

Modbus	LabVIEW	Library	Help
February	2009,	372767A-01
This	help	file	describes	the	Modbus	LabVIEW	VI	library.
For	more	information	about	this	help	file,	refer	to	the	following	topics:
Using	Help
Important	Information
Technical	Support	and	Professional	Services
To	comment	on	National	Instruments	documentation,	refer	to	the	National
Instruments	Web	site.
©	2009	National	Instruments	Corporation.	All	rights	reserved.

javascript:WWW(WWW_Feedback)

Using	Help
Conventions
Navigating	Help
Searching	Help
Printing	Help	File	Topics

Conventions
This	help	file	uses	the	following	formatting	and	typographical
conventions:

This	icon	denotes	a	note,	which	alerts	you	to	important
information.
This	icon	denotes	a	tip,	which	alerts	you	to	advisory
information.

bold Bold	text	denotes	items	that	you	must	select	or	click	in	the
software,	such	as	menu	items	and	dialog	box	options.	Bold
text	also	denotes	parameter	names.

green Underlined	text	in	this	color	denotes	a	link	to	a	help	topic,
help	file,	or	Web	address.

purple Underlined	text	in	this	color	denotes	a	visited	link	to	a	help
topic,	help	file,	or	Web	address.

italic Italic	text	denotes	variables,	emphasis,	cross-references,	or
an	introduction	to	a	key	concept.	Italic	text	also	denotes	text
that	is	a	placeholder	for	a	word	or	value	that	you	must
supply.

monospace Text	in	this	font	denotes	text	or	characters	that	you	should
enter	from	the	keyboard,	sections	of	code,	programming
examples,	and	syntax	examples.	This	font	is	also	used	for
the	proper	names	of	disk	drives,	paths,	directories,
programs,	subprograms,	subroutines,	device	names,
functions,	operations,	variables,	filenames,	and	extensions.

Navigating	Help	(Windows	Only)
To	navigate	this	help	file,	use	the	Contents,	Index,	and	Search	tabs	to
the	left	of	this	window	or	use	the	following	toolbar	buttons	located	above
the	tabs:

Note		The	information	in	this	topic	only	applies	to	the	help	file
installed	with	the	Windows	version	of	the	software.
Hide—Hides	the	navigation	pane	from	view.
Locate—Locates	the	currently	displayed	topic	in	the	Contents
tab,	allowing	you	to	view	related	topics.
Back—Displays	the	previously	viewed	topic.
Forward—Displays	the	topic	you	viewed	before	clicking	the
Back	button.
Options—Displays	a	list	of	commands	and	viewing	options	for
the	help	file.

Searching	Help	(Windows	Only)
Use	the	Search	tab	to	the	left	of	this	window	to	locate	content	in	this	help
file.

Note		The	information	in	this	topic	only	applies	to	the	help	file
installed	with	the	Windows	version	of	the	software.

If	you	want	to	search	for	words	in	a	certain	order,	such	as	"related
documentation,"	add	quotation	marks	around	the	search	words	as	shown
in	the	example.	Searching	for	terms	on	the	Search	tab	allows	you	to
quickly	locate	specific	information	and	information	in	topics	that	are	not
included	on	the	Contents	tab.

Tip		You	can	temporarily	disable	the	search	highlighting	feature	by
selecting	Options»Search	Highlight	Off	from	the	toolbar.

Wildcards
You	also	can	search	using	asterisk	(*)	or	question	mark	(?)	wildcards.
Use	the	asterisk	wildcard	to	return	topics	that	contain	a	certain	string.	For
example,	a	search	for	"prog*"	lists	topics	that	contain	the	words
"program,"	"programmatically,"	"progress,"	and	so	on.
Use	the	question	mark	wildcard	as	a	substitute	for	a	single	character	in	a
search	term.	For	example,	"?ext"	lists	topics	that	contain	the	words
"next,"	"text,"	and	so	on.

Note		Wildcard	searching	will	not	work	on	Simplified	Chinese,
Traditional	Chinese,	Japanese,	and	Korean	systems.

Nested	Expressions
Use	nested	expressions	to	combine	searches	to	further	refine	a	search.
You	can	use	Boolean	expressions	and	wildcards	in	a	nested	expression.
For	example,	"example	AND	(program	OR	VI)"	lists	topics	that	contain
"example	program"	or	"example	VI."	You	cannot	nest	expressions	more
than	five	levels.

Boolean	Expressions
Click	the	 	button	to	add	Boolean	expressions	to	a	search.	The	following
Boolean	operators	are	available:

AND	(default)—Returns	topics	that	contain	both	search	terms.
You	do	not	need	to	specify	this	operator	unless	you	are	using
nested	expressions.
OR—Returns	topics	that	contain	either	the	first	or	second	term.
NOT—Returns	topics	that	contain	the	first	term	without	the
second	term.
NEAR—Returns	topics	that	contain	both	terms	within	eight	words
of	each	other.

Search	Options

Use	the	following	checkboxes	on	the	Search	tab	to	customize	a	search:
Search	previous	results—Narrows	the	results	from	a	search
that	returned	too	many	topics.	You	must	remove	the	checkmark
from	this	checkbox	to	search	all	topics.
Match	similar	words—Broadens	a	search	to	return	topics	that
contain	words	similar	to	the	search	terms.	For	example,	a	search
for	"program"	lists	topics	that	include	the	words	"programs,"
"programming,"	and	so	on.
Search	titles	only—Searches	only	in	the	titles	of	topics.

Printing	Help	File	Topics	(Windows	Only)
Complete	the	following	steps	to	print	an	entire	book	from	the	Contents
tab:

Note		The	information	in	this	topic	only	applies	to	the	help	file
installed	with	the	Windows	version	of	the	software.

1.	 Right-click	the	book.
2.	 Select	Print	from	the	shortcut	menu	to	display	the	Print	Topics

dialog	box.
3.	 Select	the	Print	the	selected	heading	and	all	subtopics	option.

Note		Select	Print	the	selected	topic	if	you	want	to	print
the	single	topic	you	have	selected	in	the	Contents	tab.

4.	 Click	the	OK	button.

Printing	PDF	Documents
This	help	file	may	contain	links	to	PDF	documents.	To	print	PDF
documents,	click	the	print	button	located	on	the	Adobe	Acrobat	Viewer
toolbar.

MB	Ethernet	Master	Query	Read	Coils	(poly).vi
The	master	uses	this	VI	read	the	slaves'	coils.	This	corresponds	to	a
public	function	code	of	1	in	the	MODBUS	protocol.

MBAP	Header	is	a	cluster	containing	the	transaction	ID	and	Unit
ID.	This	is	additional	information	not	usually	required	for	a
MODBUS	transaction.

Transaction	Identifier—This	identifier	is	for	transaction	pairing;
the	MODBUS	server	copies	the	request	transaction	identifier	in
the	response.
Unit	Identifier—This	field	is	for	intra-system	routing	purposes.	It
typically	communicates	to	a	MODBUS	serial	line	slave	through	a
gateway	between	an	Ethernet	TCP-IP	network	and	a	MODBUS
serial	line.	The	MODBUS	client	sets	this	field	in	the	request,	and
the	server	response	must	return	this	field	with	the	same	value.

TCP	Connection	Refnum	in	is	a	network	connection	refnum	that
uniquely	identifies	the	TCP	connection.	Use	TCP	Open
Connection.vi	to	open	a	TCP	connection.
Starting	Address	is	the	first	address	location	of	the	coil	to	read.
This	address	is	sometimes	referred	to	as	offset.	Refer	to	your
device's	documentation	to	find	the	coil	address	mapping.

Be	sure	to	specify	the	correct	address	in	the	MODBUS	device
configuration	software	for	the	register	you	want	to	use	in	LabVIEW.
In	most	MODBUS	device	configuration	software,	you	must	enter	a
name	for	the	register	you	want	to	use.	Per	MODBUS	convention,
the	register	address	of	the	slave	device	is	calculated	by
subtracting	1	from	the	register	name	that	you	specify	in	the	master
device	configuration	software.	The	MODBUS	LabVIEW	library
expects	register	addresses,	not	register	names,	so	you	may	need
to	subtract	1	from	the	address	you	defined	in	the	MODBUS	device

configuration	software.	For	example,	a	register	name	defined	as	2
in	a	MODBUS	configuration	device	translates	to	register	address	1
in	the	Holding	Registers	table	of	the	LabVIEW	MODBUS	library,	as
shown	below.
MODBUS
Device

Holding	Register	Name	=	2

LabVIEW Holding	Register	Address	=	1

Quantity	represents	how	many	coils	to	read	from	the	slave.	The	VI
returns	the	coil	at	Starting	Address	and	each	following	coil	up	to
Quantity.	For	example,	if	Starting	Address	is	0	and	Quantity	is
4,	the	VI	reads	coils	from	the	slave	at	address	0,	1,	2,	and	3.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

TCP	Connection	Refnum	(dup)	can	be	an	input	to	another
MODBUS	VI,	or	you	can	close	it	using	TCP	Close	Connection.vi.

Coils	represents	the	data	read	from	the	slave.

Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The
exception	code	mapping	is	as	follows:
0 No	error
1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Ethernet	Master	Query	Read	Discrete	Inputs
(poly).vi
The	master	uses	this	VI	to	read	the	slaves'	discrete	inputs.	This
corresponds	to	a	public	function	code	of	2	in	the	MODBUS	protocol.

MBAP	Header	is	a	cluster	containing	the	transaction	ID	and	Unit
ID.	This	is	additional	information	not	usually	required	for	a
MODBUS	transaction.

