MySQL 5.0 Reference Manual

Copyright 1997-2006 MySQL AB

This documentation is NOT distributed under a GPL license. Use of this
documentation is subject to the following terms: You may create a printed copy
of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any
way. You shall not publish or distribute this documentation in any form or on
any media, except if you distribute the documentation in a manner similar to
how MySQL disseminates it (that is, electronically for download on a website
with the software) or on a CD-ROM or similar medium, provided however that
the documentation is disseminated together with the software on the same
medium. Any other use, such as any dissemination of printed copies or use of
this documentation, in whole or in part, in another publication, requires the prior
written consent from an authorized representative of MySQL AB. MySQL AB
reserves any and all rights to this documentation not expressly granted above.

Please email <docs@mysqgl.com> for more information or if you are interested in
doing a translation.

Abstract
This is the MySQL Reference Manual. It documents MySQL 5.0 through 5.0.25.

Document generated on: 2006-08-11

Table of Contents

Preface

mailto:docs@mysql.com

1. General Information

1.1. About This Manual

1.2. Conventions Used in This Manual

1.3. Overview of MySQL AB

1.4. Overview of the MySQL Database Management System
1.4.1. History of MySQL
1.4.2. The Main Features of MySQL
1.4.3. MySQL Stability
1.4.4. How Large MySQL Tables Can Be
1.4.5. Year 2000 Compliance

1.5. Overview of the MaxDB Database Management System
1.5.1. What is MaxDB?
1.5.2. History of MaxDB
1.5.3. Features of MaxDB
1.5.4. Licensing and Support
1.5.5. Feature Differences Between MaxDB and MySQL
1.5.6. Interoperability Features Between MaxDB and MySQL
1.5.7. MaxDB-Related Links

1.6. MySQL Development Roadmap
1.6.1. What's New in MySQL 5.0

1.7. MySQL Information Sources

1.7.1. MySQL Mailing Lists
1.7.2. MySQL Community Support at the MySQL Forums
1.7.3. MySQL Community Support on Internet Relay Chat (IRC)

1.8. How to Report Bugs or Problems

1.9. MySQL Standards Compliance
1.9.1. What Standards MySQL Follows
1.9.2. Selecting SQL Modes
1.9.3. Running MySQL in ANSI Mode
1.9.4. MySQL Extensions to Standard SQL
1.9.5. MySQL Differences from Standard SQL
1.9.6. How MySQL Deals with Constraints

2. Installing and Upgrading MySQL

2.1. General Installation Issues
2.1.1. Operating Systems Supported by MySQL
2.1.2. Choosing Which MySQL Distribution to Install
2.1.3. How to Get MySQL
2.1.4. Verifying Package Integrity Using MD5 Checksums or GnuPG
2.1.5. Installation Layouts
2.2. Standard MySQL Installation Using a Binary Distribution
2.3. Installing MySQL on Windows
2.3.1. Choosing An Installation Package
2.3.2. Installing MySQL with the Automated Installer
2.3.3. Using the MySQL Installation Wizard
2.3.4. Using the Configuration Wizard
2.3.5. Installing MySQL from a Noinstall Zip Archive
2.3.6. Extracting the Install Archive
2.3.7. Creating an Option File
2.3.8. Selecting a MySQL Server type
2.3.9. Starting the Server for the First Time
2.3.10. Starting MySQL from the Windows Command Line
2.3.11. Starting MySQL as a Windows Service
2.3.12. Testing The MySQL Installation
2.3.13. Troubleshooting a MySQL Installation Under Windows
2.3.14. Upgrading MySQL on Windows
2.3.15. MySQL on Windows Compared to MySQL on Unix
2.4. Installing MySQL on Linux
2.5. Installing MySQL on Mac OS X
2.6. Installing MySQL on Solaris
2.7. Installing MySQL on NetWare
2.8. Installing MySQL on Other Unix-Like Systems
2.9. MySQL Installation Using a Source Distribution
2.9.1. Source Installation Overview

2.9.2. Typical configure Options
2.9.3. Installing from the Development Source Tree

2.9.4. Dealing with Problems Compiling MySQL

2.9.5. MIT-pthreads Notes

2.9.6. Installing MySQL from Source on Windows

2.9.7. Compiling MySQL Clients on Windows
2.10. Post-Installation Setup and Testing

2.10.1. Windows Post-Installation Procedures

2.10.2. Unix Post-Installation Procedures

2.10.3. Securing the Initial MySQL Accounts
2.11. Upgrading MySQL

2.11.1. Upgrading from MySQL 5.0 to 5.1

2.11.2. Upgrading from MySQL 4.1 to 5.0

2.11.3. Copying MySQL Databases to Another Machine

2.12. Downgrading MySQL
2.12.1. Downgrading to MySQL 4.1

2.13. Operating System-Specific Notes
2.13.1. Linux Notes
2.13.2. Mac OS X Notes
2.13.3. Solaris Notes
2.13.4. BSD Notes
2.13.5. Other Unix Notes
2.13.6. OS/2 Notes
2.14. Perl Installation Notes
2.14.1. Installing Perl on Unix
2.14.2. Installing ActiveState Perl on Windows
2.14.3. Problems Using the Perl DB1/DBD Interface

3. Tutorial
3.1. Connecting to and Disconnecting from the Server
3.2. Entering Queries
3.3. Creating and Using a Database
3.3.1. Creating and Selecting a Database
3.3.2. Creating a Table
3.3.3. Loading Data into a Table
3.3.4. Retrieving Information from a Table
3.4. Getting Information About Databases and Tables
3.5. Using mysql in Batch Mode
3.6. Examples of Common Queries
3.6.1. The Maximum Value for a Column
3.6.2. The Row Holding the Maximum of a Certain Column
3.6.3. Maximum of Column per Group

3.6.4. The Rows Holding the Group-wise Maximum of a Certain Field
3.6.5. Using User-Defined Variables

3.6.6. Using Foreign Keys
3.6.7. Searching on Two Keys
3.6.8. Calculating Visits Per Day
3.6.9. Using AUTO INCREMENT
3.7. Queries from the Twin Project
3.7.1. Find All Non-distributed Twins
3.7.2. Show a Table of Twin Pair Status

3.8. Using MySQL with Apache

4. Using MySQL. Programs
4.1. Overview of MySQL Programs

4.2. Invoking MySQL Programs
4.3. Specifying Program Options
4.3.1. Using Options on the Command Line

4.3.2. Using Option Files
4.3.3. Using Environment Variables to Specify Options

4.3.4. Using Options to Set Program Variables

5. Database Administration
5.1. Overview of Server-Side Programs
5.2. mysqld — The MySQL Server
5.2.1. mysgld Command Options
5.2.2. Server System Variables
5.2.3. Using System Variables
5.2.4. Server Status Variables
5.2.5. The Server SQL Mode
5.2.6. The MySQL Server Shutdown Process
5.2.7. MySQL Server-Side Help Support
5.3. The mysqgld-max Extended MySQL Server
5.4. MySQL Server Startup Programs
5.4.1. mysqld_safe — MySQL Server Startup Script
5.4.2. mysql.server — MySQL Server Startup Script
5.4.3. mysqld_multi — Manage Multiple MySQL Servers
5.5. mysqlmanager — The MySQL Instance Manager
5.5.1. Starting the MySQL Server with MySQL. Instance Manager
5.5.2. Connecting to the MySQL Instance Manager and Creating User
Accounts
5.5.3. MySQL Instance Manager Command Options
5.5.4. MySQL Instance Manager Configuration Files
5.5.5. Commands Recognized by the MySQL Instance Manager
5.6. Installation-Related Programs
5.6.1. mysql fix_privilege_tables — Upgrade MySQL System Tables
5.6.2. mysqgl_upgrade — Check Tables for MySQL Upgrade
5.7. General Security Issues

5.7.1. General Security Guidelines
5.7.2. Making MySQL Secure Against Attackers

5.7.3. Security-Related mysqld Options
5.7.4. Security Issues with LOAD DATA LOCAL
5.7.5. How to Run MySQL as a Normal User
5.8. The MySQL Access Privilege System
5.8.1. What the Privilege System Does
5.8.2. How the Privilege System Works
5.8.3. Privileges Provided by MySQL
5.8.4. Connecting to the MySQL Server
5.8.5. Access Control, Stage 1: Connection Verification
5.8.6. Access Control, Stage 2: Request Verification

5.8.7. When Privilege Changes Take Effect
5.8.8. Causes of Access denied Errors
5.8.9. Password Hashing as of MySQL 4.1
5.9. MySQL User Account Management
5.9.1. MySQL Usernames and Passwords
5.9.2. Adding New User Accounts to MySQL
5.9.3. Removing User Accounts from MySQL
5.9.4. Limiting Account Resources
5.9.5. Assigning Account Passwords
5.9.6. Keeping Your Password Secure
5.9.7. Using Secure Connections
5.10. Backup and Recovery
5.10.1. Database Backups
5.10.2. Example Backup and Recovery Strategy
5.10.3. Point-in-Time Recovery
5.10.4. Table Maintenance and Crash Recovery
5.11. MySQL Localization and International Usage
5.11.1. The Character Set Used for Data and Sorting
5.11.2. Setting the Error Message L.anguage
5.11.3. Adding a New Character Set

5.11.4. The Character Definition Arrays

5.11.5. String Collating Support
5.11.6. Multi-Byte Character Support

5.11.7. Problems With Character Sets
5.11.8. MySQL Server Time Zone Support
5.12. MySQL Server Logs
5.12.1. The Error Log
5.12.2. The General Query Log
5.12.3. The Binary Log
5.12.4. The Slow Query Log
5.12.5. Server L.og Maintenance
5.13. Running Multiple MySQL Servers on the Same Machine
5.13.1. Running Multiple Servers on Windows
5.13.2. Running Multiple Servers on Unix
5.13.3. Using Client Programs in a Multiple-Server Environment
5.14. The MySQL Query Cache
5.14.1. How the Query Cache Operates
5.14.2. Query Cache SELECT Options
5.14.3. Query Cache Configuration

5.14.4. Query Cache Status and Maintenance

6. Replication
6.1. Introduction to Replication

6.2. Replication Implementation Overview
6.3. Replication Implementation Details
6.3.1. Replication Master Thread States
6.3.2. Replication Slave I/O Thread States
6.3.3. Replication Slave SQL Thread States
6.3.4. Replication Relay and Status Files
6.4. How to Set Up Replication
6.5. Replication Compatibility Between MySQL Versions
6.6. Upgrading a Replication Setup
6.6.1. Upgrading Replication to 5.0
6.7. Replication Features and Known Problems
6.8. Replication Startup Options
6.9. How Servers Evaluate Replication Rules
6.10. Replication FAQ
6.11. Troubleshooting Replication
6.12. How to Report Replication Bugs or Problems
6.13. Auto-Increment in Multiple-Master Replication

7. Optimization
7.1. Optimization Overview
7.1.1. MySQL Design Limitations and Tradeoffs

7.1.2. Designing Applications for Portability
7.1.3. What We Have Used MySQL For
7.1.4. The MySQL Benchmark Suite

7.1.5. Using Your Own Benchmarks
7.2. Optimizing SELECT and Other Statements

7.2.1. Optimizing Queries with EXPLAIN
7.2.2. Estimating Query Performance
7.2.3. Speed of SELECT Queries

7.2.4. wHERE Clause Optimization

7.2.5. Range Optimization

7.2.6. Index Merge Optimization

7.2.7. IS NULL Optimization

7.2.8. DISTINCT Optimization

7.2.10. Nested Join Optimization
7.2.11. Outer Join Simplification

7.2.12. ORDER BY Optimization
7.2.13. GROUP BY Optimization
7.2.14. LIMIT Optimization

7.2.15. How to Avoid Table Scans
7.2.16. Speed of INSERT Statements
7.2.17. Speed of UPDATE Statements
7.2.18. Speed of DELETE Statements

7.2.19. Other Optimization Tips

7.3. Locking Issues
7.3.1. Locking Methods

7.3.2. Table Locking Issues
7.3.3. Concurrent Inserts
7.4. Optimizing Database Structure
7.4.1. Design Choices
7.4.2. Make Your Data as Small as Possible
7.4.3. Column Indexes
7.4.4. Multiple-Column Indexes
7.4.5. How MySQL Uses Indexes
7.4.6. The My1sAM Key Cache

7.4.7. My1SAM Index Statistics Collection

7.4.8. How MySQL Opens and Closes Tables

7.4.9. Drawbacks to Creating Many Tables in the Same Database
7.5. Optimizing the MySQL Server

7.5.1. System Factors and Startup Parameter Tuning

7.5.2. Tuning Server Parameters

7.5.3. Controlling Query Optimizer Performance

7.5.4. How Compiling and Linking Affects the Speed of MySQL
7.5.5. How MySQL Uses Memory
7.5.6. How MySQL Uses DNS

7.6. Disk Issues

7.6.1. Using Symbolic Links

8. Client and Utility Programs
8.1. Overview of Client and Utility Programs

8.2. myisam_ftdump — Display Full-Text Index information
8.3. myisamchk — MyISAM Table-Maintenance Utility
8.3.1. myisamchk General Options
8.3.2. myisamchk Check Options
8.3.3. myisamchk Repair Options
8.3.4. Other myisamchk Options

8.3.5. myisamchk Memory Usage
8.4. myisamlog — Display MyISAM Log File Contents
8.5. myisampack — Generate Compressed, Read-Only MyISAM Tables
8.6. mysql — The MySQL Command-Line Tool

8.6.1. mysqgl Options

8.6.2. mysql Commands

8.6.3. mysql Server-Side Help
8.6.4. Executing SQL Statements from a Text File

8.6.5. mysql Tips
8.7. mysql_explain_log — Use EXPLAIN on Statements in Query Log
8.8. mysqlaccess — Client for Checking Access Privileges
8.9. mysqladmin — Client for Administering a MySQL Server
8.10. mysqglbinlog — Utility for Processing Binary Log Files
8.11. mysqglcheck — A Table Maintenance and Repair Program
8.12. mysgqldump — A Database Backup Program
8.13. mysqglhotcopy — A Database Backup Program
8.14. mysqglimport — A Data Import Program

