',	'02:00:00.999998');

								->	'03:00:01.999997'

	CONVERT_TZ(dt,from_tz,to_tz)

CONVERT_TZ()	converts	a	datetime	value	dt	from	the	time	zone	given	by
from_tz	to	the	time	zone	given	by	to_tz	and	returns	the	resulting	value.
Time	zones	are	specified	as	described	in	Section	5.11.8,	“MySQL	Server

Time	Zone	Support”.	This	function	returns	NULL	if	the	arguments	are
invalid.

If	the	value	falls	out	of	the	supported	range	of	the	TIMESTAMP	type	when
converted	fom	from_tz	to	UTC,	no	conversion	occurs.	The	TIMESTAMP
range	is	described	in	Section	11.1.2,	“Overview	of	Date	and	Time	Types”.

mysql>	SELECT	CONVERT_TZ('2004-01-01	12:00:00','GMT','MET');

								->	'2004-01-01	13:00:00'

mysql>	SELECT	CONVERT_TZ('2004-01-01	12:00:00','+00:00','+10:00');

								->	'2004-01-01	22:00:00'

Note:	To	use	named	time	zones	such	as	'MET'	or	'Europe/Moscow',	the
time	zone	tables	must	be	properly	set	up.	See	Section	5.11.8,	“MySQL
Server	Time	Zone	Support”,	for	instructions.

If	you	intend	to	use	CONVERT_TZ()	while	other	tables	are	locked	with	LOCK
TABLES,	you	must	also	lock	the	mysql.time_zone_name	table.

	CURDATE()

Returns	the	current	date	as	a	value	in	'YYYY-MM-DD'	or	YYYYMMDD	format,
depending	on	whether	the	function	is	used	in	a	string	or	numeric	context.

mysql>	SELECT	CURDATE();

								->	'1997-12-15'

mysql>	SELECT	CURDATE()	+	0;

								->	19971215

	CURRENT_DATE,	CURRENT_DATE()

CURRENT_DATE	and	CURRENT_DATE()	are	synonyms	for	CURDATE().

	CURTIME()

Returns	the	current	time	as	a	value	in	'HH:MM:SS'	or	HHMMSS	format,
depending	on	whether	the	function	is	used	in	a	string	or	numeric	context.

mysql>	SELECT	CURTIME();

								->	'23:50:26'

mysql>	SELECT	CURTIME()	+	0;

								->	235026

	CURRENT_TIME,	CURRENT_TIME()

CURRENT_TIME	and	CURRENT_TIME()	are	synonyms	for	CURTIME().

	CURRENT_TIMESTAMP,	CURRENT_TIMESTAMP()

CURRENT_TIMESTAMP	and	CURRENT_TIMESTAMP()	are	synonyms	for	NOW().

	DATE(expr)

Extracts	the	date	part	of	the	date	or	datetime	expression	expr.

mysql>	SELECT	DATE('2003-12-31	01:02:03');

								->	'2003-12-31'

	DATEDIFF(expr1,expr2)

DATEDIFF()	returns	expr1	–	expr2	expressed	as	a	value	in	days	from	one
date	to	the	other.	expr1	and	expr2	are	date	or	date-and-time	expressions.
Only	the	date	parts	of	the	values	are	used	in	the	calculation.

mysql>	SELECT	DATEDIFF('1997-12-31	23:59:59','1997-12-30');

								->	1

mysql>	SELECT	DATEDIFF('1997-11-30	23:59:59','1997-12-31');

								->	-31

	DATE_ADD(date,INTERVAL	expr	unit),	DATE_SUB(date,INTERVAL	expr
unit)

These	functions	perform	date	arithmetic.	date	is	a	DATETIME	or	DATE	value
specifying	the	starting	date.	expr	is	an	expression	specifying	the	interval
value	to	be	added	or	subtracted	from	the	starting	date.	expr	is	a	string;	it
may	start	with	a	‘-’	for	negative	intervals.	unit	is	a	keyword	indicating	the
units	in	which	the	expression	should	be	interpreted.

The	INTERVAL	keyword	and	the	unit	specifier	are	not	case	sensitive.

The	following	table	shows	the	expected	form	of	the	expr	argument	for	each
unit	value.

unit	Value Expected	expr	Format
MICROSECOND MICROSECONDS

SECOND SECONDS

MINUTE MINUTES

HOUR HOURS

DAY DAYS

WEEK WEEKS

MONTH MONTHS

QUARTER QUARTERS

YEAR YEARS

SECOND_MICROSECOND 'SECONDS.MICROSECONDS'

MINUTE_MICROSECOND 'MINUTES.MICROSECONDS'

MINUTE_SECOND 'MINUTES:SECONDS'

HOUR_MICROSECOND 'HOURS.MICROSECONDS'

HOUR_SECOND 'HOURS:MINUTES:SECONDS'

HOUR_MINUTE 'HOURS:MINUTES'

DAY_MICROSECOND 'DAYS.MICROSECONDS'

DAY_SECOND 'DAYS	HOURS:MINUTES:SECONDS'

DAY_MINUTE 'DAYS	HOURS:MINUTES'

DAY_HOUR 'DAYS	HOURS'

YEAR_MONTH 'YEARS-MONTHS'

The	values	QUARTER	and	WEEK	are	available	beginning	with	MySQL	5.0.0.

MySQL	allows	any	punctuation	delimiter	in	the	expr	format.	Those	shown
in	the	table	are	the	suggested	delimiters.	If	the	date	argument	is	a	DATE
value	and	your	calculations	involve	only	YEAR,	MONTH,	and	DAY	parts	(that	is,
no	time	parts),	the	result	is	a	DATE	value.	Otherwise,	the	result	is	a	DATETIME
value.

Date	arithmetic	also	can	be	performed	using	INTERVAL	together	with	the	+
or	-	operator:

date	+	INTERVAL	expr	unit

date	-	INTERVAL	expr	unit

INTERVAL	expr	unit	is	allowed	on	either	side	of	the	+	operator	if	the
expression	on	the	other	side	is	a	date	or	datetime	value.	For	the	-	operator,
INTERVAL	expr	unit	is	allowed	only	on	the	right	side,	because	it	makes	no
sense	to	subtract	a	date	or	datetime	value	from	an	interval.

mysql>	SELECT	'1997-12-31	23:59:59'	+	INTERVAL	1	SECOND;

								->	'1998-01-01	00:00:00'

mysql>	SELECT	INTERVAL	1	DAY	+	'1997-12-31';

								->	'1998-01-01'

mysql>	SELECT	'1998-01-01'	-	INTERVAL	1	SECOND;

								->	'1997-12-31	23:59:59'

mysql>	SELECT	DATE_ADD('1997-12-31	23:59:59',

				->																	INTERVAL	1	SECOND);

								->	'1998-01-01	00:00:00'

mysql>	SELECT	DATE_ADD('1997-12-31	23:59:59',

				->																	INTERVAL	1	DAY);

								->	'1998-01-01	23:59:59'

mysql>	SELECT	DATE_ADD('1997-12-31	23:59:59',

				->																	INTERVAL	'1:1'	MINUTE_SECOND);

								->	'1998-01-01	00:01:00'

mysql>	SELECT	DATE_SUB('1998-01-01	00:00:00',

				->																	INTERVAL	'1	1:1:1'	DAY_SECOND);

								->	'1997-12-30	22:58:59'

mysql>	SELECT	DATE_ADD('1998-01-01	00:00:00',

				->																	INTERVAL	'-1	10'	DAY_HOUR);

								->	'1997-12-30	14:00:00'

mysql>	SELECT	DATE_SUB('1998-01-02',	INTERVAL	31	DAY);

								->	'1997-12-02'

mysql>	SELECT	DATE_ADD('1992-12-31	23:59:59.000002',

				->												INTERVAL	'1.999999'	SECOND_MICROSECOND);

								->	'1993-01-01	00:00:01.000001'

If	you	specify	an	interval	value	that	is	too	short	(does	not	include	all	the
interval	parts	that	would	be	expected	from	the	unit	keyword),	MySQL
assumes	that	you	have	left	out	the	leftmost	parts	of	the	interval	value.	For
example,	if	you	specify	a	unit	of	DAY_SECOND,	the	value	of	expr	is	expected
to	have	days,	hours,	minutes,	and	seconds	parts.	If	you	specify	a	value	like
'1:10',	MySQL	assumes	that	the	days	and	hours	parts	are	missing	and	the
value	represents	minutes	and	seconds.	In	other	words,	'1:10'	DAY_SECOND
is	interpreted	in	such	a	way	that	it	is	equivalent	to	'1:10'	MINUTE_SECOND.
This	is	analogous	to	the	way	that	MySQL	interprets	TIME	values	as
representing	elapsed	time	rather	than	as	a	time	of	day.

If	you	add	to	or	subtract	from	a	date	value	something	that	contains	a	time
part,	the	result	is	automatically	converted	to	a	datetime	value:

mysql>	SELECT	DATE_ADD('1999-01-01',	INTERVAL	1	DAY);

								->	'1999-01-02'

mysql>	SELECT	DATE_ADD('1999-01-01',	INTERVAL	1	HOUR);

								->	'1999-01-01	01:00:00'

If	you	add	MONTH,	YEAR_MONTH,	or	YEAR	and	the	resulting	date	has	a	day	that
is	larger	than	the	maximum	day	for	the	new	month,	the	day	is	adjusted	to
the	maximum	days	in	the	new	month:

mysql>	SELECT	DATE_ADD('1998-01-30',	INTERVAL	1	MONTH);

								->	'1998-02-28'

Date	arithmetic	operations	require	complete	dates	and	do	not	work	with
incomplete	dates	such	as	'2006-07-00'	or	badly	malformed	dates:

mysql>	SELECT	DATE_ADD('2006-07-00',	INTERVAL	1	DAY);

								->	NULL

mysql>	SELECT	'2005-03-32'	+	INTERVAL	1	MONTH;

								->	NULL

	DATE_FORMAT(date,format)

Formats	the	date	value	according	to	the	format	string.

The	following	specifiers	may	be	used	in	the	format	string.	The	‘%’	character
is	required	before	format	specifier	characters.

Specifier Description
%a Abbreviated	weekday	name	(Sun..Sat)
%b Abbreviated	month	name	(Jan..Dec)
%c Month,	numeric	(0..12)
%D Day	of	the	month	with	English	suffix	(0th,	1st,	2nd,	3rd,	…)
%d Day	of	the	month,	numeric	(00..31)
%e Day	of	the	month,	numeric	(0..31)
%f Microseconds	(000000..999999)
%H Hour	(00..23)
%h Hour	(01..12)
%I Hour	(01..12)
%i Minutes,	numeric	(00..59)
%j Day	of	year	(001..366)
%k Hour	(0..23)
%l Hour	(1..12)

%M Month	name	(January..December)
%m Month,	numeric	(00..12)
%p AM	or	PM
%r Time,	12-hour	(hh:mm:ss	followed	by	AM	or	PM)
%S Seconds	(00..59)
%s Seconds	(00..59)
%T Time,	24-hour	(hh:mm:ss)
%U Week	(00..53),	where	Sunday	is	the	first	day	of	the	week
%u Week	(00..53),	where	Monday	is	the	first	day	of	the	week

%V
Week	(01..53),	where	Sunday	is	the	first	day	of	the	week;	used
with	%X

%v
Week	(01..53),	where	Monday	is	the	first	day	of	the	week;	used
with	%x

%W Weekday	name	(Sunday..Saturday)
%w Day	of	the	week	(0=Sunday..6=Saturday)

%X
Year	for	the	week	where	Sunday	is	the	first	day	of	the	week,
numeric,	four	digits;	used	with	%V

%x
Year	for	the	week,	where	Monday	is	the	first	day	of	the	week,
numeric,	four	digits;	used	with	%v

%Y Year,	numeric,	four	digits
%y Year,	numeric	(two	digits)
%% A	literal	‘%’	character
%x x,	for	any	‘x’	not	listed	above

Ranges	for	the	month	and	day	specifiers	begin	with	zero	due	to	the	fact	that
MySQL	allows	the	storing	of	incomplete	dates	such	as	'2004-00-00'.

mysql>	SELECT	DATE_FORMAT('1997-10-04	22:23:00',	'%W	%M	%Y');

								->	'Saturday	October	1997'

mysql>	SELECT	DATE_FORMAT('1997-10-04	22:23:00',	'%H:%i:%s');

								->	'22:23:00'

mysql>	SELECT	DATE_FORMAT('1997-10-04	22:23:00',

																										'%D	%y	%a	%d	%m	%b	%j');

								->	'4th	97	Sat	04	10	Oct	277'

mysql>	SELECT	DATE_FORMAT('1997-10-04	22:23:00',

																										'%H	%k	%I	%r	%T	%S	%w');

								->	'22	22	10	10:23:00	PM	22:23:00	00	6'

mysql>	SELECT	DATE_FORMAT('1999-01-01',	'%X	%V');

								->	'1998	52'

mysql>	SELECT	DATE_FORMAT('2006-06-00',	'%d');

								->	'00'

	DAY(date)

DAY()	is	a	synonym	for	DAYOFMONTH().

	DAYNAME(date)

Returns	the	name	of	the	weekday	for	date.

mysql>	SELECT	DAYNAME('1998-02-05');

								->	'Thursday'

	DAYOFMONTH(date)

Returns	the	day	of	the	month	for	date,	in	the	range	0	to	31.

mysql>	SELECT	DAYOFMONTH('1998-02-03');

								->	3

	DAYOFWEEK(date)

Returns	the	weekday	index	for	date	(1	=	Sunday,	2	=	Monday,	…,	7	=
Saturday).	These	index	values	correspond	to	the	ODBC	standard.

mysql>	SELECT	DAYOFWEEK('1998-02-03');

								->	3

	DAYOFYEAR(date)

Returns	the	day	of	the	year	for	date,	in	the	range	1	to	366.

mysql>	SELECT	DAYOFYEAR('1998-02-03');

								->	34

	EXTRACT(unit	FROM	date)

The	EXTRACT()	function	uses	the	same	kinds	of	unit	specifiers	as
DATE_ADD()	or	DATE_SUB(),	but	extracts	parts	from	the	date	rather	than
performing	date	arithmetic.

mysql>	SELECT	EXTRACT(YEAR	FROM	'1999-07-02');

							->	1999

mysql>	SELECT	EXTRACT(YEAR_MONTH	FROM	'1999-07-02	01:02:03');

							->	199907

mysql>	SELECT	EXTRACT(DAY_MINUTE	FROM	'1999-07-02	01:02:03');

							->	20102

mysql>	SELECT	EXTRACT(MICROSECOND

				->																FROM	'2003-01-02	10:30:00.00123');

								->	123

	FROM_DAYS(N)

Given	a	day	number	N,	returns	a	DATE	value.

mysql>	SELECT	FROM_DAYS(729669);

								->	'1997-10-07'

Use	FROM_DAYS()	with	caution	on	old	dates.	It	is	not	intended	for	use	with
values	that	precede	the	advent	of	the	Gregorian	calendar	(1582).	See
Section	12.6,	“What	Calendar	Is	Used	By	MySQL?”.

	FROM_UNIXTIME(unix_timestamp),
FROM_UNIXTIME(unix_timestamp,format)

Returns	a	representation	of	the	unix_timestamp	argument	as	a	value	in
'YYYY-MM-DD	HH:MM:SS'	or	YYYYMMDDHHMMSS	format,	depending	on	whether
the	function	is	used	in	a	string	or	numeric	context.	unix_timestamp	is	an
internal	timestamp	value	such	as	is	produced	by	the	UNIX_TIMESTAMP()
function.

If	format	is	given,	the	result	is	formatted	according	to	the	format	string,
which	is	used	the	same	way	as	listed	in	the	entry	for	the	DATE_FORMAT()
function.

mysql>	SELECT	FROM_UNIXTIME(875996580);

								->	'1997-10-04	22:23:00'

mysql>	SELECT	FROM_UNIXTIME(875996580)	+	0;

								->	19971004222300

mysql>	SELECT	FROM_UNIXTIME(UNIX_TIMESTAMP(),

				->																						'%Y	%D	%M	%h:%i:%s	%x');

								->	'2003	6th	August	06:22:58	2003'

Note:	If	you	use	UNIX_TIMESTAMP()	and	FROM_UNIXTIME()	to	convert
between	TIMESTAMP	values	and	Unix	timestamp	values,	the	conversion	is

lossy	because	the	mapping	is	not	one-to-one	in	both	directions.	For	details,
see	the	description	of	the	UNIX_TIMESTAMP()	function.

	GET_FORMAT(DATE|TIME|DATETIME,
'EUR'|'USA'|'JIS'|'ISO'|'INTERNAL')

Returns	a	format	string.	This	function	is	useful	in	combination	with	the
DATE_FORMAT()	and	the	STR_TO_DATE()	functions.

The	possible	values	for	the	first	and	second	arguments	result	in	several
possible	format	strings	(for	the	specifiers	used,	see	the	table	in	the
DATE_FORMAT()	function	description).	ISO	format	refers	to	ISO	9075,	not
ISO	8601.

Function	Call Result
GET_FORMAT(DATE,'USA') '%m.%d.%Y'

GET_FORMAT(DATE,'JIS') '%Y-%m-%d'

GET_FORMAT(DATE,'ISO') '%Y-%m-%d'

GET_FORMAT(DATE,'EUR') '%d.%m.%Y'

GET_FORMAT(DATE,'INTERNAL') '%Y%m%d'

GET_FORMAT(DATETIME,'USA') '%Y-%m-%d-%H.%i.%s'

GET_FORMAT(DATETIME,'JIS') '%Y-%m-%d	%H:%i:%s'

GET_FORMAT(DATETIME,'ISO') '%Y-%m-%d	%H:%i:%s'

GET_FORMAT(DATETIME,'EUR') '%Y-%m-%d-%H.%i.%s'

GET_FORMAT(DATETIME,'INTERNAL') '%Y%m%d%H%i%s'

GET_FORMAT(TIME,'USA') '%h:%i:%s	%p'

GET_FORMAT(TIME,'JIS') '%H:%i:%s'

GET_FORMAT(TIME,'ISO') '%H:%i:%s'

GET_FORMAT(TIME,'EUR') '%H.%i.%S'

GET_FORMAT(TIME,'INTERNAL') '%H%i%s'

TIMESTAMP	can	also	be	used	as	the	first	argument	to	GET_FORMAT(),	in
which	case	the	function	returns	the	same	values	as	for	DATETIME.

mysql>	SELECT	DATE_FORMAT('2003-10-03',GET_FORMAT(DATE,'EUR'));

								->	'03.10.2003'

mysql>	SELECT	STR_TO_DATE('10.31.2003',GET_FORMAT(DATE,'USA'));

								->	'2003-10-31'

	HOUR(time)

Returns	the	hour	for	time.	The	range	of	the	return	value	is	0	to	23	for	time-
of-day	values.	However,	the	range	of	TIME	values	actually	is	much	larger,	so
HOUR	can	return	values	greater	than	23.

mysql>	SELECT	HOUR('10:05:03');

								->	10

mysql>	SELECT	HOUR('272:59:59');

								->	272

	LAST_DAY(date)

Takes	a	date	or	datetime	value	and	returns	the	corresponding	value	for	the
last	day	of	the	month.	Returns	NULL	if	the	argument	is	invalid.

mysql>	SELECT	LAST_DAY('2003-02-05');

								->	'2003-02-28'

mysql>	SELECT	LAST_DAY('2004-02-05');

								->	'2004-02-29'

mysql>	SELECT	LAST_DAY('2004-01-01	01:01:01');

								->	'2004-01-31'

mysql>	SELECT	LAST_DAY('2003-03-32');

								->	NULL

	LOCALTIME,	LOCALTIME()

LOCALTIME	and	LOCALTIME()	are	synonyms	for	NOW().

	LOCALTIMESTAMP,	LOCALTIMESTAMP()

LOCALTIMESTAMP	and	LOCALTIMESTAMP()	are	synonyms	for	NOW().

	MAKEDATE(year,dayofyear)

Returns	a	date,	given	year	and	day-of-year	values.	dayofyear	must	be
greater	than	0	or	the	result	is	NULL.

mysql>	SELECT	MAKEDATE(2001,31),	MAKEDATE(2001,32);

								->	'2001-01-31',	'2001-02-01'

mysql>	SELECT	MAKEDATE(2001,365),	MAKEDATE(2004,365);

								->	'2001-12-31',	'2004-12-30'

mysql>	SELECT	MAKEDATE(2001,0);

								->	NULL

	MAKETIME(hour,minute,second)

Returns	a	time	value	calculated	from	the	hour,	minute,	and	second
arguments.

mysql>	SELECT	MAKETIME(12,15,30);

								->	'12:15:30'

	MICROSECOND(expr)

Returns	the	microseconds	from	the	time	or	datetime	expression	expr	as	a
number	in	the	range	from	0	to	999999.

mysql>	SELECT	MICROSECOND('12:00:00.123456');

								->	123456

mysql>	SELECT	MICROSECOND('1997-12-31	23:59:59.000010');

								->	10

	MINUTE(time)

Returns	the	minute	for	time,	in	the	range	0	to	59.

mysql>	SELECT	MINUTE('98-02-03	10:05:03');

								->	5

	MONTH(date)

Returns	the	month	for	date,	in	the	range	0	to	12.

mysql>	SELECT	MONTH('1998-02-03');

								->	2

	MONTHNAME(date)

Returns	the	full	name	of	the	month	for	date.

mysql>	SELECT	MONTHNAME('1998-02-05');

								->	'February'

	NOW()

Returns	the	current	date	and	time	as	a	value	in	'YYYY-MM-DD	HH:MM:SS'	or
YYYYMMDDHHMMSS	format,	depending	on	whether	the	function	is	used	in	a
string	or	numeric	context.

mysql>	SELECT	NOW();

								->	'1997-12-15	23:50:26'

mysql>	SELECT	NOW()	+	0;

								->	19971215235026

NOW()	returns	a	constant	time	that	indicates	the	time	at	which	the	statement
began	to	execute.	(Within	a	stored	routine	or	trigger,	NOW()	returns	the	time
at	which	the	routine	or	triggering	statement	began	to	execute.)	This	differs
from	the	behavior	for	SYSDATE(),	which	returns	the	exact	time	at	which	it
executes	as	of	MySQL	5.0.13.

mysql>	SELECT	NOW(),	SLEEP(2),	NOW();

+---------------------+----------+---------------------+

|	NOW()															|	SLEEP(2)	|	NOW()															|

+---------------------+----------+---------------------+

|	2006-04-12	13:47:36	|								0	|	2006-04-12	13:47:36	|

+---------------------+----------+---------------------+

mysql>	SELECT	SYSDATE(),	SLEEP(2),	SYSDATE();

+---------------------+----------+---------------------+

|	SYSDATE()											|	SLEEP(2)	|	SYSDATE()											|

+---------------------+----------+---------------------+

|	2006-04-12	13:47:44	|								0	|	2006-04-12	13:47:46	|

+---------------------+----------+---------------------+

See	the	description	for	SYSDATE()	for	additional	information	about	the
differences	between	the	two	functions.

	PERIOD_ADD(P,N)

Adds	N	months	to	period	P	(in	the	format	YYMM	or	YYYYMM).	Returns	a	value
in	the	format	YYYYMM.	Note	that	the	period	argument	P	is	not	a	date	value.

mysql>	SELECT	PERIOD_ADD(9801,2);

								->	199803

	PERIOD_DIFF(P1,P2)

Returns	the	number	of	months	between	periods	P1	and	P2.	P1	and	P2	should
be	in	the	format	YYMM	or	YYYYMM.	Note	that	the	period	arguments	P1	and	P2
are	not	date	values.

mysql>	SELECT	PERIOD_DIFF(9802,199703);

								->	11

	QUARTER(date)

Returns	the	quarter	of	the	year	for	date,	in	the	range	1	to	4.

mysql>	SELECT	QUARTER('98-04-01');

								->	2

	SECOND(time)

Returns	the	second	for	time,	in	the	range	0	to	59.

mysql>	SELECT	SECOND('10:05:03');

								->	3

	SEC_TO_TIME(seconds)

Returns	the	seconds	argument,	converted	to	hours,	minutes,	and	seconds,	as
a	value	in	'HH:MM:SS'	or	HHMMSS	format,	depending	on	whether	the	function
is	used	in	a	string	or	numeric	context.

mysql>	SELECT	SEC_TO_TIME(2378);

								->	'00:39:38'

mysql>	SELECT	SEC_TO_TIME(2378)	+	0;

								->	3938

	STR_TO_DATE(str,format)

This	is	the	inverse	of	the	DATE_FORMAT()	function.	It	takes	a	string	str	and
a	format	string	format.	STR_TO_DATE()	returns	a	DATETIME	value	if	the
format	string	contains	both	date	and	time	parts,	or	a	DATE	or	TIME	value	if
the	string	contains	only	date	or	time	parts.

The	date,	time,	or	datetime	values	contained	in	str	should	be	given	in	the
format	indicated	by	format.	For	the	specifiers	that	can	be	used	in	format,
see	the	DATE_FORMAT()	function	description.	If	str	contains	an	illegal	date,
time,	or	datetime	value,	STR_TO_DATE()	returns	NULL.	Starting	from	MySQL
5.0.3,	an	illegal	value	also	produces	a	warning.

Range	checking	on	the	parts	of	date	values	is	as	described	in	Section	11.3.1,
“The	DATETIME,	DATE,	and	TIMESTAMP	Types”.	This	means,	for	example,	that
“zero”	dates	or	dates	with	part	values	of	0	are	allowed	unless	the	SQL	mode
is	set	to	disallow	such	values.

mysql>	SELECT	STR_TO_DATE('00/00/0000',	'%m/%d/%Y');

								->	'0000-00-00'

mysql>	SELECT	STR_TO_DATE('04/31/2004',	'%m/%d/%Y');

								->	'2004-04-31'

	SUBDATE(date,INTERVAL	expr	unit),	SUBDATE(expr,days)

When	invoked	with	the	INTERVAL	form	of	the	second	argument,	SUBDATE()
is	a	synonym	for	DATE_SUB().	For	information	on	the	INTERVAL	unit
argument,	see	the	discussion	for	DATE_ADD().

mysql>	SELECT	DATE_SUB('1998-01-02',	INTERVAL	31	DAY);

								->	'1997-12-02'

mysql>	SELECT	SUBDATE('1998-01-02',	INTERVAL	31	DAY);

								->	'1997-12-02'

The	second	form	allows	the	use	of	an	integer	value	for	days.	In	such	cases,
it	is	interpreted	as	the	number	of	days	to	be	subtracted	from	the	date	or
datetime	expression	expr.

mysql>	SELECT	SUBDATE('1998-01-02	12:00:00',	31);

								->	'1997-12-02	12:00:00'

Note:	You	cannot	use	format	"%X%V"	to	convert	a	year-week	string	to	a	date
because	the	combination	of	a	year	and	week	does	not	uniquely	identify	a
year	and	month	if	the	week	crosses	a	month	boundary.	To	convert	a	year-
week	to	a	date,	then	you	should	also	specify	the	weekday:

mysql>	SELECT	STR_TO_DATE('200442	Monday',	'%X%V	%W');

								->	'2004-10-18'

	SUBTIME(expr1,expr2)

SUBTIME()	returns	expr1	–	expr2	expressed	as	a	value	in	the	same	format
as	expr1.	expr1	is	a	time	or	datetime	expression,	and	expr2	is	a	time
expression.

mysql>	SELECT	SUBTIME('1997-12-31	23:59:59.999999','1	1:1:1.000002');

								->	'1997-12-30	22:58:58.999997'

mysql>	SELECT	SUBTIME('01:00:00.999999',	'02:00:00.999998');

								->	'-00:59:59.999999'

	SYSDATE()

Returns	the	current	date	and	time	as	a	value	in	'YYYY-MM-DD	HH:MM:SS'	or
YYYYMMDDHHMMSS	format,	depending	on	whether	the	function	is	used	in	a
string	or	numeric	context.

As	of	MySQL	5.0.13,	SYSDATE()	returns	the	time	at	which	it	executes.	This
differs	from	the	behavior	for	NOW(),	which	returns	a	constant	time	that
indicates	the	time	at	which	the	statement	began	to	execute.	(Within	a	stored
routine	or	trigger,	NOW()	returns	the	time	at	which	the	routine	or	triggering
statement	began	to	execute.)

mysql>	SELECT	NOW(),	SLEEP(2),	NOW();

+---------------------+----------+---------------------+

|	NOW()															|	SLEEP(2)	|	NOW()															|

+---------------------+----------+---------------------+

|	2006-04-12	13:47:36	|								0	|	2006-04-12	13:47:36	|

+---------------------+----------+---------------------+

mysql>	SELECT	SYSDATE(),	SLEEP(2),	SYSDATE();

+---------------------+----------+---------------------+

|	SYSDATE()											|	SLEEP(2)	|	SYSDATE()											|

+---------------------+----------+---------------------+

|	2006-04-12	13:47:44	|								0	|	2006-04-12	13:47:46	|

+---------------------+----------+---------------------+

In	addition,	the	SET	TIMESTAMP	statement	affects	the	value	returned	by
NOW()	but	not	by	SYSDATE().	This	means	that	timestamp	settings	in	the
binary	log	have	no	effect	on	invocations	of	SYSDATE().

Because	SYSDATE()	can	return	different	values	even	within	the	same
statement,	and	is	not	affected	by	SET	TIMESTAMP,	it	is	non-deterministic	and
therefore	unsafe	for	replication.	If	that	is	a	problem,	you	can	start	the	server
with	the	--sysdate-is-now	option	to	cause	SYSDATE()	to	be	an	alias	for
NOW().

	TIME(expr)

Extracts	the	time	part	of	the	time	or	datetime	expression	expr	and	returns	it
as	a	string.

mysql>	SELECT	TIME('2003-12-31	01:02:03');

								->	'01:02:03'

mysql>	SELECT	TIME('2003-12-31	01:02:03.000123');

								->	'01:02:03.000123'

	TIMEDIFF(expr1,expr2)

TIMEDIFF()	returns	expr1	–	expr2	expressed	as	a	time	value.	expr1	and
expr2	are	time	or	date-and-time	expressions,	but	both	must	be	of	the	same
type.

mysql>	SELECT	TIMEDIFF('2000:01:01	00:00:00',

				->																	'2000:01:01	00:00:00.000001');

								->	'-00:00:00.000001'

mysql>	SELECT	TIMEDIFF('1997-12-31	23:59:59.000001',

				->																	'1997-12-30	01:01:01.000002');

								->	'46:58:57.999999'

	TIMESTAMP(expr),	TIMESTAMP(expr1,expr2)

With	a	single	argument,	this	function	returns	the	date	or	datetime
expression	expr	as	a	datetime	value.	With	two	arguments,	it	adds	the	time
expression	expr2	to	the	date	or	datetime	expression	expr1	and	returns	the
result	as	a	datetime	value.

mysql>	SELECT	TIMESTAMP('2003-12-31');

								->	'2003-12-31	00:00:00'

mysql>	SELECT	TIMESTAMP('2003-12-31	12:00:00','12:00:00');

								->	'2004-01-01	00:00:00'

	TIMESTAMPADD(unit,interval,datetime_expr)

Adds	the	integer	expression	interval	to	the	date	or	datetime	expression
datetime_expr.	The	unit	for	interval	is	given	by	the	unit	argument,
which	should	be	one	of	the	following	values:	FRAC_SECOND,	SECOND,
MINUTE,	HOUR,	DAY,	WEEK,	MONTH,	QUARTER,	or	YEAR.

The	unit	value	may	be	specified	using	one	of	keywords	as	shown,	or	with	a
prefix	of	SQL_TSI_.	For	example,	DAY	and	SQL_TSI_DAY	both	are	legal.

mysql>	SELECT	TIMESTAMPADD(MINUTE,1,'2003-01-02');

								->	'2003-01-02	00:01:00'

mysql>	SELECT	TIMESTAMPADD(WEEK,1,'2003-01-02');

								->	'2003-01-09'

TIMESTAMPADD()	is	available	as	of	MySQL	5.0.0.

	TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2)

Returns	the	integer	difference	between	the	date	or	datetime	expressions
datetime_expr1	and	datetime_expr2.	The	unit	for	the	result	is	given	by
the	unit	argument.	The	legal	values	for	unit	are	the	same	as	those	listed	in
the	description	of	the	TIMESTAMPADD()	function.

mysql>	SELECT	TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01');

								->	3

mysql>	SELECT	TIMESTAMPDIFF(YEAR,'2002-05-01','2001-01-01');

								->	-1

TIMESTAMPDIFF()	is	available	as	of	MySQL	5.0.0.

	TIME_FORMAT(time,format)

This	is	used	like	the	DATE_FORMAT()	function,	but	the	format	string	may
contain	format	specifiers	only	for	hours,	minutes,	and	seconds.	Other
specifiers	produce	a	NULL	value	or	0.

If	the	time	value	contains	an	hour	part	that	is	greater	than	23,	the	%H	and	%k
hour	format	specifiers	produce	a	value	larger	than	the	usual	range	of	0..23.
The	other	hour	format	specifiers	produce	the	hour	value	modulo	12.

mysql>	SELECT	TIME_FORMAT('100:00:00',	'%H	%k	%h	%I	%l');

								->	'100	100	04	04	4'

	TIME_TO_SEC(time)

Returns	the	time	argument,	converted	to	seconds.

mysql>	SELECT	TIME_TO_SEC('22:23:00');

								->	80580

mysql>	SELECT	TIME_TO_SEC('00:39:38');

								->	2378

	TO_DAYS(date)

Given	a	date	date,	returns	a	day	number	(the	number	of	days	since	year	0).

mysql>	SELECT	TO_DAYS(950501);

								->	728779

mysql>	SELECT	TO_DAYS('1997-10-07');

								->	729669

TO_DAYS()	is	not	intended	for	use	with	values	that	precede	the	advent	of	the
Gregorian	calendar	(1582),	because	it	does	not	take	into	account	the	days
that	were	lost	when	the	calendar	was	changed.	For	dates	before	1582	(and
possibly	a	later	year	in	other	locales),	results	from	this	function	are	not
reliable.	See	Section	12.6,	“What	Calendar	Is	Used	By	MySQL?”,	for
details.

Remember	that	MySQL	converts	two-digit	year	values	in	dates	to	four-digit
form	using	the	rules	in	Section	11.3,	“Date	and	Time	Types”.	For	example,
'1997-10-07'	and	'97-10-07'	are	seen	as	identical	dates:

mysql>	SELECT	TO_DAYS('1997-10-07'),	TO_DAYS('97-10-07');

								->	729669,	729669

	UNIX_TIMESTAMP(),	UNIX_TIMESTAMP(date)

If	called	with	no	argument,	returns	a	Unix	timestamp	(seconds	since	'1970-
01-01	00:00:00'	UTC)	as	an	unsigned	integer.	If	UNIX_TIMESTAMP()	is
called	with	a	date	argument,	it	returns	the	value	of	the	argument	as	seconds
since	'1970-01-01	00:00:00'	UTC.	date	may	be	a	DATE	string,	a
DATETIME	string,	a	TIMESTAMP,	or	a	number	in	the	format	YYMMDD	or
YYYYMMDD.	The	server	interprets	date	as	a	value	in	the	current	time	zone	and
converts	it	to	an	internal	value	in	UTC.	Clients	can	set	their	time	zone	as
described	in	Section	5.11.8,	“MySQL	Server	Time	Zone	Support”.

mysql>	SELECT	UNIX_TIMESTAMP();

								->	882226357

mysql>	SELECT	UNIX_TIMESTAMP('1997-10-04	22:23:00');

								->	875996580

When	UNIX_TIMESTAMP	is	used	on	a	TIMESTAMP	column,	the	function	returns
the	internal	timestamp	value	directly,	with	no	implicit	“string-to-Unix-
timestamp”	conversion.	If	you	pass	an	out-of-range	date	to
UNIX_TIMESTAMP(),	it	returns	0.

Note:	If	you	use	UNIX_TIMESTAMP()	and	FROM_UNIXTIME()	to	convert
between	TIMESTAMP	values	and	Unix	timestamp	values,	the	conversion	is
lossy	because	the	mapping	is	not	one-to-one	in	both	directions.	For
example,	due	to	conventions	for	local	time	zone	changes,	it	is	possible	for
two	UNIX_TIMESTAMP()	to	map	two	TIMESTAMP	values	to	the	same	Unix
timestamp	value.	FROM_UNIXTIME()	will	map	that	value	back	to	only	one	of

the	original	TIMESTAMP	values.	Here	is	an	example,	using	TIMESTAMP	values
in	the	CET	time	zone:

mysql>	SELECT	UNIX_TIMESTAMP('2005-03-27	03:00:00');

+---------------------------------------+

|	UNIX_TIMESTAMP('2005-03-27	03:00:00')	|

+---------------------------------------+

|																												1111885200	|

+---------------------------------------+

mysql>	SELECT	UNIX_TIMESTAMP('2005-03-27	02:00:00');

+---------------------------------------+

|	UNIX_TIMESTAMP('2005-03-27	02:00:00')	|

+---------------------------------------+

|																												1111885200	|

+---------------------------------------+

mysql>	SELECT	FROM_UNIXTIME(1111885200);

+---------------------------+

|	FROM_UNIXTIME(1111885200)	|

+---------------------------+

|	2005-03-27	03:00:00							|

+---------------------------+

If	you	want	to	subtract	UNIX_TIMESTAMP()	columns,	you	might	want	to	cast
the	result	to	signed	integers.	See	Section	12.8,	“Cast	Functions	and
Operators”.

	UTC_DATE,	UTC_DATE()

Returns	the	current	UTC	date	as	a	value	in	'YYYY-MM-DD'	or	YYYYMMDD
format,	depending	on	whether	the	function	is	used	in	a	string	or	numeric
context.

mysql>	SELECT	UTC_DATE(),	UTC_DATE()	+	0;

								->	'2003-08-14',	20030814

	UTC_TIME,	UTC_TIME()

Returns	the	current	UTC	time	as	a	value	in	'HH:MM:SS'	or	HHMMSS	format,
depending	on	whether	the	function	is	used	in	a	string	or	numeric	context.

mysql>	SELECT	UTC_TIME(),	UTC_TIME()	+	0;

								->	'18:07:53',	180753

	UTC_TIMESTAMP,	UTC_TIMESTAMP()

Returns	the	current	UTC	date	and	time	as	a	value	in	'YYYY-MM-DD
HH:MM:SS'	or	YYYYMMDDHHMMSS	format,	depending	on	whether	the	function
is	used	in	a	string	or	numeric	context.

mysql>	SELECT	UTC_TIMESTAMP(),	UTC_TIMESTAMP()	+	0;

								->	'2003-08-14	18:08:04',	20030814180804

	WEEK(date[,mode])

This	function	returns	the	week	number	for	date.	The	two-argument	form	of
WEEK()	allows	you	to	specify	whether	the	week	starts	on	Sunday	or	Monday
and	whether	the	return	value	should	be	in	the	range	from	0	to	53	or	from	1
to	53.	If	the	mode	argument	is	omitted,	the	value	of	the
default_week_format	system	variable	is	used.	See	Section	5.2.2,	“Server
System	Variables”.

The	following	table	describes	how	the	mode	argument	works.

	 First	day 	 	
Mode of	week Range Week	1	is	the	first	week	…
0 Sunday 0-53 with	a	Sunday	in	this	year
1 Monday 0-53 with	more	than	3	days	this	year
2 Sunday 1-53 with	a	Sunday	in	this	year
3 Monday 1-53 with	more	than	3	days	this	year
4 Sunday 0-53 with	more	than	3	days	this	year
5 Monday 0-53 with	a	Monday	in	this	year
6 Sunday 1-53 with	more	than	3	days	this	year
7 Monday 1-53 with	a	Monday	in	this	year

mysql>	SELECT	WEEK('1998-02-20');

								->	7

mysql>	SELECT	WEEK('1998-02-20',0);

								->	7

mysql>	SELECT	WEEK('1998-02-20',1);

								->	8

mysql>	SELECT	WEEK('1998-12-31',1);

								->	53

Note	that	if	a	date	falls	in	the	last	week	of	the	previous	year,	MySQL

returns	0	if	you	do	not	use	2,	3,	6,	or	7	as	the	optional	mode	argument:

mysql>	SELECT	YEAR('2000-01-01'),	WEEK('2000-01-01',0);

								->	2000,	0

One	might	argue	that	MySQL	should	return	52	for	the	WEEK()	function,
because	the	given	date	actually	occurs	in	the	52nd	week	of	1999.	We
decided	to	return	0	instead	because	we	want	the	function	to	return	“the
week	number	in	the	given	year.”	This	makes	use	of	the	WEEK()	function
reliable	when	combined	with	other	functions	that	extract	a	date	part	from	a
date.

If	you	would	prefer	the	result	to	be	evaluated	with	respect	to	the	year	that
contains	the	first	day	of	the	week	for	the	given	date,	use	0,	2,	5,	or	7	as	the
optional	mode	argument.

mysql>	SELECT	WEEK('2000-01-01',2);

								->	52

Alternatively,	use	the	YEARWEEK()	function:

mysql>	SELECT	YEARWEEK('2000-01-01');

								->	199952

mysql>	SELECT	MID(YEARWEEK('2000-01-01'),5,2);

								->	'52'

	WEEKDAY(date)

Returns	the	weekday	index	for	date	(0	=	Monday,	1	=	Tuesday,	…	6	=
Sunday).

mysql>	SELECT	WEEKDAY('1998-02-03	22:23:00');

								->	1

mysql>	SELECT	WEEKDAY('1997-11-05');

								->	2

	WEEKOFYEAR(date)

Returns	the	calendar	week	of	the	date	as	a	number	in	the	range	from	1	to
53.	WEEKOFYEAR()	is	a	compatibility	function	that	is	equivalent	to
WEEK(date,3).

mysql>	SELECT	WEEKOFYEAR('1998-02-20');

								->	8

	YEAR(date)

Returns	the	year	for	date,	in	the	range	1000	to	9999,	or	0	for	the	“zero”
date.

mysql>	SELECT	YEAR('98-02-03');

								->	1998

	YEARWEEK(date),	YEARWEEK(date,start)

Returns	year	and	week	for	a	date.	The	start	argument	works	exactly	like
the	start	argument	to	WEEK().	The	year	in	the	result	may	be	different	from
the	year	in	the	date	argument	for	the	first	and	the	last	week	of	the	year.

mysql>	SELECT	YEARWEEK('1987-01-01');

								->	198653

Note	that	the	week	number	is	different	from	what	the	WEEK()	function
would	return	(0)	for	optional	arguments	0	or	1,	as	WEEK()	then	returns	the
week	in	the	context	of	the	given	year.

12.6.	What	Calendar	Is	Used	By	MySQL?

MySQL	uses	what	is	known	as	a	proleptic	Gregorian	calendar.

Every	country	that	has	switched	from	the	Julian	to	the	Gregorian	calendar	has
had	to	discard	at	least	ten	days	during	the	switch.	To	see	how	this	works,
consider	the	month	of	October	1582,	when	the	first	Julian-to-Gregorian	switch
occurred:

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
1 2 3 4 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

There	are	no	dates	between	October	4	and	October	15.	This	discontinuity	is
called	the	cutover.	Any	dates	before	the	cutover	are	Julian,	and	any	dates
following	the	cutover	are	Gregorian.	Dates	during	a	cutover	are	non-existent.

A	calendar	applied	to	dates	when	it	wasn't	actually	in	use	is	called	proleptic.
Thus,	if	we	assume	there	was	never	a	cutover	and	Gregorian	rules	always	rule,
we	have	a	proleptic	Gregorian	calendar.	This	is	what	is	used	by	MySQL,	as	is
required	by	standard	SQL.	For	this	reason,	dates	prior	to	the	cutover	stored	as
MySQL	DATE	or	DATETIME	values	must	be	adjusted	to	compensate	for	the
difference.	It	is	important	to	realize	that	the	cutover	did	not	occur	at	the	same
time	in	all	countries,	and	that	the	later	it	happened,	the	more	days	were	lost.	For
example,	in	Great	Britain,	it	took	place	in	1752,	when	Wednesday	September	2
was	followed	by	Thursday	September	14.	Russia	remained	on	the	Julian
calendar	until	1918,	losing	13	days	in	the	process,	and	what	is	popularly	referred
to	as	its	“October	Revolution”	occurred	in	November	according	to	the	Gregorian
calendar.

12.7.	Full-Text	Search	Functions
MATCH	(col1,col2,...)	AGAINST	(expr	[search_modifier])

search_modifier:	{	IN	BOOLEAN	MODE	|	WITH	QUERY	EXPANSION	}

MySQL	has	support	for	full-text	indexing	and	searching:

A	full-text	index	in	MySQL	is	an	index	of	type	FULLTEXT.

Full-text	indexes	can	be	used	only	with	MyISAM	tables,	and	can	be	created
only	for	CHAR,	VARCHAR,	or	TEXT	columns.

A	FULLTEXT	index	definition	can	be	given	in	the	CREATE	TABLE	statement
when	a	table	is	created,	or	added	later	using	ALTER	TABLE	or	CREATE	INDEX.

For	large	datasets,	it	is	much	faster	to	load	your	data	into	a	table	that	has	no
FULLTEXT	index	and	then	create	the	index	after	that,	than	to	load	data	into	a
table	that	has	an	existing	FULLTEXT	index.

Full-text	searching	is	performed	using	MATCH()	...	AGAINST	syntax.	MATCH()
takes	a	comma-separated	list	that	names	the	columns	to	be	searched.	AGAINST
takes	a	string	to	search	for,	and	an	optional	modifier	that	indicates	what	type	of
search	to	perform.	The	search	string	must	be	a	literal	string,	not	a	variable	or	a
column	name.	There	are	three	types	of	full-text	searches:

A	boolean	search	interprets	the	search	string	using	the	rules	of	a	special
query	language.	The	string	contains	the	words	to	search	for.	It	can	also
contain	operators	that	specify	requirements	such	that	a	word	must	be
present	or	absent	in	matching	rows,	or	that	it	should	be	weighted	higher	or
lower	than	usual.	Common	words	such	as	“some”	or	“then”	are	stopwords
and	do	not	match	if	present	in	the	search	string.	The	IN	BOOLEAN	MODE
modifier	specifies	a	boolean	search.	For	more	information,	see
Section	12.7.1,	“Boolean	Full-Text	Searches”.

A	natural	language	search	interprets	the	search	string	as	a	phrase	in	natural
human	language	(a	phrase	in	free	text).	There	are	no	special	operators.	The
stopword	list	applies.	In	addition,	words	that	are	present	in	more	than	50%
of	the	rows	are	considered	common	and	do	not	match.	Full-text	searches

are	natural	language	searches	if	no	modifier	is	given.

A	query	expansion	search	is	a	modification	of	a	natural	language	search.
The	search	string	is	used	to	perform	a	natural	language	search.	Then	words
from	the	most	relevant	rows	returned	by	the	search	are	added	to	the	search
string	and	the	search	is	done	again.	The	query	returns	the	rows	from	the
second	search.	The	WITH	QUERY	EXPANSION	modifier	specifies	a	query
expansion	search.	For	more	information,	see	Section	12.7.2,	“Full-Text
Searches	with	Query	Expansion”.

Constraints	on	full-text	searching	are	listed	in	Section	12.7.4,	“Full-Text
Restrictions”.

mysql>	CREATE	TABLE	articles	(

				->			id	INT	UNSIGNED	AUTO_INCREMENT	NOT	NULL	PRIMARY	KEY,

				->			title	VARCHAR(200),

				->			body	TEXT,

				->			FULLTEXT	(title,body)

				->);

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	INSERT	INTO	articles	(title,body)	VALUES

				->	('MySQL	Tutorial','DBMS	stands	for	DataBase	...'),

				->	('How	To	Use	MySQL	Well','After	you	went	through	a	...'),

				->	('Optimizing	MySQL','In	this	tutorial	we	will	show	...'),

				->	('1001	MySQL	Tricks','1.	Never	run	mysqld	as	root.	2.	...'),

				->	('MySQL	vs.	YourSQL','In	the	following	database	comparison	...'),

				->	('MySQL	Security','When	configured	properly,	MySQL	...');

Query	OK,	6	rows	affected	(0.00	sec)

Records:	6		Duplicates:	0		Warnings:	0

mysql>	SELECT	*	FROM	articles

				->	WHERE	MATCH	(title,body)	AGAINST	('database');

+----+-------------------+--+

|	id	|	title													|	body																																					|

+----+-------------------+--+

|		5	|	MySQL	vs.	YourSQL	|	In	the	following	database	comparison	...	|

|		1	|	MySQL	Tutorial				|	DBMS	stands	for	DataBase	...													|

+----+-------------------+--+

2	rows	in	set	(0.00	sec)

The	MATCH()	function	performs	a	natural	language	search	for	a	string	against	a
text	collection.	A	collection	is	a	set	of	one	or	more	columns	included	in	a
FULLTEXT	index.	The	search	string	is	given	as	the	argument	to	AGAINST().	For
each	row	in	the	table,	MATCH()	returns	a	relevance	value;	that	is,	a	similarity

measure	between	the	search	string	and	the	text	in	that	row	in	the	columns	named
in	the	MATCH()	list.

By	default,	the	search	is	performed	in	case-insensitive	fashion.	However,	you
can	perform	a	case-sensitive	full-text	search	by	using	a	binary	collation	for	the
indexed	columns.	For	example,	a	column	that	uses	the	latin1	character	set	of
can	be	assigned	a	collation	of	latin1_bin	to	make	it	case	sensitive	for	full-text
searches.

When	MATCH()	is	used	in	a	WHERE	clause,	as	in	the	example	shown	earlier,	the
rows	returned	are	automatically	sorted	with	the	highest	relevance	first.
Relevance	values	are	non-negative	floating-point	numbers.	Zero	relevance
means	no	similarity.	Relevance	is	computed	based	on	the	number	of	words	in	the
row,	the	number	of	unique	words	in	that	row,	the	total	number	of	words	in	the
collection,	and	the	number	of	documents	(rows)	that	contain	a	particular	word.

For	natural-language	full-text	searches,	it	is	a	requirement	that	the	columns
named	in	the	MATCH()	function	be	the	same	columns	included	in	some	FULLTEXT
index	in	your	table.	For	the	preceding	query,	note	that	the	columns	named	in	the
MATCH()	function	(title	and	body)	are	the	same	as	those	named	in	the	definition
of	the	article	table's	FULLTEXT	index.	If	you	wanted	to	search	the	title	or	body
separately,	you	would	need	to	create	separate	FULLTEXT	indexes	for	each	column.

It	is	also	possible	to	perform	a	boolean	search	or	a	search	with	query	expansion.
These	search	types	are	described	in	Section	12.7.1,	“Boolean	Full-Text
Searches”,	and	Section	12.7.2,	“Full-Text	Searches	with	Query	Expansion”.

The	preceding	example	is	a	basic	illustration	that	shows	how	to	use	the	MATCH()
function	where	rows	are	returned	in	order	of	decreasing	relevance.	The	next
example	shows	how	to	retrieve	the	relevance	values	explicitly.	Returned	rows
are	not	ordered	because	the	SELECT	statement	includes	neither	WHERE	nor	ORDER
BY	clauses:

mysql>	SELECT	id,	MATCH	(title,body)	AGAINST	('Tutorial')

				->	FROM	articles;

+----+---+

|	id	|	MATCH	(title,body)	AGAINST	('Tutorial')	|

+----+---+

|		1	|																								0.65545833110809	|

|		2	|																																							0	|

|		3	|																								0.66266459226608	|

|		4	|																																							0	|

|		5	|																																							0	|

|		6	|																																							0	|

+----+---+

6	rows	in	set	(0.00	sec)

The	following	example	is	more	complex.	The	query	returns	the	relevance	values
and	it	also	sorts	the	rows	in	order	of	decreasing	relevance.	To	achieve	this	result,
you	should	specify	MATCH()	twice:	once	in	the	SELECT	list	and	once	in	the	WHERE
clause.	This	causes	no	additional	overhead,	because	the	MySQL	optimizer
notices	that	the	two	MATCH()	calls	are	identical	and	invokes	the	full-text	search
code	only	once.

mysql>	SELECT	id,	body,	MATCH	(title,body)	AGAINST

				->	('Security	implications	of	running	MySQL	as	root')	AS	score

				->	FROM	articles	WHERE	MATCH	(title,body)	AGAINST

				->	('Security	implications	of	running	MySQL	as	root');

+----+-------------------------------------+-----------------+

|	id	|	body																																|	score											|

+----+-------------------------------------+-----------------+

|		4	|	1.	Never	run	mysqld	as	root.	2.	...	|	1.5219271183014	|

|		6	|	When	configured	properly,	MySQL	...	|	1.3114095926285	|

+----+-------------------------------------+-----------------+

2	rows	in	set	(0.00	sec)

The	MySQL	FULLTEXT	implementation	regards	any	sequence	of	true	word
characters	(letters,	digits,	and	underscores)	as	a	word.	That	sequence	may	also
contain	apostrophes	(‘'’),	but	not	more	than	one	in	a	row.	This	means	that
aaa'bbb	is	regarded	as	one	word,	but	aaa''bbb	is	regarded	as	two	words.
Apostrophes	at	the	beginning	or	the	end	of	a	word	are	stripped	by	the	FULLTEXT
parser;	'aaa'bbb'	would	be	parsed	as	aaa'bbb.

The	FULLTEXT	parser	determines	where	words	start	and	end	by	looking	for
certain	delimiter	characters;	for	example,	‘	’	(space),	‘,’	(comma),	and	‘.’
(period).	If	words	are	not	separated	by	delimiters	(as	in,	for	example,	Chinese),
the	FULLTEXT	parser	cannot	determine	where	a	word	begins	or	ends.	To	be	able
to	add	words	or	other	indexed	terms	in	such	languages	to	a	FULLTEXT	index,	you
must	preprocess	them	so	that	they	are	separated	by	some	arbitrary	delimiter	such
as	‘"’.

Some	words	are	ignored	in	full-text	searches:

Any	word	that	is	too	short	is	ignored.	The	default	minimum	length	of	words

that	are	found	by	full-text	searches	is	four	characters.

Words	in	the	stopword	list	are	ignored.	A	stopword	is	a	word	such	as	“the”
or	“some”	that	is	so	common	that	it	is	considered	to	have	zero	semantic
value.	There	is	a	built-in	stopword	list,	but	it	can	be	overwritten	by	a	user-
defined	list.

The	default	stopword	list	is	given	in	Section	12.7.3,	“Full-Text	Stopwords”.	The
default	minimum	word	length	and	stopword	list	can	be	changed	as	described	in
Section	12.7.5,	“Fine-Tuning	MySQL	Full-Text	Search”.

Every	correct	word	in	the	collection	and	in	the	query	is	weighted	according	to	its
significance	in	the	collection	or	query.	Consequently,	a	word	that	is	present	in
many	documents	has	a	lower	weight	(and	may	even	have	a	zero	weight),	because
it	has	lower	semantic	value	in	this	particular	collection.	Conversely,	if	the	word
is	rare,	it	receives	a	higher	weight.	The	weights	of	the	words	are	combined	to
compute	the	relevance	of	the	row.

Such	a	technique	works	best	with	large	collections	(in	fact,	it	was	carefully	tuned
this	way).	For	very	small	tables,	word	distribution	does	not	adequately	reflect
their	semantic	value,	and	this	model	may	sometimes	produce	bizarre	results.	For
example,	although	the	word	“MySQL”	is	present	in	every	row	of	the	articles
table	shown	earlier,	a	search	for	the	word	produces	no	results:

mysql>	SELECT	*	FROM	articles

				->	WHERE	MATCH	(title,body)	AGAINST	('MySQL');

Empty	set	(0.00	sec)

The	search	result	is	empty	because	the	word	“MySQL”	is	present	in	at	least	50%
of	the	rows.	As	such,	it	is	effectively	treated	as	a	stopword.	For	large	datasets,
this	is	the	most	desirable	behavior:	A	natural	language	query	should	not	return
every	second	row	from	a	1GB	table.	For	small	datasets,	it	may	be	less	desirable.

A	word	that	matches	half	of	the	rows	in	a	table	is	less	likely	to	locate	relevant
documents.	In	fact,	it	most	likely	finds	plenty	of	irrelevant	documents.	We	all
know	this	happens	far	too	often	when	we	are	trying	to	find	something	on	the
Internet	with	a	search	engine.	It	is	with	this	reasoning	that	rows	containing	the
word	are	assigned	a	low	semantic	value	for	the	particular	dataset	in	which	they
occur.	A	given	word	may	exceed	the	50%	threshold	in	one	dataset	but	not
another.

The	50%	threshold	has	a	significant	implication	when	you	first	try	full-text
searching	to	see	how	it	works:	If	you	create	a	table	and	insert	only	one	or	two
rows	of	text	into	it,	every	word	in	the	text	occurs	in	at	least	50%	of	the	rows.	As
a	result,	no	search	returns	any	results.	Be	sure	to	insert	at	least	three	rows,	and
preferably	many	more.	Users	who	need	to	bypass	the	50%	limitation	can	use	the
boolean	search	mode;	see	Section	12.7.1,	“Boolean	Full-Text	Searches”.

12.7.1.	Boolean	Full-Text	Searches

MySQL	can	perform	boolean	full-text	searches	using	the	IN	BOOLEAN	MODE
modifier:

mysql>	SELECT	*	FROM	articles	WHERE	MATCH	(title,body)

				->	AGAINST	('+MySQL	-YourSQL'	IN	BOOLEAN	MODE);

+----+-----------------------+-------------------------------------+

|	id	|	title																	|	body																																|

+----+-----------------------+-------------------------------------+

|		1	|	MySQL	Tutorial								|	DBMS	stands	for	DataBase	...								|

|		2	|	How	To	Use	MySQL	Well	|	After	you	went	through	a	...								|

|		3	|	Optimizing	MySQL						|	In	this	tutorial	we	will	show	...			|

|		4	|	1001	MySQL	Tricks					|	1.	Never	run	mysqld	as	root.	2.	...	|

|		6	|	MySQL	Security								|	When	configured	properly,	MySQL	...	|

+----+-----------------------+-------------------------------------+

The	+	and	-	operators	indicate	that	a	word	is	required	to	be	present	or	absent,
respectively,	for	a	match	to	occur.	Thus,	this	query	retrieves	all	the	rows	that
contain	the	word	“MySQL”	but	that	do	not	contain	the	word	“YourSQL”.

Boolean	full-text	searches	have	these	characteristics:

They	do	not	use	the	50%	threshold.

They	do	not	automatically	sort	rows	in	order	of	decreasing	relevance.	You
can	see	this	from	the	preceding	query	result:	The	row	with	the	highest
relevance	is	the	one	that	contains	“MySQL”	twice,	but	it	is	listed	last,	not
first.

They	can	work	even	without	a	FULLTEXT	index,	although	a	search	executed
in	this	fashion	would	be	quite	slow.

The	minimum	and	maximum	word	length	full-text	parameters	apply.

The	stopword	list	applies.

The	boolean	full-text	search	capability	supports	the	following	operators:

+

A	leading	plus	sign	indicates	that	this	word	must	be	present	in	each	row	that
is	returned.

-

A	leading	minus	sign	indicates	that	this	word	must	not	be	present	in	any	of
the	rows	that	are	returned.

Note:	The	-	operator	acts	only	to	exclude	rows	that	are	otherwise	matched
by	other	search	terms.	Thus,	a	boolean-mode	search	that	contains	only
terms	preceded	by	-	returns	an	empty	result.	It	does	not	return	“all	rows
except	those	containing	any	of	the	excluded	terms.”

(no	operator)

By	default	(when	neither	+	nor	-	is	specified)	the	word	is	optional,	but	the
rows	that	contain	it	are	rated	higher.	This	mimics	the	behavior	of	MATCH()
...	AGAINST()	without	the	IN	BOOLEAN	MODE	modifier.

>	<

These	two	operators	are	used	to	change	a	word's	contribution	to	the
relevance	value	that	is	assigned	to	a	row.	The	>	operator	increases	the
contribution	and	the	<	operator	decreases	it.	See	the	example	following	this
list.

()

Parentheses	group	words	into	subexpressions.	Parenthesized	groups	can	be
nested.

~

A	leading	tilde	acts	as	a	negation	operator,	causing	the	word's	contribution

to	the	row's	relevance	to	be	negative.	This	is	useful	for	marking	“noise”
words.	A	row	containing	such	a	word	is	rated	lower	than	others,	but	is	not
excluded	altogether,	as	it	would	be	with	the	-	operator.

*

The	asterisk	serves	as	the	truncation	(or	wildcard)	operator.	Unlike	the	other
operators,	it	should	be	appended	to	the	word	to	be	affected.	Words	match	if
they	begin	with	the	word	preceding	the	*	operator.

"

A	phrase	that	is	enclosed	within	double	quote	(‘"’)	characters	matches	only
rows	that	contain	the	phrase	literally,	as	it	was	typed.	The	full-text	engine
splits	the	phrase	into	words,	performs	a	search	in	the	FULLTEXT	index	for	the
words.	Prior	to	MySQL	5.0.3,	the	engine	then	performed	a	substring	search
for	the	phrase	in	the	records	that	were	found,	so	the	match	must	include
non-word	characters	in	the	phrase.	As	of	MySQL	5.0.3,	non-word
characters	need	not	be	matched	exactly:	Phrase	searching	requires	only	that
matches	contain	exactly	the	same	words	as	the	phrase	and	in	the	same
order.	For	example,	"test	phrase"	matches	"test,	phrase"	in	MySQL
5.0.3,	but	not	before.

If	the	phrase	contains	no	words	that	are	in	the	index,	the	result	is	empty.	For
example,	if	all	words	are	either	stopwords	or	shorter	than	the	minimum
length	of	indexed	words,	the	result	is	empty.

The	following	examples	demonstrate	some	search	strings	that	use	boolean	full-
text	operators:

'apple	banana'

Find	rows	that	contain	at	least	one	of	the	two	words.

'+apple	+juice'

Find	rows	that	contain	both	words.

'+apple	macintosh'

Find	rows	that	contain	the	word	“apple”,	but	rank	rows	higher	if	they	also
contain	“macintosh”.

'+apple	-macintosh'

Find	rows	that	contain	the	word	“apple”	but	not	“macintosh”.

'+apple	~macintosh'

Find	rows	that	contain	the	word	“apple”,	but	if	the	row	also	contains	the
word	“macintosh”,	rate	it	lower	than	if	row	does	not.	This	is	“softer”	than	a
search	for	'+apple	-macintosh',	for	which	the	presence	of	“macintosh”
causes	the	row	not	to	be	returned	at	all.

'+apple	+(>turnover	<strudel)'

Find	rows	that	contain	the	words	“apple”	and	“turnover”,	or	“apple”	and
“strudel”	(in	any	order),	but	rank	“apple	turnover”	higher	than	“apple
strudel”.

'apple*'

Find	rows	that	contain	words	such	as	“apple”,	“apples”,	“applesauce”,	or
“applet”.

'"some	words"'

Find	rows	that	contain	the	exact	phrase	“some	words”	(for	example,	rows
that	contain	“some	words	of	wisdom”	but	not	“some	noise	words”).	Note
that	the	‘"’	characters	that	enclose	the	phrase	are	operator	characters	that
delimit	the	phrase.	They	are	not	the	quotes	that	enclose	the	search	string
itself.

12.7.2.	Full-Text	Searches	with	Query	Expansion

Full-text	search	supports	query	expansion	(and	in	particular,	its	variant	“blind
query	expansion”).	This	is	generally	useful	when	a	search	phrase	is	too	short,
which	often	means	that	the	user	is	relying	on	implied	knowledge	that	the	full-
text	search	engine	lacks.	For	example,	a	user	searching	for	“database”	may	really
mean	that	“MySQL”,	“Oracle”,	“DB2”,	and	“RDBMS”	all	are	phrases	that

should	match	“databases”	and	should	be	returned,	too.	This	is	implied
knowledge.

Blind	query	expansion	(also	known	as	automatic	relevance	feedback)	is	enabled
by	adding	WITH	QUERY	EXPANSION	following	the	search	phrase.	It	works	by
performing	the	search	twice,	where	the	search	phrase	for	the	second	search	is	the
original	search	phrase	concatenated	with	the	few	most	highly	relevant
documents	from	the	first	search.	Thus,	if	one	of	these	documents	contains	the
word	“databases”	and	the	word	“MySQL”,	the	second	search	finds	the
documents	that	contain	the	word	“MySQL”	even	if	they	do	not	contain	the	word
“database”.	The	following	example	shows	this	difference:

mysql>	SELECT	*	FROM	articles

				->	WHERE	MATCH	(title,body)	AGAINST	('database');

+----+-------------------+--+

|	id	|	title													|	body																																					|

+----+-------------------+--+

|		5	|	MySQL	vs.	YourSQL	|	In	the	following	database	comparison	...	|

|		1	|	MySQL	Tutorial				|	DBMS	stands	for	DataBase	...													|

+----+-------------------+--+

2	rows	in	set	(0.00	sec)

mysql>	SELECT	*	FROM	articles

				->	WHERE	MATCH	(title,body)

				->	AGAINST	('database'	WITH	QUERY	EXPANSION);

+----+-------------------+--+

|	id	|	title													|	body																																					|

+----+-------------------+--+

|		1	|	MySQL	Tutorial				|	DBMS	stands	for	DataBase	...													|

|		5	|	MySQL	vs.	YourSQL	|	In	the	following	database	comparison	...	|

|		3	|	Optimizing	MySQL		|	In	this	tutorial	we	will	show	...								|

+----+-------------------+--+

3	rows	in	set	(0.00	sec)

Another	example	could	be	searching	for	books	by	Georges	Simenon	about
Maigret,	when	a	user	is	not	sure	how	to	spell	“Maigret”.	A	search	for	“Megre
and	the	reluctant	witnesses”	finds	only	“Maigret	and	the	Reluctant	Witnesses”
without	query	expansion.	A	search	with	query	expansion	finds	all	books	with	the
word	“Maigret”	on	the	second	pass.

Note:	Because	blind	query	expansion	tends	to	increase	noise	significantly	by
returning	non-relevant	documents,	it	is	meaningful	to	use	only	when	a	search
phrase	is	rather	short.

12.7.3.	Full-Text	Stopwords

The	following	table	shows	the	default	list	of	full-text	stopwords.

a's able about above according
accordingly across actually after afterwards
again against ain't all allow
allows almost alone along already
also although always am among
amongst an and another any
anybody anyhow anyone anything anyway
anyways anywhere apart appear appreciate
appropriate are aren't around as
aside ask asking associated at
available away awfully be became
because become becomes becoming been
before beforehand behind being believe
below beside besides best better
between beyond both brief but
by c'mon c's came can
can't cannot cant cause causes
certain certainly changes clearly co
com come comes concerning consequently
consider considering contain containing contains
corresponding could couldn't course currently
definitely described despite did didn't
different do does doesn't doing
don't done down downwards during
each edu eg eight either
else elsewhere enough entirely especially
et etc even ever every

everybody everyone everything everywhere ex
exactly example except far few
fifth first five followed following

follows for former formerly forth
four from further furthermore get
gets getting given gives go
goes going gone got gotten
greetings had hadn't happens hardly
has hasn't have haven't having
he he's hello help hence
her here here's hereafter hereby
herein hereupon hers herself hi
him himself his hither hopefully
how howbeit however i'd i'll
i'm i've ie if ignored
immediate in inasmuch inc indeed
indicate indicated indicates inner insofar
instead into inward is isn't
it it'd it'll it's its
itself just keep keeps kept
know knows known last lately
later latter latterly least less
lest let let's like liked
likely little look looking looks
ltd mainly many may maybe
me mean meanwhile merely might
more moreover most mostly much
must my myself name namely
nd near nearly necessary need
needs neither never nevertheless new

next nine no nobody non
none noone nor normally not

nothing novel now nowhere obviously
of off often oh ok
okay old on once one
ones only onto or other
others otherwise ought our ours
ourselves out outside over overall
own particular particularly per perhaps
placed please plus possible presumably
probably provides que quite qv
rather rd re really reasonably
regarding regardless regards relatively respectively
right said same saw say
saying says second secondly see
seeing seem seemed seeming seems
seen self selves sensible sent
serious seriously seven several shall
she should shouldn't since six
so some somebody somehow someone
something sometime sometimes somewhat somewhere
soon sorry specified specify specifying
still sub such sup sure
t's take taken tell tends
th than thank thanks thanx
that that's thats the their
theirs them themselves then thence
there there's thereafter thereby therefore
therein theres thereupon these they
they'd they'll they're they've think

third this thorough thoroughly those

though three through throughout thru
thus to together too took
toward towards tried tries truly
try trying twice two un
under unfortunately unless unlikely until
unto up upon us use
used useful uses using usually
value various very via viz
vs want wants was wasn't
way we we'd we'll we're
we've welcome well went were
weren't what what's whatever when
whence whenever where where's whereafter
whereas whereby wherein whereupon wherever
whether which while whither who
who's whoever whole whom whose
why will willing wish with
within without won't wonder would
would wouldn't yes yet you
you'd you'll you're you've your
yours yourself yourselves zero 	

12.7.4.	Full-Text	Restrictions

Full-text	searches	are	supported	for	MyISAM	tables	only.

Full-text	searches	can	be	used	with	most	multi-byte	character	sets.	The
exception	is	that	for	Unicode,	the	utf8	character	set	can	be	used,	but	not	the
ucs2	character	set.

Ideographic	languages	such	as	Chinese	and	Japanese	do	not	have	word
delimiters.	Therefore,	the	FULLTEXT	parser	cannot	determine	where	words

begin	and	end	in	these	and	other	such	languages.	The	implications	of	this
and	some	workarounds	for	the	problem	are	described	in	Section	12.7,	“Full-
Text	Search	Functions”.

Although	the	use	of	multiple	character	sets	within	a	single	table	is
supported,	all	columns	in	a	FULLTEXT	index	must	use	the	same	character	set
and	collation.

The	MATCH()	column	list	must	match	exactly	the	column	list	in	some
FULLTEXT	index	definition	for	the	table,	unless	this	MATCH()	is	IN	BOOLEAN
MODE.	Boolean-mode	searches	can	be	done	on	non-indexed	columns,
although	they	are	likely	to	be	slow.

The	argument	to	AGAINST()	must	be	a	constant	string.

12.7.5.	Fine-Tuning	MySQL	Full-Text	Search

MySQL's	full-text	search	capability	has	few	user-tunable	parameters.	You	can
exert	more	control	over	full-text	searching	behavior	if	you	have	a	MySQL	source
distribution	because	some	changes	require	source	code	modifications.	See
Section	2.9,	“MySQL	Installation	Using	a	Source	Distribution”.

Note	that	full-text	search	is	carefully	tuned	for	the	most	effectiveness.	Modifying
the	default	behavior	in	most	cases	can	actually	decrease	effectiveness.	Do	not
alter	the	MySQL	sources	unless	you	know	what	you	are	doing.

Most	full-text	variables	described	in	this	section	must	be	set	at	server	startup
time.	A	server	restart	is	required	to	change	them;	they	cannot	be	modified	while
the	server	is	running.

Some	variable	changes	require	that	you	rebuild	the	FULLTEXT	indexes	in	your
tables.	Instructions	for	doing	this	are	given	at	the	end	of	this	section.

The	minimum	and	maximum	lengths	of	words	to	be	indexed	are	defined	by
the	ft_min_word_len	and	ft_max_word_len	system	variables.	(See
Section	5.2.2,	“Server	System	Variables”.)	The	default	minimum	value	is
four	characters;	the	default	maximum	is	version	dependent.	If	you	change
either	value,	you	must	rebuild	your	FULLTEXT	indexes.	For	example,	if	you
want	three-character	words	to	be	searchable,	you	can	set	the

ft_min_word_len	variable	by	putting	the	following	lines	in	an	option	file:

[mysqld]

ft_min_word_len=3

Then	you	must	restart	the	server	and	rebuild	your	FULLTEXT	indexes.	Note
particularly	the	remarks	regarding	myisamchk	in	the	instructions	following
this	list.

	To	override	the	default	stopword	list,	set	the	ft_stopword_file	system
variable.	(See	Section	5.2.2,	“Server	System	Variables”.)	The	variable	value
should	be	the	pathname	of	the	file	containing	the	stopword	list,	or	the
empty	string	to	disable	stopword	filtering.	After	changing	the	value	of	this
variable	or	the	contents	of	the	stopword	file,	restart	the	server	and	rebuild
your	FULLTEXT	indexes.

The	stopword	list	is	free-form.	That	is,	you	may	use	any	non-alphanumeric
character	such	as	newline,	space,	or	comma	to	separate	stopwords.
Exceptions	are	the	underscore	character	(‘_’)	and	a	single	apostrophe	(‘'’)
which	are	treated	as	part	of	a	word.	The	character	set	of	the	stopword	list	is
the	server's	default	character	set;	see	Section	10.3.1,	“Server	Character	Set
and	Collation”.

The	50%	threshold	for	natural	language	searches	is	determined	by	the
particular	weighting	scheme	chosen.	To	disable	it,	look	for	the	following
line	in	myisam/ftdefs.h:

#define	GWS_IN_USE	GWS_PROB

Change	that	line	to	this:

#define	GWS_IN_USE	GWS_FREQ

Then	recompile	MySQL.	There	is	no	need	to	rebuild	the	indexes	in	this
case.	Note:	By	making	this	change,	you	severely	decrease	MySQL's	ability
to	provide	adequate	relevance	values	for	the	MATCH()	function.	If	you	really
need	to	search	for	such	common	words,	it	would	be	better	to	search	using
IN	BOOLEAN	MODE	instead,	which	does	not	observe	the	50%	threshold.

To	change	the	operators	used	for	boolean	full-text	searches,	set	the
ft_boolean_syntax	system	variable.	This	variable	can	be	changed	while

the	server	is	running,	but	you	must	have	the	SUPER	privilege	to	do	so.	No
rebuilding	of	indexes	is	necessary	in	this	case.	See	Section	5.2.2,	“Server
System	Variables”,	which	describes	the	rules	governing	how	to	set	this
variable.

If	you	modify	full-text	variables	that	affect	indexing	(ft_min_word_len,
ft_max_word_len,	or	ft_stopword_file),	or	if	you	change	the	stopword	file
itself,	you	must	rebuild	your	FULLTEXT	indexes	after	making	the	changes	and
restarting	the	server.	To	rebuild	the	indexes	in	this	case,	it	is	sufficient	to	do	a
QUICK	repair	operation:

mysql>	REPAIR	TABLE	tbl_name	QUICK;

Each	table	that	contains	any	FULLTEXT	index	must	be	repaired	as	just	shown.
Otherwise,	queries	for	the	table	may	yield	incorrect	results,	and	modifications	to
the	table	will	cause	the	server	to	see	the	table	as	corrupt	and	in	need	of	repair.

Note	that	if	you	use	myisamchk	to	perform	an	operation	that	modifies	table
indexes	(such	as	repair	or	analyze),	the	FULLTEXT	indexes	are	rebuilt	using	the
default	full-text	parameter	values	for	minimum	word	length,	maximum	word
length,	and	stopword	file	unless	you	specify	otherwise.	This	can	result	in	queries
failing.

The	problem	occurs	because	these	parameters	are	known	only	by	the	server.
They	are	not	stored	in	MyISAM	index	files.	To	avoid	the	problem	if	you	have
modified	the	minimum	or	maximum	word	length	or	stopword	file	values	used	by
the	server,	specify	the	same	ft_min_word_len,	ft_max_word_len,	and
ft_stopword_file	values	to	myisamchk	that	you	use	for	mysqld.	For	example,
if	you	have	set	the	minimum	word	length	to	3,	you	can	repair	a	table	with
myisamchk	like	this:

shell>	myisamchk	--recover	--ft_min_word_len=3	tbl_name.MYI

To	ensure	that	myisamchk	and	the	server	use	the	same	values	for	full-text
parameters,	place	each	one	in	both	the	[mysqld]	and	[myisamchk]	sections	of	an
option	file:

[mysqld]

ft_min_word_len=3

[myisamchk]

ft_min_word_len=3

An	alternative	to	using	myisamchk	is	to	use	the	REPAIR	TABLE,	ANALYZE	TABLE,
OPTIMIZE	TABLE,	or	ALTER	TABLE	statements.	These	statements	are	performed
by	the	server,	which	knows	the	proper	full-text	parameter	values	to	use.

12.8.	Cast	Functions	and	Operators

	BINARY

The	BINARY	operator	casts	the	string	following	it	to	a	binary	string.	This	is
an	easy	way	to	force	a	column	comparison	to	be	done	byte	by	byte	rather
than	character	by	character.	This	causes	the	comparison	to	be	case	sensitive
even	if	the	column	isn't	defined	as	BINARY	or	BLOB.	BINARY	also	causes
trailing	spaces	to	be	significant.

mysql>	SELECT	'a'	=	'A';

								->	1

mysql>	SELECT	BINARY	'a'	=	'A';

								->	0

mysql>	SELECT	'a'	=	'a	';

								->	1

mysql>	SELECT	BINARY	'a'	=	'a	';

								->	0

In	a	comparison,	BINARY	affects	the	entire	operation;	it	can	be	given	before
either	operand	with	the	same	result.

BINARY	str	is	shorthand	for	CAST(str	AS	BINARY).

Note	that	in	some	contexts,	if	you	cast	an	indexed	column	to	BINARY,
MySQL	is	not	able	to	use	the	index	efficiently.

	CAST(expr	AS	type),	CONVERT(expr,type),	CONVERT(expr	USING
transcoding_name)

The	CAST()	and	CONVERT()	functions	take	a	value	of	one	type	and	produce
a	value	of	another	type.

The	type	can	be	one	of	the	following	values:

BINARY[(N)]

CHAR[(N)]

DATE

DATETIME

DECIMAL

SIGNED	[INTEGER]

TIME

UNSIGNED	[INTEGER]

BINARY	produces	a	string	with	the	BINARY	data	type.	See	Section	11.4.2,
“The	BINARY	and	VARBINARY	Types”	for	a	description	of	how	this	affects
comparisons.	If	the	optional	length	N	is	given,	BINARY(N)	causes	the	cast	to
use	no	more	than	N	bytes	of	the	argument.	As	of	MySQL	5.0.17,	values
shorter	than	N	bytes	are	padded	with	0x00	bytes	to	a	length	of	N.

CHAR(N)	causes	the	cast	to	use	no	more	than	N	characters	of	the	argument.

The	DECIMAL	type	is	available	as	of	MySQL	5.0.8.

CAST()	and	CONVERT(...	USING	...)	are	standard	SQL	syntax.	The	non-
USING	form	of	CONVERT()	is	ODBC	syntax.

CONVERT()	with	USING	is	used	to	convert	data	between	different	character
sets.	In	MySQL,	transcoding	names	are	the	same	as	the	corresponding
character	set	names.	For	example,	this	statement	converts	the	string	'abc'
in	the	default	character	set	to	the	corresponding	string	in	the	utf8	character
set:

SELECT	CONVERT('abc'	USING	utf8);

Normally,	you	cannot	compare	a	BLOB	value	or	other	binary	string	in	case-
insensitive	fashion	because	binary	strings	have	no	character	set,	and	thus	no
concept	of	lettercase.	To	perform	a	case-insensitive	comparison,	use	the
CONVERT()	function	to	convert	the	value	to	a	non-binary	string.	If	the	character
set	of	the	result	has	a	case-insensitive	collation,	the	LIKE	operation	is	not	case
sensitive:

SELECT	'A'	LIKE	CONVERT(blob_col	USING	latin1)	FROM	tbl_name;

To	use	a	different	character	set,	substitute	its	name	for	latin1	in	the	preceding

statement.	To	ensure	that	a	case-insensitive	collation	is	used,	specify	a	COLLATE
clause	following	the	CONVERT()	call.

CONVERT()	can	be	used	more	generally	for	comparing	strings	that	are	represented
in	different	character	sets.

The	cast	functions	are	useful	when	you	want	to	create	a	column	with	a	specific
type	in	a	CREATE	...	SELECT	statement:

CREATE	TABLE	new_table	SELECT	CAST('2000-01-01'	AS	DATE);

The	functions	also	can	be	useful	for	sorting	ENUM	columns	in	lexical	order.
Normally,	sorting	of	ENUM	columns	occurs	using	the	internal	numeric	values.
Casting	the	values	to	CHAR	results	in	a	lexical	sort:

SELECT	enum_col	FROM	tbl_name	ORDER	BY	CAST(enum_col	AS	CHAR);

CAST(str	AS	BINARY)	is	the	same	thing	as	BINARY	str.	CAST(expr	AS
CHAR)	treats	the	expression	as	a	string	with	the	default	character	set.

CAST()	also	changes	the	result	if	you	use	it	as	part	of	a	more	complex	expression
such	as	CONCAT('Date:	',CAST(NOW()	AS	DATE)).

You	should	not	use	CAST()	to	extract	data	in	different	formats	but	instead	use
string	functions	like	LEFT()	or	EXTRACT().	See	Section	12.5,	“Date	and	Time
Functions”.

To	cast	a	string	to	a	numeric	value	in	numeric	context,	you	normally	do	not	have
to	do	anything	other	than	to	use	the	string	value	as	though	it	were	a	number:

mysql>	SELECT	1+'1';

							->	2

If	you	use	a	number	in	string	context,	the	number	automatically	is	converted	to	a
BINARY	string.

mysql>	SELECT	CONCAT('hello	you	',2);

								->	'hello	you	2'

MySQL	supports	arithmetic	with	both	signed	and	unsigned	64-bit	values.	If	you
are	using	numeric	operators	(such	as	+	or	-)	and	one	of	the	operands	is	an
unsigned	integer,	the	result	is	unsigned.	You	can	override	this	by	using	the

SIGNED	and	UNSIGNED	cast	operators	to	cast	the	operation	to	a	signed	or	unsigned
64-bit	integer,	respectively.

mysql>	SELECT	CAST(1-2	AS	UNSIGNED)

								->	18446744073709551615

mysql>	SELECT	CAST(CAST(1-2	AS	UNSIGNED)	AS	SIGNED);

								->	-1

Note	that	if	either	operand	is	a	floating-point	value,	the	result	is	a	floating-point
value	and	is	not	affected	by	the	preceding	rule.	(In	this	context,	DECIMAL	column
values	are	regarded	as	floating-point	values.)

mysql>	SELECT	CAST(1	AS	UNSIGNED)	-	2.0;

								->	-1.0

If	you	are	using	a	string	in	an	arithmetic	operation,	this	is	converted	to	a
floating-point	number.

If	you	convert	a	“zero”	date	string	to	a	date,	CONVERT()	and	CAST()	return	NULL
when	the	NO_ZERO_DATE	SQL	mode	is	enabled.	As	of	MySQL	5.0.4,	they	also
produce	a	warning.

12.9.	Other	Functions

12.9.1.	Bit	Functions

MySQL	uses	BIGINT	(64-bit)	arithmetic	for	bit	operations,	so	these	operators
have	a	maximum	range	of	64	bits.

	|

Bitwise	OR:

mysql>	SELECT	29	|	15;

								->	31

The	result	is	an	unsigned	64-bit	integer.

	&

Bitwise	AND:

mysql>	SELECT	29	&	15;

								->	13

The	result	is	an	unsigned	64-bit	integer.

	^

Bitwise	XOR:

mysql>	SELECT	1	^	1;

								->	0

mysql>	SELECT	1	^	0;

								->	1

mysql>	SELECT	11	^	3;

								->	8

The	result	is	an	unsigned	64-bit	integer.

	<<

Shifts	a	longlong	(BIGINT)	number	to	the	left.

mysql>	SELECT	1	<<	2;

								->	4

The	result	is	an	unsigned	64-bit	integer.

	>>

Shifts	a	longlong	(BIGINT)	number	to	the	right.

mysql>	SELECT	4	>>	2;

								->	1

The	result	is	an	unsigned	64-bit	integer.

	~

Invert	all	bits.

mysql>	SELECT	5	&	~1;

								->	4

The	result	is	an	unsigned	64-bit	integer.

	BIT_COUNT(N)

Returns	the	number	of	bits	that	are	set	in	the	argument	N.

mysql>	SELECT	BIT_COUNT(29),	BIT_COUNT(b'101010');

								->	4,	3

12.9.2.	Encryption	and	Compression	Functions

The	functions	in	this	section	perform	encryption	and	decryption,	and
compression	and	uncompression:

Compression	or	encryption Uncompression	or	decryption
AES_ENCRYT() AES_DECRYPT()
COMPRESS() UNCOMPRESS()
ENCODE() DECODE()
DES_ENCRYPT() DES_DECRYPT()

ENCRYPT() Not	available
MD5() Not	available
OLD_PASSWORD() Not	available
PASSWORD() Not	available
SHA()	or	SHA1() Not	available
Not	available UNCOMPRESSED_LENGTH()

Note:	The	encryption	and	compression	functions	return	binary	strings.	For	many
of	these	functions,	the	result	might	contain	arbitrary	byte	values.	If	you	want	to
store	these	results,	use	a	BLOB	column	rather	than	a	CHAR	or	(before	MySQL
5.0.3)	VARCHAR	column	to	avoid	potential	problems	with	trailing	space	removal
that	would	change	data	values.

Note:	Exploits	for	the	MD5	and	SHA-1	algorithms	have	become	known.	You
may	wish	to	consider	using	one	of	the	other	encryption	functions	described	in
this	section	instead.

	AES_ENCRYPT(str,key_str),	AES_DECRYPT(crypt_str,key_str)

These	functions	allow	encryption	and	decryption	of	data	using	the	official
AES	(Advanced	Encryption	Standard)	algorithm,	previously	known	as
“Rijndael.”	Encoding	with	a	128-bit	key	length	is	used,	but	you	can	extend
it	up	to	256	bits	by	modifying	the	source.	We	chose	128	bits	because	it	is
much	faster	and	it	is	secure	enough	for	most	purposes.

AES_ENCRYPT()	encrypts	a	string	and	returns	a	binary	string.
AES_DECRYPT()	decrypts	the	encrypted	string	and	returns	the	original	string.
The	input	arguments	may	be	any	length.	If	either	argument	is	NULL,	the
result	of	this	function	is	also	NULL.

Because	AES	is	a	block-level	algorithm,	padding	is	used	to	encode	uneven
length	strings	and	so	the	result	string	length	may	be	calculated	using	this
formula:

16	×	(trunc(string_length	/	16)	+	1)

If	AES_DECRYPT()	detects	invalid	data	or	incorrect	padding,	it	returns	NULL.
However,	it	is	possible	for	AES_DECRYPT()	to	return	a	non-NULL	value

(possibly	garbage)	if	the	input	data	or	the	key	is	invalid.

You	can	use	the	AES	functions	to	store	data	in	an	encrypted	form	by
modifying	your	queries:

INSERT	INTO	t	VALUES	(1,AES_ENCRYPT('text','password'));

AES_ENCRYPT()	and	AES_DECRYPT()	can	be	considered	the	most
cryptographically	secure	encryption	functions	currently	available	in
MySQL.

	COMPRESS(string_to_compress)

Compresses	a	string	and	returns	the	result	as	a	binary	string.	This	function
requires	MySQL	to	have	been	compiled	with	a	compression	library	such	as
zlib.	Otherwise,	the	return	value	is	always	NULL.	The	compressed	string
can	be	uncompressed	with	UNCOMPRESS().

mysql>	SELECT	LENGTH(COMPRESS(REPEAT('a',1000)));

								->	21

mysql>	SELECT	LENGTH(COMPRESS(''));

								->	0

mysql>	SELECT	LENGTH(COMPRESS('a'));

								->	13

mysql>	SELECT	LENGTH(COMPRESS(REPEAT('a',16)));

								->	15

The	compressed	string	contents	are	stored	the	following	way:

Empty	strings	are	stored	as	empty	strings.

Non-empty	strings	are	stored	as	a	four-byte	length	of	the
uncompressed	string	(low	byte	first),	followed	by	the	compressed
string.	If	the	string	ends	with	space,	an	extra	‘.’	character	is	added	to
avoid	problems	with	endspace	trimming	should	the	result	be	stored	in
a	CHAR	or	VARCHAR	column.	(Use	of	CHAR	or	VARCHAR	to	store
compressed	strings	is	not	recommended.	It	is	better	to	use	a	BLOB
column	instead.)

	DECODE(crypt_str,pass_str)

Decrypts	the	encrypted	string	crypt_str	using	pass_str	as	the	password.

crypt_str	should	be	a	string	returned	from	ENCODE().

	ENCODE(str,pass_str)

Encrypt	str	using	pass_str	as	the	password.	To	decrypt	the	result,	use
DECODE().

The	result	is	a	binary	string	of	the	same	length	as	str.

The	strength	of	the	encryption	is	based	on	how	good	the	random	generator
is.	It	should	suffice	for	short	strings.

	DES_DECRYPT(crypt_str[,key_str])

Decrypts	a	string	encrypted	with	DES_ENCRYPT().	If	an	error	occurs,	this
function	returns	NULL.

Note	that	this	function	works	only	if	MySQL	has	been	configured	with	SSL
support.	See	Section	5.9.7,	“Using	Secure	Connections”.

If	no	key_str	argument	is	given,	DES_DECRYPT()	examines	the	first	byte	of
the	encrypted	string	to	determine	the	DES	key	number	that	was	used	to
encrypt	the	original	string,	and	then	reads	the	key	from	the	DES	key	file	to
decrypt	the	message.	For	this	to	work,	the	user	must	have	the	SUPER
privilege.	The	key	file	can	be	specified	with	the	--des-key-file	server
option.

If	you	pass	this	function	a	key_str	argument,	that	string	is	used	as	the	key
for	decrypting	the	message.

If	the	crypt_str	argument	does	not	appear	to	be	an	encrypted	string,
MySQL	returns	the	given	crypt_str.

	DES_ENCRYPT(str[,{key_num|key_str}])

Encrypts	the	string	with	the	given	key	using	the	Triple-DES	algorithm.

Note	that	this	function	works	only	if	MySQL	has	been	configured	with	SSL
support.	See	Section	5.9.7,	“Using	Secure	Connections”.

The	encryption	key	to	use	is	chosen	based	on	the	second	argument	to
DES_ENCRYPT(),	if	one	was	given:

Argument Description
No	argument The	first	key	from	the	DES	key	file	is	used.
key_num The	given	key	number	(0-9)	from	the	DES	key	file	is	used.
key_str The	given	key	string	is	used	to	encrypt	str.

The	key	file	can	be	specified	with	the	--des-key-file	server	option.

The	return	string	is	a	binary	string	where	the	first	character	is	CHAR(128	|
key_num).	If	an	error	occurs,	DES_ENCRYPT()	returns	NULL.

The	128	is	added	to	make	it	easier	to	recognize	an	encrypted	key.	If	you	use
a	string	key,	key_num	is	127.

The	string	length	for	the	result	is	given	by	this	formula:

new_len	=	orig_len	+	(8	-	(orig_len	%	8))	+	1

Each	line	in	the	DES	key	file	has	the	following	format:

key_num	des_key_str

Each	key_num	value	must	be	a	number	in	the	range	from	0	to	9.	Lines	in	the
file	may	be	in	any	order.	des_key_str	is	the	string	that	is	used	to	encrypt
the	message.	There	should	be	at	least	one	space	between	the	number	and
the	key.	The	first	key	is	the	default	key	that	is	used	if	you	do	not	specify
any	key	argument	to	DES_ENCRYPT().

You	can	tell	MySQL	to	read	new	key	values	from	the	key	file	with	the
FLUSH	DES_KEY_FILE	statement.	This	requires	the	RELOAD	privilege.

One	benefit	of	having	a	set	of	default	keys	is	that	it	gives	applications	a
way	to	check	for	the	existence	of	encrypted	column	values,	without	giving
the	end	user	the	right	to	decrypt	those	values.

mysql>	SELECT	customer_address	FROM	customer_table	

					>	WHERE	crypted_credit_card	=	DES_ENCRYPT('credit_card_number');

	ENCRYPT(str[,salt])

Encrypts	str	using	the	Unix	crypt()	system	call	and	returns	a	binary
string.	The	salt	argument	should	be	a	string	with	at	least	two	characters.	If
no	salt	argument	is	given,	a	random	value	is	used.

mysql>	SELECT	ENCRYPT('hello');

								->	'VxuFAJXVARROc'

ENCRYPT()	ignores	all	but	the	first	eight	characters	of	str,	at	least	on	some
systems.	This	behavior	is	determined	by	the	implementation	of	the
underlying	crypt()	system	call.

If	crypt()	is	not	available	on	your	system	(as	is	the	case	with	Windows),
ENCRYPT()	always	returns	NULL.

	MD5(str)

Calculates	an	MD5	128-bit	checksum	for	the	string.	The	value	is	returned
as	a	binary	string	of	32	hex	digits,	or	NULL	if	the	argument	was	NULL.	The
return	value	can,	for	example,	be	used	as	a	hash	key.

mysql>	SELECT	MD5('testing');

								->	'ae2b1fca515949e5d54fb22b8ed95575'

This	is	the	“RSA	Data	Security,	Inc.	MD5	Message-Digest	Algorithm.”

If	you	want	to	convert	the	value	to	uppercase,	see	the	description	of	binary
string	conversion	given	in	the	entry	for	the	BINARY	operator	in	Section	12.8,
“Cast	Functions	and	Operators”.

See	the	note	regarding	the	MD5	algorithm	at	the	beginning	this	section.

	OLD_PASSWORD(str)

OLD_PASSWORD()	was	added	to	MySQL	when	the	implementation	of
PASSWORD()	was	changed	to	improve	security.	OLD_PASSWORD()	returns	the
value	of	the	old	(pre-4.1)	implementation	of	PASSWORD()	as	a	binary	string,
and	is	intended	to	permit	you	to	reset	passwords	for	any	pre-4.1	clients	that
need	to	connect	to	your	version	5.0	MySQL	server	without	locking	them
out.	See	Section	5.8.9,	“Password	Hashing	as	of	MySQL	4.1”.

	PASSWORD(str)

Calculates	and	returns	a	password	string	from	the	plaintext	password	str
and	returns	a	binary	string,	or	NULL	if	the	argument	was	NULL.	This	is	the
function	that	is	used	for	encrypting	MySQL	passwords	for	storage	in	the
Password	column	of	the	user	grant	table.

mysql>	SELECT	PASSWORD('badpwd');

								->	'*AAB3E285149C0135D51A520E1940DD3263DC008C'

PASSWORD()	encryption	is	one-way	(not	reversible).

PASSWORD()	does	not	perform	password	encryption	in	the	same	way	that
Unix	passwords	are	encrypted.	See	ENCRYPT().

Note:	The	PASSWORD()	function	is	used	by	the	authentication	system	in
MySQL	Server;	you	should	not	use	it	in	your	own	applications.	For	that
purpose,	consider	MD5()	or	SHA1()	instead.	Also	see	RFC	2195,	section	2
(Challenge-Response	Authentication	Mechanism	(CRAM)),	for	more
information	about	handling	passwords	and	authentication	securely	in	your
applications.

	SHA1(str),	SHA(str)

Calculates	an	SHA-1	160-bit	checksum	for	the	string,	as	described	in	RFC
3174	(Secure	Hash	Algorithm).	The	value	is	returned	as	a	binary	string	of
40	hex	digits,	or	NULL	if	the	argument	was	NULL.	One	of	the	possible	uses
for	this	function	is	as	a	hash	key.	You	can	also	use	it	as	a	cryptographic
function	for	storing	passwords.	SHA()	is	synonymous	with	SHA1().

mysql>	SELECT	SHA1('abc');

								->	'a9993e364706816aba3e25717850c26c9cd0d89d'

SHA1()	can	be	considered	a	cryptographically	more	secure	equivalent	of
MD5().	However,	see	the	note	regarding	the	MD5	and	SHA-1	algorithms	at
the	beginning	this	section.

	UNCOMPRESS(string_to_uncompress)

Uncompresses	a	string	compressed	by	the	COMPRESS()	function.	If	the
argument	is	not	a	compressed	value,	the	result	is	NULL.	This	function

http://rfc.net/rfc2195.html

requires	MySQL	to	have	been	compiled	with	a	compression	library	such	as
zlib.	Otherwise,	the	return	value	is	always	NULL.

mysql>	SELECT	UNCOMPRESS(COMPRESS('any	string'));

								->	'any	string'

mysql>	SELECT	UNCOMPRESS('any	string');

								->	NULL

	UNCOMPRESSED_LENGTH(compressed_string)

Returns	the	length	that	the	compressed	string	had	before	being	compressed.

mysql>	SELECT	UNCOMPRESSED_LENGTH(COMPRESS(REPEAT('a',30)));

								->	30

12.9.3.	Information	Functions

	BENCHMARK(count,expr)

The	BENCHMARK()	function	executes	the	expression	expr	repeatedly	count
times.	It	may	be	used	to	time	how	quickly	MySQL	processes	the
expression.	The	result	value	is	always	0.	The	intended	use	is	from	within
the	mysql	client,	which	reports	query	execution	times:

mysql>	SELECT	BENCHMARK(1000000,ENCODE('hello','goodbye'));

+--+

|	BENCHMARK(1000000,ENCODE('hello','goodbye'))	|

+--+

|																																												0	|

+--+

1	row	in	set	(4.74	sec)

The	time	reported	is	elapsed	time	on	the	client	end,	not	CPU	time	on	the
server	end.	It	is	advisable	to	execute	BENCHMARK()	several	times,	and	to
interpret	the	result	with	regard	to	how	heavily	loaded	the	server	machine	is.

	CHARSET(str)

Returns	the	character	set	of	the	string	argument.

mysql>	SELECT	CHARSET('abc');

								->	'latin1'

mysql>	SELECT	CHARSET(CONVERT('abc'	USING	utf8));

								->	'utf8'

mysql>	SELECT	CHARSET(USER());

								->	'utf8'

	COERCIBILITY(str)

Returns	the	collation	coercibility	value	of	the	string	argument.

mysql>	SELECT	COERCIBILITY('abc'	COLLATE	latin1_swedish_ci);

								->	0

mysql>	SELECT	COERCIBILITY(USER());

								->	3

mysql>	SELECT	COERCIBILITY('abc');

								->	4

The	return	values	have	the	meanings	shown	in	the	following	table.	Lower
values	have	higher	precedence.

Coercibility Meaning Example

0
Explicit
collation Value	with	COLLATE	clause

1 No	collation Concatenation	of	strings	with	different
collations

2
Implicit
collation Column	value

3
System
constant USER()	return	value

4 Coercible Literal	string
5 Ignorable NULL	or	an	expression	derived	from	NULL

Before	MySQL	5.0.3,	the	return	values	are	shown	as	follows,	and	functions
such	as	USER()	have	a	coercibility	of	2:

Coercibility Meaning Example

0
Explicit
collation Value	with	COLLATE	clause

1 No	collation Concatenation	of	strings	with	different
collations

2

Implicit Column	value,	stored	routine	parameter	or

collation local	variable
3 Coercible Literal	string

	COLLATION(str)

Returns	the	collation	of	the	string	argument.

mysql>	SELECT	COLLATION('abc');

								->	'latin1_swedish_ci'

mysql>	SELECT	COLLATION(_utf8'abc');

								->	'utf8_general_ci'

	CONNECTION_ID()

Returns	the	connection	ID	(thread	ID)	for	the	connection.	Every	connection
has	an	ID	that	is	unique	among	the	set	of	currently	connected	clients.

mysql>	SELECT	CONNECTION_ID();

								->	23786

	CURRENT_USER,	CURRENT_USER()

Returns	the	username	and	hostname	combination	for	the	MySQL	account
that	the	server	used	to	authenticate	the	current	client.	This	account
determines	your	access	privileges.	As	of	MySQL	5.0.10,	within	a	stored
routine	that	is	defined	with	the	SQL	SECURITY	DEFINER	characteristic,
CURRENT_USER()	returns	the	creator	of	the	routine.	The	return	value	is	a
string	in	the	utf8	character	set.

The	value	of	CURRENT_USER()	can	differ	from	the	value	of	USER().

mysql>	SELECT	USER();

								->	'davida@localhost'

mysql>	SELECT	*	FROM	mysql.user;

ERROR	1044:	Access	denied	for	user	''@'localhost'	to

database	'mysql'

mysql>	SELECT	CURRENT_USER();

								->	'@localhost'

The	example	illustrates	that	although	the	client	specified	a	username	of
davida	(as	indicated	by	the	value	of	the	USER()	function),	the	server
authenticated	the	client	using	an	anonymous	user	account	(as	seen	by	the

empty	username	part	of	the	CURRENT_USER()	value).	One	way	this	might
occur	is	that	there	is	no	account	listed	in	the	grant	tables	for	davida.

	DATABASE()

Returns	the	default	(current)	database	name	as	a	string	in	the	utf8	character
set.	If	there	is	no	default	database,	DATABASE()	returns	NULL.	Within	a
stored	routine,	the	default	database	is	the	database	that	the	routine	is
associated	with,	which	is	not	necessarily	the	same	as	the	database	that	is	the
default	in	the	calling	context.

mysql>	SELECT	DATABASE();

								->	'test'

	FOUND_ROWS()

A	SELECT	statement	may	include	a	LIMIT	clause	to	restrict	the	number	of
rows	the	server	returns	to	the	client.	In	some	cases,	it	is	desirable	to	know
how	many	rows	the	statement	would	have	returned	without	the	LIMIT,	but
without	running	the	statement	again.	To	obtain	this	row	count,	include	a
SQL_CALC_FOUND_ROWS	option	in	the	SELECT	statement,	and	then	invoke
FOUND_ROWS()	afterward:

mysql>	SELECT	SQL_CALC_FOUND_ROWS	*	FROM	tbl_name

				->	WHERE	id	>	100	LIMIT	10;

mysql>	SELECT	FOUND_ROWS();

The	second	SELECT	returns	a	number	indicating	how	many	rows	the	first
SELECT	would	have	returned	had	it	been	written	without	the	LIMIT	clause.
(If	the	preceding	SELECT	statement	does	not	include	the
SQL_CALC_FOUND_ROWS	option,	then	FOUND_ROWS()	may	return	a	different
result	when	LIMIT	is	used	than	when	it	is	not.)

The	row	count	available	through	FOUND_ROWS()	is	transient	and	not
intended	to	be	available	past	the	statement	following	the	SELECT
SQL_CALC_FOUND_ROWS	statement.	If	you	need	to	refer	to	the	value	later,
save	it:

mysql>	SELECT	SQL_CALC_FOUND_ROWS	*	FROM	...	;

mysql>	SET	@rows	=	FOUND_ROWS();

If	you	are	using	SELECT	SQL_CALC_FOUND_ROWS,	MySQL	must	calculate
how	many	rows	are	in	the	full	result	set.	However,	this	is	faster	than
running	the	query	again	without	LIMIT,	because	the	result	set	need	not	be
sent	to	the	client.

SQL_CALC_FOUND_ROWS	and	FOUND_ROWS()	can	be	useful	in	situations	when
you	want	to	restrict	the	number	of	rows	that	a	query	returns,	but	also
determine	the	number	of	rows	in	the	full	result	set	without	running	the
query	again.	An	example	is	a	Web	script	that	presents	a	paged	display
containing	links	to	the	pages	that	show	other	sections	of	a	search	result.
Using	FOUND_ROWS()	allows	you	to	determine	how	many	other	pages	are
needed	for	the	rest	of	the	result.

The	use	of	SQL_CALC_FOUND_ROWS	and	FOUND_ROWS()	is	more	complex	for
UNION	statements	than	for	simple	SELECT	statements,	because	LIMIT	may
occur	at	multiple	places	in	a	UNION.	It	may	be	applied	to	individual	SELECT
statements	in	the	UNION,	or	global	to	the	UNION	result	as	a	whole.

The	intent	of	SQL_CALC_FOUND_ROWS	for	UNION	is	that	it	should	return	the
row	count	that	would	be	returned	without	a	global	LIMIT.	The	conditions
for	use	of	SQL_CALC_FOUND_ROWS	with	UNION	are:

The	SQL_CALC_FOUND_ROWS	keyword	must	appear	in	the	first	SELECT	of
the	UNION.

The	value	of	FOUND_ROWS()	is	exact	only	if	UNION	ALL	is	used.	If
UNION	without	ALL	is	used,	duplicate	removal	occurs	and	the	value	of
FOUND_ROWS()	is	only	approximate.

If	no	LIMIT	is	present	in	the	UNION,	SQL_CALC_FOUND_ROWS	is	ignored
and	returns	the	number	of	rows	in	the	temporary	table	that	is	created	to
process	the	UNION.

	LAST_INSERT_ID(),	LAST_INSERT_ID(expr)

Returns	the	first	automatically	generated	value	that	was	set	for	an
AUTO_INCREMENT	column	by	the	most	recent	INSERT	or	UPDATE	statement	to
affect	such	a	column.

mysql>	SELECT	LAST_INSERT_ID();

								->	195

The	ID	that	was	generated	is	maintained	in	the	server	on	a	per-connection
basis.	This	means	that	the	value	returned	by	the	function	to	a	given	client	is
the	first	AUTO_INCREMENT	value	generated	for	most	recent	statement
affecting	an	AUTO_INCREMENT	column	by	that	client.	This	value	cannot	be
affected	by	other	clients,	even	if	they	generate	AUTO_INCREMENT	values	of
their	own.	This	behavior	ensures	that	each	client	can	retrieve	its	own	ID
without	concern	for	the	activity	of	other	clients,	and	without	the	need	for
locks	or	transactions.

The	value	of	LAST_INSERT_ID()	is	not	changed	if	you	set	the
AUTO_INCREMENT	column	of	a	row	to	a	non-“magic”	value	(that	is,	a	value
that	is	not	NULL	and	not	0).

Important:	If	you	insert	multiple	rows	using	a	single	INSERT	statement,
LAST_INSERT_ID()	returns	the	value	generated	for	the	first	inserted	row
only.	The	reason	for	this	is	to	make	it	possible	to	reproduce	easily	the	same
INSERT	statement	against	some	other	server.

For	example:

mysql>	USE	test;

Database	changed

mysql>	CREATE	TABLE	t	(

				->			id	INT	AUTO_INCREMENT	NOT	NULL	PRIMARY	KEY,

				->			name	VARCHAR(10)	NOT	NULL

				->);

Query	OK,	0	rows	affected	(0.09	sec)

mysql>	INSERT	INTO	t	VALUES	(NULL,	'Bob');

Query	OK,	1	row	affected	(0.01	sec)

mysql>	SELECT	*	FROM	t;

+----+------+

|	id	|	name	|

+----+------+

|		1	|	Bob		|

+----+------+

1	row	in	set	(0.01	sec)

mysql>	SELECT	LAST_INSERT_ID();

+------------------+

|	LAST_INSERT_ID()	|

+------------------+

|																1	|

+------------------+

1	row	in	set	(0.00	sec)

mysql>	INSERT	INTO	t	VALUES

				->	(NULL,	'Mary'),	(NULL,	'Jane'),	(NULL,	'Lisa');

Query	OK,	3	rows	affected	(0.00	sec)

Records:	3		Duplicates:	0		Warnings:	0

mysql>	SELECT	*	FROM	t;

+----+------+

|	id	|	name	|

+----+------+

|		1	|	Bob		|

|		2	|	Mary	|

|		3	|	Jane	|

|		4	|	Lisa	|

+----+------+

4	rows	in	set	(0.01	sec)

mysql>	SELECT	LAST_INSERT_ID();

+------------------+

|	LAST_INSERT_ID()	|

+------------------+

|																2	|

+------------------+

1	row	in	set	(0.00	sec)

Although	the	second	INSERT	statement	inserted	three	new	rows	into	t,	the
ID	generated	for	the	first	of	these	rows	was	2,	and	it	is	this	value	that	is
returned	by	LAST_INSERT_ID()	for	the	following	SELECT	statement.

If	you	use	INSERT	IGNORE	and	the	row	is	ignored,	the	AUTO_INCREMENT
counter	is	not	incremented	and	LAST_INSERT_ID()	returns	0,	which	reflects
that	no	row	was	inserted.

If	expr	is	given	as	an	argument	to	LAST_INSERT_ID(),	the	value	of	the
argument	is	returned	by	the	function	and	is	remembered	as	the	next	value	to
be	returned	by	LAST_INSERT_ID().	This	can	be	used	to	simulate	sequences:

1.	 Create	a	table	to	hold	the	sequence	counter	and	initialize	it:

mysql>	CREATE	TABLE	sequence	(id	INT	NOT	NULL);

mysql>	INSERT	INTO	sequence	VALUES	(0);

2.	 Use	the	table	to	generate	sequence	numbers	like	this:

mysql>	UPDATE	sequence	SET	id=LAST_INSERT_ID(id+1);

mysql>	SELECT	LAST_INSERT_ID();

The	UPDATE	statement	increments	the	sequence	counter	and	causes	the
next	call	to	LAST_INSERT_ID()	to	return	the	updated	value.	The
SELECT	statement	retrieves	that	value.	The	mysql_insert_id()	C	API
function	can	also	be	used	to	get	the	value.	See	Section	22.2.3.36,
“mysql_insert_id()”.

You	can	generate	sequences	without	calling	LAST_INSERT_ID(),	but	the
utility	of	using	the	function	this	way	is	that	the	ID	value	is	maintained	in
the	server	as	the	last	automatically	generated	value.	It	is	multi-user	safe
because	multiple	clients	can	issue	the	UPDATE	statement	and	get	their	own
sequence	value	with	the	SELECT	statement	(or	mysql_insert_id()),	without
affecting	or	being	affected	by	other	clients	that	generate	their	own	sequence
values.

Note	that	mysql_insert_id()	is	only	updated	after	INSERT	and	UPDATE
statements,	so	you	cannot	use	the	C	API	function	to	retrieve	the	value	for
LAST_INSERT_ID(expr)	after	executing	other	SQL	statements	like	SELECT	or
SET.

	ROW_COUNT()

ROW_COUNT()	returns	the	number	of	rows	updated,	inserted,	or	deleted	by
the	preceding	statement.	This	is	the	same	as	the	row	count	that	the	mysql
client	displays	and	the	value	from	the	mysql_affected_rows()	C	API
function.

mysql>	INSERT	INTO	t	VALUES(1),(2),(3);

Query	OK,	3	rows	affected	(0.00	sec)

Records:	3		Duplicates:	0		Warnings:	0

mysql>	SELECT	ROW_COUNT();

+-------------+

|	ROW_COUNT()	|

+-------------+

|											3	|

+-------------+

1	row	in	set	(0.00	sec)

mysql>	DELETE	FROM	t	WHERE	i	IN(1,2);

Query	OK,	2	rows	affected	(0.00	sec)

mysql>	SELECT	ROW_COUNT();

+-------------+

|	ROW_COUNT()	|

+-------------+

|											2	|

+-------------+

1	row	in	set	(0.00	sec)

ROW_COUNT()	was	added	in	MySQL	5.0.1.

	SCHEMA()

This	function	is	a	synonym	for	DATABASE().	It	was	added	in	MySQL	5.0.2.

	SESSION_USER()

SESSION_USER()	is	a	synonym	for	USER().

	SYSTEM_USER()

SYSTEM_USER()	is	a	synonym	for	USER().

	USER()

Returns	the	current	MySQL	username	and	hostname	as	a	string	in	the	utf8
character	set.

mysql>	SELECT	USER();

								->	'davida@localhost'

The	value	indicates	the	username	you	specified	when	connecting	to	the
server,	and	the	client	host	from	which	you	connected.	The	value	can	be
different	from	that	of	CURRENT_USER().

You	can	extract	only	the	username	part	like	this:

mysql>	SELECT	SUBSTRING_INDEX(USER(),'@',1);

								->	'davida'

	VERSION()

Returns	a	string	that	indicates	the	MySQL	server	version.	The	string	uses

the	utf8	character	set.

mysql>	SELECT	VERSION();

								->	'5.0.25-standard'

Note	that	if	your	version	string	ends	with	-log	this	means	that	logging	is
enabled.

12.9.4.	Miscellaneous	Functions

	DEFAULT(col_name)

Returns	the	default	value	for	a	table	column.	Starting	with	MySQL	5.0.2,	an
error	results	if	the	column	has	no	default	value.

mysql>	UPDATE	t	SET	i	=	DEFAULT(i)+1	WHERE	id	<	100;

FORMAT(X,D)

Formats	the	number	X	to	a	format	like	'#,###,###.##',	rounded	to	D
decimal	places,	and	returns	the	result	as	a	string.	For	details,	see
Section	12.3,	“String	Functions”.

	GET_LOCK(str,timeout)

Tries	to	obtain	a	lock	with	a	name	given	by	the	string	str,	using	a	timeout
of	timeout	seconds.	Returns	1	if	the	lock	was	obtained	successfully,	0	if	the
attempt	timed	out	(for	example,	because	another	client	has	previously
locked	the	name),	or	NULL	if	an	error	occurred	(such	as	running	out	of
memory	or	the	thread	was	killed	with	mysqladmin	kill).	If	you	have	a	lock
obtained	with	GET_LOCK(),	it	is	released	when	you	execute
RELEASE_LOCK(),	execute	a	new	GET_LOCK(),	or	your	connection	terminates
(either	normally	or	abnormally).	Locks	obtained	with	GET_LOCK()	do	not
interact	with	transactions.	That	is,	committing	a	transaction	does	not	release
any	such	locks	obtained	during	the	transaction.

This	function	can	be	used	to	implement	application	locks	or	to	simulate
record	locks.	Names	are	locked	on	a	server-wide	basis.	If	a	name	has	been
locked	by	one	client,	GET_LOCK()	blocks	any	request	by	another	client	for	a
lock	with	the	same	name.	This	allows	clients	that	agree	on	a	given	lock

name	to	use	the	name	to	perform	cooperative	advisory	locking.	But	be
aware	that	it	also	allows	a	client	that	is	not	among	the	set	of	cooperating
clients	to	lock	a	name,	either	inadvertently	or	deliberately,	and	thus	prevent
any	of	the	cooperating	clients	from	locking	that	name.	One	way	to	reduce
the	likelihood	of	this	is	to	use	lock	names	that	are	database-specific	or
application-specific.	For	example,	use	lock	names	of	the	form	db_name.str
or	app_name.str.

mysql>	SELECT	GET_LOCK('lock1',10);

								->	1

mysql>	SELECT	IS_FREE_LOCK('lock2');

								->	1

mysql>	SELECT	GET_LOCK('lock2',10);

								->	1

mysql>	SELECT	RELEASE_LOCK('lock2');

								->	1

mysql>	SELECT	RELEASE_LOCK('lock1');

								->	NULL

The	second	RELEASE_LOCK()	call	returns	NULL	because	the	lock	'lock1'
was	automatically	released	by	the	second	GET_LOCK()	call.

Note:	If	a	client	attempts	to	acquire	a	lock	that	is	already	held	by	another
client,	it	blocks	according	to	the	timeout	argument.	If	the	blocked	client
terminates,	its	thread	does	not	die	until	the	lock	request	times	out.	This	is	a
known	bug.

	INET_ATON(expr)

Given	the	dotted-quad	representation	of	a	network	address	as	a	string,
returns	an	integer	that	represents	the	numeric	value	of	the	address.
Addresses	may	be	4-	or	8-byte	addresses.

mysql>	SELECT	INET_ATON('209.207.224.40');

								->	3520061480

The	generated	number	is	always	in	network	byte	order.	For	the	example	just
shown,	the	number	is	calculated	as	209×2563	+	207×2562	+	224×256	+	40.

INET_ATON()	also	understands	short-form	IP	addresses:

mysql>	SELECT	INET_ATON('127.0.0.1'),	INET_ATON('127.1');

								->	2130706433,	2130706433

Note:	When	storing	values	generated	by	INET_ATON(),	it	is	recommended
that	you	use	an	INT	UNSIGNED	column.	If	you	use	a	(signed)	INT	column,
values	corresponding	to	IP	addresses	for	which	the	first	octet	is	greater	than
127	cannot	be	stored	correctly.	See	Section	11.2,	“Numeric	Types”.

	INET_NTOA(expr)

Given	a	numeric	network	address	(4	or	8	byte),	returns	the	dotted-quad
representation	of	the	address	as	a	string.

mysql>	SELECT	INET_NTOA(3520061480);

								->	'209.207.224.40'

	IS_FREE_LOCK(str)

Checks	whether	the	lock	named	str	is	free	to	use	(that	is,	not	locked).
Returns	1	if	the	lock	is	free	(no	one	is	using	the	lock),	0	if	the	lock	is	in	use,
and	NULL	if	an	error	occurs	(such	as	an	incorrect	argument).

	IS_USED_LOCK(str)

Checks	whether	the	lock	named	str	is	in	use	(that	is,	locked).	If	so,	it
returns	the	connection	identifier	of	the	client	that	holds	the	lock.	Otherwise,
it	returns	NULL.

	MASTER_POS_WAIT(log_name,log_pos[,timeout])

This	function	is	useful	for	control	of	master/slave	synchronization.	It	blocks
until	the	slave	has	read	and	applied	all	updates	up	to	the	specified	position
in	the	master	log.	The	return	value	is	the	number	of	log	events	the	slave	had
to	wait	for	to	advance	to	the	specified	position.	The	function	returns	NULL	if
the	slave	SQL	thread	is	not	started,	the	slave's	master	information	is	not
initialized,	the	arguments	are	incorrect,	or	an	error	occurs.	It	returns	-1	if
the	timeout	has	been	exceeded.	If	the	slave	SQL	thread	stops	while
MASTER_POS_WAIT()	is	waiting,	the	function	returns	NULL.	If	the	slave	is
past	the	specified	position,	the	function	returns	immediately.

If	a	timeout	value	is	specified,	MASTER_POS_WAIT()	stops	waiting	when
timeout	seconds	have	elapsed.	timeout	must	be	greater	than	0;	a	zero	or
negative	timeout	means	no	timeout.

	NAME_CONST(name,value)

Returns	the	given	value.	When	used	to	produce	a	result	set	column,
NAME_CONST()	causes	the	column	to	have	the	given	name.

mysql>	SELECT	NAME_CONST('myname',	14);

+--------+

|	myname	|

+--------+

|					14	|

+--------+

This	function	was	added	in	MySQL	5.0.12.	It	is	for	internal	use	only.	The
server	uses	it	when	writing	statements	from	stored	routines	that	contain
references	to	local	routine	variables,	as	described	in	Section	17.4,	“Binary
Logging	of	Stored	Routines	and	Triggers”,	You	might	see	this	function	in
the	output	from	mysqlbinlog.

	RELEASE_LOCK(str)

Releases	the	lock	named	by	the	string	str	that	was	obtained	with
GET_LOCK().	Returns	1	if	the	lock	was	released,	0	if	the	lock	was	not
established	by	this	thread	(in	which	case	the	lock	is	not	released),	and	NULL
if	the	named	lock	did	not	exist.	The	lock	does	not	exist	if	it	was	never
obtained	by	a	call	to	GET_LOCK()	or	if	it	has	previously	been	released.

The	DO	statement	is	convenient	to	use	with	RELEASE_LOCK().	See
Section	13.2.2,	“DO	Syntax”.

	SLEEP(duration)

Sleeps	(pauses)	for	the	number	of	seconds	given	by	the	duration	argument,
then	returns	0.	If	SLEEP()	is	interrupted,	it	returns	1.	The	duration	may	have
a	fractional	part	given	in	microseconds.	This	function	was	added	in	MySQL
5.0.12.

	UUID()

Returns	a	Universal	Unique	Identifier	(UUID)	generated	according	to
“DCE	1.1:	Remote	Procedure	Call”	(Appendix	A)	CAE	(Common
Applications	Environment)	Specifications	published	by	The	Open	Group	in

October	1997	(Document	Number	C706,
http://www.opengroup.org/public/pubs/catalog/c706.htm).

A	UUID	is	designed	as	a	number	that	is	globally	unique	in	space	and	time.
Two	calls	to	UUID()	are	expected	to	generate	two	different	values,	even	if
these	calls	are	performed	on	two	separate	computers	that	are	not	connected
to	each	other.

A	UUID	is	a	128-bit	number	represented	by	a	string	of	five	hexadecimal
numbers	in	aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee	format:

The	first	three	numbers	are	generated	from	a	timestamp.

The	fourth	number	preserves	temporal	uniqueness	in	case	the
timestamp	value	loses	monotonicity	(for	example,	due	to	daylight
saving	time).

The	fifth	number	is	an	IEEE	802	node	number	that	provides	spatial
uniqueness.	A	random	number	is	substituted	if	the	latter	is	not
available	(for	example,	because	the	host	computer	has	no	Ethernet
card,	or	we	do	not	know	how	to	find	the	hardware	address	of	an
interface	on	your	operating	system).	In	this	case,	spatial	uniqueness
cannot	be	guaranteed.	Nevertheless,	a	collision	should	have	very	low
probability.

Currently,	the	MAC	address	of	an	interface	is	taken	into	account	only
on	FreeBSD	and	Linux.	On	other	operating	systems,	MySQL	uses	a
randomly	generated	48-bit	number.

mysql>	SELECT	UUID();

								->	'6ccd780c-baba-1026-9564-0040f4311e29'

Note	that	UUID()	does	not	yet	work	with	replication.

	VALUES(col_name)

In	an	INSERT	...	ON	DUPLICATE	KEY	UPDATE	statement,	you	can	use	the
VALUES(col_name)	function	in	the	UPDATE	clause	to	refer	to	column	values
from	the	INSERT	portion	of	the	statement.	In	other	words,
VALUES(col_name)	in	the	UPDATE	clause	refers	to	the	value	of	col_name	that

http://www.opengroup.org/public/pubs/catalog/c706.htm

would	be	inserted,	had	no	duplicate-key	conflict	occurred.	This	function	is
especially	useful	in	multiple-row	inserts.	The	VALUES()	function	is
meaningful	only	in	INSERT	...	ON	DUPLICATE	KEY	UPDATE	statements	and
returns	NULL	otherwise.	Section	13.2.4.3,	“INSERT	...	ON	DUPLICATE	KEY
UPDATE	Syntax”.

mysql>	INSERT	INTO	table	(a,b,c)	VALUES	(1,2,3),(4,5,6)

				->	ON	DUPLICATE	KEY	UPDATE	c=VALUES(a)+VALUES(b);

12.10.	Functions	and	Modifiers	for	Use	with	GROUP	BY
Clauses

12.10.1.	GROUP	BY	(Aggregate)	Functions

This	section	describes	group	(aggregate)	functions	that	operate	on	sets	of	values.
Unless	otherwise	stated,	group	functions	ignore	NULL	values.

If	you	use	a	group	function	in	a	statement	containing	no	GROUP	BY	clause,	it	is
equivalent	to	grouping	on	all	rows.

The	SUM()	and	AVG()	aggregate	functions	do	not	work	with	temporal	values.
(They	convert	the	values	to	numbers,	which	loses	the	part	after	the	first	non-
numeric	character.)	To	work	around	this	problem,	you	can	convert	to	numeric
units,	perform	the	aggregate	operation,	and	convert	back	to	a	temporal	value.
Examples:

SELECT	SEC_TO_TIME(SUM(TIME_TO_SEC(time_col)))	FROM	tbl_name;

SELECT	FROM_DAYS(SUM(TO_DAYS(date_col)))	FROM	tbl_name;

	AVG([DISTINCT]	expr)

Returns	the	average	value	of	expr.	The	DISTINCT	option	can	be	used	as	of
MySQL	5.0.3	to	return	the	average	of	the	distinct	values	of	expr.

AVG()	returns	NULL	if	there	were	no	matching	rows.

mysql>	SELECT	student_name,	AVG(test_score)

				->								FROM	student

				->								GROUP	BY	student_name;

	BIT_AND(expr)

Returns	the	bitwise	AND	of	all	bits	in	expr.	The	calculation	is	performed
with	64-bit	(BIGINT)	precision.

This	function	returns	18446744073709551615	if	there	were	no	matching
rows.	(This	is	the	value	of	an	unsigned	BIGINT	value	with	all	bits	set	to	1.)

	BIT_OR(expr)

Returns	the	bitwise	OR	of	all	bits	in	expr.	The	calculation	is	performed	with
64-bit	(BIGINT)	precision.

This	function	returns	0	if	there	were	no	matching	rows.

	BIT_XOR(expr)

Returns	the	bitwise	XOR	of	all	bits	in	expr.	The	calculation	is	performed
with	64-bit	(BIGINT)	precision.

This	function	returns	0	if	there	were	no	matching	rows.

	COUNT(expr)

Returns	a	count	of	the	number	of	non-NULL	values	in	the	rows	retrieved	by	a
SELECT	statement.	The	result	is	a	BIGINT	value.

COUNT()	returns	0	if	there	were	no	matching	rows.

mysql>	SELECT	student.student_name,COUNT(*)

				->								FROM	student,course

				->								WHERE	student.student_id=course.student_id

				->								GROUP	BY	student_name;

COUNT(*)	is	somewhat	different	in	that	it	returns	a	count	of	the	number	of
rows	retrieved,	whether	or	not	they	contain	NULL	values.

COUNT(*)	is	optimized	to	return	very	quickly	if	the	SELECT	retrieves	from
one	table,	no	other	columns	are	retrieved,	and	there	is	no	WHERE	clause.	For
example:

mysql>	SELECT	COUNT(*)	FROM	student;

This	optimization	applies	only	to	MyISAM	tables	only,	because	an	exact	row
count	is	stored	for	this	storage	engine	and	can	be	accessed	very	quickly.	For
transactional	storage	engines	such	as	InnoDB	and	BDB,	storing	an	exact	row
count	is	more	problematic	because	multiple	transactions	may	be	occurring,
each	of	which	may	affect	the	count.

	COUNT(DISTINCT	expr,[expr...])

Returns	a	count	of	the	number	of	different	non-NULL	values.

COUNT(DISTINCT)	returns	0	if	there	were	no	matching	rows.

mysql>	SELECT	COUNT(DISTINCT	results)	FROM	student;

In	MySQL,	you	can	obtain	the	number	of	distinct	expression	combinations
that	do	not	contain	NULL	by	giving	a	list	of	expressions.	In	standard	SQL,
you	would	have	to	do	a	concatenation	of	all	expressions	inside
COUNT(DISTINCT	...).

	GROUP_CONCAT(expr)

This	function	returns	a	string	result	with	the	concatenated	non-NULL	values
from	a	group.	It	returns	NULL	if	there	are	no	non-NULL	values.	The	full
syntax	is	as	follows:

GROUP_CONCAT([DISTINCT]	expr	[,expr	...]

													[ORDER	BY	{unsigned_integer	|	col_name	|	expr}

																	[ASC	|	DESC]	[,col_name	...]]

													[SEPARATOR	str_val])

mysql>	SELECT	student_name,

				->					GROUP_CONCAT(test_score)

				->					FROM	student

				->					GROUP	BY	student_name;

Or:

mysql>	SELECT	student_name,

				->					GROUP_CONCAT(DISTINCT	test_score

				->															ORDER	BY	test_score	DESC	SEPARATOR	'	')

				->					FROM	student

				->					GROUP	BY	student_name;

In	MySQL,	you	can	get	the	concatenated	values	of	expression
combinations.	You	can	eliminate	duplicate	values	by	using	DISTINCT.	If	you
want	to	sort	values	in	the	result,	you	should	use	ORDER	BY	clause.	To	sort	in
reverse	order,	add	the	DESC	(descending)	keyword	to	the	name	of	the
column	you	are	sorting	by	in	the	ORDER	BY	clause.	The	default	is	ascending
order;	this	may	be	specified	explicitly	using	the	ASC	keyword.	SEPARATOR	is
followed	by	the	string	value	that	should	be	inserted	between	values	of
result.	The	default	is	a	comma	(‘,’).	You	can	eliminate	the	separator

altogether	by	specifying	SEPARATOR	''.

You	can	set	a	maximum	allowed	length	with	the	group_concat_max_len
system	variable.	(The	default	value	is	1024.)	The	syntax	to	do	this	at
runtime	is	as	follows,	where	val	is	an	unsigned	integer:

SET	[SESSION	|	GLOBAL]	group_concat_max_len	=	val;

If	a	maximum	length	has	been	set,	the	result	is	truncated	to	this	maximum
length.

Beginning	with	MySQL	5.0.19,	the	type	returned	by	GROUP_CONCAT()	is
always	VARCHAR	unless	group_concat_max_len	is	greater	than	512,	in
which	case,	it	returns	a	BLOB.	(Previously,	it	returned	a	BLOB	with
group_concat_max_len	greater	than	512	only	if	the	query	included	an
ORDER	BY	clause.)

See	also	CONCAT()	and	CONCAT_WS():	Section	12.3,	“String	Functions”.

	MIN([DISTINCT]	expr),	MAX([DISTINCT]	expr)

Returns	the	minimum	or	maximum	value	of	expr.	MIN()	and	MAX()	may
take	a	string	argument;	in	such	cases	they	return	the	minimum	or	maximum
string	value.	See	Section	7.4.5,	“How	MySQL	Uses	Indexes”.	The
DISTINCT	keyword	can	be	used	to	find	the	minimum	or	maximum	of	the
distinct	values	of	expr,	however,	this	produces	the	same	result	as	omitting
DISTINCT.

MIN()	and	MAX()	return	NULL	if	there	were	no	matching	rows.

mysql>	SELECT	student_name,	MIN(test_score),	MAX(test_score)

				->								FROM	student

				->								GROUP	BY	student_name;

For	MIN(),	MAX(),	and	other	aggregate	functions,	MySQL	currently
compares	ENUM	and	SET	columns	by	their	string	value	rather	than	by	the
string's	relative	position	in	the	set.	This	differs	from	how	ORDER	BY
compares	them.	This	is	expected	to	be	rectified	in	a	future	MySQL	release.

	STD(expr)	STDDEV(expr)

Returns	the	population	standard	deviation	of	expr.	This	is	an	extension	to
standard	SQL.	The	STDDEV()	form	of	this	function	is	provided	for
compatibility	with	Oracle.	As	of	MySQL	5.0.3,	the	standard	SQL	function
STDDEV_POP()	can	be	used	instead.

These	functions	return	NULL	if	there	were	no	matching	rows.

	STDDEV_POP(expr)

Returns	the	population	standard	deviation	of	expr	(the	square	root	of
VAR_POP()).	This	function	was	added	in	MySQL	5.0.3.	Before	5.0.3,	you
can	use	STD()	or	STDDEV(),	which	are	equivalent	but	not	standard	SQL.

STDDEV_POP()	returns	NULL	if	there	were	no	matching	rows.

	STDDEV_SAMP(expr)

Returns	the	sample	standard	deviation	of	expr	(the	square	root	of
VAR_SAMP().	This	function	was	added	in	MySQL	5.0.3.

STDDEV_SAMP()	returns	NULL	if	there	were	no	matching	rows.

	SUM([DISTINCT]	expr)

Returns	the	sum	of	expr.	If	the	return	set	has	no	rows,	SUM()	returns	NULL.
The	DISTINCT	keyword	can	be	used	in	MySQL	5.0	to	sum	only	the	distinct
values	of	expr.

SUM()	returns	NULL	if	there	were	no	matching	rows.

	VAR_POP(expr)

Returns	the	population	standard	variance	of	expr.	It	considers	rows	as	the
whole	population,	not	as	a	sample,	so	it	has	the	number	of	rows	as	the
denominator.	This	function	was	added	in	MySQL	5.0.3.	Before	5.0.3,	you
can	use	VARIANCE(),	which	is	equivalent	but	is	not	standard	SQL.

VAR_POP()	returns	NULL	if	there	were	no	matching	rows.

	VAR_SAMP(expr)

Returns	the	sample	variance	of	expr.	That	is,	the	denominator	is	the
number	of	rows	minus	one.	This	function	was	added	in	MySQL	5.0.3.

VAR_SAMP()	returns	NULL	if	there	were	no	matching	rows.

	VARIANCE(expr)

Returns	the	population	standard	variance	of	expr.	This	is	an	extension	to
standard	SQL.	As	of	MySQL	5.0.3,	the	standard	SQL	function	VAR_POP()
can	be	used	instead.

VARIANCE()	returns	NULL	if	there	were	no	matching	rows.

12.10.2.	GROUP	BY	Modifiers

The	GROUP	BY	clause	allows	a	WITH	ROLLUP	modifier	that	causes	extra	rows	to	be
added	to	the	summary	output.	These	rows	represent	higher-level	(or	super-
aggregate)	summary	operations.	ROLLUP	thus	allows	you	to	answer	questions	at
multiple	levels	of	analysis	with	a	single	query.	It	can	be	used,	for	example,	to
provide	support	for	OLAP	(Online	Analytical	Processing)	operations.

Suppose	that	a	table	named	sales	has	year,	country,	product,	and	profit
columns	for	recording	sales	profitability:

CREATE	TABLE	sales

(

				year				INT	NOT	NULL,

				country	VARCHAR(20)	NOT	NULL,

				product	VARCHAR(32)	NOT	NULL,

				profit		INT

);

The	table's	contents	can	be	summarized	per	year	with	a	simple	GROUP	BY	like
this:

mysql>	SELECT	year,	SUM(profit)	FROM	sales	GROUP	BY	year;

+------+-------------+

|	year	|	SUM(profit)	|

+------+-------------+

|	2000	|								4525	|

|	2001	|								3010	|

+------+-------------+

This	output	shows	the	total	profit	for	each	year,	but	if	you	also	want	to	determine
the	total	profit	summed	over	all	years,	you	must	add	up	the	individual	values
yourself	or	run	an	additional	query.

Or	you	can	use	ROLLUP,	which	provides	both	levels	of	analysis	with	a	single
query.	Adding	a	WITH	ROLLUP	modifier	to	the	GROUP	BY	clause	causes	the	query
to	produce	another	row	that	shows	the	grand	total	over	all	year	values:

mysql>	SELECT	year,	SUM(profit)	FROM	sales	GROUP	BY	year	WITH	ROLLUP;

+------+-------------+

|	year	|	SUM(profit)	|

+------+-------------+

|	2000	|								4525	|

|	2001	|								3010	|

|	NULL	|								7535	|

+------+-------------+

The	grand	total	super-aggregate	line	is	identified	by	the	value	NULL	in	the	year
column.

ROLLUP	has	a	more	complex	effect	when	there	are	multiple	GROUP	BY	columns.	In
this	case,	each	time	there	is	a	“break”	(change	in	value)	in	any	but	the	last
grouping	column,	the	query	produces	an	extra	super-aggregate	summary	row.

For	example,	without	ROLLUP,	a	summary	on	the	sales	table	based	on	year,
country,	and	product	might	look	like	this:

mysql>	SELECT	year,	country,	product,	SUM(profit)

				->	FROM	sales

				->	GROUP	BY	year,	country,	product;

+------+---------+------------+-------------+

|	year	|	country	|	product				|	SUM(profit)	|

+------+---------+------------+-------------+

|	2000	|	Finland	|	Computer			|								1500	|

|	2000	|	Finland	|	Phone						|									100	|

|	2000	|	India			|	Calculator	|									150	|

|	2000	|	India			|	Computer			|								1200	|

|	2000	|	USA					|	Calculator	|										75	|

|	2000	|	USA					|	Computer			|								1500	|

|	2001	|	Finland	|	Phone						|										10	|

|	2001	|	USA					|	Calculator	|										50	|

|	2001	|	USA					|	Computer			|								2700	|

|	2001	|	USA					|	TV									|									250	|

+------+---------+------------+-------------+

The	output	indicates	summary	values	only	at	the	year/country/product	level	of
analysis.	When	ROLLUP	is	added,	the	query	produces	several	extra	rows:

mysql>	SELECT	year,	country,	product,	SUM(profit)

				->	FROM	sales

				->	GROUP	BY	year,	country,	product	WITH	ROLLUP;

+------+---------+------------+-------------+

|	year	|	country	|	product				|	SUM(profit)	|

+------+---------+------------+-------------+

|	2000	|	Finland	|	Computer			|								1500	|

|	2000	|	Finland	|	Phone						|									100	|

|	2000	|	Finland	|	NULL							|								1600	|

|	2000	|	India			|	Calculator	|									150	|

|	2000	|	India			|	Computer			|								1200	|

|	2000	|	India			|	NULL							|								1350	|

|	2000	|	USA					|	Calculator	|										75	|

|	2000	|	USA					|	Computer			|								1500	|

|	2000	|	USA					|	NULL							|								1575	|

|	2000	|	NULL				|	NULL							|								4525	|

|	2001	|	Finland	|	Phone						|										10	|

|	2001	|	Finland	|	NULL							|										10	|

|	2001	|	USA					|	Calculator	|										50	|

|	2001	|	USA					|	Computer			|								2700	|

|	2001	|	USA					|	TV									|									250	|

|	2001	|	USA					|	NULL							|								3000	|

|	2001	|	NULL				|	NULL							|								3010	|

|	NULL	|	NULL				|	NULL							|								7535	|

+------+---------+------------+-------------+

For	this	query,	adding	ROLLUP	causes	the	output	to	include	summary	information
at	four	levels	of	analysis,	not	just	one.	Here's	how	to	interpret	the	ROLLUP	output:

Following	each	set	of	product	rows	for	a	given	year	and	country,	an	extra
summary	row	is	produced	showing	the	total	for	all	products.	These	rows
have	the	product	column	set	to	NULL.

Following	each	set	of	rows	for	a	given	year,	an	extra	summary	row	is
produced	showing	the	total	for	all	countries	and	products.	These	rows	have
the	country	and	products	columns	set	to	NULL.

Finally,	following	all	other	rows,	an	extra	summary	row	is	produced
showing	the	grand	total	for	all	years,	countries,	and	products.	This	row	has
the	year,	country,	and	products	columns	set	to	NULL.

Other	Considerations	When	using	ROLLUP

The	following	items	list	some	behaviors	specific	to	the	MySQL	implementation
of	ROLLUP:

When	you	use	ROLLUP,	you	cannot	also	use	an	ORDER	BY	clause	to	sort	the
results.	In	other	words,	ROLLUP	and	ORDER	BY	are	mutually	exclusive.	However,
you	still	have	some	control	over	sort	order.	GROUP	BY	in	MySQL	sorts	results,
and	you	can	use	explicit	ASC	and	DESC	keywords	with	columns	named	in	the
GROUP	BY	list	to	specify	sort	order	for	individual	columns.	(The	higher-level
summary	rows	added	by	ROLLUP	still	appear	after	the	rows	from	which	they	are
calculated,	regardless	of	the	sort	order.)

LIMIT	can	be	used	to	restrict	the	number	of	rows	returned	to	the	client.	LIMIT	is
applied	after	ROLLUP,	so	the	limit	applies	against	the	extra	rows	added	by	ROLLUP.
For	example:

mysql>	SELECT	year,	country,	product,	SUM(profit)

				->	FROM	sales

				->	GROUP	BY	year,	country,	product	WITH	ROLLUP

				->	LIMIT	5;

+------+---------+------------+-------------+

|	year	|	country	|	product				|	SUM(profit)	|

+------+---------+------------+-------------+

|	2000	|	Finland	|	Computer			|								1500	|

|	2000	|	Finland	|	Phone						|									100	|

|	2000	|	Finland	|	NULL							|								1600	|

|	2000	|	India			|	Calculator	|									150	|

|	2000	|	India			|	Computer			|								1200	|

+------+---------+------------+-------------+

Using	LIMIT	with	ROLLUP	may	produce	results	that	are	more	difficult	to	interpret,
because	you	have	less	context	for	understanding	the	super-aggregate	rows.

The	NULL	indicators	in	each	super-aggregate	row	are	produced	when	the	row	is
sent	to	the	client.	The	server	looks	at	the	columns	named	in	the	GROUP	BY	clause
following	the	leftmost	one	that	has	changed	value.	For	any	column	in	the	result
set	with	a	name	that	is	a	lexical	match	to	any	of	those	names,	its	value	is	set	to
NULL.	(If	you	specify	grouping	columns	by	column	number,	the	server	identifies
which	columns	to	set	to	NULL	by	number.)

Because	the	NULL	values	in	the	super-aggregate	rows	are	placed	into	the	result
set	at	such	a	late	stage	in	query	processing,	you	cannot	test	them	as	NULL	values
within	the	query	itself.	For	example,	you	cannot	add	HAVING	product	IS	NULL

to	the	query	to	eliminate	from	the	output	all	but	the	super-aggregate	rows.

On	the	other	hand,	the	NULL	values	do	appear	as	NULL	on	the	client	side	and	can
be	tested	as	such	using	any	MySQL	client	programming	interface.

12.10.3.	GROUP	BY	and	HAVING	with	Hidden	Fields

MySQL	extends	the	use	of	GROUP	BY	so	that	you	can	use	non-aggregated
columns	or	calculations	in	the	SELECT	list	that	do	not	appear	in	the	GROUP	BY
clause.	You	can	use	this	feature	to	get	better	performance	by	avoiding
unnecessary	column	sorting	and	grouping.	For	example,	you	do	not	need	to
group	on	customer.name	in	the	following	query:

SELECT	order.custid,	customer.name,	MAX(payments)

		FROM	order,customer

		WHERE	order.custid	=	customer.custid

		GROUP	BY	order.custid;

In	standard	SQL,	you	would	have	to	add	customer.name	to	the	GROUP	BY	clause.
In	MySQL,	the	name	is	redundant.

Do	not	use	this	feature	if	the	columns	you	omit	from	the	GROUP	BY	part	are	not
constant	in	the	group.	The	server	is	free	to	return	any	value	from	the	group,	so
the	results	are	indeterminate	unless	all	values	are	the	same.

A	similar	MySQL	extension	applies	to	the	HAVING	clause.	The	SQL	standard
does	not	allow	the	HAVING	clause	to	name	any	column	that	is	not	found	in	the
GROUP	BY	clause	if	it	is	not	enclosed	in	an	aggregate	function.	MySQL	allows	the
use	of	such	columns	to	simplify	calculations.	This	extension	assumes	that	the
non-grouped	columns	will	have	the	same	group-wise	values.	Otherwise,	the
result	is	indeterminate.

If	the	ONLY_FULL_GROUP_BY	SQL	mode	is	enabled,	the	MySQL	extension	to
GROUP	BY	does	not	apply.	That	is,	columns	not	named	in	the	GROUP	BY	clause
cannot	be	used	in	the	SELECT	list	or	HAVING	clause	if	not	used	in	an	aggregate
function.

The	select	list	extension	also	applies	to	ORDER	BY.	That	is,	you	can	use	non-
aggregated	columns	or	calculations	in	the	ORDER	BY	clause	that	do	not	appear	in
the	GROUP	BY	clause.	This	extension	does	not	apply	if	the	ONLY_FULL_GROUP_BY

SQL	mode	is	enabled.

In	some	cases,	you	can	use	MIN()	and	MAX()	to	obtain	a	specific	column	value
even	if	it	isn't	unique.	The	following	gives	the	value	of	column	from	the	row
containing	the	smallest	value	in	the	sort	column:

SUBSTR(MIN(CONCAT(RPAD(sort,6,'	'),column)),7)

See	Section	3.6.4,	“The	Rows	Holding	the	Group-wise	Maximum	of	a	Certain
Field”.

Note	that	if	you	are	trying	to	follow	standard	SQL,	you	can't	use	expressions	in
GROUP	BY	clauses.	You	can	work	around	this	limitation	by	using	an	alias	for	the
expression:

SELECT	id,FLOOR(value/100)	AS	val

		FROM	tbl_name

		GROUP	BY	id,	val;

MySQL	does	allow	expressions	in	GROUP	BY	clauses.	For	example:

SELECT	id,FLOOR(value/100)

		FROM	tbl_name

		GROUP	BY	id,	FLOOR(value/100);

Chapter	13.	SQL	Statement	Syntax

Table	of	Contents

13.1.	Data	Definition	Statements
13.1.1.	ALTER	DATABASE	Syntax
13.1.2.	ALTER	TABLE	Syntax
13.1.3.	CREATE	DATABASE	Syntax
13.1.4.	CREATE	INDEX	Syntax
13.1.5.	CREATE	TABLE	Syntax
13.1.6.	DROP	DATABASE	Syntax
13.1.7.	DROP	INDEX	Syntax
13.1.8.	DROP	TABLE	Syntax
13.1.9.	RENAME	TABLE	Syntax

13.2.	Data	Manipulation	Statements
13.2.1.	DELETE	Syntax
13.2.2.	DO	Syntax
13.2.3.	HANDLER	Syntax
13.2.4.	INSERT	Syntax
13.2.5.	LOAD	DATA	INFILE	Syntax
13.2.6.	REPLACE	Syntax
13.2.7.	SELECT	Syntax
13.2.8.	Subquery	Syntax
13.2.9.	TRUNCATE	Syntax
13.2.10.	UPDATE	Syntax

13.3.	MySQL	Utility	Statements
13.3.1.	DESCRIBE	Syntax
13.3.2.	HELP	Syntax
13.3.3.	USE	Syntax

13.4.	MySQL	Transactional	and	Locking	Statements
13.4.1.	START	TRANSACTION,	COMMIT,	and	ROLLBACK	Syntax
13.4.2.	Statements	That	Cannot	Be	Rolled	Back
13.4.3.	Statements	That	Cause	an	Implicit	Commit
13.4.4.	SAVEPOINT	and	ROLLBACK	TO	SAVEPOINT	Syntax
13.4.5.	LOCK	TABLES	and	UNLOCK	TABLES	Syntax
13.4.6.	SET	TRANSACTION	Syntax
13.4.7.	XA	Transactions

13.5.	Database	Administration	Statements
13.5.1.	Account	Management	Statements
13.5.2.	Table	Maintenance	Statements
13.5.3.	SET	Syntax
13.5.4.	SHOW	Syntax
13.5.5.	Other	Administrative	Statements

13.6.	Replication	Statements
13.6.1.	SQL	Statements	for	Controlling	Master	Servers
13.6.2.	SQL	Statements	for	Controlling	Slave	Servers

13.7.	SQL	Syntax	for	Prepared	Statements

This	chapter	describes	the	syntax	for	most	of	the	SQL	statements	supported	by
MySQL.	Additional	statement	descriptions	can	be	found	in	the	following
chapters:

The	EXPLAIN	statement	is	discussed	in	Chapter	7,	Optimization.

Statements	for	writing	stored	routines	are	covered	in	Chapter	17,	Stored
Procedures	and	Functions.

Statements	for	writing	triggers	are	covered	in	Chapter	18,	Triggers.

View-related	statements	are	covered	in	Chapter	19,	Views.

13.1.	Data	Definition	Statements

13.1.1.	ALTER	DATABASE	Syntax

ALTER	{DATABASE	|	SCHEMA}	[db_name]

				alter_specification	[,	alter_specification]	...

alter_specification:

				[DEFAULT]	CHARACTER	SET	charset_name

		|	[DEFAULT]	COLLATE	collation_name

ALTER	DATABASE	enables	you	to	change	the	overall	characteristics	of	a	database.
These	characteristics	are	stored	in	the	db.opt	file	in	the	database	directory.	To
use	ALTER	DATABASE,	you	need	the	ALTER	privilege	on	the	database.	ALTER
SCHEMA	is	a	synonym	for	ALTER	DATABASE	as	of	MySQL	5.0.2.

The	CHARACTER	SET	clause	changes	the	default	database	character	set.	The
COLLATE	clause	changes	the	default	database	collation.	Chapter	10,	Character
Set	Support,	discusses	character	set	and	collation	names.

The	database	name	can	be	omitted,	in	which	case	the	statement	applies	to	the
default	database.

13.1.2.	ALTER	TABLE	Syntax

ALTER	[IGNORE]	TABLE	tbl_name

				alter_specification	[,	alter_specification]	...

alter_specification:

				ADD	[COLUMN]	column_definition	[FIRST	|	AFTER	col_name]

		|	ADD	[COLUMN]	(column_definition,...)

		|	ADD	{INDEX|KEY}	[index_name]	[index_type]	(index_col_name,...)

		|	ADD	[CONSTRAINT	[symbol]]

								PRIMARY	KEY	[index_type]	(index_col_name,...)

		|	ADD	[CONSTRAINT	[symbol]]

								UNIQUE	[INDEX|KEY]	[index_name]	[index_type]	(index_col_name

		|	ADD	[FULLTEXT|SPATIAL]	[INDEX|KEY]	[index_name]	(index_col_name,...)

		|	ADD	[CONSTRAINT	[symbol]]

								FOREIGN	KEY	[index_name]	(index_col_name,...)

								[reference_definition]

		|	ALTER	[COLUMN]	col_name	{SET	DEFAULT	literal	|	DROP	DEFAULT}

		|	CHANGE	[COLUMN]	old_col_name	column_definition

								[FIRST|AFTER	col_name]

		|	MODIFY	[COLUMN]	column_definition	[FIRST	|	AFTER	col_name]

		|	DROP	[COLUMN]	col_name

		|	DROP	PRIMARY	KEY

		|	DROP	{INDEX|KEY}	index_name

		|	DROP	FOREIGN	KEY	fk_symbol

		|	DISABLE	KEYS

		|	ENABLE	KEYS

		|	RENAME	[TO]	new_tbl_name

		|	ORDER	BY	col_name

		|	CONVERT	TO	CHARACTER	SET	charset_name	[COLLATE	collation_name]

		|	[DEFAULT]	CHARACTER	SET	charset_name	[COLLATE	collation_name]

		|	DISCARD	TABLESPACE

		|	IMPORT	TABLESPACE

		|	table_option	...

index_col_name:

				col_name	[(length)]	[ASC	|	DESC]

index_type:

				USING	{BTREE	|	HASH}

ALTER	TABLE	enables	you	to	change	the	structure	of	an	existing	table.	For
example,	you	can	add	or	delete	columns,	create	or	destroy	indexes,	change	the
type	of	existing	columns,	or	rename	columns	or	the	table	itself.	You	can	also
change	the	comment	for	the	table	and	type	of	the	table.

The	syntax	for	many	of	the	allowable	alterations	is	similar	to	clauses	of	the
CREATE	TABLE	statement.	This	includes	table_option	modifications,	for	options
such	as	ENGINE,	AUTO_INCREMENT,	and	AVG_ROW_LENGTH.	(However,	ALTER	TABLE
ignores	the	DATA	DIRECTORY	and	INDEX	DIRECTORY	table	options.)
Section	13.1.5,	“CREATE	TABLE	Syntax”,	lists	all	table	options.	As	of	MySQL
5.0.23,	to	prevent	inadvertent	loss	of	data,	ALTER	TABLE	cannot	be	used	to
change	the	storage	engine	of	a	table	to	MERGE	or	BLACKHOLE.

Some	operations	may	result	in	warnings	if	attempted	on	a	table	for	which	the
storage	engine	does	not	support	the	operation.	These	warnings	can	be	displayed
with	SHOW	WARNINGS.	See	Section	13.5.4.25,	“SHOW	WARNINGS	Syntax”.

If	you	use	ALTER	TABLE	to	change	a	column	specification	but	DESCRIBE
tbl_name	indicates	that	your	column	was	not	changed,	it	is	possible	that	MySQL
ignored	your	modification	for	one	of	the	reasons	described	in	Section	13.1.5.1,
“Silent	Column	Specification	Changes”.

In	most	cases,	ALTER	TABLE	works	by	making	a	temporary	copy	of	the	original
table.	The	alteration	is	performed	on	the	copy,	and	then	the	original	table	is
deleted	and	the	new	one	is	renamed.	While	ALTER	TABLE	is	executing,	the
original	table	is	readable	by	other	clients.	Updates	and	writes	to	the	table	are
stalled	until	the	new	table	is	ready,	and	then	are	automatically	redirected	to	the
new	table	without	any	failed	updates.

If	you	use	ALTER	TABLE	tbl_name	RENAME	TO	new_tbl_name	without	any
other	options,	MySQL	simply	renames	any	files	that	correspond	to	the	table
tbl_name.	There	is	no	need	to	create	a	temporary	table.	(You	can	also	use	the
RENAME	TABLE	statement	to	rename	tables.	See	Section	13.1.9,	“RENAME	TABLE
Syntax”.)

If	you	use	any	option	to	ALTER	TABLE	other	than	RENAME,	MySQL	always	creates
a	temporary	table,	even	if	the	data	wouldn't	strictly	need	to	be	copied	(such	as
when	you	change	the	name	of	a	column).	For	MyISAM	tables,	you	can	speed	up
the	index	re-creation	operation	(which	is	the	slowest	part	of	the	alteration
process)	by	setting	the	myisam_sort_buffer_size	system	variable	to	a	high
value.

To	use	ALTER	TABLE,	you	need	ALTER,	INSERT,	and	CREATE	privileges	for	the
table.

IGNORE	is	a	MySQL	extension	to	standard	SQL.	It	controls	how	ALTER
TABLE	works	if	there	are	duplicates	on	unique	keys	in	the	new	table	or	if
warnings	occur	when	strict	mode	is	enabled.	If	IGNORE	is	not	specified,	the
copy	is	aborted	and	rolled	back	if	duplicate-key	errors	occur.	If	IGNORE	is
specified,	only	the	first	row	is	used	of	rows	with	duplicates	on	a	unique	key,
The	other	conflicting	rows	are	deleted.	Incorrect	values	are	truncated	to	the
closest	matching	acceptable	value.

You	can	issue	multiple	ADD,	ALTER,	DROP,	and	CHANGE	clauses	in	a	single
ALTER	TABLE	statement,	separated	by	commas.	This	is	a	MySQL	extension
to	standard	SQL,	which	allows	only	one	of	each	clause	per	ALTER	TABLE
statement.	For	example,	to	drop	multiple	columns	in	a	single	statement,	do
this:

ALTER	TABLE	t2	DROP	COLUMN	c,	DROP	COLUMN	d;

CHANGE	col_name,	DROP	col_name,	and	DROP	INDEX	are	MySQL	extensions

to	standard	SQL.

MODIFY	is	an	Oracle	extension	to	ALTER	TABLE.

The	word	COLUMN	is	optional	and	can	be	omitted.

column_definition	clauses	use	the	same	syntax	for	ADD	and	CHANGE	as	for
CREATE	TABLE.	Note	that	this	syntax	includes	the	column	name,	not	just	its
data	type.	See	Section	13.1.5,	“CREATE	TABLE	Syntax”.

You	can	rename	a	column	using	a	CHANGE	old_col_name
column_definition	clause.	To	do	so,	specify	the	old	and	new	column
names	and	the	type	that	the	column	currently	has.	For	example,	to	rename
an	INTEGER	column	from	a	to	b,	you	can	do	this:

ALTER	TABLE	t1	CHANGE	a	b	INTEGER;

If	you	want	to	change	a	column's	type	but	not	the	name,	CHANGE	syntax	still
requires	an	old	and	new	column	name,	even	if	they	are	the	same.	For
example:

ALTER	TABLE	t1	CHANGE	b	b	BIGINT	NOT	NULL;

You	can	also	use	MODIFY	to	change	a	column's	type	without	renaming	it:

ALTER	TABLE	t1	MODIFY	b	BIGINT	NOT	NULL;

If	you	use	CHANGE	or	MODIFY	to	shorten	a	column	for	which	an	index	exists
on	the	column,	and	the	resulting	column	length	is	less	than	the	index	length,
MySQL	shortens	the	index	automatically.

When	you	change	a	data	type	using	CHANGE	or	MODIFY,	MySQL	tries	to
convert	existing	column	values	to	the	new	type	as	well	as	possible.

To	add	a	column	at	a	specific	position	within	a	table	row,	use	FIRST	or
AFTER	col_name.	The	default	is	to	add	the	column	last.	You	can	also	use
FIRST	and	AFTER	in	CHANGE	or	MODIFY	operations.

	ALTER	...	SET	DEFAULT	or	ALTER	...	DROP	DEFAULT	specify	a	new
default	value	for	a	column	or	remove	the	old	default	value,	respectively.	If
the	old	default	is	removed	and	the	column	can	be	NULL,	the	new	default	is

NULL.	If	the	column	cannot	be	NULL,	MySQL	assigns	a	default	value,	as
described	in	Section	11.1.4,	“Data	Type	Default	Values”.

	DROP	INDEX	removes	an	index.	This	is	a	MySQL	extension	to	standard
SQL.	See	Section	13.1.7,	“DROP	INDEX	Syntax”.

If	columns	are	dropped	from	a	table,	the	columns	are	also	removed	from
any	index	of	which	they	are	a	part.	If	all	columns	that	make	up	an	index	are
dropped,	the	index	is	dropped	as	well.

If	a	table	contains	only	one	column,	the	column	cannot	be	dropped.	If	what
you	intend	is	to	remove	the	table,	use	DROP	TABLE	instead.

	DROP	PRIMARY	KEY	drops	the	primary	index.	Note:	In	older	versions	of
MySQL,	if	no	primary	index	existed,	DROP	PRIMARY	KEY	would	drop	the
first	UNIQUE	index	in	the	table.	This	is	not	the	case	in	MySQL	5.0,	where
trying	to	use	DROP	PRIMARY	KEY	on	a	table	with	no	primary	key	results	in
an	error.

If	you	add	a	UNIQUE	INDEX	or	PRIMARY	KEY	to	a	table,	it	is	stored	before	any
non-unique	index	so	that	MySQL	can	detect	duplicate	keys	as	early	as
possible.

Some	storage	engines	allow	you	to	specify	an	index	type	when	creating	an
index.	The	syntax	for	the	index_type	specifier	is	USING	type_name.	For
details	about	USING,	see	Section	13.1.4,	“CREATE	INDEX	Syntax”.

	ORDER	BY	enables	you	to	create	the	new	table	with	the	rows	in	a	specific
order.	Note	that	the	table	does	not	remain	in	this	order	after	inserts	and
deletes.	This	option	is	useful	primarily	when	you	know	that	you	are	mostly
to	query	the	rows	in	a	certain	order	most	of	the	time.	By	using	this	option
after	major	changes	to	the	table,	you	might	be	able	to	get	higher
performance.	In	some	cases,	it	might	make	sorting	easier	for	MySQL	if	the
table	is	in	order	by	the	column	that	you	want	to	order	it	by	later.

	If	you	use	ALTER	TABLE	on	a	MyISAM	table,	all	non-unique	indexes	are
created	in	a	separate	batch	(as	for	REPAIR	TABLE).	This	should	make	ALTER
TABLE	much	faster	when	you	have	many	indexes.

This	feature	can	be	activated	explicitly.	ALTER	TABLE	...	DISABLE	KEYS

tells	MySQL	to	stop	updating	non-unique	indexes	for	a	MyISAM	table.	ALTER
TABLE	...	ENABLE	KEYS	then	should	be	used	to	re-create	missing	indexes.
MySQL	does	this	with	a	special	algorithm	that	is	much	faster	than	inserting
keys	one	by	one,	so	disabling	keys	before	performing	bulk	insert	operations
should	give	a	considerable	speedup.	Using	ALTER	TABLE	...	DISABLE
KEYS	requires	the	INDEX	privilege	in	addition	to	the	privileges	mentioned
earlier.

	The	FOREIGN	KEY	and	REFERENCES	clauses	are	supported	by	the	InnoDB
storage	engine,	which	implements	ADD	[CONSTRAINT	[symbol]]	FOREIGN
KEY	(...)	REFERENCES	...	(...).	See	Section	14.2.6.4,	“FOREIGN	KEY
Constraints”.	For	other	storage	engines,	the	clauses	are	parsed	but	ignored.
The	CHECK	clause	is	parsed	but	ignored	by	all	storage	engines.	See
Section	13.1.5,	“CREATE	TABLE	Syntax”.	The	reason	for	accepting	but
ignoring	syntax	clauses	is	for	compatibility,	to	make	it	easier	to	port	code
from	other	SQL	servers,	and	to	run	applications	that	create	tables	with
references.	See	Section	1.9.5,	“MySQL	Differences	from	Standard	SQL”.

You	cannot	add	a	foreign	key	and	drop	a	foreign	key	in	separate	clauses	of
a	single	ALTER	TABLE	statement.	You	must	use	separate	statements.

	InnoDB	supports	the	use	of	ALTER	TABLE	to	drop	foreign	keys:

ALTER	TABLE	tbl_name	DROP	FOREIGN	KEY	fk_symbol;

You	cannot	add	a	foreign	key	and	drop	a	foreign	key	in	separate	clauses	of
a	single	ALTER	TABLE	statement.	You	must	use	separate	statements.

For	more	information,	see	Section	14.2.6.4,	“FOREIGN	KEY	Constraints”.

Pending	INSERT	DELAYED	statements	are	lost	if	a	table	is	write	locked	and
ALTER	TABLE	is	used	to	modify	the	table	structure.

	If	you	want	to	change	the	table	default	character	set	and	all	character
columns	(CHAR,	VARCHAR,	TEXT)	to	a	new	character	set,	use	a	statement	like
this:

ALTER	TABLE	tbl_name	CONVERT	TO	CHARACTER	SET	charset_name;

Warning:	The	preceding	operation	converts	column	values	between	the

character	sets.	This	is	not	what	you	want	if	you	have	a	column	in	one
character	set	(like	latin1)	but	the	stored	values	actually	use	some	other,
incompatible	character	set	(like	utf8).	In	this	case,	you	have	to	do	the
following	for	each	such	column:

ALTER	TABLE	t1	CHANGE	c1	c1	BLOB;

ALTER	TABLE	t1	CHANGE	c1	c1	TEXT	CHARACTER	SET	utf8;

The	reason	this	works	is	that	there	is	no	conversion	when	you	convert	to	or
from	BLOB	columns.

If	you	specify	CONVERT	TO	CHARACTER	SET	binary,	the	CHAR,	VARCHAR,	and
TEXT	columns	are	converted	to	their	corresponding	binary	string	types
(BINARY,	VARBINARY,	BLOB).	This	means	that	the	columns	no	longer	will
have	a	character	set	and	a	subsequent	CONVERT	TO	operation	will	not	apply
to	them.

To	change	only	the	default	character	set	for	a	table,	use	this	statement:

ALTER	TABLE	tbl_name	DEFAULT	CHARACTER	SET	charset_name;

The	word	DEFAULT	is	optional.	The	default	character	set	is	the	character	set
that	is	used	if	you	do	not	specify	the	character	set	for	a	new	column	which
you	add	to	a	table	(for	example,	with	ALTER	TABLE	...	ADD	column).

	For	an	InnoDB	table	that	is	created	with	its	own	tablespace	in	an	.ibd	file,
that	file	can	be	discarded	and	imported.	To	discard	the	.ibd	file,	use	this
statement:

ALTER	TABLE	tbl_name	DISCARD	TABLESPACE;

This	deletes	the	current	.ibd	file,	so	be	sure	that	you	have	a	backup	first.
Attempting	to	access	the	table	while	the	tablespace	file	is	discarded	results
in	an	error.

To	import	the	backup	.ibd	file	back	into	the	table,	copy	it	into	the	database
directory,	and	then	issue	this	statement:

ALTER	TABLE	tbl_name	IMPORT	TABLESPACE;

See	Section	14.2.3.1,	“Using	Per-Table	Tablespaces”.

With	the	mysql_info()	C	API	function,	you	can	find	out	how	many	rows	were
copied,	and	(when	IGNORE	is	used)	how	many	rows	were	deleted	due	to
duplication	of	unique	key	values.	See	Section	22.2.3.34,	“mysql_info()”.

Here	are	some	examples	that	show	uses	of	ALTER	TABLE.	Begin	with	a	table	t1
that	is	created	as	shown	here:

CREATE	TABLE	t1	(a	INTEGER,b	CHAR(10));

To	rename	the	table	from	t1	to	t2:

ALTER	TABLE	t1	RENAME	t2;

To	change	column	a	from	INTEGER	to	TINYINT	NOT	NULL	(leaving	the	name	the
same),	and	to	change	column	b	from	CHAR(10)	to	CHAR(20)	as	well	as	renaming
it	from	b	to	c:

ALTER	TABLE	t2	MODIFY	a	TINYINT	NOT	NULL,	CHANGE	b	c	CHAR(20);

To	add	a	new	TIMESTAMP	column	named	d:

ALTER	TABLE	t2	ADD	d	TIMESTAMP;

To	add	indexes	on	column	d	and	on	column	a:

ALTER	TABLE	t2	ADD	INDEX	(d),	ADD	INDEX	(a);

To	remove	column	c:

ALTER	TABLE	t2	DROP	COLUMN	c;

To	add	a	new	AUTO_INCREMENT	integer	column	named	c:

ALTER	TABLE	t2	ADD	c	INT	UNSIGNED	NOT	NULL	AUTO_INCREMENT,

		ADD	PRIMARY	KEY	(c);

Note	that	we	indexed	c	(as	a	PRIMARY	KEY),	because	AUTO_INCREMENT	columns
must	be	indexed,	and	also	that	we	declare	c	as	NOT	NULL,	because	primary	key
columns	cannot	be	NULL.

When	you	add	an	AUTO_INCREMENT	column,	column	values	are	filled	in	with
sequence	numbers	for	you	automatically.	For	MyISAM	tables,	you	can	set	the	first

sequence	number	by	executing	SET	INSERT_ID=value	before	ALTER	TABLE	or	by
using	the	AUTO_INCREMENT=value	table	option.	See	Section	13.5.3,	“SET
Syntax”.

From	MySQL	5.0.3,	you	can	use	the	ALTER	TABLE	...	AUTO_INCREMENT=value
table	option	for	InnoDB	tables	to	set	the	sequence	number	for	new	rows	if	the
value	is	greater	than	the	maximum	value	in	the	AUTO_INCREMENT	column.	If	the
value	is	less	than	the	current	maximum	value	in	the	column,	no	error	message	is
given	and	the	current	sequence	value	is	not	changed.

With	MyISAM	tables,	if	you	do	not	change	the	AUTO_INCREMENT	column,	the
sequence	number	is	not	affected.	If	you	drop	an	AUTO_INCREMENT	column	and
then	add	another	AUTO_INCREMENT	column,	the	numbers	are	resequenced
beginning	with	1.

When	replication	is	used,	adding	an	AUTO_INCREMENT	column	to	a	table	might
not	produce	the	same	ordering	of	the	rows	on	the	slave	and	the	master.	This
occurs	because	the	order	in	which	the	rows	are	numbered	depends	on	the
specific	storage	engine	used	for	the	table	and	the	order	in	which	the	rows	were
inserted.	If	it	is	important	to	have	the	same	order	on	the	master	and	slave,	the
rows	must	be	ordered	before	assigning	an	AUTO_INCREMENT	number.	Assuming
that	you	want	to	add	an	AUTO_INCREMENT	column	to	the	table	t1,	the	following
statements	produce	a	new	table	t2	identical	to	t1	but	with	an	AUTO_INCREMENT
column:

CREATE	TABLE	t2	(id	INT	AUTO_INCREMENT	PRIMARY	KEY)	

SELECT	*	FROM	t1	ORDER	BY	col1,	col2;

This	assumes	that	the	table	t1	has	columns	col1	and	col2.

This	set	of	statements	will	also	produce	a	new	table	t2	identical	to	t1,	with	the
addition	of	an	AUTO_INCREMENT	column:

CREATE	TABLE	t2	LIKE	t1;

ALTER	TABLE	T2	ADD	id	INT	AUTO_INCREMENT	PRIMARY	KEY;

INSERT	INTO	t2	SELECT	*	FROM	t1	ORDER	BY	col1,	col2;

Important:	To	guarantee	the	same	ordering	on	both	master	and	slave,	all
columns	of	t1	must	be	referenced	in	the	ORDER	BY	clause.

Regardless	of	the	method	used	to	create	and	populate	the	copy	having	the

AUTO_INCREMENT	column,	the	final	step	is	to	drop	the	original	table	and	then
rename	the	copy:

DROP	t1;

ALTER	TABLE	t2	RENAME	t1;

See	also	Section	A.7.1,	“Problems	with	ALTER	TABLE”.

13.1.3.	CREATE	DATABASE	Syntax

CREATE	{DATABASE	|	SCHEMA}	[IF	NOT	EXISTS]	db_name

				[create_specification	[,	create_specification]	...]

create_specification:

				[DEFAULT]	CHARACTER	SET	charset_name

		|	[DEFAULT]	COLLATE	collation_name

CREATE	DATABASE	creates	a	database	with	the	given	name.	To	use	this	statement,
you	need	the	CREATE	privilege	for	the	database.	CREATE	SCHEMA	is	a	synonym	for
CREATE	DATABASE	as	of	MySQL	5.0.2.

An	error	occurs	if	the	database	exists	and	you	did	not	specify	IF	NOT	EXISTS.

create_specification	options	specify	database	characteristics.	Database
characteristics	are	stored	in	the	db.opt	file	in	the	database	directory.	The
CHARACTER	SET	clause	specifies	the	default	database	character	set.	The	COLLATE
clause	specifies	the	default	database	collation.	Chapter	10,	Character	Set
Support,	discusses	character	set	and	collation	names.

A	database	in	MySQL	is	implemented	as	a	directory	containing	files	that
correspond	to	tables	in	the	database.	Because	there	are	no	tables	in	a	database
when	it	is	initially	created,	the	CREATE	DATABASE	statement	creates	only	a
directory	under	the	MySQL	data	directory	and	the	db.opt	file.	Rules	for
allowable	database	names	are	given	in	Section	9.2,	“Database,	Table,	Index,
Column,	and	Alias	Names”.

If	you	manually	create	a	directory	under	the	data	directory	(for	example,	with
mkdir),	the	server	considers	it	a	database	directory	and	it	shows	up	in	the	output
of	SHOW	DATABASES.

You	can	also	use	the	mysqladmin	program	to	create	databases.	See	Section	8.9,

“mysqladmin	—	Client	for	Administering	a	MySQL	Server”.

13.1.4.	CREATE	INDEX	Syntax

CREATE	[UNIQUE|FULLTEXT|SPATIAL]	INDEX	index_name

				[index_type]

				ON	tbl_name	(index_col_name,...)

index_col_name:

				col_name	[(length)]	[ASC	|	DESC]

index_type:

				USING	{BTREE	|	HASH}

CREATE	INDEX	is	mapped	to	an	ALTER	TABLE	statement	to	create	indexes.	See
Section	13.1.2,	“ALTER	TABLE	Syntax”.	For	more	information	about	indexes,	see
Section	7.4.5,	“How	MySQL	Uses	Indexes”.

Normally,	you	create	all	indexes	on	a	table	at	the	time	the	table	itself	is	created
with	CREATE	TABLE.	See	Section	13.1.5,	“CREATE	TABLE	Syntax”.	CREATE	INDEX
enables	you	to	add	indexes	to	existing	tables.

A	column	list	of	the	form	(col1,col2,...)	creates	a	multiple-column	index.
Index	values	are	formed	by	concatenating	the	values	of	the	given	columns.

For	CHAR,	VARCHAR,	BINARY,	and	VARBINARY	columns,	indexes	can	be	created	that
use	only	the	leading	part	of	column	values,	using	col_name(length)	syntax	to
specify	an	index	prefix	length.	BLOB	and	TEXT	columns	also	can	be	indexed,	but	a
prefix	length	must	be	given.	Prefix	lengths	are	given	in	characters	for	non-binary
string	types	and	in	bytes	for	binary	string	types.	That	is,	index	entries	consist	of
the	first	length	characters	of	each	column	value	for	CHAR,	VARCHAR,	and	TEXT
columns,	and	the	first	length	bytes	of	each	column	value	for	BINARY,
VARBINARY,	and	BLOB	columns.

The	statement	shown	here	creates	an	index	using	the	first	10	characters	of	the
name	column:

CREATE	INDEX	part_of_name	ON	customer	(name(10));

If	names	in	the	column	usually	differ	in	the	first	10	characters,	this	index	should
not	be	much	slower	than	an	index	created	from	the	entire	name	column.	Also,
using	partial	columns	for	indexes	can	make	the	index	file	much	smaller,	which

could	save	a	lot	of	disk	space	and	might	also	speed	up	INSERT	operations.

Prefixes	can	be	up	to	1000	bytes	long	(767	bytes	for	InnoDB	tables).	Note	that
prefix	limits	are	measured	in	bytes,	whereas	the	prefix	length	in	CREATE	INDEX
statements	is	interpreted	as	number	of	characters	for	non-binary	data	types
(CHAR,	VARCHAR,	TEXT).	Take	this	into	account	when	specifying	a	prefix	length	for
a	column	that	uses	a	multi-byte	character	set.

A	UNIQUE	index	creates	a	constraint	such	that	all	values	in	the	index	must	be
distinct.	An	error	occurs	if	you	try	to	add	a	new	row	with	a	key	value	that
matches	an	existing	row.	This	constraint	does	not	apply	to	NULL	values	except	for
the	BDB	storage	engine.	For	other	engines,	a	UNIQUE	index	allows	multiple	NULL
values	for	columns	that	can	contain	NULL.

FULLTEXT	indexes	are	supported	only	for	MyISAM	tables	and	can	include	only
CHAR,	VARCHAR,	and	TEXT	columns.	Indexing	always	happens	over	the	entire
column;	partial	indexing	is	not	supported	and	any	prefix	length	is	ignored	if
specified.	See	Section	12.7,	“Full-Text	Search	Functions”,	for	details	of
operation.

SPATIAL	indexes	are	supported	only	for	MyISAM	tables	and	can	include	only
spatial	columns	that	are	defined	as	NOT	NULL.	Chapter	16,	Spatial	Extensions,
describes	the	spatial	data	types.

In	MySQL	5.0:

You	can	add	an	index	on	a	column	that	can	have	NULL	values	only	if	you	are
using	the	MyISAM,	InnoDB,	BDB,	or	MEMORY	storage	engine.

You	can	add	an	index	on	a	BLOB	or	TEXT	column	only	if	you	are	using	the
MyISAM,	BDB,	or	InnoDB	storage	engine.

An	index_col_name	specification	can	end	with	ASC	or	DESC.	These	keywords	are
allowed	for	future	extensions	for	specifying	ascending	or	descending	index	value
storage.	Currently,	they	are	parsed	but	ignored;	index	values	are	always	stored	in
ascending	order.

Some	storage	engines	allow	you	to	specify	an	index	type	when	creating	an
index.	The	allowable	index	type	values	supported	by	different	storage	engines
are	shown	in	the	following	table.	Where	multiple	index	types	are	listed,	the	first

one	is	the	default	when	no	index	type	specifier	is	given.

Storage	Engine Allowable	Index	Types
MyISAM BTREE

InnoDB BTREE

MEMORY/HEAP HASH,	BTREE

If	you	specify	an	index	type	that	is	not	legal	for	a	given	storage	engine,	but	there
is	another	index	type	available	that	the	engine	can	use	without	affecting	query
results,	the	engine	uses	the	available	type.

Examples:

CREATE	TABLE	lookup	(id	INT)	ENGINE	=	MEMORY;

CREATE	INDEX	id_index	USING	BTREE	ON	lookup	(id);

TYPE	type_name	is	recognized	as	a	synonym	for	USING	type_name.	However,
USING	is	the	preferred	form.

13.1.5.	CREATE	TABLE	Syntax

CREATE	[TEMPORARY]	TABLE	[IF	NOT	EXISTS]	tbl_name

				(create_definition,...)

				[table_option	...]

Or:

CREATE	[TEMPORARY]	TABLE	[IF	NOT	EXISTS]	tbl_name

				[(create_definition,...)]

				[table_option	...]

				select_statement

Or:

CREATE	[TEMPORARY]	TABLE	[IF	NOT	EXISTS]	tbl_name

				{	LIKE	old_tbl_name	|	(LIKE	old_tbl_name)	}

create_definition:

				column_definition

		|	[CONSTRAINT	[symbol]]	PRIMARY	KEY	[index_type]	(index_col_name,...)

		|	{INDEX|KEY}	[index_name]	[index_type]	(index_col_name,...)

		|	[CONSTRAINT	[symbol]]	UNIQUE	[INDEX|KEY]

						[index_name]	[index_type]	(index_col_name,...)

		|	{FULLTEXT|SPATIAL}	[INDEX|KEY]	[index_name]	(index_col_name,...)

		|	[CONSTRAINT	[symbol]]	FOREIGN	KEY

						[index_name]	(index_col_name,...)	[reference_definition]

		|	CHECK	(expr)

column_definition:

				col_name	data_type	[NOT	NULL	|	NULL]	[DEFAULT	default_value]

						[AUTO_INCREMENT]	[UNIQUE	[KEY]	|	[PRIMARY]	KEY]

						[COMMENT	'string']	[reference_definition]

data_type:

				BIT[(length)]

		|	TINYINT[(length)]	[UNSIGNED]	[ZEROFILL]

		|	SMALLINT[(length)]	[UNSIGNED]	[ZEROFILL]

		|	MEDIUMINT[(length)]	[UNSIGNED]	[ZEROFILL]

		|	INT[(length)]	[UNSIGNED]	[ZEROFILL]

		|	INTEGER[(length)]	[UNSIGNED]	[ZEROFILL]

		|	BIGINT[(length)]	[UNSIGNED]	[ZEROFILL]

		|	REAL[(length,decimals)]	[UNSIGNED]	[ZEROFILL]

		|	DOUBLE[(length,decimals)]	[UNSIGNED]	[ZEROFILL]

		|	FLOAT[(length,decimals)]	[UNSIGNED]	[ZEROFILL]

		|	DECIMAL(length,decimals)	[UNSIGNED]	[ZEROFILL]

		|	NUMERIC(length,decimals)	[UNSIGNED]	[ZEROFILL]

		|	DATE

		|	TIME

		|	TIMESTAMP

		|	DATETIME

		|	YEAR

		|	CHAR(length)

						[CHARACTER	SET	charset_name]	[COLLATE	collation_name]

		|	VARCHAR(length)

						[CHARACTER	SET	charset_name]	[COLLATE	collation_name]

		|	BINARY(length)

		|	VARBINARY(length)

		|	TINYBLOB

		|	BLOB

		|	MEDIUMBLOB

		|	LONGBLOB

		|	TINYTEXT	[BINARY]

						[CHARACTER	SET	charset_name]	[COLLATE	collation_name]

		|	TEXT	[BINARY]

						[CHARACTER	SET	charset_name]	[COLLATE	collation_name]

		|	MEDIUMTEXT	[BINARY]

						[CHARACTER	SET	charset_name]	[COLLATE	collation_name]

		|	LONGTEXT	[BINARY]

						[CHARACTER	SET	charset_name]	[COLLATE	collation_name]

		|	ENUM(value1,value2,value3,...)

						[CHARACTER	SET	charset_name]	[COLLATE	collation_name]

		|	SET(value1,value2,value3,...)

						[CHARACTER	SET	charset_name]	[COLLATE	collation_name]

		|	spatial_type

index_col_name:

				col_name	[(length)]	[ASC	|	DESC]

index_type:

				USING	{BTREE	|	HASH}

reference_definition:

				REFERENCES	tbl_name	[(index_col_name,...)]

						[MATCH	FULL	|	MATCH	PARTIAL	|	MATCH	SIMPLE]

						[ON	DELETE	reference_option]

						[ON	UPDATE	reference_option]

reference_option:

				RESTRICT	|	CASCADE	|	SET	NULL	|	NO	ACTION

table_option:

				{ENGINE|TYPE}	[=]	engine_name

		|	AUTO_INCREMENT	[=]	value

		|	AVG_ROW_LENGTH	[=]	value

		|	[DEFAULT]	CHARACTER	SET	charset_name

		|	CHECKSUM	[=]	{0	|	1}

		|	COLLATE	collation_name

		|	COMMENT	[=]	'string'

		|	CONNECTION	[=]	'connect_string'

		|	DATA	DIRECTORY	[=]	'absolute	path	to	directory'

		|	DELAY_KEY_WRITE	[=]	{0	|	1}

		|	INDEX	DIRECTORY	[=]	'absolute	path	to	directory'

		|	INSERT_METHOD	[=]	{	NO	|	FIRST	|	LAST	}

		|	MAX_ROWS	[=]	value

		|	MIN_ROWS	[=]	value

		|	PACK_KEYS	[=]	{0	|	1	|	DEFAULT}

		|	PASSWORD	[=]	'string'

		|	ROW_FORMAT	[=]	{DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT}

		|	UNION	[=]	(tbl_name[,tbl_name]...)

select_statement:

				[IGNORE	|	REPLACE]	[AS]	SELECT	...			(Some	legal	select	statement

CREATE	TABLE	creates	a	table	with	the	given	name.	You	must	have	the	CREATE
privilege	for	the	table.

Rules	for	allowable	table	names	are	given	in	Section	9.2,	“Database,	Table,
Index,	Column,	and	Alias	Names”.	By	default,	the	table	is	created	in	the	default
database.	An	error	occurs	if	the	table	exists,	if	there	is	no	default	database,	or	if
the	database	does	not	exist.

The	table	name	can	be	specified	as	db_name.tbl_name	to	create	the	table	in	a
specific	database.	This	works	regardless	of	whether	there	is	a	default	database,
assuming	that	the	database	exists.	If	you	use	quoted	identifiers,	quote	the
database	and	table	names	separately.	For	example,	write	`mydb`.`mytbl`,	not
`mydb.mytbl`.

You	can	use	the	TEMPORARY	keyword	when	creating	a	table.	A	TEMPORARY	table	is
visible	only	to	the	current	connection,	and	is	dropped	automatically	when	the
connection	is	closed.	This	means	that	two	different	connections	can	use	the	same
temporary	table	name	without	conflicting	with	each	other	or	with	an	existing
non-TEMPORARY	table	of	the	same	name.	(The	existing	table	is	hidden	until	the
temporary	table	is	dropped.)	To	create	temporary	tables,	you	must	have	the
CREATE	TEMPORARY	TABLES	privilege.

The	keywords	IF	NOT	EXISTS	prevent	an	error	from	occurring	if	the	table	exists.
However,	there	is	no	verification	that	the	existing	table	has	a	structure	identical
to	that	indicated	by	the	CREATE	TABLE	statement.	Note:	If	you	use	IF	NOT
EXISTS	in	a	CREATE	TABLE	...	SELECT	statement,	any	rows	selected	by	the
SELECT	part	are	inserted	regardless	of	whether	the	table	already	exists.

MySQL	represents	each	table	by	an	.frm	table	format	(definition)	file	in	the
database	directory.	The	storage	engine	for	the	table	might	create	other	files	as
well.	In	the	case	of	MyISAM	tables,	the	storage	engine	creates	data	and	index	files.
Thus,	for	each	MyISAM	table	tbl_name,	there	are	three	disk	files:

File Purpose
tbl_name.frm Table	format	(definition)	file
tbl_name.MYD Data	file
tbl_name.MYI Index	file

Chapter	14,	Storage	Engines	and	Table	Types,	describes	what	files	each	storage
engine	creates	to	represent	tables.

data_type	represents	the	data	type	is	a	column	definition.	spatial_type
represents	a	spatial	data	type.	For	general	information	on	the	properties	of	data
types	other	than	the	spatial	types,	see	Chapter	11,	Data	Types.	For	information
about	spatial	data	types,	see	Chapter	16,	Spatial	Extensions.

Some	attributes	do	not	apply	to	all	data	types.	AUTO_INCREMENT	applies	only	to
integer	types.	DEFAULT	does	not	apply	to	the	BLOB	or	TEXT	types.

If	neither	NULL	nor	NOT	NULL	is	specified,	the	column	is	treated	as	though
NULL	had	been	specified.

An	integer	column	can	have	the	additional	attribute	AUTO_INCREMENT.	When
you	insert	a	value	of	NULL	(recommended)	or	0	into	an	indexed
AUTO_INCREMENT	column,	the	column	is	set	to	the	next	sequence	value.
Typically	this	is	value+1,	where	value	is	the	largest	value	for	the	column
currently	in	the	table.	AUTO_INCREMENT	sequences	begin	with	1.

To	retrieve	an	AUTO_INCREMENT	value	after	inserting	a	row,	use	the
LAST_INSERT_ID()	SQL	function	or	the	mysql_insert_id()	C	API
function.	See	Section	12.9.3,	“Information	Functions”,	and
Section	22.2.3.36,	“mysql_insert_id()”.

If	the	NO_AUTO_VALUE_ON_ZERO	SQL	mode	is	enabled,	you	can	store	0	in
AUTO_INCREMENT	columns	as	0	without	generating	a	new	sequence	value.
See	Section	5.2.5,	“The	Server	SQL	Mode”.

Note:	There	can	be	only	one	AUTO_INCREMENT	column	per	table,	it	must	be
indexed,	and	it	cannot	have	a	DEFAULT	value.	An	AUTO_INCREMENT	column
works	properly	only	if	it	contains	only	positive	values.	Inserting	a	negative
number	is	regarded	as	inserting	a	very	large	positive	number.	This	is	done
to	avoid	precision	problems	when	numbers	“wrap”	over	from	positive	to
negative	and	also	to	ensure	that	you	do	not	accidentally	get	an
AUTO_INCREMENT	column	that	contains	0.

For	MyISAM	and	BDB	tables,	you	can	specify	an	AUTO_INCREMENT	secondary
column	in	a	multiple-column	key.	See	Section	3.6.9,	“Using
AUTO_INCREMENT”.

To	make	MySQL	compatible	with	some	ODBC	applications,	you	can	find
the	AUTO_INCREMENT	value	for	the	last	inserted	row	with	the	following
query:

SELECT	*	FROM	tbl_name	WHERE	auto_col	IS	NULL

For	information	about	InnoDB	and	AUTO_INCREMENT,	see	Section	14.2.6.3,

“How	AUTO_INCREMENT	Columns	Work	in	InnoDB”.

The	attribute	SERIAL	is	an	alias	for	BIGINT	UNSIGNED	NOT	NULL
AUTO_INCREMENT	UNIQUE.

Character	data	types	(CHAR,	VARCHAR,	TEXT)	can	include	CHARACTER	SET	and
COLLATE	attributes	to	specify	the	character	set	and	collation	for	the	column.
For	details,	see	Chapter	10,	Character	Set	Support.	CHARSET	is	a	synonym
for	CHARACTER	SET.	Example:

CREATE	TABLE	t	(c	CHAR(20)	CHARACTER	SET	utf8	COLLATE	utf8_bin);

MySQL	5.0	interprets	length	specifications	in	character	column	definitions
in	characters.	(Versions	before	MySQL	4.1	interpreted	them	in	bytes.)
Lengths	for	BINARY	and	VARBINARY	are	in	bytes.

	The	DEFAULT	clause	specifies	a	default	value	for	a	column.	With	one
exception,	the	default	value	must	be	a	constant;	it	cannot	be	a	function	or	an
expression.	This	means,	for	example,	that	you	cannot	set	the	default	for	a
date	column	to	be	the	value	of	a	function	such	as	NOW()	or	CURRENT_DATE.
The	exception	is	that	you	can	specify	CURRENT_TIMESTAMP	as	the	default	for
a	TIMESTAMP	column.	See	Section	11.3.1.1,	“TIMESTAMP	Properties	as	of
MySQL	4.1”.

If	a	column	definition	includes	no	explicit	DEFAULT	value,	MySQL
determines	the	default	value	as	described	in	Section	11.1.4,	“Data	Type
Default	Values”.

BLOB	and	TEXT	columns	cannot	be	assigned	a	default	value.

	A	comment	for	a	column	can	be	specified	with	the	COMMENT	option,	up	to
255	characters	long.	The	comment	is	displayed	by	the	SHOW	CREATE	TABLE
and	SHOW	FULL	COLUMNS	statements.

KEY	is	normally	a	synonym	for	INDEX.	The	key	attribute	PRIMARY	KEY	can
also	be	specified	as	just	KEY	when	given	in	a	column	definition.	This	was
implemented	for	compatibility	with	other	database	systems.

A	UNIQUE	index	creates	a	constraint	such	that	all	values	in	the	index	must	be
distinct.	An	error	occurs	if	you	try	to	add	a	new	row	with	a	key	value	that

matches	an	existing	row.	This	constraint	does	not	apply	to	NULL	values
except	for	the	BDB	storage	engine.	For	other	engines,	a	UNIQUE	index	allows
multiple	NULL	values	for	columns	that	can	contain	NULL.

	A	PRIMARY	KEY	is	a	unique	index	where	all	key	columns	must	be	defined	as
NOT	NULL.	If	they	are	not	explicitly	declared	as	NOT	NULL,	MySQL	declares
them	so	implicitly	(and	silently).	A	table	can	have	only	one	PRIMARY	KEY.	If
you	do	not	have	a	PRIMARY	KEY	and	an	application	asks	for	the	PRIMARY
KEY	in	your	tables,	MySQL	returns	the	first	UNIQUE	index	that	has	no	NULL
columns	as	the	PRIMARY	KEY.

In	InnoDB	tables,	having	a	long	PRIMARY	KEY	wastes	a	lot	of	space.	(See
Section	14.2.13,	“InnoDB	Table	and	Index	Structures”.)

In	the	created	table,	a	PRIMARY	KEY	is	placed	first,	followed	by	all	UNIQUE
indexes,	and	then	the	non-unique	indexes.	This	helps	the	MySQL	optimizer
to	prioritize	which	index	to	use	and	also	more	quickly	to	detect	duplicated
UNIQUE	keys.

A	PRIMARY	KEY	can	be	a	multiple-column	index.	However,	you	cannot
create	a	multiple-column	index	using	the	PRIMARY	KEY	key	attribute	in	a
column	specification.	Doing	so	only	marks	that	single	column	as	primary.
You	must	use	a	separate	PRIMARY	KEY(index_col_name,	...)	clause.

	If	a	PRIMARY	KEY	or	UNIQUE	index	consists	of	only	one	column	that	has	an
integer	type,	you	can	also	refer	to	the	column	as	_rowid	in	SELECT
statements.

In	MySQL,	the	name	of	a	PRIMARY	KEY	is	PRIMARY.	For	other	indexes,	if
you	do	not	assign	a	name,	the	index	is	assigned	the	same	name	as	the	first
indexed	column,	with	an	optional	suffix	(_2,	_3,	...)	to	make	it	unique.
You	can	see	index	names	for	a	table	using	SHOW	INDEX	FROM	tbl_name.	See
Section	13.5.4.13,	“SHOW	INDEX	Syntax”.

Some	storage	engines	allow	you	to	specify	an	index	type	when	creating	an
index.	The	syntax	for	the	index_type	specifier	is	USING	type_name.

Example:

CREATE	TABLE	lookup

		(id	INT,	INDEX	USING	BTREE	(id))

		ENGINE	=	MEMORY;

For	details	about	USING,	see	Section	13.1.4,	“CREATE	INDEX	Syntax”.

For	more	information	about	indexes,	see	Section	7.4.5,	“How	MySQL	Uses
Indexes”.

	In	MySQL	5.0,	only	the	MyISAM,	InnoDB,	BDB,	and	MEMORY	storage	engines
support	indexes	on	columns	that	can	have	NULL	values.	In	other	cases,	you
must	declare	indexed	columns	as	NOT	NULL	or	an	error	results.

For	CHAR,	VARCHAR,	BINARY,	and	VARBINARY	columns,	indexes	can	be	created
that	use	only	the	leading	part	of	column	values,	using	col_name(length)
syntax	to	specify	an	index	prefix	length.	BLOB	and	TEXT	columns	also	can	be
indexed,	but	a	prefix	length	must	be	given.	Prefix	lengths	are	given	in
characters	for	non-binary	string	types	and	in	bytes	for	binary	string	types.
That	is,	index	entries	consist	of	the	first	length	characters	of	each	column
value	for	CHAR,	VARCHAR,	and	TEXT	columns,	and	the	first	length	bytes	of
each	column	value	for	BINARY,	VARBINARY,	and	BLOB	columns.	Indexing
only	a	prefix	of	column	values	like	this	can	make	the	index	file	much
smaller.	See	Section	7.4.3,	“Column	Indexes”.

Only	the	MyISAM,	BDB,	and	InnoDB	storage	engines	support	indexing	on	BLOB
and	TEXT	columns.	For	example:

CREATE	TABLE	test	(blob_col	BLOB,	INDEX(blob_col(10)));

Prefixes	can	be	up	to	1000	bytes	long	(767	bytes	for	InnoDB	tables).	Note
that	prefix	limits	are	measured	in	bytes,	whereas	the	prefix	length	in	CREATE
TABLE	statements	is	interpreted	as	number	of	characters	for	non-binary	data
types	(CHAR,	VARCHAR,	TEXT).	Take	this	into	account	when	specifying	a
prefix	length	for	a	column	that	uses	a	multi-byte	character	set.

An	index_col_name	specification	can	end	with	ASC	or	DESC.	These
keywords	are	allowed	for	future	extensions	for	specifying	ascending	or
descending	index	value	storage.	Currently,	they	are	parsed	but	ignored;
index	values	are	always	stored	in	ascending	order.

When	you	use	ORDER	BY	or	GROUP	BY	on	a	TEXT	or	BLOB	column	in	a

SELECT,	the	server	sorts	values	using	only	the	initial	number	of	bytes
indicated	by	the	max_sort_length	system	variable.	See	Section	11.4.3,
“The	BLOB	and	TEXT	Types”.

You	can	create	special	FULLTEXT	indexes,	which	are	used	for	full-text
searches.	Only	the	MyISAM	storage	engine	supports	FULLTEXT	indexes.	They
can	be	created	only	from	CHAR,	VARCHAR,	and	TEXT	columns.	Indexing
always	happens	over	the	entire	column;	partial	indexing	is	not	supported
and	any	prefix	length	is	ignored	if	specified.	See	Section	12.7,	“Full-Text
Search	Functions”,	for	details	of	operation.

You	can	create	SPATIAL	indexes	on	spatial	data	types.	Spatial	types	are
supported	only	for	MyISAM	tables	and	indexed	columns	must	be	declared	as
NOT	NULL.	See	Chapter	16,	Spatial	Extensions.

InnoDB	tables	support	checking	of	foreign	key	constraints.	See
Section	14.2,	“The	InnoDB	Storage	Engine”.	Note	that	the	FOREIGN	KEY
syntax	in	InnoDB	is	more	restrictive	than	the	syntax	presented	for	the
CREATE	TABLE	statement	at	the	beginning	of	this	section:	The	columns	of
the	referenced	table	must	always	be	explicitly	named.	InnoDB	supports	both
ON	DELETE	and	ON	UPDATE	actions	on	foreign	keys.	For	the	precise	syntax,
see	Section	14.2.6.4,	“FOREIGN	KEY	Constraints”.

For	other	storage	engines,	MySQL	Server	parses	and	ignores	the	FOREIGN
KEY	and	REFERENCES	syntax	in	CREATE	TABLE	statements.	The	CHECK	clause
is	parsed	but	ignored	by	all	storage	engines.	See	Section	1.9.5.5,	“Foreign
Keys”.

For	MyISAM	tables,	each	NULL	column	takes	one	bit	extra,	rounded	up	to	the
nearest	byte.	The	maximum	row	length	in	bytes	can	be	calculated	as
follows:

row	length	=	1

													+	(sum	of	column	lengths)

													+	(number	of	NULL	columns	+	delete_flag	+	7)/8

													+	(number	of	variable-length	columns)

delete_flag	is	1	for	tables	with	static	row	format.	Static	tables	use	a	bit	in
the	row	record	for	a	flag	that	indicates	whether	the	row	has	been	deleted.
delete_flag	is	0	for	dynamic	tables	because	the	flag	is	stored	in	the

dynamic	row	header.

These	calculations	do	not	apply	for	InnoDB	tables,	for	which	storage	size	is
no	different	for	NULL	columns	than	for	NOT	NULL	columns.

The	ENGINE	table	option	specifies	the	storage	engine	for	the	table.	TYPE	is	a
synonym,	but	ENGINE	is	the	preferred	option	name.

The	ENGINE	table	option	takes	the	storage	engine	names	shown	in	the	following
table.

Storage
Engine Description

ARCHIVE
The	archiving	storage	engine.	See	Section	14.8,	“The	ARCHIVE
Storage	Engine”.

BDB

Transaction-safe	tables	with	page	locking.	Also	known	as
BerkeleyDB.	See	Section	14.5,	“The	BDB	(BerkeleyDB)	Storage
Engine”.

CSV
Tables	that	store	rows	in	comma-separated	values	format.	See
Section	14.9,	“The	CSV	Storage	Engine”.

EXAMPLE
An	example	engine.	See	Section	14.6,	“The	EXAMPLE	Storage
Engine”.

FEDERATED
Storage	engine	that	accesses	remote	tables.	See	Section	14.7,
“The	FEDERATED	Storage	Engine”.

HEAP This	is	a	synonym	for	MEMORY.

ISAM

(OBSOLETE)
Not	available	in	MySQL	5.0.	If	you	are	upgrading	to	MySQL
5.0	from	a	previous	version,	you	should	convert	any	existing
ISAM	tables	to	MyISAM	before	performing	the	upgrade.

InnoDB
Transaction-safe	tables	with	row	locking	and	foreign	keys.	See
Section	14.2,	“The	InnoDB	Storage	Engine”.

MEMORY
The	data	for	this	storage	engine	is	stored	only	in	memory.	See
Section	14.4,	“The	MEMORY	(HEAP)	Storage	Engine”.

MERGE
A	collection	of	MyISAM	tables	used	as	one	table.	Also	known	as
MRG_MyISAM.	See	Section	14.3,	“The	MERGE	Storage	Engine”.

MyISAM

The	binary	portable	storage	engine	that	is	the	default	storage
engine	used	by	MySQL.	See	Section	14.1,	“The	MyISAM	Storage

Engine”.

NDBCLUSTER
Clustered,	fault-tolerant,	memory-based	tables.	Also	known	as
NDB.	See	Chapter	15,	MySQL	Cluster.

If	a	storage	engine	is	specified	that	is	not	available,	MySQL	uses	the	default
engine	instead.	Normally,	this	is	MyISAM.	For	example,	if	a	table	definition
includes	the	ENGINE=BDB	option	but	the	MySQL	server	does	not	support	BDB
tables,	the	table	is	created	as	a	MyISAM	table.	This	makes	it	possible	to	have	a
replication	setup	where	you	have	transactional	tables	on	the	master	but	tables
created	on	the	slave	are	non-transactional	(to	get	more	speed).	In	MySQL	5.0,	a
warning	occurs	if	the	storage	engine	specification	is	not	honored.

The	other	table	options	are	used	to	optimize	the	behavior	of	the	table.	In	most
cases,	you	do	not	have	to	specify	any	of	them.	These	options	apply	to	all	storage
engines	unless	otherwise	indicated.	Options	that	do	not	apply	to	a	given	storage
engine	may	be	accepted	and	remembered	as	part	of	the	table	definition.	Such
options	then	apply	if	you	later	use	ALTER	TABLE	to	convert	the	table	to	use	a
different	storage	engine.

AUTO_INCREMENT

The	initial	AUTO_INCREMENT	value	for	the	table.	In	MySQL	5.0,	this	works
for	MyISAM	and	MEMORY	tables.	It	is	also	supported	for	InnoDB	as	of	MySQL
5.0.3.	To	set	the	first	auto-increment	value	for	engines	that	do	not	support
the	AUTO_INCREMENT	table	option,	insert	a	“dummy”	row	with	a	value	one
less	than	the	desired	value	after	creating	the	table,	and	then	delete	the
dummy	row.

For	engines	that	support	the	AUTO_INCREMENT	table	option	in	CREATE	TABLE
statements,	you	can	also	use	ALTER	TABLE	tbl_name	AUTO_INCREMENT
=	N	to	reset	the	AUTO_INCREMENT	value.

AVG_ROW_LENGTH

An	approximation	of	the	average	row	length	for	your	table.	You	need	to	set
this	only	for	large	tables	with	variable-size	rows.

When	you	create	a	MyISAM	table,	MySQL	uses	the	product	of	the	MAX_ROWS
and	AVG_ROW_LENGTH	options	to	decide	how	big	the	resulting	table	is.	If	you

don't	specify	either	option,	the	maximum	size	for	a	table	is	65,536TB	of
data	(4GB	before	MySQL	5.0.6).	(If	your	operating	system	does	not
support	files	that	large,	table	sizes	are	constrained	by	the	file	size	limit.)	If
you	want	to	keep	down	the	pointer	sizes	to	make	the	index	smaller	and
faster	and	you	don't	really	need	big	files,	you	can	decrease	the	default
pointer	size	by	setting	the	myisam_data_pointer_size	system	variable,
which	was	added	in	MySQL	4.1.2.	(See	Section	5.2.2,	“Server	System
Variables”.)	If	you	want	all	your	tables	to	be	able	to	grow	above	the	default
limit	and	are	willing	to	have	your	tables	slightly	slower	and	larger	than
necessary,	you	can	increase	the	default	pointer	size	by	setting	this	variable.

[DEFAULT]	CHARACTER	SET

Specify	a	default	character	set	for	the	table.	CHARSET	is	a	synonym	for
CHARACTER	SET.

CHECKSUM

Set	this	to	1	if	you	want	MySQL	to	maintain	a	live	checksum	for	all	rows
(that	is,	a	checksum	that	MySQL	updates	automatically	as	the	table
changes).	This	makes	the	table	a	little	slower	to	update,	but	also	makes	it
easier	to	find	corrupted	tables.	The	CHECKSUM	TABLE	statement	reports	the
checksum.	(MyISAM	only.)

COLLATE

Specify	a	default	collation	for	the	table.

COMMENT

A	comment	for	the	table,	up	to	60	characters	long.

CONNECTION

The	connection	string	for	a	FEDERATED	table.	This	option	is	available	as	of
MySQL	5.0.13;	before	that,	use	a	COMMENT	option	for	the	connection	string.

DATA	DIRECTORY,	INDEX	DIRECTORY

By	using	DATA	DIRECTORY='directory'	or	INDEX	DIRECTORY='directory'

you	can	specify	where	the	MyISAM	storage	engine	should	put	a	table's	data
file	and	index	file.	The	directory	must	be	the	full	pathname	to	the	directory,
not	a	relative	path.

These	options	work	only	when	you	are	not	using	the	--skip-symbolic-
links	option.	Your	operating	system	must	also	have	a	working,	thread-safe
realpath()	call.	See	Section	7.6.1.2,	“Using	Symbolic	Links	for	Tables	on
Unix”,	for	more	complete	information.

DELAY_KEY_WRITE

Set	this	to	1	if	you	want	to	delay	key	updates	for	the	table	until	the	table	is
closed.	See	the	description	of	the	delay_key_write	system	variable	in
Section	5.2.2,	“Server	System	Variables”.	(MyISAM	only.)

INSERT_METHOD

If	you	want	to	insert	data	into	a	MERGE	table,	you	must	specify	with
INSERT_METHOD	the	table	into	which	the	row	should	be	inserted.
INSERT_METHOD	is	an	option	useful	for	MERGE	tables	only.	Use	a	value	of
FIRST	or	LAST	to	have	inserts	go	to	the	first	or	last	table,	or	a	value	of	NO	to
prevent	inserts.	See	Section	14.3,	“The	MERGE	Storage	Engine”.

MAX_ROWS

The	maximum	number	of	rows	you	plan	to	store	in	the	table.	This	is	not	a
hard	limit,	but	rather	a	hint	to	the	storage	engine	that	the	table	must	be	able
to	store	at	least	this	many	rows.

MIN_ROWS

The	minimum	number	of	rows	you	plan	to	store	in	the	table.

PACK_KEYS

PACK_KEYS	takes	effect	only	with	MyISAM	tables.	Set	this	option	to	1	if	you
want	to	have	smaller	indexes.	This	usually	makes	updates	slower	and	reads
faster.	Setting	the	option	to	0	disables	all	packing	of	keys.	Setting	it	to
DEFAULT	tells	the	storage	engine	to	pack	only	long	CHAR	or	VARCHAR
columns.

If	you	do	not	use	PACK_KEYS,	the	default	is	to	pack	strings,	but	not	numbers.
If	you	use	PACK_KEYS=1,	numbers	are	packed	as	well.

When	packing	binary	number	keys,	MySQL	uses	prefix	compression:

Every	key	needs	one	extra	byte	to	indicate	how	many	bytes	of	the
previous	key	are	the	same	for	the	next	key.

The	pointer	to	the	row	is	stored	in	high-byte-first	order	directly	after
the	key,	to	improve	compression.

This	means	that	if	you	have	many	equal	keys	on	two	consecutive	rows,	all
following	“same”	keys	usually	only	take	two	bytes	(including	the	pointer	to
the	row).	Compare	this	to	the	ordinary	case	where	the	following	keys	takes
storage_size_for_key	+	pointer_size	(where	the	pointer	size	is	usually
4).	Conversely,	you	get	a	significant	benefit	from	prefix	compression	only	if
you	have	many	numbers	that	are	the	same.	If	all	keys	are	totally	different,
you	use	one	byte	more	per	key,	if	the	key	is	not	a	key	that	can	have	NULL
values.	(In	this	case,	the	packed	key	length	is	stored	in	the	same	byte	that	is
used	to	mark	if	a	key	is	NULL.)

PASSWORD

Encrypt	the	.frm	file	with	a	password.	This	option	does	nothing	in	the
standard	MySQL	version.

ROW_FORMAT

Defines	how	the	rows	should	be	stored.	For	MyISAM	tables,	the	option	value
can	be	FIXED	or	DYNAMIC	for	static	or	variable-length	row	format.
myisampack	sets	the	type	to	COMPRESSED.	See	Section	14.1.3,	“MyISAM
Table	Storage	Formats”.

Starting	with	MySQL	5.0.3,	for	InnoDB	tables,	rows	are	stored	in	compact
format	(ROW_FORMAT=COMPACT)	by	default.	The	non-compact	format	used	in
older	versions	of	MySQL	can	still	be	requested	by	specifying
ROW_FORMAT=REDUNDANT.

RAID_TYPE

RAID	support	has	been	removed	as	of	MySQL	5.0.	For	information	on	RAID,
see	http://dev.mysql.com/doc/refman/4.1/en/create-table.html.

UNION

UNION	is	used	when	you	want	to	access	a	collection	of	identical	MyISAM
tables	as	one.	This	works	only	with	MERGE	tables.	See	Section	14.3,	“The
MERGE	Storage	Engine”.

You	must	have	SELECT,	UPDATE,	and	DELETE	privileges	for	the	tables	you
map	to	a	MERGE	table.	(Note:	Formerly,	all	tables	used	had	to	be	in	the	same
database	as	the	MERGE	table	itself.	This	restriction	no	longer	applies.)

You	can	create	one	table	from	another	by	adding	a	SELECT	statement	at	the	end
of	the	CREATE	TABLE	statement:

CREATE	TABLE	new_tbl	SELECT	*	FROM	orig_tbl;

MySQL	creates	new	columns	for	all	elements	in	the	SELECT.	For	example:

mysql>	CREATE	TABLE	test	(a	INT	NOT	NULL	AUTO_INCREMENT,

				->								PRIMARY	KEY	(a),	KEY(b))

				->								ENGINE=MyISAM	SELECT	b,c	FROM	test2;

This	creates	a	MyISAM	table	with	three	columns,	a,	b,	and	c.	Notice	that	the
columns	from	the	SELECT	statement	are	appended	to	the	right	side	of	the	table,
not	overlapped	onto	it.	Take	the	following	example:

mysql>	SELECT	*	FROM	foo;

+---+

|	n	|

+---+

|	1	|

+---+

mysql>	CREATE	TABLE	bar	(m	INT)	SELECT	n	FROM	foo;

Query	OK,	1	row	affected	(0.02	sec)

Records:	1		Duplicates:	0		Warnings:	0

mysql>	SELECT	*	FROM	bar;

+------+---+

|	m				|	n	|

+------+---+

|	NULL	|	1	|

http://dev.mysql.com/doc/refman/4.1/en/create-table.html

+------+---+

1	row	in	set	(0.00	sec)

For	each	row	in	table	foo,	a	row	is	inserted	in	bar	with	the	values	from	foo	and
default	values	for	the	new	columns.

In	a	table	resulting	from	CREATE	TABLE	...	SELECT,	columns	named	only	in	the
CREATE	TABLE	part	come	first.	Columns	named	in	both	parts	or	only	in	the
SELECT	part	come	after	that.	The	data	type	of	SELECT	columns	can	be	overridden
by	also	specifying	the	column	in	the	CREATE	TABLE	part.

If	any	errors	occur	while	copying	the	data	to	the	table,	it	is	automatically
dropped	and	not	created.

CREATE	TABLE	...	SELECT	does	not	automatically	create	any	indexes	for	you.
This	is	done	intentionally	to	make	the	statement	as	flexible	as	possible.	If	you
want	to	have	indexes	in	the	created	table,	you	should	specify	these	before	the
SELECT	statement:

mysql>	CREATE	TABLE	bar	(UNIQUE	(n))	SELECT	n	FROM	foo;

Some	conversion	of	data	types	might	occur.	For	example,	the	AUTO_INCREMENT
attribute	is	not	preserved,	and	VARCHAR	columns	can	become	CHAR	columns.

When	creating	a	table	with	CREATE	...	SELECT,	make	sure	to	alias	any	function
calls	or	expressions	in	the	query.	If	you	do	not,	the	CREATE	statement	might	fail
or	result	in	undesirable	column	names.

CREATE	TABLE	artists_and_works

		SELECT	artist.name,	COUNT(work.artist_id)	AS	number_of_works

		FROM	artist	LEFT	JOIN	work	ON	artist.id	=	work.artist_id

		GROUP	BY	artist.id;

You	can	also	explicitly	specify	the	data	type	for	a	generated	column:

CREATE	TABLE	foo	(a	TINYINT	NOT	NULL)	SELECT	b+1	AS	a	FROM	bar;

Use	LIKE	to	create	an	empty	table	based	on	the	definition	of	another	table,
including	any	column	attributes	and	indexes	defined	in	the	original	table:

CREATE	TABLE	new_tbl	LIKE	orig_tbl;

CREATE	TABLE	...	LIKE	does	not	preserve	any	DATA	DIRECTORY	or	INDEX
DIRECTORY	table	options	that	were	specified	for	the	original	table,	or	any	foreign
key	definitions.

You	can	precede	the	SELECT	by	IGNORE	or	REPLACE	to	indicate	how	to	handle
rows	that	duplicate	unique	key	values.	With	IGNORE,	new	rows	that	duplicate	an
existing	row	on	a	unique	key	value	are	discarded.	With	REPLACE,	new	rows
replace	rows	that	have	the	same	unique	key	value.	If	neither	IGNORE	nor	REPLACE
is	specified,	duplicate	unique	key	values	result	in	an	error.

To	ensure	that	the	binary	log	can	be	used	to	re-create	the	original	tables,	MySQL
does	not	allow	concurrent	inserts	during	CREATE	TABLE	...	SELECT.

13.1.5.1.	Silent	Column	Specification	Changes

In	some	cases,	MySQL	silently	changes	column	specifications	from	those	given
in	a	CREATE	TABLE	or	ALTER	TABLE	statement.	These	might	be	changes	to	a	data
type,	to	attributes	associated	with	a	data	type,	or	to	an	index	specification.

Possible	data	type	changes	are	given	in	the	following	list.	These	occur	prior	to
MySQL	5.0.3.	As	of	5.0.3,	an	error	occurs	if	a	column	cannot	be	created	using
the	specified	data	type.

VARCHAR	columns	with	a	length	less	than	four	are	changed	to	CHAR.

If	any	column	in	a	table	has	a	variable	length,	the	entire	row	becomes
variable-length	as	a	result.	Therefore,	if	a	table	contains	any	variable-length
columns	(VARCHAR,	TEXT,	or	BLOB),	all	CHAR	columns	longer	than	three
characters	are	changed	to	VARCHAR	columns.	This	does	not	affect	how	you
use	the	columns	in	any	way;	in	MySQL,	VARCHAR	is	just	a	different	way	to
store	characters.	MySQL	performs	this	conversion	because	it	saves	space
and	makes	table	operations	faster.	See	Chapter	14,	Storage	Engines	and
Table	Types.

Before	MySQL	5.0.3,	a	CHAR	or	VARCHAR	column	with	a	length	specification
greater	than	255	is	converted	to	the	smallest	TEXT	type	that	can	hold	values
of	the	given	length.	For	example,	VARCHAR(500)	is	converted	to	TEXT,	and
VARCHAR(200000)	is	converted	to	MEDIUMTEXT.	Note	that	this	conversion
results	in	a	change	in	behavior	with	regard	to	treatment	of	trailing	spaces.

Similar	conversions	occur	for	BINARY	and	VARBINARY,	except	that	they	are
converted	to	a	BLOB	type.

Starting	with	MySQL	5.0.3,	a	CHAR	or	BINARY	column	with	a	length
specification	greater	than	255	is	not	silently	converted.	Instead,	an	error
occurs.	From	MySQL	5.0.6	on,	silent	conversion	of	VARCHAR	and
VARBINARY	columns	with	a	length	specification	greater	than	65,535	does	not
occur	if	strict	SQL	mode	is	enabled.	Instead,	an	error	occurs.

For	a	specification	of	DECIMAL(M,D),	if	M	is	not	larger	than	D,	it	is	adjusted
upward.	For	example,	DECIMAL(10,10)	becomes	DECIMAL(11,10).

Other	silent	column	specification	changes	include	changes	to	attribute	or	index
specifications:

TIMESTAMP	display	sizes	are	discarded.	Note	that	TIMESTAMP	columns	have
changed	considerably	in	recent	versions	of	MySQL	prior	to	5.0;	for	a
description	of	these	changes,	see	the	MySQL	3.23,	4.0,	4.1	Reference
Manual.

Columns	that	are	part	of	a	PRIMARY	KEY	are	made	NOT	NULL	even	if	not
declared	that	way.

Trailing	spaces	are	automatically	deleted	from	ENUM	and	SET	member	values
when	the	table	is	created.

MySQL	maps	certain	data	types	used	by	other	SQL	database	vendors	to
MySQL	types.	See	Section	11.7,	“Using	Data	Types	from	Other	Database
Engines”.

If	you	include	a	USING	clause	to	specify	an	index	type	that	is	not	legal	for	a
given	storage	engine,	but	there	is	another	index	type	available	that	the
engine	can	use	without	affecting	query	results,	the	engine	uses	the	available
type.

To	see	whether	MySQL	used	a	data	type	other	than	the	one	you	specified,	issue	a
DESCRIBE	or	SHOW	CREATE	TABLE	statement	after	creating	or	altering	the	table.

Certain	other	data	type	changes	can	occur	if	you	compress	a	table	using
myisampack.	See	Section	14.1.3.3,	“Compressed	Table	Characteristics”.

13.1.6.	DROP	DATABASE	Syntax

DROP	{DATABASE	|	SCHEMA}	[IF	EXISTS]	db_name

DROP	DATABASE	drops	all	tables	in	the	database	and	deletes	the	database.	Be	very
careful	with	this	statement!	To	use	DROP	DATABASE,	you	need	the	DROP	privilege
on	the	database.	DROP	SCHEMA	is	a	synonym	for	DROP	DATABASE	as	of	MySQL
5.0.2.

IF	EXISTS	is	used	to	prevent	an	error	from	occurring	if	the	database	does	not
exist.

If	you	use	DROP	DATABASE	on	a	symbolically	linked	database,	both	the	link	and
the	original	database	are	deleted.

DROP	DATABASE	returns	the	number	of	tables	that	were	removed.	This
corresponds	to	the	number	of	.frm	files	removed.

The	DROP	DATABASE	statement	removes	from	the	given	database	directory	those
files	and	directories	that	MySQL	itself	may	create	during	normal	operation:

All	files	with	these	extensions:

.BAK .DAT .HSH .MRG

.MYD .MYI .TRG .TRN

.db .frm .ibd .ndb

All	subdirectories	with	names	that	consist	of	two	hex	digits	00-ff.	These
are	subdirectories	used	for	RAID	tables.	(These	directories	are	not	removed
as	of	MySQL	5.0,	when	support	for	RAID	tables	was	removed.	You	should
convert	any	existing	RAID	tables	and	remove	these	directories	manually
before	upgrading	to	MySQL	5.0.	See	Section	2.11.2,	“Upgrading	from
MySQL	4.1	to	5.0”.)

The	db.opt	file,	if	it	exists.

If	other	files	or	directories	remain	in	the	database	directory	after	MySQL
removes	those	just	listed,	the	database	directory	cannot	be	removed.	In	this	case,
you	must	remove	any	remaining	files	or	directories	manually	and	issue	the	DROP
DATABASE	statement	again.

You	can	also	drop	databases	with	mysqladmin.	See	Section	8.9,	“mysqladmin
—	Client	for	Administering	a	MySQL	Server”.

13.1.7.	DROP	INDEX	Syntax

DROP	INDEX	index_name	ON	tbl_name

DROP	INDEX	drops	the	index	named	index_name	from	the	table	tbl_name.	This
statement	is	mapped	to	an	ALTER	TABLE	statement	to	drop	the	index.	See
Section	13.1.2,	“ALTER	TABLE	Syntax”.

13.1.8.	DROP	TABLE	Syntax

DROP	[TEMPORARY]	TABLE	[IF	EXISTS]

				tbl_name	[,	tbl_name]	...

				[RESTRICT	|	CASCADE]

DROP	TABLE	removes	one	or	more	tables.	You	must	have	the	DROP	privilege	for
each	table.	All	table	data	and	the	table	definition	are	removed,	so	be	careful	with
this	statement!	If	any	of	the	tables	named	in	the	argument	list	do	not	exist,
MySQL	returns	an	error	indicating	by	name	which	non-existing	tables	it	was
unable	to	drop,	but	it	also	drops	all	of	the	tables	in	the	list	that	do	exist.

Use	IF	EXISTS	to	prevent	an	error	from	occurring	for	tables	that	do	not	exist.	A
NOTE	is	generated	for	each	non-existent	table	when	using	IF	EXISTS.	See
Section	13.5.4.25,	“SHOW	WARNINGS	Syntax”.

RESTRICT	and	CASCADE	are	allowed	to	make	porting	easier.	For	the	moment,	they
do	nothing.

Note:	DROP	TABLE	automatically	commits	the	current	active	transaction,	unless
you	use	the	TEMPORARY	keyword.

The	TEMPORARY	keyword	has	the	following	effects:

The	statement	drops	only	TEMPORARY	tables.

The	statement	does	not	end	an	ongoing	transaction.

No	access	rights	are	checked.	(A	TEMPORARY	table	is	visible	only	to	the

client	that	created	it,	so	no	check	is	necessary.)

Using	TEMPORARY	is	a	good	way	to	ensure	that	you	do	not	accidentally	drop	a
non-TEMPORARY	table.

13.1.9.	RENAME	TABLE	Syntax

RENAME	TABLE	tbl_name	TO	new_tbl_name

				[,	tbl_name2	TO	new_tbl_name2]	...

This	statement	renames	one	or	more	tables.

The	rename	operation	is	done	atomically,	which	means	that	no	other	thread	can
access	any	of	the	tables	while	the	rename	is	running.	For	example,	if	you	have
an	existing	table	old_table,	you	can	create	another	table	new_table	that	has	the
same	structure	but	is	empty,	and	then	replace	the	existing	table	with	the	empty
one	as	follows	(assuming	that	backup_table	does	not	already	exist):

CREATE	TABLE	new_table	(...);

RENAME	TABLE	old_table	TO	backup_table,	new_table	TO	old_table;

If	the	statement	renames	more	than	one	table,	renaming	operations	are	done
from	left	to	right.	If	you	want	to	swap	two	table	names,	you	can	do	so	like	this
(assuming	that	tmp_table	does	not	already	exist):

RENAME	TABLE	old_table	TO	tmp_table,

													new_table	TO	old_table,

													tmp_table	TO	new_table;

As	long	as	two	databases	are	on	the	same	filesystem,	you	can	use	RENAME	TABLE
to	move	a	table	from	one	database	to	another:

RENAME	TABLE	current_db.tbl_name	TO	other_db.tbl_name;

As	of	MySQL	5.0.14,	RENAME	TABLE	also	works	for	views,	as	long	as	you	do	not
try	to	rename	a	view	into	a	different	database.

When	you	execute	RENAME,	you	cannot	have	any	locked	tables	or	active
transactions.	You	must	also	have	the	ALTER	and	DROP	privileges	on	the	original
table,	and	the	CREATE	and	INSERT	privileges	on	the	new	table.

If	MySQL	encounters	any	errors	in	a	multiple-table	rename,	it	does	a	reverse

rename	for	all	renamed	tables	to	return	everything	to	its	original	state.

13.2.	Data	Manipulation	Statements

13.2.1.	DELETE	Syntax

Single-table	syntax:

DELETE	[LOW_PRIORITY]	[QUICK]	[IGNORE]	FROM	tbl_name

				[WHERE	where_condition]

				[ORDER	BY	...]

				[LIMIT	row_count]

Multiple-table	syntax:

DELETE	[LOW_PRIORITY]	[QUICK]	[IGNORE]

				tbl_name[.*]	[,	tbl_name[.*]]	...

				FROM	table_references

				[WHERE	where_condition]

Or:

DELETE	[LOW_PRIORITY]	[QUICK]	[IGNORE]

				FROM	tbl_name[.*]	[,	tbl_name[.*]]	...

				USING	table_references

				[WHERE	where_condition]

For	the	single-table	syntax,	the	DELETE	statement	deletes	rows	from	tbl_name
and	returns	the	number	of	rows	deleted.	The	WHERE	clause,	if	given,	specifies	the
conditions	that	identify	which	rows	to	delete.	With	no	WHERE	clause,	all	rows	are
deleted.	If	the	ORDER	BY	clause	is	specified,	the	rows	are	deleted	in	the	order	that
is	specified.	The	LIMIT	clause	places	a	limit	on	the	number	of	rows	that	can	be
deleted.

For	the	multiple-table	syntax,	DELETE	deletes	from	each	tbl_name	the	rows	that
satisfy	the	conditions.	In	this	case,	ORDER	BY	and	LIMIT	cannot	be	used.

where_condition	is	an	expression	that	evaluates	to	true	for	each	row	to	be
deleted.	It	is	specified	as	described	in	Section	13.2.7,	“SELECT	Syntax”.

As	stated,	a	DELETE	statement	with	no	WHERE	clause	deletes	all	rows.	A	faster
way	to	do	this,	when	you	do	not	want	to	know	the	number	of	deleted	rows,	is	to
use	TRUNCATE	TABLE.	See	Section	13.2.9,	“TRUNCATE	Syntax”.

If	you	delete	the	row	containing	the	maximum	value	for	an	AUTO_INCREMENT
column,	the	value	is	reused	later	for	a	BDB	table,	but	not	for	a	MyISAM	or	InnoDB
table.	If	you	delete	all	rows	in	the	table	with	DELETE	FROM	tbl_name	(without	a
WHERE	clause)	in	AUTOCOMMIT	mode,	the	sequence	starts	over	for	all	storage
engines	except	InnoDB	and	MyISAM.	There	are	some	exceptions	to	this	behavior
for	InnoDB	tables,	as	discussed	in	Section	14.2.6.3,	“How	AUTO_INCREMENT
Columns	Work	in	InnoDB”.

For	MyISAM	and	BDB	tables,	you	can	specify	an	AUTO_INCREMENT	secondary
column	in	a	multiple-column	key.	In	this	case,	reuse	of	values	deleted	from	the
top	of	the	sequence	occurs	even	for	MyISAM	tables.	See	Section	3.6.9,	“Using
AUTO_INCREMENT”.

The	DELETE	statement	supports	the	following	modifiers:

If	you	specify	LOW_PRIORITY,	the	server	delays	execution	of	the	DELETE
until	no	other	clients	are	reading	from	the	table.

For	MyISAM	tables,	if	you	use	the	QUICK	keyword,	the	storage	engine	does
not	merge	index	leaves	during	delete,	which	may	speed	up	some	kinds	of
delete	operations.

The	IGNORE	keyword	causes	MySQL	to	ignore	all	errors	during	the	process
of	deleting	rows.	(Errors	encountered	during	the	parsing	stage	are	processed
in	the	usual	manner.)	Errors	that	are	ignored	due	to	the	use	of	OPTION	are
returned	as	warnings.

The	speed	of	delete	operations	may	also	be	affected	by	factors	discussed	in
Section	7.2.18,	“Speed	of	DELETE	Statements”.

In	MyISAM	tables,	deleted	rows	are	maintained	in	a	linked	list	and	subsequent
INSERT	operations	reuse	old	row	positions.	To	reclaim	unused	space	and	reduce
file	sizes,	use	the	OPTIMIZE	TABLE	statement	or	the	myisamchk	utility	to
reorganize	tables.	OPTIMIZE	TABLE	is	easier,	but	myisamchk	is	faster.	See
Section	13.5.2.5,	“OPTIMIZE	TABLE	Syntax”,	and	Section	8.3,	“myisamchk	—
MyISAM	Table-Maintenance	Utility”.

The	QUICK	modifier	affects	whether	index	leaves	are	merged	for	delete
operations.	DELETE	QUICK	is	most	useful	for	applications	where	index	values	for
deleted	rows	are	replaced	by	similar	index	values	from	rows	inserted	later.	In

this	case,	the	holes	left	by	deleted	values	are	reused.

DELETE	QUICK	is	not	useful	when	deleted	values	lead	to	undef-filled	index	blocks
spanning	a	range	of	index	values	for	which	new	inserts	occur	again.	In	this	case,
use	of	QUICK	can	lead	to	wasted	space	in	the	index	that	remains	unreclaimed.
Here	is	an	example	of	such	a	scenario:

1.	 Create	a	table	that	contains	an	indexed	AUTO_INCREMENT	column.

2.	 Insert	many	rows	into	the	table.	Each	insert	results	in	an	index	value	that	is
added	to	the	high	end	of	the	index.

3.	 Delete	a	block	of	rows	at	the	low	end	of	the	column	range	using	DELETE
QUICK.

In	this	scenario,	the	index	blocks	associated	with	the	deleted	index	values
become	undef-filled	but	are	not	merged	with	other	index	blocks	due	to	the	use	of
QUICK.	They	remain	undef-filled	when	new	inserts	occur,	because	new	rows	do
not	have	index	values	in	the	deleted	range.	Furthermore,	they	remain	undef-
filled	even	if	you	later	use	DELETE	without	QUICK,	unless	some	of	the	deleted
index	values	happen	to	lie	in	index	blocks	within	or	adjacent	to	the	undef-filled
blocks.	To	reclaim	unused	index	space	under	these	circumstances,	use	OPTIMIZE
TABLE.

If	you	are	going	to	delete	many	rows	from	a	table,	it	might	be	faster	to	use
DELETE	QUICK	followed	by	OPTIMIZE	TABLE.	This	rebuilds	the	index	rather	than
performing	many	index	block	merge	operations.

The	MySQL-specific	LIMIT	row_count	option	to	DELETE	tells	the	server	the
maximum	number	of	rows	to	be	deleted	before	control	is	returned	to	the	client.
This	can	be	used	to	ensure	that	a	given	DELETE	statement	does	not	take	too	much
time.	You	can	simply	repeat	the	DELETE	statement	until	the	number	of	affected
rows	is	less	than	the	LIMIT	value.

If	the	DELETE	statement	includes	an	ORDER	BY	clause,	the	rows	are	deleted	in	the
order	specified	by	the	clause.	This	is	really	useful	only	in	conjunction	with
LIMIT.	For	example,	the	following	statement	finds	rows	matching	the	WHERE
clause,	sorts	them	by	timestamp_column,	and	deletes	the	first	(oldest)	one:

DELETE	FROM	somelog	WHERE	user	=	'jcole'

ORDER	BY	timestamp_column	LIMIT	1;

You	can	specify	multiple	tables	in	a	DELETE	statement	to	delete	rows	from	one	or
more	tables	depending	on	the	particular	condition	in	the	WHERE	clause.	However,
you	cannot	use	ORDER	BY	or	LIMIT	in	a	multiple-table	DELETE.	The
table_references	clause	lists	the	tables	involved	in	the	join.	Its	syntax	is
described	in	Section	13.2.7.1,	“JOIN	Syntax”.

For	the	first	multiple-table	syntax,	only	matching	rows	from	the	tables	listed
before	the	FROM	clause	are	deleted.	For	the	second	multiple-table	syntax,	only
matching	rows	from	the	tables	listed	in	the	FROM	clause	(before	the	USING	clause)
are	deleted.	The	effect	is	that	you	can	delete	rows	from	many	tables	at	the	same
time	and	have	additional	tables	that	are	used	only	for	searching:

DELETE	t1,	t2	FROM	t1,	t2,	t3	WHERE	t1.id=t2.id	AND	t2.id=t3.id;

Or:

DELETE	FROM	t1,	t2	USING	t1,	t2,	t3	WHERE	t1.id=t2.id	AND	t2.id=t3.id;

These	statements	use	all	three	tables	when	searching	for	rows	to	delete,	but
delete	matching	rows	only	from	tables	t1	and	t2.

The	preceding	examples	show	inner	joins	that	use	the	comma	operator,	but
multiple-table	DELETE	statements	can	use	any	type	of	join	allowed	in	SELECT
statements,	such	as	LEFT	JOIN.

The	syntax	allows	.*	after	the	table	names	for	compatibility	with	Access.

If	you	use	a	multiple-table	DELETE	statement	involving	InnoDB	tables	for	which
there	are	foreign	key	constraints,	the	MySQL	optimizer	might	process	tables	in
an	order	that	differs	from	that	of	their	parent/child	relationship.	In	this	case,	the
statement	fails	and	rolls	back.	Instead,	you	should	delete	from	a	single	table	and
rely	on	the	ON	DELETE	capabilities	that	InnoDB	provides	to	cause	the	other	tables
to	be	modified	accordingly.

Note:	If	you	provide	an	alias	for	a	table,	you	must	use	the	alias	when	referring	to
the	table:

DELETE	t1	FROM	test	AS	t1,	test2	WHERE	...

Cross-database	deletes	are	supported	for	multiple-table	deletes,	but	in	this	case,
you	must	refer	to	the	tables	without	using	aliases.	For	example:

DELETE	test1.tmp1,	test2.tmp2	FROM	test1.tmp1,	test2.tmp2	WHERE	...

Currently,	you	cannot	delete	from	a	table	and	select	from	the	same	table	in	a
subquery.

13.2.2.	DO	Syntax

DO	expr	[,	expr]	...

DO	executes	the	expressions	but	does	not	return	any	results.	In	most	respects,	DO
is	shorthand	for	SELECT	expr,	...,	but	has	the	advantage	that	it	is	slightly	faster
when	you	do	not	care	about	the	result.

DO	is	useful	primarily	with	functions	that	have	side	effects,	such	as
RELEASE_LOCK().

13.2.3.	HANDLER	Syntax

HANDLER	tbl_name	OPEN	[AS	alias]

HANDLER	tbl_name	READ	index_name	{	=	|	>=	|	<=	|	<	}	(value1,value2,...)

				[WHERE	where_condition]	[LIMIT	...]

HANDLER	tbl_name	READ	index_name	{	FIRST	|	NEXT	|	PREV	|	LAST	}

				[WHERE	where_condition]	[LIMIT	...]

HANDLER	tbl_name	READ	{	FIRST	|	NEXT	}

				[WHERE	where_condition]	[LIMIT	...]

HANDLER	tbl_name	CLOSE

The	HANDLER	statement	provides	direct	access	to	table	storage	engine	interfaces.
It	is	available	for	MyISAM	and	InnoDB	tables.

The	HANDLER	...	OPEN	statement	opens	a	table,	making	it	accessible	via
subsequent	HANDLER	...	READ	statements.	This	table	object	is	not	shared	by
other	threads	and	is	not	closed	until	the	thread	calls	HANDLER	...	CLOSE	or	the
thread	terminates.	If	you	open	the	table	using	an	alias,	further	references	to	the
open	table	with	other	HANDLER	statements	must	use	the	alias	rather	than	the	table
name.

The	first	HANDLER	...	READ	syntax	fetches	a	row	where	the	index	specified

satisfies	the	given	values	and	the	WHERE	condition	is	met.	If	you	have	a	multiple-
column	index,	specify	the	index	column	values	as	a	comma-separated	list.	Either
specify	values	for	all	the	columns	in	the	index,	or	specify	values	for	a	leftmost
prefix	of	the	index	columns.	Suppose	that	an	index	my_idx	includes	three
columns	named	col_a,	col_b,	and	col_c,	in	that	order.	The	HANDLER	statement
can	specify	values	for	all	three	columns	in	the	index,	or	for	the	columns	in	a
leftmost	prefix.	For	example:

HANDLER	...	READ	my_idx	=	(col_a_val,col_b_val,col_c_val)	...

HANDLER	...	READ	my_idx	=	(col_a_val,col_b_val)	...

HANDLER	...	READ	my_idx	=	(col_a_val)	...

To	employ	the	HANDLER	interface	to	refer	to	a	table's	PRIMARY	KEY,	use	the
quoted	identifier	`PRIMARY`:

HANDLER	tbl_name	READ	`PRIMARY`	...

The	second	HANDLER	...	READ	syntax	fetches	a	row	from	the	table	in	index
order	that	matches	the	WHERE	condition.

The	third	HANDLER	...	READ	syntax	fetches	a	row	from	the	table	in	natural	row
order	that	matches	the	WHERE	condition.	It	is	faster	than	HANDLER	tbl_name
READ	index_name	when	a	full	table	scan	is	desired.	Natural	row	order	is	the
order	in	which	rows	are	stored	in	a	MyISAM	table	data	file.	This	statement	works
for	InnoDB	tables	as	well,	but	there	is	no	such	concept	because	there	is	no
separate	data	file.

Without	a	LIMIT	clause,	all	forms	of	HANDLER	...	READ	fetch	a	single	row	if	one
is	available.	To	return	a	specific	number	of	rows,	include	a	LIMIT	clause.	It	has
the	same	syntax	as	for	the	SELECT	statement.	See	Section	13.2.7,	“SELECT
Syntax”.

HANDLER	...	CLOSE	closes	a	table	that	was	opened	with	HANDLER	...	OPEN.

HANDLER	is	a	somewhat	low-level	statement.	For	example,	it	does	not	provide
consistency.	That	is,	HANDLER	...	OPEN	does	not	take	a	snapshot	of	the	table,
and	does	not	lock	the	table.	This	means	that	after	a	HANDLER	...	OPEN	statement
is	issued,	table	data	can	be	modified	(by	the	current	thread	or	other	threads)	and
these	modifications	might	be	only	partially	visible	to	HANDLER	...	NEXT	or
HANDLER	...	PREV	scans.

There	are	several	reasons	to	use	the	HANDLER	interface	instead	of	normal	SELECT
statements:

HANDLER	is	faster	than	SELECT:

A	designated	storage	engine	handler	object	is	allocated	for	the	HANDLER
...	OPEN.	The	object	is	reused	for	subsequent	HANDLER	statements	for
that	table;	it	need	not	be	reinitialized	for	each	one.

There	is	less	parsing	involved.

There	is	no	optimizer	or	query-checking	overhead.

The	table	does	not	have	to	be	locked	between	two	handler	requests.

The	handler	interface	does	not	have	to	provide	a	consistent	look	of	the
data	(for	example,	dirty	reads	are	allowed),	so	the	storage	engine	can
use	optimizations	that	SELECT	does	not	normally	allow.

For	applications	that	use	a	low-level	ISAM-like	interface,	HANDLER	makes	it
much	easier	to	port	them	to	MySQL.

HANDLER	enables	you	to	traverse	a	database	in	a	manner	that	is	difficult	(or
even	impossible)	to	accomplish	with	SELECT.	The	HANDLER	interface	is	a
more	natural	way	to	look	at	data	when	working	with	applications	that
provide	an	interactive	user	interface	to	the	database.

13.2.4.	INSERT	Syntax

INSERT	[LOW_PRIORITY	|	DELAYED	|	HIGH_PRIORITY]	[IGNORE]

				[INTO]	tbl_name	[(col_name,...)]

				VALUES	({expr	|	DEFAULT},...),(...),...

				[ON	DUPLICATE	KEY	UPDATE	col_name=expr,	...]

Or:

INSERT	[LOW_PRIORITY	|	DELAYED	|	HIGH_PRIORITY]	[IGNORE]

				[INTO]	tbl_name

				SET	col_name={expr	|	DEFAULT},	...

				[ON	DUPLICATE	KEY	UPDATE	col_name=expr,	...]

Or:

INSERT	[LOW_PRIORITY	|	HIGH_PRIORITY]	[IGNORE]

				[INTO]	tbl_name	[(col_name,...)]

				SELECT	...

				[ON	DUPLICATE	KEY	UPDATE	col_name=expr,	...]

INSERT	inserts	new	rows	into	an	existing	table.	The	INSERT	...	VALUES	and
INSERT	...	SET	forms	of	the	statement	insert	rows	based	on	explicitly	specified
values.	The	INSERT	...	SELECT	form	inserts	rows	selected	from	another	table	or
tables.	INSERT	...	SELECT	is	discussed	further	in	Section	13.2.4.1,	“INSERT	...
SELECT	Syntax”.

You	can	use	REPLACE	instead	of	INSERT	to	overwrite	old	rows.	REPLACE	is	the
counterpart	to	INSERT	IGNORE	in	the	treatment	of	new	rows	that	contain	unique
key	values	that	duplicate	old	rows:	The	new	rows	are	used	to	replace	the	old
rows	rather	than	being	discarded.	See	Section	13.2.6,	“REPLACE	Syntax”.

tbl_name	is	the	table	into	which	rows	should	be	inserted.	The	columns	for	which
the	statement	provides	values	can	be	specified	as	follows:

You	can	provide	a	comma-separated	list	of	column	names	following	the
table	name.	In	this	case,	a	value	for	each	named	column	must	be	provided
by	the	VALUES	list	or	the	SELECT	statement.

If	you	do	not	specify	a	list	of	column	names	for	INSERT	...	VALUES	or
INSERT	...	SELECT,	values	for	every	column	in	the	table	must	be	provided
by	the	VALUES	list	or	the	SELECT	statement.	If	you	do	not	know	the	order	of
the	columns	in	the	table,	use	DESCRIBE	tbl_name	to	find	out.

The	SET	clause	indicates	the	column	names	explicitly.

Column	values	can	be	given	in	several	ways:

	If	you	are	not	running	in	strict	SQL	mode,	any	column	not	explicitly	given
a	value	is	set	to	its	default	(explicit	or	implicit)	value.	For	example,	if	you
specify	a	column	list	that	does	not	name	all	the	columns	in	the	table,
unnamed	columns	are	set	to	their	default	values.	Default	value	assignment
is	described	in	Section	11.1.4,	“Data	Type	Default	Values”.	See	also
Section	1.9.6.2,	“Constraints	on	Invalid	Data”.

If	you	want	an	INSERT	statement	to	generate	an	error	unless	you	explicitly
specify	values	for	all	columns	that	do	not	have	a	default	value,	you	should

use	strict	mode.	See	Section	5.2.5,	“The	Server	SQL	Mode”.

Use	the	keyword	DEFAULT	to	set	a	column	explicitly	to	its	default	value.
This	makes	it	easier	to	write	INSERT	statements	that	assign	values	to	all	but
a	few	columns,	because	it	enables	you	to	avoid	writing	an	incomplete
VALUES	list	that	does	not	include	a	value	for	each	column	in	the	table.
Otherwise,	you	would	have	to	write	out	the	list	of	column	names
corresponding	to	each	value	in	the	VALUES	list.

You	can	also	use	DEFAULT(col_name)	as	a	more	general	form	that	can	be
used	in	expressions	to	produce	a	given	column's	default	value.

If	both	the	column	list	and	the	VALUES	list	are	empty,	INSERT	creates	a	row
with	each	column	set	to	its	default	value:

INSERT	INTO	tbl_name	()	VALUES();

In	strict	mode,	an	error	occurs	if	any	column	doesn't	have	a	default	value.
Otherwise,	MySQL	uses	the	implicit	default	value	for	any	column	that	does
not	have	an	explicitly	defined	default.

You	can	specify	an	expression	expr	to	provide	a	column	value.	This	might
involve	type	conversion	if	the	type	of	the	expression	does	not	match	the
type	of	the	column,	and	conversion	of	a	given	value	can	result	in	different
inserted	values	depending	on	the	data	type.	For	example,	inserting	the
string	'1999.0e-2'	into	an	INT,	FLOAT,	DECIMAL(10,6),	or	YEAR	column
results	in	the	values	1999,	19.9921,	19.992100,	and	1999	being	inserted,
respectively.	The	reason	the	value	stored	in	the	INT	and	YEAR	columns	is
1999	is	that	the	string-to-integer	conversion	looks	only	at	as	much	of	the
initial	part	of	the	string	as	may	be	considered	a	valid	integer	or	year.	For	the
floating-point	and	fixed-point	columns,	the	string-to-floating-point
conversion	considers	the	entire	string	a	valid	floating-point	value.

An	expression	expr	can	refer	to	any	column	that	was	set	earlier	in	a	value
list.	For	example,	you	can	do	this	because	the	value	for	col2	refers	to	col1,
which	has	previously	been	assigned:

INSERT	INTO	tbl_name	(col1,col2)	VALUES(15,col1*2);

But	the	following	is	not	legal,	because	the	value	for	col1	refers	to	col2,

which	is	assigned	after	col1:

INSERT	INTO	tbl_name	(col1,col2)	VALUES(col2*2,15);

One	exception	involves	columns	that	contain	AUTO_INCREMENT	values.
Because	the	AUTO_INCREMENT	value	is	generated	after	other	value
assignments,	any	reference	to	an	AUTO_INCREMENT	column	in	the	assignment
returns	a	0.

INSERT	statements	that	use	VALUES	syntax	can	insert	multiple	rows.	To	do	this,
include	multiple	lists	of	column	values,	each	enclosed	within	parentheses	and
separated	by	commas.	Example:

INSERT	INTO	tbl_name	(a,b,c)	VALUES(1,2,3),(4,5,6),(7,8,9);

The	values	list	for	each	row	must	be	enclosed	within	parentheses.	The	following
statement	is	illegal	because	the	number	of	values	in	the	list	does	not	match	the
number	of	column	names:

INSERT	INTO	tbl_name	(a,b,c)	VALUES(1,2,3,4,5,6,7,8,9);

The	rows-affected	value	for	an	INSERT	can	be	obtained	using	the
mysql_affected_rows()	C	API	function.	See	Section	22.2.3.1,
“mysql_affected_rows()”.

If	you	use	an	INSERT	...	VALUES	statement	with	multiple	value	lists	or	INSERT
...	SELECT,	the	statement	returns	an	information	string	in	this	format:

Records:	100	Duplicates:	0	Warnings:	0

Records	indicates	the	number	of	rows	processed	by	the	statement.	(This	is	not
necessarily	the	number	of	rows	actually	inserted	because	Duplicates	can	be
non-zero.)	Duplicates	indicates	the	number	of	rows	that	could	not	be	inserted
because	they	would	duplicate	some	existing	unique	index	value.	Warnings
indicates	the	number	of	attempts	to	insert	column	values	that	were	problematic
in	some	way.	Warnings	can	occur	under	any	of	the	following	conditions:

Inserting	NULL	into	a	column	that	has	been	declared	NOT	NULL.	For	multiple-
row	INSERT	statements	or	INSERT	INTO	...	SELECT	statements,	the	column
is	set	to	the	implicit	default	value	for	the	column	data	type.	This	is	0	for
numeric	types,	the	empty	string	('')	for	string	types,	and	the	“zero”	value

for	date	and	time	types.	INSERT	INTO	...	SELECT	statements	are	handled
the	same	way	as	multiple-row	inserts	because	the	server	does	not	examine
the	result	set	from	the	SELECT	to	see	whether	it	returns	a	single	row.	(For	a
single-row	INSERT,	no	warning	occurs	when	NULL	is	inserted	into	a	NOT
NULL	column.	Instead,	the	statement	fails	with	an	error.)

Setting	a	numeric	column	to	a	value	that	lies	outside	the	column's	range.
The	value	is	clipped	to	the	closest	endpoint	of	the	range.

Assigning	a	value	such	as	'10.34	a'	to	a	numeric	column.	The	trailing
non-numeric	text	is	stripped	off	and	the	remaining	numeric	part	is	inserted.
If	the	string	value	has	no	leading	numeric	part,	the	column	is	set	to	0.

Inserting	a	string	into	a	string	column	(CHAR,	VARCHAR,	TEXT,	or	BLOB)	that
exceeds	the	column's	maximum	length.	The	value	is	truncated	to	the
column's	maximum	length.

Inserting	a	value	into	a	date	or	time	column	that	is	illegal	for	the	data	type.
The	column	is	set	to	the	appropriate	zero	value	for	the	type.

If	you	are	using	the	C	API,	the	information	string	can	be	obtained	by	invoking
the	mysql_info()	function.	See	Section	22.2.3.34,	“mysql_info()”.

If	INSERT	inserts	a	row	into	a	table	that	has	an	AUTO_INCREMENT	column,	you	can
find	the	value	used	for	that	column	by	using	the	SQL	LAST_INSERT_ID()
function.	From	within	the	C	API,	use	the	mysql_insert_id()	function.
However,	you	should	note	that	the	two	functions	do	not	always	behave
identically.	The	behavior	of	INSERT	statements	with	respect	to	AUTO_INCREMENT
columns	is	discussed	further	in	Section	12.9.3,	“Information	Functions”,	and
Section	22.2.3.36,	“mysql_insert_id()”.

The	INSERT	statement	supports	the	following	modifiers:

If	you	use	the	DELAYED	keyword,	the	server	puts	the	row	or	rows	to	be
inserted	into	a	buffer,	and	the	client	issuing	the	INSERT	DELAYED	statement
can	then	continue	immediately.	If	the	table	is	in	use,	the	server	holds	the
rows.	When	the	table	is	free,	the	server	begins	inserting	rows,	checking
periodically	to	see	whether	there	are	any	new	read	requests	for	the	table.	If
there	are,	the	delayed	row	queue	is	suspended	until	the	table	becomes	free
again.	See	Section	13.2.4.2,	“INSERT	DELAYED	Syntax”.

DELAYED	is	ignored	with	INSERT	...	SELECT	or	INSERT	...	ON	DUPLICATE
KEY	UPDATE.

If	you	use	the	LOW_PRIORITY	keyword,	execution	of	the	INSERT	is	delayed
until	no	other	clients	are	reading	from	the	table.	This	includes	other	clients
that	began	reading	while	existing	clients	are	reading,	and	while	the	INSERT
LOW_PRIORITY	statement	is	waiting.	It	is	possible,	therefore,	for	a	client	that
issues	an	INSERT	LOW_PRIORITY	statement	to	wait	for	a	very	long	time	(or
even	forever)	in	a	read-heavy	environment.	(This	is	in	contrast	to	INSERT
DELAYED,	which	lets	the	client	continue	at	once.	Note	that	LOW_PRIORITY
should	normally	not	be	used	with	MyISAM	tables	because	doing	so	disables
concurrent	inserts.	See	Section	7.3.3,	“Concurrent	Inserts”.

If	you	specify	HIGH_PRIORITY,	it	overrides	the	effect	of	the	--low-
priority-updates	option	if	the	server	was	started	with	that	option.	It	also
causes	concurrent	inserts	not	to	be	used.

If	you	use	the	IGNORE	keyword,	errors	that	occur	while	executing	the
INSERT	statement	are	treated	as	warnings	instead.	For	example,	without
IGNORE,	a	row	that	duplicates	an	existing	UNIQUE	index	or	PRIMARY	KEY
value	in	the	table	causes	a	duplicate-key	error	and	the	statement	is	aborted.
With	IGNORE,	the	row	still	is	not	inserted,	but	no	error	is	issued.	Data
conversions	that	would	trigger	errors	abort	the	statement	if	IGNORE	is	not
specified.	With	IGNORE,	invalid	values	are	adjusted	to	the	closest	values	and
inserted;	warnings	are	produced	but	the	statement	does	not	abort.	You	can
determine	with	the	mysql_info()	C	API	function	how	many	rows	were
actually	inserted	into	the	table.

If	you	specify	ON	DUPLICATE	KEY	UPDATE,	and	a	row	is	inserted	that	would
cause	a	duplicate	value	in	a	UNIQUE	index	or	PRIMARY	KEY,	an	UPDATE	of	the
old	row	is	performed.	See	Section	13.2.4.3,	“INSERT	...	ON	DUPLICATE
KEY	UPDATE	Syntax”.

13.2.4.1.	INSERT	...	SELECT	Syntax

INSERT	[LOW_PRIORITY	|	HIGH_PRIORITY]	[IGNORE]

				[INTO]	tbl_name	[(col_name,...)]

				SELECT	...

				[ON	DUPLICATE	KEY	UPDATE	col_name=expr,	...]

With	INSERT	...	SELECT,	you	can	quickly	insert	many	rows	into	a	table	from
one	or	many	tables.	For	example:

INSERT	INTO	tbl_temp2	(fld_id)

		SELECT	tbl_temp1.fld_order_id

		FROM	tbl_temp1	WHERE	tbl_temp1.fld_order_id	>	100;

The	following	conditions	hold	for	a	INSERT	...	SELECT	statements:

Specify	IGNORE	to	ignore	rows	that	would	cause	duplicate-key	violations.

DELAYED	is	ignored	with	INSERT	...	SELECT.

The	target	table	of	the	INSERT	statement	may	appear	in	the	FROM	clause	of
the	SELECT	part	of	the	query.	(This	was	not	possible	in	some	older	versions
of	MySQL.)	In	this	case,	MySQL	creates	a	temporary	table	to	hold	the	rows
from	the	SELECT	and	then	inserts	those	rows	into	the	target	table.

AUTO_INCREMENT	columns	work	as	usual.

To	ensure	that	the	binary	log	can	be	used	to	re-create	the	original	tables,
MySQL	does	not	allow	concurrent	inserts	for	INSERT	...	SELECT
statements.

Currently,	you	cannot	insert	into	a	table	and	select	from	the	same	table	in	a
subquery.

In	the	values	part	of	ON	DUPLICATE	KEY	UPDATE,	you	can	refer	to	columns	in
other	tables,	as	long	as	you	do	not	use	GROUP	BY	in	the	SELECT	part.	One	side
effect	is	that	you	must	qualify	non-unique	column	names	in	the	values	part.

13.2.4.2.	INSERT	DELAYED	Syntax

INSERT	DELAYED	...

The	DELAYED	option	for	the	INSERT	statement	is	a	MySQL	extension	to	standard
SQL	that	is	very	useful	if	you	have	clients	that	cannot	or	need	not	wait	for	the
INSERT	to	complete.	This	is	a	common	situation	when	you	use	MySQL	for
logging	and	you	also	periodically	run	SELECT	and	UPDATE	statements	that	take	a
long	time	to	complete.

When	a	client	uses	INSERT	DELAYED,	it	gets	an	okay	from	the	server	at	once,	and
the	row	is	queued	to	be	inserted	when	the	table	is	not	in	use	by	any	other	thread.

Another	major	benefit	of	using	INSERT	DELAYED	is	that	inserts	from	many	clients
are	bundled	together	and	written	in	one	block.	This	is	much	faster	than
performing	many	separate	inserts.

Note	that	INSERT	DELAYED	is	slower	than	a	normal	INSERT	if	the	table	is	not
otherwise	in	use.	There	is	also	the	additional	overhead	for	the	server	to	handle	a
separate	thread	for	each	table	for	which	there	are	delayed	rows.	This	means	that
you	should	use	INSERT	DELAYED	only	when	you	are	really	sure	that	you	need	it.

The	queued	rows	are	held	only	in	memory	until	they	are	inserted	into	the	table.
This	means	that	if	you	terminate	mysqld	forcibly	(for	example,	with	kill	-9)	or
if	mysqld	dies	unexpectedly,	any	queued	rows	that	have	not	been	written	to	disk
are	lost.

There	are	some	constraints	on	the	use	of	DELAYED:

INSERT	DELAYED	works	only	with	MyISAM,	MEMORY,	and	ARCHIVE	tables.	See
Section	14.1,	“The	MyISAM	Storage	Engine”,	Section	14.4,	“The	MEMORY
(HEAP)	Storage	Engine”,	and	Section	14.8,	“The	ARCHIVE	Storage	Engine”.

For	MyISAM	tables,	if	there	are	no	free	blocks	in	the	middle	of	the	data	file,
concurrent	SELECT	and	INSERT	statements	are	supported.	Under	these
circumstances,	you	very	seldom	need	to	use	INSERT	DELAYED	with	MyISAM.

INSERT	DELAYED	should	be	used	only	for	INSERT	statements	that	specify
value	lists.	The	server	ignores	DELAYED	for	INSERT	...	SELECT	or	INSERT
...	ON	DUPLICATE	KEY	UPDATE	statements.

Because	the	INSERT	DELAYED	statement	returns	immediately,	before	the
rows	are	inserted,	you	cannot	use	LAST_INSERT_ID()	to	get	the
AUTO_INCREMENT	value	that	the	statement	might	generate.

DELAYED	rows	are	not	visible	to	SELECT	statements	until	they	actually	have
been	inserted.

DELAYED	is	ignored	on	slave	replication	servers	because	it	could	cause	the
slave	to	have	different	data	than	the	master.

Pending	INSERT	DELAYED	statements	are	lost	if	a	table	is	write	locked	and
ALTER	TABLE	is	used	to	modify	the	table	structure.

The	following	describes	in	detail	what	happens	when	you	use	the	DELAYED
option	to	INSERT	or	REPLACE.	In	this	description,	the	“thread”	is	the	thread	that
received	an	INSERT	DELAYED	statement	and	“handler”	is	the	thread	that	handles
all	INSERT	DELAYED	statements	for	a	particular	table.

When	a	thread	executes	a	DELAYED	statement	for	a	table,	a	handler	thread	is
created	to	process	all	DELAYED	statements	for	the	table,	if	no	such	handler
already	exists.

The	thread	checks	whether	the	handler	has	previously	acquired	a	DELAYED
lock;	if	not,	it	tells	the	handler	thread	to	do	so.	The	DELAYED	lock	can	be
obtained	even	if	other	threads	have	a	READ	or	WRITE	lock	on	the	table.
However,	the	handler	waits	for	all	ALTER	TABLE	locks	or	FLUSH	TABLES
statements	to	finish,	to	ensure	that	the	table	structure	is	up	to	date.

The	thread	executes	the	INSERT	statement,	but	instead	of	writing	the	row	to
the	table,	it	puts	a	copy	of	the	final	row	into	a	queue	that	is	managed	by	the
handler	thread.	Any	syntax	errors	are	noticed	by	the	thread	and	reported	to
the	client	program.

The	client	cannot	obtain	from	the	server	the	number	of	duplicate	rows	or
the	AUTO_INCREMENT	value	for	the	resulting	row,	because	the	INSERT	returns
before	the	insert	operation	has	been	completed.	(If	you	use	the	C	API,	the
mysql_info()	function	does	not	return	anything	meaningful,	for	the	same
reason.)

The	binary	log	is	updated	by	the	handler	thread	when	the	row	is	inserted
into	the	table.	In	case	of	multiple-row	inserts,	the	binary	log	is	updated
when	the	first	row	is	inserted.

	Each	time	that	delayed_insert_limit	rows	are	written,	the	handler
checks	whether	any	SELECT	statements	are	still	pending.	If	so,	it	allows
these	to	execute	before	continuing.

	When	the	handler	has	no	more	rows	in	its	queue,	the	table	is	unlocked.	If
no	new	INSERT	DELAYED	statements	are	received	within
delayed_insert_timeout	seconds,	the	handler	terminates.

If	more	than	delayed_queue_size	rows	are	pending	in	a	specific	handler
queue,	the	thread	requesting	INSERT	DELAYED	waits	until	there	is	room	in
the	queue.	This	is	done	to	ensure	that	mysqld	does	not	use	all	memory	for
the	delayed	memory	queue.

The	handler	thread	shows	up	in	the	MySQL	process	list	with
delayed_insert	in	the	Command	column.	It	is	killed	if	you	execute	a	FLUSH
TABLES	statement	or	kill	it	with	KILL	thread_id.	However,	before	exiting,
it	first	stores	all	queued	rows	into	the	table.	During	this	time	it	does	not
accept	any	new	INSERT	statements	from	other	threads.	If	you	execute	an
INSERT	DELAYED	statement	after	this,	a	new	handler	thread	is	created.

Note	that	this	means	that	INSERT	DELAYED	statements	have	higher	priority
than	normal	INSERT	statements	if	there	is	an	INSERT	DELAYED	handler
running.	Other	update	statements	have	to	wait	until	the	INSERT	DELAYED
queue	is	empty,	someone	terminates	the	handler	thread	(with	KILL
thread_id),	or	someone	executes	a	FLUSH	TABLES.

The	following	status	variables	provide	information	about	INSERT	DELAYED
statements:

Status	Variable Meaning
Delayed_insert_threads Number	of	handler	threads

Delayed_writes Number	of	rows	written	with	INSERT
DELAYED

Not_flushed_delayed_rows Number	of	rows	waiting	to	be	written

You	can	view	these	variables	by	issuing	a	SHOW	STATUS	statement	or	by
executing	a	mysqladmin	extended-status	command.

13.2.4.3.	INSERT	...	ON	DUPLICATE	KEY	UPDATE	Syntax

If	you	specify	ON	DUPLICATE	KEY	UPDATE,	and	a	row	is	inserted	that	would
cause	a	duplicate	value	in	a	UNIQUE	index	or	PRIMARY	KEY,	an	UPDATE	of	the	old
row	is	performed.	For	example,	if	column	a	is	declared	as	UNIQUE	and	contains
the	value	1,	the	following	two	statements	have	identical	effect:

INSERT	INTO	table	(a,b,c)	VALUES	(1,2,3)

		ON	DUPLICATE	KEY	UPDATE	c=c+1;

UPDATE	table	SET	c=c+1	WHERE	a=1;

The	rows-affected	value	is	1	if	the	row	is	inserted	as	a	new	record	and	2	if	an
existing	record	is	updated.

If	column	b	is	also	unique,	the	INSERT	is	equivalent	to	this	UPDATE	statement
instead:

UPDATE	table	SET	c=c+1	WHERE	a=1	OR	b=2	LIMIT	1;

If	a=1	OR	b=2	matches	several	rows,	only	one	row	is	updated.	In	general,	you
should	try	to	avoid	using	an	ON	DUPLICATE	KEY	clause	on	tables	with	multiple
unique	indexes.

You	can	use	the	VALUES(col_name)	function	in	the	UPDATE	clause	to	refer	to
column	values	from	the	INSERT	portion	of	the	INSERT	...	UPDATE	statement.	In
other	words,	VALUES(col_name)	in	the	UPDATE	clause	refers	to	the	value	of
col_name	that	would	be	inserted,	had	no	duplicate-key	conflict	occurred.	This
function	is	especially	useful	in	multiple-row	inserts.	The	VALUES()	function	is
meaningful	only	in	INSERT	...	UPDATE	statements	and	returns	NULL	otherwise.
Example:

INSERT	INTO	table	(a,b,c)	VALUES	(1,2,3),(4,5,6)

		ON	DUPLICATE	KEY	UPDATE	c=VALUES(a)+VALUES(b);

That	statement	is	identical	to	the	following	two	statements:

INSERT	INTO	table	(a,b,c)	VALUES	(1,2,3)

		ON	DUPLICATE	KEY	UPDATE	c=3;

INSERT	INTO	table	(a,b,c)	VALUES	(4,5,6)

		ON	DUPLICATE	KEY	UPDATE	c=9;

The	DELAYED	option	is	ignored	when	you	use	ON	DUPLICATE	KEY	UPDATE.

13.2.5.	LOAD	DATA	INFILE	Syntax

LOAD	DATA	[LOW_PRIORITY	|	CONCURRENT]	[LOCAL]	INFILE	'file_name'

				[REPLACE	|	IGNORE]

				INTO	TABLE	tbl_name

				[FIELDS

								[TERMINATED	BY	'string']

								[[OPTIONALLY]	ENCLOSED	BY	'char']

								[ESCAPED	BY	'char']

]

				[LINES

								[STARTING	BY	'string']

								[TERMINATED	BY	'string']

]

				[IGNORE	number	LINES]

				[(col_name_or_user_var,...)]

				[SET	col_name	=	expr,...)]

The	LOAD	DATA	INFILE	statement	reads	rows	from	a	text	file	into	a	table	at	a
very	high	speed.	The	filename	must	be	given	as	a	literal	string.

LOAD	DATA	INFILE	is	the	complement	of	SELECT	...	INTO	OUTFILE.	(See
Section	13.2.7,	“SELECT	Syntax”.)	To	write	data	from	a	table	to	a	file,	use	SELECT
...	INTO	OUTFILE.	To	read	the	file	back	into	a	table,	use	LOAD	DATA	INFILE.
The	syntax	of	the	FIELDS	and	LINES	clauses	is	the	same	for	both	statements.
Both	clauses	are	optional,	but	FIELDS	must	precede	LINES	if	both	are	specified.

For	more	information	about	the	efficiency	of	INSERT	versus	LOAD	DATA	INFILE
and	speeding	up	LOAD	DATA	INFILE,	see	Section	7.2.16,	“Speed	of	INSERT
Statements”.

The	character	set	indicated	by	the	character_set_database	system	variable	is
used	to	interpret	the	information	in	the	file.	SET	NAMES	and	the	setting	of
character_set_client	do	not	affect	interpretation	of	input.

Note	that	it	is	currently	not	possible	to	load	data	files	that	use	the	ucs2	character
set.

As	of	MySQL	5.0.19,	the	character_set_filesystem	system	variable	controls
the	interpretation	of	the	filename.

You	can	also	load	data	files	by	using	the	mysqlimport	utility;	it	operates	by
sending	a	LOAD	DATA	INFILE	statement	to	the	server.	The	--local	option	causes
mysqlimport	to	read	data	files	from	the	client	host.	You	can	specify	the	--
compress	option	to	get	better	performance	over	slow	networks	if	the	client	and
server	support	the	compressed	protocol.	See	Section	8.14,	“mysqlimport	—	A
Data	Import	Program”.

If	you	use	LOW_PRIORITY,	execution	of	the	LOAD	DATA	statement	is	delayed	until
no	other	clients	are	reading	from	the	table.

If	you	specify	CONCURRENT	with	a	MyISAM	table	that	satisfies	the	condition	for
concurrent	inserts	(that	is,	it	contains	no	free	blocks	in	the	middle),	other	threads
can	retrieve	data	from	the	table	while	LOAD	DATA	is	executing.	Using	this	option
affects	the	performance	of	LOAD	DATA	a	bit,	even	if	no	other	thread	is	using	the
table	at	the	same	time.

The	LOCAL	keyword,	if	specified,	is	interpreted	with	respect	to	the	client	end	of
the	connection:

If	LOCAL	is	specified,	the	file	is	read	by	the	client	program	on	the	client	host
and	sent	to	the	server.	The	file	can	be	given	as	a	full	pathname	to	specify	its
exact	location.	If	given	as	a	relative	pathname,	the	name	is	interpreted
relative	to	the	directory	in	which	the	client	program	was	started.

If	LOCAL	is	not	specified,	the	file	must	be	located	on	the	server	host	and	is
read	directly	by	the	server.	The	server	uses	the	following	rules	to	locate	the
file:

If	the	filename	is	an	absolute	pathname,	the	server	uses	it	as	given.

If	the	filename	is	a	relative	pathname	with	one	or	more	leading
components,	the	server	searches	for	the	file	relative	to	the	server's	data
directory.

If	a	filename	with	no	leading	components	is	given,	the	server	looks	for
the	file	in	the	database	directory	of	the	default	database.

Note	that,	in	the	non-LOCAL	case,	these	rules	mean	that	a	file	named	as
./myfile.txt	is	read	from	the	server's	data	directory,	whereas	the	file	named	as
myfile.txt	is	read	from	the	database	directory	of	the	default	database.	For
example,	if	db1	is	the	default	database,	the	following	LOAD	DATA	statement	reads
the	file	data.txt	from	the	database	directory	for	db1,	even	though	the	statement
explicitly	loads	the	file	into	a	table	in	the	db2	database:

LOAD	DATA	INFILE	'data.txt'	INTO	TABLE	db2.my_table;

Windows	pathnames	are	specified	using	forward	slashes	rather	than	backslashes.
If	you	do	use	backslashes,	you	must	double	them.

For	security	reasons,	when	reading	text	files	located	on	the	server,	the	files	must

either	reside	in	the	database	directory	or	be	readable	by	all.	Also,	to	use	LOAD
DATA	INFILE	on	server	files,	you	must	have	the	FILE	privilege.	See
Section	5.8.3,	“Privileges	Provided	by	MySQL”.

Using	LOCAL	is	a	bit	slower	than	letting	the	server	access	the	files	directly,
because	the	contents	of	the	file	must	be	sent	over	the	connection	by	the	client	to
the	server.	On	the	other	hand,	you	do	not	need	the	FILE	privilege	to	load	local
files.

LOCAL	works	only	if	your	server	and	your	client	both	have	been	enabled	to	allow
it.	For	example,	if	mysqld	was	started	with	--local-infile=0,	LOCAL	does	not
work.	See	Section	5.7.4,	“Security	Issues	with	LOAD	DATA	LOCAL”.

On	Unix,	if	you	need	LOAD	DATA	to	read	from	a	pipe,	you	can	use	the	following
technique	(here	we	load	the	listing	of	the	/	directory	into	a	table):

mkfifo	/mysql/db/x/x

chmod	666	/mysql/db/x/x

find	/	-ls	>	/mysql/db/x/x

mysql	-e	"LOAD	DATA	INFILE	'x'	INTO	TABLE	x"	x

The	REPLACE	and	IGNORE	keywords	control	handling	of	input	rows	that	duplicate
existing	rows	on	unique	key	values:

If	you	specify	REPLACE,	input	rows	replace	existing	rows.	In	other	words,
rows	that	have	the	same	value	for	a	primary	key	or	unique	index	as	an
existing	row.	See	Section	13.2.6,	“REPLACE	Syntax”.

If	you	specify	IGNORE,	input	rows	that	duplicate	an	existing	row	on	a	unique
key	value	are	skipped.	If	you	do	not	specify	either	option,	the	behavior
depends	on	whether	the	LOCAL	keyword	is	specified.	Without	LOCAL,	an
error	occurs	when	a	duplicate	key	value	is	found,	and	the	rest	of	the	text	file
is	ignored.	With	LOCAL,	the	default	behavior	is	the	same	as	if	IGNORE	is
specified;	this	is	because	the	server	has	no	way	to	stop	transmission	of	the
file	in	the	middle	of	the	operation.

If	you	want	to	ignore	foreign	key	constraints	during	the	load	operation,	you	can
issue	a	SET	FOREIGN_KEY_CHECKS=0	statement	before	executing	LOAD	DATA.

If	you	use	LOAD	DATA	INFILE	on	an	empty	MyISAM	table,	all	non-unique	indexes
are	created	in	a	separate	batch	(as	for	REPAIR	TABLE).	Normally,	this	makes	LOAD

DATA	INFILE	much	faster	when	you	have	many	indexes.	In	some	extreme	cases,
you	can	create	the	indexes	even	faster	by	turning	them	off	with	ALTER	TABLE
...	DISABLE	KEYS	before	loading	the	file	into	the	table	and	using	ALTER	TABLE
...	ENABLE	KEYS	to	re-create	the	indexes	after	loading	the	file.	See
Section	7.2.16,	“Speed	of	INSERT	Statements”.

For	both	the	LOAD	DATA	INFILE	and	SELECT	...	INTO	OUTFILE	statements,	the
syntax	of	the	FIELDS	and	LINES	clauses	is	the	same.	Both	clauses	are	optional,
but	FIELDS	must	precede	LINES	if	both	are	specified.

If	you	specify	a	FIELDS	clause,	each	of	its	subclauses	(TERMINATED	BY,
[OPTIONALLY]	ENCLOSED	BY,	and	ESCAPED	BY)	is	also	optional,	except	that	you
must	specify	at	least	one	of	them.

If	you	specify	no	FIELDS	clause,	the	defaults	are	the	same	as	if	you	had	written
this:

FIELDS	TERMINATED	BY	'\t'	ENCLOSED	BY	''	ESCAPED	BY	'\\'

If	you	specify	no	LINES	clause,	the	defaults	are	the	same	as	if	you	had	written
this:

LINES	TERMINATED	BY	'\n'	STARTING	BY	''

In	other	words,	the	defaults	cause	LOAD	DATA	INFILE	to	act	as	follows	when
reading	input:

Look	for	line	boundaries	at	newlines.

Do	not	skip	over	any	line	prefix.

Break	lines	into	fields	at	tabs.

Do	not	expect	fields	to	be	enclosed	within	any	quoting	characters.

Interpret	occurrences	of	tab,	newline,	or	‘\’	preceded	by	‘\’	as	literal
characters	that	are	part	of	field	values.

Conversely,	the	defaults	cause	SELECT	...	INTO	OUTFILE	to	act	as	follows
when	writing	output:

Write	tabs	between	fields.

Do	not	enclose	fields	within	any	quoting	characters.

Use	‘\’	to	escape	instances	of	tab,	newline,	or	‘\’	that	occur	within	field
values.

Write	newlines	at	the	ends	of	lines.

Backslash	is	the	MySQL	escape	character	within	strings,	so	to	write	FIELDS
ESCAPED	BY	'\\',	you	must	specify	two	backslashes	for	the	value	to	be
interpreted	as	a	single	backslash.

Note:	If	you	have	generated	the	text	file	on	a	Windows	system,	you	might	have
to	use	LINES	TERMINATED	BY	'\r\n'	to	read	the	file	properly,	because	Windows
programs	typically	use	two	characters	as	a	line	terminator.	Some	programs,	such
as	WordPad,	might	use	\r	as	a	line	terminator	when	writing	files.	To	read	such
files,	use	LINES	TERMINATED	BY	'\r'.

If	all	the	lines	you	want	to	read	in	have	a	common	prefix	that	you	want	to	ignore,
you	can	use	LINES	STARTING	BY	'prefix_string'	to	skip	over	the	prefix,	and
anything	before	it.	If	a	line	does	not	include	the	prefix,	the	entire	line	is	skipped.
Suppose	that	you	issue	the	following	statement:

LOAD	DATA	INFILE	'/tmp/test.txt'	INTO	TABLE	test

		FIELDS	TERMINATED	BY	','		LINES	STARTING	BY	'xxx';

If	the	data	file	looks	like	this:

xxx"abc",1

something	xxx"def",2

"ghi",3

The	resulting	rows	will	be	("abc",1)	and	("def",2).	The	third	row	in	the	file	is
skipped	because	it	does	not	contain	the	prefix.

The	IGNORE	number	LINES	option	can	be	used	to	ignore	lines	at	the	start	of	the
file.	For	example,	you	can	use	IGNORE	1	LINES	to	skip	over	an	initial	header	line
containing	column	names:

LOAD	DATA	INFILE	'/tmp/test.txt'	INTO	TABLE	test	IGNORE	1	LINES;

When	you	use	SELECT	...	INTO	OUTFILE	in	tandem	with	LOAD	DATA	INFILE	to
write	data	from	a	database	into	a	file	and	then	read	the	file	back	into	the	database
later,	the	field-	and	line-handling	options	for	both	statements	must	match.
Otherwise,	LOAD	DATA	INFILE	will	not	interpret	the	contents	of	the	file	properly.
Suppose	that	you	use	SELECT	...	INTO	OUTFILE	to	write	a	file	with	fields
delimited	by	commas:

SELECT	*	INTO	OUTFILE	'data.txt'

		FIELDS	TERMINATED	BY	','

		FROM	table2;

To	read	the	comma-delimited	file	back	in,	the	correct	statement	would	be:

LOAD	DATA	INFILE	'data.txt'	INTO	TABLE	table2

		FIELDS	TERMINATED	BY	',';

If	instead	you	tried	to	read	in	the	file	with	the	statement	shown	following,	it
wouldn't	work	because	it	instructs	LOAD	DATA	INFILE	to	look	for	tabs	between
fields:

LOAD	DATA	INFILE	'data.txt'	INTO	TABLE	table2

		FIELDS	TERMINATED	BY	'\t';

The	likely	result	is	that	each	input	line	would	be	interpreted	as	a	single	field.

LOAD	DATA	INFILE	can	be	used	to	read	files	obtained	from	external	sources.	For
example,	many	programs	can	export	data	in	comma-separate	values	(CSV)
format,	such	that	lines	have	fields	separated	by	commas	and	enclosed	within
double	quotes.	If	lines	in	such	a	file	are	terminated	by	newlines,	the	statement
shown	here	illustrates	the	field-	and	line-handling	options	you	would	use	to	load
the	file:

LOAD	DATA	INFILE	'data.txt'	INTO	TABLE	tbl_name

		FIELDS	TERMINATED	BY	','	ENCLOSED	BY	'"'

		LINES	TERMINATED	BY	'\n';

Any	of	the	field-	or	line-handling	options	can	specify	an	empty	string	('').	If	not
empty,	the	FIELDS	[OPTIONALLY]	ENCLOSED	BY	and	FIELDS	ESCAPED	BY	values
must	be	a	single	character.	The	FIELDS	TERMINATED	BY,	LINES	STARTING	BY,
and	LINES	TERMINATED	BY	values	can	be	more	than	one	character.	For	example,
to	write	lines	that	are	terminated	by	carriage	return/linefeed	pairs,	or	to	read	a
file	containing	such	lines,	specify	a	LINES	TERMINATED	BY	'\r\n'	clause.

To	read	a	file	containing	jokes	that	are	separated	by	lines	consisting	of	%%,	you
can	do	this

CREATE	TABLE	jokes

		(a	INT	NOT	NULL	AUTO_INCREMENT	PRIMARY	KEY,

		joke	TEXT	NOT	NULL);

LOAD	DATA	INFILE	'/tmp/jokes.txt'	INTO	TABLE	jokes

		FIELDS	TERMINATED	BY	''

		LINES	TERMINATED	BY	'\n%%\n'	(joke);

FIELDS	[OPTIONALLY]	ENCLOSED	BY	controls	quoting	of	fields.	For	output
(SELECT	...	INTO	OUTFILE),	if	you	omit	the	word	OPTIONALLY,	all	fields	are
enclosed	by	the	ENCLOSED	BY	character.	An	example	of	such	output	(using	a
comma	as	the	field	delimiter)	is	shown	here:

"1","a	string","100.20"

"2","a	string	containing	a	,	comma","102.20"

"3","a	string	containing	a	\"	quote","102.20"

"4","a	string	containing	a	\",	quote	and	comma","102.20"

If	you	specify	OPTIONALLY,	the	ENCLOSED	BY	character	is	used	only	to	enclose
values	from	columns	that	have	a	string	data	type	(such	as	CHAR,	BINARY,	TEXT,	or
ENUM):

1,"a	string",100.20

2,"a	string	containing	a	,	comma",102.20

3,"a	string	containing	a	\"	quote",102.20

4,"a	string	containing	a	\",	quote	and	comma",102.20

Note	that	occurrences	of	the	ENCLOSED	BY	character	within	a	field	value	are
escaped	by	prefixing	them	with	the	ESCAPED	BY	character.	Also	note	that	if	you
specify	an	empty	ESCAPED	BY	value,	it	is	possible	to	inadvertently	generate
output	that	cannot	be	read	properly	by	LOAD	DATA	INFILE.	For	example,	the
preceding	output	just	shown	would	appear	as	follows	if	the	escape	character	is
empty.	Observe	that	the	second	field	in	the	fourth	line	contains	a	comma
following	the	quote,	which	(erroneously)	appears	to	terminate	the	field:

1,"a	string",100.20

2,"a	string	containing	a	,	comma",102.20

3,"a	string	containing	a	"	quote",102.20

4,"a	string	containing	a	",	quote	and	comma",102.20

For	input,	the	ENCLOSED	BY	character,	if	present,	is	stripped	from	the	ends	of
field	values.	(This	is	true	regardless	of	whether	OPTIONALLY	is	specified;

OPTIONALLY	has	no	effect	on	input	interpretation.)	Occurrences	of	the	ENCLOSED
BY	character	preceded	by	the	ESCAPED	BY	character	are	interpreted	as	part	of	the
current	field	value.

If	the	field	begins	with	the	ENCLOSED	BY	character,	instances	of	that	character	are
recognized	as	terminating	a	field	value	only	if	followed	by	the	field	or	line
TERMINATED	BY	sequence.	To	avoid	ambiguity,	occurrences	of	the	ENCLOSED	BY
character	within	a	field	value	can	be	doubled	and	are	interpreted	as	a	single
instance	of	the	character.	For	example,	if	ENCLOSED	BY	'"'	is	specified,	quotes
are	handled	as	shown	here:

"The	""BIG""	boss"		->	The	"BIG"	boss

The	"BIG"	boss						->	The	"BIG"	boss

The	""BIG""	boss				->	The	""BIG""	boss

FIELDS	ESCAPED	BY	controls	how	to	write	or	read	special	characters.	If	the
FIELDS	ESCAPED	BY	character	is	not	empty,	it	is	used	to	prefix	the	following
characters	on	output:

The	FIELDS	ESCAPED	BY	character

The	FIELDS	[OPTIONALLY]	ENCLOSED	BY	character

The	first	character	of	the	FIELDS	TERMINATED	BY	and	LINES	TERMINATED
BY	values

ASCII	0	(what	is	actually	written	following	the	escape	character	is	ASCII
‘0’,	not	a	zero-valued	byte)

If	the	FIELDS	ESCAPED	BY	character	is	empty,	no	characters	are	escaped	and
NULL	is	output	as	NULL,	not	\N.	It	is	probably	not	a	good	idea	to	specify	an	empty
escape	character,	particularly	if	field	values	in	your	data	contain	any	of	the
characters	in	the	list	just	given.

For	input,	if	the	FIELDS	ESCAPED	BY	character	is	not	empty,	occurrences	of	that
character	are	stripped	and	the	following	character	is	taken	literally	as	part	of	a
field	value.	The	exceptions	are	an	escaped	‘0’	or	‘N’	(for	example,	\0	or	\N	if	the
escape	character	is	‘\’).	These	sequences	are	interpreted	as	ASCII	NUL	(a	zero-
valued	byte)	and	NULL.	The	rules	for	NULL	handling	are	described	later	in	this
section.

For	more	information	about	‘\’-escape	syntax,	see	Section	9.1,	“Literal	Values”.

In	certain	cases,	field-	and	line-handling	options	interact:

If	LINES	TERMINATED	BY	is	an	empty	string	and	FIELDS	TERMINATED	BY	is
non-empty,	lines	are	also	terminated	with	FIELDS	TERMINATED	BY.

If	the	FIELDS	TERMINATED	BY	and	FIELDS	ENCLOSED	BY	values	are	both
empty	(''),	a	fixed-row	(non-delimited)	format	is	used.	With	fixed-row
format,	no	delimiters	are	used	between	fields	(but	you	can	still	have	a	line
terminator).	Instead,	column	values	are	read	and	written	using	a	field	width
wide	enough	to	hold	all	values	in	the	field.	For	TINYINT,	SMALLINT,
MEDIUMINT,	INT,	and	BIGINT,	the	field	widths	are	4,	6,	8,	11,	and	20,
respectively,	no	matter	what	the	declared	display	width	is.

LINES	TERMINATED	BY	is	still	used	to	separate	lines.	If	a	line	does	not
contain	all	fields,	the	rest	of	the	columns	are	set	to	their	default	values.	If
you	do	not	have	a	line	terminator,	you	should	set	this	to	''.	In	this	case,	the
text	file	must	contain	all	fields	for	each	row.

Fixed-row	format	also	affects	handling	of	NULL	values,	as	described	later.
Note	that	fixed-size	format	does	not	work	if	you	are	using	a	multi-byte
character	set.

Note:	Before	MySQL	5.0.6,	fixed-row	format	used	the	display	width	of	the
column.	For	example,	INT(4)	was	read	or	written	using	a	field	with	a	width
of	4.	However,	if	the	column	contained	wider	values,	they	were	dumped	to
their	full	width,	leading	to	the	possibility	of	a	“ragged”	field	holding	values
of	different	widths.	Using	a	field	wide	enough	to	hold	all	values	in	the	field
prevents	this	problem.	However,	data	files	written	before	this	change	was
made	might	not	be	reloaded	correctly	with	LOAD	DATA	INFILE	for	MySQL
5.0.6	and	up.	This	change	also	affects	data	files	read	by	mysqlimport	and
written	by	mysqldump	--tab,	which	use	LOAD	DATA	INFILE	and	SELECT
...	INTO	OUTFILE.

Handling	of	NULL	values	varies	according	to	the	FIELDS	and	LINES	options	in
use:

For	the	default	FIELDS	and	LINES	values,	NULL	is	written	as	a	field	value	of
\N	for	output,	and	a	field	value	of	\N	is	read	as	NULL	for	input	(assuming

that	the	ESCAPED	BY	character	is	‘\’).

If	FIELDS	ENCLOSED	BY	is	not	empty,	a	field	containing	the	literal	word
NULL	as	its	value	is	read	as	a	NULL	value.	This	differs	from	the	word	NULL
enclosed	within	FIELDS	ENCLOSED	BY	characters,	which	is	read	as	the	string
'NULL'.

If	FIELDS	ESCAPED	BY	is	empty,	NULL	is	written	as	the	word	NULL.

With	fixed-row	format	(which	is	used	when	FIELDS	TERMINATED	BY	and
FIELDS	ENCLOSED	BY	are	both	empty),	NULL	is	written	as	an	empty	string.
Note	that	this	causes	both	NULL	values	and	empty	strings	in	the	table	to	be
indistinguishable	when	written	to	the	file	because	both	are	written	as	empty
strings.	If	you	need	to	be	able	to	tell	the	two	apart	when	reading	the	file
back	in,	you	should	not	use	fixed-row	format.

An	attempt	to	load	NULL	into	a	NOT	NULL	column	causes	assignment	of	the
implicit	default	value	for	the	column's	data	type	and	a	warning,	or	an	error	in
strict	SQL	mode.	Implicit	default	values	are	discussed	in	Section	11.1.4,	“Data
Type	Default	Values”.

Some	cases	are	not	supported	by	LOAD	DATA	INFILE:

Fixed-size	rows	(FIELDS	TERMINATED	BY	and	FIELDS	ENCLOSED	BY	both
empty)	and	BLOB	or	TEXT	columns.

If	you	specify	one	separator	that	is	the	same	as	or	a	prefix	of	another,	LOAD
DATA	INFILE	cannot	interpret	the	input	properly.	For	example,	the
following	FIELDS	clause	would	cause	problems:

FIELDS	TERMINATED	BY	'"'	ENCLOSED	BY	'"'

If	FIELDS	ESCAPED	BY	is	empty,	a	field	value	that	contains	an	occurrence	of
FIELDS	ENCLOSED	BY	or	LINES	TERMINATED	BY	followed	by	the	FIELDS
TERMINATED	BY	value	causes	LOAD	DATA	INFILE	to	stop	reading	a	field	or
line	too	early.	This	happens	because	LOAD	DATA	INFILE	cannot	properly
determine	where	the	field	or	line	value	ends.

The	following	example	loads	all	columns	of	the	persondata	table:

LOAD	DATA	INFILE	'persondata.txt'	INTO	TABLE	persondata;

By	default,	when	no	column	list	is	provided	at	the	end	of	the	LOAD	DATA	INFILE
statement,	input	lines	are	expected	to	contain	a	field	for	each	table	column.	If
you	want	to	load	only	some	of	a	table's	columns,	specify	a	column	list:

LOAD	DATA	INFILE	'persondata.txt'	INTO	TABLE	persondata	(col1,col2,...);

You	must	also	specify	a	column	list	if	the	order	of	the	fields	in	the	input	file
differs	from	the	order	of	the	columns	in	the	table.	Otherwise,	MySQL	cannot	tell
how	to	match	input	fields	with	table	columns.

Before	MySQL	5.0.3,	the	column	list	must	contain	only	names	of	columns	in	the
table	being	loaded,	and	the	SET	clause	is	not	supported.	As	of	MySQL	5.0.3,	the
column	list	can	contain	either	column	names	or	user	variables.	With	user
variables,	the	SET	clause	enables	you	to	perform	transformations	on	their	values
before	assigning	the	result	to	columns.

User	variables	in	the	SET	clause	can	be	used	in	several	ways.	The	following
example	uses	the	first	input	column	directly	for	the	value	of	t1.column1,	and
assigns	the	second	input	column	to	a	user	variable	that	is	subjected	to	a	division
operation	before	being	used	for	the	value	of	t1.column2:

LOAD	DATA	INFILE	'file.txt'

		INTO	TABLE	t1

		(column1,	@var1)

		SET	column2	=	@var1/100;

The	SET	clause	can	be	used	to	supply	values	not	derived	from	the	input	file.	The
following	statement	sets	column3	to	the	current	date	and	time:

LOAD	DATA	INFILE	'file.txt'

		INTO	TABLE	t1

		(column1,	column2)

		SET	column3	=	CURRENT_TIMESTAMP;

You	can	also	discard	an	input	value	by	assigning	it	to	a	user	variable	and	not
assigning	the	variable	to	a	table	column:

LOAD	DATA	INFILE	'file.txt'

		INTO	TABLE	t1

		(column1,	@dummy,	column2,	@dummy,	column3);

Use	of	the	column/variable	list	and	SET	clause	is	subject	to	the	following

restrictions:

Assignments	in	the	SET	clause	should	have	only	column	names	on	the	left
hand	side	of	assignment	operators.

You	can	use	subqueries	in	the	right	hand	side	of	SET	assignments.	A
subquery	that	returns	a	value	to	be	assigned	to	a	column	may	be	a	scalar
subquery	only.	Also,	you	cannot	use	a	subquery	to	select	from	the	table	that
is	being	loaded.

Lines	ignored	by	an	IGNORE	clause	are	not	processed	for	the
column/variable	list	or	SET	clause.

User	variables	cannot	be	used	when	loading	data	with	fixed-row	format
because	user	variables	do	not	have	a	display	width.

When	processing	an	input	line,	LOAD	DATA	splits	it	into	fields	and	uses	the	values
according	to	the	column/variable	list	and	the	SET	clause,	if	they	are	present.	Then
the	resulting	row	is	inserted	into	the	table.	If	there	are	BEFORE	INSERT	or	AFTER
INSERT	triggers	for	the	table,	they	are	activated	before	or	after	inserting	the	row,
respectively.

If	an	input	line	has	too	many	fields,	the	extra	fields	are	ignored	and	the	number
of	warnings	is	incremented.

If	an	input	line	has	too	few	fields,	the	table	columns	for	which	input	fields	are
missing	are	set	to	their	default	values.	Default	value	assignment	is	described	in
Section	11.1.4,	“Data	Type	Default	Values”.

An	empty	field	value	is	interpreted	differently	than	if	the	field	value	is	missing:

For	string	types,	the	column	is	set	to	the	empty	string.

For	numeric	types,	the	column	is	set	to	0.

For	date	and	time	types,	the	column	is	set	to	the	appropriate	“zero”	value
for	the	type.	See	Section	11.3,	“Date	and	Time	Types”.

These	are	the	same	values	that	result	if	you	assign	an	empty	string	explicitly	to	a
string,	numeric,	or	date	or	time	type	explicitly	in	an	INSERT	or	UPDATE	statement.

TIMESTAMP	columns	are	set	to	the	current	date	and	time	only	if	there	is	a	NULL
value	for	the	column	(that	is,	\N),	or	if	the	TIMESTAMP	column's	default	value	is
the	current	timestamp	and	it	is	omitted	from	the	field	list	when	a	field	list	is
specified.

LOAD	DATA	INFILE	regards	all	input	as	strings,	so	you	cannot	use	numeric	values
for	ENUM	or	SET	columns	the	way	you	can	with	INSERT	statements.	All	ENUM	and
SET	values	must	be	specified	as	strings.

BIT	values	cannot	be	loaded	using	binary	notation	(for	example,	b'011010').	To
work	around	this,	specify	the	values	as	regular	integers	and	use	the	SET	clause	to
convert	them	so	that	MySQL	performs	a	numeric	type	conversion	and	loads
them	into	the	BIT	column	properly:

shell>	cat	/tmp/bit_test.txt

2

127

shell>	mysql	test

mysql>	LOAD	DATA	INFILE	'/tmp/bit_test.txt'

				->	INTO	TABLE	bit_test	(@var1)	SET	b=	CAST(@var1	AS	SIGNED);

Query	OK,	2	rows	affected	(0.00	sec)

Records:	2		Deleted:	0		Skipped:	0		Warnings:	0

mysql>	SELECT	BIN(b+0)	FROM	bit_test;

+----------+

|	bin(b+0)	|

+----------+

|	10							|

|	1111111		|

+----------+

2	rows	in	set	(0.00	sec)

When	the	LOAD	DATA	INFILE	statement	finishes,	it	returns	an	information	string
in	the	following	format:

Records:	1		Deleted:	0		Skipped:	0		Warnings:	0

If	you	are	using	the	C	API,	you	can	get	information	about	the	statement	by
calling	the	mysql_info()	function.	See	Section	22.2.3.34,	“mysql_info()”.

Warnings	occur	under	the	same	circumstances	as	when	values	are	inserted	via
the	INSERT	statement	(see	Section	13.2.4,	“INSERT	Syntax”),	except	that	LOAD
DATA	INFILE	also	generates	warnings	when	there	are	too	few	or	too	many	fields

in	the	input	row.	The	warnings	are	not	stored	anywhere;	the	number	of	warnings
can	be	used	only	as	an	indication	of	whether	everything	went	well.

You	can	use	SHOW	WARNINGS	to	get	a	list	of	the	first	max_error_count	warnings
as	information	about	what	went	wrong.	See	Section	13.5.4.25,	“SHOW	WARNINGS
Syntax”.

13.2.6.	REPLACE	Syntax

REPLACE	[LOW_PRIORITY	|	DELAYED]

				[INTO]	tbl_name	[(col_name,...)]

				VALUES	({expr	|	DEFAULT},...),(...),...

Or:

REPLACE	[LOW_PRIORITY	|	DELAYED]

				[INTO]	tbl_name

				SET	col_name={expr	|	DEFAULT},	...

Or:

REPLACE	[LOW_PRIORITY	|	DELAYED]

				[INTO]	tbl_name	[(col_name,...)]

				SELECT	...

REPLACE	works	exactly	like	INSERT,	except	that	if	an	old	row	in	the	table	has	the
same	value	as	a	new	row	for	a	PRIMARY	KEY	or	a	UNIQUE	index,	the	old	row	is
deleted	before	the	new	row	is	inserted.	See	Section	13.2.4,	“INSERT	Syntax”.

REPLACE	is	a	MySQL	extension	to	the	SQL	standard.	It	either	inserts,	or	deletes
and	inserts.	For	another	MySQL	extension	to	standard	SQL	—	that	either	inserts
or	updates	—	see	Section	13.2.4.3,	“INSERT	...	ON	DUPLICATE	KEY	UPDATE
Syntax”.

Note	that	unless	the	table	has	a	PRIMARY	KEY	or	UNIQUE	index,	using	a	REPLACE
statement	makes	no	sense.	It	becomes	equivalent	to	INSERT,	because	there	is	no
index	to	be	used	to	determine	whether	a	new	row	duplicates	another.

Values	for	all	columns	are	taken	from	the	values	specified	in	the	REPLACE
statement.	Any	missing	columns	are	set	to	their	default	values,	just	as	happens
for	INSERT.	You	cannot	refer	to	values	from	the	current	row	and	use	them	in	the
new	row.	If	you	use	an	assignment	such	as	SET	col_name	=	col_name	+	1,	the

reference	to	the	column	name	on	the	right	hand	side	is	treated	as
DEFAULT(col_name),	so	the	assignment	is	equivalent	to	SET	col_name	=
DEFAULT(col_name)	+	1.

To	use	REPLACE,	you	must	have	both	the	INSERT	and	DELETE	privileges	for	the
table.

The	REPLACE	statement	returns	a	count	to	indicate	the	number	of	rows	affected.
This	is	the	sum	of	the	rows	deleted	and	inserted.	If	the	count	is	1	for	a	single-row
REPLACE,	a	row	was	inserted	and	no	rows	were	deleted.	If	the	count	is	greater
than	1,	one	or	more	old	rows	were	deleted	before	the	new	row	was	inserted.	It	is
possible	for	a	single	row	to	replace	more	than	one	old	row	if	the	table	contains
multiple	unique	indexes	and	the	new	row	duplicates	values	for	different	old	rows
in	different	unique	indexes.

The	affected-rows	count	makes	it	easy	to	determine	whether	REPLACE	only	added
a	row	or	whether	it	also	replaced	any	rows:	Check	whether	the	count	is	1	(added)
or	greater	(replaced).

If	you	are	using	the	C	API,	the	affected-rows	count	can	be	obtained	using	the
mysql_affected_rows()	function.

Currently,	you	cannot	replace	into	a	table	and	select	from	the	same	table	in	a
subquery.

MySQL	uses	the	following	algorithm	for	REPLACE	(and	LOAD	DATA	...
REPLACE):

1.	 Try	to	insert	the	new	row	into	the	table

2.	 While	the	insertion	fails	because	a	duplicate-key	error	occurs	for	a	primary
key	or	unique	index:

1.	 Delete	from	the	table	the	conflicting	row	that	has	the	duplicate	key
value

2.	 Try	again	to	insert	the	new	row	into	the	table

13.2.7.	SELECT	Syntax

SELECT

				[ALL	|	DISTINCT	|	DISTINCTROW]

						[HIGH_PRIORITY]

						[STRAIGHT_JOIN]

						[SQL_SMALL_RESULT]	[SQL_BIG_RESULT]	[SQL_BUFFER_RESULT]

						[SQL_CACHE	|	SQL_NO_CACHE]	[SQL_CALC_FOUND_ROWS]

				select_expr,	...

				[FROM	table_references

				[WHERE	where_condition]

				[GROUP	BY	{col_name	|	expr	|	position}

						[ASC	|	DESC],	...	[WITH	ROLLUP]]

				[HAVING	where_condition]

				[ORDER	BY	{col_name	|	expr	|	position}

						[ASC	|	DESC],	...]

				[LIMIT	{[offset,]	row_count	|	row_count	OFFSET	offset}]

				[PROCEDURE	procedure_name(argument_list)]

				[INTO	OUTFILE	'file_name'	export_options

						|	INTO	DUMPFILE	'file_name'

						|	INTO	@var_name	[,	@var_name]]

				[FOR	UPDATE	|	LOCK	IN	SHARE	MODE]]

SELECT	is	used	to	retrieve	rows	selected	from	one	or	more	tables,	and	can	include
UNION	statements	and	subqueries.	See	Section	13.2.7.2,	“UNION	Syntax”,	and
Section	13.2.8,	“Subquery	Syntax”.

The	most	commonly	used	clauses	of	SELECT	statements	are	these:

Each	select_expr	indicates	a	column	that	you	want	to	retrieve.	There	must
be	at	least	one	select_expr.

table_references	indicates	the	table	or	tables	from	which	to	retrieve	rows.
Its	syntax	is	described	in	Section	13.2.7.1,	“JOIN	Syntax”.

The	WHERE	clause,	if	given,	indicates	the	condition	or	conditions	that	rows
must	satisfy	to	be	selected.	where_condition	is	an	expression	that
evaluates	to	true	for	each	row	to	be	selected.	The	statement	selects	all	rows
if	there	is	no	WHERE	clause.

In	the	WHERE	clause,	you	can	use	any	of	the	functions	and	operators	that
MySQL	supports,	except	for	aggregate	(summary)	functions.	See
Chapter	12,	Functions	and	Operators.

SELECT	can	also	be	used	to	retrieve	rows	computed	without	reference	to	any
table.

For	example:

mysql>	SELECT	1	+	1;

								->	2

You	are	allowed	to	specify	DUAL	as	a	dummy	table	name	in	situations	where	no
tables	are	referenced:

mysql>	SELECT	1	+	1	FROM	DUAL;

								->	2

DUAL	is	purely	for	compatibility	with	some	other	database	servers	that	require	a
FROM	clause.	MySQL	does	not	require	the	clause	if	no	tables	are	referenced.

In	general,	clauses	used	must	be	given	in	exactly	the	order	shown	in	the	syntax
description.	For	example,	a	HAVING	clause	must	come	after	any	GROUP	BY	clause
and	before	any	ORDER	BY	clause.	The	exception	is	that	the	INTO	clause	can
appear	either	as	shown	in	the	syntax	description	or	immediately	preceding	the
FROM	clause.

	A	select_expr	can	be	given	an	alias	using	AS	alias_name.	The	alias	is
used	as	the	expression's	column	name	and	can	be	used	in	GROUP	BY,	ORDER
BY,	or	HAVING	clauses.	For	example:

SELECT	CONCAT(last_name,',	',first_name)	AS	full_name

		FROM	mytable	ORDER	BY	full_name;

The	AS	keyword	is	optional	when	aliasing	a	select_expr.	The	preceding
example	could	have	been	written	like	this:

SELECT	CONCAT(last_name,',	',first_name)	full_name

		FROM	mytable	ORDER	BY	full_name;

However,	because	the	AS	is	optional,	a	subtle	problem	can	occur	if	you
forget	the	comma	between	two	select_expr	expressions:	MySQL
interprets	the	second	as	an	alias	name.	For	example,	in	the	following
statement,	columnb	is	treated	as	an	alias	name:

SELECT	columna	columnb	FROM	mytable;

For	this	reason,	it	is	good	practice	to	be	in	the	habit	of	using	AS	explicitly
when	specifying	column	aliases.

It	is	not	allowable	to	use	a	column	alias	in	a	WHERE	clause,	because	the
column	value	might	not	yet	be	determined	when	the	WHERE	clause	is
executed.	See	Section	A.5.4,	“Problems	with	Column	Aliases”.

	The	FROM	table_references	clause	indicates	the	table	or	tables	from
which	to	retrieve	rows.	If	you	name	more	than	one	table,	you	are
performing	a	join.	For	information	on	join	syntax,	see	Section	13.2.7.1,
“JOIN	Syntax”.	For	each	table	specified,	you	can	optionally	specify	an	alias.

tbl_name	[[AS]	alias]

				[{USE|IGNORE|FORCE}	INDEX	(key_list)]

The	use	of	USE	INDEX,	IGNORE	INDEX,	FORCE	INDEX	to	give	the	optimizer
hints	about	how	to	choose	indexes	is	described	in	Section	13.2.7.1,	“JOIN
Syntax”.

You	can	use	SET	max_seeks_for_key=value	as	an	alternative	way	to	force
MySQL	to	prefer	key	scans	instead	of	table	scans.	See	Section	5.2.2,
“Server	System	Variables”.

You	can	refer	to	a	table	within	the	default	database	as	tbl_name,	or	as
db_name.tbl_name	to	specify	a	database	explicitly.	You	can	refer	to	a
column	as	col_name,	tbl_name.col_name,	or	db_name.tbl_name.col_name.
You	need	not	specify	a	tbl_name	or	db_name.tbl_name	prefix	for	a	column
reference	unless	the	reference	would	be	ambiguous.	See	Section	9.2.1,
“Identifier	Qualifiers”,	for	examples	of	ambiguity	that	require	the	more
explicit	column	reference	forms.

	A	table	reference	can	be	aliased	using	tbl_name	AS	alias_name	or
tbl_name	alias_name:

SELECT	t1.name,	t2.salary	FROM	employee	AS	t1,	info	AS	t2

		WHERE	t1.name	=	t2.name;

SELECT	t1.name,	t2.salary	FROM	employee	t1,	info	t2

		WHERE	t1.name	=	t2.name;

	Columns	selected	for	output	can	be	referred	to	in	ORDER	BY	and	GROUP	BY
clauses	using	column	names,	column	aliases,	or	column	positions.	Column
positions	are	integers	and	begin	with	1:

SELECT	college,	region,	seed	FROM	tournament

		ORDER	BY	region,	seed;

SELECT	college,	region	AS	r,	seed	AS	s	FROM	tournament

		ORDER	BY	r,	s;

SELECT	college,	region,	seed	FROM	tournament

		ORDER	BY	2,	3;

To	sort	in	reverse	order,	add	the	DESC	(descending)	keyword	to	the	name	of
the	column	in	the	ORDER	BY	clause	that	you	are	sorting	by.	The	default	is
ascending	order;	this	can	be	specified	explicitly	using	the	ASC	keyword.

Use	of	column	positions	is	deprecated	because	the	syntax	has	been	removed
from	the	SQL	standard.

	If	you	use	GROUP	BY,	output	rows	are	sorted	according	to	the	GROUP	BY
columns	as	if	you	had	an	ORDER	BY	for	the	same	columns.	To	avoid	the
overhead	of	sorting	that	GROUP	BY	produces,	add	ORDER	BY	NULL:

SELECT	a,	COUNT(b)	FROM	test_table	GROUP	BY	a	ORDER	BY	NULL;

	MySQL	extends	the	GROUP	BY	clause	so	that	you	can	also	specify	ASC	and
DESC	after	columns	named	in	the	clause:

SELECT	a,	COUNT(b)	FROM	test_table	GROUP	BY	a	DESC;

MySQL	extends	the	use	of	GROUP	BY	to	allow	selecting	fields	that	are	not
mentioned	in	the	GROUP	BY	clause.	If	you	are	not	getting	the	results	that	you
expect	from	your	query,	please	read	the	description	of	GROUP	BY	found	in
Section	12.10,	“Functions	and	Modifiers	for	Use	with	GROUP	BY	Clauses”.

GROUP	BY	allows	a	WITH	ROLLUP	modifier.	See	Section	12.10.2,	“GROUP	BY
Modifiers”.

	The	HAVING	clause	is	applied	nearly	last,	just	before	items	are	sent	to	the
client,	with	no	optimization.	(LIMIT	is	applied	after	HAVING.)

A	HAVING	clause	can	refer	to	any	column	or	alias	named	in	a	select_expr
in	the	SELECT	list	or	in	outer	subqueries,	and	to	aggregate	functions.
However,	the	SQL	standard	requires	that	HAVING	must	reference	only
columns	in	the	GROUP	BY	clause	or	columns	used	in	aggregate	functions.	To
accommodate	both	standard	SQL	and	the	MySQL-specific	behavior	of

being	able	to	refer	columns	in	the	SELECT	list,	MySQL	5.0.2	and	up	allows
HAVING	to	refer	to	columns	in	the	SELECT	list,	columns	in	the	GROUP	BY
clause,	columns	in	outer	subqueries,	and	to	aggregate	functions.

For	example,	the	following	statement	works	in	MySQL	5.0.2	but	produces
an	error	for	earlier	versions:

mysql>	SELECT	COUNT(*)	FROM	t	GROUP	BY	col1	HAVING	col1	=	2;

If	the	HAVING	clause	refers	to	a	column	that	is	ambiguous,	a	warning	occurs.
In	the	following	statement,	col2	is	ambiguous	because	it	is	used	as	both	an
alias	and	a	column	name:

SELECT	COUNT(col1)	AS	col2	FROM	t	GROUP	BY	col2	HAVING	col2	=	2;

Preference	is	given	to	standard	SQL	behavior,	so	if	a	HAVING	column	name
is	used	both	in	GROUP	BY	and	as	an	aliased	column	in	the	output	column	list,
preference	is	given	to	the	column	in	the	GROUP	BY	column.

Do	not	use	HAVING	for	items	that	should	be	in	the	WHERE	clause.	For
example,	do	not	write	the	following:

SELECT	col_name	FROM	tbl_name	HAVING	col_name	>	0;

Write	this	instead:

SELECT	col_name	FROM	tbl_name	WHERE	col_name	>	0;

The	HAVING	clause	can	refer	to	aggregate	functions,	which	the	WHERE	clause
cannot:

SELECT	user,	MAX(salary)	FROM	users

		GROUP	BY	user	HAVING	MAX(salary)	>	10;

(This	did	not	work	in	some	older	versions	of	MySQL.)

MySQL	allows	duplicate	column	names.	That	is,	there	can	be	more	than
one	select_expr	with	the	same	name.	This	is	an	extension	to	standard
SQL.	Because	MySQL	also	allows	GROUP	BY	and	HAVING	to	refer	to
select_expr	values,	this	can	result	in	an	ambiguity:

SELECT	12	AS	a,	a	FROM	t	GROUP	BY	a;

In	that	statement,	both	columns	have	the	name	a.	To	ensure	that	the	correct
column	is	used	for	grouping,	use	different	names	for	each	select_expr.

When	MySQL	resolves	an	unqualified	column	or	alias	reference	in	an
ORDER	BY,	GROUP	BY,	or	HAVING	clause,	it	first	searches	for	the	name	in	the
select_expr	values.	If	the	name	is	not	found,	it	looks	in	the	columns	of	the
tables	named	in	the	FROM	clause.

	The	LIMIT	clause	can	be	used	to	constrain	the	number	of	rows	returned	by
the	SELECT	statement.	LIMIT	takes	one	or	two	numeric	arguments,	which
must	both	be	non-negative	integer	constants	(except	when	using	prepared
statements).

With	two	arguments,	the	first	argument	specifies	the	offset	of	the	first	row
to	return,	and	the	second	specifies	the	maximum	number	of	rows	to	return.
The	offset	of	the	initial	row	is	0	(not	1):

SELECT	*	FROM	tbl	LIMIT	5,10;		#	Retrieve	rows	6-15

To	retrieve	all	rows	from	a	certain	offset	up	to	the	end	of	the	result	set,	you
can	use	some	large	number	for	the	second	parameter.	This	statement
retrieves	all	rows	from	the	96th	row	to	the	last:

SELECT	*	FROM	tbl	LIMIT	95,18446744073709551615;

With	one	argument,	the	value	specifies	the	number	of	rows	to	return	from
the	beginning	of	the	result	set:

SELECT	*	FROM	tbl	LIMIT	5;					#	Retrieve	first	5	rows

In	other	words,	LIMIT	row_count	is	equivalent	to	LIMIT	0,	row_count.

For	prepared	statements,	you	can	use	placeholders	(supported	as	of	MySQL
version	5.0.7).	The	following	statements	will	return	one	row	from	the	tbl
table:

SET	@a=1;

PREPARE	STMT	FROM	'SELECT	*	FROM	tbl	LIMIT	?';

EXECUTE	STMT	USING	@a;

The	following	statements	will	return	the	second	to	sixth	row	from	the	tbl
table:

SET	@skip=1;	SET	@numrows=5;

PREPARE	STMT	FROM	'SELECT	*	FROM	tbl	LIMIT	?,	?';

EXECUTE	STMT	USING	@skip,	@numrows;

For	compatibility	with	PostgreSQL,	MySQL	also	supports	the	LIMIT
row_count	OFFSET	offset	syntax.

	The	SELECT	...	INTO	OUTFILE	'file_name'	form	of	SELECT	writes	the
selected	rows	to	a	file.	The	file	is	created	on	the	server	host,	so	you	must
have	the	FILE	privilege	to	use	this	syntax.	file_name	cannot	be	an	existing
file,	which	among	other	things	prevents	files	such	as	/etc/passwd	and
database	tables	from	being	destroyed.	As	of	MySQL	5.0.19,	the
character_set_filesystem	system	variable	controls	the	interpretation	of
the	filename.

The	SELECT	...	INTO	OUTFILE	statement	is	intended	primarily	to	let	you
very	quickly	dump	a	table	to	a	text	file	on	the	server	machine.	If	you	want
to	create	the	resulting	file	on	some	client	host	other	than	the	server	host,
you	cannot	use	SELECT	...	INTO	OUTFILE.	In	that	case,	you	should	instead
use	a	command	such	as	mysql	-e	"SELECT	..."	>	file_name	to	generate
the	file	on	the	client	host.

SELECT	...	INTO	OUTFILE	is	the	complement	of	LOAD	DATA	INFILE;	the
syntax	for	the	export_options	part	of	the	statement	consists	of	the	same
FIELDS	and	LINES	clauses	that	are	used	with	the	LOAD	DATA	INFILE
statement.	See	Section	13.2.5,	“LOAD	DATA	INFILE	Syntax”.

FIELDS	ESCAPED	BY	controls	how	to	write	special	characters.	If	the	FIELDS
ESCAPED	BY	character	is	not	empty,	it	is	used	as	a	prefix	that	precedes
following	characters	on	output:

The	FIELDS	ESCAPED	BY	character

The	FIELDS	[OPTIONALLY]	ENCLOSED	BY	character

The	first	character	of	the	FIELDS	TERMINATED	BY	and	LINES
TERMINATED	BY	values

ASCII	NUL	(the	zero-valued	byte;	what	is	actually	written	following
the	escape	character	is	ASCII	‘0’,	not	a	zero-valued	byte)

The	FIELDS	TERMINATED	BY,	ENCLOSED	BY,	ESCAPED	BY,	or	LINES
TERMINATED	BY	characters	must	be	escaped	so	that	you	can	read	the	file
back	in	reliably.	ASCII	NUL	is	escaped	to	make	it	easier	to	view	with	some
pagers.

The	resulting	file	does	not	have	to	conform	to	SQL	syntax,	so	nothing	else
need	be	escaped.

If	the	FIELDS	ESCAPED	BY	character	is	empty,	no	characters	are	escaped	and
NULL	is	output	as	NULL,	not	\N.	It	is	probably	not	a	good	idea	to	specify	an
empty	escape	character,	particularly	if	field	values	in	your	data	contain	any
of	the	characters	in	the	list	just	given.

Here	is	an	example	that	produces	a	file	in	the	comma-separated	values
(CSV)	format	used	by	many	programs:

SELECT	a,b,a+b	INTO	OUTFILE	'/tmp/result.txt'

		FIELDS	TERMINATED	BY	','	OPTIONALLY	ENCLOSED	BY	'"'

		LINES	TERMINATED	BY	'\n'

		FROM	test_table;

	If	you	use	INTO	DUMPFILE	instead	of	INTO	OUTFILE,	MySQL	writes	only
one	row	into	the	file,	without	any	column	or	line	termination	and	without
performing	any	escape	processing.	This	is	useful	if	you	want	to	store	a	BLOB
value	in	a	file.

The	INTO	clause	can	name	a	list	of	one	or	more	user-defined	variables.	The
selected	values	are	assigned	to	the	variables.	The	number	of	variables	must
match	the	number	of	columns.

Within	a	stored	routine,	the	variables	can	be	routine	parameters	or	local
variables.	See	Section	17.2.7.3,	“SELECT	...	INTO	Statement”.

Note:	Any	file	created	by	INTO	OUTFILE	or	INTO	DUMPFILE	is	writable	by
all	users	on	the	server	host.	The	reason	for	this	is	that	the	MySQL	server
cannot	create	a	file	that	is	owned	by	anyone	other	than	the	user	under
whose	account	it	is	running.	(You	should	never	run	mysqld	as	root	for	this
and	other	reasons.)	The	file	thus	must	be	world-writable	so	that	you	can
manipulate	its	contents.

The	SELECT	syntax	description	at	the	beginning	this	section	shows	the	INTO

clause	near	the	end	of	the	statement.	It	is	also	possible	to	use	INTO	OUTFILE
or	INTO	DUMPFILE	immediately	preceding	the	FROM	clause.

	A	PROCEDURE	clause	names	a	procedure	that	should	process	the	data	in	the
result	set.	For	an	example,	see	Section	24.3.1,	“Procedure	Analyse”.

	If	you	use	FOR	UPDATE	with	a	storage	engine	that	uses	page	or	row	locks,
rows	examined	by	the	query	are	write-locked	until	the	end	of	the	current
transaction.	Using	LOCK	IN	SHARE	MODE	sets	a	shared	lock	that	allows	other
transactions	to	read	the	examined	rows	but	not	to	update	or	delete	them.	See
Section	14.2.10.5,	“SELECT	...	FOR	UPDATE	and	SELECT	...	LOCK	IN
SHARE	MODE	Locking	Reads”.

Following	the	SELECT	keyword,	you	can	use	a	number	of	options	that	affect	the
operation	of	the	statement.

The	ALL,	DISTINCT,	and	DISTINCTROW	options	specify	whether	duplicate	rows
should	be	returned.	If	none	of	these	options	are	given,	the	default	is	ALL	(all
matching	rows	are	returned).	DISTINCT	and	DISTINCTROW	are	synonyms	and
specify	removal	of	duplicate	rows	from	the	result	set.

HIGH_PRIORITY,	STRAIGHT_JOIN,	and	options	beginning	with	SQL_	are	MySQL
extensions	to	standard	SQL.

	HIGH_PRIORITY	gives	the	SELECT	higher	priority	than	a	statement	that
updates	a	table.	You	should	use	this	only	for	queries	that	are	very	fast	and
must	be	done	at	once.	A	SELECT	HIGH_PRIORITY	query	that	is	issued	while
the	table	is	locked	for	reading	runs	even	if	there	is	an	update	statement
waiting	for	the	table	to	be	free.

HIGH_PRIORITY	cannot	be	used	with	SELECT	statements	that	are	part	of	a
UNION.

	STRAIGHT_JOIN	forces	the	optimizer	to	join	the	tables	in	the	order	in	which
they	are	listed	in	the	FROM	clause.	You	can	use	this	to	speed	up	a	query	if	the
optimizer	joins	the	tables	in	non-optimal	order.	See	Section	7.2.1,
“Optimizing	Queries	with	EXPLAIN”.	STRAIGHT_JOIN	also	can	be	used	in	the
table_references	list.	See	Section	13.2.7.1,	“JOIN	Syntax”.

	SQL_BIG_RESULT	can	be	used	with	GROUP	BY	or	DISTINCT	to	tell	the

optimizer	that	the	result	set	has	many	rows.	In	this	case,	MySQL	directly
uses	disk-based	temporary	tables	if	needed,	and	prefers	sorting	to	using	a
temporary	table	with	a	key	on	the	GROUP	BY	elements.

	SQL_BUFFER_RESULT	forces	the	result	to	be	put	into	a	temporary	table.	This
helps	MySQL	free	the	table	locks	early	and	helps	in	cases	where	it	takes	a
long	time	to	send	the	result	set	to	the	client.

	SQL_SMALL_RESULT	can	be	used	with	GROUP	BY	or	DISTINCT	to	tell	the
optimizer	that	the	result	set	is	small.	In	this	case,	MySQL	uses	fast
temporary	tables	to	store	the	resulting	table	instead	of	using	sorting.	This
should	not	normally	be	needed.

	SQL_CALC_FOUND_ROWS	tells	MySQL	to	calculate	how	many	rows	there
would	be	in	the	result	set,	disregarding	any	LIMIT	clause.	The	number	of
rows	can	then	be	retrieved	with	SELECT	FOUND_ROWS().	See	Section	12.9.3,
“Information	Functions”.

	SQL_CACHE	tells	MySQL	to	store	the	query	result	in	the	query	cache	if	you
are	using	a	query_cache_type	value	of	2	or	DEMAND.	For	a	query	that	uses
UNION	or	subqueries,	this	option	effects	any	SELECT	in	the	query.	See
Section	5.14,	“The	MySQL	Query	Cache”.

	SQL_NO_CACHE	tells	MySQL	not	to	store	the	query	result	in	the	query	cache.
See	Section	5.14,	“The	MySQL	Query	Cache”.	For	a	query	that	uses	UNION
or	subqueries,	this	option	effects	any	SELECT	in	the	query.

13.2.7.1.	JOIN	Syntax

MySQL	supports	the	following	JOIN	syntaxes	for	the	table_references	part	of
SELECT	statements	and	multiple-table	DELETE	and	UPDATE	statements:

table_references:

				table_reference	[,	table_reference]	...

table_reference:

				table_factor

		|	join_table

table_factor:

				tbl_name	[[AS]	alias]

								[{USE|IGNORE|FORCE}	INDEX	(key_list)]

		|	(table_references)

		|	{	OJ	table_reference	LEFT	OUTER	JOIN	table_reference

								ON	conditional_expr	}

join_table:

				table_reference	[INNER	|	CROSS]	JOIN	table_factor	[join_condition

		|	table_reference	STRAIGHT_JOIN	table_factor

		|	table_reference	STRAIGHT_JOIN	table_factor	ON	condition

		|	table_reference	LEFT	[OUTER]	JOIN	table_reference	join_condition

		|	table_reference	NATURAL	[LEFT	[OUTER]]	JOIN	table_factor

		|	table_reference	RIGHT	[OUTER]	JOIN	table_reference	join_condition

		|	table_reference	NATURAL	[RIGHT	[OUTER]]	JOIN	table_factor

join_condition:

				ON	conditional_expr

		|	USING	(column_list)

A	table	reference	is	also	known	as	a	join	expression.

The	syntax	of	table_factor	is	extended	in	comparison	with	the	SQL	Standard.
The	latter	accepts	only	table_reference,	not	a	list	of	them	inside	a	pair	of
parentheses.

This	is	a	conservative	extension	if	we	consider	each	comma	in	a	list	of
table_reference	items	as	equivalent	to	an	inner	join.	For	example:

SELECT	*	FROM	t1	LEFT	JOIN	(t2,	t3,	t4)

																	ON	(t2.a=t1.a	AND	t3.b=t1.b	AND	t4.c=t1.c)

is	equivalent	to:

SELECT	*	FROM	t1	LEFT	JOIN	(t2	CROSS	JOIN	t3	CROSS	JOIN	t4)

																	ON	(t2.a=t1.a	AND	t3.b=t1.b	AND	t4.c=t1.c)

In	MySQL,	CROSS	JOIN	is	a	syntactic	equivalent	to	INNER	JOIN	(they	can
replace	each	other).	In	standard	SQL,	they	are	not	equivalent.	INNER	JOIN	is
used	with	an	ON	clause,	CROSS	JOIN	is	used	otherwise.

In	versions	of	MySQL	prior	to	5.0.1,	parentheses	in	table_references	were	just
omitted	and	all	join	operations	were	grouped	to	the	left.	In	general,	parentheses
can	be	ignored	in	join	expressions	containing	only	inner	join	operations.	As	of
5.0.1,	nested	joins	are	allowed	(see	Section	7.2.10,	“Nested	Join	Optimization”).

Further	changes	in	join	processing	were	made	in	5.0.12	to	make	MySQL	more
compliant	with	standard	SQL.	These	charges	are	described	later	in	this	section.

The	following	list	describes	general	factors	to	take	into	account	when	writing
joins.

A	table	reference	can	be	aliased	using	tbl_name	AS	alias_name	or
tbl_name	alias_name:

SELECT	t1.name,	t2.salary

		FROM	employee	AS	t1	INNER	JOIN	info	AS	t2	ON	t1.name	=	t2.name;

SELECT	t1.name,	t2.salary

		FROM	employee	t1	INNER	JOIN	info	t2	ON	t1.name	=	t2.name;

INNER	JOIN	and	,	(comma)	are	semantically	equivalent	in	the	absence	of	a
join	condition:	both	produce	a	Cartesian	product	between	the	specified
tables	(that	is,	each	and	every	row	in	the	first	table	is	joined	to	each	and
every	row	in	the	second	table).

However,	the	precedence	of	the	comma	operator	is	less	than	than	of	INNER
JOIN,	CROSS	JOIN,	LEFT	JOIN,	and	so	on.	If	you	mix	comma	joins	with	the
other	join	types	when	there	is	a	join	condition,	an	error	of	the	form	Unknown
column	'col_name'	in	'on	clause'	may	occur.	Information	about	dealing
with	this	problem	is	given	later	in	this	section.

The	ON	conditional	is	any	conditional	expression	of	the	form	that	can	be
used	in	a	WHERE	clause.	Generally,	you	should	use	the	ON	clause	for
conditions	that	specify	how	to	join	tables,	and	the	WHERE	clause	to	restrict
which	rows	you	want	in	the	result	set.

If	there	is	no	matching	row	for	the	right	table	in	the	ON	or	USING	part	in	a
LEFT	JOIN,	a	row	with	all	columns	set	to	NULL	is	used	for	the	right	table.
You	can	use	this	fact	to	find	rows	in	a	table	that	have	no	counterpart	in
another	table:

SELECT	table1.*	FROM	table1

		LEFT	JOIN	table2	ON	table1.id=table2.id

		WHERE	table2.id	IS	NULL;

This	example	finds	all	rows	in	table1	with	an	id	value	that	is	not	present	in
table2	(that	is,	all	rows	in	table1	with	no	corresponding	row	in	table2).

This	assumes	that	table2.id	is	declared	NOT	NULL.	See	Section	7.2.9,
“LEFT	JOIN	and	RIGHT	JOIN	Optimization”.

The	USING(column_list)	clause	names	a	list	of	columns	that	must	exist	in
both	tables.	If	tables	a	and	b	both	contain	columns	c1,	c2,	and	c3,	the
following	join	compares	corresponding	columns	from	the	two	tables:

a	LEFT	JOIN	b	USING	(c1,c2,c3)

The	NATURAL	[LEFT]	JOIN	of	two	tables	is	defined	to	be	semantically
equivalent	to	an	INNER	JOIN	or	a	LEFT	JOIN	with	a	USING	clause	that	names
all	columns	that	exist	in	both	tables.

RIGHT	JOIN	works	analogously	to	LEFT	JOIN.	To	keep	code	portable	across
databases,	it	is	recommended	that	you	use	LEFT	JOIN	instead	of	RIGHT
JOIN.

	The	{	OJ	...	LEFT	OUTER	JOIN	...}	syntax	shown	in	the	join	syntax
description	exists	only	for	compatibility	with	ODBC.	The	curly	braces	in
the	syntax	should	be	written	literally;	they	are	not	metasyntax	as	used
elsewhere	in	syntax	descriptions.

STRAIGHT_JOIN	is	identical	to	JOIN,	except	that	the	left	table	is	always	read
before	the	right	table.	This	can	be	used	for	those	(few)	cases	for	which	the
join	optimizer	puts	the	tables	in	the	wrong	order.

Some	join	examples:

SELECT	*	FROM	table1,	table2;

SELECT	*	FROM	table1	INNER	JOIN	table2	ON	table1.id=table2.id;

SELECT	*	FROM	table1	LEFT	JOIN	table2	ON	table1.id=table2.id;

SELECT	*	FROM	table1	LEFT	JOIN	table2	USING	(id);

SELECT	*	FROM	table1	LEFT	JOIN	table2	ON	table1.id=table2.id

		LEFT	JOIN	table3	ON	table2.id=table3.id;

You	can	provide	hints	as	to	which	index	MySQL	should	use	when	retrieving
information	from	a	table.	By	specifying	USE	INDEX	(key_list),	you	can	tell
MySQL	to	use	only	one	of	the	possible	indexes	to	find	rows	in	the	table.	The

alternative	syntax	IGNORE	INDEX	(key_list)	can	be	used	to	tell	MySQL	to	not
use	some	particular	index.	These	hints	are	useful	if	EXPLAIN	shows	that	MySQL
is	using	the	wrong	index	from	the	list	of	possible	indexes.

You	can	also	use	FORCE	INDEX,	which	acts	like	USE	INDEX	(key_list)	but	with
the	addition	that	a	table	scan	is	assumed	to	be	very	expensive.	In	other	words,	a
table	scan	is	used	only	if	there	is	no	way	to	use	one	of	the	given	indexes	to	find
rows	in	the	table.

USE	INDEX,	IGNORE	INDEX,	and	FORCE	INDEX	affect	only	which	indexes	are	used
when	MySQL	decides	how	to	find	rows	in	the	table	and	how	to	do	the	join.	They
do	not	affect	whether	an	index	is	used	when	resolving	an	ORDER	BY	or	GROUP	BY.

USE	KEY,	IGNORE	KEY,	and	FORCE	KEY	are	synonyms	for	USE	INDEX,	IGNORE
INDEX,	and	FORCE	INDEX.

Examples:

SELECT	*	FROM	table1	USE	INDEX	(key1,key2)

		WHERE	key1=1	AND	key2=2	AND	key3=3;

SELECT	*	FROM	table1	IGNORE	INDEX	(key3)

		WHERE	key1=1	AND	key2=2	AND	key3=3;

Join	Processing	Changes	in	MySQL	5.0.12

Beginning	with	MySQL	5.0.12,	natural	joins	and	joins	with	USING,	including
outer	join	variants,	are	processed	according	to	the	SQL:2003	standard.	The	goal
was	to	align	the	syntax	and	semantics	of	MySQL	with	respect	to	NATURAL	JOIN
and	JOIN	...	USING	according	to	SQL:2003.	However,	these	changes	in	join
processing	can	result	in	different	output	columns	for	some	joins.	Also,	some
queries	that	appeared	to	work	correctly	in	older	versions	must	be	rewritten	to
comply	with	the	standard.

These	changes	have	five	main	aspects:

The	way	that	MySQL	determines	the	result	columns	of	NATURAL	or	USING
join	operations	(and	thus	the	result	of	the	entire	FROM	clause).

Expansion	of	SELECT	*	and	SELECT	tbl_name.*	into	a	list	of	selected
columns.

Resolution	of	column	names	in	NATURAL	or	USING	joins.

Transformation	of	NATURAL	or	USING	joins	into	JOIN	...	ON.

Resolution	of	column	names	in	the	ON	condition	of	a	JOIN	...	ON.

The	following	list	provides	more	detail	about	several	effects	of	the	5.0.12	change
in	join	processing.	The	term	“previously”	means	“prior	to	MySQL	5.0.12.”

The	columns	of	a	NATURAL	join	or	a	USING	join	may	be	different	from
previously.	Specifically,	redundant	output	columns	no	longer	appear,	and
the	order	of	columns	for	SELECT	*	expansion	may	be	different	from	before.

Consider	this	set	of	statements:

CREATE	TABLE	t1	(i	INT,	j	INT);

CREATE	TABLE	t2	(k	INT,	j	INT);

INSERT	INTO	t1	VALUES(1,1);

INSERT	INTO	t2	VALUES(1,1);

SELECT	*	FROM	t1	NATURAL	JOIN	t2;

SELECT	*	FROM	t1	JOIN	t2	USING	(j);

Previously,	the	statements	produced	this	output:

+------+------+------+------+

|	i				|	j				|	k				|	j				|

+------+------+------+------+

|				1	|				1	|				1	|				1	|

+------+------+------+------+

+------+------+------+------+

|	i				|	j				|	k				|	j				|

+------+------+------+------+

|				1	|				1	|				1	|				1	|

+------+------+------+------+

In	the	first	SELECT	statement,	column	j	appears	in	both	tables	and	thus
becomes	a	join	column,	so,	according	to	standard	SQL,	it	should	appear
only	once	in	the	output,	not	twice.	Similarly,	in	the	second	SELECT
statement,	column	j	is	named	in	the	USING	clause	and	should	appear	only
once	in	the	output,	not	twice.	But	in	both	cases,	the	redundant	column	is	not
eliminated.	Also,	the	order	of	the	columns	is	not	correct	according	to
standard	SQL.

Now	the	statements	produce	this	output:

+------+------+------+

|	j				|	i				|	k				|

+------+------+------+

|				1	|				1	|				1	|

+------+------+------+

+------+------+------+

|	j				|	i				|	k				|

+------+------+------+

|				1	|				1	|				1	|

+------+------+------+

The	redundant	column	is	eliminated	and	the	column	order	is	correct
according	to	standard	SQL:

First,	coalesced	common	columns	of	the	two	joined	tables,	in	the	order
in	which	they	occur	in	the	first	table

Second,	columns	unique	to	the	first	table,	in	order	in	which	they	occur
in	that	table

Third,	columns	unique	to	the	second	table,	in	order	in	which	they
occur	in	that	table

The	single	result	column	that	replaces	two	common	columns	is	defined	via
the	coalesce	operation.	That	is,	fro	two	t1.a	and	t2.a	the	resulting	single
join	column	a	is	defined	as	a	=	COALESCE(t1.a,	t2.a),	where:

COALESCE(x,	y)	=	(CASE	WHEN	V1	IS	NOT	NULL	THEN	V1	ELSE	V2	END)

If	the	join	operation	is	any	other	join,	the	result	columns	of	the	join	consists
of	the	concatenation	of	all	columns	of	the	joined	tables.	This	is	the	same	as
previously.

A	consequence	of	the	definition	of	coalesced	columns	is	that,	for	outer
joins,	the	coalesced	column	contains	the	value	of	the	non-NULL	column	if
one	of	the	two	columns	is	always	NULL.	If	neither	or	both	columns	are	NULL,
both	common	columns	have	the	same	value,	so	it	doesn't	matter	which	one
is	chosen	as	the	value	of	the	coalesced	column.	A	simple	way	to	interpret
this	is	to	consider	that	a	coalesced	column	of	an	outer	join	is	represented	by
the	common	column	of	the	inner	table	of	a	JOIN.	Suppose	that	the	tables

t1(a,b)	and	t2(a,c)	have	the	following	contents:

t1				t2

----		----

1	x			2	z

2	y			3	w

Then:

mysql>	SELECT	*	FROM	t1	NATURAL	LEFT	JOIN	t2;

+------+------+------+

|	a				|	b				|	c				|

+------+------+------+

|				1	|	x				|	NULL	|

|				2	|	y				|	y				|

+------+------+------+

Here	column	a	contains	the	values	of	t1.a.

mysql>	SELECT	*	FROM	t1	NATURAL	RIGHT	JOIN	t2;

+------+------+------+

|	a				|	c				|	b				|

+------+------+------+

|				2	|	y				|	y				|

|				3	|	z				|	NULL	|

+------+------+------+

Here	column	a	contains	the	values	of	t2.a.

Compare	these	results	to	the	otherwise	equivalent	queries	with	JOIN	...
ON:

mysql>	SELECT	*	FROM	t1	LEFT	JOIN	t2	ON	(t1.a	=	t2.a);

+------+------+------+------+

|	a				|	b				|	a				|	c				|

+------+------+------+------+

|				1	|	x				|	NULL	|	NULL	|

|				2	|	y				|				2	|	y				|

+------+------+------+------+

mysql>	SELECT	*	FROM	t1	RIGHT	JOIN	t2	ON	(t1.a	=	t2.a);

+------+------+------+------+

|	a				|	b				|	a				|	c				|

+------+------+------+------+

|				2	|	y				|				2	|	y				|

|	NULL	|	NULL	|				3	|	z				|

+------+------+------+------+

Previously,	a	USING	clause	could	be	rewritten	as	an	ON	clause	that	compares
corresponding	columns.	For	example,	the	following	two	clauses	were
semantically	identical:

a	LEFT	JOIN	b	USING	(c1,c2,c3)

a	LEFT	JOIN	b	ON	a.c1=b.c1	AND	a.c2=b.c2	AND	a.c3=b.c3

Now	the	two	clauses	no	longer	are	quite	the	same:

With	respect	to	determining	which	rows	satisfy	the	join	condition,	both
joins	remain	semantically	identical.

With	respect	to	determining	which	columns	to	display	for	SELECT	*
expansion,	the	two	joins	are	not	semantically	identical.	The	USING	join
selects	the	coalesced	value	of	corresponding	columns,	whereas	the	ON
join	selects	all	columns	from	all	tables.	For	the	preceding	USING	join,
SELECT	*	selects	these	values:

COALESCE(a.c1,b.c1),	COALESCE(a.c2,b.c2),	COALESCE(a.c3,b.c3)

For	the	ON	join,	SELECT	*	selects	these	values:

a.c1,	a.c2,	a.c3,	b.c1,	b.c2,	b.c3

With	an	inner	join,	COALESCE(a.c1,b.c1)	is	the	same	as	either	a.c1	or
b.c1	because	both	columns	will	have	the	same	value.	With	an	outer
join	(such	as	LEFT	JOIN),	one	of	the	two	columns	can	be	NULL.	That
column	will	be	omitted	from	the	result.

The	evaluation	of	multi-way	natural	joins	differs	in	a	very	important	way
that	affects	the	result	of	NATURAL	or	USING	joins	and	that	can	require	query
rewriting.	Suppose	that	you	have	three	tables	t1(a,b),	t2(c,b),	and
t3(a,c)	that	each	have	one	row:	t1(1,2),	t2(10,2),	and	t3(7,10).
Suppose	also	that	you	have	this	NATURAL	JOIN	on	the	three	tables:

SELECT	...	FROM	t1	NATURAL	JOIN	t2	NATURAL	JOIN	t3;

Previously,	the	left	operand	of	the	second	join	was	considered	to	be	t2,
whereas	it	should	be	the	nested	join	(t1	NATURAL	JOIN	t2).	As	a	result,
the	columns	of	t3	are	checked	for	common	columns	only	in	t2,	and,	if	t3
has	common	columns	with	t1,	these	columns	are	not	used	as	equi-join

columns.	Thus,	previously,	the	preceding	query	was	transformed	to	the
following	equi-join:

SELECT	...	FROM	t1,	t2,	t3

		WHERE	t1.b	=	t2.b	AND	t2.c	=	t3.c;

That	join	is	missing	one	more	equi-join	predicate	(t1.a	=	t3.a).	As	a
result,	it	produces	one	row,	not	the	empty	result	that	it	should.	The	correct
equivalent	query	is	this:

SELECT	...	FROM	t1,	t2,	t3

		WHERE	t1.b	=	t2.b	AND	t2.c	=	t3.c	AND	t1.a	=	t3.a;

If	you	require	the	same	query	result	in	current	versions	of	MySQL	as	in
older	versions,	rewrite	the	natural	join	as	the	first	equi-join.

Previously,	the	comma	operator	(,)	and	JOIN	both	had	the	same	precedence,
so	the	join	expression	t1,	t2	JOIN	t3	was	interpreted	as	((t1,	t2)	JOIN
t3).	Now	JOIN	has	higher	precedence,	so	the	expression	is	interpreted	as
(t1,	(t2	JOIN	t3)).	This	change	affects	statements	that	use	an	ON	clause,
because	that	clause	can	refer	only	to	columns	in	the	operands	of	the	join,
and	the	change	in	precedence	changes	interpretation	of	what	those	operands
are.

Example:

CREATE	TABLE	t1	(i1	INT,	j1	INT);

CREATE	TABLE	t2	(i2	INT,	j2	INT);

CREATE	TABLE	t3	(i3	INT,	j3	INT);

INSERT	INTO	t1	VALUES(1,1);

INSERT	INTO	t2	VALUES(1,1);

INSERT	INTO	t3	VALUES(1,1);

SELECT	*	FROM	t1,	t2	JOIN	t3	ON	(t1.i1	=	t3.i3);

Previously,	the	SELECT	was	legal	due	to	the	implicit	grouping	of	t1,t2	as
(t1,t2).	Now	the	JOIN	takes	precedence,	so	the	operands	for	the	ON	clause
are	t2	and	t3.	Because	t1.i1	is	not	a	column	in	either	of	the	operands,	the
result	is	an	Unknown	column	't1.i1'	in	'on	clause'	error.	To	allow	the
join	to	be	processed,	group	the	first	two	tables	explicitly	with	parentheses
so	that	the	operands	for	the	ON	clause	are	(t1,t2)	and	t3:

SELECT	*	FROM	(t1,	t2)	JOIN	t3	ON	(t1.i1	=	t3.i3);

Alternatively,	avoid	the	use	of	the	comma	operator	and	use	JOIN	instead:

SELECT	*	FROM	t1	JOIN	t2	JOIN	t3	ON	(t1.i1	=	t3.i3);

This	change	also	applies	to	statements	that	mix	the	comma	operator	with
INNER	JOIN,	CROSS	JOIN,	LEFT	JOIN,	and	RIGHT	JOIN,	all	of	which	now
have	higher	precedence	than	the	comma	operator.

Previously,	the	ON	clause	could	refer	to	columns	in	tables	named	to	its	right.
Now	an	ON	clause	can	refer	only	to	its	operands.

Example:

CREATE	TABLE	t1	(i1	INT);

CREATE	TABLE	t2	(i2	INT);

CREATE	TABLE	t3	(i3	INT);

SELECT	*	FROM	t1	JOIN	t2	ON	(i1	=	i3)	JOIN	t3;

Previously,	the	SELECT	statement	was	legal.	Now	the	statement	fails	with	an
Unknown	column	'i3'	in	'on	clause'	error	because	i3	is	a	column	in	t3,
which	is	not	an	operand	of	the	ON	clause.	The	statement	should	be	rewritten
as	follows:

SELECT	*	FROM	t1	JOIN	t2	JOIN	t3	ON	(i1	=	i3);

Resolution	of	column	names	in	NATURAL	or	USING	joins	is	different	than
previously.	For	column	names	that	are	outside	the	FROM	clause,	MySQL
now	handles	a	superset	of	the	queries	compared	to	previously.	That	is,	in
cases	when	MySQL	formerly	issued	an	error	that	some	column	is
ambiguous,	the	query	now	is	handled	correctly.	This	is	due	to	the	fact	that
MySQL	now	treats	the	common	columns	of	NATURAL	or	USING	joins	as	a
single	column,	so	when	a	query	refers	to	such	columns,	the	query	compiler
does	not	consider	them	as	ambiguous.

Example:

SELECT	*	FROM	t1	NATURAL	JOIN	t2	WHERE	b	>	1;

Previously,	this	query	would	produce	an	error	ERROR	1052	(23000):
Column	'b'	in	where	clause	is	ambiguous.	Now	the	query	produces	the
correct	result:

+------+------+------+

|	b				|	c				|	y				|

+------+------+------+

|				4	|				2	|				3	|

+------+------+------+

One	extension	of	MySQL	compared	to	the	SQL:2003	standard	is	that
MySQL	allows	you	to	qualify	the	common	(coalesced)	columns	of	NATURAL
or	USING	joins	(just	as	previously),	while	the	standard	disallows	that.

13.2.7.2.	UNION	Syntax

SELECT	...

UNION	[ALL	|	DISTINCT]	SELECT	...

[UNION	[ALL	|	DISTINCT]	SELECT	...]

UNION	is	used	to	combine	the	result	from	multiple	SELECT	statements	into	a
single	result	set.

The	column	names	from	the	first	SELECT	statement	are	used	as	the	column	names
for	the	results	returned.	Selected	columns	listed	in	corresponding	positions	of
each	SELECT	statement	should	have	the	same	data	type.	(For	example,	the	first
column	selected	by	the	first	statement	should	have	the	same	type	as	the	first
column	selected	by	the	other	statements.)

If	the	data	types	of	corresponding	SELECT	columns	do	not	match,	the	types	and
lengths	of	the	columns	in	the	UNION	result	take	into	account	the	values	retrieved
by	all	of	the	SELECT	statements.	For	example,	consider	the	following:

mysql>	SELECT	REPEAT('a',1)	UNION	SELECT	REPEAT('b',10);

+---------------+

|	REPEAT('a',1)	|

+---------------+

|	a													|

|	bbbbbbbbbb				|

+---------------+

(In	some	earlier	versions	of	MySQL,	only	the	type	and	length	from	the	first
SELECT	would	have	been	used	and	the	second	row	would	have	been	truncated	to
a	length	of	1.)

The	SELECT	statements	are	normal	select	statements,	but	with	the	following

restrictions:

Only	the	last	SELECT	statement	can	use	INTO	OUTFILE.

HIGH_PRIORITY	cannot	be	used	with	SELECT	statements	that	are	part	of	a
UNION.	If	you	specify	it	for	the	first	SELECT,	it	has	no	effect.	If	you	specify	it
for	any	subsequent	SELECT	statements,	a	syntax	error	results.

The	default	behavior	for	UNION	is	that	duplicate	rows	are	removed	from	the
result.	The	optional	DISTINCT	keyword	has	no	effect	other	than	the	default
because	it	also	specifies	duplicate-row	removal.	With	the	optional	ALL	keyword,
duplicate-row	removal	does	not	occur	and	the	result	includes	all	matching	rows
from	all	the	SELECT	statements.

You	can	mix	UNION	ALL	and	UNION	DISTINCT	in	the	same	query.	Mixed	UNION
types	are	treated	such	that	a	DISTINCT	union	overrides	any	ALL	union	to	its	left.
A	DISTINCT	union	can	be	produced	explicitly	by	using	UNION	DISTINCT	or
implicitly	by	using	UNION	with	no	following	DISTINCT	or	ALL	keyword.

To	use	an	ORDER	BY	or	LIMIT	clause	to	sort	or	limit	the	entire	UNION	result,
parenthesize	the	individual	SELECT	statements	and	place	the	ORDER	BY	or	LIMIT
after	the	last	one.	The	following	example	uses	both	clauses:

(SELECT	a	FROM	t1	WHERE	a=10	AND	B=1)

UNION

(SELECT	a	FROM	t2	WHERE	a=11	AND	B=2)

ORDER	BY	a	LIMIT	10;

This	kind	of	ORDER	BY	cannot	use	column	references	that	include	a	table	name
(that	is,	names	in	tbl_name.col_name	format).	Instead,	provide	a	column	alias	in
the	first	SELECT	statement	and	refer	to	the	alias	in	the	ORDER	BY.	(Alternatively,
refer	to	the	column	in	the	ORDER	BY	using	its	column	position.	However,	use	of
column	positions	is	deprecated.)

Also,	if	a	column	to	be	sorted	is	aliased,	the	ORDER	BY	clause	must	refer	to	the
alias,	not	the	column	name.	The	first	of	the	following	statements	will	work,	but
the	second	will	fail	with	an	Unknown	column	'a'	in	'order	clause'	error:

(SELECT	a	AS	b	FROM	t)	UNION	(SELECT	...)	ORDER	BY	b;

(SELECT	a	AS	b	FROM	t)	UNION	(SELECT	...)	ORDER	BY	a;

To	apply	ORDER	BY	or	LIMIT	to	an	individual	SELECT,	place	the	clause	inside	the
parentheses	that	enclose	the	SELECT:

(SELECT	a	FROM	t1	WHERE	a=10	AND	B=1	ORDER	BY	a	LIMIT	10)

UNION

(SELECT	a	FROM	t2	WHERE	a=11	AND	B=2	ORDER	BY	a	LIMIT	10);

Use	of	ORDER	BY	for	individual	SELECT	statements	implies	nothing	about	the
order	in	which	the	rows	appear	in	the	final	result	because	UNION	by	default
produces	an	unordered	set	of	rows.	If	ORDER	BY	appears	with	LIMIT,	it	is	used	to
determine	the	subset	of	the	selected	rows	to	retrieve	for	the	SELECT,	but	does	not
necessarily	affect	the	order	of	those	rows	in	the	final	UNION	result.	If	ORDER	BY
appears	without	LIMIT	in	a	SELECT,	it	is	optimized	away	because	it	will	have	no
effect	anyway.

To	cause	rows	in	a	UNION	result	to	consist	of	the	sets	of	rows	retrieved	by	each
SELECT	one	after	the	other,	select	an	additional	column	in	each	SELECT	to	use	as	a
sort	column	and	add	an	ORDER	BY	following	the	last	SELECT:

(SELECT	1	AS	sort_col,	col1a,	col1b,	...	FROM	t1)

UNION

(SELECT	2,	col2a,	col2b,	...	FROM	t2)	ORDER	BY	sort_col;

To	additionally	maintain	sort	order	within	individual	SELECT	results,	add	a
secondary	column	to	the	ORDER	BY	clause:

(SELECT	1	AS	sort_col,	col1a,	col1b,	...	FROM	t1)

UNION

(SELECT	2,	col2a,	col2b,	...	FROM	t2)	ORDER	BY	sort_col,	col1a;

13.2.8.	Subquery	Syntax

A	subquery	is	a	SELECT	statement	within	another	statement.

Starting	with	MySQL	4.1,	all	subquery	forms	and	operations	that	the	SQL
standard	requires	are	supported,	as	well	as	a	few	features	that	are	MySQL-
specific.

Here	is	an	example	of	a	subquery:

SELECT	*	FROM	t1	WHERE	column1	=	(SELECT	column1	FROM	t2);

In	this	example,	SELECT	*	FROM	t1	...	is	the	outer	query	(or	outer	statement),
and	(SELECT	column1	FROM	t2)	is	the	subquery.	We	say	that	the	subquery	is
nested	within	the	outer	query,	and	in	fact	it	is	possible	to	nest	subqueries	within
other	subqueries,	to	a	considerable	depth.	A	subquery	must	always	appear	within
parentheses.

The	main	advantages	of	subqueries	are:

They	allow	queries	that	are	structured	so	that	it	is	possible	to	isolate	each
part	of	a	statement.

They	provide	alternative	ways	to	perform	operations	that	would	otherwise
require	complex	joins	and	unions.

They	are,	in	many	people's	opinion,	readable.	Indeed,	it	was	the	innovation
of	subqueries	that	gave	people	the	original	idea	of	calling	the	early	SQL
“Structured	Query	Language.”

Here	is	an	example	statement	that	shows	the	major	points	about	subquery	syntax
as	specified	by	the	SQL	standard	and	supported	in	MySQL:

DELETE	FROM	t1

WHERE	s11	>	ANY

(SELECT	COUNT(*)	/*	no	hint	*/	FROM	t2

WHERE	NOT	EXISTS

(SELECT	*	FROM	t3

WHERE	ROW(5*t2.s1,77)=

(SELECT	50,11*s1	FROM	t4	UNION	SELECT	50,77	FROM

(SELECT	*	FROM	t5)	AS	t5)));

A	subquery	can	return	a	scalar	(a	single	value),	a	single	row,	a	single	column,	or
a	table	(one	or	more	rows	of	one	or	more	columns).	These	are	called	scalar,
column,	row,	and	table	subqueries.	Subqueries	that	return	a	particular	kind	of
result	often	can	be	used	only	in	certain	contexts,	as	described	in	the	following
sections.

There	are	few	restrictions	on	the	type	of	statements	in	which	subqueries	can	be
used.	A	subquery	can	contain	any	of	the	keywords	or	clauses	that	an	ordinary
SELECT	can	contain:	DISTINCT,	GROUP	BY,	ORDER	BY,	LIMIT,	joins,	index	hints,
UNION	constructs,	comments,	functions,	and	so	on.

One	restriction	is	that	a	subquery's	outer	statement	must	be	one	of:	SELECT,

INSERT,	UPDATE,	DELETE,	SET,	or	DO.	Another	restriction	is	that	currently	you
cannot	modify	a	table	and	select	from	the	same	table	in	a	subquery.	This	applies
to	statements	such	as	DELETE,	INSERT,	REPLACE,	UPDATE,	and	(because	subqueries
can	be	used	in	the	SET	clause)	LOAD	DATA	INFILE.

A	more	comprehensive	discussion	of	restrictions	on	subquery	use,	including
performance	issues	for	certain	forms	of	subquery	syntax,	is	given	in	Section	I.3,
“Restrictions	on	Subqueries”.

13.2.8.1.	The	Subquery	as	Scalar	Operand

In	its	simplest	form,	a	subquery	is	a	scalar	subquery	that	returns	a	single	value.	A
scalar	subquery	is	a	simple	operand,	and	you	can	use	it	almost	anywhere	a	single
column	value	or	literal	is	legal,	and	you	can	expect	it	to	have	those
characteristics	that	all	operands	have:	a	data	type,	a	length,	an	indication	whether
it	can	be	NULL,	and	so	on.	For	example:

CREATE	TABLE	t1	(s1	INT,	s2	CHAR(5)	NOT	NULL);

INSERT	INTO	t1	VALUES(100,	'abcde');

SELECT	(SELECT	s2	FROM	t1);

The	subquery	in	this	SELECT	returns	a	single	value	('abcde')	that	has	a	data	type
of	CHAR,	a	length	of	5,	a	character	set	and	collation	equal	to	the	defaults	in	effect
at	CREATE	TABLE	time,	and	an	indication	that	the	value	in	the	column	can	be
NULL.	In	fact,	almost	all	subqueries	can	be	NULL.	If	the	table	used	in	the	example
were	empty,	the	value	of	the	subquery	would	be	NULL.

There	are	a	few	contexts	in	which	a	scalar	subquery	cannot	be	used.	If	a
statement	allows	only	a	literal	value,	you	cannot	use	a	subquery.	For	example,
LIMIT	requires	literal	integer	arguments,	and	LOAD	DATA	INFILE	requires	a	literal
string	filename.	You	cannot	use	subqueries	to	supply	these	values.

When	you	see	examples	in	the	following	sections	that	contain	the	rather	spartan
construct	(SELECT	column1	FROM	t1),	imagine	that	your	own	code	contains
much	more	diverse	and	complex	constructions.

Suppose	that	we	make	two	tables:

CREATE	TABLE	t1	(s1	INT);

INSERT	INTO	t1	VALUES	(1);

CREATE	TABLE	t2	(s1	INT);

INSERT	INTO	t2	VALUES	(2);

Then	perform	a	SELECT:

SELECT	(SELECT	s1	FROM	t2)	FROM	t1;

The	result	is	2	because	there	is	a	row	in	t2	containing	a	column	s1	that	has	a
value	of	2.

A	scalar	subquery	can	be	part	of	an	expression,	but	remember	the	parentheses,
even	if	the	subquery	is	an	operand	that	provides	an	argument	for	a	function.	For
example:

SELECT	UPPER((SELECT	s1	FROM	t1))	FROM	t2;

13.2.8.2.	Comparisons	Using	Subqueries

The	most	common	use	of	a	subquery	is	in	the	form:

non_subquery_operand	comparison_operator	(subquery)

Where	comparison_operator	is	one	of	these	operators:

=		>		<		>=		<=		<>

For	example:

		...	'a'	=	(SELECT	column1	FROM	t1)

At	one	time	the	only	legal	place	for	a	subquery	was	on	the	right	side	of	a
comparison,	and	you	might	still	find	some	old	DBMSs	that	insist	on	this.

Here	is	an	example	of	a	common-form	subquery	comparison	that	you	cannot	do
with	a	join.	It	finds	all	the	values	in	table	t1	that	are	equal	to	a	maximum	value
in	table	t2:

SELECT	column1	FROM	t1

WHERE	column1	=	(SELECT	MAX(column2)	FROM	t2);

Here	is	another	example,	which	again	is	impossible	with	a	join	because	it
involves	aggregating	for	one	of	the	tables.	It	finds	all	rows	in	table	t1	containing
a	value	that	occurs	twice	in	a	given	column:

SELECT	*	FROM	t1	AS	t

WHERE	2	=	(SELECT	COUNT(*)	FROM	t1	WHERE	t1.id	=	t.id);

For	a	comparison	performed	with	one	of	these	operators,	the	subquery	must
return	a	scalar,	with	the	exception	that	=	can	be	used	with	row	subqueries.	See
Section	13.2.8.5,	“Row	Subqueries”.

13.2.8.3.	Subqueries	with	ANY,	IN,	and	SOME

Syntax:

operand	comparison_operator	ANY	(subquery)

operand	IN	(subquery)

operand	comparison_operator	SOME	(subquery)

The	ANY	keyword,	which	must	follow	a	comparison	operator,	means	“return	TRUE
if	the	comparison	is	TRUE	for	ANY	of	the	values	in	the	column	that	the	subquery
returns.”	For	example:

SELECT	s1	FROM	t1	WHERE	s1	>	ANY	(SELECT	s1	FROM	t2);

Suppose	that	there	is	a	row	in	table	t1	containing	(10).	The	expression	is	TRUE	if
table	t2	contains	(21,14,7)	because	there	is	a	value	7	in	t2	that	is	less	than	10.
The	expression	is	FALSE	if	table	t2	contains	(20,10),	or	if	table	t2	is	empty.	The
expression	is	UNKNOWN	if	table	t2	contains	(NULL,NULL,NULL).

The	word	IN	is	an	alias	for	=	ANY.	Thus,	these	two	statements	are	the	same:

SELECT	s1	FROM	t1	WHERE	s1	=	ANY	(SELECT	s1	FROM	t2);

SELECT	s1	FROM	t1	WHERE	s1	IN				(SELECT	s1	FROM	t2);

However,	NOT	IN	is	not	an	alias	for	<>	ANY,	but	for	<>	ALL.	See
Section	13.2.8.4,	“Subqueries	with	ALL”.

The	word	SOME	is	an	alias	for	ANY.	Thus,	these	two	statements	are	the	same:

SELECT	s1	FROM	t1	WHERE	s1	<>	ANY		(SELECT	s1	FROM	t2);

SELECT	s1	FROM	t1	WHERE	s1	<>	SOME	(SELECT	s1	FROM	t2);

Use	of	the	word	SOME	is	rare,	but	this	example	shows	why	it	might	be	useful.	To
most	people's	ears,	the	English	phrase	“a	is	not	equal	to	any	b”	means	“there	is
no	b	which	is	equal	to	a,”	but	that	is	not	what	is	meant	by	the	SQL	syntax.	The

syntax	means	“there	is	some	b	to	which	a	is	not	equal.”	Using	<>	SOME	instead
helps	ensure	that	everyone	understands	the	true	meaning	of	the	query.

13.2.8.4.	Subqueries	with	ALL

Syntax:

operand	comparison_operator	ALL	(subquery)

The	word	ALL,	which	must	follow	a	comparison	operator,	means	“return	TRUE	if
the	comparison	is	TRUE	for	ALL	of	the	values	in	the	column	that	the	subquery
returns.”	For	example:

SELECT	s1	FROM	t1	WHERE	s1	>	ALL	(SELECT	s1	FROM	t2);

Suppose	that	there	is	a	row	in	table	t1	containing	(10).	The	expression	is	TRUE	if
table	t2	contains	(-5,0,+5)	because	10	is	greater	than	all	three	values	in	t2.	The
expression	is	FALSE	if	table	t2	contains	(12,6,NULL,-100)	because	there	is	a
single	value	12	in	table	t2	that	is	greater	than	10.	The	expression	is	unknown
(that	is,	NULL)	if	table	t2	contains	(0,NULL,1).

Finally,	if	table	t2	is	empty,	the	result	is	TRUE.	So,	the	following	statement	is
TRUE	when	table	t2	is	empty:

SELECT	*	FROM	t1	WHERE	1	>	ALL	(SELECT	s1	FROM	t2);

But	this	statement	is	NULL	when	table	t2	is	empty:

SELECT	*	FROM	t1	WHERE	1	>	(SELECT	s1	FROM	t2);

In	addition,	the	following	statement	is	NULL	when	table	t2	is	empty:

SELECT	*	FROM	t1	WHERE	1	>	ALL	(SELECT	MAX(s1)	FROM	t2);

In	general,	tables	containing	NULL	values	and	empty	tables	are	“edge	cases.”
When	writing	subquery	code,	always	consider	whether	you	have	taken	those	two
possibilities	into	account.

NOT	IN	is	an	alias	for	<>	ALL.	Thus,	these	two	statements	are	the	same:

SELECT	s1	FROM	t1	WHERE	s1	<>	ALL	(SELECT	s1	FROM	t2);

SELECT	s1	FROM	t1	WHERE	s1	NOT	IN	(SELECT	s1	FROM	t2);

13.2.8.5.	Row	Subqueries

The	discussion	to	this	point	has	been	of	scalar	or	column	subqueries;	that	is,
subqueries	that	return	a	single	value	or	a	column	of	values.	A	row	subquery	is	a
subquery	variant	that	returns	a	single	row	and	can	thus	return	more	than	one
column	value.	Here	are	two	examples:

SELECT	*	FROM	t1	WHERE	(1,2)	=	(SELECT	column1,	column2	FROM	t2);

SELECT	*	FROM	t1	WHERE	ROW(1,2)	=	(SELECT	column1,	column2	FROM	t2);

The	queries	here	are	both	TRUE	if	table	t2	has	a	row	where	column1	=	1	and
column2	=	2.

The	expressions	(1,2)	and	ROW(1,2)	are	sometimes	called	row	constructors.
The	two	are	equivalent.	They	are	legal	in	other	contexts	as	well.	For	example,
the	following	two	statements	are	semantically	equivalent	(although	currently
only	the	second	one	can	be	optimized):

		SELECT	*	FROM	t1	WHERE	(column1,column2)	=	(1,1);

		SELECT	*	FROM	t1	WHERE	column1	=	1	AND	column2	=	1;

The	normal	use	of	row	constructors	is	for	comparisons	with	subqueries	that
return	two	or	more	columns.	For	example,	the	following	query	answers	the
request,	“find	all	rows	in	table	t1	that	also	exist	in	table	t2”:

SELECT	column1,column2,column3

FROM	t1

WHERE	(column1,column2,column3)	IN

(SELECT	column1,column2,column3	FROM	t2);

13.2.8.6.	EXISTS	and	NOT	EXISTS

If	a	subquery	returns	any	rows	at	all,	EXISTS	subquery	is	TRUE,	and	NOT	EXISTS
subquery	is	FALSE.	For	example:

SELECT	column1	FROM	t1	WHERE	EXISTS	(SELECT	*	FROM	t2);

Traditionally,	an	EXISTS	subquery	starts	with	SELECT	*,	but	it	could	begin	with
SELECT	5	or	SELECT	column1	or	anything	at	all.	MySQL	ignores	the	SELECT	list
in	such	a	subquery,	so	it	makes	no	difference.

For	the	preceding	example,	if	t2	contains	any	rows,	even	rows	with	nothing	but
NULL	values,	the	EXISTS	condition	is	TRUE.	This	is	actually	an	unlikely	example
because	a	[NOT]	EXISTS	subquery	almost	always	contains	correlations.	Here	are
some	more	realistic	examples:

What	kind	of	store	is	present	in	one	or	more	cities?

SELECT	DISTINCT	store_type	FROM	stores

		WHERE	EXISTS	(SELECT	*	FROM	cities_stores

																WHERE	cities_stores.store_type	=	stores.store_type);

What	kind	of	store	is	present	in	no	cities?

SELECT	DISTINCT	store_type	FROM	stores

		WHERE	NOT	EXISTS	(SELECT	*	FROM	cities_stores

																				WHERE	cities_stores.store_type	=	stores.store_type);

What	kind	of	store	is	present	in	all	cities?

SELECT	DISTINCT	store_type	FROM	stores	s1

		WHERE	NOT	EXISTS	(

				SELECT	*	FROM	cities	WHERE	NOT	EXISTS	(

						SELECT	*	FROM	cities_stores

							WHERE	cities_stores.city	=	cities.city

							AND	cities_stores.store_type	=	stores.store_type));

The	last	example	is	a	double-nested	NOT	EXISTS	query.	That	is,	it	has	a	NOT
EXISTS	clause	within	a	NOT	EXISTS	clause.	Formally,	it	answers	the	question
“does	a	city	exist	with	a	store	that	is	not	in	Stores”?	But	it	is	easier	to	say	that	a
nested	NOT	EXISTS	answers	the	question	“is	x	TRUE	for	all	y?”

13.2.8.7.	Correlated	Subqueries

A	correlated	subquery	is	a	subquery	that	contains	a	reference	to	a	table	that	also
appears	in	the	outer	query.	For	example:

SELECT	*	FROM	t1	WHERE	column1	=	ANY

(SELECT	column1	FROM	t2	WHERE	t2.column2	=	t1.column2);

Notice	that	the	subquery	contains	a	reference	to	a	column	of	t1,	even	though	the
subquery's	FROM	clause	does	not	mention	a	table	t1.	So,	MySQL	looks	outside
the	subquery,	and	finds	t1	in	the	outer	query.

Suppose	that	table	t1	contains	a	row	where	column1	=	5	and	column2	=	6;
meanwhile,	table	t2	contains	a	row	where	column1	=	5	and	column2	=	7.	The
simple	expression	...	WHERE	column1	=	ANY	(SELECT	column1	FROM	t2)
would	be	TRUE,	but	in	this	example,	the	WHERE	clause	within	the	subquery	is
FALSE	(because	(5,6)	is	not	equal	to	(5,7)),	so	the	subquery	as	a	whole	is
FALSE.

Scoping	rule:	MySQL	evaluates	from	inside	to	outside.	For	example:

SELECT	column1	FROM	t1	AS	x

WHERE	x.column1	=	(SELECT	column1	FROM	t2	AS	x

WHERE	x.column1	=	(SELECT	column1	FROM	t3

WHERE	x.column2	=	t3.column1));

In	this	statement,	x.column2	must	be	a	column	in	table	t2	because	SELECT
column1	FROM	t2	AS	x	...	renames	t2.	It	is	not	a	column	in	table	t1	because
SELECT	column1	FROM	t1	...	is	an	outer	query	that	is	farther	out.

For	subqueries	in	HAVING	or	ORDER	BY	clauses,	MySQL	also	looks	for	column
names	in	the	outer	select	list.

For	certain	cases,	a	correlated	subquery	is	optimized.	For	example:

val	IN	(SELECT	key_val	FROM	tbl_name	WHERE	correlated_condition)

Otherwise,	they	are	inefficient	and	likely	to	be	slow.	Rewriting	the	query	as	a
join	might	improve	performance.

Correlated	subqueries	cannot	refer	to	the	results	of	aggregate	functions	from	the
outer	query.

13.2.8.8.	Subqueries	in	the	FROM	clause

Subqueries	are	legal	in	a	SELECT	statement's	FROM	clause.	The	actual	syntax	is:

SELECT	...	FROM	(subquery)	[AS]	name	...

The	[AS]	name	clause	is	mandatory,	because	every	table	in	a	FROM	clause	must
have	a	name.	Any	columns	in	the	subquery	select	list	must	have	unique	names.
You	can	find	this	syntax	described	elsewhere	in	this	manual,	where	the	term	used
is	“derived	tables.”

For	the	sake	of	illustration,	assume	that	you	have	this	table:

CREATE	TABLE	t1	(s1	INT,	s2	CHAR(5),	s3	FLOAT);

Here	is	how	to	use	a	subquery	in	the	FROM	clause,	using	the	example	table:

INSERT	INTO	t1	VALUES	(1,'1',1.0);

INSERT	INTO	t1	VALUES	(2,'2',2.0);

SELECT	sb1,sb2,sb3

FROM	(SELECT	s1	AS	sb1,	s2	AS	sb2,	s3*2	AS	sb3	FROM	t1)	AS	sb

WHERE	sb1	>	1;

Result:	2,	'2',	4.0.

Here	is	another	example:	Suppose	that	you	want	to	know	the	average	of	a	set	of
sums	for	a	grouped	table.	This	does	not	work:

SELECT	AVG(SUM(column1))	FROM	t1	GROUP	BY	column1;

However,	this	query	provides	the	desired	information:

SELECT	AVG(sum_column1)

FROM	(SELECT	SUM(column1)	AS	sum_column1

FROM	t1	GROUP	BY	column1)	AS	t1;

Notice	that	the	column	name	used	within	the	subquery	(sum_column1)	is
recognized	in	the	outer	query.

Subqueries	in	the	FROM	clause	can	return	a	scalar,	column,	row,	or	table.
Subqueries	in	the	FROM	clause	cannot	be	correlated	subqueries.

Subqueries	in	the	FROM	clause	are	executed	even	for	the	EXPLAIN	statement	(that
is,	derived	temporary	tables	are	built).	This	occurs	because	upper	level	queries
need	information	about	all	tables	during	optimization	phase.

13.2.8.9.	Subquery	Errors

There	are	some	errors	that	apply	only	to	subqueries.	This	section	describes	them.

Unsupported	subquery	syntax:

ERROR	1235	(ER_NOT_SUPPORTED_YET)

SQLSTATE	=	42000

Message	=	"This	version	of	MySQL	does	not	yet	support

'LIMIT	&	IN/ALL/ANY/SOME	subquery'"

This	means	that	statements	of	the	following	form	do	not	work	yet:

SELECT	*	FROM	t1	WHERE	s1	IN	(SELECT	s2	FROM	t2	ORDER	BY	s1	LIMIT	1)

Incorrect	number	of	columns	from	subquery:

ERROR	1241	(ER_OPERAND_COL)

SQLSTATE	=	21000

Message	=	"Operand	should	contain	1	column(s)"

This	error	occurs	in	cases	like	this:

SELECT	(SELECT	column1,	column2	FROM	t2)	FROM	t1;

You	may	use	a	subquery	that	returns	multiple	columns,	if	the	purpose	is
comparison.	See	Section	13.2.8.5,	“Row	Subqueries”.	However,	in	other
contexts,	the	subquery	must	be	a	scalar	operand.

Incorrect	number	of	rows	from	subquery:

ERROR	1242	(ER_SUBSELECT_NO_1_ROW)

SQLSTATE	=	21000

Message	=	"Subquery	returns	more	than	1	row"

This	error	occurs	for	statements	where	the	subquery	returns	more	than	one
row.	Consider	the	following	example:

SELECT	*	FROM	t1	WHERE	column1	=	(SELECT	column1	FROM	t2);

If	SELECT	column1	FROM	t2	returns	just	one	row,	the	previous	query	will
work.	If	the	subquery	returns	more	than	one	row,	error	1242	will	occur.	In
that	case,	the	query	should	be	rewritten	as:

SELECT	*	FROM	t1	WHERE	column1	=	ANY	(SELECT	column1	FROM	t2);

Incorrectly	used	table	in	subquery:

Error	1093	(ER_UPDATE_TABLE_USED)

SQLSTATE	=	HY000

Message	=	"You	can't	specify	target	table	'x'

for	update	in	FROM	clause"

This	error	occurs	in	cases	such	as	the	following:

UPDATE	t1	SET	column2	=	(SELECT	MAX(column1)	FROM	t1);

You	can	use	a	subquery	for	assignment	within	an	UPDATE	statement	because
subqueries	are	legal	in	UPDATE	and	DELETE	statements	as	well	as	in	SELECT
statements.	However,	you	cannot	use	the	same	table	(in	this	case,	table	t1)
for	both	the	subquery's	FROM	clause	and	the	update	target.

For	transactional	storage	engines,	the	failure	of	a	subquery	causes	the	entire
statement	to	fail.	For	non-transactional	storage	engines,	data	modifications	made
before	the	error	was	encountered	are	preserved.

13.2.8.10.	Optimizing	Subqueries

Development	is	ongoing,	so	no	optimization	tip	is	reliable	for	the	long	term.	The
following	list	provides	some	interesting	tricks	that	you	might	want	to	play	with:

Use	subquery	clauses	that	affect	the	number	or	order	of	the	rows	in	the
subquery.	For	example:

SELECT	*	FROM	t1	WHERE	t1.column1	IN

(SELECT	column1	FROM	t2	ORDER	BY	column1);

SELECT	*	FROM	t1	WHERE	t1.column1	IN

(SELECT	DISTINCT	column1	FROM	t2);

SELECT	*	FROM	t1	WHERE	EXISTS

(SELECT	*	FROM	t2	LIMIT	1);

Replace	a	join	with	a	subquery.	For	example,	try	this:

SELECT	DISTINCT	column1	FROM	t1	WHERE	t1.column1	IN	(

SELECT	column1	FROM	t2);

Instead	of	this:

SELECT	DISTINCT	t1.column1	FROM	t1,	t2

WHERE	t1.column1	=	t2.column1;

Some	subqueries	can	be	transformed	to	joins	for	compatibility	with	older
versions	of	MySQL	that	do	not	support	subqueries.	However,	in	some
cases,	converting	a	subquery	to	a	join	may	improve	performance.	See
Section	13.2.8.11,	“Rewriting	Subqueries	as	Joins	for	Earlier	MySQL

Versions”.

Move	clauses	from	outside	to	inside	the	subquery.	For	example,	use	this
query:

SELECT	*	FROM	t1

WHERE	s1	IN	(SELECT	s1	FROM	t1	UNION	ALL	SELECT	s1	FROM	t2);

Instead	of	this	query:

SELECT	*	FROM	t1

WHERE	s1	IN	(SELECT	s1	FROM	t1)	OR	s1	IN	(SELECT	s1	FROM	t2);

For	another	example,	use	this	query:

SELECT	(SELECT	column1	+	5	FROM	t1)	FROM	t2;

Instead	of	this	query:

SELECT	(SELECT	column1	FROM	t1)	+	5	FROM	t2;

Use	a	row	subquery	instead	of	a	correlated	subquery.	For	example,	use	this
query:

SELECT	*	FROM	t1

WHERE	(column1,column2)	IN	(SELECT	column1,column2	FROM	t2);

Instead	of	this	query:

SELECT	*	FROM	t1

WHERE	EXISTS	(SELECT	*	FROM	t2	WHERE	t2.column1=t1.column1

AND	t2.column2=t1.column2);

Use	NOT	(a	=	ANY	(...))	rather	than	a	<>	ALL	(...).

Use	x	=	ANY	(table	containing	(1,2))	rather	than	x=1	OR	x=2.

Use	=	ANY	rather	than	EXISTS.

For	uncorrelated	subqueries	that	always	return	one	row,	IN	is	always	slower
than	=.	For	example,	use	this	query:

SELECT	*	FROM	t1	WHERE	t1.col_name

=	(SELECT	a	FROM	t2	WHERE	b	=	some_const);

Instead	of	this	query:

SELECT	*	FROM	t1	WHERE	t1.col_name

IN	(SELECT	a	FROM	t2	WHERE	b	=	some_const);

These	tricks	might	cause	programs	to	go	faster	or	slower.	Using	MySQL
facilities	like	the	BENCHMARK()	function,	you	can	get	an	idea	about	what	helps	in
your	own	situation.	See	Section	12.9.3,	“Information	Functions”.

Some	optimizations	that	MySQL	itself	makes	are:

MySQL	executes	non-correlated	subqueries	only	once.	Use	EXPLAIN	to
make	sure	that	a	given	subquery	really	is	non-correlated.

MySQL	rewrites	IN,	ALL,	ANY,	and	SOME	subqueries	in	an	attempt	to	take
advantage	of	the	possibility	that	the	select-list	columns	in	the	subquery	are
indexed.

MySQL	replaces	subqueries	of	the	following	form	with	an	index-lookup
function,	which	EXPLAIN	describes	as	a	special	join	type	(unique_subquery
or	index_subquery):

...	IN	(SELECT	indexed_column	FROM	single_table	...)

MySQL	enhances	expressions	of	the	following	form	with	an	expression
involving	MIN()	or	MAX(),	unless	NULL	values	or	empty	sets	are	involved:

value	{ALL|ANY|SOME}	{>	|	<	|	>=	|	<=}	(non-correlated	subquery)

For	example,	this	WHERE	clause:

WHERE	5	>	ALL	(SELECT	x	FROM	t)

might	be	treated	by	the	optimizer	like	this:

WHERE	5	>	(SELECT	MAX(x)	FROM	t)

There	is	a	chapter	titled	“How	MySQL	Transforms	Subqueries”	in	the	MySQL
Internals	Manual,	available	at	http://dev.mysql.com/doc/.

13.2.8.11.	Rewriting	Subqueries	as	Joins	for	Earlier	MySQL	Versions

http://dev.mysql.com/doc/

In	previous	versions	of	MySQL	(prior	to	MySQL	4.1),	only	nested	queries	of	the
form	INSERT	...	SELECT	...	and	REPLACE	...	SELECT	...	were	supported.
Although	this	is	not	the	case	in	MySQL	5.0,	it	is	still	true	that	there	are
sometimes	other	ways	to	test	membership	in	a	set	of	values.	It	is	also	true	that	on
some	occasions,	it	is	not	only	possible	to	rewrite	a	query	without	a	subquery,	but
it	can	be	more	efficient	to	make	use	of	some	of	these	techniques	rather	than	to
use	subqueries.	One	of	these	is	the	IN()	construct:

For	example,	this	query:

SELECT	*	FROM	t1	WHERE	id	IN	(SELECT	id	FROM	t2);

Can	be	rewritten	as:

SELECT	DISTINCT	t1.*	FROM	t1,	t2	WHERE	t1.id=t2.id;

The	queries:

SELECT	*	FROM	t1	WHERE	id	NOT	IN	(SELECT	id	FROM	t2);

SELECT	*	FROM	t1	WHERE	NOT	EXISTS	(SELECT	id	FROM	t2	WHERE	t1.id=t2.id);

Can	be	be	rewritten	using	IN():

SELECT	table1.*	FROM	table1	LEFT	JOIN	table2	ON	table1.id=table2.id

WHERE	table2.id	IS	NULL;

A	LEFT	[OUTER]	JOIN	can	be	faster	than	an	equivalent	subquery	because	the
server	might	be	able	to	optimize	it	better	—	a	fact	that	is	not	specific	to	MySQL
Server	alone.	Prior	to	SQL-92,	outer	joins	did	not	exist,	so	subqueries	were	the
only	way	to	do	certain	things.	Today,	MySQL	Server	and	many	other	modern
database	systems	offer	a	wide	range	of	outer	join	types.

MySQL	Server	supports	multiple-table	DELETE	statements	that	can	be	used	to
efficiently	delete	rows	based	on	information	from	one	table	or	even	from	many
tables	at	the	same	time.	Multiple-table	UPDATE	statements	are	also	supported.

13.2.9.	TRUNCATE	Syntax

TRUNCATE	[TABLE]	tbl_name

TRUNCATE	TABLE	empties	a	table	completely.	Logically,	this	is	equivalent	to	a

DELETE	statement	that	deletes	all	rows,	but	there	are	practical	differences	under
some	circumstances.

For	InnoDB	before	version	5.0.3,	TRUNCATE	TABLE	is	mapped	to	DELETE,	so	there
is	no	difference.	Starting	with	MySQL	5.0.3,	fast	TRUNCATE	TABLE	is	available.
However,	the	operation	is	still	mapped	to	DELETE	if	there	are	foreign	key
constraints	that	reference	the	table.	(When	fast	truncate	is	used,	it	resets	any
AUTO_INCREMENT	counter.	From	MySQL	5.0.13	on,	the	AUTO_INCREMENT	counter
is	reset	by	TRUNCATE	TABLE,	regardless	of	whether	there	is	a	foreign	key
constraint.)

For	other	storage	engines,	TRUNCATE	TABLE	differs	from	DELETE	in	the	following
ways	in	MySQL	5.0:

Truncate	operations	drop	and	re-create	the	table,	which	is	much	faster	than
deleting	rows	one	by	one.

Truncate	operations	are	not	transaction-safe;	an	error	occurs	when
attempting	one	in	the	course	of	an	active	transaction	or	active	table	lock.

The	number	of	deleted	rows	is	not	returned.

As	long	as	the	table	format	file	tbl_name.frm	is	valid,	the	table	can	be	re-
created	as	an	empty	table	with	TRUNCATE	TABLE,	even	if	the	data	or	index
files	have	become	corrupted.

The	table	handler	does	not	remember	the	last	used	AUTO_INCREMENT	value,
but	starts	counting	from	the	beginning.	This	is	true	even	for	MyISAM	and
InnoDB,	which	normally	do	not	reuse	sequence	values.

Since	truncation	of	a	table	does	not	make	any	use	of	DELETE,	the	TRUNCATE
statement	does	not	invoke	ON	DELETE	triggers.

TRUNCATE	TABLE	is	an	Oracle	SQL	extension	adopted	in	MySQL.

13.2.10.	UPDATE	Syntax

Single-table	syntax:

UPDATE	[LOW_PRIORITY]	[IGNORE]	tbl_name

				SET	col_name1=expr1	[,	col_name2=expr2	...]

				[WHERE	where_condition]

				[ORDER	BY	...]

				[LIMIT	row_count]

Multiple-table	syntax:

UPDATE	[LOW_PRIORITY]	[IGNORE]	table_references

				SET	col_name1=expr1	[,	col_name2=expr2	...]

				[WHERE	where_condition]

For	the	single-table	syntax,	the	UPDATE	statement	updates	columns	of	existing
rows	in	tbl_name	with	new	values.	The	SET	clause	indicates	which	columns	to
modify	and	the	values	they	should	be	given.	The	WHERE	clause,	if	given,	specifies
the	conditions	that	identify	which	rows	to	update.	With	no	WHERE	clause,	all	rows
are	updated.	If	the	ORDER	BY	clause	is	specified,	the	rows	are	updated	in	the
order	that	is	specified.	The	LIMIT	clause	places	a	limit	on	the	number	of	rows
that	can	be	updated.

For	the	multiple-table	syntax,	UPDATE	updates	rows	in	each	table	named	in
table_references	that	satisfy	the	conditions.	In	this	case,	ORDER	BY	and	LIMIT
cannot	be	used.

where_condition	is	an	expression	that	evaluates	to	true	for	each	row	to	be
updated.	It	is	specified	as	described	in	Section	13.2.7,	“SELECT	Syntax”.

The	UPDATE	statement	supports	the	following	modifiers:

If	you	use	the	LOW_PRIORITY	keyword,	execution	of	the	UPDATE	is	delayed
until	no	other	clients	are	reading	from	the	table.

If	you	use	the	IGNORE	keyword,	the	update	statement	does	not	abort	even	if
errors	occur	during	the	update.	Rows	for	which	duplicate-key	conflicts
occur	are	not	updated.	Rows	for	which	columns	are	updated	to	values	that
would	cause	data	conversion	errors	are	updated	to	the	closet	valid	values
instead.

If	you	access	a	column	from	tbl_name	in	an	expression,	UPDATE	uses	the	current
value	of	the	column.	For	example,	the	following	statement	sets	the	age	column
to	one	more	than	its	current	value:

UPDATE	persondata	SET	age=age+1;

Single-table	UPDATE	assignments	are	generally	evaluated	from	left	to	right.	For
multiple-table	updates,	there	is	no	guarantee	that	assignments	are	carried	out	in
any	particular	order.

If	you	set	a	column	to	the	value	it	currently	has,	MySQL	notices	this	and	does
not	update	it.

If	you	update	a	column	that	has	been	declared	NOT	NULL	by	setting	to	NULL,	the
column	is	set	to	the	default	value	appropriate	for	the	data	type	and	the	warning
count	is	incremented.	The	default	value	is	0	for	numeric	types,	the	empty	string
('')	for	string	types,	and	the	“zero”	value	for	date	and	time	types.

UPDATE	returns	the	number	of	rows	that	were	actually	changed.	The
mysql_info()	C	API	function	returns	the	number	of	rows	that	were	matched	and
updated	and	the	number	of	warnings	that	occurred	during	the	UPDATE.

You	can	use	LIMIT	row_count	to	restrict	the	scope	of	the	UPDATE.	A	LIMIT
clause	is	a	rows-matched	restriction.	The	statement	stops	as	soon	as	it	has	found
row_count	rows	that	satisfy	the	WHERE	clause,	whether	or	not	they	actually	were
changed.

If	an	UPDATE	statement	includes	an	ORDER	BY	clause,	the	rows	are	updated	in	the
order	specified	by	the	clause.	This	can	be	useful	in	certain	situations	that	might
otherwise	result	in	an	error.	Suppose	that	a	table	t	contains	a	column	id	that	has
a	unique	index.	The	following	statement	could	fail	with	a	duplicate-key	error,
depending	on	the	order	in	which	rows	are	updated:

UPDATE	t	SET	id	=	id	+	1;

For	example,	if	the	table	contains	1	and	2	in	the	id	column	and	1	is	updated	to	2
before	2	is	updated	to	3,	an	error	occurs.	To	avoid	this	problem,	add	an	ORDER	BY
clause	to	cause	the	rows	with	larger	id	values	to	be	updated	before	those	with
smaller	values:

UPDATE	t	SET	id	=	id	+	1	ORDER	BY	id	DESC;

You	can	also	perform	UPDATE	operations	covering	multiple	tables.	However,	you
cannot	use	ORDER	BY	or	LIMIT	with	a	multiple-table	UPDATE.	The
table_references	clause	lists	the	tables	involved	in	the	join.	Its	syntax	is
described	in	Section	13.2.7.1,	“JOIN	Syntax”.	Here	is	an	example:

UPDATE	items,month	SET	items.price=month.price

WHERE	items.id=month.id;

The	preceding	example	shows	an	inner	join	that	uses	the	comma	operator,	but
multiple-table	UPDATE	statements	can	use	any	type	of	join	allowed	in	SELECT
statements,	such	as	LEFT	JOIN.

You	need	the	UPDATE	privilege	only	for	columns	referenced	in	a	multiple-table
UPDATE	that	are	actually	updated.	You	need	only	the	SELECT	privilege	for	any
columns	that	are	read	but	not	modified.

If	you	use	a	multiple-table	UPDATE	statement	involving	InnoDB	tables	for	which
there	are	foreign	key	constraints,	the	MySQL	optimizer	might	process	tables	in
an	order	that	differs	from	that	of	their	parent/child	relationship.	In	this	case,	the
statement	fails	and	rolls	back.	Instead,	update	a	single	table	and	rely	on	the	ON
UPDATE	capabilities	that	InnoDB	provides	to	cause	the	other	tables	to	be	modified
accordingly.	See	Section	14.2.6.4,	“FOREIGN	KEY	Constraints”.

Currently,	you	cannot	update	a	table	and	select	from	the	same	table	in	a
subquery.

13.3.	MySQL	Utility	Statements

13.3.1.	DESCRIBE	Syntax

{DESCRIBE	|	DESC}	tbl_name	[col_name	|	wild]

DESCRIBE	provides	information	about	the	columns	in	a	table.	It	is	a	shortcut	for
SHOW	COLUMNS	FROM.	As	of	MySQL	5.0.1,	these	statements	also	display
information	for	views.	(See	Section	13.5.4.3,	“SHOW	COLUMNS	Syntax”.)

col_name	can	be	a	column	name,	or	a	string	containing	the	SQL	‘%’	and	‘_’
wildcard	characters	to	obtain	output	only	for	the	columns	with	names	matching
the	string.	There	is	no	need	to	enclose	the	string	within	quotes	unless	it	contains
spaces	or	other	special	characters.

mysql>	DESCRIBE	city;

+------------+----------+------+-----+---------+----------------+

|	Field						|	Type					|	Null	|	Key	|	Default	|	Extra										|

+------------+----------+------+-----+---------+----------------+

|	Id									|	int(11)		|	NO			|	PRI	|	NULL				|	auto_increment	|

|	Name							|	char(35)	|	NO			|					|									|																|

|	Country				|	char(3)		|	NO			|	UNI	|									|																|

|	District			|	char(20)	|	YES		|	MUL	|									|																|

|	Population	|	int(11)		|	NO			|					|	0							|																|

+------------+----------+------+-----+---------+----------------+

5	rows	in	set	(0.00	sec)

Field	indicates	the	column	name.

The	Null	field	indicates	whether	NULL	values	can	be	stored	in	the	column.

The	Key	field	indicates	whether	the	column	is	indexed.	A	value	of	PRI	indicates
that	the	column	is	part	of	the	table's	primary	key.	UNI	indicates	that	the	column	is
part	of	a	UNIQUE	index.	The	MUL	value	indicates	that	multiple	occurrences	of	a
given	value	are	allowed	within	the	column.

One	reason	for	MUL	to	be	displayed	on	a	UNIQUE	index	is	that	several	columns
form	a	composite	UNIQUE	index;	although	the	combination	of	the	columns	is
unique,	each	column	can	still	hold	multiple	occurrences	of	a	given	value.	Note
that	in	a	composite	index,	only	the	leftmost	column	of	the	index	has	an	entry	in
the	Key	field.

Before	MySQL	5.0.11,	if	the	column	allows	NULL	values,	the	Key	value	can	be
MUL	even	when	a	UNIQUE	index	is	used.	The	rationale	was	that	multiple	rows	in	a
UNIQUE	index	can	hold	a	NULL	value	if	the	column	is	not	declared	NOT	NULL.	As
of	MySQL	5.0.11,	the	display	is	UNI	rather	than	MUL	regardless	of	whether	the
column	allows	NULL;	you	can	see	from	the	Null	field	whether	or	not	the	column
can	contain	NULL.

The	Default	field	indicates	the	default	value	that	is	assigned	to	the	column.

The	Extra	field	contains	any	additional	information	that	is	available	about	a
given	column.	In	the	example	shown,	the	Extra	field	indicates	that	the	Id
column	was	created	with	the	AUTO_INCREMENT	keyword.

If	the	data	types	are	different	from	what	you	expect	them	to	be	based	on	a
CREATE	TABLE	statement,	note	that	MySQL	sometimes	changes	data	types.	See
Section	13.1.5.1,	“Silent	Column	Specification	Changes”.

The	DESCRIBE	statement	is	provided	for	compatibility	with	Oracle.

The	SHOW	CREATE	TABLE	and	SHOW	TABLE	STATUS	statements	also	provide
information	about	tables.	See	Section	13.5.4,	“SHOW	Syntax”.

13.3.2.	HELP	Syntax

HELP	'search_string'

The	HELP	statement	returns	online	information	from	the	MySQL	Reference
manual.	Its	proper	operation	requires	that	the	help	tables	in	the	mysql	database
be	initialized	with	help	topic	information	(see	Section	5.2.7,	“MySQL	Server-
Side	Help	Support”).

The	HELP	statement	searches	the	help	tables	for	the	given	search	string	and
displays	the	result	of	the	search.	The	search	string	is	not	case	sensitive.

The	HELP	statement	understands	several	types	of	search	strings:

At	the	most	general	level,	use	contents	to	retrieve	a	list	of	the	top-level
help	categories:

HELP	'contents'

For	a	list	of	topics	in	a	given	help	category,	such	as	Data	Types,	use	the
category	name:

HELP	'data	types'

For	help	on	a	specific	help	topic,	such	as	as	the	ASCII()	function	or	the
CREATE	TABLE	statement,	use	the	associated	keyword	or	keywords:

HELP	'ascii'

HELP	'create	table'

In	other	words,	the	search	string	matches	a	category,	many	topics,	or	a	single
topic.	You	cannot	necessarily	tell	in	advance	whether	a	given	search	string	will
return	a	list	of	items	or	the	help	information	for	a	single	help	topic.	However,
you	can	tell	what	kind	of	response	HELP	returned	by	examining	the	number	of
rows	and	columns	in	the	result	set.

The	following	descriptions	indicate	the	forms	that	the	result	set	can	take.	Output
for	the	example	statements	is	shown	using	the	familar	“tabular”	or	“vertical”
format	that	you	see	when	using	the	mysql	client,	but	note	that	mysql	itself
reformats	HELP	result	sets	in	a	different	way.

Empty	result	set

No	match	could	be	found	for	the	search	string.

Result	set	containing	a	single	row	with	three	columns

This	means	that	the	search	string	yielded	a	hit	for	the	help	topic.	The	result
has	three	columns:

name:	The	topic	name.

description:	Descriptive	help	text	for	the	topic.

example:	Usage	example	or	exmples.	This	column	might	be	blank.

Example:	HELP	'replace'

Yields:

name:	REPLACE

description:	Syntax:

REPLACE(str,from_str,to_str)

Returns	the	string	str	with	all	occurrences	of	the	string	from_str

replaced	by	the	string	to_str.	REPLACE()	performs	a	case-sensitive

match	when	searching	for	from_str.

example:	mysql>	SELECT	REPLACE('www.mysql.com',	'w',	'Ww');

								->	'WwWwWw.mysql.com'

Result	set	containing	multiple	rows	with	two	columns

This	means	that	the	search	string	matched	many	help	topics.	The	result	set
indicates	the	help	topic	names:

name:	The	help	topic	name.

is_it_category:	Y	if	the	name	represents	a	help	category,	N	if	it	does
not.	If	it	does	not,	the	name	value	when	specified	as	the	argument	to	the
HELP	statement	should	yield	a	single-row	result	set	containing	a
description	for	the	named	item.

Example:	HELP	'status'

Yields:

+-----------------------+----------------+

|	name																		|	is_it_category	|

+-----------------------+----------------+

|	SHOW																		|	N														|

|	SHOW	ENGINE											|	N														|

|	SHOW	INNODB	STATUS				|	N														|

|	SHOW	MASTER	STATUS				|	N														|

|	SHOW	PROCEDURE	STATUS	|	N														|

|	SHOW	SLAVE	STATUS					|	N														|

|	SHOW	STATUS											|	N														|

|	SHOW	TABLE	STATUS					|	N														|

+-----------------------+----------------+

Result	set	containing	multiple	rows	with	three	columns

This	means	the	search	string	matches	a	category.	The	result	set	contains
category	entries:

source_category_name:	The	help	category	name.

name:	The	category	or	topic	name

is_it_category:	Y	if	the	name	represents	a	help	category,	N	if	it	does
not.	If	it	does	not,	the	name	value	when	specified	as	the	argument	to	the
HELP	statement	should	yield	a	single-row	result	set	containing	a
description	for	the	named	item.

Example:	HELP	'functions'

Yields:

+----------------------+-------------------------+----------------+

|	source_category_name	|	name																				|	is_it_category	|

+----------------------+-------------------------+----------------+

|	Functions												|	CREATE	FUNCTION									|	N														|

|	Functions												|	DROP	FUNCTION											|	N														|

|	Functions												|	Bit	Functions											|	Y														|

|	Functions												|	Comparison	operators				|	Y														|

|	Functions												|	Control	flow	functions		|	Y														|

|	Functions												|	Date	and	Time	Functions	|	Y														|

|	Functions												|	Encryption	Functions				|	Y														|

|	Functions												|	Information	Functions			|	Y														|

|	Functions												|	Logical	operators							|	Y														|

|	Functions												|	Miscellaneous	Functions	|	Y														|

|	Functions												|	Numeric	Functions							|	Y														|

|	Functions												|	String	Functions								|	Y														|

+----------------------+-------------------------+----------------+

13.3.3.	USE	Syntax

USE	db_name

The	USE	db_name	statement	tells	MySQL	to	use	the	db_name	database	as	the
default	(current)	database	for	subsequent	statements.	The	database	remains	the
default	until	the	end	of	the	session	or	another	USE	statement	is	issued:

USE	db1;

SELECT	COUNT(*)	FROM	mytable;			#	selects	from	db1.mytable

USE	db2;

SELECT	COUNT(*)	FROM	mytable;			#	selects	from	db2.mytable

Making	a	particular	database	the	default	by	means	of	the	USE	statement	does	not
preclude	you	from	accessing	tables	in	other	databases.	The	following	example

accesses	the	author	table	from	the	db1	database	and	the	editor	table	from	the
db2	database:

USE	db1;

SELECT	author_name,editor_name	FROM	author,db2.editor

		WHERE	author.editor_id	=	db2.editor.editor_id;

The	USE	statement	is	provided	for	compatibility	with	Sybase.

13.4.	MySQL	Transactional	and	Locking	Statements

MySQL	supports	local	transactions	(within	a	given	client	connection)	through
statements	such	as	SET	AUTOCOMMIT,	START	TRANSACTION,	COMMIT,	and
ROLLBACK.	See	Section	13.4.1,	“START	TRANSACTION,	COMMIT,	and	ROLLBACK
Syntax”.	Beginning	with	MySQL	5.0,	XA	transaction	support	is	available,	which
enables	MySQL	to	participate	in	distributed	transactions	as	well.	See
Section	13.4.7,	“XA	Transactions”.

13.4.1.	START	TRANSACTION,	COMMIT,	and	ROLLBACK	Syntax

START	TRANSACTION	|	BEGIN	[WORK]

COMMIT	[WORK]	[AND	[NO]	CHAIN]	[[NO]	RELEASE]

ROLLBACK	[WORK]	[AND	[NO]	CHAIN]	[[NO]	RELEASE]

SET	AUTOCOMMIT	=	{0	|	1}

The	START	TRANSACTION	and	BEGIN	statement	begin	a	new	transaction.	COMMIT
commits	the	current	transaction,	making	its	changes	permanent.	ROLLBACK	rolls
back	the	current	transaction,	canceling	its	changes.	The	SET	AUTOCOMMIT
statement	disables	or	enables	the	default	autocommit	mode	for	the	current
connection.

Beginning	with	MySQL	5.0.3,	the	optional	WORK	keyword	is	supported	for
COMMIT	and	RELEASE,	as	are	the	CHAIN	and	RELEASE	clauses.	CHAIN	and	RELEASE
can	be	used	for	additional	control	over	transaction	completion.	The	value	of	the
completion_type	system	variable	determines	the	default	completion	behavior.
See	Section	5.2.2,	“Server	System	Variables”.

The	AND	CHAIN	clause	causes	a	new	transaction	to	begin	as	soon	as	the	current
one	ends,	and	the	new	transaction	has	the	same	isolation	level	as	the	just-
terminated	transaction.	The	RELEASE	clause	causes	the	server	to	disconnect	the
current	client	connection	after	terminating	the	current	transaction.	Including	the
NO	keyword	suppresses	CHAIN	or	RELEASE	completion,	which	can	be	useful	if	the
completion_type	system	variable	is	set	to	cause	chaining	or	release	completion
by	default.

By	default,	MySQL	runs	with	autocommit	mode	enabled.	This	means	that	as
soon	as	you	execute	a	statement	that	updates	(modifies)	a	table,	MySQL	stores

the	update	on	disk.

If	you	are	using	a	transaction-safe	storage	engine	(such	as	InnoDB,	BDB,	or	NDB
Cluster),	you	can	disable	autocommit	mode	with	the	following	statement:

SET	AUTOCOMMIT=0;

After	disabling	autocommit	mode	by	setting	the	AUTOCOMMIT	variable	to	zero,
you	must	use	COMMIT	to	store	your	changes	to	disk	or	ROLLBACK	if	you	want	to
ignore	the	changes	you	have	made	since	the	beginning	of	your	transaction.

To	disable	autocommit	mode	for	a	single	series	of	statements,	use	the	START
TRANSACTION	statement:

START	TRANSACTION;

SELECT	@A:=SUM(salary)	FROM	table1	WHERE	type=1;

UPDATE	table2	SET	summary=@A	WHERE	type=1;

COMMIT;

With	START	TRANSACTION,	autocommit	remains	disabled	until	you	end	the
transaction	with	COMMIT	or	ROLLBACK.	The	autocommit	mode	then	reverts	to	its
previous	state.

BEGIN	and	BEGIN	WORK	are	supported	as	aliases	of	START	TRANSACTION	for
initiating	a	transaction.	START	TRANSACTION	is	standard	SQL	syntax	and	is	the
recommended	way	to	start	an	ad-hoc	transaction.

The	BEGIN	statement	differs	from	the	use	of	the	BEGIN	keyword	that	starts	a
BEGIN	...	END	compound	statement.	The	latter	does	not	begin	a	transaction.	See
Section	17.2.5,	“BEGIN	...	END	Compound	Statement	Syntax”.

You	can	also	begin	a	transaction	like	this:

START	TRANSACTION	WITH	CONSISTENT	SNAPSHOT;

The	WITH	CONSISTENT	SNAPSHOT	clause	starts	a	consistent	read	for	storage
engines	that	are	capable	of	it.	Currently,	this	applies	only	to	InnoDB.	The	effect	is
the	same	as	issuing	a	START	TRANSACTION	followed	by	a	SELECT	from	any
InnoDB	table.	See	Section	14.2.10.4,	“Consistent	Non-Locking	Read”.

The	WITH	CONSISTENT	SNAPSHOT	clause	does	not	change	the	current	transaction
isolation	level,	so	it	provides	a	consistent	snapshot	only	if	the	current	isolation

level	is	one	that	allows	consistent	read	(REPEATABLE	READ	or	SERIALIZABLE).

Beginning	a	transaction	causes	an	implicit	UNLOCK	TABLES	to	be	performed.

For	best	results,	transactions	should	be	performed	using	only	tables	managed	by
a	single	transactional	storage	engine.	Otherwise,	the	following	problems	can
occur:

If	you	use	tables	from	more	than	one	transaction-safe	storage	engine	(such
as	InnoDB	and	BDB),	and	the	transaction	isolation	level	is	not	SERIALIZABLE,
it	is	possible	that	when	one	transaction	commits,	another	ongoing
transaction	that	uses	the	same	tables	will	see	only	some	of	the	changes
made	by	the	first	transaction.	That	is,	the	atomicity	of	transactions	is	not
guaranteed	with	mixed	engines	and	inconsistencies	can	result.	(If	mixed-
engine	transactions	are	infrequent,	you	can	use	SET	TRANSACTION
ISOLATION	LEVEL	to	set	the	isolation	level	to	SERIALIZABLE	on	a	per-
transaction	basis	as	necessary.)

If	you	use	non-transaction-safe	tables	within	a	transaction,	any	changes	to
those	tables	are	stored	at	once,	regardless	of	the	status	of	autocommit	mode.

If	you	issue	a	ROLLBACK	statement	after	updating	a	non-transactional	table
within	a	transaction,	an	ER_WARNING_NOT_COMPLETE_ROLLBACK	warning
occurs.	Changes	to	transaction-safe	tables	are	rolled	back,	but	not	changes
to	non-transaction-safe	tables.

Each	transaction	is	stored	in	the	binary	log	in	one	chunk,	upon	COMMIT.
Transactions	that	are	rolled	back	are	not	logged.	(Exception:	Modifications	to
non-transactional	tables	cannot	be	rolled	back.	If	a	transaction	that	is	rolled	back
includes	modifications	to	non-transactional	tables,	the	entire	transaction	is
logged	with	a	ROLLBACK	statement	at	the	end	to	ensure	that	the	modifications	to
those	tables	are	replicated.)	See	Section	5.12.3,	“The	Binary	Log”.

You	can	change	the	isolation	level	for	transactions	with	SET	TRANSACTION
ISOLATION	LEVEL.	See	Section	13.4.6,	“SET	TRANSACTION	Syntax”.

Rolling	back	can	be	a	slow	operation	that	may	occur	without	the	user	having
explicitly	asked	for	it	(for	example,	when	an	error	occurs).	Because	of	this,	SHOW
PROCESSLIST	displays	Rolling	back	in	the	State	column	for	the	connection
during	implicit	and	explicit	(ROLLBACK	SQL	statement)	rollbacks.

13.4.2.	Statements	That	Cannot	Be	Rolled	Back

Some	statements	cannot	be	rolled	back.	In	general,	these	include	data	definition
language	(DDL)	statements,	such	as	those	that	create	or	drop	databases,	those
that	create,	drop,	or	alter	tables	or	stored	routines.

You	should	design	your	transactions	not	to	include	such	statements.	If	you	issue
a	statement	early	in	a	transaction	that	cannot	be	rolled	back,	and	then	another
statement	later	fails,	the	full	effect	of	the	transaction	cannot	be	rolled	back	in
such	cases	by	issuing	a	ROLLBACK	statement.

13.4.3.	Statements	That	Cause	an	Implicit	Commit

Each	of	the	following	statements	(and	any	synonyms	for	them)	implicitly	end	a
transaction,	as	if	you	had	done	a	COMMIT	before	executing	the	statement:

ALTER	FUNCTION,	ALTER	PROCEDURE,	ALTER	TABLE,	BEGIN,	CREATE
DATABASE,	CREATE	FUNCTION,	CREATE	INDEX,	CREATE	PROCEDURE,	CREATE
TABLE,	DROP	DATABASE,	DROP	FUNCTION,	DROP	INDEX,	DROP	PROCEDURE,
DROP	TABLE,	LOAD	MASTER	DATA,	LOCK	TABLES,	LOAD	DATA	INFILE,	RENAME
TABLE,	SET	AUTOCOMMIT=1,	START	TRANSACTION,	TRUNCATE	TABLE,	UNLOCK
TABLES.

UNLOCK	TABLES	commits	a	transaction	only	if	any	tables	currently	are
locked.

The	CREATE	TABLE,	CREATE	DATABASE	DROP	DATABASE,	and	TRUNCATE
TABLE	statements	cause	an	implicit	commit	beginning	with	MySQL	5.0.8.
The	ALTER	FUNCTION,	ALTER	PROCEDURE,	CREATE	FUNCTION,	CREATE
PROCEDURE,	DROP	FUNCTION,	and	DROP	PROCEDURE	statements	cause	an
implicit	commit	beginning	with	MySQL	5.0.13.

The	CREATE	TABLE	statement	in	InnoDB	is	processed	as	a	single	transaction.
This	means	that	a	ROLLBACK	from	the	user	does	not	undo	CREATE	TABLE
statements	the	user	made	during	that	transaction.

Transactions	cannot	be	nested.	This	is	a	consequence	of	the	implicit	COMMIT
performed	for	any	current	transaction	when	you	issue	a	START	TRANSACTION
statement	or	one	of	its	synonyms.

Statements	that	cause	implicit	cannot	be	used	in	an	XA	transaction	while	the
transaction	is	in	an	ACTIVE	state.

13.4.4.	SAVEPOINT	and	ROLLBACK	TO	SAVEPOINT	Syntax

SAVEPOINT	identifier

ROLLBACK	[WORK]	TO	SAVEPOINT	identifier

RELEASE	SAVEPOINT	identifier

InnoDB	supports	the	SQL	statements	SAVEPOINT	and	ROLLBACK	TO	SAVEPOINT.
Starting	from	MySQL	5.0.3,	RELEASE	SAVEPOINT	and	the	optional	WORK	keyword
for	ROLLBACK	are	supported	as	well.

The	SAVEPOINT	statement	sets	a	named	transaction	savepoint	with	a	name	of
identifier.	If	the	current	transaction	has	a	savepoint	with	the	same	name,	the
old	savepoint	is	deleted	and	a	new	one	is	set.

The	ROLLBACK	TO	SAVEPOINT	statement	rolls	back	a	transaction	to	the	named
savepoint.	Modifications	that	the	current	transaction	made	to	rows	after	the
savepoint	was	set	are	undone	in	the	rollback,	but	InnoDB	does	not	release	the	row
locks	that	were	stored	in	memory	after	the	savepoint.	(Note	that	for	a	new
inserted	row,	the	lock	information	is	carried	by	the	transaction	ID	stored	in	the
row;	the	lock	is	not	separately	stored	in	memory.	In	this	case,	the	row	lock	is
released	in	the	undo.)	Savepoints	that	were	set	at	a	later	time	than	the	named
savepoint	are	deleted.

If	the	ROLLBACK	TO	SAVEPOINT	statement	returns	the	following	error,	it	means
that	no	savepoint	with	the	specified	name	exists:

ERROR	1181:	Got	error	153	during	ROLLBACK

The	RELEASE	SAVEPOINT	statement	removes	the	named	savepoint	from	the	set	of
savepoints	of	the	current	transaction.	No	commit	or	rollback	occurs.	It	is	an	error
if	the	savepoint	does	not	exist.

All	savepoints	of	the	current	transaction	are	deleted	if	you	execute	a	COMMIT,	or	a
ROLLBACK	that	does	not	name	a	savepoint.

Beginning	with	MySQL	5.0.17,	a	new	savepoint	level	is	created	when	a	stored
function	is	invoked	or	a	trigger	is	activated.	The	savepoints	on	previous	levels

become	unavailable	and	thus	do	not	conflict	with	savepoints	on	the	new	level.
When	the	function	or	trigger	terminates,	any	savepoints	it	created	are	released
and	the	previous	savepoint	level	is	restored.

13.4.5.	LOCK	TABLES	and	UNLOCK	TABLES	Syntax

LOCK	TABLES

				tbl_name	[AS	alias]	{READ	[LOCAL]	|	[LOW_PRIORITY]	WRITE}

				[,	tbl_name	[AS	alias]	{READ	[LOCAL]	|	[LOW_PRIORITY]	WRITE}]	...

UNLOCK	TABLES

LOCK	TABLES	locks	base	tables	(but	not	views)	for	the	current	thread.	If	any	of
the	tables	are	locked	by	other	threads,	it	blocks	until	all	locks	can	be	acquired.
UNLOCK	TABLES	releases	any	locks	held	by	the	current	thread.	All	tables	that	are
locked	by	the	current	thread	are	implicitly	unlocked	when	the	thread	issues
another	LOCK	TABLES,	or	when	the	connection	to	the	server	is	closed.

A	table	lock	protects	only	against	inappropriate	reads	or	writes	by	other	clients.
The	client	holding	the	lock,	even	a	read	lock,	can	perform	table-level	operations
such	as	DROP	TABLE.

Note	the	following	regarding	the	use	of	LOCK	TABLES	with	transactional	tables:

LOCK	TABLES	is	not	transaction-safe	and	implicitly	commits	any	active
transactions	before	attempting	to	lock	the	tables.	Also,	beginning	a
transaction	(for	example,	with	START	TRANSACTION)	implicitly	performs	an
UNLOCK	TABLES.	(See	Section	13.4.3,	“Statements	That	Cause	an	Implicit
Commit”.)

The	correct	way	to	use	LOCK	TABLES	with	transactional	tables,	such	as
InnoDB	tables,	is	to	set	AUTOCOMMIT	=	0	and	not	to	call	UNLOCK	TABLES	until
you	commit	the	transaction	explicitly.	When	you	call	LOCK	TABLES,	InnoDB
internally	takes	its	own	table	lock,	and	MySQL	takes	its	own	table	lock.
InnoDB	releases	its	table	lock	at	the	next	commit,	but	for	MySQL	to	release
its	table	lock,	you	have	to	call	UNLOCK	TABLES.	You	should	not	have
AUTOCOMMIT	=	1,	because	then	InnoDB	releases	its	table	lock	immediately
after	the	call	of	LOCK	TABLES,	and	deadlocks	can	very	easily	happen.	Note
that	we	do	not	acquire	the	InnoDB	table	lock	at	all	if	AUTOCOMMIT=1,	to	help
old	applications	avoid	unnecessary	deadlocks.

ROLLBACK	does	not	release	MySQL's	non-transactional	table	locks.

To	use	LOCK	TABLES,	you	must	have	the	LOCK	TABLES	privilege	and	the	SELECT
privilege	for	the	involved	tables.

The	main	reasons	to	use	LOCK	TABLES	are	to	emulate	transactions	or	to	get	more
speed	when	updating	tables.	This	is	explained	in	more	detail	later.

If	a	thread	obtains	a	READ	lock	on	a	table,	that	thread	(and	all	other	threads)	can
only	read	from	the	table.	If	a	thread	obtains	a	WRITE	lock	on	a	table,	only	the
thread	holding	the	lock	can	write	to	the	table.	Other	threads	are	blocked	from
reading	or	writing	the	table	until	the	lock	has	been	released.

The	difference	between	READ	LOCAL	and	READ	is	that	READ	LOCAL	allows	non-
conflicting	INSERT	statements	(concurrent	inserts)	to	execute	while	the	lock	is
held.	However,	this	cannot	be	used	if	you	are	going	to	manipulate	the	database
files	outside	MySQL	while	you	hold	the	lock.	For	InnoDB	tables,	READ	LOCAL	is
the	same	as	READ	as	of	MySQL	5.0.13.	(Before	that,	READ	LOCAL	essentially	does
nothing:	It	does	not	lock	the	table	at	all,	so	for	InnoDB	tables,	the	use	of	READ
LOCAL	is	deprecated	because	a	plain	consistent-read	SELECT	does	the	same	thing,
and	no	locks	are	needed.)

When	you	use	LOCK	TABLES,	you	must	lock	all	tables	that	you	are	going	to	use	in
your	queries.	Because	LOCK	TABLES	will	not	lock	views,	if	the	operation	that	you
are	performing	uses	any	views,	you	must	also	lock	all	of	the	base	tables	on
which	those	views	depend.	While	the	locks	obtained	with	a	LOCK	TABLES
statement	are	in	effect,	you	cannot	access	any	tables	that	were	not	locked	by	the
statement.	Also,	you	cannot	use	a	locked	table	multiple	times	in	a	single	query.
Use	aliases	instead,	in	which	case	you	must	obtain	a	lock	for	each	alias
separately.

mysql>	LOCK	TABLE	t	WRITE,	t	AS	t1	WRITE;

mysql>	INSERT	INTO	t	SELECT	*	FROM	t;

ERROR	1100:	Table	't'	was	not	locked	with	LOCK	TABLES

mysql>	INSERT	INTO	t	SELECT	*	FROM	t	AS	t1;

If	your	queries	refer	to	a	table	by	means	of	an	alias,	you	must	lock	the	table
using	that	same	alias.	It	does	not	work	to	lock	the	table	without	specifying	the
alias:

mysql>	LOCK	TABLE	t	READ;

mysql>	SELECT	*	FROM	t	AS	myalias;

ERROR	1100:	Table	'myalias'	was	not	locked	with	LOCK	TABLES

Conversely,	if	you	lock	a	table	using	an	alias,	you	must	refer	to	it	in	your	queries
using	that	alias:

mysql>	LOCK	TABLE	t	AS	myalias	READ;

mysql>	SELECT	*	FROM	t;

ERROR	1100:	Table	't'	was	not	locked	with	LOCK	TABLES

mysql>	SELECT	*	FROM	t	AS	myalias;

WRITE	locks	normally	have	higher	priority	than	READ	locks	to	ensure	that	updates
are	processed	as	soon	as	possible.	This	means	that	if	one	thread	obtains	a	READ
lock	and	then	another	thread	requests	a	WRITE	lock,	subsequent	READ	lock
requests	wait	until	the	WRITE	thread	has	gotten	the	lock	and	released	it.	You	can
use	LOW_PRIORITY	WRITE	locks	to	allow	other	threads	to	obtain	READ	locks	while
the	thread	is	waiting	for	the	WRITE	lock.	You	should	use	LOW_PRIORITY	WRITE
locks	only	if	you	are	sure	that	eventually	there	will	be	a	time	when	no	threads
have	a	READ	lock.

LOCK	TABLES	works	as	follows:

1.	 Sort	all	tables	to	be	locked	in	an	internally	defined	order.	From	the	user
standpoint,	this	order	is	undefined.

2.	 If	a	table	is	locked	with	a	read	and	a	write	lock,	put	the	write	lock	before
the	read	lock.

3.	 Lock	one	table	at	a	time	until	the	thread	gets	all	locks.

This	policy	ensures	that	table	locking	is	deadlock	free.	There	are,	however,	other
things	you	need	to	be	aware	of	about	this	policy:	If	you	are	using	a
LOW_PRIORITY	WRITE	lock	for	a	table,	it	means	only	that	MySQL	waits	for	this
particular	lock	until	there	are	no	threads	that	want	a	READ	lock.	When	the	thread
has	gotten	the	WRITE	lock	and	is	waiting	to	get	the	lock	for	the	next	table	in	the
lock	table	list,	all	other	threads	wait	for	the	WRITE	lock	to	be	released.	If	this
becomes	a	serious	problem	with	your	application,	you	should	consider
converting	some	of	your	tables	to	transaction-safe	tables.

You	can	safely	use	KILL	to	terminate	a	thread	that	is	waiting	for	a	table	lock.	See
Section	13.5.5.3,	“KILL	Syntax”.

Note	that	you	should	not	lock	any	tables	that	you	are	using	with	INSERT
DELAYED	because	in	that	case	the	INSERT	is	performed	by	a	separate	thread.

Normally,	you	do	not	need	to	lock	tables,	because	all	single	UPDATE	statements
are	atomic;	no	other	thread	can	interfere	with	any	other	currently	executing	SQL
statement.	However,	there	are	a	few	cases	when	locking	tables	may	provide	an
advantage:

If	you	are	going	to	run	many	operations	on	a	set	of	MyISAM	tables,	it	is	much
faster	to	lock	the	tables	you	are	going	to	use.	Locking	MyISAM	tables	speeds
up	inserting,	updating,	or	deleting	on	them.	The	downside	is	that	no	thread
can	update	a	READ-locked	table	(including	the	one	holding	the	lock)	and	no
thread	can	access	a	WRITE-locked	table	other	than	the	one	holding	the	lock.

The	reason	some	MyISAM	operations	are	faster	under	LOCK	TABLES	is	that
MySQL	does	not	flush	the	key	cache	for	the	locked	tables	until	UNLOCK
TABLES	is	called.	Normally,	the	key	cache	is	flushed	after	each	SQL
statement.

If	you	are	using	a	storage	engine	in	MySQL	that	does	not	support
transactions,	you	must	use	LOCK	TABLES	if	you	want	to	ensure	that	no	other
thread	comes	between	a	SELECT	and	an	UPDATE.	The	example	shown	here
requires	LOCK	TABLES	to	execute	safely:

LOCK	TABLES	trans	READ,	customer	WRITE;

SELECT	SUM(value)	FROM	trans	WHERE	customer_id=some_id;

UPDATE	customer

		SET	total_value=sum_from_previous_statement

		WHERE	customer_id=some_id;

UNLOCK	TABLES;

Without	LOCK	TABLES,	it	is	possible	that	another	thread	might	insert	a	new
row	in	the	trans	table	between	execution	of	the	SELECT	and	UPDATE
statements.

You	can	avoid	using	LOCK	TABLES	in	many	cases	by	using	relative	updates
(UPDATE	customer	SET	value=value+new_value)	or	the	LAST_INSERT_ID()
function.	See	Section	1.9.5.3,	“Transactions	and	Atomic	Operations”.