Transaction	Identifier—This	identifier	is	for	transaction	pairing;
the	MODBUS	server	copies	the	request	transaction	identifier	in
the	response.
Unit	Identifier—This	field	is	for	intra-system	routing	purposes.	It
typically	communicates	to	a	MODBUS	serial	line	slave	through	a
gateway	between	an	Ethernet	TCP-IP	network	and	a	MODBUS
serial	line.	The	MODBUS	client	sets	this	field	in	the	request,	and
the	server	response	must	return	this	field	with	the	same	value.

TCP	Connection	Refnum	in	is	a	network	connection	refnum	that
uniquely	identifies	the	TCP	connection.	Use	TCP	Open
Connection.vi	to	open	a	TCP	connection.
Starting	Address	is	the	first	address	location	of	the	discrete
inputs	to	read.	This	address	is	sometimes	referred	to	as	offset.
Refer	to	your	device's	documentation	to	find	the	discrete	input
address	mapping.

Be	sure	to	specify	the	correct	address	in	the	MODBUS	device
configuration	software	for	the	register	you	want	to	use	in	LabVIEW.
In	most	MODBUS	device	configuration	software,	you	must	enter	a
name	for	the	register	you	want	to	use.	Per	MODBUS	convention,
the	register	address	of	the	slave	device	is	calculated	by
subtracting	1	from	the	register	name	that	you	specify	in	the	master
device	configuration	software.	The	MODBUS	LabVIEW	library

expects	register	addresses,	not	register	names,	so	you	may	need
to	subtract	1	from	the	address	you	defined	in	the	MODBUS	device
configuration	software.	For	example,	a	register	name	defined	as	2
in	a	MODBUS	configuration	device	translates	to	register	address	1
in	the	Holding	Registers	table	of	the	LabVIEW	MODBUS	library,	as
shown	below.
MODBUS
Device

Holding	Register	Name	=	2

LabVIEW Holding	Register	Address	=	1

Quantity	represents	how	many	discrete	inputs	to	read	from	the
slave.	The	VI	returns	the	discrete	input	at	Starting	Address	and
each	following	discrete	input	up	to	Quantity.	For	example,	if
Starting	Address	is	0	and	Quantity	is	4,	the	VI	reads	discrete
inputs	from	the	slave	at	address	0,	1,	2,	and	3.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

TCP	Connection	Refnum	(dup)	can	be	an	input	to	another
MODBUS	VI,	or	you	can	close	it	using	TCP	Close	Connection.vi.
Discrete	Inputs	represents	the	data	read	from	the	slave.
Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The
exception	code	mapping	is	as	follows:
0 No	error
1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Ethernet	Master	Query	Read	Exception
Status	(poly).vi
The	master	uses	this	VI	to	read	the	exception	status	from	the	slave.	This
corresponds	to	a	public	function	code	of	7	in	the	MODBUS	protocol.

MBAP	Header	is	a	cluster	containing	the	transaction	ID	and	Unit
ID.	This	is	additional	information	not	usually	required	for	a
MODBUS	transaction.

Transaction	Identifier—This	identifier	is	for	transaction	pairing;
the	MODBUS	server	copies	the	request	transaction	identifier	in
the	response.
Unit	Identifier—This	field	is	for	intra-system	routing	purposes.	It
typically	communicates	to	a	MODBUS	serial	line	slave	through	a
gateway	between	an	Ethernet	TCP-IP	network	and	a	MODBUS
serial	line.	The	MODBUS	client	sets	this	field	in	the	request,	and
the	server	response	must	return	this	field	with	the	same	value.

TCP	Connection	Refnum	in	is	a	network	connection	refnum	that
uniquely	identifies	the	TCP	connection.	Use	TCP	Open
Connection.vi	to	open	a	TCP	connection.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or

function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

TCP	Connection	Refnum	(dup)	can	be	an	input	to	another
MODBUS	VI,	or	you	can	close	it	using	TCP	Close	Connection.vi.
Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The
exception	code	mapping	is	as	follows:
0 No	error
1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a

warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Ethernet	Master	Query	Read	Holding
Registers	(poly).vi
The	master	uses	this	VI	to	read	the	slaves'	holding	registers.	This
corresponds	to	a	public	function	code	of	3	in	the	MODBUS	protocol.

MBAP	Header	is	a	cluster	containing	the	transaction	ID	and	Unit
ID.	This	is	additional	information	not	usually	required	for	a
MODBUS	transaction.

Transaction	Identifier—This	identifier	is	for	transaction	pairing;
the	MODBUS	server	copies	the	request	transaction	identifier	in
the	response.
Unit	Identifier—This	field	is	for	intra-system	routing	purposes.	It
typically	communicates	to	a	MODBUS	serial	line	slave	through	a
gateway	between	an	Ethernet	TCP-IP	network	and	a	MODBUS
serial	line.	The	MODBUS	client	sets	this	field	in	the	request,	and
the	server	response	must	return	this	field	with	the	same	value.

TCP	Connection	Refnum	in	is	a	network	connection	refnum	that
uniquely	identifies	the	TCP	connection.	Use	TCP	Open
Connection.vi	to	open	a	TCP	connection.
Starting	Address	is	the	first	address	location	of	the	holding
register	to	read.	This	address	is	sometimes	referred	to	as	offset.
Refer	to	your	device's	documentation	to	find	the	holding	register
address	mapping.

Be	sure	to	specify	the	correct	address	in	the	MODBUS	device
configuration	software	for	the	register	you	want	to	use	in	LabVIEW.
In	most	MODBUS	device	configuration	software,	you	must	enter	a
name	for	the	register	you	want	to	use.	Per	MODBUS	convention,
the	register	address	of	the	slave	device	is	calculated	by
subtracting	1	from	the	register	name	that	you	specify	in	the	master
device	configuration	software.	The	MODBUS	LabVIEW	library

expects	register	addresses,	not	register	names,	so	you	may	need
to	subtract	1	from	the	address	you	defined	in	the	MODBUS	device
configuration	software.	For	example,	a	register	name	defined	as	2
in	a	MODBUS	configuration	device	translates	to	register	address	1
in	the	Holding	Registers	table	of	the	LabVIEW	MODBUS	library,	as
shown	below.
MODBUS
Device

Holding	Register	Name	=	2

LabVIEW Holding	Register	Address	=	1

Quantity	represents	how	many	holding	registers	to	read	from	the
slave.	The	VI	returns	the	holding	register	at	Starting	Address	and
each	following	holding	register	up	to	Quantity.	For	example,	if
Starting	Address	is	0	and	Quantity	is	4,	the	VI	reads	holding
registers	from	the	slave	at	address	0,	1,	2,	and	3.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

TCP	Connection	Refnum	(dup)	can	be	an	input	to	another
MODBUS	VI,	or	you	can	close	it	using	TCP	Close	Connection.vi.
Holding	Registers	represents	the	data	read	from	the	slave.
Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The
exception	code	mapping	is	as	follows:
0 No	error
1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Ethernet	Master	Query	Read	Input	Registers
(poly).vi
The	master	uses	this	VI	to	read	the	slaves'	input	registers.	This
corresponds	to	a	public	function	code	of	4	in	the	MODBUS	protocol.

MBAP	Header	is	a	cluster	containing	the	transaction	ID	and	Unit
ID.	This	is	additional	information	not	usually	required	for	a
MODBUS	transaction.

Transaction	Identifier—This	identifier	is	for	transaction	pairing;
the	MODBUS	server	copies	the	request	transaction	identifier	in
the	response.
Unit	Identifier—This	field	is	for	intra-system	routing	purposes.	It
typically	communicates	to	a	MODBUS	serial	line	slave	through	a
gateway	between	an	Ethernet	TCP-IP	network	and	a	MODBUS
serial	line.	The	MODBUS	client	sets	this	field	in	the	request,	and
the	server	response	must	return	this	field	with	the	same	value.

TCP	Connection	Refnum	in	is	a	network	connection	refnum	that
uniquely	identifies	the	TCP	connection.	Use	TCP	Open
Connection.vi	to	open	a	TCP	connection.
Starting	Address	is	the	first	address	location	of	the	input	register
to	read.	This	address	is	sometimes	referred	to	as	offset.	Refer	to
your	device's	documentation	to	find	the	input	register	address
mapping.

Be	sure	to	specify	the	correct	address	in	the	MODBUS	device
configuration	software	for	the	register	you	want	to	use	in	LabVIEW.
In	most	MODBUS	device	configuration	software,	you	must	enter	a
name	for	the	register	you	want	to	use.	Per	MODBUS	convention,
the	register	address	of	the	slave	device	is	calculated	by
subtracting	1	from	the	register	name	that	you	specify	in	the	master
device	configuration	software.	The	MODBUS	LabVIEW	library

expects	register	addresses,	not	register	names,	so	you	may	need
to	subtract	1	from	the	address	you	defined	in	the	MODBUS	device
configuration	software.	For	example,	a	register	name	defined	as	2
in	a	MODBUS	configuration	device	translates	to	register	address	1
in	the	Holding	Registers	table	of	the	LabVIEW	MODBUS	library,	as
shown	below.
MODBUS
Device

Holding	Register	Name	=	2

LabVIEW Holding	Register	Address	=	1

Quantity	represents	how	many	input	registers	to	read	from	the
slave.	The	VI	returns	the	input	register	at	Starting	Address	and
each	following	input	register	up	to	Quantity.	For	example,	if
Starting	Address	is	0	and	Quantity	is	4,	the	VI	reads	input
registers	from	the	slave	at	address	0,	1,	2,	and	3.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

TCP	Connection	Refnum	(dup)	can	be	an	input	to	another
MODBUS	VI,	or	you	can	close	it	using	TCP	Close	Connection.vi.
Input	Registers	represents	the	data	read	from	the	slave.
Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The
exception	code	mapping	is	as	follows:
0 No	error
1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Ethernet	Master	Query	Write	Multiple	Coils
(poly).vi
The	master	uses	this	VI	to	write	multiple	coils	to	the	slave.	This
corresponds	to	a	public	function	code	of	15	in	the	MODBUS	protocol.