8.15. mysqlshow — Display Database, Table, and Column Information
8.16. mysql_zap — Kill Processes That Match a Pattern

8.17. perror — Explain Error Codes
8.18. replace — A String-Replacement Utility

9. Language Structure
9.1. Literal Values
9.1.2. Numbers
9.1.3. Hexadecimal Values
9.1.4. Boolean Values
9.1.5. Bit-Field Values
9.1.6. NULL_Values
9.2. Database, Table, Index, Column, and Alias Names
9.2.1. Identifier Qualifiers
9.2.2. Identifier Case Sensitivity
9.3. User-Defined Variables

9.4. Comment Syntax
9.5. Treatment of Reserved Words in MySQL

10. Character Set Support

10.1. Character Sets and Collations in General

10.2. Character Sets and Collations in MySQL

10.3. Specifying Character Sets and Collations
10.3.1. Server Character Set and Collation
10.3.2. Database Character Set and Collation
10.3.3. Table Character Set and Collation
10.3.4. Column Character Set and Collation
10.3.5. Character String Literal Character Set and Collation
10.3.6. National Character Set
10.3.7. Examples of Character Set and Collation Assignment
10.3.8. Compatibility with Other DBMSs

10.4. Connection Character Sets and Collations

10.5. Collation Issues
10.5.1. Using COLLATE in SQL Statements
10.5.2. coLLATE Clause Precedence
10.5.3. BINARY Operator

10.5.4. Some Special Cases Where the Collation Determination Is
Tricky
10.5.5. Collations Must Be for the Right Character Set
10.5.6. An Example of the Effect of Collation
10.6. Operations Affected by Character Set Support
10.6.1. Result Strings
10.6.2. CONVERT () and CAST()
10.6.3. sHow Statements and INFORMATION SCHEMA
10.7. Unicode Support
10.8. UTF-8 for Metadata
10.9. Character Sets and Collations That MySQL Supports
10.9.1. Unicode Character Sets

10.9.2. West European Character Sets

10.9.3. Central European Character Sets
10.9.4. South European and Middle East Character Sets

10.9.5. Baltic Character Sets
10.9.6. Cyrillic Character Sets
10.9.7. Asian Character Sets
10.10. FAQ: MySQL Chinese, Japanese, and Korean Character Sets
10.10.1. SELECT shows non-Latin characters as "?"s. Why?

10.10.2. Troubles with GB character sets (Chinese)

10.10.3. Troubles with big5 character set (Chinese)

10.10.4. Troubles with character-set conversions (Japanese)

10.10.5. The Great Yen Sign problem (Japanese)

10.10.6. Troubles with euckr character set (Korean)
10.10.7. The “Data truncated” message

10.10.8. Troubles with Access, Perl, PHP, etc.

10.10.9. How can I get old MySQL 4.0 behaviour back?

10.10.10.

10.10.11.

Why do some LIKE and FULLTEXT searches fail?
What CJK character sets are available?

10.10.12.

Is character X available in all character sets?

10.10.13.

Strings don't sort correctly in Unicode (1)

10.10.14.

Strings don't sort correctly in Unicode (II)

10.10.15.

My supplementary characters get rejected

10.10.16.

Shouldn't it be CJKV (V for Vietnamese)?

10.10.17.

Will MySQL fix any CJK problems in version 5.17?

10.10.18.

10.10.19.

When will MySQL translate the manual again?
Whom can I talk to?

11. Data Types
11.1. Data Type Overview

11.1.1. Overview of Numeric Types
11.1.2. Overview of Date and Time Types
11.1.3. Overview of String Types
11.1.4. Data Type Default Values

11.2. Numeric Types

11.3. Date and Time Types
11.3.1. The DATETIME, DATE, and TIMESTAMP Types
11.3.2. The TIME Type
11.3.3. The YEAR Type
11.3.4. Y2K Issues and Date Types

11.4. String Types
11.4.1. The CHAR and VARCHAR Types
11.4.2. The BINARY and VARBINARY Types
11.4.3. The BLOB and TEXT Types
11.4.4. The ENUM Type
11.4.5. The SET Type

11.5. Data Type Storage Requirements

11.6. Choosing the Right Type for a Column
11.7. Using Data Types from Other Database Engines

12. Functions and Operators

12.1. Operators
12.1.1. Operator Precedence
12.1.2. Type Conversion in Expression Evaluation
12.1.3. Comparison Functions and Operators
12.1.4. Logical Operators

12.2. Control Flow Functions

12.3. String Functions

12.3.1. String Comparison Functions
12.4. Numeric Functions

12.4.1. Arithmetic Operators
12.4.2. Mathematical Functions
12.5. Date and Time Functions
12.6. What Calendar Is Used By MySQL?
12.7. Full-Text Search Functions
12.7.1. Boolean Full-Text Searches
12.7.2. Full-Text Searches with Query Expansion
12.7.3. Full-Text Stopwords
12.7.4. Full-Text Restrictions
12.7.5. Fine-Tuning MySQL Full-Text Search
12.8. Cast Functions and Operators
12.9. Other Functions
12.9.1. Bit Functions
12.9.2. Encryption and Compression Functions
12.9.3. Information Functions
12.9.4. Miscellaneous Functions
12.10. Functions and Modifiers for Use with GrRourP BY Clauses
12.10.1. GROUP_BY (Aggregate) Functions
12.10.2. GROUP BY Modifiers
12.10.3. GrRouP BY_ and HAVING with Hidden Fields

13. SQL Statement Syntax

13.1. Data Definition Statements
13.1.1. ALTER DATABASE Syntax
13.1.2. ALTER TABLE Syntax
13.1.3. CREATE DATABASE Syntax
13.1.4. CREATE INDEX Syntax
13.1.5. CREATE TABLE Syntax
13.1.6. DROP DATABASE Syntax
13.1.7. DROP INDEX Syntax
13.1.8. DROP_TABLE Syntax
13.1.9. RENAME TABLE Syntax

13.2. Data Manipulation Statements
13.2.1. DELETE Syntax
13.2.2. po Syntax
13.2.3. HANDLER Syntax
13.2.4. INSERT Syntax
13.2.5. LOAD DATA INFILE Syntax
13.2.6. REPLACE Syntax
13.2.7. SELECT Syntax
13.2.8. Subquery Syntax
13.2.9. TRUNCATE Syntax
13.2.10. UPDATE Syntax

13.3. MySQL Utility Statements
13.3.1. DESCRIBE Syntax
13.3.2. HELP Syntax
13.3.3. USE Syntax

13.4. MySQL Transactional and L.ocking Statements
13.4.1. START TRANSACTION, COMMIT, and ROLLBACK Syntax
13.4.2. Statements That Cannot Be Rolled Back
13.4.3. Statements That Cause an Implicit Commit
13.4.4. SAVEPOINT and ROLLBACK TO SAVEPOINT Syntax
13.4.5. LOCK TABLES and UNLOCK TABLES Syntax
13.4.6. SET TRANSACTION Syntax
13.4.7. XA Transactions

13.5. Database Administration Statements
13.5.1. Account Management Statements
13.5.2. Table Maintenance Statements
13.5.3. SET Syntax

13.5.4. sHow Syntax
13.5.5. Other Administrative Statements

13.6. Replication Statements

13.6.1. SQL Statements for Controlling Master Servers
13.6.2. SQL Statements for Controlling Slave Servers

13.7. SQL Syntax for Prepared Statements

14. Storage Engines and Table Types
14.1. The MyISAM Storage Engine

14.1.1. MmyISAM Startup Options
14.1.2. Space Needed for Keys
14.1.3. My1SAM Table Storage Formats
14.1.4. My1SAM Table Problems
14.2. The InnoDB Storage Engine
14.2.1. InnobB Overview
14.2.2. 1nnobB Contact Information
14.2.3. InnobB Configuration
14.2.4. InnoDB Startup Options and System Variables
14.2.5. Creating the InnobB Tablespace
14.2.6. Creating and Using InnoDB Tables
14.2.7. Adding and Removing InnobDB Data and Log Files
14.2.8. Backing Up and Recovering an InnobDB Database
14.2.9. Moving an InnoDB Database to Another Machine
14.2.10. 1nnoDB Transaction Model and Locking

14.2.11. 1nnoDB Performance Tuning Tips

14.2.12. Implementation of Multi-Versioning
14.2.13. I1nnoDB Table and Index Structures

14.2.14. 1nnoDB File Space Management and Disk I/0O
14.2.15. InnoDB Error Handling
14.2.16. Restrictions on InnobB Tables
14.2.17. InnoDB Troubleshooting
14.3. The MERGE Storage Engine
14.3.1. MERGE_Table Problems
14.4. The MEMORY (HEAP) Storage Engine
14.5. The BDB (BerkeleyDB) Storage Engine

14.5.1. Operating Systems Supported by BDB

14.5.2. Installing BDB
14.5.3. BDB Startup Options

14.5.4. Characteristics of BDB Tables
14.5.5. Restrictions on BDB_ Tables
14.5.6. Errors That May Occur When Using BDB Tables
14.6. The EXAMPLE Storage Engine
14.7. The FEDERATED Storage Engine
14.7.1. Description of the FEDERATED Storage Engine
14.7.2. How to use FEDERATED Tables

14.7.3. Limitations of the FEDERATED Storage Engine
14.8. The ARCHIVE Storage Engine

14.9. The csv Storage Engine

14.10. The BLACKHOLE Storage Engine

15. MySQL Cluster
15.1. MySQL Cluster Overview
15.2. Basic MySQL Cluster Concepts
15.2.1. MySQL Cluster Nodes, Node Groups, Replicas, and Partitions
15.3. Simple Multi-Computer How-To
15.3.1. Hardware, Software, and Networking
15.3.2. Multi-Computer Installation
15.3.3. Multi-Computer Configuration
15.3.4. Initial Startup
15.3.5. Loading Sample Data and Performing Queries
15.3.6. Safe Shutdown and Restart
15.4. MySQL Cluster Configuration
15.4.1. Building MySQL Cluster from Source Code
15.4.2. Installing the Software
15.4.3. Quick Test Setup of MySQL Cluster
15.4.4. Configuration File
15.4.5. Overview of Cluster Configuration Parameters
15.4.6. Configuring Parameters for L.ocal Checkpoints
15.5. Upgrading and Downgrading MySQL Cluster
15.5.1. Performing a Rolling Restart of the Cluster
15.5.2. Cluster Upgrade and Downgrade Compatibility
15.6. Process Management in MySQL Cluster
15.6.1. MySQL Server Process Usage for MySQL Cluster
15.6.2. ndbd, the Storage Engine Node Process
15.6.3. ndb_mgmd, the Management Server Process
15.6.4. ndb_mgm, the Management Client Process
15.6.5. Command Options for MySQL Cluster Processes
15.7. Management of MySQL Cluster
15.7.1. MySQL Cluster Startup Phases
15.7.2. Commands in the Management Client
15.7.3. Event Reports Generated in MySQL Cluster
15.7.4. Single-User Mode
15.8. On-line Backup of MySQL Cluster
15.8.1. Cluster Backup Concepts
15.8.2. Using The Management Client to Create a Backup
15.8.3. How to Restore a Cluster Backup
15.8.4. Configuration for Cluster Backup
15.8.5. Backup Troubleshooting

15.9. Using High-Speed Interconnects with MySQL Cluster
15.9.1. Configuring MySQL Cluster to use SCI Sockets
15.9.2. Understanding the Impact of Cluster Interconnects
15.10. Known Limitations of MySQL Cluster
15.11. MySQL Cluster Development Roadmap
15.11.1. MySQL Cluster Changes in MySQL 5.0
15.11.2. MySQL 5.1 Development Roadmap for MySQL Cluster
15.12. MySQL Cluster FAQ
15.13. MySQL Cluster Glossary

16. Spatial Extensions
16.1. Introduction to MySQL Spatial Support
16.2. The OpenGIS Geometry Model
16.2.1. The Geometry Class Hierarchy
16.2.2. Class Geometry
16.2.3. Class Point
16.2.4. Class Curve
16.2.5. Class LineString
16.2.6. Class Surface
16.2.7. Class Polygon
16.2.8. Class GeometryCollection
16.2.9. Class MultiPoint
16.2.10. Class MultiCurve
16.2.11. Class MultilLineString
16.2.12. Class MultiSurface
16.2.13. Class MultiPolygon
16.3. Supported Spatial Data Formats
16.3.1. Well-Known Text (WKT) Format
16.3.2. Well-Known Binary (WKB) Format
16.4. Creating a Spatially Enabled MySQL Database
16.4.1. MySQL Spatial Data Types
16.4.2. Creating Spatial Values
16.4.3. Creating Spatial Columns
16.4.4. Populating Spatial Columns

16.4.5. Fetching Spatial Data

16.5. Analyzing Spatial Information
16.5.1. Geometry Format Conversion Functions

16.5.2. Geometry Functions
16.5.3. Functions That Create New Geometries from Existing Ones
16.5.4. Functions for Testing Spatial Relations Between Geometric

Objects
16.5.5. Relations on Geometry Minimal Bounding Rectangles (MBRs)

16.5.6. Functions That Test Spatial Relationships Between Geometries

16.6. Optimizing Spatial Analysis
16.6.1. Creating Spatial Indexes

16.6.2. Using a Spatial Index
16.7. MySQL Conformance and Compatibility

17. Stored Procedures and Functions

17.1. Stored Routines and the Grant Tables

17.2. Stored Routine Syntax
17.2.1. CREATE PROCEDURE and CREATE FUNCTION Syntax
17.2.2. ALTER PROCEDURE and ALTER FUNCTION Syntax
17.2.3. DROP_PROCEDURE and DROP FUNCTION Syntax
17.2.4. CALL Statement Syntax
17.2.5. BEGIN ... END Compound Statement Syntax
17.2.6. DECLARE Statement Syntax
17.2.7. Variables in Stored Routines
17.2.8. Conditions and Handlers
17.2.9. Cursors
17.2.10. Flow Control Constructs