You	can	also	avoid	locking	tables	in	some	cases	by	using	the	user-level	advisory
lock	functions	GET_LOCK()	and	RELEASE_LOCK().	These	locks	are	saved	in	a	hash

table	in	the	server	and	implemented	with	pthread_mutex_lock()	and
pthread_mutex_unlock()	for	high	speed.	See	Section	12.9.4,	“Miscellaneous
Functions”.

See	Section	7.3.1,	“Locking	Methods”,	for	more	information	on	locking	policy.

You	can	lock	all	tables	in	all	databases	with	read	locks	with	the	FLUSH	TABLES
WITH	READ	LOCK	statement.	See	Section	13.5.5.2,	“FLUSH	Syntax”.	This	is	a	very
convenient	way	to	get	backups	if	you	have	a	filesystem	such	as	Veritas	that	can
take	snapshots	in	time.

Note:	If	you	use	ALTER	TABLE	on	a	locked	table,	it	may	become	unlocked.	See
Section	A.7.1,	“Problems	with	ALTER	TABLE”.

13.4.6.	SET	TRANSACTION	Syntax

SET	[GLOBAL	|	SESSION]	TRANSACTION	ISOLATION	LEVEL

{	READ	UNCOMMITTED	|	READ	COMMITTED	|	REPEATABLE	READ	|	SERIALIZABLE	}

This	statement	sets	the	transaction	isolation	level	for	the	next	transaction,
globally,	or	for	the	current	session.

The	default	behavior	of	SET	TRANSACTION	is	to	set	the	isolation	level	for	the	next
(not	yet	started)	transaction.	If	you	use	the	GLOBAL	keyword,	the	statement	sets
the	default	transaction	level	globally	for	all	new	connections	created	from	that
point	on.	Existing	connections	are	unaffected.	You	need	the	SUPER	privilege	to
do	this.	Using	the	SESSION	keyword	sets	the	default	transaction	level	for	all
future	transactions	performed	on	the	current	connection.

For	descriptions	of	each	InnoDB	transaction	isolation	level,	see
Section	14.2.10.3,	“InnoDB	and	TRANSACTION	ISOLATION	LEVEL”.	InnoDB
supports	each	of	these	levels	in	MySQL	5.0.	The	default	level	is	REPEATABLE
READ.

To	set	the	initial	default	global	isolation	level	for	mysqld,	use	the	--
transaction-isolation	option.	See	Section	5.2.1,	“mysqld	Command
Options”.

13.4.7.	XA	Transactions

MySQL	5.0.3	and	up	provides	server-side	support	for	XA	transactions.
Currently,	this	support	is	available	for	the	InnoDB	storage	engine.	The	MySQL
XA	implementation	is	based	on	the	X/Open	CAE	document	Distributed
Transaction	Processing:	The	XA	Specification.	This	document	is	published	by
The	Open	Group	and	available	at
http://www.opengroup.org/public/pubs/catalog/c193.htm.	Limitations	of	the
current	XA	implementation	are	described	in	Section	I.5,	“Restrictions	on	XA
Transactions”.

On	the	client	side,	there	are	no	special	requirements.	The	XA	interface	to	a
MySQL	server	consists	of	SQL	statements	that	begin	with	the	XA	keyword.
MySQL	client	programs	must	be	able	to	send	SQL	statements	and	to	understand
the	semantics	of	the	XA	statement	interface.	They	do	not	need	be	linked	against
a	recent	client	library.	Older	client	libraries	also	will	work.

Currently,	among	the	MySQL	Connectors,	MySQL	Connector/J	5.0.0	supports
XA	directly	(by	means	of	a	class	interface	that	handles	the	XA	SQL	statement
interface	for	you).

XA	supports	distributed	transactions;	that	is,	the	ability	to	allow	multiple
separate	transactional	resources	to	participate	in	a	global	transaction.
Transactional	resources	often	are	RDBMSs	but	may	be	other	kinds	of	resources.

A	global	transaction	involves	several	actions	that	are	transactional	in	themselves,
but	that	all	must	either	complete	successfully	as	a	group,	or	all	be	rolled	back	as
a	group.	In	essence,	this	extends	ACID	properties	“up	a	level”	so	that	multiple
ACID	transactions	can	be	executed	in	concert	as	components	of	a	global
operation	that	also	has	ACID	properties.	(However,	for	a	distributed	transaction,
you	must	use	the	SERIALIZABLE	isolation	level	to	achieve	ACID	properties.	It	is
enough	to	use	REPEATABLE	READ	for	a	non-distributed	transaction,	but	not	for	a
distributed	transaction.)

Some	examples	of	distributed	transactions:

An	application	may	act	as	an	integration	tool	that	combines	a	messaging
service	with	an	RDBMS.	The	application	makes	sure	that	transactions
dealing	with	message	sending,	retrieval,	and	processing	that	also	involve	a
transactional	database	all	happen	in	a	global	transaction.	You	can	think	of
this	as	“transactional	email.”

http://www.opengroup.org/public/pubs/catalog/c193.htm

An	application	performs	actions	that	involve	different	database	servers,
such	as	a	MySQL	server	and	an	Oracle	server	(or	multiple	MySQL	servers),
where	actions	that	involve	multiple	servers	must	happen	as	part	of	a	global
transaction,	rather	than	as	separate	transactions	local	to	each	server.

A	bank	keeps	account	information	in	an	RDBMS	and	distributes	and
receives	money	via	automated	teller	machines	(ATMs).	It	is	necessary	to
ensure	that	ATM	actions	are	correctly	reflected	in	the	accounts,	but	this
cannot	be	done	with	the	RDBMS	alone.	A	global	transaction	manager
integrates	the	ATM	and	database	resources	to	ensure	overall	consistency	of
financial	transactions.

Applications	that	use	global	transactions	involve	one	or	more	Resource
Managers	and	a	Transaction	Manager:

A	Resource	Manager	(RM)	provides	access	to	transactional	resources.	A
database	server	is	one	kind	of	resource	manager.	It	must	be	possible	to
either	commit	or	roll	back	transactions	managed	by	the	RM.

A	Transaction	Manager	(TM)	coordinates	the	transactions	that	are	part	of	a
global	transaction.	It	communicates	with	the	RMs	that	handle	each	of	these
transactions.	The	individual	transactions	within	a	global	transaction	are
“branches”	of	the	global	transaction.	Global	transactions	and	their	branches
are	identified	by	a	naming	scheme	described	later.

The	MySQL	implementation	of	XA	MySQL	enables	a	MySQL	server	to	act	as	a
Resource	Manager	that	handles	XA	transactions	within	a	global	transaction.	A
client	program	that	connects	to	the	MySQL	server	acts	as	the	Transaction
Manager.

To	carry	out	a	global	transaction,	it	is	necessary	to	know	which	components	are
involved,	and	bring	each	component	to	a	point	when	it	can	be	committed	or
rolled	back.	Depending	on	what	each	component	reports	about	its	ability	to
succeed,	they	must	all	commit	or	roll	back	as	an	atomic	group.	That	is,	either	all
components	must	commit,	or	all	components	musts	roll	back.	To	manage	a
global	transaction,	it	is	necessary	to	take	into	account	that	any	component	or	the
connecting	network	might	fail.

The	process	for	executing	a	global	transaction	uses	two-phase	commit	(2PC).
This	takes	place	after	the	actions	performed	by	the	branches	of	the	global

transaction	have	been	executed.

1.	 In	the	first	phase,	all	branches	are	prepared.	That	is,	they	are	told	by	the	TM
to	get	ready	to	commit.	Typically,	this	means	each	RM	that	manages	a
branch	records	the	actions	for	the	branch	in	stable	storage.	The	branches
indicate	whether	they	are	able	to	do	this,	and	these	results	are	used	for	the
second	phase.

2.	 In	the	second	phase,	the	TM	tells	the	RMs	whether	to	commit	or	roll	back.
If	all	branches	indicated	when	they	were	prepared	that	they	will	be	able	to
commit,	all	branches	are	told	to	commit.	If	any	branch	indicated	when	it
was	prepared	that	it	will	not	be	able	to	commit,	all	branches	are	told	to	roll
back.

In	some	cases,	a	global	transaction	might	use	one-phase	commit	(1PC).	For
example,	when	a	Transaction	Manager	finds	that	a	global	transaction	consists	of
only	one	transactional	resource	(that	is,	a	single	branch),	that	resource	can	be
told	to	prepare	and	commit	at	the	same	time.

13.4.7.1.	XA	Transaction	SQL	Syntax

To	perform	XA	transactions	in	MySQL,	use	the	following	statements:

XA	{START|BEGIN}	xid	[JOIN|RESUME]

XA	END	xid	[SUSPEND	[FOR	MIGRATE]]

XA	PREPARE	xid

XA	COMMIT	xid	[ONE	PHASE]

XA	ROLLBACK	xid

XA	RECOVER

For	XA	START,	the	JOIN	and	RESUME	clauses	are	not	supported.

For	XA	END	the	SUSPEND	[FOR	MIGRATE]	clause	is	not	supported.

Each	XA	statement	begins	with	the	XA	keyword,	and	most	of	them	require	an	xid
value.	An	xid	is	an	XA	transaction	identifier.	It	indicates	which	transaction	the
statement	applies	to.	xid	values	are	supplied	by	the	client,	or	generated	by	the

MySQL	server.	An	xid	value	has	from	one	to	three	parts:

xid:	gtrid	[,	bqual	[,	formatID]]

gtrid	is	a	global	transaction	identifier,	bqual	is	a	branch	qualifier,	and	formatID
is	a	number	that	identifies	the	format	used	by	the	gtrid	and	bqual	values.	As
indicated	by	the	syntax,	bqual	and	formatID	are	optional.	The	default	bqual
value	is	''	if	not	given.	The	default	formatID	value	is	1	if	not	given.

gtrid	and	bqual	must	be	string	literals,	each	up	to	64	bytes	(not	characters)
long.	gtrid	and	bqual	can	be	specified	in	several	ways.	You	can	use	a	quoted
string	('ab'),	hex	string	(0x6162,	X'ab'),	or	bit	value	(b'nnnn').

formatID	is	an	unsigned	integer.

The	gtrid	and	bqual	values	are	interpreted	in	bytes	by	the	MySQL	server's
underlying	XA	support	routines.	However,	while	an	SQL	statement	containing
an	XA	statement	is	being	parsed,	the	server	works	with	some	specific	character
set.	To	be	safe,	write	gtrid	and	bqual	as	hex	strings.

xid	values	typically	are	generated	by	the	Transaction	Manager.	Values	generated
by	one	TM	must	be	different	from	values	generated	by	other	TMs.	A	given	TM
must	be	able	to	recognize	its	own	xid	values	in	a	list	of	values	returned	by	the	XA
RECOVER	statement.

XA	START	xid	starts	an	XA	transaction	with	the	given	xid	value.	Each	XA
transaction	must	have	a	unique	xid	value,	so	the	value	must	not	currently	be
used	by	another	XA	transaction.	Uniqueness	is	assessed	using	the	gtrid	and
bqual	values.	All	following	XA	statements	for	the	XA	transaction	must	be
specified	using	the	same	xid	value	as	that	given	in	the	XA	START	statement.	If
you	use	any	of	those	statements	but	specify	an	xid	value	that	does	not
correspond	to	some	existing	XA	transaction,	an	error	occurs.

One	or	more	XA	transactions	can	be	part	of	the	same	global	transaction.	All	XA
transactions	within	a	given	global	transaction	must	use	the	same	gtrid	value	in
the	xid	value.	For	this	reason,	gtrid	values	must	be	globally	unique	so	that	there
is	no	ambiguity	about	which	global	transaction	a	given	XA	transaction	is	part	of.
The	bqual	part	of	the	xid	value	must	be	different	for	each	XA	transaction	within
a	global	transaction.	(The	requirement	that	bqual	values	be	different	is	a
limitation	of	the	current	MySQL	XA	implementation.	It	is	not	part	of	the	XA

specification.)

The	XA	RECOVER	statement	returns	information	for	those	XA	transactions	on	the
MySQL	server	that	are	in	the	PREPARED	state.	(See	Section	13.4.7.2,	“XA
Transaction	States”.)	The	output	includes	a	row	for	each	such	XA	transaction	on
the	server,	regardless	of	which	client	started	it.

XA	RECOVER	output	rows	look	like	this	(for	an	example	xid	value	consisting	of
the	parts	'abc',	'def',	and	7):

mysql>	XA	RECOVER;

+----------+--------------+--------------+--------+

|	formatID	|	gtrid_length	|	bqual_length	|	data			|

+----------+--------------+--------------+--------+

|								7	|												3	|												3	|	abcdef	|

+----------+--------------+--------------+--------+

The	output	columns	have	the	following	meanings:

formatID	is	the	formatID	part	of	the	transaction	xid

gtrid_length	is	the	length	in	bytes	of	the	gtrid	part	of	the	xid

bqual_length	is	the	length	in	bytes	of	the	bqual	part	of	the	xid

data	is	the	concatenation	of	the	gtrid	and	bqual	parts	of	the	xid

13.4.7.2.	XA	Transaction	States

An	XA	transaction	progresses	through	the	following	states:

1.	 Use	XA	START	to	start	an	XA	transaction	and	put	it	in	the	ACTIVE	state.

2.	 For	an	ACTIVE	XA	transaction,	issue	the	SQL	statements	that	make	up	the
transaction,	and	then	issue	an	XA	END	statement.	XA	END	puts	the	transaction
in	the	IDLE	state.

3.	 For	an	IDLE	XA	transaction,	you	can	issue	either	an	XA	PREPARE	statement
or	an	XA	COMMIT	...	ONE	PHASE	statement:

XA	PREPARE	puts	the	transaction	in	the	PREPARED	state.	An	XA	RECOVER

statement	at	this	point	will	include	the	transaction's	xid	value	in	its
output,	because	XA	RECOVER	lists	all	XA	transactions	that	are	in	the
PREPARED	state.

XA	COMMIT	...	ONE	PHASE	prepares	and	commits	the	transaction.	The
xid	value	will	not	be	listed	by	XA	RECOVER	because	the	transaction
terminates.

4.	 For	a	PREPARED	XA	transaction,	you	can	issue	an	XA	COMMIT	statement	to
commit	and	terminate	the	transaction,	or	XA	ROLLBACK	to	roll	back	and
terminate	the	transaction.

Here	is	a	simple	XA	transaction	that	inserts	a	row	into	a	table	as	part	of	a	global
transaction:

mysql>	XA	START	'xatest';

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	INSERT	INTO	mytable	(i)	VALUES(10);

Query	OK,	1	row	affected	(0.04	sec)

mysql>	XA	END	'xatest';

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	XA	PREPARE	'xatest';

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	XA	COMMIT	'xatest';

Query	OK,	0	rows	affected	(0.00	sec)

Within	the	context	of	a	given	client	connection,	XA	transactions	and	local	(non-
XA)	transactions	are	mutually	exclusive.	For	example,	if	XA	START	has	been
issued	to	begin	an	XA	transaction,	a	local	transaction	cannot	be	started	until	the
XA	transaction	has	been	committed	or	rolled	back.	Conversely,	if	a	local
transaction	has	been	started	with	START	TRANSACTION,	no	XA	statements	can	be
used	until	the	transaction	has	been	committed	or	rolled	back.

Note	that	if	an	XA	transaction	is	in	the	ACTIVE	state,	you	cannot	issue	any
statements	that	cause	an	implicit	commit.	That	would	violate	the	XA	contract
because	you	could	not	roll	back	the	XA	transaction.	You	will	receive	the
following	error	if	you	try	to	execute	such	a	statement:

ERROR	1399	(XAE07):	XAER_RMFAIL:	The	command	cannot	be	executed

when	global	transaction	is	in	the	ACTIVE	state

Statements	to	which	the	preceding	remark	applies	are	listed	at	Section	13.4.3,
“Statements	That	Cause	an	Implicit	Commit”.

13.5.	Database	Administration	Statements

13.5.1.	Account	Management	Statements

MySQL	account	information	is	stored	in	the	tables	of	the	mysql	database.	This
database	and	the	access	control	system	are	discussed	extensively	in	Chapter	5,
Database	Administration,	which	you	should	consult	for	additional	details.

Important:	Some	releases	of	MySQL	introduce	changes	to	the	structure	of	the
grant	tables	to	add	new	privileges	or	features.	Whenever	you	update	to	a	new
version	of	MySQL,	you	should	update	your	grant	tables	to	make	sure	that	they
have	the	current	structure	so	that	you	can	take	advantage	of	any	new	capabilities.
See	Section	5.6.2,	“mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade”.

13.5.1.1.	CREATE	USER	Syntax

CREATE	USER	user	[IDENTIFIED	BY	[PASSWORD]	'password']

				[,	user	[IDENTIFIED	BY	[PASSWORD]	'password']]	...

The	CREATE	USER	statement	was	added	in	MySQL	5.0.2.	This	statement	creates
new	MySQL	accounts.	To	use	it,	you	must	have	the	global	CREATE	USER
privilege	or	the	INSERT	privilege	for	the	mysql	database.	For	each	account,
CREATE	USER	creates	a	new	record	in	the	mysql.user	table	that	has	no	privileges.
An	error	occurs	if	the	account	already	exists.	Each	account	is	named	using	the
same	format	as	for	the	GRANT	statement;	for	example,	'jeffrey'@'localhost'.
The	user	and	host	parts	of	the	account	name	correspond	to	the	User	and	Host
column	values	of	the	user	table	row	for	the	account.

The	account	can	be	given	a	password	with	the	optional	IDENTIFIED	BY	clause.
The	user	value	and	the	password	are	given	the	same	way	as	for	the	GRANT
statement.	In	particular,	to	specify	the	password	in	plain	text,	omit	the	PASSWORD
keyword.	To	specify	the	password	as	the	hashed	value	as	returned	by	the
PASSWORD()	function,	include	the	PASSWORD	keyword.	See	Section	13.5.1.3,
“GRANT	Syntax”.

13.5.1.2.	DROP	USER	Syntax

DROP	USER	user	[,	user]	...

The	DROP	USER	statement	removes	one	or	more	MySQL	accounts.	To	use	it,	you
must	have	the	global	CREATE	USER	privilege	or	the	DELETE	privilege	for	the
mysql	database.	Each	account	is	named	using	the	same	format	as	for	the	GRANT
statement;	for	example,	'jeffrey'@'localhost'.	The	user	and	host	parts	of	the
account	name	correspond	to	the	User	and	Host	column	values	of	the	user	table
row	for	the	account.

DROP	USER	as	present	in	MySQL	5.0.0	removes	only	accounts	that	have	no
privileges.	In	MySQL	5.0.2,	it	was	modified	to	remove	account	privileges	as
well.	This	means	that	the	procedure	for	removing	an	account	depends	on	your
version	of	MySQL.

As	of	MySQL	5.0.2,	you	can	remove	an	account	and	its	privileges	as	follows:

DROP	USER	user;

The	statement	removes	privilege	rows	for	the	account	from	all	grant	tables.

In	MySQL	5.0.0	and	5.0.1,	DROP	USER	deletes	only	MySQL	accounts	that	have
no	privileges.	In	these	MySQL	versions,	it	serves	only	to	remove	each	account
record	from	the	user	table.	To	remove	a	MySQL	account	completely	(including
all	of	its	privileges),	you	should	use	the	following	procedure,	performing	these
steps	in	the	order	shown:

1.	 Use	SHOW	GRANTS	to	determine	what	privileges	the	account	has.	See
Section	13.5.4.12,	“SHOW	GRANTS	Syntax”.

2.	 Use	REVOKE	to	revoke	the	privileges	displayed	by	SHOW	GRANTS.	This
removes	rows	for	the	account	from	all	the	grant	tables	except	the	user
table,	and	revokes	any	global	privileges	listed	in	the	user	table.	See
Section	13.5.1.3,	“GRANT	Syntax”.

3.	 Delete	the	account	by	using	DROP	USER	to	remove	the	user	table	record.

Important:	DROP	USER	does	not	automatically	close	any	open	user	sessions.
Rather,	in	the	event	that	a	user	with	an	open	session	is	dropped,	the	statement
does	not	take	effect	until	that	user's	session	is	closed.	Once	the	session	is	closed,
the	user	is	dropped,	and	that	user's	next	attempt	to	log	in	will	fail.	This	is	by

design.

13.5.1.3.	GRANT	Syntax

GRANT	priv_type	[(column_list)]	[,	priv_type	[(column_list)]]	...

				ON	[object_type]	{tbl_name	|	*	|	*.*	|	db_name.*}

				TO	user	[IDENTIFIED	BY	[PASSWORD]	'password']

								[,	user	[IDENTIFIED	BY	[PASSWORD]	'password']]	...

				[REQUIRE

								NONE	|

								[{SSL|	X509}]

								[CIPHER	'cipher'	[AND]]

								[ISSUER	'issuer'	[AND]]

								[SUBJECT	'subject']]

				[WITH	with_option	[with_option]	...]

object_type	=

				TABLE

		|	FUNCTION

		|	PROCEDURE

with_option	=

				GRANT	OPTION

		|	MAX_QUERIES_PER_HOUR	count

		|	MAX_UPDATES_PER_HOUR	count

		|	MAX_CONNECTIONS_PER_HOUR	count

		|	MAX_USER_CONNECTIONS	count

The	GRANT	statement	enables	system	administrators	to	create	MySQL	user
accounts	and	to	grant	rights	to	from	accounts.	To	use	GRANT,	you	must	have	the
GRANT	OPTION	privilege,	and	you	must	have	the	privileges	that	you	are	granting.
The	REVOKE	statement	is	related	and	enables	administrators	to	remove	account
privileges.	See	Section	13.5.1.5,	“REVOKE	Syntax”.

MySQL	account	information	is	stored	in	the	tables	of	the	mysql	database.	This
database	and	the	access	control	system	are	discussed	extensively	in	Chapter	5,
Database	Administration,	which	you	should	consult	for	additional	details.

Important:	Some	releases	of	MySQL	introduce	changes	to	the	structure	of	the
grant	tables	to	add	new	privileges	or	features.	Whenever	you	update	to	a	new
version	of	MySQL,	you	should	update	your	grant	tables	to	make	sure	that	they
have	the	current	structure	so	that	you	can	take	advantage	of	any	new	capabilities.
See	Section	5.6.2,	“mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade”.

If	the	grant	tables	hold	privilege	rows	that	contain	mixed-case	database	or	table
names	and	the	lower_case_table_names	system	variable	is	set	to	a	non-zero
value,	REVOKE	cannot	be	used	to	revoke	these	privileges.	It	will	be	necessary	to
manipulate	the	grant	tables	directly.	(GRANT	will	not	create	such	rows	when
lower_case_table_names	is	set,	but	such	rows	might	have	been	created	prior	to
setting	the	variable.)

Privileges	can	be	granted	at	several	levels:

Global	level

Global	privileges	apply	to	all	databases	on	a	given	server.	These	privileges
are	stored	in	the	mysql.user	table.	GRANT	ALL	ON	*.*	and	REVOKE	ALL	ON
.	grant	and	revoke	only	global	privileges.

Database	level

Database	privileges	apply	to	all	objects	in	a	given	database.	These
privileges	are	stored	in	the	mysql.db	and	mysql.host	tables.	GRANT	ALL	ON
db_name.*	and	REVOKE	ALL	ON	db_name.*	grant	and	revoke	only	database
privileges.

Table	level

Table	privileges	apply	to	all	columns	in	a	given	table.	These	privileges	are
stored	in	the	mysql.tables_priv	table.	GRANT	ALL	ON	db_name.tbl_name
and	REVOKE	ALL	ON	db_name.tbl_name	grant	and	revoke	only	table
privileges.

Column	level

Column	privileges	apply	to	single	columns	in	a	given	table.	These
privileges	are	stored	in	the	mysql.columns_priv	table.	When	using	REVOKE,
you	must	specify	the	same	columns	that	were	granted.

Routine	level

The	CREATE	ROUTINE,	ALTER	ROUTINE,	EXECUTE,	and	GRANT	privileges	apply
to	stored	routines	(functions	and	procedures).	They	can	be	granted	at	the
global	and	database	levels.	Also,	except	for	CREATE	ROUTINE,	these

privileges	can	be	granted	at	the	routine	level	for	individual	routines	and	are
stored	in	the	mysql.procs_priv	table.

The	object_type	clause	was	added	in	MySQL	5.0.6.	It	should	be	specified	as
TABLE,	FUNCTION,	or	PROCEDURE	when	the	following	object	is	a	table,	a	stored
function,	or	a	stored	procedure.

For	the	GRANT	and	REVOKE	statements,	priv_type	can	be	specified	as	any	of	the
following:

Privilege Meaning
ALL

[PRIVILEGES]
Sets	all	simple	privileges	except	GRANT	OPTION

ALTER Enables	use	of	ALTER	TABLE
ALTER

ROUTINE
Enables	stored	routines	to	be	altered	or	dropped

CREATE Enables	use	of	CREATE	TABLE
CREATE

ROUTINE
Enables	creation	of	stored	routines

CREATE

TEMPORARY

TABLES
Enables	use	of	CREATE	TEMPORARY	TABLE

CREATE	USER
Enables	use	of	CREATE	USER,	DROP	USER,	RENAME	USER,	and
REVOKE	ALL	PRIVILEGES.

CREATE	VIEW Enables	use	of	CREATE	VIEW
DELETE Enables	use	of	DELETE
DROP Enables	use	of	DROP	TABLE
EXECUTE Enables	the	user	to	run	stored	routines

FILE Enables	use	of	SELECT	...	INTO	OUTFILE	and	LOAD	DATA
INFILE

INDEX Enables	use	of	CREATE	INDEX	and	DROP	INDEX
INSERT Enables	use	of	INSERT

LOCK	TABLES
Enables	use	of	LOCK	TABLES	on	tables	for	which	you	have	the
SELECT	privilege

PROCESS Enables	use	of	SHOW	FULL	PROCESSLIST
REFERENCES Not	implemented

RELOAD Enables	use	of	FLUSH
REPLICATION

CLIENT
Enables	the	user	to	ask	where	slave	or	master	servers	are

REPLICATION

SLAVE

Needed	for	replication	slaves	(to	read	binary	log	events	from	the
master)

SELECT Enables	use	of	SELECT
SHOW

DATABASES
SHOW	DATABASES	shows	all	databases

SHOW	VIEW Enables	use	of	SHOW	CREATE	VIEW
SHUTDOWN Enables	use	of	mysqladmin	shutdown

SUPER

Enables	use	of	CHANGE	MASTER,	KILL,	PURGE	MASTER	LOGS,	and
SET	GLOBAL	statements,	the	mysqladmin	debug	command;
allows	you	to	connect	(once)	even	if	max_connections	is
reached

UPDATE Enables	use	of	UPDATE
USAGE Synonym	for	“no	privileges”
GRANT	OPTION Enables	privileges	to	be	granted

The	EXECUTE	privilege	is	not	operational	until	MySQL	5.0.3.	CREATE	VIEW	and
SHOW	VIEW	were	added	in	MySQL	5.0.1.	CREATE	USER,	CREATE	ROUTINE,	and
ALTER	ROUTINE	were	added	in	MySQL	5.0.3.

The	REFERENCES	privilege	currently	is	unused.

USAGE	can	be	specified	when	you	want	to	create	a	user	that	has	no	privileges.

Use	SHOW	GRANTS	to	determine	what	privileges	an	account	has.	See
Section	13.5.4.12,	“SHOW	GRANTS	Syntax”.

You	can	assign	global	privileges	by	using	ON	*.*	syntax	or	database-level
privileges	by	using	ON	db_name.*	syntax.	If	you	specify	ON	*	and	you	have
selected	a	default	database,	the	privileges	are	granted	in	that	database.
(Warning:	If	you	specify	ON	*	and	you	have	not	selected	a	default	database,	the
privileges	granted	are	global.)

The	FILE,	PROCESS,	RELOAD,	REPLICATION	CLIENT,	REPLICATION	SLAVE,	SHOW
DATABASES,	SHUTDOWN,	and	SUPER	privileges	are	administrative	privileges	that	can

only	be	granted	globally	(using	ON	*.*	syntax).

Other	privileges	can	be	granted	globally	or	at	more	specific	levels.

The	priv_type	values	that	you	can	specify	for	a	table	are	SELECT,	INSERT,
UPDATE,	DELETE,	CREATE,	DROP,	GRANT	OPTION,	INDEX,	ALTER,	CREATE	VIEW	and
SHOW	VIEW.

The	priv_type	values	that	you	can	specify	for	a	column	(that	is,	when	you	use	a
column_list	clause)	are	SELECT,	INSERT,	and	UPDATE.

The	priv_type	values	that	you	can	specify	at	the	routine	level	are	ALTER
ROUTINE,	EXECUTE,	and	GRANT	OPTION.	CREATE	ROUTINE	is	not	a	routine-level
privilege	because	you	must	have	this	privilege	to	create	a	routine	in	the	first
place.

For	the	global,	database,	table,	and	routine	levels,	GRANT	ALL	assigns	only	the
privileges	that	exist	at	the	level	you	are	granting.	For	example,	GRANT	ALL	ON
db_name.*	is	a	database-level	statement,	so	it	does	not	grant	any	global-only
privileges	such	as	FILE.

MySQL	allows	you	to	grant	privileges	even	on	database	objects	that	do	not	exist.
In	such	cases,	the	privileges	to	be	granted	must	include	the	CREATE	privilege.
This	behavior	is	by	design,	and	is	intended	to	enable	the	database	administrator
to	prepare	user	accounts	and	privileges	for	database	objects	that	are	to	be	created
at	a	later	time.

Important:	MySQL	does	not	automatically	revoke	any	privileges	when	you	drop
a	table	or	database.	However,	if	you	drop	a	routine,	any	routine-level	privileges
granted	for	that	routine	are	revoked.

Note:	the	‘_’	and	‘%’	wildcards	are	allowed	when	specifying	database	names	in
GRANT	statements	that	grant	privileges	at	the	global	or	database	levels.	This
means,	for	example,	that	if	you	want	to	use	a	‘_’	character	as	part	of	a	database
name,	you	should	specify	it	as	‘_’	in	the	GRANT	statement,	to	prevent	the	user
from	being	able	to	access	additional	databases	matching	the	wildcard	pattern;	for
example,	GRANT	...	ON	`foo_bar`.*	TO

To	accommodate	granting	rights	to	users	from	arbitrary	hosts,	MySQL	supports
specifying	the	user	value	in	the	form	user_name@host_name.	If	a	user_name	or

host_name	value	is	legal	as	an	unquoted	identifier,	you	need	not	quote	it.
However,	quotes	are	necessary	to	specify	a	user_name	string	containing	special
characters	(such	as	‘-’),	or	a	host_name	string	containing	special	characters	or
wildcard	characters	(such	as	‘%’);	for	example,	'test-user'@'test-hostname'.
Quote	the	username	and	hostname	separately.

You	can	specify	wildcards	in	the	hostname.	For	example,
user_name@'%.loc.gov'	applies	to	user_name	for	any	host	in	the	loc.gov
domain,	and	user_name@'144.155.166.%'	applies	to	user_name	for	any	host	in
the	144.155.166	class	C	subnet.

The	simple	form	user_name	is	a	synonym	for	user_name@'%'.

MySQL	does	not	support	wildcards	in	usernames.	Anonymous	users	are	defined
by	inserting	entries	with	User=''	into	the	mysql.user	table	or	by	creating	a	user
with	an	empty	name	with	the	GRANT	statement:

GRANT	ALL	ON	test.*	TO	''@'localhost'	...

When	specifying	quoted	values,	quote	database,	table,	column,	and	routine
names	as	identifiers,	using	backticks	(‘`’).	Quote	hostnames,	usernames,	and
passwords	as	strings,	using	single	quotes	(‘'’).

Warning:	If	you	allow	anonymous	users	to	connect	to	the	MySQL	server,	you
should	also	grant	privileges	to	all	local	users	as	user_name@localhost.
Otherwise,	the	anonymous	user	account	for	localhost	in	the	mysql.user	table
(created	during	MySQL	installation)	is	used	when	named	users	try	to	log	in	to
the	MySQL	server	from	the	local	machine.	For	details,	see	Section	5.8.5,
“Access	Control,	Stage	1:	Connection	Verification”.

You	can	determine	whether	this	applies	to	you	by	executing	the	following	query,
which	lists	any	anonymous	users:

SELECT	Host,	User	FROM	mysql.user	WHERE	User='';

If	you	want	to	delete	the	local	anonymous	user	account	to	avoid	the	problem	just
described,	use	these	statements:

DELETE	FROM	mysql.user	WHERE	Host='localhost'	AND	User='';

FLUSH	PRIVILEGES;

GRANT	supports	hostnames	up	to	60	characters	long.	Database,	table,	column,	and
routine	names	can	be	up	to	64	characters.	Usernames	can	be	up	to	16	characters.
Note:	The	allowable	length	for	usernames	cannot	be	changed	by	altering	the
mysql.user	table,	and	attempting	to	do	so	results	in	unpredictable	behavior
which	may	even	make	it	impossible	for	users	to	log	in	to	the	MySQL	server.	You
should	never	alter	any	of	the	tables	in	the	mysql	database	in	any	manner
whatsoever	except	by	means	of	the	procedure	prescribed	by	MySQL	AB	that	is
described	in	Section	5.6.2,	“mysql_upgrade	—	Check	Tables	for	MySQL
Upgrade”.

The	privileges	for	a	table,	column,	or	routine	are	formed	additively	as	the	logical
OR	of	the	privileges	at	each	of	the	privilege	levels.	For	example,	if	the
mysql.user	table	specifies	that	a	user	has	a	global	SELECT	privilege,	the
privilege	cannot	be	denied	by	an	entry	at	the	database,	table,	or	column	level.

The	privileges	for	a	column	can	be	calculated	as	follows:

global	privileges

OR	(database	privileges	AND	host	privileges)

OR	table	privileges

OR	column	privileges

OR	routine	privileges

In	most	cases,	you	grant	rights	to	a	user	at	only	one	of	the	privilege	levels,	so	life
is	not	normally	this	complicated.	The	details	of	the	privilege-checking	procedure
are	presented	in	Section	5.8,	“The	MySQL	Access	Privilege	System”.

If	you	grant	privileges	for	a	username/hostname	combination	that	does	not	exist
in	the	mysql.user	table,	an	entry	is	added	and	remains	there	until	deleted	with	a
DELETE	statement.	In	other	words,	GRANT	may	create	user	table	entries,	but
REVOKE	does	not	remove	them;	you	must	do	that	explicitly	using	DROP	USER	or
DELETE.

Warning:	If	you	create	a	new	user	but	do	not	specify	an	IDENTIFIED	BY	clause,
the	user	has	no	password.	This	is	very	insecure.	As	of	MySQL	5.0.2,	you	can
enable	the	NO_AUTO_CREATE_USER	SQL	mode	to	prevent	GRANT	from	creating	a
new	user	if	it	would	otherwise	do	so,	unless	IDENTIFIED	BY	is	given	to	provide
the	new	user	a	non-empty	password.

If	a	new	user	is	created	or	if	you	have	global	grant	privileges,	the	user's
password	is	set	to	the	password	specified	by	the	IDENTIFIED	BY	clause,	if	one	is

given.	If	the	user	already	had	a	password,	this	is	replaced	by	the	new	one.

Passwords	can	also	be	set	with	the	SET	PASSWORD	statement.	See
Section	13.5.1.6,	“SET	PASSWORD	Syntax”.

In	the	IDENTIFIED	BY	clause,	the	password	should	be	given	as	the	literal
password	value.	It	is	unnecessary	to	use	the	PASSWORD()	function	as	it	is	for	the
SET	PASSWORD	statement.	For	example:

GRANT	...	IDENTIFIED	BY	'mypass';

If	you	do	not	want	to	send	the	password	in	clear	text	and	you	know	the	hashed
value	that	PASSWORD()	would	return	for	the	password,	you	can	specify	the
hashed	value	preceded	by	the	keyword	PASSWORD:

GRANT	...

IDENTIFIED	BY	PASSWORD	'*6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4';

In	a	C	program,	you	can	get	the	hashed	value	by	using	the
make_scrambled_password()	C	API	function.

If	you	grant	privileges	for	a	database,	an	entry	in	the	mysql.db	table	is	created	if
needed.	If	all	privileges	for	the	database	are	removed	with	REVOKE,	this	entry	is
deleted.

The	SHOW	DATABASES	privilege	enables	the	account	to	see	database	names	by
issuing	the	SHOW	DATABASE	statement.	Accounts	that	do	not	have	this	privilege
see	only	databases	for	which	they	have	some	privileges,	and	cannot	use	the
statement	at	all	if	the	server	was	started	with	the	--skip-show-database	option.

If	a	user	has	no	privileges	for	a	table,	the	table	name	is	not	displayed	when	the
user	requests	a	list	of	tables	(for	example,	with	a	SHOW	TABLES	statement).

The	WITH	GRANT	OPTION	clause	gives	the	user	the	ability	to	give	to	other	users
any	privileges	the	user	has	at	the	specified	privilege	level.	You	should	be	careful
to	whom	you	give	the	GRANT	OPTION	privilege,	because	two	users	with	different
privileges	may	be	able	to	join	privileges!

You	cannot	grant	another	user	a	privilege	which	you	yourself	do	not	have;	the
GRANT	OPTION	privilege	enables	you	to	assign	only	those	privileges	which	you
yourself	possess.

Be	aware	that	when	you	grant	a	user	the	GRANT	OPTION	privilege	at	a	particular
privilege	level,	any	privileges	the	user	possesses	(or	may	be	given	in	the	future)
at	that	level	can	also	be	granted	by	that	user	to	other	users.	Suppose	that	you
grant	a	user	the	INSERT	privilege	on	a	database.	If	you	then	grant	the	SELECT
privilege	on	the	database	and	specify	WITH	GRANT	OPTION,	that	user	can	give	to
other	users	not	only	the	SELECT	privilege,	but	also	INSERT.	If	you	then	grant	the
UPDATE	privilege	to	the	user	on	the	database,	the	user	can	grant	INSERT,	SELECT,
and	UPDATE.

For	a	non-administrative	user,	you	should	not	grant	the	ALTER	privilege	globally
or	for	the	mysql	database.	If	you	do	that,	the	user	can	try	to	subvert	the	privilege
system	by	renaming	tables!

The	MAX_QUERIES_PER_HOUR	count,	MAX_UPDATES_PER_HOUR	count,	and
MAX_CONNECTIONS_PER_HOUR	count	options	limit	the	number	of	queries,
updates,	and	logins	a	user	can	perform	during	any	given	one-hour	period.	If
count	is	0	(the	default),	this	means	that	there	is	no	limitation	for	that	user.

The	MAX_USER_CONNECTIONS	count	option,	implemented	in	MySQL	5.0.3,	limits
the	maximum	number	of	simultaneous	connections	that	the	account	can	make.	If
count	is	0	(the	default),	the	max_user_connections	system	variable	determines
the	number	of	simultaneous	connections	for	the	account.

Note:	To	specify	any	of	these	resource-limit	options	for	an	existing	user	without
affecting	existing	privileges,	use	GRANT	USAGE	ON	*.*	...	WITH	MAX_....

See	Section	5.9.4,	“Limiting	Account	Resources”.

MySQL	can	check	X509	certificate	attributes	in	addition	to	the	usual
authentication	that	is	based	on	the	username	and	password.	To	specify	SSL-
related	options	for	a	MySQL	account,	use	the	REQUIRE	clause	of	the	GRANT
statement.	(For	background	information	on	the	use	of	SSL	with	MySQL,	see
Section	5.9.7,	“Using	Secure	Connections”.)

There	are	a	number	of	different	possibilities	for	limiting	connection	types	for	a
given	account:

If	the	account	has	no	SSL	or	X509	requirements,	unencrypted	connections
are	allowed	if	the	username	and	password	are	valid.	However,	encrypted
connections	can	also	be	used,	at	the	client's	option,	if	the	client	has	the

proper	certificate	and	key	files.

The	REQUIRE	SSL	option	tells	the	server	to	allow	only	SSL-encrypted
connections	for	the	account.	Note	that	this	option	can	be	omitted	if	there	are
any	access-control	rows	that	allow	non-SSL	connections.

GRANT	ALL	PRIVILEGES	ON	test.*	TO	'root'@'localhost'

		IDENTIFIED	BY	'goodsecret'	REQUIRE	SSL;

REQUIRE	X509	means	that	the	client	must	have	a	valid	certificate	but	that
the	exact	certificate,	issuer,	and	subject	do	not	matter.	The	only	requirement
is	that	it	should	be	possible	to	verify	its	signature	with	one	of	the	CA
certificates.

GRANT	ALL	PRIVILEGES	ON	test.*	TO	'root'@'localhost'

		IDENTIFIED	BY	'goodsecret'	REQUIRE	X509;

REQUIRE	ISSUER	'issuer'	places	the	restriction	on	connection	attempts
that	the	client	must	present	a	valid	X509	certificate	issued	by	CA	'issuer'.
If	the	client	presents	a	certificate	that	is	valid	but	has	a	different	issuer,	the
server	rejects	the	connection.	Use	of	X509	certificates	always	implies
encryption,	so	the	SSL	option	is	unnecessary	in	this	case.

GRANT	ALL	PRIVILEGES	ON	test.*	TO	'root'@'localhost'

		IDENTIFIED	BY	'goodsecret'

		REQUIRE	ISSUER	'/C=FI/ST=Some-State/L=Helsinki/

				O=MySQL	Finland	AB/CN=Tonu	Samuel/Email=tonu@example.com';

Note	that	the	'issuer'	value	should	be	entered	as	a	single	string.

REQUIRE	SUBJECT	'subject'	places	the	restriction	on	connection	attempts
that	the	client	must	present	a	valid	X509	certificate	containing	the	subject
subject.	If	the	client	presents	a	certificate	that	is	valid	but	has	a	different
subject,	the	server	rejects	the	connection.

GRANT	ALL	PRIVILEGES	ON	test.*	TO	'root'@'localhost'

		IDENTIFIED	BY	'goodsecret'

		REQUIRE	SUBJECT	'/C=EE/ST=Some-State/L=Tallinn/

				O=MySQL	demo	client	certificate/

				CN=Tonu	Samuel/Email=tonu@example.com';

Note	that	the	'subject'	value	should	be	entered	as	a	single	string.

REQUIRE	CIPHER	'cipher'	is	needed	to	ensure	that	ciphers	and	key	lengths
of	sufficient	strength	are	used.	SSL	itself	can	be	weak	if	old	algorithms
using	short	encryption	keys	are	used.	Using	this	option,	you	can	ask	that	a
specific	cipher	method	is	used	to	allow	a	connection.

GRANT	ALL	PRIVILEGES	ON	test.*	TO	'root'@'localhost'

		IDENTIFIED	BY	'goodsecret'

		REQUIRE	CIPHER	'EDH-RSA-DES-CBC3-SHA';

The	SUBJECT,	ISSUER,	and	CIPHER	options	can	be	combined	in	the	REQUIRE
clause	like	this:

GRANT	ALL	PRIVILEGES	ON	test.*	TO	'root'@'localhost'

		IDENTIFIED	BY	'goodsecret'

		REQUIRE	SUBJECT	'/C=EE/ST=Some-State/L=Tallinn/

				O=MySQL	demo	client	certificate/

				CN=Tonu	Samuel/Email=tonu@example.com'

		AND	ISSUER	'/C=FI/ST=Some-State/L=Helsinki/

				O=MySQL	Finland	AB/CN=Tonu	Samuel/Email=tonu@example.com'

		AND	CIPHER	'EDH-RSA-DES-CBC3-SHA';

The	AND	keyword	is	optional	between	REQUIRE	options.

The	order	of	the	options	does	not	matter,	but	no	option	can	be	specified	twice.

When	mysqld	starts,	all	privileges	are	read	into	memory.	For	details,	see
Section	5.8.7,	“When	Privilege	Changes	Take	Effect”.

Note	that	if	you	are	using	table,	column,	or	routine	privileges	for	even	one	user,
the	server	examines	table,	column,	and	routine	privileges	for	all	users	and	this
slows	down	MySQL	a	bit.	Similarly,	if	you	limit	the	number	of	queries,	updates,
or	connections	for	any	users,	the	server	must	monitor	these	values.

The	biggest	differences	between	the	standard	SQL	and	MySQL	versions	of
GRANT	are:

In	MySQL,	privileges	are	associated	with	the	combination	of	a	hostname
and	username	and	not	with	only	a	username.

Standard	SQL	does	not	have	global	or	database-level	privileges,	nor	does	it
support	all	the	privilege	types	that	MySQL	supports.

MySQL	does	not	support	the	standard	SQL	TRIGGER	or	UNDER	privileges.

Standard	SQL	privileges	are	structured	in	a	hierarchical	manner.	If	you
remove	a	user,	all	privileges	the	user	has	been	granted	are	revoked.	This	is
also	true	in	MySQL	5.0.2	and	up	if	you	use	DROP	USER.	Before	5.0.2,	the
granted	privileges	are	not	automatically	revoked;	you	must	revoke	them
yourself.	See	Section	13.5.1.2,	“DROP	USER	Syntax”.

In	standard	SQL,	when	you	drop	a	table,	all	privileges	for	the	table	are
revoked.	In	standard	SQL,	when	you	revoke	a	privilege,	all	privileges	that
were	granted	based	on	that	privilege	are	also	revoked.	In	MySQL,
privileges	can	be	dropped	only	with	explicit	REVOKE	statements	or	by
manipulating	values	stored	in	the	MySQL	grant	tables.

In	MySQL,	it	is	possible	to	have	the	INSERT	privilege	for	only	some	of	the
columns	in	a	table.	In	this	case,	you	can	still	execute	INSERT	statements	on
the	table,	provided	that	you	omit	those	columns	for	which	you	do	not	have
the	INSERT	privilege.	The	omitted	columns	are	set	to	their	implicit	default
values	if	strict	SQL	mode	is	not	enabled.	In	strict	mode,	the	statement	is
rejected	if	any	of	the	omitted	columns	have	no	default	value.	(Standard
SQL	requires	you	to	have	the	INSERT	privilege	on	all	columns.)
Section	5.2.5,	“The	Server	SQL	Mode”,	discusses	strict	mode.
Section	11.1.4,	“Data	Type	Default	Values”,	discusses	implicit	default
values.

13.5.1.4.	RENAME	USER	Syntax

RENAME	USER	old_user	TO	new_user

				[,	old_user	TO	new_user]	...

The	RENAME	USER	statement	renames	existing	MySQL	accounts.	To	use	it,	you
must	have	the	global	CREATE	USER	privilege	or	the	UPDATE	privilege	for	the
mysql	database.	An	error	occurs	if	any	old	account	does	not	exist	or	any	new
account	exists.	Each	account	is	named	using	the	same	format	as	for	the	GRANT
statement;	for	example,	'jeffrey'@'localhost'.	The	user	and	host	parts	of	the
account	name	correspond	to	the	User	and	Host	column	values	of	the	user	table
row	for	the	account.

The	RENAME	USER	statement	was	added	in	MySQL	5.0.2.

13.5.1.5.	REVOKE	Syntax

REVOKE	priv_type	[(column_list)]	[,	priv_type	[(column_list)]]	...

				ON	[object_type]	{tbl_name	|	*	|	*.*	|	db_name.*}

				FROM	user	[,	user]	...

REVOKE	ALL	PRIVILEGES,	GRANT	OPTION	FROM	user	[,	user]	...

The	REVOKE	statement	enables	system	administrators	to	revoke	privileges	from
MySQL	accounts.	To	use	REVOKE,	you	must	have	the	GRANT	OPTION	privilege,
and	you	must	have	the	privileges	that	you	are	revoking.

For	details	on	the	levels	at	which	privileges	exist,	the	allowable	priv_type
values,	and	the	syntax	for	specifying	users	and	passwords,	see	Section	13.5.1.3,
“GRANT	Syntax”

If	the	grant	tables	hold	privilege	rows	that	contain	mixed-case	database	or	table
names	and	the	lower_case_table_names	system	variable	is	set	to	a	non-zero
value,	REVOKE	cannot	be	used	to	revoke	these	privileges.	It	will	be	necessary	to
manipulate	the	grant	tables	directly.	(GRANT	will	not	create	such	rows	when
lower_case_table_names	is	set,	but	such	rows	might	have	been	created	prior	to
setting	the	variable.)

To	revoke	all	privileges,	use	the	following	syntax,	which	drops	all	global,
database-,	table-,	and	column-level	privileges	for	the	named	user	or	users:

REVOKE	ALL	PRIVILEGES,	GRANT	OPTION	FROM	user	[,	user]	...

To	use	this	REVOKE	syntax,	you	must	have	the	global	CREATE	USER	privilege	or
the	UPDATE	privilege	for	the	mysql	database.

13.5.1.6.	SET	PASSWORD	Syntax

SET	PASSWORD	[FOR	user]	=	PASSWORD('some	password')

The	SET	PASSWORD	statement	assigns	a	password	to	an	existing	MySQL	user
account.

With	no	FOR	clause,	this	statement	sets	the	password	for	the	current	user.	Any
client	that	has	connected	to	the	server	using	a	non-anonymous	account	can
change	the	password	for	that	account.

With	a	FOR	clause,	this	statement	sets	the	password	for	a	specific	account	on	the
current	server	host.	Only	clients	that	have	the	UPDATE	privilege	for	the	mysql
database	can	do	this.	The	user	value	should	be	given	in	user_name@host_name

format,	where	user_name	and	host_name	are	exactly	as	they	are	listed	in	the
User	and	Host	columns	of	the	mysql.user	table	entry.	For	example,	if	you	had
an	entry	with	User	and	Host	column	values	of	'bob'	and	'%.loc.gov',	you
would	write	the	statement	like	this:

SET	PASSWORD	FOR	'bob'@'%.loc.gov'	=	PASSWORD('newpass');

That	is	equivalent	to	the	following	statements:

UPDATE	mysql.user	SET	Password=PASSWORD('newpass')

		WHERE	User='bob'	AND	Host='%.loc.gov';

FLUSH	PRIVILEGES;

Note:	If	you	are	connecting	to	a	MySQL	4.1	or	later	server	using	a	pre-4.1	client
program,	do	not	use	the	preceding	SET	PASSWORD	or	UPDATE	statement	without
reading	Section	5.8.9,	“Password	Hashing	as	of	MySQL	4.1”,	first.	The
password	format	changed	in	MySQL	4.1,	and	under	certain	circumstances	it	is
possible	that	if	you	change	your	password,	you	might	not	be	able	to	connect	to
the	server	afterward.

You	can	see	which	account	the	server	authenticated	you	as	by	executing	SELECT
CURRENT_USER().

13.5.2.	Table	Maintenance	Statements

13.5.2.1.	ANALYZE	TABLE	Syntax

ANALYZE	[LOCAL	|	NO_WRITE_TO_BINLOG]	TABLE	tbl_name	[,	tbl_name]	...

ANALYZE	TABLE	analyzes	and	stores	the	key	distribution	for	a	table.	During	the
analysis,	the	table	is	locked	with	a	read	lock	for	MyISAM	and	BDB.	For	InnoDB	the
table	is	locked	with	a	write	lock.	This	statement	works	with	MyISAM,	BDB,	and
InnoDB	tables.	For	MyISAM	tables,	this	statement	is	equivalent	to	using
myisamchk	--analyze.

For	more	information	on	how	the	analysis	works	withinInnoDB,	see
Section	14.2.16,	“Restrictions	on	InnoDB	Tables”.

MySQL	uses	the	stored	key	distribution	to	decide	the	order	in	which	tables
should	be	joined	when	you	perform	a	join	on	something	other	than	a	constant.

This	statement	requires	SELECT	and	INSERT	privileges	for	the	table.

ANALYZE	TABLE	returns	a	result	set	with	the	following	columns:

Column Value
Table The	table	name
Op Always	analyze
Msg_type One	of	status,	error,	info,	or	warning
Msg_text The	message

You	can	check	the	stored	key	distribution	with	the	SHOW	INDEX	statement.	See
Section	13.5.4.13,	“SHOW	INDEX	Syntax”.

If	the	table	has	not	changed	since	the	last	ANALYZE	TABLE	statement,	the	table	is
not	analyzed	again.

ANALYZE	TABLE	statements	are	written	to	the	binary	log	unless	the	optional
NO_WRITE_TO_BINLOG	keyword	(or	its	alias	LOCAL)	is	used.	This	is	done	so	that
ANALYZE	TABLE	statements	used	on	a	MySQL	server	acting	as	a	replication
master	will	be	replicated	by	default	to	the	replication	slave.

13.5.2.2.	BACKUP	TABLE	Syntax

BACKUP	TABLE	tbl_name	[,	tbl_name]	...	TO	'/path/to/backup/directory

Note:	This	statement	is	deprecated.	We	are	working	on	a	better	replacement	for
it	that	will	provide	online	backup	capabilities.	In	the	meantime,	the
mysqlhotcopy	script	can	be	used	instead.

BACKUP	TABLE	copies	to	the	backup	directory	the	minimum	number	of	table	files
needed	to	restore	the	table,	after	flushing	any	buffered	changes	to	disk.	The
statement	works	only	for	MyISAM	tables.	It	copies	the	.frm	definition	and	.MYD
data	files.	The	.MYI	index	file	can	be	rebuilt	from	those	two	files.	The	directory
should	be	specified	as	a	full	pathname.	To	restore	the	table,	use	RESTORE	TABLE.

During	the	backup,	a	read	lock	is	held	for	each	table,	one	at	time,	as	they	are
being	backed	up.	If	you	want	to	back	up	several	tables	as	a	snapshot	(preventing
any	of	them	from	being	changed	during	the	backup	operation),	issue	a	LOCK
TABLES	statement	first,	to	obtain	a	read	lock	for	all	tables	in	the	group.

BACKUP	TABLE	returns	a	result	set	with	the	following	columns:

Column Value
Table The	table	name
Op Always	backup
Msg_type One	of	status,	error,	info,	or	warning
Msg_text The	message

13.5.2.3.	CHECK	TABLE	Syntax

CHECK	TABLE	tbl_name	[,	tbl_name]	...	[option]	...

option	=	{FOR	UPGRADE	|	QUICK	|	FAST	|	MEDIUM	|	EXTENDED	|	CHANGED}

CHECK	TABLE	checks	a	table	or	tables	for	errors.	CHECK	TABLE	works	for	MyISAM,
InnoDB,	and	(as	of	MySQL	5.0.16)	ARCHIVE	tables.	For	MyISAM	tables,	the	key
statistics	are	updated	as	well.

As	of	MySQL	5.0.2,	CHECK	TABLE	can	also	check	views	for	problems,	such	as
tables	that	are	referenced	in	the	view	definition	that	no	longer	exist.

CHECK	TABLE	returns	a	result	set	with	the	following	columns:

Column Value
Table The	table	name
Op Always	check
Msg_type One	of	status,	error,	info,	or	warning
Msg_text The	message

Note	that	the	statement	might	produce	many	rows	of	information	for	each
checked	table.	The	last	row	has	a	Msg_type	value	of	status	and	the	Msg_text
normally	should	be	OK.	If	you	don't	get	OK,	or	Table	is	already	up	to	date

you	should	normally	run	a	repair	of	the	table.	See	Section	5.10.4,	“Table
Maintenance	and	Crash	Recovery”.	Table	is	already	up	to	date	means	that
the	storage	engine	for	the	table	indicated	that	there	was	no	need	to	check	the
table.

The	FOR	UPGRADE	option	checks	whether	the	named	tables	are	compatible	with
the	current	version	of	MySQL.	This	option	was	added	in	MySQL	5.0.19.	With
FOR	UPGRADE,	the	server	checks	each	table	to	determine	whether	there	have	been
any	incompatible	changes	in	any	of	the	table's	data	types	or	indexes	since	the
table	was	created.	If	not,	the	check	succeeds.	Otherwise,	if	there	is	a	possible
incompatibility,	the	server	runs	a	full	check	on	the	table	(which	might	take	some
time).	If	the	full	check	succeeds,	the	server	marks	the	table's	.frm	file	with	the
current	MySQL	version	number.	Marking	the	.frm	file	ensures	that	further
checks	for	the	table	with	the	same	version	of	the	server	will	be	fast.

Incompatibilities	might	occur	because	the	storage	format	for	a	data	type	has
changed	or	because	its	sort	order	has	changed.	Our	aim	is	to	avoid	these
changes,	but	occasionally	they	are	necessary	to	correct	problems	that	would	be
worse	than	an	incompatibility	between	releases.

Currently,	FOR	UPGRADE	discovers	these	incompatibilities:

The	indexing	order	for	end-space	in	TEXT	columns	for	InnoDB	and	MyISAM
tables	changed	between	MySQL	4.1	and	5.0.

The	storage	method	of	the	new	DECIMAL	data	type	changed	between
MySQL	5.0.3	and	5.0.5.

The	other	check	options	that	can	be	given	are	shown	in	the	following	table.
These	options	apply	only	to	checking	MyISAM	tables	and	are	ignored	for	InnoDB
tables	and	views.

Type Meaning
QUICK Do	not	scan	the	rows	to	check	for	incorrect	links.
FAST Check	only	tables	that	have	not	been	closed	properly.

CHANGED
Check	only	tables	that	have	been	changed	since	the	last	check	or	that
have	not	been	closed	properly.
Scan	rows	to	verify	that	deleted	links	are	valid.	This	also	calculates	a

MEDIUM key	checksum	for	the	rows	and	verifies	this	with	a	calculated
checksum	for	the	keys.

EXTENDED
Do	a	full	key	lookup	for	all	keys	for	each	row.	This	ensures	that	the
table	is	100%	consistent,	but	takes	a	long	time.

If	none	of	the	options	QUICK,	MEDIUM,	or	EXTENDED	are	specified,	the	default
check	type	for	dynamic-format	MyISAM	tables	is	MEDIUM.	This	has	the	same	result
as	running	myisamchk	--medium-check	tbl_name	on	the	table.	The	default
check	type	also	is	MEDIUM	for	static-format	MyISAM	tables,	unless	CHANGED	or
FAST	is	specified.	In	that	case,	the	default	is	QUICK.	The	row	scan	is	skipped	for
CHANGED	and	FAST	because	the	rows	are	very	seldom	corrupted.

You	can	combine	check	options,	as	in	the	following	example	that	does	a	quick
check	on	the	table	to	determine	whether	it	was	closed	properly:

CHECK	TABLE	test_table	FAST	QUICK;

Note:	In	some	cases,	CHECK	TABLE	changes	the	table.	This	happens	if	the	table	is
marked	as	“corrupted”	or	“not	closed	properly”	but	CHECK	TABLE	does	not	find
any	problems	in	the	table.	In	this	case,	CHECK	TABLE	marks	the	table	as	okay.

If	a	table	is	corrupted,	it	is	most	likely	that	the	problem	is	in	the	indexes	and	not
in	the	data	part.	All	of	the	preceding	check	types	check	the	indexes	thoroughly
and	should	thus	find	most	errors.

If	you	just	want	to	check	a	table	that	you	assume	is	okay,	you	should	use	no
check	options	or	the	QUICK	option.	The	latter	should	be	used	when	you	are	in	a
hurry	and	can	take	the	very	small	risk	that	QUICK	does	not	find	an	error	in	the
data	file.	(In	most	cases,	under	normal	usage,	MySQL	should	find	any	error	in
the	data	file.	If	this	happens,	the	table	is	marked	as	“corrupted”	and	cannot	be
used	until	it	is	repaired.)

FAST	and	CHANGED	are	mostly	intended	to	be	used	from	a	script	(for	example,	to
be	executed	from	cron)	if	you	want	to	check	tables	from	time	to	time.	In	most
cases,	FAST	is	to	be	preferred	over	CHANGED.	(The	only	case	when	it	is	not
preferred	is	when	you	suspect	that	you	have	found	a	bug	in	the	MyISAM	code.)

EXTENDED	is	to	be	used	only	after	you	have	run	a	normal	check	but	still	get

strange	errors	from	a	table	when	MySQL	tries	to	update	a	row	or	find	a	row	by
key.	This	is	very	unlikely	if	a	normal	check	has	succeeded.

Some	problems	reported	by	CHECK	TABLE	cannot	be	corrected	automatically:

Found	row	where	the	auto_increment	column	has	the	value	0.

This	means	that	you	have	a	row	in	the	table	where	the	AUTO_INCREMENT
index	column	contains	the	value	0.	(It	is	possible	to	create	a	row	where	the
AUTO_INCREMENT	column	is	0	by	explicitly	setting	the	column	to	0	with	an
UPDATE	statement.)

This	is	not	an	error	in	itself,	but	could	cause	trouble	if	you	decide	to	dump
the	table	and	restore	it	or	do	an	ALTER	TABLE	on	the	table.	In	this	case,	the
AUTO_INCREMENT	column	changes	value	according	to	the	rules	of
AUTO_INCREMENT	columns,	which	could	cause	problems	such	as	a	duplicate-
key	error.

To	get	rid	of	the	warning,	simply	execute	an	UPDATE	statement	to	set	the
column	to	some	value	other	than	0.

13.5.2.4.	CHECKSUM	TABLE	Syntax

CHECKSUM	TABLE	tbl_name	[,	tbl_name]	...	[QUICK	|	EXTENDED]

CHECKSUM	TABLE	reports	a	table	checksum.

With	QUICK,	the	live	table	checksum	is	reported	if	it	is	available,	or	NULL
otherwise.	This	is	very	fast.	A	live	checksum	is	enabled	by	specifying	the
CHECKSUM=1	table	option	when	you	create	the	table;	currently,	this	is	supported
only	for	MyISAM	tables.	See	Section	13.1.5,	“CREATE	TABLE	Syntax”.

With	EXTENDED,	the	entire	table	is	read	row	by	row	and	the	checksum	is
calculated.	This	can	be	very	slow	for	large	tables.

If	neither	QUICK	nor	EXTENDED	is	specified,	MySQL	returns	a	live	checksum	if
the	table	storage	engine	supports	it	and	scans	the	table	otherwise.

For	a	non-existent	table,	CHECKSUM	TABLE	returns	NULL	and,	as	of	MySQL	5.0.3,
generates	a	warning.

13.5.2.5.	OPTIMIZE	TABLE	Syntax

OPTIMIZE	[LOCAL	|	NO_WRITE_TO_BINLOG]	TABLE	tbl_name	[,	tbl_name]	...

OPTIMIZE	TABLE	should	be	used	if	you	have	deleted	a	large	part	of	a	table	or	if
you	have	made	many	changes	to	a	table	with	variable-length	rows	(tables	that
have	VARCHAR,	VARBINARY,	BLOB,	or	TEXT	columns).	Deleted	rows	are	maintained
in	a	linked	list	and	subsequent	INSERT	operations	reuse	old	row	positions.	You
can	use	OPTIMIZE	TABLE	to	reclaim	the	unused	space	and	to	defragment	the	data
file.

This	statement	requires	SELECT	and	INSERT	privileges	for	the	table.

In	most	setups,	you	need	not	run	OPTIMIZE	TABLE	at	all.	Even	if	you	do	a	lot	of
updates	to	variable-length	rows,	it	is	not	likely	that	you	need	to	do	this	more	than
once	a	week	or	month	and	only	on	certain	tables.

OPTIMIZE	TABLE	works	only	for	MyISAM,	BDB,	and	InnoDB	tables.

For	MyISAM	tables,	OPTIMIZE	TABLE	works	as	follows:

1.	 If	the	table	has	deleted	or	split	rows,	repair	the	table.

2.	 If	the	index	pages	are	not	sorted,	sort	them.

3.	 If	the	table's	statistics	are	not	up	to	date	(and	the	repair	could	not	be
accomplished	by	sorting	the	index),	update	them.

For	BDB	tables,	OPTIMIZE	TABLE	currently	is	mapped	to	ANALYZE	TABLE.	See
Section	13.5.2.1,	“ANALYZE	TABLE	Syntax”.

For	InnoDB	tables,	OPTIMIZE	TABLE	is	mapped	to	ALTER	TABLE,	which	rebuilds
the	table	to	update	index	statistics	and	free	unused	space	in	the	clustered	index.

You	can	make	OPTIMIZE	TABLE	work	on	other	storage	engines	by	starting
mysqld	with	the	--skip-new	or	--safe-mode	option.	In	this	case,	OPTIMIZE
TABLE	is	just	mapped	to	ALTER	TABLE.

OPTIMIZE	TABLE	returns	a	result	set	with	the	following	columns:

Column Value
Table The	table	name
Op Always	optimize
Msg_type One	of	status,	error,	info,	or	warning

Msg_text The	message

Note	that	MySQL	locks	the	table	during	the	time	OPTIMIZE	TABLE	is	running.

OPTIMIZE	TABLE	statements	are	written	to	the	binary	log	unless	the	optional
NO_WRITE_TO_BINLOG	keyword(or	its	alias	LOCAL)	is	used.	This	is	done	so	that
OPTIMIZE	TABLE	statements	used	on	a	MySQL	server	acting	as	a	replication
master	will	be	replicated	by	default	to	the	replication	slave.

13.5.2.6.	REPAIR	TABLE	Syntax

REPAIR	[LOCAL	|	NO_WRITE_TO_BINLOG]	TABLE

				tbl_name	[,	tbl_name]	...	[QUICK]	[EXTENDED]	[USE_FRM]

REPAIR	TABLE	repairs	a	possibly	corrupted	table.	By	default,	it	has	the	same
effect	as	myisamchk	--recover	tbl_name.	REPAIR	TABLE	works	for	MyISAM	and
for	ARCHIVE	tables.	See	Section	14.1,	“The	MyISAM	Storage	Engine”,	and
Section	14.8,	“The	ARCHIVE	Storage	Engine”.

This	statement	requires	SELECT	and	INSERT	privileges	for	the	table.

Normally,	you	should	never	have	to	run	this	statement.	However,	if	disaster
strikes,	REPAIR	TABLE	is	very	likely	to	get	back	all	your	data	from	a	MyISAM
table.	If	your	tables	become	corrupted	often,	you	should	try	to	find	the	reason	for
it,	to	eliminate	the	need	to	use	REPAIR	TABLE.	See	Section	A.4.2,	“What	to	Do	If
MySQL	Keeps	Crashing”,	and	Section	14.1.4,	“MyISAM	Table	Problems”.

Warning:	If	the	server	dies	during	a	REPAIR	TABLE	operation,	it	is	essential	after
restarting	it	that	you	immediately	execute	another	REPAIR	TABLE	statement	for
the	table	before	performing	any	other	operations	on	it.	(It	is	always	a	good	idea
to	start	by	making	a	backup.)	In	the	worst	case,	you	might	have	a	new	clean
index	file	without	information	about	the	data	file,	and	then	the	next	operation
you	perform	could	overwrite	the	data	file.	This	is	an	unlikely	but	possible
scenario.

REPAIR	TABLE	returns	a	result	set	with	the	following	columns:

Column Value
Table The	table	name

Op Always	repair
Msg_type One	of	status,	error,	info,	or	warning
Msg_text The	message

The	REPAIR	TABLE	statement	might	produce	many	rows	of	information	for	each
repaired	table.	The	last	row	has	a	Msg_type	value	of	status	and	Msg_test
normally	should	be	OK.	If	you	do	not	get	OK,	you	should	try	repairing	the	table
with	myisamchk	--safe-recover.	(REPAIR	TABLE	does	not	yet	implement	all	the
options	of	myisamchk.)	With	myisamchk	--safe-recover,	you	can	also	use
options	that	REPAIR	TABLE	does	not	support,	such	as	--max-record-length.

If	QUICK	is	given,	REPAIR	TABLE	tries	to	repair	only	the	index	tree.	This	type	of
repair	is	like	that	done	by	myisamchk	--recover	--quick.

If	you	use	EXTENDED,	MySQL	creates	the	index	row	by	row	instead	of	creating
one	index	at	a	time	with	sorting.	This	type	of	repair	is	like	that	done	by
myisamchk	--safe-recover.

There	is	also	a	USE_FRM	mode	available	for	REPAIR	TABLE.	Use	this	if	the	.MYI
index	file	is	missing	or	if	its	header	is	corrupted.	In	this	mode,	MySQL	re-creates
the	.MYI	file	using	information	from	the	.frm	file.	This	kind	of	repair	cannot	be
done	with	myisamchk.	Note:	Use	this	mode	only	if	you	cannot	use	regular
REPAIR	modes.	The	.MYI	header	contains	important	table	metadata	(in	particular,
current	AUTO_INCREMENT	value	and	Delete	link)	that	are	lost	in	REPAIR	...
USE_FRM.	Don't	use	USE_FRM	if	the	table	is	compressed	because	this	information
is	also	stored	in	the	.MYI	file.

REPAIR	TABLE	statements	are	written	to	the	binary	log	unless	the	optional
NO_WRITE_TO_BINLOG	keyword	(or	its	alias	LOCAL)	is	used.	This	is	done	so	that
REPAIR	TABLE	statements	used	on	a	MySQL	server	acting	as	a	replication	master
will	be	replicated	by	default	to	the	replication	slave.

13.5.2.7.	RESTORE	TABLE	Syntax

RESTORE	TABLE	tbl_name	[,	tbl_name]	...	FROM	'/path/to/backup/directory

RESTORE	TABLE	restores	the	table	or	tables	from	a	backup	that	was	made	with
BACKUP	TABLE.	Existing	tables	are	not	overwritten;	if	you	try	to	restore	over	an
existing	table,	an	error	occurs.	Just	as	for	BACKUP	TABLE,	RESTORE	TABLE
currently	works	only	for	MyISAM	tables.	The	directory	should	be	specified	as	a
full	pathname.

The	backup	for	each	table	consists	of	its	.frm	format	file	and	.MYD	data	file.	The
restore	operation	restores	those	files,	and	then	uses	them	to	rebuild	the	.MYI
index	file.	Restoring	takes	longer	than	backing	up	due	to	the	need	to	rebuild	the
indexes.	The	more	indexes	the	table	has,	the	longer	it	takes.

RESTORE	TABLE	returns	a	result	set	with	the	following	columns:

Column Value
Table The	table	name
Op Always	restore
Msg_type One	of	status,	error,	info,	or	warning
Msg_text The	message

13.5.3.	SET	Syntax

SET	variable_assignment	[,	variable_assignment]	...

variable_assignment:

						user_var_name	=	expr

				|	[GLOBAL	|	SESSION]	system_var_name	=	expr

				|	[@@global.	|	@@session.	|	@@]system_var_name	=	expr

The	SET	statement	assigns	values	to	different	types	of	variables	that	affect	the
operation	of	the	server	or	your	client.	Older	versions	of	MySQL	employed	SET
OPTION,	but	this	syntax	is	deprecated	in	favor	of	SET	without	OPTION.

This	section	describes	use	of	SET	for	assigning	values	to	system	variables	or	user
variables.	For	general	information	about	these	types	of	variables,	see
Section	5.2.2,	“Server	System	Variables”,	and	Section	9.3,	“User-Defined
Variables”.	System	variables	also	can	be	set	at	server	startup,	as	described	in
Section	5.2.3,	“Using	System	Variables”.

Some	variants	of	SET	syntax	are	used	in	other	contexts:

SET	PASSWORD	assigns	account	passwords.	See	Section	13.5.1.6,	“SET
PASSWORD	Syntax”.

SET	TRANSACTION	ISOLATION	LEVEL	sets	the	isolation	level	for	transaction
processing.	See	Section	13.4.6,	“SET	TRANSACTION	Syntax”.

SET	is	used	within	stored	routines	to	assign	values	to	local	routine	variables.
See	Section	17.2.7.2,	“Variable	SET	Statement”.

The	following	discussion	shows	the	different	SET	syntaxes	that	you	can	use	to	set
variables.	The	examples	use	the	=	assignment	operator,	but	the	:=	operator	also
is	allowable.

A	user	variable	is	written	as	@var_name	and	can	be	set	as	follows:

SET	@var_name	=	expr;

Many	system	variables	are	dynamic	and	can	be	changed	while	the	server	runs	by
using	the	SET	statement.	For	a	list,	see	Section	5.2.3.2,	“Dynamic	System
Variables”.	To	change	a	system	variable	with	SET,	refer	to	it	as	var_name,
optionally	preceded	by	a	modifier:

To	indicate	explicitly	that	a	variable	is	a	global	variable,	precede	its	name
by	GLOBAL	or	@@global..	The	SUPER	privilege	is	required	to	set	global
variables.

To	indicate	explicitly	that	a	variable	is	a	session	variable,	precede	its	name
by	SESSION,	@@session.,	or	@@.	Setting	a	session	variable	requires	no
special	privilege,	but	a	client	can	change	only	its	own	session	variables,	not
those	of	any	other	client.

LOCAL	and	@@local.	are	synonyms	for	SESSION	and	@@session..

If	no	modifier	is	present,	SET	changes	the	session	variable.

A	SET	statement	can	contain	multiple	variable	assignments,	separated	by
commas.	If	you	set	several	system	variables,	the	most	recent	GLOBAL	or	SESSION
modifier	in	the	statement	is	used	for	following	variables	that	have	no	modifier

specified.

Examples:

SET	sort_buffer_size=10000;

SET	@@local.sort_buffer_size=10000;

SET	GLOBAL	sort_buffer_size=1000000,	SESSION	sort_buffer_size=1000000;

SET	@@sort_buffer_size=1000000;

SET	@@global.sort_buffer_size=1000000,	@@local.sort_buffer_size=1000000;

When	you	assign	a	value	to	a	system	variable	with	SET,	you	cannot	use	suffix
letters	in	the	value	(as	can	be	done	with	startup	options).	However,	the	value	can
take	the	form	of	an	expression:

SET	sort_buffer_size	=	10	*	1024	*	1024;

The	@@var_name	syntax	for	system	variables	is	supported	for	compatibility	with
some	other	database	systems.

If	you	change	a	session	system	variable,	the	value	remains	in	effect	until	your
session	ends	or	until	you	change	the	variable	to	a	different	value.	The	change	is
not	visible	to	other	clients.

If	you	change	a	global	system	variable,	the	value	is	remembered	and	used	for
new	connections	until	the	server	restarts.	(To	make	a	global	system	variable
setting	permanent,	you	should	set	it	in	an	option	file.)	The	change	is	visible	to
any	client	that	accesses	that	global	variable.	However,	the	change	affects	the
corresponding	session	variable	only	for	clients	that	connect	after	the	change.	The
global	variable	change	does	not	affect	the	session	variable	for	any	client	that	is
currently	connected	(not	even	that	of	the	client	that	issues	the	SET	GLOBAL
statement).

To	prevent	incorrect	usage,	MySQL	produces	an	error	if	you	use	SET	GLOBAL
with	a	variable	that	can	only	be	used	with	SET	SESSION	or	if	you	do	not	specify
GLOBAL	(or	@@global.)	when	setting	a	global	variable.

To	set	a	SESSION	variable	to	the	GLOBAL	value	or	a	GLOBAL	value	to	the	compiled-
in	MySQL	default	value,	use	the	DEFAULT	keyword.	For	example,	the	following
two	statements	are	identical	in	setting	the	session	value	of	max_join_size	to	the
global	value:

SET	max_join_size=DEFAULT;

SET	@@session.max_join_size=@@global.max_join_size;

Not	all	system	variables	can	be	set	to	DEFAULT.	In	such	cases,	use	of	DEFAULT
results	in	an	error.

You	can	refer	to	the	values	of	specific	global	or	sesson	system	variables	in
expressions	by	using	one	of	the	@@-modifiers.	For	example,	you	can	retrieve
values	in	a	SELECT	statement	like	this:

SELECT	@@global.sql_mode,	@@session.sql_mode,	@@sql_mode;

When	you	refer	to	a	system	variable	in	an	expression	as	@@var_name	(that	is,
when	you	do	not	specify	@@global.	or	@@session.),	MySQL	returns	the	session
value	if	it	exists	and	the	global	value	otherwise.	(This	differs	from	SET
@@var_name	=	value,	which	always	refers	to	the	session	value.)

To	display	system	variables	names	and	values,	use	the	SHOW	VARIABLES
statement.	(See	Section	13.5.4.24,	“SHOW	VARIABLES	Syntax”.)

The	following	list	describes	options	that	have	non-standard	syntax	or	that	are	not
described	in	the	list	of	system	variables	found	in	Section	5.2.2,	“Server	System
Variables”.	Although	the	options	described	here	are	not	displayed	by	SHOW
VARIABLES,	you	can	obtain	their	values	with	SELECT	(with	the	exception	of
CHARACTER	SET	and	SET	NAMES).	For	example:

mysql>	SELECT	@@AUTOCOMMIT;

+--------------+

|	@@AUTOCOMMIT	|

+--------------+

|												1	|

+--------------+

The	lettercase	of	thse	options	does	not	matter.

AUTOCOMMIT	=	{0	|	1}

Set	the	autocommit	mode.	If	set	to	1,	all	changes	to	a	table	take	effect
immediately.	If	set	to	0	you	have	to	use	COMMIT	to	accept	a	transaction	or
ROLLBACK	to	cancel	it.	By	default,	client	connections	begin	with	AUTOCOMMIT
set	to	1.	If	you	change	AUTOCOMMIT	mode	from	0	to	1,	MySQL	performs	an
automatic	COMMIT	of	any	open	transaction.	Another	way	to	begin	a

transaction	is	to	use	a	START	TRANSACTION	or	BEGIN	statement.	See
Section	13.4.1,	“START	TRANSACTION,	COMMIT,	and	ROLLBACK	Syntax”.

BIG_TABLES	=	{0	|	1}

If	set	to	1,	all	temporary	tables	are	stored	on	disk	rather	than	in	memory.
This	is	a	little	slower,	but	the	error	The	table	tbl_name	is	full	does	not
occur	for	SELECT	operations	that	require	a	large	temporary	table.	The
default	value	for	a	new	connection	is	0	(use	in-memory	temporary	tables).
Normally,	you	should	never	need	to	set	this	variable,	because	in-memory
tables	are	automatically	converted	to	disk-based	tables	as	required.	(Note:
This	variable	was	formerly	named	SQL_BIG_TABLES.)

CHARACTER	SET	{charset_name	|	DEFAULT}

This	maps	all	strings	from	and	to	the	client	with	the	given	mapping.	You
can	add	new	mappings	by	editing	sql/convert.cc	in	the	MySQL	source
distribution.	SET	CHARACTER	SET	sets	three	session	system	variables:
character_set_client	and	character_set_results	are	set	to	the	given
character	set,	and	character_set_connection	to	the	value	of
character_set_database.	See	Section	10.4,	“Connection	Character	Sets
and	Collations”.

The	default	mapping	can	be	restored	by	using	the	value	DEFAULT.	The
default	depends	on	the	server	configuration.

Note	that	the	syntax	for	SET	CHARACTER	SET	differs	from	that	for	setting
most	other	options.

FOREIGN_KEY_CHECKS	=	{0	|	1}

If	set	to	1	(the	default),	foreign	key	constraints	for	InnoDB	tables	are
checked.	If	set	to	0,	they	are	ignored.	Disabling	foreign	key	checking	can	be
useful	for	reloading	InnoDB	tables	in	an	order	different	from	that	required
by	their	parent/child	relationships.	See	Section	14.2.6.4,	“FOREIGN	KEY
Constraints”.

IDENTITY	=	value

This	variable	is	a	synonym	for	the	LAST_INSERT_ID	variable.	It	exists	for

compatibility	with	other	database	systems.	You	can	read	its	value	with
SELECT	@@IDENTITY,	and	set	it	using	SET	IDENTITY.

INSERT_ID	=	value

Set	the	value	to	be	used	by	the	following	INSERT	or	ALTER	TABLE	statement
when	inserting	an	AUTO_INCREMENT	value.	This	is	mainly	used	with	the
binary	log.

LAST_INSERT_ID	=	value

Set	the	value	to	be	returned	from	LAST_INSERT_ID().	This	is	stored	in	the
binary	log	when	you	use	LAST_INSERT_ID()	in	a	statement	that	updates	a
table.	Setting	this	variable	does	not	update	the	value	returned	by	the
mysql_insert_id()	C	API	function.

NAMES	{'charset_name'	[COLLATE	'collation_name'}	|	DEFAULT}

SET	NAMES	sets	the	three	session	system	variables	character_set_client,
character_set_connection,	and	character_set_results	to	the	given
character	set.	Setting	character_set_connection	to	charset_name	also
sets	collation_connection	to	the	default	collation	for	charset_name.	The
optional	COLLATE	clause	may	be	used	to	specify	a	collation	explicitly.	See
Section	10.4,	“Connection	Character	Sets	and	Collations”.

The	default	mapping	can	be	restored	by	using	a	value	of	DEFAULT.	The
default	depends	on	the	server	configuration.

Note	that	the	syntax	for	SET	NAMES	differs	from	that	for	setting	most	other
options.

ONE_SHOT

This	option	is	a	modifier,	not	a	variable.	It	can	be	used	to	influence	the
effect	of	variables	that	set	the	character	set,	the	collation,	and	the	time	zone.
ONE_SHOT	is	primarily	used	for	replication	purposes:	mysqlbinlog	uses	SET
ONE_SHOT	to	modify	temporarily	the	values	of	character	set,	collation,	and
time	zone	variables	to	reflect	at	rollforward	what	they	were	originally.
ONE_SHOT	is	available	as	of	MySQL	5.0.

You	cannot	use	ONE_SHOT	with	other	than	the	allowed	set	of	variables;	if
you	try,	you	get	an	error	like	this:

mysql>	SET	ONE_SHOT	max_allowed_packet	=	1;

ERROR	1382	(HY000):	The	'SET	ONE_SHOT'	syntax	is	reserved	for	purposes

internal	to	the	MySQL	server

If	ONE_SHOT	is	used	with	the	allowed	variables,	it	changes	the	variables	as
requested,	but	only	for	the	next	non-SET	statement.	After	that,	the	server
resets	all	character	set,	collation,	and	time	zone-related	system	variables	to
their	previous	values.	Example:

mysql>	SET	ONE_SHOT	character_set_connection	=	latin5;

mysql>	SET	ONE_SHOT	collation_connection	=	latin5_turkish_ci;

mysql>	SHOW	VARIABLES	LIKE	'%_connection';

+--------------------------+-------------------+

|	Variable_name												|	Value													|

+--------------------------+-------------------+

|	character_set_connection	|	latin5												|

|	collation_connection					|	latin5_turkish_ci	|

+--------------------------+-------------------+

mysql>	SHOW	VARIABLES	LIKE	'%_connection';

+--------------------------+-------------------+

|	Variable_name												|	Value													|

+--------------------------+-------------------+

|	character_set_connection	|	latin1												|

|	collation_connection					|	latin1_swedish_ci	|

+--------------------------+-------------------+

SQL_AUTO_IS_NULL	=	{0	|	1}

If	set	to	1	(the	default),	you	can	find	the	last	inserted	row	for	a	table	that
contains	an	AUTO_INCREMENT	column	by	using	the	following	construct:

WHERE	auto_increment_column	IS	NULL

This	behavior	is	used	by	some	ODBC	programs,	such	as	Access.

SQL_BIG_SELECTS	=	{0	|	1}

If	set	to	0,	MySQL	aborts	SELECT	statements	that	are	likely	to	take	a	very
long	time	to	execute	(that	is,	statements	for	which	the	optimizer	estimates

that	the	number	of	examined	rows	exceeds	the	value	of	max_join_size).
This	is	useful	when	an	inadvisable	WHERE	statement	has	been	issued.	The
default	value	for	a	new	connection	is	1,	which	allows	all	SELECT	statements.

If	you	set	the	max_join_size	system	variable	to	a	value	other	than	DEFAULT,
SQL_BIG_SELECTS	is	set	to	0.

SQL_BUFFER_RESULT	=	{0	|	1}

If	set	to	1,	SQL_BUFFER_RESULT	forces	results	from	SELECT	statements	to	be
put	into	temporary	tables.	This	helps	MySQL	free	the	table	locks	early	and
can	be	beneficial	in	cases	where	it	takes	a	long	time	to	send	results	to	the
client.	The	default	value	is	0.

SQL_LOG_BIN	=	{0	|	1}

If	set	to	0,	no	logging	is	done	to	the	binary	log	for	the	client.	The	client
must	have	the	SUPER	privilege	to	set	this	option.	The	default	value	is	1.

SQL_LOG_OFF	=	{0	|	1}

If	set	to	1,	no	logging	is	done	to	the	general	query	log	for	this	client.	The
client	must	have	the	SUPER	privilege	to	set	this	option.	The	default	value	is
0.

SQL_LOG_UPDATE	=	{0	|	1}

This	variable	is	deprecated,	and	is	mapped	to	SQL_LOG_BIN.

SQL_NOTES	=	{0	|	1}

If	set	to	1	(the	default),	warnings	of	Note	level	are	recorded.	If	set	to	0,
Note	warnings	are	suppressed.	mysqldump	includes	output	to	set	this
variable	to	0	so	that	reloading	the	dump	file	does	not	produce	warnings	for
events	that	do	not	affect	the	integrity	of	the	reload	operation.	SQL_NOTES
was	added	in	MySQL	5.0.3.

SQL_QUOTE_SHOW_CREATE	=	{0	|	1}

If	set	to	1	(the	default),	the	server	quotes	identifiers	for	SHOW	CREATE	TABLE

and	SHOW	CREATE	DATABASE	statements.	If	set	to	0,	quoting	is	disabled.	This
option	is	enabled	by	default	so	that	replication	works	for	identifiers	that
require	quoting.	See	Section	13.5.4.6,	“SHOW	CREATE	TABLE	Syntax”,	and
Section	13.5.4.4,	“SHOW	CREATE	DATABASE	Syntax”.

SQL_SAFE_UPDATES	=	{0	|	1}

If	set	to	1,	MySQL	aborts	UPDATE	or	DELETE	statements	that	do	not	use	a
key	in	the	WHERE	clause	or	a	LIMIT	clause.	This	makes	it	possible	to	catch
UPDATE	or	DELETE	statements	where	keys	are	not	used	properly	and	that
would	probably	change	or	delete	a	large	number	of	rows.	The	default	value
is	0.

SQL_SELECT_LIMIT	=	{value	|	DEFAULT}

The	maximum	number	of	rows	to	return	from	SELECT	statements.	The
default	value	for	a	new	connection	is	“unlimited.”	If	you	have	changed	the
limit,	the	default	value	can	be	restored	by	using	a	SQL_SELECT_LIMIT	value
of	DEFAULT.

If	a	SELECT	has	a	LIMIT	clause,	the	LIMIT	takes	precedence	over	the	value
of	SQL_SELECT_LIMIT.

SQL_SELECT_LIMIT	does	not	apply	to	SELECT	statements	executed	within
stored	routines.	It	also	does	not	apply	to	SELECT	statements	that	do	not
produce	a	result	set	to	be	returned	to	the	client.	These	include	SELECT
statements	in	subqueries,	CREATE	TABLE	...	SELECT,	and	INSERT	INTO
...	SELECT.

SQL_WARNINGS	=	{0	|	1}

This	variable	controls	whether	single-row	INSERT	statements	produce	an
information	string	if	warnings	occur.	The	default	is	0.	Set	the	value	to	1	to
produce	an	information	string.

TIMESTAMP	=	{timestamp_value	|	DEFAULT}

Set	the	time	for	this	client.	This	is	used	to	get	the	original	timestamp	if	you
use	the	binary	log	to	restore	rows.	timestamp_value	should	be	a	Unix
epoch	timestamp,	not	a	MySQL	timestamp.

SET	TIMESTAMP	affects	the	value	returned	by	NOW()	but	not	by	SYSDATE().
This	means	that	timestamp	settings	in	the	binary	log	have	no	effect	on
invocations	of	SYSDATE().	The	server	can	be	started	with	the	--sysdate-
is-now	option	to	cause	SYSDATE()	to	be	an	alias	for	NOW(),	in	which	case
SET	TIMESTAMP	affects	both	functions.

UNIQUE_CHECKS	=	{0	|	1}

If	set	to	1	(the	default),	uniqueness	checks	for	secondary	indexes	in	InnoDB
tables	are	performed.	If	set	to	0,	storage	engines	are	allowed	to	assume	that
duplicate	keys	are	not	present	in	input	data.	If	you	know	for	certain	that
your	data	does	not	contain	uniqueness	violations,	you	can	set	this	to	0	to
speed	up	large	table	imports	to	InnoDB.

Note	that	setting	this	variable	to	0	does	not	require	storage	engines	to
ignore	duplicate	keys.	An	engine	is	still	allowed	to	check	for	them	and	issue
duplicate-key	errors	if	it	detects	them.

13.5.4.	SHOW	Syntax

SHOW	has	many	forms	that	provide	information	about	databases,	tables,	columns,
or	status	information	about	the	server.	This	section	describes	those	following:

SHOW	[FULL]	COLUMNS	FROM	tbl_name	[FROM	db_name]	[LIKE	'pattern']

SHOW	CREATE	DATABASE	db_name

SHOW	CREATE	FUNCTION	funcname

SHOW	CREATE	PROCEDURE	procname

SHOW	CREATE	TABLE	tbl_name

SHOW	DATABASES	[LIKE	'pattern']

SHOW	ENGINE	engine_name	{LOGS	|	STATUS	}

SHOW	[STORAGE]	ENGINES

SHOW	ERRORS	[LIMIT	[offset,]	row_count]

SHOW	FUNCTION	STATUS	[LIKE	'pattern']

SHOW	GRANTS	FOR	user

SHOW	INDEX	FROM	tbl_name	[FROM	db_name]

SHOW	INNODB	STATUS

SHOW	PROCEDURE	STATUS	[LIKE	'pattern']

SHOW	[BDB]	LOGS

SHOW	PRIVILEGES

SHOW	[FULL]	PROCESSLIST

SHOW	[GLOBAL	|	SESSION]	STATUS	[LIKE	'pattern']

SHOW	TABLE	STATUS	[FROM	db_name]	[LIKE	'pattern']

SHOW	[OPEN]	TABLES	[FROM	db_name]	[LIKE	'pattern']

SHOW	TRIGGERS

SHOW	[GLOBAL	|	SESSION]	VARIABLES	[LIKE	'pattern']

SHOW	WARNINGS	[LIMIT	[offset,]	row_count]

The	SHOW	statement	also	has	forms	that	provide	information	about	replication
master	and	slave	servers	and	are	described	in	Section	13.6,	“Replication
Statements”:

SHOW	BINARY	LOGS

SHOW	BINLOG	EVENTS

SHOW	MASTER	STATUS

SHOW	SLAVE	HOSTS

SHOW	SLAVE	STATUS

If	the	syntax	for	a	given	SHOW	statement	includes	a	LIKE	'pattern'	part,
'pattern'	is	a	string	that	can	contain	the	SQL	‘%’	and	‘_’	wildcard	characters.
The	pattern	is	useful	for	restricting	statement	output	to	matching	values.

Several	SHOW	statements	also	accept	a	WHERE	clause	that	provides	more	flexibility
in	specifying	which	rows	to	display.	See	Section	20.18,	“Extensions	to	SHOW
Statements”.

13.5.4.1.	SHOW	CHARACTER	SET	Syntax

SHOW	CHARACTER	SET	[LIKE	'pattern']

The	SHOW	CHARACTER	SET	statement	shows	all	available	character	sets.	It	takes
an	optional	LIKE	clause	that	indicates	which	character	set	names	to	match.	For
example:

mysql>	SHOW	CHARACTER	SET	LIKE	'latin%';

+---------+-----------------------------+-------------------+--------+

|	Charset	|	Description																	|	Default	collation	|	Maxlen	|

+---------+-----------------------------+-------------------+--------+

|	latin1		|	cp1252	West	European								|	latin1_swedish_ci	|						1	|

|	latin2		|	ISO	8859-2	Central	European	|	latin2_general_ci	|						1	|

|	latin5		|	ISO	8859-9	Turkish										|	latin5_turkish_ci	|						1	|

|	latin7		|	ISO	8859-13	Baltic										|	latin7_general_ci	|						1	|

+---------+-----------------------------+-------------------+--------+

The	Maxlen	column	shows	the	maximum	number	of	bytes	required	to	store	one
character.

13.5.4.2.	SHOW	COLLATION	Syntax

SHOW	COLLATION	[LIKE	'pattern']

The	output	from	SHOW	COLLATION	includes	all	available	character	sets.	It	takes	an
optional	LIKE	clause	whose	pattern	indicates	which	collation	names	to	match.
For	example:

mysql>	SHOW	COLLATION	LIKE	'latin1%';

+-------------------+---------+----+---------+----------+---------+

|	Collation									|	Charset	|	Id	|	Default	|	Compiled	|	Sortlen	|

+-------------------+---------+----+---------+----------+---------+

|	latin1_german1_ci	|	latin1		|		5	|									|										|							0	|

|	latin1_swedish_ci	|	latin1		|		8	|	Yes					|	Yes						|							0	|

|	latin1_danish_ci		|	latin1		|	15	|									|										|							0	|

|	latin1_german2_ci	|	latin1		|	31	|									|	Yes						|							2	|

|	latin1_bin								|	latin1		|	47	|									|	Yes						|							0	|

|	latin1_general_ci	|	latin1		|	48	|									|										|							0	|

|	latin1_general_cs	|	latin1		|	49	|									|										|							0	|

|	latin1_spanish_ci	|	latin1		|	94	|									|										|							0	|

+-------------------+---------+----+---------+----------+---------+

The	Default	column	indicates	whether	a	collation	is	the	default	for	its	character
set.	Compiled	indicates	whether	the	character	set	is	compiled	into	the	server.
Sortlen	is	related	to	the	amount	of	memory	required	to	sort	strings	expressed	in
the	character	set.

13.5.4.3.	SHOW	COLUMNS	Syntax

SHOW	[FULL]	COLUMNS	FROM	tbl_name	[FROM	db_name]	[LIKE	'pattern']

SHOW	COLUMNS	displays	information	about	the	columns	in	a	given	table.	It	also
works	for	views	as	of	MySQL	5.0.1.

If	the	data	types	differ	from	what	you	expect	them	to	be	based	on	your	CREATE
TABLE	statement,	note	that	MySQL	sometimes	changes	data	types	when	you
create	or	alter	a	table.	The	conditions	for	which	this	occurs	are	described	in
Section	13.1.5.1,	“Silent	Column	Specification	Changes”.

The	FULL	keyword	causes	the	output	to	include	the	privileges	you	have	as	well
as	any	per-column	comments	for	each	column.

You	can	use	db_name.tbl_name	as	an	alternative	to	the	tbl_name	FROM
db_name	syntax.	In	other	words,	these	two	statements	are	equivalent:

mysql>	SHOW	COLUMNS	FROM	mytable	FROM	mydb;

mysql>	SHOW	COLUMNS	FROM	mydb.mytable;

SHOW	FIELDS	is	a	synonym	for	SHOW	COLUMNS.	You	can	also	list	a	table's	columns
with	the	mysqlshow	db_name	tbl_name	command.

The	DESCRIBE	statement	provides	information	similar	to	SHOW	COLUMNS.	See
Section	13.3.1,	“DESCRIBE	Syntax”.

13.5.4.4.	SHOW	CREATE	DATABASE	Syntax

SHOW	CREATE	{DATABASE	|	SCHEMA}	db_name

Shows	the	CREATE	DATABASE	statement	that	creates	the	given	database.	SHOW
CREATE	SCHEMA	is	a	synonym	for	SHOW	CREATE	DATABASE	as	of	MySQL	5.0.2.

mysql>	SHOW	CREATE	DATABASE	test\G

***************************	1.	row	***************************

							Database:	test

Create	Database:	CREATE	DATABASE	`test`

																	/*!40100	DEFAULT	CHARACTER	SET	latin1	*/

mysql>	SHOW	CREATE	SCHEMA	test\G

***************************	1.	row	***************************

							Database:	test

Create	Database:	CREATE	DATABASE	`test`

																	/*!40100	DEFAULT	CHARACTER	SET	latin1	*/

SHOW	CREATE	DATABASE	quotes	table	and	column	names	according	to	the	value
of	the	SQL_QUOTE_SHOW_CREATE	option.	See	Section	13.5.3,	“SET	Syntax”.

13.5.4.5.	SHOW	CREATE	PROCEDURE	and	SHOW	CREATE	FUNCTION	Syntax

SHOW	CREATE	{PROCEDURE	|	FUNCTION}	sp_name

This	statement	is	a	MySQL	extension.	Similar	to	SHOW	CREATE	TABLE,	it	returns
the	exact	string	that	can	be	used	to	re-create	the	named	routine.

mysql>	SHOW	CREATE	FUNCTION	test.hello\G

***************************	1.	row	***************************

							Function:	hello

							sql_mode:

Create	Function:	CREATE	FUNCTION	`test`.`hello`(s	CHAR(20))	RETURNS	CHAR(50)

																	RETURN	CONCAT('Hello,	',s,'!')

13.5.4.6.	SHOW	CREATE	TABLE	Syntax

SHOW	CREATE	TABLE	tbl_name

Shows	the	CREATE	TABLE	statement	that	creates	the	given	table.	As	of	MySQL
5.0.1,	this	statement	also	works	with	views.

mysql>	SHOW	CREATE	TABLE	t\G

***************************	1.	row	***************************

							Table:	t

Create	Table:	CREATE	TABLE	t	(

		id	INT(11)	default	NULL	auto_increment,

		s	char(60)	default	NULL,

		PRIMARY	KEY	(id)

)	ENGINE=MyISAM

SHOW	CREATE	TABLE	quotes	table	and	column	names	according	to	the	value	of
the	SQL_QUOTE_SHOW_CREATE	option.	See	Section	13.5.3,	“SET	Syntax”.

13.5.4.7.	SHOW	CREATE	VIEW	Syntax

SHOW	CREATE	VIEW	view_name

This	statement	shows	a	CREATE	VIEW	statement	that	creates	the	given	view.

mysql>	SHOW	CREATE	VIEW	v;

+------+--+

|	View	|	Create	View																																								|

+------+--+

|	v				|	CREATE	VIEW	`test`.`v`	AS	select	1	AS	`a`,2	AS	`b`	|

+------+--+

This	statement	was	added	in	MySQL	5.0.1.

Prior	to	MySQL	5.0.11,	the	output	columns	from	this	statement	were	shown	as
Table	and	Create	Table.

Use	of	SHOW	CREATE	VIEW	requires	the	SHOW	VIEW	privilege	and	the	SELECT
privilege	for	the	view	in	question.

You	can	also	obtain	information	about	view	objects	from	INFORMATION_SCHEMA,
which	contains	a	VIEWS	table.	See	Section	20.15,	“The	INFORMATION_SCHEMA
VIEWS	Table”.

13.5.4.8.	SHOW	DATABASES	Syntax

SHOW	{DATABASES	|	SCHEMAS}	[LIKE	'pattern']

SHOW	DATABASES	lists	the	databases	on	the	MySQL	server	host.	SHOW	SCHEMAS	is
a	synonym	for	SHOW	DATABASES	as	of	MySQL	5.0.2.

You	see	only	those	databases	for	which	you	have	some	kind	of	privilege,	unless
you	have	the	global	SHOW	DATABASES	privilege.	You	can	also	get	this	list	using
the	mysqlshow	command.

If	the	server	was	started	with	the	--skip-show-database	option,	you	cannot	use
this	statement	at	all	unless	you	have	the	SHOW	DATABASES	privilege.

13.5.4.9.	SHOW	ENGINE	Syntax

SHOW	ENGINE	engine_name	{LOGS	|	STATUS	}

SHOW	ENGINE	displays	log	or	status	information	about	a	storage	engine.	The
following	statements	currently	are	supported:

SHOW	ENGINE	BDB	LOGS

SHOW	ENGINE	INNODB	STATUS

SHOW	ENGINE	BDB	LOGS	displays	status	information	about	existing	BDB	log	files.
It	returns	the	following	fields:

File

The	full	path	to	the	log	file.

Type

The	log	file	type	(BDB	for	Berkeley	DB	log	files).

Status

The	status	of	the	log	file	(FREE	if	the	file	can	be	removed,	or	IN	USE	if	the
file	is	needed	by	the	transaction	subsystem)

SHOW	ENGINE	INNODB	STATUS	displays	extensive	information	about	the	state	of
the	InnoDB	storage	engine.

The	InnoDB	Monitors	provide	additional	information	about	InnoDB	processing.
See	Section	14.2.11.1,	“SHOW	ENGINE	INNODB	STATUS	and	the	InnoDB	Monitors”.

Older	(and	now	deprecated)	synonyms	for	these	statements	are	SHOW	[BDB]
LOGS	and	SHOW	INNODB	STATUS.

13.5.4.10.	SHOW	ENGINES	Syntax

SHOW	[STORAGE]	ENGINES

SHOW	ENGINES	displays	status	information	about	the	server's	storage	engines.
This	is	particularly	useful	for	checking	whether	a	storage	engine	is	supported,	or
to	see	what	the	default	engine	is.	SHOW	TABLE	TYPES	is	a	deprecated	synonym.

mysql>	SHOW	ENGINES\G

***************************	1.	row	***************************

	Engine:	MyISAM

Support:	DEFAULT

Comment:	Default	engine	as	of	MySQL	3.23	with	great	performance

***************************	2.	row	***************************

	Engine:	MEMORY

Support:	YES

Comment:	Hash	based,	stored	in	memory,	useful	for	temporary	tables

***************************	3.	row	***************************

	Engine:	HEAP

Support:	YES

Comment:	Alias	for	MEMORY

***************************	4.	row	***************************

	Engine:	MERGE

Support:	YES

Comment:	Collection	of	identical	MyISAM	tables

***************************	5.	row	***************************

	Engine:	MRG_MYISAM

Support:	YES

Comment:	Alias	for	MERGE

***************************	6.	row	***************************

	Engine:	ISAM

Support:	NO

Comment:	Obsolete	storage	engine,	now	replaced	by	MyISAM

***************************	7.	row	***************************

	Engine:	MRG_ISAM

Support:	NO

Comment:	Obsolete	storage	engine,	now	replaced	by	MERGE

***************************	8.	row	***************************

	Engine:	InnoDB

Support:	YES

Comment:	Supports	transactions,	row-level	locking,	and	foreign	keys

***************************	9.	row	***************************

	Engine:	INNOBASE

Support:	YES

Comment:	Alias	for	INNODB

***************************	10.	row	***************************

	Engine:	BDB

Support:	YES

Comment:	Supports	transactions	and	page-level	locking

***************************	11.	row	***************************

	Engine:	BERKELEYDB

Support:	YES

Comment:	Alias	for	BDB

***************************	12.	row	***************************

	Engine:	NDBCLUSTER

Support:	NO

Comment:	Clustered,	fault-tolerant,	memory-based	tables

***************************	13.	row	***************************

	Engine:	NDB

Support:	NO

Comment:	Alias	for	NDBCLUSTER

***************************	14.	row	***************************

	Engine:	EXAMPLE

Support:	NO

Comment:	Example	storage	engine

***************************	15.	row	***************************

	Engine:	ARCHIVE

Support:	YES

Comment:	Archive	storage	engine

***************************	16.	row	***************************

	Engine:	CSV

Support:	NO

Comment:	CSV	storage	engine

***************************	17.	row	***************************

	Engine:	FEDERATED

Support:	YES

Comment:	Federated	MySQL	storage	engine

***************************	18.	row	***************************

	Engine:	BLACKHOLE

Support:	YES

Comment:	/dev/null	storage	engine	(anything	you	write	to	it	disappears)

The	Support	value	indicates	whether	the	particular	storage	engine	is	supported,
and	which	is	the	default	engine.	For	example,	if	the	server	is	started	with	the	--
default-table-type=InnoDB	option,	the	Support	value	for	the	InnoDB	row	has
the	value	DEFAULT.	See	Chapter	14,	Storage	Engines	and	Table	Types.

13.5.4.11.	SHOW	ERRORS	Syntax

SHOW	ERRORS	[LIMIT	[offset,]	row_count]

SHOW	COUNT(*)	ERRORS

This	statement	is	similar	to	SHOW	WARNINGS,	except	that	instead	of	displaying
errors,	warnings,	and	notes,	it	displays	only	errors.

The	LIMIT	clause	has	the	same	syntax	as	for	the	SELECT	statement.	See
Section	13.2.7,	“SELECT	Syntax”.

The	SHOW	COUNT(*)	ERRORS	statement	displays	the	number	of	errors.	You	can
also	retrieve	this	number	from	the	error_count	variable:

SHOW	COUNT(*)	ERRORS;

SELECT	@@error_count;

For	more	information,	see	Section	13.5.4.25,	“SHOW	WARNINGS	Syntax”.

13.5.4.12.	SHOW	GRANTS	Syntax

SHOW	GRANTS	FOR	user

This	statement	lists	the	GRANT	statement	or	statements	that	must	be	issued	to
duplicate	the	privileges	that	are	granted	to	a	MySQL	user	account.	The	account
is	named	using	the	same	format	as	for	the	GRANT	statement;	for	example,
'jeffrey'@'localhost'.	The	user	and	host	parts	of	the	account	name
correspond	to	the	User	and	Host	column	values	of	the	user	table	row	for	the
account.

mysql>	SHOW	GRANTS	FOR	'root'@'localhost';

+---+

|	Grants	for	root@localhost																																											|

+---+

|	GRANT	ALL	PRIVILEGES	ON	*.*	TO	'root'@'localhost'	WITH	GRANT	OPTION	|

+---+

To	list	the	privileges	granted	to	the	account	that	you	are	using	to	connect	to	the
server,	you	can	use	any	of	the	following	statements:

SHOW	GRANTS;

SHOW	GRANTS	FOR	CURRENT_USER;

SHOW	GRANTS	FOR	CURRENT_USER();

As	of	MySQL	5.0.24,	if	SHOW	GRANTS	FOR	CURRENT_USER	(or	any	of	the
equivalent	syntaxes)	is	used	in	DEFINER	context,	such	as	within	a	stored
procedure	that	is	defined	with	SQL	SECURITY	DEFINER),	the	grants	displayed	are
those	of	the	definer	and	not	the	invoker.

SHOW	GRANTS	displays	only	the	privileges	granted	explicitly	to	the	named
account.	Other	privileges	might	be	available	to	the	account,	but	they	are	not
displayed.	For	example,	if	an	anonymous	account	exists,	the	named	account
might	be	able	to	use	its	privileges,	but	SHOW	GRANTS	will	not	display	them.

13.5.4.13.	SHOW	INDEX	Syntax

SHOW	INDEX	FROM	tbl_name	[FROM	db_name]

SHOW	INDEX	returns	table	index	information.	The	format	resembles	that	of	the
SQLStatistics	call	in	ODBC.

SHOW	INDEX	returns	the	following	fields:

Table

The	name	of	the	table.

Non_unique

0	if	the	index	cannot	contain	duplicates,	1	if	it	can.

Key_name

The	name	of	the	index.

Seq_in_index

The	column	sequence	number	in	the	index,	starting	with	1.

Column_name

The	column	name.

	Collation

How	the	column	is	sorted	in	the	index.	In	MySQL,	this	can	have	values	‘A’
(Ascending)	or	NULL	(Not	sorted).

	Cardinality

An	estimate	of	the	number	of	unique	values	in	the	index.	This	is	updated	by
running	ANALYZE	TABLE	or	myisamchk	-a.	Cardinality	is	counted	based
on	statistics	stored	as	integers,	so	the	value	is	not	necessarily	exact	even	for
small	tables.	The	higher	the	cardinality,	the	greater	the	chance	that	MySQL
uses	the	index	when	doing	joins.

Sub_part

The	number	of	indexed	characters	if	the	column	is	only	partly	indexed,
NULL	if	the	entire	column	is	indexed.

Packed

Indicates	how	the	key	is	packed.	NULL	if	it	is	not.

Null

Contains	YES	if	the	column	may	contain	NULL.	If	not,	the	column	contains
NO	as	of	MySQL	5.0.3,	and	''	before	that.

Index_type

The	index	method	used	(BTREE,	FULLTEXT,	HASH,	RTREE).

Comment

Various	remarks.

You	can	use	db_name.tbl_name	as	an	alternative	to	the	tbl_name	FROM
db_name	syntax.	These	two	statements	are	equivalent:

SHOW	INDEX	FROM	mytable	FROM	mydb;

SHOW	INDEX	FROM	mydb.mytable;

SHOW	KEYS	is	a	synonym	for	SHOW	INDEX.	You	can	also	list	a	table's	indexes	with
the	mysqlshow	-k	db_name	tbl_name	command.

13.5.4.14.	SHOW	INNODB	STATUS	Syntax

SHOW	INNODB	STATUS

In	MySQL	5.0,	this	is	a	deprecated	synonym	for	SHOW	ENGINE	INNODB	STATUS.
See	Section	13.5.4.9,	“SHOW	ENGINE	Syntax”.

13.5.4.15.	SHOW	LOGS	Syntax

SHOW	[BDB]	LOGS

In	MySQL	5.0,	this	is	a	deprecated	synonym	for	SHOW	ENGINE	BDB	LOGS.	See
Section	13.5.4.9,	“SHOW	ENGINE	Syntax”.

13.5.4.16.	SHOW	OPEN	TABLES	Syntax

SHOW	OPEN	TABLES	[FROM	db_name]	[LIKE	'pattern']

SHOW	OPEN	TABLES	lists	the	non-TEMPORARY	tables	that	are	currently	open	in	the
table	cache.	See	Section	7.4.8,	“How	MySQL	Opens	and	Closes	Tables”.

SHOW	OPEN	TABLES	returns	the	following	fields:

Database

The	database	containing	the	table.

Table

The	table	name.

In_use

The	number	of	times	the	table	currently	is	in	use	by	queries.	If	the	count	is

zero,	the	table	is	open,	but	not	currently	being	used.

Name_locked

Whether	the	table	name	is	locked.	Name	locking	is	used	for	operations	such
as	dropping	or	renaming	tables.

The	FROM	and	LIKE	clauses	may	be	used	as	of	MySQL	5.0.12.

13.5.4.17.	SHOW	PRIVILEGES	Syntax

SHOW	PRIVILEGES

SHOW	PRIVILEGES	shows	the	list	of	system	privileges	that	the	MySQL	server
supports.	The	exact	list	of	privileges	depends	on	the	version	of	your	server.

mysql>	SHOW	PRIVILEGES\G

***************************	1.	row	***************************

Privilege:	Alter

Context:	Tables

Comment:	To	alter	the	table

***************************	2.	row	***************************

Privilege:	Alter	routine

Context:	Functions,Procedures

Comment:	To	alter	or	drop	stored	functions/procedures

***************************	3.	row	***************************

Privilege:	Create

Context:	Databases,Tables,Indexes

Comment:	To	create	new	databases	and	tables

***************************	4.	row	***************************

Privilege:	Create	routine

Context:	Functions,Procedures

Comment:	To	use	CREATE	FUNCTION/PROCEDURE

***************************	5.	row	***************************

Privilege:	Create	temporary	tables

Context:	Databases

Comment:	To	use	CREATE	TEMPORARY	TABLE

...

13.5.4.18.	SHOW	PROCEDURE	STATUS	and	SHOW	FUNCTION	STATUS	Syntax

SHOW	{PROCEDURE	|	FUNCTION}	STATUS	[LIKE	'pattern']

This	statement	is	a	MySQL	extension.	It	returns	characteristics	of	routines,	such

as	the	database,	name,	type,	creator,	and	creation	and	modification	dates.	If	no
pattern	is	specified,	the	information	for	all	stored	procedures	or	all	stored
functions	is	listed,	depending	on	which	statement	you	use.

mysql>	SHOW	FUNCTION	STATUS	LIKE	'hello'\G

***************************	1.	row	***************************

											Db:	test

									Name:	hello

									Type:	FUNCTION

						Definer:	testuser@localhost

					Modified:	2004-08-03	15:29:37

						Created:	2004-08-03	15:29:37

Security_type:	DEFINER

						Comment:

You	can	also	get	information	about	stored	routines	from	the	ROUTINES	table	in
INFORMATION_SCHEMA.	See	Section	20.14,	“The	INFORMATION_SCHEMA	ROUTINES
Table”.

13.5.4.19.	SHOW	PROCESSLIST	Syntax

SHOW	[FULL]	PROCESSLIST

SHOW	PROCESSLIST	shows	you	which	threads	are	running.	You	can	also	get	this
information	using	the	mysqladmin	processlist	command.	If	you	have	the
PROCESS	privilege,	you	can	see	all	threads.	Otherwise,	you	can	see	only	your
own	threads	(that	is,	threads	associated	with	the	MySQL	account	that	you	are
using).	See	Section	13.5.5.3,	“KILL	Syntax”.	If	you	do	not	use	the	FULL	keyword,
only	the	first	100	characters	of	each	statement	are	shown	in	the	Info	field.

This	statement	is	very	useful	if	you	get	the	“too	many	connections”	error
message	and	want	to	find	out	what	is	going	on.	MySQL	reserves	one	extra
connection	to	be	used	by	accounts	that	have	the	SUPER	privilege,	to	ensure	that
administrators	should	always	be	able	to	connect	and	check	the	system	(assuming
that	you	are	not	giving	this	privilege	to	all	your	users).

The	output	of	SHOW	PROCESSLIST	may	look	like	this:

mysql>	SHOW	FULL	PROCESSLIST\G

***************************	1.	row	***************************

Id:	1

User:	system	user

Host:

db:	NULL

Command:	Connect

Time:	1030455

State:	Waiting	for	master	to	send	event

Info:	NULL

***************************	2.	row	***************************

Id:	2

User:	system	user

Host:

db:	NULL

Command:	Connect

Time:	1004

State:	Has	read	all	relay	log;	waiting	for	the	slave	I/O	thread	to	update	it

Info:	NULL

***************************	3.	row	***************************

Id:	3112

User:	replikator

Host:	artemis:2204

db:	NULL

Command:	Binlog	Dump

Time:	2144

State:	Has	sent	all	binlog	to	slave;	waiting	for	binlog	to	be	updated

Info:	NULL

***************************	4.	row	***************************

Id:	3113

User:	replikator

Host:	iconnect2:45781

db:	NULL

Command:	Binlog	Dump

Time:	2086

State:	Has	sent	all	binlog	to	slave;	waiting	for	binlog	to	be	updated

Info:	NULL

***************************	5.	row	***************************

Id:	3123

User:	stefan

Host:	localhost

db:	apollon

Command:	Query

Time:	0

State:	NULL

Info:	SHOW	FULL	PROCESSLIST

5	rows	in	set	(0.00	sec)

The	columns	have	the	following	meaning:

Id

The	connection	identifier.

User

The	MySQL	user	who	issued	the	statement.	If	this	is	system	user,	it	refers
to	a	non-client	thread	spawned	by	the	server	to	handle	tasks	internally.	This
could	be	the	I/O	or	SQL	thread	used	on	replication	slaves	or	a	delayed-row
handler.	For	system	user,	there	is	no	host	specified	in	the	Host	column.

Host

The	hostname	of	the	client	issuing	the	statement	(except	for	system	user
where	there	is	no	host).	SHOW	PROCESSLIST	reports	the	hostname	for	TCP/IP
connections	in	host_name:client_port	format	to	make	it	easier	to
determine	which	client	is	doing	what.

db

The	default	database,	if	one	is	selected,	otherwise	NULL.

Command

The	value	of	that	column	corresponds	to	the	COM_xxx	commands	of	the
client/server	protocol.	See	Section	5.2.4,	“Server	Status	Variables”

The	Command	value	may	be	one	of	the	following:	Binlog	Dump,	Change
user,	Close	stmt,	Connect,	Connect	Out,	Create	DB,	Daemon,	Debug,
Delayed	insert,	Drop	DB,	Error,	Execute,	Fetch,	Field	List,	Init	DB,
Kill,	Long	Data,	Ping,	Prepare,	Processlist,	Query,	Quit,	Refresh,
Register	Slave,	Reset	stmt,	Set	option,	Shutdown,	Sleep,	Statistics,
Table	Dump,	Time

Time

The	time	in	seconds	between	the	start	of	the	statement	or	command	and
now.

State

An	action,	event,	or	state,	which	can	be	one	of	the	following:	After
create,	Analyzing,	Changing	master,	Checking	master	version,
Checking	table,	Connecting	to	master,	Copying	to	group	table,

Copying	to	tmp	table,	Creating	delayed	handler,	Creating	index,
Creating	sort	index,	Creating	table	from	master	dump,	Creating
tmp	table,	Execution	of	init_command,	FULLTEXT	initialization,
Finished	reading	one	binlog;	switching	to	next	binlog,	Flushing
tables,	Killed,	Killing	slave,	Locked,	Making	temp	file	,	Opening
master	dump	table,	Opening	table,	Opening	tables,	Processing
request,	Purging	old	relay	logs,	Queueing	master	event	to	the
relay	log,	Reading	event	from	the	relay	log,	Reading	from	net,
Reading	master	dump	table	data,	Rebuilding	the	index	on	master
dump	table,	Reconnecting	after	a	failed	binlog	dump	request,
Reconnecting	after	a	failed	master	event	read,	Registering	slave
on	master,	Removing	duplicates,	Reopen	tables,	Repair	by	sorting,
Repair	done,	Repair	with	keycache,	Requesting	binlog	dump,	Rolling
back,	Saving	state,	Searching	rows	for	update,	Sending	binlog
event	to	slave,	Sending	data,	Sorting	for	group,	Sorting	for
order,	Sorting	index,	Sorting	result,	System	lock,	Table	lock,
Thread	initialized,	Updating,	User	lock,	Waiting	for	INSERT,
Waiting	for	master	to	send	event,	Waiting	for	master	update,
Waiting	for	slave	mutex	on	exit,	Waiting	for	table,	Waiting	for
tables,	Waiting	for	the	next	event	in	relay	log,	Waiting	on	cond,
Waiting	to	finalize	termination,	Waiting	to	reconnect	after	a
failed	binlog	dump	request,	Waiting	to	reconnect	after	a	failed
master	event	read,	Writing	to	net,	allocating	local	table,
cleaning	up,	closing	tables,	converting	HEAP	to	MyISAM,	copy	to
tmp	table,	creating	table,	deleting	from	main	table,	deleting	from
reference	tables,	discard_or_import_tablespace,	end,	freeing
items,	got	handler	lock,	got	old	table,	info,	init,	insert,	logging
slow	query,	login,	preparing,	purging	old	relay	logs,	query	end,
removing	tmp	table,	rename,	rename	result	table,	reschedule,	setup,
starting	slave,	statistics,	storing	row	into	queue,
unauthenticated	user,	update,	updating,	updating	main	table,
updating	reference	tables,	upgrading	lock,	waiting	for
delay_list,	waiting	for	handler	insert,	waiting	for	handler	lock,
waiting	for	handler	open,	Waiting	for	event	from	ndbcluster

The	most	common	State	values	are	described	in	the	rest	of	this	section.
Most	of	the	other	State	values	are	useful	only	for	finding	bugs	in	the
server.	See	also	Section	6.3,	“Replication	Implementation	Details”,	for
additional	information	about	process	states	for	replication	servers.

For	the	SHOW	PROCESSLIST	statement,	the	value	of	State	is	NULL.

Info

The	statement	that	the	thread	is	executing,	or	NULL	if	it	is	not	executing	any
statement.

Some	State	values	commonly	seen	in	the	output	from	SHOW	PROCESSLIST:

Checking	table

The	thread	is	performing	a	table	check	operation.

Closing	tables

Means	that	the	thread	is	flushing	the	changed	table	data	to	disk	and	closing
the	used	tables.	This	should	be	a	fast	operation.	If	not,	you	should	verify
that	you	do	not	have	a	full	disk	and	that	the	disk	is	not	in	very	heavy	use.

Connect	Out

A	replication	slave	is	connecting	to	its	master.

Copying	to	group	table

If	a	statement	has	different	ORDER	BY	and	GROUP	BY	criteria,	the	rows	are
sorted	by	group	and	copied	to	a	temporary	table.

Copying	to	tmp	table

The	server	is	copying	to	a	temporary	table	in	memory.

Copying	to	tmp	table	on	disk

The	server	is	copying	to	a	temporary	table	on	disk.	The	temporary	result	set
was	larger	than	tmp_table_size	and	the	thread	is	changing	the	temporary
table	from	in-memory	to	disk-based	format	to	save	memory.

Creating	tmp	table

The	thread	is	creating	a	temporary	table	to	hold	a	part	of	the	result	for	the

query.

deleting	from	main	table

The	server	is	executing	the	first	part	of	a	multiple-table	delete.	It	is	deleting
only	from	the	first	table,	and	saving	fields	and	offsets	to	be	used	for
deleting	from	the	other	(reference)	tables.

deleting	from	reference	tables

The	server	is	executing	the	second	part	of	a	multiple-table	delete	and
deleting	the	matched	rows	from	the	other	tables.

Flushing	tables

The	thread	is	executing	FLUSH	TABLES	and	is	waiting	for	all	threads	to	close
their	tables.

FULLTEXT	initialization

The	server	is	preparing	to	perform	a	natural-language	full-text	search.

Killed

Someone	has	sent	a	KILL	statement	to	the	thread	and	it	should	abort	next
time	it	checks	the	kill	flag.	The	flag	is	checked	in	each	major	loop	in
MySQL,	but	in	some	cases	it	might	still	take	a	short	time	for	the	thread	to
die.	If	the	thread	is	locked	by	some	other	thread,	the	kill	takes	effect	as	soon
as	the	other	thread	releases	its	lock.

Locked

The	query	is	locked	by	another	query.

Sending	data

The	thread	is	processing	rows	for	a	SELECT	statement	and	also	is	sending
data	to	the	client.

Sorting	for	group

The	thread	is	doing	a	sort	to	satisfy	a	GROUP	BY.

Sorting	for	order

The	thread	is	doing	a	sort	to	satisfy	a	ORDER	BY.

Opening	tables

The	thread	is	trying	to	open	a	table.	This	is	should	be	very	fast	procedure,
unless	something	prevents	opening.	For	example,	an	ALTER	TABLE	or	a	LOCK
TABLE	statement	can	prevent	opening	a	table	until	the	statement	is	finished.

Reading	from	net

The	server	is	reading	a	packet	from	the	network.

Removing	duplicates

The	query	was	using	SELECT	DISTINCT	in	such	a	way	that	MySQL	could
not	optimize	away	the	distinct	operation	at	an	early	stage.	Because	of	this,
MySQL	requires	an	extra	stage	to	remove	all	duplicated	rows	before
sending	the	result	to	the	client.

Reopen	table

The	thread	got	a	lock	for	the	table,	but	noticed	after	getting	the	lock	that	the
underlying	table	structure	changed.	It	has	freed	the	lock,	closed	the	table,
and	is	trying	to	reopen	it.

Repair	by	sorting

The	repair	code	is	using	a	sort	to	create	indexes.

Repair	with	keycache

The	repair	code	is	using	creating	keys	one	by	one	through	the	key	cache.
This	is	much	slower	than	Repair	by	sorting.

Searching	rows	for	update

The	thread	is	doing	a	first	phase	to	find	all	matching	rows	before	updating

them.	This	has	to	be	done	if	the	UPDATE	is	changing	the	index	that	is	used	to
find	the	involved	rows.

Sleeping

The	thread	is	waiting	for	the	client	to	send	a	new	statement	to	it.

statistics

The	server	is	calculating	statistics	to	develop	a	query	execution	plan.

	System	lock

The	thread	is	waiting	to	get	an	external	system	lock	for	the	table.	If	you	are
not	using	multiple	mysqld	servers	that	are	accessing	the	same	tables,	you
can	disable	system	locks	with	the	--skip-external-locking	option.

unauthenticated	user

The	state	of	a	thread	that	has	become	associated	with	a	client	connection
but	for	which	authentication	of	the	client	user	has	not	yet	been	done.

Upgrading	lock

The	INSERT	DELAYED	handler	is	trying	to	get	a	lock	for	the	table	to	insert
rows.

Updating

The	thread	is	searching	for	rows	to	update	and	is	updating	them.

updating	main	table

The	server	is	executing	the	first	part	of	a	multiple-table	update.	It	is
updating	only	the	first	table,	and	saving	fields	and	offsets	to	be	used	for
updating	the	other	(reference)	tables.

updating	reference	tables

The	server	is	executing	the	second	part	of	a	multiple-table	update	and
updating	the	matched	rows	from	the	other	tables.

User	Lock

The	thread	is	waiting	on	a	GET_LOCK().

Waiting	for	event	from	ndbcluster

The	server	is	acting	as	an	SQL	node	in	a	MySQL	Cluster,	and	is	connected
to	a	cluster	management	node.

Waiting	for	tables

The	thread	got	a	notification	that	the	underlying	structure	for	a	table	has
changed	and	it	needs	to	reopen	the	table	to	get	the	new	structure.	However,
to	reopen	the	table,	it	must	wait	until	all	other	threads	have	closed	the	table
in	question.

This	notification	takes	place	if	another	thread	has	used	FLUSH	TABLES	or
one	of	the	following	statements	on	the	table	in	question:	FLUSH	TABLES
tbl_name,	ALTER	TABLE,	RENAME	TABLE,	REPAIR	TABLE,	ANALYZE	TABLE,	or
OPTIMIZE	TABLE.

waiting	for	handler	insert

The	INSERT	DELAYED	handler	has	processed	all	pending	inserts	and	is
waiting	for	new	ones.

Writing	to	net

The	server	is	writing	a	packet	to	the	network.

Most	states	correspond	to	very	quick	operations.	If	a	thread	stays	in	any	of	these
states	for	many	seconds,	there	might	be	a	problem	that	needs	to	be	investigated.

13.5.4.20.	SHOW	STATUS	Syntax

SHOW	[GLOBAL	|	SESSION]	STATUS	[LIKE	'pattern']

SHOW	STATUS	provides	server	status	information.	This	information	also	can	be
obtained	using	the	mysqladmin	extended-status	command.

Partial	output	is	shown	here.	The	list	of	names	and	values	may	be	different	for
your	server.	The	meaning	of	each	variable	is	given	in	Section	5.2.4,	“Server
Status	Variables”.

mysql>	SHOW	STATUS;

+--------------------------+------------+

|	Variable_name												|	Value						|

+--------------------------+------------+

|	Aborted_clients										|	0										|

|	Aborted_connects									|	0										|

|	Bytes_received											|	155372598		|

|	Bytes_sent															|	1176560426	|

|	Connections														|	30023						|

|	Created_tmp_disk_tables		|	0										|

|	Created_tmp_tables							|	8340							|

|	Created_tmp_files								|	60									|

...

|	Open_tables														|	1										|

|	Open_files															|	2										|

|	Open_streams													|	0										|

|	Opened_tables												|	44600						|

|	Questions																|	2026873				|

...

|	Table_locks_immediate				|	1920382				|

|	Table_locks_waited							|	0										|

|	Threads_cached											|	0										|

|	Threads_created										|	30022						|

|	Threads_connected								|	1										|

|	Threads_running										|	1										|

|	Uptime																			|	80380						|

+--------------------------+------------+

With	a	LIKE	clause,	the	statement	displays	only	rows	for	those	variables	with
names	that	match	the	pattern:

mysql>	SHOW	STATUS	LIKE	'Key%';

+--------------------+----------+

|	Variable_name						|	Value				|

+--------------------+----------+

|	Key_blocks_used				|	14955				|

|	Key_read_requests		|	96854827	|

|	Key_reads										|	162040			|

|	Key_write_requests	|	7589728		|

|	Key_writes									|	3813196		|

+--------------------+----------+

The	GLOBAL	and	SESSION	options	are	new	in	MySQL	5.0.2.	With	the	GLOBAL

modifier,	SHOW	STATUS	displays	the	status	values	for	all	connections	to	MySQL.
With	SESSION,	it	displays	the	status	values	for	the	current	connection.	If	no
modifier	is	present,	the	default	is	SESSION.	LOCAL	is	a	synonym	for	SESSION.

Some	status	variables	have	only	a	global	value.	For	these,	you	get	the	same
value	for	both	GLOBAL	and	SESSION.

Note:	Before	MySQL	5.0.2,	SHOW	STATUS	returned	global	status	values.	Because
the	default	as	of	5.0.2	is	to	return	session	values,	this	is	incompatible	with
previous	versions.	To	issue	a	SHOW	STATUS	statement	that	will	retrieve	global
status	values	for	all	versions	of	MySQL,	write	it	like	this:

SHOW	/*!50002	GLOBAL	*/	STATUS;

13.5.4.21.	SHOW	TABLE	STATUS	Syntax

SHOW	TABLE	STATUS	[FROM	db_name]	[LIKE	'pattern']

SHOW	TABLE	STATUS	works	likes	SHOW	TABLE,	but	provides	a	lot	of	information
about	each	table.	You	can	also	get	this	list	using	the	mysqlshow	--status
db_name	command.

As	of	MySQL	5.0.1,	this	statement	also	displays	information	about	views.

SHOW	TABLE	STATUS	returns	the	following	fields:

Name

The	name	of	the	table.

Engine

The	storage	engine	for	the	table.	See	Chapter	14,	Storage	Engines	and
Table	Types.

Version

The	version	number	of	the	table's	.frm	file.

Row_format

The	row	storage	format	(Fixed,	Dynamic,	Compressed,	Redundant,
Compact).	Starting	with	MySQL/InnoDB	5.0.3,	the	format	of	InnoDB	tables
is	reported	as	Redundant	or	Compact.	Prior	to	5.0.3,	InnoDB	tables	are
always	in	the	Redundant	format.

Rows

The	number	of	rows.	Some	storage	engines,	such	as	MyISAM,	store	the	exact
count.	For	other	storage	engines,	such	as	InnoDB,	this	value	is	an
approximation,	and	may	vary	from	the	actual	value	by	as	much	as	40	to
50%.	In	such	cases,	use	SELECT	COUNT(*)	to	obtain	an	accurate	count.

The	Rows	value	is	NULL	for	tables	in	the	INFORMATION_SCHEMA	database.

Avg_row_length

The	average	row	length.

Data_length

The	length	of	the	data	file.

Max_data_length

The	maximum	length	of	the	data	file.	This	is	the	total	number	of	bytes	of
data	that	can	be	stored	in	the	table,	given	the	data	pointer	size	used.

Index_length

The	length	of	the	index	file.

Data_free

The	number	of	allocated	but	unused	bytes.

Auto_increment

The	next	AUTO_INCREMENT	value.

Create_time

When	the	table	was	created.

Update_time

When	the	data	file	was	last	updated.	For	some	storage	engines,	this	value	is
NULL.	For	example,	InnoDB	stores	multiple	tables	in	its	tablespace	and	the
data	file	timestamp	does	not	apply.

Check_time

When	the	table	was	last	checked.	Not	all	storage	engines	update	this	time,
in	which	case	the	value	is	always	NULL.

Collation

The	table's	character	set	and	collation.

Checksum

The	live	checksum	value	(if	any).

Create_options

Extra	options	used	with	CREATE	TABLE.

Comment

The	comment	used	when	creating	the	table	(or	information	as	to	why
MySQL	could	not	access	the	table	information).

In	the	table	comment,	InnoDB	tables	report	the	free	space	of	the	tablespace	to
which	the	table	belongs.	For	a	table	located	in	the	shared	tablespace,	this	is	the
free	space	of	the	shared	tablespace.	If	you	are	using	multiple	tablespaces	and	the
table	has	its	own	tablespace,	the	free	space	is	for	only	that	table.

For	MEMORY	tables,	the	Data_length,	Max_data_length,	and	Index_length
values	approximate	the	actual	amount	of	allocated	memory.	The	allocation
algorithm	reserves	memory	in	large	amounts	to	reduce	the	number	of	allocation
operations.

Beginning	with	MySQL	5.0.3,	for	NDB	Cluster	tables,	the	output	of	this

statement	shows	appropriate	values	for	the	Avg_row_length	and	Data_length
columns,	with	the	exception	that	BLOB	columns	are	not	taken	into	account.	In
addition,	the	number	of	replicas	is	now	shown	in	the	Comment	column	(as
number_of_replicas).

For	views,	all	the	fields	displayed	by	SHOW	TABLE	STATUS	are	NULL	except	that
Name	indicates	the	view	name	and	Comment	says	view.

13.5.4.22.	SHOW	TABLES	Syntax

SHOW	[FULL]	TABLES	[FROM	db_name]	[LIKE	'pattern']

SHOW	TABLES	lists	the	non-TEMPORARY	tables	in	a	given	database.	You	can	also
get	this	list	using	the	mysqlshow	db_name	command.

Before	MySQL	5.0.1,	the	output	from	SHOW	TABLES	contains	a	single	column	of
table	names.	Beginning	with	MySQL	5.0.1,	this	statement	also	lists	any	views	in
the	database.	As	of	MySQL	5.0.2,	the	FULL	modifier	is	supported	such	that	SHOW
FULL	TABLES	displays	a	second	output	column.	Values	for	the	second	column	are
BASE	TABLE	for	a	table	and	VIEW	for	a	view.

Note:	If	you	have	no	privileges	for	a	table,	the	table	does	not	show	up	in	the
output	from	SHOW	TABLES	or	mysqlshow	db_name.

13.5.4.23.	SHOW	TRIGGERS	Syntax

SHOW	TRIGGERS	[FROM	db_name]	[LIKE	expr]

SHOW	TRIGGERS	lists	the	triggers	currently	defined	on	the	MySQL	server.	This
statement	requires	the	SUPER	privilege.	It	was	implemented	in	MySQL	5.0.10.

For	the	trigger	ins_sum	as	defined	in	Section	18.3,	“Using	Triggers”,	the	output
of	this	statement	is	as	shown	here:

mysql>	SHOW	TRIGGERS	LIKE	'acc%'\G

***************************	1.	row	***************************

		Trigger:	ins_sum

				Event:	INSERT

				Table:	account

Statement:	SET	@sum	=	@sum	+	NEW.amount

			Timing:	BEFORE

		Created:	NULL

	sql_mode:

		Definer:	myname@localhost

Note:	When	using	a	LIKE	clause	with	SHOW	TRIGGERS,	the	expression	to	be
matched	(expr)	is	compared	with	the	name	of	the	table	on	which	the	trigger	is
declared,	and	not	with	the	name	of	the	trigger:

mysql>	SHOW	TRIGGERS	LIKE	'ins%';

Empty	set	(0.01	sec)

A	brief	explanation	of	the	columns	in	the	output	of	this	statement	is	shown	here:

Trigger

The	name	of	the	trigger.

Event

The	event	that	causes	trigger	activation:	one	of	'INSERT',	'UPDATE',	or
'DELETE'.

Table

The	table	for	which	the	trigger	is	defined.

Statement

The	statement	to	be	executed	when	the	trigger	is	activated.	This	is	the	same
as	the	text	shown	in	the	ACTION_STATEMENT	column	of
INFORMATION_SCHEMA.TRIGGERS.

Timing

One	of	the	two	values	'BEFORE'	or	'AFTER'.

Created

Currently,	the	value	of	this	column	is	always	NULL.

sql_mode

The	SQL	mode	in	effect	when	the	trigger	executes.	This	column	was	added
in	MySQL	5.0.11.

Definer

The	account	that	created	the	trigger.	This	column	was	added	in	MySQL
5.0.17.

You	must	have	the	SUPER	privilege	to	execute	SHOW	TRIGGERS.

See	also	Section	20.16,	“The	INFORMATION_SCHEMA	TRIGGERS	Table”.

13.5.4.24.	SHOW	VARIABLES	Syntax

SHOW	[GLOBAL	|	SESSION]	VARIABLES	[LIKE	'pattern']

SHOW	VARIABLES	shows	the	values	of	MySQL	system	variables.	This	information
also	can	be	obtained	using	the	mysqladmin	variables	command.

With	the	GLOBAL	modifier,	SHOW	VARIABLES	displays	the	values	that	are	used	for
new	connections	to	MySQL.	With	SESSION,	it	displays	the	values	that	are	in
effect	for	the	current	connection.	If	no	modifier	is	present,	the	default	is
SESSION.	LOCAL	is	a	synonym	for	SESSION.

If	the	default	system	variable	values	are	unsuitable,	you	can	set	them	using
command	options	when	mysqld	starts,	and	most	can	be	changed	at	runtime	with
the	SET	statement.	See	Section	5.2.3,	“Using	System	Variables”,	and
Section	13.5.3,	“SET	Syntax”.

Partial	output	is	shown	here.	The	list	of	names	and	values	may	be	different	for
your	server.	Section	5.2.2,	“Server	System	Variables”,	describes	the	meaning	of
each	variable,	and	Section	7.5.2,	“Tuning	Server	Parameters”,	provides
information	about	tuning	them.

mysql>	SHOW	VARIABLES;

+---------------------------------+-------------------------------------+

|	Variable_name																			|	Value																															|

+---------------------------------+-------------------------------------+

|	auto_increment_increment								|	1																																			|

|	auto_increment_offset											|	1																																			|

|	automatic_sp_privileges									|	ON																																		|

|	back_log																								|	50																																		|

|	basedir																									|	/																																			|

|	bdb_cache_size																		|	8388600																													|

|	bdb_home																								|	/var/lib/mysql/																					|

|	bdb_log_buffer_size													|	32768																															|

...

|	max_connections																	|	100																																	|

|	max_connect_errors														|	10																																		|

|	max_delayed_threads													|	20																																		|

|	max_error_count																	|	64																																		|

|	max_heap_table_size													|	16777216																												|

|	max_join_size																			|	4294967295																										|

|	max_relay_log_size														|	0																																			|

|	max_sort_length																	|	1024																																|

...

|	time_zone																							|	SYSTEM																														|

|	timed_mutexes																			|	OFF																																	|

|	tmp_table_size																		|	33554432																												|

|	tmpdir																										|																																					|

|	transaction_alloc_block_size				|	8192																																|

|	transaction_prealloc_size							|	4096																																|

|	tx_isolation																				|	REPEATABLE-READ																					|

|	updatable_views_with_limit						|	YES																																	|

|	version																									|	5.0.19-Max																										|

|	version_comment																	|	MySQL	Community	Edition	-	Max	(GPL)	|

|	version_compile_machine									|	i686																																|

|	version_compile_os														|	pc-linux-gnu																								|

|	wait_timeout																				|	28800																															|

+---------------------------------+-------------------------------------+

With	a	LIKE	clause,	the	statement	displays	only	rows	for	those	variables	with
names	that	match	the	pattern.	To	obtain	the	row	for	a	specific	variable,	use	a
LIKE	clause	as	shown:

SHOW	VARIABLES	LIKE	'max_join_size';

SHOW	SESSION	VARIABLES	LIKE	'max_join_size';

To	get	a	list	of	variables	whose	name	match	a	pattern,	use	the	‘%’	wildcard
character	in	a	LIKE	clause:

SHOW	VARIABLES	LIKE	'%size%';

SHOW	GLOBAL	VARIABLES	LIKE	'%size%';

Wildcard	characters	can	be	used	in	any	position	within	the	pattern	to	be	matched.
Strictly	speaking,	because	‘_’	is	a	wildcard	that	matches	any	single	character,
you	should	escape	it	as	‘_’	to	match	it	literally.	In	practice,	this	is	rarely

necessary.

13.5.4.25.	SHOW	WARNINGS	Syntax

SHOW	WARNINGS	[LIMIT	[offset,]	row_count]

SHOW	COUNT(*)	WARNINGS

SHOW	WARNINGS	shows	the	error,	warning,	and	note	messages	that	resulted	from
the	last	statement	that	generated	messages,	or	nothing	if	the	last	statement	that
used	a	table	generated	no	messages.	A	related	statement,	SHOW	ERRORS,	shows
only	the	errors.	See	Section	13.5.4.11,	“SHOW	ERRORS	Syntax”.

The	list	of	messages	is	reset	for	each	new	statement	that	uses	a	table.

The	SHOW	COUNT(*)	WARNINGS	statement	displays	the	total	number	of	errors,
warnings,	and	notes.	You	can	also	retrieve	this	number	from	the	warning_count
variable:

SHOW	COUNT(*)	WARNINGS;

SELECT	@@warning_count;

The	value	of	warning_count	might	be	greater	than	the	number	of	messages
displayed	by	SHOW	WARNINGS	if	the	max_error_count	system	variable	is	set	so
low	that	not	all	messages	are	stored.	An	example	shown	later	in	this	section
demonstrates	how	this	can	happen.

The	LIMIT	clause	has	the	same	syntax	as	for	the	SELECT	statement.	See
Section	13.2.7,	“SELECT	Syntax”.

The	MySQL	server	sends	back	the	total	number	of	errors,	warnings,	and	notes
resulting	from	the	last	statement.	If	you	are	using	the	C	API,	this	value	can	be
obtained	by	calling	mysql_warning_count().	See	Section	22.2.3.71,
“mysql_warning_count()”.

Warnings	are	generated	for	statements	such	as	LOAD	DATA	INFILE	and	DML
statements	such	as	INSERT,	UPDATE,	CREATE	TABLE,	and	ALTER	TABLE.

The	following	DROP	TABLE	statement	results	in	a	note:

mysql>	DROP	TABLE	IF	EXISTS	no_such_table;

mysql>	SHOW	WARNINGS;

+-------+------+-------------------------------+

|	Level	|	Code	|	Message																							|

+-------+------+-------------------------------+

|	Note		|	1051	|	Unknown	table	'no_such_table'	|

+-------+------+-------------------------------+

Here	is	a	simple	example	that	shows	a	syntax	warning	for	CREATE	TABLE	and
conversion	warnings	for	INSERT:

mysql>	CREATE	TABLE	t1	(a	TINYINT	NOT	NULL,	b	CHAR(4))	TYPE=MyISAM;

Query	OK,	0	rows	affected,	1	warning	(0.00	sec)

mysql>	SHOW	WARNINGS\G

***************************	1.	row	***************************

		Level:	Warning

			Code:	1287

Message:	'TYPE=storage_engine'	is	deprecated,	use

									'ENGINE=storage_engine'	instead

1	row	in	set	(0.00	sec)

mysql>	INSERT	INTO	t1	VALUES(10,'mysql'),(NULL,'test'),

				->	(300,'Open	Source');

Query	OK,	3	rows	affected,	4	warnings	(0.01	sec)

Records:	3		Duplicates:	0		Warnings:	4

mysql>	SHOW	WARNINGS\G

***************************	1.	row	***************************

		Level:	Warning

			Code:	1265

Message:	Data	truncated	for	column	'b'	at	row	1

***************************	2.	row	***************************

		Level:	Warning

			Code:	1263

Message:	Data	truncated,	NULL	supplied	to	NOT	NULL	column	'a'	at	row	2

***************************	3.	row	***************************

		Level:	Warning

			Code:	1264

Message:	Data	truncated,	out	of	range	for	column	'a'	at	row	3

***************************	4.	row	***************************

		Level:	Warning

			Code:	1265

Message:	Data	truncated	for	column	'b'	at	row	3

4	rows	in	set	(0.00	sec)

The	maximum	number	of	error,	warning,	and	note	messages	to	store	is
controlled	by	the	max_error_count	system	variable.	By	default,	its	value	is	64.
To	change	the	number	of	messages	you	want	stored,	change	the	value	of
max_error_count.	In	the	following	example,	the	ALTER	TABLE	statement

produces	three	warning	messages,	but	only	one	is	stored	because
max_error_count	has	been	set	to	1:

mysql>	SHOW	VARIABLES	LIKE	'max_error_count';

+-----------------+-------+

|	Variable_name			|	Value	|

+-----------------+-------+

|	max_error_count	|	64				|

+-----------------+-------+

1	row	in	set	(0.00	sec)

mysql>	SET	max_error_count=1;

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	ALTER	TABLE	t1	MODIFY	b	CHAR;

Query	OK,	3	rows	affected,	3	warnings	(0.00	sec)

Records:	3		Duplicates:	0		Warnings:	3

mysql>	SELECT	@@warning_count;

+-----------------+

|	@@warning_count	|

+-----------------+

|															3	|

+-----------------+

1	row	in	set	(0.01	sec)

mysql>	SHOW	WARNINGS;

+---------+------+--+

|	Level			|	Code	|	Message																																|

+---------+------+--+

|	Warning	|	1263	|	Data	truncated	for	column	'b'	at	row	1	|

+---------+------+--+

1	row	in	set	(0.00	sec)

To	disable	warnings,	set	max_error_count	to	0.	In	this	case,	warning_count	still
indicates	how	many	warnings	have	occurred,	but	none	of	the	messages	are
stored.

As	of	MySQL	5.0.3,	you	can	set	the	SQL_NOTES	session	variable	to	0	to	cause
Note-level	warnings	not	to	be	recorded.

13.5.5.	Other	Administrative	Statements

13.5.5.1.	CACHE	INDEX	Syntax

CACHE	INDEX

		tbl_index_list	[,	tbl_index_list]	...

		IN	key_cache_name

tbl_index_list:

		tbl_name	[[INDEX|KEY]	(index_name[,	index_name]	...)]

The	CACHE	INDEX	statement	assigns	table	indexes	to	a	specific	key	cache.	It	is
used	only	for	MyISAM	tables.

The	following	statement	assigns	indexes	from	the	tables	t1,	t2,	and	t3	to	the	key
cache	named	hot_cache:

mysql>	CACHE	INDEX	t1,	t2,	t3	IN	hot_cache;

+---------+--------------------+----------+----------+

|	Table			|	Op																	|	Msg_type	|	Msg_text	|

+---------+--------------------+----------+----------+

|	test.t1	|	assign_to_keycache	|	status			|	OK							|

|	test.t2	|	assign_to_keycache	|	status			|	OK							|

|	test.t3	|	assign_to_keycache	|	status			|	OK							|

+---------+--------------------+----------+----------+

The	syntax	of	CACHE	INDEX	enables	you	to	specify	that	only	particular	indexes
from	a	table	should	be	assigned	to	the	cache.	The	current	implementation	assigns
all	the	table's	indexes	to	the	cache,	so	there	is	no	reason	to	specify	anything	other
than	the	table	name.

The	key	cache	referred	to	in	a	CACHE	INDEX	statement	can	be	created	by	setting
its	size	with	a	parameter	setting	statement	or	in	the	server	parameter	settings.	For
example:

mysql>	SET	GLOBAL	keycache1.key_buffer_size=128*1024;

Key	cache	parameters	can	be	accessed	as	members	of	a	structured	system
variable.	See	Section	5.2.3.1,	“Structured	System	Variables”.

A	key	cache	must	exist	before	you	can	assign	indexes	to	it:

mysql>	CACHE	INDEX	t1	IN	non_existent_cache;

ERROR	1284	(HY000):	Unknown	key	cache	'non_existent_cache'

By	default,	table	indexes	are	assigned	to	the	main	(default)	key	cache	created	at
the	server	startup.	When	a	key	cache	is	destroyed,	all	indexes	assigned	to	it
become	assigned	to	the	default	key	cache	again.

Index	assignment	affects	the	server	globally:	If	one	client	assigns	an	index	to	a
given	cache,	this	cache	is	used	for	all	queries	involving	the	index,	no	matter
which	client	issues	the	queries.

13.5.5.2.	FLUSH	Syntax

FLUSH	[LOCAL	|	NO_WRITE_TO_BINLOG]	flush_option	[,	flush_option]	...

The	FLUSH	statement	clears	or	reloads	various	internal	caches	used	by	MySQL.
To	execute	FLUSH,	you	must	have	the	RELOAD	privilege.

The	RESET	statement	is	similar	to	FLUSH.	See	Section	13.5.5.5,	“RESET	Syntax”.

flush_option	can	be	any	of	the	following:

HOSTS

Empties	the	host	cache	tables.	You	should	flush	the	host	tables	if	some	of
your	hosts	change	IP	number	or	if	you	get	the	error	message	Host
'host_name'	is	blocked.	When	more	than	max_connect_errors	errors	occur
successively	for	a	given	host	while	connecting	to	the	MySQL	server,
MySQL	assumes	that	something	is	wrong	and	blocks	the	host	from	further
connection	requests.	Flushing	the	host	tables	allows	the	host	to	attempt	to
connect	again.	See	Section	A.2.5,	“Host	'host_name'	is	blocked”.	You	can
start	mysqld	with	--max_connect_errors=999999999	to	avoid	this	error
message.

DES_KEY_FILE

Reloads	the	DES	keys	from	the	file	that	was	specified	with	the	--des-key-
file	option	at	server	startup	time.

LOGS

Closes	and	reopens	all	log	files.	If	binary	logging	is	enabled,	the	sequence
number	of	the	binary	log	file	is	incremented	by	one	relative	to	the	previous
file.	On	Unix,	this	is	the	same	thing	as	sending	a	SIGHUP	signal	to	the
mysqld	server	(except	on	some	Mac	OS	X	10.3	versions	where	mysqld
ignores	SIGHUP	and	SIGQUIT).

If	the	server	was	started	with	the	--log-error	option,	FLUSH	LOGS	causes
the	error	log	is	renamed	with	a	suffix	of	-old	and	mysqld	creates	a	new
empty	log	file.	No	renaming	occurs	if	the	--log-error	option	was	not
given.

MASTER	(DEPRECATED).	Deletes	all	binary	logs,	resets	the	binary	log
index	file	and	creates	a	new	binary	log.	Deprecated	in	favor	of	RESET
MASTER,	supported	for	backwards	compatility	only	See	Section	13.6.1.2,
“RESET	MASTER	Syntax”.

PRIVILEGES

Reloads	the	privileges	from	the	grant	tables	in	the	mysql	database.

QUERY	CACHE

Defragment	the	query	cache	to	better	utilize	its	memory.	FLUSH	QUERY
CACHE	does	not	remove	any	queries	from	the	cache,	unlike	RESET	QUERY
CACHE.

SLAVE	(DEPRECATED).	Resets	all	replication	slave	parameters,	including
relay	log	files	and	replication	position	in	the	master's	binary	logs.
Deprecated	in	favor	of	RESET	SLAVE,	supported	for	backwards	compatility
only.	See	Section	13.6.2.5,	“RESET	SLAVE	Syntax”.

STATUS

Resets	most	status	variables	to	zero.	This	is	something	you	should	use	only
when	debugging	a	query.	See	Section	1.8,	“How	to	Report	Bugs	or
Problems”.

{TABLE	|	TABLES}	[tbl_name	[,	tbl_name]	...]

When	no	tables	are	named,	closes	all	open	tables	and	forces	all	tables	in	use
to	be	closed.	This	also	flushes	the	query	cache.	With	one	or	more	table
names,	flushes	only	the	given	tables.	FLUSH	TABLES	also	removes	all	query
results	from	the	query	cache,	like	the	RESET	QUERY	CACHE	statement.

TABLES	WITH	READ	LOCK

Closes	all	open	tables	and	locks	all	tables	for	all	databases	with	a	read	lock
until	you	execute	UNLOCK	TABLES.	This	is	very	convenient	way	to	get
backups	if	you	have	a	filesystem	such	as	Veritas	that	can	take	snapshots	in
time.

USER_RESOURCES

Resets	all	per-hour	user	resources	to	zero.	This	enables	clients	that	have
reached	their	hourly	connection,	query,	or	update	limits	to	resume	activity
immediately.	FLUSH	USER_RESOURCES	does	not	apply	to	the	limit	on
maximum	simultaneous	connections.	See	Section	13.5.1.3,	“GRANT	Syntax”.

FLUSH	statements	are	written	to	the	binary	log	unless	the	optional
NO_WRITE_TO_BINLOG	keyword	(or	its	alias	LOCAL)	is	used.	This	is	done	so	that
FLUSH	statements	used	on	a	MySQL	server	acting	as	a	replication	master	will	be
replicated	by	default	to	the	replication	slave.

Note:	FLUSH	LOGS,	FLUSH	MASTER,	FLUSH	SLAVE,	and	FLUSH	TABLES	WITH	READ
LOCK	are	not	logged	in	any	case	because	they	would	cause	problems	if	replicated
to	a	slave.

You	can	also	access	some	of	these	statements	with	the	mysqladmin	utility,	using
the	flush-hosts,	flush-logs,	flush-privileges,	flush-status,	or	flush-
tables	commands.

Using	FLUSH	statements	within	stored	functions	or	triggers	is	not	supported	in
MySQL	5.0.	However,	you	may	use	FLUSH	in	stored	procedures,	so	long	as	these
are	not	called	from	stored	functions	or	triggers.	See	Section	I.1,	“Restrictions	on
Stored	Routines	and	Triggers”.

See	also	Section	13.5.5.5,	“RESET	Syntax”,	for	information	about	how	the	RESET
statement	is	used	with	replication.

13.5.5.3.	KILL	Syntax

KILL	[CONNECTION	|	QUERY]	thread_id

Each	connection	to	mysqld	runs	in	a	separate	thread.	You	can	see	which	threads
are	running	with	the	SHOW	PROCESSLIST	statement	and	kill	a	thread	with	the	KILL
thread_id	statement.

In	MySQL	5.0.0,	KILL	allows	the	optional	CONNECTION	or	QUERY	modifier:

KILL	CONNECTION	is	the	same	as	KILL	with	no	modifier:	It	terminates	the
connection	associated	with	the	given	thread_id.

KILL	QUERY	terminates	the	statement	that	the	connection	is	currently
executing,	but	leaves	the	connection	itself	intact.

If	you	have	the	PROCESS	privilege,	you	can	see	all	threads.	If	you	have	the	SUPER
privilege,	you	can	kill	all	threads	and	statements.	Otherwise,	you	can	see	and	kill
only	your	own	threads	and	statements.

You	can	also	use	the	mysqladmin	processlist	and	mysqladmin	kill	commands
to	examine	and	kill	threads.

Note:	You	cannot	use	KILL	with	the	Embedded	MySQL	Server	library,	because
the	embedded	server	merely	runs	inside	the	threads	of	the	host	application.	It
does	not	create	any	connection	threads	of	its	own.

When	you	use	KILL,	a	thread-specific	kill	flag	is	set	for	the	thread.	In	most	cases,
it	might	take	some	time	for	the	thread	to	die,	because	the	kill	flag	is	checked
only	at	specific	intervals:

In	SELECT,	ORDER	BY	and	GROUP	BY	loops,	the	flag	is	checked	after	reading	a
block	of	rows.	If	the	kill	flag	is	set,	the	statement	is	aborted.

During	ALTER	TABLE,	the	kill	flag	is	checked	before	each	block	of	rows	are
read	from	the	original	table.	If	the	kill	flag	was	set,	the	statement	is	aborted
and	the	temporary	table	is	deleted.

During	UPDATE	or	DELETE	operations,	the	kill	flag	is	checked	after	each
block	read	and	after	each	updated	or	deleted	row.	If	the	kill	flag	is	set,	the
statement	is	aborted.	Note	that	if	you	are	not	using	transactions,	the	changes
are	not	rolled	back.

GET_LOCK()	aborts	and	returns	NULL.

An	INSERT	DELAYED	thread	quickly	flushes	(inserts)	all	rows	it	has	in
memory	and	then	terminates.

If	the	thread	is	in	the	table	lock	handler	(state:	Locked),	the	table	lock	is
quickly	aborted.

If	the	thread	is	waiting	for	free	disk	space	in	a	write	call,	the	write	is
aborted	with	a	“disk	full”	error	message.

Warning:	Killing	a	REPAIR	TABLE	or	OPTIMIZE	TABLE	operation	on	a
MyISAM	table	results	in	a	table	that	is	corrupted	and	unusable.	Any	reads	or
writes	to	such	a	table	fail	until	you	optimize	or	repair	it	again	(without
interruption).

13.5.5.4.	LOAD	INDEX	INTO	CACHE	Syntax

LOAD	INDEX	INTO	CACHE

		tbl_index_list	[,	tbl_index_list]	...

tbl_index_list:

		tbl_name

				[[INDEX|KEY]	(index_name[,	index_name]	...)]

				[IGNORE	LEAVES]

The	LOAD	INDEX	INTO	CACHE	statement	preloads	a	table	index	into	the	key	cache
to	which	it	has	been	assigned	by	an	explicit	CACHE	INDEX	statement,	or	into	the
default	key	cache	otherwise.	LOAD	INDEX	INTO	CACHE	is	used	only	for	MyISAM
tables.

The	IGNORE	LEAVES	modifier	causes	only	blocks	for	the	non-leaf	nodes	of	the
index	to	be	preloaded.

The	following	statement	preloads	nodes	(index	blocks)	of	indexes	for	the	tables
t1	and	t2:

mysql>	LOAD	INDEX	INTO	CACHE	t1,	t2	IGNORE	LEAVES;

+---------+--------------+----------+----------+

|	Table			|	Op											|	Msg_type	|	Msg_text	|

+---------+--------------+----------+----------+

|	test.t1	|	preload_keys	|	status			|	OK							|

|	test.t2	|	preload_keys	|	status			|	OK							|

+---------+--------------+----------+----------+

This	statement	preloads	all	index	blocks	from	t1.	It	preloads	only	blocks	for	the
non-leaf	nodes	from	t2.

The	syntax	of	LOAD	INDEX	INTO	CACHE	enables	you	to	specify	that	only
particular	indexes	from	a	table	should	be	preloaded.	The	current	implementation
preloads	all	the	table's	indexes	into	the	cache,	so	there	is	no	reason	to	specify
anything	other	than	the	table	name.

13.5.5.5.	RESET	Syntax

RESET	reset_option	[,	reset_option]	...

The	RESET	statement	is	used	to	clear	the	state	of	various	server	operations.	You
must	have	the	RELOAD	privilege	to	execute	RESET.

RESET	acts	as	a	stronger	version	of	the	FLUSH	statement.	See	Section	13.5.5.2,
“FLUSH	Syntax”.

reset_option	can	be	any	of	the	following:

MASTER

Deletes	all	binary	logs	listed	in	the	index	file,	resets	the	binary	log	index
file	to	be	empty,	and	creates	a	new	binary	log	file.	(Known	as	FLUSH
MASTER	in	versions	of	MySQL	before	3.23.26.)	See	Section	13.6.1,	“SQL
Statements	for	Controlling	Master	Servers”.

QUERY	CACHE

Removes	all	query	results	from	the	query	cache.

SLAVE

Makes	the	slave	forget	its	replication	position	in	the	master	binary	logs.
Also	resets	the	relay	log	by	deleting	any	existing	relay	log	files	and
beginning	a	new	one.	(Known	as	FLUSH	SLAVE	in	versions	of	MySQL
before	3.23.26.)	See	Section	13.6.2,	“SQL	Statements	for	Controlling	Slave
Servers”.

13.6.	Replication	Statements

This	section	describes	SQL	statements	related	to	replication.	One	group	of
statements	is	used	for	controlling	master	servers.	The	other	is	used	for
controlling	slave	servers.

13.6.1.	SQL	Statements	for	Controlling	Master	Servers

Replication	can	be	controlled	through	the	SQL	interface.	This	section	discusses
statements	for	managing	master	replication	servers.	Section	13.6.2,	“SQL
Statements	for	Controlling	Slave	Servers”,	discusses	statements	for	managing
slave	servers.

13.6.1.1.	PURGE	MASTER	LOGS	Syntax

PURGE	{MASTER	|	BINARY}	LOGS	TO	'log_name'

PURGE	{MASTER	|	BINARY}	LOGS	BEFORE	'date'

Deletes	all	the	binary	logs	listed	in	the	log	index	prior	to	the	specified	log	or
date.	The	logs	also	are	removed	from	the	list	recorded	in	the	log	index	file,	so
that	the	given	log	becomes	the	first.

Example:

PURGE	MASTER	LOGS	TO	'mysql-bin.010';

PURGE	MASTER	LOGS	BEFORE	'2003-04-02	22:46:26';

The	BEFORE	variant's	date	argument	can	be	in	'YYYY-MM-DD	hh:mm:ss'	format.
MASTER	and	BINARY	are	synonyms.

This	statement	is	safe	to	run	while	slaves	are	replicating.	You	do	not	need	to	stop
them.	If	you	have	an	active	slave	that	currently	is	reading	one	of	the	logs	you	are
trying	to	delete,	this	statement	does	nothing	and	fails	with	an	error.	However,	if	a
slave	is	dormant	and	you	happen	to	purge	one	of	the	logs	it	has	yet	to	read,	the
slave	will	be	unable	to	replicate	after	it	comes	up.

To	safely	purge	logs,	follow	this	procedure:

1.	 On	each	slave	server,	use	SHOW	SLAVE	STATUS	to	check	which	log	it	is
reading.

2.	 Obtain	a	listing	of	the	binary	logs	on	the	master	server	with	SHOW	BINARY
LOGS.

3.	 Determine	the	earliest	log	among	all	the	slaves.	This	is	the	target	log.	If	all
the	slaves	are	up	to	date,	this	is	the	last	log	on	the	list.

4.	 Make	a	backup	of	all	the	logs	you	are	about	to	delete.	(This	step	is	optional,
but	always	advisable.)

5.	 Purge	all	logs	up	to	but	not	including	the	target	log.

13.6.1.2.	RESET	MASTER	Syntax

RESET	MASTER

Deletes	all	binary	logs	listed	in	the	index	file,	resets	the	binary	log	index	file	to
be	empty,	and	creates	a	new	binary	log	file.

13.6.1.3.	SET	SQL_LOG_BIN	Syntax

SET	SQL_LOG_BIN	=	{0|1}

Disables	or	enables	binary	logging	for	the	current	connection	(SQL_LOG_BIN	is	a
session	variable)	if	the	client	has	the	SUPER	privilege.	The	statement	is	refused
with	an	error	if	the	client	does	not	have	that	privilege.

13.6.1.4.	SHOW	BINLOG	EVENTS	Syntax

SHOW	BINLOG	EVENTS

			[IN	'log_name']	[FROM	pos]	[LIMIT	[offset,]	row_count]

Shows	the	events	in	the	binary	log.	If	you	do	not	specify	'log_name',	the	first
binary	log	is	displayed.

The	LIMIT	clause	has	the	same	syntax	as	for	the	SELECT	statement.	See
Section	13.2.7,	“SELECT	Syntax”.

Note:	Issuing	a	SHOW	BINLOG	EVENTS	with	no	LIMIT	clause	could	start	a	very
time-	and	resource-consuming	process	because	the	server	returns	to	the	client	the
complete	contents	of	the	binary	log	(which	includes	all	statements	executed	by
the	server	that	modify	data).	As	an	alternative	to	SHOW	BINLOG	EVENTS,	use	the
mysqlbinlog	utility	to	save	the	binary	log	to	a	text	file	for	later	examination	and
analysis.	See	Section	8.10,	“mysqlbinlog	—	Utility	for	Processing	Binary	Log
Files”.

13.6.1.5.	SHOW	BINARY	LOGS	Syntax

SHOW	BINARY	LOGS

SHOW	MASTER	LOGS

Lists	the	binary	log	files	on	the	server.	This	statement	is	used	as	part	of	the
procedure	described	in	Section	13.6.1.1,	“PURGE	MASTER	LOGS	Syntax”,	that
shows	how	to	determine	which	logs	can	be	purged.

mysql>	SHOW	BINARY	LOGS;

+---------------+-----------+

|	Log_name						|	File_size	|

+---------------+-----------+

|	binlog.000015	|				724935	|

|	binlog.000016	|				733481	|

+---------------+-----------+

SHOW	MASTER	LOGS	is	equivalent	to	SHOW	BINARY	LOGS.	The	File_size	column
is	displayed	as	of	MySQL	5.0.7.

13.6.1.6.	SHOW	MASTER	STATUS	Syntax

SHOW	MASTER	STATUS

Provides	status	information	about	the	binary	log	files	of	the	master.	Example:

mysql	>	SHOW	MASTER	STATUS;

+---------------+----------+--------------+------------------+

|	File										|	Position	|	Binlog_Do_DB	|	Binlog_Ignore_DB	|

+---------------+----------+--------------+------------------+

|	mysql-bin.003	|	73							|	test									|	manual,mysql					|

+---------------+----------+--------------+------------------+

13.6.1.7.	SHOW	SLAVE	HOSTS	Syntax

SHOW	SLAVE	HOSTS

Displays	a	list	of	replication	slaves	currently	registered	with	the	master.	Any
slave	not	started	with	the	--report-host=slave_name	option	is	not	visible	in
this	list.

13.6.2.	SQL	Statements	for	Controlling	Slave	Servers

Replication	can	be	controlled	through	the	SQL	interface.	This	section	discusses
statements	for	managing	slave	replication	servers.	Section	13.6.1,	“SQL
Statements	for	Controlling	Master	Servers”,	discusses	statements	for	managing
master	servers.

13.6.2.1.	CHANGE	MASTER	TO	Syntax

CHANGE	MASTER	TO	master_def	[,	master_def]	...

master_def:

				MASTER_HOST	=	'host_name'

		|	MASTER_USER	=	'user_name'

		|	MASTER_PASSWORD	=	'password'

		|	MASTER_PORT	=	port_num

		|	MASTER_CONNECT_RETRY	=	count

		|	MASTER_LOG_FILE	=	'master_log_name'

		|	MASTER_LOG_POS	=	master_log_pos

		|	RELAY_LOG_FILE	=	'relay_log_name'

		|	RELAY_LOG_POS	=	relay_log_pos

		|	MASTER_SSL	=	{0|1}

		|	MASTER_SSL_CA	=	'ca_file_name'

		|	MASTER_SSL_CAPATH	=	'ca_directory_name'

		|	MASTER_SSL_CERT	=	'cert_file_name'

		|	MASTER_SSL_KEY	=	'key_file_name'

		|	MASTER_SSL_CIPHER	=	'cipher_list'

CHANGE	MASTER	TO	changes	the	parameters	that	the	slave	server	uses	for
connecting	to	and	communicating	with	the	master	server.	It	also	updates	the
contents	of	the	master.info	and	relay-log.info	files.

MASTER_USER,	MASTER_PASSWORD,	MASTER_SSL,	MASTER_SSL_CA,
MASTER_SSL_CAPATH,	MASTER_SSL_CERT,	MASTER_SSL_KEY,	and
MASTER_SSL_CIPHER	provide	information	to	the	slave	about	how	to	connect	to	its
master.

The	SSL	options	(MASTER_SSL,	MASTER_SSL_CA,	MASTER_SSL_CAPATH,
MASTER_SSL_CERT,	MASTER_SSL_KEY,	and	MASTER_SSL_CIPHER)	can	be	changed
even	on	slaves	that	are	compiled	without	SSL	support.	They	are	saved	to	the
master.info	file,	but	are	ignored	unless	you	use	a	server	that	has	SSL	support
enabled.

If	you	don't	specify	a	given	parameter,	it	keeps	its	old	value,	except	as	indicated
in	the	following	discussion.	For	example,	if	the	password	to	connect	to	your
MySQL	master	has	changed,	you	just	need	to	issue	these	statements	to	tell	the
slave	about	the	new	password:

STOP	SLAVE;	--	if	replication	was	running

CHANGE	MASTER	TO	MASTER_PASSWORD='new3cret';

START	SLAVE;	--	if	you	want	to	restart	replication

There	is	no	need	to	specify	the	parameters	that	do	not	change	(host,	port,	user,
and	so	forth).

MASTER_HOST	and	MASTER_PORT	are	the	hostname	(or	IP	address)	of	the	master
host	and	its	TCP/IP	port.	Note	that	if	MASTER_HOST	is	equal	to	localhost,	then,
like	in	other	parts	of	MySQL,	the	port	number	might	be	ignored	(if	Unix	socket
files	can	be	used,	for	example).

If	you	specify	MASTER_HOST	or	MASTER_PORT,	the	slave	assumes	that	the	master
server	is	different	from	before	(even	if	you	specify	a	host	or	port	value	that	is	the
same	as	the	current	value.)	In	this	case,	the	old	values	for	the	master	binary	log
name	and	position	are	considered	no	longer	applicable,	so	if	you	do	not	specify
MASTER_LOG_FILE	and	MASTER_LOG_POS	in	the	statement,	MASTER_LOG_FILE=''
and	MASTER_LOG_POS=4	are	silently	appended	to	it.

MASTER_LOG_FILE	and	MASTER_LOG_POS	are	the	coordinates	at	which	the	slave
I/O	thread	should	begin	reading	from	the	master	the	next	time	the	thread	starts.
If	you	specify	either	of	them,	you	cannot	specify	RELAY_LOG_FILE	or
RELAY_LOG_POS.	If	neither	of	MASTER_LOG_FILE	or	MASTER_LOG_POS	are
specified,	the	slave	uses	the	last	coordinates	of	the	slave	SQL	thread	before
CHANGE	MASTER	was	issued.	This	ensures	that	there	is	no	discontinuity	in
replication,	even	if	the	slave	SQL	thread	was	late	compared	to	the	slave	I/O
thread,	when	you	merely	want	to	change,	say,	the	password	to	use.

CHANGE	MASTER	deletes	all	relay	log	files	and	starts	a	new	one,	unless	you

specify	RELAY_LOG_FILE	or	RELAY_LOG_POS.	In	that	case,	relay	logs	are	kept;	the
relay_log_purge	global	variable	is	set	silently	to	0.

CHANGE	MASTER	is	useful	for	setting	up	a	slave	when	you	have	the	snapshot	of
the	master	and	have	recorded	the	log	and	the	offset	corresponding	to	it.	After
loading	the	snapshot	into	the	slave,	you	can	run	CHANGE	MASTER	TO
MASTER_LOG_FILE='log_name_on_master',
MASTER_LOG_POS=log_offset_on_master	on	the	slave.

The	following	example	changes	the	master	and	master's	binary	log	coordinates.
This	is	used	when	you	want	to	set	up	the	slave	to	replicate	the	master:

CHANGE	MASTER	TO

		MASTER_HOST='master2.mycompany.com',

		MASTER_USER='replication',

		MASTER_PASSWORD='bigs3cret',

		MASTER_PORT=3306,

		MASTER_LOG_FILE='master2-bin.001',

		MASTER_LOG_POS=4,

		MASTER_CONNECT_RETRY=10;

The	next	example	shows	an	operation	that	is	less	frequently	employed.	It	is	used
when	the	slave	has	relay	logs	that	you	want	it	to	execute	again	for	some	reason.
To	do	this,	the	master	need	not	be	reachable.	You	need	only	use	CHANGE	MASTER
TO	and	start	the	SQL	thread	(START	SLAVE	SQL_THREAD):

CHANGE	MASTER	TO

		RELAY_LOG_FILE='slave-relay-bin.006',

		RELAY_LOG_POS=4025;

You	can	even	use	the	second	operation	in	a	non-replication	setup	with	a
standalone,	non-slave	server	for	recovery	following	a	crash.	Suppose	that	your
server	has	crashed	and	you	have	restored	a	backup.	You	want	to	replay	the
server's	own	binary	logs	(not	relay	logs,	but	regular	binary	logs),	named	(for
example)	myhost-bin.*.	First,	make	a	backup	copy	of	these	binary	logs	in	some
safe	place,	in	case	you	don't	exactly	follow	the	procedure	below	and	accidentally
have	the	server	purge	the	binary	logs.	Use	SET	GLOBAL	relay_log_purge=0	for
additional	safety.	Then	start	the	server	without	the	--log-bin	option,	Instead,
use	the	--replicate-same-server-id,	--relay-log=myhost-bin	(to	make	the
server	believe	that	these	regular	binary	logs	are	relay	logs)	and	--skip-slave-
start	options.	After	the	server	starts,	issue	these	statements:

CHANGE	MASTER	TO

		RELAY_LOG_FILE='myhost-bin.153',

		RELAY_LOG_POS=410,

		MASTER_HOST='some_dummy_string';

START	SLAVE	SQL_THREAD;

The	server	reads	and	executes	its	own	binary	logs,	thus	achieving	crash	recovery.
Once	the	recovery	is	finished,	run	STOP	SLAVE,	shut	down	the	server,	delete	the
master.info	and	relay-log.info	files,	and	restart	the	server	with	its	original
options.

Specifying	the	MASTER_HOST	option	(even	with	a	dummy	value)	is	required	to
make	the	server	think	it	is	a	slave.

13.6.2.2.	LOAD	DATA	FROM	MASTER	Syntax

LOAD	DATA	FROM	MASTER

This	statement	takes	a	snapshot	of	the	master	and	copies	it	to	the	slave.	It
updates	the	values	of	MASTER_LOG_FILE	and	MASTER_LOG_POS	so	that	the	slave
starts	replicating	from	the	correct	position.	Any	table	and	database	exclusion
rules	specified	with	the	--replicate-*-do-*	and	--replicate-*-ignore-*
options	are	honored.	--replicate-rewrite-db	is	not	taken	into	account	because
a	user	could	use	this	option	to	set	up	a	non-unique	mapping	such	as	--
replicate-rewrite-db="db1->db3"	and	--replicate-rewrite-db="db2-
>db3",	which	would	confuse	the	slave	when	loading	tables	from	the	master.

Use	of	this	statement	is	subject	to	the	following	conditions:

It	works	only	for	MyISAM	tables.	Attempting	to	load	a	non-MyISAM	table
results	in	the	following	error:

ERROR	1189	(08S01):	Net	error	reading	from	master

It	acquires	a	global	read	lock	on	the	master	while	taking	the	snapshot,
which	prevents	updates	on	the	master	during	the	load	operation.

If	you	are	loading	large	tables,	you	might	have	to	increase	the	values	of
net_read_timeout	and	net_write_timeout	on	both	the	master	and	slave
servers.	See	Section	5.2.2,	“Server	System	Variables”.

Note	that	LOAD	DATA	FROM	MASTER	does	not	copy	any	tables	from	the	mysql
database.	This	makes	it	easy	to	have	different	users	and	privileges	on	the	master
and	the	slave.

To	use	LOAD	DATA	FROM	MASTER,	the	replication	account	that	is	used	to	connect
to	the	master	must	have	the	RELOAD	and	SUPER	privileges	on	the	master	and	the
SELECT	privilege	for	all	master	tables	you	want	to	load.	All	master	tables	for
which	the	user	does	not	have	the	SELECT	privilege	are	ignored	by	LOAD	DATA
FROM	MASTER.	This	is	because	the	master	hides	them	from	the	user:	LOAD	DATA
FROM	MASTER	calls	SHOW	DATABASES	to	know	the	master	databases	to	load,	but
SHOW	DATABASES	returns	only	databases	for	which	the	user	has	some	privilege.
See	Section	13.5.4.8,	“SHOW	DATABASES	Syntax”.	On	the	slave	side,	the	user	that
issues	LOAD	DATA	FROM	MASTER	must	have	privileges	for	dropping	and	creating
the	databases	and	tables	that	are	copied.

13.6.2.3.	LOAD	TABLE	tbl_name	FROM	MASTER	Syntax

LOAD	TABLE	tbl_name	FROM	MASTER

Transfers	a	copy	of	the	table	from	the	master	to	the	slave.	This	statement	is
implemented	mainly	debugging	LOAD	DATA	FROM	MASTER	operations.	To	use
LOAD	TABLE,	the	account	used	for	connecting	to	the	master	server	must	have	the
RELOAD	and	SUPER	privileges	on	the	master	and	the	SELECT	privilege	for	the
master	table	to	load.	On	the	slave	side,	the	user	that	issues	LOAD	TABLE	FROM
MASTER	must	have	privileges	for	dropping	and	creating	the	table.

The	conditions	for	LOAD	DATA	FROM	MASTER	apply	here	as	well.	For	example,
LOAD	TABLE	FROM	MASTER	works	only	for	MyISAM	tables.	The	timeout	notes	for
LOAD	DATA	FROM	MASTER	apply	as	well.

13.6.2.4.	MASTER_POS_WAIT()	Syntax

SELECT	MASTER_POS_WAIT('master_log_file',	master_log_pos)

This	is	actually	a	function,	not	a	statement.	It	is	used	to	ensure	that	the	slave	has
read	and	executed	events	up	to	a	given	position	in	the	master's	binary	log.	See
Section	12.9.4,	“Miscellaneous	Functions”,	for	a	full	description.

13.6.2.5.	RESET	SLAVE	Syntax

RESET	SLAVE

RESET	SLAVE	makes	the	slave	forget	its	replication	position	in	the	master's	binary
logs.	This	statement	is	meant	to	be	used	for	a	clean	start:	It	deletes	the
master.info	and	relay-log.info	files,	all	the	relay	logs,	and	starts	a	new	relay
log.

Note:	All	relay	logs	are	deleted,	even	if	they	have	not	been	completely	executed
by	the	slave	SQL	thread.	(This	is	a	condition	likely	to	exist	on	a	replication	slave
if	you	have	issued	a	STOP	SLAVE	statement	or	if	the	slave	is	highly	loaded.)

Connection	information	stored	in	the	master.info	file	is	immediately	reset
using	any	values	specified	in	the	corresponding	startup	options.	This	information
includes	values	such	as	master	host,	master	port,	master	user,	and	master
password.	If	the	slave	SQL	thread	was	in	the	middle	of	replicating	temporary
tables	when	it	was	stopped,	and	RESET	SLAVE	is	issued,	these	replicated
temporary	tables	are	deleted	on	the	slave.

13.6.2.6.	SET	GLOBAL	SQL_SLAVE_SKIP_COUNTER	Syntax

SET	GLOBAL	SQL_SLAVE_SKIP_COUNTER	=	N

This	statement	skips	the	next	N	events	from	the	master.	This	is	useful	for
recovering	from	replication	stops	caused	by	a	statement.

This	statement	is	valid	only	when	the	slave	thread	is	not	running.	Otherwise,	it
produces	an	error.

13.6.2.7.	SHOW	SLAVE	STATUS	Syntax

SHOW	SLAVE	STATUS

This	statement	provides	status	information	on	essential	parameters	of	the	slave
threads.	If	you	issue	this	statement	using	the	mysql	client,	you	can	use	a	\G
statement	terminator	rather	than	a	semicolon	to	obtain	a	more	readable	vertical
layout:

mysql>	SHOW	SLAVE	STATUS\G

***************************	1.	row	***************************

							Slave_IO_State:	Waiting	for	master	to	send	event

										Master_Host:	localhost

										Master_User:	root

										Master_Port:	3306

								Connect_Retry:	3

						Master_Log_File:	gbichot-bin.005

		Read_Master_Log_Pos:	79

							Relay_Log_File:	gbichot-relay-bin.005

								Relay_Log_Pos:	548

Relay_Master_Log_File:	gbichot-bin.005

					Slave_IO_Running:	Yes

				Slave_SQL_Running:	Yes

						Replicate_Do_DB:

		Replicate_Ignore_DB:

											Last_Errno:	0

											Last_Error:

									Skip_Counter:	0

		Exec_Master_Log_Pos:	79

						Relay_Log_Space:	552

						Until_Condition:	None

							Until_Log_File:

								Until_Log_Pos:	0

			Master_SSL_Allowed:	No

			Master_SSL_CA_File:

			Master_SSL_CA_Path:

						Master_SSL_Cert:

				Master_SSL_Cipher:

							Master_SSL_Key:

Seconds_Behind_Master:	8

SHOW	SLAVE	STATUS	returns	the	following	fields:

Slave_IO_State

A	copy	of	the	State	field	of	the	output	of	SHOW	PROCESSLIST	for	the	slave
I/O	thread.	This	tells	you	what	the	thread	is	doing:	trying	to	connect	to	the
master,	waiting	for	events	from	the	master,	reconnecting	to	the	master,	and
so	on.	Possible	states	are	listed	in	Section	6.3,	“Replication	Implementation
Details”.	It	is	necessary	to	check	this	field	for	older	versions	of	MySQL
(prior	to	5.0.12)	because	in	these	versions	the	thread	could	be	running	while
unsuccessfully	trying	to	connect	to	the	master;	only	this	field	makes	you
aware	of	the	connection	problem.	The	state	of	the	SQL	thread	is	not	copied
because	it	is	simpler.	If	it	is	running,	there	is	no	problem;	if	it	is	not,	you
can	find	the	error	in	the	Last_Error	field	(described	below).

Master_Host

The	current	master	host.

Master_User

The	current	user	used	to	connect	to	the	master.

Master_Port

The	current	master	port.

Connect_Retry

The	current	value	of	the	--master-connect-retry	option.

Master_Log_File

The	name	of	the	master	binary	log	file	from	which	the	I/O	thread	is
currently	reading.

Read_Master_Log_Pos

The	position	up	to	which	the	I/O	thread	has	read	in	the	current	master
binary	log.

Relay_Log_File

The	name	of	the	relay	log	file	from	which	the	SQL	thread	is	currently
reading	and	executing.

Relay_Log_Pos

The	position	up	to	which	the	SQL	thread	has	read	and	executed	in	the
current	relay	log.

Relay_Master_Log_File

The	name	of	the	master	binary	log	file	containing	the	most	recent	event
executed	by	the	SQL	thread.

Slave_IO_Running

Whether	the	I/O	thread	is	started	and	has	connected	successfully	to	the
master.	For	older	versions	of	MySQL	(prior	to	4.1.14	and	5.0.12)
Slave_IO_Running	is	YES	if	the	I/O	thread	is	started,	even	if	the	slave	hasn't
connected	to	the	master	yet.

Slave_SQL_Running

Whether	the	SQL	thread	is	started.

Replicate_Do_DB,	Replicate_Ignore_DB

The	lists	of	databases	that	were	specified	with	the	--replicate-do-db	and
--replicate-ignore-db	options,	if	any.

Replicate_Do_Table,	Replicate_Ignore_Table,
Replicate_Wild_Do_Table,	Replicate_Wild_Ignore_Table

The	lists	of	tables	that	were	specified	with	the	--replicate-do-table,	--
replicate-ignore-table,	--replicate-wild-do-table,	and	--
replicate-wild-ignore_table	options,	if	any.

Last_Errno,	Last_Error

The	error	number	and	error	message	returned	by	the	most	recently	executed
query.	An	error	number	of	0	and	message	of	the	empty	string	mean	“no
error.”	If	the	Last_Error	value	is	not	empty,	it	also	appears	as	a	message	in
the	slave's	error	log.	For	example:

Last_Errno:	1051

Last_Error:	error	'Unknown	table	'z''	on	query	'drop	table	z'

The	message	indicates	that	the	table	z	existed	on	the	master	and	was
dropped	there,	but	it	did	not	exist	on	the	slave,	so	DROP	TABLE	failed	on	the
slave.	(This	might	occur,	for	example,	if	you	forget	to	copy	the	table	to	the
slave	when	setting	up	replication.)

Skip_Counter

The	most	recently	used	value	for	SQL_SLAVE_SKIP_COUNTER.

Exec_Master_Log_Pos

The	position	of	the	last	event	executed	by	the	SQL	thread	from	the	master's
binary	log	(Relay_Master_Log_File).	(Relay_Master_Log_File,
Exec_Master_Log_Pos)	in	the	master's	binary	log	corresponds	to
(Relay_Log_File,	Relay_Log_Pos)	in	the	relay	log.

Relay_Log_Space

The	total	combined	size	of	all	existing	relay	logs.

Until_Condition,	Until_Log_File,	Until_Log_Pos

The	values	specified	in	the	UNTIL	clause	of	the	START	SLAVE	statement.

Until_Condition	has	these	values:

None	if	no	UNTIL	clause	was	specified

Master	if	the	slave	is	reading	until	a	given	position	in	the	master's
binary	logs

Relay	if	the	slave	is	reading	until	a	given	position	in	its	relay	logs

Until_Log_File	and	Until_Log_Pos	indicate	the	log	filename	and	position
values	that	define	the	point	at	which	the	SQL	thread	stops	executing.

Master_SSL_Allowed,	Master_SSL_CA_File,	Master_SSL_CA_Path,
Master_SSL_Cert,	Master_SSL_Cipher,	Master_SSL_Key

These	fields	show	the	SSL	parameters	used	by	the	slave	to	connect	to	the
master,	if	any.

Master_SSL_Allowed	has	these	values:

Yes	if	an	SSL	connection	to	the	master	is	permitted

No	if	an	SSL	connection	to	the	master	is	not	permitted

Ignored	if	an	SSL	connection	is	permitted	but	the	slave	server	does
not	have	SSL	support	enabled

The	values	of	the	other	SSL-related	fields	correspond	to	the	values	of	the	--

master-ca,	--master-capath,	--master-cert,	--master-cipher,	and	--
master-key	options.

Seconds_Behind_Master

This	field	is	an	indication	of	how	“late”	the	slave	is:

When	the	slave	SQL	thread	is	actively	running	(processing	updates),
this	field	is	the	number	of	seconds	that	have	elapsed	since	the
timestamp	of	the	most	recent	event	on	the	master	executed	by	that
thread.

When	the	SQL	thread	thread	has	caught	up	to	the	slave	I/O	thread	and
goes	idle	waiting	for	more	events	from	the	I/O	thread,	this	field	is
zero.

In	essence,	this	field	measures	the	time	difference	in	seconds	between	the
slave	SQL	thread	and	the	slave	I/O	thread.

If	the	network	connection	between	master	and	slave	is	fast,	the	slave	I/O
thread	is	very	close	to	the	master,	so	this	field	is	a	good	approximation	of
how	late	the	slave	SQL	thread	is	compared	to	the	master.	If	the	network	is
slow,	this	is	not	a	good	approximation;	the	slave	SQL	thread	may	quite
often	be	caught	up	with	the	slow-reading	slave	I/O	thread,	so
Seconds_Behind_Master	often	shows	a	value	of	0,	even	if	the	I/O	thread	is
late	compared	to	the	master.	In	other	words,	this	column	is	useful	only	for
fast	networks.

This	time	difference	computation	works	even	though	the	master	and	slave
do	not	have	identical	clocks	(the	clock	difference	is	computed	when	the
slave	I/O	thread	starts,	and	assumed	to	remain	constant	from	then	on).
Seconds_Behind_Master	is	NULL	(which	means	“unknown”)	if	the	slave
SQL	thread	is	not	running,	or	if	the	slave	I/O	thread	is	not	running	or	not
connected	to	master.	For	example	if	the	slave	I/O	thread	is	sleeping	for	the
number	of	seconds	given	by	the	--master-connect-retry	option	before
reconnecting,	NULL	is	shown,	as	the	slave	cannot	know	what	the	master	is
doing,	and	so	cannot	say	reliably	how	late	it	is.

This	field	has	one	limitation.	The	timestamp	is	preserved	through
replication,	which	means	that,	if	a	master	M1	is	itself	a	slave	of	M0,	any

event	from	M1's	binlog	which	originates	in	replicating	an	event	from	M0's
binlog	has	the	timestamp	of	that	event.	This	enables	MySQL	to	replicate
TIMESTAMP	successfully.	However,	the	drawback	for
Seconds_Behind_Master	is	that	if	M1	also	receives	direct	updates	from
clients,	the	value	randomly	deviates,	because	sometimes	the	last	M1's	event
is	from	M0	and	sometimes	it	is	the	most	recent	timestamp	from	a	direct
update.

13.6.2.8.	START	SLAVE	Syntax

START	SLAVE	[thread_type	[,	thread_type]	...]

START	SLAVE	[SQL_THREAD]	UNTIL

				MASTER_LOG_FILE	=	'log_name',	MASTER_LOG_POS	=	log_pos

START	SLAVE	[SQL_THREAD]	UNTIL

				RELAY_LOG_FILE	=	'log_name',	RELAY_LOG_POS	=	log_pos

thread_type:	IO_THREAD	|	SQL_THREAD

START	SLAVE	with	no	thread_type	options	starts	both	of	the	slave	threads.	The
I/O	thread	reads	queries	from	the	master	server	and	stores	them	in	the	relay	log.
The	SQL	thread	reads	the	relay	log	and	executes	the	queries.	START	SLAVE
requires	the	SUPER	privilege.

If	START	SLAVE	succeeds	in	starting	the	slave	threads,	it	returns	without	any
error.	However,	even	in	that	case,	it	might	be	that	the	slave	threads	start	and	then
later	stop	(for	example,	because	they	do	not	manage	to	connect	to	the	master	or
read	its	binary	logs,	or	some	other	problem).	START	SLAVE	does	not	warn	you
about	this.	You	must	check	the	slave's	error	log	for	error	messages	generated	by
the	slave	threads,	or	check	that	they	are	running	satisfactorily	with	SHOW	SLAVE
STATUS.

You	can	add	IO_THREAD	and	SQL_THREAD	options	to	the	statement	to	name	which
of	the	threads	to	start.

An	UNTIL	clause	may	be	added	to	specify	that	the	slave	should	start	and	run	until
the	SQL	thread	reaches	a	given	point	in	the	master	binary	logs	or	in	the	slave
relay	logs.	When	the	SQL	thread	reaches	that	point,	it	stops.	If	the	SQL_THREAD
option	is	specified	in	the	statement,	it	starts	only	the	SQL	thread.	Otherwise,	it
starts	both	slave	threads.	If	the	SQL	thread	is	running,	the	UNTIL	clause	is
ignored	and	a	warning	is	issued.

For	an	UNTIL	clause,	you	must	specify	both	a	log	filename	and	position.	Do	not
mix	master	and	relay	log	options.

Any	UNTIL	condition	is	reset	by	a	subsequent	STOP	SLAVE	statement,	a	START
SLAVE	statement	that	includes	no	UNTIL	clause,	or	a	server	restart.

The	UNTIL	clause	can	be	useful	for	debugging	replication,	or	to	cause	replication
to	proceed	until	just	before	the	point	where	you	want	to	avoid	having	the	slave
replicate	a	statement.	For	example,	if	an	unwise	DROP	TABLE	statement	was
executed	on	the	master,	you	can	use	UNTIL	to	tell	the	slave	to	execute	up	to	that
point	but	no	farther.	To	find	what	the	event	is,	use	mysqlbinlog	with	the	master
logs	or	slave	relay	logs,	or	by	using	a	SHOW	BINLOG	EVENTS	statement.

If	you	are	using	UNTIL	to	have	the	slave	process	replicated	queries	in	sections,	it
is	recommended	that	you	start	the	slave	with	the	--skip-slave-start	option	to
prevent	the	SQL	thread	from	running	when	the	slave	server	starts.	It	is	probably
best	to	use	this	option	in	an	option	file	rather	than	on	the	command	line,	so	that
an	unexpected	server	restart	does	not	cause	it	to	be	forgotten.

The	SHOW	SLAVE	STATUS	statement	includes	output	fields	that	display	the	current
values	of	the	UNTIL	condition.

In	old	versions	of	MySQL	(before	4.0.5),	this	statement	was	called	SLAVE	START.
This	usage	is	still	accepted	in	MySQL	5.0	for	backward	compatibility,	but	is
deprecated.

13.6.2.9.	STOP	SLAVE	Syntax

STOP	SLAVE	[thread_type	[,	thread_type]	...]

thread_type:	IO_THREAD	|	SQL_THREAD

Stops	the	slave	threads.	STOP	SLAVE	requires	the	SUPER	privilege.

Like	START	SLAVE,	this	statement	may	be	used	with	the	IO_THREAD	and
SQL_THREAD	options	to	name	the	thread	or	threads	to	be	stopped.

In	old	versions	of	MySQL	(before	4.0.5),	this	statement	was	called	SLAVE	STOP.
This	usage	is	still	accepted	in	MySQL	5.0	for	backward	compatibility,	but	is
deprecated.

13.7.	SQL	Syntax	for	Prepared	Statements

MySQL	5.0	provides	support	for	server-side	prepared	statements.	This	support
takes	advantage	of	the	efficient	client/server	binary	protocol	implemented	in
MySQL	4.1,	provided	that	you	use	an	appropriate	client	programming	interface.
Candidate	interfaces	include	the	MySQL	C	API	client	library	(for	C	programs),
MySQL	Connector/J	(for	Java	programs),	and	MySQL	Connector/NET.	For
example,	the	C	API	provides	a	set	of	function	calls	that	make	up	its	prepared
statement	API.	See	Section	22.2.4,	“C	API	Prepared	Statements”.	Other
language	interfaces	can	provide	support	for	prepared	statements	that	use	the
binary	protocol	by	linking	in	the	C	client	library,	one	example	being	the	mysqli
extension,	available	in	PHP	5.0	and	later.

An	alternative	SQL	interface	to	prepared	statements	is	available.	This	interface	is
not	as	efficient	as	using	the	binary	protocol	through	a	prepared	statement	API,
but	requires	no	programming	because	it	is	available	directly	at	the	SQL	level:

You	can	use	it	when	no	programming	interface	is	available	to	you.

You	can	use	it	from	any	program	that	allows	you	to	send	SQL	statements	to
the	server	to	be	executed,	such	as	the	mysql	client	program.

You	can	use	it	even	if	the	client	is	using	an	old	version	of	the	client	library.
The	only	requirement	is	that	you	be	able	to	connect	to	a	server	that	is	recent
enough	to	support	SQL	syntax	for	prepared	statements.

SQL	syntax	for	prepared	statements	is	intended	to	be	used	for	situations	such	as
these:

You	want	to	test	how	prepared	statements	work	in	your	application	before
coding	it.

An	application	has	problems	executing	prepared	statements	and	you	want	to
determine	interactively	what	the	problem	is.

You	want	to	create	a	test	case	that	describes	a	problem	you	are	having	with
prepared	statements,	so	that	you	can	file	a	bug	report.

http://php.net/mysqli

You	need	to	use	prepared	statements	but	do	not	have	access	to	a
programming	API	that	supports	them.

SQL	syntax	for	prepared	statements	is	based	on	three	SQL	statements:

	PREPARE	stmt_name	FROM	preparable_stmt

The	PREPARE	statement	prepares	a	statement	and	assigns	it	a	name,
stmt_name,	by	which	to	refer	to	the	statement	later.	Statement	names	are
not	case	sensitive.	preparable_stmt	is	either	a	string	literal	or	a	user
variable	that	contains	the	text	of	the	statement.	The	text	must	represent	a
single	SQL	statement,	not	multiple	statements.	Within	the	statement,	‘?’
characters	can	be	used	as	parameter	markers	to	indicate	where	data	values
are	to	be	bound	to	the	query	later	when	you	execute	it.	The	‘?’	characters
should	not	be	enclosed	within	quotes,	even	if	you	intend	to	bind	them	to
string	values.	Parameter	markers	can	be	used	only	where	data	values	should
appear,	not	for	SQL	keywords,	identifiers,	and	so	forth.

If	a	prepared	statement	with	the	given	name	already	exists,	it	is	deallocated
implicitly	before	the	new	statement	is	prepared.	This	means	that	if	the	new
statement	contains	an	error	and	cannot	be	prepared,	an	error	is	returned	and
no	statement	with	the	given	name	exists.

The	scope	of	a	prepared	statement	is	the	client	session	within	which	it	is
created.	Other	clients	cannot	see	it.

	EXECUTE	stmt_name	[USING	@var_name	[,	@var_name]	...]

After	preparing	a	statement,	you	execute	it	with	an	EXECUTE	statement	that
refers	to	the	prepared	statement	name.	If	the	prepared	statement	contains
any	parameter	markers,	you	must	supply	a	USING	clause	that	lists	user
variables	containing	the	values	to	be	bound	to	the	parameters.	Parameter
values	can	be	supplied	only	by	user	variables,	and	the	USING	clause	must
name	exactly	as	many	variables	as	the	number	of	parameter	markers	in	the
statement.

You	can	execute	a	given	prepared	statement	multiple	times,	passing
different	variables	to	it	or	setting	the	variables	to	different	values	before
each	execution.

	{DEALLOCATE	|	DROP}	PREPARE	stmt_name

To	deallocate	a	prepared	statement,	use	the	DEALLOCATE	PREPARE	statement.
Attempting	to	execute	a	prepared	statement	after	deallocating	it	results	in
an	error.

If	you	terminate	a	client	session	without	deallocating	a	previously	prepared
statement,	the	server	deallocates	it	automatically.

The	following	SQL	statements	can	be	used	in	prepared	statements:	CREATE
TABLE,	DELETE,	DO,	INSERT,	REPLACE,	SELECT,	SET,	UPDATE,	and	most	SHOW
statements.	supported.	ANALYZE	TABLE,	OPTIMIZE	TABLE,	and	REPAIR	TABLE	are
supported	as	of	MySQL	5.0.23.	Other	statements	are	not	yet	supported.

The	following	examples	show	two	equivalent	ways	of	preparing	a	statement	that
computes	the	hypotenuse	of	a	triangle	given	the	lengths	of	the	two	sides.

The	first	example	shows	how	to	create	a	prepared	statement	by	using	a	string
literal	to	supply	the	text	of	the	statement:

mysql>	PREPARE	stmt1	FROM	'SELECT	SQRT(POW(?,2)	+	POW(?,2))	AS	hypotenuse';

mysql>	SET	@a	=	3;

mysql>	SET	@b	=	4;

mysql>	EXECUTE	stmt1	USING	@a,	@b;

+------------+

|	hypotenuse	|

+------------+

|										5	|

+------------+

mysql>	DEALLOCATE	PREPARE	stmt1;

The	second	example	is	similar,	but	supplies	the	text	of	the	statement	as	a	user
variable:

mysql>	SET	@s	=	'SELECT	SQRT(POW(?,2)	+	POW(?,2))	AS	hypotenuse';

mysql>	PREPARE	stmt2	FROM	@s;

mysql>	SET	@a	=	6;

mysql>	SET	@b	=	8;

mysql>	EXECUTE	stmt2	USING	@a,	@b;

+------------+

|	hypotenuse	|

+------------+

|									10	|

+------------+

mysql>	DEALLOCATE	PREPARE	stmt2;

As	of	MySQL	5.0.7,	placeholders	can	be	used	for	the	arguments	of	the	LIMIT
clause	when	using	prepared	statements.	See	Section	13.2.7,	“SELECT	Syntax”.

SQL	syntax	for	prepared	statements	cannot	be	used	in	nested	fashion.	That	is,	a
statement	passed	to	PREPARE	cannot	itself	be	a	PREPARE,	EXECUTE,	or	DEALLOCATE
PREPARE	statement.

SQL	syntax	for	prepared	statements	is	distinct	from	using	prepared	statement
API	calls.	For	example,	you	cannot	use	the	mysql_stmt_prepare()	C	API
function	to	prepare	a	PREPARE,	EXECUTE,	or	DEALLOCATE	PREPARE	statement.

SQL	syntax	for	prepared	statements	cannot	be	used	within	stored	routines
(procedures	or	functions),	or	triggers.	This	restriction	is	lifted	as	of	MySQL
5.0.13	for	stored	procedures,	but	not	for	stored	functions	or	triggers.

SQL	syntax	for	prepared	statements	does	not	support	multi-statements	(that	is,
multiple	statements	within	a	single	string	separated	by	‘;’	characters).

Chapter	14.	Storage	Engines	and	Table	Types

Table	of	Contents

14.1.	The	MyISAM	Storage	Engine
14.1.1.	MyISAM	Startup	Options
14.1.2.	Space	Needed	for	Keys
14.1.3.	MyISAM	Table	Storage	Formats
14.1.4.	MyISAM	Table	Problems

14.2.	The	InnoDB	Storage	Engine
14.2.1.	InnoDB	Overview
14.2.2.	InnoDB	Contact	Information
14.2.3.	InnoDB	Configuration
14.2.4.	InnoDB	Startup	Options	and	System	Variables
14.2.5.	Creating	the	InnoDB	Tablespace
14.2.6.	Creating	and	Using	InnoDB	Tables
14.2.7.	Adding	and	Removing	InnoDB	Data	and	Log	Files
14.2.8.	Backing	Up	and	Recovering	an	InnoDB	Database
14.2.9.	Moving	an	InnoDB	Database	to	Another	Machine
14.2.10.	InnoDB	Transaction	Model	and	Locking
14.2.11.	InnoDB	Performance	Tuning	Tips
14.2.12.	Implementation	of	Multi-Versioning
14.2.13.	InnoDB	Table	and	Index	Structures
14.2.14.	InnoDB	File	Space	Management	and	Disk	I/O
14.2.15.	InnoDB	Error	Handling
14.2.16.	Restrictions	on	InnoDB	Tables
14.2.17.	InnoDB	Troubleshooting

14.3.	The	MERGE	Storage	Engine
14.3.1.	MERGE	Table	Problems

14.4.	The	MEMORY	(HEAP)	Storage	Engine
14.5.	The	BDB	(BerkeleyDB)	Storage	Engine

14.5.1.	Operating	Systems	Supported	by	BDB
14.5.2.	Installing	BDB
14.5.3.	BDB	Startup	Options
14.5.4.	Characteristics	of	BDB	Tables
14.5.5.	Restrictions	on	BDB	Tables
14.5.6.	Errors	That	May	Occur	When	Using	BDB	Tables

14.6.	The	EXAMPLE	Storage	Engine
14.7.	The	FEDERATED	Storage	Engine

14.7.1.	Description	of	the	FEDERATED	Storage	Engine
14.7.2.	How	to	use	FEDERATED	Tables
14.7.3.	Limitations	of	the	FEDERATED	Storage	Engine

14.8.	The	ARCHIVE	Storage	Engine
14.9.	The	CSV	Storage	Engine
14.10.	The	BLACKHOLE	Storage	Engine

MySQL	supports	several	storage	engines	that	act	as	handlers	for	different	table
types.	MySQL	storage	engines	include	both	those	that	handle	transaction-safe
tables	and	those	that	handle	non-transaction-safe	tables:

MyISAM	manages	non-transactional	tables.	It	provides	high-speed	storage
and	retrieval,	as	well	as	fulltext	searching	capabilities.	MyISAM	is	supported
in	all	MySQL	configurations,	and	is	the	default	storage	engine	unless	you
have	configured	MySQL	to	use	a	different	one	by	default.

The	MEMORY	storage	engine	provides	in-memory	tables.	The	MERGE	storage
engine	allows	a	collection	of	identical	MyISAM	tables	to	be	handled	as	a
single	table.	Like	MyISAM,	the	MEMORY	and	MERGE	storage	engines	handle
non-transactional	tables,	and	both	are	also	included	in	MySQL	by	default.

Note:	The	MEMORY	storage	engine	formerly	was	known	as	the	HEAP	engine.

The	InnoDB	and	BDB	storage	engines	provide	transaction-safe	tables.	BDB	is
included	in	MySQL-Max	binary	distributions	on	those	operating	systems
that	support	it.	InnoDB	is	also	included	by	default	in	all	MySQL	5.0	binary
distributions.	In	source	distributions,	you	can	enable	or	disable	either
engine	by	configuring	MySQL	as	you	like.

The	EXAMPLE	storage	engine	is	a	“stub”	engine	that	does	nothing.	You	can
create	tables	with	this	engine,	but	no	data	can	be	stored	in	them	or	retrieved
from	them.	The	purpose	of	this	engine	is	to	serve	as	an	example	in	the
MySQL	source	code	that	illustrates	how	to	begin	writing	new	storage
engines.	As	such,	it	is	primarily	of	interest	to	developers.

NDB	Cluster	is	the	storage	engine	used	by	MySQL	Cluster	to	implement
tables	that	are	partitioned	over	many	computers.	It	is	available	in	MySQL-
Max	5.0	binary	distributions.	This	storage	engine	is	currently	supported	on

Linux,	Solaris,	and	Mac	OS	X	only.	We	intend	to	add	support	for	this
engine	on	other	platforms,	including	Windows,	in	future	MySQL	releases.

The	ARCHIVE	storage	engine	is	used	for	storing	large	amounts	of	data
without	indexes	with	a	very	small	footprint.

The	CSV	storage	engine	stores	data	in	text	files	using	comma-separated
values	format.

The	BLACKHOLE	storage	engine	accepts	but	does	not	store	data	and	retrievals
always	return	an	empty	set.

The	FEDERATED	storage	engine	was	added	in	MySQL	5.0.3.	This	engine
stores	data	in	a	remote	database.	Currently,	it	works	with	MySQL	only,
using	the	MySQL	C	Client	API.	In	future	releases,	we	intend	to	enable	it	to
connect	to	other	data	sources	using	other	drivers	or	client	connection
methods.

This	chapter	describes	each	of	the	MySQL	storage	engines	except	for	NDB
Cluster,	which	is	covered	in	Chapter	15,	MySQL	Cluster.

When	you	create	a	new	table,	you	can	specify	which	storage	engine	to	use	by
adding	an	ENGINE	or	TYPE	table	option	to	the	CREATE	TABLE	statement:

CREATE	TABLE	t	(i	INT)	ENGINE	=	INNODB;

CREATE	TABLE	t	(i	INT)	TYPE	=	MEMORY;

The	older	term	TYPE	is	supported	as	a	synonym	for	ENGINE	for	backward
compatibility,	but	ENGINE	is	the	preferred	term	and	TYPE	is	deprecated.

If	you	omit	the	ENGINE	or	TYPE	option,	the	default	storage	engine	is	used.
Normally,	this	is	MyISAM,	but	you	can	change	it	by	using	the	--default-
storage-engine	or	--default-table-type	server	startup	option,	or	by	setting
the	default-storage-engine	or	default-table-type	option	in	the	my.cnf
configuration	file.

You	can	set	the	default	storage	engine	to	be	used	during	the	current	session	by
setting	the	storage_engine	or	table_type	variable:

SET	storage_engine=MYISAM;

SET	table_type=BDB;

When	MySQL	is	installed	on	Windows	using	the	MySQL	Configuration	Wizard,
the	InnoDB	storage	engine	can	be	selected	as	the	default	instead	of	MyISAM.	See
Section	2.3.4.6,	“The	Database	Usage	Dialog”.

To	convert	a	table	from	one	storage	engine	to	another,	use	an	ALTER	TABLE
statement	that	indicates	the	new	engine:

ALTER	TABLE	t	ENGINE	=	MYISAM;

ALTER	TABLE	t	TYPE	=	BDB;

See	Section	13.1.5,	“CREATE	TABLE	Syntax”,	and	Section	13.1.2,	“ALTER	TABLE
Syntax”.

If	you	try	to	use	a	storage	engine	that	is	not	compiled	in	or	that	is	compiled	in
but	deactivated,	MySQL	instead	creates	a	table	using	the	default	storage	engine,
usually	MyISAM.	This	behavior	is	convenient	when	you	want	to	copy	tables
between	MySQL	servers	that	support	different	storage	engines.	(For	example,	in
a	replication	setup,	perhaps	your	master	server	supports	transactional	storage
engines	for	increased	safety,	but	the	slave	servers	use	only	non-transactional
storage	engines	for	greater	speed.)

This	automatic	substitution	of	the	default	storage	engine	for	unavailable	engines
can	be	confusing	for	new	MySQL	users.	A	warning	is	generated	whenever	a
storage	engine	is	automatically	changed.

For	new	tables,	MySQL	always	creates	an	.frm	file	to	hold	the	table	and	column
definitions.	The	table's	index	and	data	may	be	stored	in	one	or	more	other	files,
depending	on	the	storage	engine.	The	server	creates	the	.frm	file	above	the
storage	engine	level.	Individual	storage	engines	create	any	additional	files
required	for	the	tables	that	they	manage.

A	database	may	contain	tables	of	different	types.	That	is,	tables	need	not	all	be
created	with	the	same	storage	engine.

Transaction-safe	tables	(TSTs)	have	several	advantages	over	non-transaction-
safe	tables	(NTSTs):

They	are	safer.	Even	if	MySQL	crashes	or	you	get	hardware	problems,	you
can	get	your	data	back,	either	by	automatic	recovery	or	from	a	backup	plus
the	transaction	log.

You	can	combine	many	statements	and	accept	them	all	at	the	same	time
with	the	COMMIT	statement	(if	autocommit	is	disabled).

You	can	execute	ROLLBACK	to	ignore	your	changes	(if	autocommit	is
disabled).

If	an	update	fails,	all	of	your	changes	are	reverted.	(With	non-transaction-
safe	tables,	all	changes	that	have	taken	place	are	permanent.)

Transaction-safe	storage	engines	can	provide	better	concurrency	for	tables
that	get	many	updates	concurrently	with	reads.

You	can	combine	transaction-safe	and	non-transaction-safe	tables	in	the	same
statements	to	get	the	best	of	both	worlds.	However,	although	MySQL	supports
several	transaction-safe	storage	engines,	for	best	results,	you	should	not	mix
different	storage	engines	within	a	transaction	with	autocommit	disabled.	For
example,	if	you	do	this,	changes	to	non-transaction-safe	tables	still	are
committed	immediately	and	cannot	be	rolled	back.	For	information	about	this
and	other	problems	that	can	occur	in	transactions	that	use	mixed	storage	engines,
see	Section	13.4.1,	“START	TRANSACTION,	COMMIT,	and	ROLLBACK	Syntax”.

Non-transaction-safe	tables	have	several	advantages	of	their	own,	all	of	which
occur	because	there	is	no	transaction	overhead:

Much	faster

Lower	disk	space	requirements

Less	memory	required	to	perform	updates

14.1.	The	MyISAM	Storage	Engine

MyISAM	is	the	default	storage	engine.	It	is	based	on	the	older	ISAM	code	but	has
many	useful	extensions.	(Note	that	MySQL	5.0	does	not	support	ISAM.)

Each	MyISAM	table	is	stored	on	disk	in	three	files.	The	files	have	names	that
begin	with	the	table	name	and	have	an	extension	to	indicate	the	file	type.	An
.frm	file	stores	the	table	format.	The	data	file	has	an	.MYD	(MYData)	extension.
The	index	file	has	an	.MYI	(MYIndex)	extension.

To	specify	explicitly	that	you	want	a	MyISAM	table,	indicate	that	with	an	ENGINE
table	option:

CREATE	TABLE	t	(i	INT)	ENGINE	=	MYISAM;

The	older	term	TYPE	is	supported	as	a	synonym	for	ENGINE	for	backward
compatibility,	but	ENGINE	is	the	preferred	term	and	TYPE	is	deprecated.

Normally,	it	is	unnecesary	to	use	ENGINE	to	specify	the	MyISAM	storage	engine.
MyISAM	is	the	default	engine	unless	the	default	has	been	changed.	To	ensure	that
MyISAM	is	used	in	situations	where	the	default	might	have	been	changed,	include
the	ENGINE	option	explicitly.

You	can	check	or	repair	MyISAM	tables	with	the	mysqlcheck	client	or
myisamchk	utility.	You	can	also	compress	MyISAM	tables	with	myisampack	to
take	up	much	less	space.	See	Section	8.11,	“mysqlcheck	—	A	Table
Maintenance	and	Repair	Program”,	Section	5.10.4.1,	“Using	myisamchk	for
Crash	Recovery”,	and	Section	8.5,	“myisampack	—	Generate	Compressed,
Read-Only	MyISAM	Tables”.

MyISAM	tables	have	the	following	characteristics:

All	data	values	are	stored	with	the	low	byte	first.	This	makes	the	data
machine	and	operating	system	independent.	The	only	requirements	for
binary	portability	are	that	the	machine	uses	two's-complement	signed
integers	and	IEEE	floating-point	format.	These	requirements	are	widely
used	among	mainstream	machines.	Binary	compatibility	might	not	be
applicable	to	embedded	systems,	which	sometimes	have	peculiar

processors.

There	is	no	significant	speed	penalty	for	storing	data	low	byte	first;	the
bytes	in	a	table	row	normally	are	unaligned	and	it	takes	little	more
processing	to	read	an	unaligned	byte	in	order	than	in	reverse	order.	Also,
the	code	in	the	server	that	fetches	column	values	is	not	time	critical
compared	to	other	code.

All	numeric	key	values	are	stored	with	the	high	byte	first	to	allow	better
index	compression.

Large	files	(up	to	63-bit	file	length)	are	supported	on	filesystems	and
operating	systems	that	support	large	files.

There	is	a	limit	of	232	(~4.295E+09)	rows	in	a	MyISAM	table.	You	can
increase	this	limitation	if	you	build	MySQL	with	the	--with-big-tables
option	then	the	row	limitation	is	increased	to	(232)2	(1.844E+19)	rows.	See
Section	2.9.2,	“Typical	configure	Options”.	Beginning	with	MySQL	5.0.4
all	standard	binaries	are	built	with	this	option.

The	maximum	number	of	indexes	per	MyISAM	table	is	64.	This	can	be
changed	by	recompiling.	Beginning	with	MySQL	5.0.18,	you	can	configure
the	build	by	invoking	configure	with	the	--with-max-indexes=N	option,
where	N	is	the	maximum	number	of	indexes	to	permit	per	MyISAM	table.	N
must	be	less	thann	or	equal	to	128.	Before	MySQL	5.0.18,	you	must	change
the	source.

The	maximum	number	of	columns	per	index	is	16.

The	maximum	key	length	is	1000	bytes.	This	can	also	be	changed	by
changing	the	source	and	recompiling.	For	the	case	of	a	key	longer	than	250
bytes,	a	larger	key	block	size	than	the	default	of	1024	bytes	is	used.

When	rows	are	inserted	in	sorted	order	(as	when	you	are	using	an
AUTO_INCREMENT	column),	the	index	tree	is	split	so	that	the	high	node	only
contains	one	key.	This	improves	space	utilization	in	the	index	tree.

Internal	handling	of	one	AUTO_INCREMENT	column	per	table	is	supported.
MyISAM	automatically	updates	this	column	for	INSERT	and	UPDATE
operations.	This	makes	AUTO_INCREMENT	columns	faster	(at	least	10%).

Values	at	the	top	of	the	sequence	are	not	reused	after	being	deleted.	(When
an	AUTO_INCREMENT	column	is	defined	as	the	last	column	of	a	multiple-
column	index,	reuse	of	values	deleted	from	the	top	of	a	sequence	does
occur.)	The	AUTO_INCREMENT	value	can	be	reset	with	ALTER	TABLE	or
myisamchk.

Dynamic-sized	rows	are	much	less	fragmented	when	mixing	deletes	with
updates	and	inserts.	This	is	done	by	automatically	combining	adjacent
deleted	blocks	and	by	extending	blocks	if	the	next	block	is	deleted.

If	a	table	has	no	free	blocks	in	the	middle	of	the	data	file,	you	can	INSERT
new	rows	into	it	at	the	same	time	that	other	threads	are	reading	from	the
table.	(These	are	known	as	concurrent	inserts.)	A	free	block	can	occur	as	a
result	of	deleting	rows	or	an	update	of	a	dynamic	length	row	with	more	data
than	its	current	contents.	When	all	free	blocks	are	used	up	(filled	in),	future
inserts	become	concurrent	again.	See	Section	7.3.3,	“Concurrent	Inserts”.

You	can	put	the	data	file	and	index	file	on	different	directories	to	get	more
speed	with	the	DATA	DIRECTORY	and	INDEX	DIRECTORY	table	options	to
CREATE	TABLE.	See	Section	13.1.5,	“CREATE	TABLE	Syntax”.

BLOB	and	TEXT	columns	can	be	indexed.

NULL	values	are	allowed	in	indexed	columns.	This	takes	0–1	bytes	per	key.

Each	character	column	can	have	a	different	character	set.	See	Chapter	10,
Character	Set	Support.

There	is	a	flag	in	the	MyISAM	index	file	that	indicates	whether	the	table	was
closed	correctly.	If	mysqld	is	started	with	the	--myisam-recover	option,
MyISAM	tables	are	automatically	checked	when	opened,	and	are	repaired	if
the	table	wasn't	closed	properly.

myisamchk	marks	tables	as	checked	if	you	run	it	with	the	--update-state
option.	myisamchk	--fast	checks	only	those	tables	that	don't	have	this
mark.

myisamchk	--analyze	stores	statistics	for	portions	of	keys,	as	well	as	for
entire	keys.

myisampack	can	pack	BLOB	and	VARCHAR	columns.

MyISAM	also	supports	the	following	features:

Support	for	a	true	VARCHAR	type;	a	VARCHAR	column	starts	with	a	length
stored	in	one	or	two	bytes.

Tables	with	VARCHAR	columns	may	have	fixed	or	dynamic	row	length.

The	sum	of	the	lengths	of	the	VARCHAR	and	CHAR	columns	in	a	table	may	be
up	to	64KB.

A	hashed	computed	index	can	be	used	for	UNIQUE.	This	allows	you	to	have
UNIQUE	on	any	combination	of	columns	in	a	table.	(However,	you	cannot
search	on	a	UNIQUE	computed	index.)

Additional	resources

A	forum	dedicated	to	the	MyISAM	storage	engine	is	available	at
http://forums.mysql.com/list.php?21.

14.1.1.	MyISAM	Startup	Options

The	following	options	to	mysqld	can	be	used	to	change	the	behavior	of	MyISAM
tables.	For	additional	information,	see	Section	5.2.1,	“mysqld	Command
Options”.

	--myisam-recover=mode

Set	the	mode	for	automatic	recovery	of	crashed	MyISAM	tables.

	--delay-key-write=ALL

Don't	flush	key	buffers	between	writes	for	any	MyISAM	table.

Note:	If	you	do	this,	you	should	not	access	MyISAM	tables	from	another
program	(such	as	from	another	MySQL	server	or	with	myisamchk)	when
the	tables	are	in	use.	Doing	so	risks	index	corruption.	Using	--external-
locking	does	not	eliminate	this	risk.

http://forums.mysql.com/list.php?21

The	following	system	variables	affect	the	behavior	of	MyISAM	tables.	For
additional	information,	see	Section	5.2.2,	“Server	System	Variables”.

bulk_insert_buffer_size

The	size	of	the	tree	cache	used	in	bulk	insert	optimization.	Note:	This	is	a
limit	per	thread!

myisam_max_extra_sort_file_size

Used	to	help	MySQL	to	decide	when	to	use	the	slow	but	safe	key	cache
index	creation	method.	Note:	This	parameter	was	given	in	bytes	before
MySQL	5.0.6,	when	it	was	removed.

myisam_max_sort_file_size

The	maximum	size	of	the	temporary	file	that	MySQL	is	allowed	to	use
while	re-creating	a	MyISAM	index	(during	REPAIR	TABLE,	ALTER	TABLE,	or
LOAD	DATA	INFILE).	If	the	file	size	would	be	larger	than	this	value,	the
index	is	created	using	the	key	cache	instead,	which	is	slower.	The	value	is
given	in	bytes.

myisam_sort_buffer_size

Set	the	size	of	the	buffer	used	when	recovering	tables.

Automatic	recovery	is	activated	if	you	start	mysqld	with	the	--myisam-recover
option.	In	this	case,	when	the	server	opens	a	MyISAM	table,	it	checks	whether	the
table	is	marked	as	crashed	or	whether	the	open	count	variable	for	the	table	is	not
0	and	you	are	running	the	server	with	external	locking	disabled.	If	either	of	these
conditions	is	true,	the	following	happens:

The	server	checks	the	table	for	errors.

If	the	server	finds	an	error,	it	tries	to	do	a	fast	table	repair	(with	sorting	and
without	re-creating	the	data	file).

If	the	repair	fails	because	of	an	error	in	the	data	file	(for	example,	a
duplicate-key	error),	the	server	tries	again,	this	time	re-creating	the	data
file.

If	the	repair	still	fails,	the	server	tries	once	more	with	the	old	repair	option
method	(write	row	by	row	without	sorting).	This	method	should	be	able	to
repair	any	type	of	error	and	has	low	disk	space	requirements.

If	the	recovery	wouldn't	be	able	to	recover	all	rows	from	previously	completed
statementas	and	you	didn't	specify	FORCE	in	the	value	of	the	--myisam-recover
option,	automatic	repair	aborts	with	an	error	message	in	the	error	log:

Error:	Couldn't	repair	table:	test.g00pages

If	you	specify	FORCE,	a	warning	like	this	is	written	instead:

Warning:	Found	344	of	354	rows	when	repairing	./test/g00pages

Note	that	if	the	automatic	recovery	value	includes	BACKUP,	the	recovery	process
creates	files	with	names	of	the	form	tbl_name-datetime.BAK.	You	should	have
a	cron	script	that	automatically	moves	these	files	from	the	database	directories
to	backup	media.

14.1.2.	Space	Needed	for	Keys

MyISAM	tables	use	B-tree	indexes.	You	can	roughly	calculate	the	size	for	the
index	file	as	(key_length+4)/0.67,	summed	over	all	keys.	This	is	for	the	worst
case	when	all	keys	are	inserted	in	sorted	order	and	the	table	doesn't	have	any
compressed	keys.

String	indexes	are	space	compressed.	If	the	first	index	part	is	a	string,	it	is	also
prefix	compressed.	Space	compression	makes	the	index	file	smaller	than	the
worst-case	figure	if	a	string	column	has	a	lot	of	trailing	space	or	is	a	VARCHAR
column	that	is	not	always	used	to	the	full	length.	Prefix	compression	is	used	on
keys	that	start	with	a	string.	Prefix	compression	helps	if	there	are	many	strings
with	an	identical	prefix.

In	MyISAM	tables,	you	can	also	prefix	compress	numbers	by	specifying	the
PACK_KEYS=1	table	option	when	you	create	the	table.	Numbers	are	stored	with
the	high	byte	first,	so	this	helps	when	you	have	many	integer	keys	that	have	an
identical	prefix.

14.1.3.	MyISAM	Table	Storage	Formats

MyISAM	supports	three	different	storage	formats.	Two	of	them,	fixed	and	dynamic
format,	are	chosen	automatically	depending	on	the	type	of	columns	you	are
using.	The	third,	compressed	format,	can	be	created	only	with	the	myisampack
utility.

When	you	use	CREATE	TABLE	or	ALTER	TABLE	for	a	table	that	has	no	BLOB	or
TEXT	columns,	you	can	force	the	table	format	to	FIXED	or	DYNAMIC	with	the
ROW_FORMAT	table	option.	This	causes	CHAR	and	VARCHAR	columns	to	become
CHAR	for	FIXED	format,	or	VARCHAR	for	DYNAMIC	format.

You	can	decompress	tables	by	specifying	ROW_FORMAT=DEFAULT	with	ALTER
TABLE.

See	Section	13.1.5,	“CREATE	TABLE	Syntax”,	for	information	about	ROW_FORMAT.

14.1.3.1.	Static	(Fixed-Length)	Table	Characteristics

Static	format	is	the	default	for	MyISAM	tables.	It	is	used	when	the	table	contains
no	variable-length	columns	(VARCHAR,	VARBINARY,	BLOB,	or	TEXT).	Each	row	is
stored	using	a	fixed	number	of	bytes.

Of	the	three	MyISAM	storage	formats,	static	format	is	the	simplest	and	most
secure	(least	subject	to	corruption).	It	is	also	the	fastest	of	the	on-disk	formats
due	to	the	ease	with	which	rows	in	the	data	file	can	be	found	on	disk:	To	look	up
a	row	based	on	a	row	number	in	the	index,	multiply	the	row	number	by	the	row
length	to	calculate	the	row	position.	Also,	when	scanning	a	table,	it	is	very	easy
to	read	a	constant	number	of	rows	with	each	disk	read	operation.

The	security	is	evidenced	if	your	computer	crashes	while	the	MySQL	server	is
writing	to	a	fixed-format	MyISAM	file.	In	this	case,	myisamchk	can	easily
determine	where	each	row	starts	and	ends,	so	it	can	usually	reclaim	all	rows
except	the	partially	written	one.	Note	that	MyISAM	table	indexes	can	always	be
reconstructed	based	on	the	data	rows.

Static-format	tables	have	these	characteristics:

CHAR	columns	are	space-padded	to	the	column	width.	This	is	also	true	for
NUMERIC	and	DECIMAL	columns	created	before	MySQL	5.0.3.	BINARY
columns	are	space-padded	to	the	column	width	before	MySQL	5.0.15.	As

of	5.0.15,	BINARY	columns	are	padded	with	0x00	bytes.

Very	quick.

Easy	to	cache.

Easy	to	reconstruct	after	a	crash,	because	rows	are	located	in	fixed
positions.

Reorganization	is	unnecessary	unless	you	delete	a	huge	number	of	rows	and
want	to	return	free	disk	space	to	the	operating	system.	To	do	this,	use
OPTIMIZE	TABLE	or	myisamchk	-r.

Usually	require	more	disk	space	than	dynamic-format	tables.

14.1.3.2.	Dynamic	Table	Characteristics

Dynamic	storage	format	is	used	if	a	MyISAM	table	contains	any	variable-length
columns	(VARCHAR,	VARBINARY,	BLOB,	or	TEXT),	or	if	the	table	was	created	with
the	ROW_FORMAT=DYNAMIC	table	option.

Dynamic	format	is	a	little	more	complex	than	static	format	because	each	row	has
a	header	that	indicates	how	long	it	is.	A	row	can	become	fragmented	(stored	in
non-contiguous	pieces)	when	it	is	made	longer	as	a	result	of	an	update.

You	can	use	OPTIMIZE	TABLE	or	myisamchk	-r	to	defragment	a	table.	If	you
have	fixed-length	columns	that	you	access	or	change	frequently	in	a	table	that
also	contains	some	variable-length	columns,	it	might	be	a	good	idea	to	move	the
variable-length	columns	to	other	tables	just	to	avoid	fragmentation.

Dynamic-format	tables	have	these	characteristics:

All	string	columns	are	dynamic	except	those	with	a	length	less	than	four.

Each	row	is	preceded	by	a	bitmap	that	indicates	which	columns	contain	the
empty	string	(for	string	columns)	or	zero	(for	numeric	columns).	Note	that
this	does	not	include	columns	that	contain	NULL	values.	If	a	string	column
has	a	length	of	zero	after	trailing	space	removal,	or	a	numeric	column	has	a
value	of	zero,	it	is	marked	in	the	bitmap	and	not	saved	to	disk.	Non-empty
strings	are	saved	as	a	length	byte	plus	the	string	contents.

Much	less	disk	space	usually	is	required	than	for	fixed-length	tables.

Each	row	uses	only	as	much	space	as	is	required.	However,	if	a	row
becomes	larger,	it	is	split	into	as	many	pieces	as	are	required,	resulting	in
row	fragmentation.	For	example,	if	you	update	a	row	with	information	that
extends	the	row	length,	the	row	becomes	fragmented.	In	this	case,	you	may
have	to	run	OPTIMIZE	TABLE	or	myisamchk	-r	from	time	to	time	to
improve	performance.	Use	myisamchk	-ei	to	obtain	table	statistics.

More	difficult	than	static-format	tables	to	reconstruct	after	a	crash,	because
rows	may	be	fragmented	into	many	pieces	and	links	(fragments)	may	be
missing.

The	expected	row	length	for	dynamic-sized	rows	is	calculated	using	the
following	expression:

3

+	(number	of	columns	+	7)	/	8

+	(number	of	char	columns)

+	(packed	size	of	numeric	columns)

+	(length	of	strings)

+	(number	of	NULL	columns	+	7)	/	8

There	is	a	penalty	of	6	bytes	for	each	link.	A	dynamic	row	is	linked
whenever	an	update	causes	an	enlargement	of	the	row.	Each	new	link	is	at
least	20	bytes,	so	the	next	enlargement	probably	goes	in	the	same	link.	If
not,	another	link	is	created.	You	can	find	the	number	of	links	using
myisamchk	-ed.	All	links	may	be	removed	with	OPTIMIZE	TABLE	or
myisamchk	-r.

14.1.3.3.	Compressed	Table	Characteristics

Compressed	storage	format	is	a	read-only	format	that	is	generated	with	the
myisampack	tool.	Compressed	tables	can	be	uncompressed	with	myisamchk.

Compressed	tables	have	the	following	characteristics:

Compressed	tables	take	very	little	disk	space.	This	minimizes	disk	usage,
which	is	helpful	when	using	slow	disks	(such	as	CD-ROMs).

Each	row	is	compressed	separately,	so	there	is	very	little	access	overhead.

The	header	for	a	row	takes	up	one	to	three	bytes	depending	on	the	biggest
row	in	the	table.	Each	column	is	compressed	differently.	There	is	usually	a
different	Huffman	tree	for	each	column.	Some	of	the	compression	types	are:

Suffix	space	compression.

Prefix	space	compression.

Numbers	with	a	value	of	zero	are	stored	using	one	bit.

If	values	in	an	integer	column	have	a	small	range,	the	column	is	stored
using	the	smallest	possible	type.	For	example,	a	BIGINT	column	(eight
bytes)	can	be	stored	as	a	TINYINT	column	(one	byte)	if	all	its	values
are	in	the	range	from	-128	to	127.

If	a	column	has	only	a	small	set	of	possible	values,	the	data	type	is
converted	to	ENUM.

A	column	may	use	any	combination	of	the	preceding	compression
types.

Can	be	used	for	fixed-length	or	dynamic-length	rows.

Note.		While	a	compressed	table	is	read-only,	and	you	cannot	therefore	update	or
add	rows	in	the	table,	DDL	(Data	Definition	Language)	operations	are	still	valid.
For	example,	you	may	still	use	DROP	to	drop	the	table,	and	TRUNCATE	to	empty
the	table.

14.1.4.	MyISAM	Table	Problems

The	file	format	that	MySQL	uses	to	store	data	has	been	extensively	tested,	but
there	are	always	circumstances	that	may	cause	database	tables	to	become
corrupted.	The	following	discussion	describes	how	this	can	happen	and	how	to
handle	it.

14.1.4.1.	Corrupted	MyISAM	Tables

Even	though	the	MyISAM	table	format	is	very	reliable	(all	changes	to	a	table	made
by	an	SQL	statement	are	written	before	the	statement	returns),	you	can	still	get

corrupted	tables	if	any	of	the	following	events	occur:

The	mysqld	process	is	killed	in	the	middle	of	a	write.

An	unexpected	computer	shutdown	occurs	(for	example,	the	computer	is
turned	off).

Hardware	failures.

You	are	using	an	external	program	(such	as	myisamchk)	to	modify	a	table
that	is	being	modified	by	the	server	at	the	same	time.

A	software	bug	in	the	MySQL	or	MyISAM	code.

Typical	symptoms	of	a	corrupt	table	are:

You	get	the	following	error	while	selecting	data	from	the	table:

Incorrect	key	file	for	table:	'...'.	Try	to	repair	it

Queries	don't	find	rows	in	the	table	or	return	incomplete	results.

You	can	check	the	health	of	a	MyISAM	table	using	the	CHECK	TABLE	statement,
and	repair	a	corrupted	MyISAM	table	with	REPAIR	TABLE.	When	mysqld	is	not
running,	you	can	also	check	or	repair	a	table	with	the	myisamchk	command.
See	Section	13.5.2.3,	“CHECK	TABLE	Syntax”,	Section	13.5.2.6,	“REPAIR	TABLE
Syntax”,	and	Section	8.3,	“myisamchk	—	MyISAM	Table-Maintenance
Utility”.

If	your	tables	become	corrupted	frequently,	you	should	try	to	determine	why	this
is	happening.	The	most	important	thing	to	know	is	whether	the	table	became
corrupted	as	a	result	of	a	server	crash.	You	can	verify	this	easily	by	looking	for	a
recent	restarted	mysqld	message	in	the	error	log.	If	there	is	such	a	message,	it
is	likely	that	table	corruption	is	a	result	of	the	server	dying.	Otherwise,
corruption	may	have	occurred	during	normal	operation.	This	is	a	bug.	You
should	try	to	create	a	reproducible	test	case	that	demonstrates	the	problem.	See
Section	A.4.2,	“What	to	Do	If	MySQL	Keeps	Crashing”,	and	Section	E.1.6,
“Making	a	Test	Case	If	You	Experience	Table	Corruption”.

14.1.4.2.	Problems	from	Tables	Not	Being	Closed	Properly

Each	MyISAM	index	file	(.MYI	file)	has	a	counter	in	the	header	that	can	be	used	to
check	whether	a	table	has	been	closed	properly.	If	you	get	the	following	warning
from	CHECK	TABLE	or	myisamchk,	it	means	that	this	counter	has	gone	out	of
sync:

clients	are	using	or	haven't	closed	the	table	properly

This	warning	doesn't	necessarily	mean	that	the	table	is	corrupted,	but	you	should
at	least	check	the	table.

The	counter	works	as	follows:

The	first	time	a	table	is	updated	in	MySQL,	a	counter	in	the	header	of	the
index	files	is	incremented.

The	counter	is	not	changed	during	further	updates.

When	the	last	instance	of	a	table	is	closed	(because	a	FLUSH	TABLES
operation	was	performed	or	because	there	is	no	room	in	the	table	cache),
the	counter	is	decremented	if	the	table	has	been	updated	at	any	point.

When	you	repair	the	table	or	check	the	table	and	it	is	found	to	be	okay,	the
counter	is	reset	to	zero.

To	avoid	problems	with	interaction	with	other	processes	that	might	check
the	table,	the	counter	is	not	decremented	on	close	if	it	was	zero.

In	other	words,	the	counter	can	become	incorrect	only	under	these	conditions:

A	MyISAM	table	is	copied	without	first	issuing	LOCK	TABLES	and	FLUSH
TABLES.

MySQL	has	crashed	between	an	update	and	the	final	close.	(Note	that	the
table	may	still	be	okay,	because	MySQL	always	issues	writes	for	everything
between	each	statement.)

A	table	was	modified	by	myisamchk	--recover	or	myisamchk	--update-
state	at	the	same	time	that	it	was	in	use	by	mysqld.

Multiple	mysqld	servers	are	using	the	table	and	one	server	performed	a
REPAIR	TABLE	or	CHECK	TABLE	on	the	table	while	it	was	in	use	by	another

server.	In	this	setup,	it	is	safe	to	use	CHECK	TABLE,	although	you	might	get
the	warning	from	other	servers.	However,	REPAIR	TABLE	should	be	avoided
because	when	one	server	replaces	the	data	file	with	a	new	one,	this	is	not
known	to	the	other	servers.

In	general,	it	is	a	bad	idea	to	share	a	data	directory	among	multiple	servers.
See	Section	5.13,	“Running	Multiple	MySQL	Servers	on	the	Same
Machine”,	for	additional	discussion.

14.2.	The	InnoDB	Storage	Engine

14.2.1.	InnoDB	Overview

InnoDB	provides	MySQL	with	a	transaction-safe	(ACID	compliant)	storage	engine
that	has	commit,	rollback,	and	crash	recovery	capabilities.	InnoDB	does	locking
on	the	row	level	and	also	provides	an	Oracle-style	consistent	non-locking	read	in
SELECT	statements.	These	features	increase	multi-user	concurrency	and
performance.	There	is	no	need	for	lock	escalation	in	InnoDB	because	row-level
locks	fit	in	very	little	space.	InnoDB	also	supports	FOREIGN	KEY	constraints.	You
can	freely	mix	InnoDB	tables	with	tables	from	other	MySQL	storage	engines,
even	within	the	same	statement.

InnoDB	has	been	designed	for	maximum	performance	when	processing	large
data	volumes.	Its	CPU	efficiency	is	probably	not	matched	by	any	other	disk-
based	relational	database	engine.

Fully	integrated	with	MySQL	Server,	the	InnoDB	storage	engine	maintains	its
own	buffer	pool	for	caching	data	and	indexes	in	main	memory.	InnoDB	stores	its
tables	and	indexes	in	a	tablespace,	which	may	consist	of	several	files	(or	raw
disk	partitions).	This	is	different	from,	for	example,	MyISAM	tables	where	each
table	is	stored	using	separate	files.	InnoDB	tables	can	be	of	any	size	even	on
operating	systems	where	file	size	is	limited	to	2GB.

InnoDB	is	included	in	binary	distributions	by	default.	The	Windows	Essentials
installer	makes	InnoDB	the	MySQL	default	storage	engine	on	Windows.

InnoDB	is	used	in	production	at	numerous	large	database	sites	requiring	high
performance.	The	famous	Internet	news	site	Slashdot.org	runs	on	InnoDB.
Mytrix,	Inc.	stores	over	1TB	of	data	in	InnoDB,	and	another	site	handles	an
average	load	of	800	inserts/updates	per	second	in	InnoDB.

InnoDB	is	published	under	the	same	GNU	GPL	License	Version	2	(of	June	1991)
as	MySQL.	For	more	information	on	MySQL	licensing,	see
http://www.mysql.com/company/legal/licensing/.

Additional	resources

http://www.mysql.com/company/legal/licensing/

A	forum	dedicated	to	the	InnoDB	storage	engine	is	available	at
http://forums.mysql.com/list.php?22.

14.2.2.	InnoDB	Contact	Information

Contact	information	for	Innobase	Oy,	producer	of	the	InnoDB	engine:

Web	site:	http://www.innodb.com/

Email:	<sales@innodb.com>

Phone:	+358-9-6969	3250	(office)

							+358-40-5617367	(mobile)

Innobase	Oy	Inc.

World	Trade	Center	Helsinki

Aleksanterinkatu	17

P.O.Box	800

00101	Helsinki

Finland

14.2.3.	InnoDB	Configuration

The	InnoDB	storage	engine	is	enabled	by	default.	If	you	don't	want	to	use	InnoDB
tables,	you	can	add	the	skip-innodb	option	to	your	MySQL	option	file.

Note:	InnoDB	provides	MySQL	with	a	transaction-safe	(ACID	compliant)	storage
engine	that	has	commit,	rollback,	and	crash	recovery	capabilities.	However,	it
cannot	do	so	if	the	underlying	operating	system	or	hardware	does	not	work	as
advertised.	Many	operating	systems	or	disk	subsystems	may	delay	or	reorder
write	operations	to	improve	performance.	On	some	operating	systems,	the	very
system	call	that	should	wait	until	all	unwritten	data	for	a	file	has	been	flushed	—
fsync()	—	might	actually	return	before	the	data	has	been	flushed	to	stable
storage.	Because	of	this,	an	operating	system	crash	or	a	power	outage	may
destroy	recently	committed	data,	or	in	the	worst	case,	even	corrupt	the	database
because	of	write	operations	having	been	reordered.	If	data	integrity	is	important
to	you,	you	should	perform	some	“pull-the-plug”	tests	before	using	anything	in
production.	On	Mac	OS	X	10.3	and	up,	InnoDB	uses	a	special	fcntl()	file	flush
method.	Under	Linux,	it	is	advisable	to	disable	the	write-back	cache.

On	ATAPI	hard	disks,	a	command	such	hdparm	-W0	/dev/hda	may	work	to
disable	the	write-back	cache.	Beware	that	some	drives	or	disk	controllers	may
be	unable	to	disable	the	write-back	cache.

http://forums.mysql.com/list.php?22
http://www.innodb.com/
mailto:sales@innodb.com

Two	important	disk-based	resources	managed	by	the	InnoDB	storage	engine	are
its	tablespace	data	files	and	its	log	files.

Note:	If	you	specify	no	InnoDB	configuration	options,	MySQL	creates	an	auto-
extending	10MB	data	file	named	ibdata1	and	two	5MB	log	files	named
ib_logfile0	and	ib_logfile1	in	the	MySQL	data	directory.	To	get	good
performance,	you	should	explicitly	provide	InnoDB	parameters	as	discussed	in
the	following	examples.	Naturally,	you	should	edit	the	settings	to	suit	your
hardware	and	requirements.

The	examples	shown	here	are	representative.	See	Section	14.2.4,	“InnoDB
Startup	Options	and	System	Variables”	for	additional	information	about	InnoDB-
related	configuration	parameters.

To	set	up	the	InnoDB	tablespace	files,	use	the	innodb_data_file_path	option	in
the	[mysqld]	section	of	the	my.cnf	option	file.	On	Windows,	you	can	use
my.ini	instead.	The	value	of	innodb_data_file_path	should	be	a	list	of	one	or
more	data	file	specifications.	If	you	name	more	than	one	data	file,	separate	them
by	semicolon	(‘;’)	characters:

innodb_data_file_path=datafile_spec1[;datafile_spec2]...

For	example,	a	setting	that	explicitly	creates	a	tablespace	having	the	same
characteristics	as	the	default	is	as	follows:

[mysqld]

innodb_data_file_path=ibdata1:10M:autoextend

This	setting	configures	a	single	10MB	data	file	named	ibdata1	that	is	auto-
extending.	No	location	for	the	file	is	given,	so	by	default,	InnoDB	creates	it	in	the
MySQL	data	directory.

Sizes	are	specified	using	M	or	G	suffix	letters	to	indicate	units	of	MB	or	GB.

A	tablespace	containing	a	fixed-size	50MB	data	file	named	ibdata1	and	a	50MB
auto-extending	file	named	ibdata2	in	the	data	directory	can	be	configured	like
this:

[mysqld]

innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

The	full	syntax	for	a	data	file	specification	includes	the	filename,	its	size,	and
several	optional	attributes:

file_name:file_size[:autoextend[:max:max_file_size]]

The	autoextend	attribute	and	those	following	can	be	used	only	for	the	last	data
file	in	the	innodb_data_file_path	line.

If	you	specify	the	autoextend	option	for	the	last	data	file,	InnoDB	extends	the
data	file	if	it	runs	out	of	free	space	in	the	tablespace.	The	increment	is	8MB	at	a
time	by	default.	It	can	be	modified	by	changing	the
innodb_autoextend_increment	system	variable.

If	the	disk	becomes	full,	you	might	want	to	add	another	data	file	on	another	disk.
Instructions	for	reconfiguring	an	existing	tablespace	are	given	in	Section	14.2.7,
“Adding	and	Removing	InnoDB	Data	and	Log	Files”.

InnoDB	is	not	aware	of	the	filesystem	maximum	file	size,	so	be	cautious	on
filesystems	where	the	maximum	file	size	is	a	small	value	such	as	2GB.	To
specify	a	maximum	size	for	an	auto-extending	data	file,	use	the	max	attribute.
The	following	configuration	allows	ibdata1	to	grow	up	to	a	limit	of	500MB:

[mysqld]

innodb_data_file_path=ibdata1:10M:autoextend:max:500M

InnoDB	creates	tablespace	files	in	the	MySQL	data	directory	by	default.	To
specify	a	location	explicitly,	use	the	innodb_data_home_dir	option.	For
example,	to	use	two	files	named	ibdata1	and	ibdata2	but	create	them	in	the
/ibdata	directory,	configure	InnoDB	like	this:

[mysqld]

innodb_data_home_dir	=	/ibdata

innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

Note:	InnoDB	does	not	create	directories,	so	make	sure	that	the	/ibdata
directory	exists	before	you	start	the	server.	This	is	also	true	of	any	log	file
directories	that	you	configure.	Use	the	Unix	or	DOS	mkdir	command	to	create
any	necessary	directories.

InnoDB	forms	the	directory	path	for	each	data	file	by	textually	concatenating	the
value	of	innodb_data_home_dir	to	the	data	file	name,	adding	a	pathname

separator	(slash	or	backslash)	between	values	if	necessary.	If	the
innodb_data_home_dir	option	is	not	mentioned	in	my.cnf	at	all,	the	default
value	is	the	“dot”	directory	./,	which	means	the	MySQL	data	directory.	(The
MySQL	server	changes	its	current	working	directory	to	its	data	directory	when	it
begins	executing.)

If	you	specify	innodb_data_home_dir	as	an	empty	string,	you	can	specify
absolute	paths	for	the	data	files	listed	in	the	innodb_data_file_path	value.	The
following	example	is	equivalent	to	the	preceding	one:

[mysqld]

innodb_data_home_dir	=

innodb_data_file_path=/ibdata/ibdata1:50M;/ibdata/ibdata2:50M:autoextend

A	simple	my.cnf	example.	Suppose	that	you	have	a	computer	with	128MB
RAM	and	one	hard	disk.	The	following	example	shows	possible	configuration
parameters	in	my.cnf	or	my.ini	for	InnoDB,	including	the	autoextend	attribute.
The	example	suits	most	users,	both	on	Unix	and	Windows,	who	do	not	want	to
distribute	InnoDB	data	files	and	log	files	onto	several	disks.	It	creates	an	auto-
extending	data	file	ibdata1	and	two	InnoDB	log	files	ib_logfile0	and
ib_logfile1	in	the	MySQL	data	directory.	Also,	the	small	archived	InnoDB	log
file	ib_arch_log_0000000000	that	InnoDB	creates	automatically	ends	up	in	the
data	directory.

[mysqld]

#	You	can	write	your	other	MySQL	server	options	here

#	...

#	Data	files	must	be	able	to	hold	your	data	and	indexes.

#	Make	sure	that	you	have	enough	free	disk	space.

innodb_data_file_path	=	ibdata1:10M:autoextend

#

#	Set	buffer	pool	size	to	50-80%	of	your	computer's	memory

innodb_buffer_pool_size=70M

innodb_additional_mem_pool_size=10M

#

#	Set	the	log	file	size	to	about	25%	of	the	buffer	pool	size

innodb_log_file_size=20M

innodb_log_buffer_size=8M

#

innodb_flush_log_at_trx_commit=1

Make	sure	that	the	MySQL	server	has	the	proper	access	rights	to	create	files	in
the	data	directory.	More	generally,	the	server	must	have	access	rights	in	any

directory	where	it	needs	to	create	data	files	or	log	files.

Note	that	data	files	must	be	less	than	2GB	in	some	filesystems.	The	combined
size	of	the	log	files	must	be	less	than	4GB.	The	combined	size	of	data	files	must
be	at	least	10MB.

When	you	create	an	InnoDB	tablespace	for	the	first	time,	it	is	best	that	you	start
the	MySQL	server	from	the	command	prompt.	InnoDB	then	prints	the
information	about	the	database	creation	to	the	screen,	so	you	can	see	what	is
happening.	For	example,	on	Windows,	if	mysqld	is	located	in	C:\Program
Files\MySQL\MySQL	Server	5.0\bin,	you	can	start	it	like	this:

C:\>	"C:\Program	Files\MySQL\MySQL	Server	5.0\bin\mysqld"	--console

If	you	do	not	send	server	output	to	the	screen,	check	the	server's	error	log	to	see
what	InnoDB	prints	during	the	startup	process.

See	Section	14.2.5,	“Creating	the	InnoDB	Tablespace”,	for	an	example	of	what
the	information	displayed	by	InnoDB	should	look	like.

You	can	place	InnoDB	options	in	the	[mysqld]	group	of	any	option	file	that	your
server	reads	when	it	starts.	The	locations	for	option	files	are	described	in
Section	4.3.2,	“Using	Option	Files”.

If	you	installed	MySQL	on	Windows	using	the	installation	and	configuration
wizards,	the	option	file	will	be	the	my.ini	file	located	in	your	MySQL
installation	directory.	See	Section	2.3.4.14,	“The	Location	of	the	my.ini	File”.

If	your	PC	uses	a	boot	loader	where	the	C:	drive	is	not	the	boot	drive,	your	only
option	is	to	use	the	my.ini	file	in	your	Windows	directory	(typically	C:\WINDOWS
or	C:\WINNT).	You	can	use	the	SET	command	at	the	command	prompt	in	a
console	window	to	print	the	value	of	WINDIR:

C:\>	SET	WINDIR

windir=C:\WINDOWS

If	you	want	to	make	sure	that	mysqld	reads	options	only	from	a	specific	file,	you
can	use	the	--defaults-file	option	as	the	first	option	on	the	command	line
when	starting	the	server:

mysqld	--defaults-file=your_path_to_my_cnf

An	advanced	my.cnf	example.	Suppose	that	you	have	a	Linux	computer	with
2GB	RAM	and	three	60GB	hard	disks	at	directory	paths	/,	/dr2	and	/dr3.	The
following	example	shows	possible	configuration	parameters	in	my.cnf	for
InnoDB.

[mysqld]

#	You	can	write	your	other	MySQL	server	options	here

#	...

innodb_data_home_dir	=

#

#	Data	files	must	be	able	to	hold	your	data	and	indexes

innodb_data_file_path	=	/ibdata/ibdata1:2000M;/dr2/ibdata/ibdata2:2000M:autoextend

#

#	Set	buffer	pool	size	to	50-80%	of	your	computer's	memory,

#	but	make	sure	on	Linux	x86	total	memory	usage	is	<	2GB

innodb_buffer_pool_size=1G

innodb_additional_mem_pool_size=20M

innodb_log_group_home_dir	=	/dr3/iblogs

#

innodb_log_files_in_group	=	2

#

#	Set	the	log	file	size	to	about	25%	of	the	buffer	pool	size

innodb_log_file_size=250M

innodb_log_buffer_size=8M

#

innodb_flush_log_at_trx_commit=1

innodb_lock_wait_timeout=50

#

#	Uncomment	the	next	lines	if	you	want	to	use	them

#innodb_thread_concurrency=5

In	some	cases,	database	performance	improves	the	if	all	data	is	not	placed	on	the
same	physical	disk.	Putting	log	files	on	a	different	disk	from	data	is	very	often
beneficial	for	performance.	The	example	illustrates	how	to	do	this.	It	places	the
two	data	files	on	different	disks	and	places	the	log	files	on	the	third	disk.	InnoDB
fills	the	tablespace	beginning	with	the	first	data	file.	You	can	also	use	raw	disk
partitions	(raw	devices)	as	InnoDB	data	files,	which	may	speed	up	I/O.	See
Section	14.2.3.2,	“Using	Raw	Devices	for	the	Shared	Tablespace”.

Warning:	On	32-bit	GNU/Linux	x86,	you	must	be	careful	not	to	set	memory
usage	too	high.	glibc	may	allow	the	process	heap	to	grow	over	thread	stacks,
which	crashes	your	server.	It	is	a	risk	if	the	value	of	the	following	expression	is
close	to	or	exceeds	2GB:

innodb_buffer_pool_size

+	key_buffer_size

+	max_connections*(sort_buffer_size+read_buffer_size+binlog_cache_size)

+	max_connections*2MB

Each	thread	uses	a	stack	(often	2MB,	but	only	256KB	in	MySQL	AB	binaries)
and	in	the	worst	case	also	uses	sort_buffer_size	+	read_buffer_size
additional	memory.

By	compiling	MySQL	yourself,	you	can	use	up	to	64GB	of	physical	memory	in
32-bit	Windows.	See	the	description	for	innodb_buffer_pool_awe_mem_mb	in
Section	14.2.4,	“InnoDB	Startup	Options	and	System	Variables”.

How	to	tune	other	mysqld	server	parameters?	The	following	values	are	typical
and	suit	most	users:

[mysqld]

skip-external-locking

max_connections=200

read_buffer_size=1M

sort_buffer_size=1M

#

#	Set	key_buffer	to	5	-	50%	of	your	RAM	depending	on	how	much

#	you	use	MyISAM	tables,	but	keep	key_buffer_size	+	InnoDB

#	buffer	pool	size	<	80%	of	your	RAM

key_buffer_size=value

14.2.3.1.	Using	Per-Table	Tablespaces

You	can	store	each	InnoDB	table	and	its	indexes	in	its	own	file.	This	feature	is
called	“multiple	tablespaces”	because	in	effect	each	table	has	its	own	tablespace.

Using	multiple	tablespaces	can	be	beneficial	to	users	who	want	to	move	specific
tables	to	separate	physical	disks	or	who	wish	to	restore	backups	of	single	tables
quickly	without	interrupting	the	use	of	the	remaining	InnoDB	tables.

You	can	enable	multiple	tablespaces	by	adding	this	line	to	the	[mysqld]	section
of	my.cnf:

[mysqld]

innodb_file_per_table

After	restarting	the	server,	InnoDB	stores	each	newly	created	table	into	its	own
file	tbl_name.ibd	in	the	database	directory	where	the	table	belongs.	This	is

similar	to	what	the	MyISAM	storage	engine	does,	but	MyISAM	divides	the	table	into
a	data	file	tbl_name.MYD	and	the	index	file	tbl_name.MYI.	For	InnoDB,	the
data	and	the	indexes	are	stored	together	in	the	.ibd	file.	The	tbl_name.frm	file	is
still	created	as	usual.

If	you	remove	the	innodb_file_per_table	line	from	my.cnf	and	restart	the
server,	InnoDB	creates	tables	inside	the	shared	tablespace	files	again.

innodb_file_per_table	affects	only	table	creation,	not	access	to	existing
tables.	If	you	start	the	server	with	this	option,	new	tables	are	created	using	.ibd
files,	but	you	can	still	access	tables	that	exist	in	the	shared	tablespace.	If	you
remove	the	option	and	restart	the	server,	new	tables	are	created	in	the	shared
tablespace,	but	you	can	still	access	any	tables	that	were	created	using	multiple
tablespaces.

Note:	InnoDB	always	needs	the	shared	tablespace	because	it	puts	its	internal	data
dictionary	and	undo	logs	there.	The	.ibd	files	are	not	sufficient	for	InnoDB	to
operate.

Note:	You	cannot	freely	move	.ibd	files	between	database	directories	as	you	can
with	MyISAM	table	files.	This	is	because	the	table	definition	that	is	stored	in	the
InnoDB	shared	tablespace	includes	the	database	name,	and	because	InnoDB	must
preserve	the	consistency	of	transaction	IDs	and	log	sequence	numbers.

To	move	an	.ibd	file	and	the	associated	table	from	one	database	to	another,	use
a	RENAME	TABLE	statement:

RENAME	TABLE	db1.tbl_name	TO	db2.tbl_name;

If	you	have	a	“clean”	backup	of	an	.ibd	file,	you	can	restore	it	to	the	MySQL
installation	from	which	it	originated	as	follows:

1.	 Issue	this	ALTER	TABLE	statement:

ALTER	TABLE	tbl_name	DISCARD	TABLESPACE;

Caution:	This	statement	deletes	the	current	.ibd	file.

2.	 Put	the	backup	.ibd	file	back	in	the	proper	database	directory.

3.	 Issue	this	ALTER	TABLE	statement:

ALTER	TABLE	tbl_name	IMPORT	TABLESPACE;

In	this	context,	a	“clean”	.ibd	file	backup	means:

There	are	no	uncommitted	modifications	by	transactions	in	the	.ibd	file.

There	are	no	unmerged	insert	buffer	entries	in	the	.ibd	file.

Purge	has	removed	all	delete-marked	index	records	from	the	.ibd	file.

mysqld	has	flushed	all	modified	pages	of	the	.ibd	file	from	the	buffer	pool
to	the	file.

You	can	make	a	clean	backup	.ibd	file	using	the	following	method:

1.	 Stop	all	activity	from	the	mysqld	server	and	commit	all	transactions.

2.	 Wait	until	SHOW	ENGINE	INNODB	STATUS	shows	that	there	are	no	active
transactions	in	the	database,	and	the	main	thread	status	of	InnoDB	is
Waiting	for	server	activity.	Then	you	can	make	a	copy	of	the	.ibd
file.

Another	method	for	making	a	clean	copy	of	an	.ibd	file	is	to	use	the	commercial
InnoDB	Hot	Backup	tool:

1.	 Use	InnoDB	Hot	Backup	to	back	up	the	InnoDB	installation.

2.	 Start	a	second	mysqld	server	on	the	backup	and	let	it	clean	up	the	.ibd	files
in	the	backup.

14.2.3.2.	Using	Raw	Devices	for	the	Shared	Tablespace

You	can	use	raw	disk	partitions	as	data	files	in	the	shared	tablespace.	By	using	a
raw	disk,	you	can	perform	non-buffered	I/O	on	Windows	and	on	some	Unix
systems	without	filesystem	overhead,	which	may	improve	performance.

When	you	create	a	new	data	file,	you	must	put	the	keyword	newraw	immediately
after	the	data	file	size	in	innodb_data_file_path.	The	partition	must	be	at	least
as	large	as	the	size	that	you	specify.	Note	that	1MB	in	InnoDB	is	1024	×	1024
bytes,	whereas	1MB	in	disk	specifications	usually	means	1,000,000	bytes.

[mysqld]

innodb_data_home_dir=

innodb_data_file_path=/dev/hdd1:3Gnewraw;/dev/hdd2:2Gnewraw

The	next	time	you	start	the	server,	InnoDB	notices	the	newraw	keyword	and
initializes	the	new	partition.	However,	do	not	create	or	change	any	InnoDB	tables
yet.	Otherwise,	when	you	next	restart	the	server,	InnoDB	reinitializes	the	partition
and	your	changes	are	lost.	(As	a	safety	measure	InnoDB	prevents	users	from
modifying	data	when	any	partition	with	newraw	is	specified.)

After	InnoDB	has	initialized	the	new	partition,	stop	the	server,	change	newraw	in
the	data	file	specification	to	raw:

[mysqld]

innodb_data_home_dir=

innodb_data_file_path=/dev/hdd1:5Graw;/dev/hdd2:2Graw

Then	restart	the	server	and	InnoDB	allows	changes	to	be	made.

On	Windows,	you	can	allocate	a	disk	partition	as	a	data	file	like	this:

[mysqld]

innodb_data_home_dir=

innodb_data_file_path=//./D::10Gnewraw

The	//./	corresponds	to	the	Windows	syntax	of	\\.\	for	accessing	physical
drives.

When	you	use	raw	disk	partitions,	be	sure	that	they	have	permissions	that	allow
read	and	write	access	by	the	account	used	for	running	the	MySQL	server.

14.2.4.	InnoDB	Startup	Options	and	System	Variables

This	section	describes	the	InnoDB-related	command	options	and	system
variables.	System	variables	that	are	true	or	false	can	be	enabled	at	server	startup
by	naming	them,	or	disabled	by	using	a	skip-	prefix.	For	example,	to	enable	or
disable	InnoDB	checksums,	you	can	use	--innodb_checksums	or	--skip-
innodb_checksums	on	the	command	line,	or	innodb_checksums	or	skip-
innodb_checksums	in	an	option	file.	System	variables	that	take	a	numeric	value
can	be	specified	as	--var_name=value	on	the	command	line	or	as
var_name=value	in	option	files.	For	more	information	on	specifying	options	and
system	variables,	see	Section	4.3,	“Specifying	Program	Options”.	Many	of	the

system	variables	can	be	changed	at	runtime	(see	Section	5.2.3.2,	“Dynamic
System	Variables”).

InnoDB	command	options:

	--innodb

Enables	the	InnoDB	storage	engine,	if	the	server	was	compiled	with	InnoDB
support.	Use	--skip-innodb	to	disable	InnoDB.

	--innodb_status_file

Causes	InnoDB	to	create	a	file	named	<datadir>/innodb_status.<pid>	in	the
MySQL	data	directory.	InnoDB	periodically	writes	the	output	of	SHOW
ENGINE	INNODB	STATUS	to	this	file.

InnoDB	system	variables:

innodb_additional_mem_pool_size

The	size	in	bytes	of	a	memory	pool	InnoDB	uses	to	store	data	dictionary
information	and	other	internal	data	structures.	The	more	tables	you	have	in
your	application,	the	more	memory	you	need	to	allocate	here.	If	InnoDB
runs	out	of	memory	in	this	pool,	it	starts	to	allocate	memory	from	the
operating	system	and	writes	warning	messages	to	the	MySQL	error	log.
The	default	value	is	1MB.

innodb_autoextend_increment

The	increment	size	(in	MB)	for	extending	the	size	of	an	auto-extending
tablespace	when	it	becomes	full.	The	default	value	is	8.

innodb_buffer_pool_awe_mem_mb

The	size	of	the	buffer	pool	(in	MB),	if	it	is	placed	in	the	AWE	memory.
This	is	relevant	only	in	32-bit	Windows.	If	your	32-bit	Windows	operating
system	supports	more	than	4GB	memory,	using	so-called	“Address
Windowing	Extensions,”	you	can	allocate	the	InnoDB	buffer	pool	into	the
AWE	physical	memory	using	this	variable.	The	maximum	possible	value
for	this	variable	is	63000.	If	it	is	greater	than	0,	innodb_buffer_pool_size

is	the	window	in	the	32-bit	address	space	of	mysqld	where	InnoDB	maps
that	AWE	memory.	A	good	value	for	innodb_buffer_pool_size	is	500MB.

To	take	advantage	of	AWE	memory,	you	will	need	to	recompile	MySQL
yourself.	The	current	project	settings	needed	for	doing	this	can	be	found	in
the	innobase/os/os0proj.c	source	file.

innodb_buffer_pool_size

The	size	in	bytes	of	the	memory	buffer	InnoDB	uses	to	cache	data	and
indexes	of	its	tables.	The	larger	you	set	this	value,	the	less	disk	I/O	is
needed	to	access	data	in	tables.	On	a	dedicated	database	server,	you	may	set
this	to	up	to	80%	of	the	machine	physical	memory	size.	However,	do	not	set
it	too	large	because	competition	for	physical	memory	might	cause	paging	in
the	operating	system.

innodb_checksums

InnoDB	can	use	checksum	validation	on	all	pages	read	from	the	disk	to
ensure	extra	fault	tolerance	against	broken	hardware	or	data	files.	This
validation	is	enabled	by	default.	However,	under	some	rare	circumstances
(such	as	when	running	benchmarks)	this	extra	safety	feature	is	unneeded
and	can	be	disabled	with	--skip-innodb_checksums.	This	variable	was
added	in	MySQL	5.0.3.

innodb_commit_concurrency

The	number	of	threads	that	can	commit	at	the	same	time.	A	value	of	0
disables	concurrency	control.	This	variable	was	added	in	MySQL	5.0.12.

innodb_concurrency_tickets

The	number	of	threads	that	can	enter	InnoDB	concurrently	is	determined	by
the	innodb_thread_concurrency	variable.	A	thread	is	placed	in	a	queue
when	it	tries	to	enter	InnoDB	if	the	number	of	threads	has	already	reached
the	concurrency	limit.	When	a	thread	is	allowed	to	enter	InnoDB,	it	is	given
a	number	of	“free	tickets”	equal	to	the	value	of
innodb_concurrency_tickets,	and	the	thread	can	enter	and	leave	InnoDB
freely	until	it	has	used	up	its	tickets.	After	that	point,	the	thread	again
becomes	subject	to	the	concurrency	check	(and	possible	queuing)	the	next

time	it	tries	to	enter	InnoDB.	This	variable	was	added	in	MySQL	5.0.3.

innodb_data_file_path

The	paths	to	individual	data	files	and	their	sizes.	The	full	directory	path	to
each	data	file	is	formed	by	concatenating	innodb_data_home_dir	to	each
path	specified	here.	The	file	sizes	are	specified	in	MB	or	GB	(1024MB)	by
appending	M	or	G	to	the	size	value.	The	sum	of	the	sizes	of	the	files	must	be
at	least	10MB.	If	you	do	not	specify	innodb_data_file_path,	the	default
behavior	is	to	create	a	single	10MB	auto-extending	data	file	named
ibdata1.	The	size	limit	of	individual	files	is	determined	by	your	operating
system.	You	can	set	the	file	size	to	more	than	4GB	on	those	operating
systems	that	support	big	files.	You	can	also	use	raw	disk	partitions	as	data
files.	See	Section	14.2.3.2,	“Using	Raw	Devices	for	the	Shared
Tablespace”.

innodb_data_home_dir

The	common	part	of	the	directory	path	for	all	InnoDB	data	files.	If	you	do
not	set	this	value,	the	default	is	the	MySQL	data	directory.	You	can	specify
the	value	as	an	empty	string,	in	which	case	you	can	use	absolute	file	paths
in	innodb_data_file_path.

innodb_doublewrite

By	default,	InnoDB	stores	all	data	twice,	first	to	the	doublewrite	buffer,	and
then	to	the	actual	data	files.	This	variable	is	enabled	by	default.	It	can	be
turned	off	with	--skip-innodb_doublewrite	for	benchmarks	or	cases
when	top	performance	is	needed	rather	than	concern	for	data	integrity	or
possible	failures.	This	variable	was	added	in	MySQL	5.0.3.

innodb_fast_shutdown

If	you	set	this	variable	to	0,	InnoDB	does	a	full	purge	and	an	insert	buffer
merge	before	a	shutdown.	These	operations	can	take	minutes,	or	even	hours
in	extreme	cases.	If	you	set	this	variable	to	1,	InnoDB	skips	these	operations
at	shutdown.	The	default	value	is	1.	If	you	set	it	to	2,	InnoDB	will	just	flush
its	logs	and	then	shut	down	cold,	as	if	MySQL	had	crashed;	no	committed
transaction	will	be	lost,	but	crash	recovery	will	be	done	at	the	next	startup.
The	value	of	2	can	be	used	as	of	MySQL	5.0.5,	except	that	it	cannot	be

used	on	NetWare.

innodb_file_io_threads

The	number	of	file	I/O	threads	in	InnoDB.	Normally,	this	should	be	left	at
the	default	value	of	4,	but	disk	I/O	on	Windows	may	benefit	from	a	larger
number.	On	Unix,	increasing	the	number	has	no	effect;	InnoDB	always	uses
the	default	value.

innodb_file_per_table

If	this	variable	is	enabled,	InnoDB	creates	each	new	table	using	its	own	.ibd
file	for	storing	data	and	indexes,	rather	than	in	the	shared	tablespace.	The
default	is	to	create	tables	in	the	shared	tablespace.	See	Section	14.2.3.1,
“Using	Per-Table	Tablespaces”.

innodb_flush_log_at_trx_commit

When	innodb_flush_log_at_trx_commit	is	set	to	0,	the	log	buffer	is
written	out	to	the	log	file	once	per	second	and	the	flush	to	disk	operation	is
performed	on	the	log	file,	but	nothing	is	done	at	a	transaction	commit.
When	this	value	is	1	(the	default),	the	log	buffer	is	written	out	to	the	log	file
at	each	transaction	commit	and	the	flush	to	disk	operation	is	performed	on
the	log	file.	When	set	to	2,	the	log	buffer	is	written	out	to	the	file	at	each
commit,	but	the	flush	to	disk	operation	is	not	performed	on	it.	However,	the
flushing	on	the	log	file	takes	place	once	per	second	also	when	the	value	is
2.	Note	that	the	once-per-second	flushing	is	not	100%	guaranteed	to	happen
every	second,	due	to	process	scheduling	issues.

The	default	value	of	this	variable	is	1,	which	is	the	value	that	is	required	for
ACID	compliance.	You	can	achieve	better	performance	by	setting	the	value
different	from	1,	but	then	you	can	lose	at	most	one	second	worth	of
transactions	in	a	crash.	If	you	set	the	value	to	0,	then	any	mysqld	process
crash	can	erase	the	last	second	of	transactions.	If	you	set	the	value	to	2,	then
only	an	operating	system	crash	or	a	power	outage	can	erase	the	last	second
of	transactions.	However,	InnoDB's	crash	recovery	is	not	affected	and	thus
crash	recovery	does	work	regardless	of	the	value.	Note	that	many	operating
systems	and	some	disk	hardware	fool	the	flush-to-disk	operation.	They	may
tell	mysqld	that	the	flush	has	taken	place,	even	though	it	has	not.	Then	the
durability	of	transactions	is	not	guaranteed	even	with	the	setting	1,	and	in

the	worst	case	a	power	outage	can	even	corrupt	the	InnoDB	database.	Using
a	battery-backed	disk	cache	in	the	SCSI	disk	controller	or	in	the	disk	itself
speeds	up	file	flushes,	and	makes	the	operation	safer.	You	can	also	try	using
the	Unix	command	hdparm	to	disable	the	caching	of	disk	writes	in
hardware	caches,	or	use	some	other	command	specific	to	the	hardware
vendor.

innodb_flush_method

If	set	to	fdatasync	(the	default),	InnoDB	uses	fsync()	to	flush	both	the	data
and	log	files.	If	set	to	O_DSYNC,	InnoDB	uses	O_SYNC	to	open	and	flush	the
log	files,	but	uses	fsync()	to	flush	the	data	files.	If	O_DIRECT	is	specified
(available	on	some	GNU/Linux	versions),	InnoDB	uses	O_DIRECT	to	open
the	data	files,	and	uses	fsync()	to	flush	both	the	data	and	log	files.	Note
that	InnoDB	uses	fsync()	instead	of	fdatasync(),	and	it	does	not	use
O_DSYNC	by	default	because	there	have	been	problems	with	it	on	many
varieties	of	Unix.	This	variable	is	relevant	only	for	Unix.	On	Windows,	the
flush	method	is	always	async_unbuffered	and	cannot	be	changed.

innodb_force_recovery

The	crash	recovery	mode.	Warning:	This	variable	should	be	set	greater	than
0	only	in	an	emergency	situation	when	you	want	to	dump	your	tables	from
a	corrupt	database!	Possible	values	are	from	1	to	6.	The	meanings	of	these
values	are	described	in	Section	14.2.8.1,	“Forcing	InnoDB	Recovery”.	As	a
safety	measure,	InnoDB	prevents	any	changes	to	its	data	when	this	variable
is	greater	than	0.

innodb_lock_wait_timeout

The	timeout	in	seconds	an	InnoDB	transaction	may	wait	for	a	lock	before
being	rolled	back.	InnoDB	automatically	detects	transaction	deadlocks	in	its
own	lock	table	and	rolls	back	the	transaction.	InnoDB	notices	locks	set	using
the	LOCK	TABLES	statement.	The	default	is	50	seconds.

Note:	For	the	greatest	possible	durability	and	consistency	in	a	replication
setup	using	InnoDB	with	transactions,	you	should	use
innodb_flush_log_at_trx_commit=1,	sync_binlog=1,	and,	before
MySQL	5.0.3,	innodb_safe_binlog	in	your	master	server	my.cnf	file.
(innodb_safe_binlog	is	not	needed	from	5.0.3	on.)

innodb_locks_unsafe_for_binlog

This	variable	controls	next-key	locking	in	InnoDB	searches	and	index	scans.
By	default,	this	variable	is	0	(disabled),	which	means	that	next-key	locking
is	enabled.

Normally,	InnoDB	uses	an	algorithm	called	next-key	locking.	InnoDB
performs	row-level	locking	in	such	a	way	that	when	it	searches	or	scans	a
table	index,	it	sets	shared	or	exclusive	locks	on	any	index	records	it
encounters.	Thus,	the	row-level	locks	are	actually	index	record	locks.	The
locks	that	InnoDB	sets	on	index	records	also	affect	the	“gap”	preceding	that
index	record.	If	a	user	has	a	shared	or	exclusive	lock	on	record	R	in	an
index,	another	user	cannot	insert	a	new	index	record	immediately	before	R
in	the	order	of	the	index.	Enabling	this	variable	causes	InnoDB	not	to	use
next-key	locking	in	searches	or	index	scans.	Next-key	locking	is	still	used
to	ensure	foreign	key	constraints	and	duplicate	key	checking.	Note	that
enabling	this	variable	may	cause	phantom	problems:	Suppose	that	you	want
to	read	and	lock	all	children	from	the	child	table	with	an	identifier	value
larger	than	100,	with	the	intention	of	updating	some	column	in	the	selected
rows	later:

SELECT	*	FROM	child	WHERE	id	>	100	FOR	UPDATE;

Suppose	that	there	is	an	index	on	the	id	column.	The	query	scans	that	index
starting	from	the	first	record	where	id	is	greater	than	100.	If	the	locks	set	on
the	index	records	do	not	lock	out	inserts	made	in	the	gaps,	another	client
can	insert	a	new	row	into	the	table.	If	you	execute	the	same	SELECT	within
the	same	transaction,	you	see	a	new	row	in	the	result	set	returned	by	the
query.	This	also	means	that	if	new	items	are	added	to	the	database,	InnoDB
does	not	guarantee	serializability.	Therefore,	if	this	variable	is	enabled
InnoDB	guarantees	at	most	isolation	level	READ	COMMITTED.	(Conflict
serializability	is	still	guaranteed.)

Starting	from	MySQL	5.0.2,	this	option	is	even	more	unsafe.	InnoDB	in	an
UPDATE	or	a	DELETE	only	locks	rows	that	it	updates	or	deletes.	This	greatly
reduces	the	probability	of	deadlocks,	but	they	can	happen.	Note	that
enabling	this	variable	still	does	not	allow	operations	such	as	UPDATE	to
overtake	other	similar	operations	(such	as	another	UPDATE)	even	in	the	case
when	they	affect	different	rows.	Consider	the	following	example,	beginning
with	this	table:

CREATE	TABLE	A(A	INT	NOT	NULL,	B	INT)	ENGINE	=	InnoDB;

INSERT	INTO	A	VALUES	(1,2),(2,3),(3,2),(4,3),(5,2);

COMMIT;

Suppose	that	one	client	executes	these	statements:

SET	AUTOCOMMIT	=	0;

UPDATE	A	SET	B	=	5	WHERE	B	=	3;

Then	suppose	that	another	client	executes	these	statements	following	those
of	the	first	client:

SET	AUTOCOMMIT	=	0;

UPDATE	A	SET	B	=	4	WHERE	B	=	2;

In	this	case,	the	second	UPDATE	must	wait	for	a	commit	or	rollback	of	the
first	UPDATE.	The	first	UPDATE	has	an	exclusive	lock	on	row	(2,3),	and	the
second	UPDATE	while	scanning	rows	also	tries	to	acquire	an	exclusive	lock
for	the	same	row,	which	it	cannot	have.	This	is	because	UPDATE	two	first
acquires	an	exclusive	lock	on	a	row	and	then	determines	whether	the	row
belongs	to	the	result	set.	If	not,	it	releases	the	unnecessary	lock,	when	the
innodb_locks_unsafe_for_binlog	variable	is	enabled.

Therefore,	InnoDB	executes	UPDATE	one	as	follows:

x-lock(1,2)

unlock(1,2)

x-lock(2,3)

update(2,3)	to	(2,5)

x-lock(3,2)

unlock(3,2)

x-lock(4,3)

update(4,3)	to	(4,5)

x-lock(5,2)

unlock(5,2)

InnoDB	executes	UPDATE	two	as	follows:

x-lock(1,2)

update(1,2)	to	(1,4)

x-lock(2,3)	-	wait	for	query	one	to	commit	or	rollback

innodb_log_arch_dir

The	directory	where	fully	written	log	files	would	be	archived	if	we	used	log
archiving.	If	used,	the	value	of	this	variable	should	be	set	the	same	as
innodb_log_group_home_dir.	However,	it	is	not	required.

innodb_log_archive

Whether	to	log	InnoDB	archive	files.	This	variable	is	present	for	historical
reasons,	but	is	unused.	Recovery	from	a	backup	is	done	by	MySQL	using
its	own	log	files,	so	there	is	no	need	to	archive	InnoDB	log	files.	The	default
for	this	variable	is	0.

innodb_log_buffer_size

The	size	in	bytes	of	the	buffer	that	InnoDB	uses	to	write	to	the	log	files	on
disk.	Sensible	values	range	from	1MB	to	8MB.	The	default	is	1MB.	A	large
log	buffer	allows	large	transactions	to	run	without	a	need	to	write	the	log	to
disk	before	the	transactions	commit.	Thus,	if	you	have	big	transactions,
making	the	log	buffer	larger	saves	disk	I/O.

innodb_log_file_size

The	size	in	bytes	of	each	log	file	in	a	log	group.	The	combined	size	of	log
files	must	be	less	than	4GB	on	32-bit	computers.	The	default	is	5MB.
Sensible	values	range	from	1MB	to	1/N-th	of	the	size	of	the	buffer	pool,
where	N	is	the	number	of	log	files	in	the	group.	The	larger	the	value,	the	less
checkpoint	flush	activity	is	needed	in	the	buffer	pool,	saving	disk	I/O.	But
larger	log	files	also	mean	that	recovery	is	slower	in	case	of	a	crash.

innodb_log_files_in_group

The	number	of	log	files	in	the	log	group.	InnoDB	writes	to	the	files	in	a
circular	fashion.	The	default	(and	recommended)	is	2.

innodb_log_group_home_dir

The	directory	path	to	the	InnoDB	log	files.	It	must	have	the	same	value	as
innodb_log_arch_dir.	If	you	do	not	specify	any	InnoDB	log	variables,	the
default	is	to	create	two	5MB	files	names	ib_logfile0	and	ib_logfile1	in
the	MySQL	data	directory.

innodb_max_dirty_pages_pct

This	is	an	integer	in	the	range	from	0	to	100.	The	default	is	90.	The	main
thread	in	InnoDB	tries	to	write	pages	from	the	buffer	pool	so	that	the
percentage	of	dirty	(not	yet	written)	pages	will	not	exceed	this	value.

innodb_max_purge_lag

This	variable	controls	how	to	delay	INSERT,	UPDATE	and	DELETE	operations
when	the	purge	operations	are	lagging	(see	Section	14.2.12,
“Implementation	of	Multi-Versioning”).	The	default	value	of	this	variable	is
0,	meaning	that	there	are	no	delays.

The	InnoDB	transaction	system	maintains	a	list	of	transactions	that	have
delete-marked	index	records	by	UPDATE	or	DELETE	operations.	Let	the	length
of	this	list	be	purge_lag.	When	purge_lag	exceeds
innodb_max_purge_lag,	each	INSERT,	UPDATE	and	DELETE	operation	is
delayed	by	((purge_lag/innodb_max_purge_lag)×10)–5	milliseconds.	The
delay	is	computed	in	the	beginning	of	a	purge	batch,	every	ten	seconds.	The
operations	are	not	delayed	if	purge	cannot	run	because	of	an	old	consistent
read	view	that	could	see	the	rows	to	be	purged.

A	typical	setting	for	a	problematic	workload	might	be	1	million,	assuming
that	our	transactions	are	small,	only	100	bytes	in	size,	and	we	can	allow
100MB	of	unpurged	rows	in	our	tables.

innodb_mirrored_log_groups

The	number	of	identical	copies	of	log	groups	to	keep	for	the	database.
Currently,	this	should	be	set	to	1.

innodb_open_files

This	variable	is	relevant	only	if	you	use	multiple	tablespaces	in	InnoDB.	It
specifies	the	maximum	number	of	.ibd	files	that	InnoDB	can	keep	open	at
one	time.	The	minimum	value	is	10.	The	default	is	300.

The	file	descriptors	used	for	.ibd	files	are	for	InnoDB	only.	They	are
independent	of	those	specified	by	the	--open-files-limit	server	option,
and	do	not	affect	the	operation	of	the	table	cache.

innodb_safe_binlog

Adds	consistency	guarantees	between	the	content	of	InnoDB	tables	and	the
binary	log.	See	Section	5.12.3,	“The	Binary	Log”.	This	variable	was
removed	in	MySQL	5.0.3,	having	been	made	obsolete	by	the	introduction
of	XA	transaction	support.

innodb_support_xa

When	set	to	ON	or	1	(the	default),	this	variable	enables	InnoDB	support	for
two-phase	commit	in	XA	transactions.	Enabling	innodb_support_xa	causes
an	extra	disk	flush	for	transaction	preparation.	If	you	don't	care	about	using
XA,	you	can	disable	this	variable	by	setting	it	to	OFF	or	0	to	reduce	the
number	of	disk	flushes	and	get	better	InnoDB	performance.	This	variable
was	added	in	MySQL	5.0.3.

innodb_sync_spin_loops

The	number	of	times	a	thread	waits	for	an	InnoDB	mutex	to	be	freed	before
the	thread	is	suspended.	This	variable	was	added	in	MySQL	5.0.3.

innodb_table_locks

InnoDB	honors	LOCK	TABLES;	MySQL	does	not	return	from	LOCK	TABLE	..
WRITE	until	all	other	threads	have	released	all	their	locks	to	the	table.	The
default	value	is	1,	which	means	that	LOCK	TABLES	causes	InnoDB	to	lock	a
table	internally.	In	applications	using	AUTOCOMMIT=1,	InnoDB's	internal	table
locks	can	cause	deadlocks.	You	can	set	innodb_table_locks=0	in	the
server	option	file	to	remove	that	problem.

innodb_thread_concurrency

InnoDB	tries	to	keep	the	number	of	operating	system	threads	concurrently
inside	InnoDB	less	than	or	equal	to	the	limit	given	by	this	variable.	If	you
have	performance	issues,	and	SHOW	ENGINE	INNODB	STATUS	reveals	many
threads	waiting	for	semaphores,	you	may	have	thread	“thrashing”	and
should	try	setting	this	variable	lower	or	higher.	If	you	have	a	computer	with
many	processors	and	disks,	you	can	try	setting	the	value	higher	to	make
better	use	of	your	computer's	resources.	A	recommended	value	is	the	sum
of	the	number	of	processors	and	disks	your	system	has.	greater	disables

concurrency	checking.

The	range	of	this	variable	is	0	to	1000.	A	value	of	20	or	higher	is
interpreted	as	infinite	concurrency	before	MySQL	5.0.19.	From	5.0.19	on,	0
is	interpreted	as	infinite.	Infinite	means	that	concurrency	checking	is
disabled	and	the	possibly	considerable	overhead	of	acquiring	and	releasing
a	mutex	is	avoided.

The	default	value	has	changed	several	times:	8	before	MySQL	5.0.8,	20
(infinite)	from	5.0.8	through	5.0.18,	0	(infinite)	from	5.0.19	to	5.0.20,	and	8
(finite)	from	5.0.21	on.

innodb_thread_sleep_delay

How	long	InnoDB	threads	sleep	before	joining	the	InnoDB	queue,	in
microseconds.	The	default	value	is	10,000.	A	value	of	0	disables	sleep.	This
variable	was	added	in	MySQL	5.0.3.

sync_binlog

If	the	value	of	this	variable	is	positive,	the	MySQL	server	synchronizes	its
binary	log	to	disk	(fdatasync())	after	every	sync_binlog	writes	to	this
binary	log.	Note	that	there	is	one	write	to	the	binary	log	per	statement	if	in
autocommit	mode,	and	otherwise	one	write	per	transaction.	The	default
value	is	0	which	does	no	synchronizing	to	disk.	A	value	of	1	is	the	safest
choice,	because	in	the	event	of	a	crash	you	lose	at	most	one
statement/transaction	from	the	binary	log;	however,	it	is	also	the	slowest
choice	(unless	the	disk	has	a	battery-backed	cache,	which	makes
synchronization	very	fast).

14.2.5.	Creating	the	InnoDB	Tablespace

Suppose	that	you	have	installed	MySQL	and	have	edited	your	option	file	so	that
it	contains	the	necessary	InnoDB	configuration	parameters.	Before	starting
MySQL,	you	should	verify	that	the	directories	you	have	specified	for	InnoDB
data	files	and	log	files	exist	and	that	the	MySQL	server	has	access	rights	to	those
directories.	InnoDB	does	not	create	directories,	only	files.	Check	also	that	you
have	enough	disk	space	for	the	data	and	log	files.

It	is	best	to	run	the	MySQL	server	mysqld	from	the	command	prompt	when	you
first	start	the	server	with	InnoDB	enabled,	not	from	the	mysqld_safe	wrapper	or
as	a	Windows	service.	When	you	run	from	a	command	prompt	you	see	what
mysqld	prints	and	what	is	happening.	On	Unix,	just	invoke	mysqld.	On
Windows,	use	the	--console	option.

When	you	start	the	MySQL	server	after	initially	configuring	InnoDB	in	your
option	file,	InnoDB	creates	your	data	files	and	log	files,	and	prints	something	like
this:

InnoDB:	The	first	specified	datafile	/home/heikki/data/ibdata1

did	not	exist:

InnoDB:	a	new	database	to	be	created!

InnoDB:	Setting	file	/home/heikki/data/ibdata1	size	to	134217728

InnoDB:	Database	physically	writes	the	file	full:	wait...

InnoDB:	datafile	/home/heikki/data/ibdata2	did	not	exist:

new	to	be	created

InnoDB:	Setting	file	/home/heikki/data/ibdata2	size	to	262144000

InnoDB:	Database	physically	writes	the	file	full:	wait...

InnoDB:	Log	file	/home/heikki/data/logs/ib_logfile0	did	not	exist:

new	to	be	created

InnoDB:	Setting	log	file	/home/heikki/data/logs/ib_logfile0	size

to	5242880

InnoDB:	Log	file	/home/heikki/data/logs/ib_logfile1	did	not	exist:

new	to	be	created

InnoDB:	Setting	log	file	/home/heikki/data/logs/ib_logfile1	size

to	5242880

InnoDB:	Doublewrite	buffer	not	found:	creating	new

InnoDB:	Doublewrite	buffer	created

InnoDB:	Creating	foreign	key	constraint	system	tables

InnoDB:	Foreign	key	constraint	system	tables	created

InnoDB:	Started

mysqld:	ready	for	connections

At	this	point	InnoDB	has	initialized	its	tablespace	and	log	files.	You	can	connect
to	the	MySQL	server	with	the	usual	MySQL	client	programs	like	mysql.	When
you	shut	down	the	MySQL	server	with	mysqladmin	shutdown,	the	output	is
like	this:

010321	18:33:34		mysqld:	Normal	shutdown

010321	18:33:34		mysqld:	Shutdown	Complete

InnoDB:	Starting	shutdown...

InnoDB:	Shutdown	completed

You	can	look	at	the	data	file	and	log	directories	and	you	see	the	files	created

there.	The	log	directory	also	contains	a	small	file	named
ib_arch_log_0000000000.	That	file	resulted	from	the	database	creation,	after
which	InnoDB	switched	off	log	archiving.	When	MySQL	is	started	again,	the
data	files	and	log	files	have	been	created	already,	so	the	output	is	much	briefer:

InnoDB:	Started

mysqld:	ready	for	connections

If	you	add	the	innodb_file_per_table	option	to	my.cnf,	InnoDB	stores	each
table	in	its	own	.ibd	file	in	the	same	MySQL	database	directory	where	the	.frm
file	is	created.	See	Section	14.2.3.1,	“Using	Per-Table	Tablespaces”.

14.2.5.1.	Dealing	with	InnoDB	Initialization	Problems

If	InnoDB	prints	an	operating	system	error	during	a	file	operation,	usually	the
problem	has	one	of	the	following	causes:

You	did	not	create	the	InnoDB	data	file	directory	or	the	InnoDB	log
directory.

mysqld	does	not	have	access	rights	to	create	files	in	those	directories.

mysqld	cannot	read	the	proper	my.cnf	or	my.ini	option	file,	and
consequently	does	not	see	the	options	that	you	specified.

The	disk	is	full	or	a	disk	quota	is	exceeded.

You	have	created	a	subdirectory	whose	name	is	equal	to	a	data	file	that	you
specified,	so	the	name	cannot	be	used	as	a	filename.

There	is	a	syntax	error	in	the	innodb_data_home_dir	or
innodb_data_file_path	value.

If	something	goes	wrong	when	InnoDB	attempts	to	initialize	its	tablespace	or	its
log	files,	you	should	delete	all	files	created	by	InnoDB.	This	means	all	ibdata
files	and	all	ib_logfile	files.	In	case	you	have	already	created	some	InnoDB
tables,	delete	the	corresponding	.frm	files	for	these	tables	(and	any	.ibd	files	if
you	are	using	multiple	tablespaces)	from	the	MySQL	database	directories	as
well.	Then	you	can	try	the	InnoDB	database	creation	again.	It	is	best	to	start	the
MySQL	server	from	a	command	prompt	so	that	you	see	what	is	happening.

14.2.6.	Creating	and	Using	InnoDB	Tables

To	create	an	InnoDB	table,	specify	an	ENGINE	=	InnoDB	option	in	the	CREATE
TABLE	statement:

CREATE	TABLE	customers	(a	INT,	b	CHAR	(20),	INDEX	(a))	ENGINE=InnoDB;

The	older	term	TYPE	is	supported	as	a	synonym	for	ENGINE	for	backward
compatibility,	but	ENGINE	is	the	preferred	term	and	TYPE	is	deprecated.

The	statement	creates	a	table	and	an	index	on	column	a	in	the	InnoDB	tablespace
that	consists	of	the	data	files	that	you	specified	in	my.cnf.	In	addition,	MySQL
creates	a	file	customers.frm	in	the	test	directory	under	the	MySQL	database
directory.	Internally,	InnoDB	adds	an	entry	for	the	table	to	its	own	data	dictionary.
The	entry	includes	the	database	name.	For	example,	if	test	is	the	database	in
which	the	customers	table	is	created,	the	entry	is	for	'test/customers'.	This
means	you	can	create	a	table	of	the	same	name	customers	in	some	other
database,	and	the	table	names	do	not	collide	inside	InnoDB.

You	can	query	the	amount	of	free	space	in	the	InnoDB	tablespace	by	issuing	a
SHOW	TABLE	STATUS	statement	for	any	InnoDB	table.	The	amount	of	free	space	in
the	tablespace	appears	in	the	Comment	section	in	the	output	of	SHOW	TABLE
STATUS.	For	example:

SHOW	TABLE	STATUS	FROM	test	LIKE	'customers'

Note	that	the	statistics	SHOW	displays	for	InnoDB	tables	are	only	approximate.
They	are	used	in	SQL	optimization.	Table	and	index	reserved	sizes	in	bytes	are
accurate,	though.

14.2.6.1.	How	to	Use	Transactions	in	InnoDB	with	Different	APIs

By	default,	each	client	that	connects	to	the	MySQL	server	begins	with
autocommit	mode	enabled,	which	automatically	commits	every	SQL	statement
as	you	execute	it.	To	use	multiple-statement	transactions,	you	can	switch
autocommit	off	with	the	SQL	statement	SET	AUTOCOMMIT	=	0	and	use	COMMIT
and	ROLLBACK	to	commit	or	roll	back	your	transaction.	If	you	want	to	leave
autocommit	on,	you	can	enclose	your	transactions	within	START	TRANSACTION
and	either	COMMIT	or	ROLLBACK.	The	following	example	shows	two	transactions.

The	first	is	committed;	the	second	is	rolled	back.

shell>	mysql	test

mysql>	CREATE	TABLE	CUSTOMER	(A	INT,	B	CHAR	(20),	INDEX	(A))

				->	ENGINE=InnoDB;

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	START	TRANSACTION;

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	INSERT	INTO	CUSTOMER	VALUES	(10,	'Heikki');

Query	OK,	1	row	affected	(0.00	sec)

mysql>	COMMIT;

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	SET	AUTOCOMMIT=0;

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	INSERT	INTO	CUSTOMER	VALUES	(15,	'John');

Query	OK,	1	row	affected	(0.00	sec)

mysql>	ROLLBACK;

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	SELECT	*	FROM	CUSTOMER;

+------+--------+

|	A				|	B						|

+------+--------+

|			10	|	Heikki	|

+------+--------+

1	row	in	set	(0.00	sec)

mysql>

In	APIs	such	as	PHP,	Perl	DBI,	JDBC,	ODBC,	or	the	standard	C	call	interface	of
MySQL,	you	can	send	transaction	control	statements	such	as	COMMIT	to	the
MySQL	server	as	strings	just	like	any	other	SQL	statements	such	as	SELECT	or
INSERT.	Some	APIs	also	offer	separate	special	transaction	commit	and	rollback
functions	or	methods.

14.2.6.2.	Converting	MyISAM	Tables	to	InnoDB

Important:	Do	not	convert	MySQL	system	tables	in	the	mysql	database	(such	as
user	or	host)	to	the	InnoDB	type.	This	is	an	unsupported	operation.	The	system
tables	must	always	be	of	the	MyISAM	type.

If	you	want	all	your	(non-system)	tables	to	be	created	as	InnoDB	tables,	you	can
simply	add	the	line	default-storage-engine=innodb	to	the	[mysqld]	section
of	your	server	option	file.

InnoDB	does	not	have	a	special	optimization	for	separate	index	creation	the	way
the	MyISAM	storage	engine	does.	Therefore,	it	does	not	pay	to	export	and	import
the	table	and	create	indexes	afterward.	The	fastest	way	to	alter	a	table	to	InnoDB
is	to	do	the	inserts	directly	to	an	InnoDB	table.	That	is,	use	ALTER	TABLE	...
ENGINE=INNODB,	or	create	an	empty	InnoDB	table	with	identical	definitions	and
insert	the	rows	with	INSERT	INTO	...	SELECT	*	FROM

If	you	have	UNIQUE	constraints	on	secondary	keys,	you	can	speed	up	a	table
import	by	turning	off	the	uniqueness	checks	temporarily	during	the	import
operation:

SET	UNIQUE_CHECKS=0;

...	import	operation	...

SET	UNIQUE_CHECKS=1;

For	big	tables,	this	saves	a	lot	of	disk	I/O	because	InnoDB	can	then	use	its	insert
buffer	to	write	secondary	index	records	as	a	batch.	Be	certain	that	the	data
contains	no	duplicate	keys.	UNIQUE_CHECKS	allows	but	does	not	require	storage
engines	to	ignore	duplicate	keys.

To	get	better	control	over	the	insertion	process,	it	might	be	good	to	insert	big
tables	in	pieces:

INSERT	INTO	newtable	SELECT	*	FROM	oldtable

			WHERE	yourkey	>	something	AND	yourkey	<=	somethingelse;

After	all	records	have	been	inserted,	you	can	rename	the	tables.

During	the	conversion	of	big	tables,	you	should	increase	the	size	of	the	InnoDB
buffer	pool	to	reduce	disk	I/O.	Do	not	use	more	than	80%	of	the	physical
memory,	though.	You	can	also	increase	the	sizes	of	the	InnoDB	log	files.

Make	sure	that	you	do	not	fill	up	the	tablespace:	InnoDB	tables	require	a	lot	more
disk	space	than	MyISAM	tables.	If	an	ALTER	TABLE	operation	runs	out	of	space,	it
starts	a	rollback,	and	that	can	take	hours	if	it	is	disk-bound.	For	inserts,	InnoDB
uses	the	insert	buffer	to	merge	secondary	index	records	to	indexes	in	batches.
That	saves	a	lot	of	disk	I/O.	For	rollback,	no	such	mechanism	is	used,	and	the
rollback	can	take	30	times	longer	than	the	insertion.

In	the	case	of	a	runaway	rollback,	if	you	do	not	have	valuable	data	in	your
database,	it	may	be	advisable	to	kill	the	database	process	rather	than	wait	for

millions	of	disk	I/O	operations	to	complete.	For	the	complete	procedure,	see
Section	14.2.8.1,	“Forcing	InnoDB	Recovery”.

14.2.6.3.	How	AUTO_INCREMENT	Columns	Work	in	InnoDB

If	you	specify	an	AUTO_INCREMENT	column	for	an	InnoDB	table,	the	table	handle
in	the	InnoDB	data	dictionary	contains	a	special	counter	called	the	auto-
increment	counter	that	is	used	in	assigning	new	values	for	the	column.	This
counter	is	stored	only	in	main	memory,	not	on	disk.

InnoDB	uses	the	following	algorithm	to	initialize	the	auto-increment	counter	for	a
table	T	that	contains	an	AUTO_INCREMENT	column	named	ai_col:	After	a	server
startup,	for	the	first	insert	into	a	table	T,	InnoDB	executes	the	equivalent	of	this
statement:

SELECT	MAX(ai_col)	FROM	T	FOR	UPDATE;

InnoDB	increments	by	one	the	value	retrieved	by	the	statement	and	assigns	it	to
the	column	and	to	the	auto-increment	counter	for	the	table.	If	the	table	is	empty,
InnoDB	uses	the	value	1.	If	a	user	invokes	a	SHOW	TABLE	STATUS	statement	that
displays	output	for	the	table	T	and	the	auto-increment	counter	has	not	been
initialized,	InnoDB	initializes	but	does	not	increment	the	value	and	stores	it	for
use	by	later	inserts.	Note	that	this	initialization	uses	a	normal	exclusive-locking
read	on	the	table	and	the	lock	lasts	to	the	end	of	the	transaction.

InnoDB	follows	the	same	procedure	for	initializing	the	auto-increment	counter
for	a	freshly	created	table.

After	the	auto-increment	counter	has	been	initialized,	if	a	user	does	not	explicitly
specify	a	value	for	an	AUTO_INCREMENT	column,	InnoDB	increments	the	counter
by	one	and	assigns	the	new	value	to	the	column.	If	the	user	inserts	a	row	that
explicitly	specifies	the	column	value,	and	the	value	is	bigger	than	the	current
counter	value,	the	counter	is	set	to	the	specified	column	value.

You	may	see	gaps	in	the	sequence	of	values	assigned	to	the	AUTO_INCREMENT
column	if	you	roll	back	transactions	that	have	generated	numbers	using	the
counter.

If	a	user	specifies	NULL	or	0	for	the	AUTO_INCREMENT	column	in	an	INSERT,

InnoDB	treats	the	row	as	if	the	value	had	not	been	specified	and	generates	a	new
value	for	it.

The	behavior	of	the	auto-increment	mechanism	is	not	defined	if	a	user	assigns	a
negative	value	to	the	column	or	if	the	value	becomes	bigger	than	the	maximum
integer	that	can	be	stored	in	the	specified	integer	type.

When	accessing	the	auto-increment	counter,	InnoDB	uses	a	special	table-level
AUTO-INC	lock	that	it	keeps	to	the	end	of	the	current	SQL	statement,	not	to	the
end	of	the	transaction.	The	special	lock	release	strategy	was	introduced	to
improve	concurrency	for	inserts	into	a	table	containing	an	AUTO_INCREMENT
column.	Nevertheless,	two	transactions	cannot	have	the	AUTO-INC	lock	on	the
same	table	simultaneously,	which	can	have	a	performance	impact	if	the	AUTO-
INC	lock	is	held	for	a	long	time.	That	might	be	the	case	for	a	statement	such	as
INSERT	INTO	t1	...	SELECT	...	FROM	t2	that	inserts	all	rows	from	one	table
into	another.

InnoDB	uses	the	in-memory	auto-increment	counter	as	long	as	he	server	runs.
When	the	server	is	stopped	and	restarted,	InnoDB	reinitializes	the	counter	for
each	table	for	the	first	INSERT	to	the	table,	as	described	earlier.

Beginning	with	MySQL	5.0.3,	InnoDB	supports	the	AUTO_INCREMENT	=	N	table
option	in	CREATE	TABLE	and	ALTER	TABLE	statements,	to	set	the	initial	counter
value	or	alter	the	current	counter	value.	The	effect	of	this	option	is	canceled	by	a
server	restart,	for	reasons	discussed	earlier	in	this	section.

14.2.6.4.	FOREIGN	KEY	Constraints

InnoDB	also	supports	foreign	key	constraints.	The	syntax	for	a	foreign	key
constraint	definition	in	InnoDB	looks	like	this:

[CONSTRAINT	symbol]	FOREIGN	KEY	[id]	(index_col_name,	...)

				REFERENCES	tbl_name	(index_col_name,	...)

				[ON	DELETE	{RESTRICT	|	CASCADE	|	SET	NULL	|	NO	ACTION}]

				[ON	UPDATE	{RESTRICT	|	CASCADE	|	SET	NULL	|	NO	ACTION}]

Foreign	keys	definitions	are	subject	to	the	following	conditions:

Both	tables	must	be	InnoDB	tables	and	they	must	not	be	TEMPORARY	tables.

In	the	referencing	table,	there	must	be	an	index	where	the	foreign	key
columns	are	listed	as	the	first	columns	in	the	same	order.	Such	an	index	is
created	on	the	referencing	table	automatically	if	it	does	not	exist.

In	the	referenced	table,	there	must	be	an	index	where	the	referenced
columns	are	listed	as	the	first	columns	in	the	same	order.

Index	prefixes	on	foreign	key	columns	are	not	supported.	One	consequence
of	this	is	that	BLOB	and	TEXT	columns	cannot	be	included	in	a	foreign	key,
because	indexes	on	those	columns	must	always	include	a	prefix	length.

If	the	CONSTRAINT	symbol	clause	is	given,	the	symbol	value	must	be	unique
in	the	database.	If	the	clause	is	not	given,	InnoDB	creates	the	name
automatically.

InnoDB	rejects	any	INSERT	or	UPDATE	operation	that	attempts	to	create	a	foreign
key	value	in	a	child	table	if	there	is	no	a	matching	candidate	key	value	in	the
parent	table.	The	action	InnoDB	takes	for	any	UPDATE	or	DELETE	operation	that
attempts	to	update	or	delete	a	candidate	key	value	in	the	parent	table	that	has
some	matching	rows	in	the	child	table	is	dependent	on	the	referential	action
specified	using	ON	UPDATE	and	ON	DELETE	subclauses	of	the	FOREIGN	KEY	clause.
When	the	user	attempts	to	delete	or	update	a	row	from	a	parent	table,	and	there
are	one	or	more	matching	rows	in	the	child	table,	InnoDB	supports	five	options
regarding	the	action	to	be	taken:

CASCADE:	Delete	or	update	the	row	from	the	parent	table	and	automatically
delete	or	update	the	matching	rows	in	the	child	table.	Both	ON	DELETE
CASCADE	and	ON	UPDATE	CASCADE	are	supported.	Between	two	tables,	you
should	not	define	several	ON	UPDATE	CASCADE	clauses	that	act	on	the	same
column	in	the	parent	table	or	in	the	child	table.

SET	NULL:	Delete	or	update	the	row	from	the	parent	table	and	set	the
foreign	key	column	or	columns	in	the	child	table	to	NULL.	This	is	valid	only
if	the	foreign	key	columns	do	not	have	the	NOT	NULL	qualifier	specified.
Both	ON	DELETE	SET	NULL	and	ON	UPDATE	SET	NULL	clauses	are	supported.

NO	ACTION:	In	standard	SQL,	NO	ACTION	means	no	action	in	the	sense	that
an	attempt	to	delete	or	update	a	primary	key	value	is	not	allowed	to	proceed
if	there	is	a	related	foreign	key	value	in	the	referenced	table.	InnoDB	rejects
the	delete	or	update	operation	for	the	parent	table.

RESTRICT:	Rejects	the	delete	or	update	operation	for	the	parent	table.	NO
ACTION	and	RESTRICT	are	the	same	as	omitting	the	ON	DELETE	or	ON	UPDATE
clause.	(Some	database	systems	have	deferred	checks,	and	NO	ACTION	is	a
deferred	check.	In	MySQL,	foreign	key	constraints	are	checked
immediately,	so	NO	ACTION	and	RESTRICT	are	the	same.)

SET	DEFAULT:	This	action	is	recognized	by	the	parser,	but	InnoDB	rejects
table	definitions	containing	ON	DELETE	SET	DEFAULT	or	ON	UPDATE	SET
DEFAULT	clauses.

Note	that	InnoDB	supports	foreign	key	references	within	a	table.	In	these	cases,
“child	table	records”	really	refers	to	dependent	records	within	the	same	table.

InnoDB	requires	indexes	on	foreign	keys	and	referenced	keys	so	that	foreign	key
checks	can	be	fast	and	not	require	a	table	scan.	The	index	on	the	foreign	key	is
created	automatically.	This	is	in	contrast	to	some	older	versions,	in	which
indexes	had	to	be	created	explicitly	or	the	creation	of	foreign	key	constraints
would	fail.

Corresponding	columns	in	the	foreign	key	and	the	referenced	key	must	have
similar	internal	data	types	inside	InnoDB	so	that	they	can	be	compared	without	a
type	conversion.	The	size	and	sign	of	integer	types	must	be	the	same.	The	length
of	string	types	need	not	be	the	same.	If	you	specify	a	SET	NULL	action,	make	sure
that	you	have	not	declared	the	columns	in	the	child	table	as	NOT	NULL.

If	MySQL	reports	an	error	number	1005	from	a	CREATE	TABLE	statement,	and
the	error	message	refers	to	errno	150,	table	creation	failed	because	a	foreign	key
constraint	was	not	correctly	formed.	Similarly,	if	an	ALTER	TABLE	fails	and	it
refers	to	errno	150,	that	means	a	foreign	key	definition	would	be	incorrectly
formed	for	the	altered	table.	You	can	use	SHOW	ENGINE	INNODB	STATUS	to
display	a	detailed	explanation	of	the	most	recent	InnoDB	foreign	key	error	in	the
server.

Note:	InnoDB	does	not	check	foreign	key	constraints	on	those	foreign	key	or
referenced	key	values	that	contain	a	NULL	column.

Note:	Currently,	triggers	are	not	activated	by	cascaded	foreign	key	actions.

Deviation	from	SQL	standards:	If	there	are	several	rows	in	the	parent	table	that
have	the	same	referenced	key	value,	InnoDB	acts	in	foreign	key	checks	as	if	the

other	parent	rows	with	the	same	key	value	do	not	exist.	For	example,	if	you	have
defined	a	RESTRICT	type	constraint,	and	there	is	a	child	row	with	several	parent
rows,	InnoDB	does	not	allow	the	deletion	of	any	of	those	parent	rows.

InnoDB	performs	cascading	operations	through	a	depth-first	algorithm,	based	on
records	in	the	indexes	corresponding	to	the	foreign	key	constraints.

Deviation	from	SQL	standards:	A	FOREIGN	KEY	constraint	that	references	a
non-UNIQUE	key	is	not	standard	SQL.	It	is	an	InnoDB	extension	to	standard	SQL.

Deviation	from	SQL	standards:	If	ON	UPDATE	CASCADE	or	ON	UPDATE	SET
NULL	recurses	to	update	the	same	table	it	has	previously	updated	during	the
cascade,	it	acts	like	RESTRICT.	This	means	that	you	cannot	use	self-referential	ON
UPDATE	CASCADE	or	ON	UPDATE	SET	NULL	operations.	This	is	to	prevent	infinite
loops	resulting	from	cascaded	updates.	A	self-referential	ON	DELETE	SET	NULL,
on	the	other	hand,	is	possible,	as	is	a	self-referential	ON	DELETE	CASCADE.
Cascading	operations	may	not	be	nested	more	than	15	levels	deep.

Deviation	from	SQL	standards:	Like	MySQL	in	general,	in	an	SQL	statement
that	inserts,	deletes,	or	updates	many	rows,	InnoDB	checks	UNIQUE	and	FOREIGN
KEY	constraints	row-by-row.	According	to	the	SQL	standard,	the	default	behavior
should	be	deferred	checking.	That	is,	constraints	are	only	checked	after	the	entire
SQL	statement	has	been	processed.	Until	InnoDB	implements	deferred	constraint
checking,	some	things	will	be	impossible,	such	as	deleting	a	record	that	refers	to
itself	via	a	foreign	key.

Here	is	a	simple	example	that	relates	parent	and	child	tables	through	a	single-
column	foreign	key:

CREATE	TABLE	parent	(id	INT	NOT	NULL,

																					PRIMARY	KEY	(id)

)	ENGINE=INNODB;

CREATE	TABLE	child	(id	INT,	parent_id	INT,

																				INDEX	par_ind	(parent_id),

																				FOREIGN	KEY	(parent_id)	REFERENCES	parent(id)

																						ON	DELETE	CASCADE

)	ENGINE=INNODB;

A	more	complex	example	in	which	a	product_order	table	has	foreign	keys	for
two	other	tables.	One	foreign	key	references	a	two-column	index	in	the	product
table.	The	other	references	a	single-column	index	in	the	customer	table:

CREATE	TABLE	product	(category	INT	NOT	NULL,	id	INT	NOT	NULL,

																						price	DECIMAL,

																						PRIMARY	KEY(category,	id))	ENGINE=INNODB;

CREATE	TABLE	customer	(id	INT	NOT	NULL,

																							PRIMARY	KEY	(id))	ENGINE=INNODB;

CREATE	TABLE	product_order	(no	INT	NOT	NULL	AUTO_INCREMENT,

																												product_category	INT	NOT	NULL,

																												product_id	INT	NOT	NULL,

																												customer_id	INT	NOT	NULL,

																												PRIMARY	KEY(no),

																												INDEX	(product_category,	product_id),

																												FOREIGN	KEY	(product_category,	product_id)

																														REFERENCES	product(category,	id)

																														ON	UPDATE	CASCADE	ON	DELETE	RESTRICT,

																												INDEX	(customer_id),

																												FOREIGN	KEY	(customer_id)

																														REFERENCES	customer(id))	ENGINE=INNODB;

InnoDB	allows	you	to	add	a	new	foreign	key	constraint	to	a	table	by	using	ALTER
TABLE:

ALTER	TABLE	tbl_name

				ADD	[CONSTRAINT	symbol]	FOREIGN	KEY	[id]	(index_col_name,	...)

				REFERENCES	tbl_name	(index_col_name,	...)

				[ON	DELETE	{RESTRICT	|	CASCADE	|	SET	NULL	|	NO	ACTION}]

				[ON	UPDATE	{RESTRICT	|	CASCADE	|	SET	NULL	|	NO	ACTION}]

Remember	to	create	the	required	indexes	first.	You	can	also	add	a	self-
referential	foreign	key	constraint	to	a	table	using	ALTER	TABLE.

InnoDB	also	supports	the	use	of	ALTER	TABLE	to	drop	foreign	keys:

ALTER	TABLE	tbl_name	DROP	FOREIGN	KEY	fk_symbol;

If	the	FOREIGN	KEY	clause	included	a	CONSTRAINT	name	when	you	created	the
foreign	key,	you	can	refer	to	that	name	to	drop	the	foreign	key.	Otherwise,	the
fk_symbol	value	is	internally	generated	by	InnoDB	when	the	foreign	key	is
created.	To	find	out	the	symbol	value	when	you	want	to	drop	a	foreign	key,	use
the	SHOW	CREATE	TABLE	statement.	For	example:

mysql>	SHOW	CREATE	TABLE	ibtest11c\G

***************************	1.	row	***************************

							Table:	ibtest11c

Create	Table:	CREATE	TABLE	`ibtest11c`	(

		`A`	int(11)	NOT	NULL	auto_increment,

		`D`	int(11)	NOT	NULL	default	'0',

		`B`	varchar(200)	NOT	NULL	default	'',

		`C`	varchar(175)	default	NULL,

		PRIMARY	KEY		(`A`,`D`,`B`),

		KEY	`B`	(`B`,`C`),

		KEY	`C`	(`C`),

		CONSTRAINT	`0_38775`	FOREIGN	KEY	(`A`,	`D`)

REFERENCES	`ibtest11a`	(`A`,	`D`)

ON	DELETE	CASCADE	ON	UPDATE	CASCADE,

		CONSTRAINT	`0_38776`	FOREIGN	KEY	(`B`,	`C`)

REFERENCES	`ibtest11a`	(`B`,	`C`)

ON	DELETE	CASCADE	ON	UPDATE	CASCADE

)	ENGINE=INNODB	CHARSET=latin1

1	row	in	set	(0.01	sec)

mysql>	ALTER	TABLE	ibtest11c	DROP	FOREIGN	KEY	`0_38775`;

You	cannot	add	a	foreign	key	and	drop	a	foreign	key	in	separate	clauses	of	a
single	ALTER	TABLE	statement.	Separate	statements	are	required.

The	InnoDB	parser	allows	table	and	column	identifiers	in	a	FOREIGN	KEY	...
REFERENCES	...	clause	to	be	quoted	within	backticks.	(Alternatively,	double
quotes	can	be	used	if	the	ANSI_QUOTES	SQL	mode	is	enabled.)	The	InnoDB	parser
also	takes	into	account	the	setting	of	the	lower_case_table_names	system
variable.

InnoDB	returns	a	table's	foreign	key	definitions	as	part	of	the	output	of	the	SHOW
CREATE	TABLE	statement:

SHOW	CREATE	TABLE	tbl_name;

mysqldump	also	produces	correct	definitions	of	tables	to	the	dump	file,	and
does	not	forget	about	the	foreign	keys.

You	can	also	display	the	foreign	key	constraints	for	a	table	like	this:

SHOW	TABLE	STATUS	FROM	db_name	LIKE	'tbl_name';

The	foreign	key	constraints	are	listed	in	the	Comment	column	of	the	output.

When	performing	foreign	key	checks,	InnoDB	sets	shared	row-level	locks	on
child	or	parent	records	it	has	to	look	at.	InnoDB	checks	foreign	key	constraints
immediately;	the	check	is	not	deferred	to	transaction	commit.

To	make	it	easier	to	reload	dump	files	for	tables	that	have	foreign	key

relationships,	mysqldump	automatically	includes	a	statement	in	the	dump
output	to	set	FOREIGN_KEY_CHECKS	to	0.	This	avoids	problems	with	tables	having
to	be	reloaded	in	a	particular	order	when	the	dump	is	reloaded.	It	is	also	possible
to	set	this	variable	manually:

mysql>	SET	FOREIGN_KEY_CHECKS	=	0;

mysql>	SOURCE	dump_file_name;

mysql>	SET	FOREIGN_KEY_CHECKS	=	1;

This	allows	you	to	import	the	tables	in	any	order	if	the	dump	file	contains	tables
that	are	not	correctly	ordered	for	foreign	keys.	It	also	speeds	up	the	import
operation.	Setting	FOREIGN_KEY_CHECKS	to	0	can	also	be	useful	for	ignoring
foreign	key	constraints	during	LOAD	DATA	and	ALTER	TABLE	operations.
However,	even	if	FOREIGN_KEY_CHECKS=0,	InnoDB	does	not	allow	the	creation
of	a	foreign	key	constraint	where	a	column	references	a	non-matching	column
type.

InnoDB	does	not	allow	you	to	drop	a	table	that	is	referenced	by	a	FOREIGN	KEY
constraint,	unless	you	do	SET	FOREIGN_KEY_CHECKS=0.	When	you	drop	a	table,
the	constraints	that	were	defined	in	its	create	statement	are	also	dropped.

If	you	re-create	a	table	that	was	dropped,	it	must	have	a	definition	that	conforms
to	the	foreign	key	constraints	referencing	it.	It	must	have	the	right	column	names
and	types,	and	it	must	have	indexes	on	the	referenced	keys,	as	stated	earlier.	If
these	are	not	satisfied,	MySQL	returns	error	number	1005	and	refers	to	errno	150
in	the	error	message.

14.2.6.5.	InnoDB	and	MySQL	Replication

MySQL	replication	works	for	InnoDB	tables	as	it	does	for	MyISAM	tables.	It	is
also	possible	to	use	replication	in	a	way	where	the	storage	engine	on	the	slave	is
not	the	same	as	the	original	storage	engine	on	the	master.	For	example,	you	can
replicate	modifications	to	an	InnoDB	table	on	the	master	to	a	MyISAM	table	on	the
slave.

To	set	up	a	new	slave	for	a	master,	you	have	to	make	a	copy	of	the	InnoDB
tablespace	and	the	log	files,	as	well	as	the	.frm	files	of	the	InnoDB	tables,	and
move	the	copies	to	the	slave.	If	the	innodb_file_per_table	variable	is	enabled,
you	must	also	copy	the	.ibd	files	as	well.	For	the	proper	procedure	to	do	this,
see	Section	14.2.8,	“Backing	Up	and	Recovering	an	InnoDB	Database”.

If	you	can	shut	down	the	master	or	an	existing	slave,	you	can	take	a	cold	backup
of	the	InnoDB	tablespace	and	log	files	and	use	that	to	set	up	a	slave.	To	make	a
new	slave	without	taking	down	any	server	you	can	also	use	the	non-free
(commercial)	InnoDB	Hot	Backup	tool.

You	cannot	set	up	replication	for	InnoDB	using	the	LOAD	TABLE	FROM	MASTER
statement,	which	works	only	for	MyISAM	tables.	There	are	two	possible
workarounds:

Dump	the	table	on	the	master	and	import	the	dump	file	into	the	slave.

Use	ALTER	TABLE	tbl_name	ENGINE=MyISAM	on	the	master	before
setting	up	replication	with	LOAD	TABLE	tbl_name	FROM	MASTER,	and
then	use	ALTER	TABLE	to	convert	the	master	table	back	to	InnoDB	afterward.
However,	this	should	not	be	done	for	tables	that	have	foreign	key
definitions	because	the	definitions	will	be	lost.

Transactions	that	fail	on	the	master	do	not	affect	replication	at	all.	MySQL
replication	is	based	on	the	binary	log	where	MySQL	writes	SQL	statements	that
modify	data.	A	transaction	that	fails	(for	example,	because	of	a	foreign	key
violation,	or	because	it	is	is	rolled	back)	is	not	written	to	the	binary	log,	so	it	is
not	sent	to	slaves.	See	Section	13.4.1,	“START	TRANSACTION,	COMMIT,	and
ROLLBACK	Syntax”.

14.2.7.	Adding	and	Removing	InnoDB	Data	and	Log	Files

This	section	describes	what	you	can	do	when	your	InnoDB	tablespace	runs	out	of
room	or	when	you	want	to	change	the	size	of	the	log	files.

The	easiest	way	to	increase	the	size	of	the	InnoDB	tablespace	is	to	configure	it
from	the	beginning	to	be	auto-extending.	Specify	the	autoextend	attribute	for
the	last	data	file	in	the	tablespace	definition.	Then	InnoDB	increases	the	size	of
that	file	automatically	in	8MB	increments	when	it	runs	out	of	space.	The
increment	size	can	be	changed	by	setting	the	value	of	the
innodb_autoextend_increment	system	variable,	which	is	measured	in	MB.

Alternatively,	you	can	increase	the	size	of	your	tablespace	by	adding	another
data	file.	To	do	this,	you	have	to	shut	down	the	MySQL	server,	change	the
tablespace	configuration	to	add	a	new	data	file	to	the	end	of

http://www.innodb.com/order.html

innodb_data_file_path,	and	start	the	server	again.

If	your	last	data	file	was	defined	with	the	keyword	autoextend,	the	procedure
for	reconfiguring	the	tablespace	must	take	into	account	the	size	to	which	the	last
data	file	has	grown.	Obtain	the	size	of	the	data	file,	round	it	down	to	the	closest
multiple	of	1024	×	1024	bytes	(=	1MB),	and	specify	the	rounded	size	explicitly
in	innodb_data_file_path.	Then	you	can	add	another	data	file.	Remember	that
only	the	last	data	file	in	the	innodb_data_file_path	can	be	specified	as	auto-
extending.

As	an	example,	assume	that	the	tablespace	has	just	one	auto-extending	data	file
ibdata1:

innodb_data_home_dir	=

innodb_data_file_path	=	/ibdata/ibdata1:10M:autoextend

Suppose	that	this	data	file,	over	time,	has	grown	to	988MB.	Here	is	the
configuration	line	after	modifying	the	original	data	file	to	not	be	auto-extending
and	adding	another	auto-extending	data	file:

innodb_data_home_dir	=

innodb_data_file_path	=	/ibdata/ibdata1:988M;/disk2/ibdata2:50M:autoextend

When	you	add	a	new	file	to	the	tablespace	configuration,	make	sure	that	it	does
not	exist.	InnoDB	will	create	and	initialize	the	file	when	you	restart	the	server.

Currently,	you	cannot	remove	a	data	file	from	the	tablespace.	To	decrease	the
size	of	your	tablespace,	use	this	procedure:

1.	 Use	mysqldump	to	dump	all	your	InnoDB	tables.

2.	 Stop	the	server.

3.	 Remove	all	the	existing	tablespace	files.

4.	 Configure	a	new	tablespace.

5.	 Restart	the	server.

6.	 Import	the	dump	files.

If	you	want	to	change	the	number	or	the	size	of	your	InnoDB	log	files,	use	the
following	instructions.	The	procedure	to	use	depends	on	the	value	of
innodb_fast_shutdown:

If	innodb_fast_shutdown	is	not	set	to	2:	You	must	stop	the	MySQL	server
and	make	sure	that	it	shuts	down	without	errors	(to	ensure	that	there	is	no
information	for	outstanding	transactions	in	the	logs).	Then	copy	the	old	log
files	into	a	safe	place	just	in	case	something	went	wrong	in	the	shutdown
and	you	need	them	to	recover	the	tablespace.	Delete	the	old	log	files	from
the	log	file	directory,	edit	my.cnf	to	change	the	log	file	configuration,	and
start	the	MySQL	server	again.	mysqld	sees	that	no	log	files	exist	at	startup
and	tells	you	that	it	is	creating	new	ones.

If	innodb_fast_shutdown	is	set	to	2:	You	should	shut	down	the	server,	set
innodb_fast_shutdown	to	1,	and	restart	the	server.	The	server	should	be
allowed	to	recover.	Then	you	should	shut	down	the	server	again	and	follow
the	procedure	described	in	the	preceding	item	to	change	InnoDB	log	file
size.	Set	innodb_fast_shutdown	back	to	2	and	restart	the	server.

14.2.8.	Backing	Up	and	Recovering	an	InnoDB	Database

The	key	to	safe	database	management	is	making	regular	backups.

InnoDB	Hot	Backup	is	an	online	backup	tool	you	can	use	to	backup	your
InnoDB	database	while	it	is	running.	InnoDB	Hot	Backup	does	not	require	you
to	shut	down	your	database	and	it	does	not	set	any	locks	or	disturb	your	normal
database	processing.	InnoDB	Hot	Backup	is	a	non-free	(commercial)	add-on
tool	with	an	annual	license	fee	of	€390	per	computer	on	which	the	MySQL
server	is	run.	See	the	InnoDB	Hot	Backup	home	page	for	detailed	information
and	screenshots.

If	you	are	able	to	shut	down	your	MySQL	server,	you	can	make	a	binary	backup
that	consists	of	all	files	used	by	InnoDB	to	manage	its	tables.	Use	the	following
procedure:

1.	 Shut	down	your	MySQL	server	and	make	sure	that	it	shuts	down	without
errors.

2.	 Copy	all	your	data	files	(ibdata	files	and	.ibd	files)	into	a	safe	place.

http://www.innodb.com/order.html

3.	 Copy	all	your	ib_logfile	files	to	a	safe	place.

4.	 Copy	your	my.cnf	configuration	file	or	files	to	a	safe	place.

5.	 Copy	all	the	.frm	files	for	your	InnoDB	tables	to	a	safe	place.

Replication	works	with	InnoDB	tables,	so	you	can	use	MySQL	replication
capabilities	to	keep	a	copy	of	your	database	at	database	sites	requiring	high
availability.

In	addition	to	making	binary	backups	as	just	described,	you	should	also	regularly
make	dumps	of	your	tables	with	mysqldump.	The	reason	for	this	is	that	a	binary
file	might	be	corrupted	without	you	noticing	it.	Dumped	tables	are	stored	into
text	files	that	are	human-readable,	so	spotting	table	corruption	becomes	easier.
Also,	because	the	format	is	simpler,	the	chance	for	serious	data	corruption	is
smaller.	mysqldump	also	has	a	--single-transaction	option	that	you	can	use
to	make	a	consistent	snapshot	without	locking	out	other	clients.

To	be	able	to	recover	your	InnoDB	database	to	the	present	from	the	binary
backup	just	described,	you	have	to	run	your	MySQL	server	with	binary	logging
turned	on.	Then	you	can	apply	the	binary	log	to	the	backup	database	to	achieve
point-in-time	recovery:

mysqlbinlog	yourhostname-bin.123	|	mysql

To	recover	from	a	crash	of	your	MySQL	server,	the	only	requirement	is	to	restart
it.	InnoDB	automatically	checks	the	logs	and	performs	a	roll-forward	of	the
database	to	the	present.	InnoDB	automatically	rolls	back	uncommitted
transactions	that	were	present	at	the	time	of	the	crash.	During	recovery,	mysqld
displays	output	something	like	this:

InnoDB:	Database	was	not	shut	down	normally.

InnoDB:	Starting	recovery	from	log	files...

InnoDB:	Starting	log	scan	based	on	checkpoint	at

InnoDB:	log	sequence	number	0	13674004

InnoDB:	Doing	recovery:	scanned	up	to	log	sequence	number	0	13739520

InnoDB:	Doing	recovery:	scanned	up	to	log	sequence	number	0	13805056

InnoDB:	Doing	recovery:	scanned	up	to	log	sequence	number	0	13870592

InnoDB:	Doing	recovery:	scanned	up	to	log	sequence	number	0	13936128

...

InnoDB:	Doing	recovery:	scanned	up	to	log	sequence	number	0	20555264

InnoDB:	Doing	recovery:	scanned	up	to	log	sequence	number	0	20620800

InnoDB:	Doing	recovery:	scanned	up	to	log	sequence	number	0	20664692

InnoDB:	1	uncommitted	transaction(s)	which	must	be	rolled	back

InnoDB:	Starting	rollback	of	uncommitted	transactions

InnoDB:	Rolling	back	trx	no	16745

InnoDB:	Rolling	back	of	trx	no	16745	completed

InnoDB:	Rollback	of	uncommitted	transactions	completed

InnoDB:	Starting	an	apply	batch	of	log	records	to	the	database...

InnoDB:	Apply	batch	completed

InnoDB:	Started

mysqld:	ready	for	connections

If	your	database	gets	corrupted	or	your	disk	fails,	you	have	to	do	the	recovery
from	a	backup.	In	the	case	of	corruption,	you	should	first	find	a	backup	that	is
not	corrupted.	After	restoring	the	base	backup,	do	the	recovery	from	the	binary
log	files	using	mysqlbinlog	and	mysql	to	restore	the	changes	performed	after
the	backup	was	made.

In	some	cases	of	database	corruption	it	is	enough	just	to	dump,	drop,	and	re-
create	one	or	a	few	corrupt	tables.	You	can	use	the	CHECK	TABLE	SQL	statement
to	check	whether	a	table	is	corrupt,	although	CHECK	TABLE	naturally	cannot
detect	every	possible	kind	of	corruption.	You	can	use
innodb_tablespace_monitor	to	check	the	integrity	of	the	file	space
management	inside	the	tablespace	files.

In	some	cases,	apparent	database	page	corruption	is	actually	due	to	the	operating
system	corrupting	its	own	file	cache,	and	the	data	on	disk	may	be	okay.	It	is	best
first	to	try	restarting	your	computer.	Doing	so	may	eliminate	errors	that	appeared
to	be	database	page	corruption.

14.2.8.1.	Forcing	InnoDB	Recovery

If	there	is	database	page	corruption,	you	may	want	to	dump	your	tables	from	the
database	with	SELECT	INTO	OUTFILE.	Usually,	most	of	the	data	obtained	in	this
way	is	intact.	Even	so,	the	corruption	may	cause	SELECT	*	FROM	tbl_name
statements	or	InnoDB	background	operations	to	crash	or	assert,	or	even	to	cause
InnoDB	roll-forward	recovery	to	crash.	However,	you	can	force	the	InnoDB
storage	engine	to	start	up	while	preventing	background	operations	from	running,
so	that	you	are	able	to	dump	your	tables.	For	example,	you	can	add	the	following
line	to	the	[mysqld]	section	of	your	option	file	before	restarting	the	server:

[mysqld]

innodb_force_recovery	=	4

The	allowable	non-zero	values	for	innodb_force_recovery	follow.	A	larger
number	includes	all	precautions	of	smaller	numbers.	If	you	are	able	to	dump
your	tables	with	an	option	value	of	at	most	4,	then	you	are	relatively	safe	that
only	some	data	on	corrupt	individual	pages	is	lost.	A	value	of	6	is	more	drastic
because	database	pages	are	left	in	an	obsolete	state,	which	in	turn	may	introduce
more	corruption	into	B-trees	and	other	database	structures.

1	(SRV_FORCE_IGNORE_CORRUPT)

Let	the	server	run	even	if	it	detects	a	corrupt	page.	Try	to	make	SELECT	*
FROM	tbl_name	jump	over	corrupt	index	records	and	pages,	which	helps	in
dumping	tables.

2	(SRV_FORCE_NO_BACKGROUND)

Prevent	the	main	thread	from	running.	If	a	crash	would	occur	during	the
purge	operation,	this	recovery	value	prevents	it.

3	(SRV_FORCE_NO_TRX_UNDO)

Do	not	run	transaction	rollbacks	after	recovery.

4	(SRV_FORCE_NO_IBUF_MERGE)

Prevent	also	insert	buffer	merge	operations.	If	they	would	cause	a	crash,	do
not	do	them.	Do	not	calculate	table	statistics.

5	(SRV_FORCE_NO_UNDO_LOG_SCAN)

Do	not	look	at	undo	logs	when	starting	the	database:	InnoDB	treats	even
incomplete	transactions	as	committed.

6	(SRV_FORCE_NO_LOG_REDO)

Do	not	do	the	log	roll-forward	in	connection	with	recovery.

You	can	SELECT	from	tables	to	dump	them,	or	DROP	or	CREATE	tables	even	if
forced	recovery	is	used.	If	you	know	that	a	given	table	is	causing	a	crash	on
rollback,	you	can	drop	it.	You	can	also	use	this	to	stop	a	runaway	rollback
caused	by	a	failing	mass	import	or	ALTER	TABLE.	You	can	kill	the	mysqld

process	and	set	innodb_force_recovery	to	3	to	bring	the	database	up	without
the	rollback,	then	DROP	the	table	that	is	causing	the	runaway	rollback.

The	database	must	not	otherwise	be	used	with	any	non-zero	value	of
innodb_force_recovery.	As	a	safety	measure,	InnoDB	prevents	users	from
performing	INSERT,	UPDATE,	or	DELETE	operations	when
innodb_force_recovery	is	greater	than	0.

14.2.8.2.	Checkpoints

InnoDB	implements	a	checkpoint	mechanism	known	as	“fuzzy”	checkpointing.
InnoDB	flushes	modified	database	pages	from	the	buffer	pool	in	small	batches.
There	is	no	need	to	flush	the	buffer	pool	in	one	single	batch,	which	would	in
practice	stop	processing	of	user	SQL	statements	during	the	checkpointing
process.

During	crash	recovery,	InnoDB	looks	for	a	checkpoint	label	written	to	the	log
files.	It	knows	that	all	modifications	to	the	database	before	the	label	are	present
in	the	disk	image	of	the	database.	Then	InnoDB	scans	the	log	files	forward	from
the	checkpoint,	applying	the	logged	modifications	to	the	database.

InnoDB	writes	to	its	log	files	on	a	rotating	basis.	All	committed	modifications
that	make	the	database	pages	in	the	buffer	pool	different	from	the	images	on	disk
must	be	available	in	the	log	files	in	case	InnoDB	has	to	do	a	recovery.	This	means
that	when	InnoDB	starts	to	reuse	a	log	file,	it	has	to	make	sure	that	the	database
page	images	on	disk	contain	the	modifications	logged	in	the	log	file	that	InnoDB
is	going	to	reuse.	In	other	words,	InnoDB	must	create	a	checkpoint	and	this	often
involves	flushing	of	modified	database	pages	to	disk.

The	preceding	description	explains	why	making	your	log	files	very	large	may
save	disk	I/O	in	checkpointing.	It	often	makes	sense	to	set	the	total	size	of	the
log	files	as	big	as	the	buffer	pool	or	even	bigger.	The	drawback	of	using	large
log	files	is	that	crash	recovery	can	take	longer	because	there	is	more	logged
information	to	apply	to	the	database.

14.2.9.	Moving	an	InnoDB	Database	to	Another	Machine

On	Windows,	InnoDB	always	stores	database	and	table	names	internally	in
lowercase.	To	move	databases	in	a	binary	format	from	Unix	to	Windows	or	from

Windows	to	Unix,	you	should	have	all	table	and	database	names	in	lowercase.	A
convenient	way	to	accomplish	this	is	to	add	the	following	line	to	the	[mysqld]
section	of	your	my.cnf	or	my.ini	file	before	creating	any	databases	or	tables:

[mysqld]

lower_case_table_names=1

Like	MyISAM	data	files,	InnoDB	data	and	log	files	are	binary-compatible	on	all
platforms	having	the	same	floating-point	number	format.	You	can	move	an
InnoDB	database	simply	by	copying	all	the	relevant	files	listed	in	Section	14.2.8,
“Backing	Up	and	Recovering	an	InnoDB	Database”.	If	the	floating-point	formats
differ	but	you	have	not	used	FLOAT	or	DOUBLE	data	types	in	your	tables,	then	the
procedure	is	the	same:	simply	copy	the	relevant	files.	If	the	formats	differ	and
your	tables	contain	floating-point	data,	you	must	use	mysqldump	to	dump	your
tables	on	one	machine	and	then	import	the	dump	files	on	the	other	machine.

One	way	to	increase	performance	is	to	switch	off	autocommit	mode	when
importing	data,	assuming	that	the	tablespace	has	enough	space	for	the	big
rollback	segment	that	the	import	transactions	generate.	Do	the	commit	only	after
importing	a	whole	table	or	a	segment	of	a	table.

14.2.10.	InnoDB	Transaction	Model	and	Locking

In	the	InnoDB	transaction	model,	the	goal	is	to	combine	the	best	properties	of	a
multi-versioning	database	with	traditional	two-phase	locking.	InnoDB	does
locking	on	the	row	level	and	runs	queries	as	non-locking	consistent	reads	by
default,	in	the	style	of	Oracle.	The	lock	table	in	InnoDB	is	stored	so	space-
efficiently	that	lock	escalation	is	not	needed:	Typically	several	users	are	allowed
to	lock	every	row	in	the	database,	or	any	random	subset	of	the	rows,	without
InnoDB	running	out	of	memory.

14.2.10.1.	InnoDB	Lock	Modes

InnoDB	implements	standard	row-level	locking	where	there	are	two	types	of
locks:

A	shared	(S)	lock	allows	a	transaction	to	read	a	row	(tuple).

An	exclusive	(X)	lock	allows	a	transaction	to	update	or	delete	a	row.

If	transaction	T1	holds	a	shared	(S)	lock	on	tuple	t,	then

A	request	from	some	distinct	transaction	T2	for	an	S	lock	on	t	can	be
granted	immediately.	As	a	result,	both	T1	and	T2	hold	an	S	lock	on	t.

A	request	from	some	distinct	transaction	T2	for	an	X	lock	on	t	cannot	be
granted	immediately.

If	a	transaction	T1	holds	an	exclusive	(X)	lock	on	tuple	t,	then	a	request	from
some	distinct	transaction	T2	for	a	lock	of	either	type	on	t	cannot	be	granted
immediately.	Instead,	transaction	T2	has	to	wait	for	transaction	T1	to	release	its
lock	on	tuple	t.

Additionally,	InnoDB	supports	multiple	granularity	locking	which	allows
coexistence	of	record	locks	and	locks	on	entire	tables.	To	make	locking	at
multiple	granularity	levels	practical,	additional	types	of	locks	called	intention
locks	are	used.	Intention	locks	are	table	locks	in	InnoDB.	The	idea	behind
intention	locks	is	for	a	transaction	to	indicate	which	type	of	lock	(shared	or
exclusive)	it	will	require	later	for	a	row	in	that	table.	There	are	two	types	of
intention	locks	used	in	InnoDB	(assume	that	transaction	T	has	requested	a	lock	of
the	indicated	type	on	table	R):

Intention	shared	(IS):	Transaction	T	intends	to	set	S	locks	on	individual
rows	in	table	R.

Intention	exclusive	(IX):	Transaction	T	intends	to	set	X	locks	on	those	rows.

The	intention	locking	protocol	is	as	follows:

Before	a	given	transaction	can	acquire	an	S	lock	on	a	given	row,	it	must
first	acquire	an	IS	or	stronger	lock	on	the	table	containing	that	row.

Before	a	given	transaction	can	acquire	an	X	lock	on	a	given	row,	it	must
first	acquire	an	IX	lock	on	the	table	containing	that	row.

These	rules	can	be	conveniently	summarized	by	means	of	a	lock	type
compatibility	matrix:

	 X IX S IS

X Conflict Conflict Conflict Conflict

IX Conflict Compatible Conflict Compatible
S Conflict Conflict Compatible Compatible
IS Conflict Compatible Compatible Compatible

A	lock	is	granted	to	a	requesting	transaction	if	it	is	compatible	with	existing
locks.	A	lock	is	not	granted	to	a	requesting	transaction	if	it	conflicts	with
existing	locks.	A	transaction	waits	until	the	conflicting	existing	lock	is	released.
If	a	lock	request	conflicts	with	an	existing	lock	and	cannot	be	granted	because	it
would	cause	deadlock,	an	error	occurs.

Thus,	intention	locks	do	not	block	anything	except	full	table	requests	(for
example,	LOCK	TABLES	...	WRITE).	The	main	purpose	of	IX	and	IS	locks	is	to
show	that	someone	is	locking	a	row,	or	going	to	lock	a	row	in	the	table.

The	following	example	illustrates	how	an	error	can	occur	when	a	lock	request
would	cause	a	deadlock.	The	example	involves	two	clients,	A	and	B.

First,	client	A	creates	a	table	containing	one	row,	and	then	begins	a	transaction.
Within	the	transaction,	A	obtains	an	S	lock	on	the	row	by	selecting	it	in	share
mode:

mysql>	CREATE	TABLE	t	(i	INT)	ENGINE	=	InnoDB;

Query	OK,	0	rows	affected	(1.07	sec)

mysql>	INSERT	INTO	t	(i)	VALUES(1);

Query	OK,	1	row	affected	(0.09	sec)

mysql>	START	TRANSACTION;

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	SELECT	*	FROM	t	WHERE	i	=	1	LOCK	IN	SHARE	MODE;

+------+

|	i				|

+------+

|				1	|

+------+

1	row	in	set	(0.10	sec)

Next,	client	B	begins	a	transaction	and	attempts	to	delete	the	row	from	the	table:

mysql>	START	TRANSACTION;

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	DELETE	FROM	t	WHERE	i	=	1;

The	delete	operation	requires	an	X	lock.	The	lock	cannot	be	granted	because	it	is
incompatible	with	the	S	lock	that	client	A	holds,	so	the	request	goes	on	the	queue
of	lock	requests	for	the	row	and	client	B	blocks.

Finally,	client	A	also	attempts	to	delete	the	row	from	the	table:

mysql>	DELETE	FROM	t	WHERE	i	=	1;

ERROR	1213	(40001):	Deadlock	found	when	trying	to	get	lock;

try	restarting	transaction

Deadlock	occurs	here	because	client	A	needs	an	X	lock	to	delete	the	row.
However,	that	lock	request	cannot	be	granted	because	client	B	is	already	has	a
request	for	an	X	lock	and	is	waiting	for	client	A	to	release	its	S	lock.	Nor	can	the
S	lock	held	by	A	be	upgraded	to	an	X	lock	because	of	the	prior	request	by	B	for
an	X	lock.	As	a	result,	InnoDB	generates	an	error	for	client	A	and	releases	its
locks.	At	that	point,	the	lock	request	for	client	B	can	be	granted	and	B	deletes	the
row	from	the	table.

14.2.10.2.	InnoDB	and	AUTOCOMMIT

In	InnoDB,	all	user	activity	occurs	inside	a	transaction.	If	the	autocommit	mode	is
enabled,	each	SQL	statement	forms	a	single	transaction	on	its	own.	By	default,
MySQL	starts	new	connections	with	autocommit	enabled.

If	the	autocommit	mode	is	switched	off	with	SET	AUTOCOMMIT	=	0,	then	we	can
consider	that	a	user	always	has	a	transaction	open.	An	SQL	COMMIT	or	ROLLBACK
statement	ends	the	current	transaction	and	a	new	one	starts.	A	COMMIT	means	that
the	changes	made	in	the	current	transaction	are	made	permanent	and	become
visible	to	other	users.	A	ROLLBACK	statement,	on	the	other	hand,	cancels	all
modifications	made	by	the	current	transaction.	Both	statements	release	all
InnoDB	locks	that	were	set	during	the	current	transaction.

If	the	connection	has	autocommit	enabled,	the	user	can	still	perform	a	multiple-
statement	transaction	by	starting	it	with	an	explicit	START	TRANSACTION	or	BEGIN
statement	and	ending	it	with	COMMIT	or	ROLLBACK.

14.2.10.3.	InnoDB	and	TRANSACTION	ISOLATION	LEVEL

In	terms	of	the	SQL:1992	transaction	isolation	levels,	the	InnoDB	default	is
REPEATABLE	READ.	InnoDB	offers	all	four	transaction	isolation	levels	described
by	the	SQL	standard.	You	can	set	the	default	isolation	level	for	all	connections
by	using	the	--transaction-isolation	option	on	the	command	line	or	in	an
option	file.	For	example,	you	can	set	the	option	in	the	[mysqld]	section	of	an
option	file	like	this:

[mysqld]

transaction-isolation	=	{READ-UNCOMMITTED	|	READ-COMMITTED

																									|	REPEATABLE-READ	|	SERIALIZABLE}

A	user	can	change	the	isolation	level	for	a	single	session	or	for	all	new	incoming
connections	with	the	SET	TRANSACTION	statement.	Its	syntax	is	as	follows:

SET	[SESSION	|	GLOBAL]	TRANSACTION	ISOLATION	LEVEL

																							{READ	UNCOMMITTED	|	READ	COMMITTED

																								|	REPEATABLE	READ	|	SERIALIZABLE}

Note	that	there	are	hyphens	in	the	level	names	for	the	--transaction-
isolation	option,	but	not	for	the	SET	TRANSACTION	statement.

The	default	behavior	is	to	set	the	isolation	level	for	the	next	(not	started)
transaction.	If	you	use	the	GLOBAL	keyword,	the	statement	sets	the	default
transaction	level	globally	for	all	new	connections	created	from	that	point	on	(but
not	for	existing	connections).	You	need	the	SUPER	privilege	to	do	this.	Using	the
SESSION	keyword	sets	the	default	transaction	level	for	all	future	transactions
performed	on	the	current	connection.

Any	client	is	free	to	change	the	session	isolation	level	(even	in	the	middle	of	a
transaction),	or	the	isolation	level	for	the	next	transaction.

You	can	determine	the	global	and	session	transaction	isolation	levels	by
checking	the	value	of	the	tx_isolation	system	variable	with	these	statements:

SELECT	@@global.tx_isolation;

SELECT	@@tx_isolation;

In	row-level	locking,	InnoDB	uses	next-key	locking.	That	means	that	besides
index	records,	InnoDB	can	also	lock	the	“gap”	preceding	an	index	record	to	block
insertions	by	other	users	immediately	before	the	index	record.	A	next-key	lock
refers	to	a	lock	that	locks	an	index	record	and	the	gap	before	it.	A	gap	lock	refers
to	a	lock	that	only	locks	a	gap	before	some	index	record.

A	detailed	description	of	each	isolation	level	in	InnoDB	follows:

READ	UNCOMMITTED

SELECT	statements	are	performed	in	a	non-locking	fashion,	but	a	possible
earlier	version	of	a	record	might	be	used.	Thus,	using	this	isolation	level,
such	reads	are	not	consistent.	This	is	also	called	a	“dirty	read.”	Otherwise,
this	isolation	level	works	like	READ	COMMITTED.

READ	COMMITTED

A	somewhat	Oracle-like	isolation	level.	All	SELECT	...	FOR	UPDATE	and
SELECT	...	LOCK	IN	SHARE	MODE	statements	lock	only	the	index	records,
not	the	gaps	before	them,	and	thus	allow	the	free	insertion	of	new	records
next	to	locked	records.	UPDATE	and	DELETE	statements	using	a	unique	index
with	a	unique	search	condition	lock	only	the	index	record	found,	not	the
gap	before	it.	In	range-type	UPDATE	and	DELETE	statements,	InnoDB	must	set
next-key	or	gap	locks	and	block	insertions	by	other	users	to	the	gaps
covered	by	the	range.	This	is	necessary	because	“phantom	rows”	must	be
blocked	for	MySQL	replication	and	recovery	to	work.

Consistent	reads	behave	as	in	Oracle:	Each	consistent	read,	even	within	the
same	transaction,	sets	and	reads	its	own	fresh	snapshot.	See
Section	14.2.10.4,	“Consistent	Non-Locking	Read”.

REPEATABLE	READ

This	is	the	default	isolation	level	of	InnoDB.	SELECT	...	FOR	UPDATE,
SELECT	...	LOCK	IN	SHARE	MODE,	UPDATE,	and	DELETE	statements	that	use
a	unique	index	with	a	unique	search	condition	lock	only	the	index	record
found,	not	the	gap	before	it.	With	other	search	conditions,	these	operations
employ	next-key	locking,	locking	the	index	range	scanned	with	next-key	or
gap	locks,	and	block	new	insertions	by	other	users.

In	consistent	reads,	there	is	an	important	difference	from	the	READ
COMMITTED	isolation	level:	All	consistent	reads	within	the	same	transaction
read	the	same	snapshot	established	by	the	first	read.	This	convention	means
that	if	you	issue	several	plain	SELECT	statements	within	the	same
transaction,	these	SELECT	statements	are	consistent	also	with	respect	to	each
other.	See	Section	14.2.10.4,	“Consistent	Non-Locking	Read”.

SERIALIZABLE

This	level	is	like	REPEATABLE	READ,	but	InnoDB	implicitly	commits	all	plain
SELECT	statements	to	SELECT	...	LOCK	IN	SHARE	MODE.

14.2.10.4.	Consistent	Non-Locking	Read

A	consistent	read	means	that	InnoDB	uses	multi-versioning	to	present	to	a	query
a	snapshot	of	the	database	at	a	point	in	time.	The	query	see	the	changes	made	by
those	transactions	that	committed	before	that	point	of	time,	and	no	changes	made
by	later	or	uncommitted	transactions.	The	exception	to	this	rule	is	that	the	query
sees	the	changes	made	by	earlier	statements	within	the	same	transaction.	Note
that	the	exception	to	the	rule	causes	the	following	anomaly:	if	you	update	some
rows	in	a	table,	a	SELECT	will	see	the	latest	version	of	the	updated	rows,	while	it
sees	the	old	version	of	other	rows.	If	other	users	simultaneously	update	the	same
table,	the	anomaly	means	that	you	may	see	the	table	in	a	state	that	never	existed
in	the	database.

If	you	are	running	with	the	default	REPEATABLE	READ	isolation	level,	all
consistent	reads	within	the	same	transaction	read	the	snapshot	established	by	the
first	such	read	in	that	transaction.	You	can	get	a	fresher	snapshot	for	your	queries
by	committing	the	current	transaction	and	after	that	issuing	new	queries.

Consistent	read	is	the	default	mode	in	which	InnoDB	processes	SELECT
statements	in	READ	COMMITTED	and	REPEATABLE	READ	isolation	levels.	A
consistent	read	does	not	set	any	locks	on	the	tables	it	accesses,	and	therefore
other	users	are	free	to	modify	those	tables	at	the	same	time	a	consistent	read	is
being	performed	on	the	table.

Note	that	consistent	read	does	not	work	over	DROP	TABLE	and	over	ALTER	TABLE.
Consistent	read	does	not	work	over	DROP	TABLE	because	MySQL	can't	use	a
table	that	has	been	dropped	and	InnoDB	destroys	the	table.	Consistent	read	does
not	work	over	ALTER	TABLE	because	ALTER	TABLE	works	by	making	a	temporary
copy	of	the	original	table	and	deleting	the	original	table	when	the	temporary
copy	is	built.	When	you	reissue	a	consistent	read	within	a	transaction,	rows	in
the	new	table	are	not	visible	because	those	rows	did	not	exist	when	the
transaction's	snapshot	was	taken.

14.2.10.5.	SELECT	...	FOR	UPDATE	and	SELECT	...	LOCK	IN	SHARE	MODE

Locking	Reads

In	some	circumstances,	a	consistent	read	is	not	convenient.	For	example,	you
might	want	to	add	a	new	row	into	your	table	child,	and	make	sure	that	the	child
has	a	parent	in	table	parent.	The	following	example	shows	how	to	implement
referential	integrity	in	your	application	code.

Suppose	that	you	use	a	consistent	read	to	read	the	table	parent	and	indeed	see
the	parent	of	the	child	in	the	table.	Can	you	safely	add	the	child	row	to	table
child?	No,	because	it	may	happen	that	meanwhile	some	other	user	deletes	the
parent	row	from	the	table	parent	without	you	being	aware	of	it.

The	solution	is	to	perform	the	SELECT	in	a	locking	mode	using	LOCK	IN	SHARE
MODE:

SELECT	*	FROM	parent	WHERE	NAME	=	'Jones'	LOCK	IN	SHARE	MODE;

Performing	a	read	in	share	mode	means	that	we	read	the	latest	available	data,
and	set	a	shared	mode	lock	on	the	rows	we	read.	A	shared	mode	lock	prevents
others	from	updating	or	deleting	the	row	we	have	read.	Also,	if	the	latest	data
belongs	to	a	yet	uncommitted	transaction	of	another	client	connection,	we	wait
until	that	transaction	commits.	After	we	see	that	the	preceding	query	returns	the
parent	'Jones',	we	can	safely	add	the	child	record	to	the	child	table	and
commit	our	transaction.

Let	us	look	at	another	example:	We	have	an	integer	counter	field	in	a	table
child_codes	that	we	use	to	assign	a	unique	identifier	to	each	child	added	to
table	child.	Obviously,	using	a	consistent	read	or	a	shared	mode	read	to	read	the
present	value	of	the	counter	is	not	a	good	idea	because	two	users	of	the	database
may	then	see	the	same	value	for	the	counter,	and	a	duplicate-key	error	occurs	if
two	users	attempt	to	add	children	with	the	same	identifier	to	the	table.

Here,	LOCK	IN	SHARE	MODE	is	not	a	good	solution	because	if	two	users	read	the
counter	at	the	same	time,	at	least	one	of	them	ends	up	in	deadlock	when
attempting	to	update	the	counter.

In	this	case,	there	are	two	good	ways	to	implement	the	reading	and	incrementing
of	the	counter:	(1)	update	the	counter	first	by	incrementing	it	by	1	and	only	after
that	read	it,	or	(2)	read	the	counter	first	with	a	lock	mode	FOR	UPDATE,	and
increment	after	that.	The	latter	approach	can	be	implemented	as	follows:

SELECT	counter_field	FROM	child_codes	FOR	UPDATE;

UPDATE	child_codes	SET	counter_field	=	counter_field	+	1;

A	SELECT	...	FOR	UPDATE	reads	the	latest	available	data,	setting	exclusive
locks	on	each	row	it	reads.	Thus,	it	sets	the	same	locks	a	searched	SQL	UPDATE
would	set	on	the	rows.

The	preceding	description	is	merely	an	example	of	how	SELECT	...	FOR
UPDATE	works.	In	MySQL,	the	specific	task	of	generating	a	unique	identifier
actually	can	be	accomplished	using	only	a	single	access	to	the	table:

UPDATE	child_codes	SET	counter_field	=	LAST_INSERT_ID(counter_field	+	1);

SELECT	LAST_INSERT_ID();

The	SELECT	statement	merely	retrieves	the	identifier	information	(specific	to	the
current	connection).	It	does	not	access	any	table.

Locks	set	by	IN	SHARE	MODE	and	FOR	UPDATE	reads	are	released	when	the
transaction	is	committed	or	rolled	back.

14.2.10.6.	Next-Key	Locking:	Avoiding	the	Phantom	Problem

In	row-level	locking,	InnoDB	uses	an	algorithm	called	next-key	locking.	InnoDB
performs	the	row-level	locking	in	such	a	way	that	when	it	searches	or	scans	an
index	of	a	table,	it	sets	shared	or	exclusive	locks	on	the	index	records	it
encounters.	Thus,	the	row-level	locks	are	actually	index	record	locks.

The	locks	InnoDB	sets	on	index	records	also	affect	the	“gap”	before	that	index
record.	If	a	user	has	a	shared	or	exclusive	lock	on	record	R	in	an	index,	another
user	cannot	insert	a	new	index	record	immediately	before	R	in	the	index	order.
This	locking	of	gaps	is	done	to	prevent	the	so-called	“phantom	problem.”
Suppose	that	you	want	to	read	and	lock	all	children	from	the	child	table	having
an	identifier	value	greater	than	100,	with	the	intention	of	updating	some	column
in	the	selected	rows	later:

SELECT	*	FROM	child	WHERE	id	>	100	FOR	UPDATE;

Suppose	that	there	is	an	index	on	the	id	column.	The	query	scans	that	index
starting	from	the	first	record	where	id	is	bigger	than	100.	If	the	locks	set	on	the
index	records	would	not	lock	out	inserts	made	in	the	gaps,	a	new	row	might

meanwhile	be	inserted	to	the	table.	If	you	execute	the	same	SELECT	within	the
same	transaction,	you	would	see	a	new	row	in	the	result	set	returned	by	the
query.	This	is	contrary	to	the	isolation	principle	of	transactions:	A	transaction
should	be	able	to	run	so	that	the	data	it	has	read	does	not	change	during	the
transaction.	If	we	regard	a	set	of	rows	as	a	data	item,	the	new	“phantom”	child
would	violate	this	isolation	principle.

When	InnoDB	scans	an	index,	it	can	also	lock	the	gap	after	the	last	record	in	the
index.	Just	that	happens	in	the	previous	example:	The	locks	set	by	InnoDB
prevent	any	insert	to	the	table	where	id	would	be	bigger	than	100.

You	can	use	next-key	locking	to	implement	a	uniqueness	check	in	your
application:	If	you	read	your	data	in	share	mode	and	do	not	see	a	duplicate	for	a
row	you	are	going	to	insert,	then	you	can	safely	insert	your	row	and	know	that
the	next-key	lock	set	on	the	successor	of	your	row	during	the	read	prevents
anyone	meanwhile	inserting	a	duplicate	for	your	row.	Thus,	the	next-key	locking
allows	you	to	“lock”	the	non-existence	of	something	in	your	table.

14.2.10.7.	An	Example	of	Consistent	Read	in	InnoDB

Suppose	that	you	are	running	in	the	default	REPEATABLE	READ	isolation	level.
When	you	issue	a	consistent	read	(that	is,	an	ordinary	SELECT	statement),	InnoDB
gives	your	transaction	a	timepoint	according	to	which	your	query	sees	the
database.	If	another	transaction	deletes	a	row	and	commits	after	your	timepoint
was	assigned,	you	do	not	see	the	row	as	having	been	deleted.	Inserts	and	updates
are	treated	similarly.

You	can	advance	your	timepoint	by	committing	your	transaction	and	then	doing
another	SELECT.

This	is	called	multi-versioned	concurrency	control.

															User	A																	User	B

											SET	AUTOCOMMIT=0;						SET	AUTOCOMMIT=0;

time

|										SELECT	*	FROM	t;

|										empty	set

|																																	INSERT	INTO	t	VALUES	(1,	2);

|

v										SELECT	*	FROM	t;

											empty	set

																																		COMMIT;

											SELECT	*	FROM	t;

											empty	set

											COMMIT;

											SELECT	*	FROM	t;

											|				1				|				2				|

											1	row	in	set

In	this	example,	user	A	sees	the	row	inserted	by	B	only	when	B	has	committed
the	insert	and	A	has	committed	as	well,	so	that	the	timepoint	is	advanced	past	the
commit	of	B.

If	you	want	to	see	the	“freshest”	state	of	the	database,	you	should	use	either	the
READ	COMMITTED	isolation	level	or	a	locking	read:

SELECT	*	FROM	t	LOCK	IN	SHARE	MODE;

14.2.10.8.	Locks	Set	by	Different	SQL	Statements	in	InnoDB

A	locking	read,	an	UPDATE,	or	a	DELETE	generally	set	record	locks	on	every	index
record	that	is	scanned	in	the	processing	of	the	SQL	statement.	It	does	not	matter
if	there	are	WHERE	conditions	in	the	statement	that	would	exclude	the	row.	InnoDB
does	not	remember	the	exact	WHERE	condition,	but	only	knows	which	index
ranges	were	scanned.	The	record	locks	are	normally	next-key	locks	that	also
block	inserts	to	the	“gap”	immediately	before	the	record.

If	the	locks	to	be	set	are	exclusive,	InnoDB	always	retrieves	also	the	clustered
index	record	and	sets	a	lock	on	it.

If	you	do	not	have	indexes	suitable	for	your	statement	and	MySQL	has	to	scan
the	whole	table	to	process	the	statement,	every	row	of	the	table	becomes	locked,
which	in	turn	blocks	all	inserts	by	other	users	to	the	table.	It	is	important	to
create	good	indexes	so	that	your	queries	do	not	unnecessarily	need	to	scan	many
rows.

InnoDB	sets	specific	types	of	locks	as	follows:

SELECT	...	FROM	is	a	consistent	read,	reading	a	snapshot	of	the	database
and	setting	no	locks	unless	the	transaction	isolation	level	is	set	to
SERIALIZABLE.	For	SERIALIZABLE	level,	this	sets	shared	next-key	locks	on
the	index	records	it	encounters.

SELECT	...	FROM	...	LOCK	IN	SHARE	MODE	sets	shared	next-key	locks	on
all	index	records	the	read	encounters.

SELECT	...	FROM	...	FOR	UPDATE	sets	exclusive	next-key	locks	on	all
index	records	the	read	encounters.

INSERT	INTO	...	VALUES	(...)	sets	an	exclusive	lock	on	the	inserted	row.
Note	that	this	lock	is	not	a	next-key	lock	and	does	not	prevent	other	users
from	inserting	to	the	gap	before	the	inserted	row.	If	a	duplicate-key	error
occurs,	a	shared	lock	on	the	duplicate	index	record	is	set.

While	initializing	a	previously	specified	AUTO_INCREMENT	column	on	a
table,	InnoDB	sets	an	exclusive	lock	on	the	end	of	the	index	associated	with
the	AUTO_INCREMENT	column.	In	accessing	the	auto-increment	counter,
InnoDB	uses	a	specific	table	lock	mode	AUTO-INC	where	the	lock	lasts	only
to	the	end	of	the	current	SQL	statement,	not	to	the	end	of	the	entire
transaction.	Note	that	other	clients	cannot	insert	into	the	table	while	the
AUTO-INC	table	lock	is	held;	see	Section	14.2.10.2,	“InnoDB	and
AUTOCOMMIT”.

InnoDB	fetches	the	value	of	a	previously	initialized	AUTO_INCREMENT
column	without	setting	any	locks.

INSERT	INTO	T	SELECT	...	FROM	S	WHERE	...	sets	an	exclusive	(non-
next-key)	lock	on	each	row	inserted	into	T.	InnoDB	sets	shared	next-key
locks	locks	on	S,	unless	innodb_locks_unsafe_for_binlog	is	enabled,	in
which	case	it	does	the	search	on	S	as	a	consistent	read.	InnoDB	has	to	set
locks	in	the	latter	case:	In	roll-forward	recovery	from	a	backup,	every	SQL
statement	has	to	be	executed	in	exactly	the	same	way	it	was	done	originally.

CREATE	TABLE	...	SELECT	...	performs	the	SELECT	as	a	consistent	read	or
with	shared	locks,	as	in	the	previous	item.

REPLACE	is	done	like	an	insert	if	there	is	no	collision	on	a	unique	key.
Otherwise,	an	exclusive	next-key	lock	is	placed	on	the	row	that	has	to	be

updated.

UPDATE	...	WHERE	...	sets	an	exclusive	next-key	lock	on	every	record	the
search	encounters.

DELETE	FROM	...	WHERE	...	sets	an	exclusive	next-key	lock	on	every
record	the	search	encounters.

If	a	FOREIGN	KEY	constraint	is	defined	on	a	table,	any	insert,	update,	or
delete	that	requires	the	constraint	condition	to	be	checked	sets	shared
record-level	locks	on	the	records	that	it	looks	at	to	check	the	constraint.
InnoDB	also	sets	these	locks	in	the	case	where	the	constraint	fails.

LOCK	TABLES	sets	table	locks,	but	it	is	the	higher	MySQL	layer	above	the
InnoDB	layer	that	sets	these	locks.	InnoDB	is	aware	of	table	locks	if
innodb_table_locks=1	(the	default)	and	AUTOCOMMIT=0,	and	the	MySQL
layer	above	InnoDB	knows	about	row-level	locks.	Otherwise,	InnoDB's
automatic	deadlock	detection	cannot	detect	deadlocks	where	such	table
locks	are	involved.	Also,	because	the	higher	MySQL	layer	does	not	know
about	row-level	locks,	it	is	possible	to	get	a	table	lock	on	a	table	where
another	user	currently	has	row-level	locks.	However,	this	does	not	endanger
transaction	integrity,	as	discussed	in	Section	14.2.10.10,	“Deadlock
Detection	and	Rollback”.	See	also	Section	14.2.16,	“Restrictions	on	InnoDB
Tables”.

14.2.10.9.	Implicit	Transaction	Commit	and	Rollback

By	default,	MySQL	begins	each	client	connection	with	autocommit	mode
enabled.	When	autocommit	is	enabled,	MySQL	does	a	commit	after	each	SQL
statement	if	that	statement	did	not	return	an	error.	If	an	SQL	statement	returns	an
error,	the	commit	or	rollback	behavior	depends	on	the	error.	See	Section	14.2.15,
“InnoDB	Error	Handling”.

If	you	have	the	autocommit	mode	off	and	close	a	connection	without	explicitly
committing	the	final	transaction,	MySQL	rolls	back	that	transaction.

Each	of	the	following	statements	(and	any	synonyms	for	them)	implicitly	end	a
transaction,	as	if	you	had	done	a	COMMIT	before	executing	the	statement:

ALTER	FUNCTION,	ALTER	PROCEDURE,	ALTER	TABLE,	BEGIN,	CREATE
DATABASE,	CREATE	FUNCTION,	CREATE	INDEX,	CREATE	PROCEDURE,	CREATE
TABLE,	DROP	DATABASE,	DROP	FUNCTION,	DROP	INDEX,	DROP	PROCEDURE,
DROP	TABLE,	LOAD	MASTER	DATA,	LOCK	TABLES,	RENAME	TABLE,	SET
AUTOCOMMIT=1,	START	TRANSACTION,	TRUNCATE,	UNLOCK	TABLES.

UNLOCK	TABLES	commits	a	transaction	only	if	any	tables	are	currently
locked.

The	CREATE	TABLE,	CREATE	DATABASE	DROP	DATABASE,	and	TRUNCATE
TABLE	statements	cause	an	implicit	commit	beginning	with	MySQL	5.0.8.
The	ALTER	FUNCTION,	ALTER	PROCEDURE,	CREATE	FUNCTION,	CREATE
PROCEDURE,	DROP	FUNCTION,	and	DROP	PROCEDURE	statements	cause	an
implicit	commit	beginning	with	MySQL	MySQL	5.0.13.

The	CREATE	TABLE	statement	in	InnoDB	is	processed	as	a	single	transaction.
This	means	that	a	ROLLBACK	from	the	user	does	not	undo	CREATE	TABLE
statements	the	user	made	during	that	transaction.

Transactions	cannot	be	nested.	This	is	a	consequence	of	the	implicit	COMMIT
performed	for	any	current	transaction	when	you	issue	a	START	TRANSACTION
statement	or	one	of	its	synonyms.

Statements	that	cause	implicit	cannot	be	used	in	an	XA	transaction	while	the
transaction	is	in	an	ACTIVE	state.

14.2.10.10.	Deadlock	Detection	and	Rollback

InnoDB	automatically	detects	a	deadlock	of	transactions	and	rolls	back	a
transaction	or	transactions	to	break	the	deadlock.	InnoDB	tries	to	pick	small
transactions	to	roll	back,	where	the	size	of	a	transaction	is	determined	by	the
number	of	rows	inserted,	updated,	or	deleted.

InnoDB	is	aware	of	table	locks	if	innodb_table_locks=1	(the	default)	and
AUTOCOMMIT=0,	and	the	MySQL	layer	above	it	knows	about	row-level	locks.
Otherwise,	InnoDB	cannot	detect	deadlocks	where	a	table	lock	set	by	a	MySQL
LOCK	TABLES	statement	or	a	lock	set	by	a	storage	engine	other	than	InnoDB	is
involved.	You	must	resolve	these	situations	by	setting	the	value	of	the
innodb_lock_wait_timeout	system	variable.

When	InnoDB	performs	a	complete	rollback	of	a	transaction,	all	locks	set	by	the
transaction	are	released.	However,	if	just	a	single	SQL	statement	is	rolled	back
as	a	result	of	an	error,	some	of	the	locks	set	by	the	statement	may	be	preserved.
This	happens	because	InnoDB	stores	row	locks	in	a	format	such	that	it	cannot
know	afterward	which	lock	was	set	by	which	statement.

14.2.10.11.	How	to	Cope	with	Deadlocks

Deadlocks	are	a	classic	problem	in	transactional	databases,	but	they	are	not
dangerous	unless	they	are	so	frequent	that	you	cannot	run	certain	transactions	at
all.	Normally,	you	must	write	your	applications	so	that	they	are	always	prepared
to	re-issue	a	transaction	if	it	gets	rolled	back	because	of	a	deadlock.

InnoDB	uses	automatic	row-level	locking.	You	can	get	deadlocks	even	in	the	case
of	transactions	that	just	insert	or	delete	a	single	row.	That	is	because	these
operations	are	not	really	“atomic”;	they	automatically	set	locks	on	the	(possibly
several)	index	records	of	the	row	inserted	or	deleted.

You	can	cope	with	deadlocks	and	reduce	the	likelihood	of	their	occurrence	with
the	following	techniques:

Use	SHOW	ENGINE	INNODB	STATUS	to	determine	the	cause	of	the	latest
deadlock.	That	can	help	you	to	tune	your	application	to	avoid	deadlocks.

Always	be	prepared	to	re-issue	a	transaction	if	it	fails	due	to	deadlock.
Deadlocks	are	not	dangerous.	Just	try	again.

Commit	your	transactions	often.	Small	transactions	are	less	prone	to
collision.

If	you	are	using	locking	reads	(SELECT	...	FOR	UPDATE	or	...	LOCK	IN
SHARE	MODE),	try	using	a	lower	isolation	level	such	as	READ	COMMITTED.

Access	your	tables	and	rows	in	a	fixed	order.	Then	transactions	form	well-
defined	queues	and	do	not	deadlock.

Add	well-chosen	indexes	to	your	tables.	Then	your	queries	need	to	scan
fewer	index	records	and	consequently	set	fewer	locks.	Use	EXPLAIN	SELECT
to	determine	which	indexes	the	MySQL	server	regards	as	the	most

appropriate	for	your	queries.

Use	less	locking.	If	you	can	afford	to	allow	a	SELECT	to	return	data	from	an
old	snapshot,	do	not	add	the	clause	FOR	UPDATE	or	LOCK	IN	SHARE	MODE	to
it.	Using	the	READ	COMMITTED	isolation	level	is	good	here,	because	each
consistent	read	within	the	same	transaction	reads	from	its	own	fresh
snapshot.

If	nothing	else	helps,	serialize	your	transactions	with	table-level	locks.	The
correct	way	to	use	LOCK	TABLES	with	transactional	tables,	such	as	InnoDB
tables,	is	to	set	AUTOCOMMIT	=	0	and	not	to	call	UNLOCK	TABLES	until	after
you	commit	the	transaction	explicitly.	For	example,	if	you	need	to	write	to
table	t1	and	read	from	table	t2,	you	can	do	this:

SET	AUTOCOMMIT=0;

LOCK	TABLES	t1	WRITE,	t2	READ,	...;

...	do	something	with	tables	t1	and	t2	here	...

COMMIT;

UNLOCK	TABLES;

Table-level	locks	make	your	transactions	queue	nicely,	and	deadlocks	are
avoided.

Another	way	to	serialize	transactions	is	to	create	an	auxiliary	“semaphore”
table	that	contains	just	a	single	row.	Have	each	transaction	update	that	row
before	accessing	other	tables.	In	that	way,	all	transactions	happen	in	a	serial
fashion.	Note	that	the	InnoDB	instant	deadlock	detection	algorithm	also
works	in	this	case,	because	the	serializing	lock	is	a	row-level	lock.	With
MySQL	table-level	locks,	the	timeout	method	must	be	used	to	resolve
deadlocks.

In	applications	that	use	the	LOCK	TABLES	command,	MySQL	does	not	set
InnoDB	table	locks	if	AUTOCOMMIT=1.

14.2.11.	InnoDB	Performance	Tuning	Tips

In	InnoDB,	having	a	long	PRIMARY	KEY	wastes	a	lot	of	disk	space	because	its
value	must	be	stored	with	every	secondary	index	record.	(See
Section	14.2.13,	“InnoDB	Table	and	Index	Structures”.)	Create	an
AUTO_INCREMENT	column	as	the	primary	key	if	your	primary	key	is	long.

If	the	Unix	top	tool	or	the	Windows	Task	Manager	shows	that	the	CPU
usage	percentage	with	your	workload	is	less	than	70%,	your	workload	is
probably	disk-bound.	Maybe	you	are	making	too	many	transaction
commits,	or	the	buffer	pool	is	too	small.	Making	the	buffer	pool	bigger	can
help,	but	do	not	set	it	equal	to	more	than	80%	of	physical	memory.

Wrap	several	modifications	into	one	transaction.	InnoDB	must	flush	the	log
to	disk	at	each	transaction	commit	if	that	transaction	made	modifications	to
the	database.	The	rotation	speed	of	a	disk	is	typically	at	most	167
revolutions/second,	which	constrains	the	number	of	commits	to	the	same
167th	of	a	second	if	the	disk	does	not	“fool”	the	operating	system.

If	you	can	afford	the	loss	of	some	of	the	latest	committed	transactions	if	a
crash	occurs,	you	can	set	the	innodb_flush_log_at_trx_commit	parameter
to	0.	InnoDB	tries	to	flush	the	log	once	per	second	anyway,	although	the
flush	is	not	guaranteed.

Make	your	log	files	big,	even	as	big	as	the	buffer	pool.	When	InnoDB	has
written	the	log	files	full,	it	has	to	write	the	modified	contents	of	the	buffer
pool	to	disk	in	a	checkpoint.	Small	log	files	cause	many	unnecessary	disk
writes.	The	drawback	of	big	log	files	is	that	the	recovery	time	is	longer.

Make	the	log	buffer	quite	large	as	well	(on	the	order	of	8MB).

Use	the	VARCHAR	data	type	instead	of	CHAR	if	you	are	storing	variable-length
strings	or	if	the	column	may	contain	many	NULL	values.	A	CHAR(N)	column
always	takes	N	characters	to	store	data,	even	if	the	string	is	shorter	or	its
value	is	NULL.	Smaller	tables	fit	better	in	the	buffer	pool	and	reduce	disk
I/O.

When	using	row_format=compact	(the	default	InnoDB	record	format	in
MySQL	5.0)	and	variable-length	character	sets,	such	as	utf8	or	sjis,
CHAR(N)	will	occupy	a	variable	amount	of	space,	at	least	N	bytes.

In	some	versions	of	GNU/Linux	and	Unix,	flushing	files	to	disk	with	the
Unix	fsync()	call	(which	InnoDB	uses	by	default)	and	other	similar
methods	is	surprisingly	slow.	If	you	are	dissatisfied	with	database	write
performance,	you	might	try	setting	the	innodb_flush_method	parameter	to
O_DSYNC.	Although	O_DSYNC	seems	to	be	slower	on	most	systems,	yours

might	not	be	one	of	them.

When	using	the	InnoDB	storage	engine	on	Solaris	10	for	x86_64
architecture	(AMD	Opteron),	it	is	important	to	mount	any	filesystems	used
for	storing	InnoDB-related	files	using	the	forcedirectio	option.	(The
default	on	Solaris	10/x86_64	is	not	to	use	this	option.)	Failure	to	use
forcedirectio	causes	a	serious	degradation	of	InnoDB's	speed	and
performance	on	this	platform.

When	using	the	InnoDB	storage	engine	with	a	large
innodb_buffer_pool_size	value	on	any	release	of	Solaris	2.6	and	up	and
any	platform	(sparc/x86/x64/amd64),	a	significant	performance	gain	can	be
achieved	by	placing	InnoDB	data	files	and	log	files	on	raw	devices	or	on	a
separate	direct	I/O	UFS	filesystem	(using	mount	option	forcedirectio;	see
mount_ufs(1M)).	Users	of	the	Veritas	filesystem	VxFS	should	use	the
mount	option	convosync=direct.

Other	MySQL	data	files,	such	as	those	for	MyISAM	tables,	should	not	be
placed	on	a	direct	I/O	filesystem.	Executables	or	libraries	must	not	be
placed	on	a	direct	I/O	filesystem.

When	importing	data	into	InnoDB,	make	sure	that	MySQL	does	not	have
autocommit	mode	enabled	because	that	requires	a	log	flush	to	disk	for
every	insert.	To	disable	autocommit	during	your	import	operation,	surround
it	with	SET	AUTOCOMMIT	and	COMMIT	statements:

SET	AUTOCOMMIT=0;

...	SQL	import	statements	...

COMMIT;

If	you	use	the	mysqldump	option	--opt,	you	get	dump	files	that	are	fast	to
import	into	an	InnoDB	table,	even	without	wrapping	them	with	the	SET
AUTOCOMMIT	and	COMMIT	statements.

Beware	of	big	rollbacks	of	mass	inserts:	InnoDB	uses	the	insert	buffer	to
save	disk	I/O	in	inserts,	but	no	such	mechanism	is	used	in	a	corresponding
rollback.	A	disk-bound	rollback	can	take	30	times	as	long	to	perform	as	the
corresponding	insert.	Killing	the	database	process	does	not	help	because	the
rollback	starts	again	on	server	startup.	The	only	way	to	get	rid	of	a	runaway
rollback	is	to	increase	the	buffer	pool	so	that	the	rollback	becomes	CPU-

bound	and	runs	fast,	or	to	use	a	special	procedure.	See	Section	14.2.8.1,
“Forcing	InnoDB	Recovery”.

Beware	also	of	other	big	disk-bound	operations.	Use	DROP	TABLE	and
CREATE	TABLE	to	empty	a	table,	not	DELETE	FROM	tbl_name.

Use	the	multiple-row	INSERT	syntax	to	reduce	communication	overhead
between	the	client	and	the	server	if	you	need	to	insert	many	rows:

INSERT	INTO	yourtable	VALUES	(1,2),	(5,5),	...;

This	tip	is	valid	for	inserts	into	any	table,	not	just	InnoDB	tables.

If	you	have	UNIQUE	constraints	on	secondary	keys,	you	can	speed	up	table
imports	by	temporarily	turning	off	the	uniqueness	checks	during	the	import
session:

SET	UNIQUE_CHECKS=0;

...	import	operation	...

SET	UNIQUE_CHECKS=1;

For	big	tables,	this	saves	a	lot	of	disk	I/O	because	InnoDB	can	use	its	insert
buffer	to	write	secondary	index	records	in	a	batch.	Be	certain	that	the	data
contains	no	duplicate	keys.	UNIQUE_CHECKS	allows	but	does	not	require
storage	engines	to	ignore	duplicate	keys.

If	you	have	FOREIGN	KEY	constraints	in	your	tables,	you	can	speed	up	table
imports	by	turning	the	foreign	key	checks	off	for	the	duration	of	the	import
session:

SET	FOREIGN_KEY_CHECKS=0;

...	import	operation	...

SET	FOREIGN_KEY_CHECKS=1;

For	big	tables,	this	can	save	a	lot	of	disk	I/O.

If	you	often	have	recurring	queries	for	tables	that	are	not	updated
frequently,	use	the	query	cache:

[mysqld]

query_cache_type	=	ON

query_cache_size	=	10M

14.2.11.1.	SHOW	ENGINE	INNODB	STATUS	and	the	InnoDB	Monitors

InnoDB	includes	InnoDB	Monitors	that	print	information	about	the	InnoDB
internal	state.	You	can	use	the	SHOW	ENGINE	INNODB	STATUS	SQL	statement	at
any	time	to	fetch	the	output	of	the	standard	InnoDB	Monitor	to	your	SQL	client.
This	information	is	useful	in	performance	tuning.	(If	you	are	using	the	mysql
interactive	SQL	client,	the	output	is	more	readable	if	you	replace	the	usual
semicolon	statement	terminator	with	\G.)	For	a	discussion	of	InnoDB	lock	modes,
see	Section	14.2.10.1,	“InnoDB	Lock	Modes”.

mysql>	SHOW	ENGINE	INNODB	STATUS\G

Another	way	to	use	InnoDB	Monitors	is	to	let	them	periodically	write	data	to	the
standard	output	of	the	mysqld	server.	In	this	case,	no	output	is	sent	to	clients.
When	switched	on,	InnoDB	Monitors	print	data	about	every	15	seconds.	Server
output	usually	is	directed	to	the	.err	log	in	the	MySQL	data	directory.	This	data
is	useful	in	performance	tuning.	On	Windows,	you	must	start	the	server	from	a
command	prompt	in	a	console	window	with	the	--console	option	if	you	want	to
direct	the	output	to	the	window	rather	than	to	the	error	log.

Monitor	output	includes	the	following	types	of	information:

Table	and	record	locks	held	by	each	active	transaction

Lock	waits	of	a	transactions

Semaphore	waits	of	threads

Pending	file	I/O	requests

Buffer	pool	statistics

Purge	and	insert	buffer	merge	activity	of	the	main	InnoDB	thread

To	cause	the	standard	InnoDB	Monitor	to	write	to	the	standard	output	of	mysqld,
use	the	following	SQL	statement:

CREATE	TABLE	innodb_monitor	(a	INT)	ENGINE=INNODB;

The	monitor	can	be	stopped	by	issuing	the	following	statement:

DROP	TABLE	innodb_monitor;

The	CREATE	TABLE	syntax	is	just	a	way	to	pass	a	command	to	the	InnoDB	engine
through	MySQL's	SQL	parser:	The	only	things	that	matter	are	the	table	name
innodb_monitor	and	that	it	be	an	InnoDB	table.	The	structure	of	the	table	is	not
relevant	at	all	for	the	InnoDB	Monitor.	If	you	shut	down	the	server,	the	monitor
does	not	restart	automatically	when	you	restart	the	server.	You	must	drop	the
monitor	table	and	issue	a	new	CREATE	TABLE	statement	to	start	the	monitor.	(This
syntax	may	change	in	a	future	release.)

You	can	use	innodb_lock_monitor	in	a	similar	fashion.	This	is	the	same	as
innodb_monitor,	except	that	it	also	provides	a	great	deal	of	lock	information.	A
separate	innodb_tablespace_monitor	prints	a	list	of	created	file	segments
existing	in	the	tablespace	and	validates	the	tablespace	allocation	data	structures.
In	addition,	there	is	innodb_table_monitor	with	which	you	can	print	the
contents	of	the	InnoDB	internal	data	dictionary.

A	sample	of	InnoDB	Monitor	output:

mysql>	SHOW	ENGINE	INNODB	STATUS\G

***************************	1.	row	***************************

Status:

=====================================

030709	13:00:59	INNODB	MONITOR	OUTPUT

=====================================

Per	second	averages	calculated	from	the	last	18	seconds

SEMAPHORES

OS	WAIT	ARRAY	INFO:	reservation	count	413452,	signal	count	378357

--Thread	32782	has	waited	at	btr0sea.c	line	1477	for	0.00	seconds	the

semaphore:	X-lock	on	RW-latch	at	41a28668	created	in	file	btr0sea.c	line	135

a	writer	(thread	id	32782)	has	reserved	it	in	mode	wait	exclusive

number	of	readers	1,	waiters	flag	1

Last	time	read	locked	in	file	btr0sea.c	line	731

Last	time	write	locked	in	file	btr0sea.c	line	1347

Mutex	spin	waits	0,	rounds	0,	OS	waits	0

RW-shared	spins	108462,	OS	waits	37964;	RW-excl	spins	681824,	OS	waits

375485

LATEST	FOREIGN	KEY	ERROR

030709	13:00:59	Transaction:

TRANSACTION	0	290328284,	ACTIVE	0	sec,	process	no	3195,	OS	thread	id	34831

inserting

15	lock	struct(s),	heap	size	2496,	undo	log	entries	9

MySQL	thread	id	25,	query	id	4668733	localhost	heikki	update

insert	into	ibtest11a	(D,	B,	C)	values	(5,	'khDk'	,'khDk')

Foreign	key	constraint	fails	for	table	test/ibtest11a:

,

		CONSTRAINT	`0_219242`	FOREIGN	KEY	(`A`,	`D`)	REFERENCES	`ibtest11b`	(`A`,

		`D`)	ON	DELETE	CASCADE	ON	UPDATE	CASCADE

Trying	to	add	in	child	table,	in	index	PRIMARY	tuple:

	0:	len	4;	hex	80000101;	asc;;	1:	len	4;	hex	80000005;	asc;;	2:

	len	4;	hex	6b68446b;	asc	khDk;;	3:	len	6;	hex	0000114e0edc;	asc	...N..;;	4:

	len	7;	hex	00000000c3e0a7;	asc;;	5:	len	4;	hex	6b68446b;	asc	khDk;;

But	in	parent	table	test/ibtest11b,	in	index	PRIMARY,

the	closest	match	we	can	find	is	record:

RECORD:	info	bits	0	0:	len	4;	hex	8000015b;	asc	...[;;	1:	len	4;	hex

80000005;	asc;;	2:	len	3;	hex	6b6864;	asc	khd;;	3:	len	6;	hex

0000111ef3eb;	asc;;	4:	len	7;	hex	800001001e0084;	asc;;	5:

len	3;	hex	6b6864;	asc	khd;;

LATEST	DETECTED	DEADLOCK

030709	12:59:58

***	(1)	TRANSACTION:

TRANSACTION	0	290252780,	ACTIVE	1	sec,	process	no	3185,	OS	thread	id	30733

inserting

LOCK	WAIT	3	lock	struct(s),	heap	size	320,	undo	log	entries	146

MySQL	thread	id	21,	query	id	4553379	localhost	heikki	update

INSERT	INTO	alex1	VALUES(86,	86,	794,'aA35818','bb','c79166','d4766t',

'e187358f','g84586','h794',date_format('2001-04-03	12:54:22','%Y-%m-%d

%H:%i'),7

***	(1)	WAITING	FOR	THIS	LOCK	TO	BE	GRANTED:

RECORD	LOCKS	space	id	0	page	no	48310	n	bits	568	table	test/alex1	index

symbole	trx	id	0	290252780	lock	mode	S	waiting

Record	lock,	heap	no	324	RECORD:	info	bits	0	0:	len	7;	hex	61613335383138;

asc	aa35818;;	1:

***	(2)	TRANSACTION:

TRANSACTION	0	290251546,	ACTIVE	2	sec,	process	no	3190,	OS	thread	id	32782

inserting

130	lock	struct(s),	heap	size	11584,	undo	log	entries	437

MySQL	thread	id	23,	query	id	4554396	localhost	heikki	update

REPLACE	INTO	alex1	VALUES(NULL,	32,	NULL,'aa3572','','c3572','d6012t','',

NULL,'h396',	NULL,	NULL,	7.31,7.31,7.31,200)

***	(2)	HOLDS	THE	LOCK(S):

RECORD	LOCKS	space	id	0	page	no	48310	n	bits	568	table	test/alex1	index

symbole	trx	id	0	290251546	lock_mode	X	locks	rec	but	not	gap

Record	lock,	heap	no	324	RECORD:	info	bits	0	0:	len	7;	hex	61613335383138;

asc	aa35818;;	1:

***	(2)	WAITING	FOR	THIS	LOCK	TO	BE	GRANTED:

RECORD	LOCKS	space	id	0	page	no	48310	n	bits	568	table	test/alex1	index

symbole	trx	id	0	290251546	lock_mode	X	locks	gap	before	rec	insert	intention

waiting

Record	lock,	heap	no	82	RECORD:	info	bits	0	0:	len	7;	hex	61613335373230;

asc	aa35720;;	1:

***	WE	ROLL	BACK	TRANSACTION	(1)

TRANSACTIONS

Trx	id	counter	0	290328385

Purge	done	for	trx's	n:o	<	0	290315608	undo	n:o	<	0	17

Total	number	of	lock	structs	in	row	lock	hash	table	70

LIST	OF	TRANSACTIONS	FOR	EACH	SESSION:

---TRANSACTION	0	0,	not	started,	process	no	3491,	OS	thread	id	42002

MySQL	thread	id	32,	query	id	4668737	localhost	heikki

show	innodb	status

---TRANSACTION	0	290328384,	ACTIVE	0	sec,	process	no	3205,	OS	thread	id

38929	inserting

1	lock	struct(s),	heap	size	320

MySQL	thread	id	29,	query	id	4668736	localhost	heikki	update

insert	into	speedc	values	(1519229,1,	'hgjhjgghggjgjgjgjgjggjgjgjgjgjgggjgjg

jlhhgghggggghhjhghgggggghjhghghghghghhhhghghghjhhjghjghjkghjghjghjghjfhjfh

---TRANSACTION	0	290328383,	ACTIVE	0	sec,	process	no	3180,	OS	thread	id

28684	committing

1	lock	struct(s),	heap	size	320,	undo	log	entries	1

MySQL	thread	id	19,	query	id	4668734	localhost	heikki	update

insert	into	speedcm	values	(1603393,1,	'hgjhjgghggjgjgjgjgjggjgjgjgjgjgggjgj

gjlhhgghggggghhjhghgggggghjhghghghghghhhhghghghjhhjghjghjkghjghjghjghjfhjf

---TRANSACTION	0	290328327,	ACTIVE	0	sec,	process	no	3200,	OS	thread	id

36880	starting	index	read

LOCK	WAIT	2	lock	struct(s),	heap	size	320

MySQL	thread	id	27,	query	id	4668644	localhost	heikki	Searching	rows	for

update

update	ibtest11a	set	B	=	'kHdkkkk'	where	A	=	89572

-------	TRX	HAS	BEEN	WAITING	0	SEC	FOR	THIS	LOCK	TO	BE	GRANTED:

RECORD	LOCKS	space	id	0	page	no	65556	n	bits	232	table	test/ibtest11a	index

PRIMARY	trx	id	0	290328327	lock_mode	X	waiting

Record	lock,	heap	no	1	RECORD:	info	bits	0	0:	len	9;	hex	73757072656d756d00;

asc	supremum.;;

---TRANSACTION	0	290328284,	ACTIVE	0	sec,	process	no	3195,	OS	thread	id

34831	rollback	of	SQL	statement

ROLLING	BACK	14	lock	struct(s),	heap	size	2496,	undo	log	entries	9

MySQL	thread	id	25,	query	id	4668733	localhost	heikki	update

insert	into	ibtest11a	(D,	B,	C)	values	(5,	'khDk'	,'khDk')

---TRANSACTION	0	290327208,	ACTIVE	1	sec,	process	no	3190,	OS	thread	id

32782

58	lock	struct(s),	heap	size	5504,	undo	log	entries	159

MySQL	thread	id	23,	query	id	4668732	localhost	heikki	update

REPLACE	INTO	alex1	VALUES(86,	46,	538,'aa95666','bb','c95666','d9486t',

'e200498f','g86814','h538',date_format('2001-04-03	12:54:22','%Y-%m-%d

%H:%i'),

---TRANSACTION	0	290323325,	ACTIVE	3	sec,	process	no	3185,	OS	thread	id

30733	inserting

4	lock	struct(s),	heap	size	1024,	undo	log	entries	165

MySQL	thread	id	21,	query	id	4668735	localhost	heikki	update

INSERT	INTO	alex1	VALUES(NULL,	49,	NULL,'aa42837','','c56319','d1719t','',

NULL,'h321',	NULL,	NULL,	7.31,7.31,7.31,200)

FILE	I/O

I/O	thread	0	state:	waiting	for	i/o	request	(insert	buffer	thread)

I/O	thread	1	state:	waiting	for	i/o	request	(log	thread)

I/O	thread	2	state:	waiting	for	i/o	request	(read	thread)

I/O	thread	3	state:	waiting	for	i/o	request	(write	thread)

Pending	normal	aio	reads:	0,	aio	writes:	0,

	ibuf	aio	reads:	0,	log	i/o's:	0,	sync	i/o's:	0

Pending	flushes	(fsync)	log:	0;	buffer	pool:	0

151671	OS	file	reads,	94747	OS	file	writes,	8750	OS	fsyncs

25.44	reads/s,	18494	avg	bytes/read,	17.55	writes/s,	2.33	fsyncs/s

INSERT	BUFFER	AND	ADAPTIVE	HASH	INDEX

Ibuf	for	space	0:	size	1,	free	list	len	19,	seg	size	21,

85004	inserts,	85004	merged	recs,	26669	merges

Hash	table	size	207619,	used	cells	14461,	node	heap	has	16	buffer(s)

1877.67	hash	searches/s,	5121.10	non-hash	searches/s

LOG

Log	sequence	number	18	1212842764

Log	flushed	up	to			18	1212665295

Last	checkpoint	at		18	1135877290

0	pending	log	writes,	0	pending	chkp	writes

4341	log	i/o's	done,	1.22	log	i/o's/second

BUFFER	POOL	AND	MEMORY

Total	memory	allocated	84966343;	in	additional	pool	allocated	1402624

Buffer	pool	size			3200

Free	buffers							110

Database	pages					3074

Modified	db	pages		2674

Pending	reads	0

Pending	writes:	LRU	0,	flush	list	0,	single	page	0

Pages	read	171380,	created	51968,	written	194688

28.72	reads/s,	20.72	creates/s,	47.55	writes/s

Buffer	pool	hit	rate	999	/	1000

ROW	OPERATIONS

0	queries	inside	InnoDB,	0	queries	in	queue

Main	thread	process	no.	3004,	id	7176,	state:	purging

Number	of	rows	inserted	3738558,	updated	127415,	deleted	33707,	read	755779

1586.13	inserts/s,	50.89	updates/s,	28.44	deletes/s,	107.88	reads/s

END	OF	INNODB	MONITOR	OUTPUT

============================

Some	notes	on	the	output:

If	the	TRANSACTIONS	section	reports	lock	waits,	your	applications	may	have
lock	contention.	The	output	can	also	help	to	trace	the	reasons	for
transaction	deadlocks.

The	SEMAPHORES	section	reports	threads	waiting	for	a	semaphore	and
statistics	on	how	many	times	threads	have	needed	a	spin	or	a	wait	on	a
mutex	or	a	rw-lock	semaphore.	A	large	number	of	threads	waiting	for
semaphores	may	be	a	result	of	disk	I/O,	or	contention	problems	inside
InnoDB.	Contention	can	be	due	to	heavy	parallelism	of	queries	or	problems
in	operating	system	thread	scheduling.	Setting
innodb_thread_concurrency	smaller	than	the	default	value	can	help	in
such	situations.

The	BUFFER	POOL	AND	MEMORY	section	gives	you	statistics	on	pages	read
and	written.	You	can	calculate	from	these	numbers	how	many	data	file	I/O
operations	your	queries	currently	are	doing.

The	ROW	OPERATIONS	section	shows	what	the	main	thread	is	doing.

InnoDB	sends	diagnostic	output	to	stderr	or	to	files	rather	than	to	stdout	or
fixed-size	memory	buffers,	to	avoid	potential	buffer	overflows.	As	a	side	effect,
the	output	of	SHOW	ENGINE	INNODB	STATUS	is	written	to	a	status	file	in	the
MySQL	data	directory	every	fifteen	seconds.	The	name	of	the	file	is
innodb_status.pid,	where	pid	is	the	server	process	ID.	InnoDB	removes	the	file
for	a	normal	shutdown.	If	abnormal	shutdowns	have	occurred,	instances	of	these
status	files	may	be	present	and	must	be	removed	manually.	Before	removing
them,	you	might	want	to	examine	them	to	see	whether	they	contain	useful
information	about	the	cause	of	abnormal	shutdowns.	The	innodb_status.pid
file	is	created	only	if	the	configuration	option	innodb_status_file=1	is	set.

14.2.12.	Implementation	of	Multi-Versioning

Because	InnoDB	is	a	multi-versioned	storage	engine,	it	must	keep	information
about	old	versions	of	rows	in	the	tablespace.	This	information	is	stored	in	a	data
structure	called	a	rollback	segment	(after	an	analogous	data	structure	in	Oracle).

Internally,	InnoDB	adds	two	fields	to	each	row	stored	in	the	database.	A	6-byte
field	indicates	the	transaction	identifier	for	the	last	transaction	that	inserted	or
updated	the	row.	Also,	a	deletion	is	treated	internally	as	an	update	where	a
special	bit	in	the	row	is	set	to	mark	it	as	deleted.	Each	row	also	contains	a	7-byte
field	called	the	roll	pointer.	The	roll	pointer	points	to	an	undo	log	record	written
to	the	rollback	segment.	If	the	row	was	updated,	the	undo	log	record	contains	the
information	necessary	to	rebuild	the	content	of	the	row	before	it	was	updated.

InnoDB	uses	the	information	in	the	rollback	segment	to	perform	the	undo
operations	needed	in	a	transaction	rollback.	It	also	uses	the	information	to	build
earlier	versions	of	a	row	for	a	consistent	read.

Undo	logs	in	the	rollback	segment	are	divided	into	insert	and	update	undo	logs.
Insert	undo	logs	are	needed	only	in	transaction	rollback	and	can	be	discarded	as
soon	as	the	transaction	commits.	Update	undo	logs	are	used	also	in	consistent
reads,	but	they	can	be	discarded	only	after	there	is	no	transaction	present	for
which	InnoDB	has	assigned	a	snapshot	that	in	a	consistent	read	could	need	the
information	in	the	update	undo	log	to	build	an	earlier	version	of	a	database	row.

You	must	remember	to	commit	your	transactions	regularly,	including	those
transactions	that	issue	only	consistent	reads.	Otherwise,	InnoDB	cannot	discard
data	from	the	update	undo	logs,	and	the	rollback	segment	may	grow	too	big,
filling	up	your	tablespace.

The	physical	size	of	an	undo	log	record	in	the	rollback	segment	is	typically
smaller	than	the	corresponding	inserted	or	updated	row.	You	can	use	this
information	to	calculate	the	space	need	for	your	rollback	segment.

In	the	InnoDB	multi-versioning	scheme,	a	row	is	not	physically	removed	from
the	database	immediately	when	you	delete	it	with	an	SQL	statement.	Only	when
InnoDB	can	discard	the	update	undo	log	record	written	for	the	deletion	can	it	also
physically	remove	the	corresponding	row	and	its	index	records	from	the
database.	This	removal	operation	is	called	a	purge,	and	it	is	quite	fast,	usually
taking	the	same	order	of	time	as	the	SQL	statement	that	did	the	deletion.

In	a	scenario	where	the	user	inserts	and	deletes	rows	in	smallish	batches	at	about

the	same	rate	in	the	table,	it	is	possible	that	the	purge	thread	starts	to	lag	behind,
and	the	table	grows	bigger	and	bigger,	making	everything	disk-bound	and	very
slow.	Even	if	the	table	carries	just	10MB	of	useful	data,	it	may	grow	to	occupy
10GB	with	all	the	“dead”	rows.	In	such	a	case,	it	would	be	good	to	throttle	new
row	operations,	and	allocate	more	resources	to	the	purge	thread.	The
innodb_max_purge_lag	system	variable	exists	for	exactly	this	purpose.	See
Section	14.2.4,	“InnoDB	Startup	Options	and	System	Variables”,	for	more
information.

14.2.13.	InnoDB	Table	and	Index	Structures

MySQL	stores	its	data	dictionary	information	for	tables	in	.frm	files	in	database
directories.	This	is	true	for	all	MySQL	storage	engines.	But	every	InnoDB	table
also	has	its	own	entry	in	the	InnoDB	internal	data	dictionary	inside	the
tablespace.	When	MySQL	drops	a	table	or	a	database,	it	has	to	delete	both	an
.frm	file	or	files,	and	the	corresponding	entries	inside	the	InnoDB	data	dictionary.
This	is	the	reason	why	you	cannot	move	InnoDB	tables	between	databases	simply
by	moving	the	.frm	files.

Every	InnoDB	table	has	a	special	index	called	the	clustered	index	where	the	data
for	the	rows	is	stored.	If	you	define	a	PRIMARY	KEY	on	your	table,	the	index	of
the	primary	key	is	the	clustered	index.

If	you	do	not	define	a	PRIMARY	KEY	for	your	table,	MySQL	picks	the	first	UNIQUE
index	that	has	only	NOT	NULL	columns	as	the	primary	key	and	InnoDB	uses	it	as
the	clustered	index.	If	there	is	no	such	index	in	the	table,	InnoDB	internally
generates	a	clustered	index	where	the	rows	are	ordered	by	the	row	ID	that
InnoDB	assigns	to	the	rows	in	such	a	table.	The	row	ID	is	a	6-byte	field	that
increases	monotonically	as	new	rows	are	inserted.	Thus,	the	rows	ordered	by	the
row	ID	are	physically	in	insertion	order.

Accessing	a	row	through	the	clustered	index	is	fast	because	the	row	data	is	on
the	same	page	where	the	index	search	leads.	If	a	table	is	large,	the	clustered
index	architecture	often	saves	a	disk	I/O	when	compared	to	the	traditional
solution.	(In	many	database	systems,	data	storage	uses	a	different	page	from	the
index	record.)

In	InnoDB,	the	records	in	non-clustered	indexes	(also	called	secondary	indexes)
contain	the	primary	key	value	for	the	row.	InnoDB	uses	this	primary	key	value	to

search	for	the	row	from	the	clustered	index.	Note	that	if	the	primary	key	is	long,
the	secondary	indexes	use	more	space.

InnoDB	compares	CHAR	and	VARCHAR	strings	of	different	lengths	such	that	the
remaining	length	in	the	shorter	string	is	treated	as	if	padded	with	spaces.

14.2.13.1.	Physical	Structure	of	an	Index

All	InnoDB	indexes	are	B-trees	where	the	index	records	are	stored	in	the	leaf
pages	of	the	tree.	The	default	size	of	an	index	page	is	16KB.	When	new	records
are	inserted,	InnoDB	tries	to	leave	1/16	of	the	page	free	for	future	insertions	and
updates	of	the	index	records.

If	index	records	are	inserted	in	a	sequential	order	(ascending	or	descending),	the
resulting	index	pages	are	about	15/16	full.	If	records	are	inserted	in	a	random
order,	the	pages	are	from	1/2	to	15/16	full.	If	the	fill	factor	of	an	index	page
drops	below	1/2,	InnoDB	tries	to	contract	the	index	tree	to	free	the	page.

14.2.13.2.	Insert	Buffering

It	is	a	common	situation	in	database	applications	that	the	primary	key	is	a	unique
identifier	and	new	rows	are	inserted	in	the	ascending	order	of	the	primary	key.
Thus,	the	insertions	to	the	clustered	index	do	not	require	random	reads	from	a
disk.

On	the	other	hand,	secondary	indexes	are	usually	non-unique,	and	insertions	into
secondary	indexes	happen	in	a	relatively	random	order.	This	would	cause	a	lot	of
random	disk	I/O	operations	without	a	special	mechanism	used	in	InnoDB.

If	an	index	record	should	be	inserted	to	a	non-unique	secondary	index,	InnoDB
checks	whether	the	secondary	index	page	is	in	the	buffer	pool.	If	that	is	the	case,
InnoDB	does	the	insertion	directly	to	the	index	page.	If	the	index	page	is	not
found	in	the	buffer	pool,	InnoDB	inserts	the	record	to	a	special	insert	buffer
structure.	The	insert	buffer	is	kept	so	small	that	it	fits	entirely	in	the	buffer	pool,
and	insertions	can	be	done	very	fast.

Periodically,	the	insert	buffer	is	merged	into	the	secondary	index	trees	in	the
database.	Often	it	is	possible	to	merge	several	insertions	to	the	same	page	of	the
index	tree,	saving	disk	I/O	operations.	It	has	been	measured	that	the	insert	buffer

can	speed	up	insertions	into	a	table	up	to	15	times.

The	insert	buffer	merging	may	continue	to	happen	after	the	inserting	transaction
has	been	committed.	In	fact,	it	may	continue	to	happen	after	a	server	shutdown
and	restart	(see	Section	14.2.8.1,	“Forcing	InnoDB	Recovery”).

The	insert	buffer	merging	may	take	many	hours,	when	many	secondary	indexes
must	be	updated,	and	many	rows	have	been	inserted.	During	this	time,	disk	I/O
will	be	increased,	which	can	cause	significant	slowdown	on	disk-bound	queries.
Another	significant	background	I/O	operation	is	the	purge	thread	(see
Section	14.2.12,	“Implementation	of	Multi-Versioning”).

14.2.13.3.	Adaptive	Hash	Indexes

If	a	table	fits	almost	entirely	in	main	memory,	the	fastest	way	to	perform	queries
on	it	is	to	use	hash	indexes.	InnoDB	has	a	mechanism	that	monitors	index
searches	made	to	the	indexes	defined	for	a	table.	If	InnoDB	notices	that	queries
could	benefit	from	building	a	hash	index,	it	does	so	automatically.

Note	that	the	hash	index	is	always	built	based	on	an	existing	B-tree	index	on	the
table.	InnoDB	can	build	a	hash	index	on	a	prefix	of	any	length	of	the	key	defined
for	the	B-tree,	depending	on	the	pattern	of	searches	that	InnoDB	observes	for	the
B-tree	index.	A	hash	index	can	be	partial:	It	is	not	required	that	the	whole	B-tree
index	is	cached	in	the	buffer	pool.	InnoDB	builds	hash	indexes	on	demand	for
those	pages	of	the	index	that	are	often	accessed.

In	a	sense,	InnoDB	tailors	itself	through	the	adaptive	hash	index	mechanism	to
ample	main	memory,	coming	closer	to	the	architecture	of	main-memory
databases.

14.2.13.4.	Physical	Row	Structure

The	physical	record	structure	for	InnoDB	tables	is	dependent	on	the	MySQL
version	and	the	optional	ROW_FORMAT	option	used	when	the	table	was	created.	For
InnoDB	tables	in	MySQL	earlier	than	5.0.3,	only	the	REDUNDANT	row	format	was
available.	For	MySQL	5.0.3	and	later,	the	default	is	to	use	the	COMPACT	row
format,	but	you	can	use	the	REDUNDANT	format	to	retain	compatibility	with	older
versions	of	InnoDB	tables.

Records	in	InnoDB	ROW_FORMAT=REDUNDANT	tables	have	the	following
characteristics:

Each	index	record	contains	a	six-byte	header.	The	header	is	used	to	link
together	consecutive	records,	and	also	in	row-level	locking.

Records	in	the	clustered	index	contain	fields	for	all	user-defined	columns.
In	addition,	there	is	a	six-byte	field	for	the	transaction	ID	and	a	seven-byte
field	for	the	roll	pointer.

If	no	primary	key	was	defined	for	a	table,	each	clustered	index	record	also
contains	a	six-byte	row	ID	field.

Each	secondary	index	record	contains	also	all	the	fields	defined	for	the
clustered	index	key.

A	record	contains	also	a	pointer	to	each	field	of	the	record.	If	the	total
length	of	the	fields	in	a	record	is	less	than	128	bytes,	the	pointer	is	one	byte;
otherwise,	two	bytes.	The	array	of	these	pointers	is	called	the	record
directory.	The	area	where	these	pointers	point	is	called	the	data	part	of	the
record.

Internally,	InnoDB	stores	fixed-length	character	columns	such	as	CHAR(10)
in	a	fixed-length	format.	InnoDB	truncates	trailing	spaces	from	VARCHAR
columns.

An	SQL	NULL	value	reserves	1	or	2	bytes	in	the	record	directory.	Besides
that,	an	SQL	NULL	value	reserves	zero	bytes	in	the	data	part	of	the	record	if
stored	in	a	variable	length	column.	In	a	fixed-length	column,	it	reserves	the
fixed	length	of	the	column	in	the	data	part	of	the	record.	The	motivation
behind	reserving	the	fixed	space	for	NULL	values	is	that	it	enables	an	update
of	the	column	from	NULL	to	a	non-NULL	value	to	be	done	in	place	without
causing	fragmentation	of	the	index	page.

Records	in	InnoDB	ROW_FORMAT=COMPACT	tables	have	the	following
characteristics:

Each	index	record	contains	a	five-byte	header	that	may	be	preceded	by	a
variable-length	header.	The	header	is	used	to	link	together	consecutive
records,	and	also	in	row-level	locking.

The	record	header	contains	a	bit	vector	for	indicating	NULL	columns.	The	bit
vector	occupies	(n_nullable+7)/8	bytes.	Columns	that	are	NULL	will	not
occupy	other	space	than	the	bit	in	this	vector.

For	each	non-NULL	variable-length	field,	the	record	header	contains	the
length	of	the	column	in	one	or	two	bytes.	Two	bytes	will	only	be	needed	if
part	of	the	column	is	stored	externally	or	the	maximum	length	exceeds	255
bytes	and	the	actual	length	exceeds	127	bytes.

The	record	header	is	followed	by	the	data	contents	of	the	columns.
Columns	that	are	NULL	are	omitted.

Records	in	the	clustered	index	contain	fields	for	all	user-defined	columns.
In	addition,	there	is	a	six-byte	field	for	the	transaction	ID	and	a	seven-byte
field	for	the	roll	pointer.

If	no	primary	key	was	defined	for	a	table,	each	clustered	index	record	also
contains	a	six-byte	row	ID	field.

Each	secondary	index	record	contains	also	all	the	fields	defined	for	the
clustered	index	key.

Internally,	InnoDB	stores	fixed-length,	fixed-width	character	columns	such
as	CHAR(10)	in	a	fixed-length	format.	InnoDB	truncates	trailing	spaces	from
VARCHAR	columns.

Internally,	InnoDB	attempts	to	store	UTF-8	CHAR(n)	columns	in	n	bytes	by
trimming	trailing	spaces.	In	ROW_FORMAT=REDUNDANT,	such	columns	occupy
3*n	bytes.	The	motivation	behind	reserving	the	minimum	space	n	is	that	it
in	many	cases	enables	an	update	of	the	column	to	be	done	in	place	without
causing	fragmentation	of	the	index	page.

14.2.14.	InnoDB	File	Space	Management	and	Disk	I/O

14.2.14.1.	InnoDB	Disk	I/O

InnoDB	uses	simulated	asynchronous	disk	I/O:	InnoDB	creates	a	number	of
threads	to	take	care	of	I/O	operations,	such	as	read-ahead.

There	are	two	read-ahead	heuristics	in	InnoDB:

In	sequential	read-ahead,	if	InnoDB	notices	that	the	access	pattern	to	a
segment	in	the	tablespace	is	sequential,	it	posts	in	advance	a	batch	of	reads
of	database	pages	to	the	I/O	system.

In	random	read-ahead,	if	InnoDB	notices	that	some	area	in	a	tablespace
seems	to	be	in	the	process	of	being	fully	read	into	the	buffer	pool,	it	posts
the	remaining	reads	to	the	I/O	system.

InnoDB	uses	a	novel	file	flush	technique	called	doublewrite.	It	adds	safety	to
recovery	following	an	operating	system	crash	or	a	power	outage,	and	improves
performance	on	most	varieties	of	Unix	by	reducing	the	need	for	fsync()
operations.

Doublewrite	means	that	before	writing	pages	to	a	data	file,	InnoDB	first	writes
them	to	a	contiguous	tablespace	area	called	the	doublewrite	buffer.	Only	after	the
write	and	the	flush	to	the	doublewrite	buffer	has	completed	does	InnoDB	write
the	pages	to	their	proper	positions	in	the	data	file.	If	the	operating	system	crashes
in	the	middle	of	a	page	write,	InnoDB	can	later	find	a	good	copy	of	the	page	from
the	doublewrite	buffer	during	recovery.

14.2.14.2.	File	Space	Management

The	data	files	that	you	define	in	the	configuration	file	form	the	tablespace	of
InnoDB.	The	files	are	simply	concatenated	to	form	the	tablespace.	There	is	no
striping	in	use.	Currently,	you	cannot	define	where	within	the	tablespace	your
tables	are	allocated.	However,	in	a	newly	created	tablespace,	InnoDB	allocates
space	starting	from	the	first	data	file.

The	tablespace	consists	of	database	pages	with	a	default	size	of	16KB.	The
pages	are	grouped	into	extents	of	64	consecutive	pages.	The	“files”	inside	a
tablespace	are	called	segments	in	InnoDB.	The	term	“rollback	segment”	is
somewhat	confusing	because	it	actually	contains	many	tablespace	segments.

Two	segments	are	allocated	for	each	index	in	InnoDB.	One	is	for	non-leaf	nodes
of	the	B-tree,	the	other	is	for	the	leaf	nodes.	The	idea	here	is	to	achieve	better
sequentiality	for	the	leaf	nodes,	which	contain	the	data.

When	a	segment	grows	inside	the	tablespace,	InnoDB	allocates	the	first	32	pages
to	it	individually.	After	that	InnoDB	starts	to	allocate	whole	extents	to	the
segment.	InnoDB	can	add	to	a	large	segment	up	to	4	extents	at	a	time	to	ensure
good	sequentiality	of	data.

Some	pages	in	the	tablespace	contain	bitmaps	of	other	pages,	and	therefore	a	few
extents	in	an	InnoDB	tablespace	cannot	be	allocated	to	segments	as	a	whole,	but
only	as	individual	pages.

When	you	ask	for	available	free	space	in	the	tablespace	by	issuing	a	SHOW	TABLE
STATUS	statement,	InnoDB	reports	the	extents	that	are	definitely	free	in	the
tablespace.	InnoDB	always	reserves	some	extents	for	cleanup	and	other	internal
purposes;	these	reserved	extents	are	not	included	in	the	free	space.

When	you	delete	data	from	a	table,	InnoDB	contracts	the	corresponding	B-tree
indexes.	Whether	the	freed	space	becomes	available	for	other	users	depends	on
whether	the	pattern	of	deletes	frees	individual	pages	or	extents	to	the	tablespace.
Dropping	a	table	or	deleting	all	rows	from	it	is	guaranteed	to	release	the	space	to
other	users,	but	remember	that	deleted	rows	are	physically	removed	only	in	an
(automatic)	purge	operation	after	they	are	no	longer	needed	for	transaction
rollbacks	or	consistent	reads.	(See	Section	14.2.12,	“Implementation	of	Multi-
Versioning”.)

14.2.14.3.	Defragmenting	a	Table

If	there	are	random	insertions	into	or	deletions	from	the	indexes	of	a	table,	the
indexes	may	become	fragmented.	Fragmentation	means	that	the	physical
ordering	of	the	index	pages	on	the	disk	is	not	close	to	the	index	ordering	of	the
records	on	the	pages,	or	that	there	are	many	unused	pages	in	the	64-page	blocks
that	were	allocated	to	the	index.

A	symptom	of	fragmentation	is	that	a	table	takes	more	space	than	it	“should”
take.	How	much	that	is	exactly,	is	difficult	to	determine.	All	InnoDB	data	and
indexes	are	stored	in	B-trees,	and	their	fill	factor	may	vary	from	50%	to	100%.
Another	symptom	of	fragmentation	is	that	a	table	scan	such	as	this	takes	more
time	than	it	“should”	take:

SELECT	COUNT(*)	FROM	t	WHERE	a_non_indexed_column	<>	12345;

(In	the	preceding	query,	we	are	“fooling”	the	SQL	optimizer	into	scanning	the
clustered	index,	rather	than	a	secondary	index.)	Most	disks	can	read	10	to
50MB/s,	which	can	be	used	to	estimate	how	fast	a	table	scan	should	run.

It	can	speed	up	index	scans	if	you	periodically	perform	a	“null”	ALTER	TABLE
operation:

ALTER	TABLE	tbl_name	ENGINE=INNODB

That	causes	MySQL	to	rebuild	the	table.	Another	way	to	perform	a
defragmentation	operation	is	to	use	mysqldump	to	dump	the	table	to	a	text	file,
drop	the	table,	and	reload	it	from	the	dump	file.

If	the	insertions	to	an	index	are	always	ascending	and	records	are	deleted	only
from	the	end,	the	InnoDB	filespace	management	algorithm	guarantees	that
fragmentation	in	the	index	does	not	occur.

14.2.15.	InnoDB	Error	Handling

Error	handling	in	InnoDB	is	not	always	the	same	as	specified	in	the	SQL
standard.	According	to	the	standard,	any	error	during	an	SQL	statement	should
cause	the	rollback	of	that	statement.	InnoDB	sometimes	rolls	back	only	part	of
the	statement,	or	the	whole	transaction.	The	following	items	describe	how
InnoDB	performs	error	handling:

If	you	run	out	of	file	space	in	the	tablespace,	a	MySQL	Table	is	full
error	occurs	and	InnoDB	rolls	back	the	SQL	statement.

A	transaction	deadlock	causes	InnoDB	to	roll	back	the	entire	transaction.	In
the	case	of	a	lock	wait	timeout,	InnoDB	also	rolls	back	the	entire	transaction
before	MySQL	5.0.13;	as	of	5.0.13,	InnoDB	rolls	back	only	the	most	recent
SQL	statement.

When	a	transaction	rollback	occurs	due	to	a	deadlock	or	lock	wait	timeout,
it	cancels	the	effect	of	the	statements	within	the	transaction.	But	if	the	start-
transaction	statement	was	START	TRANSACTION	or	BEGIN	statement,	rollback
does	not	cancel	that	statement.	Further	SQL	statements	become	part	of	the
transaction	until	the	occurrence	of	COMMIT,	ROLLBACK,	or	some	SQL
statement	that	causes	an	implicit	commit.

A	duplicate-key	error	rolls	back	the	SQL	statement,	if	you	have	not
specified	the	IGNORE	option	in	your	statement.

A	row	too	long	error	rolls	back	the	SQL	statement.

Other	errors	are	mostly	detected	by	the	MySQL	layer	of	code	(above	the
InnoDB	storage	engine	level),	and	they	roll	back	the	corresponding	SQL
statement.	Locks	are	not	released	in	a	rollback	of	a	single	SQL	statement.

During	implicit	rollbacks,	as	well	as	during	the	execution	of	an	explicit
ROLLBACK	SQL	command,	SHOW	PROCESSLIST	displays	Rolling	back	in	the
State	column	for	the	relevant	connection.