MBAP	Header	is	a	cluster	containing	the	transaction	ID	and	Unit
ID.	This	is	additional	information	not	usually	required	for	a
MODBUS	transaction.

Transaction	Identifier—This	identifier	is	for	transaction	pairing;
the	MODBUS	server	copies	the	request	transaction	identifier	in
the	response.
Unit	Identifier—This	field	is	for	intra-system	routing	purposes.	It
typically	communicates	to	a	MODBUS	serial	line	slave	through	a
gateway	between	an	Ethernet	TCP-IP	network	and	a	MODBUS
serial	line.	The	MODBUS	client	sets	this	field	in	the	request,	and
the	server	response	must	return	this	field	with	the	same	value.

TCP	Connection	Refnum	in	is	a	network	connection	refnum	that
uniquely	identifies	the	TCP	connection.	Use	TCP	Open
Connection.vi	to	open	a	TCP	connection.
Starting	Address	is	the	address	location	of	the	first	coil	to	write.
This	address	is	sometimes	referred	to	as	offset.	Refer	to	your
device's	documentation	to	find	the	coil	address	mapping.

Be	sure	to	specify	the	correct	address	in	the	MODBUS	device
configuration	software	for	the	register	you	want	to	use	in	LabVIEW.
In	most	MODBUS	device	configuration	software,	you	must	enter	a
name	for	the	register	you	want	to	use.	Per	MODBUS	convention,
the	register	address	of	the	slave	device	is	calculated	by
subtracting	1	from	the	register	name	that	you	specify	in	the	master
device	configuration	software.	The	MODBUS	LabVIEW	library
expects	register	addresses,	not	register	names,	so	you	may	need

to	subtract	1	from	the	address	you	defined	in	the	MODBUS	device
configuration	software.	For	example,	a	register	name	defined	as	2
in	a	MODBUS	configuration	device	translates	to	register	address	1
in	the	Holding	Registers	table	of	the	LabVIEW	MODBUS	library,	as
shown	below.
MODBUS
Device

Holding	Register	Name	=	2

LabVIEW Holding	Register	Address	=	1

Coils	is	the	coils	to	write.	The	array	length	represents	the	number
of	coils	that	will	be	written.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

TCP	Connection	Refnum	(dup)	can	be	an	input	to	another
MODBUS	VI,	or	you	can	close	it	using	TCP	Close	Connection.vi.

Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The

exception	code	mapping	is	as	follows:
0 No	error
1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Ethernet	Master	Query	Write	Multiple
Registers	(poly).vi
The	master	uses	this	VI	to	write	multiple	registers	to	the	slave.	This
corresponds	to	a	public	function	code	of	16	in	the	MODBUS	protocol.

MBAP	Header	is	a	cluster	containing	the	transaction	ID	and	Unit
ID.	This	is	additional	information	not	usually	required	for	a
MODBUS	transaction.

Transaction	Identifier—This	identifier	is	for	transaction	pairing;
the	MODBUS	server	copies	the	request	transaction	identifier	in
the	response.
Unit	Identifier—This	field	is	for	intra-system	routing	purposes.	It
typically	communicates	to	a	MODBUS	serial	line	slave	through	a
gateway	between	an	Ethernet	TCP-IP	network	and	a	MODBUS
serial	line.	The	MODBUS	client	sets	this	field	in	the	request,	and
the	server	response	must	return	this	field	with	the	same	value.

TCP	Connection	Refnum	in	is	a	network	connection	refnum	that
uniquely	identifies	the	TCP	connection.	Use	TCP	Open
Connection.vi	to	open	a	TCP	connection.
Starting	Address	is	the	address	location	of	the	first	register	to
write.	This	address	is	sometimes	referred	to	as	offset.	Refer	to
your	device's	documentation	to	find	the	register	address	mapping.

Be	sure	to	specify	the	correct	address	in	the	MODBUS	device
configuration	software	for	the	register	you	want	to	use	in	LabVIEW.
In	most	MODBUS	device	configuration	software,	you	must	enter	a
name	for	the	register	you	want	to	use.	Per	MODBUS	convention,
the	register	address	of	the	slave	device	is	calculated	by
subtracting	1	from	the	register	name	that	you	specify	in	the	master
device	configuration	software.	The	MODBUS	LabVIEW	library
expects	register	addresses,	not	register	names,	so	you	may	need

to	subtract	1	from	the	address	you	defined	in	the	MODBUS	device
configuration	software.	For	example,	a	register	name	defined	as	2
in	a	MODBUS	configuration	device	translates	to	register	address	1
in	the	Holding	Registers	table	of	the	LabVIEW	MODBUS	library,	as
shown	below.
MODBUS
Device

Holding	Register	Name	=	2

LabVIEW Holding	Register	Address	=	1

Registers	are	the	registers	to	write.	The	array	length	represents
how	many	registers	will	be	written.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

TCP	Connection	Refnum	(dup)	can	be	an	input	to	another
MODBUS	VI,	or	you	can	close	it	using	TCP	Close	Connection.vi.

Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The

exception	code	mapping	is	as	follows:
0 No	error
1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Ethernet	Master	Query	Write	Single	Coil
(poly).vi
The	master	uses	this	VI	to	write	a	single	coil	to	the	slave.	This
corresponds	to	a	public	function	code	of	5	in	the	MODBUS	protocol.

MBAP	Header	is	a	cluster	containing	the	transaction	ID	and	Unit
ID.	This	is	additional	information	not	usually	required	for	a
MODBUS	transaction.

Transaction	Identifier—This	identifier	is	for	transaction	pairing;
the	MODBUS	server	copies	the	request	transaction	identifier	in
the	response.
Unit	Identifier—This	field	is	for	intra-system	routing	purposes.	It
typically	communicates	to	a	MODBUS	serial	line	slave	through	a
gateway	between	an	Ethernet	TCP-IP	network	and	a	MODBUS
serial	line.	The	MODBUS	client	sets	this	field	in	the	request,	and
the	server	response	must	return	this	field	with	the	same	value.

TCP	Connection	Refnum	in	is	a	network	connection	refnum	that
uniquely	identifies	the	TCP	connection.	Use	TCP	Open
Connection.vi	to	open	a	TCP	connection.
Address	is	the	first	address	location	of	the	coil	to	write.	This
address	is	sometimes	referred	to	as	offset.	Refer	to	your	device's
documentation	to	find	the	coil	address	mapping.

Be	sure	to	specify	the	correct	address	in	the	MODBUS	device
configuration	software	for	the	register	you	want	to	use	in	LabVIEW.
In	most	MODBUS	device	configuration	software,	you	must	enter	a
name	for	the	register	you	want	to	use.	Per	MODBUS	convention,
the	register	address	of	the	slave	device	is	calculated	by
subtracting	1	from	the	register	name	that	you	specify	in	the	master
device	configuration	software.	The	MODBUS	LabVIEW	library
expects	register	addresses,	not	register	names,	so	you	may	need

to	subtract	1	from	the	address	you	defined	in	the	MODBUS	device
configuration	software.	For	example,	a	register	name	defined	as	2
in	a	MODBUS	configuration	device	translates	to	register	address	1
in	the	Holding	Registers	table	of	the	LabVIEW	MODBUS	library,	as
shown	below.
MODBUS
Device

Holding	Register	Name	=	2

LabVIEW Holding	Register	Address	=	1

Coil	is	the	coil	to	write.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

TCP	Connection	Refnum	(dup)	can	be	an	input	to	another
MODBUS	VI,	or	you	can	close	it	using	TCP	Close	Connection.vi.
Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The
exception	code	mapping	is	as	follows:
0 No	error

1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Ethernet	Master	Query	Write	Single	Register
(poly).vi
The	master	uses	this	VI	to	write	a	single	register	to	the	slave.	This
corresponds	to	a	public	function	code	of	6	in	the	MODBUS	protocol.

MBAP	Header	is	a	cluster	containing	the	transaction	ID	and	Unit
ID.	This	is	additional	information	not	usually	required	for	a
MODBUS	transaction.

Transaction	Identifier—This	identifier	is	for	transaction	pairing;
the	MODBUS	server	copies	the	request	transaction	identifier	in
the	response.
Unit	Identifier—This	field	is	for	intra-system	routing	purposes.	It
typically	communicates	to	a	MODBUS	serial	line	slave	through	a
gateway	between	an	Ethernet	TCP-IP	network	and	a	MODBUS
serial	line.	The	MODBUS	client	sets	this	field	in	the	request,	and
the	server	response	must	return	this	field	with	the	same	value.

TCP	Connection	Refnum	in	is	a	network	connection	refnum	that
uniquely	identifies	the	TCP	connection.	Use	TCP	Open
Connection.vi	to	open	a	TCP	connection.
Address	is	the	address	location	of	the	register	to	write.	This
address	is	sometimes	referred	to	as	offset.	Refer	to	your	device's
documentation	to	find	the	register	address	mapping.