17.3. Stored Procedures, Functions, Triggers, and Replication: Frequently

Asked Questions

17.4. Binary Logging of Stored Routines and Triggers

18. Triggers
18.1. CREATE TRIGGER Syntax

18.2. DROP_TRIGGER Syntax
18.3. Using Triggers

19. Views
19.1. ALTER VIEW Syntax
19.2. CREATE VIEW Syntax
19.3. DROP VIEW Syntax

20. The INFORMATION SCHEMA Database
20.1. The INFORMATION SCHEMA SCHEMATA Table
20.2. The INFORMATION SCHEMA TABLES Table
20.3. The INFORMATION SCHEMA COLUMNS Table
20.4. The INFORMATION SCHEMA STATISTICS Table
20.5. The INFORMATION SCHEMA USER PRIVILEGES Table
20.6. The INFORMATION SCHEMA SCHEMA PRIVILEGES Table
20.7. The INFORMATION SCHEMA TABLE PRIVILEGES Table
20.8. The INFORMATION SCHEMA COLUMN PRIVILEGES Table
20.9. The INFORMATION SCHEMA CHARACTER SETS Table
20.10. The INFORMATION SCHEMA COLLATIONS Table
20.11. The INFORMATION SCHEMA
COLLATION CHARACTER SET APPLICABILITY Table
20.12. The INFORMATION SCHEMA TABLE CONSTRAINTS Table
20.13. The INFORMATION SCHEMA KEY COLUMN USAGE Table
20.14. The INFORMATION SCHEMA ROUTINES Table
20.15. The INFORMATION SCHEMA VIEWS Table
20.16. The INFORMATION SCHEMA TRIGGERS Table
20.17. Other INFORMATION SCHEMA Tables
20.18. Extensions to SHOW Statements

21. Precision Math
21.1. Types of Numeric Values
21.2. DECIMAL Data Type Changes

21.3. Expression Handling
21.4. Rounding Behavior

21.5. Precision Math Examples

22. APIs and Libraries

22.1. libmysgld, the Embedded MySQL Server Library

22.2. MySQL C API
22.2.1. C API Data types
22.2.2. C API Function Overview
22.2.3. C API Function Descriptions
22.2.4. C API Prepared Statements
22.2.5. C API Prepared Statement Data types
22.2.6. C API Prepared Statement Function Overview
22.2.7. C API Prepared Statement Function Descriptions
22.2.8. C API Prepared statement problems
22.2.9. C API Handling of Multiple Statement Execution
22.2.10. C API Handling of Date and Time Values
22.2.11. C API Threaded Function Descriptions

22.2.12. C API Embedded Server Function Descriptions

22.2.13. Common Questions and Problems When Using the C API
22.2.14. Building Client Programs

22.2.15. How to Make a Threaded Client
22.3. MySQL PHP API
22.3.1. Common Problems with MySQL and PHP
22.3.2. Enabling Both mysgl and mysqli in PHP
22.4. MySQL Perl API
22.5. MySQL C++ API
22.5.1. Borland C++
22.6. MySQL Python API
22.7. MySQL Tcl API
22.8. MySQL Eiffel Wrapper
22.9. MySQL Program Development Utilities
22.9.1. msgl2mysqgl — Convert mSQL Programs for Use with
MySQL
22.9.2. mysql_config — Get Compile Options for Compiling Clients

23. Connectors

23.1. MySQL Connector/ODBC
23.1.1. Introduction to MyODBC
23.1.2. How to Install MyODBC
23.1.3. MyODBC Configuration
23.1.4. MyODBC Examples
23.1.5. MyODBC Reference
23.1.6. MyODBC Notes and Tips
23.1.7. MyODBC Support

23.2. Connector/NET
23.2.1. Connector/NET Versions
23.2.2. How to install Connector/NET
23.2.3. Connector/NET Examples
23.2.4. Connector/NET Reference
23.2.5. Connector/NET Notes and Tips
23.2.6. Connector/NET Support

23.3. MySQL Connector/J
23.3.1. Connector/J Versions
23.3.2. Installing Connector/J
23.3.3. Connector/J Examples
23.3.4. Connector/J (JDBC) Reference
23.3.5. Connector/J Notes and Tips
23.3.6. Connector/J Support

23.4. MySQL Connector/MXJ
23.4.1. Introduction to Connector/MXJ
23.4.2. Installing Connector/MXJ
23.4.3. Connector/MXJ Configuration
23.4.4. Connector/MXJ Reference
23.4.5. Connector/MXJ Notes and Tips
23.4.6. Connector/MXJ Support

23.5. Connector/PHP

24. Extending MySQL
24.1. MySQL Internals
24.1.1. MySQL Threads
24.1.2. MySQL Test Suite
24.2. Adding New Functions to MySQL
24.2.1. Features of the User-Defined Function Interface
24.2.2. CREATE _FUNCTION Syntax
24.2.3. DROP_FUNCTION Syntax
24.2.4. Adding a New User-Defined Function
24.2.5. Adding a New Native Function
24.3. Adding New Procedures to MySQL
24.3.1. Procedure Analyse
24.3.2. Writing a Procedure
A. Problems and Common Errors

A.1. How to Determine What Is Causing a Problem

A.2. Common Errors When Using MySQL Programs
A.2.1. Access denied

A.2.2.Can't connect to [local] MySQL server
A.2.3.Client does not support authentication protocol
A.2.4. Password Fails When Entered Interactively
A.2.5. Host 'host name'is blocked
A.2.6. Too many connections
A.2.7. out of memory
A.2.8. MySQL server has gone away
A.2.9. packet too large
A.2.10. Communication Errors and Aborted Connections
A.2.11. The table is full
A.2.12.can't create/write to file
A.2.13. commands out of sync
A.2.14. Ignoring user
A.2.15. Table 'tbl name' doesn't exist
A.2.16.can't initialize character set
A.2.17. File Not Found
A.3. Installation-Related Issues
A.3.1. Problems Linking to the MySQL Client Library
A.3.2. Problems with File Permissions
A.4. Administration-Related Issues
A.4.1. How to Reset the Root Password

A.4.2. What to Do If MySQL Keeps Crashing
A.4.3. How MySQL Handles a Full Disk

A.4.4. Where MySQL Stores Temporary Files
A.4.5. How to Protect or Change the MySQL Unix Socket File
A.4.6. Time Zone Problems
A.5. Query-Related Issues
A.5.1. Case Sensitivity in Searches
A.5.2. Problems Using DATE Columns
A.5.3. Problems with NULL Values
A.5.4. Problems with Column Aliases
A.5.5. Rollback Failure for Non-Transactional Tables
A.5.6. Deleting Rows from Related Tables

A.5.7. Solving Problems with No Matching Rows
A.5.8. Problems with Floating-Point Comparisons

A.6. Optimizer-Related Issues
A.7. Table Definition-Related Issues
A.7.1. Problems with ALTER TABLE
A.7.2. How to Change the Order of Columns in a Table
A.7.3. TEMPORARY TABLE Problems
A.8. Known Issues in MySQL
A.8.1. Open Issues in MySQL
B. Error Codes and Messages
B.1. Server Error Codes and Messages
B.2. Client Error Codes and Messages
C. Credits
C.1. Developers at MySQL AB
C.2. Contributors to MySQL
C.3. Documenters and translators
C.4. Libraries used by and included with MySQL
C.5. Packages that support MySQL
C.6. Tools that were used to create MySQL
C.7. Supporters of MySQL
D. MySQL Change History
D.1. Changes in release 5.0.x (Production)
D.1.1. Changes in release 5.0.25 (Not yet released)
D.1.2. Changes in release 5.0.24 (Not yet released)
D.1.3. Changes in release 5.0.23 (Not released)
D.1.4. Changes in release 5.0.22 (24 May 2006)
D.1.5. Changes in release 5.0.21 (02 May 2006)

D.1.6. Changes in release 5.0.20a (18 April 2006)

D.1.7. Changes in release 5.0.20 (31 March 2006)

D.1.8. Changes in release 5.0.19 (04 March 2006)

D.1.9. Changes in release 5.0.18 (21 December 2005)

D.1.10. Changes in release 5.0.17 (14 December 2005)

D.1.11. Changes in release 5.0.16 (10 November 2005)

D.1.12. Changes in release 5.0.15 (19 October 2005: Production)

D.1.13. Changes in release 5.0.14 (Not released)

D.1.14. Changes in release 5.0.13 (22 September 2005: Release

Candidate)

D.1.15. Changes in release 5.0.12 (02 September 2005)

D.1.16. Changes in release 5.0.11 (06 August 2005)

D.1.17. Changes in release 5.0.10 (27 July 2005)

D.1.18. Changes in release 5.0.9 (15 July 2005)

D.1.19. Changes in release 5.0.8 (Not released)

D.1.20. Changes in release 5.0.7 (10 June 2005)

D.1.21. Changes in release 5.0.6 (26 May 2005)

D.1.22. Changes in release 5.0.5 (Not released)

D.1.23. Changes in release 5.0.4 (16 April 2005)

D.1.24. Changes in release 5.0.3 (23 March 2005: Beta)

D.1.25. Changes in release 5.0.2 (01 December 2004)

D.1.26. Changes in release 5.0.1 (27 July 2004)

D.1.27. Changes in release 5.0.0 (22 December 2003: Alpha)
D.2. Changes in MySQL Cluster

D.2.1. Changes in MySQL Cluster-5.0.7 (10 June 2005)

D.2.2. Changes in MySQL Cluster-5.0.6 (26 May 2005)

D.2.3. Changes in MySQL Cluster-5.0.5 (Not released)

D.2.4. Changes in MySQL Cluster-5.0.4 (16 April 2005)

D.2.5. Changes in MySQL Cluster-5.0.3 (23 March 2005: Beta)

D.2.6. Changes in MySQL Cluster-5.0.1 (27 July 2004)

D.2.7. Changes in MySQL Cluster-4.1.13 (15 July 2005)

D.2.8. Changes in MySQL Cluster-4.1.12 (13 May 2005)

D.2.9. Changes in MySQL Cluster-4.1.11 (01 April 2005)

D.2.10. Changes in MySQL Cluster-4.1.10 (12 February 2005)

D.2.11. Changes in MySQL Cluster-4.1.9 (13 January 2005)

D.2.12. Changes in MySQL Cluster-4.1.8 (14 December 2004)

D.2.13. Changes in MySQL Cluster-4.1.7 (23 October 2004)

D.2.14. Changes in MySQL Cluster-4.1.6 (10 October 2004)

D.2.15. Changes in MySQL Cluster-4.1.5 (16 September 2004)

D.2.16. Changes in MySQL Cluster-4.1.4 (31 August 2004)
D.2.17. Changes in MySQL Cluster-4.1.3 (28 June 2004)
D.3. MySQL Connector/ODBC (MyODBC) Change History
D.3.1. Changes in MyODBC 3.51.13
D.3.2. Changes in MyODBC 3.51.12
D.3.3. Changes in MyODBC 3.51.11
D.4. MySQL Connector/NET Change History
D.4.1. Version 1.0.8
D.4.2. Version 1.0.7
D.4.3. Version 1.0.6
D.4.4. Version 1.0.5
D.4.5. Version 1.0.4 1-20-05
D.4.6. Version 1.0.3-gamma 12-10-04
D.4.7. Version 1.0.2-gamma 04-11-15
D.4.8. Version 1.0.1-beta2 04-10-27
D.4.9. Version 1.0.0 04-09-01
D.4.10. Version 0.9.0 04-08-30
D.4.11. Version 0.76
D.4.12. Version 0.75
D.4.13. Version 0.74
D.4.14. Version 0.71
D.4.15. Version 0.70
D.4.16. Version 0.68
D.4.17. Version 0.65
D.4.18. Version 0.60
D.4.19. Version 0.50
D.5. MySQL Connector/J Change History
D.5.1. Changes in MySQL Connector/J 5.0.2-beta (11 July 2006)
D.5.2. Changes in MySQL Connector/J 5.0.1-beta (Not Released)
D.5.3. Changes in MySQL Connector/J 5.0.0-beta (22 December
2005)
D.5.4. Changes in MySQIL Connector/J 3.1.14 (not yet released)
D.5.5. Changes in MySQL Connector/J 3.1.13 (26 May 2006)
D.5.6. Changes in MySQL Connector/J 3.1.12 (30 November 2005)
D.5.7. Changes in MySQL Connector/J 3.1.11-stable (07 October
2005)
D.5.8. Changes in MySQL Connector/J 3.1.10-stable (23 June 2005)
D.5.9. Changes in MySQL Connector/J 3.1.9-stable (22 June 2005)
D.5.10. Changes in MySQL Connector/J 3.1.8-stable (14 April 2005)

D.5.11. Changes in MySQL Connector/J 3.1.7-stable (18 February

2005)
D.5.12. Changes in MySQL Connector/J 3.1.6-stable (23 December

2004)
D.5.13. Changes in MySQL Connector/J 3.1.5-gamma (02 December

2004)
D.5.14. Changes in MySQL Connector/J 3.1.4-beta (04 September

2004)

D.5.15. Changes in MySQL Connector/J 3.1.3-beta (07 July 2004)
D.5.16. Changes in MySQL Connector/J 3.1.2-alpha (09 June 2004)
D.5.17. Changes in MySQL Connector/J 3.1.1-alpha (14 February

2004)
D.5.18. Changes in MySQL Connector/J 3.1.0-alpha (18 February

2003)

D.5.19. Changes in MySQL Connector/J 3.0.17-ga (23 June 2005)
D.5.20. Changes in MySQL Connector/J 3.0.16-ga (15 November
2004)

D.5.21. Changes in MySQL Connector/J 3.0.15-production (04
September 2004)

D.5.22. Changes in MySQL Connector/J 3.0.14-production (28 May

2004)
D.5.23. Changes in MySQL Connector/J 3.0.13-production (27 May

2004)
D.5.24. Changes in MySQL Connector/J 3.0.12-production (18 May

2004)
D.5.25. Changes in MySQL Connector/J 3.0.11-stable (19 February

2004)
D.5.26. Changes in MySQL Connector/J 3.0.10-stable (13 January

2004)
D.5.27. Changes in MySQL Connector/J 3.0.9-stable (07 October

2003)