14.2.15.1.	InnoDB	Error	Codes

The	following	is	a	non-exhaustive	list	of	common	InnoDB-specific	errors	that
you	may	encounter,	with	information	about	why	each	occurs	and	how	to	resolve
the	problem.

1005	(ER_CANT_CREATE_TABLE)

Cannot	create	table.	If	the	error	message	refers	to	errno	150,	table	creation
failed	because	a	foreign	key	constraint	was	not	correctly	formed.	If	the
error	message	refers	to	errno	-1,	table	creation	probably	failed	because	the
table	included	a	column	name	that	matched	the	name	of	an	internal	InnoDB
table.

1016	(ER_CANT_OPEN_FILE)

Cannot	find	the	InnoDB	table	from	the	InnoDB	data	files,	although	the	.frm
file	for	the	table	exists.	See	Section	14.2.17.1,	“Troubleshooting	InnoDB
Data	Dictionary	Operations”.

1114	(ER_RECORD_FILE_FULL)

InnoDB	has	run	out	of	free	space	in	the	tablespace.	You	should	reconfigure
the	tablespace	to	add	a	new	data	file.

1205	(ER_LOCK_WAIT_TIMEOUT)

Lock	wait	timeout	expired.	Transaction	was	rolled	back.

1213	(ER_LOCK_DEADLOCK)

Transaction	deadlock.	You	should	rerun	the	transaction.

1216	(ER_NO_REFERENCED_ROW)

You	are	trying	to	add	a	row	but	there	is	no	parent	row,	and	a	foreign	key
constraint	fails.	You	should	add	the	parent	row	first.

1217	(ER_ROW_IS_REFERENCED)

You	are	trying	to	delete	a	parent	row	that	has	children,	and	a	foreign	key
constraint	fails.	You	should	delete	the	children	first.

14.2.15.2.	Operating	System	Error	Codes

To	print	the	meaning	of	an	operating	system	error	number,	use	the	perror
program	that	comes	with	the	MySQL	distribution.

The	following	table	provides	a	list	of	some	common	Linux	system	error	codes.
For	a	more	complete	list,	see	Linux	source	code.

1	(EPERM)

Operation	not	permitted

2	(ENOENT)

No	such	file	or	directory

3	(ESRCH)

No	such	process

4	(EINTR)

Interrupted	system	call

http://www.iglu.org.il/lxr/source/include/asm-i386/errno.h

5	(EIO)

I/O	error

6	(ENXIO)

No	such	device	or	address

7	(E2BIG)

Arg	list	too	long

8	(ENOEXEC)

Exec	format	error

9	(EBADF)

Bad	file	number

10	(ECHILD)

No	child	processes

11	(EAGAIN)

Try	again

12	(ENOMEM)

Out	of	memory

13	(EACCES)

Permission	denied

14	(EFAULT)

Bad	address

15	(ENOTBLK)

Block	device	required

16	(EBUSY)

Device	or	resource	busy

17	(EEXIST)

File	exists

18	(EXDEV)

Cross-device	link

19	(ENODEV)

No	such	device

20	(ENOTDIR)

Not	a	directory

21	(EISDIR)

Is	a	directory

22	(EINVAL)

Invalid	argument

23	(ENFILE)

File	table	overflow

24	(EMFILE)

Too	many	open	files

25	(ENOTTY)

Inappropriate	ioctl	for	device

26	(ETXTBSY)

Text	file	busy

27	(EFBIG)

File	too	large

28	(ENOSPC)

No	space	left	on	device

29	(ESPIPE)

Illegal	seek

30	(EROFS)

Read-only	file	system

31	(EMLINK)

Too	many	links

The	following	table	provides	a	list	of	some	common	Windows	system	error
codes.	For	a	complete	list	see	the	Microsoft	Web	site.

1	(ERROR_INVALID_FUNCTION)

Incorrect	function.

2	(ERROR_FILE_NOT_FOUND)

The	system	cannot	find	the	file	specified.

3	(ERROR_PATH_NOT_FOUND)

The	system	cannot	find	the	path	specified.

4	(ERROR_TOO_MANY_OPEN_FILES)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/system_error_codes.asp

The	system	cannot	open	the	file.

5	(ERROR_ACCESS_DENIED)

Access	is	denied.

6	(ERROR_INVALID_HANDLE)

The	handle	is	invalid.

7	(ERROR_ARENA_TRASHED)

The	storage	control	blocks	were	destroyed.

8	(ERROR_NOT_ENOUGH_MEMORY)

Not	enough	storage	is	available	to	process	this	command.

9	(ERROR_INVALID_BLOCK)

The	storage	control	block	address	is	invalid.

10	(ERROR_BAD_ENVIRONMENT)

The	environment	is	incorrect.

11	(ERROR_BAD_FORMAT)

An	attempt	was	made	to	load	a	program	with	an	incorrect	format.

12	(ERROR_INVALID_ACCESS)

The	access	code	is	invalid.

13	(ERROR_INVALID_DATA)

The	data	is	invalid.

14	(ERROR_OUTOFMEMORY)

Not	enough	storage	is	available	to	complete	this	operation.

15	(ERROR_INVALID_DRIVE)

The	system	cannot	find	the	drive	specified.

16	(ERROR_CURRENT_DIRECTORY)

The	directory	cannot	be	removed.

17	(ERROR_NOT_SAME_DEVICE)

The	system	cannot	move	the	file	to	a	different	disk	drive.

18	(ERROR_NO_MORE_FILES)

There	are	no	more	files.

19	(ERROR_WRITE_PROTECT)

The	media	is	write	protected.

20	(ERROR_BAD_UNIT)

The	system	cannot	find	the	device	specified.

21	(ERROR_NOT_READY)

The	device	is	not	ready.

22	(ERROR_BAD_COMMAND)

The	device	does	not	recognize	the	command.

23	(ERROR_CRC)

Data	error	(cyclic	redundancy	check).

24	(ERROR_BAD_LENGTH)

The	program	issued	a	command	but	the	command	length	is	incorrect.

25	(ERROR_SEEK)

The	drive	cannot	locate	a	specific	area	or	track	on	the	disk.

26	(ERROR_NOT_DOS_DISK)

The	specified	disk	or	diskette	cannot	be	accessed.

27	(ERROR_SECTOR_NOT_FOUND)

The	drive	cannot	find	the	sector	requested.

28	(ERROR_OUT_OF_PAPER)

The	printer	is	out	of	paper.

29	(ERROR_WRITE_FAULT)

The	system	cannot	write	to	the	specified	device.

30	(ERROR_READ_FAULT)

The	system	cannot	read	from	the	specified	device.

31	(ERROR_GEN_FAILURE)

A	device	attached	to	the	system	is	not	functioning.

32	(ERROR_SHARING_VIOLATION)

The	process	cannot	access	the	file	because	it	is	being	used	by	another
process.

33	(ERROR_LOCK_VIOLATION)

The	process	cannot	access	the	file	because	another	process	has	locked	a
portion	of	the	file.

34	(ERROR_WRONG_DISK)

The	wrong	diskette	is	in	the	drive.	Insert	%2	(Volume	Serial	Number:	%3)
into	drive	%1.

36	(ERROR_SHARING_BUFFER_EXCEEDED)

Too	many	files	opened	for	sharing.

38	(ERROR_HANDLE_EOF)

Reached	the	end	of	the	file.

39	(ERROR_HANDLE_DISK_FULL)

The	disk	is	full.

87	(ERROR_INVALID_PARAMETER)

The	parameter	is	incorrect.	(If	this	error	occurs	on	Windows	and	you	have
enabled	innodb_file_per_table	in	a	server	option	file,	add	the	line
innodb_flush_method=unbuffered	to	the	file	as	well.)

112	(ERROR_DISK_FULL)

The	disk	is	full.

123	(ERROR_INVALID_NAME)

The	filename,	directory	name,	or	volume	label	syntax	is	incorrect.

1450	(ERROR_NO_SYSTEM_RESOURCES)

Insufficient	system	resources	exist	to	complete	the	requested	service.

14.2.16.	Restrictions	on	InnoDB	Tables

Warning:	Do	not	convert	MySQL	system	tables	in	the	mysql	database	from
MyISAM	to	InnoDB	tables!	This	is	an	unsupported	operation.	If	you	do	this,
MySQL	does	not	restart	until	you	restore	the	old	system	tables	from	a
backup	or	re-generate	them	with	the	mysql_install_db	script.

A	table	cannot	contain	more	than	1000	columns.

The	internal	maximum	key	length	is	3500	bytes,	but	MySQL	itself	restricts

this	to	1024	bytes.

The	maximum	row	length,	except	for	VARCHAR,	BLOB	and	TEXT	columns,	is
slightly	less	than	half	of	a	database	page.	That	is,	the	maximum	row	length
is	about	8000	bytes.	LONGBLOB	and	LONGTEXT	columns	must	be	less	than
4GB,	and	the	total	row	length,	including	also	BLOB	and	TEXT	columns,	must
be	less	than	4GB.	InnoDB	stores	the	first	768	bytes	of	a	VARCHAR,	BLOB,	or
TEXT	column	in	the	row,	and	the	rest	into	separate	pages.

Although	InnoDB	supports	row	sizes	larger	than	65535	internally,	you
cannot	define	a	row	containing	VARCHAR	columns	with	a	combined	size
larger	than	65535:

mysql>	CREATE	TABLE	t	(a	VARCHAR(8000),	b	VARCHAR(10000),

				->	c	VARCHAR(10000),	d	VARCHAR(10000),	e	VARCHAR(10000),

				->	f	VARCHAR(10000),	g	VARCHAR(10000))	ENGINE=InnoDB;

ERROR	1118	(42000):	Row	size	too	large.	The	maximum	row	size	for	the

used	table	type,	not	counting	BLOBs,	is	65535.	You	have	to	change	some

columns	to	TEXT	or	BLOBs

On	some	older	operating	systems,	files	must	be	less	than	2GB.	This	is	not	a
limitation	of	InnoDB	itself,	but	if	you	require	a	large	tablespace,	you	will
need	to	configure	it	using	several	smaller	data	files	rather	than	one	or	a	file
large	data	files.

The	combined	size	of	the	InnoDB	log	files	must	be	less	than	4GB.

The	minimum	tablespace	size	is	10MB.	The	maximum	tablespace	size	is
four	billion	database	pages	(64TB).	This	is	also	the	maximum	size	for	a
table.

InnoDB	tables	do	not	support	FULLTEXT	indexes.

InnoDB	tables	do	not	support	spatial	data	types	before	MySQL	5.0.16.

ANALYZE	TABLE	determines	index	cardinality	(as	displayed	in	the
Cardinality	column	of	SHOW	INDEX	output)	by	doing	ten	random	dives	to
each	of	the	index	trees	and	updating	index	cardinality	estimates
accordingly.	Note	that	because	these	are	only	estimates,	repeated	runs	of
ANALYZE	TABLE	may	produce	different	numbers.	This	makes	ANALYZE
TABLE	fast	on	InnoDB	tables	but	not	100%	accurate	as	it	doesn't	take	all

rows	into	account.

MySQL	uses	index	cardinality	estimates	only	in	join	optimization.	If	some
join	is	not	optimized	in	the	right	way,	you	can	try	using	ANALYZE	TABLE.	In
the	few	cases	that	ANALYZE	TABLE	doesn't	produce	values	good	enough	for
your	particular	tables,	you	can	use	FORCE	INDEX	with	your	queries	to	force
the	use	of	a	particular	index,	or	set	the	max_seeks_for_key	system	variable
to	ensure	that	MySQL	prefers	index	lookups	over	table	scans.	See
Section	5.2.2,	“Server	System	Variables”,	and	Section	A.6,	“Optimizer-
Related	Issues”.

SHOW	TABLE	STATUS	does	not	give	accurate	statistics	on	InnoDB	tables,
except	for	the	physical	size	reserved	by	the	table.	The	row	count	is	only	a
rough	estimate	used	in	SQL	optimization.

InnoDB	does	not	keep	an	internal	count	of	rows	in	a	table.	(In	practice,	this
would	be	somewhat	complicated	due	to	multi-versioning.)	To	process	a
SELECT	COUNT(*)	FROM	t	statement,	InnoDB	must	scan	an	index	of	the
table,	which	takes	some	time	if	the	index	is	not	entirely	in	the	buffer	pool.
To	get	a	fast	count,	you	have	to	use	a	counter	table	you	create	yourself	and
let	your	application	update	it	according	to	the	inserts	and	deletes	it	does.	If
your	table	does	not	change	often,	using	the	MySQL	query	cache	is	a	good
solution.	SHOW	TABLE	STATUS	also	can	be	used	if	an	approximate	row	count
is	sufficient.	See	Section	14.2.11,	“InnoDB	Performance	Tuning	Tips”.

On	Windows,	InnoDB	always	stores	database	and	table	names	internally	in
lowercase.	To	move	databases	in	binary	format	from	Unix	to	Windows	or
from	Windows	to	Unix,	you	should	always	use	explicitly	lowercase	names
when	creating	databases	and	tables.

For	an	AUTO_INCREMENT	column,	you	must	always	define	an	index	for	the
table,	and	that	index	must	contain	just	the	AUTO_INCREMENT	column.	In
MyISAM	tables,	the	AUTO_INCREMENT	column	may	be	part	of	a	multi-column
index.

In	MySQL	5.0	before	MySQL	5.0.3,	InnoDB	does	not	support	the
AUTO_INCREMENT	table	option	for	setting	the	initial	sequence	value	in	a
CREATE	TABLE	or	ALTER	TABLE	statement.	To	set	the	value	with	InnoDB,
insert	a	dummy	row	with	a	value	one	less	and	delete	that	dummy	row,	or

insert	the	first	row	with	an	explicit	value	specified.

While	initializing	a	previously	specified	AUTO_INCREMENT	column	on	a
table,	InnoDB	sets	an	exclusive	lock	on	the	end	of	the	index	associated	with
the	AUTO_INCREMENT	column.	In	accessing	the	auto-increment	counter,
InnoDB	uses	a	specific	table	lock	mode	AUTO-INC	where	the	lock	lasts	only
to	the	end	of	the	current	SQL	statement,	not	to	the	end	of	the	entire
transaction.	Note	that	other	clients	cannot	insert	into	the	table	while	the
AUTO-INC	table	lock	is	held;	see	Section	14.2.10.2,	“InnoDB	and
AUTOCOMMIT”.

When	you	restart	the	MySQL	server,	InnoDB	may	reuse	an	old	value	that
was	generated	for	an	AUTO_INCREMENT	column	but	never	stored	(that	is,	a
value	that	was	generated	during	an	old	transaction	that	was	rolled	back).

When	an	AUTO_INCREMENT	column	runs	out	of	values,	InnoDB	wraps	a
BIGINT	to	-9223372036854775808	and	BIGINT	UNSIGNED	to	1.	However,
BIGINT	values	have	64	bits,	so	do	note	that	if	you	were	to	insert	one	million
rows	per	second,	it	would	still	take	nearly	three	hundred	thousand	years
before	BIGINT	reached	its	upper	bound.	With	all	other	integer	type	columns,
a	duplicate-key	error	results.	This	is	similar	to	how	MyISAM	works,	because
it	is	mostly	general	MySQL	behavior	and	not	about	any	storage	engine	in
particular.

DELETE	FROM	tbl_name	does	not	regenerate	the	table	but	instead	deletes	all
rows,	one	by	one.

Under	some	conditions,	TRUNCATE	tbl_name	for	an	InnoDB	table	is	mapped
to	DELETE	FROM	tbl_name	and	doesn't	reset	the	AUTO_INCREMENT	counter.
See	Section	13.2.9,	“TRUNCATE	Syntax”.

In	MySQL	5.0,	the	MySQL	LOCK	TABLES	operation	acquires	two	locks	on
each	table	if	innodb_table_locks=1	(the	default).	In	addition	to	a	table
lock	on	the	MySQL	layer,	it	also	acquires	an	InnoDB	table	lock.	Older
versions	of	MySQL	did	not	acquire	InnoDB	table	locks;	the	old	behavior	can
be	selected	by	setting	innodb_table_locks=0.	If	no	InnoDB	table	lock	is
acquired,	LOCK	TABLES	completes	even	if	some	records	of	the	tables	are
being	locked	by	other	transactions.

All	InnoDB	locks	held	by	a	transaction	are	released	when	the	transaction	is

committed	or	aborted.	Thus,	it	does	not	make	much	sense	to	invoke	LOCK
TABLES	on	InnoDB	tables	in	AUTOCOMMIT=1	mode,	because	the	acquired
InnoDB	table	locks	would	be	released	immediately.

Sometimes	it	would	be	useful	to	lock	further	tables	in	the	course	of	a
transaction.	Unfortunately,	LOCK	TABLES	in	MySQL	performs	an	implicit
COMMIT	and	UNLOCK	TABLES.	An	InnoDB	variant	of	LOCK	TABLES	has	been
planned	that	can	be	executed	in	the	middle	of	a	transaction.

The	LOAD	TABLE	FROM	MASTER	statement	for	setting	up	replication	slave
servers	does	not	work	for	InnoDB	tables.	A	workaround	is	to	alter	the	table
to	MyISAM	on	the	master,	do	then	the	load,	and	after	that	alter	the	master
table	back	to	InnoDB.	Do	not	do	this	if	the	tables	use	InnoDB-specific
features	such	as	foreign	keys.

The	default	database	page	size	in	InnoDB	is	16KB.	By	recompiling	the
code,	you	can	set	it	to	values	ranging	from	8KB	to	64KB.	You	must	update
the	values	of	UNIV_PAGE_SIZE	and	UNIV_PAGE_SIZE_SHIFT	in	the	univ.i
source	file.

Currently,	triggers	are	not	activated	by	cascaded	foreign	key	actions.

You	cannot	create	a	table	with	a	column	name	that	matches	the	name	of	an
internal	InnoDB	column	(including	DB_ROW_ID,	DB_TRX_ID,	DB_ROLL_PTR
and	DB_MIX_ID).	In	versions	of	MySQL	before	5.0.21	this	would	cause	a
crash,	since	5.0.21	the	server	will	report	error	1005	and	refers	to	errno	-1	in
the	error	message.

As	of	MySQL	5.0.19,	InnoDB	does	not	ignore	trailing	spaces	when
comparing	BINARY	or	VARBINARY	column	values.	See	Section	11.4.2,	“The
BINARY	and	VARBINARY	Types”	and	Section	D.1.8,	“Changes	in	release
5.0.19	(04	March	2006)”.

14.2.17.	InnoDB	Troubleshooting

The	following	general	guidelines	apply	to	troubleshooting	InnoDB	problems:

When	an	operation	fails	or	you	suspect	a	bug,	you	should	look	at	the
MySQL	server	error	log,	which	is	the	file	in	the	data	directory	that	has	a

suffix	of	.err.

When	troubleshooting,	it	is	usually	best	to	run	the	MySQL	server	from	the
command	prompt,	rather	than	through	the	mysqld_safe	wrapper	or	as	a
Windows	service.	You	can	then	see	what	mysqld	prints	to	the	console,	and
so	have	a	better	grasp	of	what	is	going	on.	On	Windows,	you	must	start	the
server	with	the	--console	option	to	direct	the	output	to	the	console
window.

Use	the	InnoDB	Monitors	to	obtain	information	about	a	problem	(see
Section	14.2.11.1,	“SHOW	ENGINE	INNODB	STATUS	and	the	InnoDB
Monitors”).	If	the	problem	is	performance-related,	or	your	server	appears	to
be	hung,	you	should	use	innodb_monitor	to	print	information	about	the
internal	state	of	InnoDB.	If	the	problem	is	with	locks,	use
innodb_lock_monitor.	If	the	problem	is	in	creation	of	tables	or	other	data
dictionary	operations,	use	innodb_table_monitor	to	print	the	contents	of
the	InnoDB	internal	data	dictionary.

If	you	suspect	that	a	table	is	corrupt,	run	CHECK	TABLE	on	that	table.

14.2.17.1.	Troubleshooting	InnoDB	Data	Dictionary	Operations

A	specific	issue	with	tables	is	that	the	MySQL	server	keeps	data	dictionary
information	in	.frm	files	it	stores	in	the	database	directories,	whereas	InnoDB
also	stores	the	information	into	its	own	data	dictionary	inside	the	tablespace
files.	If	you	move	.frm	files	around,	or	if	the	server	crashes	in	the	middle	of	a
data	dictionary	operation,	the	locations	of	the	.frm	files	may	end	up	out	of
synchrony	with	the	locations	recorded	in	the	InnoDB	internal	data	dictionary.

A	symptom	of	an	out-of-sync	data	dictionary	is	that	a	CREATE	TABLE	statement
fails.	If	this	occurs,	you	should	look	in	the	server's	error	log.	If	the	log	says	that
the	table	already	exists	inside	the	InnoDB	internal	data	dictionary,	you	have	an
orphaned	table	inside	the	InnoDB	tablespace	files	that	has	no	corresponding	.frm
file.	The	error	message	looks	like	this:

InnoDB:	Error:	table	test/parent	already	exists	in	InnoDB	internal

InnoDB:	data	dictionary.	Have	you	deleted	the	.frm	file

InnoDB:	and	not	used	DROP	TABLE?	Have	you	used	DROP	DATABASE

InnoDB:	for	InnoDB	tables	in	MySQL	version	<=	3.23.43?

InnoDB:	See	the	Restrictions	section	of	the	InnoDB	manual.

InnoDB:	You	can	drop	the	orphaned	table	inside	InnoDB	by

InnoDB:	creating	an	InnoDB	table	with	the	same	name	in	another

InnoDB:	database	and	moving	the	.frm	file	to	the	current	database.

InnoDB:	Then	MySQL	thinks	the	table	exists,	and	DROP	TABLE	will

InnoDB:	succeed.

You	can	drop	the	orphaned	table	by	following	the	instructions	given	in	the	error
message.	If	you	are	still	unable	to	use	DROP	TABLE	successfully,	the	problem	may
be	due	to	name	completion	in	the	mysql	client.	To	work	around	this	problem,
start	the	mysql	client	with	the	--skip-auto-rehash	option	and	try	DROP	TABLE
again.	(With	name	completion	on,	mysql	tries	to	construct	a	list	of	table	names,
which	fails	when	a	problem	such	as	just	described	exists.)

Another	symptom	of	an	out-of-sync	data	dictionary	is	that	MySQL	prints	an
error	that	it	cannot	open	a	.InnoDB	file:

ERROR	1016:	Can't	open	file:	'child2.InnoDB'.	(errno:	1)

In	the	error	log	you	can	find	a	message	like	this:

InnoDB:	Cannot	find	table	test/child2	from	the	internal	data	dictionary

InnoDB:	of	InnoDB	though	the	.frm	file	for	the	table	exists.	Maybe	you

InnoDB:	have	deleted	and	recreated	InnoDB	data	files	but	have	forgotten

InnoDB:	to	delete	the	corresponding	.frm	files	of	InnoDB	tables?

This	means	that	there	is	an	orphaned	.frm	file	without	a	corresponding	table
inside	InnoDB.	You	can	drop	the	orphaned	.frm	file	by	deleting	it	manually.

If	MySQL	crashes	in	the	middle	of	an	ALTER	TABLE	operation,	you	may	end	up
with	an	orphaned	temporary	table	inside	the	InnoDB	tablespace.	Using
innodb_table_monitor	you	can	see	listed	a	table	whose	name	is	#sql-....	You
can	perform	SQL	statements	on	tables	whose	name	contains	the	character	‘#’	if
you	enclose	the	name	within	backticks.	Thus,	you	can	drop	such	an	orphaned
table	like	any	other	orphaned	table	using	the	method	described	earlier.	Note	that
to	copy	or	rename	a	file	in	the	Unix	shell,	you	need	to	put	the	file	name	in
double	quotes	if	the	file	name	contains	‘#’.

14.3.	The	MERGE	Storage	Engine

The	MERGE	storage	engine,	also	known	as	the	MRG_MyISAM	engine,	is	a	collection
of	identical	MyISAM	tables	that	can	be	used	as	one.	“Identical”	means	that	all
tables	have	identical	column	and	index	information.	You	cannot	merge	MyISAM
tables	in	which	the	columns	are	listed	in	a	different	order,	do	not	have	exactly
the	same	columns,	or	have	the	indexes	in	different	order.	However,	any	or	all	of
the	MyISAM	tables	can	be	compressed	with	myisampack.	See	Section	8.5,
“myisampack	—	Generate	Compressed,	Read-Only	MyISAM	Tables”.
Differences	in	table	options	such	as	AVG_ROW_LENGTH,	MAX_ROWS,	or	PACK_KEYS
do	not	matter.

When	you	create	a	MERGE	table,	MySQL	creates	two	files	on	disk.	The	files	have
names	that	begin	with	the	table	name	and	have	an	extension	to	indicate	the	file
type.	An	.frm	file	stores	the	table	format,	and	an	.MRG	file	contains	the	names	of
the	tables	that	should	be	used	as	one.	The	tables	do	not	have	to	be	in	the	same
database	as	the	MERGE	table	itself.

You	can	use	SELECT,	DELETE,	UPDATE,	and	INSERT	on	MERGE	tables.	You	must
have	SELECT,	UPDATE,	and	DELETE	privileges	on	the	MyISAM	tables	that	you	map
to	a	MERGE	table.

Note:	The	use	of	MERGE	tables	entails	the	following	security	issue:	If	a	user	has
access	to	MyISAM	table	t,	that	user	can	create	a	MERGE	table	m	that	accesses	t.
However,	if	the	user's	privileges	on	t	are	subsequently	revoked,	the	user	can
continue	to	access	t	by	doing	so	through	m.	If	this	behavior	is	undesirable,	you
can	start	the	server	with	the	new	--skip-merge	option	to	disable	the	MERGE
storage	engine.	This	option	is	available	as	of	MySQL	5.0.24.

If	you	DROP	the	MERGE	table,	you	are	dropping	only	the	MERGE	specification.	The
underlying	tables	are	not	affected.

To	create	a	MERGE	table,	you	must	specify	a	UNION=(list-of-tables)	clause	that
indicates	which	MyISAM	tables	you	want	to	use	as	one.	You	can	optionally	specify
an	INSERT_METHOD	option	if	you	want	inserts	for	the	MERGE	table	to	take	place	in
the	first	or	last	table	of	the	UNION	list.	Use	a	value	of	FIRST	or	LAST	to	cause
inserts	to	be	made	in	the	first	or	last	table,	respectively.	If	you	do	not	specify	an
INSERT_METHOD	option	or	if	you	specify	it	with	a	value	of	NO,	attempts	to	insert

rows	into	the	MERGE	table	result	in	an	error.

The	following	example	shows	how	to	create	a	MERGE	table:

mysql>	CREATE	TABLE	t1	(

				->				a	INT	NOT	NULL	AUTO_INCREMENT	PRIMARY	KEY,

				->				message	CHAR(20))	ENGINE=MyISAM;

mysql>	CREATE	TABLE	t2	(

				->				a	INT	NOT	NULL	AUTO_INCREMENT	PRIMARY	KEY,

				->				message	CHAR(20))	ENGINE=MyISAM;

mysql>	INSERT	INTO	t1	(message)	VALUES	('Testing'),('table'),('t1');

mysql>	INSERT	INTO	t2	(message)	VALUES	('Testing'),('table'),('t2');

mysql>	CREATE	TABLE	total	(

				->				a	INT	NOT	NULL	AUTO_INCREMENT,

				->				message	CHAR(20),	INDEX(a))

				->				ENGINE=MERGE	UNION=(t1,t2)	INSERT_METHOD=LAST;

The	older	term	TYPE	is	supported	as	a	synonym	for	ENGINE	for	backward
compatibility,	but	ENGINE	is	the	preferred	term	and	TYPE	is	deprecated.

Note	that	the	a	column	is	indexed	as	a	PRIMARY	KEY	in	the	underlying	MyISAM
tables,	but	not	in	the	MERGE	table.	There	it	is	indexed	but	not	as	a	PRIMARY	KEY
because	a	MERGE	table	cannot	enforce	uniqueness	over	the	set	of	underlying
tables.

After	creating	the	MERGE	table,	you	can	issue	queries	that	operate	on	the	group	of
tables	as	a	whole:

mysql>	SELECT	*	FROM	total;

+---+---------+

|	a	|	message	|

+---+---------+

|	1	|	Testing	|

|	2	|	table			|

|	3	|	t1						|

|	1	|	Testing	|

|	2	|	table			|

|	3	|	t2						|

+---+---------+

To	remap	a	MERGE	table	to	a	different	collection	of	MyISAM	tables,	you	can	use
one	of	the	following	methods:

DROP	the	MERGE	table	and	re-create	it.

Use	ALTER	TABLE	tbl_name	UNION=(...)	to	change	the	list	of	underlying
tables.

MERGE	tables	can	help	you	solve	the	following	problems:

Easily	manage	a	set	of	log	tables.	For	example,	you	can	put	data	from
different	months	into	separate	tables,	compress	some	of	them	with
myisampack,	and	then	create	a	MERGE	table	to	use	them	as	one.

Obtain	more	speed.	You	can	split	a	big	read-only	table	based	on	some
criteria,	and	then	put	individual	tables	on	different	disks.	A	MERGE	table	on
this	could	be	much	faster	than	using	the	big	table.

Perform	more	efficient	searches.	If	you	know	exactly	what	you	are	looking
for,	you	can	search	in	just	one	of	the	split	tables	for	some	queries	and	use	a
MERGE	table	for	others.	You	can	even	have	many	different	MERGE	tables	that
use	overlapping	sets	of	tables.

Perform	more	efficient	repairs.	It	is	easier	to	repair	individual	tables	that	are
mapped	to	a	MERGE	table	than	to	repair	a	single	large	table.

Instantly	map	many	tables	as	one.	A	MERGE	table	need	not	maintain	an	index
of	its	own	because	it	uses	the	indexes	of	the	individual	tables.	As	a	result,
MERGE	table	collections	are	very	fast	to	create	or	remap.	(Note	that	you	must
still	specify	the	index	definitions	when	you	create	a	MERGE	table,	even
though	no	indexes	are	created.)

If	you	have	a	set	of	tables	from	which	you	create	a	large	table	on	demand,
you	should	instead	create	a	MERGE	table	on	them	on	demand.	This	is	much
faster	and	saves	a	lot	of	disk	space.

Exceed	the	file	size	limit	for	the	operating	system.	Each	MyISAM	table	is
bound	by	this	limit,	but	a	collection	of	MyISAM	tables	is	not.

You	can	create	an	alias	or	synonym	for	a	MyISAM	table	by	defining	a	MERGE
table	that	maps	to	that	single	table.	There	should	be	no	really	notable
performance	impact	from	doing	this	(only	a	couple	of	indirect	calls	and
memcpy()	calls	for	each	read).

The	disadvantages	of	MERGE	tables	are:

You	can	use	only	identical	MyISAM	tables	for	a	MERGE	table.

You	cannot	use	a	number	of	MyISAM	features	in	MERGE	tables.	For	example,
you	cannot	create	FULLTEXT	indexes	on	MERGE	tables.	(You	can,	of	course,
create	FULLTEXT	indexes	on	the	underlying	MyISAM	tables,	but	you	cannot
search	the	MERGE	table	with	a	full-text	search.)

If	the	MERGE	table	is	non-temporary,	all	underlying	MyISAM	tables	must	be
non-temporary,	too.	If	the	MERGE	table	is	temporary,	the	MyISAM	tables	can
be	any	mix	of	temporary	and	non-temporary.

MERGE	tables	use	more	file	descriptors.	If	10	clients	are	using	a	MERGE	table
that	maps	to	10	tables,	the	server	uses	(10	×	10)	+	10	file	descriptors.	(10
data	file	descriptors	for	each	of	the	10	clients,	and	10	index	file	descriptors
shared	among	the	clients.)

Key	reads	are	slower.	When	you	read	a	key,	the	MERGE	storage	engine	needs
to	issue	a	read	on	all	underlying	tables	to	check	which	one	most	closely
matches	the	given	key.	To	read	the	next	key,	the	MERGE	storage	engine	needs
to	search	the	read	buffers	to	find	the	next	key.	Only	when	one	key	buffer	is
used	up	does	the	storage	engine	need	to	read	the	next	key	block.	This
makes	MERGE	keys	much	slower	on	eq_ref	searches,	but	not	much	slower
on	ref	searches.	See	Section	7.2.1,	“Optimizing	Queries	with	EXPLAIN”,	for
more	information	about	eq_ref	and	ref.

Additional	resources

A	forum	dedicated	to	the	MERGE	storage	engine	is	available	at
http://forums.mysql.com/list.php?93.

14.3.1.	MERGE	Table	Problems

The	following	are	known	problems	with	MERGE	tables:

If	you	use	ALTER	TABLE	to	change	a	MERGE	table	to	another	storage	engine,
the	mapping	to	the	underlying	tables	is	lost.	Instead,	the	rows	from	the
underlying	MyISAM	tables	are	copied	into	the	altered	table,	which	then	uses
the	specified	storage	engine.

REPLACE	does	not	work.

http://forums.mysql.com/list.php?93

You	cannot	use	DROP	TABLE,	ALTER	TABLE,	DELETE	without	a	WHERE	clause,
REPAIR	TABLE,	TRUNCATE	TABLE,	OPTIMIZE	TABLE,	or	ANALYZE	TABLE	on
any	of	the	tables	that	are	mapped	into	an	open	MERGE	table.	If	you	do	so,	the
MERGE	table	may	still	refer	to	the	original	table,	which	yields	unexpected
results.	The	easiest	way	to	work	around	this	deficiency	is	to	ensure	that	no
MERGE	tables	remain	open	by	issuing	a	FLUSH	TABLES	statement	prior	to
performing	any	of	those	operations.

DROP	TABLE	on	a	table	that	is	in	use	by	a	MERGE	table	does	not	work	on
Windows	because	the	MERGE	storage	engine's	table	mapping	is	hidden	from
the	upper	layer	of	MySQL.	Windows	does	not	allow	open	files	to	be
deleted,	so	you	first	must	flush	all	MERGE	tables	(with	FLUSH	TABLES)	or
drop	the	MERGE	table	before	dropping	the	table.

A	MERGE	table	cannot	maintain	uniqueness	constraints	over	the	entire	table.
When	you	perform	an	INSERT,	the	data	goes	into	the	first	or	last	MyISAM
table	(depending	on	the	value	of	the	INSERT_METHOD	option).	MySQL
ensures	that	unique	key	values	remain	unique	within	that	MyISAM	table,	but
not	across	all	the	tables	in	the	collection.

When	you	create	or	alter	MERGE	table,	there	is	no	check	to	ensure	that	the
underlying	tables	are	existing	MyISAM	tables	and	have	identical	structures.
When	the	MERGE	table	is	used,	MySQL	checks	that	the	row	length	for	all
mapped	tables	is	equal,	but	this	is	not	foolproof.	If	you	create	a	MERGE	table
from	dissimilar	MyISAM	tables,	you	are	very	likely	to	run	into	strange
problems.

Similarly,	if	you	create	a	MERGE	table	from	non-MyISAM	tables,	or	if	you	drop
an	underlying	table	or	alter	it	to	be	a	non-MyISAM	table,	no	error	for	the
MERGE	table	occurs	until	later	when	you	attempt	to	use	it.

The	order	of	indexes	in	the	MERGE	table	and	its	underlying	tables	should	be
the	same.	If	you	use	ALTER	TABLE	to	add	a	UNIQUE	index	to	a	table	used	in	a
MERGE	table,	and	then	use	ALTER	TABLE	to	add	a	non-unique	index	on	the
MERGE	table,	the	index	ordering	is	different	for	the	tables	if	there	was
already	a	non-unique	index	in	the	underlying	table.	(This	happens	because
ALTER	TABLE	puts	UNIQUE	indexes	before	non-unique	indexes	to	facilitate
rapid	detection	of	duplicate	keys.)	Consequently,	queries	on	tables	with
such	indexes	may	return	unexpected	results.

If	you	encounter	an	error	message	similar	to	ERROR	1017	(HY000):	Can't
find	file:	'mm.MRG'	(errno:	2)	it	generally	indicates	that	some	of	the
base	tables	are	not	using	the	MyISAM	storage	engine.	Confirm	that	all
tables	are	MyISAM.

There	is	a	limit	of	232	(~4.295E+09))	rows	to	a	MERGE	table,	just	as	there	is
with	a	MyISAM,	it	is	therefore	not	possible	to	merge	multiple	MyISAM	tables
that	exceed	this	limitation.	However,	you	build	MySQL	with	the	--with-
big-tables	option	then	the	row	limitation	is	increased	to	(232)2
(1.844E+19)	rows.	See	Section	2.9.2,	“Typical	configure	Options”.
Beginning	with	MySQL	5.0.4	all	standard	binaries	are	built	with	this
option.

14.4.	The	MEMORY	(HEAP)	Storage	Engine

The	MEMORY	storage	engine	creates	tables	with	contents	that	are	stored	in
memory.	Formerly,	these	were	known	as	HEAP	tables.	MEMORY	is	the	preferred
term,	although	HEAP	remains	supported	for	backward	compatibility.

Each	MEMORY	table	is	associated	with	one	disk	file.	The	filename	begins	with	the
table	name	and	has	an	extension	of	.frm	to	indicate	that	it	stores	the	table
definition.

To	specify	explicitly	that	you	want	to	create	a	MEMORY	table,	indicate	that	with	an
ENGINE	table	option:

CREATE	TABLE	t	(i	INT)	ENGINE	=	MEMORY;

The	older	term	TYPE	is	supported	as	a	synonym	for	ENGINE	for	backward
compatibility,	but	ENGINE	is	the	preferred	term	and	TYPE	is	deprecated.

As	indicated	by	the	name,	MEMORY	tables	are	stored	in	memory.	They	use	hash
indexes	by	default,	which	makes	them	very	fast,	and	very	useful	for	creating
temporary	tables.	However,	when	the	server	shuts	down,	all	rows	stored	in
MEMORY	tables	are	lost.	The	tables	themselves	continue	to	exist	because	their
definitions	are	stored	in	.frm	files	on	disk,	but	they	are	empty	when	the	server
restarts.

This	example	shows	how	you	might	create,	use,	and	remove	a	MEMORY	table:

mysql>	CREATE	TABLE	test	ENGINE=MEMORY

				->					SELECT	ip,SUM(downloads)	AS	down

				->					FROM	log_table	GROUP	BY	ip;

mysql>	SELECT	COUNT(ip),AVG(down)	FROM	test;

mysql>	DROP	TABLE	test;

MEMORY	tables	have	the	following	characteristics:

Space	for	MEMORY	tables	is	allocated	in	small	blocks.	Tables	use	100%
dynamic	hashing	for	inserts.	No	overflow	area	or	extra	key	space	is	needed.
No	extra	space	is	needed	for	free	lists.	Deleted	rows	are	put	in	a	linked	list
and	are	reused	when	you	insert	new	data	into	the	table.	MEMORY	tables	also
have	none	of	the	problems	commonly	associated	with	deletes	plus	inserts	in

hashed	tables.

MEMORY	tables	can	have	up	to	32	indexes	per	table,	16	columns	per	index
and	a	maximum	key	length	of	500	bytes.

The	MEMORY	storage	engine	implements	both	HASH	and	BTREE	indexes.	You
can	specify	one	or	the	other	for	a	given	index	by	adding	a	USING	clause	as
shown	here:

CREATE	TABLE	lookup

				(id	INT,	INDEX	USING	HASH	(id))

				ENGINE	=	MEMORY;

CREATE	TABLE	lookup

				(id	INT,	INDEX	USING	BTREE	(id))

				ENGINE	=	MEMORY;

General	characteristics	of	B-tree	and	hash	indexes	are	described	in
Section	7.4.5,	“How	MySQL	Uses	Indexes”.

You	can	have	non-unique	keys	in	a	MEMORY	table.	(This	is	an	uncommon
feature	for	implementations	of	hash	indexes.)

If	you	have	a	hash	index	on	a	MEMORY	table	that	has	a	high	degree	of	key
duplication	(many	index	entries	containing	the	same	value),	updates	to	the
table	that	affect	key	values	and	all	deletes	are	significantly	slower.	The
degree	of	this	slowdown	is	proportional	to	the	degree	of	duplication	(or,
inversely	proportional	to	the	index	cardinality).	You	can	use	a	BTREE	index
to	avoid	this	problem.

Columns	that	are	indexed	can	contain	NULL	values.

MEMORY	tables	use	a	fixed-length	row	storage	format.

MEMORY	tables	cannot	contain	BLOB	or	TEXT	columns.

MEMORY	includes	support	for	AUTO_INCREMENT	columns.

You	can	use	INSERT	DELAYED	with	MEMORY	tables.	See	Section	13.2.4.2,
“INSERT	DELAYED	Syntax”.

MEMORY	tables	are	shared	among	all	clients	(just	like	any	other	non-
TEMPORARY	table).

MEMORY	table	contents	are	stored	in	memory,	which	is	a	property	that	MEMORY
tables	share	with	internal	tables	that	the	server	creates	on	the	fly	while
processing	queries.	However,	the	two	types	of	tables	differ	in	that	MEMORY
tables	are	not	subject	to	storage	conversion,	whereas	internal	tables	are:

If	an	internal	table	becomes	too	large,	the	server	automatically
converts	it	to	an	on-disk	table.	The	size	limit	is	determined	by	the
value	of	the	tmp_table_size	system	variable.

MEMORY	tables	are	never	converted	to	disk	tables.	To	ensure	that	you
don't	accidentally	do	anything	foolish,	you	can	set	the
max_heap_table_size	system	variable	to	impose	a	maximum	size	on
MEMORY	tables.	For	individual	tables,	you	can	also	specify	a	MAX_ROWS
table	option	in	the	CREATE	TABLE	statement.

The	server	needs	sufficient	memory	to	maintain	all	MEMORY	tables	that	are	in
use	at	the	same	time.

To	free	memory	used	by	a	MEMORY	table	when	you	no	longer	require	its
contents,	you	should	execute	DELETE	or	TRUNCATE	TABLE,	or	remove	the
table	altogether	using	DROP	TABLE.

If	you	want	to	populate	a	MEMORY	table	when	the	MySQL	server	starts,	you
can	use	the	--init-file	option.	For	example,	you	can	put	statements	such
as	INSERT	INTO	...	SELECT	or	LOAD	DATA	INFILE	into	this	file	to	load	the
table	from	a	persistent	data	source.	See	Section	5.2.1,	“mysqld	Command
Options”,	and	Section	13.2.5,	“LOAD	DATA	INFILE	Syntax”.

If	you	are	using	replication,	the	master	server's	MEMORY	tables	become
empty	when	it	is	shut	down	and	restarted.	However,	a	slave	is	not	aware
that	these	tables	have	become	empty,	so	it	returns	out-of-date	content	if	you
select	data	from	them.	When	a	MEMORY	table	is	used	on	the	master	for	the
first	time	since	the	master	was	started,	a	DELETE	statement	is	written	to	the
master's	binary	log	automatically,	thus	synchronizing	the	slave	to	the	master
again.	Note	that	even	with	this	strategy,	the	slave	still	has	outdated	data	in
the	table	during	the	interval	between	the	master's	restart	and	its	first	use	of
the	table.	However,	if	you	use	the	--init-file	option	to	populate	the
MEMORY	table	on	the	master	at	startup,	it	ensures	that	this	time	interval	is
zero.

The	memory	needed	for	one	row	in	a	MEMORY	table	is	calculated	using	the
following	expression:

SUM_OVER_ALL_BTREE_KEYS(max_length_of_key	+	sizeof(char*)	×	4)

+	SUM_OVER_ALL_HASH_KEYS(sizeof(char*)	×	2)

+	ALIGN(length_of_row+1,	sizeof(char*))

ALIGN()	represents	a	round-up	factor	to	cause	the	row	length	to	be	an	exact
multiple	of	the	char	pointer	size.	sizeof(char*)	is	4	on	32-bit	machines
and	8	on	64-bit	machines.

Additional	resources

A	forum	dedicated	to	the	MEMORY	storage	engine	is	available	at
http://forums.mysql.com/list.php?92.

http://forums.mysql.com/list.php?92

14.5.	The	BDB	(BerkeleyDB)	Storage	Engine

Sleepycat	Software	has	provided	MySQL	with	the	Berkeley	DB	transactional
storage	engine.	This	storage	engine	typically	is	called	BDB	for	short.	BDB	tables
may	have	a	greater	chance	of	surviving	crashes	and	are	also	capable	of	COMMIT
and	ROLLBACK	operations	on	transactions.

Support	for	the	BDB	storage	engine	is	included	in	MySQL	source	distributions	is
activated	in	MySQL-Max	binary	distributions.	The	MySQL	source	distribution
comes	with	a	BDB	distribution	that	is	patched	to	make	it	work	with	MySQL.	You
cannot	use	a	non-patched	version	of	BDB	with	MySQL.

We	at	MySQL	AB	work	in	close	cooperation	with	Sleepycat	to	keep	the	quality
of	the	MySQL/BDB	interface	high.	(Even	though	Berkeley	DB	is	in	itself	very
tested	and	reliable,	the	MySQL	interface	is	still	considered	gamma	quality.	We
continue	to	improve	and	optimize	it.)

When	it	comes	to	support	for	any	problems	involving	BDB	tables,	we	are
committed	to	helping	our	users	locate	the	problem	and	create	reproducible	test
cases.	Any	such	test	case	is	forwarded	to	Sleepycat,	which	in	turn	helps	us	find
and	fix	the	problem.	As	this	is	a	two-stage	operation,	any	problems	with	BDB
tables	may	take	a	little	longer	for	us	to	fix	than	for	other	storage	engines.
However,	we	anticipate	no	significant	difficulties	with	this	procedure	because
the	Berkeley	DB	code	itself	is	used	in	many	applications	other	than	MySQL.

For	general	information	about	Berkeley	DB,	please	visit	the	Sleepycat	Web	site,
http://www.sleepycat.com/.

14.5.1.	Operating	Systems	Supported	by	BDB

Currently,	we	know	that	the	BDB	storage	engine	works	with	the	following
operating	systems:

Linux	2.x	Intel

Sun	Solaris	(SPARC	and	x86)

FreeBSD	4.x/5.x	(x86,	sparc64)

http://www.sleepycat.com/

IBM	AIX	4.3.x

SCO	OpenServer

SCO	UnixWare	7.1.x

Windows	NT/2000/XP

The	BDB	storage	engine	does	not	work	with	the	following	operating	systems:

Linux	2.x	Alpha

Linux	2.x	AMD64

Linux	2.x	IA-64

Linux	2.x	s390

Mac	OS	X

Note:	The	preceding	lists	are	not	complete.	We	update	them	as	we	receive	more
information.

If	you	build	MySQL	from	source	with	support	for	BDB	tables,	but	the	following
error	occurs	when	you	start	mysqld,	it	means	that	the	BDB	storage	engine	is	not
supported	for	your	architecture:

bdb:	architecture	lacks	fast	mutexes:	applications	cannot	be	threaded

Can't	init	databases

In	this	case,	you	must	rebuild	MySQL	without	BDB	support	or	start	the	server
with	the	--skip-bdb	option.

14.5.2.	Installing	BDB

If	you	have	downloaded	a	binary	version	of	MySQL	that	includes	support	for
Berkeley	DB,	simply	follow	the	usual	binary	distribution	installation
instructions.	(MySQL-Max	distributions	include	BDB	support.)

If	you	build	MySQL	from	source,	you	can	enable	BDB	support	by	invoking
configure	with	the	--with-berkeley-db	option	in	addition	to	any	other	options

that	you	normally	use.	Download	a	MySQL	5.0	distribution,	change	location
into	its	top-level	directory,	and	run	this	command:

shell>	./configure	--with-berkeley-db	[other-options]

For	more	information,	see	Section	5.3,	“The	mysqld-max	Extended	MySQL
Server”,	Section	2.8,	“Installing	MySQL	on	Other	Unix-Like	Systems”,	and
Section	2.9,	“MySQL	Installation	Using	a	Source	Distribution”.

14.5.3.	BDB	Startup	Options

The	following	options	to	mysqld	can	be	used	to	change	the	behavior	of	the	BDB
storage	engine.	For	more	information,	see	Section	5.2.1,	“mysqld	Command
Options”.

	--bdb-home=path

The	base	directory	for	BDB	tables.	This	should	be	the	same	directory	that
you	use	for	--datadir.

	--bdb-lock-detect=method

The	BDB	lock	detection	method.	The	option	value	should	be	DEFAULT,
OLDEST,	RANDOM,	or	YOUNGEST.

	--bdb-logdir=file_name

The	BDB	log	file	directory.

	--bdb-no-recover

Do	not	start	Berkeley	DB	in	recover	mode.

	--bdb-no-sync

Don't	synchronously	flush	the	BDB	logs.	This	option	is	deprecated;	use	--
skip-sync-bdb-logs	instead	(see	the	description	for	--sync-bdb-logs).

	--bdb-shared-data

Start	Berkeley	DB	in	multi-process	mode.	(Do	not	use	DB_PRIVATE	when

initializing	Berkeley	DB.)

	--bdb-tmpdir=path

The	BDB	temporary	file	directory.

	--skip-bdb

Disable	the	BDB	storage	engine.

	--sync-bdb-logs

Synchronously	flush	the	BDB	logs.	This	option	is	enabled	by	default.	Use	--
skip-sync-bdb-logs	to	disable	it.

If	you	use	the	--skip-bdb	option,	MySQL	does	not	initialize	the	Berkeley	DB
library	and	this	saves	a	lot	of	memory.	However,	if	you	use	this	option,	you
cannot	use	BDB	tables.	If	you	try	to	create	a	BDB	table,	MySQL	uses	the	default
storage	engine	instead.

Normally,	you	should	start	mysqld	without	the	--bdb-no-recover	option	if	you
intend	to	use	BDB	tables.	However,	this	may	cause	problems	when	you	try	to	start
mysqld	if	the	BDB	log	files	are	corrupted.	See	Section	2.10.2.3,	“Starting	and
Troubleshooting	the	MySQL	Server”.

With	the	bdb_max_lock	variable,	you	can	specify	the	maximum	number	of	locks
that	can	be	active	on	a	BDB	table.	The	default	is	10,000.	You	should	increase	this
if	errors	such	as	the	following	occur	when	you	perform	long	transactions	or
when	mysqld	has	to	examine	many	rows	to	execute	a	query:

bdb:	Lock	table	is	out	of	available	locks

Got	error	12	from	...

You	may	also	want	to	change	the	binlog_cache_size	and
max_binlog_cache_size	variables	if	you	are	using	large	multiple-statement
transactions.	See	Section	5.12.3,	“The	Binary	Log”.

See	also	Section	5.2.2,	“Server	System	Variables”.

14.5.4.	Characteristics	of	BDB	Tables

Each	BDB	table	is	stored	on	disk	in	two	files.	The	files	have	names	that	begin
with	the	table	name	and	have	an	extension	to	indicate	the	file	type.	An	.frm	file
stores	the	table	format,	and	a	.db	file	contains	the	table	data	and	indexes.

To	specify	explicitly	that	you	want	a	BDB	table,	indicate	that	with	an	ENGINE	table
option:

CREATE	TABLE	t	(i	INT)	ENGINE	=	BDB;

The	older	term	TYPE	is	supported	as	a	synonym	for	ENGINE	for	backward
compatibility,	but	ENGINE	is	the	preferred	term	and	TYPE	is	deprecated.

BerkeleyDB	is	a	synonym	for	BDB	in	the	ENGINE	table	option.

The	BDB	storage	engine	provides	transactional	tables.	The	way	you	use	these
tables	depends	on	the	autocommit	mode:

If	you	are	running	with	autocommit	enabled	(which	is	the	default),	changes
to	BDB	tables	are	committed	immediately	and	cannot	be	rolled	back.

If	you	are	running	with	autocommit	disabled,	changes	do	not	become
permanent	until	you	execute	a	COMMIT	statement.	Instead	of	committing,
you	can	execute	ROLLBACK	to	forget	the	changes.

You	can	start	a	transaction	with	the	START	TRANSACTION	or	BEGIN	statement
to	suspend	autocommit,	or	with	SET	AUTOCOMMIT=0	to	disable	autocommit
explicitly.

For	more	information	about	transactions,	see	Section	13.4.1,	“START
TRANSACTION,	COMMIT,	and	ROLLBACK	Syntax”.

The	BDB	storage	engine	has	the	following	characteristics:

BDB	tables	can	have	up	to	31	indexes	per	table,	16	columns	per	index,	and	a
maximum	key	size	of	1024	bytes.

MySQL	requires	a	primary	key	in	each	BDB	table	so	that	each	row	can	be
uniquely	identified.	If	you	don't	create	one	explicitly	by	declaring	a
PRIMARY	KEY,	MySQL	creates	and	maintains	a	hidden	primary	key	for	you.
The	hidden	key	has	a	length	of	five	bytes	and	is	incremented	for	each	insert

attempt.	This	key	does	not	appear	in	the	output	of	SHOW	CREATE	TABLE	or
DESCRIBE.

The	primary	key	is	faster	than	any	other	index,	because	it	is	stored	together
with	the	row	data.	The	other	indexes	are	stored	as	the	key	data	plus	the
primary	key,	so	it's	important	to	keep	the	primary	key	as	short	as	possible	to
save	disk	space	and	get	better	speed.

This	behavior	is	similar	to	that	of	InnoDB,	where	shorter	primary	keys	save
space	not	only	in	the	primary	index	but	in	secondary	indexes	as	well.

If	all	columns	that	you	access	in	a	BDB	table	are	part	of	the	same	index	or
part	of	the	primary	key,	MySQL	can	execute	the	query	without	having	to
access	the	actual	row.	In	a	MyISAM	table,	this	can	be	done	only	if	the
columns	are	part	of	the	same	index.

Sequential	scanning	is	slower	for	BDB	tables	than	for	MyISAM	tables	because
the	data	in	BDB	tables	is	stored	in	B-trees	and	not	in	a	separate	data	file.

Key	values	are	not	prefix-	or	suffix-compressed	like	key	values	in	MyISAM
tables.	In	other	words,	key	information	takes	a	little	more	space	in	BDB
tables	compared	to	MyISAM	tables.

There	are	often	holes	in	the	BDB	table	to	allow	you	to	insert	new	rows	in	the
middle	of	the	index	tree.	This	makes	BDB	tables	somewhat	larger	than
MyISAM	tables.

SELECT	COUNT(*)	FROM	tbl_name	is	slow	for	BDB	tables,	because	no	row
count	is	maintained	in	the	table.

The	optimizer	needs	to	know	the	approximate	number	of	rows	in	the	table.
MySQL	solves	this	by	counting	inserts	and	maintaining	this	in	a	separate
segment	in	each	BDB	table.	If	you	don't	issue	a	lot	of	DELETE	or	ROLLBACK
statements,	this	number	should	be	accurate	enough	for	the	MySQL
optimizer.	However,	MySQL	stores	the	number	only	on	close,	so	it	may	be
incorrect	if	the	server	terminates	unexpectedly.	It	should	not	be	fatal	even	if
this	number	is	not	100%	correct.	You	can	update	the	row	count	by	using
ANALYZE	TABLE	or	OPTIMIZE	TABLE.	See	Section	13.5.2.1,	“ANALYZE	TABLE
Syntax”,	and	Section	13.5.2.5,	“OPTIMIZE	TABLE	Syntax”.

Internal	locking	in	BDB	tables	is	done	at	the	page	level.

LOCK	TABLES	works	on	BDB	tables	as	with	other	tables.	If	you	do	not	use
LOCK	TABLES,	MySQL	issues	an	internal	multiple-write	lock	on	the	table	(a
lock	that	does	not	block	other	writers)	to	ensure	that	the	table	is	properly
locked	if	another	thread	issues	a	table	lock.

To	support	transaction	rollback,	the	BDB	storage	engine	maintains	log	files.
For	maximum	performance,	you	can	use	the	--bdb-logdir	option	to	place
the	BDB	logs	on	a	different	disk	than	the	one	where	your	databases	are
located.

MySQL	performs	a	checkpoint	each	time	a	new	BDB	log	file	is	started,	and
removes	any	BDB	log	files	that	are	not	needed	for	current	transactions.	You
can	also	use	FLUSH	LOGS	at	any	time	to	checkpoint	the	Berkeley	DB	tables.

For	disaster	recovery,	you	should	use	table	backups	plus	MySQL's	binary
log.	See	Section	5.10.1,	“Database	Backups”.

Warning:	If	you	delete	old	log	files	that	are	still	in	use,	BDB	is	not	able	to
do	recovery	at	all	and	you	may	lose	data	if	something	goes	wrong.

Applications	must	always	be	prepared	to	handle	cases	where	any	change	of
a	BDB	table	may	cause	an	automatic	rollback	and	any	read	may	fail	with	a
deadlock	error.

If	you	get	a	full	disk	with	a	BDB	table,	you	get	an	error	(probably	error	28)
and	the	transaction	should	roll	back.	This	contrasts	with	MyISAM	tables,	for
which	mysqld	waits	for	sufficient	free	disk	space	before	continuing.

14.5.5.	Restrictions	on	BDB	Tables

The	following	list	indicates	restrictions	that	you	must	observe	when	using	BDB
tables:

Each	BDB	table	stores	in	its	.db	file	the	path	to	the	file	as	it	was	created.
This	is	done	to	enable	detection	of	locks	in	a	multi-user	environment	that
supports	symlinks.	As	a	consequence	of	this,	it	is	not	possible	to	move	BDB
table	files	from	one	database	directory	to	another.

When	making	backups	of	BDB	tables,	you	must	either	use	mysqldump	or
else	make	a	backup	that	includes	the	files	for	each	BDB	table	(the	.frm	and
.db	files)	as	well	as	the	BDB	log	files.	The	BDB	storage	engine	stores
unfinished	transactions	in	its	log	files	and	requires	them	to	be	present	when
mysqld	starts.	The	BDB	logs	are	the	files	in	the	data	directory	with	names	of
the	form	log.NNNNNNNNNN	(ten	digits).

If	a	column	that	allows	NULL	values	has	a	unique	index,	only	a	single	NULL
value	is	allowed.	This	differs	from	other	storage	engines,	which	allow
multiple	NULL	values	in	unique	indexes.

14.5.6.	Errors	That	May	Occur	When	Using	BDB	Tables

If	the	following	error	occurs	when	you	start	mysqld	after	upgrading,	it
means	that	the	current	version	of	BDB	doesn't	support	the	old	log	file	format:

bdb:		Ignoring	log	file:	.../log.NNNNNNNNNN:

unsupported	log	version	#

In	this	case,	you	must	delete	all	BDB	logs	from	your	data	directory	(the	files
that	have	names	of	the	form	log.NNNNNNNNNN)	and	restart	mysqld.	We	also
recommend	that	you	then	use	mysqldump	--opt	to	dump	your	BDB	tables,
drop	the	tables,	and	restore	them	from	the	dump	file.

If	autocommit	mode	is	disabled	and	you	drop	a	BDB	table	that	is	referenced
in	another	transaction,	you	may	get	error	messages	of	the	following	form	in
your	MySQL	error	log:

001119	23:43:56		bdb:		Missing	log	fileid	entry

001119	23:43:56		bdb:		txn_abort:	Log	undo	failed	for	LSN:

																							1	3644744:	Invalid

This	is	not	fatal,	but	the	fix	is	not	trivial.	Until	the	problem	is	fixed,	we
recommend	that	you	not	drop	BDB	tables	except	while	autocommit	mode	is
enabled.

14.6.	The	EXAMPLE	Storage	Engine

The	EXAMPLE	storage	engine	is	a	stub	engine	that	does	nothing.	Its	purpose	is	to
serve	as	an	example	in	the	MySQL	source	code	that	illustrates	how	to	begin
writing	new	storage	engines.	As	such,	it	is	primarily	of	interest	to	developers.

The	EXAMPLE	storage	engine	is	included	in	MySQL-Max	binary	distributions.	To
enable	this	storage	engine	if	you	build	MySQL	from	source,	invoke	configure
with	the	--with-example-storage-engine	option.

To	examine	the	source	for	the	EXAMPLE	engine,	look	in	the	sql/examples
directory	of	a	MySQL	source	distribution.

When	you	create	an	EXAMPLE	table,	the	server	creates	a	table	format	file	in	the
database	directory.	The	file	begins	with	the	table	name	and	has	an	.frm
extension.	No	other	files	are	created.	No	data	can	be	stored	into	the	table.
Retrievals	return	an	empty	result.

mysql>	CREATE	TABLE	test	(i	INT)	ENGINE	=	EXAMPLE;

Query	OK,	0	rows	affected	(0.78	sec)

mysql>	INSERT	INTO	test	VALUES(1),(2),(3);

ERROR	1031	(HY000):	Table	storage	engine	for	'test'	doesn't	have	this	option

mysql>	SELECT	*	FROM	test;

Empty	set	(0.31	sec)

The	EXAMPLE	storage	engine	does	not	support	indexing.

14.7.	The	FEDERATED	Storage	Engine

The	FEDERATED	storage	engine	is	available	beginning	with	MySQL	5.0.3.	It	is	a
storage	engine	that	accesses	data	in	tables	of	remote	databases	rather	than	in
local	tables.

The	FEDERATED	storage	engine	is	included	in	MySQL-Max	binary	distributions.
To	enable	this	storage	engine	if	you	build	MySQL	from	source,	invoke
configure	with	the	--with-federated-storage-engine	option.

To	examine	the	source	for	the	FEDERATED	engine,	look	in	the	sql	directory	of	a
source	distribution	for	MySQL	5.0.3	or	newer.

Additional	resources

A	forum	dedicated	to	the	FEDERATED	storage	engine	is	available	at
http://forums.mysql.com/list.php?105.

14.7.1.	Description	of	the	FEDERATED	Storage	Engine

When	you	create	a	FEDERATED	table,	the	server	creates	a	table	format	file	in	the
database	directory.	The	file	begins	with	the	table	name	and	has	an	.frm
extension.	No	other	files	are	created,	because	the	actual	data	is	in	a	remote	table.
This	differs	from	the	way	that	storage	engines	for	local	tables	work.

For	local	database	tables,	data	files	are	local.	For	example,	if	you	create	a	MyISAM
table	named	users,	the	MyISAM	handler	creates	a	data	file	named	users.MYD.	A
handler	for	local	tables	reads,	inserts,	deletes,	and	updates	data	in	local	data	files,
and	rows	are	stored	in	a	format	particular	to	the	handler.	To	read	rows,	the
handler	must	parse	data	into	columns.	To	write	rows,	column	values	must	be
converted	to	the	row	format	used	by	the	handler	and	written	to	the	local	data	file.

With	the	MySQL	FEDERATED	storage	engine,	there	are	no	local	data	files	for	a
table	(for	example,	there	is	no	.MYD	file).	Instead,	a	remote	database	stores	the
data	that	normally	would	be	in	the	table.	The	local	server	connects	to	a	remote
server,	and	uses	the	MySQL	client	API	to	read,	delete,	update,	and	insert	data	in
the	remote	table.	Data	retrieval	is	initiated	via	a	SELECT	*	FROM	tbl_name	SQL
statement.	To	read	the	result,	rows	are	fetched	one	at	a	time	by	using	the

http://forums.mysql.com/list.php?105

mysql_fetch_row()	C	API	function,	and	then	converting	the	columns	in	the
SELECT	result	set	to	the	format	that	the	FEDERATED	handler	expects.

The	flow	of	information	is	as	follows:

1.	 SQL	calls	issued	locally

2.	 MySQL	handler	API	(data	in	handler	format)

3.	 MySQL	client	API	(data	converted	to	SQL	calls)

4.	 Remote	database	->	MySQL	client	API

5.	 Convert	result	sets	(if	any)	to	handler	format

6.	 Handler	API	->	Result	rows	or	rows-affected	count	to	local

14.7.2.	How	to	use	FEDERATED	Tables

The	procedure	for	using	FEDERATED	tables	is	very	simple.	Normally,	you	have
two	servers	running,	either	both	on	the	same	host	or	on	different	hosts.	(It	is
possible	for	a	FEDERATED	table	to	use	another	table	that	is	managed	by	the	same
server,	although	there	is	little	point	in	doing	so.)

First,	you	must	have	a	table	on	the	remote	server	that	you	want	to	access	by
using	a	FEDERATED	table.	Suppose	that	the	remote	table	is	in	the	federated
database	and	is	defined	like	this:

CREATE	TABLE	test_table	(

				id					INT(20)	NOT	NULL	AUTO_INCREMENT,

				name			VARCHAR(32)	NOT	NULL	DEFAULT	'',

				other		INT(20)	NOT	NULL	DEFAULT	'0',

				PRIMARY	KEY		(id),

				INDEX	name	(name),

				INDEX	other_key	(other)

)

ENGINE=MyISAM

DEFAULT	CHARSET=latin1;

The	example	uses	a	MyISAM	table,	but	the	table	could	use	any	storage	engine.

Next,	create	a	FEDERATED	table	on	the	local	server	for	accessing	the	remote	table:

CREATE	TABLE	federated_table	(

				id					INT(20)	NOT	NULL	AUTO_INCREMENT,

				name			VARCHAR(32)	NOT	NULL	DEFAULT	'',

				other		INT(20)	NOT	NULL	DEFAULT	'0',

				PRIMARY	KEY		(id),

				INDEX	name	(name),

				INDEX	other_key	(other)

)

ENGINE=FEDERATED

DEFAULT	CHARSET=latin1

CONNECTION='mysql://root@remote_host:9306/federated/test_table';

(Before	MySQL	5.0.13,	use	COMMENT	rather	than	CONNECTION.)

The	structure	of	this	table	must	be	exactly	the	same	as	that	of	the	remote	table,
except	that	the	ENGINE	table	option	should	be	FEDERATED	and	the	CONNECTION
table	option	is	a	connection	string	that	indicates	to	the	FEDERATED	engine	how	to
connect	to	the	remote	server.

The	FEDERATED	engine	creates	only	the	test_table.frm	file	in	the	federated
database.

The	remote	host	information	indicates	the	remote	server	to	which	your	local
server	connects,	and	the	database	and	table	information	indicates	which	remote
table	to	use	as	the	data	source.	In	this	example,	the	remote	server	is	indicated	to
be	running	as	remote_host	on	port	9306,	so	there	must	be	a	MySQL	server
running	on	the	remote	host	and	listening	to	port	9306.

The	general	form	of	the	connection	string	in	the	CONNECTION	option	is	as
follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Only	mysql	is	supported	as	the	scheme	value	at	this	point;	the	password	and	port
number	are	optional.

Here	are	some	example	connection	strings:

CONNECTION='mysql://username:password@hostname:port/database/tablename'

CONNECTION='mysql://username@hostname/database/tablename'

CONNECTION='mysql://username:password@hostname/database/tablename'

The	use	of	CONNECTION	for	specifying	the	connection	string	is	non-optimal	and	is

likely	to	change	in	future.	Keep	this	in	mind	for	applications	that	use	FEDERATED
tables.	Such	applications	are	likely	to	need	modification	if	the	format	for
specifying	connection	information	changes.

Because	any	password	given	in	the	connection	string	is	stored	as	plain	text,	it
can	be	seen	by	any	user	who	can	use	SHOW	CREATE	TABLE	or	SHOW	TABLE
STATUS	for	the	FEDERATED	table,	or	query	the	TABLES	table	in	the
INFORMATION_SCHEMA	database.

14.7.3.	Limitations	of	the	FEDERATED	Storage	Engine

The	following	items	indicate	features	that	the	FEDERATED	storage	engine	does
and	does	not	support:

In	the	first	version,	the	remote	server	must	be	a	MySQL	server.	Support	by
FEDERATED	for	other	database	engines	may	be	added	in	the	future.

The	remote	table	that	a	FEDERATED	table	points	to	must	exist	before	you	try
to	access	the	table	through	the	FEDERATED	table.

It	is	possible	for	one	FEDERATED	table	to	point	to	another,	but	you	must	be
careful	not	to	create	a	loop.

There	is	no	support	for	transactions.

There	is	no	way	for	the	FEDERATED	engine	to	know	if	the	remote	table	has
changed.	The	reason	for	this	is	that	this	table	must	work	like	a	data	file	that
would	never	be	written	to	by	anything	other	than	the	database.	The	integrity
of	the	data	in	the	local	table	could	be	breached	if	there	was	any	change	to
the	remote	database.

The	FEDERATED	storage	engine	supports	SELECT,	INSERT,	UPDATE,	DELETE,
and	indexes.	It	does	not	support	ALTER	TABLE,	or	any	Data	Definition
Language	statements	other	than	DROP	TABLE.	The	current	implementation
does	not	use	Prepared	statements.

Any	DROP	TABLE	statement	issued	against	a	FEDERATED	table	will	only
drop	the	local	table,	not	the	remote	table.

The	implementation	uses	SELECT,	INSERT,	UPDATE,	and	DELETE,	but	not

HANDLER.

FEDERATED	tables	do	not	work	with	the	query	cache.

Some	of	these	limitations	may	be	lifted	in	future	versions	of	the	FEDERATED
handler.

14.8.	The	ARCHIVE	Storage	Engine

The	ARCHIVE	storage	engine	is	used	for	storing	large	amounts	of	data	without
indexes	in	a	very	small	footprint.

The	ARCHIVE	storage	engine	is	included	in	MySQL	binary	distributions.	To
enable	this	storage	engine	if	you	build	MySQL	from	source,	invoke	configure
with	the	--with-archive-storage-engine	option.

To	examine	the	source	for	the	ARCHIVE	engine,	look	in	the	sql	directory	of	a
MySQL	source	distribution.

You	can	check	whether	the	ARCHIVE	storage	engine	is	available	with	this
statement:

mysql>	SHOW	VARIABLES	LIKE	'have_archive';

When	you	create	an	ARCHIVE	table,	the	server	creates	a	table	format	file	in	the
database	directory.	The	file	begins	with	the	table	name	and	has	an	.frm
extension.	The	storage	engine	creates	other	files,	all	having	names	beginning
with	the	table	name.	The	data	and	metadata	files	have	extensions	of	.ARZ	and
.ARM,	respectively.	An	.ARN	file	may	appear	during	optimization	operations.

The	ARCHIVE	engine	supports	INSERT	and	SELECT,	but	not	DELETE,	REPLACE,	or
UPDATE.	It	does	support	ORDER	BY	operations,	BLOB	columns,	and	basically	all	but
spatial	data	types	(see	Section	16.4.1,	“MySQL	Spatial	Data	Types”).	The
ARCHIVE	engine	uses	row-level	locking.

Storage:	Rows	are	compressed	as	they	are	inserted.	The	ARCHIVE	engine	uses
zlib	lossless	data	compression	(see	http://www.zlib.net/).	You	can	use	OPTIMIZE
TABLE	to	analyze	the	table	and	pack	it	into	a	smaller	format	(for	a	reason	to	use
OPTIMIZE	TABLE,	see	later	in	this	section).	Beginning	with	MySQL	5.0.15,	the
engine	also	supports	CHECK	TABLE.	There	are	several	types	of	insertions	that	are
used:

An	INSERT	statement	just	pushes	rows	into	a	compression	buffer,	and	that
buffer	flushes	as	necessary.	The	insertion	into	the	buffer	is	protected	by	a
lock.	A	SELECT	forces	a	flush	to	occur,	unless	the	only	insertions	that	have

http://www.zlib.net/

come	in	were	INSERT	DELAYED	(those	flush	as	necessary).	See
Section	13.2.4.2,	“INSERT	DELAYED	Syntax”.

A	bulk	insert	is	visible	only	after	it	completes,	unless	other	inserts	occur	at
the	same	time,	in	which	case	it	can	be	seen	partially.	A	SELECT	never	causes
a	flush	of	a	bulk	insert	unless	a	normal	insert	occurs	while	it	is	loading.

Retrieval:	On	retrieval,	rows	are	uncompressed	on	demand;	there	is	no	row
cache.	A	SELECT	operation	performs	a	complete	table	scan:	When	a	SELECT
occurs,	it	finds	out	how	many	rows	are	currently	available	and	reads	that	number
of	rows.	SELECT	is	performed	as	a	consistent	read.	Note	that	lots	of	SELECT
statements	during	insertion	can	deteriorate	the	compression,	unless	only	bulk	or
delayed	inserts	are	used.	To	achieve	better	compression,	you	can	use	OPTIMIZE
TABLE	or	REPAIR	TABLE.	The	number	of	rows	in	ARCHIVE	tables	reported	by	SHOW
TABLE	STATUS	is	always	accurate.	See	Section	13.5.2.5,	“OPTIMIZE	TABLE
Syntax”,	Section	13.5.2.6,	“REPAIR	TABLE	Syntax”,	and	Section	13.5.4.21,	“SHOW
TABLE	STATUS	Syntax”.

Additional	resources

A	forum	dedicated	to	the	ARCHIVE	storage	engine	is	available	at
http://forums.mysql.com/list.php?112.

http://forums.mysql.com/list.php?112

14.9.	The	CSV	Storage	Engine

The	CSV	storage	engine	stores	data	in	text	files	using	comma-separated	values
format.

To	enable	this	storage	engine,	use	the	--with-csv-storage-engine	option	to
configure	when	you	build	MySQL.

The	CSV	storage	engine	is	included	in	MySQL-Max	binary	distributions.	To
enable	this	storage	engine	if	you	build	MySQL	from	source,	invoke	configure
with	the	--with-csv-storage-engine	option.

To	examine	the	source	for	the	CSV	engine,	look	in	the	sql/examples	directory	of
a	MySQL	source	distribution.

When	you	create	a	CSV	table,	the	server	creates	a	table	format	file	in	the	database
directory.	The	file	begins	with	the	table	name	and	has	an	.frm	extension.	The
storage	engine	also	creates	a	data	file.	Its	name	begins	with	the	table	name	and
has	a	.CSV	extension.	The	data	file	is	a	plain	text	file.	When	you	store	data	into
the	table,	the	storage	engine	saves	it	into	the	data	file	in	comma-separated	values
format.

mysql>	CREATE	TABLE	test(i	INT,	c	CHAR(10))	ENGINE	=	CSV;

Query	OK,	0	rows	affected	(0.12	sec)

mysql>	INSERT	INTO	test	VALUES(1,'record	one'),(2,'record	two');

Query	OK,	2	rows	affected	(0.00	sec)

Records:	2		Duplicates:	0		Warnings:	0

mysql>	SELECT	*	FROM	test;

+------+------------+

|	i				|	c										|

+------+------------+

|				1	|	record	one	|

|				2	|	record	two	|

+------+------------+

2	rows	in	set	(0.00	sec)

If	you	examine	the	test.CSV	file	in	the	database	directory	created	by	executing
the	preceding	statements,	its	contents	should	look	like	this:

"1","record	one"

"2","record	two"

This	format	can	be	read,	and	even	written,	by	spreadsheet	applications	such	as
Microsoft	Excel	or	StarOffice	Calc.

The	CSV	storage	engine	does	not	support	indexing.

14.10.	The	BLACKHOLE	Storage	Engine

The	BLACKHOLE	storage	engine	acts	as	a	“black	hole”	that	accepts	data	but	throws
it	away	and	does	not	store	it.	Retrievals	always	return	an	empty	result:

mysql>	CREATE	TABLE	test(i	INT,	c	CHAR(10))	ENGINE	=	BLACKHOLE;

Query	OK,	0	rows	affected	(0.03	sec)

mysql>	INSERT	INTO	test	VALUES(1,'record	one'),(2,'record	two');

Query	OK,	2	rows	affected	(0.00	sec)

Records:	2		Duplicates:	0		Warnings:	0

mysql>	SELECT	*	FROM	test;

Empty	set	(0.00	sec)

The	BLACKHOLE	storage	engine	is	included	in	MySQL-Max	binary	distributions.
To	enable	this	storage	engine	if	you	build	MySQL	from	source,	invoke
configure	with	the	--with-blackhole-storage-engine	option.

To	examine	the	source	for	the	BLACKHOLE	engine,	look	in	the	sql	directory	of	a
MySQL	source	distribution.

When	you	create	a	BLACKHOLE	table,	the	server	creates	a	table	format	file	in	the
database	directory.	The	file	begins	with	the	table	name	and	has	an	.frm
extension.	There	are	no	other	files	associated	with	the	table.

The	BLACKHOLE	storage	engine	supports	all	kinds	of	indexes.	That	is,	you	can
include	index	declarations	in	the	table	definition.

You	can	check	whether	the	BLACKHOLE	storage	engine	is	available	with	this
statement:

mysql>	SHOW	VARIABLES	LIKE	'have_blackhole_engine';

Inserts	into	a	BLACKHOLE	table	do	not	store	any	data,	but	if	the	binary	log	is
enabled,	the	SQL	statements	are	logged	(and	replicated	to	slave	servers).	This
can	be	useful	as	a	repeater	or	filter	mechanism.	For	example,	suppose	that	your
application	requires	slave-side	filtering	rules,	but	transferring	all	binary	log	data
to	the	slave	first	results	in	too	much	traffic.	In	such	a	case,	it	is	possible	to	set	up
on	the	master	host	a	“dummy”	slave	process	whose	default	storage	engine	is

BLACKHOLE,	depicted	as	follows:

The	master	writes	to	its	binary	log.	The	“dummy”	mysqld	process	acts	as	a
slave,	applying	the	desired	combination	of	replicate-do-*	and	replicate-
ignore-*	rules,	and	writes	a	new,	filtered	binary	log	of	its	own.	(See	Section	6.8,
“Replication	Startup	Options”.)	This	filtered	log	is	provided	to	the	slave.

The	dummy	process	does	not	actually	store	any	data,	so	there	is	little	processing
overhead	incurred	by	running	the	additional	mysqld	process	on	the	replication
master	host.	This	type	of	setup	can	be	repeated	with	additional	replication	slaves.

Other	possible	uses	for	the	BLACKHOLE	storage	engine	include:

Verification	of	dump	file	syntax.

Measurement	of	the	overhead	from	binary	logging,	by	comparing
performance	using	BLACKHOLE	with	and	without	binary	logging	enabled.

BLACKHOLE	is	essentially	a	“no-op”	storage	engine,	so	it	could	be	used	for
finding	performance	bottlenecks	not	related	to	the	storage	engine	itself.

Chapter	15.	MySQL	Cluster

Table	of	Contents

15.1.	MySQL	Cluster	Overview
15.2.	Basic	MySQL	Cluster	Concepts

15.2.1.	MySQL	Cluster	Nodes,	Node	Groups,	Replicas,	and	Partitions
15.3.	Simple	Multi-Computer	How-To

15.3.1.	Hardware,	Software,	and	Networking
15.3.2.	Multi-Computer	Installation
15.3.3.	Multi-Computer	Configuration
15.3.4.	Initial	Startup
15.3.5.	Loading	Sample	Data	and	Performing	Queries
15.3.6.	Safe	Shutdown	and	Restart

15.4.	MySQL	Cluster	Configuration
15.4.1.	Building	MySQL	Cluster	from	Source	Code
15.4.2.	Installing	the	Software
15.4.3.	Quick	Test	Setup	of	MySQL	Cluster
15.4.4.	Configuration	File
15.4.5.	Overview	of	Cluster	Configuration	Parameters
15.4.6.	Configuring	Parameters	for	Local	Checkpoints

15.5.	Upgrading	and	Downgrading	MySQL	Cluster
15.5.1.	Performing	a	Rolling	Restart	of	the	Cluster
15.5.2.	Cluster	Upgrade	and	Downgrade	Compatibility

15.6.	Process	Management	in	MySQL	Cluster
15.6.1.	MySQL	Server	Process	Usage	for	MySQL	Cluster
15.6.2.	ndbd,	the	Storage	Engine	Node	Process
15.6.3.	ndb_mgmd,	the	Management	Server	Process
15.6.4.	ndb_mgm,	the	Management	Client	Process
15.6.5.	Command	Options	for	MySQL	Cluster	Processes

15.7.	Management	of	MySQL	Cluster
15.7.1.	MySQL	Cluster	Startup	Phases
15.7.2.	Commands	in	the	Management	Client
15.7.3.	Event	Reports	Generated	in	MySQL	Cluster
15.7.4.	Single-User	Mode

15.8.	On-line	Backup	of	MySQL	Cluster
15.8.1.	Cluster	Backup	Concepts

15.8.2.	Using	The	Management	Client	to	Create	a	Backup
15.8.3.	How	to	Restore	a	Cluster	Backup
15.8.4.	Configuration	for	Cluster	Backup
15.8.5.	Backup	Troubleshooting

15.9.	Using	High-Speed	Interconnects	with	MySQL	Cluster
15.9.1.	Configuring	MySQL	Cluster	to	use	SCI	Sockets
15.9.2.	Understanding	the	Impact	of	Cluster	Interconnects

15.10.	Known	Limitations	of	MySQL	Cluster
15.11.	MySQL	Cluster	Development	Roadmap

15.11.1.	MySQL	Cluster	Changes	in	MySQL	5.0
15.11.2.	MySQL	5.1	Development	Roadmap	for	MySQL	Cluster

15.12.	MySQL	Cluster	FAQ
15.13.	MySQL	Cluster	Glossary

MySQL	Cluster	is	a	high-availability,	high-redundancy	version	of	MySQL
adapted	for	the	distributed	computing	environment.	It	uses	the	NDB	Cluster
storage	engine	to	enable	running	several	MySQL	servers	in	a	cluster.	This
storage	engine	is	available	in	MySQL	5.0	binary	releases	and	in	RPMs
compatible	with	most	modern	Linux	distributions.	(If	you	install	using	RPM
files,	note	that	both	the	mysql-server	and	mysql-max	RPMs	must	be	installed	to
have	MySQL	Cluster	capability.)

The	operating	systems	on	which	MySQL	Cluster	is	currently	available	are
Linux,	Mac	OS	X,	and	Solaris.	(Some	users	have	reported	success	with	running
MySQL	Cluster	on	FreeBSD	and	HP-UX,	although	these	platforms	are	not	yet
officially	supported	by	MySQL	AB.)	We	are	working	to	make	Cluster	run	on	all
operating	systems	supported	by	MySQL,	including	Windows,	and	will	update
this	page	as	new	platforms	are	supported.

This	chapter	represents	a	work	in	progress,	and	its	contents	are	subject	to
revision	as	MySQL	Cluster	continues	to	evolve.	Additional	information
regarding	MySQL	Cluster	can	be	found	on	the	MySQL	AB	Web	site	at
http://www.mysql.com/products/cluster/.

Additional	resources

Answers	to	some	commonly	asked	questions	about	Cluster	may	be	found	in
the	Section	15.12,	“MySQL	Cluster	FAQ”.

http://www.mysql.com/products/cluster/

The	MySQL	Cluster	mailing	list:	http://lists.mysql.com/cluster.

The	MySQL	Cluster	Forum:	http://forums.mysql.com/list.php?25.

If	you	are	new	to	MySQL	Cluster,	you	may	find	our	Developer	Zone	article
How	to	set	up	a	MySQL	Cluster	for	two	servers	to	be	helpful.

http://lists.mysql.com/cluster
http://forums.mysql.com/list.php?25
http://dev.mysql.com/tech-resources/articles/mysql-cluster-for-two-servers.html

15.1.	MySQL	Cluster	Overview

MySQL	Cluster	is	a	technology	that	enables	clustering	of	in-memory	databases
in	a	shared-nothing	system.	The	shared-nothing	architecture	allows	the	system	to
work	with	very	inexpensive	hardware,	and	without	any	specific	requirements	on
hardware	or	software.	It	also	does	not	have	any	single	point	of	failure	because
each	component	has	its	own	memory	and	disk.

MySQL	Cluster	integrates	the	standard	MySQL	server	with	an	in-memory
clustered	storage	engine	called	NDB.	In	our	documentation,	the	term	NDB	refers	to
the	part	of	the	setup	that	is	specific	to	the	storage	engine,	whereas	“MySQL
Cluster”	refers	to	the	combination	of	MySQL	and	the	NDB	storage	engine.

A	MySQL	Cluster	consists	of	a	set	of	computers,	each	running	a	number	of
processes	including	MySQL	servers,	data	nodes	for	NDB	Cluster,	management
servers,	and	(possibly)	specialized	data	access	programs.	The	relationship	of
these	components	in	a	cluster	is	shown	here:

All	these	programs	work	together	to	form	a	MySQL	Cluster.	When	data	is	stored
in	the	NDB	Cluster	storage	engine,	the	tables	are	stored	in	the	data	nodes.	Such

tables	are	directly	accessible	from	all	other	MySQL	servers	in	the	cluster.	Thus,
in	a	payroll	application	storing	data	in	a	cluster,	if	one	application	updates	the
salary	of	an	employee,	all	other	MySQL	servers	that	query	this	data	can	see	this
change	immediately.

The	data	stored	in	the	data	nodes	for	MySQL	Cluster	can	be	mirrored;	the	cluster
can	handle	failures	of	individual	data	nodes	with	no	other	impact	than	that	a
small	number	of	transactions	are	aborted	due	to	losing	the	transaction	state.
Because	transactional	applications	are	expected	to	handle	transaction	failure,	this
should	not	be	a	source	of	problems.

15.2.	Basic	MySQL	Cluster	Concepts

NDB	is	an	in-memory	storage	engine	offering	high-availability	and	data-
persistence	features.

The	NDB	storage	engine	can	be	configured	with	a	range	of	failover	and	load-
balancing	options,	but	it	is	easiest	to	start	with	the	storage	engine	at	the	cluster
level.	MySQL	Cluster's	NDB	storage	engine	contains	a	complete	set	of	data,
dependent	only	on	other	data	within	the	cluster	itself.

The	cluster	portion	of	MySQL	Cluster	is	currently	configured	independently	of
the	MySQL	servers.	In	a	MySQL	Cluster,	each	part	of	the	cluster	is	considered
to	be	a	node.

Note:	In	many	contexts,	the	term	“node”	is	used	to	indicate	a	computer,	but
when	discussing	MySQL	Cluster	it	means	a	process.	There	can	be	any	number
of	nodes	on	a	single	computer,	for	which	we	use	the	term	cluster	host.

There	are	three	types	of	cluster	nodes,	and	in	a	minimal	MySQL	Cluster
configuration,	there	will	be	at	least	three	nodes,	one	of	each	of	these	types:

The	management	node	(MGM	node):	The	role	of	this	type	of	node	is	to
manage	the	other	nodes	within	the	MySQL	Cluster,	such	as	providing
configuration	data,	starting	and	stopping	nodes,	running	backup,	and	so
forth.	Because	this	node	type	manages	the	configuration	of	the	other	nodes,
a	node	of	this	type	should	be	started	first,	before	any	other	node.	An	MGM
node	is	started	with	the	command	ndb_mgmd.

The	data	node:	This	is	the	type	of	node	that	stores	the	cluster's	data.	There
are	as	many	data	nodes	as	there	are	replicas,	times	the	number	of	fragments.
For	example,	with	two	replicas,	each	having	two	fragments,	you	will	need
four	data	nodes.	It	is	not	necessary	to	have	more	than	one	replica.	A	data
node	is	started	with	the	command	ndbd.

The	SQL	node:	This	is	the	node	that	accesses	the	cluster	data.	In	the	case	of
MySQL	Cluster,	an	SQL	node	is	a	traditional	MySQL	server	that	uses	the
NDB	Cluster	storage	engine.	An	SQL	node	is	typically	started	with	the
command	mysqld	--ndbcluster	or	by	using	mysqld	with	the	ndbcluster

option	added	to	my.cnf.

Important:	It	is	not	realistic	to	expect	to	employ	a	three-node	setup	in	a
production	environment.	Such	a	configuration	provides	no	redundancy;	in	order
to	benefit	from	MySQL	Cluster's	high-availability	features,	you	must	use
multiple	data	and	SQL	nodes.	The	use	of	multiple	management	nodes	is	also
highly	recommended.

For	a	brief	introduction	to	the	relationships	between	nodes,	node	groups,
replicas,	and	partitions	in	MySQL	Cluster,	see	Section	15.2.1,	“MySQL	Cluster
Nodes,	Node	Groups,	Replicas,	and	Partitions”.

Configuration	of	a	cluster	involves	configuring	each	individual	node	in	the
cluster	and	setting	up	individual	communication	links	between	nodes.	MySQL
Cluster	is	currently	designed	with	the	intention	that	data	nodes	are	homogeneous
in	terms	of	processor	power,	memory	space,	and	bandwidth.	In	addition,	to
provide	a	single	point	of	configuration,	all	configuration	data	for	the	cluster	as	a
whole	is	located	in	one	configuration	file.

The	management	server	(MGM	node)	manages	the	cluster	configuration	file	and
the	cluster	log.	Each	node	in	the	cluster	retrieves	the	configuration	data	from	the
management	server,	and	so	requires	a	way	to	determine	where	the	management
server	resides.	When	interesting	events	occur	in	the	data	nodes,	the	nodes
transfer	information	about	these	events	to	the	management	server,	which	then
writes	the	information	to	the	cluster	log.

In	addition,	there	can	be	any	number	of	cluster	client	processes	or	applications.
These	are	of	two	types:

Standard	MySQL	clients:	These	are	no	different	for	MySQL	Cluster	than
they	are	for	standard	(non-Cluster)	MySQL.	In	other	words,	MySQL
Cluster	can	be	accessed	from	existing	MySQL	applications	written	in	PHP,
Perl,	C,	C++,	Java,	Python,	Ruby,	and	so	on.

Management	clients:	These	clients	connect	to	the	management	server	and
provide	commands	for	starting	and	stopping	nodes	gracefully,	starting	and
stopping	message	tracing	(debug	versions	only),	showing	node	versions	and
status,	starting	and	stopping	backups,	and	so	on.

15.2.1.	MySQL	Cluster	Nodes,	Node	Groups,	Replicas,	and
Partitions

This	section	discusses	the	manner	in	which	MySQL	Cluster	divides	and
duplicates	data	for	storage.

Central	to	an	understanding	of	this	topic	are	the	following	concepts,	listed	here
with	brief	definitions:

(Data)	Node:	An	ndbd	process,	which	stores	a	replica	—that	is,	a	copy	of
the	partition	(see	below)	assigned	to	the	node	group	of	which	the	node	is	a
member.

Each	data	node	should	be	located	on	a	separate	computer.	While	it	is	also
possible	to	host	multiple	ndbd	processes	on	a	single	computer,	such	a
configuration	is	not	supported.

It	is	common	for	the	terms	“node”	and	“data	node”	to	be	used
interchangeably	when	referring	to	an	ndbd	process;	where	mentioned,
management	(MGM)	nodes	(ndb_mgmd	processes)	and	SQL	nodes
(mysqld	processes)	are	specified	as	such	in	this	discussion.

Node	Group:	A	node	group	consists	of	one	or	more	nodes,	and	stores
partitions,	or	sets	of	replicas	(see	next	item).

Note:	Currently,	all	node	groups	in	a	cluster	must	have	the	same	number	of
nodes.

Partition:	This	is	a	portion	of	the	data	stored	by	the	cluster.	There	are	as
many	cluster	partitions	as	nodes	participating	in	the	cluster.	Each	node	is
responsible	for	keeping	at	least	one	copy	of	any	partitions	assigned	to	it
(that	is,	at	least	one	replica)	available	to	the	cluster.

A	replica	belongs	entirely	to	a	single	node;	a	node	can	(and	usually	does)
store	several	replicas.

Replica:	This	is	a	copy	of	a	cluster	partition.	Each	node	in	a	node	group
stores	a	replica.	Also	sometimes	known	as	a	partition	replica.	The	number
of	replicas	is	equal	to	the	number	of	nodes	per	node	group.

The	following	diagram	illustrates	a	MySQL	Cluster	with	four	data	nodes,
arranged	in	two	node	groups	of	two	nodes	each;	nodes	1	and	2	belong	to	node
group	0,	and	nodes	3	and	4	belong	to	node	group	1.	Note	that	only	data	(ndbd)
nodes	are	shown	here;	although	a	working	cluster	requires	an	ndb_mgm	process
for	cluster	management	and	at	least	one	SQL	node	to	access	the	data	stored	by
the	cluster,	these	have	been	omitted	in	the	figure	for	clarity.

The	data	stored	by	the	cluster	is	divided	into	four	partitions,	numbered	0,	1,	2,
and	3.	Each	partition	is	stored	—	in	multiple	copies	—	on	the	same	node	group.
Partitions	are	stored	on	alternate	node	groups:	Partition	2	is	stored	on	.

Partition	0	is	stored	on	node	group	0;	a	primary	replica	(primary	copy)	is
stored	on	node	1,	and	a	backup	replica	(backup	copy	of	the	partition)	is
stored	on	node	2.

Partition	1	is	stored	on	the	other	node	group	(node	group	1);	this	partition's

primary	replica	is	on	node	3,	and	its	backup	replica	is	on	node	4.

Partition	2	is	stored	on	node	group	0.	However,	the	placing	of	its	two
replicas	is	reversed	from	that	of	Partition	0;	for	Partition	2,	the	primary
replica	is	stored	on	node	2,	and	the	backup	on	node	1.

Partition	3	is	stored	on	node	group	1,	and	the	placement	of	its	two	replicas
are	reversed	from	those	of	partition	1.	That	is,	its	primary	replica	is	located
on	node	4,	with	the	backup	on	node	3.

What	this	means	regarding	the	continued	operation	of	a	MySQL	Cluster	is	this:
so	long	as	each	node	group	participating	in	the	cluster	has	at	least	one	node
operating,	the	cluster	has	a	complete	copy	of	all	data	and	remains	viable.	This	is
illustrated	in	the	next	diagram.

In	this	example,	where	the	cluster	consists	of	two	node	groups	of	two	nodes
each,	any	combination	of	at	least	one	node	in	node	group	0	and	at	least	one	node
in	node	group	1	is	sufficient	to	keep	the	cluster	“alive”	(indicated	by	arrows	in
the	diagram).	However,	if	both	nodes	from	either	node	group	fail,	the	remaining
two	nodes	are	not	sufficient	(shown	by	the	arrows	marked	out	with	an	X);	in
either	case,	the	cluster	has	lost	an	entire	partition	and	so	can	no	longer	provide

access	to	a	complete	set	of	all	cluster	data.

15.3.	Simple	Multi-Computer	How-To

This	section	is	a	“How-To”	that	describes	the	basics	for	how	to	plan,	install,
configure,	and	run	a	MySQL	Cluster.	Whereas	the	examples	in	Section	15.4,
“MySQL	Cluster	Configuration”	provide	more	in-depth	information	on	a	variety
of	clustering	options	and	configuration,	the	result	of	following	the	guidelines	and
procedures	outlined	here	should	be	a	usable	MySQL	Cluster	which	meets	the
minimum	requirements	for	availability	and	safeguarding	of	data.

This	section	covers	hardware	and	software	requirements;	networking	issues;
installation	of	MySQL	Cluster;	configuration	issues;	starting,	stopping,	and
restarting	the	cluster;	loading	of	a	sample	database;	and	performing	queries.

Basic	Assumptions

This	How-To	makes	the	following	assumptions:

1.	 The	cluster	setup	has	four	nodes,	each	on	a	separate	host,	and	each	with	a
fixed	network	address	on	a	typical	Ethernet	as	shown	here:

Node IP	Address
Management	(MGM)	node 192.168.0.10
MySQL	server	(SQL)	node 192.168.0.20
Data	(NDBD)	node	"A" 192.168.0.30
Data	(NDBD)	node	"B" 192.168.0.40

This	may	be	made	clearer	in	the	following	diagram:

Note:	In	the	interest	of	simplicity	(and	reliability),	this	How-To	uses	only
numeric	IP	addresses.	However,	if	DNS	resolution	is	available	on	your
network,	it	is	possible	to	use	hostnames	in	lieu	of	IP	addresses	in
configuring	Cluster.	Alternatively,	you	can	use	the	/etc/hosts	file	or	your
operating	system's	equivalent	for	providing	a	means	to	do	host	lookup	if
such	is	available.

2.	 Each	host	in	our	scenario	is	an	Intel-based	desktop	PC	running	a	common,
generic	Linux	distribution	installed	to	disk	in	a	standard	configuration,	and
running	no	unnecessary	services.	The	core	OS	with	standard	TCP/IP
networking	capabilities	should	be	sufficient.	Also	for	the	sake	of	simplicity,
we	also	assume	that	the	filesystems	on	all	hosts	are	set	up	identically.	In	the
event	that	they	are	not,	you	will	need	to	adapt	these	instructions
accordingly.

3.	 Standard	100	Mbps	or	1	gigabit	Ethernet	cards	are	installed	on	each
machine,	along	with	the	proper	drivers	for	the	cards,	and	that	all	four	hosts
are	connected	via	a	standard-issue	Ethernet	networking	appliance	such	as	a
switch.	(All	machines	should	use	network	cards	with	the	same	throughout.
That	is,	all	four	machines	in	the	cluster	should	have	100	Mbps	cards	or	all
four	machines	should	have	1	Gbps	cards.)	MySQL	Cluster	will	work	in	a

100	Mbps	network;	however,	gigabit	Ethernet	will	provide	better
performance.

Note	that	MySQL	Cluster	is	not	intended	for	use	in	a	network	for	which
throughput	is	less	than	100	Mbps.	For	this	reason	(among	others),
attempting	to	run	a	MySQL	Cluster	over	a	public	network	such	as	the
Internet	is	not	likely	to	be	successful,	and	is	not	recommended.

4.	 For	our	sample	data,	we	will	use	the	world	database	which	is	available	for
download	from	the	MySQL	AB	Web	site.	As	this	database	takes	up	a
relatively	small	amount	of	space,	we	assume	that	each	machine	has	256MB
RAM,	which	should	be	sufficient	for	running	the	operating	system,	host
NDB	process,	and	(for	the	data	nodes)	for	storing	the	database.

Although	we	refer	to	a	Linux	operating	system	in	this	How-To,	the	instructions
and	procedures	that	we	provide	here	should	be	easily	adaptable	to	either	Solaris
or	Mac	OS	X.	We	also	assume	that	you	already	know	how	to	perform	a	minimal
installation	and	configuration	of	the	operating	system	with	networking
capability,	or	that	you	are	able	to	obtain	assistance	in	this	elsewhere	if	needed.

We	discuss	MySQL	Cluster	hardware,	software,	and	networking	requirements	in
somewhat	greater	detail	in	the	next	section.	(See	Section	15.3.1,	“Hardware,
Software,	and	Networking”.)

15.3.1.	Hardware,	Software,	and	Networking

One	of	the	strengths	of	MySQL	Cluster	is	that	it	can	be	run	on	commodity
hardware	and	has	no	unusual	requirements	in	this	regard,	other	than	for	large
amounts	of	RAM,	due	to	the	fact	that	all	live	data	storage	is	done	in	memory.
(Note	that	this	is	subject	to	change,	and	that	we	intend	to	implement	disk-based
storage	in	a	future	MySQL	Cluster	release.)	Naturally,	multiple	and	faster	CPUs
will	enhance	performance.	Memory	requirements	for	Cluster	processes	are
relatively	small.

The	software	requirements	for	Cluster	are	also	modest.	Host	operating	systems
do	not	require	any	unusual	modules,	services,	applications,	or	configuration	to
support	MySQL	Cluster.	For	Mac	OS	X	or	Solaris,	the	standard	installation	is
sufficient.	For	Linux,	a	standard,	“out	of	the	box”	installation	should	be	all	that
is	necessary.	The	MySQL	software	requirements	are	simple:	all	that	is	needed	is

a	production	release	of	MySQL-max	5.0;	you	must	use	the	-max	version	of
MySQL	to	have	Cluster	support.	(See	Section	5.3,	“The	mysqld-max	Extended
MySQL	Server”.)	It	is	not	necessary	to	compile	MySQL	yourself	merely	to	be
able	to	use	Cluster.	In	this	How-To,	we	assume	that	you	are	using	the	-max
binary	appropriate	to	your	Linux,	Solaris,	or	Mac	OS	X	operating	system,
available	via	the	MySQL	software	downloads	page	at
http://dev.mysql.com/downloads/.

For	inter-node	communication,	Cluster	supports	TCP/IP	networking	in	any
standard	topology,	and	the	minimum	expected	for	each	host	is	a	standard	100
Mbps	Ethernet	card,	plus	a	switch,	hub,	or	router	to	provide	network
connectivity	for	the	cluster	as	a	whole.	We	strongly	recommend	that	a	MySQL
Cluster	be	run	on	its	own	subnet	which	is	not	shared	with	non-Cluster	machines
for	the	following	reasons:

Security:	Communications	between	Cluster	nodes	are	not	encrypted	or
shielded	in	any	way.	The	only	means	of	protecting	transmissions	within	a
MySQL	Cluster	is	to	run	your	Cluster	on	a	protected	network.	If	you	intend
to	use	MySQL	Cluster	for	Web	applications,	the	cluster	should	definitely
reside	behind	your	firewall	and	not	in	your	network's	De-Militarized	Zone
(DMZ)	or	elsewhere.

Efficiency:	Setting	up	a	MySQL	Cluster	on	a	private	or	protected	network
allows	the	cluster	to	make	exclusive	use	of	bandwidth	between	cluster
hosts.	Using	a	separate	switch	for	your	MySQL	Cluster	not	only	helps
protect	against	unauthorized	access	to	Cluster	data,	it	also	ensures	that
Cluster	nodes	are	shielded	from	interference	caused	by	transmissions
between	other	computers	on	the	network.	For	enhanced	reliability,	you	can
use	dual	switches	and	dual	cards	to	remove	the	network	as	a	single	point	of
failure;	many	device	drivers	support	failover	for	such	communication	links.

It	is	also	possible	to	use	the	high-speed	Scalable	Coherent	Interface	(SCI)	with
MySQL	Cluster,	but	this	is	not	a	requirement.	See	Section	15.9,	“Using	High-
Speed	Interconnects	with	MySQL	Cluster”,	for	more	about	this	protocol	and	its
use	with	MySQL	Cluster.

15.3.2.	Multi-Computer	Installation

Each	MySQL	Cluster	host	computer	running	data	or	SQL	nodes	must	have

http://dev.mysql.com/downloads/
http://compnetworking.about.com/cs/networksecurity/g/bldef_dmz.htm

installed	on	it	a	MySQL-max	binary.	For	management	nodes,	it	is	not	necessary
to	install	the	MySQL	server	binary,	but	you	do	have	to	install	the	MGM	server
daemon	and	client	binaries	(ndb_mgmd	and	ndb_mgm,	respectively).	This
section	covers	the	steps	necessary	to	install	the	correct	binaries	for	each	type	of
Cluster	node.

MySQL	AB	provides	precompiled	binaries	that	support	Cluster,	and	there	is
generally	no	need	to	compile	these	yourself.	Therefore,	the	first	step	in	the
installation	process	for	each	cluster	host	is	to	download	the	file	mysql-max-
5.0.25-pc-linux-gnu-i686.tar.gz	from	the	MySQL	downloads	area.	We
assume	that	you	have	placed	it	in	each	machine's	/var/tmp	directory.	(If	you	do
require	a	custom	binary,	see	Section	2.9.3,	“Installing	from	the	Development
Source	Tree”.)

RPMs	are	also	available	for	both	32-bit	and	64-bit	Linux	platforms;	as	of
MySQL	4.1.10a,	the	-max	binaries	installed	by	the	RPMs	support	the
NDBCluster	storage	engine.	If	you	choose	to	use	these	rather	than	the	binary
files,	be	aware	that	you	must	install	both	the	-server	and	-max	packages	on	all
machines	that	are	to	host	cluster	nodes.	(See	Section	2.4,	“Installing	MySQL	on
Linux”,	for	more	information	about	installing	MySQL	using	the	RPMs.)	After
installing	from	RPM,	you	will	still	need	to	configure	the	cluster	as	discussed	in
Section	15.3.3,	“Multi-Computer	Configuration”.

Note:	After	completing	the	installation,	do	not	yet	start	any	of	the	binaries.	We
will	show	you	how	to	do	so	following	the	configuration	of	all	nodes.

Storage	and	SQL	Node	Installation

On	each	of	the	three	machines	designated	to	host	storage	or	SQL	nodes,	perform
the	following	steps	as	the	system	root	user:

1.	 Check	your	/etc/passwd	and	/etc/group	files	(or	use	whatever	tools	are
provided	by	your	operating	system	for	manging	users	and	groups)	to	see
whether	there	is	already	a	mysql	group	and	mysql	user	on	the	system.	Some
OS	distributions	create	these	as	part	of	the	operating	system	installation
process.	If	they	are	not	already	present,	create	a	new	mysql	user	group,	and
then	add	a	mysql	user	to	this	group:

shell>	groupadd	mysql

shell>	useradd	-g	mysql	mysql

http://dev.mysql.com/downloads/

The	syntax	for	useradd	and	groupadd	may	differ	slightly	on	different
versions	of	Unix,	or	they	may	have	different	names	such	as	adduser	and
addgroup.

2.	 Change	location	to	the	directory	containing	the	downloaded	file,	unpack	the
archive,	and	create	a	symlink	to	the	mysql-max	directory	named	mysql.
Note	that	the	actual	file	and	directory	names	will	vary	according	to	the
MySQL	version	number.

shell>	cd	/var/tmp

shell>	tar	-xzvf	-C	/usr/local	mysql-max-5.0.25-pc-linux-gnu-i686.tar.gz

shell>	ln	-s	/usr/local/mysql-max-5.0.25-pc-linux-gnu-i686	/usr/local/mysql

3.	 Change	location	to	the	mysql	directory	and	run	the	supplied	script	for
creating	the	system	databases:

shell>	cd	mysql

shell>	scripts/mysql_install_db	--user=mysql

4.	 Set	the	necessary	permissions	for	the	MySQL	server	and	data	directories:

shell>	chown	-R	root	.

shell>	chown	-R	mysql	data

shell>	chgrp	-R	mysql	.

Note	that	the	data	directory	on	each	machine	hosting	a	data	node	is
/usr/local/mysql/data.	We	will	use	this	piece	of	information	when	we
configure	the	management	node.	(See	Section	15.3.3,	“Multi-Computer
Configuration”.)

5.	 Copy	the	MySQL	startup	script	to	the	appropriate	directory,	make	it
executable,	and	set	it	to	start	when	the	operating	system	is	booted	up:

shell>	cp	support-files/mysql.server	/etc/rc.d/init.d/

shell>	chmod	+x	/etc/rc.d/init.d/mysql.server

shell>	chkconfig	--add	mysql.server

(The	startup	scripts	directory	may	vary	depending	on	your	operating	system
and	version	—	for	example,	in	some	Linux	distributions,	it	is
/etc/init.d.)

Here	we	use	Red	Hat's	chkconfig	for	creating	links	to	the	startup	scripts;

use	whatever	means	is	appropriate	for	this	purpose	on	your	operating
system	and	distribution,	such	as	update-rc.d	on	Debian.

Remember	that	the	preceding	steps	must	be	performed	separately	for	each
machine	on	which	a	storage	or	SQL	node	is	to	reside.

Management	Node	Installation

Installation	for	the	management	(MGM)	node	does	not	require	installation	of	the
mysqld	binary.	Only	the	binaries	for	the	MGM	server	and	client	are	required,
which	can	be	found	in	the	downloaded	archive.	Again,	we	assume	that	you	have
placed	this	file	in	/var/tmp.

As	system	root	(that	is,	after	using	sudo,	su	root,	or	your	system's	equivalent
for	temporarily	assuming	the	system	administrator	account's	privileges),	perform
the	following	steps	to	install	ndb_mgmd	and	ndb_mgm	on	the	Cluster
management	node	host:

1.	 Change	location	to	the	/var/tmp	directory,	and	extract	the	ndb_mgm	and
ndb_mgmd	from	the	archive	into	a	suitable	directory	such	as
/usr/local/bin:

shell>	cd	/var/tmp

shell>	tar	-zxvf	mysql-5.0.25-pc-linux-gnu-i686.tar.gz

shell>	cd	mysql-5.0.25-pc-linux-gnu-i686

shell>	cp	/bin/ndb_mgm*	/usr/local/bin

(You	can	safely	delete	the	directory	created	by	unpacking	the	downloaded
archive,	and	the	files	it	contains,	from	/var/tmp	once	ndb_mgm	and
ndb_mgmd	have	been	copied	to	the	executables	directory.)

2.	 Change	location	to	the	directory	into	which	you	copied	the	files,	and	then
make	both	of	them	executable:

shell>	cd	/usr/local/bin

shell>	chmod	+x	ndb_mgm*

In	Section	15.3.3,	“Multi-Computer	Configuration”,	we	will	create	and	write
configuration	files	for	all	of	the	nodes	in	our	example	Cluster.

15.3.3.	Multi-Computer	Configuration

For	our	four-node,	four-host	MySQL	Cluster,	we	will	need	to	write	four
configuration	files,	one	per	node/host.

Each	data	node	or	SQL	node	requires	a	my.cnf	file	that	provides	two	pieces
of	information:	a	connectstring	telling	the	node	where	to	find	the	MGM
node,	and	a	line	telling	the	MySQL	server	on	this	host	(the	machine	hosting
the	data	node)	to	run	in	NDB	mode.

For	more	information	on	connectstrings,	see	Section	15.4.4.2,	“The	Cluster
connectstring”.

The	management	node	needs	a	config.ini	file	telling	it	how	many	replicas
to	maintain,	how	much	memory	to	allocate	for	data	and	indexes	on	each
data	node,	where	to	find	the	data	nodes,	where	to	save	data	to	disk	on	each
data	node,	and	where	to	find	any	SQL	nodes.

Configuring	the	Storage	and	SQL	Nodes

The	my.cnf	file	needed	for	the	data	nodes	is	fairly	simple.	The	configuration	file
should	be	located	in	the	/etc	directory	and	can	be	edited	using	any	text	editor.
(Create	the	file	if	it	does	not	exist.)	For	example:

shell>	vi	/etc/my.cnf

We	show	vi	being	used	here	to	create	the	file,	but	any	text	editor	should	work
just	as	well.

For	each	data	node	and	SQL	node	in	our	example	setup,	my.cnf	should	look	like
this:

#	Options	for	mysqld	process:

[MYSQLD]																								

ndbcluster																						#	run	NDB	engine

ndb-connectstring=192.168.0.10		#	location	of	MGM	node

#	Options	for	ndbd	process:

[MYSQL_CLUSTER]																	

ndb-connectstring=192.168.0.10		#	location	of	MGM	node

After	entering	the	preceding	information,	save	this	file	and	exit	the	text	editor.
Do	this	for	the	machines	hosting	data	node	“A”,	data	node	“B”,	and	the	SQL
node.

Important:	Once	you	have	started	a	mysqld	process	with	the	ndbcluster	and
ndb-connectstring	parameters	in	the	[MYSQLD]	in	the	my.cnf	file	as	shown
previously,	you	cannot	execute	any	CREATE	TABLE	or	ALTER	TABLE	statements
without	having	actually	started	the	cluster.	Otherwise,	these	statements	will	fail
with	an	error.	This	is	by	design.

Configuring	the	Management	Node

The	first	step	in	configuring	the	MGM	node	is	to	create	the	directory	in	which
the	configuration	file	can	be	found	and	then	to	create	the	file	itself.	For	example
(running	as	root):

shell>	mkdir	/var/lib/mysql-cluster

shell>	cd	/var/lib/mysql-cluster

shell>	vi	config.ini

For	our	representative	setup,	the	config.ini	file	should	read	as	follows:

#	Options	affecting	ndbd	processes	on	all	data	nodes:

[NDBD	DEFAULT]				

NoOfReplicas=2				#	Number	of	replicas

DataMemory=80M				#	How	much	memory	to	allocate	for	data	storage

IndexMemory=18M			#	How	much	memory	to	allocate	for	index	storage

																		#	For	DataMemory	and	IndexMemory,	we	have	used	the

																		#	default	values.	Since	the	"world"	database	takes	up

																		#	only	about	500KB,	this	should	be	more	than	enough	for

																		#	this	example	Cluster	setup.

#	TCP/IP	options:

[TCP	DEFAULT]					

portnumber=2202			#	This	the	default;	however,	you	can	use	any

																		#	port	that	is	free	for	all	the	hosts	in	cluster

																		#	Note:	It	is	recommended	beginning	with	MySQL	5.0	that

																		#	you	do	not	specify	the	portnumber	at	all	and	simply	allow

																		#	the	default	value	to	be	used	instead

#	Management	process	options:

[NDB_MGMD]																						

hostname=192.168.0.10											#	Hostname	or	IP	address	of	MGM	node

datadir=/var/lib/mysql-cluster		#	Directory	for	MGM	node	logfiles

#	Options	for	data	node	"A":

[NDBD]																										

																																#	(one	[NDBD]	section	per	data	node)

hostname=192.168.0.30											#	Hostname	or	IP	address

datadir=/usr/local/mysql/data			#	Directory	for	this	data	node's	datafiles

#	Options	for	data	node	"B":

[NDBD]																										

hostname=192.168.0.40											#	Hostname	or	IP	address

datadir=/usr/local/mysql/data			#	Directory	for	this	data	node's	datafiles

#	SQL	node	options:

[MYSQLD]																								

hostname=192.168.0.20											#	Hostname	or	IP	address

																																#	(additional	mysqld	connections	can	be

																																#	specified	for	this	node	for	various

																																#	purposes	such	as	running	ndb_restore)

(Note:	The	world	database	can	be	downloaded	from	http://dev.mysql.com/doc/,
where	it	can	be	found	listed	under	“Examples.”)

After	all	the	configuration	files	have	been	created	and	these	minimal	options
have	been	specified,	you	are	ready	to	proceed	with	starting	the	cluster	and
verifying	that	all	processes	are	running.	We	discuss	how	this	is	done	in
Section	15.3.4,	“Initial	Startup”.

For	more	detailed	information	about	the	available	MySQL	Cluster	configuration
parameters	and	their	uses,	see	Section	15.4.4,	“Configuration	File”,	and
Section	15.4,	“MySQL	Cluster	Configuration”.	For	configuration	of	MySQL
Cluster	as	relates	to	making	backups,	see	Section	15.8.4,	“Configuration	for
Cluster	Backup”.

Note:	The	default	port	for	Cluster	management	nodes	is	1186;	the	default	port
for	data	nodes	is	2202.	Beginning	with	MySQL	5.0.3,	this	restriction	is	lifted,
and	the	cluster	automatically	allocates	ports	for	data	nodes	from	those	that	are
already	free.

15.3.4.	Initial	Startup

Starting	the	cluster	is	not	very	difficult	after	it	has	been	configured.	Each	cluster
node	process	must	be	started	separately,	and	on	the	host	where	it	resides.
Although	it	is	possible	to	start	the	nodes	in	any	order,	it	is	recommended	that	the
management	node	be	started	first,	followed	by	the	storage	nodes,	and	then
finally	by	any	SQL	nodes:

1.	 On	the	management	host,	issue	the	following	command	from	the	system
shell	to	start	the	MGM	node	process:

http://dev.mysql.com/doc/

shell>	ndb_mgmd	-f	/var/lib/mysql-cluster/config.ini

Note	that	ndb_mgmd	must	be	told	where	to	find	its	configuration	file,
using	the	-f	or	--config-file	option.	(See	Section	15.6.3,	“ndb_mgmd,
the	Management	Server	Process”,	for	details.)

2.	 On	each	of	the	data	node	hosts,	run	this	command	to	start	the	ndbd	process
for	the	first	time:

shell>	ndbd	--initial

Note	that	it	is	very	important	to	use	the	--initial	parameter	only	when
starting	ndbd	for	the	first	time,	or	when	restarting	after	a	backup/restore
operation	or	a	configuration	change.	This	is	because	the	--initial	option
causes	the	node	to	delete	any	files	created	by	earlier	ndbd	instances	that	are
needed	for	recovery,	including	the	recovery	log	files.

3.	 If	you	used	RPM	files	to	install	MySQL	on	the	cluster	host	where	the	SQL
node	is	to	reside,	you	can	(and	should)	use	the	startup	script	installed	in
/etc/init.d	to	start	the	MySQL	server	process	on	the	SQL	node.	Note	that
you	need	to	install	the	-max	server	RPM	in	addition	to	the	Standard	server
RPM	to	run	the	-max	server	binary.

If	all	has	gone	well,	and	the	cluster	has	been	set	up	correctly,	the	cluster	should
now	be	operational.	You	can	test	this	by	invoking	the	ndb_mgm	management
node	client.	The	output	should	look	like	that	shown	here,	although	you	might	see
some	slight	differences	in	the	output	depending	upon	the	exact	version	of
MySQL	that	you	are	using:

shell>	ndb_mgm

--	NDB	Cluster	--	Management	Client	--

ndb_mgm>	SHOW

Connected	to	Management	Server	at:	localhost:1186

Cluster	Configuration

[ndbd(NDB)]					2	node(s)

id=2				@192.168.0.30		(Version:	5.0.25,	Nodegroup:	0,	Master)

id=3				@192.168.0.40		(Version:	5.0.25,	Nodegroup:	0)

[ndb_mgmd(MGM)]	1	node(s)

id=1				@192.168.0.10		(Version:	5.0.25)

[mysqld(SQL)]			1	node(s)

id=4			(Version:	5.0.25)

Note:	If	you	are	using	an	older	version	of	MySQL,	you	may	see	the	SQL	node
referenced	as	[mysqld(API)].	This	reflects	an	older	usage	that	is	now
deprecated.

You	should	now	be	ready	to	work	with	databases,	tables,	and	data	in	MySQL
Cluster.	See	Section	15.3.5,	“Loading	Sample	Data	and	Performing	Queries”,	for
a	brief	discussion.

15.3.5.	Loading	Sample	Data	and	Performing	Queries

Working	with	data	in	MySQL	Cluster	is	not	much	different	from	doing	so	in
MySQL	without	Cluster.	There	are	two	points	to	keep	in	mind:

For	a	table	to	be	replicated	in	the	cluster,	it	must	use	the	NDB	Cluster
storage	engine.	To	specify	this,	use	the	ENGINE=NDB	or	ENGINE=NDBCLUSTER
table	option.	You	can	add	this	option	when	creating	the	table:

CREATE	TABLE	tbl_name	(...)	ENGINE=NDBCLUSTER;

Alternatively,	for	an	existing	table	that	uses	a	different	storage	engine,	use
ALTER	TABLE	to	change	the	table	to	use	NDB	Cluster:

ALTER	TABLE	tbl_name	ENGINE=NDBCLUSTER;

Each	NDB	table	must	have	a	primary	key.	If	no	primary	key	is	defined	by	the
user	when	a	table	is	created,	the	NDB	Cluster	storage	engine	automatically
generates	a	hidden	one.	(Note:	This	hidden	key	takes	up	space	just	as	does
any	other	table	index.	It	is	not	uncommon	to	encounter	problems	due	to
insufficient	memory	for	accommodating	these	automatically	created
indexes.)

If	you	are	importing	tables	from	an	existing	database	using	the	output	of
mysqldump,	you	can	open	the	SQL	script	in	a	text	editor	and	add	the	ENGINE
option	to	any	table	creation	statements,	or	replace	any	existing	ENGINE	(or	TYPE)
options.	Suppose	that	you	have	the	world	sample	database	on	another	MySQL
server	that	does	not	support	MySQL	Cluster,	and	you	want	to	export	the	City
table:

shell>	mysqldump	--add-drop-table	world	City	>	city_table.sql

The	resulting	city_table.sql	file	will	contain	this	table	creation	statement	(and
the	INSERT	statements	necessary	to	import	the	table	data):

DROP	TABLE	IF	EXISTS	`City`;

CREATE	TABLE	`City`	(

		`ID`	int(11)	NOT	NULL	auto_increment,

		`Name`	char(35)	NOT	NULL	default	'',

		`CountryCode`	char(3)	NOT	NULL	default	'',

		`District`	char(20)	NOT	NULL	default	'',

		`Population`	int(11)	NOT	NULL	default	'0',

		PRIMARY	KEY		(`ID`)

)	ENGINE=MyISAM	DEFAULT	CHARSET=latin1;

INSERT	INTO	`City`	VALUES	(1,'Kabul','AFG','Kabol',1780000);

INSERT	INTO	`City`	VALUES	(2,'Qandahar','AFG','Qandahar',237500);

INSERT	INTO	`City`	VALUES	(3,'Herat','AFG','Herat',186800);

(remaining	INSERT	statements	omitted)

You	will	need	to	make	sure	that	MySQL	uses	the	NDB	storage	engine	for	this
table.	There	are	two	ways	that	this	can	be	accomplished.	One	of	these	is	to
modify	the	table	definition	before	importing	it	into	the	Cluster	database.	Using
the	City	table	as	an	example,	modify	the	ENGINE	option	of	the	definition	as
follows:

DROP	TABLE	IF	EXISTS	`City`;

CREATE	TABLE	`City`	(

		`ID`	int(11)	NOT	NULL	auto_increment,

		`Name`	char(35)	NOT	NULL	default	'',

		`CountryCode`	char(3)	NOT	NULL	default	'',

		`District`	char(20)	NOT	NULL	default	'',

		`Population`	int(11)	NOT	NULL	default	'0',

		PRIMARY	KEY		(`ID`)

)	ENGINE=NDBCLUSTER	DEFAULT	CHARSET=latin1;

INSERT	INTO	`City`	VALUES	(1,'Kabul','AFG','Kabol',1780000);

INSERT	INTO	`City`	VALUES	(2,'Qandahar','AFG','Qandahar',237500);

INSERT	INTO	`City`	VALUES	(3,'Herat','AFG','Herat',186800);

(remaining	INSERT	statements	omitted)

This	must	be	done	for	the	definition	of	each	table	that	is	to	be	part	of	the
clustered	database.	The	easiest	way	to	accomplish	this	is	to	do	a	search-and-
replace	on	the	file	that	contains	the	definitions	and	replace	all	instances	of
TYPE=engine_name	or	ENGINE=engine_name	with	ENGINE=NDBCLUSTER.	If	you	do
not	want	to	modify	the	file,	you	can	use	the	unmodified	file	to	create	the	tables,
and	then	use	ALTER	TABLE	to	change	their	storage	engine.	The	particulars	are

given	later	in	this	section.

Assuming	that	you	have	already	created	a	database	named	world	on	the	SQL
node	of	the	cluster,	you	can	then	use	the	mysql	command-line	client	to	read
city_table.sql,	and	create	and	populate	the	corresponding	table	in	the	usual
manner:

shell>	mysql	world	<	city_table.sql

It	is	very	important	to	keep	in	mind	that	the	preceding	command	must	be
executed	on	the	host	where	the	SQL	node	is	running	(in	this	case,	on	the
machine	with	the	IP	address	192.168.0.20).

To	create	a	copy	of	the	entire	world	database	on	the	SQL	node,	use	mysqldump
on	the	non-cluster	server	to	export	the	database	to	a	file	named	world.sql;	for
example,	in	the	/tmp	directory.	Then	modify	the	table	definitions	as	just
described	and	import	the	file	into	the	SQL	node	of	the	cluster	like	this:

shell>	mysql	world	<	/tmp/world.sql

If	you	save	the	file	to	a	different	location,	adjust	the	preceding	instructions
accordingly.

It	is	important	to	note	that	NDB	Cluster	in	MySQL	5.0	does	not	support
autodiscovery	of	databases.	(See	Section	15.10,	“Known	Limitations	of	MySQL
Cluster”.)	This	means	that,	once	the	world	database	and	its	tables	have	been
created	on	one	data	node,	you	need	to	issue	the	CREATE	SCHEMA	world	statement
(beginning	with	MySQL	5.0.2,	you	may	use	CREATE	SCHEMA	world	instead),
followed	by	FLUSH	TABLES	on	each	SQL	node	in	the	cluster.	This	causes	the
node	to	recognize	the	database	and	read	its	table	definitions.

Running	SELECT	queries	on	the	SQL	node	is	no	different	from	running	them	on
any	other	instance	of	a	MySQL	server.	To	run	queries	from	the	command	line,
you	first	need	to	log	in	to	the	MySQL	Monitor	in	the	usual	way	(specify	the	root
password	at	the	Enter	password:	prompt):

shell>	mysql	-u	root	-p

Enter	password:

Welcome	to	the	MySQL	monitor.		Commands	end	with	;	or	\g.

Your	MySQL	connection	id	is	1	to	server	version:	5.0.25

Type	'help;'	or	'\h'	for	help.	Type	'\c'	to	clear	the	buffer.

mysql>

We	simply	use	the	MySQL	server's	root	account	and	assume	that	you	have
followed	the	standard	security	precautions	for	installing	a	MySQL	server,
including	setting	a	strong	root	password.	For	more	information,	see
Section	2.10.3,	“Securing	the	Initial	MySQL	Accounts”.

It	is	worth	taking	into	account	that	Cluster	nodes	do	not	make	use	of	the	MySQL
privilege	system	when	accessing	one	another.	Setting	or	changing	MySQL	user
accounts	(including	the	root	account)	effects	only	applications	that	access	the
SQL	node,	not	interaction	between	nodes.

If	you	did	not	modify	the	ENGINE	clauses	in	the	table	definitions	prior	to
importing	the	SQL	script,	you	should	run	the	following	statements	at	this	point:

mysql>	USE	world;

mysql>	ALTER	TABLE	City	ENGINE=NDBCLUSTER;

mysql>	ALTER	TABLE	Country	ENGINE=NDBCLUSTER;

mysql>	ALTER	TABLE	CountryLanguage	ENGINE=NDBCLUSTER;

Selecting	a	database	and	running	a	SELECT	query	against	a	table	in	that
database	is	also	accomplished	in	the	usual	manner,	as	is	exiting	the	MySQL
Monitor:

mysql>	USE	world;

mysql>	SELECT	Name,	Population	FROM	City	ORDER	BY	Population	DESC	LIMIT	5;

+-----------+------------+

|	Name						|	Population	|

+-----------+------------+

|	Bombay				|			10500000	|

|	Seoul					|				9981619	|

|	São	Paulo	|				9968485	|

|	Shanghai		|				9696300	|

|	Jakarta			|				9604900	|

+-----------+------------+

5	rows	in	set	(0.34	sec)

mysql>	\q

Bye

shell>

Applications	that	use	MySQL	can	employ	standard	APIs	to	access	NDB	tables.
It	is	important	to	remember	that	your	application	must	access	the	SQL	node,	and

not	the	MGM	or	data	nodes.	This	brief	example	shows	how	we	might	execute
the	SELECT	statement	just	shown	by	using	PHP	5's	mysqli	extension	running	on
a	Web	server	elsewhere	on	the	network:

<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	4.01	Transitional//EN"

		"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

		<meta	http-equiv="Content-Type"

								content="text/html;	charset=iso-8859-1">

		<title>SIMPLE	mysqli	SELECT</title>

</head>

<body>

<?php

		#	connect	to	SQL	node:

		$link	=	new	mysqli('192.168.0.20',	'root',	'root_password',	'world');

		#	parameters	for	mysqli	constructor	are:

		#			host,	user,	password,	database

		if(mysqli_connect_errno())

				die("Connect	failed:	"	.	mysqli_connect_error());

		$query	=	"SELECT	Name,	Population

												FROM	City

												ORDER	BY	Population	DESC

												LIMIT	5";

		#	if	no	errors...

		if($result	=	$link->query($query))

		{

?>

<table	border="1"	width="40%"	cellpadding="4"	cellspacing	="1">

		<tbody>

		<tr>

				<th	width="10%">City</th>

				<th>Population</th>

		</tr>

<?

				#	then	display	the	results...

				while($row	=	$result->fetch_object())

						printf(<tr>\n		<td	align=\"center\">%s</td><td>%d</td>\n</tr>\n",

														$row->Name,	$row->Population);

?>

		</tbody

</table>

<?

		#	...and	verify	the	number	of	rows	that	were	retrieved

				printf("<p>Affected	rows:	%d</p>\n",	$link->affected_rows);

		}

		else

				#	otherwise,	tell	us	what	went	wrong

				echo	mysqli_error();

		#	free	the	result	set	and	the	mysqli	connection	object

		$result->close();

		$link->close();

?>

</body>

</html>

We	assume	that	the	process	running	on	the	Web	server	can	reach	the	IP	address
of	the	SQL	node.

In	a	similar	fashion,	you	can	use	the	MySQL	C	API,	Perl-DBI,	Python-mysql,	or
MySQL	AB's	own	Connectors	to	perform	the	tasks	of	data	definition	and
manipulation	just	as	you	would	normally	with	MySQL.

15.3.6.	Safe	Shutdown	and	Restart

To	shut	down	the	cluster,	enter	the	following	command	in	a	shell	on	the	machine
hosting	the	MGM	node:

shell>	ndb_mgm	-e	shutdown

The	-e	option	here	is	used	to	pass	a	command	to	the	ndb_mgm	client	from	the
shell.	See	Section	4.3.1,	“Using	Options	on	the	Command	Line”.	The	command
causes	the	ndb_mgm,	ndb_mgmd,	and	any	ndbd	processes	to	terminate
gracefully.	Any	SQL	nodes	can	be	terminated	using	mysqladmin	shutdown	and
other	means.

To	restart	the	cluster,	run	these	commands:

On	the	management	host	(192.168.0.10	in	our	example	setup):

shell>	ndb_mgmd	-f	/var/lib/mysql-cluster/config.ini

On	each	of	the	data	node	hosts	(192.168.0.30	and	192.168.0.40):

shell>	ndbd

Remember	not	to	invoke	this	command	with	the	--initial	option	when
restarting	an	NDBD	node	normally.

On	the	SQL	host	(192.168.0.20):

shell>	mysqld	&

For	information	on	making	Cluster	backups,	see	Section	15.8.2,	“Using	The
Management	Client	to	Create	a	Backup”.

To	restore	the	cluster	from	backup	requires	the	use	of	the	ndb_restore
command.	This	is	covered	in	Section	15.8.3,	“How	to	Restore	a	Cluster
Backup”.

More	information	on	configuring	MySQL	Cluster	can	be	found	in	Section	15.4,
“MySQL	Cluster	Configuration”.

15.4.	MySQL	Cluster	Configuration

A	MySQL	server	that	is	part	of	a	MySQL	Cluster	differs	in	only	one	respect
from	a	normal	(non-clustered)	MySQL	server,	in	that	it	employs	the	NDB
Cluster	storage	engine.	This	engine	is	also	referred	to	simply	as	NDB,	and	the
two	forms	of	the	name	are	synonymous.

To	avoid	unnecessary	allocation	of	resources,	the	server	is	configured	by	default
with	the	NDB	storage	engine	disabled.	To	enable	NDB,	you	must	modify	the
server's	my.cnf	configuration	file,	or	start	the	server	with	the	--ndbcluster
option.

The	MySQL	server	is	a	part	of	the	cluster,	so	it	also	must	know	how	to	access	an
MGM	node	to	obtain	the	cluster	configuration	data.	The	default	behavior	is	to
look	for	the	MGM	node	on	localhost.	However,	should	you	need	to	specify
that	its	location	is	elsewhere,	this	can	be	done	in	my.cnf	or	on	the	MySQL	server
command	line.	Before	the	NDB	storage	engine	can	be	used,	at	least	one	MGM
node	must	be	operational,	as	well	as	any	desired	data	nodes.

15.4.1.	Building	MySQL	Cluster	from	Source	Code

NDB,	the	Cluster	storage	engine,	is	available	in	binary	distributions	for	Linux,
Mac	OS	X,	and	Solaris.	We	are	working	to	make	Cluster	run	on	all	operating
systems	supported	by	MySQL,	including	Windows.

If	you	choose	to	build	from	a	source	tarball	or	the	MySQL	5.0	BitKeeper	tree,	be
sure	to	use	the	--with-ndbcluster	option	when	running	configure.	You	can
also	use	the	BUILD/compile-pentium-max	build	script.	Note	that	this	script
includes	OpenSSL,	so	you	must	either	have	or	obtain	OpenSSL	to	build
successfully,	or	else	modify	compile-pentium-max	to	exclude	this	requirement.
Of	course,	you	can	also	just	follow	the	standard	instructions	for	compiling	your
own	binaries,	and	then	perform	the	usual	tests	and	installation	procedure.	See
Section	2.9.3,	“Installing	from	the	Development	Source	Tree”.

15.4.2.	Installing	the	Software

In	the	next	few	sections,	we	assume	that	you	are	already	familiar	with	installing

MySQL,	and	here	we	cover	only	the	differences	between	configuring	MySQL
Cluster	and	configuring	MySQL	without	clustering.	(See	Chapter	2,	Installing
and	Upgrading	MySQL,	if	you	require	more	information	about	the	latter.)

You	will	find	Cluster	configuration	easiest	if	you	have	already	have	all
management	and	data	nodes	running	first;	this	is	likely	to	be	the	most	time-
consuming	part	of	the	configuration.	Editing	the	my.cnf	file	is	fairly
straightforward,	and	this	section	will	cover	only	any	differences	from
configuring	MySQL	without	clustering.

15.4.3.	Quick	Test	Setup	of	MySQL	Cluster

To	familiarize	you	with	the	basics,	we	will	describe	the	simplest	possible
configuration	for	a	functional	MySQL	Cluster.	After	this,	you	should	be	able	to
design	your	desired	setup	from	the	information	provided	in	the	other	relevant
sections	of	this	chapter.

First,	you	need	to	create	a	configuration	directory	such	as	/var/lib/mysql-
cluster,	by	executing	the	following	command	as	the	system	root	user:

shell>	mkdir	/var/lib/mysql-cluster

In	this	directory,	create	a	file	named	config.ini	that	contains	the	following
information.	Substitute	appropriate	values	for	HostName	and	DataDir	as
necessary	for	your	system.

#	file	"config.ini"	-	showing	minimal	setup	consisting	of	1	data	node,

#	1	management	server,	and	3	MySQL	servers.

#	The	empty	default	sections	are	not	required,	and	are	shown	only	for

#	the	sake	of	completeness.

#	Data	nodes	must	provide	a	hostname	but	MySQL	Servers	are	not	required

#	to	do	so.

#	If	you	don't	know	the	hostname	for	your	machine,	use	localhost.

#	The	DataDir	parameter	also	has	a	default	value,	but	it	is	recommended	to

#	set	it	explicitly.

#	Note:	DB,	API,	and	MGM	are	aliases	for	NDBD,	MYSQLD,	and	NDB_MGMD

#	respectively.	DB	and	API	are	deprecated	and	should	not	be	used	in	new

#	installations.

[NDBD	DEFAULT]

NoOfReplicas=	1

[MYSQLD	DEFAULT]

[NDB_MGMD	DEFAULT]

[TCP	DEFAULT]

[NDB_MGMD]

HostName=	myhost.example.com

[NDBD]

HostName=	myhost.example.com

DataDir=	/var/lib/mysql-cluster

[MYSQLD]

[MYSQLD]

[MYSQLD]

You	can	now	start	the	ndb_mgmd	management	server.	By	default,	it	atttempts	to
read	the	config.ini	file	in	its	current	working	directory,	so	change	location	into
the	directory	where	the	file	is	located	and	then	invoke	ndb_mgmd:

shell>	cd	/var/lib/mysql-cluster

shell>	ndb_mgmd

Then	start	a	single	data	node	by	running	ndbd.	When	starting	ndbd	for	a	given
data	node	for	the	very	first	time,	you	should	use	the	--initial	option	as	shown
here:

shell>	ndbd	--initial

For	subsequent	ndbd	starts,	you	will	generally	want	to	omit	the	--initial
option:

shell>	ndbd

The	reason	for	omitting	--initial	on	subsequent	restarts	is	that	this	option
causes	ndbd	to	delete	and	re-create	all	existing	data	and	log	files	(as	well	as	all
table	metadata)	for	this	data	node.	One	exception	to	this	rule	about	not	using	--
initial	except	for	the	first	ndbd	invocation	is	that	you	use	it	when	restarting
the	cluster	and	restoring	from	backup	after	adding	new	data	nodes.

By	default,	ndbd	looks	for	the	management	server	at	localhost	on	port	1186.

Note:	If	you	have	installed	MySQL	from	a	binary	tarball,	you	will	need	to
specify	the	path	of	the	ndb_mgmd	and	ndbd	servers	explicitly.	(Normally,	these
will	be	found	in	/usr/local/mysql/bin.)

Finally,	change	location	to	the	MySQL	data	directory	(usually	/var/lib/mysql
or	/usr/local/mysql/data),	and	make	sure	that	the	my.cnf	file	contains	the
option	necessary	to	enable	the	NDB	storage	engine:

[mysqld]

ndbcluster

You	can	now	start	the	MySQL	server	as	usual:

shell>	mysqld_safe	--user=mysql	&

Wait	a	moment	to	make	sure	the	MySQL	server	is	running	properly.	If	you	see
the	notice	mysql	ended,	check	the	server's	.err	file	to	find	out	what	went
wrong.

If	all	has	gone	well	so	far,	you	now	can	start	using	the	cluster.	Connect	to	the
server	and	verify	that	the	NDBCLUSTER	storage	engine	is	enabled:

shell>	mysql

Welcome	to	the	MySQL	monitor.		Commands	end	with	;	or	\g.

Your	MySQL	connection	id	is	1	to	server	version:	5.0.25-Max

Type	'help;'	or	'\h'	for	help.	Type	'\c'	to	clear	the	buffer.

mysql>	SHOW	ENGINES\G

...

***************************	12.	row	***************************

Engine:	NDBCLUSTER

Support:	YES

Comment:	Clustered,	fault-tolerant,	memory-based	tables

***************************	13.	row	***************************

Engine:	NDB

Support:	YES

Comment:	Alias	for	NDBCLUSTER

...

The	row	numbers	shown	in	the	preceding	example	output	may	be	different	from
those	shown	on	your	system,	depending	upon	how	your	server	is	configured.

Try	to	create	an	NDBCLUSTER	table:

shell>	mysql

mysql>	USE	test;

Database	changed

mysql>	CREATE	TABLE	ctest	(i	INT)	ENGINE=NDBCLUSTER;

Query	OK,	0	rows	affected	(0.09	sec)

mysql>	SHOW	CREATE	TABLE	ctest	\G

***************************	1.	row	***************************

							Table:	ctest

Create	Table:	CREATE	TABLE	`ctest`	(

		`i`	int(11)	default	NULL

)	ENGINE=ndbcluster	DEFAULT	CHARSET=latin1

1	row	in	set	(0.00	sec)

To	check	that	your	nodes	were	set	up	properly,	start	the	management	client:

shell>	ndb_mgm

Use	the	SHOW	command	from	within	the	management	client	to	obtain	a	report
on	the	cluster's	status:

NDB>	SHOW

Cluster	Configuration

[ndbd(NDB)]					1	node(s)

id=2				@127.0.0.1		(Version:	3.5.3,	Nodegroup:	0,	Master)

[ndb_mgmd(MGM)]	1	node(s)

id=1				@127.0.0.1		(Version:	3.5.3)

[mysqld(API)]			3	node(s)

id=3				@127.0.0.1		(Version:	3.5.3)

id=4	(not	connected,	accepting	connect	from	any	host)

id=5	(not	connected,	accepting	connect	from	any	host)

At	this	point,	you	have	successfully	set	up	a	working	MySQL	Cluster.	You	can
now	store	data	in	the	cluster	by	using	any	table	created	with	ENGINE=NDBCLUSTER
or	its	alias	ENGINE=NDB.

15.4.4.	Configuration	File

Configuring	MySQL	Cluster	requires	working	with	two	files:

my.cnf:	Specifies	options	for	all	MySQL	Cluster	executables.	This	file,
with	which	you	should	be	familiar	with	from	previous	work	with	MySQL,
must	be	accessible	by	each	executable	running	in	the	cluster.

config.ini:	This	file	is	read	only	by	the	MySQL	Cluster	management

server,	which	then	distributes	the	information	contained	therein	to	all
processes	participating	in	the	cluster.	config.ini	contains	a	description	of
each	node	involved	in	the	cluster.	This	includes	configuration	parameters
for	data	nodes	and	configuration	parameters	for	connections	between	all
nodes	in	the	cluster.	For	a	quick	reference	to	the	sections	that	can	appear	in
this	file,	and	what	sorts	of	configuration	parameters	may	be	placed	in	each
section,	see	Sections	of	the	config.ini	File.

We	are	continuously	making	improvements	in	Cluster	configuration	and
attempting	to	simplify	this	process.	Although	we	strive	to	maintain	backward
compatibility,	there	may	be	times	when	introduce	an	incompatible	change.	In
such	cases	we	will	try	to	let	Cluster	users	know	in	advance	if	a	change	is	not
backward	compatible.	If	you	find	such	a	change	and	we	have	not	documented	it,
please	report	it	in	the	MySQL	bugs	database	using	the	instructions	given	in
Section	1.8,	“How	to	Report	Bugs	or	Problems”.

15.4.4.1.	Basic	Example	Configuration

To	support	MySQL	Cluster,	you	will	need	to	update	my.cnf	as	shown	in	the
following	example.	Note	that	the	options	shown	here	should	not	be	confused
with	those	that	are	used	in	config.ini	files.	You	may	also	specify	these
parameters	on	the	command	line	when	invoking	the	executables.

#	my.cnf

#	example	additions	to	my.cnf	for	MySQL	Cluster

#	(valid	in	MySQL	5.0)

#	enable	ndbcluster	storage	engine,	and	provide	connectstring	for

#	management	server	host	(default	port	is	1186)

[mysqld]

ndbcluster

ndb-connectstring=ndb_mgmd.mysql.com

#	provide	connectstring	for	management	server	host	(default	port:	1186)

[ndbd]

connect-string=ndb_mgmd.mysql.com

#	provide	connectstring	for	management	server	host	(default	port:	1186)

[ndb_mgm]

connect-string=ndb_mgmd.mysql.com

#	provide	location	of	cluster	configuration	file

[ndb_mgmd]

config-file=/etc/config.ini

(For	more	information	on	connectstrings,	see	Section	15.4.4.2,	“The	Cluster
connectstring”.)

#	my.cnf

#	example	additions	to	my.cnf	for	MySQL	Cluster

#	(will	work	on	all	versions)

#	enable	ndbcluster	storage	engine,	and	provide	connectstring	for	management

#	server	host	to	the	default	port	1186

[mysqld]

ndbcluster

ndb-connectstring=ndb_mgmd.mysql.com:1186

Important:	Once	you	have	started	a	mysqld	process	with	the	ndbcluster	and
ndb-connectstring	parameters	in	the	[MYSQLD]	in	the	my.cnf	file	as	shown
previously,	you	cannot	execute	any	CREATE	TABLE	or	ALTER	TABLE	statements
without	having	actually	started	the	cluster.	Otherwise,	these	statements	will	fail
with	an	error.	This	is	by	design.

You	may	also	use	a	separate	[mysql_cluster]	section	in	the	cluster	my.cnf	file
for	settings	to	be	read	and	used	by	all	executables:

#	cluster-specific	settings

[mysql_cluster]

ndb-connectstring=ndb_mgmd.mysql.com:1186

For	additional	NDB	variables	that	can	be	set	in	the	my.cnf	file,	see	Section	5.2.2,
“Server	System	Variables”.

The	configuration	file	is	named	config.ini	by	default.	It	is	read	by	ndb_mgmd
at	startup	and	can	be	placed	anywhere.	Its	location	and	name	are	specified	by
using	--config-file=path_name	on	the	ndb_mgmd	command	line.	If	the
configuration	file	is	not	specified,	ndb_mgmd	by	default	tries	to	read	a	file
named	config.ini	located	in	the	current	working	directory.

Currently,	the	configuration	file	is	in	INI	format,	which	consists	of	sections
preceded	by	section	headings	(surrounded	by	square	brackets),	followed	by	the
appropriate	parameter	names	and	values.	One	deviation	from	the	standard	INI
format	is	that	the	parameter	name	and	value	can	be	separated	by	a	colon	(‘:’)	as
well	as	the	equals	sign	(‘=’).	Another	deviation	is	that	sections	are	not	uniquely

identified	by	section	name.	Instead,	unique	sections	(such	as	two	different	nodes
of	the	same	type)	are	identified	by	a	unique	ID	specified	as	a	parameter	within
the	section.

Default	values	are	defined	for	most	parameters,	and	can	also	be	specified	in
config.ini.	To	create	a	default	value	section,	simply	add	the	word	DEFAULT	to
the	section	name.	For	example,	an	[NDBD]	section	contains	parameters	that	apply
to	a	particular	data	node,	whereas	an	[NDBD	DEFAULT]	section	contains
parameters	that	apply	to	all	data	nodes.	Suppose	that	all	data	nodes	should	use
the	same	data	memory	size.	To	configure	them	all,	create	an	[NDBD	DEFAULT]
section	that	contains	a	DataMemory	line	to	specify	the	data	memory	size.

At	a	minimum,	the	configuration	file	must	define	the	computers	and	nodes
involved	in	the	cluster	and	on	which	computers	these	nodes	are	located.	An
example	of	a	simple	configuration	file	for	a	cluster	consisting	of	one
management	server,	two	data	nodes	and	two	MySQL	servers	is	shown	here:

#	file	"config.ini"	-	2	data	nodes	and	2	SQL	nodes

#	This	file	is	placed	in	the	startup	directory	of	ndb_mgmd	(the

#	management	server)

#	The	first	MySQL	Server	can	be	started	from	any	host.	The	second

#	can	be	started	only	on	the	host	mysqld_5.mysql.com

[NDBD	DEFAULT]

NoOfReplicas=	2

DataDir=	/var/lib/mysql-cluster

[NDB_MGMD]

Hostname=	ndb_mgmd.mysql.com

DataDir=	/var/lib/mysql-cluster

[NDBD]

HostName=	ndbd_2.mysql.com

[NDBD]

HostName=	ndbd_3.mysql.com

[MYSQLD]

[MYSQLD]

HostName=	mysqld_5.mysql.com

Note	that	each	node	has	its	own	section	in	the	config.ini.	For	instance,	this
cluster	has	two	data	nodes,	so	the	preceding	configuration	file	contains	two
[NDBD]	sections	defining	these	nodes.

Sections	of	the	config.ini	File

There	are	six	different	sections	that	you	can	use	in	the	config.ini	configuration
file,	as	described	in	the	following	list:

[COMPUTER]:	Defines	cluster	hosts.	This	is	not	required	to	configure	a	viable
MySQL	Cluster,	but	be	may	used	as	a	convenience	when	setting	up	a	large
cluster.	See	Section	15.4.4.3,	“Defining	Cluster	Computers”,	for	more
information.

[NDBD]:	Defines	a	cluster	data	node	(ndbd	process).	See	Section	15.4.4.5,
“Defining	Data	Nodes”,	for	details.

[MYSQLD]:	Defines	the	cluster's	MySQL	server	nodes	(also	called	SQL	or
API	nodes).	For	a	discussion	of	SQL	node	configuration,	see
Section	15.4.4.6,	“Defining	SQL	Nodes”.

[MGM]	or	[NDB_MGMD]:	Defines	a	cluster	management	server	(MGM)	node.
For	information	concerning	the	configuration	of	MGM	nodes,	see
Section	15.4.4.4,	“Defining	the	Management	Server”.

[TCP]:	Defines	a	TCP/IP	connection	between	cluster	nodes,	with	TCP/IP
being	the	default	connection	protocol.	Normally,	[TCP]	or	[TCP	DEFAULT]
sections	are	not	required	to	set	up	a	MySQL	Cluster,	as	the	cluster	handles
this	automatically;	however,	it	may	be	necessary	in	some	situations	to
override	the	defaults	provided	by	the	cluster.	See	Section	15.4.4.7,	“Cluster
TCP/IP	Connections”,	for	information	about	available	TCP/IP	configuration
parameters	and	how	to	use	them.	(You	may	also	find	Section	15.4.4.8,
“TCP/IP	Connections	Using	Direct	Connections”	to	be	of	interest	in	some
cases.)

[SHM]:	Defines	shared-memory	connections	between	nodes.	In	MySQL	5.0-
max,	it	is	enabled	by	default,	but	should	still	be	considered	experimental.
For	a	discussion	of	SHM	interconnects,	see	Section	15.4.4.9,	“Shared-
Memory	Connections”.

[SCI]:Defines	Scalable	Coherent	Interface	connections	between	cluster
data	nodes.	Such	connections	require	software	which,	while	freely
available,	is	not	part	of	the	MySQL	Cluster	distribution,	as	well	as
specialised	hardware.	See	Section	15.4.4.10,	“SCI	Transport	Connections”

for	detailed	information	about	SCI	interconnects.

You	can	define	DEFAULT	values	for	each	section.	All	Cluster	parameter	names	are
case-insensitive,	which	differs	from	parameters	specified	in	my.cnf	or	my.ini
files.

15.4.4.2.	The	Cluster	connectstring

With	the	exception	of	the	MySQL	Cluster	management	server	(ndb_mgmd),
each	node	that	is	part	of	a	MySQL	Cluster	requires	a	connectstring	that	points	to
the	management	server's	location.	This	connectstring	is	used	in	establishing	a
connection	to	the	management	server	as	well	as	in	performing	other	tasks
depending	on	the	node's	role	in	the	cluster.	The	syntax	for	a	connectstring	is	as
follows:

<connectstring>	:=

				[<nodeid-specification>,]<host-specification>[,<host-specification>]

<nodeid-specification>	:=	node_id

<host-specification>	:=	host_name[:port_num]

node_id	is	an	integer	larger	than	1	which	identifies	a	node	in	config.ini.
host_name	is	a	string	representing	a	valid	Internet	host	name	or	IP	address.
port_num	is	an	integer	referring	to	a	TCP/IP	port	number.

example	1	(long):				"nodeid=2,myhost1:1100,myhost2:1100,192.168.0.3:1200"

example	2	(short):			"myhost1"

All	nodes	will	use	localhost:1186	as	the	default	connectstring	value	if	none	is
provided.	If	port_num	is	omitted	from	the	connectstring,	the	default	port	is	1186.
This	port	should	always	be	available	on	the	network	because	it	has	been
assigned	by	IANA	for	this	purpose	(see	http://www.iana.org/assignments/port-
numbers	for	details).

By	listing	multiple	<host-specification>	values,	it	is	possible	to	designate
several	redundant	management	servers.	A	cluster	node	will	attempt	to	contact
successive	management	servers	on	each	host	in	the	order	specified,	until	a
successful	connection	has	been	established.

There	are	a	number	of	different	ways	to	specify	the	connectstring:

http://www.iana.org/assignments/port-numbers

Each	executable	has	its	own	command-line	option	which	enables	specifying
the	management	server	at	startup.	(See	the	documentation	for	the	respective
executable.)

It	is	also	possible	to	set	the	connectstring	for	all	nodes	in	the	cluster	at	once
by	placing	it	in	a	[mysql_cluster]	section	in	the	management	server's
my.cnf	file.

For	backward	compatibility,	two	other	options	are	available,	using	the	same
syntax:

1.	 Set	the	NDB_CONNECTSTRING	environment	variable	to	contain	the
connectstring.

2.	 Write	the	connectstring	for	each	executable	into	a	text	file	named
Ndb.cfg	and	place	this	file	in	the	executable's	startup	directory.

However,	these	are	now	deprecated	and	should	not	be	used	for	new
installations.

The	recommended	method	for	specifying	the	connectstring	is	to	set	it	on	the
command	line	or	in	the	my.cnf	file	for	each	executable.

15.4.4.3.	Defining	Cluster	Computers

The	[COMPUTER]	section	has	no	real	significance	other	than	serving	as	a	way	to
avoid	the	need	of	defining	host	names	for	each	node	in	the	system.	All
parameters	mentioned	here	are	required.

	Id

This	is	an	integer	value,	used	to	refer	to	the	host	computer	elsewhere	in	the
configuration	file.	This	is	not	the	same	as	the	node	ID.

	HostName

This	is	the	computer's	hostname	or	IP	address.

15.4.4.4.	Defining	the	Management	Server

The	[NDB_MGMD]	section	is	used	to	configure	the	behavior	of	the	management
server.	[MGM]	can	be	used	as	an	alias;	the	two	section	names	are	equivalent.	All
parameters	in	the	following	list	are	optional	and	assume	their	default	values	if
omitted.	Note:	If	neither	the	ExecuteOnComputer	nor	the	HostName	parameter	is
present,	the	default	value	localhost	will	be	assumed	for	both.

	Id

Each	node	in	the	cluster	has	a	unique	identity,	which	is	represented	by	an
integer	value	in	the	range	1	to	63	inclusive.	This	ID	is	used	by	all	internal
cluster	messages	for	addressing	the	node.

	ExecuteOnComputer

This	refers	to	the	Id	set	for	one	of	the	computers	defined	in	a	[COMPUTER]
section	of	the	config.ini	file.

	PortNumber

This	is	the	port	number	on	which	the	management	server	listens	for
configuration	requests	and	management	commands.

	HostName

Specifying	this	parameter	defines	the	hostname	of	the	computer	on	which
the	management	node	is	to	reside.	To	specify	a	hostname	other	than
localhost,	either	this	parameter	or	ExecuteOnComputer	is	required.

	LogDestination

This	parameter	specifies	where	to	send	cluster	logging	information.	There
are	three	options	in	this	regard:	CONSOLE,	SYSLOG,	and	FILE:

CONSOLE	outputs	the	log	to	stdout:

CONSOLE

SYSLOG	sends	the	log	to	a	syslog	facility,	possible	values	being	one	of
auth,	authpriv,	cron,	daemon,	ftp,	kern,	lpr,	mail,	news,	syslog,
user,	uucp,	local0,	local1,	local2,	local3,	local4,	local5,	local6,
or	local7.

Note:	Not	every	facility	is	necessarily	supported	by	every	operating
system.

SYSLOG:facility=syslog

FILE	pipes	the	cluster	log	output	to	a	regular	file	on	the	same	machine.
The	following	values	can	be	specified:

filename:	The	name	of	the	logfile.

maxsize:	The	maximum	size	(in	bytes)	to	which	the	file	can	grow
before	logging	rolls	over	to	a	new	file.	When	this	occurs,	the	old
logfile	is	renamed	by	appending	.N	to	the	filename,	where	N	is	the
next	number	not	yet	used	with	this	name.

maxfiles:	The	maximum	number	of	logfiles.

FILE:filename=cluster.log,maxsize=1000000,maxfiles=6

It	is	possible	to	specify	multiple	log	destinations	separated	by
semicolons	as	shown	here:

CONSOLE;SYSLOG:facility=local0;FILE:filename=/var/log/mgmd

The	default	value	for	the	FILE	parameter	is
FILE:filename=ndb_node_id_cluster.log,maxsize=1000000,maxfiles=6,
where	node_id	is	the	ID	of	the	node.

	ArbitrationRank

This	parameter	is	used	to	define	which	nodes	can	act	as	arbitrators.	Only
MGM	nodes	and	SQL	nodes	can	be	arbitrators.	ArbitrationRank	can	take
one	of	the	following	values:

0:	The	node	will	never	be	used	as	an	arbitrator.

1:	The	node	has	high	priority;	that	is,	it	will	be	preferred	as	an
arbitrator	over	low-priority	nodes.

2:	Indicates	a	low-priority	node	which	be	used	as	an	arbitrator	only	if	a
node	with	a	higher	priority	is	not	available	for	that	purpose.

Normally,	the	management	server	should	be	configured	as	an	arbitrator	by
setting	its	ArbitrationRank	to	1	(the	default	value)	and	that	of	all	SQL
nodes	to	0.

	ArbitrationDelay

An	integer	value	which	causes	the	management	server's	responses	to
arbitration	requests	to	be	delayed	by	that	number	of	milliseconds.	By
default,	this	value	is	0;	it	is	normally	not	necessary	to	change	it.

	DataDir

This	specifies	the	directory	where	output	files	from	the	management	server
will	be	placed.	These	files	include	cluster	log	files,	process	output	files,	and
the	daemon's	process	ID	(PID)	file.	(For	log	files,	this	location	can	be
overridden	by	setting	the	FILE	parameter	for	LogDestination	as	discussed
previously	in	this	section.)

15.4.4.5.	Defining	Data	Nodes

The	[NDBD]	and	[NDBD	DEFAULT]	sections	are	used	to	configure	the	behavior
of	the	cluster's	data	nodes.	There	are	many	parameters	which	control	buffer
sizes,	pool	sizes,	timeouts,	and	so	forth.	The	only	mandatory	parameters	are:

Either	ExecuteOnComputer	or	HostName,	which	must	be	defined	in	the	local
[NDBD]	section.

The	parameter	NoOfReplicas,	which	must	be	defined	in	the	[NDBD
DEFAULT]	section,	as	it	is	common	to	all	Cluster	data	nodes.

Most	data	node	parameters	are	set	in	the	[NDBD	DEFAULT]	section.	Only	those
parameters	explicitly	stated	as	being	able	to	set	local	values	are	allowed	to	be
changed	in	the	[NDBD]	section.	Where	present,	HostName,	Id	and
ExecuteOnComputer	must	be	defined	in	the	local	[NDBD]	section,	and	not	in	any
other	section	of	config.ini.	In	other	words,	settings	for	these	parameters	are
specific	to	one	data	node.

For	those	parameters	affecting	memory	usage	or	buffer	sizes,	it	is	possible	to	use
K,	M,	or	G	as	a	suffix	to	indicate	units	of	1024,	1024×1024,	or	1024×1024×1024.

(For	example,	100K	means	100	×	1024	=	102400.)	Parameter	names	and	values
are	currently	case-sensitive.

Identifying	Data	Nodes

The	Id	value	(that	is,	the	data	node	identifier)	can	be	allocated	on	the	command
line	when	the	node	is	started	or	in	the	configuration	file.

	Id

This	is	the	node	ID	used	as	the	address	of	the	node	for	all	cluster	internal
messages.	This	is	an	integer	in	the	range	1	to	63	inclusive.	Each	node	in	the
cluster	must	have	a	unique	identity.

	ExecuteOnComputer

This	refers	to	the	Id	set	for	one	of	the	computers	defined	in	a	[COMPUTER]
section.

	HostName

Specifying	this	parameter	defines	the	hostname	of	the	computer	on	which
the	data	node	is	to	reside.	To	specify	a	hostname	other	than	localhost,
either	this	parameter	or	ExecuteOnComputer	is	required.

	ServerPort	(OBSOLETE)

Each	node	in	the	cluster	uses	a	port	to	connect	to	other	nodes.	This	port	is
used	also	for	non-TCP	transporters	in	the	connection	setup	phase.	The
default	port	is	allocated	dynamically	in	such	a	way	as	to	ensure	that	no	two
nodes	on	the	same	computer	receive	the	same	port	number,	so	it	should	not
normally	be	necessary	to	specify	a	value	for	this	parameter.

	NoOfReplicas

This	global	parameter	can	be	set	only	in	the	[NDBD	DEFAULT]	section,	and
defines	the	number	of	replicas	for	each	table	stored	in	the	cluster.	This
parameter	also	specifies	the	size	of	node	groups.	A	node	group	is	a	set	of
nodes	all	storing	the	same	information.

Node	groups	are	formed	implicitly.	The	first	node	group	is	formed	by	the
set	of	data	nodes	with	the	lowest	node	IDs,	the	next	node	group	by	the	set
of	the	next	lowest	node	identities,	and	so	on.	By	way	of	example,	assume
that	we	have	4	data	nodes	and	that	NoOfReplicas	is	set	to	2.	The	four	data
nodes	have	node	IDs	2,	3,	4	and	5.	Then	the	first	node	group	is	formed	from
nodes	2	and	3,	and	the	second	node	group	by	nodes	4	and	5.	It	is	important
to	configure	the	cluster	in	such	a	manner	that	nodes	in	the	same	node
groups	are	not	placed	on	the	same	computer	because	a	single	hardware
failure	would	cause	the	entire	cluster	to	crash.

If	no	node	IDs	are	provided,	the	order	of	the	data	nodes	will	be	the
determining	factor	for	the	node	group.	Whether	or	not	explicit	assignments
are	made,	they	can	be	viewed	in	the	output	of	the	management	client's	SHOW
statement.

There	is	no	default	value	for	NoOfReplicas;	the	maximum	possible	value	is
4.

	DataDir

This	parameter	specifies	the	directory	where	trace	files,	log	files,	pid	files
and	error	logs	are	placed.

	FileSystemPath

This	parameter	specifies	the	directory	where	all	files	created	for	metadata,
REDO	logs,	UNDO	logs	and	data	files	are	placed.	The	default	is	the
directory	specified	by	DataDir.	Note:	This	directory	must	exist	before	the
ndbd	process	is	initiated.

The	recommended	directory	hierarchy	for	MySQL	Cluster	includes
/var/lib/mysql-cluster,	under	which	a	directory	for	the	node's
filesystem	is	created.	The	name	of	this	subdirectory	contains	the	node	ID.
For	example,	if	the	node	ID	is	2,	this	subdirectory	is	named	ndb_2_fs.

	BackupDataDir

This	parameter	specifies	the	directory	in	which	backups	are	placed.	If
omitted,	the	default	backup	location	is	the	directory	named	BACKUP	under
the	location	specified	by	the	FileSystemPath	parameter.	(See	above.)

Data	Memory,	Index	Memory,	and	String	Memory

DataMemory	and	IndexMemory	are	[NDBD]	parameters	specifying	the	size	of
memory	segments	used	to	store	the	actual	records	and	their	indexes.	In	setting
values	for	these,	it	is	important	to	understand	how	DataMemory	and	IndexMemory
are	used,	as	they	usually	need	to	be	updated	to	reflect	actual	usage	by	the	cluster:

	DataMemory

This	parameter	defines	the	amount	of	space	(in	bytes)	available	for	storing
database	records.	The	entire	amount	specified	by	this	value	is	allocated	in
memory,	so	it	is	extremely	important	that	the	machine	has	sufficient
physical	memory	to	accommodate	it.

The	memory	allocated	by	DataMemory	is	used	to	store	both	the	actual
records	and	indexes.	Each	record	is	currently	of	fixed	size.	(Even	VARCHAR
columns	are	stored	as	fixed-width	columns.)	There	is	a	16-byte	overhead	on
each	record;	an	additional	amount	for	each	record	is	incurred	because	it	is
stored	in	a	32KB	page	with	128	byte	page	overhead	(see	below).	There	is
also	a	small	amount	wasted	per	page	due	to	the	fact	that	each	record	is
stored	in	only	one	page.	The	maximum	record	size	is	currently	8052	bytes.

The	memory	space	defined	by	DataMemory	is	also	used	to	store	ordered
indexes,	which	use	about	10	bytes	per	record.	Each	table	row	is	represented
in	the	ordered	index.	A	common	error	among	users	is	to	assume	that	all
indexes	are	stored	in	the	memory	allocated	by	IndexMemory,	but	this	is	not
the	case:	Only	primary	key	and	unique	hash	indexes	use	this	memory;
ordered	indexes	use	the	memory	allocated	by	DataMemory.	However,
creating	a	primary	key	or	unique	hash	index	also	creates	an	ordered	index
on	the	same	keys,	unless	you	specify	USING	HASH	in	the	index	creation
statement.	This	can	be	verified	by	running	ndb_desc	-d	db_name
table_name	in	the	management	client.

The	memory	space	allocated	by	DataMemory	consists	of	32KB	pages,	which
are	allocated	to	table	fragments.	Each	table	is	normally	partitioned	into	the
same	number	of	fragments	as	there	are	data	nodes	in	the	cluster.	Thus,	for
each	node,	there	are	the	same	number	of	fragments	as	are	set	in
NoOfReplicas.

Once	a	page	has	been	allocated,	it	is	currently	not	possible	to	return	it	to	the

pool	of	free	pages,	except	by	deleting	the	table.	(This	also	means	that
DataMemory	pages,	once	allocated	to	a	given	table,	cannot	be	used	by	other
tables.)	Performing	a	node	recovery	also	compresses	the	partition	because
all	records	are	inserted	into	empty	partitions	from	other	live	nodes.

The	DataMemory	memory	space	also	contains	UNDO	information:	For	each
update,	a	copy	of	the	unaltered	record	is	allocated	in	the	DataMemory.	There
is	also	a	reference	to	each	copy	in	the	ordered	table	indexes.	Unique	hash
indexes	are	updated	only	when	the	unique	index	columns	are	updated,	in
which	case	a	new	entry	in	the	index	table	is	inserted	and	the	old	entry	is
deleted	upon	commit.	For	this	reason,	it	is	also	necessary	to	allocate	enough
memory	to	handle	the	largest	transactions	performed	by	applications	using
the	cluster.	In	any	case,	performing	a	few	large	transactions	holds	no
advantage	over	using	many	smaller	ones,	for	the	following	reasons:

Large	transactions	are	not	any	faster	than	smaller	ones

Large	transactions	increase	the	number	of	operations	that	are	lost	and
must	be	repeated	in	event	of	transaction	failure

Large	transactions	use	more	memory

The	default	value	for	DataMemory	is	80MB;	the	minimum	is	1MB.	There	is
no	maximum	size,	but	in	reality	the	maximum	size	has	to	be	adapted	so	that
the	process	does	not	start	swapping	when	the	limit	is	reached.	This	limit	is
determined	by	the	amount	of	physical	RAM	available	on	the	machine	and
by	the	amount	of	memory	that	the	operating	system	may	commit	to	any	one
process.	32-bit	operating	systems	are	generally	limited	to	2–4GB	per
process;	64-bit	operating	systems	can	use	more.	For	large	databases,	it	may
be	preferable	to	use	a	64-bit	operating	system	for	this	reason.	In	addition,	it
is	also	possible	to	run	more	than	one	ndbd	process	per	machine,	and	this
may	prove	advantageous	on	machines	with	multiple	CPUs.

	IndexMemory

This	parameter	controls	the	amount	of	storage	used	for	hash	indexes	in
MySQL	Cluster.	Hash	indexes	are	always	used	for	primary	key	indexes,
unique	indexes,	and	unique	constraints.	Note	that	when	defining	a	primary
key	and	a	unique	index,	two	indexes	will	be	created,	one	of	which	is	a	hash
index	used	for	all	tuple	accesses	as	well	as	lock	handling.	It	is	also	used	to

enforce	unique	constraints.

The	size	of	the	hash	index	is	25	bytes	per	record,	plus	the	size	of	the
primary	key.	For	primary	keys	larger	than	32	bytes	another	8	bytes	is	added.

The	default	value	for	IndexMemory	is	18MB.	The	minimum	is	1MB.

	StringMemory

This	parameter	determines	how	much	memory	is	allocated	for	strings	such
as	table	names,	and	is	specified	in	an	[NDBD]	or	[NDBD	DEFAULT]	section	of
the	config.ini	file.	A	value	between	0	and	100	inclusive	is	interpreted	as	a
percent	of	the	maxmimum	default	value,	which	is	calculated	based	on	a
number	of	factors	including	the	number	of	tables,	maximum	table	name
size,	maximum	size	of	.FRM	files,	MaxNoOfTriggers,	maximum	column
name	size,	and	maximum	default	column	value.	In	general	it	is	safe	to
assume	that	the	maximum	default	value	is	approximately	5	MB	for	a
MySQL	Cluster	having	1000	tables.

A	value	greater	than	100	is	interpreted	as	a	number	of	bytes.

In	MySQL	5.0,	the	default	value	is	100	—	that	is,	100	percent	of	the	default
maximum,	or	roughly	5	MB.	It	is	possible	to	reduce	this	value	safely,	but	it
should	never	be	less	than	5	percent.	If	you	encounter	Error	773	Out	of
string	memory,	please	modify	StringMemory	config	parameter:	Permanent
error:	Schema	error,	this	means	that	means	that	you	have	set	the
StringMemory	value	too	low.	25	(25	percent)	is	not	excessive,	and	should
prevent	this	error	from	recurring	in	all	but	the	most	extreme	conditions,	as
when	there	are	hundreds	or	thousands	of	NDB	tables	with	names	whose
lengths	and	columns	whose	number	approach	their	permitted	maximums.

The	following	example	illustrates	how	memory	is	used	for	a	table.	Consider	this
table	definition:

CREATE	TABLE	example	(

		a	INT	NOT	NULL,

		b	INT	NOT	NULL,

		c	INT	NOT	NULL,

		PRIMARY	KEY(a),

		UNIQUE(b)

)	ENGINE=NDBCLUSTER;

For	each	record,	there	are	12	bytes	of	data	plus	12	bytes	overhead.	Having	no
nullable	columns	saves	4	bytes	of	overhead.	In	addition,	we	have	two	ordered
indexes	on	columns	a	and	b	consuming	roughly	10	bytes	each	per	record.	There
is	a	primary	key	hash	index	on	the	base	table	using	roughly	29	bytes	per	record.
The	unique	constraint	is	implemented	by	a	separate	table	with	b	as	primary	key
and	a	as	a	column.	This	other	table	consumes	an	additional	29	bytes	of	index
memory	per	record	in	the	example	table	as	well	8	bytes	of	record	data	plus	12
bytes	of	overhead.

Thus,	for	one	million	records,	we	need	58MB	for	index	memory	to	handle	the
hash	indexes	for	the	primary	key	and	the	unique	constraint.	We	also	need	64MB
for	the	records	of	the	base	table	and	the	unique	index	table,	plus	the	two	ordered
index	tables.

You	can	see	that	hash	indexes	takes	up	a	fair	amount	of	memory	space;	however,
they	provide	very	fast	access	to	the	data	in	return.	They	are	also	used	in	MySQL
Cluster	to	handle	uniqueness	constraints.

Currently,	the	only	partitioning	algorithm	is	hashing	and	ordered	indexes	are
local	to	each	node.	Thus,	ordered	indexes	cannot	be	used	to	handle	uniqueness
constraints	in	the	general	case.

An	important	point	for	both	IndexMemory	and	DataMemory	is	that	the	total
database	size	is	the	sum	of	all	data	memory	and	all	index	memory	for	each	node
group.	Each	node	group	is	used	to	store	replicated	information,	so	if	there	are
four	nodes	with	two	replicas,	there	will	be	two	node	groups.	Thus,	the	total	data
memory	available	is	2	×	DataMemory	for	each	data	node.

It	is	highly	recommended	that	DataMemory	and	IndexMemory	be	set	to	the	same
values	for	all	nodes.	Data	distribution	is	even	over	all	nodes	in	the	cluster,	so	the
maximum	amount	of	space	available	for	any	node	can	be	no	greater	than	that	of
the	smallest	node	in	the	cluster.

DataMemory	and	IndexMemory	can	be	changed,	but	decreasing	either	of	these	can
be	risky;	doing	so	can	easily	lead	to	a	node	or	even	an	entire	MySQL	Cluster	that
is	unable	to	restart	due	to	there	being	insufficient	memory	space.	Increasing
these	values	should	be	acceptable,	but	it	is	recommended	that	such	upgrades	are
performed	in	the	same	manner	as	a	software	upgrade,	beginning	with	an	update
of	the	configuration	file,	and	then	restarting	the	management	server	followed	by

restarting	each	data	node	in	turn.

Updates	do	not	increase	the	amount	of	index	memory	used.	Inserts	take	effect
immediately;	however,	rows	are	not	actually	deleted	until	the	transaction	is
committed.

Transaction	Parameters

The	next	three	[NDBD]	parameters	that	we	discuss	are	important	because	they
affect	the	number	of	parallel	transactions	and	the	sizes	of	transactions	that	can	be
handled	by	the	system.	MaxNoOfConcurrentTransactions	sets	the	number	of
parallel	transactions	possible	in	a	node.	MaxNoOfConcurrentOperations	sets	the
number	of	records	that	can	be	in	update	phase	or	locked	simultaneously.

Both	of	these	parameters	(especially	MaxNoOfConcurrentOperations)	are	likely
targets	for	users	setting	specific	values	and	not	using	the	default	value.	The
default	value	is	set	for	systems	using	small	transactions,	to	ensure	that	these	do
not	use	excessive	memory.

	MaxNoOfConcurrentTransactions

For	each	active	transaction	in	the	cluster	there	must	be	a	record	in	one	of
the	cluster	nodes.	The	task	of	coordinating	transactions	is	spread	among	the
nodes.	The	total	number	of	transaction	records	in	the	cluster	is	the	number
of	transactions	in	any	given	node	times	the	number	of	nodes	in	the	cluster.

Transaction	records	are	allocated	to	individual	MySQL	servers.	Normally,
there	is	at	least	one	transaction	record	allocated	per	connection	that	using
any	table	in	the	cluster.	For	this	reason,	one	should	ensure	that	there	are
more	transaction	records	in	the	cluster	than	there	are	concurrent
connections	to	all	MySQL	servers	in	the	cluster.

This	parameter	must	be	set	to	the	same	value	for	all	cluster	nodes.

Changing	this	parameter	is	never	safe	and	doing	so	can	cause	a	cluster	to
crash.	When	a	node	crashes,	one	of	the	nodes	(actually	the	oldest	surviving
node)	will	build	up	the	transaction	state	of	all	transactions	ongoing	in	the
crashed	node	at	the	time	of	the	crash.	It	is	thus	important	that	this	node	has
as	many	transaction	records	as	the	failed	node.

The	default	value	is	4096.

	MaxNoOfConcurrentOperations

It	is	a	good	idea	to	adjust	the	value	of	this	parameter	according	to	the	size
and	number	of	transactions.	When	performing	transactions	of	only	a	few
operations	each	and	not	involving	a	great	many	records,	there	is	no	need	to
set	this	parameter	very	high.	When	performing	large	transactions	involving
many	records	need	to	set	this	parameter	higher.

Records	are	kept	for	each	transaction	updating	cluster	data,	both	in	the
transaction	coordinator	and	in	the	nodes	where	the	actual	updates	are
performed.	These	records	contain	state	information	needed	to	find	UNDO
records	for	rollback,	lock	queues,	and	other	purposes.

This	parameter	should	be	set	to	the	number	of	records	to	be	updated
simultaneously	in	transactions,	divided	by	the	number	of	cluster	data	nodes.
For	example,	in	a	cluster	which	has	four	data	nodes	and	which	is	expected
to	handle	1,000,000	concurrent	updates	using	transactions,	you	should	set
this	value	to	1000000	/	4	=	250000.

Read	queries	which	set	locks	also	cause	operation	records	to	be	created.
Some	extra	space	is	allocated	within	individual	nodes	to	accommodate
cases	where	the	distribution	is	not	perfect	over	the	nodes.

When	queries	make	use	of	the	unique	hash	index,	there	are	actually	two
operation	records	used	per	record	in	the	transaction.	The	first	record
represents	the	read	in	the	index	table	and	the	second	handles	the	operation
on	the	base	table.

The	default	value	is	32768.

This	parameter	actually	handles	two	values	that	can	be	configured
separately.	The	first	of	these	specifies	how	many	operation	records	are	to	be
placed	with	the	transaction	coordinator.	The	second	part	specifies	how
many	operation	records	are	to	be	local	to	the	database.

A	very	large	transaction	performed	on	an	eight-node	cluster	requires	as
many	operation	records	in	the	transaction	coordinator	as	there	are	reads,
updates,	and	deletes	involved	in	the	transaction.	However,	the	operation

records	of	the	are	spread	over	all	eight	nodes.	Thus,	if	it	is	necessary	to
configure	the	system	for	one	very	large	transaction,	it	is	a	good	idea	to
configure	the	two	parts	separately.	MaxNoOfConcurrentOperations	will
always	be	used	to	calculate	the	number	of	operation	records	in	the
transaction	coordinator	portion	of	the	node.

It	is	also	important	to	have	an	idea	of	the	memory	requirements	for
operation	records.	These	consume	about	1KB	per	record.

	MaxNoOfLocalOperations

By	default,	this	parameter	is	calculated	as	1.1	×
MaxNoOfConcurrentOperations.	This	fits	systems	with	many	simultaneous
transactions,	none	of	them	being	very	large.	If	there	is	a	need	to	handle	one
very	large	transaction	at	a	time	and	there	are	many	nodes,	it	is	a	good	idea
to	override	the	default	value	by	explicitly	specifying	this	parameter.

Transaction	Temporary	Storage

The	next	set	of	[NDBD]	parameters	is	used	to	determine	temporary	storage	when
executing	a	statement	that	is	part	of	a	Cluster	transaction.	All	records	are
released	when	the	statement	is	completed	and	the	cluster	is	waiting	for	the
commit	or	rollback.

The	default	values	for	these	parameters	are	adequate	for	most	situations.
However,	users	with	a	need	to	support	transactions	involving	large	numbers	of
rows	or	operations	may	need	to	increase	these	values	to	enable	better	parallelism
in	the	system,	whereas	users	whose	applications	require	relatively	small
transactions	can	decrease	the	values	to	save	memory.

	MaxNoOfConcurrentIndexOperations

For	queries	using	a	unique	hash	index,	another	temporary	set	of	operation
records	is	used	during	a	query's	execution	phase.	This	parameter	sets	the
size	of	that	pool	of	records.	Thus,	this	record	is	allocated	only	while
executing	a	part	of	a	query.	As	soon	as	this	part	has	been	executed,	the
record	is	released.	The	state	needed	to	handle	aborts	and	commits	is
handled	by	the	normal	operation	records,	where	the	pool	size	is	set	by	the
parameter	MaxNoOfConcurrentOperations.

The	default	value	of	this	parameter	is	8192.	Only	in	rare	cases	of	extremely
high	parallelism	using	unique	hash	indexes	should	it	be	necessary	to
increase	this	value.	Using	a	smaller	value	is	possible	and	can	save	memory
if	the	DBA	is	certain	that	a	high	degree	of	parallelism	is	not	required	for	the
cluster.

	MaxNoOfFiredTriggers

The	default	value	of	MaxNoOfFiredTriggers	is	4000,	which	is	sufficient	for
most	situations.	In	some	cases	it	can	even	be	decreased	if	the	DBA	feels
certain	the	need	for	parallelism	in	the	cluster	is	not	high.

A	record	is	created	when	an	operation	is	performed	that	affects	a	unique
hash	index.	Inserting	or	deleting	a	record	in	a	table	with	unique	hash
indexes	or	updating	a	column	that	is	part	of	a	unique	hash	index	fires	an
insert	or	a	delete	in	the	index	table.	The	resulting	record	is	used	to	represent
this	index	table	operation	while	waiting	for	the	original	operation	that	fired
it	to	complete.	This	operation	is	short-lived	but	can	still	require	a	large
number	of	records	in	its	pool	for	situations	with	many	parallel	write
operations	on	a	base	table	containing	a	set	of	unique	hash	indexes.

	TransactionBufferMemory

The	memory	affected	by	this	parameter	is	used	for	tracking	operations	fired
when	updating	index	tables	and	reading	unique	indexes.	This	memory	is
used	to	store	the	key	and	column	information	for	these	operations.	It	is	only
very	rarely	that	the	value	for	this	parameter	needs	to	be	altered	from	the
default.

The	default	value	for	TransactionBufferMemory	is	1MB.

Normal	read	and	write	operations	use	a	similar	buffer,	whose	usage	is	even
more	short-lived.	The	compile-time	parameter	ZATTRBUF_FILESIZE	(found
in	ndb/src/kernel/blocks/Dbtc/Dbtc.hpp)	set	to	4000	×	128	bytes
(500KB).	A	similar	buffer	for	key	information,	ZDATABUF_FILESIZE	(also	in
Dbtc.hpp)	contains	4000	×	16	=	62.5KB	of	buffer	space.	Dbtc	is	the
module	that	handles	transaction	coordination.

Scans	and	Buffering

There	are	additional	[NDBD]	parameters	in	the	Dblqh	module	(in
ndb/src/kernel/blocks/Dblqh/Dblqh.hpp)	that	affect	reads	and	updates.
These	include	ZATTRINBUF_FILESIZE,	set	by	default	to	10000	×	128	bytes
(1250KB)	and	ZDATABUF_FILE_SIZE,	set	by	default	to	10000*16	bytes	(roughly
156KB)	of	buffer	space.	To	date,	there	have	been	neither	any	reports	from	users
nor	any	results	from	our	own	extensive	tests	suggesting	that	either	of	these
compile-time	limits	should	be	increased.

	MaxNoOfConcurrentScans

This	parameter	is	used	to	control	the	number	of	parallel	scans	that	can	be
performed	in	the	cluster.	Each	transaction	coordinator	can	handle	the
number	of	parallel	scans	defined	for	this	parameter.	Each	scan	query	is
performed	by	scanning	all	partitions	in	parallel.	Each	partition	scan	uses	a
scan	record	in	the	node	where	the	partition	is	located,	the	number	of	records
being	the	value	of	this	parameter	times	the	number	of	nodes.	The	cluster
should	be	able	to	sustain	MaxNoOfConcurrentScans	scans	concurrently
from	all	nodes	in	the	cluster.

Scans	are	actually	performed	in	two	cases.	The	first	of	these	cases	occurs
when	no	hash	or	ordered	indexes	exists	to	handle	the	query,	in	which	case
the	query	is	executed	by	performing	a	full	table	scan.	The	second	case	is
encountered	when	there	is	no	hash	index	to	support	the	query	but	there	is	an
ordered	index.	Using	the	ordered	index	means	executing	a	parallel	range
scan.	The	order	is	kept	on	the	local	partitions	only,	so	it	is	necessary	to
perform	the	index	scan	on	all	partitions.

The	default	value	of	MaxNoOfConcurrentScans	is	256.	The	maximum	value
is	500.

This	parameter	specifies	the	number	of	scans	possible	in	the	transaction
coordinator.	If	the	number	of	local	scan	records	is	not	provided,	it	is
calculated	as	the	product	of	MaxNoOfConcurrentScans	and	the	number	of
data	nodes	in	the	system.

	MaxNoOfLocalScans

Specifies	the	number	of	local	scan	records	if	many	scans	are	not	fully
parallelized.

	BatchSizePerLocalScan

This	parameter	is	used	to	calculate	the	number	of	lock	records	which	must
be	there	to	handle	many	concurrent	scan	operations.

The	default	value	is	64;	this	value	has	a	strong	connection	to	the
ScanBatchSize	defined	in	the	SQL	nodes.

	LongMessageBuffer

This	is	an	internal	buffer	used	for	passing	messages	within	individual	nodes
and	between	nodes.	Although	it	is	highly	unlikely	that	this	would	need	to	be
changed,	it	is	configurable.	By	default,	it	is	set	to	1MB.

Logging	and	Checkpointing

These	[NDBD]	parameters	control	log	and	checkpoint	behavior.

	NoOfFragmentLogFiles

This	parameter	sets	the	size	of	the	node's	REDO	log	files.	REDO	log	files
are	organized	in	a	ring.	It	is	extremely	important	that	the	first	and	last	log
files	(sometimes	referred	to	as	the	“head”	and	“tail”	log	files,	respectively)
do	not	meet.	When	these	approach	one	another	too	closely,	the	node	begins
aborting	all	transactions	encompassing	updates	due	to	a	lack	of	room	for
new	log	records.

A	REDO	log	record	is	not	removed	until	three	local	checkpoints	have	been
completed	since	that	log	record	was	inserted.	Checkpointing	frequency	is
determined	by	its	own	set	of	configuration	parameters	discussed	elsewhere
in	this	chapter.

How	these	parameters	interact	and	proposals	for	how	to	configure	them	are
discussed	in	Section	15.4.6,	“Configuring	Parameters	for	Local
Checkpoints”.

The	default	parameter	value	is	8,	which	means	8	sets	of	4	16MB	files	for	a
total	of	512MB.	In	other	words,	REDO	log	space	must	be	allocated	in
blocks	of	64MB.	In	scenarios	requiring	a	great	many	updates,	the	value	for
NoOfFragmentLogFiles	may	need	to	be	set	as	high	as	300	or	even	higher	to

provide	sufficient	space	for	REDO	logs.

If	the	checkpointing	is	slow	and	there	are	so	many	writes	to	the	database
that	the	log	files	are	full	and	the	log	tail	cannot	be	cut	without	jeopardizing
recovery,	all	updating	transactions	are	aborted	with	internal	error	code	410
(Out	of	log	file	space	temporarily).	This	condition	prevails	until	a
checkpoint	has	completed	and	the	log	tail	can	be	moved	forward.

Important:	This	parameter	cannot	be	changed	“on	the	fly”;	you	must
restart	the	node	using	--initial.	If	you	wish	to	change	this	value	for	a
running	cluster,	you	can	do	so	via	a	rolling	node	restart.

	MaxNoOfSavedMessages

This	parameter	sets	the	maximum	number	of	trace	files	that	are	kept	before
overwriting	old	ones.	Trace	files	are	generated	when,	for	whatever	reason,
the	node	crashes.

The	default	is	25	trace	files.

Metadata	Objects

The	next	set	of	[NDBD]	parameters	defines	pool	sizes	for	metadata	objects,	used
to	define	the	maximum	number	of	attributes,	tables,	indexes,	and	trigger	objects
used	by	indexes,	events,	and	replication	between	clusters.	Note	that	these	act
merely	as	“suggestions”	to	the	cluster,	and	any	that	are	not	specified	revert	to	the
default	values	shown.

	MaxNoOfAttributes

Defines	the	number	of	attributes	that	can	be	defined	in	the	cluster.

The	default	value	is	1000,	with	the	minimum	possible	value	being	32.	The
maximum	is	4294967039.	Each	attribute	consumes	around	200	bytes	of
storage	per	node	due	to	the	fact	that	all	metadata	is	fully	replicated	on	the
servers.

When	setting	MaxNoOfAttributes,	it	is	important	to	prepare	in	advance	for
any	ALTER	TABLE	statements	that	you	might	want	to	perform	in	the	future.
This	is	due	to	the	fact,	during	the	execution	of	ALTER	TABLE	on	a	Cluster

table,	3	times	the	number	of	attributes	as	in	the	original	table	are	used.	For
example,	if	a	table	requires	100	attributes,	and	you	want	to	be	able	to	alter	it
later,	you	need	to	set	the	value	of	MaxNoOfAttributes	to	300.	Assuming
that	you	can	create	all	desired	tables	without	any	problems,	a	good	rule	of
thumb	is	to	add	two	times	the	number	of	attributes	in	the	largest	table	to
MaxNoOfAttributes	to	be	sure.	You	should	also	verify	that	this	number	is
sufficient	by	trying	an	actual	ALTER	TABLE	after	configuring	the	parameter.
If	this	is	not	successful,	increase	MaxNoOfAttributes	by	another	multiple
of	the	original	value	and	test	it	again.

	MaxNoOfTables

A	table	object	is	allocated	for	each	table,	unique	hash	index,	and	ordered
index.	This	parameter	sets	the	maximum	number	of	table	objects	for	the
cluster	as	a	whole.

For	each	attribute	that	has	a	BLOB	data	type	an	extra	table	is	used	to	store
most	of	the	BLOB	data.	These	tables	also	must	be	taken	into	account	when
defining	the	total	number	of	tables.

The	default	value	of	this	parameter	is	128.	The	minimum	is	8	and	the
maximum	is	1600.	Each	table	object	consumes	approximately	20KB	per
node.

	MaxNoOfOrderedIndexes

For	each	ordered	index	in	the	cluster,	an	object	is	allocated	describing	what
is	being	indexed	and	its	storage	segments.	By	default,	each	index	so	defined
also	defines	an	ordered	index.	Each	unique	index	and	primary	key	has	both
an	ordered	index	and	a	hash	index.

The	default	value	of	this	parameter	is	128.	Each	object	consumes
approximately	10KB	of	data	per	node.

	MaxNoOfUniqueHashIndexes

For	each	unique	index	that	is	not	a	primary	key,	a	special	table	is	allocated
that	maps	the	unique	key	to	the	primary	key	of	the	indexed	table.	By
default,	an	ordered	index	is	also	defined	for	each	unique	index.	To	prevent
this,	you	must	specify	the	USING	HASH	option	when	defining	the	unique

index.

The	default	value	is	64.	Each	index	consumes	approximately	15KB	per
node.

	MaxNoOfTriggers

Internal	update,	insert,	and	delete	triggers	are	allocated	for	each	unique
hash	index.	(This	means	that	three	triggers	are	created	for	each	unique	hash
index.)	However,	an	ordered	index	requires	only	a	single	trigger	object.
Backups	also	use	three	trigger	objects	for	each	normal	table	in	the	cluster.

This	parameter	sets	the	maximum	number	of	trigger	objects	in	the	cluster.

The	default	value	is	768.

	MaxNoOfIndexes

This	parameter	is	deprecated	in	MySQL	5.0;	you	should	use
MaxNoOfOrderedIndexes	and	MaxNoOfUniqueHashIndexes	instead.

This	parameter	is	used	only	by	unique	hash	indexes.	There	needs	to	be	one
record	in	this	pool	for	each	unique	hash	index	defined	in	the	cluster.

The	default	value	of	this	parameter	is	128.

Boolean	Parameters

The	behavior	of	data	nodes	is	also	affected	by	a	set	of	[NDBD]	parameters	taking
on	boolean	values.	These	parameters	can	each	be	specified	as	TRUE	by	setting
them	equal	to	1	or	Y,	and	as	FALSE	by	setting	them	equal	to	0	or	N.

	LockPagesInMainMemory

For	a	number	of	operating	systems,	including	Solaris	and	Linux,	it	is
possible	to	lock	a	process	into	memory	and	so	avoid	any	swapping	to	disk.
This	can	be	used	to	help	guarantee	the	cluster's	real-time	characteristics.

This	feature	is	disabled	by	default.

	StopOnError

This	parameter	specifies	whether	an	ndbd	process	should	exit	or	perform
an	automatic	restart	when	an	error	condition	is	encountered.

This	feature	is	enabled	by	default.

	Diskless

It	is	possible	to	specify	MySQL	Cluster	tables	as	diskless,	meaning	that
tables	are	not	checkpointed	to	disk	and	that	no	logging	occurs.	Such	tables
exist	only	in	main	memory.	A	consequence	of	using	diskless	tables	is	that
neither	the	tables	nor	the	records	in	those	tables	survive	a	crash.	However,
when	operating	in	diskless	mode,	it	is	possible	to	run	ndbd	on	a	diskless
computer.

Important:	This	feature	causes	the	entire	cluster	to	operate	in	diskless
mode.

When	this	feature	is	enabled,	Cluster	online	backup	is	disabled.	In	addition,
a	partial	start	of	the	cluster	is	not	possible.

Diskless	is	disabled	by	default.

	RestartOnErrorInsert

This	feature	is	accessible	only	when	building	the	debug	version	where	it	is
possible	to	insert	errors	in	the	execution	of	individual	blocks	of	code	as	part
of	testing.

This	feature	is	disabled	by	default.

Controlling	Timeouts,	Intervals,	and	Disk	Paging

There	are	a	number	of	[NDBD]	parameters	specifying	timeouts	and	intervals
between	various	actions	in	Cluster	data	nodes.	Most	of	the	timeout	values	are
specified	in	milliseconds.	Any	exceptions	to	this	are	mentioned	where
applicable.

	TimeBetweenWatchDogCheck

To	prevent	the	main	thread	from	getting	stuck	in	an	endless	loop	at	some

point,	a	“watchdog”	thread	checks	the	main	thread.	This	parameter	specifies
the	number	of	milliseconds	between	checks.	If	the	process	remains	in	the
same	state	after	three	checks,	the	watchdog	thread	terminates	it.

This	parameter	can	easily	be	changed	for	purposes	of	experimentation	or	to
adapt	to	local	conditions.	It	can	be	specified	on	a	per-node	basis	although
there	seems	to	be	little	reason	for	doing	so.

The	default	timeout	is	4000	milliseconds	(4	seconds).

	StartPartialTimeout

This	parameter	specifies	how	long	the	Cluster	waits	for	all	data	nodes	to
come	up	before	the	cluster	initialization	routine	is	invoked.	This	timeout	is
used	to	avoid	a	partial	Cluster	startup	whenever	possible.

The	default	value	is	30000	milliseconds	(30	seconds).	0	disables	the
timeout.	In	other	words,	the	cluster	may	start	only	if	all	nodes	are	available.

	StartPartitionedTimeout

If	the	cluster	is	ready	to	start	after	waiting	for	StartPartialTimeout
milliseconds	but	is	still	possibly	in	a	partitioned	state,	the	cluster	waits	until
this	timeout	has	also	passed.

The	default	timeout	is	60000	milliseconds	(60	seconds).

	StartFailureTimeout

If	a	data	node	has	not	completed	its	startup	sequence	within	the	time
specified	by	this	parameter,	the	node	startup	fails.	Setting	this	parameter	to
0	means	that	no	data	node	timeout	is	applied.

The	default	value	is	60000	milliseconds	(60	seconds).	For	data	nodes
containing	extremely	large	amounts	of	data,	this	parameter	should	be
increased.	For	example,	in	the	case	of	a	data	node	containing	several
gigabytes	of	data,	a	period	as	long	as	10–15	minutes	(that	is,	600,000	to
1,000,000	milliseconds)	might	be	required	to	to	perform	a	node	restart.

	HeartbeatIntervalDbDb

One	of	the	primary	methods	of	discovering	failed	nodes	is	by	the	use	of
heartbeats.	This	parameter	states	how	often	heartbeat	signals	are	sent	and
how	often	to	expect	to	receive	them.	After	missing	three	heartbeat	intervals
in	a	row,	the	node	is	declared	dead.	Thus,	the	maximum	time	for
discovering	a	failure	through	the	heartbeat	mechanism	is	four	times	the
heartbeat	interval.

The	default	heartbeat	interval	is	1500	milliseconds	(1.5	seconds).	This
parameter	must	not	be	changed	drastically	and	should	not	vary	widely
between	nodes.	If	one	node	uses	5000	milliseconds	and	the	node	watching
it	uses	1000	milliseconds,	obviously	the	node	will	be	declared	dead	very
quickly.	This	parameter	can	be	changed	during	an	online	software	upgrade,
but	only	in	small	increments.

	HeartbeatIntervalDbApi

Each	data	node	sends	heartbeat	signals	to	each	MySQL	server	(SQL	node)
to	ensure	that	it	remains	in	contact.	If	a	MySQL	server	fails	to	send	a
heartbeat	in	time	it	is	declared	“dead,”	in	which	case	all	ongoing
transactions	are	completed	and	all	resources	released.	The	SQL	node	cannot
reconnect	until	all	activities	initiated	by	the	previous	MySQL	instance	have
been	completed.	The	three-heartbeat	criteria	for	this	determination	are	the
same	as	described	for	HeartbeatIntervalDbDb.

The	default	interval	is	1500	milliseconds	(1.5	seconds).	This	interval	can
vary	between	individual	data	nodes	because	each	data	node	watches	the
MySQL	servers	connected	to	it,	independently	of	all	other	data	nodes.

	TimeBetweenLocalCheckpoints

This	parameter	is	an	exception	in	that	it	does	not	specify	a	time	to	wait
before	starting	a	new	local	checkpoint;	rather,	it	is	used	to	ensure	that	local
checkpoints	are	not	performed	in	a	cluster	where	relatively	few	updates	are
taking	place.	In	most	clusters	with	high	update	rates,	it	is	likely	that	a	new
local	checkpoint	is	started	immediately	after	the	previous	one	has	been
completed.

The	size	of	all	write	operations	executed	since	the	start	of	the	previous	local
checkpoints	is	added.	This	parameter	is	also	exceptional	in	that	it	is
specified	as	the	base-2	logarithm	of	the	number	of	4-byte	words,	so	that	the

default	value	20	means	4MB	(4	×	220)	of	write	operations,	21	would	mean
8MB,	and	so	on	up	to	a	maximum	value	of	31,	which	equates	to	8GB	of
write	operations.

All	the	write	operations	in	the	cluster	are	added	together.	Setting
TimeBetweenLocalCheckpoints	to	6	or	less	means	that	local	checkpoints
will	be	executed	continuously	without	pause,	independent	of	the	cluster's
workload.

	TimeBetweenGlobalCheckpoints

When	a	transaction	is	committed,	it	is	committed	in	main	memory	in	all
nodes	on	which	the	data	is	mirrored.	However,	transaction	log	records	are
not	flushed	to	disk	as	part	of	the	commit.	The	reasoning	behind	this
behavior	is	that	having	the	transaction	safely	committed	on	at	least	two
autonomous	host	machines	should	meet	reasonable	standards	for	durability.

It	is	also	important	to	ensure	that	even	the	worst	of	cases	—	a	complete
crash	of	the	cluster	—	is	handled	properly.	To	guarantee	that	this	happens,
all	transactions	taking	place	within	a	given	interval	are	put	into	a	global
checkpoint,	which	can	be	thought	of	as	a	set	of	committed	transactions	that
has	been	flushed	to	disk.	In	other	words,	as	part	of	the	commit	process,	a
transaction	is	placed	in	a	global	checkpoint	group.	Later,	this	group's	log
records	are	flushed	to	disk,	and	then	the	entire	group	of	transactions	is
safely	committed	to	disk	on	all	computers	in	the	cluster.

This	parameter	defines	the	interval	between	global	checkpoints.	The	default
is	2000	milliseconds.

	TimeBetweenInactiveTransactionAbortCheck

Timeout	handling	is	performed	by	checking	a	timer	on	each	transaction
once	for	every	interval	specified	by	this	parameter.	Thus,	if	this	parameter
is	set	to	1000	milliseconds,	every	transaction	will	be	checked	for	timing	out
once	per	second.

The	default	value	is	1000	milliseconds	(1	second).

	TransactionInactiveTimeout

This	parameter	states	the	maximum	time	that	is	permitted	to	lapse	between
operations	in	the	same	transaction	before	the	transaction	is	aborted.

The	default	for	this	parameter	is	zero	(no	timeout).	For	a	real-time	database
that	needs	to	ensure	that	no	transaction	keeps	locks	for	too	long,	this
parameter	should	be	set	to	a	much	smaller	value.	The	unit	is	milliseconds.

	TransactionDeadlockDetectionTimeout

When	a	node	executes	a	query	involving	a	transaction,	the	node	waits	for
the	other	nodes	in	the	cluster	to	respond	before	continuing.	A	failure	to
respond	can	occur	for	any	of	the	following	reasons:

The	node	is	“dead”

The	operation	has	entered	a	lock	queue

The	node	requested	to	perform	the	action	could	be	heavily	overloaded.

This	timeout	parameter	states	how	long	the	transaction	coordinator	waits
for	query	execution	by	another	node	before	aborting	the	transaction,	and	is
important	for	both	node	failure	handling	and	deadlock	detection.	Setting	it
too	high	can	cause	a	undesirable	behavior	in	situations	involving	deadlocks
and	node	failure.

The	default	timeout	value	is	1200	milliseconds	(1.2	seconds).

	NoOfDiskPagesToDiskAfterRestartTUP

When	executing	a	local	checkpoint,	the	algorithm	flushes	all	data	pages	to
disk.	Merely	doing	so	as	quickly	as	possible	without	any	moderation	is
likely	to	impose	excessive	loads	on	processors,	networks,	and	disks.	To
control	the	write	speed,	this	parameter	specifies	how	many	pages	per	100
milliseconds	are	to	be	written.	In	this	context,	a	“page”	is	defined	as	8KB.
This	parameter	is	specified	in	units	of	80KB	per	second,	so	,	setting
NoOfDiskPagesToDiskAfterRestartTUP	to	a	value	of	20	entails	writing
1.6MB	in	data	pages	to	disk	each	second	during	a	local	checkpoint.	This
value	includes	the	writing	of	UNDO	log	records	for	data	pages.	That	is,	this
parameter	handles	the	limitation	of	writes	from	data	memory.	UNDO	log
records	for	index	pages	are	handled	by	the	parameter

NoOfDiskPagesToDiskAfterRestartACC.	(See	the	entry	for	IndexMemory
for	information	about	index	pages.)

In	short,	this	parameter	specifies	how	quickly	to	execute	local	checkpoints.
It	operates	in	conjunction	with	NoOfFragmentLogFiles,	DataMemory,	and
IndexMemory.

For	more	information	about	the	interaction	between	these	parameters	and
possible	strategies	for	choosing	appropriate	values	for	them,	see
Section	15.4.6,	“Configuring	Parameters	for	Local	Checkpoints”.

The	default	value	is	40	(3.2MB	of	data	pages	per	second).

	NoOfDiskPagesToDiskAfterRestartACC

This	parameter	uses	the	same	units	as
NoOfDiskPagesToDiskAfterRestartTUP	and	acts	in	a	similar	fashion,	but
limits	the	speed	of	writing	index	pages	from	index	memory.

The	default	value	of	this	parameter	is	20	(1.6MB	of	index	memory	pages
per	second).

	NoOfDiskPagesToDiskDuringRestartTUP

This	parameter	is	used	in	a	fashion	similar	to
NoOfDiskPagesToDiskAfterRestartTUP	and
NoOfDiskPagesToDiskAfterRestartACC,	only	it	does	so	with	regard	to
local	checkpoints	executed	in	the	node	when	a	node	is	restarting.	A	local
checkpoint	is	always	performed	as	part	of	all	node	restarts.	During	a	node
restart	it	is	possible	to	write	to	disk	at	a	higher	speed	than	at	other	times,
because	fewer	activities	are	being	performed	in	the	node.

This	parameter	covers	pages	written	from	data	memory.

The	default	value	is	40	(3.2MB	per	second).

	NoOfDiskPagesToDiskDuringRestartACC

Controls	the	number	of	index	memory	pages	that	can	be	written	to	disk
during	the	local	checkpoint	phase	of	a	node	restart.

As	with	NoOfDiskPagesToDiskAfterRestartTUP	and
NoOfDiskPagesToDiskAfterRestartACC,	values	for	this	parameter	are
expressed	in	terms	of	8KB	pages	written	per	100	milliseconds
(80KB/second).

The	default	value	is	20	(1.6MB	per	second).

	ArbitrationTimeout

This	parameter	specifies	how	long	data	nodes	wait	for	a	response	from	the
arbitrator	to	an	arbitration	message.	If	this	is	exceeded,	the	network	is
assumed	to	have	split.

The	default	value	is	1000	milliseconds	(1	second).

Buffering	and	Logging

Several	[NDBD]	configuration	parameters	corresponding	to	former	compile-time
parameters	are	also	available.	These	enable	the	advanced	user	to	have	more
control	over	the	resources	used	by	node	processes	and	to	adjust	various	buffer
sizes	at	need.

These	buffers	are	used	as	front	ends	to	the	file	system	when	writing	log	records
to	disk.	If	the	node	is	running	in	diskless	mode,	these	parameters	can	be	set	to
their	minimum	values	without	penalty	due	to	the	fact	that	disk	writes	are	“faked”
by	the	NDB	storage	engine's	filesystem	abstraction	layer.

	UndoIndexBuffer

The	UNDO	index	buffer,	whose	size	is	set	by	this	parameter,	is	used	during
local	checkpoints.	The	NDB	storage	engine	uses	a	recovery	scheme	based	on
checkpoint	consistency	in	conjunction	with	an	operational	REDO	log.	To
produce	a	consistent	checkpoint	without	blocking	the	entire	system	for
writes,	UNDO	logging	is	done	while	performing	the	local	checkpoint.
UNDO	logging	is	activated	on	a	single	table	fragment	at	a	time.	This
optimization	is	possible	because	tables	are	stored	entirely	in	main	memory.

The	UNDO	index	buffer	is	used	for	the	updates	on	the	primary	key	hash
index.	Inserts	and	deletes	rearrange	the	hash	index;	the	NDB	storage	engine
writes	UNDO	log	records	that	map	all	physical	changes	to	an	index	page	so

that	they	can	be	undone	at	system	restart.	It	also	logs	all	active	insert
operations	for	each	fragment	at	the	start	of	a	local	checkpoint.

Reads	and	updates	set	lock	bits	and	update	a	header	in	the	hash	index	entry.
These	changes	are	handled	by	the	page-writing	algorithm	to	ensure	that
these	operations	need	no	UNDO	logging.

This	buffer	is	2MB	by	default.	The	minimum	value	is	1MB,	which	is
sufficient	for	most	applications.	For	applications	doing	extremely	large	or
numerous	inserts	and	deletes	together	with	large	transactions	and	large
primary	keys,	it	may	be	necessary	to	increase	the	size	of	this	buffer.	If	this
buffer	is	too	small,	the	NDB	storage	engine	issues	internal	error	code	677
(Index	UNDO	buffers	overloaded).

Important:	It	is	not	safe	to	decrease	the	value	of	this	parameter	during	a
rolling	restart.

	UndoDataBuffer

This	parameter	sets	the	size	of	the	UNDO	data	buffer,	which	performs	a
function	similar	to	that	of	the	UNDO	index	buffer,	except	the	UNDO	data
buffer	is	used	with	regard	to	data	memory	rather	than	index	memory.	This
buffer	is	used	during	the	local	checkpoint	phase	of	a	fragment	for	inserts,
deletes,	and	updates.

Because	UNDO	log	entries	tend	to	grow	larger	as	more	operations	are
logged,	this	buffer	is	also	larger	than	its	index	memory	counterpart,	with	a
default	value	of	16MB.

This	amount	of	memory	may	be	unnecessarily	large	for	some	applications.
In	such	cases,	it	is	possible	to	decrease	this	size	to	a	minimum	of	1MB.

It	is	rarely	necessary	to	increase	the	size	of	this	buffer.	If	there	is	such	a
need,	it	is	a	good	idea	to	check	whether	the	disks	can	actually	handle	the
load	caused	by	database	update	activity.	A	lack	of	sufficient	disk	space
cannot	be	overcome	by	increasing	the	size	of	this	buffer.

If	this	buffer	is	too	small	and	gets	congested,	the	NDB	storage	engine	issues
internal	error	code	891	(Data	UNDO	buffers	overloaded).

Important:	It	is	not	safe	to	decrease	the	value	of	this	parameter	during	a
rolling	restart.

	RedoBuffer

All	update	activities	also	need	to	be	logged.	The	REDO	log	makes	it
possible	to	replay	these	updates	whenever	the	system	is	restarted.	The	NDB
recovery	algorithm	uses	a	“fuzzy”	checkpoint	of	the	data	together	with	the
UNDO	log,	and	then	applies	the	REDO	log	to	play	back	all	changes	up	to
the	restoration	point.

RedoBuffer	sets	the	size	of	the	buffer	inwhich	the	REDO	log	is	written,	and
is	8MB	by	default.	The	minimum	value	is	1MB.

If	this	buffer	is	too	small,	the	NDB	storage	engine	issues	error	code	1221
(REDO	log	buffers	overloaded).

Important:	It	is	not	safe	to	decrease	the	value	of	this	parameter	during	a
rolling	restart.

Controlling	Log	Messages

In	managing	the	cluster,	it	is	very	important	to	be	able	to	control	the	number	of
log	messages	sent	for	various	event	types	to	stdout.	For	each	event	category,
there	are	16	possible	event	levels	(numbered	0	through	15).	Setting	event
reporting	for	a	given	event	category	to	level	15	means	all	event	reports	in	that
category	are	sent	to	stdout;	setting	it	to	0	means	that	there	will	be	no	event
reports	made	in	that	category.

By	default,	only	the	startup	message	is	sent	to	stdout,	with	the	remaining	event
reporting	level	defaults	being	set	to	0.	The	reason	for	this	is	that	these	messages
are	also	sent	to	the	management	server's	cluster	log.

An	analogous	set	of	levels	can	be	set	for	the	management	client	to	determine
which	event	levels	to	record	in	the	cluster	log.

	LogLevelStartup

The	reporting	level	for	events	generated	during	startup	of	the	process.

The	default	level	is	1.

	LogLevelShutdown

The	reporting	level	for	events	generated	as	part	of	graceful	shutdown	of	a
node.

The	default	level	is	0.

	LogLevelStatistic

The	reporting	level	for	statistical	events	such	as	number	of	primary	key
reads,	number	of	updates,	number	of	inserts,	information	relating	to	buffer
usage,	and	so	on.

The	default	level	is	0.

	LogLevelCheckpoint

The	reporting	level	for	events	generated	by	local	and	global	checkpoints.

The	default	level	is	0.

	LogLevelNodeRestart

The	reporting	level	for	events	generated	during	node	restart.

The	default	level	is	0.

	LogLevelConnection

The	reporting	level	for	events	generated	by	connections	between	cluster
nodes.

The	default	level	is	0.

	LogLevelError

The	reporting	level	for	events	generated	by	errors	and	warnings	by	the
cluster	as	a	whole.	These	errors	do	not	cause	any	node	failure	but	are	still
considered	worth	reporting.

The	default	level	is	0.

	LogLevelInfo

The	reporting	level	for	events	generated	for	information	about	the	general
state	of	the	cluster.

The	default	level	is	0.

Backup	Parameters

The	[NDBD]	parameters	discussed	in	this	section	define	memory	buffers	set	aside
for	execution	of	online	backups.

	BackupDataBufferSize

In	creating	a	backup,	there	are	two	buffers	used	for	sending	data	to	the	disk.
The	backup	data	buffer	is	used	to	fill	in	data	recorded	by	scanning	a	node's
tables.	Once	this	buffer	has	been	filled	to	the	level	specified	as
BackupWriteSize	(see	below),	the	pages	are	sent	to	disk.	While	flushing
data	to	disk,	the	backup	process	can	continue	filling	this	buffer	until	it	runs
out	of	space.	When	this	happens,	the	backup	process	pauses	the	scan	and
waits	until	some	disk	writes	have	completed	freed	up	memory	so	that
scanning	may	continue.

The	default	value	is	2MB.

	BackupLogBufferSize

The	backup	log	buffer	fulfills	a	role	similar	to	that	played	by	the	backup
data	buffer,	except	that	it	is	used	for	generating	a	log	of	all	table	writes
made	during	execution	of	the	backup.	The	same	principles	apply	for	writing
these	pages	as	with	the	backup	data	buffer,	except	that	when	there	is	no
more	space	in	the	backup	log	buffer,	the	backup	fails.	For	that	reason,	the
size	of	the	backup	log	buffer	must	be	large	enough	to	handle	the	load
caused	by	write	activities	while	the	backup	is	being	made.	See
Section	15.8.4,	“Configuration	for	Cluster	Backup”.

The	default	value	for	this	parameter	should	be	sufficient	for	most
applications.	In	fact,	it	is	more	likely	for	a	backup	failure	to	be	caused	by

insufficient	disk	write	speed	than	it	is	for	the	backup	log	buffer	to	become
full.	If	the	disk	subsystem	is	not	configured	for	the	write	load	caused	by
applications,	the	cluster	is	unlikely	to	be	able	to	perform	the	desired
operations.

It	is	preferable	to	configure	cluster	nodes	in	such	a	manner	that	the
processor	becomes	the	bottleneck	rather	than	the	disks	or	the	network
connections.

The	default	value	is	2MB.

	BackupMemory

This	parameter	is	simply	the	sum	of	BackupDataBufferSize	and
BackupLogBufferSize.

The	default	value	is	2MB	+	2MB	=	4MB.

Important:	If	BackupDataBufferSize	and	BackupLogBufferSize	taken
together	exceed	4MB,	then	this	parameter	must	be	set	explicitly	in	the
config.ini	file	to	their	sum.

	BackupWriteSize

This	parameter	specifies	the	size	of	messages	written	to	disk	by	the	backup
log	and	backup	data	buffers.

The	default	value	is	32KB.

15.4.4.6.	Defining	SQL	Nodes

The	[MYSQLD]	sections	in	the	config.ini	file	define	the	behavior	of	the	MySQL
servers	(SQL	nodes)	used	to	access	cluster	data.	None	of	the	parameters	shown
is	required.	If	no	computer	or	host	name	is	provided,	any	host	can	use	this	SQL
node.

	Id

The	Id	value	is	used	to	identify	the	node	in	all	cluster	internal	messages.	It
must	be	an	integer	in	the	range	1	to	63	inclusive,	and	must	be	unique	among

all	node	IDs	within	the	cluster.

	ExecuteOnComputer

This	refers	to	the	Id	set	for	one	of	the	computers	(hosts)	defined	in	a
[COMPUTER]	section	of	the	configuration	file.

	HostName

Specifying	this	parameter	defines	the	hostname	of	the	computer	on	which
the	SQL	node	(API	node)	is	to	reside.	To	specify	a	hostname	other	than
localhost,	either	this	parameter	or	ExecuteOnComputer	is	required.

	ArbitrationRank

This	parameter	defines	which	nodes	can	act	as	arbitrators.	Both	MGM
nodes	and	SQL	nodes	can	be	arbitrators.	A	value	of	0	means	that	the	given
node	is	never	used	as	an	arbitrator,	a	value	of	1	gives	the	node	high	priority
as	an	arbitrator,	and	a	value	of	2	gives	it	low	priority.	A	normal
configuration	uses	the	management	server	as	arbitrator,	setting	its
ArbitrationRank	to	1	(the	default)	and	those	for	all	SQL	nodes	to	0.

	ArbitrationDelay

Setting	this	parameter	to	any	other	value	than	0	(the	default)	means	that
responses	by	the	arbitrator	to	arbitration	requests	will	be	delayed	by	the
stated	number	of	milliseconds.	It	is	usually	not	necessary	to	change	this
value.

	BatchByteSize

For	queries	that	are	translated	into	full	table	scans	or	range	scans	on
indexes,	it	is	important	for	best	performance	to	fetch	records	in	properly
sized	batches.	It	is	possible	to	set	the	proper	size	both	in	terms	of	number	of
records	(BatchSize)	and	in	terms	of	bytes	(BatchByteSize).	The	actual
batch	size	is	limited	by	both	parameters.

The	speed	at	which	queries	are	performed	can	vary	by	more	than	40%
depending	upon	how	this	parameter	is	set.	In	future	releases,	MySQL
Server	will	make	educated	guesses	on	how	to	set	parameters	relating	to

batch	size,	based	on	the	query	type.

This	parameter	is	measured	in	bytes	and	by	default	is	equal	to	32KB.

	BatchSize

This	parameter	is	measured	in	number	of	records	and	is	by	default	set	to	64.
The	maximum	size	is	992.

	MaxScanBatchSize

The	batch	size	is	the	size	of	each	batch	sent	from	each	data	node.	Most
scans	are	performed	in	parallel	to	protect	the	MySQL	Server	from	receiving
too	much	data	from	many	nodes	in	parallel;	this	parameter	sets	a	limit	to	the
total	batch	size	over	all	nodes.

The	default	value	of	this	parameter	is	set	to	256KB.	Its	maximum	size	is
16MB.

You	can	obtain	some	information	from	a	MySQL	server	running	as	a	Cluster
SQL	node	using	SHOW	STATUS	in	the	mysql	client,	as	shown	here:

mysql>	SHOW	STATUS	LIKE	'ndb%';

+-----------------------------+---------------+

|	Variable_name															|	Value									|

+-----------------------------+---------------+

|	Ndb_cluster_node_id									|	5													|	

|	Ndb_config_from_host								|	192.168.0.112	|	

|	Ndb_config_from_port								|	1186										|	

|	Ndb_number_of_storage_nodes	|	4													|	

+-----------------------------+---------------+

4	rows	in	set	(0.02	sec)

For	information	about	these	Cluster	system	status	variables,	see	Section	5.2.4,
“Server	Status	Variables”.

15.4.4.7.	Cluster	TCP/IP	Connections

TCP/IP	is	the	default	transport	mechanism	for	establishing	connections	in
MySQL	Cluster.	It	is	normally	not	necessary	to	define	connections	because
Cluster	automatically	set	ups	a	connection	between	each	of	the	data	nodes,
between	each	data	node	and	all	MySQL	server	nodes,	and	between	each	data

node	and	the	management	server.	(For	one	exception	to	this	rule,	see
Section	15.4.4.8,	“TCP/IP	Connections	Using	Direct	Connections”.)	[TCP]
sections	in	the	config.ini	file	explicitly	define	TCP/IP	connections	between
nodes	in	the	cluster.

It	is	only	necessary	to	define	a	connection	to	override	the	default	connection
parameters.	In	that	case,	it	is	necessary	to	define	at	least	NodeId1,	NodeId2,	and
the	parameters	to	change.

It	is	also	possible	to	change	the	default	values	for	these	parameters	by	setting
them	in	the	[TCP	DEFAULT]	section.

	NodeId1,	NodeId2

To	identify	a	connection	between	two	nodes	it	is	necessary	to	provide	their
node	IDs	in	the	[TCP]	section	of	the	configuration	file.	These	are	the	same
unique	Id	values	for	each	of	these	nodes	as	described	in	Section	15.4.4.6,
“Defining	SQL	Nodes”.

	SendBufferMemory

TCP	transporters	use	a	buffer	to	store	all	messages	before	performing	the
send	call	to	the	operating	system.	When	this	buffer	reaches	64KB	its
contents	are	sent;	these	are	also	sent	when	a	round	of	messages	have	been
executed.	To	handle	temporary	overload	situations	it	is	also	possible	to
define	a	bigger	send	buffer.	The	default	size	of	the	send	buffer	is	256KB.

	SendSignalId

To	be	able	to	retrace	a	distributed	message	datagram,	it	is	necessary	to
identify	each	message.	When	this	parameter	is	set	to	Y,	message	IDs	are
transported	over	the	network.	This	feature	is	disabled	by	default.

	Checksum

This	parameter	is	a	boolean	parameter	(enabled	by	setting	it	to	Y	or	1,
disabled	by	setting	it	to	N	or	0).	It	is	disabled	by	default.	When	it	is	enabled,
checksums	for	all	messages	are	calculated	before	they	placed	in	the	send
buffer.	This	feature	ensures	that	messages	are	not	corrupted	while	waiting
in	the	send	buffer,	or	by	the	transport	mechanism.

	PortNumber	(OBSOLETE)

This	formerly	specified	the	port	number	to	be	used	for	listening	for
connections	from	other	nodes.	This	parameter	should	no	longer	be	used.

	ReceiveBufferMemory

Specifies	the	size	of	the	buffer	used	when	receiving	data	from	the	TCP/IP
socket.	There	is	seldom	any	need	to	change	this	parameter	from	its	default
value	of	64KB,	except	possibly	to	save	memory.

15.4.4.8.	TCP/IP	Connections	Using	Direct	Connections

Setting	up	a	cluster	using	direct	connections	between	data	nodes	requires
specifying	explicitly	the	crossover	IP	addresses	of	the	data	nodes	so	connected	in
the	[TCP]	section	of	the	cluster	config.ini	file.

In	the	following	example,	we	envision	a	cluster	with	at	least	four	hosts,	one	each
for	a	management	server,	an	SQL	node,	and	two	data	nodes.	The	cluster	as	a
whole	resides	on	the	172.23.72.*	subnet	of	a	LAN.	In	addition	to	the	usual
network	connections,	the	two	data	nodes	are	connected	directly	using	a	standard
crossover	cable,	and	communicate	with	one	another	directly	using	IP	addresses
in	the	1.1.0.*	address	range	as	shown:

#	Management	Server

[NDB_MGMD]

Id=1

HostName=172.23.72.20

#	SQL	Node

[MYSQLD]

Id=2

HostName=172.23.72.21

#	Data	Nodes

[NDBD]

Id=3

HostName=172.23.72.22

[NDBD]

Id=4

HostName=172.23.72.23

#	TCP/IP	Connections

[TCP]

NodeId1=3

NodeId2=4

HostName1=1.1.0.1

HostName2=1.1.0.2

The	HostNameN	parameter,	where	N	is	an	integer,	is	used	only	when	specifying
direct	TCP/IP	connections.

The	use	of	direct	connections	between	data	nodes	can	improve	the	cluster's
overall	efficiency	by	allowing	the	data	nodes	to	bypass	an	Ethernet	device	such
as	a	switch,	hub,	or	router,	thus	cutting	down	on	the	cluster's	latency.	It	is
important	to	note	that	to	take	the	best	advantage	of	direct	connections	in	this
fashion	with	more	than	two	data	nodes,	you	must	have	a	direct	connection
between	each	data	node	and	every	other	data	node	in	the	same	node	group.

15.4.4.9.	Shared-Memory	Connections

MySQL	Cluster	attempts	to	use	the	shared	memory	transporter	and	configure	it
automatically	where	possible,	chiefly	where	more	than	one	node	runs
concurrently	on	the	same	cluster	host.	(In	very	early	versions	of	MySQL	Cluster,
shared	memory	segments	functioned	only	when	the	server	binary	was	built	using
--with-ndb-shm.)	[SHM]	sections	in	the	config.ini	file	explicitly	define
shared-memory	connections	between	nodes	in	the	cluster.	When	explicitly
defining	shared	memory	as	the	connection	method,	it	is	necessary	to	define	at
least	NodeId1,	NodeId2	and	ShmKey.	All	other	parameters	have	default	values
that	should	work	well	in	most	cases.

Important:	SHM	functionality	is	considered	experimental	only.	It	is	not
officially	supported	in	any	MySQL	release	series	up	to	and	including	5.0.	This
means	that	you	must	determine	for	yourself	or	by	using	our	free	resources
(forums,	mailing	lists)	whether	it	can	be	made	to	work	correctly	in	your	specific
case.

	NodeId1,	NodeId2

To	identify	a	connection	between	two	nodes	it	is	necessary	to	provide	node
identifiers	for	each	of	them,	as	NodeId1	and	NodeId2.

	ShmKey

When	setting	up	shared	memory	segments,	a	node	ID,	expressed	as	an
integer,	is	used	to	identify	uniquely	the	shared	memory	segment	to	use	for
the	communication.	There	is	no	default	value.

	ShmSize

Each	SHM	connection	has	a	shared	memory	segment	where	messages
between	nodes	are	placed	by	the	sender	and	read	by	the	reader.	The	size	of
this	segment	is	defined	by	ShmSize.	The	default	value	is	1MB.

	SendSignalId

To	retrace	the	path	of	a	distributed	message,	it	is	necessary	to	provide	each
message	with	a	unique	identifier.	Setting	this	parameter	to	Y	causes	these
message	IDs	to	be	transported	over	the	network	as	well.	This	feature	is
disabled	by	default.

	Checksum

This	parameter	is	a	boolean	(Y/N)	parameter	which	is	disabled	by	default.
When	it	is	enabled,	checksums	for	all	messages	are	calculated	before	being
placed	in	the	send	buffer.

This	feature	prevents	messages	from	being	corrupted	while	waiting	in	the
send	buffer.	It	also	serves	as	a	check	against	data	being	corrupted	during
transport.

15.4.4.10.	SCI	Transport	Connections

[SCI]	sections	in	the	config.ini	file	explicitly	define	SCI	(Scalable	Coherent
Interface)	connections	between	cluster	nodes.	Using	SCI	transporters	in	MySQL
Cluster	is	supported	only	when	the	MySQL-Max	binaries	are	built	using	--
with-ndb-sci=/your/path/to/SCI.	The	path	should	point	to	a	directory	that
contains	at	a	minimum	lib	and	include	directories	containing	SISCI	libraries
and	header	files.	(See	Section	15.9,	“Using	High-Speed	Interconnects	with
MySQL	Cluster”	for	more	information	about	SCI.)

In	addition,	SCI	requires	specialized	hardware.

It	is	strongly	recommended	to	use	SCI	Transporters	only	for	communication
between	ndbd	processes.	Note	also	that	using	SCI	Transporters	means	that	the
ndbd	processes	never	sleep.	For	this	reason,	SCI	Transporters	should	be	used
only	on	machines	having	at	least	two	CPUs	dedicated	for	use	by	ndbd
processes.	There	should	be	at	least	one	CPU	per	ndbd	process,	with	at	least	one
CPU	left	in	reserve	to	handle	operating	system	activities.

	NodeId1,	NodeId2

To	identify	a	connection	between	two	nodes	it	is	necessary	to	provide	node
identifiers	for	each	of	them,	as	NodeId1	and	NodeId2.

	Host1SciId0

This	identifies	the	SCI	node	ID	on	the	first	Cluster	node	(identified	by
NodeId1).

	Host1SciId1

It	is	possible	to	set	up	SCI	Transporters	for	failover	between	two	SCI	cards
which	then	should	use	separate	networks	between	the	nodes.	This	identifies
the	node	ID	and	the	second	SCI	card	to	be	used	on	the	first	node.

	Host2SciId0

This	identifies	the	SCI	node	ID	on	the	second	Cluster	node	(identified	by
NodeId2).

	Host2SciId1

When	using	two	SCI	cards	to	provide	failover,	this	parameter	identifies	the
second	SCI	card	to	be	used	on	the	second	node.

	SharedBufferSize

Each	SCI	transporter	has	a	shared	memory	segment	used	for
communication	between	the	two	nodes.	Setting	the	size	of	this	segment	to
the	default	value	of	1MB	should	be	sufficient	for	most	applications.	Using	a

smaller	value	can	lead	to	problems	when	performing	many	parallel	inserts;
if	the	shared	buffer	is	too	small,	this	can	also	result	in	a	crash	of	the	ndbd
process.

	SendLimit

A	small	buffer	in	front	of	the	SCI	media	stores	messages	before
transmitting	them	over	the	SCI	network.	By	default,	this	is	set	to	8KB.	Our
benchmarks	show	that	performance	is	best	at	64KB	but	16KB	reaches
within	a	few	percent	of	this,	and	there	was	little	if	any	advantage	to
increasing	it	beyond	8KB.

	SendSignalId

To	trace	a	distributed	message	it	is	necessary	to	identify	each	message
uniquely.	When	this	parameter	is	set	to	Y,	message	IDs	are	transported	over
the	network.	This	feature	is	disabled	by	default.

	Checksum

This	parameter	is	a	boolean	value,	and	is	disabled	by	default.	When
Checksum	is	enabled,	checksums	are	calculated	for	all	messages	before	they
are	placed	in	the	send	buffer.	This	feature	prevents	messages	from	being
corrupted	while	waiting	in	the	send	buffer.	It	also	serves	as	a	check	against
data	being	corrupted	during	transport.

15.4.5.	Overview	of	Cluster	Configuration	Parameters

The	next	three	sections	provide	summary	tables	of	MySQL	Cluster	configuration
parameters	used	in	the	config.ini	file	to	govern	the	cluster's	functioning.	Each
table	lists	the	parameters	for	one	of	the	Cluster	node	process	types	(ndbd,
ndb_mgmd,	and	mysqld),	and	includes	the	parameter's	type	as	well	as	its
default,	mimimum,	and	maximum	values	as	applicable.

It	is	also	stated	what	type	of	restart	is	required	(node	restart	or	system	restart)	—
and	whether	the	restart	must	be	done	with	--initial	—	to	change	the	value	of	a
given	configuration	parameter.	This	information	is	provided	in	each	table's
Restart	Type	column,	which	contains	one	of	the	values	shown	in	this	list:

N:	Node	Restart

IN:	Initial	Node	Restart

S:	System	Restart

IS:	Initial	System	Restart

When	performing	a	node	restart	or	an	initial	node	restart,	all	of	the	cluster's	data
nodes	must	be	restarted	in	turn	(also	referred	to	as	a	rolling	restart).	It	is	possible
to	update	cluster	configuration	parameters	marked	N	or	IN	online	—	that	is,
without	shutting	down	the	cluster	—	in	this	fashion.	An	initial	node	restart
requires	restarting	each	ndbd	process	with	the	--initial	option.

A	system	restart	requires	a	complete	shutdown	and	restart	of	the	entire	cluster.
An	initial	system	restart	requires	taking	a	backup	of	the	cluster,	wiping	the
cluster	filesystem	after	shutdown,	and	then	restoring	from	the	backup	following
the	restart.

In	any	cluster	restart,	all	of	the	cluster's	management	servers	must	be	restarted	in
order	for	them	to	read	the	updated	configuration	parameter	values.

Important:	Values	for	numeric	cluster	parameters	can	generally	be	increased
without	any	problems,	although	it	is	advisable	to	do	so	progressively,	making
such	adjustments	in	relatively	small	increments.	However,	decreasing	the	values
of	such	parameters	—	particularly	those	relating	to	memory	usage	and	disk
space	—	is	not	to	be	undertaken	lightly,	and	it	is	recommended	that	you	do	so
only	following	careful	planning	and	testing.	In	addition,	it	is	the	generally	the
case	that	parameters	relating	to	memory	and	disk	usage	which	can	be	raised
using	a	simple	node	restart	require	an	initial	node	restart	to	be	lowered.

Because	some	of	these	parameters	can	be	used	for	configuring	more	than	one
type	of	cluster	node,	they	may	appear	in	more	than	one	of	the	tables.

(Note	that	4294967039	—	which	often	appears	as	a	maximum	value	in	these
tables	—	is	equal	to	232	–	28	–	1.)

15.4.5.1.	Data	Node	Configuration	Parameters

The	following	table	provides	information	about	parameters	used	in	the	[NDBD]	or
[NDB_DEFAULT]	sections	of	a	config.ini	file	for	configuring	MySQL	Cluster

data	nodes.	For	detailed	descriptions	and	other	additional	information	about	each
of	these	parameters,	see	Section	15.4.4.5,	“Defining	Data	Nodes”.

Restart	Type	Column	Values

N:	Node	Restart

IN:	Initial	Node	Restart

S:	System	Restart

IS:	Initial	System	Restart

See	Section	15.4.5,	“Overview	of	Cluster	Configuration	Parameters”,	for
additional	explanations	of	these	abbreviations.

Parameter	Name Type/Units Default	Value

ArbitrationTimeout milliseconds 1000
BackupDataBufferSize bytes 2M
BackupDataDir string FileSystemPath/BACKUP
BackupLogBufferSize bytes 2M
BackupMemory bytes 4M
BackupWriteSize bytes 32K
BatchSizePerLocalScan integer 64
DataDir string /var/lib/mysql-cluster

DataMemory bytes 80M

Diskless
true|false
(1|0) 0

ExecuteOnComputer integer 	
FileSystemPath string value	specified	for	

HeartbeatIntervalDbApi milliseconds 1500
HeartbeatIntervalDbDb milliseconds 1500
HostName string localhost

Id integer None

IndexMemory bytes 18M

LockPagesInMainMemory
true|false
(1|0) 0

LogLevelCheckpoint integer 0
LogLevelConnection integer 0
LogLevelError integer 0
LogLevelInfo integer 0
LogLevelNodeRestart integer 0
LogLevelShutdown integer 0
LogLevelStartup integer 1
LogLevelStatistic integer 0
LongMessageBuffer bytes 1M
MaxNoOfAttributes integer 1000
MaxNoOfConcurrentIndexOperations integer 8K
MaxNoOfConcurrentOperations integer 32768
MaxNoOfConcurrentScans integer 256
MaxNoOfConcurrentTransactions integer 4096
MaxNoOfFiredTriggers integer 4000
MaxNoOfIndexes	(DEPRECATED	—	use
MaxNoOfOrderedIndexes	or
MaxNoOfUniqueHashIndexes	instead)

integer 128

MaxNoOfLocalOperations integer UNDEFINED

MaxNoOfLocalScans integer UNDEFINED

MaxNoOfOrderedIndexes

integer 128
MaxNoOfSavedMessages integer 25
MaxNoOfTables integer 128
MaxNoOfTriggers integer 768
MaxNoOfUniqueHashIndexes integer 64

NoOfDiskPagesToDiskAfterRestartACC

integer
(number	of
8KB	pages
per	100
milliseconds)

20	(=	20	*	80KB	=
1.6MB/second)

NoOfDiskPagesToDiskAfterRestartTUP

integer
(number	of
8KB	pages
per	100
milliseconds)

40	(=	40	*	80KB	=
3.2MB/second)

NoOfDiskPagesToDiskDuringRestartACC

integer
(number	of
8KB	pages
per	100
milliseconds)

20	(=	20	*	80KB	=
1.6MB/second)

NoOfDiskPagesToDiskDuringRestartTUP

integer
(number	of
8KB	pages
per	100
milliseconds)

40	(=	40	*	80KB	=
3.2MB/second)

NoOfFragmentLogFiles integer 8
NoOfReplicas integer None
RedoBuffer bytes 8M
RestartOnErrorInsert	(DEBUG	BUILDS
ONLY)

true|false
(1|0) 0

ServerPort	(OBSOLETE) integer 1186
StartFailureTimeout milliseconds 60000
StartPartialTimeout milliseconds 30000
StartPartitionedTimeout milliseconds 60000

StopOnError true|false
(1|0)

1

TimeBetweenGlobalCheckpoints milliseconds 2000
TimeBetweenInactiveTransactionAbortCheck milliseconds 1000

TimeBetweenLocalCheckpoints

integer
(number	of
4-byte	words
as	a	base-2
logarithm)

20	(=	4	*	220	=	4MB	write
operations)

TimeBetweenWatchDogCheck milliseconds 4000
TransactionBufferMemory bytes 1M
TransactionDeadlockDetectionTimeout milliseconds 1200
TransactionInactiveTimeout milliseconds 0
UndoDataBuffer bytes 16M
UndoIndexBuffer bytes 2M

15.4.5.2.	Management	Node	Configuration	Parameters

The	following	table	provides	information	about	parameters	used	in	the
[NDB_MGMD]	or	[MGM]	sections	of	a	config.ini	file	for	configuring	MySQL
Cluster	management	nodes.	For	detailed	descriptions	and	other	additional
information	about	each	of	these	parameters,	see	Section	15.4.4.4,	“Defining	the
Management	Server”.

Restart	Type	Column	Values

N:	Node	Restart

IN:	Initial	Node	Restart

S:	System	Restart

IS:	Initial	System	Restart

See	Section	15.4.5,	“Overview	of	Cluster	Configuration	Parameters”,	for
additional	explanations	of	these	abbreviations.

Parameter	Name Type/Units Default
Value

Minimum
Value

Maximum
Value

Restart
Type

ArbitrationDelay milliseconds 0 0 4294967039 N
ArbitrationRank integer 1 0 2 N
DataDir string N/A N/A N/A IN
ExecuteOnComputer integer 	 	 	 	
HostName string localhost N/A N/A IN
Id integer None 1 63 IN

LogDestination

CONSOLE,
SYSLOG,	or
FILE

CONSOLE N/A N/A N

15.4.5.3.	SQL	Node	Configuration	Parameters

The	following	table	provides	information	about	parameters	used	in	the	[API]
sections	of	a	config.ini	file	for	configuring	MySQL	Cluster	SQL	nodes.	For
detailed	descriptions	and	other	additional	information	about	each	of	these
parameters,	see	Section	15.4.4.6,	“Defining	SQL	Nodes”.

Restart	Type	Column	Values

N:	Node	Restart

IN:	Initial	Node	Restart

S:	System	Restart

IS:	Initial	System	Restart

See	Section	15.4.5,	“Overview	of	Cluster	Configuration	Parameters”,	for
additional	explanations	of	these	abbreviations.

Parameter	Name Type/Units Default
Value

Minimum
Value

Maximum
Value

Restart
Type

ArbitrationDelay milliseconds 0 0 4294967039 N
ArbitrationRank integer 1 0 2 N

BatchByteSize bytes 32K 1K 1M N
BatchSize integer 64 1 992 N
ExecuteOnComputer integer 	 	 	 	
HostName string localhost N/A N/A IN
Id integer None 1 63 IN
MaxScanBatchSize bytes 256K 32K 16M N

15.4.6.	Configuring	Parameters	for	Local	Checkpoints

The	parameters	discussed	in	Logging	and	Checkpointing	and	in	Data	Memory,
Index	Memory,	and	String	Memory	that	are	used	to	configure	local	checkpoints
for	a	MySQL	Cluster	do	not	exist	in	isolation,	but	rather	are	very	much
interdepedent	on	each	other.	In	this	section,	we	illustrate	how	these	parameters
—	including	DataMemory,	IndexMemory,
NoOfDiskPagesToDiskAfterRestartTUP,
NoOfDiskPagesToDiskAfterRestartACC,	and	NoOfFragmentLogFiles	—	relate
to	one	another	in	a	working	Cluster.

In	this	example,	we	assume	that	our	application	performs	the	following	numbers
of	types	of	operations	per	hour:

50000	selects

15000	inserts

15000	updates

15000	deletes

We	also	make	the	following	assumptions	about	the	data	used	in	the	application:

We	are	working	with	a	single	table	having	40	columns.

Each	column	can	hold	up	to	32	bytes	of	data.

A	typical	UPDATE	run	by	the	application	affects	the	values	of	5	columns.

No	NULL	values	are	inserted	by	the	application.

A	good	starting	point	is	to	determine	the	amount	of	time	that	should	elapse
between	local	checkpoints	(LCPs).	It	worth	noting	that,	in	the	event	of	a	system
restart,	it	takes	40-60	percent	of	this	interval	to	execute	the	REDO	log	—	for
example,	if	the	time	between	LCPs	is	5	minutes	(300	seconds),	then	it	should
take	2	to	3	minutes	(120	to	180	seconds)	for	the	REDO	log	to	be	read.

The	maximum	amount	of	data	per	node	can	be	assumed	to	be	the	size	of	the
DataMemory	parameter.	In	this	example,	we	assume	that	this	is	2	GB.	The
NoOfDiskPagesToDiskAfterRestartTUP	parameter	represents	the	amount	of
data	to	be	checkpointed	per	unit	time	—	however,	this	parameter	is	actually
expressed	as	the	number	of	8K	memory	pages	to	be	checkpointed	per	100
milliseconds.	2	GB	per	300	seconds	is	approximately	6.8	MB	per	second,	or	700
KB	per	100	milliseconds,	which	works	out	to	roughly	85	pages	per	100
milliseconds.

Similarly,	we	can	calculate	NoOfDiskPagesToDiskAfterRestartACC	in	terms	of
the	time	for	local	checkpoints	and	the	amount	of	memory	required	for	indexes
—	that	is,	the	IndexMemory.	Assuming	that	we	allow	512	MB	for	indexes,	this
works	out	to	approximately	20	8-KB	pages	per	100	milliseconds	for	this
parameter.

Next,	we	need	to	determine	the	number	of	REDO	logfiles	required	—	that	is,
fragment	log	files	—	the	corresponding	parameter	being
NoOfFragmentLogFiles.	We	need	to	make	sure	that	there	are	sufficient	REDO
logfiles	for	keeping	records	for	at	least	3	local	checkpoints.	In	a	production
setting,	there	are	always	uncertainties	—	for	instance,	we	cannot	be	sure	that
disks	always	operate	at	top	speed	or	with	maximum	throughput.	For	this	reason,
it	is	best	to	err	on	the	side	of	caution,	so	we	double	our	requirement	and
calculate	a	number	of	fragment	logfiles	which	should	be	enough	to	keep	records
covering	6	local	checkpoints.

It	is	also	important	to	remember	that	the	disk	also	handles	writes	to	the	REDO
log	and	UNDO	log,	so	if	you	find	that	the	amount	of	data	being	written	to	disk
as	detemined	by	the	values	of	NoOfDiskPagesToDiskAfterRestartACC	and
NoOfDiskPagesToDiskAfterRestartTUP	is	approaching	the	amount	of	disk
bandwidth	available,	you	may	wish	to	increase	the	time	between	local
checkpoints.

Given	5	minutes	(300	seconds)	per	local	checkpoint,	this	means	that	we	need	to

support	writing	log	records	at	maximum	speed	for	6	*	300	=	1800	seconds.	The
size	of	a	REDO	log	record	is	72	bytes	plus	4	bytes	per	updated	column	value
plus	the	maximum	size	of	the	updated	column,	and	there	is	one	REDO	log
record	for	each	table	record	updated	in	a	transaction,	on	each	node	where	the
data	reside.	Using	the	numbers	of	operations	set	out	previously	in	this	section,
we	derive	the	following:

50000	select	operations	per	hour	yields	0	log	records	(and	thus	0	bytes),
since	SELECT	statements	are	not	recorded	in	the	REDO	log.

15000	DELETE	statements	per	hour	is	approximately	5	delete	operations	per
second.	(Since	we	wish	to	be	conservative	in	our	estimate,	we	round	up
here	and	in	the	following	calculations.)	No	columns	are	updated	by	deletes,
so	these	statements	consume	only	5	operations	*	72	bytes	per	operation	=
360	bytes	per	second.

15000	UPDATE	statements	per	hour	is	roughly	the	same	as	5	updates	per
second.	Each	update	uses	72	bytes,	plus	4	bytes	per	column	*	5	columns
updated,	plus	32	bytes	per	column	*	5	columns	—	this	works	out	to	72	+	20
+	160	=	252	bytes	per	operation,	and	multiplying	this	by	5	operation	per
second	yields	1260	bytes	per	second.

15000	INSERT	statements	per	hour	is	equivalent	to	5	insert	operations	per
second.	Each	insert	requires	REDO	log	space	of	72	bytes,	plus	4	bytes	per
record	*	40	columns,	plus	32	bytes	per	column	*	40	columns,	which	is	72	+
160	+	1280	=	1512	bytes	per	operation.	This	times	5	operations	per	second
yields	7560	bytes	per	second.

So	the	total	number	of	REDO	log	bytes	being	written	per	second	is
approximately	0	+	360	+	1260	+	7560	=	9180	bytes.	Mutiplied	by	1800	seconds,
this	yields	16524000	bytes	required	for	REDO	logging,	or	approximately	15.75
MB.	The	unit	used	for	NoOfFragmentLogFiles	represents	a	set	of	4	16-MB
logfiles	—	that	is,	64	MB.	Thus,	the	minimum	value	(3)	for	this	parameter	is
sufficient	for	the	scenario	envisioned	in	this	example,	since	3	times	64	=	192
MB,	or	about	12	times	what	is	required;	the	default	value	of	8	(or	512	MB)	is
more	than	ample	in	this	case.

A	copy	of	each	altered	table	record	is	kept	in	the	UNDO	log.	In	the	scenario
discussed	above,	the	UNDO	log	would	not	require	any	more	space	than	what	is

provided	by	the	default	seetings.	However,	given	the	size	of	disks,	it	is	sensible
to	allocate	at	least	1	GB	for	it.

15.5.	Upgrading	and	Downgrading	MySQL	Cluster

This	portion	of	the	MySQL	Cluster	chapter	covers	upgrading	and	downgrading	a
MySQL	Cluster	from	one	MySQL	release	to	another.	It	discusses	different	types
of	Cluster	upgrades	and	downgrades,	and	provides	a	Cluster	upgrade/downgrade
compatibility	matrix	(see	Section	15.5.2,	“Cluster	Upgrade	and	Downgrade
Compatibility”).

Important:	You	are	expected	already	to	be	familiar	with	installing	and
configuring	a	MySQL	Cluster	prior	to	attempting	an	upgrade	or	downgrade.	See
Section	15.4,	“MySQL	Cluster	Configuration”.

This	section	remains	in	development,	and	will	be	updated	and	expanded
considerably	during	the	second	quarter	of	2006.

15.5.1.	Performing	a	Rolling	Restart	of	the	Cluster

This	section	discusses	how	to	perform	a	rolling	restart	of	a	MySQL	Cluster
installation,	so	called	because	it	involves	stopping	and	starting	(or	restarting)
each	node	in	turn,	so	that	the	cluster	itself	remains	operational.	This	is	often
done	as	part	of	a	rolling	upgrade	or	rolling	downgrade,	where	high	availability
of	the	cluster	is	mandatory	and	no	downtime	of	the	cluster	as	a	whole	is
permissible.	Where	we	refer	to	upgrades,	the	information	provided	here	also
generally	applies	to	downgrades	as	well.

There	are	a	number	of	reasons	why	a	rolling	restart	might	be	desirable:

Cluster	Configuration	Change:	To	make	a	change	in	the	cluster's
configuration,	such	as	adding	an	SQL	node	to	the	cluster,	or	setting	a
configuration	parameter	to	a	new	value.

Cluster	Software	Upgrade/Downgrade:	To	upgrade	the	cluster	to	a	newer
version	of	the	MySQL	Cluster	software	(or	to	downgrade	it	to	an	older
version).	This	is	usually	referred	to	as	a	“rolling	upgrade”	(or	“rolling
downgrade”,	when	reverting	to	an	older	version	of	MySQL	Cluster).

Change	on	Node	Host:	To	make	changes	in	the	hardware	or	operating
system	on	which	one	or	more	cluster	nodes	are	running

Cluster	Reset:	To	reset	the	cluster	because	it	has	reached	an	undesirable
state

The	process	for	performing	a	rolling	restart	may	be	generalised	as	follows:

1.	 Stop,	reconfigure,	then	restart	each	cluster	management	node	(ndb_mgmd
process)	in	turn

2.	 Stop,	reconfigure,	then	restart	each	cluster	data	node	(ndbd	process)	in	turn

3.	 Stop,	reconfigure,	then	restart	each	cluster	SQL	node	(mysqld	process)	in
turn

The	specifics	for	implementing	a	particular	rolling	upgrade	depend	upon	the
actual	changes	being	made.	A	more	detailed	view	of	the	process	is	presented	in
the	table	shown	here:

Table	15.1.	Steps	for	Cluster	rolling	restarts	—	by	type
RESTART	TYPE:

Cluster
Configuration

Change

Cluster	Software
Upgrade/Downgrade Change	on	Node	Host Cluster	Reset

A.	For	each	ndb_mgmd	process...

1.	 Stop
ndb_mgmd

2.	 Make	change	in
configuration
file

3.	 Start
ndb_mgmd

1.	 Stop
ndb_mgmd

2.	 Replace
ndb_mgmd
binary	with	new
version

3.	 Start
ndb_mgmd

1.	 Stop	ndb_mgmd

2.	 Make	desired
changes	in
hardware/operating
system

3.	 Start	ndb_mgmd

1.	 Stop
ndb_mgmd

2.	 Start
ndb_mgmd

B.	For	each	ndbd	process...
(OR)

1.	 Stop	ndbd 1.	 Stop	ndbd

1.	 Stop
ndbd

2.	 Start
ndbd

Restart
ndbd

2.	 Replace	ndbd
binary	with	new
version

3.	 Start	ndbd

2.	 Make	desired
changes	in
hardware/operating
system

3.	 Start	ndbd

1.	 Stop	ndbd

2.	 Start	ndbd

C.	For	each	mysqld	process...
(OR)

1.	 Stop	mysqld

2.	 Replace	mysqld
binary	with	new
version

3.	 Start	mysqld

1.	 Stop	mysqld

2.	 Make	desired
changes	in
hardware/operating
system

3.	 Start	mysqld

1.	 Stop
mysqld

2.	 Start
mysqld

Restart
mysqld

1.	 Stop
mysqld

2.	 Start
mysqld

15.5.2.	Cluster	Upgrade	and	Downgrade	Compatibility

This	section	provides	information	regarding	Cluster	software	and	table	file
compatibility	between	differing	versions	of	the	MySQL	Server	for	purposes	of
performing	upgrades	and	downgrades.

Important:	Only	compatibility	between	MySQL	versions	with	regard	to	NDB
Cluster	is	taken	into	account	in	this	section,	and	there	are	likely	other	issues	to
be	considered.	As	with	any	other	MySQL	software	upgrade	or	downgrade,	you
are	strongly	encouraged	to	review	the	relevant	portions	of	the	MySQL	Manual
for	the	MySQL	versions	from	which	and	to	which	you	intend	to	migrate,	before
attempting	an	upgrade	or	downgrade	of	the	MySQL	Cluster	software.	See
Section	2.11,	“Upgrading	MySQL”.

The	following	table	shows	Cluster	upgrade	and	downgrade	compatibility
between	different	versions	of	the	MySQL	Server.

Notes:

4.1	Series:

You	cannot	upgrade	directly	from	4.1.8	to	4.1.10	(or	newer);	you	must	first
upgrade	from	4.1.8	to	4.1.9,	then	upgrade	to	4.1.10.	Similarly,	you	cannot
downgrade	directly	from	4.1.10	(or	newer)	to	4.1.8;	you	must	first

downgrade	from	4.1.10	to	4.1.9,	then	downgrade	from	4.1.9	to	4.1.8.

If	you	wish	to	upgrade	a	MySQL	Cluster	to	4.1.15,	you	must	upgrade	to
4.1.14	first,	and	you	must	upgrade	to	4.1.15	before	upgrading	to	4.1.16	or
newer.

Cluster	downgrades	from	4.1.15	to	4.1.14	(or	earlier	versions)	are	not
supported.

Cluster	upgrades	from	MySQL	Server	versions	previous	to	4.1.8	are	not
supported;	when	upgrading	from	these,	you	must	dump	all	NDB	tables,
install	the	new	version	of	the	software,	and	then	reload	the	tables	from	the
dump.

5.0	Series:

MySQL	5.0.2	was	the	first	public	release	in	this	series.

Cluster	downgrades	from	MySQL	5.0	to	MySQL	4.1	are	not	supported.

Cluster	downgrades	from	5.0.12	to	5.0.11	(or	earlier)	are	not	supported.

You	cannot	restore	with	ndb_restore	to	a	MySQL	5.0	Cluster	using	a
backup	made	from	a	Cluster	running	MySQL	5.1.	You	must	use
mysqldump	in	such	cases.

There	was	no	public	release	for	MySQL	5.0.23.

5.1	Series:

MySQL	5.1.3	was	the	first	public	release	in	this	series.

You	cannot	downgrade	a	MySQL	5.1.6	or	later	Cluster	using	Disk	Data
tables	to	MySQL	5.1.5	or	earlier	unless	you	convert	all	such	tables	to	in-
memory	Cluster	tables	first.

MySQL	5.1.8	and	MySQL	5.1.10	were	not	released.

15.6.	Process	Management	in	MySQL	Cluster

Understanding	how	to	manage	MySQL	Cluster	requires	a	knowledge	of	four
essential	processes.	In	the	next	few	sections	of	this	chapter,	we	cover	the	roles
played	by	these	processes	in	a	cluster,	how	to	use	them,	and	what	startup	options
are	available	for	each	of	them:

Section	15.6.1,	“MySQL	Server	Process	Usage	for	MySQL	Cluster”

Section	15.6.2,	“ndbd,	the	Storage	Engine	Node	Process”

Section	15.6.3,	“ndb_mgmd,	the	Management	Server	Process”

Section	15.6.4,	“ndb_mgm,	the	Management	Client	Process”

15.6.1.	MySQL	Server	Process	Usage	for	MySQL	Cluster

mysqld	is	the	traditional	MySQL	server	process.	To	be	used	with	MySQL
Cluster,	mysqld	needs	to	be	built	with	support	for	the	NDB	Cluster	storage
engine,	as	it	is	in	the	precompiled	-max	binaries	available	from
http://dev.mysql.com/downloads/.	If	you	build	MySQL	from	source,	you	must
invoke	configure	with	the	--with-ndbcluster	option	to	enable	NDB	Cluster
storage	engine	support.

If	the	mysqld	binary	has	been	built	with	Cluster	support,	the	NDB	Cluster
storage	engine	is	still	disabled	by	default.	You	can	use	either	of	two	possible
options	to	enable	this	engine:

Use	--ndbcluster	as	a	startup	option	on	the	command	line	when	starting
mysqld.

Insert	a	line	containing	ndbcluster	in	the	[mysqld]	section	of	your	my.cnf
file.

An	easy	way	to	verify	that	your	server	is	running	with	the	NDB	Cluster	storage
engine	enabled	is	to	issue	the	SHOW	ENGINES	statement	in	the	MySQL	Monitor
(mysql).	You	should	see	the	value	YES	as	the	Support	value	in	the	row	for
NDBCLUSTER.	If	you	see	NO	in	this	row	or	if	there	is	no	such	row	displayed	in	the

http://dev.mysql.com/downloads/

output,	you	are	not	running	an	NDB-enabled	version	of	MySQL.	If	you	see
DISABLED	in	this	row,	you	need	to	enable	it	in	either	one	of	the	two	ways	just
described.

To	read	cluster	configuration	data,	the	MySQL	server	requires	at	a	minimum
three	pieces	of	information:

The	MySQL	server's	own	cluster	node	ID

The	hostname	or	IP	address	for	the	management	server	(MGM	node)

The	number	of	the	TCP/IP	port	on	which	it	can	connect	to	the	management
server

Node	IDs	can	be	allocated	dynamically,	so	it	is	not	strictly	necessary	to	specify
them	explicitly.

The	mysqld	parameter	ndb-connectstring	is	used	to	specify	the	connectstring
either	on	the	command	line	when	starting	mysqld	or	in	my.cnf.	The
connectstring	contains	the	hostname	or	IP	address	where	the	management	server
can	be	found,	as	well	as	the	TCP/IP	port	it	uses.

In	the	following	example,	ndb_mgmd.mysql.com	is	the	host	where	the
management	server	resides,	and	the	management	server	listens	for	cluster
messages	on	port	1186:

shell>	mysqld	--ndb-connectstring=ndb_mgmd.mysql.com:1186

See	Section	15.4.4.2,	“The	Cluster	connectstring”,	for	more	information	on
connectstrings.

Given	this	information,	the	MySQL	server	will	be	a	full	participant	in	the	cluster.
(We	sometimes	refer	to	a	mysqld	process	running	in	this	manner	as	an	SQL
node.)	It	will	be	fully	aware	of	all	cluster	data	nodes	as	well	as	their	status,	and
will	establish	connections	to	all	data	nodes.	In	this	case,	it	is	able	to	use	any	data
node	as	a	transaction	coordinator	and	to	read	and	update	node	data.

You	can	see	in	the	mysql	client	whether	a	MySQL	server	is	connected	to	the
cluster	using	SHOW	PROCESSLIST.	If	the	MySQL	server	is	connected	to	the
cluster,	and	you	have	the	PROCESS	privilege,	then	the	first	row	of	the	output	is	as

shown	here:

mysql>	SHOW	PROCESSLIST	\G

***************************	1.	row	***************************

					Id:	1

			User:	system	user

			Host:

					db:

Command:	Daemon

			Time:	1

		State:	Waiting	for	event	from	ndbcluster

			Info:	NULL

15.6.2.	ndbd,	the	Storage	Engine	Node	Process

ndbd	is	the	process	that	is	used	to	handle	all	the	data	in	tables	using	the	NDB
Cluster	storage	engine.	This	is	the	process	that	empowers	a	data	node	to
accomplish	distributed	transaction	handling,	node	recovery,	checkpointing	to
disk,	online	backup,	and	related	tasks.

In	a	MySQL	Cluster,	a	set	of	ndbd	processes	cooperate	in	handling	data.	These
processes	can	execute	on	the	same	computer	(host)	or	on	different	computers.
The	correspondences	between	data	nodes	and	Cluster	hosts	is	completely
configurable.

ndbd	generates	a	set	of	log	files	which	are	placed	in	the	directory	specified	by
DataDir	in	the	config.ini	configuration	file.	These	log	files	are	listed	below.
Note	that	node_id	represents	the	node's	unique	identifier.	For	example,
ndb_2_error.log	is	the	error	log	generated	by	the	data	node	whose	node	ID	is	2.

ndb_node_id_error.log	is	a	file	containing	records	of	all	crashes	which	the
referenced	ndbd	process	has	encountered.	Each	record	in	this	file	contains
a	brief	error	string	and	a	reference	to	a	trace	file	for	this	crash.	A	typical
entry	in	this	file	might	appear	as	shown	here:

Date/Time:	Saturday	30	July	2004	-	00:20:01

Type	of	error:	error

Message:	Internal	program	error	(failed	ndbrequire)

Fault	ID:	2341

Problem	data:	DbtupFixAlloc.cpp

Object	of	reference:	DBTUP	(Line:	173)

ProgramName:	NDB	Kernel

ProcessID:	14909

TraceFile:	ndb_2_trace.log.2

EOM

Note:	It	is	very	important	to	be	aware	that	the	last	entry	in	the	error	log	file
is	not	necessarily	the	newest	one	(nor	is	it	likely	to	be).	Entries	in	the	error
log	are	not	listed	in	chronological	order;	rather,	they	correspond	to	the	order
of	the	trace	files	as	determined	in	the	ndb_node_id_trace.log.next	file	(see
below).	Error	log	entries	are	thus	overwritten	in	a	cyclical	and	not
sequential	fashion.

ndb_node_id_trace.log.trace_id	is	a	trace	file	describing	exactly	what
happened	just	before	the	error	occurred.	This	information	is	useful	for
analysis	by	the	MySQL	Cluster	development	team.

It	is	possible	to	configure	the	number	of	these	trace	files	that	will	be	created
before	old	files	are	overwritten.	trace_id	is	a	number	which	is	incremented
for	each	successive	trace	file.

ndb_node_id_trace.log.next	is	the	file	that	keeps	track	of	the	next	trace	file
number	to	be	assigned.

ndb_node_id_out.log	is	a	file	containing	any	data	output	by	the	ndbd
process.	This	file	is	created	only	if	ndbd	is	started	as	a	daemon.

ndb_node_id.pid	is	a	file	containing	the	process	ID	of	the	ndbd	process
when	started	as	a	daemon.	It	also	functions	as	a	lock	file	to	avoid	the
starting	of	nodes	with	the	same	identifier.

ndb_node_id_signal.log	is	a	file	used	only	in	debug	versions	of	ndbd,
where	it	is	possible	to	trace	all	incoming,	outgoing,	and	internal	messages
with	their	data	in	the	ndbd	process.

It	is	recommended	not	to	use	a	directory	mounted	through	NFS	because	in	some
environments	this	can	cause	problems	whereby	the	lock	on	the	.pid	file	remains
in	effect	even	after	the	process	has	terminated.

To	start	ndbd,	it	may	also	be	necessary	to	specify	the	hostname	of	the
management	server	and	the	port	on	which	it	is	listening.	Optionally,	one	may
also	specify	the	node	ID	that	the	process	is	to	use.

shell>	ndbd	--connect-string="nodeid=2;host=ndb_mgmd.mysql.com:1186"

See	Section	15.4.4.2,	“The	Cluster	connectstring”,	for	additional	information
about	this	issue.	Section	15.6.5,	“Command	Options	for	MySQL	Cluster
Processes”,	describes	other	options	for	ndbd.

When	ndbd	starts,	it	actually	initiates	two	processes.	The	first	of	these	is	called
the	“angel	process”;	its	only	job	is	to	discover	when	the	execution	process	has
been	completed,	and	then	to	restart	the	ndbd	process	if	it	is	configured	to	do	so.
Thus,	if	you	attempt	to	kill	ndbd	via	the	Unix	kill	command,	it	is	necessary	to
kill	both	processes,	beginning	with	the	angel	process.	The	preferred	method	of
terminating	an	ndbd	process	is	to	use	the	management	client	and	stop	the
process	from	there.

The	execution	process	uses	one	thread	for	reading,	writing,	and	scanning	data,	as
well	as	all	other	activities.	This	thread	is	implemented	asynchronously	so	that	it
can	easily	handle	thousands	of	concurrent	activites.	In	addition,	a	watch-dog
thread	supervises	the	execution	thread	to	make	sure	that	it	does	not	hang	in	an
endless	loop.	A	pool	of	threads	handles	file	I/O,	with	each	thread	able	to	handle
one	open	file.	Threads	can	also	be	used	for	transporter	connections	by	the
transporters	in	the	ndbd	process.	In	a	system	performing	a	large	number	of
operations,	including	updates,	the	ndbd	process	can	consume	up	to	2	CPUs	if
permitted	to	do	so.	For	a	machine	with	many	CPUs	it	is	recommended	to	use
several	ndbd	processes	which	belong	to	different	node	groups.

15.6.3.	ndb_mgmd,	the	Management	Server	Process

The	management	server	is	the	process	that	reads	the	cluster	configuration	file
and	distributes	this	information	to	all	nodes	in	the	cluster	that	request	it.	It	also
maintains	a	log	of	cluster	activities.	Management	clients	can	connect	to	the
management	server	and	check	the	cluster's	status.

It	is	not	strictly	necessary	to	specify	a	connectstring	when	starting	the
management	server.	However,	if	you	are	using	more	than	one	management
server,	a	connectstring	should	be	provided	and	each	node	in	the	cluster	should
specify	its	node	ID	explicitly.

See	Section	15.4.4.2,	“The	Cluster	connectstring”,	for	information	about	using
connectstrings.	Section	15.6.5,	“Command	Options	for	MySQL	Cluster
Processes”,	describes	other	options	for	ndb_mgmd.

The	following	files	are	created	or	used	by	ndb_mgmd	in	its	starting	directory,
and	are	placed	in	the	DataDir	as	specified	in	the	config.ini	configuration	file.
In	the	list	that	follows,	node_id	is	the	unique	node	identifier.

config.ini	is	the	configuration	file	for	the	cluster	as	a	whole.	This	file	is
created	by	the	user	and	read	by	the	management	server.	Section	15.4,
“MySQL	Cluster	Configuration”,	discusses	how	to	set	up	this	file.

ndb_node_id_cluster.log	is	the	cluster	events	log	file.	Examples	of	such
events	include	checkpoint	startup	and	completion,	node	startup	events,	node
failures,	and	levels	of	memory	usage.	A	complete	listing	of	cluster	events
with	descriptions	may	be	found	in	Section	15.7,	“Management	of	MySQL
Cluster”.

When	the	size	of	the	cluster	log	reaches	one	million	bytes,	the	file	is
renamed	to	ndb_node_id_cluster.log.seq_id,	where	seq_id	is	the	sequence
number	of	the	cluster	log	file.	(For	example:	If	files	with	the	sequence
numbers	1,	2,	and	3	already	exist,	the	next	log	file	is	named	using	the
number	4.)

ndb_node_id_out.log	is	the	file	used	for	stdout	and	stderr	when	running
the	management	server	as	a	daemon.

ndb_node_id.pid	is	the	process	ID	file	used	when	running	the	management
server	as	a	daemon.

15.6.4.	ndb_mgm,	the	Management	Client	Process

The	management	client	process	is	actually	not	needed	to	run	the	cluster.	Its	value
lies	in	providing	a	set	of	commands	for	checking	the	cluster's	status,	starting
backups,	and	performing	other	administrative	functions.	The	management	client
accesses	the	management	server	using	a	C	API.	Advanced	users	can	also	employ
this	API	for	programming	dedicated	management	processes	to	perform	tasks
similar	to	those	performed	by	ndb_mgm.

To	start	the	management	client,	it	is	necessary	to	supply	the	hostname	and	port
number	of	the	management	server:

shell>	ndb_mgm	[host_name	[port_num]]

For	example:

shell>	ndb_mgm	ndb_mgmd.mysql.com	1186

The	default	hostname	and	port	number	are	localhost	and	1186,	respectively.

Additional	information	about	using	ndb_mgm	can	be	found	in	Section	15.6.5.4,
“Command	Options	for	ndb_mgm”,	and	Section	15.7.2,	“Commands	in	the
Management	Client”.

15.6.5.	Command	Options	for	MySQL	Cluster	Processes

All	MySQL	Cluster	executables	(except	for	mysqld)	take	the	options	described
in	this	section.	Users	of	earlier	MySQL	Cluster	versions	should	note	that	some
of	these	options	have	been	changed	from	those	in	MySQL	4.1	Cluster	to	make
them	consistent	with	one	another	as	well	as	with	mysqld.	You	can	use	the	--
help	option	to	view	a	list	of	supported	options.

The	following	sections	describe	options	specific	to	individual	NDB	programs.

--help	--usage,	-?

Prints	a	short	list	with	descriptions	of	the	available	command	options.

--connect-string=connect_string,	-c	connect_string

connect_string	sets	the	connectstring	to	the	management	server	as	a
command	option.

shell>	ndbd	--connect-string="nodeid=2;host=ndb_mgmd.mysql.com:1186"

--debug[=options]

This	option	can	only	be	used	for	versions	compiled	with	debugging
enabled.	It	is	used	to	enable	output	from	debug	calls	in	the	same	manner	as
for	the	mysqld	process.

--execute=command	-e	command

Can	be	used	to	send	a	command	to	a	Cluster	executable	from	the	system
shell.	For	example,	either	of	the	following:

shell>	ndb_mgm	-e	show

or

shell>	ndb_mgm	--execute="SHOW"

is	equivalent	to

NDB>	SHOW;

This	is	analogous	to	how	the	--execute	or	-e	option	works	with	the	mysql
command-line	client.	See	Section	4.3.1,	“Using	Options	on	the	Command
Line”.

--version,	-V

Prints	the	version	number	of	the	ndbd	process.	The	version	number	is	the
MySQL	Cluster	version	number.	The	version	number	is	relevant	because
not	all	versions	can	be	used	together,	and	the	MySQL	Cluster	startup
process	verifies	that	the	versions	of	the	binaries	being	used	can	co-exist	in
the	same	cluster.	This	is	also	important	when	performing	an	online	(rolling)
software	upgrade	or	downgrade	of	MySQL	Cluster.	(See	Section	15.5.1,
“Performing	a	Rolling	Restart	of	the	Cluster”).

15.6.5.1.	MySQL	Cluster-Related	Command	Options	for	mysqld

--ndb-connectstring=connect_string

When	using	the	NDB	Cluster	storage	engine,	this	option	specifies	the
management	server	that	distributes	cluster	configuration	data.

--ndbcluster

The	NDB	Cluster	storage	engine	is	necessary	for	using	MySQL	Cluster.	If	a
mysqld	binary	includes	support	for	the	NDB	Cluster	storage	engine,	the
engine	is	disabled	by	default.	Use	the	--ndbcluster	option	to	enable	it.
Use	--skip-ndbcluster	to	explicitly	disable	the	engine.

15.6.5.2.	Command	Options	for	ndbd

For	options	common	to	NDB	programs,	see	Section	15.6.5,	“Command	Options
for	MySQL	Cluster	Processes”.

--daemon,	-d

Instructs	ndbd	to	execute	as	a	daemon	process.	This	is	the	default	behavior.
--nodaemon	can	be	used	to	not	start	the	process	as	a	daemon.

--initial

Instructs	ndbd	to	perform	an	initial	start.	An	initial	start	erases	any	files
created	for	recovery	purposes	by	earlier	instances	of	ndbd.	It	also	re-creates
recovery	log	files.	Note	that	on	some	operating	systems	this	process	can
take	a	substantial	amount	of	time.

An	--initial	start	is	to	be	used	only	the	very	first	time	that	the	ndbd
process	is	started	because	it	removes	all	files	from	the	Cluster	filesystem
and	re-creates	all	REDO	log	files.	The	exceptions	to	this	rule	are:

When	performing	a	software	upgrade	which	has	changed	the	contents
of	any	files.

When	restarting	the	node	with	a	new	version	of	ndbd.

As	a	measure	of	last	resort	when	for	some	reason	the	node	restart	or
system	restart	repeatedly	fails.	In	this	case,	be	aware	that	this	node	can
no	longer	be	used	to	restore	data	due	to	the	destruction	of	the	datafiles.

This	option	does	not	affect	any	backup	files	that	have	already	been	created
by	the	affected	node.

--initial-start

This	option	is	used	when	performing	a	partial	initial	start	of	the	cluster.
Each	node	should	be	started	with	this	option,	as	well	as	--no-wait-nodes.

For	example,	suppose	you	have	a	4-node	cluster	whose	data	nodes	have	the
IDs	2,	3,	4,	and	5,	and	you	wish	to	perform	a	partial	initial	start	using	only
nodes	2,	4,	and	5	—	that	is,	omitting	node	3:

ndbd	--ndbd-nodeid=2	--no-wait-nodes=3	--initial-start

ndbd	--ndbd-nodeid=4	--no-wait-nodes=3	--initial-start

ndbd	--ndbd-nodeid=5	--no-wait-nodes=3	--initial-start

This	option	was	added	in	MySQL	5.0.21.

--nowait-nodes=node_id_1[,	node_id_2[,	...]]

This	option	takes	a	list	of	data	nodes	which	for	which	the	cluster	will	not
wait	for	before	starting.

This	can	be	used	to	start	the	cluster	in	a	partitioned	state.	For	example,	to
start	the	cluster	with	only	half	of	the	data	nodes	(nodes	2,	3,	4,	and	5)
running	in	a	4-node	cluster,	you	can	start	each	ndbd	process	with	--
nowait-nodes=3,5.	In	this	case,	the	cluster	starts	as	soon	as	nodes	2	and	4
connect,	and	does	not	wait	StartPartitionedTimeout	milliseconds	for
nodes	3	and	5	to	connect	as	it	would	otherwise.

If	you	wanted	to	start	up	the	same	cluster	as	in	the	previous	example
without	one	ndbd	—	say,	for	example,	that	the	host	machine	for	node	3	has
suffered	a	hardware	failure	—	then	start	nodes	2,	4,	and	5	with	--no-wait-
nodes=3.	Then	the	cluster	will	start	as	soon	as	nodes	2,	4,	and	5	connect	and
will	not	wait	for	node	3	to	start.

This	option	was	added	in	MySQL	5.0.21.

--nodaemon

Instructs	ndbd	not	to	start	as	a	daemon	process.	This	is	useful	when	ndbd
is	being	debugged	and	you	want	output	to	be	redirected	to	the	screen.

--nostart

Instructs	ndbd	not	to	start	automatically.	When	this	option	is	used,	ndbd
connects	to	the	management	server,	obtains	configuration	data	from	it,	and
initializes	communication	objects.	However,	it	does	not	actually	start	the
execution	engine	until	specifically	requested	to	do	so	by	the	management
server.	This	can	be	accomplished	by	issuing	the	proper	command	to	the
management	client.

15.6.5.3.	Command	Options	for	ndb_mgmd

For	options	common	to	NDB	programs,	see	Section	15.6.5,	“Command	Options
for	MySQL	Cluster	Processes”.

--config-file=filename,	-f	filename,

Instructs	the	management	server	as	to	which	file	it	should	use	for	its
configuration	file.	This	option	must	be	specified.	The	filename	defaults	to
config.ini.

Note:	This	option	also	can	be	given	as	-c	file_name,	but	this	shortcut	is
obsolete	and	should	not	be	used	in	new	installations.

--daemon,	-d

Instructs	ndb_mgmd	to	start	as	a	daemon	process.	This	is	the	default
behavior.

--nodaemon

Instructs	ndb_mgmd	not	to	start	as	a	daemon	process.

15.6.5.4.	Command	Options	for	ndb_mgm

For	options	common	to	NDB	programs,	see	Section	15.6.5,	“Command	Options
for	MySQL	Cluster	Processes”.

--try-reconnect=number

If	the	connection	to	the	management	server	is	broken,	the	node	tries	to
reconnect	to	it	every	5	seconds	until	it	succeeds.	By	using	this	option,	it	is
possible	to	limit	the	number	of	attempts	to	number	before	giving	up	and
reporting	an	error	instead.

15.7.	Management	of	MySQL	Cluster

Managing	a	MySQL	Cluster	involves	a	number	of	tasks,	the	first	of	which	is	to
configure	and	start	MySQL	Cluster.	This	is	covered	in	Section	15.4,	“MySQL
Cluster	Configuration”,	and	Section	15.6,	“Process	Management	in	MySQL
Cluster”.

The	following	sections	cover	the	management	of	a	running	MySQL	Cluster.

There	are	essentially	two	methods	of	actively	managing	a	running	MySQL
Cluster.	The	first	of	these	is	through	the	use	of	commands	entered	into	the
management	client	whereby	cluster	status	can	be	checked,	log	levels	changed,
backups	started	and	stopped,	and	nodes	stopped	and	started.	The	second	method
involves	studying	the	contents	of	the	cluster	log	ndb_node_id_cluster.log	in	the
management	server's	DataDir	directory.	(Recall	that	node_id	represents	the
unique	identifier	of	the	node	whose	activity	is	being	logged.)	The	cluster	log
contains	event	reports	generated	by	ndbd.	It	is	also	possible	to	send	cluster	log
entries	to	a	Unix	system	log.

15.7.1.	MySQL	Cluster	Startup	Phases

This	section	describes	the	steps	involved	when	the	cluster	is	started.

There	are	several	different	startup	types	and	modes,	as	shown	here:

Initial	Start:	The	cluster	starts	with	a	clean	filesystem	on	all	data	nodes.
This	occurs	either	when	the	cluster	started	for	the	very	first	time,	or	when	it
is	restarted	using	the	--initial	option.

System	Restart:	The	cluster	starts	and	reads	data	stored	in	the	data	nodes.
This	occurs	when	the	cluster	has	been	shut	down	after	having	been	in	use,
when	it	is	desired	for	the	cluster	to	resume	operations	from	the	point	where
it	left	off.

Node	Restart:	This	is	the	online	restart	of	a	cluster	node	while	the	cluster
itself	is	running.

Initial	Node	Restart:	This	is	the	same	as	a	node	restart,	except	that	the

node	is	reinitialized	and	started	with	a	clean	filesystem.

Prior	to	startup,	each	data	node	(ndbd	process)	must	be	initialized.	Initialization
consists	of	the	following	steps:

1.	 Obtain	a	Node	ID.

2.	 Fetch	configuration	data.

3.	 Allocate	ports	to	be	used	for	inter-node	communications.

4.	 Allocate	memory	according	to	settings	obtained	from	the	configuration	file.

When	a	data	node	or	SQL	node	first	connects	to	the	management	node,	it
reserves	a	cluster	node	ID.	To	make	sure	that	no	other	node	allocates	the	same
node	ID,	this	ID	is	retained	until	the	node	has	managed	to	connect	to	the	cluster
and	at	least	one	ndbd	reports	that	this	node	is	connected.	This	retention	of	the
node	ID	is	guarded	by	the	connection	between	the	node	in	question	and
ndb_mgmd.

Normally,	in	the	event	of	a	problem	with	the	node,	the	node	disconnects	from	the
management	server,	the	socket	used	for	the	connection	is	closed,	and	the
reserved	node	ID	is	freed.	However,	if	a	node	is	disconnected	abruptly	—	for
example,	due	to	a	hardware	failure	in	one	of	the	cluster	hosts,	or	because	of
network	issues	—	the	normal	closing	of	the	socket	by	the	operating	system	may
not	take	place.	In	this	case,	the	node	ID	continues	to	be	reserved	and	not	released
until	a	TCP	timeout	occurs	10	or	so	minutes	later.

To	take	care	of	this	problem,	you	can	use	PURGE	STALE	SESSIONS.	Running	this
statement	forces	all	reserved	node	IDs	to	be	checked;	any	that	are	not	being	used
by	nodes	actually	connected	to	the	cluster	are	then	freed.

Beginning	with	MySQL	5.0.22,	timeout	handling	of	node	ID	assignments	is
implemented.	This	performs	the	ID	usage	checks	automatically	after
approximately	20	seconds,	so	that	PURGE	STALE	SESSIONS	should	no	longer	be
necessary	in	a	normal	Cluster	start.

After	each	data	node	has	been	initialized,	the	cluster	startup	process	can	proceed.
The	stages	which	the	cluster	goes	through	during	this	process	are	listed	here:

Stage	0

Clear	the	cluster	filesystem.	This	stage	occurs	only	if	the	cluster	was	started
with	the	--initial	option.

Stage	1

This	stage	sets	up	Cluster	connections,	establishes	inter-node
communications	are	established,	and	starts	Cluster	heartbeats.

Stage	2

The	arbitrator	node	is	elected.	If	this	is	a	system	restart,	the	cluster
determines	the	latest	restorable	global	checkpoint.

Stage	3

This	stage	initializes	a	number	of	internal	cluster	variables.

Stage	4

For	an	initial	start	or	initial	node	restart,	the	redo	log	files	are	created.	The
number	of	these	files	is	equal	to	NoOfFragmentLogFiles.

For	a	system	restart:

Read	schema	or	schemas.

Read	data	from	the	local	checkpoint	and	undo	logs.

Apply	all	redo	information	until	the	latest	restorable	global	checkpoint
has	been	reached.

For	a	node	restart,	find	the	tail	of	the	redo	log.

Stage	5

If	this	is	an	initial	start,	create	the	SYSTAB_0	and	NDB$EVENTS	internal
system	tables.

For	a	node	restart	or	an	initial	node	restart:

1.	 The	node	is	included	in	transaction	handling	operations.

2.	 The	node	schema	is	compared	with	that	of	the	master	and
synchronized	with	it.

3.	 Synchronize	data	received	in	the	form	of	INSERT	from	the	other	data
nodes	in	this	node's	node	group.

4.	 In	all	cases,	wait	for	complete	local	checkpoint	as	determined	by	the
arbitrator.

Stage	6

Update	internal	variables.

Stage	7

Update	internal	variables.

Stage	8

In	a	system	restart,	rebuild	all	indexes.

Stage	9

Update	internal	variables.

Stage	10

At	this	point	in	a	node	restart	or	initial	node	restart,	APIs	may	connect	to
the	node	and	being	to	receive	events.

Stage	11

At	this	point	in	a	node	restart	or	initial	node	restart,	event	delivery	is
handed	over	to	the	node	joining	the	cluster.	The	newly-joined	node	takes
over	responsibility	for	delivering	its	primary	data	to	subscribers.

After	this	process	is	completed	for	an	initial	start	or	system	restart,	transaction
handling	is	enabled.	For	a	node	restart	or	initial	node	restart,	completion	of	the
startup	process	means	that	the	node	may	now	act	as	a	transaction	coordinator.

15.7.2.	Commands	in	the	Management	Client

In	addition	to	the	central	configuration	file,	a	cluster	may	also	be	controlled
through	a	command-line	interface	available	through	the	management	client
ndb_mgm.	This	is	the	primary	administrative	interface	to	a	running	cluster.

Commands	for	the	event	logs	are	given	in	Section	15.7.3,	“Event	Reports
Generated	in	MySQL	Cluster”;	commands	for	creating	backups	and	restoring
from	backup	are	provided	in	Section	15.8,	“On-line	Backup	of	MySQL	Cluster”.

The	management	client	has	the	following	basic	commands.	In	the	listing	that
follows,	node_id	denotes	either	a	database	node	ID	or	the	keyword	ALL,	which
indicates	that	the	command	should	be	applied	to	all	of	the	cluster's	data	nodes.

HELP

Displays	information	on	all	available	commands.

SHOW

Displays	information	on	the	cluster's	status.

Note:	In	a	cluster	where	multiple	management	nodes	are	in	use,	this
command	displays	information	only	for	data	nodes	that	are	actually
connected	to	the	current	management	server.

node_id	START

Starts	the	data	node	identified	by	node_id	(or	all	data	nodes).

Beginning	with	MySQL	5.0.19,	this	command	can	also	be	used	to	start
individual	management	nodes.	Note:	ALL	START	continues	to	affect	data
nodes	only.

node_id	STOP

Stops	the	data	node	identified	by	node_id	(or	all	data	nodes).

Beginning	with	MySQL	5.0.19,	this	command	can	also	be	used	to	stop
individual	management	nodes.	Note:	ALL	STOP	continues	to	affect	data

nodes	only.

node_id	RESTART	[-N]	[-I]

Restarts	the	data	node	identified	by	node_id	(or	all	data	nodes).

node_id	STATUS

Displays	status	information	for	the	data	node	identified	by	node_id	(or	for
all	data	nodes).

ENTER	SINGLE	USER	MODE	node_id

Enters	single-user	mode,	whereby	only	the	MySQL	server	identified	by	the
node	ID	node_id	is	allowed	to	access	the	database.

EXIT	SINGLE	USER	MODE

Exits	single-user	mode,	allowing	all	SQL	nodes	(that	is,	all	running	mysqld
processes)	to	access	the	database.

QUIT

Terminates	the	management	client.

SHUTDOWN

Shuts	down	all	cluster	nodes,	except	for	SQL	nodes,	and	exits.

15.7.3.	Event	Reports	Generated	in	MySQL	Cluster

In	this	section,	we	discuss	the	types	of	event	logs	provided	by	MySQL	Cluster,
and	the	types	of	events	that	are	logged.

MySQL	Cluster	provides	two	types	of	event	log.	These	are	the	cluster	log,	which
includes	events	generated	by	all	cluster	nodes,	and	the	node	logs,	which	are	local
to	each	data	node.

Output	generated	by	cluster	event	logging	can	have	multiple	destinations
including	a	file,	the	management	server	console	window,	or	syslog.	Output

generated	by	node	event	logging	is	written	to	the	data	node's	console	window.

Both	types	of	event	logs	can	be	set	to	log	different	subsets	of	events.

Note:	The	cluster	log	is	the	log	recommended	for	most	uses	because	it	provides
logging	information	for	an	entire	cluster	in	a	single	file.	Node	logs	are	intended
to	be	used	only	during	application	development,	or	for	debugging	application
code.

Each	reportable	event	can	be	distinguished	according	to	three	different	criteria:

Category:	This	can	be	any	one	of	the	following	values:	STARTUP,	SHUTDOWN,
STATISTICS,	CHECKPOINT,	NODERESTART,	CONNECTION,	ERROR,	or	INFO.

Priority:	This	is	represented	by	one	of	the	numbers	from	1	to	15	inclusive,
where	1	indicates	“most	important”	and	15	“least	important.”

Severity	Level:	This	can	be	any	one	of	the	following	values:	ALERT,
CRITICAL,	ERROR,	WARNING,	INFO,	or	DEBUG.

Both	the	cluster	log	and	the	node	log	can	be	filtered	on	these	properties.

15.7.3.1.	Logging	Management	Commands

The	following	management	commands	are	related	to	the	cluster	log:

CLUSTERLOG	ON

Turns	the	cluster	log	on.

CLUSTERLOG	OFF

Turns	the	cluster	log	off.

CLUSTERLOG	INFO

Provides	information	about	cluster	log	settings.

node_id	CLUSTERLOG	category=threshold

Logs	category	events	with	priority	less	than	or	equal	to	threshold	in	the
cluster	log.

CLUSTERLOG	FILTER	severity_level

Toggles	cluster	logging	of	events	of	the	specified	severity_level.

The	following	table	describes	the	default	setting	(for	all	data	nodes)	of	the
cluster	log	category	threshold.	If	an	event	has	a	priority	with	a	value	lower	than
or	equal	to	the	priority	threshold,	it	is	reported	in	the	cluster	log.

Note	that	events	are	reported	per	data	node,	and	that	the	threshold	can	be	set	to
different	values	on	different	nodes.

Category Default	threshold	(All	data	nodes)
STARTUP 7
SHUTDOWN 7
STATISTICS 7
CHECKPOINT 7
NODERESTART 7
CONNECTION 7
ERROR 15
INFO 7

Thresholds	are	used	to	filter	events	within	each	category.	For	example,	a
STARTUP	event	with	a	priority	of	3	is	not	logged	unless	the	threshold	for	STARTUP
is	changed	to	3	or	lower.	Only	events	with	priority	3	or	lower	are	sent	if	the
threshold	is	3.

The	following	table	shows	the	event	severity	levels.	(Note:	These	correspond	to
Unix	syslog	levels,	except	for	LOG_EMERG	and	LOG_NOTICE,	which	are	not	used
or	mapped.)

1 ALERT
A	condition	that	should	be	corrected	immediately,	such	as	a
corrupted	system	database

2 CRITICAL Critical	conditions,	such	as	device	errors	or	insufficient	resources

3 ERROR Conditions	that	should	be	corrected,	such	as	configuration	errors

4 WARNING
Conditions	that	are	not	errors,	but	that	might	require	special
handling

5 INFO Informational	messages
6 DEBUG Debugging	messages	used	for	NDB	Cluster	development

Event	severity	levels	can	be	turned	on	or	off	(using	CLUSTERLOG	FILTER	—	see
above).	If	a	severity	level	is	turned	on,	then	all	events	with	a	priority	less	than	or
equal	to	the	category	thresholds	are	logged.	If	the	severity	level	is	turned	off	then
no	events	belonging	to	that	severity	level	are	logged.

15.7.3.2.	Log	Events

An	event	report	reported	in	the	event	logs	has	the	following	format:

datetime	[string]	severity	--	message

For	example:

09:19:30	2005-07-24	[NDB]	INFO	--	Node	4	Start	phase	4	completed

This	section	discusses	all	reportable	events,	ordered	by	category	and	severity
level	within	each	category.

In	the	event	descriptions,	GCP	and	LCP	mean	“Global	Checkpoint”	and	“Local
Checkpoint,”	respectively.

CONNECTION	Events

These	events	are	associated	with	connections	between	Cluster	nodes.

Event Priority SeverityLevel Description

data	nodes
connected 8 INFO Data	nodes	connected

data	nodes
disconnected 8 INFO Data	nodes	disconnected

Communication SQL	node	or	data	node	connection

closed 8 INFO closed

Communication
opened 8 INFO

SQL	node	or	data	node	connection
opened

CHECKPOINT	Events

The	logging	messages	shown	here	are	associated	with	checkpoints.

Event Priority SeverityLevel Description

LCP	stopped	in	calc	keep
GCI 0 ALERT LCP	stopped

Local	checkpoint	fragment
completed 11 INFO

LCP	on	a	fragment	has	been
completed

Global	checkpoint
completed 10 INFO GCP	finished

Global	checkpoint	started 9 INFO
Start	of	GCP:	REDO	log	is
written	to	disk

Local	checkpoint
completed 8 INFO LCP	completed	normally

Local	checkpoint	started 7 INFO
Start	of	LCP:	data	written	to
disk

Report	undo	log	blocked 7 INFO
UNDO	logging	blocked;	buffer
near	overflow

STARTUP	Events

The	following	events	are	generated	in	response	to	the	startup	of	a	node	or	of	the
cluster	and	of	its	success	or	failure.	They	also	provide	information	relating	to	the
progress	of	the	startup	process,	including	information	concerning	logging
activities.

Event Priority SeverityLevel Description

Internal	start	signal
received	STTORRY 15 INFO

Blocks	received	after	completion	of
restart

Undo	records
executed

15 INFO 	

New	REDO	log
started 10 INFO GCI	keep	X,	newest	restorable	GCI	Y

New	log	started 10 INFO Log	part	X,	start	MB	Y,	stop	MB	Z

Node	has	been
refused	for	inclusion
in	the	cluster

8 INFO

Node	cannot	be	included	in	cluster	due
to	misconfiguration,	inability	to
establish	communication,	or	other
problem

data	node	neighbors 8 INFO Shows	neighboring	data	nodes
data	node	start	phase
X	completed 4 INFO

A	data	node	start	phase	has	been
completed

Node	has	been
successfully
included	into	the
cluster

3 INFO
Displays	the	node,	managing	node,
and	dynamic	ID

data	node	start
phases	initiated 1 INFO NDB	Cluster	nodes	starting

data	node	all	start
phases	completed 1 INFO NDB	Cluster	nodes	started

data	node	shutdown
initiated 1 INFO

Shutdown	of	data	node	has
commenced

data	node	shutdown
aborted 1 INFO

Unable	to	shut	down	data	node
normally

NODERESTART	Events

The	following	events	are	generated	when	restarting	a	node	and	relate	to	the
success	or	failure	of	the	node	restart	process.

Event Priority SeverityLevel Description

Node	failure	phase
completed 8 ALERT

Reports	completion	of	node	failure
phases

Node	has	failed,	node
ALERT

state	was	X 8 Reports	that	a	node	has	failed

Report	arbitrator	results 2 ALERT

There	are	eight	different	possible
results	for	arbitration	attempts:

Arbitration	check	failed	—
less	than	1/2	nodes	left

Arbitration	check	succeeded
—	node	group	majority

Arbitration	check	failed	—
missing	node	group

Network	partitioning	—
arbitration	required

Arbitration	succeeded	—
affirmative	response	from
node	X

Arbitration	failed	-	negative
response	from	node	X

Network	partitioning	-	no
arbitrator	available

Network	partitioning	-	no
arbitrator	configured

Completed	copying	a
fragment 10 INFO 	

Completed	copying	of
dictionary	information 8 INFO 	

Completed	copying
distribution	information 8 INFO 	

Starting	to	copy
fragments 8 INFO 	

Completed	copying	all
fragments

8 INFO 	

GCP	takeover	started 7 INFO 	

GCP	takeover	completed 7 INFO 	
LCP	takeover	started 7 INFO 	
LCP	takeover	completed
(state	=	X) 7 INFO 	

Report	whether	an
arbitrator	is	found	or	not 6

INFO

There	are	seven	different	possible
outcomes	when	seeking	an
arbitrator:

Management	server	restarts
arbitration	thread	[state=X]

Prepare	arbitrator	node	X
[ticket=Y]

Receive	arbitrator	node	X
[ticket=Y]

Started	arbitrator	node	X
[ticket=Y]

Lost	arbitrator	node	X	-
process	failure	[state=Y]

Lost	arbitrator	node	X	-
process	exit	[state=Y]

Lost	arbitrator	node	X	<error
msg>	[state=Y]

STATISTICS	Events

The	following	events	are	of	a	statistical	nature.	They	provide	information	such
as	numbers	of	transactions	and	other	operations,	amount	of	data	sent	or	received
by	individual	nodes,	and	memory	usage.

Event Priority SeverityLevel Description

Report	job
scheduling
statistics

9 INFO Mean	internal	job	scheduling	statistics

Sent	number
of	bytes 9 INFO Mean	number	of	bytes	sent	to	node	X

Received	#
of	bytes 9 INFO Mean	number	of	bytes	received	from	node	X

Report
transaction
statistics

8 INFO

Numbers	of:	transactions,	commits,	reads,
simple	reads,	writes,	concurrent	operations,
attribute	information,	and	aborts

Report
operations 8 INFO Number	of	operations

Report	table
create 7 INFO 	

Memory
usage 5 INFO

Data	and	index	memory	usage	(80%,	90%,
and	100%)

ERROR	Events

These	events	relate	to	Cluster	errors	and	warnings.	The	presence	of	one	or	more
of	these	generally	indicates	that	a	major	malfunction	or	failure	has	occurred.

Event Priority Severity Description
Dead	due	to	missed
heartbeat 8 ALERT

Node	X	declared	“dead”	due	to
missed	heartbeat

Transporter	errors 2 ERROR 	
Transporter	warnings 8 WARNING 	
Missed	heartbeats 8 WARNING Node	X	missed	heartbeat	#Y
General	warning	events 2 WARNING 	

INFO	Events

These	events	provide	general	information	about	the	state	of	the	cluster	and

activities	associated	with	Cluster	maintenance,	such	as	logging	and	heartbeat
transmission.

Event Priority Severity Description
Sent	heartbeat 12 INFO Heartbeat	sent	to	node	X
Create	log	bytes 11 INFO Log	part,	log	file,	MB
General	information	events 2 INFO 	

15.7.3.3.	Using	CLUSTERLOG	STATISTICS

The	NDB	management	client's	CLUSTERLOG	STATISTICS	command	can	provide	a
number	of	useful	statistics	in	its	output.	The	following	statistics	are	reported	by
the	transaction	coordinator:

Statistic Description	(Number	of...)
Trans.	Count Transactions	attempted	with	this	node	as	coordinator
Commit	Count Transactions	committed	with	this	node	as	coordinator
Read	Count Primary	key	reads	(all)
Simple	Read

Count
Primary	key	reads	reading	the	latest	committed	value

Write	Count
Primary	key	writes	(includes	all	INSERT,	UPDATE,	and
DELETE	operations)

AttrInfoCount Data	words	used	to	describe	all	reads	and	writes	received
Concurrent

Operations

All	concurrent	operations	ongoing	at	the	moment	the
report	is	taken

Abort	Count
Transactions	with	this	node	as	coordinator	that	were
aborted

Scans Scans	(all)
Range	Scans Index	scans

The	ndbd	process	has	a	scheduler	that	runs	in	an	infinite	loop.	During	each	loop
scheduler	performs	the	following	tasks:

1.	 Read	any	incoming	messages	from	sockets	into	a	job	buffer.

2.	 Check	whether	there	are	any	timed	messages	to	be	executed;	if	so,	put	these
into	the	job	buffer	as	well.

3.	 Execute	(in	a	loop)	any	messages	in	the	job	buffer.

4.	 Send	any	distributed	messages	that	were	generated	by	executing	the
messages	in	the	job	buffer.

5.	 Wait	for	any	new	incoming	messages.

The	number	of	loops	executed	in	the	third	step	is	reported	as	the	Mean	Loop
Counter.	This	statistic	increases	in	size	as	the	utilisation	of	the	TCP/IP	buffer
improves.	You	can	use	this	to	monitor	performance	as	you	add	new	processes	to
the	cluster.

The	Mean	send	size	and	Mean	receive	size	statistics	allow	you	to	gauge	the
efficiency	of	writes	and	reads	(respectively)	between	nodes.	These	values	are
given	in	bytes.	Higher	values	mean	a	lower	cost	per	byte	sent	or	received;	the
maximum	is	64k.

To	generate	a	report	of	all	cluster	log	statistics,	you	can	use	the	following
command	in	the	NDB	management	client:

ndb_mgm>	ALL	CLUSTERLOG	STATISTICS=15

15.7.4.	Single-User	Mode

Single-user	mode	allows	the	database	administrator	to	restrict	access	to	the
database	system	to	a	single	MySQL	server	(SQL	node).	When	entering	single-
user	mode,	all	connections	to	all	other	MySQL	servers	are	closed	gracefully	and
all	running	transactions	are	aborted.	No	new	transactions	are	allowed	to	be
started.

Once	the	cluster	has	entered	single-user	mode,	only	the	designated	SQL	node	is
granted	access	to	the	database.

You	can	use	the	ALL	STATUS	command	to	see	when	the	cluster	has	entered
single-user	mode.

Example:

NDB>	ENTER	SINGLE	USER	MODE	5

After	this	command	has	executed	and	the	cluster	has	entered	single-user	mode,
the	SQL	node	whose	node	ID	is	5	becomes	the	cluster's	only	permitted	user.

The	node	specified	in	the	preceding	command	must	be	a	MySQL	Server	node;
An	attempt	to	specify	any	other	type	of	node	will	be	rejected.

Note:	When	the	preceding	commmand	is	invoked,	all	transactions	running	on
the	designated	node	are	aborted,	the	connection	is	closed,	and	the	server	must	be
restarted.

The	command	EXIT	SINGLE	USER	MODE	changes	the	state	of	the	cluster's
data	nodes	from	single-user	mode	to	normal	mode.	MySQL	Servers	waiting	for	a
connection	(that	is,	for	the	cluster	to	become	ready	and	available),	are	again
permitted	to	connect.	The	MySQL	Server	denoted	as	the	single-user	SQL	node
continues	to	run	(if	still	connected)	during	and	after	the	state	change.

Example:

NDB>	EXIT	SINGLE	USER	MODE

There	are	two	recommended	ways	to	handle	a	node	failure	when	running	in
single-user	mode:

Method	1:

1.	 Finish	all	single-user	mode	transactions

2.	 Issue	the	EXIT	SINGLE	USER	MODE	command

3.	 Restart	the	cluster's	data	nodes

Method	2:

Restart	database	nodes	prior	to	entering	single-user	mode.

15.8.	On-line	Backup	of	MySQL	Cluster

This	section	describes	how	to	create	a	backup	and	how	to	restore	the	database
from	a	backup	at	a	later	time.

15.8.1.	Cluster	Backup	Concepts

A	backup	is	a	snapshot	of	the	database	at	a	given	time.	The	backup	consists	of
three	main	parts:

Metadata:	the	names	and	definitions	of	all	database	tables

Table	records:	the	data	actually	stored	in	the	database	tables	at	the	time
that	the	backup	was	made

Transaction	log:	a	sequential	record	telling	how	and	when	data	was	stored
in	the	database

Each	of	these	parts	is	saved	on	all	nodes	participating	in	the	backup.	During
backup,	each	node	saves	these	three	parts	into	three	files	on	disk:

BACKUP-backup_id.node_id.ctl

A	control	file	containing	control	information	and	metadata.	Each	node
saves	the	same	table	definitions	(for	all	tables	in	the	cluster)	to	its	own
version	of	this	file.

BACKUP-backup_id-0.node_id.data

A	data	file	containing	the	table	records,	which	are	saved	on	a	per-fragment
basis.	That	is,	different	nodes	save	different	fragments	during	the	backup.
The	file	saved	by	each	node	starts	with	a	header	that	states	the	tables	to
which	the	records	belong.	Following	the	list	of	records	there	is	a	footer
containing	a	checksum	for	all	records.

BACKUP-backup_id.node_id.log

A	log	file	containing	records	of	committed	transactions.	Only	transactions

on	tables	stored	in	the	backup	are	stored	in	the	log.	Nodes	involved	in	the
backup	save	different	records	because	different	nodes	host	different
database	fragments.

In	the	listing	above,	backup_id	stands	for	the	backup	identifier	and	node_id	is
the	unique	identifier	for	the	node	creating	the	file.

15.8.2.	Using	The	Management	Client	to	Create	a	Backup

Before	starting	a	backup,	make	sure	that	the	cluster	is	properly	configured	for
performing	one.	(See	Section	15.8.4,	“Configuration	for	Cluster	Backup”.)

Creating	a	backup	using	the	management	client	involves	the	following	steps:

1.	 Start	the	management	client	(ndb_mgm).

2.	 Execute	the	command	START	BACKUP.

3.	 The	management	client	will	reply	with	the	message	Start	of	backup
ordered.	This	means	that	the	management	client	has	submitted	the	request
to	the	cluster,	but	has	not	yet	received	any	response.

4.	 The	management	client	will	reply	Backup	backup_id	started,	where
backup_id	is	the	unique	identifier	for	this	particular	backup.	(This	identifier
will	also	be	saved	in	the	cluster	log,	if	it	has	not	been	configured
otherwise.)	This	means	that	the	cluster	has	received	and	processed	the
backup	request.	It	does	not	mean	that	the	backup	has	finished.

5.	 The	management	client	will	signal	that	the	backup	is	finished	with	the
message	Backup	backup_id	completed.

To	abort	a	backup	that	is	already	in	progress:

1.	 Start	the	management	client.

2.	 Execute	the	command	ABORT	BACKUP	backup_id.	The	number	backup_id
is	the	identifier	of	the	backup	that	was	included	in	the	response	of	the
management	client	when	the	backup	was	started	(in	the	message	Backup
backup_id	started).

3.	 The	management	client	will	acknowledge	the	abort	request	with	Abort	of
backup	backup_id	ordered;	note	that	it	has	received	no	actual	response	to
this	request	yet.

4.	 After	the	backup	has	been	aborted,	the	management	client	will	report
Backup	backup_id	has	been	aborted	for	reason	XYZ.	This	means	that	the
cluster	has	terminated	the	backup	and	that	all	files	related	to	this	backup
have	been	removed	from	the	cluster	filesystem.

It	is	also	possible	to	abort	a	backup	in	progress	from	the	system	shell	using	this
command:

shell>	ndb_mgm	-e	"ABORT	BACKUP	backup_id"

Note:	If	there	is	no	backup	with	ID	backup_id	running	when	it	is	aborted,	the
management	client	makes	no	explicit	response.	However,	the	fact	that	an	invalid
abort	command	was	sent	is	indicated	in	the	cluster	log.

15.8.3.	How	to	Restore	a	Cluster	Backup

The	cluster	restoration	program	is	implemented	as	a	separate	command-line
utility	ndb_restore,	which	reads	the	files	created	by	the	backup	and	inserts	the
stored	information	into	the	database.	The	restore	program	must	be	executed	once
for	each	set	of	backup	files.	That	is,	as	many	times	as	there	were	database	nodes
running	when	the	backup	was	created.

The	first	time	you	run	the	ndb_restore	restoration	program,	you	also	need	to
restore	the	metadata.	In	other	words,	you	must	re-create	the	database	tables.
(Note	that	the	cluster	should	have	an	empty	database	when	starting	to	restore	a
backup.)	The	restore	program	acts	as	an	API	to	the	cluster	and	therefore	requires
a	free	connection	to	connect	to	the	cluster.	This	can	be	verified	with	the
ndb_mgm	command	SHOW	(you	can	accomplish	this	from	a	system	shell
using	ndb_mgm	-e	SHOW).	The	-c	connectstring	option	may	be	used	to
locate	the	MGM	node	(see	Section	15.4.4.2,	“The	Cluster	connectstring”,	for
information	on	connectstrings).	The	backup	files	must	be	present	in	the	directory
given	as	an	argument	to	the	restoration	program.

It	is	possible	to	restore	a	backup	to	a	database	with	a	different	configuration	than
it	was	created	from.	For	example,	suppose	that	a	backup	with	backup	ID	12,
created	in	a	cluster	with	two	database	nodes	having	the	node	IDs	2	and	3,	is	to	be

restored	to	a	cluster	with	four	nodes.	Then	ndb_restore	must	be	run	twice	—
once	for	each	database	node	in	the	cluster	where	the	backup	was	taken.
However,	ndb_restore	cannot	always	restore	backups	made	from	a	cluster
running	one	version	of	MySQL	to	a	cluster	running	a	different	MySQL	version.
See	Section	15.5.2,	“Cluster	Upgrade	and	Downgrade	Compatibility”,	for	more
information.

Note:	For	rapid	restoration,	the	data	may	be	restored	in	parallel,	provided	that
there	is	a	sufficient	number	of	cluster	connections	available.	However,	the	data
files	must	always	be	applied	before	the	logs.

15.8.4.	Configuration	for	Cluster	Backup

Four	configuration	parameters	are	essential	for	backup:

BackupDataBufferSize

The	amount	of	memory	used	to	buffer	data	before	it	is	written	to	disk.

BackupLogBufferSize

The	amount	of	memory	used	to	buffer	log	records	before	these	are	written
to	disk.

BackupMemory

The	total	memory	allocated	in	a	database	node	for	backups.	This	should	be
the	sum	of	the	memory	allocated	for	the	backup	data	buffer	and	the	backup
log	buffer.

BackupWriteSize

The	size	of	blocks	written	to	disk.	This	applies	for	both	the	backup	data
buffer	and	the	backup	log	buffer.

More	detailed	information	about	these	parameters	can	be	found	in
Section	15.4.4.5,	“Defining	Data	Nodes”.

15.8.5.	Backup	Troubleshooting

If	an	error	code	is	returned	when	issuing	a	backup	request,	the	most	likely	cause
is	insufficient	memory	or	disk	space.	You	should	check	that	there	is	enough
memory	allocated	for	the	backup.	Important:	If	you	have	set
BackupDataBufferSize	and	BackupLogBufferSize	and	their	sum	is	greater	than
4MB,	then	you	must	also	set	BackupMemory	as	well.	See	BackupMemory.

You	should	also	make	sure	that	there	is	sufficient	space	on	the	hard	drive
partition	of	the	backup	target.

NDB	does	not	support	repeatable	reads,	which	can	cause	problems	with	the
restoration	process.	Although	the	backup	process	is	“hot”,	restoring	a	MySQL
Cluster	from	backup	is	not	a	100%	“hot”	process.	This	is	due	to	the	fact	that,	for
the	duration	of	the	restore	process,	running	transactions	get	non-repeatable	reads
from	the	restored	data.	This	means	that	the	state	of	the	data	is	inconsistent	while
the	restore	is	in	progress.

15.9.	Using	High-Speed	Interconnects	with	MySQL
Cluster

Even	before	design	of	NDB	Cluster	began	in	1996,	it	was	evident	that	one	of	the
major	problems	to	be	encountered	in	building	parallel	databases	would	be
communication	between	the	nodes	in	the	network.	For	this	reason,	NDB	Cluster
was	designed	from	the	very	beginning	to	allow	for	the	use	of	a	number	of
different	data	transport	mechanisms.	In	this	Manual,	we	use	the	term	transporter
for	these.

The	MySQL	Cluster	codebase	includes	support	for	four	different	transporters:

TCP/IP	using	100	Mbps	or	gigabit	Ethernet,	as	discussed	in
Section	15.4.4.7,	“Cluster	TCP/IP	Connections”.

Direct	(machine-to-machine)	TCP/IP;	although	this	transporter	uses	the
same	TCP/IP	protocol	as	mentioned	in	the	previous	item,	it	requires	setting
up	the	hardware	differently	and	is	configured	differently	as	well.	For	this
reason,	it	is	considered	a	separate	transport	mechanism	for	MySQL	Cluster.
See	Section	15.4.4.8,	“TCP/IP	Connections	Using	Direct	Connections”,	for
details.

Shared	memory	(SHM).	For	more	information	about	SHM,	see
Section	15.4.4.9,	“Shared-Memory	Connections”.

Scalable	Coherent	Interface	(SCI),	as	described	in	the	next	section	of	this
chapter,	Section	15.4.4.10,	“SCI	Transport	Connections”.

Most	users	today	employ	TCP/IP	over	Ethernet	because	it	is	ubiquitous.	TCP/IP
is	also	by	far	the	best-tested	transporter	for	use	with	MySQL	Cluster.

We	are	working	to	make	sure	that	communication	with	the	ndbd	process	is	made
in	“chunks”	that	are	as	large	as	possible	because	this	benefits	all	types	of	data
transmission.

For	users	who	desire	it,	it	is	also	possible	to	use	cluster	interconnects	to	enhance
performance	even	further.	There	are	two	ways	to	achieve	this:	Either	a	custom
transporter	can	be	designed	to	handle	this	case,	or	you	can	use	socket

implementations	that	bypass	the	TCP/IP	stack	to	one	extent	or	another.	We	have
experimented	with	both	of	these	techniques	using	the	SCI	(Scalable	Coherent
Interface)	technology	developed	by	Dolphin.

15.9.1.	Configuring	MySQL	Cluster	to	use	SCI	Sockets

In	this	section,	we	show	how	to	adapt	a	cluster	configured	for	normal	TCP/IP
communication	to	use	SCI	Sockets	instead.	This	documentation	is	based	on	SCI
Sockets	version	2.3.0	as	of	01	October	2004.

Prerequisites

Any	machines	with	which	you	wish	to	use	SCI	Sockets	must	be	equipped	with
SCI	cards.

It	is	possible	to	use	SCI	Sockets	with	any	version	of	MySQL	Cluster.	No	special
builds	are	needed	because	it	uses	normal	socket	calls	which	are	already	available
in	MySQL	Cluster.	However,	SCI	Sockets	are	currently	supported	only	on	the
Linux	2.4	and	2.6	kernels.	SCI	Transporters	have	been	tested	successfully	on
additional	operating	systems	although	we	have	verified	these	only	with	Linux
2.4	to	date.

There	are	essentially	four	requirements	for	SCI	Sockets:

Building	the	SCI	Socket	libraries.

Installation	of	the	SCI	Socket	kernel	libraries.

Installation	of	one	or	two	configuration	files.

The	SCI	Socket	kernel	library	must	enabled	either	for	the	entire	machine	or
for	the	shell	where	the	MySQL	Cluster	processes	are	started.

This	process	needs	to	be	repeated	for	each	machine	in	the	cluster	where	you	plan
to	use	SCI	Sockets	for	inter-node	communication.

Two	packages	need	to	be	retrieved	to	get	SCI	Sockets	working:

The	source	code	package	containing	the	DIS	support	libraries	for	the	SCI
Sockets	libraries.

http://www.dolphinics.com/

The	source	code	package	for	the	SCI	Socket	libraries	themselves.

Currently,	these	are	available	only	in	source	code	format.	The	latest	versions	of
these	packages	at	the	time	of	this	writing	were	available	as	(respectively)
DIS_GPL_2_5_0_SEP_10_2004.tar.gz	and
SCI_SOCKET_2_3_0_OKT_01_2004.tar.gz.	You	should	be	able	to	find	these	(or
possibly	newer	versions)	at	http://www.dolphinics.no/support/downloads.html.

Package	Installation

Once	you	have	obtained	the	library	packages,	the	next	step	is	to	unpack	them
into	appropriate	directories,	with	the	SCI	Sockets	library	unpacked	into	a
directory	below	the	DIS	code.	Next,	you	need	to	build	the	libraries.	This
example	shows	the	commands	used	on	Linux/x86	to	perform	this	task:

shell>	tar	xzf	DIS_GPL_2_5_0_SEP_10_2004.tar.gz

shell>	cd	DIS_GPL_2_5_0_SEP_10_2004/src/

shell>	tar	xzf	../../SCI_SOCKET_2_3_0_OKT_01_2004.tar.gz

shell>	cd	../adm/bin/Linux_pkgs

shell>	./make_PSB_66_release

It	is	possible	to	build	these	libraries	for	some	64-bit	procesors.	To	build	the
libraries	for	Opteron	CPUs	using	the	64-bit	extensions,	run
make_PSB_66_X86_64_release	rather	than	make_PSB_66_release.	If	the
build	is	made	on	an	Itanium	machine,	you	should	use
make_PSB_66_IA64_release.	The	X86-64	variant	should	work	for	Intel
EM64T	architectures	but	this	has	not	yet	(to	our	knowledge)	been	tested.

Once	the	build	process	is	complete,	the	compiled	libraries	will	be	found	in	a
zipped	tar	file	with	a	name	along	the	lines	of	DIS-<operating-system>-time-
date.	It	is	now	time	to	install	the	package	in	the	proper	place.	In	this	example	we
will	place	the	installation	in	/opt/DIS.	(Note:	You	will	most	likely	need	to	run
the	following	as	the	system	root	user.)

shell>	cp	DIS_Linux_2.4.20-8_181004.tar.gz	/opt/

shell>	cd	/opt

shell>	tar	xzf	DIS_Linux_2.4.20-8_181004.tar.gz

shell>	mv	DIS_Linux_2.4.20-8_181004	DIS

Network	Configuration

Now	that	all	the	libraries	and	binaries	are	in	their	proper	place,	we	need	to

http://www.dolphinics.no/support/downloads.html

ensure	that	the	SCI	cards	have	proper	node	IDs	within	the	SCI	address	space.

It	is	also	necessary	to	decide	on	the	network	structure	before	proceeding.	There
are	three	types	of	network	structures	which	can	be	used	in	this	context:

A	simple	one-dimensional	ring

One	or	more	SCI	switches	with	one	ring	per	switch	port

A	two-	or	three-dimensional	torus.

Each	of	these	topologies	has	its	own	method	for	providing	node	IDs.	We	discuss
each	of	them	in	brief.

A	simple	ring	uses	node	IDs	which	are	non-zero	multiples	of	4:	4,	8,	12,...

The	next	possibility	uses	SCI	switches.	An	SCI	switch	has	8	ports,	each	of	which
can	support	a	ring.	It	is	necessary	to	make	sure	that	different	rings	use	different
node	ID	spaces.	In	a	typical	configuration,	the	first	port	uses	node	IDs	below	64
(4	–	60),	the	next	64	node	IDs	(68	–	124)	are	assigned	to	the	next	port,	and	so	on,
with	node	IDs	452	–	508	being	assigned	to	the	eighth	port.

Two-	and	three-dimensional	torus	network	structures	take	into	account	where
each	node	is	located	in	each	dimension,	incrementing	by	4	for	each	node	in	the
first	dimension,	by	64	in	the	second	dimension,	and	(where	applicable)	by	1024
in	the	third	dimension.	See	Dolphin's	Web	site	for	more	thorough
documentation.

In	our	testing	we	have	used	switches,	although	most	large	cluster	installations
use	2-	or	3-dimensional	torus	structures.	The	advantage	provided	by	switches	is
that,	with	dual	SCI	cards	and	dual	switches,	it	is	possible	to	build	with	relative
ease	a	redundant	network	where	the	average	failover	time	on	the	SCI	network	is
on	the	order	of	100	microseconds.	This	is	supported	by	the	SCI	transporter	in
MySQL	Cluster	and	is	also	under	development	for	the	SCI	Socket
implementation.

Failover	for	the	2D/3D	torus	is	also	possible	but	requires	sending	out	new
routing	indexes	to	all	nodes.	However,	this	requires	only	100	milliseconds	or	so
to	complete	and	should	be	acceptable	for	most	high-availability	cases.

http://www.dolphinics.com/support/index.html

By	placing	cluster	data	nodes	properly	within	the	switched	architecture,	it	is
possible	to	use	2	switches	to	build	a	structure	whereby	16	computers	can	be
interconnected	and	no	single	failure	can	hinder	more	than	one	of	them.	With	32
computers	and	2	switches	it	is	possible	to	configure	the	cluster	in	such	a	manner
that	no	single	failure	can	cause	the	loss	of	more	than	two	nodes;	in	this	case,	it	is
also	possible	to	know	which	pair	of	nodes	is	affected.	Thus,	by	placing	the	two
nodes	in	separate	node	groups,	it	is	possible	to	build	a	“safe”	MySQL	Cluster
installation.

To	set	the	node	ID	for	an	SCI	card	use	the	following	command	in	the
/opt/DIS/sbin	directory.	In	this	example,	-c	1	refers	to	the	number	of	the	SCI
card	(this	is	always	1	if	there	is	only	1	card	in	the	machine);	-a	0	refers	to
adapter	0;	and	68	is	the	node	ID:

shell>	./sciconfig	-c	1	-a	0	-n	68

If	you	have	multiple	SCI	cards	in	the	same	machine,	you	can	determine	which
card	has	which	slot	by	issuing	the	following	command	(again	we	assume	that	the
current	working	directory	is	/opt/DIS/sbin):

shell>	./sciconfig	-c	1	-gsn

This	will	give	you	the	SCI	card's	serial	number.	Then	repeat	this	procedure	with
-c	2,	and	so	on,	for	each	card	in	the	machine.	Once	you	have	matched	each	card
with	a	slot,	you	can	set	node	IDs	for	all	cards.

After	the	necessary	libraries	and	binaries	are	installed,	and	the	SCI	node	IDs	are
set,	the	next	step	is	to	set	up	the	mapping	from	hostnames	(or	IP	addresses)	to
SCI	node	IDs.	This	is	done	in	the	SCI	sockets	configuration	file,	which	should
be	saved	as	/etc/sci/scisock.conf.	In	this	file,	each	SCI	node	ID	is	mapped
through	the	proper	SCI	card	to	the	hostname	or	IP	address	that	it	is	to
communicate	with.	Here	is	a	very	simple	example	of	such	a	configuration	file:

#host											#nodeId

alpha											8

beta												12

192.168.10.20			16

It	is	also	possible	to	limit	the	configuration	so	that	it	applies	only	to	a	subset	of
the	available	ports	for	these	hosts.	An	additional	configuration	file
/etc/sci/scisock_opt.conf	can	be	used	to	accomplish	this,	as	shown	here:

#-key																								-type								-values

EnablePortsByDefault																yes

EnablePort																		tcp											2200

DisablePort																	tcp											2201

EnablePortRange													tcp											2202	2219

DisablePortRange												tcp											2220	2231

Driver	Installation

With	the	configuration	files	in	place,	the	drivers	can	be	installed.

First,	the	low-level	drivers	and	then	the	SCI	socket	driver	need	to	be	installed:

shell>	cd	DIS/sbin/

shell>	./drv-install	add	PSB66

shell>	./scisocket-install	add

If	desired,	the	installation	can	be	checked	by	invoking	a	script	which	verifies	that
all	nodes	in	the	SCI	socket	configuration	files	are	accessible:

shell>	cd	/opt/DIS/sbin/

shell>	./status.sh

If	you	discover	an	error	and	need	to	change	the	SCI	socket	configuration,	it	is
necessary	to	use	ksocketconfig	to	accomplish	this	task:

shell>	cd	/opt/DIS/util

shell>	./ksocketconfig	-f

Testing	the	Setup

To	ensure	that	SCI	sockets	are	actually	being	used,	you	can	employ	the
latency_bench	test	program.	Using	this	utility's	server	component,	clients	can
connect	to	the	server	to	test	the	latency	of	the	connection.	Determining	whether
SCI	is	enabled	should	be	fairly	simple	from	observing	the	latency.	(Note:	Before
using	latency_bench,	it	is	necessary	to	set	the	LD_PRELOAD	environment	variable
as	shown	later	in	this	section.)

To	set	up	a	server,	use	the	following:

shell>	cd	/opt/DIS/bin/socket

shell>	./latency_bench	-server

To	run	a	client,	use	latency_bench	again,	except	this	time	with	the	-client

option:

shell>	cd	/opt/DIS/bin/socket

shell>	./latency_bench	-client	server_hostname

SCI	socket	configuration	should	now	be	complete	and	MySQL	Cluster	ready	to
use	both	SCI	Sockets	and	the	SCI	transporter	(see	Section	15.4.4.10,	“SCI
Transport	Connections”).

Starting	the	Cluster

The	next	step	in	the	process	is	to	start	MySQL	Cluster.	To	enable	usage	of	SCI
Sockets	it	is	necessary	to	set	the	environment	variable	LD_PRELOAD	before
starting	ndbd,	mysqld,	and	ndb_mgmd.	This	variable	should	point	to	the	kernel
library	for	SCI	Sockets.

To	start	ndbd	in	a	bash	shell,	do	the	following:

bash-shell>	export	LD_PRELOAD=/opt/DIS/lib/libkscisock.so

bash-shell>	ndbd

In	a	tcsh	environment	the	same	thing	can	be	accomplished	with:

tcsh-shell>	setenv	LD_PRELOAD=/opt/DIS/lib/libkscisock.so

tcsh-shell>	ndbd

Note:	MySQL	Cluster	can	use	only	the	kernel	variant	of	SCI	Sockets.

15.9.2.	Understanding	the	Impact	of	Cluster	Interconnects

The	ndbd	process	has	a	number	of	simple	constructs	which	are	used	to	access
the	data	in	a	MySQL	Cluster.	We	have	created	a	very	simple	benchmark	to	check
the	performance	of	each	of	these	and	the	effects	which	various	interconnects
have	on	their	performance.

There	are	four	access	methods:

Primary	key	access

This	is	access	of	a	record	through	its	primary	key.	In	the	simplest	case,	only
one	record	is	accessed	at	a	time,	which	means	that	the	full	cost	of	setting	up

a	number	of	TCP/IP	messages	and	a	number	of	costs	for	context	switching
are	borne	by	this	single	request.	In	the	case	where	multiple	primary	key
accesses	are	sent	in	one	batch,	those	accesses	share	the	cost	of	setting	up
the	necessary	TCP/IP	messages	and	context	switches.	If	the	TCP/IP
messages	are	for	different	destinations,	additional	TCP/IP	messages	need	to
be	set	up.

Unique	key	access

Unique	key	accesses	are	similar	to	primary	key	accesses,	except	that	a
unique	key	access	is	executed	as	a	read	on	an	index	table	followed	by	a
primary	key	access	on	the	table.	However,	only	one	request	is	sent	from	the
MySQL	Server,	and	the	read	of	the	index	table	is	handled	by	ndbd.	Such
requests	also	benefit	from	batching.

Full	table	scan

When	no	indexes	exist	for	a	lookup	on	a	table,	a	full	table	scan	is
performed.	This	is	sent	as	a	single	request	to	the	ndbd	process,	which	then
divides	the	table	scan	into	a	set	of	parallel	scans	on	all	cluster	ndbd
processes.	In	future	versions	of	MySQL	Cluster,	an	SQL	node	will	be	able
to	filter	some	of	these	scans.

Range	scan	using	ordered	index

When	an	ordered	index	is	used,	it	performs	a	scan	in	the	same	manner	as
the	full	table	scan,	except	that	it	scans	only	those	records	which	are	in	the
range	used	by	the	query	transmitted	by	the	MySQL	server	(SQL	node).	All
partitions	are	scanned	in	parallel	when	all	bound	index	attributes	include	all
attributes	in	the	partitioning	key.

To	check	the	base	performance	of	these	access	methods,	we	have	developed	a	set
of	benchmarks.	One	such	benchmark,	testReadPerf,	tests	simple	and	batched
primary	and	unique	key	accesses.	This	benchmark	also	measures	the	setup	cost
of	range	scans	by	issuing	scans	returning	a	single	record.	There	is	also	a	variant
of	this	benchmark	which	uses	a	range	scan	to	fetch	a	batch	of	records.

In	this	way,	we	can	determine	the	cost	of	both	a	single	key	access	and	a	single
record	scan	access,	as	well	as	measure	the	impact	of	the	communication	media
used,	on	base	access	methods.

In	our	tests,	we	ran	the	base	benchmarks	for	both	a	normal	transporter	using
TCP/IP	sockets	and	a	similar	setup	using	SCI	sockets.	The	figures	reported	in	the
following	table	are	for	small	accesses	of	20	records	per	access.	The	difference
between	serial	and	batched	access	decreases	by	a	factor	of	3	to	4	when	using
2KB	records	instead.	SCI	Sockets	were	not	tested	with	2KB	records.	Tests	were
performed	on	a	cluster	with	2	data	nodes	running	on	2	dual-CPU	machines
equipped	with	AMD	MP1900+	processors.

Access	Type TCP/IP	Sockets SCI	Socket
Serial	pk	access 400	microseconds 160	microseconds
Batched	pk	access 28	microseconds 22	microseconds
Serial	uk	access 500	microseconds 250	microseconds
Batched	uk	access 70	microseconds 36	microseconds
Indexed	eq-bound 1250	microseconds 750	microseconds
Index	range 24	microseconds 12	microseconds

We	also	performed	another	set	of	tests	to	check	the	performance	of	SCI	Sockets
vis-à-vis	that	of	the	SCI	transporter,	and	both	of	these	as	compared	with	the
TCP/IP	transporter.	All	these	tests	used	primary	key	accesses	either	serially	and
multi-threaded,	or	multi-threaded	and	batched.

The	tests	showed	that	SCI	sockets	were	about	100%	faster	than	TCP/IP.	The	SCI
transporter	was	faster	in	most	cases	compared	to	SCI	sockets.	One	notable	case
occurred	with	many	threads	in	the	test	program,	which	showed	that	the	SCI
transporter	did	not	perform	very	well	when	used	for	the	mysqld	process.

Our	overall	conclusion	was	that,	for	most	benchmarks,	using	SCI	sockets
improves	performance	by	approximately	100%	over	TCP/IP,	except	in	rare
instances	when	communication	performance	is	not	an	issue.	This	can	occur
when	scan	filters	make	up	most	of	processing	time	or	when	very	large	batches	of
primary	key	accesses	are	achieved.	In	that	case,	the	CPU	processing	in	the	ndbd
processes	becomes	a	fairly	large	part	of	the	overhead.

Using	the	SCI	transporter	instead	of	SCI	Sockets	is	only	of	interest	in
communicating	between	ndbd	processes.	Using	the	SCI	transporter	is	also	only
of	interest	if	a	CPU	can	be	dedicated	to	the	ndbd	process	because	the	SCI
transporter	ensures	that	this	process	will	never	go	to	sleep.	It	is	also	important	to

ensure	that	the	ndbd	process	priority	is	set	in	such	a	way	that	the	process	does
not	lose	priority	due	to	running	for	an	extended	period	of	time,	as	can	be	done	by
locking	processes	to	CPUs	in	Linux	2.6.	If	such	a	configuration	is	possible,	the
ndbd	process	will	benefit	by	10–70%	as	compared	with	using	SCI	sockets.	(The
larger	figures	will	be	seen	when	performing	updates	and	probably	on	parallel
scan	operations	as	well.)

There	are	several	other	optimized	socket	implementations	for	computer	clusters,
including	Myrinet,	Gigabit	Ethernet,	Infiniband	and	the	VIA	interface.	We	have
tested	MySQL	Cluster	so	far	only	with	SCI	sockets.	See	Section	15.9.1,
“Configuring	MySQL	Cluster	to	use	SCI	Sockets”	for	information	on	how	to	set
up	SCI	sockets	using	ordinary	TCP/IP	for	MySQL	Cluster.

15.10.	Known	Limitations	of	MySQL	Cluster

In	this	section,	we	provide	a	list	of	known	limitations	in	MySQL	Cluster	releases
in	the	5.0.x	series	compared	to	features	available	when	using	the	MyISAM	and
InnoDB	storage	engines.	Currently,	there	are	no	plans	to	address	these	in	coming
releases	of	MySQL	5.0;	however,	we	will	attempt	to	supply	fixes	for	these	issues
in	subsequent	release	series.	If	you	check	the	“Cluster”	category	in	the	MySQL
bugs	database	at	http://bugs.mysql.com,	you	can	find	known	bugs	which	(if
marked	“5.0”)	we	intend	to	correct	in	upcoming	releases	of	MySQL	5.0.

The	list	here	is	intended	to	be	complete	with	respect	to	the	conditions	just	set
forth.	You	can	report	any	discrepancies	that	you	encounter	to	the	MySQL	bugs
database	using	the	instructions	given	in	Section	1.8,	“How	to	Report	Bugs	or
Problems”.	If	we	do	not	plan	to	fix	the	problem	in	MySQL	5.0,	we	will	add	it	to
the	list.

(Note:	See	the	end	of	this	section	for	a	list	of	issues	in	MySQL	4.1	Cluster	that
have	been	resolved	in	the	current	version.)

Noncompliance	in	syntax	(resulting	in	errors	when	running	existing
applications):

Text	indexes	are	not	supported.	That	is,	you	cannot	create	indexes	on
columns	of	any	of	the	TEXT	datatypes,	nor	does	the	NDB	storage	engine
support	FULLTEXT	indexes	(these	are	supported	by	MyISAM	only).
However,	you	can	index	CHAR	or	VARCHAR	columns	of	NDB	tables.

A	BIT	column	cannot	be	a	primary	key	or	part	of	a	composite	primary
key.

Geometry	datatypes	(WKT	and	WKB)	are	not	supported	by	the	NDB
storage	engine	prior	to	MySQL	5.0.16.	(Note	that	spatial	indexes	are
still	not	supported	in	MySQL	5.0.16	and	newer.)

In	MySQL	5.0.19	and	earlier,	INSERT	IGNORE,	UPDATE	IGNORE,	and
REPLACE	are	supported	only	for	primary	keys,	but	not	for	unique	keys.
One	possible	workaround	is	to	remove	the	constraint	by	dropping	the
unique	index,	perform	any	inserts,	and	then	add	the	unique	index

http://bugs.mysql.com

again.

This	limitation	is	removed	for	INSERT	IGNORE	and	REPLACE	in	MySQL
5.0.20.	(Bug	#17431)

Non-compliance	in	limits	or	behavior	(may	result	in	errors	when	running
existing	applications):

Error	Reporting:

A	duplicate	key	error	returns	the	error	message	ERROR	23000:
Can't	write;	duplicate	key	in	table	'tbl_name'.

Like	other	MySQL	storage	engines,	the	NDB	storage	engine	can
handle	a	maximum	of	one	AUTO_INCREMENT	column	per	table.
However,	in	the	case	of	a	Cluster	table	with	no	explicit	primary
key,	an	AUTO_INCREMENT	column	is	automatically	defined	and
used	as	a	“hidden”	primary	key.	For	this	reason,	you	cannot
define	a	table	that	has	an	explicit	AUTO_INCREMENT	column	unless
that	column	is	also	declared	using	the	PRIMARY	KEY	option.

Attempting	to	create	a	table	with	an	AUTO_INCREMENT	column	that
is	not	the	table's	primary	key,	and	using	the	NDB	storage	engine,
fails	with	an	error.

Transaction	Handling:

NDB	Cluster	supports	only	the	READ	COMMITTED	transaction
isolation	level.

There	is	no	partial	rollback	of	transactions.	A	duplicate	key	or
similar	error	results	in	a	rollback	of	the	entire	transaction.

Important:	If	a	SELECT	from	a	Cluster	table	includes	a	BLOB,
TEXT,	or	VARCHAR	column,	the	READ	COMMITTED	transaction
isolation	level	is	converted	to	a	read	with	read	lock.	This	is	done
to	guarantee	consistency,	due	to	the	fact	that	parts	of	the	values
stored	in	columns	of	these	types	are	actually	read	from	a	separate
table.

As	noted	elsewhere	in	this	chapter,	MySQL	Cluster	does	not
handle	large	transactions	well;	it	is	better	to	perform	a	number	of
small	transactions	with	a	few	operations	each	than	to	attempt	a
single	large	transaction	containing	a	great	many	operations.

Among	other	considerations,	large	transactions	require	very	large
amounts	of	memory.	Because	of	this,	the	transactional	behaviour
of	a	number	of	MySQL	statements	is	effected	as	described	in	the
following	list:

TRUNCATE	is	not	transactional	when	used	on	NDB	tables.	If	a
TRUNCATE	fails	to	empty	the	table,	then	it	must	be	re-run	until
it	is	successful.

DELETE	FROM	(even	with	no	WHERE	clause)	is	transactional.
For	tables	containing	a	great	many	rows,	you	may	find	that
performance	is	improved	by	using	several	DELETE	FROM	...
LIMIT	...	statements	to	“chunk”	the	delete	operation.	If	the
objective	is	to	empty	the	table,	then	you	may	wish	to	use
TRUNCATE	instead.

LOAD	DATA	INFILE	is	not	transactional.	During	such	an
operation	the	NDB	engine	can	and	does	commit	at	will.

LOAD	DATA	FROM	MASTER	is	not	supported	in	MySQL
Cluster.

When	copying	a	table	as	part	of	an	ALTER	TABLE,	the
creation	of	the	copy	is	non-transactional.	(In	any	case,	this
operation	is	rolled	back	when	the	copy	is	deleted.)

Node	Start,	Stop,	or	Restart::	Starting,	stopping,	or	restarting	a
node	may	give	rise	to	temporary	errors	causing	some	transactions
to	fail.	These	include	the	following	cases:

When	first	starting	a	node,	it	is	possible	that	you	may	see
Error	1204	Temporary	failure,	distribution	changed	and
similar	temporary	errors.

The	stopping	or	failure	of	any	data	node	can	result	in	a

number	of	different	node	failure	errors.	(However,	there
should	be	no	aborted	transactions	when	performing	a
planned	shutdown	of	the	cluster.)

In	either	of	these	cases,	any	errors	that	are	generated	must	be
handled	within	the	application.	This	should	be	done	by	retrying
the	transaction.

A	number	of	hard	limits	exist	which	are	configurable,	but	available
main	memory	in	the	cluster	sets	limits.	See	the	complete	list	of
configuration	parameters	in	Section	15.4.4,	“Configuration	File”.	Most
configuration	parameters	can	be	upgraded	online.	These	hard	limits
include:

Database	memory	size	and	index	memory	size	(DataMemory	and
IndexMemory,	respectively).

DataMemory	is	allocated	as	32KB	pages.	As	each	DataMemory
page	is	used,	it	is	assigned	to	a	specific	table;	once	allocated,	this
memory	cannot	be	freed	except	by	dropping	the	table.

See	Section	15.4.4.5,	“Defining	Data	Nodes”,	for	further
information	about	DataMemory	and	IndexMemory.

The	maximum	number	of	operations	that	can	be	performed	per
transaction	is	set	using	the	configuration	parameters
MaxNoOfConcurrentOperations	and	MaxNoOfLocalOperations.
Note	that	bulk	loading,	TRUNCATE	TABLE,	and	ALTER	TABLE	are
handled	as	special	cases	by	running	multiple	transactions,	and	so
are	not	subject	to	this	limitation.

Different	limits	related	to	tables	and	indexes.	For	example,	the
maximum	number	of	ordered	indexes	per	table	is	determined	by
MaxNoOfOrderedIndexes.

Database	names,	table	names	and	attribute	names	cannot	be	as	long	in
NDB	tables	as	with	other	table	handlers.	Attribute	names	are	truncated
to	31	characters,	and	if	not	unique	after	truncation	give	rise	to	errors.
Database	names	and	table	names	can	total	a	maximum	of	122
characters.	(That	is,	the	maximum	length	for	an	NDB	Cluster	table

name	is	122	characters	less	the	number	of	characters	in	the	name	of
the	database	of	which	that	table	is	a	part.)

All	Cluster	table	rows	are	of	fixed	length.	This	means	(for	example)
that	if	a	table	has	one	or	more	VARCHAR	fields	containing	only
relatively	small	values,	more	memory	and	disk	space	is	required	when
using	the	NDB	storage	engine	than	would	be	the	case	for	the	same	table
and	data	using	the	MyISAM	engine.	(In	other	words,	in	the	case	of	a
VARCHAR	column,	the	column	requires	the	same	amount	of	storage	as	a
CHAR	column	of	the	same	size.)

The	maximum	number	of	tables	in	a	Cluster	database	is	limited	to
1792.

The	maximum	number	of	ordered	indexes	per	cluster,	including
AUTO_INCREMENT	columns	and	hidden	primary	keys,	is	2048.

This	limitation	was	lifted	in	MySQL	5.0.23.

The	maximum	number	of	attributes	per	table	is	limited	to	128.

The	maximum	permitted	size	of	any	one	row	is	8KB.	Note	that	each
BLOB	or	TEXT	column	contributes	a	maximum	of	256	bytes	towards	this
total.

The	maximum	number	of	attributes	per	key	is	32.

Unsupported	features	(do	not	cause	errors,	but	are	not	supported	or
enforced):

The	foreign	key	construct	is	ignored,	just	as	it	is	in	MyISAM	tables.

Savepoints	and	rollbacks	to	savepoints	are	ignored	as	in	MyISAM.

OPTIMIZE	operations	are	not	supported.

LOAD	TABLE	...	FROM	MASTER	is	not	supported.

Performance	and	limitation-related	issues:

There	are	query	performance	issues	due	to	sequential	access	to	the	NDB
storage	engine;	it	is	also	relatively	more	expensive	to	do	many	range
scans	than	it	is	with	either	MyISAM	or	InnoDB.

The	Records	in	range	statistic	is	not	supported,	resulting	in	non-
optimal	query	plans	in	some	cases.	Employ	USE	INDEX	or	FORCE
INDEX	as	a	workaround.

Unique	hash	indexes	created	with	USING	HASH	cannot	be	used	for
accessing	a	table	if	NULL	is	given	as	part	of	the	key.

MySQL	Cluster	does	not	support	durable	commits	on	disk.	Commits
are	replicated,	but	there	is	no	guarantee	that	logs	are	flushed	to	disk	on
commit.

SQL_LOG_BIN	has	no	effect	on	data	operations;	however,	it	is	supported
for	schema	operations.

MySQL	Cluster	cannot	produce	a	binlog	for	tables	having	BLOB
columns	but	no	primary	key.

Only	the	following	schema	operations	are	logged	in	a	cluster	binlog
which	is	not	on	the	mysqld	executing	the	statement:

CREATE	TABLE

ALTER	TABLE

DROP	TABLE

CREATE	DATABASE	/	CREATE	SCHEMA

DROP	DATABASE	/	DROP	SCHEMA

Missing	features:

The	only	supported	isolation	level	is	READ	COMMITTED.	(InnoDB
supports	READ	COMMITTED,	READ	UNCOMMITTED,	REPEATABLE	READ,	and
SERIALIZABLE.)	See	Section	15.8.5,	“Backup	Troubleshooting”,	for
information	on	how	this	can	affect	backup	and	restore	of	Cluster

databases.

No	durable	commits	on	disk.	Commits	are	replicated,	but	there	is	no
guarantee	that	logs	are	flushed	to	disk	on	commit.

Problems	relating	to	multiple	MySQL	servers	(not	relating	to	MyISAM	or
InnoDB):

ALTER	TABLE	is	not	fully	locking	when	running	multiple	MySQL
servers	(no	distributed	table	lock).

MySQL	replication	will	not	work	correctly	if	updates	are	done	on
multiple	MySQL	servers.	However,	if	the	database	partitioning	scheme
is	done	at	the	application	level	and	no	transactions	take	place	across
these	partitions,	replication	can	be	made	to	work.

Autodiscovery	of	databases	is	not	supported	for	multiple	MySQL
servers	accessing	the	same	MySQL	Cluster.	However,	autodiscovery
of	tables	is	supported	in	such	cases.	What	this	means	is	that	after	a
database	named	db_name	is	created	or	imported	using	one	MySQL
server,	you	should	issue	a	CREATE	DATABASE	db_name	statement	on
each	additional	MySQL	server	that	accesses	the	same	MySQL	Cluster.
(As	of	MySQL	5.0.2,	you	may	also	use	CREATE	SCHEMA	db_name.)
Once	this	has	been	done	for	a	given	MySQL	server,	that	server	should
be	able	to	detect	the	database	tables	without	error.

DDL	operations	are	not	node	failure	safe.	If	a	node	fails	while	trying	to
peform	one	of	these	(such	as	CREATE	TABLE	or	ALTER	TABLE),	the	data
dictionary	is	locked	and	no	further	DDL	statements	can	be	executed
without	restarting	the	cluster.

Issues	exclusive	to	MySQL	Cluster	(not	related	to	MyISAM	or	InnoDB):

All	machines	used	in	the	cluster	must	have	the	same	architecture.	That
is,	all	machines	hosting	nodes	must	be	either	big-endian	or	little-
endian,	and	you	cannot	use	a	mixture	of	both.	For	example,	you	cannot
have	a	management	node	running	on	a	PowerPC	which	directs	a	data
node	that	is	running	on	an	x86	machine.	This	restriction	does	not	apply
to	machines	simply	running	mysql	or	other	clients	that	may	be
accessing	the	cluster's	SQL	nodes.

It	is	also	not	possible	to	perform	a	Cluster	backup	and	restore	between
different	architectures.	For	example,	you	cannot	back	up	a	cluster
running	on	a	big-endian	platform	and	then	restore	from	that	backup	to
a	cluster	running	on	a	little-endian	system.	(Bug	#19255)

It	is	not	possible	to	make	online	schema	changes	such	as	those
accomplished	using	ALTER	TABLE	or	CREATE	INDEX,	as	the	NDB
Cluster	engine	does	not	support	autodiscovery	of	such	changes.
(However,	you	can	import	or	create	a	table	that	uses	a	different	storage
engine,	and	then	convert	it	to	NDB	using	ALTER	TABLE	tbl_name
ENGINE=NDBCLUSTER.	In	such	a	case,	you	must	issue	a	FLUSH
TABLES	statement	to	force	the	cluster	to	pick	up	the	change.)

Online	adding	or	dropping	of	nodes	is	not	possible	(the	cluster	must	be
restarted	in	such	cases).

When	using	multiple	management	servers:

You	must	give	nodes	explicit	IDs	in	connectstrings	because
automatic	allocation	of	node	IDs	does	not	work	across	multiple
management	servers.

You	must	take	extreme	care	to	have	the	same	configurations	for
all	management	servers.	No	special	checks	for	this	are	performed
by	the	cluster.

Prior	to	MySQL	5.0.14,	all	data	nodes	had	to	be	restarted	after
bringing	up	the	cluster	in	order	for	the	management	nodes	to	be
able	to	see	one	another.

(See	Bug	#12307	and	#13070	for	more	information.)

Multiple	network	interfaces	for	data	nodes	are	not	supported.	Use	of
these	is	liable	to	cause	problems:	In	the	event	of	a	data	node	failure,	an
SQL	node	waits	for	confirmation	that	the	data	node	went	down	but
never	receives	it	because	another	route	to	that	data	node	remains	open.
This	can	effectively	make	the	cluster	inoperable.

The	maximum	number	of	data	nodes	is	48.

The	total	maximum	number	of	nodes	in	a	MySQL	Cluster	is	63.	This
number	includes	all	MySQL	Servers	(SQL	nodes),	data	nodes,	and
management	servers.

The	following	Cluster	limitations	in	MySQL	4.1	have	been	resolved	in	MySQL
5.0	as	shown	below:

The	NDB	Cluster	storage	engine	supports	all	character	sets	and	collations
available	in	MySQL	5.0.

Prior	to	MySQL	5.0.6,	the	maximum	number	of	metadata	objects	possible
was	1600.	Beginning	with	5.0.6,	this	limit	is	increased	to	20320.

Cluster	in	MySQL	5.0	supports	column	indexes	that	make	use	of	prefixes.

Unlike	the	case	in	MySQL	4.1,	the	Cluster	storage	engine	in	MySQL	5.0
supports	MySQL'	query	cache.	See	Section	5.14,	“The	MySQL	Query
Cache”.

Beginning	with	MySQL	5.0.21,	it	is	possible	to	install	MySQL	with	Cluster
support	to	a	non-default	location	and	change	the	search	path	for	font
description	files	using	either	the	--basedir	or	--character-sets-dir
options.	(Previously,	ndbd	in	MySQL	5.0	searched	only	the	default	path	—
typically	/usr/local/mysql/share/mysql/charsets	—	for	character	sets.)

15.11.	MySQL	Cluster	Development	Roadmap

In	this	section,	we	discuss	changes	in	the	implementation	of	MySQL	Cluster	in
MySQL	5.0	as	compared	to	MySQL	4.1.	We	will	also	discuss	our	roadmap	for
further	improvements	to	MySQL	Cluster	as	currently	planned	for	MySQL	5.1.

There	are	relatively	few	changes	between	the	NDB	Cluster	storage	engine
implementations	in	MySQL	4.1	and	in	5.0,	so	the	upgrade	path	should	be
relatively	quick	and	painless.

All	significantly	new	features	being	developed	for	MySQL	Cluster	are	going
into	the	MySQL	5.1	and	5.2	trees.	For	information	on	changes	in	the	Cluster
implementations	in	MySQL	versions	5.1	and	later,	see
http://dev.mysql.com/doc/refman/5.1/en/ndbcluster.html.

15.11.1.	MySQL	Cluster	Changes	in	MySQL	5.0

MySQL	Cluster	in	versions	5.0.3-beta	and	later	contains	a	number	of	new
features	that	are	likely	to	be	of	interest:

Push-Down	Conditions:	Consider	the	following	query:

SELECT	*	FROM	t1	WHERE	non_indexed_attribute	=	1;

This	query	will	use	a	full	table	scan	and	the	condition	will	be	evaluated	in
the	cluster's	data	nodes.	Thus,	it	is	not	necessary	to	send	the	records	across
the	network	for	evaluation.	(That	is,	function	transport	is	used,	rather	than
data	transport.)	Please	note	that	this	feature	is	currently	disabled	by	default
(pending	more	thorough	testing),	but	it	should	work	in	most	cases.	This
feature	can	be	enabled	through	the	use	of	the	SET
engine_condition_pushdown	=	On	statement.	Alternatively,	you	can	run
mysqld	with	the	this	feature	enabled	by	starting	the	MySQL	server	with	the
--engine-condition-pushdown	option.

A	major	benefit	of	this	change	is	that	queries	can	be	executed	in	parallel.
This	means	that	queries	against	non-indexed	columns	can	run	faster	than
previously	by	a	factor	of	as	much	as	5	to	10	times,	times	the	number	of	data
nodes,	because	multiple	CPUs	can	work	on	the	query	in	parallel.

http://dev.mysql.com/doc/refman/5.1/en/ndbcluster.html

You	can	use	EXPLAIN	to	determine	when	condition	pushdown	is	being	used.
See	Section	7.2.1,	“Optimizing	Queries	with	EXPLAIN”.

Decreased	IndexMemory	Usage:	In	MySQL	5.0,	each	record	consumes
approximately	25	bytes	of	index	memory,	and	every	unique	index	uses	25
bytes	per	record	of	index	memory	(in	addition	to	some	data	memory
because	these	are	stored	in	a	separate	table).	This	is	because	the	primary
key	is	not	stored	in	the	index	memory	anymore.

Query	Cache	Enabled	for	MySQL	Cluster:	See	Section	5.14,	“The
MySQL	Query	Cache”,	for	information	on	configuring	and	using	the	query
cache.

New	Optimizations:	One	optimization	that	merits	particular	attention	is
that	a	batched	read	interface	is	now	used	in	some	queries.	For	example,
consider	the	following	query:

SELECT	*	FROM	t1	WHERE	primary_key	IN	(1,2,3,4,5,6,7,8,9,10);

This	query	will	be	executed	2	to	3	times	more	quickly	than	in	previous
MySQL	Cluster	versions	due	to	the	fact	that	all	10	key	lookups	are	sent	in	a
single	batch	rather	than	one	at	a	time.

Limit	On	Number	of	Metadata	Objects:	Beginning	with	MySQL	5.0.6,
each	Cluster	database	may	contain	a	maximum	of	20320	metadata	objects
—	this	includes	database	tables,	system	tables,	indexes	and	BLOB	values.
(Previously,	this	number	was	1600.)

15.11.2.	MySQL	5.1	Development	Roadmap	for	MySQL	Cluster

What	is	said	here	is	a	status	report	based	on	recent	commits	to	the	MySQL	5.1
source	tree.	It	should	be	noted	all	5.1	development	is	subject	to	change.

There	are	currently	4	major	new	features	being	developed	for	MySQL	5.1:

1.	 Integration	of	MySQL	Cluster	into	MySQL	replication:	This	will	make
it	possible	to	update	from	any	MySQL	Server	in	the	cluster	and	still	have
the	MySQL	Replication	handled	by	one	of	the	MySQL	Servers	in	the
cluster,	with	the	state	of	the	slave	side	remaining	consistent	with	the	cluster
acting	as	the	master.

2.	 Support	for	disk-based	records:	Records	on	disk	will	be	supported.
Indexed	fields	including	the	primary	key	hash	index	must	still	be	stored	in
RAM	but	all	other	fields	can	be	on	disk.

3.	 Variable-sized	records:	A	column	defined	as	VARCHAR(255)	currently	uses
260	bytes	of	storage	independent	of	what	is	stored	in	any	particular	record.
In	MySQL	5.1	Cluster	tables,	only	the	portion	of	the	column	actually	taken
up	by	the	record	will	be	stored.	This	will	make	possible	a	reduction	in	space
requirements	for	such	columns	by	a	factor	of	5	in	many	cases.

4.	 User-defined	partitioning:	Users	will	be	able	to	define	partitions	based	on
columns	that	are	part	of	the	primary	key.	The	MySQL	Server	will	be	able	to
discover	whether	it	is	possible	to	prune	away	some	of	the	partitions	from
the	WHERE	clause.	Partitioning	based	on	KEY,	HASH,	RANGE,	and	LIST	handlers
will	be	possible,	as	well	as	subpartitioning.	This	feature	should	also	be
available	for	many	other	handlers,	and	not	only	NDB	Cluster.

In	addition,	we	are	working	to	increase	the	8KB	size	limit	for	rows	containing
columns	of	types	other	than	BLOB	or	TEXT	in	Cluster	tables.	This	is	due	to	the	fact
that	rows	are	currently	fixed	in	size	and	the	page	size	is	32,768	bytes	(minus	128
bytes	for	the	row	header).	Currently,	this	means	that	if	we	allowed	more	than
8KB	per	record,	any	remaining	space	(up	to	approximately	14,000	bytes)	would
be	left	empty.	In	MySQL	5.1,	we	plan	to	fix	this	limitation	so	that	using	more
than	8KB	in	a	given	row	does	not	result	in	the	remainder	of	the	page	being
wasted.

15.12.	MySQL	Cluster	FAQ

This	section	answers	questions	that	are	often	asked	about	MySQL	Cluster.

What	does	“NDB”	mean?

This	stands	for	“Network	Database.”

What's	the	difference	in	using	Cluster	vs	using	replication?

In	a	replication	setup,	a	master	MySQL	server	updates	one	or	more	slaves.
Transactions	are	committed	sequentially,	and	a	slow	transaction	can	cause
the	slave	to	lag	behind	the	master.	This	means	that	if	the	master	fails,	it	is
possible	that	the	slave	might	not	have	recorded	the	last	few	transactions.	If
a	transaction-safe	engine	such	as	InnoDB	is	being	used,	a	transaction	will
either	be	complete	on	the	slave	or	not	applied	at	all,	but	replication	does	not
guarantee	that	all	data	on	the	master	and	the	slave	will	be	consistent	at	all
times.	In	MySQL	Cluster,	all	data	nodes	are	kept	in	synchrony,	and	a
transaction	committed	by	any	one	data	node	is	committed	for	all	data
nodes.	In	the	event	of	a	data	node	failure,	all	remaining	data	nodes	remain
in	a	consistent	state.

In	short,	whereas	standard	MySQL	replication	is	asynchronous,	MySQL
Cluster	is	synchronous.

We	have	implemented	(asynchronous)	replication	for	Cluster	in	MySQL
5.1.	This	includes	the	capability	to	replicate	both	between	two	clusters,	and
from	a	MySQL	cluster	to	a	non-Cluster	MySQL	server.	Howecer,	we	do	not
plan	to	backport	this	functionality	to	MySQL	5.0.

Do	I	need	to	do	any	special	networking	to	run	Cluster?	(How	do	computers
in	a	cluster	communicate?)

MySQL	Cluster	is	intended	to	be	used	in	a	high-bandwidth	environment,
with	computers	connecting	via	TCP/IP.	Its	performance	depends	directly
upon	the	connection	speed	between	the	cluster's	computers.	The	minimum
connectivity	requirements	for	Cluster	include	a	typical	100-megabit
Ethernet	network	or	the	equivalent.	We	recommend	you	use	gigabit

Ethernet	whenever	available.

The	faster	SCI	protocol	is	also	supported,	but	requires	special	hardware.
See	Section	15.9,	“Using	High-Speed	Interconnects	with	MySQL	Cluster”,
for	more	information	about	SCI.

How	many	computers	do	I	need	to	run	a	cluster,	and	why?

A	minimum	of	three	computers	is	required	to	run	a	viable	cluster.	However,
the	minimum	recommended	number	of	computers	in	a	MySQL	Cluster	is
four:	one	each	to	run	the	management	and	SQL	nodes,	and	two	computers
to	serve	as	data	nodes.	The	purpose	of	the	two	data	nodes	is	to	provide
redundancy;	the	management	node	must	run	on	a	separate	machine	to
guarantee	continued	arbitration	services	in	the	event	that	one	of	the	data
nodes	fails.

What	do	the	different	computers	do	in	a	cluster?

A	MySQL	Cluster	has	both	a	physical	and	logical	organization,	with
computers	being	the	physical	elements.	The	logical	or	functional	elements
of	a	cluster	are	referred	to	as	nodes,	and	a	computer	housing	a	cluster	node
is	sometimes	referred	to	as	a	cluster	host.	There	are	three	types	of	nodes,
each	corresponding	to	a	specific	role	within	the	cluster.	These	are:

Management	node	(MGM	node):	Provides	management	services	for
the	cluster	as	a	whole,	including	startup,	shutdown,	backups,	and
configuration	data	for	the	other	nodes.	The	management	node	server	is
implemented	as	the	application	ndb_mgmd;	the	management	client
used	to	control	MySQL	Cluster	via	the	MGM	node	is	ndb_mgm.

Data	node:	Stores	and	replicates	data.	Data	node	functionality	is
handled	by	an	instance	of	the	NDB	data	node	process	ndbd.

SQL	node:	This	is	simply	an	instance	of	MySQL	Server	(mysqld)	that
is	built	with	support	for	the	NDB	Cluster	storage	engine	and	started
with	the	--ndb-cluster	option	to	enable	the	engine.

With	which	operating	systems	can	I	use	Cluster?

MySQL	Cluster	is	officially	supported	on	Linux,	Mac	OS	X,	and	Solaris.

We	are	working	to	add	Cluster	support	for	other	platforms,	including
Windows,	and	our	goal	is	eventually	to	offer	MySQL	Cluster	on	all
platforms	for	which	MySQL	itself	is	supported.

It	may	be	possible	to	run	Cluster	processes	on	other	operating	systems.	We
have	had	reports	from	users	who	say	that	they	have	run	Cluster	successfully
on	FreeBSD	as	well	as	HP-UX.	However,	Cluster	on	any	but	the	three
platforms	mentioned	here	should	be	considered	alpha	software	(at	best),
cannot	be	guaranteed	reliable	in	a	production	setting,	and	is	not	supported
by	MySQL	AB.

What	are	the	hardware	requirements	for	running	MySQL	Cluster?

Cluster	should	run	on	any	platform	for	which	NDB-enabled	binaries	are
available.	Naturally,	faster	CPUs	and	more	memory	will	improve
performance,	and	64-bit	CPUs	will	likely	be	more	effective	than	32-bit
processors.	There	must	be	sufficient	memory	on	machines	used	for	data
nodes	to	hold	each	node's	share	of	the	database	(see	How	much	RAM	do	I
Need?	for	more	information).	Nodes	can	communicate	via	a	standard
TCP/IP	network	and	hardware.	For	SCI	support,	special	networking
hardware	is	required.

How	much	RAM	do	I	need?	Is	it	possible	to	use	disk	memory	at	all?

In	MySQL-5.0,	Cluster	is	in-memory	only.	This	means	that	all	table	data
(including	indexes)	is	stored	in	RAM.	Therefore,	if	your	data	takes	up	1GB
of	space	and	you	want	to	replicate	it	once	in	the	cluster,	you	need	2GB	of
memory	to	do	so.	This	is	in	addition	to	the	memory	required	by	the
operating	system	and	any	applications	running	on	the	cluster	computers.

If	a	data	node's	memory	usage	exceeds	what	is	available	in	RAM,	then	the
system	will	attempt	to	use	swap	space	up	to	the	limit	set	for	DataMemory.
However,	this	will	at	best	result	in	severely	degraded	performance,	and	may
cuase	the	node	to	be	dropped	due	to	slow	response	time	(missed	hearbeats).
We	do	not	recommend	on	relying	on	disk	swapping	in	a	production
environment	for	this	reason.	In	any	case,	once	the	DataMemory	limit	is
reached,	any	operations	requiring	additional	memory	(such	as	inserts)	will
fail.

(We	have	implemented	disk	data	storage	for	MySQL	Cluster	in	MySQL

5.1,	but	we	have	no	plans	to	add	this	capability	in	MySQL	5.0.)

You	can	use	the	following	formula	for	obtaining	a	rough	estimate	of	how
much	RAM	is	needed	for	each	data	node	in	the	cluster:

(SizeofDatabase	×	NumberOfReplicas	×	1.1)	/	NumberOfDataNodes

To	calculate	the	memory	requirements	more	exactly	requires	determining,
for	each	table	in	the	cluster	database,	the	storage	space	required	per	row
(see	Section	11.5,	“Data	Type	Storage	Requirements”,	for	details),	and
multiplying	this	by	the	number	of	rows.	You	must	also	remember	to
account	for	any	column	indexes	as	follows:

Each	primary	key	or	hash	index	created	for	an	NDBCluster	table
requires	21–25	bytes	per	record.	These	indexes	use	IndexMemory.

Each	ordered	index	requires	10	bytes	storage	per	record,	using
DataMemory.

Creating	a	primary	key	or	unique	index	also	creates	an	ordered	index,
unless	this	index	is	created	with	USING	HASH.	In	other	words,	if	created
without	USING	HASH,	a	primary	key	or	unique	index	on	a	Cluster	table
takes	up	31–35	bytes	per	record	in	MySQL	5.0.

Note	that	creating	MySQL	Cluster	tables	with	USING	HASH	for	all
primary	keys	and	unique	indexes	will	generally	cause	table	updates	to
run	more	quickly.	This	is	due	to	the	fact	that	less	memory	is	required
(because	no	ordered	indexes	are	created),	and	that	less	CPU	must	be
utilized	(because	fewer	indexes	must	be	read	and	possibly	updated).

When	calculating	Cluster	memory	requirements,	you	may	find	useful	the
ndb_size.pl	utility	which	is	available	on	MySQLForge.	This	Perl	script
connects	to	a	current	MySQL	(non-Cluster)	database	and	creates	a	report	on
how	much	space	that	database	would	require	if	it	used	the	NDBCluster
storage	engine.

It	is	especially	important	to	keep	in	mind	that	every	MySQL	Cluster	table
must	have	a	primary	key.	The	NDB	storage	engine	creates	a	primary	key
automatically	if	none	is	defined,	and	this	primary	key	is	created	without
USING	HASH.

http://forge.mysql.com/projects/view.php?id=88

There	is	no	easy	way	to	determine	exactly	how	much	memory	is	being	used
for	storage	of	Cluster	indexes	at	any	given	time;	however,	warnings	are
written	to	the	Cluster	log	when	80%	of	available	DataMemory	or
IndexMemory	is	in	use,	and	again	when	use	reaches	85%,	90%,	and	so	on.

We	often	see	questions	from	users	who	report	that,	when	they	are	trying	to
populate	a	Cluster	database,	the	loading	process	terminates	prematurely	and
an	error	message	like	this	one	is	observed:

ERROR	1114:	The	table	'my_cluster_table'	is	full

When	this	occurs,	the	cause	is	very	likely	to	be	that	your	setup	does	not
provide	sufficient	RAM	for	all	table	data	and	all	indexes,	including	the
primary	key	required	by	the	NDB	storage	engine	and	automatically	created
in	the	event	that	the	table	definition	does	not	include	the	definition	of	a
primary	key.

It	is	also	worth	noting	that	all	data	nodes	should	have	the	same	amount	of
RAM,	as	no	data	node	in	a	cluster	can	use	more	memory	than	the	least
amount	available	to	any	individual	data	node.	In	other	words,	if	there	are
three	computers	hosting	Cluster	data	nodes,	with	two	of	these	having	3GB
of	RAM	available	to	store	Cluster	data,	and	one	having	only	1GB	RAM,
then	each	data	node	can	devote	only	1GB	to	clustering.

Because	MySQL	Cluster	uses	TCP/IP,	does	that	mean	I	can	run	it	over	the
Internet,	with	one	or	more	nodes	in	a	remote	location?

It	is	very	doubtful	in	any	case	that	a	cluster	would	perform	reliably	under
such	conditions,	as	MySQL	Cluster	was	designed	and	implemented	with	the
assumption	that	it	would	be	run	under	conditions	guaranteeing	dedicated
high-speed	connectivity	such	as	that	found	in	a	LAN	setting	using	100
Mbps	or	gigabit	Ethernet	(preferably	the	latter).	We	neither	test	nor	warrant
its	performance	using	anything	slower	than	this.

Also,	it	is	extremely	important	to	keep	in	mind	that	communications
between	the	nodes	in	a	MySQL	Cluster	are	not	secure;	they	are	neither
encrypted	nor	safeguarded	by	any	other	protective	mechanism.	The	most
secure	configuration	for	a	cluster	is	in	a	private	network	behind	a	firewall,
with	no	direct	access	to	any	Cluster	data	or	management	nodes	from
outside.	(For	SQL	nodes,	you	should	take	the	same	precautions	as	you

would	with	any	other	instance	of	the	MySQL	server.)

Do	I	have	to	learn	a	new	programming	or	query	language	to	use	Cluster?

No.	Although	some	specialized	commands	are	used	to	manage	and
configure	the	cluster	itself,	only	standard	(My)SQL	queries	and	commands
are	required	for	the	following	operations:

Creating,	altering,	and	dropping	tables

Inserting,	updating,	and	deleting	table	data

Creating,	changing,	and	dropping	primary	and	unique	indexes

Configuring	and	managing	SQL	nodes	(MySQL	servers)

How	do	I	find	out	what	an	error	or	warning	message	means	when	using
Cluster?

There	are	two	ways	in	which	this	can	be	done:

From	within	the	mysql	client,	use	SHOW	ERRORS	or	SHOW
WARNINGS	immediately	upon	being	notified	of	the	error	or	warning
condition.	Errors	and	warnings	also	be	displayed	in	MySQL	Query
Browser.

From	a	system	shell	prompt,	use	perror	--ndb	error_code.

Is	MySQL	Cluster	transaction-safe?	What	isolation	levels	are	supported?

Yes:	For	tables	created	with	the	NDB	storage	engine,	transactions	are
supported.	In	MySQL	5.0,	Cluster	supports	only	the	READ	COMMITTED
transaction	isolation	level.

What	storage	engines	are	supported	by	MySQL	Cluster?

Clustering	in	MySQL	is	supported	only	by	the	NDB	storage	engine.	That	is,
in	order	for	a	table	to	be	shared	between	nodes	in	a	cluster,	it	must	be
created	using	ENGINE=NDB	(or	ENGINE=NDBCLUSTER,	which	is	equivalent).

(It	is	possible	to	create	tables	using	other	storage	engines	such	as	MyISAM	or

InnoDB	on	a	MySQL	server	being	used	for	clustering,	but	these	non-NDB
tables	will	not	participate	in	the	cluster.)

Which	versions	of	the	MySQL	software	support	Cluster?	Do	I	have	to
compile	from	source?

Cluster	is	supported	in	all	MySQL-max	binaries	in	the	5.0	release	series,
except	as	noted	in	the	following	paragraph.	You	can	determine	whether
your	server	has	NDB	support	using	either	the	SHOW	VARIABLES	LIKE
'have_%'	or	SHOW	ENGINES	statement.	(See	Section	5.3,	“The	mysqld-max
Extended	MySQL	Server”,	for	more	information.)

Linux	users,	please	note	that	NDB	is	not	included	in	the	standard	MySQL
server	RPMs.	Beginning	with	MySQL	5.0.4,	there	are	separate	RPM
packages	for	the	NDB	storage	engine	and	accompanying	management	and
other	tools;	see	the	NDB	RPM	Downloads	section	of	the	MySQL	5.0
Downloads	page	for	these.	(Prior	to	5.0.4,	you	had	to	use	the	-max	binaries
supplied	as	.tar.gz	archives.	This	is	still	possible,	but	is	not	required,	so
you	can	use	your	Linux	distribution's	RPM	manager	if	you	prefer.)	You	can
also	obtain	NDB	support	by	compiling	the	-max	binaries	from	source,	but	it
is	not	necessary	to	do	so	simply	to	use	MySQL	Cluster.	To	download	the
latest	binary,	RPM,	or	source	distribution	in	the	MySQL	5.0	series,	visit
http://dev.mysql.com/downloads/mysql/5.0.html.

In	the	event	of	a	catastrophic	failure	—	say,	for	instance,	the	whole	city
loses	power	and	my	UPS	fails	—	would	I	lose	all	my	data?

All	committed	transactions	are	logged.	Therefore,	although	it	is	possible
that	some	data	could	be	lost	in	the	event	of	a	catastrophe,	this	should	be
quite	limited.	Data	loss	can	be	further	reduced	by	minimizing	the	number	of
operations	per	transaction.	(It	is	not	a	good	idea	to	perform	large	numbers
of	operations	per	transaction	in	any	case.)

Is	it	possible	to	use	FULLTEXT	indexes	with	Cluster?

FULLTEXT	indexing	is	not	currently	supported	by	the	NDB	storage	engine,	or
by	any	storage	engine	other	than	MyISAM.	We	are	working	to	add	this
capability	in	a	future	release.

Can	I	run	multiple	nodes	on	a	single	computer?

http://dev.mysql.com/downloads/mysql/5.0.html

It	is	possible	but	not	advisable.	One	of	the	chief	reasons	to	run	a	cluster	is
to	provide	redundancy.	To	enjoy	the	full	benefits	of	this	redundancy,	each
node	should	reside	on	a	separate	machine.	If	you	place	multiple	nodes	on	a
single	machine	and	that	machine	fails,	you	lose	all	of	those	nodes.	Given
that	MySQL	Cluster	can	be	run	on	commodity	hardware	loaded	with	a	low-
cost	(or	even	no-cost)	operating	system,	the	expense	of	an	extra	machine	or
two	is	well	worth	it	to	safeguard	mission-critical	data.	It	also	worth	noting
that	the	requirements	for	a	cluster	host	running	a	management	node	are
minimal.	This	task	can	be	accomplished	with	a	200	MHz	Pentium	CPU	and
sufficient	RAM	for	the	operating	system	plus	a	small	amount	of	overhead
for	the	ndb_mgmd	and	ndb_mgm	processes.

It	is	acceptable	to	run	multiple	cluster	data	nodes	on	a	single	host	for
learning	about	MySQL	Cluster,	or	for	testing	purposes;	howver,	this	is	not
supported	for	production	use.

Can	I	add	nodes	to	a	cluster	without	restarting	it?

Not	at	present.	A	simple	restart	is	all	that	is	required	for	adding	new	MGM
or	SQL	nodes	to	a	Cluster.	When	adding	data	nodes	the	process	is	more
complex,	and	requires	the	following	steps:

1.	 Make	a	complete	backup	of	all	Cluster	data.

2.	 Completely	shut	down	the	cluster	and	all	cluster	node	processes.

3.	 Restart	the	cluster,	using	the	--initial	startup	option.

4.	 Restore	all	cluster	data	from	the	backup.

In	a	future	MySQL	Cluster	release	series,	we	hope	to	implement	a	“hot”
reconfiguration	capability	for	MySQL	Cluster	to	minimize	(if	not
eliminate)	the	requirement	for	restarting	the	cluster	when	adding	new
nodes.

Are	there	any	limitations	that	I	should	be	aware	of	when	using	Cluster?

NDB	tables	in	MySQL	are	subject	to	the	following	limitations:

Not	all	character	sets	and	collations	are	supported.

FULLTEXT	indexes	and	index	prefixes	are	not	supported.	Only	complete
columns	may	be	indexed.

Spatial	data	types	are	not	supported.	See	Chapter	16,	Spatial
Extensions.

Only	complete	rollbacks	for	transactions	are	supported.	Partial
rollbacks	and	rollbacks	to	savepoints	are	not	supported.

The	maximum	number	of	attributes	allowed	per	table	is	128,	and
attribute	names	cannot	be	any	longer	than	31	characters.	For	each
table,	the	maximum	combined	length	of	the	table	and	database	names
is	122	characters.

The	maximum	size	for	a	table	row	is	8	kilobytes,	not	counting	BLOB
values.	There	is	no	set	limit	for	the	number	of	rows	per	table.	Table
size	limits	depend	on	a	number	of	factors,	in	particular	on	the	amount
of	RAM	available	to	each	data	node.

The	NDB	engine	does	not	support	foreign	key	constraints.	As	with
MyISAM	tables,	these	are	ignored.

Query	caching	is	not	supported.

For	additional	information	on	Cluster	limitations,	see	Section	15.10,
“Known	Limitations	of	MySQL	Cluster”.

How	do	I	import	an	existing	MySQL	database	into	a	cluster?

You	can	import	databases	into	MySQL	Cluster	much	as	you	would	with	any
other	version	of	MySQL.	Other	than	the	limitation	mentioned	in	the
previous	question,	the	only	other	special	requirement	is	that	any	tables	to	be
included	in	the	cluster	must	use	the	NDB	storage	engine.	This	means	that	the
tables	must	be	created	with	ENGINE=NDB	or	ENGINE=NDBCLUSTER.	It	is	also
possible	to	convert	existing	tables	using	other	storage	engines	to	NDB
Cluster	using	ALTER	TABLE,	but	requires	an	additional	workaround.	See
Section	15.10,	“Known	Limitations	of	MySQL	Cluster”,	for	details.

How	do	cluster	nodes	communicate	with	one	another?

Cluster	nodes	can	communicate	via	any	of	three	different	protocols:
TCP/IP,	SHM	(shared	memory),	and	SCI	(Scalable	Coherent	Interface).
Where	available,	SHM	is	used	by	default	between	nodes	residing	on	the
same	cluster	host.	SCI	is	a	high-speed	(1	gigabit	per	second	and	higher),
high-availability	protocol	used	in	building	scalable	multi-processor
systems;	it	requires	special	hardware	and	drivers.	See	Section	15.9,	“Using
High-Speed	Interconnects	with	MySQL	Cluster”,	for	more	about	using	SCI
as	a	transport	mechanism	in	MySQL	Cluster.

What	is	an	“arbitrator”?

If	one	or	more	nodes	in	a	cluster	fail,	it	is	possible	that	not	all	cluster	nodes
will	be	able	to	“see”	one	another.	In	fact,	it	is	possible	that	two	sets	of	nodes
might	become	isolated	from	one	another	in	a	network	partitioning,	also
known	as	a	“split	brain”	scenario.	This	type	of	situation	is	undesirable
because	each	set	of	nodes	tries	to	behave	as	though	it	is	the	entire	cluster.

When	cluster	nodes	go	down,	there	are	two	possibilities.	If	more	than	50%
of	the	remaining	nodes	can	communicate	with	each	other,	we	have	what	is
sometimes	called	a	“majority	rules”	situation,	and	this	set	of	nodes	is
considered	to	be	the	cluster.	The	arbitrator	comes	into	play	when	there	is	an
even	number	of	nodes:	in	such	cases,	the	set	of	nodes	to	which	the
arbitrator	belongs	is	considered	to	be	the	cluster,	and	nodes	not	belonging	to
this	set	are	shut	down.

The	preceding	information	is	somewhat	simplified.	A	more	complete
explanation	taking	into	account	node	groups	follows:

When	all	nodes	in	at	least	one	node	group	are	alive,	network	partitioning	is
not	an	issue,	because	no	one	portion	of	the	cluster	can	form	a	functional
cluster.	The	real	problem	arises	when	no	single	node	group	has	all	its	nodes
alive,	in	which	case	network	partitioning	(the	“split-brain”	scenario)
becomes	possible.	Then	an	arbitrator	is	required.	All	cluster	nodes
recognize	the	same	node	as	the	arbitrator,	which	is	normally	the
management	server;	however,	it	is	possible	to	configure	any	of	the	MySQL
Servers	in	the	cluster	to	act	as	the	arbitrator	instead.	The	arbitrator	accepts
the	first	set	of	cluster	nodes	to	contact	it,	and	tells	the	remaining	set	to	shut
down.	Arbitrator	selection	is	controlled	by	the	ArbitrationRank
configuration	parameter	for	MySQL	Server	and	management	server	nodes.

(See	Section	15.4.4.4,	“Defining	the	Management	Server”,	for	details.)	It
should	also	be	noted	that	the	role	of	arbitrator	does	not	in	and	of	itself
impose	any	heavy	demands	upon	the	host	so	designated,	and	thus	the
arbitrator	host	does	not	need	to	be	particularly	fast	or	to	have	extra	memory
especially	for	this	purpose.

What	data	types	are	supported	by	MySQL	Cluster?

MySQL	Cluster	supports	all	of	the	usual	MySQL	data	types,	with	the
exception	of	those	associated	with	MySQL's	spatial	extensions.	(See
Chapter	16,	Spatial	Extensions.)	In	addition,	there	are	some	differences
with	regard	to	indexes	when	used	with	NDB	tables.	Note:	MySQL	Cluster
tables	(that	is,	tables	created	with	ENGINE=NDBCLUSTER)	have	only	fixed-
width	rows.	This	means	that	(for	example)	each	record	containing	a
VARCHAR(255)	column	will	require	space	for	255	characters	(as	required	for
the	character	set	and	collation	being	used	for	the	table),	regardless	of	the
actual	number	of	characters	stored	therein.	This	issue	is	expected	to	be
fixed	in	a	future	MySQL	release	series.

See	Section	15.10,	“Known	Limitations	of	MySQL	Cluster”,	for	more
information	about	these	issues.

How	do	I	start	and	stop	MySQL	Cluster?

It	is	necessary	to	start	each	node	in	the	cluster	separately,	in	the	following
order:

1.	 Start	the	management	node	with	the	ndb_mgmd	command.

2.	 Start	each	data	node	with	the	ndbd	command.

3.	 Start	each	MySQL	server	(SQL	node)	using	mysqld_safe	--
user=mysql	&.

Each	of	these	commands	must	be	run	from	a	system	shell	on	the	machine
housing	the	affected	node.	You	can	verify	the	cluster	is	running	by	starting
the	MGM	management	client	ndb_mgm	on	the	machine	housing	the	MGM
node.

What	happens	to	cluster	data	when	the	cluster	is	shut	down?

The	data	held	in	memory	by	the	cluster's	data	nodes	is	written	to	disk,	and
is	reloaded	in	memory	the	next	time	that	the	cluster	is	started.

To	shut	down	the	cluster,	enter	the	following	command	in	a	shell	on	the
machine	hosting	the	MGM	node:

shell>	ndb_mgm	-e	shutdown

This	causes	the	ndb_mgm,	ndb_mgm,	and	any	ndbd	processes	to
terminate	gracefully.	MySQL	servers	running	as	Cluster	SQL	nodes	can	be
stopped	using	mysqladmin	shutdown.

For	more	information,	see	Section	15.7.2,	“Commands	in	the	Management
Client”,	and	Section	15.3.6,	“Safe	Shutdown	and	Restart”.

Is	it	helpful	to	have	more	than	one	management	node	for	a	cluster?

It	can	be	helpful	as	a	fail-safe.	Only	one	MGM	node	controls	the	cluster	at
any	given	time,	but	it	is	possible	to	configure	one	MGM	as	primary,	and
one	or	more	additional	management	nodes	to	take	over	in	the	event	that	the
primary	MGM	node	fails.

Can	I	mix	different	kinds	of	hardware	and	operating	systems	in	a	Cluster?

Yes,	so	long	as	all	machines	and	operating	systems	have	the	same
endianness	(all	big-endian	or	all	little-endian).	It	is	also	possible	to	use
different	MySQL	Cluster	releases	on	different	nodes.	However,	we
recommend	this	be	done	only	as	part	of	a	rolling	upgrade	procedure.

Can	I	run	two	data	nodes	on	a	single	host?	Two	SQL	nodes?

Yes,	it	is	possible	to	do	this.	In	the	case	of	multiple	data	nodes,	each	node
must	use	a	different	data	directory.	If	you	want	to	run	multiple	SQL	nodes
on	one	machine,	each	instance	of	mysqld	must	use	a	different	TCP/IP	port.
However,	running	more	than	one	node	of	a	given	type	per	machine	is	not
supported	for	production	use.

Can	I	use	hostnames	with	MySQL	Cluster?

Yes,	it	is	possible	to	use	DNS	and	DHCP	for	cluster	hosts.	However,	if	your

application	requires	“five	nines”	availability,	we	recommend	using	fixed	IP
addresses.	Making	communication	between	Cluster	hosts	dependent	on
services	such	as	DNS	and	DHCP	introduces	additional	points	of	failure,	and
the	fewer	of	these,	the	better.

15.13.	MySQL	Cluster	Glossary

The	following	terms	are	useful	to	an	understanding	of	MySQL	Cluster	or	have
specialized	meanings	when	used	in	relation	to	it.

Cluster:

In	its	generic	sense,	a	cluster	is	a	set	of	computers	functioning	as	a	unit	and
working	together	to	accomplish	a	single	task.

NDB	Cluster:

This	is	the	storage	engine	used	in	MySQL	to	implement	data	storage,
retrieval,	and	management	distributed	among	several	computers.

MySQL	Cluster:

This	refers	to	a	group	of	computers	working	together	using	the	NDB	storage
engine	to	support	a	distributed	MySQL	database	in	a	shared-nothing
architecture	using	in-memory	storage.

Configuration	files:

Text	files	containing	directives	and	information	regarding	the	cluster,	its
hosts,	and	its	nodes.	These	are	read	by	the	cluster's	management	nodes
when	the	cluster	is	started.	See	Section	15.4.4,	“Configuration	File”,	for
details.

Backup:

A	complete	copy	of	all	cluster	data,	transactions	and	logs,	saved	to	disk	or
other	long-term	storage.

Restore:

Returning	the	cluster	to	a	previous	state,	as	stored	in	a	backup.

Checkpoint:

Generally	speaking,	when	data	is	saved	to	disk,	it	is	said	that	a	checkpoint
has	been	reached.	More	specific	to	Cluster,	it	is	a	point	in	time	where	all
committed	transactions	are	stored	on	disk.	With	regard	to	the	NDB	storage
engine,	there	are	two	types	of	checkpoints	which	work	together	to	ensure
that	a	consistent	view	of	the	cluster's	data	is	maintained:

Local	Checkpoint	(LCP):

This	is	a	checkpoint	that	is	specific	to	a	single	node;	however,	LCP's
take	place	for	all	nodes	in	the	cluster	more	or	less	concurrently.	An
LCP	involves	saving	all	of	a	node's	data	to	disk,	and	so	usually	occurs
every	few	minutes.	The	precise	interval	varies,	and	depends	upon	the
amount	of	data	stored	by	the	node,	the	level	of	cluster	activity,	and
other	factors.

Global	Checkpoint	(GCP):

A	GCP	occurs	every	few	seconds,	when	transactions	for	all	nodes	are
synchronized	and	the	redo-log	is	flushed	to	disk.

Cluster	host:

A	computer	making	up	part	of	a	MySQL	Cluster.	A	cluster	has	both	a
physical	structure	and	a	logical	structure.	Physically,	the	cluster	consists	of
a	number	of	computers,	known	as	cluster	hosts	(or	more	simply	as	hosts.
See	also	Node	and	Node	group	below.

Node:

This	refers	to	a	logical	or	functional	unit	of	MySQL	Cluster,	and	is
sometimes	also	referred	to	as	a	cluster	node.	In	the	context	of	MySQL
Cluster,	we	use	the	term	“node”	to	indicate	a	process	rather	than	a	physical
component	of	the	cluster.	There	are	three	node	types	required	to	implement
a	working	MySQL	Cluster:

Management	(MGM)	nodes:

Manages	the	other	nodes	within	the	MySQL	Cluster.	It	provides
configuration	data	to	the	other	nodes;	starts	and	stops	nodes;	handles
network	partitioning;	creates	backups	and	restores	from	them,	and	so

forth.

SQL	(MySQL	server)	nodes:

Instances	of	MySQL	Server	which	serve	as	front	ends	to	data	kept	in
the	cluster's	data	nodes.	Clients	desiring	to	store,	retrieve,	or	update
data	can	access	an	SQL	node	just	as	they	would	any	other	MySQL
Server,	employing	the	usual	authentication	methods	and	API's;	the
underlying	distribution	of	data	between	node	groups	is	transparent	to
users	and	applications.	SQL	nodes	access	the	cluster's	databases	as	a
whole	without	regard	to	the	data's	distribution	across	different	data
nodes	or	cluster	hosts.

Data	nodes:

These	nodes	store	the	actual	data.	Table	data	fragments	are	stored	in	a
set	of	node	groups;	each	node	group	stores	a	different	subset	of	the
table	data.	Each	of	the	nodes	making	up	a	node	group	stores	a	replica
of	the	fragment	for	which	that	node	group	is	responsible.	Currently,	a
single	cluster	can	support	up	to	48	data	nodes	total.

It	is	possible	for	more	than	one	node	to	co-exist	on	a	single	machine.	(In
fact,	it	is	even	possible	to	set	up	a	complete	cluster	on	one	machine,
although	one	would	almost	certainly	not	want	to	do	this	in	a	production
environment.)	It	may	be	helpful	to	remember	that,	when	working	with
MySQL	Cluster,	the	term	host	refers	to	a	physical	component	of	the	cluster
whereas	a	node	is	a	logical	or	functional	component	(that	is,	a	process).

Note	Regarding	Terms:	In	older	versions	of	the	MySQL	Cluster
documentation,	data	nodes	were	sometimes	referred	to	as	“database	nodes”.
The	term	“storage	nodes”	has	also	been	used.	In	addition,	SQL	nodes	were
sometimes	known	as	“client	nodes”.	They	are	also	often	referred	to	as	“API
nodes”.	The	older	terminology	has	been	deprecated	to	minimize	confusion,
and	for	this	reason	should	be	avoided.

Node	group:

A	set	of	data	nodes.	All	data	nodes	in	a	node	group	contain	the	same	data
(fragments),	and	all	nodes	in	a	single	group	should	reside	on	different	hosts.
It	is	possible	to	control	which	nodes	belong	to	which	node	groups.

For	more	information,	see	Section	15.2.1,	“MySQL	Cluster	Nodes,	Node
Groups,	Replicas,	and	Partitions”.

Node	failure:

MySQL	Cluster	is	not	solely	dependent	upon	the	functioning	of	any	single
node	making	up	the	cluster;	the	cluster	can	continue	to	run	if	one	or	more
nodes	fail.	The	precise	number	of	node	failures	that	a	given	cluster	can
tolerate	depends	upon	the	number	of	nodes	and	the	cluster's	configuration.

Node	restart:

The	process	of	restarting	a	failed	cluster	node.

Initial	node	restart:

The	process	of	starting	a	cluster	node	with	its	filesystem	removed.	This	is
sometimes	used	in	the	course	of	software	upgrades	and	in	other	special
circumstances.

System	crash	(or	system	failure):

This	can	occur	when	so	many	cluster	nodes	have	failed	that	the	cluster's
state	can	no	longer	be	guaranteed.

System	restart:

The	process	of	restarting	the	cluster	and	reinitializing	its	state	from	disk
logs	and	checkpoints.	This	is	required	after	either	a	planned	or	an
unplanned	shutdown	of	the	cluster.

Fragment:

A	portion	of	a	database	table;	in	the	NDB	storage	engine,	a	table	is	broken	up
into	and	stored	as	a	number	of	fragments.	A	fragment	is	sometimes	also
called	a	“partition”;	however,	“fragment”	is	the	preferred	term.	Tables	are
fragmented	in	MySQL	Cluster	in	order	to	facilitate	load	balancing	between
machines	and	nodes.

Replica:

Under	the	NDB	storage	engine,	each	table	fragment	has	number	of	replicas
stored	on	other	data	nodes	in	order	to	provide	redundancy.	Currently,	there
may	be	up	four	replicas	per	fragment.

Transporter:

A	protocol	providing	data	transfer	between	nodes.	MySQL	Cluster
currently	supports	four	different	types	of	transporter	connections:

TCP/IP

This	is,	of	course,	the	familiar	network	protocol	that	underlies	HTTP,
FTP	(and	so	on)	on	the	Internet.	TCP/IP	can	be	used	for	both	local	and
remote	connections.

SCI

Scalable	Coherent	Interface	is	a	high-speed	protocol	used	in	building
multiprocessor	systems	and	parallel-processing	applications.	Use	of
SCI	with	MySQL	Cluster	requires	specialized	hardware,	as	discussed
in	Section	15.9.1,	“Configuring	MySQL	Cluster	to	use	SCI	Sockets”.
For	a	basic	introduction	to	SCI,	see	this	essay	at	dolphinics.com.

SHM

Unix-style	shared	memory	segments.	Where	supported,	SHM	is	used
automatically	to	connect	nodes	running	on	the	same	host.	The	Unix
man	page	for	shmop(2)	is	a	good	place	to	begin	obtaining	additional
information	about	this	topic.

Note:	The	cluster	transporter	is	internal	to	the	cluster.	Applications	using
MySQL	Cluster	communicate	with	SQL	nodes	just	as	they	do	with	any
other	version	of	MySQL	Server	(via	TCP/IP,	or	through	the	use	of	Unix
socket	files	or	Windows	named	pipes).	Queries	can	be	sent	and	results
retrieved	using	the	standard	MySQL	client	APIs.

NDB:

This	stands	for	Network	Database,	and	refers	to	the	storage	engine	used	to
enable	MySQL	Cluster.	The	NDB	storage	engine	supports	all	the	usual

http://www.dolphinics.com/corporate/scitech.html
http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+shmop

MySQL	data	types	and	SQL	statements,	and	is	ACID-compliant.	This
engine	also	provides	full	support	for	transactions	(commits	and	rollbacks).

shared-nothing	architecture:

The	ideal	architecture	for	a	MySQL	Cluster.	In	a	true	shared-nothing	setup,
each	node	runs	on	a	separate	host.	The	advantage	such	an	arrangement	is
that	there	no	single	host	or	node	can	act	as	single	point	of	failure	or	as	a
performance	bottle	neck	for	the	system	as	a	whole.

In-memory	storage:

All	data	stored	in	each	data	node	is	kept	in	memory	on	the	node's	host
computer.	For	each	data	node	in	the	cluster,	you	must	have	available	an
amount	of	RAM	equal	to	the	size	of	the	database	times	the	number	of
replicas,	divided	by	the	number	of	data	nodes.	Thus,	if	the	database	takes
up	1GB	of	memory,	and	you	want	to	set	up	the	cluster	with	four	replicas
and	eight	data	nodes,	a	minimum	of	500MB	memory	will	be	required	per
node.	Note	that	this	is	in	addition	to	any	requirements	for	the	operating
system	and	any	other	applications	that	might	be	running	on	the	host.

Table:

As	is	usual	in	the	context	of	a	relational	database,	the	term	“table”	denotes	a
set	of	identically	structured	records.	In	MySQL	Cluster,	a	database	table	is
stored	in	a	data	node	as	a	set	of	fragments,	each	of	which	is	replicated	on
additional	data	nodes.	The	set	of	data	nodes	replicating	the	same	fragment
or	set	of	fragments	is	referred	to	as	a	node	group.

Cluster	programs:

These	are	command-line	programs	used	in	running,	configuring,	and
administering	MySQL	Cluster.	They	include	both	server	daemons:

ndbd:

The	data	node	daemon	(runs	a	data	node	process)

ndb_mgmd:

The	management	server	daemon	(runs	a	management	server	process)

and	client	programs:

ndb_mgm:

The	management	client	(provides	an	interface	for	executing
management	commands)

ndb_waiter:

Used	to	verify	status	of	all	nodes	in	a	cluster

ndb_restore:

Restores	cluster	data	from	backup

For	more	about	these	programs	and	their	uses,	see	Section	15.6,	“Process
Management	in	MySQL	Cluster”.

Event	log:

MySQL	Cluster	logs	events	by	category	(startup,	shutdown,	errors,
checkpoints,	and	so	on),	priority,	and	severity.	A	complete	listing	of	all
reportable	events	may	be	found	in	Section	15.7.3,	“Event	Reports
Generated	in	MySQL	Cluster”.	Event	logs	are	of	two	types:

Cluster	log:

Keeps	a	record	of	all	desired	reportable	events	for	the	cluster	as	a
whole.

Node	log:

A	separate	log	which	is	also	kept	for	each	individual	node.

Under	normal	circumstances,	it	is	necessary	and	sufficient	to	keep	and
examine	only	the	cluster	log.	The	node	logs	need	be	consulted	only	for
application	development	and	debugging	purposes.

Chapter	16.	Spatial	Extensions

Table	of	Contents

16.1.	Introduction	to	MySQL	Spatial	Support
16.2.	The	OpenGIS	Geometry	Model

16.2.1.	The	Geometry	Class	Hierarchy
16.2.2.	Class	Geometry
16.2.3.	Class	Point
16.2.4.	Class	Curve
16.2.5.	Class	LineString
16.2.6.	Class	Surface
16.2.7.	Class	Polygon
16.2.8.	Class	GeometryCollection
16.2.9.	Class	MultiPoint
16.2.10.	Class	MultiCurve
16.2.11.	Class	MultiLineString
16.2.12.	Class	MultiSurface
16.2.13.	Class	MultiPolygon

16.3.	Supported	Spatial	Data	Formats
16.3.1.	Well-Known	Text	(WKT)	Format
16.3.2.	Well-Known	Binary	(WKB)	Format

16.4.	Creating	a	Spatially	Enabled	MySQL	Database
16.4.1.	MySQL	Spatial	Data	Types
16.4.2.	Creating	Spatial	Values
16.4.3.	Creating	Spatial	Columns
16.4.4.	Populating	Spatial	Columns
16.4.5.	Fetching	Spatial	Data

16.5.	Analyzing	Spatial	Information
16.5.1.	Geometry	Format	Conversion	Functions
16.5.2.	Geometry	Functions
16.5.3.	Functions	That	Create	New	Geometries	from	Existing	Ones
16.5.4.	Functions	for	Testing	Spatial	Relations	Between	Geometric	Objects
16.5.5.	Relations	on	Geometry	Minimal	Bounding	Rectangles	(MBRs)
16.5.6.	Functions	That	Test	Spatial	Relationships	Between	Geometries

16.6.	Optimizing	Spatial	Analysis
16.6.1.	Creating	Spatial	Indexes

16.6.2.	Using	a	Spatial	Index
16.7.	MySQL	Conformance	and	Compatibility

MySQL	supports	spatial	extensions	to	allow	the	generation,	storage,	and	analysis
of	geographic	features.	Before	MySQL	5.0.16,	these	features	are	available	for
MyISAM	tables	only.	As	of	MySQL	5.0.16,	InnoDB,	NDB,	BDB,	and	ARCHIVE	also
support	spatial	features.	(However,	the	ARCHIVE	engine	does	not	support
indexing,	so	spatial	columns	in	ARCHIVE	columns	cannot	be	indexed.	MySQL
Cluster	also	does	not	support	indexing	of	spatial	columns.)

Although	spatial	extensions	are	supported	in	InnoDB	tables,	use	of	spatial
indexes	may	cause	a	crash.	(Bug	#15860)

This	chapter	covers	the	following	topics:

The	basis	of	these	spatial	extensions	in	the	OpenGIS	geometry	model

Data	formats	for	representing	spatial	data

How	to	use	spatial	data	in	MySQL

Use	of	indexing	for	spatial	data

MySQL	differences	from	the	OpenGIS	specification

Additional	resources

The	Open	Geospatial	Consortium	publishes	the	OpenGIS®	Simple	Features
Specifications	For	SQL,	a	document	that	proposes	several	conceptual	ways
for	extending	an	SQL	RDBMS	to	support	spatial	data.	This	specification	is
available	from	the	OGC	Web	site	at	http://www.opengis.org/docs/99-
049.pdf.

If	you	have	questions	or	concerns	about	the	use	of	the	spatial	extensions	to
MySQL,	you	can	discuss	them	in	the	GIS	forum:
http://forums.mysql.com/list.php?23.

http://www.opengis.org/docs/99-049.pdf
http://forums.mysql.com/list.php?23

16.1.	Introduction	to	MySQL	Spatial	Support

MySQL	implements	spatial	extensions	following	the	specification	of	the	Open
Geospatial	Consortium	(OGC).	This	is	an	international	consortium	of	more	than
250	companies,	agencies,	and	universities	participating	in	the	development	of
publicly	available	conceptual	solutions	that	can	be	useful	with	all	kinds	of
applications	that	manage	spatial	data.	The	OGC	maintains	a	Web	site	at
http://www.opengis.org/.

In	1997,	the	Open	Geospatial	Consortium	published	the	OpenGIS®	Simple
Features	Specifications	For	SQL,	a	document	that	proposes	several	conceptual
ways	for	extending	an	SQL	RDBMS	to	support	spatial	data.	This	specification	is
available	from	the	OGC	Web	site	at	http://www.opengis.org/docs/99-049.pdf.	It
contains	additional	information	relevant	to	this	chapter.

MySQL	implements	a	subset	of	the	SQL	with	Geometry	Types	environment
proposed	by	OGC.	This	term	refers	to	an	SQL	environment	that	has	been
extended	with	a	set	of	geometry	types.	A	geometry-valued	SQL	column	is
implemented	as	a	column	that	has	a	geometry	type.	The	specification	describe	a
set	of	SQL	geometry	types,	as	well	as	functions	on	those	types	to	create	and
analyze	geometry	values.

A	geographic	feature	is	anything	in	the	world	that	has	a	location.	A	feature	can
be:

An	entity.	For	example,	a	mountain,	a	pond,	a	city.

A	space.	For	example,	a	postcode	area,	the	tropics.

A	definable	location.	For	example,	a	crossroad,	as	a	particular	place	where
two	streets	intersect.

Some	documents	use	the	term	geospatial	feature	to	refer	to	geographic	features.

Geometry	is	another	word	that	denotes	a	geographic	feature.	Originally	the
word	geometry	meant	measurement	of	the	earth.	Another	meaning	comes	from
cartography,	referring	to	the	geometric	features	that	cartographers	use	to	map	the
world.

http://www.opengis.org/
http://www.opengis.org/docs/99-049.pdf

This	chapter	uses	all	of	these	terms	synonymously:	geographic	feature,
geospatial	feature,	feature,	or	geometry.	Here,	the	term	most	commonly	used
is	geometry,	defined	as	a	point	or	an	aggregate	of	points	representing	anything
in	the	world	that	has	a	location.

16.2.	The	OpenGIS	Geometry	Model

The	set	of	geometry	types	proposed	by	OGC's	SQL	with	Geometry	Types
environment	is	based	on	the	OpenGIS	Geometry	Model.	In	this	model,	each
geometric	object	has	the	following	general	properties:

It	is	associated	with	a	Spatial	Reference	System,	which	describes	the
coordinate	space	in	which	the	object	is	defined.

It	belongs	to	some	geometry	class.

16.2.1.	The	Geometry	Class	Hierarchy

The	geometry	classes	define	a	hierarchy	as	follows:

Geometry	(non-instantiable)

Point	(instantiable)

Curve	(non-instantiable)

LineString	(instantiable)

Line

LinearRing

Surface	(non-instantiable)

Polygon	(instantiable)

GeometryCollection	(instantiable)

MultiPoint	(instantiable)

MultiCurve	(non-instantiable)

MultiLineString	(instantiable)

MultiSurface	(non-instantiable)

MultiPolygon	(instantiable)

It	is	not	possible	to	create	objects	in	non-instantiable	classes.	It	is	possible	to
create	objects	in	instantiable	classes.	All	classes	have	properties,	and	instantiable
classes	may	also	have	assertions	(rules	that	define	valid	class	instances).

Geometry	is	the	base	class.	It	is	an	abstract	class.	The	instantiable	subclasses	of
Geometry	are	restricted	to	zero-,	one-,	and	two-dimensional	geometric	objects
that	exist	in	two-dimensional	coordinate	space.	All	instantiable	geometry	classes
are	defined	so	that	valid	instances	of	a	geometry	class	are	topologically	closed
(that	is,	all	defined	geometries	include	their	boundary).

The	base	Geometry	class	has	subclasses	for	Point,	Curve,	Surface,	and
GeometryCollection:

Point	represents	zero-dimensional	objects.

Curve	represents	one-dimensional	objects,	and	has	subclass	LineString,
with	sub-subclasses	Line	and	LinearRing.

Surface	is	designed	for	two-dimensional	objects	and	has	subclass	Polygon.

GeometryCollection	has	specialized	zero-,	one-,	and	two-dimensional
collection	classes	named	MultiPoint,	MultiLineString,	and
MultiPolygon	for	modeling	geometries	corresponding	to	collections	of
Points,	LineStrings,	and	Polygons,	respectively.	MultiCurve	and
MultiSurface	are	introduced	as	abstract	superclasses	that	generalize	the
collection	interfaces	to	handle	Curves	and	Surfaces.

Geometry,	Curve,	Surface,	MultiCurve,	and	MultiSurface	are	defined	as	non-
instantiable	classes.	They	define	a	common	set	of	methods	for	their	subclasses
and	are	included	for	extensibility.

Point,	LineString,	Polygon,	GeometryCollection,	MultiPoint,
MultiLineString,	and	MultiPolygon	are	instantiable	classes.

16.2.2.	Class	Geometry

Geometry	is	the	root	class	of	the	hierarchy.	It	is	a	non-instantiable	class	but	has	a
number	of	properties	that	are	common	to	all	geometry	values	created	from	any
of	the	Geometry	subclasses.	These	properties	are	described	in	the	following	list.
Particular	subclasses	have	their	own	specific	properties,	described	later.

Geometry	Properties

A	geometry	value	has	the	following	properties:

Its	type.	Each	geometry	belongs	to	one	of	the	instantiable	classes	in	the
hierarchy.

Its	SRID,	or	Spatial	Reference	Identifier.	This	value	identifies	the
geometry's	associated	Spatial	Reference	System	that	describes	the
coordinate	space	in	which	the	geometry	object	is	defined.

In	MySQL,	the	SRID	value	is	just	an	integer	associated	with	the	geometry
value.	All	calculations	are	done	assuming	Euclidean	(planar)	geometry.

Its	coordinates	in	its	Spatial	Reference	System,	represented	as	double-
precision	(eight-byte)	numbers.	All	non-empty	geometries	include	at	least
one	pair	of	(X,Y)	coordinates.	Empty	geometries	contain	no	coordinates.

Coordinates	are	related	to	the	SRID.	For	example,	in	different	coordinate
systems,	the	distance	between	two	objects	may	differ	even	when	objects
have	the	same	coordinates,	because	the	distance	on	the	planar	coordinate
system	and	the	distance	on	the	geocentric	system	(coordinates	on	the
Earth's	surface)	are	different	things.

Its	interior,	boundary,	and	exterior.

Every	geometry	occupies	some	position	in	space.	The	exterior	of	a
geometry	is	all	space	not	occupied	by	the	geometry.	The	interior	is	the
space	occupied	by	the	geometry.	The	boundary	is	the	interface	between	the
geometry's	interior	and	exterior.

Its	MBR	(Minimum	Bounding	Rectangle),	or	Envelope.	This	is	the
bounding	geometry,	formed	by	the	minimum	and	maximum	(X,Y)
coordinates:

((MINX	MINY,	MAXX	MINY,	MAXX	MAXY,	MINX	MAXY,	MINX	MINY))

Whether	the	value	is	simple	or	non-simple.	Geometry	values	of	types
(LineString,	MultiPoint,	MultiLineString)	are	either	simple	or	non-
simple.	Each	type	determines	its	own	assertions	for	being	simple	or	non-
simple.

Whether	the	value	is	closed	or	not	closed.	Geometry	values	of	types
(LineString,	MultiString)	are	either	closed	or	not	closed.	Each	type
determines	its	own	assertions	for	being	closed	or	not	closed.

Whether	the	value	is	empty	or	non-empty	A	geometry	is	empty	if	it	does
not	have	any	points.	Exterior,	interior,	and	boundary	of	an	empty	geometry
are	not	defined	(that	is,	they	are	represented	by	a	NULL	value).	An	empty
geometry	is	defined	to	be	always	simple	and	has	an	area	of	0.

Its	dimension.	A	geometry	can	have	a	dimension	of	–1,	0,	1,	or	2:

–1	for	an	empty	geometry.

0	for	a	geometry	with	no	length	and	no	area.

1	for	a	geometry	with	non-zero	length	and	zero	area.

2	for	a	geometry	with	non-zero	area.

Point	objects	have	a	dimension	of	zero.	LineString	objects	have	a
dimension	of	1.	Polygon	objects	have	a	dimension	of	2.	The	dimensions	of
MultiPoint,	MultiLineString,	and	MultiPolygon	objects	are	the	same	as
the	dimensions	of	the	elements	they	consist	of.

16.2.3.	Class	Point

A	Point	is	a	geometry	that	represents	a	single	location	in	coordinate	space.

Point	Examples

Imagine	a	large-scale	map	of	the	world	with	many	cities.	A	Point	object
could	represent	each	city.

On	a	city	map,	a	Point	object	could	represent	a	bus	stop.

Point	Properties

X-coordinate	value.

Y-coordinate	value.

Point	is	defined	as	a	zero-dimensional	geometry.

The	boundary	of	a	Point	is	the	empty	set.

16.2.4.	Class	Curve

A	Curve	is	a	one-dimensional	geometry,	usually	represented	by	a	sequence	of
points.	Particular	subclasses	of	Curve	define	the	type	of	interpolation	between
points.	Curve	is	a	non-instantiable	class.

Curve	Properties

A	Curve	has	the	coordinates	of	its	points.

A	Curve	is	defined	as	a	one-dimensional	geometry.

A	Curve	is	simple	if	it	does	not	pass	through	the	same	point	twice.

A	Curve	is	closed	if	its	start	point	is	equal	to	its	endpoint.

The	boundary	of	a	closed	Curve	is	empty.

The	boundary	of	a	non-closed	Curve	consists	of	its	two	endpoints.

A	Curve	that	is	simple	and	closed	is	a	LinearRing.

16.2.5.	Class	LineString

A	LineString	is	a	Curve	with	linear	interpolation	between	points.

LineString	Examples

On	a	world	map,	LineString	objects	could	represent	rivers.

In	a	city	map,	LineString	objects	could	represent	streets.

LineString	Properties

A	LineString	has	coordinates	of	segments,	defined	by	each	consecutive
pair	of	points.

A	LineString	is	a	Line	if	it	consists	of	exactly	two	points.

A	LineString	is	a	LinearRing	if	it	is	both	closed	and	simple.

16.2.6.	Class	Surface

A	Surface	is	a	two-dimensional	geometry.	It	is	a	non-instantiable	class.	Its	only
instantiable	subclass	is	Polygon.

Surface	Properties

A	Surface	is	defined	as	a	two-dimensional	geometry.

The	OpenGIS	specification	defines	a	simple	Surface	as	a	geometry	that
consists	of	a	single	“patch”	that	is	associated	with	a	single	exterior
boundary	and	zero	or	more	interior	boundaries.

The	boundary	of	a	simple	Surface	is	the	set	of	closed	curves	corresponding
to	its	exterior	and	interior	boundaries.

16.2.7.	Class	Polygon

A	Polygon	is	a	planar	Surface	representing	a	multisided	geometry.	It	is	defined
by	a	single	exterior	boundary	and	zero	or	more	interior	boundaries,	where	each
interior	boundary	defines	a	hole	in	the	Polygon.

Polygon	Examples

On	a	region	map,	Polygon	objects	could	represent	forests,	districts,	and	so
on.

Polygon	Assertions

The	boundary	of	a	Polygon	consists	of	a	set	of	LinearRing	objects	(that	is,
LineString	objects	that	are	both	simple	and	closed)	that	make	up	its
exterior	and	interior	boundaries.

A	Polygon	has	no	rings	that	cross.	The	rings	in	the	boundary	of	a	Polygon
may	intersect	at	a	Point,	but	only	as	a	tangent.

A	Polygon	has	no	lines,	spikes,	or	punctures.

A	Polygon	has	an	interior	that	is	a	connected	point	set.

A	Polygon	may	have	holes.	The	exterior	of	a	Polygon	with	holes	is	not
connected.	Each	hole	defines	a	connected	component	of	the	exterior.

The	preceding	assertions	make	a	Polygon	a	simple	geometry.

16.2.8.	Class	GeometryCollection

A	GeometryCollection	is	a	geometry	that	is	a	collection	of	one	or	more
geometries	of	any	class.

All	the	elements	in	a	GeometryCollection	must	be	in	the	same	Spatial
Reference	System	(that	is,	in	the	same	coordinate	system).	There	are	no	other
constraints	on	the	elements	of	a	GeometryCollection,	although	the	subclasses	of
GeometryCollection	described	in	the	following	sections	may	restrict
membership.	Restrictions	may	be	based	on:

Element	type	(for	example,	a	MultiPoint	may	contain	only	Point
elements)

Dimension

Constraints	on	the	degree	of	spatial	overlap	between	elements

16.2.9.	Class	MultiPoint

A	MultiPoint	is	a	geometry	collection	composed	of	Point	elements.	The	points
are	not	connected	or	ordered	in	any	way.

MultiPoint	Examples

On	a	world	map,	a	MultiPoint	could	represent	a	chain	of	small	islands.

On	a	city	map,	a	MultiPoint	could	represent	the	outlets	for	a	ticket	office.

MultiPoint	Properties

A	MultiPoint	is	a	zero-dimensional	geometry.

A	MultiPoint	is	simple	if	no	two	of	its	Point	values	are	equal	(have
identical	coordinate	values).

The	boundary	of	a	MultiPoint	is	the	empty	set.

16.2.10.	Class	MultiCurve

A	MultiCurve	is	a	geometry	collection	composed	of	Curve	elements.
MultiCurve	is	a	non-instantiable	class.

MultiCurve	Properties

A	MultiCurve	is	a	one-dimensional	geometry.

A	MultiCurve	is	simple	if	and	only	if	all	of	its	elements	are	simple;	the	only
intersections	between	any	two	elements	occur	at	points	that	are	on	the
boundaries	of	both	elements.

A	MultiCurve	boundary	is	obtained	by	applying	the	“mod	2	union	rule”
(also	known	as	the	“odd-even	rule”):	A	point	is	in	the	boundary	of	a
MultiCurve	if	it	is	in	the	boundaries	of	an	odd	number	of	MultiCurve
elements.

A	MultiCurve	is	closed	if	all	of	its	elements	are	closed.

The	boundary	of	a	closed	MultiCurve	is	always	empty.

16.2.11.	Class	MultiLineString

A	MultiLineString	is	a	MultiCurve	geometry	collection	composed	of

LineString	elements.

MultiLineString	Examples

On	a	region	map,	a	MultiLineString	could	represent	a	river	system	or	a
highway	system.

16.2.12.	Class	MultiSurface

A	MultiSurface	is	a	geometry	collection	composed	of	surface	elements.
MultiSurface	is	a	non-instantiable	class.	Its	only	instantiable	subclass	is
MultiPolygon.

MultiSurface	Assertions

Two	MultiSurface	surfaces	have	no	interiors	that	intersect.

Two	MultiSurface	elements	have	boundaries	that	intersect	at	most	at	a
finite	number	of	points.

16.2.13.	Class	MultiPolygon

A	MultiPolygon	is	a	MultiSurface	object	composed	of	Polygon	elements.

MultiPolygon	Examples

On	a	region	map,	a	MultiPolygon	could	represent	a	system	of	lakes.

MultiPolygon	Assertions

A	MultiPolygon	has	no	two	Polygon	elements	with	interiors	that	intersect.

A	MultiPolygon	has	no	two	Polygon	elements	that	cross	(crossing	is	also
forbidden	by	the	previous	assertion),	or	that	touch	at	an	infinite	number	of
points.

A	MultiPolygon	may	not	have	cut	lines,	spikes,	or	punctures.	A
MultiPolygon	is	a	regular,	closed	point	set.

A	MultiPolygon	that	has	more	than	one	Polygon	has	an	interior	that	is	not

connected.	The	number	of	connected	components	of	the	interior	of	a
MultiPolygon	is	equal	to	the	number	of	Polygon	values	in	the
MultiPolygon.

MultiPolygon	Properties

A	MultiPolygon	is	a	two-dimensional	geometry.

A	MultiPolygon	boundary	is	a	set	of	closed	curves	(LineString	values)
corresponding	to	the	boundaries	of	its	Polygon	elements.

Each	Curve	in	the	boundary	of	the	MultiPolygon	is	in	the	boundary	of
exactly	one	Polygon	element.

Every	Curve	in	the	boundary	of	an	Polygon	element	is	in	the	boundary	of
the	MultiPolygon.

16.3.	Supported	Spatial	Data	Formats

This	section	describes	the	standard	spatial	data	formats	that	are	used	to	represent
geometry	objects	in	queries.	They	are:

Well-Known	Text	(WKT)	format

Well-Known	Binary	(WKB)	format

Internally,	MySQL	stores	geometry	values	in	a	format	that	is	not	identical	to
either	WKT	or	WKB	format.

16.3.1.	Well-Known	Text	(WKT)	Format

The	Well-Known	Text	(WKT)	representation	of	Geometry	is	designed	to
exchange	geometry	data	in	ASCII	form.

Examples	of	WKT	representations	of	geometry	objects:

A	Point:

POINT(15	20)

Note	that	point	coordinates	are	specified	with	no	separating	comma.

A	LineString	with	four	points:

LINESTRING(0	0,	10	10,	20	25,	50	60)

Note	that	point	coordinate	pairs	are	separated	by	commas.

A	Polygon	with	one	exterior	ring	and	one	interior	ring:

POLYGON((0	0,10	0,10	10,0	10,0	0),(5	5,7	5,7	7,5	7,	5	5))

A	MultiPoint	with	three	Point	values:

MULTIPOINT(0	0,	20	20,	60	60)

A	MultiLineString	with	two	LineString	values:

MULTILINESTRING((10	10,	20	20),	(15	15,	30	15))

A	MultiPolygon	with	two	Polygon	values:

MULTIPOLYGON(((0	0,10	0,10	10,0	10,0	0)),((5	5,7	5,7	7,5	7,	5	5)))

A	GeometryCollection	consisting	of	two	Point	values	and	one
LineString:

GEOMETRYCOLLECTION(POINT(10	10),	POINT(30	30),	LINESTRING(15	15,	20	20))

A	Backus-Naur	grammar	that	specifies	the	formal	production	rules	for	writing
WKT	values	can	be	found	in	the	OpenGIS	specification	document	referenced
near	the	beginning	of	this	chapter.

16.3.2.	Well-Known	Binary	(WKB)	Format

The	Well-Known	Binary	(WKB)	representation	for	geometric	values	is	defined
by	the	OpenGIS	specification.	It	is	also	defined	in	the	ISO	SQL/MM	Part	3:
Spatial	standard.

WKB	is	used	to	exchange	geometry	data	as	binary	streams	represented	by	BLOB
values	containing	geometric	WKB	information.

WKB	uses	one-byte	unsigned	integers,	four-byte	unsigned	integers,	and	eight-
byte	double-precision	numbers	(IEEE	754	format).	A	byte	is	eight	bits.

For	example,	a	WKB	value	that	corresponds	to	POINT(1	1)	consists	of	this
sequence	of	21	bytes	(each	represented	here	by	two	hex	digits):

0101000000000000000000F03F000000000000F03F

The	sequence	may	be	broken	down	into	these	components:

Byte	order	:	01

WKB	type			:	01000000

X										:	000000000000F03F

Y										:	000000000000F03F

Component	representation	is	as	follows:

The	byte	order	may	be	either	0	or	1	to	indicate	little-endian	or	big-endian

storage.	The	little-endian	and	big-endian	byte	orders	are	also	known	as
Network	Data	Representation	(NDR)	and	External	Data	Representation
(XDR),	respectively.

The	WKB	type	is	a	code	that	indicates	the	geometry	type.	Values	from	1
through	7	indicate	Point,	LineString,	Polygon,	MultiPoint,
MultiLineString,	MultiPolygon,	and	GeometryCollection.

A	Point	value	has	X	and	Y	coordinates,	each	represented	as	a	double-
precision	value.

WKB	values	for	more	complex	geometry	values	are	represented	by	more
complex	data	structures,	as	detailed	in	the	OpenGIS	specification.

16.4.	Creating	a	Spatially	Enabled	MySQL	Database

This	section	describes	the	data	types	you	can	use	for	representing	spatial	data	in
MySQL,	and	the	functions	available	for	creating	and	retrieving	spatial	values.

16.4.1.	MySQL	Spatial	Data	Types

MySQL	has	data	types	that	correspond	to	OpenGIS	classes.	Some	of	these	types
hold	single	geometry	values:

GEOMETRY

POINT

LINESTRING

POLYGON

GEOMETRY	can	store	geometry	values	of	any	type.	The	other	single-value	types
(POINT,	LINESTRING,	and	POLYGON)	restrict	their	values	to	a	particular	geometry
type.

The	other	data	types	hold	collections	of	values:

MULTIPOINT

MULTILINESTRING

MULTIPOLYGON

GEOMETRYCOLLECTION

GEOMETRYCOLLECTION	can	store	a	collection	of	objects	of	any	type.	The	other
collection	types	(MULTIPOINT,	MULTILINESTRING,	MULTIPOLYGON,	and
GEOMETRYCOLLECTION)	restrict	collection	members	to	those	having	a	particular
geometry	type.

16.4.2.	Creating	Spatial	Values

This	section	describes	how	to	create	spatial	values	using	Well-Known	Text	and
Well-Known	Binary	functions	that	are	defined	in	the	OpenGIS	standard,	and
using	MySQL-specific	functions.

16.4.2.1.	Creating	Geometry	Values	Using	WKT	Functions

MySQL	provides	a	number	of	functions	that	take	as	input	parameters	a	Well-
Known	Text	representation	and,	optionally,	a	spatial	reference	system	identifier
(SRID).	They	return	the	corresponding	geometry.

GeomFromText()	accepts	a	WKT	of	any	geometry	type	as	its	first	argument.	An
implementation	also	provides	type-specific	construction	functions	for
construction	of	geometry	values	of	each	geometry	type.

	GeomCollFromText(wkt[,srid]),
GeometryCollectionFromText(wkt[,srid])

Constructs	a	GEOMETRYCOLLECTION	value	using	its	WKT	representation	and
SRID.

	GeomFromText(wkt[,srid]),	GeometryFromText(wkt[,srid])

Constructs	a	geometry	value	of	any	type	using	its	WKT	representation	and
SRID.

	LineFromText(wkt[,srid]),	LineStringFromText(wkt[,srid])

Constructs	a	LINESTRING	value	using	its	WKT	representation	and	SRID.

	MLineFromText(wkt[,srid]),	MultiLineStringFromText(wkt[,srid])

Constructs	a	MULTILINESTRING	value	using	its	WKT	representation	and
SRID.

	MPointFromText(wkt[,srid]),	MultiPointFromText(wkt[,srid])

Constructs	a	MULTIPOINT	value	using	its	WKT	representation	and	SRID.

	MPolyFromText(wkt[,srid]),	MultiPolygonFromText(wkt[,srid])

Constructs	a	MULTIPOLYGON	value	using	its	WKT	representation	and	SRID.

	PointFromText(wkt[,srid])

Constructs	a	POINT	value	using	its	WKT	representation	and	SRID.

	PolyFromText(wkt[,srid]),	PolygonFromText(wkt[,srid])

Constructs	a	POLYGON	value	using	its	WKT	representation	and	SRID.

The	OpenGIS	specification	also	defines	the	following	optional	functions,	which
MySQL	does	not	implement.	These	functions	construct	Polygon	or
MultiPolygon	values	based	on	the	WKT	representation	of	a	collection	of	rings
or	closed	LineString	values.	These	values	may	intersect.

	BdMPolyFromText(wkt,srid)

Constructs	a	MultiPolygon	value	from	a	MultiLineString	value	in	WKT
format	containing	an	arbitrary	collection	of	closed	LineString	values.

	BdPolyFromText(wkt,srid)

Constructs	a	Polygon	value	from	a	MultiLineString	value	in	WKT	format
containing	an	arbitrary	collection	of	closed	LineString	values.