Be	sure	to	specify	the	correct	address	in	the	MODBUS	device
configuration	software	for	the	register	you	want	to	use	in	LabVIEW.
In	most	MODBUS	device	configuration	software,	you	must	enter	a
name	for	the	register	you	want	to	use.	Per	MODBUS	convention,
the	register	address	of	the	slave	device	is	calculated	by
subtracting	1	from	the	register	name	that	you	specify	in	the	master
device	configuration	software.	The	MODBUS	LabVIEW	library
expects	register	addresses,	not	register	names,	so	you	may	need

to	subtract	1	from	the	address	you	defined	in	the	MODBUS	device
configuration	software.	For	example,	a	register	name	defined	as	2
in	a	MODBUS	configuration	device	translates	to	register	address	1
in	the	Holding	Registers	table	of	the	LabVIEW	MODBUS	library,	as
shown	below.
MODBUS
Device

Holding	Register	Name	=	2

LabVIEW Holding	Register	Address	=	1

Register	is	the	register	to	write.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

TCP	Connection	Refnum	(dup)	can	be	an	input	to	another
MODBUS	VI,	or	you	can	close	it	using	TCP	Close	Connection.vi.
Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The
exception	code	mapping	is	as	follows:
0 No	error

1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Serial	Master	Query	Read	Coils	(poly).vi
The	master	uses	this	VI	to	read	the	slaves'	coils.	This	corresponds	to	a
public	function	code	of	1	in	the	MODBUS	protocol.

Serial	Parameters	are	parameters	that	modify	the	way	the
MODBUS	frame	is	structured.	Refer	to	the	MODBUS	specification
for	more	information	about	the	MODBUS	Frame.	The	Serial
Parameters	in	LabVIEW	is	a	cluster	containing	an	enum	(Mode)
and	an	integer	(Slave	Address).
Mode
RTU	Data	is	represented	in	binary	format.
ASCII
Data	is	represented	in	ASCII,	so	it	is	human	readable.

Slave	Address
This	is	the	address	of	the	slave	you	are	communicating	with.
This	property	is	usually	valid	for	RS-485	networks,	which	can
have	multiple	MODBUS	devices	connected	to	the	same	network.

Note:	Consult	your	device	documentation	to	find	out	how	to
validate/change	the	address	of	your	device.

VISA	resource	name	specifies	the	resource	to	be	opened.	This
control	also	specifies	the	session	and	class.	For	more	information
about	VISA	resource	names,	refer	to	the	NI-VISA	Help.
Starting	Address	is	the	first	address	location	of	the	coil	to	read.
This	address	is	sometimes	referred	to	as	offset.	Refer	to	your
device's	documentation	to	find	the	coil	address	mapping.

Be	sure	to	specify	the	correct	address	in	the	MODBUS	device
configuration	software	for	the	register	you	want	to	use	in	LabVIEW.
In	most	MODBUS	device	configuration	software,	you	must	enter	a
name	for	the	register	you	want	to	use.	Per	MODBUS	convention,

the	register	address	of	the	slave	device	is	calculated	by
subtracting	1	from	the	register	name	that	you	specify	in	the	master
device	configuration	software.	The	MODBUS	LabVIEW	library
expects	register	addresses,	not	register	names,	so	you	may	need
to	subtract	1	from	the	address	you	defined	in	the	MODBUS	device
configuration	software.	For	example,	a	register	name	defined	as	2
in	a	MODBUS	configuration	device	translates	to	register	address	1
in	the	Holding	Registers	table	of	the	LabVIEW	MODBUS	library,	as
shown	below.
MODBUS
Device

Holding	Register	Name	=	2

LabVIEW Holding	Register	Address	=	1

Quantity	represents	how	many	coils	to	read	from	the	slave.	The	VI
returns	the	coil	at	Starting	Address	and	each	following	coil	up	to
Quantity.	For	example,	if	Starting	Address	is	0	and	Quantity	is
4,	the	VI	reads	coils	from	the	slave	at	address	0,	1,	2,	and	3.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.

source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,

what	inputs	are	in	error,	and	how	to	eliminate	the	error.

VISA	resource	name	out	is	the	resource	to	which	a	VISA	session
is	opened	and	its	class.	The	class	matches	that	of	the	VISA
resource	name	input.	For	more	information	about	VISA	resource
names,	refer	to	the	NI-VISA	Help.
Coils	represents	the	data	read	from	the	slave.
Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The
exception	code	mapping	is	as	follows:
0 No	error
1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.

source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Serial	Master	Query	Read	Discrete	Inputs
(poly).vi
The	master	uses	this	VI	to	read	the	slaves'	discrete	inputs.	This
corresponds	to	a	public	function	code	of	2	in	the	MODBUS	protocol.

Serial	Parameters	are	parameters	that	modify	the	way	the
MODBUS	frame	is	structured.	Refer	to	the	MODBUS	specification
for	more	information	about	the	MODBUS	Frame.	The	Serial
Parameters	in	LabVIEW	is	a	cluster	containing	an	enum	(Mode)
and	an	integer	(Slave	Address).
Mode
RTU	Data	is	represented	in	binary	format.
ASCII
Data	is	represented	in	ASCII,	so	it	is	human	readable.

Slave	Address
This	is	the	address	of	the	slave	you	are	communicating	with.
This	property	is	usually	valid	for	RS-485	networks,	which	can
have	multiple	MODBUS	devices	connected	to	the	same	network.

Note:	Consult	your	device	documentation	to	find	out	how	to
validate/change	the	address	of	your	device.

VISA	resource	name	specifies	the	resource	to	be	opened.	This
control	also	specifies	the	session	and	class.	For	more	information
about	VISA	resource	names,	refer	to	the	NI-VISA	Help.
Starting	Address	is	the	first	address	location	of	the	discrete
inputs	to	read.	This	address	is	sometimes	referred	to	as	offset.
Refer	to	your	device's	documentation	to	find	the	discrete	input
address	mapping.

Be	sure	to	specify	the	correct	address	in	the	MODBUS	device
configuration	software	for	the	register	you	want	to	use	in	LabVIEW.

In	most	MODBUS	device	configuration	software,	you	must	enter	a
name	for	the	register	you	want	to	use.	Per	MODBUS	convention,
the	register	address	of	the	slave	device	is	calculated	by
subtracting	1	from	the	register	name	that	you	specify	in	the	master
device	configuration	software.	The	MODBUS	LabVIEW	library
expects	register	addresses,	not	register	names,	so	you	may	need
to	subtract	1	from	the	address	you	defined	in	the	MODBUS	device
configuration	software.	For	example,	a	register	name	defined	as	2
in	a	MODBUS	configuration	device	translates	to	register	address	1
in	the	Holding	Registers	table	of	the	LabVIEW	MODBUS	library,	as
shown	below.
MODBUS
Device

Holding	Register	Name	=	2

LabVIEW Holding	Register	Address	=	1

Quantity	represents	how	many	discrete	inputs	to	read	from	the
slave.	The	VI	returns	the	discrete	input	at	Starting	Address	and
each	following	discrete	input	up	to	Quantity.	For	example,	if
Starting	Address	is	0	and	Quantity	is	4,	the	VI	reads	discrete
inputs	from	the	slave	at	address	0,	1,	2,	and	3.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,

code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

VISA	resource	name	out	is	the	resource	to	which	a	VISA	session
is	opened	and	its	class.	The	class	matches	that	of	the	VISA
resource	name	input.	For	more	information	about	VISA	resource
names,	refer	to	the	NI-VISA	Help.
Discrete	Inputs	represents	the	data	read	from	the	slave.
Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The
exception	code	mapping	is	as	follows:
0 No	error
1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.

source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Serial	Master	Query	Read	Exception	Status
(poly).vi
The	master	uses	this	VI	to	read	the	exception	status	from	the	slave.	This
corresponds	to	a	public	function	code	of	7	in	the	MODBUS	protocol.

VISA	resource	name	specifies	the	resource	to	be	opened.	This
control	also	specifies	the	session	and	class.	For	more	information
about	VISA	resource	names,	refer	to	the	NI-VISA	Help.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

Serial	Parameters	are	parameters	that	modify	the	way	the
MODBUS	frame	is	structured.	Refer	to	the	MODBUS	specification
for	more	information	about	the	MODBUS	Frame.	The	Serial

Parameters	in	LabVIEW	is	a	cluster	containing	an	enum	(Mode)
and	an	integer	(Slave	Address).
Mode
RTU	Data	is	represented	in	binary	format.
ASCII
Data	is	represented	in	ASCII,	so	it	is	human	readable.

Slave	Address
This	is	the	address	of	the	slave	you	are	communicating	with.
This	property	is	usually	valid	for	RS-485	networks,	which	can
have	multiple	MODBUS	devices	connected	to	the	same	network.

Note:	Consult	your	device	documentation	to	find	out	how	to
validate/change	the	address	of	your	device.

VISA	resource	name	out	is	the	resource	to	which	a	VISA	session
is	opened	and	its	class.	The	class	matches	that	of	the	VISA
resource	name	input.	For	more	information	about	VISA	resource
names,	refer	to	the	NI-VISA	Help.
Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The
exception	code	mapping	is	as	follows:
0 No	error
1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front

panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Serial	Master	Query	Read	Holding	Registers
(poly).vi
The	master	uses	this	VI	to	read	the	slaves'	holding	registers.	This
corresponds	to	a	public	function	code	of	3	in	the	MODBUS	protocol.

Serial	Parameters	are	parameters	that	modify	the	way	the
MODBUS	frame	is	structured.	Refer	to	the	MODBUS	specification
for	more	information	about	the	MODBUS	Frame.	The	Serial
Parameters	in	LabVIEW	is	a	cluster	containing	an	enum	(Mode)
and	an	integer	(Slave	Address).
Mode
RTU	Data	is	represented	in	binary	format.
ASCII
Data	is	represented	in	ASCII,	so	it	is	human	readable.