D.5.28. Changes in MySQL Connector/J 3.0.8-stable (23 May 2003)
D.5.29. Changes in MySQL Connector/J 3.0.7-stable (08 April 2003)
D.5.30. Changes in MySQL Connector/J 3.0.6-stable (18 February

2003)
D.5.31. Changes in MySQL Connector/J 3.0.5-gamma (22 January
2003)
D.5.32. Changes in MySQL Connector/J 3.0.4-gamma (06 January
2003)

D.5.33. Changes in MySQL Connector/J 3.0.3-dev (17 December

2002)
D.5.34. Changes in MySQL Connector/J 3.0.2-dev (08 November

2002)
D.5.35. Changes in MySQL Connector/J 3.0.1-dev (21 September

2002)
D.5.36. Changes in MySQL Connector/J 3.0.0-dev (31 July 2002)
D.5.37. Changes in MySQL Connector/J 2.0.14 (16 May 2002)
D.5.38. Changes in MySQL Connector/J 2.0.13 (24 April 2002)
D.5.39. Changes in MySQL Connector/J 2.0.12 (07 April 2002)
D.5.40. Changes in MySQL Connector/J 2.0.11 (27 January 2002)
D.5.41. Changes in MySQL Connector/J 2.0.10 (24 January 2002)
D.5.42. Changes in MySQL Connector/J 2.0.9 (13 January 2002)
D.5.43. Changes in MySQL Connector/J 2.0.8 (25 November 2001)
D.5.44. Changes in MySQL Connector/J 2.0.7 (24 October 2001)
D.5.45. Changes in MySQL Connector/J 2.0.6 (16 June 2001)
D.5.46. Changes in MySQL Connector/J 2.0.5 (13 June 2001)
D.5.47. Changes in MySQL Connector/J 2.0.3 (03 December 2000)
D.5.48. Changes in MySQL Connector/J 2.0.1 (06 April 2000)
D.5.49. Changes in MySQL Connector/J 2.0.0pre5 (21 February 2000)
D.5.50. Changes in MySQL Connector/J 2.0.0pre4 (10 January 2000)
D.5.51. Changes in MySQL Connector/J 2.0.0pre (17 August 1999)
D.5.52. Changes in MySQL Connector/J 1.2b (04 July 1999)
D.5.53. Changes in MySQL Connector/J 1.2a (14 April 1999)
D.5.54. Changes in MySQL Connector/J 1.1i (24 March 1999)
D.5.55. Changes in MySQL Connector/J 1.1h (08 March 1999)
D.5.56. Changes in MySQL Connector/J 1.1g (19 February 1999)
D.5.57. Changes in MySQL Connector/J 1.1f (31 December 1998)
D.5.58. Changes in MySQL Connector/J 1.1b (03 November 1998)
D.5.59. Changes in MySQL Connector/J 1.1 (02 September 1998)
D.5.60. Changes in MySQL Connector/J 1.0 (24 August 1998)
D.5.61. Changes in MySQL Connector/J 0.9d (04 August 1998)
D.5.62. Changes in MySQL Connector/J 0.9 (28 July 1998)
D.5.63. Changes in MySQL Connector/J 0.8 (06 July 1998)
D.5.64. Changes in MySQL Connector/J 0.7 (01 July 1998)
D.5.65. Changes in MySQL Connector/J 0.6 (21 May 1998)

E. Porting to Other Systems

E.1. Debugging a MySQL Server

E.1.1. Compiling MySQL for Debugging

E.1.2. Creating Trace Files
E.1.3. Debugging mysqgld under gdb
E.1.4. Using a Stack Trace
E.1.5. Using Server Logs to Find Causes of Errors in mysgld
E.1.6. Making a Test Case If You Experience Table Corruption
E.2. Debugging a MySQL Client
E.3. The DBUG Package
E.4. Comments about RTS Threads
E.5. Differences Between Thread Packages
F. Environment Variables

G. Regular Expressions
H. Limits in MySQL

H.1. Limits of Joins
I. Feature Restrictions
L.1. Restrictions on Stored Routines and Triggers
I.2. Restrictions on Server-Side Cursors
L.3. Restrictions on Subqueries
1.4. Restrictions on Views
L.5. Restrictions on XA Transactions
J. GNU General Public License
K. MySQL FLOSS License Exception

List of Tables

15.1. Steps for Cluster rolling restarts — by type

List of Examples

23.1. Obtaining a connection from the DriverManager
23.2. Using java.sql.Statement to execute a SELECT query
23.3. Stored Procedures

23.4. Using Connection.prepareCall()

23.5. Registering output parameters

23.6. Setting CallableStatement input parameters

23.7. Retrieving results and output parameter values

23.8. Retrieving AUTO INCREMENT column values using

Statement.getGeneratedKeys()

23.9. Retrieving AUTO INCREMENT column values using SELECT
LAST INSERT ID()

23.10. Retrieving AUTO INCREMENT column values in Updatable ResultSets

23.11. Using a connection pool with a J2EE application server
23.12. Example of transaction with retry logic

Preface

This is the Reference Manual for the MySQL Database System, version 5.0, up
to release 5.0.25. It is not intended for use with older versions of the MySQL
software due to the many functional and other differences between MySQL 5.0
and previous versions. If you are using an earlier release of the MySQL
software, please refer to the MySQL 3.23, 4.0, 4.1 Reference Manual, which
provides coverage of the 3.22, 3.23, 4.0, and 4.1 series of MySQL software
releases. Differences between minor versions of MySQL 5.0 are noted in the
present text with reference to release numbers (5.0.x).

Chapter 1. General Information

Table of Contents

1.1. About This Manual

1.2. Conventions Used in This Manual

1.3. Overview of MySQL AB

1.4. Overview of the MySQL Database Management System
1.4.1. History of MySQL
1.4.2. The Main Features of MySQL
1.4.3. MySQL Stability
1.4.4. How Large MySQL Tables Can Be
1.4.5. Year 2000 Compliance

1.5. Overview of the MaxDB Database Management System
1.5.1. What is MaxDB?
1.5.2. History of MaxDB
1.5.3. Features of MaxDB
1.5.4. Licensing and Support
1.5.5. Feature Differences Between MaxDB and MySQL
1.5.6. Interoperability Features Between MaxDB and MySQL
1.5.7. MaxDB-Related Links

1.6. MySQL Development Roadmap
1.6.1. What's New in MySQL 5.0

1.7. MySQL Information Sources

1.7.1. MySQL Mailing Lists
1.7.2. MySQL Community Support at the MySQL Forums
1.7.3. MySQL Community Support on Internet Relay Chat (IRC)

1.8. How to Report Bugs or Problems

1.9. MySQL Standards Compliance
1.9.1. What Standards MySQL Follows
1.9.2. Selecting SQL Modes
1.9.3. Running MySQL in ANSI Mode
1.9.4. MySQL Extensions to Standard SQL
1.9.5. MySQL Differences from Standard SQL
1.9.6. How MySQL Deals with Constraints

The MySQL® software delivers a very fast, multi-threaded, multi-user, and

robust SQL (Structured Query Language) database server. MySQL Server is
intended for mission-critical, heavy-load production systems as well as for
embedding into mass-deployed software. MySQL is a registered trademark of
MySQL AB.

The MySQL software is Dual Licensed. Users can choose to use the MySQL
software as an Open Source product under the terms of the GNU General Public
License (http://www.fsf.org/licenses/) or can purchase a standard commercial
license from MySQL AB. See http://www.mysqgl.com/company/legal/licensing/
for more information on our licensing policies.

The following list describes some sections of particular interest in this manual:

e For a discussion about the capabilities of the MySQL Database Server, see
Section 1.4.2, “The Main Features of MySQL”.

e For installation instructions, see Chapter 2, Installing and Upgrading
MySQL. For information about upgrading MySQL, see Section 2.11,

“Upgrading MySQL.”.

e For information about configuring and administering MySQL Server, see
Chapter 5, Database Administration.

e For information about setting up replication servers, see Chapter 6,
Replication.

e For tips on porting the MySQL Database Software to new architectures or
operating systems, see Appendix E, Porting to Other Systems.

¢ For a tutorial introduction to the MySQL Database Server, see Chapter 3,
Tutorial.

e For benchmarking information, see the sq1-bench benchmarking directory
in your MySQL distribution.

e For a history of new features and bugfixes, see Appendix D, MySQL
Change History.

e For a list of currently known bugs and misfeatures, see Section A.8
“Known Issues in MySQL”.

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/

e For future plans, see Section 1.6, “MySQL Development Roadmap”.

e For a list of all the contributors to this project, see Appendix C, Credits.

Important:

To report errors (often called “bugs”), please use the instructions at Section 1.8,
“How to Report Bugs or Problems”.

If you have found a sensitive security bug in MySQL Server, please let us know
immediately by sending an email message to <security@mysql.com>.

mailto:security@mysql.com

1.1. About This Manual

This is the Reference Manual for the MySQL Database System, version 5.0,
through release 5.0.25. It is not intended for use with older versions of the
MySQL software due to the many functional and other differences between
MySQL 5.0 and previous versions. If you are using a version 4.1 release of the
MySQL software, please refer to the MySQL 3.23, 4.0, 4.1 Reference Manual,
which covers the 3.23, 4.0, and 4.1 series of MySQL software releases.
Differences between minor versions of MySQL 5.0 are noted in the present text
with reference to release numbers (5.0.x).

Because this manual serves as a reference, it does not provide general instruction
on SQL or relational database concepts. It also does not teach you how to use
your operating system or command-line interpreter.

The MySQL Database Software is under constant development, and the
Reference Manual is updated frequently as well. The most recent version of the
manual is available online in searchable form at http://dev.mysqgl.com/doc/.
Other formats also are available there, including HTML, PDF, and Windows
CHM versions.

The Reference Manual source files are written in DocBook XML format. The
HTML version and other formats are produced automatically, primarily using the
DocBook XSL stylesheets. For information about DocBook, see
http://docbook.org/

The DocBook XML sources of this manual are available from
http://dev.mysql.com/tech-resources/sources.html. You can check out a copy of
the documentation repository with this command:

svn checkout http://svn.mysql.com/svnpublic/mysqgldoc/

If you have any suggestions concerning additions or corrections to this manual,
please send them to the documentation team at <docs@mysql.com>.

This manual was originally written by David Axmark and Michael “Monty”
Widenius. It is maintained by the MySQL Documentation Team, consisting of
Paul DuBois, Stefan Hinz, Mike Hillyer, and Jon Stephens. For the many other

http://dev.mysql.com/doc/
http://docbook.org/
http://dev.mysql.com/tech-resources/sources.html
mailto:docs@mysql.com

contributors, see Appendix C, Credits.

The copyright to this manual is owned by the Swedish company MySQL AB.
MySQL® and the MySQL logo are registered trademarks of MySQL AB. Other
trademarks and registered trademarks referred to in this manual are the property
of their respective owners, and are used for identification purposes only.

1.2. Conventions Used in This Manual

This manual uses certain typographical conventions:

e Text in this style is used for SQL statements; database, table, and
column names; program listings and source code; and environment
variables. Example: “To reload the grant tables, use the FLUSH PRIVILEGES
statement.”

e Text in this style indicates input that you type in examples.

o Text in this style indicates the names of executable programs and scripts,
examples being mysql (the MySQL command line client program) and
mysqld (the MySQL server executable).

e Text in this style is used for variable input for which you should
substitute a value of your own choosing.

¢ Filenames and directory names are written like this: “The global my.cnf file
is located in the /etc directory.”

e Character sequences are written like this: “To specify a wildcard, use the ‘%’
character.”

e Text in this style is used for emphasis.

o Text in this style is used in table headings and to convey especially strong
emphasis.

When commands are shown that are meant to be executed from within a
particular program, the prompt shown preceding the command indicates which
command to use. For example, shell> indicates a command that you execute
from your login shell, and mysql> indicates a statement that you execute from
the mysql client program:

shell> type a shell command here
mysql> type a mysql statement here

The “shell” is your command interpreter. On Unix, this is typically a program

such as sh, csh, or bash. On Windows, the equivalent program is
command.com or cmd.exe, typically run in a console window.

When you enter a command or statement shown in an example, do not type the
prompt shown in the example.

Database, table, and column names must often be substituted into statements. To
indicate that such substitution is necessary, this manual uses db_name, tb1_name,
and col _name. For example, you might see a statement like this:

mysql> SELECT col_name FROM db_name.tbl name;

This means that if you were to enter a similar statement, you would supply your
own database, table, and column names, perhaps like this:

mysql> SELECT author_name FROM biblio_db.author_list;

SQL keywords are not case sensitive and may be written in any lettercase. This
manual uses uppercase.

In syntax descriptions, square brackets (‘[’ and ‘]’) indicate optional words or
clauses. For example, in the following statement, IF EXISTS is optional:

DROP TABLE [IF EXISTS] tbl_name

When a syntax element consists of a number of alternatives, the alternatives are
separated by vertical bars (“|”). When one member from a set of choices may be
chosen, the alternatives are listed within square brackets (‘[’ and ‘]1°):

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

When one member from a set of choices must be chosen, the alternatives are
listed within braces (‘{’ and ‘}’):

{DESCRIBE | DESC} tbl name [col _name | wild]

An ellipsis (. . .) indicates the omission of a section of a statement, typically to
provide a shorter version of more complex syntax. For example, INSERT ...
SELECT is shorthand for the form of INSERT statement that is followed by a
SELECT statement.

An ellipsis can also indicate that the preceding syntax element of a statement

may be repeated. In the following example, multiple reset_option values may
be given, with each of those after the first preceded by commas:

RESET reset_option [,reset_option]

Commands for setting shell variables are shown using Bourne shell syntax. For
example, the sequence to set the CC environment variable and run the configure
command looks like this in Bourne shell syntax:

shell> CC=gcc ./configure

If you are using csh or tcsh, you must issue commands somewhat differently:

shell> setenv CC gcc
shell> ./configure

1.3. Overview of MySQL AB

MySQL AB is the company of the MySQL founders and main developers.
MySQL AB was originally established in Sweden by David Axmark, Allan
Larsson, and Michael “Monty” Widenius.