16.4.2.2.	Creating	Geometry	Values	Using	WKB	Functions

MySQL	provides	a	number	of	functions	that	take	as	input	parameters	a	BLOB
containing	a	Well-Known	Binary	representation	and,	optionally,	a	spatial
reference	system	identifier	(SRID).	They	return	the	corresponding	geometry.

GeomFromWKB()	accepts	a	WKB	of	any	geometry	type	as	its	first	argument.	An
implementation	also	provides	type-specific	construction	functions	for
construction	of	geometry	values	of	each	geometry	type.

	GeomCollFromWKB(wkb[,srid]),	GeometryCollectionFromWKB(wkb[,srid])

Constructs	a	GEOMETRYCOLLECTION	value	using	its	WKB	representation	and
SRID.

	GeomFromWKB(wkb[,srid]),	GeometryFromWKB(wkb[,srid])

Constructs	a	geometry	value	of	any	type	using	its	WKB	representation	and
SRID.

	LineFromWKB(wkb[,srid]),	LineStringFromWKB(wkb[,srid])

Constructs	a	LINESTRING	value	using	its	WKB	representation	and	SRID.

	MLineFromWKB(wkb[,srid]),	MultiLineStringFromWKB(wkb[,srid])

Constructs	a	MULTILINESTRING	value	using	its	WKB	representation	and
SRID.

	MPointFromWKB(wkb[,srid]),	MultiPointFromWKB(wkb[,srid])

Constructs	a	MULTIPOINT	value	using	its	WKB	representation	and	SRID.

	MPolyFromWKB(wkb[,srid]),	MultiPolygonFromWKB(wkb[,srid])

Constructs	a	MULTIPOLYGON	value	using	its	WKB	representation	and	SRID.

	PointFromWKB(wkb[,srid])

Constructs	a	POINT	value	using	its	WKB	representation	and	SRID.

	PolyFromWKB(wkb[,srid]),	PolygonFromWKB(wkb[,srid])

Constructs	a	POLYGON	value	using	its	WKB	representation	and	SRID.

The	OpenGIS	specification	also	describes	optional	functions	for	constructing
Polygon	or	MultiPolygon	values	based	on	the	WKB	representation	of	a
collection	of	rings	or	closed	LineString	values.	These	values	may	intersect.
MySQL	does	not	implement	these	functions:

	BdMPolyFromWKB(wkb,srid)

Constructs	a	MultiPolygon	value	from	a	MultiLineString	value	in	WKB
format	containing	an	arbitrary	collection	of	closed	LineString	values.

	BdPolyFromWKB(wkb,srid)

Constructs	a	Polygon	value	from	a	MultiLineString	value	in	WKB	format
containing	an	arbitrary	collection	of	closed	LineString	values.

16.4.2.3.	Creating	Geometry	Values	Using	MySQL-Specific	Functions

MySQL	provides	a	set	of	useful	non-standard	functions	for	creating	geometry
WKB	representations.	The	functions	described	in	this	section	are	MySQL
extensions	to	the	OpenGIS	specification.	The	results	of	these	functions	are	BLOB
values	containing	WKB	representations	of	geometry	values	with	no	SRID.	The
results	of	these	functions	can	be	substituted	as	the	first	argument	for	any	function
in	the	GeomFromWKB()	function	family.

	GeometryCollection(g1,g2,...)

Constructs	a	WKB	GeometryCollection.	If	any	argument	is	not	a	well-
formed	WKB	representation	of	a	geometry,	the	return	value	is	NULL.

	LineString(pt1,pt2,...)

Constructs	a	WKB	LineString	value	from	a	number	of	WKB	Point
arguments.	If	any	argument	is	not	a	WKB	Point,	the	return	value	is	NULL.	If
the	number	of	Point	arguments	is	less	than	two,	the	return	value	is	NULL.

	MultiLineString(ls1,ls2,...)

Constructs	a	WKB	MultiLineString	value	using	WKB	LineString
arguments.	If	any	argument	is	not	a	WKB	LineString,	the	return	value	is
NULL.

	MultiPoint(pt1,pt2,...)

Constructs	a	WKB	MultiPoint	value	using	WKB	Point	arguments.	If	any
argument	is	not	a	WKB	Point,	the	return	value	is	NULL.

	MultiPolygon(poly1,poly2,...)

Constructs	a	WKB	MultiPolygon	value	from	a	set	of	WKB	Polygon
arguments.	If	any	argument	is	not	a	WKB	Polygon,	the	return	value	is	NULL.

	Point(x,y)

Constructs	a	WKB	Point	using	its	coordinates.

	Polygon(ls1,ls2,...)

Constructs	a	WKB	Polygon	value	from	a	number	of	WKB	LineString
arguments.	If	any	argument	does	not	represent	the	WKB	of	a	LinearRing
(that	is,	not	a	closed	and	simple	LineString)	the	return	value	is	NULL.

16.4.3.	Creating	Spatial	Columns

MySQL	provides	a	standard	way	of	creating	spatial	columns	for	geometry	types,
for	example,	with	CREATE	TABLE	or	ALTER	TABLE.	Currently,	spatial	columns	are
supported	for	MyISAM,	InnoDB,	NDB,	BDB,	and	ARCHIVE	tables.	(Support	for	storage
engines	other	than	MyISAM	was	added	in	MySQL	5.0.16.)	See	also	the
annotations	about	spatial	indexes	under	Section	16.6.1,	“Creating	Spatial
Indexes”.

Use	the	CREATE	TABLE	statement	to	create	a	table	with	a	spatial	column:

CREATE	TABLE	geom	(g	GEOMETRY);

Use	the	ALTER	TABLE	statement	to	add	or	drop	a	spatial	column	to	or	from
an	existing	table:

ALTER	TABLE	geom	ADD	pt	POINT;

ALTER	TABLE	geom	DROP	pt;

16.4.4.	Populating	Spatial	Columns

After	you	have	created	spatial	columns,	you	can	populate	them	with	spatial	data.

Values	should	be	stored	in	internal	geometry	format,	but	you	can	convert	them	to
that	format	from	either	Well-Known	Text	(WKT)	or	Well-Known	Binary	(WKB)
format.	The	following	examples	demonstrate	how	to	insert	geometry	values	into
a	table	by	converting	WKT	values	into	internal	geometry	format:

Perform	the	conversion	directly	in	the	INSERT	statement:

INSERT	INTO	geom	VALUES	(GeomFromText('POINT(1	1)'));

SET	@g	=	'POINT(1	1)';

INSERT	INTO	geom	VALUES	(GeomFromText(@g));

Perform	the	conversion	prior	to	the	INSERT:

SET	@g	=	GeomFromText('POINT(1	1)');

INSERT	INTO	geom	VALUES	(@g);

The	following	examples	insert	more	complex	geometries	into	the	table:

SET	@g	=	'LINESTRING(0	0,1	1,2	2)';

INSERT	INTO	geom	VALUES	(GeomFromText(@g));

SET	@g	=	'POLYGON((0	0,10	0,10	10,0	10,0	0),(5	5,7	5,7	7,5	7,	5	5))';

INSERT	INTO	geom	VALUES	(GeomFromText(@g));

SET	@g	=

'GEOMETRYCOLLECTION(POINT(1	1),LINESTRING(0	0,1	1,2	2,3	3,4	4))';

INSERT	INTO	geom	VALUES	(GeomFromText(@g));

The	preceding	examples	all	use	GeomFromText()	to	create	geometry	values.	You
can	also	use	type-specific	functions:

SET	@g	=	'POINT(1	1)';

INSERT	INTO	geom	VALUES	(PointFromText(@g));

SET	@g	=	'LINESTRING(0	0,1	1,2	2)';

INSERT	INTO	geom	VALUES	(LineStringFromText(@g));

SET	@g	=	'POLYGON((0	0,10	0,10	10,0	10,0	0),(5	5,7	5,7	7,5	7,	5	5))';

INSERT	INTO	geom	VALUES	(PolygonFromText(@g));

SET	@g	=

'GEOMETRYCOLLECTION(POINT(1	1),LINESTRING(0	0,1	1,2	2,3	3,4	4))';

INSERT	INTO	geom	VALUES	(GeomCollFromText(@g));

Note	that	if	a	client	application	program	wants	to	use	WKB	representations	of
geometry	values,	it	is	responsible	for	sending	correctly	formed	WKB	in	queries
to	the	server.	However,	there	are	several	ways	of	satisfying	this	requirement.	For
example:

Inserting	a	POINT(1	1)	value	with	hex	literal	syntax:

mysql>	INSERT	INTO	geom	VALUES

				->	(GeomFromWKB(0x0101000000000000000000F03F000000000000F03F));

An	ODBC	application	can	send	a	WKB	representation,	binding	it	to	a

placeholder	using	an	argument	of	BLOB	type:

INSERT	INTO	geom	VALUES	(GeomFromWKB(?))

Other	programming	interfaces	may	support	a	similar	placeholder
mechanism.

In	a	C	program,	you	can	escape	a	binary	value	using
mysql_real_escape_string()	and	include	the	result	in	a	query	string	that
is	sent	to	the	server.	See	Section	22.2.3.52,
“mysql_real_escape_string()”.

16.4.5.	Fetching	Spatial	Data

Geometry	values	stored	in	a	table	can	be	fetched	in	internal	format.	You	can	also
convert	them	into	WKT	or	WKB	format.

Fetching	spatial	data	in	internal	format:

Fetching	geometry	values	using	internal	format	can	be	useful	in	table-to-
table	transfers:

CREATE	TABLE	geom2	(g	GEOMETRY)	SELECT	g	FROM	geom;

Fetching	spatial	data	in	WKT	format:

The	AsText()	function	converts	a	geometry	from	internal	format	into	a
WKT	string.

SELECT	AsText(g)	FROM	geom;

Fetching	spatial	data	in	WKB	format:

The	AsBinary()	function	converts	a	geometry	from	internal	format	into	a
BLOB	containing	the	WKB	value.

SELECT	AsBinary(g)	FROM	geom;

16.5.	Analyzing	Spatial	Information

After	populating	spatial	columns	with	values,	you	are	ready	to	query	and	analyze
them.	MySQL	provides	a	set	of	functions	to	perform	various	operations	on
spatial	data.	These	functions	can	be	grouped	into	four	major	categories
according	to	the	type	of	operation	they	perform:

Functions	that	convert	geometries	between	various	formats

Functions	that	provide	access	to	qualitative	or	quantitative	properties	of	a
geometry

Functions	that	describe	relations	between	two	geometries

Functions	that	create	new	geometries	from	existing	ones

Spatial	analysis	functions	can	be	used	in	many	contexts,	such	as:

Any	interactive	SQL	program,	such	as	mysql	or	MySQL	Query	Browser

Application	programs	written	in	any	language	that	supports	a	MySQL	client
API

16.5.1.	Geometry	Format	Conversion	Functions

MySQL	supports	the	following	functions	for	converting	geometry	values
between	internal	format	and	either	WKT	or	WKB	format:

	AsBinary(g)

Converts	a	value	in	internal	geometry	format	to	its	WKB	representation	and
returns	the	binary	result.

SELECT	AsBinary(g)	FROM	geom;

	AsText(g)

Converts	a	value	in	internal	geometry	format	to	its	WKT	representation	and
returns	the	string	result.

mysql>	SET	@g	=	'LineString(1	1,2	2,3	3)';

mysql>	SELECT	AsText(GeomFromText(@g));

+--------------------------+

|	AsText(GeomFromText(@g))	|

+--------------------------+

|	LINESTRING(1	1,2	2,3	3)		|

+--------------------------+

	GeomFromText(wkt[,srid])

Converts	a	string	value	from	its	WKT	representation	into	internal	geometry
format	and	returns	the	result.	A	number	of	type-specific	functions	are	also
supported,	such	as	PointFromText()	and	LineFromText().	See
Section	16.4.2.1,	“Creating	Geometry	Values	Using	WKT	Functions”.

	GeomFromWKB(wkb[,srid])

Converts	a	binary	value	from	its	WKB	representation	into	internal
geometry	format	and	returns	the	result.	A	number	of	type-specific	functions
are	also	supported,	such	as	PointFromWKB()	and	LineFromWKB().	See
Section	16.4.2.2,	“Creating	Geometry	Values	Using	WKB	Functions”.

16.5.2.	Geometry	Functions

Each	function	that	belongs	to	this	group	takes	a	geometry	value	as	its	argument
and	returns	some	quantitative	or	qualitative	property	of	the	geometry.	Some
functions	restrict	their	argument	type.	Such	functions	return	NULL	if	the	argument
is	of	an	incorrect	geometry	type.	For	example,	Area()	returns	NULL	if	the	object
type	is	neither	Polygon	nor	MultiPolygon.

16.5.2.1.	General	Geometry	Functions

The	functions	listed	in	this	section	do	not	restrict	their	argument	and	accept	a
geometry	value	of	any	type.

	Dimension(g)

Returns	the	inherent	dimension	of	the	geometry	value	g.	The	result	can	be	–
1,	0,	1,	or	2.	The	meaning	of	these	values	is	given	in	Section	16.2.2,	“Class
Geometry”.

mysql>	SELECT	Dimension(GeomFromText('LineString(1	1,2	2)'));

+--+

|	Dimension(GeomFromText('LineString(1	1,2	2)'))	|

+--+

|																																														1	|

+--+

	Envelope(g)

Returns	the	Minimum	Bounding	Rectangle	(MBR)	for	the	geometry	value
g.	The	result	is	returned	as	a	Polygon	value.

The	polygon	is	defined	by	the	corner	points	of	the	bounding	box:

POLYGON((MINX	MINY,	MAXX	MINY,	MAXX	MAXY,	MINX	MAXY,	MINX	MINY))

mysql>	SELECT	AsText(Envelope(GeomFromText('LineString(1	1,2	2)')));

+---+

|	AsText(Envelope(GeomFromText('LineString(1	1,2	2)')))	|

+---+

|	POLYGON((1	1,2	1,2	2,1	2,1	1))																								|

+---+

	GeometryType(g)

Returns	as	a	string	the	name	of	the	geometry	type	of	which	the	geometry
instance	g	is	a	member.	The	name	corresponds	to	one	of	the	instantiable
Geometry	subclasses.

mysql>	SELECT	GeometryType(GeomFromText('POINT(1	1)'));

+--+

|	GeometryType(GeomFromText('POINT(1	1)'))	|

+--+

|	POINT																																				|

+--+

	SRID(g)

Returns	an	integer	indicating	the	Spatial	Reference	System	ID	for	the
geometry	value	g.

In	MySQL,	the	SRID	value	is	just	an	integer	associated	with	the	geometry
value.	All	calculations	are	done	assuming	Euclidean	(planar)	geometry.

mysql>	SELECT	SRID(GeomFromText('LineString(1	1,2	2)',101));

+---+

|	SRID(GeomFromText('LineString(1	1,2	2)',101))	|

+---+

|																																											101	|

+---+

The	OpenGIS	specification	also	defines	the	following	functions,	which	MySQL
does	not	implement:

	Boundary(g)

Returns	a	geometry	that	is	the	closure	of	the	combinatorial	boundary	of	the
geometry	value	g.

	IsEmpty(g)

Returns	1	if	the	geometry	value	g	is	the	empty	geometry,	0	if	it	is	not	empty,
and	–1	if	the	argument	is	NULL.	If	the	geometry	is	empty,	it	represents	the
empty	point	set.

	IsSimple(g)

Currently,	this	function	is	a	placeholder	and	should	not	be	used.	If
implemented,	its	behavior	will	be	as	described	in	the	next	paragraph.

Returns	1	if	the	geometry	value	g	has	no	anomalous	geometric	points,	such
as	self-intersection	or	self-tangency.	IsSimple()	returns	0	if	the	argument
is	not	simple,	and	–1	if	it	is	NULL.

The	description	of	each	instantiable	geometric	class	given	earlier	in	the
chapter	includes	the	specific	conditions	that	cause	an	instance	of	that	class
to	be	classified	as	not	simple.	(See	Section	16.2.1,	“The	Geometry	Class
Hierarchy”.)

16.5.2.2.	Point	Functions

A	Point	consists	of	X	and	Y	coordinates,	which	may	be	obtained	using	the
following	functions:

	X(p)

Returns	the	X-coordinate	value	for	the	point	p	as	a	double-precision
number.

mysql>	SET	@pt	=	'Point(56.7	53.34)';

mysql>	SELECT	X(GeomFromText(@pt));

+----------------------+

|	X(GeomFromText(@pt))	|

+----------------------+

|																	56.7	|

+----------------------+

	Y(p)

Returns	the	Y-coordinate	value	for	the	point	p	as	a	double-precision
number.

mysql>	SET	@pt	=	'Point(56.7	53.34)';

mysql>	SELECT	Y(GeomFromText(@pt));

+----------------------+

|	Y(GeomFromText(@pt))	|

+----------------------+

|																53.34	|

+----------------------+

16.5.2.3.	LineString	Functions

A	LineString	consists	of	Point	values.	You	can	extract	particular	points	of	a
LineString,	count	the	number	of	points	that	it	contains,	or	obtain	its	length.

	EndPoint(ls)

Returns	the	Point	that	is	the	endpoint	of	the	LineString	value	ls.

mysql>	SET	@ls	=	'LineString(1	1,2	2,3	3)';

mysql>	SELECT	AsText(EndPoint(GeomFromText(@ls)));

+-------------------------------------+

|	AsText(EndPoint(GeomFromText(@ls)))	|

+-------------------------------------+

|	POINT(3	3)																										|

+-------------------------------------+

	GLength(ls)

Returns	as	a	double-precision	number	the	length	of	the	LineString	value

ls	in	its	associated	spatial	reference.

mysql>	SET	@ls	=	'LineString(1	1,2	2,3	3)';

mysql>	SELECT	GLength(GeomFromText(@ls));

+----------------------------+

|	GLength(GeomFromText(@ls))	|

+----------------------------+

|												2.8284271247462	|

+----------------------------+

GLength()	is	a	non-standard	name.	It	corresponds	to	the	OpenGIS
Length()	function.

	NumPoints(ls)

Returns	the	number	of	Point	objects	in	the	LineString	value	ls.

mysql>	SET	@ls	=	'LineString(1	1,2	2,3	3)';

mysql>	SELECT	NumPoints(GeomFromText(@ls));

+------------------------------+

|	NumPoints(GeomFromText(@ls))	|

+------------------------------+

|																												3	|

+------------------------------+

	PointN(ls,N)

Returns	the	N-th	Point	in	the	Linestring	value	ls.	Points	are	numbered
beginning	with	1.

mysql>	SET	@ls	=	'LineString(1	1,2	2,3	3)';

mysql>	SELECT	AsText(PointN(GeomFromText(@ls),2));

+-------------------------------------+

|	AsText(PointN(GeomFromText(@ls),2))	|

+-------------------------------------+

|	POINT(2	2)																										|

+-------------------------------------+

	StartPoint(ls)

Returns	the	Point	that	is	the	start	point	of	the	LineString	value	ls.

mysql>	SET	@ls	=	'LineString(1	1,2	2,3	3)';

mysql>	SELECT	AsText(StartPoint(GeomFromText(@ls)));

+---------------------------------------+

|	AsText(StartPoint(GeomFromText(@ls)))	|

+---------------------------------------+

|	POINT(1	1)																												|

+---------------------------------------+

The	OpenGIS	specification	also	defines	the	following	function,	which	MySQL
does	not	implement:

	IsRing(ls)

Returns	1	if	the	LineString	value	ls	is	closed	(that	is,	its	StartPoint()
and	EndPoint()	values	are	the	same)	and	is	simple	(does	not	pass	through
the	same	point	more	than	once).	Returns	0	if	ls	is	not	a	ring,	and	–1	if	it	is
NULL.

16.5.2.4.	MultiLineString	Functions

	GLength(mls)

Returns	as	a	double-precision	number	the	length	of	the	MultiLineString
value	mls.	The	length	of	mls	is	equal	to	the	sum	of	the	lengths	of	its
elements.

mysql>	SET	@mls	=	'MultiLineString((1	1,2	2,3	3),(4	4,5	5))';

mysql>	SELECT	GLength(GeomFromText(@mls));

+-----------------------------+

|	GLength(GeomFromText(@mls))	|

+-----------------------------+

|													4.2426406871193	|

+-----------------------------+

GLength()	is	a	non-standard	name.	It	corresponds	to	the	OpenGIS
Length()	function.

	IsClosed(mls)

Returns	1	if	the	MultiLineString	value	mls	is	closed	(that	is,	the
StartPoint()	and	EndPoint()	values	are	the	same	for	each	LineString	in
mls).	Returns	0	if	mls	is	not	closed,	and	–1	if	it	is	NULL.

mysql>	SET	@mls	=	'MultiLineString((1	1,2	2,3	3),(4	4,5	5))';

mysql>	SELECT	IsClosed(GeomFromText(@mls));

+------------------------------+

|	IsClosed(GeomFromText(@mls))	|

+------------------------------+

|																												0	|

+------------------------------+

16.5.2.5.	Polygon	Functions

	Area(poly)

Returns	as	a	double-precision	number	the	area	of	the	Polygon	value	poly,
as	measured	in	its	spatial	reference	system.

mysql>	SET	@poly	=	'Polygon((0	0,0	3,3	0,0	0),(1	1,1	2,2	1,1	1))';

mysql>	SELECT	Area(GeomFromText(@poly));

+---------------------------+

|	Area(GeomFromText(@poly))	|

+---------------------------+

|																									4	|

+---------------------------+

	ExteriorRing(poly)

Returns	the	exterior	ring	of	the	Polygon	value	poly	as	a	LineString.

mysql>	SET	@poly	=

				->	'Polygon((0	0,0	3,3	3,3	0,0	0),(1	1,1	2,2	2,2	1,1	1))';

mysql>	SELECT	AsText(ExteriorRing(GeomFromText(@poly)));

+---+

|	AsText(ExteriorRing(GeomFromText(@poly)))	|

+---+

|	LINESTRING(0	0,0	3,3	3,3	0,0	0)											|

+---+

	InteriorRingN(poly,N)

Returns	the	N-th	interior	ring	for	the	Polygon	value	poly	as	a	LineString.
Rings	are	numbered	beginning	with	1.

mysql>	SET	@poly	=

				->	'Polygon((0	0,0	3,3	3,3	0,0	0),(1	1,1	2,2	2,2	1,1	1))';

mysql>	SELECT	AsText(InteriorRingN(GeomFromText(@poly),1));

+--+

|	AsText(InteriorRingN(GeomFromText(@poly),1))	|

+--+

|	LINESTRING(1	1,1	2,2	2,2	1,1	1)														|

+--+

	NumInteriorRings(poly)

Returns	the	number	of	interior	rings	in	the	Polygon	value	poly.

mysql>	SET	@poly	=

				->	'Polygon((0	0,0	3,3	3,3	0,0	0),(1	1,1	2,2	2,2	1,1	1))';

mysql>	SELECT	NumInteriorRings(GeomFromText(@poly));

+---------------------------------------+

|	NumInteriorRings(GeomFromText(@poly))	|

+---------------------------------------+

|																																					1	|

+---------------------------------------+

16.5.2.6.	MultiPolygon	Functions

	Area(mpoly)

Returns	as	a	double-precision	number	the	area	of	the	MultiPolygon	value
mpoly,	as	measured	in	its	spatial	reference	system.

mysql>	SET	@mpoly	=

				->	'MultiPolygon(((0	0,0	3,3	3,3	0,0	0),(1	1,1	2,2	2,2	1,1	1)))';

mysql>	SELECT	Area(GeomFromText(@mpoly));

+----------------------------+

|	Area(GeomFromText(@mpoly))	|

+----------------------------+

|																										8	|

+----------------------------+

The	OpenGIS	specification	also	defines	the	following	functions,	which	MySQL
does	not	implement:

	Centroid(mpoly)

Returns	the	mathematical	centroid	for	the	MultiPolygon	value	mpoly	as	a
Point.	The	result	is	not	guaranteed	to	be	on	the	MultiPolygon.

	PointOnSurface(mpoly)

Returns	a	Point	value	that	is	guaranteed	to	be	on	the	MultiPolygon	value
mpoly.

16.5.2.7.	GeometryCollection	Functions

	GeometryN(gc,N)

Returns	the	N-th	geometry	in	the	GeometryCollection	value	gc.
Geometries	are	numbered	beginning	with	1.

mysql>	SET	@gc	=	'GeometryCollection(Point(1	1),LineString(2	2,	3	3))';

mysql>	SELECT	AsText(GeometryN(GeomFromText(@gc),1));

+--+

|	AsText(GeometryN(GeomFromText(@gc),1))	|

+--+

|	POINT(1	1)																													|

+--+

	NumGeometries(gc)

Returns	the	number	of	geometries	in	the	GeometryCollection	value	gc.

mysql>	SET	@gc	=	'GeometryCollection(Point(1	1),LineString(2	2,	3	3))';

mysql>	SELECT	NumGeometries(GeomFromText(@gc));

+----------------------------------+

|	NumGeometries(GeomFromText(@gc))	|

+----------------------------------+

|																																2	|

+----------------------------------+

16.5.3.	Functions	That	Create	New	Geometries	from	Existing
Ones

16.5.3.1.	Geometry	Functions	That	Produce	New	Geometries

Section	16.5.2,	“Geometry	Functions”,	discusses	several	functions	that	construct
new	geometries	from	existing	ones.	See	that	section	for	descriptions	of	these
functions:

Envelope(g)

StartPoint(ls)

EndPoint(ls)

PointN(ls,N)

ExteriorRing(poly)

InteriorRingN(poly,N)

GeometryN(gc,N)

16.5.3.2.	Spatial	Operators

OpenGIS	proposes	a	number	of	other	functions	that	can	produce	geometries.
They	are	designed	to	implement	spatial	operators.

These	functions	are	not	implemented	in	MySQL.	They	may	appear	in	future
releases.

	Buffer(g,d)

Returns	a	geometry	that	represents	all	points	whose	distance	from	the
geometry	value	g	is	less	than	or	equal	to	a	distance	of	d.

	ConvexHull(g)

Returns	a	geometry	that	represents	the	convex	hull	of	the	geometry	value	g.

	Difference(g1,g2)

Returns	a	geometry	that	represents	the	point	set	difference	of	the	geometry
value	g1	with	g2.

	Intersection(g1,g2)

Returns	a	geometry	that	represents	the	point	set	intersection	of	the
geometry	values	g1	with	g2.

	SymDifference(g1,g2)

Returns	a	geometry	that	represents	the	point	set	symmetric	difference	of	the
geometry	value	g1	with	g2.

	Union(g1,g2)

Returns	a	geometry	that	represents	the	point	set	union	of	the	geometry
values	g1	and	g2.

16.5.4.	Functions	for	Testing	Spatial	Relations	Between	Geometric
Objects

The	functions	described	in	these	sections	take	two	geometries	as	input
parameters	and	return	a	qualitative	or	quantitative	relation	between	them.

16.5.5.	Relations	on	Geometry	Minimal	Bounding	Rectangles
(MBRs)

MySQL	provides	several	functions	that	test	relations	between	minimal	bounding
rectangles	of	two	geometries	g1	and	g2.	The	return	values	1	and	0	indicate	true
and	false,	respectively.

	MBRContains(g1,g2)

Returns	1	or	0	to	indicate	whether	the	Minimum	Bounding	Rectangle	of	g1
contains	the	Minimum	Bounding	Rectangle	of	g2.

mysql>	SET	@g1	=	GeomFromText('Polygon((0	0,0	3,3	3,3	0,0	0))');

mysql>	SET	@g2	=	GeomFromText('Point(1	1)');

mysql>	SELECT	MBRContains(@g1,@g2),	MBRContains(@g2,@g1);

----------------------+----------------------+

|	MBRContains(@g1,@g2)	|	MBRContains(@g2,@g1)	|

+----------------------+----------------------+

|																				1	|																				0	|

+----------------------+----------------------+

	MBRDisjoint(g1,g2)

Returns	1	or	0	to	indicate	whether	the	Minimum	Bounding	Rectangles	of
the	two	geometries	g1	and	g2	are	disjoint	(do	not	intersect).

	MBREqual(g1,g2)

Returns	1	or	0	to	indicate	whether	the	Minimum	Bounding	Rectangles	of
the	two	geometries	g1	and	g2	are	the	same.

	MBRIntersects(g1,g2)

Returns	1	or	0	to	indicate	whether	the	Minimum	Bounding	Rectangles	of
the	two	geometries	g1	and	g2	intersect.

	MBROverlaps(g1,g2)

Returns	1	or	0	to	indicate	whether	the	Minimum	Bounding	Rectangles	of
the	two	geometries	g1	and	g2	overlap.

	MBRTouches(g1,g2)

Returns	1	or	0	to	indicate	whether	the	Minimum	Bounding	Rectangles	of
the	two	geometries	g1	and	g2	touch.

	MBRWithin(g1,g2)

Returns	1	or	0	to	indicate	whether	the	Minimum	Bounding	Rectangle	of	g1
is	within	the	Minimum	Bounding	Rectangle	of	g2.

mysql>	SET	@g1	=	GeomFromText('Polygon((0	0,0	3,3	3,3	0,0	0))');

mysql>	SET	@g2	=	GeomFromText('Polygon((0	0,0	5,5	5,5	0,0	0))');

mysql>	SELECT	MBRWithin(@g1,@g2),	MBRWithin(@g2,@g1);

+--------------------+--------------------+

|	MBRWithin(@g1,@g2)	|	MBRWithin(@g2,@g1)	|

+--------------------+--------------------+

|																		1	|																		0	|

+--------------------+--------------------+

16.5.6.	Functions	That	Test	Spatial	Relationships	Between
Geometries

The	OpenGIS	specification	defines	the	following	functions.	They	test	the
relationship	between	two	geometry	values	g1	and	g2.

Currently,	MySQL	does	not	implement	these	functions	according	to	the
specification.	Those	that	are	implemented	return	the	same	result	as	the
corresponding	MBR-based	functions.	This	includes	functions	in	the	following
list	other	than	Distance()	and	Related().

These	functions	may	be	implemented	in	future	releases	with	full	support	for
spatial	analysis,	not	just	MBR-based	support.

The	return	values	1	and	0	indicate	true	and	false,	respectively.

	Contains(g1,g2)

Returns	1	or	0	to	indicate	whether	g1	completely	contains	g2.

	Crosses(g1,g2)

Returns	1	if	g1	spatially	crosses	g2.	Returns	NULL	if	g1	is	a	Polygon	or	a
MultiPolygon,	or	if	g2	is	a	Point	or	a	MultiPoint.	Otherwise,	returns	0.

The	term	spatially	crosses	denotes	a	spatial	relation	between	two	given
geometries	that	has	the	following	properties:

The	two	geometries	intersect

Their	intersection	results	in	a	geometry	that	has	a	dimension	that	is	one
less	than	the	maximum	dimension	of	the	two	given	geometries

Their	intersection	is	not	equal	to	either	of	the	two	given	geometries

	Disjoint(g1,g2)

Returns	1	or	0	to	indicate	whether	g1	is	spatially	disjoint	from	(does	not
intersect)	g2.

	Distance(g1,g2)

Returns	as	a	double-precision	number	the	shortest	distance	between	any
two	points	in	the	two	geometries.

	Equals(g1,g2)

Returns	1	or	0	to	indicate	whether	g1	is	spatially	equal	to	g2.

	Intersects(g1,g2)

Returns	1	or	0	to	indicate	whether	g1	spatially	intersects	g2.

	Overlaps(g1,g2)

Returns	1	or	0	to	indicate	whether	g1	spatially	overlaps	g2.	The	term
spatially	overlaps	is	used	if	two	geometries	intersect	and	their	intersection
results	in	a	geometry	of	the	same	dimension	but	not	equal	to	either	of	the
given	geometries.

	Related(g1,g2,pattern_matrix)

Returns	1	or	0	to	indicate	whether	the	spatial	relationship	specified	by
pattern_matrix	exists	between	g1	and	g2.	Returns	–1	if	the	arguments	are
NULL.	The	pattern	matrix	is	a	string.	Its	specification	will	be	noted	here	if
this	function	is	implemented.

	Touches(g1,g2)

Returns	1	or	0	to	indicate	whether	g1	spatially	touches	g2.	Two	geometries
spatially	touch	if	the	interiors	of	the	geometries	do	not	intersect,	but	the
boundary	of	one	of	the	geometries	intersects	either	the	boundary	or	the
interior	of	the	other.

	Within(g1,g2)

Returns	1	or	0	to	indicate	whether	g1	is	spatially	within	g2.

16.6.	Optimizing	Spatial	Analysis

Search	operations	in	non-spatial	databases	can	be	optimized	using	indexes.	This
is	true	for	spatial	databases	as	well.	With	the	help	of	a	great	variety	of	multi-
dimensional	indexing	methods	that	have	previously	been	designed,	it	is	possible
to	optimize	spatial	searches.	The	most	typical	of	these	are:

Point	queries	that	search	for	all	objects	that	contain	a	given	point

Region	queries	that	search	for	all	objects	that	overlap	a	given	region

MySQL	uses	R-Trees	with	quadratic	splitting	to	index	spatial	columns.	A
spatial	index	is	built	using	the	MBR	of	a	geometry.	For	most	geometries,	the
MBR	is	a	minimum	rectangle	that	surrounds	the	geometries.	For	a	horizontal	or
a	vertical	linestring,	the	MBR	is	a	rectangle	degenerated	into	the	linestring.	For	a
point,	the	MBR	is	a	rectangle	degenerated	into	the	point.

It	is	also	possible	to	create	normal	indexes	on	spatial	columns.	Beginning	with
MySQL	5.0.16,	you	must	declare	a	prefix	for	any	(non-spatial)	index	on	a	spatial
column	except	for	POINT	columns.

16.6.1.	Creating	Spatial	Indexes

MySQL	can	create	spatial	indexes	using	syntax	similar	to	that	for	creating
regular	indexes,	but	extended	with	the	SPATIAL	keyword.	Currently,	spatial
columns	that	are	indexed	must	be	declared	NOT	NULL.	The	following	examples
demonstrate	how	to	create	spatial	indexes:

With	CREATE	TABLE:

CREATE	TABLE	geom	(g	GEOMETRY	NOT	NULL,	SPATIAL	INDEX(g));

With	ALTER	TABLE:

ALTER	TABLE	geom	ADD	SPATIAL	INDEX(g);

With	CREATE	INDEX:

CREATE	SPATIAL	INDEX	sp_index	ON	geom	(g);

For	MyISAM	tables,	SPATIAL	INDEX	creates	an	R-tree	index.	For	other	storage
engines	that	support	spatial	indexing,	SPATIAL	INDEX	creates	a	B-tree	index.	A
B-tree	index	on	spatial	values	will	be	useful	for	exact-value	lookups,	but	not	for
range	scans.

To	drop	spatial	indexes,	use	ALTER	TABLE	or	DROP	INDEX:

With	ALTER	TABLE:

ALTER	TABLE	geom	DROP	INDEX	g;

With	DROP	INDEX:

DROP	INDEX	sp_index	ON	geom;

Example:	Suppose	that	a	table	geom	contains	more	than	32,000	geometries,
which	are	stored	in	the	column	g	of	type	GEOMETRY.	The	table	also	has	an
AUTO_INCREMENT	column	fid	for	storing	object	ID	values.

mysql>	DESCRIBE	geom;

+-------+----------+------+-----+---------+----------------+

|	Field	|	Type					|	Null	|	Key	|	Default	|	Extra										|

+-------+----------+------+-----+---------+----------------+

|	fid			|	int(11)		|						|	PRI	|	NULL				|	auto_increment	|

|	g					|	geometry	|						|					|									|																|

+-------+----------+------+-----+---------+----------------+

2	rows	in	set	(0.00	sec)

mysql>	SELECT	COUNT(*)	FROM	geom;

+----------+

|	count(*)	|

+----------+

|				32376	|

+----------+

1	row	in	set	(0.00	sec)

To	add	a	spatial	index	on	the	column	g,	use	this	statement:

mysql>	ALTER	TABLE	geom	ADD	SPATIAL	INDEX(g);

Query	OK,	32376	rows	affected	(4.05	sec)

Records:	32376		Duplicates:	0		Warnings:	0

16.6.2.	Using	a	Spatial	Index

The	optimizer	investigates	whether	available	spatial	indexes	can	be	involved	in
the	search	for	queries	that	use	a	function	such	as	MBRContains()	or	MBRWithin()
in	the	WHERE	clause.	The	following	query	finds	all	objects	that	are	in	the	given
rectangle:

mysql>	SET	@poly	=

				->	'Polygon((30000	15000,31000	15000,31000	16000,30000	16000,30000	15000))';

mysql>	SELECT	fid,AsText(g)	FROM	geom	WHERE

				->	MBRContains(GeomFromText(@poly),g);

+-----+---+

|	fid	|	AsText(g)																																																					|

+-----+---+

|		21	|	LINESTRING(30350.4	15828.8,30350.6	15845,30333.8	15845,30	...	|

|		22	|	LINESTRING(30350.6	15871.4,30350.6	15887.8,30334	15887.8,	...	|

|		23	|	LINESTRING(30350.6	15914.2,30350.6	15930.4,30334	15930.4,	...	|

|		24	|	LINESTRING(30290.2	15823,30290.2	15839.4,30273.4	15839.4,	...	|

|		25	|	LINESTRING(30291.4	15866.2,30291.6	15882.4,30274.8	15882.	...	|

|		26	|	LINESTRING(30291.6	15918.2,30291.6	15934.4,30275	15934.4,	...	|

|	249	|	LINESTRING(30337.8	15938.6,30337.8	15946.8,30320.4	15946.	...	|

|			1	|	LINESTRING(30250.4	15129.2,30248.8	15138.4,30238.2	15136.	...	|

|			2	|	LINESTRING(30220.2	15122.8,30217.2	15137.8,30207.6	15136,	...	|

|			3	|	LINESTRING(30179	15114.4,30176.6	15129.4,30167	15128,3016	...	|

|			4	|	LINESTRING(30155.2	15121.4,30140.4	15118.6,30142	15109,30	...	|

|			5	|	LINESTRING(30192.4	15085,30177.6	15082.2,30179.2	15072.4,	...	|

|			6	|	LINESTRING(30244	15087,30229	15086.2,30229.4	15076.4,3024	...	|

|			7	|	LINESTRING(30200.6	15059.4,30185.6	15058.6,30186	15048.8,	...	|

|		10	|	LINESTRING(30179.6	15017.8,30181	15002.8,30190.8	15003.6,	...	|

|		11	|	LINESTRING(30154.2	15000.4,30168.6	15004.8,30166	15014.2,	...	|

|		13	|	LINESTRING(30105	15065.8,30108.4	15050.8,30118	15053,3011	...	|

|	154	|	LINESTRING(30276.2	15143.8,30261.4	15141,30263	15131.4,30	...	|

|	155	|	LINESTRING(30269.8	15084,30269.4	15093.4,30258.6	15093,30	...	|

|	157	|	LINESTRING(30128.2	15011,30113.2	15010.2,30113.6	15000.4,	...	|

+-----+---+

20	rows	in	set	(0.00	sec)

Use	EXPLAIN	to	check	the	way	this	query	is	executed:

mysql>	SET	@poly	=

				->	'Polygon((30000	15000,31000	15000,31000	16000,30000	16000,30000	15000))';

mysql>	EXPLAIN	SELECT	fid,AsText(g)	FROM	geom	WHERE

				->	MBRContains(GeomFromText(@poly),g)\G

***************************	1.	row	***************************

											id:	1

		select_type:	SIMPLE

								table:	geom

									type:	range

possible_keys:	g

										key:	g

						key_len:	32

										ref:	NULL

									rows:	50

								Extra:	Using	where

1	row	in	set	(0.00	sec)

Check	what	would	happen	without	a	spatial	index:

mysql>	SET	@poly	=

				->	'Polygon((30000	15000,31000	15000,31000	16000,30000	16000,30000	15000))';

mysql>	EXPLAIN	SELECT	fid,AsText(g)	FROM	g	IGNORE	INDEX	(g)	WHERE

				->	MBRContains(GeomFromText(@poly),g)\G

***************************	1.	row	***************************

											id:	1

		select_type:	SIMPLE

								table:	geom

									type:	ALL

possible_keys:	NULL

										key:	NULL

						key_len:	NULL

										ref:	NULL

									rows:	32376

								Extra:	Using	where

1	row	in	set	(0.00	sec)

Executing	the	SELECT	statement	without	the	spatial	index	yields	the	same	result
but	causes	the	execution	time	to	rise	from	0.00	seconds	to	0.46	seconds:

mysql>	SET	@poly	=

				->	'Polygon((30000	15000,31000	15000,31000	16000,30000	16000,30000	15000))';

mysql>	SELECT	fid,AsText(g)	FROM	geom	IGNORE	INDEX	(g)	WHERE

				->	MBRContains(GeomFromText(@poly),g);

+-----+---+

|	fid	|	AsText(g)																																																					|

+-----+---+

|			1	|	LINESTRING(30250.4	15129.2,30248.8	15138.4,30238.2	15136.	...	|

|			2	|	LINESTRING(30220.2	15122.8,30217.2	15137.8,30207.6	15136,	...	|

|			3	|	LINESTRING(30179	15114.4,30176.6	15129.4,30167	15128,3016	...	|

|			4	|	LINESTRING(30155.2	15121.4,30140.4	15118.6,30142	15109,30	...	|

|			5	|	LINESTRING(30192.4	15085,30177.6	15082.2,30179.2	15072.4,	...	|

|			6	|	LINESTRING(30244	15087,30229	15086.2,30229.4	15076.4,3024	...	|

|			7	|	LINESTRING(30200.6	15059.4,30185.6	15058.6,30186	15048.8,	...	|

|		10	|	LINESTRING(30179.6	15017.8,30181	15002.8,30190.8	15003.6,	...	|

|		11	|	LINESTRING(30154.2	15000.4,30168.6	15004.8,30166	15014.2,	...	|

|		13	|	LINESTRING(30105	15065.8,30108.4	15050.8,30118	15053,3011	...	|

|		21	|	LINESTRING(30350.4	15828.8,30350.6	15845,30333.8	15845,30	...	|

|		22	|	LINESTRING(30350.6	15871.4,30350.6	15887.8,30334	15887.8,	...	|

|		23	|	LINESTRING(30350.6	15914.2,30350.6	15930.4,30334	15930.4,	...	|

|		24	|	LINESTRING(30290.2	15823,30290.2	15839.4,30273.4	15839.4,	...	|

|		25	|	LINESTRING(30291.4	15866.2,30291.6	15882.4,30274.8	15882.	...	|

|		26	|	LINESTRING(30291.6	15918.2,30291.6	15934.4,30275	15934.4,	...	|

|	154	|	LINESTRING(30276.2	15143.8,30261.4	15141,30263	15131.4,30	...	|

|	155	|	LINESTRING(30269.8	15084,30269.4	15093.4,30258.6	15093,30	...	|

|	157	|	LINESTRING(30128.2	15011,30113.2	15010.2,30113.6	15000.4,	...	|

|	249	|	LINESTRING(30337.8	15938.6,30337.8	15946.8,30320.4	15946.	...	|

+-----+---+

20	rows	in	set	(0.46	sec)

In	future	releases,	spatial	indexes	may	also	be	used	for	optimizing	other
functions.	See	Section	16.5.4,	“Functions	for	Testing	Spatial	Relations	Between
Geometric	Objects”.

16.7.	MySQL	Conformance	and	Compatibility

MySQL	does	not	yet	implement	the	following	GIS	features:

Additional	Metadata	Views

OpenGIS	specifications	propose	several	additional	metadata	views.	For
example,	a	system	view	named	GEOMETRY_COLUMNS	contains	a	description	of
geometry	columns,	one	row	for	each	geometry	column	in	the	database.

The	OpenGIS	function	Length()	on	LineString	and	MultiLineString
currently	should	be	called	in	MySQL	as	GLength()

The	problem	is	that	there	is	an	existing	SQL	function	Length()	that
calculates	the	length	of	string	values,	and	sometimes	it	is	not	possible	to
distinguish	whether	the	function	is	called	in	a	textual	or	spatial	context.	We
need	either	to	solve	this	somehow,	or	decide	on	another	function	name.

Chapter	17.	Stored	Procedures	and	Functions

Table	of	Contents

17.1.	Stored	Routines	and	the	Grant	Tables
17.2.	Stored	Routine	Syntax

17.2.1.	CREATE	PROCEDURE	and	CREATE	FUNCTION	Syntax
17.2.2.	ALTER	PROCEDURE	and	ALTER	FUNCTION	Syntax
17.2.3.	DROP	PROCEDURE	and	DROP	FUNCTION	Syntax
17.2.4.	CALL	Statement	Syntax
17.2.5.	BEGIN	...	END	Compound	Statement	Syntax
17.2.6.	DECLARE	Statement	Syntax
17.2.7.	Variables	in	Stored	Routines
17.2.8.	Conditions	and	Handlers
17.2.9.	Cursors
17.2.10.	Flow	Control	Constructs

17.3.	Stored	Procedures,	Functions,	Triggers,	and	Replication:	Frequently	Asked
Questions
17.4.	Binary	Logging	of	Stored	Routines	and	Triggers

Stored	routines	(procedures	and	functions)	are	supported	in	MySQL	5.0.	A
stored	procedure	is	a	set	of	SQL	statements	that	can	be	stored	in	the	server.	Once
this	has	been	done,	clients	don't	need	to	keep	reissuing	the	individual	statements
but	can	refer	to	the	stored	procedure	instead.

Some	situations	where	stored	routines	can	be	particularly	useful:

When	multiple	client	applications	are	written	in	different	languages	or	work
on	different	platforms,	but	need	to	perform	the	same	database	operations.

When	security	is	paramount.	Banks,	for	example,	use	stored	procedures	and
functions	for	all	common	operations.	This	provides	a	consistent	and	secure
environment,	and	routines	can	ensure	that	each	operation	is	properly
logged.	In	such	a	setup,	applications	and	users	would	have	no	access	to	the
database	tables	directly,	but	can	only	execute	specific	stored	routines.

Stored	routines	can	provide	improved	performance	because	less	information
needs	to	be	sent	between	the	server	and	the	client.	The	tradeoff	is	that	this	does

increase	the	load	on	the	database	server	because	more	of	the	work	is	done	on	the
server	side	and	less	is	done	on	the	client	(application)	side.	Consider	this	if	many
client	machines	(such	as	Web	servers)	are	serviced	by	only	one	or	a	few	database
servers.

Stored	routines	also	allow	you	to	have	libraries	of	functions	in	the	database
server.	This	is	a	feature	shared	by	modern	application	languages	that	allow	such
design	internally	(for	example,	by	using	classes).	Using	these	client	application
language	features	is	beneficial	for	the	programmer	even	outside	the	scope	of
database	use.

MySQL	follows	the	SQL:2003	syntax	for	stored	routines,	which	is	also	used	by
IBM's	DB2.

The	MySQL	implementation	of	stored	routines	is	still	in	progress.	All	syntax
described	in	this	chapter	is	supported	and	any	limitations	and	extensions	are
documented	where	appropriate.	Further	discussion	of	restrictions	on	use	of
stored	routines	is	given	in	Section	I.1,	“Restrictions	on	Stored	Routines	and
Triggers”.

Binary	logging	for	stored	routines	takes	place	as	described	in	Section	17.4,
“Binary	Logging	of	Stored	Routines	and	Triggers”.

Recursive	stored	procedures	are	disabled	by	default,	but	can	be	enabled	on	the
server	by	setting	the	max_sp_recursion_depth	server	system	variable	to	a
nonzero	value.	See	Section	5.2.2,	“Server	System	Variables”,	for	more
information.

Stored	functions	cannot	be	recursive.	See	Section	I.1,	“Restrictions	on	Stored
Routines	and	Triggers”.

17.1.	Stored	Routines	and	the	Grant	Tables

Stored	routines	require	the	proc	table	in	the	mysql	database.	This	table	is	created
during	the	MySQL	5.0	installation	procedure.	If	you	are	upgrading	to	MySQL
5.0	from	an	earlier	version,	be	sure	to	update	your	grant	tables	to	make	sure	that
the	proc	table	exists.	See	Section	5.6.2,	“mysql_upgrade	—	Check	Tables	for
MySQL	Upgrade”.

The	server	manipulates	the	mysql.proc	table	in	response	to	statements	that
create,	alter,	or	drop	stored	routines.	It	is	not	supported	that	the	server	will	notice
manual	manipulation	of	this	table.

Beginning	with	MySQL	5.0.3,	the	grant	system	takes	stored	routines	into
account	as	follows:

The	CREATE	ROUTINE	privilege	is	needed	to	create	stored	routines.

The	ALTER	ROUTINE	privilege	is	needed	to	alter	or	drop	stored	routines.	This
privilege	is	granted	automatically	to	the	creator	of	a	routine.

The	EXECUTE	privilege	is	required	to	execute	stored	routines.	However,	this
privilege	is	granted	automatically	to	the	creator	of	a	routine.	Also,	the
default	SQL	SECURITY	characteristic	for	a	routine	is	DEFINER,	which	enables
users	who	have	access	to	the	database	with	which	the	routine	is	associated
to	execute	the	routine.

17.2.	Stored	Routine	Syntax

A	stored	routine	is	either	a	procedure	or	a	function.	Stored	routines	are	created
with	CREATE	PROCEDURE	and	CREATE	FUNCTION	statements.	A	procedure	is
invoked	using	a	CALL	statement,	and	can	only	pass	back	values	using	output
variables.	A	function	can	be	called	from	inside	a	statement	just	like	any	other
function	(that	is,	by	invoking	the	function's	name),	and	can	return	a	scalar	value.
Stored	routines	may	call	other	stored	routines.

As	of	MySQL	5.0.1,	a	stored	procedure	or	function	is	associated	with	a
particular	database.	This	has	several	implications:

When	the	routine	is	invoked,	an	implicit	USE	db_name	is	performed	(and
undone	when	the	routine	terminates).	USE	statements	within	stored	routines
are	disallowed.

You	can	qualify	routine	names	with	the	database	name.	This	can	be	used	to
refer	to	a	routine	that	is	not	in	the	current	database.	For	example,	to	invoke
a	stored	procedure	p	or	function	f	that	is	associated	with	the	test	database,
you	can	say	CALL	test.p()	or	test.f().

When	a	database	is	dropped,	all	stored	routines	associated	with	it	are
dropped	as	well.

(In	MySQL	5.0.0,	stored	routines	are	global	and	not	associated	with	a	database.
They	inherit	the	default	database	from	the	caller.	If	a	USE	db_name	is	executed
within	the	routine,	the	original	default	database	is	restored	upon	routine	exit.)

MySQL	supports	the	very	useful	extension	that	allows	the	use	of	regular	SELECT
statements	(that	is,	without	using	cursors	or	local	variables)	inside	a	stored
procedure.	The	result	set	of	such	a	query	is	simply	sent	directly	to	the	client.
Multiple	SELECT	statements	generate	multiple	result	sets,	so	the	client	must	use	a
MySQL	client	library	that	supports	multiple	result	sets.	This	means	the	client
must	use	a	client	library	from	a	version	of	MySQL	at	least	as	recent	as	4.1.	The
client	should	also	specify	the	CLIENT_MULTI_STATEMENTS	option	when	it
connects.	For	C	programs,	this	can	be	done	with	the	mysql_real_connect()	C
API	function	(see	Section	22.2.3.51,	“mysql_real_connect()”).

The	following	sections	describe	the	syntax	used	to	create,	alter,	drop,	and	invoke
stored	procedures	and	functions.

17.2.1.	CREATE	PROCEDURE	and	CREATE	FUNCTION	Syntax

CREATE

				[DEFINER	=	{	user	|	CURRENT_USER	}]

				PROCEDURE	sp_name	([proc_parameter[,...]])

				[characteristic	...]	routine_body

CREATE

				[DEFINER	=	{	user	|	CURRENT_USER	}]

				FUNCTION	sp_name	([func_parameter[,...]])

				RETURNS	type

				[characteristic	...]	routine_body

				

proc_parameter:

				[IN	|	OUT	|	INOUT]	param_name	type

				

func_parameter:

				param_name	type

type:

				Any	valid	MySQL	data	type

characteristic:

				LANGUAGE	SQL

		|	[NOT]	DETERMINISTIC

		|	{	CONTAINS	SQL	|	NO	SQL	|	READS	SQL	DATA	|	MODIFIES	SQL	DATA	}

		|	SQL	SECURITY	{	DEFINER	|	INVOKER	}

		|	COMMENT	'string'

routine_body:

				Valid	SQL	procedure	statement

These	statements	create	stored	routines.	As	of	MySQL	5.0.3,	to	use	them,	it	is
necessary	to	have	the	CREATE	ROUTINE	privilege.	If	binary	logging	is	enabled,
these	statements	might	may	also	require	the	SUPER	privilege,	as	described	in
Section	17.4,	“Binary	Logging	of	Stored	Routines	and	Triggers”.	MySQL
automatically	grants	the	ALTER	ROUTINE	and	EXECUTE	privileges	to	the	routine
creator.

By	default,	the	routine	is	associated	with	the	default	database.	To	associate	the
routine	explicitly	with	a	given	database,	specify	the	name	as	db_name.sp_name
when	you	create	it.

If	the	routine	name	is	the	same	as	the	name	of	a	built-in	SQL	function,	you	must
use	a	space	between	the	name	and	the	following	parenthesis	when	defining	the
routine,	or	a	syntax	error	occurs.	This	is	also	true	when	you	invoke	the	routine
later.	For	this	reason,	we	suggest	that	it	is	better	to	avoid	re-using	the	names	of
existing	SQL	functions	for	your	own	stored	routines.

The	IGNORE_SPACE	SQL	mode	applies	to	built-in	functions,	not	to	stored
routines.	it	is	always	allowable	to	have	spaces	after	a	routine	name,	regardless	of
whether	IGNORE_SPACE	is	enabled.

The	parameter	list	enclosed	within	parentheses	must	always	be	present.	If	there
are	no	parameters,	an	empty	parameter	list	of	()	should	be	used.

Each	parameter	can	be	declared	to	use	any	valid	data	type,	except	that	the
COLLATE	attribute	cannot	be	used.

Each	parameter	is	an	IN	parameter	by	default.	To	specify	otherwise	for	a
parameter,	use	the	keyword	OUT	or	INOUT	before	the	parameter	name.

Note:	Specifying	a	parameter	as	IN,	OUT,	or	INOUT	is	valid	only	for	a	PROCEDURE.
(FUNCTION	parameters	are	always	regarded	as	IN	parameters.)

An	IN	parameter	passes	a	value	into	a	procedure.	The	procedure	might	modify
the	value,	but	the	modification	is	not	visible	to	the	caller	when	the	procedure
returns.	An	OUT	parameter	passes	a	value	from	the	procedure	back	to	the	caller.
Its	initial	value	is	NULL	within	the	procedure,	and	its	value	is	visible	to	the	caller
when	the	procedure	returns.	An	INOUT	parameter	is	initialized	by	the	caller,	can
be	modified	by	the	procedure,	and	any	change	made	by	the	procedure	is	visible
to	the	caller	when	the	procedure	returns.

For	each	OUT	or	INOUT	parameter,	pass	a	user-defined	variable	so	that	you	can
obtain	its	value	when	the	procedure	returns.	(For	an	example,	see	Section	17.2.4,
“CALL	Statement	Syntax”.)	If	you	are	calling	the	procedure	from	within	another
stored	procedure	or	function,	you	can	also	pass	a	routine	parameter	or	local
routine	variable	as	an	IN	or	INOUT	parameter.

The	RETURNS	clause	may	be	specified	only	for	a	FUNCTION,	for	which	it	is
mandatory.	It	indicates	the	return	type	of	the	function,	and	the	function	body
must	contain	a	RETURN	value	statement.

The	routine_body	consists	of	a	valid	SQL	procedure	statement.	This	can	be	a
simple	statement	such	as	SELECT	or	INSERT,	or	it	can	be	a	compound	statement
written	using	BEGIN	and	END.	Compound	statement	syntax	is	described	in
Section	17.2.5,	“BEGIN	...	END	Compound	Statement	Syntax”.	Compound
statements	can	contain	declarations,	loops,	and	other	control	structure
statements.	The	syntax	for	these	statements	is	described	later	in	this	chapter.	See,
for	example,	Section	17.2.6,	“DECLARE	Statement	Syntax”,	and	Section	17.2.10,
“Flow	Control	Constructs”.	Some	statements	are	not	allowed	in	stored	routines;
see	Section	I.1,	“Restrictions	on	Stored	Routines	and	Triggers”.

The	CREATE	FUNCTION	statement	was	used	in	earlier	versions	of	MySQL	to
support	UDFs	(user-defined	functions).	See	Section	24.2,	“Adding	New
Functions	to	MySQL”.	UDFs	continue	to	be	supported,	even	with	the	existence
of	stored	functions.	A	UDF	can	be	regarded	as	an	external	stored	function.
However,	do	note	that	stored	functions	share	their	namespace	with	UDFs.

A	procedure	or	function	is	considered	“deterministic”	if	it	always	produces	the
same	result	for	the	same	input	parameters,	and	“not	deterministic”	otherwise.	If
neither	DETERMINISTIC	nor	NOT	DETERMINISTIC	is	given	in	the	routine
definition,	the	default	is	NOT	DETERMINISTIC.

A	routine	that	contains	the	NOW()	function	(or	its	synonyms)	or	RAND()	is	non-
deterministic,	but	it	might	still	be	replication-safe.	For	NOW(),	the	binary	log
includes	the	timestamp	and	replicates	correctly.	RAND()	also	replicates	correctly
as	long	as	it	is	invoked	only	once	within	a	routine.	(You	can	consider	the	routine
execution	timestamp	and	random	number	seed	as	implicit	inputs	that	are
identical	on	the	master	and	slave.)

Currently,	the	DETERMINISTIC	characteristic	is	accepted,	but	not	yet	used	by	the
optimizer.	However,	if	binary	logging	is	enabled,	this	characteristic	affects
which	routine	definitions	MySQL	accepts.	See	Section	17.4,	“Binary	Logging	of
Stored	Routines	and	Triggers”.

Several	characteristics	provide	information	about	the	nature	of	data	use	by	the
routine.	CONTAINS	SQL	indicates	that	the	routine	does	not	contain	statements	that
read	or	write	data.	NO	SQL	indicates	that	the	routine	contains	no	SQL	statements.
READS	SQL	DATA	indicates	that	the	routine	contains	statements	that	read	data,	but
not	statements	that	write	data.	MODIFIES	SQL	DATA	indicates	that	the	routine
contains	statements	that	may	write	data.	CONTAINS	SQL	is	the	default	if	none	of

these	characteristics	is	given	explicitly.	These	characteristics	are	advisory	only.
The	server	does	not	use	them	to	constrain	what	kinds	of	statements	a	routine	will
be	allowed	to	execute.

The	SQL	SECURITY	characteristic	can	be	used	to	specify	whether	the	routine
should	be	executed	using	the	permissions	of	the	user	who	creates	the	routine	or
the	user	who	invokes	it.	The	default	value	is	DEFINER.	This	feature	is	new	in
SQL:2003.	The	creator	or	invoker	must	have	permission	to	access	the	database
with	which	the	routine	is	associated.	As	of	MySQL	5.0.3,	it	is	necessary	to	have
the	EXECUTE	privilege	to	be	able	to	execute	the	routine.	The	user	that	must	have
this	privilege	is	either	the	definer	or	invoker,	depending	on	how	the	SQL
SECURITY	characteristic	is	set.

The	optional	DEFINER	clause	specifies	the	MySQL	account	to	be	used	when
checking	access	privileges	at	routine	execution	time	for	routines	that	have	the
SQL	SECURITY	DEFINER	characteristic.	The	DEFINER	clause	was	added	in
MySQL	5.0.20.

If	a	user	value	is	given,	it	should	be	a	MySQL	account	in
'user_name'@'host_name'	format	(the	same	format	used	in	the	GRANT	statement).
The	user_name	and	host_name	values	both	are	required.	CURRENT_USER	also	can
be	given	as	CURRENT_USER().	The	default	DEFINER	value	is	the	user	who
executes	the	CREATE	PROCEDURE	or	CREATE	FUNCTION	or	statement.	(This	is	the
same	as	DEFINER	=	CURRENT_USER.)

If	you	specify	the	DEFINER	clause,	you	cannot	set	the	value	to	any	account	but
your	own	unless	you	have	the	SUPER	privilege.	These	rules	determine	the	legal
DEFINER	user	values:

If	you	do	not	have	the	SUPER	privilege,	the	only	legal	user	value	is	your
own	account,	either	specified	literally	or	by	using	CURRENT_USER.	You
cannot	set	the	definer	to	some	other	account.

If	you	have	the	SUPER	privilege,	you	can	specify	any	syntactically	legal
account	name.	If	the	account	does	not	actually	exist,	a	warning	is	generated.

Although	it	is	possible	to	create	routines	with	a	non-existent	DEFINER	value,
an	error	occurs	if	the	routine	executes	with	definer	privileges	but	the	definer
does	not	exist	at	execution	time.

MySQL	stores	the	sql_mode	system	variable	setting	that	is	in	effect	at	the	time	a
routine	is	created,	and	always	executes	the	routine	with	this	setting	in	force.

When	the	routine	is	invoked,	an	implicit	USE	db_name	is	performed	(and	undone
when	the	routine	terminates).	USE	statements	within	stored	routines	are
disallowed.

As	of	MySQL	5.0.18,	the	server	uses	the	data	type	of	a	routine	parameter	or
function	return	value	as	follows.	These	rules	also	apply	to	local	routine	variables
created	with	the	DECLARE	statement	(Section	17.2.7.1,	“DECLARE	Local
Variables”).

Assignments	are	checked	for	data	type	mismatches	and	overflow.
Conversion	and	overflow	problems	result	in	warnings,	or	errors	in	strict
mode.

For	character	data	types,	if	there	is	a	CHARACTER	SET	clause	in	the
declaration,	the	specified	character	set	and	its	default	collation	are	used.	If
there	is	no	such	clause,	the	database	character	set	and	collation	are	used.
(These	are	given	by	the	values	of	the	character_set_database	and
collation_database	system	variables.)

Only	scalar	values	can	be	assigned	to	parameters	or	variables.	For	example,
a	statement	such	as	SET	x	=	(SELECT	1,	2)	is	invalid.

Before	MySQL	5.0.18,	parameters,	return	values,	and	local	variables	are	treated
as	items	in	expressions,	and	are	subject	to	automatic	(silent)	conversion	and
truncation.	Stored	functions	ignore	the	sql_mode	setting.

The	COMMENT	clause	is	a	MySQL	extension,	and	may	be	used	to	describe	the
stored	routine.	This	information	is	displayed	by	the	SHOW	CREATE	PROCEDURE
and	SHOW	CREATE	FUNCTION	statements.

MySQL	allows	routines	to	contain	DDL	statements,	such	as	CREATE	and	DROP.
MySQL	also	allows	stored	procedures	(but	not	stored	functions)	to	contain	SQL
transaction	statements	such	as	COMMIT.	Stored	functions	may	not	contain
statements	that	do	explicit	or	implicit	commit	or	rollback.	Support	for	these
statements	is	not	required	by	the	SQL	standard,	which	states	that	each	DBMS
vendor	may	decide	whether	to	allow	them.

Stored	routines	cannot	use	LOAD	DATA	INFILE.

Statements	that	return	a	result	set	cannot	be	used	within	a	stored	function.	This
includes	SELECT	statements	that	do	not	use	INTO	to	fetch	column	values	into
variables,	SHOW	statements,	and	other	statements	such	as	EXPLAIN.	For	statements
that	can	be	determined	at	function	definition	time	to	return	a	result	set,	a	Not
allowed	to	return	a	result	set	from	a	function	error	occurs
(ER_SP_NO_RETSET_IN_FUNC).	For	statements	that	can	be	determined	only	at
runtime	to	return	a	result	set,	a	PROCEDURE	%s	can't	return	a	result	set	in
the	given	context	error	occurs	(ER_SP_BADSELECT).

Note:	Before	MySQL	5.0.10,	stored	functions	created	with	CREATE	FUNCTION
must	not	contain	references	to	tables,	with	limited	exceptions.	They	may	include
some	SET	statements	that	contain	table	references,	for	example	SET	a:=
(SELECT	MAX(id)	FROM	t),	and	SELECT	statements	that	fetch	values	directly	into
variables,	for	example	SELECT	i	INTO	var1	FROM	t.

The	following	is	an	example	of	a	simple	stored	procedure	that	uses	an	OUT
parameter.	The	example	uses	the	mysql	client	delimiter	command	to	change
the	statement	delimiter	from	;	to	//	while	the	procedure	is	being	defined.	This
allows	the	;	delimiter	used	in	the	procedure	body	to	be	passed	through	to	the
server	rather	than	being	interpreted	by	mysql	itself.

mysql>	delimiter	//

mysql>	CREATE	PROCEDURE	simpleproc	(OUT	param1	INT)

				->	BEGIN

				->			SELECT	COUNT(*)	INTO	param1	FROM	t;

				->	END;

				->	//

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	delimiter	;

mysql>	CALL	simpleproc(@a);

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	SELECT	@a;

+------+

|	@a			|

+------+

|	3				|

+------+

1	row	in	set	(0.00	sec)

When	using	the	delimiter	command,	you	should	avoid	the	use	of	the	backslash
(‘\’)	character	because	that	is	the	escape	character	for	MySQL.

The	following	is	an	example	of	a	function	that	takes	a	parameter,	performs	an
operation	using	an	SQL	function,	and	returns	the	result.	In	this	case,	it	is
unnecessary	to	use	delimiter	because	the	function	definition	contains	no
internal	;	statement	delimiters:

mysql>	CREATE	FUNCTION	hello	(s	CHAR(20))	RETURNS	CHAR(50)

				->	RETURN	CONCAT('Hello,	',s,'!');

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	SELECT	hello('world');

+----------------+

|	hello('world')	|

+----------------+

|	Hello,	world!		|

+----------------+

1	row	in	set	(0.00	sec)

A	stored	function	returns	a	value	of	the	data	type	specified	in	its	RETURNS	clause.
If	the	RETURN	statement	returns	a	value	of	a	different	type,	the	value	is	coerced	to
the	proper	type.	For	example,	if	a	function	returns	an	ENUM	or	SET	value,	but	the
RETURN	statement	returns	an	integer,	the	value	returned	from	the	function	is	the
string	for	the	corresponding	ENUM	member	of	set	of	SET	members.

17.2.2.	ALTER	PROCEDURE	and	ALTER	FUNCTION	Syntax

ALTER	{PROCEDURE	|	FUNCTION}	sp_name	[characteristic	...]

characteristic:

				{	CONTAINS	SQL	|	NO	SQL	|	READS	SQL	DATA	|	MODIFIES	SQL	DATA	}

		|	SQL	SECURITY	{	DEFINER	|	INVOKER	}

		|	COMMENT	'string'

This	statement	can	be	used	to	change	the	characteristics	of	a	stored	procedure	or
function.	As	of	MySQL	5.0.3,	you	must	have	the	ALTER	ROUTINE	privilege	for
the	routine.	(That	privilege	is	granted	automatically	to	the	routine	creator.)	If
binary	logging	is	enabled,	this	statement	might	also	require	the	SUPER	privilege,
as	described	in	Section	17.4,	“Binary	Logging	of	Stored	Routines	and	Triggers”.

More	than	one	change	may	be	specified	in	an	ALTER	PROCEDURE	or	ALTER
FUNCTION	statement.

17.2.3.	DROP	PROCEDURE	and	DROP	FUNCTION	Syntax

DROP	{PROCEDURE	|	FUNCTION}	[IF	EXISTS]	sp_name

This	statement	is	used	to	drop	a	stored	procedure	or	function.	That	is,	the
specified	routine	is	removed	from	the	server.	As	of	MySQL	5.0.3,	you	must	have
the	ALTER	ROUTINE	privilege	for	the	routine.	(That	privilege	is	granted
automatically	to	the	routine	creator.)

The	IF	EXISTS	clause	is	a	MySQL	extension.	It	prevents	an	error	from	occurring
if	the	procedure	or	function	does	not	exist.	A	warning	is	produced	that	can	be
viewed	with	SHOW	WARNINGS.

17.2.4.	CALL	Statement	Syntax

CALL	sp_name([parameter[,...]])

The	CALL	statement	invokes	a	procedure	that	was	defined	previously	with
CREATE	PROCEDURE.

CALL	can	pass	back	values	to	its	caller	using	parameters	that	are	declared	as	OUT
or	INOUT	parameters.	It	also	“returns”	the	number	of	rows	affected,	which	a
client	program	can	obtain	at	the	SQL	level	by	calling	the	ROW_COUNT()	function
and	from	C	by	calling	the	mysql_affected_rows()	C	API	function.

To	get	back	a	value	from	a	procedure	using	an	OUT	or	INOUT	parameter,	pass	the
parameter	by	means	of	a	user	variable,	and	then	check	the	value	of	the	variable
after	the	procedure	returns.	(If	you	are	calling	the	procedure	from	within	another
stored	procedure	or	function,	you	can	also	pass	a	routine	parameter	or	local
routine	variable	as	an	IN	or	INOUT	parameter.)	For	an	INOUT	parameter,	initialize
its	value	before	passing	it	to	the	procedure.	The	following	procedure	has	an	OUT
parameter	that	the	procedure	sets	to	the	current	server	version,	and	an	INOUT
value	that	the	procedure	increments	by	one	from	its	current	value:

CREATE	PROCEDURE	p	(OUT	ver_param	VARCHAR(25),	INOUT	incr_param	INT)

BEGIN

		#	Set	value	of	OUT	parameter

		SELECT	VERSION()	INTO	ver_param;

		#	Increment	value	of	INOUT	parameter

		SET	incr_param	=	incr_param	+	1;

END;

Before	calling	the	procedure,	initialize	the	variable	to	be	passed	as	the	INOUT
parameter.	After	calling	the	procedure,	the	values	of	the	two	variables	will	have
been	set	or	modified:

mysql>	SET	@increment	=	10;

mysql>	CALL	p(@version,	@increment);

mysql>	SELECT	@version,	@increment;

+------------+------------+

|	@version			|	@increment	|

+------------+------------+

|	5.0.25-log	|	11									|	

+------------+------------+

If	you	write	C	programs	that	execute	stored	procedures	with	the	CALL	SQL
statement,	you	must	set	the	CLIENT_MULTI_RESULTS	flag	when	you	call
mysql_real_connect(),	either	explicitly,	or	implicitly	by	setting
CLIENT_MULTI_STATEMENTS.	This	is	because	each	CALL	returns	a	result	to
indicate	the	call	status,	in	addition	to	any	results	sets	that	might	be	returned	by
statements	executed	within	the	procedure.	To	process	the	result	of	a	CALL
statement,	use	a	loop	that	calls	mysql_next_result()	to	determine	whether
there	are	more	results.	For	an	example,	see	Section	22.2.9,	“C	API	Handling	of
Multiple	Statement	Execution”.

17.2.5.	BEGIN	...	END	Compound	Statement	Syntax

[begin_label:]	BEGIN

				[statement_list]

END	[end_label]

BEGIN	...	END	syntax	is	used	for	writing	compound	statements,	which	can
appear	within	stored	routines	and	triggers.	A	compound	statement	can	contain
multiple	statements,	enclosed	by	the	BEGIN	and	END	keywords.	statement_list
represents	a	list	of	one	or	more	statements.	Each	statement	within
statement_list	must	be	terminated	by	a	semicolon	(;)	statement	delimiter.
Note	that	statement_list	is	optional,	which	means	that	the	empty	compound
statement	(BEGIN	END)	is	legal.

Use	of	multiple	statements	requires	that	a	client	is	able	to	send	statement	strings
containing	the	;	statement	delimiter.	This	is	handled	in	the	mysql	command-line
client	with	the	delimiter	command.	Changing	the	;	end-of-statement	delimiter
(for	example,	to	//)	allows	;	to	be	used	in	a	routine	body.	For	an	example,	see

Section	17.2.1,	“CREATE	PROCEDURE	and	CREATE	FUNCTION	Syntax”.

A	compound	statement	can	be	labeled.	end_label	cannot	be	given	unless
begin_label	also	is	present.	If	both	are	present,	they	must	be	the	same.

The	optional	[NOT]	ATOMIC	clause	is	not	yet	supported.	This	means	that	no
transactional	savepoint	is	set	at	the	start	of	the	instruction	block	and	the	BEGIN
clause	used	in	this	context	has	no	effect	on	the	current	transaction.

17.2.6.	DECLARE	Statement	Syntax

The	DECLARE	statement	is	used	to	define	various	items	local	to	a	routine:

Local	variables.	See	Section	17.2.7,	“Variables	in	Stored	Routines”.

Conditions	and	handlers.	See	Section	17.2.8,	“Conditions	and	Handlers”.

Cursors.	See	Section	17.2.9,	“Cursors”.

The	SIGNAL	and	RESIGNAL	statements	are	not	currently	supported.

DECLARE	is	allowed	only	inside	a	BEGIN	...	END	compound	statement	and	must
be	at	its	start,	before	any	other	statements.

Declarations	must	follow	a	certain	order.	Cursors	must	be	declared	before
declaring	handlers,	and	variables	and	conditions	must	be	declared	before
declaring	either	cursors	or	handlers.

17.2.7.	Variables	in	Stored	Routines

You	may	declare	and	use	variables	within	a	routine.

17.2.7.1.	DECLARE	Local	Variables

DECLARE	var_name[,...]	type	[DEFAULT	value]

This	statement	is	used	to	declare	local	variables.	To	provide	a	default	value	for
the	variable,	include	a	DEFAULT	clause.	The	value	can	be	specified	as	an
expression;	it	need	not	be	a	constant.	If	the	DEFAULT	clause	is	missing,	the	initial

value	is	NULL.

Local	variables	are	treated	like	routine	parameters	with	respect	to	data	type	and
overflow	checking.	See	Section	17.2.1,	“CREATE	PROCEDURE	and	CREATE
FUNCTION	Syntax”.

The	scope	of	a	local	variable	is	within	the	BEGIN	...	END	block	where	it	is
declared.	The	variable	can	be	referred	to	in	blocks	nested	within	the	declaring
block,	except	those	blocks	that	declare	a	variable	with	the	same	name.

17.2.7.2.	Variable	SET	Statement

SET	var_name	=	expr	[,	var_name	=	expr]	...

The	SET	statement	in	stored	routines	is	an	extended	version	of	the	general	SET
statement.	Referenced	variables	may	be	ones	declared	inside	a	routine,	or	global
system	variables.

The	SET	statement	in	stored	routines	is	implemented	as	part	of	the	pre-existing
SET	syntax.	This	allows	an	extended	syntax	of	SET	a=x,	b=y,	...	where
different	variable	types	(locally	declared	variables	and	global	and	session	server
variables)	can	be	mixed.	This	also	allows	combinations	of	local	variables	and
some	options	that	make	sense	only	for	system	variables;	in	that	case,	the	options
are	recognized	but	ignored.

17.2.7.3.	SELECT	...	INTO	Statement

SELECT	col_name[,...]	INTO	var_name[,...]	table_expr

This	SELECT	syntax	stores	selected	columns	directly	into	variables.	Therefore,
only	a	single	row	may	be	retrieved.

SELECT	id,data	INTO	x,y	FROM	test.t1	LIMIT	1;

User	variable	names	are	not	case	sensitive.	See	Section	9.3,	“User-Defined
Variables”.

Important:	SQL	variable	names	should	not	be	the	same	as	column	names.	If	an
SQL	statement,	such	as	a	SELECT	...	INTO	statement,	contains	a	reference	to	a
column	and	a	declared	local	variable	with	the	same	name,	MySQL	currently

interprets	the	reference	as	the	name	of	a	variable.	For	example,	in	the	following
statement,	xname	is	interpreted	as	a	reference	to	the	xname	variable	rather	than
the	xname	column:

CREATE	PROCEDURE	sp1	(x	VARCHAR(5))

		BEGIN

				DECLARE	xname	VARCHAR(5)	DEFAULT	'bob';

				DECLARE	newname	VARCHAR(5);

				DECLARE	xid	INT;

				

				SELECT	xname,id	INTO	newname,xid	

						FROM	table1	WHERE	xname	=	xname;

				SELECT	newname;

		END;

When	this	procedure	is	called,	the	newname	variable	returns	the	value	'bob'
regardless	of	the	value	of	the	table1.xname	column.

See	also	Section	I.1,	“Restrictions	on	Stored	Routines	and	Triggers”.

17.2.8.	Conditions	and	Handlers

Certain	conditions	may	require	specific	handling.	These	conditions	can	relate	to
errors,	as	well	as	to	general	flow	control	inside	a	routine.

17.2.8.1.	DECLARE	Conditions

DECLARE	condition_name	CONDITION	FOR	condition_value

condition_value:

				SQLSTATE	[VALUE]	sqlstate_value

		|	mysql_error_code

This	statement	specifies	conditions	that	need	specific	handling.	It	associates	a
name	with	a	specified	error	condition.	The	name	can	subsequently	be	used	in	a
DECLARE	HANDLER	statement.	See	Section	17.2.8.2,	“DECLARE	Handlers”.

A	condition_value	can	be	an	SQLSTATE	value	or	a	MySQL	error	code.

17.2.8.2.	DECLARE	Handlers

DECLARE	handler_type	HANDLER	FOR	condition_value[,...]	statement

handler_type:

				CONTINUE

		|	EXIT

		|	UNDO

condition_value:

				SQLSTATE	[VALUE]	sqlstate_value

		|	condition_name

		|	SQLWARNING

		|	NOT	FOUND

		|	SQLEXCEPTION

		|	mysql_error_code

The	DECLARE	...	HANDLER	statement	specifies	handlers	that	each	may	deal	with
one	or	more	conditions.	If	one	of	these	conditions	occurs,	the	specified
statement	is	executed.	statement	can	be	a	simple	statement	(for	example,	SET
var_name	=	value),	or	it	can	be	a	compound	statement	written	using	BEGIN	and
END	(see	Section	17.2.5,	“BEGIN	...	END	Compound	Statement	Syntax”).

For	a	CONTINUE	handler,	execution	of	the	current	routine	continues	after
execution	of	the	handler	statement.	For	an	EXIT	handler,	execution	terminates	for
the	BEGIN	...	END	compound	statement	in	which	the	handler	is	declared.	(This
is	true	even	if	the	condition	occurs	in	an	inner	block.)	The	UNDO	handler	type
statement	is	not	yet	supported.

If	a	condition	occurs	for	which	no	handler	has	been	declared,	the	default	action
is	EXIT.

A	condition_value	can	be	any	of	the	following	values:

An	SQLSTATE	value	or	a	MySQL	error	code.

A	condition	name	previously	specified	with	DECLARE	...	CONDITION.	See
Section	17.2.8.1,	“DECLARE	Conditions”.

SQLWARNING	is	shorthand	for	all	SQLSTATE	codes	that	begin	with	01.

NOT	FOUND	is	shorthand	for	all	SQLSTATE	codes	that	begin	with	02.

SQLEXCEPTION	is	shorthand	for	all	SQLSTATE	codes	not	caught	by
SQLWARNING	or	NOT	FOUND.

Example:

mysql>	CREATE	TABLE	test.t	(s1	int,primary	key	(s1));

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	delimiter	//

mysql>	CREATE	PROCEDURE	handlerdemo	()

				->	BEGIN

				->			DECLARE	CONTINUE	HANDLER	FOR	SQLSTATE	'23000'	SET	@x2	=	1;

				->			SET	@x	=	1;

				->			INSERT	INTO	test.t	VALUES	(1);

				->			SET	@x	=	2;

				->			INSERT	INTO	test.t	VALUES	(1);

				->			SET	@x	=	3;

				->	END;

				->	//

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	CALL	handlerdemo()//

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	SELECT	@x//

				+------+

				|	@x			|

				+------+

				|	3				|

				+------+

				1	row	in	set	(0.00	sec)

The	example	associates	a	handler	with	SQLSTATE	23000,	which	occurs	for	a
duplicate-key	error.	Notice	that	@x	is	3,	which	shows	that	MySQL	executed	to
the	end	of	the	procedure.	If	the	line	DECLARE	CONTINUE	HANDLER	FOR	SQLSTATE
'23000'	SET	@x2	=	1;	had	not	been	present,	MySQL	would	have	taken	the
default	path	(EXIT)	after	the	second	INSERT	failed	due	to	the	PRIMARY	KEY
constraint,	and	SELECT	@x	would	have	returned	2.

If	you	want	to	ignore	a	condition,	you	can	declare	a	CONTINUE	handler	for	it	and
associate	it	with	an	empty	block.	For	example:

DECLARE	CONTINUE	HANDLER	FOR	SQLWARNING	BEGIN	END;

17.2.9.	Cursors

Simple	cursors	are	supported	inside	stored	procedures	and	functions.	The	syntax

is	as	in	embedded	SQL.	Cursors	are	currently	asensitive,	read-only,	and	non-
scrolling.	Asensitive	means	that	the	server	may	or	may	not	make	a	copy	of	its
result	table.

Cursors	must	be	declared	before	declaring	handlers,	and	variables	and	conditions
must	be	declared	before	declaring	either	cursors	or	handlers.

Example:

CREATE	PROCEDURE	curdemo()

BEGIN

		DECLARE	done	INT	DEFAULT	0;

		DECLARE	a	CHAR(16);

		DECLARE	b,c	INT;

		DECLARE	cur1	CURSOR	FOR	SELECT	id,data	FROM	test.t1;

		DECLARE	cur2	CURSOR	FOR	SELECT	i	FROM	test.t2;

		DECLARE	CONTINUE	HANDLER	FOR	SQLSTATE	'02000'	SET	done	=	1;

		OPEN	cur1;

		OPEN	cur2;

		REPEAT

				FETCH	cur1	INTO	a,	b;

				FETCH	cur2	INTO	c;

				IF	NOT	done	THEN

							IF	b	<	c	THEN

										INSERT	INTO	test.t3	VALUES	(a,b);

							ELSE

										INSERT	INTO	test.t3	VALUES	(a,c);

							END	IF;

				END	IF;

		UNTIL	done	END	REPEAT;

		CLOSE	cur1;

		CLOSE	cur2;

END

17.2.9.1.	Declaring	Cursors

DECLARE	cursor_name	CURSOR	FOR	select_statement

This	statement	declares	a	cursor.	Multiple	cursors	may	be	declared	in	a	routine,
but	each	cursor	in	a	given	block	must	have	a	unique	name.

The	SELECT	statement	cannot	have	an	INTO	clause.

17.2.9.2.	Cursor	OPEN	Statement

OPEN	cursor_name

This	statement	opens	a	previously	declared	cursor.

17.2.9.3.	Cursor	FETCH	Statement

FETCH	cursor_name	INTO	var_name	[,	var_name]	...

This	statement	fetches	the	next	row	(if	a	row	exists)	using	the	specified	open
cursor,	and	advances	the	cursor	pointer.

17.2.9.4.	Cursor	CLOSE	Statement

CLOSE	cursor_name

This	statement	closes	a	previously	opened	cursor.

If	not	closed	explicitly,	a	cursor	is	closed	at	the	end	of	the	compound	statement
in	which	it	was	declared.

17.2.10.	Flow	Control	Constructs

The	IF,	CASE,	LOOP,	WHILE,	REPLACE	ITERATE,	and	LEAVE	constructs	are	fully
implemented.

Many	of	these	constructs	contain	other	statements,	as	indicated	by	the	grammar
specifications	in	the	following	sections.	Such	constructs	may	be	nested.	For
example,	an	IF	statement	might	contain	a	WHILE	loop,	which	itself	contains	a
CASE	statement.

FOR	loops	are	not	currently	supported.

17.2.10.1.	IF	Statement

IF	search_condition	THEN	statement_list

				[ELSEIF	search_condition	THEN	statement_list]	...

				[ELSE	statement_list]

END	IF

IF	implements	a	basic	conditional	construct.	If	the	search_condition	evaluates
to	true,	the	corresponding	SQL	statement	list	is	executed.	If	no
search_condition	matches,	the	statement	list	in	the	ELSE	clause	is	executed.
Each	statement_list	consists	of	one	or	more	statements.

Note:	There	is	also	an	IF()	function,	which	differs	from	the	IF	statement
described	here.	See	Section	12.2,	“Control	Flow	Functions”.

17.2.10.2.	CASE	Statement

CASE	case_value

				WHEN	when_value	THEN	statement_list

				[WHEN	when_value	THEN	statement_list]	...

				[ELSE	statement_list]

END	CASE

Or:

CASE

				WHEN	search_condition	THEN	statement_list

				[WHEN	search_condition	THEN	statement_list]	...

				[ELSE	statement_list]

END	CASE

The	CASE	statement	for	stored	routines	implements	a	complex	conditional
construct.	If	a	search_condition	evaluates	to	true,	the	corresponding	SQL
statement	list	is	executed.	If	no	search	condition	matches,	the	statement	list	in
the	ELSE	clause	is	executed.	Each	statement_list	consists	of	one	or	more
statements.

Note:	The	syntax	of	the	CASE	statement	shown	here	for	use	inside	stored	routines
differs	slightly	from	that	of	the	SQL	CASE	expression	described	in	Section	12.2,
“Control	Flow	Functions”.	The	CASE	statement	cannot	have	an	ELSE	NULL
clause,	and	it	is	terminated	with	END	CASE	instead	of	END.

17.2.10.3.	LOOP	Statement

[begin_label:]	LOOP

				statement_list

END	LOOP	[end_label]

LOOP	implements	a	simple	loop	construct,	enabling	repeated	execution	of	the

statement	list,	which	consists	of	one	or	more	statements.	The	statements	within
the	loop	are	repeated	until	the	loop	is	exited;	usually	this	is	accomplished	with	a
LEAVE	statement.

A	LOOP	statement	can	be	labeled.	end_label	cannot	be	given	unless
begin_label	also	is	present.	If	both	are	present,	they	must	be	the	same.

17.2.10.4.	LEAVE	Statement

LEAVE	label

This	statement	is	used	to	exit	any	labeled	flow	control	construct.	It	can	be	used
within	BEGIN	...	END	or	loop	constructs	(LOOP,	REPEAT,	WHILE).

17.2.10.5.	ITERATE	Statement

ITERATE	label

ITERATE	can	appear	only	within	LOOP,	REPEAT,	and	WHILE	statements.	ITERATE
means	“do	the	loop	again.”

Example:

CREATE	PROCEDURE	doiterate(p1	INT)

BEGIN

		label1:	LOOP

				SET	p1	=	p1	+	1;

				IF	p1	<	10	THEN	ITERATE	label1;	END	IF;

				LEAVE	label1;

		END	LOOP	label1;

		SET	@x	=	p1;

END

17.2.10.6.	REPEAT	Statement

[begin_label:]	REPEAT

				statement_list

UNTIL	search_condition

END	REPEAT	[end_label]

The	statement	list	within	a	REPEAT	statement	is	repeated	until	the
search_condition	is	true.	Thus,	a	REPEAT	always	enters	the	loop	at	least	once.

statement_list	consists	of	one	or	more	statements.

A	REPEAT	statement	can	be	labeled.	end_label	cannot	be	given	unless
begin_label	also	is	present.	If	both	are	present,	they	must	be	the	same.

Example:

mysql>	delimiter	//

mysql>	CREATE	PROCEDURE	dorepeat(p1	INT)

				->	BEGIN

				->			SET	@x	=	0;

				->			REPEAT	SET	@x	=	@x	+	1;	UNTIL	@x	>	p1	END	REPEAT;

				->	END

				->	//

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	CALL	dorepeat(1000)//

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	SELECT	@x//

+------+

|	@x			|

+------+

|	1001	|

+------+

1	row	in	set	(0.00	sec)

17.2.10.7.	WHILE	Statement

[begin_label:]	WHILE	search_condition	DO

				statement_list

END	WHILE	[end_label]

The	statement	list	within	a	WHILE	statement	is	repeated	as	long	as	the
search_condition	is	true.	statement_list	consists	of	one	or	more	statements.

A	WHILE	statement	can	be	labeled.	end_label	cannot	be	given	unless
begin_label	also	is	present.	If	both	are	present,	they	must	be	the	same.

Example:

CREATE	PROCEDURE	dowhile()

BEGIN

		DECLARE	v1	INT	DEFAULT	5;

		WHILE	v1	>	0	DO

				...

				SET	v1	=	v1	-	1;

		END	WHILE;

END

17.3.	Stored	Procedures,	Functions,	Triggers,	and
Replication:	Frequently	Asked	Questions

Do	MySQL	5.0	stored	procedures	and	functions	work	with	replication?

Yes,	standard	actions	carried	out	in	stored	procedures	and	functions	are
replicated	from	a	master	MySQL	server	to	a	slave	server.	There	are	a	few
limitations	that	are	described	in	detail	in	Section	17.4,	“Binary	Logging	of
Stored	Routines	and	Triggers”.

Are	stored	procedures	and	functions	created	on	a	master	server	replicated	to
a	slave?

Yes,	creation	of	stored	procedures	and	functions	carried	out	through	normal
DDL	statements	on	a	master	server	are	replicated	to	a	slave,	so	the	objects
will	exist	on	both	servers.	ALTER	and	DROP	statements	for	stored	procedures
and	functions	are	also	replicated.

How	are	actions	that	take	place	inside	stored	procedures	and	functions
replicated?

MySQL	records	each	DML	event	that	occurs	in	a	stored	procedure	and
replicates	those	individual	actions	to	a	slave	server.	The	actual	calls	made	to
execute	stored	procedures	are	not	replicated.

Stored	functions	that	change	data	are	logged	as	function	invocations,	not	as
the	DML	events	that	occur	inside	each	function.

Are	there	special	security	requirements	for	using	stored	procedures	and
functions	together	with	replication?

Yes.	Because	a	slave	server	has	authority	to	execute	any	statement	read
from	a	master's	binary	log,	special	security	constraints	exist	for	using	stored
functions	with	replication.	If	replication	or	binary	logging	in	general	(for
the	purpose	of	point-in-time	recovery)	is	active,	then	MySQL	DBAs	have
two	security	options	open	to	them:

Any	user	wishing	to	create	stored	functions	must	be	granted	the	SUPER

privilege.

Alternatively,	a	DBA	can	set	the	log_bin_trust_function_creators
system	variable	to	1,	which	enables	anyone	with	the	standard	CREATE
ROUTINE	privilege	to	create	stored	functions.

Note:	Before	MySQL	5.0.16,	these	restrictions	also	apply	to	stored
procedures	and	the	system	variable	is	named
log_bin_trust_routine_creators.

What	limitations	exist	for	replicating	stored	procedure	and	function
actions?

Non-deterministic	(random)	or	time-based	actions	embedded	in	stored
procedures	may	not	replicate	properly.	By	their	very	nature,	randomly
produced	results	are	not	predictable	and	cannot	be	exactly	reproduced,	and
therefore,	random	actions	replicated	to	a	slave	will	not	mirror	those
performed	on	a	master.	Note	that	declaring	stored	functions	to	be
DETERMINISTIC	or	setting	the	log_bin_trust_function_creators	system
variable	to	0	will	not	allow	random-valued	operations	to	be	invoked.

In	addition,	time-based	actions	cannot	be	reproduced	on	a	slave	because	the
timing	of	such	actions	in	a	stored	procedure	is	not	reproducible	through	the
binary	log	used	for	replication.	It	records	only	DML	events	and	does	not
factor	in	timing	constraints.

Finally,	non-transactional	tables	for	which	errors	occur	during	large	DML
actions	(such	as	bulk	inserts)	may	experience	replication	issues	in	that	a
master	may	be	partially	updated	from	DML	activity,	but	no	updates	are
done	to	the	slave	because	of	the	errors	that	occurred.	A	workaround	is	for	a
function's	DML	actions	to	be	carried	out	with	the	IGNORE	keyword	so	that
updates	on	the	master	that	cause	errors	are	ignored	and	updates	that	do	not
cause	errors	are	replicated	to	the	slave.

Do	the	preceding	limitations	affect	MySQL's	ability	to	do	point-in-time
recovery?

The	same	limitations	that	affect	replication	do	affect	point-in-time	recovery.

What	will	MySQL	do	to	correct	the	aforementioned	limitations?

A	future	release	of	MySQL	is	expected	to	feature	a	choice	in	how
replication	should	be	handled:

Statement-based	replication	(current	implementation).

Row-level	replication	(that	will	solve	all	the	limitations	described
earlier).

Do	triggers	work	with	replication?

Triggers	and	replication	in	MySQL	5.0	work	the	same	as	in	most	other
database	engines:	Actions	carried	out	through	triggers	on	a	master	are	not
replicated	to	a	slave	server.	Instead,	triggers	that	exist	on	tables	that	reside
on	a	MySQL	master	server	need	to	be	created	on	the	corresponding	tables
on	any	MySQL	slave	servers	so	that	the	triggers	activate	on	the	slaves	as
well	as	the	master.

How	are	actions	carried	out	through	triggers	on	a	master	replicated	to	a
slave?

First,	the	triggers	that	exist	on	a	master	must	be	re-created	on	the	slave
server.	Once	this	is	done,	the	replication	flow	works	as	any	other	standard
DML	statement	that	participates	in	replication.	For	example,	consider	a
table	EMP	that	has	an	AFTER	insert	trigger,	which	exists	on	a	master	MySQL
server.	The	same	EMP	table	and	AFTER	insert	trigger	exist	on	the	slave	server
as	well.	The	replication	flow	would	be:

1.	 An	INSERT	statement	is	made	to	EMP.

2.	 The	AFTER	trigger	on	EMP	activates.

3.	 The	INSERT	statement	is	written	to	the	binary	log.

4.	 The	replication	slave	picks	up	the	INSERT	statement	to	EMP	and
executes	it.

5.	 The	AFTER	trigger	on	EMP	that	exists	on	the	slave	activates.

17.4.	Binary	Logging	of	Stored	Routines	and	Triggers

The	binary	log	contains	information	about	SQL	statements	that	modify	database
contents.	This	information	is	stored	in	the	form	of	“events”	that	describe	the
modifications.	The	binary	log	has	two	important	purposes:

For	replication,	the	master	server	sends	the	events	contained	in	its	binary
log	to	its	slaves,	which	execute	those	events	to	make	the	same	data	changes
that	were	made	on	the	master.	See	Section	6.2,	“Replication
Implementation	Overview”.

Certain	data	recovery	operations	require	use	of	the	binary	log.	After	a
backup	file	has	been	restored,	the	events	in	the	binary	log	that	were
recorded	after	the	backup	was	made	are	re-executed.	These	events	bring
databases	up	to	date	from	the	point	of	the	backup.	See	Section	5.10.2.2,
“Using	Backups	for	Recovery”.

This	section	describes	the	development	of	binary	logging	in	MySQL	5.0	with
respect	to	stored	routines	(procedures	and	functions)	and	triggers.	The	discussion
first	summarizes	the	changes	that	have	taken	place	in	the	logging
implementation,	and	then	states	the	current	conditions	that	the	implementation
places	on	the	use	of	stored	routines.	Finally,	implementation	details	are	given
that	provide	information	about	when	and	why	various	changes	were	made.	These
details	show	how	several	aspects	of	the	current	logging	behavior	were
implemented	in	response	to	shortcomings	identified	in	earlier	versions.

In	general,	the	issues	described	here	result	from	the	fact	that	binary	logging
occurs	at	the	SQL	statement	level.	A	future	MySQL	release	is	expected	to
implement	row-level	binary	logging,	which	specifies	the	changes	to	make	to
individual	rows	as	a	result	of	executing	SQL	statements.

Unless	noted	otherwise,	the	remarks	here	assume	that	you	have	enabled	binary
logging	by	starting	the	server	with	the	--log-bin	option.	(See	Section	5.12.3,
“The	Binary	Log”.)	If	the	binary	log	is	not	enabled,	replication	is	not	possible,
nor	is	the	binary	log	available	for	data	recovery.

The	development	of	stored	routine	logging	in	MySQL	5.0	can	be	summarized	as
follows:

Before	MySQL	5.0.6:	In	the	initial	implementation	of	stored	routine
logging,	statements	that	create	stored	routines	and	CALL	statements	are	not
logged.	These	omissions	can	cause	problems	for	replication	and	data
recovery.

MySQL	5.0.6:	Statements	that	create	stored	routines	and	CALL	statements
are	logged.	Stored	function	invocations	are	logged	when	they	occur	in
statements	that	update	data	(because	those	statements	are	logged).
However,	function	invocations	are	not	logged	when	they	occur	in
statements	such	as	SELECT	that	do	not	change	data,	even	if	a	data	change
occurs	within	a	function	itself;	this	can	cause	problems.	Under	some
circumstances,	functions	and	procedures	can	have	different	effects	if
executed	at	different	times	or	on	different	(master	and	slave)	machines,	and
thus	can	be	unsafe	for	data	recovery	or	replication.	To	handle	this,	measures
are	implemented	to	allow	identification	of	safe	routines	and	to	prevent
creation	of	unsafe	routines	except	by	users	with	sufficient	privileges.

MySQL	5.0.12:	For	stored	functions,	when	a	function	invocation	that
changes	data	occurs	within	a	non-logged	statement	such	as	SELECT,	the
server	logs	a	DO	func_name()	statement	that	invokes	the	function	so	that	the
function	gets	executed	during	data	recovery	or	replication	to	slave	servers.
For	stored	procedures,	the	server	does	not	log	CALL	statements.	Instead,	it
logs	individual	statements	within	a	procedure	that	are	executed	as	a	result
of	a	CALL.	This	eliminates	problems	that	may	occur	when	a	procedure
would	follow	a	different	execution	path	on	a	slave	than	on	the	master.

MySQL	5.0.16:	The	procedure	logging	changes	made	in	5.0.12	allow	the
conditions	on	unsafe	routines	to	be	relaxed	for	stored	procedures.
Consequently,	the	user	interface	for	controlling	these	conditions	is	revised
to	apply	only	to	functions.	Procedure	creators	are	no	longer	bound	by	them.

MySQL	5.0.17:	Logging	of	stored	functions	as	DO	func_name()	statements
(per	the	changes	made	in	5.0.12)	are	logged	as	SELECT	func_name()
statements	instead	for	better	control	over	error	checking.

As	a	consequence	of	the	preceding	changes,	the	following	conditions	currently
apply	to	stored	function	creation	when	binary	logging	is	enabled.	These
conditions	do	not	apply	to	stored	procedure	creation.

To	create	or	alter	a	stored	function,	you	must	have	the	SUPER	privilege,	in
addition	to	the	CREATE	ROUTINE	or	ALTER	ROUTINE	privilege	that	is
normally	required.

When	you	create	a	stored	function,	you	must	declare	either	that	it	is
deterministic	or	that	it	does	not	modify	data.	Otherwise,	it	may	be	unsafe
for	data	recovery	or	replication.	Two	sets	of	function	characteristics	apply
here:

The	DETERMINISTIC	and	NOT	DETERMINISTIC	characteristics	indicate
whether	a	function	always	produces	the	same	result	for	given	inputs.
The	default	is	NOT	DETERMINISTIC	if	neither	characteristic	is	given,	so
you	must	specify	DETERMINISTIC	explicitly	to	declare	that	a	function	is
deterministic.

Use	of	the	NOW()	function	(or	its	synonyms)	or	RAND()	does	not
necessarily	make	a	function	non-deterministic.	For	NOW(),	the	binary
log	includes	the	timestamp	and	replicates	correctly.	RAND()	also
replicates	correctly	as	long	as	it	is	invoked	only	once	within	a
function.	(You	can	consider	the	function	execution	timestamp	and
random	number	seed	as	implicit	inputs	that	are	identical	on	the	master
and	slave.)

SYSDATE()	is	not	affected	by	the	timestamps	in	the	binary	log,	so	it
causes	stored	routines	to	be	non-deterministic	if	statement-based
logging	is	used.	This	does	not	occur	if	the	server	is	started	with	the	--
sysdate-is-now	option	to	cause	SYSDATE()	to	be	an	alias	for	NOW().

The	CONTAINS	SQL,	NO	SQL,	READS	SQL	DATA,	and	MODIFIES	SQL
DATA	characteristics	provide	information	about	whether	the	function
reads	or	writes	data.	Either	NO	SQL	or	READS	SQL	DATA	indicates	that	a
function	does	not	change	data,	but	you	must	specify	one	of	these
explicitly	because	the	default	is	CONTAINS	SQL	if	no	characteristic	is
given.

By	default,	for	a	CREATE	FUNCTION	statement	to	be	accepted,
DETERMINISTIC	or	one	of	NO	SQL	and	READS	SQL	DATA	must	be	specified
explicitly.	Otherwise	an	error	occurs:

ERROR	1418	(HY000):	This	function	has	none	of	DETERMINISTIC,	NO	SQL,

or	READS	SQL	DATA	in	its	declaration	and	binary	logging	is	enabled

(you	*might*	want	to	use	the	less	safe	log_bin_trust_function_creators

variable)

Assessment	of	the	nature	of	a	function	is	based	on	the	“honesty”	of	the
creator:	MySQL	does	not	check	that	a	function	declared	DETERMINISTIC
contains	no	statements	that	produce	non-deterministic	results.

To	relax	the	preceding	conditions	on	function	creation	(that	you	must	have
the	SUPER	privilege	and	that	a	function	must	be	declared	deterministic	or	to
not	modify	data),	set	the	global	log_bin_trust_function_creators
system	variable	to	1.	By	default,	this	variable	has	a	value	of	0,	but	you	can
change	it	like	this:

mysql>	SET	GLOBAL	log_bin_trust_function_creators	=	1;

You	can	also	set	this	variable	by	using	the	--log-bin-trust-function-
creators	option	when	starting	the	server.

If	binary	logging	is	not	enabled,	log_bin_trust_function_creators	does
not	apply	and	SUPER	is	not	required	for	routine	creation.

Triggers	are	similar	to	stored	functions,	so	the	preceding	remarks	regarding
functions	also	apply	to	triggers	with	the	following	exception:	CREATE	TRIGGER
does	not	have	an	optional	DETERMINISTIC	characteristic,	so	triggers	are	assumed
to	be	always	deterministic.	However,	this	assumption	might	in	some	cases	be
invalid.	For	example,	the	UUID()	function	is	non-deterministic	(and	does	not
replicate).	You	should	be	careful	about	using	such	functions	in	triggers.

Triggers	can	update	tables	(as	of	MySQL	5.0.10),	so	error	messages	similar	to
those	for	stored	functions	occur	with	CREATE	TRIGGER	if	you	do	not	have	the
SUPER	privilege	and	log_bin_trust_function_creators	is	0.

The	rest	of	this	section	provides	details	on	the	development	of	stored	routine
logging.	Some	of	these	details	give	additional	background	on	the	rationale	for
the	current	logging-related	conditions	on	stored	routine	use.

Routine	logging	before	MySQL	5.0.6:	Statements	that	create	and	use	stored
routines	are	not	written	to	the	binary	log,	but	statements	invoked	within	stored
routines	are	logged.	Suppose	that	you	issue	the	following	statements:

CREATE	PROCEDURE	mysp	INSERT	INTO	t	VALUES(1);

CALL	mysp();

For	this	example,	only	the	INSERT	statement	appears	in	the	binary	log.	The
CREATE	PROCEDURE	and	CALL	statements	do	not	appear.	The	absence	of	routine-
related	statements	in	the	binary	log	means	that	stored	routines	are	not	replicated
correctly.	It	also	means	that	for	a	data	recovery	operation,	re-executing	events	in
the	binary	log	does	not	recover	stored	routines.

Routine	logging	changes	in	MySQL	5.0.6:	To	address	the	absence	of	logging
for	stored	routine	creation	and	CALL	statements	(and	the	consequent	replication
and	data	recovery	concerns),	the	characteristics	of	binary	logging	for	stored
routines	were	changed	as	described	here.	(Some	of	the	items	in	the	following	list
point	out	issues	that	are	dealt	with	in	later	versions.)

The	server	writes	CREATE	PROCEDURE,	CREATE	FUNCTION,	ALTER
PROCEDURE,	ALTER	FUNCTION,	DROP	PROCEDURE,	and	DROP	FUNCTION
statements	to	the	binary	log.	Also,	the	server	logs	CALL	statements,	not	the
statements	executed	within	procedures.	Suppose	that	you	issue	the
following	statements:

CREATE	PROCEDURE	mysp	INSERT	INTO	t	VALUES(1);

CALL	mysp();

For	this	example,	the	CREATE	PROCEDURE	and	CALL	statements	appear	in	the
binary	log,	but	the	INSERT	statement	does	not	appear.	This	corrects	the
problem	that	occurred	before	MySQL	5.0.6	such	that	only	the	INSERT	was
logged.

Logging	CALL	statements	has	a	security	implication	for	replication,	which
arises	from	two	factors:

It	is	possible	for	a	procedure	to	follow	different	execution	paths	on
master	and	slave	servers.

Statements	executed	on	a	slave	are	processed	by	the	slave	SQL	thread
which	has	full	privileges.

The	implication	is	that	although	a	user	must	have	the	CREATE	ROUTINE
privilege	to	create	a	routine,	the	user	can	write	a	routine	containing	a
dangerous	statement	that	will	execute	only	on	the	slave	where	the	statement

is	processed	by	the	SQL	thread	that	has	full	privileges.	For	example,	if	the
master	and	slave	servers	have	server	ID	values	of	1	and	2,	respectively,	a
user	on	the	master	server	could	create	and	invoke	an	unsafe	procedure
unsafe_sp()	as	follows:

mysql>	delimiter	//

mysql>	CREATE	PROCEDURE	unsafe_sp	()

				->	BEGIN

				->			IF	@@server_id=2	THEN	DROP	DATABASE	accounting;	END	IF;

				->	END;

				->	//

mysql>	delimiter	;

mysql>	CALL	unsafe_sp();

The	CREATE	PROCEDURE	and	CALL	statements	are	written	to	the	binary	log,
so	the	slave	will	execute	them.	Because	the	slave	SQL	thread	has	full
privileges,	it	will	execute	the	DROP	DATABASE	statement	that	drops	the
accounting	database.	Thus,	the	CALL	statement	has	different	effects	on	the
master	and	slave	and	is	not	replication-safe.

The	preceding	example	uses	a	stored	procedure,	but	similar	problems	can
occur	for	stored	functions	that	are	invoked	within	statements	that	are
written	to	the	binary	log:	Function	invocation	has	different	effects	on	the
master	and	slave.

To	guard	against	this	danger	for	servers	that	have	binary	logging	enabled,
MySQL	5.0.6	introduces	the	requirement	that	stored	procedure	and	function
creators	must	have	the	SUPER	privilege,	in	addition	to	the	usual	CREATE
ROUTINE	privilege	that	is	required.	Similarly,	to	use	ALTER	PROCEDURE	or
ALTER	FUNCTION,	you	must	have	the	SUPER	privilege	in	addition	to	the
ALTER	ROUTINE	privilege.	Without	the	SUPER	privilege,	an	error	will	occur:

ERROR	1419	(HY000):	You	do	not	have	the	SUPER	privilege	and

binary	logging	is	enabled	(you	*might*	want	to	use	the	less	safe

log_bin_trust_routine_creators	variable)

If	you	do	not	want	to	require	routine	creators	to	have	the	SUPER	privilege
(for	example,	if	all	users	with	the	CREATE	ROUTINE	privilege	on	your	system
are	experienced	application	developers),	set	the	global
log_bin_trust_routine_creators	system	variable	to	1.	You	can	also	set
this	variable	by	using	the	--log-bin-trust-routine-creators	option
when	starting	the	server.	If	binary	logging	is	not	enabled,

log_bin_trust_routine_creators	does	not	apply	and	SUPER	is	not
required	for	routine	creation.

If	a	routine	that	performs	updates	is	non-deterministic,	it	is	not	repeatable.
This	can	have	two	undesirable	effects:

It	will	make	a	slave	different	from	the	master.

Restored	data	will	be	different	from	the	original	data.

To	deal	with	these	problems,	MySQL	enforces	the	following	requirement:
On	a	master	server,	creation	and	alteration	of	a	routine	is	refused	unless	you
declare	the	routine	to	be	deterministic	or	to	not	modify	data.	Two	sets	of
routine	characteristics	apply	here:

The	DETERMINISTIC	and	NOT	DETERMINISTIC	characteristics	indicate
whether	a	routine	always	produces	the	same	result	for	given	inputs.
The	default	is	NOT	DETERMINISTIC	if	neither	characteristic	is	given,	so
you	must	specify	DETERMINISTIC	explicitly	to	declare	that	a	routine	is
deterministic.

The	CONTAINS	SQL,	NO	SQL,	READS	SQL	DATA,	and	MODIFIES	SQL
DATA	characteristics	provide	information	about	whether	the	routine
reads	or	writes	data.	Either	NO	SQL	or	READS	SQL	DATA	indicates	that	a
routine	does	not	change	data,	but	you	must	specify	one	of	these
explicitly	because	the	default	is	CONTAINS	SQL	if	no	characteristic	is
given.

By	default,	for	a	CREATE	PROCEDURE	or	CREATE	FUNCTION	statement	to	be
accepted,	DETERMINISTIC	or	one	of	NO	SQL	and	READS	SQL	DATA	must	be
specified	explicitly.	Otherwise	an	error	occurs:

ERROR	1418	(HY000):	This	routine	has	none	of	DETERMINISTIC,	NO	SQL,

or	READS	SQL	DATA	in	its	declaration	and	binary	logging	is	enabled

(you	*might*	want	to	use	the	less	safe	log_bin_trust_routine_creators

variable)

If	you	set	log_bin_trust_routine_creators	to	1,	the	requirement	that
routines	be	deterministic	or	not	modify	data	is	dropped.

A	CALL	statement	is	written	to	the	binary	log	if	the	routine	returns	no	error,

but	not	otherwise.	When	a	routine	that	modifies	data	fails,	you	get	this
warning:

ERROR	1417	(HY000):	A	routine	failed	and	has	neither	NO	SQL	nor

READS	SQL	DATA	in	its	declaration	and	binary	logging	is	enabled;	if

non-transactional	tables	were	updated,	the	binary	log	will	miss	their

changes

This	logging	behavior	has	the	potential	to	cause	problems.	If	a	routine
partly	modifies	a	non-transactional	table	(such	as	a	MyISAM	table)	and
returns	an	error,	the	binary	log	will	not	reflect	these	changes.	To	protect
against	this,	you	should	use	transactional	tables	in	the	routine	and	modify
the	tables	within	transactions.

If	you	use	the	IGNORE	keyword	with	INSERT,	DELETE,	or	UPDATE	to	ignore
errors	within	a	routine,	a	partial	update	might	occur	but	no	error	will	result.
Such	statements	are	logged	and	they	replicate	normally.

Although	statements	normally	are	not	written	to	the	binary	log	if	they	are
rolled	back,	CALL	statements	are	logged	even	when	they	occur	within	a
rolled-back	transaction.	This	can	result	in	a	CALL	being	rolled	back	on	the
master	but	executed	on	slaves.

If	a	stored	function	is	invoked	within	a	statement	such	as	SELECT	that	does
not	modify	data,	execution	of	the	function	is	not	written	to	the	binary	log,
even	if	the	function	itself	modifies	data.	This	logging	behavior	has	the
potential	to	cause	problems.	Suppose	that	a	function	myfunc()	is	defined	as
follows:

CREATE	FUNCTION	myfunc	()	RETURNS	INT	DETERMINISTIC

BEGIN

		INSERT	INTO	t	(i)	VALUES(1);

		RETURN	0;

END;

Given	that	definition,	the	following	statement	is	not	written	to	the	binary
log	because	it	is	a	SELECT.	Nevertheless,	it	modifies	the	table	t	because
myfunc()	modifies	t:

SELECT	myfunc();

A	workaround	for	this	problem	is	to	invoke	functions	that	do	updates	only

within	statements	that	do	updates	(and	which	therefore	are	written	to	the
binary	log).	Note	that	although	the	DO	statement	sometimes	is	executed	for
the	side	effect	of	evaluating	an	expression,	DO	is	not	a	workaround	here
because	it	is	not	written	to	the	binary	log.

On	slave	servers,	--replicate-*-table	rules	do	not	apply	to	CALL
statements	or	to	statements	within	stored	routines.	These	statements	are
always	replicated.	If	such	statements	contain	references	to	tables	that	do	not
exist	on	the	slave,	they	could	have	undesirable	effects	when	executed	on	the
slave.

Routine	logging	changes	in	MySQL	5.0.12:	The	changes	in	5.0.12	address
several	problems	that	were	present	in	earlier	versions:

Stored	function	invocations	in	non-logged	statements	such	as	SELECT	were
not	being	logged,	even	when	a	function	itself	changed	data.

Stored	procedure	logging	at	the	CALL	level	could	cause	different	effects	on	a
master	and	slave	if	a	procedure	took	different	execution	paths	on	the	two
machines.

CALL	statements	were	logged	even	when	they	occurred	within	a	rolled-back
transaction.

To	deal	with	these	issues,	MySQL	5.0.12	implements	the	following	changes	to
function	and	procedure	logging:

A	stored	function	invocation	is	logged	as	a	DO	statement	if	the	function
changes	data	and	occurs	within	a	statement	that	would	not	otherwise	be
logged.	This	corrects	the	problem	of	non-replication	of	data	changes	that
result	from	use	of	stored	functions	in	non-logged	statements.	For	example,
SELECT	statements	are	not	written	to	the	binary	log,	but	a	SELECT	might
invoke	a	stored	function	that	makes	changes.	To	handle	this,	a	DO
func_name()	statement	is	written	to	the	binary	log	when	the	given	function
makes	a	change.	Suppose	that	the	following	statements	are	executed	on	the
master:

CREATE	FUNCTION	f1(a	INT)	RETURNS	INT

BEGIN

		IF	(a	<	3)	THEN	

				INSERT	INTO	t2	VALUES	(a);

		END	IF;

END;

CREATE	TABLE	t1	(a	INT);

INSERT	INTO	t1	VALUES	(1),(2),(3);

SELECT	f1(a)	FROM	t1;

When	the	SELECT	statement	executes,	the	function	f1()	is	invoked	three
times.	Two	of	those	invocations	insert	a	row,	and	MySQL	logs	a	DO
statement	for	each	of	them.	That	is,	MySQL	writes	the	following	statements
to	the	binary	log:

DO	f1(1);

DO	f1(2);

The	server	also	logs	a	DO	statement	for	a	stored	function	invocation	when
the	function	invokes	a	stored	procedure	that	causes	an	error.	In	this	case,	the
server	writes	the	DO	statement	to	the	log	along	with	the	expected	error	code.
On	the	slave,	if	the	same	error	occurs,	that	is	the	expected	result	and
replication	continues.	Otherwise,	replication	stops.

Note:	See	later	in	this	section	for	changes	made	in	MySQL	5.0.19:	These
logged	DO	func_name()	statements	are	logged	as	SELECT	func_name()
statements	instead.

Stored	procedure	calls	are	logged	at	the	statement	level	rather	than	at	the
CALL	level.	That	is,	the	server	does	not	log	the	CALL	statement,	it	logs	those
statements	within	the	procedure	that	actually	execute.	As	a	result,	the	same
changes	that	occur	on	the	master	will	be	observed	on	slave	servers.	This
eliminates	the	problems	that	could	result	from	a	procedure	having	different
execution	paths	on	different	machines.	For	example,	the	DROP	DATABASE
problem	shown	earlier	for	the	unsafe_sp()	procedure	does	not	occur	and
the	routine	is	no	longer	replication-unsafe	because	it	has	the	same	effect	on
master	and	slave	servers.

In	general,	statements	executed	within	a	stored	procedure	are	written	to	the
binary	log	using	the	same	rules	that	would	apply	were	the	statements	to	be
executed	in	standalone	fashion.	Some	special	care	is	taken	when	logging
procedure	statements	because	statement	execution	within	procedures	is	not
quite	the	same	as	in	non-procedure	context:

A	statement	to	be	logged	might	contain	references	to	local	procedure
variables.	These	variables	do	not	exist	outside	of	stored	procedure
context,	so	a	statement	that	refers	to	such	a	variable	cannot	be	logged
literally.	Instead,	each	reference	to	a	local	variable	is	replaced	by	this
construct	for	logging	purposes:

NAME_CONST(var_name,	var_value)

var_name	is	the	local	variable	name,	and	var_value	is	a	constant
indicating	the	value	that	the	variable	has	at	the	time	the	statement	is
logged.	NAME_CONST()	has	a	value	of	var_value,	and	a	“name”	of
var_name.	Thus,	if	you	invoke	this	function	directly,	you	get	a	result
like	this:

mysql>	SELECT	NAME_CONST('myname',	14);

+--------+

|	myname	|

+--------+

|					14	|

+--------+

NAME_CONST()	allows	a	logged	standalone	statement	to	be	executed	on
a	slave	with	the	same	effect	as	the	original	statement	that	was	executed
on	the	master	within	a	stored	procedure.

A	statement	to	be	logged	might	contain	references	to	user-defined
variables.	To	handle	this,	MySQL	writes	a	SET	statement	to	the	binary
log	to	make	sure	that	the	variable	exists	on	the	slave	with	the	same
value	as	on	the	master.	For	example,	if	a	statement	refers	to	a	variable
@my_var,	that	statement	will	be	preceded	in	the	binary	log	by	the
following	statement,	where	value	is	the	value	of	@my_var	on	the
master:

SET	@my_var	=	value;

Procedure	calls	can	occur	within	a	committed	or	rolled-back
transaction.	Previously,	CALL	statements	were	logged	even	if	they
occurred	within	a	rolled-back	transaction.	As	of	MySQL	5.0.12,
transactional	context	is	accounted	for	so	that	the	transactional	aspects
of	procedure	execution	are	replicated	correctly.	That	is,	the	server	logs
those	statements	within	the	procedure	that	actually	execute	and	modify

data,	and	also	logs	BEGIN,	COMMIT,	and	ROLLBACK	statements	as
necessary.	For	example,	if	a	procedure	updates	only	transactional
tables	and	is	executed	within	a	transaction	that	is	rolled	back,	those
updates	are	not	logged.	If	the	procedure	occurs	within	a	committed
transaction,	BEGIN	and	COMMIT	statements	are	logged	with	the	updates.
For	a	procedure	that	executes	within	a	rolled-back	transaction,	its
statements	are	logged	using	the	same	rules	that	would	apply	if	the
statements	were	executed	in	standalone	fashion:

Updates	to	transactional	tables	are	not	logged.

Updates	to	non-transactional	tables	are	logged	because	rollback
does	not	cancel	them.

Updates	to	a	mix	of	transactional	and	non-transactional	tables	are
logged	surrounded	by	BEGIN	and	ROLLBACK	so	that	slaves	will
make	the	same	changes	and	rollbacks	as	on	the	master.

A	stored	procedure	call	is	not	written	to	the	binary	log	at	the	statement	level
if	the	procedure	is	invoked	from	within	a	stored	function.	In	that	case,	the
only	thing	logged	is	the	statement	that	invokes	the	function	(if	it	occurs
within	a	statement	that	is	logged)	or	a	DO	statement	(if	it	occurs	within	a
statement	that	is	not	logged).	For	this	reason,	care	still	should	be	exercised
in	the	use	of	stored	functions	that	invoke	a	procedure,	even	if	the	procedure
is	otherwise	safe	in	itself.

Because	procedure	logging	occurs	at	the	statement	level	rather	than	at	the
CALL	level,	interpretation	of	the	--replicate-*-table	options	is	revised	to
apply	only	to	stored	functions.	They	no	longer	apply	to	stored	procedures,
except	those	procedures	that	are	invoked	from	within	functions.

Routine	logging	changes	in	MySQL	5.0.16:	In	5.0.12,	a	change	was	introduced
to	log	stored	procedure	calls	at	the	statement	level	rather	than	at	the	CALL	level.
This	change	eliminates	the	requirement	that	procedures	be	identified	as	safe.	The
requirement	now	exists	only	for	stored	functions,	because	they	still	appear	in	the
binary	log	as	function	invocations	rather	than	as	the	statements	executed	within
the	function.	To	reflect	the	lifting	of	the	restriction	on	stored	procedures,	the
log_bin_trust_routine_creators	system	variable	is	renamed	to
log_bin_trust_function_creators	and	the	--log-bin-trust-routine-

creators	server	option	is	renamed	to	--log-bin-trust-function-creators.
(For	backward	compatibility,	the	old	names	are	recognized	but	result	in	a
warning.)	Error	messages	that	now	apply	only	to	functions	and	not	to	routines	in
general	are	re-worded.

Routine	logging	changes	in	MySQL	5.0.19:	In	5.0.12,	a	change	was	introduced
to	log	a	stored	function	invocation	as	DO	func_name()	if	the	invocation	changes
data	and	occurs	within	a	non-logged	statement,	or	if	the	function	invokes	a
stored	procedure	that	produces	an	error.	In	5.0.19,	these	invocations	are	logged
as	SELECT	func_name()	instead.	The	change	to	SELECT	was	made	because	use	of
DO	was	found	to	yield	insufficient	control	over	error	code	checking.

Chapter	18.	Triggers

Table	of	Contents

18.1.	CREATE	TRIGGER	Syntax
18.2.	DROP	TRIGGER	Syntax
18.3.	Using	Triggers

Support	for	triggers	is	included	beginning	with	MySQL	5.0.2.	A	trigger	is	a
named	database	object	that	is	associated	with	a	table	and	that	is	activated	when	a
particular	event	occurs	for	the	table.	For	example,	the	following	statements
create	a	table	and	an	INSERT	trigger.	The	trigger	sums	the	values	inserted	into
one	of	the	table's	columns:

mysql>	CREATE	TABLE	account	(acct_num	INT,	amount	DECIMAL(10,2));

Query	OK,	0	rows	affected	(0.03	sec)

mysql>	CREATE	TRIGGER	ins_sum	BEFORE	INSERT	ON	account

				->	FOR	EACH	ROW	SET	@sum	=	@sum	+	NEW.amount;

Query	OK,	0	rows	affected	(0.06	sec)

This	chapter	describes	the	syntax	for	creating	and	dropping	triggers,	and	shows
some	examples	of	how	to	use	them.	Discussion	of	restrictions	on	use	of	triggers
is	given	in	Section	I.1,	“Restrictions	on	Stored	Routines	and	Triggers”.	Remarks
regarding	binary	logging	as	it	applies	to	triggers	are	given	in	Section	17.4,
“Binary	Logging	of	Stored	Routines	and	Triggers”.

18.1.	CREATE	TRIGGER	Syntax
CREATE

				[DEFINER	=	{	user	|	CURRENT_USER	}]

				TRIGGER	trigger_name	trigger_time	trigger_event

				ON	tbl_name	FOR	EACH	ROW	trigger_stmt

This	statement	creates	a	new	trigger.	A	trigger	is	a	named	database	object	that	is
associated	with	a	table,	and	that	activates	when	a	particular	event	occurs	for	the
table.	CREATE	TRIGGER	was	added	in	MySQL	5.0.2.	Currently,	its	use	requires
the	SUPER	privilege.

The	trigger	becomes	associated	with	the	table	named	tbl_name,	which	must
refer	to	a	permanent	table.	You	cannot	associate	a	trigger	with	a	TEMPORARY	table
or	a	view.

When	the	trigger	is	activated,	the	DEFINER	clause	determines	the	privileges	that
apply,	as	described	later	in	this	section.

trigger_time	is	the	trigger	action	time.	It	can	be	BEFORE	or	AFTER	to	indicate
that	the	trigger	activates	before	or	after	the	statement	that	activated	it.

trigger_event	indicates	the	kind	of	statement	that	activates	the	trigger.	The
trigger_event	can	be	one	of	the	following:

INSERT:	The	trigger	is	activated	whenever	a	new	row	is	inserted	into	the
table;	for	example,	through	INSERT,	LOAD	DATA,	and	REPLACE	statements.

UPDATE:	The	trigger	is	activated	whenever	a	row	is	modified;	for	example,
through	UPDATE	statements.

DELETE:	The	trigger	is	activated	whenever	a	row	is	deleted	from	the	table;
for	example,	through	DELETE	and	REPLACE	statements.	However,	DROP
TABLE	and	TRUNCATE	statements	on	the	table	do	not	activate	this	trigger,
because	they	do	not	use	DELETE.	See	Section	13.2.9,	“TRUNCATE	Syntax”.

It	is	important	to	understand	that	the	trigger_event	does	not	represent	a	literal
type	of	SQL	statement	that	activates	the	trigger	so	much	as	it	represents	a	type	of
table	operation.	For	example,	an	INSERT	trigger	is	activated	by	not	only	INSERT

statements	but	also	LOAD	DATA	statements	because	both	statements	insert	rows
into	a	table.

A	potentially	confusing	example	of	this	is	the	INSERT	INTO	...	ON	DUPLICATE
KEY	UPDATE	...	syntax:	a	BEFORE	INSERT	trigger	will	activate	for	every	row,
followed	by	either	an	AFTER	INSERT	trigger	or	both	the	BEFORE	UPDATE	and
AFTER	UPDATE	triggers,	depending	on	whether	there	was	a	duplicate	key	for	the
row.

There	cannot	be	two	triggers	for	a	given	table	that	have	the	same	trigger	action
time	and	event.	For	example,	you	cannot	have	two	BEFORE	UPDATE	triggers	for	a
table.	But	you	can	have	a	BEFORE	UPDATE	and	a	BEFORE	INSERT	trigger,	or	a
BEFORE	UPDATE	and	an	AFTER	UPDATE	trigger.

trigger_stmt	is	the	statement	to	execute	when	the	trigger	activates.	If	you	want
to	execute	multiple	statements,	use	the	BEGIN	...	END	compound	statement
construct.	This	also	enables	you	to	use	the	same	statements	that	are	allowable
within	stored	routines.	See	Section	17.2.5,	“BEGIN	...	END	Compound
Statement	Syntax”.	Some	statements	are	not	allowed	in	triggers;	see	Section	I.1,
“Restrictions	on	Stored	Routines	and	Triggers”.

Note:	Currently,	triggers	are	not	activated	by	cascaded	foreign	key	actions.	This
limitation	will	be	lifted	as	soon	as	possible.

Note:	Before	MySQL	5.0.10,	triggers	cannot	contain	direct	references	to	tables
by	name.	Beginning	with	MySQL	5.0.10,	you	can	write	triggers	such	as	the	one
named	testref	shown	in	this	example:

CREATE	TABLE	test1(a1	INT);

CREATE	TABLE	test2(a2	INT);

CREATE	TABLE	test3(a3	INT	NOT	NULL	AUTO_INCREMENT	PRIMARY	KEY);

CREATE	TABLE	test4(

		a4	INT	NOT	NULL	AUTO_INCREMENT	PRIMARY	KEY,	

		b4	INT	DEFAULT	0

);

DELIMITER	|

CREATE	TRIGGER	testref	BEFORE	INSERT	ON	test1

		FOR	EACH	ROW	BEGIN

				INSERT	INTO	test2	SET	a2	=	NEW.a1;

				DELETE	FROM	test3	WHERE	a3	=	NEW.a1;		

				UPDATE	test4	SET	b4	=	b4	+	1	WHERE	a4	=	NEW.a1;

		END;

|

DELIMITER	;

INSERT	INTO	test3	(a3)	VALUES	

		(NULL),	(NULL),	(NULL),	(NULL),	(NULL),	

		(NULL),	(NULL),	(NULL),	(NULL),	(NULL);

INSERT	INTO	test4	(a4)	VALUES	

		(0),	(0),	(0),	(0),	(0),	(0),	(0),	(0),	(0),	(0);

Suppose	that	you	insert	the	following	values	into	table	test1	as	shown	here:

mysql>	INSERT	INTO	test1	VALUES	

				->	(1),	(3),	(1),	(7),	(1),	(8),	(4),	(4);

Query	OK,	8	rows	affected	(0.01	sec)

Records:	8		Duplicates:	0		Warnings:	0

As	a	result,	the	data	in	the	four	tables	will	be	as	follows:

mysql>	SELECT	*	FROM	test1;

+------+

|	a1			|

+------+

|				1	|

|				3	|

|				1	|

|				7	|

|				1	|

|				8	|

|				4	|

|				4	|

+------+

8	rows	in	set	(0.00	sec)

mysql>	SELECT	*	FROM	test2;

+------+

|	a2			|

+------+

|				1	|

|				3	|

|				1	|

|				7	|

|				1	|

|				8	|

|				4	|

|				4	|

+------+

8	rows	in	set	(0.00	sec)

mysql>	SELECT	*	FROM	test3;

+----+

|	a3	|

+----+

|		2	|

|		5	|

|		6	|

|		9	|

|	10	|

+----+

5	rows	in	set	(0.00	sec)

mysql>	SELECT	*	FROM	test4;

+----+------+

|	a4	|	b4			|

+----+------+

|		1	|				3	|

|		2	|				0	|

|		3	|				1	|

|		4	|				2	|

|		5	|				0	|

|		6	|				0	|

|		7	|				1	|

|		8	|				1	|

|		9	|				0	|

|	10	|				0	|

+----+------+

10	rows	in	set	(0.00	sec)

You	can	refer	to	columns	in	the	subject	table	(the	table	associated	with	the
trigger)	by	using	the	aliases	OLD	and	NEW.	OLD.col_name	refers	to	a	column	of	an
existing	row	before	it	is	updated	or	deleted.	NEW.col_name	refers	to	the	column
of	a	new	row	to	be	inserted	or	an	existing	row	after	it	is	updated.

The	DEFINER	clause	specifies	the	MySQL	account	to	be	used	when	checking
access	privileges	at	trigger	activation	time.	It	was	added	in	MySQL	5.0.17.	If	a
user	value	is	given,	it	should	be	a	MySQL	account	in	'user_name'@'host_name'
format	(the	same	format	used	in	the	GRANT	statement).	The	user_name	and
host_name	values	both	are	required.	CURRENT_USER	also	can	be	given	as
CURRENT_USER().	The	default	DEFINER	value	is	the	user	who	executes	the	CREATE
TRIGGER	statement.	(This	is	the	same	as	DEFINER	=	CURRENT_USER.)

If	you	specify	the	DEFINER	clause,	you	cannot	set	the	value	to	any	account	but
your	own	unless	you	have	the	SUPER	privilege.	These	rules	determine	the	legal

DEFINER	user	values:

If	you	do	not	have	the	SUPER	privilege,	the	only	legal	user	value	is	your
own	account,	either	specified	literally	or	by	using	CURRENT_USER.	You
cannot	set	the	definer	to	some	other	account.

If	you	have	the	SUPER	privilege,	you	can	specify	any	syntactically	legal
account	name.	If	the	account	does	not	actually	exist,	a	warning	is	generated.

Although	it	is	possible	to	create	triggers	with	a	non-existent	DEFINER	value,
it	is	not	a	good	idea	for	such	triggers	to	be	activated	until	the	definer
actually	does	exist.	Otherwise,	the	behavior	with	respect	to	privilege
checking	is	undefined.

Note:	Because	MySQL	currently	requires	the	SUPER	privilege	for	the	use	of
CREATE	TRIGGER,	only	the	second	of	the	preceding	rules	applies.	(MySQL	5.1.6
implements	the	TRIGGER	privilege	and	requires	that	privilege	for	trigger	creation,
so	at	that	point	both	rules	come	into	play	and	SUPER	is	required	only	for
specifying	a	DEFINER	value	other	than	your	own	account.)

From	MySQL	5.0.17	on,	MySQL	checks	trigger	privileges	like	this:

At	CREATE	TRIGGER	time,	the	user	that	issues	the	statement	must	have	the
SUPER	privilege.

At	trigger	activation	time,	privileges	are	checked	against	the	DEFINER	user.
This	user	must	have	these	privileges:

The	SUPER	privilege.

The	SELECT	privilege	for	the	subject	table	if	references	to	table
columns	occur	via	OLD.col_name	or	NEW.col_name	in	the	trigger
definition.

The	UPDATE	privilege	for	the	subject	table	if	table	columns	are	targets
of	SET	NEW.col_name	=	value	assignments	in	the	trigger	definition.

Whatever	other	privileges	normally	are	required	for	the	statements
executed	by	the	trigger.

Before	MySQL	5.0.17,	MySQL	checks	trigger	privileges	like	this:

At	CREATE	TRIGGER	time,	the	user	that	issues	the	statement	must	have	the
SUPER	privilege.

At	trigger	activation	time,	privileges	are	checked	against	the	user	whose
actions	cause	the	trigger	to	be	activated.	This	user	must	have	whatever
privileges	normally	are	required	for	the	statements	executed	by	the	trigger.

Note	that	the	introduction	of	the	DEFINER	clause	changes	the	meaning	of
CURRENT_USER()	within	trigger	definitions:	The	CURRENT_USER()	function
evaluates	to	the	trigger	DEFINER	value	as	of	MySQL	5.0.17	and	to	the	user	whose
actions	caused	the	trigger	to	be	activated	before	5.0.17.

18.2.	DROP	TRIGGER	Syntax
DROP	TRIGGER	[schema_name.]trigger_name

This	statement	drops	a	trigger.	The	schema	(database)	name	is	optional.	If	the
schema	is	omitted,	the	trigger	is	dropped	from	the	default	schema.	DROP	TRIGGER
was	added	in	MySQL	5.0.2.	Its	use	requires	the	SUPER	privilege.

Note:	Prior	to	MySQL	5.0.10,	the	table	name	was	required	instead	of	the	schema
name	(table_name.trigger_name).	When	upgrading	from	a	previous	version	of
MySQL	5.0	to	MySQL	5.0.10	or	newer,	you	must	drop	all	triggers	before
upgrading	and	re-create	them	afterwards,	or	else	DROP	TRIGGER	does	not	work
after	the	upgrade.	See	Section	2.11.2,	“Upgrading	from	MySQL	4.1	to	5.0”,	for	a
suggested	upgrade	procedure.

In	addition,	triggers	created	in	MySQL	5.0.16	or	later	cannot	be	dropped
following	a	downgrade	to	MySQL	5.0.15	or	earlier.	If	you	wish	to	perform	such
a	downgrade,	you	must	also	in	this	case	drop	all	triggers	prior	to	the	downgrade,
and	then	re-create	them	afterwards.

(For	more	information	about	these	two	issues,	see	Bug	#15921	and	Bug
#18588.)

18.3.	Using	Triggers

Support	for	triggers	is	included	beginning	with	MySQL	5.0.2.	This	section
discusses	how	to	use	triggers	and	some	limitations	regarding	their	use.
Additional	information	about	trigger	limitations	is	given	in	Section	I.1,
“Restrictions	on	Stored	Routines	and	Triggers”.

A	trigger	is	a	named	database	object	that	is	associated	with	a	table,	and	that
activates	when	a	particular	event	occurs	for	the	table.	Some	uses	for	triggers	are
to	perform	checks	of	values	to	be	inserted	into	a	table	or	to	perform	calculations
on	values	involved	in	an	update.

A	trigger	is	associated	with	a	table	and	is	defined	to	activate	when	an	INSERT,
DELETE,	or	UPDATE	statement	for	the	table	executes.	A	trigger	can	be	set	to
activate	either	before	or	after	the	triggering	statement.	For	example,	you	can
have	a	trigger	activate	before	each	row	that	is	deleted	from	a	table	or	after	each
row	that	is	updated.

To	create	a	trigger	or	drop	a	trigger,	use	the	CREATE	TRIGGER	or	DROP	TRIGGER
statement.	The	syntax	for	these	statements	is	described	in	Section	18.1,	“CREATE
TRIGGER	Syntax”,	and	Section	18.2,	“DROP	TRIGGER	Syntax”.

Here	is	a	simple	example	that	associates	a	trigger	with	a	table	for	INSERT
statements.	It	acts	as	an	accumulator	to	sum	the	values	inserted	into	one	of	the
columns	of	the	table.

The	following	statements	create	a	table	and	a	trigger	for	it:

mysql>	CREATE	TABLE	account	(acct_num	INT,	amount	DECIMAL(10,2));

mysql>	CREATE	TRIGGER	ins_sum	BEFORE	INSERT	ON	account

				->	FOR	EACH	ROW	SET	@sum	=	@sum	+	NEW.amount;

The	CREATE	TRIGGER	statement	creates	a	trigger	named	ins_sum	that	is
associated	with	the	account	table.	It	also	includes	clauses	that	specify	the	trigger
activation	time,	the	triggering	event,	and	what	to	do	with	the	trigger	activates:

The	keyword	BEFORE	indicates	the	trigger	action	time.	In	this	case,	the
trigger	should	activate	before	each	row	inserted	into	the	table.	The	other
allowable	keyword	here	is	AFTER.

The	keyword	INSERT	indicates	the	event	that	activates	the	trigger.	In	the
example,	INSERT	statements	cause	trigger	activation.	You	can	also	create
triggers	for	DELETE	and	UPDATE	statements.

The	statement	following	FOR	EACH	ROW	defines	the	statement	to	execute
each	time	the	trigger	activates,	which	occurs	once	for	each	row	affected	by
the	triggering	statement	In	the	example,	the	triggered	statement	is	a	simple
SET	that	accumulates	the	values	inserted	into	the	amount	column.	The
statement	refers	to	the	column	as	NEW.amount	which	means	“the	value	of
the	amount	column	to	be	inserted	into	the	new	row.”

To	use	the	trigger,	set	the	accumulator	variable	to	zero,	execute	an	INSERT
statement,	and	then	see	what	value	the	variable	has	afterward:

mysql>	SET	@sum	=	0;

mysql>	INSERT	INTO	account	VALUES(137,14.98),(141,1937.50),(97,-100.00);

mysql>	SELECT	@sum	AS	'Total	amount	inserted';

+-----------------------+

|	Total	amount	inserted	|

+-----------------------+

|	1852.48															|

+-----------------------+

In	this	case,	the	value	of	@sum	after	the	INSERT	statement	has	executed	is	14.98
+	1937.50	-	100,	or	1852.48.

To	destroy	the	trigger,	use	a	DROP	TRIGGER	statement.	You	must	specify	the
schema	name	if	the	trigger	is	not	in	the	default	schema:

mysql>	DROP	TRIGGER	test.ins_sum;

Trigger	names	exist	in	the	schema	namespace,	meaning	that	all	triggers	must
have	unique	names	within	a	schema.	Triggers	in	different	schemas	can	have	the
same	name.

In	addition	to	the	requirement	that	trigger	names	be	unique	for	a	schema,	there
are	other	limitations	on	the	types	of	triggers	you	can	create.	In	particular,	you
cannot	have	two	triggers	for	a	table	that	have	the	same	activation	time	and
activation	event.	For	example,	you	cannot	define	two	BEFORE	INSERT	triggers	or
two	AFTER	UPDATE	triggers	for	a	table.	This	should	rarely	be	a	significant
limitation,	because	it	is	possible	to	define	a	trigger	that	executes	multiple
statements	by	using	the	BEGIN	...	END	compound	statement	construct	after	FOR

EACH	ROW.	(An	example	appears	later	in	this	section.)

The	OLD	and	NEW	keywords	enable	you	to	access	columns	in	the	rows	affected	by
a	trigger.	(OLD	and	NEW	are	not	case	sensitive.)	In	an	INSERT	trigger,	only
NEW.col_name	can	be	used;	there	is	no	old	row.	In	a	DELETE	trigger,	only
OLD.col_name	can	be	used;	there	is	no	new	row.	In	an	UPDATE	trigger,	you	can
use	OLD.col_name	to	refer	to	the	columns	of	a	row	before	it	is	updated	and
NEW.col_name	to	refer	to	the	columns	of	the	row	after	it	is	updated.

A	column	named	with	OLD	is	read-only.	You	can	refer	to	it	(if	you	have	the
SELECT	privilege),	but	not	modify	it.	A	column	named	with	NEW	can	be	referred
to	if	you	have	the	SELECT	privilege	for	it.	In	a	BEFORE	trigger,	you	can	also
change	its	value	with	SET	NEW.col_name	=	value	if	you	have	the	UPDATE
privilege	for	it.	This	means	you	can	use	a	trigger	to	modify	the	values	to	be
inserted	into	a	new	row	or	that	are	used	to	update	a	row.

In	a	BEFORE	trigger,	the	NEW	value	for	an	AUTO_INCREMENT	column	is	0,	not	the
automatically	generated	sequence	number	that	will	be	generated	when	the	new
record	actually	is	inserted.

OLD	and	NEW	are	MySQL	extensions	to	triggers.

By	using	the	BEGIN	...	END	construct,	you	can	define	a	trigger	that	executes
multiple	statements.	Within	the	BEGIN	block,	you	also	can	use	other	syntax	that
is	allowed	within	stored	routines	such	as	conditionals	and	loops.	However,	just
as	for	stored	routines,	if	you	use	the	mysql	program	to	define	a	trigger	that
executes	multiple	statements,	it	is	necessary	to	redefine	the	mysql	statement
delimiter	so	that	you	can	use	the	;	statement	delimiter	within	the	trigger
definition.	The	following	example	illustrates	these	points.	It	defines	an	UPDATE
trigger	that	checks	the	new	value	to	be	used	for	updating	each	row,	and	modifies
the	value	to	be	within	the	range	from	0	to	100.	This	must	be	a	BEFORE	trigger
because	the	value	needs	to	be	checked	before	it	is	used	to	update	the	row:

mysql>	delimiter	//

mysql>	CREATE	TRIGGER	upd_check	BEFORE	UPDATE	ON	account

				->	FOR	EACH	ROW

				->	BEGIN

				->					IF	NEW.amount	<	0	THEN

				->									SET	NEW.amount	=	0;

				->					ELSEIF	NEW.amount	>	100	THEN

				->									SET	NEW.amount	=	100;

				->					END	IF;

				->	END;//

mysql>	delimiter	;

It	can	be	easier	to	define	a	stored	procedure	separately	and	then	invoke	it	from
the	trigger	using	a	simple	CALL	statement.	This	is	also	advantageous	if	you	want
to	invoke	the	same	routine	from	within	several	triggers.

There	are	some	limitations	on	what	can	appear	in	statements	that	a	trigger
executes	when	activated:

The	trigger	cannot	use	the	CALL	statement	to	invoke	stored	procedures	that
return	data	to	the	client	or	that	use	dynamic	SQL.	(Stored	procedures	are
allowed	to	return	data	to	the	trigger	through	OUT	or	INOUT	parameters.)

The	trigger	cannot	use	statements	that	explicitly	or	implicitly	begin	or	end	a
transaction	such	as	START	TRANSACTION,	COMMIT,	or	ROLLBACK.

Prior	to	MySQL	5.0.10,	triggers	cannot	contain	direct	references	to	tables
by	name.

MySQL	handles	errors	during	trigger	execution	as	follows:

If	a	BEFORE	trigger	fails,	the	operation	on	the	corresponding	row	is	not
performed.

An	AFTER	trigger	is	executed	only	if	the	BEFORE	trigger	(if	any)	and	the	row
operation	both	execute	successfully.

An	error	during	either	a	BEFORE	or	AFTER	trigger	results	in	failure	of	the
entire	statement	that	caused	trigger	invocation.

For	transactional	tables,	failure	of	a	trigger	(and	thus	the	whole	statement)
should	cause	rollback	of	all	changes	performed	by	the	statement.	For	non-
transactional	tables,	such	rollback	cannot	be	done,	so	although	the
statement	fails,	any	changes	performed	prior	to	the	point	of	the	error	remain
in	effect.

Chapter	19.	Views

Table	of	Contents

19.1.	ALTER	VIEW	Syntax
19.2.	CREATE	VIEW	Syntax
19.3.	DROP	VIEW	Syntax

Views	(including	updatable	views)	are	implemented	in	MySQL	Server	5.0.
Views	are	available	in	binary	releases	from	5.0.1	and	up.

This	chapter	discusses	the	following	topics:

Creating	or	altering	views	with	CREATE	VIEW	or	ALTER	VIEW

Destroying	views	with	DROP	VIEW

Discussion	of	restrictions	on	use	of	views	is	given	in	Section	I.4,	“Restrictions
on	Views”.

To	use	views	if	you	have	upgraded	to	MySQL	5.0.1	from	an	older	release,	you
should	upgrade	your	grant	tables	so	that	they	contain	the	view-related	privileges.
See	Section	5.6.2,	“mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade”.

Metadata	about	views	can	be	obtained	from	the	INFORMATION_SCHEMA.VIEWS
table	and	by	using	the	SHOW	CREATE	VIEW	statement.	See	Section	20.15,	“The
INFORMATION_SCHEMA	VIEWS	Table”,	and	Section	13.5.4.7,	“SHOW	CREATE	VIEW
Syntax”.

19.1.	ALTER	VIEW	Syntax
ALTER

				[ALGORITHM	=	{UNDEFINED	|	MERGE	|	TEMPTABLE}]

				[DEFINER	=	{	user	|	CURRENT_USER	}]

				[SQL	SECURITY	{	DEFINER	|	INVOKER	}]

				VIEW	view_name	[(column_list)]

				AS	select_statement

				[WITH	[CASCADED	|	LOCAL]	CHECK	OPTION]

This	statement	changes	the	definition	of	an	existing	view.	The	syntax	is	similar
to	that	for	CREATE	VIEW.	See	Section	19.2,	“CREATE	VIEW	Syntax”.	This
statement	requires	the	CREATE	VIEW	and	DROP	privileges	for	the	view,	and	some
privilege	for	each	column	referred	to	in	the	SELECT	statement.

This	statement	was	added	in	MySQL	5.0.1.	The	DEFINER	and	SQL	SECURITY
clauses	may	be	used	as	of	MySQL	5.0.16	to	specify	the	security	context	to	be
used	when	checking	access	privileges	at	view	invocation	time.	For	details,	see
Section	19.2,	“CREATE	VIEW	Syntax”.

19.2.	CREATE	VIEW	Syntax
CREATE

				[OR	REPLACE]

				[ALGORITHM	=	{UNDEFINED	|	MERGE	|	TEMPTABLE}]

				[DEFINER	=	{	user	|	CURRENT_USER	}]

				[SQL	SECURITY	{	DEFINER	|	INVOKER	}]

				VIEW	view_name	[(column_list)]

				AS	select_statement

				[WITH	[CASCADED	|	LOCAL]	CHECK	OPTION]

This	statement	creates	a	new	view,	or	replaces	an	existing	one	if	the	OR	REPLACE
clause	is	given.	The	select_statement	is	a	SELECT	statement	that	provides	the
definition	of	the	view.	The	statement	can	select	from	base	tables	or	other	views.

This	statement	requires	the	CREATE	VIEW	privilege	for	the	view,	and	some
privilege	for	each	column	selected	by	the	SELECT	statement.	For	columns	used
elsewhere	in	the	SELECT	statement	you	must	have	the	SELECT	privilege.	If	the	OR
REPLACE	clause	is	present,	you	must	also	have	the	DROP	privilege	for	the	view.

A	view	belongs	to	a	database.	By	default,	a	new	view	is	created	in	the	default
database.	To	create	the	view	explicitly	in	a	given	database,	specify	the	name	as
db_name.view_name	when	you	create	it.

mysql>	CREATE	VIEW	test.v	AS	SELECT	*	FROM	t;

Base	tables	and	views	share	the	same	namespace	within	a	database,	so	a
database	cannot	contain	a	base	table	and	a	view	that	have	the	same	name.

Views	must	have	unique	column	names	with	no	duplicates,	just	like	base	tables.
By	default,	the	names	of	the	columns	retrieved	by	the	SELECT	statement	are	used
for	the	view	column	names.	To	define	explicit	names	for	the	view	columns,	the
optional	column_list	clause	can	be	given	as	a	list	of	comma-separated
identifiers.	The	number	of	names	in	column_list	must	be	the	same	as	the
number	of	columns	retrieved	by	the	SELECT	statement.

Columns	retrieved	by	the	SELECT	statement	can	be	simple	references	to	table
columns.	They	can	also	be	expressions	that	use	functions,	constant	values,
operators,	and	so	forth.

Unqualified	table	or	view	names	in	the	SELECT	statement	are	interpreted	with
respect	to	the	default	database.	A	view	can	refer	to	tables	or	views	in	other
databases	by	qualifying	the	table	or	view	name	with	the	proper	database	name.

A	view	can	be	created	from	many	kinds	of	SELECT	statements.	It	can	refer	to
base	tables	or	other	views.	It	can	use	joins,	UNION,	and	subqueries.	The	SELECT
need	not	even	refer	to	any	tables.	The	following	example	defines	a	view	that
selects	two	columns	from	another	table,	as	well	as	an	expression	calculated	from
those	columns:

mysql>	CREATE	TABLE	t	(qty	INT,	price	INT);

mysql>	INSERT	INTO	t	VALUES(3,	50);

mysql>	CREATE	VIEW	v	AS	SELECT	qty,	price,	qty*price	AS	value	FROM	t;

mysql>	SELECT	*	FROM	v;

+------+-------+-------+

|	qty		|	price	|	value	|

+------+-------+-------+

|				3	|				50	|			150	|

+------+-------+-------+

A	view	definition	is	subject	to	the	following	restrictions:

The	SELECT	statement	cannot	contain	a	subquery	in	the	FROM	clause.

The	SELECT	statement	cannot	refer	to	system	or	user	variables.

The	SELECT	statement	cannot	refer	to	prepared	statement	parameters.

Within	a	stored	routine,	the	definition	cannot	refer	to	routine	parameters	or
local	variables.

Any	table	or	view	referred	to	in	the	definition	must	exist.	However,	after	a
view	has	been	created,	it	is	possible	to	drop	a	table	or	view	that	the
definition	refers	to.	In	this	case,	use	of	the	view	results	in	an	error.	To	check
a	view	definition	for	problems	of	this	kind,	use	the	CHECK	TABLE	statement.

The	definition	cannot	refer	to	a	TEMPORARY	table,	and	you	cannot	create	a
TEMPORARY	view.

The	tables	named	in	the	view	definition	must	already	exist.

You	cannot	associate	a	trigger	with	a	view.

ORDER	BY	is	allowed	in	a	view	definition,	but	it	is	ignored	if	you	select	from	a
view	using	a	statement	that	has	its	own	ORDER	BY.

For	other	options	or	clauses	in	the	definition,	they	are	added	to	the	options	or
clauses	of	the	statement	that	references	the	view,	but	the	effect	is	undefined.	For
example,	if	a	view	definition	includes	a	LIMIT	clause,	and	you	select	from	the
view	using	a	statement	that	has	its	own	LIMIT	clause,	it	is	undefined	which	limit
applies.	This	same	principle	applies	to	options	such	as	ALL,	DISTINCT,	or
SQL_SMALL_RESULT	that	follow	the	SELECT	keyword,	and	to	clauses	such	as	INTO,
FOR	UPDATE,	LOCK	IN	SHARE	MODE,	and	PROCEDURE.

If	you	create	a	view	and	then	change	the	query	processing	environment	by
changing	system	variables,	that	may	affect	the	results	that	you	get	from	the	view:

mysql>	CREATE	VIEW	v	AS	SELECT	CHARSET(CHAR(65)),	COLLATION(CHAR(65));

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	SET	NAMES	'latin1';

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	SELECT	*	FROM	v;

+-------------------+---------------------+

|	CHARSET(CHAR(65))	|	COLLATION(CHAR(65))	|

+-------------------+---------------------+

|	latin1												|	latin1_swedish_ci			|

+-------------------+---------------------+

1	row	in	set	(0.00	sec)

mysql>	SET	NAMES	'utf8';

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	SELECT	*	FROM	v;

+-------------------+---------------------+

|	CHARSET(CHAR(65))	|	COLLATION(CHAR(65))	|

+-------------------+---------------------+

|	utf8														|	utf8_general_ci					|

+-------------------+---------------------+

1	row	in	set	(0.00	sec)

The	DEFINER	and	SQL	SECURITY	clauses	specify	the	security	context	to	be	used
when	checking	access	privileges	at	view	invocation	time.	They	were	addded	in
MySQL	5.0.13,	but	have	no	effect	until	MySQL	5.0.16.

CURRENT_USER	also	can	be	given	as	CURRENT_USER().

Within	a	stored	routine	that	is	defined	with	the	SQL	SECURITY	DEFINER
characteristic,	CURRENT_USER	returns	the	routine	creator.	This	also	affects	a	view
defined	within	such	a	routine,	if	the	view	definition	contains	a	DEFINER	value	of
CURRENT_USER.

The	default	DEFINER	value	is	the	user	who	executes	the	CREATE	VIEW	statement.
(This	is	the	same	as	DEFINER	=	CURRENT_USER.)	If	a	user	value	is	given,	it
should	be	a	MySQL	account	in	'user_name'@'host_name'	format	(the	same
format	used	in	the	GRANT	statement).	The	user_name	and	host_name	values	both
are	required.

If	you	specify	the	DEFINER	clause,	you	cannot	set	the	value	to	any	user	but	your
own	unless	you	have	the	SUPER	privilege.	These	rules	determine	the	legal
DEFINER	user	values:

If	you	do	not	have	the	SUPER	privilege,	the	only	legal	user	value	is	your
own	account,	either	specified	literally	or	by	using	CURRENT_USER.	You
cannot	set	the	definer	to	some	other	account.

If	you	have	the	SUPER	privilege,	you	can	specify	any	syntactically	legal
account	name.	If	the	account	does	not	actually	exist,	a	warning	is	generated.

The	SQL	SECURITY	characteristic	determines	which	MySQL	account	to	use	when
checking	access	privileges	for	the	view	when	the	view	is	executed.	The	legal
characteristic	values	are	DEFINER	and	INVOKER.	These	indicate	that	the	view	must
be	executable	by	the	user	who	defined	it	or	invoked	it,	respectively.	The	default
SQL	SECURITY	value	is	DEFINER.

As	of	MySQL	5.0.16	(when	the	DEFINER	and	SQL	SECURITY	clauses	were
implemented),	view	privileges	are	checked	like	this:

At	view	definition	time,	the	view	creator	must	have	the	privileges	needed	to
use	the	top-level	objects	accessed	by	the	view.	For	example,	if	the	view
definition	refers	to	a	stored	function,	only	the	privileges	needed	to	invoke
the	function	can	be	checked.	The	privileges	required	when	the	function	runs
can	be	checked	only	as	it	executes:	For	different	invocations	of	the
function,	different	execution	paths	within	the	function	might	be	taken.

At	view	execution	time,	privileges	for	objects	accessed	by	the	view	are
checked	against	the	privileges	held	by	the	view	creator	or	invoker,

depending	on	whether	the	SQL	SECURITY	characteristic	is	DEFINER	or
INVOKER,	respectively.

If	view	execution	causes	execution	of	a	stored	function,	privilege	checking
for	statements	executed	within	the	function	depend	on	whether	the	function
is	defined	with	a	SQL	SECURITY	characteristic	of	DEFINER	or	INVOKER.	If	the
security	characteristic	is	DEFINER,	the	function	runs	with	the	privileges	of
its	creator.	If	the	characteristic	is	INVOKER,	the	function	runs	with	the
privileges	determined	by	the	view's	SQL	SECURITY	characteristic.

Prior	to	MySQL	5.0.16	(before	the	DEFINER	and	SQL	SECURITY	clauses	were
implemented),	privileges	required	for	objects	used	in	a	view	are	checked	at	view
creation	time.

Example:	A	view	might	depend	on	a	stored	function,	and	that	function	might
invoke	other	stored	routines.	For	example,	the	following	view	invokes	a	stored
function	f():

CREATE	VIEW	v	AS	SELECT	*	FROM	t	WHERE	t.id	=	f(t.name);

Suppose	that	f()	contains	a	statement	such	as	this:

IF	name	IS	NULL	then

		CALL	p1();

ELSE

		CALL	p2();

END	IF;

The	privileges	required	for	executing	statements	within	f()	need	to	be	checked
when	f()	executes.	This	might	mean	that	privileges	are	needed	for	p1()	or	p2(),
depending	on	the	execution	path	within	f().	Those	privileges	need	to	be
checked	at	runtime,	and	the	user	who	must	possess	the	privileges	is	determined
by	the	SQL	SECURITY	values	of	the	function	f()	and	the	view	v.

The	DEFINER	and	SQL	SECURITY	clauses	for	views	are	extensions	to	standard
SQL.	In	standard	SQL,	views	are	handled	using	the	rules	for	SQL	SECURITY
INVOKER.

If	you	invoke	a	view	that	was	created	before	MySQL	5.0.13,	it	is	treated	as
though	it	was	created	with	a	SQL	SECURITY	DEFINER	clause	and	with	a	DEFINER
value	that	is	the	same	as	your	account.	However,	because	the	actual	definer	is

unknown,	MySQL	issues	a	warning.	To	make	the	warning	go	away,	it	is
sufficient	to	re-create	the	view	so	that	the	view	definition	includes	a	DEFINER
clause.

The	optional	ALGORITHM	clause	is	a	MySQL	extension	to	standard	SQL.
ALGORITHM	takes	three	values:	MERGE,	TEMPTABLE,	or	UNDEFINED.	The	default
algorithm	is	UNDEFINED	if	no	ALGORITHM	clause	is	present.	The	algorithm	affects
how	MySQL	processes	the	view.

For	MERGE,	the	text	of	a	statement	that	refers	to	the	view	and	the	view	definition
are	merged	such	that	parts	of	the	view	definition	replace	corresponding	parts	of
the	statement.

For	TEMPTABLE,	the	results	from	the	view	are	retrieved	into	a	temporary	table,
which	then	is	used	to	execute	the	statement.

For	UNDEFINED,	MySQL	chooses	which	algorithm	to	use.	It	prefers	MERGE	over
TEMPTABLE	if	possible,	because	MERGE	is	usually	more	efficient	and	because	a
view	cannot	be	updatable	if	a	temporary	table	is	used.

A	reason	to	choose	TEMPTABLE	explicitly	is	that	locks	can	be	released	on
underlying	tables	after	the	temporary	table	has	been	created	and	before	it	is	used
to	finish	processing	the	statement.	This	might	result	in	quicker	lock	release	than
the	MERGE	algorithm	so	that	other	clients	that	use	the	view	are	not	blocked	as
long.

A	view	algorithm	can	be	UNDEFINED	for	three	reasons:

No	ALGORITHM	clause	is	present	in	the	CREATE	VIEW	statement.

The	CREATE	VIEW	statement	has	an	explicit	ALGORITHM	=	UNDEFINED
clause.

ALGORITHM	=	MERGE	is	specified	for	a	view	that	can	be	processed	only	with
a	temporary	table.	In	this	case,	MySQL	generates	a	warning	and	sets	the
algorithm	to	UNDEFINED.

As	mentioned	earlier,	MERGE	is	handled	by	merging	corresponding	parts	of	a
view	definition	into	the	statement	that	refers	to	the	view.	The	following
examples	briefly	illustrate	how	the	MERGE	algorithm	works.	The	examples

assume	that	there	is	a	view	v_merge	that	has	this	definition:

CREATE	ALGORITHM	=	MERGE	VIEW	v_merge	(vc1,	vc2)	AS

SELECT	c1,	c2	FROM	t	WHERE	c3	>	100;

Example	1:	Suppose	that	we	issue	this	statement:

SELECT	*	FROM	v_merge;

MySQL	handles	the	statement	as	follows:

v_merge	becomes	t

*	becomes	vc1,	vc2,	which	corresponds	to	c1,	c2

The	view	WHERE	clause	is	added

The	resulting	statement	to	be	executed	becomes:

SELECT	c1,	c2	FROM	t	WHERE	c3	>	100;

Example	2:	Suppose	that	we	issue	this	statement:

SELECT	*	FROM	v_merge	WHERE	vc1	<	100;

This	statement	is	handled	similarly	to	the	previous	one,	except	that	vc1	<	100
becomes	c1	<	100	and	the	view	WHERE	clause	is	added	to	the	statement	WHERE
clause	using	an	AND	connective	(and	parentheses	are	added	to	make	sure	the	parts
of	the	clause	are	executed	with	correct	precedence).	The	resulting	statement	to
be	executed	becomes:

SELECT	c1,	c2	FROM	t	WHERE	(c3	>	100)	AND	(c1	<	100);

Effectively,	the	statement	to	be	executed	has	a	WHERE	clause	of	this	form:

WHERE	(select	WHERE)	AND	(view	WHERE)

The	MERGE	algorithm	requires	a	one-to-one	relationship	between	the	rows	in	the
view	and	the	rows	in	the	underlying	table.	If	this	relationship	does	not	hold,	a
temporary	table	must	be	used	instead.	Lack	of	a	one-to-one	relationship	occurs	if
the	view	contains	any	of	a	number	of	constructs:

Aggregate	functions	(SUM(),	MIN(),	MAX(),	COUNT(),	and	so	forth)

DISTINCT

GROUP	BY

HAVING

UNION	or	UNION	ALL

Refers	only	to	literal	values	(in	this	case,	there	is	no	underlying	table)

Some	views	are	updatable.	That	is,	you	can	use	them	in	statements	such	as
UPDATE,	DELETE,	or	INSERT	to	update	the	contents	of	the	underlying	table.	For	a
view	to	be	updatable,	there	must	be	a	one-to-one	relationship	between	the	rows
in	the	view	and	the	rows	in	the	underlying	table.	There	are	also	certain	other
constructs	that	make	a	view	non-updatable.	To	be	more	specific,	a	view	is	not
updatable	if	it	contains	any	of	the	following:

Aggregate	functions	(SUM(),	MIN(),	MAX(),	COUNT(),	and	so	forth)

DISTINCT

GROUP	BY

HAVING

UNION	or	UNION	ALL

Subquery	in	the	select	list

Join

Non-updatable	view	in	the	FROM	clause

A	subquery	in	the	WHERE	clause	that	refers	to	a	table	in	the	FROM	clause

Refers	only	to	literal	values	(in	this	case,	there	is	no	underlying	table	to
update)

ALGORITHM	=	TEMPTABLE	(use	of	a	temporary	table	always	makes	a	view

non-updatable)

With	respect	to	insertability	(being	updatable	with	INSERT	statements),	an
updatable	view	is	insertable	if	it	also	satisfies	these	additional	requirements	for
the	view	columns:

There	must	be	no	duplicate	view	column	names.

The	view	must	contain	all	columns	in	the	base	table	that	do	not	have	a
default	value.

The	view	columns	must	be	simple	column	references	and	not	derived
columns.	A	derived	column	is	one	that	is	not	a	simple	column	reference	but
is	derived	from	an	expression.	These	are	examples	of	derived	columns:

3.14159

col1	+	3

UPPER(col2)

col3	/	col4

(subquery)

A	view	that	has	a	mix	of	simple	column	references	and	derived	columns	is	not
insertable,	but	it	can	be	updatable	if	you	update	only	those	columns	that	are	not
derived.	Consider	this	view:

CREATE	VIEW	v	AS	SELECT	col1,	1	AS	col2	FROM	t;

This	view	is	not	insertable	because	col2	is	derived	from	an	expression.	But	it	is
updatable	if	the	update	does	not	try	to	update	col2.	This	update	is	allowable:

UPDATE	v	SET	col1	=	0;

This	update	is	not	allowable	because	it	attempts	to	update	a	derived	column:

UPDATE	v	SET	col2	=	0;

It	is	sometimes	possible	for	a	multiple-table	view	to	be	updatable,	assuming	that
it	can	be	processed	with	the	MERGE	algorithm.	For	this	to	work,	the	view	must	use
an	inner	join	(not	an	outer	join	or	a	UNION).	Also,	only	a	single	table	in	the	view
definition	can	be	updated,	so	the	SET	clause	must	name	only	columns	from	one
of	the	tables	in	the	view.	Views	that	use	UNION	ALL	are	disallowed	even	though
they	might	be	theoretically	updatable,	because	the	implementation	uses

temporary	tables	to	process	them.

For	a	multiple-table	updatable	view,	INSERT	can	work	if	it	inserts	into	a	single
table.	DELETE	is	not	supported.

The	WITH	CHECK	OPTION	clause	can	be	given	for	an	updatable	view	to	prevent
inserts	or	updates	to	rows	except	those	for	which	the	WHERE	clause	in	the
select_statement	is	true.

In	a	WITH	CHECK	OPTION	clause	for	an	updatable	view,	the	LOCAL	and	CASCADED
keywords	determine	the	scope	of	check	testing	when	the	view	is	defined	in	terms
of	another	view.	The	LOCAL	keyword	restricts	the	CHECK	OPTION	only	to	the	view
being	defined.	CASCADED	causes	the	checks	for	underlying	views	to	be	evaluated
as	well.	When	neither	keyword	is	given,	the	default	is	CASCADED.	Consider	the
definitions	for	the	following	table	and	set	of	views:

mysql>	CREATE	TABLE	t1	(a	INT);

mysql>	CREATE	VIEW	v1	AS	SELECT	*	FROM	t1	WHERE	a	<	2

				->	WITH	CHECK	OPTION;

mysql>	CREATE	VIEW	v2	AS	SELECT	*	FROM	v1	WHERE	a	>	0

				->	WITH	LOCAL	CHECK	OPTION;

mysql>	CREATE	VIEW	v3	AS	SELECT	*	FROM	v1	WHERE	a	>	0

				->	WITH	CASCADED	CHECK	OPTION;

Here	the	v2	and	v3	views	are	defined	in	terms	of	another	view,	v1.	v2	has	a
LOCAL	check	option,	so	inserts	are	tested	only	against	the	v2	check.	v3	has	a
CASCADED	check	option,	so	inserts	are	tested	not	only	against	its	own	check,	but
against	those	of	underlying	views.	The	following	statements	illustrate	these
differences:

mysql>	INSERT	INTO	v2	VALUES	(2);

Query	OK,	1	row	affected	(0.00	sec)

mysql>	INSERT	INTO	v3	VALUES	(2);

ERROR	1369	(HY000):	CHECK	OPTION	failed	'test.v3'

The	updatability	of	views	may	be	affected	by	the	value	of	the
updatable_views_with_limit	system	variable.	See	Section	5.2.2,	“Server
System	Variables”.

The	CREATE	VIEW	statement	was	added	in	MySQL	5.0.1.	The	WITH	CHECK
OPTION	clause	was	implemented	in	MySQL	5.0.2.

19.3.	DROP	VIEW	Syntax
DROP	VIEW	[IF	EXISTS]

				view_name	[,	view_name]	...

				[RESTRICT	|	CASCADE]

DROP	VIEW	removes	one	or	more	views.	You	must	have	the	DROP	privilege	for
each	view.	If	any	of	the	views	named	in	the	argument	list	do	not	exist,	MySQL
returns	an	error	indicating	by	name	which	non-existing	views	it	was	unable	to
drop,	but	it	also	drops	all	of	the	views	in	the	list	that	do	exist.

The	IF	EXISTS	clause	prevents	an	error	from	occurring	for	views	that	don't
exist.	When	this	clause	is	given,	a	NOTE	is	generated	for	each	non-existent	view.
See	Section	13.5.4.25,	“SHOW	WARNINGS	Syntax”.

RESTRICT	and	CASCADE,	if	given,	are	parsed	and	ignored.

This	statement	was	added	in	MySQL	5.0.1.

Chapter	20.	The	INFORMATION_SCHEMA	Database

Table	of	Contents

20.1.	The	INFORMATION_SCHEMA	SCHEMATA	Table
20.2.	The	INFORMATION_SCHEMA	TABLES	Table
20.3.	The	INFORMATION_SCHEMA	COLUMNS	Table
20.4.	The	INFORMATION_SCHEMA	STATISTICS	Table
20.5.	The	INFORMATION_SCHEMA	USER_PRIVILEGES	Table
20.6.	The	INFORMATION_SCHEMA	SCHEMA_PRIVILEGES	Table
20.7.	The	INFORMATION_SCHEMA	TABLE_PRIVILEGES	Table
20.8.	The	INFORMATION_SCHEMA	COLUMN_PRIVILEGES	Table
20.9.	The	INFORMATION_SCHEMA	CHARACTER_SETS	Table
20.10.	The	INFORMATION_SCHEMA	COLLATIONS	Table
20.11.	The	INFORMATION_SCHEMA	COLLATION_CHARACTER_SET_APPLICABILITY
Table
20.12.	The	INFORMATION_SCHEMA	TABLE_CONSTRAINTS	Table
20.13.	The	INFORMATION_SCHEMA	KEY_COLUMN_USAGE	Table
20.14.	The	INFORMATION_SCHEMA	ROUTINES	Table
20.15.	The	INFORMATION_SCHEMA	VIEWS	Table
20.16.	The	INFORMATION_SCHEMA	TRIGGERS	Table
20.17.	Other	INFORMATION_SCHEMA	Tables
20.18.	Extensions	to	SHOW	Statements

INFORMATION_SCHEMA	provides	access	to	database	metadata.

Metadata	is	data	about	the	data,	such	as	the	name	of	a	database	or	table,	the	data
type	of	a	column,	or	access	privileges.	Other	terms	that	sometimes	are	used	for
this	information	are	data	dictionary	and	system	catalog.

INFORMATION_SCHEMA	is	the	information	database,	the	place	that	stores
information	about	all	the	other	databases	that	the	MySQL	server	maintains.
Inside	INFORMATION_SCHEMA	there	are	several	read-only	tables.	They	are	actually
views,	not	base	tables,	so	there	are	no	files	associated	with	them.

In	effect,	we	have	a	database	named	INFORMATION_SCHEMA,	although	the	server
does	not	create	a	database	directory	with	that	name.	It	is	possible	to	select
INFORMATION_SCHEMA	as	the	default	database	with	a	USE	statement,	but	it	is

possible	only	to	read	the	contents	of	tables.	You	cannot	insert	into	them,	update
them,	or	delete	from	them.

Here	is	an	example	of	a	statement	that	retrieves	information	from
INFORMATION_SCHEMA:

mysql>	SELECT	table_name,	table_type,	engine

				->	FROM	information_schema.tables

				->	WHERE	table_schema	=	'db5'

				->	ORDER	BY	table_name	DESC;

+------------+------------+--------+

|	table_name	|	table_type	|	engine	|

+------------+------------+--------+

|	v56								|	VIEW							|	NULL			|

|	v3									|	VIEW							|	NULL			|

|	v2									|	VIEW							|	NULL			|

|	v										|	VIEW							|	NULL			|

|	tables					|	BASE	TABLE	|	MyISAM	|

|	t7									|	BASE	TABLE	|	MyISAM	|

|	t3									|	BASE	TABLE	|	MyISAM	|

|	t2									|	BASE	TABLE	|	MyISAM	|

|	t										|	BASE	TABLE	|	MyISAM	|

|	pk									|	BASE	TABLE	|	InnoDB	|

|	loop							|	BASE	TABLE	|	MyISAM	|

|	kurs							|	BASE	TABLE	|	MyISAM	|

|	k										|	BASE	TABLE	|	MyISAM	|

|	into							|	BASE	TABLE	|	MyISAM	|

|	goto							|	BASE	TABLE	|	MyISAM	|

|	fk2								|	BASE	TABLE	|	InnoDB	|

|	fk									|	BASE	TABLE	|	InnoDB	|

+------------+------------+--------+

17	rows	in	set	(0.01	sec)

Explanation:	The	statement	requests	a	list	of	all	the	tables	in	database	db5,	in
reverse	alphabetical	order,	showing	just	three	pieces	of	information:	the	name	of
the	table,	its	type,	and	its	storage	engine.

Each	MySQL	user	has	the	right	to	access	these	tables,	but	can	see	only	the	rows
in	the	tables	that	correspond	to	objects	for	which	the	user	has	the	proper	access
privileges.

The	SELECT	...	FROM	INFORMATION_SCHEMA	statement	is	intended	as	a	more
consistent	way	to	provide	access	to	the	information	provided	by	the	various	SHOW
statements	that	MySQL	supports	(SHOW	DATABASES,	SHOW	TABLES,	and	so	forth).
Using	SELECT	has	these	advantages,	compared	to	SHOW:

It	conforms	to	Codd's	rules.	That	is,	all	access	is	done	on	tables.

Nobody	needs	to	learn	a	new	statement	syntax.	Because	they	already	know
how	SELECT	works,	they	only	need	to	learn	the	object	names.

The	implementor	need	not	worry	about	adding	keywords.

There	are	millions	of	possible	output	variations,	instead	of	just	one.	This
provides	more	flexibility	for	applications	that	have	varying	requirements
about	what	metadata	they	need.

Migration	is	easier	because	every	other	DBMS	does	it	this	way.

However,	because	SHOW	is	popular	with	MySQL	employees	and	users,	and
because	it	might	be	confusing	were	it	to	disappear,	the	advantages	of
conventional	syntax	are	not	a	sufficient	reason	to	eliminate	SHOW.	In	fact,	along
with	the	implementation	of	INFORMATION_SCHEMA,	there	are	enhancements	to
SHOW	as	well.	These	are	described	in	Section	20.18,	“Extensions	to	SHOW
Statements”.

There	is	no	difference	between	the	privileges	required	for	SHOW	statements	and
those	required	to	select	information	from	INFORMATION_SCHEMA.	In	either	case,
you	have	to	have	some	privilege	on	an	object	in	order	to	see	information	about
it.

The	implementation	for	the	INFORMATION_SCHEMA	table	structures	in	MySQL
follows	the	ANSI/ISO	SQL:2003	standard	Part	11	Schemata.	Our	intent	is
approximate	compliance	with	SQL:2003	core	feature	F021	Basic	information
schema.

Users	of	SQL	Server	2000	(which	also	follows	the	standard)	may	notice	a	strong
similarity.	However,	MySQL	has	omitted	many	columns	that	are	not	relevant	for
our	implementation,	and	added	columns	that	are	MySQL-specific.	One	such
column	is	the	ENGINE	column	in	the	INFORMATION_SCHEMA.TABLES	table.

Although	other	DBMSs	use	a	variety	of	names,	like	syscat	or	system,	the
standard	name	is	INFORMATION_SCHEMA.

The	following	sections	describe	each	of	the	tables	and	columns	that	are	in
INFORMATION_SCHEMA.	For	each	column,	there	are	three	pieces	of	information:

“INFORMATION_SCHEMA	Name”	indicates	the	name	for	the	column	in	the
INFORMATION_SCHEMA	table.	This	corresponds	to	the	standard	SQL	name
unless	the	“Remarks”	field	says	“MySQL	extension.”

“SHOW	Name”	indicates	the	equivalent	field	name	in	the	closest	SHOW
statement,	if	there	is	one.

“Remarks”	provides	additional	information	where	applicable.	If	this	field	is
NULL,	it	means	that	the	value	of	the	column	is	always	NULL.	If	this	field	says
“MySQL	extension,”	the	column	is	a	MySQL	extension	to	standard	SQL.

To	avoid	using	any	name	that	is	reserved	in	the	standard	or	in	DB2,	SQL	Server,
or	Oracle,	we	changed	the	names	of	some	columns	marked	“MySQL	extension”.
(For	example,	we	changed	COLLATION	to	TABLE_COLLATION	in	the	TABLES	table.)
See	the	list	of	reserved	words	near	the	end	of	this	article:
http://www.dbazine.com/gulutzan5.shtml.

The	definition	for	character	columns	(for	example,	TABLES.TABLE_NAME)	is
generally	VARCHAR(N)	CHARACTER	SET	utf8	where	N	is	at	least	64.

Each	section	indicates	what	SHOW	statement	is	equivalent	to	a	SELECT	that
retrieves	information	from	INFORMATION_SCHEMA,	if	there	is	such	a	statement.

Note:	At	present,	there	are	some	missing	columns	and	some	columns	out	of
order.	We	are	working	on	this	and	update	the	documentation	as	changes	are
made.

http://www.dbazine.com/gulutzan5.shtml

20.1.	The	INFORMATION_SCHEMA	SCHEMATA	Table

A	schema	is	a	database,	so	the	SCHEMATA	table	provides	information	about
databases.

INFORMATION_SCHEMA	Name SHOW	Name Remarks
CATALOG_NAME 	 NULL

SCHEMA_NAME 	 Database
DEFAULT_CHARACTER_SET_NAME 	 	
DEFAULT_COLLATION_NAME 	 	
SQL_PATH 	 NULL

Notes:

DEFAULT_COLLATION_NAME	was	added	in	MySQL	5.0.6.

The	following	statements	are	equivalent:

SELECT	SCHEMA_NAME	AS	`Database`

		FROM	INFORMATION_SCHEMA.SCHEMATA

		[WHERE	SCHEMA_NAME	LIKE	'wild']

SHOW	DATABASES

		[LIKE	'wild']

20.2.	The	INFORMATION_SCHEMA	TABLES	Table

The	TABLES	table	provides	information	about	tables	in	databases.

INFORMATION_SCHEMA	Name SHOW	Name Remarks
TABLE_CATALOG 	 NULL

TABLE_SCHEMA Table_... 	
TABLE_NAME Table_... 	
TABLE_TYPE 	 	
ENGINE Engine MySQL	extension
VERSION Version MySQL	extension
ROW_FORMAT Row_format MySQL	extension
TABLE_ROWS Rows MySQL	extension
AVG_ROW_LENGTH Avg_row_length MySQL	extension
DATA_LENGTH Data_length MySQL	extension
MAX_DATA_LENGTH Max_data_length MySQL	extension
INDEX_LENGTH Index_length MySQL	extension
DATA_FREE Data_free MySQL	extension
AUTO_INCREMENT Auto_increment MySQL	extension
CREATE_TIME Create_time MySQL	extension
UPDATE_TIME Update_time MySQL	extension
CHECK_TIME Check_time MySQL	extension
TABLE_COLLATION Collation MySQL	extension
CHECKSUM Checksum MySQL	extension
CREATE_OPTIONS Create_options MySQL	extension
TABLE_COMMENT Comment MySQL	extension

Notes:

TABLE_SCHEMA	and	TABLE_NAME	are	a	single	field	in	a	SHOW	display,	for
example	Table_in_db1.

TABLE_TYPE	should	be	BASE	TABLE	or	VIEW.	If	table	is	temporary,	then
TABLE_TYPE	=	TEMPORARY.	(There	are	no	temporary	views,	so	this	is	not
ambiguous.)

The	TABLE_ROWS	column	is	NULL	if	the	table	is	in	the	INFORMATION_SCHEMA
database.	For	InnoDB	tables,	the	row	count	is	only	a	rough	estimate	used	in
SQL	optimization.

We	have	nothing	for	the	table's	default	character	set.	TABLE_COLLATION	is
close,	because	collation	names	begin	with	a	character	set	name.

The	following	statements	are	equivalent:

SELECT	table_name	FROM	INFORMATION_SCHEMA.TABLES

		[WHERE	table_schema	=	'db_name']

		[WHERE|AND	table_name	LIKE	'wild']

SHOW	TABLES

		[FROM	db_name]

		[LIKE	'wild']

20.3.	The	INFORMATION_SCHEMA	COLUMNS	Table

The	COLUMNS	table	provides	information	about	columns	in	tables.

INFORMATION_SCHEMA	Name SHOW	Name Remarks
TABLE_CATALOG 	 NULL

TABLE_SCHEMA 	 	
TABLE_NAME 	 	
COLUMN_NAME Field 	
ORDINAL_POSITION 	 see	notes
COLUMN_DEFAULT Default 	
IS_NULLABLE Null 	
DATA_TYPE Type 	
CHARACTER_MAXIMUM_LENGTH Type 	
CHARACTER_OCTET_LENGTH 	 	
NUMERIC_PRECISION Type 	
NUMERIC_SCALE Type 	
CHARACTER_SET_NAME 	 	
COLLATION_NAME Collation 	
COLUMN_TYPE Type MySQL	extension
COLUMN_KEY Key MySQL	extension
EXTRA Extra MySQL	extension
COLUMN_COMMENT Comment MySQL	extension

Notes:

In	SHOW,	the	Type	display	includes	values	from	several	different	COLUMNS
columns.

ORDINAL_POSITION	is	necessary	because	you	might	want	to	say	ORDER	BY
ORDINAL_POSITION.	Unlike	SHOW,	SELECT	does	not	have	automatic	ordering.

CHARACTER_OCTET_LENGTH	should	be	the	same	as

CHARACTER_MAXIMUM_LENGTH,	except	for	multi-byte	character	sets.

CHARACTER_SET_NAME	can	be	derived	from	Collation.	For	example,	if	you
say	SHOW	FULL	COLUMNS	FROM	t,	and	you	see	in	the	Collation	column	a
value	of	latin1_swedish_ci,	the	character	set	is	what's	before	the	first
underscore:	latin1.

The	following	statements	are	nearly	equivalent:

SELECT	COLUMN_NAME,	DATA_TYPE,	IS_NULLABLE,	COLUMN_DEFAULT

		FROM	INFORMATION_SCHEMA.COLUMNS

		WHERE	table_name	=	'tbl_name'

		[AND	table_schema	=	'db_name']

		[AND	column_name	LIKE	'wild']

SHOW	COLUMNS

		FROM	tbl_name

		[FROM	db_name]

		[LIKE	'wild']

20.4.	The	INFORMATION_SCHEMA	STATISTICS	Table

The	STATISTICS	table	provides	information	about	table	indexes.

INFORMATION_SCHEMA	Name SHOW	Name Remarks
TABLE_CATALOG 	 NULL

TABLE_SCHEMA 	 =	Database
TABLE_NAME Table 	
NON_UNIQUE Non_unique 	
INDEX_SCHEMA 	 =	Database
INDEX_NAME Key_name 	
SEQ_IN_INDEX Seq_in_index 	
COLUMN_NAME Column_name 	
COLLATION Collation 	
CARDINALITY Cardinality 	
SUB_PART Sub_part MySQL	extension
PACKED Packed MySQL	extension
NULLABLE Null MySQL	extension
INDEX_TYPE Index_type MySQL	extension
COMMENT Comment MySQL	extension

Notes:

There	is	no	standard	table	for	indexes.	The	preceding	list	is	similar	to	what
SQL	Server	2000	returns	for	sp_statistics,	except	that	we	replaced	the
name	QUALIFIER	with	CATALOG	and	we	replaced	the	name	OWNER	with
SCHEMA.

Clearly,	the	preceding	table	and	the	output	from	SHOW	INDEX	are	derived
from	the	same	parent.	So	the	correlation	is	already	close.

The	following	statements	are	equivalent:

SELECT	*	FROM	INFORMATION_SCHEMA.STATISTICS

		WHERE	table_name	=	'tbl_name'

		[AND	table_schema	=	'db_name']

SHOW	INDEX

		FROM	tbl_name

		[FROM	db_name]

20.5.	The	INFORMATION_SCHEMA	USER_PRIVILEGES
Table

The	USER_PRIVILEGES	table	provides	information	about	global	privileges.	This
information	comes	from	the	mysql.user	grant	table.

INFORMATION_SCHEMA

Name
SHOW

Name Remarks

GRANTEE 	 'user_name'@'host_name'	value,	MySQL
extension

TABLE_CATALOG 	 NULL,	MySQL	extension
PRIVILEGE_TYPE 	 MySQL	extension
IS_GRANTABLE 	 MySQL	extension

Notes:

This	is	a	non-standard	table.	It	takes	its	values	from	the	mysql.user	table.

20.6.	The	INFORMATION_SCHEMA	SCHEMA_PRIVILEGES
Table

The	SCHEMA_PRIVILEGES	table	provides	information	about	schema	(database)
privileges.	This	information	comes	from	the	mysql.db	grant	table.

INFORMATION_SCHEMA

Name
SHOW

Name Remarks

GRANTEE 	 'user_name'@'host_name'	value,	MySQL
extension

TABLE_CATALOG 	 NULL,	MySQL	extension
TABLE_SCHEMA 	 MySQL	extension
PRIVILEGE_TYPE 	 MySQL	extension
IS_GRANTABLE 	 MySQL	extension

Notes:

This	is	a	non-standard	table.	It	takes	its	values	from	the	mysql.db	table.

20.7.	The	INFORMATION_SCHEMA	TABLE_PRIVILEGES
Table

The	TABLE_PRIVILEGES	table	provides	information	about	table	privileges.	This
information	comes	from	the	mysql.tables_priv	grant	table.

INFORMATION_SCHEMA	Name SHOW	Name Remarks
GRANTEE 	 'user_name'@'host_name'	value
TABLE_CATALOG 	 NULL

TABLE_SCHEMA 	 	
TABLE_NAME 	 	
PRIVILEGE_TYPE 	 	
IS_GRANTABLE 	 	

Notes:

PRIVILEGE_TYPE	can	contain	one	(and	only	one)	of	these	values:	SELECT,
INSERT,	UPDATE,	REFERENCES,	ALTER,	INDEX,	DROP,	CREATE	VIEW.

The	following	statements	are	not	equivalent:

SELECT	...	FROM	INFORMATION_SCHEMA.TABLE_PRIVILEGES

SHOW	GRANTS	...

20.8.	The	INFORMATION_SCHEMA	COLUMN_PRIVILEGES
Table

The	COLUMN_PRIVILEGES	table	provides	information	about	column	privileges.
This	information	comes	from	the	mysql.columns_priv	grant	table.

INFORMATION_SCHEMA	Name SHOW	Name Remarks
GRANTEE 	 'user_name'@'host_name'	value
TABLE_CATALOG 	 NULL

TABLE_SCHEMA 	 	
TABLE_NAME 	 	
COLUMN_NAME 	 	
PRIVILEGE_TYPE 	 	
IS_GRANTABLE 	 	

Notes:

In	the	output	from	SHOW	FULL	COLUMNS,	the	privileges	are	all	in	one	field
and	in	lowercase,	for	example,	select,insert,update,references.	In
COLUMN_PRIVILEGES,	there	is	one	privilege	per	row,	in	uppercase.

PRIVILEGE_TYPE	can	contain	one	(and	only	one)	of	these	values:	SELECT,
INSERT,	UPDATE,	REFERENCES.

If	the	user	has	GRANT	OPTION	privilege,	IS_GRANTABLE	should	be	YES.
Otherwise,	IS_GRANTABLE	should	be	NO.	The	output	does	not	list	GRANT
OPTION	as	a	separate	privilege.

The	following	statements	are	not	equivalent:

SELECT	...	FROM	INFORMATION_SCHEMA.COLUMN_PRIVILEGES

SHOW	GRANTS	...

20.9.	The	INFORMATION_SCHEMA	CHARACTER_SETS	Table

The	CHARACTER_SETS	table	provides	information	about	available	character	sets.

INFORMATION_SCHEMA	Name SHOW	Name Remarks
CHARACTER_SET_NAME Charset 	
DEFAULT_COLLATE_NAME Default	collation 	
DESCRIPION Description MySQL	extension
MAXLEN Maxlen MySQL	extension

The	following	statements	are	equivalent:

SELECT	*	FROM	INFORMATION_SCHEMA.CHARACTER_SETS

		[WHERE	name	LIKE	'wild']

SHOW	CHARACTER	SET

		[LIKE	'wild']

20.10.	The	INFORMATION_SCHEMA	COLLATIONS	Table

The	COLLATIONS	table	provides	information	about	collations	for	each	character
set.

INFORMATION_SCHEMA	Name SHOW	Name Remarks
COLLATION_NAME Collation 	
CHARACTER_SET_NAME Charset MySQL	extension
ID Id MySQL	extension
IS_DEFAULT Default MySQL	extension
IS_COMPILED Compiled MySQL	extension
SORTLEN Sortlen MySQL	extension

The	following	statements	are	equivalent:

SELECT	COLLATION_NAME	FROM	INFORMATION_SCHEMA.COLLATIONS

		[WHERE	collation_name	LIKE	'wild']

SHOW	COLLATION

		[LIKE	'wild']

20.11.	The	INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY	Table

The	COLLATION_CHARACTER_SET_APPLICABILITY	table	indicates	what	character
set	is	applicable	for	what	collation.	The	columns	are	equivalent	to	the	first	two
display	fields	that	we	get	from	SHOW	COLLATION.

INFORMATION_SCHEMA	Name SHOW	Name Remarks
COLLATION_NAME Collation 	
CHARACTER_SET_NAME Charset 	

20.12.	The	INFORMATION_SCHEMA	TABLE_CONSTRAINTS
Table

The	TABLE_CONSTRAINTS	table	describes	which	tables	have	constraints.

INFORMATION_SCHEMA	Name SHOW	Name Remarks
CONSTRAINT_CATALOG 	 NULL

CONSTRAINT_SCHEMA 	 	
CONSTRAINT_NAME 	 	
TABLE_SCHEMA 	 	
TABLE_NAME 	 	
CONSTRAINT_TYPE 	 	

Notes:

The	CONSTRAINT_TYPE	value	can	be	UNIQUE,	PRIMARY	KEY,	or	FOREIGN	KEY.

The	UNIQUE	and	PRIMARY	KEY	information	is	about	the	same	as	what	you
get	from	the	Key_name	field	in	the	output	from	SHOW	INDEX	when	the
Non_unique	field	is	0.

The	CONSTRAINT_TYPE	column	can	contain	one	of	these	values:	UNIQUE,
PRIMARY	KEY,	FOREIGN	KEY,	CHECK.	This	is	a	CHAR	(not	ENUM)	column.	The
CHECK	value	is	not	available	until	we	support	CHECK.

20.13.	The	INFORMATION_SCHEMA	KEY_COLUMN_USAGE
Table

The	KEY_COLUMN_USAGE	table	describes	which	key	columns	have	constraints.

INFORMATION_SCHEMA	Name SHOW	Name Remarks
CONSTRAINT_CATALOG 	 NULL

CONSTRAINT_SCHEMA 	 	
CONSTRAINT_NAME 	 	
TABLE_CATALOG 	 	
TABLE_SCHEMA 	 	
TABLE_NAME 	 	
COLUMN_NAME 	 	
ORDINAL_POSITION 	 	
POSITION_IN_UNIQUE_CONSTRAINT 	 	
REFERENCED_TABLE_SCHEMA 	 	
REFERENCED_TABLE_NAME 	 	
REFERENCED_COLUMN_NAME 	 	

Notes:

If	the	constraint	is	a	foreign	key,	then	this	is	the	column	of	the	foreign	key,
not	the	column	that	the	foreign	key	references.

The	value	of	ORDINAL_POSITION	is	the	column's	position	within	the
constraint,	not	the	column's	position	within	the	table.	Column	positions	are
numbered	beginning	with	1.

The	value	of	POSITION_IN_UNIQUE_CONSTRAINT	is	NULL	for	unique	and
primary-key	constraints.	For	foreign-key	constraints,	it	is	the	ordinal
position	in	key	of	the	table	that	is	being	referenced.

For	example,	suppose	that	there	are	two	tables	name	t1	and	t3	that	have	the
following	definitions:

CREATE	TABLE	t1

(

				s1	INT,

				s2	INT,

				s3	INT,

				PRIMARY	KEY(s3)

)	ENGINE=InnoDB;

CREATE	TABLE	t3

(

				s1	INT,

				s2	INT,

				s3	INT,

				KEY(s1),

				CONSTRAINT	CO	FOREIGN	KEY	(s2)	REFERENCES	t1(s3)

)	ENGINE=InnoDB;

For	those	two	tables,	the	KEY_COLUMN_USAGE	table	has	two	rows:

One	row	with	CONSTRAINT_NAME	=	'PRIMARY',	TABLE_NAME	=	't1',
COLUMN_NAME	=	's3',	ORDINAL_POSITION	=	1,
POSITION_IN_UNIQUE_CONSTRAINT	=	NULL.

One	row	with	CONSTRAINT_NAME	=	'CO',	TABLE_NAME	=	't3',
COLUMN_NAME	=	's2',	ORDINAL_POSITION	=	1,
POSITION_IN_UNIQUE_CONSTRAINT	=	1.

REFERENCED_TABLE_SCHEMA,	REFERENCED_TABLE_NAME,	and
REFERENCED_COLUMN_NAME	were	added	in	MySQL	5.0.6.

20.14.	The	INFORMATION_SCHEMA	ROUTINES	Table

The	ROUTINES	table	provides	information	about	stored	routines	(both	procedures
and	functions).	The	ROUTINES	table	does	not	include	user-defined	functions
(UDFs)	at	this	time.

The	column	named	“mysql.proc	name”	indicates	the	mysql.proc	table	column
that	corresponds	to	the	INFORMATION_SCHEMA.ROUTINES	table	column,	if	any.

INFORMATION_SCHEMA	Name mysql.proc	Name Remarks
SPECIFIC_NAME specific_name 	
ROUTINE_CATALOG 	 NULL

ROUTINE_SCHEMA db 	
ROUTINE_NAME name 	
ROUTINE_TYPE type {PROCEDURE|FUNCTION}

DTD_IDENTIFIER 	 (data	type	descriptor)
ROUTINE_BODY 	 SQL

ROUTINE_DEFINITION body 	
EXTERNAL_NAME 	 NULL

EXTERNAL_LANGUAGE language NULL

PARAMETER_STYLE 	 SQL

IS_DETERMINISTIC is_deterministic 	
SQL_DATA_ACCESS sql_data_access 	
SQL_PATH 	 NULL

SECURITY_TYPE security_type 	
CREATED created 	
LAST_ALTERED modified 	
SQL_MODE sql_mode MySQL	extension
ROUTINE_COMMENT comment MySQL	extension
DEFINER definer MySQL	extension

Notes:

MySQL	calculates	EXTERNAL_LANGUAGE	thus:

If	mysql.proc.language='SQL',	EXTERNAL_LANGUAGE	is	NULL

Otherwise,	EXTERNAL_LANGUAGE	is	what	is	in	mysql.proc.language.
However,	we	do	not	have	external	languages	yet,	so	it	is	always	NULL.

20.15.	The	INFORMATION_SCHEMA	VIEWS	Table

The	VIEWS	table	provides	information	about	views	in	databases.	You	must	have
the	SHOW	VIEW	privilege	to	access	this	table.

INFORMATION_SCHEMA	Name SHOW	Name Remarks
TABLE_CATALOG 	 NULL

TABLE_SCHEMA 	 	
TABLE_NAME 	 	
VIEW_DEFINITION 	 	
CHECK_OPTION 	 	
IS_UPDATABLE 	 	
DEFINER 	 	
SECURITY_TYPE 	 	

Notes:

The	VIEW_DEFINITION	column	has	most	of	what	you	see	in	the	Create
Table	field	that	SHOW	CREATE	VIEW	produces.	Skip	the	words	before	SELECT
and	skip	the	words	WITH	CHECK	OPTION.	Suppose	that	the	original	statement
was:

CREATE	VIEW	v	AS

		SELECT	s2,s1	FROM	t

		WHERE	s1	>	5

		ORDER	BY	s1

		WITH	CHECK	OPTION;

Then	the	view	definition	looks	like	this:

SELECT	s2,s1	FROM	t	WHERE	s1	>	5	ORDER	BY	s1

The	CHECK_OPTION	column	always	has	a	value	of	NONE.

The	IS_UPDATABLE	column	is	YES	if	the	view	is	updatable,	NO	if	the	view	is
not	updatable.

The	DEFINER	and	SECURITY_TYPE	columns	were	added	in	MySQL	5.0.14.
DEFINER	indicates	who	defined	the	view.	SECURITY_TYPE	has	a	value	of
DEFINER	or	INVOKER.

20.16.	The	INFORMATION_SCHEMA	TRIGGERS	Table

The	TRIGGERS	table	provides	information	about	triggers.	You	must	have	the
SUPER	privilege	to	access	this	table.

INFORMATION_SCHEMA	Name SHOW	Name Remarks
TRIGGER_CATALOG 	 NULL

TRIGGER_SCHEMA 	 	
TRIGGER_NAME Trigger 	
EVENT_MANIPULATION Event 	
EVENT_OBJECT_CATALOG 	 NULL

EVENT_OBJECT_SCHEMA 	 	
EVENT_OBJECT_TABLE Table 	
ACTION_ORDER 	 0

ACTION_CONDITION 	 NULL

ACTION_STATEMENT Statement 	
ACTION_ORIENTATION 	 ROW

ACTION_TIMING Timing 	
ACTION_REFERENCE_OLD_TABLE 	 NULL

ACTION_REFERENCE_NEW_TABLE 	 NULL

ACTION_REFERENCE_OLD_ROW 	 OLD

ACTION_REFERENCE_NEW_ROW 	 NEW

CREATED 	 NULL	(0)
SQL_MODE 	 MySQL	extension
DEFINER 	 MySQL	extension

Notes:

The	TRIGGERS	table	was	added	in	MySQL	5.0.10.

The	TRIGGER_SCHEMA	and	TRIGGER_NAME	columns	contain	the	name	of	the
database	in	which	the	trigger	occurs	and	the	trigger	name,	respectively.

The	EVENT_MANIPULATION	column	contains	one	of	the	values	'INSERT',
'DELETE',	or	'UPDATE'.

As	noted	in	Chapter	18,	Triggers,	every	trigger	is	associated	with	exactly
one	table.	The	EVENT_OBJECT_SCHEMA	and	EVENT_OBJECT_TABLE	columns
contain	the	database	in	which	this	table	occurs,	and	the	table's	name.

The	ACTION_ORDER	statement	contains	the	ordinal	position	of	the	trigger's
action	within	the	list	of	all	similar	triggers	on	the	same	table.	Currently,	this
value	is	always	0,	because	it	is	not	possible	to	have	more	than	one	trigger
with	the	same	EVENT_MANIPULATION	and	ACTION_TIMING	on	the	same	table.

The	ACTION_STATEMENT	column	contains	the	statement	to	be	executed	when
the	trigger	is	invoked.	This	is	the	same	as	the	text	displayed	in	the
Statement	column	of	the	output	from	SHOW	TRIGGERS.	Note	that	this	text
uses	UTF-8	encoding.

The	ACTION_ORIENTATION	column	always	contains	the	value	'ROW'.

The	ACTION_TIMING	column	contains	one	of	the	two	values	'BEFORE'	or
'AFTER'.

The	columns	ACTION_REFERENCE_OLD_ROW	and	ACTION_REFERENCE_NEW_ROW
contain	the	old	and	new	column	identifiers,	respectively.	This	means	that
ACTION_REFERENCE_OLD_ROW	always	contains	the	value	'OLD'	and
ACTION_REFERENCE_NEW_ROW	always	contains	the	value	'NEW'.

The	SQL_MODE	column	shows	the	server	SQL	mode	that	was	in	effect	at	the
time	when	the	trigger	was	created	(and	thus	which	remains	in	effect	for	this
trigger	whenever	it	is	invoked,	regardless	of	the	current	server	SQL	mode).
The	possible	range	of	values	for	this	column	is	the	same	as	that	of	the
sql_mode	system	variable.	See	Section	5.2.5,	“The	Server	SQL	Mode”.

The	DEFINER	column	was	added	in	MySQL	5.0.17.	DEFINER	indicates	who
defined	the	trigger.

The	following	columns	currently	always	contain	NULL:	TRIGGER_CATALOG,
EVENT_OBJECT_CATALOG,	ACTION_CONDITION,
ACTION_REFERENCE_OLD_TABLE,	ACTION_REFERENCE_NEW_TABLE,	and
CREATED.

Example,	using	the	ins_sum	trigger	defined	in	Section	18.3,	“Using	Triggers”:

mysql>	SELECT	*	FROM	INFORMATION_SCHEMA.TRIGGERS\G

***************************	1.	row	***************************

											TRIGGER_CATALOG:	NULL

												TRIGGER_SCHEMA:	test

														TRIGGER_NAME:	ins_sum

								EVENT_MANIPULATION:	INSERT

						EVENT_OBJECT_CATALOG:	NULL

							EVENT_OBJECT_SCHEMA:	test

								EVENT_OBJECT_TABLE:	account

														ACTION_ORDER:	0

										ACTION_CONDITION:	NULL

										ACTION_STATEMENT:	SET	@sum	=	@sum	+	NEW.amount

								ACTION_ORIENTATION:	ROW

													ACTION_TIMING:	BEFORE

ACTION_REFERENCE_OLD_TABLE:	NULL

ACTION_REFERENCE_NEW_TABLE:	NULL

		ACTION_REFERENCE_OLD_ROW:	OLD

		ACTION_REFERENCE_NEW_ROW:	NEW

																			CREATED:	NULL

																		SQL_MODE:

																			DEFINER:	me@localhost

See	also	Section	13.5.4.23,	“SHOW	TRIGGERS	Syntax”.

20.17.	Other	INFORMATION_SCHEMA	Tables

We	intend	to	implement	additional	INFORMATION_SCHEMA	tables.	In	particular,	we
acknowledge	the	need	for	the	PARAMETERS	and	REFERENTIAL_CONSTRAINTS
tables.	(REFERENTIAL_CONSTRAINTS	is	implemented	in	MySQL	5.1.)

20.18.	Extensions	to	SHOW	Statements

Some	extensions	to	SHOW	statements	accompany	the	implementation	of
INFORMATION_SCHEMA:

SHOW	can	be	used	to	get	information	about	the	structure	of
INFORMATION_SCHEMA	itself.

Several	SHOW	statements	accept	a	WHERE	clause	that	provides	more	flexibility
in	specifying	which	rows	to	display.

These	extensions	are	available	beginning	with	MySQL	5.0.3.

INFORMATION_SCHEMA	is	an	information	database,	so	its	name	is	included	in	the
output	from	SHOW	DATABASES.	Similarly,	SHOW	TABLES	can	be	used	with
INFORMATION_SCHEMA	to	obtain	a	list	of	its	tables:

mysql>	SHOW	TABLES	FROM	INFORMATION_SCHEMA;

+---------------------------------------+

|	Tables_in_information_schema										|

+---------------------------------------+

|	CHARACTER_SETS																								|

|	COLLATIONS																												|

|	COLLATION_CHARACTER_SET_APPLICABILITY	|

|	COLUMNS																															|

|	COLUMN_PRIVILEGES																					|

|	KEY_COLUMN_USAGE																						|

|	ROUTINES																														|

|	SCHEMATA																														|

|	SCHEMA_PRIVILEGES																					|

|	STATISTICS																												|

|	TABLES																																|

|	TABLE_CONSTRAINTS																					|

|	TABLE_PRIVILEGES																						|

|	TRIGGERS																														|

|	USER_PRIVILEGES																							|

|	VIEWS																																	|

+---------------------------------------+

16	rows	in	set	(0.00	sec)

SHOW	COLUMNS	and	DESCRIBE	can	display	information	about	the	columns	in
individual	INFORMATION_SCHEMA	tables.

Several	SHOW	statement	have	been	extended	to	allow	a	WHERE	clause:

SHOW	CHARACTER	SET

SHOW	COLLATION

SHOW	COLUMNS

SHOW	DATABASES

SHOW	FUNCTION	STATUS

SHOW	KEYS

SHOW	OPEN	TABLES

SHOW	PROCEDURE	STATUS

SHOW	STATUS

SHOW	TABLE	STATUS

SHOW	TABLES

SHOW	VARIABLES

The	WHERE	clause,	if	present,	is	evaluated	against	the	column	names	displayed	by
the	SHOW	statement.	For	example,	the	SHOW	CHARACTER	SET	statement	produces
these	output	columns:

mysql>	SHOW	CHARACTER	SET;

+----------+-----------------------------+---------------------+--------+

|	Charset		|	Description																	|	Default	collation			|	Maxlen	|

+----------+-----------------------------+---------------------+--------+

|	big5					|	Big5	Traditional	Chinese				|	big5_chinese_ci					|						2	|

|	dec8					|	DEC	West	European											|	dec8_swedish_ci					|						1	|

|	cp850				|	DOS	West	European											|	cp850_general_ci				|						1	|

|	hp8						|	HP	West	European												|	hp8_english_ci						|						1	|

|	koi8r				|	KOI8-R	Relcom	Russian							|	koi8r_general_ci				|						1	|

|	latin1			|	cp1252	West	European								|	latin1_swedish_ci			|						1	|

|	latin2			|	ISO	8859-2	Central	European	|	latin2_general_ci			|						1	|

...

To	use	a	WHERE	clause	with	SHOW	CHARACTER	SET,	you	would	refer	to	those
column	names.	As	an	example,	the	following	statement	displays	information
about	character	sets	for	which	the	default	collation	contains	the	string
'japanese':

mysql>	SHOW	CHARACTER	SET	WHERE	`Default	collation`	LIKE	'%japanese%';

+---------+---------------------------+---------------------+--------+

|	Charset	|	Description															|	Default	collation			|	Maxlen	|

+---------+---------------------------+---------------------+--------+

|	ujis				|	EUC-JP	Japanese											|	ujis_japanese_ci				|						3	|

|	sjis				|	Shift-JIS	Japanese								|	sjis_japanese_ci				|						2	|

|	cp932			|	SJIS	for	Windows	Japanese	|	cp932_japanese_ci			|						2	|

|	eucjpms	|	UJIS	for	Windows	Japanese	|	eucjpms_japanese_ci	|						3	|

+---------+---------------------------+---------------------+--------+

This	statement	displays	the	multi-byte	character	sets:

mysql>	SHOW	CHARACTER	SET	WHERE	Maxlen	>	1;

+---------+---------------------------+---------------------+--------+

|	Charset	|	Description															|	Default	collation			|	Maxlen	|

+---------+---------------------------+---------------------+--------+

|	big5				|	Big5	Traditional	Chinese		|	big5_chinese_ci					|						2	|

|	ujis				|	EUC-JP	Japanese											|	ujis_japanese_ci				|						3	|

|	sjis				|	Shift-JIS	Japanese								|	sjis_japanese_ci				|						2	|

|	euckr			|	EUC-KR	Korean													|	euckr_korean_ci					|						2	|

|	gb2312		|	GB2312	Simplified	Chinese	|	gb2312_chinese_ci			|						2	|

|	gbk					|	GBK	Simplified	Chinese				|	gbk_chinese_ci						|						2	|

|	utf8				|	UTF-8	Unicode													|	utf8_general_ci					|						3	|

|	ucs2				|	UCS-2	Unicode													|	ucs2_general_ci					|						2	|

|	cp932			|	SJIS	for	Windows	Japanese	|	cp932_japanese_ci			|						2	|

|	eucjpms	|	UJIS	for	Windows	Japanese	|	eucjpms_japanese_ci	|						3	|

+---------+---------------------------+---------------------+--------+

Chapter	21.	Precision	Math

Table	of	Contents

21.1.	Types	of	Numeric	Values
21.2.	DECIMAL	Data	Type	Changes
21.3.	Expression	Handling
21.4.	Rounding	Behavior
21.5.	Precision	Math	Examples

MySQL	5.0	introduces	precision	math:	numeric	value	handling	that	results	in
more	accurate	results	and	more	control	over	invalid	values	than	in	earlier
versions	of	MySQL.	Precision	math	is	based	on	two	implementation	changes:

The	introduction	of	SQL	modes	in	MySQL	5.0	that	control	how	strict	the
server	is	about	accepting	or	rejecting	invalid	data.

The	introduction	in	MySQL	5.0.3	of	a	library	for	fixed-point	arithmetic.

These	changes	have	several	implications	for	numeric	operations:

More	precise	calculations:	For	exact-value	numbers,	calculations	do	not
introduce	floating-point	errors.	Instead,	exact	precision	is	used.	For
example,	a	number	such	as	.0001	is	treated	as	an	exact	value	rather	than	as
an	approximation,	and	summing	it	10,000	times	produces	a	result	of	exactly
1,	not	a	value	that	merely	“close”	to	1.

Well-defined	rounding	behavior:	For	exact-value	numbers,	the	result	of
ROUND()	depends	on	its	argument,	not	on	environmental	factors	such	as	how
the	underlying	C	library	works.

Improved	platform	independence:	Operations	on	exact	numeric	values
are	the	same	across	different	platforms	such	as	Windows	and	Unix.

Control	over	handling	of	invalid	values:	Overflow	and	division	by	zero
are	detectable	and	can	be	treated	as	errors.	For	example,	you	can	treat	a
value	that	is	too	large	for	a	column	as	an	error	rather	than	having	the	value
truncated	to	lie	within	the	range	of	the	column's	data	type.	Similarly,	you

can	treat	division	by	zero	as	an	error	rather	than	as	an	operation	that
produces	a	result	of	NULL.	The	choice	of	which	approach	to	take	is
determined	by	the	setting	of	the	sql_mode	system	variable.

An	important	result	of	these	changes	is	that	MySQL	provides	improved
compliance	with	standard	SQL.

The	following	discussion	covers	several	aspects	of	how	precision	math	works
(including	possible	incompatibilities	with	older	applications).	At	the	end,	some
examples	are	given	that	demonstrate	how	MySQL	5.0	handles	numeric
operations	precisely.	For	information	about	using	the	sql_mode	system	variable
to	control	the	SQL	mode,	see	Section	5.2.5,	“The	Server	SQL	Mode”.

21.1.	Types	of	Numeric	Values

The	scope	of	precision	math	for	exact-value	operations	includes	the	exact-value
data	types	(DECIMAL	and	integer	types)	and	exact-value	numeric	literals.
Approximate-value	data	types	and	numeric	literals	still	are	handled	as	floating-
point	numbers.

Exact-value	numeric	literals	have	an	integer	part	or	fractional	part,	or	both.	They
may	be	signed.	Examples:	1,	.2,	3.4,	-5,	-6.78,	+9.10.

Approximate-value	numeric	literals	are	represented	in	scientific	notation	with	a
mantissa	and	exponent.	Either	or	both	parts	may	be	signed.	Examples:	1.2E3,
1.2E-3,	-1.2E3,	-1.2E-3.

Two	numbers	that	look	similar	need	not	be	both	exact-value	or	both
approximate-value.	For	example,	2.34	is	an	exact-value	(fixed-point)	number,
whereas	2.34E0	is	an	approximate-value	(floating-point)	number.

The	DECIMAL	data	type	is	a	fixed-point	type	and	calculations	are	exact.	In
MySQL,	the	DECIMAL	type	has	several	synonyms:	NUMERIC,	DEC,	FIXED.	The
integer	types	also	are	exact-value	types.

The	FLOAT	and	DOUBLE	data	types	are	floating-point	types	and	calculations	are
approximate.	In	MySQL,	types	that	are	synonymous	with	FLOAT	or	DOUBLE	are
DOUBLE	PRECISION	and	REAL.

21.2.	DECIMAL	Data	Type	Changes

This	section	discusses	the	characteristics	of	the	DECIMAL	data	type	(and	its
synonyms)	as	of	MySQL	5.0.3,	with	particular	regard	to	the	following	topics:

Maximum	number	of	digits

Storage	format

Storage	requirements

The	non-standard	MySQL	extension	to	the	upper	range	of	DECIMAL	columns

Some	of	these	changes	result	in	possible	incompatibilities	for	applications	that
are	written	for	older	versions	of	MySQL.	These	incompatibilities	are	noted
throughout	this	section.

The	declaration	syntax	for	a	DECIMAL	column	remains	DECIMAL(M,D),	although
the	range	of	values	for	the	arguments	has	changed	somewhat:

M	is	the	maximum	number	of	digits	(the	precision).	It	has	a	range	of	1	to	65.
This	introduces	a	possible	incompatibility	for	older	applications,	because
previous	versions	of	MySQL	allow	a	range	of	1	to	254.

The	precision	of	65	digits	actually	applies	as	of	MySQL	5.0.6.	From	5.0.3
to	5.0.5,	the	precision	is	64	digits.

D	is	the	number	of	digits	to	the	right	of	the	decimal	point	(the	scale).	It	has	a
range	of	0	to	30	and	must	be	no	larger	than	M.

The	maximum	value	of	65	for	M	means	that	calculations	on	DECIMAL	values	are
accurate	up	to	65	digits.	This	limit	of	65	digits	of	precision	also	applies	to	exact-
value	numeric	literals,	so	the	maximum	range	of	such	literals	is	different	from
before.	(Prior	to	MySQL	5.0.3,	decimal	values	could	have	up	to	254	digits.
However,	calculations	were	done	using	floating-point	and	thus	were
approximate,	not	exact.)	This	change	in	the	range	of	literal	values	is	another
possible	source	of	incompatibility	for	older	applications.

Values	for	DECIMAL	columns	no	longer	are	represented	as	strings	that	require	one

byte	per	digit	or	sign	character.	Instead,	a	binary	format	is	used	that	packs	nine
decimal	digits	into	four	bytes.	This	change	to	DECIMAL	storage	format	changes
the	storage	requirements	as	well.	The	storage	requirements	for	the	integer	and
fractional	parts	of	each	value	are	determined	separately.	Each	multiple	of	nine
digits	requires	four	bytes,	and	any	digits	left	over	require	some	fraction	of	four
bytes.	For	example,	a	DECIMAL(18,9)	column	has	nine	digits	on	either	side	of
the	decimal	point,	so	the	integer	part	and	the	fractional	part	each	require	four
bytes.	A	DECIMAL(20,10)	column	has	ten	digits	on	either	side	of	the	decimal
point.	Each	part	requires	four	bytes	for	nine	of	the	digits,	and	one	byte	for	the
remaining	digit.

The	storage	required	for	leftover	digits	is	given	by	the	following	table:

Leftover	Digits Number	of	Bytes
0 0
1 1
2 1
3 2
4 2
5 3
6 3
7 4
8 4
9 4

As	a	result	of	the	change	from	string	to	numeric	format	for	DECIMAL	storage,
DECIMAL	columns	no	longer	store	a	leading	+	character	or	leading	0	digits.	Before
MySQL	5.0.3,	if	you	inserted	+0003.1	into	a	DECIMAL(5,1)	column,	it	was
stored	as	+0003.1.	As	of	MySQL	5.0.3,	it	is	stored	as	3.1.	Applications	that	rely
on	the	older	behavior	must	be	modified	to	account	for	this	change.

The	change	of	storage	format	also	means	that	DECIMAL	columns	no	longer
support	the	non-standard	extension	that	allowed	values	larger	than	the	range
implied	by	the	column	definition.	Formerly,	one	byte	was	allocated	for	storing
the	sign	character.	For	positive	values	that	needed	no	sign	byte,	MySQL	allowed
an	extra	digit	to	be	stored	instead.	For	example,	a	DECIMAL(3,0)	column	must

support	a	range	of	at	least	–999	to	999,	but	MySQL	would	allow	storing	values
from	1000	to	9999	as	well,	by	using	the	sign	byte	to	store	an	extra	digit.	This
extension	to	the	upper	range	of	DECIMAL	columns	no	longer	is	allowed.	In
MySQL	5.0.3	and	up,	a	DECIMAL(M,D)	column	allows	at	most	M−D	digits	to	the
left	of	the	decimal	point.	This	can	result	in	an	incompatibility	if	an	application
has	a	reliance	on	MySQL	allowing	“too-large”	values.

The	SQL	standard	requires	that	the	precision	of	NUMERIC(M,D)	be	exactly	M	digits.
For	DECIMAL(M,D),	the	standard	requires	a	precision	of	at	least	M	digits	but	allows
more.	In	MySQL,	DECIMAL(M,D)	and	NUMERIC(M,D)	are	the	same,	and	both	have	a
precision	of	exactly	M	digits.

Summary	of	incompatibilities:

The	following	list	summarizes	the	incompatibilities	that	result	from	changes	to
DECIMAL	column	and	value	handling.	You	can	use	it	as	guide	when	porting	older
applications	for	use	with	MySQL	5.0.3	and	up.

For	DECIMAL(M,D),	the	maximum	M	is	65,	not	254.

Calculations	involving	exact-value	decimal	numbers	are	accurate	to	65
digits.	This	is	fewer	than	the	maximum	number	of	digits	allowed	before
MySQL	5.0.3	(254	digits),	but	the	exact-value	precision	is	greater.
Calculations	formerly	were	done	with	double-precision	floating-point,
which	has	a	precision	of	52	bits	(about	15	decimal	digits).

The	non-standard	MySQL	extension	to	the	upper	range	of	DECIMAL	columns
no	longer	is	supported.

Leading	‘+’	and	‘0’	characters	are	not	stored.

The	behavior	used	by	the	server	for	DECIMAL	columns	in	a	table	depends	on	the
version	of	MySQL	used	to	create	the	table.	If	your	server	is	from	MySQL	5.0.3
or	higher,	but	you	have	DECIMAL	columns	in	tables	that	were	created	before	5.0.3,
the	old	behavior	still	applies	to	those	columns.	To	convert	the	tables	to	the	newer
DECIMAL	format,	dump	them	with	mysqldump	and	reload	them.

21.3.	Expression	Handling

With	precision	math,	exact-value	numbers	are	used	as	given	whenever	possible.
For	example,	numbers	in	comparisons	are	used	exactly	as	given	without	a
change	in	value.	In	strict	SQL	mode,	for	INSERT	into	a	column	with	an	exact	data
type	(DECIMAL	or	integer),	a	number	is	inserted	with	its	exact	value	if	it	is	within
the	column	range.	When	retrieved,	the	value	should	be	the	same	as	what	was
inserted.	(Without	strict	mode,	truncation	for	INSERT	is	allowable.)

Handling	of	a	numeric	expression	depends	on	what	kind	of	values	the	expression
contains:

If	any	approximate	values	are	present,	the	expression	is	approximate	and	is
evaluated	using	floating-point	arithmetic.

If	no	approximate	values	are	present,	the	expression	contains	only	exact
values.	If	any	exact	value	contains	a	fractional	part	(a	value	following	the
decimal	point),	the	expression	is	evaluated	using	DECIMAL	exact	arithmetic
and	has	a	precision	of	65	digits.	(The	term	“exact”	is	subject	to	the	limits	of
what	can	be	represented	in	binary.	For	example,	1.0/3.0	can	be
approximated	in	decimal	notation	as	.333...,	but	not	written	as	an	exact
number,	so	(1.0/3.0)*3.0	does	not	evaluate	to	exactly	1.0.)

Otherwise,	the	expression	contains	only	integer	values.	The	expression	is
exact	and	is	evaluated	using	integer	arithmetic	and	has	a	precision	the	same
as	BIGINT	(64	bits).

If	a	numeric	expression	contains	any	strings,	they	are	converted	to	double-
precision	floating-point	values	and	the	expression	is	approximate.

Inserts	into	numeric	columns	are	affected	by	the	SQL	mode,	which	is	controlled
by	the	sql_mode	system	variable.	(See	Section	5.2.5,	“The	Server	SQL	Mode”.)
The	following	discussion	mentions	strict	mode	(selected	by	the
STRICT_ALL_TABLES	or	STRICT_TRANS_TABLES	mode	values)	and
ERROR_FOR_DIVISION_BY_ZERO.	To	turn	on	all	restrictions,	you	can	simply	use
TRADITIONAL	mode,	which	includes	both	strict	mode	values	and
ERROR_FOR_DIVISION_BY_ZERO:

mysql>	SET	sql_mode='TRADITIONAL';

If	a	number	is	inserted	into	an	exact	type	column	(DECIMAL	or	integer),	it	is
inserted	with	its	exact	value	if	it	is	within	the	column	range.

If	the	value	has	too	many	digits	in	the	fractional	part,	rounding	occurs	and	a
warning	is	generated.	Rounding	is	done	as	described	in	Section	21.4,	“Rounding
Behavior”.

If	the	value	has	too	many	digits	in	the	integer	part,	it	is	too	large	and	is	handled
as	follows:

If	strict	mode	is	not	enabled,	the	value	is	truncated	to	the	nearest	legal	value
and	a	warning	is	generated.

If	strict	mode	is	enabled,	an	overflow	error	occurs.

Underflow	is	not	detected,	so	underflow	handing	is	undefined.

By	default,	division	by	zero	produces	a	result	of	NULL	and	no	warning.	With	the
ERROR_FOR_DIVISION_BY_ZERO	SQL	mode	enabled,	MySQL	handles	division	by
zero	differently:

If	strict	mode	is	not	enabled,	a	warning	occurs.

If	strict	mode	is	enabled,	inserts	and	updates	involving	division	by	zero	are
prohibited,	and	an	error	occurs.

In	other	words,	inserts	and	updates	involving	expressions	that	perform	division
by	zero	can	be	treated	as	errors,	but	this	requires	ERROR_FOR_DIVISION_BY_ZERO
in	addition	to	strict	mode.

Suppose	that	we	have	this	statement:

INSERT	INTO	t	SET	i	=	1/0;

This	is	what	happens	for	combinations	of	strict	and
ERROR_FOR_DIVISION_BY_ZERO	modes:

sql_mode	Value Result

''	(Default) No	warning,	no	error;	i	is	set	to	NULL.
strict No	warning,	no	error;	i	is	set	to	NULL.
ERROR_FOR_DIVISION_BY_ZERO Warning,	no	error;	i	is	set	to	NULL.
strict,ERROR_FOR_DIVISION_BY_ZERO Error	condition;	no	row	is	inserted.

For	inserts	of	strings	into	numeric	columns,	conversion	from	string	to	number	is
handled	as	follows	if	the	string	has	non-numeric	contents:

A	string	that	does	not	begin	with	a	number	cannot	be	used	as	a	number	and
produces	an	error	in	strict	mode,	or	a	warning	otherwise.	This	includes	the
empty	string.

A	string	that	begins	with	a	number	can	be	converted,	but	the	trailing	non-
numeric	portion	is	truncated.	If	the	truncated	portion	contains	anything
other	than	spaces,	this	produces	an	error	in	strict	mode,	or	a	warning
otherwise.

21.4.	Rounding	Behavior

This	section	discusses	precision	math	rounding	for	the	ROUND()	function	and	for
inserts	into	columns	with	exact-value	types	(DECIMAL	and	integer).

The	ROUND()	function	rounds	differently	depending	on	whether	its	argument	is
exact	or	approximate:

For	exact-value	numbers,	ROUND()	uses	the	“round	half	up”	rule:	A	value
with	a	fractional	part	of	.5	or	greater	is	rounded	up	to	the	next	integer	if
positive	or	down	to	the	next	integer	if	negative.	(In	other	words,	it	is
rounded	away	from	zero.)	A	value	with	a	fractional	part	less	than	.5	is
rounded	down	to	the	next	integer	if	positive	or	up	to	the	next	integer	if
negative.

For	approximate-value	numbers,	the	result	depends	on	the	C	library.	On
many	systems,	this	means	that	ROUND()	uses	the	“round	to	nearest	even”
rule:	A	value	with	any	fractional	part	is	rounded	to	the	nearest	even	integer.

The	following	example	shows	how	rounding	differs	for	exact	and	approximate
values:

mysql>	SELECT	ROUND(2.5),	ROUND(25E-1);

+------------+--------------+

|	ROUND(2.5)	|	ROUND(25E-1)	|

+------------+--------------+

|	3										|												2	|

+------------+--------------+

For	inserts	into	a	DECIMAL	or	integer	column,	the	target	is	an	exact	data	type,	so
rounding	uses	“round	half	up,”	regardless	of	whether	the	value	to	be	inserted	is
exact	or	approximate:

mysql>	CREATE	TABLE	t	(d	DECIMAL(10,0));

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	INSERT	INTO	t	VALUES(2.5),(2.5E0);

Query	OK,	2	rows	affected,	2	warnings	(0.00	sec)

Records:	2		Duplicates:	0		Warnings:	2

mysql>	SELECT	d	FROM	t;

+------+

|	d				|

+------+

|	3				|

|	3				|

+------+

21.5.	Precision	Math	Examples

This	section	provides	some	examples	that	show	how	precision	math	improves
query	results	in	MySQL	5	compared	to	older	versions.

Example	1.	Numbers	are	used	with	their	exact	value	as	given	when	possible.

Before	MySQL	5.0.3,	numbers	that	are	treated	as	floating-point	values	produce
inexact	results:

mysql>	SELECT	.1	+	.2	=	.3;

+--------------+

|	.1	+	.2	=	.3	|

+--------------+

|												0	|

+--------------+

As	of	MySQL	5.0.3,	numbers	are	used	as	given	when	possible:

mysql>	SELECT	.1	+	.2	=	.3;

+--------------+

|	.1	+	.2	=	.3	|

+--------------+

|												1	|

+--------------+

For	floating-point	values,	results	are	inexact:

mysql>	SELECT	.1E0	+	.2E0	=	.3E0;

+--------------------+

|	.1E0	+	.2E0	=	.3E0	|

+--------------------+

|																		0	|

+--------------------+

Another	way	to	see	the	difference	in	exact	and	approximate	value	handling	is	to
add	a	small	number	to	a	sum	many	times.	Consider	the	following	stored
procedure,	which	adds	.0001	to	a	variable	1,000	times.

CREATE	PROCEDURE	p	()

BEGIN

		DECLARE	i	INT	DEFAULT	0;

		DECLARE	d	DECIMAL(10,4)	DEFAULT	0;

		DECLARE	f	FLOAT	DEFAULT	0;

		WHILE	i	<	10000	DO

				SET	d	=	d	+	.0001;

				SET	f	=	f	+	.0001E0;

				SET	i	=	i	+	1;

		END	WHILE;

		SELECT	d,	f;

END;

The	sum	for	both	d	and	f	logically	should	be	1,	but	that	is	true	only	for	the
decimal	calculation.	The	floating-point	calculation	introduces	small	errors:

+--------+------------------+

|	d						|	f																|

+--------+------------------+

|	1.0000	|	0.99999999999991	|

+--------+------------------+

Example	2.	Multiplication	is	performed	with	the	scale	required	by	standard
SQL.	That	is,	for	two	numbers	X1	and	X2	that	have	scale	S1	and	S2,	the	scale	of
the	result	is	S1	+	S2:

Before	MySQL	5.0.3,	this	is	what	happens:

mysql>	SELECT	.01	*	.01;

+-----------+

|	.01	*	.01	|

+-----------+

|						0.00	|

+-----------+

The	displayed	value	is	incorrect.	The	value	was	calculated	correctly	in	this	case,
but	not	displayed	to	the	required	scale.	To	see	that	the	calculated	value	actually
was	.0001,	try	this:

mysql>	SELECT	.01	*	.01	+	.0000;

+-------------------+

|	.01	*	.01	+	.0000	|

+-------------------+

|												0.0001	|

+-------------------+

As	of	MySQL	5.0.3,	the	displayed	scale	is	correct:

mysql>	SELECT	.01	*	.01;

+-----------+

|	.01	*	.01	|

+-----------+

|	0.0001				|

+-----------+

Example	3.	Rounding	behavior	is	well-defined.

Before	MySQL	5.0.3,	rounding	behavior	(for	example,	with	the	ROUND()
function)	is	dependent	on	the	implementation	of	the	underlying	C	library.	This
results	in	inconsistencies	from	platform	to	platform.	For	example,	you	might	get
a	different	value	on	Windows	than	on	Linux,	or	a	different	value	on	x86
machines	than	on	PowerPC	machines.

As	of	MySQL	5.0.3,	rounding	happens	like	this:

Rounding	for	exact-value	columns	(DECIMAL	and	integer)	and	exact-valued
numbers	uses	the	“round	half	up”	rule.	Values	with	a	fractional	part	of	.5	or
greater	are	rounded	away	from	zero	to	the	nearest	integer,	as	shown	here:

mysql>	SELECT	ROUND(2.5),	ROUND(-2.5);

+------------+-------------+

|	ROUND(2.5)	|	ROUND(-2.5)	|

+------------+-------------+

|	3										|	-3										|

+------------+-------------+

However,	rounding	for	floating-point	values	uses	the	C	library,	which	on	many
systems	uses	the	“round	to	nearest	even”	rule.	Values	with	any	fractional	part	on
such	systems	are	rounded	to	the	nearest	even	integer:

mysql>	SELECT	ROUND(2.5E0),	ROUND(-2.5E0);

+--------------+---------------+

|	ROUND(2.5E0)	|	ROUND(-2.5E0)	|

+--------------+---------------+

|												2	|												-2	|

+--------------+---------------+

Example	4.	In	strict	mode,	inserting	a	value	that	is	too	large	results	in	overflow
and	causes	an	error,	rather	than	truncation	to	a	legal	value.

Before	MySQL	5.0.2	(or	in	5.0.2	and	later,	without	strict	mode),	truncation	to	a
legal	value	occurs:

mysql>	CREATE	TABLE	t	(i	TINYINT);

Query	OK,	0	rows	affected	(0.01	sec)

mysql>	INSERT	INTO	t	SET	i	=	128;

Query	OK,	1	row	affected,	1	warning	(0.00	sec)

mysql>	SELECT	i	FROM	t;

+------+

|	i				|

+------+

|		127	|

+------+

1	row	in	set	(0.00	sec)

As	of	MySQL	5.0.2,	overflow	occurs	if	strict	mode	is	in	effect:

mysql>	SET	sql_mode='STRICT_ALL_TABLES';

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	CREATE	TABLE	t	(i	TINYINT);

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	INSERT	INTO	t	SET	i	=	128;

ERROR	1264	(22003):	Out	of	range	value	adjusted	for	column	'i'	at	row	1

mysql>	SELECT	i	FROM	t;

Empty	set	(0.00	sec)

Example	5:	In	strict	mode	and	with	ERROR_FOR_DIVISION_BY_ZERO	set,	division
by	zero	causes	an	error,	and	not	a	result	of	NULL.

Before	MySQL	5.0.2	(or	when	not	using	strict	mode	in	5.0.2	or	a	later	version),
division	by	zero	has	a	result	of	NULL:

mysql>	CREATE	TABLE	t	(i	TINYINT);

Query	OK,	0	rows	affected	(0.01	sec)

mysql>	INSERT	INTO	t	SET	i	=	1	/	0;

Query	OK,	1	row	affected	(0.00	sec)

mysql>	SELECT	i	FROM	t;

+------+

|	i				|

+------+

|	NULL	|

+------+

1	row	in	set	(0.00	sec)

As	of	MySQL	5.0.2,	division	by	zero	is	an	error	if	the	proper	SQL	modes	are	in
effect:

mysql>	SET	sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	CREATE	TABLE	t	(i	TINYINT);

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	INSERT	INTO	t	SET	i	=	1	/	0;

ERROR	1365	(22012):	Division	by	0

mysql>	SELECT	i	FROM	t;

Empty	set	(0.01	sec)

Example	6.	Prior	to	MySQL	5.0.3	(before	precision	math	was	introduced),
exact-value	and	approximate-value	literals	both	are	converted	to	double-
precision	floating-point	values:

mysql>	SELECT	VERSION();

+------------+

|	VERSION()		|

+------------+

|	4.1.18-log	|

+------------+

1	row	in	set	(0.01	sec)

mysql>	CREATE	TABLE	t	SELECT	2.5	AS	a,	25E-1	AS	b;

Query	OK,	1	row	affected	(0.07	sec)

Records:	1		Duplicates:	0		Warnings:	0

mysql>	DESCRIBE	t;

+-------+-------------+------+-----+---------+-------+

|	Field	|	Type								|	Null	|	Key	|	Default	|	Extra	|

+-------+-------------+------+-----+---------+-------+

|	a					|	double(3,1)	|						|					|	0.0					|							|

|	b					|	double						|						|					|	0							|							|

+-------+-------------+------+-----+---------+-------+

2	rows	in	set	(0.04	sec)

As	of	MySQL	5.0.3,	the	approximate-value	literal	still	is	converted	to	floating-
point,	but	the	exact-value	literal	is	handled	as	DECIMAL:

mysql>	SELECT	VERSION();

+------------+

|	VERSION()		|

+------------+

|	5.0.19-log	|

+------------+

1	row	in	set	(0.17	sec)

mysql>	CREATE	TABLE	t	SELECT	2.5	AS	a,	25E-1	AS	b;

Query	OK,	1	row	affected	(0.19	sec)

Records:	1		Duplicates:	0		Warnings:	0

mysql>	DESCRIBE	t;

+-------+-----------------------+------+-----+---------+-------+

|	Field	|	Type																		|	Null	|	Key	|	Default	|	Extra	|

+-------+-----------------------+------+-----+---------+-------+

|	a					|	decimal(2,1)	unsigned	|	NO			|					|	0.0					|							|

|	b					|	double																|	NO			|					|	0							|							|

+-------+-----------------------+------+-----+---------+-------+

2	rows	in	set	(0.02	sec)

Example	7.	If	the	argument	to	an	aggregate	function	is	an	exact	numeric	type,
the	result	is	also	an	exact	numeric	type,	with	a	scale	at	least	that	of	the	argument.

Consider	these	statements:

mysql>	CREATE	TABLE	t	(i	INT,	d	DECIMAL,	f	FLOAT);

mysql>	INSERT	INTO	t	VALUES(1,1,1);

mysql>	CREATE	TABLE	y	SELECT	AVG(i),	AVG(d),	AVG(f)	FROM	t;

Result	before	MySQL	5.0.3	(prior	to	the	introduction	of	precision	math	in
MySQL):

mysql>	DESCRIBE	y;

+--------+--------------+------+-----+---------+-------+

|	Field		|	Type									|	Null	|	Key	|	Default	|	Extra	|

+--------+--------------+------+-----+---------+-------+

|	AVG(i)	|	double(17,4)	|	YES		|					|	NULL				|							|

|	AVG(d)	|	double(17,4)	|	YES		|					|	NULL				|							|

|	AVG(f)	|	double							|	YES		|					|	NULL				|							|

+--------+--------------+------+-----+---------+-------+

The	result	is	a	double	no	matter	the	argument	type.

Result	as	of	MySQL	5.0.3:

mysql>	DESCRIBE	y;

+--------+---------------+------+-----+---------+-------+

|	Field		|	Type										|	Null	|	Key	|	Default	|	Extra	|

+--------+---------------+------+-----+---------+-------+

|	AVG(i)	|	decimal(14,4)	|	YES		|					|	NULL				|							|

|	AVG(d)	|	decimal(14,4)	|	YES		|					|	NULL				|							|

|	AVG(f)	|	double								|	YES		|					|	NULL				|							|

+--------+---------------+------+-----+---------+-------+

The	result	is	a	double	only	for	the	floating-point	argument.	For	exact	type
arguments,	the	result	is	also	an	exact	type.	(From	MySQL	5.0.3	to	5.0.6,	the	first
two	columns	are	DECIMAL(64,0).)

Chapter	22.	APIs	and	Libraries

Table	of	Contents

22.1.	libmysqld,	the	Embedded	MySQL	Server	Library
22.2.	MySQL	C	API

22.2.1.	C	API	Data	types
22.2.2.	C	API	Function	Overview
22.2.3.	C	API	Function	Descriptions
22.2.4.	C	API	Prepared	Statements
22.2.5.	C	API	Prepared	Statement	Data	types
22.2.6.	C	API	Prepared	Statement	Function	Overview
22.2.7.	C	API	Prepared	Statement	Function	Descriptions
22.2.8.	C	API	Prepared	statement	problems
22.2.9.	C	API	Handling	of	Multiple	Statement	Execution
22.2.10.	C	API	Handling	of	Date	and	Time	Values
22.2.11.	C	API	Threaded	Function	Descriptions
22.2.12.	C	API	Embedded	Server	Function	Descriptions
22.2.13.	Common	Questions	and	Problems	When	Using	the	C	API
22.2.14.	Building	Client	Programs
22.2.15.	How	to	Make	a	Threaded	Client

22.3.	MySQL	PHP	API
22.3.1.	Common	Problems	with	MySQL	and	PHP
22.3.2.	Enabling	Both	mysql	and	mysqli	in	PHP

22.4.	MySQL	Perl	API
22.5.	MySQL	C++	API

22.5.1.	Borland	C++
22.6.	MySQL	Python	API
22.7.	MySQL	Tcl	API
22.8.	MySQL	Eiffel	Wrapper
22.9.	MySQL	Program	Development	Utilities

22.9.1.	msql2mysql	—	Convert	mSQL	Programs	for	Use	with	MySQL
22.9.2.	mysql_config	—	Get	Compile	Options	for	Compiling	Clients

This	chapter	describes	the	APIs	available	for	MySQL,	where	to	get	them,	and
how	to	use	them.	The	C	API	is	the	most	extensively	covered,	because	it	was
developed	by	the	MySQL	team,	and	is	the	basis	for	most	of	the	other	APIs.	This

chapter	also	covers	some	programs	that	are	useful	for	application	developers.

22.1.	libmysqld,	the	Embedded	MySQL	Server
Library

The	embedded	MySQL	server	library	is	NOT	part	of	MySQL	5.0.	It	is	part
of	previous	editions	and	will	be	included	in	future	versions,	starting	with
MySQL	5.1.	You	can	find	appropriate	documentation	in	the	corresponding
manuals	for	these	versions.	In	this	manual,	only	an	overview	of	the
embedded	library	is	provided.

The	embedded	MySQL	server	library	makes	it	possible	to	run	a	full-featured
MySQL	server	inside	a	client	application.	The	main	benefits	are	increased	speed
and	more	simple	management	for	embedded	applications.

The	embedded	server	library	is	based	on	the	client/server	version	of	MySQL,
which	is	written	in	C/C++.	Consequently,	the	embedded	server	also	is	written	in
C/C++.	There	is	no	embedded	server	available	in	other	languages.

The	API	is	identical	for	the	embedded	MySQL	version	and	the	client/server
version.	To	change	an	old	threaded	application	to	use	the	embedded	library,	you
normally	only	have	to	add	calls	to	the	following	functions:

Function When	to	Call

mysql_server_init()
Should	be	called	before	any	other	MySQL	function	is
called,	preferably	early	in	the	main()	function.

mysql_server_end() Should	be	called	before	your	program	exits.

mysql_thread_init()
Should	be	called	in	each	thread	you	create	that	accesses
MySQL.

mysql_thread_end() Should	be	called	before	calling	pthread_exit()

Then	you	must	link	your	code	with	libmysqld.a	instead	of	libmysqlclient.a.

The	mysql_server_xxx()	functions	are	also	included	in	libmysqlclient.a	to
allow	you	to	change	between	the	embedded	and	the	client/server	version	by	just
linking	your	application	with	the	right	library.	See	Section	22.2.12.1,
“mysql_server_init()”.

One	difference	between	the	embedded	server	and	the	standalone	server	is	that
for	the	embedded	server,	authentication	for	connections	is	disabled	by	default.
To	use	authentication	for	the	embedded	server,	specify	the	--with-embedded-
privilege-control	option	when	you	invoke	configure	to	configure	your
MySQL	distribution.

22.2.	MySQL	C	API

The	C	API	code	is	distributed	with	MySQL.	It	is	included	in	the	mysqlclient
library	and	allows	C	programs	to	access	a	database.

Many	of	the	clients	in	the	MySQL	source	distribution	are	written	in	C.	If	you	are
looking	for	examples	that	demonstrate	how	to	use	the	C	API,	take	a	look	at	these
clients.	You	can	find	these	in	the	clients	directory	in	the	MySQL	source
distribution.

Most	of	the	other	client	APIs	(all	except	Connector/J	and	Connector/NET)	use
the	mysqlclient	library	to	communicate	with	the	MySQL	server.	This	means
that,	for	example,	you	can	take	advantage	of	many	of	the	same	environment
variables	that	are	used	by	other	client	programs,	because	they	are	referenced
from	the	library.	See	Chapter	8,	Client	and	Utility	Programs,	for	a	list	of	these
variables.

The	client	has	a	maximum	communication	buffer	size.	The	size	of	the	buffer	that
is	allocated	initially	(16KB)	is	automatically	increased	up	to	the	maximum	size
(the	maximum	is	16MB).	Because	buffer	sizes	are	increased	only	as	demand
warrants,	simply	increasing	the	default	maximum	limit	does	not	in	itself	cause
more	resources	to	be	used.	This	size	check	is	mostly	a	check	for	erroneous
statements	and	communication	packets.

The	communication	buffer	must	be	large	enough	to	contain	a	single	SQL
statement	(for	client-to-server	traffic)	and	one	row	of	returned	data	(for	server-
to-client	traffic).	Each	thread's	communication	buffer	is	dynamically	enlarged	to
handle	any	query	or	row	up	to	the	maximum	limit.	For	example,	if	you	have
BLOB	values	that	contain	up	to	16MB	of	data,	you	must	have	a	communication
buffer	limit	of	at	least	16MB	(in	both	server	and	client).	The	client's	default
maximum	is	16MB,	but	the	default	maximum	in	the	server	is	1MB.	You	can
increase	this	by	changing	the	value	of	the	max_allowed_packet	parameter	when
the	server	is	started.	See	Section	7.5.2,	“Tuning	Server	Parameters”.

The	MySQL	server	shrinks	each	communication	buffer	to	net_buffer_length
bytes	after	each	query.	For	clients,	the	size	of	the	buffer	associated	with	a
connection	is	not	decreased	until	the	connection	is	closed,	at	which	time	client
memory	is	reclaimed.

For	programming	with	threads,	see	Section	22.2.15,	“How	to	Make	a	Threaded
Client”.	For	creating	a	standalone	application	which	includes	the	"server"	and
"client"	in	the	same	program	(and	does	not	communicate	with	an	external
MySQL	server),	see	Section	22.1,	“libmysqld,	the	Embedded	MySQL	Server
Library”.

22.2.1.	C	API	Data	types

	MYSQL

This	structure	represents	a	handle	to	one	database	connection.	It	is	used	for
almost	all	MySQL	functions.	You	should	not	try	to	make	a	copy	of	a	MYSQL
structure.	There	is	no	guarantee	that	such	a	copy	will	be	usable.

	MYSQL_RES

This	structure	represents	the	result	of	a	query	that	returns	rows	(SELECT,
SHOW,	DESCRIBE,	EXPLAIN).	The	information	returned	from	a	query	is	called
the	result	set	in	the	remainder	of	this	section.

	MYSQL_ROW

This	is	a	type-safe	representation	of	one	row	of	data.	It	is	currently
implemented	as	an	array	of	counted	byte	strings.	(You	cannot	treat	these	as
null-terminated	strings	if	field	values	may	contain	binary	data,	because	such
values	may	contain	null	bytes	internally.)	Rows	are	obtained	by	calling
mysql_fetch_row().

	MYSQL_FIELD

This	structure	contains	information	about	a	field,	such	as	the	field's	name,
type,	and	size.	Its	members	are	described	in	more	detail	here.	You	may
obtain	the	MYSQL_FIELD	structures	for	each	field	by	calling
mysql_fetch_field()	repeatedly.	Field	values	are	not	part	of	this	structure;
they	are	contained	in	a	MYSQL_ROW	structure.

	MYSQL_FIELD_OFFSET

This	is	a	type-safe	representation	of	an	offset	into	a	MySQL	field	list.	(Used
by	mysql_field_seek().)	Offsets	are	field	numbers	within	a	row,

beginning	at	zero.

	my_ulonglong

The	type	used	for	the	number	of	rows	and	for	mysql_affected_rows(),
mysql_num_rows(),	and	mysql_insert_id().	This	type	provides	a	range	of
0	to	1.84e19.

On	some	systems,	attempting	to	print	a	value	of	type	my_ulonglong	does
not	work.	To	print	such	a	value,	convert	it	to	unsigned	long	and	use	a	%lu
print	format.	Example:

printf	("Number	of	rows:	%lu\n",	(unsigned	long)	mysql_num_rows(result));

The	MYSQL_FIELD	structure	contains	the	members	listed	here:

char	*	name

The	name	of	the	field,	as	a	null-terminated	string.	If	the	field	was	given	an
alias	with	an	AS	clause,	the	value	of	name	is	the	alias.

char	*	org_name

The	name	of	the	field,	as	a	null-terminated	string.	Aliases	are	ignored.

char	*	table

The	name	of	the	table	containing	this	field,	if	it	isn't	a	calculated	field.	For
calculated	fields,	the	table	value	is	an	empty	string.	If	the	table	was	given
an	alias	with	an	AS	clause,	the	value	of	table	is	the	alias.

char	*	org_table

The	name	of	the	table,	as	a	null-terminated	string.	Aliases	are	ignored.

char	*	db

The	name	of	the	database	that	the	field	comes	from,	as	a	null-terminated
string.	If	the	field	is	a	calculated	field,	db	is	an	empty	string.

char	*	catalog

The	catalog	name.	This	value	is	always	"def".

char	*	def

The	default	value	of	this	field,	as	a	null-terminated	string.	This	is	set	only	if
you	use	mysql_list_fields().

unsigned	long	length

The	width	of	the	field,	as	specified	in	the	table	definition.

unsigned	long	max_length

The	maximum	width	of	the	field	for	the	result	set	(the	length	of	the	longest
field	value	for	the	rows	actually	in	the	result	set).	If	you	use
mysql_store_result()	or	mysql_list_fields(),	this	contains	the
maximum	length	for	the	field.	If	you	use	mysql_use_result(),	the	value	of
this	variable	is	zero.

unsigned	int	name_length

The	length	of	name.

unsigned	int	org_name_length

The	length	of	org_name.

unsigned	int	table_length

The	length	of	table.

unsigned	int	org_table_length

The	length	of	org_table.

unsigned	int	db_length

The	length	of	db.

unsigned	int	catalog_length

The	length	of	catalog.

unsigned	int	def_length

The	length	of	def.

unsigned	int	flags

Different	bit-flags	for	the	field.	The	flags	value	may	have	zero	or	more	of
the	following	bits	set:

Flag	Value Flag	Description
NOT_NULL_FLAG Field	can't	be	NULL
PRI_KEY_FLAG Field	is	part	of	a	primary	key
UNIQUE_KEY_FLAG Field	is	part	of	a	unique	key
MULTIPLE_KEY_FLAG Field	is	part	of	a	non-unique	key
UNSIGNED_FLAG Field	has	the	UNSIGNED	attribute
ZEROFILL_FLAG Field	has	the	ZEROFILL	attribute
BINARY_FLAG Field	has	the	BINARY	attribute
AUTO_INCREMENT_FLAG Field	has	the	AUTO_INCREMENT	attribute
ENUM_FLAG Field	is	an	ENUM	(deprecated)
SET_FLAG Field	is	a	SET	(deprecated)
BLOB_FLAG Field	is	a	BLOB	or	TEXT	(deprecated)
TIMESTAMP_FLAG Field	is	a	TIMESTAMP	(deprecated)

Use	of	the	BLOB_FLAG,	ENUM_FLAG,	SET_FLAG,	and	TIMESTAMP_FLAG	flags	is
deprecated	because	they	indicate	the	type	of	a	field	rather	than	an	attribute
of	its	type.	It	is	preferable	to	test	field->type	against	MYSQL_TYPE_BLOB,
MYSQL_TYPE_ENUM,	MYSQL_TYPE_SET,	or	MYSQL_TYPE_TIMESTAMP	instead.

The	following	example	illustrates	a	typical	use	of	the	flags	value:

if	(field->flags	&	NOT_NULL_FLAG)

				printf("Field	can't	be	null\n");

You	may	use	the	following	convenience	macros	to	determine	the	boolean
status	of	the	flags	value:

Flag	Status Description
IS_NOT_NULL(flags) True	if	this	field	is	defined	as	NOT	NULL
IS_PRI_KEY(flags) True	if	this	field	is	a	primary	key

IS_BLOB(flags)
True	if	this	field	is	a	BLOB	or	TEXT	(deprecated;	test
field->type	instead)

unsigned	int	decimals

The	number	of	decimals	for	numeric	fields.

unsigned	int	charsetnr

The	character	set	number	for	the	field.

enum	enum_field_types	type

The	type	of	the	field.	The	type	value	may	be	one	of	the	MYSQL_TYPE_
symbols	shown	in	the	following	table.

Type	Value Type	Description
MYSQL_TYPE_TINY TINYINT	field
MYSQL_TYPE_SHORT SMALLINT	field
MYSQL_TYPE_LONG INTEGER	field
MYSQL_TYPE_INT24 MEDIUMINT	field
MYSQL_TYPE_LONGLONG BIGINT	field
MYSQL_TYPE_DECIMAL DECIMAL	or	NUMERIC	field

MYSQL_TYPE_NEWDECIMAL
Precision	math	DECIMAL	or	NUMERIC	field
(MySQL	5.0.3	and	up)

MYSQL_TYPE_FLOAT FLOAT	field
MYSQL_TYPE_DOUBLE DOUBLE	or	REAL	field
MYSQL_TYPE_BIT BIT	field	(MySQL	5.0.3	and	up)
MYSQL_TYPE_TIMESTAMP TIMESTAMP	field
MYSQL_TYPE_DATE DATE	field
MYSQL_TYPE_TIME TIME	field

MYSQL_TYPE_DATETIME DATETIME	field

MYSQL_TYPE_YEAR YEAR	field
MYSQL_TYPE_STRING CHAR	or	BINARY	field
MYSQL_TYPE_VAR_STRING VARCHAR	or	VARBINARY	field

MYSQL_TYPE_BLOB
BLOB	or	TEXT	field	(use	max_length	to	determine
the	maximum	length)

MYSQL_TYPE_SET SET	field
MYSQL_TYPE_ENUM ENUM	field
MYSQL_TYPE_GEOMETRY Spatial	field
MYSQL_TYPE_NULL NULL-type	field
MYSQL_TYPE_CHAR Deprecated;	use	MYSQL_TYPE_TINY	instead

You	can	use	the	IS_NUM()	macro	to	test	whether	a	field	has	a	numeric	type.
Pass	the	type	value	to	IS_NUM()	and	it	evaluates	to	TRUE	if	the	field	is
numeric:

if	(IS_NUM(field->type))

				printf("Field	is	numeric\n");

To	distinguish	between	binary	and	non-binary	data	for	string	data	types,
check	whether	the	charsetnr	value	is	63.	If	so,	the	character	set	is	binary,
which	indicates	binary	rather	than	non-binary	data.	This	is	how	to
distinguish	between	BINARY	and	CHAR,	VARBINARY	and	VARCHAR,	and	BLOB
and	TEXT.

22.2.2.	C	API	Function	Overview

The	functions	available	in	the	C	API	are	summarized	here	and	described	in
greater	detail	in	a	later	section.	See	Section	22.2.3,	“C	API	Function
Descriptions”.

Function Description

mysql_affected_rows()
Returns	the	number	of	rows
changed/deleted/inserted	by	the	last	UPDATE,
DELETE,	or	INSERT	query.

mysql_autocommit() Toggles	autocommit	mode	on/off.

mysql_change_user() Changes	user	and	database	on	an	open
connection.

mysql_close() Closes	a	server	connection.
mysql_commit() Commits	the	transaction.

mysql_connect()
Connects	to	a	MySQL	server.	This	function
is	deprecated;	use	mysql_real_connect()
instead.

mysql_create_db()
Creates	a	database.	This	function	is
deprecated;	use	the	SQL	statement	CREATE
DATABASE	instead.

mysql_data_seek() Seeks	to	an	arbitrary	row	number	in	a	query
result	set.

mysql_debug() Does	a	DBUG_PUSH	with	the	given	string.

mysql_drop_db()
Drops	a	database.	This	function	is
deprecated;	use	the	SQL	statement	DROP
DATABASE	instead.

mysql_dump_debug_info() Makes	the	server	write	debug	information
to	the	log.

mysql_eof()

Determines	whether	the	last	row	of	a	result
set	has	been	read.	This	function	is
deprecated;	mysql_errno()	or
mysql_error()	may	be	used	instead.

mysql_errno() Returns	the	error	number	for	the	most
recently	invoked	MySQL	function.

mysql_error() Returns	the	error	message	for	the	most
recently	invoked	MySQL	function.

mysql_escape_string() Escapes	special	characters	in	a	string	for	use
in	an	SQL	statement.

mysql_fetch_field() Returns	the	type	of	the	next	table	field.

mysql_fetch_field_direct() Returns	the	type	of	a	table	field,	given	a
field	number.

mysql_fetch_fields() Returns	an	array	of	all	field	structures.

mysql_fetch_lengths() Returns	the	lengths	of	all	columns	in	the
current	row.

mysql_fetch_row() Fetches	the	next	row	from	the	result	set.

mysql_field_seek() Puts	the	column	cursor	on	a	specified
column.

mysql_field_count() Returns	the	number	of	result	columns	for
the	most	recent	statement.

mysql_field_tell() Returns	the	position	of	the	field	cursor	used
for	the	last	mysql_fetch_field().

mysql_free_result() Frees	memory	used	by	a	result	set.

mysql_get_client_info() Returns	client	version	information	as	a
string.

mysql_get_client_version() Returns	client	version	information	as	an
integer.

mysql_get_host_info() Returns	a	string	describing	the	connection.

mysql_get_server_version() Returns	version	number	of	server	as	an
integer.

mysql_get_proto_info() Returns	the	protocol	version	used	by	the
connection.

mysql_get_server_info() Returns	the	server	version	number.

mysql_info() Returns	information	about	the	most	recently
executed	query.

mysql_init() Gets	or	initializes	a	MYSQL	structure.

mysql_insert_id()
Returns	the	ID	generated	for	an
AUTO_INCREMENT	column	by	the	previous
query.

mysql_kill() Kills	a	given	thread.
mysql_library_end() Finalize	MySQL	C	API	library.
mysql_library_init() Initialize	MySQL	C	API	library.

mysql_list_dbs() Returns	database	names	matching	a	simple
regular	expression.

mysql_list_fields() Returns	field	names	matching	a	simple
regular	expression.

mysql_list_processes() Returns	a	list	of	the	current	server	threads.

mysql_list_tables()
Returns	table	names	matching	a	simple

regular	expression.
mysql_more_results() Checks	whether	any	more	results	exist.

mysql_next_result() Returns/initiates	the	next	result	in	multiple-
statement	executions.

mysql_num_fields() Returns	the	number	of	columns	in	a	result
set.

mysql_num_rows() Returns	the	number	of	rows	in	a	result	set.
mysql_options() Sets	connect	options	for	mysql_connect().

mysql_ping() Checks	whether	the	connection	to	the	server
is	working,	reconnecting	as	necessary.

mysql_query() Executes	an	SQL	query	specified	as	a	null-
terminated	string.

mysql_real_connect() Connects	to	a	MySQL	server.

mysql_real_escape_string()
Escapes	special	characters	in	a	string	for	use
in	an	SQL	statement,	taking	into	account	the
current	character	set	of	the	connection.

mysql_real_query() Executes	an	SQL	query	specified	as	a
counted	string.

mysql_refresh() Flush	or	reset	tables	and	caches.
mysql_reload() Tells	the	server	to	reload	the	grant	tables.
mysql_rollback() Rolls	back	the	transaction.

mysql_row_seek() Seeks	to	a	row	offset	in	a	result	set,	using
value	returned	from	mysql_row_tell().

mysql_row_tell() Returns	the	row	cursor	position.
mysql_select_db() Selects	a	database.
mysql_server_end() Finalize	embedded	server	library.
mysql_server_init() Initialize	embedded	server	library.

mysql_set_local_infile_default() Set	the	LOAD	DATA	LOCAL	INFILE	handler
callbacks	to	their	default	values.

mysql_set_local_infile_handler() Install	application-specific	LOAD	DATA
LOCAL	INFILE	handler	callbacks.

mysql_set_server_option()
Sets	an	option	for	the	connection	(like
multi-statements).

mysql_sqlstate() Returns	the	SQLSTATE	error	code	for	the
last	error.

mysql_shutdown() Shuts	down	the	database	server.
mysql_stat() Returns	the	server	status	as	a	string.
mysql_store_result() Retrieves	a	complete	result	set	to	the	client.
mysql_thread_id() Returns	the	current	thread	ID.

mysql_thread_safe() Returns	1	if	the	clients	are	compiled	as
thread-safe.

mysql_use_result() Initiates	a	row-by-row	result	set	retrieval.

mysql_warning_count() Returns	the	warning	count	for	the	previous
SQL	statement.

Application	programs	should	use	this	general	outline	for	interacting	with
MySQL:

1.	 Initialize	the	MySQL	library	by	calling	mysql_library_init().	The	library
can	be	either	the	mysqlclient	C	client	library	or	the	mysqld	embedded
server	library,	depending	on	whether	the	application	was	linked	with	the	-
libmysqlclient	or	-libmysqld	flag.

2.	 Initialize	a	connection	handler	by	calling	mysql_init()	and	connect	to	the
server	by	calling	mysql_real_connect().

3.	 Issue	SQL	statements	and	process	their	results.	(The	following	discussion
provides	more	information	about	how	to	do	this.)

4.	 Close	the	connection	to	the	MySQL	server	by	calling	mysql_close().

5.	 End	use	of	the	MySQL	library	by	calling	mysql_library_end().

The	purpose	of	calling	mysql_library_init()	and	mysql_library_end()	is	to
provide	proper	initialization	and	finalization	of	the	MySQL	library.	For
applications	that	are	linked	with	the	client	library,	they	provide	improved
memory	management.	If	you	don't	call	mysql_library_end(),	a	block	of
memory	remains	allocated.	(This	does	not	increase	the	amount	of	memory	used
by	the	application,	but	some	memory	leak	detectors	will	complain	about	it.)	For
applications	that	are	linked	with	the	embedded	server,	these	calls	start	and	stop
the	server.

mysql_library_init()	and	mysql_library_end()	are	available	as	of	MySQL
5.0.3.	These	actually	are	#define	symbols	that	make	them	equivalent	to
mysql_server_init()	and	mysql_server_end(),	but	the	names	more	clearly
indicate	that	they	should	be	called	when	beginning	and	ending	use	of	a	MySQL
library	no	matter	whether	the	application	uses	the	mysqlclient	or	mysqld
library.	For	older	versions	of	MySQL,	you	can	call	mysql_server_init()	and
mysql_server_end()	instead.

In	a	non-multi-threaded	environment,	the	call	to	mysql_library_init()	may	be
omitted,	because	mysql_init()	will	invoke	it	automatically	as	necessary.
However,	a	race	condition	is	possible	if	mysql_library_init()	is	invoked	by
mysql_init()	in	a	multi-threaded	environment:	mysql_library_init()	is	not
thread-safe,	so	it	should	be	called	prior	to	any	other	client	library	call.

To	connect	to	the	server,	call	mysql_init()	to	initialize	a	connection	handler,
then	call	mysql_real_connect()	with	that	handler	(along	with	other	information
such	as	the	hostname,	username,	and	password).	Upon	connection,
mysql_real_connect()	sets	the	reconnect	flag	(part	of	the	MYSQL	structure)	to	a
value	of	1	in	versions	of	the	API	older	than	5.0.3,	or	0	in	newer	versions.	A	value
of	1	for	this	flag	indicates	that	if	a	statement	cannot	be	performed	because	of	a
lost	connection,	to	try	reconnecting	to	the	server	before	giving	up.	As	of	MySQL
5.0.13,	you	can	use	the	MYSQL_OPT_RECONNECT	option	to	mysql_options()	to
control	reconnection	behavior.	When	you	are	done	with	the	connection,	call
mysql_close()	to	terminate	it.

While	a	connection	is	active,	the	client	may	send	SQL	statements	to	the	server
using	mysql_query()	or	mysql_real_query().	The	difference	between	the	two
is	that	mysql_query()	expects	the	query	to	be	specified	as	a	null-terminated
string	whereas	mysql_real_query()	expects	a	counted	string.	If	the	string
contains	binary	data	(which	may	include	null	bytes),	you	must	use
mysql_real_query().

For	each	non-SELECT	query	(for	example,	INSERT,	UPDATE,	DELETE),	you	can	find
out	how	many	rows	were	changed	(affected)	by	calling
mysql_affected_rows().

For	SELECT	queries,	you	retrieve	the	selected	rows	as	a	result	set.	(Note	that
some	statements	are	SELECT-like	in	that	they	return	rows.	These	include	SHOW,

DESCRIBE,	and	EXPLAIN.	They	should	be	treated	the	same	way	as	SELECT
statements.)

There	are	two	ways	for	a	client	to	process	result	sets.	One	way	is	to	retrieve	the
entire	result	set	all	at	once	by	calling	mysql_store_result().	This	function
acquires	from	the	server	all	the	rows	returned	by	the	query	and	stores	them	in	the
client.	The	second	way	is	for	the	client	to	initiate	a	row-by-row	result	set
retrieval	by	calling	mysql_use_result().	This	function	initializes	the	retrieval,
but	does	not	actually	get	any	rows	from	the	server.

In	both	cases,	you	access	rows	by	calling	mysql_fetch_row().	With
mysql_store_result(),	mysql_fetch_row()	accesses	rows	that	have	previously
been	fetched	from	the	server.	With	mysql_use_result(),	mysql_fetch_row()
actually	retrieves	the	row	from	the	server.	Information	about	the	size	of	the	data
in	each	row	is	available	by	calling	mysql_fetch_lengths().

After	you	are	done	with	a	result	set,	call	mysql_free_result()	to	free	the
memory	used	for	it.

The	two	retrieval	mechanisms	are	complementary.	Client	programs	should
choose	the	approach	that	is	most	appropriate	for	their	requirements.	In	practice,
clients	tend	to	use	mysql_store_result()	more	commonly.

An	advantage	of	mysql_store_result()	is	that	because	the	rows	have	all	been
fetched	to	the	client,	you	not	only	can	access	rows	sequentially,	you	can	move
back	and	forth	in	the	result	set	using	mysql_data_seek()	or	mysql_row_seek()
to	change	the	current	row	position	within	the	result	set.	You	can	also	find	out
how	many	rows	there	are	by	calling	mysql_num_rows().	On	the	other	hand,	the
memory	requirements	for	mysql_store_result()	may	be	very	high	for	large
result	sets	and	you	are	more	likely	to	encounter	out-of-memory	conditions.

An	advantage	of	mysql_use_result()	is	that	the	client	requires	less	memory	for
the	result	set	because	it	maintains	only	one	row	at	a	time	(and	because	there	is
less	allocation	overhead,	mysql_use_result()	can	be	faster).	Disadvantages	are
that	you	must	process	each	row	quickly	to	avoid	tying	up	the	server,	you	don't
have	random	access	to	rows	within	the	result	set	(you	can	only	access	rows
sequentially),	and	you	don't	know	how	many	rows	are	in	the	result	set	until	you
have	retrieved	them	all.	Furthermore,	you	must	retrieve	all	the	rows	even	if	you
determine	in	mid-retrieval	that	you've	found	the	information	you	were	looking

for.

The	API	makes	it	possible	for	clients	to	respond	appropriately	to	statements
(retrieving	rows	only	as	necessary)	without	knowing	whether	the	statement	is	a
SELECT.	You	can	do	this	by	calling	mysql_store_result()	after	each
mysql_query()	(or	mysql_real_query()).	If	the	result	set	call	succeeds,	the
statement	was	a	SELECT	and	you	can	read	the	rows.	If	the	result	set	call	fails,	call
mysql_field_count()	to	determine	whether	a	result	was	actually	to	be
expected.	If	mysql_field_count()	returns	zero,	the	statement	returned	no	data
(indicating	that	it	was	an	INSERT,	UPDATE,	DELETE,	and	so	forth),	and	was	not
expected	to	return	rows.	If	mysql_field_count()	is	non-zero,	the	statement
should	have	returned	rows,	but	didn't.	This	indicates	that	the	statement	was	a
SELECT	that	failed.	See	the	description	for	mysql_field_count()	for	an	example
of	how	this	can	be	done.

Both	mysql_store_result()	and	mysql_use_result()	allow	you	to	obtain
information	about	the	fields	that	make	up	the	result	set	(the	number	of	fields,
their	names	and	types,	and	so	forth).	You	can	access	field	information
sequentially	within	the	row	by	calling	mysql_fetch_field()	repeatedly,	or	by
field	number	within	the	row	by	calling	mysql_fetch_field_direct().	The
current	field	cursor	position	may	be	changed	by	calling	mysql_field_seek().
Setting	the	field	cursor	affects	subsequent	calls	to	mysql_fetch_field().	You
can	also	get	information	for	fields	all	at	once	by	calling	mysql_fetch_fields().

For	detecting	and	reporting	errors,	MySQL	provides	access	to	error	information
by	means	of	the	mysql_errno()	and	mysql_error()	functions.	These	return	the
error	code	or	error	message	for	the	most	recently	invoked	function	that	can
succeed	or	fail,	allowing	you	to	determine	when	an	error	occurred	and	what	it
was.

22.2.3.	C	API	Function	Descriptions

In	the	descriptions	here,	a	parameter	or	return	value	of	NULL	means	NULL	in	the
sense	of	the	C	programming	language,	not	a	MySQL	NULL	value.

Functions	that	return	a	value	generally	return	a	pointer	or	an	integer.	Unless
specified	otherwise,	functions	returning	a	pointer	return	a	non-NULL	value	to
indicate	success	or	a	NULL	value	to	indicate	an	error,	and	functions	returning	an
integer	return	zero	to	indicate	success	or	non-zero	to	indicate	an	error.	Note	that

“non-zero”	means	just	that.	Unless	the	function	description	says	otherwise,	do
not	test	against	a	value	other	than	zero:

if	(result)																			/*	correct	*/

				...	error	...

if	(result	<	0)															/*	incorrect	*/

				...	error	...

if	(result	==	-1)													/*	incorrect	*/

				...	error	...

When	a	function	returns	an	error,	the	Errors	subsection	of	the	function
description	lists	the	possible	types	of	errors.	You	can	find	out	which	of	these
occurred	by	calling	mysql_errno().	A	string	representation	of	the	error	may	be
obtained	by	calling	mysql_error().

22.2.3.1.	mysql_affected_rows()

my_ulonglong	mysql_affected_rows(MYSQL	*mysql)

Description

Returns	the	number	of	rows	changed	by	the	last	UPDATE,	deleted	by	the	last
DELETE	or	inserted	by	the	last	INSERT	statement.	May	be	called	immediately	after
mysql_query()	for	UPDATE,	DELETE,	or	INSERT	statements.	For	SELECT
statements,	mysql_affected_rows()	works	like	mysql_num_rows().

Return	Values

An	integer	greater	than	zero	indicates	the	number	of	rows	affected	or	retrieved.
Zero	indicates	that	no	records	were	updated	for	an	UPDATE	statement,	no	rows
matched	the	WHERE	clause	in	the	query	or	that	no	query	has	yet	been	executed.	-1
indicates	that	the	query	returned	an	error	or	that,	for	a	SELECT	query,
mysql_affected_rows()	was	called	prior	to	calling	mysql_store_result().
Because	mysql_affected_rows()	returns	an	unsigned	value,	you	can	check	for
-1	by	comparing	the	return	value	to	(my_ulonglong)-1	(or	to
(my_ulonglong)~0,	which	is	equivalent).

Errors

None.

Example

mysql_query(&mysql,"UPDATE	products	SET	cost=cost*1.25	WHERE	group=10");

printf("%ld	products	updated",(long)	mysql_affected_rows(&mysql));

If	you	specify	the	flag	CLIENT_FOUND_ROWS	when	connecting	to	mysqld,
mysql_affected_rows()	returns	the	number	of	rows	matched	by	the	WHERE
statement	for	UPDATE	statements.	Otherwise,	it	returns	the	number	of	rows
actually	changed.

Note	that	when	you	use	a	REPLACE	command,	mysql_affected_rows()	returns	2
if	the	new	row	replaced	an	old	row,	because	in	this	case,	one	row	was	inserted
after	the	duplicate	was	deleted.

If	you	use	INSERT	...	ON	DUPLICATE	KEY	UPDATE	to	insert	a	row,
mysql_affected_rows()	returns	1	if	the	row	is	inserted	as	a	new	row	and	2	if	an
existing	row	is	updated.

22.2.3.2.	mysql_autocommit()

my_bool	mysql_autocommit(MYSQL	*mysql,	my_bool	mode)

Description

Sets	autocommit	mode	on	if	mode	is	1,	off	if	mode	is	0.

Return	Values

Zero	if	successful.	Non-zero	if	an	error	occurred.

Errors

None.

22.2.3.3.	mysql_change_user()

my_bool	mysql_change_user(MYSQL	*mysql,	const	char	*user,	const

char	*password,	const	char	*db)

Description

Changes	the	user	and	causes	the	database	specified	by	db	to	become	the	default
(current)	database	on	the	connection	specified	by	mysql.	In	subsequent	queries,
this	database	is	the	default	for	table	references	that	do	not	include	an	explicit
database	specifier.

mysql_change_user()	fails	if	the	connected	user	cannot	be	authenticated	or
doesn't	have	permission	to	use	the	database.	In	this	case,	the	user	and	database
are	not	changed

The	db	parameter	may	be	set	to	NULL	if	you	don't	want	to	have	a	default
database.

This	command	always	performs	a	ROLLBACK	of	any	active	transactions,	closes	all
temporary	tables,	unlocks	all	locked	tables	and	resets	the	state	as	if	one	had	done
a	new	connect.	This	happens	even	if	the	user	didn't	change.

Return	Values

Zero	for	success.	Non-zero	if	an	error	occurred.

Errors

The	same	that	you	can	get	from	mysql_real_connect().

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

ER_UNKNOWN_COM_ERROR

The	MySQL	server	doesn't	implement	this	command	(probably	an	old
server).

ER_ACCESS_DENIED_ERROR

The	user	or	password	was	wrong.

ER_BAD_DB_ERROR

The	database	didn't	exist.

ER_DBACCESS_DENIED_ERROR

The	user	did	not	have	access	rights	to	the	database.

ER_WRONG_DB_NAME

The	database	name	was	too	long.

Example

if	(mysql_change_user(&mysql,	"user",	"password",	"new_database"))

{

			fprintf(stderr,	"Failed	to	change	user.		Error:	%s\n",

											mysql_error(&mysql));

}

22.2.3.4.	mysql_character_set_name()

const	char	*mysql_character_set_name(MYSQL	*mysql)

Description

Returns	the	default	character	set	for	the	current	connection.

Return	Values

The	default	character	set

Errors

None.

22.2.3.5.	mysql_close()

void	mysql_close(MYSQL	*mysql)

Description

Closes	a	previously	opened	connection.	mysql_close()	also	deallocates	the
connection	handle	pointed	to	by	mysql	if	the	handle	was	allocated	automatically
by	mysql_init()	or	mysql_connect().

Return	Values

None.

Errors

None.

22.2.3.6.	mysql_commit()

my_bool	mysql_commit(MYSQL	*mysql)

Description

Commits	the	current	transaction.

As	of	MySQL	5.0.3,	the	action	of	this	function	is	subject	to	the	value	of	the
completion_type	system	variable.	In	particular,	if	the	value	of
completion_type	is	2,	the	server	performs	a	release	after	terminating	a
transaction	and	closes	the	client	connection.	The	client	program	should	call
mysql_close()	to	close	the	connection	from	the	client	side.

Return	Values

Zero	if	successful.	Non-zero	if	an	error	occurred.

Errors

None.

22.2.3.7.	mysql_connect()

MYSQL	*mysql_connect(MYSQL	*mysql,	const	char	*host,	const	char

*user,	const	char	*passwd)

Description

This	function	is	deprecated.	It	is	preferable	to	use	mysql_real_connect()
instead.

mysql_connect()	attempts	to	establish	a	connection	to	a	MySQL	database
engine	running	on	host.	mysql_connect()	must	complete	successfully	before
you	can	execute	any	of	the	other	API	functions,	with	the	exception	of
mysql_get_client_info().

The	meanings	of	the	parameters	are	the	same	as	for	the	corresponding
parameters	for	mysql_real_connect()	with	the	difference	that	the	connection
parameter	may	be	NULL.	In	this	case,	the	C	API	allocates	memory	for	the
connection	structure	automatically	and	frees	it	when	you	call	mysql_close().
The	disadvantage	of	this	approach	is	that	you	can't	retrieve	an	error	message	if
the	connection	fails.	(To	get	error	information	from	mysql_errno()	or
mysql_error(),	you	must	provide	a	valid	MYSQL	pointer.)

Return	Values

Same	as	for	mysql_real_connect().

Errors

Same	as	for	mysql_real_connect().

22.2.3.8.	mysql_create_db()

int	mysql_create_db(MYSQL	*mysql,	const	char	*db)

Description

Creates	the	database	named	by	the	db	parameter.

This	function	is	deprecated.	It	is	preferable	to	use	mysql_query()	to	issue	an
SQL	CREATE	DATABASE	statement	instead.

Return	Values

Zero	if	the	database	was	created	successfully.	Non-zero	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

Example

if(mysql_create_db(&mysql,	"my_database"))

{

			fprintf(stderr,	"Failed	to	create	new	database.		Error:	%s\n",

											mysql_error(&mysql));

}

22.2.3.9.	mysql_data_seek()

void	mysql_data_seek(MYSQL_RES	*result,	my_ulonglong	offset)

Description

Seeks	to	an	arbitrary	row	in	a	query	result	set.	The	offset	value	is	a	row	number
and	should	be	in	the	range	from	0	to	mysql_num_rows(result)-1.

This	function	requires	that	the	result	set	structure	contains	the	entire	result	of	the
query,	so	mysql_data_seek()	may	be	used	only	in	conjunction	with
mysql_store_result(),	not	with	mysql_use_result().

Return	Values

None.

Errors

None.

22.2.3.10.	mysql_debug()

void	mysql_debug(const	char	*debug)

Description

Does	a	DBUG_PUSH	with	the	given	string.	mysql_debug()	uses	the	Fred	Fish
debug	library.	To	use	this	function,	you	must	compile	the	client	library	to	support
debugging.	See	Section	E.1,	“Debugging	a	MySQL	Server”,	and	Section	E.2,
“Debugging	a	MySQL	Client”.

Return	Values

None.

Errors

None.

Example

The	call	shown	here	causes	the	client	library	to	generate	a	trace	file	in
/tmp/client.trace	on	the	client	machine:

mysql_debug("d:t:O,/tmp/client.trace");

22.2.3.11.	mysql_drop_db()

int	mysql_drop_db(MYSQL	*mysql,	const	char	*db)

Description

Drops	the	database	named	by	the	db	parameter.

This	function	is	deprecated.	It	is	preferable	to	use	mysql_query()	to	issue	an
SQL	DROP	DATABASE	statement	instead.

Return	Values

Zero	if	the	database	was	dropped	successfully.	Non-zero	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

Example

if(mysql_drop_db(&mysql,	"my_database"))

		fprintf(stderr,	"Failed	to	drop	the	database:	Error:	%s\n",

										mysql_error(&mysql));

22.2.3.12.	mysql_dump_debug_info()

int	mysql_dump_debug_info(MYSQL	*mysql)

Description

Instructs	the	server	to	write	some	debug	information	to	the	log.	For	this	to	work,
the	connected	user	must	have	the	SUPER	privilege.

Return	Values

Zero	if	the	command	was	successful.	Non-zero	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.13.	mysql_eof()

my_bool	mysql_eof(MYSQL_RES	*result)

Description

This	function	is	deprecated.	mysql_errno()	or	mysql_error()	may	be	used
instead.

mysql_eof()	determines	whether	the	last	row	of	a	result	set	has	been	read.

If	you	acquire	a	result	set	from	a	successful	call	to	mysql_store_result(),	the
client	receives	the	entire	set	in	one	operation.	In	this	case,	a	NULL	return	from
mysql_fetch_row()	always	means	the	end	of	the	result	set	has	been	reached	and
it	is	unnecessary	to	call	mysql_eof().	When	used	with	mysql_store_result(),

mysql_eof()	always	returns	true.

On	the	other	hand,	if	you	use	mysql_use_result()	to	initiate	a	result	set
retrieval,	the	rows	of	the	set	are	obtained	from	the	server	one	by	one	as	you	call
mysql_fetch_row()	repeatedly.	Because	an	error	may	occur	on	the	connection
during	this	process,	a	NULL	return	value	from	mysql_fetch_row()	does	not
necessarily	mean	the	end	of	the	result	set	was	reached	normally.	In	this	case,	you
can	use	mysql_eof()	to	determine	what	happened.	mysql_eof()	returns	a	non-
zero	value	if	the	end	of	the	result	set	was	reached	and	zero	if	an	error	occurred.

Historically,	mysql_eof()	predates	the	standard	MySQL	error	functions
mysql_errno()	and	mysql_error().	Because	those	error	functions	provide	the
same	information,	their	use	is	preferred	over	mysql_eof(),	which	is	deprecated.
(In	fact,	they	provide	more	information,	because	mysql_eof()	returns	only	a
boolean	value	whereas	the	error	functions	indicate	a	reason	for	the	error	when
one	occurs.)

Return	Values

Zero	if	no	error	occurred.	Non-zero	if	the	end	of	the	result	set	has	been	reached.

Errors

None.

Example

The	following	example	shows	how	you	might	use	mysql_eof():

mysql_query(&mysql,"SELECT	*	FROM	some_table");

result	=	mysql_use_result(&mysql);

while((row	=	mysql_fetch_row(result)))

{

				//	do	something	with	data

}

if(!mysql_eof(result))		//	mysql_fetch_row()	failed	due	to	an	error

{

				fprintf(stderr,	"Error:	%s\n",	mysql_error(&mysql));

}

However,	you	can	achieve	the	same	effect	with	the	standard	MySQL	error
functions:

mysql_query(&mysql,"SELECT	*	FROM	some_table");

result	=	mysql_use_result(&mysql);

while((row	=	mysql_fetch_row(result)))

{

				//	do	something	with	data

}

if(mysql_errno(&mysql))		//	mysql_fetch_row()	failed	due	to	an	error

{

				fprintf(stderr,	"Error:	%s\n",	mysql_error(&mysql));

}

22.2.3.14.	mysql_errno()

unsigned	int	mysql_errno(MYSQL	*mysql)

Description

For	the	connection	specified	by	mysql,	mysql_errno()	returns	the	error	code	for
the	most	recently	invoked	API	function	that	can	succeed	or	fail.	A	return	value
of	zero	means	that	no	error	occurred.	Client	error	message	numbers	are	listed	in
the	MySQL	errmsg.h	header	file.	Server	error	message	numbers	are	listed	in
mysqld_error.h.	Errors	also	are	listed	at	Appendix	B,	Error	Codes	and
Messages.

Note	that	some	functions	like	mysql_fetch_row()	don't	set	mysql_errno()	if
they	succeed.

A	rule	of	thumb	is	that	all	functions	that	have	to	ask	the	server	for	information
reset	mysql_errno()	if	they	succeed.

Return	Values

An	error	code	value	for	the	last	mysql_xxx()	call,	if	it	failed.	zero	means	no	error
occurred.

Errors

None.

22.2.3.15.	mysql_error()

const	char	*mysql_error(MYSQL	*mysql)

Description

For	the	connection	specified	by	mysql,	mysql_error()	returns	a	null-terminated
string	containing	the	error	message	for	the	most	recently	invoked	API	function
that	failed.	If	a	function	didn't	fail,	the	return	value	of	mysql_error()	may	be
the	previous	error	or	an	empty	string	to	indicate	no	error.

A	rule	of	thumb	is	that	all	functions	that	have	to	ask	the	server	for	information
reset	mysql_error()	if	they	succeed.

For	functions	that	reset	mysql_errno(),	the	following	two	tests	are	equivalent:

if(mysql_errno(&mysql))

{

				//	an	error	occurred

}

if(mysql_error(&mysql)[0]	!=	'\0')

{

				//	an	error	occurred

}

The	language	of	the	client	error	messages	may	be	changed	by	recompiling	the
MySQL	client	library.	Currently,	you	can	choose	error	messages	in	several
different	languages.	See	Section	5.11.2,	“Setting	the	Error	Message	Language”.

Return	Values

A	null-terminated	character	string	that	describes	the	error.	An	empty	string	if	no
error	occurred.

Errors

None.

22.2.3.16.	mysql_escape_string()

You	should	use	mysql_real_escape_string()	instead!

This	function	is	identical	to	mysql_real_escape_string()	except	that
mysql_real_escape_string()	takes	a	connection	handler	as	its	first	argument
and	escapes	the	string	according	to	the	current	character	set.

mysql_escape_string()	does	not	take	a	connection	argument	and	does	not
respect	the	current	character	set.

22.2.3.17.	mysql_fetch_field()

MYSQL_FIELD	*mysql_fetch_field(MYSQL_RES	*result)

Description

Returns	the	definition	of	one	column	of	a	result	set	as	a	MYSQL_FIELD	structure.
Call	this	function	repeatedly	to	retrieve	information	about	all	columns	in	the
result	set.	mysql_fetch_field()	returns	NULL	when	no	more	fields	are	left.

mysql_fetch_field()	is	reset	to	return	information	about	the	first	field	each
time	you	execute	a	new	SELECT	query.	The	field	returned	by
mysql_fetch_field()	is	also	affected	by	calls	to	mysql_field_seek().

If	you've	called	mysql_query()	to	perform	a	SELECT	on	a	table	but	have	not
called	mysql_store_result(),	MySQL	returns	the	default	blob	length	(8KB)	if
you	call	mysql_fetch_field()	to	ask	for	the	length	of	a	BLOB	field.	(The	8KB
size	is	chosen	because	MySQL	doesn't	know	the	maximum	length	for	the	BLOB.
This	should	be	made	configurable	sometime.)	Once	you've	retrieved	the	result
set,	field->max_length	contains	the	length	of	the	largest	value	for	this	column
in	the	specific	query.

Return	Values

The	MYSQL_FIELD	structure	for	the	current	column.	NULL	if	no	columns	are	left.

Errors

None.

Example

MYSQL_FIELD	*field;

while((field	=	mysql_fetch_field(result)))

{

				printf("field	name	%s\n",	field->name);

}

22.2.3.18.	mysql_fetch_field_direct()

MYSQL_FIELD	*mysql_fetch_field_direct(MYSQL_RES	*result,	unsigned

int	fieldnr)

Description

Given	a	field	number	fieldnr	for	a	column	within	a	result	set,	returns	that
column's	field	definition	as	a	MYSQL_FIELD	structure.	You	may	use	this	function
to	retrieve	the	definition	for	an	arbitrary	column.	The	value	of	fieldnr	should
be	in	the	range	from	0	to	mysql_num_fields(result)-1.

Return	Values

The	MYSQL_FIELD	structure	for	the	specified	column.

Errors

None.

Example

unsigned	int	num_fields;

unsigned	int	i;

MYSQL_FIELD	*field;

num_fields	=	mysql_num_fields(result);

for(i	=	0;	i	<	num_fields;	i++)

{

				field	=	mysql_fetch_field_direct(result,	i);

				printf("Field	%u	is	%s\n",	i,	field->name);

}

22.2.3.19.	mysql_fetch_fields()

MYSQL_FIELD	*mysql_fetch_fields(MYSQL_RES	*result)

Description

Returns	an	array	of	all	MYSQL_FIELD	structures	for	a	result	set.	Each	structure
provides	the	field	definition	for	one	column	of	the	result	set.

Return	Values

An	array	of	MYSQL_FIELD	structures	for	all	columns	of	a	result	set.

Errors

None.

Example

unsigned	int	num_fields;

unsigned	int	i;

MYSQL_FIELD	*fields;

num_fields	=	mysql_num_fields(result);

fields	=	mysql_fetch_fields(result);

for(i	=	0;	i	<	num_fields;	i++)

{

			printf("Field	%u	is	%s\n",	i,	fields[i].name);

}

22.2.3.20.	mysql_fetch_lengths()

unsigned	long	*mysql_fetch_lengths(MYSQL_RES	*result)

Description

Returns	the	lengths	of	the	columns	of	the	current	row	within	a	result	set.	If	you
plan	to	copy	field	values,	this	length	information	is	also	useful	for	optimization,
because	you	can	avoid	calling	strlen().	In	addition,	if	the	result	set	contains
binary	data,	you	must	use	this	function	to	determine	the	size	of	the	data,	because
strlen()	returns	incorrect	results	for	any	field	containing	null	characters.

The	length	for	empty	columns	and	for	columns	containing	NULL	values	is	zero.
To	see	how	to	distinguish	these	two	cases,	see	the	description	for
mysql_fetch_row().

Return	Values

An	array	of	unsigned	long	integers	representing	the	size	of	each	column	(not
including	any	terminating	null	characters).	NULL	if	an	error	occurred.

Errors

mysql_fetch_lengths()	is	valid	only	for	the	current	row	of	the	result	set.	It
returns	NULL	if	you	call	it	before	calling	mysql_fetch_row()	or	after	retrieving
all	rows	in	the	result.

Example

MYSQL_ROW	row;

unsigned	long	*lengths;

unsigned	int	num_fields;

unsigned	int	i;

row	=	mysql_fetch_row(result);

if	(row)

{

				num_fields	=	mysql_num_fields(result);

				lengths	=	mysql_fetch_lengths(result);

				for(i	=	0;	i	<	num_fields;	i++)

				{

									printf("Column	%u	is	%lu	bytes	in	length.\n",	i,	lengths[i]);

				}

}

22.2.3.21.	mysql_fetch_row()

MYSQL_ROW	mysql_fetch_row(MYSQL_RES	*result)

Description

Retrieves	the	next	row	of	a	result	set.	When	used	after	mysql_store_result(),
mysql_fetch_row()	returns	NULL	when	there	are	no	more	rows	to	retrieve.	When
used	after	mysql_use_result(),	mysql_fetch_row()	returns	NULL	when	there
are	no	more	rows	to	retrieve	or	if	an	error	occurred.

The	number	of	values	in	the	row	is	given	by	mysql_num_fields(result).	If	row
holds	the	return	value	from	a	call	to	mysql_fetch_row(),	pointers	to	the	values
are	accessed	as	row[0]	to	row[mysql_num_fields(result)-1].	NULL	values	in
the	row	are	indicated	by	NULL	pointers.

The	lengths	of	the	field	values	in	the	row	may	be	obtained	by	calling
mysql_fetch_lengths().	Empty	fields	and	fields	containing	NULL	both	have
length	0;	you	can	distinguish	these	by	checking	the	pointer	for	the	field	value.	If

the	pointer	is	NULL,	the	field	is	NULL;	otherwise,	the	field	is	empty.

Return	Values

A	MYSQL_ROW	structure	for	the	next	row.	NULL	if	there	are	no	more	rows	to
retrieve	or	if	an	error	occurred.

Errors

Note	that	error	is	not	reset	between	calls	to	mysql_fetch_row()

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

Example

MYSQL_ROW	row;

unsigned	int	num_fields;

unsigned	int	i;

num_fields	=	mysql_num_fields(result);

while	((row	=	mysql_fetch_row(result)))

{

			unsigned	long	*lengths;

			lengths	=	mysql_fetch_lengths(result);

			for(i	=	0;	i	<	num_fields;	i++)

			{

							printf("[%.*s]	",	(int)	lengths[i],	row[i]	?	row[i]	:	"NULL");

			}

			printf("\n");

}

22.2.3.22.	mysql_field_count()

unsigned	int	mysql_field_count(MYSQL	*mysql)

Description

Returns	the	number	of	columns	for	the	most	recent	query	on	the	connection.

The	normal	use	of	this	function	is	when	mysql_store_result()	returned	NULL
(and	thus	you	have	no	result	set	pointer).	In	this	case,	you	can	call
mysql_field_count()	to	determine	whether	mysql_store_result()	should
have	produced	a	non-empty	result.	This	allows	the	client	program	to	take	proper
action	without	knowing	whether	the	query	was	a	SELECT	(or	SELECT-like)
statement.	The	example	shown	here	illustrates	how	this	may	be	done.

See	Section	22.2.13.1,	“Why	mysql_store_result()	Sometimes	Returns	NULL
After	mysql_query()	Returns	Success”.

Return	Values

An	unsigned	integer	representing	the	number	of	columns	in	a	result	set.

Errors

None.

Example

MYSQL_RES	*result;

unsigned	int	num_fields;

unsigned	int	num_rows;

if	(mysql_query(&mysql,query_string))

{

				//	error

}

else	//	query	succeeded,	process	any	data	returned	by	it

{

				result	=	mysql_store_result(&mysql);

				if	(result)		//	there	are	rows

				{

								num_fields	=	mysql_num_fields(result);

								//	retrieve	rows,	then	call	mysql_free_result(result)

				}

				else		//	mysql_store_result()	returned	nothing;	should	it	have?

				{

								if(mysql_field_count(&mysql)	==	0)

								{

												//	query	does	not	return	data

												//	(it	was	not	a	SELECT)

												num_rows	=	mysql_affected_rows(&mysql);

								}

								else	//	mysql_store_result()	should	have	returned	data

								{

												fprintf(stderr,	"Error:	%s\n",	mysql_error(&mysql));

								}

				}

}

An	alternative	is	to	replace	the	mysql_field_count(&mysql)	call	with
mysql_errno(&mysql).	In	this	case,	you	are	checking	directly	for	an	error	from
mysql_store_result()	rather	than	inferring	from	the	value	of
mysql_field_count()	whether	the	statement	was	a	SELECT.

22.2.3.23.	mysql_field_seek()

MYSQL_FIELD_OFFSET	mysql_field_seek(MYSQL_RES	*result,

MYSQL_FIELD_OFFSET	offset)

Description

Sets	the	field	cursor	to	the	given	offset.	The	next	call	to	mysql_fetch_field()
retrieves	the	field	definition	of	the	column	associated	with	that	offset.

To	seek	to	the	beginning	of	a	row,	pass	an	offset	value	of	zero.

Return	Values

The	previous	value	of	the	field	cursor.

Errors

None.

22.2.3.24.	mysql_field_tell()

MYSQL_FIELD_OFFSET	mysql_field_tell(MYSQL_RES	*result)

Description

Returns	the	position	of	the	field	cursor	used	for	the	last	mysql_fetch_field().
This	value	can	be	used	as	an	argument	to	mysql_field_seek().

Return	Values

The	current	offset	of	the	field	cursor.

Errors

None.

22.2.3.25.	mysql_free_result()

void	mysql_free_result(MYSQL_RES	*result)

Description

Frees	the	memory	allocated	for	a	result	set	by	mysql_store_result(),
mysql_use_result(),	mysql_list_dbs(),	and	so	forth.	When	you	are	done	with
a	result	set,	you	must	free	the	memory	it	uses	by	calling	mysql_free_result().

Do	not	attempt	to	access	a	result	set	after	freeing	it.

Return	Values

None.

Errors

None.

22.2.3.26.	mysql_get_character_set_info()

void	mysql_get_character_set_info(MYSQL	*mysql,	MY_CHARSET_INFO

*cs)

Description

This	function	provides	information	about	the	default	client	character	set.	The
default	character	set	may	be	changed	with	the	mysql_set_character_set()
function.

This	function	was	added	in	MySQL	5.0.10.

Example

if	(!mysql_set_character_set(&mysql,	"utf8"))

{

				MY_CHARSET_INFO	cs;

				mysql_get_character_set_info(&mysql,	&cs);

				printf("character	set	information:\n");

				printf("character	set	name:	%s\n",	cs.name);

				printf("collation	name:	%s\n",	cs.csname);

				printf("comment:	%s\n",	cs.comment);

				printf("directory:	%s\n",	cs.dir);

				printf("multi	byte	character	min.	length:	%d\n",	cs.mbminlen);

				printf("multi	byte	character	max.	length:	%d\n",	cs.mbmaxlen);

}

22.2.3.27.	mysql_get_client_info()

char	*mysql_get_client_info(void)

Description

Returns	a	string	that	represents	the	client	library	version.

Return	Values

A	character	string	that	represents	the	MySQL	client	library	version.

Errors

None.

22.2.3.28.	mysql_get_client_version()

unsigned	long	mysql_get_client_version(void)

Description

Returns	an	integer	that	represents	the	client	library	version.	The	value	has	the
format	XYYZZ	where	X	is	the	major	version,	YY	is	the	release	level,	and	ZZ	is	the
version	number	within	the	release	level.	For	example,	a	value	of	40102
represents	a	client	library	version	of	4.1.2.

Return	Values

An	integer	that	represents	the	MySQL	client	library	version.

Errors

None.

22.2.3.29.	mysql_get_host_info()

char	*mysql_get_host_info(MYSQL	*mysql)

Description

Returns	a	string	describing	the	type	of	connection	in	use,	including	the	server
hostname.

Return	Values

A	character	string	representing	the	server	hostname	and	the	connection	type.

Errors

None.

22.2.3.30.	mysql_get_proto_info()

unsigned	int	mysql_get_proto_info(MYSQL	*mysql)

Description

Returns	the	protocol	version	used	by	current	connection.

Return	Values

An	unsigned	integer	representing	the	protocol	version	used	by	the	current
connection.

Errors

None.

22.2.3.31.	mysql_get_server_info()

char	*mysql_get_server_info(MYSQL	*mysql)

Description

Returns	a	string	that	represents	the	server	version	number.

Return	Values

A	character	string	that	represents	the	server	version	number.

Errors

None.

22.2.3.32.	mysql_get_server_version()

unsigned	long	mysql_get_server_version(MYSQL	*mysql)

Description

Returns	the	version	number	of	the	server	as	an	integer.

Return	Values

A	number	that	represents	the	MySQL	server	version	in	this	format:

major_version*10000	+	minor_version	*100	+	sub_version

For	example,	5.0.12	is	returned	as	50012.

This	function	is	useful	in	client	programs	for	quickly	determining	whether	some
version-specific	server	capability	exists.

Errors

None.

22.2.3.33.	mysql_hex_string()

unsigned	long	mysql_hex_string(char	*to,	const	char	*from,	unsigned

long	length)

Description

This	function	is	used	to	create	a	legal	SQL	string	that	you	can	use	in	an	SQL
statement.	See	Section	9.1.1,	“Strings”.

The	string	in	from	is	encoded	to	hexadecimal	format,	with	each	character
encoded	as	two	hexadecimal	digits.	The	result	is	placed	in	to	and	a	terminating
null	byte	is	appended.

The	string	pointed	to	by	from	must	be	length	bytes	long.	You	must	allocate	the
to	buffer	to	be	at	least	length*2+1	bytes	long.	When	mysql_hex_string()
returns,	the	contents	of	to	is	a	null-terminated	string.	The	return	value	is	the
length	of	the	encoded	string,	not	including	the	terminating	null	character.

The	return	value	can	be	placed	into	an	SQL	statement	using	either	0xvalue	or
X'value'	format.	However,	the	return	value	does	not	include	the	0x	or	X'...'.
The	caller	must	supply	whichever	of	those	is	desired.

Example

char	query[1000],*end;

end	=	strmov(query,"INSERT	INTO	test_table	values(");

end	=	strmov(end,"0x");

end	+=	mysql_hex_string(end,"What's	this",11);

end	=	strmov(end,",0x");

end	+=	mysql_hex_string(end,"binary	data:	\0\r\n",16);

*end++	=	')';

if	(mysql_real_query(&mysql,query,(unsigned	int)	(end	-	query)))

{

			fprintf(stderr,	"Failed	to	insert	row,	Error:	%s\n",

											mysql_error(&mysql));

}

The	strmov()	function	used	in	the	example	is	included	in	the	mysqlclient
library	and	works	like	strcpy()	but	returns	a	pointer	to	the	terminating	null	of
the	first	parameter.

Return	Values

The	length	of	the	value	placed	into	to,	not	including	the	terminating	null
character.

Errors

None.

22.2.3.34.	mysql_info()

char	*mysql_info(MYSQL	*mysql)

Description

Retrieves	a	string	providing	information	about	the	most	recently	executed	query,
but	only	for	the	statements	listed	here.	For	other	statements,	mysql_info()
returns	NULL.	The	format	of	the	string	varies	depending	on	the	type	of	query,	as
described	here.	The	numbers	are	illustrative	only;	the	string	contains	values
appropriate	for	the	query.

INSERT	INTO	...	SELECT	...

String	format:	Records:	100	Duplicates:	0	Warnings:	0

INSERT	INTO	...	VALUES	(...),(...),(...)...

String	format:	Records:	3	Duplicates:	0	Warnings:	0

LOAD	DATA	INFILE	...

String	format:	Records:	1	Deleted:	0	Skipped:	0	Warnings:	0

ALTER	TABLE

String	format:	Records:	3	Duplicates:	0	Warnings:	0

UPDATE

String	format:	Rows	matched:	40	Changed:	40	Warnings:	0

Note	that	mysql_info()	returns	a	non-NULL	value	for	INSERT	...	VALUES	only
for	the	multiple-row	form	of	the	statement	(that	is,	only	if	multiple	value	lists	are
specified).

Return	Values

A	character	string	representing	additional	information	about	the	most	recently
executed	query.	NULL	if	no	information	is	available	for	the	query.

Errors

None.

22.2.3.35.	mysql_init()

MYSQL	*mysql_init(MYSQL	*mysql)

Description

Allocates	or	initializes	a	MYSQL	object	suitable	for	mysql_real_connect().	If
mysql	is	a	NULL	pointer,	the	function	allocates,	initializes,	and	returns	a	new
object.	Otherwise,	the	object	is	initialized	and	the	address	of	the	object	is
returned.	If	mysql_init()	allocates	a	new	object,	it	is	freed	when
mysql_close()	is	called	to	close	the	connection.

Return	Values

An	initialized	MYSQL*	handle.	NULL	if	there	was	insufficient	memory	to	allocate	a
new	object.

Errors

In	case	of	insufficient	memory,	NULL	is	returned.

22.2.3.36.	mysql_insert_id()

my_ulonglong	mysql_insert_id(MYSQL	*mysql)

Description

Returns	the	value	generated	for	an	AUTO_INCREMENT	column	by	the	previous
INSERT	or	UPDATE	statement.	Use	this	function	after	you	have	performed	an
INSERT	statement	into	a	table	that	contains	an	AUTO_INCREMENT	field.

More	precisely,	mysql_insert_id()	is	updated	under	these	conditions:

INSERT	statements	that	store	a	value	into	an	AUTO_INCREMENT	column.	This
is	true	whether	the	value	is	automatically	generated	by	storing	the	special
values	NULL	or	0	into	the	column,	or	is	an	explicit	non-special	value.

In	the	case	of	a	multiple-row	INSERT	statement,	mysql_insert_id()	returns
the	first	automatically	generated	AUTO_INCREMENT	value;	if	no	such	value	is
generated,	it	returns	the	last	last	explicit	value	inserted	into	the
AUTO_INCREMENT	column.

INSERT	statements	that	generate	an	AUTO_INCREMENT	value	by	inserting
LAST_INSERT_ID(expr)	into	any	column.

INSERT	statements	that	generate	an	AUTO_INCREMENT	value	by	updating	any
column	to	LAST_INSERT_ID(expr).

The	value	of	mysql_insert_id()	is	not	affected	by	statements	such	as
SELECT	that	return	a	result	set.

If	the	previous	statement	returned	an	error,	the	value	of	mysql_insert_id()
is	undefined.

Note	that	mysql_insert_id()	returns	0	if	the	previous	statement	does	not	use	an
AUTO_INCREMENT	value.	If	you	need	to	save	the	value	for	later,	be	sure	to	call
mysql_insert_id()	immediately	after	the	statement	that	generates	the	value.

The	value	of	mysql_insert_id()	is	affected	only	by	statements	issued	within
the	current	client	connection.	It	is	not	affected	by	statements	issued	by	other
clients.

See	Section	12.9.3,	“Information	Functions”.

Also	note	that	the	value	of	the	SQL	LAST_INSERT_ID()	function	always	contains
the	most	recently	generated	AUTO_INCREMENT	value,	and	is	not	reset	between
statements	because	the	value	of	that	function	is	maintained	in	the	server.	Another

difference	is	that	LAST_INSERT_ID()	is	not	updated	if	you	set	an
AUTO_INCREMENT	column	to	a	specific	non-special	value.

The	reason	for	the	difference	between	LAST_INSERT_ID()	and
mysql_insert_id()	is	that	LAST_INSERT_ID()	is	made	easy	to	use	in	scripts
while	mysql_insert_id()	tries	to	provide	a	little	more	exact	information	of
what	happens	to	the	AUTO_INCREMENT	column.

Return	Values

Described	in	the	preceding	discussion.

Errors

None.

22.2.3.37.	mysql_kill()

int	mysql_kill(MYSQL	*mysql,	unsigned	long	pid)

Description

Asks	the	server	to	kill	the	thread	specified	by	pid.

Return	Values

Zero	for	success.	Non-zero	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.38.	mysql_library_end()

void	mysql_library_end(void)

Description

This	is	a	synonym	for	the	mysql_server_end()	function.	It	was	added	in
MySQL	5.0.3.

See	Section	22.2.2,	“C	API	Function	Overview”,	for	usage	information.

22.2.3.39.	mysql_library_init()

int	mysql_library_init(int	argc,	char	**argv,	char	**groups)

Description

This	is	a	synonym	for	the	mysql_server_init()	function.	It	was	added	in
MySQL	5.0.3.	See	Section	22.2.12.1,	“mysql_server_init()”.

See	Section	22.2.2,	“C	API	Function	Overview”	for	usage	information.

22.2.3.40.	mysql_list_dbs()

MYSQL_RES	*mysql_list_dbs(MYSQL	*mysql,	const	char	*wild)

Description

Returns	a	result	set	consisting	of	database	names	on	the	server	that	match	the
simple	regular	expression	specified	by	the	wild	parameter.	wild	may	contain	the
wildcard	characters	‘%’	or	‘_’,	or	may	be	a	NULL	pointer	to	match	all	databases.
Calling	mysql_list_dbs()	is	similar	to	executing	the	query	SHOW	databases
[LIKE	wild].

You	must	free	the	result	set	with	mysql_free_result().

Return	Values

A	MYSQL_RES	result	set	for	success.	NULL	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_OUT_OF_MEMORY

Out	of	memory.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.41.	mysql_list_fields()

MYSQL_RES	*mysql_list_fields(MYSQL	*mysql,	const	char	*table,	const

char	*wild)

Description

Returns	a	result	set	consisting	of	field	names	in	the	given	table	that	match	the
simple	regular	expression	specified	by	the	wild	parameter.	wild	may	contain	the
wildcard	characters	‘%’	or	‘_’,	or	may	be	a	NULL	pointer	to	match	all	fields.
Calling	mysql_list_fields()	is	similar	to	executing	the	query	SHOW	COLUMNS
FROM	tbl_name	[LIKE	wild].

Note	that	it's	recommended	that	you	use	SHOW	COLUMNS	FROM	tbl_name	instead
of	mysql_list_fields().

You	must	free	the	result	set	with	mysql_free_result().

Return	Values

A	MYSQL_RES	result	set	for	success.	NULL	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.42.	mysql_list_processes()

MYSQL_RES	*mysql_list_processes(MYSQL	*mysql)

Description

Returns	a	result	set	describing	the	current	server	threads.	This	is	the	same	kind
of	information	as	that	reported	by	mysqladmin	processlist	or	a	SHOW
PROCESSLIST	query.

You	must	free	the	result	set	with	mysql_free_result().

Return	Values

A	MYSQL_RES	result	set	for	success.	NULL	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.43.	mysql_list_tables()

MYSQL_RES	*mysql_list_tables(MYSQL	*mysql,	const	char	*wild)

Description

Returns	a	result	set	consisting	of	table	names	in	the	current	database	that	match
the	simple	regular	expression	specified	by	the	wild	parameter.	wild	may	contain
the	wildcard	characters	‘%’	or	‘_’,	or	may	be	a	NULL	pointer	to	match	all	tables.
Calling	mysql_list_tables()	is	similar	to	executing	the	query	SHOW	tables
[LIKE	wild].

You	must	free	the	result	set	with	mysql_free_result().

Return	Values

A	MYSQL_RES	result	set	for	success.	NULL	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.44.	mysql_more_results()

my_bool	mysql_more_results(MYSQL	*mysql)

Description

Returns	true	if	more	results	exist	from	the	currently	executed	query,	and	the
application	must	call	mysql_next_result()	to	fetch	the	results.

Return	Values

TRUE	(1)	if	more	results	exist.	FALSE	(0)	if	no	more	results	exist.

In	most	cases,	you	can	call	mysql_next_result()	instead	to	test	whether	more
results	exist	and	initiate	retrieval	if	so.

See	Section	22.2.9,	“C	API	Handling	of	Multiple	Statement	Execution”,	and
Section	22.2.3.45,	“mysql_next_result()”.

Errors

None.

22.2.3.45.	mysql_next_result()

int	mysql_next_result(MYSQL	*mysql)

Description

If	more	query	results	exist,	mysql_next_result()	reads	the	next	query	results

and	returns	the	status	back	to	application.

You	must	call	mysql_free_result()	for	the	preceding	query	if	it	returned	a
result	set.

After	calling	mysql_next_result()	the	state	of	the	connection	is	as	if	you	had
called	mysql_real_query()	or	mysql_query()	for	the	next	query.	This	means
that	you	can	call	mysql_store_result(),	mysql_warning_count(),
mysql_affected_rows(),	and	so	forth.

If	mysql_next_result()	returns	an	error,	no	other	statements	are	executed	and
there	are	no	more	results	to	fetch.

If	your	program	executes	stored	procedures	with	the	CALL	SQL	statement,	you
must	set	the	CLIENT_MULTI_RESULTS	flag,	either	explicitly,	or	implicitly	by
setting	CLIENT_MULTI_STATEMENTS	when	you	call	mysql_real_connect().	This
is	because	each	CALL	returns	a	result	to	indicate	the	call	status,	in	addition	to	any
results	sets	that	might	be	returned	by	statements	executed	within	the	procedure.
In	addition,	because	CALL	can	return	multiple	results,	you	should	process	those
results	using	a	loop	that	calls	mysql_next_result()	to	determine	whether	there
are	more	results.

For	an	example	that	shows	how	to	use	mysql_next_result(),	see
Section	22.2.9,	“C	API	Handling	of	Multiple	Statement	Execution”.

Return	Values

Return	Value Description
0 Successful	and	there	are	more	results
-1 Successful	and	there	are	no	more	results
>0 An	error	occurred

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.	For	example	if	you	didn't
call	mysql_use_result()	for	a	previous	result	set.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.46.	mysql_num_fields()

unsigned	int	mysql_num_fields(MYSQL_RES	*result)

To	pass	a	MYSQL*	argument	instead,	use	unsigned	int
mysql_field_count(MYSQL	*mysql).

Description

Returns	the	number	of	columns	in	a	result	set.

Note	that	you	can	get	the	number	of	columns	either	from	a	pointer	to	a	result	set
or	to	a	connection	handle.	You	would	use	the	connection	handle	if
mysql_store_result()	or	mysql_use_result()	returned	NULL	(and	thus	you
have	no	result	set	pointer).	In	this	case,	you	can	call	mysql_field_count()	to
determine	whether	mysql_store_result()	should	have	produced	a	non-empty
result.	This	allows	the	client	program	to	take	proper	action	without	knowing
whether	the	query	was	a	SELECT	(or	SELECT-like)	statement.	The	example	shown
here	illustrates	how	this	may	be	done.

See	Section	22.2.13.1,	“Why	mysql_store_result()	Sometimes	Returns	NULL
After	mysql_query()	Returns	Success”.

Return	Values

An	unsigned	integer	representing	the	number	of	columns	in	a	result	set.

Errors

None.

Example

MYSQL_RES	*result;

unsigned	int	num_fields;

unsigned	int	num_rows;

if	(mysql_query(&mysql,query_string))

{

				//	error

}

else	//	query	succeeded,	process	any	data	returned	by	it

{

				result	=	mysql_store_result(&mysql);

				if	(result)		//	there	are	rows

				{

								num_fields	=	mysql_num_fields(result);

								//	retrieve	rows,	then	call	mysql_free_result(result)

				}

				else		//	mysql_store_result()	returned	nothing;	should	it	have?

				{

								if	(mysql_errno(&mysql))

								{

											fprintf(stderr,	"Error:	%s\n",	mysql_error(&mysql));

								}

								else	if	(mysql_field_count(&mysql)	==	0)

								{

												//	query	does	not	return	data

												//	(it	was	not	a	SELECT)

												num_rows	=	mysql_affected_rows(&mysql);

								}

				}

}

An	alternative	(if	you	know	that	your	query	should	have	returned	a	result	set)	is
to	replace	the	mysql_errno(&mysql)	call	with	a	check	whether
mysql_field_count(&mysql)	is	=	0.	This	happens	only	if	something	went
wrong.

22.2.3.47.	mysql_num_rows()

my_ulonglong	mysql_num_rows(MYSQL_RES	*result)

Description

Returns	the	number	of	rows	in	the	result	set.

The	use	of	mysql_num_rows()	depends	on	whether	you	use
mysql_store_result()	or	mysql_use_result()	to	return	the	result	set.	If	you
use	mysql_store_result(),	mysql_num_rows()	may	be	called	immediately.	If
you	use	mysql_use_result(),	mysql_num_rows()	does	not	return	the	correct
value	until	all	the	rows	in	the	result	set	have	been	retrieved.

Return	Values

The	number	of	rows	in	the	result	set.

Errors

None.

22.2.3.48.	mysql_options()

int	mysql_options(MYSQL	*mysql,	enum	mysql_option	option,	const

char	*arg)

Description

Can	be	used	to	set	extra	connect	options	and	affect	behavior	for	a	connection.
This	function	may	be	called	multiple	times	to	set	several	options.

mysql_options()	should	be	called	after	mysql_init()	and	before
mysql_connect()	or	mysql_real_connect().

The	option	argument	is	the	option	that	you	want	to	set;	the	arg	argument	is	the
value	for	the	option.	If	the	option	is	an	integer,	then	arg	should	point	to	the	value
of	the	integer.

Possible	option	values:

Option Argument
Type Function

MYSQL_INIT_COMMAND char	*

Command	to	execute	when	connecting
to	the	MySQL	server.	Will
automatically	be	re-executed	when

reconnecting.

MYSQL_OPT_COMPRESS Not	used Use	the	compressed	client/server
protocol.

MYSQL_OPT_CONNECT_TIMEOUT
unsigned

int	*
Connect	timeout	in	seconds.

MYSQL_OPT_GUESS_CONNECTION Not	used

For	an	application	linked	against
libmysqld,	this	allows	the	library	to
guess	whether	to	use	the	embedded
server	or	a	remote	server.	“Guess
means	that	if	the	hostname	is	set	
not	localhost,	it	uses	a	remote	server.
This	behavior	is	the	default.
MYSQL_OPT_USE_EMBEDDED_CONNECTION

and
MYSQL_OPT_USE_REMOTE_CONNECTION

can	be	used	to	override	it.	This	option
is	ignored	for	applications	linked
against	libmysqlclient.

MYSQL_OPT_LOCAL_INFILE

optional
pointer	to
uint

If	no	pointer	is	given	or	if	pointer
points	to	an	unsigned	int	!=	0
command	LOAD	LOCAL	INFILE
enabled.

MYSQL_OPT_NAMED_PIPE Not	used Use	named	pipes	to	connect	to	a
MySQL	server	on	NT.

MYSQL_OPT_PROTOCOL
unsigned

int	*

Type	of	protocol	to	use.	Should	be	one
of	the	enum	values	of
mysql_protocol_type	defined	in
mysql.h.

MYSQL_OPT_READ_TIMEOUT
unsigned

int	*

Timeout	for	reads	from	server	(works
currently	only	on	Windows	on	TCP/IP
connections).

MYSQL_OPT_RECONNECT my_bool	*

Enable	or	disable	automatic
reconnection	to	the	server	if	the
connection	is	found	to	have	been	lost.
Reconnect	has	been	off	by	default
since	MySQL	5.0.3;	this	option	is	new
in	5.0.13	and	provides	a	way	to	set

reconnection	behavior	explicitly.

MYSQL_OPT_SET_CLIENT_IP char	*

For	an	application	linked	against
linked	against	libmysqld	(with
libmysqld	compiled	with
authentication	support),	this	means	that
the	user	is	considered	to	have
connected	from	the	specified	IP
address	(specified	as	a	string)	for
authentication	purposes.	This	option	is
ignored	for	applications	linked	against
libmysqlclient.

MYSQL_OPT_SSL_VERIFY_SERVER_CERT my_bool	*

Enable	or	disable	verification	of	the
server's	Common	Name	value	in	its
certificate	against	the	hostname	used
when	connecting	to	the	server.	The
connection	is	rejected	if	there	is	
mismatch.	This	feature	can	be	used	to
prevent	man-in-the-middle	attacks.
Verification	is	disabled	by	default.
Added	in	MySQL	5.0.23.

MYSQL_OPT_USE_EMBEDDED_CONNECTION Not	used

For	an	application	linked	against
libmysqld,	this	forces	the	use	of	the
embedded	server	for	the	connection.
This	option	is	ignored	for	applications
linked	against	libmysqlclient

MYSQL_OPT_USE_REMOTE_CONNECTION Not	used

For	an	application	linked	against
libmysqld,	this	forces	the	use	of	a
remote	server	for	the	connection.	
option	is	ignored	for	applications
linked	against	libmysqlclient

MYSQL_OPT_USE_RESULT Not	used This	option	is	unused.

MYSQL_OPT_WRITE_TIMEOUT
unsigned

int	*

Timeout	for	writes	to	server	(works
currently	only	on	Windows	on	TCP/IP
connections).

MYSQL_READ_DEFAULT_FILE char	*
Read	options	from	the	named	option
file	instead	of	from	my.cnf.
Read	options	from	the	named	group

MYSQL_READ_DEFAULT_GROUP char	* from	my.cnf	or	the	file	specified	with
MYSQL_READ_DEFAULT_FILE.

MYSQL_REPORT_DATA_TRUNCATION my_bool	*

Enable	or	disable	reporting	of	data
truncation	errors	for	prepared
statements	via	MYSQL_BIND.error
(Default:	enabled)	Added	in	5.0.3.

MYSQL_SECURE_AUTH my_bool*

Whether	to	connect	to	a	server	that
does	not	support	the	password	
used	in	MySQL	4.1.1	and	later.

MYSQL_SET_CHARSET_DIR char*
The	pathname	to	the	directory	that
contains	character	set	definition	

MYSQL_SET_CHARSET_NAME char*
The	name	of	the	character	set	to	use	as
the	default	character	set.

MYSQL_SHARED_MEMORY_BASE_NAME char*

Named	of	shared-memory	object	for
communication	to	server.	Should	be
same	as	the	option	--shared-memory-
base-name	used	for	the	mysqld
you	want	to	connect	to.

Note	that	the	client	group	is	always	read	if	you	use	MYSQL_READ_DEFAULT_FILE
or	MYSQL_READ_DEFAULT_GROUP.

The	specified	group	in	the	option	file	may	contain	the	following	options:

Option Description

connect-timeout

Connect	timeout	in	seconds.	On	Linux	this
timeout	is	also	used	for	waiting	for	the	first
answer	from	the	server.

compress Use	the	compressed	client/server	protocol.

database
Connect	to	this	database	if	no	database	was
specified	in	the	connect	command.

debug Debug	options.
disable-local-infile Disable	use	of	LOAD	DATA	LOCAL.
host Default	hostname.

Command	to	execute	when	connecting	to	MySQL

init-command server.	Will	automatically	be	re-executed	when
reconnecting.

interactive-timeout

Same	as	specifying	CLIENT_INTERACTIVE	to
mysql_real_connect().	See	Section	22.2.3.51,
“mysql_real_connect()”.

local-infile[=(0|1)]
If	no	argument	or	argument	!=	0	then	enable	use
of	LOAD	DATA	LOCAL.

max_allowed_packet Max	size	of	packet	client	can	read	from	server.

multi-results
Allow	multiple	result	sets	from	multiple-
statement	executions	or	stored	procedures.

multi-statements
Allow	the	client	to	send	multiple	statements	in	a
single	string	(separated	by	‘;’).

password Default	password.

pipe
Use	named	pipes	to	connect	to	a	MySQL	server
on	NT.

protocol=

{TCP|SOCKET|PIPE|MEMORY}

The	protocol	to	use	when	connecting	to	the
server.

port Default	port	number.

return-found-rows
Tell	mysql_info()	to	return	found	rows	instead	of
updated	rows	when	using	UPDATE.

shared-memory-base-

name=name

Shared-memory	name	to	use	to	connect	to	server
(default	is	"MYSQL").

socket Default	socket	file.
user Default	user.

Note	that	timeout	has	been	replaced	by	connect-timeout,	but	timeout	is	still
supported	in	MySQL	5.0.25	for	backward	compatibility.

For	more	information	about	option	files,	see	Section	4.3.2,	“Using	Option	Files”.

Return	Values

Zero	for	success.	Non-zero	if	you	used	an	unknown	option.

Example

MYSQL	mysql;

mysql_init(&mysql);

mysql_options(&mysql,MYSQL_OPT_COMPRESS,0);

mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"odbc");

if	(!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))

{

				fprintf(stderr,	"Failed	to	connect	to	database:	Error:	%s\n",

										mysql_error(&mysql));

}

This	code	requests	the	client	to	use	the	compressed	client/server	protocol	and
read	the	additional	options	from	the	odbc	section	in	the	my.cnf	file.

22.2.3.49.	mysql_ping()

int	mysql_ping(MYSQL	*mysql)

Description

Checks	whether	the	connection	to	the	server	is	working.	If	the	connection	has
gone	down,	an	automatic	reconnection	is	attempted.

This	function	can	be	used	by	clients	that	remain	idle	for	a	long	while,	to	check
whether	the	server	has	closed	the	connection	and	reconnect	if	necessary.

Return	Values

Zero	if	the	connection	to	the	server	is	alive.	Non-zero	if	an	error	occurred.	A
non-zero	return	does	not	indicate	whether	the	MySQL	server	itself	is	down;	the
connection	might	be	broken	for	other	reasons	such	as	network	problems.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.50.	mysql_query()

int	mysql_query(MYSQL	*mysql,	const	char	*query)

Description

Executes	the	SQL	query	pointed	to	by	the	null-terminated	string	query.
Normally,	the	string	must	consist	of	a	single	SQL	statement	and	you	should	not
add	a	terminating	semicolon	(‘;’)	or	\g	to	the	statement.	If	multiple-statement
execution	has	been	enabled,	the	string	can	contain	several	statements	separated
by	semicolons.	See	Section	22.2.9,	“C	API	Handling	of	Multiple	Statement
Execution”.

mysql_query()	cannot	be	used	for	queries	that	contain	binary	data;	you	should
use	mysql_real_query()	instead.	(Binary	data	may	contain	the	‘\0’	character,
which	mysql_query()	interprets	as	the	end	of	the	query	string.)

If	you	want	to	know	whether	the	query	should	return	a	result	set,	you	can	use
mysql_field_count()	to	check	for	this.	See	Section	22.2.3.22,
“mysql_field_count()”.

Return	Values

Zero	if	the	query	was	successful.	Non-zero	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.51.	mysql_real_connect()

MYSQL	*mysql_real_connect(MYSQL	*mysql,	const	char	*host,	const

char	*user,	const	char	*passwd,	const	char	*db,	unsigned	int	port,

const	char	*unix_socket,	unsigned	long	client_flag)

Description

mysql_real_connect()	attempts	to	establish	a	connection	to	a	MySQL	database
engine	running	on	host.	mysql_real_connect()	must	complete	successfully
before	you	can	execute	any	other	API	functions	that	require	a	valid	MYSQL
connection	handle	structure.

The	parameters	are	specified	as	follows:

The	first	parameter	should	be	the	address	of	an	existing	MYSQL	structure.
Before	calling	mysql_real_connect()	you	must	call	mysql_init()	to
initialize	the	MYSQL	structure.	You	can	change	a	lot	of	connect	options	with
the	mysql_options()	call.	See	Section	22.2.3.48,	“mysql_options()”.

The	value	of	host	may	be	either	a	hostname	or	an	IP	address.	If	host	is
NULL	or	the	string	"localhost",	a	connection	to	the	local	host	is	assumed.	If
the	OS	supports	sockets	(Unix)	or	named	pipes	(Windows),	they	are	used
instead	of	TCP/IP	to	connect	to	the	server.

The	user	parameter	contains	the	user's	MySQL	login	ID.	If	user	is	NULL	or
the	empty	string	"",	the	current	user	is	assumed.	Under	Unix,	this	is	the
current	login	name.	Under	Windows	ODBC,	the	current	username	must	be
specified	explicitly.	See	the	MyODBC	section	of	Chapter	23,	Connectors.

The	passwd	parameter	contains	the	password	for	user.	If	passwd	is	NULL,
only	entries	in	the	user	table	for	the	user	that	have	a	blank	(empty)
password	field	are	checked	for	a	match.	This	allows	the	database
administrator	to	set	up	the	MySQL	privilege	system	in	such	a	way	that

users	get	different	privileges	depending	on	whether	they	have	specified	a
password.

Note:	Do	not	attempt	to	encrypt	the	password	before	calling
mysql_real_connect();	password	encryption	is	handled	automatically	by
the	client	API.

db	is	the	database	name.	If	db	is	not	NULL,	the	connection	sets	the	default
database	to	this	value.

If	port	is	not	0,	the	value	is	used	as	the	port	number	for	the	TCP/IP
connection.	Note	that	the	host	parameter	determines	the	type	of	the
connection.

If	unix_socket	is	not	NULL,	the	string	specifies	the	socket	or	named	pipe
that	should	be	used.	Note	that	the	host	parameter	determines	the	type	of	the
connection.

The	value	of	client_flag	is	usually	0,	but	can	be	set	to	a	combination	of
the	following	flags	to	enable	certain	features:

Flag	Name Flag	Description
CLIENT_COMPRESS Use	compression	protocol.

CLIENT_FOUND_ROWS
Return	the	number	of	found	(matched)	rows,
not	the	number	of	changed	rows.

CLIENT_IGNORE_SPACE
Allow	spaces	after	function	names.	Makes	all
functions	names	reserved	words.

CLIENT_INTERACTIVE

Allow	interactive_timeout	seconds
(instead	of	wait_timeout	seconds)	of
inactivity	before	closing	the	connection.	The
client's	session	wait_timeout	variable	is	set
to	the	value	of	the	session
interactive_timeout	variable.

CLIENT_LOCAL_FILES Enable	LOAD	DATA	LOCAL	handling.

CLIENT_MULTI_STATEMENTS

Tell	the	server	that	the	client	may	send
multiple	statements	in	a	single	string
(separated	by	‘;’).	If	this	flag	is	not	set,
multiple-statement	execution	is	disabled.	See

the	note	following	this	table	for	more
information	about	this	flag.

CLIENT_MULTI_RESULTS

Tell	the	server	that	the	client	can	handle
multiple	result	sets	from	multiple-statement
executions	or	stored	procedures.	This	is
automatically	set	if
CLIENT_MULTI_STATEMENTS	is	set.	See	the
note	following	this	table	for	more	information
about	this	flag.

CLIENT_NO_SCHEMA

Don't	allow	the	db_name.tbl_name.col_name
syntax.	This	is	for	ODBC.	It	causes	the	parser
to	generate	an	error	if	you	use	that	syntax,
which	is	useful	for	trapping	bugs	in	some
ODBC	programs.

CLIENT_ODBC
The	client	is	an	ODBC	client.	This	changes
mysqld	to	be	more	ODBC-friendly.

CLIENT_SSL

Use	SSL	(encrypted	protocol).	This	option
should	not	be	set	by	application	programs;	it
is	set	internally	in	the	client	library.	Instead,
use	mysql_ssl_set()	before	calling
mysql_real_connect().

If	your	program	executes	stored	procedures	with	the	CALL	SQL	statement,	you
must	set	the	CLIENT_MULTI_RESULTS	flag,	either	explicitly,	or	implicitly	by
setting	CLIENT_MULTI_STATEMENTS	when	you	call	mysql_real_connect().	This
is	because	each	CALL	returns	a	result	to	indicate	the	call	status,	in	addition	to	any
results	sets	that	might	be	returned	by	statements	executed	within	the	procedure.

If	you	enable	CLIENT_MULTI_STATEMENTS	or	CLIENT_MULTI_RESULTS,	you	should
process	the	result	for	every	call	to	mysql_query()	or	mysql_real_query()	by
using	a	loop	that	calls	mysql_next_result()	to	determine	whether	there	are
more	results.	For	an	example,	see	Section	22.2.9,	“C	API	Handling	of	Multiple
Statement	Execution”.

For	some	parameters,	it	is	possible	to	have	the	value	taken	from	an	option	file
rather	than	from	an	explicit	value	in	the	mysql_real_connect()	call.	To	do	this,
call	mysql_options()	with	the	MYSQL_READ_DEFAULT_FILE	or
MYSQL_READ_DEFAULT_GROUP	option	before	calling	mysql_real_connect().

Then,	in	the	mysql_real_connect()	call,	specify	the	“no-value”	value	for	each
parameter	to	be	read	from	an	option	file:

For	host,	specify	a	value	of	NULL	or	the	empty	string	("").

For	user,	specify	a	value	of	NULL	or	the	empty	string.

For	passwd,	specify	a	value	of	NULL.	(For	the	password,	a	value	of	the
empty	string	in	the	mysql_real_connect()	call	cannot	be	overridden	in	an
option	file,	because	the	empty	string	indicates	explicitly	that	the	MySQL
account	must	have	an	empty	password.)

For	db,	specify	a	value	of	NULL	or	the	empty	string.

For	port,	specify	a	value	of	0.

For	unix_socket,	specify	a	value	of	NULL.

If	no	value	is	found	in	an	option	file	for	a	parameter,	its	default	value	is	used	as
indicated	in	the	descriptions	given	earlier	in	this	section.

Return	Values

A	MYSQL*	connection	handle	if	the	connection	was	successful,	NULL	if	the
connection	was	unsuccessful.	For	a	successful	connection,	the	return	value	is	the
same	as	the	value	of	the	first	parameter.

Errors

CR_CONN_HOST_ERROR

Failed	to	connect	to	the	MySQL	server.

CR_CONNECTION_ERROR

Failed	to	connect	to	the	local	MySQL	server.

CR_IPSOCK_ERROR

Failed	to	create	an	IP	socket.

CR_OUT_OF_MEMORY

Out	of	memory.

CR_SOCKET_CREATE_ERROR

Failed	to	create	a	Unix	socket.

CR_UNKNOWN_HOST

Failed	to	find	the	IP	address	for	the	hostname.

CR_VERSION_ERROR

A	protocol	mismatch	resulted	from	attempting	to	connect	to	a	server	with	a
client	library	that	uses	a	different	protocol	version.	This	can	happen	if	you
use	a	very	old	client	library	to	connect	to	a	new	server	that	wasn't	started
with	the	--old-protocol	option.

CR_NAMEDPIPEOPEN_ERROR

Failed	to	create	a	named	pipe	on	Windows.

CR_NAMEDPIPEWAIT_ERROR

Failed	to	wait	for	a	named	pipe	on	Windows.

CR_NAMEDPIPESETSTATE_ERROR

Failed	to	get	a	pipe	handler	on	Windows.

CR_SERVER_LOST

If	connect_timeout	>	0	and	it	took	longer	than	connect_timeout	seconds
to	connect	to	the	server	or	if	the	server	died	while	executing	the	init-
command.

Example

MYSQL	mysql;

mysql_init(&mysql);

mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"your_prog_name");

if	(!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))

{

				fprintf(stderr,	"Failed	to	connect	to	database:	Error:	%s\n",

										mysql_error(&mysql));

}

By	using	mysql_options()	the	MySQL	library	reads	the	[client]	and
[your_prog_name]	sections	in	the	my.cnf	file	which	ensures	that	your	program
works,	even	if	someone	has	set	up	MySQL	in	some	non-standard	way.

Note	that	upon	connection,	mysql_real_connect()	sets	the	reconnect	flag	(part
of	the	MYSQL	structure)	to	a	value	of	1	in	versions	of	the	API	older	than	5.0.3,	or
0	in	newer	versions.	A	value	of	1	for	this	flag	indicates	that	if	a	statement	cannot
be	performed	because	of	a	lost	connection,	to	try	reconnecting	to	the	server
before	giving	up.	As	of	MySQL	5.0.13,	you	can	use	the	MYSQL_OPT_RECONNECT
option	to	mysql_options()	to	control	reconnection	behavior.

22.2.3.52.	mysql_real_escape_string()

unsigned	long	mysql_real_escape_string(MYSQL	*mysql,	char	*to,

const	char	*from,	unsigned	long	length)

Note	that	mysql	must	be	a	valid,	open	connection.	This	is	needed	because	the
escaping	depends	on	the	character	set	in	use	by	the	server.

Description

This	function	is	used	to	create	a	legal	SQL	string	that	you	can	use	in	an	SQL
statement.	See	Section	9.1.1,	“Strings”.

The	string	in	from	is	encoded	to	an	escaped	SQL	string,	taking	into	account	the
current	character	set	of	the	connection.	The	result	is	placed	in	to	and	a
terminating	null	byte	is	appended.	Characters	encoded	are	NUL	(ASCII	0),	‘\n’,
‘\r’,	‘\’,	‘'’,	‘"’,	and	Control-Z	(see	Section	9.1,	“Literal	Values”).	(Strictly
speaking,	MySQL	requires	only	that	backslash	and	the	quote	character	used	to
quote	the	string	in	the	query	be	escaped.	This	function	quotes	the	other
characters	to	make	them	easier	to	read	in	log	files.)

The	string	pointed	to	by	from	must	be	length	bytes	long.	You	must	allocate	the
to	buffer	to	be	at	least	length*2+1	bytes	long.	(In	the	worst	case,	each	character

may	need	to	be	encoded	as	using	two	bytes,	and	you	need	room	for	the
terminating	null	byte.)	When	mysql_real_escape_string()	returns,	the
contents	of	to	is	a	null-terminated	string.	The	return	value	is	the	length	of	the
encoded	string,	not	including	the	terminating	null	character.

If	you	need	to	change	the	character	set	of	the	connection,	you	should	use	the
mysql_set_character_set()	function	rather	than	executing	a	SET	NAMES	(or
SET	CHARACTER	SET)	statement.	mysql_set_character_set()	works	like	SET
NAMES	but	also	affects	the	character	set	used	by	mysql_real_escape_string(),
which	SET	NAMES	does	not.

Example

char	query[1000],*end;

end	=	strmov(query,"INSERT	INTO	test_table	values(");

*end++	=	'\'';

end	+=	mysql_real_escape_string(&mysql,	end,"What's	this",11);

*end++	=	'\'';

*end++	=	',';

*end++	=	'\'';

end	+=	mysql_real_escape_string(&mysql,	end,"binary	data:	\0\r\n",16);

*end++	=	'\'';

*end++	=	')';

if	(mysql_real_query(&mysql,query,(unsigned	int)	(end	-	query)))

{

			fprintf(stderr,	"Failed	to	insert	row,	Error:	%s\n",

											mysql_error(&mysql));

}

The	strmov()	function	used	in	the	example	is	included	in	the	mysqlclient
library	and	works	like	strcpy()	but	returns	a	pointer	to	the	terminating	null	of
the	first	parameter.

Return	Values

The	length	of	the	value	placed	into	to,	not	including	the	terminating	null
character.

Errors

None.

22.2.3.53.	mysql_real_query()

int	mysql_real_query(MYSQL	*mysql,	const	char	*query,	unsigned	long

length)

Description

Executes	the	SQL	query	pointed	to	by	query,	which	should	be	a	string	length
bytes	long.	Normally,	the	string	must	consist	of	a	single	SQL	statement	and	you
should	not	add	a	terminating	semicolon	(‘;’)	or	\g	to	the	statement.	If	multiple-
statement	execution	has	been	enabled,	the	string	can	contain	several	statements
separated	by	semicolons.	See	Section	22.2.9,	“C	API	Handling	of	Multiple
Statement	Execution”.

You	must	use	mysql_real_query()	rather	than	mysql_query()	for	queries	that
contain	binary	data,	because	binary	data	may	contain	the	‘\0’	character.	In
addition,	mysql_real_query()	is	faster	than	mysql_query()	because	it	does	not
call	strlen()	on	the	query	string.

If	you	want	to	know	whether	the	query	should	return	a	result	set,	you	can	use
mysql_field_count()	to	check	for	this.	See	Section	22.2.3.22,
“mysql_field_count()”.

Return	Values

Zero	if	the	query	was	successful.	Non-zero	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.54.	mysql_refresh()

int	mysql_refresh(MYSQL	*mysql,	unsigned	int	options)

Description

This	functions	flushes	tables	or	caches,	or	resets	replication	server	information.
The	connected	user	must	have	the	RELOAD	privilege.

The	options	argument	is	a	bit	mask	composed	from	any	combination	of	the
following	values.	Multiple	values	can	be	OR'ed	together	to	perform	multiple
operations	with	a	single	call.

REFRESH_GRANT

Refresh	the	grant	tables,	like	FLUSH	PRIVILEGES.

REFRESH_LOG

Flush	the	logs,	like	FLUSH	LOGS.

REFRESH_TABLES

Flush	the	table	cache,	like	FLUSH	TABLES.

REFRESH_HOSTS

Flush	the	host	cache,	like	FLUSH	HOSTS.

REFRESH_STATUS

Reset	status	variables,	like	FLUSH	STATUS.

REFRESH_THREADS

Flush	the	thread	cache.

REFRESH_SLAVE

On	a	slave	replication	server,	reset	the	master	server	information	and	restart
the	slave,	like	RESET	SLAVE.

REFRESH_MASTER

On	a	master	replication	server,	remove	the	binary	log	files	listed	in	the
binary	log	index	and	truncate	the	index	file,	like	RESET	MASTER.

Return	Values

Zero	for	success.	Non-zero	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.55.	mysql_reload()

int	mysql_reload(MYSQL	*mysql)

Description

Asks	the	MySQL	server	to	reload	the	grant	tables.	The	connected	user	must	have
the	RELOAD	privilege.

This	function	is	deprecated.	It	is	preferable	to	use	mysql_query()	to	issue	an
SQL	FLUSH	PRIVILEGES	statement	instead.

Return	Values

Zero	for	success.	Non-zero	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.56.	mysql_rollback()

my_bool	mysql_rollback(MYSQL	*mysql)

Description

Rolls	back	the	current	transaction.

As	of	MySQL	5.0.3,	the	action	of	this	function	is	subject	to	the	value	of	the
completion_type	system	variable.	In	particular,	if	the	value	of
completion_type	is	2,	the	server	performs	a	release	after	terminating	a
transaction	and	closes	the	client	connection.	The	client	program	should	call
mysql_close()	to	close	the	connection	from	the	client	side.

Return	Values

Zero	if	successful.	Non-zero	if	an	error	occurred.

Errors

None.

22.2.3.57.	mysql_row_seek()

MYSQL_ROW_OFFSET	mysql_row_seek(MYSQL_RES	*result,	MYSQL_ROW_OFFSET

offset)

Description

Sets	the	row	cursor	to	an	arbitrary	row	in	a	query	result	set.	The	offset	value	is
a	row	offset	that	should	be	a	value	returned	from	mysql_row_tell()	or	from
mysql_row_seek().	This	value	is	not	a	row	number;	if	you	want	to	seek	to	a	row
within	a	result	set	by	number,	use	mysql_data_seek()	instead.

This	function	requires	that	the	result	set	structure	contains	the	entire	result	of	the
query,	so	mysql_row_seek()	may	be	used	only	in	conjunction	with
mysql_store_result(),	not	with	mysql_use_result().

Return	Values

The	previous	value	of	the	row	cursor.	This	value	may	be	passed	to	a	subsequent
call	to	mysql_row_seek().

Errors

None.

22.2.3.58.	mysql_row_tell()

MYSQL_ROW_OFFSET	mysql_row_tell(MYSQL_RES	*result)

Description

Returns	the	current	position	of	the	row	cursor	for	the	last	mysql_fetch_row().
This	value	can	be	used	as	an	argument	to	mysql_row_seek().

You	should	use	mysql_row_tell()	only	after	mysql_store_result(),	not	after
mysql_use_result().

Return	Values

The	current	offset	of	the	row	cursor.

Errors

None.

22.2.3.59.	mysql_select_db()

int	mysql_select_db(MYSQL	*mysql,	const	char	*db)

Description

Causes	the	database	specified	by	db	to	become	the	default	(current)	database	on
the	connection	specified	by	mysql.	In	subsequent	queries,	this	database	is	the
default	for	table	references	that	do	not	include	an	explicit	database	specifier.

mysql_select_db()	fails	unless	the	connected	user	can	be	authenticated	as
having	permission	to	use	the	database.

Return	Values

Zero	for	success.	Non-zero	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.60.	mysql_set_character_set()

int	mysql_set_character_set(MYSQL	*mysql,	char	*csname)

Description

This	function	is	used	to	set	the	default	character	set	for	the	current	connection.
The	string	csname	specifies	a	valid	character	set	name.	The	connection	collation
becomes	the	default	collation	of	the	character	set.	This	function	works	like	the
SET	NAMES	statement,	but	also	sets	the	value	of	mysql->charset,	and	thus	affects
the	character	set	used	by	mysql_real_escape_string()

This	function	was	added	in	MySQL	5.0.7.

Return	Values

Zero	for	success.	Non-zero	if	an	error	occurred.

Example

MYSQL	mysql;

mysql_init(&mysql);

if	(!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))

{

				fprintf(stderr,	"Failed	to	connect	to	database:	Error:	%s\n",

										mysql_error(&mysql));

}

if	(!mysql_set_character_set(&mysql,	"utf8"))	

{

				printf("New	client	character	set:	%s\n",	mysql_character_set_name(&mysql));

}

22.2.3.61.	mysql_set_local_infile_default()

void

mysql_set_local_infile_default(MYSQL	*mysql);

Description

Sets	the	LOAD	LOCAL	DATA	INFILE	handler	callback	functions	to	the	defaults
used	internally	by	the	C	client	library.	The	library	calls	this	function
automatically	if	mysql_set_local_infile_handler()	has	not	been	called	or
does	not	supply	valid	functions	for	each	of	its	callbacks.

The	mysql_set_local_infile_default()	function	was	added	in	MySQL	4.1.2.

Return	Values

None.

Errors

None.

22.2.3.62.	mysql_set_local_infile_handler()

void

mysql_set_local_infile_handler(MYSQL	*mysql,

															int	(*local_infile_init)(void	**,	const	char	*,	void	*),

															int	(*local_infile_read)(void	*,	char	*,	unsigned	int),

															void	(*local_infile_end)(void	*),

															int	(*local_infile_error)(void	*,	char*,	unsigned	int),

															void	*userdata);

Description

This	function	installs	callbacks	to	be	used	during	the	execution	of	LOAD	DATA
LOCAL	INFILE	statements.	It	enables	application	programs	to	exert	control	over
local	(client-side)	datafile	reading.	The	arguments	are	the	connection	handler,	a
set	of	pointers	to	callback	functions,	and	a	pointer	to	a	data	area	that	the
callbacks	can	use	to	share	information.

To	use	mysql_set_local_infile_handler(),	you	must	write	the	following
callback	functions:

int

local_infile_init(void	**ptr,	const	char	*filename,	void	*userdata);

The	initialization	function.	This	is	called	once	to	do	any	setup	necessary,	open

the	datafile,	allocate	data	structures,	and	so	forth.	The	first	void**	argument	is	a
pointer	to	a	pointer.	You	can	set	the	pointer	(that	is,	*ptr)	to	a	value	that	will	be
passed	to	each	of	the	other	callbacks	(as	a	void*).	The	callbacks	can	use	this
pointed-to	value	to	maintain	state	information.	The	userdata	argument	is	the
same	value	that	is	passed	to	mysql_set_local_infile_handler().

The	initialization	function	should	return	zero	for	success,	non-zero	for	an	error.

int

local_infile_read(void	*ptr,	char	*buf,	unsigned	int	buf_len);

The	data-reading	function.	This	is	called	repeatedly	to	read	the	data	file.	buf
points	to	the	buffer	where	the	read	data	should	be	stored,	and	buf_len	is	the
maximum	number	of	bytes	that	the	callback	can	read	and	store	in	the	buffer.	(It
can	read	fewer	bytes,	but	should	not	read	more.)

The	return	value	is	the	number	of	bytes	read,	or	zero	when	no	more	data	could
be	read	(this	indicates	EOF).	Return	a	value	less	than	zero	if	an	error	occurs.

void

local_infile_end(void	*ptr)

The	termination	function.	This	is	called	once	after	local_infile_read()	has
returned	zero	(EOF)	or	an	error.	This	function	should	deallocate	any	memory
allocated	by	local_infile_init()	and	perform	any	other	cleanup	necessary.	It
is	invoked	even	if	the	initalization	function	returns	an	error.

int

local_infile_error(void	*ptr,	char	*error_msg,	unsigned	int	error_msg_len);

The	error-handling	function.	This	is	called	to	get	a	textual	error	message	to
return	to	the	user	in	case	any	of	your	other	functions	returns	an	error.	error_msg
points	to	the	buffer	into	which	the	message	should	be	written,	and
error_msg_len	is	the	length	of	the	buffer.	The	message	should	be	written	as	a
null-terminated	string,	so	the	message	can	be	at	most	error_msg_len–1	bytes
long.

The	return	value	is	the	error	number.

Typically,	the	other	callbacks	store	the	error	message	in	the	data	structure
pointed	to	by	ptr,	so	that	local_infile_error()	can	copy	the	message	from

there	into	error_msg.

After	calling	mysql_set_local_infile_handler()	in	your	C	code	and	passing
pointers	to	your	callback	functions,	you	can	then	issue	a	LOAD	DATA	LOCAL
INFILE	statement	(for	example,	by	using	mysql_query()).	The	client	library
automatically	invokes	your	callbacks.	The	filename	specified	in	LOAD	DATA
LOCAL	INFILE	will	be	passed	as	the	second	parameter	to	the
local_infile_init()	callback.

The	mysql_set_local_infile_handler()	function	was	added	in	MySQL	4.1.2.

Return	Values

None.

Errors

None.

22.2.3.63.	mysql_set_server_option()

int	mysql_set_server_option(MYSQL	*mysql,	enum

enum_mysql_set_option	option)

Description

Enables	or	disables	an	option	for	the	connection.	option	can	have	one	of	the
following	values:

MYSQL_OPTION_MULTI_STATEMENTS_ON Enable	multiple-statement
support.

MYSQL_OPTION_MULTI_STATEMENTS_OFF Disable	multiple-statement
support.

If	you	enable	multiple-statement	support,	you	should	retrieve	results	from	calls
to	mysql_query()	or	mysql_real_query()	by	using	a	loop	that	calls
mysql_next_result()	to	determine	whether	there	are	more	results.	For	an
example,	see	Section	22.2.9,	“C	API	Handling	of	Multiple	Statement
Execution”.

Enabling	multiple-statement	support	with	MYSQL_OPTION_MULTI_STATEMENTS_ON
does	not	have	quite	the	same	effect	as	enabling	it	by	passing	the
CLIENT_MULTI_STATEMENTS	flag	to	mysql_real_connect():
CLIENT_MULTI_STATEMENTS	also	enables	CLIENT_MULTI_RESULTS.	If	you	are
using	the	CALL	SQL	statement	in	your	programs,	multiple-result	support	must	be
enabled;	this	means	that	MYSQL_OPTION_MULTI_STATEMENTS_ON	by	itself	is
insufficient	to	allow	the	use	of	CALL.

Return	Values

Zero	for	success.	Non-zero	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

ER_UNKNOWN_COM_ERROR

The	server	didn't	support	mysql_set_server_option()	(which	is	the	case
that	the	server	is	older	than	4.1.1)	or	the	server	didn't	support	the	option	one
tried	to	set.

22.2.3.64.	mysql_shutdown()

int	mysql_shutdown(MYSQL	*mysql,	enum	enum_shutdown_level

shutdown_level)

Description

Asks	the	database	server	to	shut	down.	The	connected	user	must	have	SHUTDOWN

privileges.	The	shutdown_level	argument	was	added	in	MySQL	5.0.1.	MySQL
5.0	servers	support	only	one	type	of	shutdown;	shutdown_level	must	be	equal
to	SHUTDOWN_DEFAULT.	Additional	shutdown	levels	are	planned	to	make	it
possible	to	choose	the	desired	level.	Dynamically	linked	executables	which	have
been	compiled	with	older	versions	of	the	libmysqlclient	headers	and	call
mysql_shutdown()	need	to	be	used	with	the	old	libmysqlclient	dynamic
library.

The	shutdown	process	is	described	in	Section	5.2.6,	“The	MySQL	Server
Shutdown	Process”.

Return	Values

Zero	for	success.	Non-zero	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.65.	mysql_sqlstate()

const	char	*mysql_sqlstate(MYSQL	*mysql)

Description

Returns	a	null-terminated	string	containing	the	SQLSTATE	error	code	for	the

last	error.	The	error	code	consists	of	five	characters.	'00000'	means	“no	error.”
The	values	are	specified	by	ANSI	SQL	and	ODBC.	For	a	list	of	possible	values,
see	Appendix	B,	Error	Codes	and	Messages.

Note	that	not	all	MySQL	errors	are	mapped	to	SQLSTATE	error	codes.	The
value	'HY000'	(general	error)	is	used	for	unmapped	errors.

Return	Values

A	null-terminated	character	string	containing	the	SQLSTATE	error	code.

See	Also

See	Section	22.2.3.14,	“mysql_errno()”,	Section	22.2.3.15,	“mysql_error()”,
and	Section	22.2.7.26,	“mysql_stmt_sqlstate()”.

22.2.3.66.	mysql_ssl_set()

int	mysql_ssl_set(MYSQL	*mysql,	const	char	*key,	const	char	*cert,

const	char	*ca,	const	char	*capath,	const	char	*cipher)

Description

mysql_ssl_set()	is	used	for	establishing	secure	connections	using	SSL.	It	must
be	called	before	mysql_real_connect().

mysql_ssl_set()	does	nothing	unless	OpenSSL	support	is	enabled	in	the	client
library.

mysql	is	the	connection	handler	returned	from	mysql_init().	The	other
parameters	are	specified	as	follows:

key	is	the	pathname	to	the	key	file.

cert	is	the	pathname	to	the	certificate	file.

ca	is	the	pathname	to	the	certificate	authority	file.

capath	is	the	pathname	to	a	directory	that	contains	trusted	SSL	CA
certificates	in	pem	format.

cipher	is	a	list	of	allowable	ciphers	to	use	for	SSL	encryption.

Any	unused	SSL	parameters	may	be	given	as	NULL.

Return	Values

This	function	always	returns	0.	If	SSL	setup	is	incorrect,	mysql_real_connect()
returns	an	error	when	you	attempt	to	connect.

22.2.3.67.	mysql_stat()

char	*mysql_stat(MYSQL	*mysql)

Description

Returns	a	character	string	containing	information	similar	to	that	provided	by	the
mysqladmin	status	command.	This	includes	uptime	in	seconds	and	the	number
of	running	threads,	questions,	reloads,	and	open	tables.

Return	Values

A	character	string	describing	the	server	status.	NULL	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.68.	mysql_store_result()

MYSQL_RES	*mysql_store_result(MYSQL	*mysql)

Description

You	must	call	mysql_store_result()	or	mysql_use_result()	for	every	query
that	successfully	retrieves	data	(SELECT,	SHOW,	DESCRIBE,	EXPLAIN,	CHECK	TABLE,
and	so	forth).

You	don't	have	to	call	mysql_store_result()	or	mysql_use_result()	for	other
queries,	but	it	does	not	do	any	harm	or	cause	any	notable	performance
degradation	if	you	call	mysql_store_result()	in	all	cases.	You	can	detect	if	the
query	didn't	have	a	result	set	by	checking	if	mysql_store_result()	returns	0
(more	about	this	later	on).

If	you	want	to	know	whether	the	query	should	return	a	result	set,	you	can	use
mysql_field_count()	to	check	for	this.	See	Section	22.2.3.22,
“mysql_field_count()”.

mysql_store_result()	reads	the	entire	result	of	a	query	to	the	client,	allocates	a
MYSQL_RES	structure,	and	places	the	result	into	this	structure.

mysql_store_result()	returns	a	null	pointer	if	the	query	didn't	return	a	result
set	(if	the	query	was,	for	example,	an	INSERT	statement).

mysql_store_result()	also	returns	a	null	pointer	if	reading	of	the	result	set
failed.	You	can	check	whether	an	error	occurred	by	checking	if	mysql_error()
returns	a	non-empty	string,	if	mysql_errno()	returns	non-zero,	or	if
mysql_field_count()	returns	zero.

An	empty	result	set	is	returned	if	there	are	no	rows	returned.	(An	empty	result
set	differs	from	a	null	pointer	as	a	return	value.)

Once	you	have	called	mysql_store_result()	and	got	a	result	back	that	isn't	a
null	pointer,	you	may	call	mysql_num_rows()	to	find	out	how	many	rows	are	in
the	result	set.

You	can	call	mysql_fetch_row()	to	fetch	rows	from	the	result	set,	or
mysql_row_seek()	and	mysql_row_tell()	to	obtain	or	set	the	current	row

position	within	the	result	set.

You	must	call	mysql_free_result()	once	you	are	done	with	the	result	set.

See	Section	22.2.13.1,	“Why	mysql_store_result()	Sometimes	Returns	NULL
After	mysql_query()	Returns	Success”.

Return	Values

A	MYSQL_RES	result	structure	with	the	results.	NULL	if	an	error	occurred.

Errors

mysql_store_result()	resets	mysql_error()	and	mysql_errno()	if	it
succeeds.

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_OUT_OF_MEMORY

Out	of	memory.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.69.	mysql_thread_id()

unsigned	long	mysql_thread_id(MYSQL	*mysql)

Description

Returns	the	thread	ID	of	the	current	connection.	This	value	can	be	used	as	an
argument	to	mysql_kill()	to	kill	the	thread.

If	the	connection	is	lost	and	you	reconnect	with	mysql_ping(),	the	thread	ID
changes.	This	means	you	should	not	get	the	thread	ID	and	store	it	for	later.	You
should	get	it	when	you	need	it.

Return	Values

The	thread	ID	of	the	current	connection.

Errors

None.

22.2.3.70.	mysql_use_result()

MYSQL_RES	*mysql_use_result(MYSQL	*mysql)

Description

You	must	call	mysql_store_result()	or	mysql_use_result()	for	every	query
that	successfully	retrieves	data	(SELECT,	SHOW,	DESCRIBE,	EXPLAIN).

mysql_use_result()	initiates	a	result	set	retrieval	but	does	not	actually	read	the
result	set	into	the	client	like	mysql_store_result()	does.	Instead,	each	row
must	be	retrieved	individually	by	making	calls	to	mysql_fetch_row().	This
reads	the	result	of	a	query	directly	from	the	server	without	storing	it	in	a
temporary	table	or	local	buffer,	which	is	somewhat	faster	and	uses	much	less
memory	than	mysql_store_result().	The	client	allocates	memory	only	for	the
current	row	and	a	communication	buffer	that	may	grow	up	to
max_allowed_packet	bytes.

On	the	other	hand,	you	shouldn't	use	mysql_use_result()	if	you	are	doing	a	lot
of	processing	for	each	row	on	the	client	side,	or	if	the	output	is	sent	to	a	screen
on	which	the	user	may	type	a	^S	(stop	scroll).	This	ties	up	the	server	and	prevent
other	threads	from	updating	any	tables	from	which	the	data	is	being	fetched.

When	using	mysql_use_result(),	you	must	execute	mysql_fetch_row()	until	a
NULL	value	is	returned,	otherwise,	the	unfetched	rows	are	returned	as	part	of	the

result	set	for	your	next	query.	The	C	API	gives	the	error	Commands	out	of
sync;	you	can't	run	this	command	now	if	you	forget	to	do	this!

You	may	not	use	mysql_data_seek(),	mysql_row_seek(),	mysql_row_tell(),
mysql_num_rows(),	or	mysql_affected_rows()	with	a	result	returned	from
mysql_use_result(),	nor	may	you	issue	other	queries	until
mysql_use_result()	has	finished.	(However,	after	you	have	fetched	all	the
rows,	mysql_num_rows()	accurately	returns	the	number	of	rows	fetched.)

You	must	call	mysql_free_result()	once	you	are	done	with	the	result	set.

When	using	the	libmysqld	embedded	server,	the	memory	benefits	are
essentially	lost	because	memory	usage	incrementally	increases	with	each	row
retrieved	until	mysql_free_result()	is	called.

Return	Values

A	MYSQL_RES	result	structure.	NULL	if	an	error	occurred.

Errors

mysql_use_result()	resets	mysql_error()	and	mysql_errno()	if	it	succeeds.

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_OUT_OF_MEMORY

Out	of	memory.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.3.71.	mysql_warning_count()

unsigned	int	mysql_warning_count(MYSQL	*mysql)

Description

Returns	the	number	of	warnings	generated	during	execution	of	the	previous	SQL
statement.

Return	Values

The	warning	count.

Errors

None.

22.2.4.	C	API	Prepared	Statements

The	MySQL	client/server	protocol	provides	for	the	use	of	prepared	statements.
This	capability	uses	the	MYSQL_STMT	statement	handler	data	structure	returned	by
the	mysql_stmt_init()	initialization	function.	Prepared	execution	is	an	efficient
way	to	execute	a	statement	more	than	once.	The	statement	is	first	parsed	to
prepare	it	for	execution.	Then	it	is	executed	one	or	more	times	at	a	later	time,
using	the	statement	handle	returned	by	the	initialization	function.

Prepared	execution	is	faster	than	direct	execution	for	statements	executed	more
than	once,	primarily	because	the	query	is	parsed	only	once.	In	the	case	of	direct
execution,	the	query	is	parsed	every	time	it	is	executed.	Prepared	execution	also
can	provide	a	reduction	of	network	traffic	because	for	each	execution	of	the
prepared	statement,	it	is	necessary	only	to	send	the	data	for	the	parameters.

Prepared	statements	might	not	provide	a	performance	increase	in	some
situations.	For	best	results,	test	your	application	both	with	prepared	and	non-
prepared	statements	and	choose	whichever	yields	best	performance.

Another	advantage	of	prepared	statements	is	that	it	uses	a	binary	protocol	that
makes	data	transfer	between	client	and	server	more	efficient.

The	following	statements	can	be	used	as	prepared	statements:	CREATE	TABLE,
DELETE,	DO,	INSERT,	REPLACE,	SELECT,	SET,	UPDATE,	and	most	SHOW	statements.
Other	statements	are	not	supported	in	MySQL	5.0.

22.2.5.	C	API	Prepared	Statement	Data	types

Prepared	statements	mainly	use	the	MYSQL_STMT	and	MYSQL_BIND	data	structures.
A	third	structure,	MYSQL_TIME,	is	used	to	transfer	temporal	data.

	MYSQL_STMT

This	structure	represents	a	prepared	statement.	A	statement	is	created	by
calling	mysql_stmt_init(),	which	returns	a	statement	handle	(that	is,	a
pointer	to	a	MYSQL_STMT).	The	handle	is	used	for	all	subsequent	statement-
related	functions	until	you	close	it	with	mysql_stmt_close().

The	MYSQL_STMT	structure	has	no	members	that	are	for	application	use.
Also,	you	should	not	try	to	make	a	copy	of	a	MYSQL_STMT	structure.	There	is
no	guarantee	that	such	a	copy	will	be	usable.

Multiple	statement	handles	can	be	associated	with	a	single	connection.	The
limit	on	the	number	of	handles	depends	on	the	available	system	resources.

	MYSQL_BIND

This	structure	is	used	both	for	statement	input	(data	values	sent	to	the
server)	and	output	(result	values	returned	from	the	server).	For	input,	it	is
used	with	mysql_stmt_bind_param()	to	bind	parameter	data	values	to
buffers	for	use	by	mysql_stmt_execute().	For	output,	it	is	used	with
mysql_stmt_bind_result()	to	bind	result	set	buffers	for	use	in	fetching
rows	with	mysql_stmt_fetch().

To	use	a	MYSQL_BIND	structure,	you	should	zero	its	contents	to	initialize	it,
and	then	set	its	members	appropriately.	For	example,	to	declare	and
initialize	an	array	of	three	MYSQL_BIND	structures,	use	this	code:

MYSQL_BIND				bind[3];

memset(bind,	0,	sizeof(bind));

The	MYSQL_BIND	structure	contains	the	following	members	for	use	by

application	programs.	Each	is	used	both	for	input	and	for	output,	although
sometimes	for	different	purposes	depending	on	the	direction	of	data
transfer.

enum	enum_field_types	buffer_type

The	type	of	the	buffer.	The	allowable	buffer_type	values	are	listed
later	in	this	section.	For	input,	buffer_type	indicates	what	type	of
value	you	are	binding	to	a	statement	parameter.	For	output,	it	indicates
what	type	of	value	you	expect	to	receive	in	a	result	buffer.

void	*buffer

For	input,	this	is	a	pointer	to	the	buffer	in	which	a	statement
parameter's	data	value	is	stored.	For	output,	it	is	a	pointer	to	the	buffer
in	which	to	return	a	result	set	column	value.	For	numeric	data	types,
buffer	should	point	to	a	variable	of	the	proper	C	type.	(If	you	are
associating	the	variable	with	a	column	that	has	the	UNSIGNED	attribute,
the	variable	should	be	an	unsigned	C	type.	Indicate	whether	the
variable	is	signed	or	unsigned	by	using	the	is_unsigned	member,
described	later	in	this	list.)	For	date	and	time	data	types,	buffer	should
point	to	a	MYSQL_TIME	structure.	For	character	and	binary	string	data
types,	buffer	should	point	to	a	character	buffer.

unsigned	long	buffer_length

The	actual	size	of	*buffer	in	bytes.	This	indicates	the	maximum
amount	of	data	that	can	be	stored	in	the	buffer.	For	character	and
binary	C	data,	the	buffer_length	value	specifies	the	length	of
*buffer	when	used	with	mysql_stmt_bind_param(),	or	the	maximum
number	of	data	bytes	that	can	be	fetched	into	the	buffer	when	used
with	mysql_stmt_bind_result().

unsigned	long	*length

A	pointer	to	an	unsigned	long	variable	that	indicates	the	actual
number	of	bytes	of	data	stored	in	*buffer.	length	is	used	for
character	or	binary	C	data.	For	input	parameter	data	binding,	length
points	to	an	unsigned	long	variable	that	indicates	the	length	of	the
parameter	value	stored	in	*buffer;	this	is	used	by

mysql_stmt_execute().	For	output	value	binding,	the	return	value	of
mysql_stmt_fetch()	determines	the	interpretation	of	the	length.	If
mysql_stmt_fetch()	returns	0,	*length	indicates	the	actual	length	of
the	parameter	value.	If	mysql_stmt_fetch()	returns
MYSQL_DATA_TRUNCATED,	*length	indicates	the	non-truncated	length	of
the	parameter	value.	In	this	case,	the	minimum	of	*length	and
buffer_length	indicates	the	actual	length	of	the	value.

length	is	ignored	for	numeric	and	temporal	data	types	because	the
length	of	the	data	value	is	determined	by	the	buffer_type	value.

my_bool	*is_null

This	member	points	to	a	my_bool	variable	that	is	true	if	a	value	is
NULL,	false	if	it	is	not	NULL.	For	input,	set	*is_null	to	true	to	indicate
that	you	are	passing	a	NULL	value	as	a	statement	parameter.	For	output,
this	value	is	set	to	true	after	you	fetch	a	row	if	the	result	set	column
value	returned	from	the	statement	is	NULL.

is_null	is	a	pointer	to	a	boolean	rather	than	a	boolean	scalar	so	that	it
can	be	used	in	the	following	way:

If	your	data	values	are	always	NULL,	use	MYSQL_TYPE_NULL	to	bind
the	column.

If	your	data	values	are	always	NOT	NULL,	set	is_null	=
(my_bool*)	0.

In	all	other	cases,	you	should	set	is_null	to	the	address	of	a
my_bool	variable	and	change	that	variable's	value	appropriately
between	executions	to	indicate	whether	data	values	are	NULL	or
NOT	NULL.

my_bool	is_unsigned

This	member	is	used	for	integer	types.	(These	correspond	to	the
MYSQL_TYPE_TINY,	MYSQL_TYPE_SHORT,	MYSQL_TYPE_LONG,	and
MYSQL_TYPE_LONGLONG	type	codes.)	is_unsigned	should	be	set	to	true
for	unsigned	types	and	false	for	signed	types.

my_bool	*error

For	output,	set	this	member	to	point	to	a	my_bool	variable	to	have
truncation	information	for	the	parameter	stored	there	after	a	row
fetching	operation.	(Truncation	reporting	is	enabled	by	default,	but	can
be	controlled	by	calling	mysql_options()	with	the
MYSQL_REPORT_DATA_TRUNCATION	option.)	When	truncation	reporting
is	enabled,	mysql_stmt_fetch()	returns	MYSQL_DATA_TRUNCATED	and
*error	is	true	in	the	MYSQL_BIND	structures	for	parameters	in	which
truncation	occurred.	Truncation	indicates	loss	of	sign	or	significant
digits,	or	that	a	string	was	too	long	to	fit	in	a	column.	The	error
member	was	added	in	MySQL	5.0.3.

	MYSQL_TIME

This	structure	is	used	to	send	and	receive	DATE,	TIME,	DATETIME,	and
TIMESTAMP	data	directly	to	and	from	the	server.	This	is	done	by	setting	the
buffer_type	member	of	a	MYSQL_BIND	structure	to	one	of	the	temporal
types,	and	setting	the	buffer	member	to	point	to	a	MYSQL_TIME	structure.

The	MYSQL_TIME	structure	contains	the	following	members:

unsigned	int	year

The	year.

unsigned	int	month

The	month	of	the	year.

unsigned	int	day

The	day	of	the	month.

unsigned	int	hour

The	hour	of	the	day.

unsigned	int	minute

The	minute	of	the	hour.

unsigned	int	second

The	second	of	the	minute.

my_bool	neg

A	boolean	flag	to	indicate	whether	the	time	is	negative.

unsigned	long	second_part

The	fractional	part	of	the	second.	This	member	currently	is	unused.

Only	those	parts	of	a	MYSQL_TIME	structure	that	apply	to	a	given	type	of
temporal	value	are	used:	The	year,	month,	and	day	elements	are	used	for
DATE,	DATETIME,	and	TIMESTAMP	values.	The	hour,	minute,	and	second
elements	are	used	for	TIME,	DATETIME,	and	TIMESTAMP	values.	See
Section	22.2.10,	“C	API	Handling	of	Date	and	Time	Values”.

The	following	table	shows	the	allowable	values	that	may	be	specified	in	the
buffer_type	member	of	MYSQL_BIND	structures.	The	table	also	shows	those	SQL
types	that	correspond	most	closely	to	each	buffer_type	value,	and,	for	numeric
and	temporal	types,	the	corresponding	recommended	C	type.

The	types	are	“recommended”	because	implicit	type	conversion	may	be
performed	in	both	directions.	The	buffer_type	value	controls	the	conversion
that	will	be	performed.	For	example,	to	fetch	a	SQL	MEDIUMINT	column	value,
you	can	specify	a	buffer_type	value	of	MYSQL_TYPE_LONG	and	use	a	C	variable
of	type	int	as	the	destination	buffer.	If	you	fetch	a	numeric	column	with	a	value
of	255	into	a	char[4]	character	array,	specify	a	buffer_type	value	of
MYSQL_TYPE_STRING	and	the	resulting	value	in	the	array	will	be	a	4-byte	string
containing	'255\0'.

To	distinguish	between	binary	and	non-binary	data	for	string	data	types,	check
whether	the	charsetnr	value	of	the	result	set	metadata	is	63.	If	so,	the	character
set	is	binary,	which	indicates	binary	rather	than	non-binary	data.	This	is	how	to
distinguish	between	BINARY	and	CHAR,	VARBINARY	and	VARCHAR,	and	BLOB	and
TEXT.

buffer_type	Value SQL	Type Recommended	C	Type
MYSQL_TYPE_BIT BIT unsigned	long	long	int

MYSQL_TYPE_TINY TINYINT unsigned	char

MYSQL_TYPE_SHORT SMALLINT short	int

MYSQL_TYPE_LONG INT int

MYSQL_TYPE_LONGLONG BIGINT long	long	int

MYSQL_TYPE_FLOAT FLOAT float

MYSQL_TYPE_DOUBLE DOUBLE double

MYSQL_TYPE_NEWDECIMAL DECIMAL char[]

MYSQL_TYPE_TIME TIME MYSQL_TIME

MYSQL_TYPE_DATE DATE MYSQL_TIME

MYSQL_TYPE_DATETIME DATETIME MYSQL_TIME

MYSQL_TYPE_TIMESTAMP TIMESTAMP MYSQL_TIME

MYSQL_TYPE_STRING CHAR/BINARY char[]

MYSQL_TYPE_VAR_STRING VARCHAR/VARBINARY char[]

MYSQL_TYPE_TINY_BLOB TINYBLOB/TINYTEXT char[]

MYSQL_TYPE_BLOB BLOB/TEXT char[]

MYSQL_TYPE_MEDIUM_BLOB MEDIUMBLOB/MEDIUMTEXT char[]

MYSQL_TYPE_LONG_BLOB LONGBLOB/LONGTEXT char[]

22.2.6.	C	API	Prepared	Statement	Function	Overview

The	functions	available	for	prepared	statement	processing	are	summarized	here
and	described	in	greater	detail	in	a	later	section.	See	Section	22.2.7,	“C	API
Prepared	Statement	Function	Descriptions”.

Function Description

mysql_stmt_affected_rows()
Returns	the	number	of	rows	changes,
deleted,	or	inserted	by	prepared	UPDATE,
DELETE,	or	INSERT	statement.

mysql_stmt_attr_get() Get	value	of	an	attribute	for	a	prepared
statement.

mysql_stmt_attr_set() Sets	an	attribute	for	a	prepared	statement.

mysql_stmt_bind_param()
Associates	application	data	buffers	with	the
parameter	markers	in	a	prepared	SQL
statement.

mysql_stmt_bind_result() Associates	application	data	buffers	with
columns	in	the	result	set.

mysql_stmt_close() Frees	memory	used	by	prepared	statement.

mysql_stmt_data_seek() Seeks	to	an	arbitrary	row	number	in	a
statement	result	set.

mysql_stmt_errno() Returns	the	error	number	for	the	last
statement	execution.

mysql_stmt_error() Returns	the	error	message	for	the	last
statement	execution.

mysql_stmt_execute() Executes	the	prepared	statement.

mysql_stmt_fetch() Fetches	the	next	row	of	data	from	the	result
set	and	returns	data	for	all	bound	columns.

mysql_stmt_fetch_column() Fetch	data	for	one	column	of	the	current	row
of	the	result	set.

mysql_stmt_field_count() Returns	the	number	of	result	columns	for	the
most	recent	statement.

mysql_stmt_free_result() Free	the	resources	allocated	to	the	statement
handle.

mysql_stmt_init() Allocates	memory	for	MYSQL_STMT	structure
and	initializes	it.

mysql_stmt_insert_id()
Returns	the	ID	generated	for	an
AUTO_INCREMENT	column	by	prepared
statement.

mysql_stmt_num_rows() Returns	total	rows	from	the	statement
buffered	result	set.

mysql_stmt_param_count() Returns	the	number	of	parameters	in	a
prepared	SQL	statement.

mysql_stmt_param_metadata()
(Return	parameter	metadata	in	the	form	of	a
result	set.)	Currently,	this	function	does
nothing.

mysql_stmt_prepare() Prepares	an	SQL	string	for	execution.
mysql_stmt_reset() Reset	the	statement	buffers	in	the	server.

mysql_stmt_result_metadata() Returns	prepared	statement	metadata	in	the
form	of	a	result	set.

mysql_stmt_row_seek() Seeks	to	a	row	offset	in	a	statement	result	set,
using	value	returned	from
mysql_stmt_row_tell().

mysql_stmt_row_tell() Returns	the	statement	row	cursor	position.
mysql_stmt_send_long_data() Sends	long	data	in	chunks	to	server.

mysql_stmt_sqlstate() Returns	the	SQLSTATE	error	code	for	the
last	statement	execution.

mysql_stmt_store_result() Retrieves	the	complete	result	set	to	the	client.

Call	mysql_stmt_init()	to	create	a	statement	handle,	then
mysql_stmt_prepare	to	prepare	it,	mysql_stmt_bind_param()	to	supply	the
parameter	data,	and	mysql_stmt_execute()	to	execute	the	statement.	You	can
repeat	the	mysql_stmt_execute()	by	changing	parameter	values	in	the
respective	buffers	supplied	through	mysql_stmt_bind_param().

If	the	statement	is	a	SELECT	or	any	other	statement	that	produces	a	result	set,
mysql_stmt_prepare()	also	returns	the	result	set	metadata	information	in	the
form	of	a	MYSQL_RES	result	set	through	mysql_stmt_result_metadata().

You	can	supply	the	result	buffers	using	mysql_stmt_bind_result(),	so	that	the
mysql_stmt_fetch()	automatically	returns	data	to	these	buffers.	This	is	row-by-
row	fetching.

You	can	also	send	the	text	or	binary	data	in	chunks	to	server	using
mysql_stmt_send_long_data().	See	Section	22.2.7.25,
“mysql_stmt_send_long_data()”.

When	statement	execution	has	been	completed,	the	statement	handle	must	be
closed	using	mysql_stmt_close()	so	that	all	resources	associated	with	it	can	be
freed.

If	you	obtained	a	SELECT	statement's	result	set	metadata	by	calling
mysql_stmt_result_metadata(),	you	should	also	free	the	metadata	using
mysql_free_result().

Execution	Steps

To	prepare	and	execute	a	statement,	an	application	follows	these	steps:

1.	 Create	a	prepared	statement	handle	with	msyql_stmt_init().	To	prepare
the	statement	on	the	server,	call	mysql_stmt_prepare()	and	pass	it	a	string
containing	the	SQL	statement.

2.	 If	the	statement	produces	a	result	set,	call	mysql_stmt_result_metadata()
to	obtain	the	result	set	metadata.	This	metadata	is	itself	in	the	form	of	result
set,	albeit	a	separate	one	from	the	one	that	contains	the	rows	returned	by	the
query.	The	metadata	result	set	indicates	how	many	columns	are	in	the	result
and	contains	information	about	each	column.

3.	 Set	the	values	of	any	parameters	using	mysql_stmt_bind_param().	All
parameters	must	be	set.	Otherwise,	statement	execution	returns	an	error	or
produces	unexpected	results.

4.	 Call	mysql_stmt_execute()	to	execute	the	statement.

5.	 If	the	statement	produces	a	result	set,	bind	the	data	buffers	to	use	for
retrieving	the	row	values	by	calling	mysql_stmt_bind_result().

6.	 Fetch	the	data	into	the	buffers	row	by	row	by	calling	mysql_stmt_fetch()
repeatedly	until	no	more	rows	are	found.

7.	 Repeat	steps	3	through	6	as	necessary,	by	changing	the	parameter	values
and	re-executing	the	statement.

When	mysql_stmt_prepare()	is	called,	the	MySQL	client/server	protocol
performs	these	actions:

The	server	parses	the	statement	and	sends	the	okay	status	back	to	the	client
by	assigning	a	statement	ID.	It	also	sends	total	number	of	parameters,	a
column	count,	and	its	metadata	if	it	is	a	result	set	oriented	statement.	All
syntax	and	semantics	of	the	statement	are	checked	by	the	server	during	this
call.

The	client	uses	this	statement	ID	for	the	further	operations,	so	that	the
server	can	identify	the	statement	from	among	its	pool	of	statements.

When	mysql_stmt_execute()	is	called,	the	MySQL	client/server	protocol
performs	these	actions:

The	client	uses	the	statement	handle	and	sends	the	parameter	data	to	the
server.

The	server	identifies	the	statement	using	the	ID	provided	by	the	client,
replaces	the	parameter	markers	with	the	newly	supplied	data,	and	executes
the	statement.	If	the	statement	produces	a	result	set,	the	server	sends	the
data	back	to	the	client.	Otherwise,	it	sends	an	okay	status	and	total	number
of	rows	changed,	deleted,	or	inserted.

When	mysql_stmt_fetch()	is	called,	the	MySQL	client/server	protocol
performs	these	actions:

The	client	reads	the	data	from	the	packet	row	by	row	and	places	it	into	the
application	data	buffers	by	doing	the	necessary	conversions.	If	the
application	buffer	type	is	same	as	that	of	the	field	type	returned	from	the
server,	the	conversions	are	straightforward.

If	an	error	occurs,	you	can	get	the	statement	error	code,	error	message,	and
SQLSTATE	value	using	mysql_stmt_errno(),	mysql_stmt_error(),	and
mysql_stmt_sqlstate(),	respectively.

Prepared	Statement	Logging

For	prepared	statements	that	are	executed	with	the	mysql_stmt_prepare()	and
mysql_stmt_execute()	C	API	functions,	the	server	writes	Prepare	and	Execute
lines	to	the	general	query	log	so	that	you	can	tell	when	statements	are	prepared
and	executed.

Suppose	that	you	prepare	and	execute	a	statement	as	follows:

1.	 Call	mysql_stmt_prepare()	to	prepare	the	statement	string	"SELECT	?".

2.	 Call	mysql_stmt_bind_param()	to	bind	the	value	3	to	the	parameter	in	the
prepared	statement.

3.	 Call	mysql_stmt_execute()	to	execute	the	prepared	statement.

As	a	result	of	the	preceding	calls,	the	server	writes	the	following	lines	to	the
general	query	log:

Prepare		[1]	SELECT	?

Execute		[1]	SELECT	3

Each	Prepare	and	Execute	line	in	the	log	is	tagged	with	a	[N]	statement
identifier	so	that	you	can	keep	track	of	which	prepared	statement	is	being
logged.	N	is	a	positive	integer.	If	there	are	multiple	prepared	statements	active
simultaneously	for	the	client,	N	may	be	greater	than	1.	Each	Execute	lines	shows
a	prepared	statement	after	substitution	of	data	values	for	?	parameters.

Version	notes:	Prepare	lines	are	displayed	without	[N]	before	MySQL	4.1.10.
Execute	lines	are	not	displayed	at	all	before	MySQL	4.1.10.

22.2.7.	C	API	Prepared	Statement	Function	Descriptions

To	prepare	and	execute	queries,	use	the	functions	described	in	detail	in	the
following	sections.

Note	that	all	functions	operating	with	a	MYSQL_STMT	structure	begin	with	the
prefix	mysql_stmt_.

To	create	a	MYSQL_STMT	handle,	use	the	mysql_stmt_init()	function.

22.2.7.1.	mysql_stmt_affected_rows()

my_ulonglong	mysql_stmt_affected_rows(MYSQL_STMT	*stmt)

Description

Returns	the	total	number	of	rows	changed,	deleted,	or	inserted	by	the	last
executed	statement.	May	be	called	immediately	after	mysql_stmt_execute()	for
UPDATE,	DELETE,	or	INSERT	statements.	For	SELECT	statements,
mysql_stmt_affected_rows()	works	like	mysql_num_rows().

Return	Values

An	integer	greater	than	zero	indicates	the	number	of	rows	affected	or	retrieved.
Zero	indicates	that	no	records	were	updated	for	an	UPDATE	statement,	no	rows
matched	the	WHERE	clause	in	the	query,	or	that	no	query	has	yet	been	executed.	-1
indicates	that	the	query	returned	an	error	or	that,	for	a	SELECT	query,
mysql_stmt_affected_rows()	was	called	prior	to	calling

mysql_stmt_store_result().	Because	mysql_stmt_affected_rows()	returns
an	unsigned	value,	you	can	check	for	-1	by	comparing	the	return	value	to
(my_ulonglong)-1	(or	to	(my_ulonglong)~0,	which	is	equivalent).

See	Section	22.2.3.1,	“mysql_affected_rows()”,	for	additional	information	on
the	return	value.

Errors

None.

Example

For	the	usage	of	mysql_stmt_affected_rows(),	refer	to	the	Example	from
Section	22.2.7.10,	“mysql_stmt_execute()”.

22.2.7.2.	mysql_stmt_attr_get()

int	mysql_stmt_attr_get(MYSQL_STMT	*stmt,	enum	enum_stmt_attr_type

option,	void	*arg)

Description

Can	be	used	to	get	the	current	value	for	a	statement	attribute.

The	option	argument	is	the	option	that	you	want	to	get;	the	arg	should	point	to	a
variable	that	should	contain	the	option	value.	If	the	option	is	an	integer,	then	arg
should	point	to	the	value	of	the	integer.

See	Section	22.2.7.3,	“mysql_stmt_attr_set()”,	for	a	list	of	options	and	option
types.

Note:	In	MySQL	5.0,	mysql_stmt_attr_get()	uses	unsigned	int	*,	not
my_bool	*,	for	STMT_ATTR_UPDATE_MAX_LENGTH.	This	is	corrected	in	MySQL
5.1.7.

Return	Values

0	if	okay.	Non-zero	if	option	is	unknown.

Errors

None.

22.2.7.3.	mysql_stmt_attr_set()

int	mysql_stmt_attr_set(MYSQL_STMT	*stmt,	enum	enum_stmt_attr_type

option,	const	void	*arg)

Description

Can	be	used	to	affect	behavior	for	a	prepared	statement.	This	function	may	be
called	multiple	times	to	set	several	options.

The	option	argument	is	the	option	that	you	want	to	set;	the	arg	argument	is	the
value	for	the	option.	If	the	option	is	an	integer,	then	arg	should	point	to	the	value
of	the	integer.

Possible	option	values:

Option Argument
Type Function

STMT_ATTR_UPDATE_MAX_LENGTH my_bool	*

If	set	to	1:	Update	metadata
MYSQL_FIELD->max_length	in
mysql_stmt_store_result().

STMT_ATTR_CURSOR_TYPE
unsigned

long	*

Type	of	cursor	to	open	for
statement	when
mysql_stmt_execute()	is
invoked.	*arg	can	be
CURSOR_TYPE_NO_CURSOR	(the
default)	or
CURSOR_TYPE_READ_ONLY.

STMT_ATTR_PREFETCH_ROWS
unsigned

long	*

Number	of	rows	to	fetch	from
server	at	a	time	when	using	a
cursor.	*arg	can	be	in	the	range
from	1	to	the	maximum	value	of
unsigned	long.	The	default	is	1.

Note:	In	MySQL	5.0,	mysql_stmt_attr_get()	uses	unsigned	int	*,	not
my_bool	*,	for	STMT_ATTR_UPDATE_MAX_LENGTH.	This	is	corrected	in	MySQL
5.1.7.

If	you	use	the	STMT_ATTR_CURSOR_TYPE	option	with	CURSOR_TYPE_READ_ONLY,	a
cursor	is	opened	for	the	statement	when	you	invoke	mysql_stmt_execute().	If
there	is	already	an	open	cursor	from	a	previous	mysql_stmt_execute()	call,	it
closes	the	cursor	before	opening	a	new	one.	mysql_stmt_reset()	also	closes
any	open	cursor	before	preparing	the	statement	for	re-execution.
mysql_stmt_free_result()	closes	any	open	cursor.

If	you	open	a	cursor	for	a	prepared	statement,	mysql_stmt_store_result()	is
unnecessary,	because	that	function	causes	the	result	set	to	be	buffered	on	the
client	side.

The	STMT_ATTR_CURSOR_TYPE	option	was	added	in	MySQL	5.0.2.	The
STMT_ATTR_PREFETCH_ROWS	option	was	added	in	MySQL	5.0.6.

Return	Values

0	if	okay.	Non-zero	if	option	is	unknown.

Errors

None.

Example

The	following	example	opens	a	cursor	for	a	prepared	statement	and	sets	the
number	of	rows	to	fetch	at	a	time	to	5:

MYSQL_STMT	*stmt;

int	rc;

unsigned	long	type;

unsigned	long	prefetch_rows	=	5;

stmt	=	mysql_stmt_init(mysql);

type	=	(unsigned	long)	CURSOR_TYPE_READ_ONLY;

rc	=	mysql_stmt_attr_set(stmt,	STMT_ATTR_CURSOR_TYPE,	(void*)	&type);

/*	...	check	return	value	...	*/

rc	=	mysql_stmt_attr_set(stmt,	STMT_ATTR_PREFETCH_ROWS,

																									(void*)	&prefetch_rows);

/*	...	check	return	value	...	*/

22.2.7.4.	mysql_stmt_bind_param()

my_bool	mysql_stmt_bind_param(MYSQL_STMT	*stmt,	MYSQL_BIND	*bind)

Description

mysql_stmt_bind_param()	is	used	to	bind	data	for	the	parameter	markers	in	the
SQL	statement	that	was	passed	to	mysql_stmt_prepare().	It	uses	MYSQL_BIND
structures	to	supply	the	data.	bind	is	the	address	of	an	array	of	MYSQL_BIND
structures.	The	client	library	expects	the	array	to	contain	an	element	for	each	‘?’
parameter	marker	that	is	present	in	the	query.

Suppose	that	you	prepare	the	following	statement:

INSERT	INTO	mytbl	VALUES(?,?,?)

When	you	bind	the	parameters,	the	array	of	MYSQL_BIND	structures	must	contain
three	elements,	and	can	be	declared	like	this:

MYSQL_BIND	bind[3];

The	members	of	each	MYSQL_BIND	element	that	should	be	set	are	described	in
Section	22.2.5,	“C	API	Prepared	Statement	Data	types”.

Return	Values

Zero	if	the	bind	was	successful.	Non-zero	if	an	error	occurred.

Errors

CR_INVALID_BUFFER_USE

Indicates	if	the	bind	is	to	supply	the	long	data	in	chunks	and	if	the	buffer
type	is	non	string	or	binary.

CR_UNSUPPORTED_PARAM_TYPE

The	conversion	is	not	supported.	Possibly	the	buffer_type	value	is	illegal
or	is	not	one	of	the	supported	types.

CR_OUT_OF_MEMORY

Out	of	memory.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

Example

For	the	usage	of	mysql_stmt_bind_param(),	refer	to	the	Example	from
Section	22.2.7.10,	“mysql_stmt_execute()”.

22.2.7.5.	mysql_stmt_bind_result()

my_bool	mysql_stmt_bind_result(MYSQL_STMT	*stmt,	MYSQL_BIND	*bind)

Description

mysql_stmt_bind_result()	is	used	to	associate	(bind)	columns	in	the	result	set
to	data	buffers	and	length	buffers.	When	mysql_stmt_fetch()	is	called	to	fetch
data,	the	MySQL	client/server	protocol	places	the	data	for	the	bound	columns
into	the	specified	buffers.

All	columns	must	be	bound	to	buffers	prior	to	calling	mysql_stmt_fetch().
bind	is	the	address	of	an	array	of	MYSQL_BIND	structures.	The	client	library
expects	the	array	to	contain	an	element	for	each	column	of	the	result	set.	If	you
do	not	bind	columns	to	MYSQL_BIND	structures,	mysql_stmt_fetch()	simply
ignores	the	data	fetch.	The	buffers	should	be	large	enough	to	hold	the	data
values,	because	the	protocol	doesn't	return	data	values	in	chunks.

A	column	can	be	bound	or	rebound	at	any	time,	even	after	a	result	set	has	been
partially	retrieved.	The	new	binding	takes	effect	the	next	time
mysql_stmt_fetch()	is	called.	Suppose	that	an	application	binds	the	columns	in
a	result	set	and	calls	mysql_stmt_fetch().	The	client/server	protocol	returns
data	in	the	bound	buffers.	Then	suppose	that	the	application	binds	the	columns	to
a	different	set	of	buffers.	The	protocol	does	not	place	data	into	the	newly	bound
buffers	until	the	next	call	to	mysql_stmt_fetch()	occurs.

To	bind	a	column,	an	application	calls	mysql_stmt_bind_result()	and	passes
the	type,	address,	and	the	address	of	the	length	buffer.	The	members	of	each
MYSQL_BIND	element	that	should	be	set	are	described	in	Section	22.2.5,	“C	API

Prepared	Statement	Data	types”.

Return	Values

Zero	if	the	bind	was	successful.	Non-zero	if	an	error	occurred.

Errors

CR_UNSUPPORTED_PARAM_TYPE

The	conversion	is	not	supported.	Possibly	the	buffer_type	value	is	illegal
or	is	not	one	of	the	supported	types.

CR_OUT_OF_MEMORY

Out	of	memory.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

Example

For	the	usage	of	mysql_stmt_bind_result(),	refer	to	the	Example	from
Section	22.2.7.11,	“mysql_stmt_fetch()”.

22.2.7.6.	mysql_stmt_close()

my_bool	mysql_stmt_close(MYSQL_STMT	*)

Description

Closes	the	prepared	statement.	mysql_stmt_close()	also	deallocates	the
statement	handle	pointed	to	by	stmt.

If	the	current	statement	has	pending	or	unread	results,	this	function	cancels	them
so	that	the	next	query	can	be	executed.

Return	Values

Zero	if	the	statement	was	freed	successfully.	Non-zero	if	an	error	occurred.

Errors

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

Example

For	the	usage	of	mysql_stmt_close(),	refer	to	the	Example	from
Section	22.2.7.10,	“mysql_stmt_execute()”.

22.2.7.7.	mysql_stmt_data_seek()

void	mysql_stmt_data_seek(MYSQL_STMT	*stmt,	my_ulonglong	offset)

Description

Seeks	to	an	arbitrary	row	in	a	statement	result	set.	The	offset	value	is	a	row
number	and	should	be	in	the	range	from	0	to	mysql_stmt_num_rows(stmt)-1.

This	function	requires	that	the	statement	result	set	structure	contains	the	entire
result	of	the	last	executed	query,	so	mysql_stmt_data_seek()	may	be	used	only
in	conjunction	with	mysql_stmt_store_result().

Return	Values

None.

Errors

None.

22.2.7.8.	mysql_stmt_errno()

unsigned	int	mysql_stmt_errno(MYSQL_STMT	*stmt)

Description

For	the	statement	specified	by	stmt,	mysql_stmt_errno()	returns	the	error	code
for	the	most	recently	invoked	statement	API	function	that	can	succeed	or	fail.	A
return	value	of	zero	means	that	no	error	occurred.	Client	error	message	numbers
are	listed	in	the	MySQL	errmsg.h	header	file.	Server	error	message	numbers	are
listed	in	mysqld_error.h.	Errors	also	are	listed	at	Appendix	B,	Error	Codes	and
Messages.

Return	Values

An	error	code	value.	Zero	if	no	error	occurred.

Errors

None.

22.2.7.9.	mysql_stmt_error()

const	char	*mysql_stmt_error(MYSQL_STMT	*stmt)

Description

For	the	statement	specified	by	stmt,	mysql_stmt_error()	returns	a	null-
terminated	string	containing	the	error	message	for	the	most	recently	invoked
statement	API	function	that	can	succeed	or	fail.	An	empty	string	("")	is	returned
if	no	error	occurred.	This	means	the	following	two	tests	are	equivalent:

if	(mysql_stmt_errno(stmt))

{

		//	an	error	occurred

}

if	(mysql_stmt_error(stmt)[0])

{

		//	an	error	occurred

}

The	language	of	the	client	error	messages	may	be	changed	by	recompiling	the
MySQL	client	library.	Currently,	you	can	choose	error	messages	in	several
different	languages.

Return	Values

A	character	string	that	describes	the	error.	An	empty	string	if	no	error	occurred.

Errors

None.

22.2.7.10.	mysql_stmt_execute()

int	mysql_stmt_execute(MYSQL_STMT	*stmt)

Description

mysql_stmt_execute()	executes	the	prepared	query	associated	with	the
statement	handle.	The	currently	bound	parameter	marker	values	are	sent	to
server	during	this	call,	and	the	server	replaces	the	markers	with	this	newly
supplied	data.

If	the	statement	is	an	UPDATE,	DELETE,	or	INSERT,	the	total	number	of	changed,
deleted,	or	inserted	rows	can	be	found	by	calling	mysql_stmt_affected_rows().
If	this	is	a	statement	such	as	SELECT	that	generates	a	result	set,	you	must	call
mysql_stmt_fetch()	to	fetch	the	data	prior	to	calling	any	other	functions	that
result	in	query	processing.	For	more	information	on	how	to	fetch	the	results,
refer	to	Section	22.2.7.11,	“mysql_stmt_fetch()”.

For	statements	that	generate	a	result	set,	you	can	request	that
mysql_stmt_execute()	open	a	cursor	for	the	statement	by	calling
mysql_stmt_attr_set()	before	executing	the	statement.	If	you	execute	a
statement	multiple	times,	mysql_stmt_execute()	closes	any	open	cursor	before
opening	a	new	one.

Return	Values

Zero	if	execution	was	successful.	Non-zero	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_OUT_OF_MEMORY

Out	of	memory.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

Example

The	following	example	demonstrates	how	to	create	and	populate	a	table	using
mysql_stmt_init(),	mysql_stmt_prepare(),	mysql_stmt_param_count(),
mysql_stmt_bind_param(),	mysql_stmt_execute(),	and
mysql_stmt_affected_rows().	The	mysql	variable	is	assumed	to	be	a	valid
connection	handle.

#define	STRING_SIZE	50

#define	DROP_SAMPLE_TABLE	"DROP	TABLE	IF	EXISTS	test_table"

#define	CREATE_SAMPLE_TABLE	"CREATE	TABLE	test_table(col1	INT,\

																																																	col2	VARCHAR(40),\

																																																	col3	SMALLINT,\

																																																	col4	TIMESTAMP)"

#define	INSERT_SAMPLE	"INSERT	INTO	test_table(col1,col2,col3)	VALUES(?,?,?)"

MYSQL_STMT				*stmt;

MYSQL_BIND				bind[3];

my_ulonglong		affected_rows;

int											param_count;

short									small_data;

int											int_data;

char										str_data[STRING_SIZE];

unsigned	long	str_length;

my_bool							is_null;

if	(mysql_query(mysql,	DROP_SAMPLE_TABLE))

{

		fprintf(stderr,	"	DROP	TABLE	failed\n");

		fprintf(stderr,	"	%s\n",	mysql_error(mysql));

		exit(0);

}

if	(mysql_query(mysql,	CREATE_SAMPLE_TABLE))

{

		fprintf(stderr,	"	CREATE	TABLE	failed\n");

		fprintf(stderr,	"	%s\n",	mysql_error(mysql));

		exit(0);

}

/*	Prepare	an	INSERT	query	with	3	parameters	*/

/*	(the	TIMESTAMP	column	is	not	named;	the	server	*/

/*		sets	it	to	the	current	date	and	time)	*/

stmt	=	mysql_stmt_init(mysql);

if	(!stmt)

{

		fprintf(stderr,	"	mysql_stmt_init(),	out	of	memory\n");

		exit(0);

}

if	(mysql_stmt_prepare(stmt,	INSERT_SAMPLE,	strlen(INSERT_SAMPLE)))

{

		fprintf(stderr,	"	mysql_stmt_prepare(),	INSERT	failed\n");

		fprintf(stderr,	"	%s\n",	mysql_stmt_error(stmt));

		exit(0);

}

fprintf(stdout,	"	prepare,	INSERT	successful\n");

/*	Get	the	parameter	count	from	the	statement	*/

param_count=	mysql_stmt_param_count(stmt);

fprintf(stdout,	"	total	parameters	in	INSERT:	%d\n",	param_count);

if	(param_count	!=	3)	/*	validate	parameter	count	*/

{

		fprintf(stderr,	"	invalid	parameter	count	returned	by	MySQL\n");

		exit(0);

}

/*	Bind	the	data	for	all	3	parameters	*/

memset(bind,	0,	sizeof(bind));

/*	INTEGER	PARAM	*/

/*	This	is	a	number	type,	so	there	is	no	need	to	specify	buffer_length	*/

bind[0].buffer_type=	MYSQL_TYPE_LONG;

bind[0].buffer=	(char	*)&int_data;

bind[0].is_null=	0;

bind[0].length=	0;

/*	STRING	PARAM	*/

bind[1].buffer_type=	MYSQL_TYPE_STRING;

bind[1].buffer=	(char	*)str_data;

bind[1].buffer_length=	STRING_SIZE;

bind[1].is_null=	0;

bind[1].length=	&str_length;

/*	SMALLINT	PARAM	*/

bind[2].buffer_type=	MYSQL_TYPE_SHORT;

bind[2].buffer=	(char	*)&small_data;

bind[2].is_null=	&is_null;

bind[2].length=	0;

/*	Bind	the	buffers	*/

if	(mysql_stmt_bind_param(stmt,	bind))

{

		fprintf(stderr,	"	mysql_stmt_bind_param()	failed\n");

		fprintf(stderr,	"	%s\n",	mysql_stmt_error(stmt));

		exit(0);

}

/*	Specify	the	data	values	for	the	first	row	*/

int_data=	10;													/*	integer	*/

strncpy(str_data,	"MySQL",	STRING_SIZE);	/*	string		*/

str_length=	strlen(str_data);

/*	INSERT	SMALLINT	data	as	NULL	*/

is_null=	1;

/*	Execute	the	INSERT	statement	-	1*/

if	(mysql_stmt_execute(stmt))

{

		fprintf(stderr,	"	mysql_stmt_execute(),	1	failed\n");

		fprintf(stderr,	"	%s\n",	mysql_stmt_error(stmt));

		exit(0);

}

/*	Get	the	total	number	of	affected	rows	*/

affected_rows=	mysql_stmt_affected_rows(stmt);

fprintf(stdout,	"	total	affected	rows(insert	1):	%lu\n",

																(unsigned	long)	affected_rows);

if	(affected_rows	!=	1)	/*	validate	affected	rows	*/

{

		fprintf(stderr,	"	invalid	affected	rows	by	MySQL\n");

		exit(0);

}

/*	Specify	data	values	for	second	row,	then	re-execute	the	statement	*/

int_data=	1000;

strncpy(str_data,	"The	most	popular	Open	Source	database",	STRING_SIZE);

str_length=	strlen(str_data);

small_data=	1000;									/*	smallint	*/

is_null=	0;															/*	reset	*/

/*	Execute	the	INSERT	statement	-	2*/

if	(mysql_stmt_execute(stmt))

{

		fprintf(stderr,	"	mysql_stmt_execute,	2	failed\n");

		fprintf(stderr,	"	%s\n",	mysql_stmt_error(stmt));

		exit(0);

}

/*	Get	the	total	rows	affected	*/

affected_rows=	mysql_stmt_affected_rows(stmt);

fprintf(stdout,	"	total	affected	rows(insert	2):	%lu\n",

																(unsigned	long)	affected_rows);

if	(affected_rows	!=	1)	/*	validate	affected	rows	*/

{

		fprintf(stderr,	"	invalid	affected	rows	by	MySQL\n");

		exit(0);

}

/*	Close	the	statement	*/

if	(mysql_stmt_close(stmt))

{

		fprintf(stderr,	"	failed	while	closing	the	statement\n");

		fprintf(stderr,	"	%s\n",	mysql_stmt_error(stmt));

		exit(0);

}

Note:	For	complete	examples	on	the	use	of	prepared	statement	functions,	refer	to
the	file	tests/mysql_client_test.c.	This	file	can	be	obtained	from	a	MySQL
source	distribution	or	from	the	BitKeeper	source	repository.

22.2.7.11.	mysql_stmt_fetch()

int	mysql_stmt_fetch(MYSQL_STMT	*stmt)

Description

mysql_stmt_fetch()	returns	the	next	row	in	the	result	set.	It	can	be	called	only

while	the	result	set	exists;	that	is,	after	a	call	to	mysql_stmt_execute()	that
creates	a	result	set	or	after	mysql_stmt_store_result(),	which	is	called	after
mysql_stmt_execute()	to	buffer	the	entire	result	set.

mysql_stmt_fetch()	returns	row	data	using	the	buffers	bound	by
mysql_stmt_bind_result().	It	returns	the	data	in	those	buffers	for	all	the
columns	in	the	current	row	set	and	the	lengths	are	returned	to	the	length	pointer.

All	columns	must	be	bound	by	the	application	before	calling
mysql_stmt_fetch().

If	a	fetched	data	value	is	a	NULL	value,	the	*is_null	value	of	the	corresponding
MYSQL_BIND	structure	contains	TRUE	(1).	Otherwise,	the	data	and	its	length	are
returned	in	the	*buffer	and	*length	elements	based	on	the	buffer	type	specified
by	the	application.	Each	numeric	and	temporal	type	has	a	fixed	length,	as	listed
in	the	following	table.	The	length	of	the	string	types	depends	on	the	length	of	the
actual	data	value,	as	indicated	by	data_length.

Type Length
MYSQL_TYPE_TINY 1
MYSQL_TYPE_SHORT 2
MYSQL_TYPE_LONG 4
MYSQL_TYPE_LONGLONG 8
MYSQL_TYPE_FLOAT 4
MYSQL_TYPE_DOUBLE 8
MYSQL_TYPE_TIME sizeof(MYSQL_TIME)

MYSQL_TYPE_DATE sizeof(MYSQL_TIME)

MYSQL_TYPE_DATETIME sizeof(MYSQL_TIME)

MYSQL_TYPE_STRING data	length

MYSQL_TYPE_BLOB data_length

Return	Values

Return	Value Description

0 Successful,	the	data	has	been	fetched	to	application
data	buffers.

1 Error	occurred.	Error	code	and	message	can	be
obtained	by	calling	mysql_stmt_errno()	and
mysql_stmt_error().

MYSQL_NO_DATA No	more	rows/data	exists
MYSQL_DATA_TRUNCATED Data	truncation	occurred

MYSQL_DATA_TRUNCATED	is	returned	when	truncation	reporting	is	enabled.
(Reporting	is	enabled	by	default,	but	can	be	controlled	with	mysql_options().)
To	determine	which	parameters	were	truncated	when	this	value	is	returned,
check	the	error	members	of	the	MYSQL_BIND	parameter	structures.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_OUT_OF_MEMORY

Out	of	memory.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

CR_UNSUPPORTED_PARAM_TYPE

The	buffer	type	is	MYSQL_TYPE_DATE,	MYSQL_TYPE_TIME,
MYSQL_TYPE_DATETIME,	or	MYSQL_TYPE_TIMESTAMP,	but	the	data	type	is	not
DATE,	TIME,	DATETIME,	or	TIMESTAMP.

All	other	unsupported	conversion	errors	are	returned	from

mysql_stmt_bind_result().

Example

The	following	example	demonstrates	how	to	fetch	data	from	a	table	using
mysql_stmt_result_metadata(),	mysql_stmt_bind_result(),	and
mysql_stmt_fetch().	(This	example	expects	to	retrieve	the	two	rows	inserted
by	the	example	shown	in	Section	22.2.7.10,	“mysql_stmt_execute()”.)	The
mysql	variable	is	assumed	to	be	a	valid	connection	handle.

#define	STRING_SIZE	50

#define	SELECT_SAMPLE	"SELECT	col1,	col2,	col3,	col4	FROM	test_table"

MYSQL_STMT				*stmt;

MYSQL_BIND				bind[4];

MYSQL_RES					*prepare_meta_result;

MYSQL_TIME				ts;

unsigned	long	length[4];

int											param_count,	column_count,	row_count;

short									small_data;

int											int_data;

char										str_data[STRING_SIZE];

my_bool							is_null[4];

my_bool							error[4];

/*	Prepare	a	SELECT	query	to	fetch	data	from	test_table	*/

stmt	=	mysql_stmt_init(mysql);

if	(!stmt)

{

		fprintf(stderr,	"	mysql_stmt_init(),	out	of	memory\n");

		exit(0);

}

if	(mysql_stmt_prepare(stmt,	SELECT_SAMPLE,	strlen(SELECT_SAMPLE)))

{

		fprintf(stderr,	"	mysql_stmt_prepare(),	SELECT	failed\n");

		fprintf(stderr,	"	%s\n",	mysql_stmt_error(stmt));

		exit(0);

}

fprintf(stdout,	"	prepare,	SELECT	successful\n");

/*	Get	the	parameter	count	from	the	statement	*/

param_count=	mysql_stmt_param_count(stmt);

fprintf(stdout,	"	total	parameters	in	SELECT:	%d\n",	param_count);

if	(param_count	!=	0)	/*	validate	parameter	count	*/

{

		fprintf(stderr,	"	invalid	parameter	count	returned	by	MySQL\n");

		exit(0);

}

/*	Fetch	result	set	meta	information	*/

prepare_meta_result	=	mysql_stmt_result_metadata(stmt);

if	(!prepare_meta_result)

{

		fprintf(stderr,

									"	mysql_stmt_result_metadata(),	returned	no	meta	information\n");

		fprintf(stderr,	"	%s\n",	mysql_stmt_error(stmt));

		exit(0);

}

/*	Get	total	columns	in	the	query	*/

column_count=	mysql_num_fields(prepare_meta_result);

fprintf(stdout,	"	total	columns	in	SELECT	statement:	%d\n",	column_count);

if	(column_count	!=	4)	/*	validate	column	count	*/

{

		fprintf(stderr,	"	invalid	column	count	returned	by	MySQL\n");

		exit(0);

}

/*	Execute	the	SELECT	query	*/

if	(mysql_stmt_execute(stmt))

{

		fprintf(stderr,	"	mysql_stmt_execute(),	failed\n");

		fprintf(stderr,	"	%s\n",	mysql_stmt_error(stmt));

		exit(0);

}

/*	Bind	the	result	buffers	for	all	4	columns	before	fetching	them	*/

memset(bind,	0,	sizeof(bind));

/*	INTEGER	COLUMN	*/

bind[0].buffer_type=	MYSQL_TYPE_LONG;

bind[0].buffer=	(char	*)&int_data;

bind[0].is_null=	&is_null[0];

bind[0].length=	&length[0];

bind[0].error=	&error[0];

/*	STRING	COLUMN	*/

bind[1].buffer_type=	MYSQL_TYPE_STRING;

bind[1].buffer=	(char	*)str_data;

bind[1].buffer_length=	STRING_SIZE;

bind[1].is_null=	&is_null[1];

bind[1].length=	&length[1];

bind[1].error=	&error[1];

/*	SMALLINT	COLUMN	*/

bind[2].buffer_type=	MYSQL_TYPE_SHORT;

bind[2].buffer=	(char	*)&small_data;

bind[2].is_null=	&is_null[2];

bind[2].length=	&length[2];

bind[2].error=	&error[2];

/*	TIMESTAMP	COLUMN	*/

bind[3].buffer_type=	MYSQL_TYPE_TIMESTAMP;

bind[3].buffer=	(char	*)&ts;

bind[3].is_null=	&is_null[3];

bind[3].length=	&length[3];

bind[3].error=	&error[3];

/*	Bind	the	result	buffers	*/

if	(mysql_stmt_bind_result(stmt,	bind))

{

		fprintf(stderr,	"	mysql_stmt_bind_result()	failed\n");

		fprintf(stderr,	"	%s\n",	mysql_stmt_error(stmt));

		exit(0);

}

/*	Now	buffer	all	results	to	client	*/

if	(mysql_stmt_store_result(stmt))

{

		fprintf(stderr,	"	mysql_stmt_store_result()	failed\n");

		fprintf(stderr,	"	%s\n",	mysql_stmt_error(stmt));

		exit(0);

}

/*	Fetch	all	rows	*/

row_count=	0;

fprintf(stdout,	"Fetching	results	...\n");

while	(!mysql_stmt_fetch(stmt))

{

		row_count++;

		fprintf(stdout,	"		row	%d\n",	row_count);

		/*	column	1	*/

		fprintf(stdout,	"			column1	(integer)		:	");

		if	(is_null[0])

				fprintf(stdout,	"	NULL\n");

		else

				fprintf(stdout,	"	%d(%ld)\n",	int_data,	length[0]);

		/*	column	2	*/

		fprintf(stdout,	"			column2	(string)			:	");

		if	(is_null[1])

				fprintf(stdout,	"	NULL\n");

		else

				fprintf(stdout,	"	%s(%ld)\n",	str_data,	length[1]);

		/*	column	3	*/

		fprintf(stdout,	"			column3	(smallint)	:	");

		if	(is_null[2])

				fprintf(stdout,	"	NULL\n");

		else

				fprintf(stdout,	"	%d(%ld)\n",	small_data,	length[2]);

		/*	column	4	*/

		fprintf(stdout,	"			column4	(timestamp):	");

		if	(is_null[3])

				fprintf(stdout,	"	NULL\n");

		else

				fprintf(stdout,	"	%04d-%02d-%02d	%02d:%02d:%02d	(%ld)\n",

																					ts.year,	ts.month,	ts.day,

																					ts.hour,	ts.minute,	ts.second,

																					length[3]);

		fprintf(stdout,	"\n");

}

/*	Validate	rows	fetched	*/

fprintf(stdout,	"	total	rows	fetched:	%d\n",	row_count);

if	(row_count	!=	2)

{

		fprintf(stderr,	"	MySQL	failed	to	return	all	rows\n");

		exit(0);

}

/*	Free	the	prepared	result	metadata	*/

mysql_free_result(prepare_meta_result);

/*	Close	the	statement	*/

if	(mysql_stmt_close(stmt))

{

		fprintf(stderr,	"	failed	while	closing	the	statement\n");

		fprintf(stderr,	"	%s\n",	mysql_stmt_error(stmt));

		exit(0);

}

22.2.7.12.	mysql_stmt_fetch_column()

int	mysql_stmt_fetch_column(MYSQL_STMT	*stmt,	MYSQL_BIND	*bind,

unsigned	int	column,	unsigned	long	offset)

Description

Fetch	one	column	from	the	current	result	set	row.	bind	provides	the	buffer	where
data	should	be	placed.	It	should	be	set	up	the	same	way	as	for
mysql_stmt_bind_result().	column	indicates	which	column	to	fetch.	The	first
column	is	numbered	0.	offset	is	the	offset	within	the	data	value	at	which	to
begin	retrieving	data.	This	can	be	used	for	fetching	the	data	value	in	pieces.	The
beginning	of	the	value	is	offset	0.

Return	Values

Zero	if	the	value	was	fetched	successfully.	Non-zero	if	an	error	occurred.

Errors

CR_INVALID_PARAMETER_NO

Invalid	column	number.

CR_NO_DATA

The	end	of	the	result	set	has	already	been	reached.

22.2.7.13.	mysql_stmt_field_count()

unsigned	int	mysql_stmt_field_count(MYSQL_STMT	*stmt)

Description

Returns	the	number	of	columns	for	the	most	recent	statement	for	the	statement
handler.	This	value	is	zero	for	statements	such	as	INSERT	or	DELETE	that	do	not
produce	result	sets.

mysql_stmt_field_count()	can	be	called	after	you	have	prepared	a	statement
by	invoking	mysql_stmt_prepare().

Return	Values

An	unsigned	integer	representing	the	number	of	columns	in	a	result	set.

Errors

None.

22.2.7.14.	mysql_stmt_free_result()

my_bool	mysql_stmt_free_result(MYSQL_STMT	*stmt)

Description

Releases	memory	associated	with	the	result	set	produced	by	execution	of	the
prepared	statement.	If	there	is	a	cursor	open	for	the	statement,
mysql_stmt_free_result()	closes	it.

Return	Values

Zero	if	the	result	set	was	freed	successfully.	Non-zero	if	an	error	occurred.

Errors

22.2.7.15.	mysql_stmt_init()

MYSQL_STMT	*mysql_stmt_init(MYSQL	*mysql)

Description

Create	a	MYSQL_STMT	handle.	The	handle	should	be	freed	with
mysql_stmt_close(MYSQL_STMT	*).

Return	values

A	pointer	to	a	MYSQL_STMT	structure	in	case	of	success.	NULL	if	out	of	memory.

Errors

CR_OUT_OF_MEMORY

Out	of	memory.

22.2.7.16.	mysql_stmt_insert_id()

my_ulonglong	mysql_stmt_insert_id(MYSQL_STMT	*stmt)

Description

Returns	the	value	generated	for	an	AUTO_INCREMENT	column	by	the	prepared
INSERT	or	UPDATE	statement.	Use	this	function	after	you	have	executed	a
prepared	INSERT	statement	on	a	table	which	contains	an	AUTO_INCREMENT	field.

See	Section	22.2.3.36,	“mysql_insert_id()”,	for	more	information.

Return	Values

Value	for	AUTO_INCREMENT	column	which	was	automatically	generated	or
explicitly	set	during	execution	of	prepared	statement,	or	value	generated	by
LAST_INSERT_ID(expr)	function.	Return	value	is	undefined	if	statement	does	not
set	AUTO_INCREMENT	value.

Errors

None.

22.2.7.17.	mysql_stmt_num_rows()

my_ulonglong	mysql_stmt_num_rows(MYSQL_STMT	*stmt)

Description

Returns	the	number	of	rows	in	the	result	set.

The	use	of	mysql_stmt_num_rows()	depends	on	whether	you	used
mysql_stmt_store_result()	to	buffer	the	entire	result	set	in	the	statement
handle.

If	you	use	mysql_stmt_store_result(),	mysql_stmt_num_rows()	may	be
called	immediately.

Return	Values

The	number	of	rows	in	the	result	set.

Errors

None.

22.2.7.18.	mysql_stmt_param_count()

unsigned	long	mysql_stmt_param_count(MYSQL_STMT	*stmt)

Description

Returns	the	number	of	parameter	markers	present	in	the	prepared	statement.

Return	Values

An	unsigned	long	integer	representing	the	number	of	parameters	in	a	statement.

Errors

None.

Example

For	the	usage	of	mysql_stmt_param_count(),	refer	to	the	Example	from
Section	22.2.7.10,	“mysql_stmt_execute()”.

22.2.7.19.	mysql_stmt_param_metadata()

MYSQL_RES	*mysql_stmt_param_metadata(MYSQL_STMT	*stmt)

This	function	currently	does	nothing.

Description

Return	Values

Errors

22.2.7.20.	mysql_stmt_prepare()

int	mysql_stmt_prepare(MYSQL_STMT	*stmt,	const	char	*query,

unsigned	long	length)

Description

Given	the	statement	handle	returned	by	mysql_stmt_init(),	prepares	the	SQL
statement	pointed	to	by	the	string	query	and	returns	a	status	value.	The	string
length	should	be	given	by	the	length	argument.	The	string	must	consist	of	a
single	SQL	statement.	You	should	not	add	a	terminating	semicolon	(‘;’)	or	\g	to
the	statement.

The	application	can	include	one	or	more	parameter	markers	in	the	SQL
statement	by	embedding	question	mark	(‘?’)	characters	into	the	SQL	string	at	the
appropriate	positions.

The	markers	are	legal	only	in	certain	places	in	SQL	statements.	For	example,
they	are	allowed	in	the	VALUES()	list	of	an	INSERT	statement	(to	specify	column
values	for	a	row),	or	in	a	comparison	with	a	column	in	a	WHERE	clause	to	specify
a	comparison	value.	However,	they	are	not	allowed	for	identifiers	(such	as	table
or	column	names),	or	to	specify	both	operands	of	a	binary	operator	such	as	the	=
equal	sign.	The	latter	restriction	is	necessary	because	it	would	be	impossible	to
determine	the	parameter	type.	In	general,	parameters	are	legal	only	in	Data
Manipulation	Language	(DML)	statements,	and	not	in	Data	Definition	Language
(DDL)	statements.

The	parameter	markers	must	be	bound	to	application	variables	using
mysql_stmt_bind_param()	before	executing	the	statement.

Return	Values

Zero	if	the	statement	was	prepared	successfully.	Non-zero	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_OUT_OF_MEMORY

Out	of	memory.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

If	the	prepare	operation	was	unsuccessful	(that	is,	mysql_stmt_prepare()
returns	non-zero),	the	error	message	can	be	obtained	by	calling
mysql_stmt_error().

Example

For	the	usage	of	mysql_stmt_prepare(),	refer	to	the	Example	from
Section	22.2.7.10,	“mysql_stmt_execute()”.

22.2.7.21.	mysql_stmt_reset()

my_bool	mysql_stmt_reset(MYSQL_STMT	*stmt)

Description

Reset	the	prepared	statement	on	the	client	and	server	to	state	after	prepare.	This
is	mainly	used	to	reset	data	sent	with	mysql_stmt_send_long_data().	Any	open
cursor	for	the	statement	is	closed.

To	re-prepare	the	statement	with	another	query,	use	mysql_stmt_prepare().

Return	Values

Zero	if	the	statement	was	reset	successfully.	Non-zero	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.7.22.	mysql_stmt_result_metadata()

MYSQL_RES	*mysql_stmt_result_metadata(MYSQL_STMT	*stmt)

Description

If	a	statement	passed	to	mysql_stmt_prepare()	is	one	that	produces	a	result	set,
mysql_stmt_result_metadata()	returns	the	result	set	metadata	in	the	form	of	a
pointer	to	a	MYSQL_RES	structure	that	can	be	used	to	process	the	meta	information
such	as	total	number	of	fields	and	individual	field	information.	This	result	set
pointer	can	be	passed	as	an	argument	to	any	of	the	field-based	API	functions	that
process	result	set	metadata,	such	as:

mysql_num_fields()

mysql_fetch_field()

mysql_fetch_field_direct()

mysql_fetch_fields()

mysql_field_count()

mysql_field_seek()

mysql_field_tell()

mysql_free_result()

The	result	set	structure	should	be	freed	when	you	are	done	with	it,	which	you
can	do	by	passing	it	to	mysql_free_result().	This	is	similar	to	the	way	you
free	a	result	set	obtained	from	a	call	to	mysql_store_result().