Slave	Address
This	is	the	address	of	the	slave	you	are	communicating	with.
This	property	is	usually	valid	for	RS-485	networks,	which	can
have	multiple	MODBUS	devices	connected	to	the	same	network.

Note:	Consult	your	device	documentation	to	find	out	how	to
validate/change	the	address	of	your	device.

VISA	resource	name	specifies	the	resource	to	be	opened.	This
control	also	specifies	the	session	and	class.	For	more	information
about	VISA	resource	names,	refer	to	the	NI-VISA	Help.
Starting	Address	is	the	first	address	location	of	the	holding
register	to	read.	This	address	is	sometimes	referred	to	as	offset.
Refer	to	your	device's	documentation	to	find	the	holding	register
address	mapping.

Be	sure	to	specify	the	correct	address	in	the	MODBUS	device
configuration	software	for	the	register	you	want	to	use	in	LabVIEW.

In	most	MODBUS	device	configuration	software,	you	must	enter	a
name	for	the	register	you	want	to	use.	Per	MODBUS	convention,
the	register	address	of	the	slave	device	is	calculated	by
subtracting	1	from	the	register	name	that	you	specify	in	the	master
device	configuration	software.	The	MODBUS	LabVIEW	library
expects	register	addresses,	not	register	names,	so	you	may	need
to	subtract	1	from	the	address	you	defined	in	the	MODBUS	device
configuration	software.	For	example,	a	register	name	defined	as	2
in	a	MODBUS	configuration	device	translates	to	register	address	1
in	the	Holding	Registers	table	of	the	LabVIEW	MODBUS	library,	as
shown	below.
MODBUS
Device

Holding	Register	Name	=	2

LabVIEW Holding	Register	Address	=	1

Quantity	represents	how	many	holding	registers	to	read	from	the
slave.	The	VI	returns	the	holding	register	at	Starting	Address	and
each	following	holding	register	up	to	Quantity.	For	example,	if
Starting	Address	is	0	and	Quantity	is	4,	the	VI	reads	holding
registers	from	the	slave	at	address	0,	1,	2,	and	3.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,

code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

VISA	resource	name	out	is	the	resource	to	which	a	VISA	session
is	opened	and	its	class.	The	class	matches	that	of	the	VISA
resource	name	input.	For	more	information	about	VISA	resource
names,	refer	to	the	NI-VISA	Help.
Holding	Registers	represents	the	data	read	from	the	slave	(array
of	U16).
Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The
exception	code	mapping	is	as	follows:
0 No	error
1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.

source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Serial	Master	Query	Read	Input	Registers
(poly).vi
The	master	uses	this	VI	to	read	the	slaves	input	registers.	This
corresponds	to	a	public	function	code	of	4	in	the	MODBUS	protocol.

Serial	Parameters	are	parameters	that	modify	the	way	the
MODBUS	frame	is	structured.	Refer	to	the	MODBUS	specification
for	more	information	about	the	MODBUS	Frame.	The	Serial
Parameters	in	LabVIEW	is	a	cluster	containing	an	enum	(Mode)
and	an	integer	(Slave	Address).
Mode
RTU	Data	is	represented	in	binary	format.
ASCII
Data	is	represented	in	ASCII,	so	it	is	human	readable.

Slave	Address
This	is	the	address	of	the	slave	you	are	communicating	with.
This	property	is	usually	valid	for	RS-485	networks,	which	can
have	multiple	MODBUS	devices	connected	to	the	same	network.

Note:	Consult	your	device	documentation	to	find	out	how	to
validate/change	the	address	of	your	device.

VISA	resource	name	specifies	the	resource	to	be	opened.	This
control	also	specifies	the	session	and	class.	For	more	information
about	VISA	resource	names,	refer	to	the	NI-VISA	Help.
Starting	Address	is	the	first	address	location	of	the	input	register
to	read.	This	address	is	sometimes	referred	to	as	offset.	Refer	to
your	device's	documentation	to	find	the	input	register	address
mapping.

Be	sure	to	specify	the	correct	address	in	the	MODBUS	device
configuration	software	for	the	register	you	want	to	use	in	LabVIEW.

In	most	MODBUS	device	configuration	software,	you	must	enter	a
name	for	the	register	you	want	to	use.	Per	MODBUS	convention,
the	register	address	of	the	slave	device	is	calculated	by
subtracting	1	from	the	register	name	that	you	specify	in	the	master
device	configuration	software.	The	MODBUS	LabVIEW	library
expects	register	addresses,	not	register	names,	so	you	may	need
to	subtract	1	from	the	address	you	defined	in	the	MODBUS	device
configuration	software.	For	example,	a	register	name	defined	as	2
in	a	MODBUS	configuration	device	translates	to	register	address	1
in	the	Holding	Registers	table	of	the	LabVIEW	MODBUS	library,	as
shown	below.
MODBUS
Device

Holding	Register	Name	=	2

LabVIEW Holding	Register	Address	=	1

Quantity	represents	how	many	input	registers	to	read	from	the
slave.	The	VI	returns	the	input	register	at	Starting	Address	and
each	following	input	register	up	to	Quantity.	For	example,	if
Starting	Address	is	0	and	Quantity	is	4,	the	VI	reads	input
registers	from	the	slave	at	address	0,	1,	2,	and	3.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,

code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

VISA	resource	name	out	is	the	resource	to	which	a	VISA	session
is	opened	and	its	class.	The	class	matches	that	of	the	VISA
resource	name	input.	For	more	information	about	VISA	resource
names,	refer	to	the	NI-VISA	Help.
Input	Registers	represents	the	data	read	from	the	slave	(array	of
U16).
Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The
exception	code	mapping	is	as	follows:
0 No	error
1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.

source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Serial	Master	Query	Write	Multiple	Coils
(poly).vi
The	master	uses	this	VI	to	write	multiple	coils	to	the	slave.	This
corresponds	to	a	public	function	code	of	15	in	the	MODBUS	protocol.

Serial	Parameters	are	parameters	that	modify	the	way	the
MODBUS	frame	is	structured.	Refer	to	the	MODBUS	specification
for	more	information	about	the	MODBUS	Frame.	The	Serial
Parameters	in	LabVIEW	is	a	cluster	containing	an	enum	(Mode)
and	an	integer	(Slave	Address).
Mode
RTU	Data	is	represented	in	binary	format.
ASCII
Data	is	represented	in	ASCII,	so	it	is	human	readable.

Slave	Address
This	is	the	address	of	the	slave	you	are	communicating	with.
This	property	is	usually	valid	for	RS-485	networks,	which	can
have	multiple	MODBUS	devices	connected	to	the	same	network.

Note:	Consult	your	device	documentation	to	find	out	how	to
validate/change	the	address	of	your	device.

VISA	resource	name	specifies	the	resource	to	be	opened.	This
control	also	specifies	the	session	and	class.	For	more	information
about	VISA	resource	names,	refer	to	the	NI-VISA	Help.
Starting	Address	is	the	address	location	of	the	first	coil	to	write.
This	address	is	sometimes	referred	to	as	offset.	Refer	to	your
device's	documentation	to	find	the	coil	address	mapping.

Be	sure	to	specify	the	correct	address	in	the	MODBUS	device
configuration	software	for	the	register	you	want	to	use	in	LabVIEW.
In	most	MODBUS	device	configuration	software,	you	must	enter	a

name	for	the	register	you	want	to	use.	Per	MODBUS	convention,
the	register	address	of	the	slave	device	is	calculated	by
subtracting	1	from	the	register	name	that	you	specify	in	the	master
device	configuration	software.	The	MODBUS	LabVIEW	library
expects	register	addresses,	not	register	names,	so	you	may	need
to	subtract	1	from	the	address	you	defined	in	the	MODBUS	device
configuration	software.	For	example,	a	register	name	defined	as	2
in	a	MODBUS	configuration	device	translates	to	register	address	1
in	the	Holding	Registers	table	of	the	LabVIEW	MODBUS	library,	as
shown	below.
MODBUS
Device

Holding	Register	Name	=	2

LabVIEW Holding	Register	Address	=	1

Coils	is	the	coils	to	write.	The	array	length	represents	the	number
of	coils	that	will	be	written.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

VISA	resource	name	out	is	the	resource	to	which	a	VISA	session
is	opened	and	its	class.	The	class	matches	that	of	the	VISA
resource	name	input.	For	more	information	about	VISA	resource
names,	refer	to	the	NI-VISA	Help.
Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The
exception	code	mapping	is	as	follows:
0 No	error
1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Serial	Master	Query	Write	Multiple	Registers
(poly).vi
The	master	uses	this	VI	to	write	multiple	registers	to	the	slave.	This
corresponds	to	a	public	function	code	of	16	in	the	MODBUS	protocol.

Serial	Parameters	are	parameters	that	modify	the	way	the
MODBUS	frame	is	structured.	Refer	to	the	MODBUS	specification
for	more	information	about	the	MODBUS	Frame.	The	Serial
Parameters	in	LabVIEW	is	a	cluster	containing	an	enum	(Mode)
and	an	integer	(Slave	Address).
Mode
RTU	Data	is	represented	in	binary	format.
ASCII
Data	is	represented	in	ASCII,	so	it	is	human	readable.

Slave	Address
This	is	the	address	of	the	slave	you	are	communicating	with.
This	property	is	usually	valid	for	RS-485	networks,	which	can
have	multiple	MODBUS	devices	connected	to	the	same	network.