We are dedicated to developing the MySQL database software and promoting it
to new users. MySQL AB owns the copyright to the MySQL source code, the
MySQL logo and (registered) trademark, and this manual. See Section 1.4

“Overview of the MySQL Database Management System”.

The MySQL core values show our dedication to MySQL and Open Source.

These core values direct how MySQL AB works with the MySQL server
software:

e To be the best and the most widely used database in the world

To be available and affordable by all

To be easy to use

To be continuously improved while remaining fast and safe

To be fun to use and improve
e To be free from bugs
These are the core values of the company MySQL AB and its employees:

e We subscribe to the Open Source philosophy and support the Open Source
community

e We aim to be good citizens
e We prefer partners that share our values and mindset

e We answer email and provide support

e We are a virtual company, networking with others
e We work against software patents

The MySQL Web site (http://www.mysql.com/) provides the latest information
about MySQL and MySQL AB.

By the way, the “AB” part of the company name is the acronym for the Swedish
“aktiebolag,” or “stock company.” It translates to “MySQL, Inc.” In fact,
MySQL, Inc. and MySQL GmbH are examples of MySQL AB subsidiaries.
They are located in the United States and Germany, respectively.

http://www.mysql.com/

1.4. Overview of the MySQL Database Management
System

MySQL, the most popular Open Source SQL database management system, is
developed, distributed, and supported by MySQL AB. MySQL AB is a
commercial company, founded by the MySQL developers. It is a second
generation Open Source company that unites Open Source values and
methodology with a successful business model.

The MySQL Web site (http://www.mysql.com/) provides the latest information
about MySQL software and MySQL AB.

e MySQL is a database management system.

A database is a structured collection of data. It may be anything from a
simple shopping list to a picture gallery or the vast amounts of information
in a corporate network. To add, access, and process data stored in a
computer database, you need a database management system such as
MySQL Server. Since computers are very good at handling large amounts
of data, database management systems play a central role in computing, as
standalone utilities, or as parts of other applications.

e MySQL is a relational database management system.

A relational database stores data in separate tables rather than putting all the
data in one big storeroom. This adds speed and flexibility. The SQL part of
“MySQL” stands for “Structured Query Language.” SQL is the most
common standardized language used to access databases and is defined by
the ANSI/ISO SQL Standard. The SQL standard has been evolving since
1986 and several versions exist. In this manual, “SQL-92” refers to the
standard released in 1992, “SQL:1999” refers to the standard released in
1999, and “SQL:2003” refers to the current version of the standard. We use
the phrase “the SQL standard” to mean the current version of the SQL
Standard at any time.

e MySQL software is Open Source.

Open Source means that it is possible for anyone to use and modify the

http://www.mysql.com/

software. Anybody can download the MySQL software from the Internet
and use it without paying anything. If you wish, you may study the source
code and change it to suit your needs. The MySQL software uses the GPL
(GNU General Public License), http://www.fsf.org/licenses/, to define what
you may and may not do with the software in different situations. If you
feel uncomfortable with the GPL or need to embed MySQL code into a
commercial application, you can buy a commercially licensed version from
us. See the MySQL Licensing Overview for more information
(http://www.mysqgl.com/company/legal/licensing/).

The MySQL Database Server is very fast, reliable, and easy to use.

If that is what you are looking for, you should give it a try. MySQL Server
also has a practical set of features developed in close cooperation with our
users. You can find a performance comparison of MySQL Server with other
database managers on our benchmark page. See Section 7.1.4, “The

MySQL Benchmark Suite”.

MySQL Server was originally developed to handle large databases much
faster than existing solutions and has been successfully used in highly
demanding production environments for several years. Although under
constant development, MySQL Server today offers a rich and useful set of
functions. Its connectivity, speed, and security make MySQL Server highly
suited for accessing databases on the Internet.

MySQL Server works in client/server or embedded systems.

The MySQL Database Software is a client/server system that consists of a
multi-threaded SQL server that supports different backends, several
different client programs and libraries, administrative tools, and a wide
range of application programming interfaces (APIs).

We also provide MySQL Server as an embedded multi-threaded library that
you can link into your application to get a smaller, faster, easier-to-manage
standalone product.

A large amount of contributed MySQL software is available.

It is very likely that your favorite application or language supports the
MySQL Database Server.

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/

The official way to pronounce “MySQL” is “My Ess Que EII” (not “my
sequel”), but we don't mind if you pronounce it as “my sequel” or in some other
localized way.

1.4.1. History of MySQL

We started out with the intention of using the msQL database system to connect to
our tables using our own fast low-level (ISAM) routines. However, after some
testing, we came to the conclusion that msQL was not fast enough or flexible
enough for our needs. This resulted in a new SQL interface to our database but
with almost the same API interface as msQL. This API was designed to allow
third-party code that was written for use with msqL to be ported easily for use
with MySQL.

The derivation of the name MySQL is not clear. Our base directory and a large
number of our libraries and tools have had the prefix “my” for well over 10
years. However, co-founder Monty Widenius's daughter is also named My.
Which of the two gave its name to MySQL is still a mystery, even for us.

The name of the MySQL Dolphin (our logo) is “Sakila,” which was chosen by
the founders of MySQL AB from a huge list of names suggested by users in our
“Name the Dolphin” contest. The winning name was submitted by Ambrose
Twebaze, an Open Source software developer from Swaziland, Africa.
According to Ambrose, the feminine name Sakila has its roots in SiSwati, the
local language of Swaziland. Sakila is also the name of a town in Arusha,
Tanzania, near Ambrose's country of origin, Uganda.

1.4.2. The Main Features of MySQL

The following list describes some of the important characteristics of the MySQL
Database Software. See also Section 1.6, “MySQL Development Roadmap”, for
more information about current and upcoming features.

Internals and Portability:
e Written in C and C++.

e Tested with a broad range of different compilers.

e Works on many different platforms. See Section 2.1.1, “Operating Systems
Supported by MySQL”.

e Uses GNU Automake, Autoconf, and Libtool for portability.

e APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are
available. See Chapter 22, APIs and Libraries.

e Fully multi-threaded using kernel threads. It can easily use multiple CPUs if
they are available.

e Provides transactional and non-transactional storage engines.
e Uses very fast B-tree disk tables (MyISAM) with index compression.

e Relatively easy to add other storage engines. This is useful if you want to
add an SQL interface to an in-house database.

e A very fast thread-based memory allocation system.
e Very fast joins using an optimized one-sweep multi-join.
¢ In-memory hash tables, which are used as temporary tables.

e SQL functions are implemented using a highly optimized class library and
should be as fast as possible. Usually there is no memory allocation at all
after query initialization.

e The MySQL code is tested with Purify (a commercial memory leakage
detector) as well as with Valgrind, a GPL tool
(http://developer.kde.org/~sewardj/).

e The server is available as a separate program for use in a client/server
networked environment. It is also available as a library that can be
embedded (linked) into standalone applications. Such applications can be
used in isolation or in environments where no network is available.

Data Types:

e Many data types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long,

http://developer.kde.org/~sewardj/

FLOAT, DOUBLE, CHAR, VARCHAR, TEXT, BLOB, DATE, TIME, DATETIME,
TIMESTAMP, YEAR, SET, ENUM, and OpenGlIS spatial types. See Chapter 11,

Data Types.

e Fixed-length and variable-length records.
Statements and Functions:

e Full operator and function support in the SELECT and WHERE clauses of
queries. For example:

mysql> SELECT CONCAT(first_name, ' ', last_name)
-> FROM citizen
-> WHERE income/dependents > 10000 AND age > 30;

e Full support for SQL GRoUP BY and ORDER BY clauses. Support for group
functions (COUNT (), COUNT(DISTINCT ...), AVG(), STD(), SUM(), MAX(),
MIN(), and GROUP_CONCAT()).

e Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard
SQL and ODBC syntax.

e Support for aliases on tables and columns as required by standard SQL.

e DELETE, INSERT, REPLACE, and UPDATE return the number of rows that were
changed (affected). It is possible to return the number of rows matched
instead by setting a flag when connecting to the server.

e The MySQL-specific SHow statement can be used to retrieve information
about databases, storage engines, tables, and indexes.

The EXPLAIN statement can be used to determine how the optimizer resolves
a query.

¢ Function names do not clash with table or column names. For example, ABS
is a valid column name. The only restriction is that for a function call, no
spaces are allowed between the function name and the ‘(’ that follows it.
See Section 9.5, “Treatment of Reserved Words in MySQL”.

¢ You can mix tables from different databases in the same query (as of
MySQL 3.22).

Security:

e A privilege and password system that is very flexible and secure, and that
allows host-based verification. Passwords are secure because all password
traffic is encrypted when you connect to a server.

Scalability and Limits:

e Handles large databases. We use MySQL Server with databases that contain
50 million records. We also know of users who use MySQL Server with
60,000 tables and about 5,000,000,000 rows.

e Up to 64 indexes per table are allowed (32 before MySQL 4.1.2). Each
index may consist of 1 to 16 columns or parts of columns. The maximum
index width is 1000 bytes (767 for InnoDB); before MySQL 4.1.2, the limit
is 500 bytes. An index may use a prefix of a column for CHAR, VARCHAR,
BLOB, or TEXT column types.

Connectivity:

e Clients can connect to the MySQL server using TCP/IP sockets on any
platform. On Windows systems in the NT family (NT, 2000, XP, 2003, or
Vista), clients can connect using named pipes. On Unix systems, clients can
connect using Unix domain socket files.

e In MySQL 4.1 and higher, Windows servers also support shared-memory
connections if started with the - -shared-memory option. Clients can
connect through shared memory by using the --protocol=memory option.

e The Connector/ODBC (MyODBC) interface provides MySQL support for
client programs that use ODBC (Open Database Connectivity) connections.
For example, you can use MS Access to connect to your MySQL server.
Clients can be run on Windows or Unix. MyODBC source is available. All
ODBC 2.5 functions are supported, as are many others. See Chapter 23,
Connectors.

e The Connector/J interface provides MySQL support for Java client
programs that use JDBC connections. Clients can be run on Windows or
Unix. Connector/J source is available. See Chapter 23, Connectors.

e MySQL Connector/NET enables developers to easily create .NET
applications that require secure, high-performance data connectivity with
MySQL. It implements the required ADO.NET interfaces and integrates
into ADO.NET aware tools. Developers can build applications using their
choice of .NET languages. MySQL Connector/NET is a fully managed
ADO.NET driver written in 100% pure C#. See Chapter 23, Connectors.

Localization:

e The server can provide error messages to clients in many languages. See
Section 5.11.2, “Setting the Error Message Language”.

o Full support for several different character sets, including latini (cp1252),
german, big5, ujis, and more. For example, the Scandinavian characters

a’, ‘4’ and ‘6’ are allowed in table and column names. Unicode support is
available as of MySQL 4.1.

e All data is saved in the chosen character set. All comparisons for normal
string columns are case-insensitive.

e Sorting is done according to the chosen character set (using Swedish
collation by default). It is possible to change this when the MySQL server is
started. To see an example of very advanced sorting, look at the Czech
sorting code. MySQL Server supports many different character sets that can
be specified at compile time and runtime.

Clients and Tools:

e MySQL Server has built-in support for SQL statements to check, optimize,
and repair tables. These statements are available from the command line
through the mysglcheck client. MySQL also includes myisamchk, a very
fast command-line utility for performing these operations on MyISAM tables.
See Chapter 5, Database Administration.

e All MySQL programs can be invoked with the --help or -? options to
obtain online assistance.

1.4.3. MySQL Stability

This section addresses the questions, “How stable is MySQL Server?” and, “Can

I depend on MySQL Server in this project?” We will try to clarify these issues
and answer some important questions that concern many potential users. The
information in this section is based on data gathered from the mailing lists,
which are very active in identifying problems as well as reporting types of use.

The original code stems back to the early 1980s. It provides a stable code base,
and the 1sAM table format used by the original storage engine remains backward-
compatible. At TcX, the predecessor of MySQL AB, MySQL code has worked
in projects since mid-1996, without any problems. When the MySQL Database
Software initially was released to a wider public, our new users quickly found
some pieces of untested code. Each new release since then has had fewer
portability problems, even though each new release has also had many new
features.

Each release of the MySQL Server has been usable. Problems have occurred
only when users try code from the “gray zones.” Naturally, new users don't know
what the gray zones are; this section therefore attempts to document those areas
that are currently known. The descriptions mostly deal with Versions 3.23 and
later of MySQL Server. All known and reported bugs are fixed in the latest
version, with the exception of those listed in the bugs section, which are design-
related. See Section A.8, “Known Issues in MySQL”.

The MySQL Server design is multi-layered with independent modules. Some of
the newer modules are listed here with an indication of how well-tested each of
them is:

e Replication (Stable)

Large groups of servers using replication are in production use, with good
results. Work on enhanced replication features is continuing.

e InnoDB tables (Stable)

The InnoDB transactional storage engine has been stable since version
3.23.49. 1nnoDB is being used in large, heavy-load production systems.

e Full-text searches (Stable)

Full-text searching is widely used. Important feature enhancements were
added in MySQL 4.0 and 4.1.

e MyoDBC 3.51 (Stable)

MyoDBC 3.51 uses ODBC SDK 3.51 and is in wide production use. Some
issues brought up appear to be application-related and independent of the
ODBC driver or underlying database server.

1.4.4. How Large MySQL Tables Can Be

MySQL 3.22 had a 4GB (4 gigabyte) limit on table size. With the MyISAM storage
engine in MySQL 3.23, the maximum table size was increased to 65536
terabytes (2567 — 1 bytes). With this larger allowed table size, the maximum
effective table size for MySQL databases is usually determined by operating
system constraints on file sizes, not by MySQL internal limits.

The InnoDB storage engine maintains InnoDB tables within a tablespace that can
be created from several files. This allows a table to exceed the maximum
individual file size. The tablespace can include raw disk partitions, which allows
extremely large tables. The maximum tablespace size is 64TB.

The following table lists some examples of operating system file-size limits.
This is only a rough guide and is not intended to be definitive. For the most up-
to-date information, be sure to check the documentation specific to your
operating system.