The	result	set	returned	by	mysql_stmt_result_metadata()	contains	only
metadata.	It	does	not	contain	any	row	results.	The	rows	are	obtained	by	using	the
statement	handle	with	mysql_stmt_fetch().

Return	Values

A	MYSQL_RES	result	structure.	NULL	if	no	meta	information	exists	for	the	prepared
query.

Errors

CR_OUT_OF_MEMORY

Out	of	memory.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

Example

For	the	usage	of	mysql_stmt_result_metadata(),	refer	to	the	Example	from
Section	22.2.7.11,	“mysql_stmt_fetch()”.

22.2.7.23.	mysql_stmt_row_seek()

MYSQL_ROW_OFFSET	mysql_stmt_row_seek(MYSQL_STMT	*stmt,

MYSQL_ROW_OFFSET	offset)

Description

Sets	the	row	cursor	to	an	arbitrary	row	in	a	statement	result	set.	The	offset
value	is	a	row	offset	that	should	be	a	value	returned	from
mysql_stmt_row_tell()	or	from	mysql_stmt_row_seek().	This	value	is	not	a
row	number;	if	you	want	to	seek	to	a	row	within	a	result	set	by	number,	use
mysql_stmt_data_seek()	instead.

This	function	requires	that	the	result	set	structure	contains	the	entire	result	of	the
query,	so	mysql_stmt_row_seek()	may	be	used	only	in	conjunction	with
mysql_stmt_store_result().

Return	Values

The	previous	value	of	the	row	cursor.	This	value	may	be	passed	to	a	subsequent
call	to	mysql_stmt_row_seek().

Errors

None.

22.2.7.24.	mysql_stmt_row_tell()

MYSQL_ROW_OFFSET	mysql_stmt_row_tell(MYSQL_STMT	*stmt)

Description

Returns	the	current	position	of	the	row	cursor	for	the	last	mysql_stmt_fetch().
This	value	can	be	used	as	an	argument	to	mysql_stmt_row_seek().

You	should	use	mysql_stmt_row_tell()	only	after
mysql_stmt_store_result().

Return	Values

The	current	offset	of	the	row	cursor.

Errors

None.

22.2.7.25.	mysql_stmt_send_long_data()

my_bool	mysql_stmt_send_long_data(MYSQL_STMT	*stmt,	unsigned	int

parameter_number,	const	char	*data,	unsigned	long	length)

Description

Allows	an	application	to	send	parameter	data	to	the	server	in	pieces	(or
“chunks”).	This	function	can	be	called	multiple	times	to	send	the	parts	of	a
character	or	binary	data	value	for	a	column,	which	must	be	one	of	the	TEXT	or
BLOB	data	types.

parameter_number	indicates	which	parameter	to	associate	the	data	with.
Parameters	are	numbered	beginning	with	0.	data	is	a	pointer	to	a	buffer
containing	data	to	be	sent,	and	length	indicates	the	number	of	bytes	in	the
buffer.

Note:	The	next	mysql_stmt_execute()	call	ignores	the	bind	buffer	for	all
parameters	that	have	been	used	with	mysql_stmt_send_long_data()	since	last
mysql_stmt_execute()	or	mysql_stmt_reset().

If	you	want	to	reset/forget	the	sent	data,	you	can	do	it	with
mysql_stmt_reset().	See	Section	22.2.7.21,	“mysql_stmt_reset()”.

Return	Values

Zero	if	the	data	is	sent	successfully	to	server.	Non-zero	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_OUT_OF_MEMORY

Out	of	memory.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

Example

The	following	example	demonstrates	how	to	send	the	data	for	a	TEXT	column	in
chunks.	It	inserts	the	data	value	'MySQL	-	The	most	popular	Open	Source
database'	into	the	text_column	column.	The	mysql	variable	is	assumed	to	be	a
valid	connection	handle.

#define	INSERT_QUERY	"INSERT	INTO	test_long_data(text_column)	VALUES(?)"

MYSQL_BIND	bind[1];

long							length;

smtt	=	mysql_stmt_init(mysql);

if	(!stmt)

{

		fprintf(stderr,	"	mysql_stmt_init(),	out	of	memory\n");

		exit(0);

}

if	(mysql_stmt_prepare(stmt,	INSERT_QUERY,	strlen(INSERT_QUERY)))

{

		fprintf(stderr,	"\n	mysql_stmt_prepare(),	INSERT	failed");

		fprintf(stderr,	"\n	%s",	mysql_stmt_error(stmt));

		exit(0);

}

	memset(bind,	0,	sizeof(bind));

	bind[0].buffer_type=	MYSQL_TYPE_STRING;

	bind[0].length=	&length;

	bind[0].is_null=	0;

/*	Bind	the	buffers	*/

if	(mysql_stmt_bind_param(stmt,	bind))

{

		fprintf(stderr,	"\n	param	bind	failed");

		fprintf(stderr,	"\n	%s",	mysql_stmt_error(stmt));

		exit(0);

}

	/*	Supply	data	in	chunks	to	server	*/

	if	(!mysql_stmt_send_long_data(stmt,0,"MySQL",5))

{

		fprintf(stderr,	"\n	send_long_data	failed");

		fprintf(stderr,	"\n	%s",	mysql_stmt_error(stmt));

		exit(0);

}

	/*	Supply	the	next	piece	of	data	*/

	if	(mysql_stmt_send_long_data(stmt,0,"	-	The	most	popular	Open	Source	database",40))

{

		fprintf(stderr,	"\n	send_long_data	failed");

		fprintf(stderr,	"\n	%s",	mysql_stmt_error(stmt));

		exit(0);

}

	/*	Now,	execute	the	query	*/

	if	(mysql_stmt_execute(stmt))

{

		fprintf(stderr,	"\n	mysql_stmt_execute	failed");

		fprintf(stderr,	"\n	%s",	mysql_stmt_error(stmt));

		exit(0);

}

22.2.7.26.	mysql_stmt_sqlstate()

const	char	*mysql_stmt_sqlstate(MYSQL_STMT	*stmt)

Description

For	the	statement	specified	by	stmt,	mysql_stmt_sqlstate()	returns	a	null-
terminated	string	containing	the	SQLSTATE	error	code	for	the	most	recently
invoked	prepared	statement	API	function	that	can	succeed	or	fail.	The	error	code
consists	of	five	characters.	"00000"	means	“no	error.”	The	values	are	specified
by	ANSI	SQL	and	ODBC.	For	a	list	of	possible	values,	see	Appendix	B,	Error
Codes	and	Messages.

Note	that	not	all	MySQL	errors	are	yet	mapped	to	SQLSTATE	codes.	The	value
"HY000"	(general	error)	is	used	for	unmapped	errors.

Return	Values

A	null-terminated	character	string	containing	the	SQLSTATE	error	code.

22.2.7.27.	mysql_stmt_store_result()

int	mysql_stmt_store_result(MYSQL_STMT	*stmt)

Description

You	must	call	mysql_stmt_store_result()	for	every	statement	that
successfully	produces	a	result	set	(SELECT,	SHOW,	DESCRIBE,	EXPLAIN),	and	only
if	you	want	to	buffer	the	complete	result	set	by	the	client,	so	that	the	subsequent
mysql_stmt_fetch()	call	returns	buffered	data.

It	is	unnecessary	to	call	mysql_stmt_store_result()	for	other	statements,	but	if
you	do,	it	does	not	harm	or	cause	any	notable	performance	problem.	You	can
detect	whether	the	statement	produced	a	result	set	by	checking	if
mysql_stmt_result_metadata()	returns	NULL.	For	more	information,	refer	to
Section	22.2.7.22,	“mysql_stmt_result_metadata()”.

Note:	MySQL	doesn't	by	default	calculate	MYSQL_FIELD->max_length	for	all
columns	in	mysql_stmt_store_result()	because	calculating	this	would	slow
down	mysql_stmt_store_result()	considerably	and	most	applications	doesn't
need	max_length.	If	you	want	max_length	to	be	updated,	you	can	call
mysql_stmt_attr_set(MYSQL_STMT,	STMT_ATTR_UPDATE_MAX_LENGTH,	&flag)

to	enable	this.	See	Section	22.2.7.3,	“mysql_stmt_attr_set()”.

Return	Values

Zero	if	the	results	are	buffered	successfully.	Non-zero	if	an	error	occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC

Commands	were	executed	in	an	improper	order.

CR_OUT_OF_MEMORY

Out	of	memory.

CR_SERVER_GONE_ERROR

The	MySQL	server	has	gone	away.

CR_SERVER_LOST

The	connection	to	the	server	was	lost	during	the	query.

CR_UNKNOWN_ERROR

An	unknown	error	occurred.

22.2.8.	C	API	Prepared	statement	problems

Here	follows	a	list	of	the	currently	known	problems	with	prepared	statements:

TIME,	TIMESTAMP,	and	DATETIME	do	not	support	parts	of	seconds	(for
example	from	DATE_FORMAT().

When	converting	an	integer	to	string,	ZEROFILL	is	honored	with	prepared
statements	in	some	cases	where	the	MySQL	server	doesn't	print	the	leading
zeros.	(For	example,	with	MIN(number-with-zerofill)).

When	converting	a	floating	point	number	to	a	string	in	the	client,	the
rightmost	digits	of	the	converted	value	may	differ	slightly	from	those	of	the
original	value.

Prepared	statements	do	not	use	the	Query	Cache,	even	in	cases	where	a
query	does	not	contain	any	placeholders.	See	Section	5.14.1,	“How	the
Query	Cache	Operates”.

Prepared	statements	do	not	support	multi-statements	(that	is,	multiple
statements	within	a	single	string	separated	by	‘;’	characters).	This	also
means	that	prepared	statements	cannot	invoke	stored	procedures	that	return
result	sets,	because	prepared	statements	do	not	support	multiple	result	sets.

22.2.9.	C	API	Handling	of	Multiple	Statement	Execution

MySQL	5.0	supports	the	execution	of	multiple	statements	specified	in	a	single
query	string.	To	use	this	capability	with	a	given	connection,	you	must	specify	the
CLIENT_MULTI_STATEMENTS	option	in	the	flags	parameter	to
mysql_real_connect()	when	opening	the	connection.	You	can	also	set	this	for
an	existing	connection	by	calling
mysql_set_server_option(MYSQL_OPTION_MULTI_STATEMENTS_ON).

By	default,	mysql_query()	and	mysql_real_query()	return	only	the	first	query
status	and	the	subsequent	queries	status	can	be	processed	using
mysql_more_results()	and	mysql_next_result().

If	you	enable	multiple-statement	support,	you	should	process	the	results	from
mysql_query()	and	mysql_real_query()	within	a	loop	that	checks	for	more
results.	This	is	true	even	for	statements	such	as	DROP	TABLE	that	return	a	result
but	not	a	result	set.	Failure	to	process	the	result	this	way	may	result	in	a	dropped

connection	to	the	server.

/*	Connect	to	server	with	option	CLIENT_MULTI_STATEMENTS	*/

mysql_real_connect(...,	CLIENT_MULTI_STATEMENTS);

/*	Now	execute	multiple	queries	*/

mysql_query(mysql,"DROP	TABLE	IF	EXISTS	test_table;\

																			CREATE	TABLE	test_table(id	INT);\

																			INSERT	INTO	test_table	VALUES(10);\

																			UPDATE	test_table	SET	id=20	WHERE	id=10;\

																			SELECT	*	FROM	test_table;\

																			DROP	TABLE	test_table");

do

{

		/*	Process	all	results	*/

		...

		printf("total	affected	rows:	%lld",	mysql_affected_rows(mysql));

		...

		if	(!(result=	mysql_store_result(mysql)))

		{

					printf(stderr,	"Got	fatal	error	processing	query\n");

					exit(1);

		}

		process_result_set(result);	/*	client	function	*/

		mysql_free_result(result);

}	while	(!mysql_next_result(mysql));

The	multiple-statement	capability	can	be	used	with	mysql_query()	or
mysql_real_query().	It	cannot	be	used	with	the	prepared	statement	interface.
Prepared	statement	handles	are	defined	to	work	only	with	strings	that	contain	a
single	statement.

22.2.10.	C	API	Handling	of	Date	and	Time	Values

The	binary	protocol	allows	you	to	send	and	receive	date	and	time	values	(DATE,
TIME,	DATETIME,	and	TIMESTAMP),	using	the	MYSQL_TIME	structure.	The	members
of	this	structure	are	described	in	Section	22.2.5,	“C	API	Prepared	Statement
Data	types”.

To	send	temporal	data	values,	create	a	prepared	statement	using
mysql_stmt_prepare().	Then,	before	calling	mysql_stmt_execute()	to	execute
the	statement,	use	the	following	procedure	to	set	up	each	temporal	parameter:

1.	 In	the	MYSQL_BIND	structure	associated	with	the	data	value,	set	the

buffer_type	member	to	the	type	that	indicates	what	kind	of	temporal	value
you're	sending.	For	DATE,	TIME,	DATETIME,	or	TIMESTAMP	values,	set
buffer_type	to	MYSQL_TYPE_DATE,	MYSQL_TYPE_TIME,
MYSQL_TYPE_DATETIME,	or	MYSQL_TYPE_TIMESTAMP,	respectively.

2.	 Set	the	buffer	member	of	the	MYSQL_BIND	structure	to	the	address	of	the
MYSQL_TIME	structure	in	which	you	pass	the	temporal	value.

3.	 Fill	in	the	members	of	the	MYSQL_TIME	structure	that	are	appropriate	for	the
type	of	temporal	value	to	be	passed.

Use	mysql_stmt_bind_param()	to	bind	the	parameter	data	to	the	statement.
Then	you	can	call	mysql_stmt_execute().

To	retrieve	temporal	values,	the	procedure	is	similar,	except	that	you	set	the
buffer_type	member	to	the	type	of	value	you	expect	to	receive,	and	the	buffer
member	to	the	address	of	a	MYSQL_TIME	structure	into	which	the	returned	value
should	be	placed.	Use	mysql_bind_results()	to	bind	the	buffers	to	the
statement	after	calling	mysql_stmt_execute()	and	before	fetching	the	results.

Here	is	a	simple	example	that	inserts	DATE,	TIME,	and	TIMESTAMP	data.	The	mysql
variable	is	assumed	to	be	a	valid	connection	handle.

		MYSQL_TIME		ts;

		MYSQL_BIND		bind[3];

		MYSQL_STMT		*stmt;

		strmov(query,	"INSERT	INTO	test_table(date_field,	time_field,

																																								timestamp_field)	VALUES(?,?,?");

		stmt	=	mysql_stmt_init(mysql);

		if	(!stmt)

		{

				fprintf(stderr,	"	mysql_stmt_init(),	out	of	memory\n");

				exit(0);

		}

		if	(mysql_stmt_prepare(mysql,	query,	strlen(query)))

		{

				fprintf(stderr,	"\n	mysql_stmt_prepare(),	INSERT	failed");

				fprintf(stderr,	"\n	%s",	mysql_stmt_error(stmt));

				exit(0);

		}

		/*	set	up	input	buffers	for	all	3	parameters	*/

		bind[0].buffer_type=	MYSQL_TYPE_DATE;

		bind[0].buffer=	(char	*)&ts;

		bind[0].is_null=	0;

		bind[0].length=	0;

		...

		bind[1]=	bind[2]=	bind[0];

		...

		mysql_stmt_bind_param(stmt,	bind);

		/*	supply	the	data	to	be	sent	in	the	ts	structure	*/

		ts.year=	2002;

		ts.month=	02;

		ts.day=	03;

		ts.hour=	10;

		ts.minute=	45;

		ts.second=	20;

		mysql_stmt_execute(stmt);

		..

22.2.11.	C	API	Threaded	Function	Descriptions

You	need	to	use	the	following	functions	when	you	want	to	create	a	threaded
client.	See	Section	22.2.15,	“How	to	Make	a	Threaded	Client”.

22.2.11.1.	my_init()

void	my_init(void)

Description

This	function	needs	to	be	called	once	in	the	program	before	calling	any	MySQL
function.	This	initializes	some	global	variables	that	MySQL	needs.	If	you	are
using	a	thread-safe	client	library,	this	also	calls	mysql_thread_init()	for	this
thread.

This	is	automatically	called	by	mysql_init(),	mysql_library_init(),
mysql_server_init()	and	mysql_connect().

Return	Values

None.

22.2.11.2.	mysql_thread_init()

my_bool	mysql_thread_init(void)

Description

This	function	needs	to	be	called	for	each	created	thread	to	initialize	thread-
specific	variables.

This	is	automatically	called	by	my_init()	and	mysql_connect().

Return	Values

Zero	if	successful.	Non-zero	if	an	error	occurred.

22.2.11.3.	mysql_thread_end()

void	mysql_thread_end(void)

Description

This	function	needs	to	be	called	before	calling	pthread_exit()	to	free	memory
allocated	by	mysql_thread_init().

Note	that	this	function	is	not	invoked	automatically	by	the	client	library.	It	must
be	called	explicitly	to	avoid	a	memory	leak.

Return	Values

None.

22.2.11.4.	mysql_thread_safe()

unsigned	int	mysql_thread_safe(void)

Description

This	function	indicates	whether	the	client	is	compiled	as	thread-safe.

Return	Values

1	if	the	client	is	thread-safe,	0	otherwise.

22.2.12.	C	API	Embedded	Server	Function	Descriptions

If	you	want	to	allow	your	application	to	be	linked	against	the	embedded	MySQL
server	library,	you	must	use	the	mysql_server_init()	and	mysql_server_end()
functions.	See	Section	22.1,	“libmysqld,	the	Embedded	MySQL	Server	Library”.

However,	to	provide	improved	memory	management,	even	programs	that	are
linked	with	-lmysqlclient	rather	than	-lmysqld	should	include	calls	to	begin
and	end	use	of	the	library.	As	of	MySQL	5.0.3,	the	mysql_library_init()	and
mysql_library_end()	functions	can	be	used	to	do	this.	These	actually	are
#define	symbols	that	make	them	equivalent	to	mysql_server_init()	and
mysql_server_end(),	but	the	names	more	clearly	indicate	that	they	should	be
called	when	beginning	and	ending	use	of	a	MySQL	C	API	library	no	matter
whether	the	application	uses	libmysqlclient	or	libmysqld.	For	more
information,	see	Section	22.2.2,	“C	API	Function	Overview”.

22.2.12.1.	mysql_server_init()

int	mysql_server_init(int	argc,	char	**argv,	char	**groups)

Description

This	function	must	be	called	once	in	the	program	using	the	embedded	server
before	calling	any	other	MySQL	function.	It	starts	the	server	and	initializes	any
subsystems	(mysys,	InnoDB,	and	so	forth)	that	the	server	uses.	If	this	function	is
not	called,	the	next	call	to	mysql_init()	executes	mysql_server_init().

In	a	non-multi-threaded	environment,	the	call	to	mysql_server_init()	may	be
omitted,	because	mysql_init()	will	invoke	it	automatically	as	necessary.
However,	a	race	condition	is	possible	if	mysql_server_init()	is	invoked	by
mysql_init()	in	a	multi-threaded	environment:	mysql_server_init()	is	not
thread-safe,	so	it	should	be	called	prior	to	any	other	client	library	call.

If	you	are	using	the	DBUG	package	that	comes	with	MySQL,	you	should	call
mysql_server_init()	after	you	have	called	my_init().

The	argc	and	argv	arguments	are	analogous	to	the	arguments	to	main().	The
first	element	of	argv	is	ignored	(it	typically	contains	the	program	name).	For
convenience,	argc	may	be	0	(zero)	if	there	are	no	command-line	arguments	for
the	server.	mysql_server_init()	makes	a	copy	of	the	arguments	so	it's	safe	to
destroy	argv	or	groups	after	the	call.

If	you	want	to	connect	to	an	external	server	without	starting	the	embedded
server,	you	have	to	specify	a	negative	value	for	argc.

The	NULL-terminated	list	of	strings	in	groups	selects	which	groups	in	the	option
files	are	active.	See	Section	4.3.2,	“Using	Option	Files”.	For	convenience,
groups	may	be	NULL,	in	which	case	the	[server]	and	[embedded]	groups	are
active.

Example

#include	<mysql.h>

#include	<stdlib.h>

static	char	*server_args[]	=	{

		"this_program",							/*	this	string	is	not	used	*/

		"--datadir=.",

		"--key_buffer_size=32M"

};

static	char	*server_groups[]	=	{

		"embedded",

		"server",

		"this_program_SERVER",

		(char	*)NULL

};

int	main(void)	{

		if	(mysql_server_init(sizeof(server_args)	/	sizeof(char	*),

																								server_args,	server_groups))

				exit(1);

		/*	Use	any	MySQL	API	functions	here	*/

		mysql_server_end();

		return	EXIT_SUCCESS;

}

Return	Values

0	if	okay,	1	if	an	error	occurred.

22.2.12.2.	mysql_server_end()

void	mysql_server_end(void)

Description

This	function	must	be	called	once	in	the	program	after	all	other	MySQL
functions.	It	shuts	down	the	embedded	server.

Return	Values

None.

22.2.13.	Common	Questions	and	Problems	When	Using	the	C	API

22.2.13.1.	Why	mysql_store_result()	Sometimes	Returns	NULL	After
mysql_query()	Returns	Success

It	is	possible	for	mysql_store_result()	to	return	NULL	following	a	successful
call	to	mysql_query().	When	this	happens,	it	means	one	of	the	following
conditions	occurred:

There	was	a	malloc()	failure	(for	example,	if	the	result	set	was	too	large).

The	data	couldn't	be	read	(an	error	occurred	on	the	connection).

The	query	returned	no	data	(for	example,	it	was	an	INSERT,	UPDATE,	or
DELETE).

You	can	always	check	whether	the	statement	should	have	produced	a	non-empty
result	by	calling	mysql_field_count().	If	mysql_field_count()	returns	zero,
the	result	is	empty	and	the	last	query	was	a	statement	that	does	not	return	values
(for	example,	an	INSERT	or	a	DELETE).	If	mysql_field_count()	returns	a	non-
zero	value,	the	statement	should	have	produced	a	non-empty	result.	See	the
description	of	the	mysql_field_count()	function	for	an	example.

You	can	test	for	an	error	by	calling	mysql_error()	or	mysql_errno().

22.2.13.2.	What	Results	You	Can	Get	from	a	Query

In	addition	to	the	result	set	returned	by	a	query,	you	can	also	get	the	following
information:

mysql_affected_rows()	returns	the	number	of	rows	affected	by	the	last
query	when	doing	an	INSERT,	UPDATE,	or	DELETE.

For	a	fast	re-create,	use	TRUNCATE	TABLE.

mysql_num_rows()	returns	the	number	of	rows	in	a	result	set.	With
mysql_store_result(),	mysql_num_rows()	may	be	called	as	soon	as
mysql_store_result()	returns.	With	mysql_use_result(),
mysql_num_rows()	may	be	called	only	after	you	have	fetched	all	the	rows
with	mysql_fetch_row().

mysql_insert_id()	returns	the	ID	generated	by	the	last	query	that	inserted
a	row	into	a	table	with	an	AUTO_INCREMENT	index.	See	Section	22.2.3.36,
“mysql_insert_id()”.

Some	queries	(LOAD	DATA	INFILE	...,	INSERT	INTO	...	SELECT	...,
UPDATE)	return	additional	information.	The	result	is	returned	by
mysql_info().	See	the	description	for	mysql_info()	for	the	format	of	the
string	that	it	returns.	mysql_info()	returns	a	NULL	pointer	if	there	is	no
additional	information.

22.2.13.3.	How	to	Get	the	Unique	ID	for	the	Last	Inserted	Row

If	you	insert	a	record	into	a	table	that	contains	an	AUTO_INCREMENT	column,	you
can	obtain	the	value	stored	into	that	column	by	calling	the	mysql_insert_id()
function.

You	can	check	from	your	C	applications	whether	a	value	was	stored	in	an
AUTO_INCREMENT	column	by	executing	the	following	code	(which	assumes	that
you've	checked	that	the	statement	succeeded).	It	determines	whether	the	query
was	an	INSERT	with	an	AUTO_INCREMENT	index:

if	((result	=	mysql_store_result(&mysql))	==	0	&&

				mysql_field_count(&mysql)	==	0	&&

				mysql_insert_id(&mysql)	!=	0)

{

				used_id	=	mysql_insert_id(&mysql);

}

For	more	information,	see	Section	22.2.3.36,	“mysql_insert_id()”.

When	a	new	AUTO_INCREMENT	value	has	been	generated,	you	can	also	obtain	it
by	executing	a	SELECT	LAST_INSERT_ID()	statement	with	mysql_query()	and
retrieving	the	value	from	the	result	set	returned	by	the	statement.

For	LAST_INSERT_ID(),	the	most	recently	generated	ID	is	maintained	in	the
server	on	a	per-connection	basis.	It	is	not	changed	by	another	client.	It	is	not
even	changed	if	you	update	another	AUTO_INCREMENT	column	with	a	non-magic
value	(that	is,	a	value	that	is	not	NULL	and	not	0).

If	you	want	to	use	the	ID	that	was	generated	for	one	table	and	insert	it	into	a
second	table,	you	can	use	SQL	statements	like	this:

INSERT	INTO	foo	(auto,text)

				VALUES(NULL,'text');														#	generate	ID	by	inserting	NULL

INSERT	INTO	foo2	(id,text)

				VALUES(LAST_INSERT_ID(),'text');		#	use	ID	in	second	table

Note	that	mysql_insert_id()	returns	the	value	stored	into	an	AUTO_INCREMENT
column,	whether	that	value	is	automatically	generated	by	storing	NULL	or	0	or
was	specified	as	an	explicit	value.	LAST_INSERT_ID()	returns	only	automatically
generated	AUTO_INCREMENT	values.	If	you	store	an	explicit	value	other	than	NULL
or	0,	it	does	not	affect	the	value	returned	by	LAST_INSERT_ID().

22.2.13.4.	Problems	Linking	with	the	C	API

When	linking	with	the	C	API,	the	following	errors	may	occur	on	some	systems:

gcc	-g	-o	client	test.o	-L/usr/local/lib/mysql	-lmysqlclient	-lsocket	-lnsl

Undefined								first	referenced

	symbol										in	file

floor												/usr/local/lib/mysql/libmysqlclient.a(password.o)

ld:	fatal:	Symbol	referencing	errors.	No	output	written	to	client

If	this	happens	on	your	system,	you	must	include	the	math	library	by	adding	-lm
to	the	end	of	the	compile/link	line.

22.2.14.	Building	Client	Programs

If	you	compile	MySQL	clients	that	you've	written	yourself	or	that	you	obtain
from	a	third-party,	they	must	be	linked	using	the	-lmysqlclient	-lz	options	in
the	link	command.	You	may	also	need	to	specify	a	-L	option	to	tell	the	linker
where	to	find	the	library.	For	example,	if	the	library	is	installed	in
/usr/local/mysql/lib,	use	-L/usr/local/mysql/lib	-lmysqlclient	-lz	in
the	link	command.

For	clients	that	use	MySQL	header	files,	you	may	need	to	specify	an	-I	option
when	you	compile	them	(for	example,	-I/usr/local/mysql/include),	so	that
the	compiler	can	find	the	header	files.

To	make	it	simpler	to	compile	MySQL	programs	on	Unix,	we	have	provided	the
mysql_config	script	for	you.	See	Section	22.9.2,	“mysql_config	—	Get	Compile
Options	for	Compiling	Clients”.

You	can	use	it	to	compile	a	MySQL	client	as	follows:

CFG=/usr/local/mysql/bin/mysql_config

sh	-c	"gcc	-o	progname	`$CFG	--cflags`	progname.c	`$CFG	--libs`"

The	sh	-c	is	needed	to	get	the	shell	not	to	treat	the	output	from	mysql_config	as
one	word.

22.2.15.	How	to	Make	a	Threaded	Client

The	client	library	is	almost	thread-safe.	The	biggest	problem	is	that	the
subroutines	in	net.c	that	read	from	sockets	are	not	interrupt	safe.	This	was	done
with	the	thought	that	you	might	want	to	have	your	own	alarm	that	can	break	a
long	read	to	a	server.	If	you	install	interrupt	handlers	for	the	SIGPIPE	interrupt,
the	socket	handling	should	be	thread-safe.

To	avoid	aborting	the	program	when	a	connection	terminates,	MySQL	blocks
SIGPIPE	on	the	first	call	to	mysql_server_init(),	mysql_init(),	or
mysql_connect().	If	you	want	to	use	your	own	SIGPIPE	handler,	you	should
first	call	mysql_server_init()	and	then	install	your	handler.

In	the	older	binaries	we	distribute	on	our	Web	site	(http://www.mysql.com/),	the
client	libraries	are	not	normally	compiled	with	the	thread-safe	option	(the

http://www.mysql.com/

Windows	binaries	are	by	default	compiled	to	be	thread-safe).	Newer	binary
distributions	should	have	both	a	normal	and	a	thread-safe	client	library.

To	get	a	threaded	client	where	you	can	interrupt	the	client	from	other	threads	and
set	timeouts	when	talking	with	the	MySQL	server,	you	should	use	the	-lmysys,	-
lmystrings,	and	-ldbug	libraries	and	the	net_serv.o	code	that	the	server	uses.

If	you	don't	need	interrupts	or	timeouts,	you	can	just	compile	a	thread-safe	client
library	(mysqlclient_r)	and	use	this.	See	Section	22.2,	“MySQL	C	API”.	In
this	case,	you	don't	have	to	worry	about	the	net_serv.o	object	file	or	the	other
MySQL	libraries.

When	using	a	threaded	client	and	you	want	to	use	timeouts	and	interrupts,	you
can	make	great	use	of	the	routines	in	the	thr_alarm.c	file.	If	you	are	using
routines	from	the	mysys	library,	the	only	thing	you	must	remember	is	to	call
my_init()	first!	See	Section	22.2.11,	“C	API	Threaded	Function	Descriptions”.

All	functions	except	mysql_real_connect()	are	by	default	thread-safe.	The
following	notes	describe	how	to	compile	a	thread-safe	client	library	and	use	it	in
a	thread-safe	manner.	(The	notes	below	for	mysql_real_connect()	actually
apply	to	mysql_connect()	as	well,	but	because	mysql_connect()	is	deprecated,
you	should	be	using	mysql_real_connect()	anyway.)

To	make	mysql_real_connect()	thread-safe,	you	must	recompile	the	client
library	with	this	command:

shell>	./configure	--enable-thread-safe-client

This	creates	a	thread-safe	client	library	libmysqlclient_r.	(Assuming	that	your
OS	has	a	thread-safe	gethostbyname_r()	function.)	This	library	is	thread-safe
per	connection.	You	can	let	two	threads	share	the	same	connection	with	the
following	caveats:

Two	threads	can't	send	a	query	to	the	MySQL	server	at	the	same	time	on	the
same	connection.	In	particular,	you	have	to	ensure	that	between	a
mysql_query()	and	mysql_store_result()	no	other	thread	is	using	the
same	connection.

Many	threads	can	access	different	result	sets	that	are	retrieved	with
mysql_store_result().

If	you	use	mysql_use_result,	you	have	to	ensure	that	no	other	thread	is
using	the	same	connection	until	the	result	set	is	closed.	However,	it	really	is
best	for	threaded	clients	that	share	the	same	connection	to	use
mysql_store_result().

If	you	want	to	use	multiple	threads	on	the	same	connection,	you	must	have
a	mutex	lock	around	your	mysql_query()	and	mysql_store_result()	call
combination.	Once	mysql_store_result()	is	ready,	the	lock	can	be
released	and	other	threads	may	query	the	same	connection.

If	you	program	with	POSIX	threads,	you	can	use	pthread_mutex_lock()
and	pthread_mutex_unlock()	to	establish	and	release	a	mutex	lock.

You	need	to	know	the	following	if	you	have	a	thread	that	is	calling	MySQL
functions	which	did	not	create	the	connection	to	the	MySQL	database:

When	you	call	mysql_init()	or	mysql_connect(),	MySQL	creates	a	thread-
specific	variable	for	the	thread	that	is	used	by	the	debug	library	(among	other
things).

If	you	call	a	MySQL	function,	before	the	thread	has	called	mysql_init()	or
mysql_connect(),	the	thread	does	not	have	the	necessary	thread-specific
variables	in	place	and	you	are	likely	to	end	up	with	a	core	dump	sooner	or	later.

To	get	things	to	work	smoothly	you	have	to	do	the	following:

1.	 Call	my_init()	at	the	start	of	your	program	if	it	calls	any	other	MySQL
function	before	calling	mysql_real_connect().

2.	 Call	mysql_thread_init()	in	the	thread	handler	before	calling	any	MySQL
function.

3.	 In	the	thread,	call	mysql_thread_end()	before	calling	pthread_exit().
This	frees	the	memory	used	by	MySQL	thread-specific	variables.

You	may	get	some	errors	because	of	undefined	symbols	when	linking	your	client
with	libmysqlclient_r.	In	most	cases	this	is	because	you	haven't	included	the
thread	libraries	on	the	link/compile	line.

22.3.	MySQL	PHP	API

PHP	is	a	server-side,	HTML-embedded	scripting	language	that	may	be	used	to
create	dynamic	Web	pages.	It	is	available	for	most	operating	systems	and	Web
servers,	and	can	access	most	common	databases,	including	MySQL.	PHP	may
be	run	as	a	separate	program	or	compiled	as	a	module	for	use	with	the	Apache
Web	server.

PHP	actually	provides	two	different	MySQL	API	extensions:

mysql:	Available	for	PHP	versions	4	and	5,	this	extension	is	intended	for
use	with	MySQL	versions	prior	to	MySQL	4.1.	This	extension	does	not
support	the	improved	authentication	protocol	used	in	MySQL	5.0,	nor	does
it	support	prepared	statements	or	multiple	statements.	If	you	wish	to	use
this	extension	with	MySQL	5.0,	you	will	likely	want	to	configure	the
MySQL	server	to	use	the	--old-passwords	option	(see	Section	A.2.3,
“Client	does	not	support	authentication	protocol”).	This	extension
is	documented	on	the	PHP	Web	site	at	http://php.net/mysql.

mysqli	-	Stands	for	“MySQL,	Improved”;	this	extension	is	available	only	in
PHP	5.	It	is	intended	for	use	with	MySQL	4.1.1	and	later.	This	extension
fully	supports	the	authentication	protocol	used	in	MySQL	5.0,	as	well	as	the
Prepared	Statements	and	Multiple	Statements	APIs.	In	addition,	this
extension	provides	an	advanced,	object-oriented	programming	interface.
You	can	read	the	documentation	for	the	mysqli	extension	at
http://php.net/mysqli.	A	helpful	article	can	be	found	at
http://www.zend.com/php5/articles/php5-mysqli.php.

If	you're	experiencing	problems	with	enabling	both	the	mysql	and	the	mysqli
extension	when	building	PHP	on	Linux	yourself,	see	Section	22.3.2,	“Enabling
Both	mysql	and	mysqli	in	PHP”.

The	PHP	distribution	and	documentation	are	available	from	the	PHP	Web	site.
MySQL	provides	the	mysql	and	mysqli	extensions	for	the	Windows	operating
system	for	MySQL	versions	as	of	5.0.18	on
http://dev.mysql.com/downloads/connector/php/.	You	can	find	information	why
you	should	preferably	use	the	extensions	provided	by	MySQL	on	that	page.

http://php.net/mysql
http://php.net/mysqli
http://www.zend.com/php5/articles/php5-mysqli.php
http://www.php.net/
http://dev.mysql.com/downloads/connector/php/

22.3.1.	Common	Problems	with	MySQL	and	PHP

Error:	Maximum	Execution	Time	Exceeded:	This	is	a	PHP	limit;	go	into
the	php.ini	file	and	set	the	maximum	execution	time	up	from	30	seconds
to	something	higher,	as	needed.	It	is	also	not	a	bad	idea	to	double	the	RAM
allowed	per	script	to	16MB	instead	of	8MB.

Fatal	error:	Call	to	unsupported	or	undefined	function

mysql_connect()	in	...:	This	means	that	your	PHP	version	isn't
compiled	with	MySQL	support.	You	can	either	compile	a	dynamic	MySQL
module	and	load	it	into	PHP	or	recompile	PHP	with	built-in	MySQL
support.	This	process	is	described	in	detail	in	the	PHP	manual.

Error:	Undefined	reference	to	'uncompress':	This	means	that	the
client	library	is	compiled	with	support	for	a	compressed	client/server
protocol.	The	fix	is	to	add	-lz	last	when	linking	with	-lmysqlclient.

Error:	Client	does	not	support	authentication	protocol:	This	is
most	often	encountered	when	trying	to	use	the	older	mysql	extension	with
MySQL	4.1.1	and	later.	Possible	solutions	are:	downgrade	to	MySQL	4.0;
switch	to	PHP	5	and	the	newer	mysqli	extension;	or	configure	the	MySQL
server	with	--old-passwords.	(See	Section	A.2.3,	“Client	does	not
support	authentication	protocol”,	for	more	information.)

Those	with	PHP4	legacy	code	can	make	use	of	a	compatibility	layer	for	the	old
and	new	MySQL	libraries,	such	as	this	one:
http://www.coggeshall.org/oss/mysql2i.

22.3.2.	Enabling	Both	mysql	and	mysqli	in	PHP

If	you're	experiencing	problems	with	enabling	both	the	mysql	and	the	mysqli
extension	when	building	PHP	on	Linux	yourself,	you	should	try	the	following
procedure.

1.	 Configure	PHP	like	this:

./configure	--with-mysqli=/usr/bin/mysql_config	--with-mysql=/usr		

2.	 Edit	the	Makefile	and	search	for	a	line	that	starts	with	EXTRA_LIBS.	It	might

http://www.coggeshall.org/oss/mysql2i

look	like	this	(all	on	one	line):

EXTRA_LIBS	=	-lcrypt	-lcrypt	-lmysqlclient	-lz	-lresolv	-lm	-ldl	-lnsl

-lxml2	-lz	-lm	-lxml2	-lz	-lm	-lmysqlclient	-lz	-lcrypt	-lnsl	-lm

-lxml2	-lz	-lm	-lcrypt	-lxml2	-lz	-lm	-lcrypt

Remove	all	duplicates,	so	that	the	line	looks	like	this	(all	on	one	line):

EXTRA_LIBS	=	-lcrypt	-lcrypt	-lmysqlclient	-lz	-lresolv	-lm	-ldl	-lnsl

-lxml2

3.	 Build	and	install	PHP:

make

make	install

22.4.	MySQL	Perl	API

The	Perl	DBI	module	provides	a	generic	interface	for	database	access.	You	can
write	a	DBI	script	that	works	with	many	different	database	engines	without
change.	To	use	DBI,	you	must	install	the	DBI	module,	as	well	as	a	DataBase
Driver	(DBD)	module	for	each	type	of	server	you	want	to	access.	For	MySQL,
this	driver	is	the	DBD::mysql	module.

Perl	DBI	is	the	recommended	Perl	interface.	It	replaces	an	older	interface	called
mysqlperl,	which	should	be	considered	obsolete.

Installation	instructions	for	Perl	DBI	support	are	given	in	Section	2.14,	“Perl
Installation	Notes”.

DBI	information	is	available	at	the	command	line,	online,	or	in	printed	form:

Once	you	have	the	DBI	and	DBD::mysql	modules	installed,	you	can	get
information	about	them	at	the	command	line	with	the	perldoc	command:

shell>	perldoc	DBI

shell>	perldoc	DBI::FAQ

shell>	perldoc	DBD::mysql

You	can	also	use	pod2man,	pod2html,	and	so	forth	to	translate	this
information	into	other	formats.

For	online	information	about	Perl	DBI,	visit	the	DBI	Web	site,
http://dbi.perl.org/.	That	site	hosts	a	general	DBI	mailing	list.	MySQL	AB
hosts	a	list	specifically	about	DBD::mysql;	see	Section	1.7.1,	“MySQL
Mailing	Lists”.

For	printed	information,	the	official	DBI	book	is	Programming	the	Perl
DBI	(Alligator	Descartes	and	Tim	Bunce,	O'Reilly	&	Associates,	2000).
Information	about	the	book	is	available	at	the	DBI	Web	site,
http://dbi.perl.org/.

For	information	that	focuses	specifically	on	using	DBI	with	MySQL,	see
MySQL	and	Perl	for	the	Web	(Paul	DuBois,	New	Riders,	2001).	This	book's
Web	site	is	http://www.kitebird.com/mysql-perl/.

http://dbi.perl.org/
http://dbi.perl.org/
http://www.kitebird.com/mysql-perl/

22.5.	MySQL	C++	API

MySQL++	is	a	MySQL	API	for	C++.	Warren	Young	has	taken	over	this	project.
More	information	can	be	found	at	http://www.mysql.com/products/mysql++/.

22.5.1.	Borland	C++

You	can	compile	the	MySQL	Windows	source	with	Borland	C++	5.02.	(The
Windows	source	includes	only	projects	for	Microsoft	VC++,	for	Borland	C++
you	have	to	do	the	project	files	yourself.)

One	known	problem	with	Borland	C++	is	that	it	uses	a	different	structure
alignment	than	VC++.	This	means	that	you	run	into	problems	if	you	try	to	use
the	default	libmysql.dll	libraries	(that	were	compiled	using	VC++)	with
Borland	C++.	To	avoid	this	problem,	only	call	mysql_init()	with	NULL	as	an
argument,	not	a	pre-allocated	MYSQL	structure.

http://www.mysql.com/products/mysql++/

22.6.	MySQL	Python	API

MySQLdb	provides	MySQL	support	for	Python,	compliant	with	the	Python	DB
API	version	2.0.	It	can	be	found	at	http://sourceforge.net/projects/mysql-python/.

http://sourceforge.net/projects/mysql-python/

22.7.	MySQL	Tcl	API

MySQLtcl	is	a	simple	API	for	accessing	a	MySQL	database	server	from	the	Tcl
programming	language.	It	can	be	found	at	http://www.xdobry.de/mysqltcl/.

http://www.xdobry.de/mysqltcl/

22.8.	MySQL	Eiffel	Wrapper

Eiffel	MySQL	is	an	interface	to	the	MySQL	database	server	using	the	Eiffel
programming	language,	written	by	Michael	Ravits.	It	can	be	found	at
http://efsa.sourceforge.net/archive/ravits/mysql.htm.

http://efsa.sourceforge.net/archive/ravits/mysql.htm

22.9.	MySQL	Program	Development	Utilities

This	section	describes	some	utilities	that	you	may	find	useful	when	developing
MySQL	programs.

msql2mysql

A	shell	script	that	converts	mSQL	programs	to	MySQL.	It	doesn't	handle
every	case,	but	it	gives	a	good	start	when	converting.

mysql_config

A	shell	script	that	produces	the	option	values	needed	when	compiling
MySQL	programs.

22.9.1.	msql2mysql	—	Convert	mSQL	Programs	for	Use	with
MySQL

Initially,	the	MySQL	C	API	was	developed	to	be	very	similar	to	that	for	the
mSQL	database	system.	Because	of	this,	mSQL	programs	often	can	be	converted
relatively	easily	for	use	with	MySQL	by	changing	the	names	of	the	C	API
functions.

The	msql2mysql	utility	performs	the	conversion	of	mSQL	C	API	function	calls
to	their	MySQL	equivalents.	msql2mysql	converts	the	input	file	in	place,	so
make	a	copy	of	the	original	before	converting	it.	For	example,	use	msql2mysql
like	this:

shell>	cp	client-prog.c	client-prog.c.orig

shell>	msql2mysql	client-prog.c

client-prog.c	converted

Then	examine	client-prog.c	and	make	any	post-conversion	revisions	that	may
be	necessary.

msql2mysql	uses	the	replace	utility	to	make	the	function	name	substitutions.
See	Section	8.18,	“replace	—	A	String-Replacement	Utility”.

22.9.2.	mysql_config	—	Get	Compile	Options	for	Compiling
Clients

mysql_config	provides	you	with	useful	information	for	compiling	your	MySQL
client	and	connecting	it	to	MySQL.

mysql_config	supports	the	following	options:

--cflags

Compiler	flags	to	find	include	files	and	critical	compiler	flags	and	defines
used	when	compiling	the	libmysqlclient	library.

--include

Compiler	options	to	find	MySQL	include	files.	(Note	that	normally	you
would	use	--cflags	instead	of	this	option.)

--libmysqld-libs,	--embedded

Libraries	and	options	required	to	link	with	the	MySQL	embedded	server.

--libs

Libraries	and	options	required	to	link	with	the	MySQL	client	library.

--libs_r

Libraries	and	options	required	to	link	with	the	thread-safe	MySQL	client
library.

--port

The	default	TCP/IP	port	number,	defined	when	configuring	MySQL.

--socket

The	default	Unix	socket	file,	defined	when	configuring	MySQL.

--version

Version	number	for	the	MySQL	distribution.

If	you	invoke	mysql_config	with	no	options,	it	displays	a	list	of	all	options	that
it	supports,	and	their	values:

shell>	mysql_config

Usage:	/usr/local/mysql/bin/mysql_config	[options]

Options:

		--cflags									[-I/usr/local/mysql/include/mysql	-mcpu=pentiumpro]

		--include								[-I/usr/local/mysql/include/mysql]

		--libs											[-L/usr/local/mysql/lib/mysql	-lmysqlclient	-lz

																				-lcrypt	-lnsl	-lm	-L/usr/lib	-lssl	-lcrypto]

		--libs_r									[-L/usr/local/mysql/lib/mysql	-lmysqlclient_r

																				-lpthread	-lz	-lcrypt	-lnsl	-lm	-lpthread]

		--socket									[/tmp/mysql.sock]

		--port											[3306]

		--version								[4.0.16]

		--libmysqld-libs	[-L/usr/local/mysql/lib/mysql	-lmysqld	-lpthread	-lz

																				-lcrypt	-lnsl	-lm	-lpthread	-lrt]

You	can	use	mysql_config	within	a	command	line	to	include	the	value	that	it
displays	for	a	particular	option.	For	example,	to	compile	a	MySQL	client
program,	use	mysql_config	as	follows:

shell>	CFG=/usr/local/mysql/bin/mysql_config

shell>	sh	-c	"gcc	-o	progname	`$CFG	--cflags`	progname.c	`$CFG	--libs`"

When	you	use	mysql_config	this	way,	be	sure	to	invoke	it	within	backtick	(‘`’)
characters.	That	tells	the	shell	to	execute	it	and	substitute	its	output	into	the
surrounding	command.

Chapter	23.	Connectors

Table	of	Contents

23.1.	MySQL	Connector/ODBC
23.1.1.	Introduction	to	MyODBC
23.1.2.	How	to	Install	MyODBC
23.1.3.	MyODBC	Configuration
23.1.4.	MyODBC	Examples
23.1.5.	MyODBC	Reference
23.1.6.	MyODBC	Notes	and	Tips
23.1.7.	MyODBC	Support

23.2.	Connector/NET
23.2.1.	Connector/NET	Versions
23.2.2.	How	to	install	Connector/NET
23.2.3.	Connector/NET	Examples
23.2.4.	Connector/NET	Reference
23.2.5.	Connector/NET	Notes	and	Tips
23.2.6.	Connector/NET	Support

23.3.	MySQL	Connector/J
23.3.1.	Connector/J	Versions
23.3.2.	Installing	Connector/J
23.3.3.	Connector/J	Examples
23.3.4.	Connector/J	(JDBC)	Reference
23.3.5.	Connector/J	Notes	and	Tips
23.3.6.	Connector/J	Support

23.4.	MySQL	Connector/MXJ
23.4.1.	Introduction	to	Connector/MXJ
23.4.2.	Installing	Connector/MXJ
23.4.3.	Connector/MXJ	Configuration
23.4.4.	Connector/MXJ	Reference
23.4.5.	Connector/MXJ	Notes	and	Tips
23.4.6.	Connector/MXJ	Support

23.5.	Connector/PHP

This	chapter	describes	MySQL	Connectors,	drivers	that	provide	connectivity	to
the	MySQL	server	for	client	programs.	There	are	currently	five	MySQL

Connectors:

Connector/ODBC	provides	driver	support	for	connecting	to	a	MySQL
server	using	the	Open	Database	Connectivity	(ODBC)	API.	Support	is
available	for	ODBC	connectivity	from	Windows,	Unix	and	Mac	OS	X
platforms.

Connector/NET	enables	developers	to	create	.NET	applications	that	use
data	stored	in	a	MySQL	database.	Connector/NET	implement	a	fully-
functional	ADO.NET	interface	and	provides	support	for	use	with
ADO.NET	aware	tools.	Applications	that	want	to	use	Connector/NET	can
be	written	in	any	of	the	supported	.NET	languages.

Connector/J	provides	driver	support	for	connecting	to	MySQL	from	a	Java
application	using	the	standard	Java	Database	Connectivity	(JDBC)	API.

Connector/MXJ	is	a	tool	that	enables	easy	deployment	and	management	of
MySQL	server	and	database	through	your	Java	application.

Connector/PHP	is	a	Windows-only	connector	for	PHP	that	provides	the
mysql	and	mysqli	extensions	for	use	with	MySQL	5.0.18	and	later.

For	information	on	connecting	to	a	MySQL	server	using	other	languages	and
interfaces	than	those	detailed	above,	including	Perl,	Python	and	PHP	for	other
platforms	and	environments,	please	refer	to	the	Chapter	22,	APIs	and	Libraries
chapter.

23.1.	MySQL	Connector/ODBC

The	MySQL	Connector/ODBC	is	the	name	for	the	family	of	MySQL	ODBC
drivers	(also	called	MyODBC	drivers)	that	provide	access	to	a	MySQL	database
using	the	industry	standard	Open	Database	Connectivity	(ODBC)	API.	This
reference	covers	Connector/ODBC	3.51,	a	version	of	the	API	that	provides
ODBC	3.5x	compliant	access	to	a	MySQL	database.

The	manual	for	versions	of	MyODBC	older	than	3.51	can	be	located	in	the
corresponding	binary	or	source	distribution.

For	more	information	on	the	ODBC	API	standard	and	how	to	use	it,	refer	to
http://www.microsoft.com/data/.

The	application	development	part	of	this	reference	assumes	a	good	working
knowledge	of	C,	general	DBMS	knowledge,	and	finally,	but	not	least,	familiarity
with	MySQL.	For	more	information	about	MySQL	functionality	and	its	syntax,
refer	to	http://dev.mysql.com/doc/.

Typically,	you	need	to	install	MyODBC	only	on	Windows	machines.	For	Unix
and	Mac	OS	X	you	can	use	the	native	MySQL	network	or	named	pipe	to
communicate	with	your	MySQL	database.	You	may	need	MyODBC	for	Unix	or
Mac	OS	X	if	you	have	an	application	that	requires	an	ODBC	interface	to
communicate	with	database..	Applications	that	require	ODBC	to	communicate
with	MySQL	include	ColdFusion,	Microsoft	Office,	and	Filemaker	Pro.

If	you	want	to	install	the	MyODBC	connector	on	a	Unix	host,	then	you	must
also	install	an	ODBC	manager.

If	you	have	questions	that	are	not	answered	in	this	document,	please	send	a	mail
message	to	<myodbc@lists.mysql.com>.

23.1.1.	Introduction	to	MyODBC

ODBC	(Open	Database	Connectivity)	provides	a	way	for	client	programs	to
access	a	wide	range	of	databases	or	data	sources.	ODBC	is	a	standardized	API
that	allows	connections	to	SQL	database	servers.	It	was	developed	according	to
the	specifications	of	the	SQL	Access	Group	and	defines	a	set	of	function	calls,

http://www.microsoft.com/data/
http://dev.mysql.com/doc/
mailto:myodbc@lists.mysql.com

error	codes,	and	data	types	that	can	be	used	to	develop	database-independent
applications.	ODBC	usually	is	used	when	database	independence	or
simultaneous	access	to	different	data	sources	is	required.

For	more	information	about	ODBC,	refer	to	http://www.microsoft.com/data/.

23.1.1.1.	MyODBC	Versions

There	are	currently	two	version	of	MyODBC	available:

MyODBC	5.0,	currently	in	beta	status,	has	been	designed	to	extend	the
functionality	of	the	MyODBC	3.51	driver	and	incorporate	full	support	for
the	functionality	in	the	MySQL	5.0	server	release,	including	stored
procedures	and	views.	Applications	using	MyODBC	3.51	will	be
compatible	with	MyODBC	5.0,	while	being	able	to	take	advantage	of	the
new	features.	Features	and	functionality	of	the	MyODBC	5.0	driver	are	not
currently	included	in	this	guide.

MyODBC	3.51	is	the	current	release	of	the	32-bit	ODBC	driver,	also
known	as	the	MySQL	ODBC	3.51	driver.	This	version	is	enhanced
compared	to	the	older	MyODBC	2.50	driver.	It	has	support	for	ODBC	3.5x
specification	level	1	(complete	core	API	+	level	2	features)	in	order	to
continue	to	provide	all	functionality	of	ODBC	for	accessing	MySQL.

MyODBC	2.50	is	the	previous	version	of	the	32-bit	ODBC	driver	from
MySQL	AB	that	is	based	on	ODBC	2.50	specification	level	0	(with	level	1
and	2	features).	Information	about	the	MyODBC	2.50	driver	is	included	in
this	guide	for	the	purposes	of	comparison	only.

Note:	From	this	section	onward,	the	primary	focus	of	this	guide	is	the	MyODBC
3.51	driver.	More	information	about	the	MyODBC	2.50	driver	in	the
documentation	included	in	the	installation	packages	for	that	version.	If	there	is	a
specific	issue	(error	or	known	problem)	that	only	affects	the	2.50	version,	it	may
be	included	here	for	reference.

23.1.1.2.	General	Information	About	ODBC	and	MyODBC

Open	Database	Connectivity	(ODBC)	is	a	widely	accepted	application-
programming	interface	(API)	for	database	access.	It	is	based	on	the	Call-Level

http://www.microsoft.com/data/

Interface	(CLI)	specifications	from	X/Open	and	ISO/IEC	for	database	APIs	and
uses	Structured	Query	Language	(SQL)	as	its	database	access	language.

A	survey	of	ODBC	functions	supported	by	MyODBC	is	given	at
Section	23.1.5.1,	“MyODBC	API	Reference”.	For	general	information	about
ODBC,	see	http://www.microsoft.com/data/.

23.1.1.2.1.	MyODBC	Architecture

The	MyODBC	architecture	is	based	on	five	components,	as	shown	in	the
following	diagram:

Application:

The	Application	uses	the	ODBC	API	to	access	the	data	from	the	MySQL
server.	The	ODBC	API	in	turn	uses	the	communicates	with	the	Driver
Manager.	The	Application	communicates	with	the	Driver	Manager	using
the	standard	ODBC	calls.	The	Application	does	not	care	where	the	data	is
stored,	how	it	is	stored,	or	even	how	the	system	is	configured	to	access	the

http://www.microsoft.com/data/

data.	It	needs	to	know	only	the	Data	Source	Name	(DSN).

A	number	of	tasks	are	common	to	all	applications,	no	matter	how	they	use
ODBC.	These	tasks	are:

Selecting	the	MySQL	server	and	connecting	to	it

Submitting	SQL	statements	for	execution

Retrieving	results	(if	any)

Processing	errors

Committing	or	rolling	back	the	transaction	enclosing	the	SQL
statement

Disconnecting	from	the	MySQL	server

Because	most	data	access	work	is	done	with	SQL,	the	primary	tasks	for
applications	that	use	ODBC	are	submitting	SQL	statements	and	retrieving
any	results	generated	by	those	statements.

Driver	manager:

The	Driver	Manager	is	a	library	that	manages	communication	between
application	and	driver	or	drivers.	It	performs	the	following	tasks:

Resolves	Data	Source	Names	(DSN).	The	DSN	is	a	configuration
string	that	identifies	a	given	database	driver,	database,	database	host
and	optionally	authentication	information	that	enables	an	ODBC
application	to	connect	to	a	database	using	a	standardized	reference.

Because	the	database	connectivity	information	is	identified	by	the
DSN,	any	ODBC	compliant	application	can	connect	to	the	data	source
using	the	same	DSN	reference.	This	eliminates	the	need	to	separately
configure	each	application	that	needs	access	to	a	given	database;
instead	you	instruct	the	application	to	use	a	pre-configured	DSN.

Loading	and	unloading	of	the	driver	required	to	access	a	specific
database	as	defined	within	the	DSN.	For	example,	if	you	have

configured	a	DSN	that	connects	to	a	MySQL	database	then	the	driver
manager	will	load	the	MyODBC	driver	to	enable	the	ODBC	API	to
communicate	with	the	MySQL	host.

Processes	ODBC	function	calls	or	passes	them	to	the	driver	for
processing.

MyODBC	Driver:

The	MyODBC	driver	is	a	library	that	implements	the	functions	supported
by	the	ODBC	API.	It	processes	ODBC	function	calls,	submits	SQL	requests
to	MySQL	server,	and	returns	results	back	to	the	application.	If	necessary,
the	driver	modifies	an	application's	request	so	that	the	request	conforms	to
syntax	supported	by	MySQL.

DSN	Configuration:

The	ODBC	configuration	file	stores	the	driver	and	database	information
required	to	connect	to	the	server.	It	is	used	by	the	Driver	Manager	to
determine	which	driver	to	be	loaded	according	to	the	definition	in	the	DSN.
The	driver	uses	this	to	read	connection	parameters	based	on	the	DSN
specified.	For	more	information,	Section	23.1.3,	“MyODBC
Configuration”.

MySQL	Server:

The	MySQL	database	where	the	information	is	stored.	The	database	is	used
as	the	source	of	the	data	(during	queries)	and	the	destination	for	data
(during	inserts	and	updates).

23.1.1.2.2.	ODBC	Driver	Managers

An	ODBC	Driver	Manager	is	a	library	that	manages	communication	between	the
ODBC-aware	application	and	any	drivers.	Its	main	functionality	includes:

Resolving	Data	Source	Names	(DSN).

Driver	loading	and	unloading.

Processing	ODBC	function	calls	or	passing	them	to	the	driver.

Both	Windows	and	Mac	OS	X	include	ODBC	driver	managers	with	the
operating	system.	Most	ODBC	Driver	Manager	implementations	also	include	an
administration	application	that	makes	the	configuration	of	DSN	and	drivers
easier.	Examples	and	information	on	these	managers,	including	Unix	ODBC
driver	managers	are	listed	below:

Microsoft	Windows	ODBC	Driver	Manager	(odbc32.dll),
http://www.microsoft.com/data/.

Mac	OS	X	includes	ODBC	Administrator,	a	GUI	application	that	provides
a	simpler	configuration	mechanism	for	the	Unix	iODBC	Driver	Manager.
You	can	configure	DSN	and	driver	information	either	through	ODBC
Administrator	or	through	the	iODBC	configuration	files.	This	also	means
that	you	can	test	ODBC	Administrator	configurations	using	the	iodbctest
command.	http://www.apple.com.

unixODBC	Driver	Manager	for	Unix	(libodbc.so).	See
http://www.unixodbc.org,	for	more	information.	The	unixODBC	Driver
Manager	includes	the	MyODBC	driver	3.51	in	the	installation	package,
starting	with	version	unixODBC	2.1.2.

iODBC	ODBC	Driver	Manager	for	Unix	(libiodbc.so),	see
http://www.iodbc.org,	for	more	information.

23.1.2.	How	to	Install	MyODBC

You	can	install	the	MyODBC	drivers	using	two	different	methods,	a	binary
installation	and	a	source	installation.	The	binary	installation	is	the	easiest	and
most	straightforward	method	of	installation.	Using	the	source	installation
methods	should	only	be	necessary	on	platforms	where	a	binary	installation
package	is	not	available,	or	in	situations	where	you	want	to	customize	or	modify
the	installation	process	or	MyODBC	drivers	before	installation.

23.1.2.1.	Where	to	Get	MyODBC

MySQL	AB	distributes	all	its	products	under	the	General	Public	License	(GPL).
You	can	get	a	copy	of	the	latest	version	of	MyODBC	binaries	and	sources	from
the	MySQL	AB	Web	site	http://dev.mysql.com/downloads/.

http://www.microsoft.com/data/
http://www.apple.com
http://www.unixodbc.org
http://www.iodbc.org
http://dev.mysql.com/downloads/

For	more	information	about	MyODBC,	visit
http://www.mysql.com/products/myodbc/.

For	more	information	about	licensing,	visit
http://www.mysql.com/company/legal/licensing/.

23.1.2.2.	Supported	Platforms

MyODBC	can	be	used	on	all	major	platforms	supported	by	MySQL.	You	can
install	it	on:

Windows	95,	98,	Me,	NT,	2000,	XP,	and	2003

All	Unix-like	Operating	Systems,	including:	AIX,	Amiga,	BSDI,	DEC,
FreeBSD,	HP-UX	10/11,	Linux,	NetBSD,	OpenBSD,	OS/2,	SGI	Irix,
Solaris,	SunOS,	SCO	OpenServer,	SCO	UnixWare,	Tru64	Unix

Mac	OS	X	and	Mac	OS	X	Server

If	a	binary	distribution	is	not	available	for	a	particular	platform,	see
Section	23.1.2.4,	“Installing	MyODBC	from	a	source	distribution”,	to	build	the
driver	from	the	original	source	code.	You	can	contribute	the	binaries	you	create
to	MySQL	by	sending	a	mail	message	to	<myodbc@lists.mysql.com>,	so	that	it
becomes	available	for	other	users.

23.1.2.3.	Installing	MyODBC	from	a	binary	distribution

Using	a	binary	distribution	offers	the	most	straightforward	method	for	installing
MyODBC.	If	you	want	more	control	over	the	driver,	the	installation	location	and
or	to	customize	elements	of	the	driver	you	will	need	to	build	and	install	from	the
source.	See	the	Section	23.1.2.4,	“Installing	MyODBC	from	a	source
distribution”.

23.1.2.3.1.	Installing	MyODBC	from	a	Binary	Distribution	on	Windows

Before	installing	the	MyODBC	drivers	on	Windows	you	should	ensure	that	your
Microsoft	Data	Access	Components	(MDAC)	are	up	to	date.	You	can	obtain	the
latest	version	from	the	Microsoft	Data	Access	and	Storage	website.

http://www.mysql.com/products/myodbc/
http://www.mysql.com/company/legal/licensing/
mailto:myodbc@lists.mysql.com
http://www.microsoft.com/data/

There	are	three	available	distribution	types	to	use	when	installing	for	Windows.
The	contents	in	each	case	are	identical,	it	is	only	the	installation	method	which	is
different.

Zipped	installer	consists	of	a	Zipped	package	containing	a	standalone
installation	application.	To	install	from	this	package,	you	must	unzip	the
installer,	and	then	run	the	installation	application.	See	Section	23.1.2.3.1.1,
“Installing	the	Windows	MyODBC	Driver	using	an	installer”	to	complete
the	installation.

MSI	installer,	an	installation	file	that	can	be	used	with	the	installer	included
in	Windows	2000,	Windows	XP	and	Windows	Server	2003.	See
Section	23.1.2.3.1.1,	“Installing	the	Windows	MyODBC	Driver	using	an
installer”	to	complete	the	installation.

Zipped	DLL	package,	containing	the	DLL	files	that	need	must	be	manually
installed.	See	Section	23.1.2.3.1.2,	“Installing	the	Windows	MyODBC
Driver	using	the	Zipped	DLL	package”	to	complete	the	installation.

23.1.2.3.1.1.	Installing	the	Windows	MyODBC	Driver	using	an	installer

The	installer	packages	offer	a	very	simple	method	for	installing	the	MyODBC
drivers.	If	you	have	downloaded	the	zipped	installer	then	you	must	extract	the
installer	application.	The	basic	installation	process	is	identical	for	both	installers.

You	should	follow	these	steps	to	complete	the	installation:

1.	 Double	click	on	the	standalone	installer	that	you	extracted,	or	the	MSI	file
you	downloaded.

2.	 The	MySQL	Connector/ODBC	3.51	-	Setup	Wizard	will	start.	Click	the
Next	button	to	begin	the	installation	process.

3.	 You	will	need	to	choose	the	installation	type.	The	Typical	installation
provides	the	standard	files	you	will	need	to	connect	to	a	MySQL	database
using	ODBC.	The	Complete	option	installs	all	the	available	files,	including
debug	and	utility	components.	It	is	recommended	you	choose	one	of	these
two	options	to	complete	the	installation.	If	choose	one	of	these	methods,
click	Next	and	then	proceed	to	step	5.

You	may	also	choose	a	Custom	installation,	which	enables	you	to	select	the
individual	components	that	you	want	to	install.	You	have	chosen	this
method,	click	Next	and	then	proceed	to	step	4.

4.	 If	you	have	chosen	a	custom	installation,	use	the	popups	to	select	which
components	to	install	and	then	click	Next	to	install	the	necessary	files.

5.	 Once	the	files	have	copied	to	your	machine,	the	installation	is	complete.
Click	Finish	to	exit	the	installer.

Now	the	installation	is	complete,	you	can	continue	to	configure	your	ODBC
connections	using	Section	23.1.3,	“MyODBC	Configuration”.

23.1.2.3.1.2.	Installing	the	Windows	MyODBC	Driver	using	the	Zipped	DLL	package

If	you	have	downloaded	the	Zipped	DLL	package	then	you	must	install	the
individual	files	required	for	MyODBC	operation	manually.	Once	you	have
unzipped	the	installation	files,	you	can	either	perform	this	operation	by	hand,
executing	each	statement	individually,	or	you	can	use	the	included	Batch	file	to
perform	an	installation	to	the	default	locations.

To	install	using	the	Batch	file:

1.	 Unzip	the	MyODBC	Zipped	DLL	package.

2.	 Open	a	Command	Prompt.

3.	 Change	to	the	directory	created	when	you	unzipped	the	MyODBC	Zipped
DLL	package.

4.	 Run	Install.bat:

C:\>	Install.bat

This	will	copy	the	necessary	files	into	the	default	location,	and	then	register
the	MyODBC	driver	with	the	Windows	ODBC	manager.

If	you	want	to	copy	the	files	to	an	alternative	location	-	for	example,	to	run	or
test	different	versions	of	the	MyODBC	driver	on	the	same	machine,	then	you
must	copy	the	files	by	hand.	It	is	however	not	recommended	to	install	these	files
in	a	non-standard	location.	To	copy	the	files	by	hand	to	the	default	installation
location	use	the	following	steps:

1.	 Unzip	the	MyODBC	Zipped	DLL	package.

2.	 Open	a	Command	Prompt.

3.	 Change	to	the	directory	created	when	you	unzipped	the	MyODBC	Zipped
DLL	package.

4.	 Copy	the	library	files	to	a	suitable	directory.	The	default	is	to	copy	them
into	the	default	Windows	system	directory	\Windows\System32:

C:\>	copy	lib\myodbc3S.dll	\Windows\System32

C:\>	copy	lib\myodbc3S.lib	\Windows\System32

C:\>	copy	lib\myodbc3.dll	\Windows\System32

C:\>	copy	lib\myodbc3.lib	\Windows\System32

5.	 Copy	the	MyODBC	tools.	These	must	be	placed	into	a	directory	that	is	in
the	system	PATH.	The	default	is	to	install	these	into	the	Windows	system
directory	\Windows\System32:

C:\>	copy	bin\myodbc3i.exe	\Windows\System32

C:\>	copy	bin\myodbc3m.exe	\Windows\System32

C:\>	copy	bin\myodbc3c.exe	\Windows\System32

6.	 Optionally	copy	the	help	files.	For	these	files	to	be	accessible	through	the
help	system,	they	must	be	installed	in	the	Windows	system	directory:

C:\>	copy	doc*.hlp	\Windows\System32

7.	 Finally,	you	must	register	the	MyODBC	driver	with	the	ODBC	manager:

C:\>	myodbc3i	-a	-d	-t"MySQL	ODBC	3.51	Driver;\

		DRIVER=myodbc3.dll;SETUP=myodbc3S.dll"

You	must	change	the	references	to	the	DLL	files	and	command	location	in
the	above	statement	if	you	have	not	installed	these	files	into	the	default
location.

23.1.2.3.1.3.	Handling	Installation	Errors

On	Windows,	you	may	get	the	following	error	when	trying	to	install	the	older
MyODBC	2.50	driver:

An	error	occurred	while	copying	C:\WINDOWS\SYSTEM\MFC30.DLL.	

Restart	Windows	and	try	installing	again	(before	running	any

applications	which	use	ODBC)

The	reason	for	the	error	is	that	another	application	is	currently	using	the	ODBC
system.	Windows	may	not	allow	you	to	complete	the	installation.	In	most	cases,
you	can	continue	by	pressing	Ignore	to	copy	the	rest	of	the	MyODBC	files	and
the	final	installation	should	still	work.	If	it	doesn't,	the	solution	is	to	re-boot	your
computer	in	“safe	mode.”	Choose	safe	mode	by	pressing	F8	just	before	your
machine	starts	Windows	during	re-booting,	install	the	MyODBC	drivers,	and	re-
boot	to	normal	mode.

23.1.2.3.2.	Installing	MyODBC	from	a	Binary	Distribution	on	Unix

There	are	two	methods	available	for	installing	MyODBC	on	Unix	from	a	binary
distribution.	For	most	Unix	environments	you	will	need	to	use	the	tarball
distribution.	For	Linux	systems,	there	is	also	an	RPM	distribution	available.

23.1.2.3.2.1.	Installing	MyODBC	from	a	Binary	Tarball	Distribution

To	install	the	driver	from	a	tarball	distribution	(.tar.gz	file),	download	the
latest	version	of	the	driver	for	your	operating	system	and	follow	these	steps	that
demonstrate	the	process	using	the	Linux	version	of	the	tarball:

shell>	su	root

shell>	gunzip	MyODBC-3.51.11-i686-pc-linux.tar.gz

shell>	tar	xvf	MyODBC-3.51.11-i686-pc-linux.tar

shell>	cd	MyODBC-3.51.11-i686-pc-linux

Read	the	installation	instructions	in	the	INSTALL-BINARY	file	and	execute	these
commands.

shell>	cp	libmyodbc*	/usr/local/lib

shell>	cp	odbc.ini	/usr/local/etc

shell>	export	ODBCINI=/usr/local/etc/odbc.ini

Then	proceed	on	to	Section	23.1.3.4,	“Configuring	a	MyODBC	DSN	on	Unix”,
to	configure	the	DSN	for	MyODBC.	For	more	information,	refer	to	the
INSTALL-BINARY	file	that	comes	with	your	distribution.

23.1.2.3.2.2.	Installing	MyODBC	from	an	RPM	Distribution

To	install	or	upgrade	MyODBC	from	an	RPM	distribution	on	Linux,	simply
download	the	RPM	distribution	of	the	latest	version	of	MyODBC	and	follow	the
instructions	below.	Use	su	root	to	become	root,	then	install	the	RPM	file.

If	you	are	installing	for	the	first	time:

shell>	su	root

	shell>	rpm	-ivh	MyODBC-3.51.12.i386.rpm

If	the	driver	exists,	upgrade	it	like	this:

shell>	su	root

shell>	rpm	-Uvh	MyODBC-3.51.12.i386.rpm

If	there	is	any	dependency	error	for	MySQL	client	library,	libmysqlclient,
simply	ignore	it	by	supplying	the	--nodeps	option,	and	then	make	sure	the
MySQL	client	shared	library	is	in	the	path	or	set	through	LD_LIBRARY_PATH.

This	installs	the	driver	libraries	and	related	documents	to	/usr/local/lib	and
/usr/share/doc/MyODBC,	respectively.	Proceed	onto	Section	23.1.3.4,
“Configuring	a	MyODBC	DSN	on	Unix”.

To	uninstall	the	driver,	become	root	and	execute	an	rpm	command:

shell>	su	root

shell>	rpm	-e	MyODBC

23.1.2.3.3.	Installing	MyODBC	on	Mac	OS	X

Mac	OS	X	is	based	on	the	FreeBSD	operating	system,	and	you	can	normally	use
the	MySQL	network	port	for	connecting	to	MySQL	servers	on	other	hosts.
Installing	the	MyODBC	driver	enables	you	to	connect	to	MySQL	databases	on
any	platform	through	the	ODBC	interface.	You	should	only	need	to	install	the
MyODBC	driver	when	your	application	requires	an	ODBC	interface.
Applications	that	require	or	can	use	ODBC	(and	therefore	the	MyODBC	driver)
include	ColdFusion,	Filemaker	Pro,	4th	Dimension	and	many	other	applications.

Mac	OS	X	includes	its	own	ODBC	manager,	based	on	the	iODBC	manager.	Mac
OS	X	includes	an	administration	tool	that	provides	easier	administration	of
ODBC	drivers	and	configuration,	updating	the	underlying	iODBC	configuration
files.

23.1.2.3.3.1.	Installing	the	MyODBC	Driver

You	can	install	MyODBC	on	a	Mac	OS	X	or	Mac	OS	X	Server	computer	by
using	the	binary	distribution.	The	package	is	available	as	a	compressed	disk
image	(.dmg)	file.	To	install	MyODBC	on	your	computer	using	this	method,
follow	these	steps:

1.	 Download	the	file	to	your	computer	and	double-click	on	the	downloaded
image	file.

2.	 Within	the	disk	image	you	will	find	an	installer	package	(with	the	.pkg
extension).	Double	click	on	this	file	to	start	the	Mac	OS	X	installer.

3.	 You	will	be	presented	with	the	installer	welcome	message.	Click	the
Continue	button	to	begin	the	installation	process.

4.	 Please	take	the	time	to	read	the	Important	Information	as	it	contains
guidance	on	how	to	complete	the	installation	process.	Once	you	have	read
the	notice	and	collected	the	necessary	information,	click	Continue.

5.	 MyODBC	drivers	are	made	available	under	the	GNU	General	Public
License.	Please	read	the	license	if	you	are	not	familiar	with	it	before
continuing	installation.	Click	Continue	to	approve	the	license	(you	will	be
asked	to	confirm	that	decision)	and	continue	the	installation.

6.	 Choose	a	location	to	install	the	MyODBC	drivers	and	the	ODBC
Administrator	application.	You	must	install	the	files	onto	a	drive	with	an
operating	system	and	you	may	be	limited	in	the	choices	available.	Select
the	drive	you	want	to	use,	and	then	click	Continue.

7.	 The	installer	will	automatically	select	the	files	that	need	to	be	installed	on
your	machine.	Click	Install	to	continue.	The	installer	will	copy	the
necessary	files	to	your	machine.	A	progress	bar	will	be	shown	indicating
the	installation	progress.

8.	 When	installation	has	been	completed	you	will	get	a	window	like	the	one
shown	below.	Click	Close	to	close	and	quit	the	installer.

23.1.2.4.	Installing	MyODBC	from	a	source	distribution

Installing	MyODBC	from	a	source	distribution	gives	you	greater	flexibility	in
the	contents	and	installation	location	of	the	MyODBC	components.	It	also
enables	you	to	build	and	install	MyODBC	on	platforms	where	a	pre-compiled
binary	is	not	available.

MyODBC	sources	are	available	either	as	a	downloadable	package,	or	through
the	revision	control	system	used	by	the	MyODBC	developers.

23.1.2.4.1.	Installing	MyODBC	from	a	Source	Distribution	on	Windows

You	should	only	need	to	install	MyODBC	from	source	on	Windows	if	you	want
to	change	or	modify	the	source	or	installation.	If	you	are	unsure	whether	to
install	from	source,	please	use	the	binary	installation	detailed	in
Section	23.1.2.3.1,	“Installing	MyODBC	from	a	Binary	Distribution	on
Windows”.

Installing	MyODBC	from	source	on	Windows	requires	a	number	of	different

tools	and	packages:

MDAC,	Microsoft	Data	Access	SDK	from	http://www.microsoft.com/data/.

Suitable	C	compiler,	such	as	Microsoft	Visual	C++	or	the	C	compiler
included	with	Microsoft	Visual	Studio.

Compatible	make	tool.	Microsoft's	nmake	is	used	in	the	examples	in	this
section.

MySQL	client	libraries	and	include	files	from	MySQL	4.0.0	or	higher.
(Preferably	MySQL	4.0.16	or	higher).	This	is	required	because	MyODBC
uses	new	calls	and	structures	that	exist	only	starting	from	this	version	of	the
library.	To	get	the	client	libraries	and	include	files,	visit
http://dev.mysql.com/downloads/.

23.1.2.4.1.1.	Building	MyODBC	3.51

MyODBC	source	distributions	include	Makefiles	that	require	the	nmake	or
other	make	utility.	In	the	distribution,	you	can	find	Makefile	for	building	the
release	version	and	Makefile_debug	for	building	debugging	versions	of	the
driver	libraries	and	DLLs.

To	build	the	driver,	use	this	procedure:

1.	 Download	and	extract	the	sources	to	a	folder,	then	change	directory	into
that	folder.	The	following	command	assumes	the	folder	is	named	myodbc3-
src:

C:\>	cd	myodbc3-src

2.	 Edit	Makefile	to	specify	the	correct	path	for	the	MySQL	client	libraries	and
header	files.	Then	use	the	following	commands	to	build	and	install	the
release	version:

C:\>	nmake	-f	Makefile

C:\>	nmake	-f	Makefile	install

nmake	-f	Makefile	builds	the	release	version	of	the	driver	and	places	the
binaries	in	subdirectory	called	Release.

http://www.microsoft.com/data/
http://dev.mysql.com/downloads/

nmake	-f	Makefile	install	installs	(copies)	the	driver	DLLs	and	libraries
(myodbc3.dll,	myodbc3.lib)	to	your	system	directory.

3.	 To	build	the	debug	version,	use	Makefile_Debug	rather	than	Makefile,	as
shown	below:

C:\>	nmake	-f	Makefile_debug

C:\>	nmake	-f	Makefile_debug	install

4.	 You	can	clean	and	rebuild	the	driver	by	using:

C:\>	nmake	-f	Makefile	clean

C:\>	nmake	-f	Makefile	install

Note:

Make	sure	to	specify	the	correct	MySQL	client	libraries	and	header	files
path	in	the	Makefiles	(set	the	MYSQL_LIB_PATH	and	MYSQL_INCLUDE_PATH
variables).	The	default	header	file	path	is	assumed	to	be	C:\mysql\include.
The	default	library	path	is	assumed	to	be	C:\mysql\lib\opt	for	release
DLLs	and	C:\mysql\lib\debug	for	debug	versions.

For	the	complete	usage	of	nmake,	visit
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dv_vcce4/html/evgrfRunningNMAKE.asp.

If	you	are	using	the	Subversion	tree	for	compiling,	all	Windows-specific
Makefiles	are	named	as	Win_Makefile*.

23.1.2.4.1.2.	Testing

After	the	driver	libraries	are	copied/installed	to	the	system	directory,	you	can	test
whether	the	libraries	are	properly	built	by	using	the	samples	provided	in	the
samples	subdirectory:

C:\>	cd	samples

C:\>	nmake	-f	Makefile	all

23.1.2.4.1.3.	Building	MyODBC	2.50

The	MyODBC	2.50	source	distribution	includes	VC	workspace	files.	You	can

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vcce4/html/evgrfRunningNMAKE.asp

build	the	driver	using	these	files	(.dsp	and	.dsw)	directly	by	loading	them	from
Microsoft	Visual	Studio	6.0	or	higher.

23.1.2.4.2.	Installing	MyODBC	from	a	Source	Distribution	on	Unix

You	need	the	following	tools	to	build	MySQL	from	source	on	Unix:

A	working	ANSI	C++	compiler.	gcc	2.95.2	or	later,	egcs	1.0.2	or	later	or
egcs	2.91.66,	SGI	C++,	and	SunPro	C++	are	some	of	the	compilers	that	are
known	to	work.

A	good	make	program.	GNU	make	is	always	recommended	and	is
sometimes	required.

MySQL	client	libraries	and	include	files	from	MySQL	4.0.0	or	higher.
(Preferably	MySQL	4.0.16	or	higher).	This	is	required	because	MyODBC
uses	new	calls	and	structures	that	exist	only	starting	from	this	version	of	the
library.	To	get	the	client	libraries	and	include	files,	visit
http://dev.mysql.com/downloads/.

If	you	have	built	your	own	MySQL	server	and/or	client	libraries	from
source	then	you	must	have	used	the	--enable-thread-safe-client	option
to	configure	when	the	libraries	were	built.

You	should	also	ensure	that	the	libmysqlclient	library	were	built	and
installed	as	a	shared	library.

A	compatible	ODBC	manager	must	be	installed.	MyODBC	is	known	to
work	with	the	iODBC	and	unixODBC	managers.	See	Section	23.1.1.2.2,
“ODBC	Driver	Managers”,	for	more	information.

If	you	are	using	a	character	set	that	isn't	compiled	into	the	MySQL	client
library	then	you	need	to	install	the	MySQL	character	definitions	from	the
charsets	directory	into	SHAREDIR	(by	default,
/usr/local/mysql/share/mysql/charsets).	These	should	be	in	place	if
you	have	installed	the	MySQL	server	on	the	same	machine.	See	Chapter	10,
Character	Set	Support,	for	more	information	on	character	set	support.

Once	you	have	all	the	required	files,	unpack	the	source	files	to	a	separate
directory,	you	then	have	to	run	configure	and	build	the	library	using	make.

http://dev.mysql.com/downloads/

23.1.2.4.2.1.	Typical	configure	Options

The	configure	script	gives	you	a	great	deal	of	control	over	how	you	configure
your	MyODBC	build.	Typically	you	do	this	using	options	on	the	configure
command	line.	You	can	also	affect	configure	using	certain	environment
variables.	For	a	list	of	options	and	environment	variables	supported	by
configure,	run	this	command:

shell>	./configure	--help

Some	of	the	more	commonly	used	configure	options	are	described	here:

1.	 To	compile	MyODBC,	you	need	to	supply	the	MySQL	client	include	and
library	files	path	using	the	--with-mysql-path=DIR	option,	where	DIR	is
the	directory	where	MySQL	is	installed.

MySQL	compile	options	can	be	determined	by	running
DIR/bin/mysql_config.

2.	 Supply	the	standard	header	and	library	files	path	for	your	ODBC	Driver
Manager	(iODBC	or	unixODBC).

If	you	are	using	iODBC	and	iODBC	is	not	installed	in	its	default	location
(/usr/local),	you	might	have	to	use	the	--with-iodbc=DIR	option,
where	DIR	is	the	directory	where	iODBC	is	installed.

If	the	iODBC	headers	do	not	reside	in	DIR/include,	you	can	use	the	--
with-iodbc-includes=INCDIR	option	to	specify	their	location.

The	applies	to	libraries.	If	they	are	not	in	DIR/lib,	you	can	use	the	--
with-iodbc-libs=LIBDIR	option.

If	you	are	using	unixODBC,	use	the	--with-unixODBC=DIR	option	(case
sensitive)	to	make	configure	look	for	unixODBC	instead	of	iODBC	by
default,	DIR	is	the	directory	where	unixODBC	is	installed.

If	the	unixODBC	headers	and	libraries	aren't	located	in	DIR/include	and
DIR/lib,	use	the	--with-unixODBC-includes=INCDIR	and	--with-
unixODBC-libs=LIBDIR	options.

3.	 You	might	want	to	specify	an	installation	prefix	other	than	/usr/local.	For
example,	to	install	the	MyODBC	drivers	in	/usr/local/odbc/lib,	use	the
--prefix=/usr/local/odbc	option.

The	final	configuration	command	looks	something	like	this:

shell>	./configure	--prefix=/usr/local	\

									--with-iodbc=/usr/local	\

									--with-mysql-path=/usr/local/mysql

23.1.2.4.2.2.	Additional	configure	Options

There	are	a	number	of	other	options	that	you	need,	or	want,	to	set	when
configuring	the	MyODBC	driver	before	it	is	built.

To	link	the	driver	with	MySQL	thread	safe	client	libraries
libmysqlclient_r.so	or	libmysqlclient_r.a,	you	must	specify	the
following	configure	option:

--enable-thread-safe

and	can	be	disabled	(default)	using

--disable-thread-safe

This	option	enables	the	building	of	the	driver	thread-safe	library
libmyodbc3_r.so	from	by	linking	with	MySQL	thread-safe	client	library
libmysqlclient_r.so	(The	extensions	are	OS	dependent).

If	the	compilation	with	the	thread-safe	option	fails,	it	may	be	because	the
correct	thread-libraries	on	the	system	could	not	be	located.	You	should	set
the	value	of	LIBS	to	point	to	the	correct	thread	library	for	your	system.

LIBS="-lpthread"	./configure	..

You	can	enable	or	disable	the	shared	and	static	versions	of	MyODBC	using
these	options:

--enable-shared[=yes/no]

--disable-shared

--enable-static[=yes/no]

--disable-static

By	default,	all	the	binary	distributions	are	built	as	non-debugging	versions
(configured	with	--without-debug).

To	enable	debugging	information,	build	the	driver	from	source	distribution
and	use	the	--with-debug	option	when	you	run	configure.

This	option	is	available	only	for	source	trees	that	have	been	obtained	from
the	Subversion	repository.	This	option	does	not	apply	to	the	packaged
source	distributions.

By	default,	the	driver	is	built	with	the	--without-docs	option.	If	you	would
like	the	documentation	to	be	built,	then	execute	configure	with:

--with-docs

23.1.2.4.2.3.	Building	and	Compilation

To	build	the	driver	libraries,	you	have	to	just	execute	make.

shell>	make

If	any	errors	occur,	correct	them	and	continue	the	build	process.	If	you	aren't
able	to	build,	then	send	a	detailed	email	to	<myodbc@lists.mysql.com>	for
further	assistance.

23.1.2.4.2.4.	Building	Shared	Libraries

On	most	platforms,	MySQL	does	not	build	or	support	.so	(shared)	client
libraries	by	default.	This	is	based	on	our	experience	of	problems	when	building
shared	libraries.

In	cases	like	this,	you	have	to	download	the	MySQL	distribution	and	configure	it
with	these	options:

--without-server	--enable-shared

To	build	shared	driver	libraries,	you	must	specify	the	--enable-shared	option
for	configure.	By	default,	configure	does	not	enable	this	option.

If	you	have	configured	with	the	--disable-shared	option,	you	can	build	the	.so
file	from	the	static	libraries	using	the	following	commands:

mailto:myodbc@lists.mysql.com

shell>	cd	MyODBC-3.51.01

shell>	make

shell>	cd	driver

shell>	CC=/usr/bin/gcc	\

										$CC	-bundle	-flat_namespace	-undefined	error	\

										-o	.libs/libmyodbc3-3.51.01.so	\

										catalog.o	connect.o	cursor.o	dll.o	error.o	execute.o	\

										handle.o	info.o	misc.o	myodbc3.o	options.o	prepare.o	\

										results.o	transact.o	utility.o	\

										-L/usr/local/mysql/lib/mysql/	\

										-L/usr/local/iodbc/lib/	\

										-lz	-lc	-lmysqlclient	-liodbcinst

Make	sure	to	change	-liodbcinst	to	-lodbcinst	if	you	are	using	unixODBC
instead	of	iODBC,	and	configure	the	library	paths	accordingly.

This	builds	and	places	the	libmyodbc3-3.51.01.so	file	in	the	.libs	directory.
Copy	this	file	to	the	MyODBC	library	installation	directory	(/usr/local/lib
(or	the	lib	directory	under	the	installation	directory	that	you	supplied	with	the	-
-prefix).

shell>	cd	.libs

shell>	cp	libmyodbc3-3.51.01.so	/usr/local/lib

shell>	cd	/usr/local/lib

shell>	ln	-s	libmyodbc3-3.51.01.so	libmyodbc3.so

To	build	the	thread-safe	driver	library:

shell>	CC=/usr/bin/gcc	\

										$CC	-bundle	-flat_namespace	-undefined	error

										-o	.libs/libmyodbc3_r-3.51.01.so

										catalog.o	connect.o	cursor.o	dll.o	error.o	execute.o

										handle.o	info.o	misc.o	myodbc3.o	options.o	prepare.o

										results.o	transact.o	utility.o

										-L/usr/local/mysql/lib/mysql/

										-L/usr/local/iodbc/lib/

										-lz	-lc	-lmysqlclient_r	-liodbcinst

23.1.2.4.2.5.	Installing	Driver	Libraries

To	install	the	driver	libraries,	execute	the	following	command:

shell>	make	install

That	command	installs	one	of	the	following	sets	of	libraries:

For	MyODBC	3.51:

libmyodbc3.so

libmyodbc3-3.51.01.so,	where	3.51.01	is	the	version	of	the	driver

libmyodbc3.a

For	thread-safe	MyODBC	3.51:

libmyodbc3_r.so

libmyodbc3-3_r.51.01.so

libmyodbc3_r.a

For	MyODBC	2.5.0:

libmyodbc.so

libmyodbc-2.50.39.so,	where	2.50.39	is	the	version	of	the	driver

libmyodbc.a

For	more	information	on	build	process,	refer	to	the	INSTALL	file	that	comes	with
the	source	distribution.	Note	that	if	you	are	trying	to	use	the	make	from	Sun,
you	may	end	up	with	errors.	On	the	other	hand,	GNU	gmake	should	work	fine
on	all	platforms.

23.1.2.4.2.6.	Testing	MyODBC	on	Unix

To	run	the	basic	samples	provided	in	the	distribution	with	the	libraries	that	you
built,	use	the	following	command:

shell>	make	test

Before	running	the	tests,	create	the	DSN	'myodbc3'	in	odbc.ini	and	set	the
environment	variable	ODBCINI	to	the	correct	odbc.ini	file;	and	MySQL	server	is
running.	You	can	find	a	sample	odbc.ini	with	the	driver	distribution.

You	can	even	modify	the	samples/run-samples	script	to	pass	the	desired	DSN,

UID,	and	PASSWORD	values	as	the	command-line	arguments	to	each	sample.

23.1.2.4.2.7.	Building	MyODBC	from	Source	on	Mac	OS	X

To	build	the	driver	on	Mac	OS	X	(Darwin),	make	use	of	the	following	configure
example:

shell>	./configure	--prefix=/usr/local

										--with-unixODBC=/usr/local

										--with-mysql-path=/usr/local/mysql

										--disable-shared

										--enable-gui=no

										--host=powerpc-apple

The	command	assumes	that	the	unixODBC	and	MySQL	are	installed	in	the	default
locations.	If	not,	configure	accordingly.

On	Mac	OS	X,	--enable-shared	builds	.dylib	files	by	default.	You	can	build
.so	files	like	this:

shell>	make

shell>	cd	driver

shell>	CC=/usr/bin/gcc	\

										$CC	-bundle	-flat_namespace	-undefined	error

										-o	.libs/libmyodbc3-3.51.01.so	*.o

										-L/usr/local/mysql/lib/

										-L/usr/local/iodbc/lib

										-liodbcinst	-lmysqlclient	-lz	-lc

To	build	the	thread-safe	driver	library:

shell>	CC=/usr/bin/gcc	\

										$CC	-bundle	-flat_namespace	-undefined	error

										-o	.libs/libmyodbc3-3.51.01.so	*.o

										-L/usr/local/mysql/lib/

										-L/usr/local/iodbc/lib

										-liodbcinst	-lmysqlclienti_r	-lz	-lc	-lpthread

Make	sure	to	change	the	-liodbcinst	to	-lodbcinst	in	case	of	using	unixODBC
instead	of	iODBC	and	configure	the	libraries	path	accordingly.

In	Apple's	version	of	GCC,	both	cc	and	gcc	are	actually	symbolic	links	to	gcc3.

Copy	this	library	to	the	$prefix/lib	directory	and	symlink	to	libmyodbc3.so.

You	can	cross-check	the	output	shared-library	properties	using	this	command:

shell>	otool	-LD	.libs/libmyodbc3-3.51.01.so

23.1.2.4.2.8.	Building	MyODBC	from	Source	on	HP-UX

To	build	the	driver	on	HP-UX	10.x	or	11.x,	make	use	of	the	following	configure
example:

If	using	cc:

shell>	CC="cc"	\

										CFLAGS="+z"	\

										LDFLAGS="-Wl,+b:-Wl,+s"	\

										./configure	--prefix=/usr/local

										--with-unixodbc=/usr/local

										--with-mysql-path=/usr/local/mysql/lib/mysql

										--enable-shared

										--enable-thread-safe

If	using	gcc:

shell>	CC="gcc"	\

										LDFLAGS="-Wl,+b:-Wl,+s"	\

										./configure	--prefix=/usr/local

										--with-unixodbc=/usr/local

										--with-mysql-path=/usr/local/mysql

										--enable-shared

										--enable-thread-safe

Once	the	driver	is	built,	cross-check	its	attributes	using	chatr
.libs/libmyodbc3.sl	to	determine	whether	you	need	to	have	set	the	MySQL
client	library	path	using	the	SHLIB_PATH	environment	variable.	For	static
versions,	ignore	all	shared-library	options	and	run	configure	with	the	--
disable-shared	option.

23.1.2.4.2.9.	Building	MyODBC	from	Source	on	AIX

To	build	the	driver	on	AIX,	make	use	of	the	following	configure	example:

shell>	./configure	--prefix=/usr/local

										--with-unixodbc=/usr/local

										--with-mysql-path=/usr/local/mysql

										--disable-shared

										--enable-thread-safe

NOTE:	For	more	information	about	how	to	build	and	set	up	the	static	and	shared
libraries	across	the	different	platforms	refer	to	'	Using	static	and	shared	libraries
across	platforms'.

23.1.2.4.3.	Installing	MyODBC	from	the	Development	Source	Tree

Caution:	You	should	read	this	section	only	if	you	are	interested	in	helping	us
test	our	new	code.	If	you	just	want	to	get	MySQL	Connector/ODBC	up	and
running	on	your	system,	you	should	use	a	standard	release	distribution.

To	be	able	to	access	the	MyODBC	source	tree,	you	must	have	Subversion
installed.	Subversion	is	freely	available	from	http://subversion.tigris.org/.

To	build	from	the	source	trees,	you	need	the	following	tools:

autoconf	2.52	(or	newer)

automake	1.4	(or	newer)

libtool	1.4	(or	newer)

m4

The	most	recent	development	source	tree	is	available	from	our	public
Subversion	trees	at	http://dev.mysql.com/tech-resources/sources.html.

To	checkout	out	the	Connector/ODBC	sources,	change	to	the	directory	where
you	want	the	copy	of	the	MyODBC	tree	to	be	stored,	then	use	the	following
command:

shell>	svn	co	http://svn.mysql.com/svnpublic/connector-odbc3

You	should	now	have	a	copy	of	the	entire	MyODBC	source	tree	in	the	directory
connector-odbc3.	To	build	from	this	source	tree	on	Unix	or	Linux	follow	these
steps:

shell>	cd	connector-odbc3

shell>	aclocal

shell>	autoheader

shell>	autoconf

http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html
http://subversion.tigris.org/
http://dev.mysql.com/tech-resources/sources.html

shell>	automake;

shell>	./configure		#	Add	your	favorite	options	here

shell>	make

For	more	information	on	how	to	build,	refer	to	the	INSTALL	file	located	in	the
same	directory.	For	more	information	on	options	to	configure,	see
Section	23.1.2.4.2.1,	“Typical	configure	Options”

When	the	build	is	done,	run	make	install	to	install	the	MyODBC	3.51	driver	on
your	system.

If	you	have	gotten	to	the	make	stage	and	the	distribution	does	not	compile,
please	report	it	to	<myodbc@lists.mysql.com>.

On	Windows,	make	use	of	Windows	Makefiles	WIN-Makefile	and	WIN-
Makefile_debug	in	building	the	driver.	For	more	information,	see
Section	23.1.2.4.1,	“Installing	MyODBC	from	a	Source	Distribution	on
Windows”.

After	the	initial	checkout	operation	to	get	the	source	tree,	you	should	run	svn
update	periodically	update	your	source	according	to	the	latest	version.

23.1.3.	MyODBC	Configuration

Before	you	connect	to	a	MySQL	database	using	the	MyODBC	driver	you	must
configure	an	ODBC	Data	Source	Name.	The	DSN	associates	the	various
configuration	parameters	required	to	communicate	with	a	database	to	a	specific
name.	You	use	the	DSN	in	an	application	to	communicate	with	the	database,
rather	than	specifying	individual	parameters	within	the	application	itself.	DSN
information	can	be	user	specific,	system	specific,	or	provided	in	a	special	file.
ODBC	data	source	names	are	configured	in	different	ways,	depending	on	your
platform	and	ODBC	driver.

23.1.3.1.	Data	Source	Names

A	Data	Source	Name	associates	the	configuration	parameters	for	communicating
with	a	specific	database.	Generally	a	DSN	consists	of	the	following	parameters:

Name
Hostname

mailto:myodbc@lists.mysql.com

Database	Name
Login
Password

In	addition,	different	ODBC	drivers,	including	MyODBC,	may	accept	additional
driver-specific	options	and	parameters.

There	are	three	types	of	DSN:

A	System	DSN	is	a	global	DSN	definition	that	is	available	to	any	user	and
application	on	a	particular	system.	A	System	DSN	can	normally	only	be
configured	by	a	systems	administrator,	or	by	a	user	who	has	specific
permissions	that	let	them	create	System	DSNs.

A	User	DSN	is	specific	to	an	individual	user,	and	can	be	used	to	store
database	connectivity	information	that	the	user	regularly	uses.

A	File	DSN	uses	a	simple	file	to	define	the	DSN	configuration.	File	DSNs
can	be	shared	between	users	and	machines	and	are	therefore	more	practical
when	installing	or	deploying	DSN	information	as	part	of	an	application
across	many	machines.

DSN	information	is	stored	in	different	locations	depending	on	your	platform	and
environment.

23.1.3.2.	Configuring	a	MyODBC	DSN	on	Windows

The	ODBC	Data	Source	Administrator	within	Windows	enables	you	to	create
DSNs,	check	driver	installation	and	configure	ODBC	systems	such	as	tracing
(used	for	debugging)	and	connection	pooling.

Different	editions	and	versions	of	Windows	store	the	ODBC	Data	Source
Administrator	in	different	locations	depending	on	the	version	of	Windows	that
you	are	using.

To	open	the	ODBC	Data	Source	Administrator	in	Windows	Server	2003:

1.	 On	the	Start	menu,	choose	Administrative	Tools,	and	then	click	Data
Sources	(ODBC).

To	open	the	ODBC	Data	Source	Administrator	in	Windows	2000	Server	or
Windows	2000	Professional:

1.	 On	the	Start	menu,	choose	Settings,	and	then	click	Control	Panel.

2.	 In	Control	Panel,	click	Administrative	Tools.

3.	 In	Administrative	Tools,	click	Data	Sources	(ODBC).

To	open	the	ODBC	Data	Source	Administrator	on	Windows	XP:

1.	 On	the	Start	menu,	click	Control	Panel.

2.	 In	the	Control	Panel	when	in	Category	View	click	Performance	and
Maintenance	and	then	click	Administrative	Tools..	If	you	are	viewing
the	Control	Panel	in	Classic	View,	click	Administrative	Tools.

3.	 In	Administrative	Tools,	click	Data	Sources	(ODBC).

Irrespective	of	your	Windows	version,	you	should	be	presented	the	ODBC	Data
Source	Administrator	window:

Within	Windows	XP,	you	can	add	the	Administrative	Tools	folder	to	your
Start	menu	to	make	it	easier	to	locate	the	ODBC	Data	Source	Administrator.	To
do	this:

1.	 Right	click	on	the	Start	menu.

2.	 Select	Properties.

3.	 Click	Customize....

4.	 Select	the	Advanced	tab.

5.	 Within	Start	menu	items,	within	the	System	Administrative	Tools
section,	select	Display	on	the	All	Programs	menu.

Within	both	Windows	Server	2003	and	Windows	XP	you	may	want	to
permanently	add	the	ODBC	Data	Source	Administrator	to	your	Start	menu.	To
do	this,	locate	the	Data	Sources	(ODBC)	icon	using	the	methods	shown,	then
right-click	on	the	icon	and	then	choose	Pin	to	Start	Menu.

23.1.3.2.1.	Adding	a	MyODBC	DSN	on	Windows

To	add	and	configure	a	new	MyODBC	data	source	on	Windows,	use	the	ODBC
Data	Source	Administrator:

1.	 Open	the	ODBC	Data	Source	Administrator.

2.	 To	create	a	System	DSN	(which	will	be	available	to	all	users)	,	select	the
System	DSN	tab.	To	create	a	User	DSN,	which	will	be	unique	only	to	the
current	user,	click	the	Add..	button.

3.	 You	will	need	to	select	the	ODBC	driver	for	this	DSN.

Select	MySQL	ODBC	3.51	Driver,	then	click	Finish.

4.	 You	now	need	to	configure	the	specific	fields	for	the	DSN	you	are	creating
through	the	Add	Data	Source	Name	dialog.

In	the	Data	Source	Name	box,	enter	the	name	of	the	data	source	you	want
to	access.	It	can	be	any	valid	name	that	you	choose.

5.	 In	the	Description	box,	enter	some	text	to	help	identify	the	connection.

6.	 In	the	Server	field,	enter	the	name	of	the	MySQL	server	host	that	you	want
to	access.	By	default,	it	is	localhost.

7.	 In	the	User	field,	enter	the	user	name	to	use	for	this	connection.

8.	 In	the	Password	field,	enter	the	corresponding	password	for	this	connection.

9.	 The	Database	popup	should	automatically	populate	with	the	list	of
databases	that	the	user	has	permissions	to	access.

10.	 Click	OK	to	save	the	DSN.

A	completed	DSN	configuration	may	look	like	this:

23.1.3.2.2.	Checking	MyODBC	DSN	Configuration	on	Windows

You	can	verify	the	connection	using	the	parameters	you	have	entered	by	clicking
the	Test	button.	If	the	connection	could	be	made	successfully,	you	will	be
notified	with	a	Success;	connection	was	made!	dialog.

If	the	connection	failed,	you	can	obtain	more	information	on	the	test	and	why	it
may	have	failed	by	clicking	the	Diagnostics...	button	to	show	additional	error
messages.

23.1.3.2.3.	MyODBC	DSN	Configuration	Options

You	can	configure	a	number	of	options	for	a	specific	DSN	by	using	either	the
Connect	Options	or	Advanced	tabs	in	the	DSN	configuration	dialog.

The	Connection	Options	dialog	can	be	seen	below.

The	three	options	you	can	configure	are:

Port	sets	the	TCP/IP	port	number	to	use	when	communicating	with
MySQL.	Communication	with	MySQL	uses	port	3306	by	default.	If	your
server	is	configured	to	use	a	different	TCP/IP	port,	you	must	specify	that
port	number	here.

Socket	sets	the	name	or	location	of	a	specific	socket	or	Windows	pipe	to
use	when	communicating	with	MySQL.

Initial	Statement	defines	an	SQL	statement	that	will	be	executed	when
the	connection	to	MySQL	is	opened.	You	can	use	this	to	set	MySQL
options	for	your	connection,	such	as	setting	the	default	character	set	or
database	to	use	during	your	connection.

The	Advanced	tab	enables	you	to	configure	MyODBC	connection	parameters.
Refer	to	Section	23.1.3.5,	“MyODBC	Connection	Parameters”,	for	information
about	the	meaning	of	these	options.

23.1.3.2.4.	Errors	and	Debugging

This	section	answers	MyODBC	connection-related	questions.

While	configuring	a	MyODBC	DSN,	a	Could	Not	Load	Translator	or
Setup	Library	error	occurs

For	more	information,	refer	to	MS	KnowledgeBase	Article(Q260558).
Also,	make	sure	you	have	the	latest	valid	ctl3d32.dll	in	your	system
directory.

On	Windows,	the	default	myodbc3.dll	is	compiled	for	optimal
performance.	If	you	want	to	debug	MyODBC	3.51	(for	example,	to	enable
tracing),	you	should	instead	use	myodbc3d.dll.	To	install	this	file,	copy
myodbc3d.dll	over	the	installed	myodbc3.dll	file.	Make	sure	to	revert	back
to	the	release	version	of	the	driver	DLL	once	you	are	done	with	the
debugging	because	the	debug	version	may	cause	performance	issues.	Note
that	the	myodbc3d.dll	isn't	included	in	MyODBC	3.51.07	through	3.51.11.
If	you	are	using	one	of	these	versions,	you	should	copy	that	DLL	from	a

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q260558

previous	version	(for	example,	3.51.06).

For	MyODBC	2.50,	myodbc.dll	and	myodbcd.dll	are	used	instead.

23.1.3.3.	Configuring	a	MyODBC	DSN	on	Mac	OS	X

To	configure	a	DSN	on	Mac	OS	X	you	should	use	the	ODBC	Administrator.	If
you	have	Mac	OS	X	10.2	or	earlier,	refer	to	Section	23.1.3.4,	“Configuring	a
MyODBC	DSN	on	Unix”.	Select	whether	you	want	to	create	a	User	DSN	or	a
System	DSN.	If	you	want	to	add	a	System	DSN,	you	may	need	to	authenticate
with	the	system.	You	must	click	the	padlock	and	enter	a	user	and	password	with
administrator	privileges.

1.	 Open	the	ODBC	Administrator	from	the	Utilities	folder	in	the
Applications	folder.

2.	 On	the	User	DSN	or	System	DSN	panel,	click	Add.

3.	 Select	the	MyODBC	driver	and	click	OK.

4.	 You	will	be	presented	with	the	Data	Source	Name	dialog.	Enter	The	Data
Source	Name	and	an	optional	Description	for	the	DSN.

5.	 Click	Add	to	add	a	new	keyword/value	pair	to	the	panel.	You	should
configure	at	least	four	pairs	to	specify	the	server,	username,	password	and
database	connection	parameters.	See	Section	23.1.3.5,	“MyODBC
Connection	Parameters”.

6.	 Click	OK	to	add	the	DSN	to	the	list	of	configured	data	source	names.

A	completed	DSN	configuration	may	look	like	this:

You	can	configure	additional	ODBC	options	to	your	DSN	by	adding	further
keyword/value	pairs	and	setting	the	corresponding	values.	See	Section	23.1.3.5,
“MyODBC	Connection	Parameters”.

23.1.3.4.	Configuring	a	MyODBC	DSN	on	Unix

On	Unix,	you	configure	DSN	entries	directly	in	the	odbc.ini	file.	Here	is	a
typical	odbc.ini	file	that	configures	myodbc	and	myodbc3	as	the	DSN	names	for
MyODBC	2.50	and	MyODBC	3.51,	respectively:

;

;		odbc.ini	configuration	for	MyODBC	and	MyODBC	3.51	drivers

;

[ODBC	Data	Sources]

myodbc						=	MyODBC	2.50	Driver	DSN

myodbc3					=	MyODBC	3.51	Driver	DSN

[myodbc]

Driver							=	/usr/local/lib/libmyodbc.so

Description		=	MyODBC	2.50	Driver	DSN

SERVER							=	localhost

PORT									=

USER									=	root

Password					=

Database					=	test

OPTION							=	3

SOCKET							=

[myodbc3]

Driver							=	/usr/local/lib/libmyodbc3.so

Description		=	MyODBC	3.51	Driver	DSN

SERVER							=	localhost

PORT									=

USER									=	root

Password					=

Database					=	test

OPTION							=	3

SOCKET							=

[Default]

Driver							=	/usr/local/lib/libmyodbc3.so

Description		=	MyODBC	3.51	Driver	DSN

SERVER							=	localhost

PORT									=

USER									=	root

Password					=

Database					=	test

OPTION							=	3

SOCKET							=

Refer	to	the	Section	23.1.3.5,	“MyODBC	Connection	Parameters”,	for	the	list	of
connection	parameters	that	can	be	supplied.

Note:	If	you	are	using	unixODBC,	you	can	use	the	following	tools	to	set	up	the
DSN:

ODBCConfig	GUI	tool(HOWTO:	ODBCConfig)

odbcinst

In	some	cases	when	using	unixODBC,	you	might	get	this	error:

Data	source	name	not	found	and	no	default	driver	specified

If	this	happens,	make	sure	the	ODBCINI	and	ODBCSYSINI	environment	variables
are	pointing	to	the	right	odbc.ini	file.	For	example,	if	your	odbc.ini	file	is
located	in	/usr/local/etc,	set	the	environment	variables	like	this:

export	ODBCINI=/usr/local/etc/odbc.ini

export	ODBCSYSINI=/usr/local/etc

23.1.3.5.	MyODBC	Connection	Parameters

http://www.unixodbc.org/config.html

You	can	specify	the	parameters	in	the	following	tables	for	MyODBC	when
configuring	a	DSN.	Users	on	Windows	can	use	the	Options	and	Advanced
panels	when	configuring	a	DSN	to	set	these	parameters;	see	the	table	for
information	on	which	options	relate	to	which	fields	and	checkboxes.	On	Unix
and	Mac	OS	X,	use	the	parameter	name	and	value	as	the	keyword/value	pair	in
the	DSN	configuration.	Alternatively,	you	can	set	these	parameters	within	the
InConnectionString	argument	in	the	SQLDriverConnect()	call.

Parameter DefaultValue Comment

user
ODBC	(on
Windows) The	username	used	to	connect	to	MySQL.

server localhost The	hostname	of	the	MySQL	server.
database 	 The	default	database.

option 0 Options	that	specify	how	MyODBC	should	work.
See	below.

port 3306 The	TCP/IP	port	to	use	if	server	is	not	localhost.
stmt 	 A	statement	to	execute	when	connecting	to	MySQL.
password 	 The	password	for	the	user	account	on	server.

socket 	 The	Unix	socket	file	or	Windows	named	pipe	to
connect	to	if	server	is	localhost.

The	option	argument	is	used	to	tell	MyODBC	that	the	client	isn't	100%	ODBC
compliant.	On	Windows,	you	normally	select	options	by	toggling	the
checkboxes	in	the	connection	screen,	but	you	can	also	select	them	in	the	option
argument.	The	following	options	are	listed	in	the	order	in	which	they	appear	in
the	MyODBC	connect	screen:

Value Windows
Checkbox Description

1 Don't	Optimized
Column	Width

The	client	can't	handle	that	MyODBC	returns	the
real	width	of	a	column.

2 Return	Matching
Rows

The	client	can't	handle	that	MySQL	returns	the	true
value	of	affected	rows.	If	this	flag	is	set,	MySQL
returns	“found	rows”	instead.	You	must	have
MySQL	3.21.14	or	newer	to	get	this	to	work.

4
Trace	Driver
Calls	To
myodbc.log

Make	a	debug	log	in	C:\myodbc.log	on	Windows,
or	/tmp/myodbc.log	on	Unix	variants.

8 Allow	Big
Results

Don't	set	any	packet	limit	for	results	and
parameters.

16 Don't	Prompt
Upon	Connect

Don't	prompt	for	questions	even	if	driver	would	like
to	prompt.

32 Enable	Dynamic
Cursor

Enable	or	disable	the	dynamic	cursor	support.	(Not
allowed	in	MyODBC	2.50.)

64 Ignore	#	in	Table
Name

Ignore	use	of	database	name	in
db_name.tbl_name.col_name.

128 User	Manager
Cursors

Force	use	of	ODBC	manager	cursors
(experimental).

256 Don't	Use	Set
Locale Disable	the	use	of	extended	fetch	(experimental).

512 Pad	Char	To	Full
Length Pad	CHAR	columns	to	full	column	length.

1024
Return	Table
Names	for
SQLDescribeCol

SQLDescribeCol()	returns	fully	qualified	column
names.

2048 Use	Compressed
Protocol Use	the	compressed	client/server	protocol.

4096
Ignore	Space
After	Function
Names

Tell	server	to	ignore	space	after	function	name	and
before	‘(’	(needed	by	PowerBuilder).	This	makes
all	function	names	keywords.

8192 Force	Use	of
Named	Pipes

Connect	with	named	pipes	to	a	mysqld	server
running	on	NT.

16384 Change	BIGINT
Columns	to	Int

Change	BIGINT	columns	to	INT	columns	(some
applications	can't	handle	BIGINT).

32768 No	Catalog
(exp)

Return	'user'	as	Table_qualifier	and	Table_owner
from	SQLTables	(experimental).

65536 Read	Options
From	my.cnf

Read	parameters	from	the	[client]	and	[odbc]
groups	from	my.cnf.

131072 Safe Add	some	extra	safety	checks	(should	not	be	needed
but...).

262144 Disable
transaction Disable	transactions.

524288 Save	queries	to
myodbc.sql

Enable	query	logging	to
c:\myodbc.sql(/tmp/myodbc.sql)	file.	(Enabled
only	in	debug	mode.)

1048576
Don't	Cache
Result	(forward
only	cursors)

Do	not	cache	the	results	locally	in	the	driver,
instead	read	from	server	(mysql_use_result()).
This	works	only	for	forward-only	cursors.	This
option	is	very	important	in	dealing	with	large	tables
when	you	don't	want	the	driver	to	cache	the	entire
result	set.

2097152
Force	Use	Of
Forward	Only
Cursors

Force	the	use	of	Forward-only	cursor	type.	In	case
of	applications	setting	the	default	static/dynamic
cursor	type,	and	one	wants	the	driver	to	use	non-
cache	result	sets,	then	this	option	ensures	the
forward-only	cursor	behavior.

To	select	multiple	options,	add	together	their	values.	For	example,	setting
option	to	12	(4+8)	gives	you	debugging	without	packet	limits.

The	following	table	shows	some	recommended	option	values	for	various
configurations:

Configuration Option	Value
Microsoft	Access,	Visual	Basic 3
Driver	trace	generation	(Debug	mode) 4
Microsoft	Access	(with	improved	DELETE	queries) 35
Large	tables	with	too	many	rows 2049
Sybase	PowerBuilder 135168
Query	log	generation	(Debug	mode) 524288
Generate	driver	trace	as	well	as	query	log	(Debug	mode) 524292
Large	tables	with	no-cache	results 3145731

23.1.3.6.	Connecting	Without	a	Predefined	DSN

You	can	connect	to	the	MySQL	server	using	SQLDriverConnect,	by	specifying
the	DRIVER	name	field.	Here	are	the	connection	strings	for	MyODBC	using
DSN-Less	connections:

For	MyODBC	2.50:

ConnectionString	=	"DRIVER={MySQL};\

																			SERVER=localhost;\

																			DATABASE=test;\

																			USER=venu;\

																			PASSWORD=venu;\

																			OPTION=3;"

For	MyODBC	3.51:

ConnectionString	=	"DRIVER={MySQL	ODBC	3.51	Driver};\

																			SERVER=localhost;\

																			DATABASE=test;\

																			USER=venu;\

																			PASSWORD=venu;\

																			OPTION=3;"

If	your	programming	language	converts	backslash	followed	by	whitespace	to	a
space,	it	is	preferable	to	specify	the	connection	string	as	a	single	long	string,	or
to	use	a	concatenation	of	multiple	strings	that	does	not	add	spaces	in	between.
For	example:

ConnectionString	=	"DRIVER={MySQL	ODBC	3.51	Driver};"

																			"SERVER=localhost;"

																			"DATABASE=test;"

																			"USER=venu;"

																			"PASSWORD=venu;"

																			"OPTION=3;"

Note.		Note	that	on	Mac	OS	X	you	may	need	to	specify	the	full	path	to	the
MyODBC	driver	library.

Refer	to	the	Section	23.1.3.5,	“MyODBC	Connection	Parameters”,	for	the	list	of
connection	parameters	that	can	be	supplied.

23.1.3.7.	ODBC	Connection	Pooling

Connection	pooling	enables	the	ODBC	driver	to	re-use	existing	connections	to	a

given	database	from	a	pool	of	connections,	instead	of	opening	a	new	connection
each	time	the	database	is	accessed.	By	enabling	connection	pooling	you	can
improve	the	overall	performance	of	your	application	by	lowering	the	time	taken
to	open	a	connection	to	a	database	in	the	connection	pool.

For	more	information	about	connection	pooling:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470.

23.1.3.8.	Getting	an	ODBC	Trace	File

If	you	encounter	difficulties	or	problems	with	MyODBC,	you	should	start	by
making	a	log	file	from	the	ODBC	Manager	and	MyODBC.	This	is	called	tracing,
and	is	enabled	through	the	ODBC	Manager.	The	procedure	for	this	differs	for
Windows,	Mac	OS	X	and	Unix.

23.1.3.8.1.	Enabling	ODBC	Tracing	on	Windows

To	enable	the	trace	option	on	Windows:

1.	 The	Tracing	tab	of	the	ODBC	Data	Source	Administrator	dialog	box
enables	you	to	configure	the	way	ODBC	function	calls	are	traced.

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470

2.	 When	you	activate	tracing	from	the	Tracing	tab,	the	Driver	Manager	logs
all	ODBC	function	calls	for	all	subsequently	run	applications.

3.	 ODBC	function	calls	from	applications	running	before	tracing	is	activated
are	not	logged.	ODBC	function	calls	are	recorded	in	a	log	file	you	specify.

4.	 Tracing	ceases	only	after	you	click	Stop	Tracing	Now.	Remember	that
while	tracing	is	on,	the	log	file	continues	to	increase	in	size	and	that	tracing
affects	the	performance	of	all	your	ODBC	applications.

23.1.3.8.2.	Enabling	ODBC	Tracing	on	Mac	OS	X

To	enable	the	trace	option	on	Mac	OS	X	10.3	or	later	you	should	use	the
Tracing	tab	within	ODBC	Administrator	.

1.	 Open	the	ODBC	Administrator.

2.	 Select	the	Tracing	tab.

3.	 Select	the	Enable	Tracing	checkbox.

4.	 Enter	the	location	where	you	want	to	save	the	Tracing	log.	If	you	want	to
append	information	to	an	existing	log	file,	click	the	Choose...	button.

23.1.3.8.3.	Enabling	ODBC	Tracing	on	Unix

To	enable	the	trace	option	on	Mac	OS	X	10.2	(or	earlier)	or	Unix	you	must	add
the	trace	option	to	the	ODBC	configuration:

1.	 On	Unix,	you	need	to	explicitly	set	the	Trace	option	in	the	ODBC.INI	file.

Set	the	tracing	ON	or	OFF	by	using	TraceFile	and	Trace	parameters	in
odbc.ini	as	shown	below:

TraceFile		=	/tmp/odbc.trace

Trace						=	1

TraceFile	specifies	the	name	and	full	path	of	the	trace	file	and	Trace	is	set
to	ON	or	OFF.	You	can	also	use	1	or	YES	for	ON	and	0	or	NO	for	OFF.	If	you	are
using	ODBCConfig	from	unixODBC,	then	follow	the	instructions	for	tracing
unixODBC	calls	at	HOWTO-ODBCConfig.

23.1.3.8.4.	Enabling	a	MyODBC	Log

To	generate	a	MyODBC	log,	do	the	following:

1.	 Within	Windows,	enable	the	Trace	MyODBC	option	flag	in	the	MyODBC
connect/configure	screen.	The	log	is	written	to	file	C:\myodbc.log.	If	the
trace	option	is	not	remembered	when	you	are	going	back	to	the	above
screen,	it	means	that	you	are	not	using	the	myodbcd.dll	driver,	see
Section	23.1.3.2.4,	“Errors	and	Debugging”.

On	Mac	OS	X,	Unix,	or	if	you	are	using	DSN-Less	connection,	then	you
need	to	supply	OPTION=4	in	the	connection	string	or	set	the	corresponding
keyword/value	pair	in	the	DSN.

2.	 Start	your	application	and	try	to	get	it	to	fail.	Then	check	the	MyODBC
trace	file	to	find	out	what	could	be	wrong.

If	you	need	help	determining	what	is	wrong,	see	Section	23.1.7.1,	“MyODBC
Community	Support”.

http://www.unixodbc.org/config.html

23.1.4.	MyODBC	Examples

Once	you	have	configured	a	DSN	to	provide	access	to	a	database,	how	you
access	and	use	that	connection	is	dependent	on	the	application	or	programming
language.	As	ODBC	is	a	standardized	interface,	any	application	or	language	that
supports	ODBC	can	use	the	DSN	and	connect	to	the	configured	database.

23.1.4.1.	Basic	MyODBC	Application	Steps

Interacting	with	a	MySQL	server	from	an	applications	using	the	MyODBC
typically	involves	the	following	operations:

Configure	the	MyODBC	DSN

Connect	to	MySQL	server

Initialization	operations

Execute	SQL	statements

Retrieve	results

Perform	Transactions

Disconnect	from	the	server

Most	applications	use	some	variation	of	these	steps.	The	basic	application	steps
are	shown	in	the	following	diagram:

23.1.4.2.	Step-by-step	Guide	to	Connecting	to	a	MySQL	Database	through
MyODBC

A	typical	installation	situation	where	you	would	install	MyODBC	is	when	you
want	to	access	a	database	on	a	Linux	or	Unix	host	from	a	Windows	machine.

As	an	example	of	the	process	required	to	set	up	access	between	two	machines,
the	steps	below	take	you	through	the	basic	steps.	These	instructions	assume	that
you	want	to	connect	to	system	ALPHA	from	system	BETA	with	a	username	and
password	of	myuser	and	mypassword.

On	system	ALPHA	(the	MySQL	server)	follow	these	steps:

1.	 Start	the	MySQL	server.

2.	 Use	GRANT	to	set	up	an	account	with	a	username	of	myuser	that	can	connect
from	system	BETA	using	a	password	of	myuser	to	the	database	test:

GRANT	ALL	ON	test.*	to	'myuser'@'BETA'	IDENTIFIED	BY	'mypassword';

For	more	information	about	MySQL	privileges,	refer	to	Section	5.9,
“MySQL	User	Account	Management”.

On	system	BETA	(the	MyODBC	client),	follow	these	steps:

1.	 Configure	a	MyODBC	DSN	using	parameters	that	match	the	server,
database	and	authentication	information	that	you	have	just	configured	on
system	ALPHA.

Parameter Value Comment
DSN remote_test A	name	to	identify	the	connection.
SERVER ALPHA The	address	of	the	remote	server.
DATABASE test The	name	of	the	default	database.

USER myuser The	username	configured	for	access	to	this
database.

PASSWORD mypassword The	password	for	myuser.

2.	 Using	an	ODBC-capable	application,	such	as	Microsoft	Office,	connect	to
the	MySQL	server	using	the	DSN	you	have	just	created.	If	the	connection
fails,	use	tracing	to	examine	the	connection	process.	See	Section	23.1.3.8,
“Getting	an	ODBC	Trace	File”,	for	more	information.

23.1.4.3.	MyODBC	and	Third-Party	ODBC	Tools

Once	you	have	configured	your	MyODBC	DSN,	you	can	access	your	MySQL
database	through	any	application	that	supports	the	ODBC	interface,	including
programming	languages	and	third-party	applications.	This	section	contains
guides	and	help	on	using	MyODBC	with	various	ODBC-compatible	tools	and
applications,	including	Microsoft	Word,	Microsoft	Excel	and
Adobe/Macromedia	ColdFusion.

23.1.4.3.1.	Applications	Tested	with	MyODBC

MyODBC	has	been	tested	with	the	following	applications:

Publisher Application Notes
Adobe ColdFusion Formerly	Macromedia	ColdFusion
Borland C++	Builder 	
	 Builder	4 	
	 Delphi 	
Business	Objects Crystal	Reports 	
Claris Filemaker	Pro 	
Corel Paradox 	
Computer
Associates Visual	Objects Also	known	as	CAVO

	 AllFusion	ERwin
Data	Modeler 	

Gupta Team	Developer Previously	known	as	Centura	Team
Developer;	Gupta	SQL/Windows

Gensym G2-ODBC	Bridge 	
Inline iHTML 	
Lotus Notes Versions	4.5	and	4.6
Microsoft Access 	
	 Excel 	
	 Visio	Enterprise 	
	 Visual	C++ 	
	 Visual	Basic 	
	 ODBC.NET Using	C#,	Visual	Basic,	C++

	 FoxPro 	
	 Visual	Interdev 	
OpenOffice.org OpenOffice.org 	
Perl DBD::ODBC 	
Pervasive
Software DataJunction 	

Sambar
Technologies Sambar	Server 	

SPSS SPSS 	
SoftVelocity Clarion 	

SQLExpress SQLExpress	for
Xbase++ 	

Sun StarOffice 	
SunSystems Vision 	
Sybase PowerBuilder 	
	 PowerDesigner 	
theKompany.com Data	Architect 	

If	you	know	of	any	other	applications	that	work	with	MyODBC,	please	send
mail	to	<myodbc@lists.mysql.com>	about	them.

23.1.4.3.2.	Using	MyODBC	with	Microsoft	Word	or	Excel

You	can	use	Microsoft	Word	and	Microsoft	Excel	to	access	information	from	a
MySQL	database	using	MyODBC.	Within	Microsoft	Word,	this	facility	is	most
useful	when	importing	data	for	mailmerge,	or	for	tables	and	data	to	be	included
in	reports.	Within	Microsoft	Excel,	you	can	execute	queries	on	your	MySQL
server	and	import	the	data	directly	into	an	Excel	Worksheet,	presenting	the	data
as	a	series	of	rows	and	columns.

With	both	applications,	data	is	accessed	and	imported	into	the	application	using
Microsoft	Query	,	which	enables	you	to	execute	a	query	though	an	ODBC
source.	You	use	Microsoft	Query	to	build	the	SQL	statement	to	be	executed,
selecting	the	tables,	fields,	selection	criteria	and	sort	order.	For	example,	to	insert
information	from	a	table	in	the	World	test	database	into	an	Excel	spreadsheet,

mailto:myodbc@lists.mysql.com

using	the	DSN	samples	shown	in	Section	23.1.3,	“MyODBC	Configuration”:

1.	 Create	a	new	Worksheet.

2.	 From	the	Data	menu,	choose	Import	External	Data,	and	then	select	New
Database	Query.

3.	 Microsoft	Query	will	start.	First,	you	need	to	choose	the	data	source,	by
selecting	an	existing	Data	Source	Name.

4.	 Within	the	Query	Wizard,	you	must	choose	the	columns	that	you	want	to
import.	The	list	of	tables	available	to	the	user	configured	through	the	DSN
is	shown	on	the	left,	the	columns	that	will	be	added	to	your	query	are
shown	on	the	right.	The	columns	you	choose	are	equivalent	to	those	in	the
first	section	of	a	SELECT	query.	Click	Next	to	continue.

5.	 You	can	filter	rows	from	the	query	(the	equivalent	of	a	WHERE	clause)	using
the	Filter	Data	dialog.	Click	Next	to	continue.

6.	 Select	an	(optional)	sort	order	for	the	data.	This	is	equivalent	to	using	a
ORDER	BY	clause	in	your	SQL	query.	You	can	select	up	to	three	fields	for
sorting	the	information	returned	by	the	query.	Click	Next	to	continue.

7.	 Select	the	destination	for	your	query.	You	can	select	to	return	the	data
Microsoft	Excel,	where	you	can	choose	a	worksheet	and	cell	where	the	data
will	be	inserted;	you	can	continue	to	view	the	query	and	results	within
Microsoft	Query,	where	you	can	edit	the	SQL	query	and	further	filter	and
sort	the	information	returned;	or	you	can	create	an	OLAP	Cube	from	the
query,	which	can	then	be	used	directly	within	Microsoft	Excel.	Click
Finish.

The	same	process	can	be	used	to	import	data	into	a	Word	document,	where	the
data	will	be	inserted	as	a	table.	This	can	be	used	for	mail	merge	purposes	(where

the	field	data	is	read	from	a	Word	table),	or	where	you	want	to	include	data	and
reports	within	a	report	or	other	document.

23.1.4.3.3.	Using	MyODBC	and	Microsoft	Access

You	can	use	MySQL	database	with	Microsoft	Access	using	MyODBC.	The
MySQL	database	can	be	used	as	an	import	source,	an	export	source,	or	as	a
linked	table	for	direct	use	within	an	Access	application,	so	you	can	use	Access
as	the	front-end	interface	to	a	MySQL	database.

23.1.4.3.3.1.	Exporting	Access	Data	to	MySQL

To	export	a	table	of	data	from	an	Access	database	to	MySQL,	follow	these
instructions:

1.	 When	you	open	an	Access	database	or	an	Access	project,	a	Database
window	appears.	It	displays	shortcuts	for	creating	new	database	objects	and
opening	existing	objects.

2.	 Click	the	name	of	the	table	or	query	you	want	to	export,	and	then	in	the
File	menu,	select	Export.

3.	 In	the	Export	Object	Type	Object	name	To	dialog	box,	in	the	Save	As
Type	box,	select	ODBC	Databases	()	as	shown	here:

4.	 In	the	Export	dialog	box,	enter	a	name	for	the	file	(or	use	the	suggested
name),	and	then	select	OK.

5.	 The	Select	Data	Source	dialog	box	is	displayed;	it	lists	the	defined	data
sources	for	any	ODBC	drivers	installed	on	your	computer.	Click	either	the
File	Data	Source	or	Machine	Data	Source	tab,	and	then	double-click	the
MyODBC	or	MyODBC	3.51	data	source	that	you	want	to	export	to.	To
define	a	new	data	source	for	MyODBC,	please	Section	23.1.3.2,
“Configuring	a	MyODBC	DSN	on	Windows”.

Microsoft	Access	connects	to	the	MySQL	Server	through	this	data	source	and
exports	new	tables	and	or	data.

23.1.4.3.3.2.	Importing	MySQL	Data	to	Access

To	import	or	link	a	table	or	tables	from	MySQL	to	Access,	follow	these
instructions:

1.	 Open	a	database,	or	switch	to	the	Database	window	for	the	open	database.

2.	 To	import	tables,	on	the	File	menu,	point	to	Get	External	Data,	and	then
click	Import.	To	link	tables,	on	the	File	menu,	point	to	Get	External	Data,
and	then	click	Link	Tables.

3.	 In	the	Import	(or	Link)	dialog	box,	in	the	Files	Of	Type	box,	select	ODBC
Databases	().	The	Select	Data	Source	dialog	box	lists	the	defined	data
sources	The	Select	Data	Source	dialog	box	is	displayed;	it	lists	the	defined
data	source	names.

4.	 If	the	ODBC	data	source	that	you	selected	requires	you	to	log	on,	enter

your	login	ID	and	password	(additional	information	might	also	be
required),	and	then	click	OK.

5.	 Microsoft	Access	connects	to	the	MySQL	server	through	ODBC	data
source	and	displays	the	list	of	tables	that	you	can	import	or	link.

6.	 Click	each	table	that	you	want	to	import	or	link,	and	then	click	OK.	If
you're	linking	a	table	and	it	doesn't	have	an	index	that	uniquely	identifies
each	record,	Microsoft	Access	displays	a	list	of	the	fields	in	the	linked
table.	Click	a	field	or	a	combination	of	fields	that	uniquely	identifies	each
record,	and	then	click	OK.

23.1.4.3.3.3.	Linking	MySQL	Data	to	Access	Tables

Use	the	following	procedure	to	view	or	to	refresh	links	when	the	structure	or
location	of	a	linked	table	has	changed.	The	Linked	Table	Manager	lists	the	paths
to	all	currently	linked	tables.

To	view	or	refresh	links:

1.	 Open	the	database	that	contains	links	to	tables.

2.	 On	the	Tools	menu,	point	to	Add-ins	(Database	Utilities	in	Access
2000	or	newer),	and	then	click	Linked	Table	Manager.

3.	 Select	the	check	box	for	the	tables	whose	links	you	want	to	refresh.

4.	 Click	OK	to	refresh	the	links.

Microsoft	Access	confirms	a	successful	refresh	or,	if	the	table	wasn't	found,
displays	the	Select	New	Location	of	<table	name>	dialog	box	in	which	you
can	specify	its	the	table's	new	location.	If	several	selected	tables	have	moved	to
the	new	location	that	you	specify,	the	Linked	Table	Manager	searches	that
location	for	all	selected	tables,	and	updates	all	links	in	one	step.

To	change	the	path	for	a	set	of	linked	tables:

1.	 Open	the	database	that	contains	links	to	tables.

2.	 On	the	Tools	menu,	point	to	Add-ins	(Database	Utilities	in	Access

2000	or	newer),	and	then	click	Linked	Table	Manager.

3.	 Select	the	Always	Prompt	For	A	New	Location	check	box.

4.	 Select	the	check	box	for	the	tables	whose	links	you	want	to	change,	and
then	click	OK.

5.	 In	the	Select	New	Location	of	<table	name>	dialog	box,	specify	the	new
location,	click	Open,	and	then	click	OK.

23.1.4.4.	MyODBC	Programming	Examples

With	a	suitable	ODBC	Manager	and	the	my	MyODBC	driver	installed,	any
programming	language	or	environment	that	can	support	ODBC	should	be	able	to
connect	to	a	MySQL	database	through	MyODBC.

This	includes,	but	is	certainly	not	limited	to,	Microsoft	support	languages
(including	Visual	Basic,	C#	and	interfaces	such	as	ODBC.NET),	Perl	(through
the	DBI	module,	and	the	DBD::ODBC	driver).

23.1.4.4.1.	Using	MyODBC	with	Visual	Basic	Using	ADO,	DAO	and	RDO

This	section	contains	simple	examples	of	the	use	of	MySQL	ODBC	3.51	Driver
with	ADO,	DAO	and	RDO.

23.1.4.4.1.1.	ADO:	rs.addNew,	rs.delete,	and	rs.update

The	following	ADO	(ActiveX	Data	Objects)	example	creates	a	table	my_ado	and
demonstrates	the	use	of	rs.addNew,	rs.delete,	and	rs.update.

Private	Sub	myodbc_ado_Click()

Dim	conn	As	ADODB.Connection

Dim	rs	As	ADODB.Recordset

Dim	fld	As	ADODB.Field

Dim	sql	As	String

'connect	to	MySQL	server	using	MySQL	ODBC	3.51	Driver

Set	conn	=	New	ADODB.Connection

conn.ConnectionString	=	"DRIVER={MySQL	ODBC	3.51	Driver};"_

&	"SERVER=localhost;"_

&	"	DATABASE=test;"_

&	"UID=venu;PWD=venu;	OPTION=3"

conn.Open

'create	table

conn.Execute	"DROP	TABLE	IF	EXISTS	my_ado"

conn.Execute	"CREATE	TABLE	my_ado(id	int	not	null	primary	key,	name	varchar(20),"	_

&	"txt	text,	dt	date,	tm	time,	ts	timestamp)"

'direct	insert

conn.Execute	"INSERT	INTO	my_ado(id,name,txt)	values(1,100,'venu')"

conn.Execute	"INSERT	INTO	my_ado(id,name,txt)	values(2,200,'MySQL')"

conn.Execute	"INSERT	INTO	my_ado(id,name,txt)	values(3,300,'Delete')"

Set	rs	=	New	ADODB.Recordset

rs.CursorLocation	=	adUseServer

'fetch	the	initial	table	..

rs.Open	"SELECT	*	FROM	my_ado",	conn

Debug.Print	rs.RecordCount

rs.MoveFirst

Debug.Print	String(50,	"-")	&	"Initial	my_ado	Result	Set	"	&	String(50,	"-")

For	Each	fld	In	rs.Fields

Debug.Print	fld.Name,

Next

Debug.Print

Do	Until	rs.EOF

For	Each	fld	In	rs.Fields

Debug.Print	fld.Value,

Next

rs.MoveNext

Debug.Print

Loop

rs.Close

'rs	insert

rs.Open	"select	*	from	my_ado",	conn,	adOpenDynamic,	adLockOptimistic

rs.AddNew

rs!Name	=	"Monty"

rs!txt	=	"Insert	row"

rs.Update

rs.Close

'rs	update

rs.Open	"SELECT	*	FROM	my_ado"

rs!Name	=	"update"

rs!txt	=	"updated-row"

rs.Update

rs.Close

'rs	update	second	time..

rs.Open	"SELECT	*	FROM	my_ado"

rs!Name	=	"update"

rs!txt	=	"updated-second-time"

rs.Update

rs.Close

'rs	delete

rs.Open	"SELECT	*	FROM	my_ado"

rs.MoveNext

rs.MoveNext

rs.Delete

rs.Close

'fetch	the	updated	table	..

rs.Open	"SELECT	*	FROM	my_ado",	conn

Debug.Print	rs.RecordCount

rs.MoveFirst

Debug.Print	String(50,	"-")	&	"Updated	my_ado	Result	Set	"	&	String(50,	"-")

For	Each	fld	In	rs.Fields

Debug.Print	fld.Name,

Next

Debug.Print

Do	Until	rs.EOF

For	Each	fld	In	rs.Fields

Debug.Print	fld.Value,

Next

rs.MoveNext

Debug.Print

Loop

rs.Close

conn.Close

End	Sub

23.1.4.4.1.2.	DAO:	rs.addNew,	rs.update,	and	Scrolling

The	following	DAO	(Data	Access	Objects)	example	creates	a	table	my_dao	and
demonstrates	the	use	of	rs.addNew,	rs.update,	and	result	set	scrolling.

Private	Sub	myodbc_dao_Click()

Dim	ws	As	Workspace

Dim	conn	As	Connection

Dim	queryDef	As	queryDef

Dim	str	As	String

'connect	to	MySQL	using	MySQL	ODBC	3.51	Driver

Set	ws	=	DBEngine.CreateWorkspace("",	"venu",	"venu",	dbUseODBC)

str	=	"odbc;DRIVER={MySQL	ODBC	3.51	Driver};"_

&	"SERVER=localhost;"_

&	"	DATABASE=test;"_

&	"UID=venu;PWD=venu;	OPTION=3"

Set	conn	=	ws.OpenConnection("test",	dbDriverNoPrompt,	False,	str)

'Create	table	my_dao

Set	queryDef	=	conn.CreateQueryDef("",	"drop	table	if	exists	my_dao")

queryDef.Execute

Set	queryDef	=	conn.CreateQueryDef("",	"create	table	my_dao(Id	INT	AUTO_INCREMENT	PRIMARY	KEY,	"	_

&	"Ts	TIMESTAMP(14)	NOT	NULL,	Name	varchar(20),	Id2	INT)")

queryDef.Execute

'Insert	new	records	using	rs.addNew

Set	rs	=	conn.OpenRecordset("my_dao")

Dim	i	As	Integer

For	i	=	10	To	15

rs.AddNew

rs!Name	=	"insert	record"	&	i

rs!Id2	=	i

rs.Update

Next	i

rs.Close

'rs	update..

Set	rs	=	conn.OpenRecordset("my_dao")

rs.Edit

rs!Name	=	"updated-string"

rs.Update

rs.Close

'fetch	the	table	back...

Set	rs	=	conn.OpenRecordset("my_dao",	dbOpenDynamic)

str	=	"Results:"

rs.MoveFirst

While	Not	rs.EOF

str	=	"	"	&	rs!Id	&	"	,	"	&	rs!Name	&	",	"	&	rs!Ts	&	",	"	&	rs!Id2

Debug.Print	"DATA:"	&	str

rs.MoveNext

Wend

'rs	Scrolling

rs.MoveFirst

str	=	"	FIRST	ROW:	"	&	rs!Id	&	"	,	"	&	rs!Name	&	",	"	&	rs!Ts	&	",	"	&	rs!Id2

Debug.Print	str

rs.MoveLast

str	=	"	LAST	ROW:	"	&	rs!Id	&	"	,	"	&	rs!Name	&	",	"	&	rs!Ts	&	",	"	&	rs!Id2

Debug.Print	str

rs.MovePrevious

str	=	"	LAST-1	ROW:	"	&	rs!Id	&	"	,	"	&	rs!Name	&	",	"	&	rs!Ts	&	",	"	&	rs!Id2

Debug.Print	str

'free	all	resources

rs.Close

queryDef.Close

conn.Close

ws.Close

End	Sub

23.1.4.4.1.3.	RDO:	rs.addNew	and	rs.update

The	following	RDO	(Remote	Data	Objects)	example	creates	a	table	my_rdo	and
demonstrates	the	use	of	rs.addNew	and	rs.update.

Dim	rs	As	rdoResultset

Dim	cn	As	New	rdoConnection

Dim	cl	As	rdoColumn

Dim	SQL	As	String

'cn.Connect	=	"DSN=test;"

cn.Connect	=	"DRIVER={MySQL	ODBC	3.51	Driver};"_

&	"SERVER=localhost;"_

&	"	DATABASE=test;"_

&	"UID=venu;PWD=venu;	OPTION=3"

cn.CursorDriver	=	rdUseOdbc

cn.EstablishConnection	rdDriverPrompt

'drop	table	my_rdo

SQL	=	"drop	table	if	exists	my_rdo"

cn.Execute	SQL,	rdExecDirect

'create	table	my_rdo

SQL	=	"create	table	my_rdo(id	int,	name	varchar(20))"

cn.Execute	SQL,	rdExecDirect

'insert	-	direct

SQL	=	"insert	into	my_rdo	values	(100,'venu')"

cn.Execute	SQL,	rdExecDirect

SQL	=	"insert	into	my_rdo	values	(200,'MySQL')"

cn.Execute	SQL,	rdExecDirect

'rs	insert

SQL	=	"select	*	from	my_rdo"

Set	rs	=	cn.OpenResultset(SQL,	rdOpenStatic,	rdConcurRowVer,	rdExecDirect)

rs.AddNew

rs!id	=	300

rs!Name	=	"Insert1"

rs.Update

rs.Close

'rs	insert

SQL	=	"select	*	from	my_rdo"

Set	rs	=	cn.OpenResultset(SQL,	rdOpenStatic,	rdConcurRowVer,	rdExecDirect)

rs.AddNew

rs!id	=	400

rs!Name	=	"Insert	2"

rs.Update

rs.Close

'rs	update

SQL	=	"select	*	from	my_rdo"

Set	rs	=	cn.OpenResultset(SQL,	rdOpenStatic,	rdConcurRowVer,	rdExecDirect)

rs.Edit

rs!id	=	999

rs!Name	=	"updated"

rs.Update

rs.Close

'fetch	back...

SQL	=	"select	*	from	my_rdo"

Set	rs	=	cn.OpenResultset(SQL,	rdOpenStatic,	rdConcurRowVer,	rdExecDirect)

Do	Until	rs.EOF

For	Each	cl	In	rs.rdoColumns

Debug.Print	cl.Value,

Next

rs.MoveNext

Debug.Print

Loop

Debug.Print	"Row	count=";	rs.RowCount

'close

rs.Close

cn.Close

End	Sub

23.1.4.4.2.	Using	MyODBC	with	.NET

This	section	contains	simple	examples	that	demonstrate	the	use	of	MyODBC
drivers	with	ODBC.NET.

23.1.4.4.2.1.	Using	MyODBC	with	ODBC.NET	and	C#	(C	sharp)

The	following	sample	creates	a	table	my_odbc_net	and	demonstrates	its	use	in
C#.

/**

	*	@sample				:	mycon.cs

	*	@purpose			:	Demo	sample	for	ODBC.NET	using	MyODBC

	*	@author				:	Venu,	<myodbc@lists.mysql.com>

	*

	*	(C)	Copyright	MySQL	AB,	1995-2006

	*

	**/

										

/*	build	command

	*

	*		csc	/t:exe

	*						/out:mycon.exe	mycon.cs

	*						/r:Microsoft.Data.Odbc.dll

	*/

										

using	Console	=	System.Console;

using	Microsoft.Data.Odbc;

										

namespace	myodbc3

{

		class	mycon

		{

				static	void	Main(string[]	args)

				{

						try

								{

										//Connection	string	for	MyODBC	2.50

										/*string	MyConString	=	"DRIVER={MySQL};"	+

												"SERVER=localhost;"	+

												"DATABASE=test;"	+

												"UID=venu;"	+

												"PASSWORD=venu;"	+

												"OPTION=3";

										*/

										//Connection	string	for	MyODBC	3.51

										string	MyConString	=	"DRIVER={MySQL	ODBC	3.51	Driver};"	+

												"SERVER=localhost;"	+

												"DATABASE=test;"	+

mailto:myodbc@lists.mysql.com

												"UID=venu;"	+

												"PASSWORD=venu;"	+

												"OPTION=3";

										

										//Connect	to	MySQL	using	MyODBC

										OdbcConnection	MyConnection	=	new	OdbcConnection(MyConString);

										MyConnection.Open();

										

										Console.WriteLine("\n	!!!	success,	connected	successfully	!!!\n");

										

										//Display	connection	information

										Console.WriteLine("Connection	Information:");

										Console.WriteLine("\tConnection	String:"	+	

																												MyConnection.ConnectionString);

										Console.WriteLine("\tConnection	Timeout:"	+	

																												MyConnection.ConnectionTimeout);

										Console.WriteLine("\tDatabase:"	+	

																												MyConnection.Database);

										Console.WriteLine("\tDataSource:"	+	

																												MyConnection.DataSource);

										Console.WriteLine("\tDriver:"	+	

																												MyConnection.Driver);

										Console.WriteLine("\tServerVersion:"	+	

																												MyConnection.ServerVersion);

										

										//Create	a	sample	table

										OdbcCommand	MyCommand	=	

												new	OdbcCommand("DROP	TABLE	IF	EXISTS	my_odbc_net",

																												MyConnection);

										MyCommand.ExecuteNonQuery();

										MyCommand.CommandText	=	

												"CREATE	TABLE	my_odbc_net(id	int,	name	varchar(20),	idb	bigint)";

										MyCommand.ExecuteNonQuery();

										

										//Insert

										MyCommand.CommandText	=	

												"INSERT	INTO	my_odbc_net	VALUES(10,'venu',	300)";

										Console.WriteLine("INSERT,	Total	rows	affected:"	+	

																												MyCommand.ExecuteNonQuery());;

										

										//Insert

										MyCommand.CommandText	=	

												"INSERT	INTO	my_odbc_net	VALUES(20,'mysql',400)";

										Console.WriteLine("INSERT,	Total	rows	affected:"	+	

																												MyCommand.ExecuteNonQuery());

										

										//Insert

										MyCommand.CommandText	=	

												"INSERT	INTO	my_odbc_net	VALUES(20,'mysql',500)";

										Console.WriteLine("INSERT,	Total	rows	affected:"	+	

																												MyCommand.ExecuteNonQuery());

										

										//Update

										MyCommand.CommandText	=	

												"UPDATE	my_odbc_net	SET	id=999	WHERE	id=20";

										Console.WriteLine("Update,	Total	rows	affected:"	+	

																												MyCommand.ExecuteNonQuery());

										

										//COUNT(*)

										MyCommand.CommandText	=	

												"SELECT	COUNT(*)	as	TRows	FROM	my_odbc_net";

										Console.WriteLine("Total	Rows:"	+	

																												MyCommand.ExecuteScalar());

										

										//Fetch

										MyCommand.CommandText	=	"SELECT	*	FROM	my_odbc_net";

										OdbcDataReader	MyDataReader;

										MyDataReader	=		MyCommand.ExecuteReader();

										while	(MyDataReader.Read())

												{

														if(string.Compare(MyConnection.Driver,"myodbc3.dll")	==	0)	{

																//Supported	only	by	MyODBC	3.51

																Console.WriteLine("Data:"	+	MyDataReader.GetInt32(0)	+	"	"	+

																																		MyDataReader.GetString(1)	+	"	"	+

																																		MyDataReader.GetInt64(2));	

														}

														else	{

																//BIGINTs	not	supported	by	MyODBC

																Console.WriteLine("Data:"	+	MyDataReader.GetInt32(0)	+	"	"	+

																																		MyDataReader.GetString(1)	+	"	"	+

																																		MyDataReader.GetInt32(2));	

														}

												}

										

										//Close	all	resources

										MyDataReader.Close();

										MyConnection.Close();

								}

						catch	(OdbcException	MyOdbcException)	//Catch	any	ODBC	exception	..

								{

										for	(int	i=0;	i	<	MyOdbcException.Errors.Count;	i++)

												{

														Console.Write("ERROR	#"	+	i	+	"\n"	+

																												"Message:	"	+	

																												MyOdbcException.Errors[i].Message	+	"\n"	+

																												"Native:	"	+	

																												MyOdbcException.Errors[i].NativeError.ToString()	+	"\n"	+

																												"Source:	"	+	

																												MyOdbcException.Errors[i].Source	+	"\n"	+

																												"SQL:	"	+	

																												MyOdbcException.Errors[i].SQLState	+	"\n");

												}

								}

				}

		}

}

23.1.4.4.2.2.	Using	MyODBC	with	ODBC.NET	and	Visual	Basic

The	following	sample	creates	a	table	my_vb_net	and	demonstrates	the	use	in	VB.

'	@sample				:	myvb.vb

'	@purpose			:	Demo	sample	for	ODBC.NET	using	MyODBC

'	@author				:	Venu,	<myodbc@lists.mysql.com>

'

'	(C)	Copyright	MySQL	AB,	1995-2006

'

'

'

'	build	command

'

'	vbc	/target:exe

'					/out:myvb.exe

'					/r:Microsoft.Data.Odbc.dll

'					/r:System.dll

'					/r:System.Data.dll

'

Imports	Microsoft.Data.Odbc

Imports	System

Module	myvb

		Sub	Main()

				Try

						'MyODBC	3.51	connection	string

						Dim	MyConString	As	String	=	"DRIVER={MySQL	ODBC	3.51	Driver};"	&	_

						"SERVER=localhost;"	&	_

						"DATABASE=test;"	&	_

						"UID=venu;"	&	_

						"PASSWORD=venu;"	&	_

						"OPTION=3;"

						'Connection

						Dim	MyConnection	As	New	OdbcConnection(MyConString)

mailto:myodbc@lists.mysql.com

						MyConnection.Open()

						Console.WriteLine("Connection	State::"	&	MyConnection.State.ToString)

						'Drop

						Console.WriteLine("Dropping	table")

						Dim	MyCommand	As	New	OdbcCommand()

						MyCommand.Connection	=	MyConnection

						MyCommand.CommandText	=	"DROP	TABLE	IF	EXISTS	my_vb_net"

						MyCommand.ExecuteNonQuery()

						'Create

						Console.WriteLine("Creating....")

						MyCommand.CommandText	=	"CREATE	TABLE	my_vb_net(id	int,	name	varchar(30))"

						MyCommand.ExecuteNonQuery()

						'Insert

						MyCommand.CommandText	=	"INSERT	INTO	my_vb_net	VALUES(10,'venu')"

						Console.WriteLine("INSERT,	Total	rows	affected:"	&	_

						MyCommand.ExecuteNonQuery())

						'Insert

						MyCommand.CommandText	=	"INSERT	INTO	my_vb_net	VALUES(20,'mysql')"

						Console.WriteLine("INSERT,	Total	rows	affected:"	&	_

						MyCommand.ExecuteNonQuery())

						'Insert

						MyCommand.CommandText	=	"INSERT	INTO	my_vb_net	VALUES(20,'mysql')"

						Console.WriteLine("INSERT,	Total	rows	affected:"	&	_

						MyCommand.ExecuteNonQuery())

						'Insert

						MyCommand.CommandText	=	"INSERT	INTO	my_vb_net(id)	VALUES(30)"

						Console.WriteLine("INSERT,	Total	rows	affected:"	&	_

																								MyCommand.ExecuteNonQuery())

						'Update

						MyCommand.CommandText	=	"UPDATE	my_vb_net	SET	id=999	WHERE	id=20"

						Console.WriteLine("Update,	Total	rows	affected:"	&	_

						MyCommand.ExecuteNonQuery())

						'COUNT(*)

						MyCommand.CommandText	=	"SELECT	COUNT(*)	as	TRows	FROM	my_vb_net"

						Console.WriteLine("Total	Rows:"	&	MyCommand.ExecuteScalar())

						'Select

						Console.WriteLine("Select	*	FROM	my_vb_net")

						MyCommand.CommandText	=	"SELECT	*	FROM	my_vb_net"

						Dim	MyDataReader	As	OdbcDataReader

						MyDataReader	=	MyCommand.ExecuteReader

						While	MyDataReader.Read

								If	MyDataReader("name")	Is	DBNull.Value	Then

										Console.WriteLine("id	=	"	&	_

										CStr(MyDataReader("id"))	&	"		name	=	"	&	_

										"NULL")

								Else

										Console.WriteLine("id	=	"	&	_

										CStr(MyDataReader("id"))	&	"		name	=	"	&	_

										CStr(MyDataReader("name")))

								End	If

						End	While

						'Catch	ODBC	Exception

				Catch	MyOdbcException	As	OdbcException

						Dim	i	As	Integer

						Console.WriteLine(MyOdbcException.ToString)

						'Catch	program	exception

				Catch	MyException	As	Exception

						Console.WriteLine(MyException.ToString)

				End	Try

		End	Sub

23.1.5.	MyODBC	Reference

This	section	provides	reference	material	for	the	MyODBC	API,	showing
supported	functions	and	methods,	supported	MySQL	column	types	and	the
corresponding	native	type	in	MyODBC,	and	the	error	codes	returned	by
MyODBC	when	a	fault	occurs.

23.1.5.1.	MyODBC	API	Reference

This	section	summarizes	ODBC	routines,	categorized	by	functionality.

For	the	complete	ODBC	API	reference,	please	refer	to	the	ODBC	Programer's
Reference	at	http://msdn.microsoft.com/library/en-
us/odbc/htm/odbcabout_this_manual.asp.

An	application	can	call	SQLGetInfo	function	to	obtain	conformance	information
about	MyODBC.	To	obtain	information	about	support	for	a	specific	function	in
the	driver,	an	application	can	call	SQLGetFunctions.

Note:	For	backward	compatibility,	the	MyODBC	3.51	driver	supports	all

http://msdn.microsoft.com/library/en-us/odbc/htm/odbcabout_this_manual.asp

deprecated	functions.

The	following	tables	list	MyODBC	API	calls	grouped	by	task:

Connecting	to	a	data	source:

	 MyODBC 	 	
Function	name 2.50 3.51 Standard Purpose

SQLAllocHandle No Yes ISO	92
Obtains	an	environment,
connection,	statement,	or	descriptor
handle.

SQLConnect Yes Yes ISO	92
Connects	to	a	specific	driver	by
data	source	name,	user	ID,	and
password.

SQLDriverConnect Yes Yes ODBC

Connects	to	a	specific	driver	by
connection	string	or	requests	that
the	Driver	Manager	and	driver
display	connection	dialog	boxes	for
the	user.

SQLAllocEnv Yes Yes Deprecated Obtains	an	environment	handle
allocated	from	driver.

SQLAllocConnect Yes Yes Deprecated Obtains	a	connection	handle

Obtaining	information	about	a	driver	and	data	source:

	 MyODBC 	 	
Function	name 2.50 3.51 Standard Purpose

SQLDataSources No No ISO	92
Returns	the	list	of	available	data
sources,	handled	by	the	Driver
Manager

SQLDrivers No No ODBC
Returns	the	list	of	installed	drivers	and
their	attributes,	handles	by	Driver
Manager

SQLGetInfo Yes Yes ISO	92 Returns	information	about	a	specific
driver	and	data	source.

SQLGetFunctions Yes Yes ISO	92 Returns	supported	driver	functions.

SQLGetTypeInfo Yes Yes ISO	92 Returns	information	about	supported
data	types.

Setting	and	retrieving	driver	attributes:

	 MyODBC 	 	
Function	name 2.50 3.51 Standard Purpose
SQLSetConnectAttr No Yes ISO	92 Sets	a	connection	attribute.

SQLGetConnectAttr No Yes ISO	92 Returns	the	value	of	a
connection	attribute.

SQLSetConnectOption Yes Yes Deprecated Sets	a	connection	option

SQLGetConnectOption Yes Yes Deprecated Returns	the	value	of	a
connection	option

SQLSetEnvAttr No Yes ISO	92 Sets	an	environment	attribute.

SQLGetEnvAttr No Yes ISO	92 Returns	the	value	of	an
environment	attribute.

SQLSetStmtAttr No Yes ISO	92 Sets	a	statement	attribute.

SQLGetStmtAttr No Yes ISO	92 Returns	the	value	of	a	statement
attribute.

SQLSetStmtOption Yes Yes Deprecated Sets	a	statement	option

SQLGetStmtOption Yes Yes Deprecated Returns	the	value	of	a	statement
option

Preparing	SQL	requests:

	 MyODBC 	 	
Function	name 2.50 3.51 Standard Purpose
SQLAllocStmt Yes Yes Deprecated Allocates	a	statement	handle

SQLPrepare Yes Yes ISO	92 Prepares	an	SQL	statement	for
later	execution.

SQLBindParameter Yes Yes ODBC Assigns	storage	for	a	parameter
in	an	SQL	statement.

SQLGetCursorName Yes Yes ISO	92
Returns	the	cursor	name
associated	with	a	statement

handle.
SQLSetCursorName Yes Yes ISO	92 Specifies	a	cursor	name.

SQLSetScrollOptions Yes Yes ODBC Sets	options	that	control	cursor
behavior.

Submitting	requests:

	 MyODBC 	 	
Function	name 2.50 3.51 Standard Purpose
SQLExecute Yes Yes ISO	92 Executes	a	prepared	statement.
SQLExecDirect Yes Yes ISO	92 Executes	a	statement

SQLNativeSql Yes Yes ODBC Returns	the	text	of	an	SQL	statement
as	translated	by	the	driver.

SQLDescribeParam Yes Yes ODBC Returns	the	description	for	a	specific
parameter	in	a	statement.

SQLNumParams Yes Yes ISO	92 Returns	the	number	of	parameters	in
a	statement.

SQLParamData Yes Yes ISO	92

Used	in	conjunction	with
SQLPutData	to	supply	parameter	data
at	execution	time.	(Useful	for	long
data	values.)

SQLPutData Yes Yes ISO	92
Sends	part	or	all	of	a	data	value	for	a
parameter.	(Useful	for	long	data
values.)

Retrieving	results	and	information	about	results:

	 MyODBC 	 	
Function	name 2.50 3.51 Standard Purpose

SQLRowCount Yes Yes ISO	92
Returns	the	number	of	rows
affected	by	an	insert,	update,	or
delete	request.

SQLNumResultCols Yes Yes ISO	92 Returns	the	number	of	columns	in
the	result	set.
Describes	a	column	in	the	result

SQLDescribeCol Yes Yes ISO	92 set.

SQLColAttribute No Yes ISO	92 Describes	attributes	of	a	column
in	the	result	set.

SQLColAttributes Yes Yes Deprecated Describes	attributes	of	a	column
in	the	result	set.

SQLFetch Yes Yes ISO	92 Returns	multiple	result	rows.
SQLFetchScroll No Yes ISO	92 Returns	scrollable	result	rows.
SQLExtendedFetch Yes Yes Deprecated Returns	scrollable	result	rows.

SQLSetPos Yes Yes ODBC

Positions	a	cursor	within	a	fetched
block	of	data	and	allows	an
application	to	refresh	data	in	the
rowset	or	to	update	or	delete	data
in	the	result	set.

SQLBulkOperations No Yes ODBC

Performs	bulk	insertions	and	bulk
bookmark	operations,	including
update,	delete,	and	fetch	by
bookmark.

Retrieving	error	or	diagnostic	information:

	 MyODBC 	 	
Function	name 2.50 3.51 Standard Purpose

SQLError Yes Yes Deprecated Returns	additional	error	or	status
information

SQLGetDiagField Yes Yes ISO	92
Returns	additional	diagnostic
information	(a	single	field	of	the
diagnostic	data	structure).

SQLGetDiagRec Yes Yes ISO	92
Returns	additional	diagnostic
information	(multiple	fields	of	the
diagnostic	data	structure).

Obtaining	information	about	the	data	source's	system	tables	(catalog
functions)	item:

	 MyODBC 	 	

Function	name 2.50 3.51 Standard Purpose

SQLColumnPrivileges Yes Yes ODBC
Returns	a	list	of	columns	and
associated	privileges	for	one	or
more	tables.

SQLColumns Yes Yes X/Open Returns	the	list	of	column	names
in	specified	tables.

SQLForeignKeys Yes Yes ODBC
Returns	a	list	of	column	names
that	make	up	foreign	keys,	if	they
exist	for	a	specified	table.

SQLPrimaryKeys Yes Yes ODBC
Returns	the	list	of	column	names
that	make	up	the	primary	key	for
a	table.

SQLSpecialColumns Yes Yes X/Open

Returns	information	about	the
optimal	set	of	columns	that
uniquely	identifies	a	row	in	a
specified	table,	or	the	columns
that	are	automatically	updated
when	any	value	in	the	row	is
updated	by	a	transaction.

SQLStatistics Yes Yes ISO	92
Returns	statistics	about	a	single
table	and	the	list	of	indexes
associated	with	the	table.

SQLTablePrivileges Yes Yes ODBC
Returns	a	list	of	tables	and	the
privileges	associated	with	each
table.

SQLTables Yes Yes X/Open Returns	the	list	of	table	names
stored	in	a	specific	data	source.

Performing	transactions:

	 MyODBC 	 	
Function	name 2.50 3.51 Standard Purpose
SQLTransact Yes Yes Deprecated Commits	or	rolls	back	a	transaction
SQLEndTran No Yes ISO	92 Commits	or	rolls	back	a	transaction.

Terminating	a	statement:

	 MyODBC 	 	
Function	name 2.50 3.51 Standard Purpose

SQLFreeStmt Yes Yes ISO	92

Ends	statement	processing,	discards
pending	results,	and,	optionally,	frees
all	resources	associated	with	the
statement	handle.

SQLCloseCursor Yes Yes ISO	92 Closes	a	cursor	that	has	been	opened	on
a	statement	handle.

SQLCancel Yes Yes ISO	92 Cancels	an	SQL	statement.

Terminating	a	connection:

	 MyODBC 	 	
Function	name 2.50 3.51 Standard Purpose
SQLDisconnect Yes Yes ISO	92 Closes	the	connection.

SQLFreeHandle No Yes ISO	92 Releases	an	environment,	connection,
statement,	or	descriptor	handle.

SQLFreeConnect Yes Yes Deprecated Releases	connection	handle
SQLFreeEnv Yes Yes Deprecated Releases	an	environment	handle

23.1.5.2.	MyODBC	Data	Types

The	following	table	illustrates	how	driver	maps	the	server	data	types	to	default
SQL	and	C	data	types:

Native	Value SQL	Type C	Type
bit SQL_BIT SQL_C_BIT

tinyint SQL_TINYINT SQL_C_STINYINT

tinyint	unsigned SQL_TINYINT SQL_C_UTINYINT

bigint SQL_BIGINT SQL_C_SBIGINT

bigint	unsigned SQL_BIGINT SQL_C_UBIGINT

long	varbinary SQL_LONGVARBINARY SQL_C_BINARY

blob SQL_LONGVARBINARY SQL_C_BINARY

longblob SQL_LONGVARBINARY SQL_C_BINARY

tinyblob SQL_LONGVARBINARY SQL_C_BINARY

mediumblob SQL_LONGVARBINARY SQL_C_BINARY

long	varchar SQL_LONGVARCHAR SQL_C_CHAR

text SQL_LONGVARCHAR SQL_C_CHAR

mediumtext SQL_LONGVARCHAR SQL_C_CHAR

char SQL_CHAR SQL_C_CHAR

numeric SQL_NUMERIC SQL_C_CHAR

decimal SQL_DECIMAL SQL_C_CHAR

integer SQL_INTEGER SQL_C_SLONG

integer	unsigned SQL_INTEGER SQL_C_ULONG

int SQL_INTEGER SQL_C_SLONG

int	unsigned SQL_INTEGER SQL_C_ULONG

mediumint SQL_INTEGER SQL_C_SLONG

mediumint	unsigned SQL_INTEGER SQL_C_ULONG

smallint SQL_SMALLINT SQL_C_SSHORT

smallint	unsigned SQL_SMALLINT SQL_C_USHORT

real SQL_FLOAT SQL_C_DOUBLE

double SQL_FLOAT SQL_C_DOUBLE

float SQL_REAL SQL_C_FLOAT

double	precision SQL_DOUBLE SQL_C_DOUBLE

date SQL_DATE SQL_C_DATE

time SQL_TIME SQL_C_TIME

year SQL_SMALLINT SQL_C_SHORT

datetime SQL_TIMESTAMP SQL_C_TIMESTAMP

timestamp SQL_TIMESTAMP SQL_C_TIMESTAMP

text SQL_VARCHAR SQL_C_CHAR

varchar SQL_VARCHAR SQL_C_CHAR

enum SQL_VARCHAR SQL_C_CHAR

set SQL_VARCHAR SQL_C_CHAR

bit SQL_CHAR SQL_C_CHAR

bool SQL_CHAR SQL_C_CHAR

23.1.5.3.	MyODBC	Error	Codes

The	following	tables	lists	the	error	codes	returned	by	the	driver	apart	from	the
server	errors.

Native
Code

SQLSTATE
2

SQLSTATE
3

Error	Message

500 01000 01000 General	warning
501 01004 01004 String	data,	right	truncated
502 01S02 01S02 Option	value	changed
503 01S03 01S03 No	rows	updated/deleted
504 01S04 01S04 More	than	one	row	updated/deleted

505 01S06 01S06 Attempt	to	fetch	before	the	result	set
returned	the	first	row	set

506 07001 07002 SQLBindParameter	not	used	for	all
parameters

507 07005 07005 Prepared	statement	not	a	cursor-
specification

508 07009 07009 Invalid	descriptor	index
509 08002 08002 Connection	name	in	use
510 08003 08003 Connection	does	not	exist
511 24000 24000 Invalid	cursor	state
512 25000 25000 Invalid	transaction	state
513 25S01 25S01 Transaction	state	unknown
514 34000 34000 Invalid	cursor	name
515 S1000 HY000 General	driver	defined	error
516 S1001 HY001 Memory	allocation	error
517 S1002 HY002 Invalid	column	number
518 S1003 HY003 Invalid	application	buffer	type
519 S1004 HY004 Invalid	SQL	data	type
520 S1009 HY009 Invalid	use	of	null	pointer
521 S1010 HY010 Function	sequence	error
522 S1011 HY011 Attribute	can	not	be	set	now
523 S1012 HY012 Invalid	transaction	operation	code
524 S1013 HY013 Memory	management	error
525 S1015 HY015 No	cursor	name	available
526 S1024 HY024 Invalid	attribute	value

527 S1090 HY090 Invalid	string	or	buffer	length

528 S1091 HY091 Invalid	descriptor	field	identifier
529 S1092 HY092 Invalid	attribute/option	identifier
530 S1093 HY093 Invalid	parameter	number
531 S1095 HY095 Function	type	out	of	range
532 S1106 HY106 Fetch	type	out	of	range
533 S1117 HY117 Row	value	out	of	range
534 S1109 HY109 Invalid	cursor	position
535 S1C00 HYC00 Optional	feature	not	implemented
0 21S01 21S01 Column	count	does	not	match	value	count
0 23000 23000 Integrity	constraint	violation
0 42000 42000 Syntax	error	or	access	violation
0 42S02 42S02 Base	table	or	view	not	found
0 42S12 42S12 Index	not	found
0 42S21 42S21 Column	already	exists
0 42S22 42S22 Column	not	found
0 08S01 08S01 Communication	link	failure

23.1.6.	MyODBC	Notes	and	Tips

Here	are	some	common	notes	and	tips	for	using	MyODBC	within	different
environments,	applications	and	tools.	The	notes	provided	here	are	based	on	the
experiences	of	MyODBC	developers	and	users.

23.1.6.1.	MyODBC	General	Functionality

This	section	provides	help	with	common	queries	and	areas	of	functionality	in
MySQL	and	how	to	use	them	with	MyODBC.

23.1.6.1.1.	Obtaining	Auto-Increment	Values

Obtaining	the	value	of	column	that	uses	AUTO_INCREMENT	after	an	INSERT
statement	can	be	achieved	in	a	number	of	different	ways.	To	obtain	the	value

immediately	after	an	INSERT,	use	a	SELECT	query	with	the	LAST_INSERT_ID()
function.

For	example,	using	MyODBC	you	would	execute	two	separate	statements,	the
INSERT	statement	and	the	SELECT	query	to	obtain	the	auto-increment	value.

INSERT	INTO	tbl	(auto,text)	VALUES(NULL,'text');

SELECT	LAST_INSERT_ID();

If	you	do	not	require	the	value	within	your	application,	but	do	require	the	value
as	part	of	another	INSERT,	the	entire	process	can	be	handled	by	executing	the
following	statements:

INSERT	INTO	tbl	(auto,text)	VALUES(NULL,'text');

INSERT	INTO	tbl2	(id,text)	VALUES(LAST_INSERT_ID(),'text');

Certain	ODBC	applications	(including	Delphi	and	Access)	may	have	trouble
obtaining	the	auto-increment	value	using	the	previous	examples.	In	this	case,	try
the	following	statement	as	an	alternative:

SELECT	*	FROM	tbl	WHERE	auto	IS	NULL;

See	Section	22.2.13.3,	“How	to	Get	the	Unique	ID	for	the	Last	Inserted	Row”.

23.1.6.1.2.	Dynamic	Cursor	Support

Support	for	the	dynamic	cursor	is	provided	in	MyODBC	3.51,	but	dynamic
cursors	are	not	enabled	by	default.	You	can	enable	this	function	within	Windows
by	selecting	the	Enable	Dynamic	Cursor	checkbox	within	the	ODBC	Data
Source	Administrator.

On	other	platforms,	you	can	enable	the	dynamic	cursor	by	adding	32	to	the
OPTION	value	when	creating	the	DSN.

23.1.6.1.3.	MyODBC	Performance

The	MyODBC	driver	has	been	optimized	to	provide	very	fast	performance.	If
you	experience	problems	with	the	performance	of	MyODBC,	or	notice	a	large
amount	of	disk	activity	for	simple	queries,	there	are	a	number	of	aspects	you
should	check:

Ensure	that	ODBC	Tracing	is	not	enabled.	With	tracing	enabled,	a	lot	of
information	is	recorded	in	the	tracing	file	by	the	ODBC	Manager.	You	can
check,	and	disable,	tracing	within	Windows	using	the	Tracing	panel	of	the
ODBC	Data	Source	Administrator.	Within	Mac	OS	X,	check	the	Tracing
panel	of	ODBC	Administrator.	See	Section	23.1.3.8,	“Getting	an	ODBC
Trace	File”.

Make	sure	you	are	using	the	standard	version	of	the	driver,	and	not	the
debug	version.	The	debug	version	includes	additional	checks	and	reporting
measures.

Disable	the	MyODBC	driver	trace	and	query	logs.	These	options	are
enabled	for	each	DSN,	so	make	sure	to	examine	only	the	DSN	that	you	are
using	in	your	application.	Within	Windows,	you	can	disable	the	MyODBC
and	query	logs	by	modifying	the	DSN	configuration.	Within	Mac	OS	X	and
Unix,	ensure	that	the	driver	trace	(option	value	4)	and	query	logging	(option
value	524288)	are	not	enabled.

23.1.6.1.4.	Setting	ODBC	Query	Timeout	in	Windows

For	more	information	on	how	to	set	the	query	timeout	on	Microsoft	Windows
when	executing	queries	through	an	ODBC	connection,	read	the	Microsoft
knowledgebase	document	at	http://support.microsoft.com/default.aspx?
scid=kb%3Ben-us%3B153756.

23.1.6.2.	MyODBC	Application	Specific	Tips

Most	programs	should	work	with	MyODBC,	but	for	each	of	those	listed	here,
there	are	specific	notes	and	tips	to	improve	or	enhance	the	way	you	work	with
MyODBC	and	these	applications.

With	all	applications	you	should	ensure	that	you	are	using	the	latest	MyODBC
drivers,	ODBC	Manager	and	any	supporting	libraries	and	interfaces	used	by
your	application.	For	example,	on	Windows,	using	the	latest	version	of
Microsoft	Data	Access	Components	(MDAC)	will	improve	the	compatibility
with	ODBC	in	general,	and	with	the	MyODBC	driver.

23.1.6.2.1.	Using	MyODBC	with	Microsoft	Applications

http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B153756

The	majority	of	Microsoft	applications	have	been	tested	with	MyODBC,
including	Microsoft	Office,	Microsoft	Access	and	the	various	programming
languages	supported	within	ASP	and	Microsoft	Visual	Studio.

If	you	have	problem	with	MyODBC	and	your	program	also	works	with	OLEDB,
you	should	try	the	OLEDB	driver.

23.1.6.2.1.1.	Microsoft	Access

To	improve	the	integration	between	Microsoft	Access	and	MySQL	through
MyODBC:

For	all	versions	of	Access,	you	should	enable	the	MyODBC	Return
matching	rows	option.	For	Access	2.0,	you	should	additionally	enable	the
Simulate	ODBC	1.0	option.

You	should	have	a	TIMESTAMP	column	in	all	tables	that	you	want	to	be	able
to	update.	For	maximum	portability,	don't	use	a	length	specification	in	the
column	declaration	(which	is	unsupported	within	MySQL	in	versions
earlier	than	4.1).

You	should	have	a	primary	key	in	each	MySQL	table	you	want	to	use	with
Access.	If	not,	new	or	updated	rows	may	show	up	as	#DELETED#.

Use	only	DOUBLE	float	fields.	Access	fails	when	comparing	with	single-
precision	floats.	The	symptom	usually	is	that	new	or	updated	rows	may
show	up	as	#DELETED#	or	that	you	can't	find	or	update	rows.

If	you	are	using	MyODBC	to	link	to	a	table	that	has	a	BIGINT	column,	the
results	are	displayed	as	#DELETED#.	The	work	around	solution	is:

Have	one	more	dummy	column	with	TIMESTAMP	as	the	data	type.

Select	the	Change	BIGINT	columns	to	INT	option	in	the	connection
dialog	in	ODBC	DSN	Administrator.

Delete	the	table	link	from	Access	and	re-create	it.

Old	records	may	still	display	as	#DELETED#,	but	newly	added/updated
records	are	displayed	properly.

If	you	still	get	the	error	Another	user	has	changed	your	data	after
adding	a	TIMESTAMP	column,	the	following	trick	may	help	you:

Don't	use	a	table	data	sheet	view.	Instead,	create	a	form	with	the	fields	you
want,	and	use	that	form	data	sheet	view.	You	should	set	the	DefaultValue
property	for	the	TIMESTAMP	column	to	NOW().	It	may	be	a	good	idea	to	hide
the	TIMESTAMP	column	from	view	so	your	users	are	not	confused.

In	some	cases,	Access	may	generate	SQL	statements	that	MySQL	can't
understand.	You	can	fix	this	by	selecting	"Query|SQLSpecific|Pass-
Through"	from	the	Access	menu.

On	Windows	NT,	Access	reports	BLOB	columns	as	OLE	OBJECTS.	If	you
want	to	have	MEMO	columns	instead,	you	should	change	BLOB	columns	to
TEXT	with	ALTER	TABLE.

Access	can't	always	handle	the	MySQL	DATE	column	properly.	If	you	have
a	problem	with	these,	change	the	columns	to	DATETIME.

If	you	have	in	Access	a	column	defined	as	BYTE,	Access	tries	to	export	this
as	TINYINT	instead	of	TINYINT	UNSIGNED.	This	gives	you	problems	if	you
have	values	larger	than	127	in	the	column.

If	you	have	very	large	(long)	tables	in	Access,	it	might	take	a	very	long
time	to	open	them.	Or	you	might	run	low	on	virtual	memory	and	eventually
get	an	ODBC	Query	Failed	error	and	the	table	cannot	open.	To	deal	with
this,	select	the	following	options:

Return	Matching	Rows	(2)

Allow	BIG	Results	(8).

These	add	up	to	a	value	of	10	(OPTION=10).

Some	external	articles	and	tips	that	may	be	useful	when	using	Access,	ODBC
and	MyODBC:

Read	How	to	Trap	ODBC	Login	Error	Messages	in	Access

Optimizing	Access	ODBC	Applications

http://support.microsoft.com/support/kb/articles/Q124/9/01.asp?LN=EN-US&SD=gn&FR=0%3CP%3E

Optimizing	for	Client/Server	Performance

Tips	for	Converting	Applications	to	Using	ODBCDirect

Tips	for	Optimizing	Queries	on	Attached	SQL	Tables

For	a	list	of	tools	that	can	be	used	with	Access	and	ODBC	data	sources,
refer	to	converters	section	for	list	of	available	tools.

23.1.6.2.1.2.	Microsoft	Excel	and	Column	Types

If	you	have	problems	importing	data	into	Microsoft	Excel,	particularly
numerical,	date,	and	time	values,	this	is	probably	because	of	a	bug	in	Excel,
where	the	column	type	of	the	source	data	is	used	to	determine	the	data	type
when	that	data	is	inserted	into	a	cell	within	the	worksheet.	The	result	is	that
Excel	incorrectly	identifies	the	content	and	this	affects	both	the	display	format
and	the	data	when	it	is	used	within	calculations.

To	address	this	issue,	use	the	CONCAT()	function	in	your	queries.	The	use	of
CONCAT()	forces	Excel	to	treat	the	value	as	a	string,	which	Excel	will	then	parse
and	usually	correctly	identify	the	embedded	information.

However,	even	with	this	option,	some	data	may	be	incorrectly	formatted,	even
though	the	source	data	remains	unchanged.	Use	the	Format	Cells	option	within
Excel	to	change	the	format	of	the	displayed	information.

23.1.6.2.1.3.	Microsoft	Visual	Basic

To	be	able	to	update	a	table,	you	must	define	a	primary	key	for	the	table.

Visual	Basic	with	ADO	can't	handle	big	integers.	This	means	that	some	queries
like	SHOW	PROCESSLIST	do	not	work	properly.	The	fix	is	to	use	OPTION=16384	in
the	ODBC	connect	string	or	to	select	the	Change	BIGINT	columns	to	INT
option	in	the	MyODBC	connect	screen.	You	may	also	want	to	select	the	Return
matching	rows	option.

23.1.6.2.1.4.	Microsoft	Visual	InterDev

If	you	have	a	BIGINT	in	your	result,	you	may	get	the	error	[Microsoft][ODBC

http://support.microsoft.com/default.aspx?scid=kb;en-us;128808
http://support.microsoft.com/default.aspx?scid=kb;en-us;164481
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q99321
http://www.mysql.com/portal/software/convertors/

Driver	Manager]	Driver	does	not	support	this	parameter.	Try	selecting
the	Change	BIGINT	columns	to	INT	option	in	the	MyODBC	connect	screen.

23.1.6.2.1.5.	Visual	Objects

You	should	select	the	Don't	optimize	column	widths	option.

23.1.6.2.1.6.	Microsoft	ADO

When	you	are	coding	with	the	ADO	API	and	MyODBC,	you	need	to	pay
attention	to	some	default	properties	that	aren't	supported	by	the	MySQL	server.
For	example,	using	the	CursorLocation	Property	as	adUseServer	returns	a
result	of	–1	for	the	RecordCount	Property.	To	have	the	right	value,	you	need	to
set	this	property	to	adUseClient,	as	shown	in	the	VB	code	here:

Dim	myconn	As	New	ADODB.Connection

Dim	myrs	As	New	Recordset

Dim	mySQL	As	String

Dim	myrows	As	Long

myconn.Open	"DSN=MyODBCsample"

mySQL	=	"SELECT	*	from	user"

myrs.Source	=	mySQL

Set	myrs.ActiveConnection	=	myconn

myrs.CursorLocation	=	adUseClient

myrs.Open

myrows	=	myrs.RecordCount

myrs.Close

myconn.Close

Another	workaround	is	to	use	a	SELECT	COUNT(*)	statement	for	a	similar	query
to	get	the	correct	row	count.

To	find	the	number	of	rows	affected	by	a	specific	SQL	statement	in	ADO,	use
the	RecordsAffected	property	in	the	ADO	execute	method.	For	more
information	on	the	usage	of	execute	method,	refer	to
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/ado270/htm/mdmthcnnexecute.asp.

For	information,	see	ActiveX	Data	Objects(ADO)	Frequently	Asked	Questions.

23.1.6.2.1.7.	Using	MyODBC	with	Active	Server	Pages	(ASP)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q183606

You	should	select	the	Return	matching	rows	option	in	the	DSN.

For	more	information	about	how	to	access	MySQL	via	ASP	using	MyODBC,
refer	to	the	following	articles:

Using	MyODBC	To	Access	Your	MySQL	Database	Via	ASP

ASP	and	MySQL	at	DWAM.NT

A	Frequently	Asked	Questions	list	for	ASP	can	be	found	at
http://support.microsoft.com/default.aspx?
scid=/Support/ActiveServer/faq/data/adofaq.asp.

23.1.6.2.1.8.	Using	MyODBC	with	Visual	Basic	(ADO,	DAO	and	RDO)	and	ASP

Some	articles	that	may	help	with	Visual	Basic	and	ASP:

MySQL	BLOB	columns	and	Visual	Basic	6	by	Mike	Hillyer
(<mike@openwin.org>).

How	to	map	Visual	basic	data	type	to	MySQL	types	by	Mike	Hillyer
(<mike@openwin.org>).

23.1.6.2.2.	Using	MyODBC	with	Borland	Applications

With	all	Borland	applications	where	the	Borland	Database	Engine	(BDE)	is
used,	follow	these	steps	to	improve	compatibility:

Update	to	BDE	3.2	or	newer.

Enable	the	Don't	optimize	column	widths	option	in	the	DSN.

Enabled	the	Return	matching	rows	option	in	the	DSN.

23.1.6.2.2.1.	Using	MyODBC	with	Borland	Builder	4

When	you	start	a	query,	you	can	use	the	Active	property	or	the	Open	method.
Note	that	Active	starts	by	automatically	issuing	a	SELECT	*	FROM	...	query.
That	may	not	be	a	good	thing	if	your	tables	are	large.

http://www.devarticles.com/c/a/ASP/Using-MyODBC-To-Access-Your-MySQL-Database-Via-ASP/
http://www.dwam.net/mysql/asp_myodbc.asp
http://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp
http://dev.mysql.com/tech-resources/articles/vb-blob-handling.html
mailto:mike@openwin.org
http://dev.mysql.com/tech-resources/articles/visual-basic-datatypes.html
mailto:mike@openwin.org

23.1.6.2.2.2.	Using	MyODBC	with	Delphi

Also,	here	is	some	potentially	useful	Delphi	code	that	sets	up	both	an	ODBC
entry	and	a	BDE	entry	for	MyODBC.	The	BDE	entry	requires	a	BDE	Alias
Editor	that	is	free	at	a	Delphi	Super	Page	near	you.	(Thanks	to	Bryan	Brunton
<bryan@flesherfab.com>	for	this):

fReg:=	TRegistry.Create;

fReg.OpenKey('\Software\ODBC\ODBC.INI\DocumentsFab',	True);

fReg.WriteString('Database',	'Documents');

fReg.WriteString('Description',	'	');

fReg.WriteString('Driver',	'C:\WINNT\System32\myodbc.dll');

fReg.WriteString('Flag',	'1');

fReg.WriteString('Password',	'');

fReg.WriteString('Port',	'	');

fReg.WriteString('Server',	'xmark');

fReg.WriteString('User',	'winuser');

fReg.OpenKey('\Software\ODBC\ODBC.INI\ODBC	Data	Sources',	True);

fReg.WriteString('DocumentsFab',	'MySQL');

fReg.CloseKey;

fReg.Free;

Memo1.Lines.Add('DATABASE	NAME=');

Memo1.Lines.Add('USER	NAME=');

Memo1.Lines.Add('ODBC	DSN=DocumentsFab');

Memo1.Lines.Add('OPEN	MODE=READ/WRITE');

Memo1.Lines.Add('BATCH	COUNT=200');

Memo1.Lines.Add('LANGDRIVER=');

Memo1.Lines.Add('MAX	ROWS=-1');

Memo1.Lines.Add('SCHEMA	CACHE	DIR=');

Memo1.Lines.Add('SCHEMA	CACHE	SIZE=8');

Memo1.Lines.Add('SCHEMA	CACHE	TIME=-1');

Memo1.Lines.Add('SQLPASSTHRU	MODE=SHARED	AUTOCOMMIT');

Memo1.Lines.Add('SQLQRYMODE=');

Memo1.Lines.Add('ENABLE	SCHEMA	CACHE=FALSE');

Memo1.Lines.Add('ENABLE	BCD=FALSE');

Memo1.Lines.Add('ROWSET	SIZE=20');

Memo1.Lines.Add('BLOBS	TO	CACHE=64');

Memo1.Lines.Add('BLOB	SIZE=32');

AliasEditor.Add('DocumentsFab','MySQL',Memo1.Lines);

23.1.6.2.2.3.	Using	MyODBC	with	C++	Builder

Tested	with	BDE	3.0.	The	only	known	problem	is	that	when	the	table	schema
changes,	query	fields	are	not	updated.	BDE,	however,	does	not	seem	to

mailto:bryan@flesherfab.com

recognize	primary	keys,	only	the	index	named	PRIMARY,	although	this	has	not
been	a	problem.

23.1.6.2.3.	Using	MyODBC	with	ColdFusion

The	following	information	is	taken	from	the	ColdFusion	documentation:

Use	the	following	information	to	configure	ColdFusion	Server	for	Linux	to	use
the	unixODBC	driver	with	MyODBC	for	MySQL	data	sources.	Allaire	has
verified	that	MyODBC	2.50.26	works	with	MySQL	3.22.27	and	ColdFusion	for
Linux.	(Any	newer	version	should	also	work.)	You	can	download	MyODBC	at
http://dev.mysql.com/downloads/connector/odbc/.

ColdFusion	version	4.5.1	allows	you	to	us	the	ColdFusion	Administrator	to	add
the	MySQL	data	source.	However,	the	driver	is	not	included	with	ColdFusion
version	4.5.1.	Before	the	MySQL	driver	appears	in	the	ODBC	data	sources	drop-
down	list,	you	must	build	and	copy	the	MyODBC	driver	to
/opt/coldfusion/lib/libmyodbc.so.

The	Contrib	directory	contains	the	program	mydsn-xxx.zip	which	allows	you	to
build	and	remove	the	DSN	registry	file	for	the	MyODBC	driver	on	ColdFusion
applications.

For	more	information	and	guides	on	using	ColdFusion	and	MyODBC,	see	the
following	external	sites:

Refer	to	MySQL	ColdFusion	unixODBC	MyODBC	and	Solaris	-	how	to
succeed

ColdFusion	(on	Solaris	and	NT	with	service	pack	5),	How-to:	MySQL	and
ColdFusion.

Troubleshooting	Data	Sources	and	Database	Connectivity	for	Unix
Platforms.

23.1.6.2.4.	Using	MyODBC	with	OpenOffice

Open	Office	(http://www.openoffice.org)	How-to:	MySQL	+	OpenOffice.	How-
to:	OpenOffice	+	MyODBC	+	unixODBC.

http://dev.mysql.com/downloads/connector/odbc/
http://dbforums.com/showthread.php?threadid=174934
http://www.njwtech.net/addons/coldfusion/mysql.html
http://www.macromedia.com/v1/handlers/index.cfm?ID=11328&Method=Full&PageCall=/support/index.cfm
http://www.openoffice.org
http://dba.openoffice.org/proposals/MySQL_OOo.html
http://www.unixodbc.org/doc/OOoMySQL.pdf

23.1.6.2.5.	Using	MyODBC	with	Sambar	Server

Sambar	Server	(http://www.sambarserver.info)	How-to:	MyODBC	+
SambarServer	+	MySQL.

23.1.6.2.6.	Using	MyODBC	with	Pervasive	Software	DataJunction

You	have	to	change	it	to	output	VARCHAR	rather	than	ENUM,	as	it	exports	the	latter
in	a	manner	that	causes	MySQL	problems.

23.1.6.2.7.	Using	MyODBC	with	SunSystems	Vision

You	should	select	the	Return	matching	rows	option.

23.1.6.3.	MyODBC	Errors	and	Resolutions

The	following	section	details	some	common	errors	and	their	suggested	fix	or
alternative	solution.	If	you	are	still	experiencing	problems,	use	the	MyODBC
mailing	list;	see	Section	23.1.7.1,	“MyODBC	Community	Support”.

Many	problems	can	be	resolved	by	upgrading	your	MyODBC	drivers	to	the
latest	available	release.	On	Windows,	you	should	also	make	sure	that	you	have
the	latest	versions	of	the	Microsoft	Data	Access	Components	(MDAC)	installed.

24.1.6.3.1:

Question:

Are	MyODBC	2.50	applications	compatible	with	MyODBC	3.51?

Answer:

Applications	based	on	MyODBC	2.50	should	work	fine	with	MyODBC	3.51	and
later	versions.	If	you	find	something	is	not	working	with	the	latest	version	of
MyODBC	which	previously	worked	under	an	earlier	version,	please	file	a	bug
report.	See	Section	23.1.7.2,	“How	to	Report	MyODBC	Problems	or	Bugs”.

24.1.6.3.2:

Question:

http://www.sambarserver.info
http://www.sambarserver.info/article.php?sid=66

I	have	installed	MyODBC	on	Windows	XP	x64	Edition	or	Windows	Server	2003
R2	x64.	The	installation	completed	successfully,	but	the	MyODBC	driver	does
not	appear	in	ODBC	Data	Source	Administrator.

Answer:

This	is	not	a	bug,	but	is	related	to	the	way	Windows	x64	editions	operate	with
the	ODBC	driver.	On	Windows	x64	editions,	the	MyODBC	driver	is	installed	in
the	%SystemRoot%\SysWOW64	folder.	However,	the	default	ODBC	Data	Source
Administrator	that	is	available	through	the	Administrative	Tools	or	Control
Panel	in	Windows	x64	Editions	is	located	in	the	%SystemRoot%\system32
folder,	and	only	searches	this	folder	for	ODBC	drivers.

On	Windowx	x64	editions,	you	should	use	the	ODBC	administration	tool
located	at	%SystemRoot%\SysWOW64\odbcad32.exe,	this	will	correctly	locate	the
installed	MyODBC	drivers	and	enable	you	to	create	a	MyODBC	DSN.

This	issue	was	originally	reported	as	Bug	#20301.

24.1.6.3.3:

Question:

When	connecting	or	using	the	Test	button	in	ODBC	Data	Source	Administrator
I	get	error	10061	(Cannot	connect	to	server)

Answer:

This	error	can	be	raised	by	a	number	of	different	issues,	including	server
problems,	network	problems,	and	firewall	and	port	blocking	problems.	For	more
information,	see	Section	A.2.2,	“Can't	connect	to	[local]	MySQL	server”.

24.1.6.3.4:

Question:

The	following	error	is	reported	when	using	transactions:	Transactions	are	not
enabled

Answer:

This	error	indicates	that	you	are	trying	to	use	transactions	with	a	MySQL	table
that	does	not	support	transactions.	Transactions	are	supported	within	MySQL
when	using	the	InnoDB	and	BDB	database	engines.

You	should	check	the	following	before	continuing:

Verify	that	your	MySQL	server	supports	a	transactional	database	engine.
Use	SHOW	ENGINES	to	obtain	a	list	of	the	available	engine	types.

Verify	that	the	tables	you	are	updating	use	a	transaction	database	engine.

Ensure	that	you	have	not	enabled	the	disable	transactions	option	in
your	DSN.

24.1.6.3.5:

Question:

The	following	error	is	reported	when	I	submit	a	query:	Cursor	not	found

Answer:

This	occurs	because	the	application	is	using	the	old	MyODBC	2.50	version,	and
it	did	not	set	the	cursor	name	explicitly	through	SQLSetCursorName.	The	fix	is
to	upgrade	to	MyODBC	3.51	version.

24.1.6.3.6:

Question:

Access	reports	records	as	#DELETED#	when	inserting	or	updating	records	in
linked	tables.

Answer:

If	the	inserted	or	updated	records	are	shown	as	#DELETED#	in	the	access,	then:

If	you	are	using	Access	2000,	you	should	get	and	install	the	newest	(version
2.6	or	higher)	Microsoft	MDAC	(Microsoft	Data	Access	Components)
from	http://www.microsoft.com/data/.	This	fixes	a	bug	in	Access	that	when
you	export	data	to	MySQL,	the	table	and	column	names	aren't	specified.

http://www.microsoft.com/data/

Another	way	to	work	around	this	bug	is	to	upgrade	to	MyODBC	2.50.33	or
higher	and	MySQL	3.23.x	or	higher,	which	together	provide	a	workaround
for	the	problem.

You	should	also	get	and	apply	the	Microsoft	Jet	4.0	Service	Pack	5	(SP5)
which	can	be	found	at	http://support.microsoft.com/default.aspx?
scid=kb;EN-US;q239114.	This	fixes	some	cases	where	columns	are	marked
as	#DELETED#	in	Access.

Note:	If	you	are	using	MySQL	3.22,	you	must	apply	the	MDAC	patch	and
use	MyODBC	2.50.32	or	2.50.34	and	up	to	work	around	this	problem.

For	all	versions	of	Access,	you	should	enable	the	MyODBC	Return
matching	rows	option.	For	Access	2.0,	you	should	additionally	enable	the
Simulate	ODBC	1.0	option.

You	should	have	a	timestamp	in	all	tables	that	you	want	to	be	able	to
update..

You	should	have	a	primary	key	in	the	table.	If	not,	new	or	updated	rows
may	show	up	as	#DELETED#.

Use	only	DOUBLE	float	fields.	Access	fails	when	comparing	with	single-
precision	floats.	The	symptom	usually	is	that	new	or	updated	rows	may
show	up	as	#DELETED#	or	that	you	can't	find	or	update	rows.

If	you	are	using	MyODBC	to	link	to	a	table	that	has	a	BIGINT	column,	the
results	are	displayed	as	#DELETED.	The	work	around	solution	is:

Have	one	more	dummy	column	with	TIMESTAMP	as	the	data	type.

Select	the	Change	BIGINT	columns	to	INT	option	in	the	connection
dialog	in	ODBC	DSN	Administrator.

Delete	the	table	link	from	Access	and	re-create	it.

Old	records	still	display	as	#DELETED#,	but	newly	added/updated	records	are
displayed	properly.

24.1.6.3.7:

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114

Question:

How	do	I	handle	Write	Conflicts	or	Row	Location	errors?

Answer:

If	you	see	the	following	errors,	select	the	Return	Matching	Rows	option	in	the
DSN	configuration	dialog,	or	specify	OPTION=2,	as	the	connection	parameter:

Write	Conflict.	Another	user	has	changed	your	data.

Row	cannot	be	located	for	updating.	Some	values	may	have	been	changed

since	it	was	last	read.

24.1.6.3.8:

Question:

Exporting	data	from	Access	97	to	MySQL	reports	a	Syntax	Error.

Answer:

This	error	is	specific	to	Access	97	and	versions	of	MyODBC	earlier	than
3.51.02.	Update	to	the	latest	version	of	the	MyODBC	driver	to	resolve	this
problem.

24.1.6.3.9:

Question:

Exporting	data	from	Microsoft	DTS	to	MySQL	reports	a	Syntax	Error.

Answer:

This	error	occurs	only	with	MySQL	tables	using	the	TEXT	or	VARCHAR	data	types.
You	can	fix	this	error	by	upgrading	your	MyODBC	driver	to	version	3.51.02	or
higher.

24.1.6.3.10:

Question:

Using	ODBC.NET	with	MyODBC,	while	fetching	empty	string	(0	length),	it
starts	giving	the	SQL_NO_DATA	exception.

Answer:

You	can	get	the	patch	that	addresses	this	problem	from
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243.

24.1.6.3.11:

Question:

Using	SELECT	COUNT(*)	FROM	tbl_name	within	Visual	Basic	and	ASP	returns
an	error.

Answer:

This	error	occurs	because	the	COUNT(*)	expression	is	returning	a	BIGINT,	and
ADO	can't	make	sense	of	a	number	this	big.	Select	the	Change	BIGINT	columns
to	INT	option	(option	value	16384).

24.1.6.3.12:

Question:

Using	the	AppendChunk()	or	GetChunk()	ADO	methods,	the	Multiple-step
operation	generated	errors.	Check	each	status	value	error	is	returned.

Answer:

The	GetChunk()	and	AppendChunk()	methods	from	ADO	doesn't	work	as
expected	when	the	cursor	location	is	specified	as	adUseServer.	On	the	other
hand,	you	can	overcome	this	error	by	using	adUseClient.

A	simple	example	can	be	found	from
http://www.dwam.net/iishelp/ado/docs/adomth02_4.htm

24.1.6.3.13:

Question:

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243
http://www.dwam.net/iishelp/ado/docs/adomth02_4.htm

Access	Returns	Another	user	had	modified	the	record	that	you	have
modified	while	editing	records	on	a	Linked	Table.

Answer:

In	most	cases,	this	can	be	solved	by	doing	one	of	the	following	things:

Add	a	primary	key	for	the	table	if	one	doesn't	exist.

Add	a	timestamp	column	if	one	doesn't	exist.

Only	use	double-precision	float	fields.	Some	programs	may	fail	when	they
compare	single-precision	floats.

If	these	strategies	don't	help,	you	should	start	by	making	a	log	file	from	the
ODBC	manager	(the	log	you	get	when	requesting	logs	from	ODBCADMIN)	and
a	MyODBC	log	to	help	you	figure	out	why	things	go	wrong.	For	instructions,
see	Section	23.1.3.8,	“Getting	an	ODBC	Trace	File”.

23.1.7.	MyODBC	Support

There	are	many	different	places	where	you	can	get	support	for	using	MyODBC.
You	should	always	try	the	MyODBC	Mailing	List	or	MyODBC	Forum.	See
Section	23.1.7.1,	“MyODBC	Community	Support”,	for	help	before	reporting	a
specific	bug	or	issue	to	MySQL.

23.1.7.1.	MyODBC	Community	Support

MySQL	AB	provides	assistance	to	the	user	community	by	means	of	its	mailing
lists.	For	MyODBC-related	issues,	you	can	get	help	from	experienced	users	by
using	the	<myodbc@lists.mysql.com>	mailing	list.	Archives	are	available	online
at	http://lists.mysql.com/myodbc.

For	information	about	subscribing	to	MySQL	mailing	lists	or	to	browse	list
archives,	visit	http://lists.mysql.com/.	See	Section	1.7.1,	“MySQL	Mailing
Lists”.

Community	support	from	experienced	users	is	also	available	through	the
MyODBC	Forum.	You	may	also	find	help	from	other	users	in	the	other	MySQL

mailto:myodbc@lists.mysql.com
http://lists.mysql.com/myodbc
http://lists.mysql.com/
http://forums.mysql.com/list.php?37

Forums,	located	at	http://forums.mysql.com.	See	Section	1.7.2,	“MySQL
Community	Support	at	the	MySQL	Forums”.

23.1.7.2.	How	to	Report	MyODBC	Problems	or	Bugs

If	you	encounter	difficulties	or	problems	with	MyODBC,	you	should	start	by
making	a	log	file	from	the	ODBC	Manager	(the	log	you	get	when	requesting	logs
from	ODBC	ADMIN)	and	MyODBC.	The	procedure	for	doing	this	is	described	in
Section	23.1.3.8,	“Getting	an	ODBC	Trace	File”.

Check	the	MyODBC	trace	file	to	find	out	what	could	be	wrong.	You	should	be
able	to	determine	what	statements	were	issued	by	searching	for	the	string
>mysql_real_query	in	the	myodbc.log	file.

You	should	also	try	issuing	the	statements	from	the	mysql	client	program	or
from	admndemo.	This	helps	you	determine	whether	the	error	is	in	MyODBC	or
MySQL.

If	you	find	out	something	is	wrong,	please	only	send	the	relevant	rows
(maximum	40	rows)	to	the	myodbc	mailing	list.	See	Section	1.7.1,	“MySQL
Mailing	Lists”.	Please	never	send	the	whole	MyODBC	or	ODBC	log	file!

You	should	ideally	include	the	following	information	with	the	email:

Operating	system	and	version

MyODBC	version

ODBC	Driver	Manager	type	and	version

MySQL	server	version

ODBC	trace	from	Driver	Manager

MyODBC	log	file	from	MyODBC	driver

Simple	reproducible	sample

Remember	that	the	more	information	you	can	supply	to	us,	the	more	likely	it	is
that	we	can	fix	the	problem!

http://forums.mysql.com

Also,	before	posting	the	bug,	check	the	MyODBC	mailing	list	archive	at
http://lists.mysql.com/myodbc.

If	you	are	unable	to	find	out	what's	wrong,	the	last	option	is	to	create	an	archive
in	tar	or	Zip	format	that	contains	a	MyODBC	trace	file,	the	ODBC	log	file,	and
a	README	file	that	explains	the	problem.	You	can	send	this	to
ftp://ftp.mysql.com/pub/mysql/upload/.	Only	MySQL	engineers	have	access	to
the	files	you	upload,	and	we	are	very	discreet	with	the	data.

If	you	can	create	a	program	that	also	demonstrates	the	problem,	please	include	it
in	the	archive	as	well.

If	the	program	works	with	another	SQL	server,	you	should	include	an	ODBC	log
file	where	you	perform	exactly	the	same	SQL	statements	so	that	we	can	compare
the	results	between	the	two	systems.

Remember	that	the	more	information	you	can	supply	to	us,	the	more	likely	it	is
that	we	can	fix	the	problem.

23.1.7.3.	How	to	Submit	a	MyODBC	Patch

You	can	send	a	patch	or	suggest	a	better	solution	for	any	existing	code	or
problems	by	sending	a	mail	message	to	<myodbc@lists.mysql.com>.

23.1.7.4.	MyODBC	Change	History

The	MyODBC	Change	History	(Changelog)	is	located	with	the	main	Changelog
for	MySQL.	See	Section	D.3,	“MySQL	Connector/ODBC	(MyODBC)	Change
History”.

23.1.7.5.	Credits

These	are	the	developers	that	have	worked	on	the	MyODBC	and	MyODBC	3.51
Drivers	from	MySQL	AB.

Michael	(Monty)	Widenius

Venu	Anuganti

http://lists.mysql.com/myodbc
ftp://ftp.mysql.com/pub/mysql/upload/
mailto:myodbc@lists.mysql.com

Peter	Harvey

23.2.	Connector/NET

Connector/NET	enables	developers	to	easily	create	.NET	applications	that
require	secure,	high-performance	data	connectivity	with	MySQL.	It	implements
the	required	ADO.NET	interfaces	and	integrates	into	ADO.NET	aware	tools.
Developers	can	build	applications	using	their	choice	of	.NET	languages.
Connector/NET	is	a	fully	managed	ADO.NET	driver	written	in	100%	pure	C#.

Connector/NET	includes	full	support	for:

MySQL	5.0	features	(such	as	stored	procedures)

MySQL	4.1	features	(server-side	prepared	statements,	Unicode,	and	shared
memory	access,	and	so	forth)

Large-packet	support	for	sending	and	receiving	rows	and	BLOBs	up	to	2
gigabytes	in	size.

Protocol	compression	which	allows	for	compressing	the	data	stream
between	the	client	and	server.

Support	for	connecting	using	TCP/IP	sockets,	named	pipes,	or	shared
memory	on	Windows.

Support	for	connecting	using	TCP/IP	sockets	or	Unix	sockets	on	Unix.

Support	for	the	Open	Source	Mono	framework	developed	by	Novell.

Fully	managed,	does	not	utilize	the	MySQL	client	library.

This	document	is	intended	as	a	user's	guide	to	Connector/NET	and	includes	a
full	syntax	reference.	Syntax	information	is	also	included	within	the
Documentation.chm	file	included	with	the	Connector/NET	distribution.

23.2.1.	Connector/NET	Versions

There	is	currently	one	version	of	the	Connector/NET	available:

Connector/NET	1.0	includes	support	for	MySQL	4.0,	and	MySQL	5.0
features,	and	full	compatibility	with	the	ADO.NET	driver	interface.

23.2.2.	How	to	install	Connector/NET

Connector/NET	runs	on	any	platform	that	supports	the	.NET	framework.	The
.NET	framework	is	primarily	supported	on	recent	versions	of	Microsoft
Windows,	and	is	supported	on	Linux	through	the	Open	Source	Mono	framework
(see	http://www.mono-project.com).

Connector/NET	is	available	for	download	from
http://dev.mysql.com/downloads/connector/net/1.0.html.

23.2.2.1.	Installing	Connector/NET	on	Windows

On	Windows,	installation	is	supported	either	through	a	binary	installation
process	or	by	downloading	a	Zip	file	with	the	Connector/NET	components.

Before	installing,	you	should	ensure	that	your	system	is	up	to	date,	including
installing	the	latest	version	of	the	.NET	Framework.

23.2.2.1.1.	Installing	Connector/NET	using	the	Installer

Using	the	installer	is	the	most	straightforward	method	of	installing
Connector/NET	on	Windows	and	the	installed	components	include	the	source
code,	test	code	and	full	reference	documentation.

Connector/NET	is	installed	through	the	use	of	a	Windows	Installer	(.msi)
installation	package,	which	can	be	used	to	install	Connector/NET	on	all
Windows	operating	systems.	The	MSI	package	in	contained	within	a	ZIP	archive
named	mysql-connector-net-version.zip,	where	version	indicates	the
Connector/NET	version.

To	install	Connector/NET:

1.	 Double	click	on	the	MSI	installer	file	extracted	from	the	Zip	you
downloaded.	Click	Next	to	start	the	installation.

http://www.mono-project.com
http://dev.mysql.com/downloads/connector/net/1.0.html

2.	 You	must	choose	the	type	of	installation	that	you	want	to	perform.

For	most	situations,	the	Typical	installation	will	be	suitable.	Click	the

Typical	button	and	proceed	to	Step	5.	A	Complete	installation	installs	all	the
available	files.	To	conduct	a	Complete	installation,	click	the	Complete
button	and	proceed	to	step	5.	If	you	want	to	customize	your	installation,
including	choosing	the	components	to	install	and	some	installation	options,
click	the	Custom	button	and	proceed	to	Step	3.

3.	 If	you	have	chosen	a	custom	installation,	you	can	select	the	individual
components	that	you	want	to	install,	including	the	core	interface
component,	supporting	documentation	(a	CHM	file)	samples	and	examples
and	the	source	code.	Select	the	items,	and	their	installation	level,	and	then
click	Next	to	continue	the	installation.

4.	 For	a	custom	installation	you	can	also	decide	whether	the	Connector/NET
component	should	be	registered	in	the	Global	Assembly	Cache	-	this	will
make	the	Connector/NET	component	available	to	all	applications,	not	just
those	where	you	explicitly	reference	the	Connector/NET	component.	You
can	also	enable,	or	disable,	the	creation	or	appropriate	items	in	the	Start
menu.	Click	Next	when	you	have	selected	the	required	options.

5.	 You	will	be	given	a	final	opportunity	to	confirm	the	installation.	Click
Install	to	copy	and	install	the	files	onto	your	machine.

6.	 Once	the	installation	has	been	completed,	click	Finish	to	exit	the	installer.

Unless	you	choose	otherwise,	Connector/NET	is	installed	in	C:\Program
Files\MySQL\MySQL	Connector	Net	X.X.X,	where	X.X.X	is	replaced	with	the
version	of	Connector/NET	you	are	installing.	New	installations	do	not	overwrite
existing	versions	of	Connector/NET.

Depending	on	your	installation	type,	the	installed	components	will	include	some
or	all	of	the	following	components:

bin	-	Connector/NET	MySQL	libraries	for	different	versions	of	the	.NET
environment.

docs	-	contains	a	CHM	of	the	Connector/NET	documentation.

samples	-	sample	code	and	applications	that	use	the	Connector/NET
component.

src	-	the	source	code	for	the	Connector/NET	component.

23.2.2.1.2.	Installing	Connector/NET	using	the	Zip	package

If	you	are	having	problems	running	the	installer,	you	can	download	a	.zip	file
without	an	installer	as	an	alternative.	That	file	is	called	mysql-connector-net-
version-noinstall.zip.	Once	downloaded,	you	can	extract	the	files	to	a	location
of	your	choice.

The	.zip	file	contains	the	following	directories:

bin	-	Connector/NET	MySQL	libraries	for	different	versions	of	the	.NET
environment.

doc	-	contains	a	CHM	of	the	Connector/NET	documentation.

Samples	-	sample	code	and	applications	that	use	the	Connector/NET
component.

mysqlclient	-	the	source	code	for	the	Connector/NET	component.

testsuite	-	the	test	suite	used	to	verify	the	operation	of	the

Connector/NET	component.

23.2.2.2.	Installing	Connector/NET	on	Unix	with	Mono

There	is	no	installer	available	for	installing	the	Connector/NET	component	on
your	Unix	installation.	However,	the	installation	is	very	simple.	Before
installing,	please	ensure	that	you	have	a	working	Mono	project	installation.

Note	that	you	should	only	install	the	Connector/NET	component	on	Unix
environments	where	you	want	to	connect	to	a	MySQL	server	through	the	Mono
project.	If	you	are	deploying	or	developing	on	a	different	environment	such	as
Java	or	Perl	then	you	should	use	a	more	appropriate	connectivity	component.
See	the	Chapter	23,	Connectors,	or	Chapter	22,	APIs	and	Libraries,	for	more
information.

To	install	Connector/NET	on	Unix/Mono:

1.	 Download	the	mysql-connector-net-version-noinstall.zip	and	extract	the
contents.

2.	 Copy	the	MySql.Data.dll	file	to	your	Mono	project	installation	folder.

3.	 You	must	register	the	Connector/NET	component	in	the	Global	Assembly
Cache	using	the	gacutil	command:

shell>	gacutil	/i	MySql.Data.dll

Once	installed,	applications	that	are	compiled	with	the	Connector/NET
component	need	no	further	changes.	However,	you	must	ensure	that	when	you
compile	your	applications	you	include	the	Connector/NET	component	using	the
-r:MySqlData.dll	command	line	option.

23.2.2.3.	Installing	Connector/NET	using	the	Source

Caution:	You	should	read	this	section	only	if	you	are	interested	in	helping	us
test	our	new	code.	If	you	just	want	to	get	Connector/NET	up	and	running	on
your	system,	you	should	use	a	standard	release	distribution.

To	be	able	to	access	the	Connector/NET	source	tree,	you	must	have	Subversion

installed.	Subversion	is	freely	available	from	http://subversion.tigris.org/.

The	most	recent	development	source	tree	is	available	from	our	public
Subversion	trees	at	http://dev.mysql.com/tech-resources/sources.html.

To	checkout	out	the	Connector/NET	sources,	change	to	the	directory	where	you
want	the	copy	of	the	Connector/NET	tree	to	be	stored,	then	use	the	following
command:

shell>	svn	co

http://svn.mysql.com/svnpublic/connector-net

A	Visual	Studio	project	is	included	in	the	source	which	you	can	use	to	build
Connector/NET.

23.2.3.	Connector/NET	Examples

Connector/NET	comprises	several	classes	that	are	used	to	connect	to	the
database,	execute	queries	and	statements,	and	manage	query	results.

The	following	are	the	major	classes	of	Connector/NET:

MySqlCommand:	Represents	an	SQL	statement	to	execute	against	a	MySQL
database.

MySqlCommandBuilder:	Automatically	generates	single-table	commands
used	to	reconcile	changes	made	to	a	DataSet	with	the	associated	MySQL
database.

MySqlConnection:	Represents	an	open	connection	to	a	MySQL	Server
database.

MySqlDataAdapter:	Represents	a	set	of	data	commands	and	a	database
connection	that	are	used	to	fill	a	dataset	and	update	a	MySQL	database.

MySqlDataReader:	Provides	a	means	of	reading	a	forward-only	stream	of
rows	from	a	MySQL	database.

MySqlException:	The	exception	that	is	thrown	when	MySQL	returns	an
error.

http://subversion.tigris.org/
http://dev.mysql.com/tech-resources/sources.html

MySqlHelper:	Helper	class	that	makes	it	easier	to	work	with	the	provider.

MySqlTransaction:	Represents	an	SQL	transaction	to	be	made	in	a	MySQL
database.

This	section	contains	basic	information	and	examples	for	each	of	the	above
classes.	For	a	more	detailed	reference	guide	please	see	Section	23.2.4,
“Connector/NET	Reference”.

23.2.3.1.	MySqlCommand

Represents	a	SQL	statement	to	execute	against	a	MySQL	database.	This	class
cannot	be	inherited.

MySqlCommand	features	the	following	methods	for	executing	commands	at	a
MySQL	database:

Item Description
ExecuteReader Executes	commands	that	return	rows.

ExecuteNonQuery Executes	commands	such	as	SQL	INSERT,	DELETE,	andUPDATE	statements.

ExecuteScalar Retrieves	a	single	value	(for	example,	an	aggregate	value)
from	a	database.

You	can	reset	the	CommandText	property	and	reuse	the	MySqlCommand	object.
However,	you	must	close	the	MySqlDataReader	before	you	can	execute	a	new	or
previous	command.

If	a	MySqlException	is	generated	by	the	method	executing	a	MySqlCommand,	the
MySqlConnection	remains	open.	It	is	the	responsibility	of	the	programmer	to
close	the	connection.

Note.		Prior	versions	of	the	provider	used	the	'@'	symbol	to	mark	parameters	in
SQL.	This	is	incompatible	with	MySQL	user	variables,	so	the	provider	now	uses
the	'?'	symbol	to	locate	parameters	in	SQL.	To	support	older	code,	you	can	set
'old	syntax=yes'	on	your	connection	string.	If	you	do	this,	please	be	aware	that
an	exception	will	not	be	throw	if	you	fail	to	define	a	parameter	that	you	intended
to	use	in	your	SQL.

Examples

The	following	example	creates	a	MySqlCommand	and	a	MySqlConnection.	The
MySqlConnection	is	opened	and	set	as	the	Connection	for	the	MySqlCommand.
The	example	then	calls	ExecuteNonQuery,	and	closes	the	connection.	To
accomplish	this,	the	ExecuteNonQuery	is	passed	a	connection	string	and	a	query
string	that	is	a	SQL	INSERT	statement.

Visual	Basic	example:

		Public	Sub	InsertRow(myConnectionString	As	String)

		"	If	the	connection	string	is	null,	use	a	default.

		If	myConnectionString	=	""	Then

				myConnectionString	=	"Database=Test;Data	Source=localhost;User	Id=username;Password=pass"

		End	If

		Dim	myConnection	As	New	MySqlConnection(myConnectionString)

		Dim	myInsertQuery	As	String	=	"INSERT	INTO	Orders	(id,	customerId,	amount)	Values(1001,	23,	30.66)"

		Dim	myCommand	As	New	MySqlCommand(myInsertQuery)

		myCommand.Connection	=	myConnection

		myConnection.Open()

		myCommand.ExecuteNonQuery()

		myCommand.Connection.Close()

End	Sub

				

C#	example:

		public	void	InsertRow(string	myConnectionString)	

{

		//	If	the	connection	string	is	null,	use	a	default.

		if(myConnectionString	==	"")	

		{

				myConnectionString	=	"Database=Test;Data	Source=localhost;User	Id=username;Password=pass";

		}

		MySqlConnection	myConnection	=	new	MySqlConnection(myConnectionString);

		string	myInsertQuery	=	"INSERT	INTO	Orders	(id,	customerId,	amount)	Values(1001,	23,	30.66)";

		MySqlCommand	myCommand	=	new	MySqlCommand(myInsertQuery);

		myCommand.Connection	=	myConnection;

		myConnection.Open();

		myCommand.ExecuteNonQuery();

		myCommand.Connection.Close();

}

				

23.2.3.1.1.	Class	MySqlCommand	Constructor	Form	1

Overload	methods	for	MySqlCommand

Initializes	a	new	instance	of	the	MySqlCommand	class.

Examples

The	following	example	creates	a	MySqlCommand	and	sets	some	of	its
properties.

Note.		This	example	shows	how	to	use	one	of	the	overloaded	versions	of	the
MySqlCommand	constructor.	For	other	examples	that	might	be	available,	see	the
individual	overload	topics.

Visual	Basic	example:

		Public	Sub	CreateMySqlCommand()

				Dim	myConnection	As	New	MySqlConnection	_

								("Persist	Security	Info=False;database=test;server=myServer")

				myConnection.Open()

				Dim	myTrans	As	MySqlTransaction	=	myConnection.BeginTransaction()

				Dim	mySelectQuery	As	String	=	"SELECT	*	FROM	MyTable"

				Dim	myCommand	As	New	MySqlCommand(mySelectQuery,	myConnection,	myTrans)

				myCommand.CommandTimeout	=	20

		End	Sub

		

C#	example:

		public	void	CreateMySqlCommand()	

		{

				MySqlConnection	myConnection	=	new	MySqlConnection("Persist	Security	Info=False;

						database=test;server=myServer");

				myConnection.Open();

				MySqlTransaction	myTrans	=	myConnection.BeginTransaction();

				string	mySelectQuery	=	"SELECT	*	FROM	myTable";

				MySqlCommand	myCommand	=	new	MySqlCommand(mySelectQuery,	myConnection,myTrans);

				myCommand.CommandTimeout	=	20;

		}

		

C++	example:

		public:

		void	CreateMySqlCommand()

		{

				MySqlConnection*	myConnection	=	new	MySqlConnection(S"Persist	Security	Info=False;

						database=test;server=myServer");

				myConnection->Open();

				MySqlTransaction*	myTrans	=	myConnection->BeginTransaction();

				String*	mySelectQuery	=	S"SELECT	*	FROM	myTable";

				MySqlCommand*	myCommand	=	new	MySqlCommand(mySelectQuery,	myConnection,	myTrans);

				myCommand->CommandTimeout	=	20;

		};

		

Initializes	a	new	instance	of	the	MySqlCommand	class.

The	base	constructor	initializes	all	fields	to	their	default	values.	The	following
table	shows	initial	property	values	for	an	instance	of	MySqlCommand.

Properties Initial	Value
CommandText empty	string	("")
CommandTimeout 0
CommandType CommandType.Text
Connection Null

You	can	change	the	value	for	any	of	these	properties	through	a	separate	call	to
the	property.

Examples

The	following	example	creates	a	MySqlCommand	and	sets	some	of	its	properties.

Visual	Basic	example:

Public	Sub	CreateMySqlCommand()

				Dim	myCommand	As	New	MySqlCommand()

				myCommand.CommandType	=	CommandType.Text

End	Sub

C#	example:

public	void	CreateMySqlCommand()	

{

			MySqlCommand	myCommand	=	new	MySqlCommand();

			myCommand.CommandType	=	CommandType.Text;

}

23.2.3.1.2.	Class	MySqlCommand	Constructor	Form	2

Initializes	a	new	instance	of	the	MySqlCommand	class	with	the	text	of	the	query.

Parameters:	The	text	of	the	query.

When	an	instance	of	MySqlCommand	is	created,	the	following	read/write
properties	are	set	to	initial	values.

Properties Initial	Value
CommandText cmdText

CommandTimeout 0
CommandType CommandType.Text
Connection Null

You	can	change	the	value	for	any	of	these	properties	through	a	separate	call	to
the	property.

Examples

The	following	example	creates	a	MySqlCommand	and	sets	some	of	its	properties.

Visual	Basic	example:

Public	Sub	CreateMySqlCommand()

		Dim	sql	as	String	=	"SELECT	*	FROM	mytable"

				Dim	myCommand	As	New	MySqlCommand(sql)

				myCommand.CommandType	=	CommandType.Text

End	Sub

C#	example:

public	void	CreateMySqlCommand()	

{

		string	sql	=	"SELECT	*	FROM	mytable";

		MySqlCommand	myCommand	=	new	MySqlCommand(sql);

		myCommand.CommandType	=	CommandType.Text;

}

23.2.3.1.3.	Class	MySqlCommand	Constructor	Form	3

Initializes	a	new	instance	of	the	MySqlCommand	class	with	the	text	of	the	query
and	a	MySqlConnection.

Parameters:	The	text	of	the	query.

Parameters:	A	MySqlConnection	that	represents	the	connection	to	an	instance
of	SQL	Server.

When	an	instance	of	MySqlCommand	is	created,	the	following	read/write
properties	are	set	to	initial	values.

Properties Initial	Value
CommandText cmdText

CommandTimeout 0
CommandType CommandType.Text
Connection connection

You	can	change	the	value	for	any	of	these	properties	through	a	separate	call	to
the	property.

Examples

The	following	example	creates	a	MySqlCommand	and	sets	some	of	its	properties.

Visual	Basic	example:

Public	Sub	CreateMySqlCommand()

		Dim	conn	as	new	MySqlConnection("server=myServer")

		Dim	sql	as	String	=	"SELECT	*	FROM	mytable"

				Dim	myCommand	As	New	MySqlCommand(sql,	conn)

				myCommand.CommandType	=	CommandType.Text

End	Sub

C#	example:

public	void	CreateMySqlCommand()	

{

		MySqlConnection	conn	=	new	MySqlConnection("server=myserver")

		string	sql	=	"SELECT	*	FROM	mytable";

		MySqlCommand	myCommand	=	new	MySqlCommand(sql,	conn);

		myCommand.CommandType	=	CommandType.Text;

}

23.2.3.1.4.	Class	MySqlCommand	Constructor	Form	4

Initializes	a	new	instance	of	the	MySqlCommand	class	with	the	text	of	the	query,	a
MySqlConnection,	and	the	MySqlTransaction.

Parameters:	The	text	of	the	query.

Parameters:	A	MySqlConnection	that	represents	the	connection	to	an	instance
of	SQL	Server.

Parameters:	The	MySqlTransaction	in	which	the	MySqlCommand	executes.

When	an	instance	of	MySqlCommand	is	created,	the	following	read/write
properties	are	set	to	initial	values.

Properties Initial	Value
CommandText cmdText

CommandTimeout 0
CommandType CommandType.Text
Connection connection

You	can	change	the	value	for	any	of	these	properties	through	a	separate	call	to
the	property.

Examples

The	following	example	creates	a	MySqlCommand	and	sets	some	of	its	properties.

Visual	Basic	example:

Public	Sub	CreateMySqlCommand()

		Dim	conn	as	new	MySqlConnection("server=myServer")

		conn.Open();

		Dim	txn	as	MySqlTransaction	=	conn.BeginTransaction()

		Dim	sql	as	String	=	"SELECT	*	FROM	mytable"

				Dim	myCommand	As	New	MySqlCommand(sql,	conn,	txn)

				myCommand.CommandType	=	CommandType.Text

End	Sub

C#	example:

public	void	CreateMySqlCommand()	

{

		MySqlConnection	conn	=	new	MySqlConnection("server=myserver")

		conn.Open();

		MySqlTransaction	txn	=	conn.BeginTransaction();

		string	sql	=	"SELECT	*	FROM	mytable";

		MySqlCommand	myCommand	=	new	MySqlCommand(sql,	conn,	txn);

		myCommand.CommandType	=	CommandType.Text;

}

23.2.3.1.5.	ExecuteNonQuery

Executes	a	SQL	statement	against	the	connection	and	returns	the	number	of	rows
affected.

Returns:	Number	of	rows	affected

You	can	use	ExecuteNonQuery	to	perform	any	type	of	database	operation,
however	any	resultsets	returned	will	not	be	available.	Any	output	parameters
used	in	calling	a	stored	procedure	will	be	populated	with	data	and	can	be
retrieved	after	execution	is	complete.	For	UPDATE,	INSERT,	and	DELETE
statements,	the	return	value	is	the	number	of	rows	affected	by	the	command.	For
all	other	types	of	statements,	the	return	value	is	-1.

Examples

The	following	example	creates	a	MySqlCommand	and	then	executes	it	using
ExecuteNonQuery.	The	example	is	passed	a	string	that	is	a	SQL	statement	(such
as	UPDATE,	INSERT,	or	DELETE)	and	a	string	to	use	to	connect	to	the	data
source.

Visual	Basic	example:

				Public	Sub	CreateMySqlCommand(myExecuteQuery	As	String,	myConnection	As	MySqlConnection)

						Dim	myCommand	As	New	MySqlCommand(myExecuteQuery,	myConnection)

						myCommand.Connection.Open()

						myCommand.ExecuteNonQuery()

						myConnection.Close()

				End	Sub	

		

C#	example:

				public	void	CreateMySqlCommand(string	myExecuteQuery,	MySqlConnection	myConnection)	

				{

						MySqlCommand	myCommand	=	new	MySqlCommand(myExecuteQuery,	myConnection);

						myCommand.Connection.Open();

						myCommand.ExecuteNonQuery();

						myConnection.Close();

				}

		

23.2.3.1.6.	ExecuteReader1

Sends	the	CommandText	to	the	MySqlConnectionConnection,	and	builds	a
MySqlDataReader	using	one	of	the	CommandBehavior	values.

Parameters:	One	of	the	CommandBehavior	values.

When	the	CommandType	property	is	set	to	StoredProcedure,	the	CommandText
property	should	be	set	to	the	name	of	the	stored	procedure.	The	command
executes	this	stored	procedure	when	you	call	ExecuteReader.

The	MySqlDataReader	supports	a	special	mode	that	enables	large	binary	values
to	be	read	efficiently.	For	more	information,	see	the	SequentialAccess	setting
for	CommandBehavior.

While	the	MySqlDataReader	is	in	use,	the	associated	MySqlConnection	is	busy
serving	the	MySqlDataReader.	While	in	this	state,	no	other	operations	can	be
performed	on	the	MySqlConnection	other	than	closing	it.	This	is	the	case	until
the	MySqlDataReader.Close	method	of	the	MySqlDataReader	is	called.	If	the
MySqlDataReader	is	created	with	CommandBehavior	set	to	CloseConnection,
closing	the	MySqlDataReader	closes	the	connection	automatically.

Note.		When	calling	ExecuteReader	with	the	SingleRow	behavior,	you	should	be
aware	that	using	a	limit	clause	in	your	SQL	will	cause	all	rows	(up	to	the	limit
given)	to	be	retrieved	by	the	client.	The	MySqlDataReader.Read	method	will	still
return	false	after	the	first	row	but	pulling	all	rows	of	data	into	the	client	will	have
a	performance	impact.	If	the	limit	clause	is	not	necessary,	it	should	be	avoided.

Returns:	A	MySqlDataReader	object.

23.2.3.1.7.	ExecuteReader

Sends	the	CommandText	to	the	MySqlConnectionConnection	and	builds	a
MySqlDataReader.

Returns:	A	MySqlDataReader	object.

When	the	CommandType	property	is	set	to	StoredProcedure,	the	CommandText
property	should	be	set	to	the	name	of	the	stored	procedure.	The	command
executes	this	stored	procedure	when	you	call	ExecuteReader.

While	the	MySqlDataReader	is	in	use,	the	associated	MySqlConnection	is	busy
serving	the	MySqlDataReader.	While	in	this	state,	no	other	operations	can	be
performed	on	the	MySqlConnection	other	than	closing	it.	This	is	the	case	until
the	MySqlDataReader.Close	method	of	the	MySqlDataReader	is	called.

Examples

The	following	example	creates	a	MySqlCommand,	then	executes	it	by	passing	a
string	that	is	a	SQL	SELECT	statement,	and	a	string	to	use	to	connect	to	the	data
source.

Visual	Basic	example:

Public	Sub	CreateMySqlDataReader(mySelectQuery	As	String,	myConnection	As	MySqlConnection)

				Dim	myCommand	As	New	MySqlCommand(mySelectQuery,	myConnection)

				myConnection.Open()

				Dim	myReader	As	MySqlDataReader

				myReader	=	myCommand.ExecuteReader()

				Try

				While	myReader.Read()

								Console.WriteLine(myReader.GetString(0))

				End	While

Finally

				myReader.Close

				myConnection.Close

				End	Try

End	Sub

C#	example:

public	void	CreateMySqlDataReader(string	mySelectQuery,	MySqlConnection	myConnection)	

	{

				MySqlCommand	myCommand	=	new	MySqlCommand(mySelectQuery,	myConnection);

				myConnection.Open();

				MySqlDataReader	myReader;

				myReader	=	myCommand.ExecuteReader();

				try

				{

						while(myReader.Read())	

						{

								Console.WriteLine(myReader.GetString(0));

						}

				}

				finally

				{

						myReader.Close();

						myConnection.Close();

				}

	}		

	

23.2.3.1.8.	Prepare

Creates	a	prepared	version	of	the	command	on	an	instance	of	MySQL	Server.

Prepared	statements	are	only	supported	on	MySQL	version	4.1	and	higher.
Calling	prepare	while	connected	to	earlier	versions	of	MySQL	will	succeed	but
will	execute	the	statement	in	the	same	way	as	unprepared.

Examples

The	following	example	demonstrates	the	use	of	the	Prepare	method.

Visual	Basic	example:

		public	sub	PrepareExample()

				Dim	cmd	as	New	MySqlCommand("INSERT	INTO	mytable	VALUES	(?val)",	myConnection)

				cmd.Parameters.Add("?val",	10)

				cmd.Prepare()

				cmd.ExecuteNonQuery()

				

				cmd.Parameters(0).Value	=	20

				cmd.ExecuteNonQuery()

		end	sub

		

C#	example:

		private	void	PrepareExample()

		{

				MySqlCommand	cmd	=	new	MySqlCommand("INSERT	INTO	mytable	VALUES	(?val)",	myConnection);

				cmd.Parameters.Add("?val",	10);

				cmd.Prepare();

				cmd.ExecuteNonQuery();

				

				cmd.Parameters[0].Value	=	20;

				cmd.ExecuteNonQuery();

		}

		

23.2.3.1.9.	ExecuteScalar

Executes	the	query,	and	returns	the	first	column	of	the	first	row	in	the	result	set
returned	by	the	query.	Extra	columns	or	rows	are	ignored.

Returns:	The	first	column	of	the	first	row	in	the	result	set,	or	a	null	reference	if
the	result	set	is	empty

Use	the	ExecuteScalar	method	to	retrieve	a	single	value	(for	example,	an
aggregate	value)	from	a	database.	This	requires	less	code	than	using	the
ExecuteReader	method,	and	then	performing	the	operations	necessary	to
generate	the	single	value	using	the	data	returned	by	a	MySqlDataReader

A	typical	ExecuteScalar	query	can	be	formatted	as	in	the	following	C#
example:

C#	example:

cmd.CommandText	=	"select	count(*)	from	region";

Int32	count	=	(int32)	cmd.ExecuteScalar();

Examples

The	following	example	creates	a	MySqlCommand	and	then	executes	it	using
ExecuteScalar.	The	example	is	passed	a	string	that	is	a	SQL	statement	that
returns	an	aggregate	result,	and	a	string	to	use	to	connect	to	the	data	source.

Visual	Basic	example:

Public	Sub	CreateMySqlCommand(myScalarQuery	As	String,	myConnection	As	MySqlConnection)

				Dim	myCommand	As	New	MySqlCommand(myScalarQuery,	myConnection)

				myCommand.Connection.Open()

				myCommand.ExecuteScalar()

				myConnection.Close()

End	Sub	

C#	example:

public	void	CreateMySqlCommand(string	myScalarQuery,	MySqlConnection	myConnection)	

	{

				MySqlCommand	myCommand	=	new	MySqlCommand(myScalarQuery,	myConnection);

				myCommand.Connection.Open();

				myCommand.ExecuteScalar();

				myConnection.Close();

	}

C++	example:

public:

				void	CreateMySqlCommand(String*	myScalarQuery,	MySqlConnection*	myConnection)

				{

								MySqlCommand*	myCommand	=	new	MySqlCommand(myScalarQuery,	myConnection);

								myCommand->Connection->Open();

								myCommand->ExecuteScalar();

								myConnection->Close();

				}		

23.2.3.1.10.	CommandText

Gets	or	sets	the	SQL	statement	to	execute	at	the	data	source.

Value:	The	SQL	statement	or	stored	procedure	to	execute.	The	default	is	an
empty	string.

When	the	CommandType	property	is	set	to	StoredProcedure,	the	CommandText
property	should	be	set	to	the	name	of	the	stored	procedure.	The	user	may	be
required	to	use	escape	character	syntax	if	the	stored	procedure	name	contains
any	special	characters.	The	command	executes	this	stored	procedure	when	you
call	one	of	the	Execute	methods.

Examples

The	following	example	creates	a	MySqlCommand	and	sets	some	of	its	properties.

Visual	Basic	example:

Public	Sub	CreateMySqlCommand()

				Dim	myCommand	As	New	MySqlCommand()

				myCommand.CommandText	=	"SELECT	*	FROM	Mytable	ORDER	BY	id"

				myCommand.CommandType	=	CommandType.Text

End	Sub

C#	example:

public	void	CreateMySqlCommand()	

	{

				MySqlCommand	myCommand	=	new	MySqlCommand();

				myCommand.CommandText	=	"SELECT	*	FROM	mytable	ORDER	BY	id";

				myCommand.CommandType	=	CommandType.Text;

	}		

23.2.3.1.11.	CommandTimeout

Gets	or	sets	the	wait	time	before	terminating	the	attempt	to	execute	a	command
and	generating	an	error.

Value:	The	time	(in	seconds)	to	wait	for	the	command	to	execute.	The	default	is
0	seconds.

MySQL	currently	does	not	support	any	method	of	canceling	a	pending	or
executing	operation.	All	commands	issues	against	a	MySQL	server	will	execute
until	completion	or	exception	occurs.

23.2.3.1.12.	CommandType

Gets	or	sets	a	value	indicating	how	the	CommandText	property	is	to	be
interpreted.

Value:	One	of	the	System.Data.CommandType	values.	The	default	is	Text.

When	you	set	the	CommandType	property	to	StoredProcedure,	you	should	set	the
CommandText	property	to	the	name	of	the	stored	procedure.	The	command
executes	this	stored	procedure	when	you	call	one	of	the	Execute	methods.

Examples

The	following	example	creates	a	MySqlCommand	and	sets	some	of	its	properties.

Visual	Basic	example:

Public	Sub	CreateMySqlCommand()

				Dim	myCommand	As	New	MySqlCommand()

				myCommand.CommandType	=	CommandType.Text

End	Sub

C#	example:

public	void	CreateMySqlCommand()	

{

			MySqlCommand	myCommand	=	new	MySqlCommand();

			myCommand.CommandType	=	CommandType.Text;

}

23.2.3.1.13.	Connection

Gets	or	sets	the	MySqlConnection	used	by	this	instance	of	the	MySqlCommand.

Value:	The	connection	to	a	data	source.	The	default	value	is	a	null	reference
(Nothing	in	Visual	Basic).

If	you	set	Connection	while	a	transaction	is	in	progress	and	the	Transaction
property	is	not	null,	an	InvalidOperationException	is	generated.	If	the
Transaction	property	is	not	null	and	the	transaction	has	already	been	committed
or	rolled	back,	Transaction	is	set	to	null.

Examples

The	following	example	creates	a	MySqlCommand	and	sets	some	of	its	properties.

Visual	Basic	example:

Public	Sub	CreateMySqlCommand()

				Dim	mySelectQuery	As	String	=	"SELECT	*	FROM	mytable	ORDER	BY	id"

				Dim	myConnectString	As	String	=	"Persist	Security	Info=False;database=test;server=myServer"

				Dim	myCommand	As	New	MySqlCommand(mySelectQuery)

				myCommand.Connection	=	New	MySqlConnection(myConnectString)

				myCommand.CommandType	=	CommandType.Text

End	Sub

C#	example:

public	void	CreateMySqlCommand()	

	{

				string	mySelectQuery	=	"SELECT	*	FROM	mytable	ORDER	BY	id";

				string	myConnectString	=	"Persist	Security	Info=False;database=test;server=myServer";

				MySqlCommand	myCommand	=	new	MySqlCommand(mySelectQuery);

				myCommand.Connection	=	new	MySqlConnection(myConnectString);

				myCommand.CommandType	=	CommandType.Text;

	}		

	

23.2.3.1.14.	IsPrepared

Returns	true	if	the	statement	is	prepared.

23.2.3.1.15.	Parameters

Get	the	MySqlParameterCollection

Value:	The	parameters	of	the	SQL	statement	or	stored	procedure.	The	default	is
an	empty	collection.

Connector/Net	does	not	support	unnamed	parameters.	Every	parameter	added	to
the	collection	must	have	an	associated	name.

Examples

The	following	example	creates	a	MySqlCommand	and	displays	its	parameters.	To
accomplish	this,	the	method	is	passed	a	MySqlConnection,	a	query	string	that	is
a	SQL	SELECT	statement,	and	an	array	of	MySqlParameter	objects.

Visual	Basic	example:

Public	Sub	CreateMySqlCommand(myConnection	As	MySqlConnection,	_

mySelectQuery	As	String,	myParamArray()	As	MySqlParameter)

				Dim	myCommand	As	New	MySqlCommand(mySelectQuery,	myConnection)

				myCommand.CommandText	=	"SELECT	id,	name	FROM	mytable	WHERE	age=?age"

				myCommand.UpdatedRowSource	=	UpdateRowSource.Both

				myCommand.Parameters.Add(myParamArray)

				Dim	j	As	Integer

				For	j	=	0	To	myCommand.Parameters.Count	-	1

							myCommand.Parameters.Add(myParamArray(j))

				Next	j

				Dim	myMessage	As	String	=	""

				Dim	i	As	Integer

				For	i	=	0	To	myCommand.Parameters.Count	-	1

								myMessage	+=	myCommand.Parameters(i).ToString()	&	ControlChars.Cr

				Next	i

				Console.WriteLine(myMessage)

End	Sub

C#	example:

public	void	CreateMySqlCommand(MySqlConnection	myConnection,	string	mySelectQuery,	

		MySqlParameter[]	myParamArray)	

{

			MySqlCommand	myCommand	=	new	MySqlCommand(mySelectQuery,	myConnection);

			myCommand.CommandText	=	"SELECT	id,	name	FROM	mytable	WHERE	age=?age";				

			myCommand.Parameters.Add(myParamArray);

			for	(int	j=0;	j<myParamArray.Length;	j++)

			{

						myCommand.Parameters.Add(myParamArray[j])	;

			}

			string	myMessage	=	"";

			for	(int	i	=	0;	i	<	myCommand.Parameters.Count;	i++)	

			{

						myMessage	+=	myCommand.Parameters[i].ToString()	+	"\n";

			}

			MessageBox.Show(myMessage);

}		

23.2.3.1.16.	Transaction

Gets	or	sets	the	MySqlTransaction	within	which	the	MySqlCommand	executes.

Value:	The	MySqlTransaction.	The	default	value	is	a	null	reference	(Nothing	in
Visual	Basic).

You	cannot	set	the	Transaction	property	if	it	is	already	set	to	a	specific	value,
and	the	command	is	in	the	process	of	executing.	If	you	set	the	transaction
property	to	a	MySqlTransaction	object	that	is	not	connected	to	the	same
MySqlConnection	as	the	MySqlCommand	object,	an	exception	will	be	thrown	the
next	time	you	attempt	to	execute	a	statement.

23.2.3.1.17.	UpdatedRowSource

Gets	or	sets	how	command	results	are	applied	to	the	DataRow	when	used	by	the
System.Data.Common.DbDataAdapter.Update	method	of	the
System.Data.Common.DbDataAdapter.

Value:	One	of	the	UpdateRowSource	values.

The	default	System.Data.UpdateRowSource	value	is	Both	unless	the	command
is	automatically	generated	(as	in	the	case	of	the	MySqlCommandBuilder),	in
which	case	the	default	is	None.

23.2.3.2.	MySqlCommandBuilder

Automatically	generates	single-table	commands	used	to	reconcile	changes	made
to	a	DataSet	with	the	associated	MySQL	database.	This	class	cannot	be
inherited.

The	MySqlDataAdapter	does	not	automatically	generate	the	SQL	statements
required	to	reconcile	changes	made	to	a	System.Data.DataSetDataSet	with	the
associated	instance	of	MySQL.	However,	you	can	create	a
MySqlCommandBuilder	object	to	automatically	generate	SQL	statements	for
single-table	updates	if	you	set	the
MySqlDataAdapter.SelectCommandSelectCommand	property	of	the
MySqlDataAdapter.	Then,	any	additional	SQL	statements	that	you	do	not	set	are
generated	by	the	MySqlCommandBuilder.

The	MySqlCommandBuilder	registers	itself	as	a	listener	for
MySqlDataAdapter.OnRowUpdatingRowUpdating	events	whenever	you	set	the
DataAdapter	property.	You	can	only	associate	one	MySqlDataAdapter	or
MySqlCommandBuilder	object	with	each	other	at	one	time.

To	generate	INSERT,	UPDATE,	or	DELETE	statements,	the
MySqlCommandBuilder	uses	the	SelectCommand	property	to	retrieve	a	required
set	of	metadata	automatically.	If	you	change	the	SelectCommand	after	the
metadata	has	is	retrieved	(for	example,	after	the	first	update),	you	should	call	the
RefreshSchema	method	to	update	the	metadata.

The	SelectCommand	must	also	return	at	least	one	primary	key	or	unique	column.
If	none	are	present,	an	InvalidOperation	exception	is	generated,	and	the
commands	are	not	generated.

The	MySqlCommandBuilder	also	uses	the	MySqlCommand.ConnectionConnection,
MySqlCommand.CommandTimeoutCommandTimeout,	and
MySqlCommand.TransactionTransaction	properties	referenced	by	the
SelectCommand.	The	user	should	call	RefreshSchema	if	any	of	these	properties
are	modified,	or	if	the	SelectCommand	itself	is	replaced.	Otherwise	the

MySqlDataAdapter.InsertCommandInsertCommand,
MySqlDataAdapter.UpdateCommandUpdateCommand,	and
MySqlDataAdapter.DeleteCommandDeleteCommand	properties	retain	their
previous	values.

If	you	call	Dispose,	the	MySqlCommandBuilder	is	disassociated	from	the
MySqlDataAdapter,	and	the	generated	commands	are	no	longer	used.

Note.		Caution	must	be	used	when	using	MySqlCOmmandBuilder	on	MySql	4.0
systems.	With	MySql	4.0,	database/schema	information	is	not	provided	to	the
connector	for	a	query.	This	means	that	a	query	that	pulls	columns	from	two
identically	named	tables	in	two	or	more	different	databases	will	not	cause	an
exception	to	be	thrown	but	will	not	work	correctly.	Even	more	dangerous	is	the
situation	where	your	select	statement	references	database	X	but	is	executed	in
database	Y	and	both	databases	have	tables	with	similar	layouts.	This	situation
can	cause	unwanted	changes	or	deletes.	This	note	does	not	apply	to	MySQL
versions	4.1	and	later.

Examples

The	following	example	uses	the	MySqlCommand,	along	MySqlDataAdapter	and
MySqlConnection,	to	select	rows	from	a	data	source.	The	example	is	passed	an
initialized	System.Data.DataSet,	a	connection	string,	a	query	string	that	is	a
SQL	SELECT	statement,	and	a	string	that	is	the	name	of	the	database	table.	The
example	then	creates	a	MySqlCommandBuilder.

Visual	Basic	example:

		Public	Shared	Function	SelectRows(myConnection	As	String,	mySelectQuery	As	String,	myTableName	As	String)	As	DataSet

				Dim	myConn	As	New	MySqlConnection(myConnection)

				Dim	myDataAdapter	As	New	MySqlDataAdapter()

				myDataAdapter.SelectCommand	=	New	MySqlCommand(mySelectQuery,	myConn)

				Dim	cb	As	SqlCommandBuilder	=	New	MySqlCommandBuilder(myDataAdapter)

				myConn.Open()

				Dim	ds	As	DataSet	=	New	DataSet

				myDataAdapter.Fill(ds,	myTableName)

				'	Code	to	modify	data	in	DataSet	here	

				'	Without	the	MySqlCommandBuilder	this	line	would	fail.

				myDataAdapter.Update(ds,	myTableName)

				myConn.Close()

		End	Function	'SelectRows

				

C#	example:

		public	static	DataSet	SelectRows(string	myConnection,	string	mySelectQuery,	string	myTableName)

		{

		MySqlConnection	myConn	=	new	MySqlConnection(myConnection);

		MySqlDataAdapter	myDataAdapter	=	new	MySqlDataAdapter();

		myDataAdapter.SelectCommand	=	new	MySqlCommand(mySelectQuery,	myConn);

		MySqlCommandBuilder	cb	=	new	MySqlCommandBuilder(myDataAdapter);

		myConn.Open();

		DataSet	ds	=	new	DataSet();

		myDataAdapter.Fill(ds,	myTableName);

		//code	to	modify	data	in	DataSet	here

		//Without	the	MySqlCommandBuilder	this	line	would	fail

		myDataAdapter.Update(ds,	myTableName);

		myConn.Close();

		return	ds;

		}

				

23.2.3.2.1.	Class	MySqlCommandBuilder	Constructor

Initializes	a	new	instance	of	the	MySqlCommandBuilder	class.

23.2.3.2.2.	Class	MySqlCommandBuilder	Constructor	Form	1

Initializes	a	new	instance	of	the	MySqlCommandBuilder	class	and	sets	the	last	one
wins	property.

Parameters:	False	to	generate	change	protection	code.	True	otherwise.

The	lastOneWins	parameter	indicates	whether	SQL	code	should	be	included
with	the	generated	DELETE	and	UPDATE	commands	that	checks	the
underlying	data	for	changes.	If	lastOneWins	is	true	then	this	code	is	not	included
and	data	records	could	be	overwritten	in	a	multi-user	or	multi-threaded
environments.	Setting	lastOneWins	to	false	will	include	this	check	which	will
cause	a	concurrency	exception	to	be	thrown	if	the	underlying	data	record	has
changed	without	our	knowledge.

23.2.3.2.3.	Class	MySqlCommandBuilder	Constructor	Form	2

Initializes	a	new	instance	of	the	MySqlCommandBuilder	class	with	the	associated
MySqlDataAdapter	object.

Parameters:	The	MySqlDataAdapter	to	use.

The	MySqlCommandBuilder	registers	itself	as	a	listener	for
MySqlDataAdapter.RowUpdating	events	that	are	generated	by	the
MySqlDataAdapter	specified	in	this	property.

When	you	create	a	new	instance	MySqlCommandBuilder,	any	existing
MySqlCommandBuilder	associated	with	this	MySqlDataAdapter	is	released.

23.2.3.2.4.	Class	MySqlCommandBuilder	Constructor	Form	3

Initializes	a	new	instance	of	the	MySqlCommandBuilder	class	with	the	associated
MySqlDataAdapter	object.

Parameters:	The	MySqlDataAdapter	to	use.

Parameters:	False	to	generate	change	protection	code.	True	otherwise.

The	MySqlCommandBuilder	registers	itself	as	a	listener	for
MySqlDataAdapter.RowUpdating	events	that	are	generated	by	the
MySqlDataAdapter	specified	in	this	property.

When	you	create	a	new	instance	MySqlCommandBuilder,	any	existing
MySqlCommandBuilder	associated	with	this	MySqlDataAdapter	is	released.

The	lastOneWins	parameter	indicates	whether	SQL	code	should	be	included
with	the	generated	DELETE	and	UPDATE	commands	that	checks	the
underlying	data	for	changes.	If	lastOneWins	is	true	then	this	code	is	not	included
and	data	records	could	be	overwritten	in	a	multi-user	or	multi-threaded
environments.	Setting	lastOneWins	to	false	will	include	this	check	which	will
cause	a	concurrency	exception	to	be	thrown	if	the	underlying	data	record	has
changed	without	our	knowledge.

23.2.3.2.5.	DataAdapter

Gets	or	sets	a	MySqlDataAdapter	object	for	which	SQL	statements	are
automatically	generated.

Value:	A	MySqlDataAdapter	object.

The	MySqlCommandBuilder	registers	itself	as	a	listener	for
MySqlDataAdapter.RowUpdating	events	that	are	generated	by	the
MySqlDataAdapter	specified	in	this	property.

When	you	create	a	new	instance	MySqlCommandBuilder,	any	existing
MySqlCommandBuilder	associated	with	this	MySqlDataAdapter	is	released.

23.2.3.2.6.	QuotePrefix

Gets	or	sets	the	beginning	character	or	characters	to	use	when	specifying
MySQL	database	objects	(for	example,	tables	or	columns)	whose	names	contain
characters	such	as	spaces	or	reserved	tokens.

Value:	The	beginning	character	or	characters	to	use.	The	default	value	is	`.

Database	objects	in	MySQL	can	contain	special	characters	such	as	spaces	that
would	make	normal	SQL	strings	impossible	to	correctly	parse.	Use	of	the
QuotePrefix	and	the	QuoteSuffix	properties	allows	the	MySqlCommandBuilder
to	build	SQL	commands	that	handle	this	situation.

23.2.3.2.7.	QuoteSuffix

Gets	or	sets	the	beginning	character	or	characters	to	use	when	specifying
MySQL	database	objects	(for	example,	tables	or	columns)	whose	names	contain
characters	such	as	spaces	or	reserved	tokens.

Value:	The	beginning	character	or	characters	to	use.	The	default	value	is	`.

Database	objects	in	MySQL	can	contain	special	characters	such	as	spaces	that
would	make	normal	SQL	strings	impossible	to	correctly	parse.	Use	of	the
QuotePrefix	and	the	QuoteSuffix	properties	allows	the	MySqlCommandBuilder
to	build	SQL	commands	that	handle	this	situation.

23.2.3.2.8.	DeriveParameters

23.2.3.2.9.	GetDeleteCommand

Gets	the	automatically	generated	MySqlCommand	object	required	to	perform
deletions	on	the	database.

Returns:	The	MySqlCommand	object	generated	to	handle	delete	operations.

An	application	can	use	the	GetDeleteCommand	method	for	informational	or
troubleshooting	purposes	because	it	returns	the	MySqlCommand	object	to	be
executed.

You	can	also	use	GetDeleteCommand	as	the	basis	of	a	modified	command.	For
example,	you	might	call	GetDeleteCommand	and	modify	the
MySqlCommand.CommandTimeout	value,	and	then	explicitly	set	that	on	the
MySqlDataAdapter.

After	the	SQL	statement	is	first	generated,	the	application	must	explicitly	call
RefreshSchema	if	it	changes	the	statement	in	any	way.	Otherwise,	the
GetDeleteCommand	will	be	still	be	using	information	from	the	previous
statement,	which	might	not	be	correct.	The	SQL	statements	are	first	generated
either	when	the	application	calls	System.Data.Common.DataAdapter.Update	or
GetDeleteCommand.

23.2.3.2.10.	GetInsertCommand

Gets	the	automatically	generated	MySqlCommand	object	required	to	perform
insertions	on	the	database.

Returns:	The	MySqlCommand	object	generated	to	handle	insert	operations.

An	application	can	use	the	GetInsertCommand	method	for	informational	or
troubleshooting	purposes	because	it	returns	the	MySqlCommand	object	to	be
executed.

You	can	also	use	the	GetInsertCommand	as	the	basis	of	a	modified	command.
For	example,	you	might	call	GetInsertCommand	and	modify	the
MySqlCommand.CommandTimeout	value,	and	then	explicitly	set	that	on	the
MySqlDataAdapter.

After	the	SQL	statement	is	first	generated,	the	application	must	explicitly	call
RefreshSchema	if	it	changes	the	statement	in	any	way.	Otherwise,	the
GetInsertCommand	will	be	still	be	using	information	from	the	previous
statement,	which	might	not	be	correct.	The	SQL	statements	are	first	generated
either	when	the	application	calls	System.Data.Common.DataAdapter.Update	or
GetInsertCommand.

23.2.3.2.11.	GetUpdateCommand

Gets	the	automatically	generated	MySqlCommand	object	required	to	perform
updates	on	the	database.

Returns:	The	MySqlCommand	object	generated	to	handle	update	operations.

An	application	can	use	the	GetUpdateCommand	method	for	informational	or
troubleshooting	purposes	because	it	returns	the	MySqlCommand	object	to	be
executed.

You	can	also	use	GetUpdateCommand	as	the	basis	of	a	modified	command.	For
example,	you	might	call	GetUpdateCommand	and	modify	the
MySqlCommand.CommandTimeout	value,	and	then	explicitly	set	that	on	the
MySqlDataAdapter.

After	the	SQL	statement	is	first	generated,	the	application	must	explicitly	call
RefreshSchema	if	it	changes	the	statement	in	any	way.	Otherwise,	the
GetUpdateCommand	will	be	still	be	using	information	from	the	previous
statement,	which	might	not	be	correct.	The	SQL	statements	are	first	generated
either	when	the	application	calls	System.Data.Common.DataAdapter.Update	or
GetUpdateCommand.

23.2.3.2.12.	RefreshSchema

Refreshes	the	database	schema	information	used	to	generate	INSERT,	UPDATE,
or	DELETE	statements.

An	application	should	call	RefreshSchema	whenever	the	SELECT	statement
associated	with	the	MySqlCommandBuilder	changes.

An	application	should	call	RefreshSchema	whenever	the
MySqlDataAdapter.SelectCommand	value	of	the	MySqlDataAdapter	changes.

23.2.3.3.	MySqlConnection

Represents	an	open	connection	to	a	MySQL	Server	database.	This	class	cannot
be	inherited.

A	MySqlConnection	object	represents	a	session	to	a	MySQL	Server	data	source.
When	you	create	an	instance	of	MySqlConnection,	all	properties	are	set	to	their
initial	values.	For	a	list	of	these	values,	see	the	MySqlConnection	constructor.

If	the	MySqlConnection	goes	out	of	scope,	it	is	not	closed.	Therefore,	you	must
explicitly	close	the	connection	by	calling	MySqlConnection.Close	or
MySqlConnection.Dispose.

Examples

The	following	example	creates	a	MySqlCommand	and	a	MySqlConnection.	The
MySqlConnection	is	opened	and	set	as	the	MySqlCommand.Connection	for	the
MySqlCommand.	The	example	then	calls	MySqlCommand.ExecuteNonQuery,	and
closes	the	connection.	To	accomplish	this,	the	ExecuteNonQuery	is	passed	a
connection	string	and	a	query	string	that	is	a	SQL	INSERT	statement.

Visual	Basic	example:

		Public	Sub	InsertRow(myConnectionString	As	String)

				'	If	the	connection	string	is	null,	use	a	default.

				If	myConnectionString	=	""	Then

						myConnectionString	=	"Database=Test;Data	Source=localhost;User	Id=username;Password=pass"

				End	If

				Dim	myConnection	As	New	MySqlConnection(myConnectionString)

				Dim	myInsertQuery	As	String	=	"INSERT	INTO	Orders	(id,	customerId,	amount)	Values(1001,	23,	30.66)"

				Dim	myCommand	As	New	MySqlCommand(myInsertQuery)

				myCommand.Connection	=	myConnection

				myConnection.Open()

				myCommand.ExecuteNonQuery()

				myCommand.Connection.Close()

		End	Sub

		

C#	example:

		public	void	InsertRow(string	myConnectionString)	

		{

				//	If	the	connection	string	is	null,	use	a	default.

				if(myConnectionString	==	"")	

				{

						myConnectionString	=	"Database=Test;Data	Source=localhost;User	Id=username;Password=pass";

				}

				MySqlConnection	myConnection	=	new	MySqlConnection(myConnectionString);

				string	myInsertQuery	=	"INSERT	INTO	Orders	(id,	customerId,	amount)	Values(1001,	23,	30.66)";

				MySqlCommand	myCommand	=	new	MySqlCommand(myInsertQuery);

				myCommand.Connection	=	myConnection;

				myConnection.Open();

				myCommand.ExecuteNonQuery();

				myCommand.Connection.Close();

		}

		

23.2.3.3.1.	Class	MySqlConnection	Constructor	(Default)

Initializes	a	new	instance	of	the	MySqlConnection	class.

When	a	new	instance	of	MySqlConnection	is	created,	the	read/write	properties
are	set	to	the	following	initial	values	unless	they	are	specifically	set	using	their
associated	keywords	in	the	ConnectionString	property.

Properties Initial	Value
ConnectionString empty	string	("")
ConnectionTimeout 15
Database empty	string	("")
DataSource empty	string	("")
ServerVersion empty	string	("")

You	can	change	the	value	for	these	properties	only	by	using	the
ConnectionString	property.

Examples

Overload	methods	for	MySqlConnection

Initializes	a	new	instance	of	the	MySqlConnection	class.

23.2.3.3.2.	Class	MySqlConnection	Constructor	Form	1

Initializes	a	new	instance	of	the	MySqlConnection	class	when	given	a	string
containing	the	connection	string.

When	a	new	instance	of	MySqlConnection	is	created,	the	read/write	properties
are	set	to	the	following	initial	values	unless	they	are	specifically	set	using	their
associated	keywords	in	the	ConnectionString	property.

Properties Initial	Value
ConnectionString empty	string	("")
ConnectionTimeout 15
Database empty	string	("")
DataSource empty	string	("")
ServerVersion empty	string	("")

You	can	change	the	value	for	these	properties	only	by	using	the
ConnectionString	property.

Examples

Parameters:	The	connection	properties	used	to	open	the	MySQL	database.

23.2.3.3.3.	Open

Opens	a	database	connection	with	the	property	settings	specified	by	the
ConnectionString.

Exception:	Cannot	open	a	connection	without	specifying	a	data	source	or	server.

Exception:	A	connection-level	error	occurred	while	opening	the	connection.

The	MySqlConnection	draws	an	open	connection	from	the	connection	pool	if
one	is	available.	Otherwise,	it	establishes	a	new	connection	to	an	instance	of
MySQL.

Examples

The	following	example	creates	a	MySqlConnection,	opens	it,	displays	some	of
its	properties,	then	closes	the	connection.

Visual	Basic	example:

Public	Sub	CreateMySqlConnection(myConnString	As	String)

				Dim	myConnection	As	New	MySqlConnection(myConnString)

				myConnection.Open()

				MessageBox.Show("ServerVersion:	"	+	myConnection.ServerVersion	_

				+	ControlChars.Cr	+	"State:	"	+	myConnection.State.ToString())

				myConnection.Close()

End	Sub

				

C#	example:

public	void	CreateMySqlConnection(string	myConnString)	

{

		MySqlConnection	myConnection	=	new	MySqlConnection(myConnString);

		myConnection.Open();

		MessageBox.Show("ServerVersion:	"	+	myConnection.ServerVersion	+	

										"\nState:	"	+	myConnection.State.ToString());

		myConnection.Close();

}

				

23.2.3.3.4.	Database

Gets	the	name	of	the	current	database	or	the	database	to	be	used	after	a
connection	is	opened.

Returns:	The	name	of	the	current	database	or	the	name	of	the	database	to	be
used	after	a	connection	is	opened.	The	default	value	is	an	empty	string.

The	Database	property	does	not	update	dynamically.	If	you	change	the	current
database	using	a	SQL	statement,	then	this	property	may	reflect	the	wrong	value.
If	you	change	the	current	database	using	the	ChangeDatabase	method,	this
property	is	updated	to	reflect	the	new	database.

Examples

The	following	example	creates	a	MySqlConnection	and	displays	some	of	its
read-only	properties.

Visual	Basic	example:

Public	Sub	CreateMySqlConnection()

		Dim	myConnString	As	String	=	_

				"Persist	Security	Info=False;database=test;server=localhost;user	id=joeuser;pwd=pass"

		Dim	myConnection	As	New	MySqlConnection(myConnString)

		myConnection.Open()

		MessageBox.Show("Server	Version:	"	+	myConnection.ServerVersion	_

				+	ControlChars.NewLine	+	"Database:	"	+	myConnection.Database)

		myConnection.ChangeDatabase("test2")

		MessageBox.Show("ServerVersion:	"	+	myConnection.ServerVersion	_	

				+	ControlChars.NewLine	+	"Database:	"	+	myConnection.Database)

		myConnection.Close()

End	Sub				

				

C#	example:

public	void	CreateMySqlConnection()

{

		string	myConnString	=	

				"Persist	Security	Info=False;database=test;server=localhost;user	id=joeuser;pwd=pass";

		MySqlConnection	myConnection	=	new	MySqlConnection(myConnString);

		myConnection.Open();

		MessageBox.Show("Server	Version:	"	+	myConnection.ServerVersion	

				+	"\nDatabase:	"	+	myConnection.Database);

		myConnection.ChangeDatabase("test2");

		MessageBox.Show("ServerVersion:	"	+	myConnection.ServerVersion		

				+	"\nDatabase:	"	+	myConnection.Database);

		myConnection.Close();

}

				

23.2.3.3.5.	State

Gets	the	current	state	of	the	connection.

Returns:	A	bitwise	combination	of	the	System.Data.ConnectionState	values.
The	default	is	Closed.

The	allowed	state	changes	are:

From	Closed	to	Open,	using	the	Open	method	of	the	connection	object.

From	Open	to	Closed,	using	either	the	Close	method	or	the	Dispose	method
of	the	connection	object.

Examples

The	following	example	creates	a	MySqlConnection,	opens	it,	displays	some	of
its	properties,	then	closes	the	connection.

Visual	Basic	example:

Public	Sub	CreateMySqlConnection(myConnString	As	String)

				Dim	myConnection	As	New	MySqlConnection(myConnString)

				myConnection.Open()

				MessageBox.Show("ServerVersion:	"	+	myConnection.ServerVersion	_

				+	ControlChars.Cr	+	"State:	"	+	myConnection.State.ToString())

				myConnection.Close()

End	Sub

				

C#	example:

public	void	CreateMySqlConnection(string	myConnString)	

{

		MySqlConnection	myConnection	=	new	MySqlConnection(myConnString);

		myConnection.Open();

		MessageBox.Show("ServerVersion:	"	+	myConnection.ServerVersion	+	

										"\nState:	"	+	myConnection.State.ToString());

		myConnection.Close();

}

				

23.2.3.3.6.	ServerVersion

Gets	a	string	containing	the	version	of	the	MySQL	server	to	which	the	client	is
connected.

Returns:	The	version	of	the	instance	of	MySQL.

Exception:	The	connection	is	closed.

Examples

The	following	example	creates	a	MySqlConnection,	opens	it,	displays	some	of
its	properties,	then	closes	the	connection.

Visual	Basic	example:

Public	Sub	CreateMySqlConnection(myConnString	As	String)

				Dim	myConnection	As	New	MySqlConnection(myConnString)

				myConnection.Open()

				MessageBox.Show("ServerVersion:	"	+	myConnection.ServerVersion	_

				+	ControlChars.Cr	+	"State:	"	+	myConnection.State.ToString())

				myConnection.Close()

End	Sub

				

C#	example:

public	void	CreateMySqlConnection(string	myConnString)	

{

		MySqlConnection	myConnection	=	new	MySqlConnection(myConnString);

		myConnection.Open();

		MessageBox.Show("ServerVersion:	"	+	myConnection.ServerVersion	+	

										"\nState:	"	+	myConnection.State.ToString());

		myConnection.Close();

}

				

23.2.3.3.7.	Close

Closes	the	connection	to	the	database.	This	is	the	preferred	method	of	closing
any	open	connection.

The	Close	method	rolls	back	any	pending	transactions.	It	then	releases	the
connection	to	the	connection	pool,	or	closes	the	connection	if	connection	pooling
is	disabled.

An	application	can	call	Close	more	than	one	time.	No	exception	is	generated.

Examples

The	following	example	creates	a	MySqlConnection,	opens	it,	displays	some	of
its	properties,	then	closes	the	connection.

Visual	Basic	example:

Public	Sub	CreateMySqlConnection(myConnString	As	String)

				Dim	myConnection	As	New	MySqlConnection(myConnString)

				myConnection.Open()

				MessageBox.Show("ServerVersion:	"	+	myConnection.ServerVersion	_

				+	ControlChars.Cr	+	"State:	"	+	myConnection.State.ToString())

				myConnection.Close()

End	Sub

				

C#	example:

public	void	CreateMySqlConnection(string	myConnString)	

{

		MySqlConnection	myConnection	=	new	MySqlConnection(myConnString);

		myConnection.Open();

		MessageBox.Show("ServerVersion:	"	+	myConnection.ServerVersion	+	

										"\nState:	"	+	myConnection.State.ToString());

		myConnection.Close();

}

				

23.2.3.3.8.	CreateCommand

Creates	and	returns	a	MySqlCommand	object	associated	with	the
MySqlConnection.

Returns:	A	MySqlCommand	object.

23.2.3.3.9.	BeginTransaction

Begins	a	database	transaction.

Returns:	An	object	representing	the	new	transaction.

Exception:	Parallel	transactions	are	not	supported.

This	command	is	equivalent	to	the	MySQL	BEGIN	TRANSACTION	command.

You	must	explicitly	commit	or	roll	back	the	transaction	using	the
MySqlTransaction.Commit	or	MySqlTransaction.Rollback	method.

Note.	If	you	do	not	specify	an	isolation	level,	the	default	isolation	level	is	used.
To	specify	an	isolation	level	with	the	BeginTransaction	method,	use	the
overload	that	takes	the	iso	parameter.

Examples

The	following	example	creates	a	MySqlConnection	and	a	MySqlTransaction.	It
also	demonstrates	how	to	use	the	BeginTransaction,	a
MySqlTransaction.Commit,	and	MySqlTransaction.Rollback	methods.

Visual	Basic	example:

Public	Sub	RunTransaction(myConnString	As	String)

				Dim	myConnection	As	New	MySqlConnection(myConnString)

				myConnection.Open()

				

				Dim	myCommand	As	MySqlCommand	=	myConnection.CreateCommand()

				Dim	myTrans	As	MySqlTransaction

				

				'	Start	a	local	transaction

				myTrans	=	myConnection.BeginTransaction()

				'	Must	assign	both	transaction	object	and	connection

				'	to	Command	object	for	a	pending	local	transaction

				myCommand.Connection	=	myConnection

				myCommand.Transaction	=	myTrans

				

				Try

						myCommand.CommandText	=	"Insert	into	Test	(id,	desc)	VALUES	(100,	'Description')"

						myCommand.ExecuteNonQuery()

						myCommand.CommandText	=	"Insert	into	Test	(id,	desc)	VALUES	(101,	'Description')"

						myCommand.ExecuteNonQuery()

						myTrans.Commit()

						Console.WriteLine("Both	records	are	written	to	database.")

				Catch	e	As	Exception

						Try

								myTrans.Rollback()

						Catch	ex	As	MySqlException

								If	Not	myTrans.Connection	Is	Nothing	Then

										Console.WriteLine("An	exception	of	type	"	+	ex.GetType().ToString()	+	_

																												"	was	encountered	while	attempting	to	roll	back	the	transaction.")

								End	If

						End	Try

				

						Console.WriteLine("An	exception	of	type	"	+	e.GetType().ToString()	+	_

																						"was	encountered	while	inserting	the	data.")

						Console.WriteLine("Neither	record	was	written	to	database.")

				Finally

						myConnection.Close()

				End	Try

End	Sub

				

C#	example:

public	void	RunTransaction(string	myConnString)	

{

		MySqlConnection	myConnection	=	new	MySqlConnection(myConnString);

		myConnection.Open();

		MySqlCommand	myCommand	=	myConnection.CreateCommand();

		MySqlTransaction	myTrans;

		//	Start	a	local	transaction

		myTrans	=	myConnection.BeginTransaction();

		//	Must	assign	both	transaction	object	and	connection

		//	to	Command	object	for	a	pending	local	transaction

		myCommand.Connection	=	myConnection;

		myCommand.Transaction	=	myTrans;

				try

				{

						myCommand.CommandText	=	"insert	into	Test	(id,	desc)	VALUES	(100,	'Description')";

						myCommand.ExecuteNonQuery();

						myCommand.CommandText	=	"insert	into	Test	(id,	desc)	VALUES	(101,	'Description')";

						myCommand.ExecuteNonQuery();

						myTrans.Commit();

						Console.WriteLine("Both	records	are	written	to	database.");

				}

				catch(Exception	e)

				{

						try

						{

								myTrans.Rollback();

						}

						catch	(SqlException	ex)

						{

								if	(myTrans.Connection	!=	null)

								{

										Console.WriteLine("An	exception	of	type	"	+	ex.GetType()	+

																												"	was	encountered	while	attempting	to	roll	back	the	transaction.");

								}

						}

				

						Console.WriteLine("An	exception	of	type	"	+	e.GetType()	+

																								"	was	encountered	while	inserting	the	data.");

						Console.WriteLine("Neither	record	was	written	to	database.");

				}

				finally	

				{

						myConnection.Close();

				}

}

				

23.2.3.3.10.	BeginTransaction1

Begins	a	database	transaction	with	the	specified	isolation	level.

Parameters:	The	isolation	level	under	which	the	transaction	should	run.

Returns:	An	object	representing	the	new	transaction.

Exception:	Parallel	exceptions	are	not	supported.

This	command	is	equivalent	to	the	MySQL	BEGIN	TRANSACTION	command.

You	must	explicitly	commit	or	roll	back	the	transaction	using	the
MySqlTransaction.Commit	or	MySqlTransaction.Rollback	method.

Note.	If	you	do	not	specify	an	isolation	level,	the	default	isolation	level	is	used.
To	specify	an	isolation	level	with	the	BeginTransaction	method,	use	the
overload	that	takes	the	iso	parameter.

Examples

The	following	example	creates	a	MySqlConnection	and	a	MySqlTransaction.	It
also	demonstrates	how	to	use	the	BeginTransaction,	a
MySqlTransaction.Commit,	and	MySqlTransaction.Rollback	methods.

Visual	Basic	example:

Public	Sub	RunTransaction(myConnString	As	String)

				Dim	myConnection	As	New	MySqlConnection(myConnString)

				myConnection.Open()

				

				Dim	myCommand	As	MySqlCommand	=	myConnection.CreateCommand()

				Dim	myTrans	As	MySqlTransaction

				

				'	Start	a	local	transaction

				myTrans	=	myConnection.BeginTransaction()

				'	Must	assign	both	transaction	object	and	connection

				'	to	Command	object	for	a	pending	local	transaction

				myCommand.Connection	=	myConnection

				myCommand.Transaction	=	myTrans

				

				Try

						myCommand.CommandText	=	"Insert	into	Test	(id,	desc)	VALUES	(100,	'Description')"

						myCommand.ExecuteNonQuery()

						myCommand.CommandText	=	"Insert	into	Test	(id,	desc)	VALUES	(101,	'Description')"

						myCommand.ExecuteNonQuery()

						myTrans.Commit()

						Console.WriteLine("Both	records	are	written	to	database.")

				Catch	e	As	Exception

						Try

								myTrans.Rollback()

						Catch	ex	As	MySqlException

								If	Not	myTrans.Connection	Is	Nothing	Then

										Console.WriteLine("An	exception	of	type	"	+	ex.GetType().ToString()	+	_

																												"	was	encountered	while	attempting	to	roll	back	the	transaction.")

								End	If

						End	Try

				

						Console.WriteLine("An	exception	of	type	"	+	e.GetType().ToString()	+	_

																						"was	encountered	while	inserting	the	data.")

						Console.WriteLine("Neither	record	was	written	to	database.")

				Finally

						myConnection.Close()

				End	Try

End	Sub

				

C#	example:

public	void	RunTransaction(string	myConnString)	

{

		MySqlConnection	myConnection	=	new	MySqlConnection(myConnString);

		myConnection.Open();

		MySqlCommand	myCommand	=	myConnection.CreateCommand();

		MySqlTransaction	myTrans;

		//	Start	a	local	transaction

		myTrans	=	myConnection.BeginTransaction();

		//	Must	assign	both	transaction	object	and	connection

		//	to	Command	object	for	a	pending	local	transaction

		myCommand.Connection	=	myConnection;

		myCommand.Transaction	=	myTrans;

				try

				{

						myCommand.CommandText	=	"insert	into	Test	(id,	desc)	VALUES	(100,	'Description')";

						myCommand.ExecuteNonQuery();

						myCommand.CommandText	=	"insert	into	Test	(id,	desc)	VALUES	(101,	'Description')";

						myCommand.ExecuteNonQuery();

						myTrans.Commit();

						Console.WriteLine("Both	records	are	written	to	database.");

				}

				catch(Exception	e)

				{

						try

						{

								myTrans.Rollback();

						}

						catch	(SqlException	ex)

						{

								if	(myTrans.Connection	!=	null)

								{

										Console.WriteLine("An	exception	of	type	"	+	ex.GetType()	+

																												"	was	encountered	while	attempting	to	roll	back	the	transaction.");

								}

						}

				

						Console.WriteLine("An	exception	of	type	"	+	e.GetType()	+

																								"	was	encountered	while	inserting	the	data.");

						Console.WriteLine("Neither	record	was	written	to	database.");

				}

				finally	

				{

						myConnection.Close();

				}

}

				

23.2.3.3.11.	ChangeDatabase

Changes	the	current	database	for	an	open	MySqlConnection.

Parameters:	The	name	of	the	database	to	use.

The	value	supplied	in	the	database	parameter	must	be	a	valid	database	name.
The	database	parameter	cannot	contain	a	null	value,	an	empty	string,	or	a	string
with	only	blank	characters.

When	you	are	using	connection	pooling	against	MySQL,	and	you	close	the
connection,	it	is	returned	to	the	connection	pool.	The	next	time	the	connection	is
retrieved	from	the	pool,	the	reset	connection	request	executes	before	the	user
performs	any	operations.

Exception:	The	database	name	is	not	valid.

Exception:	The	connection	is	not	open.

Exception:	Cannot	change	the	database.

Examples

The	following	example	creates	a	MySqlConnection	and	displays	some	of	its
read-only	properties.

Visual	Basic	example:

Public	Sub	CreateMySqlConnection()

		Dim	myConnString	As	String	=	_

				"Persist	Security	Info=False;database=test;server=localhost;user	id=joeuser;pwd=pass"

		Dim	myConnection	As	New	MySqlConnection(myConnString)

		myConnection.Open()

		MessageBox.Show("Server	Version:	"	+	myConnection.ServerVersion	_

				+	ControlChars.NewLine	+	"Database:	"	+	myConnection.Database)

		myConnection.ChangeDatabase("test2")

		MessageBox.Show("ServerVersion:	"	+	myConnection.ServerVersion	_	

				+	ControlChars.NewLine	+	"Database:	"	+	myConnection.Database)

		myConnection.Close()

End	Sub				

				

C#	example:

public	void	CreateMySqlConnection()

{

		string	myConnString	=	

				"Persist	Security	Info=False;database=test;server=localhost;user	id=joeuser;pwd=pass";

		MySqlConnection	myConnection	=	new	MySqlConnection(myConnString);

		myConnection.Open();

		MessageBox.Show("Server	Version:	"	+	myConnection.ServerVersion	

				+	"\nDatabase:	"	+	myConnection.Database);

		myConnection.ChangeDatabase("test2");

		MessageBox.Show("ServerVersion:	"	+	myConnection.ServerVersion		

				+	"\nDatabase:	"	+	myConnection.Database);

		myConnection.Close();

}

				

23.2.3.3.12.	StateChange

Occurs	when	the	state	of	the	connection	changes.

The	StateChange	event	fires	whenever	the	State	changes	from	closed	to
opened,	or	from	opened	to	closed.	StateChange	fires	immediately	after	the
MySqlConnection	transitions.

If	an	event	handler	throws	an	exception	from	within	the	StateChange	event,	the
exception	propagates	to	the	caller	of	the	Open	or	Close	method.

The	StateChange	event	is	not	raised	unless	you	explicitly	call	Close	or	Dispose.

The	event	handler	receives	an	argument	of	type
System.Data.StateChangeEventArgs	containing	data	related	to	this	event.	The
following	StateChangeEventArgs	properties	provide	information	specific	to	this
event.

Property Description

System.Data.StateChangeEventArgs.CurrentState

Gets	the	new	state	of
the	connection.	The
connection	object	will
be	in	the	new	state
already	when	the	event
is	fired.

System.Data.StateChangeEventArgs.OriginalState
Gets	the	original	state
of	the	connection.

23.2.3.3.13.	InfoMessage

Occurs	when	MySQL	returns	warnings	as	a	result	of	executing	a	command	or
query.

23.2.3.3.14.	ConnectionTimeout

Gets	the	time	to	wait	while	trying	to	establish	a	connection	before	terminating
the	attempt	and	generating	an	error.

Exception:	The	value	set	is	less	than	0.

A	value	of	0	indicates	no	limit,	and	should	be	avoided	in	a
MySqlConnection.ConnectionString	because	an	attempt	to	connect	will	wait
indefinitely.

Examples

The	following	example	creates	a	MySqlConnection	and	sets	some	of	its
properties	in	the	connection	string.

Visual	Basic	example:

Public	Sub	CreateSqlConnection()

		Dim	myConnection	As	New	MySqlConnection()

		myConnection.ConnectionString	=	"Persist	Security	Info=False;Username=user;Password=pass;database=test1;server=localhost;Connect	Timeout=30"

		myConnection.Open()

End	Sub

C#	example:

public	void	CreateSqlConnection()	

{

		MySqlConnection	myConnection	=	new	MySqlConnection();

		myConnection.ConnectionString	=	"Persist	Security	Info=False;Username=user;Password=pass;database=test1;server=localhost;Connect	Timeout=30";

		myConnection.Open();

}

23.2.3.3.15.	ConnectionString

Gets	or	sets	the	string	used	to	connect	to	a	MySQL	Server	database.

The	ConnectionString	returned	may	not	be	exactly	like	what	was	originally	set
but	will	be	indentical	in	terms	of	keyword/value	pairs.	Security	information	will
not	be	included	unless	the	Persist	Security	Info	value	is	set	to	true.

You	can	use	the	ConnectionString	property	to	connect	to	a	database.	The
following	example	illustrates	a	typical	connection	string.

"Persist	Security	Info=False;database=MyDB;server=MySqlServer;user	id=myUser;Password=myPass"

The	ConnectionString	property	can	be	set	only	when	the	connection	is	closed.
Many	of	the	connection	string	values	have	corresponding	read-only	properties.
When	the	connection	string	is	set,	all	of	these	properties	are	updated,	except
when	an	error	is	detected.	In	this	case,	none	of	the	properties	are	updated.
MySqlConnection	properties	return	only	those	settings	contained	in	the
ConnectionString.

To	connect	to	a	local	machine,	specify	"localhost"	for	the	server.	If	you	do	not
specify	a	server,	localhost	is	assumed.

Resetting	the	ConnectionString	on	a	closed	connection	resets	all	connection
string	values	(and	related	properties)	including	the	password.	For	example,	if
you	set	a	connection	string	that	includes	"Database=	MyDb",	and	then	reset	the
connection	string	to	"Data	Source=myserver;User
Id=myUser;Password=myPass",	the	MySqlConnection.Database	property	is	no
longer	set	to	MyDb.

The	connection	string	is	parsed	immediately	after	being	set.	If	errors	in	syntax
are	found	when	parsing,	a	runtime	exception,	such	as	ArgumentException,	is
generated.	Other	errors	can	be	found	only	when	an	attempt	is	made	to	open	the
connection.

The	basic	format	of	a	connection	string	consists	of	a	series	of	keyword/value
pairs	separated	by	semicolons.	The	equal	sign	(=)	connects	each	keyword	and	its
value.	To	include	values	that	contain	a	semicolon,	single-quote	character,	or
double-quote	character,	the	value	must	be	enclosed	in	double	quotes.	If	the	value
contains	both	a	semicolon	and	a	double-quote	character,	the	value	can	be
enclosed	in	single	quotes.	The	single	quote	is	also	useful	if	the	value	begins	with
a	double-quote	character.	Conversely,	the	double	quote	can	be	used	if	the	value
begins	with	a	single	quote.	If	the	value	contains	both	single-quote	and	double-
quote	characters,	the	quote	character	used	to	enclose	the	value	must	be	doubled
each	time	it	occurs	within	the	value.

To	include	preceding	or	trailing	spaces	in	the	string	value,	the	value	must	be
enclosed	in	either	single	quotes	or	double	quotes.	Any	leading	or	trailing	spaces
around	integer,	Boolean,	or	enumerated	values	are	ignored,	even	if	enclosed	in
quotes.	However,	spaces	within	a	string	literal	keyword	or	value	are	preserved.
Using	.NET	Framework	version	1.1,	single	or	double	quotes	may	be	used	within
a	connection	string	without	using	delimiters	(for	example,	Data	Source=
my'Server	or	Data	Source=	my"Server),	unless	a	quote	character	is	the	first	or
last	character	in	the	value.

To	include	an	equal	sign	(=)	in	a	keyword	or	value,	it	must	be	preceded	by
another	equal	sign.	For	example,	in	the	hypothetical	connection	string

"key==word=value"

the	keyword	is	"key=word"	and	the	value	is	"value".

If	a	specific	keyword	in	a	keyword=	value	pair	occurs	multiple	times	in	a
connection	string,	the	last	occurrence	listed	is	used	in	the	value	set.

Keywords	are	not	case	sensitive.

The	following	table	lists	the	valid	names	for	keyword	values	within	the
ConnectionString.

Name Default Description
Connect
Timeout	-
or- 15

The	length	of	time	(in	seconds)	to	wait	for	a	connection
to	the	server	before	terminating	the	attempt	and

Connection
Timeout

generating	an	error.

Host	-or-
Server	-or-
Data
Source	-or-
DataSource
-or-
Address	-
or-	Addr	-
or-
Network
Address

localhost

The	name	or	network	address	of	the	instance	of	MySQL
to	which	to	connect.	Multiple	hosts	can	be	specified
separated	by	&.	This	can	be	useful	where	multiple
MySQL	servers	are	configured	for	replication	and	you
are	not	concerned	about	the	precise	server	you	are
connecting	to.	No	attempt	is	made	by	the	provider	to
synchronize	writes	to	the	database	so	care	should	be
taken	when	using	this	option.	In	Unix	environment	with
Mono,	this	can	be	a	fully	qualified	path	to	MySQL
socket	filename.	With	this	configuration,	the	Unix	socket
will	be	used	instead	of	TCP/IP	socket.	Currently	only	a
single	socket	name	can	be	given	so	accessing	MySQL	in
a	replicated	environment	using	Unix	sockets	is	not
currently	supported.

Port 3306

The	port	MySQL	is	using	to	listen	for	connections.
Specify	-1	for	this	value	to	use	a	named	pipe	connection
(Windows	only).	This	value	is	ignored	if	Unix	socket	is
used.

Protocol socket

Specifies	the	type	of	connection	to	make	to	the
server.Values	can	be:	socket	or	tcp	for	a	socket
connection	pipe	for	a	named	pipe	connection	unix	for	a
Unix	socket	connection	memory	to	use	MySQL	shared
memory

CharSet	-or
Character
Set

	
Specifies	the	character	set	that	should	be	used	to	encode
all	queries	sent	to	the	server.	Resultsets	are	still	returned
in	the	character	set	of	the	data	returned.

Logging false When	true,	various	pieces	of	information	is	output	to	any
configured	TraceListeners.

Allow
Batch true

When	true,	multiple	SQL	statements	can	be	sent	with	one
command	execution.	-Note-	Starting	with	MySQL	4.1.1,
batch	statements	should	be	separated	by	the	server-
defined	seperator	character.	Commands	sent	to	earlier
versions	of	MySQL	should	be	seperated	with	';'.
When	true,	SSL	encryption	is	used	for	all	data	sent
between	the	client	and	server	if	the	server	has	a

Encrypt false certificate	installed.	Recognized	values	are	true,	false,
yes,	and	no.Note	This	parameter	currently	has	no	effect.

Initial
Catalog	-
or-
Database

mysql The	name	of	the	database	to	use	intially

Password	-
or-	pwd 	 The	password	for	the	MySQL	account	being	used.

Persist
Security
Info

false

When	set	to	false	or	no	(strongly	recommended),
security-sensitive	information,	such	as	the	password,	is
not	returned	as	part	of	the	connection	if	the	connection	is
open	or	has	ever	been	in	an	open	state.	Resetting	the
connection	string	resets	all	connection	string	values
including	the	password.	Recognized	values	are	true,
false,	yes,	and	no.

User	Id	-or-
Username	-
or-	Uid	-or-
User	name

	 The	MySQL	login	account	being	used.

Shared
Memory
Name

MYSQL
The	name	of	the	shared	memory	object	to	use	for
communication	if	the	connection	protocol	is	set	to
memory.

Allow	Zero
Datetime false

True	to	have	MySqlDataReader.GetValue()	return	a
MySqlDateTime	for	date	or	datetime	columns	that	have
illegal	values.	False	will	cause	a	DateTime	object	to	be
returned	for	legal	values	and	an	exception	will	be	thrown
for	illegal	values.

Convert
Zero
Datetime

false

True	to	have	MySqlDataReader.GetValue()	and
MySqlDataReader.GetDateTime()	return
DateTime.MinValue	for	date	or	datetime	columns	that
have	illegal	values.

Old	Syntax
-or-
OldSyntax

false

Allows	use	of	'@'	symbol	as	a	parameter	marker.	See
MySqlCommand	for	more	info.	This	is	for	compatibility
only.	All	future	code	should	be	written	to	use	the	new	'?'
parameter	marker.
When	set	to	the	name	of	a	named	pipe,	the

Pipe	Name
-or-	Pipe

mysql MySqlConnection	will	attempt	to	connect	to	MySQL	on
that	named	pipe.This	settings	only	applies	to	the
Windows	platform.

The	following	table	lists	the	valid	names	for	connection	pooling	values	within
the	ConnectionString.	For	more	information	about	connection	pooling,	see
Connection	Pooling	for	the	MySql	Data	Provider.

Name Default Description

Connection	Lifetime 0

When	a	connection	is	returned	to	the	pool,
its	creation	time	is	compared	with	the
current	time,	and	the	connection	is
destroyed	if	that	time	span	(in	seconds)
exceeds	the	value	specified	by	Connection
Lifetime.	This	is	useful	in	clustered
configurations	to	force	load	balancing
between	a	running	server	and	a	server	just
brought	online.	A	value	of	zero	(0)	causes
pooled	connections	to	have	the	maximum
connection	timeout.

Max	Pool	Size 100 The	maximum	number	of	connections
allowed	in	the	pool.

Min	Pool	Size 0 The	minimum	number	of	connections
allowed	in	the	pool.

Pooling true

When	true,	the	MySqlConnection	object	is
drawn	from	the	appropriate	pool,	or	if
necessary,	is	created	and	added	to	the
appropriate	pool.	Recognized	values	are
true,	false,	yes,	and	no.

Reset	Pooled	Connections
-or-	ResetConnections	-or-
ResetPooledConnections

true

Specifies	whether	a	ping	and	a	reset	should
be	sent	to	the	server	before	a	pooled
connection	is	returned.	Not	resetting	will
yeild	faster	connection	opens	but	also	will
not	clear	out	session	items	such	as	temp
tables.

Cache	Server
Configuration	-or-

Specifies	whether	server	variables	should
be	updated	when	a	pooled	connection	is

CacheServerConfiguration
-or-	CacheServerConfig

false returned.	Turning	this	one	will	yeild	faster
opens	but	will	also	not	catch	any	server
changes	made	by	other	connections.

When	setting	keyword	or	connection	pooling	values	that	require	a	Boolean
value,	you	can	use	'yes'	instead	of	'true',	and	'no'	instead	of	'false'.

Note	The	MySql	Data	Provider	uses	the	native	socket	protocol	to	communicate
with	MySQL.	Therefore,	it	does	not	support	the	use	of	an	ODBC	data	source
name	(DSN)	when	connecting	to	MySQL	because	it	does	not	add	an	ODBC
layer.

CAUTION	In	this	release,	the	application	should	use	caution	when	constructing	a
connection	string	based	on	user	input	(for	example	when	retrieving	user	ID	and
password	information	from	a	dialog	box,	and	appending	it	to	the	connection
string).	The	application	should	ensure	that	a	user	cannot	embed	extra	connection
string	parameters	in	these	values	(for	example,	entering	a	password	as
"validpassword;database=somedb"	in	an	attempt	to	attach	to	a	different
database).

Examples

The	following	example	creates	a	MySqlConnection	and	sets	some	of	its
properties

Visual	Basic	example:

		Public	Sub	CreateConnection()

				Dim	myConnection	As	New	MySqlConnection()

				myConnection.ConnectionString	=	"Persist	Security	Info=False;database=myDB;server=myHost;Connect	Timeout=30;user	id=myUser;	pwd=myPass"

				myConnection.Open()

		End	Sub	'CreateConnection

		

C#	example:

		public	void	CreateConnection()	

		{

				MySqlConnection	myConnection	=	new	MySqlConnection();

				myConnection.ConnectionString	=	"Persist	Security	Info=False;database=myDB;server=myHost;Connect	Timeout=30;user	id=myUser;	pwd=myPass";

				myConnection.Open();

		}

		

Examples

The	following	example	creates	a	MySqlConnection	in	Unix	environment	with
Mono	installed.	MySQL	socket	filename	used	in	this	example	is
"/var/lib/mysql/mysql.sock".	The	actual	filename	depends	on	your	MySQL
configuration.

Visual	Basic	example:

		Public	Sub	CreateConnection()

				Dim	myConnection	As	New	MySqlConnection()

				myConnection.ConnectionString	=	"database=myDB;server=/var/lib/mysql/mysql.sock;user	id=myUser;	pwd=myPass"

				myConnection.Open()

		End	Sub	'CreateConnection

		

C#	example:

		public	void	CreateConnection()	

		{

				MySqlConnection	myConnection	=	new	MySqlConnection();

				myConnection.ConnectionString	=	"database=myDB;server=/var/lib/mysql/mysql.sock;user	id=myUser;	pwd=myPass";

				myConnection.Open();

		}

		

23.2.3.4.	MySqlDataAdapter

Represents	a	set	of	data	commands	and	a	database	connection	that	are	used	to	fill
a	dataset	and	update	a	MySQL	database.	This	class	cannot	be	inherited.

The	MySQLDataAdapter,	serves	as	a	bridge	between	a	System.Data.DataSet	and
MySQL	for	retrieving	and	saving	data.	The	MySQLDataAdapter	provides	this
bridge	by	mapping	DbDataAdapter.Fill,	which	changes	the	data	in	the	DataSet
to	match	the	data	in	the	data	source,	and	DbDataAdapter.Update,	which	changes
the	data	in	the	data	source	to	match	the	data	in	the	DataSet,	using	the
appropriate	SQL	statements	against	the	data	source.

When	the	MySQLDataAdapter	fills	a	DataSet,	it	will	create	the	necessary	tables
and	columns	for	the	returned	data	if	they	do	not	already	exist.	However,	primary

key	information	will	not	be	included	in	the	implicitly	created	schema	unless	the
System.Data.MissingSchemaAction	property	is	set	to
System.Data.MissingSchemaAction.AddWithKey.	You	may	also	have	the
MySQLDataAdapter	create	the	schema	of	the	DataSet,	including	primary	key
information,	before	filling	it	with	data	using
System.Data.Common.DbDataAdapter.FillSchema.

MySQLDataAdapter	is	used	in	conjunction	with	MySqlConnection	and
MySqlCommand	to	increase	performance	when	connecting	to	a	MySQL	database.

The	MySQLDataAdapter	also	includes	the	MySqlDataAdapter.SelectCommand,
MySqlDataAdapter.InsertCommand,	MySqlDataAdapter.DeleteCommand,
MySqlDataAdapter.UpdateCommand,	and	DataAdapter.TableMappings
properties	to	facilitate	the	loading	and	updating	of	data.

When	an	instance	of	MySQLDataAdapter	is	created,	the	read/write	properties	are
set	to	initial	values.	For	a	list	of	these	values,	see	the	MySQLDataAdapter
constructor.

Note.		Please	be	aware	that	the	DataColumn	class	in	.NET	1.0	and	1.1	does	not
allow	columns	with	type	of	UInt16,	UInt32,	or	UInt64	to	be	autoincrement
columns.	If	you	plan	to	use	autoincremement	columns	with	MySQL,	you	should
consider	using	signed	integer	columns.

Examples

The	following	example	creates	a	MySqlCommand	and	a	MySqlConnection.	The
MySqlConnection	is	opened	and	set	as	the	MySqlCommand.Connection	for	the
MySqlCommand.	The	example	then	calls	MySqlCommand.ExecuteNonQuery,	and
closes	the	connection.	To	accomplish	this,	the	ExecuteNonQuery	is	passed	a
connection	string	and	a	query	string	that	is	a	SQL	INSERT	statement.

Visual	Basic	example:

Public	Function	SelectRows(dataSet	As	DataSet,	connection	As	String,	query	As	String)	As	DataSet

				Dim	conn	As	New	MySqlConnection(connection)

				Dim	adapter	As	New	MySqlDataAdapter()

				adapter.SelectCommand	=	new	MySqlCommand(query,	conn)

				adapter.Fill(dataset)

				Return	dataset

End	Function

		

C#	example:

public	DataSet	SelectRows(DataSet	dataset,string	connection,string	query)	

{

				MySqlConnection	conn	=	new	MySqlConnection(connection);

				MySqlDataAdapter	adapter	=	new	MySqlDataAdapter();

				adapter.SelectCommand	=	new	MySqlCommand(query,	conn);

				adapter.Fill(dataset);

				return	dataset;

}

		

23.2.3.4.1.	Class	MySqlDataAdapter	Constructor

Overload	methods	for	MySqlDataAdapter

Initializes	a	new	instance	of	the	MySqlDataAdapter	class.

When	an	instance	of	MySqlDataAdapter	is	created,	the	following	read/write
properties	are	set	to	the	following	initial	values.

Properties Initial	Value
MissingMappingAction MissingMappingAction.Passthrough

MissingSchemaAction MissingSchemaAction.Add

You	can	change	the	value	of	any	of	these	properties	through	a	separate	call	to	the
property.

Examples

The	following	example	creates	a	MySqlDataAdapter	and	sets	some	of	its
properties.

Visual	Basic	example:

	

Public	Sub	CreateSqlDataAdapter()

				Dim	conn	As	MySqlConnection	=	New	MySqlConnection("Data	Source=localhost;"	&	_

				"database=test")

				Dim	da	As	MySqlDataAdapter	=	New	MySqlDataAdapter

				da.MissingSchemaAction	=	MissingSchemaAction.AddWithKey				

			

				da.SelectCommand	=	New	MySqlCommand("SELECT	id,	name	FROM	mytable",	conn)

				da.InsertCommand	=	New	MySqlCommand("INSERT	INTO	mytable	(id,	name)	"	&	_

																																												"VALUES	(?id,	?name)",	conn)

				da.UpdateCommand	=	New	MySqlCommand("UPDATE	mytable	SET	id=?id,	name=?name	"	&	_

																																												"WHERE	id=?oldId",	conn)

				da.DeleteCommand	=	New	MySqlCommand("DELETE	FROM	mytable	WHERE	id=?id",	conn)

				da.InsertCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id")

				da.InsertCommand.Parameters.Add("?name",	MySqlDbType.VarChar,	40,	"name")

	

				da.UpdateCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id")

				da.UpdateCommand.Parameters.Add("?name",	MySqlDbType.VarChar,	40,	"name")

				da.UpdateCommand.Parameters.Add("?oldId",	MySqlDbType.VarChar,	5,	"id").SourceVersion	=	DataRowVersion.Original

				da.DeleteCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id").SourceVersion	=	DataRowVersion.Original

End	Sub

C#	example:

public	static	void	CreateSqlDataAdapter()	

{

				MySqlConnection	conn	=	new	MySqlConnection("Data	Source=localhost;database=test");

				MySqlDataAdapter	da	=	new	MySqlDataAdapter();

				da.MissingSchemaAction	=	MissingSchemaAction.AddWithKey;

			

				da.SelectCommand	=	new	MySqlCommand("SELECT	id,	name	FROM	mytable",	conn);

				da.InsertCommand	=	new	MySqlCommand("INSERT	INTO	mytable	(id,	name)	"	+

																																												"VALUES	(?id,	?name)",	conn);

				da.UpdateCommand	=	new	MySqlCommand("UPDATE	mytable	SET	id=?id,	name=?name	"	+

																																												"WHERE	id=?oldId",	conn);

				da.DeleteCommand	=	new	MySqlCommand("DELETE	FROM	mytable	WHERE	id=?id",	conn);

				da.InsertCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id");

				da.InsertCommand.Parameters.Add("?name",	MySqlDbType.VarChar,	40,	"name");

	

				da.UpdateCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id");

				da.UpdateCommand.Parameters.Add("?name",	MySqlDbType.VarChar,	40,	"name");

				da.UpdateCommand.Parameters.Add("?oldId",	MySqlDbType.VarChar,	5,	"id").SourceVersion	=	DataRowVersion.Original;

				da.DeleteCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id").SourceVersion	=	DataRowVersion.Original;

}		

23.2.3.4.2.	Class	MySqlDataAdapter	Constructor	Form	1

Initializes	a	new	instance	of	the	MySqlDataAdapter	class	with	the	specified
MySqlCommand	as	the	SelectCommand	property.

Parameters:	MySqlCommand	that	is	a	SQL	SELECT	statement	or	stored	procedure
and	is	set	as	the	SelectCommand	property	of	the	MySqlDataAdapter.

When	an	instance	of	MySqlDataAdapter	is	created,	the	following	read/write
properties	are	set	to	the	following	initial	values.

Properties Initial	Value
MissingMappingAction MissingMappingAction.Passthrough

MissingSchemaAction MissingSchemaAction.Add

You	can	change	the	value	of	any	of	these	properties	through	a	separate	call	to	the
property.

When	SelectCommand	(or	any	of	the	other	command	properties)	is	assigned	to	a
previously	created	MySqlCommand,	the	MySqlCommand	is	not	cloned.	The
SelectCommand	maintains	a	reference	to	the	previously	created	MySqlCommand
object.

Examples

The	following	example	creates	a	MySqlDataAdapter	and	sets	some	of	its
properties.

Visual	Basic	example:

	

Public	Sub	CreateSqlDataAdapter()

				Dim	conn	As	MySqlConnection	=	New	MySqlConnection("Data	Source=localhost;"	&	_

				"database=test")

		Dim	cmd	as	new	MySqlCommand("SELECT	id,	name	FROM	mytable",	conn)

				Dim	da	As	MySqlDataAdapter	=	New	MySqlDataAdapter(cmd)

				da.MissingSchemaAction	=	MissingSchemaAction.AddWithKey				

			

				da.InsertCommand	=	New	MySqlCommand("INSERT	INTO	mytable	(id,	name)	"	&	_

																																												"VALUES	(?id,	?name)",	conn)

				da.UpdateCommand	=	New	MySqlCommand("UPDATE	mytable	SET	id=?id,	name=?name	"	&	_

																																												"WHERE	id=?oldId",	conn)

				da.DeleteCommand	=	New	MySqlCommand("DELETE	FROM	mytable	WHERE	id=?id",	conn)

				da.InsertCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id")

				da.InsertCommand.Parameters.Add("?name",	MySqlDbType.VarChar,	40,	"name")

	

				da.UpdateCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id")

				da.UpdateCommand.Parameters.Add("?name",	MySqlDbType.VarChar,	40,	"name")

				da.UpdateCommand.Parameters.Add("?oldId",	MySqlDbType.VarChar,	5,	"id").SourceVersion	=	DataRowVersion.Original

				da.DeleteCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id").SourceVersion	=	DataRowVersion.Original

End	Sub

C#	example:

public	static	void	CreateSqlDataAdapter()	

{

				MySqlConnection	conn	=	new	MySqlConnection("Data	Source=localhost;database=test");

				MySqlCommand	cmd	=	new	MySqlCommand("SELECT	id,	name	FROM	mytable",	conn);

				MySqlDataAdapter	da	=	new	MySqlDataAdapter(cmd);

				da.MissingSchemaAction	=	MissingSchemaAction.AddWithKey;

			

				da.InsertCommand	=	new	MySqlCommand("INSERT	INTO	mytable	(id,	name)	"	+

																																												"VALUES	(?id,	?name)",	conn);

				da.UpdateCommand	=	new	MySqlCommand("UPDATE	mytable	SET	id=?id,	name=?name	"	+

																																												"WHERE	id=?oldId",	conn);

				da.DeleteCommand	=	new	MySqlCommand("DELETE	FROM	mytable	WHERE	id=?id",	conn);

				da.InsertCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id");

				da.InsertCommand.Parameters.Add("?name",	MySqlDbType.VarChar,	40,	"name");

	

				da.UpdateCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id");

				da.UpdateCommand.Parameters.Add("?name",	MySqlDbType.VarChar,	40,	"name");

				da.UpdateCommand.Parameters.Add("?oldId",	MySqlDbType.VarChar,	5,	"id").SourceVersion	=	DataRowVersion.Original;

				da.DeleteCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id").SourceVersion	=	DataRowVersion.Original;

}		

23.2.3.4.3.	Class	MySqlDataAdapter	Constructor	Form	2

Initializes	a	new	instance	of	the	MySqlDataAdapter	class	with	a	SelectCommand
and	a	MySqlConnection	object.

Parameters:	A	String	that	is	a	SQL	SELECT	statement	or	stored	procedure	to	be
used	by	the	SelectCommand	property	of	the	MySqlDataAdapter.

Parameters:	A	MySqlConnection	that	represents	the	connection.

This	implementation	of	the	MySqlDataAdapter	opens	and	closes	a
MySqlConnection	if	it	is	not	already	open.	This	can	be	useful	in	a	an	application
that	must	call	the	DbDataAdapter.Fill	method	for	two	or	more
MySqlDataAdapter	objects.	If	the	MySqlConnection	is	already	open,	you	must
explicitly	call	MySqlConnection.Close	or	MySqlConnection.Dispose	to	close
it.

When	an	instance	of	MySqlDataAdapter	is	created,	the	following	read/write
properties	are	set	to	the	following	initial	values.

Properties Initial	Value

MissingMappingAction MissingMappingAction.Passthrough

MissingSchemaAction MissingSchemaAction.Add

You	can	change	the	value	of	any	of	these	properties	through	a	separate	call	to	the
property.

Examples

The	following	example	creates	a	MySqlDataAdapter	and	sets	some	of	its
properties.

Visual	Basic	example:

	

Public	Sub	CreateSqlDataAdapter()

				Dim	conn	As	MySqlConnection	=	New	MySqlConnection("Data	Source=localhost;"	&	_

				"database=test")

				Dim	da	As	MySqlDataAdapter	=	New	MySqlDataAdapter("SELECT	id,	name	FROM	mytable",	conn)

				da.MissingSchemaAction	=	MissingSchemaAction.AddWithKey				

			

				da.InsertCommand	=	New	MySqlCommand("INSERT	INTO	mytable	(id,	name)	"	&	_

																																												"VALUES	(?id,	?name)",	conn)

				da.UpdateCommand	=	New	MySqlCommand("UPDATE	mytable	SET	id=?id,	name=?name	"	&	_

																																												"WHERE	id=?oldId",	conn)

				da.DeleteCommand	=	New	MySqlCommand("DELETE	FROM	mytable	WHERE	id=?id",	conn)

				da.InsertCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id")

				da.InsertCommand.Parameters.Add("?name",	MySqlDbType.VarChar,	40,	"name")

	

				da.UpdateCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id")

				da.UpdateCommand.Parameters.Add("?name",	MySqlDbType.VarChar,	40,	"name")

				da.UpdateCommand.Parameters.Add("?oldId",	MySqlDbType.VarChar,	5,	"id").SourceVersion	=	DataRowVersion.Original

				da.DeleteCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id").SourceVersion	=	DataRowVersion.Original

End	Sub

C#	example:

public	static	void	CreateSqlDataAdapter()	

{

				MySqlConnection	conn	=	new	MySqlConnection("Data	Source=localhost;database=test");

				MySqlDataAdapter	da	=	new	MySqlDataAdapter("SELECT	id,	name	FROM	mytable",	conn);

				da.MissingSchemaAction	=	MissingSchemaAction.AddWithKey;

			

				da.InsertCommand	=	new	MySqlCommand("INSERT	INTO	mytable	(id,	name)	"	+

																																												"VALUES	(?id,	?name)",	conn);

				da.UpdateCommand	=	new	MySqlCommand("UPDATE	mytable	SET	id=?id,	name=?name	"	+

																																												"WHERE	id=?oldId",	conn);

				da.DeleteCommand	=	new	MySqlCommand("DELETE	FROM	mytable	WHERE	id=?id",	conn);

				da.InsertCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id");

				da.InsertCommand.Parameters.Add("?name",	MySqlDbType.VarChar,	40,	"name");

	

				da.UpdateCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id");

				da.UpdateCommand.Parameters.Add("?name",	MySqlDbType.VarChar,	40,	"name");

				da.UpdateCommand.Parameters.Add("?oldId",	MySqlDbType.VarChar,	5,	"id").SourceVersion	=	DataRowVersion.Original;

				da.DeleteCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id").SourceVersion	=	DataRowVersion.Original;

}		

23.2.3.4.4.	Class	MySqlDataAdapter	Constructor	Form	3

Initializes	a	new	instance	of	the	MySqlDataAdapter	class	with	a	SelectCommand
and	a	connection	string.

Parameters:	A	string	that	is	a	SQL	SELECT	statement	or	stored	procedure	to	be
used	by	the	SelectCommand	property	of	the	MySqlDataAdapter.

Parameters:	The	connection	string

When	an	instance	of	MySqlDataAdapter	is	created,	the	following	read/write
properties	are	set	to	the	following	initial	values.

Properties Initial	Value
MissingMappingAction MissingMappingAction.Passthrough

MissingSchemaAction MissingSchemaAction.Add

You	can	change	the	value	of	any	of	these	properties	through	a	separate	call	to	the
property.

Examples

The	following	example	creates	a	MySqlDataAdapter	and	sets	some	of	its
properties.

Visual	Basic	example:

	

Public	Sub	CreateSqlDataAdapter()

				Dim	da	As	MySqlDataAdapter	=	New	MySqlDataAdapter("SELECT	id,	name	FROM	mytable",	"Data	Source=localhost;database=test")

				Dim	conn	As	MySqlConnection	=	da.SelectCommand.Connection

				da.MissingSchemaAction	=	MissingSchemaAction.AddWithKey				

			

				da.InsertCommand	=	New	MySqlCommand("INSERT	INTO	mytable	(id,	name)	"	&	_

																																												"VALUES	(?id,	?name)",	conn)

				da.UpdateCommand	=	New	MySqlCommand("UPDATE	mytable	SET	id=?id,	name=?name	"	&	_

																																												"WHERE	id=?oldId",	conn)

				da.DeleteCommand	=	New	MySqlCommand("DELETE	FROM	mytable	WHERE	id=?id",	conn)

				da.InsertCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id")

				da.InsertCommand.Parameters.Add("?name",	MySqlDbType.VarChar,	40,	"name")

	

				da.UpdateCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id")

				da.UpdateCommand.Parameters.Add("?name",	MySqlDbType.VarChar,	40,	"name")

				da.UpdateCommand.Parameters.Add("?oldId",	MySqlDbType.VarChar,	5,	"id").SourceVersion	=	DataRowVersion.Original

				da.DeleteCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id").SourceVersion	=	DataRowVersion.Original

End	Sub

C#	example:

public	static	void	CreateSqlDataAdapter()	

{

				MySqlDataAdapter	da	=	new	MySqlDataAdapter("SELECT	id,	name	FROM	mytable",	"Data	Source=localhost;database=test");

				MySqlConnection	conn	=	da.SelectCommand.Connection;

				da.MissingSchemaAction	=	MissingSchemaAction.AddWithKey;

			

				da.InsertCommand	=	new	MySqlCommand("INSERT	INTO	mytable	(id,	name)	"	+

																																												"VALUES	(?id,	?name)",	conn);

				da.UpdateCommand	=	new	MySqlCommand("UPDATE	mytable	SET	id=?id,	name=?name	"	+

																																												"WHERE	id=?oldId",	conn);

				da.DeleteCommand	=	new	MySqlCommand("DELETE	FROM	mytable	WHERE	id=?id",	conn);

				da.InsertCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id");

				da.InsertCommand.Parameters.Add("?name",	MySqlDbType.VarChar,	40,	"name");

	

				da.UpdateCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id");

				da.UpdateCommand.Parameters.Add("?name",	MySqlDbType.VarChar,	40,	"name");

				da.UpdateCommand.Parameters.Add("?oldId",	MySqlDbType.VarChar,	5,	"id").SourceVersion	=	DataRowVersion.Original;

				da.DeleteCommand.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id").SourceVersion	=	DataRowVersion.Original;

}		

23.2.3.4.5.	DeleteCommand

Gets	or	sets	a	SQL	statement	or	stored	procedure	used	to	delete	records	from	the
data	set.

Value:	A	MySqlCommand	used	during
System.Data.Common.DataAdapter.Update	to	delete	records	in	the	database
that	correspond	to	deleted	rows	in	the	DataSet.

During	System.Data.Common.DataAdapter.Update,	if	this	property	is	not	set

and	primary	key	information	is	present	in	the	DataSet,	the	DeleteCommand	can
be	generated	automatically	if	you	set	the	SelectCommand	property	and	use	the
MySqlCommandBuilder.	Then,	any	additional	commands	that	you	do	not	set	are
generated	by	the	MySqlCommandBuilder.	This	generation	logic	requires	key
column	information	to	be	present	in	the	DataSet.

When	DeleteCommand	is	assigned	to	a	previously	created	MySqlCommand,	the
MySqlCommand	is	not	cloned.	The	DeleteCommand	maintains	a	reference	to	the
previously	created	MySqlCommand	object.

Examples

The	following	example	creates	a	MySqlDataAdapter	and	sets	the	SelectCommand
and	DeleteCommand	properties.	It	assumes	you	have	already	created	a
MySqlConnection	object.

Visual	Basic	example:

Public	Shared	Function	CreateCustomerAdapter(conn	As	MySqlConnection)	As	MySqlDataAdapter	

		

		Dim	da	As	MySqlDataAdapter	=	New	MySqlDataAdapter()

		Dim	cmd	As	MySqlCommand

		Dim	parm	As	MySqlParameter

		'	Create	the	SelectCommand.

		cmd	=	New	MySqlCommand("SELECT	*	FROM	mytable	WHERE	id=?id	AND	name=?name",	conn)

		cmd.Parameters.Add("?id",	MySqlDbType.VarChar,	15)

		cmd.Parameters.Add("?name",	MySqlDbType.VarChar,	15)

		da.SelectCommand	=	cmd

		'	Create	the	DeleteCommand.

		cmd	=	New	MySqlCommand("DELETE	FROM	mytable	WHERE	id=?id",	conn)

		parm	=	cmd.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id")

		parm.SourceVersion	=	DataRowVersion.Original

		da.DeleteCommand	=	cmd

		Return	da

End	Function

C#	example:

public	static	MySqlDataAdapter	CreateCustomerAdapter(MySqlConnection	conn)

{

		MySqlDataAdapter	da	=	new	MySqlDataAdapter();

		MySqlCommand	cmd;

		MySqlParameter	parm;

		//	Create	the	SelectCommand.

		cmd	=	new	MySqlCommand("SELECT	*	FROM	mytable	WHERE	id=?id	AND	name=?name",	conn);

		cmd.Parameters.Add("?id",	MySqlDbType.VarChar,	15);

		cmd.Parameters.Add("?name",	MySqlDbType.VarChar,	15);

		da.SelectCommand	=	cmd;

		//	Create	the	DeleteCommand.

		cmd	=	new	MySqlCommand("DELETE	FROM	mytable	WHERE	id=?id",	conn);

		parm	=	cmd.Parameters.Add("?id",	MySqlDbType.VarChar,	5,	"id");

		parm.SourceVersion	=	DataRowVersion.Original;

		da.DeleteCommand	=	cmd;

		return	da;

}

23.2.3.4.6.	InsertCommand

Gets	or	sets	a	SQL	statement	or	stored	procedure	used	to	insert	records	into	the
data	set.

Value:	A	MySqlCommand	used	during
System.Data.Common.DataAdapter.Update	to	insert	records	into	the	database
that	correspond	to	new	rows	in	the	DataSet.

During	System.Data.Common.DataAdapter.Update,	if	this	property	is	not	set
and	primary	key	information	is	present	in	the	DataSet,	the	InsertCommand	can
be	generated	automatically	if	you	set	the	SelectCommand	property	and	use	the
MySqlCommandBuilder.	Then,	any	additional	commands	that	you	do	not	set	are
generated	by	the	MySqlCommandBuilder.	This	generation	logic	requires	key
column	information	to	be	present	in	the	DataSet.

When	InsertCommand	is	assigned	to	a	previously	created	MySqlCommand,	the
MySqlCommand	is	not	cloned.	The	InsertCommand	maintains	a	reference	to	the
previously	created	MySqlCommand	object.

Note.		If	execution	of	this	command	returns	rows,	these	rows	may	be	added	to
the	DataSet	depending	on	how	you	set	the	MySqlCommand.UpdatedRowSource
property	of	the	MySqlCommand	object.

Examples

The	following	example	creates	a	MySqlDataAdapter	and	sets	the	SelectCommand
and	InsertCommand	properties.	It	assumes	you	have	already	created	a
MySqlConnection	object.

Visual	Basic	example:

Public	Shared	Function	CreateCustomerAdapter(conn	As	MySqlConnection)	As	MySqlDataAdapter	

		

		Dim	da	As	MySqlDataAdapter	=	New	MySqlDataAdapter()

		Dim	cmd	As	MySqlCommand

		Dim	parm	As	MySqlParameter

		'	Create	the	SelectCommand.

		cmd	=	New	MySqlCommand("SELECT	*	FROM	mytable	WHERE	id=?id	AND	name=?name",	conn)

		cmd.Parameters.Add("?id",	MySqlDbType.VarChar,	15)

		cmd.Parameters.Add("?name",	MySqlDbType.VarChar,	15)

		da.SelectCommand	=	cmd

		'	Create	the	InsertCommand.

		cmd	=	New	MySqlCommand("INSERT	INTO	mytable	(id,name)	VALUES	(?id,	?name)",	conn)

		cmd.Parameters.Add("?id",	MySqlDbType.VarChar,	15,	"id")

		cmd.Parameters.Add("?name",	MySqlDbType.VarChar,	15,	"name")		

		da.InsertCommand	=	cmd

		

		Return	da

End	Function

C#	example:

public	static	MySqlDataAdapter	CreateCustomerAdapter(MySqlConnection	conn)

{

		MySqlDataAdapter	da	=	new	MySqlDataAdapter();

		MySqlCommand	cmd;

		MySqlParameter	parm;

		//	Create	the	SelectCommand.

		cmd	=	new	MySqlCommand("SELECT	*	FROM	mytable	WHERE	id=?id	AND	name=?name",	conn);

		cmd.Parameters.Add("?id",	MySqlDbType.VarChar,	15);

		cmd.Parameters.Add("?name",	MySqlDbType.VarChar,	15);

		da.SelectCommand	=	cmd;

		//	Create	the	InsertCommand.

		cmd	=	new	MySqlCommand("INSERT	INTO	mytable	(id,name)	VALUES	(?id,?name)",	conn);

		cmd.Parameters.Add("?id",	MySqlDbType.VarChar,	15,	"id");

		cmd.Parameters.Add("?name",	MySqlDbType.VarChar,	15,	"name");

		

		da.InsertCommand	=	cmd;		

		return	da;

}

23.2.3.4.7.	UpdateCommand

Gets	or	sets	a	SQL	statement	or	stored	procedure	used	to	updated	records	in	the
data	source.

Value:	A	MySqlCommand	used	during
System.Data.Common.DataAdapter.Update	to	update	records	in	the	database

with	data	from	the	DataSet.

During	System.Data.Common.DataAdapter.Update,	if	this	property	is	not	set
and	primary	key	information	is	present	in	the	DataSet,	the	UpdateCommand	can
be	generated	automatically	if	you	set	the	SelectCommand	property	and	use	the
MySqlCommandBuilder.	Then,	any	additional	commands	that	you	do	not	set	are
generated	by	the	MySqlCommandBuilder.	This	generation	logic	requires	key
column	information	to	be	present	in	the	DataSet.

When	UpdateCommand	is	assigned	to	a	previously	created	MySqlCommand,	the
MySqlCommand	is	not	cloned.	The	UpdateCommand	maintains	a	reference	to	the
previously	created	MySqlCommand	object.

Note.		If	execution	of	this	command	returns	rows,	these	rows	may	be	merged
with	the	DataSet	depending	on	how	you	set	the
MySqlCommand.UpdatedRowSource	property	of	the	MySqlCommand	object.

Examples

The	following	example	creates	a	MySqlDataAdapter	and	sets	the	SelectCommand
and	UpdateCommand	properties.	It	assumes	you	have	already	created	a
MySqlConnection	object.

Visual	Basic	example:

Public	Shared	Function	CreateCustomerAdapter(conn	As	MySqlConnection)	As	MySqlDataAdapter	

		

		Dim	da	As	MySqlDataAdapter	=	New	MySqlDataAdapter()

		Dim	cmd	As	MySqlCommand

		Dim	parm	As	MySqlParameter

		'	Create	the	SelectCommand.

		cmd	=	New	MySqlCommand("SELECT	*	FROM	mytable	WHERE	id=?id	AND	name=?name",	conn)

		cmd.Parameters.Add("?id",	MySqlDbType.VarChar,	15)

		cmd.Parameters.Add("?name",	MySqlDbType.VarChar,	15)

		da.SelectCommand	=	cmd

		'	Create	the	UpdateCommand.

		cmd	=	New	MySqlCommand("UPDATE	mytable	SET	id=?id,	name=?name	WHERE	id=?oldId",	conn)

		cmd.Parameters.Add("?id",	MySqlDbType.VarChar,	15,	"id")

		cmd.Parameters.Add("?name",	MySqlDbType.VarChar,	15,	"name")		

		

		parm	=	cmd.Parameters.Add("?oldId",	MySqlDbType.VarChar,	15,	"id")

		parm.SourceVersion	=	DataRowVersion.Original

		

		da.UpdateCommand	=	cmd

		

		Return	da

End	Function

C#	example:

public	static	MySqlDataAdapter	CreateCustomerAdapter(MySqlConnection	conn)

{

		MySqlDataAdapter	da	=	new	MySqlDataAdapter();

		MySqlCommand	cmd;

		MySqlParameter	parm;

		//	Create	the	SelectCommand.

		cmd	=	new	MySqlCommand("SELECT	*	FROM	mytable	WHERE	id=?id	AND	name=?name",	conn);

		cmd.Parameters.Add("?id",	MySqlDbType.VarChar,	15);

		cmd.Parameters.Add("?name",	MySqlDbType.VarChar,	15);

		da.SelectCommand	=	cmd;

		//	Create	the	UpdateCommand.

		cmd	=	new	MySqlCommand("UPDATE	mytable	SET	id=?id,	name=?name	WHERE	id=?oldId",	conn);

		cmd.Parameters.Add("?id",	MySqlDbType.VarChar,	15,	"id");

		cmd.Parameters.Add("?name",	MySqlDbType.VarChar,	15,	"name");

		

		parm	=	cmd.Parameters.Add("?oldId",	MySqlDbType.VarChar,	15,	"id");

		parm.SourceVersion	=	DataRowVersion.Original;

		

		da.UpdateCommand	=	cmd;		

		return	da;

}

23.2.3.4.8.	SelectCommand

Gets	or	sets	a	SQL	statement	or	stored	procedure	used	to	select	records	in	the
data	source.

Value:	A	MySqlCommand	used	during
System.Data.Common.DbDataAdapter.Fill	to	select	records	from	the	database
for	placement	in	the	DataSet.

When	SelectCommand	is	assigned	to	a	previously	created	MySqlCommand,	the
MySqlCommand	is	not	cloned.	The	SelectCommand	maintains	a	reference	to	the
previously	created	MySqlCommand	object.

If	the	SelectCommand	does	not	return	any	rows,	no	tables	are	added	to	the
DataSet,	and	no	exception	is	raised.

Examples

The	following	example	creates	a	MySqlDataAdapter	and	sets	the	SelectCommand
and	InsertCommand	properties.	It	assumes	you	have	already	created	a
MySqlConnection	object.

Visual	Basic	example:

Public	Shared	Function	CreateCustomerAdapter(conn	As	MySqlConnection)	As	MySqlDataAdapter	

		

		Dim	da	As	MySqlDataAdapter	=	New	MySqlDataAdapter()

		Dim	cmd	As	MySqlCommand

		Dim	parm	As	MySqlParameter

		'	Create	the	SelectCommand.

		cmd	=	New	MySqlCommand("SELECT	*	FROM	mytable	WHERE	id=?id	AND	name=?name",	conn)

		cmd.Parameters.Add("?id",	MySqlDbType.VarChar,	15)

		cmd.Parameters.Add("?name",	MySqlDbType.VarChar,	15)

		da.SelectCommand	=	cmd

		'	Create	the	InsertCommand.

		cmd	=	New	MySqlCommand("INSERT	INTO	mytable	(id,name)	VALUES	(?id,	?name)",	conn)

		cmd.Parameters.Add("?id",	MySqlDbType.VarChar,	15,	"id")

		cmd.Parameters.Add("?name",	MySqlDbType.VarChar,	15,	"name")		

		da.InsertCommand	=	cmd

		

		Return	da

End	Function

C#	example:

public	static	MySqlDataAdapter	CreateCustomerAdapter(MySqlConnection	conn)

{

		MySqlDataAdapter	da	=	new	MySqlDataAdapter();

		MySqlCommand	cmd;

		MySqlParameter	parm;

		//	Create	the	SelectCommand.

		cmd	=	new	MySqlCommand("SELECT	*	FROM	mytable	WHERE	id=?id	AND	name=?name",	conn);

		cmd.Parameters.Add("?id",	MySqlDbType.VarChar,	15);

		cmd.Parameters.Add("?name",	MySqlDbType.VarChar,	15);

		da.SelectCommand	=	cmd;

		//	Create	the	InsertCommand.

		cmd	=	new	MySqlCommand("INSERT	INTO	mytable	(id,name)	VALUES	(?id,?name)",	conn);

		cmd.Parameters.Add("?id",	MySqlDbType.VarChar,	15,	"id");

		cmd.Parameters.Add("?name",	MySqlDbType.VarChar,	15,	"name");

		

		da.InsertCommand	=	cmd;		

		return	da;

}

23.2.3.5.	MySqlDataReader

To	create	a	MySQLDataReader,	you	must	call	the	MySqlCommand.ExecuteReader
method	of	the	MySqlCommand	object,	rather	than	directly	using	a	constructor.

While	the	MySqlDataReader	is	in	use,	the	associated	MySqlConnection	is	busy
serving	the	MySqlDataReader,	and	no	other	operations	can	be	performed	on	the
MySqlConnection	other	than	closing	it.	This	is	the	case	until	the
MySqlDataReader.Close	method	of	the	MySqlDataReader	is	called.

MySqlDataReader.IsClosed	and	MySqlDataReader.RecordsAffected	are	the
only	properties	that	you	can	call	after	the	MySqlDataReader	is	closed.	Though
the	RecordsAffected	property	may	be	accessed	at	any	time	while	the
MySqlDataReader	exists,	always	call	Close	before	returning	the	value	of
RecordsAffected	to	ensure	an	accurate	return	value.

For	optimal	performance,	MySqlDataReader	avoids	creating	unnecessary	objects
or	making	unnecessary	copies	of	data.	As	a	result,	multiple	calls	to	methods	such
as	MySqlDataReader.GetValue	return	a	reference	to	the	same	object.	Use
caution	if	you	are	modifying	the	underlying	value	of	the	objects	returned	by
methods	such	as	GetValue.

Examples

The	following	example	creates	a	MySqlConnection,	a	MySqlCommand,	and	a
MySqlDataReader.	The	example	reads	through	the	data,	writing	it	out	to	the
console.	Finally,	the	example	closes	the	MySqlDataReader,	then	the
MySqlConnection.

Visual	Basic	example:

Public	Sub	ReadMyData(myConnString	As	String)

				Dim	mySelectQuery	As	String	=	"SELECT	OrderID,	CustomerID	FROM	Orders"

				Dim	myConnection	As	New	MySqlConnection(myConnString)

				Dim	myCommand	As	New	MySqlCommand(mySelectQuery,	myConnection)

				myConnection.Open()

				Dim	myReader	As	MySqlDataReader

				myReader	=	myCommand.ExecuteReader()

				'	Always	call	Read	before	accessing	data.

				While	myReader.Read()

								Console.WriteLine((myReader.GetInt32(0)	&	",	"	&	myReader.GetString(1)))

				End	While

				'	always	call	Close	when	done	reading.

				myReader.Close()

				'	Close	the	connection	when	done	with	it.

				myConnection.Close()

End	Sub	'ReadMyData

		

C#	example:

public	void	ReadMyData(string	myConnString)	{

				string	mySelectQuery	=	"SELECT	OrderID,	CustomerID	FROM	Orders";

				MySqlConnection	myConnection	=	new	MySqlConnection(myConnString);

				MySqlCommand	myCommand	=	new	MySqlCommand(mySelectQuery,myConnection);

				myConnection.Open();

				MySqlDataReader	myReader;

				myReader	=	myCommand.ExecuteReader();

				//	Always	call	Read	before	accessing	data.

				while	(myReader.Read())	{

							Console.WriteLine(myReader.GetInt32(0)	+	",	"	+	myReader.GetString(1));

				}

				//	always	call	Close	when	done	reading.

				myReader.Close();

				//	Close	the	connection	when	done	with	it.

				myConnection.Close();

	}

		

23.2.3.5.1.	GetBytes

GetBytes	returns	the	number	of	available	bytes	in	the	field.	In	most	cases	this	is
the	exact	length	of	the	field.	However,	the	number	returned	may	be	less	than	the
true	length	of	the	field	if	GetBytes	has	already	been	used	to	obtain	bytes	from
the	field.	This	may	be	the	case,	for	example,	if	the	MySqlDataReader	is	reading	a
large	data	structure	into	a	buffer.	For	more	information,	see	the
SequentialAccess	setting	for	MySqlCommand.CommandBehavior.

If	you	pass	a	buffer	that	is	a	null	reference	(Nothing	in	Visual	Basic),	GetBytes
returns	the	length	of	the	field	in	bytes.

No	conversions	are	performed;	therefore	the	data	retrieved	must	already	be	a
byte	array.

23.2.3.5.2.	GetTimeSpan

Gets	the	value	of	the	specified	column	as	a	TimeSpan	object.

Parameters:	The	zero-based	column	ordinal.

Returns:	The	value	of	the	specified	column.

23.2.3.5.3.	GetDateTime

Gets	the	value	of	the	specified	column	as	a	DateTime	object.

Note.		MySql	allows	date	columns	to	contain	the	value	'0000-00-00'	and
datetime	columns	to	contain	the	value	'0000-00-00	00:00:00'.	The	DateTime
structure	cannot	contain	or	represent	these	values.	To	read	a	datetime	value	from
a	column	that	might	contain	zero	values,	use	GetMySqlDateTime.	The	behavior
of	reading	a	zero	datetime	column	using	this	method	is	defined	by	the
ZeroDateTimeBehavior	connection	string	option.	For	more	information	on	this
option,	please	refer	to	MySqlConnection.ConnectionString.

Parameters:	The	zero-based	column	ordinal.

Returns:	The	value	of	the	specified	column.

23.2.3.5.4.	GetMySqlDateTime

Gets	the	value	of	the	specified	column	as	a	MySql.Data.Types.MySqlDateTime
object.

Parameters:	The	zero-based	column	ordinal.

Returns:	The	value	of	the	specified	column.

23.2.3.5.5.	GetString

Gets	the	value	of	the	specified	column	as	a	String	object.

Parameters:	The	zero-based	column	ordinal.

Returns:	The	value	of	the	specified	column.

23.2.3.5.6.	GetDecimal

Gets	the	value	of	the	specified	column	as	a	Decimal	object.

Parameters:	The	zero-based	column	ordinal.

Returns:	The	value	of	the	specified	column.

23.2.3.5.7.	GetDouble

Gets	the	value	of	the	specified	column	as	a	double-precision	floating	point
number.

Parameters:	The	zero-based	column	ordinal.

Returns:	The	value	of	the	specified	column.

23.2.3.5.8.	GetFloat

Gets	the	value	of	the	specified	column	as	a	single-precision	floating	point
number.

Parameters:	The	zero-based	column	ordinal.

Returns:	The	value	of	the	specified	column.

23.2.3.5.9.	GetGiud

Gets	the	value	of	the	specified	column	as	a	globally-unique	identifier	(GUID).

Parameters:	The	zero-based	column	ordinal.

Returns:	The	value	of	the	specified	column.

23.2.3.5.10.	GetInt16

Gets	the	value	of	the	specified	column	as	a	16-bit	signed	integer.

Parameters:	The	zero-based	column	ordinal.

Returns:	The	value	of	the	specified	column.

23.2.3.5.11.	GetInt32

Gets	the	value	of	the	specified	column	as	a	32-bit	signed	integer.

Parameters:	The	zero-based	column	ordinal.

Returns:	The	value	of	the	specified	column.

23.2.3.5.12.	GetInt64

Gets	the	value	of	the	specified	column	as	a	64-bit	signed	integer.

Parameters:	The	zero-based	column	ordinal.

Returns:	The	value	of	the	specified	column.

23.2.3.5.13.	GetUInt16

Gets	the	value	of	the	specified	column	as	a	16-bit	unsigned	integer.

Parameters:	The	zero-based	column	ordinal.

Returns:	The	value	of	the	specified	column.

23.2.3.5.14.	GetUInt32

Gets	the	value	of	the	specified	column	as	a	32-bit	unsigned	integer.

Parameters:	The	zero-based	column	ordinal.

Returns:	The	value	of	the	specified	column.

23.2.3.5.15.	GetUInt64

Gets	the	value	of	the	specified	column	as	a	64-bit	unsigned	integer.

Parameters:	The	zero-based	column	ordinal.

Returns:	The	value	of	the	specified	column.

23.2.3.6.	MySqlException

This	class	is	created	whenever	the	MySql	Data	Provider	encounters	an	error
generated	from	the	server.

Any	open	connections	are	not	automatically	closed	when	an	exception	is	thrown.
If	the	client	application	determines	that	the	exception	is	fatal,	it	should	close	any
open	MySqlDataReader	objects	or	MySqlConnection	objects.

Examples

The	following	example	generates	a	MySqlException	due	to	a	missing	server,	and
then	displays	the	exception.

Visual	Basic	example:

Public	Sub	ShowException()

					Dim	mySelectQuery	As	String	=	"SELECT	column1	FROM	table1"

					Dim	myConnection	As	New	MySqlConnection	("Data	Source=localhost;Database=Sample;")

					Dim	myCommand	As	New	MySqlCommand(mySelectQuery,	myConnection)

					Try

									myCommand.Connection.Open()

					Catch	e	As	MySqlException

				MessageBox.Show(e.Message)

					End	Try

	End	Sub

		

C#	example:

public	void	ShowException()	

{

			string	mySelectQuery	=	"SELECT	column1	FROM	table1";

			MySqlConnection	myConnection	=

						new	MySqlConnection("Data	Source=localhost;Database=Sample;");

			MySqlCommand	myCommand	=	new	MySqlCommand(mySelectQuery,myConnection);

			try	

			{

						myCommand.Connection.Open();

			}

			catch	(MySqlException	e)	

			{

				MessageBox.Show(e.Message);

			}

}

		

23.2.3.7.	MySqlParameter

Parameter	names	are	not	case	sensitive.

Examples

The	following	example	creates	multiple	instances	of	MySqlParameter	through
the	MySqlParameterCollection	collection	within	the	MySqlDataAdapter.	These
parameters	are	used	to	select	data	from	the	data	source	and	place	the	data	in	the
DataSet.	This	example	assumes	that	a	DataSet	and	a	MySqlDataAdapter	have
already	been	created	with	the	appropriate	schema,	commands,	and	connection.

Visual	Basic	example:

Public	Sub	AddSqlParameters()

				'	...

				'	create	myDataSet	and	myDataAdapter

				'	...

				myDataAdapter.SelectCommand.Parameters.Add("@CategoryName",	MySqlDbType.VarChar,	80).Value	=	"toasters"

				myDataAdapter.SelectCommand.Parameters.Add("@SerialNum",	MySqlDbType.Long).Value	=	239

				

				myDataAdapter.Fill(myDataSet)

End	Sub	'AddSqlParameters	

		

C#	example:

public	void	AddSqlParameters()	

{

//	...

//	create	myDataSet	and	myDataAdapter

//	...

		myDataAdapter.SelectCommand.Parameters.Add("@CategoryName",	MySqlDbType.VarChar,	80).Value	=	"toasters";

		myDataAdapter.SelectCommand.Parameters.Add("@SerialNum",	MySqlDbType.Long).Value	=	239;

		myDataAdapter.Fill(myDataSet);

}

		

23.2.3.8.	MySqlParameterCollection

The	number	of	the	parameters	in	the	collection	must	be	equal	to	the	number	of
parameter	placeholders	within	the	command	text,	or	an	exception	will	be
generated.

Examples

The	following	example	creates	multiple	instances	of	MySqlParameter	through
the	MySqlParameterCollection	collection	within	the	MySqlDataAdapter.	These

parameters	are	used	to	select	data	within	the	data	source	and	place	the	data	in	the
DataSet.	This	code	assumes	that	a	DataSet	and	a	MySqlDataAdapter	have
already	been	created	with	the	appropriate	schema,	commands,	and	connection.

Visual	Basic	example:

Public	Sub	AddParameters()

				'	...

				'	create	myDataSet	and	myDataAdapter

				'	...

				myDataAdapter.SelectCommand.Parameters.Add("@CategoryName",	MySqlDbType.VarChar,	80).Value	=	"toasters"

				myDataAdapter.SelectCommand.Parameters.Add("@SerialNum",	MySqlDbType.Long).Value	=	239

				

				myDataAdapter.Fill(myDataSet)

End	Sub	'AddSqlParameters	

		

C#	example:

public	void	AddSqlParameters()	

{

//	...

//	create	myDataSet	and	myDataAdapter

//	...

		myDataAdapter.SelectCommand.Parameters.Add("@CategoryName",	MySqlDbType.VarChar,	80).Value	=	"toasters";

		myDataAdapter.SelectCommand.Parameters.Add("@SerialNum",	MySqlDbType.Long).Value	=	239;

		myDataAdapter.Fill(myDataSet);

}

		

23.2.3.9.	MySqlTransaction

Represents	a	SQL	transaction	to	be	made	in	a	MySQL	database.	This	class
cannot	be	inherited.

The	application	creates	a	MySqlTransaction	object	by	calling
MySqlConnection.BeginTransaction	on	the	MySqlConnection	object.	All
subsequent	operations	associated	with	the	transaction	(for	example,	committing
or	aborting	the	transaction),	are	performed	on	the	MySqlTransaction	object.

Examples

The	following	example	creates	a	MySqlConnection	and	a	MySqlTransaction.	It
also	demonstrates	how	to	use	the	MySqlConnection.BeginTransaction,

MySqlTransaction.Commit,	and	MySqlTransaction.Rollback	methods.

Visual	Basic	example:

Public	Sub	RunTransaction(myConnString	As	String)

				Dim	myConnection	As	New	MySqlConnection(myConnString)

				myConnection.Open()

				

				Dim	myCommand	As	MySqlCommand	=	myConnection.CreateCommand()

				Dim	myTrans	As	MySqlTransaction

				

				'	Start	a	local	transaction

				myTrans	=	myConnection.BeginTransaction()

				'	Must	assign	both	transaction	object	and	connection

				'	to	Command	object	for	a	pending	local	transaction

				myCommand.Connection	=	myConnection

				myCommand.Transaction	=	myTrans

				

				Try

						myCommand.CommandText	=	"Insert	into	Region	(RegionID,	RegionDescription)	VALUES	(100,	'Description')"

						myCommand.ExecuteNonQuery()

						myCommand.CommandText	=	"Insert	into	Region	(RegionID,	RegionDescription)	VALUES	(101,	'Description')"

						myCommand.ExecuteNonQuery()

						myTrans.Commit()

						Console.WriteLine("Both	records	are	written	to	database.")

				Catch	e	As	Exception

						Try

								myTrans.Rollback()

						Catch	ex	As	MySqlException

								If	Not	myTrans.Connection	Is	Nothing	Then

										Console.WriteLine("An	exception	of	type	"	&	ex.GetType().ToString()	&	_

																												"	was	encountered	while	attempting	to	roll	back	the	transaction.")

								End	If

						End	Try

				

						Console.WriteLine("An	exception	of	type	"	&	e.GetType().ToString()	&	_

																						"was	encountered	while	inserting	the	data.")

						Console.WriteLine("Neither	record	was	written	to	database.")

				Finally

						myConnection.Close()

				End	Try

End	Sub	'RunTransaction

		

C#	example:

public	void	RunTransaction(string	myConnString)	

	{

				MySqlConnection	myConnection	=	new	MySqlConnection(myConnString);

				myConnection.Open();

				MySqlCommand	myCommand	=	myConnection.CreateCommand();

				MySqlTransaction	myTrans;

				//	Start	a	local	transaction

				myTrans	=	myConnection.BeginTransaction();

				//	Must	assign	both	transaction	object	and	connection

				//	to	Command	object	for	a	pending	local	transaction

				myCommand.Connection	=	myConnection;

				myCommand.Transaction	=	myTrans;

				try

				{

						myCommand.CommandText	=	"Insert	into	Region	(RegionID,	RegionDescription)	VALUES	(100,	'Description')";

						myCommand.ExecuteNonQuery();

						myCommand.CommandText	=	"Insert	into	Region	(RegionID,	RegionDescription)	VALUES	(101,	'Description')";

						myCommand.ExecuteNonQuery();

						myTrans.Commit();

						Console.WriteLine("Both	records	are	written	to	database.");

				}

				catch(Exception	e)

				{

						try

						{

								myTrans.Rollback();

						}

						catch	(MySqlException	ex)

						{

								if	(myTrans.Connection	!=	null)

								{

										Console.WriteLine("An	exception	of	type	"	+	ex.GetType()	+

																												"	was	encountered	while	attempting	to	roll	back	the	transaction.");

								}

						}

				

						Console.WriteLine("An	exception	of	type	"	+	e.GetType()	+

																								"	was	encountered	while	inserting	the	data.");

						Console.WriteLine("Neither	record	was	written	to	database.");

				}

				finally	

				{

						myConnection.Close();

				}

}

		

23.2.3.9.1.	Rollback

Rolls	back	a	transaction	from	a	pending	state.

The	Rollback	method	is	equivalent	to	the	MySQL	statement	ROLLBACK.	The
transaction	can	only	be	rolled	back	from	a	pending	state	(after	BeginTransaction
has	been	called,	but	before	Commit	is	called).

Examples

The	following	example	creates	MySqlConnection	and	a	MySqlTransaction.	It
also	demonstrates	how	to	use	the	MySqlConnection.BeginTransaction,	Commit,
and	Rollback	methods.

Visual	Basic	example:

Public	Sub	RunSqlTransaction(myConnString	As	String)

				Dim	myConnection	As	New	MySqlConnection(myConnString)

				myConnection.Open()

				

				Dim	myCommand	As	MySqlCommand	=	myConnection.CreateCommand()

				Dim	myTrans	As	MySqlTransaction

				

				'	Start	a	local	transaction

				myTrans	=	myConnection.BeginTransaction()

				

				'	Must	assign	both	transaction	object	and	connection

				'	to	Command	object	for	a	pending	local	transaction

				myCommand.Connection	=	myConnection

				myCommand.Transaction	=	myTrans

				

				Try

						myCommand.CommandText	=	"Insert	into	mytable	(id,	desc)	VALUES	(100,	'Description')"

						myCommand.ExecuteNonQuery()

						myCommand.CommandText	=	"Insert	into	mytable	(id,	desc)	VALUES	(101,	'Description')"

						myCommand.ExecuteNonQuery()

						myTrans.Commit()

						Console.WriteLine("Success.")

				Catch	e	As	Exception

						Try

								myTrans.Rollback()

						Catch	ex	As	MySqlException

								If	Not	myTrans.Connection	Is	Nothing	Then

										Console.WriteLine("An	exception	of	type	"	&	ex.GetType().ToString()	&	_

																												"	was	encountered	while	attempting	to	roll	back	the	transaction.")

								End	If

						End	Try

				

						Console.WriteLine("An	exception	of	type	"	&	e.GetType().ToString()	&	_

																						"was	encountered	while	inserting	the	data.")

						Console.WriteLine("Neither	record	was	written	to	database.")

				Finally

						myConnection.Close()

				End	Try

End	Sub

C#	example:

public	void	RunSqlTransaction(string	myConnString)	

	{

				MySqlConnection	myConnection	=	new	MySqlConnection(myConnString);

				myConnection.Open();

				MySqlCommand	myCommand	=	myConnection.CreateCommand();

				MySqlTransaction	myTrans;

				//	Start	a	local	transaction

				myTrans	=	myConnection.BeginTransaction();

				//	Must	assign	both	transaction	object	and	connection

				//	to	Command	object	for	a	pending	local	transaction

				myCommand.Connection	=	myConnection;

				myCommand.Transaction	=	myTrans;

				try

				{

						myCommand.CommandText	=	"Insert	into	mytable	(id,	desc)	VALUES	(100,	'Description')";

						myCommand.ExecuteNonQuery();

						myCommand.CommandText	=	"Insert	into	mytable	(id,	desc)	VALUES	(101,	'Description')";

						myCommand.ExecuteNonQuery();

						myTrans.Commit();

						Console.WriteLine("Both	records	are	written	to	database.");

				}

				catch(Exception	e)

				{

						try

						{

								myTrans.Rollback();

						}

						catch	(MySqlException	ex)

						{

								if	(myTrans.Connection	!=	null)

								{

										Console.WriteLine("An	exception	of	type	"	+	ex.GetType()	+

																												"	was	encountered	while	attempting	to	roll	back	the	transaction.");

								}

						}

				

						Console.WriteLine("An	exception	of	type	"	+	e.GetType()	+

																								"	was	encountered	while	inserting	the	data.");

						Console.WriteLine("Neither	record	was	written	to	database.");

				}

				finally	

				{

						myConnection.Close();

				}

}		

23.2.3.9.2.	Commit

Commits	the	database	transaction.

The	Commit	method	is	equivalent	to	the	MySQL	SQL	statement	COMMIT.

Examples

The	following	example	creates	MySqlConnection	and	a	MySqlTransaction.	It
also	demonstrates	how	to	use	the	MySqlConnection.BeginTransaction,	Commit,
and	Rollback	methods.

Visual	Basic	example:

Public	Sub	RunSqlTransaction(myConnString	As	String)

				Dim	myConnection	As	New	MySqlConnection(myConnString)

				myConnection.Open()

				

				Dim	myCommand	As	MySqlCommand	=	myConnection.CreateCommand()

				Dim	myTrans	As	MySqlTransaction

				

				'	Start	a	local	transaction

				myTrans	=	myConnection.BeginTransaction()

				

				'	Must	assign	both	transaction	object	and	connection

				'	to	Command	object	for	a	pending	local	transaction

				myCommand.Connection	=	myConnection

				myCommand.Transaction	=	myTrans

				

				Try

						myCommand.CommandText	=	"Insert	into	mytable	(id,	desc)	VALUES	(100,	'Description')"

						myCommand.ExecuteNonQuery()

						myCommand.CommandText	=	"Insert	into	mytable	(id,	desc)	VALUES	(101,	'Description')"

						myCommand.ExecuteNonQuery()

						myTrans.Commit()

						Console.WriteLine("Success.")

				Catch	e	As	Exception

						Try

								myTrans.Rollback()

						Catch	ex	As	MySqlException

								If	Not	myTrans.Connection	Is	Nothing	Then

										Console.WriteLine("An	exception	of	type	"	&	ex.GetType().ToString()	&	_

																												"	was	encountered	while	attempting	to	roll	back	the	transaction.")

								End	If

						End	Try

				

						Console.WriteLine("An	exception	of	type	"	&	e.GetType().ToString()	&	_

																						"was	encountered	while	inserting	the	data.")

						Console.WriteLine("Neither	record	was	written	to	database.")

				Finally

						myConnection.Close()

				End	Try

End	Sub

C#	example:

public	void	RunSqlTransaction(string	myConnString)	

	{

				MySqlConnection	myConnection	=	new	MySqlConnection(myConnString);

				myConnection.Open();

				MySqlCommand	myCommand	=	myConnection.CreateCommand();

				MySqlTransaction	myTrans;

				//	Start	a	local	transaction

				myTrans	=	myConnection.BeginTransaction();

				//	Must	assign	both	transaction	object	and	connection

				//	to	Command	object	for	a	pending	local	transaction

				myCommand.Connection	=	myConnection;

				myCommand.Transaction	=	myTrans;

				try

				{

						myCommand.CommandText	=	"Insert	into	mytable	(id,	desc)	VALUES	(100,	'Description')";

						myCommand.ExecuteNonQuery();

						myCommand.CommandText	=	"Insert	into	mytable	(id,	desc)	VALUES	(101,	'Description')";

						myCommand.ExecuteNonQuery();

						myTrans.Commit();

						Console.WriteLine("Both	records	are	written	to	database.");

				}

				catch(Exception	e)

				{

						try

						{

								myTrans.Rollback();

						}

						catch	(MySqlException	ex)

						{

								if	(myTrans.Connection	!=	null)

								{

										Console.WriteLine("An	exception	of	type	"	+	ex.GetType()	+

																												"	was	encountered	while	attempting	to	roll	back	the	transaction.");

								}

						}

				

						Console.WriteLine("An	exception	of	type	"	+	e.GetType()	+

																								"	was	encountered	while	inserting	the	data.");

						Console.WriteLine("Neither	record	was	written	to	database.");

				}

				finally	

				{

						myConnection.Close();

				}

}		

23.2.4.	Connector/NET	Reference

This	section	of	the	manual	contains	a	complete	reference	to	the	Connector/NET
ADO.NET	component,	automatically	generated	from	the	embedded
documentation.

23.2.4.1.	MySql.Data.MySqlClient

Namespace	hierarchy

Classes

Class Description
MySqlCommand 	
MySqlCommandBuilder 	
MySqlConnection 	
MySqlDataAdapter 	

MySqlDataReader
Provides	a	means	of	reading	a	forward-only
stream	of	rows	from	a	MySQL	database.	This
class	cannot	be	inherited.

MySqlError Collection	of	error	codes	that	can	be	returned
by	the	server

MySqlException The	exception	that	is	thrown	when	MySQL
returns	an	error.	This	class	cannot	be	inherited.

MySqlHelper Helper	class	that	makes	it	easier	to	work	with
the	provider.
Provides	data	for	the	InfoMessage	event.	This

MySqlInfoMessageEventArgs class	cannot	be	inherited.

MySqlParameter
Represents	a	parameter	to	a	MySqlCommand	,
and	optionally,	its	mapping	to	DataSetcolumns.
This	class	cannot	be	inherited.

MySqlParameterCollection

Represents	a	collection	of	parameters	relevant
to	a	MySqlCommand	as	well	as	their
respective	mappings	to	columns	in	a	DataSet.
This	class	cannot	be	inherited.

MySqlRowUpdatedEventArgs Provides	data	for	the	RowUpdated	event.	This
class	cannot	be	inherited.

MySqlRowUpdatingEventArgs Provides	data	for	the	RowUpdating	event.	Thisclass	cannot	be	inherited.
MySqlTransaction 	

Delegates

Delegate Description

MySqlInfoMessageEventHandler Represents	the	method	that	will	handle	the
InfoMessage	event	of	a	MySqlConnection	.

MySqlRowUpdatedEventHandler Represents	the	method	that	will	handle	the
RowUpdatedevent	of	a	MySqlDataAdapter	.

MySqlRowUpdatingEventHandler
Represents	the	method	that	will	handle	the
RowUpdatingevent	of	a	MySqlDataAdapter
.

Enumerations

Enumeration Description

MySqlDbType Specifies	MySQL	specific	data	type	of	a	field,	property,	for
use	in	a	MySqlParameter	.

MySqlErrorCode 	

23.2.4.1.1.	MySql.Data.MySqlClientHierarchy

See	Also

MySql.Data.MySqlClient	Namespace

23.2.4.1.2.	MySqlCommand	Class

For	a	list	of	all	members	of	this	type,	see	MySqlCommand	Members	.

Syntax:	Visual	Basic

NotInheritable	Public	Class	MySqlCommand_

		Inherits	Component_

		Implements	IDbCommand,	ICloneable

Syntax:	C#

public	sealed	class	MySqlCommand	:	Component,	IDbCommand,	ICloneable

Thread	Safety

Public	static	(Shared	in	Visual	Basic)	members	of	this	type	are	safe	for
multithreaded	operations.	Instance	members	are	not	guaranteed	to	be	thread-
safe.

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlCommand	Members	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.	MySqlCommand	Members

MySqlCommand	overview

Public	Instance	Constructors

MySqlCommand Overloaded.	Initializes	a	new	instance	of	theMySqlCommand	class.

Public	Instance	Properties

CommandText 	
CommandTimeout 	
CommandType 	
Connection 	
Container(inherited	from
Component)

Gets	the	IContainerthat	contains	the
Component.

IsPrepared 	
Parameters 	
Site(inherited	from	Component) Gets	or	sets	the	ISiteof	the	Component.
Transaction 	
UpdatedRowSource 	

Public	Instance	Methods

Cancel
Attempts	to	cancel	the	execution	of	a
MySqlCommand.	This	operation	is	not
supported.

CreateObjRef(inherited	from
MarshalByRefObject)

Creates	an	object	that	contains	all	the
relevant	information	required	to	generate	a
proxy	used	to	communicate	with	a	remote
object.

CreateParameter Creates	a	new	instance	of	a
MySqlParameter	object.

Dispose(inherited	from
Component)

Releases	all	resources	used	by	the
Component.

Equals(inherited	from	Object) Determines	whether	the	specified	Objectis
equal	to	the	current	Object.

ExecuteNonQuery 	
ExecuteReader Overloaded.
ExecuteScalar 	

GetHashCode(inherited	from
Serves	as	a	hash	function	for	a	particular
type.	GetHashCodeis	suitable	for	use	in

Object) hashing	algorithms	and	data	structures	like
a	hash	table.

GetLifetimeService(inherited
from	MarshalByRefObject)

Retrieves	the	current	lifetime	service	object
that	controls	the	lifetime	policy	for	this
instance.

GetType(inherited	from	Object) Gets	the	Typeof	the	current	instance.
InitializeLifetimeService(inherited
from	MarshalByRefObject)

Obtains	a	lifetime	service	object	to	control
the	lifetime	policy	for	this	instance.

Prepare 	

ToString(inherited	from
Component)

Returns	a	Stringcontaining	the	name	of	the
Component,	if	any.	This	method	should	not
be	overridden.

Public	Instance	Events

Disposed(inherited	from
Component)

Adds	an	event	handler	to	listen	to	the
Disposedevent	on	the	component.

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.	MySqlCommand	Constructor

Initializes	a	new	instance	of	the	MySqlCommand	class.

Overload	List

Initializes	a	new	instance	of	the	MySqlCommand	class.

public	MySqlCommand();

public	MySqlCommand(string);

public	MySqlCommand(string,MySqlConnection);

public	MySqlCommand(string,MySqlConnection,MySqlTransaction);

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.1.	MySqlCommand	Constructor	()

Initializes	a	new	instance	of	the	MySqlCommand	class.

Syntax:	Visual	Basic

Overloads	Public	Sub	New()

Syntax:	C#

public	MySqlCommand();

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlCommand	Constructor	Overload	List

23.2.4.1.2.1.1.2.	MySqlCommand	Constructor	(String)

Syntax:	Visual	Basic

Overloads	Public	Sub	New(_

			ByVal	cmdText	As	String	_

)

Syntax:	C#

public	MySqlCommand(

stringcmdText

);

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlCommand	Constructor	Overload	List

23.2.4.1.2.1.1.3.	MySqlCommand	Constructor	(String,	MySqlConnection)

Syntax:	Visual	Basic

Overloads	Public	Sub	New(_

			ByVal	cmdText	As	String,	_

			ByVal	connection	As	MySqlConnection	_

)

Syntax:	C#

public	MySqlCommand(

stringcmdText,

MySqlConnectionconnection

);

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlCommand	Constructor	Overload	List

23.2.4.1.2.1.1.3.1.	MySqlConnection	Class

For	a	list	of	all	members	of	this	type,	see	MySqlConnection	Members	.

Syntax:	Visual	Basic

NotInheritable	Public	Class	MySqlConnection_

		Inherits	Component_

		Implements	IDbConnection,	ICloneable

Syntax:	C#

public	sealed	class	MySqlConnection	:	Component,	IDbConnection,	ICloneable

Thread	Safety

Public	static	(Shared	in	Visual	Basic)	members	of	this	type	are	safe	for
multithreaded	operations.	Instance	members	are	not	guaranteed	to	be	thread-
safe.

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlConnection	Members	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.	MySqlConnection	Members

MySqlConnection	overview

Public	Instance	Constructors

MySqlConnection Overloaded.	Initializes	a	new	instance	of	theMySqlConnection	class.

Public	Instance	Properties

ConnectionString 	
ConnectionTimeout 	
Container(inherited
from	Component) Gets	the	IContainerthat	contains	the	Component.

Database 	

DataSource Gets	the	name	of	the	MySQL	server	to	which	to
connect.

ServerThread Returns	the	id	of	the	server	thread	this	connection	is
executing	on

ServerVersion 	
Site(inherited	from
Component) Gets	or	sets	the	ISiteof	the	Component.

State 	

UseCompression Indicates	if	this	connection	should	use	compression
when	communicating	with	the	server.

Public	Instance	Methods

BeginTransaction Overloaded.

ChangeDatabase 	
Close 	
CreateCommand 	

CreateObjRef(inherited	from
MarshalByRefObject)

Creates	an	object	that	contains	all	the
relevant	information	required	to	generate	a
proxy	used	to	communicate	with	a	remote
object.

Dispose(inherited	from
Component)

Releases	all	resources	used	by	the
Component.

Equals(inherited	from	Object) Determines	whether	the	specified	Objectis
equal	to	the	current	Object.

GetHashCode(inherited	from
Object)

Serves	as	a	hash	function	for	a	particular
type.	GetHashCodeis	suitable	for	use	in
hashing	algorithms	and	data	structures	like
a	hash	table.

GetLifetimeService(inherited
from	MarshalByRefObject)

Retrieves	the	current	lifetime	service	object
that	controls	the	lifetime	policy	for	this
instance.

GetType(inherited	from	Object) Gets	the	Typeof	the	current	instance.
InitializeLifetimeService(inherited
from	MarshalByRefObject)

Obtains	a	lifetime	service	object	to	control
the	lifetime	policy	for	this	instance.

Open 	
Ping Ping

ToString(inherited	from
Component)

Returns	a	Stringcontaining	the	name	of	the
Component,	if	any.	This	method	should	not
be	overridden.

Public	Instance	Events

Disposed(inherited	from
Component)

Adds	an	event	handler	to	listen	to	the
Disposedevent	on	the	component.

InfoMessage 	
StateChange 	

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.1.	MySqlConnection	Constructor

Initializes	a	new	instance	of	the	MySqlConnection	class.

Overload	List

Initializes	a	new	instance	of	the	MySqlConnection	class.

public	MySqlConnection();

public	MySqlConnection(string);

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.1.1.	MySqlConnection	Constructor	()

Initializes	a	new	instance	of	the	MySqlConnection	class.

Syntax:	Visual	Basic

Overloads	Public	Sub	New()

Syntax:	C#

public	MySqlConnection();

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlConnection	Constructor	Overload	List

23.2.4.1.2.1.1.3.1.1.1.2.	MySqlConnection	Constructor	(String)

Syntax:	Visual	Basic

Overloads	Public	Sub	New(_

			ByVal	connectionString	As	String	_

)

Syntax:	C#

public	MySqlConnection(

stringconnectionString

);

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlConnection	Constructor	Overload	List

23.2.4.1.2.1.1.3.1.1.2.	ConnectionString	Property

Syntax:	Visual	Basic

NotOverridable	Public	Property	ConnectionString	As	String	_

_

		Implements	IDbConnection.ConnectionString

Syntax:	C#

public	string	ConnectionString	{get;	set;}

Implements

IDbConnection.ConnectionString

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.3.	ConnectionTimeout	Property

Syntax:	Visual	Basic

NotOverridable	Public	ReadOnly	Property	ConnectionTimeout	As	Integer	_

_

		Implements	IDbConnection.ConnectionTimeout

Syntax:	C#

public	int	ConnectionTimeout	{get;}

Implements

IDbConnection.ConnectionTimeout

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.4.	Database	Property

Syntax:	Visual	Basic

NotOverridable	Public	ReadOnly	Property	Database	As	String	_

_

		Implements	IDbConnection.Database

Syntax:	C#

public	string	Database	{get;}

Implements

IDbConnection.Database

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.5.	DataSource	Property

Gets	the	name	of	the	MySQL	server	to	which	to	connect.

Syntax:	Visual	Basic

Public	ReadOnly	Property	DataSource	As	String

Syntax:	C#

public	string	DataSource	{get;}

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.6.	ServerThread	Property

Returns	the	id	of	the	server	thread	this	connection	is	executing	on

Syntax:	Visual	Basic

Public	ReadOnly	Property	ServerThread	As	Integer

Syntax:	C#

public	int	ServerThread	{get;}

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.7.	ServerVersion	Property

Syntax:	Visual	Basic

Public	ReadOnly	Property	ServerVersion	As	String

Syntax:	C#

public	string	ServerVersion	{get;}

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.8.	State	Property

Syntax:	Visual	Basic

NotOverridable	Public	ReadOnly	Property	State	As	ConnectionState	_

_

		Implements	IDbConnection.State

Syntax:	C#

public	System.Data.ConnectionState	State	{get;}

Implements

IDbConnection.State

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.9.	UseCompression	Property

Indicates	if	this	connection	should	use	compression	when	communicating	with
the	server.

Syntax:	Visual	Basic

Public	ReadOnly	Property	UseCompression	As	Boolean

Syntax:	C#

public	bool	UseCompression	{get;}

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.10.	BeginTransaction	Method

Overload	List

public	MySqlTransaction	BeginTransaction();

public	MySqlTransaction	BeginTransaction(IsolationLevel);

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.10.1.	MySqlConnection.BeginTransaction	Method	()

Syntax:	Visual	Basic

Overloads	Public	Function	BeginTransaction()	As	MySqlTransaction

Syntax:	C#

public	MySqlTransaction	BeginTransaction();

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlConnection.BeginTransaction	Overload	List

23.2.4.1.2.1.1.3.1.1.10.1.1.	MySqlTransaction	Class

For	a	list	of	all	members	of	this	type,	see	MySqlTransaction	Members	.

Syntax:	Visual	Basic

NotInheritable	Public	Class	MySqlTransaction_

		Implements	IDbTransaction,	IDisposable

Syntax:	C#

public	sealed	class	MySqlTransaction	:	IDbTransaction,	IDisposable

Thread	Safety

Public	static	(Sharedin	Visual	Basic)	members	of	this	type	are	safe	for
multithreaded	operations.	Instance	members	are	notguaranteed	to	be	thread-safe.

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlTransaction	Members	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.10.1.1.1.	MySqlTransaction	Members

MySqlTransaction	overview

Public	Instance	Properties

Connection
Gets	the	MySqlConnection	object	associated	with	the
transaction,	or	a	null	reference	(Nothing	in	Visual	Basic)	if	the
transaction	is	no	longer	valid.

IsolationLevel Specifies	the	IsolationLevelfor	this	transaction.

Public	Instance	Methods

Commit 	
Equals(inherited	from
Object)

Determines	whether	the	specified	Objectis	equal	to	the
current	Object.

GetHashCode(inherited
from	Object)

Serves	as	a	hash	function	for	a	particular	type.
GetHashCodeis	suitable	for	use	in	hashing	algorithms
and	data	structures	like	a	hash	table.

GetType(inherited
from	Object) Gets	the	Typeof	the	current	instance.

Rollback 	
ToString(inherited
from	Object) Returns	a	Stringthat	represents	the	current	Object.

See	Also

MySqlTransaction	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.10.1.1.1.1.	Connection	Property

Gets	the	MySqlConnection	object	associated	with	the	transaction,	or	a	null
reference	(Nothing	in	Visual	Basic)	if	the	transaction	is	no	longer	valid.

Syntax:	Visual	Basic

Public	ReadOnly	Property	Connection	As	MySqlConnection

Syntax:	C#

public	MySqlConnection	Connection	{get;}

Property	Value

The	MySqlConnection	object	associated	with	this	transaction.

Remarks

A	single	application	may	have	multiple	database	connections,	each	with	zero	or
more	transactions.	This	property	enables	you	to	determine	the	connection	object
associated	with	a	particular	transaction	created	by	BeginTransaction	.

See	Also

MySqlTransaction	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.10.1.1.1.2.	IsolationLevel	Property

Specifies	the	IsolationLevelfor	this	transaction.

Syntax:	Visual	Basic

NotOverridable	Public	ReadOnly	Property	IsolationLevel	As	IsolationLevel	_

_

		Implements	IDbTransaction.IsolationLevel

Syntax:	C#

public	System.Data.IsolationLevel	IsolationLevel	{get;}

Property	Value

The	IsolationLevel	for	this	transaction.	The	default	is	ReadCommitted.

Implements

IDbTransaction.IsolationLevel

Remarks

Parallel	transactions	are	not	supported.	Therefore,	the	IsolationLevel	applies	to
the	entire	transaction.

See	Also

MySqlTransaction	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.10.1.1.1.3.	MySqlTransaction.Commit	Method

Syntax:	Visual	Basic

NotOverridable	Public	Sub	Commit()	_

_

		Implements	IDbTransaction.Commit

Syntax:	C#

public	void	Commit();

Implements

IDbTransaction.Commit

See	Also

MySqlTransaction	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.10.1.1.1.4.	MySqlTransaction.Rollback	Method

Syntax:	Visual	Basic

NotOverridable	Public	Sub	Rollback()	_

_

		Implements	IDbTransaction.Rollback

Syntax:	C#

public	void	Rollback();

Implements

IDbTransaction.Rollback

See	Also

MySqlTransaction	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.10.2.	MySqlConnection.BeginTransaction	Method	(IsolationLevel)

Syntax:	Visual	Basic

Overloads	Public	Function	BeginTransaction(_

			ByVal	iso	As	IsolationLevel	_

)	As	MySqlTransaction

Syntax:	C#

public	MySqlTransaction	BeginTransaction(

IsolationLeveliso

);

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlConnection.BeginTransaction	Overload	List

23.2.4.1.2.1.1.3.1.1.11.	MySqlConnection.ChangeDatabase	Method

Syntax:	Visual	Basic

NotOverridable	Public	Sub	ChangeDatabase(_

			ByVal	databaseName	As	String	_

)	_

_

		Implements	IDbConnection.ChangeDatabase

Syntax:	C#

public	void	ChangeDatabase(

stringdatabaseName

);

Implements

IDbConnection.ChangeDatabase

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.12.	MySqlConnection.Close	Method

Syntax:	Visual	Basic

NotOverridable	Public	Sub	Close()	_

_

		Implements	IDbConnection.Close

Syntax:	C#

public	void	Close();

Implements

IDbConnection.Close

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.13.	MySqlConnection.CreateCommand	Method

Syntax:	Visual	Basic

Public	Function	CreateCommand()	As	MySqlCommand

Syntax:	C#

public	MySqlCommand	CreateCommand();

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.14.	MySqlConnection.Open	Method

Syntax:	Visual	Basic

NotOverridable	Public	Sub	Open()	_

_

		Implements	IDbConnection.Open

Syntax:	C#

public	void	Open();

Implements

IDbConnection.Open

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.15.	MySqlConnection.Ping	Method

Ping

Syntax:	Visual	Basic

Public	Function	Ping()	As	Boolean

Syntax:	C#

public	bool	Ping();

Return	Value

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.16.	MySqlConnection.InfoMessage	Event

Syntax:	Visual	Basic

Public	Event	InfoMessage	As	MySqlInfoMessageEventHandler

Syntax:	C#

public	event	MySqlInfoMessageEventHandler	InfoMessage;

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.16.1.	MySqlInfoMessageEventHandler	Delegate

Represents	the	method	that	will	handle	the	InfoMessage	event	of	a
MySqlConnection	.

Syntax:	Visual	Basic

Public	Delegate	Sub	MySqlInfoMessageEventHandler(_

			ByVal	sender	As	Object,	_

			ByVal	args	As	MySqlInfoMessageEventArgs	_

)

Syntax:	C#

public	delegate	void	MySqlInfoMessageEventHandler(

objectsender,

MySqlInfoMessageEventArgsargs

);

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.	MySqlInfoMessageEventArgs	Class

Provides	data	for	the	InfoMessage	event.	This	class	cannot	be	inherited.

For	a	list	of	all	members	of	this	type,	see	MySqlInfoMessageEventArgs
Members	.

Syntax:	Visual	Basic

Public	Class	MySqlInfoMessageEventArgs_

		Inherits	EventArgs

Syntax:	C#

public	class	MySqlInfoMessageEventArgs	:	EventArgs

Thread	Safety

Public	static	(Sharedin	Visual	Basic)	members	of	this	type	are	safe	for
multithreaded	operations.	Instance	members	are	notguaranteed	to	be	thread-safe.

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlInfoMessageEventArgs	Members	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1.	MySqlInfoMessageEventArgs	Members

MySqlInfoMessageEventArgs	overview

Public	Instance	Constructors

MySqlInfoMessageEventArgs
Constructor

Initializes	a	new	instance	of	the
MySqlInfoMessageEventArgs	class.

Public	Instance	Fields

errors 	

Public	Instance	Methods

Equals(inherited	from
Object)

Determines	whether	the	specified	Objectis	equal	to	the
current	Object.

GetHashCode(inherited Serves	as	a	hash	function	for	a	particular	type.

from	Object) GetHashCodeis	suitable	for	use	in	hashing	algorithms
and	data	structures	like	a	hash	table.

GetType(inherited
from	Object) Gets	the	Typeof	the	current	instance.

ToString(inherited
from	Object) Returns	a	Stringthat	represents	the	current	Object.

Protected	Instance	Methods

Finalize(inherited	from
Object)

Allows	an	Objectto	attempt	to	free	resources	and
perform	other	cleanup	operations	before	the
Objectis	reclaimed	by	garbage	collection.

MemberwiseClone(inherited
from	Object) Creates	a	shallow	copy	of	the	current	Object.

See	Also

MySqlInfoMessageEventArgs	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1.1.	MySqlInfoMessageEventArgs	Constructor

Initializes	a	new	instance	of	the	MySqlInfoMessageEventArgs	class.

Syntax:	Visual	Basic

Public	Sub	New()

Syntax:	C#

public	MySqlInfoMessageEventArgs();

See	Also

MySqlInfoMessageEventArgs	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.	MySqlInfoMessageEventArgs.errors	Field

Syntax:	Visual	Basic

Public	errors	As	MySqlError()

Syntax:	C#

public	MySqlError[]	errors;

See	Also

MySqlInfoMessageEventArgs	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.	MySqlError	Class

Collection	of	error	codes	that	can	be	returned	by	the	server

For	a	list	of	all	members	of	this	type,	see	MySqlError	Members	.

Syntax:	Visual	Basic

Public	Class	MySqlError

Syntax:	C#

public	class	MySqlError

Thread	Safety

Public	static	(Shared	in	Visual	Basic)	members	of	this	type	are	safe	for
multithreaded	operations.	Instance	members	are	not	guaranteed	to	be	thread-
safe.

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlError	Members	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.	MySqlError	Members

MySqlError	overview

Public	Instance	Constructors

MySqlError	Constructor 	

Public	Instance	Properties

Code Error	code
Level Error	level
Message Error	message

Public	Instance	Methods

Equals(inherited	from
Object)

Determines	whether	the	specified	Objectis	equal	to	the
current	Object.

GetHashCode(inherited
from	Object)

Serves	as	a	hash	function	for	a	particular	type.
GetHashCodeis	suitable	for	use	in	hashing	algorithms
and	data	structures	like	a	hash	table.

GetType(inherited
from	Object) Gets	the	Typeof	the	current	instance.

ToString(inherited
from	Object) Returns	a	Stringthat	represents	the	current	Object.

Protected	Instance	Methods

Finalize(inherited	from
Object)

Allows	an	Objectto	attempt	to	free	resources	and
perform	other	cleanup	operations	before	the
Objectis	reclaimed	by	garbage	collection.

MemberwiseClone(inherited
from	Object) Creates	a	shallow	copy	of	the	current	Object.

See	Also

MySqlError	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.1.	MySqlError	Constructor

Syntax:	Visual	Basic

Public	Sub	New(_

			ByVal	level	As	String,	_

			ByVal	code	As	Integer,	_

			ByVal	message	As	String	_

)

Syntax:	C#

public	MySqlError(

stringlevel,

intcode,

stringmessage

);

Parameters

level:

code:

message:

See	Also

MySqlError	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.2.	Code	Property

Error	code

Syntax:	Visual	Basic

Public	ReadOnly	Property	Code	As	Integer

Syntax:	C#

public	int	Code	{get;}

See	Also

MySqlError	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.3.	Level	Property

Error	level

Syntax:	Visual	Basic

Public	ReadOnly	Property	Level	As	String

Syntax:	C#

public	string	Level	{get;}

See	Also

MySqlError	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.4.	Message	Property

Error	message

Syntax:	Visual	Basic

Public	ReadOnly	Property	Message	As	String

Syntax:	C#

public	string	Message	{get;}

See	Also

MySqlError	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.3.1.1.17.	MySqlConnection.StateChange	Event

Syntax:	Visual	Basic

Public	Event	StateChange	As	StateChangeEventHandler

Syntax:	C#

public	event	StateChangeEventHandler	StateChange;

See	Also

MySqlConnection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.1.4.	MySqlCommand	Constructor	(String,	MySqlConnection,	MySqlTransaction)

Syntax:	Visual	Basic

Overloads	Public	Sub	New(_

			ByVal	cmdText	As	String,	_

			ByVal	connection	As	MySqlConnection,	_

			ByVal	transaction	As	MySqlTransaction	_

)

Syntax:	C#

public	MySqlCommand(

stringcmdText,

MySqlConnectionconnection,

MySqlTransactiontransaction

);

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlCommand	Constructor	Overload	List

23.2.4.1.2.1.2.	CommandText	Property

Syntax:	Visual	Basic

NotOverridable	Public	Property	CommandText	As	String	_

_

		Implements	IDbCommand.CommandText

Syntax:	C#

public	string	CommandText	{get;	set;}

Implements

IDbCommand.CommandText

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.3.	CommandTimeout	Property

Syntax:	Visual	Basic

NotOverridable	Public	Property	CommandTimeout	As	Integer	_

_

		Implements	IDbCommand.CommandTimeout

Syntax:	C#

public	int	CommandTimeout	{get;	set;}

Implements

IDbCommand.CommandTimeout

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.4.	CommandType	Property

Syntax:	Visual	Basic

NotOverridable	Public	Property	CommandType	As	CommandType	_

_

		Implements	IDbCommand.CommandType

Syntax:	C#

public	System.Data.CommandType	CommandType	{get;	set;}

Implements

IDbCommand.CommandType

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.5.	Connection	Property

Syntax:	Visual	Basic

Public	Property	Connection	As	MySqlConnection

Syntax:	C#

public	MySqlConnection	Connection	{get;	set;}

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.6.	IsPrepared	Property

Syntax:	Visual	Basic

Public	ReadOnly	Property	IsPrepared	As	Boolean

Syntax:	C#

public	bool	IsPrepared	{get;}

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.	Parameters	Property

Syntax:	Visual	Basic

Public	ReadOnly	Property	Parameters	As	MySqlParameterCollection

Syntax:	C#

public	MySqlParameterCollection	Parameters	{get;}

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.	MySqlParameterCollection	Class

Represents	a	collection	of	parameters	relevant	to	a	MySqlCommand	as	well	as
their	respective	mappings	to	columns	in	a	DataSet.	This	class	cannot	be
inherited.

For	a	list	of	all	members	of	this	type,	see	MySqlParameterCollection	Members	.

Syntax:	Visual	Basic

NotInheritable	Public	Class	MySqlParameterCollection_

		Inherits	MarshalByRefObject_

		Implements	IDataParameterCollection,	IList,	ICollection,	IEnumerable

Syntax:	C#

public	sealed	class	MySqlParameterCollection	:	MarshalByRefObject,	IDataParameterCollection,	IList,	ICollection,	IEnumerable

Thread	Safety

Public	static	(Shared	in	Visual	Basic)	members	of	this	type	are	safe	for
multithreaded	operations.	Instance	members	are	not	guaranteed	to	be	thread-
safe.

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlParameterCollection	Members	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.	MySqlParameterCollection	Members

MySqlParameterCollection	overview

Public	Instance	Constructors

MySqlParameterCollection
Constructor

Initializes	a	new	instance	of	the
MySqlParameterCollection	class.

Public	Instance	Properties

Count Gets	the	number	of	MySqlParameter	objects	in	the	collection.

Item Overloaded.	Gets	the	MySqlParameter	with	a	specified	attribute.	In	C#,
this	property	is	the	indexer	for	the	MySqlParameterCollection	class.

Public	Instance	Methods

Add
Overloaded.	Adds	the	specified
MySqlParameter	object	to	the
MySqlParameterCollection	.

Clear Removes	all	items	from	the	collection.

Contains
Overloaded.	Gets	a	value	indicating
whether	a	MySqlParameter	exists	in	the
collection.

CopyTo
Copies	MySqlParameter	objects	from	the
MySqlParameterCollection	to	the	specified
array.

CreateObjRef(inherited	from
MarshalByRefObject)

Creates	an	object	that	contains	all	the
relevant	information	required	to	generate	a
proxy	used	to	communicate	with	a	remote
object.

Equals(inherited	from	Object) Determines	whether	the	specified	Objectis
equal	to	the	current	Object.

GetHashCode(inherited	from
Object)

Serves	as	a	hash	function	for	a	particular
type.	GetHashCodeis	suitable	for	use	in
hashing	algorithms	and	data	structures	like
a	hash	table.

GetLifetimeService(inherited
from	MarshalByRefObject)

Retrieves	the	current	lifetime	service	object
that	controls	the	lifetime	policy	for	this
instance.

GetType(inherited	from	Object) Gets	the	Typeof	the	current	instance.

IndexOf Overloaded.	Gets	the	location	of	a
MySqlParameter	in	the	collection.

InitializeLifetimeService(inherited
from	MarshalByRefObject)

Obtains	a	lifetime	service	object	to	control
the	lifetime	policy	for	this	instance.

Insert Inserts	a	MySqlParameter	into	the
collection	at	the	specified	index.

Remove Removes	the	specified	MySqlParameter
from	the	collection.

RemoveAt Overloaded.	Removes	the	specified
MySqlParameter	from	the	collection.

ToString(inherited	from	Object) Returns	a	Stringthat	represents	the	current
Object.

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.1.	MySqlParameterCollection	Constructor

Initializes	a	new	instance	of	the	MySqlParameterCollection	class.

Syntax:	Visual	Basic

Public	Sub	New()

Syntax:	C#

public	MySqlParameterCollection();

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.2.	Count	Property

Gets	the	number	of	MySqlParameter	objects	in	the	collection.

Syntax:	Visual	Basic

NotOverridable	Public	ReadOnly	Property	Count	As	Integer	_

_

		Implements	ICollection.Count

Syntax:	C#

public	int	Count	{get;}

Implements

ICollection.Count

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.	Item	Property

Gets	the	MySqlParameter	with	a	specified	attribute.	In	C#,	this	property	is	the
indexer	for	the	MySqlParameterCollection	class.

Overload	List

Gets	the	MySqlParameter	at	the	specified	index.

public	MySqlParameter	this[int]	{get;	set;}

Gets	the	MySqlParameter	with	the	specified	name.

public	MySqlParameter	this[string]	{get;	set;}

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.	MySqlParameter	Class

Represents	a	parameter	to	a	MySqlCommand	,	and	optionally,	its	mapping	to
DataSetcolumns.	This	class	cannot	be	inherited.

For	a	list	of	all	members	of	this	type,	see	MySqlParameter	Members	.

Syntax:	Visual	Basic

NotInheritable	Public	Class	MySqlParameter_

		Inherits	MarshalByRefObject_

		Implements	IDataParameter,	IDbDataParameter,	ICloneable

Syntax:	C#

public	sealed	class	MySqlParameter	:	MarshalByRefObject,	IDataParameter,	IDbDataParameter,	ICloneable

Thread	Safety

Public	static	(Shared	in	Visual	Basic)	members	of	this	type	are	safe	for
multithreaded	operations.	Instance	members	are	not	guaranteed	to	be	thread-
safe.

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlParameter	Members	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.1.	MySqlParameter	Members

MySqlParameter	overview

Public	Instance	Constructors

MySqlParameter Overloaded.	Initializes	a	new	instance	of	the	MySqlParameter
class.

Public	Instance	Properties

DbType Gets	or	sets	the	DbTypeof	the	parameter.
Gets	or	sets	a	value	indicating	whether	the	parameter	is	input-
only,	output-only,	bidirectional,	or	a	stored	procedure	return

Direction value	parameter.	As	of	MySql	version	4.1	and	earlier,	input-
only	is	the	only	valid	choice.

IsNullable Gets	or	sets	a	value	indicating	whether	the	parameter	accepts
null	values.

IsUnsigned 	
MySqlDbType Gets	or	sets	the	MySqlDbType	of	the	parameter.
ParameterName Gets	or	sets	the	name	of	the	MySqlParameter.

Precision Gets	or	sets	the	maximum	number	of	digits	used	to	represent
the	Value	property.

Scale Gets	or	sets	the	number	of	decimal	places	to	which	Value	is
resolved.

Size Gets	or	sets	the	maximum	size,	in	bytes,	of	the	data	within	the
column.

SourceColumn Gets	or	sets	the	name	of	the	source	column	that	is	mapped	to
the	DataSetand	used	for	loading	or	returning	the	Value	.

SourceVersion Gets	or	sets	the	DataRowVersionto	use	when	loading	Value	.
Value Gets	or	sets	the	value	of	the	parameter.

Public	Instance	Methods

CreateObjRef(inherited	from
MarshalByRefObject)

Creates	an	object	that	contains	all	the
relevant	information	required	to	generate	a
proxy	used	to	communicate	with	a	remote
object.

Equals(inherited	from	Object) Determines	whether	the	specified	Objectis
equal	to	the	current	Object.

GetHashCode(inherited	from
Object)

Serves	as	a	hash	function	for	a	particular
type.	GetHashCodeis	suitable	for	use	in
hashing	algorithms	and	data	structures	like
a	hash	table.

GetLifetimeService(inherited
from	MarshalByRefObject)

Retrieves	the	current	lifetime	service	object
that	controls	the	lifetime	policy	for	this
instance.

GetType(inherited	from	Object) Gets	the	Typeof	the	current	instance.

InitializeLifetimeService(inherited
from	MarshalByRefObject)

Obtains	a	lifetime	service	object	to	control
the	lifetime	policy	for	this	instance.

ToString Overridden.	Gets	a	string	containing	the
ParameterName	.

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.1.1.	MySqlParameter	Constructor

Initializes	a	new	instance	of	the	MySqlParameter	class.

Overload	List

Initializes	a	new	instance	of	the	MySqlParameter	class.

public	MySqlParameter();

Initializes	a	new	instance	of	the	MySqlParameter	class	with	the	parameter	name
and	the	data	type.

public	MySqlParameter(string,MySqlDbType);

Initializes	a	new	instance	of	the	MySqlParameter	class	with	the	parameter	name,
the	MySqlDbType	,	and	the	size.

public	MySqlParameter(string,MySqlDbType,int);

Initializes	a	new	instance	of	the	MySqlParameter	class	with	the	parameter	name,
the	type	of	the	parameter,	the	size	of	the	parameter,	a	ParameterDirection,	the
precision	of	the	parameter,	the	scale	of	the	parameter,	the	source	column,	a
DataRowVersionto	use,	and	the	value	of	the	parameter.

public
MySqlParameter(string,MySqlDbType,int,ParameterDirection,bool,byte,byte,string,DataRowVersion,object);

Initializes	a	new	instance	of	the	MySqlParameter	class	with	the	parameter	name,
the	MySqlDbType	,	the	size,	and	the	source	column	name.

public	MySqlParameter(string,MySqlDbType,int,string);

Initializes	a	new	instance	of	the	MySqlParameter	class	with	the	parameter	name
and	a	value	of	the	new	MySqlParameter.

public	MySqlParameter(string,object);

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.1.1.1.	MySqlParameter	Constructor	()

Initializes	a	new	instance	of	the	MySqlParameter	class.

Syntax:	Visual	Basic

Overloads	Public	Sub	New()

Syntax:	C#

public	MySqlParameter();

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameter	Constructor	Overload	List

23.2.4.1.2.1.7.1.1.3.1.1.1.2.	MySqlParameter	Constructor	(String,	MySqlDbType)

Initializes	a	new	instance	of	the	MySqlParameter	class	with	the	parameter	name
and	the	data	type.

Syntax:	Visual	Basic

Overloads	Public	Sub	New(_

			ByVal	parameterName	As	String,	_

			ByVal	dbType	As	MySqlDbType	_

)

Syntax:	C#

public	MySqlParameter(

stringparameterName,

MySqlDbTypedbType

);

Parameters

parameterName:	The	name	of	the	parameter	to	map.

dbType:	One	of	the	MySqlDbType	values.

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameter	Constructor	Overload	List

23.2.4.1.2.1.7.1.1.3.1.1.1.2.1.	MySqlDbType	Enumeration

Specifies	MySQL	specific	data	type	of	a	field,	property,	for	use	in	a
MySqlParameter	.

Syntax:	Visual	Basic

Public	Enum	MySqlDbType

Syntax:	C#

public	enum	MySqlDbType

Members

Member
Name Description

VarString A	variable-length	string	containing	0	to	65535	characters

Timestamp A	timestamp.	The	range	is	'1970-01-01	00:00:00'	to	sometime	in
the	year	2037

LongBlob A	BLOB	or	TEXT	column	with	a	maximum	length	of
4294967295	or	4G	(2^32	-	1)	characters
Time

Time The	range	is	'-838:59:59'	to	'838:59:59'.

TinyBlob A	BLOB	or	TEXT	column	with	a	maximum	length	of	255	(2^8	-
1)	characters

Datetime DateTime	The	supported	range	is	'1000-01-01	00:00:00'	to	'9999-
12-31	23:59:59'.

Decimal

Decimal

A	fixed	precision	and	scale	numeric	value	between	-1038	-1	and
10	38	-1.

UByte 	

Blob A	BLOB	or	TEXT	column	with	a	maximum	length	of	65535
(2^16	-	1)	characters

Double

Double

A	normal-size	(double-precision)	floating-point	number.
Allowable	values	are	-1.7976931348623157E+308	to
-2.2250738585072014E-308,	0,	and	2.2250738585072014E-308
to	1.7976931348623157E+308.

Newdate Obsolete	Use	Datetime	or	Date	type

Byte
Byte

The	signed	range	is	-128	to	127.	The	unsigned	range	is	0	to	255.

Date Date	The	supported	range	is	'1000-01-01'	to	'9999-12-31'.
VarChar A	variable-length	string	containing	0	to	255	characters
UInt16 	
UInt24 	

Int16

Int16

A	16-bit	signed	integer.	The	signed	range	is	-32768	to	32767.	The
unsigned	range	is	0	to	65535

NewDecimal New	Decimal

Set
A	set.	A	string	object	that	can	have	zero	or	more	values,	each	of
which	must	be	chosen	from	the	list	of	values	'value1',	'value2',	...
A	SET	can	have	a	maximum	of	64	members.

String Obsolete	Use	VarChar	type

Enum

An	enumeration.	A	string	object	that	can	have	only	one	value,
chosen	from	the	list	of	values	'value1',	'value2',	...,	NULL	or	the
special	""	error	value.	An	ENUM	can	have	a	maximum	of	65535
distinct	values

Geometry 	
UInt64 	

Int64
Int64

A	64-bit	signed	integer.

UInt32 	
Int24 Specifies	a	24	(3	byte)	signed	or	unsigned	value.
Bit Bit-field	data	type

Float

Single

A	small	(single-precision)	floating-point	number.	Allowable
values	are	-3.402823466E+38	to	-1.175494351E-38,	0,	and
1.175494351E-38	to	3.402823466E+38.

Year
A	year	in	2-	or	4-digit	format	(default	is	4-digit).	The	allowable
values	are	1901	to	2155,	0000	in	the	4-digit	year	format,	and
1970-2069	if	you	use	the	2-digit	format	(70-69)

Int32
Int32

A	32-bit	signed	integer

MediumBlob A	BLOB	or	TEXT	column	with	a	maximum	length	of	16777215(2^24	-	1)	characters

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.1.1.3.	MySqlParameter	Constructor	(String,	MySqlDbType,	Int32)

Initializes	a	new	instance	of	the	MySqlParameter	class	with	the	parameter	name,
the	MySqlDbType	,	and	the	size.

Syntax:	Visual	Basic

Overloads	Public	Sub	New(_

			ByVal	parameterName	As	String,	_

			ByVal	dbType	As	MySqlDbType,	_

			ByVal	size	As	Integer	_

)

Syntax:	C#

public	MySqlParameter(

stringparameterName,

MySqlDbTypedbType,

intsize

);

Parameters

parameterName:	The	name	of	the	parameter	to	map.

dbType:	One	of	the	MySqlDbType	values.

size:	The	length	of	the	parameter.

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameter	Constructor	Overload	List

23.2.4.1.2.1.7.1.1.3.1.1.1.4.	MySqlParameter	Constructor	(String,	MySqlDbType,	Int32,	ParameterDirection,	Boolean,	Byte,

Byte,	String,	DataRowVersion,	Object)

Initializes	a	new	instance	of	the	MySqlParameter	class	with	the	parameter	name,
the	type	of	the	parameter,	the	size	of	the	parameter,	a	ParameterDirection,	the
precision	of	the	parameter,	the	scale	of	the	parameter,	the	source	column,	a
DataRowVersionto	use,	and	the	value	of	the	parameter.

Syntax:	Visual	Basic

Overloads	Public	Sub	New(_

			ByVal	parameterName	As	String,	_

			ByVal	dbType	As	MySqlDbType,	_

			ByVal	size	As	Integer,	_

			ByVal	direction	As	ParameterDirection,	_

			ByVal	isNullable	As	Boolean,	_

			ByVal	precision	As	Byte,	_

			ByVal	scale	As	Byte,	_

			ByVal	sourceColumn	As	String,	_

			ByVal	sourceVersion	As	DataRowVersion,	_

			ByVal	value	As	Object	_

)

Syntax:	C#

public	MySqlParameter(

stringparameterName,

MySqlDbTypedbType,

intsize,

ParameterDirectiondirection,

boolisNullable,

byteprecision,

bytescale,

stringsourceColumn,

DataRowVersionsourceVersion,

objectvalue

);

Parameters

parameterName:	The	name	of	the	parameter	to	map.

dbType:	One	of	the	MySqlDbType	values.

size:	The	length	of	the	parameter.

direction:	One	of	the	ParameterDirectionvalues.

isNullable:	true	if	the	value	of	the	field	can	be	null,	otherwise	false.

precision:	The	total	number	of	digits	to	the	left	and	right	of	the	decimal
point	to	which	Value	is	resolved.

scale:	The	total	number	of	decimal	places	to	which	Value	is	resolved.

sourceColumn:	The	name	of	the	source	column.

sourceVersion:	One	of	the	DataRowVersionvalues.

value:	An	Objectthat	is	the	value	of	the	MySqlParameter	.

Exceptions

Exception	Type Condition
ArgumentException 	

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameter	Constructor	Overload	List

23.2.4.1.2.1.7.1.1.3.1.1.1.4.1.	Value	Property

Gets	or	sets	the	value	of	the	parameter.

Syntax:	Visual	Basic

NotOverridable	Public	Property	Value	As	Object	_

_

		Implements	IDataParameter.Value

Syntax:	C#

public	object	Value	{get;	set;}

Implements

IDataParameter.Value

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.1.1.5.	MySqlParameter	Constructor	(String,	MySqlDbType,	Int32,	String)

Initializes	a	new	instance	of	the	MySqlParameter	class	with	the	parameter	name,
the	MySqlDbType	,	the	size,	and	the	source	column	name.

Syntax:	Visual	Basic

Overloads	Public	Sub	New(_

			ByVal	parameterName	As	String,	_

			ByVal	dbType	As	MySqlDbType,	_

			ByVal	size	As	Integer,	_

			ByVal	sourceColumn	As	String	_

)

Syntax:	C#

public	MySqlParameter(

stringparameterName,

MySqlDbTypedbType,

intsize,

stringsourceColumn

);

Parameters

parameterName:	The	name	of	the	parameter	to	map.

dbType:	One	of	the	MySqlDbType	values.

size:	The	length	of	the	parameter.

sourceColumn:	The	name	of	the	source	column.

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameter	Constructor	Overload	List

23.2.4.1.2.1.7.1.1.3.1.1.1.6.	MySqlParameter	Constructor	(String,	Object)

Initializes	a	new	instance	of	the	MySqlParameter	class	with	the	parameter	name
and	a	value	of	the	new	MySqlParameter.

Syntax:	Visual	Basic

Overloads	Public	Sub	New(_

			ByVal	parameterName	As	String,	_

			ByVal	value	As	Object	_

)

Syntax:	C#

public	MySqlParameter(

stringparameterName,

objectvalue

);

Parameters

parameterName:	The	name	of	the	parameter	to	map.

value:	An	Objectthat	is	the	value	of	the	MySqlParameter	.

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameter	Constructor	Overload	List

23.2.4.1.2.1.7.1.1.3.1.1.2.	DbType	Property

Gets	or	sets	the	DbTypeof	the	parameter.

Syntax:	Visual	Basic

NotOverridable	Public	Property	DbType	As	DbType	_

_

		Implements	IDataParameter.DbType

Syntax:	C#

public	System.Data.DbType	DbType	{get;	set;}

Implements

IDataParameter.DbType

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.1.3.	Direction	Property

Gets	or	sets	a	value	indicating	whether	the	parameter	is	input-only,	output-only,
bidirectional,	or	a	stored	procedure	return	value	parameter.	As	of	MySql	version
4.1	and	earlier,	input-only	is	the	only	valid	choice.

Syntax:	Visual	Basic

NotOverridable	Public	Property	Direction	As	ParameterDirection	_

_

		Implements	IDataParameter.Direction

Syntax:	C#

public	System.Data.ParameterDirection	Direction	{get;	set;}

Implements

IDataParameter.Direction

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.1.4.	IsNullable	Property

Gets	or	sets	a	value	indicating	whether	the	parameter	accepts	null	values.

Syntax:	Visual	Basic

NotOverridable	Public	Property	IsNullable	As	Boolean	_

_

		Implements	IDataParameter.IsNullable

Syntax:	C#

public	bool	IsNullable	{get;	set;}

Implements

IDataParameter.IsNullable

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.1.5.	IsUnsigned	Property

Syntax:	Visual	Basic

Public	Property	IsUnsigned	As	Boolean

Syntax:	C#

public	bool	IsUnsigned	{get;	set;}

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.1.6.	MySqlDbType	Property

Gets	or	sets	the	MySqlDbType	of	the	parameter.

Syntax:	Visual	Basic

Public	Property	MySqlDbType	As	MySqlDbType

Syntax:	C#

public	MySqlDbType	MySqlDbType	{get;	set;}

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.1.7.	ParameterName	Property

Gets	or	sets	the	name	of	the	MySqlParameter.

Syntax:	Visual	Basic

NotOverridable	Public	Property	ParameterName	As	String	_

_

		Implements	IDataParameter.ParameterName

Syntax:	C#

public	string	ParameterName	{get;	set;}

Implements

IDataParameter.ParameterName

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.1.8.	Precision	Property

Gets	or	sets	the	maximum	number	of	digits	used	to	represent	the	Value	property.

Syntax:	Visual	Basic

NotOverridable	Public	Property	Precision	As	Byte	_

_

		Implements	IDbDataParameter.Precision

Syntax:	C#

public	byte	Precision	{get;	set;}

Implements

IDbDataParameter.Precision

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.1.9.	Scale	Property

Gets	or	sets	the	number	of	decimal	places	to	which	Value	is	resolved.

Syntax:	Visual	Basic

NotOverridable	Public	Property	Scale	As	Byte	_

_

		Implements	IDbDataParameter.Scale

Syntax:	C#

public	byte	Scale	{get;	set;}

Implements

IDbDataParameter.Scale

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.1.10.	Size	Property

Gets	or	sets	the	maximum	size,	in	bytes,	of	the	data	within	the	column.

Syntax:	Visual	Basic

NotOverridable	Public	Property	Size	As	Integer	_

_

		Implements	IDbDataParameter.Size

Syntax:	C#

public	int	Size	{get;	set;}

Implements

IDbDataParameter.Size

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.1.11.	SourceColumn	Property

Gets	or	sets	the	name	of	the	source	column	that	is	mapped	to	the	DataSetand
used	for	loading	or	returning	the	Value	.

Syntax:	Visual	Basic

NotOverridable	Public	Property	SourceColumn	As	String	_

_

		Implements	IDataParameter.SourceColumn

Syntax:	C#

public	string	SourceColumn	{get;	set;}

Implements

IDataParameter.SourceColumn

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.1.12.	SourceVersion	Property

Gets	or	sets	the	DataRowVersionto	use	when	loading	Value	.

Syntax:	Visual	Basic

NotOverridable	Public	Property	SourceVersion	As	DataRowVersion	_

_

		Implements	IDataParameter.SourceVersion

Syntax:	C#

public	System.Data.DataRowVersion	SourceVersion	{get;	set;}

Implements

IDataParameter.SourceVersion

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.1.1.13.	MySqlParameter.ToString	Method

Overridden.	Gets	a	string	containing	the	ParameterName	.

Syntax:	Visual	Basic

Overrides	Public	Function	ToString()	As	String

Syntax:	C#

public	override	string	ToString();

Return	Value

See	Also

MySqlParameter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.3.2.	Item	Property	(Int32)

Gets	the	MySqlParameter	at	the	specified	index.

Syntax:	Visual	Basic

Overloads	Public	Default	Property	Item(_

			ByVal	index	As	Integer	_

)	As	MySqlParameter

Syntax:	C#

public	MySqlParameter	this[

intindex

]	{get;	set;}

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameterCollection.Item	Overload	List

23.2.4.1.2.1.7.1.1.3.3.	Item	Property	(String)

Gets	the	MySqlParameter	with	the	specified	name.

Syntax:	Visual	Basic

Overloads	Public	Default	Property	Item(_

			ByVal	name	As	String	_

)	As	MySqlParameter

Syntax:	C#

public	MySqlParameter	this[

stringname

]	{get;	set;}

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameterCollection.Item	Overload	List

23.2.4.1.2.1.7.1.1.4.	Add	Method

Adds	the	specified	MySqlParameter	object	to	the	MySqlParameterCollection	.

Overload	List

Adds	the	specified	MySqlParameter	object	to	the	MySqlParameterCollection	.

public	MySqlParameter	Add(MySqlParameter);

Adds	the	specified	MySqlParameter	object	to	the	MySqlParameterCollection	.

public	int	Add(object);

Adds	a	MySqlParameter	to	the	MySqlParameterCollection	given	the	parameter
name	and	the	data	type.

public	MySqlParameter	Add(string,MySqlDbType);

Adds	a	MySqlParameter	to	the	MySqlParameterCollection	with	the	parameter
name,	the	data	type,	and	the	column	length.

public	MySqlParameter	Add(string,MySqlDbType,int);

Adds	a	MySqlParameter	to	the	MySqlParameterCollection	with	the	parameter
name,	the	data	type,	the	column	length,	and	the	source	column	name.

public	MySqlParameter	Add(string,MySqlDbType,int,string);

Adds	a	MySqlParameter	to	the	MySqlParameterCollection	given	the	specified
parameter	name	and	value.

public	MySqlParameter	Add(string,object);

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.4.1.	MySqlParameterCollection.Add	Method	(MySqlParameter)

Adds	the	specified	MySqlParameter	object	to	the	MySqlParameterCollection	.

Syntax:	Visual	Basic

Overloads	Public	Function	Add(_

			ByVal	value	As	MySqlParameter	_

)	As	MySqlParameter

Syntax:	C#

public	MySqlParameter	Add(

MySqlParametervalue

);

Parameters

value:	The	MySqlParameter	to	add	to	the	collection.

Return	Value

The	newly	added	MySqlParameter	object.

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameterCollection.Add	Overload	List

23.2.4.1.2.1.7.1.1.4.2.	MySqlParameterCollection.Add	Method	(Object)

Adds	the	specified	MySqlParameter	object	to	the	MySqlParameterCollection	.

Syntax:	Visual	Basic

NotOverridable	Overloads	Public	Function	Add(_

			ByVal	value	As	Object	_

)	As	Integer	_

_

		Implements	IList.Add

Syntax:	C#

public	int	Add(

objectvalue

);

Parameters

value:	The	MySqlParameter	to	add	to	the	collection.

Return	Value

The	index	of	the	new	MySqlParameter	object.

Implements

IList.Add

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameterCollection.Add	Overload	List

23.2.4.1.2.1.7.1.1.4.3.	MySqlParameterCollection.Add	Method	(String,	MySqlDbType)

Adds	a	MySqlParameter	to	the	MySqlParameterCollection	given	the	parameter
name	and	the	data	type.

Syntax:	Visual	Basic

Overloads	Public	Function	Add(_

			ByVal	parameterName	As	String,	_

			ByVal	dbType	As	MySqlDbType	_

)	As	MySqlParameter

Syntax:	C#

public	MySqlParameter	Add(

stringparameterName,

MySqlDbTypedbType

);

Parameters

parameterName:	The	name	of	the	parameter.

dbType:	One	of	the	MySqlDbType	values.

Return	Value

The	newly	added	MySqlParameter	object.

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameterCollection.Add	Overload	List

23.2.4.1.2.1.7.1.1.4.4.	MySqlParameterCollection.Add	Method	(String,	MySqlDbType,	Int32)

Adds	a	MySqlParameter	to	the	MySqlParameterCollection	with	the	parameter
name,	the	data	type,	and	the	column	length.

Syntax:	Visual	Basic

Overloads	Public	Function	Add(_

			ByVal	parameterName	As	String,	_

			ByVal	dbType	As	MySqlDbType,	_

			ByVal	size	As	Integer	_

)	As	MySqlParameter

Syntax:	C#

public	MySqlParameter	Add(

stringparameterName,

MySqlDbTypedbType,

intsize

);

Parameters

parameterName:	The	name	of	the	parameter.

dbType:	One	of	the	MySqlDbType	values.

size:	The	length	of	the	column.

Return	Value

The	newly	added	MySqlParameter	object.

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameterCollection.Add	Overload	List

23.2.4.1.2.1.7.1.1.4.5.	MySqlParameterCollection.Add	Method	(String,	MySqlDbType,	Int32,	String)

Adds	a	MySqlParameter	to	the	MySqlParameterCollection	with	the	parameter
name,	the	data	type,	the	column	length,	and	the	source	column	name.

Syntax:	Visual	Basic

Overloads	Public	Function	Add(_

			ByVal	parameterName	As	String,	_

			ByVal	dbType	As	MySqlDbType,	_

			ByVal	size	As	Integer,	_

			ByVal	sourceColumn	As	String	_

)	As	MySqlParameter

Syntax:	C#

public	MySqlParameter	Add(

stringparameterName,

MySqlDbTypedbType,

intsize,

stringsourceColumn

);

Parameters

parameterName:	The	name	of	the	parameter.

dbType:	One	of	the	MySqlDbType	values.

size:	The	length	of	the	column.

sourceColumn:	The	name	of	the	source	column.

Return	Value

The	newly	added	MySqlParameter	object.

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameterCollection.Add	Overload	List

23.2.4.1.2.1.7.1.1.4.6.	MySqlParameterCollection.Add	Method	(String,	Object)

Adds	a	MySqlParameter	to	the	MySqlParameterCollection	given	the	specified
parameter	name	and	value.

Syntax:	Visual	Basic

Overloads	Public	Function	Add(_

			ByVal	parameterName	As	String,	_

			ByVal	value	As	Object	_

)	As	MySqlParameter

Syntax:	C#

public	MySqlParameter	Add(

stringparameterName,

objectvalue

);

Parameters

parameterName:	The	name	of	the	parameter.

value:	The	Value	of	the	MySqlParameter	to	add	to	the	collection.

Return	Value

The	newly	added	MySqlParameter	object.

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameterCollection.Add	Overload	List

23.2.4.1.2.1.7.1.1.5.	MySqlParameterCollection.Clear	Method

Removes	all	items	from	the	collection.

Syntax:	Visual	Basic

NotOverridable	Public	Sub	Clear()	_

_

		Implements	IList.Clear

Syntax:	C#

public	void	Clear();

Implements

IList.Clear

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.6.	Contains	Method

Gets	a	value	indicating	whether	a	MySqlParameter	exists	in	the	collection.

Overload	List

Gets	a	value	indicating	whether	a	MySqlParameter	exists	in	the	collection.

public	bool	Contains(object);

Gets	a	value	indicating	whether	a	MySqlParameter	with	the	specified	parameter
name	exists	in	the	collection.

public	bool	Contains(string);

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.6.1.	MySqlParameterCollection.Contains	Method	(Object)

Gets	a	value	indicating	whether	a	MySqlParameter	exists	in	the	collection.

Syntax:	Visual	Basic

NotOverridable	Overloads	Public	Function	Contains(_

			ByVal	value	As	Object	_

)	As	Boolean	_

_

		Implements	IList.Contains

Syntax:	C#

public	bool	Contains(

objectvalue

);

Parameters

value:	The	value	of	the	MySqlParameter	object	to	find.

Return	Value

true	if	the	collection	contains	the	MySqlParameter	object;	otherwise,	false.

Implements

IList.Contains

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace	,

MySqlParameterCollection.Contains	Overload	List

23.2.4.1.2.1.7.1.1.6.2.	MySqlParameterCollection.Contains	Method	(String)

Gets	a	value	indicating	whether	a	MySqlParameter	with	the	specified	parameter
name	exists	in	the	collection.

Syntax:	Visual	Basic

NotOverridable	Overloads	Public	Function	Contains(_

			ByVal	name	As	String	_

)	As	Boolean	_

_

		Implements	IDataParameterCollection.Contains

Syntax:	C#

public	bool	Contains(

stringname

);

Parameters

name:	The	name	of	the	MySqlParameter	object	to	find.

Return	Value

true	if	the	collection	contains	the	parameter;	otherwise,	false.

Implements

IDataParameterCollection.Contains

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameterCollection.Contains	Overload	List

23.2.4.1.2.1.7.1.1.7.	MySqlParameterCollection.CopyTo	Method

Copies	MySqlParameter	objects	from	the	MySqlParameterCollection	to	the
specified	array.

Syntax:	Visual	Basic

NotOverridable	Public	Sub	CopyTo(_

			ByVal	array	As	Array,	_

			ByVal	index	As	Integer	_

)	_

_

		Implements	ICollection.CopyTo

Syntax:	C#

public	void	CopyTo(

Arrayarray,

intindex

);

Parameters

array:

index:

Implements

ICollection.CopyTo

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.8.	IndexOf	Method

Gets	the	location	of	a	MySqlParameter	in	the	collection.

Overload	List

Gets	the	location	of	a	MySqlParameter	in	the	collection.

public	int	IndexOf(object);

Gets	the	location	of	the	MySqlParameter	in	the	collection	with	a	specific
parameter	name.

public	int	IndexOf(string);

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.8.1.	MySqlParameterCollection.IndexOf	Method	(Object)

Gets	the	location	of	a	MySqlParameter	in	the	collection.

Syntax:	Visual	Basic

NotOverridable	Overloads	Public	Function	IndexOf(_

			ByVal	value	As	Object	_

)	As	Integer	_

_

		Implements	IList.IndexOf

Syntax:	C#

public	int	IndexOf(

objectvalue

);

Parameters

value:	The	MySqlParameter	object	to	locate.

Return	Value

The	zero-based	location	of	the	MySqlParameter	in	the	collection.

Implements

IList.IndexOf

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameterCollection.IndexOf	Overload	List

23.2.4.1.2.1.7.1.1.8.2.	MySqlParameterCollection.IndexOf	Method	(String)

Gets	the	location	of	the	MySqlParameter	in	the	collection	with	a	specific
parameter	name.

Syntax:	Visual	Basic

NotOverridable	Overloads	Public	Function	IndexOf(_

			ByVal	parameterName	As	String	_

)	As	Integer	_

_

		Implements	IDataParameterCollection.IndexOf

Syntax:	C#

public	int	IndexOf(

stringparameterName

);

Parameters

parameterName:	The	name	of	the	MySqlParameter	object	to	retrieve.

Return	Value

The	zero-based	location	of	the	MySqlParameter	in	the	collection.

Implements

IDataParameterCollection.IndexOf

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameterCollection.IndexOf	Overload	List

23.2.4.1.2.1.7.1.1.9.	MySqlParameterCollection.Insert	Method

Inserts	a	MySqlParameter	into	the	collection	at	the	specified	index.

Syntax:	Visual	Basic

NotOverridable	Public	Sub	Insert(_

			ByVal	index	As	Integer,	_

			ByVal	value	As	Object	_

)	_

_

		Implements	IList.Insert

Syntax:	C#

public	void	Insert(

intindex,

objectvalue

);

Parameters

index:

value:

Implements

IList.Insert

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.10.	MySqlParameterCollection.Remove	Method

Removes	the	specified	MySqlParameter	from	the	collection.

Syntax:	Visual	Basic

NotOverridable	Public	Sub	Remove(_

			ByVal	value	As	Object	_

)	_

_

		Implements	IList.Remove

Syntax:	C#

public	void	Remove(

objectvalue

);

Parameters

value:

Implements

IList.Remove

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.11.	RemoveAt	Method

Removes	the	specified	MySqlParameter	from	the	collection.

Overload	List

Removes	the	specified	MySqlParameter	from	the	collection	using	a	specific
index.

public	void	RemoveAt(int);

Removes	the	specified	MySqlParameter	from	the	collection	using	the	parameter
name.

public	void	RemoveAt(string);

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.7.1.1.11.1.	MySqlParameterCollection.RemoveAt	Method	(Int32)

Removes	the	specified	MySqlParameter	from	the	collection	using	a	specific
index.

Syntax:	Visual	Basic

NotOverridable	Overloads	Public	Sub	RemoveAt(_

			ByVal	index	As	Integer	_

)	_

_

		Implements	IList.RemoveAt

Syntax:	C#

public	void	RemoveAt(

intindex

);

Parameters

index:	The	zero-based	index	of	the	parameter.

Implements

IList.RemoveAt

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameterCollection.RemoveAt	Overload	List

23.2.4.1.2.1.7.1.1.11.2.	MySqlParameterCollection.RemoveAt	Method	(String)

Removes	the	specified	MySqlParameter	from	the	collection	using	the	parameter
name.

Syntax:	Visual	Basic

NotOverridable	Overloads	Public	Sub	RemoveAt(_

			ByVal	name	As	String	_

)	_

_

		Implements	IDataParameterCollection.RemoveAt

Syntax:	C#

public	void	RemoveAt(

stringname

);

Parameters

name:	The	name	of	the	MySqlParameter	object	to	retrieve.

Implements

IDataParameterCollection.RemoveAt

See	Also

MySqlParameterCollection	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlParameterCollection.RemoveAt	Overload	List

23.2.4.1.2.1.8.	Transaction	Property

Syntax:	Visual	Basic

Public	Property	Transaction	As	MySqlTransaction

Syntax:	C#

public	MySqlTransaction	Transaction	{get;	set;}

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.9.	UpdatedRowSource	Property

Syntax:	Visual	Basic

NotOverridable	Public	Property	UpdatedRowSource	As	UpdateRowSource	_

_

		Implements	IDbCommand.UpdatedRowSource

Syntax:	C#

public	System.Data.UpdateRowSource	UpdatedRowSource	{get;	set;}

Implements

IDbCommand.UpdatedRowSource

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.10.	MySqlCommand.Cancel	Method

Attempts	to	cancel	the	execution	of	a	MySqlCommand.	This	operation	is	not
supported.

Syntax:	Visual	Basic

NotOverridable	Public	Sub	Cancel()	_

_

		Implements	IDbCommand.Cancel

Syntax:	C#

public	void	Cancel();

Implements

IDbCommand.Cancel

Remarks

Cancelling	an	executing	command	is	currently	not	supported	on	any	version	of
MySQL.

Exceptions

Exception	Type Condition
NotSupportedException This	operation	is	not	supported.

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.11.	MySqlCommand.CreateParameter	Method

Creates	a	new	instance	of	a	MySqlParameter	object.

Syntax:	Visual	Basic

Public	Function	CreateParameter()	As	MySqlParameter

Syntax:	C#

public	MySqlParameter	CreateParameter();

Return	Value

A	MySqlParameter	object.

Remarks

This	method	is	a	strongly-typed	version	of	CreateParameter.

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.12.	MySqlCommand.ExecuteNonQuery	Method

Syntax:	Visual	Basic

NotOverridable	Public	Function	ExecuteNonQuery()	As	Integer	_

_

		Implements	IDbCommand.ExecuteNonQuery

Syntax:	C#

public	int	ExecuteNonQuery();

Implements

IDbCommand.ExecuteNonQuery

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.	ExecuteReader	Method

Overload	List

public	MySqlDataReader	ExecuteReader();

public	MySqlDataReader	ExecuteReader(CommandBehavior);

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.	MySqlCommand.ExecuteReader	Method	()

Syntax:	Visual	Basic

Overloads	Public	Function	ExecuteReader()	As	MySqlDataReader

Syntax:	C#

public	MySqlDataReader	ExecuteReader();

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlCommand.ExecuteReader	Overload	List

23.2.4.1.2.1.13.1.1.	MySqlDataReader	Class

Provides	a	means	of	reading	a	forward-only	stream	of	rows	from	a	MySQL
database.	This	class	cannot	be	inherited.

For	a	list	of	all	members	of	this	type,	see	MySqlDataReader	Members	.

Syntax:	Visual	Basic

NotInheritable	Public	Class	MySqlDataReader_

		Inherits	MarshalByRefObject_

		Implements	IEnumerable,	IDataReader,	IDisposable,	IDataRecord

Syntax:	C#

public	sealed	class	MySqlDataReader	:	MarshalByRefObject,	IEnumerable,	IDataReader,	IDisposable,	IDataRecord

Thread	Safety

Public	static	(Shared	in	Visual	Basic)	members	of	this	type	are	safe	for
multithreaded	operations.	Instance	members	are	not	guaranteed	to	be	thread-

safe.

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlDataReader	Members	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.	MySqlDataReader	Members

MySqlDataReader	overview

Public	Instance	Properties

Depth
Gets	a	value	indicating	the	depth	of	nesting	for	the	current
row.	This	method	is	not	supported	currently	and	always
returns	0.

FieldCount Gets	the	number	of	columns	in	the	current	row.

HasRows Gets	a	value	indicating	whether	the	MySqlDataReader
contains	one	or	more	rows.

IsClosed Gets	a	value	indicating	whether	the	data	reader	is	closed.

Item
Overloaded.	Overloaded.	Gets	the	value	of	a	column	in	its
native	format.	In	C#,	this	property	is	the	indexer	for	the
MySqlDataReader	class.

RecordsAffected Gets	the	number	of	rows	changed,	inserted,	or	deleted	by
execution	of	the	SQL	statement.

Public	Instance	Methods

Close Closes	the	MySqlDataReader	object.

CreateObjRef(inherited	from
MarshalByRefObject)

Creates	an	object	that	contains	all	the
relevant	information	required	to	generate	a
proxy	used	to	communicate	with	a	remote
object.

Equals(inherited	from	Object) Determines	whether	the	specified	Objectis
equal	to	the	current	Object.

GetBoolean Gets	the	value	of	the	specified	column	as	a
Boolean.

GetByte Gets	the	value	of	the	specified	column	as	a
byte.

GetBytes
Reads	a	stream	of	bytes	from	the	specified
column	offset	into	the	buffer	an	array
starting	at	the	given	buffer	offset.

GetChar Gets	the	value	of	the	specified	column	as	a
single	character.

GetChars
Reads	a	stream	of	characters	from	the
specified	column	offset	into	the	buffer	as	an
array	starting	at	the	given	buffer	offset.