Note:	Consult	your	device	documentation	to	find	out	how	to
validate/change	the	address	of	your	device.

VISA	resource	name	specifies	the	resource	to	be	opened.	This
control	also	specifies	the	session	and	class.	For	more	information
about	VISA	resource	names,	refer	to	the	NI-VISA	Help.
Starting	Address	is	the	address	location	of	the	first	register	to
write.	This	address	is	sometimes	referred	to	as	offset.	Refer	to
your	device's	documentation	to	find	the	register	address	mapping.

Be	sure	to	specify	the	correct	address	in	the	MODBUS	device
configuration	software	for	the	register	you	want	to	use	in	LabVIEW.
In	most	MODBUS	device	configuration	software,	you	must	enter	a

name	for	the	register	you	want	to	use.	Per	MODBUS	convention,
the	register	address	of	the	slave	device	is	calculated	by
subtracting	1	from	the	register	name	that	you	specify	in	the	master
device	configuration	software.	The	MODBUS	LabVIEW	library
expects	register	addresses,	not	register	names,	so	you	may	need
to	subtract	1	from	the	address	you	defined	in	the	MODBUS	device
configuration	software.	For	example,	a	register	name	defined	as	2
in	a	MODBUS	configuration	device	translates	to	register	address	1
in	the	Holding	Registers	table	of	the	LabVIEW	MODBUS	library,	as
shown	below.
MODBUS
Device

Holding	Register	Name	=	2

LabVIEW Holding	Register	Address	=	1

Registers	are	the	registers	to	write.	The	array	length	represents
how	many	registers	will	be	written.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.

source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,

what	inputs	are	in	error,	and	how	to	eliminate	the	error.

VISA	resource	name	out	is	the	resource	to	which	a	VISA	session
is	opened	and	its	class.	The	class	matches	that	of	the	VISA
resource	name	input.	For	more	information	about	VISA	resource
names,	refer	to	the	NI-VISA	Help.
Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The
exception	code	mapping	is	as	follows:
0 No	error
1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Serial	Master	Query	Write	Single	Coil
(poly).vi
The	master	uses	this	VI	to	write	a	single	coil	to	the	slave.	This
corresponds	to	a	public	function	code	of	5	in	the	MODBUS	protocol.

Serial	Parameters	are	parameters	that	modify	the	way	the
MODBUS	frame	is	structured.	Refer	to	the	MODBUS	specification
for	more	information	about	the	MODBUS	Frame.	The	Serial
Parameters	in	LabVIEW	is	a	cluster	containing	an	enum	(Mode)
and	an	integer	(Slave	Address).
Mode
RTU	Data	is	represented	in	binary	format.
ASCII
Data	is	represented	in	ASCII,	so	it	is	human	readable.

Slave	Address
This	is	the	address	of	the	slave	you	are	communicating	with.
This	property	is	usually	valid	for	RS-485	networks,	which	can
have	multiple	MODBUS	devices	connected	to	the	same	network.

Note:	Consult	your	device	documentation	to	find	out	how	to
validate/change	the	address	of	your	device.

VISA	resource	name	specifies	the	resource	to	be	opened.	This
control	also	specifies	the	session	and	class.	For	more	information
about	VISA	resource	names,	refer	to	the	NI-VISA	Help.
Address	is	the	address	location	of	the	coil	to	write.	This	address	is
sometimes	referred	to	as	offset.	Refer	to	your	device's
documentation	to	find	the	coil	address	mapping.

Be	sure	to	specify	the	correct	address	in	the	MODBUS	device
configuration	software	for	the	register	you	want	to	use	in	LabVIEW.

In	most	MODBUS	device	configuration	software,	you	must	enter	a
name	for	the	register	you	want	to	use.	Per	MODBUS	convention,
the	register	address	of	the	slave	device	is	calculated	by
subtracting	1	from	the	register	name	that	you	specify	in	the	master
device	configuration	software.	The	MODBUS	LabVIEW	library
expects	register	addresses,	not	register	names,	so	you	may	need
to	subtract	1	from	the	address	you	defined	in	the	MODBUS	device
configuration	software.	For	example,	a	register	name	defined	as	2
in	a	MODBUS	configuration	device	translates	to	register	address	1
in	the	Holding	Registers	table	of	the	LabVIEW	MODBUS	library,	as
shown	below.
MODBUS
Device

Holding	Register	Name	=	2

LabVIEW Holding	Register	Address	=	1

Coil	is	the	coil	to	write.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

VISA	resource	name	out	is	the	resource	to	which	a	VISA	session
is	opened	and	its	class.	The	class	matches	that	of	the	VISA
resource	name	input.	For	more	information	about	VISA	resource
names,	refer	to	the	NI-VISA	Help.
Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The
exception	code	mapping	is	as	follows:
0 No	error
1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Serial	Master	Query	Write	Single	Register
(poly).vi
The	master	uses	this	VI	to	write	a	single	register	to	the	slave.	This
corresponds	to	a	public	function	code	of	6	in	the	MODBUS	protocol.

Serial	Parameters	are	parameters	that	modify	the	way	the
MODBUS	frame	is	structured.	Refer	to	the	MODBUS	specification
for	more	information	about	the	MODBUS	Frame.	The	Serial
Parameters	in	LabVIEW	is	a	cluster	containing	an	enum	(Mode)
and	an	integer	(Slave	Address).
Mode
RTU	Data	is	represented	in	binary	format.
ASCII
Data	is	represented	in	ASCII,	so	it	is	human	readable.

Slave	Address
This	is	the	address	of	the	slave	you	are	communicating	with.
This	property	is	usually	valid	for	RS-485	networks,	which	can
have	multiple	MODBUS	devices	connected	to	the	same	network.

Note:	Consult	your	device	documentation	to	find	out	how	to
validate/change	the	address	of	your	device.

VISA	resource	name	specifies	the	resource	to	be	opened.	This
control	also	specifies	the	session	and	class.	For	more	information
about	VISA	resource	names,	refer	to	the	NI-VISA	Help.
Address	is	the	address	location	of	the	register	to	write.	This
address	is	sometimes	referred	to	as	offset.	Refer	to	your	device's
documentation	to	find	the	register	address	mapping.

Be	sure	to	specify	the	correct	address	in	the	MODBUS	device
configuration	software	for	the	register	you	want	to	use	in	LabVIEW.
In	most	MODBUS	device	configuration	software,	you	must	enter	a

name	for	the	register	you	want	to	use.	Per	MODBUS	convention,
the	register	address	of	the	slave	device	is	calculated	by
subtracting	1	from	the	register	name	that	you	specify	in	the	master
device	configuration	software.	The	MODBUS	LabVIEW	library
expects	register	addresses,	not	register	names,	so	you	may	need
to	subtract	1	from	the	address	you	defined	in	the	MODBUS	device
configuration	software.	For	example,	a	register	name	defined	as	2
in	a	MODBUS	configuration	device	translates	to	register	address	1
in	the	Holding	Registers	table	of	the	LabVIEW	MODBUS	library,	as
shown	below.
MODBUS
Device

Holding	Register	Name	=	2

LabVIEW Holding	Register	Address	=	1

Holding	Register	is	the	holding	register	to	write.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

VISA	resource	name	out	is	the	resource	to	which	a	VISA	session
is	opened	and	its	class.	The	class	matches	that	of	the	VISA
resource	name	input.	For	more	information	about	VISA	resource
names,	refer	to	the	NI-VISA	Help.
Exception	Code	is	nonzero	if	a	MODBUS	error	has	occurred.	The
exception	code	mapping	is	as	follows:
0 No	error
1 Illegal	function
2 Illegal	data	address
3 Illegal	data	value
4 Failure	in	associated	device
5 Acknowledge
6 Busy,	rejected	message
7 NAK—Negative	acknowledge
For	more	information	about	these	error	codes,	refer	to	your
device's	documentation.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

Introduction	to	the	Slave	VIs
You	can	use	the	MODBUS	Library	VIs	as	masters	or	slaves.	When	used
as	a	master,	the	machine	that	the	VIs	are	running	on	sends	commands	or
queries	to	the	slave(s).	The	master	reads/writes	the	slave's	coils/discrete
inputs/registers.	As	a	slave,	the	machine	must	store	this	data
somewhere.	The	slave	VIs	make	use	of	arrays	to	store	and	access	this
data.	The	first	VI	you	must	use	is	MB	Slave	Init	(poly).vi,	which	initializes
two	65536	U16	arrays	(for	registers)	and	two	65536	Boolean	arrays	(for
coils	and	discrete	inputs).	All	other	slave	VIs	access	this	memory	location
in	different	ways.
The	following	table	describes	the	primary	table	object	types	and
read/write	types.

Primary	Tables Object	Type Type
Discrete	inputs Single	bit Read	only
Coils Single	bit Read/write
Input	registers 16-bit	word Read	only
Holding	registers 16-bit	word Read/write

MB	Slave	Init	(poly).vi
You	must	use	this	VI	to	initialize	two	65536	U16	arrays	(for	registers)	and
two	65536	Boolean	arrays	(for	coils	and	discrete	inputs).