Operating System ||File-size Limit |
Linux 2.2-Intel 32-bit [2GB (LFS: 4GB) |
Linux 2.4+ "(using ext3 filesystem) 4TB|
Solaris 9/10 [16TB |
NetWare w/NSS filesystem“BTB |
Win32 w/ FAT/FAT32 ||2GB/4GB |
Win32 w/ NTFS ||2TB (possibly larger) |
MacOS X w/ HFS+ |28 |

On Linux 2.2, you can get MyISAM tables larger than 2GB in size by using the
Large File Support (LFS) patch for the ext2 filesystem. On Linux 2.4, patches
also exist for ReiserFS to get support for big files (up to 2TB). Most current
Linux distributions are based on kernel 2.4 or higher and include all the required

LFS patches. With JFS and XFS, petabyte and larger files are possible on Linux.
However, the maximum available file size still depends on several factors, one of
them being the filesystem used to store MySQL tables.

For a detailed overview about LFS in Linux, have a look at Andreas Jaeger's
Large File Support in Linux page at http://www.suse.de/~aj/linux_Ifs.html.

Windows users please note: FAT and VFAT (FAT32) are not considered suitable
for production use with MySQL. Use NTFS instead.

By default, MySQL creates MyISAM tables with an internal structure that allows a
maximum size of about 4GB. You can check the maximum table size for a
MyISAM table with the SHOW TABLE STATUS statement or with myisamchk -dv
tbl_name. See Section 13.5.4, “SHow Syntax”.

If you need a MyISAM table that is larger than 4GB and your operating system
supports large files, the CREATE TABLE statement supports AVG_ROW_LENGTH and
MAX_ROWS options. See Section 13.1.5, “CREATE TABLE Syntax”. You can also
change these options with ALTER TABLE to increase a table's maximum allowable
size after the table has been created. See Section 13.1.2, “ALTER TABLE Syntax”.

Other ways to work around file-size limits for MyISAM tables are as follows:

e If your large table is read-only, you can use myisampack to compress it.
myisampack usually compresses a table by at least 50%, so you can have,
in effect, much bigger tables. myisampack also can merge multiple tables
into a single table. See Section 8.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”.

e MySQL includes a MERGE library that allows you to handle a collection of
MyISAM tables that have identical structure as a single MERGE table. See
Section 14.3, “The MERGE Storage Engine”.

1.4.5. Year 2000 Compliance

The MySQL Server itself has no problems with Year 2000 (Y2K) compliance:

e MySQL Server uses Unix time functions that handle dates into the year
2037 for TIMESTAMP values. For DATE and DATETIME values, dates through
the year 9999 are accepted.

http://www.suse.de/~aj/linux_lfs.html

e All MySQL date functions are implemented in one source file,
sql/time.cc, and are coded very carefully to be year 2000-safe.

e In MySQL, the YEAR data type can store the years 0 and 1901 to 2155 in one
byte and display them using two or four digits. All two-digit years are
considered to be in the range 1970 to 2069, which means that if you store 01
in a YEAR column, MySQL Server treats it as 2001.

The following simple demonstration illustrates that MySQL Server has no
problems with DATE or DATETIME values through the year 9999, and no problems
with TIMESTAMP values until after the year 2030:

mysql> DROP TABLE IF EXISTS y2k;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE y2k (date DATE,

-> date_time DATETIME,

-> time_stamp TIMESTAMP);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO y2k VALUES
-> ('1998-12-31', '1998-12-31
-> ('1999-01-01', '1999-01-01
-> ('1999-09-09"', '1999-09-09
-> ('2000-01-01', '2000-01-01
-> ('2000-02-28"', '2000-02-28
-> ('2000-02-29"', '2000-02-29
-> ('2000-03-01', '2000-03-01
-> ('2000-12-31"', '2000-12-31
(
(
(
(

'1998-12-31
'1999-01-01
'1999-09-09
'2000-01-01
'2000-02-28
'2000-02-29
'2000-03-01
'2000-12-31
'2001-01-01
'2004-12-31
'2005-01-01
'2030-01-01
00', '2040-01-01
59','9999-12-31
(0.00 sec)

23:
00:
23:
00:
00:
00:
00:
23:
00:
23:

59:
00:
59:
00:
00:
00:
00:
59:
00:
59:
00:00:
00:00:

59",
00",
59",
00",
00",
00",
00",
59",
00",
59",
00",
00",

23:
00:
23:
00:
00:
00:
00:
23:
00:
23:
00:
00:
00:
23:

59:
00:
59:
00:
00:
00:
00:
59:
00:
59:
00:
00:
00:
59:

59'),
00'),
59'),
00'),
00'),
00'),
00'),
59'),
00'),
59'),
00'),
00'),
00'),
59');

-> ('2001-01-01"', '2001-01-01
-> ('2004-12-31"', '2004-12-31
-> ('2005-01-01"', '2005-01-01
-> ('2030-01-01"', '2030-01-01
-> ('2040-01-01"', '2040-01-01 00:00:
-> ('9999-12-31"','9999-12-31 23:59:
Query OK, 14 rows affected, 2 warnings
Records: 14 Duplicates: 0 Warnings: 2

mysql> SELECT * FROM y2k;

1998-12-31
1999-01-01
1999-09-09
2000-01-01
2000-02-28

1998-12-31
1999-01-01
1999-09-09
2000-01-01
2000-02-28

1998-12-31
1999-01-01
1999-09-09
2000-01-01
2000-02-28

2030-01-01 00:00:00
0000-00-00 00:00:00
0000-00-00 00:00:00

2040-01-01 2040-01-01 00:00:00
9999-12-31 9999-12-31 23:59:59

2000-02-29 2000-02-29 00:00:00 | 2000-02-29 00:00:00 |
2000-03-01 2000-03-01 00:00:00 | 2000-03-01 00:00:00 |
2000-12-31 2000-12-31 23:59:59 | 2000-12-31 23:59:59 |
2001-01-01 2001-01-01 00:00:00 | 2001-01-01 00:00:00 |
2004-12-31 2004-12-31 23:59:59 | 2004-12-31 23:59:59 |
2005-01-01 2005-01-01 00:00:00 | 2005-01-01 00:00:00 |
I I
I I
I I

I I
I I
I I
I I
| |
| 2030-01-01 | 2030-01-01 00:00:00
I I
I I
+ +

14 rows in set (0.00 sec)

The final two TIMESTAMP column values are zero because the year values (2040,
9999) exceed the TIMESTAMP maximum. The TIMESTAMP data type, which is used
to store the current time, supports values that range from '1970-01-01
00:00:00' t0 '2030-01-01 00:00:00' on 32-bit machines (signed value). On
64-bit machines, TIMESTAMP handles values up to 2106 (unsigned value).

Although MySQL Server itself is Y2K-safe, you may run into problems if you
use it with applications that are not Y2K-safe. For example, many old
applications store or manipulate years using two-digit values (which are
ambiguous) rather than four-digit values. This problem may be compounded by
applications that use values such as 00 or 99 as “missing” value indicators.
Unfortunately, these problems may be difficult to fix because different
applications may be written by different programmers, each of whom may use a
different set of conventions and date-handling functions.

Thus, even though MySQL Server has no Y2K problems, it is the application's
responsibility to provide unambiguous input. See Section 11.3.4, “Y2K Issues
and Date Types”, for MySQL Server's rules for dealing with ambiguous date
input data that contains two-digit year values.

1.5. Overview of the MaxDB Database Management
System

MaxDB is a heavy-duty enterprise database. The database management system
is SAP-certified.

MaxDB is the new name of a database management system formerly called SAP
DB. In 2003 SAP AG and MySQL AB joined a partnership and re-branded the
database system to MaxDB. The development of MaxDB has continued since
then as it was done before—through the SAP developer team.

MySQL AB cooperates closely with the MaxDB team at SAP around delivering
improvements to the MaxDB product. Joint efforts include development of new
native drivers to enable more efficient usage of MaxDB in the Open Source
community, and improvement of documentation to expand the MaxDB user
base. Interoperability features between MySQL and MaxDB database also are
seen as important. For example, the new MaxDB Synchronization Manager
supports data synchronization from MaxDB to MySQL.

The MaxDB database management system does not share a common code-base
with the MySQL database management system. The MaxDB and MySQL
database management systems are independent products provided by MySQL
AB.

MySQL AB offers a complete portfolio of Professional Services for MaxDB.

1.5.1. What is MaxDB?

MaxDB is an ANSI SQL-92 (entry level) compliant relational database
management system (RDBMS) from SAP AG, that is delivered by MySQL AB
as well. MaxDB fulfills the needs for enterprise usage: safety, scalability, high
concurrency, and performance. It runs on all major operating systems. Over the
years it has proven able to run SAP R/3 and terabytes of data in 247 operation.

The database development started in 1977 as a research project at the Technical
University of Berlin. In the early 1980s it became a database product that
subsequently was owned by Nixdorf, Siemens Nixdorf, Software AG, and today

by SAP AG. Along the way, it has been named VDN, Reflex, Supra 2, DDB/4,
Entire SQL-DB-Server, and ADABAS D. In 1997, SAP took over the software
from Software AG and renamed it to SAP DB. Since October 2000, SAP DB
sources additionally were released as Open Source under the GNU General
Public License (see Appendix J, GNU General Public License).

In 2003, SAP AG and MySQL AB formed a partnership and re-branded the
database system to MaxDB.

1.5.2. History of MaxDB

The history of MaxDB goes back to SAP DB, SAP AG's DBMS. That is,
MaxDB is a re-branded and enhanced version of SAP DB. For many years,
MaxDB has been used for small, medium, and large installations of the mySAP
Business Suite and other demanding SQL applications requiring an enterprise-
class DBMS with regard to the number of users, the transactional workload, and
the size of the database.

SAP DB was meant to provide an alternative to third-party database systems
such as Oracle, Microsoft SQL Server, and DB2 by IBM. In October 2000, SAP
AG released SAP DB under the GNU GPL license (see Appendix J, GNU
General Public License), thus making it Open Source software.

Today, MaxDB is used in about 3,500 SAP customer installations worldwide.
Moreover, the majority of all DBMS installations on Unix and Linux within
SAP’s IT department rely on MaxDB. MaxDB is tuned toward heavy-duty
online transaction processing (OLTP) with several thousand users and database
sizes ranging from several hundred GB to multiple TB.

In 2003, SAP and MySQL concluded a partnership and development cooperation
agreement. As a result, SAP's database system SAP DB has been delivered under
the name of MaxDB by MySQL since the release of version 7.5 (November
2003).

Version 7.5 of MaxDB is a direct advancement of the SAP DB 7.4 code base.
Therefore, the MaxDB software version 7.5 can be used as a direct upgrade of
previous SAP DB versions starting 7.2.04 and higher.

The former SAP DB development team at SAP AG is responsible, now as

before, for developing and supporting MaxDB. MySQL AB cooperates closely
with the MaxDB team at SAP around delivering improvements to the MaxDB
product, see Section 1.5, “Overview of the MaxDB Database Management
System”. Both SAP AG and MySQL AB handle the sale and distribution of
MaxDB. The advancement of MaxDB and the MySQL Server leverages
synergies that benefit both product lines.

MaxDB is subjected to SAP AG's complete quality assurance process before it is
shipped with SAP solutions or provided as a download from the MySQL site.

1.5.3. Features of MaxDB

MaxDB is a heavy-duty, SAP-certified Open Source database for OLTP and
OLAP usage which offers high reliability, availability, scalability, and a very
comprehensive feature set. It is targeted for large mySAP Business Suite
environments and other applications that require maximum enterprise-level
database functionality and complements the MySQL database server.

MaxDB operates as a client/server product. It was developed to meet the needs
of installations in OLTP and Data Warehouse/OL AP/Decision Support scenarios
and offers these benefits:

e Easy configuration and administration: GUI-based Installation Manager
and Database Manager as single administration tools for DBMS operations

¢ Around-the-clock operation, no planned downtimes, no permanent
attendance required: Automatic space management, no need for
reorganizations

¢ Sophisticated backup and restore capabilities: Online and incremental
backups, recovery wizard to guide you through the recovery scenario

e Supports large number of users, database sizes in the terabytes, and
demanding workloads: Proven reliability, performance, and scalability

¢ High availability: Cluster support, standby configuration, hot standby
configuration

1.5.4. Licensing and Support

MaxDB can be used under the same licenses available for the other products
distributed by MySQL AB. Thus, MaxDB is available under the GNU General
Public License, and a commercial license. For more information on licensing,

see http://www.mysqgl.com/company/legal/licensing/.

MySQL AB offers MaxDB technical support to non-SAP customers. MaxDB
support is available on various levels (Basic, Silver, and Gold), which expand
from unlimited email/web-support to 24x7 phone support for business critical
systems.

MySQL AB also offers Licenses and Support for MaxDB when used with SAP
Applications, like SAP NetWeaver and mySAP Business Suite. For more
information on licenses and support for your needs, please contact MySQL AB.
(See http://www.mysql.com/company/contact/.)

Consulting and training services are available. MySQL gives classes on MaxDB
at regular intervals. See http://www.mysql.com/training/ for a list of classes.

1.5.5. Feature Differences Between MaxDB and MySQL

MaxDB is MySQL AB's SAP-certified database. The MaxDB database server
complements the MySQL AB product portfolio. Some MaxDB features are not
available on the MySQL database management server and vice versa.