GetDataTypeName Gets	the	name	of	the	source	data	type.
GetDateTime 	
GetDecimal 	
GetDouble 	

GetFieldType Gets	the	Type	that	is	the	data	type	of	the
object.

GetFloat 	
GetGuid 	

GetHashCode(inherited	from
Object)

Serves	as	a	hash	function	for	a	particular
type.	GetHashCodeis	suitable	for	use	in
hashing	algorithms	and	data	structures	like
a	hash	table.

GetInt16 	
GetInt32 	
GetInt64 	

GetLifetimeService(inherited
from	MarshalByRefObject)

Retrieves	the	current	lifetime	service	object
that	controls	the	lifetime	policy	for	this
instance.

GetMySqlDateTime 	
GetName Gets	the	name	of	the	specified	column.

GetOrdinal Gets	the	column	ordinal,	given	the	name	of
the	column.

GetSchemaTable Returns	a	DataTable	that	describes	the
column	metadata	of	the	MySqlDataReader.

GetString 	
GetTimeSpan 	
GetType(inherited	from	Object) Gets	the	Typeof	the	current	instance.
GetUInt16 	
GetUInt32 	
GetUInt64 	

GetValue Gets	the	value	of	the	specified	column	in	its
native	format.

GetValues Gets	all	attribute	columns	in	the	collection
for	the	current	row.

InitializeLifetimeService(inherited
from	MarshalByRefObject)

Obtains	a	lifetime	service	object	to	control
the	lifetime	policy	for	this	instance.

IsDBNull Gets	a	value	indicating	whether	the	column
contains	non-existent	or	missing	values.

NextResult
Advances	the	data	reader	to	the	next	result,
when	reading	the	results	of	batch	SQL
statements.

Read Advances	the	MySqlDataReader	to	the	next
record.

ToString(inherited	from	Object) Returns	a	Stringthat	represents	the	current
Object.

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.1.	Depth	Property

Gets	a	value	indicating	the	depth	of	nesting	for	the	current	row.	This	method	is
not	supported	currently	and	always	returns	0.

Syntax:	Visual	Basic

NotOverridable	Public	ReadOnly	Property	Depth	As	Integer	_

_

		Implements	IDataReader.Depth

Syntax:	C#

public	int	Depth	{get;}

Implements

IDataReader.Depth

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.2.	FieldCount	Property

Gets	the	number	of	columns	in	the	current	row.

Syntax:	Visual	Basic

NotOverridable	Public	ReadOnly	Property	FieldCount	As	Integer	_

_

		Implements	IDataRecord.FieldCount

Syntax:	C#

public	int	FieldCount	{get;}

Implements

IDataRecord.FieldCount

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.3.	HasRows	Property

Gets	a	value	indicating	whether	the	MySqlDataReader	contains	one	or	more
rows.

Syntax:	Visual	Basic

Public	ReadOnly	Property	HasRows	As	Boolean

Syntax:	C#

public	bool	HasRows	{get;}

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.4.	IsClosed	Property

Gets	a	value	indicating	whether	the	data	reader	is	closed.

Syntax:	Visual	Basic

NotOverridable	Public	ReadOnly	Property	IsClosed	As	Boolean	_

_

		Implements	IDataReader.IsClosed

Syntax:	C#

public	bool	IsClosed	{get;}

Implements

IDataReader.IsClosed

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.5.	Item	Property

Overloaded.	Gets	the	value	of	a	column	in	its	native	format.	In	C#,	this	property
is	the	indexer	for	the	MySqlDataReader	class.

Overload	List

Overloaded.	Gets	the	value	of	a	column	in	its	native	format.	In	C#,	this	property
is	the	indexer	for	the	MySqlDataReader	class.

public	object	this[int]	{get;}

Gets	the	value	of	a	column	in	its	native	format.	In	C#,	this	property	is	the
indexer	for	the	MySqlDataReader	class.

public	object	this[string]	{get;}

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.5.1.	Item	Property	(Int32)

Overloaded.	Gets	the	value	of	a	column	in	its	native	format.	In	C#,	this	property
is	the	indexer	for	the	MySqlDataReader	class.

Syntax:	Visual	Basic

NotOverridable	Overloads	Public	Default	ReadOnly	Property	Item(_

			ByVal	i	As	Integer	_

)	_

_

		Implements	IDataRecord.Item	As	Object	_

_

		Implements	IDataRecord.Item

Syntax:	C#

public	object	this[

inti

]	{get;}

Implements

IDataRecord.Item

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlDataReader.Item	Overload	List

23.2.4.1.2.1.13.1.1.1.5.2.	Item	Property	(String)

Gets	the	value	of	a	column	in	its	native	format.	In	C#,	this	property	is	the
indexer	for	the	MySqlDataReader	class.

Syntax:	Visual	Basic

NotOverridable	Overloads	Public	Default	ReadOnly	Property	Item(_

			ByVal	name	As	String	_

)	_

_

		Implements	IDataRecord.Item	As	Object	_

_

		Implements	IDataRecord.Item

Syntax:	C#

public	object	this[

stringname

]	{get;}

Implements

IDataRecord.Item

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlDataReader.Item	Overload	List

23.2.4.1.2.1.13.1.1.1.6.	RecordsAffected	Property

Gets	the	number	of	rows	changed,	inserted,	or	deleted	by	execution	of	the	SQL
statement.

Syntax:	Visual	Basic

NotOverridable	Public	ReadOnly	Property	RecordsAffected	As	Integer	_

_

		Implements	IDataReader.RecordsAffected

Syntax:	C#

public	int	RecordsAffected	{get;}

Implements

IDataReader.RecordsAffected

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.7.	MySqlDataReader.Close	Method

Closes	the	MySqlDataReader	object.

Syntax:	Visual	Basic

NotOverridable	Public	Sub	Close()	_

_

		Implements	IDataReader.Close

Syntax:	C#

public	void	Close();

Implements

IDataReader.Close

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.8.	MySqlDataReader.GetBoolean	Method

Gets	the	value	of	the	specified	column	as	a	Boolean.

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetBoolean(_

			ByVal	i	As	Integer	_

)	As	Boolean	_

_

		Implements	IDataRecord.GetBoolean

Syntax:	C#

public	bool	GetBoolean(

inti

);

Parameters

i:

Return	Value

Implements

IDataRecord.GetBoolean

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.9.	MySqlDataReader.GetByte	Method

Gets	the	value	of	the	specified	column	as	a	byte.

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetByte(_

			ByVal	i	As	Integer	_

)	As	Byte	_

_

		Implements	IDataRecord.GetByte

Syntax:	C#

public	byte	GetByte(

inti

);

Parameters

i:

Return	Value

Implements

IDataRecord.GetByte

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.10.	MySqlDataReader.GetBytes	Method

Reads	a	stream	of	bytes	from	the	specified	column	offset	into	the	buffer	an	array
starting	at	the	given	buffer	offset.

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetBytes(_

			ByVal	i	As	Integer,	_

			ByVal	dataIndex	As	Long,	_

			ByVal	buffer	As	Byte(),	_

			ByVal	bufferIndex	As	Integer,	_

			ByVal	length	As	Integer	_

)	As	Long	_

_

		Implements	IDataRecord.GetBytes

Syntax:	C#

public	long	GetBytes(

inti,

longdataIndex,

byte[]buffer,

intbufferIndex,

intlength

);

Parameters

i:	The	zero-based	column	ordinal.

dataIndex:	The	index	within	the	field	from	which	to	begin	the	read

operation.

buffer:	The	buffer	into	which	to	read	the	stream	of	bytes.

bufferIndex:	The	index	for	buffer	to	begin	the	read	operation.

length:	The	maximum	length	to	copy	into	the	buffer.

Return	Value

The	actual	number	of	bytes	read.

Implements

IDataRecord.GetBytes

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.11.	MySqlDataReader.GetChar	Method

Gets	the	value	of	the	specified	column	as	a	single	character.

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetChar(_

			ByVal	i	As	Integer	_

)	As	Char	_

_

		Implements	IDataRecord.GetChar

Syntax:	C#

public	char	GetChar(

inti

);

Parameters

i:

Return	Value

Implements

IDataRecord.GetChar

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.12.	MySqlDataReader.GetChars	Method

Reads	a	stream	of	characters	from	the	specified	column	offset	into	the	buffer	as
an	array	starting	at	the	given	buffer	offset.

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetChars(_

			ByVal	i	As	Integer,	_

			ByVal	fieldOffset	As	Long,	_

			ByVal	buffer	As	Char(),	_

			ByVal	bufferoffset	As	Integer,	_

			ByVal	length	As	Integer	_

)	As	Long	_

_

		Implements	IDataRecord.GetChars

Syntax:	C#

public	long	GetChars(

inti,

longfieldOffset,

char[]buffer,

intbufferoffset,

intlength

);

Parameters

i:

fieldOffset:

buffer:

bufferoffset:

length:

Return	Value

Implements

IDataRecord.GetChars

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.13.	MySqlDataReader.GetDataTypeName	Method

Gets	the	name	of	the	source	data	type.

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetDataTypeName(_

			ByVal	i	As	Integer	_

)	As	String	_

_

		Implements	IDataRecord.GetDataTypeName

Syntax:	C#

public	string	GetDataTypeName(

inti

);

Parameters

i:

Return	Value

Implements

IDataRecord.GetDataTypeName

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.14.	MySqlDataReader.GetDateTime	Method

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetDateTime(_

			ByVal	index	As	Integer	_

)	As	Date	_

_

		Implements	IDataRecord.GetDateTime

Syntax:	C#

public	DateTime	GetDateTime(

intindex

);

Implements

IDataRecord.GetDateTime

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.15.	MySqlDataReader.GetDecimal	Method

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetDecimal(_

			ByVal	index	As	Integer	_

)	As	Decimal	_

_

		Implements	IDataRecord.GetDecimal

Syntax:	C#

public	decimal	GetDecimal(

intindex

);

Implements

IDataRecord.GetDecimal

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.16.	MySqlDataReader.GetDouble	Method

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetDouble(_

			ByVal	index	As	Integer	_

)	As	Double	_

_

		Implements	IDataRecord.GetDouble

Syntax:	C#

public	double	GetDouble(

intindex

);

Implements

IDataRecord.GetDouble

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.17.	MySqlDataReader.GetFieldType	Method

Gets	the	Type	that	is	the	data	type	of	the	object.

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetFieldType(_

			ByVal	i	As	Integer	_

)	As	Type	_

_

		Implements	IDataRecord.GetFieldType

Syntax:	C#

public	Type	GetFieldType(

inti

);

Parameters

i:

Return	Value

Implements

IDataRecord.GetFieldType

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.18.	MySqlDataReader.GetFloat	Method

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetFloat(_

			ByVal	index	As	Integer	_

)	As	Single	_

_

		Implements	IDataRecord.GetFloat

Syntax:	C#

public	float	GetFloat(

intindex

);

Implements

IDataRecord.GetFloat

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.19.	MySqlDataReader.GetGuid	Method

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetGuid(_

			ByVal	index	As	Integer	_

)	As	Guid	_

_

		Implements	IDataRecord.GetGuid

Syntax:	C#

public	Guid	GetGuid(

intindex

);

Implements

IDataRecord.GetGuid

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.20.	MySqlDataReader.GetInt16	Method

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetInt16(_

			ByVal	index	As	Integer	_

)	As	Short	_

_

		Implements	IDataRecord.GetInt16

Syntax:	C#

public	short	GetInt16(

intindex

);

Implements

IDataRecord.GetInt16

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.21.	MySqlDataReader.GetInt32	Method

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetInt32(_

			ByVal	index	As	Integer	_

)	As	Integer	_

_

		Implements	IDataRecord.GetInt32

Syntax:	C#

public	int	GetInt32(

intindex

);

Implements

IDataRecord.GetInt32

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.22.	MySqlDataReader.GetInt64	Method

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetInt64(_

			ByVal	index	As	Integer	_

)	As	Long	_

_

		Implements	IDataRecord.GetInt64

Syntax:	C#

public	long	GetInt64(

intindex

);

Implements

IDataRecord.GetInt64

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.23.	MySqlDataReader.GetMySqlDateTime	Method

Syntax:	Visual	Basic

Public	Function	GetMySqlDateTime(_

			ByVal	index	As	Integer	_

)	As	MySqlDateTime

Syntax:	C#

public	MySqlDateTime	GetMySqlDateTime(

intindex

);

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.24.	MySqlDataReader.GetName	Method

Gets	the	name	of	the	specified	column.

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetName(_

			ByVal	i	As	Integer	_

)	As	String	_

_

		Implements	IDataRecord.GetName

Syntax:	C#

public	string	GetName(

inti

);

Parameters

i:

Return	Value

Implements

IDataRecord.GetName

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.25.	MySqlDataReader.GetOrdinal	Method

Gets	the	column	ordinal,	given	the	name	of	the	column.

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetOrdinal(_

			ByVal	name	As	String	_

)	As	Integer	_

_

		Implements	IDataRecord.GetOrdinal

Syntax:	C#

public	int	GetOrdinal(

stringname

);

Parameters

name:

Return	Value

Implements

IDataRecord.GetOrdinal

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.26.	MySqlDataReader.GetSchemaTable	Method

Returns	a	DataTable	that	describes	the	column	metadata	of	the
MySqlDataReader.

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetSchemaTable()	As	DataTable	_

_

		Implements	IDataReader.GetSchemaTable

Syntax:	C#

public	DataTable	GetSchemaTable();

Return	Value

Implements

IDataReader.GetSchemaTable

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.27.	MySqlDataReader.GetString	Method

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetString(_

			ByVal	index	As	Integer	_

)	As	String	_

_

		Implements	IDataRecord.GetString

Syntax:	C#

public	string	GetString(

intindex

);

Implements

IDataRecord.GetString

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.28.	MySqlDataReader.GetTimeSpan	Method

Syntax:	Visual	Basic

Public	Function	GetTimeSpan(_

			ByVal	index	As	Integer	_

)	As	TimeSpan

Syntax:	C#

public	TimeSpan	GetTimeSpan(

intindex

);

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.29.	MySqlDataReader.GetUInt16	Method

Syntax:	Visual	Basic

Public	Function	GetUInt16(_

			ByVal	index	As	Integer	_

)	As	UInt16

Syntax:	C#

public	ushort	GetUInt16(

intindex

);

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.30.	MySqlDataReader.GetUInt32	Method

Syntax:	Visual	Basic

Public	Function	GetUInt32(_

			ByVal	index	As	Integer	_

)	As	UInt32

Syntax:	C#

public	uint	GetUInt32(

intindex

);

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.31.	MySqlDataReader.GetUInt64	Method

Syntax:	Visual	Basic

Public	Function	GetUInt64(_

			ByVal	index	As	Integer	_

)	As	UInt64

Syntax:	C#

public	ulong	GetUInt64(

intindex

);

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.32.	MySqlDataReader.GetValue	Method

Gets	the	value	of	the	specified	column	in	its	native	format.

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetValue(_

			ByVal	i	As	Integer	_

)	As	Object	_

_

		Implements	IDataRecord.GetValue

Syntax:	C#

public	object	GetValue(

inti

);

Parameters

i:

Return	Value

Implements

IDataRecord.GetValue

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.33.	MySqlDataReader.GetValues	Method

Gets	all	attribute	columns	in	the	collection	for	the	current	row.

Syntax:	Visual	Basic

NotOverridable	Public	Function	GetValues(_

			ByVal	values	As	Object()	_

)	As	Integer	_

_

		Implements	IDataRecord.GetValues

Syntax:	C#

public	int	GetValues(

object[]values

);

Parameters

values:

Return	Value

Implements

IDataRecord.GetValues

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.34.	MySqlDataReader.IsDBNull	Method

Gets	a	value	indicating	whether	the	column	contains	non-existent	or	missing
values.

Syntax:	Visual	Basic

NotOverridable	Public	Function	IsDBNull(_

			ByVal	i	As	Integer	_

)	As	Boolean	_

_

		Implements	IDataRecord.IsDBNull

Syntax:	C#

public	bool	IsDBNull(

inti

);

Parameters

i:

Return	Value

Implements

IDataRecord.IsDBNull

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.35.	MySqlDataReader.NextResult	Method

Advances	the	data	reader	to	the	next	result,	when	reading	the	results	of	batch
SQL	statements.

Syntax:	Visual	Basic

NotOverridable	Public	Function	NextResult()	As	Boolean	_

_

		Implements	IDataReader.NextResult

Syntax:	C#

public	bool	NextResult();

Return	Value

Implements

IDataReader.NextResult

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.1.1.1.36.	MySqlDataReader.Read	Method

Advances	the	MySqlDataReader	to	the	next	record.

Syntax:	Visual	Basic

NotOverridable	Public	Function	Read()	As	Boolean	_

_

		Implements	IDataReader.Read

Syntax:	C#

public	bool	Read();

Return	Value

Implements

IDataReader.Read

See	Also

MySqlDataReader	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.13.2.	MySqlCommand.ExecuteReader	Method	(CommandBehavior)

Syntax:	Visual	Basic

Overloads	Public	Function	ExecuteReader(_

			ByVal	behavior	As	CommandBehavior	_

)	As	MySqlDataReader

Syntax:	C#

public	MySqlDataReader	ExecuteReader(

CommandBehaviorbehavior

);

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlCommand.ExecuteReader	Overload	List

23.2.4.1.2.1.14.	MySqlCommand.ExecuteScalar	Method

Syntax:	Visual	Basic

NotOverridable	Public	Function	ExecuteScalar()	As	Object	_

_

		Implements	IDbCommand.ExecuteScalar

Syntax:	C#

public	object	ExecuteScalar();

Implements

IDbCommand.ExecuteScalar

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.2.1.15.	MySqlCommand.Prepare	Method

Syntax:	Visual	Basic

NotOverridable	Public	Sub	Prepare()	_

_

		Implements	IDbCommand.Prepare

Syntax:	C#

public	void	Prepare();

Implements

IDbCommand.Prepare

See	Also

MySqlCommand	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.	MySqlCommandBuilder	Class

For	a	list	of	all	members	of	this	type,	see	MySqlCommandBuilder	Members	.

Syntax:	Visual	Basic

NotInheritable	Public	Class	MySqlCommandBuilder_

		Inherits	Component

Syntax:	C#

public	sealed	class	MySqlCommandBuilder	:	Component

Thread	Safety

Public	static	(Sharedin	Visual	Basic)	members	of	this	type	are	safe	for

multithreaded	operations.	Instance	members	are	notguaranteed	to	be	thread-safe.

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlCommandBuilder	Members	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.	MySqlCommandBuilder	Members

MySqlCommandBuilder	overview

Public	Static	(Shared)	Methods

DeriveParameters

Overloaded.	Retrieves	parameter	information	from	the
stored	procedure	specified	in	the	MySqlCommand	and
populates	the	Parameters	collection	of	the	specified
MySqlCommand	object.	This	method	is	not	currently
supported	since	stored	procedures	are	not	available	in
MySql.

Public	Instance	Constructors

MySqlCommandBuilder Overloaded.	Initializes	a	new	instance	of	theMySqlCommandBuilder	class.

Public	Instance	Properties

Container(inherited	from
Component)

Gets	the	IContainerthat	contains	the
Component.

DataAdapter 	
QuotePrefix 	
QuoteSuffix 	
Site(inherited	from	Component) Gets	or	sets	the	ISiteof	the	Component.

Public	Instance	Methods

CreateObjRef(inherited	from
MarshalByRefObject)

Creates	an	object	that	contains	all	the
relevant	information	required	to	generate	a
proxy	used	to	communicate	with	a	remote
object.

Dispose(inherited	from
Component)

Releases	all	resources	used	by	the
Component.

Equals(inherited	from	Object) Determines	whether	the	specified	Objectis
equal	to	the	current	Object.

GetDeleteCommand 	

GetHashCode(inherited	from
Object)

Serves	as	a	hash	function	for	a	particular
type.	GetHashCodeis	suitable	for	use	in
hashing	algorithms	and	data	structures	like
a	hash	table.

GetInsertCommand 	

GetLifetimeService(inherited
from	MarshalByRefObject)

Retrieves	the	current	lifetime	service	object
that	controls	the	lifetime	policy	for	this
instance.

GetType(inherited	from	Object) Gets	the	Typeof	the	current	instance.
GetUpdateCommand 	
InitializeLifetimeService(inherited
from	MarshalByRefObject)

Obtains	a	lifetime	service	object	to	control
the	lifetime	policy	for	this	instance.

RefreshSchema 	

ToString(inherited	from
Component)

Returns	a	Stringcontaining	the	name	of	the
Component,	if	any.	This	method	should	not
be	overridden.

Public	Instance	Events

Disposed(inherited	from
Component)

Adds	an	event	handler	to	listen	to	the
Disposedevent	on	the	component.

See	Also

MySqlCommandBuilder	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.1.	DeriveParameters	Method

Retrieves	parameter	information	from	the	stored	procedure	specified	in	the
MySqlCommand	and	populates	the	Parameters	collection	of	the	specified
MySqlCommand	object.	This	method	is	not	currently	supported	since	stored
procedures	are	not	available	in	MySql.

Overload	List

Retrieves	parameter	information	from	the	stored	procedure	specified	in	the
MySqlCommand	and	populates	the	Parameters	collection	of	the	specified
MySqlCommand	object.	This	method	is	not	currently	supported	since	stored
procedures	are	not	available	in	MySql.

public	static	void	DeriveParameters(MySqlCommand);

public	static	void	DeriveParameters(MySqlCommand,bool);

See	Also

MySqlCommandBuilder	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.1.1.	MySqlCommandBuilder.DeriveParameters	Method	(MySqlCommand)

Retrieves	parameter	information	from	the	stored	procedure	specified	in	the
MySqlCommand	and	populates	the	Parameters	collection	of	the	specified
MySqlCommand	object.	This	method	is	not	currently	supported	since	stored
procedures	are	not	available	in	MySql.

Syntax:	Visual	Basic

Overloads	Public	Shared	Sub	DeriveParameters(_

			ByVal	command	As	MySqlCommand	_

)

Syntax:	C#

public	static	void	DeriveParameters(

MySqlCommandcommand

);

Parameters

command:	The	MySqlCommand	referencing	the	stored	procedure	from
which	the	parameter	information	is	to	be	derived.	The	derived	parameters
are	added	to	the	Parameters	collection	of	the	MySqlCommand.

Exceptions

Exception	Type Condition

InvalidOperationException The	command	text	is	not	a	valid	stored	procedurename.

See	Also

MySqlCommandBuilder	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlCommandBuilder.DeriveParameters	Overload	List

23.2.4.1.3.1.1.2.	MySqlCommandBuilder.DeriveParameters	Method	(MySqlCommand,	Boolean)

Syntax:	Visual	Basic

Overloads	Public	Shared	Sub	DeriveParameters(_

			ByVal	command	As	MySqlCommand,	_

			ByVal	useProc	As	Boolean	_

)

Syntax:	C#

public	static	void	DeriveParameters(

MySqlCommandcommand,

booluseProc

);

See	Also

MySqlCommandBuilder	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlCommandBuilder.DeriveParameters	Overload	List

23.2.4.1.3.1.2.	MySqlCommandBuilder	Constructor

Initializes	a	new	instance	of	the	MySqlCommandBuilder	class.

Overload	List

Initializes	a	new	instance	of	the	MySqlCommandBuilder	class.

public	MySqlCommandBuilder();

public	MySqlCommandBuilder(MySqlDataAdapter);

public	MySqlCommandBuilder(MySqlDataAdapter,bool);

public	MySqlCommandBuilder(bool);

See	Also

MySqlCommandBuilder	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.1.	MySqlCommandBuilder	Constructor	()

Initializes	a	new	instance	of	the	MySqlCommandBuilder	class.

Syntax:	Visual	Basic

Overloads	Public	Sub	New()

Syntax:	C#

public	MySqlCommandBuilder();

See	Also

MySqlCommandBuilder	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlCommandBuilder	Constructor	Overload	List

23.2.4.1.3.1.2.2.	MySqlCommandBuilder	Constructor	(MySqlDataAdapter)

Syntax:	Visual	Basic

Overloads	Public	Sub	New(_

			ByVal	adapter	As	MySqlDataAdapter	_

)

Syntax:	C#

public	MySqlCommandBuilder(

MySqlDataAdapteradapter

);

See	Also

MySqlCommandBuilder	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlCommandBuilder	Constructor	Overload	List

23.2.4.1.3.1.2.2.1.	MySqlDataAdapter	Class

For	a	list	of	all	members	of	this	type,	see	MySqlDataAdapter	Members	.

Syntax:	Visual	Basic

NotInheritable	Public	Class	MySqlDataAdapter_

		Inherits	DbDataAdapter

Syntax:	C#

public	sealed	class	MySqlDataAdapter	:	DbDataAdapter

Thread	Safety

Public	static	(Sharedin	Visual	Basic)	members	of	this	type	are	safe	for
multithreaded	operations.	Instance	members	are	notguaranteed	to	be	thread-safe.

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlDataAdapter	Members	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.	MySqlDataAdapter	Members

MySqlDataAdapter	overview

Public	Instance	Constructors

MySqlDataAdapter Overloaded.	Initializes	a	new	instance	of	theMySqlDataAdapter	class.

Public	Instance	Properties

AcceptChangesDuringFill(inherited
from	DataAdapter)

Gets	or	sets	a	value	indicating	whether
AcceptChangesis	called	on	a
DataRowafter	it	is	added	to	the
DataTableduring	any	of	the	Fill
operations.

AcceptChangesDuringUpdate(inherited
from	DataAdapter)

Gets	or	sets	whether	AcceptChangesis
called	during	a	Update.

Container(inherited	from	Component) Gets	the	IContainerthat	contains	the
Component.

ContinueUpdateOnError(inherited
from	DataAdapter)

Gets	or	sets	a	value	that	specifies
whether	to	generate	an	exception	when
an	error	is	encountered	during	a	row
update.

DeleteCommand Overloaded.

FillLoadOption(inherited	from
DataAdapter)

Gets	or	sets	the	LoadOptionthat
determines	how	the	adapter	fills	the
DataTablefrom	the	DbDataReader.

InsertCommand Overloaded.

MissingMappingAction(inherited	from
DataAdapter)

Determines	the	action	to	take	when
incoming	data	does	not	have	a
matching	table	or	column.

MissingSchemaAction(inherited	from
DataAdapter)

Determines	the	action	to	take	when
existing	DataSetschema	does	not
match	incoming	data.

ReturnProviderSpecificTypes(inherited
from	DataAdapter)

Gets	or	sets	whether	the	Fillmethod
should	return	provider-specific	values
or	common	CLS-compliant	values.

SelectCommand Overloaded.
Site(inherited	from	Component) Gets	or	sets	the	ISiteof	the	Component.

Gets	a	collection	that	provides	the

TableMappings(inherited	from
DataAdapter)

master	mapping	between	a	source	table
and	a	DataTable.

UpdateBatchSize(inherited	from
DbDataAdapter)

Gets	or	sets	a	value	that	enables	or
disables	batch	processing	support,	and
specifies	the	number	of	commands	that
can	be	executed	in	a	batch.

UpdateCommand Overloaded.

Public	Instance	Methods

CreateObjRef(inherited	from
MarshalByRefObject)

Creates	an	object	that	contains	all
the	relevant	information	required
to	generate	a	proxy	used	to
communicate	with	a	remote
object.

Dispose(inherited	from	Component) Releases	all	resources	used	by	the
Component.

Equals(inherited	from	Object)
Determines	whether	the	specified
Objectis	equal	to	the	current
Object.

Fill(inherited	from	DbDataAdapter)

Overloaded.	Adds	or	refreshes
rows	in	the	DataSetto	match	those
in	the	data	source	using	the
DataSetname,	and	creates	a
DataTablenamed	"Table."

FillSchema(inherited	from	DbDataAdapter)

Overloaded.	Configures	the
schema	of	the	specified
DataTablebased	on	the	specified
SchemaType.

GetFillParameters(inherited	from	DbDataAdapter)
Gets	the	parameters	set	by	the
user	when	executing	an	SQL
SELECT	statement.

GetHashCode(inherited	from	Object)

Serves	as	a	hash	function	for	a
particular	type.	GetHashCodeis
suitable	for	use	in	hashing
algorithms	and	data	structures	like

a	hash	table.

GetLifetimeService(inherited	from
MarshalByRefObject)

Retrieves	the	current	lifetime
service	object	that	controls	the
lifetime	policy	for	this	instance.

GetType(inherited	from	Object) Gets	the	Typeof	the	current
instance.

InitializeLifetimeService(inherited	from
MarshalByRefObject)

Obtains	a	lifetime	service	object
to	control	the	lifetime	policy	for
this	instance.

ResetFillLoadOption(inherited	from	DataAdapter)
Resets	FillLoadOptionto	its
default	state	and	causes	Fillto
honor	AcceptChangesDuringFill.

ShouldSerializeAcceptChangesDuringFill(inherited
from	DataAdapter)

Determines	whether	the
AcceptChangesDuringFillproperty
should	be	persisted.

ShouldSerializeFillLoadOption(inherited	from
DataAdapter)

Determines	whether	the
FillLoadOptionproperty	should	be
persisted.

ToString(inherited	from	Component)

Returns	a	Stringcontaining	the
name	of	the	Component,	if	any.
This	method	should	not	be
overridden.

Update(inherited	from	DbDataAdapter)

Overloaded.	Calls	the	respective
INSERT,	UPDATE,	or	DELETE
statements	for	each	inserted,
updated,	or	deleted	row	in	the
specified	DataSet.

Public	Instance	Events

Disposed(inherited
from	Component)

Adds	an	event	handler	to	listen	to	the	Disposedevent	on	the
component.

FillError(inherited
from	DataAdapter) Returned	when	an	error	occurs	during	a	fill	operation.

RowUpdated
Occurs	during	Update	after	a	command	is	executed	against
the	data	source.	The	attempt	to	update	is	made,	so	the	event

fires.

RowUpdating
Occurs	during	Update	before	a	command	is	executed
against	the	data	source.	The	attempt	to	update	is	made,	so
the	event	fires.

Protected	Internal	Instance	Properties

FillCommandBehavior(inherited
from	DbDataAdapter)

Gets	or	sets	the	behavior	of	the	command
used	to	fill	the	data	adapter.

See	Also

MySqlDataAdapter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.1.	MySqlDataAdapter	Constructor

Initializes	a	new	instance	of	the	MySqlDataAdapter	class.

Overload	List

Initializes	a	new	instance	of	the	MySqlDataAdapter	class.

public	MySqlDataAdapter();

public	MySqlDataAdapter(MySqlCommand);

public	MySqlDataAdapter(string,MySqlConnection);

public	MySqlDataAdapter(string,string);

See	Also

MySqlDataAdapter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.1.1.	MySqlDataAdapter	Constructor	()

Initializes	a	new	instance	of	the	MySqlDataAdapter	class.

Syntax:	Visual	Basic

Overloads	Public	Sub	New()

Syntax:	C#

public	MySqlDataAdapter();

See	Also

MySqlDataAdapter	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlDataAdapter	Constructor	Overload	List

23.2.4.1.3.1.2.2.1.1.1.2.	MySqlDataAdapter	Constructor	(MySqlCommand)

Syntax:	Visual	Basic

Overloads	Public	Sub	New(_

			ByVal	selectCommand	As	MySqlCommand	_

)

Syntax:	C#

public	MySqlDataAdapter(

MySqlCommandselectCommand

);

See	Also

MySqlDataAdapter	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlDataAdapter	Constructor	Overload	List

23.2.4.1.3.1.2.2.1.1.1.3.	MySqlDataAdapter	Constructor	(String,	MySqlConnection)

Syntax:	Visual	Basic

Overloads	Public	Sub	New(_

			ByVal	selectCommandText	As	String,	_

			ByVal	connection	As	MySqlConnection	_

)

Syntax:	C#

public	MySqlDataAdapter(

stringselectCommandText,

MySqlConnectionconnection

);

See	Also

MySqlDataAdapter	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlDataAdapter	Constructor	Overload	List

23.2.4.1.3.1.2.2.1.1.1.4.	MySqlDataAdapter	Constructor	(String,	String)

Syntax:	Visual	Basic

Overloads	Public	Sub	New(_

			ByVal	selectCommandText	As	String,	_

			ByVal	selectConnString	As	String	_

)

Syntax:	C#

public	MySqlDataAdapter(

stringselectCommandText,

stringselectConnString

);

See	Also

MySqlDataAdapter	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlDataAdapter	Constructor	Overload	List

23.2.4.1.3.1.2.2.1.1.2.	DeleteCommand	Property

Syntax:	Visual	Basic

Overloads	Public	Property	DeleteCommand	As	MySqlCommand

Syntax:	C#

new	public	MySqlCommand	DeleteCommand	{get;	set;}

See	Also

MySqlDataAdapter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.3.	InsertCommand	Property

Syntax:	Visual	Basic

Overloads	Public	Property	InsertCommand	As	MySqlCommand

Syntax:	C#

new	public	MySqlCommand	InsertCommand	{get;	set;}

See	Also

MySqlDataAdapter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.4.	SelectCommand	Property

Syntax:	Visual	Basic

Overloads	Public	Property	SelectCommand	As	MySqlCommand

Syntax:	C#

new	public	MySqlCommand	SelectCommand	{get;	set;}

See	Also

MySqlDataAdapter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.5.	UpdateCommand	Property

Syntax:	Visual	Basic

Overloads	Public	Property	UpdateCommand	As	MySqlCommand

Syntax:	C#

new	public	MySqlCommand	UpdateCommand	{get;	set;}

See	Also

MySqlDataAdapter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.6.	MySqlDataAdapter.RowUpdated	Event

Occurs	during	Update	after	a	command	is	executed	against	the	data	source.	The
attempt	to	update	is	made,	so	the	event	fires.

Syntax:	Visual	Basic

Public	Event	RowUpdated	As	MySqlRowUpdatedEventHandler

Syntax:	C#

public	event	MySqlRowUpdatedEventHandler	RowUpdated;

Event	Data

The	event	handler	receives	an	argument	of	type	MySqlRowUpdatedEventArgs
containing	data	related	to	this	event.	The	following
MySqlRowUpdatedEventArgsproperties	provide	information	specific	to	this
event.

Property Description

Command Gets	or	sets	the	MySqlCommand	executed	when	Update	is
called.

Errors Gets	any	errors	generated	by	the	.NET	Framework	data
provider	when	the	Commandwas	executed.

RecordsAffected Gets	the	number	of	rows	changed,	inserted,	or	deleted	by
execution	of	the	SQL	statement.

Row Gets	the	DataRowsent	through	an	Update.

RowCount Gets	the	number	of	rows	processed	in	a	batch	of	updated
records.

StatementType Gets	the	type	of	SQL	statement	executed.
Status Gets	the	UpdateStatusof	the	Commandproperty.
TableMapping Gets	the	DataTableMappingsent	through	an	Update.

See	Also

MySqlDataAdapter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.6.1.	MySqlRowUpdatedEventHandler	Delegate

Represents	the	method	that	will	handle	the	RowUpdatedevent	of	a
MySqlDataAdapter	.

Syntax:	Visual	Basic

Public	Delegate	Sub	MySqlRowUpdatedEventHandler(_

			ByVal	sender	As	Object,	_

			ByVal	e	As	MySqlRowUpdatedEventArgs	_

)

Syntax:	C#

public	delegate	void	MySqlRowUpdatedEventHandler(

objectsender,

MySqlRowUpdatedEventArgse

);

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.6.1.1.	MySqlRowUpdatedEventArgs	Class

Provides	data	for	the	RowUpdated	event.	This	class	cannot	be	inherited.

For	a	list	of	all	members	of	this	type,	see	MySqlRowUpdatedEventArgs
Members	.

Syntax:	Visual	Basic

NotInheritable	Public	Class	MySqlRowUpdatedEventArgs_

		Inherits	RowUpdatedEventArgs

Syntax:	C#

public	sealed	class	MySqlRowUpdatedEventArgs	:	RowUpdatedEventArgs

Thread	Safety

Public	static	(Sharedin	Visual	Basic)	members	of	this	type	are	safe	for
multithreaded	operations.	Instance	members	are	notguaranteed	to	be	thread-safe.

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlRowUpdatedEventArgs	Members	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.6.1.1.1.	MySqlRowUpdatedEventArgs	Members

MySqlRowUpdatedEventArgs	overview

Public	Instance	Constructors

MySqlRowUpdatedEventArgs
Constructor

Initializes	a	new	instance	of	the
MySqlRowUpdatedEventArgs	class.

Public	Instance	Properties

Command Overloaded.	Gets	or	sets	the	MySqlCommand
executed	when	Update	is	called.

Errors(inherited	from
RowUpdatedEventArgs)

Gets	any	errors	generated	by	the	.NET
Framework	data	provider	when	the	Commandwas
executed.

RecordsAffected(inherited
from
RowUpdatedEventArgs)

Gets	the	number	of	rows	changed,	inserted,	or
deleted	by	execution	of	the	SQL	statement.

Row(inherited	from
RowUpdatedEventArgs) Gets	the	DataRowsent	through	an	Update.

RowCount(inherited	from
RowUpdatedEventArgs)

Gets	the	number	of	rows	processed	in	a	batch	of
updated	records.

StatementType(inherited
from
RowUpdatedEventArgs)

Gets	the	type	of	SQL	statement	executed.

Status(inherited	from
RowUpdatedEventArgs) Gets	the	UpdateStatusof	the	Commandproperty.

TableMapping(inherited
from
RowUpdatedEventArgs)

Gets	the	DataTableMappingsent	through	an
Update.

Public	Instance	Methods

CopyToRows(inherited
from
RowUpdatedEventArgs)

Overloaded.	Copies	references	to	the	modified	rows
into	the	provided	array.

Equals(inherited	from
Object)

Determines	whether	the	specified	Objectis	equal	to
the	current	Object.

GetHashCode(inherited
from	Object)

Serves	as	a	hash	function	for	a	particular	type.
GetHashCodeis	suitable	for	use	in	hashing	algorithms
and	data	structures	like	a	hash	table.

GetType(inherited	from
Object) Gets	the	Typeof	the	current	instance.

ToString(inherited	from
Object) Returns	a	Stringthat	represents	the	current	Object.

See	Also

MySqlRowUpdatedEventArgs	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.6.1.1.1.1.	MySqlRowUpdatedEventArgs	Constructor

Initializes	a	new	instance	of	the	MySqlRowUpdatedEventArgs	class.

Syntax:	Visual	Basic

Public	Sub	New(_

			ByVal	row	As	DataRow,	_

			ByVal	command	As	IDbCommand,	_

			ByVal	statementType	As	StatementType,	_

			ByVal	tableMapping	As	DataTableMapping	_

)

Syntax:	C#

public	MySqlRowUpdatedEventArgs(

DataRowrow,

IDbCommandcommand,

StatementTypestatementType,

DataTableMappingtableMapping

);

Parameters

row:	The	DataRowsent	through	an	Update.

command:	The	IDbCommandexecuted	when	Updateis	called.

statementType:	One	of	the	StatementTypevalues	that	specifies	the	type	of
query	executed.

tableMapping:	The	DataTableMappingsent	through	an	Update.

See	Also

MySqlRowUpdatedEventArgs	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.6.1.1.1.2.	Command	Property

Gets	or	sets	the	MySqlCommand	executed	when	Update	is	called.

Syntax:	Visual	Basic

Overloads	Public	ReadOnly	Property	Command	As	MySqlCommand

Syntax:	C#

new	public	MySqlCommand	Command	{get;}

See	Also

MySqlRowUpdatedEventArgs	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.7.	MySqlDataAdapter.RowUpdating	Event

Occurs	during	Update	before	a	command	is	executed	against	the	data	source.
The	attempt	to	update	is	made,	so	the	event	fires.

Syntax:	Visual	Basic

Public	Event	RowUpdating	As	MySqlRowUpdatingEventHandler

Syntax:	C#

public	event	MySqlRowUpdatingEventHandler	RowUpdating;

Event	Data

The	event	handler	receives	an	argument	of	type	MySqlRowUpdatingEventArgs
containing	data	related	to	this	event.	The	following
MySqlRowUpdatingEventArgsproperties	provide	information	specific	to	this
event.

Property Description

Command Gets	or	sets	the	MySqlCommand	to	execute	when	performing
the	Update.

Errors Gets	any	errors	generated	by	the	.NET	Framework	data
provider	when	the	Commandexecutes.

Row Gets	the	DataRowthat	will	be	sent	to	the	server	as	part	of	an
insert,	update,	or	delete	operation.

StatementType Gets	the	type	of	SQL	statement	to	execute.
Status Gets	or	sets	the	UpdateStatusof	the	Commandproperty.
TableMapping Gets	the	DataTableMappingto	send	through	the	Update.

See	Also

MySqlDataAdapter	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.7.1.	MySqlRowUpdatingEventHandler	Delegate

Represents	the	method	that	will	handle	the	RowUpdatingevent	of	a

MySqlDataAdapter	.

Syntax:	Visual	Basic

Public	Delegate	Sub	MySqlRowUpdatingEventHandler(_

			ByVal	sender	As	Object,	_

			ByVal	e	As	MySqlRowUpdatingEventArgs	_

)

Syntax:	C#

public	delegate	void	MySqlRowUpdatingEventHandler(

objectsender,

MySqlRowUpdatingEventArgse

);

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.7.1.1.	MySqlRowUpdatingEventArgs	Class

Provides	data	for	the	RowUpdating	event.	This	class	cannot	be	inherited.

For	a	list	of	all	members	of	this	type,	see	MySqlRowUpdatingEventArgs
Members	.

Syntax:	Visual	Basic

NotInheritable	Public	Class	MySqlRowUpdatingEventArgs_

		Inherits	RowUpdatingEventArgs

Syntax:	C#

public	sealed	class	MySqlRowUpdatingEventArgs	:	RowUpdatingEventArgs

Thread	Safety

Public	static	(Sharedin	Visual	Basic)	members	of	this	type	are	safe	for
multithreaded	operations.	Instance	members	are	notguaranteed	to	be	thread-safe.

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlRowUpdatingEventArgs	Members	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.7.1.1.1.	MySqlRowUpdatingEventArgs	Members

MySqlRowUpdatingEventArgs	overview

Public	Instance	Constructors

MySqlRowUpdatingEventArgs
Constructor

Initializes	a	new	instance	of	the
MySqlRowUpdatingEventArgs	class.

Public	Instance	Properties

Command Overloaded.	Gets	or	sets	the	MySqlCommand	to
execute	when	performing	the	Update.

Errors(inherited	from
RowUpdatingEventArgs)

Gets	any	errors	generated	by	the	.NET
Framework	data	provider	when	the
Commandexecutes.

Row(inherited	from
RowUpdatingEventArgs)

Gets	the	DataRowthat	will	be	sent	to	the	server
as	part	of	an	insert,	update,	or	delete	operation.

StatementType(inherited
from
RowUpdatingEventArgs)

Gets	the	type	of	SQL	statement	to	execute.

Status(inherited	from
RowUpdatingEventArgs)

Gets	or	sets	the	UpdateStatusof	the
Commandproperty.

TableMapping(inherited
from Gets	the	DataTableMappingto	send	through	the

RowUpdatingEventArgs) Update.

Public	Instance	Methods

Equals(inherited	from
Object)

Determines	whether	the	specified	Objectis	equal	to	the
current	Object.

GetHashCode(inherited
from	Object)

Serves	as	a	hash	function	for	a	particular	type.
GetHashCodeis	suitable	for	use	in	hashing	algorithms
and	data	structures	like	a	hash	table.

GetType(inherited
from	Object) Gets	the	Typeof	the	current	instance.

ToString(inherited
from	Object) Returns	a	Stringthat	represents	the	current	Object.

See	Also

MySqlRowUpdatingEventArgs	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.7.1.1.1.1.	MySqlRowUpdatingEventArgs	Constructor

Initializes	a	new	instance	of	the	MySqlRowUpdatingEventArgs	class.

Syntax:	Visual	Basic

Public	Sub	New(_

			ByVal	row	As	DataRow,	_

			ByVal	command	As	IDbCommand,	_

			ByVal	statementType	As	StatementType,	_

			ByVal	tableMapping	As	DataTableMapping	_

)

Syntax:	C#

public	MySqlRowUpdatingEventArgs(

DataRowrow,

IDbCommandcommand,

StatementTypestatementType,

DataTableMappingtableMapping

);

Parameters

row:	The	DataRowto	Update.

command:	The	IDbCommandto	execute	during	Update.

statementType:	One	of	the	StatementTypevalues	that	specifies	the	type	of
query	executed.

tableMapping:	The	DataTableMappingsent	through	an	Update.

See	Also

MySqlRowUpdatingEventArgs	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.2.1.1.7.1.1.1.2.	Command	Property

Gets	or	sets	the	MySqlCommand	to	execute	when	performing	the	Update.

Syntax:	Visual	Basic

Overloads	Public	Property	Command	As	MySqlCommand

Syntax:	C#

new	public	MySqlCommand	Command	{get;	set;}

See	Also

MySqlRowUpdatingEventArgs	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.2.3.	MySqlCommandBuilder	Constructor	(MySqlDataAdapter,	Boolean)

Syntax:	Visual	Basic

Overloads	Public	Sub	New(_

			ByVal	adapter	As	MySqlDataAdapter,	_

			ByVal	lastOneWins	As	Boolean	_

)

Syntax:	C#

public	MySqlCommandBuilder(

MySqlDataAdapteradapter,

boollastOneWins

);

See	Also

MySqlCommandBuilder	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlCommandBuilder	Constructor	Overload	List

23.2.4.1.3.1.2.4.	MySqlCommandBuilder	Constructor	(Boolean)

Syntax:	Visual	Basic

Overloads	Public	Sub	New(_

			ByVal	lastOneWins	As	Boolean	_

)

Syntax:	C#

public	MySqlCommandBuilder(

boollastOneWins

);

See	Also

MySqlCommandBuilder	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlCommandBuilder	Constructor	Overload	List

23.2.4.1.3.1.3.	DataAdapter	Property

Syntax:	Visual	Basic

Public	Property	DataAdapter	As	MySqlDataAdapter

Syntax:	C#

public	MySqlDataAdapter	DataAdapter	{get;	set;}

See	Also

MySqlCommandBuilder	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.4.	QuotePrefix	Property

Syntax:	Visual	Basic

Public	Property	QuotePrefix	As	String

Syntax:	C#

public	string	QuotePrefix	{get;	set;}

See	Also

MySqlCommandBuilder	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.5.	QuoteSuffix	Property

Syntax:	Visual	Basic

Public	Property	QuoteSuffix	As	String

Syntax:	C#

public	string	QuoteSuffix	{get;	set;}

See	Also

MySqlCommandBuilder	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.6.	MySqlCommandBuilder.GetDeleteCommand	Method

Syntax:	Visual	Basic

Public	Function	GetDeleteCommand()	As	MySqlCommand

Syntax:	C#

public	MySqlCommand	GetDeleteCommand();

See	Also

MySqlCommandBuilder	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.7.	MySqlCommandBuilder.GetInsertCommand	Method

Syntax:	Visual	Basic

Public	Function	GetInsertCommand()	As	MySqlCommand

Syntax:	C#

public	MySqlCommand	GetInsertCommand();

See	Also

MySqlCommandBuilder	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.8.	MySqlCommandBuilder.GetUpdateCommand	Method

Syntax:	Visual	Basic

Public	Function	GetUpdateCommand()	As	MySqlCommand

Syntax:	C#

public	MySqlCommand	GetUpdateCommand();

See	Also

MySqlCommandBuilder	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.3.1.9.	MySqlCommandBuilder.RefreshSchema	Method

Syntax:	Visual	Basic

Public	Sub	RefreshSchema()

Syntax:	C#

public	void	RefreshSchema();

See	Also

MySqlCommandBuilder	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.4.	MySqlException	Class

The	exception	that	is	thrown	when	MySQL	returns	an	error.	This	class	cannot	be
inherited.

For	a	list	of	all	members	of	this	type,	see	MySqlException	Members	.

Syntax:	Visual	Basic

NotInheritable	Public	Class	MySqlException_

		Inherits	SystemException

Syntax:	C#

public	sealed	class	MySqlException	:	SystemException

Thread	Safety

Public	static	(Sharedin	Visual	Basic)	members	of	this	type	are	safe	for
multithreaded	operations.	Instance	members	are	notguaranteed	to	be	thread-safe.

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlException	Members	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.4.1.	MySqlException	Members

MySqlException	overview

Public	Instance	Properties

Data(inherited	from
Exception)

Gets	a	collection	of	key/value	pairs	that	provide
additional,	user-defined	information	about	the
exception.

HelpLink(inherited	from
Exception)

Gets	or	sets	a	link	to	the	help	file	associated	with	this
exception.

InnerException(inherited
from	Exception)

Gets	the	Exceptioninstance	that	caused	the	current
exception.

Message(inherited	from
Exception) Gets	a	message	that	describes	the	current	exception.

Number Gets	a	number	that	identifies	the	type	of	error.
Source(inherited	from
Exception)

Gets	or	sets	the	name	of	the	application	or	the	object
that	causes	the	error.

StackTrace(inherited
from	Exception)

Gets	a	string	representation	of	the	frames	on	the	call
stack	at	the	time	the	current	exception	was	thrown.

TargetSite(inherited
from	Exception) Gets	the	method	that	throws	the	current	exception.

Public	Instance	Methods

Equals(inherited	from
Object)

Determines	whether	the	specified	Objectis	equal
to	the	current	Object.

GetBaseException(inherited
from	Exception)

When	overridden	in	a	derived	class,	returns	the
Exceptionthat	is	the	root	cause	of	one	or	more
subsequent	exceptions.

GetHashCode(inherited
from	Object)

Serves	as	a	hash	function	for	a	particular	type.
GetHashCodeis	suitable	for	use	in	hashing
algorithms	and	data	structures	like	a	hash	table.

GetObjectData(inherited
from	Exception)

When	overridden	in	a	derived	class,	sets	the
SerializationInfowith	information	about	the
exception.

GetType(inherited	from
Exception) Gets	the	runtime	type	of	the	current	instance.

ToString(inherited	from
Exception)

Creates	and	returns	a	string	representation	of	the
current	exception.

See	Also

MySqlException	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.4.1.1.	Number	Property

Gets	a	number	that	identifies	the	type	of	error.

Syntax:	Visual	Basic

Public	ReadOnly	Property	Number	As	Integer

Syntax:	C#

public	int	Number	{get;}

See	Also

MySqlException	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.5.	MySqlHelper	Class

Helper	class	that	makes	it	easier	to	work	with	the	provider.

For	a	list	of	all	members	of	this	type,	see	MySqlHelper	Members	.

Syntax:	Visual	Basic

NotInheritable	Public	Class	MySqlHelper

Syntax:	C#

public	sealed	class	MySqlHelper

Thread	Safety

Public	static	(Shared	in	Visual	Basic)	members	of	this	type	are	safe	for
multithreaded	operations.	Instance	members	are	not	guaranteed	to	be	thread-
safe.

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlHelper	Members	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.5.1.	MySqlHelper	Members

MySqlHelper	overview

Public	Static	(Shared)	Methods

ExecuteDataRow
Executes	a	single	SQL	command	and	returns	the	first	row	of
the	resultset.	A	new	MySqlConnection	object	is	created,
opened,	and	closed	during	this	method.

ExecuteDataset
Overloaded.	Executes	a	single	SQL	command	and	returns
the	resultset	in	a	DataSet.	A	new	MySqlConnection	object	is
created,	opened,	and	closed	during	this	method.

ExecuteNonQuery

Overloaded.	Executes	a	single	command	against	a	MySQL
database.	The	MySqlConnection	is	assumed	to	be	open
when	the	method	is	called	and	remains	open	after	the
method	completes.

ExecuteReader Overloaded.	Executes	a	single	command	against	a	MySQL
database.

ExecuteScalar Overloaded.	Execute	a	single	command	against	a	MySQL
database.

UpdateDataSet Updates	the	given	table	with	data	from	the	given	DataSet

Public	Instance	Methods

Equals(inherited	from
Object)

Determines	whether	the	specified	Objectis	equal	to	the
current	Object.

GetHashCode(inherited
from	Object)

Serves	as	a	hash	function	for	a	particular	type.
GetHashCodeis	suitable	for	use	in	hashing	algorithms
and	data	structures	like	a	hash	table.

GetType(inherited
from	Object) Gets	the	Typeof	the	current	instance.

ToString(inherited
from	Object) Returns	a	Stringthat	represents	the	current	Object.

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.5.1.1.	MySqlHelper.ExecuteDataRow	Method

Executes	a	single	SQL	command	and	returns	the	first	row	of	the	resultset.	A	new
MySqlConnection	object	is	created,	opened,	and	closed	during	this	method.

Syntax:	Visual	Basic

Public	Shared	Function	ExecuteDataRow(_

			ByVal	connectionString	As	String,	_

			ByVal	commandText	As	String,	_

			ParamArray	parms	As	MySqlParameter()	_

)	As	DataRow

Syntax:	C#

public	static	DataRow	ExecuteDataRow(

stringconnectionString,

stringcommandText,

			params	MySqlParameter[]parms

);

Parameters

connectionString:	Settings	to	be	used	for	the	connection

commandText:	Command	to	execute

parms:	Parameters	to	use	for	the	command

Return	Value

DataRow	containing	the	first	row	of	the	resultset

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.5.1.2.	ExecuteDataset	Method

Executes	a	single	SQL	command	and	returns	the	resultset	in	a	DataSet.	The	state
of	the	MySqlConnection	object	remains	unchanged	after	execution	of	this
method.

Overload	List

Executes	a	single	SQL	command	and	returns	the	resultset	in	a	DataSet.	The	state
of	the	MySqlConnection	object	remains	unchanged	after	execution	of	this
method.

public	static	DataSet	ExecuteDataset(MySqlConnection,string);

Executes	a	single	SQL	command	and	returns	the	resultset	in	a	DataSet.	The	state
of	the	MySqlConnection	object	remains	unchanged	after	execution	of	this
method.

public	static	DataSet	ExecuteDataset(MySqlConnection,string,params
MySqlParameter[]);

Executes	a	single	SQL	command	and	returns	the	resultset	in	a	DataSet.	A	new
MySqlConnection	object	is	created,	opened,	and	closed	during	this	method.

public	static	DataSet	ExecuteDataset(string,string);

Executes	a	single	SQL	command	and	returns	the	resultset	in	a	DataSet.	A	new
MySqlConnection	object	is	created,	opened,	and	closed	during	this	method.

public	static	DataSet	ExecuteDataset(string,string,params
MySqlParameter[]);

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.5.1.2.1.	MySqlHelper.ExecuteDataset	Method	(MySqlConnection,	String)

Executes	a	single	SQL	command	and	returns	the	resultset	in	a	DataSet.	The	state
of	the	MySqlConnection	object	remains	unchanged	after	execution	of	this
method.

Syntax:	Visual	Basic

Overloads	Public	Shared	Function	ExecuteDataset(_

			ByVal	connection	As	MySqlConnection,	_

			ByVal	commandText	As	String	_

)	As	DataSet

Syntax:	C#

public	static	DataSet	ExecuteDataset(

MySqlConnectionconnection,

stringcommandText

);

Parameters

connection:	MySqlConnection	object	to	use

commandText:	Command	to	execute

Return	Value

DataSetcontaining	the	resultset

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlHelper.ExecuteDataset	Overload	List

23.2.4.1.5.1.2.2.	MySqlHelper.ExecuteDataset	Method	(MySqlConnection,	String,	MySqlParameter[])

Executes	a	single	SQL	command	and	returns	the	resultset	in	a	DataSet.	The	state
of	the	MySqlConnection	object	remains	unchanged	after	execution	of	this
method.

Syntax:	Visual	Basic

Overloads	Public	Shared	Function	ExecuteDataset(_

			ByVal	connection	As	MySqlConnection,	_

			ByVal	commandText	As	String,	_

			ParamArray	commandParameters	As	MySqlParameter()	_

)	As	DataSet

Syntax:	C#

public	static	DataSet	ExecuteDataset(

MySqlConnectionconnection,

stringcommandText,

			params	MySqlParameter[]commandParameters

);

Parameters

connection:	MySqlConnection	object	to	use

commandText:	Command	to	execute

commandParameters:	Parameters	to	use	for	the	command

Return	Value

DataSetcontaining	the	resultset

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlHelper.ExecuteDataset	Overload	List

23.2.4.1.5.1.2.3.	MySqlHelper.ExecuteDataset	Method	(String,	String)

Executes	a	single	SQL	command	and	returns	the	resultset	in	a	DataSet.	A	new
MySqlConnection	object	is	created,	opened,	and	closed	during	this	method.

Syntax:	Visual	Basic

Overloads	Public	Shared	Function	ExecuteDataset(_

			ByVal	connectionString	As	String,	_

			ByVal	commandText	As	String	_

)	As	DataSet

Syntax:	C#

public	static	DataSet	ExecuteDataset(

stringconnectionString,

stringcommandText

);

Parameters

connectionString:	Settings	to	be	used	for	the	connection

commandText:	Command	to	execute

Return	Value

DataSetcontaining	the	resultset

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlHelper.ExecuteDataset	Overload	List

23.2.4.1.5.1.2.4.	MySqlHelper.ExecuteDataset	Method	(String,	String,	MySqlParameter[])

Executes	a	single	SQL	command	and	returns	the	resultset	in	a	DataSet.	A	new
MySqlConnection	object	is	created,	opened,	and	closed	during	this	method.

Syntax:	Visual	Basic

Overloads	Public	Shared	Function	ExecuteDataset(_

			ByVal	connectionString	As	String,	_

			ByVal	commandText	As	String,	_

			ParamArray	commandParameters	As	MySqlParameter()	_

)	As	DataSet

Syntax:	C#

public	static	DataSet	ExecuteDataset(

stringconnectionString,

stringcommandText,

			params	MySqlParameter[]commandParameters

);

Parameters

connectionString:	Settings	to	be	used	for	the	connection

commandText:	Command	to	execute

commandParameters:	Parameters	to	use	for	the	command

Return	Value

DataSetcontaining	the	resultset

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlHelper.ExecuteDataset	Overload	List

23.2.4.1.5.1.3.	ExecuteNonQuery	Method

Executes	a	single	command	against	a	MySQL	database.	The	MySqlConnection
is	assumed	to	be	open	when	the	method	is	called	and	remains	open	after	the
method	completes.

Overload	List

Executes	a	single	command	against	a	MySQL	database.	The	MySqlConnection
is	assumed	to	be	open	when	the	method	is	called	and	remains	open	after	the
method	completes.

public	static	int	ExecuteNonQuery(MySqlConnection,string,params
MySqlParameter[]);

Executes	a	single	command	against	a	MySQL	database.	A	new
MySqlConnection	is	created	using	the	ConnectionString	given.

public	static	int	ExecuteNonQuery(string,string,params	MySqlParameter[]);

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.5.1.3.1.	MySqlHelper.ExecuteNonQuery	Method	(MySqlConnection,	String,	MySqlParameter[])

Executes	a	single	command	against	a	MySQL	database.	The	MySqlConnection
is	assumed	to	be	open	when	the	method	is	called	and	remains	open	after	the
method	completes.

Syntax:	Visual	Basic

Overloads	Public	Shared	Function	ExecuteNonQuery(_

			ByVal	connection	As	MySqlConnection,	_

			ByVal	commandText	As	String,	_

			ParamArray	commandParameters	As	MySqlParameter()	_

)	As	Integer

Syntax:	C#

public	static	int	ExecuteNonQuery(

MySqlConnectionconnection,

stringcommandText,

			params	MySqlParameter[]commandParameters

);

Parameters

connection:	MySqlConnection	object	to	use

commandText:	SQL	command	to	be	executed

commandParameters:	Array	of	MySqlParameter	objects	to	use	with	the
command.

Return	Value

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlHelper.ExecuteNonQuery	Overload	List

23.2.4.1.5.1.3.2.	MySqlHelper.ExecuteNonQuery	Method	(String,	String,	MySqlParameter[])

Executes	a	single	command	against	a	MySQL	database.	A	new
MySqlConnection	is	created	using	the	ConnectionString	given.

Syntax:	Visual	Basic

Overloads	Public	Shared	Function	ExecuteNonQuery(_

			ByVal	connectionString	As	String,	_

			ByVal	commandText	As	String,	_

			ParamArray	parms	As	MySqlParameter()	_

)	As	Integer

Syntax:	C#

public	static	int	ExecuteNonQuery(

stringconnectionString,

stringcommandText,

			params	MySqlParameter[]parms

);

Parameters

connectionString:	ConnectionString	to	use

commandText:	SQL	command	to	be	executed

parms:	Array	of	MySqlParameter	objects	to	use	with	the	command.

Return	Value

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlHelper.ExecuteNonQuery	Overload	List

23.2.4.1.5.1.4.	ExecuteReader	Method

Executes	a	single	command	against	a	MySQL	database.

Overload	List

Executes	a	single	command	against	a	MySQL	database.

public	static	MySqlDataReader	ExecuteReader(string,string);

Executes	a	single	command	against	a	MySQL	database.

public	static	MySqlDataReader	ExecuteReader(string,string,params
MySqlParameter[]);

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.5.1.4.1.	MySqlHelper.ExecuteReader	Method	(String,	String)

Executes	a	single	command	against	a	MySQL	database.

Syntax:	Visual	Basic

Overloads	Public	Shared	Function	ExecuteReader(_

			ByVal	connectionString	As	String,	_

			ByVal	commandText	As	String	_

)	As	MySqlDataReader

Syntax:	C#

public	static	MySqlDataReader	ExecuteReader(

stringconnectionString,

stringcommandText

);

Parameters

connectionString:	Settings	to	use	for	this	command

commandText:	Command	text	to	use

Return	Value

MySqlDataReader	object	ready	to	read	the	results	of	the	command

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlHelper.ExecuteReader	Overload	List

23.2.4.1.5.1.4.2.	MySqlHelper.ExecuteReader	Method	(String,	String,	MySqlParameter[])

Executes	a	single	command	against	a	MySQL	database.

Syntax:	Visual	Basic

Overloads	Public	Shared	Function	ExecuteReader(_

			ByVal	connectionString	As	String,	_

			ByVal	commandText	As	String,	_

			ParamArray	commandParameters	As	MySqlParameter()	_

)	As	MySqlDataReader

Syntax:	C#

public	static	MySqlDataReader	ExecuteReader(

stringconnectionString,

stringcommandText,

			params	MySqlParameter[]commandParameters

);

Parameters

connectionString:	Settings	to	use	for	this	command

commandText:	Command	text	to	use

commandParameters:	Array	of	MySqlParameter	objects	to	use	with	the
command

Return	Value

MySqlDataReader	object	ready	to	read	the	results	of	the	command

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlHelper.ExecuteReader	Overload	List

23.2.4.1.5.1.5.	ExecuteScalar	Method

Execute	a	single	command	against	a	MySQL	database.

Overload	List

Execute	a	single	command	against	a	MySQL	database.

public	static	object	ExecuteScalar(MySqlConnection,string);

Execute	a	single	command	against	a	MySQL	database.

public	static	object	ExecuteScalar(MySqlConnection,string,params
MySqlParameter[]);

Execute	a	single	command	against	a	MySQL	database.

public	static	object	ExecuteScalar(string,string);

Execute	a	single	command	against	a	MySQL	database.

public	static	object	ExecuteScalar(string,string,params	MySqlParameter[]);

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.5.1.5.1.	MySqlHelper.ExecuteScalar	Method	(MySqlConnection,	String)

Execute	a	single	command	against	a	MySQL	database.

Syntax:	Visual	Basic

Overloads	Public	Shared	Function	ExecuteScalar(_

			ByVal	connection	As	MySqlConnection,	_

			ByVal	commandText	As	String	_

)	As	Object

Syntax:	C#

public	static	object	ExecuteScalar(

MySqlConnectionconnection,

stringcommandText

);

Parameters

connection:	MySqlConnection	object	to	use

commandText:	Command	text	to	use	for	the	command

Return	Value

The	first	column	of	the	first	row	in	the	result	set,	or	a	null	reference	if	the	result
set	is	empty.

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlHelper.ExecuteScalar	Overload	List

23.2.4.1.5.1.5.2.	MySqlHelper.ExecuteScalar	Method	(MySqlConnection,	String,	MySqlParameter[])

Execute	a	single	command	against	a	MySQL	database.

Syntax:	Visual	Basic

Overloads	Public	Shared	Function	ExecuteScalar(_

			ByVal	connection	As	MySqlConnection,	_

			ByVal	commandText	As	String,	_

			ParamArray	commandParameters	As	MySqlParameter()	_

)	As	Object

Syntax:	C#

public	static	object	ExecuteScalar(

MySqlConnectionconnection,

stringcommandText,

			params	MySqlParameter[]commandParameters

);

Parameters

connection:	MySqlConnection	object	to	use

commandText:	Command	text	to	use	for	the	command

commandParameters:	Parameters	to	use	for	the	command

Return	Value

The	first	column	of	the	first	row	in	the	result	set,	or	a	null	reference	if	the	result
set	is	empty.

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlHelper.ExecuteScalar	Overload	List

23.2.4.1.5.1.5.3.	MySqlHelper.ExecuteScalar	Method	(String,	String)

Execute	a	single	command	against	a	MySQL	database.

Syntax:	Visual	Basic

Overloads	Public	Shared	Function	ExecuteScalar(_

			ByVal	connectionString	As	String,	_

			ByVal	commandText	As	String	_

)	As	Object

Syntax:	C#

public	static	object	ExecuteScalar(

stringconnectionString,

stringcommandText

);

Parameters

connectionString:	Settings	to	use	for	the	update

commandText:	Command	text	to	use	for	the	update

Return	Value

The	first	column	of	the	first	row	in	the	result	set,	or	a	null	reference	if	the	result
set	is	empty.

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlHelper.ExecuteScalar	Overload	List

23.2.4.1.5.1.5.4.	MySqlHelper.ExecuteScalar	Method	(String,	String,	MySqlParameter[])

Execute	a	single	command	against	a	MySQL	database.

Syntax:	Visual	Basic

Overloads	Public	Shared	Function	ExecuteScalar(_

			ByVal	connectionString	As	String,	_

			ByVal	commandText	As	String,	_

			ParamArray	commandParameters	As	MySqlParameter()	_

)	As	Object

Syntax:	C#

public	static	object	ExecuteScalar(

stringconnectionString,

stringcommandText,

			params	MySqlParameter[]commandParameters

);

Parameters

connectionString:	Settings	to	use	for	the	command

commandText:	Command	text	to	use	for	the	command

commandParameters:	Parameters	to	use	for	the	command

Return	Value

The	first	column	of	the	first	row	in	the	result	set,	or	a	null	reference	if	the	result
set	is	empty.

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace	,
MySqlHelper.ExecuteScalar	Overload	List

23.2.4.1.5.1.6.	MySqlHelper.UpdateDataSet	Method

Updates	the	given	table	with	data	from	the	given	DataSet

Syntax:	Visual	Basic

Public	Shared	Sub	UpdateDataSet(_

			ByVal	connectionString	As	String,	_

			ByVal	commandText	As	String,	_

			ByVal	ds	As	DataSet,	_

			ByVal	tablename	As	String	_

)

Syntax:	C#

public	static	void	UpdateDataSet(

stringconnectionString,

stringcommandText,

DataSetds,

stringtablename

);

Parameters

connectionString:	Settings	to	use	for	the	update

commandText:	Command	text	to	use	for	the	update

ds:	DataSetcontaining	the	new	data	to	use	in	the	update

tablename:	Tablename	in	the	dataset	to	update

See	Also

MySqlHelper	Class	,	MySql.Data.MySqlClient	Namespace

23.2.4.1.6.	MySqlErrorCode	Enumeration

Syntax:	Visual	Basic

Public	Enum	MySqlErrorCode

Syntax:	C#

public	enum	MySqlErrorCode

Members

Member	Name Description
PacketTooLarge 	
PasswordNotAllowed 	
DuplicateKeyEntry 	
HostNotPrivileged 	
PasswordNoMatch 	
AnonymousUser 	
DuplicateKey 	

KeyNotFound 	
DuplicateKeyName 	

Requirements

Namespace:	MySql.Data.MySqlClient

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySql.Data.MySqlClient	Namespace

23.2.4.2.	MySql.Data.Types

Namespace	hierarchy

Classes

Class Description

MySqlConversionException Summary	description	forMySqlConversionException.
MySqlDateTime Summary	description	for	MySqlDateTime.
MySqlValue 	

23.2.4.2.1.	MySql.Data.TypesHierarchy

See	Also

MySql.Data.Types	Namespace

23.2.4.2.2.	MySqlConversionException	Class

Summary	description	for	MySqlConversionException.

For	a	list	of	all	members	of	this	type,	see	MySqlConversionException	Members	.

Syntax:	Visual	Basic

Public	Class	MySqlConversionException_

		Inherits	ApplicationException

Syntax:	C#

public	class	MySqlConversionException	:	ApplicationException

Thread	Safety

Public	static	(Sharedin	Visual	Basic)	members	of	this	type	are	safe	for
multithreaded	operations.	Instance	members	are	notguaranteed	to	be	thread-safe.

Requirements

Namespace:	MySql.Data.Types

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlConversionException	Members	,	MySql.Data.Types	Namespace

23.2.4.2.2.1.	MySqlConversionException	Members

MySqlConversionException	overview

Public	Instance	Constructors

MySqlConversionException	Constructor Ctor

Public	Instance	Properties

Data(inherited	from
Exception)

Gets	a	collection	of	key/value	pairs	that	provide
additional,	user-defined	information	about	the
exception.

HelpLink(inherited	from
Exception)

Gets	or	sets	a	link	to	the	help	file	associated	with	this
exception.

InnerException(inherited
from	Exception)

Gets	the	Exceptioninstance	that	caused	the	current
exception.

Message(inherited	from

Exception) Gets	a	message	that	describes	the	current	exception.

Source(inherited	from
Exception)

Gets	or	sets	the	name	of	the	application	or	the	object
that	causes	the	error.

StackTrace(inherited
from	Exception)

Gets	a	string	representation	of	the	frames	on	the	call
stack	at	the	time	the	current	exception	was	thrown.

TargetSite(inherited
from	Exception) Gets	the	method	that	throws	the	current	exception.

Public	Instance	Methods

Equals(inherited	from
Object)

Determines	whether	the	specified	Objectis	equal
to	the	current	Object.

GetBaseException(inherited
from	Exception)

When	overridden	in	a	derived	class,	returns	the
Exceptionthat	is	the	root	cause	of	one	or	more
subsequent	exceptions.

GetHashCode(inherited
from	Object)

Serves	as	a	hash	function	for	a	particular	type.
GetHashCodeis	suitable	for	use	in	hashing
algorithms	and	data	structures	like	a	hash	table.

GetObjectData(inherited
from	Exception)

When	overridden	in	a	derived	class,	sets	the
SerializationInfowith	information	about	the
exception.

GetType(inherited	from
Exception) Gets	the	runtime	type	of	the	current	instance.

ToString(inherited	from
Exception)

Creates	and	returns	a	string	representation	of	the
current	exception.

Protected	Instance	Properties

HResult(inherited
from	Exception)

Gets	or	sets	HRESULT,	a	coded	numerical	value	that	is
assigned	to	a	specific	exception.

Protected	Instance	Methods

Finalize(inherited	from
Object)

Allows	an	Objectto	attempt	to	free	resources	and
perform	other	cleanup	operations	before	the
Objectis	reclaimed	by	garbage	collection.

MemberwiseClone(inherited
from	Object) Creates	a	shallow	copy	of	the	current	Object.

See	Also

MySqlConversionException	Class	,	MySql.Data.Types	Namespace

23.2.4.2.2.1.1.	MySqlConversionException	Constructor

Syntax:	Visual	Basic

Public	Sub	New(_

			ByVal	msg	As	String	_

)

Syntax:	C#

public	MySqlConversionException(

stringmsg

);

See	Also

MySqlConversionException	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.	MySqlDateTime	Class

Summary	description	for	MySqlDateTime.

For	a	list	of	all	members	of	this	type,	see	MySqlDateTime	Members	.

Syntax:	Visual	Basic

Public	Class	MySqlDateTime_

		Inherits	MySqlValue_

		Implements	IConvertible,	IComparable

Syntax:	C#

public	class	MySqlDateTime	:	MySqlValue,	IConvertible,	IComparable

Thread	Safety

Public	static	(Shared	in	Visual	Basic)	members	of	this	type	are	safe	for
multithreaded	operations.	Instance	members	are	not	guaranteed	to	be	thread-
safe.

Requirements

Namespace:	MySql.Data.Types

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlDateTime	Members	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.	MySqlDateTime	Members

MySqlDateTime	overview

Public	Static	(Shared)	Type	Conversions

Explicit	MySqlDateTime	to	DateTime	Conversion 	

Public	Instance	Properties

Day Returns	the	day	portion	of	this	datetime
Hour Returns	the	hour	portion	of	this	datetime
IsNull	(inherited	from
MySqlValue) 	

IsValidDateTime Indicates	if	this	object	contains	a	value	that	can
be	represented	as	a	DateTime

Minute Returns	the	minute	portion	of	this	datetime
Month Returns	the	month	portion	of	this	datetime
Second Returns	the	second	portion	of	this	datetime
ValueAsObject	(inherited
from	MySqlValue) Returns	the	value	of	this	field	as	an	object

Year Returns	the	year	portion	of	this	datetime

Public	Instance	Methods

Equals(inherited	from
Object)

Determines	whether	the	specified	Objectis	equal	to	the
current	Object.

GetDateTime Returns	this	value	as	a	DateTime

GetHashCode(inherited
from	Object)

Serves	as	a	hash	function	for	a	particular	type.
GetHashCodeis	suitable	for	use	in	hashing	algorithms
and	data	structures	like	a	hash	table.

GetType(inherited
from	Object) Gets	the	Typeof	the	current	instance.

ToString Returns	a	MySQL	specific	string	representation	of	this
value

Protected	Instance	Fields

classType	(inherited	from	MySqlValue) The	system	type	represented	by	this
value

dbType	(inherited	from	MySqlValue) The	generic	dbtype	of	this	value
isNull	(inherited	from	MySqlValue) Is	this	value	null
mySqlDbType	(inherited	from
MySqlValue) The	specific	MySQL	db	type

mySqlTypeName	(inherited	from
MySqlValue)

The	MySQL	specific	typename	of	this
value

objectValue	(inherited	from
MySqlValue) 	

Protected	Instance	Methods

Finalize(inherited	from
Object)

Allows	an	Objectto	attempt	to	free	resources	and
perform	other	cleanup	operations	before	the
Objectis	reclaimed	by	garbage	collection.

MemberwiseClone(inherited
from	Object) Creates	a	shallow	copy	of	the	current	Object.

See	Also

MySqlDateTime	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.1.	MySqlDateTime	Explicit	MySqlDateTime	to	DateTime	Conversion

Syntax:	Visual	Basic

MySqlDateTime.op_Explicit(val)

Syntax:	C#

public	static	explicit	operator	DateTime(

MySqlDateTimeval

);

Parameters

val:

Return	Value

See	Also

MySqlDateTime	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.2.	Day	Property

Returns	the	day	portion	of	this	datetime

Syntax:	Visual	Basic

Public	Property	Day	As	Integer

Syntax:	C#

public	int	Day	{get;	set;}

See	Also

MySqlDateTime	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.3.	Hour	Property

Returns	the	hour	portion	of	this	datetime

Syntax:	Visual	Basic

Public	Property	Hour	As	Integer

Syntax:	C#

public	int	Hour	{get;	set;}

See	Also

MySqlDateTime	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.4.	IsNull	Property

Syntax:	Visual	Basic

Public	Property	IsNull	As	Boolean

Syntax:	C#

public	bool	IsNull	{get;	set;}

See	Also

MySqlValue	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.4.1.	MySqlValue	Class

For	a	list	of	all	members	of	this	type,	see	MySqlValue	Members	.

Syntax:	Visual	Basic

MustInherit	Public	Class	MySqlValue

Syntax:	C#

public	abstract	class	MySqlValue

Thread	Safety

Public	static	(Shared	in	Visual	Basic)	members	of	this	type	are	safe	for
multithreaded	operations.	Instance	members	are	not	guaranteed	to	be	thread-
safe.

Requirements

Namespace:	MySql.Data.Types

Assembly:	MySql.Data	(in	MySql.Data.dll)

See	Also

MySqlValue	Members	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.4.1.1.	MySqlValue	Members

MySqlValue	overview

Protected	Static	(Shared)	Fields

numberFormat 	

Public	Instance	Constructors

MySqlValue	Constructor Initializes	a	new	instance	of	the	MySqlValue	class.

Public	Instance	Properties

IsNull 	
ValueAsObject Returns	the	value	of	this	field	as	an	object

Public	Instance	Methods

Equals(inherited	from
Object)

Determines	whether	the	specified	Objectis	equal	to	the
current	Object.

GetHashCode(inherited
from	Object)

Serves	as	a	hash	function	for	a	particular	type.
GetHashCodeis	suitable	for	use	in	hashing	algorithms
and	data	structures	like	a	hash	table.

GetType(inherited
from	Object)

Gets	the	Typeof	the	current	instance.

ToString Returns	a	string	representation	of	this	value

Protected	Instance	Fields

classType The	system	type	represented	by	this	value
dbType The	generic	dbtype	of	this	value
isNull Is	this	value	null
mySqlDbType The	specific	MySQL	db	type
mySqlTypeName The	MySQL	specific	typename	of	this	value
objectValue 	

Protected	Instance	Methods

Finalize(inherited	from
Object)

Allows	an	Objectto	attempt	to	free	resources	and
perform	other	cleanup	operations	before	the
Objectis	reclaimed	by	garbage	collection.

MemberwiseClone(inherited
from	Object) Creates	a	shallow	copy	of	the	current	Object.

See	Also

MySqlValue	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.4.1.1.1.	MySqlValue.numberFormat	Field

Syntax:	Visual	Basic

Protected	Shared	numberFormat	As	NumberFormatInfo

Syntax:	C#

protected	static	NumberFormatInfo	numberFormat;

See	Also

MySqlValue	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.4.1.1.2.	MySqlValue	Constructor

Initializes	a	new	instance	of	the	MySqlValue	class.

Syntax:	Visual	Basic

Public	Sub	New()

Syntax:	C#

public	MySqlValue();

See	Also

MySqlValue	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.4.1.1.3.	ValueAsObject	Property

Returns	the	value	of	this	field	as	an	object

Syntax:	Visual	Basic

Public	ReadOnly	Property	ValueAsObject	As	Object

Syntax:	C#

public	object	ValueAsObject	{get;}

See	Also

MySqlValue	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.4.1.1.4.	MySqlValue.ToString	Method

Returns	a	string	representation	of	this	value

Syntax:	Visual	Basic

Overrides	Public	Function	ToString()	As	String

Syntax:	C#

public	override	string	ToString();

See	Also

MySqlValue	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.4.1.1.5.	MySqlValue.classType	Field

The	system	type	represented	by	this	value

Syntax:	Visual	Basic

Protected	classType	As	Type

Syntax:	C#

protected	Type	classType;

See	Also

MySqlValue	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.4.1.1.6.	MySqlValue.dbType	Field

The	generic	dbtype	of	this	value

Syntax:	Visual	Basic

Protected	dbType	As	DbType

Syntax:	C#

protected	DbType	dbType;

See	Also

MySqlValue	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.4.1.1.7.	MySqlValue.mySqlDbType	Field

The	specific	MySQL	db	type

Syntax:	Visual	Basic

Protected	mySqlDbType	As	MySqlDbType

Syntax:	C#

protected	MySqlDbType	mySqlDbType;

See	Also

MySqlValue	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.4.1.1.8.	MySqlValue.mySqlTypeName	Field

The	MySQL	specific	typename	of	this	value

Syntax:	Visual	Basic

Protected	mySqlTypeName	As	String

Syntax:	C#

protected	string	mySqlTypeName;

See	Also

MySqlValue	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.4.1.1.9.	MySqlValue.objectValue	Field

Syntax:	Visual	Basic

Protected	objectValue	As	Object

Syntax:	C#

protected	object	objectValue;

See	Also

MySqlValue	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.5.	IsValidDateTime	Property

Indicates	if	this	object	contains	a	value	that	can	be	represented	as	a	DateTime

Syntax:	Visual	Basic

Public	ReadOnly	Property	IsValidDateTime	As	Boolean

Syntax:	C#

public	bool	IsValidDateTime	{get;}

See	Also

MySqlDateTime	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.6.	Minute	Property

Returns	the	minute	portion	of	this	datetime

Syntax:	Visual	Basic

Public	Property	Minute	As	Integer

Syntax:	C#

public	int	Minute	{get;	set;}

See	Also

MySqlDateTime	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.7.	Month	Property

Returns	the	month	portion	of	this	datetime

Syntax:	Visual	Basic

Public	Property	Month	As	Integer

Syntax:	C#

public	int	Month	{get;	set;}

See	Also

MySqlDateTime	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.8.	Second	Property

Returns	the	second	portion	of	this	datetime

Syntax:	Visual	Basic

Public	Property	Second	As	Integer

Syntax:	C#

public	int	Second	{get;	set;}

See	Also

MySqlDateTime	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.9.	Year	Property

Returns	the	year	portion	of	this	datetime

Syntax:	Visual	Basic

Public	Property	Year	As	Integer

Syntax:	C#

public	int	Year	{get;	set;}

See	Also

MySqlDateTime	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.10.	MySqlDateTime.GetDateTime	Method

Returns	this	value	as	a	DateTime

Syntax:	Visual	Basic

Public	Function	GetDateTime()	As	Date

Syntax:	C#

public	DateTime	GetDateTime();

See	Also

MySqlDateTime	Class	,	MySql.Data.Types	Namespace

23.2.4.2.3.1.11.	MySqlDateTime.ToString	Method

Returns	a	MySQL	specific	string	representation	of	this	value

Syntax:	Visual	Basic

Overrides	Public	Function	ToString()	As	String

Syntax:	C#

public	override	string	ToString();

See	Also

MySqlDateTime	Class	,	MySql.Data.Types	Namespace

23.2.5.	Connector/NET	Notes	and	Tips

In	this	section	we	will	cover	some	of	the	more	common	use	cases	for
Connector/NET,	including	BLOB	handling,	date	handling,	and	using
Connector/NET	with	common	tools	such	as	Crystal	Reports.

23.2.5.1.	Connecting	to	MySQL	Using	Connector/NET

23.2.5.1.1.	Introduction

All	interaction	between	a	.NET	application	and	the	MySQL	server	is	routed
through	a	MySqlConnection	object.	Before	your	application	can	interact	with	the
server,	a	MySqlConnection	object	must	be	instanced,	configured,	and	opened.

Even	when	using	the	MySqlHelper	class,	a	MySqlConnection	object	is	created	by
the	helper	class.

In	this	section,	we	will	describe	how	to	connect	to	MySQL	using	the
MySqlConnection	object.

23.2.5.1.2.	Creating	a	Connection	String

The	MySqlConnection	object	is	configured	using	a	connection	string.	A
connection	string	contains	sever	key/value	pairs,	separated	by	semicolons.	Each
key/value	pair	is	joined	with	an	equals	sign.

The	following	is	a	sample	connection	string:

				Server=127.0.0.1;Uid=root;Pwd=12345;Database=test;

				

In	this	example,	the	MySqlConnection	object	is	configured	to	connect	to	a
MySQL	server	at	127.0.0.1,	with	a	username	of	root	and	a	password	of	12345.
The	default	database	for	all	statements	will	be	the	test	database.

The	following	options	are	typically	used	(a	full	list	of	options	is	available	in	the
API	documentation	for	Section	23.2.3.3.15,	“ConnectionString”):

Server:	The	name	or	network	address	of	the	instance	of	MySQL	to	which
to	connect.	The	default	is	localhost.	Aliases	include	host,	Data	Source,
DataSource,	Address,	Addr	and	Network	Address.

Uid:	The	MySQL	user	account	to	use	when	connecting.	Aliases	include
User	Id,	Username	and	User	name.

Pwd:	The	password	for	the	MySQL	account	being	used.	Alias	Password	can
also	be	used.

Database:	The	default	database	that	all	statements	are	applied	to.	Default	is
mysql.	Alias	Initial	Catalog	can	also	be	used.

Port:	The	port	MySQL	is	using	to	listen	for	connections.	Default	is	3306.
Specify	-1	for	this	value	to	use	a	named-pipe	connection.

23.2.5.1.3.	Opening	a	Connection

Once	you	have	created	a	connection	string	it	can	be	used	to	open	a	connection	to
the	MySQL	server.

The	following	code	is	used	to	create	a	MySqlConnection	object,	assign	the
connection	string,	and	open	the	connection.

Visual	Basic	Example

Dim	conn	As	New	MySql.Data.MySqlClient.MySqlConnection

Dim	myConnectionString	as	String

myConnectionString	=	"server=127.0.0.1;"	_

												&	"uid=root;"	_

												&	"pwd=12345;"	_

												&	"database=test;"

Try

		conn.ConnectionString	=	myConnectionString

		conn.Open()

Catch	ex	As	MySql.Data.MySqlClient.MySqlException

		MessageBox.Show(ex.Message)

End	Try

		

C#	Example

MySql.Data.MySqlClient.MySqlConnection	conn;

string	myConnectionString;

				

myConnectionString	=	"server=127.0.0.1;uid=root;"	+

				"pwd=12345;database=test;";

		

try

{

				conn	=	new	MySql.Data.MySqlClient.MySqlConnection();

				conn.ConnectionString	=	myConnectionString;

				conn.Open();

}

catch	(MySql.Data.MySqlClient.MySqlException	ex)

{

				MessageBox.Show(ex.Message);

}

You	can	also	pass	the	connection	string	to	the	constructor	of	the
MySqlConnection	class:

Visual	Basic	Example

Dim	myConnectionString	as	String

myConnectionString	=	"server=127.0.0.1;"	_

														&	"uid=root;"	_

														&	"pwd=12345;"	_

														&	"database=test;"	

Try

				Dim	conn	As	New	MySql.Data.MySqlClient.MySqlConnection(myConnectionString)

				conn.Open()

Catch	ex	As	MySql.Data.MySqlClient.MySqlException

			MessageBox.Show(ex.Message)

End	Try

		

C#	Example

MySql.Data.MySqlClient.MySqlConnection	conn;

string	myConnectionString;

myConnectionString	=	"server=127.0.0.1;uid=root;"	+

				"pwd=12345;database=test;";

try

{

				conn	=	new	MySql.Data.MySqlClient.MySqlConnection(myConnectionString);

				conn.Open();

}

catch	(MySql.Data.MySqlClient.MySqlException	ex)

{

				MessageBox.Show(ex.Message);

}

Once	the	connection	is	open	it	can	be	used	by	the	other	Connector/NET	classes
to	communicate	with	the	MySQL	server.

23.2.5.1.4.	Handling	Connection	Errors

Because	connecting	to	an	external	server	is	unpredictable,	it	is	important	to	add
error	handling	to	your	.NET	application.	When	there	is	an	error	connecting,	the
MySqlConnection	class	will	return	a	MySqlException	object.	This	object	has	two
properties	that	are	of	interest	when	handling	errors:

Message:	A	message	that	describes	the	current	exception.

Number:	The	MySQL	error	number.

When	handling	errors,	you	can	your	application's	response	based	on	the	error
number.	The	two	most	common	error	numbers	when	connecting	are	as	follows:

0:	Cannot	connect	to	server.

1045:	Invalid	username	and/or	password.

The	following	code	shows	how	to	adapt	the	application's	response	based	on	the
actual	error:

Visual	Basic	Example

Dim	myConnectionString	as	String

myConnectionString	=	"server=127.0.0.1;"	_

										&	"uid=root;"	_

										&	"pwd=12345;"	_

										&	"database=test;"	

Try

				Dim	conn	As	New	MySql.Data.MySqlClient.MySqlConnection(myConnectionString)

				conn.Open()

Catch	ex	As	MySql.Data.MySqlClient.MySqlException

				Select	Case	ex.Number

								Case	0

												MessageBox.Show("Cannot	connect	to	server.	Contact	administrator")

								Case	1045

												MessageBox.Show("Invalid	username/password,	please	try	again")

				End	Select

End	Try

		

C#	Example

MySql.Data.MySqlClient.MySqlConnection	conn;

string	myConnectionString;

myConnectionString	=	"server=127.0.0.1;uid=root;"	+		

				"pwd=12345;database=test;";

try

{

				conn	=	new	MySql.Data.MySqlClient.MySqlConnection(myConnectionString);

				conn.Open();

}

				catch	(MySql.Data.MySqlClient.MySqlException	ex)

{

				switch	(ex.Number)

				{

								case	0:

												MessageBox.Show("Cannot	connect	to	server.		Contact	administrator");

								case	1045:

												MessageBox.Show("Invalid	username/password,	please	try	again");

				}

}

		

Important:	Note	that	if	you	are	using	multilanguage	databases	you	must	specify
the	character	set	in	the	connection	string.	If	you	do	not	specify	the	character	set,
the	connection	defaults	to	the	latin1	charset.	You	can	specify	the	character	set
as	part	of	the	connection	string,	for	example:

MySqlConnection	myConnection	=	new	MySqlConnection("server=127.0.0.1;uid=root;"	+

				"pwd=12345;database=test;Charset=latin1;");

23.2.5.2.	Using	the	Connector/NET	with	Prepared	Statements

23.2.5.2.1.	Introduction

As	of	MySQL	4.1,	it	is	possible	to	use	prepared	statements	with	Connector/NET.
Use	of	prepared	statements	can	provide	significant	performance	improvements
on	queries	that	are	executed	more	than	once.

Prepared	execution	is	faster	than	direct	execution	for	statements	executed	more
than	once,	primarily	because	the	query	is	parsed	only	once.	In	the	case	of	direct
execution,	the	query	is	parsed	every	time	it	is	executed.	Prepared	execution	also
can	provide	a	reduction	of	network	traffic	because	for	each	execution	of	the
prepared	statement,	it	is	necessary	only	to	send	the	data	for	the	parameters.

Another	advantage	of	prepared	statements	is	that	it	uses	a	binary	protocol	that
makes	data	transfer	between	client	and	server	more	efficient.

23.2.5.2.2.	Preparing	Statements	in	Connector/NET

To	prepare	a	statement,	create	a	command	object	and	set	the	.CommandText
property	to	your	query.

After	entering	your	statement,	call	the	.Prepare	method	of	the	MySqlCommand
object.	After	the	statement	is	prepared,	add	parameters	for	each	of	the	dynamic
elements	in	the	query.

After	you	enter	your	query	and	enter	parameters,	execute	the	statement	using	the
.ExecuteNonQuery(),	.ExecuteScalar(),	or	.ExecuteReader	methods.

For	subsequent	executions,	you	need	only	modify	the	values	of	the	parameters
and	call	the	execute	method	again,	there	is	no	need	to	set	the	.CommandText
property	or	redefine	the	parameters.

Visual	Basic	Example

Dim	conn	As	New	MySqlConnection

Dim	cmd	As	New	MySqlCommand

		

conn.ConnectionString	=	strConnection

Try

			conn.Open()

			cmd.Connection	=	conn

	

			cmd.CommandText	=	"INSERT	INTO	myTable	VALUES(NULL,	?number,	?text)"

			cmd.Prepare()

			cmd.Parameters.Add("?number",	1)

			cmd.Parameters.Add("?text",	"One")

			For	i	=	1	To	1000

							cmd.Parameters["?number"].Value	=	i

							cmd.Parameters["?text"].Value	=	"A	string	value"

							cmd.ExecuteNonQuery()

					Next	

Catch	ex	As	MySqlException

				MessageBox.Show("Error	"	&	ex.Number	&	"	has	occurred:	"	&	ex.Message,	"Error",	MessageBoxButtons.OK,	MessageBoxIcon.Error)

End	Try

		

C#	Example

MySql.Data.MySqlClient.MySqlConnection	conn;

MySql.Data.MySqlClient.MySqlCommand	cmd;

		

conn	=	new	MySql.Data.MySqlClient.MySqlConnection();

cmd	=	new	MySql.Data.MySqlClient.MySqlCommand();

conn.ConnectionString	=	strConnection;

try

{

				conn.Open();

				cmd.Connection	=	conn;

				cmd.CommandText	=	"INSERT	INTO	myTable	VALUES(NULL,	?number,	?text)";

				cmd.Prepare();

				cmd.Parameters.Add("?number",	1);

				cmd.Parameters.Add("?text",	"One");

				for	(int	i=1;	i	<=	1000;	i++)

				{

								cmd.Parameters["?number"].Value	=	i;

								cmd.Parameters["?text"].Value	=	"A	string	value";

								cmd.ExecuteNonQuery();

				}

}

catch	(MySql.Data.MySqlClient.MySqlException	ex)

{

				MessageBox.Show("Error	"	+	ex.Number	+	"	has	occurred:	"	+	ex.Message,

								"Error",	MessageBoxButtons.OK,	MessageBoxIcon.Error);

}

23.2.5.3.	Accessing	Stored	Procedures	with	Connector/NET

23.2.5.3.1.	Introduction

With	the	release	of	MySQL	version	5	the	MySQL	server	now	supports	stored
procedures	with	the	SQL	2003	stored	procedure	syntax.

A	stored	procedure	is	a	set	of	SQL	statements	that	can	be	stored	in	the	server.
Once	this	has	been	done,	clients	don't	need	to	keep	reissuing	the	individual
statements	but	can	refer	to	the	stored	procedure	instead.

Stored	procedures	can	be	particularly	useful	in	situations	such	as	the	following:

When	multiple	client	applications	are	written	in	different	languages	or	work
on	different	platforms,	but	need	to	perform	the	same	database	operations.

When	security	is	paramount.	Banks,	for	example,	use	stored	procedures	for

all	common	operations.	This	provides	a	consistent	and	secure	environment,
and	procedures	can	ensure	that	each	operation	is	properly	logged.	In	such	a
setup,	applications	and	users	would	not	get	any	access	to	the	database	tables
directly,	but	can	only	execute	specific	stored	procedures.

Connector/NET	supports	the	calling	of	stored	procedures	through	the
MySqlCommand	object.	Data	can	be	passed	in	and	our	of	a	MySQL	stored
procedure	through	use	of	the	MySqlCommand.Parameters	collection.

Note:	When	you	call	a	stored	procedure,	the	command	object	makes	an
additional	SELECT	call	to	determine	the	parameters	of	the	stored	procedure.	You
must	ensure	that	the	user	calling	the	procedure	has	the	SELECT	privilege	on	the
mysql.proc	table	to	enable	them	to	verify	the	parameters.	Failure	to	do	this	will
result	in	an	error	when	calling	the	procedure.

This	section	will	not	provide	in-depth	information	on	creating	Stored
Procedures.	For	such	information,	please	refer	to
http://dev.mysql.com/doc/mysql/en/stored-procedures.html.

A	sample	application	demonstrating	how	to	use	stored	procedures	with
Connector/NET	can	be	found	in	the	Samples	directory	of	your	Connector/NET
installation.

23.2.5.3.2.	Creating	Stored	Procedures	from	Connector/NET

Stored	procedures	in	MySQL	can	be	created	using	a	variety	of	tools.	First,	stored
procedures	can	be	created	using	the	mysql	command-line	client.	Second,	stored
procedures	can	be	created	using	the	MySQL	Query	Browser	GUI	client.	Finally,
stored	procedures	can	be	created	using	the	.ExecuteNonQuery	method	of	the
MySqlCommand	object:

Visual	Basic	Example

Dim	conn	As	New	MySqlConnection

Dim	cmd	As	New	MySqlCommand

conn.ConnectionString	=	"server=127.0.0.1;"	_

				&	"uid=root;"	_

				&	"pwd=12345;"	_

				&	"database=test"

http://dev.mysql.com/doc/mysql/en/stored-procedures.html

Try

				conn.Open()

				cmd.Connection	=	conn

				cmd.CommandText	=	"CREATE	PROCEDURE	add_emp("	_

								&	"IN	fname	VARCHAR(20),	IN	lname	VARCHAR(20),	IN	bday	DATETIME,	OUT	empno	INT)	"	_

								&	"BEGIN	INSERT	INTO	emp(first_name,	last_name,	birthdate)	"	_

								&	"VALUES(fname,	lname,	DATE(bday));	SET	empno	=	LAST_INSERT_ID();	END"

	

				cmd.ExecuteNonQuery()

Catch	ex	As	MySqlException

				MessageBox.Show("Error	"	&	ex.Number	&	"	has	occurred:	"	&	ex.Message,	"Error",	MessageBoxButtons.OK,	MessageBoxIcon.Error)

End	Try

C#	Example

MySql.Data.MySqlClient.MySqlConnection	conn;

MySql.Data.MySqlClient.MySqlCommand	cmd;

conn	=	new	MySql.Data.MySqlClient.MySqlConnection();

cmd	=	new	MySql.Data.MySqlClient.MySqlCommand();

conn.ConnectionString	=	"server=127.0.0.1;uid=root;"	+

				"pwd=12345;database=test;";

try

{

				conn.Open();

				cmd.Connection	=	conn;

				cmd.CommandText	=	"CREATE	PROCEDURE	add_emp("	+

								"IN	fname	VARCHAR(20),	IN	lname	VARCHAR(20),	IN	bday	DATETIME,	OUT	empno	INT)	"	+

								"BEGIN	INSERT	INTO	emp(first_name,	last_name,	birthdate)	"	+

								"VALUES(fname,	lname,	DATE(bday));	SET	empno	=	LAST_INSERT_ID();	END";

				cmd.ExecuteNonQuery();

}

catch	(MySql.Data.MySqlClient.MySqlException	ex)

{

MessageBox.Show("Error	"	+	ex.Number	+	"	has	occurred:	"	+	ex.Message,

				"Error",	MessageBoxButtons.OK,	MessageBoxIcon.Error);

}

It	should	be	noted	that,	unlike	the	command-line	and	GUI	clients,	you	are	not
required	to	specify	a	special	delimiter	when	creating	stored	procedures	in
Connector/NET.

23.2.5.3.3.	Calling	a	Stored	Procedure	from	Connector/NET

To	call	a	stored	procedure	using	Connector/NET,	create	a	MySqlCommand	object
and	pass	the	stored	procedure	name	as	the	.CommandText	property.	Set	the
.CommandType	property	to	CommandType.StoredProcedure.

After	the	stored	procedure	is	named,	create	one	MySqlCommand	parameter	for
every	parameter	in	the	stored	procedure.	IN	parameters	are	defined	with	the
parameter	name	and	the	object	containing	the	value,	OUT	parameters	are	defined
with	the	parameter	name	and	the	datatype	that	is	expected	to	be	returned.	All
parameters	need	the	parameter	direction	defined.

After	defining	parameters,	call	the	stored	procedure	by	using	the
MySqlCommand.ExecuteNonQuery()	method:

Visual	Basic	Example

Dim	conn	As	New	MySqlConnection

Dim	cmd	As	New	MySqlCommand

conn.ConnectionString	=	"server=127.0.0.1;"	_

				&	"uid=root;"	_

				&	"pwd=12345;"	_

				&	"database=test"

Try

				conn.Open()

				cmd.Connection	=	conn

				cmd.CommandText	=	"add_emp"

				cmd.CommandType	=	CommandType.StoredProcedure

				cmd.Parameters.Add("?lname",	'Jones')

				cmd.Parameters["?lname"].Direction	=	ParameterDirection.Input

				cmd.Parameters.Add("?fname",	'Tom')

				cmd.Parameters["?fname"].Direction	=	ParameterDirection.Input

				cmd.Parameters.Add("?bday",	#12/13/1977	2:17:36	PM#)

				cmd.Parameters["?bday"].Direction	=	ParameterDirection.Input

				cmd.Parameters.Add("?empno",	MySqlDbType.Int32)

				cmd.Parameters["?empno"].Direction	=	ParameterDirection.Output

				cmd.ExecuteNonQuery()

				MessageBox.Show(cmd.Parameters["?empno"].Value)

Catch	ex	As	MySqlException

				MessageBox.Show("Error	"	&	ex.Number	&	"	has	occurred:	"	&	ex.Message,	"Error",	MessageBoxButtons.OK,	MessageBoxIcon.Error)

End	Try

C#	Example

MySql.Data.MySqlClient.MySqlConnection	conn;

MySql.Data.MySqlClient.MySqlCommand	cmd;

conn	=	new	MySql.Data.MySqlClient.MySqlConnection();

cmd	=	new	MySql.Data.MySqlClient.MySqlCommand();

conn.ConnectionString	=	"server=127.0.0.1;uid=root;"	+

				"pwd=12345;database=test;";

try

{

				conn.Open();

				cmd.Connection	=	conn;

				cmd.CommandText	=	"add_emp";

				cmd.CommandType	=	CommandType.StoredProcedure;

				cmd.Parameters.Add("?lname",	"Jones");

				cmd.Parameters["?lname"].Direction	=	ParameterDirection.Input;

				cmd.Parameters.Add("?fname",	"Tom");

				cmd.Parameters["?fname"].Direction	=	ParameterDirection.Input;

				cmd.Parameters.Add("?bday",	DateTime.Parse("12/13/1977	2:17:36	PM"));

				cmd.Parameters["?bday"].Direction	=	ParameterDirection.Input;

				cmd.Parameters.Add("?empno",	MySqlDbType.Int32);

				cmd.Parameters["?empno"].Direction	=	ParameterDirection.Output;

				cmd.ExecuteNonQuery();

				MessageBox.Show(cmd.Parameters["?empno"].Value);

}

catch	(MySql.Data.MySqlClient.MySqlException	ex)

{

				MessageBox.Show("Error	"	+	ex.Number	+	"	has	occurred:	"	+	ex.Message,

						"Error",	MessageBoxButtons.OK,	MessageBoxIcon.Error);

}

Once	the	stored	procedure	is	called,	the	values	of	output	parameters	can	be
retrieved	by	using	the	.Value	property	of	the	MySqlConnector.Parameters
collection.

23.2.5.4.	Handling	BLOB	Data	With	Connector/NET

23.2.5.4.1.	Introduction

One	common	use	for	MySQL	is	the	storage	of	binary	data	in	BLOB	columns.
MySQL	supports	four	different	BLOB	datatypes:	TINYBLOB,	BLOB,	MEDIUMBLOB,
and	LONGBLOB.

Data	stored	in	a	BLOB	column	can	be	accessed	using	Connector/NET	and
manipulated	using	client-side	code.	There	are	no	special	requirements	for	using
Connector/NET	with	BLOB	data.

Simple	code	examples	will	be	presented	within	this	section,	and	a	full	sample
application	can	be	found	in	the	Samples	directory	of	the	Connector/NET
installation.

23.2.5.4.2.	Preparing	the	MySQL	Server

The	first	step	is	using	MySQL	with	BLOB	data	is	to	configure	the	server.	Let's
start	by	creating	a	table	to	be	accessed.	In	my	file	tables,	I	usually	have	four
columns:	an	AUTO_INCREMENT	column	of	appropriate	size	(UNSIGNED
SMALLINT)	to	serve	as	a	primary	key	to	identify	the	file,	a	VARCHAR	column
that	stores	the	filename,	an	UNSIGNED	MEDIUMINT	column	that	stores	the
size	of	the	file,	and	a	MEDIUMBLOB	column	that	stores	the	file	itself.	For	this
example,	I	will	use	the	following	table	definition:

CREATE	TABLE	file(

file_id	SMALLINT	UNSIGNED	AUTO_INCREMENT	NOT	NULL	PRIMARY	KEY,

file_name	VARCHAR(64)	NOT	NULL,

file_size	MEDIUMINT	UNSIGNED	NOT	NULL,

file	MEDIUMBLOB	NOT	NULL);

After	creating	a	table,	you	may	need	to	modify	the	max_allowed_packet	system
variable.	This	variable	determines	how	large	of	a	packet	(i.e.	a	single	row)	can
be	sent	to	the	MySQL	server.	By	default,	the	server	will	only	accept	a	maximum
size	of	1	meg	from	our	client	application.	If	you	do	not	intend	to	exceed	1	meg,
this	should	be	fine.	If	you	do	intend	to	exceed	1	meg	in	your	file	transfers,	this
number	has	to	be	increased.

The	max_allowed_packet	option	can	be	modified	using	MySQL	Administrator's

Startup	Variables	screen.	Adjust	the	Maximum	allowed	option	in	the	Memory
section	of	the	Networking	tab	to	an	appropriate	setting.	After	adjusting	the	value,
click	the	Apply	Changes	button	and	restart	the	server	using	the	Service
Control	screen	of	MySQL	Administrator.	You	can	also	adjust	this	value	directly
in	the	my.cnf	file	(add	a	line	that	reads	max_allowed_packet=xxM),	or	use	the
SET	max_allowed_packet=xxM;	syntax	from	within	MySQL.

Try	to	be	conservative	when	setting	max_allowed_packet,	as	transfers	of	BLOB
data	can	take	some	time	to	complete.	Try	to	set	a	value	that	will	be	adequate	for
your	intended	use	and	increase	the	value	if	necessary.

23.2.5.4.3.	Writing	a	File	to	the	Database

To	write	a	file	to	a	database	we	need	to	convert	the	file	to	a	byte	array,	then	use
the	byte	array	as	a	parameter	to	an	INSERT	query.

The	following	code	opens	a	file	using	a	FileStream	object,	reads	it	into	a	byte
array,	and	inserts	it	into	the	file	table:

Visual	Basic	Example

Dim	conn	As	New	MySqlConnection

Dim	cmd	As	New	MySqlCommand

Dim	SQL	As	String

Dim	FileSize	As	UInt32

Dim	rawData()	As	Byte

Dim	fs	As	FileStream

conn.ConnectionString	=	"server=127.0.0.1;"	_

				&	"uid=root;"	_

				&	"pwd=12345;"	_

				&	"database=test"

Try

				fs	=	New	FileStream("c:\image.png",	FileMode.Open,	FileAccess.Read)

				FileSize	=	fs.Length

				

				rawData	=	New	Byte(FileSize)	{}

				fs.Read(rawData,	0,	FileSize)

				fs.Close()

				

				conn.Open()

				

				SQL	=	"INSERT	INTO	file	VALUES(NULL,	?FileName,	?FileSize,	?File)"

				

				cmd.Connection	=	conn

				cmd.CommandText	=	SQL

				cmd.Parameters.Add("?FileName",	strFileName)

				cmd.Parameters.Add("?FileSize",	FileSize)

				cmd.Parameters.Add("?File",	rawData)

				

				cmd.ExecuteNonQuery()

				

				MessageBox.Show("File	Inserted	into	database	successfully!",	_

				"Success!",	MessageBoxButtons.OK,	MessageBoxIcon.Asterisk)

				

				conn.Close()

Catch	ex	As	Exception

				MessageBox.Show("There	was	an	error:	"	&	ex.Message,	"Error",	_

								MessageBoxButtons.OK,	MessageBoxIcon.Error)

End	Try

		

C#	Example

MySql.Data.MySqlClient.MySqlConnection	conn;

MySql.Data.MySqlClient.MySqlCommand	cmd;

conn	=	new	MySql.Data.MySqlClient.MySqlConnection();

cmd	=	new	MySql.Data.MySqlClient.MySqlCommand();

string	SQL;

UInt32	FileSize;

byte[]	rawData;

FileStream	fs;

conn.ConnectionString	=	"server=127.0.0.1;uid=root;"	+

				"pwd=12345;database=test;";

try

{

				fs	=	new	FileStream(@"c:\image.png",	FileMode.Open,	FileAccess.Read);

				FileSize	=	fs.Length;

				rawData	=	new	byte[FileSize];

				fs.Read(rawData,	0,	FileSize);

				fs.Close();

				conn.Open();

				SQL	=	"INSERT	INTO	file	VALUES(NULL,	?FileName,	?FileSize,	?File)";

				cmd.Connection	=	conn;

				cmd.CommandText	=	SQL;

				cmd.Parameters.Add("?FileName",	strFileName);

				cmd.Parameters.Add("?FileSize",	FileSize);

				cmd.Parameters.Add("?File",	rawData);

				cmd.ExecuteNonQuery();

				MessageBox.Show("File	Inserted	into	database	successfully!",

								"Success!",	MessageBoxButtons.OK,	MessageBoxIcon.Asterisk);

				conn.Close();

}

catch	(MySql.Data.MySqlClient.MySqlException	ex)

{

				MessageBox.Show("Error	"	+	ex.Number	+	"	has	occurred:	"	+	ex.Message,

								"Error",	MessageBoxButtons.OK,	MessageBoxIcon.Error);

}

	

The	Read	method	of	the	FileStream	object	is	used	to	load	the	file	into	a	byte
array	which	is	sized	according	to	the	Length	property	of	the	FileStream	object.

After	assigning	the	byte	array	as	a	parameter	of	the	MySqlCommand	object,	the
ExecuteNonQuery	method	is	called	and	the	BLOB	is	inserted	into	the	file	table.

23.2.5.4.4.	Reading	a	BLOB	from	the	Database	to	a	File	on	Disk

Once	a	file	is	loaded	into	the	file	table,	we	can	use	the	MySqlDataReader	class
to	retrieve	it.

The	following	code	retrieves	a	row	from	the	file	table,	then	loads	the	data	into
a	FileStream	object	to	be	written	to	disk:

Visual	Basic	Example

Dim	conn	As	New	MySqlConnection

Dim	cmd	As	New	MySqlCommand

Dim	myData	As	MySqlDataReader

Dim	SQL	As	String

Dim	rawData()	As	Byte

Dim	FileSize	As	UInt32

Dim	fs	As	FileStream

conn.ConnectionString	=	"server=127.0.0.1;"	_

				&	"uid=root;"	_

				&	"pwd=12345;"	_

				&	"database=test"

SQL	=	"SELECT	file_name,	file_size,	file	FROM	file"

Try

				conn.Open()

				

				cmd.Connection	=	conn

				cmd.CommandText	=	SQL

				

				myData	=	cmd.ExecuteReader

				

				If	Not	myData.HasRows	Then	Throw	New	Exception("There	are	no	BLOBs	to	save")

				

				myData.Read()

				

				FileSize	=	myData.GetUInt32(myData.GetOrdinal("file_size"))

				rawData	=	New	Byte(FileSize)	{}

				

				myData.GetBytes(myData.GetOrdinal("file"),	0,	rawData,	0,	FileSize)

				

				fs	=	New	FileStream("C:\newfile.png",	FileMode.OpenOrCreate,	FileAccess.Write)

				fs.Write(rawData,	0,	FileSize)

				fs.Close()

				

				MessageBox.Show("File	successfully	written	to	disk!",	"Success!",	MessageBoxButtons.OK,	MessageBoxIcon.Asterisk)

				

				myData.Close()

				conn.Close()

Catch	ex	As	Exception

				MessageBox.Show("There	was	an	error:	"	&	ex.Message,	"Error",	MessageBoxButtons.OK,	MessageBoxIcon.Error)

End	Try

		

C#	Example

MySql.Data.MySqlClient.MySqlConnection	conn;

MySql.Data.MySqlClient.MySqlCommand	cmd;

MySql.Data.MySqlClient.MySqlDataReader	myData;

conn	=	new	MySql.Data.MySqlClient.MySqlConnection();

cmd	=	new	MySql.Data.MySqlClient.MySqlCommand();

string	SQL;

UInt32	FileSize;

byte[]	rawData;

FileStream	fs;

conn.ConnectionString	=	"server=127.0.0.1;uid=root;"	+

				"pwd=12345;database=test;";

SQL	=	"SELECT	file_name,	file_size,	file	FROM	file";

try

{

				conn.Open();

				cmd.Connection	=	conn;

				cmd.CommandText	=	SQL;

				myData	=	cmd.ExecuteReader();

				if	(!	myData.HasRows)

								throw	new	Exception("There	are	no	BLOBs	to	save");

				myData.Read();

				FileSize	=	myData.GetUInt32(myData.GetOrdinal("file_size"));

				rawData	=	new	byte[FileSize];

				myData.GetBytes(myData.GetOrdinal("file"),	0,	rawData,	0,	FileSize);

				fs	=	new	FileStream(@"C:\newfile.png",	FileMode.OpenOrCreate,	FileAccess.Write);

				fs.Write(rawData,	0,	FileSize);

				fs.Close();

				MessageBox.Show("File	successfully	written	to	disk!",

								"Success!",	MessageBoxButtons.OK,	MessageBoxIcon.Asterisk);

				myData.Close();

				conn.Close();

}

catch	(MySql.Data.MySqlClient.MySqlException	ex)

{

				MessageBox.Show("Error	"	+	ex.Number	+	"	has	occurred:	"	+	ex.Message,

								"Error",	MessageBoxButtons.OK,	MessageBoxIcon.Error);

}

	

After	connecting,	the	contents	of	the	file	table	are	loaded	into	a
MySqlDataReader	object.	The	GetBytes	method	of	the	MySqlDataReader	is
used	to	load	the	BLOB	into	a	byte	array,	which	is	then	written	to	disk	using	a
FileStream	object.

The	GetOrdinal	method	of	the	MySqlDataReader	can	be	used	to	determine	the

integer	index	of	a	named	column.	Use	of	the	GetOrdinal	method	prevents	errors
if	the	column	order	of	the	SELECT	query	is	changed.

23.2.5.5.	Using	Connector/NET	with	Crystal	Reports

23.2.5.5.1.	Introduction

Crystal	Reports	is	a	common	tool	used	by	Windows	application	developers	to
perform	reporting	and	document	generation.	In	this	section	we	will	show	how	to
use	Crystal	Reports	XI	with	MySQL	and	Connector/NET.

23.2.5.5.2.	Creating	a	Data	Source

When	creating	a	report	in	Crystal	Reports	there	are	two	options	for	accessing	the
MySQL	data	while	designing	your	report.

The	first	option	is	to	use	Connector/ODBC	as	an	ADO	data	source	when
designing	your	report.	You	will	be	able	to	browse	your	database	and	choose
tables	and	fields	using	drag	and	drop	to	build	your	report.	The	disadvantage	of
this	approach	is	that	additional	work	must	be	performed	within	your	application
to	produce	a	dataset	that	matches	the	one	expected	by	your	report.

The	second	option	is	to	create	a	dataset	in	VB.NET	and	save	it	as	XML.	This
XML	file	can	then	be	used	to	design	a	report.	This	works	quite	well	when
displaying	the	report	in	your	application,	but	is	less	versatile	at	design	time
because	you	must	choose	all	relevant	columns	when	creating	the	dataset.	If	you
forget	a	column	you	must	re-create	the	dataset	before	the	column	can	be	added
to	the	report.

The	following	code	can	be	used	to	create	a	dataset	from	a	query	and	write	it	to
disk:

Visual	Basic	Example

Dim	myData	As	New	DataSet

Dim	conn	As	New	MySqlConnection

Dim	cmd	As	New	MySqlCommand

Dim	myAdapter	As	New	MySqlDataAdapter

conn.ConnectionString	=	"server=127.0.0.1;"	_

				&	"uid=root;"	_

				&	"pwd=12345;"	_

				&	"database=world"

Try

				conn.Open()

				cmd.CommandText	=	"SELECT	city.name	AS	cityName,	city.population	AS	CityPopulation,	"	_	

								&	"country.name,	country.population,	country.continent	"	_

								&	"FROM	country,	city	ORDER	BY	country.continent,	country.name"

				cmd.Connection	=	conn

				

				myAdapter.SelectCommand	=	cmd

				myAdapter.Fill(myData)

				

				myData.WriteXml("C:\dataset.xml",	XmlWriteMode.WriteSchema)

Catch	ex	As	Exception

				MessageBox.Show(ex.Message,	"Report	could	not	be	created",	MessageBoxButtons.OK,	MessageBoxIcon.Error)

End	Try

	

C#	Example

DataSet	myData	=	new	DataSet();

MySql.Data.MySqlClient.MySqlConnection	conn;

MySql.Data.MySqlClient.MySqlCommand	cmd;

MySql.Data.MySqlClient.MySqlDataAdapter	myAdapter;

conn	=	new	MySql.Data.MySqlClient.MySqlConnection();

cmd	=	new	MySql.Data.MySqlClient.MySqlCommand();

myAdapter	=	new	MySql.Data.MySqlClient.MySqlDataAdapter();

conn.ConnectionString	=	"server=127.0.0.1;uid=root;"	+

		"pwd=12345;database=test;";

		

try

{

		cmd.CommandText	=	"SELECT	city.name	AS	cityName,	city.population	AS	CityPopulation,	"	+

		"country.name,	country.population,	country.continent	"	+

		"FROM	country,	city	ORDER	BY	country.continent,	country.name";

		cmd.Connection	=	conn;

		

		myAdapter.SelectCommand	=	cmd;

		myAdapter.Fill(myData);

		

		myData.WriteXml(@"C:\dataset.xml",	XmlWriteMode.WriteSchema);

}

catch	(MySql.Data.MySqlClient.MySqlException	ex)

{

		MessageBox.Show(ex.Message,	"Report	could	not	be	created",

		MessageBoxButtons.OK,	MessageBoxIcon.Error);

}

The	resulting	XML	file	can	be	used	as	an	ADO.NET	XML	datasource	when
designing	your	report.

If	you	choose	to	design	your	reports	using	Connector/ODBC,	it	can	be
downloaded	from	dev.mysql.com.

23.2.5.5.3.	Creating	the	Report

For	most	purposes	the	Standard	Report	wizard	should	help	with	the	initial
creation	of	a	report.	To	start	the	wizard,	open	Crystal	Reports	and	choose	the
New	>	Standard	Report	option	from	the	File	menu.

The	wizard	will	first	prompt	you	for	a	data	source.	If	you	are	using
Connector/ODBC	as	your	data	source,	use	the	OLEDB	provider	for	ODBC
option	from	the	OLE	DB	(ADO)	tree	instead	of	the	ODBC	(RDO)	tree	when
choosing	a	data	source.	If	using	a	saved	dataset,	choose	the	ADO.NET	(XML)
option	and	browse	to	your	saved	dataset.

The	remainder	of	the	report	creation	process	is	done	automatically	by	the
wizard.

After	the	report	is	created,	choose	the	Report	Options...	entry	of	the	File	menu.
Un-check	the	Save	Data	With	Report	option.	This	prevents	saved	data	from
interfering	with	the	loading	of	data	within	our	application.

23.2.5.5.4.	Displaying	the	Report

To	display	a	report	we	first	populate	a	dataset	with	the	data	needed	for	the	report,
then	load	the	report	and	bind	it	to	the	dataset.	Finally	we	pass	the	report	to	the
crViewer	control	for	display	to	the	user.

The	following	references	are	needed	in	a	project	that	displays	a	report:

CrytalDecisions.CrystalReports.Engine

CrystalDecisions.ReportSource

CrystalDecisions.Shared

http://dev.mysql.com/downloads/connector/odbc/3.51.html

CrystalDecisions.Windows.Forms

The	following	code	assumes	that	you	created	your	report	using	a	dataset	saved
using	the	code	shown	in	Section	23.2.5.5.2,	“Creating	a	Data	Source”,	and	have
a	crViewer	control	on	your	form	named	myViewer.

Visual	Basic	Example

Imports	CrystalDecisions.CrystalReports.Engine

Imports	System.Data

Imports	MySql.Data.MySqlClient

Dim	myReport	As	New	ReportDocument

Dim	myData	As	New	DataSet

Dim	conn	As	New	MySqlConnection

Dim	cmd	As	New	MySqlCommand

Dim	myAdapter	As	New	MySqlDataAdapter

conn.ConnectionString	=	_

				"server=127.0.0.1;"	_

				&	"uid=root;"	_

				&	"pwd=12345;"	_

				&	"database=test"

Try

				conn.Open()

				

				cmd.CommandText	=	"SELECT	city.name	AS	cityName,	city.population	AS	CityPopulation,	"	_	

								&	"country.name,	country.population,	country.continent	"	_

								&	"FROM	country,	city	ORDER	BY	country.continent,	country.name"

				cmd.Connection	=	conn

				

				myAdapter.SelectCommand	=	cmd

				myAdapter.Fill(myData)

				

				myReport.Load(".\world_report.rpt")

				myReport.SetDataSource(myData)

				myViewer.ReportSource	=	myReport

Catch	ex	As	Exception

				MessageBox.Show(ex.Message,	"Report	could	not	be	created",	MessageBoxButtons.OK,	MessageBoxIcon.Error)

End	Try

C#	Example

using	CrystalDecisions.CrystalReports.Engine;

using	System.Data;

using	MySql.Data.MySqlClient;

ReportDocument	myReport	=	new	ReportDocument();

DataSet	myData	=	new	DataSet();

MySql.Data.MySqlClient.MySqlConnection	conn;

MySql.Data.MySqlClient.MySqlCommand	cmd;

MySql.Data.MySqlClient.MySqlDataAdapter	myAdapter;

conn	=	new	MySql.Data.MySqlClient.MySqlConnection();

cmd	=	new	MySql.Data.MySqlClient.MySqlCommand();

myAdapter	=	new	MySql.Data.MySqlClient.MySqlDataAdapter();

conn.ConnectionString	=	"server=127.0.0.1;uid=root;"	+

				"pwd=12345;database=test;";

try

{

				cmd.CommandText	=	"SELECT	city.name	AS	cityName,	city.population	AS	CityPopulation,	"	+

								"country.name,	country.population,	country.continent	"	+

								"FROM	country,	city	ORDER	BY	country.continent,	country.name";

				cmd.Connection	=	conn;

				myAdapter.SelectCommand	=	cmd;

				myAdapter.Fill(myData);

				myReport.Load(@".\world_report.rpt");

				myReport.SetDataSource(myData);

				myViewer.ReportSource	=	myReport;

}

catch	(MySql.Data.MySqlClient.MySqlException	ex)

{

				MessageBox.Show(ex.Message,	"Report	could	not	be	created",

								MessageBoxButtons.OK,	MessageBoxIcon.Error);

}

A	new	dataset	it	generated	using	the	same	query	used	to	generate	the	previously
saved	dataset.	Once	the	dataset	is	filled,	a	ReportDocument	is	used	to	load	the
report	file	and	bind	it	to	the	dataset.	The	ReportDocument	is	the	passed	as	the
ReportSource	of	the	crViewer.

This	same	approach	is	taken	when	a	report	is	created	from	a	single	table	using
Connector/ODBC.	The	dataset	replaces	the	table	used	in	the	report	and	the
report	is	displayed	properly.

When	a	report	is	created	from	multiple	tables	using	Connector/ODBC,	a	dataset
with	multiple	tables	must	be	created	in	our	application.	This	allows	each	table	in
the	report	data	source	to	be	replaced	with	a	report	in	the	dataset.

We	populate	a	dataset	with	multiple	tables	by	providing	multiple	SELECT
statements	in	our	MySqlCommand	object.	These	SELECT	statements	are	based	on
the	SQL	query	shown	in	Crystal	Reports	in	the	Database	menu's	Show	SQL
Query	option.	Assume	the	following	query:

SELECT	`country`.`Name`,	`country`.`Continent`,	`country`.`Population`,	`city`.`Name`,	`city`.`Population`

FROM	`world`.`country`	`country`	LEFT	OUTER	JOIN	`world`.`city`	`city`	ON	`country`.`Code`=`city`.`CountryCode`

ORDER	BY	`country`.`Continent`,	`country`.`Name`,	`city`.`Name`

This	query	is	converted	to	two	SELECT	queries	and	displayed	with	the	following
code:

Visual	Basic	Example

Imports	CrystalDecisions.CrystalReports.Engine

Imports	System.Data

Imports	MySql.Data.MySqlClient

Dim	myReport	As	New	ReportDocument

Dim	myData	As	New	DataSet

Dim	conn	As	New	MySqlConnection

Dim	cmd	As	New	MySqlCommand

Dim	myAdapter	As	New	MySqlDataAdapter

conn.ConnectionString	=	"server=127.0.0.1;"	_

				&	"uid=root;"	_

				&	"pwd=12345;"	_

				&	"database=world"

Try

				conn.Open()

				cmd.CommandText	=	"SELECT	name,	population,	countrycode	FROM	city	ORDER	BY	countrycode,	name;	"	_

								&	"SELECT	name,	population,	code,	continent	FROM	country	ORDER	BY	continent,	name"

				cmd.Connection	=	conn

				

				myAdapter.SelectCommand	=	cmd

				myAdapter.Fill(myData)

				

				myReport.Load(".\world_report.rpt")

				myReport.Database.Tables(0).SetDataSource(myData.Tables(0))

				myReport.Database.Tables(1).SetDataSource(myData.Tables(1))

				myViewer.ReportSource	=	myReport

Catch	ex	As	Exception

				MessageBox.Show(ex.Message,	"Report	could	not	be	created",	MessageBoxButtons.OK,	MessageBoxIcon.Error)

End	Try

C#	Example

using	CrystalDecisions.CrystalReports.Engine;

using	System.Data;

using	MySql.Data.MySqlClient;

ReportDocument	myReport	=	new	ReportDocument();

DataSet	myData	=	new	DataSet();

MySql.Data.MySqlClient.MySqlConnection	conn;

MySql.Data.MySqlClient.MySqlCommand	cmd;

MySql.Data.MySqlClient.MySqlDataAdapter	myAdapter;

conn	=	new	MySql.Data.MySqlClient.MySqlConnection();

cmd	=	new	MySql.Data.MySqlClient.MySqlCommand();

myAdapter	=	new	MySql.Data.MySqlClient.MySqlDataAdapter();

conn.ConnectionString	=	"server=127.0.0.1;uid=root;"	+

				"pwd=12345;database=test;";

try

{

				cmd.CommandText	=	"SELECT	name,	population,	countrycode	FROM	city	ORDER	"	+

								"BY	countrycode,	name;	SELECT	name,	population,	code,	continent	FROM	"	+

								"country	ORDER	BY	continent,	name";

				cmd.Connection	=	conn;

				myAdapter.SelectCommand	=	cmd;

				myAdapter.Fill(myData);

				myReport.Load(@".\world_report.rpt");

				myReport.Database.Tables(0).SetDataSource(myData.Tables(0));

				myReport.Database.Tables(1).SetDataSource(myData.Tables(1));

				myViewer.ReportSource	=	myReport;

}

catch	(MySql.Data.MySqlClient.MySqlException	ex)

{

				MessageBox.Show(ex.Message,	"Report	could	not	be	created",

								MessageBoxButtons.OK,	MessageBoxIcon.Error);

}		

	

It	is	important	to	order	the	SELECT	queries	in	alphabetical	order,	as	this	is	the
order	the	report	will	expect	its	source	tables	to	be	in.	One	SetDataSource
statement	is	needed	for	each	table	in	the	report.

This	approach	can	cause	performance	problems	because	Crystal	Reports	must
bind	the	tables	together	on	the	client-side,	which	will	be	slower	than	using	a	pre-
saved	dataset.

23.2.5.6.	Handling	Date	and	Time	Information	in	Connector/NET

23.2.5.6.1.	Introduction

MySQL	and	the	.NET	languages	handle	date	and	time	information	differently,
with	MySQL	allowing	dates	that	cannot	be	represented	by	a	.NET	data	type,
such	as	'0000-00-00	00:00:00'.	These	differences	can	cause	problems	if	not
properly	handled.

In	this	section	we	will	demonstrate	how	to	properly	handle	date	and	time
information	when	using	Connector/NET.

23.2.5.6.2.	Problems	when	Using	Invalid	Dates

The	differences	in	date	handling	can	cause	problems	for	developers	who	use
invalid	dates.	Invalid	MySQL	dates	cannot	be	loaded	into	native	.NET	DateTime
objects,	including	NULL	dates.

Because	of	this	issue,	.NET	DataSet	objects	cannot	be	populated	by	the	Fill
method	of	the	MySqlDataAdapter	class	as	invalid	dates	will	cause	a
System.ArgumentOutOfRangeException	exception	to	occur.

23.2.5.6.3.	Restricting	Invalid	Dates

The	best	solution	to	the	date	problem	is	to	restrict	users	from	entering	invalid
dates.	This	can	be	done	on	either	the	client	or	the	server	side.

Restricting	invalid	dates	on	the	client	side	is	as	simple	as	always	using	the	.NET
DateTime	class	to	handle	dates.	The	DateTime	class	will	only	allow	valid	dates,
ensuring	that	the	values	in	your	database	are	also	valid.	The	disadvantage	of	this
is	that	it	is	not	useful	in	a	mixed	environment	where	.NET	and	non	.NET	code
are	used	to	manipulate	the	database,	as	each	application	must	perform	its	own
date	validation.

Users	of	MySQL	5.0.2	and	higher	can	use	the	new	traditional	SQL	mode	to
restrict	invalid	date	values.	For	information	on	using	the	traditional	SQL
mode,	see	Section	5.2.5,	“The	Server	SQL	Mode”.

23.2.5.6.4.	Handling	Invalid	Dates

Although	it	is	strongly	recommended	that	you	avoid	the	use	of	invalid	dates
within	your	.NET	application,	it	is	possible	to	use	invalid	dates	by	means	of	the
MySqlDateTime	datatype.

The	MySqlDateTime	datatype	supports	the	same	date	values	that	are	supported	by
the	MySQL	server.	The	default	behavior	of	Connector/NET	is	to	return	a	.NET
DateTime	object	for	valid	date	values,	and	return	an	error	for	invalid	dates.	This
default	can	be	modified	to	cause	Connector/NET	to	return	MySqlDateTime
objects	for	invalid	dates.

To	instruct	Connector/NET	to	return	a	MySqlDateTime	object	for	invalid	dates,
add	the	following	line	to	your	connection	string:

		Allow	Zero	Datetime=True

		

Please	note	that	the	use	of	the	MySqlDateTime	class	can	still	be	problematic.	The
following	are	some	known	issues:

1.	 Data	binding	for	invalid	dates	can	still	cause	errors	(zero	dates	like	0000-
00-00	do	not	seem	to	have	this	problem).

2.	 The	ToString	method	return	a	date	formatted	in	the	standard	MySQL
format	(for	example,	2005-02-23	08:50:25).	This	differs	from	the
ToString	behavior	of	the	.NET	DateTime	class.

3.	 The	MySqlDateTime	class	supports	NULL	dates,	while	the	.NET	DateTime
class	does	not.	This	can	cause	errors	when	trying	to	convert	a
MySQLDateTime	to	a	DateTime	if	you	do	not	check	for	NULL	first.

Because	of	the	known	issues,	the	best	recommendation	is	still	to	use	only	valid
dates	in	your	application.

23.2.5.6.5.	Handling	NULL	Dates

The	.NET	DateTime	datatype	cannot	handle	NULL	values.	As	such,	when
assigning	values	from	a	query	to	a	DateTime	variable,	you	must	first	check
whether	the	value	is	in	fact	NULL.

When	using	a	MySqlDataReader,	use	the	.IsDBNull	method	to	check	whether	a

value	is	NULL	before	making	the	assignment:

Visual	Basic	Example

If	Not	myReader.IsDBNull(myReader.GetOrdinal("mytime"))	Then

				myTime	=	myReader.GetDateTime(myReader.GetOrdinal("mytime"))

Else

				myTime	=	DateTime.MinValue

End	If

		

C#	Example

if	(!	myReader.IsDBNull(myReader.GetOrdinal("mytime")))

				myTime	=	myReader.GetDateTime(myReader.GetOrdinal("mytime"));

else

				myTime	=	DateTime.MinValue;

		

NULL	values	will	work	in	a	dataset	and	can	be	bound	to	form	controls	without
special	handling.

23.2.6.	Connector/NET	Support

The	developers	of	Connector/NET	greatly	value	the	input	of	our	users	in	the
software	development	process.	If	you	find	Connector/NET	lacking	some	feature
important	to	you,	or	if	you	discover	a	bug	and	need	to	file	a	bug	report,	please
use	the	instructions	in	Section	1.8,	“How	to	Report	Bugs	or	Problems”.

23.2.6.1.	Connector/NET	Community	Support

Community	support	for	Connector/NET	can	be	found	through	the	forums	at
http://forums.mysql.com.

Community	support	for	Connector/NET	can	also	be	found	through	the
mailing	lists	at	http://lists.mysql.com.

Paid	support	is	available	from	MySQL	AB.	Additional	information	is
available	at	http://www.mysql.com/support/.

23.2.6.2.	How	to	report	Connector/NET	Problems	or	Bugs

http://forums.mysql.com
http://lists.mysql.com
http://www.mysql.com/support/

If	you	encounter	difficulties	or	problems	with	Connector/NET,	contact	the
Connector/NET	community	Section	23.2.6.1,	“Connector/NET	Community
Support”.

You	should	first	try	to	execute	the	same	SQL	statements	and	commands	from	the
mysql	client	program	or	from	admndemo.	This	helps	you	determine	whether	the
error	is	in	Connector/NET	or	MySQL.

If	reporting	a	problem,	you	should	ideally	include	the	following	information
with	the	email:

Operating	system	and	version

Connector/NET	version

MySQL	server	version

Copies	of	error	messages	or	other	unexpected	output

Simple	reproducible	sample

Remember	that	the	more	information	you	can	supply	to	us,	the	more	likely	it	is
that	we	can	fix	the	problem.

If	you	believe	the	problem	to	be	a	bug,	then	you	must	report	the	bug	through
http://bugs.mysql.com/.

23.2.6.3.	Connector/NET	Change	History

The	Connector/NET	Change	History	(Changelog)	is	located	with	the	main
Changelog	for	MySQL.	See	Section	D.4,	“MySQL	Connector/NET	Change
History”.

http://bugs.mysql.com/

23.3.	MySQL	Connector/J

MySQL	provides	connectivity	for	client	applications	developed	in	the	Java
programming	language	via	a	JDBC	driver,	which	is	called	MySQL	Connector/J.

MySQL	Connector/J	is	a	JDBC-3.0	Type	4	driver,	which	means	that	is	pure
Java,	implements	version	3.0	of	the	JDBC	specification,	and	communicates
directly	with	the	MySQL	server	using	the	MySQL	protocol.

Although	JDBC	is	useful	by	itself,	we	would	hope	that	if	you	are	not	familiar
with	JDBC	that	after	reading	the	first	few	sections	of	this	manual,	that	you
would	avoid	using	naked	JDBC	for	all	but	the	most	trivial	problems	and
consider	using	one	of	the	popular	persistence	frameworks	such	as	Hibernate,
Spring's	JDBC	templates	or	Ibatis	SQL	Maps	to	do	the	majority	of	repetitive
work	and	heavier	lifting	that	is	sometimes	required	with	JDBC.

This	section	is	not	designed	to	be	a	complete	JDBC	tutorial.	If	you	need	more
information	about	using	JDBC	you	might	be	interested	in	the	following	online
tutorials	that	are	more	in-depth	than	the	information	presented	here:

JDBC	Basics	—	A	tutorial	from	Sun	covering	beginner	topics	in	JDBC

JDBC	Short	Course	—	A	more	in-depth	tutorial	from	Sun	and	JGuru

23.3.1.	Connector/J	Versions

There	are	currently	three	version	of	MySQL	Connector/J	available:

Connector/J	3.0	provides	core	functionality	and	was	designed	with
connectivity	to	MySQL	3.x	or	MySQL	4.1	servers,	although	it	will	provide
basic	compatibility	with	later	versions	of	MySQL.	Connector/J	3.0	does	not
support	server-side	prepared	statements,	and	does	not	support	any	of	the
features	in	versions	of	MySQL	later	than	4.1.

Connector/J	3.1	was	designed	for	connectivity	to	MySQL	4.1	and	MySQL
5.0	servers	and	provides	support	for	all	the	functionality	in	MySQL	5.0
except	distributed	transaction	(XA)	support.

http://www.hibernate.org/
http://www.springframework.org/
http://ibatis.apache.org/
http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html
http://java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html

Connector/J	5.0	provides	support	for	all	the	functionality	offered	by
Connector/J	3.1	and	includes	distributed	transaction	(XA)	support.

The	current	recommended	version	for	Connector/J	is	5.0.	This	guide	covers	all
three	connector	versions,	with	specific	notes	given	where	a	setting	applies	to	a
specific	option.

23.3.1.1.	Java	Versions	Supported

MySQL	Connector/J	supports	Java-2	JVMs,	including:

JDK	1.2.x

JDK	1.3.x

JDK	1.4.x

JDK	1.5.x

If	you	are	building	Connector/J	from	source	using	the	source	distribution	(see
Section	23.3.2.4,	“Installing	from	the	Development	Source	Tree”)	then	you	must
use	JDK	1.4.x	or	newer	to	compiler	the	Connector	package.

MySQL	Connector/J	does	not	support	JDK-1.1.x	or	JDK-1.0.x

Because	of	the	implementation	of	java.sql.Savepoint,	Connector/J	3.1.0	and
newer	will	not	run	on	JDKs	older	than	1.4	unless	the	class	verifier	is	turned	off
(by	setting	the	-Xverify:none	option	to	the	Java	runtime).	This	is	because	the
class	verifier	will	try	to	load	the	class	definition	for	java.sql.Savepoint	even
though	it	is	not	accessed	by	the	driver	unless	you	actually	use	savepoint
functionality.

Caching	functionality	provided	by	Connector/J	3.1.0	or	newer	is	also	not
available	on	JVMs	older	than	1.4.x,	as	it	relies	on	java.util.LinkedHashMap
which	was	first	available	in	JDK-1.4.0.

23.3.2.	Installing	Connector/J

You	can	install	the	Connector/J	package	using	two	methods,	using	either	the

binary	or	source	distribution.	The	binary	distribution	provides	the	easiest
methods	for	installation;	the	source	distribution	enables	you	to	customize	your
installation	further.	With	with	either	solution,	you	must

23.3.2.1.	Installing	Connector/J	from	a	Binary	Distribution

The	easiest	method	of	installation	is	to	use	the	binary	distribution	of	the
Connector/J	package.	The	binary	distribution	is	available	either	as	a	Tar/Gzip	or
Zip	file	which	you	must	extract	to	a	suitable	location	and	then	optionally	make
the	information	about	the	package	available	by	changing	your	CLASSPATH	(see
Section	23.3.2.2,	“Installing	the	Driver	and	Configuring	the	CLASSPATH”).

MySQL	Connector/J	is	distributed	as	a	.zip	or	.tar.gz	archive	containing	the
sources,	the	class	files,	and	the	JAR	archive	named	mysql-connector-java-
[version]-bin.jar,	and	starting	with	Connector/J	3.1.8	a	debug	build	of	the
driver	in	a	file	named	mysql-connector-java-[version]-bin-g.jar.

Starting	with	Connector/J	3.1.9,	the	.class	files	that	constitute	the	JAR	files	are
only	included	as	part	of	the	driver	JAR	file.

You	should	not	use	the	debug	build	of	the	driver	unless	instructed	to	do	so	when
reporting	a	problem	ors	bug	to	MySQL	AB,	as	it	is	not	designed	to	be	run	in
production	environments,	and	will	have	adverse	performance	impact	when	used.
The	debug	binary	also	depends	on	the	Aspect/J	runtime	library,	which	is	located
in	the	src/lib/aspectjrt.jar	file	that	comes	with	the	Connector/J	distribution.

You	will	need	to	use	the	appropriate	graphical	or	command-line	utility	to	un-
archive	the	distribution	(for	example,	WinZip	for	the	.zip	archive,	and	tar	for	the
.tar.gz	archive).	Because	there	are	potentially	long	filenames	in	the	distribution,
we	use	the	GNU	tar	archive	format.	You	will	need	to	use	GNU	tar	(or	an
application	that	understands	the	GNU	tar	archive	format)	to	unpack	the	.tar.gz
variant	of	the	distribution.

23.3.2.2.	Installing	the	Driver	and	Configuring	the	CLASSPATH

Once	you	have	extracted	the	distribution	archive,	you	can	install	the	driver	by
placing	mysql-connector-java-[version]-bin.jar	in	your	classpath,	either
by	adding	the	full	path	to	it	to	your	CLASSPATH	environment	variable,	or	by
directly	specifying	it	with	the	command	line	switch	-cp	when	starting	your	JVM.

If	you	are	going	to	use	the	driver	with	the	JDBC	DriverManager,	you	would	use
com.mysql.jdbc.Driver	as	the	class	that	implements	java.sql.Driver.

You	can	set	the	CLASSPATH	environment	variableunder	UNIX,	Linux	or	Mac	OS
X	either	locally	for	a	user	within	their	.profile,	.login	or	other	login	file.	You
can	also	set	it	globally	by	editing	the	global	/etc/profile	file.

For	example,	under	a	C	shell	(csh,	tcsh)	you	would	add	the	Connector/J	driver	to
your	CLASSPATH	using	the	following:

shell>	setenv	CLASSPATH	/path/to/mysql-connector-java-[version]-bin.jar:$CLASSPATH

Or	with	a	Bourne-compatible	shell	(sh,	ksh,	bash):

export	set	CLASSPATH=/path/to/mysql-connector-java-[version]-bin.jar:$CLASSPATH

Within	Windows	2000,	Windows	XP	and	Windows	Server	2003,	you	must	set
the	environment	variable	through	the	System	control	panel.

If	you	want	to	use	MySQL	Connector/J	with	an	application	server	such	as
Tomcat	or	JBoss,	you	will	have	to	read	your	vendor's	documentation	for	more
information	on	how	to	configure	third-party	class	libraries,	as	most	application
servers	ignore	the	CLASSPATH	environment	variable.	For	configuration	examples
for	some	J2EE	application	servers,	see	Section	23.3.5.2,	“Using	Connector/J
with	J2EE	and	Other	Java	Frameworks”.	However,	the	authoritative	source	for
JDBC	connection	pool	configuration	information	for	your	particular	application
server	is	the	documentation	for	that	application	server.

If	you	are	developing	servlets	or	JSPs,	and	your	application	server	is	J2EE-
compliant,	you	can	put	the	driver's	.jar	file	in	the	WEB-INF/lib	subdirectory	of
your	webapp,	as	this	is	a	standard	location	for	third	party	class	libraries	in	J2EE
web	applications.

You	can	also	use	the	MysqlDataSource	or	MysqlConnectionPoolDataSource
classes	in	the	com.mysql.jdbc.jdbc2.optional	package,	if	your	J2EE
application	server	supports	or	requires	them.	Starting	with	Connector/J	5.0.0,	the
javax.sql.XADataSource	interface	is	implemented	via	the
com.mysql.jdbc.jdbc2.optional.MysqlXADataSource	class,	which	supports
XA	distributed	transactions	when	used	in	combination	with	MySQL	server
version	5.0.

The	various	MysqlDataSource	classes	support	the	following	parameters	(through
standard	set	mutators):

user

password

serverName	(see	the	previous	section	about	fail-over	hosts)

databaseName

port

23.3.2.3.	Upgrading	from	an	Older	Version

MySQL	AB	tries	to	keep	the	upgrade	process	as	easy	as	possible,	however	as	is
the	case	with	any	software,	sometimes	changes	need	to	be	made	in	new	versions
to	support	new	features,	improve	existing	functionality,	or	comply	with	new
standards.

This	section	has	information	about	what	users	who	are	upgrading	from	one
version	of	Connector/J	to	another	(or	to	a	new	version	of	the	MySQL	server,
with	respect	to	JDBC	functionality)	should	be	aware	of.

23.3.2.3.1.	Upgrading	from	MySQL	Connector/J	3.0	to	3.1

Connector/J	3.1	is	designed	to	be	backward-compatible	with	Connector/J	3.0	as
much	as	possible.	Major	changes	are	isolated	to	new	functionality	exposed	in
MySQL-4.1	and	newer,	which	includes	Unicode	character	sets,	server-side
prepared	statements,	SQLState	codes	returned	in	error	messages	by	the	server
and	various	performance	enhancements	that	can	be	enabled	or	disabled	via
configuration	properties.

Unicode	Character	Sets	—	See	the	next	section,	as	well	as	Chapter	10,
Character	Set	Support,	for	information	on	this	new	feature	of	MySQL.	If
you	have	something	misconfigured,	it	will	usually	show	up	as	an	error	with
a	message	similar	to	Illegal	mix	of	collations.

Server-side	Prepared	Statements	—	Connector/J	3.1	will	automatically

detect	and	use	server-side	prepared	statements	when	they	are	available
(MySQL	server	version	4.1.0	and	newer).

Starting	with	version	3.1.7,	the	driver	scans	SQL	you	are	preparing	via	all
variants	of	Connection.prepareStatement()	to	determine	if	it	is	a
supported	type	of	statement	to	prepare	on	the	server	side,	and	if	it	is	not
supported	by	the	server,	it	instead	prepares	it	as	a	client-side	emulated
prepared	statement.	You	can	disable	this	feature	by	passing
emulateUnsupportedPstmts=false	in	your	JDBC	URL.

If	your	application	encounters	issues	with	server-side	prepared	statements,
you	can	revert	to	the	older	client-side	emulated	prepared	statement	code
that	is	still	presently	used	for	MySQL	servers	older	than	4.1.0	with	the
connection	property	useServerPrepStmts=false

Datetimes	with	all-zero	components	(0000-00-00	...)	—	These	values
can	not	be	represented	reliably	in	Java.	Connector/J	3.0.x	always	converted
them	to	NULL	when	being	read	from	a	ResultSet.

Connector/J	3.1	throws	an	exception	by	default	when	these	values	are
encountered	as	this	is	the	most	correct	behavior	according	to	the	JDBC	and
SQL	standards.	This	behavior	can	be	modified	using	the
zeroDateTimeBehavior	configuration	property.	The	allowable	values	are:

exception	(the	default),	which	throws	an	SQLException	with	an
SQLState	of	S1009.

convertToNull,	which	returns	NULL	instead	of	the	date.

round,	which	rounds	the	date	to	the	nearest	closest	value	which	is
0001-01-01.

Starting	with	Connector/J	3.1.7,	ResultSet.getString()	can	be	decoupled
from	this	behavior	via	noDatetimeStringSync=true	(the	default	value	is
false)	so	that	you	can	get	retrieve	the	unaltered	all-zero	value	as	a	String.
It	should	be	noted	that	this	also	precludes	using	any	time	zone	conversions,
therefore	the	driver	will	not	allow	you	to	enable	noDatetimeStringSync	and
useTimezone	at	the	same	time.

New	SQLState	Codes	—	Connector/J	3.1	uses	SQL:1999	SQLState	codes

returned	by	the	MySQL	server	(if	supported),	which	are	different	from	the
legacy	X/Open	state	codes	that	Connector/J	3.0	uses.	If	connected	to	a
MySQL	server	older	than	MySQL-4.1.0	(the	oldest	version	to	return
SQLStates	as	part	of	the	error	code),	the	driver	will	use	a	built-in	mapping.
You	can	revert	to	the	old	mapping	by	using	the	configuration	property
useSqlStateCodes=false.

ResultSet.getString()	—	Calling	ResultSet.getString()	on	a	BLOB
column	will	now	return	the	address	of	the	byte[]	array	that	represents	it,
instead	of	a	String	representation	of	the	BLOB.	BLOBs	have	no	character
set,	so	they	can't	be	converted	to	java.lang.Strings	without	data	loss	or
corruption.

To	store	strings	in	MySQL	with	LOB	behavior,	use	one	of	the	TEXT	types,
which	the	driver	will	treat	as	a	java.sql.Clob.

Debug	builds	—	Starting	with	Connector/J	3.1.8	a	debug	build	of	the
driver	in	a	file	named	mysql-connector-java-[version]-bin-g.jar	is
shipped	alongside	the	normal	binary	jar	file	that	is	named	mysql-
connector-java-[version]-bin.jar.

Starting	with	Connector/J	3.1.9,	we	don't	ship	the	.class	files	unbundled,
they	are	only	available	in	the	JAR	archives	that	ship	with	the	driver.

You	should	not	use	the	debug	build	of	the	driver	unless	instructed	to	do	so
when	reporting	a	problem	or	bug	to	MySQL	AB,	as	it	is	not	designed	to	be
run	in	production	environments,	and	will	have	adverse	performance	impact
when	used.	The	debug	binary	also	depends	on	the	Aspect/J	runtime	library,
which	is	located	in	the	src/lib/aspectjrt.jar	file	that	comes	with	the
Connector/J	distribution.

23.3.2.3.2.	JDBC-Specific	Issues	When	Upgrading	to	MySQL	Server	4.1	or	Newer

Using	the	UTF-8	Character	Encoding	-	Prior	to	MySQL	server	version	4.1,
the	UTF-8	character	encoding	was	not	supported	by	the	server,	however	the
JDBC	driver	could	use	it,	allowing	storage	of	multiple	character	sets	in
latin1	tables	on	the	server.

Starting	with	MySQL-4.1,	this	functionality	is	deprecated.	If	you	have

applications	that	rely	on	this	functionality,	and	can	not	upgrade	them	to	use
the	official	Unicode	character	support	in	MySQL	server	version	4.1	or
newer,	you	should	add	the	following	property	to	your	connection	URL:

useOldUTF8Behavior=true

Server-side	Prepared	Statements	-	Connector/J	3.1	will	automatically	detect
and	use	server-side	prepared	statements	when	they	are	available	(MySQL
server	version	4.1.0	and	newer).	If	your	application	encounters	issues	with
server-side	prepared	statements,	you	can	revert	to	the	older	client-side
emulated	prepared	statement	code	that	is	still	presently	used	for	MySQL
servers	older	than	4.1.0	with	the	following	connection	property:

useServerPrepStmts=false

23.3.2.4.	Installing	from	the	Development	Source	Tree

Caution.		You	should	read	this	section	only	if	you	are	interested	in	helping	us
test	our	new	code.	If	you	just	want	to	get	MySQL	Connector/J	up	and	running	on
your	system,	you	should	use	a	standard	release	distribution.

To	install	MySQL	Connector/J	from	the	development	source	tree,	make	sure	that
you	have	the	following	prerequisites:

Subversion,	to	check	out	the	sources	from	our	repository	(available	from
http://subversion.tigris.org/).

Apache	Ant	version	1.6	or	newer	(available	from	http://ant.apache.org/).

JDK-1.4.2	or	later.	Although	MySQL	Connector/J	can	be	installed	on	older
JDKs,	to	compile	it	from	source	you	must	have	at	least	JDK-1.4.2.

The	Subversion	source	code	repository	for	MySQL	Connector/J	is	located	at
http://svn.mysql.com/svnpublic/connector-j.	In	general,	you	should	not	check	out
the	entire	repository	because	it	contains	every	branch	and	tag	for	MySQL
Connector/J	and	is	quite	large.

To	check	out	and	compile	a	specific	branch	of	MySQL	Connector/J,	follow	these
steps:

http://subversion.tigris.org/
http://ant.apache.org/
http://svn.mysql.com/svnpublic/connector-j

1.	 At	the	time	of	this	writing,	there	are	three	active	branches	of	Connector/J:
branch_3_0,	branch_3_1	and	branch_5_0.	Check	out	the	latest	code	from
the	branch	that	you	want	with	the	following	command	(replacing	[major]
and	[minor]	with	appropriate	version	numbers):

shell>	svn	co	»

http://svn.mysql.com/svnpublic/connector-j/branches/branch_[major]

This	creates	a	connector-j	subdirectory	in	the	current	directory	that
contains	the	latest	sources	for	the	requested	branch.

2.	 Change	location	to	the	connector-j	directory	to	make	it	your	current
working	directory:

shell>	cd	connector-j

3.	 Issue	the	following	command	to	compile	the	driver	and	create	a	.jar	file
suitable	for	installation:

shell>	ant	dist

This	creates	a	build	directory	in	the	current	directory,	where	all	build
output	will	go.	A	directory	is	created	in	the	build	directory	that	includes
the	version	number	of	the	sources	you	are	building	from.	This	directory
contains	the	sources,	compiled	.class	files,	and	a	.jar	file	suitable	for
deployment.	For	other	possible	targets,	including	ones	that	will	create	a
fully	packaged	distribution,	issue	the	following	command:

shell>	ant	--projecthelp

4.	 A	newly	created	.jar	file	containing	the	JDBC	driver	will	be	placed	in	the
directory	build/mysql-connector-java-[version].

Install	the	newly	created	JDBC	driver	as	you	would	a	binary	.jar	file	that
you	download	from	MySQL	by	following	the	instructions	in
Section	23.3.2.2,	“Installing	the	Driver	and	Configuring	the	CLASSPATH”.

23.3.3.	Connector/J	Examples

Examples	of	using	Connector/J	are	located	throughout	this	document,	this
section	provides	a	summary	and	links	to	these	examples.

Example	23.1,	“Obtaining	a	connection	from	the	DriverManager”

Example	23.2,	“Using	java.sql.Statement	to	execute	a	SELECT	query”

Example	23.3,	“Stored	Procedures”

Example	23.4,	“Using	Connection.prepareCall()”

Example	23.5,	“Registering	output	parameters”

Example	23.6,	“Setting	CallableStatement	input	parameters”

Example	23.7,	“Retrieving	results	and	output	parameter	values”

Example	23.8,	“Retrieving	AUTO_INCREMENT	column	values	using
Statement.getGeneratedKeys()”

Example	23.9,	“Retrieving	AUTO_INCREMENT	column	values	using	SELECT
LAST_INSERT_ID()”

Example	23.10,	“Retrieving	AUTO_INCREMENT	column	values	in	Updatable
ResultSets”

Example	23.11,	“Using	a	connection	pool	with	a	J2EE	application	server”

Example	23.12,	“Example	of	transaction	with	retry	logic”

23.3.4.	Connector/J	(JDBC)	Reference

This	section	of	the	manual	contains	reference	material	for	MySQL	Connector/J,
some	of	which	is	automatically	generated	during	the	Connector/J	build	process.

23.3.4.1.	Driver/Datasource	Class	Names,	URL	Syntax	and	Configuration
Properties	for	Connector/J

The	name	of	the	class	that	implements	java.sql.Driver	in	MySQL	Connector/J	is
com.mysql.jdbc.Driver.	The	org.gjt.mm.mysql.Driver	class	name	is	also
usable	to	remain	backward-compatible	with	MM.MySQL.	You	should	use	this
class	name	when	registering	the	driver,	or	when	otherwise	configuring	software
to	use	MySQL	Connector/J.

The	JDBC	URL	format	for	MySQL	Connector/J	is	as	follows,	with	items	in
square	brackets	([,])	being	optional:

jdbc:mysql://[host][,failoverhost...][:port]/[database]	»

[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

If	the	hostname	is	not	specified,	it	defaults	to	127.0.0.1.	If	the	port	is	not
specified,	it	defaults	to	3306,	the	default	port	number	for	MySQL	servers.

jdbc:mysql://[host:port],[host:port].../[database]	»

[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

If	the	database	is	not	specified,	the	connection	will	be	made	with	no	default
database.	In	this	case,	you	will	need	to	either	call	the	setCatalog()	method	on
the	Connection	instance	or	fully-specify	table	names	using	the	database	name
(i.e.	SELECT	dbname.tablename.colname	FROM	dbname.tablename...)	in	your
SQL.	Not	specifying	the	database	to	use	upon	connection	is	generally	only
useful	when	building	tools	that	work	with	multiple	databases,	such	as	GUI
database	managers.

MySQL	Connector/J	has	fail-over	support.	This	allows	the	driver	to	fail-over	to
any	number	of	slave	hosts	and	still	perform	read-only	queries.	Fail-over	only
happens	when	the	connection	is	in	an	autoCommit(true)	state,	because	fail-over
can	not	happen	reliably	when	a	transaction	is	in	progress.	Most	application
servers	and	connection	pools	set	autoCommit	to	true	at	the	end	of	every
transaction/connection	use.

The	fail-over	functionality	has	the	following	behavior:

If	the	URL	property	autoReconnect	is	false:	Failover	only	happens	at
connection	initialization,	and	failback	occurs	when	the	driver	determines
that	the	first	host	has	become	available	again.

If	the	URL	property	autoReconnect	is	true:	Failover	happens	when	the
driver	determines	that	the	connection	has	failed	(before	every	query),	and
falls	back	to	the	first	host	when	it	determines	that	the	host	has	become
available	again	(after	queriesBeforeRetryMaster	queries	have	been
issued).

In	either	case,	whenever	you	are	connected	to	a	"failed-over"	server,	the
connection	will	be	set	to	read-only	state,	so	queries	that	would	modify	data	will

have	exceptions	thrown	(the	query	will	never	be	processed	by	the	MySQL
server).

Configuration	properties	define	how	Connector/J	will	make	a	connection	to	a
MySQL	server.	Unless	otherwise	noted,	properties	can	be	set	for	a	DataSource
object	or	for	a	Connection	object.

Configuration	Properties	can	be	set	in	one	of	the	following	ways:

Using	the	set*()	methods	on	MySQL	implementations	of
java.sql.DataSource	(which	is	the	preferred	method	when	using
implementations	of	java.sql.DataSource):

com.mysql.jdbc.jdbc2.optional.MysqlDataSource

com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource

As	a	key/value	pair	in	the	java.util.Properties	instance	passed	to
DriverManager.getConnection()	or	Driver.connect()

As	a	JDBC	URL	parameter	in	the	URL	given	to
java.sql.DriverManager.getConnection(),
java.sql.Driver.connect()	or	the	MySQL	implementations	of	the
javax.sql.DataSource	setURL()	method.

Note.		If	the	mechanism	you	use	to	configure	a	JDBC	URL	is	XML-based,
you	will	need	to	use	the	XML	character	literal	&	to	separate
configuration	parameters,	as	the	ampersand	is	a	reserved	character	for
XML.

The	properties	are	listed	in	the	following	tables.

Connection/Authentication.	

Property	Name Definition Default	Value

user The	user	to	connect	as 	
password The	password	to	use	when	connecting 	

The	name	of	the	class	that	the	driver	should	use	for

socketFactory creating	socket	connections	to	the	server.	This	class
must	implement	the	interface
com.mysql.jdbc.SocketFactory	and	have	public
no-args	constructor.

com.mysql.jdbc.StandardSocketFactory

connectTimeout
Timeout	for	socket	connect	(in	milliseconds),	with	0
being	no	timeout.	Only	works	on	JDK-1.4	or	newer.
Defaults	to	0.

0

socketTimeout Timeout	on	network	socket	operations	(0,	the
default	means	no	timeout). 0

useConfigs

Load	the	comma-delimited	list	of	configuration
properties	before	parsing	the	URL	or	applying	user-
specified	properties.	See	Section	23.3.4.1,
“Driver/Datasource	Class	Names,	URL	Syntax	and
Configuration	Properties	for	Connector/J”

	

interactiveClient

Set	the	CLIENT_INTERACTIVE	flag,	which	tells
MySQL	to	timeout	connections	based	on
INTERACTIVE_TIMEOUT	instead	of
WAIT_TIMEOUT

false

propertiesTransform
An	implementation	of
com.mysql.jdbc.ConnectionPropertiesTransform

that	the	driver	will	use	to	modify	URL	properties
passed	to	the	driver	before	attempting	a	connection

	

useCompression Use	zlib	compression	when	communicating	with	the
server	(true/false)?	Defaults	to	false. false

High	Availability	and	Clustering.	

Property	Name Definition Default
Value

Since
Version

Should	the	driver	try	to	re-
establish	stale	and/or	dead
connections?	If	enabled	the	driver
will	throw	an	exception	for	a
queries	issued	on	a	stale	or	dead
connection,	which	belong	to	the
current	transaction,	but	will
attempt	reconnect	before	the	next

autoReconnect

query	issued	on	the	connection	in
a	new	transaction.	The	use	of	this
feature	is	not	recommended,
because	it	has	side	effects	related
to	session	state	and	data
consistency	when	applications
don'thandle	SQLExceptions
properly,	and	is	only	designed	to
be	used	when	you	are	unable	to
configure	your	application	to
handle	SQLExceptions	resulting
from	dead	andstale	connections
properly.	Alternatively,
investigate	setting	the	MySQL
server	variable	"wait_timeout"to
some	high	value	rather	than	the
default	of	8	hours.

false 1.1

autoReconnectForPools
Use	a	reconnection	strategy
appropriate	for	connection	pools
(defaults	to	'false')

false 3.1.3

failOverReadOnly
When	failing	over	in
autoReconnect	mode,	should	the
connection	be	set	to	'read-only'?

true 3.0.12

reconnectAtTxEnd

If	autoReconnect	is	set	to	true,
should	the	driver	attempt
reconnectionsat	the	end	of	every
transaction?

false 3.0.10

roundRobinLoadBalance

When	autoReconnect	is	enabled,
and	failoverReadonly	is	false,
should	we	pick	hosts	to	connect
to	on	a	round-robin	basis?

false 3.1.2

queriesBeforeRetryMaster

Number	of	queries	to	issue	before
falling	back	to	master	when	failed
over	(when	using	multi-host
failover).	Whichever	condition	is
met	first,
'queriesBeforeRetryMaster'	or

50 3.0.2

'secondsBeforeRetryMaster'	will
cause	an	attempt	to	be	made	to
reconnect	to	the	master.	Defaults
to	50.

secondsBeforeRetryMaster

How	long	should	the	driver	wait,
when	failed	over,	before
attempting	to	reconnect	to	the
master	server?	Whichever
condition	is	met	first,
'queriesBeforeRetryMaster'	or
'secondsBeforeRetryMaster'	will
cause	an	attempt	to	be	made	to
reconnect	to	the	master.	Time	in
seconds,	defaults	to	30

30 3.0.2

resourceId

A	globally	unique	name	that
identifies	the	resource	that	this
datasource	or	connection	is
connected	to,	used	for
XAResource.isSameRM()	when
the	driver	can't	determine	this
value	based	on	hostnames	used	in
the	URL

	 5.0.1

Security.	

Property	Name Definition Default
Value

Since
Version

allowMultiQueries
Allow	the	use	of	';'	to	delimit	multiple
queries	during	one	statement
(true/false,	defaults	to	'false'

false 3.1.1

useSSL Use	SSL	when	communicating	with
the	server	(true/false),	defaults	to	'false' false 3.0.2

requireSSL Require	SSL	connection	if
useSSL=true?	(defaults	to	'false'). false 3.1.0

allowUrlInLocalInfile
Should	the	driver	allow	URLs	in
'LOAD	DATA	LOCAL	INFILE'
statements?

false 3.1.4

paranoid

Take	measures	to	prevent	exposure
sensitive	information	in	error	messages
and	clear	data	structures	holding
sensitive	data	when	possible?	(defaults
to	'false')

false 3.0.1

Performance	Extensions.	

Property	Name Definition Default
Value

metadataCacheSize

The	number	of	queries	to
cacheResultSetMetadata	for	if
cacheResultSetMetaData	is	set	to	'true'
(default	50)

50

prepStmtCacheSize
If	prepared	statement	caching	is
enabled,	how	many	prepared	statements
should	be	cached?

25

prepStmtCacheSqlLimit
If	prepared	statement	caching	is
enabled,	what's	the	largest	SQL	the
driver	will	cache	the	parsing	for?

256

useCursorFetch

If	connected	to	MySQL	>	5.0.2,	and
setFetchSize()	>	0	on	a	statement,
should	that	statement	use	cursor-based
fetching	to	retrieve	rows?

false

blobSendChunkSize
Chunk	to	use	when	sending
BLOB/CLOBs	via
ServerPreparedStatements

1048576

cacheCallableStmts Should	the	driver	cache	the	parsing
stage	of	CallableStatements false

cachePrepStmts

Should	the	driver	cache	the	parsing
stage	of	PreparedStatements	of	client-
side	prepared	statements,	the	check	for
suitability	of	server-side	prepared	and
server-side	prepared	statements
themselves?

false

Should	the	driver	cache

cacheResultSetMetadata ResultSetMetaData	for	Statements	and
PreparedStatements?	(Req.	JDK-1.4+,
true/false,	default	'false')

false

cacheServerConfiguration
Should	the	driver	cache	the	results	of
SHOW	VARIABLES	and	SHOW	COLLATION
on	a	per-URL	basis?

false

defaultFetchSize
The	driver	will	call	setFetchSize(n)	with
this	value	on	all	newly-created
Statements

0

dontTrackOpenResources

The	JDBC	specification	requires	the
driver	to	automatically	track	and	close
resources,	however	if	your	application
doesn't	do	a	good	job	of	explicitly
calling	close()	on	statements	or	result
sets,	this	can	cause	memory	leakage.
Setting	this	property	to	true	relaxes	this
constraint,	and	can	be	more	memory
efficient	for	some	applications.

false

dynamicCalendars
Should	the	driver	retrieve	the	default
calendar	when	required,	or	cache	it	per
connection/session?

false

elideSetAutoCommits

If	using	MySQL-4.1	or	newer,	should
the	driver	only	issue	'set	autocommit=n'
queries	when	the	server's	state	doesn't
match	the	requested	state	by
Connection.setAutoCommit(boolean)?

false

holdResultsOpenOverStatementClose
Should	the	driver	close	result	sets	on
Statement.close()	as	required	by	the
JDBC	specification?

false

locatorFetchBufferSize

If	'emulateLocators'	is	configured	to
'true',	what	size	buffer	should	be	used
when	fetching	BLOB	data	for
getBinaryInputStream?

1048576

Should	the	driver	use	multiqueries
(irregardless	of	the	setting	of
allowMultiQueries)	as	well	as
rewriting	of	prepared	statements	for

rewriteBatchedStatements

INSERT	into	multi-value	inserts	when
executeBatch()	is	called?	Notice	that
this	has	the	potential	for	SQL	injection
if	using	plain	java.sql.Statements	and
your	code	doesn't	sanitize	input
correctly.	Notice	that	for	prepared
statements,	server-side	prepared
statements	can	not	currently	take
advantage	of	this	rewrite	option,	and
that	if	you	don't	specify	stream	lengths
when	using
PreparedStatement.set*Stream(),the
driver	won't	be	able	to	determine	the
optimium	number	of	parameters	per
batch	and	you	might	receive	anan	error
from	the	driver	that	the	resultant	packet
is	too	large.
Statement.getGeneratedKeys()	for	these
rewritten	statements	only	works	when
the	entire	batch	includes	INSERT
statements.

false

useFastIntParsing
Use	internal	String->Integer	conversion
routines	to	avoid	excessive	object
creation?

true

useJvmCharsetConverters

Always	use	the	character	encoding
routines	built	into	the	JVM,	rather	than
using	lookup	tables	for	single-byte
character	sets?	(The	default	of	"true"	for
this	is	appropriate	for	newer	JVMs

true

useLocalSessionState

Should	the	driver	refer	to	the	internal
values	of	autocommit	and	transaction
isolation	that	are	set	by
Connection.setAutoCommit()	and
Connection.setTransactionIsolation(),
rather	than	querying	the	database?

false

useReadAheadInput
Use	newer,	optimized	non-blocking,
buffered	input	stream	when	reading
from	the	server?

true

Debuging/Profiling.	

Property	Name Definition Default	Value

logger

The	name	of	a	class	that	implements
'com.mysql.jdbc.log.Log'	that	will	be
used	to	log	messages	to.(default	is
'com.mysql.jdbc.log.StandardLogger',
which	logs	to	STDERR)

com.mysql.jdbc.log.StandardLogger

profileSQL

Trace	queries	and	their
execution/fetch	times	to	the
configured	logger	(true/false)	defaults
to	'false'

false

reportMetricsIntervalMillis If	'gatherPerfMetrics'	is	enabled,	how
often	should	they	be	logged	(in	ms)? 30000

maxQuerySizeToLog
Controls	the	maximum	length/size	of
a	query	that	will	get	logged	when
profiling	or	tracing

2048

packetDebugBufferSize
The	maximum	number	of	packets	to
retain	when	'enablePacketDebug'	is
true

20

slowQueryThresholdMillis
If	'logSlowQueries'	is	enabled,	how
long	should	a	query	(in	ms)	before	it
is	logged	as	'slow'?

2000

useUsageAdvisor

Should	the	driver	issue	'usage'
warnings	advising	proper	and
efficient	usage	of	JDBC	and	MySQL
Connector/J	to	the	log	(true/false,
defaults	to	'false')?

false

autoGenerateTestcaseScript
Should	the	driver	dump	the	SQL	it	is
executing,	including	server-side
prepared	statements	to	STDERR?

false

dumpMetadataOnColumnNotFound

Should	the	driver	dump	the	field-
level	metadata	of	a	result	set	into	the
exception	message	when false

ResultSet.findColumn()	fails?

dumpQueriesOnException
Should	the	driver	dump	the	contents
of	the	query	sent	to	the	server	in	the
message	for	SQLExceptions?

false

enablePacketDebug

When	enabled,	a	ring-buffer	of
'packetDebugBufferSize'	packets	will
be	kept,	and	dumped	when
exceptions	are	thrown	in	key	areas	in
the	driver's	code

false

explainSlowQueries

If	'logSlowQueries'	is	enabled,	should
the	driver	automatically	issue	an
'EXPLAIN'	on	the	server	and	send
the	results	to	the	configured	log	at	a
WARN	level?

false

logSlowQueries
Should	queries	that	take	longer	than
'slowQueryThresholdMillis'	be
logged?

false

traceProtocol Should	trace-level	network	protocol
be	logged? false

Miscellaneous.	

Property	Name Definition

useUnicode

Should	the	driver	use	Unicode	character	encodings	when	handling
strings?	Should	only	be	used	when	the	driver	can't	determine	
character	set	mapping,	or	you	are	trying	to	
character	set	that	MySQL	either	doesn't	natively	support	(such	as
UTF-8),	true/false,	defaults	to	'true'

characterEncoding If	'useUnicode'	is	set	to	true,	what	character	encoding	should	the
driver	use	when	dealing	with	strings?	(defaults	is	

characterSetResults Character	set	to	tell	the	server	to	return	results	as.

connectionCollation If	set,	tells	the	server	to	use	this	collation	via	'set
collation_connection'

sessionVariables A	comma-separated	list	of	name/value	pairs	to	be	sent	as	SET
SESSION	...	to	the	server	when	the	driver	connects.

allowNanAndInf Should	the	driver	allow	NaN	or	+/-	INF	values	in
PreparedStatement.setDouble()?

autoClosePStmtStreams Should	the	driver	automatically	call	.close()	on	streams/readers
passed	as	arguments	via	set*()	methods?

autoDeserialize Should	the	driver	automatically	detect	and	de-serialize	objects	stored
in	BLOB	fields?

capitalizeTypeNames Capitalize	type	names	in	DatabaseMetaData?	(usually	only	useful
when	using	WebObjects,	true/false,	defaults	to	'false')

clobCharacterEncoding
The	character	encoding	to	use	for	sending	and	retrieving	TEXT,
MEDIUMTEXT	and	LONGTEXT	values	instead	of	the	
connection	characterEncoding

clobberStreamingResults

This	will	cause	a	'streaming'	ResultSet	to	be	automatically	closed,
and	any	outstanding	data	still	streaming	from	the	server	
discarded	if	another	query	is	executed	before	
read	from	the	server.

continueBatchOnError Should	the	driver	continue	processing	batch	commands	if	one
statement	fails.	The	JDBC	spec	allows	either	way	(defaults	to	

createDatabaseIfNotExist Creates	the	database	given	in	the	URL	if	it	doesn't	yet	exist.
Assumes	the	configured	user	has	permissions	to	create	

emptyStringsConvertToZero Should	the	driver	allow	conversions	from	empty	string	fields	to
numeric	values	of	'0'?

emulateLocators N/A

emulateUnsupportedPstmts Should	the	driver	detect	prepared	statements	that	are	not	supported
by	the	server,	and	replace	them	with	client-side	

ignoreNonTxTables Ignore	non-transactional	table	warning	for	rollback?	(defaults	to
'false').

jdbcCompliantTruncation

Should	the	driver	throw	java.sql.DataTruncation	exceptions	when
data	is	truncated	as	is	required	by	the	JDBC	specification	
connected	to	a	server	that	supports	
newer)?

maxRows The	maximum	number	of	rows	to	return	(0,	the	default	means	return
all	rows).

noAccessToProcedureBodies

When	determining	procedure	parameter	types	for
CallableStatements,	and	the	connected	user	can't	access	procedure
bodies	through	"SHOW	CREATE	PROCEDURE"	or	select	on

mysql.proc	should	the	driver	instead	create	basic	
parameters	reported	as	INOUT	VARCHARs)	
exception?

noDatetimeStringSync Don't	ensure	that
ResultSet.getDatetimeType().toString().equals(ResultSet.getString())

noTimezoneConversionForTimeType Don't	convert	TIME	values	using	the	server	timezone	if
'useTimezone'='true'

nullCatalogMeansCurrent

When	DatabaseMetadataMethods	ask	for	a	'catalog'	parameter,	does
the	value	null	mean	use	the	current	catalog?	(this	is	
compliant,	but	follows	legacy	behavior	from	
driver)

nullNamePatternMatchesAll
Should	DatabaseMetaData	methods	that	accept	*pattern	parameters
treat	null	the	same	as	'%'	(this	is	not	JDBC-compliant,	
versions	of	the	driver	accepted	this	

overrideSupportsIntegrityEnhancementFacility

Should	the	driver	return	"true"	for
DatabaseMetaData.supportsIntegrityEnhancementFacility()	
the	database	doesn't	support	it	to	
require	this	method	to	return	"true"	to	signal	support	of	foreign	keys,
even	though	the	SQL	specification	states	that	this	
much	more	than	just	foreign	key	
OpenOffice)?

pedantic Follow	the	JDBC	spec	to	the	letter.

pinGlobalTxToPhysicalConnection

When	using	XAConnections,	should	the	driver	ensure	that
operations	on	a	given	XID	are	always	routed	to	the	same	physical
connection?	This	allows	the	XAConnection	to	support	
...	JOIN"	after	"XA	END"	has	been	called

processEscapeCodesForPrepStmts Should	the	driver	process	escape	codes	in	queries	that	are	prepared?

relaxAutoCommit
If	the	version	of	MySQL	the	driver	connects	to	does	not	support
transactions,	still	allow	calls	to	commit(),	
setAutoCommit()	(true/false,	defaults	

retainStatementAfterResultSetClose
Should	the	driver	retain	the	Statement	reference	in	a	ResultSet	after
ResultSet.close()	has	been	called.	This	is	not	
JDBC-4.0.

rollbackOnPooledClose Should	the	driver	issue	a	rollback()	when	the	logical	connection	in	a
pool	is	closed?
Enables	workarounds	for	bugs	in	Sun's	JDBC	compliance	testsuite

runningCTS13 version	1.3

serverTimezone Override	detection/mapping	of	timezone.	Used	when	timezone	from
server	doesn't	map	to	Java	timezone

strictFloatingPoint Used	only	in	older	versions	of	compliance	test

strictUpdates Should	the	driver	do	strict	checking	(all	primary	keys	selected)	of
updatable	result	sets	(true,	false,	defaults	to	

tinyInt1isBit
Should	the	driver	treat	the	datatype	TINYINT(1)	as	the	BIT	type
(because	the	server	silently	converts	BIT	->	TINYINT(1)	
creating	tables)?

transformedBitIsBoolean
If	the	driver	converts	TINYINT(1)	to	a	different	type,	should	it	use
BOOLEAN	instead	of	BIT	for	future	compatibility	with	
5.0,	as	MySQL-5.0	has	a	BIT	type?

ultraDevHack
Create	PreparedStatements	for	prepareCall()	when	required,	because
UltraDev	is	broken	and	issues	a	prepareCall()	for	
(true/false,	defaults	to	'false')

useGmtMillisForDatetimes
Convert	between	session	timezone	and	GMT	before	creating	Date
and	Timestamp	instances	(value	of	"false"	is	legacy	
leads	to	more	JDBC-compliant	behavior.

useHostsInPrivileges
Add	'@hostname'	to	users	in
DatabaseMetaData.getColumn/TablePrivileges()	
defaults	to	'true'.

useInformationSchema
When	connected	to	MySQL-5.0.7	or	newer,	should	the	driver	use	the
INFORMATION_SCHEMA	to	derive	information	used	by
DatabaseMetaData?

useJDBCCompliantTimezoneShift

Should	the	driver	use	JDBC-compliant	rules	when	converting
TIME/TIMESTAMP/DATETIME	values'	timezone	information	
those	JDBC	arguments	which	take	a	
(Notice	that	this	option	is	exclusive	of	the	"useTimezone=true"
configuration	option.)

useOldUTF8Behavior Use	the	UTF-8	behavior	the	driver	did	when	communicating	with
4.0	and	older	servers

useOnlyServerErrorMessages Don't	prepend	'standard'	SQLState	error	messages	to	error	messages
returned	by	the	server.

useServerPrepStmts Use	server-side	prepared	statements	if	the	server	supports	them?
(defaults	to	'true').

useSqlStateCodes Use	SQL	Standard	state	codes	instead	of	'legacy'	X/Open/SQL	state
codes	(true/false),	default	is	'true'

useStreamLengthsInPrepStmts
Honor	stream	length	parameter	in
PreparedStatement/ResultSet.setXXXStream()	method	
(true/false,	defaults	to	'true')?

useTimezone Convert	time/date	types	between	client	and	server	timezones
(true/false,	defaults	to	'false')?

useUnbufferedInput Don't	use	BufferedInputStream	for	reading	data	from	the	server

yearIsDateType Should	the	JDBC	driver	treat	the	MySQL	type	"YEAR"	as	a
java.sql.Date,	or	as	a	SHORT?

zeroDateTimeBehavior

What	should	happen	when	the	driver	encounters	DATETIME	values
that	are	composed	entirely	of	zeroes	(used	by	MySQL	to	
invalid	dates)?	Valid	values	are	'exception',	'round'	and
'convertToNull'.

Connector/J	also	supports	access	to	MySQL	via	named	pipes	on	Windows
NT/2000/XP	using	the	NamedPipeSocketFactory	as	a	plugin-socket	factory	via
the	socketFactory	property.	If	you	don't	use	a	namedPipePath	property,	the
default	of	'\\.\pipe\MySQL'	will	be	used.	If	you	use	the
NamedPipeSocketFactory,	the	hostname	and	port	number	values	in	the	JDBC
url	will	be	ignored.	You	can	enable	this	feature	using:

socketFactory=com.mysql.jdbc.NamedPipeSocketFactory

								

Named	pipes	only	work	when	connecting	to	a	MySQL	server	on	the	same
physical	machine	as	the	one	the	JDBC	driver	is	being	used	on.	In	simple
performance	tests,	it	appears	that	named	pipe	access	is	between	30%-50%	faster
than	the	standard	TCP/IP	access.

You	can	create	your	own	socket	factories	by	following	the	example	code	in
com.mysql.jdbc.NamedPipeSocketFactory,	or
com.mysql.jdbc.StandardSocketFactory.

23.3.4.2.	JDBC	API	Implementation	Notes

MySQL	Connector/J	passes	all	of	the	tests	in	the	publicly-available	version	of
Sun's	JDBC	compliance	test	suite.	However,	in	many	places	the	JDBC

specification	is	vague	about	how	certain	functionality	should	be	implemented,	or
the	specification	allows	leeway	in	implementation.

This	section	gives	details	on	a	interface-by-interface	level	about	how	certain
implementation	decisions	may	affect	how	you	use	MySQL	Connector/J.

Blob

The	Blob	implementation	does	not	allow	in-place	modification	(they	are
copies,	as	reported	by	the	DatabaseMetaData.locatorsUpdateCopies()
method).	Because	of	this,	you	should	use	the	corresponding
PreparedStatement.setBlob()	or	ResultSet.updateBlob()	(in	the	case
of	updatable	result	sets)	methods	to	save	changes	back	to	the	database.

Starting	with	Connector/J	version	3.1.0,	you	can	emulate	Blobs	with
locators	by	adding	the	property	'emulateLocators=true'	to	your	JDBC	URL.
You	must	then	use	a	column	alias	with	the	value	of	the	column	set	to	the
actual	name	of	the	Blob	column	in	the	SELECT	that	you	write	to	retrieve	the
Blob.	The	SELECT	must	also	reference	only	one	table,	the	table	must	have	a
primary	key,	and	the	SELECT	must	cover	all	columns	that	make	up	the
primary	key.	The	driver	will	then	delay	loading	the	actual	Blob	data	until
you	retrieve	the	Blob	and	call	retrieval	methods	(getInputStream(),
getBytes(),	and	so	forth)	on	it.

CallableStatement

Starting	with	Connector/J	3.1.1,	stored	procedures	are	supported	when
connecting	to	MySQL	version	5.0	or	newer	via	the	CallableStatement
interface.	Currently,	the	getParameterMetaData()	method	of
CallableStatement	is	not	supported.

Clob

The	Clob	implementation	does	not	allow	in-place	modification	(they	are
copies,	as	reported	by	the	DatabaseMetaData.locatorsUpdateCopies()
method).	Because	of	this,	you	should	use	the
PreparedStatement.setClob()	method	to	save	changes	back	to	the
database.	The	JDBC	API	does	not	have	a	ResultSet.updateClob()
method.

Connection

Unlike	older	versions	of	MM.MySQL	the	isClosed()	method	does	not
ping	the	server	to	determine	if	it	is	alive.	In	accordance	with	the	JDBC
specification,	it	only	returns	true	if	closed()	has	been	called	on	the
connection.	If	you	need	to	determine	if	the	connection	is	still	valid,	you
should	issue	a	simple	query,	such	as	SELECT	1.	The	driver	will	throw	an
exception	if	the	connection	is	no	longer	valid.

DatabaseMetaData

Foreign	Key	information	(getImportedKeys()/getExportedKeys()	and
getCrossReference())	is	only	available	from	InnoDB	tables.	However,	the
driver	uses	SHOW	CREATE	TABLE	to	retrieve	this	information,	so	when	other
storage	engines	support	foreign	keys,	the	driver	will	transparently	support
them	as	well.

PreparedStatement

PreparedStatements	are	implemented	by	the	driver,	as	MySQL	does	not
have	a	prepared	statement	feature.	Because	of	this,	the	driver	does	not
implement	getParameterMetaData()	or	getMetaData()	as	it	would	require
the	driver	to	have	a	complete	SQL	parser	in	the	client.

Starting	with	version	3.1.0	MySQL	Connector/J,	server-side	prepared
statements	and	binary-encoded	result	sets	are	used	when	the	server	supports
them.

Take	care	when	using	a	server-side	prepared	statement	with	large
parameters	that	are	set	via	setBinaryStream(),	setAsciiStream(),
setUnicodeStream(),	setBlob(),	or	setClob().	If	you	want	to	re-execute
the	statement	with	any	large	parameter	changed	to	a	non-large	parameter,	it
is	necessary	to	call	clearParameters()	and	set	all	parameters	again.	The
reason	for	this	is	as	follows:

The	driver	streams	the	large	data	out-of-band	to	the	prepared	statement
on	the	server	side	when	the	parameter	is	set	(before	execution	of	the
prepared	statement).

Once	that	has	been	done,	the	stream	used	to	read	the	data	on	the	client

side	is	closed	(as	per	the	JDBC	spec),	and	can't	be	read	from	again.

If	a	parameter	changes	from	large	to	non-large,	the	driver	must	reset
the	server-side	state	of	the	prepared	statement	to	allow	the	parameter
that	is	being	changed	to	take	the	place	of	the	prior	large	value.	This
removes	all	of	the	large	data	that	has	already	been	sent	to	the	server,
thus	requiring	the	data	to	be	re-sent,	via	the	setBinaryStream(),
setAsciiStream(),	setUnicodeStream(),	setBlob()	or	setClob()
methods.

Consequently,	if	you	want	to	change	the	type	of	a	parameter	to	a	non-large
one,	you	must	call	clearParameters()	and	set	all	parameters	of	the
prepared	statement	again	before	it	can	be	re-executed.

ResultSet

By	default,	ResultSets	are	completely	retrieved	and	stored	in	memory.	In
most	cases	this	is	the	most	efficient	way	to	operate,	and	due	to	the	design	of
the	MySQL	network	protocol	is	easier	to	implement.	If	you	are	working
with	ResultSets	that	have	a	large	number	of	rows	or	large	values,	and	can
not	allocate	heap	space	in	your	JVM	for	the	memory	required,	you	can	tell
the	driver	to	stream	the	results	back	one	row	at	a	time.

To	enable	this	functionality,	you	need	to	create	a	Statement	instance	in	the
following	manner:

stmt	=	conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,

														java.sql.ResultSet.CONCUR_READ_ONLY);

stmt.setFetchSize(Integer.MIN_VALUE);

The	combination	of	a	forward-only,	read-only	result	set,	with	a	fetch	size	of
Integer.MIN_VALUE	serves	as	a	signal	to	the	driver	to	stream	result	sets
row-by-row.	After	this	any	result	sets	created	with	the	statement	will	be
retrieved	row-by-row.

There	are	some	caveats	with	this	approach.	You	will	have	to	read	all	of	the
rows	in	the	result	set	(or	close	it)	before	you	can	issue	any	other	queries	on
the	connection,	or	an	exception	will	be	thrown.

The	earliest	the	locks	these	statements	hold	can	be	released	(whether	they

be	MyISAM	table-level	locks	or	row-level	locks	in	some	other	storage	engine
such	as	InnoDB)	is	when	the	statement	completes.

If	the	statement	is	within	scope	of	a	transaction,	then	locks	are	released
when	the	transaction	completes	(which	implies	that	the	statement	needs	to
complete	first).	As	with	most	other	databases,	statements	are	not	complete
until	all	the	results	pending	on	the	statement	are	read	or	the	active	result	set
for	the	statement	is	closed.

Therefore,	if	using	streaming	results,	you	should	process	them	as	quickly	as
possible	if	you	want	to	maintain	concurrent	access	to	the	tables	referenced
by	the	statement	producing	the	result	set.

ResultSetMetaData

The	isAutoIncrement()	method	only	works	when	using	MySQL	servers
4.0	and	newer.

Statement

When	using	versions	of	the	JDBC	driver	earlier	than	3.2.1,	and	connected
to	server	versions	earlier	than	5.0.3,	the	"setFetchSize()"	method	has	no
effect,	other	than	to	toggle	result	set	streaming	as	described	above.

MySQL	does	not	support	SQL	cursors,	and	the	JDBC	driver	doesn't
emulate	them,	so	"setCursorName()"	has	no	effect.

23.3.4.3.	Java,	JDBC	and	MySQL	Types

MySQL	Connector/J	is	flexible	in	the	way	it	handles	conversions	between
MySQL	data	types	and	Java	data	types.

In	general,	any	MySQL	data	type	can	be	converted	to	a	java.lang.String,	and	any
numerical	type	can	be	converted	to	any	of	the	Java	numerical	types,	although
round-off,	overflow,	or	loss	of	precision	may	occur.

Starting	with	Connector/J	3.1.0,	the	JDBC	driver	will	issue	warnings	or	throw
DataTruncation	exceptions	as	is	required	by	the	JDBC	specification	unless	the
connection	was	configured	not	to	do	so	by	using	the	property

jdbcCompliantTruncation	and	setting	it	to	false.

The	conversions	that	are	always	guaranteed	to	work	are	listed	in	the	following
table:

Connection	Properties	-	Miscellaneous.	

These	MySQL	Data	Types Can	always	be	converted	to	these	Java
types

CHAR,	VARCHAR,	BLOB,	TEXT,

ENUM,	and	SET

java.lang.String,

java.io.InputStream,

java.io.Reader,	java.sql.Blob,

java.sql.Clob

FLOAT,	REAL,	DOUBLE	PRECISION,

NUMERIC,	DECIMAL,	TINYINT,

SMALLINT,	MEDIUMINT,	INTEGER,

BIGINT

java.lang.String,	java.lang.Short,

java.lang.Integer,	java.lang.Long,

java.lang.Double,

java.math.BigDecimal

DATE,	TIME,	DATETIME,

TIMESTAMP

java.lang.String,	java.sql.Date,

java.sql.Timestamp

Note:	round-off,	overflow	or	loss	of	precision	may	occur	if	you	choose	a	Java
numeric	data	type	that	has	less	precision	or	capacity	than	the	MySQL	data	type
you	are	converting	to/from.

The	ResultSet.getObject()	method	uses	the	following	type	conversions
between	MySQL	and	Java	types,	following	the	JDBC	specification	where
appropriate:

MySQL	Types	to	Java	Types	for	ResultSet.getObject().	

MySQL	Type	Name Returned	as	Java	Class
BIT(1)	(new	in	MySQL-
5.0)

java.lang.Boolean

BIT(>	1)	(new	in
MySQL-5.0)

byte[]

TINYINT
java.lang.Boolean	if	the	configuration	property
tinyInt1isBit	is	set	to	true	(the	default)	and	the
storage	size	is	1,	or	java.lang.Integer	if	not.
See	TINYINT,	above	as	these	are	aliases	for

BOOL,	BOOLEAN TINYINT(1),	currently.

SMALLINT[(M)]
[UNSIGNED]

java.lang.Integer	(regardless	if	UNSIGNED	or
not)

MEDIUMINT[(M)]
[UNSIGNED]

java.lang.Integer,	if	UNSIGNED
java.lang.Long

INT,INTEGER[(M)]
[UNSIGNED]

java.lang.Integer,	if	UNSIGNED
java.lang.Long

BIGINT[(M)]
[UNSIGNED]

java.lang.Long,	if	UNSIGNED
java.math.BigInteger

FLOAT[(M,D)] java.lang.Float

DOUBLE[(M,B)] java.lang.Double

DECIMAL[(M[,D])] java.math.BigDecimal

DATE java.sql.Date

DATETIME java.sql.Timestamp

TIMESTAMP[(M)] java.sql.Timestamp

TIME java.sql.Time

YEAR[(2|4)] java.sql.Date	(with	the	date	set	two	January	1st,
at	midnight)

CHAR(M) java.lang.String	(unless	the	character	set	for	the
column	is	BINARY,	then	byte[]	is	returned.

VARCHAR(M)
[BINARY]

java.lang.String	(unless	the	character	set	for	the
column	is	BINARY,	then	byte[]	is	returned.

BINARY(M) byte[]

VARBINARY(M) byte[]

TINYBLOB byte[]

TINYTEXT java.lang.String

BLOB byte[]

TEXT java.lang.String

MEDIUMBLOB byte[]

MEDIUMTEXT java.lang.String

LONGBLOB byte[]

LONGTEXT java.lang.String

ENUM('value1','value2',...) java.lang.String
SET('value1','value2',...) java.lang.String

23.3.4.4.	Using	Character	Sets	and	Unicode

All	strings	sent	from	the	JDBC	driver	to	the	server	are	converted	automatically
from	native	Java	Unicode	form	to	the	client	character	encoding,	including	all
queries	sent	via	Statement.execute(),	Statement.executeUpdate(),
Statement.executeQuery()	as	well	as	all	PreparedStatement	and
CallableStatement	parameters	with	the	exclusion	of	parameters	set	using
setBytes(),	setBinaryStream(),	setAsciiStream(),	setUnicodeStream()	and
setBlob()	.

Prior	to	MySQL	Server	4.1,	Connector/J	supported	a	single	character	encoding
per	connection,	which	could	either	be	automatically	detected	from	the	server
configuration,	or	could	be	configured	by	the	user	through	the	useUnicode	and
"characterEncoding"	properties.

Starting	with	MySQL	Server	4.1,	Connector/J	supports	a	single	character
encoding	between	client	and	server,	and	any	number	of	character	encodings	for
data	returned	by	the	server	to	the	client	in	ResultSets.

The	character	encoding	between	client	and	server	is	automatically	detected	upon
connection.	The	encoding	used	by	the	driver	is	specified	on	the	server	via	the
character_set	system	variable	for	server	versions	older	than	4.1.0	and
character_set_server	for	server	versions	4.1.0	and	newer.	For	more
information,	see	Section	10.3.1,	“Server	Character	Set	and	Collation”.

To	override	the	automatically-detected	encoding	on	the	client	side,	use	the
characterEncoding	property	in	the	URL	used	to	connect	to	the	server.

When	specifying	character	encodings	on	the	client	side,	Java-style	names	should
be	used.	The	following	table	lists	Java-style	names	for	MySQL	character	sets:

MySQL	to	Java	Encoding	Name	Translations.	

MySQL	Character	Set
Name Java-Style	Character	Encoding	Name

usa7 US-ASCII
big5 Big5
gbk GBK

sjis SJIS	(or	Cp932	or	MS932	for	MySQL	Server	<
4.1.11)

cp932 Cp932	or	MS932	(MySQL	Server	>	4.1.11)
gb2312 EUC_CN
ujis EUC_JP
euc_kr EUC_KR
latin1 ISO8859_1
latin1_de ISO8859_1
german1 ISO8859_1
danish ISO8859_1
latin2 ISO8859_2
czech ISO8859_2
hungarian ISO8859_2
croat ISO8859_2
greek ISO8859_7
hebrew ISO8859_8
latin5 ISO8859_9
latvian ISO8859_13
latvian1 ISO8859_13
estonia ISO8859_13
dos Cp437
pclatin2 Cp852
cp866 Cp866
koi8_ru KOI8_R
tis620 TIS620
win1250 Cp1250
win1250ch Cp1250
win1251 Cp1251

cp1251 Cp1251

win1251ukr Cp1251
cp1257 Cp1257
macroman MacRoman
macce MacCentralEurope
utf8 UTF-8
ucs2 UnicodeBig

Warning.		Do	not	issue	the	query	'set	names'	with	Connector/J,	as	the	driver	will
not	detect	that	the	character	set	has	changed,	and	will	continue	to	use	the
character	set	detected	during	the	initial	connection	setup.

To	allow	multiple	character	sets	to	be	sent	from	the	client,	the	UTF-8	encoding
should	be	used,	either	by	configuring	utf8	as	the	default	server	character	set,	or
by	configuring	the	JDBC	driver	to	use	UTF-8	through	the	characterEncoding
property.

23.3.4.5.	Connecting	Securely	Using	SSL

SSL	in	MySQL	Connector/J	encrypts	all	data	(other	than	the	initial	handshake)
between	the	JDBC	driver	and	the	server.	The	performance	penalty	for	enabling
SSL	is	an	increase	in	query	processing	time	between	35%	and	50%,	depending
on	the	size	of	the	query,	and	the	amount	of	data	it	returns.

For	SSL	Support	to	work,	you	must	have	the	following:

A	JDK	that	includes	JSSE	(Java	Secure	Sockets	Extension),	like	JDK-1.4.1
or	newer.	SSL	does	not	currently	work	with	a	JDK	that	you	can	add	JSSE
to,	like	JDK-1.2.x	or	JDK-1.3.x	due	to	the	following	JSSE	bug:
http://developer.java.sun.com/developer/bugParade/bugs/4273544.html

A	MySQL	server	that	supports	SSL	and	has	been	compiled	and	configured
to	do	so,	which	is	MySQL-4.0.4	or	later,	see	Section	5.9.7,	“Using	Secure
Connections”,	for	more	information.

A	client	certificate	(covered	later	in	this	section)

http://developer.java.sun.com/developer/bugParade/bugs/4273544.html

You	will	first	need	to	import	the	MySQL	server	CA	Certificate	into	a	Java
truststore.	A	sample	MySQL	server	CA	Certificate	is	located	in	the	SSL
subdirectory	of	the	MySQL	source	distribution.	This	is	what	SSL	will	use	to
determine	if	you	are	communicating	with	a	secure	MySQL	server.

To	use	Java's	keytool	to	create	a	truststore	in	the	current	directory	,	and	import
the	server's	CA	certificate	(cacert.pem),	you	can	do	the	following	(assuming
that	keytool	is	in	your	path.	The	keytool	should	be	located	in	the	bin
subdirectory	of	your	JDK	or	JRE):

shell>	keytool	-import	-alias	mysqlServerCACert	-file	cacert.pem	-keystore	truststore

								

Keytool	will	respond	with	the	following	information:

Enter	keystore	password:		*********

Owner:	EMAILADDRESS=walrus@example.com,	CN=Walrus,	O=MySQL	AB,	L=Orenburg,	ST=Some

-State,	C=RU

Issuer:	EMAILADDRESS=walrus@example.com,	CN=Walrus,	O=MySQL	AB,	L=Orenburg,	ST=Som

e-State,	C=RU

Serial	number:	0

Valid	from:	Fri	Aug	02	16:55:53	CDT	2002	until:	Sat	Aug	02	16:55:53	CDT	2003

Certificate	fingerprints:

									MD5:		61:91:A0:F2:03:07:61:7A:81:38:66:DA:19:C4:8D:AB

									SHA1:	25:77:41:05:D5:AD:99:8C:14:8C:CA:68:9C:2F:B8:89:C3:34:4D:6C

Trust	this	certificate?	[no]:		yes

Certificate	was	added	to	keystore

You	will	then	need	to	generate	a	client	certificate,	so	that	the	MySQL	server
knows	that	it	is	talking	to	a	secure	client:

	shell>	keytool	-genkey	-keyalg	rsa	-alias	mysqlClientCertificate	-keystore	keystore	

Keytool	will	prompt	you	for	the	following	information,	and	create	a	keystore
named	keystore	in	the	current	directory.

You	should	respond	with	information	that	is	appropriate	for	your	situation:

Enter	keystore	password:		*********

What	is	your	first	and	last	name?

		[Unknown]:		Matthews

What	is	the	name	of	your	organizational	unit?

		[Unknown]:		Software	Development

What	is	the	name	of	your	organization?

		[Unknown]:		MySQL	AB

What	is	the	name	of	your	City	or	Locality?

		[Unknown]:		Flossmoor

What	is	the	name	of	your	State	or	Province?

		[Unknown]:		IL

What	is	the	two-letter	country	code	for	this	unit?

		[Unknown]:		US

Is	<CN=Matthews,	OU=Software	Development,	O=MySQL	AB,

	L=Flossmoor,	ST=IL,	C=US>	correct?

		[no]:		y

Enter	key	password	for	<mysqlClientCertificate>

								(RETURN	if	same	as	keystore	password):

Finally,	to	get	JSSE	to	use	the	keystore	and	truststore	that	you	have	generated,
you	need	to	set	the	following	system	properties	when	you	start	your	JVM,
replacing	path_to_keystore_file	with	the	full	path	to	the	keystore	file	you
created,	path_to_truststore_file	with	the	path	to	the	truststore	file	you	created,
and	using	the	appropriate	password	values	for	each	property.

-Djavax.net.ssl.keyStore=path_to_keystore_file

-Djavax.net.ssl.keyStorePassword=*********

-Djavax.net.ssl.trustStore=path_to_truststore_file

-Djavax.net.ssl.trustStorePassword=*********	

You	will	also	need	to	set	useSSL	to	true	in	your	connection	parameters	for
MySQL	Connector/J,	either	by	adding	useSSL=true	to	your	URL,	or	by	setting
the	property	useSSL	to	true	in	the	java.util.Properties	instance	you	pass	to
DriverManager.getConnection().

You	can	test	that	SSL	is	working	by	turning	on	JSSE	debugging	(as	detailed
below),	and	look	for	the	following	key	events:

...

	***	ClientHello,	v3.1

	RandomCookie:		GMT:	1018531834	bytes	=	{	199,	148,	180,	215,	74,	12,	54,	244,	0,	168,	55,	103,	215,	64,	16,	138,	225,	190,	132,	153,	2,	217,	219,	239,	202,	19,	121,	78	}

	Session	ID:		{}

	Cipher	Suites:		{	0,	5,	0,	4,	0,	9,	0,	10,	0,	18,	0,	19,	0,	3,	0,	17	}

	Compression	Methods:		{	0	}

	[write]	MD5	and	SHA1	hashes:		len	=	59

	0000:	01	00	00	37	03	01	3D	B6			90	FA	C7	94	B4	D7	4A	0C		...7..=.......J.

	0010:	36	F4	00	A8	37	67	D7	40			10	8A	E1	BE	84	99	02	D9		6...7g.@........

	0020:	DB	EF	CA	13	79	4E	00	00			10	00	05	00	04	00	09	00	yN..........

	0030:	0A	00	12	00	13	00	03	00			11	01	00																

	main,	WRITE:		SSL	v3.1	Handshake,	length	=	59

	main,	READ:		SSL	v3.1	Handshake,	length	=	74

	***	ServerHello,	v3.1

	RandomCookie:		GMT:	1018577560	bytes	=	{	116,	50,	4,	103,	25,	100,	58,	202,	79,	185,	178,	100,	215,	66,	254,	21,	83,	187,	190,	42,	170,	3,	132,	110,	82,	148,	160,	92	}

	Session	ID:		{163,	227,	84,	53,	81,	127,	252,	254,	178,	179,	68,	63,	182,	158,	30,	11,	150,	79,	170,	76,	255,	92,	15,	226,	24,	17,	177,	219,	158,	177,	187,	143}

	Cipher	Suite:		{	0,	5	}

	Compression	Method:	0

	%%	Created:		[Session-1,	SSL_RSA_WITH_RC4_128_SHA]

	**	SSL_RSA_WITH_RC4_128_SHA

	[read]	MD5	and	SHA1	hashes:		len	=	74

	0000:	02	00	00	46	03	01	3D	B6			43	98	74	32	04	67	19	64		...F..=.C.t2.g.d

	0010:	3A	CA	4F	B9	B2	64	D7	42			FE	15	53	BB	BE	2A	AA	03		:.O..d.B..S..*..

	0020:	84	6E	52	94	A0	5C	20	A3			E3	54	35	51	7F	FC	FE	B2		.nR..\	..T5Q....

	0030:	B3	44	3F	B6	9E	1E	0B	96			4F	AA	4C	FF	5C	0F	E2	18		.D?.....O.L.\...

	0040:	11	B1	DB	9E	B1	BB	8F	00			05	00																			

	main,	READ:		SSL	v3.1	Handshake,	length	=	1712

	...

JSSE	provides	debugging	(to	STDOUT)	when	you	set	the	following	system
property:	-Djavax.net.debug=all	This	will	tell	you	what	keystores	and
truststores	are	being	used,	as	well	as	what	is	going	on	during	the	SSL	handshake
and	certificate	exchange.	It	will	be	helpful	when	trying	to	determine	what	is	not
working	when	trying	to	get	an	SSL	connection	to	happen.

23.3.4.6.	Using	Master/Slave	Replication	with	ReplicationConnection

Starting	with	Connector/J	3.1.7,	we've	made	available	a	variant	of	the	driver	that
will	automatically	send	queries	to	a	read/write	master,	or	a	failover	or	round-
robin	loadbalanced	set	of	slaves	based	on	the	state	of
Connection.getReadOnly()	.

An	application	signals	that	it	wants	a	transaction	to	be	read-only	by	calling
Connection.setReadOnly(true),	this	replication-aware	connection	will	use	one
of	the	slave	connections,	which	are	load-balanced	per-vm	using	a	round-robin
scheme	(a	given	connection	is	sticky	to	a	slave	unless	that	slave	is	removed	from
service).	If	you	have	a	write	transaction,	or	if	you	have	a	read	that	is	time-
sensitive	(remember,	replication	in	MySQL	is	asynchronous),	set	the	connection
to	be	not	read-only,	by	calling	Connection.setReadOnly(false)	and	the	driver
will	ensure	that	further	calls	are	sent	to	the	master	MySQL	server.	The	driver
takes	care	of	propagating	the	current	state	of	autocommit,	isolation	level,	and
catalog	between	all	of	the	connections	that	it	uses	to	accomplish	this	load
balancing	functionality.

To	enable	this	functionality,	use	the	"	com.mysql.jdbc.ReplicationDriver	"
class	when	configuring	your	application	server's	connection	pool	or	when
creating	an	instance	of	a	JDBC	driver	for	your	standalone	application.	Because	it
accepts	the	same	URL	format	as	the	standard	MySQL	JDBC	driver,
ReplicationDriver	does	not	currently	work	with	java.sql.DriverManager	-
based	connection	creation	unless	it	is	the	only	MySQL	JDBC	driver	registered
with	the	DriverManager	.

Here	is	a	short,	simple	example	of	how	ReplicationDriver	might	be	used	in	a
standalone	application.

import	java.sql.Connection;

import	java.sql.ResultSet;

import	java.util.Properties;

import	com.mysql.jdbc.ReplicationDriver;

public	class	ReplicationDriverDemo	{

				public	static	void	main(String[]	args)	throws	Exception	{

								ReplicationDriver	driver	=	new	ReplicationDriver();

								Properties	props	=	new	Properties();

								//	We	want	this	for	failover	on	the	slaves

								props.put("autoReconnect",	"true");

								//	We	want	to	load	balance	between	the	slaves

								props.put("roundRobinLoadBalance",	"true");

								props.put("user",	"foo");

								props.put("password",	"bar");

								//

								//	Looks	like	a	normal	MySQL	JDBC	url,	with	a	comma-separated	list

								//	of	hosts,	the	first	being	the	'master',	the	rest	being	any	number

								//	of	slaves	that	the	driver	will	load	balance	against

								//

								Connection	conn	=

												driver.connect("jdbc:mysql://master,slave1,slave2,slave3/test",

																props);

								//

								//	Perform	read/write	work	on	the	master

								//	by	setting	the	read-only	flag	to	"false"

								//

								conn.setReadOnly(false);

								conn.setAutoCommit(false);

								conn.createStatement().executeUpdate("UPDATE	some_table");

								conn.commit();

								//

								//	Now,	do	a	query	from	a	slave,	the	driver	automatically	picks	one

								//	from	the	list

								//

								conn.setReadOnly(true);

								ResultSet	rs	=	conn.createStatement().executeQuery("SELECT	a,b,c	FROM	some_other_table");

								

				}

}

23.3.5.	Connector/J	Notes	and	Tips

23.3.5.1.	Basic	JDBC	Concepts

This	section	provides	some	general	JDBC	background.

23.3.5.1.1.	Connecting	to	MySQL	Using	the	DriverManager	Interface

When	you	are	using	JDBC	outside	of	an	application	server,	the	DriverManager
class	manages	the	establishment	of	Connections.

The	DriverManager	needs	to	be	told	which	JDBC	drivers	it	should	try	to	make
Connections	with.	The	easiest	way	to	do	this	is	to	use	Class.forName()	on	the
class	that	implements	the	java.sql.Driver	interface.	With	MySQL
Connector/J,	the	name	of	this	class	is	com.mysql.jdbc.Driver.	With	this
method,	you	could	use	an	external	configuration	file	to	supply	the	driver	class
name	and	driver	parameters	to	use	when	connecting	to	a	database.

The	following	section	of	Java	code	shows	how	you	might	register	MySQL
Connector/J	from	the	main()	method	of	your	application:

import	java.sql.Connection;

import	java.sql.DriverManager;

import	java.sql.SQLException;

//	Notice,	do	not	import	com.mysql.jdbc.*

//	or	you	will	have	problems!

public	class	LoadDriver	{

				public	static	void	main(String[]	args)	{

								try	{

												//	The	newInstance()	call	is	a	work	around	for	some

												//	broken	Java	implementations

												Class.forName("com.mysql.jdbc.Driver").newInstance();

								}	catch	(Exception	ex)	{

												//	handle	the	error

								}

}

After	the	driver	has	been	registered	with	the	DriverManager,	you	can	obtain	a
Connection	instance	that	is	connected	to	a	particular	database	by	calling
DriverManager.getConnection():

Example	23.1.	Obtaining	a	connection	from	the	DriverManager

This	example	shows	how	you	can	obtain	a	Connection	instance	from	the
DriverManager.	There	are	a	few	different	signatures	for	the	getConnection()
method.	You	should	see	the	API	documentation	that	comes	with	your	JDK	for
more	specific	information	on	how	to	use	them.

import	java.sql.Connection;

import	java.sql.DriverManager;

import	java.sql.SQLException;

				...	try	{

												Connection	conn	=	DriverManager.getConnection("jdbc:mysql://localhost/test?user=monty&password=greatsqldb");

												//	Do	something	with	the	Connection

										

								}	catch	(SQLException	ex)	{

												//	handle	any	errors

												System.out.println("SQLException:	"	+	ex.getMessage());

												System.out.println("SQLState:	"	+	ex.getSQLState());

												System.out.println("VendorError:	"	+	ex.getErrorCode());

								}

Once	a	Connection	is	established,	it	can	be	used	to	create	Statement	and
PreparedStatement	objects,	as	well	as	retrieve	metadata	about	the	database.

This	is	explained	in	the	following	sections.

23.3.5.1.2.	Using	Statements	to	Execute	SQL

Statement	objects	allow	you	to	execute	basic	SQL	queries	and	retrieve	the
results	through	the	ResultSet	class	which	is	described	later.

To	create	a	Statement	instance,	you	call	the	createStatement()	method	on	the
Connection	object	you	have	retrieved	via	one	of	the
DriverManager.getConnection()	or	DataSource.getConnection()	methods
described	earlier.

Once	you	have	a	Statement	instance,	you	can	execute	a	SELECT	query	by	calling
the	executeQuery(String)	method	with	the	SQL	you	want	to	use.

To	update	data	in	the	database,	use	the	executeUpdate(String	SQL)	method.
This	method	returns	the	number	of	rows	affected	by	the	update	statement.

If	you	don't	know	ahead	of	time	whether	the	SQL	statement	will	be	a	SELECT	or
an	UPDATE/INSERT,	then	you	can	use	the	execute(String	SQL)	method.	This
method	will	return	true	if	the	SQL	query	was	a	SELECT,	or	false	if	it	was	an
UPDATE,	INSERT,	or	DELETE	statement.	If	the	statement	was	a	SELECT	query,	you
can	retrieve	the	results	by	calling	the	getResultSet()	method.	If	the	statement
was	an	UPDATE,	INSERT,	or	DELETE	statement,	you	can	retrieve	the	affected	rows
count	by	calling	getUpdateCount()	on	the	Statement	instance.

Example	23.2.	Using	java.sql.Statement	to	execute	a	SELECT	query

//	assume	that	conn	is	an	already	created	JDBC	connection

Statement	stmt	=	null;

ResultSet	rs	=	null;

try	{

				stmt	=	conn.createStatement();

				rs	=	stmt.executeQuery("SELECT	foo	FROM	bar");

				//	or	alternatively,	if	you	don't	know	ahead	of	time	that

				//	the	query	will	be	a	SELECT...

				if	(stmt.execute("SELECT	foo	FROM	bar"))	{

								rs	=	stmt.getResultSet();

				}

				//	Now	do	something	with	the	ResultSet

}	finally	{

				//	it	is	a	good	idea	to	release

				//	resources	in	a	finally{}	block

				//	in	reverse-order	of	their	creation

				//	if	they	are	no-longer	needed

				if	(rs	!=	null)	{

								try	{

												rs.close();

								}	catch	(SQLException	sqlEx)	{	//	ignore	}

								rs	=	null;

				}

				if	(stmt	!=	null)	{

								try	{

												stmt.close();

								}	catch	(SQLException	sqlEx)	{	//	ignore	}

								stmt	=	null;

				}

}

23.3.5.1.3.	Using	CallableStatements	to	Execute	Stored	Procedures

Starting	with	MySQL	server	version	5.0	when	used	with	Connector/J	3.1.1	or
newer,	the	java.sql.CallableStatement	interface	is	fully	implemented	with
the	exception	of	the	getParameterMetaData()	method.

See	Chapter	17,	Stored	Procedures	and	Functions,	for	more	information	on
MySQL	stored	procedures.

Connector/J	exposes	stored	procedure	functionality	through	JDBC's
CallableStatement	interface.

Note.		Current	versions	of	MySQL	server	do	not	return	enough	information	for
the	JDBC	driver	to	provide	result	set	metadata	for	callable	statements.	This
means	that	when	using	CallableStatement,	ResultSetMetaData	may	return
NULL.

The	following	example	shows	a	stored	procedure	that	returns	the	value	of
inOutParam	incremented	by	1,	and	the	string	passed	in	via	inputParam	as	a
ResultSet:

Example	23.3.	Stored	Procedures

CREATE	PROCEDURE	demoSp(IN	inputParam	VARCHAR(255),	INOUT	inOutParam	INT)

BEGIN

				DECLARE	z	INT;

				SET	z	=	inOutParam	+	1;

				SET	inOutParam	=	z;

				SELECT	inputParam;

				SELECT	CONCAT('zyxw',	inputParam);

END

To	use	the	demoSp	procedure	with	Connector/J,	follow	these	steps:

1.	 Prepare	the	callable	statement	by	using	Connection.prepareCall()	.

Notice	that	you	have	to	use	JDBC	escape	syntax,	and	that	the	parentheses
surrounding	the	parameter	placeholders	are	not	optional:

Example	23.4.	Using	Connection.prepareCall()

import	java.sql.CallableStatement;

...

				//

				//	Prepare	a	call	to	the	stored	procedure	'demoSp'

				//	with	two	parameters

				//

				//	Notice	the	use	of	JDBC-escape	syntax	({call	...})

				//

				CallableStatement	cStmt	=	conn.prepareCall("{call	demoSp(?,	?)}");

				cStmt.setString(1,	"abcdefg");

Note.		Connection.prepareCall()	is	an	expensive	method,	due	to	the
metadata	retrieval	that	the	driver	performs	to	support	output	parameters.
For	performance	reasons,	you	should	try	to	minimize	unnecessary	calls	to
Connection.prepareCall()	by	reusing	CallableStatement	instances	in
your	code.

2.	 Register	the	output	parameters	(if	any	exist)

To	retrieve	the	values	of	output	parameters	(parameters	specified	as	OUT	or
INOUT	when	you	created	the	stored	procedure),	JDBC	requires	that	they	be
specified	before	statement	execution	using	the	various
registerOutputParameter()	methods	in	the	CallableStatement
interface:

Example	23.5.	Registering	output	parameters

import	java.sql.Types;

...

//

//	Connector/J	supports	both	named	and	indexed

//	output	parameters.	You	can	register	output

//	parameters	using	either	method,	as	well

//	as	retrieve	output	parameters	using	either

//	method,	regardless	of	what	method	was

//	used	to	register	them.

//

//	The	following	examples	show	how	to	use

//	the	various	methods	of	registering

//	output	parameters	(you	should	of	course

//	use	only	one	registration	per	parameter).

//

//

//	Registers	the	second	parameter	as	output,	and

//	uses	the	type	'INTEGER'	for	values	returned	from

//	getObject()

//

cStmt.registerOutParameter(2,	Types.INTEGER);

//

//	Registers	the	named	parameter	'inOutParam',	and

//	uses	the	type	'INTEGER'	for	values	returned	from

//	getObject()

//

cStmt.registerOutParameter("inOutParam",	Types.INTEGER);

...

3.	 Set	the	input	parameters	(if	any	exist)

Input	and	in/out	parameters	are	set	as	for	PreparedStatement	objects.

However,	CallableStatement	also	supports	setting	parameters	by	name:

Example	23.6.	Setting	CallableStatement	input	parameters

...

				//

				//	Set	a	parameter	by	index

				//

				cStmt.setString(1,	"abcdefg");

				//

				//	Alternatively,	set	a	parameter	using

				//	the	parameter	name

				//

				cStmt.setString("inputParameter",	"abcdefg");

				//

				//	Set	the	'in/out'	parameter	using	an	index

				//

				cStmt.setInt(2,	1);

				//

				//	Alternatively,	set	the	'in/out'	parameter

				//	by	name

				//

				cStmt.setInt("inOutParam",	1);

...

4.	 Execute	the	CallableStatement,	and	retrieve	any	result	sets	or	output
parameters.

Although	CallableStatement	supports	calling	any	of	the	Statement
execute	methods	(executeUpdate(),	executeQuery()	or	execute()),	the
most	flexible	method	to	call	is	execute(),	as	you	do	not	need	to	know
ahead	of	time	if	the	stored	procedure	returns	result	sets:

Example	23.7.	Retrieving	results	and	output	parameter	values

...

				boolean	hadResults	=	cStmt.execute();

				//

				//	Process	all	returned	result	sets

				//

				while	(hadResults)	{

								ResultSet	rs	=	cStmt.getResultSet();

								//	process	result	set

								...

								hadResults	=	rs.getMoreResults();

				}

				//

				//	Retrieve	output	parameters

				//

				//	Connector/J	supports	both	index-based	and

				//	name-based	retrieval

				//

				int	outputValue	=	rs.getInt(2);	//	index-based

				outputValue	=	rs.getInt("inOutParam");	//	name-based

...

23.3.5.1.4.	Retrieving	AUTO_INCREMENT	Column	Values

Before	version	3.0	of	the	JDBC	API,	there	was	no	standard	way	of	retrieving
key	values	from	databases	that	supported	auto	increment	or	identity	columns.
With	older	JDBC	drivers	for	MySQL,	you	could	always	use	a	MySQL-specific
method	on	the	Statement	interface,	or	issue	the	query	SELECT
LAST_INSERT_ID()	after	issuing	an	INSERT	to	a	table	that	had	an
AUTO_INCREMENT	key.	Using	the	MySQL-specific	method	call	isn't	portable,	and
issuing	a	SELECT	to	get	the	AUTO_INCREMENT	key's	value	requires	another	round-
trip	to	the	database,	which	isn't	as	efficient	as	possible.	The	following	code
snippets	demonstrate	the	three	different	ways	to	retrieve	AUTO_INCREMENT	values.
First,	we	demonstrate	the	use	of	the	new	JDBC-3.0	method
getGeneratedKeys()	which	is	now	the	preferred	method	to	use	if	you	need	to
retrieve	AUTO_INCREMENT	keys	and	have	access	to	JDBC-3.0.	The	second
example	shows	how	you	can	retrieve	the	same	value	using	a	standard	SELECT
LAST_INSERT_ID()	query.	The	final	example	shows	how	updatable	result	sets
can	retrieve	the	AUTO_INCREMENT	value	when	using	the	insertRow()	method.

Example	23.8.	Retrieving	AUTO_INCREMENT	column	values	using
Statement.getGeneratedKeys()

			Statement	stmt	=	null;

			ResultSet	rs	=	null;

			try	{

				//

				//	Create	a	Statement	instance	that	we	can	use	for

				//	'normal'	result	sets	assuming	you	have	a

				//	Connection	'conn'	to	a	MySQL	database	already

				//	available

				stmt	=	conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,

																																java.sql.ResultSet.CONCUR_UPDATABLE);

				//

				//	Issue	the	DDL	queries	for	the	table	for	this	example

				//

				stmt.executeUpdate("DROP	TABLE	IF	EXISTS	autoIncTutorial");

				stmt.executeUpdate(

												"CREATE	TABLE	autoIncTutorial	("

												+	"priKey	INT	NOT	NULL	AUTO_INCREMENT,	"

												+	"dataField	VARCHAR(64),	PRIMARY	KEY	(priKey))");

				//

				//	Insert	one	row	that	will	generate	an	AUTO	INCREMENT

				//	key	in	the	'priKey'	field

				//

				stmt.executeUpdate(

												"INSERT	INTO	autoIncTutorial	(dataField)	"

												+	"values	('Can	I	Get	the	Auto	Increment	Field?')",

												Statement.RETURN_GENERATED_KEYS);

				//

				//	Example	of	using	Statement.getGeneratedKeys()

				//	to	retrieve	the	value	of	an	auto-increment

				//	value

				//

				int	autoIncKeyFromApi	=	-1;

				rs	=	stmt.getGeneratedKeys();

				if	(rs.next())	{

								autoIncKeyFromApi	=	rs.getInt(1);

				}	else	{

								//	throw	an	exception	from	here

				}

				rs.close();

				rs	=	null;

				System.out.println("Key	returned	from	getGeneratedKeys():"

								+	autoIncKeyFromApi);

}	finally	{

				if	(rs	!=	null)	{

								try	{

												rs.close();

								}	catch	(SQLException	ex)	{

												//	ignore

								}

				}

				if	(stmt	!=	null)	{

								try	{

												stmt.close();

								}	catch	(SQLException	ex)	{

												//	ignore

								}

				}

}

Example	23.9.	Retrieving	AUTO_INCREMENT	column	values	using	SELECT
LAST_INSERT_ID()

			Statement	stmt	=	null;

			ResultSet	rs	=	null;

			try	{

				//

				//	Create	a	Statement	instance	that	we	can	use	for

				//	'normal'	result	sets.

				stmt	=	conn.createStatement();

				//

				//	Issue	the	DDL	queries	for	the	table	for	this	example

				//

				stmt.executeUpdate("DROP	TABLE	IF	EXISTS	autoIncTutorial");

				stmt.executeUpdate(

												"CREATE	TABLE	autoIncTutorial	("

												+	"priKey	INT	NOT	NULL	AUTO_INCREMENT,	"

												+	"dataField	VARCHAR(64),	PRIMARY	KEY	(priKey))");

				//

				//	Insert	one	row	that	will	generate	an	AUTO	INCREMENT

				//	key	in	the	'priKey'	field

				//

				stmt.executeUpdate(

												"INSERT	INTO	autoIncTutorial	(dataField)	"

												+	"values	('Can	I	Get	the	Auto	Increment	Field?')");

				//

				//	Use	the	MySQL	LAST_INSERT_ID()

				//	function	to	do	the	same	thing	as	getGeneratedKeys()

				//

				int	autoIncKeyFromFunc	=	-1;

				rs	=	stmt.executeQuery("SELECT	LAST_INSERT_ID()");

				if	(rs.next())	{

								autoIncKeyFromFunc	=	rs.getInt(1);

				}	else	{

								//	throw	an	exception	from	here

				}

				rs.close();

				System.out.println("Key	returned	from	"	+	"'SELECT	LAST_INSERT_ID()':	"

								+	autoIncKeyFromFunc);

}	finally	{

				if	(rs	!=	null)	{

								try	{

												rs.close();

								}	catch	(SQLException	ex)	{

												//	ignore

								}

				}

				if	(stmt	!=	null)	{

								try	{

												stmt.close();

								}	catch	(SQLException	ex)	{

												//	ignore

								}

				}

}

			

Example	23.10.	Retrieving	AUTO_INCREMENT	column	values	in	Updatable
ResultSets

			Statement	stmt	=	null;

			ResultSet	rs	=	null;

			try	{

				//

				//	Create	a	Statement	instance	that	we	can	use	for

				//	'normal'	result	sets	as	well	as	an	'updatable'

				//	one,	assuming	you	have	a	Connection	'conn'	to

				//	a	MySQL	database	already	available

				//

				stmt	=	conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,

																																java.sql.ResultSet.CONCUR_UPDATABLE);

				//

				//	Issue	the	DDL	queries	for	the	table	for	this	example

				//

				stmt.executeUpdate("DROP	TABLE	IF	EXISTS	autoIncTutorial");

				stmt.executeUpdate(

												"CREATE	TABLE	autoIncTutorial	("

												+	"priKey	INT	NOT	NULL	AUTO_INCREMENT,	"

												+	"dataField	VARCHAR(64),	PRIMARY	KEY	(priKey))");

				//

				//	Example	of	retrieving	an	AUTO	INCREMENT	key

				//	from	an	updatable	result	set

				//

				rs	=	stmt.executeQuery("SELECT	priKey,	dataField	"

							+	"FROM	autoIncTutorial");

				rs.moveToInsertRow();

				rs.updateString("dataField",	"AUTO	INCREMENT	here?");

				rs.insertRow();

				//

				//	the	driver	adds	rows	at	the	end

				//

				rs.last();

				//

				//	We	should	now	be	on	the	row	we	just	inserted

				//

				int	autoIncKeyFromRS	=	rs.getInt("priKey");

				rs.close();

				rs	=	null;

				System.out.println("Key	returned	for	inserted	row:	"

								+	autoIncKeyFromRS);

}	finally	{

				if	(rs	!=	null)	{

								try	{

												rs.close();

								}	catch	(SQLException	ex)	{

												//	ignore

								}

				}

				if	(stmt	!=	null)	{

								try	{

												stmt.close();

								}	catch	(SQLException	ex)	{

												//	ignore

								}

				}

}

			

When	you	run	the	preceding	example	code,	you	should	get	the	following	output:
Key	returned	from	getGeneratedKeys():	1	Key	returned	from	SELECT
LAST_INSERT_ID():	1	Key	returned	for	inserted	row:	2	You	should	be	aware,	that
at	times,	it	can	be	tricky	to	use	the	SELECT	LAST_INSERT_ID()	query,	as	that
function's	value	is	scoped	to	a	connection.	So,	if	some	other	query	happens	on
the	same	connection,	the	value	will	be	overwritten.	On	the	other	hand,	the
getGeneratedKeys()	method	is	scoped	by	the	Statement	instance,	so	it	can	be
used	even	if	other	queries	happen	on	the	same	connection,	but	not	on	the	same
Statement	instance.

23.3.5.2.	Using	Connector/J	with	J2EE	and	Other	Java	Frameworks

This	section	describes	how	to	use	Connector/J	in	several	contexts.

23.3.5.2.1.	General	J2EE	Concepts

This	section	provides	general	background	on	J2EE	concepts	that	pertain	to	use
of	Connector/J.

23.3.5.2.1.1.	Understanding	Connection	Pooling

Connection	pooling	is	a	technique	of	creating	and	managing	a	pool	of
connections	that	are	ready	for	use	by	any	thread	that	needs	them.

This	technique	of	pooling	connections	is	based	on	the	fact	that	most	applications
only	need	a	thread	to	have	access	to	a	JDBC	connection	when	they	are	actively
processing	a	transaction,	which	usually	take	only	milliseconds	to	complete.
When	not	processing	a	transaction,	the	connection	would	otherwise	sit	idle.
Instead,	connection	pooling	allows	the	idle	connection	to	be	used	by	some	other
thread	to	do	useful	work.

In	practice,	when	a	thread	needs	to	do	work	against	a	MySQL	or	other	database
with	JDBC,	it	requests	a	connection	from	the	pool.	When	the	thread	is	finished
using	the	connection,	it	returns	it	to	the	pool,	so	that	it	may	be	used	by	any	other
threads	that	want	to	use	it.

When	the	connection	is	loaned	out	from	the	pool,	it	is	used	exclusively	by	the
thread	that	requested	it.	From	a	programming	point	of	view,	it	is	the	same	as	if
your	thread	called	DriverManager.getConnection()	every	time	it	needed	a
JDBC	connection,	however	with	connection	pooling,	your	thread	may	end	up
using	either	a	new,	or	already-existing	connection.

Connection	pooling	can	greatly	increase	the	performance	of	your	Java
application,	while	reducing	overall	resource	usage.	The	main	benefits	to
connection	pooling	are:

Reduced	connection	creation	time

Although	this	is	not	usually	an	issue	with	the	quick	connection	setup	that

MySQL	offers	compared	to	other	databases,	creating	new	JDBC
connections	still	incurs	networking	and	JDBC	driver	overhead	that	will	be
avoided	if	connections	are	recycled.

Simplified	programming	model

When	using	connection	pooling,	each	individual	thread	can	act	as	though	it
has	created	its	own	JDBC	connection,	allowing	you	to	use	straight-forward
JDBC	programming	techniques.

Controlled	resource	usage

If	you	don't	use	connection	pooling,	and	instead	create	a	new	connection
every	time	a	thread	needs	one,	your	application's	resource	usage	can	be
quite	wasteful	and	lead	to	unpredictable	behavior	under	load.

Remember	that	each	connection	to	MySQL	has	overhead	(memory,	CPU,
context	switches,	and	so	forth)	on	both	the	client	and	server	side.	Every
connection	limits	how	many	resources	there	are	available	to	your	application	as
well	as	the	MySQL	server.	Many	of	these	resources	will	be	used	whether	or	not
the	connection	is	actually	doing	any	useful	work!

Connection	pools	can	be	tuned	to	maximize	performance,	while	keeping
resource	utilization	below	the	point	where	your	application	will	start	to	fail
rather	than	just	run	slower.

Luckily,	Sun	has	standardized	the	concept	of	connection	pooling	in	JDBC
through	the	JDBC-2.0	Optional	interfaces,	and	all	major	application	servers	have
implementations	of	these	APIs	that	work	fine	with	MySQL	Connector/J.

Generally,	you	configure	a	connection	pool	in	your	application	server
configuration	files,	and	access	it	via	the	Java	Naming	and	Directory	Interface
(JNDI).	The	following	code	shows	how	you	might	use	a	connection	pool	from
an	application	deployed	in	a	J2EE	application	server:

Example	23.11.	Using	a	connection	pool	with	a	J2EE	application	server

import	java.sql.Connection;

import	java.sql.SQLException;

import	java.sql.Statement;

import	javax.naming.InitialContext;

import	javax.sql.DataSource;

public	class	MyServletJspOrEjb	{

				public	void	doSomething()	throws	Exception	{

								/*

									*	Create	a	JNDI	Initial	context	to	be	able	to

									*		lookup		the	DataSource

									*

									*	In	production-level	code,	this	should	be	cached	as

									*	an	instance	or	static	variable,	as	it	can

									*	be	quite	expensive	to	create	a	JNDI	context.

									*

									*	Note:	This	code	only	works	when	you	are	using	servlets

									*	or	EJBs	in	a	J2EE	application	server.	If	you	are

									*	using	connection	pooling	in	standalone	Java	code,	you

									*	will	have	to	create/configure	datasources	using	whatever

									*	mechanisms	your	particular	connection	pooling	library

									*	provides.

									*/

								InitialContext	ctx	=	new	InitialContext();

									/*

										*	Lookup	the	DataSource,	which	will	be	backed	by	a	pool

										*	that	the	application	server	provides.	DataSource	instances

										*	are	also	a	good	candidate	for	caching	as	an	instance

										*	variable,	as	JNDI	lookups	can	be	expensive	as	well.

										*/

								DataSource	ds	=	(DataSource)ctx.lookup("java:comp/env/jdbc/MySQLDB");

								/*

									*	The	following	code	is	what	would	actually	be	in	your

									*	Servlet,	JSP	or	EJB	'service'	method...where	you	need

									*	to	work	with	a	JDBC	connection.

									*/

								Connection	conn	=	null;

								Statement	stmt	=	null;

								try	{

												conn	=	ds.getConnection();

												/*

													*	Now,	use	normal	JDBC	programming	to	work	with

													*	MySQL,	making	sure	to	close	each	resource	when	you're

													*	finished	with	it,	which	allows	the	connection	pool

													*	resources	to	be	recovered	as	quickly	as	possible

													*/

												stmt	=	conn.createStatement();

												stmt.execute("SOME	SQL	QUERY");

												stmt.close();

												stmt	=	null;

												conn.close();

												conn	=	null;

								}	finally	{

												/*

													*	close	any	jdbc	instances	here	that	weren't

													*	explicitly	closed	during	normal	code	path,	so

													*	that	we	don't	'leak'	resources...

													*/

												if	(stmt	!=	null)	{

																try	{

																				stmt.close();

																}	catch	(sqlexception	sqlex)	{

																				//	ignore	--	as	we	can't	do	anything	about	it	here

																}

																stmt	=	null;

												}

												if	(conn	!=	null)	{

																try	{

																				conn.close();

																}	catch	(sqlexception	sqlex)	{

																				//	ignore	--	as	we	can't	do	anything	about	it	here

																}

																conn	=	null;

												}

								}

				}

}

As	shown	in	the	example	above,	after	obtaining	the	JNDI	InitialContext,	and
looking	up	the	DataSource,	the	rest	of	the	code	should	look	familiar	to	anyone
who	has	done	JDBC	programming	in	the	past.

The	most	important	thing	to	remember	when	using	connection	pooling	is	to
make	sure	that	no	matter	what	happens	in	your	code	(exceptions,	flow-of-
control,	and	so	forth),	connections,	and	anything	created	by	them	(such	as

statements	or	result	sets)	are	closed,	so	that	they	may	be	re-used,	otherwise	they
will	be	stranded,	which	in	the	best	case	means	that	the	MySQL	server	resources
they	represent	(such	as	buffers,	locks,	or	sockets)	may	be	tied	up	for	some	time,
or	worst	case,	may	be	tied	up	forever.

What's	the	Best	Size	for	my	Connection	Pool?

As	with	all	other	configuration	rules-of-thumb,	the	answer	is:	it	depends.
Although	the	optimal	size	depends	on	anticipated	load	and	average	database
transaction	time,	the	optimum	connection	pool	size	is	smaller	than	you	might
expect.	If	you	take	Sun's	Java	Petstore	blueprint	application	for	example,	a
connection	pool	of	15-20	connections	can	serve	a	relatively	moderate	load	(600
concurrent	users)	using	MySQL	and	Tomcat	with	response	times	that	are
acceptable.

To	correctly	size	a	connection	pool	for	your	application,	you	should	create	load
test	scripts	with	tools	such	as	Apache	JMeter	or	The	Grinder,	and	load	test	your
application.

An	easy	way	to	determine	a	starting	point	is	to	configure	your	connection	pool's
maximum	number	of	connections	to	be	unbounded,	run	a	load	test,	and	measure
the	largest	amount	of	concurrently	used	connections.	You	can	then	work
backward	from	there	to	determine	what	values	of	minimum	and	maximum
pooled	connections	give	the	best	performance	for	your	particular	application.

23.3.5.2.2.	Using	Connector/J	with	Tomcat

The	following	instructions	are	based	on	the	instructions	for	Tomcat-5.x,
available	at	http://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-
examples-howto.html	which	is	current	at	the	time	this	document	was	written.

First,	install	the	.jar	file	that	comes	with	Connector/J	in
$CATALINA_HOME/common/lib	so	that	it	is	available	to	all	applications	installed	in
the	container.

Next,	Configure	the	JNDI	DataSource	by	adding	a	declaration	resource	to
$CATALINA_HOME/conf/server.xml	in	the	context	that	defines	your	web
application:

<Context>

http://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-examples-howto.html

		...

		<Resource	name="jdbc/MySQLDB"

															auth="Container"

															type="javax.sql.DataSource"/>

		<!--	The	name	you	used	above,	must	match	_exactly_	here!

							The	connection	pool	will	be	bound	into	JNDI	with	the	name

							"java:/comp/env/jdbc/MySQLDB"

		-->

		<ResourceParams	name="jdbc/MySQLDB">

				<parameter>

						<name>factory</name>

						<value>org.apache.commons.dbcp.BasicDataSourceFactory</value>

				</parameter>

				<!--	Don't	set	this	any	higher	than	max_connections	on	your

									MySQL	server,	usually	this	should	be	a	10	or	a	few	10's

									of	connections,	not	hundreds	or	thousands	-->

				<parameter>

						<name>maxActive</name>

						<value>10</value>

				</parameter>

				<!--	You	don't	want	to	many	idle	connections	hanging	around

									if	you	can	avoid	it,	only	enough	to	soak	up	a	spike	in

									the	load	-->

				<parameter>

						<name>maxIdle</name>

						<value>5</value>

				</parameter>

				<!--	Don't	use	autoReconnect=true,	it's	going	away	eventually

									and	it's	a	crutch	for	older	connection	pools	that	couldn't

									test	connections.	You	need	to	decide	whether	your	application	is

									supposed	to	deal	with	SQLExceptions	(hint,	it	should),	and

									how	much	of	a	performance	penalty	you're	willing	to	pay

									to	ensure	'freshness'	of	the	connection	-->

				<parameter>

						<name>validationQuery</name>

						<value>SELECT	1</value>

				</parameter>

			<!--	The	most	conservative	approach	is	to	test	connections

								before	they're	given	to	your	application.	For	most	applications

								this	is	okay,	the	query	used	above	is	very	small	and	takes

								no	real	server	resources	to	process,	other	than	the	time	used

								to	traverse	the	network.

								If	you	have	a	high-load	application	you'll	need	to	rely	on

								something	else.	-->

				<parameter>

						<name>testOnBorrow</name>

						<value>true</value>

				</parameter>

			<!--	Otherwise,	or	in	addition	to	testOnBorrow,	you	can	test

								while	connections	are	sitting	idle	-->

				<parameter>

						<name>testWhileIdle</name>

						<value>true</value>

				</parameter>

				<!--	You	have	to	set	this	value,	otherwise	even	though

									you've	asked	connections	to	be	tested	while	idle,

									the	idle	evicter	thread	will	never	run	-->

				<parameter>

						<name>timeBetweenEvictionRunsMillis</name>

						<value>10000</value>

				</parameter>

				<!--	Don't	allow	connections	to	hang	out	idle	too	long,

									never	longer	than	what	wait_timeout	is	set	to	on	the

									server...A	few	minutes	or	even	fraction	of	a	minute

									is	sometimes	okay	here,	it	depends	on	your	application

									and	how	much	spikey	load	it	will	see	-->

				<parameter>

						<name>minEvictableIdleTimeMillis</name>

						<value>60000</value>

				</parameter>

				<!--	Username	and	password	used	when	connecting	to	MySQL	-->

				<parameter>

					<name>username</name>

					<value>someuser</value>

				</parameter>

				<parameter>

					<name>password</name>

					<value>somepass</value>

				</parameter>

				<!--	Class	name	for	the	Connector/J	driver	-->

				<parameter>

							<name>driverClassName</name>

							<value>com.mysql.jdbc.Driver</value>

				</parameter>

				<!--	The	JDBC	connection	url	for	connecting	to	MySQL,	notice

									that	if	you	want	to	pass	any	other	MySQL-specific	parameters

									you	should	pass	them	here	in	the	URL,	setting	them	using	the

									parameter	tags	above	will	have	no	effect,	you	will	also

									need	to	use	&	to	separate	parameter	values	as	the

									ampersand	is	a	reserved	character	in	XML	-->

				<parameter>

						<name>url</name>

						<value>jdbc:mysql://localhost:3306/test</value>

				</parameter>

		</ResourceParams>

</Context>

In	general,	you	should	follow	the	installation	instructions	that	come	with	your
version	of	Tomcat,	as	the	way	you	configure	datasources	in	Tomcat	changes
from	time-to-time,	and	unfortunately	if	you	use	the	wrong	syntax	in	your	XML
file,	you	will	most	likely	end	up	with	an	exception	similar	to	the	following:

Error:	java.sql.SQLException:	Cannot	load	JDBC	driver	class	'null	'	SQL

state:	null	

23.3.5.2.3.	Using	Connector/J	with	JBoss

These	instructions	cover	JBoss-4.x.	To	make	the	JDBC	driver	classes	available
to	the	application	server,	copy	the	.jar	file	that	comes	with	Connector/J	to	the	lib
directory	for	your	server	configuration	(which	is	usually	called	default).	Then,
in	the	same	configuration	directory,	in	the	subdirectory	named	deploy,	create	a
datasource	configuration	file	that	ends	with	"-ds.xml",	which	tells	JBoss	to
deploy	this	file	as	a	JDBC	Datasource.	The	file	should	have	the	following
contents:

<datasources>

				<local-tx-datasource>

								<!--	This	connection	pool	will	be	bound	into	JNDI	with	the	name

													"java:/MySQLDB"	-->

								<jndi-name>MySQLDB</jndi-name>

								<connection-url>jdbc:mysql://localhost:3306/dbname</connection-url>

								<driver-class>com.mysql.jdbc.Driver</driver-class>

								<user-name>user</user-name>

								<password>pass</password>

								<min-pool-size>5</min-pool-size>

								<!--	Don't	set	this	any	higher	than	max_connections	on	your

									MySQL	server,	usually	this	should	be	a	10	or	a	few	10's

									of	connections,	not	hundreds	or	thousands	-->

								<max-pool-size>20</max-pool-size>

								<!--	Don't	allow	connections	to	hang	out	idle	too	long,

									never	longer	than	what	wait_timeout	is	set	to	on	the

									server...A	few	minutes	is	usually	okay	here,

									it	depends	on	your	application

									and	how	much	spikey	load	it	will	see	-->

								<idle-timeout-minutes>5</idle-timeout-minutes>

								<!--	If	you're	using	Connector/J	3.1.8	or	newer,	you	can	use

													our	implementation	of	these	to	increase	the	robustness

													of	the	connection	pool.	-->

								<exception-sorter-class-name>com.mysql.jdbc.integration.jboss.ExtendedMysqlExceptionSorter</exception-sorter-class-name>

								<valid-connection-checker-class-name>com.mysql.jdbc.integration.jboss.MysqlValidConnectionChecker</valid-connection-checker-class-name>

				</local-tx-datasource>

</datasources>	

23.3.5.3.	Common	Problems	and	Solutions

There	are	a	few	issues	that	seem	to	be	commonly	encountered	often	by	users	of
MySQL	Connector/J.	This	section	deals	with	their	symptoms,	and	their
resolutions.

24.3.5.3.1:

Question:

When	I	try	to	connect	to	the	database	with	MySQL	Connector/J,	I	get	the
following	exception:

SQLException:	Server	configuration	denies	access	to	data	source

SQLState:	08001

VendorError:	0

What's	going	on?	I	can	connect	just	fine	with	the	MySQL	command-line	client.

Answer:

MySQL	Connector/J	must	use	TCP/IP	sockets	to	connect	to	MySQL,	as	Java
does	not	support	Unix	Domain	Sockets.	Therefore,	when	MySQL	Connector/J
connects	to	MySQL,	the	security	manager	in	MySQL	server	will	use	its	grant
tables	to	determine	whether	the	connection	should	be	allowed.

You	must	add	the	necessary	security	credentials	to	the	MySQL	server	for	this	to
happen,	using	the	GRANT	statement	to	your	MySQL	Server.	See	Section	13.5.1.3,
“GRANT	Syntax”,	for	more	information.

Note.		Testing	your	connectivity	with	the	mysql	command-line	client	will	not
work	unless	you	add	the	--host	flag,	and	use	something	other	than	localhost
for	the	host.	The	mysql	command-line	client	will	use	Unix	domain	sockets	if
you	use	the	special	hostname	localhost.	If	you	are	testing	connectivity	to
localhost,	use	127.0.0.1	as	the	hostname	instead.

Warning.		Changing	privileges	and	permissions	improperly	in	MySQL	can
potentially	cause	your	server	installation	to	not	have	optimal	security	properties.

24.3.5.3.2:

Question:

My	application	throws	an	SQLException	'No	Suitable	Driver'.	Why	is	this
happening?

Answer:

There	are	three	possible	causes	for	this	error:

The	Connector/J	driver	is	not	in	your	CLASSPATH,	see	Section	23.3.2,

“Installing	Connector/J”.

The	format	of	your	connection	URL	is	incorrect,	or	you	are	referencing	the
wrong	JDBC	driver.

When	using	DriverManager,	the	jdbc.drivers	system	property	has	not
been	populated	with	the	location	of	the	Connector/J	driver.

24.3.5.3.3:

Question:

I'm	trying	to	use	MySQL	Connector/J	in	an	applet	or	application	and	I	get	an
exception	similar	to:

SQLException:	Cannot	connect	to	MySQL	server	on	host:3306.

Is	there	a	MySQL	server	running	on	the	machine/port	you

are	trying	to	connect	to?

(java.security.AccessControlException)

SQLState:	08S01

VendorError:	0	

Answer:

Either	you're	running	an	Applet,	your	MySQL	server	has	been	installed	with	the
"--skip-networking"	option	set,	or	your	MySQL	server	has	a	firewall	sitting	in
front	of	it.

Applets	can	only	make	network	connections	back	to	the	machine	that	runs	the
web	server	that	served	the	.class	files	for	the	applet.	This	means	that	MySQL
must	run	on	the	same	machine	(or	you	must	have	some	sort	of	port	re-direction)
for	this	to	work.	This	also	means	that	you	will	not	be	able	to	test	applets	from
your	local	file	system,	you	must	always	deploy	them	to	a	web	server.

MySQL	Connector/J	can	only	communicate	with	MySQL	using	TCP/IP,	as	Java
does	not	support	Unix	domain	sockets.	TCP/IP	communication	with	MySQL
might	be	affected	if	MySQL	was	started	with	the	"--skip-networking"	flag,	or	if
it	is	firewalled.

If	MySQL	has	been	started	with	the	"--skip-networking"	option	set	(the	Debian
Linux	package	of	MySQL	server	does	this	for	example),	you	need	to	comment	it

out	in	the	file	/etc/mysql/my.cnf	or	/etc/my.cnf.	Of	course	your	my.cnf	file	might
also	exist	in	the	data	directory	of	your	MySQL	server,	or	anywhere	else
(depending	on	how	MySQL	was	compiled	for	your	system).	Binaries	created	by
MySQL	AB	always	look	in	/etc/my.cnf	and	[datadir]/my.cnf.	If	your	MySQL
server	has	been	firewalled,	you	will	need	to	have	the	firewall	configured	to	allow
TCP/IP	connections	from	the	host	where	your	Java	code	is	running	to	the
MySQL	server	on	the	port	that	MySQL	is	listening	to	(by	default,	3306).

24.3.5.3.4:

Question:

I	have	a	servlet/application	that	works	fine	for	a	day,	and	then	stops	working
overnight

Answer:

MySQL	closes	connections	after	8	hours	of	inactivity.	You	either	need	to	use	a
connection	pool	that	handles	stale	connections	or	use	the	"autoReconnect"
parameter	(see	Section	23.3.4.1,	“Driver/Datasource	Class	Names,	URL	Syntax
and	Configuration	Properties	for	Connector/J”).

Also,	you	should	be	catching	SQLExceptions	in	your	application	and	dealing
with	them,	rather	than	propagating	them	all	the	way	until	your	application	exits,
this	is	just	good	programming	practice.	MySQL	Connector/J	will	set	the
SQLState	(see	java.sql.SQLException.getSQLState()	in	your	APIDOCS)	to
"08S01"	when	it	encounters	network-connectivity	issues	during	the	processing
of	a	query.	Your	application	code	should	then	attempt	to	re-connect	to	MySQL	at
this	point.

The	following	(simplistic)	example	shows	what	code	that	can	handle	these
exceptions	might	look	like:

Example	23.12.	Example	of	transaction	with	retry	logic

public	void	doBusinessOp()	throws	SQLException	{

								Connection	conn	=	null;

								Statement	stmt	=	null;

								ResultSet	rs	=	null;

								//

								//	How	many	times	do	you	want	to	retry	the	transaction

								//	(or	at	least	_getting_	a	connection)?

								//

								int	retryCount	=	5;

								boolean	transactionCompleted	=	false;

								do	{

												try	{

																conn	=	getConnection();	//	assume	getting	this	from	a

																																								//	javax.sql.DataSource,	or	the

																																								//	java.sql.DriverManager

																conn.setAutoCommit(false);

																//

																//	Okay,	at	this	point,	the	'retry-ability'	of	the

																//	transaction	really	depends	on	your	application	logic,

																//	whether	or	not	you're	using	autocommit	(in	this	case

																//	not),	and	whether	you're	using	transacational	storage

																//	engines

																//

																//	For	this	example,	we'll	assume	that	it's	_not_	safe

																//	to	retry	the	entire	transaction,	so	we	set	retry	count

																//	to	0	at	this	point

																//

																//	If	you	were	using	exclusively	transaction-safe	tables,

																//	or	your	application	could	recover	from	a	connection	going

																//	bad	in	the	middle	of	an	operation,	then	you	would	not

																//	touch	'retryCount'	here,	and	just	let	the	loop	repeat

																//	until	retryCount	==	0.

																//

																retryCount	=	0;

																stmt	=	conn.createStatement();

																String	query	=	"SELECT	foo	FROM	bar	ORDER	BY	baz";

																rs	=	stmt.executeQuery(query);

																while	(rs.next())	{

																}

																rs.close();

																rs	=	null;

																stmt.close();

																stmt	=	null;

																conn.commit();

																conn.close();

																conn	=	null;

																transactionCompleted	=	true;

												}	catch	(SQLException	sqlEx)	{

																//

																//	The	two	SQL	states	that	are	'retry-able'	are	08S01

																//	for	a	communications	error,	and	40001	for	deadlock.

																//

																//	Only	retry	if	the	error	was	due	to	a	stale	connection,

																//	communications	problem	or	deadlock

																//

																String	sqlState	=	sqlEx.getSQLState();

																if	("08S01".equals(sqlState)	||	"40001".equals(sqlState))	{

																				retryCount--;

																}	else	{

																				retryCount	=	0;

																}

												}	finally	{

																if	(rs	!=	null)	{

																				try	{

																								rs.close();

																				}	catch	(SQLException	sqlEx)	{

																								//	You'd	probably	want	to	log	this	.	.	.

																				}

																}

																if	(stmt	!=	null)	{

																				try	{

																								stmt.close();

																				}	catch	(SQLException	sqlEx)	{

																								//	You'd	probably	want	to	log	this	as	well	.	.	.

																				}

																}

																if	(conn	!=	null)	{

																				try	{

																								//

																								//	If	we	got	here,	and	conn	is	not	null,	the

																								//	transaction	should	be	rolled	back,	as	not

																								//	all	work	has	been	done

																								try	{

																												conn.rollback();

																								}	finally	{

																												conn.close();

																								}

																				}	catch	(SQLException	sqlEx)	{

																								//

																								//	If	we	got	an	exception	here,	something

																								//	pretty	serious	is	going	on,	so	we	better

																								//	pass	it	up	the	stack,	rather	than	just

																								//	logging	it.	.	.

																								throw	sqlEx;

																				}

																}

												}

								}	while	(!transactionCompleted	&&	(retryCount	>	0));

				}

Note.		Use	of	the	autoReconnect	option	is	not	recommended	because	there	is	no
safe	method	of	reconnecting	to	the	MySQL	server	without	risking	some
corruption	of	the	connection	state	or	database	state	information.	Instead,	you
should	use	a	connection	pool	which	will	enable	your	application	to	connect	to
the	MySQL	server	using	an	available	connection	from	the	pool.	The
autoReconnect	facility	is	deprecated,	and	may	be	removed	in	a	future	release.

24.3.5.3.5:

Question:

I'm	trying	to	use	JDBC-2.0	updatable	result	sets,	and	I	get	an	exception	saying
my	result	set	is	not	updatable.

Answer:

Because	MySQL	does	not	have	row	identifiers,	MySQL	Connector/J	can	only
update	result	sets	that	have	come	from	queries	on	tables	that	have	at	least	one
primary	key,	the	query	must	select	every	primary	key	and	the	query	can	only
span	one	table	(that	is,	no	joins).	This	is	outlined	in	the	JDBC	specification.

23.3.6.	Connector/J	Support

23.3.6.1.	Connector/J	Community	Support

MySQL	AB	provides	assistance	to	the	user	community	by	means	of	its	mailing
lists.	For	Connector/J	related	issues,	you	can	get	help	from	experienced	users	by
using	the	MySQL	and	Java	mailing	list.	Archives	and	subscription	information	is

available	online	at	http://lists.mysql.com/java.

For	information	about	subscribing	to	MySQL	mailing	lists	or	to	browse	list
archives,	visit	http://lists.mysql.com/.	See	Section	1.7.1,	“MySQL	Mailing
Lists”.

Community	support	from	experienced	users	is	also	available	through	the	JDBC
Forum.	You	may	also	find	help	from	other	users	in	the	other	MySQL	Forums,
located	at	http://forums.mysql.com.	See	Section	1.7.2,	“MySQL	Community
Support	at	the	MySQL	Forums”.

23.3.6.2.	How	to	Report	Connector/J	Bugs	or	Problems

The	normal	place	to	report	bugs	is	http://bugs.mysql.com/,	which	is	the	address
for	our	bugs	database.	This	database	is	public,	and	can	be	browsed	and	searched
by	anyone.	If	you	log	in	to	the	system,	you	will	also	be	able	to	enter	new	reports.

If	you	have	found	a	sensitive	security	bug	in	MySQL,	you	can	send	email	to
security_at_mysql.com.

Writing	a	good	bug	report	takes	patience,	but	doing	it	right	the	first	time	saves
time	both	for	us	and	for	yourself.	A	good	bug	report,	containing	a	full	test	case
for	the	bug,	makes	it	very	likely	that	we	will	fix	the	bug	in	the	next	release.

This	section	will	help	you	write	your	report	correctly	so	that	you	don't	waste
your	time	doing	things	that	may	not	help	us	much	or	at	all.

If	you	have	a	repeatable	bug	report,	please	report	it	to	the	bugs	database	at
http://bugs.mysql.com/.	Any	bug	that	we	are	able	to	repeat	has	a	high	chance	of
being	fixed	in	the	next	MySQL	release.

To	report	other	problems,	you	can	use	one	of	the	MySQL	mailing	lists.

Remember	that	it	is	possible	for	us	to	respond	to	a	message	containing	too	much
information,	but	not	to	one	containing	too	little.	People	often	omit	facts	because
they	think	they	know	the	cause	of	a	problem	and	assume	that	some	details	don't
matter.

A	good	principle	is	this:	If	you	are	in	doubt	about	stating	something,	state	it.	It	is

http://lists.mysql.com/java
http://lists.mysql.com/
http://forums.mysql.com/list.php?39
http://forums.mysql.com
http://bugs.mysql.com/
mailto:security_at_mysql.com
http://bugs.mysql.com/

faster	and	less	troublesome	to	write	a	couple	more	lines	in	your	report	than	to
wait	longer	for	the	answer	if	we	must	ask	you	to	provide	information	that	was
missing	from	the	initial	report.

The	most	common	errors	made	in	bug	reports	are	(a)	not	including	the	version
number	of	Connector/J	or	MySQL	used,	and	(b)	not	fully	describing	the	platform
on	which	Connector/J	is	installed	(including	the	JVM	version,	and	the	platform
type	and	version	number	that	MySQL	itself	is	installed	on).

This	is	highly	relevant	information,	and	in	99	cases	out	of	100,	the	bug	report	is
useless	without	it.	Very	often	we	get	questions	like,	“Why	doesn't	this	work	for
me?”	Then	we	find	that	the	feature	requested	wasn't	implemented	in	that
MySQL	version,	or	that	a	bug	described	in	a	report	has	already	been	fixed	in
newer	MySQL	versions.

Sometimes	the	error	is	platform-dependent;	in	such	cases,	it	is	next	to	impossible
for	us	to	fix	anything	without	knowing	the	operating	system	and	the	version
number	of	the	platform.

If	at	all	possible,	you	should	create	a	repeatable,	stanalone	testcase	that	doesn't
involve	any	third-party	classes.

To	streamline	this	process,	we	ship	a	base	class	for	testcases	with	Connector/J,
named	'com.mysql.jdbc.util.BaseBugReport'.	To	create	a	testcase	for
Connector/J	using	this	class,	create	your	own	class	that	inherits	from
com.mysql.jdbc.util.BaseBugReport	and	override	the	methods	setUp(),
tearDown()	and	runTest().

In	the	setUp()	method,	create	code	that	creates	your	tables,	and	populates	them
with	any	data	needed	to	demonstrate	the	bug.

In	the	runTest()	method,	create	code	that	demonstrates	the	bug	using	the	tables
and	data	you	created	in	the	setUp	method.

In	the	tearDown()	method,	drop	any	tables	you	created	in	the	setUp()	method.

In	any	of	the	above	three	methods,	you	should	use	one	of	the	variants	of	the
getConnection()	method	to	create	a	JDBC	connection	to	MySQL:

getConnection()	-	Provides	a	connection	to	the	JDBC	URL	specified	in

getUrl().	If	a	connection	already	exists,	that	connection	is	returned,
otherwise	a	new	connection	is	created.

getNewConnection()	-	Use	this	if	you	need	to	get	a	new	connection	for
your	bug	report	(i.e.	there's	more	than	one	connection	involved).

getConnection(String	url)	-	Returns	a	connection	using	the	given	URL.

getConnection(String	url,	Properties	props)	-	Returns	a	connection
using	the	given	URL	and	properties.

If	you	need	to	use	a	JDBC	URL	that	is	different	from	'jdbc:mysql:///test',
override	the	method	getUrl()	as	well.

Use	the	assertTrue(boolean	expression)	and	assertTrue(String
failureMessage,	boolean	expression)	methods	to	create	conditions	that	must
be	met	in	your	testcase	demonstrating	the	behavior	you	are	expecting	(vs.	the
behavior	you	are	observing,	which	is	why	you	are	most	likely	filing	a	bug
report).

Finally,	create	a	main()	method	that	creates	a	new	instance	of	your	testcase,	and
calls	the	run	method:

public	static	void	main(String[]	args)	throws	Exception	{

						new	MyBugReport().run();

	}

Once	you	have	finished	your	testcase,	and	have	verified	that	it	demonstrates	the
bug	you	are	reporting,	upload	it	with	your	bug	report	to	http://bugs.mysql.com/.

23.3.6.3.	Connector/J	Change	History

The	Connector/J	Change	History	(Changelog)	is	located	with	the	main
Changelog	for	MySQL.	See	Section	D.5,	“MySQL	Connector/J	Change
History”.

http://bugs.mysql.com/

23.4.	MySQL	Connector/MXJ

MySQL	Connector/MXJ	is	a	solution	for	deploying	the	MySQL	database	engine
(mysqld)	intelligently	from	within	a	Java	package.

23.4.1.	Introduction	to	Connector/MXJ

MySQL	Connector/MXJ	is	a	Java	Utility	package	for	deploying	and	managing	a
MySQL	database.	Deploying	and	using	MySQL	can	be	as	easy	as	adding	an
additional	parameter	to	the	JDBC	connection	url,	which	will	result	in	the
database	being	started	when	the	first	connection	is	made.	This	makes	it	easy	for
Java	developers	to	deploy	applications	which	require	a	database	by	reducing
installation	barriers	for	their	end-users.

MySQL	Connector/MXJ	makes	the	MySQL	database	appear	to	be	a	java-based
component.	It	does	this	by	determining	what	platform	the	system	is	running	on,
selecting	the	appropriate	binary,	and	launching	the	executable.	It	will	also
optionally	deploy	an	initial	database,	with	any	specified	parameters.

Included	are	instructions	for	use	with	a	JDBC	driver	and	deploying	as	a	JMX
MBean	to	JBoss.

You	can	download	sources	and	binaries	from:
http://dev.mysql.com/downloads/connector/mxj/

This	a	beta	release	and	feedback	is	welcome	and	encouraged.

Please	send	questions	or	comments	to	the	MySQL	and	Java	mailing	list.

23.4.1.1.	Connector/MXJ	Versions

Connector/MX

Connector/MXJ	5.x,	currently	in	beta	status,	includes	mysqld	version	5.0.22
and	includes	binaries	for	Linux	x86,	Mac	OS	X	PPC,	Windows
XP/NT/2000	x86	and	Solaris	SPARC.	Connector/MXJ	5.x	requires	the
Connector/J	5.x	package.

http://dev.mysql.com/downloads/connector/mxj/
http://lists.mysql.com/java

Connector/MXJ	1.x	includes	mysqld	version	4.1.13	and	includes	binaries
for	Linux	x86,	Windows	XP/NT/2000	x86	and	Solaris	SPARC.
Connector/MXJ	1.x	requires	the	Connector/J	3.x	package.

This	guide	provides	information	on	the	Connector/MXJ	5.x	release.	For
information	on	using	the	older	releases,	please	see	the	documentation	included
with	the	appropriate	distribution.

23.4.1.2.	Connector/MXJ	Overview

Connector/MXJ	consists	of	a	Java	class,	a	copy	of	the	mysqld	binary	for	a
specific	list	of	platforms,	and	associated	files	and	support	utilities.	The	Java	class
controls	the	initialization	of	an	instance	of	the	embedded	mysqld	binary,	and	the
ongoing	management	of	the	mysqld	process.	The	entire	sequence	and
management	can	be	controlled	entirely	from	within	Java	using	the
Connector/MXJ	Java	classes.	You	can	see	an	overview	of	the	contents	of	the
Connector/MXJ	package	in	the	figure	below.

It	is	important	to	note	that	Connector/MXJ	is	not	an	embedded	version	of
MySQL,	or	a	version	of	MySQL	written	as	part	of	a	Java	class.	Connector/MXJ
works	through	the	use	of	an	embedded,	compiled	binary	of	mysqld	as	would
normally	be	used	when	deploying	a	standard	MySQL	installation.

It	is	the	Connector/MXJ	wrapper,	support	classes	and	tools,	that	enable
Connector/MXJ	to	appear	as	a	MySQL	instance.

When	Connector/MXJ	is	initialized,	the	corresponding	mysqld	binary	for	the
current	platform	is	extracted,	along	with	a	pre-configured	data	directed.	Both	are
contained	within	the	Connector/MXJ	JAR	file.	The	mysqld	instance	is	then
started,	with	any	additional	options	as	specified	during	the	initialization,	and	the
MySQL	database	becomes	accessible.

Because	Connector/MXJ	works	in	combination	with	Connector/J,	you	can
access	and	integrate	with	the	MySQL	instance	through	a	JDBC	connection.
When	you	have	finished	with	the	server,	the	instance	is	terminated,	and,	by
default,	any	data	created	during	the	session	is	retained	within	the	temporary
directory	created	when	the	instance	was	started.

Connector/MXJ	and	the	embedded	mysqld	instance	can	be	deployed	in	a	number
of	environments	where	relying	on	an	existing	database,	or	installing	a	MySQL
instance	would	be	impossible,	including	CD-ROM	embedded	database
applications	and	temporary	database	requirements	within	a	Java-based
application	environment.

23.4.2.	Installing	Connector/MXJ

Connector/MXJ	does	not	have	a	installation	application	or	process,	but	there	are
some	steps	you	can	follow	to	make	the	installation	and	deployment	of
Connector/MXJ	easier.

Before	you	start,	there	are	some	baseline	requirements	for

Java	Runtime	Environment	(v1.4.0	or	newer)	if	you	are	only	going	to
deploy	the	package.

Java	Development	Kit	(v1.4.0	or	newer)	if	you	want	to	build
Connector/MXJ	from	source.

Connector/J	5.0	or	newer.

Depending	on	your	target	installation/deployment	environment	you	may	also
require:

JBoss	-	4.0rc1	or	newer

Apache	Tomcat	-	5.0	or	newer

Sun's	JMX	reference	implementation	version	1.2.1	(from
http://java.sun.com/products/JavaManagement/)

23.4.2.1.	Supported	Platforms

Connector/MXJ	is	compatible	with	any	platform	supporting	Java	and	MySQL.
By	default,	Connector/MXJ	incorporates	the	mysqld	binary	for	a	select	number
of	platforms,	as	outlined	below.

Linux,	i386

http://java.sun.com/products/JavaManagement/

Windows	NT,	Windows	2000,	Windows	XP,	x86

Solaris	8,	SPARC	32	(compatible	with	Solaris	8,	Solaris	9	and	Solaris	10	on
SPARC	32-bit	and	64-bit	platforms)

Mac	OS	X,	PowerPC

For	more	information	on	packaging	your	own	Connector/MXJ	with	the
platforms	you	require,	see	Section	23.4.5.1,	“Creating	your	own	Connector/MXJ
Package”

23.4.2.2.	Connector/MXJ	Base	Installation

Because	there	is	no	formal	installation	process,	the	method,	installation
directory,	and	access	methods	you	use	for	Connector/MXJ	are	entirely	up	to	your
individual	requirements.

To	perform	a	basic	installation,	choose	a	target	directory	for	the	files	included	in
the	Connector/MXJ	package.	On	Unix/Linux	systems	you	may	opt	to	use	a
directory	such	as	/usr/local/connector-mxj;	On	Windows,	you	may	want	to
install	the	files	in	the	base	directory,	C:\Connector-MXJ,	or	within	the	Program
Files	directory.

To	install	the	files:

1.	 Download	the	Connector/MXJ	package,	either	in	Tar/Gzip	format	(ideal	for
Unix/Linux	systems)	or	Zip	format	(Windows).

2.	 Extract	the	files	from	the	package.	This	will	create	a	directory	connector-
mxj.	Copy	and	optionally	rename	this	directory	to	your	desired	location.

3.	 For	best	results,	you	should	update	your	global	CLASSPATH	variable	with	the
location	of	the	Connector/MXJ	JAR	(connextor-mxj.jar).	You	will	also
need	to	add	the	AspectJ	Runtime,	located	in	lib/aspectjrt.jar.

Within	Unix/Linux	you	can	do	this	globally	by	editing	the	global	shell
profile,	or	on	a	user	by	user	basis	by	editing	their	individual	shell	profile.

On	Windows	2000,	Windows	NT	and	Windows	XP,	you	can	edit	the	global
CLASSPATH	by	editing	the	Environment	Variables	configured	through	the

System	control	panel.

23.4.2.3.	Connector/MXJ	Quick	Start	Guide

Once	you	have	extracted	the	Connector/MXJ	and	Connector/J	components	you
can	run	one	of	the	sample	applications	that	initiates	a	MySQL	instance.	You	can
test	the	installation	by	running	the	ConnectorMXJUrlTestExample:

java	ConnectorMXJUrlTestExample

jdbc:mysql:mxj://localhost:3336/test?server.basedir=/var/tmp/test-mxj

[MysqldResource]	launching	mysqld	(getOptions)

[/var/tmp/test-mxj/bin/mysqld][--no-defaults][--pid-file=/var/tmp/test-mxj/data/MysqldResource.pid][--socket=mysql.sock][--datadir=/var/tmp/test-mxj/data][--port=3336][--basedir=/var/tmp/test-mxj]

[MysqldResource]	launching	mysqld	(driver_launched_mysqld_1)

InnoDB:	The	first	specified	data	file	./ibdata1	did	not	exist:

InnoDB:	a	new	database	to	be	created!

060726	15:40:42		InnoDB:	Setting	file	./ibdata1	size	to	10	MB

InnoDB:	Database	physically	writes	the	file	full:	wait...

060726	15:40:43		InnoDB:	Log	file	./ib_logfile0	did	not	exist:	new	to	be	created

InnoDB:	Setting	log	file	./ib_logfile0	size	to	5	MB

InnoDB:	Database	physically	writes	the	file	full:	wait...

060726	15:40:43		InnoDB:	Log	file	./ib_logfile1	did	not	exist:	new	to	be	created

InnoDB:	Setting	log	file	./ib_logfile1	size	to	5	MB

InnoDB:	Database	physically	writes	the	file	full:	wait...

InnoDB:	Doublewrite	buffer	not	found:	creating	new

InnoDB:	Doublewrite	buffer	created

InnoDB:	Creating	foreign	key	constraint	system	tables

InnoDB:	Foreign	key	constraint	system	tables	created

060726	15:40:44		InnoDB:	Started;	log	sequence	number	0	0

060726	15:40:44	[Note]	/var/tmp/test-mxj/bin/mysqld:	ready	for	connections.

Version:	'5.0.22-max'		socket:	'mysql.sock'		port:	3336		MySQL	Community	Edition	-	Experimental	(GPL)

[MysqldResource]	mysqld	running	as	process:	1210

5.0.22-max

[MysqldResource]	stopping	mysqld	(process:	1210)

060726	15:40:44	[Note]	/var/tmp/test-mxj/bin/mysqld:	Normal	shutdown

060726	15:40:45		InnoDB:	Starting	shutdown...

060726	15:40:48		InnoDB:	Shutdown	completed;	log	sequence	number	0	43655

060726	15:40:48	[Note]	/var/tmp/test-mxj/bin/mysqld:	Shutdown	complete

[MysqldResource]	clearing	options

[MysqldResource]	shutdown	complete

The	above	output	shows	an	instance	of	MySQL	starting,	the	necessary	files

being	created	(log	files,	InnoDB	data	files)	and	the	MySQL	database	entering	the
running	state.	The	instance	is	then	shutdown	by	Connector/MXJ	before	the
example	terminates.

23.4.2.4.	Deploying	Connector/MXJ	using	Driver	Launch

Connector/MXJ	and	Connector/J	work	together	to	enable	you	to	launch	an
instance	of	the	mysqld	server	through	the	use	of	a	keyword	in	the	JDBC
connection	string.	Deploying	Connector/MXJ	within	a	Java	application	can	be
automated	through	this	method,	making	the	deployment	of	Connector/MXJ	a
simple	process:

1.	 Download	and	unzip	Connector/MXJ,	add	connector-mxj.jar	to	the
CLASSPATH.

2.	 To	the	JDBC	connection	string,	embed	the	mxj	keyword,	for	example:
jdbc:mysql:mxj://localhost:PORT/DBNAME.

For	more	details,	see	Section	23.4.3,	“Connector/MXJ	Configuration”.

23.4.2.5.	Deploying	Connector/MXJ	within	JBoss

For	deployment	within	a	JBoss	environment,	you	must	configure	the	JBoss
environment	to	use	the	Connector/MXJ	component	within	the	JDBC	parameters:

1.	 Download	Connector/MXJ	copy	the	connector-mxj.jar	file	to	the
$JBOSS_HOME/server/default/lib	directory.

2.	 Download	Connector/J	copy	the	connector-mxj.jar	file	to	the
$JBOSS_HOME/server/default/lib	directory.

3.	 Create	an	MBean	service	xml	file	in	the
$JBOSS_HOME/server/default/deploy	directory	with	any	attributes	set,	for
instance	the	datadir	and	autostart.

4.	 Set	the	JDBC	parameters	of	your	web	application	to	use:

String	driver	=	"com.mysql.jdbc.Driver";	

String	url	=	"jdbc:mysql:///test?propertiesTransform="+

													"com.mysql.management.jmx.ConnectorMXJPropertiesTransform";	

String	user	=	"root";	

String	password	=	"";	

Class.forName(driver);

Connection	conn	=	DriverManager.getConnection(url,	user,	password);	

You	may	wish	to	create	a	separate	users	and	database	table	spaces	for	each
application,	rather	than	using	"root	and	test".

We	highly	suggest	having	a	routine	backup	procedure	for	backing	up	the
database	files	in	the	datadir.

23.4.2.6.	Verifying	Installation	using	JUnit

The	best	way	to	ensure	that	your	platform	is	supported	is	to	run	the	JUnit	tests.
These	will	test	the	Connector/MXJ	classes	and	the	associated	components.

23.4.2.6.1.	JUnit	Test	Requirements

The	first	thing	to	do	is	make	sure	that	the	components	will	work	on	the	platform.
The	MysqldResource	class	is	really	a	wrapper	for	a	native	version	of	MySQL,	so
not	all	platforms	are	supported.	At	the	time	of	this	writing,	Linux	on	the	i386
architecture	has	been	tested	and	seems	to	work	quite	well,	as	does	OS	X	v10.3.
There	has	been	limited	testing	on	Windows	and	Solaris.

Requirements:

1.	 JDK-1.4	or	newer	(or	the	JRE	if	you	aren't	going	to	be	compiling	the	source
or	JSPs).

2.	 MySQL	Connector/J	version	5.0	or	newer	(from
http://dev.mysql.com/downloads/connector/j/)	installed	and	available	via
your	CLASSPATH.

3.	 The	javax.management	classes	for	JMX	version	1.2.1,	these	are	present	in
the	following	application	servers:

JBoss	-	4.0rc1	or	newer.

Apache	Tomcat	-	5.0	or	newer.

http://dev.mysql.com/downloads/connector/j/

Sun's	JMX	reference	implementation	version	1.2.1	(from
http://java.sun.com/products/JavaManagement/).

4.	 JUnit	3.8.1	(from	http://www.junit.org/).

If	building	from	source,	All	of	the	requirements	from	above,	plus:

1.	 Ant	version	1.5	or	newer	(download	from	http://ant.apache.org/).

23.4.2.6.2.	Running	the	JUnit	Tests

1.	 The	tests	attempt	to	launch	MySQL	on	the	port	3336.	If	you	have	a	MySQL
running,	it	may	conflict,	but	this	isn't	very	likely	because	the	default	port
for	MySQL	is	3306.	However,	You	may	set	the	"c-mxj_test_port"	Java
property	to	a	port	of	your	choosing.	Alternatively,	you	may	wish	to	start	by
shutting	down	any	instances	of	MySQL	you	have	running	on	the	target
machine.

The	tests	suppress	output	to	the	console	by	default.	For	verbose	output,	you
may	set	the	"c-mxj_test_silent"	Java	property	to	"false".

2.	 To	run	the	JUnit	test	suite,	the	$CLASSPATH	must	include	the	following:

JUnit

JMX

Connector/J

MySQL	Connector/MXJ

3.	 If	connector-mxj.jar	is	not	present	in	your	download,	unzip	MySQL
Connector/MXJ	source	archive.

cd	mysqldjmx

ant	dist

					

Then	add	$TEMP/cmxj/stage/connector-mxj/connector-mxj.jar	to	the
CLASSPATH.

http://java.sun.com/products/JavaManagement/
http://www.junit.org/
http://ant.apache.org/

4.	 if	you	have	junit,	execute	the	unit	tests.	From	the	command	line,	type:

java	junit.textui.TestRunner	com.mysql.management.AllTestsSuite

				

The	output	should	look	something	like	this:

...

...

..........

Time:	259.438

OK	(101	tests)

		

Note	that	the	tests	are	a	bit	slow	near	the	end,	so	please	be	patient.

23.4.3.	Connector/MXJ	Configuration

23.4.3.1.	Running	as	part	of	the	JDBC	Driver

A	feature	of	the	MySQL	Connector/J	JDBC	driver	is	the	ability	to	specify	a
connection	to	an	embedded	Connector/MXJ	instance	through	the	use	of	the	mxj
keyword	in	the	JDBC	connection	string.

In	the	following	example,	we	have	a	program	which	creates	a	connection,
executes	a	query,	and	prints	the	result	to	the	System.out.	The	MySQL	database
will	be	deployed	and	started	as	part	of	the	connection	process,	and	shutdown	as
part	of	the	finally	block.

You	can	find	this	file	in	the	Connector/MXJ	package	as
src/ConnectorMXJUrlTestExample.java.

import	java.io.File;

import	java.sql.Connection;

import	java.sql.DriverManager;

import	java.sql.ResultSet;

import	java.sql.Statement;

import	com.mysql.management.driverlaunched.ServerLauncherSocketFactory;

public	class	ConnectorMXJUrlTestExample	{

				public	static	String	DRIVER	=	"com.mysql.jdbc.Driver";

				public	static	String	JAVA_IO_TMPDIR	=	"java.io.tmpdir";

				public	static	void	main(String[]	args)	throws	Exception	{

								File	ourAppDir	=	new	File(System.getProperty(JAVA_IO_TMPDIR));

								File	databaseDir	=	new	File(ourAppDir,	"test-mxj");

								int	port	=	3336;

								String	url	=	"jdbc:mysql:mxj://localhost:"	+	port	+	"/test"	+	"?"

																+	"server.basedir="	+	databaseDir;

								System.out.println(url);

								String	userName	=	"root";

								String	password	=	"";

								Class.forName(DRIVER);

								Connection	conn	=	null;

								try	{

												conn	=	DriverManager.getConnection(url,	userName,	password);

												printQueryResults(conn,	"SELECT	VERSION()");

								}	finally	{

												try	{

																if	(conn	!=	null)

																				conn.close();

												}	catch	(Exception	e)	{

																e.printStackTrace();

												}

												ServerLauncherSocketFactory.shutdown(databaseDir,	null);

								}

				}

				public	static	void	printQueryResults(Connection	conn,	String	SQLquery)

												throws	Exception	{

								Statement	stmt	=	conn.createStatement();

								ResultSet	rs	=	stmt.executeQuery(SQLquery);

								int	columns	=	rs.getMetaData().getColumnCount();

								System.out.println("------------------------");

								System.out.println();

								while	(rs.next())	{

												for	(int	i	=	1;	i	<=	columns;	i++)	{

																System.out.println(rs.getString(i));

												}

												System.out.println();

								}

								rs.close();

								stmt.close();

								System.out.println("------------------------");

								System.out.flush();

								Thread.sleep(100);	//	wait	for	System.out	to	finish	flush

				}

}

To	run	the	above	program,	be	sure	to	have	connector-mxj.jar	and	Connector/J	in
the	CLASSPATH.	Then	type:

java	ConnectorMXJTestExample

		

23.4.3.2.	Running	within	a	Java	Object

If	you	have	a	java	application	and	wish	to	“embed”	a	MySQL	database,	make
use	of	the	com.mysql.management.MysqldResource	class	directly.	This	class
may	be	instantiated	with	the	default	(no	argument)	constructor,	or	by	passing	in	a
java.io.File	object	representing	the	directory	you	wish	the	server	to	be
"unzipped"	into.	It	may	also	be	instantiated	with	printstreams	for	"stdout"	and
"stderr"	for	logging.

Once	instantiated,	a	java.util.Map,	the	object	will	be	able	to	provide	a
java.util.Map	of	server	options	appropriate	for	the	platform	and	version	of
MySQL	which	you	will	be	using.

The	MysqldResource	enables	you	to	"start"	MySQL	with	a	java.util.Map	of
server	options	which	you	provide,	as	well	as	"shutdown"	the	database.	The
following	example	shows	a	simplistic	way	to	embed	MySQL	in	an	application
using	plain	java	objects.

You	can	find	this	file	in	the	Connector/MXJ	package	as
src/ConnectorMXJObjectTestExample.java.

import	java.io.File;

import	java.sql.Connection;

import	java.sql.DriverManager;

import	java.sql.ResultSet;

import	java.sql.Statement;

import	java.util.HashMap;

import	java.util.Map;

import	com.mysql.management.MysqldResource;

public	class	ConnectorMXJObjectTestExample	{

				public	static	String	DRIVER	=	"com.mysql.jdbc.Driver";

				public	static	String	JAVA_IO_TMPDIR	=	"java.io.tmpdir";

				public	static	void	main(String[]	args)	throws	Exception	{

								File	ourAppDir	=	new	File(System.getProperty(JAVA_IO_TMPDIR));

								File	databaseDir	=	new	File(ourAppDir,	"mysql-mxj");

								int	port	=	3336;

								MysqldResource	mysqldResource	=	startDatabase(databaseDir,	port);

								String	userName	=	"root";

								String	password	=	"";

								Class.forName(DRIVER);

								Connection	conn	=	null;

								try	{

												String	url	=	"jdbc:mysql://localhost:"	+	port	+	"/test";

												conn	=	DriverManager.getConnection(url,	userName,	password);

												printQueryResults(conn,	"SELECT	VERSION()");

								}	finally	{

												try	{

																if	(conn	!=	null)	{

																				conn.close();

																}

												}	catch	(Exception	e)	{

																e.printStackTrace();

												}

												try	{

																mysqldResource.shutdown();

												}	catch	(Exception	e)	{

																e.printStackTrace();

												}

								}

				}

				public	static	MysqldResource	startDatabase(File	databaseDir,	int	port)	{

								MysqldResource	mysqldResource	=	new	MysqldResource(databaseDir);

								Map	database_options	=	new	HashMap();

								database_options.put("port",	Integer.toString(port));

								mysqldResource.start("test-mysqld-thread",	database_options);

								if	(!mysqldResource.isRunning())	{

												throw	new	RuntimeException("MySQL	did	not	start.");

								}

								System.out.println("MySQL	is	running.");

								return	mysqldResource;

				}

				public	static	void	printQueryResults(Connection	conn,	String	SQLquery)

												throws	Exception	{

								Statement	stmt	=	conn.createStatement();

								ResultSet	rs	=	stmt.executeQuery(SQLquery);

								int	columns	=	rs.getMetaData().getColumnCount();

								System.out.println("------------------------");

								System.out.println();

								while	(rs.next())	{

												for	(int	i	=	1;	i	<=	columns;	i++)	{

																System.out.println(rs.getString(i));

												}

												System.out.println();

								}

								rs.close();

								stmt.close();

								System.out.println("------------------------");

								System.out.flush();

								Thread.sleep(100);	//	wait	for	System.out	to	finish	flush

				}

}

		

23.4.3.3.	Setting	server	options

Of	course	there	are	many	options	we	may	wish	to	set	for	a	MySQL	database.
These	options	may	be	specified	as	part	of	the	JDBC	connection	string	simply	by
prefixing	each	server	option	with	''server.''.	In	the	following	example	we	set	two
driver	parameters	and	two	server	parameters:

								String	url	=	"jdbc:mysql://"	+	hostColonPort	+	"/"	

																+	"?"

																+	"cacheServerConfiguration=true"

																+	"&"

																+	"useLocalSessionState=true"

																+	"&"

																+	"server.basedir=/opt/myapp/db"

																+	"&"

																+	"server.datadir=/mnt/bigdisk/myapp/data";

		

23.4.4.	Connector/MXJ	Reference

23.4.4.1.	MysqldResource	API

23.4.4.1.1.	MysqldResource	Constructors

The	MysqldResource	class	supports	three	different	constructor	forms:

public	MysqldResource(File	baseDir,	File	dataDir,	String

mysqlVersionString,	PrintStream	out,	PrintStream	err,	Utils

util)

The	most	detailed	constructor,	enables	you	to	set	the	base	directory,	data
directory,	select	a	server	by	its	version	string,	standard	out	and	standard
error	and	MySQL	utilities	class.

public	MysqldResource(File	baseDir,	File	dataDir,	String

mysqlVersionString,	PrintStream	out,	PrintStream	err)

Enables	you	to	set	the	base	directory,	data	directory,	select	a	server	by	its
version	string,	standard	out	and	standard	error.

public	MysqldResource(File	baseDir,	File	dataDir,	String

mysqlVersionString)

Enables	you	to	set	the	base	directory,	data	directory	and	select	a	server	by
its	version	string.	Output	for	standard	out	and	standard	err	are	directed	to
System.out	and	System.err.

public	MysqldResource(File	baseDir,	File	dataDir)

Enables	you	to	set	the	base	directory	and	data	directory.	The	default
MySQL	version	is	selected,	and	output	for	standard	out	and	standard	err	are
directed	to	System.out	and	System.err.

public	MysqldResource(File	baseDir);

Allows	the	setting	of	the	"basedir"	to	deploy	the	MySQL	files	to.	Output	for
standard	out	and	standard	err	are	directed	to	System.out	and	System.err.

public	MysqldResource();

The	basedir	is	defaulted	to	a	subdirectory	of	the	java.io.tempdir.	Output	for
standard	out	and	standard	err	are	directed	to	System.out	and	System.err;

23.4.4.1.2.	MysqldResource	Methods

MysqldResource	API	includes	the	following	methods:

void	start(String	threadName,	Map	mysqldArgs);

Deploys	and	starts	MySQL.	The	"threadName"	string	is	used	to	name	the
thread	which	actually	performs	the	execution	of	the	MySQL	command	line.
The	map	is	the	set	of	arguments	and	their	values	to	be	passed	to	the
command	line.

void	shutdown();

Shuts	down	the	MySQL	instance	managed	by	the	MysqldResource	object.

Map	getServerOptions();

Returns	a	map	of	all	the	options	and	their	current	(or	default,	if	not	running)
options	available	for	the	MySQL	database.

boolean	isRunning();

Returns	true	if	the	MySQL	database	is	running.

boolean	isReadyForConnections();

Returns	true	once	the	database	reports	that	is	ready	for	connections.

void	setKillDelay(int	millis);

The	default	“Kill	Delay”	is	30	seconds.	This	represents	the	amount	of	time
to	wait	between	the	initial	request	to	shutdown	and	issuing	a	“force	kill”	if
the	database	has	not	shutdown	by	itself.

void	addCompletionListenser(Runnable	listener);

Allows	for	applications	to	be	notified	when	the	server	process	completes.
Each	''listener''	will	be	fired	off	in	its	own	thread.

String	getVersion();

Returns	the	version	of	MySQL.

void	setVersion(int	MajorVersion,	int	minorVersion,	int

patchLevel);

The	standard	distribution	comes	with	only	one	version	of	MySQL
packaged.	However,	it	is	possible	to	package	multiple	versions,	and	specify
which	version	to	use.

23.4.5.	Connector/MXJ	Notes	and	Tips

This	section	contains	notes	and	tips	on	using	the	Connector/MXJ	component
within	your	applications.

23.4.5.1.	Creating	your	own	Connector/MXJ	Package

If	you	want	to	create	a	custom	Connector/MXJ	package	that	includes	a	specific
mysqld	version	or	platform	then	you	must	extract	and	rebuild	the	connector-
mxj.jar	file.

First,	you	should	create	a	new	directory	into	which	you	can	extract	the	current
connector-mxj.jar:

shell>	mkdir	custom-mxj

shell>	cd	custom-mxj

shell>	jar	-xf	connector-mxj.jar

shell>	ls

5-0-22/

ConnectorMXJObjectTestExample.class

ConnectorMXJUrlTestExample.class

META-INF/

TestDb.class

com/

kill.exe

The	MySQL	version	directory,	5-0-22	in	the	above	example,	contains	all	of	the
files	used	to	create	an	instance	of	MySQL	when	Connector/MXJ	is	executed.	All
of	the	files	in	this	directory	are	required	for	each	version	of	MySQL	that	you
want	to	embed.	Note	as	well	the	format	of	the	version	number,	which	uses
hyphens	instead	of	periods	to	separate	the	version	number	components.

Within	the	version	specific	directory	are	the	platform	specific	directories,	and

archives	of	the	data	and	share	directory	required	by	MySQL	for	the	various
platforms.	For	example,	here	is	the	listing	for	the	default	Connector/MXJ
package:

shell>>	ls

Linux-i386/

META-INF/

Mac_OS_X-ppc/

SunOS-sparc/

Win-x86/

com/

data_dir.jar

share_dir.jar

win_share_dir.jar

Platform	specific	directories	are	listed	by	their	OS	and	platform	-	for	example
the	mysqld	for	Mac	OS	X	PowerPC	is	located	within	the	Mac_OS_X-ppc
directory.	You	can	delete	directories	from	this	location	that	you	do	not	require,
and	add	new	directories	for	additional	platforms	that	you	want	to	support.

To	add	a	platform	specific	mysqld,	create	a	new	directory	with	the	corresponding
name	for	your	operating	system/platform.	For	example,	you	could	add	a
directory	for	Mac	OS	X/Intel	using	the	directory	Mac_OS_X-i386.

On	Unix	systems,	you	can	determine	the	platform	using	uname:

shell>	uname	-p

i386

Now	you	need	to	download	or	compile	mysqld	for	the	MySQL	version	and
platform	you	want	to	include	in	your	custom	connector-mxj.jar	package	into
the	new	directory.

Create	a	file	called	version.txt	in	the	OS/platform	directory	you	have	just
created	that	contains	the	version	string/path	of	the	mysqld	binary.	For	example:

mysql-5.0.22-osx10.3-i386/bin/mysqld

You	can	now	recreate	the	connector-mxj.jar	file	with	the	added	mysqld:

shell>	cd	custom-mxj

shell>	jar	-cf	../connector-mxj.jar	*

You	should	test	this	package	using	the	steps	outlined	in	Section	23.4.2.3,
“Connector/MXJ	Quick	Start	Guide”.

23.4.5.2.	Deploying	Connector/MXJ	with	a	pre-configured	database

To	include	a	pre-configured/populated	database	within	your	Connector/MXJ
JAR	file	you	must	create	a	custom	data_dir.jar	file,	as	included	within	the
main	connector-mxj.jar	file:

1.	 First	extract	the	connector-mxj.jar	file,	as	outlined	in	the	previous	section
(see	Section	23.4.5.1,	“Creating	your	own	Connector/MXJ	Package”).

2.	 First,	create	your	database	and	populate	the	database	with	the	information
you	require	in	an	existing	instance	of	MySQL	-	including	Connector/MXJ
instances.	Data	file	formats	are	compatible	across	platforms.

3.	 Shutdown	the	instance	of	MySQL.

4.	 Create	a	JAR	file	of	the	data	directory	and	databases	that	you	want	to
include	your	Connector/MXJ	package.	You	should	include	the	mysql
database,	which	includes	user	authentication	information,	in	addition	to	the
specific	databases	you	want	to	include.	For	example,	to	create	a	JAR	of	the
mysql	and	mxjtest	databases:

shell>	jar	-cf	../data_dir.jar	mysql	mxjtest

5.	 Copy	the	data_dir.jar	file	into	the	extracted	connector-mxj.jar
directory,	and	then	create	an	archive	for	connector-mxj.jar.

Note	that	if	you	are	create	databases	using	the	InnoDB	engine,	you	must	include
the	ibdata.*	and	ib_logfile*	files	within	the	data_dir.jar	archive.

23.4.5.3.	Running	within	a	JMX	Agent	(custom)

As	a	JMX	MBean,	MySQL	Connector/MXJ	requires	a	JMX	v1.2	compliant
MBean	container,	such	as	JBoss	version	4.	The	MBean	will	uses	the	standard
JMX	management	APIs	to	present	(and	allow	the	setting	of)	parameters	which
are	appropriate	for	that	platform.

If	you	are	not	using	the	SUN	Reference	implementation	of	the	JMX	libraries,
you	should	skip	this	section.	Or,	if	you	are	deploying	to	JBoss,	you	also	may
wish	to	skip	to	the	next	section.

We	want	to	see	the	MysqldDynamicMBean	in	action	inside	of	a	JMX	agent.	In
the	com.mysql.management.jmx.sunri	package	is	a	custom	JMX	agent	with
two	MBeans:

1.	 the	MysqldDynamicMBean,	and

2.	 a	com.sun.jdmk.comm.HtmlAdaptorServer,	which	provides	a	web	interface
for	manipulating	the	beans	inside	of	a	JMX	agent.

When	this	very	simple	agent	is	started,	it	will	allow	a	MySQL	database	to	be
started	and	stopped	with	a	web	browser.

1.	 Complete	the	testing	of	the	platform	as	above.

current	JDK,	JUnit,	Connector/J,	MySQL	Connector/MXJ

this	section	requires	the	SUN	reference	implementation	of	JMX

PATH,	JAVA_HOME,	ANT_HOME,	CLASSPATH

2.	 If	not	building	from	source,	skip	to	next	step

rebuild	with	the	"sunri.present"

ant	-Dsunri.present=true	dist	

re-run	tests:

java	junit.textui.TestRunner	com.mysql.management.AllTestsSuite

3.	 launch	the	test	agent	from	the	command	line:

java	com.mysql.management.jmx.sunri.MysqldTestAgentSunHtmlAdaptor	&

					

4.	 from	a	browser:

http://localhost:9092/

					

5.	 under	MysqldAgent,

select	"name=mysqld"

					

6.	 Observe	the	MBean	View

7.	 scroll	to	the	bottom	of	the	screen	press	the	startMysqld	button

8.	 click	Back	to	MBean	View

9.	 scroll	to	the	bottom	of	the	screen	press	stopMysqld	button

10.	 kill	the	java	process	running	the	Test	Agent	(jmx	server)

23.4.5.4.	Deployment	in	a	standard	JMX	Agent	environment	(JBoss)

Once	there	is	confidence	that	the	MBean	will	function	on	the	platform,
deploying	the	MBean	inside	of	a	standard	JMX	Agent	is	the	next	step.	Included
are	instructions	for	deploying	to	JBoss.

1.	 Ensure	a	current	version	of	java	development	kit	(v1.4.x),	see	above.

Ensure	JAVA_HOME	is	set	(JBoss	requires	JAVA_HOME)

Ensure	JAVA_HOME/bin	is	in	the	PATH	(You	will	NOT	need	to	set	your
CLASSPATH,	nor	will	you	need	any	of	the	jars	used	in	the	previous
tests).

2.	 Ensure	a	current	version	of	JBoss	(v4.0RC1	or	better)

http://www.jboss.org/index.html

select	"Downloads"

select	"jboss-4.0.zip"

pick	a	mirror

unzip	~/dload/jboss-4.0.zip

create	a	JBOSS_HOME	environment	variable	set	to	the	unzipped	directory

unix	only:

cd	$JBOSS_HOME/bin

chmod	+x	*.sh

3.	 Deploy	(copy)	the	connector-mxj.jar	to

$JBOSS_HOME/server/default/lib.

4.	 Deploy	(copy)	mysql-connector-java-3.1.4-beta-bin.jar	to
$JBOSS_HOME/server/default/lib.

5.	 Create	a	mxjtest.war	directory	in	$JBOSS_HOME/server/default/deploy.

6.	 Deploy	(copy)	index.jsp	to
$JBOSS_HOME/server/default/deploy/mxjtest.war.

7.	 Create	a	mysqld-service.xml	file	in
$JBOSS_HOME/server/default/deploy.

<?xml	version="1.0"	encoding="UTF-8"?>

	<server>

		<mbean	code="com.mysql.management.jmx.jboss.JBossMysqldDynamicMBean"

					name="mysql:type=service,name=mysqld">

		<attribute	name="datadir">/tmp/xxx_data_xxx</attribute>

		<attribute	name="autostart">true</attribute>

		</mbean>

	</server>

					

8.	 Start	jboss:

on	unix:	$JBOSS_HOME/bin/run.sh

on	windows:	%JBOSS_HOME%\bin\run.bat

Be	ready:	JBoss	sends	a	lot	of	output	to	the	screen.

9.	 When	JBoss	seems	to	have	stopped	sending	output	to	the	screen,	open	a
web	browser	to:	http://localhost:8080/jmx-console

10.	 Scroll	down	to	the	bottom	of	the	page	in	the	mysql	section,	select	the
bulleted	mysqld	link.

11.	 Observe	the	JMX	MBean	View	page.	MySQL	should	already	be	running.

12.	 (If	"autostart=true"	was	set,	you	may	skip	this	step.)	Scroll	to	the	bottom	of
the	screen.	You	may	press	the	Invoke	button	to	stop	(or	start)	MySQL
observe	Operation	completed	successfully	without	a	return	value.

Click	Back	to	MBean	View

13.	 To	confirm	MySQL	is	running,	open	a	web	browser	to
http://localhost:8080/mxjtest/	and	you	should	see	that

SELECT	1

returned	with	a	result	of

1

14.	 Guided	by	the
$JBOSS_HOME/server/default/deploy/mxjtest.war/index.jsp	you	will
be	able	to	use	MySQL	in	your	Web	Application.	There	is	a	test	database
and	a	root	user	(no	password)	ready	to	experiment	with.	Try	creating	a
table,	inserting	some	rows,	and	doing	some	selects.

15.	 Shut	down	MySQL.	MySQL	will	be	stopped	automatically	when	JBoss	is
stopped,	or:	from	the	browser,	scroll	down	to	the	bottom	of	the	MBean
View	press	the	stop	service	Invoke	button	to	halt	the	service.	Observe
Operation	completed	successfully	without	a	return	value.	Using
ps	or	task	manager	see	that	MySQL	is	no	longer	running

As	of	1.0.6-beta	version	is	the	ability	to	have	the	MBean	start	the	MySQL
database	upon	start	up.	Also,	we've	taken	advantage	of	the	JBoss	life-cycle
extension	methods	so	that	the	database	will	gracefully	shut	down	when	JBoss	is
shutdown.

23.4.6.	Connector/MXJ	Support

There	are	a	wide	variety	of	options	available	for	obtaining	support	for	using
Connector/MXJ.	You	should	contact	the	Connector/MXJ	community	for	help
before	reporting	a	potential	bug	or	problem.	See	Section	23.4.6.1,
“Connector/MXJ	Community	Support”.

23.4.6.1.	Connector/MXJ	Community	Support

MySQL	AB	provides	assistance	to	the	user	community	by	means	of	a	number	of
mailing	lists	and	web	based	forums.

You	can	find	help	and	support	through	the	MySQL	and	Java	mailing	list.

For	information	about	subscribing	to	MySQL	mailing	lists	or	to	browse	list
archives,	visit	http://lists.mysql.com/.	See	Section	1.7.1,	“MySQL	Mailing
Lists”.

Community	support	from	experienced	users	is	also	available	through	the
MyODBC	Forum.	You	may	also	find	help	from	other	users	in	the	other	MySQL
Forums,	located	at	http://forums.mysql.com.	See	Section	1.7.2,	“MySQL
Community	Support	at	the	MySQL	Forums”.

23.4.6.2.	How	to	Report	Connector/MXJ	Problems

If	you	encounter	difficulties	or	problems	with	Connector/MXJ,	contact	the
Connector/MXJ	community	Section	23.4.6.1,	“Connector/MXJ	Community
Support”.

If	reporting	a	problem,	you	should	ideally	include	the	following	information
with	the	email:

Operating	system	and	version

Connector/MXJ	version

MySQL	server	version

Copies	of	error	messages	or	other	unexpected	output

Simple	reproducible	sample

Remember	that	the	more	information	you	can	supply	to	us,	the	more	likely	it	is
that	we	can	fix	the	problem.

If	you	believe	the	problem	to	be	a	bug,	then	you	must	report	the	bug	through
http://bugs.mysql.com/.

http://lists.mysql.com/java
http://lists.mysql.com/
http://forums.mysql.com/list.php?39
http://forums.mysql.com
http://bugs.mysql.com/

23.5.	Connector/PHP

The	PHP	distribution	and	documentation	are	available	from	the	PHP	Web	site.
MySQL	provides	the	mysql	and	mysqli	extensions	for	the	Windows	operating
system	for	MySQL	versions	as	of	5.0.18	on
http://dev.mysql.com/downloads/connector/php/.	You	can	find	information	why
you	should	preferably	use	the	extensions	provided	by	MySQL	on	that	page.	For
platforms	other	than	Windows,	you	should	use	the	mysql	or	mysqli	extensions
shipped	with	the	PHP	sources.	See	Section	22.3,	“MySQL	PHP	API”.

http://dev.mysql.com/downloads/connector/php/

Chapter	24.	Extending	MySQL

Table	of	Contents

24.1.	MySQL	Internals
24.1.1.	MySQL	Threads
24.1.2.	MySQL	Test	Suite

24.2.	Adding	New	Functions	to	MySQL
24.2.1.	Features	of	the	User-Defined	Function	Interface
24.2.2.	CREATE	FUNCTION	Syntax
24.2.3.	DROP	FUNCTION	Syntax
24.2.4.	Adding	a	New	User-Defined	Function
24.2.5.	Adding	a	New	Native	Function

24.3.	Adding	New	Procedures	to	MySQL
24.3.1.	Procedure	Analyse
24.3.2.	Writing	a	Procedure

24.1.	MySQL	Internals

This	chapter	describes	a	lot	of	things	that	you	need	to	know	when	working	on
the	MySQL	code.	If	you	plan	to	contribute	to	MySQL	development,	want	to
have	access	to	the	bleeding-edge	versions	of	the	code,	or	just	want	to	keep	track
of	development,	follow	the	instructions	in	Section	2.9.3,	“Installing	from	the
Development	Source	Tree”.	If	you	are	interested	in	MySQL	internals,	you
should	also	subscribe	to	our	internals	mailing	list.	This	list	has	relatively	low
traffic.	For	details	on	how	to	subscribe,	please	see	Section	1.7.1,	“MySQL
Mailing	Lists”.	All	developers	at	MySQL	AB	are	on	the	internals	list	and	we
help	other	people	who	are	working	on	the	MySQL	code.	Feel	free	to	use	this	list
both	to	ask	questions	about	the	code	and	to	send	patches	that	you	would	like	to
contribute	to	the	MySQL	project!

24.1.1.	MySQL	Threads

The	MySQL	server	creates	the	following	threads:

One	thread	manages	TCP/IP	file	connection	requests	and	creates	a	new
dedicated	thread	to	handle	the	authentication	and	SQL	statement	processing
for	each	connection.	(On	Unix,	this	thread	also	manages	Unix	socket	file
connection	requests.)	On	Windows,	a	similar	thread	manages	shared-
memory	connection	requests,	and	on	Windows	NT-based	systems,	a	thread
manages	named-pipe	connection	requests.	Every	client	connection	has	its
own	thread,	although	the	manager	threads	try	to	avoid	creating	threads	by
consulting	the	thread	cache	first	to	see	whether	a	cached	thread	can	be	used
for	a	new	connection.

On	Windows	NT,	there	is	a	named	pipe	handler	thread	that	does	the	same
work	as	the	TCP/IP	connection	thread	on	named	pipe	connect	requests.

On	a	master	replication	server,	slave	server	connections	are	like	client
connections:	There	is	one	thread	per	connected	slave.

On	a	slave	replication	server,	an	I/O	thread	is	started	to	connect	to	the
master	server	and	read	updates	from	it.	An	SQL	thread	is	started	to	apply
updates	read	from	the	master.	These	two	threads	run	independently	and	can
be	started	and	stopped	independently.

The	signal	thread	handles	all	signals.	This	thread	also	normally	handles
alarms	and	calls	process_alarm()	to	force	timeouts	on	connections	that
have	been	idle	too	long.

If	mysqld	is	compiled	with	-DUSE_ALARM_THREAD,	a	dedicated	thread	that
handles	alarms	is	created.	This	is	only	used	on	some	systems	where	there
are	problems	with	sigwait()	or	if	you	want	to	use	the	thr_alarm()	code	in
your	application	without	a	dedicated	signal	handling	thread.

If	the	server	is	started	with	the	--flush_time=val	option,	a	dedicated
thread	is	created	to	flush	all	tables	every	val	seconds.

Each	table	for	which	INSERT	DELAYED	statements	are	issued	gets	its	own
thread.

mysqladmin	processlist	only	shows	the	connection,	INSERT	DELAYED,	and
replication	threads.

24.1.2.	MySQL	Test	Suite

The	test	system	that	is	included	in	Unix	source	and	binary	distributions	makes	it
possible	for	users	and	developers	to	perform	regression	tests	on	the	MySQL
code.	These	tests	can	be	run	on	Unix.

The	current	set	of	test	cases	doesn't	test	everything	in	MySQL,	but	it	should
catch	most	obvious	bugs	in	the	SQL	processing	code,	operating	system	or	library
issues,	and	is	quite	thorough	in	testing	replication.	Our	goal	is	to	have	the	tests
cover	100%	of	the	code.	We	welcome	contributions	to	our	test	suite.	You	may
especially	want	to	contribute	tests	that	examine	the	functionality	critical	to	your
system	because	this	ensures	that	all	future	MySQL	releases	work	well	with	your
applications.

The	test	system	consists	of	a	test	language	interpreter	(mysqltest),	a	shell	script
to	run	all	tests	(mysql-test-run),	the	actual	test	cases	written	in	a	special	test
language,	and	their	expected	results.	To	run	the	test	suite	on	your	system	after	a
build,	type	make	test	from	the	source	root	directory,	or	change	location	to	the
mysql-test	directory	and	type	./mysql-test-run.	If	you	have	installed	a	binary
distribution,	change	location	to	the	mysql-test	directory	under	the	installation
root	directory	(for	example,	/usr/local/mysql/mysql-test),	and	run	./mysql-

test-run.	All	tests	should	succeed.	If	any	do	not,	you	should	try	to	find	out	why
and	report	the	problem	if	it	indicates	a	bug	in	MySQL.	See	Section	1.8,	“How	to
Report	Bugs	or	Problems”.

If	one	test	fails,	you	should	run	mysql-test-run	with	the	--force	option	to
check	whether	any	other	tests	fail.

If	you	have	a	copy	of	mysqld	running	on	the	machine	where	you	want	to	run	the
test	suite,	you	do	not	have	to	stop	it,	as	long	as	it	is	not	using	ports	9306	or	9307.
If	either	of	those	ports	is	taken,	you	should	edit	mysql-test-run	and	change	the
values	of	the	master	or	slave	port	to	one	that	is	available.

In	the	mysql-test	directory,	you	can	run	an	individual	test	case	with	./mysql-
test-run	test_name.

You	can	use	the	mysqltest	language	to	write	your	own	test	cases.	This	is
documented	in	the	MySQL	Test	Framework	manual,	available	at
http://dev.mysql.com/doc/.

If	you	have	a	question	about	the	test	suite,	or	have	a	test	case	to	contribute,	send
an	email	message	to	the	MySQL	internals	mailing	list.	See	Section	1.7.1,
“MySQL	Mailing	Lists”.	This	list	does	not	accept	attachments,	so	you	should
FTP	all	the	relevant	files	to:	ftp://ftp.mysql.com/pub/mysql/upload/

http://dev.mysql.com/doc/
ftp://ftp.mysql.com/pub/mysql/upload/

24.2.	Adding	New	Functions	to	MySQL

There	are	two	ways	to	add	new	functions	to	MySQL:

You	can	add	functions	through	the	user-defined	function	(UDF)	interface.
User-defined	functions	are	compiled	as	object	files	and	then	added	to	and
removed	from	the	server	dynamically	using	the	CREATE	FUNCTION	and	DROP
FUNCTION	statements.	See	Section	24.2.2,	“CREATE	FUNCTION	Syntax”.

You	can	add	functions	as	native	(built-in)	MySQL	functions.	Native
functions	are	compiled	into	the	mysqld	server	and	become	available	on	a
permanent	basis.

Each	method	has	advantages	and	disadvantages:

If	you	write	user-defined	functions,	you	must	install	object	files	in	addition
to	the	server	itself.	If	you	compile	your	function	into	the	server,	you	don't
need	to	do	that.

Native	functions	require	you	to	modify	a	source	distribution.	UDFs	do	not.
You	can	add	UDFs	to	a	binary	MySQL	distribution.	No	access	to	MySQL
source	is	necessary.

If	you	upgrade	your	MySQL	distribution,	you	can	continue	to	use	your
previously	installed	UDFs,	unless	you	upgrade	to	a	newer	version	for	which
the	UDF	interface	changes.	For	native	functions,	you	must	repeat	your
modifications	each	time	you	upgrade.

Whichever	method	you	use	to	add	new	functions,	they	can	be	invoked	in	SQL
statements	just	like	native	functions	such	as	ABS()	or	SOUNDEX().

Another	way	to	add	functions	is	by	creating	stored	functions.	These	are	written
using	SQL	statements	rather	than	by	compiling	object	code.	The	syntax	for
writing	stored	functions	is	described	in	Chapter	17,	Stored	Procedures	and
Functions.

The	following	sections	describe	features	of	the	UDF	interface,	provide
instructions	for	writing	UDFs,	discuss	security	precautions	that	MySQL	takes	to

prevent	UDF	misuse,	and	describe	how	to	add	native	mySQL	functions.

For	example	source	code	that	illustrates	how	to	write	UDFs,	take	a	look	at	the
sql/udf_example.cc	file	that	is	provided	in	MySQL	source	distributions.

24.2.1.	Features	of	the	User-Defined	Function	Interface

The	MySQL	interface	for	user-defined	functions	provides	the	following	features
and	capabilities:

Functions	can	return	string,	integer,	or	real	values.

You	can	define	simple	functions	that	operate	on	a	single	row	at	a	time,	or
aggregate	functions	that	operate	on	groups	of	rows.

Information	is	provided	to	functions	that	enables	them	to	check	the	number
and	types	of	the	arguments	passed	to	them.

You	can	tell	MySQL	to	coerce	arguments	to	a	given	type	before	passing
them	to	a	function.

You	can	indicate	that	a	function	returns	NULL	or	that	an	error	occurred.

24.2.2.	CREATE	FUNCTION	Syntax

CREATE	[AGGREGATE]	FUNCTION	function_name	RETURNS	{STRING|INTEGER|REAL|DECIMAL}

				SONAME	shared_library_name

A	user-defined	function	(UDF)	is	a	way	to	extend	MySQL	with	a	new	function
that	works	like	a	native	(built-in)	MySQL	function	such	as	ABS()	or	CONCAT().

function_name	is	the	name	that	should	be	used	in	SQL	statements	to	invoke	the
function.	The	RETURNS	clause	indicates	the	type	of	the	function's	return	value.	As
of	MySQL	5.0.3,	DECIMAL	is	a	legal	value	after	RETURNS,	but	currently	DECIMAL
functions	return	string	values	and	should	be	written	like	STRING	functions.

shared_library_name	is	the	basename	of	the	shared	object	file	that	contains	the
code	that	implements	the	function.	The	file	must	be	located	in	a	directory	that	is
searched	by	your	system's	dynamic	linker.

To	create	a	function,	you	must	have	the	INSERT	and	privilege	for	the	mysql
database.	This	is	necessary	because	CREATE	FUNCTION	adds	a	row	to	the
mysql.func	system	table	that	records	the	function's	name,	type,	and	shared
library	name.	If	you	do	not	have	this	table,	you	should	run	the	mysql_upgrade
command	to	create	it.	See	Section	5.6.2,	“mysql_upgrade	—	Check	Tables	for
MySQL	Upgrade”.

An	active	function	is	one	that	has	been	loaded	with	CREATE	FUNCTION	and	not
removed	with	DROP	FUNCTION.	All	active	functions	are	reloaded	each	time	the
server	starts,	unless	you	start	mysqld	with	the	--skip-grant-tables	option.	In
this	case,	UDF	initialization	is	skipped	and	UDFs	are	unavailable.

For	instructions	on	writing	user-defined	functions,	see	Section	24.2.4,	“Adding	a
New	User-Defined	Function”.	For	the	UDF	mechanism	to	work,	functions	must
be	written	in	C	or	C++,	your	operating	system	must	support	dynamic	loading
and	you	must	have	compiled	mysqld	dynamically	(not	statically).

An	AGGREGATE	function	works	exactly	like	a	native	MySQL	aggregate
(summary)	function	such	as	SUM	or	COUNT().	For	AGGREGATE	to	work,	your
mysql.func	table	must	contain	a	type	column.	If	your	mysql.func	table	does
not	have	this	column,	you	should	run	the	mysql_upgrade	program	to	create	it
(see	Section	5.6.2,	“mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade”).

24.2.3.	DROP	FUNCTION	Syntax

DROP	FUNCTION	function_name

This	statement	drops	the	user-defined	function	(UDF)	named	function_name.

To	drop	a	function,	you	must	have	the	DELETE	privilege	for	the	mysql	database.
This	is	because	DROP	FUNCTION	removes	a	row	from	the	mysql.func	system
table	that	records	the	function's	name,	type,	and	shared	library	name.

24.2.4.	Adding	a	New	User-Defined	Function

For	the	UDF	mechanism	to	work,	functions	must	be	written	in	C	or	C++	and
your	operating	system	must	support	dynamic	loading.	The	MySQL	source
distribution	includes	a	file	sql/udf_example.cc	that	defines	5	new	functions.
Consult	this	file	to	see	how	UDF	calling	conventions	work.

A	UDF	contains	code	that	becomes	part	of	the	running	server,	so	when	you	write
a	UDF,	you	are	bound	by	any	and	all	constraints	that	otherwise	apply	to	writing
server	code.	For	example,	you	may	have	problems	if	you	attempt	to	use
functions	from	the	libstdc++	library.	Note	that	these	constraints	may	change	in
future	versions	of	the	server,	so	it	is	possible	that	server	upgrades	will	require
revisions	to	UDFs	that	were	originally	written	for	older	servers.	For	information
about	these	constraints,	see	Section	2.9.2,	“Typical	configure	Options”,	and
Section	2.9.4,	“Dealing	with	Problems	Compiling	MySQL”.

To	be	able	to	use	UDFs,	you	need	to	link	mysqld	dynamically.	Don't	configure
MySQL	using	--with-mysqld-ldflags=-all-static.	If	you	want	to	use	a	UDF
that	needs	to	access	symbols	from	mysqld	(for	example,	the	metaphone	function
in	sql/udf_example.cc	that	uses	default_charset_info),	you	must	link	the
program	with	-rdynamic	(see	man	dlopen).	If	you	plan	to	use	UDFs,	the	rule	of
thumb	is	to	configure	MySQL	with	--with-mysqld-ldflags=-rdynamic	unless
you	have	a	very	good	reason	not	to.

If	you	must	use	a	precompiled	distribution	of	MySQL,	use	MySQL-Max,	which
contains	a	dynamically	linked	server	that	supports	dynamic	loading.

For	each	function	that	you	want	to	use	in	SQL	statements,	you	should	define
corresponding	C	(or	C++)	functions.	In	the	following	discussion,	the	name
“xxx”	is	used	for	an	example	function	name.	To	distinguish	between	SQL	and
C/C++	usage,	XXX()	(uppercase)	indicates	an	SQL	function	call,	and	xxx()
(lowercase)	indicates	a	C/C++	function	call.

The	C/C++	functions	that	you	write	to	implement	the	interface	for	XXX()	are:

xxx()	(required)

The	main	function.	This	is	where	the	function	result	is	computed.	The
correspondence	between	the	SQL	function	data	type	and	the	return	type	of
your	C/C++	function	is	shown	here:

SQL	Type C/C++	Type
STRING char	*

INTEGER long	long

REAL double

It	is	also	possible	to	declare	a	DECIMAL	function,	but	currently	the	value	is
returned	as	a	string,	so	you	should	write	the	UDF	as	though	it	were	a
STRING	function.

xxx_init()	(optional)

The	initialization	function	for	xxx().	It	can	be	used	for	the	following
purposes:

To	check	the	number	of	arguments	to	XXX().

To	check	that	the	arguments	are	of	a	required	type	or,	alternatively,	to
tell	MySQL	to	coerce	arguments	to	the	types	you	want	when	the	main
function	is	called.

To	allocate	any	memory	required	by	the	main	function.

To	specify	the	maximum	length	of	the	result.

To	specify	(for	REAL	functions)	the	maximum	number	of	decimal
places	in	the	result.

To	specify	whether	the	result	can	be	NULL.

xxx_deinit()	(optional)

The	deinitialization	function	for	xxx().	It	should	deallocate	any	memory
allocated	by	the	initialization	function.

When	an	SQL	statement	invokes	XXX(),	MySQL	calls	the	initialization	function
xxx_init()	to	let	it	perform	any	required	setup,	such	as	argument	checking	or
memory	allocation.	If	xxx_init()	returns	an	error,	MySQL	aborts	the	SQL
statement	with	an	error	message	and	does	not	call	the	main	or	deinitialization
functions.	Otherwise,	MySQL	calls	the	main	function	xxx()	once	for	each	row.
After	all	rows	have	been	processed,	MySQL	calls	the	deinitialization	function
xxx_deinit()	so	that	it	can	perform	any	required	cleanup.

For	aggregate	functions	that	work	like	SUM(),	you	must	also	provide	the
following	functions:

xxx_clear()	(required	in	5.0)

Reset	the	current	aggregate	value	but	do	not	insert	the	argument	as	the
initial	aggregate	value	for	a	new	group.

xxx_add()	(required)

Add	the	argument	to	the	current	aggregate	value.

MySQL	handles	aggregate	UDFs	as	follows:

1.	 Call	xxx_init()	to	let	the	aggregate	function	allocate	any	memory	it	needs
for	storing	results.

2.	 Sort	the	table	according	to	the	GROUP	BY	expression.

3.	 Call	xxx_clear()	for	the	first	row	in	each	new	group.

4.	 Call	xxx_add()	for	each	new	row	that	belongs	in	the	same	group.

5.	 Call	xxx()	to	get	the	result	for	the	aggregate	when	the	group	changes	or
after	the	last	row	has	been	processed.

6.	 Repeat	3-5	until	all	rows	has	been	processed

7.	 Call	xxx_deinit()	to	let	the	UDF	free	any	memory	it	has	allocated.

All	functions	must	be	thread-safe.	This	includes	not	just	the	main	function,	but
the	initialization	and	deinitialization	functions	as	well,	and	also	the	additional
functions	required	by	aggregate	functions.	A	consequence	of	this	requirement	is
that	you	are	not	allowed	to	allocate	any	global	or	static	variables	that	change!	If
you	need	memory,	you	should	allocate	it	in	xxx_init()	and	free	it	in
xxx_deinit().

24.2.4.1.	UDF	Calling	Sequences	for	Simple	Functions

This	section	describes	the	different	functions	that	you	need	to	define	when	you
create	a	simple	UDF.	Section	24.2.4,	“Adding	a	New	User-Defined	Function”,
describes	the	order	in	which	MySQL	calls	these	functions.

The	main	xxx()	function	should	be	declared	as	shown	in	this	section.	Note	that
the	return	type	and	parameters	differ,	depending	on	whether	you	declare	the	SQL
function	XXX()	to	return	STRING,	INTEGER,	or	REAL	in	the	CREATE	FUNCTION
statement:

For	STRING	functions:

char	*xxx(UDF_INIT	*initid,	UDF_ARGS	*args,

										char	*result,	unsigned	long	*length,

										char	*is_null,	char	*error);

For	INTEGER	functions:

long	long	xxx(UDF_INIT	*initid,	UDF_ARGS	*args,

														char	*is_null,	char	*error);

For	REAL	functions:

double	xxx(UDF_INIT	*initid,	UDF_ARGS	*args,

														char	*is_null,	char	*error);

The	initialization	and	deinitialization	functions	are	declared	like	this:

my_bool	xxx_init(UDF_INIT	*initid,	UDF_ARGS	*args,	char	*message);

void	xxx_deinit(UDF_INIT	*initid);

The	initid	parameter	is	passed	to	all	three	functions.	It	points	to	a	UDF_INIT
structure	that	is	used	to	communicate	information	between	functions.	The
UDF_INIT	structure	members	follow.	The	initialization	function	should	fill	in	any
members	that	it	wishes	to	change.	(To	use	the	default	for	a	member,	leave	it
unchanged.)

my_bool	maybe_null

xxx_init()	should	set	maybe_null	to	1	if	xxx()	can	return	NULL.	The
default	value	is	1	if	any	of	the	arguments	are	declared	maybe_null.

unsigned	int	decimals

The	number	of	decimal	digits	to	the	right	of	the	decimal	point.	The	default
value	is	the	maximum	number	of	decimal	digits	in	the	arguments	passed	to
the	main	function.	(For	example,	if	the	function	is	passed	1.34,	1.345,	and

1.3,	the	default	would	be	3,	because	1.345	has	3	decimal	digits.

unsigned	int	max_length

The	maximum	length	of	the	result.	The	default	max_length	value	differs
depending	on	the	result	type	of	the	function.	For	string	functions,	the
default	is	the	length	of	the	longest	argument.	For	integer	functions,	the
default	is	21	digits.	For	real	functions,	the	default	is	13	plus	the	number	of
decimal	digits	indicated	by	initid->decimals.	(For	numeric	functions,	the
length	includes	any	sign	or	decimal	point	characters.)

If	you	want	to	return	a	blob	value,	you	can	set	max_length	to	65KB	or
16MB.	This	memory	is	not	allocated,	but	the	value	is	used	to	decide	which
data	type	to	use	if	there	is	a	need	to	temporarily	store	the	data.

char	*ptr

A	pointer	that	the	function	can	use	for	its	own	purposes.	For	example,
functions	can	use	initid->ptr	to	communicate	allocated	memory	among
themselves.	xxx_init()	should	allocate	the	memory	and	assign	it	to	this
pointer:

initid->ptr	=	allocated_memory;

In	xxx()	and	xxx_deinit(),	refer	to	initid->ptr	to	use	or	deallocate	the
memory.

my_bool	const_item

xxx_init()	should	set	const_item	to	1	if	xxx()	always	returns	the	same
value	and	to	0	otherwise.

24.2.4.2.	UDF	Calling	Sequences	for	Aggregate	Functions

This	section	describes	the	different	functions	that	you	need	to	define	when	you
create	an	aggregate	UDF.	Section	24.2.4,	“Adding	a	New	User-Defined
Function”,	describes	the	order	in	which	MySQL	calls	these	functions.

xxx_reset()

This	function	is	called	when	MySQL	finds	the	first	row	in	a	new	group.	It
should	reset	any	internal	summary	variables	and	then	use	the	given
UDF_ARGS	argument	as	the	first	value	in	your	internal	summary	value	for	the
group.	Declare	xxx_reset()	as	follows:

char	*xxx_reset(UDF_INIT	*initid,	UDF_ARGS	*args,

																char	*is_null,	char	*error);

xxx_reset()	is	not	needed	or	used	in	MySQL	5.0,	in	which	the	UDF
interface	uses	xxx_clear()	instead.	However,	you	can	define	both
xxx_reset()	and	xxx_clear()	if	you	want	to	have	your	UDF	work	with
older	versions	of	the	server.	(If	you	do	include	both	functions,	the
xxx_reset()	function	in	many	cases	can	be	implemented	internally	by
calling	xxx_clear()	to	reset	all	variables,	and	then	calling	xxx_add()	to
add	the	UDF_ARGS	argument	as	the	first	value	in	the	group.)

xxx_clear()

This	function	is	called	when	MySQL	needs	to	reset	the	summary	results.	It
is	called	at	the	beginning	for	each	new	group	but	can	also	be	called	to	reset
the	values	for	a	query	where	there	were	no	matching	rows.	Declare
xxx_clear()	as	follows:

char	*xxx_clear(UDF_INIT	*initid,	char	*is_null,	char	*error);

is_null	is	set	to	point	to	CHAR(0)	before	calling	xxx_clear().

If	something	went	wrong,	you	can	store	a	value	in	the	variable	to	which	the
error	argument	points.	error	points	to	a	single-byte	variable,	not	to	a
string	buffer.

xxx_clear()	is	required	by	MySQL	5.0.

xxx_add()

This	function	is	called	for	all	rows	that	belong	to	the	same	group,	except	for
the	first	row.	You	should	use	it	to	add	the	value	in	the	UDF_ARGS	argument	to
your	internal	summary	variable.

char	*xxx_add(UDF_INIT	*initid,	UDF_ARGS	*args,

														char	*is_null,	char	*error);

The	xxx()	function	for	an	aggregate	UDF	should	be	declared	the	same	way	as
for	a	non-aggregate	UDF.	See	Section	24.2.4.1,	“UDF	Calling	Sequences	for
Simple	Functions”.

For	an	aggregate	UDF,	MySQL	calls	the	xxx()	function	after	all	rows	in	the
group	have	been	processed.	You	should	normally	never	access	its	UDF_ARGS
argument	here	but	instead	return	a	value	based	on	your	internal	summary
variables.

Return	value	handling	in	xxx()	should	be	done	the	same	way	as	for	a	non-
aggregate	UDF.	See	Section	24.2.4.4,	“UDF	Return	Values	and	Error	Handling”.

The	xxx_reset()	and	xxx_add()	functions	handle	their	UDF_ARGS	argument	the
same	way	as	functions	for	non-aggregate	UDFs.	See	Section	24.2.4.3,	“UDF
Argument	Processing”.

The	pointer	arguments	to	is_null	and	error	are	the	same	for	all	calls	to
xxx_reset(),	xxx_clear(),	xxx_add()	and	xxx().	You	can	use	this	to
remember	that	you	got	an	error	or	whether	the	xxx()	function	should	return
NULL.	You	should	not	store	a	string	into	*error!	error	points	to	a	single-byte
variable,	not	to	a	string	buffer.

*is_null	is	reset	for	each	group	(before	calling	xxx_clear()).	*error	is	never
reset.

If	*is_null	or	*error	are	set	when	xxx()	returns,	MySQL	returns	NULL	as	the
result	for	the	group	function.

24.2.4.3.	UDF	Argument	Processing

The	args	parameter	points	to	a	UDF_ARGS	structure	that	has	the	members	listed
here:

unsigned	int	arg_count

The	number	of	arguments.	Check	this	value	in	the	initialization	function	if
you	require	your	function	to	be	called	with	a	particular	number	of
arguments.	For	example:

if	(args->arg_count	!=	2)

{

				strcpy(message,"XXX()	requires	two	arguments");

				return	1;

}

enum	Item_result	*arg_type

A	pointer	to	an	array	containing	the	types	for	each	argument.	The	possible
type	values	are	STRING_RESULT,	INT_RESULT,	and	REAL_RESULT.

To	make	sure	that	arguments	are	of	a	given	type	and	return	an	error	if	they
are	not,	check	the	arg_type	array	in	the	initialization	function.	For
example:

if	(args->arg_type[0]	!=	STRING_RESULT	||

				args->arg_type[1]	!=	INT_RESULT)

{

				strcpy(message,"XXX()	requires	a	string	and	an	integer");

				return	1;

}

As	an	alternative	to	requiring	your	function's	arguments	to	be	of	particular
types,	you	can	use	the	initialization	function	to	set	the	arg_type	elements	to
the	types	you	want.	This	causes	MySQL	to	coerce	arguments	to	those	types
for	each	call	to	xxx().	For	example,	to	specify	that	the	first	two	arguments
should	be	coerced	to	string	and	integer,	respectively,	do	this	in	xxx_init():

args->arg_type[0]	=	STRING_RESULT;

args->arg_type[1]	=	INT_RESULT;

char	**args

args->args	communicates	information	to	the	initialization	function	about
the	general	nature	of	the	arguments	passed	to	your	function.	For	a	constant
argument	i,	args->args[i]	points	to	the	argument	value.	(See	below	for
instructions	on	how	to	access	the	value	properly.)	For	a	non-constant
argument,	args->args[i]	is	0.	A	constant	argument	is	an	expression	that
uses	only	constants,	such	as	3	or	4*7-2	or	SIN(3.14).	A	non-constant
argument	is	an	expression	that	refers	to	values	that	may	change	from	row	to
row,	such	as	column	names	or	functions	that	are	called	with	non-constant
arguments.

For	each	invocation	of	the	main	function,	args->args	contains	the	actual
arguments	that	are	passed	for	the	row	currently	being	processed.

Functions	can	refer	to	an	argument	i	as	follows:

An	argument	of	type	STRING_RESULT	is	given	as	a	string	pointer	plus	a
length,	to	allow	handling	of	binary	data	or	data	of	arbitrary	length.	The
string	contents	are	available	as	args->args[i]	and	the	string	length	is
args->lengths[i].	You	should	not	assume	that	strings	are	null-
terminated.

For	an	argument	of	type	INT_RESULT,	you	must	cast	args->args[i]	to
a	long	long	value:

long	long	int_val;

int_val	=	*((long	long*)	args->args[i]);

For	an	argument	of	type	REAL_RESULT,	you	must	cast	args->args[i]
to	a	double	value:

double				real_val;

real_val	=	*((double*)	args->args[i]);

unsigned	long	*lengths

For	the	initialization	function,	the	lengths	array	indicates	the	maximum
string	length	for	each	argument.	You	should	not	change	these.	For	each
invocation	of	the	main	function,	lengths	contains	the	actual	lengths	of	any
string	arguments	that	are	passed	for	the	row	currently	being	processed.	For
arguments	of	types	INT_RESULT	or	REAL_RESULT,	lengths	still	contains	the
maximum	length	of	the	argument	(as	for	the	initialization	function).

24.2.4.4.	UDF	Return	Values	and	Error	Handling

The	initialization	function	should	return	0	if	no	error	occurred	and	1	otherwise.	If
an	error	occurs,	xxx_init()	should	store	a	null-terminated	error	message	in	the
message	parameter.	The	message	is	returned	to	the	client.	The	message	buffer	is
MYSQL_ERRMSG_SIZE	characters	long,	but	you	should	try	to	keep	the	message	to
less	than	80	characters	so	that	it	fits	the	width	of	a	standard	terminal	screen.

The	return	value	of	the	main	function	xxx()	is	the	function	value,	for	long	long
and	double	functions.	A	string	function	should	return	a	pointer	to	the	result	and
set	*result	and	*length	to	the	contents	and	length	of	the	return	value.	For
example:

memcpy(result,	"result	string",	13);

*length	=	13;

The	result	buffer	that	is	passed	to	the	xxx()	function	is	255	bytes	long.	If	your
result	fits	in	this,	you	don't	have	to	worry	about	memory	allocation	for	results.

If	your	string	function	needs	to	return	a	string	longer	than	255	bytes,	you	must
allocate	the	space	for	it	with	malloc()	in	your	xxx_init()	function	or	your
xxx()	function	and	free	it	in	your	xxx_deinit()	function.	You	can	store	the
allocated	memory	in	the	ptr	slot	in	the	UDF_INIT	structure	for	reuse	by	future
xxx()	calls.	See	Section	24.2.4.1,	“UDF	Calling	Sequences	for	Simple
Functions”.

To	indicate	a	return	value	of	NULL	in	the	main	function,	set	*is_null	to	1:

*is_null	=	1;

To	indicate	an	error	return	in	the	main	function,	set	*error	to	1:

*error	=	1;

If	xxx()	sets	*error	to	1	for	any	row,	the	function	value	is	NULL	for	the	current
row	and	for	any	subsequent	rows	processed	by	the	statement	in	which	XXX()	was
invoked.	(xxx()	is	not	even	called	for	subsequent	rows.)

24.2.4.5.	Compiling	and	Installing	User-Defined	Functions

Files	implementing	UDFs	must	be	compiled	and	installed	on	the	host	where	the
server	runs.	This	process	is	described	below	for	the	example	UDF	file
sql/udf_example.cc	that	is	included	in	the	MySQL	source	distribution.

The	immediately	following	instructions	are	for	Unix.	Instructions	for	Windows
are	given	later	in	this	section.

The	udf_example.cc	file	contains	the	following	functions:

metaphon()	returns	a	metaphon	string	of	the	string	argument.	This	is
something	like	a	soundex	string,	but	it's	more	tuned	for	English.

myfunc_double()	returns	the	sum	of	the	ASCII	values	of	the	characters	in
its	arguments,	divided	by	the	sum	of	the	length	of	its	arguments.

myfunc_int()	returns	the	sum	of	the	length	of	its	arguments.

sequence([const	int])	returns	a	sequence	starting	from	the	given	number
or	1	if	no	number	has	been	given.

lookup()	returns	the	IP	number	for	a	hostname.

reverse_lookup()	returns	the	hostname	for	an	IP	number.	The	function
may	be	called	either	with	a	single	string	argument	of	the	form
'xxx.xxx.xxx.xxx'	or	with	four	numbers.

A	dynamically	loadable	file	should	be	compiled	as	a	sharable	object	file,	using	a
command	something	like	this:

shell>	gcc	-shared	-o	udf_example.so	udf_example.cc

If	you	are	using	gcc,	you	should	be	able	to	create	udf_example.so	with	a
simpler	command:

shell>	make	udf_example.so

You	can	easily	determine	the	correct	compiler	options	for	your	system	by
running	this	command	in	the	sql	directory	of	your	MySQL	source	tree:

shell>	make	udf_example.o

You	should	run	a	compile	command	similar	to	the	one	that	make	displays,
except	that	you	should	remove	the	-c	option	near	the	end	of	the	line	and	add	-o
udf_example.so	to	the	end	of	the	line.	(On	some	systems,	you	may	need	to
leave	the	-c	on	the	command.)

After	you	compile	a	shared	object	containing	UDFs,	you	must	install	it	and	tell
MySQL	about	it.	Compiling	a	shared	object	from	udf_example.cc	produces	a
file	named	something	like	udf_example.so	(the	exact	name	may	vary	from
platform	to	platform).	Copy	this	file	to	some	directory	such	as	/usr/lib	that

searched	by	your	system's	dynamic	(runtime)	linker,	or	add	the	directory	in
which	you	placed	the	shared	object	to	the	linker	configuration	file	(for	example,
/etc/ld.so.conf).

The	dynamic	linker	name	is	system-specific	(for	example,	ld-elf.so.1	on
FreeBSD,	ld.so	on	Linux,	or	dyld	on	Mac	OS	X).	Consult	your	system
documentation	for	information	about	the	linker	name	and	how	to	configure	it.

On	many	systems,	you	can	also	set	the	LD_LIBRARY	or	LD_LIBRARY_PATH
environment	variable	to	point	at	the	directory	where	you	have	the	files	for	your
UDF.	The	dlopen	manual	page	tells	you	which	variable	you	should	use	on	your
system.	You	should	set	this	in	mysql.server	or	mysqld_safe	startup	scripts	and
restart	mysqld.

On	some	systems,	the	ldconfig	program	that	configures	the	dynamic	linker	does
not	recognize	a	shared	object	unless	its	name	begins	with	lib.	In	this	case	you
should	rename	a	file	such	as	udf_example.so	to	libudf_example.so.

On	Windows,	you	can	compile	user-defined	functions	by	using	the	following
procedure:

1.	 You	need	to	obtain	the	BitKeeper	source	repository	for	MySQL	5.0.	See
Section	2.9.3,	“Installing	from	the	Development	Source	Tree”.

2.	 In	the	source	repository,	look	in	the	VC++Files/examples/udf_example
directory.	There	are	files	named	udf_example.def,	udf_example.dsp,	and
udf_example.dsw	there.

3.	 In	the	source	repository,	look	in	the	sql	directory.	Copy	the
udf_example.cc	from	this	directory	to	the
VC++Files/examples/udf_example	directory	and	rename	the	file	to
udf_example.cpp.

4.	 Open	the	udf_example.dsw	file	with	Visual	Studio	VC++	and	use	it	to
compile	the	UDFs	as	a	normal	project.

After	the	shared	object	file	has	been	installed,	notify	mysqld	about	the	new
functions	with	these	statements:

mysql>	CREATE	FUNCTION	metaphon	RETURNS	STRING	SONAME	'udf_example.so';

mysql>	CREATE	FUNCTION	myfunc_double	RETURNS	REAL	SONAME	'udf_example.so';

mysql>	CREATE	FUNCTION	myfunc_int	RETURNS	INTEGER	SONAME	'udf_example.so';

mysql>	CREATE	FUNCTION	lookup	RETURNS	STRING	SONAME	'udf_example.so';

mysql>	CREATE	FUNCTION	reverse_lookup

				->								RETURNS	STRING	SONAME	'udf_example.so';

mysql>	CREATE	AGGREGATE	FUNCTION	avgcost

				->								RETURNS	REAL	SONAME	'udf_example.so';

Functions	can	be	deleted	using	DROP	FUNCTION:

mysql>	DROP	FUNCTION	metaphon;

mysql>	DROP	FUNCTION	myfunc_double;

mysql>	DROP	FUNCTION	myfunc_int;

mysql>	DROP	FUNCTION	lookup;

mysql>	DROP	FUNCTION	reverse_lookup;

mysql>	DROP	FUNCTION	avgcost;

The	CREATE	FUNCTION	and	DROP	FUNCTION	statements	update	the	func	system
table	in	the	mysql	database.	The	function's	name,	type	and	shared	library	name
are	saved	in	the	table.	You	must	have	the	INSERT	and	DELETE	privileges	for	the
mysql	database	to	create	and	drop	functions.

You	should	not	use	CREATE	FUNCTION	to	add	a	function	that	has	previously	been
created.	If	you	need	to	reinstall	a	function,	you	should	remove	it	with	DROP
FUNCTION	and	then	reinstall	it	with	CREATE	FUNCTION.	You	would	need	to	do	this,
for	example,	if	you	recompile	a	new	version	of	your	function,	so	that	mysqld
gets	the	new	version.	Otherwise,	the	server	continues	to	use	the	old	version.

An	active	function	is	one	that	has	been	loaded	with	CREATE	FUNCTION	and	not
removed	with	DROP	FUNCTION.	All	active	functions	are	reloaded	each	time	the
server	starts,	unless	you	start	mysqld	with	the	--skip-grant-tables	option.	In
this	case,	UDF	initialization	is	skipped	and	UDFs	are	unavailable.

24.2.4.6.	User-Defined	Function	Security	Precautions

MySQL	takes	the	following	measures	to	prevent	misuse	of	user-defined
functions.

You	must	have	the	INSERT	privilege	to	be	able	to	use	CREATE	FUNCTION	and	the
DELETE	privilege	to	be	able	to	use	DROP	FUNCTION.	This	is	necessary	because
these	statements	add	and	delete	rows	from	the	mysql.func	table.

UDFs	should	have	at	least	one	symbol	defined	in	addition	to	the	xxx	symbol	that
corresponds	to	the	main	xxx()	function.	These	auxiliary	symbols	correspond	to
the	xxx_init(),	xxx_deinit(),	xxx_reset(),	xxx_clear(),	and	xxx_add()
functions.	As	of	MySQL	5.0.3,	mysqld	supports	an	--allow-suspicious-udfs
option	that	controls	whether	UDFs	that	have	only	an	xxx	symbol	can	be	loaded.
By	default,	the	option	is	off,	to	prevent	attempts	at	loading	functions	from	shared
object	files	other	than	those	containing	legitimate	UDFs.	If	you	have	older	UDFs
that	contain	only	the	xxx	symbol	and	that	cannot	be	recompiled	to	include	an
auxiliary	symbol,	it	may	be	necessary	to	specify	the	--allow-suspicious-udfs
option.	Otherwise,	you	should	avoid	enabling	this	capability.

UDF	object	files	cannot	be	placed	in	arbitrary	directories.	They	must	be	located
in	some	system	directory	that	the	dynamic	linker	is	configured	to	search.	To
enforce	this	restriction	and	prevent	attempts	at	specifying	pathnames	outside	of
directories	searched	by	the	dynamic	linker,	MySQL	checks	the	shared	object	file
name	specified	in	CREATE	FUNCTION	statements	for	pathname	delimiter
characters.	As	of	MySQL	5.0.3,	MySQL	also	checks	for	pathname	delimiters	in
filenames	stored	in	the	mysql.func	table	when	it	loads	functions.	This	prevents
attempts	at	specifying	illegitimate	pathnames	through	direct	manipulation	of	the
mysql.func	table.	For	information	about	UDFs	and	the	runtime	linker,	see
Section	24.2.4.5,	“Compiling	and	Installing	User-Defined	Functions”.

24.2.5.	Adding	a	New	Native	Function

The	procedure	for	adding	a	new	native	function	is	described	here.	Note	that	you
cannot	add	native	functions	to	a	binary	distribution	because	the	procedure
involves	modifying	MySQL	source	code.	You	must	compile	MySQL	yourself
from	a	source	distribution.	Also	note	that	if	you	migrate	to	another	version	of
MySQL	(for	example,	when	a	new	version	is	released),	you	need	to	repeat	the
procedure	with	the	new	version.

To	add	a	new	native	MySQL	function,	follow	these	steps:

1.	 Add	one	line	to	lex.h	that	defines	the	function	name	in	the
sql_functions[]	array.

2.	 If	the	function	prototype	is	simple	(just	takes	zero,	one,	two	or	three
arguments),	you	should	in	lex.h	specify	SYM(FUNC_ARGN)	(where	N	is	the
number	of	arguments)	as	the	second	argument	in	the	sql_functions[]

array	and	add	a	function	that	creates	a	function	object	in	item_create.cc.
Take	a	look	at	"ABS"	and	create_funcs_abs()	for	an	example	of	this.

If	the	function	prototype	is	complicated	(for	example,	if	it	takes	a	variable
number	of	arguments),	you	should	add	two	lines	to	sql_yacc.yy.	One
indicates	the	preprocessor	symbol	that	yacc	should	define	(this	should	be
added	at	the	beginning	of	the	file).	Then	define	the	function	parameters	and
add	an	“item”	with	these	parameters	to	the	simple_expr	parsing	rule.	For
an	example,	check	all	occurrences	of	ATAN	in	sql_yacc.yy	to	see	how	this
is	done.

3.	 In	item_func.h,	declare	a	class	inheriting	from	Item_num_func	or
Item_str_func,	depending	on	whether	your	function	returns	a	number	or	a
string.

4.	 In	item_func.cc,	add	one	of	the	following	declarations,	depending	on
whether	you	are	defining	a	numeric	or	string	function:

double			Item_func_newname::val()

longlong	Item_func_newname::val_int()

String		*Item_func_newname::Str(String	*str)

If	you	inherit	your	object	from	any	of	the	standard	items	(like
Item_num_func),	you	probably	only	have	to	define	one	of	these	functions
and	let	the	parent	object	take	care	of	the	other	functions.	For	example,	the
Item_str_func	class	defines	a	val()	function	that	executes	atof()	on	the
value	returned	by	::str().

5.	 You	should	probably	also	define	the	following	object	function:

void	Item_func_newname::fix_length_and_dec()

This	function	should	at	least	calculate	max_length	based	on	the	given
arguments.	max_length	is	the	maximum	number	of	characters	the	function
may	return.	This	function	should	also	set	maybe_null	=	0	if	the	main
function	can't	return	a	NULL	value.	The	function	can	check	whether	any	of
the	function	arguments	can	return	NULL	by	checking	the	arguments'
maybe_null	variable.	You	can	take	a	look	at
Item_func_mod::fix_length_and_dec	for	a	typical	example	of	how	to	do
this.

All	functions	must	be	thread-safe.	In	other	words,	don't	use	any	global	or	static
variables	in	the	functions	without	protecting	them	with	mutexes)

If	you	want	to	return	NULL,	from	::val(),	::val_int()	or	::str()	you	should
set	null_value	to	1	and	return	0.

For	::str()	object	functions,	there	are	some	additional	considerations	to	be
aware	of:

The	String	*str	argument	provides	a	string	buffer	that	may	be	used	to
hold	the	result.	(For	more	information	about	the	String	type,	take	a	look	at
the	sql_string.h	file.)

The	::str()	function	should	return	the	string	that	holds	the	result	or
(char*)	0	if	the	result	is	NULL.

All	current	string	functions	try	to	avoid	allocating	any	memory	unless
absolutely	necessary!

24.3.	Adding	New	Procedures	to	MySQL

In	MySQL,	you	can	define	a	procedure	in	C++	that	can	access	and	modify	the
data	in	a	query	before	it	is	sent	to	the	client.	The	modification	can	be	done	on	a
row-by-row	or	GROUP	BY	level.

We	have	created	an	example	procedure	to	show	you	what	can	be	done.

Additionally,	we	recommend	that	you	take	a	look	at	mylua.	With	this	you	can	use
the	LUA	language	to	load	a	procedure	at	runtime	into	mysqld.

24.3.1.	Procedure	Analyse

analyse([max_elements,[max_memory]])

This	procedure	is	defined	in	the	sql/sql_analyse.cc.	This	examines	the	result
from	your	query	and	returns	an	analysis	of	the	results:

max_elements	(default	256)	is	the	maximum	number	of	distinct	values
analyse	does	notice	per	column.	This	is	used	by	analyse	to	check	whether
the	optimal	data	type	should	be	of	type	ENUM.

max_memory	(default	8192)	is	the	maximum	amount	of	memory	that
analyse	should	allocate	per	column	while	trying	to	find	all	distinct	values.

SELECT	...	FROM	...	WHERE	...	PROCEDURE	ANALYSE([max_elements,[max_memory

24.3.2.	Writing	a	Procedure

For	the	moment,	the	only	documentation	for	this	is	the	source.

You	can	find	all	information	about	procedures	by	examining	the	following	files:

sql/sql_analyse.cc

sql/procedure.h

sql/procedure.cc

sql/sql_select.cc

Appendix	A.	Problems	and	Common	Errors

Table	of	Contents

A.1.	How	to	Determine	What	Is	Causing	a	Problem
A.2.	Common	Errors	When	Using	MySQL	Programs

A.2.1.	Access	denied
A.2.2.	Can't	connect	to	[local]	MySQL	server
A.2.3.	Client	does	not	support	authentication	protocol
A.2.4.	Password	Fails	When	Entered	Interactively
A.2.5.	Host	'host_name'	is	blocked
A.2.6.	Too	many	connections
A.2.7.	Out	of	memory
A.2.8.	MySQL	server	has	gone	away
A.2.9.	Packet	too	large
A.2.10.	Communication	Errors	and	Aborted	Connections
A.2.11.	The	table	is	full
A.2.12.	Can't	create/write	to	file
A.2.13.	Commands	out	of	sync
A.2.14.	Ignoring	user
A.2.15.	Table	'tbl_name'	doesn't	exist
A.2.16.	Can't	initialize	character	set
A.2.17.	File	Not	Found

A.3.	Installation-Related	Issues
A.3.1.	Problems	Linking	to	the	MySQL	Client	Library
A.3.2.	Problems	with	File	Permissions

A.4.	Administration-Related	Issues
A.4.1.	How	to	Reset	the	Root	Password
A.4.2.	What	to	Do	If	MySQL	Keeps	Crashing
A.4.3.	How	MySQL	Handles	a	Full	Disk
A.4.4.	Where	MySQL	Stores	Temporary	Files
A.4.5.	How	to	Protect	or	Change	the	MySQL	Unix	Socket	File
A.4.6.	Time	Zone	Problems

A.5.	Query-Related	Issues
A.5.1.	Case	Sensitivity	in	Searches
A.5.2.	Problems	Using	DATE	Columns
A.5.3.	Problems	with	NULL	Values

A.5.4.	Problems	with	Column	Aliases
A.5.5.	Rollback	Failure	for	Non-Transactional	Tables
A.5.6.	Deleting	Rows	from	Related	Tables
A.5.7.	Solving	Problems	with	No	Matching	Rows
A.5.8.	Problems	with	Floating-Point	Comparisons

A.6.	Optimizer-Related	Issues
A.7.	Table	Definition-Related	Issues

A.7.1.	Problems	with	ALTER	TABLE
A.7.2.	How	to	Change	the	Order	of	Columns	in	a	Table
A.7.3.	TEMPORARY	TABLE	Problems

A.8.	Known	Issues	in	MySQL
A.8.1.	Open	Issues	in	MySQL

This	appendix	lists	some	common	problems	and	error	messages	that	you	may
encounter.	It	describes	how	to	determine	the	causes	of	the	problems	and	what	to
do	to	solve	them.

A.1.	How	to	Determine	What	Is	Causing	a	Problem

When	you	run	into	a	problem,	the	first	thing	you	should	do	is	to	find	out	which
program	or	piece	of	equipment	is	causing	it:

If	you	have	one	of	the	following	symptoms,	then	it	is	probably	a	hardware
problems	(such	as	memory,	motherboard,	CPU,	or	hard	disk)	or	kernel
problem:

The	keyboard	doesn't	work.	This	can	normally	be	checked	by	pressing
the	Caps	Lock	key.	If	the	Caps	Lock	light	doesn't	change,	you	have	to
replace	your	keyboard.	(Before	doing	this,	you	should	try	to	restart
your	computer	and	check	all	cables	to	the	keyboard.)

The	mouse	pointer	doesn't	move.

The	machine	doesn't	answer	to	a	remote	machine's	pings.

Other	programs	that	are	not	related	to	MySQL	don't	behave	correctly.

Your	system	restarted	unexpectedly.	(A	faulty	user-level	program
should	never	be	able	to	take	down	your	system.)

In	this	case,	you	should	start	by	checking	all	your	cables	and	run	some
diagnostic	tool	to	check	your	hardware!	You	should	also	check	whether
there	are	any	patches,	updates,	or	service	packs	for	your	operating	system
that	could	likely	solve	your	problem.	Check	also	that	all	your	libraries	(such
as	glibc)	are	up	to	date.

It's	always	good	to	use	a	machine	with	ECC	memory	to	discover	memory
problems	early.

If	your	keyboard	is	locked	up,	you	may	be	able	to	recover	by	logging	in	to
your	machine	from	another	machine	and	executing	kbd_mode	-a.

Please	examine	your	system	log	file	(/var/log/messages	or	similar)	for
reasons	for	your	problem.	If	you	think	the	problem	is	in	MySQL,	you
should	also	examine	MySQL's	log	files.	See	Section	5.12,	“MySQL	Server

Logs”.

If	you	don't	think	you	have	hardware	problems,	you	should	try	to	find	out
which	program	is	causing	problems.	Try	using	top,	ps,	Task	Manager,	or
some	similar	program,	to	check	which	program	is	taking	all	CPU	or	is
locking	the	machine.

Use	top,	df,	or	a	similar	program	to	check	whether	you	are	out	of	memory,
disk	space,	file	descriptors,	or	some	other	critical	resource.

If	the	problem	is	some	runaway	process,	you	can	always	try	to	kill	it.	If	it
doesn't	want	to	die,	there	is	probably	a	bug	in	the	operating	system.

If	after	you	have	examined	all	other	possibilities	and	you	have	concluded	that
the	MySQL	server	or	a	MySQL	client	is	causing	the	problem,	it's	time	to	create	a
bug	report	for	our	mailing	list	or	our	support	team.	In	the	bug	report,	try	to	give
a	very	detailed	description	of	how	the	system	is	behaving	and	what	you	think	is
happening.	You	should	also	state	why	you	think	that	MySQL	is	causing	the
problem.	Take	into	consideration	all	the	situations	in	this	chapter.	State	any
problems	exactly	how	they	appear	when	you	examine	your	system.	Use	the
“copy	and	paste”	method	for	any	output	and	error	messages	from	programs	and
log	files.

Try	to	describe	in	detail	which	program	is	not	working	and	all	symptoms	you
see.	We	have	in	the	past	received	many	bug	reports	that	state	only	“the	system
doesn't	work.”	This	doesn't	provide	us	with	any	information	about	what	could	be
the	problem.

If	a	program	fails,	it's	always	useful	to	know	the	following	information:

Has	the	program	in	question	made	a	segmentation	fault	(did	it	dump	core)?

Is	the	program	taking	up	all	available	CPU	time?	Check	with	top.	Let	the
program	run	for	a	while,	it	may	simply	be	evaluating	something
computationally	intensive.

If	the	mysqld	server	is	causing	problems,	can	you	get	any	response	from	it
with	mysqladmin	-u	root	ping	or	mysqladmin	-u	root	processlist?

What	does	a	client	program	say	when	you	try	to	connect	to	the	MySQL

server?	(Try	with	mysql,	for	example.)	Does	the	client	jam?	Do	you	get	any
output	from	the	program?

When	sending	a	bug	report,	you	should	follow	the	outline	described	in
Section	1.8,	“How	to	Report	Bugs	or	Problems”.

A.2.	Common	Errors	When	Using	MySQL	Programs

This	section	lists	some	errors	that	users	frequently	encounter	when	running
MySQL	programs.	Although	the	problems	show	up	when	you	try	to	run	client
programs,	the	solutions	to	many	of	the	problems	involves	changing	the
configuration	of	the	MySQL	server.

A.2.1.	Access	denied

An	Access	denied	error	can	have	many	causes.	Often	the	problem	is	related	to
the	MySQL	accounts	that	the	server	allows	client	programs	to	use	when
connecting.	See	Section	5.8.8,	“Causes	of	Access	denied	Errors”,	and
Section	5.8.2,	“How	the	Privilege	System	Works”.

A.2.2.	Can't	connect	to	[local]	MySQL	server

A	MySQL	client	on	Unix	can	connect	to	the	mysqld	server	in	two	different
ways:	By	using	a	Unix	socket	file	to	connect	through	a	file	in	the	filesystem
(default	/tmp/mysql.sock),	or	by	using	TCP/IP,	which	connects	through	a	port
number.	A	Unix	socket	file	connection	is	faster	than	TCP/IP,	but	can	be	used
only	when	connecting	to	a	server	on	the	same	computer.	A	Unix	socket	file	is
used	if	you	don't	specify	a	hostname	or	if	you	specify	the	special	hostname
localhost.

If	the	MySQL	server	is	running	on	Windows	9x	or	Me,	you	can	connect	only	via
TCP/IP.	If	the	server	is	running	on	Windows	NT,	2000,	XP,	or	2003	and	is
started	with	the	--enable-named-pipe	option,	you	can	also	connect	with	named
pipes	if	you	run	the	client	on	the	host	where	the	server	is	running.	The	name	of
the	named	pipe	is	MySQL	by	default.	If	you	don't	give	a	hostname	when
connecting	to	mysqld,	a	MySQL	client	first	tries	to	connect	to	the	named	pipe.	If
that	doesn't	work,	it	connects	to	the	TCP/IP	port.	You	can	force	the	use	of	named
pipes	on	Windows	by	using	.	as	the	hostname.

The	error	(2002)	Can't	connect	to	...	normally	means	that	there	is	no
MySQL	server	running	on	the	system	or	that	you	are	using	an	incorrect	Unix
socket	filename	or	TCP/IP	port	number	when	trying	to	connect	to	the	server.

The	error	(2003)	Can't	connect	to	MySQL	server	on	'server'	(10061)
indicates	that	the	network	connection	has	been	refused.	You	should	check	that
there	is	a	MySQL	server	running,	that	it	has	network	connections	enabled,	the
network	port	you	specified	is	the	one	configured	on	the	server,	and	that	the
TCP/IP	port	you	are	using	has	not	been	blocked	by	a	firewall	or	port	blocking
service.

Start	by	checking	whether	there	is	a	process	named	mysqld	running	on	your
server	host.	(Use	ps	xa	|	grep	mysqld	on	Unix	or	the	Task	Manager	on
Windows.)	If	there	is	no	such	process,	you	should	start	the	server.	See
Section	2.10.2.3,	“Starting	and	Troubleshooting	the	MySQL	Server”.

If	a	mysqld	process	is	running,	you	can	check	it	by	trying	the	following
commands.	The	port	number	or	Unix	socket	filename	might	be	different	in	your
setup.	host_ip	represents	the	IP	number	of	the	machine	where	the	server	is
running.

shell>	mysqladmin	version

shell>	mysqladmin	variables

shell>	mysqladmin	-h	`hostname`	version	variables

shell>	mysqladmin	-h	`hostname`	--port=3306	version

shell>	mysqladmin	-h	host_ip	version

shell>	mysqladmin	--protocol=socket	--socket=/tmp/mysql.sock	version

Note	the	use	of	backticks	rather	than	forward	quotes	with	the	hostname
command;	these	cause	the	output	of	hostname	(that	is,	the	current	hostname)	to
be	substituted	into	the	mysqladmin	command.	If	you	have	no	hostname
command	or	are	running	on	Windows,	you	can	manually	type	the	hostname	of
your	machine	(without	backticks)	following	the	-h	option.	You	can	also	try	-h
127.0.0.1	to	connect	with	TCP/IP	to	the	local	host.

Here	are	some	reasons	the	Can't	connect	to	local	MySQL	server	error	might
occur:

mysqld	is	not	running.	Check	your	operating	system's	process	list	to	ensure
the	mysqld	process	is	present.

You're	running	a	MySQL	server	on	Windows	with	many	TCP/IP
connections	to	it.	If	you're	experiencing	that	quite	often	your	clients	get	that
error,	you	can	find	a	workaround	here:	Section	A.2.2.1,	“Connection	to
MySQL	Server	Failing	on	Windows”.

You	are	running	on	a	system	that	uses	MIT-pthreads.	If	you	are	running	on
a	system	that	doesn't	have	native	threads,	mysqld	uses	the	MIT-pthreads
package.	See	Section	2.1.1,	“Operating	Systems	Supported	by	MySQL”.
However,	not	all	MIT-pthreads	versions	support	Unix	socket	files.	On	a
system	without	socket	file	support,	you	must	always	specify	the	hostname
explicitly	when	connecting	to	the	server.	Try	using	this	command	to	check
the	connection	to	the	server:

shell>	mysqladmin	-h	`hostname`	version

Someone	has	removed	the	Unix	socket	file	that	mysqld	uses
(/tmp/mysql.sock	by	default).	For	example,	you	might	have	a	cron	job
that	removes	old	files	from	the	/tmp	directory.	You	can	always	run
mysqladmin	version	to	check	whether	the	Unix	socket	file	that
mysqladmin	is	trying	to	use	really	exists.	The	fix	in	this	case	is	to	change
the	cron	job	to	not	remove	mysql.sock	or	to	place	the	socket	file
somewhere	else.	See	Section	A.4.5,	“How	to	Protect	or	Change	the	MySQL
Unix	Socket	File”.

You	have	started	the	mysqld	server	with	the	--socket=/path/to/socket
option,	but	forgotten	to	tell	client	programs	the	new	name	of	the	socket	file.
If	you	change	the	socket	pathname	for	the	server,	you	must	also	notify	the
MySQL	clients.	You	can	do	this	by	providing	the	same	--socket	option
when	you	run	client	programs.	You	also	need	to	ensure	that	clients	have
permission	to	access	the	mysql.sock	file.	To	find	out	where	the	socket	file
is,	you	can	do:

shell>	netstat	-ln	|	grep	mysql

See	Section	A.4.5,	“How	to	Protect	or	Change	the	MySQL	Unix	Socket
File”.

You	are	using	Linux	and	one	server	thread	has	died	(dumped	core).	In	this
case,	you	must	kill	the	other	mysqld	threads	(for	example,	with	kill	or
with	the	mysql_zap	script)	before	you	can	restart	the	MySQL	server.	See
Section	A.4.2,	“What	to	Do	If	MySQL	Keeps	Crashing”.

The	server	or	client	program	might	not	have	the	proper	access	privileges	for
the	directory	that	holds	the	Unix	socket	file	or	the	socket	file	itself.	In	this
case,	you	must	either	change	the	access	privileges	for	the	directory	or

socket	file	so	that	the	server	and	clients	can	access	them,	or	restart	mysqld
with	a	--socket	option	that	specifies	a	socket	filename	in	a	directory	where
the	server	can	create	it	and	where	client	programs	can	access	it.

If	you	get	the	error	message	Can't	connect	to	MySQL	server	on	some_host,
you	can	try	the	following	things	to	find	out	what	the	problem	is:

Check	whether	the	server	is	running	on	that	host	by	executing	telnet
some_host	3306	and	pressing	the	Enter	key	a	couple	of	times.	(3306	is	the
default	MySQL	port	number.	Change	the	value	if	your	server	is	listening	to
a	different	port.)	If	there	is	a	MySQL	server	running	and	listening	to	the
port,	you	should	get	a	response	that	includes	the	server's	version	number.	If
you	get	an	error	such	as	telnet:	Unable	to	connect	to	remote	host:
Connection	refused,	then	there	is	no	server	running	on	the	given	port.

If	the	server	is	running	on	the	local	host,	try	using	mysqladmin	-h
localhost	variables	to	connect	using	the	Unix	socket	file.	Verify	the	TCP/IP
port	number	that	the	server	is	configured	to	listen	to	(it	is	the	value	of	the
port	variable.)

Make	sure	that	your	mysqld	server	was	not	started	with	the	--skip-
networking	option.	If	it	was,	you	cannot	connect	to	it	using	TCP/IP.

Check	to	make	sure	that	there	is	no	firewall	blocking	access	to	MySQL.
Applications	such	as	ZoneAlarm	and	the	Windows	XP	personal	firewall
may	need	to	be	configured	to	allow	external	access	to	a	MySQL	server.

A.2.2.1.	Connection	to	MySQL	Server	Failing	on	Windows

When	you're	running	a	MySQL	server	on	Windows	with	many	TCP/IP
connections	to	it,	and	you're	experiencing	that	quite	often	your	clients	get	a
Can't	connect	to	MySQL	server	error,	the	reason	might	be	that	Windows
doesn't	allow	for	enough	ephemeral	(short-lived)	ports	to	serve	those
connections.

By	default,	Windows	allows	5000	ephemeral	(short-lived)	TCP	ports	to	the	user.
After	any	port	is	closed	it	will	remain	in	a	TIME_WAIT	status	for	120	seconds.
This	status	allows	the	connection	to	be	reused	at	a	much	lower	cost	than
reinitializing	a	brand	new	connection.	However,	the	port	will	not	be	available

again	until	this	time	expires.

With	a	small	stack	of	available	TCP	ports	(5000)	and	a	high	number	of	TCP
ports	being	open	and	closed	over	a	short	period	of	time	along	with	the
TIME_WAIT	status	you	have	a	good	chance	for	running	out	of	ports.	There	are	two
ways	to	address	this	problem:

Reduce	the	number	of	TCP	ports	consumed	quickly	by	investigating
connection	pooling	or	persistent	connections	where	possible

Tune	some	settings	in	the	Windows	registry	(see	below)

IMPORTANT:	The	following	procedure	involves	modifying	the	Windows
registry.	Before	you	modify	the	registry,	make	sure	to	back	it	up	and	make
sure	that	you	understand	how	to	restore	the	registry	if	a	problem	occurs.
For	information	about	how	to	back	up,	restore,	and	edit	the	registry,	view
the	following	article	in	the	Microsoft	Knowledge	Base:
http://support.microsoft.com/kb/256986/EN-US/.

1.	 Start	Registry	Editor	(Regedt32.exe).

2.	 Locate	the	following	key	in	the	registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

3.	 On	the	Edit	menu,	click	Add	Value,	and	then	add	the	following	registry
value:

Value	Name:	MaxUserPort

Data	Type:	REG_DWORD

Value:	65534

This	sets	the	number	of	ephemeral	ports	available	to	any	user.	The	valid
range	is	between	5000	and	65534	(decimal).	The	default	value	is	0x1388
(5000	decimal).

4.	 On	the	Edit	menu,	click	Add	Value,	and	then	add	the	following	registry
value:

Value	Name:	TcpTimedWaitDelay

Data	Type:	REG_DWORD

Value:	30

http://support.microsoft.com/kb/256986/EN-US/

This	sets	the	number	of	seconds	to	hold	a	TCP	port	connection	in
TIME_WAIT	state	before	closing.	The	valid	range	is	between	0	(zero)	and	300
(decimal).	The	default	value	is	0x78	(120	decimal).

5.	 Quit	Registry	Editor.

6.	 Reboot	the	machine.

Note:	Undoing	the	above	should	be	as	simple	as	deleting	the	registry	entries
you've	created.

A.2.3.	Client	does	not	support	authentication	protocol

MySQL	5.0	uses	an	authentication	protocol	based	on	a	password	hashing
algorithm	that	is	incompatible	with	that	used	by	older	(pre-4.1)	clients.	If	you
upgrade	the	server	from	4.0,	attempts	to	connect	to	it	with	an	older	client	may
fail	with	the	following	message:

shell>	mysql

Client	does	not	support	authentication	protocol	requested

by	server;	consider	upgrading	MySQL	client

To	solve	this	problem,	you	should	use	one	of	the	following	approaches:

Upgrade	all	client	programs	to	use	a	4.1.1	or	newer	client	library.

When	connecting	to	the	server	with	a	pre-4.1	client	program,	use	an
account	that	still	has	a	pre-4.1-style	password.

Reset	the	password	to	pre-4.1	style	for	each	user	that	needs	to	use	a	pre-4.1
client	program.	This	can	be	done	using	the	SET	PASSWORD	statement	and	the
OLD_PASSWORD()	function:

mysql>	SET	PASSWORD	FOR

				->	'some_user'@'some_host'	=	OLD_PASSWORD('newpwd');

Alternatively,	use	UPDATE	and	FLUSH	PRIVILEGES:

mysql>	UPDATE	mysql.user	SET	Password	=	OLD_PASSWORD('newpwd')

				->	WHERE	Host	=	'some_host'	AND	User	=	'some_user';

mysql>	FLUSH	PRIVILEGES;

Substitute	the	password	you	want	to	use	for	“newpwd”	in	the	preceding
examples.	MySQL	cannot	tell	you	what	the	original	password	was,	so	you'll
need	to	pick	a	new	one.

Tell	the	server	to	use	the	older	password	hashing	algorithm:

1.	 Start	mysqld	with	the	--old-passwords	option.

2.	 Assign	an	old-format	password	to	each	account	that	has	had	its
password	updated	to	the	longer	4.1	format.	You	can	identify	these
accounts	with	the	following	query:

mysql>	SELECT	Host,	User,	Password	FROM	mysql.user

				->	WHERE	LENGTH(Password)	>	16;

For	each	account	record	displayed	by	the	query,	use	the	Host	and	User
values	and	assign	a	password	using	the	OLD_PASSWORD()	function	and
either	SET	PASSWORD	or	UPDATE,	as	described	earlier.

Note:	In	older	versions	of	PHP,	the	mysql	extension	does	not	support	the
authentication	protocol	in	MySQL	4.1.1	and	higher.	This	is	true	regardless	of	the
PHP	version	being	used.	If	you	wish	to	use	the	mysql	extension	with	MySQL	4.1
or	newer,	you	may	need	to	follow	one	of	the	options	discussed	above	for
configuring	MySQL	to	work	with	old	clients.	The	mysqli	extension	(stands	for
"MySQL,	Improved";	added	in	PHP	5)	is	compatible	with	the	improved
password	hashing	employed	in	MySQL	4.1	and	higher,	and	no	special
configuration	of	MySQL	need	be	done	to	use	this	MySQL	client	library.	For
more	information	about	the	mysqli	extension,	see	http://php.net/mysqli.

It	may	also	be	possible	to	compile	the	older	mysql	extension	against	the	new
MySQL	client	library.	This	is	beyond	the	scope	of	this	Manual;	consult	the	PHP
documentation	for	more	information.	You	also	be	able	to	obtain	assistance	with
these	issues	in	our	MySQL	with	PHP	forum.

For	additional	background	on	password	hashing	and	authentication,	see
Section	5.8.9,	“Password	Hashing	as	of	MySQL	4.1”.

A.2.4.	Password	Fails	When	Entered	Interactively

MySQL	client	programs	prompt	for	a	password	when	invoked	with	a	--

http://php.net/mysqli
http://forums.mysql.com/list.php?52

password	or	-p	option	that	has	no	following	password	value:

shell>	mysql	-u	user_name	-p

Enter	password:

On	some	systems,	you	may	find	that	your	password	works	when	specified	in	an
option	file	or	on	the	command	line,	but	not	when	you	enter	it	interactively	at	the
Enter	password:	prompt.	This	occurs	when	the	library	provided	by	the	system
to	read	passwords	limits	password	values	to	a	small	number	of	characters
(typically	eight).	That	is	a	problem	with	the	system	library,	not	with	MySQL.	To
work	around	it,	change	your	MySQL	password	to	a	value	that	is	eight	or	fewer
characters	long,	or	put	your	password	in	an	option	file.

A.2.5.	Host	'host_name'	is	blocked

If	you	get	the	following	error,	it	means	that	mysqld	has	received	many	connect
requests	from	the	host	'host_name'	that	have	been	interrupted	in	the	middle:

Host	'host_name'	is	blocked	because	of	many	connection	errors.

Unblock	with	'mysqladmin	flush-hosts'

The	number	of	interrupted	connect	requests	allowed	is	determined	by	the	value
of	the	max_connect_errors	system	variable.	After	max_connect_errors	failed
requests,	mysqld	assumes	that	something	is	wrong	(for	example,	that	someone	is
trying	to	break	in),	and	blocks	the	host	from	further	connections	until	you
execute	a	mysqladmin	flush-hosts	command	or	issue	a	FLUSH	HOSTS	statement.
See	Section	5.2.2,	“Server	System	Variables”.

By	default,	mysqld	blocks	a	host	after	10	connection	errors.	You	can	adjust	the
value	by	starting	the	server	like	this:

shell>	mysqld_safe	--max_connect_errors=10000	&

If	you	get	this	error	message	for	a	given	host,	you	should	first	verify	that	there
isn't	anything	wrong	with	TCP/IP	connections	from	that	host.	If	you	are	having
network	problems,	it	does	you	no	good	to	increase	the	value	of	the
max_connect_errors	variable.

A.2.6.	Too	many	connections

If	you	get	a	Too	many	connections	error	when	you	try	to	connect	to	the	mysqld
server,	this	means	that	all	available	connections	are	in	use	by	other	clients.

The	number	of	connections	allowed	is	controlled	by	the	max_connections
system	variable.	Its	default	value	is	100.	If	you	need	to	support	more
connections,	you	should	restart	mysqld	with	a	larger	value	for	this	variable.

mysqld	actually	allows	max_connections+1	clients	to	connect.	The	extra
connection	is	reserved	for	use	by	accounts	that	have	the	SUPER	privilege.	By
granting	the	SUPER	privilege	to	administrators	and	not	to	normal	users	(who
should	not	need	it),	an	administrator	can	connect	to	the	server	and	use	SHOW
PROCESSLIST	to	diagnose	problems	even	if	the	maximum	number	of
unprivileged	clients	are	connected.	See	Section	13.5.4.19,	“SHOW	PROCESSLIST
Syntax”.

The	maximum	number	of	connections	MySQL	can	support	depends	on	the
quality	of	the	thread	library	on	a	given	platform.	Linux	or	Solaris	should	be	able
to	support	500-1000	simultaneous	connections,	depending	on	how	much	RAM
you	have	and	what	your	clients	are	doing.	Static	Linux	binaries	provided	by
MySQL	AB	can	support	up	to	4000	connections.

A.2.7.	Out	of	memory

If	you	issue	a	query	using	the	mysql	client	program	and	receive	an	error	like	the
following	one,	it	means	that	mysql	does	not	have	enough	memory	to	store	the
entire	query	result:

mysql:	Out	of	memory	at	line	42,	'malloc.c'

mysql:	needed	8136	byte	(8k),	memory	in	use:	12481367	bytes	(12189k)

ERROR	2008:	MySQL	client	ran	out	of	memory

To	remedy	the	problem,	first	check	whether	your	query	is	correct.	Is	it
reasonable	that	it	should	return	so	many	rows?	If	not,	correct	the	query	and	try
again.	Otherwise,	you	can	invoke	mysql	with	the	--quick	option.	This	causes	it
to	use	the	mysql_use_result()	C	API	function	to	retrieve	the	result	set,	which
places	less	of	a	load	on	the	client	(but	more	on	the	server).

A.2.8.	MySQL	server	has	gone	away

This	section	also	covers	the	related	Lost	connection	to	server	during	query

error.

The	most	common	reason	for	the	MySQL	server	has	gone	away	error	is	that	the
server	timed	out	and	closed	the	connection.	In	this	case,	you	normally	get	one	of
the	following	error	codes	(which	one	you	get	is	operating	system-dependent):

Error	Code Description
CR_SERVER_GONE_ERROR The	client	couldn't	send	a	question	to	the	server.

CR_SERVER_LOST

The	client	didn't	get	an	error	when	writing	to	the
server,	but	it	didn't	get	a	full	answer	(or	any	answer)	to
the	question.

By	default,	the	server	closes	the	connection	after	eight	hours	if	nothing	has
happened.	You	can	change	the	time	limit	by	setting	the	wait_timeout	variable
when	you	start	mysqld.	See	Section	5.2.2,	“Server	System	Variables”.

If	you	have	a	script,	you	just	have	to	issue	the	query	again	for	the	client	to	do	an
automatic	reconnection.	This	assumes	that	you	have	automatic	reconnection	in
the	client	enabled	(which	is	the	default	for	the	mysql	command-line	client).

Some	other	common	reasons	for	the	MySQL	server	has	gone	away	error	are:

You	(or	the	db	administrator)	has	killed	the	running	thread	with	a	KILL
statement	or	a	mysqladmin	kill	command.

You	tried	to	run	a	query	after	closing	the	connection	to	the	server.	This
indicates	a	logic	error	in	the	application	that	should	be	corrected.

A	client	application	running	on	a	different	host	does	not	have	the	necessary
privileges	to	connect	to	the	MySQL	server	from	that	host.

You	got	a	timeout	from	the	TCP/IP	connection	on	the	client	side.	This	may
happen	if	you	have	been	using	the	commands:	mysql_options(...,
MYSQL_OPT_READ_TIMEOUT,...)	or	mysql_options(...,
MYSQL_OPT_WRITE_TIMEOUT,...).	In	this	case	increasing	the	timeout	may
help	solve	the	problem.

You	have	encountered	a	timeout	on	the	server	side	and	the	automatic
reconnection	in	the	client	is	disabled	(the	reconnect	flag	in	the	MYSQL

structure	is	equal	to	0).

You	are	using	a	Windows	client	and	the	server	had	dropped	the	connection
(probably	because	wait_timeout	expired)	before	the	command	was	issued.

The	problem	on	Windows	is	that	in	some	cases	MySQL	doesn't	get	an	error
from	the	OS	when	writing	to	the	TCP/IP	connection	to	the	server,	but
instead	gets	the	error	when	trying	to	read	the	answer	from	connection.

Prior	to	MySQL	5.0.19,	even	if	the	reconnect	flag	in	the	MYSQL	structure	is
equal	to	1,	MySQL	does	not	automatically	reconnect	and	re-issue	the	query
as	it	doesn't	know	if	the	server	did	get	the	original	query	or	not.

The	solution	to	this	is	to	either	do	a	mysql_ping	on	the	connection	if	there
has	been	a	long	time	since	the	last	query	(this	is	what	MyODBC	does)	or	set
wait_timeout	on	the	mysqld	server	so	high	that	it	in	practice	never	times
out.

You	can	also	get	these	errors	if	you	send	a	query	to	the	server	that	is
incorrect	or	too	large.	If	mysqld	receives	a	packet	that	is	too	large	or	out	of
order,	it	assumes	that	something	has	gone	wrong	with	the	client	and	closes
the	connection.	If	you	need	big	queries	(for	example,	if	you	are	working
with	big	BLOB	columns),	you	can	increase	the	query	limit	by	setting	the
server's	max_allowed_packet	variable,	which	has	a	default	value	of	1MB.
You	may	also	need	to	increase	the	maximum	packet	size	on	the	client	end.
More	information	on	setting	the	packet	size	is	given	in	Section	A.2.9,
“Packet	too	large”.

You	also	get	a	lost	connection	if	you	are	sending	a	packet	16MB	or	larger	if
your	client	is	older	than	4.0.8	and	your	server	is	4.0.8	and	above,	or	the
other	way	around.

It	is	also	possible	to	see	this	error	if	hostname	lookups	fail	(for	example,	if
the	DNS	server	on	which	your	server	or	network	relies	goes	down).	This	is
because	MySQL	is	dependent	on	the	host	system	for	name	resolution,	but
has	no	way	of	knowing	whether	it	is	working	—	from	MySQL's	point	of
view	the	problem	is	indistinguishable	from	any	other	network	timeout.

You	may	also	see	the	MySQL	server	has	gone	away	error	if	MySQL	is
started	with	the	--skip-networking	option.

You	can	also	encounter	this	error	with	applications	that	fork	child
processes,	all	of	which	try	to	use	the	same	connection	to	the	MySQL	server.
This	can	be	avoided	by	using	a	separate	connection	for	each	child	process.

Another	networking	issue	that	can	cause	this	error	occurs	if	if	the	MySQL
port	(default	3306)	is	blocked	by	your	firewall,	thus	preventing	any
connections	at	all	to	the	MySQL	server.

You	have	encountered	a	bug	where	the	server	died	while	executing	the
query.

You	can	check	whether	the	MySQL	server	died	and	restarted	by	executing
mysqladmin	version	and	examining	the	server's	uptime.	If	the	client	connection
was	broken	because	mysqld	crashed	and	restarted,	you	should	concentrate	on
finding	the	reason	for	the	crash.	Start	by	checking	whether	issuing	the	query
again	kills	the	server	again.	See	Section	A.4.2,	“What	to	Do	If	MySQL	Keeps
Crashing”.

You	can	get	more	information	about	the	lost	connections	by	starting	mysqld	with
the	--log-warnings=2	option.	This	logs	some	of	the	disconnected	errors	in	the
hostname.err	file.	See	Section	5.12.1,	“The	Error	Log”.

If	you	want	to	create	a	bug	report	regarding	this	problem,	be	sure	that	you
include	the	following	information:

Indicate	whether	the	MySQL	server	died.	You	can	find	information	about
this	in	the	server	error	log.	See	Section	A.4.2,	“What	to	Do	If	MySQL
Keeps	Crashing”.

If	a	specific	query	kills	mysqld	and	the	tables	involved	were	checked	with
CHECK	TABLE	before	you	ran	the	query,	can	you	provide	a	reproducible	test
case?	See	Section	E.1.6,	“Making	a	Test	Case	If	You	Experience	Table
Corruption”.

What	is	the	value	of	the	wait_timeout	system	variable	in	the	MySQL
server?	(mysqladmin	variables	gives	you	the	value	of	this	variable.)

Have	you	tried	to	run	mysqld	with	the	--log	option	to	determine	whether
the	problem	query	appears	in	the	log?

See	also	Section	A.2.10,	“Communication	Errors	and	Aborted	Connections”,
and	Section	1.8,	“How	to	Report	Bugs	or	Problems”.

A.2.9.	Packet	too	large

A	communication	packet	is	a	single	SQL	statement	sent	to	the	MySQL	server	or
a	single	row	that	is	sent	to	the	client.

The	largest	possible	packet	that	can	be	transmitted	to	or	from	a	MySQL	5.0
server	or	client	is	1GB.

When	a	MySQL	client	or	the	mysqld	server	receives	a	packet	bigger	than
max_allowed_packet	bytes,	it	issues	a	Packet	too	large	error	and	closes	the
connection.	With	some	clients,	you	may	also	get	a	Lost	connection	to	MySQL
server	during	query	error	if	the	communication	packet	is	too	large.

Both	the	client	and	the	server	have	their	own	max_allowed_packet	variable,	so
if	you	want	to	handle	big	packets,	you	must	increase	this	variable	both	in	the
client	and	in	the	server.

If	you	are	using	the	mysql	client	program,	its	default	max_allowed_packet
variable	is	16MB.	To	set	a	larger	value,	start	mysql	like	this:

shell>	mysql	--max_allowed_packet=32M

That	sets	the	packet	size	to	32MB.

The	server's	default	max_allowed_packet	value	is	1MB.	You	can	increase	this	if
the	server	needs	to	handle	big	queries	(for	example,	if	you	are	working	with	big
BLOB	columns).	For	example,	to	set	the	variable	to	16MB,	start	the	server	like
this:

shell>	mysqld	--max_allowed_packet=16M

You	can	also	use	an	option	file	to	set	max_allowed_packet.	For	example,	to	set
the	size	for	the	server	to	16MB,	add	the	following	lines	in	an	option	file:

[mysqld]

max_allowed_packet=16M

It	is	safe	to	increase	the	value	of	this	variable	because	the	extra	memory	is

allocated	only	when	needed.	For	example,	mysqld	allocates	more	memory	only
when	you	issue	a	long	query	or	when	mysqld	must	return	a	large	result	row.	The
small	default	value	of	the	variable	is	a	precaution	to	catch	incorrect	packets
between	the	client	and	server	and	also	to	ensure	that	you	do	not	run	out	of
memory	by	using	large	packets	accidentally.

You	can	also	get	strange	problems	with	large	packets	if	you	are	using	large	BLOB
values	but	have	not	given	mysqld	access	to	enough	memory	to	handle	the	query.
If	you	suspect	this	is	the	case,	try	adding	ulimit	-d	256000	to	the	beginning	of
the	mysqld_safe	script	and	restarting	mysqld.

A.2.10.	Communication	Errors	and	Aborted	Connections

The	server	error	log	can	be	a	useful	source	of	information	about	connection
problems.	See	Section	5.12.1,	“The	Error	Log”.	If	you	start	the	server	with	the	-
-log-warnings	option,	you	might	find	messages	like	this	in	your	error	log:

010301	14:38:23		Aborted	connection	854	to	db:	'users'	user:	'josh'

If	Aborted	connections	messages	appear	in	the	error	log,	the	cause	can	be	any
of	the	following:

The	client	program	did	not	call	mysql_close()	before	exiting.

The	client	had	been	sleeping	more	than	wait_timeout	or
interactive_timeout	seconds	without	issuing	any	requests	to	the	server.
See	Section	5.2.2,	“Server	System	Variables”.

The	client	program	ended	abruptly	in	the	middle	of	a	data	transfer.

When	any	of	these	things	happen,	the	server	increments	the	Aborted_clients
status	variable.

The	server	increments	the	Aborted_connects	status	variable	when	the	following
things	happen:

A	client	doesn't	have	privileges	to	connect	to	a	database.

A	client	uses	an	incorrect	password.

A	connection	packet	doesn't	contain	the	right	information.

It	takes	more	than	connect_timeout	seconds	to	get	a	connect	packet.	See
Section	5.2.2,	“Server	System	Variables”.

If	these	kinds	of	things	happen,	it	might	indicate	that	someone	is	trying	to	break
into	your	server!

Other	reasons	for	problems	with	aborted	clients	or	aborted	connections:

Use	of	Ethernet	protocol	with	Linux,	both	half	and	full	duplex.	Many	Linux
Ethernet	drivers	have	this	bug.	You	should	test	for	this	bug	by	transferring	a
huge	file	via	FTP	between	the	client	and	server	machines.	If	a	transfer	goes
in	burst-pause-burst-pause	mode,	you	are	experiencing	a	Linux	duplex
syndrome.	The	only	solution	is	switching	the	duplex	mode	for	both	your
network	card	and	hub/switch	to	either	full	duplex	or	to	half	duplex	and
testing	the	results	to	determine	the	best	setting.

Some	problem	with	the	thread	library	that	causes	interrupts	on	reads.

Badly	configured	TCP/IP.

Faulty	Ethernets,	hubs,	switches,	cables,	and	so	forth.	This	can	be
diagnosed	properly	only	by	replacing	hardware.

The	max_allowed_packet	variable	value	is	too	small	or	queries	require
more	memory	than	you	have	allocated	for	mysqld.	See	Section	A.2.9,
“Packet	too	large”.

See	also	Section	A.2.8,	“MySQL	server	has	gone	away”.

A.2.11.	The	table	is	full

There	are	several	ways	a	full-table	error	can	occur:

You	are	using	a	MySQL	server	older	than	3.23	and	an	in-memory
temporary	table	becomes	larger	than	tmp_table_size	bytes.	To	avoid	this
problem,	you	can	use	the	--tmp_table_size=val	option	to	make	mysqld
increase	the	temporary	table	size	or	use	the	SQL	option	SQL_BIG_TABLES
before	you	issue	the	problematic	query.	See	Section	13.5.3,	“SET	Syntax”.

You	can	also	start	mysqld	with	the	--big-tables	option.	This	is	exactly
the	same	as	using	SQL_BIG_TABLES	for	all	queries.

As	of	MySQL	3.23,	this	problem	should	not	occur.	If	an	in-memory
temporary	table	becomes	larger	than	tmp_table_size,	the	server
automatically	converts	it	to	a	disk-based	MyISAM	table.

You	are	using	InnoDB	tables	and	run	out	of	room	in	the	InnoDB	tablespace.
In	this	case,	the	solution	is	to	extend	the	InnoDB	tablespace.	See
Section	14.2.7,	“Adding	and	Removing	InnoDB	Data	and	Log	Files”.

You	are	using	ISAM	or	MyISAM	tables	on	an	operating	system	that	supports
files	only	up	to	2GB	in	size	and	you	have	hit	this	limit	for	the	data	file	or
index	file.

You	are	using	a	MyISAM	table	and	the	space	required	for	the	table	exceeds
what	is	allowed	by	the	internal	pointer	size.	If	you	don't	specify	the
MAX_ROWS	table	option	when	you	create	a	table,	MySQL	uses	the
myisam_data_pointer_size	system	variable.	From	MySQL	5.0.6	on,	the
default	value	is	6	bytes,	which	is	enough	to	allow	256TB	of	data.	Before
MySQL	5.0.6,	the	default	value	is	4	bytes,	which	is	enough	to	allow	only
4GB	of	data.	See	Section	5.2.2,	“Server	System	Variables”.

You	can	check	the	maximum	data/index	sizes	by	using	this	statement:

SHOW	TABLE	STATUS	FROM	database	LIKE	'tbl_name';

You	also	can	use	myisamchk	-dv	/path/to/table-index-file.

If	the	pointer	size	is	too	small,	you	can	fix	the	problem	by	using	ALTER
TABLE:

ALTER	TABLE	tbl_name	MAX_ROWS=1000000000	AVG_ROW_LENGTH=nnn;

You	have	to	specify	AVG_ROW_LENGTH	only	for	tables	with	BLOB	or	TEXT
columns;	in	this	case,	MySQL	can't	optimize	the	space	required	based	only
on	the	number	of	rows.

A.2.12.	Can't	create/write	to	file

If	you	get	an	error	of	the	following	type	for	some	queries,	it	means	that	MySQL
cannot	create	a	temporary	file	for	the	result	set	in	the	temporary	directory:

Can't	create/write	to	file	'\\sqla3fe_0.ism'.

The	preceding	error	is	a	typical	message	for	Windows;	the	Unix	message	is
similar.

One	fix	is	to	start	mysqld	with	the	--tmpdir	option	or	to	add	the	option	to	the
[mysqld]	section	of	your	option	file.	For	example,	to	specify	a	directory	of
C:\temp,	use	these	lines:

[mysqld]

tmpdir=C:/temp

The	C:\temp	directory	must	exist	and	have	sufficient	space	for	the	MySQL
server	to	write	to.	See	Section	4.3.2,	“Using	Option	Files”.

Another	cause	of	this	error	can	be	permissions	issues.	Make	sure	that	the
MySQL	server	can	write	to	the	tmpdir	directory.

Check	also	the	error	code	that	you	get	with	perror.	One	reason	the	server	cannot
write	to	a	table	is	that	the	filesystem	is	full:

shell>	perror	28

Error	code		28:		No	space	left	on	device

A.2.13.	Commands	out	of	sync

If	you	get	Commands	out	of	sync;	you	can't	run	this	command	now	in	your
client	code,	you	are	calling	client	functions	in	the	wrong	order.

This	can	happen,	for	example,	if	you	are	using	mysql_use_result()	and	try	to
execute	a	new	query	before	you	have	called	mysql_free_result().	It	can	also
happen	if	you	try	to	execute	two	queries	that	return	data	without	calling
mysql_use_result()	or	mysql_store_result()	in	between.

A.2.14.	Ignoring	user

If	you	get	the	following	error,	it	means	that	when	mysqld	was	started	or	when	it
reloaded	the	grant	tables,	it	found	an	account	in	the	user	table	that	had	an

invalid	password.

Found	wrong	password	for	user	'some_user'@'some_host';	ignoring	user

As	a	result,	the	account	is	simply	ignored	by	the	permission	system.

The	following	list	indicates	possible	causes	of	and	fixes	for	this	problem:

You	may	be	running	a	new	version	of	mysqld	with	an	old	user	table.	You
can	check	this	by	executing	mysqlshow	mysql	user	to	see	whether	the
Password	column	is	shorter	than	16	characters.	If	so,	you	can	correct	this
condition	by	running	the	scripts/add_long_password	script.

The	account	has	an	old	password	(eight	characters	long)	and	you	didn't	start
mysqld	with	the	--old-protocol	option.	Update	the	account	in	the	user
table	to	have	a	new	password	or	restart	mysqld	with	the	--old-protocol
option.

	You	have	specified	a	password	in	the	user	table	without	using	the
PASSWORD()	function.	Use	mysql	to	update	the	account	in	the	user	table
with	a	new	password,	making	sure	to	use	the	PASSWORD()	function:

mysql>	UPDATE	user	SET	Password=PASSWORD('newpwd')

				->	WHERE	User='some_user'	AND	Host='some_host';

A.2.15.	Table	'tbl_name'	doesn't	exist

If	you	get	either	of	the	following	errors,	it	usually	means	that	no	table	exists	in
the	default	database	with	the	given	name:

Table	'tbl_name'	doesn't	exist

Can't	find	file:	'tbl_name'	(errno:	2)

In	some	cases,	it	may	be	that	the	table	does	exist	but	that	you	are	referring	to	it
incorrectly:

Because	MySQL	uses	directories	and	files	to	store	databases	and	tables,
database	and	table	names	are	case	sensitive	if	they	are	located	on	a
filesystem	that	has	case-sensitive	filenames.

Even	for	filesystems	that	are	not	case	sensitive,	such	as	on	Windows,	all

references	to	a	given	table	within	a	query	must	use	the	same	lettercase.

You	can	check	which	tables	are	in	the	default	database	with	SHOW	TABLES.	See
Section	13.5.4,	“SHOW	Syntax”.

A.2.16.	Can't	initialize	character	set

You	might	see	an	error	like	this	if	you	have	character	set	problems:

MySQL	Connection	Failed:	Can't	initialize	character	set	charset_name

This	error	can	have	any	of	the	following	causes:

The	character	set	is	a	multi-byte	character	set	and	you	have	no	support	for
the	character	set	in	the	client.	In	this	case,	you	need	to	recompile	the	client
by	running	configure	with	the	--with-charset=charset_name	or	--with-
extra-charsets=charset_name	option.	See	Section	2.9.2,	“Typical
configure	Options”.

All	standard	MySQL	binaries	are	compiled	with	--with-extra-
character-sets=complex,	which	enables	support	for	all	multi-byte
character	sets.	See	Section	5.11.1,	“The	Character	Set	Used	for	Data	and
Sorting”.

The	character	set	is	a	simple	character	set	that	is	not	compiled	into	mysqld,
and	the	character	set	definition	files	are	not	in	the	place	where	the	client
expects	to	find	them.

In	this	case,	you	need	to	use	one	of	the	following	methods	to	solve	the
problem:

Recompile	the	client	with	support	for	the	character	set.	See
Section	2.9.2,	“Typical	configure	Options”.

Specify	to	the	client	the	directory	where	the	character	set	definition
files	are	located.	For	many	clients,	you	can	do	this	with	the	--
character-sets-dir	option.

Copy	the	character	definition	files	to	the	path	where	the	client	expects
them	to	be.

A.2.17.	File	Not	Found

If	you	get	ERROR	'...'	not	found	(errno:	23),	Can't	open	file:	...
(errno:	24),	or	any	other	error	with	errno	23	or	errno	24	from	MySQL,	it
means	that	you	haven't	allocated	enough	file	descriptors	for	the	MySQL	server.
You	can	use	the	perror	utility	to	get	a	description	of	what	the	error	number
means:

shell>	perror	23

Error	code		23:		File	table	overflow

shell>	perror	24

Error	code		24:		Too	many	open	files

shell>	perror	11

Error	code		11:		Resource	temporarily	unavailable

The	problem	here	is	that	mysqld	is	trying	to	keep	open	too	many	files
simultaneously.	You	can	either	tell	mysqld	not	to	open	so	many	files	at	once	or
increase	the	number	of	file	descriptors	available	to	mysqld.

To	tell	mysqld	to	keep	open	fewer	files	at	a	time,	you	can	make	the	table	cache
smaller	by	reducing	the	value	of	the	table_cache	system	variable	(the	default
value	is	64).	Reducing	the	value	of	max_connections	also	reduces	the	number	of
open	files	(the	default	value	is	100).

To	change	the	number	of	file	descriptors	available	to	mysqld,	you	can	use	the	--
open-files-limit	option	to	mysqld_safe	or	(as	of	MySQL	3.23.30)	set	the
open_files_limit	system	variable.	See	Section	5.2.2,	“Server	System
Variables”.	The	easiest	way	to	set	these	values	is	to	add	an	option	to	your	option
file.	See	Section	4.3.2,	“Using	Option	Files”.	If	you	have	an	old	version	of
mysqld	that	doesn't	support	setting	the	open	files	limit,	you	can	edit	the
mysqld_safe	script.	There	is	a	commented-out	line	ulimit	-n	256	in	the	script.
You	can	remove	the	‘#’	character	to	uncomment	this	line,	and	change	the	number
256	to	set	the	number	of	file	descriptors	to	be	made	available	to	mysqld.

--open-files-limit	and	ulimit	can	increase	the	number	of	file	descriptors,	but
only	up	to	the	limit	imposed	by	the	operating	system.	There	is	also	a	“hard”	limit
that	can	be	overridden	only	if	you	start	mysqld_safe	or	mysqld	as	root	(just
remember	that	you	also	need	to	start	the	server	with	the	--user	option	in	this
case	so	that	it	does	not	continue	to	run	as	root	after	it	starts	up).	If	you	need	to
increase	the	operating	system	limit	on	the	number	of	file	descriptors	available	to

each	process,	consult	the	documentation	for	your	system.

Note:	If	you	run	the	tcsh	shell,	ulimit	does	not	work!	tcsh	also	reports	incorrect
values	when	you	ask	for	the	current	limits.	In	this	case,	you	should	start
mysqld_safe	using	sh.

A.3.	Installation-Related	Issues

A.3.1.	Problems	Linking	to	the	MySQL	Client	Library

When	you	are	linking	an	application	program	to	use	the	MySQL	client	library,
you	might	get	undefined	reference	errors	for	symbols	that	start	with	mysql_,
such	as	those	shown	here:

/tmp/ccFKsdPa.o:	In	function	`main':

/tmp/ccFKsdPa.o(.text+0xb):	undefined	reference	to	`mysql_init'

/tmp/ccFKsdPa.o(.text+0x31):	undefined	reference	to	`mysql_real_connect'

/tmp/ccFKsdPa.o(.text+0x57):	undefined	reference	to	`mysql_real_connect'

/tmp/ccFKsdPa.o(.text+0x69):	undefined	reference	to	`mysql_error'

/tmp/ccFKsdPa.o(.text+0x9a):	undefined	reference	to	`mysql_close'

You	should	be	able	to	solve	this	problem	by	adding	-Ldir_path	-lmysqlclient
at	the	end	of	your	link	command,	where	dir_path	represents	the	pathname	of
the	directory	where	the	client	library	is	located.	To	determine	the	correct
directory,	try	this	command:

shell>	mysql_config	--libs

The	output	from	mysql_config	might	indicate	other	libraries	that	should	be
specified	on	the	link	command	as	well.

If	you	get	undefined	reference	errors	for	the	uncompress	or	compress
function,	add	-lz	to	the	end	of	your	link	command	and	try	again.

If	you	get	undefined	reference	errors	for	a	function	that	should	exist	on	your
system,	such	as	connect,	check	the	manual	page	for	the	function	in	question	to
determine	which	libraries	you	should	add	to	the	link	command.

You	might	get	undefined	reference	errors	such	as	the	following	for	functions
that	don't	exist	on	your	system:

mf_format.o(.text+0x201):	undefined	reference	to	`__lxstat'

This	usually	means	that	your	MySQL	client	library	was	compiled	on	a	system
that	is	not	100%	compatible	with	yours.	In	this	case,	you	should	download	the
latest	MySQL	source	distribution	and	compile	MySQL	yourself.	See	Section	2.9,

“MySQL	Installation	Using	a	Source	Distribution”.

You	might	get	undefined	reference	errors	at	runtime	when	you	try	to	execute	a
MySQL	program.	If	these	errors	specify	symbols	that	start	with	mysql_	or
indicate	that	the	mysqlclient	library	can't	be	found,	it	means	that	your	system
can't	find	the	shared	libmysqlclient.so	library.	The	fix	for	this	is	to	tell	your
system	to	search	for	shared	libraries	where	the	library	is	located.	Use	whichever
of	the	following	methods	is	appropriate	for	your	system:

Add	the	path	to	the	directory	where	libmysqlclient.so	is	located	to	the
LD_LIBRARY_PATH	environment	variable.

Add	the	path	to	the	directory	where	libmysqlclient.so	is	located	to	the
LD_LIBRARY	environment	variable.

Copy	libmysqlclient.so	to	some	directory	that	is	searched	by	your
system,	such	as	/lib,	and	update	the	shared	library	information	by
executing	ldconfig.

Another	way	to	solve	this	problem	is	by	linking	your	program	statically	with	the
-static	option,	or	by	removing	the	dynamic	MySQL	libraries	before	linking
your	code.	Before	trying	the	second	method,	you	should	be	sure	that	no	other
programs	are	using	the	dynamic	libraries.

A.3.2.	Problems	with	File	Permissions

If	you	have	problems	with	file	permissions,	the	UMASK	environment	variable
might	be	set	incorrectly	when	mysqld	starts.	For	example,	MySQL	might	issue
the	following	error	message	when	you	create	a	table:

ERROR:	Can't	find	file:	'path/with/filename.frm'	(Errcode:	13)

The	default	UMASK	value	is	0660.	You	can	change	this	behavior	by	starting
mysqld_safe	as	follows:

shell>	UMASK=384		#	=	600	in	octal

shell>	export	UMASK

shell>	mysqld_safe	&

By	default,	MySQL	creates	database	and	RAID	directories	with	an	access
permission	value	of	0700.	You	can	modify	this	behavior	by	setting	the

UMASK_DIR	variable.	If	you	set	its	value,	new	directories	are	created	with	the
combined	UMASK	and	UMASK_DIR	values.	For	example,	if	you	want	to	give	group
access	to	all	new	directories,	you	can	do	this:

shell>	UMASK_DIR=504		#	=	770	in	octal

shell>	export	UMASK_DIR

shell>	mysqld_safe	&

In	MySQL	3.23.25	and	above,	MySQL	assumes	that	the	value	for	UMASK	and
UMASK_DIR	is	in	octal	if	it	starts	with	a	zero.

See	Appendix	F,	Environment	Variables.

A.4.	Administration-Related	Issues

A.4.1.	How	to	Reset	the	Root	Password

If	you	have	never	set	a	root	password	for	MySQL,	the	server	does	not	require	a
password	at	all	for	connecting	as	root.	However,	it	is	recommended	to	set	a
password	for	each	account.	See	Section	5.7.1,	“General	Security	Guidelines”.

If	you	set	a	root	password	previously,	but	have	forgotten	what	it	was,	you	can
set	a	new	password.	The	following	procedure	is	for	Windows	systems.	The
procedure	for	Unix	systems	is	given	later	in	this	section.

The	procedure	under	Windows:

1.	 Log	on	to	your	system	as	Administrator.

2.	 Stop	the	MySQL	server	if	it	is	running.	For	a	server	that	is	running	as	a
Windows	service,	go	to	the	Services	manager:

Start	Menu	->	Control	Panel	->	Administrative	Tools	->	Services

Then	find	the	MySQL	service	in	the	list,	and	stop	it.

If	your	server	is	not	running	as	a	service,	you	may	need	to	use	the	Task
Manager	to	force	it	to	stop.

3.	 Create	a	text	file	and	place	the	following	command	within	it	on	a	single
line:

SET	PASSWORD	FOR	'root'@'localhost'	=	PASSWORD('MyNewPassword');

Save	the	file	with	any	name.	For	this	example	the	file	will	be	C:\mysql-
init.txt.

4.	 Open	a	console	window	to	get	to	the	DOS	command	prompt:

Start	Menu	->	Run	->	cmd

5.	 We	are	assuming	that	you	installed	MySQL	to	C:\mysql.	If	you	installed

MySQL	to	another	location,	adjust	the	following	commands	accordingly.

At	the	DOS	command	prompt,	execute	this	command:

C:\>	C:\mysql\bin\mysqld-nt	--init-file=C:\mysql-init.txt

The	contents	of	the	file	named	by	the	--init-file	option	are	executed	at
server	startup,	changing	the	root	password.	After	the	server	has	started
successfully,	you	should	delete	C:\mysql-init.txt.

If	you	install	MySQL	using	the	MySQL	Installation	Wizard,	you	may	need
to	specify	a	--defaults-file	option:

C:\>	"C:\Program	Files\MySQL\MySQL	Server	5.0\bin\mysqld-nt.exe"

									--defaults-file="C:\Program	Files\MySQL\MySQL	Server	5.0\my.ini"

									--init-file=C:\mysql-init.txt

The	appropriate	--defaults-file	setting	can	be	found	using	the	Services
Manager:

Start	Menu	->	Control	Panel	->	Administrative	Tools	->	Services

Find	the	MySQL	service	in	the	list,	right-click	on	it,	and	choose	the
Properties	option.	The	Path	to	executable	field	contains	the	--
defaults-file	setting.

6.	 Stop	the	MySQL	server,	then	restart	it	in	normal	mode	again.	If	you	run	the
server	as	a	service,	start	it	from	the	Windows	Services	window.	If	you	start
the	server	manually,	use	whatever	command	you	normally	use.

7.	 You	should	be	able	to	connect	using	the	new	password.

In	a	Unix	environment,	the	procedure	for	resetting	the	root	password	is	as
follows:

1.	 Log	on	to	your	system	as	either	the	Unix	root	user	or	as	the	same	user	that
the	mysqld	server	runs	as.

2.	 Locate	the	.pid	file	that	contains	the	server's	process	ID.	The	exact	location
and	name	of	this	file	depend	on	your	distribution,	hostname,	and
configuration.	Common	locations	are	/var/lib/mysql/,

/var/run/mysqld/,	and	/usr/local/mysql/data/.	Generally,	the	filename
has	the	extension	of	.pid	and	begins	with	either	mysqld	or	your	system's
hostname.

You	can	stop	the	MySQL	server	by	sending	a	normal	kill	(not	kill	-9)	to
the	mysqld	process,	using	the	pathname	of	the	.pid	file	in	the	following
command:

shell>	kill	`cat	/mysql-data-directory/host_name.pid`

Note	the	use	of	backticks	rather	than	forward	quotes	with	the	cat
command;	these	cause	the	output	of	cat	to	be	substituted	into	the	kill
command.

3.	 Create	a	text	file	and	place	the	following	command	within	it	on	a	single
line:

SET	PASSWORD	FOR	'root'@'localhost'	=	PASSWORD('MyNewPassword');

Save	the	file	with	any	name.	For	this	example	the	file	will	be	~/mysql-
init.

4.	 Restart	the	MySQL	server	with	the	special	--init-file=~/mysql-init
option:

shell>	mysqld_safe	--init-file=~/mysql-init	&

The	contents	of	the	init-file	are	executed	at	server	startup,	changing	the	root
password.	After	the	server	has	started	successfully	you	should	delete
~/mysql-init.

5.	 You	should	be	able	to	connect	using	the	new	password.

Alternatively,	on	any	platform,	you	can	set	the	new	password	using	the	mysql
client(but	this	approach	is	less	secure):

1.	 Stop	mysqld	and	restart	it	with	the	--skip-grant-tables	--user=root
options	(Windows	users	omit	the	--user=root	portion).

2.	 Connect	to	the	mysqld	server	with	this	command:

shell>	mysql	-u	root

3.	 Issue	the	following	statements	in	the	mysql	client:

mysql>	UPDATE	mysql.user	SET	Password=PASSWORD('newpwd')

				->																			WHERE	User='root';

mysql>	FLUSH	PRIVILEGES;

Replace	“newpwd”	with	the	actual	root	password	that	you	want	to	use.

4.	 You	should	be	able	to	connect	using	the	new	password.

A.4.2.	What	to	Do	If	MySQL	Keeps	Crashing

Each	MySQL	version	is	tested	on	many	platforms	before	it	is	released.	This
doesn't	mean	that	there	are	no	bugs	in	MySQL,	but	if	there	are	bugs,	they	should
be	very	few	and	can	be	hard	to	find.	If	you	have	a	problem,	it	always	helps	if
you	try	to	find	out	exactly	what	crashes	your	system,	because	you	have	a	much
better	chance	of	getting	the	problem	fixed	quickly.

First,	you	should	try	to	find	out	whether	the	problem	is	that	the	mysqld	server
dies	or	whether	your	problem	has	to	do	with	your	client.	You	can	check	how
long	your	mysqld	server	has	been	up	by	executing	mysqladmin	version.	If
mysqld	has	died	and	restarted,	you	may	find	the	reason	by	looking	in	the
server's	error	log.	See	Section	5.12.1,	“The	Error	Log”.

On	some	systems,	you	can	find	in	the	error	log	a	stack	trace	of	where	mysqld
died	that	you	can	resolve	with	the	resolve_stack_dump	program.	See
Section	E.1.4,	“Using	a	Stack	Trace”.	Note	that	the	variable	values	written	in	the
error	log	may	not	always	be	100%	correct.

Many	server	crashes	are	caused	by	corrupted	data	files	or	index	files.	MySQL
updates	the	files	on	disk	with	the	write()	system	call	after	every	SQL	statement
and	before	the	client	is	notified	about	the	result.	(This	is	not	true	if	you	are
running	with	--delay-key-write,	in	which	case	data	files	are	written	but	not
index	files.)	This	means	that	data	file	contents	are	safe	even	if	mysqld	crashes,
because	the	operating	system	ensures	that	the	unflushed	data	is	written	to	disk.
You	can	force	MySQL	to	flush	everything	to	disk	after	every	SQL	statement	by
starting	mysqld	with	the	--flush	option.

The	preceding	means	that	normally	you	should	not	get	corrupted	tables	unless
one	of	the	following	happens:

The	MySQL	server	or	the	server	host	was	killed	in	the	middle	of	an	update.

You	have	found	a	bug	in	mysqld	that	caused	it	to	die	in	the	middle	of	an
update.

Some	external	program	is	manipulating	data	files	or	index	files	at	the	same
time	as	mysqld	without	locking	the	table	properly.

You	are	running	many	mysqld	servers	using	the	same	data	directory	on	a
system	that	doesn't	support	good	filesystem	locks	(normally	handled	by	the
lockd	lock	manager),	or	you	are	running	multiple	servers	with	external
locking	disabled.

You	have	a	crashed	data	file	or	index	file	that	contains	very	corrupt	data
that	confused	mysqld.

You	have	found	a	bug	in	the	data	storage	code.	This	isn't	likely,	but	it's	at
least	possible.	In	this	case,	you	can	try	to	change	the	storage	engine	to
another	engine	by	using	ALTER	TABLE	on	a	repaired	copy	of	the	table.

Because	it	is	very	difficult	to	know	why	something	is	crashing,	first	try	to	check
whether	things	that	work	for	others	crash	for	you.	Please	try	the	following
things:

Stop	the	mysqld	server	with	mysqladmin	shutdown,	run	myisamchk	--
silent	--force	*/*.MYI	from	the	data	directory	to	check	all	MyISAM	tables,
and	restart	mysqld.	This	ensures	that	you	are	running	from	a	clean	state.
See	Chapter	5,	Database	Administration.

Start	mysqld	with	the	--log	option	and	try	to	determine	from	the
information	written	to	the	log	whether	some	specific	query	kills	the	server.
About	95%	of	all	bugs	are	related	to	a	particular	query.	Normally,	this	is
one	of	the	last	queries	in	the	log	file	just	before	the	server	restarts.	See
Section	5.12.2,	“The	General	Query	Log”.	If	you	can	repeatedly	kill
MySQL	with	a	specific	query,	even	when	you	have	checked	all	tables	just
before	issuing	it,	then	you	have	been	able	to	locate	the	bug	and	should
submit	a	bug	report	for	it.	See	Section	1.8,	“How	to	Report	Bugs	or

Problems”.

Try	to	make	a	test	case	that	we	can	use	to	repeat	the	problem.	See
Section	E.1.6,	“Making	a	Test	Case	If	You	Experience	Table	Corruption”.

Try	running	the	tests	in	the	mysql-test	directory	and	the	MySQL
benchmarks.	See	Section	24.1.2,	“MySQL	Test	Suite”.	They	should	test
MySQL	rather	well.	You	can	also	add	code	to	the	benchmarks	that
simulates	your	application.	The	benchmarks	can	be	found	in	the	sql-bench
directory	in	a	source	distribution	or,	for	a	binary	distribution,	in	the	sql-
bench	directory	under	your	MySQL	installation	directory.

Try	the	fork_big.pl	script.	(It	is	located	in	the	tests	directory	of	source
distributions.)

If	you	configure	MySQL	for	debugging,	it	is	much	easier	to	gather
information	about	possible	errors	if	something	goes	wrong.	Configuring
MySQL	for	debugging	causes	a	safe	memory	allocator	to	be	included	that
can	find	some	errors.	It	also	provides	a	lot	of	output	about	what	is
happening.	Reconfigure	MySQL	with	the	--with-debug	or	--with-
debug=full	option	to	configure	and	then	recompile.	See	Section	E.1,
“Debugging	a	MySQL	Server”.

Make	sure	that	you	have	applied	the	latest	patches	for	your	operating
system.

Use	the	--skip-external-locking	option	to	mysqld.	On	some	systems,
the	lockd	lock	manager	does	not	work	properly;	the	--skip-external-
locking	option	tells	mysqld	not	to	use	external	locking.	(This	means	that
you	cannot	run	two	mysqld	servers	on	the	same	data	directory	and	that	you
must	be	careful	if	you	use	myisamchk.	Nevertheless,	it	may	be	instructive
to	try	the	option	as	a	test.)

Have	you	tried	mysqladmin	-u	root	processlist	when	mysqld	appears	to
be	running	but	not	responding?	Sometimes	mysqld	is	not	comatose	even
though	you	might	think	so.	The	problem	may	be	that	all	connections	are	in
use,	or	there	may	be	some	internal	lock	problem.	mysqladmin	-u	root
processlist	usually	is	able	to	make	a	connection	even	in	these	cases,	and
can	provide	useful	information	about	the	current	number	of	connections	and
their	status.

Run	the	command	mysqladmin	-i	5	status	or	mysqladmin	-i	5	-r	status	in
a	separate	window	to	produce	statistics	while	you	run	your	other	queries.

Try	the	following:

1.	 Start	mysqld	from	gdb	(or	another	debugger).	See	Section	E.1.3,
“Debugging	mysqld	under	gdb”.

2.	 Run	your	test	scripts.

3.	 Print	the	backtrace	and	the	local	variables	at	the	three	lowest	levels.	In
gdb,	you	can	do	this	with	the	following	commands	when	mysqld	has
crashed	inside	gdb:

backtrace

info	local

up

info	local

up

info	local

With	gdb,	you	can	also	examine	which	threads	exist	with	info
threads	and	switch	to	a	specific	thread	with	thread	N,	where	N	is	the
thread	ID.

Try	to	simulate	your	application	with	a	Perl	script	to	force	MySQL	to	crash
or	misbehave.

Send	a	normal	bug	report.	See	Section	1.8,	“How	to	Report	Bugs	or
Problems”.	Be	even	more	detailed	than	usual.	Because	MySQL	works	for
many	people,	it	may	be	that	the	crash	results	from	something	that	exists
only	on	your	computer	(for	example,	an	error	that	is	related	to	your
particular	system	libraries).

If	you	have	a	problem	with	tables	containing	dynamic-length	rows	and	you
are	using	only	VARCHAR	columns	(not	BLOB	or	TEXT	columns),	you	can	try	to
change	all	VARCHAR	to	CHAR	with	ALTER	TABLE.	This	forces	MySQL	to	use
fixed-size	rows.	Fixed-size	rows	take	a	little	extra	space,	but	are	much	more
tolerant	to	corruption.

The	current	dynamic	row	code	has	been	in	use	at	MySQL	AB	for	several

years	with	very	few	problems,	but	dynamic-length	rows	are	by	nature	more
prone	to	errors,	so	it	may	be	a	good	idea	to	try	this	strategy	to	see	whether	it
helps.

Do	not	rule	out	your	server	hardware	when	diagnosing	problems.	Defective
hardware	can	be	the	cause	of	data	corruption.	Particular	attention	should	be
paid	to	both	RAMS	and	hard-drives	when	troubleshooting	hardware.

A.4.3.	How	MySQL	Handles	a	Full	Disk

This	section	describes	how	MySQL	responds	to	disk-full	errors	(such	as	“no
space	left	on	device”),	and	to	quota-exceeded	errors	(such	as	“write	failed”	or
“user	block	limit	reached”).

This	section	is	relevant	for	writes	to	MyISAM	tables.	It	also	applies	for	writes	to
binary	log	files	and	binary	log	index	file,	except	that	references	to	“row”	and
“record”	should	be	understood	to	mean	“event.”

When	a	disk-full	condition	occurs,	MySQL	does	the	following:

It	checks	once	every	minute	to	see	whether	there	is	enough	space	to	write
the	current	row.	If	there	is	enough	space,	it	continues	as	if	nothing	had
happened.

Every	10	minutes	it	writes	an	entry	to	the	log	file,	warning	about	the	disk-
full	condition.

To	alleviate	the	problem,	you	can	take	the	following	actions:

To	continue,	you	only	have	to	free	enough	disk	space	to	insert	all	records.

To	abort	the	thread,	you	must	use	mysqladmin	kill.	The	thread	is	aborted
the	next	time	it	checks	the	disk	(in	one	minute).

Other	threads	might	be	waiting	for	the	table	that	caused	the	disk-full
condition.	If	you	have	several	“locked”	threads,	killing	the	one	thread	that
is	waiting	on	the	disk-full	condition	allows	the	other	threads	to	continue.

Exceptions	to	the	preceding	behavior	are	when	you	use	REPAIR	TABLE	or
OPTIMIZE	TABLE	or	when	the	indexes	are	created	in	a	batch	after	LOAD	DATA

INFILE	or	after	an	ALTER	TABLE	statement.	All	of	these	statements	may	create
large	temporary	files	that,	if	left	to	themselves,	would	cause	big	problems	for	the
rest	of	the	system.	If	the	disk	becomes	full	while	MySQL	is	doing	any	of	these
operations,	it	removes	the	big	temporary	files	and	mark	the	table	as	crashed.	The
exception	is	that	for	ALTER	TABLE,	the	old	table	is	left	unchanged.

A.4.4.	Where	MySQL	Stores	Temporary	Files

MySQL	uses	the	value	of	the	TMPDIR	environment	variable	as	the	pathname	of
the	directory	in	which	to	store	temporary	files.	If	you	don't	have	TMPDIR	set,
MySQL	uses	the	system	default,	which	is	normally	/tmp,	/var/tmp,	or
/usr/tmp.	If	the	filesystem	containing	your	temporary	file	directory	is	too	small,
you	can	use	the	--tmpdir	option	to	mysqld	to	specify	a	directory	in	a	filesystem
where	you	have	enough	space.

In	MySQL	5.0,	the	--tmpdir	option	can	be	set	to	a	list	of	several	paths	that	are
used	in	round-robin	fashion.	Paths	should	be	separated	by	colon	characters	(‘:’)
on	Unix	and	semicolon	characters	(‘;’)	on	Windows,	NetWare,	and	OS/2.	Note:
To	spread	the	load	effectively,	these	paths	should	be	located	on	different	physical
disks,	not	different	partitions	of	the	same	disk.

If	the	MySQL	server	is	acting	as	a	replication	slave,	you	should	not	set	--tmpdir
to	point	to	a	directory	on	a	memory-based	filesystem	or	to	a	directory	that	is
cleared	when	the	server	host	restarts.	A	replication	slave	needs	some	of	its
temporary	files	to	survive	a	machine	restart	so	that	it	can	replicate	temporary
tables	or	LOAD	DATA	INFILE	operations.	If	files	in	the	temporary	file	directory
are	lost	when	the	server	restarts,	replication	fails.