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

Holding	Registers	represents	an	empty	array	for	storing	the
holding	registers.
Coils	represents	an	empty	array	for	storing	the	coils.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE

(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Slave	Read	All	Coils	(poly).vi
Reads	all	coils	from	the	slave's	memory	table.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

Coils	represents	the	entire	table	used	for	storing	the	coils.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a

warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Slave	Read	All	Discrete	Inputs	(poly).vi
Reads	all	discrete	inputs	from	the	slave's	memory	table.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

Discrete	Inputs	represents	the	entire	table	used	for	storing	the
discrete	inputs.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code

is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Slave	Read	All	Holding	Registers	(poly).vi
Reads	all	holding	registers	from	the	slave's	memory	table.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

Holding	Registers	represents	the	entire	table	used	for	storing	the
holding	registers.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code

is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Slave	Read	All	Input	Registers	(poly).vi
Reads	all	input	registers	from	the	slave's	memory	table.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

Input	Registers	represents	the	entire	table	used	for	storing	the
input	registers.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code

is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Slave	Read	Coils	(poly).vi
Returns	the	slave	coils	from	Starting	Address	to	Starting	Address	+
Quantity.

Starting	Address	is	the	first	address	location	of	the	coils	to	read.
This	address	is	sometimes	referred	to	as	offset.
Quantity	represents	how	many	coils	to	read.	The	VI	returns	the
coils	at	Starting	Address	and	each	following	coil	up	to	Quantity.
For	example,	if	Starting	Address	is	0	and	Quantity	is	4,	the	VI
reads	coils	from	addresses	0,	1,	2,	and	3.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

Coils	represents	the	data	stored	in	the	coils	table.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status

that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Slave	Read	Discrete	Inputs	(poly).vi
Returns	the	slave's	discrete	inputs	from	Starting	Address	to	Starting
Address	+	Quantity.

Starting	Address	is	the	first	address	location	of	the	discrete
inputs	to	read.	This	address	is	sometimes	referred	to	as	offset.
Quantity	represents	how	many	discrete	inputs	to	read.	The	VI
returns	the	discrete	inputs	at	Starting	Address	and	each	following
discrete	input	up	to	Quantity.	For	example,	if	Starting	Address	is
0	and	Quantity	is	4,	the	VI	reads	discrete	inputs	from	addresses	0,
1,	2,	and	3.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

Discrete	Inputs	represents	the	data	stored	in	the	discrete	inputs
table.
error	out	contains	error	information.	If	error	in	indicates	that	an

error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Slave	Read	Holding	Registers	(poly).vi
Returns	the	slave	holding	registers	from	Starting	Address	to	Starting
Address	+	Quantity.

Starting	Address	is	the	first	address	location	of	the	holding
register	to	read.	This	address	is	sometimes	referred	to	as	offset.
Quantity	represents	how	many	holding	registers	to	read.	The	VI
returns	the	holding	registers	at	Starting	Address	and	each
following	holding	register	up	to	Quantity.	For	example,	if	Starting
Address	is	0	and	Quantity	is	4,	the	VI	reads	holding	registers
from	addresses	0,	1,	2,	and	3.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

Holding	Registers	represents	the	data	read	from	the	slave.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the

same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Slave	Read	Input	Registers	(poly).vi
Returns	the	slave's	input	registers	from	Starting	Address	to	Starting
Address	+	Quantity.

Starting	Address	is	the	first	address	location	of	the	input	register
to	read.	This	address	is	sometimes	referred	to	as	offset.
Quantity	represents	how	many	input	registers	to	read.	The	VI
returns	the	input	registers	at	Starting	Address	and	each	following
input	register	up	to	Quantity.	For	example,	if	Starting	Address	is
0	and	Quantity	is	4,	the	VI	reads	input	registers	from	addresses	0,
1,	2,	and	3.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

Input	Registers	represents	the	data	read	from	the	slave.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the

same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Slave	Write	Coils	(poly).vi
Writes	multiple	coils	to	the	slave	memory	tables.

Starting	Address	is	the	address	location	of	the	first	coil	to	write.
This	address	is	sometimes	referred	to	as	offset.
Coils	to	write.	The	array	length	represents	the	quantity.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.

code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Slave	Write	Discrete	Inputs	(poly).vi
Writes	multiple	discrete	inputs	to	the	slave	memory	tables.

Starting	Address	is	the	address	location	of	the	first	discrete	input
to	write.	This	address	is	sometimes	referred	to	as	offset.
Discrete	Inputs	to	write.	The	array	length	represents	the	quantity.

Note:	Only	the	slave	can	write	discrete	inputs.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Slave	Write	Holding	Registers	(poly).vi
Writes	multiple	holding	registers	to	the	slave	memory	tables.

Starting	Address	is	the	address	location	of	the	first	holding
register	to	write.	This	address	is	sometimes	referred	to	as	offset.
Holding	Registers	to	write.	The	array	length	represents	the
quantity.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE

(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Slave	Write	Input	Registers	(poly).vi
Writes	multiple	input	registers	to	the	slave	memory	tables.

Starting	Address	is	the	address	location	of	the	first	input	register
to	write.	This	address	is	sometimes	referred	to	as	offset.
Input	Registers	to	write.	The	array	length	represents	the	quantity.

Note:	Only	the	slave	can	write	input	registers.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.
Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Ethernet	Slave	Demon.vi
The	Ethernet	slave	demon	waits	and	establishes	connection	to	Ethernet
masters.	It	then	constantly	scans	the	TCP	buffer	for	commands	from	the
master.	When	it	detects	a	command	from	the	master,	it	updates	the
memory	tables	with	data	and	also	responds	to	the	master's	query	for
data.	You	must	use	the	Slave	API	to	access	the	data	in	the	tables.

Port	is	the	port	number	on	which	you	want	to	listen	for	a
connection.
Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	slave	waits	for	the	master's	response	before	throwing	an	error.
Period	represents	the	duration	of	a	MODBUS	cycle,	or	how	often
the	slave	scans	the	TCP	buffer	for	commands	from	the	masters.
#	of	connections	is	the	number	of	connections	to	TCP	masters.
Demon	Running	is	true	if	the	demon	is	running	(listening	for
connections	and	communication	with	masters).

MB	Serial	Init.vi
Initializes	the	serial	port	specified	by	VISA	resource	name	to	the
specified	settings.	Wire	data	to	the	VISA	resource	name	input	to
determine	the	polymorphic	instance	to	use	or	manually	select	the
instance.

Mode	is	used	to	select	which	type	of	MODBUS	frame	to	use.	For
MB	Serial	Init.vi,	this	affects	the	number	of	data	bits	the	serial	port
uses.
RTU	Data	is	represented	in	binary	format	(8	data	bits).
ASCII
Data	is	represented	in	ASCII,	so	it	is	human	readable	(7	data
bits).

VISA	resource	name	specifies	the	resource	to	be	opened.	This
control	also	specifies	the	session	and	class.	For	more	information
about	VISA	resource	names,	refer	to	the	NI-VISA	Help.
Baud	Rate	is	the	rate	of	transmission.	The	default	is	9600.
Parity	specifies	the	parity	used	for	every	frame	to	be	transmitted
or	received.	This	input	accepts	the	following	values:
0 No	parity	(default)
1 Odd	parity
2 Even	parity
3 Mark	parity
4 Space	parity

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	If	an	error	occurs	while	this	VI	or	function	runs,	the	VI
or	function	runs	normally	and	sets	its	own	error	status	in	error	out.

Use	the	Simple	Error	Handler	or	General	Error	Handler	VIs	to
display	the	description	of	the	error	code.	Use	error	in	and	error
out	to	check	errors	and	to	specify	execution	order	by	wiring	error
out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	identifies	where	an	error	occurred.	The	source
string	includes	the	name	of	the	VI	that	produced	the	error,
what	inputs	are	in	error,	and	how	to	eliminate	the	error.

Flow	Control	sets	the	type	of	control	the	transfer	mechanism
uses.	This	input	accepts	the	following	values:
0 None	(default)—The	transfer	mechanism	does	not	use	flow

control.	Buffers	on	both	sides	of	the	connection	are	assumed
to	be	large	enough	to	hold	all	data	transferred.

1 XON/XOFF—The	transfer	mechanism	uses	the	XON	and
XOFF	characters	to	perform	flow	control.	The	transfer
mechanism	controls	input	flow	by	sending	XOFF	when	the
receive	buffer	is	nearly	full,	and	it	controls	the	output	flow	by
suspending	transmission	when	XOFF	is	received.

2 RTS/CTS—The	transfer	mechanism	uses	the	RTS	output
signal	and	the	CTS	input	signal	to	perform	flow	control.	The
transfer	mechanism	controls	input	flow	by	unasserting	the
RTS	signal	when	the	receive	buffer	is	nearly	full,	and	it
controls	output	flow	by	suspending	the	transmission	when	the
CTS	signal	is	unasserted.

3 XON/XOFF	and	RTS/CTS—The	transfer	mechanism	uses	the
XON	and	XOFF	characters	and	the	RTS	output	signal	and
CTS	input	signal	to	perform	flow	control.	The	transfer
mechanism	controls	input	flow	by	sending	XOFF	and
unasserting	the	RTS	signal	when	the	receive	buffer	is	nearly
full,	and	it	controls	the	output	flow	by	suspending	transmission

when	XOFF	is	received	and	the	CTS	is	unasserted.

4 DTR/DSR—The	transfer	mechanism	uses	the	DTR	output
signal	and	the	DSR	input	signal	to	perform	flow	control.	The
transfer	mechanism	controls	input	flow	by	unasserting	the
DTR	signal	when	the	receive	buffer	is	nearly	full,	and	it
controls	output	flow	by	suspending	the	transmission	when	the
DSR	signal	is	unasserted.

5 XON/XOFF	and	DTR/DSR—The	transfer	mechanism	uses
the	XON	and	XOFF	characters	and	the	DTR	output	signal	and
DSR	input	signal	to	perform	flow	control.	The	transfer
mechanism	controls	input	flow	by	sending	XOFF	and
unasserting	the	DTR	signal	when	the	receive	buffer	is	nearly
full,	and	it	controls	the	output	flow	by	suspending	transmission
when	XOFF	is	received	and	the	DSR	signal	is	unasserted.