The following list summarizes the main differences between MaxDB and
MySQL; it is not complete.

e MaxDB runs as a client/server system. MySQL can run as a client/server
system or as an embedded system.

e MaxDB might not run on all platforms supported by MySQL.

e MaxDB uses a proprietary network protocol for client/server
communication. MySQL uses either TCP/IP (with or without SSL
encryption), sockets (under Unix-like systems), or named pipes or shared
memory (under Windows NT-family systems).

e MaxDB supports stored procedures and functions. MySQL 5.0 and up also
supports stored procedures and functions. MaxDB supports programming
of triggers through an SQL extension. MySQL 5.0 supports triggers.

http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/contact/
http://www.mysql.com/training/

MaxDB contains a debugger for stored procedure languages, can cascade
nested triggers, and supports multiple triggers per action and row.

e MaxDB is distributed with user interfaces that are text-based, graphical, or
Web-based. MySQL is distributed with text-based user interfaces only;
graphical user interfaces such as MySQL Query Browser or MySQL
Administrator are shipped separately from the main distributions. Web-
based user interfaces for MySQL are offered by third parties.

e MaxDB supports a number of programming interfaces that also are
supported by MySQL. For developing with MaxDB, the MaxDB ODBC
Driver, SQL Database Connectivity (SQLDBC), JDBC Driver, Perl and
Python modules and a MaxDB PHP extension, which provides access to
MySQL MaxDB databases using PHP, are available. Third Party
Programming Interfaces: Support for OLE DB, ADO, DAO, RDO and
.NET through ODBC. MaxDB supports embedded SQL with C/C++.

e MaxDB includes administrative features that MySQL does not have: job
scheduling by time (included in MySQL as of 5.1), event, and alert, and
sending messages to a database administrator on alert thresholds. (MySQL
has scheduling support starting with version 5.1.6.)

1.5.6. Interoperability Features Between MaxDB and MySQL

MaxDB and MySQL are independent database management servers. The
interoperation of the systems is possible in a way that the systems can exchange
their data. To exchange data between MaxDB and MySQL, you can use the
import and export tools of the systems or the MaxDB Synchronization Manager.
The import and export tools can be used to transfer data in an infrequent, manual
fashion. The MaxDB Synchronization Manager offers faster, automatic data
transfer capabilities.

The MaxDB Loader can be used to export data and object definitions. The
Loader can export data using MaxDB internal, binary formats and text formats
(CSV). Data exported from MaxDB in text formats can be imported into MySQL
using the mysqglimport client program. To export MySQL data, you can use
either mysqldump to create INSERT statements or SELECT ... INTO OUTFILE to
create a text file (CSV). Use the MaxDB Loader to import the data files
generated by MySQL.

Object definitions can be exchanged between the systems using MaxDB Loader
and the MySQL tool mysqldump. As the SQL dialects of both systems differ
slightly and MaxDB has features currently not supported by MySQL like SQL
constraints, we recommend to hand-tune the definition files. The mysqldump
tool offers an option - -compatible=maxdb to produce output that is compatible
with MaxDB to make porting easier.

The MaxDB Synchronization Manager is available as part of MaxDB 7.6. The
Synchronization Manager supports creation of asynchronous replication
scenarios between several MaxDB instances. However, interoperability features
also are planned, so that the Synchronization Manager supports replication to
and from a MySQL server.

1.5.7. MaxDB-Related Links

The main page for MaxDB information is
http://www.mysql.com/products/maxdb, which provides details about the
features of the MaxDB database management systems and has pointers to
available documentation.

The MySQL Reference Manual does not contain any MaxDB documentation
other than the introduction given in this section. MaxDB has its own
documentation, which is called the MaxDB library and is available at
http://dev.mysql.com/doc/maxdb/index.html.

MySQL AB runs a community mailing list on MaxDB; see
http://lists.mysqgl.com/maxdb. The list shows a vivid community discussion.
Many of the core developers contribute to it. Product announcements are sent to
the list.

A Web forum on MaxDB is available at http:/forums.mysql.com/. The forum
focuses on MaxDB questions not related to SAP applications.

http://www.mysql.com/products/maxdb
http://dev.mysql.com/doc/maxdb/index.html
http://lists.mysql.com/maxdb
http://forums.mysql.com/

1.6. MySQL Development Roadmap

This section provides a snapshot of the MySQL development roadmap, including
major features implemented in or planned for various MySQL releases. The
following sections provide information for each release series.

The current production release series is MySQL 5.0, which was declared stable
for production use as of MySQL 5.0.15, released in October 2005. The previous
production release series was MySQL 4.1, which was declared stable for
production use as of MySQL 4.1.7, released in October 2004. “Production
status” means that future 5.0 and 4.1 development is limited only to bugfixes.
For the older MySQL 4.0 and 3.23 series, only critical bugfixes are made.

Active MySQL development is currently taking place in the MySQL 5.0 and 5.1
release series, and new features are being added only to the latter.

Before upgrading from one release series to the next, please see the notes in

Section 2.11, “Upgrading MySQL”.

The most requested features and the versions in which they were implemented or
are scheduled for implementation are summarized in the following table:

Feature MySQL Series |
Foreign keys 3.23 (for the InnoDB storage engine) |
Unions |
Subqueries |
R-trees 4.1 (for the MyISAM storage engine) |

Stored procedures

Partitioning

Views

Cursors 5.0 |

XA transactions 5.0 |

Foreign keys 5.2 (implemented in 3.23 for InnoDB)l

Triggers 5.0 and 5.1 |
|
|

IlPluggable Storage Engine API||5.1
Row-Based Replication “5.1

1.6.1. What's New in MySQL 5.0

The following features are implemented in MySQL 5.0.

e BIT Data Type: Can be used to store numbers in binary notation. See
Section 11.1.1, “Overview of Numeric Types”.

e Cursors: Elementary support for server-side cursors. For information about
using cursors within stored routines, see Section 17.2.9, “Cursors”. For
information about using cursors from within the C API, see
Section 22.2.7.3, “mysql stmt attr set()”.

e Information Schema: The introduction of the INFORMATION_SCHEMA
database in MySQL 5.0 provided a standards-compliant means for
accessing the MySQL Server's metadata; that is, data about the databases
(schemas) on the server and the objects which they contain. See Chapter 20,
The INFORMATION SCHEMA Database.

¢ Instance Manager: Can be used to start and stop the MySQL Server, even
from a remote host. See Section 5.5, “mysqlmanager — The MySQL
Instance Manager”.

e Precision Math: MySQL 5.0 introduced stricter criteria for acceptance or
rejection of data, and implemented a new library for fixed-point arithmetic.
These contributed to a much higher degree of accuracy for mathematical
operations and greater control over invalid values. See Chapter 21,
Precision Math.

e Storage Engines: Storage engines added in MySQL 5.0 include ARCHIVE
and FEDERATED. See Section 14.8, “The ARCHIVE Storage Engine”, and
Section 14.7, “The FEDERATED Storage Engine”.

e Stored Routines: Support for named stored procedures and stored
functions was implemented in MySQL 5.0. See Chapter 17, Stored
Procedures and Functions.

Strict Mode and Standard Error Handling: MySQL 5.0 added a strict
mode where by it follows standard SQL in a number of ways in which it did
not previously. Support for standard SQLSTATE error messages was also
implemented. See Section 5.2.5, “The Server SQL Mode”.

Triggers: MySQL 5.0 added limited support for triggers. See Chapter 18,
Triggers, and Section 1.9.5.4, “Stored Routines and Triggers”.

VARCHAR Data Type: The maximum effective length of a VARCHAR column
was increased to 65,532 bytes, and stripping of trailing whitespace was
eliminated. See Section 11.4, “String Types”.

Views: MySQL 5.0 added support for named, updatable views. See
Chapter 19, Views, and Section 1.9.5.6, “Views”.

XA Transactions: See Section 13.4.7, “XA Transactions”.

Performance enhancements: A number of improvements were made in
MySQL 5.0 to improve the speed of certain types of queries and in the
handling of certain types. These include:

o MySQL 5.0 introduces a new “greedy” optimizer which can greatly
reduce the time required to arrive at a query execution plan. This is
particularly noticeable where several tables are to be joined and no
good join keys can otherwise be found. Without the greedy optimizer,
the complexity of the search for an execution plan is calculated as N!,
where n is the number of tables to be joined. The greedy optimizer
reduces this to N!/(D-1)!, where D is the depth of the search. Although
the greedy optimizer does not guarantee the best possible of all
execution plans (this is currently being worked on), it can reduce the
time spent arriving at an execution plan for a join involving a great
many tables — 30, 40, or more — by a factor of as much as 1,000.
This should eliminate most if not all situations where users thought
that the optimizer had hung when trying to perform joins across many
tables.

o Use of the Index Merge method to obtain better optimization of AND
and OR relations over different keys. (Previously, these were optimized
only where both relations in the WHERE clause involved the same key.)
This also applies to other one-to-one comparison operators (>, <, and

so on), including = and the IN operator. This means that MySQL can

use multiple indexes in retrieving results for conditions such as WHERE
keyl > 4 OR key2 < 7 and even combinations of conditions such as
WHERE (keyl > 4 OR key2 < 7) AND (key3 >= 10 OR key4 = 1).

See Section 7.2.6, “Index Merge Optimization”.

A new equality detector finds and optimizes “hidden” equalities in
joins. For example, a WHERE clause such as

tl.cl1l=t2.c2 AND t2.c2=t3.c3 AND tl.cl1l < 5

implies these other conditions

tl.c1=t3.c3 AND t2.c2 < 5 AND t3.c3 < 5

These optimizations can be applied with any combination of AND and

OR operators. See Section 7.2.10, “Nested Join Optimization”, and
Section 7.2.11, “Outer Join Simplification”.

Optimization of NOT IN and NOT BETWEEN relations, reducing or
eliminating table scans for queries making use of them by mean of
range analysis. The performance of MySQL with regard to these
relations now matches its performance with regard to IN and BETWEEN.

The VARCHAR data type as implemented in MySQL 5.0 is more efficient
than in previous versions, due to the elimination of the old (and
nonstandard) removal of trailing spaces during retrieval.

The addition of a true BIT column type; this type is much more
efficient for storage and retrieval of Boolean values than the
workarounds required in MySQL in versions previous to 5.0.

Performance Improvements in the InnobB Storage Engine:

m New compact storage format which can save up to 20% of the
disk space required in previous MySQL/InnoDB versions.

m Faster recovery from a failed or aborted ALTER TABLE.

m Faster implementation of TRUNCATE.

)

(See Section 14.2, “The InnoDB Storage Engine”.)

o Performance Improvements in the NDBCluster Storage Engine:
m Faster handling of queries that use IN and BETWEEN.

= Condition pushdown: In cases involving the comparison of an
unindexed column with a constant, this condition is “pushed
down” to the cluster where it is evaluated in all partitions
simultaneously, eliminating the need to send non-matching
records over the network. This can make such queries 10 to 100
times faster than in MySQL 4.1 Cluster.

See Section 7.2.1, “Optimizing Queries with EXPLAIN”, for more
information.

(See Chapter 15, MySQL Cluster.)

For those wishing to take a look at the bleeding edge of MySQL development,
we make our BitKeeper repository for MySQL publicly available. See
Section 2.9.3, “Installing from the Development Source Tree”.

1.7. MySQL Information Sources

This section lists sources of additional information that you may find helpful,
such as the MySQL mailing lists and user forums, and Internet Relay Chat.

1.7.1. MySQL Mailing Lists

This section introduces the MySQL mailing lists and provides guidelines as to
how the lists should be used. When you subscribe to a mailing list, you receive
all postings to the list as email messages. You can also send your own questions
and answers to the list.

To subscribe to or unsubscribe from any of the mailing lists described in this
section, visit http:/lists.mysqgl.com/. For most of them, you can select the regular
version of the list where you get individual messages, or a digest version where
you get one large message per day.

Please do not send messages about subscribing or unsubscribing to any of the
mailing lists, because such messages are distributed automatically to thousands
of other users.

Your local site may have many subscribers to a MySQL mailing list. If so, the
site may have a local mailing list, so that messages sent from lists.mysqgl.com
to your site are propagated to the local list. In such cases, please contact your
system administrator to be added to or dropped from the local MySQL list.

If you wish to have traffic for a mailing list go to a separate mailbox in your mail
program, set up a filter based on the message headers. You can use either the
List-ID: or Delivered-To: headers to identify list messages.

The MySQL mailing lists are as follows:
® announce

This list is for announcements of new versions of MySQL and related
programs. This is a low-volume list to which all MySQL users should
subscribe.

http://lists.mysql.com/

mysql

This is the main list for general MySQL discussion. Please note that some
topics are better discussed on the more-specialized lists. If you post to the
wrong list, you may not get an answer.

bugs

This list is for people who want to stay informed about issues reported since
the last release of MySQL or who want to be actively involved in the
process of bug hunting and fixing. See Section 1.8, “How to Report Bugs or
Problems”.

internals

This list is for people who work on the MySQL code. This is also the forum
for discussions on MySQL development and for posting patches.

mysqgldoc

This list is for people who work on the MySQL documentation: people
from MySQL AB, translators, and other community members.

benchmarks

This list is for anyone interested in performance issues. Discussions
concentrate on database performance (not limited to MySQL), but also
include broader categories such as performance of the kernel, filesystem,
disk system, and so on.

packagers

This list is for discussions on packaging and distributing MySQL. This is
the forum used by distribution maintainers to exchange ideas on packaging
MySQL and on ensuring that MySQL looks and feels as similar as possible
on all supported platforms and operating systems.

java

This list is for discussions about the MySQL server and Java. It is mostly

used to discuss JDBC drivers such as MySQL Connector/J.
® win32

This list is for all topics concerning the MySQL software on Microsoft
operating systems, such as Windows 9x, Me, NT, 2000, XP, and 2003.

e myodbc

This list is for all topics concerning connecting to the MySQL server with
ODBC.

® gui-tools

This list is for all topics concerning MySQL graphical user interface tools
such as MysQL Administrator and MySQL Query Browser.

® cluster
This list is for discussion of MySQL Cluster.
® dotnet

This list is for discussion of the MySQL server and the .NET platform. It is
mostly related to MySQL Connector/Net.

® plusplus

This list is for all topics concerning programming with the C++ API for
MySQL.

e perl

This list is for all topics concerning Perl support for MySQL with
DBD: :mysql.

If you're unable to get an answer to your questions from a MySQL mailing list or
forum, one option is to purchase support from MySQL AB. This puts you in
direct contact with MySQL developers.

The following table shows some MySQL mailing lists in languages other than

English. These lists are not operated by MySQL AB.

® <mysqgl-france-subscribe@yahoogroups.com>

A French mailing list.

® <list@tinc.net>

A Korean mailing list. To subscribe, email subscribe mysqgl
your@email.address to this list.