MySQL	creates	all	temporary	files	as	hidden	files.	This	ensures	that	the
temporary	files	are	removed	if	mysqld	is	terminated.	The	disadvantage	of	using
hidden	files	is	that	you	do	not	see	a	big	temporary	file	that	fills	up	the	filesystem
in	which	the	temporary	file	directory	is	located.

When	sorting	(ORDER	BY	or	GROUP	BY),	MySQL	normally	uses	one	or	two
temporary	files.	The	maximum	disk	space	required	is	determined	by	the
following	expression:

(length	of	what	is	sorted	+	sizeof(row	pointer))

*	number	of	matched	rows

*	2

The	row	pointer	size	is	usually	four	bytes,	but	may	grow	in	the	future	for	really
big	tables.

For	some	SELECT	queries,	MySQL	also	creates	temporary	SQL	tables.	These	are
not	hidden	and	have	names	of	the	form	SQL_*.

ALTER	TABLE	creates	a	temporary	table	in	the	same	directory	as	the	original
table.

A.4.5.	How	to	Protect	or	Change	the	MySQL	Unix	Socket	File

The	default	location	for	the	Unix	socket	file	that	the	server	uses	for
communication	with	local	clients	is	/tmp/mysql.sock.	(For	some	distribution
formats,	the	directory	might	be	different,	such	as	/var/lib/mysql	for	RPMs.)

On	some	versions	of	Unix,	anyone	can	delete	files	in	the	/tmp	directory	or	other
similar	directories	used	for	temporary	files.	If	the	socket	file	is	located	in	such	a
directory	on	your	system,	this	might	cause	problems.

On	most	versions	of	Unix,	you	can	protect	your	/tmp	directory	so	that	files	can
be	deleted	only	by	their	owners	or	the	superuser	(root).	To	do	this,	set	the
sticky	bit	on	the	/tmp	directory	by	logging	in	as	root	and	using	the	following
command:

shell>	chmod	+t	/tmp

You	can	check	whether	the	sticky	bit	is	set	by	executing	ls	-ld	/tmp.	If	the
last	permission	character	is	t,	the	bit	is	set.

Another	approach	is	to	change	the	place	where	the	server	creates	the	Unix	socket
file.	If	you	do	this,	you	should	also	let	client	programs	know	the	new	location	of
the	file.	You	can	specify	the	file	location	in	several	ways:

Specify	the	path	in	a	global	or	local	option	file.	For	example,	put	the
following	lines	in	/etc/my.cnf:

[mysqld]

socket=/path/to/socket

[client]

socket=/path/to/socket

See	Section	4.3.2,	“Using	Option	Files”.

Specify	a	--socket	option	on	the	command	line	to	mysqld_safe	and	when
you	run	client	programs.

Set	the	MYSQL_UNIX_PORT	environment	variable	to	the	path	of	the	Unix
socket	file.

Recompile	MySQL	from	source	to	use	a	different	default	Unix	socket	file
location.	Define	the	path	to	the	file	with	the	--with-unix-socket-path
option	when	you	run	configure.	See	Section	2.9.2,	“Typical	configure
Options”.

You	can	test	whether	the	new	socket	location	works	by	attempting	to	connect	to
the	server	with	this	command:

shell>	mysqladmin	--socket=/path/to/socket	version

A.4.6.	Time	Zone	Problems

If	you	have	a	problem	with	SELECT	NOW()	returning	values	in	UTC	and	not	your
local	time,	you	have	to	tell	the	server	your	current	time	zone.	The	same	applies	if
UNIX_TIMESTAMP()	returns	the	wrong	value.	This	should	be	done	for	the
environment	in	which	the	server	runs;	for	example,	in	mysqld_safe	or
mysql.server.	See	Appendix	F,	Environment	Variables.

You	can	set	the	time	zone	for	the	server	with	the	--timezone=timezone_name
option	to	mysqld_safe.	You	can	also	set	it	by	setting	the	TZ	environment
variable	before	you	start	mysqld.

The	allowable	values	for	--timezone	or	TZ	are	system-dependent.	Consult	your
operating	system	documentation	to	see	what	values	are	acceptable.

A.5.	Query-Related	Issues

A.5.1.	Case	Sensitivity	in	Searches

By	default,	MySQL	searches	are	not	case	sensitive	(although	there	are	some
character	sets	that	are	never	case	insensitive,	such	as	czech).	This	means	that	if
you	search	with	col_name	LIKE	'a%',	you	get	all	column	values	that	start	with	A
or	a.	If	you	want	to	make	this	search	case	sensitive,	make	sure	that	one	of	the
operands	has	a	case	sensitive	or	binary	collation.	For	example,	if	you	are
comparing	a	column	and	a	string	that	both	have	the	latin1	character	set,	you
can	use	the	COLLATE	operator	to	cause	either	operand	to	have	the
latin1_general_cs	or	latin1_bin	collation.	For	example:

col_name	COLLATE	latin1_general_cs	LIKE	'a%'

col_name	LIKE	'a%'	COLLATE	latin1_general_cs

col_name	COLLATE	latin1_bin	LIKE	'a%'

col_name	LIKE	'a%'	COLLATE	latin1_bin

If	you	want	a	column	always	to	be	treated	in	case-sensitive	fashion,	declare	it
with	a	case	sensitive	or	binary	collation.	See	Section	13.1.5,	“CREATE	TABLE
Syntax”.

Simple	comparison	operations	(>=,	>,	=,	<,	<=,	sorting,	and	grouping)	are
based	on	each	character's	“sort	value.”	Characters	with	the	same	sort	value	(such
as	‘E’,	‘e’,	and	‘ÃƒÂ©’)	are	treated	as	the	same	character.

A.5.2.	Problems	Using	DATE	Columns

The	format	of	a	DATE	value	is	'YYYY-MM-DD'.	According	to	standard	SQL,	no
other	format	is	allowed.	You	should	use	this	format	in	UPDATE	expressions	and	in
the	WHERE	clause	of	SELECT	statements.	For	example:

mysql>	SELECT	*	FROM	tbl_name	WHERE	date	>=	'2003-05-05';

As	a	convenience,	MySQL	automatically	converts	a	date	to	a	number	if	the	date
is	used	in	a	numeric	context	(and	vice	versa).	It	is	also	smart	enough	to	allow	a
“relaxed”	string	form	when	updating	and	in	a	WHERE	clause	that	compares	a	date
to	a	TIMESTAMP,	DATE,	or	DATETIME	column.	(“Relaxed	form”	means	that	any
punctuation	character	may	be	used	as	the	separator	between	parts.	For	example,

'2004-08-15'	and	'2004#08#15'	are	equivalent.)	MySQL	can	also	convert	a
string	containing	no	separators	(such	as	'20040815'),	provided	it	makes	sense	as
a	date.

When	you	compare	a	DATE,	TIME,	DATETIME,	or	TIMESTAMP	to	a	constant	string
with	the	<,	<=,	=,	>=,	>,	or	BETWEEN	operators,	MySQL	normally	converts	the
string	to	an	internal	long	integer	for	faster	comparison	(and	also	for	a	bit	more
“relaxed”	string	checking).	However,	this	conversion	is	subject	to	the	following
exceptions:

When	you	compare	two	columns

When	you	compare	a	DATE,	TIME,	DATETIME,	or	TIMESTAMP	column	to	an
expression

When	you	use	any	other	comparison	method	than	those	just	listed,	such	as
IN	or	STRCMP().

For	these	exceptional	cases,	the	comparison	is	done	by	converting	the	objects	to
strings	and	performing	a	string	comparison.

To	keep	things	safe,	assume	that	strings	are	compared	as	strings	and	use	the
appropriate	string	functions	if	you	want	to	compare	a	temporal	value	to	a	string.

The	special	date	'0000-00-00'	can	be	stored	and	retrieved	as	'0000-00-00'.
When	using	a	'0000-00-00'	date	through	MyODBC,	it	is	automatically
converted	to	NULL	in	MyODBC	2.50.12	and	above,	because	ODBC	can't	handle
this	kind	of	date.

Because	MySQL	performs	the	conversions	described	above,	the	following
statements	work:

mysql>	INSERT	INTO	tbl_name	(idate)	VALUES	(19970505);

mysql>	INSERT	INTO	tbl_name	(idate)	VALUES	('19970505');

mysql>	INSERT	INTO	tbl_name	(idate)	VALUES	('97-05-05');

mysql>	INSERT	INTO	tbl_name	(idate)	VALUES	('1997.05.05');

mysql>	INSERT	INTO	tbl_name	(idate)	VALUES	('1997	05	05');

mysql>	INSERT	INTO	tbl_name	(idate)	VALUES	('0000-00-00');

mysql>	SELECT	idate	FROM	tbl_name	WHERE	idate	>=	'1997-05-05';

mysql>	SELECT	idate	FROM	tbl_name	WHERE	idate	>=	19970505;

mysql>	SELECT	MOD(idate,100)	FROM	tbl_name	WHERE	idate	>=	19970505;

mysql>	SELECT	idate	FROM	tbl_name	WHERE	idate	>=	'19970505';

However,	the	following	does	not	work:

mysql>	SELECT	idate	FROM	tbl_name	WHERE	STRCMP(idate,'20030505')=0;

STRCMP()	is	a	string	function,	so	it	converts	idate	to	a	string	in	'YYYY-MM-DD'
format	and	performs	a	string	comparison.	It	does	not	convert	'20030505'	to	the
date	'2003-05-05'	and	perform	a	date	comparison.

If	you	are	using	the	ALLOW_INVALID_DATES	SQL	mode,	MySQL	allows	you	to
store	dates	that	are	given	only	limited	checking:	MySQL	requires	only	that	the
day	is	in	the	range	from	1	to	31	and	the	month	is	in	the	range	from	1	to	12.

This	makes	MySQL	very	convenient	for	Web	applications	where	you	obtain
year,	month,	and	day	in	three	different	fields	and	you	want	to	store	exactly	what
the	user	inserted	(without	date	validation).

If	you	are	not	using	the	NO_ZERO_IN_DATE	SQL	mode,	the	day	or	month	part	can
be	zero.	This	is	convenient	if	you	want	to	store	a	birthdate	in	a	DATE	column	and
you	know	only	part	of	the	date.

If	you	are	not	using	the	NO_ZERO_DATE	SQL	mode,	MySQL	also	allows	you	to
store	'0000-00-00'	as	a	“dummy	date.”	This	is	in	some	cases	more	convenient
than	using	NULL	values.

If	the	date	cannot	be	converted	to	any	reasonable	value,	a	0	is	stored	in	the	DATE
column,	which	is	retrieved	as	'0000-00-00'.	This	is	both	a	speed	and	a
convenience	issue.	We	believe	that	the	database	server's	responsibility	is	to
retrieve	the	same	date	you	stored	(even	if	the	data	was	not	logically	correct	in	all
cases).	We	think	it	is	up	to	the	application	and	not	the	server	to	check	the	dates.

If	you	want	MySQL	to	check	all	dates	and	accept	only	legal	dates	(unless
overridden	by	IGNORE),	you	should	set	sql_mode	to
"NO_ZERO_IN_DATE,NO_ZERO_DATE".

Date	handling	in	MySQL	5.0.1	and	earlier	works	like	MySQL	5.0.2	with	the
ALLOW_INVALID_DATES	SQL	mode	enabled.

A.5.3.	Problems	with	NULL	Values

The	concept	of	the	NULL	value	is	a	common	source	of	confusion	for	newcomers
to	SQL,	who	often	think	that	NULL	is	the	same	thing	as	an	empty	string	''.	This
is	not	the	case.	For	example,	the	following	statements	are	completely	different:

mysql>	INSERT	INTO	my_table	(phone)	VALUES	(NULL);

mysql>	INSERT	INTO	my_table	(phone)	VALUES	('');

Both	statements	insert	a	value	into	the	phone	column,	but	the	first	inserts	a	NULL
value	and	the	second	inserts	an	empty	string.	The	meaning	of	the	first	can	be
regarded	as	“phone	number	is	not	known”	and	the	meaning	of	the	second	can	be
regarded	as	“the	person	is	known	to	have	no	phone,	and	thus	no	phone	number.”

To	help	with	NULL	handling,	you	can	use	the	IS	NULL	and	IS	NOT	NULL	operators
and	the	IFNULL()	function.

In	SQL,	the	NULL	value	is	never	true	in	comparison	to	any	other	value,	even
NULL.	An	expression	that	contains	NULL	always	produces	a	NULL	value	unless
otherwise	indicated	in	the	documentation	for	the	operators	and	functions
involved	in	the	expression.	All	columns	in	the	following	example	return	NULL:

mysql>	SELECT	NULL,	1+NULL,	CONCAT('Invisible',NULL);

If	you	want	to	search	for	column	values	that	are	NULL,	you	cannot	use	an	expr	=
NULL	test.	The	following	statement	returns	no	rows,	because	expr	=	NULL	is
never	true	for	any	expression:

mysql>	SELECT	*	FROM	my_table	WHERE	phone	=	NULL;

To	look	for	NULL	values,	you	must	use	the	IS	NULL	test.	The	following
statements	show	how	to	find	the	NULL	phone	number	and	the	empty	phone
number:

mysql>	SELECT	*	FROM	my_table	WHERE	phone	IS	NULL;

mysql>	SELECT	*	FROM	my_table	WHERE	phone	=	'';

See	Section	3.3.4.6,	“Working	with	NULL	Values”,	for	additional	information	and
examples.

You	can	add	an	index	on	a	column	that	can	have	NULL	values	if	you	are	using	the
MyISAM,	InnoDB,	or	BDB,	or	MEMORY	storage	engine.	Otherwise,	you	must	declare
an	indexed	column	NOT	NULL,	and	you	cannot	insert	NULL	into	the	column.

When	reading	data	with	LOAD	DATA	INFILE,	empty	or	missing	columns	are
updated	with	''.	If	you	want	a	NULL	value	in	a	column,	you	should	use	\N	in	the
data	file.	The	literal	word	“NULL”	may	also	be	used	under	some	circumstances.
See	Section	13.2.5,	“LOAD	DATA	INFILE	Syntax”.

When	using	DISTINCT,	GROUP	BY,	or	ORDER	BY,	all	NULL	values	are	regarded	as
equal.

When	using	ORDER	BY,	NULL	values	are	presented	first,	or	last	if	you	specify	DESC
to	sort	in	descending	order.

Aggregate	(summary)	functions	such	as	COUNT(),	MIN(),	and	SUM()	ignore	NULL
values.	The	exception	to	this	is	COUNT(*),	which	counts	rows	and	not	individual
column	values.	For	example,	the	following	statement	produces	two	counts.	The
first	is	a	count	of	the	number	of	rows	in	the	table,	and	the	second	is	a	count	of
the	number	of	non-NULL	values	in	the	age	column:

mysql>	SELECT	COUNT(*),	COUNT(age)	FROM	person;

For	some	data	types,	MySQL	handles	NULL	values	specially.	If	you	insert	NULL
into	a	TIMESTAMP	column,	the	current	date	and	time	is	inserted.	If	you	insert	NULL
into	an	integer	column	that	has	the	AUTO_INCREMENT	attribute,	the	next	number	in
the	sequence	is	inserted.

A.5.4.	Problems	with	Column	Aliases

You	can	use	an	alias	to	refer	to	a	column	in	GROUP	BY,	ORDER	BY,	or	HAVING
clauses.	Aliases	can	also	be	used	to	give	columns	better	names:

SELECT	SQRT(a*b)	AS	root	FROM	tbl_name	GROUP	BY	root	HAVING	root	>	0;

SELECT	id,	COUNT(*)	AS	cnt	FROM	tbl_name	GROUP	BY	id	HAVING	cnt	>	0;

SELECT	id	AS	'Customer	identity'	FROM	tbl_name;

Standard	SQL	doesn't	allow	you	to	refer	to	a	column	alias	in	a	WHERE	clause.
This	restriction	is	imposed	because	when	the	WHERE	code	is	executed,	the	column
value	may	not	yet	be	determined.	For	example,	the	following	query	is	illegal:

SELECT	id,	COUNT(*)	AS	cnt	FROM	tbl_name	WHERE	cnt	>	0	GROUP	BY	id;

The	WHERE	statement	is	executed	to	determine	which	rows	should	be	included	in
the	GROUP	BY	part,	whereas	HAVING	is	used	to	decide	which	rows	from	the	result

set	should	be	used.

A.5.5.	Rollback	Failure	for	Non-Transactional	Tables

If	you	receive	the	following	message	when	trying	to	perform	a	ROLLBACK,	it
means	that	one	or	more	of	the	tables	you	used	in	the	transaction	do	not	support
transactions:

Warning:	Some	non-transactional	changed	tables	couldn't	be	rolled	back

These	non-transactional	tables	are	not	affected	by	the	ROLLBACK	statement.

If	you	were	not	deliberately	mixing	transactional	and	non-transactional	tables
within	the	transaction,	the	most	likely	cause	for	this	message	is	that	a	table	you
thought	was	transactional	actually	is	not.	This	can	happen	if	you	try	to	create	a
table	using	a	transactional	storage	engine	that	is	not	supported	by	your	mysqld
server	(or	that	was	disabled	with	a	startup	option).	If	mysqld	doesn't	support	a
storage	engine,	it	instead	creates	the	table	as	a	MyISAM	table,	which	is	non-
transactional.

You	can	check	the	storage	engine	for	a	table	by	using	either	of	these	statements:

SHOW	TABLE	STATUS	LIKE	'tbl_name';

SHOW	CREATE	TABLE	tbl_name;

See	Section	13.5.4.21,	“SHOW	TABLE	STATUS	Syntax”,	and	Section	13.5.4.6,
“SHOW	CREATE	TABLE	Syntax”.

You	can	check	which	storage	engines	your	mysqld	server	supports	by	using	this
statement:

SHOW	ENGINES;

You	can	also	use	the	following	statement,	and	check	the	value	of	the	variable
that	is	associated	with	the	storage	engine	in	which	you	are	interested:

SHOW	VARIABLES	LIKE	'have_%';

For	example,	to	determine	whether	the	InnoDB	storage	engine	is	available,	check
the	value	of	the	have_innodb	variable.

See	Section	13.5.4.10,	“SHOW	ENGINES	Syntax”,	and	Section	13.5.4.24,	“SHOW
VARIABLES	Syntax”.

A.5.6.	Deleting	Rows	from	Related	Tables

If	the	total	length	of	the	DELETE	statement	for	related_table	is	more	than	1MB
(the	default	value	of	the	max_allowed_packet	system	variable),	you	should	split
it	into	smaller	parts	and	execute	multiple	DELETE	statements.	You	probably	get
the	fastest	DELETE	by	specifying	only	100	to	1,000	related_column	values	per
statement	if	the	related_column	is	indexed.	If	the	related_column	isn't
indexed,	the	speed	is	independent	of	the	number	of	arguments	in	the	IN	clause.

A.5.7.	Solving	Problems	with	No	Matching	Rows

If	you	have	a	complicated	query	that	uses	many	tables	but	that	doesn't	return	any
rows,	you	should	use	the	following	procedure	to	find	out	what	is	wrong:

1.	 Test	the	query	with	EXPLAIN	to	check	whether	you	can	find	something	that
is	obviously	wrong.	See	Section	7.2.1,	“Optimizing	Queries	with	EXPLAIN”.

2.	 Select	only	those	columns	that	are	used	in	the	WHERE	clause.

3.	 Remove	one	table	at	a	time	from	the	query	until	it	returns	some	rows.	If	the
tables	are	large,	it's	a	good	idea	to	use	LIMIT	10	with	the	query.

4.	 Issue	a	SELECT	for	the	column	that	should	have	matched	a	row	against	the
table	that	was	last	removed	from	the	query.

5.	 If	you	are	comparing	FLOAT	or	DOUBLE	columns	with	numbers	that	have
decimals,	you	can't	use	equality	(=)	comparisons.	This	problem	is	common
in	most	computer	languages	because	not	all	floating-point	values	can	be
stored	with	exact	precision.	In	some	cases,	changing	the	FLOAT	to	a	DOUBLE
fixes	this.	See	Section	A.5.8,	“Problems	with	Floating-Point	Comparisons”.

Similar	problems	may	be	encountered	when	comparing	DECIMAL	values
prior	to	MySQL	5.0.3.

6.	 If	you	still	can't	figure	out	what's	wrong,	create	a	minimal	test	that	can	be
run	with	mysql	test	<	query.sql	that	shows	your	problems.	You	can

create	a	test	file	by	dumping	the	tables	with	mysqldump	--quick	db_name
tbl_name_1	...	tbl_name_n	>	query.sql.	Open	the	file	in	an	editor,	remove
some	insert	lines	(if	there	are	more	than	needed	to	demonstrate	the
problem),	and	add	your	SELECT	statement	at	the	end	of	the	file.

Verify	that	the	test	file	demonstrates	the	problem	by	executing	these
commands:

shell>	mysqladmin	create	test2

shell>	mysql	test2	<	query.sql

Attach	the	test	file	to	a	bug	report,	which	you	can	file	using	the	instructions
in	Section	1.8,	“How	to	Report	Bugs	or	Problems”.

A.5.8.	Problems	with	Floating-Point	Comparisons

Floating-point	numbers	sometimes	cause	confusion	because	they	are
approximate.	That	is,	they	are	not	stored	as	exact	values	inside	computer
architecture.	What	you	can	see	on	the	screen	usually	is	not	the	exact	value	of	the
number.	The	FLOAT	and	DOUBLE	data	types	are	such,	and	DECIMAL	operations
before	MySQL	5.0.3	are	approximate	as	well.

Prior	to	MySQL	5.0.3,	DECIMAL	columns	store	values	with	exact	precision
because	they	are	represented	as	strings,	but	calculations	on	DECIMAL	values	are
done	using	floating-point	operations.	As	of	5.0.3,	MySQL	performs	DECIMAL
operations	with	a	precision	of	64	decimal	digits,	which	should	solve	most
common	inaccuracy	problems	when	it	comes	to	DECIMAL	columns.	(If	your
server	is	from	MySQL	5.0.3	or	higher,	but	you	have	DECIMAL	columns	in	tables
that	were	created	before	5.0.3,	the	old	behavior	still	applies	to	those	columns.	To
convert	the	tables	to	the	newer	DECIMAL	format,	dump	them	with	mysqldump
and	reload	them.)

The	following	example	(for	versions	of	MySQL	older	than	5.0.3)	demonstrates
the	problem.	It	shows	that	even	for	older	DECIMAL	columns,	calculations	that	are
done	using	floating-point	operations	are	subject	to	floating-point	error.	(Were
you	to	replace	the	DECIMAL	columns	with	FLOAT,	similar	problems	would	occur
for	all	versions	of	MySQL.)

mysql>	CREATE	TABLE	t1	(i	INT,	d1	DECIMAL(9,2),	d2	DECIMAL(9,2));

mysql>	INSERT	INTO	t1	VALUES	(1,	101.40,	21.40),	(1,	-80.00,	0.00),

				->	(2,	0.00,	0.00),	(2,	-13.20,	0.00),	(2,	59.60,	46.40),

				->	(2,	30.40,	30.40),	(3,	37.00,	7.40),	(3,	-29.60,	0.00),

				->	(4,	60.00,	15.40),	(4,	-10.60,	0.00),	(4,	-34.00,	0.00),

				->	(5,	33.00,	0.00),	(5,	-25.80,	0.00),	(5,	0.00,	7.20),

				->	(6,	0.00,	0.00),	(6,	-51.40,	0.00);

mysql>	SELECT	i,	SUM(d1)	AS	a,	SUM(d2)	AS	b

				->	FROM	t1	GROUP	BY	i	HAVING	a	<>	b;

+------+--------+-------+

|	i				|	a						|	b					|

+------+--------+-------+

|				1	|		21.40	|	21.40	|

|				2	|		76.80	|	76.80	|

|				3	|			7.40	|		7.40	|

|				4	|		15.40	|	15.40	|

|				5	|			7.20	|		7.20	|

|				6	|	-51.40	|		0.00	|

+------+--------+-------+

The	result	is	correct.	Although	the	first	five	records	look	like	they	should	not
satisfy	the	comparison	(the	values	of	a	and	b	do	not	appear	to	be	different),	they
may	do	so	because	the	difference	between	the	numbers	shows	up	around	the
tenth	decimal	or	so,	depending	on	factors	such	as	computer	architecture	or	the
compiler	version	or	optimization	level.	For	example,	different	CPUs	may
evaluate	floating-point	numbers	differently.

As	of	MySQL	5.0.3,	you	will	get	only	the	last	row	in	the	above	result.

The	problem	cannot	be	solved	by	using	ROUND()	or	similar	functions,	because
the	result	is	still	a	floating-point	number:

mysql>	SELECT	i,	ROUND(SUM(d1),	2)	AS	a,	ROUND(SUM(d2),	2)	AS	b

				->	FROM	t1	GROUP	BY	i	HAVING	a	<>	b;

+------+--------+-------+

|	i				|	a						|	b					|

+------+--------+-------+

|				1	|		21.40	|	21.40	|

|				2	|		76.80	|	76.80	|

|				3	|			7.40	|		7.40	|

|				4	|		15.40	|	15.40	|

|				5	|			7.20	|		7.20	|

|				6	|	-51.40	|		0.00	|

+------+--------+-------+

This	is	what	the	numbers	in	column	a	look	like	when	displayed	with	more
decimal	places:

mysql>	SELECT	i,	ROUND(SUM(d1),	2)*1.0000000000000000	AS	a,

				->	ROUND(SUM(d2),	2)	AS	b	FROM	t1	GROUP	BY	i	HAVING	a	<>	b;

+------+----------------------+-------+

|	i				|	a																				|	b					|

+------+----------------------+-------+

|				1	|		21.3999999999999986	|	21.40	|

|				2	|		76.7999999999999972	|	76.80	|

|				3	|			7.4000000000000004	|		7.40	|

|				4	|		15.4000000000000004	|	15.40	|

|				5	|			7.2000000000000002	|		7.20	|

|				6	|	-51.3999999999999986	|		0.00	|

+------+----------------------+-------+

Depending	on	your	computer	architecture,	you	may	or	may	not	see	similar
results.	For	example,	on	some	machines	you	may	get	the	“correct”	results	by
multiplying	both	arguments	by	1,	as	the	following	example	shows.

Warning:	Never	use	this	method	in	your	applications.	It	is	not	an	example	of	a
trustworthy	method!

mysql>	SELECT	i,	ROUND(SUM(d1),	2)*1	AS	a,	ROUND(SUM(d2),	2)*1	AS	b

				->	FROM	t1	GROUP	BY	i	HAVING	a	<>	b;

+------+--------+------+

|	i				|	a						|	b				|

+------+--------+------+

|				6	|	-51.40	|	0.00	|

+------+--------+------+

The	reason	that	the	preceding	example	seems	to	work	is	that	on	the	particular
machine	where	the	test	was	done,	CPU	floating-point	arithmetic	happens	to
round	the	numbers	to	the	same	value.	However,	there	is	no	rule	that	any	CPU
should	do	so,	so	this	method	cannot	be	trusted.

The	correct	way	to	do	floating-point	number	comparison	is	to	first	decide	on	an
acceptable	tolerance	for	differences	between	the	numbers	and	then	do	the
comparison	against	the	tolerance	value.	For	example,	if	we	agree	that	floating-
point	numbers	should	be	regarded	the	same	if	they	are	same	within	a	precision	of
one	in	ten	thousand	(0.0001),	the	comparison	should	be	written	to	find
differences	larger	than	the	tolerance	value:

mysql>	SELECT	i,	SUM(d1)	AS	a,	SUM(d2)	AS	b	FROM	t1

				->	GROUP	BY	i	HAVING	ABS(a	-	b)	>	0.0001;

+------+--------+------+

|	i				|	a						|	b				|

+------+--------+------+

|				6	|	-51.40	|	0.00	|

+------+--------+------+

1	row	in	set	(0.00	sec)

Conversely,	to	get	rows	where	the	numbers	are	the	same,	the	test	should	find
differences	within	the	tolerance	value:

mysql>	SELECT	i,	SUM(d1)	AS	a,	SUM(d2)	AS	b	FROM	t1

				->	GROUP	BY	i	HAVING	ABS(a	-	b)	<=	0.0001;

+------+-------+-------+

|	i				|	a					|	b					|

+------+-------+-------+

|				1	|	21.40	|	21.40	|

|				2	|	76.80	|	76.80	|

|				3	|		7.40	|		7.40	|

|				4	|	15.40	|	15.40	|

|				5	|		7.20	|		7.20	|

+------+-------+-------+

A.6.	Optimizer-Related	Issues

MySQL	uses	a	cost-based	optimizer	to	determine	the	best	way	to	resolve	a
query.	In	many	cases,	MySQL	can	calculate	the	best	possible	query	plan,	but
sometimes	MySQL	doesn't	have	enough	information	about	the	data	at	hand	and
has	to	make	“educated”	guesses	about	the	data.

For	the	cases	when	MySQL	does	not	do	the	"right"	thing,	tools	that	you	have
available	to	help	MySQL	are:

Use	the	EXPLAIN	statement	to	get	information	about	how	MySQL	processes
a	query.	To	use	it,	just	add	the	keyword	EXPLAIN	to	the	front	of	your	SELECT
statement:

mysql>	EXPLAIN	SELECT	*	FROM	t1,	t2	WHERE	t1.i	=	t2.i;

EXPLAIN	is	discussed	in	more	detail	in	Section	7.2.1,	“Optimizing	Queries
with	EXPLAIN”.

Use	ANALYZE	TABLE	tbl_name	to	update	the	key	distributions	for	the
scanned	table.	See	Section	13.5.2.1,	“ANALYZE	TABLE	Syntax”.

	Use	FORCE	INDEX	for	the	scanned	table	to	tell	MySQL	that	table	scans	are
very	expensive	compared	to	using	the	given	index.	See	Section	13.2.7,
“SELECT	Syntax”.

SELECT	*	FROM	t1,	t2	FORCE	INDEX	(index_for_column)

WHERE	t1.col_name=t2.col_name;

USE	INDEX	and	IGNORE	INDEX	may	also	be	useful.

Global	and	table-level	STRAIGHT_JOIN.	See	Section	13.2.7,	“SELECT
Syntax”.

You	can	tune	global	or	thread-specific	system	variables.	For	example,	Start
mysqld	with	the	--max-seeks-for-key=1000	option	or	use	SET
max_seeks_for_key=1000	to	tell	the	optimizer	to	assume	that	no	key	scan
causes	more	than	1,000	key	seeks.	See	Section	5.2.2,	“Server	System
Variables”.

A.7.	Table	Definition-Related	Issues

A.7.1.	Problems	with	ALTER	TABLE

ALTER	TABLE	changes	a	table	to	the	current	character	set.	If	you	get	a	duplicate-
key	error	during	ALTER	TABLE,	the	cause	is	either	that	the	new	character	sets
maps	two	keys	to	the	same	value	or	that	the	table	is	corrupted.	In	the	latter	case,
you	should	run	REPAIR	TABLE	on	the	table.

If	ALTER	TABLE	dies	with	the	following	error,	the	problem	may	be	that	MySQL
crashed	during	an	earlier	ALTER	TABLE	operation	and	there	is	an	old	table	named
A-xxx	or	B-xxx	lying	around:

Error	on	rename	of	'./database/name.frm'

to	'./database/B-xxx.frm'	(Errcode:	17)

In	this	case,	go	to	the	MySQL	data	directory	and	delete	all	files	that	have	names
starting	with	A-	or	B-.	(You	may	want	to	move	them	elsewhere	instead	of
deleting	them.)

ALTER	TABLE	works	in	the	following	way:

Create	a	new	table	named	A-xxx	with	the	requested	structural	changes.

Copy	all	rows	from	the	original	table	to	A-xxx.

Rename	the	original	table	to	B-xxx.

Rename	A-xxx	to	your	original	table	name.

Delete	B-xxx.

If	something	goes	wrong	with	the	renaming	operation,	MySQL	tries	to	undo	the
changes.	If	something	goes	seriously	wrong	(although	this	shouldn't	happen),
MySQL	may	leave	the	old	table	as	B-xxx.	A	simple	rename	of	the	table	files	at
the	system	level	should	get	your	data	back.

If	you	use	ALTER	TABLE	on	a	transactional	table	or	if	you	are	using	Windows	or
OS/2,	ALTER	TABLE	unlocks	the	table	if	you	had	done	a	LOCK	TABLE	on	it.	This	is

done	because	InnoDB	and	these	operating	systems	cannot	drop	a	table	that	is	in
use.

A.7.2.	How	to	Change	the	Order	of	Columns	in	a	Table

First,	consider	whether	you	really	need	to	change	the	column	order	in	a	table.
The	whole	point	of	SQL	is	to	abstract	the	application	from	the	data	storage
format.	You	should	always	specify	the	order	in	which	you	wish	to	retrieve	your
data.	The	first	of	the	following	statements	returns	columns	in	the	order
col_name1,	col_name2,	col_name3,	whereas	the	second	returns	them	in	the	order
col_name1,	col_name3,	col_name2:

mysql>	SELECT	col_name1,	col_name2,	col_name3	FROM	tbl_name;

mysql>	SELECT	col_name1,	col_name3,	col_name2	FROM	tbl_name;

If	you	decide	to	change	the	order	of	table	columns	anyway,	you	can	do	so	as
follows:

1.	 Create	a	new	table	with	the	columns	in	the	new	order.

2.	 Execute	this	statement:

mysql>	INSERT	INTO	new_table

				->	SELECT	columns-in-new-order	FROM	old_table;

3.	 Drop	or	rename	old_table.

4.	 Rename	the	new	table	to	the	original	name:

mysql>	ALTER	TABLE	new_table	RENAME	old_table;

SELECT	*	is	quite	suitable	for	testing	queries.	However,	in	an	application,	you
should	never	rely	on	using	SELECT	*	and	retrieving	the	columns	based	on	their
position.	The	order	and	position	in	which	columns	are	returned	does	not	remain
the	same	if	you	add,	move,	or	delete	columns.	A	simple	change	to	your	table
structure	could	cause	your	application	to	fail.

A.7.3.	TEMPORARY	TABLE	Problems

The	following	list	indicates	limitations	on	the	use	of	TEMPORARY	tables:

A	TEMPORARY	table	can	only	be	of	type	HEAP,	ISAM,	MyISAM,	MERGE,	or
InnoDB.

You	cannot	refer	to	a	TEMPORARY	table	more	than	once	in	the	same	query.
For	example,	the	following	does	not	work:

mysql>	SELECT	*	FROM	temp_table,	temp_table	AS	t2;

ERROR	1137:	Can't	reopen	table:	'temp_table'

The	SHOW	TABLES	statement	does	not	list	TEMPORARY	tables.

You	cannot	use	RENAME	to	rename	a	TEMPORARY	table.	However,	you	can	use
ALTER	TABLE	instead:

mysql>	ALTER	TABLE	orig_name	RENAME	new_name;

There	are	known	issues	in	using	temporary	tables	with	replication.	See
Section	6.7,	“Replication	Features	and	Known	Problems”,	for	more
information.

A.8.	Known	Issues	in	MySQL

This	section	is	a	list	of	the	known	issues	in	recent	versions	of	MySQL.

For	information	about	platform-specific	issues,	see	the	installation	and	porting
instructions	in	Section	2.13,	“Operating	System-Specific	Notes”,	and
Appendix	E,	Porting	to	Other	Systems.

A.8.1.	Open	Issues	in	MySQL

The	following	problems	are	known	and	fixing	them	is	a	high	priority:

If	you	compare	a	NULL	value	to	a	subquery	using	ALL/ANY/SOME	and	the
subquery	returns	an	empty	result,	the	comparison	might	evaluate	to	the	non-
standard	result	of	NULL	rather	than	to	TRUE	or	FALSE.	This	will	be	fixed	in
MySQL	5.1.

Subquery	optimization	for	IN	is	not	as	effective	as	for	=.

Even	if	you	use	lower_case_table_names=2	(which	enables	MySQL	to
remember	the	case	used	for	databases	and	table	names),	MySQL	does	not
remember	the	case	used	for	database	names	for	the	function	DATABASE()	or
within	the	various	logs	(on	case-insensitive	systems).

Dropping	a	FOREIGN	KEY	constraint	doesn't	work	in	replication	because	the
constraint	may	have	another	name	on	the	slave.

REPLACE	(and	LOAD	DATA	with	the	REPLACE	option)	does	not	trigger	ON
DELETE	CASCADE.

DISTINCT	with	ORDER	BY	doesn't	work	inside	GROUP_CONCAT()	if	you	don't
use	all	and	only	those	columns	that	are	in	the	DISTINCT	list.

If	one	user	has	a	long-running	transaction	and	another	user	drops	a	table
that	is	updated	in	the	transaction,	there	is	small	chance	that	the	binary	log
may	contain	the	DROP	TABLE	command	before	the	table	is	used	in	the
transaction	itself.	We	plan	to	fix	this	by	having	the	DROP	TABLE	command
wait	until	the	table	is	not	being	used	in	any	transaction.

When	inserting	a	big	integer	value	(between	263	and	264–1)	into	a	decimal
or	string	column,	it	is	inserted	as	a	negative	value	because	the	number	is
evaluated	in	a	signed	integer	context.

FLUSH	TABLES	WITH	READ	LOCK	does	not	block	COMMIT	if	the	server	is
running	without	binary	logging,	which	may	cause	a	problem	(of
consistency	between	tables)	when	doing	a	full	backup.

ANALYZE	TABLE	on	a	BDB	table	may	in	some	cases	make	the	table	unusable
until	you	restart	mysqld.	If	this	happens,	look	for	errors	of	the	following
form	in	the	MySQL	error	file:

001207	22:07:56		bdb:		log_flush:	LSN	past	current	end-of-log

Don't	execute	ALTER	TABLE	on	a	BDB	table	on	which	you	are	running
multiple-statement	transactions	until	all	those	transactions	complete.	(The
transaction	might	be	ignored.)

ANALYZE	TABLE,	OPTIMIZE	TABLE,	and	REPAIR	TABLE	may	cause	problems
on	tables	for	which	you	are	using	INSERT	DELAYED.

Performing	LOCK	TABLE	...	and	FLUSH	TABLES	...	doesn't	guarantee	that
there	isn't	a	half-finished	transaction	in	progress	on	the	table.

BDB	tables	are	relatively	slow	to	open.	If	you	have	many	BDB	tables	in	a
database,	it	takes	a	long	time	to	use	the	mysql	client	on	the	database	if	you
are	not	using	the	-A	option	or	if	you	are	using	rehash.	This	is	especially
noticeable	when	you	have	a	large	table	cache.

Replication	uses	query-level	logging:	The	master	writes	the	executed
queries	to	the	binary	log.	This	is	a	very	fast,	compact,	and	efficient	logging
method	that	works	perfectly	in	most	cases.

It	is	possible	for	the	data	on	the	master	and	slave	to	become	different	if	a
query	is	designed	in	such	a	way	that	the	data	modification	is	non-
deterministic	(generally	not	a	recommended	practice,	even	outside	of
replication).

For	example:

CREATE	...	SELECT	or	INSERT	...	SELECT	statements	that	insert	zero
or	NULL	values	into	an	AUTO_INCREMENT	column.

DELETE	if	you	are	deleting	rows	from	a	table	that	has	foreign	keys	with
ON	DELETE	CASCADE	properties.

REPLACE	...	SELECT,	INSERT	IGNORE	...	SELECT	if	you	have
duplicate	key	values	in	the	inserted	data.

If	and	only	if	the	preceding	queries	have	no	ORDER	BY	clause
guaranteeing	a	deterministic	order.

For	example,	for	INSERT	...	SELECT	with	no	ORDER	BY,	the	SELECT	may
return	rows	in	a	different	order	(which	results	in	a	row	having	different
ranks,	hence	getting	a	different	number	in	the	AUTO_INCREMENT	column),
depending	on	the	choices	made	by	the	optimizers	on	the	master	and	slave.

A	query	is	optimized	differently	on	the	master	and	slave	only	if:

The	table	is	stored	using	a	different	storage	engine	on	the	master	than
on	the	slave.	(It	is	possible	to	use	different	storage	engines	on	the
master	and	slave.	For	example,	you	can	use	InnoDB	on	the	master,	but
MyISAM	on	the	slave	if	the	slave	has	less	available	disk	space.)

MySQL	buffer	sizes	(key_buffer_size,	and	so	on)	are	different	on	the
master	and	slave.

The	master	and	slave	run	different	MySQL	versions,	and	the	optimizer
code	differs	between	these	versions.

This	problem	may	also	affect	database	restoration	using
mysqlbinlog|mysql.

The	easiest	way	to	avoid	this	problem	is	to	add	an	ORDER	BY	clause	to	the
aforementioned	non-deterministic	queries	to	ensure	that	the	rows	are
always	stored	or	modified	in	the	same	order.

In	future	MySQL	versions,	we	will	automatically	add	an	ORDER	BY	clause
when	needed.

The	following	issues	are	known	and	will	be	fixed	in	due	time:

Log	filenames	are	based	on	the	server	hostname	(if	you	don't	specify	a
filename	with	the	startup	option).	You	have	to	use	options	such	as	--log-
bin=old_host_name-bin	if	you	change	your	hostname	to	something	else.
Another	option	is	to	rename	the	old	files	to	reflect	your	hostname	change	(if
these	are	binary	logs,	you	need	to	edit	the	binary	log	index	file	and	fix	the
binlog	names	there	as	well).	See	Section	5.2.1,	“mysqld	Command
Options”.

mysqlbinlog	does	not	delete	temporary	files	left	after	a	LOAD	DATA	INFILE
command.	See	Section	8.10,	“mysqlbinlog	—	Utility	for	Processing	Binary
Log	Files”.

RENAME	doesn't	work	with	TEMPORARY	tables	or	tables	used	in	a	MERGE	table.

Due	to	the	way	table	format	(.frm)	files	are	stored,	you	cannot	use
character	255	(CHAR(255))	in	table	names,	column	names,	or	enumerations.
This	is	scheduled	to	be	fixed	in	version	5.1	when	we	implement	new	table
definition	format	files.

When	using	SET	CHARACTER	SET,	you	can't	use	translated	characters	in
database,	table,	and	column	names.

You	can't	use	‘_’	or	‘%’	with	ESCAPE	in	LIKE	...	ESCAPE.

If	you	have	a	DECIMAL	column	in	which	the	same	number	is	stored	in
different	formats	(for	example,	+01.00,	1.00,	01.00),	GROUP	BY	may	regard
each	value	as	a	different	value.

You	cannot	build	the	server	in	another	directory	when	using	MIT-pthreads.
Because	this	requires	changes	to	MIT-pthreads,	we	are	not	likely	to	fix	this.
See	Section	2.9.5,	“MIT-pthreads	Notes”.

BLOB	and	TEXT	values	can't	reliably	be	used	in	GROUP	BY,	ORDER	BY	or
DISTINCT.	Only	the	first	max_sort_length	bytes	are	used	when	comparing
BLOB	values	in	these	cases.	The	default	value	of	max_sort_length	is	1024
and	can	be	changed	at	server	startup	time	or	at	runtime.

Numeric	calculations	are	done	with	BIGINT	or	DOUBLE	(both	are	normally	64

bits	long).	Which	precision	you	get	depends	on	the	function.	The	general
rule	is	that	bit	functions	are	performed	with	BIGINT	precision,	IF	and	ELT()
with	BIGINT	or	DOUBLE	precision,	and	the	rest	with	DOUBLE	precision.	You
should	try	to	avoid	using	unsigned	long	long	values	if	they	resolve	to	be
larger	than	63	bits	(9223372036854775807)	for	anything	other	than	bit
fields.

You	can	have	up	to	255	ENUM	and	SET	columns	in	one	table.

In	MIN(),	MAX(),	and	other	aggregate	functions,	MySQL	currently	compares
ENUM	and	SET	columns	by	their	string	value	rather	than	by	the	string's
relative	position	in	the	set.

mysqld_safe	redirects	all	messages	from	mysqld	to	the	mysqld	log.	One
problem	with	this	is	that	if	you	execute	mysqladmin	refresh	to	close	and
reopen	the	log,	stdout	and	stderr	are	still	redirected	to	the	old	log.	If	you
use	--log	extensively,	you	should	edit	mysqld_safe	to	log	to	host_name.err
instead	of	host_name.log	so	that	you	can	easily	reclaim	the	space	for	the	old
log	by	deleting	it	and	executing	mysqladmin	refresh.

In	an	UPDATE	statement,	columns	are	updated	from	left	to	right.	If	you	refer
to	an	updated	column,	you	get	the	updated	value	instead	of	the	original
value.	For	example,	the	following	statement	increments	KEY	by	2,	not	1:

mysql>	UPDATE	tbl_name	SET	KEY=KEY+1,KEY=KEY+1;

You	can	refer	to	multiple	temporary	tables	in	the	same	query,	but	you
cannot	refer	to	any	given	temporary	table	more	than	once.	For	example,	the
following	doesn't	work:

mysql>	SELECT	*	FROM	temp_table,	temp_table	AS	t2;

ERROR	1137:	Can't	reopen	table:	'temp_table'

The	optimizer	may	handle	DISTINCT	differently	when	you	are	using
“hidden”	columns	in	a	join	than	when	you	are	not.	In	a	join,	hidden
columns	are	counted	as	part	of	the	result	(even	if	they	are	not	shown),
whereas	in	normal	queries,	hidden	columns	don't	participate	in	the
DISTINCT	comparison.	We	will	probably	change	this	in	the	future	to	never
compare	the	hidden	columns	when	executing	DISTINCT.

An	example	of	this	is:

SELECT	DISTINCT	mp3id	FROM	band_downloads

							WHERE	userid	=	9	ORDER	BY	id	DESC;

and

SELECT	DISTINCT	band_downloads.mp3id

							FROM	band_downloads,band_mp3

							WHERE	band_downloads.userid	=	9

							AND	band_mp3.id	=	band_downloads.mp3id

							ORDER	BY	band_downloads.id	DESC;

In	the	second	case,	using	MySQL	Server	3.23.x,	you	may	get	two	identical
rows	in	the	result	set	(because	the	values	in	the	hidden	id	column	may
differ).

Note	that	this	happens	only	for	queries	where	that	do	not	have	the	ORDER	BY
columns	in	the	result.

If	you	execute	a	PROCEDURE	on	a	query	that	returns	an	empty	set,	in	some
cases	the	PROCEDURE	does	not	transform	the	columns.

Creation	of	a	table	of	type	MERGE	doesn't	check	whether	the	underlying
tables	are	compatible	types.

If	you	use	ALTER	TABLE	to	add	a	UNIQUE	index	to	a	table	used	in	a	MERGE
table	and	then	add	a	normal	index	on	the	MERGE	table,	the	key	order	is
different	for	the	tables	if	there	was	an	old,	non-UNIQUE	key	in	the	table.	This
is	because	ALTER	TABLE	puts	UNIQUE	indexes	before	normal	indexes	to	be
able	to	detect	duplicate	keys	as	early	as	possible.

Appendix	B.	Error	Codes	and	Messages

Table	of	Contents

B.1.	Server	Error	Codes	and	Messages
B.2.	Client	Error	Codes	and	Messages

This	appendix	lists	the	errors	that	may	appear	when	you	call	MySQL	from	any
host	language.	The	first	list	displays	server	error	messages.	The	second	list
displays	client	program	messages.

B.1.	Server	Error	Codes	and	Messages

Server	error	information	comes	from	the	following	source	files.	For	details	about
the	way	that	error	information	is	defined,	see	the	MySQL	Internals	manual,
available	at	http://dev.mysql.com/doc/.

Error	message	information	is	listed	in	the	share/errmsg.txt	file.	%d	and	%s
represent	numbers	and	strings,	respectively,	that	are	substituted	into	the
Message	values	when	they	are	displayed.

The	Error	values	listed	in	share/errmsg.txt	are	used	to	generate	the
definitions	in	the	include/mysqld_error.h	and
include/mysqld_ername.h	MySQL	source	files.

The	SQLSTATE	values	listed	in	share/errmsg.txt	are	used	to	generate	the
definitions	in	the	include/sql_state.h	MySQL	source	file.

Because	updates	are	frequent,	it	is	possible	that	those	files	will	contain
additional	error	information	not	listed	here.

Error:	1000	SQLSTATE:	HY000	(ER_HASHCHK)

Message:	hashchk

Error:	1001	SQLSTATE:	HY000	(ER_NISAMCHK)

Message:	isamchk

Error:	1002	SQLSTATE:	HY000	(ER_NO)

Message:	NO

Error:	1003	SQLSTATE:	HY000	(ER_YES)

Message:	YES

Error:	1004	SQLSTATE:	HY000	(ER_CANT_CREATE_FILE)

Message:	Can't	create	file	'%s'	(errno:	%d)

http://dev.mysql.com/doc/

Error:	1005	SQLSTATE:	HY000	(ER_CANT_CREATE_TABLE)

Message:	Can't	create	table	'%s'	(errno:	%d)

Error:	1006	SQLSTATE:	HY000	(ER_CANT_CREATE_DB)

Message:	Can't	create	database	'%s'	(errno:	%d)

Error:	1007	SQLSTATE:	HY000	(ER_DB_CREATE_EXISTS)

Message:	Can't	create	database	'%s';	database	exists

Error:	1008	SQLSTATE:	HY000	(ER_DB_DROP_EXISTS)

Message:	Can't	drop	database	'%s';	database	doesn't	exist

Error:	1009	SQLSTATE:	HY000	(ER_DB_DROP_DELETE)

Message:	Error	dropping	database	(can't	delete	'%s',	errno:	%d)

Error:	1010	SQLSTATE:	HY000	(ER_DB_DROP_RMDIR)

Message:	Error	dropping	database	(can't	rmdir	'%s',	errno:	%d)

Error:	1011	SQLSTATE:	HY000	(ER_CANT_DELETE_FILE)

Message:	Error	on	delete	of	'%s'	(errno:	%d)

Error:	1012	SQLSTATE:	HY000	(ER_CANT_FIND_SYSTEM_REC)

Message:	Can't	read	record	in	system	table

Error:	1013	SQLSTATE:	HY000	(ER_CANT_GET_STAT)

Message:	Can't	get	status	of	'%s'	(errno:	%d)

Error:	1014	SQLSTATE:	HY000	(ER_CANT_GET_WD)

Message:	Can't	get	working	directory	(errno:	%d)

Error:	1015	SQLSTATE:	HY000	(ER_CANT_LOCK)

Message:	Can't	lock	file	(errno:	%d)

Error:	1016	SQLSTATE:	HY000	(ER_CANT_OPEN_FILE)

Message:	Can't	open	file:	'%s'	(errno:	%d)

Error:	1017	SQLSTATE:	HY000	(ER_FILE_NOT_FOUND)

Message:	Can't	find	file:	'%s'	(errno:	%d)

Error:	1018	SQLSTATE:	HY000	(ER_CANT_READ_DIR)

Message:	Can't	read	dir	of	'%s'	(errno:	%d)

Error:	1019	SQLSTATE:	HY000	(ER_CANT_SET_WD)

Message:	Can't	change	dir	to	'%s'	(errno:	%d)

Error:	1020	SQLSTATE:	HY000	(ER_CHECKREAD)

Message:	Record	has	changed	since	last	read	in	table	'%s'

Error:	1021	SQLSTATE:	HY000	(ER_DISK_FULL)

Message:	Disk	full	(%s);	waiting	for	someone	to	free	some	space...

Error:	1022	SQLSTATE:	23000	(ER_DUP_KEY)

Message:	Can't	write;	duplicate	key	in	table	'%s'

Error:	1023	SQLSTATE:	HY000	(ER_ERROR_ON_CLOSE)

Message:	Error	on	close	of	'%s'	(errno:	%d)

Error:	1024	SQLSTATE:	HY000	(ER_ERROR_ON_READ)

Message:	Error	reading	file	'%s'	(errno:	%d)

Error:	1025	SQLSTATE:	HY000	(ER_ERROR_ON_RENAME)

Message:	Error	on	rename	of	'%s'	to	'%s'	(errno:	%d)

Error:	1026	SQLSTATE:	HY000	(ER_ERROR_ON_WRITE)

Message:	Error	writing	file	'%s'	(errno:	%d)

Error:	1027	SQLSTATE:	HY000	(ER_FILE_USED)

Message:	'%s'	is	locked	against	change

Error:	1028	SQLSTATE:	HY000	(ER_FILSORT_ABORT)

Message:	Sort	aborted

Error:	1029	SQLSTATE:	HY000	(ER_FORM_NOT_FOUND)

Message:	View	'%s'	doesn't	exist	for	'%s'

Error:	1030	SQLSTATE:	HY000	(ER_GET_ERRNO)

Message:	Got	error	%d	from	storage	engine

Error:	1031	SQLSTATE:	HY000	(ER_ILLEGAL_HA)

Message:	Table	storage	engine	for	'%s'	doesn't	have	this	option

Error:	1032	SQLSTATE:	HY000	(ER_KEY_NOT_FOUND)

Message:	Can't	find	record	in	'%s'

Error:	1033	SQLSTATE:	HY000	(ER_NOT_FORM_FILE)

Message:	Incorrect	information	in	file:	'%s'

Error:	1034	SQLSTATE:	HY000	(ER_NOT_KEYFILE)

Message:	Incorrect	key	file	for	table	'%s';	try	to	repair	it

Error:	1035	SQLSTATE:	HY000	(ER_OLD_KEYFILE)

Message:	Old	key	file	for	table	'%s';	repair	it!

Error:	1036	SQLSTATE:	HY000	(ER_OPEN_AS_READONLY)

Message:	Table	'%s'	is	read	only

Error:	1037	SQLSTATE:	HY001	(ER_OUTOFMEMORY)

Message:	Out	of	memory;	restart	server	and	try	again	(needed	%d	bytes)

Error:	1038	SQLSTATE:	HY001	(ER_OUT_OF_SORTMEMORY)

Message:	Out	of	sort	memory;	increase	server	sort	buffer	size

Error:	1039	SQLSTATE:	HY000	(ER_UNEXPECTED_EOF)

Message:	Unexpected	EOF	found	when	reading	file	'%s'	(errno:	%d)

Error:	1040	SQLSTATE:	08004	(ER_CON_COUNT_ERROR)

Message:	Too	many	connections

Error:	1041	SQLSTATE:	HY000	(ER_OUT_OF_RESOURCES)

Message:	Out	of	memory;	check	if	mysqld	or	some	other	process	uses	all
available	memory;	if	not,	you	may	have	to	use	'ulimit'	to	allow	mysqld	to
use	more	memory	or	you	can	add	more	swap	space

Error:	1042	SQLSTATE:	08S01	(ER_BAD_HOST_ERROR)

Message:	Can't	get	hostname	for	your	address

Error:	1043	SQLSTATE:	08S01	(ER_HANDSHAKE_ERROR)

Message:	Bad	handshake

Error:	1044	SQLSTATE:	42000	(ER_DBACCESS_DENIED_ERROR)

Message:	Access	denied	for	user	'%s'@'%s'	to	database	'%s'

Error:	1045	SQLSTATE:	28000	(ER_ACCESS_DENIED_ERROR)

Message:	Access	denied	for	user	'%s'@'%s'	(using	password:	%s)

Error:	1046	SQLSTATE:	3D000	(ER_NO_DB_ERROR)

Message:	No	database	selected

Error:	1047	SQLSTATE:	08S01	(ER_UNKNOWN_COM_ERROR)

Message:	Unknown	command

Error:	1048	SQLSTATE:	23000	(ER_BAD_NULL_ERROR)

Message:	Column	'%s'	cannot	be	null

Error:	1049	SQLSTATE:	42000	(ER_BAD_DB_ERROR)

Message:	Unknown	database	'%s'

Error:	1050	SQLSTATE:	42S01	(ER_TABLE_EXISTS_ERROR)

Message:	Table	'%s'	already	exists

Error:	1051	SQLSTATE:	42S02	(ER_BAD_TABLE_ERROR)

Message:	Unknown	table	'%s'

Error:	1052	SQLSTATE:	23000	(ER_NON_UNIQ_ERROR)

Message:	Column	'%s'	in	%s	is	ambiguous

Error:	1053	SQLSTATE:	08S01	(ER_SERVER_SHUTDOWN)

Message:	Server	shutdown	in	progress

Error:	1054	SQLSTATE:	42S22	(ER_BAD_FIELD_ERROR)

Message:	Unknown	column	'%s'	in	'%s'

Error:	1055	SQLSTATE:	42000	(ER_WRONG_FIELD_WITH_GROUP)

Message:	'%s'	isn't	in	GROUP	BY

Error:	1056	SQLSTATE:	42000	(ER_WRONG_GROUP_FIELD)

Message:	Can't	group	on	'%s'

Error:	1057	SQLSTATE:	42000	(ER_WRONG_SUM_SELECT)

Message:	Statement	has	sum	functions	and	columns	in	same	statement

Error:	1058	SQLSTATE:	21S01	(ER_WRONG_VALUE_COUNT)

Message:	Column	count	doesn't	match	value	count

Error:	1059	SQLSTATE:	42000	(ER_TOO_LONG_IDENT)

Message:	Identifier	name	'%s'	is	too	long

Error:	1060	SQLSTATE:	42S21	(ER_DUP_FIELDNAME)

Message:	Duplicate	column	name	'%s'

Error:	1061	SQLSTATE:	42000	(ER_DUP_KEYNAME)

Message:	Duplicate	key	name	'%s'

Error:	1062	SQLSTATE:	23000	(ER_DUP_ENTRY)

Message:	Duplicate	entry	'%s'	for	key	%d

Error:	1063	SQLSTATE:	42000	(ER_WRONG_FIELD_SPEC)

Message:	Incorrect	column	specifier	for	column	'%s'

Error:	1064	SQLSTATE:	42000	(ER_PARSE_ERROR)

Message:	%s	near	'%s'	at	line	%d

Error:	1065	SQLSTATE:	42000	(ER_EMPTY_QUERY)

Message:	Query	was	empty

Error:	1066	SQLSTATE:	42000	(ER_NONUNIQ_TABLE)

Message:	Not	unique	table/alias:	'%s'

Error:	1067	SQLSTATE:	42000	(ER_INVALID_DEFAULT)

Message:	Invalid	default	value	for	'%s'

Error:	1068	SQLSTATE:	42000	(ER_MULTIPLE_PRI_KEY)

Message:	Multiple	primary	key	defined

Error:	1069	SQLSTATE:	42000	(ER_TOO_MANY_KEYS)

Message:	Too	many	keys	specified;	max	%d	keys	allowed

Error:	1070	SQLSTATE:	42000	(ER_TOO_MANY_KEY_PARTS)

Message:	Too	many	key	parts	specified;	max	%d	parts	allowed

Error:	1071	SQLSTATE:	42000	(ER_TOO_LONG_KEY)

Message:	Specified	key	was	too	long;	max	key	length	is	%d	bytes

Error:	1072	SQLSTATE:	42000	(ER_KEY_COLUMN_DOES_NOT_EXITS)

Message:	Key	column	'%s'	doesn't	exist	in	table

Error:	1073	SQLSTATE:	42000	(ER_BLOB_USED_AS_KEY)

Message:	BLOB	column	'%s'	can't	be	used	in	key	specification	with	the
used	table	type

Error:	1074	SQLSTATE:	42000	(ER_TOO_BIG_FIELDLENGTH)

Message:	Column	length	too	big	for	column	'%s'	(max	=	%d);	use	BLOB	or
TEXT	instead

Error:	1075	SQLSTATE:	42000	(ER_WRONG_AUTO_KEY)

Message:	Incorrect	table	definition;	there	can	be	only	one	auto	column	and
it	must	be	defined	as	a	key

Error:	1076	SQLSTATE:	HY000	(ER_READY)

Message:	%s:	ready	for	connections.	Version:	'%s'	socket:	'%s'	port:	%d

Error:	1077	SQLSTATE:	HY000	(ER_NORMAL_SHUTDOWN)

Message:	%s:	Normal	shutdown

Error:	1078	SQLSTATE:	HY000	(ER_GOT_SIGNAL)

Message:	%s:	Got	signal	%d.	Aborting!

Error:	1079	SQLSTATE:	HY000	(ER_SHUTDOWN_COMPLETE)

Message:	%s:	Shutdown	complete

Error:	1080	SQLSTATE:	08S01	(ER_FORCING_CLOSE)

Message:	%s:	Forcing	close	of	thread	%ld	user:	'%s'

Error:	1081	SQLSTATE:	08S01	(ER_IPSOCK_ERROR)

Message:	Can't	create	IP	socket

Error:	1082	SQLSTATE:	42S12	(ER_NO_SUCH_INDEX)

Message:	Table	'%s'	has	no	index	like	the	one	used	in	CREATE	INDEX;
recreate	the	table

Error:	1083	SQLSTATE:	42000	(ER_WRONG_FIELD_TERMINATORS)

Message:	Field	separator	argument	is	not	what	is	expected;	check	the
manual

Error:	1084	SQLSTATE:	42000	(ER_BLOBS_AND_NO_TERMINATED)

Message:	You	can't	use	fixed	rowlength	with	BLOBs;	please	use	'fields
terminated	by'

Error:	1085	SQLSTATE:	HY000	(ER_TEXTFILE_NOT_READABLE)

Message:	The	file	'%s'	must	be	in	the	database	directory	or	be	readable	by
all

Error:	1086	SQLSTATE:	HY000	(ER_FILE_EXISTS_ERROR)

Message:	File	'%s'	already	exists

Error:	1087	SQLSTATE:	HY000	(ER_LOAD_INFO)

Message:	Records:	%ld	Deleted:	%ld	Skipped:	%ld	Warnings:	%ld

Error:	1088	SQLSTATE:	HY000	(ER_ALTER_INFO)

Message:	Records:	%ld	Duplicates:	%ld

Error:	1089	SQLSTATE:	HY000	(ER_WRONG_SUB_KEY)

Message:	Incorrect	sub	part	key;	the	used	key	part	isn't	a	string,	the	used
length	is	longer	than	the	key	part,	or	the	storage	engine	doesn't	support
unique	sub	keys

Error:	1090	SQLSTATE:	42000	(ER_CANT_REMOVE_ALL_FIELDS)

Message:	You	can't	delete	all	columns	with	ALTER	TABLE;	use	DROP
TABLE	instead

Error:	1091	SQLSTATE:	42000	(ER_CANT_DROP_FIELD_OR_KEY)

Message:	Can't	DROP	'%s';	check	that	column/key	exists

Error:	1092	SQLSTATE:	HY000	(ER_INSERT_INFO)

Message:	Records:	%ld	Duplicates:	%ld	Warnings:	%ld

Error:	1093	SQLSTATE:	HY000	(ER_UPDATE_TABLE_USED)

Message:	You	can't	specify	target	table	'%s'	for	update	in	FROM	clause

Error:	1094	SQLSTATE:	HY000	(ER_NO_SUCH_THREAD)

Message:	Unknown	thread	id:	%lu

Error:	1095	SQLSTATE:	HY000	(ER_KILL_DENIED_ERROR)

Message:	You	are	not	owner	of	thread	%lu

Error:	1096	SQLSTATE:	HY000	(ER_NO_TABLES_USED)

Message:	No	tables	used

Error:	1097	SQLSTATE:	HY000	(ER_TOO_BIG_SET)

Message:	Too	many	strings	for	column	%s	and	SET

Error:	1098	SQLSTATE:	HY000	(ER_NO_UNIQUE_LOGFILE)

Message:	Can't	generate	a	unique	log-filename	%s.(1-999)

Error:	1099	SQLSTATE:	HY000	(ER_TABLE_NOT_LOCKED_FOR_WRITE)

Message:	Table	'%s'	was	locked	with	a	READ	lock	and	can't	be	updated

Error:	1100	SQLSTATE:	HY000	(ER_TABLE_NOT_LOCKED)

Message:	Table	'%s'	was	not	locked	with	LOCK	TABLES

Error:	1101	SQLSTATE:	42000	(ER_BLOB_CANT_HAVE_DEFAULT)

Message:	BLOB/TEXT	column	'%s'	can't	have	a	default	value

Error:	1102	SQLSTATE:	42000	(ER_WRONG_DB_NAME)

Message:	Incorrect	database	name	'%s'

Error:	1103	SQLSTATE:	42000	(ER_WRONG_TABLE_NAME)

Message:	Incorrect	table	name	'%s'

Error:	1104	SQLSTATE:	42000	(ER_TOO_BIG_SELECT)

Message:	The	SELECT	would	examine	more	than	MAX_JOIN_SIZE	rows;
check	your	WHERE	and	use	SET	SQL_BIG_SELECTS=1	or	SET
SQL_MAX_JOIN_SIZE=#	if	the	SELECT	is	okay

Error:	1105	SQLSTATE:	HY000	(ER_UNKNOWN_ERROR)

Message:	Unknown	error

Error:	1106	SQLSTATE:	42000	(ER_UNKNOWN_PROCEDURE)

Message:	Unknown	procedure	'%s'

Error:	1107	SQLSTATE:	42000	(ER_WRONG_PARAMCOUNT_TO_PROCEDURE)

Message:	Incorrect	parameter	count	to	procedure	'%s'

Error:	1108	SQLSTATE:	HY000	(ER_WRONG_PARAMETERS_TO_PROCEDURE)

Message:	Incorrect	parameters	to	procedure	'%s'

Error:	1109	SQLSTATE:	42S02	(ER_UNKNOWN_TABLE)

Message:	Unknown	table	'%s'	in	%s

Error:	1110	SQLSTATE:	42000	(ER_FIELD_SPECIFIED_TWICE)

Message:	Column	'%s'	specified	twice

Error:	1111	SQLSTATE:	HY000	(ER_INVALID_GROUP_FUNC_USE)

Message:	Invalid	use	of	group	function

Error:	1112	SQLSTATE:	42000	(ER_UNSUPPORTED_EXTENSION)

Message:	Table	'%s'	uses	an	extension	that	doesn't	exist	in	this	MySQL
version

Error:	1113	SQLSTATE:	42000	(ER_TABLE_MUST_HAVE_COLUMNS)

Message:	A	table	must	have	at	least	1	column

Error:	1114	SQLSTATE:	HY000	(ER_RECORD_FILE_FULL)

Message:	The	table	'%s'	is	full

Error:	1115	SQLSTATE:	42000	(ER_UNKNOWN_CHARACTER_SET)

Message:	Unknown	character	set:	'%s'

Error:	1116	SQLSTATE:	HY000	(ER_TOO_MANY_TABLES)

Message:	Too	many	tables;	MySQL	can	only	use	%d	tables	in	a	join

Error:	1117	SQLSTATE:	HY000	(ER_TOO_MANY_FIELDS)

Message:	Too	many	columns

Error:	1118	SQLSTATE:	42000	(ER_TOO_BIG_ROWSIZE)

Message:	Row	size	too	large.	The	maximum	row	size	for	the	used	table
type,	not	counting	BLOBs,	is	%ld.	You	have	to	change	some	columns	to
TEXT	or	BLOBs

Error:	1119	SQLSTATE:	HY000	(ER_STACK_OVERRUN)

Message:	Thread	stack	overrun:	Used:	%ld	of	a	%ld	stack.	Use	'mysqld	-O
thread_stack=#'	to	specify	a	bigger	stack	if	needed

Error:	1120	SQLSTATE:	42000	(ER_WRONG_OUTER_JOIN)

Message:	Cross	dependency	found	in	OUTER	JOIN;	examine	your	ON
conditions

Error:	1121	SQLSTATE:	42000	(ER_NULL_COLUMN_IN_INDEX)

Message:	Column	'%s'	is	used	with	UNIQUE	or	INDEX	but	is	not	defined
as	NOT	NULL

Error:	1122	SQLSTATE:	HY000	(ER_CANT_FIND_UDF)

Message:	Can't	load	function	'%s'

Error:	1123	SQLSTATE:	HY000	(ER_CANT_INITIALIZE_UDF)

Message:	Can't	initialize	function	'%s';	%s

Error:	1124	SQLSTATE:	HY000	(ER_UDF_NO_PATHS)

Message:	No	paths	allowed	for	shared	library

Error:	1125	SQLSTATE:	HY000	(ER_UDF_EXISTS)

Message:	Function	'%s'	already	exists

Error:	1126	SQLSTATE:	HY000	(ER_CANT_OPEN_LIBRARY)

Message:	Can't	open	shared	library	'%s'	(errno:	%d	%s)

Error:	1127	SQLSTATE:	HY000	(ER_CANT_FIND_DL_ENTRY)

Message:	Can't	find	function	'%s'	in	library

Error:	1128	SQLSTATE:	HY000	(ER_FUNCTION_NOT_DEFINED)

Message:	Function	'%s'	is	not	defined

Error:	1129	SQLSTATE:	HY000	(ER_HOST_IS_BLOCKED)

Message:	Host	'%s'	is	blocked	because	of	many	connection	errors;	unblock
with	'mysqladmin	flush-hosts'

Error:	1130	SQLSTATE:	HY000	(ER_HOST_NOT_PRIVILEGED)

Message:	Host	'%s'	is	not	allowed	to	connect	to	this	MySQL	server

Error:	1131	SQLSTATE:	42000	(ER_PASSWORD_ANONYMOUS_USER)

Message:	You	are	using	MySQL	as	an	anonymous	user	and	anonymous
users	are	not	allowed	to	change	passwords

Error:	1132	SQLSTATE:	42000	(ER_PASSWORD_NOT_ALLOWED)

Message:	You	must	have	privileges	to	update	tables	in	the	mysql	database
to	be	able	to	change	passwords	for	others

Error:	1133	SQLSTATE:	42000	(ER_PASSWORD_NO_MATCH)

Message:	Can't	find	any	matching	row	in	the	user	table

Error:	1134	SQLSTATE:	HY000	(ER_UPDATE_INFO)

Message:	Rows	matched:	%ld	Changed:	%ld	Warnings:	%ld

Error:	1135	SQLSTATE:	HY000	(ER_CANT_CREATE_THREAD)

Message:	Can't	create	a	new	thread	(errno	%d);	if	you	are	not	out	of
available	memory,	you	can	consult	the	manual	for	a	possible	OS-dependent
bug

Error:	1136	SQLSTATE:	21S01	(ER_WRONG_VALUE_COUNT_ON_ROW)

Message:	Column	count	doesn't	match	value	count	at	row	%ld

Error:	1137	SQLSTATE:	HY000	(ER_CANT_REOPEN_TABLE)

Message:	Can't	reopen	table:	'%s'

Error:	1138	SQLSTATE:	22004	(ER_INVALID_USE_OF_NULL)

Message:	Invalid	use	of	NULL	value

Error:	1139	SQLSTATE:	42000	(ER_REGEXP_ERROR)

Message:	Got	error	'%s'	from	regexp

Error:	1140	SQLSTATE:	42000	(ER_MIX_OF_GROUP_FUNC_AND_FIELDS)

Message:	Mixing	of	GROUP	columns	(MIN(),MAX(),COUNT(),...)	with
no	GROUP	columns	is	illegal	if	there	is	no	GROUP	BY	clause

Error:	1141	SQLSTATE:	42000	(ER_NONEXISTING_GRANT)

Message:	There	is	no	such	grant	defined	for	user	'%s'	on	host	'%s'

Error:	1142	SQLSTATE:	42000	(ER_TABLEACCESS_DENIED_ERROR)

Message:	%s	command	denied	to	user	'%s'@'%s'	for	table	'%s'

Error:	1143	SQLSTATE:	42000	(ER_COLUMNACCESS_DENIED_ERROR)

Message:	%s	command	denied	to	user	'%s'@'%s'	for	column	'%s'	in	table
'%s'

Error:	1144	SQLSTATE:	42000	(ER_ILLEGAL_GRANT_FOR_TABLE)

Message:	Illegal	GRANT/REVOKE	command;	please	consult	the	manual
to	see	which	privileges	can	be	used

Error:	1145	SQLSTATE:	42000	(ER_GRANT_WRONG_HOST_OR_USER)

Message:	The	host	or	user	argument	to	GRANT	is	too	long

Error:	1146	SQLSTATE:	42S02	(ER_NO_SUCH_TABLE)

Message:	Table	'%s.%s'	doesn't	exist

Error:	1147	SQLSTATE:	42000	(ER_NONEXISTING_TABLE_GRANT)

Message:	There	is	no	such	grant	defined	for	user	'%s'	on	host	'%s'	on	table
'%s'

Error:	1148	SQLSTATE:	42000	(ER_NOT_ALLOWED_COMMAND)

Message:	The	used	command	is	not	allowed	with	this	MySQL	version

Error:	1149	SQLSTATE:	42000	(ER_SYNTAX_ERROR)

Message:	You	have	an	error	in	your	SQL	syntax;	check	the	manual	that
corresponds	to	your	MySQL	server	version	for	the	right	syntax	to	use

Error:	1150	SQLSTATE:	HY000	(ER_DELAYED_CANT_CHANGE_LOCK)

Message:	Delayed	insert	thread	couldn't	get	requested	lock	for	table	%s

Error:	1151	SQLSTATE:	HY000	(ER_TOO_MANY_DELAYED_THREADS)

Message:	Too	many	delayed	threads	in	use

Error:	1152	SQLSTATE:	08S01	(ER_ABORTING_CONNECTION)

Message:	Aborted	connection	%ld	to	db:	'%s'	user:	'%s'	(%s)

Error:	1153	SQLSTATE:	08S01	(ER_NET_PACKET_TOO_LARGE)

Message:	Got	a	packet	bigger	than	'max_allowed_packet'	bytes

Error:	1154	SQLSTATE:	08S01	(ER_NET_READ_ERROR_FROM_PIPE)

Message:	Got	a	read	error	from	the	connection	pipe

Error:	1155	SQLSTATE:	08S01	(ER_NET_FCNTL_ERROR)

Message:	Got	an	error	from	fcntl()

Error:	1156	SQLSTATE:	08S01	(ER_NET_PACKETS_OUT_OF_ORDER)

Message:	Got	packets	out	of	order

Error:	1157	SQLSTATE:	08S01	(ER_NET_UNCOMPRESS_ERROR)

Message:	Couldn't	uncompress	communication	packet

Error:	1158	SQLSTATE:	08S01	(ER_NET_READ_ERROR)

Message:	Got	an	error	reading	communication	packets

Error:	1159	SQLSTATE:	08S01	(ER_NET_READ_INTERRUPTED)

Message:	Got	timeout	reading	communication	packets

Error:	1160	SQLSTATE:	08S01	(ER_NET_ERROR_ON_WRITE)

Message:	Got	an	error	writing	communication	packets

Error:	1161	SQLSTATE:	08S01	(ER_NET_WRITE_INTERRUPTED)

Message:	Got	timeout	writing	communication	packets

Error:	1162	SQLSTATE:	42000	(ER_TOO_LONG_STRING)

Message:	Result	string	is	longer	than	'max_allowed_packet'	bytes

Error:	1163	SQLSTATE:	42000	(ER_TABLE_CANT_HANDLE_BLOB)

Message:	The	used	table	type	doesn't	support	BLOB/TEXT	columns

Error:	1164	SQLSTATE:	42000	(ER_TABLE_CANT_HANDLE_AUTO_INCREMENT)

Message:	The	used	table	type	doesn't	support	AUTO_INCREMENT
columns

Error:	1165	SQLSTATE:	HY000	(ER_DELAYED_INSERT_TABLE_LOCKED)

Message:	INSERT	DELAYED	can't	be	used	with	table	'%s'	because	it	is
locked	with	LOCK	TABLES

Error:	1166	SQLSTATE:	42000	(ER_WRONG_COLUMN_NAME)

Message:	Incorrect	column	name	'%s'

Error:	1167	SQLSTATE:	42000	(ER_WRONG_KEY_COLUMN)

Message:	The	used	storage	engine	can't	index	column	'%s'

Error:	1168	SQLSTATE:	HY000	(ER_WRONG_MRG_TABLE)

Message:	All	tables	in	the	MERGE	table	are	not	identically	defined

Error:	1169	SQLSTATE:	23000	(ER_DUP_UNIQUE)

Message:	Can't	write,	because	of	unique	constraint,	to	table	'%s'

Error:	1170	SQLSTATE:	42000	(ER_BLOB_KEY_WITHOUT_LENGTH)

Message:	BLOB/TEXT	column	'%s'	used	in	key	specification	without	a	key
length

Error:	1171	SQLSTATE:	42000	(ER_PRIMARY_CANT_HAVE_NULL)

Message:	All	parts	of	a	PRIMARY	KEY	must	be	NOT	NULL;	if	you	need
NULL	in	a	key,	use	UNIQUE	instead

Error:	1172	SQLSTATE:	42000	(ER_TOO_MANY_ROWS)

Message:	Result	consisted	of	more	than	one	row

Error:	1173	SQLSTATE:	42000	(ER_REQUIRES_PRIMARY_KEY)

Message:	This	table	type	requires	a	primary	key

Error:	1174	SQLSTATE:	HY000	(ER_NO_RAID_COMPILED)

Message:	This	version	of	MySQL	is	not	compiled	with	RAID	support

Error:	1175	SQLSTATE:	HY000	(ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE)

Message:	You	are	using	safe	update	mode	and	you	tried	to	update	a	table
without	a	WHERE	that	uses	a	KEY	column

Error:	1176	SQLSTATE:	HY000	(ER_KEY_DOES_NOT_EXITS)

Message:	Key	'%s'	doesn't	exist	in	table	'%s'

Error:	1177	SQLSTATE:	42000	(ER_CHECK_NO_SUCH_TABLE)

Message:	Can't	open	table

Error:	1178	SQLSTATE:	42000	(ER_CHECK_NOT_IMPLEMENTED)

Message:	The	storage	engine	for	the	table	doesn't	support	%s

Error:	1179	SQLSTATE:	25000
(ER_CANT_DO_THIS_DURING_AN_TRANSACTION)

Message:	You	are	not	allowed	to	execute	this	command	in	a	transaction

Error:	1180	SQLSTATE:	HY000	(ER_ERROR_DURING_COMMIT)

Message:	Got	error	%d	during	COMMIT

Error:	1181	SQLSTATE:	HY000	(ER_ERROR_DURING_ROLLBACK)

Message:	Got	error	%d	during	ROLLBACK

Error:	1182	SQLSTATE:	HY000	(ER_ERROR_DURING_FLUSH_LOGS)

Message:	Got	error	%d	during	FLUSH_LOGS

Error:	1183	SQLSTATE:	HY000	(ER_ERROR_DURING_CHECKPOINT)

Message:	Got	error	%d	during	CHECKPOINT

Error:	1184	SQLSTATE:	08S01	(ER_NEW_ABORTING_CONNECTION)

Message:	Aborted	connection	%ld	to	db:	'%s'	user:	'%s'	host:	'%s'	(%s)

Error:	1185	SQLSTATE:	HY000	(ER_DUMP_NOT_IMPLEMENTED)

Message:	The	storage	engine	for	the	table	does	not	support	binary	table
dump

Error:	1186	SQLSTATE:	HY000	(ER_FLUSH_MASTER_BINLOG_CLOSED)

Message:	Binlog	closed,	cannot	RESET	MASTER

Error:	1187	SQLSTATE:	HY000	(ER_INDEX_REBUILD)

Message:	Failed	rebuilding	the	index	of	dumped	table	'%s'

Error:	1188	SQLSTATE:	HY000	(ER_MASTER)

Message:	Error	from	master:	'%s'

Error:	1189	SQLSTATE:	08S01	(ER_MASTER_NET_READ)

Message:	Net	error	reading	from	master

Error:	1190	SQLSTATE:	08S01	(ER_MASTER_NET_WRITE)

Message:	Net	error	writing	to	master

Error:	1191	SQLSTATE:	HY000	(ER_FT_MATCHING_KEY_NOT_FOUND)

Message:	Can't	find	FULLTEXT	index	matching	the	column	list

Error:	1192	SQLSTATE:	HY000	(ER_LOCK_OR_ACTIVE_TRANSACTION)

Message:	Can't	execute	the	given	command	because	you	have	active	locked
tables	or	an	active	transaction

Error:	1193	SQLSTATE:	HY000	(ER_UNKNOWN_SYSTEM_VARIABLE)

Message:	Unknown	system	variable	'%s'

Error:	1194	SQLSTATE:	HY000	(ER_CRASHED_ON_USAGE)

Message:	Table	'%s'	is	marked	as	crashed	and	should	be	repaired

Error:	1195	SQLSTATE:	HY000	(ER_CRASHED_ON_REPAIR)

Message:	Table	'%s'	is	marked	as	crashed	and	last	(automatic?)	repair	failed

Error:	1196	SQLSTATE:	HY000	(ER_WARNING_NOT_COMPLETE_ROLLBACK)

Message:	Some	non-transactional	changed	tables	couldn't	be	rolled	back

Error:	1197	SQLSTATE:	HY000	(ER_TRANS_CACHE_FULL)

Message:	Multi-statement	transaction	required	more	than
'max_binlog_cache_size'	bytes	of	storage;	increase	this	mysqld	variable	and
try	again

Error:	1198	SQLSTATE:	HY000	(ER_SLAVE_MUST_STOP)

Message:	This	operation	cannot	be	performed	with	a	running	slave;	run
STOP	SLAVE	first

Error:	1199	SQLSTATE:	HY000	(ER_SLAVE_NOT_RUNNING)

Message:	This	operation	requires	a	running	slave;	configure	slave	and	do
START	SLAVE

Error:	1200	SQLSTATE:	HY000	(ER_BAD_SLAVE)

Message:	The	server	is	not	configured	as	slave;	fix	in	config	file	or	with
CHANGE	MASTER	TO

Error:	1201	SQLSTATE:	HY000	(ER_MASTER_INFO)

Message:	Could	not	initialize	master	info	structure;	more	error	messages
can	be	found	in	the	MySQL	error	log

Error:	1202	SQLSTATE:	HY000	(ER_SLAVE_THREAD)

Message:	Could	not	create	slave	thread;	check	system	resources

Error:	1203	SQLSTATE:	42000	(ER_TOO_MANY_USER_CONNECTIONS)

Message:	User	%s	already	has	more	than	'max_user_connections'	active
connections

Error:	1204	SQLSTATE:	HY000	(ER_SET_CONSTANTS_ONLY)

Message:	You	may	only	use	constant	expressions	with	SET

Error:	1205	SQLSTATE:	HY000	(ER_LOCK_WAIT_TIMEOUT)

Message:	Lock	wait	timeout	exceeded;	try	restarting	transaction

Error:	1206	SQLSTATE:	HY000	(ER_LOCK_TABLE_FULL)

Message:	The	total	number	of	locks	exceeds	the	lock	table	size

Error:	1207	SQLSTATE:	25000	(ER_READ_ONLY_TRANSACTION)

Message:	Update	locks	cannot	be	acquired	during	a	READ
UNCOMMITTED	transaction

Error:	1208	SQLSTATE:	HY000	(ER_DROP_DB_WITH_READ_LOCK)

Message:	DROP	DATABASE	not	allowed	while	thread	is	holding	global
read	lock

Error:	1209	SQLSTATE:	HY000	(ER_CREATE_DB_WITH_READ_LOCK)

Message:	CREATE	DATABASE	not	allowed	while	thread	is	holding	global
read	lock

Error:	1210	SQLSTATE:	HY000	(ER_WRONG_ARGUMENTS)

Message:	Incorrect	arguments	to	%s

Error:	1211	SQLSTATE:	42000	(ER_NO_PERMISSION_TO_CREATE_USER)

Message:	'%s'@'%s'	is	not	allowed	to	create	new	users

Error:	1212	SQLSTATE:	HY000	(ER_UNION_TABLES_IN_DIFFERENT_DIR)

Message:	Incorrect	table	definition;	all	MERGE	tables	must	be	in	the	same
database

Error:	1213	SQLSTATE:	40001	(ER_LOCK_DEADLOCK)

Message:	Deadlock	found	when	trying	to	get	lock;	try	restarting	transaction

Error:	1214	SQLSTATE:	HY000	(ER_TABLE_CANT_HANDLE_FT)

Message:	The	used	table	type	doesn't	support	FULLTEXT	indexes

Error:	1215	SQLSTATE:	HY000	(ER_CANNOT_ADD_FOREIGN)

Message:	Cannot	add	foreign	key	constraint

Error:	1216	SQLSTATE:	23000	(ER_NO_REFERENCED_ROW)

Message:	Cannot	add	or	update	a	child	row:	a	foreign	key	constraint	fails

Error:	1217	SQLSTATE:	23000	(ER_ROW_IS_REFERENCED)

Message:	Cannot	delete	or	update	a	parent	row:	a	foreign	key	constraint
fails

Error:	1218	SQLSTATE:	08S01	(ER_CONNECT_TO_MASTER)

Message:	Error	connecting	to	master:	%s

Error:	1219	SQLSTATE:	HY000	(ER_QUERY_ON_MASTER)

Message:	Error	running	query	on	master:	%s

Error:	1220	SQLSTATE:	HY000	(ER_ERROR_WHEN_EXECUTING_COMMAND)

Message:	Error	when	executing	command	%s:	%s

Error:	1221	SQLSTATE:	HY000	(ER_WRONG_USAGE)

Message:	Incorrect	usage	of	%s	and	%s

Error:	1222	SQLSTATE:	21000
(ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT)

Message:	The	used	SELECT	statements	have	a	different	number	of
columns

Error:	1223	SQLSTATE:	HY000	(ER_CANT_UPDATE_WITH_READLOCK)

Message:	Can't	execute	the	query	because	you	have	a	conflicting	read	lock

Error:	1224	SQLSTATE:	HY000	(ER_MIXING_NOT_ALLOWED)

Message:	Mixing	of	transactional	and	non-transactional	tables	is	disabled

Error:	1225	SQLSTATE:	HY000	(ER_DUP_ARGUMENT)

Message:	Option	'%s'	used	twice	in	statement

Error:	1226	SQLSTATE:	42000	(ER_USER_LIMIT_REACHED)

Message:	User	'%s'	has	exceeded	the	'%s'	resource	(current	value:	%ld)

Error:	1227	SQLSTATE:	42000	(ER_SPECIFIC_ACCESS_DENIED_ERROR)

Message:	Access	denied;	you	need	the	%s	privilege	for	this	operation

Error:	1228	SQLSTATE:	HY000	(ER_LOCAL_VARIABLE)

Message:	Variable	'%s'	is	a	SESSION	variable	and	can't	be	used	with	SET
GLOBAL

Error:	1229	SQLSTATE:	HY000	(ER_GLOBAL_VARIABLE)

Message:	Variable	'%s'	is	a	GLOBAL	variable	and	should	be	set	with	SET
GLOBAL

Error:	1230	SQLSTATE:	42000	(ER_NO_DEFAULT)

Message:	Variable	'%s'	doesn't	have	a	default	value

Error:	1231	SQLSTATE:	42000	(ER_WRONG_VALUE_FOR_VAR)

Message:	Variable	'%s'	can't	be	set	to	the	value	of	'%s'

Error:	1232	SQLSTATE:	42000	(ER_WRONG_TYPE_FOR_VAR)

Message:	Incorrect	argument	type	to	variable	'%s'

Error:	1233	SQLSTATE:	HY000	(ER_VAR_CANT_BE_READ)

Message:	Variable	'%s'	can	only	be	set,	not	read

Error:	1234	SQLSTATE:	42000	(ER_CANT_USE_OPTION_HERE)

Message:	Incorrect	usage/placement	of	'%s'

Error:	1235	SQLSTATE:	42000	(ER_NOT_SUPPORTED_YET)

Message:	This	version	of	MySQL	doesn't	yet	support	'%s'

Error:	1236	SQLSTATE:	HY000
(ER_MASTER_FATAL_ERROR_READING_BINLOG)

Message:	Got	fatal	error	%d:	'%s'	from	master	when	reading	data	from
binary	log

Error:	1237	SQLSTATE:	HY000	(ER_SLAVE_IGNORED_TABLE)

Message:	Slave	SQL	thread	ignored	the	query	because	of	replicate-*-table
rules

Error:	1238	SQLSTATE:	HY000	(ER_INCORRECT_GLOBAL_LOCAL_VAR)

Message:	Variable	'%s'	is	a	%s	variable

Error:	1239	SQLSTATE:	42000	(ER_WRONG_FK_DEF)

Message:	Incorrect	foreign	key	definition	for	'%s':	%s

Error:	1240	SQLSTATE:	HY000	(ER_KEY_REF_DO_NOT_MATCH_TABLE_REF)

Message:	Key	reference	and	table	reference	don't	match

Error:	1241	SQLSTATE:	21000	(ER_OPERAND_COLUMNS)

Message:	Operand	should	contain	%d	column(s)

Error:	1242	SQLSTATE:	21000	(ER_SUBQUERY_NO_1_ROW)

Message:	Subquery	returns	more	than	1	row

Error:	1243	SQLSTATE:	HY000	(ER_UNKNOWN_STMT_HANDLER)

Message:	Unknown	prepared	statement	handler	(%.*s)	given	to	%s

Error:	1244	SQLSTATE:	HY000	(ER_CORRUPT_HELP_DB)

Message:	Help	database	is	corrupt	or	does	not	exist

Error:	1245	SQLSTATE:	HY000	(ER_CYCLIC_REFERENCE)

Message:	Cyclic	reference	on	subqueries

Error:	1246	SQLSTATE:	HY000	(ER_AUTO_CONVERT)

Message:	Converting	column	'%s'	from	%s	to	%s

Error:	1247	SQLSTATE:	42S22	(ER_ILLEGAL_REFERENCE)

Message:	Reference	'%s'	not	supported	(%s)

Error:	1248	SQLSTATE:	42000	(ER_DERIVED_MUST_HAVE_ALIAS)

Message:	Every	derived	table	must	have	its	own	alias

Error:	1249	SQLSTATE:	01000	(ER_SELECT_REDUCED)

Message:	Select	%u	was	reduced	during	optimization

Error:	1250	SQLSTATE:	42000	(ER_TABLENAME_NOT_ALLOWED_HERE)

Message:	Table	'%s'	from	one	of	the	SELECTs	cannot	be	used	in	%s

Error:	1251	SQLSTATE:	08004	(ER_NOT_SUPPORTED_AUTH_MODE)

Message:	Client	does	not	support	authentication	protocol	requested	by
server;	consider	upgrading	MySQL	client

Error:	1252	SQLSTATE:	42000	(ER_SPATIAL_CANT_HAVE_NULL)

Message:	All	parts	of	a	SPATIAL	index	must	be	NOT	NULL

Error:	1253	SQLSTATE:	42000	(ER_COLLATION_CHARSET_MISMATCH)

Message:	COLLATION	'%s'	is	not	valid	for	CHARACTER	SET	'%s'

Error:	1254	SQLSTATE:	HY000	(ER_SLAVE_WAS_RUNNING)

Message:	Slave	is	already	running

Error:	1255	SQLSTATE:	HY000	(ER_SLAVE_WAS_NOT_RUNNING)

Message:	Slave	already	has	been	stopped

Error:	1256	SQLSTATE:	HY000	(ER_TOO_BIG_FOR_UNCOMPRESS)

Message:	Uncompressed	data	size	too	large;	the	maximum	size	is	%d
(probably,	length	of	uncompressed	data	was	corrupted)

Error:	1257	SQLSTATE:	HY000	(ER_ZLIB_Z_MEM_ERROR)

Message:	ZLIB:	Not	enough	memory

Error:	1258	SQLSTATE:	HY000	(ER_ZLIB_Z_BUF_ERROR)

Message:	ZLIB:	Not	enough	room	in	the	output	buffer	(probably,	length	of
uncompressed	data	was	corrupted)

Error:	1259	SQLSTATE:	HY000	(ER_ZLIB_Z_DATA_ERROR)

Message:	ZLIB:	Input	data	corrupted

Error:	1260	SQLSTATE:	HY000	(ER_CUT_VALUE_GROUP_CONCAT)

Message:	%d	line(s)	were	cut	by	GROUP_CONCAT()

Error:	1261	SQLSTATE:	01000	(ER_WARN_TOO_FEW_RECORDS)

Message:	Row	%ld	doesn't	contain	data	for	all	columns

Error:	1262	SQLSTATE:	01000	(ER_WARN_TOO_MANY_RECORDS)

Message:	Row	%ld	was	truncated;	it	contained	more	data	than	there	were
input	columns

Error:	1263	SQLSTATE:	22004	(ER_WARN_NULL_TO_NOTNULL)

Message:	Column	set	to	default	value;	NULL	supplied	to	NOT	NULL
column	'%s'	at	row	%ld

Error:	1264	SQLSTATE:	22003	(ER_WARN_DATA_OUT_OF_RANGE)

Message:	Out	of	range	value	adjusted	for	column	'%s'	at	row	%ld

Error:	1265	SQLSTATE:	01000	(WARN_DATA_TRUNCATED)

Message:	Data	truncated	for	column	'%s'	at	row	%ld

Error:	1266	SQLSTATE:	HY000	(ER_WARN_USING_OTHER_HANDLER)

Message:	Using	storage	engine	%s	for	table	'%s'

Error:	1267	SQLSTATE:	HY000	(ER_CANT_AGGREGATE_2COLLATIONS)

Message:	Illegal	mix	of	collations	(%s,%s)	and	(%s,%s)	for	operation	'%s'

Error:	1268	SQLSTATE:	HY000	(ER_DROP_USER)

Message:	Cannot	drop	one	or	more	of	the	requested	users

Error:	1269	SQLSTATE:	HY000	(ER_REVOKE_GRANTS)

Message:	Can't	revoke	all	privileges	for	one	or	more	of	the	requested	users

Error:	1270	SQLSTATE:	HY000	(ER_CANT_AGGREGATE_3COLLATIONS)

Message:	Illegal	mix	of	collations	(%s,%s),	(%s,%s),	(%s,%s)	for	operation

'%s'

Error:	1271	SQLSTATE:	HY000	(ER_CANT_AGGREGATE_NCOLLATIONS)

Message:	Illegal	mix	of	collations	for	operation	'%s'

Error:	1272	SQLSTATE:	HY000	(ER_VARIABLE_IS_NOT_STRUCT)

Message:	Variable	'%s'	is	not	a	variable	component	(can't	be	used	as
XXXX.variable_name)

Error:	1273	SQLSTATE:	HY000	(ER_UNKNOWN_COLLATION)

Message:	Unknown	collation:	'%s'

Error:	1274	SQLSTATE:	HY000	(ER_SLAVE_IGNORED_SSL_PARAMS)

Message:	SSL	parameters	in	CHANGE	MASTER	are	ignored	because	this
MySQL	slave	was	compiled	without	SSL	support;	they	can	be	used	later	if
MySQL	slave	with	SSL	is	started

Error:	1275	SQLSTATE:	HY000	(ER_SERVER_IS_IN_SECURE_AUTH_MODE)

Message:	Server	is	running	in	--secure-auth	mode,	but	'%s'@'%s'	has	a
password	in	the	old	format;	please	change	the	password	to	the	new	format

Error:	1276	SQLSTATE:	HY000	(ER_WARN_FIELD_RESOLVED)

Message:	Field	or	reference	'%s%s%s%s%s'	of	SELECT	#%d	was	resolved
in	SELECT	#%d

Error:	1277	SQLSTATE:	HY000	(ER_BAD_SLAVE_UNTIL_COND)

Message:	Incorrect	parameter	or	combination	of	parameters	for	START
SLAVE	UNTIL

Error:	1278	SQLSTATE:	HY000	(ER_MISSING_SKIP_SLAVE)

Message:	It	is	recommended	to	use	--skip-slave-start	when	doing	step-by-
step	replication	with	START	SLAVE	UNTIL;	otherwise,	you	will	get
problems	if	you	get	an	unexpected	slave's	mysqld	restart

Error:	1279	SQLSTATE:	HY000	(ER_UNTIL_COND_IGNORED)

Message:	SQL	thread	is	not	to	be	started	so	UNTIL	options	are	ignored

Error:	1280	SQLSTATE:	42000	(ER_WRONG_NAME_FOR_INDEX)

Message:	Incorrect	index	name	'%s'

Error:	1281	SQLSTATE:	42000	(ER_WRONG_NAME_FOR_CATALOG)

Message:	Incorrect	catalog	name	'%s'

Error:	1282	SQLSTATE:	HY000	(ER_WARN_QC_RESIZE)

Message:	Query	cache	failed	to	set	size	%lu;	new	query	cache	size	is	%lu

Error:	1283	SQLSTATE:	HY000	(ER_BAD_FT_COLUMN)

Message:	Column	'%s'	cannot	be	part	of	FULLTEXT	index

Error:	1284	SQLSTATE:	HY000	(ER_UNKNOWN_KEY_CACHE)

Message:	Unknown	key	cache	'%s'

Error:	1285	SQLSTATE:	HY000	(ER_WARN_HOSTNAME_WONT_WORK)

Message:	MySQL	is	started	in	--skip-name-resolve	mode;	you	must	restart
it	without	this	switch	for	this	grant	to	work

Error:	1286	SQLSTATE:	42000	(ER_UNKNOWN_STORAGE_ENGINE)

Message:	Unknown	table	engine	'%s'

Error:	1287	SQLSTATE:	HY000	(ER_WARN_DEPRECATED_SYNTAX)

Message:	'%s'	is	deprecated;	use	'%s'	instead

Error:	1288	SQLSTATE:	HY000	(ER_NON_UPDATABLE_TABLE)

Message:	The	target	table	%s	of	the	%s	is	not	updatable

Error:	1289	SQLSTATE:	HY000	(ER_FEATURE_DISABLED)

Message:	The	'%s'	feature	is	disabled;	you	need	MySQL	built	with	'%s'	to
have	it	working

Error:	1290	SQLSTATE:	HY000	(ER_OPTION_PREVENTS_STATEMENT)

Message:	The	MySQL	server	is	running	with	the	%s	option	so	it	cannot
execute	this	statement

Error:	1291	SQLSTATE:	HY000	(ER_DUPLICATED_VALUE_IN_TYPE)

Message:	Column	'%s'	has	duplicated	value	'%s'	in	%s

Error:	1292	SQLSTATE:	22007	(ER_TRUNCATED_WRONG_VALUE)

Message:	Truncated	incorrect	%s	value:	'%s'

Error:	1293	SQLSTATE:	HY000	(ER_TOO_MUCH_AUTO_TIMESTAMP_COLS)

Message:	Incorrect	table	definition;	there	can	be	only	one	TIMESTAMP
column	with	CURRENT_TIMESTAMP	in	DEFAULT	or	ON	UPDATE
clause

Error:	1294	SQLSTATE:	HY000	(ER_INVALID_ON_UPDATE)

Message:	Invalid	ON	UPDATE	clause	for	'%s'	column

Error:	1295	SQLSTATE:	HY000	(ER_UNSUPPORTED_PS)

Message:	This	command	is	not	supported	in	the	prepared	statement
protocol	yet

Error:	1296	SQLSTATE:	HY000	(ER_GET_ERRMSG)

Message:	Got	error	%d	'%s'	from	%s

Error:	1297	SQLSTATE:	HY000	(ER_GET_TEMPORARY_ERRMSG)

Message:	Got	temporary	error	%d	'%s'	from	%s

Error:	1298	SQLSTATE:	HY000	(ER_UNKNOWN_TIME_ZONE)

Message:	Unknown	or	incorrect	time	zone:	'%s'

Error:	1299	SQLSTATE:	HY000	(ER_WARN_INVALID_TIMESTAMP)

Message:	Invalid	TIMESTAMP	value	in	column	'%s'	at	row	%ld

Error:	1300	SQLSTATE:	HY000	(ER_INVALID_CHARACTER_STRING)

Message:	Invalid	%s	character	string:	'%s'

Error:	1301	SQLSTATE:	HY000	(ER_WARN_ALLOWED_PACKET_OVERFLOWED)

Message:	Result	of	%s()	was	larger	than	max_allowed_packet	(%ld)	-
truncated

Error:	1302	SQLSTATE:	HY000	(ER_CONFLICTING_DECLARATIONS)

Message:	Conflicting	declarations:	'%s%s'	and	'%s%s'

Error:	1303	SQLSTATE:	2F003	(ER_SP_NO_RECURSIVE_CREATE)

Message:	Can't	create	a	%s	from	within	another	stored	routine

Error:	1304	SQLSTATE:	42000	(ER_SP_ALREADY_EXISTS)

Message:	%s	%s	already	exists

Error:	1305	SQLSTATE:	42000	(ER_SP_DOES_NOT_EXIST)

Message:	%s	%s	does	not	exist

Error:	1306	SQLSTATE:	HY000	(ER_SP_DROP_FAILED)

Message:	Failed	to	DROP	%s	%s

Error:	1307	SQLSTATE:	HY000	(ER_SP_STORE_FAILED)

Message:	Failed	to	CREATE	%s	%s

Error:	1308	SQLSTATE:	42000	(ER_SP_LILABEL_MISMATCH)

Message:	%s	with	no	matching	label:	%s

Error:	1309	SQLSTATE:	42000	(ER_SP_LABEL_REDEFINE)

Message:	Redefining	label	%s

Error:	1310	SQLSTATE:	42000	(ER_SP_LABEL_MISMATCH)

Message:	End-label	%s	without	match

Error:	1311	SQLSTATE:	01000	(ER_SP_UNINIT_VAR)

Message:	Referring	to	uninitialized	variable	%s

Error:	1312	SQLSTATE:	0A000	(ER_SP_BADSELECT)

Message:	PROCEDURE	%s	can't	return	a	result	set	in	the	given	context

Error:	1313	SQLSTATE:	42000	(ER_SP_BADRETURN)

Message:	RETURN	is	only	allowed	in	a	FUNCTION

Error:	1314	SQLSTATE:	0A000	(ER_SP_BADSTATEMENT)

Message:	%s	is	not	allowed	in	stored	procedures

Error:	1315	SQLSTATE:	42000	(ER_UPDATE_LOG_DEPRECATED_IGNORED)

Message:	The	update	log	is	deprecated	and	replaced	by	the	binary	log;	SET
SQL_LOG_UPDATE	has	been	ignored

Error:	1316	SQLSTATE:	42000	(ER_UPDATE_LOG_DEPRECATED_TRANSLATED)

Message:	The	update	log	is	deprecated	and	replaced	by	the	binary	log;	SET
SQL_LOG_UPDATE	has	been	translated	to	SET	SQL_LOG_BIN

Error:	1317	SQLSTATE:	70100	(ER_QUERY_INTERRUPTED)

Message:	Query	execution	was	interrupted

Error:	1318	SQLSTATE:	42000	(ER_SP_WRONG_NO_OF_ARGS)

Message:	Incorrect	number	of	arguments	for	%s	%s;	expected	%u,	got	%u

Error:	1319	SQLSTATE:	42000	(ER_SP_COND_MISMATCH)

Message:	Undefined	CONDITION:	%s

Error:	1320	SQLSTATE:	42000	(ER_SP_NORETURN)

Message:	No	RETURN	found	in	FUNCTION	%s

Error:	1321	SQLSTATE:	2F005	(ER_SP_NORETURNEND)

Message:	FUNCTION	%s	ended	without	RETURN

Error:	1322	SQLSTATE:	42000	(ER_SP_BAD_CURSOR_QUERY)

Message:	Cursor	statement	must	be	a	SELECT

Error:	1323	SQLSTATE:	42000	(ER_SP_BAD_CURSOR_SELECT)

Message:	Cursor	SELECT	must	not	have	INTO

Error:	1324	SQLSTATE:	42000	(ER_SP_CURSOR_MISMATCH)

Message:	Undefined	CURSOR:	%s

Error:	1325	SQLSTATE:	24000	(ER_SP_CURSOR_ALREADY_OPEN)

Message:	Cursor	is	already	open

Error:	1326	SQLSTATE:	24000	(ER_SP_CURSOR_NOT_OPEN)

Message:	Cursor	is	not	open

Error:	1327	SQLSTATE:	42000	(ER_SP_UNDECLARED_VAR)

Message:	Undeclared	variable:	%s

Error:	1328	SQLSTATE:	HY000	(ER_SP_WRONG_NO_OF_FETCH_ARGS)

Message:	Incorrect	number	of	FETCH	variables

Error:	1329	SQLSTATE:	02000	(ER_SP_FETCH_NO_DATA)

Message:	No	data	-	zero	rows	fetched,	selected,	or	processed

Error:	1330	SQLSTATE:	42000	(ER_SP_DUP_PARAM)

Message:	Duplicate	parameter:	%s

Error:	1331	SQLSTATE:	42000	(ER_SP_DUP_VAR)

Message:	Duplicate	variable:	%s

Error:	1332	SQLSTATE:	42000	(ER_SP_DUP_COND)

Message:	Duplicate	condition:	%s

Error:	1333	SQLSTATE:	42000	(ER_SP_DUP_CURS)

Message:	Duplicate	cursor:	%s

Error:	1334	SQLSTATE:	HY000	(ER_SP_CANT_ALTER)

Message:	Failed	to	ALTER	%s	%s

Error:	1335	SQLSTATE:	0A000	(ER_SP_SUBSELECT_NYI)

Message:	Subselect	value	not	supported

Error:	1336	SQLSTATE:	0A000	(ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG)

Message:	%s	is	not	allowed	in	stored	function	or	trigger

Error:	1337	SQLSTATE:	42000	(ER_SP_VARCOND_AFTER_CURSHNDLR)

Message:	Variable	or	condition	declaration	after	cursor	or	handler
declaration

Error:	1338	SQLSTATE:	42000	(ER_SP_CURSOR_AFTER_HANDLER)

Message:	Cursor	declaration	after	handler	declaration

Error:	1339	SQLSTATE:	20000	(ER_SP_CASE_NOT_FOUND)

Message:	Case	not	found	for	CASE	statement

Error:	1340	SQLSTATE:	HY000	(ER_FPARSER_TOO_BIG_FILE)

Message:	Configuration	file	'%s'	is	too	big

Error:	1341	SQLSTATE:	HY000	(ER_FPARSER_BAD_HEADER)

Message:	Malformed	file	type	header	in	file	'%s'

Error:	1342	SQLSTATE:	HY000	(ER_FPARSER_EOF_IN_COMMENT)

Message:	Unexpected	end	of	file	while	parsing	comment	'%s'

Error:	1343	SQLSTATE:	HY000	(ER_FPARSER_ERROR_IN_PARAMETER)

Message:	Error	while	parsing	parameter	'%s'	(line:	'%s')

Error:	1344	SQLSTATE:	HY000	(ER_FPARSER_EOF_IN_UNKNOWN_PARAMETER)

Message:	Unexpected	end	of	file	while	skipping	unknown	parameter	'%s'

Error:	1345	SQLSTATE:	HY000	(ER_VIEW_NO_EXPLAIN)

Message:	EXPLAIN/SHOW	can	not	be	issued;	lacking	privileges	for
underlying	table

Error:	1346	SQLSTATE:	HY000	(ER_FRM_UNKNOWN_TYPE)

Message:	File	'%s'	has	unknown	type	'%s'	in	its	header

Error:	1347	SQLSTATE:	HY000	(ER_WRONG_OBJECT)

Message:	'%s.%s'	is	not	%s

Error:	1348	SQLSTATE:	HY000	(ER_NONUPDATEABLE_COLUMN)

Message:	Column	'%s'	is	not	updatable

Error:	1349	SQLSTATE:	HY000	(ER_VIEW_SELECT_DERIVED)

Message:	View's	SELECT	contains	a	subquery	in	the	FROM	clause

Error:	1350	SQLSTATE:	HY000	(ER_VIEW_SELECT_CLAUSE)

Message:	View's	SELECT	contains	a	'%s'	clause

Error:	1351	SQLSTATE:	HY000	(ER_VIEW_SELECT_VARIABLE)

Message:	View's	SELECT	contains	a	variable	or	parameter

Error:	1352	SQLSTATE:	HY000	(ER_VIEW_SELECT_TMPTABLE)

Message:	View's	SELECT	refers	to	a	temporary	table	'%s'

Error:	1353	SQLSTATE:	HY000	(ER_VIEW_WRONG_LIST)

Message:	View's	SELECT	and	view's	field	list	have	different	column
counts

Error:	1354	SQLSTATE:	HY000	(ER_WARN_VIEW_MERGE)

Message:	View	merge	algorithm	can't	be	used	here	for	now	(assumed
undefined	algorithm)

Error:	1355	SQLSTATE:	HY000	(ER_WARN_VIEW_WITHOUT_KEY)

Message:	View	being	updated	does	not	have	complete	key	of	underlying
table	in	it

Error:	1356	SQLSTATE:	HY000	(ER_VIEW_INVALID)

Message:	View	'%s.%s'	references	invalid	table(s)	or	column(s)	or
function(s)	or	definer/invoker	of	view	lack	rights	to	use	them

Error:	1357	SQLSTATE:	HY000	(ER_SP_NO_DROP_SP)

Message:	Can't	drop	or	alter	a	%s	from	within	another	stored	routine

Error:	1358	SQLSTATE:	HY000	(ER_SP_GOTO_IN_HNDLR)

Message:	GOTO	is	not	allowed	in	a	stored	procedure	handler

Error:	1359	SQLSTATE:	HY000	(ER_TRG_ALREADY_EXISTS)

Message:	Trigger	already	exists

Error:	1360	SQLSTATE:	HY000	(ER_TRG_DOES_NOT_EXIST)

Message:	Trigger	does	not	exist

Error:	1361	SQLSTATE:	HY000	(ER_TRG_ON_VIEW_OR_TEMP_TABLE)

Message:	Trigger's	'%s'	is	view	or	temporary	table

Error:	1362	SQLSTATE:	HY000	(ER_TRG_CANT_CHANGE_ROW)

Message:	Updating	of	%s	row	is	not	allowed	in	%strigger

Error:	1363	SQLSTATE:	HY000	(ER_TRG_NO_SUCH_ROW_IN_TRG)

Message:	There	is	no	%s	row	in	%s	trigger

Error:	1364	SQLSTATE:	HY000	(ER_NO_DEFAULT_FOR_FIELD)

Message:	Field	'%s'	doesn't	have	a	default	value

Error:	1365	SQLSTATE:	22012	(ER_DIVISION_BY_ZERO)

Message:	Division	by	0

Error:	1366	SQLSTATE:	HY000	(ER_TRUNCATED_WRONG_VALUE_FOR_FIELD)

Message:	Incorrect	%s	value:	'%s'	for	column	'%s'	at	row	%ld

Error:	1367	SQLSTATE:	22007	(ER_ILLEGAL_VALUE_FOR_TYPE)

Message:	Illegal	%s	'%s'	value	found	during	parsing

Error:	1368	SQLSTATE:	HY000	(ER_VIEW_NONUPD_CHECK)

Message:	CHECK	OPTION	on	non-updatable	view	'%s.%s'

Error:	1369	SQLSTATE:	HY000	(ER_VIEW_CHECK_FAILED)

Message:	CHECK	OPTION	failed	'%s.%s'

Error:	1370	SQLSTATE:	42000	(ER_PROCACCESS_DENIED_ERROR)

Message:	%s	command	denied	to	user	'%s'@'%s'	for	routine	'%s'

Error:	1371	SQLSTATE:	HY000	(ER_RELAY_LOG_FAIL)

Message:	Failed	purging	old	relay	logs:	%s

Error:	1372	SQLSTATE:	HY000	(ER_PASSWD_LENGTH)

Message:	Password	hash	should	be	a	%d-digit	hexadecimal	number

Error:	1373	SQLSTATE:	HY000	(ER_UNKNOWN_TARGET_BINLOG)

Message:	Target	log	not	found	in	binlog	index

Error:	1374	SQLSTATE:	HY000	(ER_IO_ERR_LOG_INDEX_READ)

Message:	I/O	error	reading	log	index	file

Error:	1375	SQLSTATE:	HY000	(ER_BINLOG_PURGE_PROHIBITED)

Message:	Server	configuration	does	not	permit	binlog	purge

Error:	1376	SQLSTATE:	HY000	(ER_FSEEK_FAIL)

Message:	Failed	on	fseek()

Error:	1377	SQLSTATE:	HY000	(ER_BINLOG_PURGE_FATAL_ERR)

Message:	Fatal	error	during	log	purge

Error:	1378	SQLSTATE:	HY000	(ER_LOG_IN_USE)

Message:	A	purgeable	log	is	in	use,	will	not	purge

Error:	1379	SQLSTATE:	HY000	(ER_LOG_PURGE_UNKNOWN_ERR)

Message:	Unknown	error	during	log	purge

Error:	1380	SQLSTATE:	HY000	(ER_RELAY_LOG_INIT)

Message:	Failed	initializing	relay	log	position:	%s

Error:	1381	SQLSTATE:	HY000	(ER_NO_BINARY_LOGGING)

Message:	You	are	not	using	binary	logging

Error:	1382	SQLSTATE:	HY000	(ER_RESERVED_SYNTAX)

Message:	The	'%s'	syntax	is	reserved	for	purposes	internal	to	the	MySQL
server

Error:	1383	SQLSTATE:	HY000	(ER_WSAS_FAILED)

Message:	WSAStartup	Failed

Error:	1384	SQLSTATE:	HY000	(ER_DIFF_GROUPS_PROC)

Message:	Can't	handle	procedures	with	different	groups	yet

Error:	1385	SQLSTATE:	HY000	(ER_NO_GROUP_FOR_PROC)

Message:	Select	must	have	a	group	with	this	procedure

Error:	1386	SQLSTATE:	HY000	(ER_ORDER_WITH_PROC)

Message:	Can't	use	ORDER	clause	with	this	procedure

Error:	1387	SQLSTATE:	HY000	(ER_LOGGING_PROHIBIT_CHANGING_OF)

Message:	Binary	logging	and	replication	forbid	changing	the	global	server
%s

Error:	1388	SQLSTATE:	HY000	(ER_NO_FILE_MAPPING)

Message:	Can't	map	file:	%s,	errno:	%d

Error:	1389	SQLSTATE:	HY000	(ER_WRONG_MAGIC)

Message:	Wrong	magic	in	%s

Error:	1390	SQLSTATE:	HY000	(ER_PS_MANY_PARAM)

Message:	Prepared	statement	contains	too	many	placeholders

Error:	1391	SQLSTATE:	HY000	(ER_KEY_PART_0)

Message:	Key	part	'%s'	length	cannot	be	0

Error:	1392	SQLSTATE:	HY000	(ER_VIEW_CHECKSUM)

Message:	View	text	checksum	failed

Error:	1393	SQLSTATE:	HY000	(ER_VIEW_MULTIUPDATE)

Message:	Can	not	modify	more	than	one	base	table	through	a	join	view
'%s.%s'

Error:	1394	SQLSTATE:	HY000	(ER_VIEW_NO_INSERT_FIELD_LIST)

Message:	Can	not	insert	into	join	view	'%s.%s'	without	fields	list

Error:	1395	SQLSTATE:	HY000	(ER_VIEW_DELETE_MERGE_VIEW)

Message:	Can	not	delete	from	join	view	'%s.%s'

Error:	1396	SQLSTATE:	HY000	(ER_CANNOT_USER)

Message:	Operation	%s	failed	for	%s

Error:	1397	SQLSTATE:	XAE04	(ER_XAER_NOTA)

Message:	XAER_NOTA:	Unknown	XID

Error:	1398	SQLSTATE:	XAE05	(ER_XAER_INVAL)

Message:	XAER_INVAL:	Invalid	arguments	(or	unsupported	command)

Error:	1399	SQLSTATE:	XAE07	(ER_XAER_RMFAIL)

Message:	XAER_RMFAIL:	The	command	cannot	be	executed	when	global
transaction	is	in	the	%s	state

Error:	1400	SQLSTATE:	XAE09	(ER_XAER_OUTSIDE)

Message:	XAER_OUTSIDE:	Some	work	is	done	outside	global	transaction

Error:	1401	SQLSTATE:	XAE03	(ER_XAER_RMERR)

Message:	XAER_RMERR:	Fatal	error	occurred	in	the	transaction	branch	-
check	your	data	for	consistency

Error:	1402	SQLSTATE:	XA100	(ER_XA_RBROLLBACK)

Message:	XA_RBROLLBACK:	Transaction	branch	was	rolled	back

Error:	1403	SQLSTATE:	42000	(ER_NONEXISTING_PROC_GRANT)

Message:	There	is	no	such	grant	defined	for	user	'%s'	on	host	'%s'	on
routine	'%s'

Error:	1404	SQLSTATE:	HY000	(ER_PROC_AUTO_GRANT_FAIL)

Message:	Failed	to	grant	EXECUTE	and	ALTER	ROUTINE	privileges

Error:	1405	SQLSTATE:	HY000	(ER_PROC_AUTO_REVOKE_FAIL)

Message:	Failed	to	revoke	all	privileges	to	dropped	routine

Error:	1406	SQLSTATE:	22001	(ER_DATA_TOO_LONG)

Message:	Data	too	long	for	column	'%s'	at	row	%ld

Error:	1407	SQLSTATE:	42000	(ER_SP_BAD_SQLSTATE)

Message:	Bad	SQLSTATE:	'%s'

Error:	1408	SQLSTATE:	HY000	(ER_STARTUP)

Message:	%s:	ready	for	connections.	Version:	'%s'	socket:	'%s'	port:	%d	%s

Error:	1409	SQLSTATE:	HY000	(ER_LOAD_FROM_FIXED_SIZE_ROWS_TO_VAR)

Message:	Can't	load	value	from	file	with	fixed	size	rows	to	variable

Error:	1410	SQLSTATE:	42000	(ER_CANT_CREATE_USER_WITH_GRANT)

Message:	You	are	not	allowed	to	create	a	user	with	GRANT

Error:	1411	SQLSTATE:	HY000	(ER_WRONG_VALUE_FOR_TYPE)

Message:	Incorrect	%s	value:	'%s'	for	function	%s

Error:	1412	SQLSTATE:	HY000	(ER_TABLE_DEF_CHANGED)

Message:	Table	definition	has	changed,	please	retry	transaction

Error:	1413	SQLSTATE:	42000	(ER_SP_DUP_HANDLER)

Message:	Duplicate	handler	declared	in	the	same	block

Error:	1414	SQLSTATE:	42000	(ER_SP_NOT_VAR_ARG)

Message:	OUT	or	INOUT	argument	%d	for	routine	%s	is	not	a	variable	or
NEW	pseudo-variable	in	BEFORE	trigger

Error:	1415	SQLSTATE:	0A000	(ER_SP_NO_RETSET)

Message:	Not	allowed	to	return	a	result	set	from	a	%s

Error:	1416	SQLSTATE:	22003	(ER_CANT_CREATE_GEOMETRY_OBJECT)

Message:	Cannot	get	geometry	object	from	data	you	send	to	the
GEOMETRY	field

Error:	1417	SQLSTATE:	HY000	(ER_FAILED_ROUTINE_BREAK_BINLOG)

Message:	A	routine	failed	and	has	neither	NO	SQL	nor	READS	SQL	DATA
in	its	declaration	and	binary	logging	is	enabled;	if	non-transactional	tables
were	updated,	the	binary	log	will	miss	their	changes

Error:	1418	SQLSTATE:	HY000	(ER_BINLOG_UNSAFE_ROUTINE)

Message:	This	function	has	none	of	DETERMINISTIC,	NO	SQL,	or
READS	SQL	DATA	in	its	declaration	and	binary	logging	is	enabled	(you
might	want	to	use	the	less	safe	log_bin_trust_function_creators	variable)

Error:	1419	SQLSTATE:	HY000	(ER_BINLOG_CREATE_ROUTINE_NEED_SUPER)

Message:	You	do	not	have	the	SUPER	privilege	and	binary	logging	is
enabled	(you	*might*	want	to	use	the	less	safe
log_bin_trust_function_creators	variable)

Error:	1420	SQLSTATE:	HY000	(ER_EXEC_STMT_WITH_OPEN_CURSOR)

Message:	You	can't	execute	a	prepared	statement	which	has	an	open	cursor
associated	with	it.	Reset	the	statement	to	re-execute	it.

Error:	1421	SQLSTATE:	HY000	(ER_STMT_HAS_NO_OPEN_CURSOR)

Message:	The	statement	(%lu)	has	no	open	cursor.

Error:	1422	SQLSTATE:	HY000	(ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG)

Message:	Explicit	or	implicit	commit	is	not	allowed	in	stored	function	or
trigger.

Error:	1423	SQLSTATE:	HY000	(ER_NO_DEFAULT_FOR_VIEW_FIELD)

Message:	Field	of	view	'%s.%s'	underlying	table	doesn't	have	a	default
value

Error:	1424	SQLSTATE:	HY000	(ER_SP_NO_RECURSION)

Message:	Recursive	stored	functions	and	triggers	are	not	allowed.

Error:	1425	SQLSTATE:	42000	(ER_TOO_BIG_SCALE)

Message:	Too	big	scale	%d	specified	for	column	'%s'.	Maximum	is	%d.

Error:	1426	SQLSTATE:	42000	(ER_TOO_BIG_PRECISION)

Message:	Too	big	precision	%d	specified	for	column	'%s'.	Maximum	is	%d.

Error:	1427	SQLSTATE:	42000	(ER_M_BIGGER_THAN_D)

Message:	For	float(M,D),	double(M,D)	or	decimal(M,D),	M	must	be	>=	D
(column	'%s').

Error:	1428	SQLSTATE:	HY000	(ER_WRONG_LOCK_OF_SYSTEM_TABLE)

Message:	You	can't	combine	write-locking	of	system	'%s.%s'	table	with
other	tables

Error:	1429	SQLSTATE:	HY000	(ER_CONNECT_TO_FOREIGN_DATA_SOURCE)

Message:	Unable	to	connect	to	foreign	data	source:	%s

Error:	1430	SQLSTATE:	HY000	(ER_QUERY_ON_FOREIGN_DATA_SOURCE)

Message:	There	was	a	problem	processing	the	query	on	the	foreign	data
source.	Data	source	error:	%-.64

Error:	1431	SQLSTATE:	HY000	(ER_FOREIGN_DATA_SOURCE_DOESNT_EXIST)

Message:	The	foreign	data	source	you	are	trying	to	reference	does	not	exist.
Data	source	error:	%s

Error:	1432	SQLSTATE:	HY000
(ER_FOREIGN_DATA_STRING_INVALID_CANT_CREATE)

Message:	Can't	create	federated	table.	The	data	source	connection	string
'%s'	is	not	in	the	correct	format

Error:	1433	SQLSTATE:	HY000	(ER_FOREIGN_DATA_STRING_INVALID)

Message:	The	data	source	connection	string	'%s'	is	not	in	the	correct	format

Error:	1434	SQLSTATE:	HY000	(ER_CANT_CREATE_FEDERATED_TABLE)

Message:	Can't	create	federated	table.	Foreign	data	src	error:	%s

Error:	1435	SQLSTATE:	HY000	(ER_TRG_IN_WRONG_SCHEMA)

Message:	Trigger	in	wrong	schema

Error:	1436	SQLSTATE:	HY000	(ER_STACK_OVERRUN_NEED_MORE)

Message:	Thread	stack	overrun:	%ld	bytes	used	of	a	%ld	byte	stack,	and
%ld	bytes	needed.	Use	'mysqld	-O	thread_stack=#'	to	specify	a	bigger
stack.

Error:	1437	SQLSTATE:	42000	(ER_TOO_LONG_BODY)

Message:	Routine	body	for	'%s'	is	too	long

Error:	1438	SQLSTATE:	HY000	(ER_WARN_CANT_DROP_DEFAULT_KEYCACHE)

Message:	Cannot	drop	default	keycache

Error:	1439	SQLSTATE:	42000	(ER_TOO_BIG_DISPLAYWIDTH)

Message:	Display	width	out	of	range	for	column	'%s'	(max	=	%d)

Error:	1440	SQLSTATE:	XAE08	(ER_XAER_DUPID)

Message:	XAER_DUPID:	The	XID	already	exists

Error:	1441	SQLSTATE:	22008	(ER_DATETIME_FUNCTION_OVERFLOW)

Message:	Datetime	function:	%s	field	overflow

Error:	1442	SQLSTATE:	HY000
(ER_CANT_UPDATE_USED_TABLE_IN_SF_OR_TRG)

Message:	Can't	update	table	'%s'	in	stored	function/trigger	because	it	is
already	used	by	statement	which	invoked	this	stored	function/trigger.

Error:	1443	SQLSTATE:	HY000	(ER_VIEW_PREVENT_UPDATE)

Message:	The	definition	of	table	'%s'	prevents	operation	%s	on	table	'%s'.

Error:	1444	SQLSTATE:	HY000	(ER_PS_NO_RECURSION)

Message:	The	prepared	statement	contains	a	stored	routine	call	that	refers	to

that	same	statement.	It's	not	allowed	to	execute	a	prepared	statement	in	such
a	recursive	manner

Error:	1445	SQLSTATE:	HY000	(ER_SP_CANT_SET_AUTOCOMMIT)

Message:	Not	allowed	to	set	autocommit	from	a	stored	function	or	trigger

Error:	1446	SQLSTATE:	HY000	(ER_MALFORMED_DEFINER)

Message:	Definer	is	not	fully	qualified

Error:	1447	SQLSTATE:	HY000	(ER_VIEW_FRM_NO_USER)

Message:	View	'%s'.'%s'	has	no	definer	information	(old	table	format).
Current	user	is	used	as	definer.	Please	recreate	the	view!

Error:	1448	SQLSTATE:	HY000	(ER_VIEW_OTHER_USER)

Message:	You	need	the	SUPER	privilege	for	creation	view	with	'%s'@'%s'
definer

Error:	1449	SQLSTATE:	HY000	(ER_NO_SUCH_USER)

Message:	There	is	no	'%s'@'%s'	registered

Error:	1450	SQLSTATE:	HY000	(ER_FORBID_SCHEMA_CHANGE)

Message:	Changing	schema	from	'%s'	to	'%s'	is	not	allowed.

Error:	1451	SQLSTATE:	23000	(ER_ROW_IS_REFERENCED_2)

Message:	Cannot	delete	or	update	a	parent	row:	a	foreign	key	constraint
fails	(%s)

Error:	1452	SQLSTATE:	23000	(ER_NO_REFERENCED_ROW_2)

Message:	Cannot	add	or	update	a	child	row:	a	foreign	key	constraint	fails
(%s)

Error:	1453	SQLSTATE:	42000	(ER_SP_BAD_VAR_SHADOW)

Message:	Variable	'%s'	must	be	quoted	with	`...`,	or	renamed

Error:	1454	SQLSTATE:	HY000	(ER_TRG_NO_DEFINER)

Message:	No	definer	attribute	for	trigger	'%s'.'%s'.	The	trigger	will	be
activated	under	the	authorization	of	the	invoker,	which	may	have
insufficient	privileges.	Please	recreate	the	trigger.

Error:	1455	SQLSTATE:	HY000	(ER_OLD_FILE_FORMAT)

Message:	'%s'	has	an	old	format,	you	should	re-create	the	'%s'	object(s)

Error:	1456	SQLSTATE:	HY000	(ER_SP_RECURSION_LIMIT)

Message:	Recursive	limit	%d	(as	set	by	the	max_sp_recursion_depth
variable)	was	exceeded	for	routine	%s

Error:	1457	SQLSTATE:	HY000	(ER_SP_PROC_TABLE_CORRUPT)

Message:	Failed	to	load	routine	%s.	The	table	mysql.proc	is	missing,
corrupt,	or	contains	bad	data	(internal	code	%d)

Error:	1458	SQLSTATE:	42000	(ER_SP_WRONG_NAME)

Message:	Incorrect	routine	name	'%s'

Error:	1459	SQLSTATE:	HY000	(ER_TABLE_NEEDS_UPGRADE)

Message:	Table	upgrade	required.	Please	do	"REPAIR	TABLE	`%s`"	to	fix
it!

Error:	1460	SQLSTATE:	42000	(ER_SP_NO_AGGREGATE)

Message:	AGGREGATE	is	not	supported	for	stored	functions

Error:	1461	SQLSTATE:	42000	(ER_MAX_PREPARED_STMT_COUNT_REACHED)

Message:	Can't	create	more	than	max_prepared_stmt_count	statements
(current	value:	%lu)

Error:	1462	SQLSTATE:	HY000	(ER_VIEW_RECURSIVE)

Message:	`%s`.`%s`	contains	view	recursion

Error:	1463	SQLSTATE:	42000	(ER_NON_GROUPING_FIELD_USED)

Message:	non-grouping	field	'%s'	is	used	in	%s	clause

Error:	1464	SQLSTATE:	HY000	(ER_TABLE_CANT_HANDLE_SPKEYS)

Message:	The	used	table	type	doesn't	support	SPATIAL	indexes

Error:	1465	SQLSTATE:	HY000	(ER_NO_TRIGGERS_ON_SYSTEM_SCHEMA)

Message:	Triggers	can	not	be	created	on	system	tables

Error:	1466	SQLSTATE:	HY000	(ER_REMOVED_SPACES)

Message:	Leading	spaces	are	removed	from	name	'%s'

B.2.	Client	Error	Codes	and	Messages

Client	error	information	comes	from	the	following	source	files:

The	Error	values	and	the	symbols	in	parentheses	correspond	to	definitions
in	the	include/errmsg.h	MySQL	source	file.

The	Message	values	correspond	to	the	error	messages	that	are	listed	in	the
libmysql/errmsg.c	file.	%d	and	%s	represent	numbers	and	strings,
respectively,	that	are	substituted	into	the	messages	when	they	are	displayed.

Because	updates	are	frequent,	it	is	possible	that	those	files	will	contain
additional	error	information	not	listed	here.

Error:	2000	(CR_UNKNOWN_ERROR)

Message:	Unknown	MySQL	error

Error:	2001	(CR_SOCKET_CREATE_ERROR)

Message:	Can't	create	UNIX	socket	(%d)

Error:	2002	(CR_CONNECTION_ERROR)

Message:	Can't	connect	to	local	MySQL	server	through	socket	'%s'	(%d)

Error:	2003	(CR_CONN_HOST_ERROR)

Message:	Can't	connect	to	MySQL	server	on	'%s'	(%d)

Error:	2004	(CR_IPSOCK_ERROR)

Message:	Can't	create	TCP/IP	socket	(%d)

Error:	2005	(CR_UNKNOWN_HOST)

Message:	Unknown	MySQL	server	host	'%s'	(%d)

Error:	2006	(CR_SERVER_GONE_ERROR)

Message:	MySQL	server	has	gone	away

Error:	2007	(CR_VERSION_ERROR)

Message:	Protocol	mismatch;	server	version	=	%d,	client	version	=	%d

Error:	2008	(CR_OUT_OF_MEMORY)

Message:	MySQL	client	ran	out	of	memory

Error:	2009	(CR_WRONG_HOST_INFO)

Message:	Wrong	host	info

Error:	2010	(CR_LOCALHOST_CONNECTION)

Message:	Localhost	via	UNIX	socket

Error:	2011	(CR_TCP_CONNECTION)

Message:	%s	via	TCP/IP

Error:	2012	(CR_SERVER_HANDSHAKE_ERR)

Message:	Error	in	server	handshake

Error:	2013	(CR_SERVER_LOST)

Message:	Lost	connection	to	MySQL	server	during	query

Error:	2014	(CR_COMMANDS_OUT_OF_SYNC)

Message:	Commands	out	of	sync;	you	can't	run	this	command	now

Error:	2015	(CR_NAMEDPIPE_CONNECTION)

Message:	Named	pipe:	%s

Error:	2016	(CR_NAMEDPIPEWAIT_ERROR)

Message:	Can't	wait	for	named	pipe	to	host:	%s	pipe:	%s	(%lu)

Error:	2017	(CR_NAMEDPIPEOPEN_ERROR)

Message:	Can't	open	named	pipe	to	host:	%s	pipe:	%s	(%lu)

Error:	2018	(CR_NAMEDPIPESETSTATE_ERROR)

Message:	Can't	set	state	of	named	pipe	to	host:	%s	pipe:	%s	(%lu)

Error:	2019	(CR_CANT_READ_CHARSET)

Message:	Can't	initialize	character	set	%s	(path:	%s)

Error:	2020	(CR_NET_PACKET_TOO_LARGE)

Message:	Got	packet	bigger	than	'max_allowed_packet'	bytes

Error:	2021	(CR_EMBEDDED_CONNECTION)

Message:	Embedded	server

Error:	2022	(CR_PROBE_SLAVE_STATUS)

Message:	Error	on	SHOW	SLAVE	STATUS:

Error:	2023	(CR_PROBE_SLAVE_HOSTS)

Message:	Error	on	SHOW	SLAVE	HOSTS:

Error:	2024	(CR_PROBE_SLAVE_CONNECT)

Message:	Error	connecting	to	slave:

Error:	2025	(CR_PROBE_MASTER_CONNECT)

Message:	Error	connecting	to	master:

Error:	2026	(CR_SSL_CONNECTION_ERROR)

Message:	SSL	connection	error

Error:	2027	(CR_MALFORMED_PACKET)

Message:	Malformed	packet

Error:	2028	(CR_WRONG_LICENSE)

Message:	This	client	library	is	licensed	only	for	use	with	MySQL	servers
having	'%s'	license

Error:	2029	(CR_NULL_POINTER)

Message:	Invalid	use	of	null	pointer

Error:	2030	(CR_NO_PREPARE_STMT)

Message:	Statement	not	prepared

Error:	2031	(CR_PARAMS_NOT_BOUND)

Message:	No	data	supplied	for	parameters	in	prepared	statement

Error:	2032	(CR_DATA_TRUNCATED)

Message:	Data	truncated

Error:	2033	(CR_NO_PARAMETERS_EXISTS)

Message:	No	parameters	exist	in	the	statement

Error:	2034	(CR_INVALID_PARAMETER_NO)

Message:	Invalid	parameter	number

Error:	2035	(CR_INVALID_BUFFER_USE)

Message:	Can't	send	long	data	for	non-string/non-binary	data	types
(parameter:	%d)

Error:	2036	(CR_UNSUPPORTED_PARAM_TYPE)

Message:	Using	unsupported	buffer	type:	%d	(parameter:	%d)

Error:	2037	(CR_SHARED_MEMORY_CONNECTION)

Message:	Shared	memory:	%s

Error:	2038	(CR_SHARED_MEMORY_CONNECT_REQUEST_ERROR)

Message:	Can't	open	shared	memory;	client	could	not	create	request	event
(%lu)

Error:	2039	(CR_SHARED_MEMORY_CONNECT_ANSWER_ERROR)

Message:	Can't	open	shared	memory;	no	answer	event	received	from	server
(%lu)

Error:	2040	(CR_SHARED_MEMORY_CONNECT_FILE_MAP_ERROR)

Message:	Can't	open	shared	memory;	server	could	not	allocate	file	mapping
(%lu)

Error:	2041	(CR_SHARED_MEMORY_CONNECT_MAP_ERROR)

Message:	Can't	open	shared	memory;	server	could	not	get	pointer	to	file
mapping	(%lu)

Error:	2042	(CR_SHARED_MEMORY_FILE_MAP_ERROR)

Message:	Can't	open	shared	memory;	client	could	not	allocate	file	mapping
(%lu)

Error:	2043	(CR_SHARED_MEMORY_MAP_ERROR)

Message:	Can't	open	shared	memory;	client	could	not	get	pointer	to	file
mapping	(%lu)

Error:	2044	(CR_SHARED_MEMORY_EVENT_ERROR)

Message:	Can't	open	shared	memory;	client	could	not	create	%s	event
(%lu)

Error:	2045	(CR_SHARED_MEMORY_CONNECT_ABANDONED_ERROR)

Message:	Can't	open	shared	memory;	no	answer	from	server	(%lu)

Error:	2046	(CR_SHARED_MEMORY_CONNECT_SET_ERROR)

Message:	Can't	open	shared	memory;	cannot	send	request	event	to	server
(%lu)

Error:	2047	(CR_CONN_UNKNOW_PROTOCOL)

Message:	Wrong	or	unknown	protocol

Error:	2048	(CR_INVALID_CONN_HANDLE)

Message:	Invalid	connection	handle

Error:	2049	(CR_SECURE_AUTH)

Message:	Connection	using	old	(pre-4.1.1)	authentication	protocol	refused
(client	option	'secure_auth'	enabled)

Error:	2050	(CR_FETCH_CANCELED)

Message:	Row	retrieval	was	canceled	by	mysql_stmt_close()	call

Error:	2051	(CR_NO_DATA)

Message:	Attempt	to	read	column	without	prior	row	fetch

Error:	2052	(CR_NO_STMT_METADATA)

Message:	Prepared	statement	contains	no	metadata

Error:	2053	(CR_NO_RESULT_SET)

Message:	Attempt	to	read	a	row	while	there	is	no	result	set	associated	with
the	statement

Error:	2054	(CR_NOT_IMPLEMENTED)

Message:	This	feature	is	not	implemented	yet

Appendix	C.	Credits

Table	of	Contents

C.1.	Developers	at	MySQL	AB
C.2.	Contributors	to	MySQL
C.3.	Documenters	and	translators
C.4.	Libraries	used	by	and	included	with	MySQL
C.5.	Packages	that	support	MySQL
C.6.	Tools	that	were	used	to	create	MySQL
C.7.	Supporters	of	MySQL

This	appendix	lists	the	developers,	contributors,	and	supporters	that	have	helped
to	make	MySQL	what	it	is	today.

C.1.	Developers	at	MySQL	AB

These	are	the	developers	that	are	or	have	been	employed	by	MySQL	AB	to	work
on	the	MySQL	database	software,	roughly	in	the	order	they	started	to	work	with
us.	Following	each	developer	is	a	small	list	of	the	tasks	that	the	developer	is
responsible	for,	or	the	accomplishments	they	have	made.	All	developers	are
involved	in	support.

Michael	(Monty)	Widenius

Lead	developer	and	main	author	of	the	MySQL	server	(mysqld).

New	functions	for	the	string	library.

Most	of	the	mysys	library.

The	ISAM	and	MyISAM	libraries	(B-tree	index	file	handlers	with	index
compression	and	different	record	formats).

The	HEAP	library.	A	memory	table	system	with	our	superior	full
dynamic	hashing.	In	use	since	1981	and	published	around	1984.

The	replace	program	(take	a	look	at	it,	it's	COOL!).

Connector/ODBC	(MyODBC),	the	ODBC	driver	for	Windows.

Fixing	bugs	in	MIT-pthreads	to	get	it	to	work	for	MySQL	Server.	And
also	Unireg,	a	curses-based	application	tool	with	many	utilities.

Porting	of	mSQL	tools	like	msqlperl,	DBD/DBI,	and	DB2mysql.

Most	of	crash-me	and	the	foundation	for	the	MySQL	benchmarks.

David	Axmark

Initial	main	writer	of	the	Reference	Manual,	including	enhancements
to	texi2html.

Automatic	Web	site	updating	from	the	manual.

Initial	Autoconf,	Automake,	and	Libtool	support.

Licensing.

Parts	of	all	the	text	files.	(Nowadays	only	the	README	is	left.	The	rest
ended	up	in	the	manual.)

Lots	of	testing	of	new	features.

Our	in-house	Free	Software	legal	expert.

Mailing	list	maintainer	(who	never	has	the	time	to	do	it	right...).

Our	original	portability	code	(now	more	than	10	years	old).	Nowadays
only	some	parts	of	mysys	are	left.

Someone	for	Monty	to	call	in	the	middle	of	the	night	when	he	just	got
that	new	feature	to	work.

Chief	"Open	Sourcerer"	(MySQL	community	relations).

Jani	Tolonen

mysqlimport

A	lot	of	extensions	to	the	command-line	clients.

PROCEDURE	ANALYSE()

Sinisa	Milivojevic	(now	in	support)

Compression	(with	zlib)	in	the	client/server	protocol.

Perfect	hashing	for	the	lexical	analyzer	phase.

Multi-row	INSERT

mysqldump	-e	option

LOAD	DATA	LOCAL	INFILE

SQL_CALC_FOUND_ROWS	SELECT	option

--max-user-connections=...	option

net_read	and	net_write_timeout

GRANT/REVOKE	and	SHOW	GRANTS	FOR

New	client/server	protocol	for	4.0

UNION	in	4.0

Multiple-table	DELETE/UPDATE

Subqueries	in	the	FROM	clause	(4.1).

User	resources	management

Initial	developer	of	the	MySQL++	C++	API	and	the	MySQLGUI	client.

Tonu	Samuel	(past	developer)

VIO	interface	(the	foundation	for	the	encrypted	client/server	protocol).

MySQL	Filesystem	(a	way	to	use	MySQL	databases	as	files	and
directories).

The	CASE	expression.

The	MD5()	and	COALESCE()	functions.

RAID	support	for	MyISAM	tables.

Sasha	Pachev	(past	developer)

Initial	implementation	of	replication	(up	to	version	4.0).

SHOW	CREATE	TABLE.

mysql-bench

Matt	Wagner

MySQL	test	suite.

Webmaster	(until	2002).

Miguel	Solorzano	(now	in	support)

Win32	development	and	release	builds.

Windows	NT	server	code.

WinMySQLAdmin

Timothy	Smith	(now	in	support)

Dynamic	character	sets	support.

configure,	RPMs	and	other	parts	of	the	build	system.

Initial	developer	of	libmysqld,	the	embedded	server.

Sergei	Golubchik

Full-text	search.

Added	keys	to	the	MERGE	library.

Precision	math.

Jeremy	Cole	(past	developer)

Proofreading	and	editing	this	fine	manual.

ALTER	TABLE	...	ORDER	BY

UPDATE	...	ORDER	BY

DELETE	...	ORDER	BY

Indrek	Siitan

Designing/programming	of	our	Web	interface.

Author	of	our	newsletter	management	system.

Jorge	del	Conde	(now	in	support)

MySQLCC	(MySQL	Control	Center)

Win32	development

Initial	implementation	of	the	Web	site	portals.

Venu	Anuganti	(past	developer)

MyODBC	3.51

New	client/server	protocol	for	4.1	(for	prepared	statements).

Arjen	Lentz	(now	handling	community)

Maintainer	of	the	MySQL	Reference	Manual.

Preparing	the	O'Reilly	printed	edition	of	the	manual.

Alexander	(Bar)	Barkov,	Alexey	(Holyfoot)	Botchkov,	and	Ramil
Kalimullin

Spatial	data	(GIS)	and	R-Trees	implementation	for	4.1

Unicode	and	character	sets	for	4.1;	documentation	for	same

Oleksandr	(Sanja)	Byelkin

Query	cache	in	4.0

Implementation	of	subqueries	(4.1).

Implementation	of	views	(5.0).

Aleksey	(Walrus)	Kishkin	and	Alexey	(Ranger)	Stroganov

Benchmarks	design	and	analysis.

Maintenance	of	the	MySQL	test	suite.

Zak	Greant	(past	employee)

Open	Source	advocate,	MySQL	community	relations.

Carsten	Pedersen

The	MySQL	Certification	program.

Lenz	Grimmer

Production	(build	and	release)	engineering.

Peter	Zaitsev

SHA1(),	AES_ENCRYPT()	and	AES_DECRYPT()	functions.

Debugging,	cleaning	up	various	features.

Alexander	(Salle)	Keremidarski

Support.

Debugging.

Per-Erik	Martin

Lead	developer	for	stored	procedures	(5.0).

Jim	Winstead

Former	lead	Web	developer.

Improving	server,	fixing	bugs.

Mark	Matthews

Connector/J	driver	(Java).

Peter	Gulutzan

SQL	standards	compliance.

Documentation	of	existing	MySQL	code/algorithms.

Character	set	documentation.

Guilhem	Bichot

Replication,	from	MySQL	version	4.0.

Fixed	handling	of	exponents	for	DECIMAL.

Author	of	mysql_tableinfo.

Backup	(in	5.1).

Antony	T.	Curtis

Porting	of	the	MySQL	Database	software	to	OS/2.

Mikael	Ronstrom

Much	of	the	initial	work	on	NDB	Cluster	until	2000.	Roughly	half	the
code	base	at	that	time.	Transaction	protocol,	node	recovery,	system
restart	and	restart	code	and	parts	of	the	API	functionality.

Lead	Architect,	developer,	debugger	of	NDB	Cluster	1994-2004

Lots	of	optimizations

Jonas	Oreland

On-line	Backup

The	automatic	test	environment	of	MySQL	Cluster

Portability	Library	for	NDB	Cluster

Lots	of	other	things

Pekka	Nouisiainen

Ordered	index	implementation	of	MySQL	Cluster

BLOB	support	in	MySQL	Cluster

Charset	support	in	MySQL	Cluster

Martin	Skold

Unique	index	implementation	of	MySQL	Cluster

Integration	of	NDB	Cluster	into	MySQL

Magnus	Svensson

The	test	framework	for	MySQL	Cluster

Integration	of	NDB	Cluster	into	MySQL

Tomas	Ulin

Lots	of	work	on	configuration	changes	for	simple	installation	and	use
of	MySQL	Cluster

Konstantin	Osipov

Prepared	statements.

Cursors.

Dmitri	Lenev

Time	zone	support.

Triggers	(in	5.0).

C.2.	Contributors	to	MySQL

Although	MySQL	AB	owns	all	copyrights	in	the	MySQL	server	and	the	MySQL
manual,	we	wish	to	recognize	those	who	have	made	contributions	of	one	kind	or
another	to	the	MySQL	distribution.	Contributors	are	listed	here,	in	somewhat
random	order:

Gianmassimo	Vigazzola	<qwerg@mbox.vol.it>	or	<qwerg@tin.it>

The	initial	port	to	Win32/NT.

Per	Eric	Olsson

For	more	or	less	constructive	criticism	and	real	testing	of	the	dynamic
record	format.

Irena	Pancirov	<irena@mail.yacc.it>

Win32	port	with	Borland	compiler.	mysqlshutdown.exe	and
mysqlwatch.exe

David	J.	Hughes

For	the	effort	to	make	a	shareware	SQL	database.	At	TcX,	the	predecessor
of	MySQL	AB,	we	started	with	mSQL,	but	found	that	it	couldn't	satisfy	our
purposes	so	instead	we	wrote	an	SQL	interface	to	our	application	builder
Unireg.	mysqladmin	and	mysql	client	are	programs	that	were	largely
influenced	by	their	mSQL	counterparts.	We	have	put	a	lot	of	effort	into
making	the	MySQL	syntax	a	superset	of	mSQL.	Many	of	the	API's	ideas	are
borrowed	from	mSQL	to	make	it	easy	to	port	free	mSQL	programs	to	the
MySQL	API.	The	MySQL	software	doesn't	contain	any	code	from	mSQL.
Two	files	in	the	distribution	(client/insert_test.c	and
client/select_test.c)	are	based	on	the	corresponding	(non-copyrighted)
files	in	the	mSQL	distribution,	but	are	modified	as	examples	showing	the
changes	necessary	to	convert	code	from	mSQL	to	MySQL	Server.	(mSQL	is
copyrighted	David	J.	Hughes.)

Patrick	Lynch

mailto:qwerg@mbox.vol.it
mailto:qwerg@tin.it
mailto:irena@mail.yacc.it

For	helping	us	acquire	http://www.mysql.com/.

Fred	Lindberg

For	setting	up	qmail	to	handle	the	MySQL	mailing	list	and	for	the
incredible	help	we	got	in	managing	the	MySQL	mailing	lists.

Igor	Romanenko	<igor@frog.kiev.ua>

mysqldump	(previously	msqldump,	but	ported	and	enhanced	by	Monty).

Yuri	Dario

For	keeping	up	and	extending	the	MySQL	OS/2	port.

Tim	Bunce

Author	of	mysqlhotcopy.

Zarko	Mocnik	<zarko.mocnik@dem.si>

Sorting	for	Slovenian	language.

"TAMITO"	<tommy@valley.ne.jp>

The	_MB	character	set	macros	and	the	ujis	and	sjis	character	sets.

Joshua	Chamas	<joshua@chamas.com>

Base	for	concurrent	insert,	extended	date	syntax,	debugging	on	NT,	and
answering	on	the	MySQL	mailing	list.

Yves	Carlier	<Yves.Carlier@rug.ac.be>

mysqlaccess,	a	program	to	show	the	access	rights	for	a	user.

Rhys	Jones	<rhys@wales.com>	(And	GWE	Technologies	Limited)

For	one	of	the	early	JDBC	drivers.

Dr	Xiaokun	Kelvin	ZHU	<X.Zhu@brad.ac.uk>

http://www.mysql.com/
mailto:igor@frog.kiev.ua
mailto:zarko.mocnik@dem.si
mailto:tommy@valley.ne.jp
mailto:joshua@chamas.com
mailto:Yves.Carlier@rug.ac.be
mailto:rhys@wales.com
mailto:X.Zhu@brad.ac.uk

Further	development	of	one	of	the	early	JDBC	drivers	and	other	MySQL-
related	Java	tools.

James	Cooper	<pixel@organic.com>

For	setting	up	a	searchable	mailing	list	archive	at	his	site.

Rick	Mehalick	<Rick_Mehalick@i-o.com>

For	xmysql,	a	graphical	X	client	for	MySQL	Server.

Doug	Sisk	<sisk@wix.com>

For	providing	RPM	packages	of	MySQL	for	Red	Hat	Linux.

Diemand	Alexander	V.	<axeld@vial.ethz.ch>

For	providing	RPM	packages	of	MySQL	for	Red	Hat	Linux-Alpha.

Antoni	Pamies	Olive	<toni@readysoft.es>

For	providing	RPM	versions	of	a	lot	of	MySQL	clients	for	Intel	and
SPARC.

Jay	Bloodworth	<jay@pathways.sde.state.sc.us>

For	providing	RPM	versions	for	MySQL	3.21.

David	Sacerdote	<davids@secnet.com>

Ideas	for	secure	checking	of	DNS	hostnames.

Wei-Jou	Chen	<jou@nematic.ieo.nctu.edu.tw>

Some	support	for	Chinese(BIG5)	characters.

Wei	He	<hewei@mail.ied.ac.cn>

A	lot	of	functionality	for	the	Chinese(GBK)	character	set.

Jan	Pazdziora	<adelton@fi.muni.cz>

mailto:pixel@organic.com
mailto:Rick_Mehalick@i-o.com
mailto:sisk@wix.com
mailto:axeld@vial.ethz.ch
mailto:toni@readysoft.es
mailto:jay@pathways.sde.state.sc.us
mailto:davids@secnet.com
mailto:jou@nematic.ieo.nctu.edu.tw
mailto:hewei@mail.ied.ac.cn
mailto:adelton@fi.muni.cz

Czech	sorting	order.

Zeev	Suraski	<bourbon@netvision.net.il>

FROM_UNIXTIME()	time	formatting,	ENCRYPT()	functions,	and	bison	advisor.
Active	mailing	list	member.

Luuk	de	Boer	<luuk@wxs.nl>

Ported	(and	extended)	the	benchmark	suite	to	DBI/DBD.	Have	been	of	great
help	with	crash-me	and	running	benchmarks.	Some	new	date	functions.
The	mysql_setpermission	script.

Alexis	Mikhailov	<root@medinf.chuvashia.su>

User-defined	functions	(UDFs);	CREATE	FUNCTION	and	DROP	FUNCTION.

Andreas	F.	Bobak	<bobak@relog.ch>

The	AGGREGATE	extension	to	user-defined	functions.

Ross	Wakelin	<R.Wakelin@march.co.uk>

Help	to	set	up	InstallShield	for	MySQL-Win32.

Jethro	Wright	III	<jetman@li.net>

The	libmysql.dll	library.

James	Pereria	<jpereira@iafrica.com>

Mysqlmanager,	a	Win32	GUI	tool	for	administering	MySQL	Servers.

Curt	Sampson	<cjs@portal.ca>

Porting	of	MIT-pthreads	to	NetBSD/Alpha	and	NetBSD	1.3/i386.

Martin	Ramsch	<m.ramsch@computer.org>

Examples	in	the	MySQL	Tutorial.

mailto:bourbon@netvision.net.il
mailto:luuk@wxs.nl
mailto:root@medinf.chuvashia.su
mailto:bobak@relog.ch
mailto:R.Wakelin@march.co.uk
mailto:jetman@li.net
mailto:jpereira@iafrica.com
mailto:cjs@portal.ca
mailto:m.ramsch@computer.org

Steve	Harvey

For	making	mysqlaccess	more	secure.

Konark	IA-64	Centre	of	Persistent	Systems	Private	Limited

http://www.pspl.co.in/konark/.	Help	with	the	Win64	port	of	the	MySQL
server.

Albert	Chin-A-Young.

Configure	updates	for	Tru64,	large	file	support	and	better	TCP	wrappers
support.

John	Birrell

Emulation	of	pthread_mutex()	for	OS/2.

Benjamin	Pflugmann

Extended	MERGE	tables	to	handle	INSERTS.	Active	member	on	the	MySQL
mailing	lists.

Jocelyn	Fournier

Excellent	spotting	and	reporting	innumerable	bugs	(especially	in	the
MySQL	4.1	subquery	code).

Marc	Liyanage

Maintaining	the	Mac	OS	X	packages	and	providing	invaluable	feedback	on
how	to	create	Mac	OS	X	PKGs.

Robert	Rutherford

Providing	invaluable	information	and	feedback	about	the	QNX	port.

Previous	developers	of	NDB	Cluster

Lots	of	people	were	involved	in	various	ways	summer	students,	master
thesis	students,	employees.	In	total	more	than	100	people	so	too	many	to

http://www.pspl.co.in/konark/

mention	here.	Notable	name	is	Ataullah	Dabaghi	who	up	until	1999
contributed	around	a	third	of	the	code	base.	A	special	thanks	also	to
developers	of	the	AXE	system	which	provided	much	of	the	architectural
foundations	for	NDB	Cluster	with	blocks,	signals	and	crash	tracing
functionality.	Also	credit	should	be	given	to	those	who	believed	in	the	ideas
enough	to	allocate	of	their	budgets	for	its	development	from	1992	to	present
time.

Other	contributors,	bugfinders,	and	testers:	James	H.	Thompson,	Maurizio
Menghini,	Wojciech	Tryc,	Luca	Berra,	Zarko	Mocnik,	Wim	Bonis,	Elmar
Haneke,	<jehamby@lightside>,	<psmith@BayNetworks.com>,
<duane@connect.com.au>,	Ted	Deppner	<ted@psyber.com>,	Mike	Simons,
Jaakko	Hyvatti.

And	lots	of	bug	report/patches	from	the	folks	on	the	mailing	list.

A	big	tribute	goes	to	those	that	help	us	answer	questions	on	the	MySQL	mailing
lists:

Daniel	Koch	<dkoch@amcity.com>

Irix	setup.

Luuk	de	Boer	<luuk@wxs.nl>

Benchmark	questions.

Tim	Sailer	<tps@users.buoy.com>

DBD::mysql	questions.

Boyd	Lynn	Gerber	<gerberb@zenez.com>

SCO-related	questions.

Richard	Mehalick	<RM186061@shellus.com>

xmysql-related	questions	and	basic	installation	questions.

Zeev	Suraski	<bourbon@netvision.net.il>

mailto:jehamby@lightside
mailto:psmith@BayNetworks.com
mailto:duane@connect.com.au
mailto:ted@psyber.com
mailto:dkoch@amcity.com
mailto:luuk@wxs.nl
mailto:tps@users.buoy.com
mailto:gerberb@zenez.com
mailto:RM186061@shellus.com
mailto:bourbon@netvision.net.il

Apache	module	configuration	questions	(log	&	auth),	PHP-related
questions,	SQL	syntax-related	questions	and	other	general	questions.

Francesc	Guasch	<frankie@citel.upc.es>

General	questions.

Jonathan	J	Smith	<jsmith@wtp.net>

Questions	pertaining	to	OS-specifics	with	Linux,	SQL	syntax,	and	other
things	that	might	need	some	work.

David	Sklar	<sklar@student.net>

Using	MySQL	from	PHP	and	Perl.

Alistair	MacDonald	<A.MacDonald@uel.ac.uk>

Is	flexible	and	can	handle	Linux	and	perhaps	HP-UX.	Tries	to	get	users	to
use	mysqlbug.

John	Lyon	<jlyon@imag.net>

Questions	about	installing	MySQL	on	Linux	systems,	using	either	.rpm
files	or	compiling	from	source.

Lorvid	Ltd.	<lorvid@WOLFENET.com>

Simple	billing/license/support/copyright	issues.

Patrick	Sherrill	<patrick@coconet.com>

ODBC	and	VisualC++	interface	questions.

Randy	Harmon	<rjharmon@uptimecomputers.com>

DBD,	Linux,	some	SQL	syntax	questions.

mailto:frankie@citel.upc.es
mailto:jsmith@wtp.net
mailto:sklar@student.net
mailto:A.MacDonald@uel.ac.uk
mailto:jlyon@imag.net
mailto:lorvid@WOLFENET.com
mailto:patrick@coconet.com
mailto:rjharmon@uptimecomputers.com

C.3.	Documenters	and	translators

The	following	people	have	helped	us	with	writing	the	MySQL	documentation
and	translating	the	documentation	or	error	messages	in	MySQL.

Paul	DuBois

Ongoing	help	with	making	this	manual	correct	and	understandable.	That
includes	rewriting	Monty's	and	David's	attempts	at	English	into	English	as
other	people	know	it.

Kim	Aldale

Helped	to	rewrite	Monty's	and	David's	early	attempts	at	English	into
English.

Michael	J.	Miller	Jr.	<mke@terrapin.turbolift.com>

For	the	first	MySQL	manual.	And	a	lot	of	spelling/language	fixes	for	the
FAQ	(that	turned	into	the	MySQL	manual	a	long	time	ago).

Yan	Cailin

First	translator	of	the	MySQL	Reference	Manual	into	simplified	Chinese	in
early	2000	on	which	the	Big5	and	HK	coded	(http://mysql.hitstar.com/)
versions	were	based.	Personal	home	page	at	linuxdb.yeah.net.

Jay	Flaherty	<fty@mediapulse.com>

Big	parts	of	the	Perl	DBI/DBD	section	in	the	manual.

Paul	Southworth	<pauls@etext.org>,	Ray	Loyzaga	<yar@cs.su.oz.au>

Proof-reading	of	the	Reference	Manual.

Therrien	Gilbert	<gilbert@ican.net>,	Jean-Marc	Pouyot
<jmp@scalaire.fr>

French	error	messages.

mailto:mke@terrapin.turbolift.com
http://mysql.hitstar.com/
http://linuxdb.yeah.net
mailto:fty@mediapulse.com
mailto:pauls@etext.org
mailto:yar@cs.su.oz.au
mailto:gilbert@ican.net
mailto:jmp@scalaire.fr

Petr	Snajdr,	<snajdr@pvt.net>

Czech	error	messages.

Jaroslaw	Lewandowski	<jotel@itnet.com.pl>

Polish	error	messages.

Miguel	Angel	Fernandez	Roiz

Spanish	error	messages.

Roy-Magne	Mo	<rmo@www.hivolda.no>

Norwegian	error	messages	and	testing	of	MySQL	3.21.xx.

Timur	I.	Bakeyev	<root@timur.tatarstan.ru>

Russian	error	messages.

<brenno@dewinter.com>	&	Filippo	Grassilli	<phil@hyppo.com>

Italian	error	messages.

Dirk	Munzinger	<dirk@trinity.saar.de>

German	error	messages.

Billik	Stefan	<billik@sun.uniag.sk>

Slovak	error	messages.

Stefan	Saroiu	<tzoompy@cs.washington.edu>

Romanian	error	messages.

Peter	Feher

Hungarian	error	messages.

Roberto	M.	Serqueira

mailto:snajdr@pvt.net
mailto:jotel@itnet.com.pl
mailto:rmo@www.hivolda.no
mailto:root@timur.tatarstan.ru
mailto:brenno@dewinter.com
mailto:phil@hyppo.com
mailto:dirk@trinity.saar.de
mailto:billik@sun.uniag.sk
mailto:tzoompy@cs.washington.edu

Portuguese	error	messages.

Carsten	H.	Pedersen

Danish	error	messages.

Arjen	G.	Lentz

Dutch	error	messages,	completing	earlier	partial	translation	(also	work	on
consistency	and	spelling).

C.4.	Libraries	used	by	and	included	with	MySQL

The	following	is	a	list	of	the	creators	of	the	libraries	we	have	included	with	the
MySQL	server	source	to	make	it	easy	to	compile	and	install	MySQL.	We	are
very	thankfully	to	all	individuals	that	have	created	these	and	it	has	made	our	life
much	easier.

Fred	Fish

For	his	excellent	C	debugging	and	trace	library.	Monty	has	made	a	number
of	smaller	improvements	to	the	library	(speed	and	additional	options).

Richard	A.	O'Keefe

For	his	public	domain	string	library.

Henry	Spencer

For	his	regex	library,	used	in	WHERE	column	REGEXP	regexp.

Chris	Provenzano

Portable	user	level	pthreads.	From	the	copyright:	This	product	includes
software	developed	by	Chris	Provenzano,	the	University	of	California,
Berkeley,	and	contributors.	We	are	currently	using	version	1_60_beta6
patched	by	Monty	(see	mit-pthreads/Changes-mysql).

Jean-loup	Gailly	and	Mark	Adler

For	the	zlib	library	(used	on	MySQL	on	Windows).

Bjorn	Benson

For	his	safe_malloc	(memory	checker)	package	which	is	used	in	when	you
configure	MySQL	with	--debug.

Free	Software	Foundation

The	readline	library	(used	by	the	mysql	command-line	client).

The	NetBSD	foundation

The	libedit	package	(optionally	used	by	the	mysql	command-line	client).

C.5.	Packages	that	support	MySQL

The	following	is	a	list	of	creators/maintainers	of	some	of	the	most	important
API/packages/applications	that	a	lot	of	people	use	with	MySQL.

We	can't	list	every	possible	package	here	because	the	list	would	then	be	way	to
hard	to	maintain.	For	other	packages,	please	refer	to	the	software	portal	at
http://solutions.mysql.com/software/.

Tim	Bunce,	Alligator	Descartes

For	the	DBD	(Perl)	interface.

Andreas	Koenig	<a.koenig@mind.de>

For	the	Perl	interface	for	MySQL	Server.

Jochen	Wiedmann	<wiedmann@neckar-alb.de>

For	maintaining	the	Perl	DBD::mysql	module.

Eugene	Chan	<eugene@acenet.com.sg>

For	porting	PHP	for	MySQL	Server.

Georg	Richter

MySQL	4.1	testing	and	bug	hunting.	New	PHP	5.0	mysqli	extension	(API)
for	use	with	MySQL	4.1	and	up.

Giovanni	Maruzzelli	<maruzz@matrice.it>

For	porting	iODBC	(Unix	ODBC).

Xavier	Leroy	<Xavier.Leroy@inria.fr>

The	author	of	LinuxThreads	(used	by	the	MySQL	Server	on	Linux).

http://solutions.mysql.com/software/
mailto:a.koenig@mind.de
mailto:wiedmann@neckar-alb.de
mailto:eugene@acenet.com.sg
mailto:maruzz@matrice.it
mailto:Xavier.Leroy@inria.fr

C.6.	Tools	that	were	used	to	create	MySQL

The	following	is	a	list	of	some	of	the	tools	we	have	used	to	create	MySQL.	We
use	this	to	express	our	thanks	to	those	that	has	created	them	as	without	these	we
could	not	have	made	MySQL	what	it	is	today.

Free	Software	Foundation

From	whom	we	got	an	excellent	compiler	(gcc),	an	excellent	debugger	(gdb
and	the	libc	library	(from	which	we	have	borrowed	strto.c	to	get	some
code	working	in	Linux).

Free	Software	Foundation	&	The	XEmacs	development	team

For	a	really	great	editor/environment	used	by	almost	everybody	at	MySQL
AB.

Julian	Seward

Author	of	valgrind,	an	excellent	memory	checker	tool	that	has	helped	us
find	a	lot	of	otherwise	hard	to	find	bugs	in	MySQL.

Dorothea	Lütkehaus	and	Andreas	Zeller

For	DDD	(The	Data	Display	Debugger)	which	is	an	excellent	graphical	front
end	to	gdb).

C.7.	Supporters	of	MySQL

Although	MySQL	AB	owns	all	copyrights	in	the	MySQL	server	and	the	MySQL
manual,	we	wish	to	recognize	the	following	companies,	which	helped	us	finance
the	development	of	the	MySQL	server,	such	as	by	paying	us	for	developing	a
new	feature	or	giving	us	hardware	for	development	of	the	MySQL	server.

VA	Linux	/	Andover.net

Funded	replication.

NuSphere

Editing	of	the	MySQL	manual.

Stork	Design	studio

The	MySQL	Web	site	in	use	between	1998-2000.

Intel

Contributed	to	development	on	Windows	and	Linux	platforms.

Compaq

Contributed	to	Development	on	Linux/Alpha.

SWSoft

Development	on	the	embedded	mysqld	version.

FutureQuest

--skip-show-database

Appendix	D.	MySQL	Change	History

Table	of	Contents

D.1.	Changes	in	release	5.0.x	(Production)
D.1.1.	Changes	in	release	5.0.25	(Not	yet	released)
D.1.2.	Changes	in	release	5.0.24	(Not	yet	released)
D.1.3.	Changes	in	release	5.0.23	(Not	released)
D.1.4.	Changes	in	release	5.0.22	(24	May	2006)
D.1.5.	Changes	in	release	5.0.21	(02	May	2006)
D.1.6.	Changes	in	release	5.0.20a	(18	April	2006)
D.1.7.	Changes	in	release	5.0.20	(31	March	2006)
D.1.8.	Changes	in	release	5.0.19	(04	March	2006)
D.1.9.	Changes	in	release	5.0.18	(21	December	2005)
D.1.10.	Changes	in	release	5.0.17	(14	December	2005)
D.1.11.	Changes	in	release	5.0.16	(10	November	2005)
D.1.12.	Changes	in	release	5.0.15	(19	October	2005:	Production)
D.1.13.	Changes	in	release	5.0.14	(Not	released)
D.1.14.	Changes	in	release	5.0.13	(22	September	2005:	Release	Candidate)
D.1.15.	Changes	in	release	5.0.12	(02	September	2005)
D.1.16.	Changes	in	release	5.0.11	(06	August	2005)
D.1.17.	Changes	in	release	5.0.10	(27	July	2005)
D.1.18.	Changes	in	release	5.0.9	(15	July	2005)
D.1.19.	Changes	in	release	5.0.8	(Not	released)
D.1.20.	Changes	in	release	5.0.7	(10	June	2005)
D.1.21.	Changes	in	release	5.0.6	(26	May	2005)
D.1.22.	Changes	in	release	5.0.5	(Not	released)
D.1.23.	Changes	in	release	5.0.4	(16	April	2005)
D.1.24.	Changes	in	release	5.0.3	(23	March	2005:	Beta)
D.1.25.	Changes	in	release	5.0.2	(01	December	2004)
D.1.26.	Changes	in	release	5.0.1	(27	July	2004)
D.1.27.	Changes	in	release	5.0.0	(22	December	2003:	Alpha)

D.2.	Changes	in	MySQL	Cluster
D.2.1.	Changes	in	MySQL	Cluster-5.0.7	(10	June	2005)
D.2.2.	Changes	in	MySQL	Cluster-5.0.6	(26	May	2005)
D.2.3.	Changes	in	MySQL	Cluster-5.0.5	(Not	released)
D.2.4.	Changes	in	MySQL	Cluster-5.0.4	(16	April	2005)

D.2.5.	Changes	in	MySQL	Cluster-5.0.3	(23	March	2005:	Beta)
D.2.6.	Changes	in	MySQL	Cluster-5.0.1	(27	July	2004)
D.2.7.	Changes	in	MySQL	Cluster-4.1.13	(15	July	2005)
D.2.8.	Changes	in	MySQL	Cluster-4.1.12	(13	May	2005)
D.2.9.	Changes	in	MySQL	Cluster-4.1.11	(01	April	2005)
D.2.10.	Changes	in	MySQL	Cluster-4.1.10	(12	February	2005)
D.2.11.	Changes	in	MySQL	Cluster-4.1.9	(13	January	2005)
D.2.12.	Changes	in	MySQL	Cluster-4.1.8	(14	December	2004)
D.2.13.	Changes	in	MySQL	Cluster-4.1.7	(23	October	2004)
D.2.14.	Changes	in	MySQL	Cluster-4.1.6	(10	October	2004)
D.2.15.	Changes	in	MySQL	Cluster-4.1.5	(16	September	2004)
D.2.16.	Changes	in	MySQL	Cluster-4.1.4	(31	August	2004)
D.2.17.	Changes	in	MySQL	Cluster-4.1.3	(28	June	2004)

D.3.	MySQL	Connector/ODBC	(MyODBC)	Change	History
D.3.1.	Changes	in	MyODBC	3.51.13
D.3.2.	Changes	in	MyODBC	3.51.12
D.3.3.	Changes	in	MyODBC	3.51.11

D.4.	MySQL	Connector/NET	Change	History
D.4.1.	Version	1.0.8
D.4.2.	Version	1.0.7
D.4.3.	Version	1.0.6
D.4.4.	Version	1.0.5
D.4.5.	Version	1.0.4	1-20-05
D.4.6.	Version	1.0.3-gamma	12-10-04
D.4.7.	Version	1.0.2-gamma	04-11-15
D.4.8.	Version	1.0.1-beta2	04-10-27
D.4.9.	Version	1.0.0	04-09-01
D.4.10.	Version	0.9.0	04-08-30
D.4.11.	Version	0.76
D.4.12.	Version	0.75
D.4.13.	Version	0.74
D.4.14.	Version	0.71
D.4.15.	Version	0.70
D.4.16.	Version	0.68
D.4.17.	Version	0.65
D.4.18.	Version	0.60
D.4.19.	Version	0.50

D.5.	MySQL	Connector/J	Change	History
D.5.1.	Changes	in	MySQL	Connector/J	5.0.2-beta	(11	July	2006)

D.5.2.	Changes	in	MySQL	Connector/J	5.0.1-beta	(Not	Released)
D.5.3.	Changes	in	MySQL	Connector/J	5.0.0-beta	(22	December	2005)
D.5.4.	Changes	in	MySQL	Connector/J	3.1.14	(not	yet	released)
D.5.5.	Changes	in	MySQL	Connector/J	3.1.13	(26	May	2006)
D.5.6.	Changes	in	MySQL	Connector/J	3.1.12	(30	November	2005)
D.5.7.	Changes	in	MySQL	Connector/J	3.1.11-stable	(07	October	2005)
D.5.8.	Changes	in	MySQL	Connector/J	3.1.10-stable	(23	June	2005)
D.5.9.	Changes	in	MySQL	Connector/J	3.1.9-stable	(22	June	2005)
D.5.10.	Changes	in	MySQL	Connector/J	3.1.8-stable	(14	April	2005)
D.5.11.	Changes	in	MySQL	Connector/J	3.1.7-stable	(18	February	2005)
D.5.12.	Changes	in	MySQL	Connector/J	3.1.6-stable	(23	December	2004)
D.5.13.	Changes	in	MySQL	Connector/J	3.1.5-gamma	(02	December	2004)
D.5.14.	Changes	in	MySQL	Connector/J	3.1.4-beta	(04	September	2004)
D.5.15.	Changes	in	MySQL	Connector/J	3.1.3-beta	(07	July	2004)
D.5.16.	Changes	in	MySQL	Connector/J	3.1.2-alpha	(09	June	2004)
D.5.17.	Changes	in	MySQL	Connector/J	3.1.1-alpha	(14	February	2004)
D.5.18.	Changes	in	MySQL	Connector/J	3.1.0-alpha	(18	February	2003)
D.5.19.	Changes	in	MySQL	Connector/J	3.0.17-ga	(23	June	2005)
D.5.20.	Changes	in	MySQL	Connector/J	3.0.16-ga	(15	November	2004)
D.5.21.	Changes	in	MySQL	Connector/J	3.0.15-production	(04	September
2004)
D.5.22.	Changes	in	MySQL	Connector/J	3.0.14-production	(28	May	2004)
D.5.23.	Changes	in	MySQL	Connector/J	3.0.13-production	(27	May	2004)
D.5.24.	Changes	in	MySQL	Connector/J	3.0.12-production	(18	May	2004)
D.5.25.	Changes	in	MySQL	Connector/J	3.0.11-stable	(19	February	2004)
D.5.26.	Changes	in	MySQL	Connector/J	3.0.10-stable	(13	January	2004)
D.5.27.	Changes	in	MySQL	Connector/J	3.0.9-stable	(07	October	2003)
D.5.28.	Changes	in	MySQL	Connector/J	3.0.8-stable	(23	May	2003)
D.5.29.	Changes	in	MySQL	Connector/J	3.0.7-stable	(08	April	2003)
D.5.30.	Changes	in	MySQL	Connector/J	3.0.6-stable	(18	February	2003)
D.5.31.	Changes	in	MySQL	Connector/J	3.0.5-gamma	(22	January	2003)
D.5.32.	Changes	in	MySQL	Connector/J	3.0.4-gamma	(06	January	2003)
D.5.33.	Changes	in	MySQL	Connector/J	3.0.3-dev	(17	December	2002)
D.5.34.	Changes	in	MySQL	Connector/J	3.0.2-dev	(08	November	2002)
D.5.35.	Changes	in	MySQL	Connector/J	3.0.1-dev	(21	September	2002)
D.5.36.	Changes	in	MySQL	Connector/J	3.0.0-dev	(31	July	2002)
D.5.37.	Changes	in	MySQL	Connector/J	2.0.14	(16	May	2002)
D.5.38.	Changes	in	MySQL	Connector/J	2.0.13	(24	April	2002)
D.5.39.	Changes	in	MySQL	Connector/J	2.0.12	(07	April	2002)

D.5.40.	Changes	in	MySQL	Connector/J	2.0.11	(27	January	2002)
D.5.41.	Changes	in	MySQL	Connector/J	2.0.10	(24	January	2002)
D.5.42.	Changes	in	MySQL	Connector/J	2.0.9	(13	January	2002)
D.5.43.	Changes	in	MySQL	Connector/J	2.0.8	(25	November	2001)
D.5.44.	Changes	in	MySQL	Connector/J	2.0.7	(24	October	2001)
D.5.45.	Changes	in	MySQL	Connector/J	2.0.6	(16	June	2001)
D.5.46.	Changes	in	MySQL	Connector/J	2.0.5	(13	June	2001)
D.5.47.	Changes	in	MySQL	Connector/J	2.0.3	(03	December	2000)
D.5.48.	Changes	in	MySQL	Connector/J	2.0.1	(06	April	2000)
D.5.49.	Changes	in	MySQL	Connector/J	2.0.0pre5	(21	February	2000)
D.5.50.	Changes	in	MySQL	Connector/J	2.0.0pre4	(10	January	2000)
D.5.51.	Changes	in	MySQL	Connector/J	2.0.0pre	(17	August	1999)
D.5.52.	Changes	in	MySQL	Connector/J	1.2b	(04	July	1999)
D.5.53.	Changes	in	MySQL	Connector/J	1.2a	(14	April	1999)
D.5.54.	Changes	in	MySQL	Connector/J	1.1i	(24	March	1999)
D.5.55.	Changes	in	MySQL	Connector/J	1.1h	(08	March	1999)
D.5.56.	Changes	in	MySQL	Connector/J	1.1g	(19	February	1999)
D.5.57.	Changes	in	MySQL	Connector/J	1.1f	(31	December	1998)
D.5.58.	Changes	in	MySQL	Connector/J	1.1b	(03	November	1998)
D.5.59.	Changes	in	MySQL	Connector/J	1.1	(02	September	1998)
D.5.60.	Changes	in	MySQL	Connector/J	1.0	(24	August	1998)
D.5.61.	Changes	in	MySQL	Connector/J	0.9d	(04	August	1998)
D.5.62.	Changes	in	MySQL	Connector/J	0.9	(28	July	1998)
D.5.63.	Changes	in	MySQL	Connector/J	0.8	(06	July	1998)
D.5.64.	Changes	in	MySQL	Connector/J	0.7	(01	July	1998)
D.5.65.	Changes	in	MySQL	Connector/J	0.6	(21	May	1998)

This	appendix	lists	the	changes	from	version	to	version	in	the	MySQL	source
code	through	the	latest	version	of	MySQL	5.0,	which	is	currently	MySQL
5.0.25.	Starting	with	MySQL	5.0,	we	began	offering	a	new	version	of	the
Manual	for	each	new	series	of	MySQL	releases	(5.0,	5.1,	and	so	on).	For
information	about	changes	in	previous	release	series	of	the	MySQL	database
software,	see	the	corresponding	version	of	this	Manual.	For	information	about
legacy	versions	of	the	MySQL	software	through	the	4.1	series,	see	MySQL	3.23,
4.0,	4.1	Reference	Manual.

We	update	this	section	as	we	add	new	features	in	the	5.0	series,	so	that
everybody	can	follow	the	development	process.

Note	that	we	tend	to	update	the	manual	at	the	same	time	we	make	changes	to
MySQL.	If	you	find	a	recent	version	of	MySQL	listed	here	that	you	can't	find	on
our	download	page	(http://dev.mysql.com/downloads/),	it	means	that	the	version
has	not	yet	been	released.

The	date	mentioned	with	a	release	version	is	the	date	of	the	last	BitKeeper
ChangeSet	on	which	the	release	was	based,	not	the	date	when	the	packages	were
made	available.	The	binaries	are	usually	made	available	a	few	days	after	the	date
of	the	tagged	ChangeSet,	because	building	and	testing	all	packages	takes	some
time.

The	manual	included	in	the	source	and	binary	distributions	may	not	be	fully
accurate	when	it	comes	to	the	release	changelog	entries,	because	the	integration
of	the	manual	happens	at	build	time.	For	the	most	up-to-date	release	changelog,
please	refer	to	the	online	version	instead.

http://dev.mysql.com/downloads/

D.1.	Changes	in	release	5.0.x	(Production)

The	following	changelog	shows	what	has	been	done	in	the	5.0	tree:

Basic	support	for	read-only	server	side	cursors.	For	information	about	using
cursors	within	stored	routines,	see	Section	17.2.9,	“Cursors”.	For
information	about	using	cursors	from	within	the	C	API,	see
Section	22.2.7.3,	“mysql_stmt_attr_set()”.

Basic	support	for	(updatable)	views.	See,	for	example,	Section	19.2,
“CREATE	VIEW	Syntax”.

Basic	support	for	stored	procedures	and	functions	(SQL:2003	style).	See
Chapter	17,	Stored	Procedures	and	Functions.

Initial	support	for	rudimentary	triggers.

Added	SELECT	INTO	list_of_vars,	which	can	be	of	mixed	(that	is,	global
and	local)	types.	See	Section	17.2.7.3,	“SELECT	...	INTO	Statement”.

Removed	the	update	log.	It	is	fully	replaced	by	the	binary	log.	If	the
MySQL	server	is	started	with	--log-update,	it	is	translated	to	--log-bin
(or	ignored	if	the	server	is	explicitly	started	with	--log-bin),	and	a	warning
message	is	written	to	the	error	log.	Setting	SQL_LOG_UPDATE	silently	sets
SQL_LOG_BIN	instead	(or	do	nothing	if	the	server	is	explicitly	started	with	--
log-bin).

Support	for	the	ISAM	storage	engine	has	been	removed.	If	you	have	ISAM
tables,	you	should	convert	them	before	upgrading.	See	Section	2.11.2,
“Upgrading	from	MySQL	4.1	to	5.0”.

Support	for	RAID	options	in	MyISAM	tables	has	been	removed.	If	you	have
tables	that	use	these	options,	you	should	convert	them	before	upgrading.
See	Section	2.11.2,	“Upgrading	from	MySQL	4.1	to	5.0”.

User	variable	names	are	now	case	insensitive:	If	you	do	SET	@a=10;	then
SELECT	@A;	now	returns	10.	Case	sensitivity	of	a	variable's	value	depends
on	the	collation	of	the	value.

Strict	mode,	which	in	essence	means	that	you	get	an	error	instead	of	a
warning	when	inserting	an	incorrect	value	into	a	column.	See	Section	5.2.5,
“The	Server	SQL	Mode”.

VARCHAR	and	VARBINARY	columns	remember	end	space.	A	VARCHAR()	or
VARBINARY	column	can	contain	up	to	65,535	characters	or	bytes,
respectively.

MEMORY	(HEAP)	tables	can	have	VARCHAR()	columns.

When	using	a	constant	string	or	a	function	that	generates	a	string	result	in
CREATE	...	SELECT,	MySQL	creates	the	result	field	based	on	the
maximum	length	of	the	string	or	expression:

Maximum	Length Data	type
=	0 CHAR(0)

<	512 VARCHAR(max_length)
>=	512 TEXT

For	a	full	list	of	changes,	please	refer	to	the	changelog	sections	for	each
individual	5.0.x	release.

D.1.1.	Changes	in	release	5.0.25	(Not	yet	released)

This	is	a	bugfix	release	for	the	current	production	release	family.

This	section	documents	all	changes	and	bug	fixes	that	have	been	applied	since
the	last	official	MySQL	release.	If	you	would	like	to	receive	more	fine-grained
and	personalized	update	alerts	about	fixes	that	are	relevant	to	the	version	and
features	you	use,	please	consider	subscribing	to	MySQL	Network	(a	commercial
MySQL	offering).	For	more	details	please	see
http://www.mysql.com/network/advisors.html.

Functionality	added	or	changed:

Table	comments	longer	than	60	characters	and	column	comments	longer
than	255	characters	were	truncated	silently.	Now	a	warning	is	issued,	or	an
error	in	strict	mode.	(Bug	#13934)

http://www.mysql.com/network/advisors.html

The	bundled	yaSSL	library	was	upgraded	to	version	1.3.7.

The	server	now	issues	a	warning	if	it	removes	leading	spaces	from	an	alias.
(Bug	#10977)

Bugs	fixed:

NDB	Cluster:	REPLACE	statements	did	not	work	correctly	on	an	NDB	table
having	both	a	primary	key	and	a	unique	key.	In	such	cases,	proper	values
were	not	set	for	columns	which	were	not	explicitly	referenced	in	the
statement.	(Bug	#20728)

NDB	Cluster:	Trying	to	create	or	drop	a	table	while	a	node	was	restarting
caused	the	node	to	crash.	This	is	now	handled	by	raising	an	error.	(Bug
#18781)

NDB	Cluster:	Running	ndbd	--nowait-nodes=id	where	id	was	the	node
ID	of	a	node	that	was	already	running	would	fail	with	an	invalid	error
message.	(Bug	#20419)

NDB	Cluster:	Incorrect	values	were	inserted	into	AUTO_INCREMENT	columns
of	tables	restored	from	a	cluster	backup.	(Bug	#20820)

NDB	Cluster:	When	attempting	to	restart	the	cluster	following	a	data
import,	the	cluster	would	fail	during	Phase	4	of	the	restart	with	Error	2334:
Job	buffer	congestion.	(Bug	#20774)

NDB	Cluster:	A	node	failure	during	a	scan	could	sometime	cause	the	node
to	crash	when	restarting	too	quickly	following	the	failure.	(Bug	#20197)

NDB	Cluster:	It	was	possible	to	use	port	numbers	greater	than	65535	for
ServerPort	in	the	config.ini	file.	(Bug	#19164)

NDB	Cluster:	Under	certain	circumstances,	a	node	that	was	shut	down	then
restarted	could	hang	during	the	restart.	(Bug	#18863)

NDB	Cluster	(Replication):	In	some	cases,	a	large	number	of	MySQL
servers	sending	requests	to	the	cluster	simultaneously	could	cause	the
cluster	to	crash.	This	could	also	be	triggered	by	many	NDB	API	clients
making	simultaneous	event	subscriptions	or	unsubscriptions.	(Bug	#20683)

NDB	Cluster	(NDB	API):	NdbScanOperation::readTuples()	and
NdbIndexScanOperation::readTuples()	ignored	the	batch	parameter.
(Bug	#20252)

The	use	of	WHERE	col_name	IS	NULL	in	SELECT	statements	reset	the	value
of	LAST_INSERT_ID()	to	zero.	(Bug	#14553)

The	server	crashed	when	using	the	range	access	method	to	execut	a
subquery	with	a	ORDER	BY	DESC	clause.	(Bug	#20869)

Use	of	the	join	cache	in	favor	of	an	index	for	ORDER	BY	operations	could
cause	incorrect	result	sorting.	(Bug	#17212)

A	user-defined	function	that	is	called	on	each	row	of	a	returned	result	set,
could	receive	an	in_null	state	that	is	set,	if	it	was	set	previously.	Now,	the
is_null	state	is	reset	to	false	before	each	invocation	of	a	UDF.	(Bug
#19904)

Referring	to	a	stored	function	qualified	with	the	name	of	one	database	and
tables	in	another	database	caused	a	“table	doesn't	exist”	error.	(Bug	#18444)

For	NDB	and	possibly	InnoDB	tables,	a	BEFORE	UPDATE	trigger	could	insert
incorrect	values.	(Bug	#18437)

Triggers	on	tables	in	the	mysql	database	caused	a	server	crash.	Triggers	for
tables	in	this	database	now	are	disallowed.	(Bug	#18361)

The	length	of	the	pattern	string	prefix	for	LIKE	operations	was	calculated
incorrectly	for	multi-byte	character	sets.	As	a	result,	the	the	scanned	range
was	wider	than	necessary	if	the	prefix	contained	any	multi-byte	characters,
and	rows	could	be	missing	from	the	result	set.	(Bug	#16674,	Bug	#18359)

For	very	complex	SELECT	statements	could	create	temporary	tables	that
were	too	big,	but	for	which	the	temporary	files	did	not	get	removed,
causing	subsequent	queries	to	fail.	(Bug	#11824)

For	spatial	data	types,	the	server	formerly	returned	these	as	VARSTRING
values	with	a	binary	collation.	Now	the	server	returns	spatial	values	as	BLOB
values.	(Bug	#10166)

Using	SELECT	and	a	table	join	while	running	a	concurrent	INSERT	operation
would	join	incorrect	rows.	(Bug	#14400)

Using	SELECT	on	a	corrupt	table	using	the	dynamic	record	format	could
cause	a	server	crash.	(Bug	#19835)

Using	tables	from	MySQL	4.x	in	MySQL	5.x,	in	particular	those	with
VARCHAR	fields	and	using	INSERT	DELAYED	to	update	data	in	the	table	would
result	in	either	data	corruption	or	a	server	crash.	(Bug	#16611,	Bug	#16218,
Bug	#17294)

Checking	a	spatial	table	(using	CHECK	TABLE)	with	an	index	and	only	one
row	would	indicate	a	table	corruption.	(Bug	#17877)

SHOW	GRANTS	FOR	CURRENT_USER	did	not	return	definer	grants	when
executed	in	DEFINER	context	(such	as	within	a	stored	prodedure	defined
with	SQL	SECURITY	DEFINER),	it	returned	the	invoker	grants.	(Bug	#15298)

For	SELECT	...	FOR	UPDATE	statements	that	used	DISTINCT	or	GROUP	BY
over	all	key	parts	of	a	unique	index	(or	primary	key),	the	optimizer
unnecessarily	created	a	temporary	table,	thus	losing	the	linkage	to	the
underlying	unique	index	values.	This	caused	a	Result	set	not	updatable
error.	(The	temporary	table	is	unnecessary	because	under	these
circumstances	the	distinct	or	grouped	columns	must	also	be	unique.)	(Bug
#16458)

The	first	time	a	user	who	had	been	granted	the	CREATE	ROUTINE	privilege
used	that	privilege	to	create	a	stored	function	or	procedure,	the	Password
column	in	that	user's	row	in	the	mysql.user	table	was	set	to	NULL.	(Bug
#19857)

Creation	of	a	view	as	a	join	of	views	or	tables	could	fail	if	the	views	or
tables	are	in	different	databases.	(Bug	#20482)

Use	of	MIN()	or	MAX()	with	GROUP	BY	on	a	ucs2	column	could	cause	a
server	crash.	(Bug	#20076)

INSERT	INTO	...	SELECT	...	LIMIT	1	could	be	slow	because	the	LIMIT
was	ignored	when	selecting	candidate	rows.	(Bug	#9676)

Certain	queries	having	a	WHERE	clause	that	included	conditions	on	multi-part
keys	with	more	than	2	key	parts	could	produce	incorrect	results	and	send
[Note]	Use_count:	Wrong	count	for	key	at...	messages	to	STDERR.	(Bug
#16168)

The	mysql_list_fields()	C	API	function	returned	the	incorrect	table
name	for	views.	(Bug	#19671)

A	cast	problem	caused	incorrect	results	for	prepared	statements	that
returned	float	values	when	MySQL	was	compiled	with	gcc	4.0.	(Bug
#19694)

D.1.2.	Changes	in	release	5.0.24	(Not	yet	released)

This	is	a	bugfix	release	for	the	current	production	release	family.

This	section	documents	all	changes	and	bug	fixes	that	have	been	applied	since
the	last	official	MySQL	release.	If	you	would	like	to	receive	more	fine-grained
and	personalized	update	alerts	about	fixes	that	are	relevant	to	the	version	and
features	you	use,	please	consider	subscribing	to	MySQL	Network	(a	commercial
MySQL	offering).	For	more	details	please	see
http://www.mysql.com/network/advisors.html.

Bugs	fixed:

MySQL	5.0.23	contained	a	fix	for	Bug	#10952	that	has	been	reverted	in
5.0.24	because	it	introduced	the	risk	of	unintended	data	loss.

The	FEDERATED	storage	engine	did	not	allow	creation	of	UNIQUE	indexes	on
nullable	columns.	(Bug	#15133)

A	SELECT	that	used	a	subquery	in	the	FROM	clause	that	did	not	select	from	a
table	failed	when	the	subquery	was	used	in	a	join.	(Bug	#21002)

REPLACE	...	SELECT	for	a	view	required	the	INSERT	privilege	for	tables
other	than	the	table	being	modified.	(Bug	#21135)

Failure	to	account	for	a	NULL	table	pointer	on	big-endian	machines	could
cause	a	server	crash	during	type	conversion.	(Bug	#21135)

http://www.mysql.com/network/advisors.html

mysqldump	sometimes	did	not	select	the	correct	database	before	trying	to
dump	views	from	it,	resulting	in	an	empty	result	set	that	caused
mysqldump	to	die	with	a	segmentation	fault.	(Bug	#21014)

D.1.3.	Changes	in	release	5.0.23	(Not	released)

MySQL	5.0.23	was	never	officially	released.

This	section	documents	all	changes	and	bug	fixes	that	have	been	applied	since
the	last	official	MySQL	release.	If	you	would	like	to	receive	more	fine-grained
and	personalized	update	alerts	about	fixes	that	are	relevant	to	the	version	and
features	you	use,	please	consider	subscribing	to	MySQL	Network	(a	commercial
MySQL	offering).	For	more	details	please	see
http://www.mysql.com/network/advisors.html.

Functionality	added	or	changed:

NDB	Cluster:	The	limit	of	2048	ordered	indexes	per	cluster	has	been	lifted.
There	is	now	no	upper	limit	on	the	number	of	ordered	indexes	(including
AUTO_INCREMENT	columns)	that	may	be	used.	(Bug	#14509)

NDB	Cluster:	The	status	variables	Ndb_connected_host	and
Ndb_connected_port	were	renamed	to	Ndb_config_from_host	and
Ndb_config_from_port,	respectively.

The	mysql_upgrade	command	has	been	converted	from	a	shell	script	to	a
C	program,	so	it	is	available	on	non-Unix	systems	such	as	Windows.	This
program	should	be	run	for	each	MySQL	upgrade.	See	Section	5.6.2,
“mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade”.

Binary	distributions	that	include	SSL	support	now	are	built	using	yaSSL
when	possible.

Added	the	--ssl-verify-server-cert	option	to	MySQL	client	programs.
This	option	causes	the	server's	Common	Name	value	in	its	certificate	to	be
verified	against	the	hostname	used	when	connecting	to	the	server,	and	the
connection	is	rejected	if	there	is	a	mismatch.	Added
MYSQL_OPT_SSL_VERIFY_SERVER_CERT	option	for	the	mysql_options()	C
API	function	to	enable	this	verification.	This	feature	can	be	used	to	prevent

http://www.mysql.com/network/advisors.html

man-in-the-middle	attacks.	Verification	is	disabled	by	default.	(Bug
#17208)

Added	the	ssl_ca,	ssl_capath,	ssl_cert,	ssl_cipher,	and	ssl_key
system	variables,	which	display	the	values	given	via	the	corresponding
command	options.	See	Section	5.9.7.3,	“SSL	Command	Options”.
(Bug#19606)

Added	the	log_queries_not_using_indexes	system	variable.
(Bug#19616)

Added	the	--angel-pid-file	option	to	mysqlmanager	for	specifying	the
file	in	which	the	angel	process	records	its	process	ID	when	mysqlmanager
runs	in	daemon	mode.	(Bug	#14106)

The	ONLY_FULL_GROUP_BY	SQL	mode	now	also	applies	to	the	HAVING
clause.	That	is,	columns	not	named	in	the	GROUP	BY	clause	cannot	be	used
in	the	HAVING	clause	if	not	used	in	an	aggregate	function.	(Bug	#18739)

SQL	syntax	for	prepared	statements	now	supports	ANALYZE	TABLE,
OPTIMIZE	TABLE,	and	REPAIR	TABLE.	(Bug	#19308)

The	bundled	yaSSL	library	was	upgraded	to	version	1.3.5.	This	improves
handling	of	certain	problems	with	SSL-related	command	options.	(Bug
#17737)

Added	the	--set-charset	option	to	mysqlbinlog	to	allow	the	character	set
to	be	specified	for	processing	binary	log	files.	(Bug	#18351)

For	a	table	with	an	AUTO_INCREMENT	column,	SHOW	CREATE	TABLE	now
shows	the	next	AUTO_INCREMENT	value	to	be	generated.	(Bug	#19025)

It	is	now	possible	to	use	NEW.var_name	values	within	triggers	as	INOUT
parameters	to	stored	procedures.	(Bug	#14635)

The	mysqldumpslow	script	has	been	moved	from	client	RPM	packages	to
server	RPM	packages.	This	corrects	a	problem	where	mysqldumpslow
could	not	be	used	with	a	client-only	RPM	install,	because	it	depends	on
my_print_defaults	which	is	in	the	server	RPM.	(Bug	#20216)

Bugs	fixed:

mysqldump	would	not	dump	views	that	had	become	invalid	because	a
table	named	in	the	view	definition	had	been	dropped.	Instead,	it	quit	with
an	error	message.	Now	you	can	specify	the	--force	option	to	cause
mysqldump	to	keep	going	and	write	a	SQL	comment	containing	the	view
definition	to	the	dump	output.	(Bug	#17371)

The	WITH	CHECK	OPTION	was	not	enforced	when	a	REPLACE	statement	was
executed	against	a	view.	(Bug	#19789)

The	use	of	MIN()	and	MAX()	on	columns	with	a	partial	index	produced
incorrect	results	in	some	queries.	(Bug	#18206)

Concatenating	the	results	of	multiple	constant	subselects	produced	incorrect
results.	(Bug	#16716)

A	“table	not	found”	error	could	occur	for	statements	that	called	a	function
defined	in	another	database.	(Bug	#17199)

A	buffer	overwrite	error	in	Instance	Manager	caused	a	crash.	(Bug	#20622)

Re-execution	of	a	prepared	multiple-table	DELETE	statement	that	involves	a
trigger	or	stored	function	can	result	in	a	server	crash.	(Bug	#19634)

On	Windows,	corrected	a	crash	stemming	from	differences	in	Visual	C
runtime	library	routines	from	POSIX	behavior	regarding	invalid	file
descriptors.	(Bug	#18275)

Multiple-table	updates	with	FEDERATED	tables	could	cause	a	server	crash.
(Bug	#19773)

On	Windows,	terminating	mysqld	with	Control-C	could	result	in	a	crash
during	shutdown.	(Bug	#18235)

On	Windows,	removal	of	binary	log	files	would	fail	if	the	files	were	already
open.	(Bug	#19208)

mysqldump	produced	garbled	output	for	view	definitions.	(Bug	#18462)

The	omission	of	leading	zeros	in	dates	could	lead	to	erroneous	results	when
these	were	compared	with	the	output	of	certain	date	and	time	functions.
(Bug	#16377)

An	invalid	comparison	between	keys	in	partial	indexes	over	multi-byte
character	fields	could	lead	to	incorrect	result	sets	if	the	selected	query
execution	plan	used	a	range	scan	by	a	partial	index	over	a	UTF8	character
field.	This	also	caused	incorrect	results	under	similar	circumstances	with
many	other	character	sets.	(Bug	#14896)

NDB	Cluster:	Cluster	system	status	variables	were	not	updated.	(Bug
#11459)

NDB	Cluster:	The	cluster's	data	nodes	would	fail	while	trying	to	load	data
when	NoOfFrangmentLogFiles	was	equal	to	1.	(Bug	#19894)

NDB	Cluster:	A	problem	with	error	handling	when	ndb_use_exact_count
was	enabled	could	lead	to	incorrect	values	returned	from	queries	using
COUNT().	A	warning	is	now	returned	in	such	cases.	(Bug	#19202)

NDB	Cluster:	Restoring	a	backup	made	using	ndb_restore	failed	when	the
backup	had	been	taken	from	a	cluster	whose	data	memory	was	full.	(Bug
#19852)

NDB	Cluster:	TEXT	columns	in	Cluster	tables	having	both	an	explicit
primary	key	and	a	unique	key	were	not	correctly	updated	by	REPLACE
statements.	(Bug	#19906)

NDB	Cluster:	An	internal	formatting	error	caused	some	management	client
error	messages	to	be	unreadable.	(Bug	#20016)

NDB	Cluster:	Running	management	client	commands	while	mgmd	was	in
the	process	of	disconnecting	could	cause	the	management	server	to	fail.
(Bug	#19932)

NDB	Cluster	(NDBAPI):	Update	operations	on	blobs	were	not	checked	for
illegal	operations.

Note:	Read	locks	with	blob	update	operations	are	now	upgraded	from	read
committed	to	read	shared.

NDB	Cluster:	The	management	client	ALL	STOP	command	shut	down
mgmd	processes	(as	well	as	ndbd	processes).	(Bug	#18966)

NDB	Cluster:	LOAD	DATA	LOCAL	failed	to	ignore	duplicate	keys	in	Cluster
tables.	(Bug	#19496)

NDB	Cluster:	Repeated	CREATE	-	INSERT	-	DROP	operations	tables	could	in
some	circumstances	cause	the	MySQL	table	definition	cache	to	become
corrupt,	so	that	some	mysqld	processes	could	access	table	information	but
others	could	not.	(Bug	#18595)

NDB	Cluster:	The	mgm	client	command	ALL	CLUSTERLOG
STATISTICS=15;	had	no	effect.	(Bug	#20336)

NDB	Cluster:	TRUNCATE	TABLE	failed	to	reset	the	AUTO_INCREMENT	counter.
(Bug	#18864)

NDB	Cluster:	SELECT	...	FOR	UPDATE	failed	to	lock	the	selected	rows.
(Bug	#18184)

NDB	Cluster:	The	failure	of	a	data	node	when	preparing	to	commit	a
transaction	(that	is,	while	the	node's	status	was	CS_PREPARE_TO_COMMIT)
could	cause	the	failure	of	other	cluster	data	nodes.	(Bug	#20185)

NDB	Cluster:	Renaming	a	table	in	such	a	way	as	to	move	it	to	to	a	different
database	failed	to	move	the	table's	indexes.	(Bug	#19967)

NDB	Cluster:	Resources	for	unique	indexes	on	Cluster	table	columns	were
incorrectly	allocated,	so	that	only	one-fourth	as	many	unique	indexes	as
indicated	by	the	value	of	UniqueHashIndexes	could	be	created.	(Bug
#19623)

NDB	Cluster:	Running	ALL	START	in	the	NDB	management	client	or
restarting	multiple	nodes	simultaneously	could	under	some	circumstances
cause	the	cluster	to	crash.	(Bug	#19930)

NDB	Cluster:	SELECT	statements	with	a	BLOB	or	TEXT	column	in	the
selected	column	list	and	a	WHERE	condition	including	a	primary	key	lookup
on	a	VARCHAR	primary	key	produced	empty	result	sets.	Note:	This	issue
affected	the	5.0	series	of	MySQL	Cluster	releases	only.	(Bug	#19956)

NDB	Cluster	(NDBAPI):	On	big-endian	platforms,
NdbOperation::write_attr()	did	not	update	32-bit	fields	correctly.	(Bug
#19537)

NDB	Cluster:	Some	queries	having	a	WHERE	clause	of	the	form	c1=val1	OR
c2	LIKE	'val2'	were	not	evaluated	correctly.	(Bug	#	17421)

NDB	Cluster:	Using	“stale”	mysqld	.FRM	files	could	cause	a	newly-
restored	cluster	to	fail.	This	situation	could	arise	when	restarting	a	MySQL
Cluster	using	the	--intial	option	while	leaving	connected	mysqld
processes	running.	(Bug	#16875)

NDB	Cluster:	Repeated	use	of	the	SHOW	and	ALL	STATUS	commands	in	the
ndb_mgm	client	could	cause	the	mgmd	process	to	crash.	(Bug	#18591)

NDB	Cluster:	An	issue	with	ndb_mgmd	prevented	more	than	27	mysqld
processes	from	connecting	to	a	single	cluster	at	one	time.	(Bug	#17150)

NDB	Cluster:	Data	node	failures	could	cause	excessive	CPU	usage	by
ndb_mgmd.	(Bug	#13987)

NDB	Cluster:	TRUNCATE	failed	on	tables	having	BLOB	or	TEXT	columns	with
the	error	Lock	wait	timeout	exceeded.	(Bug	#19201)

NDB	Cluster:	Stopping	multiple	nodes	could	cause	node	failure	handling
not	to	be	completed.	(Bug	#19039)

NDB	Cluster:	ndbd	could	sometimes	fail	to	start	with	the	error	Node
failure	handling	not	completed	following	a	graceful	restart.	(Bug	#18550)

NDB	Cluster:	Backups	could	fail	for	large	clusters	with	many	tables,	where
the	number	of	tables	approached	MaxNoOfTables.	(Bug	#17607)

On	Windows,	temporary	tables	containing	‘:’	in	the	name	could	not	be
created.	(Bug	#20616)

The	--core-file-size	option	for	mysqld_safe	was	effective	only	for
root.	(Bug	#17353)

Some	queries	that	used	ORDER	BY	and	LIMIT	performed	quickly	in	MySQL

3.23,	but	slowly	in	MySQL	4.x/5.x	due	to	an	optimizer	problem.	(Bug
#4981)

mysql_upgrade	was	missing	from	binary	MySQL	distributions.	(Bug
#18516,	Bug	#20403)

Queries	using	an	indexed	column	as	the	argument	for	the	MIN()	and	MAX()
functions	following	an	ALTER	TABLE	..	DISABLE	KEYS	statement	returned
Got	error	124	from	storage	engine	until	ALTER	TABLE	...	ENABLE	KEYS
was	run	on	the	table.	(Bug	#20357)

A	number	of	dependency	issues	in	the	RPM	bench	and	test	packages
caused	installation	of	these	packages	to	fail.	(Bug	#20078)

Nested	natural	joins	worked	executed	correctly	when	executed	as	a	non-
prepared	statement	could	fail	with	an	Unknown	column	'col_name'	in	'field
list'	error	when	executed	as	a	prepared	statement,	due	to	a	name	resolution
problem.	(Bug	#15355)

GROUP	BY	on	an	expression	that	contained	a	cast	to	DECIMAL	produced	an
incorrect	result.	(Bug	#19667)

The	max_length	metadata	value	for	columns	created	from	CONCAT()	could
be	incorrect	when	the	collation	of	an	argument	differed	from	the	collation
of	the	CONCAT()	itself.	In	some	contexts	such	as	UNION,	this	could	lead	to
truncation	of	the	column	contents.	(Bug	#15962)

The	MD5()	and	SHA()	functions	treat	their	arguments	as	case-sensitive
strings.	But	when	they	are	compared,	their	arguments	were	compared	as
case-insensitive	strings,	which	leads	to	two	function	calls	with	different
arguments	(and	thus	different	results)	compared	as	being	identical.	This	can
lead	to	a	wrong	decision	made	in	the	range	optimizer	and	thus	to	an
incorrect	result	set.	(Bug	#15351)

For	BOOLEAN	mode	full-text	searches	on	non-indexed	columns,	NULL	rows
generated	by	a	LEFT	JOIN	caused	incorrect	query	results.	(Bug	#14708)

BIT	columns	in	a	table	could	cause	joins	that	use	the	table	to	fail.	(Bug
#18895)

A	UNION	over	more	than	128	SELECT	statements	that	use	an	aggregate
function	failed.	(Bug	#18175)

InnoDB	unlocked	its	data	directory	before	committing	a	transaction,
potentially	resulting	in	non-recoverable	tables	if	a	server	crash	occurred
before	the	commit.	(Bug	#19727)

Multiple-table	DELETE	statements	containing	a	subquery	that	selected	from
one	of	the	tables	being	modified	caused	a	server	crash.	(Bug	#19225)

With	settings	of	read_buffer_size	>=	2G	and	read_rnd_buffer_size
>=2G,	LOAD	DATA	INFILE	failed	with	no	error	message	or	caused	a	server
crash	for	files	larger	than	2GB.	(Bug	#12982)

REPLACE	statements	caused	activation	of	UPDATE	triggers,	not	DELETE	and
INSERT	triggers.	(Bug	#13479)

The	thread	for	INSERT	DELAYED	rows	was	maintaining	a	separate
AUTO_INCREMENT	counter,	resulting	in	incorrect	values	being	assigned	if
DELAYED	and	non-DELAYED	inserts	were	mixed.	(Bug	#20195)

mysqldump	wrote	an	extra	pair	of	DROP	DATABASE	and	CREATE	DATABASE
statements	if	run	with	the	--add-drop-database	option	and	the	database
contained	views.	(Bug	#17201)

On	64-bit	Windows	systems,	REGEXP	for	regular	expressions	with	exactly
31	characters	did	not	work.	(Bug	#19407)

For	mysqld,	Valgrind	revealed	problems	that	were	corrected:	A	dangling
stack	pointer	being	overwritten	(Bug	#20769);	possible	uninitialized	data	in
a	string	comparison	(Bug	#20783);	memory	corruption	in	replication	slaves
when	switching	databases	(Bug	#19022);	syscall	write	parameter	pointing
to	uninitialized	byte	(Bug	#20579).

For	ndb_mgmd,	Valgrind	revealed	problems	that	were	corrected:	A
memory	leak	(Bug	#19318);	a	dependency	on	an	uninitialized	variable	(Bug
#20333).

An	update	that	used	a	join	of	a	table	to	itself	and	modified	the	table	on	both
sides	of	the	join	reported	the	table	as	crashed.	(Bug	#18036)

SSL	connections	using	yaSSL	on	OpenBSD	could	fail.	(Bug	#19191)

On	Windows,	multiple	clients	simultaneously	attempting	to	perform	ALTER
TABLE	operations	on	an	InnoDB	table	could	deadlock.	(Bug	#17264)

The	fill_help_tables.sql	file	did	not	load	properly	if	the	ANSI_QUOTES
SQL	mode	was	enabled.	(Bug	#20542)

The	fill_help_tables.sql	file	did	not	contain	a	SET	NAMES	'utf8'
statement	to	indicate	its	encoding.	This	caused	problems	for	some	settings
of	the	MySQL	character	set	such	as	big5.	(Bug	#20551)

The	MySQL	server	startup	script	/etc/init.d/mysql	(created	from
mysql.server)	is	now	marked	to	ensure	that	the	system	services	ypbind,
nscd,	ldap,	and	NTP	are	started	first	(if	these	are	configured	on	the
machine).	(Bug	#18810)

MERGE	tables	did	not	work	reliably	with	BIT	columns.	(Bug	#19648)

For	a	reference	to	a	non-existent	index	in	FORCE	INDEX,	the	error	message
referred	to	a	column,	not	an	index.	(Bug	#17873)

Some	yaSSL	public	function	names	conflicted	with	those	from	OpenSSL,
causing	conflicts	for	applications	that	linked	against	both	OpenSSL	and	a
version	of	libmysqlclient	that	was	built	with	yaSSL	support.	The	yaSSL
public	functions	now	are	renamed	to	avoid	this	conflict.	(Bug	#19575)

CHECK	TABLE	temporarily	cleared	the	AUTO_INCREMENT	value.	Because	it
runs	with	a	read	lock,	other	readers	could	perform	concurrent	inserts,	and	if
so,	they	could	get	an	incorrect	AUTO_INCREMENT	value.	CHECK	TABLE	no
longer	modifies	the	AUTO_INCREMENT	value.	(Bug	#19604)

If	there	is	a	global	read	lock,	CREATE	DATABASE,	RENAME	DATABASE,	and
DROP	DATABASE	could	deadlock.	(Bug	#19815)

On	Linux,	libmysqlclient	when	compiled	with	yaSSL	using	the	icc
compiler	had	a	spurious	dependency	on	C++	libraries.	(Bug	#20119)

Using	CONCAT(@user_var,	col_name),	where	col_name	is	a	column	in	an
INFORMATION_SCHEMA	table,	could	cause	erroneous	duplication	of	data	in	the

query	result.	(Bug	#19599)

Results	from	INFORMATION_SCHEMA.SCHEMATA	could	contain	uppercase
information	when	lower_case_table_names	was	not	0.	(Bug	#17661)

Grant	table	modifications	sometimes	did	not	refresh	the	in-memory	tables	if
the	hostname	was	''	or	not	specified.	(Bug	#16297)

Invalid	escape	sequences	in	option	files	caused	MySQL	programs	that	read
them	to	abort.	(Bug	#15328)

InnoDB	did	not	increment	the	handler_read_prev	counter.	(Bug	#19542)

Race	conditions	on	certain	platforms	could	cause	the	Instance	Manager	to
fail	to	initialize.	(Bug	#19391)

ALTER	TABLE	on	a	table	created	prior	to	5.0.3	would	cause	table	corruption
if	the	ALTER	TABLE	did	one	of	the	following:

Change	the	default	value	of	a	column.

Change	the	table	comment.

Change	the	table	password.

(Bug	#17001)

An	ALTER	TABLE	operation	that	does	not	need	to	copy	data,	when	executed
on	a	table	created	prior	to	MySQL	4.0.25,	could	result	in	a	server	crash	for
subsequent	accesses	to	the	table.	(Bug	#19192)

The	binary	log	lacked	character	set	information	for	table	name	when
dropping	temporary	tables.	(Bug	#14157)

A	B-TREE	index	on	a	MEMORY	table	erroneously	reported	duplicate	entry	error
for	multiple	NULL	values.	(Bug	#12873)

Race	conditions	on	certain	platforms	could	cause	the	Instance	Manager	to
try	to	restart	the	same	instance	multiple	times.	(Bug	#18023)

A	CREATE	TABLE	statement	that	created	a	table	from	a	materialized	view	did

not	inherit	default	values	from	the	underlying	table.	(Bug	#19089)

The	COM_STATISTICS	command	was	changed	in	5.0.3	to	display	session
status	variable	values	rather	than	global	values.	This	causes	mysqladmin
status	information	not	to	be	useful	for	the	Slow	queries	and	Opens	values.
Now	COM_STATISTICS	displays	the	global	values	for	Slow	queries	and
Opens.	(Bug	#18669)

INFORMATION_SCHEMA.TABLES	provided	inconsistent	info	about	invalid
views.	This	could	cause	server	crashes	or	result	in	incorrect	data	being
returned	for	queries	that	attempt	to	obtain	information	from
INFORMATION_SCHEMA	tables	about	views	using	stored	functions.	(Bug
#18282)

Multiple	calls	to	a	stored	procedure	that	selects	from	INFORMATION_SCHEMA
could	cause	a	server	crash.	(Bug	#17204)

Premature	optimization	of	nested	subqueries	in	the	FROM	clause	that	refer	to
aggregate	functions	could	lead	to	incorrect	results.	(Bug	#19077)

A	view	definition	that	referred	to	an	alias	in	the	HAVING	clause	could	be
saved	in	the	.frm	file	with	the	alias	replaced	by	the	expression	that	it
referred	to,	causing	failure	of	subsequent	SELECT	*	FROM	view_name
statements.	(Bug	#19573)

Several	aspects	of	view	privileges	were	being	checked	incorrectly.	(Bug
#18681,	Bug	#20363)

A	view	with	a	non-existent	account	in	the	DEFINER	clause	caused	SHOW
CREATE	VIEW	to	fail.	Now	SHOW	CREATE	VIEW	issues	a	warning	instead.
(Bug	#20048)

A	bug	in	NTPL	threads	on	Linux	could	result	in	a	deadlock	with	FLUSH
TABLES	WITH	READ	LOCK	under	some	conditions.	(Bug	#20048)

MyISAM	table	deadlock	was	possible	if	one	thread	issued	a	LOCK	TABLES
request	for	write	locks	and	then	an	administrative	statement	such	as
OPTIMIZE	TABLE,	if	between	the	two	statements	another	client	meanwhile
issued	a	multiple-table	SELECT	for	some	of	the	locked	tables.	(Bug	#16986)

Subqueries	that	produced	a	BIGINT	UNSIGNED	value	were	being	treated	as
returning	a	signed	value.	(Bug	#19700)

The	patch	for	Bug	#17164	introduced	the	problem	that	some	outer	joins
were	incorrectly	converted	to	inner	joins.	(Bug	#19816)

BLOB	or	TEXT	arguments	to	or	values	returned	from	stored	functions	were
not	copied	properly	if	too	long	and	could	become	garbled.	(Bug	#18587)

Selecting	data	from	a	MEMORY	table	with	a	VARCHAR	column	and	a	HASH	index
over	it	returned	only	the	first	row	matched.	(Bug	#18233)

CREATE	TABLE	...	SELECT	did	not	always	produce	the	proper	column
default	value	in	TRADITIONAL	SQL	mode.	(Bug	#17626)

Privilege	checking	on	the	contents	of	the	INFORMATION_SCHEMA.VIEWS	table
was	insufficiently	restrictive.	(Bug	#16681)

The	result	from	CONV()	is	a	string,	but	was	not	always	treated	the	same	way
as	a	string	when	converted	to	a	real	value	for	an	arithmetic	operation.	(Bug
#13975)

CREATE	TABLE	...	SELECT	...	statements	that	used	a	stored	function
explicitly	or	implicitly	(through	a	view)	resulted	in	a	Table	not	locked
error.	(Bug	#12472,	Bug	#15137)

Within	a	trigger,	SET	used	the	SQL	mode	of	the	invoking	statement,	not	the
mode	in	effect	at	trigger	creation	time.	(Bug	#6951)

The	server	no	longer	uses	a	signal	handler	for	signal	0	because	it	could
cause	a	crash	on	some	platforms.	(Bug	#15869)

Revised	memory	allocation	for	local	objects	within	stored	functions	and
triggers	to	avoid	memory	leak	for	repeated	function	or	trigger	invocation.
(Bug	#17260)

EXPLAIN	...	SELECT	INTO	caused	the	client	to	hang.	(Bug	#15463)

Symlinking	.mysql_history	to	/dev/null	to	suppress	statement	history
saving	by	mysql	did	not	work.	(mysql	deleted	the	symlink	and	recreated

.mysql_history	as	a	regular	file,	and	then	wrote	history	to	it.)	(Bug
#16803)

The	basedir	and	tmpdir	system	variables	could	not	be	accessed	via
@@var_name	syntax.	(Bug	#1039)

For	certain	CREATE	VIEW	statements,	the	server	did	not	detect	invalid
subqueries	within	the	SELECT	part.	(Bug	#7549)

The	range	operator	failed	and	caused	a	server	crash	for	clauses	of	the	form
tbl_name.unsigned_keypart	NOT	IN	(negative_const,	...).	(Bug	#19618)

Returning	the	value	of	a	system	variable	from	a	stored	function	caused	a
server	crash.	(Bug	#18037)

Updates	to	a	MEMORY	table	caused	the	size	of	BTREE	indexes	for	the	table	to
increase.	(Bug	#18160)

REPAIR	TABLE	did	not	restore	the	length	for	packed	keys	in	tables	created
under	MySQL	4.x.	(Bug	#17810)

Selecting	from	a	view	that	used	GROUP	BY	on	a	non-constant	temporal
interval	(such	as	DATE(col)	+	INTERVAL	TIME_TO_SEC(col)	SECOND
could	cause	a	server	crash.	(Bug	#19490)

An	outer	join	of	two	views	that	was	written	using	{	OJ	...	}	syntax	could
cause	a	server	crash.	(Bug	#19396)

LOAD_FILE()	returned	an	error	if	the	file	did	not	exist,	rather	than	NULL	as	it
should	according	to	the	manual.	(Bug	#10418)

For	certain	CREATE	TABLE	...	SELECT	statements,	the	selected	values	were
truncated	when	inserted	into	the	new	table.	(Bug	#17048)

Use	of	uninitialized	user	variables	in	a	subquery	in	the	FROM	clause	results
in	bad	entries	in	the	binary	log.	(Bug	#19136)

In	the	INFORMATION_SCHEMA.COLUMNS	table,	the	values	for	the
CHARACTER_MAXIMUM_LENGTH	and	CHARACTER_OCTET_LENGTH	columns	were
incorrect	for	multi-byte	character	sets.	(Bug	#19236)

An	entry	in	the	mysql.proc	table	with	an	empty	routine	name	caused
access	to	the	INFORMATION_SCHEMA.ROUTINES	table	to	crash	the	server.	(Bug
#18177)

A	range	access	optimizer	heuristic	was	invalid,	causing	some	queries	to	be
much	slower	in	MySQL	5.0	than	in	4.0.	(Bug	#17379,	Bug	#18940)

IS_USED_LOCK()	could	return	an	incorrect	connection	identifier.	(Bug
#16501)

mysql	displayed	NULL	for	strings	that	are	empty	or	contain	only	spaces.
(Bug	#19564)

Concurrent	reading	and	writing	of	privilege	structures	could	crash	the
server.	(Bug	#16372)

A	NUL	byte	within	a	comment	in	a	statement	string	caused	the	rest	of	the
string	not	to	be	written	to	the	query	log,	allowing	logging	to	be	bypassed.
(CVE-2006-0903)	(Bug	#17667)

mysql-test-run.pl	started	NDB	even	for	test	cases	that	didn't	need	it.	(Bug
#19083)

SELECT	DISTINCT	queries	sometimes	returned	only	the	last	row.	(Bug
#18068)

Use	of	CONVERT_TZ()	in	a	stored	function	or	trigger	(or	in	a	stored
procedure	called	from	a	stored	function	or	trigger)	caused	an	error.	(Bug
#11081)

Some	queries	were	slower	in	5.0	than	in	4.1	because	some	4.1	cost-
evaluation	code	had	not	been	merged	into	5.0.	(Bug	#14292)

Index	prefixes	for	utf8	VARCHAR	columns	did	not	work	for	UPDATE
statements.	(Bug	#19080)

InnoDB	does	not	support	SPATIAL	indexes,	but	did	not	prevent	creation	of
such	an	index.	(Bug	#15860)

The	configuration	information	for	building	the	embedded	server	on

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0903

Windows	was	missing	a	file.	(Bug	#18455)

The	parser	leaked	memory	when	its	stack	needed	to	be	extended.	(Bug
#18930)

When	myisamchk	needed	to	rebuild	a	table,	AUTO_INCREMENT	information
was	lost.	(Bug	#10405)

LOAD	DATA	FROM	MASTER	would	fail	when	trying	to	load	the
INFORMATION_SCHEMA	database	from	the	master,	because	the
INFORMATION_SCHEMA	system	database	would	already	exist	on	the	slave.
(Bug	#18607)

The	binary	log	would	create	an	incorrect	DROP	query	when	creating
temporary	tables	during	replication.	(Bug	#17263)

The	IN-to-EXISTS	transformation	was	making	a	reference	to	a	parse	tree
fragment	that	was	left	out	of	the	parse	tree.	This	caused	problems	with
prepared	statements.	(Bug	#18492)

In	mysqltest,	--sleep=0	had	no	effect.	Now	it	correctly	causes	sleep
commands	in	test	case	files	to	sleep	for	0	seconds.	(Bug	#18312)

Attempting	to	set	the	default	value	of	an	ENUM	or	SET	column	to	NULL	caused
a	server	crash.	(Bug	#19145)

The	sql_notes	and	sql_warnings	system	variables	were	not	always
displayed	correctly	by	SHOW	VARIABLES	(for	example,	they	were	displayed
as	ON	after	being	set	to	OFF).	(Bug	#16195)

The	sql_big_selects	system	variable	was	not	displayed	by	SHOW
VARIABLES.	(Bug	#17849)

The	system_time_zone	and	version_*	system	variables	could	not	be
accessed	via	SELECT	@@var_name	syntax.	(Bug	#12792,	Bug	#15684)

Flushing	the	compression	buffer	(via	FLUSH	TABLE)	no	longer	increases	the
size	of	an	unmodified	ARCHIVE	table.	(Bug	#19204)

RPM	packages	had	spurious	dependencies	on	Perl	modules	and	other

programs.	(Bug	#13634)

D.1.4.	Changes	in	release	5.0.22	(24	May	2006)

This	is	a	security	fix	release	for	the	previous	production	release	family.

This	release	includes	the	security	fix	described	later	in	this	section	and	a	few
other	changes	to	resolve	build	problems,	relative	to	the	last	official	MySQL
release	(5.0.21).	If	you	would	like	to	receive	more	fine-grained	and	personalized
update	alerts	about	fixes	that	are	relevant	to	the	version	and	features	you	use,
please	consider	subscribing	to	MySQL	Network	(a	commercial	MySQL	offering).
For	more	details	please	see	http://www.mysql.com/network/advisors.html.

Bugs	fixed:

Security	fix:	An	SQL-injection	security	hole	has	been	found	in	multi-byte
encoding	processing.	The	bug	was	in	the	server,	incorrectly	parsing	the
string	escaped	with	the	mysql_real_escape_string()	C	API	function.
(CVE-2006-2753,	Bug#8378)

This	vulnerability	was	discovered	and	reported	by	Josh	Berkus
<josh@postgresql.org>	and	Tom	Lane	<tgl@sss.pgh.pa.us>	as	part	of
the	inter-project	security	collaboration	of	the	OSDB	consortium.	For	more
information	about	SQL	injection,	please	see	the	following	text.

Discussion:	An	SQL-injection	security	hole	has	been	found	in	multi-byte
encoding	processing.	An	SQL-injection	security	hole	can	include	a	situation
whereby	when	a	user	supplied	data	to	be	inserted	into	a	database,	the	user
might	inject	SQL	statements	into	the	data	that	the	server	will	execute.	With
regards	to	this	vulnerability,	when	character	set	unaware-escaping	is	used
(for	example,	addslashes()	in	PHP),	it	is	possible	to	bypass	the	escaping
in	some	multi-byte	character	sets	(for	example,	SJIS,	BIG5	and	GBK).	As	a
result,	a	function	such	as	addslashes()	is	not	able	to	prevent	SQL-
injection	attacks.	It	is	impossible	to	fix	this	on	the	server	side.	The	best
solution	is	for	applications	to	use	character	set-aware	escaping	offered	by	a
function	such	mysql_real_escape_string().

However,	a	bug	was	detected	in	how	the	MySQL	server	parses	the	output	of
mysql_real_escape_string().	As	a	result,	even	when	the	character	set-

http://www.mysql.com/network/advisors.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2753
mailto:josh@postgresql.org
mailto:tgl@sss.pgh.pa.us

aware	function	mysql_real_escape_string()	was	used,	SQL	injection
was	possible.	This	bug	has	been	fixed.

Workarounds:	If	you	are	unable	to	upgrade	MySQL	to	a	version	that
includes	the	fix	for	the	bug	in	mysql_real_escape_string()	parsing,	but
run	MySQL	5.0.1	or	higher,	you	can	use	the	NO_BACKSLASH_ESCAPES	SQL
mode	as	a	workaround.	(This	mode	was	introduced	in	MySQL	5.0.1.)
NO_BACKSLASH_ESCAPES	enables	an	SQL	standard	compatibility	mode,
where	backslash	is	not	considered	a	special	character.	The	result	will	be	that
queries	will	fail.

To	set	this	mode	for	the	current	connection,	enter	the	following	SQL
statement:

SET	sql_mode='NO_BACKSLASH_ESCAPES';

You	can	also	set	the	mode	globally	for	all	clients:

SET	GLOBAL	sql_mode='NO_BACKSLASH_ESCAPES';

This	SQL	mode	also	can	be	enabled	automatically	when	the	server	starts	by
using	the	command-line	option	--sql-mode=NO_BACKSLASH_ESCAPES	or	by
setting	sql-mode=NO_BACKSLASH_ESCAPES	in	the	server	option	file	(for
example,	my.cnf	or	my.ini,	depending	on	your	system).

The	patch	for	Bug	#8303	broke	the	fix	for	Bug	#8378	and	was	undone.	(In
string	literals	with	an	escape	character	(\)	followed	by	a	multi-byte
character	that	has	a	second	byte	of	(\),	the	literal	was	not	interpreted
correctly.	The	next	byte	now	is	escaped,	not	the	entire	multi-byte	character.
This	means	it	a	strict	reverse	of	the	mysql_real_escape_string()
function.)

The	client	libraries	had	not	been	compiled	for	position-indpendent	code	on
Solaris-SPARC	and	AMD	x86_64	platforms.	(Bug	#13159,	Bug	#14202,
Bug	#18091)

Running	myisampack	followed	by	myisamchk	with	the	--unpack	option
would	corrupt	the	auto_increment	key.	(Bug	#12633)

D.1.5.	Changes	in	release	5.0.21	(02	May	2006)

This	is	a	bugfix	release	for	the	current	production	release	family.

This	MySQL	5.0.21	release	includes	the	patches	for	recently	reported	security
vulnerabilites	in	the	MySQL	client-server	protocol.	We	would	like	to	thank
Stefano	Di	Paola	<stefano.dipaola@wisec.it>	for	finding	and	reporting	these
to	us.

This	section	documents	all	changes	and	bug	fixes	that	have	been	applied	since
the	last	official	MySQL	release.	If	you	would	like	to	receive	more	fine-grained
and	personalized	update	alerts	about	fixes	that	are	relevant	to	the	version	and
features	you	use,	please	consider	subscribing	to	MySQL	Network	(a	commercial
MySQL	offering).	For	more	details	please	see
http://www.mysql.com/network/advisors.html.

Functionality	added	or	changed:

Security	enhancement:	Added	the	global	max_prepared_stmt_count
system	variable	to	limit	the	total	number	of	prepared	statements	in	the
server.	This	limits	the	potential	for	denial-of-service	attacks	based	on
running	the	server	out	of	memory	by	preparing	huge	numbers	of	statements.
The	current	number	of	prepared	statements	is	available	through	the
prepared_stmt_count	system	variable.	(Bug	#16365)

The	MySQL-shared-compat-5.0.X-.i386.rpm	shared	compatibility	RPMs	no
longer	contain	libraries	for	MySQL	5.1.	This	avoids	a	conflict	because	the
5.0	and	5.1	libraries	share	the	same	soname	number.	It	contains	libraries	for
3.23,	4.0,	4.1,	and	5.0.	(Bug	#19288)

Creating	a	table	in	an	InnoDB	database	with	a	column	name	that	matched
the	name	of	an	internal	InnoDB	column	(including	DB_ROW_ID,	DB_TRX_ID,
DB_ROLL_PTR	and	DB_MIX_ID)	would	cause	a	crash.	MySQL	now	returns
error	1005	(cannot	create	table)	with	errno	set	to	-1.	(Bug	#18934)

NDB	Cluster:	It	is	now	possible	to	perform	a	partial	start	of	a	cluster.	That
is,	it	is	now	possible	to	bring	up	the	cluster	without	running	ndbd	--initial
on	all	configured	data	nodes	first.	(Bug	#18606)

NDB	Cluster:	A	new	--nowait-nodes	startup	option	for	ndbd	makes	it
possible	to	“skip”	specific	nodes	without	waiting	for	them	to	start	when
starting	the	cluster.	See	Section	15.6.5.2,	“Command	Options	for	ndbd”.

mailto:stefano.dipaola@wisec.it
http://www.mysql.com/network/advisors.html

NDB	Cluster:	It	is	now	possible	to	install	MySQL	with	Cluster	support	to	a
non-default	location	and	change	the	search	path	for	font	description	files
using	either	the	--basedir	or	--character-sets-dir	options.	(Previously
in	MySQL	5.0,	ndbd	searched	only	the	default	path	for	character	sets.)

In	result	set	metadata,	the	MYSQL_FIELD.length	value	for	BIT	columns	now
is	reported	in	number	of	bits.	For	example,	the	value	for	a	BIT(9)	column	is
9.	(Formerly,	the	value	was	related	to	number	of	bytes.)	(Bug	#13601)

The	default	for	the	innodb_thread_concurrency	system	variable	was
changed	to	8.	(Bug	#15868)

Bugs	fixed:

Security	fix:	A	malicious	client,	using	specially	crafted	invalid	login	or
COM_TABLE_DUMP	packets	was	able	to	read	uninitialized	memory,	which
potentially,	though	unlikely	in	MySQL,	could	have	led	to	an	information
disclosure.	(CVE-2006-1516,	CVE-2006-1517)	Thanks	to	Stefano	Di	Paola
<stefano.dipaola@wisec.it>	for	finding	and	reporting	this	bug.

Security	fix:	A	malicious	client,	using	specially	crafted	invalid
COM_TABLE_DUMP	packets	was	able	to	trigger	an	exploitable	buffer	overflow
on	the	server.	(CVE-2006-1518)	Thanks	to	Stefano	Di	Paola
<stefano.dipaola@wisec.it>	for	finding	and	reporting	this	bug.

Security	fix:	Invalid	arguments	to	DATE_FORMAT()	caused	a	server	crash.
(CVE-2006-3469,	Bug	#20729)	Thanks	to	Jean-David	Maillefer	for
discovering	and	reporting	this	problem	to	the	Debian	project	and	to
Christian	Hammers	from	the	Debian	Team	for	notifying	us	of	it.

NDB	Cluster:	A	simultaneous	DROP	TABLE	and	table	update	operation
utilising	a	table	scan	could	trigger	a	node	failure.	(Bug	#18597)

mysql-test-run	could	not	be	run	as	root.	(Bug	#17002)

MySQL-shared-compat-5.0.13-0.i386.rpm,	MySQL-shared-compat-
5.0.15-0.i386.rpm,	MySQL-shared-compat-5.0.18-0.i386.rpm,	MySQL-
shared-compat-5.0.19-0.i386.rpm,	MySQL-shared-compat-5.0.20-
0.i386.rpm,	and	MySQL-shared-compat-5.0.20a-0.i386.rpm	incorrectly
depended	on	glibc	2.3	and	could	not	be	installed	on	a	glibc	2.2	system.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1516
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1517
mailto:stefano.dipaola@wisec.it
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1518
mailto:stefano.dipaola@wisec.it
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3469

(Bug	#16539)

IA-64	RPM	packages	for	Red	Hat	and	SuSE	Linux	that	were	built	with	the
icc	compiler	incorrectly	depended	on	icc	runtime	libraries.	(Bug	#16662)

After	calling	FLUSH	STATUS,	the	max_used_connections	variable	did	not
increment	for	existing	connections	and	connections	which	use	the	thread
cache.	(Bug	#15933)

MySQL	would	not	compile	on	Linux	distributions	that	use	the	tinfo	library.
(Bug	#18912)

Within	a	trigger,	CONNECTION_ID()	did	not	return	the	connection	ID	of	the
thread	that	caused	the	trigger	to	be	activated.	(Bug	#16461)

The	yaSSL	library	returned	a	cipher	list	in	a	manner	incompatible	with
OpenSSL.	(Bug	#18399)

For	single-SELECT	union	constructs	of	the	form	(SELECT	...	ORDER	BY
order_list1	[LIMIT	n])	ORDER	BY	order_list2,	the	ORDER	BY	lists
were	concatenated	and	the	LIMIT	clause	was	ignored.	(Bug	#18767)

CREATE	VIEW	statements	would	not	be	replicated	to	the	slave	if	the	--
replicate-wild-ignore-table	rule	was	enabled.	(Bug	#18715)

Index	corruption	could	occur	in	cases	when	key_cache_block_size	was
not	a	multiple	of	myisam_block_size	(for	example,	with
key_cache_block_size=1536	and	myisam_block_size=1024).	(Bug
#19079)

LAST_INSERT_ID()	in	a	stored	function	or	trigger	returned	zero.	.	(Bug
#15728)

Use	of	CONVERT_TZ()	in	a	view	definition	could	result	in	spurious	syntax	or
access	errors.	(Bug	#15153)

UNCOMPRESS(NULL)	could	cause	subsequent	UNCOMPRESS()	calls	to	return
NULL	for	legal	non-NULL	arguments.	(Bug	#18643)

Conversion	of	a	number	to	a	CHAR	UNICODE	string	returned	an	invalid	result.

(Bug	#18691)

DELETE	and	UPDATE	statements	that	used	large	NOT	IN	(value_list)
clauses	could	use	large	amounts	of	memory.	(Bug	#15872)

Prevent	recursive	views	caused	by	using	RENAME	TABLE	on	a	view	after
creating	it.	(Bug	#14308)

A	LOCK	TABLES	statement	that	failed	could	cause	MyISAM	not	to	update	table
statistics	properly,	causing	a	subsequent	CHECK	TABLE	to	report	table
corruption.	(Bug	#18544)

For	a	reference	to	a	non-existent	stored	function	in	a	stored	routine	that	had
a	CONTINUE	handler,	the	server	continued	as	though	a	useful	result	had	been
returned,	possibly	resulting	in	a	server	crash.	(Bug	#18787)

InnoDB	did	not	use	a	consistent	read	for	CREATE	...	SELECT	when
innodb_locks_unsafe_for_binlog	was	set.	(Bug	#18350)

InnoDB	could	read	a	delete	mark	from	its	system	tables	incorrectly.	(Bug
#19217)

Corrected	a	syntax	error	in	mysql-test-run.sh.	(Bug	#19190)

A	missing	DBUG_RETURN()	caused	the	server	to	emit	a	spurious	error
message:	missing	DBUG_RETURN	or	DBUG_VOID_RETURN	macro	in
function	"open_table".	(Bug	#18964)

DROP	DATABASE	did	not	drop	stored	routines	associated	with	the	database	if
the	database	name	was	longer	than	21	characters.	(Bug	#18344)

Avoid	trying	to	include	<asm/atomic.h>	when	it	doesn't	work	in	C++	code.
(Bug	#13621)

Executing	SELECT	on	a	large	table	that	had	been	compressed	within
myisampack	could	cause	a	crash.	(Bug	#17917)

NDB	Cluster:	When	attempting	to	create	an	index	on	a	BIT	or	BLOB	column,
Error	743:	Unsupported	character	set	in	table	or	index	was	returned	instead
of	Error	906:	Unsupported	attribute	type	in	index.

Within	stored	routines,	usernames	were	parsed	incorrectly	if	they	were
enclosed	within	quotes.	(Bug	#13310)

Casting	a	string	to	DECIMAL	worked,	but	casting	a	trimmed	string	(using
LTRIM()	or	RTRIM())	resulted	in	loss	of	decimal	digits.	(Bug	#17043)

NDB	Cluster:	On	slow	networks	or	CPUs,	the	management	client	SHOW
command	could	sometimes	erroneously	show	all	data	nodes	as	being	master
nodes	belonging	to	nodegroup	0.	(Bug	#15530)

If	the	second	or	third	argument	to	BETWEEN	was	a	constant	expression	such
as	'2005-09-01	-	INTERVAL	6	MONTH	and	the	other	two	arguments	were
columns,	BETWEEN	was	evaluated	incorrectly.	(Bug	#18618)

If	the	first	argument	to	BETWEEN	was	a	DATE	or	TIME	column	of	a	view	and
the	other	arguments	were	constants,	BETWEEN	did	not	perform	conversion	of
the	constants	to	the	appropriate	temporary	type,	resulting	in	incorrect
evaluation.	(Bug	#16069)

Server	and	clients	ignored	the	--sysconfdir	option	that	was	passed	to
configure.	(Bug	#15069)

NDB	Cluster:	In	a	2-node	cluster	with	a	node	failure,	restarting	the	node
with	a	low	value	for	StartPartialTimeout	could	cause	the	cluster	to	come
up	partitioned	(“split-brain”	issue).	(Bug	#16447)

A	similar	issue	could	occur	when	the	cluster	was	first	started	with	a
sufficiently	low	value	for	this	parameter.	(Bug	#18612)

NDB	Cluster:	On	systems	with	multiple	network	interfaces,	data	nodes
would	get	“stuck”	in	startup	phase	2	if	the	interface	connecting	them	to	the
management	server	was	working	on	node	startup	while	the	interface
interconnecting	the	data	nodes	experienced	a	temporary	outage.	(Bug
#15695)

NDB	Cluster:	Unused	open	handlers	for	tables	in	which	the	metadata	had
changed	were	not	properly	closed.	This	could	result	in	stale	results	from
Cluster	tables	following	an	ALTER	TABLE.	(Bug	#13228)

NDB	Cluster:	Uninitialized	internal	variables	could	lead	to	unexpected

results.	(Bug	#11033,	Bug	#11034)

For	InnoDB	tables,	an	expression	of	the	form	col_name	BETWEEN
col_name2	-	INTERVAL	x	DAY	AND	col_name2	+	INTERVAL	x	DAY
when	used	in	a	join	returned	incorrect	results.	(Bug	#14360)

INSERT	DELAYED	into	a	view	caused	an	infinite	loop.	(Bug	#13683)

Lettercase	in	database	name	qualifiers	was	not	consistently	handled
properly	in	queries	when	lower_case_table_names	was	set	to	1.	(Bug
#15917)

The	optimizer	could	cause	a	server	crash	or	use	a	non-optimal	subset	of
indexes	when	evaluating	whether	to	use	Index	Merge/Intersection
variant	of	index_merge	optimization.	(Bug	#19021)

The	presence	of	multiple	equalities	in	a	condition	after	reading	a	constant
table	could	cause	the	optimizer	not	to	use	an	index.	This	resulted	in	certain
queries	being	much	slower	than	in	MySQL	4.1.	(Bug	#16504)

A	recent	change	caused	the	mysql	client	not	to	display	NULL	values
correctly	and	to	display	numeric	columns	left-justified	rather	than	right-
justified.	The	problems	have	been	corrected.	(Bug	#18265)

mysql_reconnect()	sent	a	SET	NAMES	statement	to	the	server,	even	for	pre-
4.1	servers	that	do	not	understand	the	statement.	(Bug	#18830)

COUNT(*)	on	a	MyISAM	table	could	return	different	results	for	the	base	table
and	a	view	on	the	base	table.	(Bug	#18237)

DELETE	with	LEFT	JOIN	for	InnoDB	tables	could	crash	the	server	if
innodb_locks_unsafe_for_binlog	was	enabled.	(Bug	#15650)

InnoDB	failure	to	release	an	adaptive	hash	index	latch	could	cause	a	server
crash	if	the	query	cache	was	enabled.	(Bug	#15758)

For	mysql.server,	if	the	basedir	option	was	specified	after	datadir	in	an
option	file,	the	setting	for	datadir	was	ignored	and	assumed	to	be	located
under	basedir.	(Bug	#16240)

The	euro	sign	(€)	was	not	stored	correctly	in	columns	using	the
latin1_german1_ci	or	latin1_general_ci	collation.	(Bug	#18321)

EXTRACT(QUARTER	FROM	date)	returned	unexpected	results.	(Bug	#18100)

TRUNCATE	did	not	reset	the	AUTO_INCREMENT	counter	for	MyISAM	tables	when
issued	inside	a	stored	procedure.	(Bug	#14945)

Note:	This	bug	did	not	affect	InnoDB	tables.	Also,	TRUNCATE	does	not	reset
the	AUTO_INCREMENT	counter	for	NDBCluster	tables	regardless	of	when	it	is
called	(see	Bug	#18864).

The	server	was	always	built	as	though	--with-extra-charsets=complex
had	been	specified.	(Bug	#12076)

A	query	using	WHERE	(column_1,	column_2)	IN	((value_1,	value_2)[,	(...,
...),	...])	would	return	incorrect	results.	(Bug	#16248)

Queries	of	the	form	SELECT	DISTINCT	timestamp_column	WHERE
date_function(timestamp_col)	=	constant	did	not	return	all	matching
rows.	(Bug	#16710)

When	running	a	query	that	contained	a	GROUP_CONCAT(SELECT
GROUP_CONCAT(...)),	the	result	was	NULL	except	in	the	ROLLUP	part	of	the
result,	if	there	was	one.	(Bug	#15560)

For	tables	created	in	a	MySQL	4.1	installation	upgraded	to	MySQL	5.0	and
up,	multiple-table	updates	could	update	only	the	first	matching	row.	(Bug
#16281)

NDB	Cluster:	When	multiple	node	restarts	were	attempted	without
allowing	each	restart	to	complete,	the	error	message	returned	was	Array
index	out	of	bounds	rather	than	Too	many	crashed	replicas.	(Bug	#18349)

CASTdouble	AS	SIGNED	INT)	for	large	double	values	outside	the	signed
integer	range	truncates	the	result	to	be	within	range,	but	the	result
sometimes	had	the	wrong	sign,	and	no	warning	was	generated.	(Bug
#15098)

Updating	a	field	value	when	also	requesting	a	lock	with	GET_LOCK()	would

cause	slave	servers	in	a	replication	environment	to	terminate.	(Bug	#17284)

D.1.6.	Changes	in	release	5.0.20a	(18	April	2006)

This	is	a	bugfix	release	for	the	current	production	release	family.	It	replaces
MySQL	5.0.20.

Changes	from	5.0.20	to	5.0.20a:

The	fix	for	“Command	line	options	are	ignored	for	mysql	client”	(Bug
#16855)	has	been	revoked	because	it	introduced	an	incompatible	change	in
the	way	the	mysql	command-line	client	selects	the	server	to	connect	to.	In
the	worst	case,	this	might	have	led	to	a	client	issuing	commands	to	a	server
for	which	they	were	not	intended,	and	this	must	not	happen.	To	help	all
users	in	understanding	this	subject,	Section	4.2,	“Invoking	MySQL
Programs”	now	includes	additional	explanation	of	how	command	options
with	regard	to	host	selection.

The	code	of	the	yaSSL	library	has	been	improved	to	avoid	the	dependency
on	a	C++	runtime	library,	so	a	link	with	pure	C	applications	is	now	possible
on	additional	(but	not	yet	all)	platforms.	We	are	working	on	fixing	the
remaining	issues.

Additional	information	about	SSL	support:

With	version	5.0.20a,	SSL	support	is	contained	in	all	binaries	for	all	Unix
(including	Linux)	and	Windows	platforms	except	AIX,	HP-UX,
OpenServer	6,	and	the	RPMs	specific	for	RHAS3/RHAS4/SLES9	on
Itanium	CPUs	(ia64);	It	is	also	not	contained	in	those	for	Novell	Netware.
We	are	trying	to	add	these	platforms	in	future	versions.

Please	note	that	the	original	5.0.20	announcement	included	inexact
wording:	SSL	support	is	“included”	in	both	server	and	client,	but	by	default
not	“enabled”.	SSL	can	be	enabled	by	passing	the	SSL-related	options	(--
ssl,	--ssl-key=...,	--ssl-cert=...,	--ssl-ca=...)	when	starting	the
server	and	the	client	or	by	specifying	these	options	in	an	option	file.	For
more	information,	see	Section	5.9.7,	“Using	Secure	Connections”.

D.1.7.	Changes	in	release	5.0.20	(31	March	2006)

Functionality	added	or	changed:

Added	the	--sysdate-is-now	option	to	mysqld	to	enable	SYSDATE()	to	be
treated	as	an	alias	for	NOW().	See	Section	12.5,	“Date	and	Time	Functions”.
(Bug	#15101)

InnoDB:	The	InnoDB	storage	engine	now	provides	a	descriptive	error
message	if	ibdata	file	information	is	omitted	from	my.cnf.	(Bug	#16827)

The	NDBCluster	storage	engine	now	supports	INSERT	IGNORE	and	REPLACE
statements.	Previously,	these	statements	failed	with	an	error.	(Bug	#17431)

Builds	for	Windows,	Linux,	and	Unix	(except	AIX)	platforms	now	have
SSL	support	enabled,	in	the	server	as	well	as	in	the	client	libraries.	Because
part	of	the	SSL	code	is	written	in	C++,	this	does	introduce	dependencies	on
the	system's	C++	runtime	libraries	in	several	cases,	depending	on	compiler
specifics.	(Bug	#18195)

The	syntax	for	CREATE	PROCEDURE	and	CREATE	FUNCTION	statements	now
includes	a	DEFINER	clause.	The	DEFINER	value	specifies	the	security	context
to	be	used	when	checking	access	privileges	at	routine	invocation	time	if	the
routine	has	the	SQL	SECURITY	DEFINER	characteristic.	See	Section	17.2.1,
“CREATE	PROCEDURE	and	CREATE	FUNCTION	Syntax”,	for	more	information.

When	mysqldump	is	invoked	with	the	--routines	option,	it	now	dumps
the	DEFINER	value	for	stored	routines.

Large	file	support	added	to	build	for	QNX	platform.	(Bug	#17336)

Large	file	support	was	re-enabled	for	the	MySQL	server	binary	for	the	AIX
5.2	platform.	(Bug	#13571)

Bugs	fixed:

If	the	WHERE	condition	of	a	query	contained	an	OR-ed	FALSE	term,	the	set	of
tables	whose	rows	cannot	serve	for	null-complements	in	outer	joins	was
determined	incorrectly.	This	resulted	in	blocking	possible	conversions	of
outer	joins	into	joins	by	the	optimizer	for	such	queries.	(Bug	#17164)

mysql_config	returned	incorrect	libraries	on	x86_64	systems.	(Bug	#13158)

Stored	routine	names	longer	than	64	characters	were	silently	truncated.
Now	the	limit	is	properly	enforced	and	an	error	occurs.	(Bug	#17015)

During	conversion	from	one	character	set	to	ucs2,	multi-byte	characters
with	no	ucs2	equivalent	were	converted	to	multiple	characters,	rather	than
to	0x003F	QUESTION	MARK.	(Bug	#15375)

The	mysql_close()	C	API	function	leaked	handles	for	shared-memory
connections	on	Windows.	(Bug	#15846)

Checks	for	permissions	on	database	operations	could	be	performed	in	a
case-insensitive	manner	(a	user	with	permissions	on	database	MYDATABASE
could	by	accident	get	permissions	on	database	myDataBase),	if	the	privilege
data	were	still	cached	from	a	previous	check.	(Bug	#17279)

If	InnoDB	ran	out	of	buffer	space	for	row	locks	and	adaptive	hashes,	the
server	would	crash.	Now	InnoDB	rolls	back	the	transaction.	(Bug	#18238)

InnoDB	tables	with	an	adaptive	hash	blocked	other	queries	during	CHECK
TABLE	statements	while	the	entire	hash	was	checked.	This	could	be	a	long
time	for	a	large	hash.	(Bug	#17126)

For	InnoDB	tables	created	in	MySQL	4.1	or	earlier,	or	created	in	5.0	or	later
with	compact	format,	updating	a	row	so	that	a	long	column	is	updated	or
the	length	of	some	column	changes,	InnoDB	later	would	fail	to	reclaim	the
BLOB	storage	space	if	the	row	was	deleted.	(Bug	#18252)

InnoDB	had	a	memory	leak	for	duplicate-key	errors	with	tables	having	90
columns	or	more.	(Bug	#18384)

InnoDB:	The	LATEST	FOREIGN	KEY	ERROR	section	in	the	output	of	SHOW
INNODB	STATUS	was	sometimes	formatted	incorrectly,	causing	problems
with	scripts	that	parsed	the	output	of	this	statement.	(Bug	#16814)

When	using	ORDER	BY	with	a	non-string	column	inside	GROUP_CONCAT()	the
result's	character	set	was	converted	to	binary.	(Bug	#18281)

See	also	Bug	#14169.

SELECT	...	WHERE	column	LIKE	'A%'	when	column	had	a	key	and	used

the	latin2_czech_cs	collation.	(Bug	#17374)

Complex	queries	with	nested	joins	could	cause	a	server	crash.	(Bug
#18279)

The	server	could	deadlock	under	heavy	load	while	writing	to	the	binary	log.
(Bug	#18116)

A	SELECT	...	ORDER	BY	...	from	a	view	defined	using	a	function	could
crash	the	server.	An	example	of	such	a	view	might	be	CREATE	VIEW	AS
SELECT	SQRT(c1)	FROM	t1.	(Bug	#18386)

A	DELETE	using	a	subquery	could	crash	the	server.	(Bug	#18306)

REPAIR	TABLE,	OPTIMIZE	TABLE,	and	ALTER	TABLE	operations	on
transactional	tables	(or	on	tables	of	any	type	on	Windows)	could	corrupt
triggers	associated	with	those	tables.	(Bug	#18153)

MyISAM:	Performing	a	bulk	insert	on	a	table	referenced	by	a	trigger	would
crash	the	table.	(Bug	#17764)

MyISAM:	Keys	for	which	the	first	part	of	the	key	was	a	CHAR	or	VARCHAR
column	using	the	UTF-8	character	set	and	longer	than	254	bytes	could
become	corrupted.	(Bug	#17705)

Using	ORDER	BY	intvar	within	a	stored	procedure	(where	intvar	is	an
integer	variable	or	expression)	would	crash	the	server.	(Bug	#16474)

Note:	The	use	of	an	integer	i	in	an	ORDER	BY	i	clause	for	sorting	the	result
by	the	ith	column	is	deprecated	(and	non-standard).	It	should	not	be	used	in
new	applications.	See	Section	13.2.7,	“SELECT	Syntax”.

Triggers	created	in	MySQL	5.0.16	and	earlier	could	not	be	dropped	after
upgrading	the	server	to	5.0.17	or	later.	(Bug	#15921)

A	SELECT	using	a	function	against	a	nested	view	would	crash	the	server.
(Bug	#15683)

NDB	Cluster:	Certain	queries	using	ORDER	BY	...	ASC	in	the	WHERE	clause
could	return	incorrect	results.	(Bug	#17729)

NDB	Cluster:	A	timeout	in	the	handling	of	an	ABORT	condition	with	more
that	32	operations	could	yield	a	node	failure.	(Bug	#18414)

NDB	Cluster:	A	node	restart	immediately	following	a	CREATE	TABLE	would
fail.	Important:	This	fix	supports	2-node	Clusters	only.	(Bug	#18385)

NDB	Cluster:	In	event	of	a	node	failure	during	a	rollback,	a	“false”	lock
could	be	established	on	the	backup	for	that	node,	which	lock	could	not	be
removed	without	restarting	the	node.	(Bug	#18352)

NDB	Cluster:	The	cluster	created	a	crashed	replica	of	a	table	having	an
ordered	index	—	or	when	logging	was	not	enabled,	of	a	table	having	a	table
or	unique	index	—	leading	to	a	crash	of	the	cluster	following	8	successibe
restarts.	(Bug	#18298)

NDB	Cluster:	When	replacing	a	failed	master	node,	the	replacement	node
could	cause	the	cluster	to	crash	from	a	buffer	overflow	if	it	had	an
excessively	large	amount	of	data	to	write	to	the	cluster	log.	(Bug	#18118)

NDB	Cluster:	If	a	mysql	or	other	client	could	not	parse	the	result	set
returned	from	a	mysqld	process	acting	as	an	SQL	node	in	a	cluster,	the
client	would	crash	instead	of	returning	the	appropriate	error.	For	example,
this	could	happen	when	the	client	attempted	to	use	a	character	set	was	not
available	to	the	mysqld.	(Bug	#17380)

NDB	Cluster:	Restarting	nodes	were	allowed	to	start	and	join	the	cluster
too	early.	(Bug	#16772)

If	a	row	was	inserted	inside	a	stored	procedure	using	the	parameters	passed
to	the	procedure	in	the	INSERT	statement,	the	resulting	binlog	entry	was
not	escaped	properly.	(Bug	#18293)

If	InnoDB	encountered	a	HA_ERR_LOCK_TABLE_FULL	error	and	rolled-back	a
transaction,	the	transaction	was	still	written	to	the	binary	log.	(Bug	#18283)

Stored	procedures	that	call	UDFs	and	pass	local	string	variables	caused
server	crashes.	(Bug	#17261)

Connecting	to	a	server	with	a	UCS2	default	character	set	with	a	client	using
a	non-UCS2	character	set	crashed	the	server.	(Bug	#18004)

Loading	of	UDFs	in	a	statically	linked	MySQL	caused	a	server	crash.	UDF
loading	is	now	blocked	if	the	MySQL	server	is	statically	linked.	(Bug
#11835)

Views	that	incorporate	tables	from	the	INFORMATION_SCHEMA
resulted	in	a	server	crash	when	queried.	(Bug	#18224)

A	SELECT	*	query	on	an	INFORMATION_SCHEMA	table	by	a	user	with
limited	privileges	resulted	in	a	server	crash.	(Bug	#18113)

Attempting	to	access	an	InnoDB	table	after	starting	the	server	with	--skip-
innodb	caused	a	server	crash.	(Bug	#14575)

InnoDB	used	table	locks	(not	row	locks)	within	stored	functions.	(Bug
#18077)

Replication	slaves	could	not	replicate	triggers	from	older	servers	that
included	no	DEFINER	clause	in	the	trigger	definition.	Now	the	trigger
executes	with	the	privileges	of	the	invoker	(which	on	the	slave	is	the	slave
SQL	thread).	(Bug	#16266)

Character	set	conversion	of	string	constants	for	UNION	of	constant	and	table
column	was	not	done	when	it	was	safe	to	do	so.	(Bug	#15949)

The	DEFINER	value	for	stored	routines	was	not	replicated.	(Bug	#15963)

Use	of	stored	functions	with	DISTINCT	or	GROUP	BY	can	produce	incorrect
results	when	ORDER	BY	is	also	used.	(Bug	#13575)

Use	of	TRUNCATE	TABLE	for	a	TEMPORARY	table	on	a	master	server	was
propagated	to	slaves	properly,	but	slaves	did	not	decrement	the
Slave_open_temp_tables	counter	properly.	(Bug	#17137)

SELECT	COUNT(*)	for	a	MyISAM	table	could	return	different	results
depending	on	whether	an	index	was	used.	(Bug	#14980)

A	LEFT	JOIN	with	a	UNION	that	selects	literal	values	could	crash	the	server.
(Bug	#17366)

Large	file	support	did	not	work	in	AIX	server	binaries.	(Bug	#10776)

Updating	a	view	that	filters	certain	rows	to	set	a	filtered	out	row	to	be
included	in	the	table	caused	infinite	loop.	For	example,	if	the	view	has	a
WHERE	clause	of	salary	>	100	then	issuing	an	UPDATE	statement	of
SET	salary	=	200	WHERE	id	=	10,	caused	an	infinite	loop.	(Bug	#17726)

Certain	combinations	of	joins	with	mixed	ON	and	USING	clauses	caused
unknown	column	errors.	(Bug	#15229)

NDB	Cluster:	Inserting	and	deleting	BLOB	column	values	while	a	backup
was	in	process	could	cause	the	loss	of	an	ndbd	node.	(Bug	#14028)

If	the	server	was	started	with	the	--skip-grant-tables	option,	it	was
impossible	to	create	a	trigger	or	a	view	without	explicitly	specifying	a
DEFINER	clause.	(Bug	#16777)

COUNT(DISTINCT	col1,	col2)	and	COUNT(DISTINCT	CONCAT(col1,	col2))
operations	produced	different	results	if	one	of	the	columns	was	an	indexed
DECIMAL	column.	(Bug	#15745)

The	server	displayed	garbage	in	the	error	message	warning	about	bad
assignments	to	DECIMAL	columns	or	routine	variables.	(Bug	#15480)

The	server	would	execute	stored	routines	that	had	a	non-existent	definer.
(Bug	#13198)

For	FEDERATED	tables,	a	SELECT	statement	with	an	ORDER	BY	clause	did	not
return	rows	in	the	proper	order.	(Bug	#17377)

The	FORMAT()	function	returned	an	incorrect	result	when	the	client's
character_set_connection	value	was	utf8.	(Bug	#16678)

NDB	Cluster:	Some	query	cache	statistics	were	not	always	correctly
reported	for	Cluster	tables.	(Bug	#16795)

Updating	the	value	of	a	Unicode	VARCHAR	column	with	the	result	returned
by	a	stored	function	would	cause	the	insertion	of	ASCII	characters	into	the
column	instead	of	Unicode,	even	where	the	function's	return	type	was	also
declared	as	Unicode.	(Bug	#17615)

D.1.8.	Changes	in	release	5.0.19	(04	March	2006)

Functionality	added	or	changed:

Incompatible	change:	The	InnoDB	storage	engine	no	longer	ignores
trailing	spaces	when	comparing	BINARY	or	VARBINARY	column	values.	This
means	that	(for	example)	the	binary	values	'a'	and	'a	'	are	now	regarded
as	unequal	any	time	they	are	compared,	as	they	are	in	MyISAM	tables.	(Bug
#14189)

See	Section	11.4.2,	“The	BINARY	and	VARBINARY	Types”	for	more
information	about	the	BINARY	and	VARBINARY	types.

Several	changes	were	made	to	make	upgrades	easier:

Added	the	mysql_upgrade	program	that	checks	all	tables	for
incompatibilities	with	the	current	version	of	MySQL	Server	and
repairs	them	if	necessary.	This	program	should	be	run	for	each	MySQL
upgrade	(rather	than	mysql_fix_privilege_tables).	See	Section	5.6.2,
“mysql_upgrade	—	Check	Tables	for	MySQL	Upgrade”.

Added	the	FOR	UPGRADE	option	for	the	CHECK	TABLE	statement.	This
option	checks	whether	tables	are	incompatible	with	the	current	version
of	MySQL	Server.

Added	the	--check-upgrade	to	mysqlcheck	that	invokes	CHECK	TABLE
with	the	FOR	UPGRADE	option.

NDB	Cluster:	The	ndb_mgm	client	commands	node_id	START	and
node_id	STOP	now	work	with	management	nodes	as	well	as	data	nodes.
(However,	using	ALL	for	the	node_id	continues	to	affect	all	data	nodes
only.)

When	using	the	GROUP_CONCAT()	function	where	the
group_concat_max_len	system	variable	was	greater	than	512,	the	type	of
the	result	was	BLOB	only	if	the	query	included	an	ORDER	BY	clause;
otherwise	the	result	was	a	VARCHAR.

The	result	type	of	the	GROUP_CONCAT()	function	is	now	VARCHAR	only	if	the
value	of	the	group_concat_max_len	system	variable	is	less	than	or	equal	to
512.	Otherwise,	this	function	returns	a	BLOB.	(Bug	#14169)

mysql	no	longer	terminates	data	value	display	when	it	encounters	a	NUL
byte.	Instead,	it	displays	NUL	bytes	as	spaces.	(Bug	#16859)

Added	the	--wait-timeout	option	to	mysqlmanager	to	allow
configuration	of	the	timeout	for	dropping	an	inactive	connection,	and
increased	the	default	timeout	from	30	seconds	to	28,800	seconds	(8	hours).
(Bug	#12674,	Bug#15980)

A	number	of	performance	issues	were	resolved	that	had	previously	been
encountered	when	using	statements	that	repeatedly	invoked	stored
functions.	For	example,	calling	BENCHMARK()	using	a	stored	function
executed	much	more	slowly	than	when	invoking	it	with	inline	code	that
accomplished	the	same	task.	In	most	cases	the	two	should	now	execute	with
approximately	the	same	speed.	(Bug	#15014,	Bug	#14946)

libmysqlclient	now	uses	versioned	symbols	with	GNU	ld.	(Bug	#3074)

NDB	Cluster:	More	descriptive	warnings	are	now	issued	when
inappropriate	logging	parameters	are	set	in	config.ini.	(Formerly,	the
warning	issued	was	simply	Could	not	add	logfile	destination.)	(Bug
#11331)

Added	the	--port-open-timeout	option	to	mysqld	to	control	how	many
seconds	the	server	should	wait	for	the	TCP/IP	port	to	become	free	if	it
cannot	be	opened.	(Bug	#15591)

Repeated	invocation	of	my_init()	and	my_end()	caused	corruption	of
character	set	data	and	connection	failure.	(Bug	#6536)

Two	new	Hungarian	collations	are	included:	utf8_hungarian_ci	and
ucs2_hungarian_ci.	These	support	the	correct	sort	order	for	Hungarian
vowels.	However,	they	do	not	support	the	correct	order	for	sorting
Hungarian	consonant	contractions;	this	issue	will	be	fixed	in	a	future
release.

Wording	of	error	1329	changed	to	No	data	-	zero	rows	fetched,	selected,	or
processed.	(Bug	#15206)

The	INFORMATION_SCHEMA	now	skips	data	contained	in
unlistable/unreadable	directories	rather	than	returning	an	error.	(Bug

#15851)

InnoDB	now	caches	a	list	of	unflushed	files	instead	of	scanning	for
unflushed	files	during	a	table	flush	operation.	This	improves	performance
when	--innodb-file-per-table	is	set	on	a	system	with	a	large	number	of
InnoDB	tables.	(Bug	#15653)

The	message	for	error	1109	changed	from	Unknown	table	...	in	order	clause
to	Unknown	table	...	in	field	list.	(Bug	#15091)

The	mysqltest	utility	now	converts	all	CR/LF	combinations	to	LF	to	allow
test	cases	intended	for	Windows	to	work	properly	on	UNIX-like	systems.
(Bug	#13809)

The	mysql_ping	function	will	now	retry	if	the	reconnect	flag	is	set	and
error	CR_SERVER_LOST	is	encountered	during	the	first	attempt	to	ping	the
server.	(Bug	#14057)

mysqldump	now	surrounds	the	DEFINER,	SQL	SECURITY	DEFINER	and	WITH
CHECK	OPTION	clauses	of	a	CREATE	VIEW	statement	with	"not	in	version"
comments	to	prevent	errors	in	earlier	versions	of	MySQL.	(Bug	#14871)

New	charset	command	added	to	mysql	command-line	client.	By	typing
charset	name	or	\C	name	(such	as	\C	UTF8),	the	client	character	set	can	be
changed	without	reconnecting.	(Bug	#16217)

Client	API	will	now	attempt	reconnect	on	TCP/IP	if	the	reconnect	flag	is
set,	as	is	the	case	with	sockets.	(Bug	#2845)

Bugs	fixed:

Generating	an	AUTO_INCREMENT	value	through	a	FEDERATED	table	did	not	set
the	value	returned	by	LAST_INSERT_ID().	(Bug	#14768)

Cursors	in	stored	routines	could	cause	a	server	crash.	(Bug	#16887)

Setting	the	myisam_repair_threads	system	variable	to	a	value	larger	than
1	could	cause	corruption	of	large	MyISAM	tables.	(Bug	#11527)

The	length	of	a	VARCHAR()	column	that	used	the	utf8	character	set	would

increase	each	time	the	table	was	re-created	in	a	stored	procedure	or
prepared	statement,	eventually	causing	the	CREATE	TABLE	statement	to	fail.
(Bug	#13134)

type_decimal	failed	with	the	prepared	statement	protocol.	(Bug	#17826)

The	MySQL	server	could	crash	with	out	of	memory	errors	when
performing	aggregate	functions	on	a	DECIMAL	column.	(Bug	#17602)

A	stored	procedure	failed	to	return	data	the	first	time	it	was	called	per
connection.	(Bug	#17476)

Using	DROP	FUNCTION	IF	EXISTS	func_name	to	drop	a	user-defined
function	caused	a	server	crash	if	the	server	was	running	with	the	--skip-
grant-tables	option.	(Bug	#17595)

Using	ALTER	TABLE	to	increase	the	length	of	a	BINARY(M)	column	caused
column	values	to	be	padded	with	spaces	rather	than	0x00	bytes.	(Bug
#16857)

A	large	BIGINT	value	specified	in	a	WHERE	clause	could	be	treated	differently
depending	on	whether	it	is	specified	as	a	quoted	string.	(For	example,	WHERE
bigint_col	=	17666000000000000000	versus	WHERE	bigint_col	=
'17666000000000000000').	(Bug	#9088)

A	natural	join	between	INFORMATION_SCHEMA	tables	failed.	(Bug	#17523)

A	memory	leak	caused	warnings	on	slaves	for	certain	statements	that
executed	without	warning	on	the	master.	(Bug	#16175)

The	embedded	server	did	not	allow	binding	of	columns	to	the
MYSQL_TYPE_VAR_STRING	data	type	in	prepared	statements.	(Bug	#12070)

The	embedded	server	failed	various	tests	in	the	automated	test	suite.	(Bug
#9630,	Bug	#9631,	Bug	#9633,	Bug	#10801,	Bug	#10911,	Bug	#10924,
Bug	#10925,	Bug	#10926,	Bug	#10930,	Bug	#15433)

Instance	Manager	erroneously	accepted	a	list	of	instance	identifiers	for	the
START	INSTANCE	and	STOP	INSTANCE	commands	(should	accept	only	a
single	identifier).	(Bug	#12813)

For	a	transaction	that	used	MyISAM	and	InnoDB	tables,	interruption	of	the
transaction	due	to	a	dropped	connection	on	a	master	server	caused	slaves	to
lose	synchrony.	(Bug	#16559)

SELECT	with	GROUP	BY	on	a	view	can	cause	a	server	crash.	(Bug	#16382)

If	the	query	optimizer	transformed	a	GROUP	BY	clause	in	a	subquery,	it	did
not	also	transform	the	HAVING	clause	if	there	was	one,	producing	incorrect
results.	(Bug	#16603)

SUBSTRING_INDEX()	could	yield	inconsistent	results	when	applied	with	the
same	arguments	to	consecutive	rows	in	a	query.	(Bug	#14676)

The	parser	allowed	CREATE	AGGREGATE	FUNCTION	for	creating	stored
functions,	even	though	AGGREGATE	does	not	apply.	(It	is	used	only	for
CREATE	FUNCTION	only	when	creating	user-defined	functions.)	(Bug
#16896)

Data	truncations	on	non-UNIQUE	indexes	could	crash	InnoDB	when	using
multi-byte	character	sets.	(Bug	#17530)

Triggers	created	without	BEGIN	and	END	clauses	could	not	be	properly
restored	from	a	mysqldump	file.	(Bug	#16878)

The	RENAME	TABLE	statement	did	not	move	triggers	to	the	new	table.	(Bug
#13525)

Clients	compiled	from	source	with	the	--without-readline	did	not	save
command	history	from	session	to	session.	(Bug	#16557)

Stored	routines	that	contained	only	a	single	statement	were	not	written
properly	to	the	dumpfile	when	using	mysqldump.	(Bug	#14857)

For	certain	MERGE	tables,	the	optimizer	wrongly	assumed	that	using
index_merge/intersection	was	too	expensive.	(Bug	#17314)

Executing	a	SHOW	CREATE	VIEW	query	of	an	invalid	view	caused	the
mysql_next_result	function	of	libMySQL.dll	to	hang.	(Bug	#15943)

BIT	fields	were	not	properly	handled	when	using	row-based	replication.

(Bug	#13418)

Issuing	GRANT	EXECUTE	on	a	procedure	would	display	any	warnings	related
to	the	creation	of	the	procedure.	(Bug	#7787)

NDB	Cluster:	ndb_delete_all	would	run	out	of	memory	on	tables
containing	BLOB	columns.	(Bug	#16693)

NDB	Cluster:	UNIQUE	keys	in	Cluster	tables	were	limited	to	225	bytes	in
length.	(Bug	#15918)

In	a	highly	concurrent	environment,	a	server	crash	or	deadlock	could	result
from	execution	of	a	statement	that	used	stored	functions	or	activated
triggers	coincident	with	alteration	of	the	tables	used	by	these	functions	or
triggers.	(Bug	#16593)

Previously,	a	stored	function	invocation	was	written	to	the	binary	log	as	DO
func_name()	if	the	invocation	changes	data	and	occurs	within	a	non-logged
statement,	or	if	the	function	invokes	a	stored	procedure	that	produces	an
error.	These	invocations	now	are	logged	as	SELECT	func_name()	instead	for
better	control	over	error	code	checking	(slave	servers	could	stop	due	to
detecting	a	different	error	than	occurred	on	the	master).	(Bug	#14769)

CHECKSUM	TABLE	returned	different	values	on	MyISAM	table	depending	on
whether	the	QUICK	or	EXTENDED	options	were	used.	(Bug	#8841)

MySQL	server	dropped	client	connection	for	certain	SELECT	statements
against	views	defined	that	used	MERGE	algorithm.	(Bug	#16260)

A	call	to	the	IF()	function	using	decimal	arguments	could	return	incorrect
results.	(Bug	#16272)

A	statement	containing	GROUP	BY	and	HAVING	clauses	could	return	incorrect
results	when	the	HAVING	clause	contained	logic	that	returned	FALSE	for
every	row.	(Bug	#14927)

Using	GROUP	BY	on	column	used	in	WHERE	clause	could	cause	empty	set	to
be	returned.	(Bug	#16203)

For	a	MySQL	5.0	server,	using	MySQL	4.1	tables	in	queries	with	a	GROUP

BY	clause	could	result	in	buffer	overrun	or	a	server	crash.	(Bug	#16752)

SET	sql_mode	=	N,	where	N	>	31,	did	not	work	properly.	(Bug	#13897)

NDB	Cluster:	Cluster	log	file	paths	were	truncated	to	128	characters.	They
may	now	be	as	long	as	MAX_PATH	(the	maximum	path	length	permitted	by
the	operating	system).	(Bug	#17411)

The	mysql_stmt_store_result()	C	API	function	could	not	be	used	for	a
prepared	statement	if	a	cursor	had	been	opened	for	the	statement.	(Bug
#14013)

The	mysql_stmt_sqlstate()	C	API	function	incorrectly	returned	an	empty
string	rather	than	'00000'	when	no	error	occurred.	(Bug	#16143)

Using	the	TRUNCATE()	function	with	a	negative	number	for	the	second
argument	on	a	BIGINT	column	returned	incorrect	results.	(Bug	#8461)

Instance	Manager	searched	wrong	location	for	password	file	on	some
platforms.	(Bug	#16499)

NDB	Cluster:	Following	multiple	forced	shutdowns	and	restarts	of	data
nodes,	DROP	DATABASE	could	fail.	(Bug	#17325)

NDB	Cluster:	An	UPDATE	with	an	inner	join	failed	to	match	any	records	if
both	tables	in	the	join	did	not	have	a	primary	key.	(Bug	#17257)

NDB	Cluster:	A	DELETE	with	a	join	in	the	WHERE	clause	failed	to	retrieve
any	records	if	both	tables	in	the	join	did	not	have	a	primary	key.	(Bug
#17249)

The	error	message	returned	by	perror	--ndb	was	prefixed	with	OS	error
code:	instead	of	NDB	error	code:.	(Bug	#17235)

NDB	Cluster:	In	some	cases,	LOAD	DATA	INFILE	did	not	load	all	data	into
NDB	tables.	(Bug	#17081)

NDB	Cluster:	The	REDO	log	would	become	corrupted	(and	thus	unreadable)
in	some	circumstances,	due	to	a	failure	in	the	query	handler.	(Bug	#17295)

NDB	Cluster:	No	error	message	was	generated	for	setting
NoOfFragmentLogFiles	too	low.	(Bug	#13966)

NDB	Cluster:	No	error	message	was	generated	for	setting
MaxNoOfAttributes	too	low.	(Bug	#13965)

Binary	distributions	for	Solaris	contained	files	with	group	ownership	set	to
the	non-existing	wheel	group.	Now	the	bin	group	is	used.	(Bug	#15562)

The	DECIMAL	data	type	was	not	being	handled	correctly	with	prepared
statements.	(Bug	#16511)

The	SELECT	privilege	was	required	for	triggers	that	performed	no	selects.
(Bug	#15196)

The	UPDATE	privilege	was	required	for	triggers	that	performed	no	updates.
(Bug	#15166)

CAST(...	AS	TIME)	operations	returned	different	results	when	using	versus
not	using	prepared-statement	protocol.	(Bug	#15805)

Improper	memory	handling	for	stored	routine	variables	could	cause
memory	overruns	and	binary	log	corruption.	(Bug	#15588)

Killing	a	long-running	query	containing	a	subquery	could	cause	a	server
crash.	(Bug	#14851)

A	FULLTEXT	query	in	a	prepared	statement	could	result	in	unexpected
behavior.	(Bug	#14496)

A	RETURN	statement	within	a	trigger	caused	a	server	crash.	RETURN	now	is
disallowed	within	triggers.	To	exit	immediately,	use	LEAVE.	(Bug	#16829)

STR_TO_DATE(1,NULL)	caused	a	server	crash.	(CVE-2006-3081,	Bug
#15828)

An	invalid	stored	routine	could	not	be	dropped.	(Bug	#16303)

When	evaluation	of	the	test	in	a	CASE	failed	in	a	stored	procedure	that
contained	a	CONTINUE	handler,	execution	resumed	at	the	beginning	of	the

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3081

CASE	statement	instead	of	at	the	end.	(Bug	#16568)

An	INSERT	statement	in	a	stored	procedure	corrupted	the	binary	log.	(Bug
#16621)

When	MyODBC	or	any	other	client	called	my_init()/my_end()	several
times,	it	caused	corruption	of	charset	data	stored	in	once_mem_pool.	(Bug
#11892)

When	multiple	handlers	are	created	for	the	same	MySQL	error	number
within	nested	blocks,	the	outermost	handler	took	precedence.	(Bug	#15011)

Certain	LEAVE	statements	in	stored	procedures	were	not	properly	optimized.
(Bug	#15737)

Setting	InnoDB	path	settings	to	an	empty	string	caused	InnoDB	storage
engine	to	crash	upon	server	startup.	(Bug	#16157)

InnoDB	used	full	explicit	table	locks	in	trigger	processing.	(Bug	#16229)

Server	crash	when	dropping	InnoDB	constraints	named	TABLENAME_ibfk_0.
(Bug	#16387)

Corrected	race	condition	when	dropping	the	adaptive	hash	index	for	a	B-
tree	page	in	InnoDB.	(Bug	#16582)

The	mysql_real_connect()	C	API	function	incorrectly	reset	the
MYSQL_OPT_RECONNECT	option	to	its	default	value.	(Bug	#15719)

InnoDB:	After	upgrading	an	InnoDB	table	having	a	VARCHAR	BINARY	column
created	in	MySQL	4.0	to	MySQL	5.0,	update	operations	on	the	table	would
cause	the	server	to	crash.	(Bug	#16298)

Trying	to	compile	the	server	on	Windows	generated	a	stack	overflow
warning	due	to	a	recursive	definition	of	the	internal	Field_date::store()
method.	(Bug	#15634)

The	use	of	LOAD	INDEX	within	a	stored	routine	was	permitted	and	caused
the	server	to	crash.	Note:	LOAD	INDEX	statements	within	stored	routines	are
not	supported,	and	now	yield	an	error	if	attempted.	This	behavior	is

intended.	(Bug	#14270)

The	mysqlbinlog	utility	did	not	output	DELIMITER	statements,	causing
syntax	errors	for	stored	routine	creation	statements.	(Bug	#11312)

NDB	Cluster	returned	incorrect	Can't	find	file	error	for	OS	error	24,
changed	to	Too	many	open	files.	(Bug	#15020)

Performing	a	RENAME	TABLE	on	an	InnoDB	table	when	the	server	is	started
with	the	--innodb-file-per-table	and	the	data	directory	is	a	symlink
caused	a	server	crash.	(Bug	#15991)

Multi-byte	path	names	for	LOAD	DATA	and	SELECT	...	INTO	OUTFILE
caused	errors.	Added	the	character_set_filesystem	system	variable,
which	controls	the	interpretation	of	string	literals	that	refer	to	filenames.
(Bug	#12448)

Certain	subqueries	where	the	inner	query	is	the	result	of	a	aggregate
function	would	return	different	results	on	MySQL	5.0	than	on	MySQL	4.1.
(Bug	#15347)

Attempts	to	create	FULLTEXT	indexes	on	VARCHAR	columns	larger	than
1000	bytes	resulted	in	error.	(Bug	#13835)

Characters	in	the	gb2312	and	euckr	character	sets	which	did	not	have
Unicode	mappings	were	truncated.	(Bug	#15377)

Certain	nested	LEFT	JOIN	operations	were	not	properly	optimized.	(Bug
#16393)

GRANT	statements	specifying	schema	names	that	included	underscore
characters	(i.e.	my_schema)	did	not	match	if	the	underscore	was	escaped	in
the	GRANT	statement	(i.e.	GRANT	ALL	ON	`my_schema`	...).	(Bug	#14834)

Running	out	of	diskspace	in	the	location	specified	by	the	tmpdir	option
resulted	in	incorrect	error	message.	(Bug	#14634)

Test	suite	sp	test	left	behind	tables	when	the	test	failed	that	could	cause
future	tests	to	fail.	(Bug	#15866)

UPDATE	statement	crashed	multi-byte	character	set	FULLTEXT	index	if	update
value	was	almost	identical	to	initial	value	only	differing	in	some	spaces
being	changed	to	 .	(Bug	#16489)

A	SELECT	query	which	contained	a	GROUP_CONCAT()	and	an	ORDER	BY
clause	against	the	INFORMATION_SCHEMA	resulted	in	an	empty	result	set.
(Bug	#15307)

The	--replicate-do	and	--replicate-ignore	options	were	not	being
enforced	on	multiple-table	statements.	(Bug	#15699,	Bug	#16487)

A	prepared	statement	created	from	a	SELECT	...	LIKE	query	(such	as
PREPARE	stmt1	FROM	'SELECT	col_1	FROM	tedd_test	WHERE	col_1

LIKE	?';)	would	begin	to	produce	erratic	results	after	being	executed
repeatedly	numerous	(thousands)	of	times.	(Bug	#12734)

The	server	would	crash	when	the	size	of	an	ARCHIVE	table	grew	beyond
2GB.	(Bug	#15787)

Created	a	user	function	with	an	empty	string	(that	is,	CREATE	FUNCTION
''()),	was	accepted	by	the	server.	Following	this,	calling	SHOW	FUNCTION
STATUS	would	cause	the	server	to	crash.	(Bug	#15658)

In	some	cases	the	query	optimizer	did	not	properly	perform	multiple	joins
where	inner	joins	followed	left	joins,	resulting	in	corrupted	result	sets.	(Bug
#15633)

The	absence	of	a	table	in	the	left	part	of	a	left	or	right	join	was	not	checked
prior	to	name	resolution,	which	resulted	in	a	server	crash.	(Bug	#15538)

NDBCluster:	A	bitfield	whose	offset	and	length	totaled	32	would	crash	the
cluster.	(Bug	#16125)

NDBCluster:	Upon	the	completion	of	a	scan	where	a	key	request	remained
outstanding	on	the	primary	replica	and	a	starting	node	died,	the	scan	did	not
terminate.	This	caused	incompleted	error	handling	of	the	failed	node.	(Bug
#15908)

NDBCluster:	The	ndb_autodiscover	test	failed	sporadically	due	to	a	node
not	being	permitted	to	connect	to	the	cluster.	(Bug	#15619)

NDBCluster:	When	running	more	than	one	management	process	in	a
cluster:

ndb_mgm	-c	host:port	-e	"node_id	stop"	would	stop	a	management
process	running	only	on	the	same	system	on	which	the	command	was
issued.

ndb_mgm	-e	"shutdown"	failed	to	shut	down	any	management
processes	at	all.

(Bug	#12045,	Bug	#12124)

The	contents	of	fill_help_tables.sql	could	not	be	loaded	in	strict	SQL
mode.	(Bug	#15760)

fill_help_tables.sql	was	not	included	in	binary	distributions	for	several
platforms.	(Bug	#15759)

An	INSERT	...	SELECT	statement	between	tables	in	a	MERGE	set	can	return
errors	when	statement	involves	insert	into	child	table	from	merge	table	or
vice-versa.	(Bug	#5390)

Certain	permission	management	statements	could	create	a	NULL	hostname
for	a	user,	resulting	in	a	server	crash.	(Bug	#15598)

A	COMMIT	statement	followed	by	a	ALTER	TABLE	statement	on	a	BDB	table
caused	server	crash.	(Bug	#14212)

A	DELETE	statement	involving	a	LEFT	JOIN	and	an	IS	NULL	test	on	the
right-hand	table	of	the	join	crashed	the	server	when	the
innodb_locks_unsafe_for_binlog	option	was	enabled.	(Bug	#15650)

Performing	an	ORDER	BY	on	an	indexed	ENUM	column	returned	error.	(Bug
#15308)

The	NOT	FOUND	condition	handler	for	stored	procedures	did	not	distinguish
between	a	NOT	FOUND	condition	and	an	exception	or	warning.	(Bug	#15231)

A	stored	procedure	with	an	undefined	variable	and	an	exception	handler
would	hang	the	client	when	called.	(Bug	#14498)

Subselect	could	return	wrong	results	when	records	cache	and	grouping	was
involved.	(Bug	#15347)

Temporary	table	aliasing	did	not	work	inside	stored	functions.	(Bug
#12198)

MIN()	and	MAX()	operations	were	not	optimized	for	views.	(Bug	#16016)

Using	an	aggregate	function	as	the	argument	for	a	HAVING	clause	would
result	in	the	aggregate	function	always	returning	FALSE.	(Bug	#14274)

Parallel	builds	occasionally	failed	on	Solaris.	(Bug	#16282)

The	FORCE	INDEX	keyword	in	a	query	would	prevent	an	index	merge	from
being	used	where	an	index	merge	would	normally	be	chosen	by	the
optimizer.	(Bug	#16166)

The	COALESCE()	function	truncated	data	in	a	TINYTEXT	column.	(Bug
#15581)

InnoDB:	Comparison	of	indexed	VARCHAR	CHARACTER	SET	ucs2	COLLATE
ucs2_bin	columns	using	LIKE	could	fail.	(Bug	#14583)

An	attempt	to	open	a	table	that	requires	a	disabled	storage	engine	could
cause	a	server	crash.	(Bug	#15185)

Issuing	a	DROP	USER	command	could	cause	some	users	to	encounter	a
hostname	is	not	allowed	to	connect	to	this	MySQL	server	error.	(Bug
#15775)

Setting	innodb_log_file_size	to	a	value	greater	than	4G	crashed	the
server.	(Bug	#15108)

A	SELECT	of	a	stored	function	that	references	the	INFORMATION_SCHEMA
could	crash	the	server.	(Bug	#15533)

Tarball	install	package	was	missing	a	proper	fill_help_tables.sql	file.
(Bug	#15151)

D.1.9.	Changes	in	release	5.0.18	(21	December	2005)

Functionality	added	or	changed:

It	is	now	possible	to	build	the	server	such	that	MyISAM	tables	can	support	up
to	128	keys	rather	than	the	standard	64.	This	can	be	done	by	configuring	the
build	using	the	option	--with-max-indexes=N,	where	N≤128	is	the
maximum	number	of	indexes	to	permit	per	table.	(Bug	#10932)

The	server	treats	stored	routine	parameters	and	local	variables	(and	stored
function	return	values)	according	to	standard	SQL.	Previously,	parameters,
variables,	and	return	values	were	treated	as	items	in	expressions	and	were
subject	to	automatic	(silent)	conversion	and	truncation.	Now	the	data	type	is
observed.	Data	type	conversion	and	overflow	problems	that	occur	in
assignments	result	in	warnings,	or	errors	in	strict	mode.	The	CHARACTER	SET
clause	for	character	data	type	declarations	is	used.	Parameters,	variables,
and	return	values	must	be	scalars;	it	is	no	longer	possible	to	assign	a	row
value.	Also,	stored	functions	execute	using	the	sql_mode	value	in	force	at
function	creation	time	rather	than	ignoring	it.	For	more	information,	see
Section	17.2.1,	“CREATE	PROCEDURE	and	CREATE	FUNCTION	Syntax”.	(Bug
#8702,	Bug	#8768,	Bug	#8769,	Bug	#9078,	Bug	#9572,	Bug	#12903,	Bug
#13705,	Bug	#13808,	Bug	#13909,	Bug	#14161,	Bug	#15148)

Bugs	fixed:

	API	function	mysql_stmt_prepare	returned	wrong	field	length	for	TEXT
columns.	(Bug	#15613)

The	output	of	mysqldump	--triggers	did	not	contain	the	DEFINER	clause	in
dumped	trigger	definitions.	(Bug	#15110)

The	output	of	SHOW	TRIGGERS	contained	extraneous	whitespace.	(Bug
#15103)

Creating	a	trigger	caused	a	server	crash	if	the	table	or	trigger	database	was
not	known	because	no	default	database	had	been	selected.	(Bug	#14863)

SHOW	[FULL]	COLUMNS	and	SHOW	INDEX	FROM	did	not	function	with
temporary	tables.	(Bug	#14271,	Bug	#14387,	Bug	#15224)

The	INFORMATION_SCHEMA.COLUMNS	table	did	not	report	the	size
of	BINARY	or	VARBINARY	columns.	(Bug	#14271)

The	server	would	not	compile	under	Cygwin.	(Bug	#13640)

DESCRIBE	did	not	function	with	temporary	tables.	(Bug	#12770)

Reversing	the	order	of	operands	in	a	WHERE	clause	testing	a	simple	equality
(such	as	WHERE	t1.col1	=	t2.col2)	would	produce	different	output	from
EXPLAIN.	(Bug	#15106)

Column	aliases	were	displayed	incorrectly	in	a	SELECT	from	a	view
following	an	update	to	a	base	table	of	the	view.	(Bug	#14861)

Set	functions	could	not	be	aggregated	in	outer	subqueries.	(Bug	#12762)

When	a	connection	using	yaSSL	was	aborted,	the	server	would	continue	to
try	to	read	the	closed	socket,	and	the	thread	continued	to	appear	in	the
output	of	SHOW	PROCESSLIST.	Note	that	this	issue	did	not	affect	secure
connection	attempts	using	OpenSSL.	(Bug	#15772)

InnoDB:	Having	two	tables	in	a	parent-child	relationship	enforced	by	a
foreign	key	where	one	table	used	ROW_FORMAT=COMPACT	and	the	other	used
ROW_FORMAT=REDUNDANT	could	result	in	a	MySQL	server	crash.	Note	that
this	problem	did	not	exist	prior	to	MySQL	5.0.3,	when	the	compact	row
format	for	InnoDB	was	introduced.	(Bug	#15550)

BDB:	A	DELETE,	INSERT,	or	UPDATE	of	a	BDB	table	could	cause	the	server	to
crash	where	the	query	contained	a	subquery	using	an	index	read.	(Bug
#15536)

A	left	join	on	a	column	that	having	a	NULL	value	could	cause	the	server	to
crash.	(Bug	#15268)

A	replication	slave	server	could	sometimes	crash	on	a	BEFORE	UPDATE
trigger	if	the	UPDATE	query	was	not	executed	in	the	same	database	as	the
table	with	the	trigger.	(Bug	#14614)

A	race	condition	when	creating	temporary	files	caused	a	deadlock	on
Windows	with	threads	in	Opening	tables	or	Waiting	for	table	states.
(Bug	#12071)

InnoDB:	If	FOREIGN_KEY_CHECKS	was	0,	InnoDB	allowed	inconsistent	foreign

keys	to	be	created.	(Bug	#13778)

NDB	Cluster:	Under	some	circumstances,	it	was	possible	for	a	restarting
node	to	undergo	a	forced	shutdown.	(Bug	#15632)

NDB	Cluster:	If	an	abort	by	the	Transaction	Coordinator	timed	out,	the
abort	condition	was	incorrectly	handled,	causing	the	transaction	record	to
be	released	prematurely.	(Bug	#15685)

NDB	Cluster:	The	ndb_read_multi_range.test	script	failed	to	drop	a
table,	causing	the	test	to	fail.	(Bug	#15675)	(See	also	Bug	#15401.)

NDB	Cluster:	A	node	which	failed	during	cluster	startup	was	sometimes	not
removed	from	the	internal	list	of	active	nodes.	(Bug	#15587)

Resolution	of	the	argument	to	the	VALUES()	function	to	a	variable	inside	a
stored	routine	caused	a	server	crash.	The	argument	must	be	a	table	column.
(Bug	#15441)

D.1.10.	Changes	in	release	5.0.17	(14	December	2005)

Functionality	added	or	changed:

The	original	Linux	RPM	packages	(5.0.17-0)	had	an	issue	with	a	zlib
dependency	that	would	result	in	an	error	during	an	install	or	upgrade.	They
were	replaced	by	new	binaries,	5.0.17-1.	(Bug	#15223)	Here	is	a	list	of	the
new	RPM	binaries:

MySQL-{Max,client,devel,server,shared,ndb*}-5.0.17-1.i386.rpm

MySQL-*-standard-5.0.17-1.rhel3.i386.rpm,	MySQL-*-standard-
5.0.17-1.rhel3.ia64.rpm,	MySQL-*-standard-5.0.17-
1.rhel3.x86_64.rpm

MySQL-*-pro-5.0.17-1.rhel3.i386.rpm,	MySQL-*-pro-5.0.17-
1.rhel3.ia64.rpm,	MySQL-*-pro-5.0.17-1.rhel3.x86_64.rpm

MySQL-*-pro-gpl-5.0.17-1.rhel3.i386.rpm,	MySQL-*-pro-gpl-5.0.17-
1.rhel3.ia64.rpm,	MySQL-*-pro-gpl-5.0.17-1.rhel3.x86_64.rpm

The	syntax	for	CREATE	TRIGGER	now	includes	a	DEFINER	clause	for
specifying	which	access	privileges	to	check	at	trigger	invocation	time.	See
Section	18.1,	“CREATE	TRIGGER	Syntax”,	for	more	information.

Known	issue:	If	you	attempt	to	replicate	from	a	master	server	older	than
MySQL	5.0.17	to	a	slave	running	MySQL	5.0.17	through	5.0.19,	replication
of	CREATE	TRIGGER	statements	fails	on	the	slave	with	a	Definer	not	fully
qualified	error.	A	workaround	is	to	create	triggers	on	the	master	using	a
version-specific	comment	embedded	in	each	CREATE	TRIGGER	statement:

CREATE	/*!50017	DEFINER	=	'root'@'localhost'	*/	TRIGGER	...	;

CREATE	TRIGGER	statements	written	this	way	will	replicate	to	newer	slaves,
which	pick	up	the	DEFINER	clause	from	the	comment	and	execute
successfully.	(Bug	#16266)

Added	a	DEFINER	column	to	the	INFORMATION_SCHEMA.TRIGGERS	table.

Invoking	a	stored	function	or	trigger	creates	a	new	savepoint	level.	When
the	function	or	trigger	finishes,	the	previous	savepoint	level	is	restored.
(See	Bug	#13825	for	more	information.)

Recursion	is	allowed	in	stored	procedures.	Recursive	stored	functions	and
triggers	still	are	disallowed.	(Bug	#10100)

In	the	latin5_turkish_ci	collation,	the	order	of	the	characters	A	WITH
CIRCUMFLEX,	I	WITH	CIRCUMLEX,	and	U	WITH	CIRCUMFLEX	was	changed.	If
you	have	used	these	characters	in	any	indexed	columns,	you	should	rebuild
those	indexes.	(Bug	#13421)

Support	files	for	compiling	with	Visual	Studio	6	have	been	removed.	(Bug
#15094)

Bugs	fixed:

RPM	packages	had	an	incorrect	zlib	dependency.	(Bug	#15223)

NDB	Cluster:	REPLACE	failed	when	attempting	to	update	a	primary	key
value	in	a	Cluster	table.	(Bug	#14007)

make	failed	when	attempting	to	build	MySQL	in	different	directory	than
source.	(Bug	#11827)

Corrected	an	error-handling	problem	within	stored	routines	on	64-bit
platforms.	(Bug	#15630)

Slave	SQL	thread	cleanup	was	not	handled	properly	on	Mac	OS	X	when	a
statement	was	killed,	resulting	in	a	slave	crash.	(Bug	#15623,	Bug	#15668)

Symbolic	links	did	not	function	properly	on	Windows	platforms.	(Bug
#14960,	Bug	#14310)

mysqld	would	not	start	on	Windows	9X	operating	systems	including
Windows	Me.	(Bug	#15209)

InnoDB:	During	replication,	There	was	a	failure	to	record	events	in	the
binary	log	that	still	occurred	even	in	the	event	of	a	ROLLBACK.	For	example,
this	sequence	of	commands:

BEGIN;

CREATE	TEMPORARY	TABLE	t1	(a	INT)	ENGINE=INNODB;

ROLLBACK;

INSERT	INTO	t1	VALUES	(1);

would	succeed	on	the	replication	master	as	expected.	However,	the	INSERT
would	fail	on	the	slave	because	the	ROLLBACK	would	(erroneously)	cause	the
CREATE	TEMPORARY	TABLE	statement	not	to	be	written	to	the	binlog.	(Bug
#7947)

A	bug	in	mysql-test/t/mysqltest.test	caused	that	test	to	fail.	(Bug
#15605)

The	CREATE	test	case	in	mysql-test-run.pl	failed	on	AIX	and	SCO.	(Bug
#15607)

NDB	Cluster:	Creating	a	table	with	packed	keys	failed	silently.	NDB	now
supports	the	PACK_KEYS	option	to	CREATE	TABLE	correctly.	(Bug	#14514)

NDB	Cluster:	Using	ORDER	BY	primary_key_column	when	selecting	from	a
table	having	the	primary	key	on	a	VARCHAR	column	caused	a	forced
shutdown	of	the	cluster.	(Bug	#14828,	Bug	#15240,	Bug	#15682,	Bug

#15517)

NDB	Cluster:	Under	certain	circumstances,	when	mysqld	connects	to	a
cluster	management	server,	the	connection	would	fail	before	a	node	ID
could	be	allocated.	(Bug	#15215)

NDB	Cluster:	There	was	a	small	window	for	a	node	failure	to	occur	during
a	backup	without	an	error	being	reported.	(Bug	#15425)

mysql	--help	was	missing	a	newline	after	the	version	string	when	the
bundled	readline	library	was	not	used.	(Bug	#15097)

Implicit	versus	explicit	conversion	of	float	to	integer	(such	as	inserting	a
float	value	into	an	integer	column	versus	using	CAST(...	AS	UNSIGNED
before	inserting	the	value)	could	produce	different	results.	Implicit	and
explicit	typecasts	now	are	done	the	same	way,	with	a	value	equal	to	the
nearest	integer	according	to	the	prevailing	rounding	mode.	(Bug	#12956)

GROUP	BY	on	a	view	column	did	not	correctly	account	for	the	possibility	that
the	column	could	contain	NULL	values.	(Bug	#14850)

ANALYZE	TABLE	did	not	properly	update	table	statistics	for	a	MyISAM	table
with	a	FULLTEXT	index	containing	stopwords,	so	a	subsequent	ANALYZE
TABLE	would	not	recognize	the	table	as	having	already	been	analyzed.	(Bug
#14902)

The	maximum	value	of	MAX_ROWS	was	handled	incorrectly	on	64-bit
systems.	(Bug	#14155)

NDB	Cluster:	A	forced	cluster	shutdown	occurred	when	the	management
daemon	was	restarted	with	a	changed	config.ini	file	that	added	an
API/SQL	node.	(Bug	#15512)

Multiple-table	update	operations	were	counting	updates	and	not	updated
rows.	As	a	result,	if	a	row	had	several	updates	it	was	counted	several	times
for	the	“rows	matched”	value	but	updated	only	once.	(Bug	#15028)

A	statement	that	produced	a	warning,	when	fetched	via
mysql_stmt_fetch(),	did	not	produce	a	warning	count	according	to
mysql_warning_count().	(Bug	#15510)

Manual	manipulation	of	the	mysql.proc	table	could	cause	a	server	crash.
This	should	not	happen,	but	it	is	also	not	supported	that	the	server	will
notice	such	changes.	(Bug	#14233)

Revised	table	locking	to	allow	proper	assessment	of	view	security.	(Bug
#11555)

Within	a	stored	procedure,	inserting	with	INSERT	...	SELECT	into	a	table
with	an	AUTO_INCREMENT	column	did	not	generate	the	correct	sequence
number.	(Bug	#14304)

SELECT	queries	that	began	with	an	opening	parenthesis	were	not	being
placed	in	the	query	cache.	(Bug	#14652)

Space	truncation	was	being	ignored	when	inserting	into	BINARY	or
VARBINARY	columns.	Now	space	truncation	results	in	a	warning,	or	an	error
in	strict	mode.	(Bug	#14299)

The	database-changing	code	for	stored	routine	handling	caused	an	error-
handling	problem	resulting	in	a	server	crash.	(Bug	#15392)

Selecting	from	a	view	processed	with	the	temptable	algorithm	caused	a
server	crash	if	the	query	cache	was	enabled.	(Bug	#15119)

REPAIR	TABLES,	BACKUP	TABLES,	RESTORE	TABLES	within	a	stored
procedure	caused	a	server	crash.	(Bug	#13012)

Creating	a	view	that	referenced	a	stored	function	that	selected	from	a	view
caused	a	crash	upon	selection	from	the	view.	(Bug	#15096)

ALTER	TABLE	...	SET	DEFAULT	had	no	effect.	(Bug	#14693)

Creating	a	view	within	a	stored	procedure	could	result	in	an	out	of	memory
error	or	a	server	crash.	(Bug	#14885)

InnoDB:	A	race	condition	allowed	two	threads	to	drop	a	hash	index
simultaneously.	(Bug	#14747)

mysqlhotcopy	tried	to	copy	INFORMATION_SCHEMA	tables.	(Bug	#14610)

CHAR(...	USING	...)	and	CONVERT(CHAR(...)	USING	...),	though
logically	equivalent,	could	produce	different	results.	(Bug	#14146)

The	value	of	INFORMATION_SCHEMA.TABLES.TABLE_TYPE	sometimes	was
reported	as	empty.	(Bug	#14476)

InnoDB:	Activity	on	an	InnoDB	table	caused	execution	time	for	SHOW
CREATE	TABLE	for	the	table	to	increase.	(Bug	#13762)

DELETE	from	CSV	tables	reported	an	incorrect	rows-affected	value.	(Bug
#13406)

The	server	crashed	if	compiled	without	any	transactional	storage	engines.
(Bug	#15047)

Declaring	a	stored	routine	variable	to	have	a	DEFAULT	value	that	referred	to
a	variable	of	the	same	name	caused	a	server	crash.	(For	example:	DECLARE
x	INT	DEFAULT	x)	Now	the	DEFAULT	variable	is	interpreted	as	referring	to	a
variable	in	an	outer	scope,	if	there	is	one.	(Bug	#14376)

Perform	character	set	conversion	of	constant	values	whenever	possible
without	data	loss.	(Bug	#10446)

mysql	ignored	the	MYSQL_TCP_PORT	environment	variable.	(Bug	#5792)

ROW_COUNT()	returned	an	incorrect	result	after	EXECUTE	of	a	prepared
statement.	(Bug	#14956)

A	UNION	of	DECIMAL	columns	could	produce	incorrect	results.	(Bug	#14216)

Queries	that	select	records	based	on	comparisons	to	a	set	of	column	could
crash	the	server	if	there	was	one	index	covering	the	columns,	and	a	set	of
other	non-covering	indexes	that	taken	together	cover	the	columns.	(Bug
#15204)

When	using	an	aggregate	function	to	select	from	a	table	that	has	a	multiple-
column	primary	key,	adding	ORDER	BY	to	the	query	could	produce	an
incorrect	result.	(Bug	#14920)

SHOW	CREATE	TABLE	for	a	view	could	fail	if	the	client	had	locked	the	view.

(Bug	#14726)

For	binary	string	data	types,	mysqldump	--hex-blob	produced	an	illegal
output	value	of	0x	rather	than	''.	(Bug	#13318)

Some	comparisons	for	the	IN()	operator	were	inconsistent	with	equivalent
comparisons	for	the	=	operator.	(Bug	#12612)

In	a	stored	procedure,	continuing	(via	a	condition	handler)	after	a	failed
variable	initialization	caused	a	server	crash.	(Bug	#14643)

Within	a	stored	procedure,	exception	handling	for	UPDATE	statements	that
caused	a	duplicate-key	error	caused	a	Packets	out	of	order	error	for	the
following	statement.	(Bug	#13729)

Creating	a	table	containing	an	ENUM	or	SET	column	from	within	a	stored
procedure	or	prepared	statement	caused	a	server	crash	later	when	executing
the	procedure	or	statement.	(Bug	#14410)

Selecting	from	a	view	used	filesort	retrieval	when	faster	retrieval	was
possible.	(Bug	#14816)

Warnings	from	a	previous	command	were	not	being	reset	when	fetching
from	a	cursor.	(Bug	#13524)

RESET	MASTER	failed	to	delete	log	files	on	Windows.	(Bug	#13377)

Using	ORDER	BY	on	a	column	from	a	view,	when	also	selecting	the	column
normally,	and	via	an	alias,	caused	a	mistaken	Column	'x'	in	order
clause	is	ambiguous	error.	(Bug	#14662)

Invoking	a	stored	procedure	within	another	stored	procedure	caused	the
server	to	crash.	(Bug	#13549)

Stored	functions	making	use	of	cursors	were	not	replicated.	(Bug	#14077)

CAST(expr	AS	BINARY(N))	did	not	pad	with	0x00	to	a	length	of	N	bytes.
(Bug	#14255)

Casting	a	FLOAT	or	DOUBLE	whose	value	was	less	than	1.0E-06	to	DECIMAL

would	yield	an	inappropriate	value.	(Bug	#14268)

In	some	cases,	a	left	outer	join	could	yield	an	invalid	result	or	cause	the
server	to	crash,	due	to	a	MYSQL_DATA_TRUNCATED	error.	(Bug	#13488)

For	a	invalid	view	definition,	selecting	from	the
INFORMATION_SCHEMA.VIEWS	table	or	using	SHOW	CREATE	VIEW	failed,
making	it	difficult	to	determine	what	part	of	the	definition	was	invalid.	Now
the	server	returns	the	definition	and	issues	a	warning.	(Bug	#13818)

The	server	could	misinterpret	old	trigger	definition	files	created	before
MySQL	5.0.17.	Now	they	are	interpreted	correctly,	but	this	takes	more	time
and	the	server	issues	a	warning	that	the	trigger	should	be	re-created.	(Bug
#14090)

mysqldump	--triggers	did	not	account	for	the	SQL	mode	and	could	dump
trigger	definitions	with	missing	whitespace	if	the	IGNORE_SPACE	mode	was
enabled.	(Bug	#14554)

Within	a	trigger	definition	the	CURRENT_USER()	function	evaluated	to	the
user	whose	actions	caused	the	trigger	to	be	activated.	Now	that	triggers
have	a	DEFINER	value,	CURRENT_USER()	evaluates	to	the	trigger	definer.
(Bug	#5861)

CREATE	TABLE	tbl_name	(...)	SELECT	...	could	crash	the	server	and	write
invalid	data	into	the	.frm	file	if	the	CREATE	TABLE	and	SELECT	both
contained	a	column	with	the	same	name.	Also,	if	a	default	value	is	specified
in	the	column	definition,	it	is	now	actually	used.	(Bug	#14480)

A	newline	character	in	a	column	alias	in	a	view	definition	caused	an	error
when	selecting	from	the	view	later.	(Bug	#13622)

mysql_fix_privilege_tables.sql	contained	an	erroneous	comment	that
resulted	in	an	error	when	the	file	contents	were	processed.	(Bug	#14469)

On	Windows,	the	server	could	crash	during	shutdown	if	both	replication
threads	and	normal	client	connection	threads	were	active.	(Re-fix	of	Bug
#11796)

The	grammar	for	supporting	the	DEFINER	=	CURRENT_USER	clause	in

CREATE	VIEW	and	ALTER	VIEW	was	incorrect.	(Bug	#14719)

Queries	on	ARCHIVE	tables	that	used	the	filesort	sorting	method	could
result	in	a	server	crash.	(Bug	#14433)

The	mysql_stmt_fetch()	C	APP	function	could	return	MYSQL_NO_DATA	for
a	SELECT	COUNT(*)	FROM	tbl_name	WHERE	1	=	0	statement,	which
should	return	1	row.	(Bug	#14845)

A	LIMIT-related	optimization	failed	to	take	into	account	that	MyISAM	table
indexes	can	be	disabled,	causing	Error	124	when	it	tried	to	use	such	an
index.	(Bug	#14616)

A	server	crash	resulted	from	the	following	sequence	of	events:	1)	With	no
default	database	selected,	create	a	stored	procedure	with	the	procedure
name	explicitly	qualified	with	a	database	name	(CREATE	PROCEDURE
db_name.proc_name	...).	2)	Create	another	stored	procedure	with	no
database	name	qualifier.	3)	Execute	SHOW	PROCEDURE	STATUS.	(Bug
#14569)

Complex	subqueries	could	cause	improper	internal	query	execution
environment	initialization	and	crash	the	server.	(Bug	#14342)

For	a	table	that	had	been	opened	with	HANDLER	OPEN,	issuing	OPTIMIZE
TABLE,	ALTER	TABLE,	or	REPAIR	TABLE	caused	a	server	crash.	(Bug	#14397)

A	server	crash	could	occur	if	a	prepared	statement	invoked	a	stored
procedure	that	existed	when	the	statement	was	prepared	but	had	been
dropped	and	re-created	prior	to	statement	execution.	(Bug	#12329)

A	server	crash	could	occur	if	a	prepared	statement	updated	a	table	for	which
a	trigger	existed	when	the	statement	was	prepared	but	had	been	dropped
prior	to	statement	execution.	(Bug	#13399)

Statements	that	implicitly	commit	a	transaction	are	prohibited	in	stored
functions	and	triggers.	An	attempt	to	create	a	function	or	trigger	containing
such	a	statement	produces	an	error.	(Bug	#13627)	(The	originally	reported
symptom	was	that	a	trigger	that	dropped	another	trigger	could	cause	a
server	crash.	That	problem	was	fixed	by	the	patch	for	Bug	#13343.)

D.1.11.	Changes	in	release	5.0.16	(10	November	2005)

Functionality	added	or	changed:

When	trying	to	run	the	server	with	yaSSL	enabled,	MySQL	now	tries	to
open	/dev/random	automatically	if	/dev/urandom	is	not	available.	(Bug
#13164)

The	read_only	system	variable	no	longer	applies	to	TEMPORARY	tables.	(Bug
#4544)

Due	to	changes	in	binary	logging,	the	restrictions	on	which	stored	routine
creators	can	be	trusted	not	to	create	unsafe	routines	have	been	lifted	for
stored	procedures	(but	not	stored	functions).	Consequently,	the
log_bin_trust_routine_creators	system	variable	and	the	corresponding
--log-bin-trust-routine-creators	server	option	were	renamed	to
log_bin_trust_function_creators	and	--log-bin-trust-function-
creators.	For	backward	compatibility,	the	old	names	are	recognized	but
result	in	a	warning.	See	Section	17.4,	“Binary	Logging	of	Stored	Routines
and	Triggers”.

Added	the	Compression	status	variable,	which	indicates	whether	the	client
connection	uses	compression	in	the	client/server	protocol.

In	MySQL	5.0.13,	syntax	for	DEFINER	and	SQL	SECURITY	clauses	was	added
to	the	CREATE	VIEW	and	ALTER	VIEW	statements,	but	the	clauses	had	no
effect.	They	now	are	enabled.	They	specify	the	security	context	to	be	used
when	checking	access	privileges	at	view	invocation	time.	See	Section	19.2,
“CREATE	VIEW	Syntax”,	for	more	information.

The	InnoDB,	NDB,	BDB,	and	ARCHIVE	storage	engines	now	support	spatial
columns.	See	Chapter	16,	Spatial	Extensions.

The	CHECK	TABLE	statement	now	works	for	ARCHIVE	tables.

You	must	now	declare	a	prefix	for	an	index	on	any	column	of	any	Geometry
class,	the	only	exception	being	when	the	column	is	a	POINT.	(Bug	#12267)

Added	a	--hexdump	option	to	mysqlbinlog	that	displays	a	hex	dump	of	the
log	in	comments.	This	output	can	be	helpful	for	replication	debugging.

MySQL	5.0	now	supports	character	set	conversion	for	seven	additional
cp950	characters	into	the	big5	character	set:	0xF9D6,	0xF9D7,	0xF9D8,
0xF9D9,	0xF9DA,	0xF9DB,	and	0xF9DC.	Note:	If	you	move	data	containing
these	additional	characters	to	an	older	MySQL	installation	which	does	not
support	them,	you	may	encounter	errors.	(Bug	#12476)

When	a	date	column	is	set	NOT	NULL	and	contains	0000-00-00,	it	will	be
updated	for	UPDATE	statements	that	contains	columnname	IS	NULL	in	the
WHERE	clause.	(Bug	#14186)

Bugs	fixed:

When	the	DATE_FORMAT()	function	appeared	in	both	the	SELECT	and	ORDER
BY	clauses	of	a	query	but	with	arguments	that	differ	by	case	(i.e.	%m	and
%M),	incorrect	sorting	may	have	occurred.	(Bug	#14016)

For	InnoDB	tables,	using	a	column	prefix	for	a	utf8	column	in	a	primary
key	caused	Cannot	find	record	errors	when	attempting	to	locate	records.
(Bug	#14056)

NDB	Cluster:	A	memory	leak	occurred	when	performing	ordered	index
scans	using	indexes	a	columns	larger	than	32	bytes,	which	would	eventually
lead	to	the	forced	shutdown	of	all	mysqld	server	processes	used	with	the
cluster.	(Bug	#13078)

InnoDB:	Large	innobase_buffer_pool_size	and	innobase_log_file_size
values	were	displayed	incorrectly	on	64-bit	systems.	(Bug	#12701)

InnoDB:	When	dropping	and	adding	a	PRIMARY	KEY,	if	a	loose	index	scan
using	only	the	second	part	of	multiple-part	index	was	chosen,	incorrect	keys
were	created	and	an	endless	loop	resulted.	(Bug	#13293)

NDB	Cluster:	Repeated	transactions	using	unique	index	lookups	could
cause	a	memory	leak	leading	to	error	288,	Out	of	index	operations	in
transaction	coordinator.	(Bug	#14199)

Selecting	from	a	table	in	both	an	outer	query	and	a	subquery	could	cause	a
server	crash.	(Bug	#14482)

SHOW	CREATE	TABLE	did	not	display	the	CONNECTION	string	for	FEDERATED

tables.	(Bug	#13724)

For	some	stored	functions	dumped	by	mysqldump	--routines,	the	function
definition	could	not	be	reloaded	later	due	to	a	parsing	error.	(Bug	#14723)

For	a	MyISAM	table	originally	created	in	MySQL	4.1,	INSERT	DELAYED	could
cause	a	server	crash.	(Bug	#13707)

The	--exit-info=65536	option	conflicted	with	--temp-pool	and	caused
problems	with	the	server's	use	of	temporary	files.	Now	--temp-pool	is
ignored	if	--exit-info=65536	is	specified.	(Bug	#9551)

ORDER	BY	DESC	within	the	GROUP_CONCAT()	function	was	not	honored	when
used	in	a	view.	(Bug	#14466)

A	comparison	with	an	invalid	date	(such	as	WHERE	col_name	>	'2005-09-
31')	caused	any	index	on	col_name	not	to	be	used	and	a	string	comparison
for	each	row,	resulting	in	slow	performance.	(Bug	#14093)

Within	stored	routines,	REPLACE()	could	return	an	empty	string	(rather	than
the	original	string)	when	no	replacement	was	done,	and	IFNULL()	could
return	garbage	results.	(Bug	#13941)

Inserts	of	too-large	DECIMAL	values	were	handled	inconsistently	(sometimes
set	to	the	maximum	DECIMAL	value,	sometimes	set	to	0).	(Bug	#13573)

Executing	REPAIR	TABLE,	ANALYZE	TABLE,	or	OPTIMIZE	TABLE	on	a	view
for	which	an	underlying	table	had	been	dropped	caused	a	server	crash.	(Bug
#14540)

A	prepared	statement	that	selected	from	a	view	processed	using	the	merge
algorithm	could	crash	on	the	second	execution.	(Bug	#14026)

Deletes	from	a	CSV	table	could	cause	table	corruption.	(Bug	#14672)

An	update	of	a	CSV	table	could	cause	a	server	crash.	(Bug	#13894)

For	queries	with	nested	outer	joins,	the	optimizer	could	choose	join	orders
that	query	execution	could	not	handle.	The	fix	is	that	now	the	optimizer
avoids	choosing	such	join	orders.	(Bug	#13126)

Starting	mysqld	with	the	--skip-innodb	and	--default-storage-
engine=innodb	(or	--default-table-type=innodb	caused	a	server	crash.
(Bug	#9815,	re-fix	of	bug	from	5.0.5)

mysqlmanager	did	not	start	up	correctly	on	Windows	2003.	(Bug	#14537)

The	parser	did	not	correctly	recognize	wildcards	in	the	host	part	of	the
DEFINER	user	in	CREATE	VIEW	statements.	(Bug	#14256)

Memory	corruption	and	a	server	crash	could	be	caused	by	statements	that
used	a	cursor	and	generated	a	result	set	larger	than	max_heap_table_size.
(Bug	#14210)

mysqld_safe	did	not	correctly	start	the	-max	version	of	the	server	(if	it	was
present)	if	the	--ledir	option	was	given.	(Bug	#13774)

The	mysql	parser	did	not	properly	strip	the	delimiter	from	input	lines	less
than	nine	characters	long.	For	example,	this	could	cause	USE	abc;	to	result
in	an	Unknown	database:	abc;	error.	(Bug	#14358)

Statements	of	the	form	CREATE	TABLE	...	SELECT	...	that	created	a
column	with	a	multi-byte	character	set	could	incorrectly	calculate	the
maximum	length	of	the	column,	resulting	in	a	Specified	key	was	too
long	error.	(Bug	#14139)

Some	updatable	views	could	not	be	updated.	(Bug	#14027)

Running	OPTIMIZE	TABLE	and	other	data-updating	statements	concurrently
on	an	InnoDB	table	could	cause	a	crash	or	the	following	warnings	in	the
error	log:	Warning:	Found	locks	from	different	threads	in	write:
enter	write_lock,	Warning:	Found	locks	from	different	threads	in
write:	start	of	release	lock.	(Bug	#11704)

Indexes	for	BDB	tables	were	being	limited	incorrectly	to	255	bytes.	(Bug
#14381)

Use	of	col_name	=	VALUES(col_name)	in	the	ON	DUPLICATE	KEY	UPDATE
clause	of	an	INSERT	statement	failed	with	an	Column	'col_name'	in	field	list
is	ambiguous	error.	(Bug	#13392)

On	Windows,	the	server	was	not	ignoring	hidden	or	system	directories	that
Windows	may	have	created	in	the	data	directory,	and	would	treat	them	as
available	databases.	(Bug	#4375)

mysqldump	could	not	dump	views	if	the	-x	option	was	given.	(Bug
#12838)

mysqlimport	now	issues	a	SET	@@character_set_database	=	binary
statement	before	loading	data	so	that	a	file	containing	mixed	character	sets
(columns	with	different	character	sets)	can	be	loaded	properly.	(Bug
#12123)

Use	of	the	deprecated	--sql-bin-update-same	option	caused	a	server
crash.	(Bug	#12974)

Maximum	values	were	handled	incorrectly	for	command-line	options	of
type	GET_LL.	(Bug	#12925)

For	a	user	that	has	the	SELECT	privilege	on	a	view,	the	server	erroneously
was	also	requiring	the	user	to	have	the	EXECUTE	privilege	at	view	execution
time	for	stored	functions	used	in	the	view	definition.	(Bug	#9505)

Use	of	WITH	ROLLUP	PROCEDURE	ANALYSE()	could	hang	the	server.	(Bug
#14138)

TIMEDIFF(),	ADDTIME(),	and	STR_TO_DATE()	were	not	reporting	that	they
could	return	NULL,	so	functions	that	invoked	them	might	misinterpret	their
results.	(Bug	#14009)

The	example	configuration	files	supplied	with	MySQL	distributions	listed
the	thread_cache_size	variable	as	thread_cache.	(Bug	#13811)

Using	ALTER	TABLE	to	add	an	index	could	fail	if	the	operation	ran	out	of
temporary	file	space.	Now	it	automatically	makes	a	second	attempt	that
uses	a	slower	method	but	no	temporary	file.	In	this	case,	problems	that
occurred	during	the	first	attempt	can	be	displayed	with	SHOW	WARNINGS.
(Bug	#12166)

The	input	polling	loop	for	Instance	Manager	did	not	sleep	properly.
Instance	Manager	used	up	too	much	CPU	as	a	result.	(Bug	#14388)

Trying	to	take	the	logarithm	of	a	negative	value	is	now	handled	in	the	same
fashion	as	division	by	zero.	That	is,	it	produces	a	warning	when
ERROR_FOR_DIVISION_BY_ZERO	is	set,	and	an	error	in	strict	mode.	(Bug
#13820)

LOAD	DATA	INFILE	would	not	accept	the	same	character	for	both	the
ESCAPED	BY	and	the	ENCLOSED	BY	clauses.	(Bug	#11203)

The	value	of	Last_query_cost	was	not	updated	for	queries	served	from	the
query	cache.	(Bug	#10303)

TIMESTAMPDIFF()	returned	an	incorrect	result	if	one	argument	but	not	the
other	was	a	leap	year	and	a	date	was	from	March	or	later.	(Bug	#13534)

The	server	incorrectly	accepted	column	definitions	of	the	form
DECIMAL(0,D)	for	D	less	than	11.	(Bug	#13667)

The	displayed	value	for	the	CHARACTER_MAXIMUM_LENGTH	column	in	the
INFORMATION_SCHEMA.COLUMNS	table	was	not	adjusted	for	multi-byte
character	sets.	(Bug	#14290)

A	bugfix	in	MySQL	5.0.15	caused	the	displayed	values	for	the
CHARACTER_MAXIMUM_LENGTH	and	CHARACTER_OCTET_LENGTH	columns	in	the
INFORMATION_SCHEMA.COLUMNS	table	to	be	reversed.	(Bug	#14207)

On	Windows,	the	value	of	character_sets_dir	in	SHOW	VARIABLES	output
was	displayed	inconsistently	(using	both	‘/’	and	‘\’	as	pathname
component	separators).	(Bug	#14137)

Subqueries	in	the	FROM	clause	failed	if	the	current	database	was
INFORMATION_SCHEMA.	(Bug	#14089)

Corrected	a	parser	precedence	problem	that	resulted	in	an	Unknown	column
...	in	'on	clause'	error	for	some	joins.	(Bug	#13832)

For	LIKE	...	ESCAPE,	an	escape	sequence	longer	than	one	character	was
accepted	as	valid.	Now	the	sequence	must	be	empty	or	one	character	long.
If	the	NO_BACKSLASH_ESCAPES	SQL	mode	is	enabled,	the	sequence	must	be
one	character	long.	(Bug	#12595)

SELECT	DISTINCT	CHAR(col_name)	returned	incorrect	results	after	SET
NAMES	utf8.	(Bug	#13233)

A	prepared	statement	failed	with	Illegal	mix	of	collations	if	the	client
character	set	was	utf8	and	the	statement	used	a	table	that	had	a	character
set	of	latin1.	(Bug	#12371)

Inserting	a	new	row	into	an	InnoDB	table	could	cause	DATETIME	values
already	stored	in	the	table	to	change.	(Bug	#13900)

The	default	value	of	query_prealloc_size	was	set	to	8192,	lower	than	its
minimum	of	16384.	The	minimum	has	been	lowered	to	8192.	(Bug	#13334)

The	server	did	not	take	character	set	into	account	in	checking	the	width	of
the	mysql.user.Password	column.	As	a	result,	it	could	incorrectly	generate
long	password	hashes	even	if	the	column	was	not	long	enough	to	hold
them.	(Bug	#13064)

Inserting	cp932	strings	into	a	VARCHAR	column	caused	a	server	crash	rather
than	string	truncation	if	the	string	was	longer	than	the	column	definition.
(Bug	#12547)

Two	threads	that	were	creating	triggers	on	an	InnoDB	table	at	the	same	time
could	deadlock.	(Bug	#12739)

mysqladmin	and	mysqldump	would	hang	on	SCO	OpenServer.	(Bug
#13238)

Where	one	stored	procedure	called	another	stored	procedure:	If	the	second
stored	procedure	generated	an	exception,	the	exception	was	not	caught	by
the	calling	stored	procedure.	For	example,	if	stored	procedure	A	used	an
EXIT	statement	to	handle	an	exception,	subsequent	statements	in	A	would	be
executed	regardless	when	A	was	called	by	another	stored	procedure	B,	even
if	an	exception	that	should	have	been	handled	by	the	EXIT	was	generated	in
A.	(Bug	#7049)

Trying	to	create	a	stored	routine	with	no	database	selected	would	crash	the
server.	(Bug	#13514,	Bug	#13587)

Specifying	--default-character-set=cp-932	for	mysqld	would	cause

SQL	scripts	containing	comments	written	using	that	character	set	to	fail
with	a	syntax	error.	(Bug	#13487)

Trying	to	compile	the	server	using	the	--without-geometry	option	caused
the	build	to	fail.	(Bug	#12991)

D.1.12.	Changes	in	release	5.0.15	(19	October	2005:	Production)

Functionality	added	or	changed:

Warning:	Incompatible	change.	For	BINARY	columns,	the	pad	value	and
how	it	is	handled	has	changed.	The	pad	value	for	inserts	now	is	0x00	rather
than	space,	and	there	is	no	stripping	of	the	pad	value	for	selects.	For	details,
see	Section	11.4.2,	“The	BINARY	and	VARBINARY	Types”.

Warning:	Incompatible	change.	The	CHAR()	function	now	returns	a
binary	string	rather	than	a	string	in	the	connection	character	set.	An
optional	USING	charset	clause	may	be	used	to	produce	a	result	in	a	specific
character	set	instead.	Also,	arguments	larger	than	256	produce	multiple
characters.	They	are	no	longer	interpreted	modulo	256	to	produce	a	single
character	each.	These	changes	may	cause	some	incompatibilities,	as	noted
in	Section	2.11.2,	“Upgrading	from	MySQL	4.1	to	5.0”.

NDB	Cluster:	The	perror	utility	included	with	the	MySQL-Server	RPM
now	provides	support	for	the	--ndb	option,	and	so	can	be	used	to	obtain
error	message	text	for	MySQL	Cluster	error	codes.	(Bug	#13740)

NDB	Cluster:	The	ndb_mgm	client	now	reports	node	startup	phases
automatically.	(Bug	#16197)

When	executing	single-table	UPDATE	or	DELETE	queries	containing	an	ORDER
BY	...	LIMIT	N	clause,	but	not	having	any	WHERE	clause,	MySQL	can	now
take	advantage	of	an	index	to	read	the	first	N	rows	in	the	ordering	specified
in	the	query.	If	an	index	is	used,	only	the	first	N	records	will	be	read,	as
opposed	to	scanning	the	entire	table.	(Bug	#12915)

The	MySQL-server	RPM	now	explicitly	assigns	the	mysql	system	user	to
the	mysql	user	group	during	the	postinstallation	process.	This	corrects	an
issue	with	upgrading	the	server	on	some	Linux	distributions	whereby	a

previously	existing	mysql	user	was	not	changed	to	the	mysql	group,
resulting	in	wrong	groups	for	files	created	following	the	installation.	(Bug
#12823)

Added	the	--tz-utc	option	to	mysqldump.	This	option	adds	SET
TIME_ZONE='+00:00'	to	the	dump	file	so	that	TIMESTAMP	columns	can	be
dumped	and	reloaded	between	servers	in	different	time	zones	and	protected
from	changes	due	to	daylight	saving	time.	(Bug	#13052)

When	declaring	a	local	variable	(or	parameter)	named	password	or	name,
and	setting	it	with	SET	(for	example,	SET	password	=	''),	the	new	error
message	ERROR	42000:	Variable	'nnn'	must	be	quoted	with	`...`,
or	renamed	is	returned	(where	'nnn'	is	'password'	or	'names').	This	means
there	is	a	syntax	conflict	with	special	sentences	like	SET	PASSWORD	=
PASSWORD(...)	(for	setting	a	user's	password)	and	set	names	default	(for
setting	charset	and	collation).

This	must	be	resolved	either	by	quoting	the	variable	name:	SET	`password`
=	...,	which	will	set	the	local	variable	`password`,	or	by	renaming	the
variable	to	something	else	(if	setting	the	user's	password	is	the	desired
effect).

The	following	statements	now	cause	an	implicit	COMMIT:

CREATE	VIEW

ALTER	VIEW

DROP	VIEW

CREATE	TRIGGER

DROP	TRIGGER

CREATE	USER

RENAME	USER

DROP	USER

(Bug	#13343)

NDBCluster:	A	number	of	new	or	improved	error	messages	have	been
implemented	in	this	release	in	order	to	provide	better	and	more	accurate
diagnostic	information	regarding	cluster	configuration	issues	and	problems.
(Bug	#11739,	Bug	#11749,	Bug	#12044,	Bug	#12786,	Bug	#13197)

NDBCluster:	A	new	“smart”	node	allocation	algorithm	means	that	it	is	no
longer	necessary	to	use	sequential	IDs	for	cluster	nodes,	and	that	nodes	not
explicitly	assigned	IDs	should	now	have	IDs	allocated	automatically	in
most	cases.	In	practical	terms,	this	means	that	it	is	now	possible	to	assign	a
set	of	node	IDs	such	as	1,	2,	4,	5	without	an	error	being	generated	due	to	the
missing	3.	(Bug	#13009)

Bugs	fixed:

Issuing	STOP	SLAVE	after	having	acquired	a	global	read	lock	with	FLUSH
TABLES	WITH	READ	LOCK	caused	a	deadlock.	Now	STOP	SLAVE	is	generates
an	error	in	such	circumstances.	(Bug	#10942)

An	expression	in	an	ORDER	BY	clause	failed	with	Unknown	column
'col_name'	in	'order	clause'	if	the	expression	referred	to	a	column	alias.
(Bug	#11694)

mysqldump	could	not	dump	views.	(Bug	#14061)

Using	an	undefined	variable	in	an	IF	or	SET	clause	inside	a	stored	routine
produced	an	incorrect	unknown	column	...	in	'order	clause'	error
message.	(Bug	#13037)

Trying	to	create	a	view	dynamically	using	a	prepared	statement	within	a
stored	procedure	failed	with	error	1295.	(Bug	#13095)

mysqldump	--triggers	did	not	quote	identifiers	properly	if	the	--
compatible	option	was	given,	so	the	dump	output	could	not	be	reloaded.
(Bug	#13146)

Character	set	conversion	was	not	being	done	for	FIND_IN_SET().	(Bug
#13751)

CAST(1E+300	TO	SIGNED	INT)	produced	an	incorrect	result	on	little-endian
machines.	(Bug	#13344)

Corrected	a	memory-copying	problem	for	big5	values	when	using	icc
compiler	on	Linux	IA-64	systems.	(Bug	#10836)

On	BSD	systems,	the	system	crypt()	call	could	return	an	error	for	some
salt	values.	The	error	was	not	handled,	resulting	in	a	server	crash.	(Bug
#13619)

Character	set	file	parsing	during	mysql_real_connect()	read	past	the	end
of	a	memory	buffer.	(Bug	#6413)

InnoDB:	Queries	that	were	executed	using	an	index_merge	union	or
intersection	could	produce	incorrect	results	if	the	underlying	table	used	the
InnoDB	storage	engine	and	had	a	primary	key	containing	VARCHAR	members.
(Bug	#13484)

CREATE	DEFINER=...	VIEW	...	caused	the	server	to	crash	when	run	with	-
-skip-grant-tables.	(Bug	#13504)

The	--interactive-timeout	and	--slave-net-timeout	options	for
mysqld	were	not	being	obeyed	on	Mac	OS	X	and	other	BSD-based
platforms.	(Bug	#8731)

Queries	of	the	form	(SELECT	...)	ORDER	BY	...	were	being	treated	as	a
UNION.	This	improperly	resulted	in	only	distinct	values	being	returned
(because	UNION	by	default	eliminates	duplicate	results).	Also,	references	to
column	aliases	in	ORDER	BY	clauses	following	parenthesized	SELECT
statements	were	not	resolved	properly.	(Bug	#7672)

If	special	characters	such	as	'_'	,	'%',	or	the	escape	character	were
included	within	the	prefix	of	a	column	index,	LIKE	pattern	matching	on	the
indexed	column	did	not	return	the	correct	result.	(Bug	#13046,	Bug
#13919)

An	UPDATE	query	using	a	join	would	be	executed	incorrectly	on	a
replication	slave.	(Bug	#12618)

Server	crashed	during	a	SELECT	statement,	writing	a	message	like	this	to	the

error	log:

InnoDB:	Error:	MySQL	is	trying	to	perform	a	SELECT

InnoDB:	but	it	has	not	locked	any	tables	in	::external_lock()!

(Bug	#12736)

NDBCluster:	ndb_mgmd	would	allow	a	node	to	be	stopped	or	restarted
while	another	node	was	still	starting	up,	which	could	crash	the	cluster.	It
should	now	not	be	possible	to	issue	a	node	stop	or	restart	while	a	different
node	is	still	restarting,	and	the	cluster	management	client	issues	an	error	if
an	attempt	is	made	to	do	so.	(Bug	#13461)

NDBCluster:	Placing	multiple	[TCP	DEFAULT]	sections	in	the	cluster
config.ini	file	crashed	ndb_mgmd.	(The	ndb_mgmd	process	now	exits
gracefully	with	an	appropriate	error	message	instead.)	(Bug	#13611)

NDBCluster:	Trying	to	run	ndbd	as	system	root	when	connecting	to	a
mysqld	process	running	as	the	mysql	system	user	via	SHM	caused	the
ndbd	process	to	crash.	(ndbd	should	now	exit	gracefully	with	an
appropriate	error	message	instead.)	(Bug	#9249)

Server	may	over-allocate	memory	when	performing	a	FULLTEXT	search	for
stopwords	only.	(Bug	#13582)

Queries	that	use	indexes	in	normal	SELECT	statements	may	cause	range
scans	in	VIEWs.	(Bug	#13327)

When	calling	a	stored	procedure	with	the	syntax	CALL
schema.procedurename	and	no	default	schema	selected,	ERROR	1046	was
displayed	after	the	procedure	returned.	(Bug	#13616)

With	--log-slave-updates	Exec_master_log_pos	of	SQL	thread	lagged
IO	(Bug	#13023)

SHOW	CREATE	TABLE	did	not	display	any	FOREIGN	KEY	clauses	if	a
temporary	file	could	not	be	created.	Now	SHOW	CREATE	TABLE	displays	an
error	message	in	an	SQL	comment	if	this	occurs.	(Bug	#13002)

A	column	in	the	ON	condition	of	a	join	that	referenced	a	table	in	a	nested
join	could	not	be	resolved	if	the	nested	join	was	a	right	join.	(Bug	#13597)

A	qualified	reference	to	a	view	column	in	the	HAVING	clause	could	not	be
resolved.	(Bug	#13410)

comp_err	did	not	detect	when	multiple	error	messages	for	a	language	were
given	for	an	error	symbol.	(Bug	#13071)

For	XA	transaction	IDs	(gtrid.bqual.formatID),	uniqueness	is	supposed	to
be	assessed	based	on	gtrid	and	bqual.	MySQL	was	also	including
formatID	in	the	uniqueness	check.	(Bug	#13143)

Local	(non-XA)	and	XA	transactions	are	supposed	to	be	mutually	exclusive
within	a	given	client	connection,	but	this	prohibition	was	not	always
enforced.	(Bug	#12935)

mysqlcheck	--all-databases	--analyze	--optimize	failed	because	it
also	tried	to	analyze	and	optimize	the	INFORMATION_SCHEMA	tables	which	it
can't.	(Bug	#13783)

SELECT	*	INTO	OUTFILE	...	FROM	INFORMATION_SCHEMA.schemata	failed
with	an	Access	denied	error.	(Bug	#13202)

A	table	or	view	named	Ç	(C-cedilla)	couldn't	be	dropped.	(Bug	#13145)

Tests	containing	SHOW	TABLE	STATUS	or	INFORMATION_SCHEMA	failed	on
opnsrv6c.	(Bug,	#14064,	Bug	#14065)

D.1.13.	Changes	in	release	5.0.14	(Not	released)

Functionality	added	or	changed:

The	limit	of	255	characters	on	the	input	buffer	for	mysql	on	Windows	has	been
lifted.	The	exact	limit	depends	on	what	the	system	allows,	but	can	be	up	to	64K
characters.	A	typical	limit	is	16K	characters.	(Bug	#12929)

Re-enabled	the	--delayed-inserts	option	for	mysqldump,	which	now	checks
for	each	table	dumped	whether	its	storage	engine	supports	DELAYED	inserts.	(Bug
#7815)

Added	the	myisam_stats_method,	which	controls	whether	NULL	values	in

indexes	are	considered	the	same	or	different	when	collecting	statistics	for	MyISAM
tables.	This	influences	the	query	optimizer	as	described	in	Section	7.4.7,
“MyISAM	Index	Statistics	Collection”.	(Bug	#12232)

When	an	InnoDB	foreign	key	constraint	is	violated,	the	error	message	now
indicates	which	table,	column,	and	constraint	names	are	involved.	(Bug
#3443)

Configure-time	checking	for	the	availability	of	multi-byte	macros	and
functions	in	the	bundled	readline	library.	This	improves	handling	of	multi-
byte	character	sets	in	the	mysql	client.	(Bug	#3982)

The	CHAR()	function	now	takes	into	account	the	character	set	and	collation
given	by	the	character_set_connection	and	collation_connection
system	variables.	For	an	argument	n	to	CHAR(),	the	result	is	n	mod	256	for
single-byte	character	sets.	For	multi-byte	character	sets,	n	must	be	a	valid
code	point	in	the	character	set.	Also,	the	result	string	from	CHAR()	is
checked	for	well-formedness.	For	invalid	arguments,	or	a	result	that	is	not
well-formed,	MySQL	generates	a	warning	(or,	in	strict	SQL	mode,	an
error).	(Bug	#10504)

RENAME	TABLE	now	works	for	views	as	well,	as	long	as	you	do	not	try	to
rename	a	view	into	a	different	database.	(Bug	#5508)

Multiple-table	UPDATE	and	DELETE	statements	that	do	not	affect	any	rows
are	now	written	to	the	binary	log	and	will	replicate.	(Bug	#13348,	Bug
#12844)

Range	scans	can	now	be	performed	for	queries	on	VIEWs	such	as	column
IN	(<constants>)	and	column	BETWEEN	ConstantA	AND	ConstantB.	(Bug
#13317)

Bugs	fixed:

NDBCluster:	A	trigger	updating	the	value	of	an	AUTO_INCREMENT	column	in
a	Cluster	table	would	insert	an	error	code	rather	than	the	expected	value
into	the	column.	(Bug	#13961)

NDBCluster:	When	performing	a	delete	of	a	great	many	(tens	of	thousands
of)	rows	at	once	from	a	Cluster	table,	an	improperly	dereferenced	pointer

could	cause	the	mysqld	process	to	crash.	(Bug	#9282)

CHECKSUM	TABLE	locked	InnoDB	tables	and	did	not	use	a	consistent	read.
(Bug	#12669)

The	--skip-innodb-doublewrite	option	disables	use	of	the	InnoDB
doublewrite	buffer.	However,	having	this	option	in	effect	when	creating	a
new	MySQL	installation	prevented	the	buffer	from	even	being	created,
resulting	in	a	server	crash	later.	(Bug	#13367)

MySQL	programs	in	binary	distributions	for	Solaris	8/9/10	x86	systems
would	not	run	on	Pentium	III	machines.	(Bug	#6772)

When	SELECT	...	FOR	UPDATE	or	SELECT	...	LOCK	IN	SHARE	MODE	for
an	InnoDB	table	were	executed	from	within	a	stored	function	or	a	trigger,
they	were	converted	to	a	non-locking	consistent	read.	(Bug	#11238)

NDB	Cluster:	If	ndb_restore	could	not	find	a	free	mysqld	process,	it
crashed.	(Bug	#13512)

NDB	Cluster:	Receipt	of	several	enter	single	user	mode	commands	by
multiple	ndb_mgmd	processes	within	a	short	period	of	time	resulted	in
cluster	shutdown.	(Bug	#13053)

NDB	Cluster:	Multiple	ndb_mgmd	processes	in	a	cluster	would	not	know
each	other's	IP	addresses.	(Bug	#12037)

NDB	Cluster:	With	two	mgmd	processes	in	a	cluster,	ndb_mgmd	output
for	SHOW	would	display	the	same	IP	address	for	both	processes,	even	when
they	were	on	different	hosts.	(Bug	#11595)

NDB	Cluster:	Queries	on	NDB	tables	that	are	executed	using
index_merge/union	or	index_merge/intersection	could	produce	incorrect
results.	(Bug	#13081)

The	--replicate-rewrite-db	and	--replicate-do-table	options	did	not
work	for	statements	in	which	tables	were	aliased	to	names	other	than	those
listed	by	the	options.	(Bug	#11139)

After	running	configure	with	the	--with-embedded-privilege-control

option,	the	embedded	server	failed	to	build.	(Bug	#13501)

Nested	handlers	within	stored	procedures	didn't	work.	(Bug	#6127)

The	optimizer	chose	a	less	efficient	execution	plan	for	col_name
BETWEEN	const	AND	const	than	for	col_name	=	const,	even	though	the
two	expressions	are	logically	equivalent.	Now	the	optimizer	can	use	the	ref
access	method	for	both	expressions.	(Bug	#13455)

Incorrect	creation	of	DECIMAL	local	variables	in	a	stored	procedure	could
cause	a	server	crash.	(Bug	#12589)

Queries	against	a	MERGE	table	that	has	a	composite	index	could	produce
incorrect	results.	(Bug	#9112)

The	server	was	not	rejecting	FLOAT(M,D)	or	DOUBLE(M,D)	columns
specifications	when	M	was	less	than	D.	(Bug	#12694)

After	running	configure	with	the	--without-server	option,	the
distribution	failed	to	build.	(Bug	#11680,	Bug	#13550)

Joins	nested	under	NATURAL	or	USING	joins	were	sometimes	not	initialized
properly,	causing	a	server	crash.	(Bug	#13545)

Locking	a	view	with	the	query	cache	enabled	and
query_cache_wlock_invalidate	enabled	could	cause	a	server	crash.	(Bug
#13424)

A	HAVING	clause	that	references	an	unqualified	view	column	name	could
crash	the	server.	(Bug	#13411)

Comparisons	involving	row	constructors	containing	constants	could	cause	a
server	crash.	(Bug	#13356)

NDB	Cluster:	LOAD	DATA	INFILE	with	a	large	data	file	failed.	(Bug
#10694)

NDB	Cluster:	Adding	an	index	to	a	table	with	a	large	number	of	columns
(more	then	100)	crashed	the	storage	node.	(Bug	#13316)

Calling	the	FORMAT()	function	with	a	DECIMAL	column	value	caused	a	server
crash	when	the	value	was	NULL.	(Bug	#13361)

Aggregate	functions	sometimes	incorrectly	were	allowed	in	the	WHERE
clause	of	UPDATE	and	DELETE	statements.	(Bug	#13180)

It	was	possible	to	create	a	view	that	executed	a	stored	function	for	which
you	did	not	have	the	EXECUTE	privilege.	(Bug	#12812)

BIT	columns	and	following	columns	in	NDB	tables	were	corrupt	when
dumped	by	mysqldump.	(Bug	#13152)

NATURAL	joins	and	joins	with	USING	against	a	view	could	return	NULL	rather
than	the	correct	value.	(Bug	#13127)

Use	of	a	user-defined	function	within	the	HAVING	clause	of	a	query	resulted
in	an	Unknown	column	error.	(Bug	#11553)

For	queries	for	which	the	optimizer	determined	a	join	type	of	“Range
checked	for	each	record”	(as	shown	by	EXPLAIN,	the	query	sometimes	could
cause	a	server	crash,	depending	on	the	data	distribution.	(Bug	#12291)

For	queries	with	DISTINCT	and	WITH	ROLLUP,	the	DISTINCT	should	be
applied	after	the	rollup	operation,	but	was	not	always.	(Bug	#12887)

The	server	crashed	when	processing	a	view	that	invoked	the	CONVERT_TZ()
function.	(Bug	#11416)

Shared-memory	connections	were	not	working	on	Windows.	(Bug	#12723)

D.1.14.	Changes	in	release	5.0.13	(22	September	2005:	Release
Candidate)

Functionality	added	or	changed:

The	syntax	for	CREATE	VIEW	and	ALTER	VIEW	statements	now	includes
DEFINER	and	SQL	SECURITY	clauses	for	specifying	the	security	context	to	be
used	when	checking	access	privileges	at	view	invocation	time.	(The	syntax
is	present	in	5.0.13,	but	these	clauses	have	no	effect	until	5.0.16.)	See
Section	19.2,	“CREATE	VIEW	Syntax”,	for	more	information.

The	--hex-dump	option	for	mysqldump	now	also	applies	to	BIT	columns.

Added	a	--routines	option	for	mysqldump	that	enables	dumping	of
stored	routines.	(Bug	#9056)

The	connection	string	for	FEDERATED	tables	now	is	specified	using	a
CONNECTION	table	option	rather	than	a	COMMENT	table	option.

Better	detection	of	connection	timeout	for	replication	servers	on	Windows
allows	elimination	of	extraneous	Lost	connection	errors	in	the	error	log.
(Bug	#5588)

The	counters	for	the	Key_read_requests,	Key_reads,
Key_write_requests,	and	Key_writes	status	variables	were	changed	from
unsigned	long	to	unsigned	longlong	to	accommodate	larger	values
before	the	variables	roll	over	and	restart	from	0.	(Bug	#12920)

The	restriction	on	the	use	of	PREPARE,	EXECUTE,	and	DEALLOCATE	PREPARE
within	stored	procedures	was	lifted.	The	restriction	still	applies	to	stored
functions	and	triggers.	(Bug	#10975,	Bug	#7115,	Bug	#10605)

A	new	command	line	argument	was	added	to	mysqld	to	ignore	client
character	set	information	sent	during	handshake,	and	use	server	side
settings	instead,	to	reproduce	4.0	behavior	(Bug	#9948):

mysqld	--skip-character-set-client-handshake

OPTIMIZE	TABLE	and	HANDLER	now	are	prohibited	in	stored	procedures	and
functions	and	in	triggers.	(Bug	#12953,	Bug	#12995)

InnoDB:	The	TRUNCATE	TABLE	statement	for	InnoDB	tables	always	resets	the
counter	for	an	AUTO_INCREMENT	column	now,	regardless	of	whether	there	is
a	foreign	key	constraint	on	the	table.	(Beginning	with	5.0.3,	TRUNCATE
TABLE	reset	the	counter,	but	only	if	there	was	no	such	constraint.)	(Bug
#11946)

The	LEAST()	and	GREATEST()	functions	used	to	return	NULL	only	if	all
arguments	were	NULL.	Now	they	return	NULL	if	any	argument	is	NULL,	the
same	as	Oracle.	(Bug	#12791)

Two	new	collations	have	been	added	for	Esperanto:	utf8_esperanto_ci
and	ucs2_esperanto_ci.

Reorder	network	startup	to	come	after	all	other	initialization,	particularly
storage	engine	startup	which	can	take	a	long	time.	This	also	prevents
MySQL	from	being	run	on	a	privileged	port	(any	port	under	1024)	unless
run	as	the	root	user.	(Bug	#11707)

The	Windows	binary	packages	are	now	compiled	with	the	Microsoft	Visual
Studio	2003	compiler	instead	of	Microsoft	Visual	C++	6.0.

The	binaries	compiled	with	the	Intel	icc	compiler	are	now	built	using	icc
9.0	instead	of	icc	8.1.	You	will	have	to	install	new	versions	of	the	Intel	icc
runtime	libraries,	which	are	available	from	here:	(
http://dev.mysql.com/downloads/os-linux.html)

Bugs	fixed:

Incompatible	change:	A	lock	wait	timeout	caused	InnoDB	to	roll	back	the
entire	current	transaction.	Now	it	rolls	back	only	the	most	recent	SQL
statement.	(Bug	#12308)

The	FEDERATED	storage	engine	does	not	support	ALTER	TABLE,	but	no
appropriate	error	message	was	issued.	(Bug	#13108)

mysqldump	did	not	dump	triggers	properly.	(Bug	#12597)

NDBCluster:	The	average	row	size	for	Cluster	tables	was	being	calculated
incorrectly.	This	affected	the	values	shown	for	the	Data_length	and
Avg_row_length	columns	in	the	output	generated	by	SHOW	TABLE	STATUS
as	well	as	the	values	for	the	data_length	and	data_length/table_rows
columns	shown	in	the	TABLES	table	of	the	INFORMATION_SCHEMA	database
with	respect	to	Cluster	tables	(tables	using	other	storage	engines	were	not
affected	by	this	bug).	(Bug	#9896)

Within	a	stored	procedure,	fetching	a	large	number	of	rows	in	a	loop	using
a	cursor	could	result	in	a	server	crash	or	an	out	of	memory	error.	Also,
values	inserted	within	a	stored	procedure	using	a	cursor	were	interpreted	as
latin1	even	if	character	set	variables	had	been	set	to	a	different	character
set.	(Bug	#6513,	Bug	#9819)

http://dev.mysql.com/downloads/os-linux.html

For	a	server	compiled	with	yaSSL,	clients	that	used	MySQL	Connector/J
were	not	able	to	establish	SSH	connections.	(Bug	#13029)

When	used	in	view	definitions,	DAYNAME(expr),	DAYOFWEEK(expr),
WEEKDAY(expr)	were	incorrectly	treated	as	though	the	expression	was
TO_DAYS(expr)	or	TO_DAYS(TO_DAYS(expr)).	(Bug	#13000)

Incorrect	implicit	nesting	of	joins	caused	the	parser	to	fail	on	queries	of	the
form	SELECT	...	FROM	t1	JOIN	t2	JOIN	t3	ON	t1.t1col	=	t3.t3col
with	an	Unknown	column	't1.t1col'	in	'on	clause'	error.	(Bug
#12943)

NDB:	A	cluster	shutdown	following	the	crash	of	a	data	node	would	fail	to
terminate	the	remaining	node	processes,	even	though	ndb_mgm	showed
the	shutdown	request	as	having	been	completed.	(Bug	#10938,	Bug	#9996,
Bug	#11623)

A	column	that	can	be	NULL	was	not	handled	properly	for	WITH	ROLLUP	in	a
subquery	or	view.	(Bug	#12885)

Within	a	transaction,	the	following	statements	now	cause	an	implicit
commit:	CREATE	FUNCTION,	DROP	FUNCTION,	DROP	PROCEDURE,	ALTER
FUNCTION,	ALTER	PROCEDURE,	CREATE	PROCEDURE.	This	corrects	a	problem
where	these	statements	followed	by	ROLLBACK	might	not	be	replicated
properly.	(Bug	#12870)

Simultaneous	execution	of	DML	statements	and	CREATE	TRIGGER	or	DROP
TRIGGER	statements	on	the	same	table	could	cause	server	crashes	or	errors.
(Bug	#12704)

If	a	stored	function	invoked	from	a	SELECT	failed	with	an	error,	it	could
cause	the	client	connection	to	be	dropped.	Now	such	errors	generate
warnings	instead	so	as	not	to	interrupt	the	SELECT.	(Bug	#12379)

A	concurrency	problem	for	CREATE	...	SELECT	could	cause	a	server	crash.
(Bug	#12845)

The	server	incorrectly	generated	an	Unknown	table	error	message	when	for
attempts	to	drop	tables	in	the	INFORMATION_SCHEMA	database.	Now	it	issues
an	Access	denied	message.	(Bug	#9846)

The	server	allowed	privileges	to	be	granted	explicitly	for	the
INFORMATION_SCHEMA	database.	Such	privileges	are	always	implicit	and
should	not	be	grantable.	(Bug	#10734)

The	server	allowed	TEMPORARY	tables	and	stored	procedures	to	be	created	in
the	INFORMATION_SCHEMA	database.	(Bug	#9683,	Bug	#10708)

The	server	failed	to	disallow	SET	AUTOCOMMIT	in	stored	functions	and
triggers.	It	is	allowed	to	change	the	value	of	AUTOCOMMIT	in	stored
procedures,	but	a	runtime	error	might	occur	if	the	procedure	is	invoked
from	a	stored	function	or	trigger.	(Bug	#12712)

Using	an	INOUT	parameter	with	a	DECIMAL	data	type	in	a	stored	procedure
caused	a	server	crash.	(Bug	#12979)

Performing	an	IS	NULL	check	on	the	MIN()	or	MAX()	of	an	indexed	column
in	a	complex	query	could	produce	incorrect	results.	(Bug	#12695)

The	mysql.server	script	contained	incorrect	path	for	the	libexec	directory.
(Bug	#12550)

The	NDB	START	BACKUP	command	could	be	interrupted	by	a	SHOW
command.	(Bug	#13054)

The	LIKE	...	ESCAPE	syntax	produced	invalid	results	when	escape
character	was	larger	than	one	byte.	(Bug	#12611)

A	client	connection	thread	cleanup	problem	caused	the	server	to	crash	when
closing	the	connection	if	the	binary	log	was	enabled.	(Bug	#12517)

Using	AS	to	rename	a	column	selected	from	a	view	in	a	subquery	made	it
not	possible	to	refer	to	that	column	in	the	outer	query.	(Bug	#12993)

The	character_set_system	system	variable	could	not	be	selected	with
SELECT	@@character_set_system.	(Bug	#11775)

A	view-creation	statement	of	the	form	CREATE	VIEW	name	AS	SELECT	...
FROM	tbl_name	AS	name	failed	with	a	Not	unique	table/alias:	'name'
error.	(Bug	#6808)

UNION	[DISTINCT]	was	not	removing	all	duplicates	for	multi-byte	character
values.	(Bug	#12891)

Multiplying	a	DECIMAL	value	within	a	loop	in	a	stored	routine	could
incorrectly	result	in	a	value	of	NULL.	(Bug	#12938)

mysql	and	mysqldump	were	ignoring	the	--defaults-extra-file	option.
(Bug	#12917)

Columns	named	in	the	USING()	clause	of	JOIN	...	USING()	were
incorrectly	resolved	in	case-sensitive	fashion.	(Bug	#13067)

Local	variables	in	stored	routines	were	not	always	initialized	correctly.
(Bug	#13133)

SHOW	FIELDS	FROM	schemaname.viewname	caused	error	1046	when	no
default	schema	was	set.	(Bug	#12905)

The	value	of	character_set_results	could	be	set	to	NULL,	but	returned	the
string	"NULL"	when	retrieved.	(Bug	#12363)

InnoDB:	Limit	recursion	depth	to	200	in	deadlock	detection	to	avoid
running	out	of	stack	space.	(Bug	#12588)

GROUP_CONCAT()	ignored	an	empty	string	if	it	was	the	first	value	to	occur	in
the	result.	(Bug	#12863)

Outer	join	elimination	was	erroneously	applied	for	some	queries	that	used	a
NOT	BETWEEN	condition,	an	IN(value_list)	condition,	or	an	IF()
condition.	(Bug	#12101,	Bug	#12102)

SHOW	FIELDS	truncated	the	TYPE	column	to	40	characters.	(Bug	#7142)

Use	of	PREPARE	and	EXECUTE	with	a	statement	that	selected	from	a	view	in	a
subquery	could	cause	a	server	crash.	(Bug	#12651)

On	HP-UX	11.x	(PA-RISC),	the	-L	option	caused	mysqlimport	to	crash.
(Bug	#12958)

If	the	binary	log	is	enabled,	execution	of	a	stored	procedure	that	modifies

table	data	and	uses	user	variables	could	cause	a	server	crash	or	incorrect
information	to	be	written	to	the	binary	log.	(Bug	#12637)

Queries	with	subqueries,	where	the	inner	subquery	uses	the	range	or
index_merge	access	method,	could	return	incorrect	results.	(Bug	#12720)

After	changing	the	character	set	with	SET	CHARACTER	SET,	the	result	of	the
GROUP_CONCAT()	function	was	not	converted	to	the	proper	character	set.
(Bug	#12829)

A	bug	introduced	in	MySQL	5.0.12	caused	SHOW	TABLE	STATUS	to	display
an	Auto_increment	value	of	0	for	InnoDB	tables.	(Bug	#12973)

Foreign	keys	were	not	properly	enforced	in	TEMPORARY	tables.	Foreign	keys
now	are	disallowed	in	TEMPORARY	tables.	(Bug	#12084)

Replication	of	LOAD	DATA	INFILE	failed	between	systems	that	use	different
pathname	syntax	(such	as	delimiter	characters).	(Bug	#11815)

Within	a	stored	procedure,	a	server	crash	was	caused	by	assigning	to	a
VARCHAR	INOUT	parameter	the	value	of	an	expression	that	included	the
variable	itself.	(For	example,	SET	c	=	c.)	(Bug	#12849)

SELECT	...	JOIN	...	ON	...	JOIN	...	USING	caused	a	server	crash.
(Bug	#12977)

Using	GROUP	BY	when	selecting	from	a	view	in	some	cases	could	cause
incorrect	results	to	be	returned.	(Bug	#12922)

myisampack	did	not	properly	pack	BLOB	values	larger	than	224	bytes.	(Bug
#4214)

Incorrect	results	could	be	returned	from	a	view	processed	using	a	temporary
table.	(Bug	#12941)

The	server	crashed	when	one	thread	resized	the	query	cache	while	another
thread	was	using	it.	(Bug	#12848)

mysqld_multi	now	quotes	arguments	on	command	lines	that	it	constructs
to	avoid	problems	with	arguments	that	contain	shell	metacharacters.	(Bug

#11280)

InnoDB:	A	consistent	read	could	return	inconsistent	results	due	to	a	bug
introduced	in	MySQL	5.0.5.	(Bug	#12947)

Deadlock	occurred	when	several	account	management	statements	were	run
(particularly	between	FLUSH	PRIVILEGES/SET	PASSWORD	and	GRANT/REVOKE
statements).	(Bug	#12423)

The	Windows	installer	made	a	change	to	one	of	the	mysql.proc	table	files,
causing	stored	routine	functionality	to	be	compromised.	The	Windows
installer	now	never	overwrites	files	in	the	MySQL	data	directory.	During	an
upgrade	from	one	version	to	another,	a	file	in	the	data	directory	will	not	be
overwritten	even	if	it	has	not	been	modified	since	it	was	put	there	by	an
older	installer.

If	you	have	already	lost	access	to	stored	routines	because	of	this	problem,
you	can	get	them	back	using	the	following	procedure:

Stop	the	server.

In	the	mysql\data	directory	under	your	MySQL	installation	directory,
and	replace	the	proc.frm	file	with	corresponding	file	from	the	version
of	MySQL	that	you	were	using	before	you	upgraded.

Start	the	server

Start	the	mysql	command-line	client	(use	the	root	account	or	another
account	that	has	full	database	privileges)	and	execute	the
mysql_fix_privilege_tables.sql	script	that	upgrades	the	grant
tables	to	the	current	structure.	Instructions	for	doing	this	are	given	in
Section	5.6.1,	“mysql_fix_privilege_tables	—	Upgrade	MySQL
System	Tables”.

After	this,	all	stored	routine	functionality	should	work.	(Bug	#12820)

On	Windows,	the	server	was	preventing	tables	from	being	created	if	the
table	name	was	a	prefix	of	a	forbidden	name.	For	example,	nul	is	a
forbidden	name	because	it's	the	same	as	a	Windows	device	name,	but	a
table	with	the	name	of	n	or	nu	was	being	forbidden	as	well.	(Bug	#12325)

InnoDB	was	too	permissive	with	LOCK	TABLE	...	READ	LOCAL	and	allowed
new	inserts	into	the	table.	Now	READ	LOCAL	is	equivalent	to	READ	for
InnoDB.	This	will	cause	slightly	more	locking	in	mysqldump,	but	makes
InnoDB	table	dumps	consistent	with	MyISAM	table	dumps.	(Bug	#12410)

Use	of	the	mysql	client	HELP	command	from	within	a	stored	routine	caused
a	“packets	out	of	order”	error	and	a	lost	connection.	Now	HELP	is	detected
and	disallowed	within	stored	routines.	(Bug	#12490)

Use	of	yaSSL	for	a	secure	client	connection	caused	LOAD	DATA	LOCAL
INFILE	to	fail.	(Bug	#11286)

SHOW	CREATE	PROCEDURE	and	SHOW	CREATE	FUNCTION	no	longer	qualify	the
routine	name	with	the	database	name,	for	consistency	with	the	behavior	of
SHOW	CREATE	TABLE.	(Bug	#10362)

A	UNION	of	long	utf8	VARCHAR	columns	was	sometimes	returned	as	a
column	with	a	LONGTEXT	data	type	rather	than	VARCHAR.	This	could	prevent
such	queries	from	working	at	all	if	selected	into	a	MEMORY	table	because	the
MEMORY	storage	engine	does	not	support	the	TEXT	data	types.	(Bug	#12537)

If	a	client	has	opened	an	InnoDB	table	for	which	the	.ibd	file	is	missing,
InnoDB	would	not	honor	a	DROP	TABLE	statement	for	the	table.	(Bug
#12852)

ALTER	TABLE	...	DISCARD	TABLESPACE	for	non-InnoDB	table	caused	the
client	to	lose	the	connection.	(The	server	was	not	returning	the	error
properly.)	(Bug	#12207)

DO	IFNULL(NULL,	NULL)	and	SELECT	CAST(IFNULL(NULL,	NULL)	AS
DECIMAL)	caused	a	server	crash.	(Bug	#12841)

When	using	a	cursor,	a	SELECT	statement	that	uses	a	GROUP	BY	clause	could
return	incorrect	results.	(Bug	#11904)

The	SYSDATE()	function	now	returns	the	time	at	which	it	was	invoked.	In
particular,	within	a	stored	routine	or	trigger,	SYSDATE()	returns	the	time	at
which	it	executes,	not	the	time	at	which	the	stored	routine	or	triggering
statement	began	to	execute.	(Bug	#12480)

CREATE	VIEW	inside	a	stored	procedure	caused	a	server	crash	if	the	table
underlying	the	view	had	been	deleted.	(Bug	#12468)

A	memory	leak	resulting	from	repeated	SELECT	...	INTO	statements	inside
a	stored	procedure	could	cause	the	server	to	crash.	(Bug	#11333)

D.1.15.	Changes	in	release	5.0.12	(02	September	2005)

Functionality	added	or	changed:

Incompatible	change:	Beginning	with	MySQL	5.0.12,	natural	joins	and
joins	with	USING,	including	outer	join	variants,	are	processed	according	to
the	SQL:2003	standard.	The	changes	include	elimination	of	redundant
output	columns	for	NATURAL	joins	and	joins	specified	with	a	USING	clause
and	proper	ordering	of	output	columns.	(Bug	#6136,	Bug	#6276,	Bug
#6489,	Bug	#6495,	Bug	#6558,	Bug	#9067,	Bug	#9978,	Bug	#10428,	Bug
#10646,	Bug	#10972.)	The	precedence	of	the	comma	operator	also	now	is
lower	compared	to	JOIN.	(Bug	#4789,	Bug	#12065,	Bug	#13551.)

These	changes	make	MySQL	more	compliant	with	standard	SQL.	However,
they	can	result	in	different	output	columns	for	some	joins.	Also,	some
queries	that	appeared	to	work	correctly	prior	to	5.0.12	must	be	rewritten	to
comply	with	the	standard.	For	details	about	the	scope	of	the	changes	and
examples	that	show	what	query	rewrites	are	necessary,	see	Section	13.2.7.1,
“JOIN	Syntax”.

Recursive	triggers	are	detected	and	disallowed.	Also,	within	a	stored
function	or	trigger,	it	is	not	allowable	to	modify	a	table	that	is	already	being
used	(for	reading	or	writing)	by	the	statement	that	invoked	the	function	or
trigger.	(Bug	#11896,	Bug	#12644)

SHOW	TABLE	STATUS	for	a	view	now	shows	VIEW	in	uppercase,	consistent
with	SHOW	TABLES	and	INFORMATION_SCHEMA.	(Bug	#5501)

An	optimizer	estimate	of	zero	rows	for	a	non-empty	InnoDB	table	used	in	a
left	or	right	join	could	cause	incomplete	rollback	for	the	table.	(Bug
#12779)

Calls	to	stored	procedures	were	written	to	the	binary	log	even	within

transactions	that	were	rolled	back,	causing	them	to	be	executed	on
replication	slaves.	(Bug	#12334)

Interleaved	execution	of	stored	procedures	and	functions	could	be	written	to
the	binary	log	incorrectly,	causing	replication	slaves	to	get	out	of	sync.
(Bug	#12335)

A	query	of	the	form	SHOW	TABLE	STATUS	FROM	db_name	WHERE	name	IN
(select_query)	would	crash	the	server.	(Bug	#12636)

Users	created	using	an	IP	address	or	other	alias	rather	than	a	hostname
listed	in	/etc/hosts	could	not	set	their	own	passwords.	(Bug	#12302)

Using	DESCRIBE	on	a	view	after	renaming	a	column	in	one	of	the	view's
base	tables	caused	the	server	to	crash.	(Bug	#12533)

SHOW	OPEN	TABLES	now	supports	FROM	and	LIKE	clauses.	(Bug	#12183)

SHOW	TABLE	STATUS	FROM	INFORMATION_SCHEMA	now	sorts	output	by	table
name	the	same	as	it	does	for	other	databases.	(Bug	#12315)

SHOW	ENGINE	INNODB	STATUS	now	can	display	longer	query	strings.	(Bug
#7819)

Added	the	SLEEP()	function,	which	pauses	for	the	number	of	seconds	given
by	its	argument.	(Bug	#6760)

Trying	to	drop	the	default	keycache	by	setting	@@global.key_buffer_size
to	zero	now	returns	a	warning	that	the	default	keycache	cannot	be	dropped.
(Bug	#10473)

The	stability	of	cursors	when	used	with	InnoDB	tables	was	greatly
improved.	(Bug	#11832,	Bug	#12243,	Bug	#11309)

It	is	no	longer	possible	to	issue	FLUSH	commands	from	within	stored
functions	or	triggers.	See	Section	I.1,	“Restrictions	on	Stored	Routines	and
Triggers”,	for	details.	(Bug	#12280,	Bug	#12307)

INFORMATION_SCHEMA	objects	are	now	reported	as	a	SYSTEM	VIEW	table	type.
(Bug	#11711)

Bugs	fixed:

CHECKSUM	TABLE	command	returned	incorrect	results	for	tables	with	deleted
rows.	After	upgrading,	users	who	used	stored	checksum	information	to
detect	table	changes	should	rebuild	their	checksum	data.	(Bug	#12296)

A	data	type	of	CHAR	BINARY	was	not	recognized	as	valid	for	stored	routine
parameters.	(Bug	#9048)

SET	GLOBAL	TRANSACTION	ISOLATION	LEVEL	was	not	working.	(Bug
#11207)

NDB	Cluster:	Corrected	the	parsing	of	the	CLUSTERLOG	command	by
ndb_mgm	to	allow	multiple	items.	(Bug	#12833)

NDB	Cluster:	Improved	error	messages	related	to	filesystem	issues.	(Bug
#11218)

NDB	Cluster:	When	a	schema	was	detected	to	be	corrupt,	ndb	neglected	to
close	it,	resulting	in	a	“file	already	open”	error	if	the	schema	was	opened
again	later.	written.	(Bug	#12027)

NDB	Cluster:	When	it	could	not	copy	a	fragment,	ndbd	exited	without
printing	a	message	about	the	condition	to	the	error	log.	Now	the	message	is
written.	(Bug	#12900)

NDB	Cluster:	When	a	disk	full	condition	occurred,	ndbd	exited	without
printing	a	message	about	the	condition	to	the	error	log.	Now	the	message	is
written.	(Bug	#12716)

mysql_fix_privilege_tables.sql	was	missing	a	comma,	causing	a
syntax	error	when	executed.	(Bug	#12705)

STRCMP()	was	not	handled	correctly	in	views.	(Bug	#12489)

NDB	Cluster:	Bad	values	in	config.ini	caused	ndb_mdmd	to	crash.	(Bug
#12043)

TRUNCATE	TABLE	did	not	work	with	TEMPORARY	InnoDB	tables.	(Bug	#11816)

Built-in	commands	for	the	mysql	client,	such	as	delimiter	and	\d	are	now
always	parsed	within	files	that	are	read	using	the	\.	and	source	commands.
(Bug	#11523)

ALTER	TABLE	db_name.t	RENAME	t	did	not	move	the	table	to	default
database	unless	the	new	name	was	qualified	with	the	database	name.	(Bug
#11493)

It	was	not	possible	to	create	a	stored	function	with	a	spatial	return	value
data	type.	(Bug	#10499)

The	only	valid	values	for	the	PACK_KEYS	table	option	are	0	and	1,	but	other
values	were	being	accepted.	(Bug	#10056)

If	a	DROP	DATABASE	fails	on	a	master	server	due	to	the	presence	of	a	non-
database	file	in	the	database	directory,	the	master	have	the	database	tables
deleted,	but	not	the	slaves.	To	deal	with	failed	database	drops,	we	now	write
DROP	TABLE	statements	to	the	binary	log	for	the	tables	so	that	they	are
dropped	on	slaves.	(Bug	#4680)

Improper	use	of	loose	index	scan	in	InnoDB	sometimes	caused	incorrect
query	results.	(Bug	#12672)

DELETE	or	UPDATE	for	an	indexed	MyISAM	table	could	fail.	This	was	due	to	a
change	in	end-space	comparison	behavior	from	4.0	to	4.1.	(Bug	#12565)

Joins	on	VARCHAR	columns	of	different	lengths	could	produce	incorrect
results.	(Bug	#11398)

A	“Duplicate	column	name”	error	no	longer	occurs	when	selecting	from	a
view	defined	as	SELECT	*	from	a	join	that	uses	a	USING	clause	on	tables	that
have	a	common	column	name.	(Bug	#6558)

Invocations	of	the	SLEEP()	function	incorrectly	could	get	optimized	away
for	statements	in	which	it	occurs.	Statements	containing	SLEEP()
incorrectly	could	be	stored	in	the	query	cache.	(Bug	#12689)

NDB	Cluster:	An	ALTER	TABLE	command	caused	loss	of	data	stored	prior	to
the	issuing	of	the	command.	(Bug	#12118)

Query	cache	is	switched	off	if	a	thread	(connection)	has	tables	locked.	This
prevents	invalid	results	where	the	locking	thread	inserts	values	between	a
second	thread	connecting	and	selecting	from	the	table.	(Bug	#12385)

NOW(),	CURRENT_TIME	and	values	generated	by	timestamp	columns	are	now
constant	for	the	duration	of	a	stored	function	or	trigger.	This	prevents	the
breaking	of	statements-based	replication.	(Bug	#12480,	Bug	#12481)

Some	statements	executed	on	a	master	server	caused	the	SQL	thread	on	a
slave	to	run	out	of	memory.	(Bug	#12532)

A	SELECT	DISTINCT	query	with	a	constant	value	for	one	of	the	columns
would	return	only	a	single	row.	(Bug	#12625)

NDB	Cluster:	Cluster	failed	to	take	character	set	data	into	account	when
recomputing	hashes	(and	thus	could	not	locate	records	for	updating	or
deletion)	following	a	configuration	change	and	node	restart.	(Bug	#12220)

NDB	Cluster:	Wrong	error	message	displayed	when	cluster	management
server	closed	port	while	mysqld	was	connecting.	(Bug	#10950)

A	view	was	allowed	to	depend	on	a	function	that	referred	to	a	temporary
table.	(Bug	#10970)

Prepared	statement	parameters	could	cause	errors	in	the	binary	log	if	the
character	set	was	cp932.	(Bug	#11338)

The	CREATE_OPTIONS	column	of	INFORMATION_SCHEMA.TABLES	showed
incorrect	options	for	tables	in	INFORMATION_SCHEMA.	(Bug	#12397)

MEMORY	tables	using	B-Tree	index	on	64-bit	platforms	could	produce	false
table	is	full	errors.	(Bug	#12460)

Issuing	FLUSH	INSTANCES	followed	by	STOP	INSTANCE	caused	instance
manager	to	crash.	(Bug	#10957)

Duplicate	instructions	in	stored	procedures	resulted	in	incorrect	execution
when	the	optimizer	optimized	the	duplicate	code	away.	(Bug	#12168)

SHOW	TABLES	FROM	returned	wrong	error	message	if	the	schema	specified

did	not	exist.	(Bug	#12591)

The	ROW()	function	returned	an	incorrect	result	when	comparison	involved
NULL	values.	(Bug	#12509)

Views	with	multiple	UNION	and	UNION	ALL	produced	incorrect	results.	(Bug
#10624)

Stored	procedures	with	particularly	long	loops	could	crash	server	due	to
memory	leak.	(Bug	#12297,	Bug	#11247)

Trigger	and	stored	procedure	execution	could	break	replication.	(Bug
#12482)

A	server	crash	could	result	from	an	update	of	a	view	defined	as	a	join,	even
though	the	update	updated	only	a	single	table.	(Bug	#12569)

On	Windows	when	the	--innodb_buffer_pool_awe_mem_mb	option	has
been	given,	the	server	detects	whether	AWE	support	is	available	and	has
been	compiled	into	the	server,	and	displays	an	appropriate	error	message	if
not.	(Bug	#6581)

The	NUMERIC_SCALE	column	of	the	INFORMATION_SCHEMA.COLUMNS	table
should	be	returned	as	0	for	integer	columns.	It	was	being	returned	as	NULL.
(Bug	#12301)

The	COLUMN_DEFAULT	column	of	the	INFORMATION_SCHEMA.COLUMNS	table
should	be	returned	as	NULL	if	a	column	has	no	default	value.	An	empty
string	was	being	returned	if	the	column	was	defined	as	NOT	NULL.	(Bug
#12518)

Slave	I/O	threads	were	considered	to	be	in	the	running	state	when	launched
(rather	than	after	successfully	connecting	to	the	master	server),	resulting	in
incorrect	SHOW	SLAVE	STATUS	output.	(Bug	#10780)

Column	names	in	subqueries	must	be	unique,	but	were	not	being	checked
for	uniqueness.	(Bug	#11864)

On	Windows,	the	server	could	crash	during	shutdown	if	both	replication
threads	and	normal	client	connection	threads	were	active.	(Bug	#11796)

Some	subqueries	of	the	form	SELECT	...	WHERE	ROW(...)	IN
(subquery)	were	being	handled	incorrectly.	(Bug	#11867)

Selecting	from	a	view	after	INSERT	statements	for	the	view's	underlying
table	yielded	different	results	than	subsequent	selects.	(Bug	#12382)

The	mysql_info()	C	API	function	could	return	incorrect	data	when
executed	as	part	of	a	multi-statement	that	included	a	mix	of	statements	that
do	and	do	not	return	information.	(Bug	#11688)

When	restoring	INFORMATION_SCHEMA	as	the	default	database	after	failing	to
execute	a	stored	procedure	in	an	inaccessible	database,	the	server	returned	a
spurious	ERROR	42000:	Unknown	database	'information_schema'
message.	(Bug	#12318)

Renamed	the	rest()	macro	in	my_list.h	to	list_rest()	to	avoid	name
clashes	with	user	code.	(Bug	#12327)

DATE_ADD()	and	DATE_SUB()	were	converting	invalid	dates	to	NULL	in
TRADITIONAL	SQL	mode	rather	than	rejecting	them	with	an	error.	(Bug
#10627)

A	trigger	that	included	a	SELECT	statement	could	cause	a	server	crash.	(Bug
#11587)

An	incorrect	conversion	from	double	to	ulonglong	caused	indexes	not	to
be	used	for	BDB	tables	on	HP-UX.	(Bug	#10802)

myisampack	failed	to	delete	.TMD	temporary	files	when	run	with	-T	option.
(Bug	#12235)

Added	portability	check	for	Intel	compiler	to	address	a	problem	compiling
InnoDB	code.	(Bug	#11510)

XA	allowed	two	active	transactions	to	be	started	with	the	same	XID.	(Bug
#12162)

Concatenating	USER()	or	DATEBASE()	with	a	column	produced	invalid
results.	(Bug	#12351)

Creating	a	view	that	included	the	TIMESTAMPDIFF()	function	resulted	in	a
invalid	view.	(Bug	#12298)

Comparison	of	InnoDB	multi-part	primary	keys	that	include	VARCHAR
columns	can	result	in	incorrect	results.	(Bug	#12340)

For	PKG	installs	on	Mac	OS	X,	the	preinstallation	and	postinstallation
scripts	were	being	run	only	for	new	installations	and	not	for	upgrade
installations,	resulting	in	an	incomplete	installation	process.	(Bug	#11380)

Using	cursors	and	nested	queries	for	the	same	table,	corrupted	results	were
returned	for	the	outer	query.	(Bug	#11909)

User	variables	were	not	automatically	cast	for	comparisons,	causing	queries
to	fail	if	the	column	and	connection	character	sets	differed.	Now	when
mixing	strings	with	different	character	sets	but	the	same	coercibility,	allow
conversion	if	one	character	set	is	a	superset	of	the	other.	(Bug	#10892)

Selecting	from	a	view	defined	as	a	join	over	many	tables	could	result	in	a
server	crash	due	to	miscalculation	of	the	number	of	conditions	in	the	WHERE
clause.	(Bug	#12470)

Pathame	values	for	options	such	as	---basedir	or	--datadir	didn't	work
on	Japanese	Windows	machines	for	directory	names	containing	multi-byte
characters	having	a	second	byte	of	0x5C	(‘\’).	(Bug	#5439)

A	race	condition	between	server	threads	could	cause	a	crash	if	one	thread
deleted	a	stored	routine	while	another	thread	was	executing	a	stored	routine.
(Bug	#12228)

Mishandling	of	comparison	for	rows	containing	NULL	values	against	rows
produced	by	an	IN	subquery	could	cause	a	server	crash.	(Bug	#12392)

Inserting	NULL	into	a	GEOMETRY	column	for	a	table	that	has	a	trigger	could
result	in	a	server	crash	if	the	table	was	subsequently	dropped.	(Bug	#12281)

A	failure	to	obtain	a	lock	for	an	IN	SHARE	MODE	query	could	result	in	a
server	crash.	(Bug	#12082)

SELECT	...	INTO	var_name	within	a	trigger	could	cause	a	server	crash.

(Bug	#11973)

INSERT	...	SELECT	...	ON	DUPLICATE	KEY	UPDATE	could	fail	with	an
erroneous	“Column	'col_name'	specified	twice”	error.	(Bug	#10109)

SHOW	TABLE	STATUS	sometimes	reported	a	Row_format	value	of	Dynamic
for	MEMORY	tables,	though	such	tables	always	have	a	format	of	Fixed.	(Bug
#3094)

A	query	using	a	LEFT	JOIN,	an	IN	subquery	on	the	outer	table,	and	an	ORDER
BY	clause,	caused	the	server	to	crash	when	cursors	were	enabled.	(Bug
#11901)

Using	a	stored	procedure	that	referenced	tables	in	the	INFORMATION_SCHEMA
database	would	return	an	empty	result	set.	(Bug	#10055,	Bug	#12278)

Columns	defined	as	TINYINT(1)	were	redefined	as	TINYINT(4)	when
incorporated	into	a	VIEW.	(Bug	#11335)

ISO-8601	formatted	dates	were	not	being	parsed	correctly.	(Bug	#7308)

FLUSH	TABLES	WITH	READ	LOCK	combined	with	LOCK	TABLE	..	WRITE
caused	deadlock.	(Bug	#9459)

NULL	column	definitions	read	incorrectly	for	inner	tables	of	nested	outer
joins.	(Bug	#12154)

GROUP_CONCAT	ignores	the	DISTINCT	modifier	when	used	in	a	query	joining
multiple	tables	where	one	of	the	tables	has	a	single	row.	(Bug	#12095)

UNION	query	with	FULLTEXT	could	cause	server	crash.	(Bug	#11869)

D.1.16.	Changes	in	release	5.0.11	(06	August	2005)

Functionality	added	or	changed:

Security	improvement:	Applied	a	patch	that	addresses	a	potential	zlib	data
vulnerability	that	could	result	in	an	application	crash.	(CVE-2005-1849)
This	only	affects	the	binaries	for	platforms	that	are	linked	statically	against
the	bundled	zlib	(most	notably	Microsoft	Windows	and	HP-UX).

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1849

SHOW	CHARACTER	SET	and	INFORMATION_SCHEMA	now	properly	report	the
Latin1	character	set	as	cp1252.	(Bug	#11216)

mysqldump	now	dumps	triggers	for	each	dumped	table.	This	can	be
suppressed	with	the	--skip-triggers	option.	(Bug	#10431)

Added	new	ER_STACK_OVERRUN_NEED_MORE	error	message	to	indicate	that,
while	the	stack	is	not	completely	full,	more	stack	space	is	required.	(Bug
#11213)

NDB:	Improved	handling	of	the	configuration	variables
NoOfPagesToDiskDuringRestartACC,	NoOfPagesToDiskAfterRestartACC,
NoOfPagesToDiskDuringRestartTUP,	and
NoOfPagesToDiskAfterRestartTUP	should	result	in	noticeably	faster
startup	times	for	MySQL	Cluster.	(Bug	#12149)

Added	support	of	where	clause	for	queries	with	FROM	DUAL.	(Bug	#11745)

Added	an	optimization	that	avoids	key	access	with	NULL	keys	for	the	ref
method	when	used	in	outer	joins.	(Bug	#12144)

Maximum	size	of	stored	procedures	increased	from	64k	to	4Gb.	(Bug
#11602)

Added	error	message	for	users	who	attempt	CREATE	TABLE	...	LIKE	and
specify	a	non-table	in	the	LIKE	clause.	(Bug	#6859)

Bugs	fixed:

DDL	statements	now	are	allowed	in	stored	procedures	if	the	procedure	is
not	invoked	from	a	stored	function	or	a	trigger.	Also	fixed	problems	where
a	TEMPORARY	statement	created	by	one	stored	routine	was	inaccessible	to
another	routine	invoked	during	the	same	connection.	(Bug	#11126)

Creation	of	the	mysql	group	account	failed	during	the	RPM	installation.
(Bug	#12348)

big5	strings	were	not	being	stored	in	FULLTEXT	index.	(Bug	#12075)

When	DROP	DATABASE	was	called	concurrently	with	a	DROP	TABLE	of	any

table	the	MySQL	Server	crashed.	(Bug	#12212)

max_connections_per_hour	setting	was	being	capped	by	unrelated
max_user_connections	setting.	(Bug	#9947)

SELECT	@@local...	returned	@@session...	in	the	column	header.	(Bug
#10724)

Multiplying	ABS()	output	by	a	negative	number	would	return	incorrect
results.	(Bug	#11402)

Updated	dependency	list	for	RPM	builds	to	include	missing	dependencies
such	as	useradd	and	groupadd.	(Bug	#12233)

mysql_install_db	used	static	localhost	value	in	GRANT	tables	even	when
server	hostname	is	not	localhost,	such	as	localhost.localdomain.	This
change	is	applied	to	version	5.0.10b	on	Windows.	(Bug	#11822)

Multiple	SELECT	SQL_CACHE	queries	in	a	stored	procedure	causes	error	and
client	hang.	(Bug	#6897)

Added	checks	to	prevent	error	when	allocating	memory	when	there	was
insufficient	memory	available.	(Bug	#7003)

Character	data	truncated	when	GBK	characters	0xA3A0	and	0xA1	are
present.	(Bug	#11987)

Comparisons	like	SELECT	"A\\"	LIKE	"A\\";	fail	when	using	SET	NAMES
utf8;.	(Bug	#11754)

When	used	in	a	SELECT	query	against	a	view,	the	GROUP_CONCAT()	function
returned	only	a	single	row.	(Bug	#11412)

Calling	the	C	API	function	mysql_stmt_fetch()	after	all	rows	of	a	result
set	were	exhausted	would	return	an	error	instead	of	MYSQL_NO_DATA.	(Bug
#11037)

Information	about	a	trigger	was	not	displayed	in	the	output	of	SELECT	...
FROM	INFORMATION_SCHEMA.TRIGGERS	when	the	selected	database	was
INFORMATION_SCHEMA,	prior	to	the	trigger's	first	invocation.	(Bug	#12127)

Issuing	successive	FLUSH	TABLES	WITH	READ	LOCK	would	cause	the	mysql
client	to	hang.	(Bug	#11934)

In	stored	procedures,	a	cursor	that	fetched	an	empty	string	into	a	variable
would	set	the	variable	to	NULL	instead.	(Bug	#8692)

A	trigger	dependent	on	a	feature	of	one	SQL_MODE	setting	would	cause	an
error	when	invoked	after	the	SQL_MODE	was	changed.	(Bug	#5891)

A	delayed	insert	that	would	duplicate	an	existing	record	crashed	the	server
instead.	(Bug	#12226)

ALTER	TABLE	when	SQL_MODE	=	'TRADITIONAL'	gave	rise	to	an	invalid
error	message.	(Bug	#11964)

Attempting	to	repair	a	table	having	a	fulltext	index	on	a	column	containing
words	whose	length	exceeded	21	characters	and	where
myisam_repair_threads	was	greater	than	1	would	crash	the	server.	(Bug
#11684)

The	MySQL	Cluster	backup	log	was	invalid	where	the	number	of	Cluster
nodes	was	not	equal	to	a	power	of	2.	(Bug	#11675)

GROUP_CONCAT()	sometimes	returned	a	result	with	a	different	collation	from
that	of	its	arguments.	(Bug	#10201)

The	LPAD()	and	RPAD()	functions	returned	the	wrong	length	to
mysql_fetch_fields().	(Bug	#11311)

A	UNIQUE	VARCHAR	column	would	be	mis-identified	as	MUL	in	table
descriptions.	(Bug	#11227)

Incorrect	error	message	displayed	if	user	attempted	to	create	a	table	in	a
non-existing	database	using	CREATE	database_name.table_name	syntax.
(Bug	#10407)

InnoDB:	Do	not	flush	after	each	write,	not	even	before	setting	up	the
doublewrite	buffer.	Flushing	can	be	extremely	slow	on	some	systems.	(Bug
#12125)

InnoDB:	True	VARCHAR:	Return	NULL	columns	in	the	format	expected	by
MySQL.	(Bug	#12186)

Two	threads	could	potentially	initialize	different	characters	sets	and
overwrite	each	other.	(Bug	#12109)

Unsigned	LONG	system	variables	may	return	incorrect	value	when	retrieved
with	a	SELECT	for	certain	values.	(Bug	#10351)

Prepared	statements	were	not	being	written	to	the	Slow	Query	log.	(Bug
#9968)

D.1.17.	Changes	in	release	5.0.10	(27	July	2005)

Functionality	added	or	changed:

Security	improvement:	Applied	a	patch	that	addresses	a	zlib	data
vulnerability	that	could	result	in	a	buffer	overflow	and	code	execution.
(CVE-2005-2096)	(Bug	#11844)

Incompatible	change:	The	namespace	for	triggers	has	changed.
Previously,	trigger	names	had	to	be	unique	per	table.	Now	they	must	be
unique	within	the	schema	(database).	An	implication	of	this	change	is	that
DROP	TRIGGER	syntax	now	uses	a	schema	name	instead	of	a	table	name
(schema	name	is	optional	and,	if	omitted,	the	current	schema	will	be	used).
(Bug	#5892)

Note:	When	upgrading	from	a	previous	version	of	MySQL	5	to	MySQL
5.0.10	or	newer,	you	must	drop	all	triggers	and	re-create	them	or	DROP
TRIGGER	will	not	work	after	the	upgrade.	A	suggested	procedure	for	doing
this	is	given	in	Section	2.11.2,	“Upgrading	from	MySQL	4.1	to	5.0”.

The	viewing	of	triggers	and	trigger	metadata	has	been	enhanced	as	follows:

An	extension	to	the	SHOW	command	has	been	added:	SHOW	TRIGGERS
can	be	used	to	view	a	listing	of	triggers.	See	Section	13.5.4.23,	“SHOW
TRIGGERS	Syntax”,	for	details.

The	INFORMATION_SCHEMA	database	now	includes	a	TRIGGERS	table.
See	Section	20.16,	“The	INFORMATION_SCHEMA	TRIGGERS	Table”,	for

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2096

details.	(Bug	#9586)

Triggers	can	now	reference	tables	by	name.	See	Section	18.1,	“CREATE
TRIGGER	Syntax”,	for	more	information.

The	output	of	perror	--help	now	displays	the	--ndb	option.	(Bug	#11999)

On	Windows,	the	search	path	used	by	MySQL	applications	for	my.ini	now
includes	..\my.ini	(that	is,	the	application's	parent	directory,	and	hence,
the	installation	directory).	(Bug	#10419)

Add	the	--defaults-group-suffix	option.	See	Section	4.3.2,	“Using
Option	Files”.

Added	mysql_get_character_set_info()	C	API	function	for	obtaining
information	about	the	default	character	set	of	the	current	connection.

The	bundled	version	of	the	readline	library	was	upgraded	to	version	5.0.

It	is	no	longer	necessary	to	issue	an	explicit	LOCK	TABLES	for	any	tables
accessed	by	a	trigger	prior	to	executing	any	statements	that	might	invoke
the	trigger.	(Bug	#9581,	Bug	#8406)

MySQL	Cluster:	A	new	-P	option	is	available	for	use	with	the	ndb_mgmd
client.	When	called	with	this	option,	ndb_mgmd	prints	all	configuration
data	to	stdout,	then	exits.

Add	table_lock_wait_timeout	global	server	system	variable.

Bugs	fixed:

NDB:	Trying	to	use	a	greater	number	of	tables	then	specified	by	the	value	of
MaxNoOfTables	caused	table	corruption	such	that	data	nodes	could	not	be
restarted.	(Bug	#9994)

NDB:	Attempting	to	create	or	drop	tables	during	a	backup	would	cause	the
cluster	to	shut	down.	(Bug	#11942)

When	attempting	to	drop	a	table	with	a	broken	unique	index,	NDB	failed	to
drop	the	table	and	erroneously	report	that	the	table	was	unknown.	(Bug

#11355)

SELECT	...	NOT	IN()	gave	unexpected	results	when	only	static	value
present	between	the	().	(Bug	#11885)

Fixed	compile	error	when	using	GCC4	on	AMD64.	(Bug	#12040)

NDB	ignored	the	Hostname	option	in	the	NDBD	DEFAULT	section	of	the	Cluster
configuration	file.	(Bug	#12028)

SHOW	PROCEDURE/FUNCTION	STATUS	didn't	work	for	users	with	limited
access.	(Bug	#11577)

MySQL	server	would	crash	is	a	fetch	was	performed	after	a	ROLLBACK	when
cursors	were	involved.	(Bug	#10760)

The	temporary	tables	created	by	an	ALTER	TABLE	on	a	cluster	table	were
visible	to	all	MySQL	servers.	(Bug	#12055)

NDB_MGMD	was	leaking	file	descriptors.	(Bug	#11898)

IP	addresses	not	shown	in	ndb_mgm	SHOW	command	on	second	ndb_mgmd
(or	on	ndb_mgmd	restart).	(Bug	#11596)

Functions	that	evaluate	to	constants	(such	as	NOW()	and	CURRENT_USER()
were	being	evaluated	in	the	definition	of	a	VIEW	rather	than	included
verbatim.	(Bug	#4663)

Execution	of	SHOW	TABLES	failed	to	increment	the	Com_show_tables	status
variable.	(Bug	#11685)

For	execution	of	a	stored	procedure	that	refers	to	a	view,	changes	to	the
view	definition	were	not	seen.	The	procedure	continued	to	see	the	old
contents	of	the	view.	(Bug	#6120)

For	prepared	statements,	the	SQL	parser	did	not	disallow	‘?’	parameter
markers	immediately	adjacent	to	other	tokens,	which	could	result	in
malformed	statements	in	the	binary	log.	(For	example,	SELECT	*	FROM	t
WHERE?	=	1	could	become	SELECT	*	FROM	t	WHERE0	=	1.)	(Bug	#11299)

When	two	threads	compete	for	the	same	table,	a	deadlock	could	occur	if
one	thread	has	also	a	lock	on	another	table	through	LOCK	TABLES	and	the
thread	is	attempting	to	remove	the	table	in	some	manner	and	the	other
thread	want	locks	on	both	tables.	(Bug	#10600)

Aliasing	the	column	names	in	a	VIEW	did	not	work	when	executing	a
SELECT	query	on	the	VIEW.	(Bug	#11399)

Performing	an	ORDER	BY	on	a	SELECT	from	a	VIEW	produced	unexpected
results	when	VIEW	and	underlying	table	had	the	same	column	name	on
different	columns.	Bug	#11709)

The	C	API	function	mysql_statement_reset()	did	not	clear	error
information.	(Bug	#11183)

When	used	within	a	subquery,	SUBSTRING()	returned	an	empty	string.	(Bug
#10269)

Multiple-table	UPDATE	queries	using	CONVERT_TZ()	would	fail	with	an	error.
(Bug	#9979)

mysql_fetch_fields()	returned	incorrect	length	information	for	MEDIUM
and	LONG	TEXT	and	BLOB	columns.	(Bug	#9735)

mysqlbinlog	was	failing	the	test	suite	on	Windows	due	to	BOOL	being
incorrectly	cast	to	INT.	(Bug	#11567)

NDBCLuster:	Server	left	core	files	following	shutdown	if	data	nodes	had
failed.	(Bug	#11516)

Creating	a	trigger	in	one	database	that	references	a	table	in	another	database
was	being	allowed	without	generating	errors.	(Bug	#8751)

Duplicate	trigger	names	were	allowed	within	a	single	schema.	(Bug	#6182)

Server	did	not	accept	some	fully-qualified	trigger	names.	(Bug	#8758)

The	traditional	SQL	mode	accepted	invalid	dates	if	the	date	value
provided	was	the	result	of	an	implicit	type	conversion.	(Bug	#5906)

The	MySQL	server	had	issues	with	certain	combinations	of	basedir	and
datadir.	(Bug	#7249)

INFORMATION_SCHEMA.COLUMNS	had	some	inaccurate	values	for	some	data
types.	(Bug	#11057)

LIKE	pattern	matching	using	prefix	index	didn't	return	correct	result.	(Bug
#11650)

For	several	character	sets,	MySQL	incorrectly	converted	the	character	code
for	the	division	sign	to	the	eucjpms	character	set.	(Bug	#11717)

When	invoked	within	a	view,	SUBTIME()	returned	incorrect	values.	(Bug
#11760)

SHOW	BINARY	LOGS	displayed	a	file	size	of	0	for	all	log	files	but	the	current
one	if	the	files	were	not	located	in	the	data	directory.	(Bug	#12004)

Server-side	prepared	statements	failed	for	columns	with	a	character	set	of
ucs2.	(Bug	#9442)

References	to	system	variables	in	an	SQL	statement	prepared	with	PREPARE
were	evaluated	during	EXECUTE	to	their	values	at	prepare	time,	not	to	their
values	at	execution	time.	(Bug	#9359)

For	server	shutdown	on	Windows,	error	messages	of	the	form	Forcing
close	of	thread	n	user:	'name'	were	being	written	to	the	error	log.	Now
connections	are	closed	more	gracefully	without	generating	error	messages.
(Bug	#7403)

Increased	the	version	number	of	the	libmysqlclient	shared	library	from
14	to	15	because	it	is	binary	incompatible	with	the	MySQL	4.1	client
library.	(Bug	#11893)

A	recent	optimizer	change	caused	DELETE	...	WHERE	...	NOT	LIKE	and
DELETE	...	WHERE	...	NOT	BETWEEN	to	not	properly	identify	the	rows	to
be	deleted.	(Bug	#11853)

Within	a	stored	procedure	that	selects	from	a	table,	invoking	another
procedure	that	requires	a	write	lock	for	the	table	caused	that	procedure	to

fail	with	a	message	that	the	table	was	read-locked.	(Bug	#9565)

Within	a	stored	procedure,	selecting	from	a	table	through	a	view	caused
subsequent	updates	to	the	table	to	fail	with	a	message	that	the	table	was
read-locked.	(Bug	#9597)

For	a	stored	procedure	defined	with	SQL	SECURITY	DEFINER	characteristic,
CURRENT_USER()	incorrectly	reported	the	use	invoking	the	procedure,	not
the	user	who	defined	it.	(Bug	#7291)

Creating	a	table	with	a	SET	or	ENUM	column	with	the	DEFAULT	0	clause
caused	a	server	crash	if	the	table's	character	set	was	utf8.	(Bug	#11819)

With	strict	SQL	mode	enabled,	ALTER	TABLE	reported	spurious	“Invalid
default	value”	messages	for	columns	that	had	no	DEFAULT	clause.	(Bug
#9881)

In	SQL	prepared	statements,	comparisons	could	fail	for	values	not	equally
space-padded.	For	example,	SELECT	'a'	=	'a	';	returns	1,	but	PREPARE	s
FROM	'SELECT	?=?';	SET	@a	=	'a',	@b	=	'a	';	PREPARE	s	FROM

'SELECT	?=?';	EXECUTE	s	USING	@a,	@b;	incorrectly	returned	0.	(Bug
#9379)

Labels	in	stored	routines	did	not	work	if	the	character	set	was	not	latin1.
(Bug	#7088)

Invoking	the	DES_ENCRYPT()	function	could	cause	a	server	crash	if	the
server	was	started	without	the	--des-key-file	option.	(Bug	#11643)

The	server	crashed	upon	execution	of	a	statement	that	used	a	stored
function	indirectly	(via	a	view)	if	the	function	was	not	yet	in	the
connection-specific	stored	routine	cache	and	the	statement	would	update	a
Handler_xxx	status	variable.	This	fix	allows	the	use	of	stored	routines
under	LOCK	TABLES	without	explicitly	locking	the	mysql.lock	table.
However,	you	cannot	use	mysql.proc	in	statements	that	will	combine
locking	of	it	with	modifications	for	other	tables.	(Bug	#11554)

The	server	crashed	when	dropping	a	trigger	that	invoked	a	stored
procedure,	if	the	procedure	was	not	yet	in	the	connection-specific	stored
routine	cache.	(Bug	#11889)

Selecting	the	result	of	an	aggregate	function	for	an	ENUM	or	SET	column
within	a	subquery	could	result	in	a	server	crash.	(Bug	#11821)

Incorrect	column	values	could	be	retrieved	from	views	defined	using
statements	of	the	form	SELECT	*	FROM	tbl_name.	(Bug	#11771)

The	mysql.proc	table	was	not	being	created	properly	with	the	proper	utf8
character	set	and	collation,	causing	server	crashes	for	stored	procedure
operations	if	the	server	was	using	a	multi-byte	character	set.	To	take
advantage	of	the	bug	fix,	mysql_fix_privilege_tables	should	be	run	to
correct	the	structure	of	the	mysql.proc	table.	(Bug	#11365)

Note	that	it	is	necessary	to	run	mysql_fix_privileges_tables	when
upgrading	from	a	previous	installation	that	contains	the	mysql.proc	table
(that	is,	from	a	previous	5.0	installation).	Otherwise,	creating	stored
procedures	might	not	work.

Execution	of	a	prepared	statement	that	invoked	a	non-existent	or	dropped
stored	routine	would	crash	the	server.	(Bug	#11834)

Executing	a	statement	that	invoked	a	trigger	would	cause	problems	unless	a
LOCK	TABLES	was	first	issued	for	any	tables	accessed	by	the	trigger.	Note:
The	exact	nature	of	the	problem	depended	upon	the	MySQL	5.0	release
being	used:	prior	to	5.0.3,	this	resulted	in	a	crash;	from	5.0.3	to	5.0.7,
MySQL	would	issue	a	warning;	in	5.0.9,	the	server	would	issue	an	error.
(Bug	#8406)

The	same	issue	caused	LOCK	TABLES	to	fail	following	UNLOCK	TABLES	if
triggers	were	involved.	(Bug	#9581)

In	a	shared	Windows	environment,	MySQL	could	not	find	its	configuration
file	unless	the	file	was	in	the	C:\	directory.	(Bug	#5354)

D.1.18.	Changes	in	release	5.0.9	(15	July	2005)

Functionality	added	or	changed:

An	attempt	to	create	a	TIMESTAMP	column	with	a	display	width	(for
example,	TIMESTAMP(6))	now	results	in	a	warning.	Display	widths	have	not
been	supported	for	TIMESTAMP	since	MySQL	4.1.	(Bug	#10466)

InnoDB:	When	creating	or	extending	an	InnoDB	data	file,	at	most	one
megabyte	at	a	time	is	allocated	for	initializing	the	file.	Previously,	InnoDB
allocated	and	initialized	1	or	8	megabytes	of	memory,	even	if	only	a	few
16-kilobyte	pages	were	to	be	written.	This	improves	the	performance	of
CREATE	TABLE	in	innodb_file_per_table	mode.

InnoDB:	Various	optimizations.	Removed	unreachable	debug	code	from
non-debug	builds.	Added	hints	for	the	branch	predictor	in	gcc.	Made
assertions	occupy	less	space.

InnoDB:	Make	innodb_thread_concurrency=20	by	default.	Bypass	the
concurrency	checking	if	the	setting	is	greater	than	or	equal	to	20.

InnoDB:	Make	CHECK	TABLE	killable.	(Bug	#9730)

Recursion	in	stored	routines	is	now	disabled	because	it	was	crashing	the
server.	We	plan	to	modify	stored	routines	to	allow	this	to	operate	safely	in	a
future	release.	(Bug	#11394)

The	handling	of	BIT	columns	has	been	improved,	and	should	now	be	much
more	reliable	in	a	number	of	cases.	(Bug	#10617,	Bug	#11091,	Bug
#11572)

mysql_real_escape_string()	API	function	now	respects
NO_BACKSLASH_ESCAPES	SQL	mode.	(Bug	#10214)

Bugs	fixed:

SHOW	CREATE	VIEW	did	not	take	the	ANSI	MODE	into	account	when	quoting
identifiers.	(Bug	#6903)

The	mysql_config	script	did	not	handle	symbolic	linking	properly.	(Bug
#10986)

Incorrect	results	when	using	GROUP	BY	...	WITH	ROLLUP	on	a	VIEW.	(Bug
#11639)

Instances	of	the	VAR_SAMP()	function	in	view	definitions	were	converted	to
VARIANCE().	This	is	incorrect	because	VARIANCE()	is	the	same	as
VAR_POP(),	not	VAR_SAMP().	(Bug	#10651)

mysqldump	failed	when	reloading	a	view	if	the	view	was	defined	in	terms
of	a	different	view	that	had	not	yet	been	reloaded.	mysqldump	now	creates
a	dummy	table	to	handle	this	case.	(Bug	#10927)

mysqldump	could	crash	for	illegal	or	non-existent	table	names.	(Bug
#9358)

The	--no-data	option	for	mysqldump	was	being	ignored	if	table	names
were	given	after	the	database	name.	(Bug	#9558)

The	--master-data	option	for	mysqldump	resulted	in	no	error	if	the
binary	log	was	not	enabled.	Now	an	error	occurs	unless	the	--force	option
is	given.	(Bug	#11678)

DES_ENCRYPT()	and	DES_DECRYPT()	require	SSL	support	to	be	enabled,	but
were	not	checking	for	it.	Checking	for	incorrect	arguments	or	resource
exhaustion	was	also	improved	for	these	functions.	(Bug	#10589)

When	used	in	joins,	SUBSTRING()	failed	to	truncate	to	zero	any	string
values	that	could	not	be	converted	to	numbers.	(Bug	#10124)

mysqldump	--xml	did	not	format	NULL	column	values	correctly.	(Bug
#9657)

There	was	a	compression	algorithm	issue	with	myisampack	for	very	large
datasets	(where	the	total	size	of	all	records	in	a	single	column	was	on	the
order	of	3	GB	or	more)	on	64-bit	platforms.	(A	fix	for	other	platforms	was
made	in	MySQL	5.0.6.)	(Bug	#8321)

Temporary	tables	were	created	in	the	data	directory	instead	of	tmpdir.	(Bug
#11440)

MySQL	would	not	compile	correctly	on	QNX	due	to	missing	rint()
function.	(Bug	#11544)

A	SELECT	DISTINCT	col_name	would	work	correctly	with	a	MyISAM	table
only	when	there	was	an	index	on	col_name.	(Bug	#11484)

The	server	would	lose	table-level	CREATE	VIEW	and	SHOW	VIEW	privileges
following	a	FLUSH	PRIVILEGES	or	server	restart.	(Bug	#9795)

In	strict	mode,	an	INSERT	into	a	view	that	did	not	include	a	value	for	a	NOT
NULL	column	but	that	did	include	a	WHERE	test	on	the	same	column	would
succeed,	This	happened	even	though	the	INSERT	should	have	been
prevented	due	to	the	failure	to	supply	a	value	for	the	NOT	NULL	column.
(Bug	#6443)

Running	a	CHECK	TABLES	on	multiple	views	crashed	the	server.	(Bug
#11337)

When	a	table	had	a	primary	key	containing	a	BLOB	column,	creation	of
another	index	failed	with	the	error	BLOB/TEXT	column	used	in	key
specification	without	keylength,	even	when	the	new	index	did	not
contain	a	BLOB	column.	(Bug	#11657)

NDB	Cluster:	When	trying	to	open	a	table	that	could	not	be	discovered	or
unpacked,	cluster	would	return	error	codes	which	the	MySQL	server	falsely
interpreted	as	operating	system	errors.	(Bug	#103651)

Manually	inserting	a	row	with	host=''	into	mysql.tables_priv	and
performing	a	FLUSH	PRIVILEGES	would	cause	the	server	to	crash.	(Bug
#11330)

A	cursor	using	a	query	with	a	filter	on	a	DATE	or	DATETIME	column	would
cause	the	server	to	crash	server	after	the	data	was	fetched.	(Bug	#11172)

Closing	a	cursor	that	was	already	closed	would	cause	MySQL	to	hang.
(Bug	#9814)

Using	CONCAT_WS	on	a	column	set	NOT	NULL	caused	incorrect	results	when
used	in	a	LEFT	JOIN.	(Bug	#11469)

Signed	BIGINT	would	not	accept	-9223372036854775808	as	a	DEFAULT
value.	(Bug	#11215)

Views	did	not	use	indexes	on	all	appropriate	queries.	(Bug	#10031)

For	MEMORY	tables,	it	was	possible	for	updates	to	be	performed	using
outdated	key	statistics	when	the	updates	involved	only	very	small	changes
in	a	very	few	rows.	This	resulted	in	the	random	failures	of	queries	such	as
UPDATE	t	SET	col	=	col	+	1	WHERE	col_key	=	2;	where	the	same

query	with	no	WHERE	clause	would	succeed.	(Bug	#10178)

Optimizer	performed	range	check	when	comparing	unsigned	integers	to
negative	constants,	could	cause	errors.	(Bug	#11185)

Wrong	comparison	method	used	in	VIEW	when	relaxed	date	syntax	used	(for
example,	2005.06.10).	(Bug	#11325)

The	ENCRYPT()	and	SUBSTRING_INDEX()	functions	would	cause	errors	when
used	with	a	VIEW.	(Bug	#7024)

Clients	would	hang	following	some	errors	with	stored	procedures.	(Bug
#9503)

Combining	cursors	and	subqueries	could	cause	server	crash	or	memory
leaks.	(Bug	#10736)

If	a	prepared	statement	cursor	is	opened	but	not	completely	fetched,
attempting	to	open	a	cursor	for	a	second	prepared	statement	will	fail.	(Bug
#10794)

D.1.19.	Changes	in	release	5.0.8	(Not	released)

Note:	Starting	with	version	5.0.8,	changes	for	MySQL	Cluster	can	be	found	in
the	combined	Change	History.

Functionality	added	or	changed:

Warning:	Incompatible	change:	Previously,	conversion	of	DATETIME
values	to	numeric	form	by	adding	zero	produced	a	result	in
YYYYMMDDHHMMSS	format.	The	result	of	DATETIME+0	is	now	in
YYYYMMDDHHMMSS.000000	format.	(Bug#12268)

MEMORY	tables	now	support	indexes	of	up	to	500	bytes.	See	Section	14.4,
“The	MEMORY	(HEAP)	Storage	Engine”.	(Bug	#10566)

New	SQL_MODE	-	NO_ENGINE_SUBSTITUTION	Prevents	automatic	substitution
of	storage	engine	when	the	requested	storage	engine	is	disabled	or	not
compiled	in.	(Bug	#6877)

The	statements	CREATE	TABLE,	TRUNCATE	TABLE,	DROP	DATABASE,	and
CREATE	DATABASE	cause	an	implicit	commit.	(Bug	#6883)

Expanded	on	information	provided	in	general	log	and	slow	query	log	for
prepared	statements.	(Bug	#8367,	Bug	#9334)

Where	a	GROUP	BY	query	uses	a	grouping	column	from	the	query's	SELECT
clause,	MySQL	now	issues	a	warning.	This	is	done	because	the	SQL
standard	states	that	any	grouping	column	must	unambiguously	reference	a
column	of	the	table	resulting	from	the	query's	FROM	clause,	and	allowing
columns	from	the	SELECT	clause	to	be	used	as	grouping	columns	is	a
MySQL	extension	to	the	standard.

By	way	of	example,	consider	the	following	table:

CREATE	TABLE	users	(

		userid	INT	NOT	NULL	PRIMARY	KEY,

		username	VARCHAR(25),

		usergroupid	INT	NOT	NULL

);

MySQL	allows	you	to	use	the	alias	in	this	query:

SELECT	usergroupid	AS	id,	COUNT(userid)	AS	number_of_users

FROM	users

GROUP	BY	id;

However,	the	SQL	standard	requires	that	the	column	name	be	used,	as
shown	here:

SELECT	usergroupid	AS	id,	COUNT(userid)	AS	number_of_users

FROM	users

GROUP	BY	usergroupid;

Queries	such	as	the	first	of	the	two	shown	above	will	continue	to	be
supported	in	MySQL;	however,	beginning	with	MySQL	5.0.8,	using	a
column	alias	in	this	fashion	will	generate	a	warning.	Note	that	in	the	event
of	a	collision	between	column	names	and/or	aliases	used	in	joins,	MySQL
attempts	to	resolve	the	conflict	by	giving	preference	to	columns	arising
from	tables	named	in	the	query's	FROM	clause.	(Bug	#11211)

The	granting	or	revocation	of	privileges	on	a	stored	routine	is	no	longer

performed	when	running	the	server	with	--skip-grant-tables	even	after
the	statement	SET	@@global.automatic_sp_privileges=1;	has	been
executed.	(Bug	#9993)

Added	support	for	B'10'	syntax	for	bit	literal.	(Bug	#10650)

Bugs	fixed:

Security	fix:	On	Windows	systems,	a	user	with	any	of	the	following
privileges

REFERENCES

CREATE	TEMPORARY	TABLES

GRANT	OPTION

CREATE

SELECT

on	*.*	could	crash	mysqld	by	issuing	a	USE	LPT1;	or	USE	PRN;	command.
In	addition,	any	of	the	commands	USE	NUL;,	USE	CON;,	USE	COM1;,	or	USE
AUX;	would	report	success	even	though	the	database	was	not	in	fact
changed.	Note:	Although	this	bug	was	thought	to	be	fixed	previously,	it	was
later	discovered	to	be	present	in	the	MySQL	5.0.7-beta	release	for
Windows.	(Bug	#9148,	CVE-2005-0799

A	CREATE	TABLE	db_name.tbl_name	LIKE	...	statement	would	crash	the
server	when	no	database	was	selected.	(Bug	#11028)

SELECT	DISTINCT	queries	or	GROUP	BY	queries	without	MIN()	or	MAX()
could	return	inconsistent	results	for	indexed	columns.	(Bug	#11044)

The	SHOW	INSTANCE	OPTIONS	command	in	MySQL	Instance	Manager
displayed	option	values	incorrectly	for	options	for	which	no	value	had	been
given.	(Bug	#11200)

An	outer	join	with	an	empty	derived	table	(a	result	from	a	subquery)
returned	no	result.	(Bug	#11284)

http://cve.mitre.org/cvename.cgi?name=CVE-2005-0799

An	outer	join	with	an	ON	condition	that	evaluated	to	false	could	return	an
incorrect	result.	(Bug	#11285)

mysqld_safe	would	sometimes	fail	to	remove	the	pid	file	for	the	old	mysql
process	after	a	crash.	As	a	result,	the	server	would	fail	to	start	due	to	a	false
A	mysqld	process	already	exists...	error.	(Bug	#11122)

CAST(...	AS	DECIMAL)	didn't	work	for	strings.	(Bug	#11283)

NULLIF()	function	could	produce	incorrect	results	if	first	argument	is	NULL.
(Bug	#11142)

Setting	@@SQL_MODE	=	NULL	caused	an	erroneous	error	message.	(Bug
#10732)

Converting	a	VARCHAR	column	having	an	index	to	a	different	type	(such	as
TINYTEXT)	gave	rise	to	an	incorrect	error	message.	(Bug	#10543)

Note	that	this	bugfix	induces	a	slight	change	in	the	behavior	of	indexes:	If
an	index	is	defined	to	be	the	same	length	as	a	field	(or	is	left	to	default	to
that	field's	length),	and	the	length	of	the	field	is	later	changed,	then	the
index	will	adopt	the	new	length	of	the	field.	Previously,	the	size	of	the
index	did	not	change	for	some	field	types	(such	as	VARCHAR)	when	the	field
type	was	changed.

sql_data_access	column	of	routines	table	of	INFORMATION_SCHEMA	was
empty.	(Bug	#11055)

A	CAST()	value	could	not	be	included	in	a	VIEW.	(Bug	#11387)

Server	crashed	when	using	GROUP	BY	on	the	result	of	a	DIV	operation	on	a
DATETIME	value.	(Bug	#11385)

Possible	NULL	values	in	BLOB	columns	could	crash	the	server	when	a	BLOB
was	used	in	a	GROUP	BY	query.	(Bug	#11295)

Fixed	64	bit	compiler	warning	for	packet	length	in	replication.	(Bug
#11064)

Multiple	range	accesses	in	a	subquery	cause	server	crash.	(Bug	#11487)

An	issue	with	index	merging	could	cause	suboptimal	index	merge	plans	to
be	chosen	when	searching	by	indexes	created	on	DATE	columns.	The	same
issue	caused	the	InnoDB	storage	engine	to	issue	the	warning	using	a
partial-field	key	prefix	in	search.	(Bug	#8441)

The	mysqlhotcopy	script	was	not	parsing	the	output	of	SHOW	SLAVE	STATUS
correctly	when	called	with	the	--record_log_pos	option.	(Bug	#7967)

SELECT	*	FROM	table	returned	incorrect	results	when	called	from	a	stored
procedure,	where	table	had	a	primary	key.	(Bug	#10136)

When	used	in	defining	a	view,	the	TIME_FORMAT()	function	failed	with
calculated	values,	for	example,	when	passed	the	value	returned	by
SEC_TO_TIME().	(Bug	#7521)

SELECT	DISTINCT	...	GROUP	BY	constant	returned	multiple	rows	(it
should	return	a	single	row).	(Bug	#8614)

INSERT	INTO	SELECT	FROM	view	produced	incorrect	result	when	using
ORDER	BY.	(Bug	#11298)

Fixed	hang/crash	with	Boolean	full-text	search	where	a	query	contained
more	query	terms	that	one-third	of	the	query	length	(it	could	be	achieved
with	truncation	operator:	'a*b*c*d*').	(Bug	#7858)

Fixed	column	name	generation	in	VIEW	creation	to	ensure	there	are	no
duplicate	column	names.	(Bug	#7448)

An	ORDER	BY	clause	sometimes	had	no	effect	on	the	ordering	of	a	result
when	selecting	specific	columns	(as	opposed	to	using	SELECT	*)	from	a
view.	(Bug	#7422)

Some	data	definition	statements	(CREATE	TABLE	where	the	table	was	not	a
temporary	table,	TRUNCATE	TABLE,	DROP	DATABASE,	and	CREATE	DATABASE)
were	not	being	written	to	the	binary	log	after	a	ROLLBACK.	This	also	caused
problems	with	replication.	(Bug	#6883)

Calling	a	stored	procedure	that	made	use	of	an	INSERT	...	SELECT	...
UNION	SELECT	...	query	caused	a	server	crash.	(Bug	#11060)

Selecting	from	a	view	defined	using	SELECT	SUM(DISTINCT	...)	caused	an
error;	attempting	to	execute	a	SELECT	*	FROM
INFORMATION_SCHEMA.TABLES	query	after	defining	such	a	view	crashed	the
server.	(Bug	#7015)

The	mysql	client	would	output	a	prompt	twice	following	input	of	very	long
strings,	because	it	incorrectly	assumed	that	a	call	to	the	_cgets()	function
would	clear	the	input	buffer.	(Bug	#10840)

A	three	byte	buffer	overflow	in	the	client	functions	caused	improper	exiting
of	the	client	when	reading	a	command	from	the	user.	(Bug	#10841)

Fixed	a	problem	where	a	stored	procedure	caused	a	server	crash	if	the	query
cache	was	enabled.	(Bug	#9715)

SHOW	CREATE	DATABASE	INFORMATION_SCHEMA	returned	an	“unknown
database”	error.	(Bug	#9434)

Corrected	a	problem	with	IFNULL()	returning	an	incorrect	result	on	64-bit
systems.	(Bug	#11235)

Fixed	a	problem	resolving	table	names	with	lower_case_table_names=2
when	the	table	name	lettercase	differed	in	the	FROM	and	WHERE	clauses.	(Bug
#9500)

Fixed	server	crash	due	to	some	internal	functions	not	taking	into	account
that	for	multi-byte	character	sets,	CHAR	columns	could	exceed	255	bytes	and
VARCHAR	columns	could	exceed	65,535	bytes.	(Bug	#11167)

Fixed	locking	problems	for	multiple-statement	DELETE	statements
performed	within	a	stored	routine,	such	as	incorrectly	locking	a	to-be-
modified	table	with	a	read	lock	rather	than	a	write	lock.	(Bug	#11158)

Fixed	a	portability	problem	testing	for	crypt()	support	that	caused
compilation	problems	when	using	OpenSSL/yaSSL	on	HP-UX	and	Mac	OS
X.	(Bug	#10675,	Bug	#11150)

The	hostname	cache	was	not	working.	(Bug	#10931)

On	Windows,	mysqlshow	did	not	interpret	wildcard	characters	properly	if

they	were	given	in	the	table	name	argument.	(Bug	#10947)

The	default	hostname	for	MySQL	server	was	always	mysql.	(Bug	#11174)

Using	PREPARE	to	prepare	a	statement	that	invoked	a	stored	routine	that
deallocated	the	prepared	statement	caused	a	server	crash.	This	is	prevented
by	disabling	dynamic	SQL	within	stored	routines.	(Bug	#10975)	(Note:
This	restriction	was	lifted	in	5.0.13	for	stored	procedures,	but	not	stored
functions	or	triggers.)

Using	PREPARE	to	prepare	a	statement	that	invoked	a	stored	routine	that
executed	the	prepared	statement	caused	a	Packets	out	of	order	error	the
second	time	the	routine	was	invoked.	This	is	prevented	by	disabling
dynamic	SQL	within	stored	routines.	(Bug	#7115)	(Note:	This	restriction
was	lifted	in	5.0.13	for	stored	procedures,	but	not	stored	functions	or
triggers.)

Using	prepared	statements	within	a	stored	routine	(PREPARE,	EXECUTE,
DEALLOCATE)	could	cause	the	client	connection	to	be	dropped	after	the
routine	returned.	This	is	prevented	by	disabling	dynamic	SQL	within	stored
routines.	(Bug	#10605)	(Note:	This	restriction	was	lifted	in	5.0.13	for	stored
procedures,	but	not	stored	functions	or	triggers.)

When	using	a	cursor	with	a	prepared	statement,	the	first	execution	returned
the	correct	result	but	was	not	cleaned	up	properly,	causing	subsequent
executions	to	return	incorrect	results.	(Bug	#10729)

MySQL	Cluster:	Connections	between	data	nodes	and	management	nodes
were	not	being	closed	following	shutdown	of	ndb_mgmd.	(Bug	#11132)

MySQL	Cluster:	mysqld	processes	would	not	reconnect	to	cluster
following	restart	of	ndb_mgmd.	(Bug	#11221)

MySQL	Cluster:	Fixed	problem	whereby	data	nodes	would	fail	to	restart	on
64-bit	Solaris	(Bug	#9025)

MySQL	Cluster:	Calling	ndb_select_count()	crashed	the	cluster	when
running	on	Red	Hat	Enterprise	4/64-bit/Opteron.	(Bug	#10058)

MySQL	Cluster:	Insert	records	were	incorrectly	applied	by	ndb_restore,

thus	making	restoration	from	backup	inconsistent	if	the	binlog	contained
inserts.	(Bug	#11166)

MySQL	Cluster:	Cluster	would	time	out	and	crash	after	first	query	on	64-bit
Solaris	9.	(Bug	#8918)

MySQL	Cluster:	ndb_mgm	client	show	command	displayed	incorrect	output
after	master	data	node	failure.	(Bug	#11050)

MySQL	Cluster:	A	delete	performed	as	part	of	a	transaction	caused	an
erroneous	result.	(Bug	#11133)

MySQL	Cluster:	Not	allowing	sufficient	parallelism	in	cluster	configuration
(for	example,	NoOfTransactions	too	small)	caused	ndb_restore	to	fail
without	providing	any	error	messages.	(Bug	#10294)

MySQL	Cluster:	When	using	dynamically	allocated	ports	on	Linux,	cluster
would	hang	on	initial	startup.	(Bug	#10893)

MySQL	Cluster:	Setting	TransactionInactiveTimeout=	0	did	not	result	in	an
infinite	timeout.	(Bug	#11290)

InnoDB:	Enforce	maximum	CHAR_LENGTH()	of	UTF-8	data	in	ON	UPDATE
CASCADE.	(Bug	#10409)

InnoDB:	Pad	UTF-8	VARCHAR	columns	with	0x20.	Pad	UCS2	CHAR	columns
with	0x0020.	(Bug	#10511)

D.1.20.	Changes	in	release	5.0.7	(10	June	2005)

Functionality	added	or	changed:

Security	improvement:	Applied	a	patch	to	fix	a	UDF	library-loading
vulnerability	that	could	result	in	a	buffer	overflow	and	code	execution.
(http://www.appsecinc.com/resources/alerts/mysql/2005-002.html)

Added	mysql_set_character_set()	C	API	function	for	setting	the	default
character	set	of	the	current	connection.	This	allows	clients	to	affect	the
character	set	used	by	mysql_real_escape_string().	(Bug	#8317)

http://www.appsecinc.com/resources/alerts/mysql/2005-002.html

The	behavior	of	the	Last_query_cost	system	variable	has	been	changed.
The	default	value	is	now	0	(rather	than	-1)	and	it	now	has	session-level
scope	(rather	than	being	global).	See	Section	5.2.4,	“Server	Status
Variables”,	for	additional	information.

All	characters	occurring	on	the	same	line	following	the	DELIMITER	keyword
will	be	set	as	delimiter.	For	example,	DELIMITER	:;	will	set	:;	as	the
delimiter.	This	behavior	is	now	consistent	between	MySQL	5.1	and	MySQL
5.0.	(Bug	#9879)

The	table,	type,	and	rows	columns	of	EXPLAIN	output	can	now	be	NULL.
This	is	required	for	using	EXPLAIN	on	SELECT	queries	that	use	no	tables	(for
example,	EXPLAIN	SELECT	1).	(Bug	#9899)

Placeholders	now	can	be	used	for	LIMIT	in	prepared	statements.	(Bug
#7306)

SHOW	BINARY	LOGS	now	displays	a	File_size	column	that	indicates	the
size	of	each	file.

The	--delayed-insert	option	for	mysqldump	has	been	disabled	to	avoid
causing	problems	with	storage	engines	that	do	not	support	INSERT	DELAYED.
(Bug	#7815)

Improved	the	optimizer	to	be	able	to	use	indexes	for	expressions	of	the
form	indexed_col	NOT	IN	(val1,	val2,	...)	and	indexed_col	NOT
BETWEEN	val1	AND	val2..	(Bug	#10561)

Removed	mysqlshutdown.exe	and	mysqlwatch.exe	from	the	Windows
“No	Installer”	distribution	(they	had	already	been	removed	from	the	“With
Installer”	distribution	before).	Removed	those	programs	from	the	source
distribution.

Removed	WinMySQLAdmin	from	the	source	distribution	and	from	the	“No
Installer”	Windows	distribution	(it	had	already	been	removed	from	the
“With	Installer”	distribution	before).

InnoDB:	In	stored	procedures	and	functions,	InnoDB	no	longer	takes	full
explicit	table	locks	for	every	involved	table.	Only	`intention'	locks	are
taken,	similar	to	those	in	the	execution	of	an	ordinary	SQL	statement.	This

greatly	reduces	the	number	of	deadlocks.

Bugs	fixed:

Security	update:	A	user	with	limited	privileges	could	obtain	information
about	the	privileges	of	other	users	by	querying	objects	in	the
INFORMATION_SCHEMA	database	for	which	that	user	did	not	have	the	requisite
privileges.	(Bug	#10964)

Triggers	with	dropped	functions	caused	crashes.	(Bug	#5893)

Failure	of	a	BEFORE	trigger	did	not	prevent	the	triggering	statement	from
performing	its	operation	on	the	row	for	which	the	trigger	error	occurred.
Now	the	triggering	statement	fails	as	described	in	Section	18.3,	“Using
Triggers”.	(Bug	#10902)

Issuing	a	write	lock	for	a	table	from	one	client	prevented	other	clients	from
accessing	the	table's	metadata.	For	example,	if	one	client	issued	a	LOCK
TABLES	mydb.mytable	WRITE,	then	a	second	client	attempting	to	execute	a
USE	mydb;	would	hang.	(Bug	#9998)

The	LAST_DAY()	failed	to	return	NULL	when	supplied	with	an	invalid
argument.	See	Section	12.5,	“Date	and	Time	Functions”.	(Bug	#10568)

The	functions	COALESCE(),	IF(),	and	IFNULL()	performed	incorrect
conversions	of	their	arguments.	(Bug	#9939)

The	TIME_FORMAT()	function	returned	incorrect	results	with	some	format
specifiers.	See	Section	12.5,	“Date	and	Time	Functions”.	(Bug	#10590)

Dropping	stored	routines	when	the	MySQL	server	had	been	started	with	--
skip-grant-tables	generated	extraneous	warnings.	(Bug	#9993)

A	problem	with	the	my_global.h	file	caused	compilation	of	MySQL	to	fail
on	single-processor	Linux	systems	running	2.6	kernels.	(Bug	#10364)

The	ucs2_turkish_ci	collation	failed	with	upper('i').	UPPER/LOWER	now
can	return	a	string	with	different	length.	(Bug	#8610)

OPTIMIZE	of	InnoDB	table	does	not	return	'Table	is	full'	if	out	of

tablespace.	(Bug	#8135)

GROUP	BY	queries	with	ROLLUP	returned	wrong	results	for	expressions
containing	group	by	columns.	(Bug	#7894)

Fixed	bug	in	FIELD()	function	where	value	list	contains	NULL.	(Bug
#10944)

Corrected	a	problem	where	an	incorrect	data	type	was	returned	in	the	result
set	metadata	when	using	a	prepared	SELECT	DISTINCT	statement	to	select
from	a	view.	(Bug	#11111)

Fixed	bug	in	the	MySQL	Instance	manager	that	caused	the	version	to
always	be	unknown	when	SHOW	INSTANCE	STATUS	was	issued.	(Bug	#10229)

Using	ORDER	BY	to	sort	the	results	of	an	IF()	that	contained	a
FROM_UNIXTIME()	expression	returned	incorrect	results	due	to	integer
overflow.	(Bug	#9669)

Fixed	a	server	crash	resulting	from	accessing	InnoDB	tables	within	stored
functions.	This	is	handled	by	prohibiting	statements	that	do	an	implicit	or
explicit	commit	or	rollback	within	stored	functions	or	triggers.	(Bug
#10015)

Fixed	a	server	crash	resulting	from	the	second	invocation	of	a	stored
procedure	that	selected	from	a	view	defined	as	a	join	that	used	ON	in	the	join
conditions.	(Bug	#6866)

Using	ALTER	TABLE	for	a	table	that	had	a	trigger	caused	a	crash	when
executing	a	statement	that	activated	the	trigger,	and	also	a	crash	later	with
USE	db_name	for	the	database	containing	the	table.	(Bug	#5894)

Fixed	a	server	crash	resulting	from	an	attempt	to	allocate	too	much	memory
when	GROUP	BY	blob_col	and	COUNT(DISTINCT)	were	used.	(Bug	#11088)

Fixed	a	portability	problem	for	compiling	on	Windows	with	Visual	Studio
6.	(Bug	#11153)

The	incorrect	sequence	of	statements	HANDLER	tbl_name	READ
index_name	NEXT	without	a	preceding	HANDLER	tbl_name	READ

index_name	=	(value_list)	for	an	InnoDB	table	resulted	in	a	server	crash
rather	than	an	error.	(Bug	#5373)

On	Windows,	with	lower_case_table_names	set	to	2,	using	ALTER	TABLE
to	alter	a	MEMORY	or	InnoDB	table	that	had	a	mixed-case	name	also
improperly	changed	the	name	to	lowercase.	(Bug	#9660)

The	server	timed	out	SSL	connections	too	quickly	on	Windows.	(Bug
#8572)

Executing	LOAD	INDEX	INTO	CACHE	for	a	table	while	other	threads	where
selecting	from	the	table	caused	a	deadlock.	(Bug	#10602)

Fixed	a	server	crash	resulting	from	CREATE	TABLE	...	SELECT	that	selected
from	a	table	being	altered	by	ALTER	TABLE.	(Bug	#10224)

The	FEDERATED	storage	engine	properly	handled	outer	joins,	but	not	inner
joins.	(Bug	#10848)

Consistently	report	INFORMATION_SCHEMA	table	names	in	uppercase	in	SHOW
TABLE	STATUS	output.	(Bug	#10059)

Fixed	a	failure	of	WITH	ROLLUP	to	sum	values	properly.	(Bug	#10982)

Triggers	were	not	being	activated	for	multiple-table	UPDATE	or	DELETE
statements.	(Bug	#5860)

INSERT	BEFORE	triggers	were	not	being	activated	for	INSERT	...	SELECT
statements.	(Bug	#6812)

INSERT	BEFORE	triggers	were	not	being	activated	for	implicit	inserts	(LOAD
DATA).	(Bug	#8755)

If	a	stored	function	contained	a	FLUSH	statement,	the	function	crashed	when
invoked.	FLUSH	now	is	disallowed	within	stored	functions.	(Bug	#8409)

Multiple-row	REPLACE	could	fail	on	a	duplicate-key	error	when	having	one
AUTO_INCREMENT	key	and	one	unique	key.	(Bug	#11080)

Fixed	a	server	crash	resulting	from	invalid	string	pointer	when	inserting

into	the	mysql.host	table.	(Bug	#10181)

Multiple-table	DELETE	did	always	delete	on	the	fly	from	the	first	table	that
was	to	be	deleted	from.	In	some	cases,	when	using	many	tables	and	it	was
necessary	to	access	the	same	row	twice	in	the	first	table,	we	could	miss
some	rows-to-be-deleted	from	other	tables.	This	is	now	fixed.

The	mysql_next_result()	function	could	hang	if	you	were	executing
many	statements	in	a	mysql_real_query()	call	and	one	of	those	statements
raised	an	error.	(Bug	#9992)

The	combination	of	COUNT(),	DISTINCT,	and	CONCAT()	sometimes	triggered
a	memory	deallocation	bug	on	Windows	resulting	in	a	server	crash.	(Bug
#9593)

InnoDB:	Do	very	fast	shutdown	only	if	innodb_fast_shutdown=2,	but	wait
for	threads	to	exit	and	release	allocated	memory	if
innodb_fast_shutdown=1.	Starting	with	MySQL/InnoDB	5.0.5,	InnoDB
would	do	brutal	shutdown	also	when	innodb_fast_shutdown=1.	(Bug
#9673)

InnoDB:	Fixed	InnoDB:	Error:	stored_select_lock_type	is	0	inside
::start_stmt()!	in	a	stored	procedure	call	if
innodb_locks_unsafe_for_binlog	was	set	in	my.cnf.	(Bug	#10746)

InnoDB:	Fixed	a	duplicate	key	error	that	occurred	with	REPLACE	in	a	table
with	an	AUTO-INC	column.	(Bug	#11005)

MySQL	would	pass	an	incorrect	key	length	to	storage	engines	for	MIN().
This	could	cause	warnings	InnoDB:	Warning:	using	a	partial-field
key	prefix	in	search.	in	the	.err	log.	(Bug	#11039,	same	as	Bug
#13218	in	MySQL	4.1.15)

Fixed	a	server	crash	for	INSERT	or	UPDATE	when	the	WHERE	clause	contained
a	correlated	subquery	that	referred	to	a	column	of	the	table	being	modified.
(Bug	#6384)

Fixed	a	problem	causing	an	incorrect	result	for	columns	that	include	an
aggregate	function	as	part	of	an	expression	when	WITH	ROLLUP	is	added	to
GROUP	BY.	(Bug	#7914)

Fixed	a	problem	with	returning	an	incorrect	result	from	a	view	that	selected
a	COALESCE()	expression	from	the	result	of	an	outer	join.	(Bug	#9938)

MySQL	was	adding	a	DEFAULT	clause	to	ENUM	columns	that	included	no
explicit	DEFAULT	and	were	defined	as	NOT	NULL.	(This	is	supposed	to
happen	only	for	columns	that	are	NULL.)	(Bug	#6267)

Corrected	inappropriate	error	messages	that	were	displayed	when
attempting	to	set	the	read-only	warning_count	and	error_count	system
variables.	(Bug	#10339)

D.1.21.	Changes	in	release	5.0.6	(26	May	2005)

Functionality	added	or	changed:

Incompatible	change:	MyISAM	and	InnoDB	tables	created	with	DECIMAL
columns	in	MySQL	5.0.3	to	5.0.5	will	appear	corrupt	after	an	upgrade	to
MySQL	5.0.6.	Dump	such	tables	with	mysqldump	before	upgrading,	and
then	reload	them	after	upgrading.	(The	same	incompatibility	will	occur	for
these	tables	created	in	MySQL	5.0.6	after	a	downgrade	to	MySQL	5.0.3	to
5.0.5.)	(Bug	#10465,	Bug	#10625)

Incompatible	change:	The	behavior	of	LOAD	DATA	INFILE	and	SELECT
...	INTO	OUTFILE	has	changed	when	the	FIELDS	TERMINATED	BY	and
FIELDS	ENCLOSED	BY	values	both	are	empty.	Formerly,	a	column	was	read
or	written	the	display	width	of	the	column.	For	example,	INT(4)	was	read
or	written	using	a	field	with	a	width	of	4.	Now	columns	are	read	and	written
using	a	field	width	wide	enough	to	hold	all	values	in	the	field.	However,
data	files	written	before	this	change	was	made	might	not	be	reloaded
correctly	with	LOAD	DATA	INFILE	for	MySQL	4.1.12	and	up.	This	change
also	affects	data	files	read	by	mysqlimport	and	written	by	mysqldump	--
tab,	which	use	LOAD	DATA	INFILE	and	SELECT	...	INTO	OUTFILE.	For
more	information,	see	Section	13.2.5,	“LOAD	DATA	INFILE	Syntax”.
(Bug#12564)

The	precision	of	the	DECIMAL	data	type	has	been	increased	from	64	to	65
decimal	digits.

Added	the	div_precision_increment	system	variable,	which	indicates	the

number	of	digits	of	precision	by	which	to	increase	the	result	of	division
operations	performed	with	the	/	operator.

Added	the	log_bin_trust_routine_creators	system	variable,	which
applies	when	binary	logging	is	enabled.	It	controls	whether	stored	routine
creators	can	be	trusted	not	to	create	stored	routines	that	will	cause	unsafe
events	to	be	written	to	the	binary	log.

Added	the	--log-bin-trust-routine-creators	server	option	for	setting
the	log_bin_trust_routine_creators	system	variable	from	the	command
line.

Implemented	the	STMT_ATTR_PREFETCH_ROWS	option	for	the
mysql_stmt_attr_set()	C	API	function.	This	sets	how	many	rows	to	fetch
at	a	time	when	using	cursors	with	prepared	statements.

The	GRANT	and	REVOKE	statements	now	support	an	object_type	clause	to	be
used	for	disambiguating	whether	the	grant	object	is	a	table,	a	stored
function,	or	a	stored	procedure.	Use	of	this	clause	requires	that	you	upgrade
your	grant	tables.	See	Section	5.6.1,	“mysql_fix_privilege_tables	—
Upgrade	MySQL	System	Tables”.	(Bug	#10246)

Added	REFERENCED_TABLE_SCHEMA,	REFERENCED_TABLE_NAME,	and
REFERENCED_COLUMN_NAME	columns	to	the	KEY_COLUMN_USAGE	table	of
INFORMATION_SCHEMA.	(Bug	#9587)

Added	a	--show-warnings	option	to	mysql	to	cause	warnings	to	be	shown
after	each	statement	if	there	are	any.	This	option	applies	to	interactive	and
batch	mode.	In	interactive	mode,	\w	and	\W	may	be	used	to	enable	and
disable	warning	display.	(Bug	#8684)

Removed	a	limitation	that	prevented	use	of	FIFOs	as	logging	targets	(such
as	for	the	general	query	log).	This	modification	does	not	apply	to	the	binary
log	and	the	relay	log.	(Bug	#8271)

Added	a	--debug	option	to	my_print_defaults.

When	the	server	cannot	read	a	table	because	it	cannot	read	the	.frm	file,
print	a	message	that	the	table	was	created	with	a	different	version	of
MySQL.	(This	can	happen	if	you	create	tables	that	use	new	features	and

then	downgrade	to	an	older	version	of	MySQL.)	(Bug	#10435)

SHOW	VARIABLES	now	shows	the	slave_compressed_protocol,
slave_load_tmpdir	and	slave_skip_errors	system	variables.	(Bug
#7800)

Removed	unused	system	variable	myisam_max_extra_sort_file_size.

Changed	default	value	of	myisam_data_pointer_size	from	4	to	6.	This
allows	us	to	avoid	table	is	full	errors	for	most	cases.

The	variable	concurrent_insert	now	takes	3	values.	Setting	this	to	2
changes	MyISAM	to	do	concurrent	inserts	to	end	of	table	if	table	is	in	use	by
another	thread.

New	/*>	prompt	for	mysql.	This	prompt	indicates	that	a	/*	...	*/
comment	was	begun	on	an	earlier	line	and	the	closing	*/	sequence	has	not
yet	been	seen.	(Bug	#9186)

If	strict	SQL	mode	is	enabled,	VARCHAR	and	VARBINARY	columns	with	a
length	greater	than	65,535	no	longer	are	silently	converted	to	TEXT	or	BLOB
columns.	Instead,	an	error	occurs.	(Bug	#8295,	Bug	#8296)

The	INFORMATION_SCHEMA.SCHEMATA	table	now	has	a
DEFAULT_COLLATION_NAME	column.	(Bug	#8998)

InnoDB:	When	the	maximum	length	of	SHOW	INNODB	STATUS	output	would
be	exceeded,	truncate	the	beginning	of	the	list	of	active	transactions,	instead
of	truncating	the	end	of	the	output.	(Bug	#5436)

InnoDB:	If	innodb_locks_unsafe_for_binlog	option	is	set	and	the
isolation	level	of	the	transaction	is	not	set	to	serializable	then	InnoDB	uses	a
consistent	read	for	select	in	clauses	like	INSERT	INTO	...	SELECT	and
UPDATE	...	(SELECT)	that	do	not	specify	FOR	UPDATE	or	IN	SHARE	MODE.
Thus	no	locks	are	set	to	rows	read	from	selected	table.

Updated	version	of	libedit	to	2.9.	(Bug	#2596)

Removed	mysqlshutdown.exe	and	mysqlwatch.exe	from	the	Windows
“With	Installer”	distribution.

Bugs	fixed:

An	error	in	the	implementation	of	the	MyISAM	compression	algorithm
caused	myisampack	to	fail	with	very	large	sets	of	data	(total	size	of	all	the
records	in	a	single	column	needed	to	be	>=	3	GB	in	order	to	trigger	this
issue).	(Bug	#8321)

Statements	that	create	and	use	stored	routines	were	not	being	written	to	the
binary	log,	which	affects	replication	and	data	recovery	options.	(Bug
#2610)	Stored	routine-related	statements	now	are	logged,	subject	to	the
issues	and	limitations	discussed	in	Section	17.4,	“Binary	Logging	of	Stored
Routines	and	Triggers”.

Disabled	binary	logging	within	stored	routines	to	avoid	writing	spurious
extra	statements	to	the	binary	log.	For	example,	if	a	routine	p()	executes	an
INSERT	statement,	then	for	CALL	p(),	the	CALL	statement	appears	in	the
binary	log,	but	not	the	INSERT	statement.	(Bug	#9100)

Statements	that	create	and	drop	triggers	were	not	being	written	to	the	binary
log,	which	affects	replication	and	data	recovery	options.	(Bug	#10417)
Trigger-related	statements	now	are	logged,	subject	to	the	issues	and
limitations	discussed	in	Section	17.4,	“Binary	Logging	of	Stored	Routines
and	Triggers”.

The	mysql_stmt_execute()	and	mysql_stmt_reset()	C	API	functions
now	close	any	cursor	that	is	open	for	the	statement,	which	prevents	a	server
crash.	(Bug	#9478)

The	mysql_stmt_attr_set()	C	API	function	now	returns	an	error	for
option	values	that	are	defined	in	mysql.h	but	not	yet	implemented,	such	as
CURSOR_TYPE_SCROLLABLE.	(Bug	#9643)

MERGE	tables	could	fail	on	Windows	due	to	incorrect	interpretation	of
pathname	separator	characters	for	filenames	in	the	.MRG	file.	(Bug	#10687)

Fixed	a	server	crash	for	INSERT	...	ON	DUPLICATE	KEY	UPDATE	with
MERGE	tables,	which	do	not	have	unique	indexes.	(Bug	#10400)

Fix	FORMAT()	to	do	better	rounding	for	double	values	(for	example,
FORMAT(4.55,1)	returns	4.6,	not	4.5).	(Bug	#9060)

Disallow	use	of	SESSION	or	GLOBAL	for	user	variables	or	local	variables	in
stored	routines.	(Bug	#9286)

Fixed	a	server	crash	when	using	GROUP	BY	...	WITH	ROLLUP	on	an	indexed
column	in	an	InnoDB	table.	(Bug	#9798)

In	strict	SQL	mode,	some	assignments	to	numeric	columns	that	should	have
been	rejected	were	not	(such	as	the	result	of	an	arithmetic	expression	or	an
explicit	CAST()	operation).	(Bug	#6961)

CREATE	TABLE	t	AS	SELECT	UUID()	created	a	VARCHAR(12)	column,	which
is	too	small	to	hold	the	36-character	result	from	UUID().	(Bug	#9535)

Fixed	a	server	crash	in	the	BLACKHOLE	storage	engine.	(Bug	#10175)

Fixed	a	server	crash	resulting	from	repeated	calls	to	ABS()	when	the
argument	evaluated	to	NULL.	(Bug	#10599)

For	a	user-defined	function	invoked	from	within	a	prepared	statement,	the
UDF's	initialization	routine	was	invoked	for	each	execution	of	the
statement,	but	the	deinitialization	routine	was	not.	(It	was	invoked	only
when	the	statement	was	closed.)	Similarly,	when	invoking	a	UDF	from
within	a	trigger,	the	initialization	routine	was	invoked	but	the
deinitialization	routine	was	not.	For	UDFs	that	have	an	expensive	deinit
function	(such	as	myperl,	this	bugfix	will	have	negative	performance
consequences.	(Bug	#9913)

Portability	fix	for	Cygwin:	Don't	use	#pragma	interface	in	source	files.
(Bug	#10241)

Fix	CREATE	TABLE	...	LIKE	to	work	when	lower_case_table_names	is	set
on	a	case-sensitive	filesystem	and	the	source	table	name	is	not	given	in
lowercase.	(Bug	#9761)

Fixed	a	server	crash	resulting	from	a	CHECK	TABLE	statement	where	the
arguments	were	a	view	name	followed	by	a	table	name.	(Bug	#9897)

Within	a	stored	procedure,	attempting	to	update	a	view	defined	as	an	inner
join	failed	with	a	Table	'tbl_name'	was	locked	with	a	READ	lock	and
can't	be	updated	error.	(Bug	#9481)

Fixed	a	problem	with	INFORMATION_SCHEMA	tables	being	inaccessible
depending	on	lettercase	used	to	refer	to	them.	(Bug	#10018)

my_print_defaults	was	ignoring	the	--defaults-extra-file	option	or
crashing	when	the	option	was	given.	(Bug	#9136,	Bug	#9851)

The	INFORMATION_SCHEMA.COLUMNS	table	was	missing	columns	of	views	for
which	the	user	has	access.	(Bug	#9838)

Fixed	a	mysqldump	crash	that	occurred	with	the	--complete-insert
option	when	dumping	tables	with	a	large	number	of	long	column	names.
(Bug	#10286)

Corrected	a	problem	where	DEFAULT	values	where	not	assigned	properly	to
BIT(1)	or	CHAR(1)	columns	if	certain	other	columns	preceded	them	in	the
table	definition.	(Bug	#10179)

For	MERGE	tables,	avoid	writing	absolute	pathnames	in	the	.MRG	file	for	the
names	of	the	constituent	MyISAM	tables	so	that	if	the	data	directory	is
moved,	MERGE	tables	will	not	break.	For	mysqld,	write	just	the	MyISAM	table
name	if	it	is	in	the	same	database	as	the	MERGE	table,	and	a	path	relative	to
the	data	directory	otherwise.	For	the	embedded	servers,	absolute	pathnames
may	still	be	used.	(Bug	#5964)

Corrected	a	problem	resolving	outer	column	references	in	correlated
subqueries	when	using	the	prepared	statements.	(Bug	#10041)

Corrected	the	error	message	for	exceeding	the	MAX_CONNECTIONS_PER_HOUR
limit	to	say	max_connections_per_hour	instead	of	max_connections.	(Bug
#9947)

Fixed	incorrect	memory	block	allocation	for	the	query	cache	in	the
embedded	server.	(Bug	#9549)

Corrected	an	inability	to	select	from	a	view	within	a	stored	procedure.	(Bug
#9758)

Fixed	a	server	crash	resulting	from	use	of	AVG(DISTINCT)	with	GROUP	BY
...	WITH	ROLLUP.	(Bug	#9799)

Fixed	a	server	crash	resulting	from	use	of	DISTINCT	AVG()	with	GROUP	BY
...	WITH	ROLLUP.	(Bug	#9800)

Fixed	a	server	crash	resulting	from	use	of	a	CHAR	or	VARCHAR	column	with
MIN()	or	MAX()	and	GROUP	BY	...	WITH	ROLLUP.	(Bug	#9820)

Fixed	a	server	crash	resulting	from	use	of	SELECT	DISTINCT	with	a
prepared	statement	that	uses	a	cursor.	(Bug	#9520)

Fixed	server	crash	resulting	from	multiple	calls	to	a	stored	procedure	that
assigned	the	result	of	a	subquery	to	a	variable	or	compared	it	to	a	value
with	IN.	(Bug	#5963)

Selecting	from	a	single-table	view	defined	on	multiple-table	views	caused	a
server	crash.	(Bug	#8528)

If	the	file	named	by	a	--defaults-extra-file	option	does	not	exist	or	is
otherwise	inaccessible,	an	error	now	occurs.	(Bug	#5056)

net_read_timeout	and	net_write_timeout	were	not	being	respected	on
Windows.	(Bug	#9721)

SELECT	from	INFORMATION_SCHEMA	tables	failed	if	the	statement	has	a	GROUP
BY	clause	and	an	aggregate	function	in	the	select	list.	(Bug	#9404)

Corrected	some	failures	of	prepared	statements	for	SQL	(PREPARE	plus
EXECUTE)	to	return	all	rows	for	some	SELECT	statements.	(Bug	#9096,	Bug
#9777)

Remove	extra	slashes	in	--tmpdir	value	(for	example,	convert	/var//tmp
to	/var/tmp,	because	they	caused	various	errors.	(Bug	#8497)

Added	Create_routine_priv,	Alter_routine_priv,	and	Execute_priv
privileges	to	the	mysql.host	privilege	table.	(They	had	been	added	to
mysql.db	in	MySQL	5.0.3	but	not	to	the	host	table.)	(Bug	#8166)

Fixed	configure	to	properly	recognize	whether	NTPL	is	available	on	Linux.
(Bug	#2173)

Incomplete	results	were	returned	from	INFORMATION_SCHEMA.COLUMNS	for

INFORMATION_SCHEMA	tables	for	non-root	users.	(Bug	#10261)

Fixed	a	portability	problem	in	compiling	mysql.cc	with	VC++	on
Windows.	(Bug	#10245)

SELECT	0/0	returned	0	rather	than	NULL.	(Bug	#10404)

MAX()	for	an	INT	UNSIGNED	(unsigned	4-byte	integer)	column	could	return
negative	values	if	the	column	contained	values	larger	than	231.	(Bug	#9298)

SHOW	CREATE	VIEW	got	confused	and	could	not	find	the	view	if	there	was	a
temporary	table	with	the	same	name	as	the	view.	(Bug	#8921)

Fixed	a	deadlock	resulting	from	use	of	FLUSH	TABLES	WITH	READ	LOCK
while	an	INSERT	DELAYED	statement	is	in	progress.	(Bug	#7823)

The	optimizer	was	choosing	suboptimal	execution	plans	for	certain	outer
joins	where	the	right	table	of	a	left	join	(or	left	table	of	a	right	join)	had
both	ON	and	WHERE	conditions.	(Bug	#10162)

RENAME	TABLE	for	an	ARCHIVE	table	failed	if	the	.arn	file	was	not	present.
(Bug	#9911)

Invoking	a	stored	function	that	executed	a	SHOW	statement	resulted	in	a
server	crash.	(Bug	#8408)

Fixed	problems	with	static	variables	and	do	not	link	with	libsupc++	to
allow	building	on	FreeBSD	5.3.	(Bug	#9714)

Fixed	some	awk	script	portability	problems	in	cmd-line-
utils/libedit/makelist.sh.	(Bug	#9954)

Fixed	a	problem	with	mishandling	of	NULL	key	parts	in	hash	indexes	on
VARCHAR	columns,	resulting	in	incorrect	query	results.	(Bug	#9489,	Bug
#10176)

InnoDB:	Fixed	a	critical	bug	in	InnoDB	AUTO_INCREMENT:	it	could	assign	the
same	value	for	several	rows.	(Bug	#10359)	InnoDB:	All	InnoDB	bug	fixes
from	4.1.12	and	earlier	versions,	and	also	the	fixes	to	bugs	#10335	and
#10607	listed	in	the	4.1.13	change	notes.

D.1.22.	Changes	in	release	5.0.5	(Not	released)

No	public	release	of	MySQL	5.0.5	was	made.	The	changes	described	in	this
section	are	available	in	MySQL	5.0.6.

Functionality	added	or	changed:

Added	support	for	the	BIT	data	type	to	the	MEMORY,	InnoDB,	and	BDB	storage
engines.

SHOW	VARIABLES	no	longer	displays	the	deprecated	log_update	system
variable.	(Bug	#9738)

The	behavior	controlled	by	the	--innodb-fast-shutdown	option	now	can
be	changed	at	runtime	by	setting	the	value	of	the	global
innodb_fast_shutdown	system	variable.	It	now	accepts	values	0,	1	and	2
(except	on	Netware	where	2	is	disabled).	If	set	to	2,	then	when	the	MySQL
server	shuts	down,	InnoDB	will	just	flush	its	logs	and	shut	down	brutally
(and	quickly)	as	if	a	MySQL	crash	had	occurred;	no	committed	transaction
will	be	lost,	but	a	crash	recovery	will	be	done	at	next	startup.

Bugs	fixed:

Security	fix:	If	mysqld	was	started	with	--user=non_existent_user,	it
would	run	using	the	privileges	of	the	account	it	was	invoked	from,	even	if
that	was	root.	(Bug	#9833)

Corrected	a	failure	to	resolve	a	column	reference	correctly	for	a	LEFT	JOIN
that	compared	a	join	column	to	an	IN	subquery.	(Bug	#9338)

Fixed	a	problem	where,	after	an	internal	temporary	table	in	memory
became	too	large	and	had	to	be	converted	to	an	on-disk	table,	the	error
indicator	was	not	cleared	and	the	query	failed	with	error	1023	(Can't	find
record	in	'').	(Bug	#9703)

Multiple-table	updates	could	produce	spurious	data-truncation	warnings	if
they	used	a	join	across	columns	that	are	indexed	using	a	column	prefix.
(Bug	#9103)

Fixed	a	string-length	comparison	problem	that	caused	mysql	to	fail	loading

dump	files	containing	certain	‘\’-sequences.	(Bug	#9756)

Fixed	a	failure	to	resolve	a	column	reference	properly	when	an	outer	join
involving	a	view	contained	a	subquery	and	the	column	was	used	in	the
subquery	and	the	outer	query.	(Bug	#6106,	Bug	#6107)

Use	of	a	subquery	that	used	WITH	ROLLUP	in	the	FROM	clause	of	the	main
query	sometimes	resulted	in	a	Column	cannot	be	null	error.	(Bug	#9681)

Fixed	a	memory	leak	that	occurred	when	selecting	from	a	view	that
contained	a	subquery.	(Bug	#10107)

Fixed	an	optimizer	bug	in	computing	the	union	of	two	ranges	for	the	OR
operator.	(Bug	#9348)

Fixed	a	segmentation	fault	in	mysqlcheck	that	occurred	when	the	last	table
checked	in	--auto-repair	mode	returned	an	error	(such	as	the	table	being
a	MERGE	table).	(Bug	#9492)

SET	@var=	CAST(NULL	AS	[INTEGER|CHAR])	now	sets	the	result	type	of	the
variable	to	INTEGER/CHAR.	(Bug	#6598)

Incorrect	results	were	returned	for	queries	of	the	form	SELECT	...	LEFT
JOIN	...	WHERE	EXISTS	(subquery),	where	the	subquery	selected	rows
based	on	an	IS	NULL	condition.	(Bug	#9516)

Executing	LOCK	TABLES	and	then	calling	a	stored	procedure	caused	an	error
and	resulting	in	the	server	thinking	that	no	stored	procedures	exist.	(Bug
#9566)

Selecting	from	a	view	containing	a	subquery	caused	the	server	to	hang.
(Bug	#8490)

Within	a	stored	procedure,	attempting	to	execute	a	multiple-table	UPDATE
failed	with	a	Table	'tbl_name'	was	locked	with	a	READ	lock	and	can't	be
updated	error.	(Bug	#9486)

Starting	mysqld	with	the	--skip-innodb	and	--default-storage-
engine=innodb	(or	--default-table-type=innodb	caused	a	server	crash.
(Bug	#9815)

Queries	containing	CURRENT_USER()	incorrectly	were	registered	in	the
query	cache.	(Bug	#9796)

Setting	the	storage_engine	system	variable	to	MEMORY	succeeded,	but
retrieving	the	variable	resulted	in	a	value	of	HEAP	(the	old	name	for	the
MEMORY	storage	engine)	rather	than	MEMORY.	(Bug	#10039)

mysqlshow	displayed	an	incorrect	row	count	for	tables.	(Bug	#9391)

The	server	died	with	signal	11	if	a	non-existent	location	was	specified	for
the	location	of	the	binary	log.	Now	the	server	exits	after	printing	an
appropriate	error	message.	(Bug	#9542)

Fixed	a	problem	in	the	client/server	protocol	where	the	server	closed	the
connection	before	sending	the	final	error	message.	The	problem	could	show
up	as	a	Lost	connection	to	MySQL	server	during	query	when
attempting	to	connect	to	access	a	non-existent	database.	(Bug	#6387,	Bug
#9455)

Fixed	a	readline-related	crash	in	mysql	when	the	user	pressed	Control-R.
(Bug	#9568)

For	stored	functions	that	should	return	a	YEAR	value,	corrected	a	failure	of
the	value	to	be	in	YEAR	format.	(Bug	#8861)

Fixed	a	server	crash	resulting	from	invocation	of	a	stored	function	that
returned	a	value	having	an	ENUM	or	SET	data	type.	(Bug	#9775)

Fixed	a	server	crash	resulting	from	invocation	of	a	stored	function	that
returned	a	value	having	a	BLOB	data	type.	(Bug	#9102)

Fixed	a	server	crash	resulting	from	invocation	of	a	stored	function	that
returned	a	value	having	a	BIT	data	type.	(Bug	#7648)

TIMEDIFF()	with	a	negative	time	first	argument	and	positive	time	second
argument	produced	incorrect	results.	(Bug	#8068)

Fixed	a	problem	with	OPTIMIZE	TABLE	for	InnoDB	tables	being	written
twice	to	the	binary	log.	(Bug	#9149)

InnoDB:	Prevent	ALTER	TABLE	from	changing	the	storage	engine	if	there	are
foreign	key	constraints	on	the	table.	(Bug	#5574,	Bug	#5670)

InnoDB:	Fixed	a	bug	where	next-key	locking	doesn't	allow	the	insert	which
does	not	produce	a	phantom.	(Bug	#9354)	If	the	range	is	of	type	'a'	<=
uniquecolumn,	InnoDB	lock	only	the	RECORD,	if	the	record	with	the
column	value	'a'	exists	in	a	CLUSTERED	index.	This	allows	inserts
before	a	range.

InnoDB:	When	FOREIGN_KEY_CHECKS=0,	ALTER	TABLE	and	RENAME	TABLE
will	ignore	any	type	incompatibilities	between	referencing	and	referenced
columns.	Thus,	it	will	be	possible	to	convert	the	character	sets	of	columns
that	participate	in	a	foreign	key.	Be	sure	to	convert	all	tables	before
modifying	any	data!	(Bug	#9802)

Provide	more	informative	error	messages	in	clustered	setting	when	a	query
is	issued	against	a	table	that	has	been	modified	by	another	mysqld	server.
(Bug	#6762)

D.1.23.	Changes	in	release	5.0.4	(16	April	2005)

Functionality	added	or	changed:

Added	ENGINE=MyISAM	table	option	when	creating	mysql.proc	table	in
mysql_create_system_tables	script	to	make	sure	the	table	is	created	as	a
MyISAM	table	even	if	the	default	storage	engine	has	been	changed.	(Bug
#9496)

SHOW	CREATE	TABLE	for	an	INFORMATION_SCHEMA	table	no	longer	prints	a
MAX_ROWS	value	because	the	value	has	no	meaning.	(Bug	#8941)

Invalid	DEFAULT	values	for	CREATE	TABLE	now	generate	errors.	(Bug	#5902)

Added	--show-table-type	option	to	mysqlshow,	to	display	a	column
indicating	the	table	type,	as	in	SHOW	FULL	TABLES.	(Bug	#5036)

The	way	the	time	zone	information	is	stored	in	the	binary	log	was	changed,
so	that	it	is	now	possible	to	have	a	replication	master	and	slave	running
with	different	global	time	zones.	A	drawback	is	that	replication	from	5.0.4
masters	to	pre-5.0.4	slaves	is	impossible.

Added	--with-big-tables	compilation	option	to	configure.	(Previously	it
was	necessary	to	pass	-DBIG_TABLES	to	the	compiler	manually	in	order	to
enable	large	table	support.)	See	Section	2.9.2,	“Typical	configure	Options”,
for	details.

New	configuration	directives	!include	and	!includedir	implemented	for
including	option	files	and	searching	directories	for	option	files.	See
Section	4.3.2,	“Using	Option	Files”,	for	usage.

Bugs	fixed:

The	use	of	XOR	together	with	NOT	ISNULL()	erroneously	resulted	in	some
outer	joins	being	converted	to	inner	joins	by	the	optimizer.	(Bug	#9017)

Fixed	an	optimizer	problem	where	extraneous	comparisons	between	NULL
values	in	indexed	columns	were	being	done	for	operators	such	as	=	that	are
never	true	for	NULL.	(Bug	#8877)

Fixed	the	client/server	protocol	for	prepared	statements	so	that	reconnection
works	properly	when	the	connection	is	killed	while	reconnect	is	enabled.
(Bug	#8866)

A	server	installed	as	a	Windows	service	and	started	with	--shared-memory
could	not	be	stopped.	(Bug	#9665)

Fixed	a	server	crash	resulting	from	multiple	executions	of	a	prepared
statement	involving	a	join	of	an	INFORMATION_SCHEMA	table	with	another
table.	(Bug	#9383)

Fixed	utf8_spanish2_ci	and	ucs2_spanish2_ci	collations	to	not	consider
‘r’	equal	to	‘rr’.	If	you	upgrade	to	this	version	from	an	earlier	version,	you
should	rebuild	the	indexes	of	affected	tables.	(Bug	#9269)

mysqldump	dumped	core	when	invoked	with	--tmp	and	--single-
transaction	options	and	a	non-existent	table	name.	(Bug	#9175)

Allow	extra	HKSCS	and	cp950	characters	(big5	extension	characters)	to	be
accepted	in	big5	columns.	(Bug	#9357)

mysql.server	no	longer	uses	non-portable	alias	command	or	LSB

functions.	(Bug	#9852)

Fixed	a	server	crash	resulting	from	GROUP	BY	on	a	decimal	expression.	(Bug
#9210)

In	prepared	statements,	subqueries	containing	parameters	were	erroneously
treated	as	const	tables	during	preparation,	resulting	in	a	server	crash.	(Bug
#8807)

InnoDB:	ENUM	and	SET	columns	were	treated	incorrectly	as	character
strings.	This	bug	did	not	manifest	itself	with	latin1	collations	if	there	were
less	than	about	100	elements	in	an	ENUM,	but	it	caused	malfunction	with
UTF-8.	Old	tables	will	continue	to	work.	In	new	tables,	ENUM	and	SET	will	be
internally	stored	as	unsigned	integers.	(Bug	#9526)

InnoDB:	Avoid	test	suite	failures	caused	by	a	locking	conflict	between	two
server	instances	at	server	shutdown/startup.	This	conflict	on	advisory	locks
appears	to	be	the	result	of	a	bug	in	the	operating	system;	these	locks	should
be	released	when	the	files	are	closed,	but	somehow	that	does	not	always
happen	immediately	in	Linux.	(Bug	#9381)

InnoDB:	True	VARCHAR:	InnoDB	stored	the	'position'	of	a	row	wrong	in	a
column	prefix	primary	key	index;	this	could	cause	MySQL	to	complain
ERROR	1032:	Can't	find	record	…	in	an	update	of	the	primary	key,	and
also	some	ORDER	BY	or	DISTINCT	queries.	(Bug	#9314)

InnoDB:	Fix	bug	in	MySQL/InnoDB	5.0.3:	SQL	statements	were	not	rolled
back	on	error.	(Bug	#8650)

Fixed	a	Commands	out	of	sync	error	when	two	prepared	statements	for
single-row	result	sets	were	open	simultaneously.	(Bug	#8880)

Fixed	a	server	crash	after	a	call	to	mysql_stmt_close()	for	single-row
result	set.	(Bug	#9159)

Fixed	server	crashes	for	CREATE	TABLE	...	SELECT	or	INSERT	INTO	...
SELECT	when	selecting	from	multiple-table	view.	(Bug	#8703,	Bug	#9398)

TRADITIONAL	SQL	mode	should	prevent	inserts	where	a	column	with	no
default	value	is	omitted	or	set	to	a	value	of	DEFAULT.	Fixed	cases	where	this

restriction	was	not	enforced.	(Bug	#5986)

Fixed	a	server	crash	when	creating	a	PRIMARY	KEY	for	a	table,	if	the	table
contained	a	BIT	column.	(Bug	#9571)

Warning	message	from	GROUP_CONCAT()	did	not	always	indicate	correct
number	of	lines.	(Bug	#8681)

The	commit	count	cache	for	NDB	was	not	properly	invalidated	when
deleting	a	record	using	a	cursor.	(Bug	#8585)

Fixed	option-parsing	code	for	the	embedded	server	to	understand	K,	M,	and	G
suffixes	for	the	net_buffer_length	and	max_allowed_packet	options.
(Bug	#9472)

Selecting	a	BIT	column	failed	if	the	binary	client/server	protocol	was	used.
(Bug	#9608)

Fixed	a	permissions	problem	whereby	information	in	INFORMATION_SCHEMA
could	be	exposed	to	a	user	with	insufficient	privileges.	(Bug	#7214)

An	error	now	occurs	if	you	try	to	insert	an	invalid	value	via	a	stored
procedure	in	STRICT	mode.	(Bug	#5907)

Link	with	libsupc++	on	Fedora	Core	3	to	get	language	support	functions.
(Bug	#6554)

The	value	of	the	CHARACTER_MAXIMUM_LENGTH	and
CHARACTER_OCTET_LENGTH	columns	of	the	INFORMATION_SCHEMA.COLUMNS
table	must	be	NULL	for	numeric	columns,	but	were	not.	(Bug	#9344)

DROP	TABLE	did	not	drop	triggers	that	were	defined	for	the	table.	DROP
DATABASE	did	not	drop	triggers	in	the	database.	(Bug	#5859,	Bug	#6559)

CREATE	OR	REPLACE	VIEW	and	ALTER	VIEW	now	require	the	CREATE	VIEW
and	DROP	privileges,	not	CREATE	VIEW	and	DELETE.	(DELETE	is	a	row-level
privilege,	not	a	table-level	privilege.)	(Bug	#9260)

Some	user	variables	were	not	being	handled	with	“implicit”	coercibility.
(Bug	#9425)

Setting	the	max_error_count	system	variable	to	0	resulted	in	a	setting	of	1.
(Bug	#9072)

Fixed	a	collation	coercibility	problem	that	caused	a	union	between	binary
and	non-binary	columns	to	fail.	(Bug	#6519)

Fixed	a	bug	in	division	of	floating	point	numbers.	It	could	cause	nine	zeros
(000000000)	to	be	inserted	in	the	middle	of	the	quotient.	(Bug	#9501)

INFORMATION_SCHEMA	tables	had	an	implicit	upper	limit	for	the	number	of
rows.	As	a	result,	not	all	data	could	be	returned	for	some	queries.	(Bug
#9317)

Fixed	a	problem	with	the	tee	command	in	mysql	that	resulted	in	mysql
crashing.	(Bug	#8499)

CAST()	now	produces	warnings	when	casting	incorrect	INTEGER	and	CHAR
values.	This	also	applies	to	implicit	string	to	number	casts.	(Bug	#5912)

ALTER	TABLE	now	fails	in	STRICT	mode	if	the	alteration	generates	warnings.

Using	CONVERT('0000-00-00',date)	or	CAST('0000-00-00'	as	date)
with	the	NO_ZERO_DATE	SQL	mode	enabled	now	produces	a	warning.	(Bug
#6145)

Inserting	a	zero	date	in	a	DATE,	DATETIME	or	TIMESTAMP	column	during
TRADITIONAL	mode	now	produces	an	error.	(Bug	#5933)

Inserting	a	zero	date	into	a	DATETIME	column	in	TRADITIONAL	mode	now
produces	an	error.

STR_TO_DATE()	now	produces	errors	in	strict	mode	(and	warnings
otherwise)	when	given	an	illegal	argument.	(Bug	#5902)

Fixed	a	problem	with	ORDER	BY	that	sometimes	caused	incorrect	sorting	of
utf8	data.	(Bug	#9309)

Fixed	server	crash	resulting	from	queries	that	combined	SELECT	DISTINCT,
SUM(),	and	ROLLUP.	(Bug	#8615)

Incorrect	results	were	returned	from	queries	that	combined	SELECT
DISTINCT,	GROUP	BY	,	and	ROLLUP.	(Bug	#8616)

Too	many	rows	were	returned	from	queries	that	combined	ROLLUP	and
LIMIT	if	SQL_CALC_FOUND_ROWS	was	given.	(Bug	#8617)

If	on	replication	master	a	LOAD	DATA	INFILE	is	interrupted	in	the	middle
(integrity	constraint	violation,	killed	connection...),	the	slave	used	to	skip
this	LOAD	DATA	INFILE	entirely,	thus	missing	some	changes	if	this
command	permanently	inserted/updated	some	table	records	before	being
interrupted.	This	is	now	fixed.	(Bug	#3247)

D.1.24.	Changes	in	release	5.0.3	(23	March	2005:	Beta)

Note:	This	Beta	release,	as	any	other	pre-production	release,	should	not	be
installed	on	“production”	level	systems	or	systems	with	critical	data.	It	is	good
practice	to	back	up	your	data	before	installing	any	new	version	of	software.
Although	MySQL	worked	very	hard	to	ensure	a	high	level	of	quality,	protect
your	data	by	making	a	backup	as	you	would	for	any	software	beta	release.

Functionality	added	or	changed:

Security	improvement:	The	server	creates	.frm,	.MYD,	.MYI,	.MRG,	.ISD,	and
.ISM	table	files	only	if	a	file	with	the	same	name	does	not	already	exist.
Thanks	to	Stefano	Di	Paola	<stefano.dipaola@wisec.it>	for	finding	and
informing	us	about	this	issue.	(CVE-2005-0711)

Security	improvement:	User-defined	functions	should	have	at	least	one
symbol	defined	in	addition	to	the	xxx	symbol	that	corresponds	to	the	main
xxx()	function.	These	auxiliary	symbols	correspond	to	the	xxx_init(),
xxx_deinit(),	xxx_reset(),	xxx_clear(),	and	xxx_add()	functions.
mysqld	by	default	no	longer	loads	UDFs	unless	they	have	at	least	one
auxiliary	symbol	defined	in	addition	to	the	main	symbol.	The	--allow-
suspicious-udfs	option	controls	whether	UDFs	that	have	only	an	xxx
symbol	can	be	loaded.	By	default,	the	option	is	off.	mysqld	also	checks
UDF	filenames	when	it	reads	them	from	the	mysql.func	table	and	rejects
those	that	contain	directory	pathname	separator	characters.	(It	already
checked	names	as	given	in	CREATE	FUNCTION	statements.)	See
Section	24.2.4.1,	“UDF	Calling	Sequences	for	Simple	Functions”,

mailto:stefano.dipaola@wisec.it
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0711

Section	24.2.4.2,	“UDF	Calling	Sequences	for	Aggregate	Functions”,	and
Section	24.2.4.6,	“User-Defined	Function	Security	Precautions”.	Thanks	to
Stefano	Di	Paola	<stefano.dipaola@wisec.it>	for	finding	and	informing
us	about	this	issue.	(CVE-2005-0709,	CVE-2005-0710)

The	DECIMAL	and	NUMERIC	data	types	now	are	handled	with	a	fixed-point
library	that	allows	for	precision	math	handling	that	results	in	more	accurate
results.	See	Chapter	21,	Precision	Math.

Warning:	Incompatible	change:	A	consequence	of	the	change	in	handling
of	the	DECIMAL	and	NUMERIC	fixed-point	data	types	is	that	the	server	is	more
strict	to	follow	standard	SQL.	For	example,	a	data	type	of	DECIMAL(3,1)
stores	a	maximum	value	of	99.9.	Previously,	the	server	allowed	larger
numbers	to	be	stored.	That	is,	it	stored	a	value	such	as	100.0	as	100.0.	Now
the	server	clips	100.0	to	the	maximum	allowable	value	of	99.9.	If	you	have
tables	that	were	created	before	MySQL	5.0.3	and	that	contain	floating-point
data	not	strictly	legal	for	the	data	type,	you	should	alter	the	data	types	of
those	columns.	For	example:

ALTER	TABLE	tbl_name	MODIFY	col_name	DECIMAL(4,1);

Incompatible	change:	The	C	API	ER_WARN_DATA_TRUNCATED	warning
symbol	was	renamed	to	WARN_DATA_TRUNCATED.

InnoDB:	Upgrading	from	4.1:	The	sorting	order	for	end-space	in	TEXT
columns	for	InnoDB	tables	has	changed.	Starting	from	5.0.3,	InnoDB
compares	TEXT	columns	as	space-padded	at	the	end.	If	you	have	a	non-
unique	index	on	a	TEXT	column,	you	should	run	CHECK	TABLE	on	it,	and	run
OPTIMIZE	TABLE	if	the	check	reports	errors.	If	you	have	a	UNIQUE	INDEX	on
a	TEXT	column,	you	should	rebuild	the	table	with	OPTIMIZE	TABLE.

Implemented	support	for	XA	transactions.	See	Section	13.4.7,	“XA
Transactions”.	The	implementation	make	the	innodb_safe_binlog	system
variable	obsolete,	so	it	has	been	removed.

mysqlbinlog	now	prints	a	ROLLBACK	statement	at	the	end	of	its	output,	in
case	the	server	crashed	while	it	was	in	the	process	of	writing	the	final	entry
into	the	last	binary	log	named	on	the	command	line.	This	causes	any	half-
written	transaction	to	be	rolled	back	when	the	output	is	executed.	The
ROLLBACK	is	harmless	if	the	binary	log	file	was	written	and	closed	normally.

mailto:stefano.dipaola@wisec.it
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0709
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0710

Added	the	engine_condition_pushdown	system	variable.	For	NDB,	setting
this	variable	to	1	allows	processing	of	some	WHERE	clause	conditions	to	be
processed	in	NDB	nodes	before	rows	are	sent	to	the	MySQL	server,	rather
than	having	rows	sent	to	the	server	for	evaluation.

Additional	control	over	transaction	completion	was	implemented.	The
COMMIT	and	ROLLBACK	statements	support	AND	[NO]	CHAIN	and	RELEASE
clauses.	There	is	a	new	RELEASE	SAVEPOINT	statement.	The
completion_type	system	variable	was	added	for	setting	the	global	and
session	default	completion	type.

A	new	CREATE	USER	privilege	was	added.

my.cnf	in	the	compile-time	datadir	(usually	/usr/local/mysql/data/	in
the	binary	tarball	distributions)	is	not	being	read	anymore.	The	value	of	the
environment	variable	MYSQL_HOME	is	used	instead	of	the	hard-coded	path.

Support	for	the	ISAM	storage	engine	has	been	removed.	If	you	have	ISAM
tables,	you	should	convert	them	before	upgrading.	See	Section	2.11.2,
“Upgrading	from	MySQL	4.1	to	5.0”.

Support	for	RAID	options	in	MyISAM	tables	has	been	removed.	If	you	have
tables	that	use	these	options,	you	should	convert	them	before	upgrading.
See	Section	2.11.2,	“Upgrading	from	MySQL	4.1	to	5.0”.

Added	support	for	AVG(DISTINCT).

ONLY_FULL_GROUP_BY	no	longer	is	included	in	the	ANSI	composite	SQL
mode.	(Bug	#8510)

mysqld_safe	will	create	the	directory	where	the	UNIX	socket	file	is	to	be
located	if	the	directory	does	not	exist.	This	applies	only	to	the	last
component	of	the	directory	pathname.	(Bug	#8513)

The	coercibility	for	the	return	value	of	functions	such	as	USER()	or
VERSION()	now	is	“system	constant”	rather	than	“implicit.”	This	makes
these	functions	more	coercible	than	column	values	so	that	comparisons	of
the	two	do	not	result	in	Illegal	mix	of	collations	errors.
COERCIBILITY()	was	modified	to	accommodate	this	new	coercibility	value.
See	Section	12.9.3,	“Information	Functions”.

User	variable	coercibility	has	been	changed	from	“coercible”	to	“implicit.”
That	is,	user	variables	have	the	same	coercibility	as	column	values.

Boolean	full-text	phrase	searching	now	requires	only	that	matches	contain
exactly	the	same	words	as	the	phrase	and	in	the	same	order.	Non-word
characters	no	longer	need	match	exactly.

CHECKSUM	TABLE	returns	a	warning	for	non-existing	tables.	The	checksum
value	remains	NULL	as	before.	(Bug	#8256)

The	server	now	includes	a	timestamp	in	the	Ready	for	connections
message	that	is	written	to	the	error	log	at	startup.	(Bug	#8444)

Added	SQL_NOTES	session	variable	to	cause	Note-level	warnings	not	to	be
recorded.	(Bug	#6662)

Allowed	the	service-installation	command	for	Windows	servers	to	specify	a
single	option	other	than	--defaults-file	following	the	service	name.	This
is	for	compatibility	with	MySQL	4.1.	(Bug	#7856)

InnoDB:	Commit	after	every	10,000	copied	rows	when	executing	ALTER
TABLE,	CREATE	INDEX,	DROP	INDEX	or	OPTIMIZE	TABLE.	This	makes	it	much
faster	to	recover	from	an	aborted	operation.

Added	VAR_POP()	and	STDDEV_POP()	as	standard	SQL	aliases	for	the
VARIANCE()	and	STDDEV()	functions	that	compute	population	variance	and
standard	deviation.	Added	new	VAR_SAMP()	and	STDDEV_SAMP()	functions
to	compute	sample	variance	and	standard	deviation.	(Bug	#3190)

Fixed	a	problem	with	out-of-order	packets	being	sent	(ERROR	after	OK	or
EOF)	following	a	KILL	QUERY	statement.	(Bug	#6804)

Retrieving	from	a	view	defined	as	a	SELECT	that	mixed	UNION	ALL	and
UNION	DISTINCT	resulted	in	a	different	result	than	retrieving	from	the
original	SELECT.	(Bug	#6565)

Fixed	a	problem	with	non-optimal	index_merge	query	execution	plans
being	chosen	on	IRIX.	(Bug	#8578)

BIT	in	column	definitions	now	is	a	distinct	data	type;	it	no	longer	is	treated

as	a	synonym	for	TINYINT(1).

Bit-field	values	can	be	written	using	b'value'	notation.	value	is	a	binary
value	written	using	0s	and	1s.

From	the	Windows	distribution,	predefined	accounts	without	passwords	for
remote	users	("root@%",	"@%")	were	removed	(other	distributions	never
had	them).

Added	mysql_library_init()	and	mysql_library_end()	as	synonyms	for
the	mysql_server_init()	and	mysql_server_end()	C	API	functions.
mysql_library_init()	and	mysql_library_end()	are	#define	symbols,
but	the	names	more	clearly	indicate	that	they	should	be	called	when
beginning	and	ending	use	of	a	MySQL	C	API	library	no	matter	whether	the
application	uses	libmysqlclient	or	libmysqld.	(Bug	#6149)

SHOW	COLUMNS	now	displays	NO	rather	than	blank	in	the	Null	output	column
if	the	corresponding	table	column	cannot	be	NULL.

Changed	XML	format	for	mysql	from	<col_name>col_value</col_name>
to	<field	name="col_name">col_value</field>	to	allow	for	proper
encoding	of	column	names	that	are	not	legal	as	element	names.	(Bug
#7811)

Added	--innodb-checksums	and	--innodb-doublewrite	options	for
mysqld.

Added	--large-pages	option	for	mysqld.

Added	multi_read_range	system	variable.

SHOW	DATABASES,	SHOW	TABLES,	SHOW	COLUMNS,	and	so	forth	display
information	about	the	INFORMATION_SCHEMA	database.	Also,	several	SHOW
statements	now	accept	a	WHERE	clause	specifying	which	output	rows	to
display.	See	Chapter	20,	The	INFORMATION_SCHEMA	Database.

Added	the	CREATE	ROUTINE	and	ALTER	ROUTINE	privileges,	and	made	the
EXECUTE	privilege	operational.

InnoDB:	Corrected	a	bug	in	the	crash	recovery	of	ROW_FORMAT=COMPACT

tables	that	caused	corruption.	(Bug	#7973)	There	may	still	be	bugs	in	the
crash	recovery,	especially	in	COMPACT	tables.

When	the	MyISAM	storage	engine	detects	corruption	of	a	MyISAM	table,	a
message	describing	the	problem	now	is	written	to	the	error	log.

InnoDB:	When	MySQL/InnoDB	is	compiled	on	Mac	OS	X	10.2	or	earlier,
detect	the	operating	system	version	at	run	time	and	use	the	fcntl()	file
flush	method	on	Mac	OS	X	versions	10.3	and	later.	In	Mac	OS	X,	fsync()
does	not	flush	the	write	cache	in	the	disk	drive,	but	the	special	fcntl()
does;	however,	the	flush	request	is	ignored	by	some	external	devices.
Failure	to	flush	the	buffers	may	cause	severe	database	corruption	at	power
outages.

InnoDB:	Implemented	fast	TRUNCATE	TABLE.	The	old	approach	(deleting
rows	one	by	one)	may	be	used	if	the	table	is	being	referenced	by	foreign
keys.	(Bug	#7150)

Added	cp932	(SJIS	for	Windows	Japanese)	and	eucjpms	(UJIS	for
Windows	Japanese)	character	sets.

Added	several	InnoDB	status	variables.	See	Section	5.2.4,	“Server	Status
Variables”.

Added	the	FEDERATED	storage	engine.	See	Section	14.7,	“The	FEDERATED
Storage	Engine”.

SHOW	CREATE	TABLE	now	uses	USING	index_type	rather	than	TYPE
index_type	to	specify	an	index	type.	(Bug	#7233)

InnoDB	now	supports	a	fast	TRUNCATE	TABLE.	One	visible	change	from	this
is	that	auto-increment	values	for	this	table	are	reset	on	TRUNCATE.

Added	an	error	member	to	the	MYSQL_BIND	data	structure	that	is	used	in	the
C	API	for	prepared	statements.	This	member	is	used	for	reporting	data
truncation	errors.	Truncation	reporting	is	enabled	via	the	new
MYSQL_REPORT_DATA_TRUNCATION	option	for	the	mysql_options()	C	API
function.

API	change:	the	reconnect	flag	in	the	MYSQL	structure	is	now	set	to	0	by

mysql_real_connect().	Only	those	client	programs	which	didn't	explicitly
set	this	flag	to	0	or	1	after	mysql_real_connect()	experience	a	change.
Having	automatic	reconnection	enabled	by	default	was	considered	too
dangerous	(after	reconnection,	table	locks,	temporary	tables,	user	and
session	variables	are	lost).

FLUSH	TABLES	WITH	READ	LOCK	is	now	killable	while	it's	waiting	for
running	COMMIT	statements	to	finish.

MEMORY	(HEAP)	can	have	VARCHAR()	fields.

VARCHAR	columns	now	remember	end	space.	A	VARCHAR()	column	can	now
contain	up	to	65535	bytes.	For	more	details,	see	Section	D.1,	“Changes	in
release	5.0.x	(Production)”.	If	the	table	handler	doesn't	support	the	new
VARCHAR	type,	then	it's	converted	to	a	CHAR	column.	Currently	this	happens
for	NDB	tables.

InnoDB:	Introduced	a	compact	record	format	that	does	not	store	the	number
of	columns	or	the	lengths	of	fixed-size	columns.	The	old	format	can	be
requested	by	specifying	ROW_FORMAT=REDUNDANT.	The	new	format
(ROW_FORMAT=COMPACT)	is	the	default.	The	new	format	typically	saves	20	%
of	disk	space	and	memory.

InnoDB:	Setting	the	initial	AUTO_INCREMENT	value	for	an	InnoDB	table	using
CREATE	TABLE	...	AUTO_INCREMENT	=	n	now	works,	and	ALTER	TABLE
...	AUTO_INCREMENT	=	n	resets	the	current	value.

Seconds_Behind_Master	is	NULL	(which	means	“unknown”)	if	the	slave
SQL	thread	is	not	running,	or	if	the	slave	I/O	thread	is	not	running	or	not
connected	to	master.	It	is	zero	if	the	SQL	thread	has	caught	up	to	the	I/O
thread.	It	no	longer	grows	indefinitely	if	the	master	is	idle.

The	MySQL	server	aborts	immediately	instead	of	simply	issuing	a	warning
if	it	is	started	with	the	--log-bin	option	but	cannot	initialize	the	binary	log
at	startup	(that	is,	an	error	occurs	when	writing	to	the	binary	log	file	or
binary	log	index	file).

The	binary	log	file	and	binary	log	index	file	now	are	handled	the	same	way
as	MyISAM	tables	when	there	is	a	“disk	full”	or	“quota	exceeded”	error.	See
Section	A.4.3,	“How	MySQL	Handles	a	Full	Disk”.

The	MySQL	server	now	aborts	when	started	with	the	option	--log-bin-
index	and	without	--log-bin,	and	when	started	with	--log-slave-
updates	and	without	--log-bin.

If	the	MySQL	server	is	started	without	an	argument	to	--log-bin	and
without	--log-bin-index,	thus	not	providing	a	name	for	the	binary	log
index	file,	a	warning	is	issued	because	MySQL	falls	back	to	using	the
hostname	for	that	name,	and	this	is	prone	to	replication	issues	if	the	server's
hostname's	gets	changed	later.	See	Section	A.8.1,	“Open	Issues	in
MySQL”.

Added	account-specific	MAX_USER_CONNECTIONS	limit,	which	allows	you	to
specify	the	maximum	number	of	concurrent	connections	for	the	account.
Also,	all	limited	resources	now	are	counted	per	account	(instead	of	being
counted	per	user	+	host	pair	as	it	was	before).	Use	the	--old-style-user-
limits	option	to	get	the	old	behavior.

InnoDB:	A	shared	record	lock	(LOCK_REC_NOT_GAP)	is	now	taken	for	a
matching	record	in	the	foreign	key	check	because	inserts	can	be	allowed
into	gaps.

InnoDB:	Relaxed	locking	in	INSERT…SELECT,	single	table	UPDATE…SELECT
and	single	table	DELETE…SELECT	clauses	when
innodb_locks_unsafe_for_binlog	is	used	and	isolation	level	of	the
transaction	is	not	serializable.	InnoDB	uses	consistent	read	in	these	cases	for
a	selected	table.

Added	a	new	global	system	variable	slave_transaction_retries:	if	the
replication	slave	SQL	thread	fails	to	execute	a	transaction	because	of	an
InnoDB	deadlock	or	exceeded	InnoDB's	innodb_lock_wait_timeout	or
NDBCluster's	TransactionDeadlockDetectionTimeout	or
TransactionInactiveTimeout,	it	automatically	retries
slave_transaction_retries	times	before	stopping	with	an	error.	The
default	is	10.	(Bug	#8325)

When	a	client	releases	a	user-level	lock,	DO	RELEASE_LOCK()	will	not	be
written	to	the	binary	log	anymore	(this	makes	the	binary	log	smaller);	as	a
counterpart,	the	slave	does	not	actually	take	the	lock	when	it	executes
GET_LOCK().	This	is	mainly	an	optimization	and	should	not	affect	existing

setups.	(Bug	#7998)

The	way	the	character	set	information	is	stored	into	the	binary	log	was
changed,	so	that	it's	now	possible	to	have	a	replication	master	and	slave
running	with	different	global	character	sets.	A	drawback	is	that	replication
from	5.0.3	masters	to	pre-5.0.3	slaves	is	impossible.

The	LOAD	DATA	statement	was	extended	to	support	user	variables	in	the
target	column	list,	and	an	optional	SET	clause.	Now	one	can	perform	some
transformations	on	data	after	they	have	been	read	and	before	they	are
inserted	into	the	table.	For	example:

LOAD	DATA	INFILE	'file.txt'

		INTO	TABLE	t1

		(column1,	@var1)

		SET	column2	=	@var1/100;

Also,	replication	of	LOAD	DATA	was	changed,	so	you	can't	replicate	such
statements	from	a	5.0.3	master	to	pre-5.0.3	slaves.

NDB	Cluster:	When	using	this	storage	engine,	the	output	of	SHOW	TABLE
STATUS	now	displays	properly-calculated	values	in	the	Avg_row_length	and
Data_length	columns.	(Note	that	BLOB	columns	are	not	yet	taken	into
account.)	In	addition,	the	number	of	replicas	is	now	shown	in	the	Comment
column	(as	number_of_replicas).

Bugs	fixed:

If	a	MyISAM	table	on	Windows	had	INDEX	DIRECTORY	or	DATA	DIRECTORY
table	options,	mysqldump	dumped	the	directory	pathnames	with	single-
backslash	pathname	separators.	This	would	cause	syntax	errors	when
importing	the	dump	file.	mysqldump	now	changes	‘\’	to	‘/’	in	the
pathnames	on	Windows.	(Bug	#6660)

mysql_fix_privilege_tables	now	fixes	that	the	mysql	privilege	tables
can	be	used	in	MySQL	4.1.	This	allows	one	to	easily	downgrade	to	4.1	or
run	MySQL	5.0	and	4.1	with	the	same	privilege	files	for	testing	purposes.

Fixed	bug	creating	user	with	GRANT	fails	with	password	but	works
without,	(Bug	#7905)

mysqldump	misinterpreted	‘_’	and	‘%’	characters	in	the	names	of	tables	to
be	dumped	as	wildcard	characters.	(Bug	#9123)

The	definition	of	the	enumeration-valued	sql_mode	column	of	the
mysql.proc	table	was	missing	some	of	the	current	allowable	SQL	modes,
so	stored	routines	would	not	necessarily	execute	with	the	SQL	mode	in
effect	at	the	time	of	routine	definition.	(Bug	#8902)

REPAIR	TABLE	did	not	invalidate	query	results	in	the	query	cache	that	were
generated	from	the	table.	(Bug	#8480)

In	strict	or	traditional	SQL	mode,	too-long	string	values	assigned	to	string
columns	(CHAR,	VARCHAR,	BINARY,	VARBINARY,	TEXT,	or	BLOB)	were	correctly
truncated,	but	the	server	returned	an	SQLSTATE	value	of	01000	(should	be
22001).	(Bug	#6999,	Bug	#9029)

Stored	functions	that	used	cursors	could	return	incorrect	results.	(Bug
#8386)

AES_DECRYPT(col_name,key)	could	fail	to	return	NULL	for	invalid	values	in
col_name,	if	col_name	was	declared	as	NOT	NULL.	(Bug	#8669)

Ordering	by	unsigned	expression	(more	complex	than	a	column	reference)
was	treating	the	value	as	signed,	producing	incorrectly	sorted	results.	(Bug
#7425)

HAVING	was	treating	unsigned	columns	as	signed.	(Bug	#7425)

Fixed	a	problem	with	boolean	full-text	searches	on	utf8	columns	where	a
double	quote	in	the	search	string	caused	a	server	crash.	(Bug	#8351)

For	a	query	with	both	GROUP	BY	and	COUNT(DISTINCT)	clauses	and	a	FROM
clause	with	a	subquery,	NULL	was	returned	for	any	VARCHAR	column	selected
by	the	subquery.	(Bug	#8218)

Fixed	a	bug	in	TRUNCATE,	which	did	not	work	within	stored	procedures.	A
workaround	has	been	made	so	that	within	stored	procedures,	TRUNCATE	is
executed	like	DELETE.	This	was	necessary	because	TRUNCATE	is	implicitly
locking	tables.	(Bug	#8850)

Fixed	an	optimizer	bug	that	caused	incorrectly	ordered	result	from	a	query
that	used	a	FULLTEXT	index	to	retrieve	rows	and	there	was	another	index
that	was	usable	for	ORDER	BY.	For	such	a	query,	EXPLAIN	showed	fulltext
join	type,	but	regular	(not	FULLTEXT)	index	in	the	Key	column.	(Bug	#6635)

If	SELECT	DISTINCT	named	an	index	column	multiple	times	in	the	select
list,	the	server	tried	to	access	different	key	fields	for	each	instance	of	the
column,	which	could	result	in	a	crash.	(Bug	#8532)

For	a	stored	function	that	refers	to	a	given	table,	invoking	the	function
while	selecting	from	the	same	table	resulted	in	a	server	crash.	(Bug	#8405)

Comparison	of	a	DECIMAL	column	containing	NULL	to	a	subquery	that
produced	DECIMAL	values	resulted	in	a	server	crash.	(Bug	#8397)

The	--set-character-set	option	for	myisamchk	was	changed	to	--set-
collation.	The	value	needed	for	specifying	how	to	sort	indexes	is	a
collation	name,	not	a	character	set	name.	(Bug	#8349)

Hostname	matching	didn't	work	if	a	netmask	was	specified	for	table-
specific	privileges.	(Bug	#3309)

Corruption	of	MyISAM	table	indexes	could	occur	with	TRUNCATE	TABLE	if	the
table	had	already	been	opened.	For	example,	this	was	possible	if	the	table
had	been	opened	implicitly	by	selecting	from	a	MERGE	table	that	mapped	to
the	MyISAM	table.	The	server	now	issues	an	error	message	for	TRUNCATE
TABLE	under	these	conditions.	(Bug	#8306)

Setting	the	connection	collation	to	a	value	different	from	the	server
collation	followed	by	a	CREATE	TABLE	statement	that	included	a	quoted
default	value	resulted	in	a	server	crash.	(Bug	#8235)

Fixed	handling	of	table-name	matching	in	mysqlhotcopy	to	accommodate
DBD::mysql	2.9003	and	up	(which	implement	identifier	quoting).	(Bug
#8136)

Selecting	from	a	view	defined	as	a	join	caused	a	server	crash	if	the	query
cache	was	enabled.	(Bug	#8054)

Results	in	the	query	cache	generated	from	a	view	were	not	properly

invalidated	after	ALTER	VIEW	or	DROP	VIEW	on	that	view.	(Bug	#8050)

FOUND_ROWS()	returned	an	incorrect	value	after	a	SELECT
SQL_CALC_FOUND_ROWS	DISTINCT	statement	that	selected	constants	and
included	GROUP	BY	and	LIMIT	clauses.	(Bug	#7945)

Selecting	from	an	INFORMATION_SCHEMA	table	combined	with	a	subquery	on
an	INFORMATION_SCHEMA	table	caused	an	error	with	the	message	Table
tbl_name	is	corrupted.	(Bug	#8164)

Fixed	a	problem	with	equality	propagation	optimization	for	prepared
statements	and	stored	procedures	that	caused	a	server	crash	upon	re-
execution	of	the	prepared	statement	or	stored	procedure.	(Bug	#8115,	Bug
#8849)

LEFT	OUTER	JOIN	between	an	empty	base	table	and	a	view	on	an	empty
base	table	caused	a	server	crash.	(Bug	#7433)

Use	of	GROUP_CONCAT()	in	the	select	list	when	selecting	from	a	view	caused
a	server	crash.	(Bug	#7116)

Use	of	a	view	in	a	correlated	subquery	that	contains	HAVING	but	no	GROUP
BY	caused	a	server	crash.	(Bug	#6894)

Handling	by	mysql_list_fields()	of	references	to	stored	functions	within
views	was	incorrect	and	could	result	in	a	server	crash.	(Bug	#6814)

mysqldump	now	avoids	writing	SET	NAMES	to	the	dump	output	if	the	server
is	older	than	version	4.1	and	would	not	understand	that	statement.	(Bug
#7997)

Fixed	problems	when	selecting	from	a	view	that	had	an	EXISTS	or	NOT
EXISTS	subquery.	Selecting	columns	by	name	caused	a	server	crash.	With
SELECT	*,	a	crash	did	not	occur,	but	columns	in	outer	query	were	not
resolved	properly.	(Bug	#6394)

DDL	statements	for	views	were	not	being	written	to	the	binary	log	(and
thus	not	subject	to	replication).	(Bug	#4838)

The	CHAR()	function	was	not	ignoring	NULL	arguments,	contrary	to	the

documentation.	(Bug	#6317)

Creating	a	table	using	a	name	containing	a	character	that	is	illegal	in
character_set_client	resulted	in	the	character	being	stripped	from	the
name	and	no	error.	The	character	now	is	considered	an	error.	(Bug	#8041)

Fixed	a	problem	with	the	Cyrillic	letters	I	and	SHORT	I	being	treated	the
same	by	the	utf8_general_ci	collation.	(Bug	#8385)

Some	INFORMATION_SCHEMA	columns	that	contained	catalog	identifiers	were
of	type	LONGTEXT.	These	were	changed	to	VARCHAR(N,	where	N	is	the
appropriate	maximum	identifier	length.	(Bug	#7215)

Some	INFORMATION_SCHEMA	columns	that	contained	timestamp	values	were
of	type	VARBINARY.	These	were	changed	to	TIMESTAMP.	(Bug	#7217)

An	expression	that	tested	a	case-insensitive	character	column	against	string
constants	that	differed	in	lettercase	could	fail	because	the	constants	were
treated	as	having	a	binary	collation.	(For	example,	WHERE	city='London'
AND	city='london'	could	fail.)	(Bug	#7098,	Bug	#8690)

The	output	of	the	STATUS	(\s)	command	in	mysql	had	the	values	for	the
server	and	client	character	sets	reversed.	(Bug	#7571)

If	the	slave	was	running	with	--replicate-*-table	options	which
excluded	one	temporary	table	and	included	another,	and	the	two	tables	were
used	in	a	single	DROP	TEMPORARY	TABLE	IF	EXISTS	statement,	as	the	ones
the	master	automatically	writes	to	its	binary	log	upon	client's	disconnection
when	client	has	not	explicitly	dropped	these,	the	slave	could	forget	to	delete
the	included	replicated	temporary	table.	Only	the	slave	needs	to	be
upgraded.	(Bug	#8055)

When	setting	integer	system	variables	to	a	negative	value	with	SET
VARIABLES,	the	value	was	treated	as	a	positive	value	modulo	232.	(Bug
#6958)

Corrected	a	problem	with	references	to	DUAL	where	statements	such	as
SELECT	1	AS	a	FROM	DUAL	would	succeed	but	statements	such	as	SELECT	1
AS	a	FROM	DUAL	LIMIT	1	would	fail.	(Bug	#8023)

Fixed	a	server	crash	caused	by	DELETE	FROM	tbl_name	...	WHERE	...
ORDER	BY	tbl_name.col_name	when	the	ORDER	BY	column	was	qualified
with	the	table	name.	(Bug	#8392)

Fixed	a	bug	in	MATCH	...	AGAINST	in	natural	language	mode	that	could
cause	a	server	crash	if	the	FULLTEXT	index	was	not	used	in	a	join	(EXPLAIN
did	not	show	fulltext	join	mode)	and	the	search	query	matched	no	rows	in
the	table	(Bug	#8522).

InnoDB:	Honor	the	--tmpdir	startup	option	when	creating	temporary	files.
Previously,	InnoDB	temporary	files	were	always	created	in	the	temporary
directory	of	the	operating	system.	On	Netware,	InnoDB	will	continue	to
ignore	--tmpdir.	(Bug	#5822)

Platform	and	architecture	information	in	version	information	produced	for	-
-version	option	on	Windows	was	always	Win95/Win98	(i32).	More
accurately	determine	platform	as	Win32	or	Win64	for	32-bit	or	64-bit
Windows,	and	architecture	as	ia32	for	x86,	ia64	for	Itanium,	and	axp	for
Alpha.	(Bug	#4445)

If	multiple	semicolon-separated	statements	were	received	in	a	single	packet,
they	were	written	to	the	binary	log	as	a	single	event	rather	than	as	separate
per-statement	events.	For	a	server	serving	as	a	replication	master,	this
caused	replication	to	fail	when	the	event	was	sent	to	slave	servers.	(Bug
#8436)

Fixed	LOAD	INDEX	statement	to	actually	load	index	in	memory.	(Bug	#8452)

Fixed	a	failure	of	multiple-table	updates	to	replicate	properly	on	slave
servers	when	--replicate-*-table	options	had	been	specified.	(Bug
#7011)

Fixed	failure	of	CREATE	TABLE	...	LIKE	Windows	when	the	source	or
destination	table	was	located	in	a	symlinked	database	directory.	(Bug
#6607)

With	lower_case_table_names	set	to	1,	mysqldump	on	Windows	could
write	the	same	table	name	in	different	lettercase	for	different	SQL
statements.	Fixed	so	that	consistent	lettercase	is	used.	(Bug	#5185)

mysqld_safe	now	understands	the	--help	option.	Previously,	it	ignored	the
option	and	attempted	to	start	the	server	anyway.	(Bug	#7931)

Fixed	problem	in	NO_BACKSLASH_ESCAPES	SQL	mode	for	strings	that
contained	both	the	string	quoting	character	and	backslash.	(Bug	#6368)

Fixed	some	portability	issues	with	overflow	in	floating	point	values.

Prepared	statements	now	gives	warnings	on	prepare.

Fixed	bug	in	prepared	statements	with	SUM(DISTINCT...).

Fixed	bug	in	prepared	statements	with	OUTER	JOIN.

Fixed	a	bug	in	CONV()	function	returning	unsigned	BIGINT	number	(third
argument	is	positive,	and	return	value	does	not	fit	in	32	bits).	(Bug	#7751)

Fixed	a	failure	of	the	IN()	operator	to	return	correct	result	if	all	values	in
the	list	were	constants	and	some	of	them	were	using	substring	functions,	for
example,	LEFT(),	RIGHT(),	or	MID().	(Bug	#7716)

Fixed	a	crash	in	CONVERT_TZ()	function	when	its	second	or	third	argument
was	from	a	const	table	(see	Section	7.2.1,	“Optimizing	Queries	with
EXPLAIN”).	(Bug	#7705)

Fixed	a	problem	with	calculation	of	number	of	columns	in	row	comparison
against	subquery.	(Bug	#8020)

Fixed	erroneous	output	resulting	from	SELECT	DISTINCT	combined	with	a
subquery	and	GROUP	BY.	(Bug	#7946)

Fixed	server	crash	in	comparing	a	nested	row	expression	(for	example
row(1,(2,3)))	with	a	subquery.	(Bug	#8022)

Fixed	server	crash	resulting	from	certain	correlated	subqueries	with	forward
references	(references	to	an	alias	defined	later	in	the	outer	query).	(Bug
#8025)

Fixed	server	crash	resulting	from	re-execution	of	prepared	statements
containing	subqueries.	(Bug	#8125)

Fixed	a	bug	where	ALTER	TABLE	improperly	would	accept	an	index	on	a
TIMESTAMP	column	that	CREATE	TABLE	would	reject.	(Bug	#7884)

SHOW	CREATE	TABLE	now	reports	ENGINE=MEMORY	rather	than	ENGINE=HEAP
for	a	MEMORY	table	(unless	the	MYSQL323	SQL	mode	is	enabled).	(Bug
#6659)

Fixed	a	bug	where	the	use	of	GROUP_CONCAT()	with	HAVING	caused	a	server
crash.	(Bug	#7769)

Fixed	a	bug	where	comparing	the	result	of	a	subquery	to	a	non-existent
column	caused	a	server	crash	on	Windows.	(Bug	#7885)

Fixed	a	bug	in	a	combination	of	-not	and	trunc*	operators	of	full-text
search.	Using	more	than	one	truncated	negative	search	term,	was	causing
empty	result	set.

InnoDB:	Corrected	the	handling	of	trailing	spaces	in	the	ucs2	character	set.
(Bug	#7350,	Bug	#8771)

InnoDB:	Use	native	tmpfile()	function	on	Netware.	All	InnoDB
temporary	files	are	created	under	sys:\tmp.	Previously,	InnoDB	temporary
files	were	never	deleted	on	Netware.

Fixed	a	bug	in	max_heap_table_size	handling,	that	resulted	in	Table	is
full	error	when	the	table	was	still	smaller	than	the	limit.	(Bug	#7791).

Fixed	a	symlink	vulnerability	in	the	mysqlaccess	script.	Reported	by	Javier
Fernandez-Sanguino	Pena	and	Debian	Security	Audit	Team.	(CVE-2005-
0004)

Fixed	a	bug	that	caused	server	crash	if	some	error	occurred	during	filling	of
temporary	table	created	for	derived	table	or	view	handling.	(Bug	#7413)

Fixed	a	bug	which	caused	server	crash	if	query	containing	CONVERT_TZ()
function	with	constant	arguments	was	prepared.	(Bug	#6849)

Prevent	adding	CREATE	TABLE	..	SELECT	query	to	the	binary	log	when	the
insertion	of	new	records	partially	failed.	(Bug	#6682)

http://www.debian.org/security/audit
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0004

Fixed	a	bug	which	caused	a	crash	when	only	the	slave	I/O	thread	was
stopped	and	started.	(Bug	#6148)

Giving	mysqld	a	SIGHUP	caused	it	to	crash.

Changed	semantics	of	CREATE/ALTER/DROP	DATABASE	statements	so	that
replication	of	CREATE	DATABASE	is	possible	when	using	--binlog-do-db
and	--binlog-ignore-db.	(Bug	#6391)

A	sequence	of	BEGIN	(or	SET	AUTOCOMMIT=0),	FLUSH	TABLES	WITH	READ
LOCK,	transactional	update,	COMMIT,	FLUSH	TABLES	WITH	READ	LOCK	could
hang	the	connection	forever	and	possibly	the	MySQL	server	itself.	This
happened	for	example	when	running	the	innobackup	script	several	times.
(Bug	#6732)

mysqlbinlog	did	not	print	SET	PSEUDO_THREAD_ID	statements	in	front	of
LOAD	DATA	INFILE	statements	inserting	into	temporary	tables,	thus	causing
potential	problems	when	rolling	forward	these	statements	after	restoring	a
backup.	(Bug	#6671)

InnoDB:	Fixed	a	bug	no	error	message	for	ALTER	with	InnoDB	and
AUTO_INCREMENT	(Bug	#7061).	InnoDB	now	supports	ALTER
TABLE...AUTO_INCREMENT	=	x	query	to	set	auto	increment	value	for	a
table.

Made	the	MySQL	server	accept	executing	SHOW	CREATE	DATABASE	even	if
the	connection	has	an	open	transaction	or	locked	tables;	refusing	it	made
mysqldump	--single-transaction	sometimes	fail	to	print	a	complete
CREATE	DATABASE	statement	for	some	dumped	databases.	(Bug	#7358)

Fixed	that,	when	encountering	a	“disk	full”	or	“quota	exceeded”	write	error,
MyISAM	sometimes	didn't	sleep	and	retry	the	write,	thus	resulting	in	a
corrupted	table.	(Bug	#7714)

Fixed	that	--expire-log-days	was	not	honored	if	using	only	transactions.
(Bug	#7236)

Fixed	that	a	slave	could	crash	after	replicating	many	ANALYZE	TABLE,
OPTIMIZE	TABLE,	or	REPAIR	TABLE	statements	from	the	master.	(Bug
#6461,	Bug	#7658)

mysqlbinlog	forgot	to	add	backquotes	around	the	collation	of	user	variables
(causing	later	parsing	problems	as	BINARY	is	a	reserved	word).	(Bug	#7793)

Ensured	that	mysqldump	--single-transaction	sets	its	transaction	isolation
level	to	REPEATABLE	READ	before	proceeding	(otherwise	if	the	MySQL
server	was	configured	to	run	with	a	default	isolation	level	lower	than
REPEATABLE	READ	it	could	give	an	inconsistent	dump).	(Bug	#7850)

Fixed	that	when	using	the	RPAD()	function	(or	any	function	adding	spaces
to	the	right)	in	a	query	that	had	to	be	resolved	by	using	a	temporary	table,
all	resulting	strings	had	rightmost	spaces	removed	(that	is,	RPAD()	did	not
work)	(Bug	#4048)

Fixed	that	a	5.0.3	slave	can	connect	to	a	master	<	3.23.50	without	hanging
(the	reason	for	the	hang	is	a	bug	in	these	quite	old	masters	--	SELECT
@@unknown_var	hangs	them	--	which	was	fixed	in	MySQL	3.23.50).	(Bug
#7965)

InnoDB:	Fixed	a	deadlock	without	any	locking,	simple	select	and	update
(Bug	#7975).	InnoDB	now	takes	an	exclusive	lock	when	INSERT	ON
DUPLICATE	KEY	UPDATE	is	checking	duplicate	keys.

Fixed	a	bug	where	MySQL	was	allowing	concurrent	updates	(inserts,
deletes)	to	a	table	if	binary	logging	is	enabled.	Changed	to	ensure	that	all
updates	are	executed	in	a	serialized	fashion,	because	they	are	executed
serialized	when	binlog	is	replayed.	(Bug	#7879)

Fixed	a	rare	race	condition	which	could	lead	to	FLUSH	TABLES	WITH	READ
LOCK	hanging.	(Bug	#8682)

Fixed	a	bug	in	replication	that	caused	the	master	to	stamp	generated
statements	(such	as	SET	commands)	with	an	error_code	intended	only	for
another	statement.	This	could	happen,	for	example,	when	a	statements
generates	a	duplicate	key	error	on	the	master	but	must	be	replicated.	(Bug
#8412)

D.1.25.	Changes	in	release	5.0.2	(01	December	2004)

Functionality	added	or	changed:

Warning:	Incompatible	change!	The	precedence	of	NOT	operator	has
changed	so	that	expressions	such	as	NOT	a	BETWEEN	b	AND	c	are	parsed
correctly	as	NOT	(a	BETWEEN	b	AND	c)	rather	than	as	(NOT	a)	BETWEEN	b
AND	c.	The	pre-5.0	higher-precedence	behavior	can	be	obtained	by	enabling
the	new	HIGH_NOT_PRECEDENCE	SQL	mode.

Warning:	Incompatible	change!	SHOW	STATUS	now	shows	the	session
(thread-specific)	status	variables	and	SHOW	GLOBAL	STATUS	shows	the	status
variables	for	the	whole	server.

Before	MySQL	5.0.2,	SHOW	STATUS	returned	global	status	values.	Because
the	default	as	of	5.0.2	is	to	return	session	values,	this	is	incompatible	with
previous	versions.	To	issue	a	SHOW	STATUS	statement	that	will	retrieve
global	status	values	for	all	versions	of	MySQL,	write	it	like	this:

SHOW	/*!50002	GLOBAL	*/	STATUS;

Added	support	for	the	INFORMATION_SCHEMA	“information	database”	that
provides	database	metadata.	See	Chapter	20,	The	INFORMATION_SCHEMA
Database.

A	HAVING	clause	in	a	SELECT	statement	now	can	refer	to	columns	in	the
GROUP	BY	clause,	as	required	by	standard	SQL.

Added	the	CREATE	USER	and	RENAME	USER	statements.

Modify	DROP	USER	so	that	it	drops	the	account,	including	all	its	privileges.
Formerly,	it	removed	the	account	record	only	for	an	account	that	had	had	all
privileges	revoked.

Added	IS	[NOT]	boolean_value	syntax,	where	boolean_value	is	TRUE,
FALSE,	or	UNKNOWN.

Added	several	InnoDB	status	variables.	See	Section	5.2.4,	“Server	Status
Variables”.

Implemented	the	WITH	CHECK	OPTION	clause	for	CREATE	VIEW.

CHECK	TABLE	now	works	for	views.

The	SCHEMA	and	SCHEMAS	keywords	are	now	accepted	as	synonyms	for
DATABASE	and	DATABASES.

Added	initial	support	for	rudimentary	triggers	(the	CREATE	TRIGGER	and
DROP	TRIGGER	statements).

Added	basic	support	for	read-only	server	side	cursors.

mysqldump	--single-transaction	--master-data	is	now	able	to	take	an
online	(non-blocking)	dump	of	InnoDB	and	report	the	corresponding	binary
log	coordinates,	which	makes	a	backup	suitable	for	point-in-time	recovery,
roll-forward	or	replication	slave	creation.	See	Section	8.12,	“mysqldump
—	A	Database	Backup	Program”.

Added	--start-datetime,	--stop-datetime,	--start-position,	--stop-
position	options	to	mysqlbinlog	(makes	point-in-time	recovery	easier).

Made	the	MySQL	server	not	react	to	signals	SIGHUP	and	SIGQUIT	on	Mac
OS	X	10.3.	This	is	needed	because	under	this	OS,	the	MySQL	server
receives	lots	of	these	signals	(reported	as	Bug	#2030).

New	--auto-increment-increment	and	--auto-increment-offset
startup	options.	These	allow	you	to	set	up	a	server	to	generate	auto-
increment	values	that	don't	conflict	with	another	server.

MySQL	now	by	default	checks	dates	and	in	strict	mode	allows	only	fully
correct	dates.	If	you	want	MySQL	to	behave	as	before,	you	should	enable
the	new	ALLOW_INVALID_DATES	SQL	mode.

Added	STRICT_TRANS_TABLES,	STRICT_ALL_TABLES,	NO_ZERO_IN_DATE,
NO_ZERO_DATE,	ERROR_FOR_DIVISION_BY_ZERO,	and	TRADITIONAL	SQL
modes.	The	TRADITIONAL	mode	is	shorthand	for	all	the	preceding	modes.
When	using	mode	TRADITIONAL,	MySQL	generates	an	error	if	you	try	to
insert	a	wrong	value	in	a	column.	It	does	not	adjust	the	value	to	the	closest
possible	legal	value.

MySQL	now	remembers	which	columns	were	declared	to	have	default
values.	In	STRICT_TRANS_TABLES/STRICT_ALL_TABLES	mode,	you	now	get
an	error	if	you	do	an	INSERT	without	specifying	all	columns	that	don't	have
a	default	value.	A	side	effect	of	this	is	that	when	you	do	SHOW	CREATE	for	a

new	table,	you	no	longer	see	a	DEFAULT	value	for	a	column	for	which	you
didn't	specify	a	default	value.

The	compilation	flag	DONT_USE_DEFAULT_FIELDS	was	removed	because	you
can	get	the	same	behavior	by	setting	the	sql_mode	system	variable	to
STRICT_TRANS_TABLES.

Added	NO_AUTO_CREATE_USER	SQL	mode	to	prevent	GRANT	from
automatically	creating	new	users	if	it	would	otherwise	do	so,	unless	a
password	also	is	specified.

We	now	detect	too-large	floating	point	numbers	during	statement	parsing
and	generate	an	error	messages	for	them.

Renamed	the	sql_updatable_view_key	system	variable	to
updatable_views_with_limit.	This	variable	now	can	have	only	two
values:

1	or	YES:	Don't	issue	an	error	message	(warning	only)	if	a	VIEW
without	presence	of	a	key	in	the	underlying	table	is	used	in	queries
with	a	LIMIT	clause	for	updating.	(This	is	the	default	value.)

0	or	NO:	Prohibit	update	of	a	VIEW,	which	does	not	contain	a	key	in
the	underlying	table	and	the	query	uses	a	LIMIT	clause	(usually	get
from	GUI	tools).

Reverted	output	format	of	SHOW	TABLES	to	old	pre-5.0.1	format	that	did	not
include	a	table	type	column.	To	get	the	additional	column	that	lists	the	table
type,	use	SHOW	FULL	TABLES	now.

The	mysql_fix_privilege_tables	script	now	initializes	the	global	CREATE
VIEW	and	SHOW	VIEW	privileges	in	the	user	table	to	the	value	of	the	CREATE
privilege	in	that	table.

If	the	server	finds	that	the	user	table	has	not	been	upgraded	to	include	the
view-related	privilege	columns,	it	treats	each	account	as	having	view
privileges	that	are	the	same	as	its	CREATE	privilege.

InnoDB:	If	you	specify	the	option	innodb_locks_unsafe_for_binlog	in
my.cnf,	InnoDB	in	an	UPDATE	or	a	DELETE	only	locks	the	rows	that	it

updates	or	deletes.	This	greatly	reduces	the	probability	of	deadlocks.

A	connection	doing	a	rollback	now	displays	"Rolling	back"	in	the	State
column	of	SHOW	PROCESSLIST.

mysqlbinlog	now	prints	an	informative	commented	line	(thread	id,
timestamp,	server	id,	and	so	forth)	before	each	LOAD	DATA	INFILE,	like	it
does	for	other	queries;	unless	--short-form	is	used.

Two	new	server	system	variables	were	introduced.
auto_increment_increment	and	auto_increment_offset	can	be	set
locally	or	globally,	and	are	intended	for	use	in	controlling	the	behavior	of
AUTO_INCREMENT	columns	in	master-to-master	replication.	Note	that	these
variables	are	not	intended	to	take	the	place	of	sequences.	See	Section	5.2.2,
“Server	System	Variables”.

Bugs	fixed:

Fixed	that	mysqlbinlog	--read-from-remote-server	sometimes	couldn't
accept	two	binary	log	files	on	the	command	line.	(Bug	#4507)

Fixed	that	mysqlbinlog	--position	--read-from-remote-server	had
incorrect	#	at	lines.	(Bug	#4506)

Fixed	that	CREATE	TABLE	...	TYPE=HEAP	...	AS	SELECT...	caused
replication	slave	to	stop.	(Bug	#4971)

Fixed	that	mysql_options(...,MYSQL_OPT_LOCAL_INFILE,...)	failed	to
disable	LOAD	DATA	LOCAL	INFILE.	(Bug	#5038)

Fixed	that	disable-local-infile	option	had	no	effect	if	client	read	it	from
a	configuration	file	using	mysql_options(...,MYSQL_READ_DEFAULT,...).
(Bug	#5073)

Fixed	that	SET	GLOBAL	SYNC_BINLOG	did	not	work	on	some	platforms	(Mac
OS	X).	(Bug	#5064)

Fixed	that	mysql-test-run	failed	on	the	rpl_trunc_binlog	test	if	running
test	from	the	installed	(the	target	of	'make	install')	directory.	(Bug	#5050)

Fixed	that	mysql-test-run	failed	on	the	grant_cache	test	when	run	as	Unix
user	'root'.	(Bug	#4678)

Fixed	an	unlikely	deadlock	which	could	happen	when	using	KILL.	(Bug
#4810)

Fixed	a	crash	when	one	connection	got	KILLed	while	it	was	doing	START
SLAVE.	(Bug	#4827)

Made	FLUSH	TABLES	WITH	READ	LOCK	block	COMMIT	if	server	is	running
with	binary	logging;	this	ensures	that	the	binary	log	position	can	be	trusted
when	doing	a	full	backup	of	tables	and	the	binary	log.	(Bug	#4953)

Fixed	that	the	counter	of	an	auto_increment	column	was	not	reset	by
TRUNCATE	TABLE	is	the	table	was	a	temporary	one.	(Bug	#5033)

Fixed	slave	SQL	thread	so	that	the	SET	COLLATION_SERVER...	statements	it
replicates	don't	advance	its	position	(so	that	if	it	gets	interrupted	before	the
actual	update	query,	it	later	redoes	the	SET).	(Bug	#5705)

Fixed	that	if	the	slave	SQL	thread	found	a	syntax	error	in	a	query	(which
should	be	rare,	as	the	master	parsed	it	successfully),	it	stops.	(Bug	#5711)

Fixed	that	if	a	write	to	a	MyISAM	table	fails	because	of	a	full	disk	or	an
exceeded	disk	quota,	it	prints	a	message	to	the	error	log	every	10	minutes,
and	waits	until	disk	becomes	free.	(Bug	#3248)

Fixed	problem	introduced	in	4.0.21	where	a	connection	starting	a
transaction,	doing	updates,	then	FLUSH	TABLES	WITH	READ	LOCK,	then
COMMIT,	would	cause	replication	slaves	to	stop	(complaining	about	error
1223).	Bug	surfaced	when	using	the	InnoDB	innobackup	script.	(Bug
#5949)

OPTIMIZE	TABLE,	REPAIR	TABLE,	and	ANALYZE	TABLE	are	now	replicated
without	any	error	code	in	the	binary	log.	(Bug	#5551)

If	a	connection	had	an	open	transaction	but	had	done	no	updates	to
transactional	tables	(for	example	if	had	just	done	a	SELECT	FOR	UPDATE
then	executed	a	non-transactional	update,	that	update	automatically
committed	the	transaction	(thus	releasing	InnoDB's	row-level	locks	etc).

(Bug	#5714)

If	a	connection	was	interrupted	by	a	network	error	and	did	a	rollback,	the
network	error	code	got	stored	into	the	BEGIN	and	ROLLBACK	binary	log
events;	that	caused	superfluous	slave	stops.	(Bug	#6522)

Fixed	a	bug	which	prevented	mysqlbinlog	from	being	able	to	read	from
stdin,	for	example,	when	piping	the	output	from	zcat	to	mysqlbinlog.
(Bug	#7853)

D.1.26.	Changes	in	release	5.0.1	(27	July	2004)

Note:	This	build	passes	our	test	suite	and	fixes	a	lot	of	reported	bugs	found	in
the	previous	5.0.0	release.	However,	please	be	aware	that	this	is	not	a	“standard
MySQL	build”	in	the	sense	that	there	are	still	some	open	critical	bugs	in	our
bugs	database	at	http://bugs.mysql.com/	that	affect	this	release	as	well.	We	are
actively	fixing	these	and	will	make	a	new	release	where	these	are	fixed	as	soon
as	possible.	However,	this	binary	should	be	a	good	candidate	for	testing	new
MySQL	5.0	features	for	future	products.

Functionality	added	or	changed:

Warning:	Incompatible	change!	C	API	change:	mysql_shutdown()	now
requires	a	second	argument.	This	is	a	source-level	incompatibility	that
affects	how	you	compile	client	programs;	it	does	not	affect	the	ability	of
compiled	clients	to	communicate	with	older	servers.	See	Section	22.2.3.64,
“mysql_shutdown()”.

When	installing	a	MySQL	server	as	a	Windows	service,	the	installation
command	can	include	a	--local-service	option	following	the	service
name	to	cause	the	server	to	run	using	the	LocalService	Windows	account
that	has	limited	privileges.	This	is	in	addition	to	the	--defaults-file
option	that	also	can	be	given	following	the	service	name.

Added	support	for	read-only	and	updatable	views	based	on	a	single	table	or
other	updatable	views.	View	use	requires	that	you	upgrade	your	grant	tables
to	add	the	view-related	privileges.	See	Section	5.6.1,
“mysql_fix_privilege_tables	—	Upgrade	MySQL	System	Tables”.

http://bugs.mysql.com/

Implemented	a	new	“greedy	search”	optimizer	that	can	significantly	reduce
the	time	spent	on	query	optimization	for	some	many-table	joins.	(You	are
affected	if	not	only	some	particular	SELECT	is	slow,	but	even	using	EXPLAIN
for	it	takes	a	noticeable	amount	of	time.)	Two	new	system	variables,
optimizer_search_depth	and	optimizer_prune_level,	can	be	used	to
fine-tune	optimizer	behavior.

A	stored	procedure	is	no	longer	“global.”	That	is,	it	now	belongs	to	a
specific	database:

When	a	database	is	dropped,	all	routines	belonging	to	that	database	are
also	dropped.

Procedure	names	may	be	qualified,	for	example,	db.p()

When	executed	from	another	database,	an	implicit	USE	db_name	is	in
effect.

Explicit	USE	db_name	statements	no	longer	are	allowed	in	a	stored
procedure.

See	Chapter	17,	Stored	Procedures	and	Functions.

Fixed	SHOW	TABLES	output	field	name	and	values	according	to	standard.
Field	name	changed	from	Type	to	table_type,	values	are	BASE	TABLE,	VIEW
and	ERROR.	(Bug	#4603)

Added	the	sql_updatable_view_key	system	variable.

Added	the	--replicate-same-server-id	server	option.

Added	Last_query_cost	status	variable	that	reports	optimizer	cost	for	last
compiled	query.

Added	the	--to-last-log	option	to	mysqlbinlog,	for	use	in	conjunction
with	--read-from-remote-server.

Added	the	--innodb-safe-binlog	server	option,	which	adds	consistency
guarantees	between	the	content	of	InnoDB	tables	and	the	binary	log.	See
Section	5.12.3,	“The	Binary	Log”.

OPTIMIZE	TABLE	for	InnoDB	tables	is	now	mapped	to	ALTER	TABLE	instead
of	ANALYZE	TABLE.	This	rebuilds	the	table,	which	updates	index	statistics
and	frees	space	in	the	clustered	index.

sync_frm	is	now	a	settable	global	variable	(not	only	a	startup	option).

For	replication	of	MEMORY	(HEAP)	tables:	Made	the	master	automatically
write	a	DELETE	FROM	statement	to	its	binary	log	when	a	MEMORY	table	is
opened	for	the	first	time	since	master's	startup.	This	is	for	the	case	where
the	slave	has	replicated	a	non-empty	MEMORY	table,	then	the	master	is	shut
down	and	restarted:	the	table	is	now	empty	on	master;	the	DELETE	FROM
empties	it	on	slave	too.	Note	that	even	with	this	fix,	between	the	master's
restart	and	the	first	use	of	the	table	on	master,	the	slave	still	has	out-of-date
data	in	the	table.	But	if	you	use	the	--init-file	option	to	populate	the
MEMORY	table	on	the	master	at	startup,	it	ensures	that	the	failing	time	interval
is	zero.	(Bug	#2477)

When	a	session	having	open	temporary	tables	terminates,	the	statement
automatically	written	to	the	binary	log	is	now	DROP	TEMPORARY	TABLE	IF
EXISTS	instead	of	DROP	TEMPORARY	TABLE,	for	more	robustness.

The	MySQL	server	now	returns	an	error	if	SET	SQL_LOG_BIN	is	issued	by	a
user	without	the	SUPER	privilege	(in	previous	versions	it	just	silently
ignored	the	statement	in	this	case).

Changed	that	when	the	MySQL	server	has	binary	logging	disabled	(that	is,
no	--log-bin	option	was	used),	then	no	transaction	binary	log	cache	is
allocated	for	connections.	This	should	save	binlog_cache_size	bytes	of
memory	(32KB	by	default)	for	every	connection.

Added	the	sync_binlog=N	global	variable	and	startup	option,	which	makes
the	MySQL	server	synchronize	its	binary	log	to	disk	(fdatasync())	after
every	Nth	write	to	the	binary	log.

Changed	the	slave	SQL	thread	to	print	less	useless	error	messages	(no	more
message	duplication;	no	more	messages	when	an	error	is	skipped	because
of	slave-skip-errors).

DROP	DATABASE	IF	EXISTS,	DROP	TABLE	IF	EXISTS,	single-table	DELETE,
and	single-table	UPDATE	now	are	written	to	the	binary	log	even	if	they

changed	nothing	on	the	master	(for	example,	even	if	a	DELETE	matched	no
rows).	The	old	behavior	sometimes	caused	bad	surprises	in	replication
setups.

Replication	and	mysqlbinlog	now	have	better	support	for	the	case	that	the
session	character	set	and	collation	variables	are	changed	within	a	given
session.	See	Section	6.7,	“Replication	Features	and	Known	Problems”.

Killing	a	CHECK	TABLE	statement	does	not	result	in	the	table	being	marked
as	“corrupted”	any	more;	the	table	remains	as	if	CHECK	TABLE	had	not	even
started.	See	Section	13.5.5.3,	“KILL	Syntax”.

Bugs	fixed:

Strange	results	with	index	(x,	y)	...	WHERE	x=val_1	AND	y>=val_2
ORDER	BY	pk;	(Bug	#3155)

Adding	ORDER	BY	to	a	query	that	uses	a	subquery	can	cause	incorrect
results.	(Bug	#3118)

ALTER	DATABASE	caused	the	client	to	hang	if	the	database	did	not	exist.
(Bug	#2333)

SLAVE	START	(which	is	a	deprecated	syntax,	START	SLAVE	should	be	used
instead)	could	crash	the	slave.	(Bug	#2516)

Multiple-table	DELETE	statements	were	never	replicated	by	the	slave	if	there
were	any	--replicate-*-table	options.	(Bug	#2527)

The	MySQL	server	did	not	report	any	error	if	a	statement	(submitted
through	mysql_real_query()	or	mysql_stmt_prepare())	was	terminated
by	garbage	characters.	This	can	happen	if	you	pass	a	wrong	length
parameter	to	these	functions.	The	result	was	that	the	garbage	characters
were	written	into	the	binary	log.	(Bug	#2703)

Replication:	If	a	client	connects	to	a	slave	server	and	issues	an
administrative	statement	for	a	table	(for	example,	OPTIMIZE	TABLE	or
REPAIR	TABLE),	this	could	sometimes	stop	the	slave	SQL	thread.	This	does
not	lead	to	any	corruption,	but	you	must	use	START	SLAVE	to	get	replication
going	again.	(Bug	#1858)

Made	clearer	the	error	message	that	one	gets	when	an	update	is	refused
because	of	the	--read-only	option.	(Bug	#2757)

Fixed	that	--replicate-wild-*-table	rules	apply	to	ALTER	DATABASE
when	the	table	pattern	is	%,	as	is	the	case	for	CREATE	DATABASE	and	DROP
DATABASE.	(Bug	#3000)

Fixed	that	when	a	Rotate	event	is	found	by	the	slave	SQL	thread	in	the
middle	of	a	transaction,	the	value	of	Relay_Log_Pos	in	SHOW	SLAVE	STATUS
remains	correct.	(Bug	#3017)

Corrected	the	master's	binary	log	position	that	InnoDB	reports	when	it	is
doing	a	crash	recovery	on	a	slave	server.	(Bug	#3015)

Changed	the	column	Seconds_Behind_Master	in	SHOW	SLAVE	STATUS	to
never	show	a	value	of	-1.	(Bug	#2826)

Changed	that	when	a	DROP	TEMPORARY	TABLE	statement	is	automatically
written	to	the	binary	log	when	a	session	ends,	the	statement	is	recorded	with
an	error	code	of	value	zero	(this	ensures	that	killing	a	SELECT	on	the	master
does	not	result	in	a	superfluous	error	on	the	slave).	(Bug	#3063)

Changed	that	when	a	thread	handling	INSERT	DELAYED	(also	known	as	a
delayed_insert	thread)	is	killed,	its	statements	are	recorded	with	an	error
code	of	value	zero	(killing	such	a	thread	does	not	endanger	replication,	so
we	thus	avoid	a	superfluous	error	on	the	slave).	(Bug	#3081)

Fixed	deadlock	when	two	START	SLAVE	commands	were	run	at	the	same
time.	(Bug	#2921)

Fixed	that	a	statement	never	triggers	a	superfluous	error	on	the	slave,	if	it
must	be	excluded	given	the	--replicate-*	options.	The	bug	was	that	if	the
statement	had	been	killed	on	the	master,	the	slave	would	stop.	(Bug	#2983)

The	--local-load	option	of	mysqlbinlog	now	requires	an	argument.

Fixed	a	segmentation	fault	when	running	LOAD	DATA	FROM	MASTER	after
RESET	SLAVE.	(Bug	#2922)

mysqlbinlog	--read-from-remote-server	read	all	binary	logs	following	the

one	that	was	requested.	It	now	stops	at	the	end	of	the	requested	file,	the
same	as	it	does	when	reading	a	local	binary	log.	There	is	an	option	--to-
last-log	to	get	the	old	behavior.	(Bug	#3204)

Fixed	mysqlbinlog	--read-from-remote-server	to	print	the	exact	positions
of	events	in	the	"at	#"	lines.	(Bug	#3214)

Fixed	a	rare	error	condition	that	caused	the	slave	SQL	thread	spuriously	to
print	the	message	Binlog	has	bad	magic	number	and	stop	when	it	was	not
necessary	to	do	so.	(Bug	#3401)

Fixed	mysqlbinlog	not	to	forget	to	print	a	USE	statement	under	rare
circumstances	where	the	binary	log	contained	a	LOAD	DATA	INFILE
statement.	(Bug	#3415)

Fixed	a	memory	corruption	when	replicating	a	LOAD	DATA	INFILE	when	the
master	had	version	3.23.	(Bug	#3422)

Multiple-table	DELETE	statements	were	always	replicated	by	the	slave	if
there	were	some	--replicate-*-ignore-table	options	and	no	--
replicate-*-do-table	options.	(Bug	#3461)

Fixed	a	crash	of	the	MySQL	slave	server	when	it	was	built	with	--with-
debug	and	replicating	itself.	(Bug	#3568)

Fixed	that	in	some	replication	error	messages,	a	very	long	query	caused	the
rest	of	the	message	to	be	invisible	(truncated),	by	putting	the	query	last	in
the	message.	(Bug	#3357)

If	server-id	was	not	set	using	startup	options	but	with	SET	GLOBAL,	the
replication	slave	still	complained	that	it	was	not	set.	(Bug	#3829)

mysql_fix_privilege_tables	didn't	correctly	handle	the	argument	of	its	--
password=password_val	option.	(Bug	#4240)

Fixed	potential	memory	overrun	in	mysql_real_connect()	(which	required
a	compromised	DNS	server	and	certain	operating	systems).	(Bug	#4017,
CVE-2004-0836)

During	the	installation	process	of	the	server	RPM	on	Linux,	mysqld	was

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0836

run	as	the	root	system	user,	and	if	you	had	--log-
bin=somewhere_out_of_var_lib_mysql	it	created	binary	log	files	owned
by	root	in	this	directory,	which	remained	owned	by	root	after	the
installation.	This	is	now	fixed	by	starting	mysqld	as	the	mysql	system	user
instead.	(Bug	#4038)

Made	DROP	DATABASE	honor	the	value	of	lower_case_table_names.	(Bug
#4066)

The	slave	SQL	thread	refused	to	replicate	INSERT	...	SELECT	if	it
examined	more	than	4	billion	rows.	(Bug	#3871)

mysqlbinlog	didn't	escape	the	string	content	of	user	variables,	and	did	not
deal	well	when	these	variables	were	in	non-ASCII	character	sets;	this	is
now	fixed	by	always	printing	the	string	content	of	user	variables	in
hexadecimal.	The	character	set	and	collation	of	the	string	is	now	also
printed.	(Bug	#3875)

Fixed	incorrect	destruction	of	expression	that	led	to	a	server	crash	on
complex	AND/OR	expressions	if	query	was	ignored	(either	by	a	replication
server	because	of	--replicate-*-table	rules,	or	by	any	MySQL	server
because	of	a	syntax	error).	(Bug	#3969,	Bug	#4494)

If	CREATE	TEMPORARY	TABLE	t	SELECT	failed	while	loading	the	data,	the
temporary	table	was	not	dropped.	(Bug	#4551)

Fixed	that	when	a	multiple-table	DROP	TABLE	failed	to	drop	a	table	on	the
master	server,	the	error	code	was	not	written	to	the	binary	log.	(Bug	#4553)

When	the	slave	SQL	thread	was	replicating	a	LOAD	DATA	INFILE	statement,
it	didn't	show	the	statement	in	the	output	of	SHOW	PROCESSLIST.	(Bug
#4326)

D.1.27.	Changes	in	release	5.0.0	(22	December	2003:	Alpha)

Functionality	added	or	changed:

The	output	of	the	SHOW	BINLOG	EVENTS	statement	has	been	modified.	The
Orig_log_pos	column	has	been	renamed	to	End_log_pos	and	now
represents	the	offset	of	the	last	byte	of	the	event,	plus	one.

Important	note:	If	you	upgrade	to	MySQL	4.1.1	or	higher,	it	is	difficult	to
downgrade	back	to	4.0	or	4.1.0!	That	is	because,	for	earlier	versions,
InnoDB	is	not	aware	of	multiple	tablespaces.

Added	support	for	SUM(DISTINCT),	MIN(DISTINCT),	and	MAX(DISTINCT).

The	KILL	statement	now	takes	CONNECTION	and	QUERY	modifiers.	The	first	is
the	same	as	KILL	with	no	modifier	(it	kills	a	given	connection	thread).	The
second	kills	only	the	statement	currently	being	executed	by	the	connection.

Added	TIMESTAMPADD()	and	TIMESTAMPDIFF()	functions.

Added	WEEK	and	QUARTER	values	as	INTERVAL	arguments	for	the	DATE_ADD()
and	DATE_SUB()	functions.

New	binary	log	format	that	enables	replication	of	these	session	variables:
sql_mode,	SQL_AUTO_IS_NULL,	FOREIGN_KEY_CHECKS	(which	was	replicated
since	4.0.14,	but	here	it's	done	more	efficiently	and	takes	less	space	in	the
binary	logs),	UNIQUE_CHECKS.	Other	variables	(like	character	sets,
SQL_SELECT_LIMIT,	...)	will	be	replicated	in	upcoming	5.0.x	releases.

Implemented	Index	Merge	optimization	for	OR	clauses.	See	Section	7.2.6,
“Index	Merge	Optimization”.

Basic	support	for	stored	procedures	(SQL:2003	style).	See	Chapter	17,
Stored	Procedures	and	Functions.

Added	SELECT	INTO	list_of_vars,	which	can	be	of	mixed	(that	is,	global
and	local)	types.	See	Section	17.2.7.3,	“SELECT	...	INTO	Statement”.

Easier	replication	upgrade	(5.0.0	masters	can	read	older	binary	logs	and
5.0.0	slaves	can	read	older	relay	logs).	See	Section	6.5,	“Replication
Compatibility	Between	MySQL	Versions”,	for	more	details).	The	format	of
the	binary	log	and	relay	log	is	changed	compared	to	that	of	MySQL	4.1	and
older.

Bugs	fixed:

D.2.	Changes	in	MySQL	Cluster

Starting	from	4.1.13	and	5.0.7,	all	Cluster	changes	are	included	in	the
MySQL	Change	History,	and	this	manual	section	is	no	longer	separately
maintained.

D.2.1.	Changes	in	MySQL	Cluster-5.0.7	(10	June	2005)

Note:	Starting	with	version	5.0.8,	changes	for	MySQL	Cluster	can	be	found	in
the	combined	MySQL	Change	History.

Functionality	added	or	changed:

Bugs	fixed:

(Bug	#11019)	mgmapi	start	backup	in	some	cases	returns	wrong	backupid

(Bug	#10190)	Backup	from	cluster	wih	NoOfReplica=1	is	corrupt

(Bug	#9246)	Condition	pushdown	and	left	join,	wrong	result

(Bug	#10956)	More	than	7	node	restarts	with	--initial	caused	cluster	to
fail.

(Bug	#9945)	ALTER	TABLE	caused	server	crash.	(Linux/390)

(Bug	#9826)	(Bug	#10948)	Schema	change	(DROP	TABLE,	ALTER	TABLE)
crashed	HPUX	and	PPC32.

(Bug	#10711)	(Bug	#9363)	(Bug	#8918)	(Bug	#10058)	(Bug	#9025)
Cluster	would	time	out	and	crash	after	first	query;	setting	DataMemory	to
more	than	2GB	prevented	cluster	from	starting;	calling
ndb_select_count()	crashed	the	cluster.	(64-bit	Unix	OSes)

D.2.2.	Changes	in	MySQL	Cluster-5.0.6	(26	May	2005)

Functionality	added	or	changed:

Limit	on	number	of	metadata	objects	(number	of	tables,	indexes	and
BLOBs)	now	increased	to	20,320

Bugs	fixed:

The	server	would	hang	on	successive	calls	to	an	INSERT	...	ON	DUPLICATE
KEY	UPDATE	query.	(Bug	#9725)

(Bug	#10193)	Invalid	DataDir	in	config	causes	ndbd	segmentation	fault

(Bug	#10813)	Build	with	SCI	Transporter	fails

(Bug	#10831)	ndb	mgmd	LogDestination	maxfiles	does	not	rotate	logs
properly

D.2.3.	Changes	in	MySQL	Cluster-5.0.5	(Not	released)

Functionality	added	or	changed:

Decreased	IndexMemory	Usage

Parallel	key	lookup	(read-multi-range)	for	queries	like	SELECT	*	FROM	t1
WHERE	primary_key	IN	(1,2,3,4,5,6,7,8,9,10);

Bugs	fixed:

Patches	merged	from	versions	4.1.11	and	4.1.12

(Bug	#8315)	NdbScanFilter	cmp	method	only	works	for	strings	of	exact
word	boundary	length

(Bug	#8103)	Configuration	handling	error

(Bug	#8035)	mysqld	signal	10	when	ndbd	is	shutdown

(Bug	#7631)	NDB$EVENT	contains	unreadable	event	and	table	names

(Bug	#7628)	Filtered	event	types	are	ignored

(Bug	#7627)	Drop	Event	operation	fails

(Bug	#7424)	create	index	on	datetime	fails

D.2.4.	Changes	in	MySQL	Cluster-5.0.4	(16	April	2005)

Functionality	added	or	changed:

Condition	pushdown	to	storage	engine	now	works	for	update	and	delete	as
well

Bugs	fixed:

(Bug	#9675)	Auto-increment	not	working	with	INSERT..SELECT	and
NDB	storage

(Bug	#9517)	Condition	pushdown	to	storage	engine	does	not	work	for
update/delete

(Bug	#9282)	API	Node	Crashes/Reloads	on	'DELETE	FROM'

(Bug	#9280)	Memory	leak	in	cluster	when	dependent	sub-queries	are	used

(Bug	#8585)	ndb_cache2	fails	on	aix52

D.2.5.	Changes	in	MySQL	Cluster-5.0.3	(23	March	2005:	Beta)

Functionality	added	or	changed:

Condition	pushdown	to	storage	engine

Query	cache	enabled	for	cluster

Bugs	fixed:

Patches	merged	from	version	4.1.10

D.2.6.	Changes	in	MySQL	Cluster-5.0.1	(27	July	2004)

Functionality	added	or	changed:

This	was	the	first	MySQL	Cluster	release	in	the	5.0	series.	As	nearly	all

attention	was	still	focused	on	getting	4.1	stable,	it	is	not	recommended	to
use	MySQL	5.0.1	for	MySQL	Cluster.

Bugs	fixed:

N/A

D.2.7.	Changes	in	MySQL	Cluster-4.1.13	(15	July	2005)

Functionality	added	or	changed:

Bugs	fixed:

(Bug	#11132)	Connections	between	data	nodes	and	management	nodes
were	not	being	closed	following	shutdown	of	ndb_mgmd.

(Bug	#11050)	ndb_mgm>	show	printed	incorrectly	after	master	data	node
failure.

(Bug	#10956)	More	than	7	node	restarts	with	--initial	caused	cluster	to
fail.

(Bug	#9826)	(Bug	#10948)	Schema	change	(DROP	TABLE,	ALTER	TABLE)
crashed	HPUX	and	PPC32.

(Bug	#9025)	Data	nodes	failed	to	restart	on	64-bit	Solaris.

(Bug	#11166)	Insert	records	were	incorrectly	applied	by	ndb_restore,	thus
making	restoration	from	backup	inconsistent	if	the	binlog	contained	inserts.

(Bug	#8918)	(Bug	#9363)	(Bug	#10711)	(Bug	#10058)	(Bug	#9025)
Cluster	would	time	out	and	crash	after	first	query;	setting	DataMemory	to
more	than	2GB	prevented	cluster	from	starting;	calling
ndb_select_count()	crashed	the	cluster.	(64-bit	Unix	OSes)

(Bug	#10190)	When	making	a	backup	of	a	cluster	where
NumberOfReplicas	was	equal	to	1,	the	backup's	metadata	was	corrupted.
(Linux)

(Bug	#9945)	ALTER	TABLE	caused	server	crash.	(Linux/390)

(Bug	#11133)	A	delete	operation	performed	as	part	of	a	transaction	caused
an	erroneous	result.

(Bug	#10294)	Not	allowing	sufficient	parallelism	in	cluster	configuration
(for	example,	NoOfTransactions	too	small)	caused	ndb_restore	to	fail
without	generating	any	error	messages.

(Bug	#11290)	Setting	TransactionInactiveTimeout=	0	did	not	result	in	an
infinite	timeout.

D.2.8.	Changes	in	MySQL	Cluster-4.1.12	(13	May	2005)

Functionality	added	or	changed:

Bugs	fixed:

(Bug	#10471)	Backup	can	become	inconsistent	with	certain	combinations
of	multiple-row	updates

(Bug	#10287)	ndb_select_all	"delimiter"	option	non	functional

(Bug	#10142)	Unhandled	resource	shortage	in	UNIQUE	index	code

(Bug	#10029)	crash	in	ordered	index	scan	after	db	full

(Bug	#10001)	2	NDB	nodes	get	signal	6	(abort)	in	DBTC

(Bug	#9969)	4012	-	has	misleading	error	message

(Bug	#9960)	START	BACKUP	reports	failure	albeit	succeeding

(Bug	#9924)	ABORT	BACKUP	1	crashes	4	node	cluster

(Bug	#9892)	Index	activation	file	during	node	recovery

(Bug	#9891)	Crash	in	DBACC	(line	7004)	during	commit

(Bug	#9865)	SELECT	does	not	function	properly

(Bug	#9839)	Column	with	AUTOINC	contains	-1	Value	on	node	stop

(Bug	#9757)	Uncompleted	node	failure	after	gracefully	stopping	node

(Bug	#9749)	Transactions	causes	deadlock	in	ACC

(Bug	#9724)	Node	fails	to	start:	Message:	File	has	already	been	opened

(Bug	#9691)	UPDATE	fails	on	attempt	to	update	primary	key

(Bug	#9675)	Auto-increment	not	working	with	INSERT..SELECT	and
NDB	storage

(Bug	#9318)	drop	database	does	not	drop	ndb	tables

(Bug	#9280)	Memory	leak	in	cluster	when	dependent	sub-queries	are	used

(Bug	#8928)	create	table	with	keys	will	shutdown	the	cluster

Creating	a	table	did	not	work	for	a	cluster	with	6	nodes.	(Bug	#8928)
Databases	with	1,	2,	4,	8,	...	(2n	nodes)	did	not	have	the	problem.	After	a
rolling	upgrade,	restart	each	node	manually	by	restarting	it	with	the	--
initial	option.	Otherwise,	use	dump	and	restore	after	an	upgrade.

D.2.9.	Changes	in	MySQL	Cluster-4.1.11	(01	April	2005)

Functionality	added	or	changed:

Bugs	fixed:

(Bug	#9916)	DbaccMain.cpp	/	DBACC	(Line:	4876)	/	Pointer	too	large

(Bug	#9435)	TIMESTAMP	columns	don't	update

(Bug	#9052)	Uninitialized	data	during	unique	index	build,	potential	cluster
crash

(Bug	#8876)	Timeout	when	committing	aborted	transaction	after	node
failure

(Bug	#8786)	ndb_autodiscover,	drop	index	can	fail,	wait	2	minutes	timeout

(Bug	#8853)	Transaction	aborted	after	long	time	during	node	failure	(4012)

(Bug	#8753)	Invalid	schema	object	version	after	dropping	index	(crash
fixed,	currently	retry	required)

(Bug	#8645)	Assertion	failure	with	multiple	management	servers

(Bug	#8557)	ndbd	does	not	get	same	nodeid	on	restart

(Bug	#8556)	corrupt	ndb_mgm	show	printout	for	certain	configurations

(Bug	#8167)	cluster	shared	memory	and	mysqld	signal	usage	clash

D.2.10.	Changes	in	MySQL	Cluster-4.1.10	(12	February	2005)

Bugs	fixed:

(Bug	#8284)	Out	of	fragment	memory	in	DBACC

(Bug	#8262)	Node	crash	due	to	bug	in	DBLQH

(Bug	#8208)	node	restart	fails	on	Aix	5.2

(Bug	#8167)	cluster	shared	memory	and	mysqld	signal	usage	clash

(Bug	#8101)	unique	index	and	error	4209	while	selecting

(Bug	#8070)	(Bug	#7937)	(Bug	#6716)	various	ndb_restore	core	dumps	on
HP-UX

(Bug	#8010)	4006	forces	MySQL	Node	Restart

(Bug	#7928)	out	of	connection	objects

(Bug	#7898)	mysqld	crash	with	ndb	(solaris)

(Bug	#7864)	Not	possible	to	have	more	than	4.5G	data	memory

D.2.11.	Changes	in	MySQL	Cluster-4.1.9	(13	January	2005)

Functionality	added	or	changed:

New	implementation	of	shared	memory	transporter.

Cluster	automatically	configures	shared	memory	transporter	if	possible.

Cluster	prioritizes	usage	of	transporters	with	shared	memory	and	localhost
TCP

Added	switches	to	control	the	above	functions,	ndb-shm	and	ndb-
optimized-node-selection.

Bugs	fixed:

(Bug	#7805)	config.ini	parsing	error

(Bug	#7798)	Running	range	scan	after	alter	table	in	different	thread	causes
node	failure

(Bug	#7761)	Alter	table	does	not	autocommit

(Bug	#7725)	Indexed	DATETIME	Columns	Return	Random	Results

(Bug	#7660)	START	BACKUP	does	not	increment	BACKUP-ID	(Big
Endian	machines)

(Bug	#7593)	Cannot	Create	A	Large	NDB	Data	Warehouse

(Bug	#7480)	Mysqld	crash	in	ha_ndbcluster	using	Query	Browser

(Bug	#7470)	shared	memory	transporter	does	not	connect

(Bug	#7396)	Primary	Key	not	working	in	NDB	Mysql	Clustered	table
(solaris)

(Bug	#7379)	ndb	restore	fails	to	handle	blobs	and	multiple	databases

(Bug	#7346)	ndb_restore	enters	infinite	loop

(Bug	#7340)	Problem	for	inserting	data	into	the	Text	field	on	utf8

(Bug	#7124)	ndb_mgmd	is	aborted	on	startup	when	using	SHM	connection

D.2.12.	Changes	in	MySQL	Cluster-4.1.8	(14	December	2004)

Functionality	added	or	changed:

Default	port	for	ndb_mgmd	was	changed	to	1186	(from	2200)	as	this	port
number	was	officially	assigned	to	MySQL	Cluster	by	IANA.

New	command	in	ndb_mgm,	PURGE	STALE	SESSIONS,	as	a
workaround	for	cases	where	nodes	fail	to	allocate	a	node	id	even	if	it	is	free
to	use.

New	command	in	ndb_mgm,	CONNECT.

The	ndb	executables	have	been	changed	to	make	use	of	the	regular	MySQL
command	line	option	parsing	features.	See	Section	15.6.5,	“Command
Options	for	MySQL	Cluster	Processes”,	for	notes	on	changes.

As	bonus	of	the	above	you	can	now	specify	all	command	line	options	in
my.cnf	using	the	executable	names	as	sections,	that	is,	[ndbd],	[ndb_mgmd],
[ndb_mgm],	[ndb_restore],	and	so	forth.

						[ndbd]

						ndb-connectstring=myhost.domain.com:1234

						[ndb_mgm]

						ndb-connectstring=myhost.domain.com:1234

Added	use	of	section	[mysql_cluster]	in	my.cnf.	All	cluster	executables,
including	mysqld,	parse	this	section.	For	example,	this	is	a	convenient	place
to	put	ndb-connectstring	so	that	it	need	be	specified	only	once.

Added	cluster	log	info	events	on	allocation	and	deallocation	of	nodeid's.

Added	cluster	log	info	events	on	connection	refuse	as	a	result	of	version
mismatch.

Extended	connectstring	syntax	to	allow	for	leaving	the	port	number	out.	For
example,	ndb-connectstring|connect-
string=myhost1,myhost2,myhost3	is	a	valid	connectstring	and	connect
occurs	on	default	port	1186.

Clear	text	ndb	error	messages	provided	also	for	error	codes	that	are	mapped
to	corresponding	mysql	error	codes,	by	executing	SHOW	WARNINGS	after	an
error	has	occurred	which	relates	to	the	ndb	storage	engine.

Significant	performance	improvements	done	for	read	performance,
especially	for	blobs.

Added	some	variables	for	performance	tuning,	ndb_force_send	and
ndb_use_exact_count.	Do	show	variables	like	'ndb%';	in	mysql	client
for	listing.	Use	set	command	to	alter	variables.

Added	variables	to	set	some	options,	ndb_use_transactions	and
ndb_autoincrement_prefetch_sz.

Bugs	fixed:

(Bug	#7303)	ndb_mgm:	Trying	to	set	CLUSTERLOG	for	a	specific	node	id
core	dumps

(Bug	#7193)	start	backup	gives	false	error	printout

(Bug	#7153)	Cluster	nodes	don't	report	error	on	endianness	mismatch

(Bug	#7152)	ndb_mgmd	segmentation	fault	on	incorrect	HostName	in
configuration

(Bug	#7104)	clusterlog	filtering	and	level	setting	broken

(Bug	#6995)	ndb_recover	on	varchar	fields	results	in	changing	case	of	data

(Bug	#6919)	all	status	only	shows	2	nodes	on	a	8-node	cluster

(Bug	#6871)	DBD	execute	failed:	Got	error	897	'Unknown	error	code'	from
ndbcluster

(Bug	#6794)	Wrong	outcome	of	update	operation	of	ndb	table

(Bug	#6791)	Segmentation	fault	when	config.ini	is	not	correctly	set

(Bug	#6775)	failure	in	acc	when	running	many	mysql	clients

(Bug	#6696)	ndb_mgm	command	line	options	inconsistent	with	behavior

(Bug	#6684)	ndb_restore	doesn't	give	error	messages	if	improper	command
given

(Bug	#6677)	ndb_mgm	can	crash	on	"ALL	CLUSTERLOG"

(Bug	#6538)	Error	code	returned	when	select	max()	on	empty	table	with
index

(Bug	#6451)	failing	create	table	givers	"ghost"	tables	which	are	impossible
to	remove

(Bug	#6435)	strange	behavior	of	left	join

(Bug	#6426)	update	with	long	pk	fails

(Bug	#6398)	update	of	primary	key	fails

(Bug	#6354)	mysql	does	not	complain	about	--ndbcluster	option	when	NDB
is	not	compiled	in

(Bug	#6331)	INSERT	IGNORE	..	SELECT	breaks	subsequent	inserts

(Bug	#6288)	cluster	nodes	crash	on	data	import

(Bug	#6031)	To	drop	database	you	have	to	execute	DROP	DATABASE
command	twice

(Bug	#6020)	LOCK	TABLE	+	delete	returns	error	208

(Bug	#6018)	REPLACE	does	not	work	for	BLOBs	+	NDB

(Bug	#6016)	Strange	crash	with	blobs	+	different	DATABASES

(Bug	#5973)	ndb	table	belonging	to	different	database	shows	up	in	show
tables

(Bug	#5872)	ALTER	TABLE	with	blob	from	ndb	table	to	myisam	fails

(Bug	#5844)	Failing	mysql-test-run	leaves	stray	NDB	processes	behind

(Bug	#5824)	HELP	text	messed	up	in	ndb_mgm

(Bug	#5786)	Duplicate	key	error	after	restore

(Bug	#5785)	lock	timeout	during	concurrent	update

(Bug	#5782)	Unknown	error	when	using	LIMIT	with	ndb	table

(Bug	#5756)	RESTART	node	from	ndb_mgm	fails

A	few	more	not	reported	bugs	fixed

D.2.13.	Changes	in	MySQL	Cluster-4.1.7	(23	October	2004)

Functionality	added	or	changed:

Optimization	1:	Improved	performance	on	index	scans.	Measured	30%
performance	increase	on	query	which	do	large	amounts	of	index	scans.

Optimization	2:	Improved	performance	on	primary	key	lookups.	Around
double	performance	for	autocommitted	primary	key	lookups.

Optimization	3:	Improved	performance	when	using	blobs	by	avoiding
usage	of	exclusive	locks	for	blobs.

Bugs	fixed:

A	few	bugs	fixed.

D.2.14.	Changes	in	MySQL	Cluster-4.1.6	(10	October	2004)

Functionality	added	or	changed:

Limited	character	set	support	for	storage	engine	NDBCLUSTER:

Char	set Collation
big5 big5_chinese_ci
	 big5_bin
binary binary

euckr euckr_korean_ci
	 euckr_bin
gb2312 gb2312_chinese_ci
	 gb2312_bin
gbk gbk_chinese_ci
	 gbk_bin
latin1 latin1_swedish_ci
	 latin1_bin
sjis sjis_japanese_ci
	 sjis_bin
tis620 tis620_bin
ucs2 ucs2_general_ci
	 ucs2_bin
ujis ujis_japanese_ci
	 ujis_bin
utf8 utf8_general_ci
	 utf8_bin

The	SCI	Transporter	has	been	brought	up-to-date	with	all	changes	and	now
works	and	has	been	documented	as	well.

Optimizations	when	several	clients	to	a	MySQL	Server	access	ndb	tables.

Added	more	checks	and	warnings	for	erroneous	and	inappropriate	cluster
configurations.

SHOW	TABLES	now	directly	shows	ndb	tables	created	on	a	different	MySQL
server,	that	is,	without	a	prior	table	access.

Enhanced	support	for	starting	MySQL	Server	independently	of	ndbd	and
ndb_mgmd.

Clear	text	ndb	error	messages	provided	by	executing	SHOW	WARNINGS	after
an	error	has	occurred	which	relates	to	the	ndb	storage	engine.

Bugs	fixed:

Quite	a	few	bugs	fixed.

D.2.15.	Changes	in	MySQL	Cluster-4.1.5	(16	September	2004)

Functionality	added	or	changed:

Many	queries	in	MySQL	Cluster	are	executed	as	range	scans	or	full	table
scans.	All	queries	that	don't	use	a	unique	hash	index	or	the	primary	hash
index	use	this	access	method.	In	a	distributed	system	it	is	crucial	that
batching	is	properly	performed.

In	previous	versions,	the	batch	size	was	fixed	to	16	per	data	node.	In	this
version	it	is	configurable	per	MySQL	Server.	So	for	queries	using	lots	of
large	scans	it	is	appropriate	to	set	this	parameter	rather	large	and	for	queries
using	many	small	scans	only	fetching	a	small	amount	of	records	it	is
appropriate	to	set	it	low.

The	performance	of	queries	can	easily	change	as	much	as	40%	based	on
how	this	variable	is	set.

In	future	versions	more	logic	will	be	implemented	for	assessing	the	batch
size	on	a	per-query	basis.	Thus,	the	semantics	of	the	new	configuration
variable	ScanBatchSize	are	likely	to	change.

The	fixed	size	overhead	of	the	ndbd	process	has	been	greatly	decreased.
This	is	also	true	for	the	overhead	per	operation	record	as	well	as	overhead
per	table	and	index.

A	number	of	new	configuration	variables	have	been	introduced	to	enable
configuration	of	system	buffers.	Configuration	variables	for	specifying	the
numbers	of	tables,	unique	hash	indexes,	and	ordered	indexes	have	also	been
introduced.

New	configuration	variables:	MaxNoOfOrderedIndexes,
MaxNoOfUniqueHashIndexes

Configuration	variables	no	longer	used:	MaxNoOfIndexes	(split	into	the	two
above).

In	previous	versions	ALTER	TABLE,	TRUNCATE	TABLE,	and	LOAD	DATA	were
performed	as	one	big	transaction.	In	this	version,	all	of	these	statements	are
automatically	separated	into	several	distinct	transactions.

This	removes	the	limitation	that	one	could	not	change	very	large	tables	due
to	the	MaxNoOfConcurrentOperations	parameter.

MySQL	CLuster's	online	backup	feature	now	backs	up	indexes	so	that	both
data	and	indexes	are	restored.

In	previous	versions	it	was	not	possible	to	use	NULL	in	indexes.	This	is	now
possible	for	all	supported	index	types.

Much	work	has	been	put	onto	making	AUTO_INCREMENT	features	work	as	for
other	table	handlers.	Autoincrements	as	a	partial	key	is	still	only	supported
by	MyISAM.

In	earlier	versions,	mysqld	would	crash	if	the	cluster	wasn't	started	with	the
--ndbcluster	option.	Now	mysqld	handles	cluster	crashes	and	starts
without	crashing.

The	-i	option	for	initial	startup	of	ndbd	has	been	removed.	Initial	startup
still	can	be	specified	by	using	the	--initial	option.	The	reason	for	this	is
to	ensure	that	it	is	clear	what	takes	place	when	using	--initial:	this	option
completely	removes	all	data	from	the	disk	and	should	only	be	used	at	initial
start,	in	certain	software	upgrade	cases,	and	in	some	cases	as	a	workaround
when	nodes	cannot	be	restarted	successfully.

The	management	client	(ndb_mgm)	now	has	additional	commands	and
more	information	is	printed	for	some	commands	such	as	show.

In	previous	versions,	the	files	were	called	ndb_0..	when	it	wasn't	possible
to	allocate	a	node	ID	when	starting	the	node.	To	ensure	that	files	are	not	so
easily	overwritten,	these	files	are	now	named	ndb_pid..,	where	pid	is	the
process	ID	assigned	by	the	OS.

The	default	parameters	have	changed	for	ndb_mgmd	and	ndbd.	In
particular,	they	are	now	started	as	daemons	by	default.	The	-n	option	has
been	removed	since	it	could	cause	confusion	as	to	its	meaning	(nostart	or
nodaemon).

In	the	configuration	file,	you	can	now	use	[NDBD]	as	an	alias	for	[DB],
[MYSQLD]	as	an	alias	for	[API],	and	[NDB_MGMD]	as	an	alias	for	[MGM].	Note:
In	fact,	[NDBD],	[MYSQLD],	and	[NDB_MGMD]	are	now	the	preferred
designations,	although	the	older	ones	will	continue	to	be	supported	for
some	time	to	come	in	order	to	maintain	backward	compatibility.

Many	more	checks	for	consistency	in	configuration	have	been	introduced	to
in	order	to	provide	quicker	feedback	on	configuration	errors.

In	the	connect	string,	it	is	now	possible	to	use	both	‘;’	and	‘,’	as	the
separator	between	entries.	Thus,	"nodeid=2,host=localhost:2200"	is
equivalent	to	"nodeid=2;host=localhost:2200".

In	the	configuration	file,	it	is	also	possible	to	use	‘:’	or	‘=’	for	assignment
values.	For	example,	MaxNoOfOrderedIndexes	:	128	and
MaxNoOfOrderedIndexes	=	128	are	equivalent	expressions.

The	configuration	variable	names	are	now	case	insensitive,	so
MaxNoOfOrderedIndexes:	128	is	equivalent	to	MAXNOOFORDEREDINDEXES	=
128.

It	is	possible	now	to	set	the	backup	directory	separately	from	the
FileSystemPath	by	using	the	BackupDir	configuration	variable.

Log	files	and	trace	files	can	now	be	placed	in	any	directory	by	setting	the
DataDir	configuration	variable.

FileSystemPath	is	no	longer	mandatory	and	defaults	to	DataDir.

Queries	involving	tables	from	different	databases	are	now	supported.

It	is	now	possible	to	update	the	primary	key.

The	performance	of	ordered	indexes	has	been	greatly	improved,	particularly
the	maintenance	of	indexes	on	updates,	inserts	and	deletes.

Bugs	fixed:

Quite	a	few	bugs	fixed.

D.2.16.	Changes	in	MySQL	Cluster-4.1.4	(31	August	2004)

Functionality	added	or	changed:

The	names	of	the	log	files	and	trace	files	created	by	the	ndbd	and
ndb_mgmd	processes	have	changed.

Support	for	the	many	BLOB	data	types	was	introduced	in	this	version.

Bugs	fixed:

Quite	a	few	bugs	were	fixed	in	the	4.1.4	release.

D.2.17.	Changes	in	MySQL	Cluster-4.1.3	(28	June	2004)

Functionality	added	or	changed:

This	was	the	first	MySQL	Cluster	release	so	all	functionality	was	new.

Bugs	fixed:

Various	bugs	fixed	in	the	development	process	leading	up	to	4.1.3.

D.3.	MySQL	Connector/ODBC	(MyODBC)	Change
History

D.3.1.	Changes	in	MyODBC	3.51.13

Functionality	added	or	changed:

N/A

Bugs	fixed:

The	SQLDriverConnect()	ODBC	method	did	not	work	with	recent
MyODBC	releases.	(Bug	#12393)

D.3.2.	Changes	in	MyODBC	3.51.12

Functionality	added	or	changed:

N/A

Bugs	fixed:

File	DSNs	could	not	be	saved.	(Bug	#12019)

SQLColumns()	returned	no	information	for	tables	that	had	a	column	named
using	a	reserved	word.	(Bug	#9539)

D.3.3.	Changes	in	MyODBC	3.51.11

Functionality	added	or	changed:	No	changes.

Bugs	fixed:

mysql_list_dbcolumns()	and	insert_fields()	were	retrieving	all	rows
from	a	table.	Fixed	the	queries	generated	by	these	functions	to	return	no
rows.	(Bug	#8198)

SQLGetTypoInfo()	returned	tinyblob	for	SQL_VARBINARY	and	nothing	for

SQL_BINARY.	Fixed	to	return	varbinary	for	SQL_VARBINARY,	binary	for
SQL_BINARY,	and	longblob	for	SQL_LONGVARBINARY.	(Bug	#8138)

D.4.	MySQL	Connector/NET	Change	History

D.4.1.	Version	1.0.8

An	exception	would	be	raised	when	using	an	output	parameter	to	a
System.String	value.	(Bug	#17814)

The	DiscoverParameters	function	would	fail	when	a	stored	procedure	used
a	NUMERIC	parameter	type.	(Bug	#19515)

When	running	a	query	that	included	a	date	comparison,	a	DateReader	error
would	be	raised.	(Bug	#19481)

Parameter	substitution	in	queries	where	the	order	of	parameters	and	table
fields	did	not	match	would	substitute	incorrect	values.	(Bug	#19261)

When	working	with	multiple	threads,	character	set	initialization	would
generate	errors.	(Bug	#17106)

When	using	an	unsigned	64-bit	integer	in	a	stored	procedure,	the	unsigned
bit	would	be	lost	stored.	(Bug	#16934)

The	connection	string	parser	did	not	allow	single	or	double	quotes	in	the
password.	(Bug	#16659)

The	CommandBuilder	ignored	Unsigned	flag	at	Parameter	creation.	(Bug
#17375)

CHAR	type	added	to	MySqlDbType.	(Bug	#17749)

Unsigned	data	types	were	not	properly	supported.	(Bug	#16788)

D.4.2.	Version	1.0.7

The	parameter	collection	object's	Add()	method	added	parameters	to	the	list
without	first	checking	to	see	whether	they	already	existed.	Now	it	updates
the	value	of	the	existing	parameter	object	if	it	exists.	(Bug	#13927)

A	#42000Query	was	empty	exception	occurred	when	executing	a	query
built	with	MySqlCommandBuilder,	if	the	query	string	ended	with	a
semicolon.	(Bug	#14631)

Implemented	the	MySqlCommandBuilder.DeriveParameters	method	that	is
used	to	discover	the	parameters	for	a	stored	procedure.	(Bug	#13632)

Added	support	for	the	cp932	character	set.	(Bug	#13806)

Calling	a	stored	procedure	where	a	parameter	contained	special	characters
(such	as	'@')	would	produce	an	exception.	Note	that	ANSI_QUOTES	had	to	be
enabled	to	make	this	possible.	(Bug	#13753)

A	statement	that	contained	multiple	references	to	the	same	parameter	could
not	be	prepared.	(Bug	#13541)

The	Ping()	method	did	not	update	the	State	property	of	the	Connection
object.	(Bug	#13658)

D.4.3.	Version	1.0.6

The	nant	build	sequence	had	problems.	(Bug	#12978)

Serializing	a	parameter	failed	if	the	first	value	passed	in	was	NULL.	(Bug
#13276)

Field	names	that	contained	the	following	characters	caused	errors:	()%<>/
(Bug	#13036)

The	MySQL	Connector/NET	1.0.5	installer	would	not	install	alongside
MySQL	Connector/NET	1.0.4.	(Bug	#12835)

MySQL	Connector/NET	1.0.5	could	not	connect	on	Mono.	(Bug	#13345)

D.4.4.	Version	1.0.5

With	multiple	hosts	in	the	connection	string,	MySQL	Connector/NET
would	not	connect	to	the	last	host	in	the	list.	(Bug	#12628)

MySQL	Connector/NET	interpreted	the	new	decimal	data	type	as	a	byte

array.	(Bug	#11294)

The	cp1250	character	set	was	not	supported.	(Bug	#11621)

Connection	could	fail	when	.NET	thread	pool	had	no	available	worker
threads.	(Bug	#10637)

Decimal	parameters	caused	syntax	errors.	(Bug	#11550,	Bug	#10486,	Bug
#10152)

A	call	to	a	stored	procedure	caused	an	exception	if	the	stored	procedure	had
no	parameters.	(Bug	#11542)

Certain	malformed	queries	would	trigger	a	Connection	must	be	valid
and	open	error	message.	(Bug	#11490)

The	MySqlCommandBuilder	class	could	not	handle	queries	that	referenced
tables	in	a	database	other	than	the	default	database.	(Bug	#8382)

MySQL	Connector/NET	could	not	work	properly	with	certain	regional
settings.	(WL#8228)

Trying	to	use	a	stored	procedure	when	Connection.Database	was	not
populated	generated	an	exception.	(Bug	#11450)

Trying	to	read	a	TIMESTAMP	column	generated	an	exception.	(Bug	#7951)

Parameters	were	not	recognized	when	they	were	separated	by	linefeeds.
(Bug	#9722)

Calling	MySqlConnection.clone	when	a	connection	string	had	not	yet	been
set	on	the	original	connection	would	generate	an	error.	(Bug	#10281)

Added	support	to	call	a	stored	function	from	MySQL	Connector/NET.	(Bug
#10644)

MySQL	Connector/NET	could	not	connect	to	MySQL	4.1.14.	(Bug
#12771)

The	ConnectionString	property	could	not	be	set	when	a	MySqlConnection

object	was	added	with	the	designer.	(Bug	#12551,	Bug	#8724)

D.4.5.	Version	1.0.4	1-20-05

Bug	#7243	calling	prepare	causing	exception	[fixed]

Fixed	another	small	problem	with	prepared	statements

Bug	#7258	MySqlCommand.Connection	returns	an	IDbConnection	[fixed]

Bug	#7345	MySqlAdapter.Fill	method	throws	Error	message	:	Non-
negative	number	required	[fixed]

Bug	#7478	Clone	method	bug	in	MySqlCommand	[fixed]

Bug	#7612	MySqlDataReader.GetString(index)	returns	non-Null	value
when	field	is	Null	[fixed]

Bug	#7755	MySqlReader.GetInt32	throws	exception	if	column	is	unsigned
[fixed]

Bug	#7704	GetBytes	is	working	no	more	[fixed]

Bug	#7724	Quote	character	\222	not	quoted	in	EscapeString	[fixed]

Fixed	problem	that	causes	named	pipes	to	not	work	with	some	blob
functionality

Fixed	problem	with	shared	memory	connections

Bug	#7436	Problem	with	Multiple	resultsets...	[fixed]

Added	or	filled	out	several	more	topics	in	the	API	reference	documentation

D.4.6.	Version	1.0.3-gamma	12-10-04

Made	MySQL	the	default	named	pipe	name

Now	SHOW	COLLATION	is	used	upon	connection	to	retrieve	the	full	list
of	charset	ids

Fixed	Invalid	character	set	index:	200	(Bug	#6547)

Installer	now	includes	options	to	install	into	GAC	and	create	Start	Menu
items

Bug	#6863	-	Int64	Support	in	MySqlCommand	Parameters	[fixed]

Connections	now	do	not	have	to	give	a	database	on	the	connection	string

Bug	#6770	-	MySqlDataReader.GetChar(int	i)	throws	IndexOutOfRange
Exception	[fixed]

Fixed	problem	where	multiple	resultsets	having	different	numbers	of
columns	would	cause	a	problem

Bug	#6983	Exception	stack	trace	lost	when	re-throwing	exceptions	[fixed]

Fixed	major	problem	with	detecting	null	values	when	using	prepared
statements

Bug	#6902	Errors	in	parsing	stored	procedure	parameters	[fixed]

Bug	#6668	Integer	"out"	parameter	from	stored	procedure	returned	as	string
[fixed]

Bug	#7032	MySqlDateTime	in	Datatables	sorting	by	Text,	not	Date.	[fixed]

Bug	#7133	Invalid	query	string	when	using	inout	parameters	[fixed]

Bug	#6831	Test	suite	fails	with	MySQL	4.0	because	of	case	sensitivity	of
table	names	[fixed]

Bug	#7132	Inserting	DateTime	causes	System.InvalidCastException	to	be
thrown	[fixed]

Bug	#6879	InvalidCast	when	using	DATE_ADD-function	[fixed]

Bug	#6634	An	Open	Connection	has	been	Closed	by	the	Host	System
[fixed]

Added	ServerThread	property	to	MySqlConnection	to	expose	server	thread

id

Added	Ping	method	to	MySqlConnection

Changed	the	name	of	the	test	suite	to	MySql.Data.Tests.dll

D.4.7.	Version	1.0.2-gamma	04-11-15

Fixed	problem	with	MySqlBinary	where	string	values	could	not	be	used	to
update	extended	text	columns

Fixed	Installation	directory	ignored	using	custom	installation	(Bug	#6329)

Fixed	problem	where	setting	command	text	leaves	the	command	in	a
prepared	state

Fixed	double	type	handling	in	MySqlParameter(string	parameterName,
object	value)	(Bug	#6428)

Fixed	Zero	date	"0000-00-00"	is	returned	wrong	when	filling	Dataset	(Bug
#6429)

Fixed	problem	where	calling	stored	procedures	might	cause	an	"Illegal	mix
of	collations"	problem.

Added	charset	connection	string	option

Fixed	#HY000	Illegal	mix	of	collations	(latin1_swedish_ci,IMPLICIT)	and
(utf8_general_	(Bug	#6322)

Added	the	TableEditor	CS	and	VB	sample

Fixed	Charset-map	for	UCS-2	(Bug	#6541)

Updated	the	installer	to	include	the	new	samples

Fixed	Long	inserts	take	very	long	time	(Bu	#5453)

Fixed	Objects	not	being	disposed	(Bug	#6649)

Provider	is	now	using	character	set	specified	by	server	as	default

D.4.8.	Version	1.0.1-beta2	04-10-27

Fixed	BUG	#5602	Possible	bug	in	MySqlParameter(string,	object)
constructor

Fixed	BUG	#5458	Calling	GetChars	on	a	longtext	column	throws	an
exception

Fixed	BUG	#5474	cannot	run	a	stored	procedure	populating
mysqlcommand.parameters

Fixed	BUG	#5469	Setting	DbType	throws	NullReferenceException

Fixed	problem	where	connector	was	not	issuing	a	CMD_QUIT	before
closing	the	socket

Fixed	BUG	#5392	MySqlCommand	sees	"?"	as	parameters	in	string	literals

Fixed	problem	with	ConnectionInternal	where	a	key	might	be	added	more
than	once

CP1252	is	now	used	for	Latin1	only	when	the	server	is	4.1.2	and	later

Fixed	BUG	#5388	DataReader	reports	all	rows	as	NULL	if	one	row	is
NULL

Virtualized	driver	subsystem	so	future	releases	could	easily	support	client
or	embedded	server	support

Field	buffers	being	reused	to	decrease	memory	allocations	and	increase
speed

Fixed	problem	where	using	old	syntax	while	using	the	interfaces	caused
problems

Using	PacketWriter	instead	of	Packet	for	writing	to	streams

Refactored	compression	code	into	CompressedStream	to	clean	up

NativeDriver

Added	test	case	for	resetting	the	command	text	on	a	prepared	command

Fixed	problem	where	MySqlParameterCollection.Add()	would	throw
unclear	exception	when	given	a	null	value	(Bug	#5621)

Fixed	construtor	initialize	problems	in	MySqlCommand()	(Bug	#5613)

Fixed	Parsing	the	';'	char	(Bug	#5876)

Fixed	missing	Reference	in	DbType	setter	(Bug	#5897)

Fixed	System.OverflowException	when	using	YEAR	datatype	(Bug	#6036)

Added	Aggregate	function	test	(wasn't	really	a	bug)

Fixed	serializing	of	floating	point	parameters	(double,	numeric,	single,
decimal)	(Bug	#5900)

IsNullable	error	(Bug	#5796)

Fixed	problem	where	connection	lifetime	on	the	connect	string	was	not
being	respected

Fixed	problem	where	Min	Pool	Size	was	not	being	respected

Fixed	MySqlDataReader	and	'show	tables	from	...'	behavior	(Bug	#5256)

Implemented	SequentialAccess

Fixed	MySqlDateTime	sets	IsZero	property	on	all	subseq.records	after	first
zero	found	(Bug	#6006)

Fixed	Can't	display	Chinese	correctly	(Bug	#5288)

Fixed	Russian	character	support	as	well

Fixed	Method	TokenizeSql()	uses	only	a	limited	set	of	valid	characters	for
parameters	(Bug	#6217)

Fixed	NET	Connector	source	missing	resx	files	(Bug	#6216)

Fixed	DBNull	Values	causing	problems	with	retrieving/updating	queries.
(Bug	#5798)

Fixed	Yet	Another	"object	reference	not	set	to	an	instance	of	an	object"
(Bug	#5496)

Fixed	problem	in	PacketReader	where	it	could	try	to	allocate	the	wrong
buffer	size	in	EnsureCapacity

Fixed	GetBoolean	returns	wrong	values	(Bug	#6227)

Fixed	IndexOutOfBounds	when	reading	BLOB	with	DataReader	with
GetString(index)	(Bug	#6230)

D.4.9.	Version	1.0.0	04-09-01

Fixed	BUG#	3889	Thai	encoding	not	correctly	supported

Updated	many	of	the	test	cases

Fixed	problem	with	using	compression

Bumped	version	number	to	1.0.0	for	beta	1	release

Added	COPYING.rtf	file	for	use	in	installer

Removed	all	of	the	XML	comment	warnings	(I'll	clean	them	up	better	later)

Removed	some	last	references	to	ByteFX

D.4.10.	Version	0.9.0	04-08-30

Added	test	fixture	for	prepared	statements

All	type	classes	now	implement	a	SerializeBinary	method	for	sending	their
data	to	a	PacketWriter

Added	PacketWriter	class	that	will	enable	future	low-memory	large	object

handling

Fixed	many	small	bugs	in	running	prepared	statements	and	stored
procedures

Changed	command	so	that	an	exception	will	not	be	throw	in	executing	a
stored	procedure	with	parameters	in	old	syntax	mode

SingleRow	behavior	now	working	right	even	with	limit

GetBytes	now	only	works	on	binary	columns

Logger	now	truncates	long	sql	commands	so	blob	columns	don't	blow	out
our	log

host	and	database	now	have	a	default	value	of	""	unless	otherwise	set

FIXED	BUG#	5214	Connection	Timeout	seems	to	be	ignored

Added	test	case	for	bug#	5051:	GetSchema	not	working	correctly

Fixed	problem	where	GetSchema	would	return	false	for	IsUnique	when	the
column	is	key

MySqlDataReader	GetXXX	methods	now	using	the	field	level	MySqlValue
object	and	not	performing	conversions

FIXED	BUG#	5097:	DataReader	returning	NULL	for	time	column

Added	test	case	for	LOAD	DATA	LOCAL	INFILE

Added	replacetext	custom	nant	task

Added	CommandBuilderTest	fixture

Added	Last	One	Wins	feature	to	CommandBuilder

Fixed	persist	security	info	case	problem

Fixed	GetBool	so	that	1,	true,	"true",	and	"yes"	all	count	as	trueWL#	2024
Make	parameter	mark	configurable

Added	the	"old	syntax"	connection	string	parameter	to	allow	use	of	@
parameter	marker

Fixed	Bug	#4658	MySqlCommandBuilder

Fixed	Bug	#4864	ByteFX.MySqlClient	caches	passwords	if	'Persist
Security	Info'	is	false

Updated	license	banner	in	all	source	files	to	include	FLOSS	exception

Added	new	.Types	namespace	and	implementations	for	most	current	MySql
types

Added	MySqlField41	as	a	subclass	of	MySqlField

Changed	many	classes	to	now	use	the	new	.Types	types

Changed	type	enum	int	to	Int32,	short	to	Int16,	and	bigint	to	Int64

Added	dummy	types	UInt16,	UInt32,	and	UInt64	to	allow	an	unsigned
parameter	to	be	made

Connections	are	now	reset	when	they	are	pulled	from	the	connection	pool

Refactored	auth	code	in	driver	so	it	can	be	used	for	both	auth	and	reset

Added	UserReset	test	in	PoolingTests.cs

Connections	are	now	reset	using	COM_CHANGE_USER	when	pulled
from	the	pool

Implemented	SingleResultSet	behavior

Implemented	support	of	unicode

Added	char	set	mappings	for	utf-8	and	ucs-2

fixed	Bug	#4520	time	fields	overflow	using	bytefx	.net	mysql	driver

Modified	time	test	in	data	type	test	fixture	to	check	for	time	spans	where
hours	>	24

Fixed	Bug	#4505	Wrong	string	with	backslash	escaping	in
ByteFx.Data.MySqlClient.MySqlParameter

Added	code	to	Parameter	test	case	TestQuoting	to	test	for	backslashes

Fixed	Bug	#4486	mysqlcommandbuilder	fails	with	multi-word	column
names

Fixed	bug	in	TokenizeSql	where	underscore	would	terminate	character
capture	in	parameter	name

Added	test	case	for	spaces	in	column	names

Fixed	bug#	4324	-	MySqlDataReader.GetBytes	don't	works	correctly

Added	GetBytes()	test	case	to	DataReader	test	fixture

Now	reading	all	server	variables	in	InternalConnection.Configure	into
Hashtable

Now	using	string[]	for	index	map	in	CharSetMap

Added	CRInSQL	test	case	for	carriage	returns	in	SQL

setting	maxPacketSize	to	default	value	in	Driver.ctor

Fixed	bug	#4442	-	Setting	MySqlDbType	on	a	parameter	doesn't	set	generic
type

Removed	obsolete	data	types	Long	and	LongLong

Fixed	bug#	4071	-	Overflow	exception	thrown	when	using	"use	pipe"	on
connection	string

Changed	"use	pipe"	keyword	to	"pipe	name"	or	just	"pipe"

Allow	reading	multiple	resultsets	from	a	single	query

Added	flags	attribute	to	ServerStatusFlags	enum

Changed	name	of	ServerStatus	enum	to	ServerStatusFlags

Fixed	BUG	#4386	-	Inserted	data	row	doesn't	update	properly

Fixed	bug	#4074	-	Error	processing	show	create	table

Change	Packet.ReadLenInteger	to	ReadPackedLong	and	added
packet.ReadPackedInteger	that	alwasy	reads	integers	packed	with	2,3,4

Added	syntax.cs	test	fixture	to	test	various	SQL	syntax	bugs

Fixed	bug#	4149	Improper	handling	of	time	values.	Now	time	value	of
00:00:00	is	not	treated	as	null.

Moved	all	test	suite	files	into	TestSuite	folder

Fixed	bug	where	null	column	would	move	the	result	packet	pointer
backward

Added	new	nant	build	script

Fixed	BUG	#3917	-	clear	tablename	so	it	will	be	regen'ed	properly	during
the	next	GenerateSchema.

Fixed	bug	#3915	-	GetValues	was	always	returning	zero	and	was	also
always	trying	to	copy	all	fields	rather	than	respecting	the	size	of	the	array
passed	in.

Implemented	shared	memory	access	protocol

Implemented	prepared	statements	for	MySQL	4.1

Implemented	stored	procedures	for	MySQL	5.0

Renamed	MySqlInternalConnection	to	InternalConnection

SQL	is	now	parsed	as	chars,	fixes	problems	with	other	languages

Added	logging	and	allow	batch	connection	string	options

Fixed	bug	#3888	-	RowUpdating	event	not	set	when	setting	the
DataAdapter	property

Fixed	bug	in	char	set	mapping

Implemented	4.1	authentication

Improved	open/auth	code	in	driver

Improved	how	connection	bits	are	set	during	connection

Database	name	is	now	passed	to	server	during	initial	handshake

Changed	namespace	for	client	to	MySql.Data.MySqlClient

Changed	assembly	name	of	client	to	MySql.Data.dll

Changed	license	text	in	all	source	files	to	GPL

Added	the	MySqlClient.build	Nant	file

Removed	the	mono	batch	files

Moved	some	of	the	unused	files	into	notused	folder	so	nant	build	file	can
use	wildcards

Implemented	shared	memory	accesss

Major	revamp	in	code	structure

Prepared	statements	now	working	for	MySql	4.1.1	and	later

Finished	implementing	auth	for	4.0,	4.1.0,	and	4.1.1

Changed	namespace	from	MySQL.Data.MySQLClient	back	to
MySql.Data.MySqlClient

Fixed	bug	in	CharSetMapping	where	it	was	trying	to	use	text	names	as	ints

Changed	namespace	to	MySQL.Data.MySQLClient

Integrated	auth	changes	from	UC2004

Fixed	bug	where	calling	any	of	the	GetXXX	methods	on	a	datareader

before	or	after	reading	data	would	not	throw	the	appropriate	exception
(thanks	Luca	Morelli	<morelli.luca@iol.it>)

Added	TimeSpan	code	in	parameter.cs	to	properly	serialize	a	timespan
object	to	mysql	time	format	(thanks	Gianluca	Colombo
<g.colombo@alfi.it>)

Added	TimeStamp	to	parameter	serialization	code.	Prevented	DataAdatper
updates	from	working	right	(thanks	MIchael	King)

Fixed	a	misspelling	in	MySqlHelper.cs	(thanks	Patrick	Kristiansen)

D.4.11.	Version	0.76

Driver	now	using	charset	number	given	in	handshake	to	create	encoding

Changed	command	editor	to	point	to	MySqlClient.Design

Fixed	bug	in	Version.isAtLeast

Changed	DBConnectionString	to	support	changes	done	to
MySqlConnectionString

Removed	SqlCommandEditor	and	DataAdapterPreviewDialog

Using	new	long	return	values	in	many	places

Integrated	new	CompressedStream	class

Changed	ConnectionString	and	added	attributes	to	allow	it	to	be	used	in
MySqlClient.Design

Changed	packet.cs	to	support	newer	lengths	in	ReadLenInteger

changed	other	classes	to	use	new	properties	and	fields	of
MySqlConnectionString

ConnectionInternal	is	now	using	PING	to	see	whether	the	server	is	alive

Moved	toolbox	bitmaps	into	resource/

Changed	field.cs	to	allow	values	to	come	directly	from	row	buffer

Changed	to	use	the	new	driver.Send	syntax

Using	a	new	packet	queueing	system

started	work	handling	the	"broken"	compression	packet	handling

Fixed	bug	in	StreamCreator	where	failure	to	connect	to	a	host	would
continue	to	loop	infinitly	(thanks	Kevin	Casella)

Improved	connectstring	handling

Moved	designers	into	Pro	product

Removed	some	old	commented	out	code	from	command.cs

Fixed	a	problem	with	compression

Fixed	connection	object	where	an	exception	throw	prior	to	the	connection
opening	would	not	leave	the	connection	in	the	connecting	state	(thanks
Chris	Cline)

Added	GUID	support

Fixed	sequence	out	of	order	bug	(thanks	Mark	Reay)

D.4.12.	Version	0.75

Enum	values	now	supported	as	parameter	values	(thanks	Philipp	Sumi)

Year	datatype	now	supported

fixed	compression

Fixed	bug	where	a	parameter	with	a	TimeSpan	as	the	value	would	not
serialize	properly

Fixed	bug	where	default	ctor	would	not	set	default	connection	string	values

Added	some	XML	comments	to	some	members

Work	to	fix/improve	compression	handling

Improved	ConnectionString	handling	so	that	it	better	matches	the	standard
set	by	SqlClient.

A	MySqlException	is	now	thrown	if	a	username	is	not	included	in	the
connection	string

Localhost	is	now	used	as	the	default	if	not	specified	on	the	connection
string

An	exception	is	now	thrown	if	an	attempt	is	made	to	set	the	connection
string	while	the	connection	is	open

Small	changes	to	ConnectionString	docs

Removed	MultiHostStream	and	MySqlStream.	Replaced	it	with
Common/StreamCreator

Added	support	for	Use	Pipe	connection	string	value

Added	Platform	class	for	easier	access	to	platform	utility	functions

Fixed	small	pooling	bug	where	new	connection	was	not	getting	created
after	IsAlive	fails

Added	Platform.cs	and	StreamCreator.cs

Fixed	Field.cs	to	properly	handle	4.1	style	timestamps

Changed	Common.Version	to	Common.DBVersion	to	avoid	name	conflict

Fixed	field.cs	so	that	text	columns	return	the	right	field	type	(thanks
beni27@gmx.net)

Added	MySqlError	class	to	provide	some	reference	for	error	codes	(thanks
Geert	Veenstra)

D.4.13.	Version	0.74

Added	Unix	socket	support	(thanks	Mohammad	DAMT	[md@mt.web.id])

only	calling	Thread.Sleep	when	no	data	is	available

improved	escaping	of	quote	characters	in	parameter	data

removed	misleading	comments	from	parameter.cs

fixed	pooling	bug

same	pooling	bug	fixed	again!!	;-)

Fixed	ConnectionSTring	editor	dialog	(thanks	marco	p	(pomarc))

UserId	now	supported	in	connection	strings	(thanks	Jeff	Neeley)

Attempting	to	create	a	parameter	that	is	not	input	throws	an	exception
(thanks	Ryan	Gregg)

Added	much	documentation

checked	in	new	MultiHostStream	capability.	Big	thanks	to	Dan	Guisinger
for	this.	he	originally	submitted	the	code	and	idea	of	supporting	multiple
machines	on	the	connect	string.

Added	alot	of	documentation.	Still	alot	to	do.

Fixed	speed	issue	with	0.73

changed	to	Thread.Sleep(0)	in	MySqlDataStream	to	help	optimize	the	case
where	it	doesn't	need	to	wait	(thanks	Todd	German)

Prepopulating	the	idlepools	to	MinPoolSize

Fixed	MySqlPool	deadlock	condition	as	well	as	stupid	bug	where
CreateNewPooledConnection	was	not	ever	adding	new	connections	to	the
pool.	Also	fixed	MySqlStream.ReadBytes	and	ReadByte	to	not	use
TicksPerSecond	which	does	not	appear	to	always	be	right.	(thanks	Matthew
J.	Peddlesden)

Fix	for	precision	and	scale	(thanks	Matthew	J.	Peddlesden)

Added	Thread.Sleep(1)	to	stream	reading	methods	to	be	more	cpu	friendly
(thanks	Sean	McGinnis)

Fixed	problem	where	ExecuteReader	would	sometime	return	null	(thanks
Lloyd	Dupont)

Fixed	major	bug	with	null	field	handling	(thanks	Naucki)

enclosed	queries	for	max_allowed_packet	and	characterset	inside	try	catch
(and	set	defaults)

fixed	problem	where	socket	was	not	getting	closed	properly	(thanks	Steve!)

Fixed	problem	where	ExecuteNonQuery	was	not	always	returning	the	right
value

Fixed	InternalConnection	to	not	use	@@session.max_allowed_packet	but
use	@@max_allowed_packet.	(Thanks	Miguel)

Added	many	new	XML	doc	lines

Fixed	sql	parsing	to	not	send	empty	queries	(thanks	Rory)

Fixed	problem	where	the	reader	was	not	unpeeking	the	packet	on	close

Fixed	problem	where	user	variables	were	not	being	handled	(thanks	Sami
Vaaraniemi)

Fixed	loop	checking	in	the	MySqlPool	(thanks	Steve	M.	Brown)

Fixed	ParameterCollection.Add	method	to	match	SqlClient	(thanks	Joshua
Mouch)

Fixed	ConnectionSTring	parsing	to	handle	no	and	yes	for	boolean	and	not
lowercase	values	(thanks	Naucki)

Added	InternalConnection	class,	changes	to	pooling

Implemented	Persist	Security	Info

Added	security.cs	and	version.cs	to	project

Fixed	DateTime	handling	in	Parameter.cs	(thanks	Burkhard	Perkens-
Golomb)

Fixed	parameter	serialization	where	some	types	would	throw	a	cast
exception

Fixed	DataReader	to	convert	all	returned	values	to	prevent	casting	errors
(thanks	Keith	Murray)

Added	code	to	Command.ExecuteReader	to	return	null	if	the	initial	SQL
command	throws	an	exception	(thanks	Burkhard	Perkens-Golomb)

Fixed	ExecuteScalar	bug	introduced	with	restructure

Restructure	to	allow	for	LOCAL	DATA	INFILE	and	better	sequencing	of
packets

Fixed	several	bugs	related	to	restructure.

Early	work	done	to	support	more	secure	passwords	in	Mysql	4.1.	Old
passwords	in	4.1	not	supported	yet

Parameters	appearing	after	system	parameters	are	now	handled	correctly
(Adam	M.	(adammil))

strings	can	now	be	assigned	directly	to	blob	fields	(Adam	M.)

Fixed	float	parameters	(thanks	Pent)

Improved	Parameter	ctor	and	ParameterCollection.Add	methods	to	better
match	SqlClient	(thx	Joshua	Mouch)

Corrected	Connection.CreateCommand	to	return	a	MySqlCommand	type

Fixed	connection	string	designer	dialog	box	problem	(thanks	Abraham
Guyt)

Fixed	problem	with	sending	commands	not	always	reading	the	response
packet	(thanks	Joshua	Mouch)

Fixed	parameter	serialization	where	some	blobs	types	were	not	being

handled	(thanks	Sean	McGinnis)

Removed	spurious	MessageBox.show	from	DataReader	code	(thanks
Joshua	Mouch)

Fixed	a	nasty	bug	in	the	split	sql	code	(thanks	everyone!	:-))

D.4.14.	Version	0.71

Fixed	bug	in	MySqlStream	where	too	much	data	could	attempt	to	be	read
(thanks	Peter	Belbin)

Implemented	HasRows	(thanks	Nash	Pherson)

Fixed	bug	where	tables	with	more	than	252	columns	cause	an	exception	(
thanks	Joshua	Kessler)

Fixed	bug	where	SQL	statements	ending	in	;	would	cause	a	problem	(
thanks	Shane	Krueger)

Fixed	bug	in	driver	where	error	messages	were	getting	truncated	by	1
character	(thanks	Shane	Krueger)

Made	MySqlException	serializable	(thanks	Mathias	Hasselmann)

D.4.15.	Version	0.70

Updated	some	of	the	character	code	pages	to	be	more	accurate

Fixed	problem	where	readers	could	be	opened	on	connections	that	had
readers	open

Release	of	0.70

Moved	test	to	separate	assembly	MySqlClientTests

Fixed	stupid	problem	in	driver	with	sequence	out	of	order	(Thanks	Peter
Belbin)

Added	some	pipe	tests

Increased	default	max	pool	size	to	50

Compiles	with	Mono	0-24

Fixed	connection	and	data	reader	dispose	problems

Added	String	datatype	handling	to	parameter	serialization

Fixed	sequence	problem	in	driver	that	occurred	after	thrown	exception
(thanks	Burkhard	Perkens-Golomb)

Added	support	for	CommandBehavior.SingleRow	to	DataReader

Fixed	command	sql	processing	so	quotes	are	better	handled	(thanks	Theo
Spears)

Fixed	parsing	of	double,	single,	and	decimal	values	to	account	for	non-
English	separators.	You	still	have	to	use	the	right	syntax	if	you	using	hard
coded	sql,	but	if	you	use	parameters	the	code	will	convert	floating	point
types	to	use	'.'	appropriately	internal	both	into	the	server	and	out.	[Thanks
anonymous]

Added	MySqlStream	class	to	simplify	timeOuts	and	driver	coding.

Fixed	DataReader	so	that	it	is	closed	properly	when	the	associated
connection	is	closed.	[thanks	smishra]

Made	client	more	SqlClient	compliant	so	that	DataReaders	have	to	be
closed	before	the	connection	can	be	used	to	run	another	command

Improved	DBNull.Value	handling	in	the	fields

Added	several	unit	tests

Fixed	MySqlException	so	that	the	base	class	is	actually	called	:-o

Improved	driver	coding

Fixed	bug	where	NextResult	was	returning	false	on	the	last	resultset

Added	more	tests	for	MySQL

Improved	casting	problems	by	equating	unsigned	32bit	values	to	Int64	and
usigned	16bit	values	to	Int32,	and	so	forth.

Added	new	ctor	for	MySqlParameter	for	(name,	type,	size,	srccol)

Fixed	bug	in	MySqlDataReader	where	it	didn't	check	for	null	fieldlist
before	returning	field	count

Started	adding	MySqlClient	unit	tests	(added	MySqlClient/Tests	folder	and
some	test	cases)

Fixed	some	things	in	Connection	String	handling

Moved	INIT_DB	to	MySqlPool.	I	may	move	it	again,	this	is	in	preparation
of	the	conference.

Fixed	bug	inside	CommandBuilder	that	prevented	inserts	from	happening
properly

Reworked	some	of	the	internals	so	that	all	three	execute	methods	of
Command	worked	properly

FIxed	many	small	bugs	found	during	benchmarking

The	first	cut	of	CoonectionPooling	is	working.	"min	pool	size"	and	"max
pool	size"	are	respected.

Work	to	enable	multiple	resultsets	to	be	returned

Character	sets	are	handled	much	more	intelligently	now.	The	driver	queries
MySQL	at	startup	for	the	default	character	set.	That	character	set	is	then
used	for	conversions	if	that	code	page	can	be	loaded.	If	not,	then	the	default
code	page	for	the	current	OS	is	used.

Added	code	to	save	the	inferred	type	in	the	name,value	ctor	of	Parameter

Also,	inferred	type	if	value	of	null	parameter	is	changed	using	Value
property

Converted	all	files	to	use	proper	Camel	case.	MySQL	is	now	MySql	in	all

files.	PgSQL	is	now	PgSql

Added	attribute	to	PgSql	code	to	prevent	designer	from	trying	to	show

Added	MySQLDbType	property	to	Parameter	object	and	added	proper
conversion	code	to	convert	from	DbType	to	MySQLDbType)

Removed	unused	ObjectToString	method	from	MySQLParameter.cs

Fixed	Add(..)	method	in	ParameterCollection	so	that	it	doesn't	use
Add(name,	value)	instead.

Fixed	IndexOf	and	Contains	in	ParameterCollection	to	be	aware	that
parameter	names	are	now	stored	without	@

Fixed	Command.ConvertSQLToBytes	so	it	only	allows	characters	that	can
be	in	MySQL	variable	names

Fixed	DataReader	and	Field	so	that	blob	fields	read	their	data	from	Field.cs
and	GetBytes	works	right

Added	simple	query	builder	editor	to	CommandText	property	of
MySQLCommand

Fixed	CommandBuilder	and	Parameter	serialization	to	account	for
Parameters	not	storing	@	in	their	names

Removed	MySQLFieldType	enum	from	Field.cs.	Now	using
MySQLDbType	enum

Added	Designer	attribute	to	several	classes	to	prevent	designer	view	when
using	VS.Net

Fixed	Initial	catalog	typo	in	ConnectionString	designer

Removed	3	parameter	ctor	for	MySQLParameter	that	conflicted	with
(name,	type,	value)

changed	MySQLParameter	so	paramName	is	now	stored	without	leading	@
(this	fixed	null	inserts	when	using	designer)

Changed	TypeConverter	for	MySQLParameter	to	use	the	ctor	with	all
properties

D.4.16.	Version	0.68

Fixed	sequence	issue	in	driver

Added	DbParametersEditor	to	make	parameter	editing	more	like	SqlClient

Fixed	Command	class	so	that	parameters	can	be	edited	using	the	designer

Update	connection	string	designer	to	support	Use	Compression	flag

Fixed	string	encoding	so	that	European	characters	like	ä	will	work	correctly

Creating	base	classes	to	aid	in	building	new	data	providers

Added	support	for	UID	key	in	connection	string

Field,	parameter,	command	now	using	DBNull.Value	instead	of	null

CommandBuilder	using	DBNull.Value

CommandBuilder	now	builds	insert	command	correctly	when	an
auto_insert	field	is	not	present

Field	now	uses	typeof	keyword	to	return	System.Types	(performance)

D.4.17.	Version	0.65

MySQLCommandBuilder	now	implemented

Transaction	support	now	implemented	(not	all	table	types	support	this)

GetSchemaTable	fixed	to	not	use	xsd	(for	Mono)

Driver	is	now	Mono-compatible!!

TIME	data	type	now	supported

More	work	to	improve	Timestamp	data	type	handling

Changed	signatures	of	all	classes	to	match	corresponding	SqlClient	classes

D.4.18.	Version	0.60

Protocol	compression	using	SharpZipLib	(www.icsharpcode.net)

Named	pipes	on	Windows	now	working	properly

Work	done	to	improve	Timestamp	data	type	handling

Implemented	IEnumerable	on	DataReader	so	DataGrid	would	work

D.4.19.	Version	0.50

Speed	increased	dramatically	by	removing	bugging	network	sync	code

Driver	no	longer	buffers	rows	of	data	(more	ADO.Net	compliant)

Conversion	bugs	related	to	TIMESTAMP	and	DATETIME	fields	fixed

D.5.	MySQL	Connector/J	Change	History

D.5.1.	Changes	in	MySQL	Connector/J	5.0.2-beta	(11	July	2006)

Fixed	can't	use	XAConnection	for	local	transactions	when	no	global
transaction	is	in	progress.	(fixes	Bug#17401)

Fixed	driver	fails	on	non-ASCII	platforms.	The	driver	was	assuming	that
the	platform	character	set	would	be	a	superset	of	MySQL's	"latin1"	when
doing	the	handshake	for	authentication,	and	when	reading	error	messages.
We	now	use	Cp1252	for	all	strings	sent	to	the	server	during	the	handshake
phase,	and	a	hard-coded	mapping	of	the	"language"	server	variable	to	the
character	set	that	is	used	for	error	messages.	(Fixes	Bug#18086)

Fixed	ConnectionProperties	(and	thus	some	subclasses)	are	not
serializable,	even	though	some	J2EE	containers	expect	them	to	be.	(Fixes
Bug#19169)

Fixed	MysqlValidConnectionChecker	for	JBoss	doesn't	work	with
MySQLXADataSources.	(Fixes	Bug#20242)

Better	caching	of	character	set	converters	(per-connection)	to	remove	a
bottleneck	for	multibyte	character	sets.

Added	connection/datasource	property
"pinGlobalTxToPhysicalConnection"	(defaults	to	"false").	When	set	to
"true",	when	using	XAConnections,	the	driver	ensures	that	operations	on	a
given	XID	are	always	routed	to	the	same	physical	connection.	This	allows
the	XAConnection	to	support	"XA	START	...	JOIN"	after	"XA	END"	has
been	called,	and	is	also	a	workaround	for	transaction	managers	that	don't
maintain	thread	affinity	for	a	global	transaction	(most	either	always
maintain	thread	affinity,	or	have	it	as	a	configuration	option).

MysqlXaConnection.recover(int	flags)	now	allows	combinations	of
XAResource.TMSTARTRSCAN	and	TMENDRSCAN.	To	simulate	the	"scanning"
nature	of	the	interface,	we	return	all	prepared	XIDs	for	TMSTARTRSCAN,	and
no	new	XIDs	for	calls	with	TMNOFLAGS,	or	TMENDRSCAN	when	not	in
combination	with	TMSTARTRSCAN.	This	change	was	made	for	API

compliance,	as	well	as	integration	with	IBM	WebSphere's	transaction
manager.

D.5.2.	Changes	in	MySQL	Connector/J	5.0.1-beta	(Not	Released)

Not	released	due	to	a	packaging	error

D.5.3.	Changes	in	MySQL	Connector/J	5.0.0-beta	(22	December
2005)

XADataSource	implemented	(ported	from	3.2	branch	which	won't	be
released	as	a	product).	Use
com.mysql.jdbc.jdbc2.optional.MysqlXADataSource	as	your	datasource
class	name	in	your	application	server	to	utilize	XA	transactions	in	MySQL-
5.0.10	and	newer.

PreparedStatement.setString()	didn't	work	correctly	when	sql_mode	on
server	contained	NO_BACKSLASH_ESCAPES	and	no	characters	that	needed
escaping	were	present	in	the	string.

Attempt	detection	of	the	MySQL	type	BINARY	(it's	an	alias,	so	this	isn't
always	reliable),	and	use	the	java.sql.Types.BINARY	type	mapping	for	it.

Moved	-bin-g.jar	file	into	separate	debug	subdirectory	to	avoid
confusion.

Don't	allow	.setAutoCommit(true),	or	.commit()	or	.rollback()	on	an
XA-managed	connection	as	per	the	JDBC	specification.

If	the	connection	useTimezone	is	set	to	true,	then	also	respect	time	zone
conversions	in	escape-processed	string	literals	(for	example,	"{ts	...}"
and	"{t	...}").

Return	original	column	name	for	RSMD.getColumnName()	if	the	column	was
aliased,	alias	name	for	.getColumnLabel()	(if	aliased),	and	original	table
name	for	.getTableName().	Note	this	only	works	for	MySQL-4.1	and
newer,	as	older	servers	don't	make	this	information	available	to	clients.

Setting	useJDBCCompliantTimezoneShift=true	(it's	not	the	default)	causes

the	driver	to	use	GMT	for	all	TIMESTAMP/DATETIME	time	zones,	and	the
current	VM	time	zone	for	any	other	type	that	refers	to	time	zones.	This
feature	can	not	be	used	when	useTimezone=true	to	convert	between	server
and	client	time	zones.

Add	one	level	of	indirection	of	internal	representation	of
CallableStatement	parameter	metadata	to	avoid	class	not	found	issues	on
JDK-1.3	for	ParameterMetadata	interface	(which	doesn't	exist	prior	to
JDBC-3.0).

Added	unit	tests	for	XADatasource,	as	well	as	friendlier	exceptions	for	XA
failures	compared	to	the	"stock"	XAException	(which	has	no	messages).

Idle	timeouts	cause	XAConnections	to	whine	about	rolling	themselves	back.
(Bug	#14729)

Added	support	for	Connector/MXJ	integration	via	url	subprotocol
jdbc:mysql:mxj://....

Moved	all	SQLException	constructor	usage	to	a	factory	in	SQLError
(ground-work	for	JDBC-4.0	SQLState-based	exception	classes).

Removed	Java5-specific	calls	to	BigDecimal	constructor	(when	result	set
value	is	'',	(int)0	was	being	used	as	an	argument	indirectly	via	method
return	value.	This	signature	doesn't	exist	prior	to	Java5.)

Added	service-provider	entry	to	META-INF/services/java.sql.Driver	for
JDBC-4.0	support.

Return	"[VAR]BINARY"	for	RSMD.getColumnTypeName()	when	that	is
actually	the	type,	and	it	can	be	distinguished	(MySQL-4.1	and	newer).

When	fix	for	Bug	#14562	was	merged	from	3.1.12,	added	functionality	for
CallableStatement's	parameter	metadata	to	return	correct	information	for
.getParameterClassName().

Fuller	synchronization	of	Connection	to	avoid	deadlocks	when	using
multithreaded	frameworks	that	multithread	a	single	connection	(usually	not
recommended,	but	the	JDBC	spec	allows	it	anyways),	part	of	fix	to	Bug
#14972).

Implementation	of	Statement.cancel()	and
Statement.setQueryTimeout().	Both	require	MySQL-5.0.0	or	newer
server,	require	a	separate	connection	to	issue	the	KILL	QUERY	statement,	and
in	the	case	of	setQueryTimeout()	creates	an	additional	thread	to	handle	the
timeout	functionality.

Note:	Failures	to	cancel	the	statement	for	setQueryTimeout()	may
manifest	themselves	as	RuntimeExceptions	rather	than	failing	silently,	as
there	is	currently	no	way	to	unblock	the	thread	that	is	executing	the	query
being	cancelled	due	to	timeout	expiration	and	have	it	throw	the	exception
instead.

D.5.4.	Changes	in	MySQL	Connector/J	3.1.14	(not	yet	released)

Fixed	updatable	result	set	throws	ClassCastException	when	there	is	row
data	and	moveToInsertRow()	is	called.	(Fixes	Bug#20479)

Fixed	Updatable	result	set	that	contains	a	BIT	column	fails	when	server-
side	prepared	statements	are	used.	(Fixes	Bug#20485)

Fixed	memory	leak	with	profileSQL=true.	(Fixes	Bug#16987)

-	-	Connection	fails	to	localhost	when	using	timeout	and	IPv6	is	configured.
(Fixes	Bug#19726)

Fixed	NullPointerException	in	MysqlDataSourceFactory	due	to	Reference
containing	RefAddrs	with	null	content.	(Fixes	Bug#16791)

Fixed	ResultSet.getShort()	for	UNSIGNED	TINYINT	returns	incorrect
values	when	using	server-side	prepared	statements.	(Fixes	Bug#20306)

Fixed	can't	pool	server-side	prepared	statements,	exception	raised	when	re-
using	them.	(Fixes	Bug#20687	-

D.5.5.	Changes	in	MySQL	Connector/J	3.1.13	(26	May	2006)

INOUT	parameter	does	not	store	IN	value.	(Bug	#15464)

Exception	thrown	for	new	decimal	type	when	using	updatable	result	sets.

(Bug	#14609)

No	"dos"	character	set	in	MySQL	>	4.1.0.	(Bug	#15544)

PreparedStatement.setObject()	serializes	BigInteger	as	object,	rather
than	sending	as	numeric	value	(and	is	thus	not	complementary	to
.getObject()	on	an	UNSIGNED	LONG	type).	(Bug	#15383)

ResultSet.getShort()	for	UNSIGNED	TINYINT	returned	wrong	values.
(Bug	#11874)

lib-nodist	directory	missing	from	package	breaks	out-of-box	build.	(Bug
#15676)

DBMD.getColumns()	returns	wrong	type	for	BIT.	(Bug	#15854)

Fixed	issue	where	driver	was	unable	to	initialize	character	set	mapping
tables.	Removed	reliance	on	.properties	files	to	hold	this	information,	as
it	turns	out	to	be	too	problematic	to	code	around	class	loader	hierarchies
that	change	depending	on	how	an	application	is	deployed.	Moved
information	back	into	the	CharsetMapping	class.	(Bug	#14938)

Fixed	updatable	result	set	doesn't	return	AUTO_INCREMENT	values	for
insertRow()	when	multiple	column	primary	keys	are	used.	(the	driver	was
checking	for	the	existence	of	single-column	primary	keys	and	an
autoincrement	value	>	0	instead	of	a	straightforward	isAutoIncrement()
check).	(Bug	#16841)

Fixed	Statement.getGeneratedKeys()	throws	NullPointerException
when	no	query	has	been	processed.	(Bug	#17099)

Fixed	driver	trying	to	call	methods	that	don't	exist	on	older	and	newer
versions	of	Log4j.	The	fix	is	not	trying	to	auto-detect	presense	of	log4j,	too
many	different	incompatible	versions	out	there	in	the	wild	to	do	this
reliably.	(Bug	#13469)

If	you	relied	on	autodetection	before,	you	will	need	to	add
"logger=com.mysql.jdbc.log.Log4JLogger"	to	your	JDBC	URL	to	enable
Log4J	usage,	or	alternatively	use	the	new	"CommonsLogger"	class	to	take
care	of	this.

Added	support	for	Apache	Commons	logging,	use
"com.mysql.jdbc.log.CommonsLogger"	as	the	value	for	the	"logger"
configuration	property.

LogFactory	now	prepends	"com.mysql.jdbc.log"	to	log	class	name	if	it	can't
be	found	as-specified.	This	allows	you	to	use	"short	names"	for	the	built-in
log	factories,	for	example	"logger=CommonsLogger"	instead	of
"logger=com.mysql.jdbc.log.CommonsLogger".

Fixed	issue	with	ReplicationConnection	incorrectly	copying	state,	doesn't
transfer	connection	context	correctly	when	transitioning	between	the	same
read-only	states.	(Bug	#15570)

Fixed	issue	where	server-side	prepared	statements	don't	cause	truncation
exceptions	to	be	thrown	when	truncation	happens.	(Bug	#18041)

Added	performance	feature,	re-writing	of	batched	executes	for
Statement.executeBatch()	(for	all	DML	statements)	and
PreparedStatement.executeBatch()	(for	INSERTs	with	VALUE	clauses
only).	Enable	by	using	"rewriteBatchedStatements=true"	in	your	JDBC
URL.

Fixed	CallableStatement.registerOutParameter()	not	working	when
some	parameters	pre-populated.	Still	waiting	for	feedback	from	JDBC
experts	group	to	determine	what	correct	parameter	count	from
getMetaData()	should	be,	however.	(Bug	#17898)

Fixed	calling	clearParameters()	on	a	closed	prepared	statement	causes
NPE.	(Bug	#17587)

Map	"latin1"	on	MySQL	server	to	CP1252	for	MySQL	>	4.1.0.

Added	additional	accessor	and	mutator	methods	on	ConnectionProperties
so	that	DataSource	users	can	use	same	naming	as	regular	URL	properties.

Fixed	data	truncation	and	getWarnings()	only	returns	last	warning	in	set.
(Bug	#18740)

Improved	performance	of	retrieving	BigDecimal,	Time,	Timestamp	and
Date	values	from	server-side	prepared	statements	by	creating	fewer	short-

lived	instances	of	Strings	when	the	native	type	is	not	an	exact	match	for
the	requested	type.	Fixes	Bug	#18496	for	BigDecimals.

Fixed	aliased	column	names	where	length	of	name	>	251	are	corrupted.
(Bug	#18554)

Fixed	ResultSet.wasNull()	not	always	reset	correctly	for	booleans	when
done	via	conversion	for	server-side	prepared	statements.	(Bug	#17450)

Fixed	invalid	classname	returned	for
ResultSetMetaData.getColumnClassName()	for	BIGINT	type.	(Bug
#19282)

Fixed	case	where	driver	wasn't	reading	server	status	correctly	when
fetching	server-side	prepared	statement	rows,	which	in	some	cases	could
cause	warning	counts	to	be	off,	or	multiple	result	sets	to	not	be	read	off	the
wire.

Driver	now	aware	of	fix	for	BIT	type	metadata	that	went	into	MySQL-
5.0.21	for	server	not	reporting	length	consistently	(Bug	#13601).

Fixed	PreparedStatement.setObject(int,	Object,	int)	doesn't
respect	scale	of	BigDecimals.	(Bug	#19615)

Fixed	ResultSet.wasNull()	returns	incorrect	value	when	extracting	native
string	from	server-side	prepared	statement	generated	result	set.	(Bug
#19282)

D.5.6.	Changes	in	MySQL	Connector/J	3.1.12	(30	November	2005)

Fixed	client-side	prepared	statement	bug	with	embedded	?	characters	inside
quoted	identifiers	(it	was	recognized	as	a	placeholder,	when	it	was	not).

Don't	allow	executeBatch()	for	CallableStatements	with	registered
OUT/INOUT	parameters	(JDBC	compliance).

Fall	back	to	platform-encoding	for	URLDecoder.decode()	when	parsing
driver	URL	properties	if	the	platform	doesn't	have	a	two-argument	version
of	this	method.

Java	type	conversion	may	be	incorrect	for	MEDIUMINT.	(Bug	#14562)

Added	configuration	property	useGmtMillisForDatetimes	which	when	set
to	true	causes	ResultSet.getDate(),	.getTimestamp()	to	return	correct
millis-since	GMT	when	.getTime()	is	called	on	the	return	value	(currently
default	is	false	for	legacy	behavior).

Fixed	DatabaseMetaData.stores*Identifiers():

If	lower_case_table_names=0	(on	server):

storesLowerCaseIdentifiers()	returns	false

storesLowerCaseQuotedIdentifiers()	returns	false

storesMixedCaseIdentifiers()	returns	true

storesMixedCaseQuotedIdentifiers()	returns	true

storesUpperCaseIdentifiers()	returns	false

storesUpperCaseQuotedIdentifiers()	returns	true

If	lower_case_table_names=1	(on	server):

storesLowerCaseIdentifiers()	returns	true

storesLowerCaseQuotedIdentifiers()	returns	true

storesMixedCaseIdentifiers()	returns	false

storesMixedCaseQuotedIdentifiers()	returns	false

storesUpperCaseIdentifiers()	returns	false

storesUpperCaseQuotedIdentifiers()	returns	true

DatabaseMetaData.getColumns()	doesn't	return	TABLE_NAME	correctly.
(Bug	#14815)

Escape	processor	replaces	quote	character	in	quoted	string	with	string

delimiter.	(Bug	#14909)

OpenOffice	expects	DBMD.supportsIntegrityEnhancementFacility()	to
return	true	if	foreign	keys	are	supported	by	the	datasource,	even	though
this	method	also	covers	support	for	check	constraints,	which	MySQL
doesn't	have.	Setting	the	configuration	property
overrideSupportsIntegrityEnhancementFacility	to	true	causes	the
driver	to	return	true	for	this	method.	(Bug	#12975)

Added	com.mysql.jdbc.testsuite.url.default	system	property	to	set
default	JDBC	url	for	testsuite	(to	speed	up	bug	resolution	when	I'm	working
in	Eclipse).

Unable	to	initialize	character	set	mapping	tables	(due	to	J2EE	classloader
differences).	(Bug	#14938)

Deadlock	while	closing	server-side	prepared	statements	from	multiple
threads	sharing	one	connection.	(Bug	#14972)

logSlowQueries	should	give	better	info.	(Bug	#12230)

Extraneous	sleep	on	autoReconnect.	(Bug	#13775)

Driver	incorrectly	closes	streams	passed	as	arguments	to
PreparedStatements.	Reverts	to	legacy	behavior	by	setting	the	JDBC
configuration	property	autoClosePStmtStreams	to	true	(also	included	in
the	3-0-Compat	configuration	“bundle”).	(Bug	#15024)

maxQuerySizeToLog	is	not	respected.	Added	logging	of	bound	values	for
execute()	phase	of	server-side	prepared	statements	when
profileSQL=true	as	well.	(Bug	#13048)

Usage	advisor	complains	about	unreferenced	columns,	even	though	they've
been	referenced.	(Bug	#15065)

Don't	increase	timeout	for	failover/reconnect.	(Bug	#6577)

Process	escape	tokens	in	Connection.prepareStatement(...).	(Bug
#15141)	You	can	disable	this	behavior	by	setting	the	JDBC	URL
configuration	property	processEscapeCodesForPrepStmts	to	false.

Reconnect	during	middle	of	executeBatch()	should	not	occur	if
autoReconnect	is	enabled.	(Bug	#13255)

D.5.7.	Changes	in	MySQL	Connector/J	3.1.11-stable	(07	October
2005)

Spurious	!	on	console	when	character	encoding	is	utf8.	(Bug	#11629)

Fixed	statements	generated	for	testcases	missing	;	for	“plain”	statements.

Incorrect	generation	of	testcase	scripts	for	server-side	prepared	statements.
(Bug	#11663)

Fixed	regression	caused	by	fix	for	Bug	#11552	that	caused	driver	to	return
incorrect	values	for	unsigned	integers	when	those	integers	where	within	the
range	of	the	positive	signed	type.

Moved	source	code	to	Subversion	repository.

Escape	tokenizer	doesn't	respect	stacked	single	quotes	for	escapes.	(Bug
#11797)

GEOMETRY	type	not	recognized	when	using	server-side	prepared	statements.

ReplicationConnection	won't	switch	to	slave,	throws	“Catalog	can't	be
null”	exception.	(Bug	#11879)

Properties	shared	between	master	and	slave	with	replication	connection.
(Bug	#12218)

Statement.getWarnings()	fails	with	NPE	if	statement	has	been	closed.
(Bug	#10630)

Only	get	char[]	from	SQL	in	PreparedStatement.ParseInfo()	when
needed.

Geometry	types	not	handled	with	server-side	prepared	statements.	(Bug
#12104)

StringUtils.getBytes()	doesn't	work	when	using	multi-byte	character

encodings	and	a	length	in	characters	is	specified.	(Bug	#11614)

Pstmt.setObject(....,	Types.BOOLEAN)	throws	exception.	(Bug	#11798)

maxPerformance.properties	mis-spells	“elideSetAutoCommits”.	(Bug
#11976)

DBMD.storesLower/Mixed/UpperIdentifiers()	reports	incorrect	values
for	servers	deployed	on	Windows.	(Bug	#11575)

ResultSet.moveToCurrentRow()	fails	to	work	when	preceded	by	a	call	to
ResultSet.moveToInsertRow().	(Bug	#11190)

VARBINARY	data	corrupted	when	using	server-side	prepared	statements	and
.setBytes().	(Bug	#11115)

explainSlowQueries	hangs	with	server-side	prepared	statements.	(Bug
#12229)

Escape	processor	didn't	honor	strings	demarcated	with	double	quotes.	(Bug
#11498)

Lifted	restriction	of	changing	streaming	parameters	with	server-side
prepared	statements.	As	long	as	all	streaming	parameters	were	set	before
execution,	.clearParameters()	does	not	have	to	be	called.	(due	to
limitation	of	client/server	protocol,	prepared	statements	can	not	reset
individual	stream	data	on	the	server	side).

Reworked	Field	class,	*Buffer,	and	MysqlIO	to	be	aware	of	field	lengths	>
Integer.MAX_VALUE.

Updated	DBMD.supportsCorrelatedQueries()	to	return	true	for	versions
>	4.1,	supportsGroupByUnrelated()	to	return	true	and
getResultSetHoldability()	to	return	HOLD_CURSORS_OVER_COMMIT.

Handling	of	catalog	argument	in	DatabaseMetaData.getIndexInfo(),
which	also	means	changes	to	the	following	methods	in	DatabaseMetaData:
(Bug	#12541)

getBestRowIdentifier()

getColumns()

getCrossReference()

getExportedKeys()

getImportedKeys()

getIndexInfo()

getPrimaryKeys()

getProcedures()	(and	thus	indirectly	getProcedureColumns())

getTables()

The	catalog	argument	in	all	of	these	methods	now	behaves	in	the
following	way:

Specifying	NULL	means	that	catalog	will	not	be	used	to	filter	the	results
(thus	all	databases	will	be	searched),	unless	you've	set
nullCatalogMeansCurrent=true	in	your	JDBC	URL	properties.

Specifying	""	means	“current”	catalog,	even	though	this	isn't	quite
JDBC	spec	compliant,	it's	there	for	legacy	users.

Specifying	a	catalog	works	as	stated	in	the	API	docs.

Made	Connection.clientPrepare()	available	from	“wrapped”
connections	in	the	jdbc2.optional	package	(connections	built	by
ConnectionPoolDataSource	instances).

Added	Connection.isMasterConnection()	for	clients	to	be	able	to
determine	if	a	multi-host	master/slave	connection	is	connected	to	the	first
host	in	the	list.

Tokenizer	for	=	in	URL	properties	was	causing	sessionVariables=....	to
be	parameterized	incorrectly.	(Bug	#12753)

Foreign	key	information	that	is	quoted	is	parsed	incorrectly	when
DatabaseMetaData	methods	use	that	information.	(Bug	#11781)

The	sendBlobChunkSize	property	is	now	clamped	to	max_allowed_packet
with	consideration	of	stream	buffer	size	and	packet	headers	to	avoid
PacketTooBigExceptions	when	max_allowed_packet	is	similar	in	size	to
the	default	sendBlobChunkSize	which	is	1M.

CallableStatement.clearParameters()	now	clears	resources	associated
with	INOUT/OUTPUT	parameters	as	well	as	INPUT	parameters.

Connection.prepareCall()	is	database	name	case-sensitive	(on	Windows
systems).	(Bug	#12417)

cp1251	incorrectly	mapped	to	win1251	for	servers	newer	than	4.0.x.	(Bug
#12752)

java.sql.Types.OTHER	returned	for	BINARY	and	VARBINARY	columns	when
using	DatabaseMetaData.getColumns().	(Bug	#12970)

ServerPreparedStatement.getBinding()	now	checks	if	the	statement	is
closed	before	attempting	to	reference	the	list	of	parameter	bindings,	to
avoid	throwing	a	NullPointerException.

ResultSetMetaData	from	Statement.getGeneratedKeys()	caused	a
NullPointerException	to	be	thrown	whenever	a	method	that	required	a
connection	reference	was	called.	(Bug	#13277)

Backport	of	Field	class,	ResultSetMetaData.getColumnClassName(),	and
ResultSet.getObject(int)	changes	from	5.0	branch	to	fix	behavior
surrounding	VARCHAR	BINARY/VARBINARY	and	related	types.

Fixed	NullPointerException	when	converting	catalog	parameter	in	many
DatabaseMetaDataMethods	to	byte[]s	(for	the	result	set)	when	the
parameter	is	null.	(null	isn't	technically	allowed	by	the	JDBC
specification,	but	we've	historically	allowed	it).

Backport	of	VAR[BINARY|CHAR]	[BINARY]	types	detection	from	5.0	branch.

Read	response	in	MysqlIO.sendFileToServer(),	even	if	the	local	file	can't
be	opened,	otherwise	next	query	issued	will	fail,	because	it's	reading	the
response	to	the	empty	LOAD	DATA	INFILE	packet	sent	to	the	server.

Workaround	for	Bug	#13374:	ResultSet.getStatement()	on	closed	result
set	returns	NULL	(as	per	JDBC	4.0	spec,	but	not	backward-compatible).	Set
the	connection	property	retainStatementAfterResultSetClose	to	true	to
be	able	to	retrieve	a	ResultSet's	statement	after	the	ResultSet	has	been
closed	via	.getStatement()	(the	default	is	false,	to	be	JDBC-compliant
and	to	reduce	the	chance	that	code	using	JDBC	leaks	Statement	instances).

URL	configuration	parameters	don't	allow	‘&’	or	‘=’	in	their	values.	The
JDBC	driver	now	parses	configuration	parameters	as	if	they	are	encoded
using	the	application/x-www-form-urlencoded	format	as	specified	by
java.net.URLDecoder

(http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLDecoder.html).	(Bug
#13453)

If	the	‘%’	character	is	present	in	a	configuration	property,	it	must	now	be
represented	as	%25,	which	is	the	encoded	form	of	‘%’	when	using
application/x-www-form-urlencoded	encoding.

The	configuration	property	sessionVariables	now	allows	you	to	specify
variables	that	start	with	the	‘@’	sign.

When	gatherPerfMetrics	is	enabled	for	servers	older	than	4.1.0,	a
NullPointerException	is	thrown	from	the	constructor	of	ResultSet	if	the
query	doesn't	use	any	tables.	(Bug	#13043)

D.5.8.	Changes	in	MySQL	Connector/J	3.1.10-stable	(23	June
2005)

Fixed	connecting	without	a	database	specified	raised	an	exception	in
MysqlIO.changeDatabaseTo().

Initial	implemention	of	ParameterMetadata	for
PreparedStatement.getParameterMetadata().	Only	works	fully	for
CallableStatements,	as	current	server-side	prepared	statements	return
every	parameter	as	a	VARCHAR	type.

D.5.9.	Changes	in	MySQL	Connector/J	3.1.9-stable	(22	June	2005)

Overhaul	of	character	set	configuration,	everything	now	lives	in	a

http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLDecoder.html

properties	file.

Driver	now	correctly	uses	CP932	if	available	on	the	server	for	Windows-
31J,	CP932	and	MS932	java	encoding	names,	otherwise	it	resorts	to	SJIS,
which	is	only	a	close	approximation.	Currently	only	MySQL-5.0.3	and
newer	(and	MySQL-4.1.12	or	.13,	depending	on	when	the	character	set	gets
backported)	can	reliably	support	any	variant	of	CP932.

com.mysql.jdbc.PreparedStatement.ParseInfo	does	unnecessary	call	to
toCharArray().	(Bug	#9064)

Memory	leak	in	ServerPreparedStatement	if	serverPrepare()	fails.	(Bug
#10144)

Actually	write	manifest	file	to	correct	place	so	it	ends	up	in	the	binary	jar
file.

Added	createDatabaseIfNotExist	property	(default	is	false),	which	will
cause	the	driver	to	ask	the	server	to	create	the	database	specified	in	the	URL
if	it	doesn't	exist.	You	must	have	the	appropriate	privileges	for	database
creation	for	this	to	work.

Unsigned	SMALLINT	treated	as	signed	for	ResultSet.getInt(),	fixed	all
cases	for	UNSIGNED	integer	values	and	server-side	prepared	statements,	as
well	as	ResultSet.getObject()	for	UNSIGNED	TINYINT.	(Bug	#10156)

Double	quotes	not	recognized	when	parsing	client-side	prepared	statements.
(Bug	#10155)

Made	enableStreamingResults()	visible	on
com.mysql.jdbc.jdbc2.optional.StatementWrapper.

Made	ServerPreparedStatement.asSql()	work	correctly	so	auto-explain
functionality	would	work	with	server-side	prepared	statements.

Made	JDBC2-compliant	wrappers	public	in	order	to	allow	access	to	vendor
extensions.

Cleaned	up	logging	of	profiler	events,	moved	code	to	dump	a	profiler	event
as	a	string	to	com.mysql.jdbc.log.LogUtils	so	that	third	parties	can	use	it.

DatabaseMetaData.supportsMultipleOpenResults()	now	returns	true.
The	driver	has	supported	this	for	some	time,	DBMD	just	missed	that	fact.

Driver	doesn't	support	{?=CALL(...)}	for	calling	stored	functions.	This
involved	adding	support	for	function	retrieval	to
DatabaseMetaData.getProcedures()	and	getProcedureColumns()	as
well.	(Bug	#10310)

SQLException	thrown	when	retrieving	YEAR(2)	with
ResultSet.getString().	The	driver	will	now	always	treat	YEAR	types	as
java.sql.Dates	and	return	the	correct	values	for	getString().
Alternatively,	the	yearIsDateType	connection	property	can	be	set	to	false
and	the	values	will	be	treated	as	SHORTs.	(Bug	#10485)

The	datatype	returned	for	TINYINT(1)	columns	when	tinyInt1isBit=true
(the	default)	can	be	switched	between	Types.BOOLEAN	and	Types.BIT	using
the	new	configuration	property	transformedBitIsBoolean,	which	defaults
to	false.	If	set	to	false	(the	default),	DatabaseMetaData.getColumns()
and	ResultSetMetaData.getColumnType()	will	return	Types.BOOLEAN	for
TINYINT(1)	columns.	If	true,	Types.BOOLEAN	will	be	returned	instead.
Regardless	of	this	configuration	property,	if	tinyInt1isBit	is	enabled,
columns	with	the	type	TINYINT(1)	will	be	returned	as	java.lang.Boolean
instances	from	ResultSet.getObject(...),	and
ResultSetMetaData.getColumnClassName()	will	return
java.lang.Boolean.

SQLException	is	thrown	when	using	property	characterSetResults	with
cp932	or	eucjpms.	(Bug	#10496)

Reorganized	directory	layout.	Sources	now	are	in	src	folder.	Don't	pollute
parent	directory	when	building,	now	output	goes	to	./build,	distribution
goes	to	./dist.

Added	support/bug	hunting	feature	that	generates	.sql	test	scripts	to
STDERR	when	autoGenerateTestcaseScript	is	set	to	true.

0-length	streams	not	sent	to	server	when	using	server-side	prepared
statements.	(Bug	#10850)

Setting	cachePrepStmts=true	now	causes	the	Connection	to	also	cache	the

check	the	driver	performs	to	determine	if	a	prepared	statement	can	be
server-side	or	not,	as	well	as	caches	server-side	prepared	statements	for	the
lifetime	of	a	connection.	As	before,	the	prepStmtCacheSize	parameter
controls	the	size	of	these	caches.

Try	to	handle	OutOfMemoryErrors	more	gracefully.	Although	not	much	can
be	done,	they	will	in	most	cases	close	the	connection	they	happened	on	so
that	further	operations	don't	run	into	a	connection	in	some	unknown	state.
When	an	OOM	has	happened,	any	further	operations	on	the	connection	will
fail	with	a	“Connection	closed”	exception	that	will	also	list	the	OOM
exception	as	the	reason	for	the	implicit	connection	close	event.

Don't	send	COM_RESET_STMT	for	each	execution	of	a	server-side	prepared
statement	if	it	isn't	required.

Driver	detects	if	you're	running	MySQL-5.0.7	or	later,	and	does	not	scan	for
LIMIT	?[,?]	in	statements	being	prepared,	as	the	server	supports	those
types	of	queries	now.

VARBINARY	data	corrupted	when	using	server-side	prepared	statements	and
ResultSet.getBytes().	(Bug	#11115)

Connection.setCatalog()	is	now	aware	of	the	useLocalSessionState
configuration	property,	which	when	set	to	true	will	prevent	the	driver	from
sending	USE	...	to	the	server	if	the	requested	catalog	is	the	same	as	the
current	catalog.

Added	the	following	configuration	bundles,	use	one	or	many	via	the
useConfigs	configuration	property:

maxPerformance	—	maximum	performance	without	being	reckless

solarisMaxPerformance	—	maximum	performance	for	Solaris,	avoids
syscalls	where	it	can

3-0-Compat	—	Compatibility	with	Connector/J	3.0.x	functionality

Added	maintainTimeStats	configuration	property	(defaults	to	true),
which	tells	the	driver	whether	or	not	to	keep	track	of	the	last	query	time	and
the	last	successful	packet	sent	to	the	server's	time.	If	set	to	false,	removes

two	syscalls	per	query.

autoReconnect	ping	causes	exception	on	connection	startup.	(Bug	#11259)

Connector/J	dumping	query	into	SQLException	twice.	(Bug	#11360)

Fixed	PreparedStatement.setClob()	not	accepting	null	as	a	parameter.

Production	package	doesn't	include	JBoss	integration	classes.	(Bug	#11411)

Removed	nonsensical	“costly	type	conversion”	warnings	when	using	usage
advisor.

D.5.10.	Changes	in	MySQL	Connector/J	3.1.8-stable	(14	April
2005)

Fixed	DatabaseMetaData.getTables()	returning	views	when	they	were
not	asked	for	as	one	of	the	requested	table	types.

Added	support	for	new	precision-math	DECIMAL	type	in	MySQL	5.0.3	and
up.

Fixed	ResultSet.getTime()	on	a	NULL	value	for	server-side	prepared
statements	throws	NPE.

Made	Connection.ping()	a	public	method.

DATE_FORMAT()	queries	returned	as	BLOBs	from	getObject().	(Bug	#8868)

ServerPreparedStatements	now	correctly	“stream”	BLOB/CLOB	data	to	the
server.	You	can	configure	the	threshold	chunk	size	using	the	JDBC	URL
property	blobSendChunkSize	(the	default	is	1MB).

BlobFromLocator	now	uses	correct	identifier	quoting	when	generating
prepared	statements.

Server-side	session	variables	can	be	preset	at	connection	time	by	passing
them	as	a	comma-delimited	list	for	the	connection	property
sessionVariables.

Fixed	regression	in	ping()	for	users	using	autoReconnect=true.

PreparedStatement.addBatch()	doesn't	work	with	server-side	prepared
statements	and	streaming	BINARY	data.	(Bug	#9040)

DBMD.supportsMixedCase*Identifiers()	returns	wrong	value	on	servers
running	on	case-sensitive	filesystems.	(Bug	#8800)

Cannot	use	UTF-8	for	characterSetResults	configuration	property.	(Bug
#9206)

A	continuation	of	Bug	#8868,	where	functions	used	in	queries	that	should
return	non-string	types	when	resolved	by	temporary	tables	suddenly
become	opaque	binary	strings	(work-around	for	server	limitation).	Also
fixed	fields	with	type	of	CHAR(n)	CHARACTER	SET	BINARY	to	return
correct/matching	classes	for	RSMD.getColumnClassName()	and
ResultSet.getObject().	(Bug	#9236)

DBMD.supportsResultSetConcurrency()	not	returning	true	for	forward-
only/read-only	result	sets	(we	obviously	support	this).	(Bug	#8792)

DATA_TYPE	column	from	DBMD.getBestRowIdentifier()	causes
ArrayIndexOutOfBoundsException	when	accessed	(and	in	fact,	didn't
return	any	value).	(Bug	#8803)

Check	for	empty	strings	('')	when	converting	CHAR/VARCHAR	column	data	to
numbers,	throw	exception	if	emptyStringsConvertToZero	configuration
property	is	set	to	false	(for	backward-compatibility	with	3.0,	it	is	now	set
to	true	by	default,	but	will	most	likely	default	to	false	in	3.2).

PreparedStatement.getMetaData()	inserts	blank	row	in	database	under
certain	conditions	when	not	using	server-side	prepared	statements.	(Bug
#9320)

Connection.canHandleAsPreparedStatement()	now	makes	“best	effort”
to	distinguish	LIMIT	clauses	with	placeholders	in	them	from	ones	without	in
order	to	have	fewer	false	positives	when	generating	work-arounds	for
statements	the	server	cannot	currently	handle	as	server-side	prepared
statements.

Fixed	build.xml	to	not	compile	log4j	logging	if	log4j	not	available.

Added	support	for	the	c3p0	connection	pool's	(http://c3p0.sf.net/)
validation/connection	checker	interface	which	uses	the	lightweight
COM_PING	call	to	the	server	if	available.	To	use	it,	configure	your	c3p0
connection	pool's	connectionTesterClassName	property	to	use
com.mysql.jdbc.integration.c3p0.MysqlConnectionTester.

Better	detection	of	LIMIT	inside/outside	of	quoted	strings	so	that	the	driver
can	more	correctly	determine	whether	a	prepared	statement	can	be	prepared
on	the	server	or	not.

Stored	procedures	with	same	name	in	different	databases	confuse	the	driver
when	it	tries	to	determine	parameter	counts/types.	(Bug	#9319)

Added	finalizers	to	ResultSet	and	Statement	implementations	to	be	JDBC
spec-compliant,	which	requires	that	if	not	explicitly	closed,	these	resources
should	be	closed	upon	garbage	collection.

Stored	procedures	with	DECIMAL	parameters	with	storage	specifications	that
contained	‘,’	in	them	would	fail.	(Bug	#9682)

PreparedStatement.setObject(int,	Object,	int	type,	int	scale)

now	uses	scale	value	for	BigDecimal	instances.

Statement.getMoreResults()	could	throw	NPE	when	existing	result	set
was	.close()d.	(Bug	#9704)

The	performance	metrics	feature	now	gathers	information	about	number	of
tables	referenced	in	a	SELECT.

The	logging	system	is	now	automatically	configured.	If	the	value	has	been
set	by	the	user,	via	the	URL	property	logger	or	the	system	property
com.mysql.jdbc.logger,	then	use	that,	otherwise,	autodetect	it	using	the
following	steps:

1.	 Log4j,	if	it's	available,

2.	 Then	JDK1.4	logging,

http://c3p0.sf.net/

3.	 Then	fallback	to	our	STDERR	logging.

DBMD.getTables()	shouldn't	return	tables	if	views	are	asked	for,	even	if	the
database	version	doesn't	support	views.	(Bug	#9778)

Fixed	driver	not	returning	true	for	-1	when	ResultSet.getBoolean()	was
called	on	result	sets	returned	from	server-side	prepared	statements.

Added	a	Manifest.MF	file	with	implementation	information	to	the	.jar	file.

More	tests	in	Field.isOpaqueBinary()	to	distinguish	opaque	binary	(that
is,	fields	with	type	CHAR(n)	and	CHARACTER	SET	BINARY)	from	output	of
various	scalar	and	aggregate	functions	that	return	strings.

Should	accept	null	for	catalog	(meaning	use	current)	in	DBMD	methods,
even	though	it's	not	JDBC-compliant	for	legacy's	sake.	Disable	by	setting
connection	property	nullCatalogMeansCurrent	to	false	(which	will	be	the
default	value	in	C/J	3.2.x).	(Bug	#9917)

Should	accept	null	for	name	patterns	in	DBMD	(meaning	‘%’),	even	though
it	isn't	JDBC	compliant,	for	legacy's	sake.	Disable	by	setting	connection
property	nullNamePatternMatchesAll	to	false	(which	will	be	the	default
value	in	C/J	3.2.x).	(Bug	#9769)

D.5.11.	Changes	in	MySQL	Connector/J	3.1.7-stable	(18	February
2005)

Timestamp	key	column	data	needed	_binary	stripped	for
UpdatableResultSet.refreshRow().	(Bug	#7686)

Timestamps	converted	incorrectly	to	strings	with	server-side	prepared
statements	and	updatable	result	sets.	(Bug	#7715)

Detect	new	sql_mode	variable	in	string	form	(it	used	to	be	integer)	and
adjust	quoting	method	for	strings	appropriately.

Added	holdResultsOpenOverStatementClose	property	(default	is	false),
that	keeps	result	sets	open	over	statement.close()	or	new	execution	on	same
statement	(suggested	by	Kevin	Burton).

Infinite	recursion	when	“falling	back”	to	master	in	failover	configuration.
(Bug	#7952)

Disable	multi-statements	(if	enabled)	for	MySQL-4.1	versions	prior	to
version	4.1.10	if	the	query	cache	is	enabled,	as	the	server	returns	wrong
results	in	this	configuration.

Fixed	duplicated	code	in	configureClientCharset()	that	prevented
useOldUTF8Behavior=true	from	working	properly.

Removed	dontUnpackBinaryResults	functionality,	the	driver	now	always
stores	results	from	server-side	prepared	statements	as	is	from	the	server	and
unpacks	them	on	demand.

Emulated	locators	corrupt	binary	data	when	using	server-side	prepared
statements.	(Bug	#8096)

Fixed	synchronization	issue	with
ServerPreparedStatement.serverPrepare()	that	could	cause
deadlocks/crashes	if	connection	was	shared	between	threads.

By	default,	the	driver	now	scans	SQL	you	are	preparing	via	all	variants	of
Connection.prepareStatement()	to	determine	if	it	is	a	supported	type	of
statement	to	prepare	on	the	server	side,	and	if	it	is	not	supported	by	the
server,	it	instead	prepares	it	as	a	client-side	emulated	prepared	statement.
You	can	disable	this	by	passing	emulateUnsupportedPstmts=false	in	your
JDBC	URL.	(Bug	#4718)

Remove	_binary	introducer	from	parameters	used	as	in/out	parameters	in
CallableStatement.

Always	return	byte[]s	for	output	parameters	registered	as	*BINARY.

Send	correct	value	for	“boolean”	true	to	server	for
PreparedStatement.setObject(n,	"true",	Types.BIT).

Fixed	bug	with	Connection	not	caching	statements	from
prepareStatement()	when	the	statement	wasn't	a	server-side	prepared
statement.

Choose	correct	“direction”	to	apply	time	adjustments	when	both	client	and
server	are	in	GMT	time	zone	when	using	ResultSet.get(...,	cal)	and
PreparedStatement.set(....,	cal).

Added	dontTrackOpenResources	option	(default	is	false,	to	be	JDBC
compliant),	which	helps	with	memory	use	for	non-well-behaved	apps	(that
is,	applications	that	don't	close	Statement	objects	when	they	should).

ResultSet.getString()	doesn't	maintain	format	stored	on	server,	bug	fix
only	enabled	when	noDatetimeStringSync	property	is	set	to	true	(the
default	is	false).	(Bug	#8428)

Fixed	NPE	in	ResultSet.realClose()	when	using	usage	advisor	and	result
set	was	already	closed.

PreparedStatements	not	creating	streaming	result	sets.	(Bug	#8487)

Don't	pass	NULL	to	String.valueOf()	in
ResultSet.getNativeConvertToString(),	as	it	stringifies	it	(that	is,
returns	null),	which	is	not	correct	for	the	method	in	question.

ResultSet.getBigDecimal()	throws	exception	when	rounding	would	need
to	occur	to	set	scale.	The	driver	now	chooses	a	rounding	mode	of	“half	up”
if	non-rounding	BigDecimal.setScale()	fails.	(Bug	#8424)

Added	useLocalSessionState	configuration	property,	when	set	to	true	the
JDBC	driver	trusts	that	the	application	is	well-behaved	and	only	sets
autocommit	and	transaction	isolation	levels	using	the	methods	provided	on
java.sql.Connection,	and	therefore	can	manipulate	these	values	in	many
cases	without	incurring	round-trips	to	the	database	server.

Added	enableStreamingResults()	to	Statement	for	connection	pool
implementations	that	check	Statement.setFetchSize()	for	specification-
compliant	values.	Call	Statement.setFetchSize(>=0)	to	disable	the
streaming	results	for	that	statement.

Added	support	for	BIT	type	in	MySQL-5.0.3.	The	driver	will	treat	BIT(1-8)
as	the	JDBC	standard	BIT	type	(which	maps	to	java.lang.Boolean),	as	the
server	does	not	currently	send	enough	information	to	determine	the	size	of	a
bitfield	when	<	9	bits	are	declared.	BIT(>9)	will	be	treated	as	VARBINARY,

and	will	return	byte[]	when	getObject()	is	called.

D.5.12.	Changes	in	MySQL	Connector/J	3.1.6-stable	(23
December	2004)

Fixed	hang	on	SocketInputStream.read()	with	Statement.setMaxRows()
and	multiple	result	sets	when	driver	has	to	truncate	result	set	directly,	rather
than	tacking	a	LIMIT	n	on	the	end	of	it.

DBMD.getProcedures()	doesn't	respect	catalog	parameter.	(Bug	#7026)

D.5.13.	Changes	in	MySQL	Connector/J	3.1.5-gamma	(02
December	2004)

Fix	comparisons	made	between	string	constants	and	dynamic	strings	that
are	converted	with	either	toUpperCase()	or	toLowerCase()	to	use
Locale.ENGLISH,	as	some	locales	“override”	case	rules	for	English.	Also
use	StringUtils.indexOfIgnoreCase()	instead	of
.toUpperCase().indexOf(),	avoids	creating	a	very	short-lived	transient
String	instance.

Server-side	prepared	statements	did	not	honor	zeroDateTimeBehavior
property,	and	would	cause	class-cast	exceptions	when	using
ResultSet.getObject(),	as	the	all-zero	string	was	always	returned.	(Bug
#5235)

Fixed	batched	updates	with	server	prepared	statements	weren't	looking	if
the	types	had	changed	for	a	given	batched	set	of	parameters	compared	to
the	previous	set,	causing	the	server	to	return	the	error	“Wrong	arguments	to
mysql_stmt_execute()”.

Handle	case	when	string	representation	of	timestamp	contains	trailing	‘.’
with	no	numbers	following	it.

Inefficient	detection	of	pre-existing	string	instances	in
ResultSet.getNativeString().	(Bug	#5706)

Don't	throw	exceptions	for	Connection.releaseSavepoint().

Use	a	per-session	Calendar	instance	by	default	when	decoding	dates	from
ServerPreparedStatements	(set	to	old,	less	performant	behavior	by	setting
property	dynamicCalendars=true).

Added	experimental	configuration	property	dontUnpackBinaryResults,
which	delays	unpacking	binary	result	set	values	until	they're	asked	for,	and
only	creates	object	instances	for	non-numerical	values	(it	is	set	to	false	by
default).	For	some	usecase/jvm	combinations,	this	is	friendlier	on	the
garbage	collector.

UNSIGNED	BIGINT	unpacked	incorrectly	from	server-side	prepared	statement
result	sets.	(Bug	#5729)

ServerSidePreparedStatement	allocating	short-lived	objects
unnecessarily.	(Bug	#6225)

Removed	unwanted	new	Throwable()	in	ResultSet	constructor	due	to	bad
merge	(caused	a	new	object	instance	that	was	never	used	for	every	result	set
created).	Found	while	profiling	for	Bug	#6359.

Fixed	too-early	creation	of	StringBuffer	in
EscapeProcessor.escapeSQL(),	also	return	String	when	escaping	not
needed	(to	avoid	unnecessary	object	allocations).	Found	while	profiling	for
Bug	#6359.

Use	null-safe-equals	for	key	comparisons	in	updatable	result	sets.

SUM()	on	DECIMAL	with	server-side	prepared	statement	ignores	scale	if	zero-
padding	is	needed	(this	ends	up	being	due	to	conversion	to	DOUBLE	by
server,	which	when	converted	to	a	string	to	parse	into	BigDecimal,	loses	all
“padding”	zeros).	(Bug	#6537)

Use	DatabaseMetaData.getIdentifierQuoteString()	when	building
DBMD	queries.

Use	1MB	packet	for	sending	file	for	LOAD	DATA	LOCAL	INFILE	if	that	is	<
max_allowed_packet	on	server.

ResultSetMetaData.getColumnDisplaySize()	returns	incorrect	values	for
multi-byte	charsets.	(Bug	#6399)

Make	auto-deserialization	of	java.lang.Objects	stored	in	BLOB	columns
configurable	via	autoDeserialize	property	(defaults	to	false).

Re-work	Field.isOpaqueBinary()	to	detect	CHAR(n)	CHARACTER	SET
BINARY	to	support	fixed-length	binary	fields	for	ResultSet.getObject().

Use	our	own	implementation	of	buffered	input	streams	to	get	around
blocking	behavior	of	java.io.BufferedInputStream.	Disable	this	with
useReadAheadInput=false.

Failing	to	connect	to	the	server	when	one	of	the	addresses	for	the	given	host
name	is	IPV6	(which	the	server	does	not	yet	bind	on).	The	driver	now	loops
through	all	IP	addresses	for	a	given	host,	and	stops	on	the	first	one	that
accepts()	a	socket.connect().	(Bug	#6348)

D.5.14.	Changes	in	MySQL	Connector/J	3.1.4-beta	(04	September
2004)

Connector/J	3.1.3	beta	does	not	handle	integers	correctly	(caused	by
changes	to	support	unsigned	reads	in	Buffer.readInt()	->
Buffer.readShort()).	(Bug	#4510)

Added	support	in	DatabaseMetaData.getTables()	and	getTableTypes()
for	views,	which	are	now	available	in	MySQL	server	5.0.x.

ServerPreparedStatement.execute*()	sometimes	threw
ArrayIndexOutOfBoundsException	when	unpacking	field	metadata.	(Bug
#4642)

Optimized	integer	number	parsing,	enable	“old”	slower	integer	parsing
using	JDK	classes	via	useFastIntParsing=false	property.

Added	useOnlyServerErrorMessages	property,	which	causes	message	text
in	exceptions	generated	by	the	server	to	only	contain	the	text	sent	by	the
server	(as	opposed	to	the	SQLState's	“standard”	description,	followed	by
the	server's	error	message).	This	property	is	set	to	true	by	default.

ResultSet.wasNull()	does	not	work	for	primatives	if	a	previous	null	was
returned.	(Bug	#4689)

Track	packet	sequence	numbers	if	enablePacketDebug=true,	and	throw	an
exception	if	packets	received	out-of-order.

ResultSet.getObject()	returns	wrong	type	for	strings	when	using
prepared	statements.	(Bug	#4482)

Calling	MysqlPooledConnection.close()	twice	(even	though	an
application	error),	caused	NPE.	Fixed.

ServerPreparedStatements	dealing	with	return	of	DECIMAL	type	don't
work.	(Bug	#5012)

ResultSet.getObject()	doesn't	return	type	Boolean	for	pseudo-bit	types
from	prepared	statements	on	4.1.x	(shortcut	for	avoiding	extra	type
conversion	when	using	binary-encoded	result	sets	obscured	test	in
getObject()	for	“pseudo”	bit	type).	(Bug	#5032)

You	can	now	use	URLs	in	LOAD	DATA	LOCAL	INFILE	statements,	and	the
driver	will	use	Java's	built-in	handlers	for	retreiving	the	data	and	sending	it
to	the	server.	This	feature	is	not	enabled	by	default,	you	must	set	the
allowUrlInLocalInfile	connection	property	to	true.

The	driver	is	more	strict	about	truncation	of	numerics	on	ResultSet.get*
(),	and	will	throw	an	SQLException	when	truncation	is	detected.	You	can
disable	this	by	setting	jdbcCompliantTruncation	to	false	(it	is	enabled	by
default,	as	this	functionality	is	required	for	JDBC	compliance).

Added	three	ways	to	deal	with	all-zero	datetimes	when	reading	them	from	a
ResultSet:	exception	(the	default),	which	throws	an	SQLException	with
an	SQLState	of	S1009;	convertToNull,	which	returns	NULL	instead	of	the
date;	and	round,	which	rounds	the	date	to	the	nearest	closest	value	which	is
'0001-01-01'.

Fixed	ServerPreparedStatement	to	read	prepared	statement	metadata	off
the	wire,	even	though	it's	currently	a	placeholder	instead	of	using
MysqlIO.clearInputStream()	which	didn't	work	at	various	times	because
data	wasn't	available	to	read	from	the	server	yet.	This	fixes	sporadic	errors
users	were	having	with	ServerPreparedStatements	throwing
ArrayIndexOutOfBoundExceptions.

Use	com.mysql.jdbc.Message's	classloader	when	loading	resource	bundle,
should	fix	sporadic	issues	when	the	caller's	classloader	can't	locate	the
resource	bundle.

D.5.15.	Changes	in	MySQL	Connector/J	3.1.3-beta	(07	July	2004)

Mangle	output	parameter	names	for	CallableStatements	so	they	will	not
clash	with	user	variable	names.

Added	support	for	INOUT	parameters	in	CallableStatements.

Null	bitmask	sent	for	server-side	prepared	statements	was	incorrect.	(Bug
#4119)

Use	SQL	Standard	SQL	states	by	default,	unless	useSqlStateCodes
property	is	set	to	false.

Added	packet	debuging	code	(see	the	enablePacketDebug	property
documentation).

Added	constants	for	MySQL	error	numbers	(publicly	accessible,	see
com.mysql.jdbc.MysqlErrorNumbers),	and	the	ability	to	generate	the
mappings	of	vendor	error	codes	to	SQLStates	that	the	driver	uses	(for
documentation	purposes).

Externalized	more	messages	(on-going	effort).

Error	in	retrieval	of	mediumint	column	with	prepared	statements	and	binary
protocol.	(Bug	#4311)

Support	new	time	zone	variables	in	MySQL-4.1.3	when
useTimezone=true.

Support	for	unsigned	numerics	as	return	types	from	prepared	statements.
This	also	causes	a	change	in	ResultSet.getObject()	for	the	bigint
unsigned	type,	which	used	to	return	BigDecimal	instances,	it	now	returns
instances	of	java.lang.BigInteger.

D.5.16.	Changes	in	MySQL	Connector/J	3.1.2-alpha	(09	June

2004)

Fixed	stored	procedure	parameter	parsing	info	when	size	was	specified	for
a	parameter	(for	example,	char(),	varchar()).

Enabled	callable	statement	caching	via	cacheCallableStmts	property.

Fixed	case	when	no	output	parameters	specified	for	a	stored	procedure
caused	a	bogus	query	to	be	issued	to	retrieve	out	parameters,	leading	to	a
syntax	error	from	the	server.

Fixed	case	when	no	parameters	could	cause	a	NullPointerException	in
CallableStatement.setOutputParameters().

Removed	wrapping	of	exceptions	in	MysqlIO.changeUser().

Fixed	sending	of	split	packets	for	large	queries,	enabled	nio	ability	to	send
large	packets	as	well.

Added	.toString()	functionality	to	ServerPreparedStatement,	which
should	help	if	you're	trying	to	debug	a	query	that	is	a	prepared	statement	(it
shows	SQL	as	the	server	would	process).

Added	gatherPerformanceMetrics	property,	along	with	properties	to
control	when/where	this	info	gets	logged	(see	docs	for	more	info).

ServerPreparedStatements	weren't	actually	de-allocating	server-side
resources	when	.close()	was	called.

Added	logSlowQueries	property,	along	with
slowQueriesThresholdMillis	property	to	control	when	a	query	should	be
considered	“slow.”

Correctly	map	output	parameters	to	position	given	in	prepareCall()
versus.	order	implied	during	registerOutParameter().	(Bug	#3146)

Correctly	detect	initial	character	set	for	servers	>=	4.1.0.

Cleaned	up	detection	of	server	properties.

Support	placeholder	for	parameter	metadata	for	server	>=	4.1.2.

getProcedures()	does	not	return	any	procedures	in	result	set.	(Bug	#3539)

getProcedureColumns()	doesn't	work	with	wildcards	for	procedure	name.
(Bug	#3540)

DBMD.getSQLStateType()	returns	incorrect	value.	(Bug	#3520)

Added	connectionCollation	property	to	cause	driver	to	issue	set
collation_connection=...	query	on	connection	init	if	default	collation
for	given	charset	is	not	appropriate.

Fixed	DatabaseMetaData.getProcedures()	when	run	on	MySQL-5.0.0
(output	of	SHOW	PROCEDURE	STATUS	changed	between	5.0.0	and	5.0.1.

getWarnings()	returns	SQLWarning	instead	of	DataTruncation.	(Bug
#3804)

Don't	enable	server-side	prepared	statements	for	server	version	5.0.0	or
5.0.1,	as	they	aren't	compatible	with	the	'4.1.2+'	style	that	the	driver	uses
(the	driver	expects	information	to	come	back	that	isn't	there,	so	it	hangs).

D.5.17.	Changes	in	MySQL	Connector/J	3.1.1-alpha	(14	February
2004)

Fixed	bug	with	UpdatableResultSets	not	using	client-side	prepared
statements.

Fixed	character	encoding	issues	when	converting	bytes	to	ASCII	when
MySQL	doesn't	provide	the	character	set,	and	the	JVM	is	set	to	a	multi-byte
encoding	(usually	affecting	retrieval	of	numeric	values).

Unpack	“unknown”	data	types	from	server	prepared	statements	as	Strings.

Implemented	long	data	(Blobs,	Clobs,	InputStreams,	Readers)	for	server
prepared	statements.

Implemented	Statement.getWarnings()	for	MySQL-4.1	and	newer	(using
SHOW	WARNINGS).

Default	result	set	type	changed	to	TYPE_FORWARD_ONLY	(JDBC	compliance).

Centralized	setting	of	result	set	type	and	concurrency.

Refactored	how	connection	properties	are	set	and	exposed	as
DriverPropertyInfo	as	well	as	Connection	and	DataSource	properties.

Support	for	NIO.	Use	useNIO=true	on	platforms	that	support	NIO.

Support	for	transaction	savepoints	(MySQL	>=	4.0.14	or	4.1.1).

Support	for	mysql_change_user().	See	the	changeUser()	method	in
com.mysql.jdbc.Connection.

Reduced	number	of	methods	called	in	average	query	to	be	more	efficient.

Prepared	Statements	will	be	re-prepared	on	auto-reconnect.	Any	errors
encountered	are	postponed	until	first	attempt	to	re-execute	the	re-prepared
statement.

Ensure	that	warnings	are	cleared	before	executing	queries	on	prepared
statements,	as-per	JDBC	spec	(now	that	we	support	warnings).

Support	“old”	profileSql	capitalization	in	ConnectionProperties.	This
property	is	deprecated,	you	should	use	profileSQL	if	possible.

Optimized	Buffer.readLenByteArray()	to	return	shared	empty	byte	array
when	length	is	0.

Allow	contents	of	PreparedStatement.setBlob()	to	be	retained	between
calls	to	.execute*().

Deal	with	0-length	tokens	in	EscapeProcessor	(caused	by	callable
statement	escape	syntax).

Check	for	closed	connection	on	delete/update/insert	row	operations	in
UpdatableResultSet.

Fix	support	for	table	aliases	when	checking	for	all	primary	keys	in
UpdatableResultSet.

Removed	useFastDates	connection	property.

Correctly	initialize	datasource	properties	from	JNDI	Refs,	including
explicitly	specified	URLs.

DatabaseMetaData	now	reports	supportsStoredProcedures()	for	MySQL
versions	>=	5.0.0

Fixed	stack	overflow	in	Connection.prepareCall()	(bad	merge).

Fixed	IllegalAccessError	to	Calendar.getTimeInMillis()	in
DateTimeValue	(for	JDK	<	1.4).

DatabaseMetaData.getColumns()	is	not	returning	correct	column	ordinal
info	for	non-'%'	column	name	patterns.	(Bug	#1673)

Merged	fix	of	datatype	mapping	from	MySQL	type	FLOAT	to
java.sql.Types.REAL	from	3.0	branch.

Detect	collation	of	column	for	RSMD.isCaseSensitive().

Fixed	sending	of	queries	larger	than	16M.

Added	named	and	indexed	input/output	parameter	support	to
CallableStatement.	MySQL-5.0.x	or	newer.

Fixed	NullPointerException	in
ServerPreparedStatement.setTimestamp(),	as	well	as	year	and	month
descrepencies	in	ServerPreparedStatement.setTimestamp(),	setDate().

Added	ability	to	have	multiple	database/JVM	targets	for	compliance	and
regression/unit	tests	in	build.xml.

Fixed	NPE	and	year/month	bad	conversions	when	accessing	some	datetime
functionality	in	ServerPreparedStatements	and	their	resultant	result	sets.

Display	where/why	a	connection	was	implicitly	closed	(to	aid	debugging).

CommunicationsException	implemented,	that	tries	to	determine	why
communications	was	lost	with	a	server,	and	displays	possible	reasons	when

.getMessage()	is	called.

NULL	values	for	numeric	types	in	binary	encoded	result	sets	causing
NullPointerExceptions.	(Bug	#2359)

Implemented	Connection.prepareCall(),	and	DatabaseMetaData.
getProcedures()	and	getProcedureColumns().

Reset	long	binary	parameters	in	ServerPreparedStatement	when
clearParameters()	is	called,	by	sending	COM_RESET_STMT	to	the	server.

Merged	prepared	statement	caching,	and	.getMetaData()	support	from	3.0
branch.

Fixed	off-by-1900	error	in	some	cases	for	years	in
TimeUtil.fastDate/TimeCreate()	when	unpacking	results	from	server-
side	prepared	statements.

Fixed	charset	conversion	issue	in	getTables().	(Bug	#2502)

Implemented	multiple	result	sets	returned	from	a	statement	or	stored
procedure.

Server-side	prepared	statements	were	not	returning	datatype	YEAR	correctly.
(Bug	#2606)

Enabled	streaming	of	result	sets	from	server-side	prepared	statements.

Class-cast	exception	when	using	scrolling	result	sets	and	server-side
prepared	statements.	(Bug	#2623)

Merged	unbuffered	input	code	from	3.0.

Fixed	ConnectionProperties	that	weren't	properly	exposed	via	accessors,
cleaned	up	ConnectionProperties	code.

NULL	fields	were	not	being	encoded	correctly	in	all	cases	in	server-side
prepared	statements.	(Bug	#2671)

Fixed	rare	buffer	underflow	when	writing	numbers	into	buffers	for	sending

prepared	statement	execution	requests.

Use	DocBook	version	of	docs	for	shipped	versions	of	drivers.

D.5.18.	Changes	in	MySQL	Connector/J	3.1.0-alpha	(18	February
2003)

Added	requireSSL	property.

Added	useServerPrepStmts	property	(default	false).	The	driver	will	use
server-side	prepared	statements	when	the	server	version	supports	them	(4.1
and	newer)	when	this	property	is	set	to	true.	It	is	currently	set	to	false	by
default	until	all	bind/fetch	functionality	has	been	implemented.	Currently
only	DML	prepared	statements	are	implemented	for	4.1	server-side
prepared	statements.

Track	open	Statements,	close	all	when	Connection.close()	is	called
(JDBC	compliance).

D.5.19.	Changes	in	MySQL	Connector/J	3.0.17-ga	(23	June	2005)

Timestamp/Time	conversion	goes	in	the	wrong	“direction”	when
useTimeZone=true	and	server	time	zone	differs	from	client	time	zone.	(Bug
#5874)

DatabaseMetaData.getIndexInfo()	ignored	unique	parameter.	(Bug
#7081)

Support	new	protocol	type	MYSQL_TYPE_VARCHAR.

Added	useOldUTF8Behavior'	configuration	property,	which	causes	JDBC
driver	to	act	like	it	did	with	MySQL-4.0.x	and	earlier	when	the	character
encoding	is	utf-8	when	connected	to	MySQL-4.1	or	newer.

Statements	created	from	a	pooled	connection	were	returning	physical
connection	instead	of	logical	connection	when	getConnection()	was
called.	(Bug	#7316)

PreparedStatements	don't	encode	Big5	(and	other	multi-byte)	character

sets	correctly	in	static	SQL	strings.	(Bug	#7033)

Connections	starting	up	failed-over	(due	to	down	master)	never	retry
master.	(Bug	#6966)

PreparedStatement.fixDecimalExponent()	adding	extra	+,	making
number	unparseable	by	MySQL	server.	(Bug	#7061)

Timestamp	key	column	data	needed	_binary	stripped	for
UpdatableResultSet.refreshRow().	(Bug	#7686)

Backported	SQLState	codes	mapping	from	Connector/J	3.1,	enable	with
useSqlStateCodes=true	as	a	connection	property,	it	defaults	to	false	in
this	release,	so	that	we	don't	break	legacy	applications	(it	defaults	to	true
starting	with	Connector/J	3.1).

PreparedStatement.fixDecimalExponent()	adding	extra	+,	making
number	unparseable	by	MySQL	server.	(Bug	#7601)

Escape	sequence	{fn	convert(...,	type)}	now	supports	ODBC-style	types
that	are	prepended	by	SQL_.

Fixed	duplicated	code	in	configureClientCharset()	that	prevented
useOldUTF8Behavior=true	from	working	properly.

Handle	streaming	result	sets	with	more	than	2	billion	rows	properly	by
fixing	wraparound	of	row	number	counter.

MS932,	SHIFT_JIS,	and	Windows_31J	not	recognized	as	aliases	for	sjis.
(Bug	#7607)

Adding	CP943	to	aliases	for	sjis.	(Bug	#6549,	fixed	while	fixing	Bug
#7607)

Which	requires	hex	escaping	of	binary	data	when	using	multi-byte	charsets
with	prepared	statements.	(Bug	#8064)

NON_UNIQUE	column	from	DBMD.getIndexInfo()	returned	inverted	value.
(Bug	#8812)

Workaround	for	server	Bug	#9098:	Default	values	of	CURRENT_*	for	DATE,
TIME,	DATETIME,	and	TIMESTAMP	columns	can't	be	distinguished	from
string	values,	so	UpdatableResultSet.moveToInsertRow()	generates	bad
SQL	for	inserting	default	values.

EUCKR	charset	is	sent	as	SET	NAMES	euc_kr	which	MySQL-4.1	and	newer
doesn't	understand.	(Bug	#8629)

DatabaseMetaData.supportsSelectForUpdate()	returns	correct	value
based	on	server	version.

Use	hex	escapes	for	PreparedStatement.setBytes()	for	double-byte
charsets	including	“aliases”	Windows-31J,	CP934,	MS932.

Added	support	for	the	EUC_JP_Solaris	character	encoding,	which	maps	to
a	MySQL	encoding	of	eucjpms	(backported	from	3.1	branch).	This	only
works	on	servers	that	support	eucjpms,	namely	5.0.3	or	later.

D.5.20.	Changes	in	MySQL	Connector/J	3.0.16-ga	(15	November
2004)

Re-issue	character	set	configuration	commands	when	re-using	pooled
connections	and/or	Connection.changeUser()	when	connected	to	MySQL-
4.1	or	newer.

Fixed	ResultSetMetaData.isReadOnly()	to	detect	non-writable	columns
when	connected	to	MySQL-4.1	or	newer,	based	on	existence	of	“original”
table	and	column	names.

ResultSet.updateByte()	when	on	insert	row	throws
ArrayOutOfBoundsException.	(Bug	#5664)

Fixed	DatabaseMetaData.getTypes()	returning	incorrect	(this	is,	non-
negative)	scale	for	the	NUMERIC	type.

Off-by-one	bug	in	Buffer.readString(string).	(Bug	#5664)

Made	TINYINT(1)	->	BIT/Boolean	conversion	configurable	via
tinyInt1isBit	property	(default	true	to	be	JDBC	compliant	out	of	the
box).

Only	set	character_set_results	during	connection	establishment	if	server
version	>=	4.1.1.

Fixed	regression	where	useUnbufferedInput	was	defaulting	to	false.

ResultSet.getTimestamp()	on	a	column	with	TIME	in	it	fails.	(Bug	#5664)

D.5.21.	Changes	in	MySQL	Connector/J	3.0.15-production	(04
September	2004)

StringUtils.escapeEasternUnicodeByteStream	was	still	broken	for
GBK.	(Bug	#4010)

Failover	for	autoReconnect	not	using	port	numbers	for	any	hosts,	and	not
retrying	all	hosts.	(Warning:	This	required	a	change	to	the	SocketFactory
connect()	method	signature,	which	is	now	public	Socket
connect(String	host,	int	portNumber,	Properties	props);	therefore,
any	third-party	socket	factories	will	have	to	be	changed	to	support	this
signature.	(Bug	#4334)

Logical	connections	created	by	MysqlConnectionPoolDataSource	will	now
issue	a	rollback()	when	they	are	closed	and	sent	back	to	the	pool.	If	your
application	server/connection	pool	already	does	this	for	you,	you	can	set	the
rollbackOnPooledClose	property	to	false	to	avoid	the	overhead	of	an
extra	rollback().

Removed	redundant	calls	to	checkRowPos()	in	ResultSet.

DOUBLE	mapped	twice	in	DBMD.getTypeInfo().	(Bug	#4742)

Added	FLOSS	license	exemption.

Calling	.close()	twice	on	a	PooledConnection	causes	NPE.	(Bug	#4808)

DBMD.getColumns()	returns	incorrect	JDBC	type	for	unsigned	columns.
This	affects	type	mappings	for	all	numeric	types	in	the
RSMD.getColumnType()	and	RSMD.getColumnTypeNames()	methods	as	well,
to	ensure	that	“like”	types	from	DBMD.getColumns()	match	up	with	what
RSMD.getColumnType()	and	getColumnTypeNames()	return.	(Bug	#4138,

Bug	#4860)

“Production”	is	now	“GA”	(General	Availability)	in	naming	scheme	of
distributions.

RSMD.getPrecision()	returning	0	for	non-numeric	types	(should	return
max	length	in	chars	for	non-binary	types,	max	length	in	bytes	for	binary
types).	This	fix	also	fixes	mapping	of	RSMD.getColumnType()	and
RSMD.getColumnTypeName()	for	the	BLOB	types	based	on	the	length	sent
from	the	server	(the	server	doesn't	distinguish	between	TINYBLOB,	BLOB,
MEDIUMBLOB	or	LONGBLOB	at	the	network	protocol	level).	(Bug	#4880)

ResultSet	should	release	Field[]	instance	in	.close().	(Bug	#5022)

ResultSet.getMetaData()	should	not	return	incorrectly	initialized
metadata	if	the	result	set	has	been	closed,	but	should	instead	throw	an
SQLException.	Also	fixed	for	getRow()	and	getWarnings()	and	traversal
methods	by	calling	checkClosed()	before	operating	on	instance-level	fields
that	are	nullified	during	.close().	(Bug	#5069)

Parse	new	time	zone	variables	from	4.1.x	servers.

Use	_binary	introducer	for	PreparedStatement.setBytes()	and
set*Stream()	when	connected	to	MySQL-4.1.x	or	newer	to	avoid
misinterpretation	during	character	conversion.

D.5.22.	Changes	in	MySQL	Connector/J	3.0.14-production	(28
May	2004)

Fixed	URL	parsing	error.

D.5.23.	Changes	in	MySQL	Connector/J	3.0.13-production	(27
May	2004)

Using	a	MySQLDatasource	without	server	name	fails.	(Bug	#3848)

No	Database	Selected	when	using	MysqlConnectionPoolDataSource.
(Bug	#3920)

PreparedStatement.getGeneratedKeys()	method	returns	only	1	result	for
batched	insertions.	(Bug	#3873)

D.5.24.	Changes	in	MySQL	Connector/J	3.0.12-production	(18
May	2004)

Add	unsigned	attribute	to	DatabaseMetaData.getColumns()	output	in	the
TYPE_NAME	column.

Added	failOverReadOnly	property,	to	allow	end-user	to	configure	state	of
connection	(read-only/writable)	when	failed	over.

Backported	“change	user”	and	“reset	server	state”	functionality	from	3.1
branch,	to	allow	clients	of	MysqlConnectionPoolDataSource	to	reset	server
state	on	getConnection()	on	a	pooled	connection.

Don't	escape	SJIS/GBK/BIG5	when	using	MySQL-4.1	or	newer.

Allow	url	parameter	for	MysqlDataSource	and	MysqlConnectionPool
DataSource	so	that	passing	of	other	properties	is	possible	from	inside
appservers.

Map	duplicate	key	and	foreign	key	errors	to	SQLState	of	23000.

Backport	documentation	tooling	from	3.1	branch.

Return	creating	statement	for	ResultSets	created	by	getGeneratedKeys().
(Bug	#2957)

Allow	java.util.Date	to	be	sent	in	as	parameter	to
PreparedStatement.setObject(),	converting	it	to	a	Timestamp	to
maintain	full	precision.	(Bug	#103).

Don't	truncate	BLOB	or	CLOB	values	when	using	setBytes()	and/or
setBinary/CharacterStream().	(Bug	#2670).

Dynamically	configure	character	set	mappings	for	field-level	character	sets
on	MySQL-4.1.0	and	newer	using	SHOW	COLLATION	when	connecting.

Map	binary	character	set	to	US-ASCII	to	support	DATETIME	charset

recognition	for	servers	>=	4.1.2.

Use	SET	character_set_results	during	initialization	to	allow	any	charset
to	be	returned	to	the	driver	for	result	sets.

Use	charsetnr	returned	during	connect	to	encode	queries	before	issuing
SET	NAMES	on	MySQL	>=	4.1.0.

Add	helper	methods	to	ResultSetMetaData
(getColumnCharacterEncoding()	and	getColumnCharacterSet())	to
allow	end-users	to	see	what	charset	the	driver	thinks	it	should	be	using	for
the	column.

Only	set	character_set_results	for	MySQL	>=	4.1.0.

StringUtils.escapeSJISByteStream()	not	covering	all	eastern	double-
byte	charsets	correctly.	(Bug	#3511)

Renamed	StringUtils.escapeSJISByteStream()	to	more	appropriate
escapeEasternUnicodeByteStream().

Not	specifying	database	in	URL	caused	MalformedURL	exception.	(Bug
#3554)

Auto-convert	MySQL	encoding	names	to	Java	encoding	names	if	used	for
characterEncoding	property.

Added	encoding	names	that	are	recognized	on	some	JVMs	to	fix	case
where	they	were	reverse-mapped	to	MySQL	encoding	names	incorrectly.

Use	junit.textui.TestRunner	for	all	unit	tests	(to	allow	them	to	be	run
from	the	command	line	outside	of	Ant	or	Eclipse).

UpdatableResultSet	not	picking	up	default	values	for
moveToInsertRow().	(Bug	#3557)

Inconsistent	reporting	of	data	type.	The	server	still	doesn't	return	all	types
for	*BLOBs	*TEXT	correctly,	so	the	driver	won't	return	those	correctly.
(Bug	#3570)

DBMD.getSQLStateType()	returns	incorrect	value.	(Bug	#3520)

Fixed	regression	in	PreparedStatement.setString()	and	eastern
character	encodings.

Made	StringRegressionTest	4.1-unicode	aware.

D.5.25.	Changes	in	MySQL	Connector/J	3.0.11-stable	(19
February	2004)

Trigger	a	SET	NAMES	utf8	when	encoding	is	forced	to	utf8	or	utf-8	via
the	characterEncoding	property.	Previously,	only	the	Java-style	encoding
name	of	utf-8	would	trigger	this.

AutoReconnect	time	was	growing	faster	than	exponentially.	(Bug	#2447)

Fixed	failover	always	going	to	last	host	in	list.	(Bug	#2578)

Added	useUnbufferedInput	parameter,	and	now	use	it	by	default	(due	to
JVM	issue
http://developer.java.sun.com/developer/bugParade/bugs/4401235.html)

Detect	on/off	or	1,	2,	3	form	of	lower_case_table_names	value	on	server.

Return	java.lang.Integer	for	TINYINT	and	SMALLINT	types	from
ResultSetMetaData.getColumnClassName().	(Bug	#2852)

Return	java.lang.Double	for	FLOAT	type	from
ResultSetMetaData.getColumnClassName().	(Bug	#2855)

Return	[B	instead	of	java.lang.Object	for	BINARY,	VARBINARY	and
LONGVARBINARY	types	from	ResultSetMetaData.getColumnClassName()
(JDBC	compliance).

Issue	connection	events	on	all	instances	created	from	a
ConnectionPoolDataSource.

D.5.26.	Changes	in	MySQL	Connector/J	3.0.10-stable	(13	January
2004)

http://developer.java.sun.com/developer/bugParade/bugs/4401235.html

Don't	count	quoted	IDs	when	inside	a	'string'	in	PreparedStatement
parsing.	(Bug	#1511)

“Friendlier”	exception	message	for	PacketTooLargeException.	(Bug
#1534)

Backported	fix	for	aliased	tables	and	UpdatableResultSets	in
checkUpdatability()	method	from	3.1	branch.

Fix	for	ArrayIndexOutOfBounds	exception	when	using
Statement.setMaxRows().	(Bug	#1695)

Barge	blobs	and	split	packets	not	being	read	correctly.	(Bug	#1576)

Fixed	regression	of	Statement.getGeneratedKeys()	and	REPLACE
statements.

Subsequent	call	to	ResultSet.updateFoo()	causes	NPE	if	result	set	is	not
updatable.	(Bug	#1630)

Fix	for	4.1.1-style	authentication	with	no	password.

Foreign	Keys	column	sequence	is	not	consistent	in
DatabaseMetaData.getImported/Exported/CrossReference().	(Bug
#1731)

DatabaseMetaData.getSystemFunction()	returning	bad	function
VResultsSion.	(Bug	#1775)

Cross-database	updatable	result	sets	are	not	checked	for	updatability
correctly.	(Bug	#1592)

DatabaseMetaData.getColumns()	should	return	Types.LONGVARCHAR	for
MySQL	LONGTEXT	type.

ResultSet.getObject()	on	TINYINT	and	SMALLINT	columns	should	return
Java	type	Integer.	(Bug	#1913)

Added	alwaysClearStream	connection	property,	which	causes	the	driver	to
always	empty	any	remaining	data	on	the	input	stream	before	each	query.

Added	more	descriptive	error	message	Server	Configuration	Denies
Access	to	DataSource,	as	well	as	retrieval	of	message	from	server.

Autoreconnect	code	didn't	set	catalog	upon	reconnect	if	it	had	been
changed.

Implement	ResultSet.updateClob().

ResultSetMetaData.isCaseSensitive()	returned	wrong	value	for
CHAR/VARCHAR	columns.

Connection	property	maxRows	not	honored.	(Bug	#1933)

Statements	being	created	too	many	times	in
DBMD.extractForeignKeyFromCreateTable().	(Bug	#1925)

Support	escape	sequence	{fn	convert	...	}.	(Bug	#1914)

ArrayIndexOutOfBounds	when	parameter	number	==	number	of	parameters
+	1.	(Bug	#1958)

ResultSet.findColumn()	should	use	first	matching	column	name	when
there	are	duplicate	column	names	in	SELECT	query	(JDBC-compliance).
(Bug	#2006)

Removed	static	synchronization	bottleneck	from
PreparedStatement.setTimestamp().

Removed	static	synchronization	bottleneck	from	instance	factory	method	of
SingleByteCharsetConverter.

Enable	caching	of	the	parsing	stage	of	prepared	statements	via	the
cachePrepStmts,	prepStmtCacheSize,	and	prepStmtCacheSqlLimit
properties	(disabled	by	default).

Speed	up	parsing	of	PreparedStatements,	try	to	use	one-pass	whenever
possible.

Fixed	security	exception	when	used	in	Applets	(applets	can't	read	the
system	property	file.encoding	which	is	needed	for	LOAD	DATA	LOCAL

INFILE).

Use	constants	for	SQLStates.

Map	charset	ko18_ru	to	ko18r	when	connected	to	MySQL-4.1.0	or	newer.

Ensure	that	Buffer.writeString()	saves	room	for	the	\0.

Fixed	exception	Unknown	character	set	'danish'	on	connect	with	JDK-
1.4.0

Fixed	mappings	in	SQLError	to	report	deadlocks	with	SQLStates	of	41000.

maxRows	property	would	affect	internal	statements,	so	check	it	for	all
statement	creation	internal	to	the	driver,	and	set	to	0	when	it	is	not.

D.5.27.	Changes	in	MySQL	Connector/J	3.0.9-stable	(07	October
2003)

Faster	date	handling	code	in	ResultSet	and	PreparedStatement	(no	longer
uses	Date	methods	that	synchronize	on	static	calendars).

Fixed	test	for	end	of	buffer	in	Buffer.readString().

Fixed	ResultSet.previous()	behavior	to	move	current	position	to	before
result	set	when	on	first	row	of	result	set.	(Bug	#496)

Fixed	Statement	and	PreparedStatement	issuing	bogus	queries	when
setMaxRows()	had	been	used	and	a	LIMIT	clause	was	present	in	the	query.

refreshRow	didn't	work	when	primary	key	values	contained	values	that
needed	to	be	escaped	(they	ended	up	being	doubly	escaped).	(Bug	#661)

Support	InnoDB	contraint	names	when	extracting	foreign	key	information	in
DatabaseMetaData	(implementing	ideas	from	Parwinder	Sekhon).	(Bug
#517,	Bug	#664)

Backported	4.1	protocol	changes	from	3.1	branch	(server-side	SQL	states,
new	field	information,	larger	client	capability	flags,	connect-with-database,
and	so	forth).

Fix	UpdatableResultSet	to	return	values	for	getXXX()	when	on	insert	row.
(Bug	#675)

The	insertRow	in	an	UpdatableResultSet	is	now	loaded	with	the	default
column	values	when	moveToInsertRow()	is	called.	(Bug	#688)

DatabaseMetaData.getColumns()	wasn't	returning	NULL	for	default	values
that	are	specified	as	NULL.

Change	default	statement	type/concurrency	to	TYPE_FORWARD_ONLY	and
CONCUR_READ_ONLY	(spec	compliance).

Don't	try	and	reset	isolation	level	on	reconnect	if	MySQL	doesn't	support
them.

Don't	wrap	SQLExceptions	in	RowDataDynamic.

Don't	change	timestamp	TZ	twice	if	useTimezone==true.	(Bug	#774)

Fixed	regression	in	large	split-packet	handling.	(Bug	#848)

Better	diagnostic	error	messages	in	exceptions	for	“streaming”	result	sets.

Issue	exception	on	ResultSet.getXXX()	on	empty	result	set	(wasn't	caught
in	some	cases).

Don't	hide	messages	from	exceptions	thrown	in	I/O	layers.

Don't	fire	connection	closed	events	when	closing	pooled	connections,	or	on
PooledConnection.getConnection()	with	already	open	connections.	(Bug
#884)

Clip	+/-	INF	(to	smallest	and	largest	representative	values	for	the	type	in
MySQL)	and	NaN	(to	0)	for	setDouble/setFloat(),	and	issue	a	warning
on	the	statement	when	the	server	does	not	support	+/-	INF	or	NaN.

Double-escaping	of	'\'	when	charset	is	SJIS	or	GBK	and	'\'	appears	in
non-escaped	input.	(Bug	#879)

When	emptying	input	stream	of	unused	rows	for	“streaming”	result	sets,

have	the	current	thread	yield()	every	100	rows	in	order	to	not	monopolize
CPU	time.

DatabaseMetaData.getColumns()	getting	confused	about	the	keyword
“set”	in	character	columns.	(Bug	#1099)

Fixed	deadlock	issue	with	Statement.setMaxRows().

Fixed	CLOB.truncate().	(Bug	#1130)

Optimized	CLOB.setChracterStream().	(Bug	#1131)

Made	databaseName,	portNumber,	and	serverName	optional	parameters	for
MysqlDataSourceFactory.	(Bug	#1246)

ResultSet.get/setString	mashing	char	127.	(Bug	#1247)

Backported	authentication	changes	for	4.1.1	and	newer	from	3.1	branch.

Added	com.mysql.jdbc.util.BaseBugReport	to	help	creation	of	testcases
for	bug	reports.

Added	property	to	“clobber”	streaming	results,	by	setting	the
clobberStreamingResults	property	to	true	(the	default	is	false).	This
will	cause	a	“streaming”	ResultSet	to	be	automatically	closed,	and	any
oustanding	data	still	streaming	from	the	server	to	be	discarded	if	another
query	is	executed	before	all	the	data	has	been	read	from	the	server.

D.5.28.	Changes	in	MySQL	Connector/J	3.0.8-stable	(23	May
2003)

Allow	bogus	URLs	in	Driver.getPropertyInfo().

Return	list	of	generated	keys	when	using	multi-value	INSERTS	with
Statement.getGeneratedKeys().

Use	JVM	charset	with	filenames	and	LOAD	DATA	[LOCAL]	INFILE.

Fix	infinite	loop	with	Connection.cleanup().

Changed	Ant	target	compile-core	to	compile-driver,	and	made	testsuite
compilation	a	separate	target.

Fixed	result	set	not	getting	set	for	Statement.executeUpdate(),	which
affected	getGeneratedKeys()	and	getUpdateCount()	in	some	cases.

Unicode	character	0xFFFF	in	a	string	would	cause	the	driver	to	throw	an
ArrayOutOfBoundsException.	(Bug	#378).

Return	correct	number	of	generated	keys	when	using	REPLACE	statements.

Fix	problem	detecting	server	character	set	in	some	cases.

Fix	row	data	decoding	error	when	using	very	large	packets.

Optimized	row	data	decoding.

Issue	exception	when	operating	on	an	already	closed	prepared	statement.

Fixed	SJIS	encoding	bug,	thanks	to	Naoto	Sato.

Optimized	usage	of	EscapeProcessor.

Allow	multiple	calls	to	Statement.close().

D.5.29.	Changes	in	MySQL	Connector/J	3.0.7-stable	(08	April
2003)

Fixed	MysqlPooledConnection.close()	calling	wrong	event	type.

Fixed	StringIndexOutOfBoundsException	in
PreparedStatement.setClob().

4.1	Column	Metadata	fixes.

Remove	synchronization	from	Driver.connect()	and
Driver.acceptsUrl().

IOExceptions	during	a	transaction	now	cause	the	Connection	to	be	closed.

Fixed	missing	conversion	for	YEAR	type	in
ResultSetMetaData.getColumnTypeName().

Don't	pick	up	indexes	that	start	with	pri	as	primary	keys	for
DBMD.getPrimaryKeys().

Throw	SQLExceptions	when	trying	to	do	operations	on	a	forcefully	closed
Connection	(that	is,	when	a	communication	link	failure	occurs).

You	can	now	toggle	profiling	on/off	using
Connection.setProfileSql(boolean).

Fixed	charset	issues	with	database	metadata	(charset	was	not	getting	set
correctly).

Updatable	ResultSets	can	now	be	created	for	aliased	tables/columns	when
connected	to	MySQL-4.1	or	newer.

Fixed	LOAD	DATA	LOCAL	INFILE	bug	when	file	>	max_allowed_packet.

Fixed	escaping	of	0x5c	('\')	character	for	GBK	and	Big5	charsets.

Fixed	ResultSet.getTimestamp()	when	underlying	field	is	of	type	DATE.

Ensure	that	packet	size	from	alignPacketSize()	does	not	exceed
max_allowed_packet	(JVM	bug)

Don't	reset	Connection.isReadOnly()	when	autoReconnecting.

D.5.30.	Changes	in	MySQL	Connector/J	3.0.6-stable	(18	February
2003)

Fixed	ResultSetMetaData	to	return	""	when	catalog	not	known.	Fixes
NullPointerExceptions	with	Sun's	CachedRowSet.

Fixed	DBMD.getTypeInfo()	and	DBMD.getColumns()	returning	different
value	for	precision	in	TEXT	and	BLOB	types.

Allow	ignoring	of	warning	for	“non	transactional	tables”	during	rollback
(compliance/usability)	by	setting	ignoreNonTxTables	property	to	true.

Fixed	SQLExceptions	getting	swallowed	on	initial	connect.

Fixed	Statement.setMaxRows()	to	stop	sending	LIMIT	type	queries	when
not	needed	(performance).

Clean	up	Statement	query/method	mismatch	tests	(that	is,	INSERT	not
allowed	with	.executeQuery()).

More	checks	added	in	ResultSet	traversal	method	to	catch	when	in	closed
state.

Fixed	ResultSetMetaData.isWritable()	to	return	correct	value.

Add	“window”	of	different	NULL	sorting	behavior	to
DBMD.nullsAreSortedAtStart	(4.0.2	to	4.0.10,	true;	otherwise,	no).

Implemented	Blob.setBytes().	You	still	need	to	pass	the	resultant	Blob
back	into	an	updatable	ResultSet	or	PreparedStatement	to	persist	the
changes,	because	MySQL	does	not	support	“locators”.

Backported	4.1	charset	field	info	changes	from	Connector/J	3.1.

D.5.31.	Changes	in	MySQL	Connector/J	3.0.5-gamma	(22
January	2003)

Fixed	Buffer.fastSkipLenString()	causing	ArrayIndexOutOfBounds
exceptions	with	some	queries	when	unpacking	fields.

Implemented	an	empty	TypeMap	for	Connection.getTypeMap()	so	that
some	third-party	apps	work	with	MySQL	(IBM	WebSphere	5.0	Connection
pool).

Added	missing	LONGTEXT	type	to	DBMD.getColumns().

Retrieve	TX_ISOLATION	from	database	for
Connection.getTransactionIsolation()	when	the	MySQL	version
supports	it,	instead	of	an	instance	variable.

Quote	table	names	in	DatabaseMetaData.getColumns(),
getPrimaryKeys(),	getIndexInfo(),	getBestRowIdentifier().

Greatly	reduce	memory	required	for	setBinaryStream()	in
PreparedStatements.

Fixed	ResultSet.isBeforeFirst()	for	empty	result	sets.

Added	update	options	for	foreign	key	metadata.

D.5.32.	Changes	in	MySQL	Connector/J	3.0.4-gamma	(06
January	2003)

Added	quoted	identifiers	to	database	names	for	Connection.setCatalog.

Added	support	for	quoted	identifiers	in	PreparedStatement	parser.

Streamlined	character	conversion	and	byte[]	handling	in
PreparedStatements	for	setByte().

Reduce	memory	footprint	of	PreparedStatements	by	sharing	outbound
packet	with	MysqlIO.

Added	strictUpdates	property	to	allow	control	of	amount	of	checking	for
“correctness”	of	updatable	result	sets.	Set	this	to	false	if	you	want	faster
updatable	result	sets	and	you	know	that	you	create	them	from	SELECT
statements	on	tables	with	primary	keys	and	that	you	have	selected	all
primary	keys	in	your	query.

Added	support	for	4.0.8-style	large	packets.

Fixed	PreparedStatement.executeBatch()	parameter	overwriting.

D.5.33.	Changes	in	MySQL	Connector/J	3.0.3-dev	(17	December
2002)

Changed	charsToByte	in	SingleByteCharConverter	to	be	non-static.

Changed	SingleByteCharConverter	to	use	lazy	initialization	of	each
converter.

Fixed	charset	handling	in	Fields.java.

Implemented	Connection.nativeSQL().

More	robust	escape	tokenizer:	Recognize	--	comments,	and	allow	nested
escape	sequences	(see	testsuite.EscapeProcessingTest).

DBMD.getImported/ExportedKeys()	now	handles	multiple	foreign	keys	per
table.

Fixed	ResultSetMetaData.getPrecision()	returning	incorrect	values	for
some	floating-point	types.

Fixed	ResultSetMetaData.getColumnTypeName()	returning	BLOB	for	TEXT
and	TEXT	for	BLOB	types.

Fixed	Buffer.isLastDataPacket()	for	4.1	and	newer	servers.

Added	CLIENT_LONG_FLAG	to	be	able	to	get	more	column	flags
(isAutoIncrement()	being	the	most	important).

Because	of	above,	implemented	ResultSetMetaData.isAutoIncrement()
to	use	Field.isAutoIncrement().

Honor	lower_case_table_names	when	enabled	in	the	server	when	doing
table	name	comparisons	in	DatabaseMetaData	methods.

Some	MySQL-4.1	protocol	support	(extended	field	info	from	selects).

Use	non-aliased	table/column	names	and	database	names	to	fullly	qualify
tables	and	columns	in	UpdatableResultSet	(requires	MySQL-4.1	or
newer).

Allow	user	to	alter	behavior	of	Statement/
PreparedStatement.executeBatch()	via	continueBatchOnError	property
(defaults	to	true).

Check	for	connection	closed	in	more	Connection	methods
(createStatement,	prepareStatement,	setTransactionIsolation,
setAutoCommit).

More	robust	implementation	of	updatable	result	sets.	Checks	that	all

primary	keys	of	the	table	have	been	selected.

LOAD	DATA	LOCAL	INFILE	...	now	works,	if	your	server	is	configured	to
allow	it.	Can	be	turned	off	with	the	allowLoadLocalInfile	property	(see
the	README).

Substitute	'?'	for	unknown	character	conversions	in	single-byte	character
sets	instead	of	'\0'.

NamedPipeSocketFactory	now	works	(only	intended	for	Windows),	see
README	for	instructions.

D.5.34.	Changes	in	MySQL	Connector/J	3.0.2-dev	(08	November
2002)

Fixed	issue	with	updatable	result	sets	and	PreparedStatements	not
working.

Fixed	ResultSet.setFetchDirection(FETCH_UNKNOWN).

Fixed	issue	when	calling	Statement.setFetchSize()	when	using	arbitrary
values.

Fixed	incorrect	conversion	in	ResultSet.getLong().

Implemented	ResultSet.updateBlob().

Removed	duplicate	code	from	UpdatableResultSet	(it	can	be	inherited
from	ResultSet,	the	extra	code	for	each	method	to	handle	updatability	I
thought	might	someday	be	necessary	has	not	been	needed).

Fixed	UnsupportedEncodingException	thrown	when	“forcing”	a	character
encoding	via	properties.

Fixed	various	non-ASCII	character	encoding	issues.

Added	driver	property	useHostsInPrivileges.	Defaults	to	true.	Affects
whether	or	not	@hostname	will	be	used	in
DBMD.getColumn/TablePrivileges.

All	DBMD	result	set	columns	describing	schemas	now	return	NULL	to	be	more
compliant	with	the	behavior	of	other	JDBC	drivers	for	other	database
systems	(MySQL	does	not	support	schemas).

Added	SSL	support.	See	README	for	information	on	how	to	use	it.

Properly	restore	connection	properties	when	autoReconnecting	or	failing-
over,	including	autoCommit	state,	and	isolation	level.

Use	SHOW	CREATE	TABLE	when	possible	for	determining	foreign	key
information	for	DatabaseMetaData.	Also	allows	cascade	options	for	DELETE
information	to	be	returned.

Escape	0x5c	character	in	strings	for	the	SJIS	charset.

Fixed	start	position	off-by-1	error	in	Clob.getSubString().

Implemented	Clob.truncate().

Implemented	Clob.setString().

Implemented	Clob.setAsciiStream().

Implemented	Clob.setCharacterStream().

Added	com.mysql.jdbc.MiniAdmin	class,	which	allows	you	to	send
shutdown	command	to	MySQL	server.	This	is	intended	to	be	used	when
“embedding”	Java	and	MySQL	server	together	in	an	end-user	application.

Added	connectTimeout	parameter	that	allows	users	of	JDK-1.4	and	newer
to	specify	a	maxium	time	to	wait	to	establish	a	connection.

Failover	and	autoReconnect	work	only	when	the	connection	is	in	an
autoCommit(false)	state,	in	order	to	stay	transaction-safe.

Added	queriesBeforeRetryMaster	property	that	specifies	how	many
queries	to	issue	when	failed	over	before	attempting	to	reconnect	to	the
master	(defaults	to	50).

Fixed	DBMD.supportsResultSetConcurrency()	so	that	it	returns	true	for

ResultSet.TYPE_SCROLL_INSENSITIVE	and	ResultSet.CONCUR_READ_ONLY
or	ResultSet.CONCUR_UPDATABLE.

Fixed	ResultSet.isLast()	for	empty	result	sets	(should	return	false).

PreparedStatement	now	honors	stream	lengths	in
setBinary/Ascii/Character	Stream()	unless	you	set	the	connection	property
useStreamLengthsInPrepStmts	to	false.

Removed	some	not-needed	temporary	object	creation	by	smarter	use	of
Strings	in	EscapeProcessor,	Connection	and	DatabaseMetaData	classes.

D.5.35.	Changes	in	MySQL	Connector/J	3.0.1-dev	(21	September
2002)

Fixed	ResultSet.getRow()	off-by-one	bug.

Fixed	RowDataStatic.getAt()	off-by-one	bug.

Added	limited	Clob	functionality	(ResultSet.getClob(),
PreparedStatemtent.setClob(),	PreparedStatement.setObject(Clob).

Added	socketTimeout	parameter	to	URL.

Connection.isClosed()	no	longer	“pings”	the	server.

Connection.close()	issues	rollback()	when	getAutoCommit()	is	false.

Added	paranoid	parameter,	which	sanitizes	error	messages	by	removing
“sensitive”	information	from	them	(such	as	hostnames,	ports,	or
usernames),	as	well	as	clearing	“sensitive”	data	structures	when	possible.

Fixed	ResultSetMetaData.isSigned()	for	TINYINT	and	BIGINT.

Charsets	now	automatically	detected.	Optimized	code	for	single-byte
character	set	conversion.

Implemented	ResultSet.getCharacterStream().

Added	LOCAL	TEMPORARY	to	table	types	in

DatabaseMetaData.getTableTypes().

Massive	code	clean-up	to	follow	Java	coding	conventions	(the	time	had
come).

D.5.36.	Changes	in	MySQL	Connector/J	3.0.0-dev	(31	July	2002)

!!!	LICENSE	CHANGE	!!!	The	driver	is	now	GPL.	If	you	need	non-GPL
licenses,	please	contact	me	<mark@mysql.com>.

JDBC-3.0	functionality	including
Statement/PreparedStatement.getGeneratedKeys()	and
ResultSet.getURL().

Performance	enchancements:	Driver	is	now	50–100%	faster	in	most
situations,	and	creates	fewer	temporary	objects.

Repackaging:	New	driver	name	is	com.mysql.jdbc.Driver,	old	name	still
works,	though	(the	driver	is	now	provided	by	MySQL-AB).

Better	checking	for	closed	connections	in	Statement	and
PreparedStatement.

Support	for	streaming	(row-by-row)	result	sets	(see	README)	Thanks	to
Doron.

Support	for	large	packets	(new	addition	to	MySQL-4.0	protocol),	see
README	for	more	information.

JDBC	Compliance:	Passes	all	tests	besides	stored	procedure	tests.

Fix	and	sort	primary	key	names	in	DBMetaData	(SF	bugs	582086	and
582086).

Float	types	now	reported	as	java.sql.Types.FLOAT	(SF	bug	579573).

ResultSet.getTimestamp()	now	works	for	DATE	types	(SF	bug	559134).

ResultSet.getDate/Time/Timestamp	now	recognizes	all	forms	of	invalid
values	that	have	been	set	to	all	zeros	by	MySQL	(SF	bug	586058).

Testsuite	now	uses	Junit	(which	you	can	get	from	http://www.junit.org.

The	driver	now	only	works	with	JDK-1.2	or	newer.

Added	multi-host	failover	support	(see	README).

General	source-code	cleanup.

Overall	speed	improvements	via	controlling	transient	object	creation	in
MysqlIO	class	when	reading	packets.

Performance	improvements	in	string	handling	and	field	metadata	creation
(lazily	instantiated)	contributed	by	Alex	Twisleton-Wykeham-Fiennes.

D.5.37.	Changes	in	MySQL	Connector/J	2.0.14	(16	May	2002)

More	code	cleanup.

PreparedStatement	now	releases	resources	on	.close().	(SF	bug	553268)

Quoted	identifiers	not	used	if	server	version	does	not	support	them.	Also,	if
server	started	with	--ansi	or	--sql-mode=ANSI_QUOTES,	‘"’	will	be	used	as
an	identifier	quote	character,	otherwise	‘'’	will	be	used.

ResultSet.getDouble()	now	uses	code	built	into	JDK	to	be	more	precise
(but	slower).

LogicalHandle.isClosed()	calls	through	to	physical	connection.

Added	SQL	profiling	(to	STDERR).	Set	profileSql=true	in	your	JDBC
URL.	See	README	for	more	information.

Fixed	typo	for	relaxAutoCommit	parameter.

D.5.38.	Changes	in	MySQL	Connector/J	2.0.13	(24	April	2002)

More	code	cleanup.

Fixed	unicode	chars	being	read	incorrectly.	(SF	bug	541088)

http://www.junit.org

Faster	blob	escaping	for	PrepStmt.

Added	set/getPortNumber()	to	DataSource(s).	(SF	bug	548167)

Added	setURL()	to	MySQLXADataSource.	(SF	bug	546019)

PreparedStatement.toString()	fixed.	(SF	bug	534026)

ResultSetMetaData.getColumnClassName()	now	implemented.

Rudimentary	version	of	Statement.getGeneratedKeys()	from	JDBC-3.0
now	implemented	(you	need	to	be	using	JDK-1.4	for	this	to	work,	I
believe).

DBMetaData.getIndexInfo()	-	bad	PAGES	fixed.	(SF	BUG	542201)

D.5.39.	Changes	in	MySQL	Connector/J	2.0.12	(07	April	2002)

General	code	cleanup.

Added	getIdleFor()	method	to	Connection	and	MysqlLogicalHandle.

Relaxed	synchronization	in	all	classes,	should	fix	520615	and	520393.

Added	getTable/ColumnPrivileges()	to	DBMD	(fixes	484502).

Added	new	types	to	getTypeInfo(),	fixed	existing	types	thanks	to	Al
Davis	and	Kid	Kalanon.

Added	support	for	BIT	types	(51870)	to	PreparedStatement.

Fixed	getRow()	bug	(527165)	in	ResultSet.

Fixes	for	ResultSet	updatability	in	PreparedStatement.

Fixed	time	zone	off-by-1-hour	bug	in	PreparedStatement	(538286,
528785).

ResultSet:	Fixed	updatability	(values	being	set	to	null	if	not	updated).

DataSources	-	fixed	setUrl	bug	(511614,	525565),	wrong	datasource	class

name	(532816,	528767).

Added	identifier	quoting	to	all	DatabaseMetaData	methods	that	need	them
(should	fix	518108).

Added	support	for	YEAR	type	(533556).

ResultSet.insertRow()	should	now	detect	auto_increment	fields	in	most
cases	and	use	that	value	in	the	new	row.	This	detection	will	not	work	in
multi-valued	keys,	however,	due	to	the	fact	that	the	MySQL	protocol	does
not	return	this	information.

ResultSet.refreshRow()	implemented.

Fixed	testsuite.Traversal	afterLast()	bug,	thanks	to	Igor	Lastric.

D.5.40.	Changes	in	MySQL	Connector/J	2.0.11	(27	January	2002)

Fixed	missing	DELETE_RULE	value	in	DBMD.getImported/ExportedKeys()
and	getCrossReference().

Full	synchronization	of	Statement.java.

More	changes	to	fix	Unexpected	end	of	input	stream	errors	when
reading	BLOB	values.	This	should	be	the	last	fix.

D.5.41.	Changes	in	MySQL	Connector/J	2.0.10	(24	January	2002)

Fixed	spurious	Unexpected	end	of	input	stream	errors	in	MysqlIO	(bug
507456).

Fixed	null-pointer-exceptions	when	using
MysqlConnectionPoolDataSource	with	Websphere	4	(bug	505839).

D.5.42.	Changes	in	MySQL	Connector/J	2.0.9	(13	January	2002)

Ant	build	was	corrupting	included	jar	files,	fixed	(bug	487669).

Fixed	extra	memory	allocation	in	MysqlIO.readPacket()	(bug	488663).

Implementation	of	DatabaseMetaData.getExported/ImportedKeys()	and
getCrossReference().

Full	synchronization	on	methods	modifying	instance	and	class-shared
references,	driver	should	be	entirely	thread-safe	now	(please	let	me	know	if
you	have	problems).

DataSource	implementations	moved	to
org.gjt.mm.mysql.jdbc2.optional	package,	and	(initial)	implementations
of	PooledConnectionDataSource	and	XADataSource	are	in	place	(thanks	to
Todd	Wolff	for	the	implementation	and	testing	of
PooledConnectionDataSource	with	IBM	WebSphere	4).

Added	detection	of	network	connection	being	closed	when	reading	packets
(thanks	to	Todd	Lizambri).

Fixed	quoting	error	with	escape	processor	(bug	486265).

Report	batch	update	support	through	DatabaseMetaData	(bug	495101).

Fixed	off-by-one-hour	error	in	PreparedStatement.setTimestamp()	(bug
491577).

Removed	concatenation	support	from	driver	(the	||	operator),	as	older
versions	of	VisualAge	seem	to	be	the	only	thing	that	use	it,	and	it	conflicts
with	the	logical	||	operator.	You	will	need	to	start	mysqld	with	the	--ansi
flag	to	use	the	||	operator	as	concatenation	(bug	491680).

Fixed	casting	bug	in	PreparedStatement	(bug	488663).

D.5.43.	Changes	in	MySQL	Connector/J	2.0.8	(25	November	2001)

Batch	updates	now	supported	(thanks	to	some	inspiration	from	Daniel
Rall).

XADataSource/ConnectionPoolDataSource	code	(experimental)

PreparedStatement.setAnyNumericType()	now	handles	positive
exponents	correctly	(adds	+	so	MySQL	can	understand	it).

DatabaseMetaData.getPrimaryKeys()	and	getBestRowIdentifier()	are
now	more	robust	in	identifying	primary	keys	(matches	regardless	of	case	or
abbreviation/full	spelling	of	Primary	Key	in	Key_type	column).

D.5.44.	Changes	in	MySQL	Connector/J	2.0.7	(24	October	2001)

PreparedStatement.setCharacterStream()	now	implemented

Fixed	dangling	socket	problem	when	in	high	availability
(autoReconnect=true)	mode,	and	finalizer	for	Connection	will	close	any
dangling	sockets	on	GC.

Fixed	ResultSetMetaData.getPrecision()	returning	one	less	than	actual
on	newer	versions	of	MySQL.

ResultSet.getBlob()	now	returns	null	if	column	value	was	null.

Character	sets	read	from	database	if	useUnicode=true	and
characterEncoding	is	not	set.	(thanks	to	Dmitry	Vereshchagin)

Initial	transaction	isolation	level	read	from	database	(if	avaialable).	(thanks
to	Dmitry	Vereshchagin)

Fixed	DatabaseMetaData.supportsTransactions(),	and
supportsTransactionIsolationLevel()	and	getTypeInfo()
SQL_DATETIME_SUB	and	SQL_DATA_TYPE	fields	not	being	readable.

Fixed	PreparedStatement	generating	SQL	that	would	end	up	with	syntax
errors	for	some	queries.

Fixed	ResultSet.isAfterLast()	always	returning	false.

Fixed	time	zone	issue	in	PreparedStatement.setTimestamp().	(thanks	to
Erik	Olofsson)

Captialize	type	names	when	captializeTypeNames=true	is	passed	in	URL
or	properties	(for	WebObjects.	(thanks	to	Anjo	Krank)

Updatable	result	sets	now	correctly	handle	NULL	values	in	fields.

PreparedStatement.setDouble()	now	uses	full-precision	doubles	(reverting	a
fix	made	earlier	to	truncate	them).

PreparedStatement.setBoolean()	will	use	1/0	for	values	if	your	MySQL
version	is	3.21.23	or	higher.

D.5.45.	Changes	in	MySQL	Connector/J	2.0.6	(16	June	2001)

Fixed	PreparedStatement	parameter	checking.

Fixed	case-sensitive	column	names	in	ResultSet.java.

D.5.46.	Changes	in	MySQL	Connector/J	2.0.5	(13	June	2001)

Fixed	ResultSet.getBlob()	ArrayIndex	out-of-bounds.

Fixed	ResultSetMetaData.getColumnTypeName	for	TEXT/BLOB.

Fixed	ArrayIndexOutOfBounds	when	sending	large	BLOB	queries.	(Max	size
packet	was	not	being	set)

Added	ISOLATION	level	support	to	Connection.setIsolationLevel()

Fixed	NPE	on	PreparedStatement.executeUpdate()	when	all	columns
have	not	been	set.

Fixed	data	parsing	of	TIMESTAMP	values	with	2-digit	years.

Added	Byte	to	PreparedStatement.setObject().

ResultSet.getBoolean()	now	recognizes	-1	as	true.

ResultSet	has	+/-Inf/inf	support.

ResultSet.insertRow()	works	now,	even	if	not	all	columns	are	set	(they
will	be	set	to	NULL).

DataBaseMetaData.getCrossReference()	no	longer	ArrayIndexOOB.

getObject()	on	ResultSet	correctly	does	TINYINT->Byte	and	SMALLINT-

>Short.

D.5.47.	Changes	in	MySQL	Connector/J	2.0.3	(03	December	2000)

Implemented	getBigDecimal()	without	scale	component	for	JDBC2.

Fixed	composite	key	problem	with	updatable	result	sets.

Added	detection	of	-/+INF	for	doubles.

Faster	ASCII	string	operations.

Fixed	incorrect	detection	of	MAX_ALLOWED_PACKET,	so	sending	large	blobs
should	work	now.

Fixed	off-by-one	error	in	java.sql.Blob	implementation	code.

Added	ultraDevHack	URL	parameter,	set	to	true	to	allow	(broken)
Macromedia	UltraDev	to	use	the	driver.

D.5.48.	Changes	in	MySQL	Connector/J	2.0.1	(06	April	2000)

Fixed	RSMD.isWritable()	returning	wrong	value.	Thanks	to	Moritz	Maass.

Cleaned	up	exception	handling	when	driver	connects.

Columns	that	are	of	type	TEXT	now	return	as	Strings	when	you	use
getObject().

DatabaseMetaData.getPrimaryKeys()	now	works	correctly	with	respect	to
key_seq.	Thanks	to	Brian	Slesinsky.

No	escape	processing	is	done	on	PreparedStatements	anymore	per	JDBC
spec.

Fixed	many	JDBC-2.0	traversal,	positioning	bugs,	especially	with	respect	to
empty	result	sets.	Thanks	to	Ron	Smits,	Nick	Brook,	Cessar	Garcia	and
Carlos	Martinez.

Fixed	some	issues	with	updatability	support	in	ResultSet	when	using

multiple	primary	keys.

D.5.49.	Changes	in	MySQL	Connector/J	2.0.0pre5	(21	February
2000)

Fixed	Bad	Handshake	problem.

D.5.50.	Changes	in	MySQL	Connector/J	2.0.0pre4	(10	January
2000)

Fixes	to	ResultSet	for	insertRow()	-	Thanks	to	Cesar	Garcia

Fix	to	Driver	to	recognize	JDBC-2.0	by	loading	a	JDBC-2.0	class,	instead
of	relying	on	JDK	version	numbers.	Thanks	to	John	Baker.

Fixed	ResultSet	to	return	correct	row	numbers

Statement.getUpdateCount()	now	returns	rows	matched,	instead	of	rows
actually	updated,	which	is	more	SQL-92	like.

10-29-99

Statement/PreparedStatement.getMoreResults()	bug	fixed.	Thanks	to	Noel
J.	Bergman.

Added	Short	as	a	type	to	PreparedStatement.setObject().	Thanks	to	Jeff
Crowder

Driver	now	automagically	configures	maximum/preferred	packet	sizes	by
querying	server.

Autoreconnect	code	uses	fast	ping	command	if	server	supports	it.

Fixed	various	bugs	with	respect	to	packet	sizing	when	reading	from	the
server	and	when	alloc'ing	to	write	to	the	server.

D.5.51.	Changes	in	MySQL	Connector/J	2.0.0pre	(17	August
1999)

Now	compiles	under	JDK-1.2.	The	driver	supports	both	JDK-1.1	and	JDK-
1.2	at	the	same	time	through	a	core	set	of	classes.	The	driver	will	load	the
appropriate	interface	classes	at	runtime	by	figuring	out	which	JVM	version
you	are	using.

Fixes	for	result	sets	with	all	nulls	in	the	first	row.	(Pointed	out	by	Tim
Endres)

Fixes	to	column	numbers	in	SQLExceptions	in	ResultSet	(Thanks	to	Blas
Rodriguez	Somoza)

The	database	no	longer	needs	to	specified	to	connect.	(Thanks	to	Christian
Motschke)

D.5.52.	Changes	in	MySQL	Connector/J	1.2b	(04	July	1999)

Better	Documentation	(in	progress),	in	doc/mm.doc/book1.html

DBMD	now	allows	null	for	a	column	name	pattern	(not	in	spec),	which	it
changes	to	'%'.

DBMD	now	has	correct	types/lengths	for	getXXX().

ResultSet.getDate(),	getTime(),	and	getTimestamp()	fixes.	(contributed	by
Alan	Wilken)

EscapeProcessor	now	handles	\{	\}	and	{	or	}	inside	quotes	correctly.
(thanks	to	Alik	for	some	ideas	on	how	to	fix	it)

Fixes	to	properties	handling	in	Connection.	(contributed	by	Juho	Tikkala)

ResultSet.getObject()	now	returns	null	for	NULL	columns	in	the	table,
rather	than	bombing	out.	(thanks	to	Ben	Grosman)

ResultSet.getObject()	now	returns	Strings	for	types	from	MySQL	that	it
doesn't	know	about.	(Suggested	by	Chris	Perdue)

Removed	DataInput/Output	streams,	not	needed,	1/2	number	of	method
calls	per	IO	operation.

Use	default	character	encoding	if	one	is	not	specified.	This	is	a	work-
around	for	broken	JVMs,	because	according	to	spec,	EVERY	JVM	must
support	"ISO8859_1",	but	they	don't.

Fixed	Connection	to	use	the	platform	character	encoding	instead	of
"ISO8859_1"	if	one	isn't	explicitly	set.	This	fixes	problems	people	were
having	loading	the	character-	converter	classes	that	didn't	always	exist
(JVM	bug).	(thanks	to	Fritz	Elfert	for	pointing	out	this	problem)

Changed	MysqlIO	to	re-use	packets	where	possible	to	reduce	memory
usage.

Fixed	escape-processor	bugs	pertaining	to	{}	inside	quotes.

D.5.53.	Changes	in	MySQL	Connector/J	1.2a	(14	April	1999)

Fixed	character-set	support	for	non-Javasoft	JVMs	(thanks	to	many	people
for	pointing	it	out)

Fixed	ResultSet.getBoolean()	to	recognize	'y'	&	'n'	as	well	as	'1'	&	'0'	as
boolean	flags.	(thanks	to	Tim	Pizey)

Fixed	ResultSet.getTimestamp()	to	give	better	performance.	(thanks	to
Richard	Swift)

Fixed	getByte()	for	numeric	types.	(thanks	to	Ray	Bellis)

Fixed	DatabaseMetaData.getTypeInfo()	for	DATE	type.	(thanks	to	Paul
Johnston)

Fixed	EscapeProcessor	for	"fn"	calls.	(thanks	to	Piyush	Shah	at
locomotive.org)

Fixed	EscapeProcessor	to	not	do	extraneous	work	if	there	are	no	escape
codes.	(thanks	to	Ryan	Gustafson)

Fixed	Driver	to	parse	URLs	of	the	form	"jdbc:mysql://host:port"	(thanks	to
Richard	Lobb)

D.5.54.	Changes	in	MySQL	Connector/J	1.1i	(24	March	1999)

Fixed	Timestamps	for	PreparedStatements

Fixed	null	pointer	exceptions	in	RSMD	and	RS

Re-compiled	with	jikes	for	valid	class	files	(thanks	ms!)

D.5.55.	Changes	in	MySQL	Connector/J	1.1h	(08	March	1999)

Fixed	escape	processor	to	deal	with	unmatched	{	and	}	(thanks	to	Craig
Coles)

Fixed	escape	processor	to	create	more	portable	(between	DATETIME	and
TIMESTAMP	types)	representations	so	that	it	will	work	with	BETWEEN
clauses.	(thanks	to	Craig	Longman)

MysqlIO.quit()	now	closes	the	socket	connection.	Before,	after	many	failed
connections	some	OS's	would	run	out	of	file	descriptors.	(thanks	to	Michael
Brinkman)

Fixed	NullPointerException	in	Driver.getPropertyInfo.	(thanks	to	Dave
Potts)

Fixes	to	MysqlDefs	to	allow	all	*text	fields	to	be	retrieved	as	Strings.
(thanks	to	Chris	at	Leverage)

Fixed	setDouble	in	PreparedStatement	for	large	numbers	to	avoid	sending
scientific	notation	to	the	database.	(thanks	to	J.S.	Ferguson)

Fixed	getScale()	and	getPrecision()	in	RSMD.	(contrib'd	by	James
Klicman)

Fixed	getObject()	when	field	was	DECIMAL	or	NUMERIC	(thanks	to	Bert
Hobbs)

DBMD.getTables()	bombed	when	passed	a	null	table-name	pattern.	Fixed.
(thanks	to	Richard	Lobb)

Added	check	for	"client	not	authorized"	errors	during	connect.	(thanks	to
Hannes	Wallnoefer)

D.5.56.	Changes	in	MySQL	Connector/J	1.1g	(19	February	1999)

Result	set	rows	are	now	byte	arrays.	Blobs	and	Unicode	work	bidriectonally
now.	The	useUnicode	and	encoding	options	are	implemented	now.

Fixes	to	PreparedStatement	to	send	binary	set	by	setXXXStream	to	be	sent
untouched	to	the	MySQL	server.

Fixes	to	getDriverPropertyInfo().

D.5.57.	Changes	in	MySQL	Connector/J	1.1f	(31	December	1998)

Changed	all	ResultSet	fields	to	Strings,	this	should	allow	Unicode	to	work,
but	your	JVM	must	be	able	to	convert	between	the	character	sets.	This
should	also	make	reading	data	from	the	server	be	a	bit	quicker,	because
there	is	now	no	conversion	from	StringBuffer	to	String.

Changed	PreparedStatement.streamToString()	to	be	more	efficient	(code
from	Uwe	Schaefer).

URL	parsing	is	more	robust	(throws	SQL	exceptions	on	errors	rather	than
NullPointerExceptions)

PreparedStatement	now	can	convert	Strings	to	Time/Date	values	via
setObject()	(code	from	Robert	Currey).

IO	no	longer	hangs	in	Buffer.readInt(),	that	bug	was	introduced	in	1.1d
when	changing	to	all	byte-arrays	for	result	sets.	(Pointed	out	by	Samo
Login)

D.5.58.	Changes	in	MySQL	Connector/J	1.1b	(03	November	1998)

Fixes	to	DatabaseMetaData	to	allow	both	IBM	VA	and	J-Builder	to	work.
Let	me	know	how	it	goes.	(thanks	to	Jac	Kersing)

Fix	to	ResultSet.getBoolean()	for	NULL	strings	(thanks	to	Barry	Lagerweij)

Beginning	of	code	cleanup,	and	formatting.	Getting	ready	to	branch	this	off
to	a	parallel	JDBC-2.0	source	tree.

Added	"final"	modifier	to	critical	sections	in	MysqlIO	and	Buffer	to	allow
compiler	to	inline	methods	for	speed.

9-29-98

If	object	references	passed	to	setXXX()	in	PreparedStatement	are	null,
setNull()	is	automatically	called	for	you.	(Thanks	for	the	suggestion	goes	to
Erik	Ostrom)

setObject()	in	PreparedStatement	will	now	attempt	to	write	a	serialized
representation	of	the	object	to	the	database	for	objects	of	Types.OTHER
and	objects	of	unknown	type.

Util	now	has	a	static	method	readObject()	which	given	a	ResultSet	and	a
column	index	will	re-instantiate	an	object	serialized	in	the	above	manner.

D.5.59.	Changes	in	MySQL	Connector/J	1.1	(02	September	1998)

Got	rid	of	"ugly	hack"	in	MysqlIO.nextRow().	Rather	than	catch	an
exception,	Buffer.isLastDataPacket()	was	fixed.

Connection.getCatalog()	and	Connection.setCatalog()	should	work	now.

Statement.setMaxRows()	works,	as	well	as	setting	by	property	maxRows.
Statement.setMaxRows()	overrides	maxRows	set	via	properties	or	url
parameters.

Automatic	re-connection	is	available.	Because	it	has	to	"ping"	the	database
before	each	query,	it	is	turned	off	by	default.	To	use	it,	pass	in
"autoReconnect=true"	in	the	connection	URL.	You	may	also	change	the
number	of	reconnect	tries,	and	the	initial	timeout	value	via
"maxReconnects=n"	(default	3)	and	"initialTimeout=n"	(seconds,	default	2)
parameters.	The	timeout	is	an	exponential	backoff	type	of	timeout;	for
example,	if	you	have	initial	timeout	of	2	seconds,	and	maxReconnects	of	3,
then	the	driver	will	timeout	2	seconds,	4	seconds,	then	16	seconds	between
each	re-connection	attempt.

D.5.60.	Changes	in	MySQL	Connector/J	1.0	(24	August	1998)

Fixed	handling	of	blob	data	in	Buffer.java

Fixed	bug	with	authentication	packet	being	sized	too	small.

The	JDBC	Driver	is	now	under	the	LPGL

8-14-98

Fixed	Buffer.readLenString()	to	correctly	read	data	for	BLOBS.

Fixed	PreparedStatement.stringToStream	to	correctly	read	data	for	BLOBS.

Fixed	PreparedStatement.setDate()	to	not	add	a	day.	(above	fixes	thanks	to
Vincent	Partington)

Added	URL	parameter	parsing	(?user=...	and	so	forth).

D.5.61.	Changes	in	MySQL	Connector/J	0.9d	(04	August	1998)

Big	news!	New	package	name.	Tim	Endres	from	ICE	Engineering	is
starting	a	new	source	tree	for	GNU	GPL'd	Java	software.	He's	graciously
given	me	the	org.gjt.mm	package	directory	to	use,	so	now	the	driver	is	in
the	org.gjt.mm.mysql	package	scheme.	I'm	"legal"	now.	Look	for	more
information	on	Tim's	project	soon.

Now	using	dynamically	sized	packets	to	reduce	memory	usage	when
sending	commands	to	the	DB.

Small	fixes	to	getTypeInfo()	for	parameters,	and	so	forth.

DatabaseMetaData	is	now	fully	implemented.	Let	me	know	if	these	drivers
work	with	the	various	IDEs	out	there.	I've	heard	that	they're	working	with
JBuilder	right	now.

Added	JavaDoc	documentation	to	the	package.

Package	now	available	in	.zip	or	.tar.gz.

D.5.62.	Changes	in	MySQL	Connector/J	0.9	(28	July	1998)

Implemented	getTypeInfo().	Connection.rollback()	now	throws	an
SQLException	per	the	JDBC	spec.

Added	PreparedStatement	that	supports	all	JDBC	API	methods	for
PreparedStatement	including	InputStreams.	Please	check	this	out	and	let	me
know	if	anything	is	broken.

Fixed	a	bug	in	ResultSet	that	would	break	some	queries	that	only	returned	1
row.

Fixed	bugs	in	DatabaseMetaData.getTables(),
DatabaseMetaData.getColumns()	and	DatabaseMetaData.getCatalogs().

Added	functionality	to	Statement	that	allows	executeUpdate()	to	store
values	for	IDs	that	are	automatically	generated	for	AUTO_INCREMENT
fields.	Basically,	after	an	executeUpdate(),	look	at	the	SQLWarnings	for
warnings	like	"LAST_INSERTED_ID	=	'some	number',	COMMAND	=
'your	SQL	query'".	If	you	are	using	AUTO_INCREMENT	fields	in	your
tables	and	are	executing	a	lot	of	executeUpdate()s	on	one	Statement,	be
sure	to	clearWarnings()	every	so	often	to	save	memory.

D.5.63.	Changes	in	MySQL	Connector/J	0.8	(06	July	1998)

Split	MysqlIO	and	Buffer	to	separate	classes.	Some	ClassLoaders	gave	an
IllegalAccess	error	for	some	fields	in	those	two	classes.	Now	mm.mysql
works	in	applets	and	all	classloaders.	Thanks	to	Joe	Ennis
<jce@mail.boone.com>	for	pointing	out	the	problem	and	working	on	a	fix
with	me.

D.5.64.	Changes	in	MySQL	Connector/J	0.7	(01	July	1998)

Fixed	DatabaseMetadata	problems	in	getColumns()	and	bug	in	switch
statement	in	the	Field	constructor.	Thanks	to	Costin	Manolache
<costin@tdiinc.com>	for	pointing	these	out.

D.5.65.	Changes	in	MySQL	Connector/J	0.6	(21	May	1998)

Incorporated	efficiency	changes	from	Richard	Swift
<Richard.Swift@kanatek.ca>	in	MysqlIO.java	and	ResultSet.java:

We're	now	15%	faster	than	gwe's	driver.

Started	working	on	DatabaseMetaData.

The	following	methods	are	implemented:

getTables()

getTableTypes()

getColumns

getCatalogs()

Appendix	E.	Porting	to	Other	Systems

Table	of	Contents

E.1.	Debugging	a	MySQL	Server
E.1.1.	Compiling	MySQL	for	Debugging
E.1.2.	Creating	Trace	Files
E.1.3.	Debugging	mysqld	under	gdb
E.1.4.	Using	a	Stack	Trace
E.1.5.	Using	Server	Logs	to	Find	Causes	of	Errors	in	mysqld
E.1.6.	Making	a	Test	Case	If	You	Experience	Table	Corruption

E.2.	Debugging	a	MySQL	Client
E.3.	The	DBUG	Package
E.4.	Comments	about	RTS	Threads
E.5.	Differences	Between	Thread	Packages

This	appendix	helps	you	port	MySQL	to	other	operating	systems.	Do	check	the
list	of	currently	supported	operating	systems	first.	See	Section	2.1.1,	“Operating
Systems	Supported	by	MySQL”.	If	you	have	created	a	new	port	of	MySQL,
please	let	us	know	so	that	we	can	list	it	here	and	on	our	Web	site
(http://www.mysql.com/),	recommending	it	to	other	users.

Note:	If	you	create	a	new	port	of	MySQL,	you	are	free	to	copy	and	distribute	it
under	the	GPL	license,	but	it	does	not	make	you	a	copyright	holder	of	MySQL.

A	working	POSIX	thread	library	is	needed	for	the	server.	On	Solaris	2.5	we	use
Sun	PThreads	(the	native	thread	support	in	2.4	and	earlier	versions	is	not	good
enough),	on	Linux	we	use	LinuxThreads	by	Xavier	Leroy,
<Xavier.Leroy@inria.fr>.

The	hard	part	of	porting	to	a	new	Unix	variant	without	good	native	thread
support	is	probably	to	port	MIT-pthreads.	See	mit-pthreads/README	and
Programming	POSIX	Threads	(http://www.humanfactor.com/pthreads/).

Up	to	MySQL	4.0.2,	the	MySQL	distribution	included	a	patched	version	of	Chris
Provenzano's	Pthreads	from	MIT	(see	the	MIT	Pthreads	Web	page	at
http://www.mit.edu/afs/sipb/project/pthreads/	and	a	programming	introduction	at
http://www.mit.edu:8001/people/proven/IAP_2000/).	These	can	be	used	for

http://www.mysql.com/
mailto:Xavier.Leroy@inria.fr
http://www.humanfactor.com/pthreads/
http://www.mit.edu/afs/sipb/project/pthreads/
http://www.mit.edu:8001/people/proven/IAP_2000/

some	operating	systems	that	do	not	have	POSIX	threads.	See	Section	2.9.5,
“MIT-pthreads	Notes”.

It	is	also	possible	to	use	another	user	level	thread	package	named	FSU	Pthreads
(see	http://moss.csc.ncsu.edu/~mueller/pthreads/).	This	implementation	is	being
used	for	the	SCO	port.

See	the	thr_lock.c	and	thr_alarm.c	programs	in	the	mysys	directory	for	some
tests/examples	of	these	problems.

Both	the	server	and	the	client	need	a	working	C++	compiler.	We	use	gcc	on
many	platforms.	Other	compilers	that	are	known	to	work	are	SPARCworks,	Sun
Forte,	Irix	cc,	HP-UX	aCC,	IBM	AIX	xlC_r),	Intel	ecc/icc	and	Compaq	cxx).

To	compile	only	the	client	use	./configure	--without-server.

There	is	currently	no	support	for	only	compiling	the	server,	nor	is	it	likely	to	be
added	unless	someone	has	a	good	reason	for	it.

If	you	want/need	to	change	any	Makefile	or	the	configure	script	you	also	need
GNU	Automake	and	Autoconf.	See	Section	2.9.3,	“Installing	from	the
Development	Source	Tree”.

All	steps	needed	to	remake	everything	from	the	most	basic	files.

/bin/rm	*/.deps/*.P

/bin/rm	-f	config.cache

aclocal

autoheader

aclocal

automake

autoconf

./configure	--with-debug=full	--prefix='your	installation	directory'

#	The	makefiles	generated	above	need	GNU	make	3.75	or	newer.

#	(called	gmake	below)

gmake	clean	all	install	init-db

If	you	run	into	problems	with	a	new	port,	you	may	have	to	do	some	debugging
of	MySQL!	See	Section	E.1,	“Debugging	a	MySQL	Server”.

Note:	Before	you	start	debugging	mysqld,	first	get	the	test	programs
mysys/thr_alarm	and	mysys/thr_lock	to	work.	This	ensures	that	your	thread

http://moss.csc.ncsu.edu/~mueller/pthreads/

installation	has	even	a	remote	chance	to	work!

E.1.	Debugging	a	MySQL	Server

If	you	are	using	some	functionality	that	is	very	new	in	MySQL,	you	can	try	to
run	mysqld	with	the	--skip-new	(which	disables	all	new,	potentially	unsafe
functionality)	or	with	--safe-mode	which	disables	a	lot	of	optimization	that	may
cause	problems.	See	Section	A.4.2,	“What	to	Do	If	MySQL	Keeps	Crashing”.

If	mysqld	doesn't	want	to	start,	you	should	verify	that	you	don't	have	any	my.cnf
files	that	interfere	with	your	setup!	You	can	check	your	my.cnf	arguments	with
mysqld	--print-defaults	and	avoid	using	them	by	starting	with	mysqld	--no-
defaults

If	mysqld	starts	to	eat	up	CPU	or	memory	or	if	it	“hangs,”	you	can	use
mysqladmin	processlist	status	to	find	out	if	someone	is	executing	a	query	that
takes	a	long	time.	It	may	be	a	good	idea	to	run	mysqladmin	-i10	processlist
status	in	some	window	if	you	are	experiencing	performance	problems	or
problems	when	new	clients	can't	connect.

The	command	mysqladmin	debug	dumps	some	information	about	locks	in	use,
used	memory	and	query	usage	to	the	MySQL	log	file.	This	may	help	solve	some
problems.	This	command	also	provides	some	useful	information	even	if	you
haven't	compiled	MySQL	for	debugging!

If	the	problem	is	that	some	tables	are	getting	slower	and	slower	you	should	try	to
optimize	the	table	with	OPTIMIZE	TABLE	or	myisamchk.	See	Chapter	5,
Database	Administration.	You	should	also	check	the	slow	queries	with	EXPLAIN.

You	should	also	read	the	OS-specific	section	in	this	manual	for	problems	that
may	be	unique	to	your	environment.	See	Section	2.13,	“Operating	System-
Specific	Notes”.

E.1.1.	Compiling	MySQL	for	Debugging

If	you	have	some	very	specific	problem,	you	can	always	try	to	debug	MySQL.
To	do	this	you	must	configure	MySQL	with	the	--with-debug	or	the	--with-
debug=full	option.	You	can	check	whether	MySQL	was	compiled	with
debugging	by	doing:	mysqld	--help.	If	the	--debug	flag	is	listed	with	the	options
then	you	have	debugging	enabled.	mysqladmin	ver	also	lists	the	mysqld

version	as	mysql	...	--debug	in	this	case.

If	you	are	using	gcc	or	egcs,	the	recommended	configure	line	is:

CC=gcc	CFLAGS="-O2"	CXX=gcc	CXXFLAGS="-O2	-felide-constructors	\

			-fno-exceptions	-fno-rtti"	./configure	--prefix=/usr/local/mysql	\

			--with-debug	--with-extra-charsets=complex

This	avoids	problems	with	the	libstdc++	library	and	with	C++	exceptions
(many	compilers	have	problems	with	C++	exceptions	in	threaded	code)	and
compile	a	MySQL	version	with	support	for	all	character	sets.

If	you	suspect	a	memory	overrun	error,	you	can	configure	MySQL	with	--with-
debug=full,	which	installs	a	memory	allocation	(SAFEMALLOC)	checker.
However,	running	with	SAFEMALLOC	is	quite	slow,	so	if	you	get	performance
problems	you	should	start	mysqld	with	the	--skip-safemalloc	option.	This
disables	the	memory	overrun	checks	for	each	call	to	malloc()	and	free().

If	mysqld	stops	crashing	when	you	compile	it	with	--with-debug,	you	probably
have	found	a	compiler	bug	or	a	timing	bug	within	MySQL.	In	this	case,	you	can
try	to	add	-g	to	the	CFLAGS	and	CXXFLAGS	variables	above	and	not	use	--with-
debug.	If	mysqld	dies,	you	can	at	least	attach	to	it	with	gdb	or	use	gdb	on	the
core	file	to	find	out	what	happened.

When	you	configure	MySQL	for	debugging	you	automatically	enable	a	lot	of
extra	safety	check	functions	that	monitor	the	health	of	mysqld.	If	they	find
something	“unexpected,”	an	entry	is	written	to	stderr,	which	mysqld_safe
directs	to	the	error	log!	This	also	means	that	if	you	are	having	some	unexpected
problems	with	MySQL	and	are	using	a	source	distribution,	the	first	thing	you
should	do	is	to	configure	MySQL	for	debugging!	(The	second	thing	is	to	send
mail	to	a	MySQL	mailing	list	and	ask	for	help.	See	Section	1.7.1,	“MySQL
Mailing	Lists”.	If	you	believe	that	you	have	found	a	bug,	please	use	the
instructions	at	Section	1.8,	“How	to	Report	Bugs	or	Problems”.

In	the	Windows	MySQL	distribution,	mysqld.exe	is	by	default	compiled	with
support	for	trace	files.

E.1.2.	Creating	Trace	Files

If	the	mysqld	server	doesn't	start	or	if	you	can	cause	it	to	crash	quickly,	you	can

try	to	create	a	trace	file	to	find	the	problem.

To	do	this,	you	must	have	a	mysqld	that	has	been	compiled	with	debugging
support.	You	can	check	this	by	executing	mysqld	-V.	If	the	version	number	ends
with	-debug,	it's	compiled	with	support	for	trace	files.	(On	Windows,	the
debugging	server	is	named	mysqld-debug	rather	than	mysqld	as	of	MySQL
4.1.)

Start	the	mysqld	server	with	a	trace	log	in	/tmp/mysqld.trace	on	Unix	or
C:\mysqld.trace	on	Windows:

shell>	mysqld	--debug

On	Windows,	you	should	also	use	the	--standalone	flag	to	not	start	mysqld	as
a	service.	In	a	console	window,	use	this	command:

C:\>	mysqld-debug	--debug	--standalone

After	this,	you	can	use	the	mysql.exe	command-line	tool	in	a	second	console
window	to	reproduce	the	problem.	You	can	stop	the	mysqld	server	with
mysqladmin	shutdown.

Note	that	the	trace	file	become	very	big!	If	you	want	to	generate	a	smaller	trace
file,	you	can	use	debugging	options	something	like	this:

mysqld	--debug=d,info,error,query,general,where:O,/tmp/mysqld.trace

This	only	prints	information	with	the	most	interesting	tags	to	the	trace	file.

If	you	make	a	bug	report	about	this,	please	only	send	the	lines	from	the	trace	file
to	the	appropriate	mailing	list	where	something	seems	to	go	wrong!	If	you	can't
locate	the	wrong	place,	you	can	ftp	the	trace	file,	together	with	a	full	bug	report,
to	ftp://ftp.mysql.com/pub/mysql/upload/	so	that	a	MySQL	developer	can	take	a
look	at	it.

The	trace	file	is	made	with	the	DBUG	package	by	Fred	Fish.	See	Section	E.3,
“The	DBUG	Package”.

E.1.3.	Debugging	mysqld	under	gdb

ftp://ftp.mysql.com/pub/mysql/upload/

On	most	systems	you	can	also	start	mysqld	from	gdb	to	get	more	information	if
mysqld	crashes.

With	some	older	gdb	versions	on	Linux	you	must	use	run	--one-thread	if	you
want	to	be	able	to	debug	mysqld	threads.	In	this	case,	you	can	only	have	one
thread	active	at	a	time.	We	recommend	you	to	upgrade	to	gdb	5.1	ASAP	as
thread	debugging	works	much	better	with	this	version!

NTPL	threads	(the	new	thread	library	on	Linux)	may	cause	problems	while
running	mysqld	under	gdb.	Some	symptoms	are:

mysqld	hangs	during	startup	(before	it	writes	ready	for	connections).

mysqld	crashes	during	a	pthread_mutex_lock()	or
pthread_mutex_unlock()	call.

In	this	case,	you	should	set	the	following	environment	variable	in	the	shell
before	starting	gdb:

LD_ASSUME_KERNEL=2.4.1

export	LD_ASSUME_KERNEL

When	running	mysqld	under	gdb,	you	should	disable	the	stack	trace	with	--
skip-stack-trace	to	be	able	to	catch	segfaults	within	gdb.

In	MySQL	4.0.14	and	above	you	should	use	the	--gdb	option	to	mysqld.	This
installs	an	interrupt	handler	for	SIGINT	(needed	to	stop	mysqld	with	^C	to	set
breakpoints)	and	disable	stack	tracing	and	core	file	handling.

It's	very	hard	to	debug	MySQL	under	gdb	if	you	do	a	lot	of	new	connections	the
whole	time	as	gdb	doesn't	free	the	memory	for	old	threads.	You	can	avoid	this
problem	by	starting	mysqld	with	--thread_cache_size='max_connections+1'.
In	most	cases	just	using	--thread_cache_size=5'	helps	a	lot!

If	you	want	to	get	a	core	dump	on	Linux	if	mysqld	dies	with	a	SIGSEGV	signal,
you	can	start	mysqld	with	the	--core-file	option.	This	core	file	can	be	used	to
make	a	backtrace	that	may	help	you	find	out	why	mysqld	died:

shell>	gdb	mysqld	core

gdb>			backtrace	full

gdb>			quit

See	Section	A.4.2,	“What	to	Do	If	MySQL	Keeps	Crashing”.

If	you	are	using	gdb	4.17.x	or	above	on	Linux,	you	should	install	a	.gdb	file,
with	the	following	information,	in	your	current	directory:

set	print	sevenbit	off

handle	SIGUSR1	nostop	noprint

handle	SIGUSR2	nostop	noprint

handle	SIGWAITING	nostop	noprint

handle	SIGLWP	nostop	noprint

handle	SIGPIPE	nostop

handle	SIGALRM	nostop

handle	SIGHUP	nostop

handle	SIGTERM	nostop	noprint

If	you	have	problems	debugging	threads	with	gdb,	you	should	download	gdb	5.x
and	try	this	instead.	The	new	gdb	version	has	very	improved	thread	handling!

Here	is	an	example	how	to	debug	mysqld:

shell>	gdb	/usr/local/libexec/mysqld

gdb>	run

...

backtrace	full	#	Do	this	when	mysqld	crashes

Include	the	above	output	in	a	bug	report,	which	you	can	file	using	the
instructions	in	Section	1.8,	“How	to	Report	Bugs	or	Problems”.

If	mysqld	hangs	you	can	try	to	use	some	system	tools	like	strace	or
/usr/proc/bin/pstack	to	examine	where	mysqld	has	hung.

strace	/tmp/log	libexec/mysqld

If	you	are	using	the	Perl	DBI	interface,	you	can	turn	on	debugging	information
by	using	the	trace	method	or	by	setting	the	DBI_TRACE	environment	variable.

E.1.4.	Using	a	Stack	Trace

On	some	operating	systems,	the	error	log	contains	a	stack	trace	if	mysqld	dies
unexpectedly.	You	can	use	this	to	find	out	where	(and	maybe	why)	mysqld	died.
See	Section	5.12.1,	“The	Error	Log”.	To	get	a	stack	trace,	you	must	not	compile
mysqld	with	the	-fomit-frame-pointer	option	to	gcc.	See	Section	E.1.1,
“Compiling	MySQL	for	Debugging”.

If	the	error	file	contains	something	like	the	following:

mysqld	got	signal	11;

The	manual	section	'Debugging	a	MySQL	server'	tells	you	how	to	use	a

stack	trace	and/or	the	core	file	to	produce	a	readable	backtrace	that	may

help	in	finding	out	why	mysqld	died

Attempting	backtrace.	You	can	use	the	following	information	to	find	out

where	mysqld	died.		If	you	see	no	messages	after	this,	something	went

terribly	wrong...

stack	range	sanity	check,	ok,	backtrace	follows

0x40077552

0x81281a0

0x8128f47

0x8127be0

0x8127995

0x8104947

0x80ff28f

0x810131b

0x80ee4bc

0x80c3c91

0x80c6b43

0x80c1fd9

0x80c1686

you	can	find	where	mysqld	died	by	doing	the	following:

1.	 Copy	the	preceding	numbers	to	a	file,	for	example	mysqld.stack.

2.	 Make	a	symbol	file	for	the	mysqld	server:

nm	-n	libexec/mysqld	>	/tmp/mysqld.sym

Note	that	most	MySQL	binary	distributions	(except	for	the	"debug"
packages,	where	this	information	is	included	inside	of	the	binaries
themselves)	ship	with	the	above	file,	named	mysqld.sym.gz.	In	this	case,
you	can	simply	unpack	it	by	doing:

gunzip	<	bin/mysqld.sym.gz	>	/tmp/mysqld.sym

3.	 Execute	resolve_stack_dump	-s	/tmp/mysqld.sym	-n	mysqld.stack.

This	prints	out	where	mysqld	died.	If	this	doesn't	help	you	find	out	why
mysqld	died,	you	should	make	a	bug	report	and	include	the	output	from	the
above	command	with	the	bug	report.

Note	however	that	in	most	cases	it	does	not	help	us	to	just	have	a	stack
trace	to	find	the	reason	for	the	problem.	To	be	able	to	locate	the	bug	or
provide	a	workaround,	we	would	in	most	cases	need	to	know	the	query	that
killed	mysqld	and	preferable	a	test	case	so	that	we	can	repeat	the	problem!
See	Section	1.8,	“How	to	Report	Bugs	or	Problems”.

E.1.5.	Using	Server	Logs	to	Find	Causes	of	Errors	in	mysqld

Note	that	before	starting	mysqld	with	--log	you	should	check	all	your	tables
with	myisamchk.	See	Chapter	5,	Database	Administration.

If	mysqld	dies	or	hangs,	you	should	start	mysqld	with	--log.	When	mysqld
dies	again,	you	can	examine	the	end	of	the	log	file	for	the	query	that	killed
mysqld.

If	you	are	using	--log	without	a	file	name,	the	log	is	stored	in	the	database
directory	as	host_name.log	In	most	cases	it	is	the	last	query	in	the	log	file	that
killed	mysqld,	but	if	possible	you	should	verify	this	by	restarting	mysqld	and
executing	the	found	query	from	the	mysql	command-line	tools.	If	this	works,
you	should	also	test	all	complicated	queries	that	didn't	complete.

You	can	also	try	the	command	EXPLAIN	on	all	SELECT	statements	that	takes	a
long	time	to	ensure	that	mysqld	is	using	indexes	properly.	See	Section	7.2.1,
“Optimizing	Queries	with	EXPLAIN”.

You	can	find	the	queries	that	take	a	long	time	to	execute	by	starting	mysqld	with
--log-slow-queries.	See	Section	5.12.4,	“The	Slow	Query	Log”.

If	you	find	the	text	mysqld	restarted	in	the	error	log	file	(normally	named
hostname.err)	you	probably	have	found	a	query	that	causes	mysqld	to	fail.	If
this	happens,	you	should	check	all	your	tables	with	myisamchk	(see	Chapter	5,
Database	Administration),	and	test	the	queries	in	the	MySQL	log	files	to	see
whether	one	fails.	If	you	find	such	a	query,	try	first	upgrading	to	the	newest
MySQL	version.	If	this	doesn't	help	and	you	can't	find	anything	in	the	mysql
mail	archive,	you	should	report	the	bug	to	a	MySQL	mailing	list.	The	mailing
lists	are	described	at	http://lists.mysql.com/,	which	also	has	links	to	online	list
archives.

If	you	have	started	mysqld	with	myisam-recover,	MySQL	automatically	checks

http://lists.mysql.com/

and	tries	to	repair	MyISAM	tables	if	they	are	marked	as	'not	closed	properly'	or
'crashed'.	If	this	happens,	MySQL	writes	an	entry	in	the	hostname.err	file
'Warning:	Checking	table	...'	which	is	followed	by	Warning:	Repairing
table	if	the	table	needs	to	be	repaired.	If	you	get	a	lot	of	these	errors,	without
mysqld	having	died	unexpectedly	just	before,	then	something	is	wrong	and
needs	to	be	investigated	further.	See	Section	5.2.1,	“mysqld	Command
Options”.

It	is	not	a	good	sign	if	mysqld	did	die	unexpectedly,	but	in	this	case,	you	should
not	investigate	the	Checking	table...	messages,	but	instead	try	to	find	out	why
mysqld	died.

E.1.6.	Making	a	Test	Case	If	You	Experience	Table	Corruption

If	you	get	corrupted	tables	or	if	mysqld	always	fails	after	some	update
commands,	you	can	test	whether	this	bug	is	reproducible	by	doing	the	following:

Take	down	the	MySQL	daemon	(with	mysqladmin	shutdown).

Make	a	backup	of	the	tables	(to	guard	against	the	very	unlikely	case	that	the
repair	does	something	bad).

Check	all	tables	with	myisamchk	-s	database/*.MYI.	Repair	any	wrong
tables	with	myisamchk	-r	database/table.MYI.

Make	a	second	backup	of	the	tables.

Remove	(or	move	away)	any	old	log	files	from	the	MySQL	data	directory	if
you	need	more	space.

Start	mysqld	with	--log-bin.	See	Section	5.12.3,	“The	Binary	Log”.	If	you
want	to	find	a	query	that	crashes	mysqld,	you	should	use	--log	--log-
bin.

When	you	have	gotten	a	crashed	table,	stop	the	mysqld	server.

Restore	the	backup.

Restart	the	mysqld	server	without	--log-bin

Re-execute	the	commands	with	mysqlbinlog	update-log-file	|	mysql.	The
update	log	is	saved	in	the	MySQL	database	directory	with	the	name
hostname-bin.#.

If	the	tables	are	corrupted	again	or	you	can	get	mysqld	to	die	with	the
above	command,	you	have	found	reproducible	bug	that	should	be	easy	to
fix!	FTP	the	tables	and	the	binary	log	to
ftp://ftp.mysql.com/pub/mysql/upload/	and	report	it	in	our	bugs	database
using	the	instructions	given	in	Section	1.8,	“How	to	Report	Bugs	or
Problems”.	(Please	note	that	the	/pub/mysql/upload/	FTP	directory	is	not
listable,	so	you'll	not	see	what	you've	uploaded	in	your	FTP	client.)	If	you
are	a	support	customer,	you	can	use	the	MySQL	Customer	Support	Center
https://support.mysql.com/	to	alert	the	MySQL	team	about	the	problem	and
have	it	fixed	as	soon	as	possible.

You	can	also	use	the	script	mysql_find_rows	to	just	execute	some	of	the	update
statements	if	you	want	to	narrow	down	the	problem.

ftp://ftp.mysql.com/pub/mysql/upload/
https://support.mysql.com/

E.2.	Debugging	a	MySQL	Client

To	be	able	to	debug	a	MySQL	client	with	the	integrated	debug	package,	you
should	configure	MySQL	with	--with-debug	or	--with-debug=full.	See
Section	2.9.2,	“Typical	configure	Options”.

Before	running	a	client,	you	should	set	the	MYSQL_DEBUG	environment	variable:

shell>	MYSQL_DEBUG=d:t:O,/tmp/client.trace

shell>	export	MYSQL_DEBUG

This	causes	clients	to	generate	a	trace	file	in	/tmp/client.trace.

If	you	have	problems	with	your	own	client	code,	you	should	attempt	to	connect
to	the	server	and	run	your	query	using	a	client	that	is	known	to	work.	Do	this	by
running	mysql	in	debugging	mode	(assuming	that	you	have	compiled	MySQL
with	debugging	on):

shell>	mysql	--debug=d:t:O,/tmp/client.trace

This	provides	useful	information	in	case	you	mail	a	bug	report.	See	Section	1.8,
“How	to	Report	Bugs	or	Problems”.

If	your	client	crashes	at	some	'legal'	looking	code,	you	should	check	that	your
mysql.h	include	file	matches	your	MySQL	library	file.	A	very	common	mistake
is	to	use	an	old	mysql.h	file	from	an	old	MySQL	installation	with	new	MySQL
library.

E.3.	The	DBUG	Package

The	MySQL	server	and	most	MySQL	clients	are	compiled	with	the	DBUG
package	originally	created	by	Fred	Fish.	When	you	have	configured	MySQL	for
debugging,	this	package	makes	it	possible	to	get	a	trace	file	of	what	the	program
is	debugging.	See	Section	E.1.2,	“Creating	Trace	Files”.

This	section	summaries	the	argument	values	that	you	can	specify	in	debug
options	on	the	command	line	for	MySQL	programs	that	have	been	built	with
debugging	support.	For	more	information	about	programming	with	the	DBUG
package,	see	the	DBUG	manual	in	the	dbug	directory	of	MySQL	source
distributions.	It's	best	to	use	a	recent	distribution	for	MySQL	5.0	to	get	the	most
updated	DBUG	manual.

You	use	the	debug	package	by	invoking	a	program	with	the	--debug="..."	or
the	-#...	option.

Most	MySQL	programs	have	a	default	debug	string	that	is	used	if	you	don't
specify	an	option	to	--debug.	The	default	trace	file	is	usually
/tmp/program_name.trace	on	Unix	and	\program_name.trace	on	Windows.

The	debug	control	string	is	a	sequence	of	colon-separated	fields	as	follows:

<field_1>:<field_2>:...:<field_N>

Each	field	consists	of	a	mandatory	flag	character	followed	by	an	optional	‘,’	and
comma-separated	list	of	modifiers:

flag[,modifier,modifier,...,modifier]

The	currently	recognized	flag	characters	are:

Flag Description

d

Enable	output	from	DBUG_<N>	macros	for	the	current	state.	May	be
followed	by	a	list	of	keywords	which	selects	output	only	for	the	DBUG
macros	with	that	keyword.	An	empty	list	of	keywords	implies	output	for
all	macros.
Delay	after	each	debugger	output	line.	The	argument	is	the	number	of

D tenths	of	seconds	to	delay,	subject	to	machine	capabilities.	For	example,	-
#D,20	specifies	a	delay	of	two	seconds.

f

Limit	debugging,	tracing,	and	profiling	to	the	list	of	named	functions.
Note	that	a	null	list	disables	all	functions.	The	appropriate	d	or	t	flags
must	still	be	given;	this	flag	only	limits	their	actions	if	they	are	enabled.

F Identify	the	source	file	name	for	each	line	of	debug	or	trace	output.

i
Identify	the	process	with	the	PID	or	thread	ID	for	each	line	of	debug	or
trace	output.

g

Enable	profiling.	Create	a	file	called	dbugmon.out	containing	information
that	can	be	used	to	profile	the	program.	May	be	followed	by	a	list	of
keywords	that	select	profiling	only	for	the	functions	in	that	list.	A	null	list
implies	that	all	functions	are	considered.

L Identify	the	source	file	line	number	for	each	line	of	debug	or	trace	output.

n
Print	the	current	function	nesting	depth	for	each	line	of	debug	or	trace
output.

N Number	each	line	of	debug	output.

o
Redirect	the	debugger	output	stream	to	the	specified	file.	The	default
output	is	stderr.

O
Like	o,	but	the	file	is	really	flushed	between	each	write.	When	needed,	the
file	is	closed	and	reopened	between	each	write.

p

Limit	debugger	actions	to	specified	processes.	A	process	must	be
identified	with	the	DBUG_PROCESS	macro	and	match	one	in	the	list	for
debugger	actions	to	occur.

P Print	the	current	process	name	for	each	line	of	debug	or	trace	output.

r
When	pushing	a	new	state,	do	not	inherit	the	previous	state's	function
nesting	level.	Useful	when	the	output	is	to	start	at	the	left	margin.

S

Do	function	_sanity(_file_,_line_)	at	each	debugged	function	until
_sanity()	returns	something	that	differs	from	0.	(Mostly	used	with
safemalloc	to	find	memory	leaks)

t

Enable	function	call/exit	trace	lines.	May	be	followed	by	a	list	(containing
only	one	modifier)	giving	a	numeric	maximum	trace	level,	beyond	which
no	output	occurs	for	either	debugging	or	tracing	macros.	The	default	is	a
compile	time	option.

Some	examples	of	debug	control	strings	that	might	appear	on	a	shell	command

line	(the	-#	is	typically	used	to	introduce	a	control	string	to	an	application
program)	are:

-#d:t

-#d:f,main,subr1:F:L:t,20

-#d,input,output,files:n

-#d:t:i:O,\\mysqld.trace

In	MySQL,	common	tags	to	print	(with	the	d	option)	are	enter,	exit,	error,
warning,	info,	and	loop.

E.4.	Comments	about	RTS	Threads

I	have	tried	to	use	the	RTS	thread	packages	with	MySQL	but	stumbled	on	the
following	problems:

They	use	old	versions	of	many	POSIX	calls	and	it	is	very	tedious	to	make
wrappers	for	all	functions.	I	am	inclined	to	think	that	it	would	be	easier	to
change	the	thread	libraries	to	the	newest	POSIX	specification.

Some	wrappers	are	currently	written.	See	mysys/my_pthread.c	for	more	info.

At	least	the	following	should	be	changed:

pthread_get_specific	should	use	one	argument.	sigwait	should	take	two
arguments.	A	lot	of	functions	(at	least	pthread_cond_wait,
pthread_cond_timedwait())	should	return	the	error	code	on	error.	Now	they
return	-1	and	set	errno.

Another	problem	is	that	user-level	threads	use	the	ALRM	signal	and	this	aborts	a
lot	of	functions	(read,	write,	open...).	MySQL	should	do	a	retry	on	interrupt	on
all	of	these	but	it	is	not	that	easy	to	verify	it.

The	biggest	unsolved	problem	is	the	following:

To	get	thread-level	alarms	I	changed	mysys/thr_alarm.c	to	wait	between
alarms	with	pthread_cond_timedwait(),	but	this	aborts	with	error	EINTR.	I	tried
to	debug	the	thread	library	as	to	why	this	happens,	but	couldn't	find	any	easy
solution.

If	someone	wants	to	try	MySQL	with	RTS	threads	I	suggest	the	following:

Change	functions	MySQL	uses	from	the	thread	library	to	POSIX.	This
shouldn't	take	that	long.

Compile	all	libraries	with	the	-DHAVE_rts_threads.

Compile	thr_alarm.

If	there	are	some	small	differences	in	the	implementation,	they	may	be

fixed	by	changing	my_pthread.h	and	my_pthread.c.

Run	thr_alarm.	If	it	runs	without	any	“warning,”	“error,”	or	aborted
messages,	you	are	on	the	right	track.	Here	is	a	successful	run	on	Solaris:

Main	thread:	1

Thread	0	(5)	started

Thread:	5		Waiting

process_alarm

Thread	1	(6)	started

Thread:	6		Waiting

process_alarm

process_alarm

thread_alarm

Thread:	6		Slept	for	1	(1)	sec

Thread:	6		Waiting

process_alarm

process_alarm

thread_alarm

Thread:	6		Slept	for	2	(2)	sec

Thread:	6		Simulation	of	no	alarm	needed

Thread:	6		Slept	for	0	(3)	sec

Thread:	6		Waiting

process_alarm

process_alarm

thread_alarm

Thread:	6		Slept	for	4	(4)	sec

Thread:	6		Waiting

process_alarm

thread_alarm

Thread:	5		Slept	for	10	(10)	sec

Thread:	5		Waiting

process_alarm

process_alarm

thread_alarm

Thread:	6		Slept	for	5	(5)	sec

Thread:	6		Waiting

process_alarm

process_alarm

...

thread_alarm

Thread:	5		Slept	for	0	(1)	sec

end

E.5.	Differences	Between	Thread	Packages

MySQL	is	very	dependent	on	the	thread	package	used.	So	when	choosing	a	good
platform	for	MySQL,	the	thread	package	is	very	important.

There	are	at	least	three	types	of	thread	packages:

User	threads	in	a	single	process.	Thread	switching	is	managed	with	alarms
and	the	threads	library	manages	all	non-thread-safe	functions	with	locks.
Read,	write	and	select	operations	are	usually	managed	with	a	thread-
specific	select	that	switches	to	another	thread	if	the	running	threads	have	to
wait	for	data.	If	the	user	thread	packages	are	integrated	in	the	standard	libs
(FreeBSD	and	BSDI	threads)	the	thread	package	requires	less	overhead
than	thread	packages	that	have	to	map	all	unsafe	calls	(MIT-pthreads,	FSU
Pthreads	and	RTS	threads).	In	some	environments	(for	example,	SCO),	all
system	calls	are	thread-safe	so	the	mapping	can	be	done	very	easily	(FSU
Pthreads	on	SCO).	Downside:	All	mapped	calls	take	a	little	time	and	it's
quite	tricky	to	be	able	to	handle	all	situations.	There	are	usually	also	some
system	calls	that	are	not	handled	by	the	thread	package	(like	MIT-pthreads
and	sockets).	Thread	scheduling	isn't	always	optimal.

User	threads	in	separate	processes.	Thread	switching	is	done	by	the	kernel
and	all	data	are	shared	between	threads.	The	thread	package	manages	the
standard	thread	calls	to	allow	sharing	data	between	threads.	LinuxThreads
is	using	this	method.	Downside:	Lots	of	processes.	Thread	creating	is	slow.
If	one	thread	dies	the	rest	are	usually	left	hanging	and	you	must	kill	them
all	before	restarting.	Thread	switching	is	somewhat	expensive.

Kernel	threads.	Thread	switching	is	handled	by	the	thread	library	or	the
kernel	and	is	very	fast.	Everything	is	done	in	one	process,	but	on	some
systems,	ps	may	show	the	different	threads.	If	one	thread	aborts,	the	whole
process	aborts.	Most	system	calls	are	thread-safe	and	should	require	very
little	overhead.	Solaris,	HP-UX,	AIX	and	OSF/1	have	kernel	threads.

In	some	systems	kernel	threads	are	managed	by	integrating	user	level	threads	in
the	system	libraries.	In	such	cases,	the	thread	switching	can	only	be	done	by	the
thread	library	and	the	kernel	isn't	really	“thread	aware.”

Appendix	F.	Environment	Variables

This	appendix	lists	all	the	environment	variables	that	are	used	directly	or
indirectly	by	MySQL.	Most	of	these	can	also	be	found	in	other	places	in	this
manual.

Note	that	any	options	on	the	command	line	take	precedence	over	values
specified	in	option	files	and	environment	variables,	and	values	in	option	files
take	precedence	over	values	in	environment	variables.

In	many	cases,	it	is	preferable	to	use	an	option	file	instead	of	environment
variables	to	modify	the	behavior	of	MySQL.	See	Section	4.3.2,	“Using	Option
Files”.

Variable Description
CXX The	name	of	your	C++	compiler	(for	running	configure).
CC The	name	of	your	C	compiler	(for	running	configure).
CFLAGS Flags	for	your	C	compiler	(for	running	configure).
CXXFLAGS Flags	for	your	C++	compiler	(for	running	configure).
DBI_USER The	default	username	for	Perl	DBI.
DBI_TRACE Trace	options	for	Perl	DBI.

HOME
The	default	path	for	the	mysql	history	file	is
$HOME/.mysql_history.

LD_RUN_PATH Used	to	specify	the	location	of	libmysqlclient.so.
MYSQL_DEBUG Debug	trace	options	when	debugging.

MYSQL_GROUP_SUFFIX
Option	group	suffix	value	(like	specifying	--defaults-
group-suffix).

MYSQL_HISTFILE

The	path	to	the	mysql	history	file.	If	this	variable	is	set,
its	value	overrides	the	default	for
$HOME/.mysql_history.

MYSQL_HOME
The	path	to	the	directory	in	which	the	server-specific
my.cnf	file	resides	(as	of	MySQL	5.0.3).

MYSQL_HOST
The	default	hostname	used	by	the	mysql	command-line
client.

MYSQL_PS1
The	command	prompt	to	use	in	the	mysql	command-line
client.

MYSQL_PWD

The	default	password	when	connecting	to	mysqld.	Note
that	using	this	is	insecure.	See	Section	5.9.6,	“Keeping
Your	Password	Secure”.

MYSQL_TCP_PORT The	default	TCP/IP	port	number.

MYSQL_UNIX_PORT
The	default	Unix	socket	filename;	used	for	connections
to	localhost.

PATH Used	by	the	shell	to	find	MySQL	programs.
TMPDIR The	directory	where	temporary	files	are	created.

TZ
This	should	be	set	to	your	local	time	zone.	See
Section	A.4.6,	“Time	Zone	Problems”.

UMASK_DIR
The	user-directory	creation	mask	when	creating
directories.	Note	that	this	is	ANDed	with	UMASK.

UMASK The	user-file	creation	mask	when	creating	files.

USER
The	default	username	on	Windows	and	NetWare	used
when	connecting	to	mysqld.

Appendix	G.	Regular	Expressions

A	regular	expression	is	a	powerful	way	of	specifying	a	pattern	for	a	complex
search.

MySQL	uses	Henry	Spencer's	implementation	of	regular	expressions,	which	is
aimed	at	conformance	with	POSIX	1003.2.	See	Appendix	C,	Credits.	MySQL
uses	the	extended	version	to	support	pattern-matching	operations	performed	with
the	REGEXP	operator	in	SQL	statements.	See	Section	3.3.4.7,	“Pattern	Matching”,
and	Section	12.3.1,	“String	Comparison	Functions”.

This	appendix	is	a	summary,	with	examples,	of	the	special	characters	and
constructs	that	can	be	used	in	MySQL	for	REGEXP	operations.	It	does	not	contain
all	the	details	that	can	be	found	in	Henry	Spencer's	regex(7)	manual	page.	That
manual	page	is	included	in	MySQL	source	distributions,	in	the	regex.7	file
under	the	regex	directory.

A	regular	expression	describes	a	set	of	strings.	The	simplest	regular	expression	is
one	that	has	no	special	characters	in	it.	For	example,	the	regular	expression
hello	matches	hello	and	nothing	else.

Non-trivial	regular	expressions	use	certain	special	constructs	so	that	they	can
match	more	than	one	string.	For	example,	the	regular	expression	hello|word
matches	either	the	string	hello	or	the	string	word.

As	a	more	complex	example,	the	regular	expression	B[an]*s	matches	any	of	the
strings	Bananas,	Baaaaas,	Bs,	and	any	other	string	starting	with	a	B,	ending	with
an	s,	and	containing	any	number	of	a	or	n	characters	in	between.

A	regular	expression	for	the	REGEXP	operator	may	use	any	of	the	following
special	characters	and	constructs:

^

Match	the	beginning	of	a	string.

mysql>	SELECT	'fo\nfo'	REGEXP	'^fo$';																			->	0

mysql>	SELECT	'fofo'	REGEXP	'^fo';																						->	1

$

Match	the	end	of	a	string.

mysql>	SELECT	'fo\no'	REGEXP	'^fo\no$';																	->	1

mysql>	SELECT	'fo\no'	REGEXP	'^fo$';																				->	0

.

Match	any	character	(including	carriage	return	and	newline).

mysql>	SELECT	'fofo'	REGEXP	'^f.*$';																				->	1

mysql>	SELECT	'fo\r\nfo'	REGEXP	'^f.*$';																->	1

a*

Match	any	sequence	of	zero	or	more	a	characters.

mysql>	SELECT	'Ban'	REGEXP	'^Ba*n';																					->	1

mysql>	SELECT	'Baaan'	REGEXP	'^Ba*n';																			->	1

mysql>	SELECT	'Bn'	REGEXP	'^Ba*n';																						->	1

a+

Match	any	sequence	of	one	or	more	a	characters.

mysql>	SELECT	'Ban'	REGEXP	'^Ba+n';																					->	1

mysql>	SELECT	'Bn'	REGEXP	'^Ba+n';																						->	0

a?

Match	either	zero	or	one	a	character.

mysql>	SELECT	'Bn'	REGEXP	'^Ba?n';																						->	1

mysql>	SELECT	'Ban'	REGEXP	'^Ba?n';																					->	1

mysql>	SELECT	'Baan'	REGEXP	'^Ba?n';																				->	0

de|abc

Match	either	of	the	sequences	de	or	abc.

mysql>	SELECT	'pi'	REGEXP	'pi|apa';																					->	1

mysql>	SELECT	'axe'	REGEXP	'pi|apa';																				->	0

mysql>	SELECT	'apa'	REGEXP	'pi|apa';																				->	1

mysql>	SELECT	'apa'	REGEXP	'^(pi|apa)$';																->	1

mysql>	SELECT	'pi'	REGEXP	'^(pi|apa)$';																	->	1

mysql>	SELECT	'pix'	REGEXP	'^(pi|apa)$';																->	0

(abc)*

Match	zero	or	more	instances	of	the	sequence	abc.

mysql>	SELECT	'pi'	REGEXP	'^(pi)*$';																				->	1

mysql>	SELECT	'pip'	REGEXP	'^(pi)*$';																			->	0

mysql>	SELECT	'pipi'	REGEXP	'^(pi)*$';																		->	1

{1},	{2,3}

{n}	or	{m,n}	notation	provides	a	more	general	way	of	writing	regular
expressions	that	match	many	occurrences	of	the	previous	atom	(or	“piece”)
of	the	pattern.	m	and	n	are	integers.

a*

Can	be	written	as	a{0,}.

a+

Can	be	written	as	a{1,}.

a?

Can	be	written	as	a{0,1}.

To	be	more	precise,	a{n}	matches	exactly	n	instances	of	a.	a{n,}	matches	n
or	more	instances	of	a.	a{m,n}	matches	m	through	n	instances	of	a,
inclusive.

m	and	n	must	be	in	the	range	from	0	to	RE_DUP_MAX	(default	255),	inclusive.
If	both	m	and	n	are	given,	m	must	be	less	than	or	equal	to	n.

mysql>	SELECT	'abcde'	REGEXP	'a[bcd]{2}e';														->	0

mysql>	SELECT	'abcde'	REGEXP	'a[bcd]{3}e';														->	1

mysql>	SELECT	'abcde'	REGEXP	'a[bcd]{1,10}e';											->	1

[a-dX],	[^a-dX]

Matches	any	character	that	is	(or	is	not,	if	^	is	used)	either	a,	b,	c,	d	or	X.	A
-	character	between	two	other	characters	forms	a	range	that	matches	all
characters	from	the	first	character	to	the	second.	For	example,	[0-9]
matches	any	decimal	digit.	To	include	a	literal]	character,	it	must
immediately	follow	the	opening	bracket	[.	To	include	a	literal	-	character,	it
must	be	written	first	or	last.	Any	character	that	does	not	have	a	defined
special	meaning	inside	a	[]	pair	matches	only	itself.

mysql>	SELECT	'aXbc'	REGEXP	'[a-dXYZ]';																	->	1

mysql>	SELECT	'aXbc'	REGEXP	'^[a-dXYZ]$';															->	0

mysql>	SELECT	'aXbc'	REGEXP	'^[a-dXYZ]+$';														->	1

mysql>	SELECT	'aXbc'	REGEXP	'^[^a-dXYZ]+$';													->	0

mysql>	SELECT	'gheis'	REGEXP	'^[^a-dXYZ]+$';												->	1

mysql>	SELECT	'gheisa'	REGEXP	'^[^a-dXYZ]+$';											->	0

[.characters.]

Within	a	bracket	expression	(written	using	[and]),	matches	the	sequence
of	characters	of	that	collating	element.	characters	is	either	a	single
character	or	a	character	name	like	newline.	You	can	find	the	full	list	of
character	names	in	the	regexp/cname.h	file.

mysql>	SELECT	'~'	REGEXP	'[[.~.]]';																					->	1

mysql>	SELECT	'~'	REGEXP	'[[.tilde.]]';																	->	1

[=character_class=]

Within	a	bracket	expression	(written	using	[and]),	[=character_class=]
represents	an	equivalence	class.	It	matches	all	characters	with	the	same
collation	value,	including	itself.	For	example,	if	o	and	(+)	are	the	members
of	an	equivalence	class,	then	[[=o=]],	[[=(+)=]],	and	[o(+)]	are	all
synonymous.	An	equivalence	class	may	not	be	used	as	an	endpoint	of	a
range.

[:character_class:]

Within	a	bracket	expression	(written	using	[and]),	[:character_class:]
represents	a	character	class	that	matches	all	characters	belonging	to	that
class.	The	following	table	lists	the	standard	class	names.	These	names	stand
for	the	character	classes	defined	in	the	ctype(3)	manual	page.	A	particular
locale	may	provide	other	class	names.	A	character	class	may	not	be	used	as

an	endpoint	of	a	range.

alnum Alphanumeric	characters
alpha Alphabetic	characters
blank Whitespace	characters
cntrl Control	characters
digit Digit	characters
graph Graphic	characters
lower Lowercase	alphabetic	characters
print Graphic	or	space	characters
punct Punctuation	characters
space Space,	tab,	newline,	and	carriage	return
upper Uppercase	alphabetic	characters
xdigit Hexadecimal	digit	characters

mysql>	SELECT	'justalnums'	REGEXP	'[[:alnum:]]+';							->	1

mysql>	SELECT	'!!'	REGEXP	'[[:alnum:]]+';															->	0

[[:<:]],	[[:>:]]

These	markers	stand	for	word	boundaries.	They	match	the	beginning	and
end	of	words,	respectively.	A	word	is	a	sequence	of	word	characters	that	is
not	preceded	by	or	followed	by	word	characters.	A	word	character	is	an
alphanumeric	character	in	the	alnum	class	or	an	underscore	(_).

mysql>	SELECT	'a	word	a'	REGEXP	'[[:<:]]word[[:>:]]';			->	1

mysql>	SELECT	'a	xword	a'	REGEXP	'[[:<:]]word[[:>:]]';		->	0

To	use	a	literal	instance	of	a	special	character	in	a	regular	expression,	precede	it
by	two	backslash	(\)	characters.	The	MySQL	parser	interprets	one	of	the
backslashes,	and	the	regular	expression	library	interprets	the	other.	For	example,
to	match	the	string	1+2	that	contains	the	special	+	character,	only	the	last	of	the
following	regular	expressions	is	the	correct	one:

mysql>	SELECT	'1+2'	REGEXP	'1+2';																							->	0

mysql>	SELECT	'1+2'	REGEXP	'1\+2';																						->	0

mysql>	SELECT	'1+2'	REGEXP	'1\\+2';																					->	1

Appendix	H.	Limits	in	MySQL

Table	of	Contents

H.1.	Limits	of	Joins

This	Appendix	lists	current	limits	in	MySQL	5.0.

H.1.	Limits	of	Joins

The	maximum	number	of	tables	that	can	be	referenced	in	a	single	join	is	61.	This
also	applies	to	the	number	of	tables	that	can	be	referenced	in	the	definition	of	a
view.

Appendix	I.	Feature	Restrictions

Table	of	Contents

I.1.	Restrictions	on	Stored	Routines	and	Triggers
I.2.	Restrictions	on	Server-Side	Cursors
I.3.	Restrictions	on	Subqueries
I.4.	Restrictions	on	Views
I.5.	Restrictions	on	XA	Transactions

The	discussion	here	describes	restrictions	that	apply	to	the	use	of	MySQL
features	such	as	subqueries	or	views.

I.1.	Restrictions	on	Stored	Routines	and	Triggers

Some	of	the	restrictions	noted	here	apply	to	all	stored	routines;	that	is,	both	to
stored	procedures	and	stored	functions.	Some	of	restrictions	apply	only	to	stored
functions,	and	not	to	stored	procedures.

All	of	the	restrictions	for	stored	functions	also	apply	to	triggers.

Stored	routines	cannot	contain	arbitrary	SQL	statements.	The	following
statements	are	disallowed:

The	table-maintenance	statements	CHECK	TABLES	and	OPTIMIZE	TABLES.
Note:	This	restriction	is	lifted	beginning	with	MySQL	5.0.17.

The	locking	statements	LOCK	TABLES,	UNLOCK	TABLES.

LOAD	DATA	and	LOAD	TABLE.

SQL	prepared	statements	(PREPARE,	EXECUTE,	DEALLOCATE	PREPARE).
Implication:	You	cannot	use	dynamic	SQL	within	stored	routines	(where
you	construct	dynamically	statements	as	strings	and	then	execute	them).
This	restriction	is	lifted	as	of	MySQL	5.0.13	for	stored	procedures;	it	still
applies	to	stored	functions	and	triggers.

For	stored	functions	(but	not	stored	procedures),	the	following	additional
statements	or	operations	are	disallowed:

Statements	that	do	explicit	or	implicit	commit	or	rollback.

Statements	that	return	a	result	set.	This	includes	SELECT	statements	that	do
not	have	an	INTO	var_list	clause	and	SHOW	statements.	A	function	can
process	a	result	set	either	with	SELECT	...	INTO	var_list	or	by	using	a
cursor	and	FETCH	statements.	See	Section	17.2.7.3,	“SELECT	...	INTO
Statement”.

FLUSH	statements.

Note:	Before	MySQL	5.0.10,	stored	functions	created	with	CREATE
FUNCTION	must	not	contain	references	to	tables,	with	limited	exceptions.

They	may	include	some	SET	statements	that	contain	table	references,	for
example	SET	a:=	(SELECT	MAX(id)	FROM	t),	and	SELECT	statements	that
fetch	values	directly	into	variables,	for	example	SELECT	i	INTO	var1	FROM
t.

Recursive	statements.	That	is,	stored	functions	cannot	be	used	recursively.

Within	a	stored	function	or	trigger,	it	is	not	permitted	to	modify	a	table	that
is	already	being	used	(for	reading	or	writing)	by	the	statement	that	invoked
the	function	or	trigger.

Note	that	although	some	restrictions	normally	apply	to	stored	functions	and
triggers	but	not	to	stored	procedures,	those	restrictions	do	apply	to	stored
procedures	if	they	are	invoked	from	within	a	stored	function	or	trigger.	For
example,	although	you	can	use	FLUSH	in	a	stored	procedure,	such	a	stored
procedure	cannot	be	called	from	a	stored	function	or	trigger.

It	is	possible	for	the	same	identifier	to	be	used	for	a	routine	parameter,	a	local
variable,	and	a	table	column.	Also,	the	same	local	variable	name	can	be	used	in
nested	blocks.	For	example:

CREATE	PROCEDURE	p	(i	INT)

BEGIN

		DECLARE	i	INT	DEFAULT	0;

		SELECT	i	FROM	t;

		BEGIN

				DECLARE	i	INT	DEFAULT	1;

				SELECT	i	FROM	t;

		END;

END;

In	such	cases	the	identifier	is	ambiguous	and	the	following	precedence	rules
apply:

A	local	variable	takes	precedence	over	a	routine	parameter	or	table	column

A	routine	parameter	takes	precedence	over	a	table	column

A	local	variable	in	an	inner	block	takes	precedence	over	a	local	variable	in
an	outer	block

The	behavior	that	table	columns	do	not	take	precedence	over	variables	is	non-

standard.

Use	of	stored	routines	can	cause	replication	problems.	This	issue	is	discussed
further	in	Section	17.4,	“Binary	Logging	of	Stored	Routines	and	Triggers”.

INFORMATION_SCHEMA	does	not	yet	have	a	PARAMETERS	table,	so	applications	that
need	to	acquire	routine	parameter	information	at	runtime	must	use	workarounds
such	as	parsing	the	output	of	SHOW	CREATE	statements.

There	are	no	stored	routine	debugging	facilities.

CALL	statements	cannot	be	prepared.	This	true	both	for	server-side	prepared
statements	and	for	SQL	prepared	statements.

UNDO	handlers	are	not	supported.

FOR	loops	are	not	supported.

To	prevent	problems	of	interaction	between	server	threads,	when	a	client	issues	a
statement,	the	server	uses	a	snapshot	of	routines	and	triggers	available	for
execution	of	the	statement.	That	is,	the	server	calculates	a	list	of	procedures,
functions,	and	triggers	that	may	be	used	during	execution	of	the	statement,	loads
them,	and	then	proceeds	to	execute	the	statement.	This	means	that	while	the
statement	executes,	it	will	not	see	changes	to	routines	performed	by	other
threads.

For	triggers,	the	following	additional	statements	or	operations	are	disallowed:

Triggers	currently	are	not	activated	by	foreign	key	actions.

The	RETURN	statement	is	disallowed	in	triggers,	which	cannot	return	a	value.
To	exit	a	trigger	immediately,	use	the	LEAVE	statement.

Triggers	are	not	allowed	on	tables	in	the	mysql	database.

I.2.	Restrictions	on	Server-Side	Cursors

Server-side	cursors	are	implemented	beginning	with	the	C	API	in	MySQL	5.0.2
via	the	mysql_stmt_attr_set()	function.	A	server-side	cursor	allows	a	result
set	to	be	generated	on	the	server	side,	but	not	transferred	to	the	client	except	for
those	rows	that	the	client	requests.	For	example,	if	a	client	executes	a	query	but
is	only	interested	in	the	first	row,	the	remaining	rows	are	not	transferred.

In	MySQL,	a	server-side	cursor	is	materialized	into	a	temporary	table.	Initially,
this	is	a	MEMORY	table,	but	is	converted	to	a	MyISAM	table	if	its	size	reaches	the
value	of	the	max_heap_table_size	system	variable.	(Beginning	with	MySQL
5.0.14,	the	same	temporary-table	implementation	also	is	used	for	cursors	in
stored	routines.)	One	limitation	of	the	implementation	is	that	for	a	large	result
set,	retrieving	its	rows	through	a	cursor	might	be	slow.

Cursors	are	read-only;	you	cannot	use	a	cursor	to	update	rows.

UPDATE	WHERE	CURRENT	OF	and	DELETE	WHERE	CURRENT	OF	are	not
implemented,	because	updatable	cursors	are	not	supported.

Cursors	are	non-holdable	(not	held	open	after	a	commit).

Cursors	are	asensitive.

Cursors	are	non-scrollable.

Cursors	are	not	named.	The	statement	handler	acts	as	the	cursor	ID.

You	can	have	open	only	a	single	cursor	per	prepared	statement.	If	you	need
several	cursors,	you	must	prepare	several	statements.

You	cannot	use	a	cursor	for	a	statement	that	generates	a	result	set	if	the	statement
is	not	supported	in	prepared	mode.	This	includes	statements	such	as	CHECK
TABLES,	HANDLER	READ,	and	SHOW	BINLOG	EVENTS.

I.3.	Restrictions	on	Subqueries

Known	bug	to	be	fixed	later:	If	you	compare	a	NULL	value	to	a	subquery
using	ALL,	ANY,	or	SOME,	and	the	subquery	returns	an	empty	result,	the
comparison	might	evaluate	to	the	non-standard	result	of	NULL	rather	than	to
TRUE	or	FALSE.

A	subquery's	outer	statement	can	be	any	one	of:	SELECT,	INSERT,	UPDATE,
DELETE,	SET,	or	DO.

Subquery	optimization	for	IN	is	not	as	effective	as	for	the	=	operator	or	for
IN(value_list)	constructs.

A	typical	case	for	poor	IN	subquery	performance	is	when	the	subquery
returns	a	small	number	of	rows	but	the	outer	query	returns	a	large	number
of	rows	to	be	compared	to	the	subquery	result.

The	problem	is	that,	for	a	statement	that	uses	an	IN	subquery,	the	optimizer
rewrites	it	as	a	correlated	subquery.	Consider	the	following	statement	that
uses	an	uncorrelated	subquery:

SELECT	...	FROM	t1	WHERE	t1.a	IN	(SELECT	b	FROM	t2);

The	optimizer	rewrites	the	statement	to	a	correlated	subquery:

SELECT	...	FROM	t1	WHERE	EXISTS	(SELECT	1	FROM	t2	WHERE	t2.b	=	t1.a);

If	the	inner	and	outer	queries	return	M	and	N	rows,	respectively,	the
execution	time	becomes	on	the	order	of	O(M×N),	rather	than	O(M+N)	as	it
would	be	for	an	uncorrelated	subquery.

An	implication	is	that	an	IN	subquery	can	be	much	slower	than	a	query
written	using	an	IN(value_list)	construct	that	lists	the	same	values	that
the	subquery	would	return.

In	general,	you	cannot	modify	a	table	and	select	from	the	same	table	in	a
subquery.	For	example,	this	limitation	applies	to	statements	of	the	following
forms:

DELETE	FROM	t	WHERE	...	(SELECT	...	FROM	t	...);

UPDATE	t	...	WHERE	col	=	(SELECT	...	FROM	t	...);

{INSERT|REPLACE}	INTO	t	(SELECT	...	FROM	t	...);

Exception:	The	preceding	prohibition	does	not	apply	if	you	are	using	a
subquery	for	the	modified	table	in	the	FROM	clause.	Example:

UPDATE	t	...	WHERE	col	=	(SELECT	(SELECT	...	FROM	t...)	AS	_t	...);

Here	the	prohibition	does	not	apply	because	the	result	from	a	subquery	in
the	FROM	clause	is	stored	as	a	temporary	table,	so	the	relevant	rows	in	t	have
already	been	selected	by	the	time	the	update	to	t	takes	place.

Row	comparison	operations	are	only	partially	supported:

For	expr	IN	(subquery),	expr	can	be	an	n-tuple	(specified	via	row
constructor	syntax)	and	the	subquery	can	return	rows	of	n-tuples.

For	expr	op	{ALL|ANY|SOME}	(subquery),	expr	must	be	a	scalar
value	and	the	subquery	must	be	a	column	subquery;	it	cannot	return
multiple-column	rows.

In	other	words,	for	a	subquery	that	returns	rows	of	n-tuples,	this	is
supported:

(val_1,	...,	val_n)	IN	(subquery)

But	this	is	not	supported:

(val_1,	...,	val_n)	op	{ALL|ANY|SOME}	(subquery)

The	reason	for	supporting	row	comparisons	for	IN	but	not	for	the	others	is
that	IN	is	implemented	by	rewriting	it	as	a	sequence	of	=	comparisons	and
AND	operations.	This	approach	cannot	be	used	for	ALL,	ANY,	or	SOME.

Row	constructors	are	not	well	optimized.	The	following	two	expressions
are	equivalent,	but	only	the	second	can	be	optimized:

(col1,	col2,	...)	=	(val1,	val2,	...)

col1	=	val1	AND	col2	=	val2	AND	...

Subqueries	in	the	FROM	clause	cannot	be	correlated	subqueries.	They	are

materialized	(executed	to	produce	a	result	set)	before	evaluating	the	outer
query,	so	they	cannot	be	evaluated	per	row	of	the	outer	query.

The	optimizer	is	more	mature	for	joins	than	for	subqueries,	so	in	many
cases	a	statement	that	uses	a	subquery	can	be	executed	more	efficiently	if
you	rewrite	it	as	a	join.

An	exception	occurs	for	the	case	where	an	IN	subquery	can	be	rewritten	as
a	SELECT	DISTINCT	join.	Example:

SELECT	col	FROM	t1	WHERE	id_col	IN	(SELECT	id_col2	FROM	t2	WHERE	

That	statement	can	be	rewritten	as	follows:

SELECT	DISTINCT	col	FROM	t1,	t2	WHERE	t1.id_col	=	t2.id_col	AND	

But	in	this	case,	the	join	requires	an	extra	DISTINCT	operation	and	is	not
more	efficient	than	the	subquery.

Possible	future	optimization:	MySQL	does	not	rewrite	the	join	order	for
subquery	evaluation.	In	some	cases,	a	subquery	could	be	executed	more
efficiently	if	MySQL	rewrote	it	as	a	join.	This	would	give	the	optimizer	a
chance	to	choose	between	more	execution	plans.	For	example,	it	could
decide	whether	to	read	one	table	or	the	other	first.

Example:

SELECT	a	FROM	outer_table	AS	ot

WHERE	a	IN	(SELECT	a	FROM	inner_table	AS	it	WHERE	ot.b	=	it.b);

For	that	query,	MySQL	always	scans	outer_table	first	and	then	executes
the	subquery	on	inner_table	for	each	row.	If	outer_table	has	a	lot	of
rows	and	inner_table	has	few	rows,	the	query	probably	will	not	be	as	fast
as	it	could	be.

The	preceding	query	could	be	rewritten	like	this:

SELECT	a	FROM	outer_table	AS	ot,	inner_table	AS	it

WHERE	ot.a	=	it.a	AND	ot.b	=	it.b;

In	this	case,	we	can	scan	the	small	table	(inner_table)	and	look	up	rows	in
outer_table,	which	will	be	fast	if	there	is	an	index	on	(ot.a,ot.b).

Possible	future	optimization:	A	correlated	subquery	is	evaluated	for	each
row	of	the	outer	query.	A	better	approach	is	that	if	the	outer	row	values	do
not	change	from	the	previous	row,	do	not	evaluate	the	subquery	again.
Instead,	use	its	previous	result.

Possible	future	optimization:	A	subquery	in	the	FROM	clause	is	evaluated	by
materializing	the	result	into	a	temporary	table,	and	this	table	does	not	use
indexes.	This	does	not	allow	the	use	of	indexes	in	comparison	with	other
tables	in	the	query,	although	that	might	be	useful.

Possible	future	optimization:	If	a	subquery	in	the	FROM	clause	resembles	a
view	to	which	the	merge	algorithm	can	be	applied,	rewrite	the	query	and
apply	the	merge	algorithm	so	that	indexes	can	be	used.	The	following
statement	contains	such	a	subquery:

SELECT	*	FROM	(SELECT	*	FROM	t1	WHERE	t1.t1_col)	AS	_t1,	t2	WHERE	t2.t2_col;

The	statement	can	be	rewritten	as	a	join	like	this:

SELECT	*	FROM	t1,	t2	WHERE	t1.t1_col	AND	t2.t2_col;

This	type	of	rewriting	would	provide	two	benefits:

It	avoids	the	use	of	a	temporary	table	for	which	no	indexes	can	be
used.	In	the	rewritten	query,	the	optimizer	can	use	indexes	on	t1.

It	gives	the	optimizer	more	freedom	to	choose	between	different
execution	plans.	For	example,	rewriting	the	query	as	a	join	allows	the
optimizer	to	use	t1	or	t2	first.

Possible	future	optimization:	For	IN,	=	ANY,	<>	ANY,	=	ALL,	and	<>	ALL
with	non-correlated	subqueries,	use	an	in-memory	hash	for	a	result	result	or
a	temporary	table	with	an	index	for	larger	results.	Example:

SELECT	a	FROM	big_table	AS	bt

WHERE	non_key_field	IN	(SELECT	non_key_field	FROM	table	WHERE	condition

In	this	case,	we	could	create	a	temporary	table:

CREATE	TABLE	t	(key	(non_key_field))

(SELECT	non_key_field	FROM	table	WHERE	condition)

Then,	for	each	row	in	big_table,	do	a	key	lookup	in	t	based	on
bt.non_key_field.

I.4.	Restrictions	on	Views

View	processing	is	not	optimized:

It	is	not	possible	to	create	an	index	on	a	view.

Indexes	can	be	used	for	views	processed	using	the	merge	algorithm.
However,	a	view	that	is	processed	with	the	temptable	algorithm	is	unable	to
take	advantage	of	indexes	on	its	underlying	tables	(although	indexes	can	be
used	during	generation	of	the	temporary	tables).

Subqueries	cannot	be	used	in	the	FROM	clause	of	a	view.	This	limitation	will	be
lifted	in	the	future.

There	is	a	general	principle	that	you	cannot	modify	a	table	and	select	from	the
same	table	in	a	subquery.	See	Section	I.3,	“Restrictions	on	Subqueries”.

The	same	principle	also	applies	if	you	select	from	a	view	that	selects	from	the
table,	if	the	view	selects	from	the	table	in	a	subquery	and	the	view	is	evaluated
using	the	merge	algorithm.	Example:

CREATE	VIEW	v1	AS

SELECT	*	FROM	t2	WHERE	EXISTS	(SELECT	1	FROM	t1	WHERE	t1.a	=	t2.a);

UPDATE	t1,	v2	SET	t1.a	=	1	WHERE	t1.b	=	v2.b;

If	the	view	is	evaluated	using	a	temporary	table,	you	can	select	from	the	table	in
the	view	subquery	and	still	modify	that	table	in	the	outer	query.	In	this	case	the
view	will	be	stored	in	a	temporary	table	and	thus	you	are	not	really	selecting
from	the	table	in	a	subquery	and	modifying	it	“at	the	same	time.”	(This	is
another	reason	you	might	wish	to	force	MySQL	to	use	the	temptable	algorithm
by	specifying	ALGORITHM	=	TEMPTABLE	in	the	view	definition.)

You	can	use	DROP	TABLE	or	ALTER	TABLE	to	drop	or	alter	a	table	that	is	used	in	a
view	definition	(which	invalidates	the	view)	and	no	warning	results	from	the
drop	or	alter	operation.	An	error	occurs	later	when	the	view	is	used.

A	view	definition	is	“frozen”	by	certain	statements:

If	a	statement	prepared	by	PREPARE	refers	to	a	view,	the	view	contents	seen
each	time	the	statement	is	executed	later	will	be	the	contents	of	the	view	at
the	time	it	was	prepared.	This	is	true	even	if	the	view	definition	is	changed
after	the	statement	is	prepared	and	before	it	is	executed.	Example:

CREATE	VIEW	v	AS	SELECT	1;

PREPARE	s	FROM	'SELECT	*	FROM	v';

ALTER	VIEW	v	AS	SELECT	2;

EXECUTE	s;

The	result	returned	by	the	EXECUTE	statement	is	1,	not	2.

If	a	statement	in	a	stored	routine	refers	to	a	view,	the	view	contents	seen	by
the	statement	are	its	contents	the	first	time	that	statement	is	executed.	For
example,	this	means	that	if	the	statement	is	executed	in	a	loop,	further
iterations	of	the	statement	see	the	same	view	contents,	even	if	the	view
definition	is	changed	later	in	the	loop.	Example:

CREATE	VIEW	v	AS	SELECT	1;

delimiter	//

CREATE	PROCEDURE	p	()

BEGIN

		DECLARE	i	INT	DEFAULT	0;

		WHILE	i	<	5	DO

				SELECT	*	FROM	v;

				SET	i	=	i	+	1;

				ALTER	VIEW	v	AS	SELECT	2;

		END	WHILE;

END;

//

delimiter	;

CALL	p();

When	the	procedure	p()	is	called,	the	SELECT	returns	1	each	time	through
the	loop,	even	though	the	view	definition	is	changed	within	the	loop.

With	regard	to	view	updatability,	the	overall	goal	for	views	is	that	if	any	view	is
theoretically	updatable,	it	should	be	updatable	in	practice.	This	includes	views
that	have	UNION	in	their	definition.	Currently,	not	all	views	that	are	theoretically
updatable	can	be	updated.	The	initial	view	implementation	was	deliberately
written	this	way	to	get	usable,	updatable	views	into	MySQL	as	quickly	as
possible.	Many	theoretically	updatable	views	can	be	updated	now,	but
limitations	still	exist:

Updatable	views	with	subqueries	anywhere	other	than	in	the	WHERE	clause.
Some	views	that	have	subqueries	in	the	SELECT	list	may	be	updatable.

You	cannot	use	UPDATE	to	update	more	than	one	underlying	table	of	a	view
that	is	defined	as	a	join.

You	cannot	use	DELETE	to	update	a	view	that	is	defined	as	a	join.

I.5.	Restrictions	on	XA	Transactions

XA	transaction	support	is	limited	to	the	InnoDB	storage	engine.

The	MySQL	XA	implementation	is	for	“external	XA,”	where	a	MySQL	server
acts	as	a	Resource	Manager	and	client	programs	act	as	Transaction	Managers.
“Internal	XA”	is	not	implemented.	This	would	allow	individual	storage	engines
within	a	MySQL	server	to	act	as	RMs,	and	the	server	itself	to	act	as	a	TM.
Internal	XA	is	required	for	handling	XA	transactions	that	involve	more	than	one
storage	engine.	The	implementation	of	internal	XA	is	incomplete	because	it
requires	that	a	storage	engine	support	two-phase	commit	at	the	table	handler
level,	and	currently	this	is	true	only	for	InnoDB.

For	XA	START,	the	JOIN	and	RESUME	clauses	are	not	supported.

For	XA	END,	the	SUSPEND	[FOR	MIGRATE]	clause	is	not	supported.

The	requirement	that	the	bqual	part	of	the	xid	value	be	different	for	each	XA
transaction	within	a	global	transaction	is	a	limitation	of	the	current	MySQL	XA
implementation.	It	is	not	part	of	the	XA	specification.

If	an	XA	transaction	has	reached	the	PREPARED	state	and	the	MySQL	server	is
killed	(for	example,	with	kill	-9	on	Unix)	or	shuts	down	abnormally,	the
transaction	can	be	continued	after	the	server	restarts.	However,	if	the	client
reconnects	and	commits	the	transaction,	the	transaction	will	be	absent	from	the
binary	log	even	though	it	has	been	committed.	This	means	the	data	and	the
binary	log	have	gone	out	of	synchrony.	An	implication	is	that	XA	cannot	be	used
safely	together	with	replication.

It	is	possible	that	the	server	will	roll	back	a	pending	XA	transaction,	even	one
that	has	reached	the	PREPARED	state.	This	happens	if	a	client	connection
terminates	and	the	server	continues	to	run,	or	if	clients	are	connected	and	the
server	shuts	down	gracefully.	(In	the	latter	case,	the	server	marks	each
connection	to	be	terminated,	and	then	rolls	back	the	PREPARED	XA	transaction
associated	with	it.)	It	should	be	possible	to	commit	or	roll	back	a	PREPARED	XA
transaction,	but	this	cannot	be	done	without	changes	to	the	binary	logging
mechanism.

Appendix	J.	GNU	General	Public	License

Version	2,	June	1991

		Copyright	©	1989,	1991	Free	Software	Foundation,	Inc.
		59	Temple	Place	-	Suite	330,	Boston,	MA		02111-1307,	USA
		Everyone	is	permitted	to	copy	and	distribute	verbatim	copies
		of	this	license	document,	but	changing	it	is	not	allowed.
		

Preamble

The	licenses	for	most	software	are	designed	to	take	away	your	freedom	to	share
and	change	it.	By	contrast,	the	GNU	General	Public	License	is	intended	to
guarantee	your	freedom	to	share	and	change	free	software---to	make	sure	the
software	is	free	for	all	its	users.	This	General	Public	License	applies	to	most	of
the	Free	Software	Foundation's	software	and	to	any	other	program	whose
authors	commit	to	using	it.	(Some	other	Free	Software	Foundation	software	is
covered	by	the	GNU	Library	General	Public	License	instead.)	You	can	apply	it
to	your	programs,	too.

When	we	speak	of	free	software,	we	are	referring	to	freedom,	not	price.	Our
General	Public	Licenses	are	designed	to	make	sure	that	you	have	the	freedom	to
distribute	copies	of	free	software	(and	charge	for	this	service	if	you	wish),	that
you	receive	source	code	or	can	get	it	if	you	want	it,	that	you	can	change	the
software	or	use	pieces	of	it	in	new	free	programs;	and	that	you	know	you	can	do
these	things.

To	protect	your	rights,	we	need	to	make	restrictions	that	forbid	anyone	to	deny
you	these	rights	or	to	ask	you	to	surrender	the	rights.	These	restrictions	translate
to	certain	responsibilities	for	you	if	you	distribute	copies	of	the	software,	or	if
you	modify	it.

For	example,	if	you	distribute	copies	of	such	a	program,	whether	gratis	or	for	a
fee,	you	must	give	the	recipients	all	the	rights	that	you	have.	You	must	make
sure	that	they,	too,	receive	or	can	get	the	source	code.	And	you	must	show	them
these	terms	so	they	know	their	rights.

We	protect	your	rights	with	two	steps:	(1)	copyright	the	software,	and	(2)	offer
you	this	license	which	gives	you	legal	permission	to	copy,	distribute	and/or
modify	the	software.

Also,	for	each	author's	protection	and	ours,	we	want	to	make	certain	that
everyone	understands	that	there	is	no	warranty	for	this	free	software.	If	the
software	is	modified	by	someone	else	and	passed	on,	we	want	its	recipients	to
know	that	what	they	have	is	not	the	original,	so	that	any	problems	introduced	by
others	will	not	reflect	on	the	original	authors'	reputations.

Finally,	any	free	program	is	threatened	constantly	by	software	patents.	We	wish
to	avoid	the	danger	that	redistributors	of	a	free	program	will	individually	obtain
patent	licenses,	in	effect	making	the	program	proprietary.	To	prevent	this,	we
have	made	it	clear	that	any	patent	must	be	licensed	for	everyone's	free	use	or	not
licensed	at	all.

The	precise	terms	and	conditions	for	copying,	distribution	and	modification
follow.

GNU	GENERAL	PUBLIC	LICENSE	TERMS	AND	CONDITIONS	FOR
COPYING,	DISTRIBUTION	AND	MODIFICATION

1.	 This	License	applies	to	any	program	or	other	work	which	contains	a	notice
placed	by	the	copyright	holder	saying	it	may	be	distributed	under	the	terms
of	this	General	Public	License.	The	``Program'',	below,	refers	to	any	such
program	or	work,	and	a	``work	based	on	the	Program''	means	either	the
Program	or	any	derivative	work	under	copyright	law:	that	is	to	say,	a	work
containing	the	Program	or	a	portion	of	it,	either	verbatim	or	with
modifications	and/or	translated	into	another	language.	(Hereinafter,
translation	is	included	without	limitation	in	the	term	``modification''.)	Each
licensee	is	addressed	as	``you''.

Activities	other	than	copying,	distribution	and	modification	are	not	covered
by	this	License;	they	are	outside	its	scope.	The	act	of	running	the	Program
is	not	restricted,	and	the	output	from	the	Program	is	covered	only	if	its
contents	constitute	a	work	based	on	the	Program	(independent	of	having
been	made	by	running	the	Program).	Whether	that	is	true	depends	on	what
the	Program	does.

2.	 You	may	copy	and	distribute	verbatim	copies	of	the	Program's	source	code

as	you	receive	it,	in	any	medium,	provided	that	you	conspicuously	and
appropriately	publish	on	each	copy	an	appropriate	copyright	notice	and
disclaimer	of	warranty;	keep	intact	all	the	notices	that	refer	to	this	License
and	to	the	absence	of	any	warranty;	and	give	any	other	recipients	of	the
Program	a	copy	of	this	License	along	with	the	Program.

You	may	charge	a	fee	for	the	physical	act	of	transferring	a	copy,	and	you
may	at	your	option	offer	warranty	protection	in	exchange	for	a	fee.

3.	 You	may	modify	your	copy	or	copies	of	the	Program	or	any	portion	of	it,
thus	forming	a	work	based	on	the	Program,	and	copy	and	distribute	such
modifications	or	work	under	the	terms	of	Section	1	above,	provided	that
you	also	meet	all	of	these	conditions:

1.	 You	must	cause	the	modified	files	to	carry	prominent	notices	stating
that	you	changed	the	files	and	the	date	of	any	change.

2.	 You	must	cause	any	work	that	you	distribute	or	publish,	that	in	whole
or	in	part	contains	or	is	derived	from	the	Program	or	any	part	thereof,
to	be	licensed	as	a	whole	at	no	charge	to	all	third	parties	under	the
terms	of	this	License.

3.	 If	the	modified	program	normally	reads	commands	interactively	when
run,	you	must	cause	it,	when	started	running	for	such	interactive	use	in
the	most	ordinary	way,	to	print	or	display	an	announcement	including
an	appropriate	copyright	notice	and	a	notice	that	there	is	no	warranty
(or	else,	saying	that	you	provide	a	warranty)	and	that	users	may
redistribute	the	program	under	these	conditions,	and	telling	the	user
how	to	view	a	copy	of	this	License.	(Exception:	if	the	Program	itself	is
interactive	but	does	not	normally	print	such	an	announcement,	your
work	based	on	the	Program	is	not	required	to	print	an	announcement.)

These	requirements	apply	to	the	modified	work	as	a	whole.	If	identifiable
sections	of	that	work	are	not	derived	from	the	Program,	and	can	be
reasonably	considered	independent	and	separate	works	in	themselves,	then
this	License,	and	its	terms,	do	not	apply	to	those	sections	when	you
distribute	them	as	separate	works.	But	when	you	distribute	the	same
sections	as	part	of	a	whole	which	is	a	work	based	on	the	Program,	the
distribution	of	the	whole	must	be	on	the	terms	of	this	License,	whose

permissions	for	other	licensees	extend	to	the	entire	whole,	and	thus	to	each
and	every	part	regardless	of	who	wrote	it.

Thus,	it	is	not	the	intent	of	this	section	to	claim	rights	or	contest	your	rights
to	work	written	entirely	by	you;	rather,	the	intent	is	to	exercise	the	right	to
control	the	distribution	of	derivative	or	collective	works	based	on	the
Program.

In	addition,	mere	aggregation	of	another	work	not	based	on	the	Program
with	the	Program	(or	with	a	work	based	on	the	Program)	on	a	volume	of	a
storage	or	distribution	medium	does	not	bring	the	other	work	under	the
scope	of	this	License.

4.	 You	may	copy	and	distribute	the	Program	(or	a	work	based	on	it,	under
Section	2)	in	object	code	or	executable	form	under	the	terms	of	Sections	1
and	2	above	provided	that	you	also	do	one	of	the	following:

1.	 Accompany	it	with	the	complete	corresponding	machine-readable
source	code,	which	must	be	distributed	under	the	terms	of	Sections	1
and	2	above	on	a	medium	customarily	used	for	software	interchange;
or,

2.	 Accompany	it	with	a	written	offer,	valid	for	at	least	three	years,	to	give
any	third-party,	for	a	charge	no	more	than	your	cost	of	physically
performing	source	distribution,	a	complete	machine-readable	copy	of
the	corresponding	source	code,	to	be	distributed	under	the	terms	of
Sections	1	and	2	above	on	a	medium	customarily	used	for	software
interchange;	or,

3.	 Accompany	it	with	the	information	you	received	as	to	the	offer	to
distribute	corresponding	source	code.	(This	alternative	is	allowed	only
for	noncommercial	distribution	and	only	if	you	received	the	program
in	object	code	or	executable	form	with	such	an	offer,	in	accord	with
Subsection	b	above.)

The	source	code	for	a	work	means	the	preferred	form	of	the	work	for
making	modifications	to	it.	For	an	executable	work,	complete	source	code
means	all	the	source	code	for	all	modules	it	contains,	plus	any	associated
interface	definition	files,	plus	the	scripts	used	to	control	compilation	and
installation	of	the	executable.	However,	as	a	special	exception,	the	source

code	distributed	need	not	include	anything	that	is	normally	distributed	(in
either	source	or	binary	form)	with	the	major	components	(compiler,	kernel,
and	so	on)	of	the	operating	system	on	which	the	executable	runs,	unless	that
component	itself	accompanies	the	executable.

If	distribution	of	executable	or	object	code	is	made	by	offering	access	to
copy	from	a	designated	place,	then	offering	equivalent	access	to	copy	the
source	code	from	the	same	place	counts	as	distribution	of	the	source	code,
even	though	third	parties	are	not	compelled	to	copy	the	source	along	with
the	object	code.

5.	 You	may	not	copy,	modify,	sublicense,	or	distribute	the	Program	except	as
expressly	provided	under	this	License.	Any	attempt	otherwise	to	copy,
modify,	sublicense	or	distribute	the	Program	is	void,	and	will	automatically
terminate	your	rights	under	this	License.	However,	parties	who	have
received	copies,	or	rights,	from	you	under	this	License	will	not	have	their
licenses	terminated	so	long	as	such	parties	remain	in	full	compliance.

6.	 You	are	not	required	to	accept	this	License,	since	you	have	not	signed	it.
However,	nothing	else	grants	you	permission	to	modify	or	distribute	the
Program	or	its	derivative	works.	These	actions	are	prohibited	by	law	if	you
do	not	accept	this	License.	Therefore,	by	modifying	or	distributing	the
Program	(or	any	work	based	on	the	Program),	you	indicate	your	acceptance
of	this	License	to	do	so,	and	all	its	terms	and	conditions	for	copying,
distributing	or	modifying	the	Program	or	works	based	on	it.

7.	 Each	time	you	redistribute	the	Program	(or	any	work	based	on	the
Program),	the	recipient	automatically	receives	a	license	from	the	original
licensor	to	copy,	distribute	or	modify	the	Program	subject	to	these	terms
and	conditions.	You	may	not	impose	any	further	restrictions	on	the
recipients'	exercise	of	the	rights	granted	herein.	You	are	not	responsible	for
enforcing	compliance	by	third	parties	to	this	License.

8.	 If,	as	a	consequence	of	a	court	judgment	or	allegation	of	patent
infringement	or	for	any	other	reason	(not	limited	to	patent	issues),
conditions	are	imposed	on	you	(whether	by	court	order,	agreement	or
otherwise)	that	contradict	the	conditions	of	this	License,	they	do	not	excuse
you	from	the	conditions	of	this	License.	If	you	cannot	distribute	so	as	to
satisfy	simultaneously	your	obligations	under	this	License	and	any	other

pertinent	obligations,	then	as	a	consequence	you	may	not	distribute	the
Program	at	all.	For	example,	if	a	patent	license	would	not	permit	royalty-
free	redistribution	of	the	Program	by	all	those	who	receive	copies	directly
or	indirectly	through	you,	then	the	only	way	you	could	satisfy	both	it	and
this	License	would	be	to	refrain	entirely	from	distribution	of	the	Program.

If	any	portion	of	this	section	is	held	invalid	or	unenforceable	under	any
particular	circumstance,	the	balance	of	the	section	is	intended	to	apply	and
the	section	as	a	whole	is	intended	to	apply	in	other	circumstances.

It	is	not	the	purpose	of	this	section	to	induce	you	to	infringe	any	patents	or
other	property	right	claims	or	to	contest	validity	of	any	such	claims;	this
section	has	the	sole	purpose	of	protecting	the	integrity	of	the	free	software
distribution	system,	which	is	implemented	by	public	license	practices.
Many	people	have	made	generous	contributions	to	the	wide	range	of
software	distributed	through	that	system	in	reliance	on	consistent
application	of	that	system;	it	is	up	to	the	author/donor	to	decide	if	he	or	she
is	willing	to	distribute	software	through	any	other	system	and	a	licensee
cannot	impose	that	choice.

This	section	is	intended	to	make	thoroughly	clear	what	is	believed	to	be	a
consequence	of	the	rest	of	this	License.

9.	 If	the	distribution	and/or	use	of	the	Program	is	restricted	in	certain	countries
either	by	patents	or	by	copyrighted	interfaces,	the	original	copyright	holder
who	places	the	Program	under	this	License	may	add	an	explicit
geographical	distribution	limitation	excluding	those	countries,	so	that
distribution	is	permitted	only	in	or	among	countries	not	thus	excluded.	In
such	case,	this	License	incorporates	the	limitation	as	if	written	in	the	body
of	this	License.

10.	 The	Free	Software	Foundation	may	publish	revised	and/or	new	versions	of
the	General	Public	License	from	time	to	time.	Such	new	versions	will	be
similar	in	spirit	to	the	present	version,	but	may	differ	in	detail	to	address
new	problems	or	concerns.

Each	version	is	given	a	distinguishing	version	number.	If	the	Program
specifies	a	version	number	of	this	License	which	applies	to	it	and	``any
later	version'',	you	have	the	option	of	following	the	terms	and	conditions

either	of	that	version	or	of	any	later	version	published	by	the	Free	Software
Foundation.	If	the	Program	does	not	specify	a	version	number	of	this
License,	you	may	choose	any	version	ever	published	by	the	Free	Software
Foundation.

11.	 If	you	wish	to	incorporate	parts	of	the	Program	into	other	free	programs
whose	distribution	conditions	are	different,	write	to	the	author	to	ask	for
permission.	For	software	which	is	copyrighted	by	the	Free	Software
Foundation,	write	to	the	Free	Software	Foundation;	we	sometimes	make
exceptions	for	this.	Our	decision	will	be	guided	by	the	two	goals	of
preserving	the	free	status	of	all	derivatives	of	our	free	software	and	of
promoting	the	sharing	and	reuse	of	software	generally.

NO	WARRANTY

12.	 BECAUSE	THE	PROGRAM	IS	LICENSED	FREE	OF	CHARGE,	THERE
IS	NO	WARRANTY	FOR	THE	PROGRAM,	TO	THE	EXTENT
PERMITTED	BY	APPLICABLE	LAW.	EXCEPT	WHEN	OTHERWISE
STATED	IN	WRITING	THE	COPYRIGHT	HOLDERS	AND/OR	OTHER
PARTIES	PROVIDE	THE	PROGRAM	``AS	IS''	WITHOUT	WARRANTY
OF	ANY	KIND,	EITHER	EXPRESSED	OR	IMPLIED,	INCLUDING,
BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF
MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.
THE	ENTIRE	RISK	AS	TO	THE	QUALITY	AND	PERFORMANCE	OF
THE	PROGRAM	IS	WITH	YOU.	SHOULD	THE	PROGRAM	PROVE
DEFECTIVE,	YOU	ASSUME	THE	COST	OF	ALL	NECESSARY
SERVICING,	REPAIR	OR	CORRECTION.

13.	 IN	NO	EVENT	UNLESS	REQUIRED	BY	APPLICABLE	LAW	OR
AGREED	TO	IN	WRITING	WILL	ANY	COPYRIGHT	HOLDER,	OR
ANY	OTHER	PARTY	WHO	MAY	MODIFY	AND/OR	REDISTRIBUTE
THE	PROGRAM	AS	PERMITTED	ABOVE,	BE	LIABLE	TO	YOU	FOR
DAMAGES,	INCLUDING	ANY	GENERAL,	SPECIAL,	INCIDENTAL
OR	CONSEQUENTIAL	DAMAGES	ARISING	OUT	OF	THE	USE	OR
INABILITY	TO	USE	THE	PROGRAM	(INCLUDING	BUT	NOT
LIMITED	TO	LOSS	OF	DATA	OR	DATA	BEING	RENDERED
INACCURATE	OR	LOSSES	SUSTAINED	BY	YOU	OR	THIRD
PARTIES	OR	A	FAILURE	OF	THE	PROGRAM	TO	OPERATE	WITH
ANY	OTHER	PROGRAMS),	EVEN	IF	SUCH	HOLDER	OR	OTHER

PARTY	HAS	BEEN	ADVISED	OF	THE	POSSIBILITY	OF	SUCH
DAMAGES.

END	OF	TERMS	AND	CONDITIONS

How	to	Apply	These	Terms	to	Your	New	Programs

If	you	develop	a	new	program,	and	you	want	it	to	be	of	the	greatest	possible	use
to	the	public,	the	best	way	to	achieve	this	is	to	make	it	free	software	which
everyone	can	redistribute	and	change	under	these	terms.

To	do	so,	attach	the	following	notices	to	the	program.	It	is	safest	to	attach	them
to	the	start	of	each	source	file	to	most	effectively	convey	the	exclusion	of
warranty;	and	each	file	should	have	at	least	the	``copyright''	line	and	a	pointer	to
where	the	full	notice	is	found.

one	line	to	give	the	program's	name	and	a	brief	idea	of	what	it	does.

Copyright	(C)	yyyy		name	of	author

This	program	is	free	software;	you	can	redistribute	it	and/or	modify

it	under	the	terms	of	the	GNU	General	Public	License	as	published	by

the	Free	Software	Foundation;	either	version	2	of	the	License,	or

(at	your	option)	any	later	version.

This	program	is	distributed	in	the	hope	that	it	will	be	useful,

but	WITHOUT	ANY	WARRANTY;	without	even	the	implied	warranty	of

MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.		See	the

GNU	General	Public	License	for	more	details.

You	should	have	received	a	copy	of	the	GNU	General	Public	License

along	with	this	program;	if	not,	write	to	the	Free	Software

Foundation,	Inc.,	59	Temple	Place	-	Suite	330,	Boston,	MA		02111-1307,	USA.

Also	add	information	on	how	to	contact	you	by	electronic	and	paper	mail.

If	the	program	is	interactive,	make	it	output	a	short	notice	like	this	when	it	starts
in	an	interactive	mode:

Gnomovision	version	69,	Copyright	(C)	19yy	name	of	author

Gnomovision	comes	with	ABSOLUTELY	NO	WARRANTY;	for	details	type	`show	w'.

This	is	free	software,	and	you	are	welcome	to	redistribute	it

under	certain	conditions;	type	`show	c'	for	details.

The	hypothetical	commands	'show	w'	and	'show	c'	should	show	the	appropriate

parts	of	the	General	Public	License.	Of	course,	the	commands	you	use	may	be
called	something	other	than	'show	w'	and	'show	c';	they	could	even	be	mouse-
clicks	or	menu	items---whatever	suits	your	program.

You	should	also	get	your	employer	(if	you	work	as	a	programmer)	or	your
school,	if	any,	to	sign	a	``copyright	disclaimer''	for	the	program,	if	necessary.
Here	is	a	sample;	alter	the	names:

Yoyodyne,	Inc.,	hereby	disclaims	all	copyright	interest	in	the	program

`Gnomovision'	(which	makes	passes	at	compilers)	written	by	James	Hacker.

signature	of	Ty	Coon,	1	April	1989

Ty	Coon,	President	of	Vice

This	General	Public	License	does	not	permit	incorporating	your	program	into
proprietary	programs.	If	your	program	is	a	subroutine	library,	you	may	consider
it	more	useful	to	permit	linking	proprietary	applications	with	the	library.	If	this	is
what	you	want	to	do,	use	the	GNU	Library	General	Public	License	instead	of
this	License.

Appendix	K.	MySQL	FLOSS	License	Exception

The	MySQL	AB	Exception	for	Free/Libre	and	Open	Source	Software-only
Applications	Using	MySQL	Client	Libraries	(the	“FLOSS	Exception”).

Version	0.4,	08	September	2005

Exception	Intent

We	want	specified	Free/Libre	and	Open	Source	Software	(``FLOSS'')
applications	to	be	able	to	use	specified	GPL-licensed	MySQL	client	libraries	(the
``Program'')	despite	the	fact	that	not	all	FLOSS	licenses	are	compatible	with
version	2	of	the	GNU	General	Public	License	(the	``GPL'').

Legal	Terms	and	Conditions

As	a	special	exception	to	the	terms	and	conditions	of	version	2.0	of	the	GPL:

1.	 You	are	free	to	distribute	a	Derivative	Work	that	is	formed	entirely	from	the
Program	and	one	or	more	works	(each,	a	“FLOSS	Work”)	licensed	under
one	or	more	of	the	licenses	listed	below	in	section	1,	as	long	as:

1.	 You	obey	the	GPL	in	all	respects	for	the	Program	and	the	Derivative
Work,	except	for	identifiable	sections	of	the	Derivative	Work	which
are	not	derived	from	the	Program,	and	which	can	reasonably	be
considered	independent	and	separate	works	in	themselves,

2.	 all	identifiable	sections	of	the	Derivative	Work	which	are	not	derived
from	the	Program,	and	which	can	reasonably	be	considered
independent	and	separate	works	in	themselves,

1.	 are	distributed	subject	to	one	of	the	FLOSS	licenses	listed	below,
and

2.	 the	object	code	or	executable	form	of	those	sections	are
accompanied	by	the	complete	corresponding	machine-readable
source	code	for	those	sections	on	the	same	medium	and	under	the
same	FLOSS	license	as	the	corresponding	object	code	or

executable	forms	of	those	sections,	and

3.	 any	works	which	are	aggregated	with	the	Program	or	with	a	Derivative
Work	on	a	volume	of	a	storage	or	distribution	medium	in	accordance
with	the	GPL,	can	reasonably	be	considered	independent	and	separate
works	in	themselves	which	are	not	derivatives	of	either	the	Program,	a
Derivative	Work	or	a	FLOSS	Work.

If	the	above	conditions	are	not	met,	then	the	Program	may	only	be	copied,
modified,	distributed	or	used	under	the	terms	and	conditions	of	the	GPL	or
another	valid	licensing	option	from	MySQL	AB.

2.	 FLOSS	License	List

License	name Version(s)/Copyright
Date

Academic	Free	License 2.0
Apache	Software	License 1.0/1.1/2.0
Apple	Public	Source	License 2.0
Artistic	license From	Perl	5.8.0
BSD	license "July	22	1999"
Common	Public	License 1.0
GNU	Library	or	"Lesser"	General	Public	License
(LGPL) 2.0/2.1

Jabber	Open	Source	License 1.0
MIT	license -
Mozilla	Public	License	(MPL) 1.0/1.1
Open	Software	License 2.0
OpenSSL	license	(with	original	SSLeay	license) "2003"	("1998")
PHP	License 3.0
Python	license	(CNRI	Python	License) —
Python	Software	Foundation	License 2.1.1
Sleepycat	License "1999"
W3C	License "2001"

X11	License "2001"
Zlib/libpng	License —
Zope	Public	License 2.0

Due	to	the	many	variants	of	some	of	the	above	licenses,	we	require	that	any
version	follow	the	2003	version	of	the	Free	Software	Foundation's	Free
Software	Definition	(http://www.gnu.org/philosophy/free-sw.html)	or
version	1.9	of	the	Open	Source	Definition	by	the	Open	Source	Initiative
(http://www.opensource.org/docs/definition.php).

3.	 Definitions

1.	 Terms	used,	but	not	defined,	herein	shall	have	the	meaning	provided	in
the	GPL.

2.	 Derivative	Work	means	a	derivative	work	under	copyright	law.

4.	 Applicability:	This	FLOSS	Exception	applies	to	all	Programs	that	contain	a
notice	placed	by	MySQL	AB	saying	that	the	Program	may	be	distributed
under	the	terms	of	this	FLOSS	Exception.	If	you	create	or	distribute	a	work
which	is	a	Derivative	Work	of	both	the	Program	and	any	other	work
licensed	under	the	GPL,	then	this	FLOSS	Exception	is	not	available	for	that
work;	thus,	you	must	remove	the	FLOSS	Exception	notice	from	that	work
and	comply	with	the	GPL	in	all	respects,	including	by	retaining	all	GPL
notices.	You	may	choose	to	redistribute	a	copy	of	the	Program	exclusively
under	the	terms	of	the	GPL	by	removing	the	FLOSS	Exception	notice	from
that	copy	of	the	Program,	provided	that	the	copy	has	never	been	modified
by	you	or	any	third	party.

Appendix	A.	Qualified	Libraries	and	Packages

The	following	is	a	non-exhaustive	list	of	libraries	and	packages	which	are
covered	by	the	FLOSS	License	Exception.	Please	note	that	this	appendix	is
provided	merely	as	an	additional	service	to	specific	FLOSS	projects	wishing	to
simplify	licensing	information	for	their	users.	Compliance	with	one	of	the
licenses	noted	under	the	“FLOSS	license	list”	section	remains	a	prerequisite.

Package	Name Qualifying	License	and	Version

http://www.gnu.org/philosophy/free-sw.html
http://www.opensource.org/docs/definition.php

Apache	Portable	Runtime	(APR) Apache	Software	License	2.0

	Table of Contents
	Preface
	General Information
	Conventions Used in This Manual
	Overview of MySQL AB
	Overview of the MySQL Database Management System
	Overview of the MaxDB Database Management System
	MySQL Development Roadmap
	MySQL Information Sources
	How to Report Bugs or Problems
	MySQL Standards Compliance

	Installing and Upgrading MySQL
	Standard MySQL Installation Using a Binary Distribution
	Installing MySQL on Windows
	Installing MySQL on Linux
	Installing MySQL on Mac OS X
	Installing MySQL on Solaris
	Installing MySQL on NetWare
	Installing MySQL on Other Unix-Like Systems
	MySQL Installation Using a Source Distribution
	Post-Installation Setup and Testing
	Upgrading MySQL
	Downgrading MySQL
	Operating System-Specific Notes
	Perl Installation Notes

	Tutorial
	Entering Queries
	Creating and Using a Database
	Getting Information About Databases and Tables
	Using mysql in Batch Mode
	Examples of Common Queries
	Queries from the Twin Project
	Using MySQL with Apache

	Using MySQL Programs
	Invoking MySQL Programs
	Specifying Program Options

	Database Administration
	mysqld � The MySQL Server
	The mysqld-max Extended MySQL Server
	MySQL Server Startup Programs
	mysqlmanager � The MySQL Instance Manager
	Installation-Related Programs
	General Security Issues
	The MySQL Access Privilege System
	MySQL User Account Management
	Backup and Recovery
	MySQL Localization and International Usage
	MySQL Server Logs
	Running Multiple MySQL Servers on the Same Machine
	The MySQL Query Cache

	Replication
	Replication Implementation Overview
	Replication Implementation Details
	How to Set Up Replication
	Replication Compatibility Between MySQL Versions
	Upgrading a Replication Setup
	Replication Features and Known Problems
	Replication Startup Options
	How Servers Evaluate Replication Rules
	Replication FAQ
	Troubleshooting Replication
	How to Report Replication Bugs or Problems
	Auto-Increment in Multiple-Master Replication

	Optimization
	Optimizing SELECT and Other Statements
	Locking Issues
	Optimizing Database Structure
	Optimizing the MySQL Server
	Disk Issues

	Client and Utility Programs
	myisam_ftdump � Display Full-Text Index information
	myisamchk � MyISAM Table-Maintenance Utility
	myisamlog � Display MyISAM Log File Contents
	myisampack � Generate Compressed, Read-Only MyISAM Tables
	mysql � The MySQL Command-Line Tool
	mysql_explain_log � Use EXPLAIN on Statements in Query Log
	mysqlaccess � Client for Checking Access Privileges
	mysqladmin � Client for Administering a MySQL Server
	mysqlbinlog � Utility for Processing Binary Log Files
	mysqlcheck � A Table Maintenance and Repair Program
	mysqldump � A Database Backup Program
	mysqlhotcopy � A Database Backup Program
	mysqlimport � A Data Import Program
	mysqlshow � Display Database, Table, and Column Information
	mysql_zap � Kill Processes That Match a Pattern
	perror � Explain Error Codes
	replace � A String-Replacement Utility

	Language Structure
	Database, Table, Index, Column, and Alias Names
	User-Defined Variables
	Comment Syntax
	Treatment of Reserved Words in MySQL

	Character Set Support
	Character Sets and Collations in MySQL
	Specifying Character Sets and Collations
	Connection Character Sets and Collations
	Collation Issues
	Operations Affected by Character Set Support
	Unicode Support
	UTF-8 for Metadata
	Character Sets and Collations That MySQL Supports
	FAQ: MySQL Chinese, Japanese, and Korean Character Sets

	Data Types
	Numeric Types
	Date and Time Types
	String Types
	Data Type Storage Requirements
	Choosing the Right Type for a Column
	Using Data Types from Other Database Engines

	Functions and Operators
	Control Flow Functions
	String Functions
	Numeric Functions
	Date and Time Functions
	What Calendar Is Used By MySQL?
	Full-Text Search Functions
	Cast Functions and Operators
	Other Functions
	Functions and Modifiers for Use with GROUP BY Clauses

	SQL Statement Syntax
	Data Manipulation Statements
	MySQL Utility Statements
	MySQL Transactional and Locking Statements
	Database Administration Statements
	Replication Statements
	SQL Syntax for Prepared Statements

	Storage Engines and Table Types
	The InnoDB Storage Engine
	The MERGE Storage Engine
	The MEMORY (HEAP) Storage Engine
	The BDB (BerkeleyDB) Storage Engine
	The EXAMPLE Storage Engine
	The FEDERATED Storage Engine
	The ARCHIVE Storage Engine
	The CSV Storage Engine
	The BLACKHOLE Storage Engine

	MySQL Cluster
	Basic MySQL Cluster Concepts
	Simple Multi-Computer How-To
	MySQL Cluster Configuration
	Upgrading and Downgrading MySQL Cluster
	Process Management in MySQL Cluster
	Management of MySQL Cluster
	On-line Backup of MySQL Cluster
	Using High-Speed Interconnects with MySQL Cluster
	Known Limitations of MySQL Cluster
	MySQL Cluster Development Roadmap
	MySQL Cluster FAQ
	MySQL Cluster Glossary

	Spatial Extensions
	The OpenGIS Geometry Model
	Supported Spatial Data Formats
	Creating a Spatially Enabled MySQL Database
	Analyzing Spatial Information
	Optimizing Spatial Analysis
	MySQL Conformance and Compatibility

	Stored Procedures and Functions
	Stored Routine Syntax
	Stored Procedures, Functions, Triggers, and Replication: Frequently Asked Questions
	Binary Logging of Stored Routines and Triggers

	Triggers
	DROP TRIGGER Syntax
	Using Triggers

	Views
	CREATE VIEW Syntax
	DROP VIEW Syntax

	The INFORMATION_SCHEMA Database
	The INFORMATION_SCHEMA TABLES Table
	The INFORMATION_SCHEMA COLUMNS Table
	The INFORMATION_SCHEMA STATISTICS Table
	The INFORMATION_SCHEMA USER_PRIVILEGES Table
	The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
	The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
	The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
	The INFORMATION_SCHEMA CHARACTER_SETS Table
	The INFORMATION_SCHEMA COLLATIONS Table
	The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
	The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
	The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
	The INFORMATION_SCHEMA ROUTINES Table
	The INFORMATION_SCHEMA VIEWS Table
	The INFORMATION_SCHEMA TRIGGERS Table
	Other INFORMATION_SCHEMA Tables
	Extensions to SHOW Statements

	Precision Math
	DECIMAL Data Type Changes
	Expression Handling
	Rounding Behavior
	Precision Math Examples

	APIs and Libraries
	MySQL C API
	MySQL PHP API
	MySQL Perl API
	MySQL C++ API
	MySQL Python API
	MySQL Tcl API
	MySQL Eiffel Wrapper
	MySQL Program Development Utilities

	Connectors
	Connector/NET
	MySQL Connector/J
	MySQL Connector/MXJ
	Connector/PHP

	Extending MySQL
	Adding New Functions to MySQL
	Adding New Procedures to MySQL

	Problems and Common Errors
	Common Errors When Using MySQL Programs
	Installation-Related Issues
	Administration-Related Issues
	Query-Related Issues
	Optimizer-Related Issues
	Table Definition-Related Issues
	Known Issues in MySQL

	Error Codes and Messages
	Client Error Codes and Messages

	Credits
	Contributors to MySQL
	Documenters and translators
	Libraries used by and included with MySQL
	Packages that support MySQL
	Tools that were used to create MySQL
	Supporters of MySQL

	MySQL Change History
	Changes in MySQL Cluster
	MySQL Connector/ODBC (MyODBC) Change History
	MySQL Connector/NET Change History
	MySQL Connector/J Change History

	Porting to Other Systems
	Debugging a MySQL Client
	The DBUG Package
	Comments about RTS Threads
	Differences Between Thread Packages

	Environment Variables
	Regular Expressions
	Limits in MySQL
	Feature Restrictions
	Restrictions on Server-Side Cursors
	Restrictions on Subqueries
	Restrictions on Views
	Restrictions on XA Transactions

	GNU General Public License
	MySQL FLOSS License Exception