® <mysqgl-de-request@lists.4t2.com>

A German mailing list. To subscribe, email subscribe mysql-de
your@email.address to this list. You can find information about this
mailing list at http://www.4t2.com/mysql/.

® <mysgl-br-request@listas.linkway.com.br>

A Portuguese mailing list. To subscribe, email subscribe mysql-br
your@email.address to this list.

® <mysgl-alta@elistas.net>

A Spanish mailing list. To subscribe, email subscribe mysql
your@email.address to this list.

1.7.1.1. Guidelines for Using the Mailing Lists

Please don't post mail messages from your browser with HTML mode turned on.
Many users don't read mail with a browser.

When you answer a question sent to a mailing list, if you consider your answer
to have broad interest, you may want to post it to the list instead of replying
directly to the individual who asked. Try to make your answer general enough
that people other than the original poster may benefit from it. When you post to
the list, please make sure that your answer is not a duplication of a previous
answer.

Try to summarize the essential part of the question in your reply. Don't feel

mailto:mysql-france-subscribe@yahoogroups.com
mailto:list@tinc.net
mailto:mysql-de-request@lists.4t2.com
http://www.4t2.com/mysql/
mailto:mysql-br-request@listas.linkway.com.br
mailto:mysql-alta@elistas.net

obliged to quote the entire original message.

When answers are sent to you individually and not to the mailing list, it is
considered good etiquette to summarize the answers and send the summary to
the mailing list so that others may have the benefit of responses you received
that helped you solve your problem.

1.7.2. MySQL Community Support at the MySQL Forums

The forums at http://forums.mysqgl.com are an important community resource.
Many forums are available, grouped into these general categories:

e Migration

e MySQL Usage

e MySQL Connectors

¢ Programming Languages
e Tools

e 3rd-Party Applications

e Storage Engines

e MySQL Technology

e SQL Standards

e Business

1.7.3. MySQL Community Support on Internet Relay Chat (IRC)

In addition to the various MySQL mailing lists and forums, you can find
experienced community people on Internet Relay Chat (IRC). These are the best
networks/channels currently known to us:

freenode (see http://www.freenode.net/ for servers)

http://forums.mysql.com
http://www.freenode.net/

e #mysql is primarily for MySQL questions, but other database and general
SQL questions are welcome. Questions about PHP, Perl, or C in
combination with MySQL are also common.

If you are looking for IRC client software to connect to an IRC network, take a
look at xchat (http://www.xchat.org/). X-Chat (GPL licensed) is available for
Unix as well as for Windows platforms (a free Windows build of X-Chat is
available at http://www.silverex.org/download/).

http://www.xchat.org/
http://www.silverex.org/download/

1.8. How to Report Bugs or Problems

Before posting a bug report about a problem, please try to verify that it is a bug
and that it has not been reported already:

e Start by searching the MySQL online manual at http://dev.mysgl.com/doc/.
We try to keep the manual up to date by updating it frequently with
solutions to newly found problems. The change history
(http://dev.mysqgl.com/doc/mysqgl/en/news.html) can be particularly useful
since it is quite possible that a newer version contains a solution to your
problem.

e If you get a parse error for a SQL statement, please check your syntax
closely. If you can't find something wrong with it, it's extremely likely that
your current version of MySQL Server doesn't support the syntax you are
using. If you are using the current version and the manual doesn't cover the
syntax that you are using, MySQL Server doesn't support your statement. In
this case, your options are to implement the syntax yourself or email
<licensing@mysqgl.com> and ask for an offer to implement it.

If the manual covers the syntax you are using, but you have an older
version of MySQL Server, you should check the MySQL change history to
see when the syntax was implemented. In this case, you have the option of
upgrading to a newer version of MySQL Server.

e For solutions to some common problems, see Appendix A, Problems and
Common Errors.

e Search the bugs database at http://bugs.mysql.com/ to see whether the bug
has been reported and fixed.

e Search the MySQL mailing list archives at http://lists.mysqgl.com/. See
Section 1.7.1, “MySQL Mailing Lists”.

¢ You can also use http://www.mysqgl.com/search/ to search all the Web pages
(including the manual) that are located at the MySQL AB Web site.

If you can't find an answer in the manual, the bugs database, or the mailing list

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/mysql/en/news.html
mailto:licensing@mysql.com
http://bugs.mysql.com/
http://lists.mysql.com/
http://www.mysql.com/search/

archives, check with your local MySQL expert. If you still can't find an answer
to your question, please use the following guidelines for reporting the bug.

The normal way to report bugs is to visit http://bugs.mysgl.com/, which is the
address for our bugs database. This database is public and can be browsed and
searched by anyone. If you log in to the system, you can enter new reports. If
you have no Web access, you can generate a bug report by using the mysqglbug
script described at the end of this section.

Bugs posted in the bugs database at http://bugs.mysqgl.com/ that are corrected for
a given release are noted in the change history.

If you have found a sensitive security bug in MySQL, you can send email to
<security@mysql.com>.

To discuss problems with other users, you can use one of the MySQL mailing

lists. Section 1.7.1, “MySQL Mailing Lists”.

Writing a good bug report takes patience, but doing it right the first time saves
time both for us and for yourself. A good bug report, containing a full test case
for the bug, makes it very likely that we will fix the bug in the next release. This
section helps you write your report correctly so that you don't waste your time
doing things that may not help us much or at all. Please read this section
carefully and make sure that all the information described here is included in
your report.

Preferably, you should test the problem using the latest production or
development version of MySQL Server before posting. Anyone should be able
to repeat the bug by just using mysql test < script_file on your test case or
by running the shell or Perl script that you include in the bug report. Any bug
that we are able to repeat has a high chance of being fixed in the next MySQL
release.

It is most helpful when a good description of the problem is included in the bug
report. That is, give a good example of everything you did that led to the
problem and describe, in exact detail, the problem itself. The best reports are
those that include a full example showing how to reproduce the bug or problem.
See Section E.1.6, “Making a Test Case If You Experience Table Corruption”.

Remember that it is possible for us to respond to a report containing too much

http://bugs.mysql.com/
http://bugs.mysql.com/
mailto:security@mysql.com

information, but not to one containing too little. People often omit facts because
they think they know the cause of a problem and assume that some details don't
matter. A good principle to follow is that if you are in doubt about stating
something, state it. It is faster and less troublesome to write a couple more lines
in your report than to wait longer for the answer if we must ask you to provide
information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version
number of the MySQL distribution that you use, and (b) not fully describing the
platform on which the MySQL server is installed (including the platform type
and version number). These are highly relevant pieces of information, and in 99
cases out of 100, the bug report is useless without them. Very often we get
questions like, “Why doesn't this work for me?” Then we find that the feature
requested wasn't implemented in that MySQL version, or that a bug described in
a report has been fixed in newer MySQL versions. Errors often are platform-
dependent. In such cases, it is next to impossible for us to fix anything without
knowing the operating system and the version number of the platform.

If you compiled MySQL from source, remember also to provide information
about your compiler if it is related to the problem. Often people find bugs in
compilers and think the problem is MySQL-related. Most compilers are under
development all the time and become better version by version. To determine
whether your problem depends on your compiler, we need to know what
compiler you used. Note that every compiling problem should be regarded as a
bug and reported accordingly.

If a program produces an error message, it is very important to include the
message in your report. If we try to search for something from the archives, it is
better that the error message reported exactly matches the one that the program
produces. (Even the lettercase should be observed.) It is best to copy and paste
the entire error message into your report. You should never try to reproduce the
message from memory.

If you have a problem with Connector/ODBC (MyODBC), please try to generate
a trace file and send it with your report. See the MyODBC section of Chapter 23,
Connectors.

If your report includes long query output lines from test cases that you run with
the mysql command-line tool, you can make the output more readable by using

the - -vertical option or the \G statement terminator. The EXPLAIN SELECT
example later in this section demonstrates the use of \G.

Please include the following information in your report:

The version number of the MySQL distribution you are using (for example,
MySQL 5.0.19). You can find out which version you are running by
executing mysgladmin version. The mysgladmin program can be found in
the bin directory under your MySQL installation directory.

The manufacturer and model of the machine on which you experience the
problem.

The operating system name and version. If you work with Windows, you
can usually get the name and version number by double-clicking your My
Computer icon and pulling down the “Help/About Windows” menu. For
most Unix-like operating systems, you can get this information by
executing the command uname -a.

Sometimes the amount of memory (real and virtual) is relevant. If in doubt,
include these values.

If you are using a source distribution of the MySQL software, include the
name and version number of the compiler that you used. If you have a
binary distribution, include the distribution name.

If the problem occurs during compilation, include the exact error messages
and also a few lines of context around the offending code in the file where
the error occurs.

If mysqld died, you should also report the statement that crashed mysqld.
You can usually get this information by running mysqld with query logging
enabled, and then looking in the log after mysqld crashes. See

Section E.1.5, “Using Server Logs to Find Causes of Errors in mysqgld”.

If a database table is related to the problem, include the output from the
SHOW CREATE TABLE db_name.tbl_name statement in the bug report. This is
a very easy way to get the definition of any table in a database. The
information helps us create a situation matching the one that you have
experienced.

e For performance-related bugs or problems with SELECT statements, you
should always include the output of EXPLAIN SELECT ..., and at least the
number of rows that the SELECT statement produces. You should also
include the output from SHOW CREATE TABLE tbl_name for each table that is
involved. The more information you provide about your situation, the more
likely it is that someone can help you.

The following is an example of a very good bug report. The statements are
run using the mysql command-line tool. Note the use of the \G statement
terminator for statements that would otherwise provide very long output
lines that are difficult to read.

mysql> SHOW VARIABLES;
mysql> SHOW COLUMNS FROM ...\G
<output from SHOW COLUMNS>
mysql> EXPLAIN SELECT ...\G
<output from EXPLAIN>
mysql> FLUSH STATUS;
mysql> SELECT ...;
<A short version of the output from SELECT,
including the time taken to run the query>
mysql> SHOW STATUS;
<output from SHOW STATUS>

e If a bug or problem occurs while running mysqld, try to provide an input
script that reproduces the anomaly. This script should include any necessary
source files. The more closely the script can reproduce your situation, the
better. If you can make a reproducible test case, you should upload it to be
attached to the bug report.

If you can't provide a script, you should at least include the output from
mysqladmin variables extended-status processlist in your report to
provide some information on how your system is performing.

e If you can't produce a test case with only a few rows, or if the test table is
too big to be included in the bug report (more than 10 rows), you should
dump your tables using mysqldump and create a README file that describes
your problem. Create a compressed archive of your files using tar and gzip
or zip, and use FTP to transfer the archive to

ftp:/ftp.mysql.com/pub/mysgl/upload/. Then enter the problem into our
bugs database at http://bugs.mysql.com/.

ftp://ftp.mysql.com/pub/mysql/upload/
http://bugs.mysql.com/

¢ If you believe that the MySQL server produces a strange result from a
statement, include not only the result, but also your opinion of what the
result should be, and an explanation describing the basis for your opinion.

e When you provide an example of the problem, it's better to use the table
names, variable names, and so forth that exist in your actual situation than
to come up with new names. The problem could be related to the name of a
table or variable. These cases are rare, perhaps, but it is better to be safe
than sorry. After all, it should be easier for you to provide an example that
uses your actual situation, and it is by all means better for us. If you have
data that you don't want to be visible to others in the bug report, you can
use FTP to transfer it to ftp:/ftp.mysqgl.com/pub/mysqgl/upload/. If the
information is really top secret and you don't want to show it even to us, go
ahead and provide an example using other names, but please regard this as
the last choice.

¢ Include all the options given to the relevant programs, if possible. For
example, indicate the options that you use when you start the mysqld
server, as well as the options that you use to run any MySQL client
programs. The options to programs such as mysqld and mysql, and to the
configure script, are often key to resolving problems and are very relevant.
It is never a bad idea to include them. If your problem involves a program
written in a language such as Perl or PHP, please include the language
processor's version number, as well as the version for any modules that the
program uses. For example, if you have a Perl script that uses the DBI and
DBD: :mysql modules, include the version numbers for Perl, bBI, and
DBD: :mysql.

e If your question is related to the privilege system, please include the output
of mysqglaccess, the output of mysgladmin reload, and all the error
messages you get when trying to connect. When you test your privileges,
you should first run mysqlaccess. After this, execute mysqladmin reload
version and try to connect with the program that gives you trouble.
mysqlaccess can be found in the bin directory under your MySQL
installation directory.

¢ If you have a patch for a bug, do include it. But don't assume that the patch
is all we need, or that we can use it, if you don't provide some necessary
information such as test cases showing the bug that your patch fixes. We

ftp://ftp.mysql.com/pub/mysql/upload/

might find problems with your patch or we might not understand it at all. If
SO, we can't use it.

If we can't verify the exact purpose of the patch, we won't use it. Test cases
help us here. Show that the patch handles all the situations that may occur.
If we find a borderline case (even a rare one) where the patch won't work, it
may be useless.

Guesses about what the bug is, why it occurs, or what it depends on are
usually wrong. Even the MySQL team can't guess such things without first
using a debugger to determine the real cause of a bug.

Indicate in your bug report that you have checked the reference manual and
mail archive so that others know you have tried to solve the problem
yourself.

If the problem is that your data appears corrupt or you get errors when you
access a particular table, you should first check your tables and then try to
repair them with CHECK TABLE and REPAIR TABLE or with myisamchk. See
Chapter 5, Database Administration.

If you are running Windows, please verify the value of
lower_case_table_names using the SHOW VARIABLES LIKE
'lower_case_table_names' command. This variable affects how the server
handles lettercase of database and table names. Its effect for a given value
should be as described in Section 9.2.2, “Identifier Case Sensitivity”.

If you often get corrupted tables, you should try to find out when and why
this happens. In this case, the error log in the MySQL data directory may
contain some information about what happened. (This is the file with the
.err suffix in the name.) See Section 5.12.1, “The Error LLog”. Please
include any relevant information from this file in your bug report. Normally
mysqld should never crash a table if nothing killed it in the middle of an
update. If you can find the cau