Timeout	specifies	the	maximum	time	period,	in	milliseconds,	that
the	VI	waits	for	the	slave's	response	before	throwing	an	error.
VISA	resource	name	out	is	the	resource	to	which	a	VISA	session
is	opened	and	its	class.	The	class	matches	that	of	the	VISA
resource	name	input.	For	more	information	about	VISA	resource
names,	refer	to	the	NI-VISA	Help.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

MB	Serial	Slave	Demon.vi
The	serial	slave	demon	constantly	scans	the	serial	port	for	commands
from	the	master.	When	it	detects	a	command	from	the	master,	it	updates
the	memory	tables	with	data	and	also	responds	to	the	master's	query	for
data.	You	must	use	the	slave	API	to	access	the	data	in	the	tables.

Serial	Port	Setup	(RT	Only)	is	required	to	configure	the	serial	port
on	the	RT	system	(if	running	Pharlap	RT	OS).

VISA	resource	name	out	is	the	resource	to	which	a	VISA
session	is	opened	and	its	class.	The	class	matches	that	of
the	VISA	resource	name	input.	For	more	information	about
VISA	resource	names,	refer	to	the	NI-VISA	Help.
Baud	Rate	is	the	rate	of	transmission.	The	default	is	9600.
Data	Bits	is	the	number	of	bits	in	the	incoming	data.	The
value	of	data	bits	is	between	5	and	8.	The	default	value	is
8.
Parity	specifies	the	parity	used	for	every	frame	to	be
transmitted	or	received.	This	input	accepts	the	following
values:
0 No	parity	(default)

1 Odd	parity

2 Even	parity
3 Mark	parity
4 Space	parity

Stop	Bits	specifies	the	number	of	stop	bits	used	to	indicate
the	end	of	a	frame.	This	input	accepts	the	following	values:
10 1	stop	bit
15 1.5	stop	bits
20 2	stop	bits

Flow	Control	sets	the	type	of	control	used	by	the	transfer
mechanism.	This	input	accepts	the	following	values:
0 None	(default)—The	transfer	mechanism	does	not	use

flow	control.	Buffers	on	both	sides	of	the	connection	are
assumed	to	be	large	enough	to	hold	all	data
transferred.

1 XON/XOFF—The	transfer	mechanism	uses	the	XON
and	XOFF	characters	to	perform	flow	control.	The
transfer	mechanism	controls	input	flow	by	sending
XOFF	when	the	receive	buffer	is	nearly	full,	and	it
controls	the	output	flow	by	suspending	transmission
when	XOFF	is	received.

2 RTS/CTS—The	transfer	mechanism	uses	the	RTS
output	signal	and	the	CTS	input	signal	to	perform	flow
control.	The	transfer	mechanism	controls	input	flow	by
unasserting	the	RTS	signal	when	the	receive	buffer	is
nearly	full,	and	it	controls	output	flow	by	suspending	the
transmission	when	the	CTS	signal	is	unasserted.

3 XON/XOFF	and	RTS/CTS—The	transfer	mechanism
uses	the	XON	and	XOFF	characters	and	the	RTS
output	signal	and	CTS	input	signal	to	perform	flow
control.	The	transfer	mechanism	controls	input	flow	by
sending	XOFF	and	unasserting	the	RTS	signal	when
the	receive	buffer	is	nearly	full,	and	it	controls	the	output
flow	by	suspending	transmission	when	XOFF	is
received	and	the	CTS	is	unasserted.

4 DTR/DSR—The	transfer	mechanism	uses	the	DTR
output	signal	and	the	DSR	input	signal	to	perform	flow
control.	The	transfer	mechanism	controls	input	flow	by
unasserting	the	DTR	signal	when	the	receive	buffer	is
nearly	full,	and	it	controls	output	flow	by	suspending	the
transmission	when	the	DSR	signal	is	unasserted.

5 XON/XOFF	and	DTR/DSR—The	transfer	mechanism
uses	the	XON	and	XOFF	characters	and	the	DTR
output	signal	and	DSR	input	signal	to	perform	flow
control.	The	transfer	mechanism	controls	input	flow	by
sending	XOFF	and	unasserting	the	DTR	signal	when
the	receive	buffer	is	nearly	full,	and	it	controls	the	output
flow	by	suspending	transmission	when	XOFF	is
received	and	the	DSR	signal	is	unasserted.

Termination	Char	calls	for	termination	of	the	read
operation.	The	read	operation	terminates	when	the
Termination	Char	is	read	from	the	serial	device.	0xA	is	the
hex	equivalent	of	a	linefeed	character	(\n).	Change	the
termination	char	to	0xD	for	message	strings	that	terminate
with	a	carriage	return	(\r).
Enable	Termination	Char	prepares	the	serial	device	to
recognize	termination	char.	If	TRUE	(default),	the	port	is	set
to	recognize	the	termination	character.	If	FALSE,	the	serial
device	does	not	recognize	the	termination	char.
Timeout	specifies	the	maximum	time	period,	in
milliseconds,	that	the	VI	waits	for	the	slave's	response
before	throwing	an	error.

Slave	Address	represents	the	address	of	the	slave	on	the
MODBUS	network.	The	masters	use	this	address	to	communicate
with	the	correct	slave.
VISA	resource	names	specifies	a	array	of	all	the	resources	to	be
opened	and	used	to	connect	to	masters.	For	example,	you	can	use
two	serial	ports	to	connect	a	slave	to	multiple	masters.	Because
this	is	an	array	of	strings,	you	can	use	a	VISA	property	node	to
extract	the	VISA	resource	name	from	a	VISA	Session	control.
Refer	to	MB	Serial	Slave	Example.vi	for	an	example.

Modes	selects	which	type	of	MODBUS	frame	to	use.	This	is	an
array	of	clusters.	Each	array	location	corresponds	to	the	mode
setting	for	the	corresponding	VISA	session	in	the	VISA	resource
names	array.
RTU
Data	is	represented	in	binary	format	(8	data	bits).

ASCII
Data	is	represented	in	ASCII,	so	it	is	human	readable	(7	data
bits).

Timeouts	specifies	the	maximum	time	period,	in	milliseconds,	that
the	slave	waits	for	the	master's	response	before	throwing	an	error.
Each	location	in	the	array	represents	the	setting	for	the
corresponding	VISA	resource	from	the	VISA	resource	names
array.
Period	represents	the	duration	of	a	MODBUS	cycle,	or	how	often
the	slave	scans	the	serial	ports.

Important	Information
Warranty
Copyright
Trademarks
Patents
Warning	Regarding	Use	of	NI	Products

Warranty
The	media	on	which	you	receive	National	Instruments	software	are
warranted	not	to	fail	to	execute	programming	instructions,	due	to	defects
in	materials	and	workmanship,	for	a	period	of	90	days	from	date	of
shipment,	as	evidenced	by	receipts	or	other	documentation.	National
Instruments	will,	at	its	option,	repair	or	replace	software	media	that	do	not
execute	programming	instructions	if	National	Instruments	receives	notice
of	such	defects	during	the	warranty	period.	National	Instruments	does	not
warrant	that	the	operation	of	the	software	shall	be	uninterrupted	or	error
free.
A	Return	Material	Authorization	(RMA)	number	must	be	obtained	from
the	factory	and	clearly	marked	on	the	outside	of	the	package	before	any
equipment	will	be	accepted	for	warranty	work.	National	Instruments	will
pay	the	shipping	costs	of	returning	to	the	owner	parts	which	are	covered
by	warranty.
National	Instruments	believes	that	the	information	in	this	document	is
accurate.	The	document	has	been	carefully	reviewed	for	technical
accuracy.	In	the	event	that	technical	or	typographical	errors	exist,
National	Instruments	reserves	the	right	to	make	changes	to	subsequent
editions	of	this	document	without	prior	notice	to	holders	of	this	edition.
The	reader	should	consult	National	Instruments	if	errors	are	suspected.
In	no	event	shall	National	Instruments	be	liable	for	any	damages	arising
out	of	or	related	to	this	document	or	the	information	contained	in	it.
EXCEPT	AS	SPECIFIED	HEREIN,	NATIONAL	INSTRUMENTS	MAKES
NO	WARRANTIES,	EXPRESS	OR	IMPLIED,	AND	SPECIFICALLY
DISCLAIMS	ANY	WARRANTY	OF	MERCHANTABILITY	OR	FITNESS
FOR	A	PARTICULAR	PURPOSE.	CUSTOMER'S	RIGHT	TO	RECOVER
DAMAGES	CAUSED	BY	FAULT	OR	NEGLIGENCE	ON	THE	PART	OF
NATIONAL	INSTRUMENTS	SHALL	BE	LIMITED	TO	THE	AMOUNT
THERETOFORE	PAID	BY	THE	CUSTOMER.	NATIONAL
INSTRUMENTS	WILL	NOT	BE	LIABLE	FOR	DAMAGES	RESULTING
FROM	LOSS	OF	DATA,	PROFITS,	USE	OF	PRODUCTS,	OR
INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES,	EVEN	IF	ADVISED	OF
THE	POSSIBILITY	THEREOF.	This	limitation	of	the	liability	of	National
Instruments	will	apply	regardless	of	the	form	of	action,	whether	in
contract	or	tort,	including	negligence.	Any	action	against	National
Instruments	must	be	brought	within	one	year	after	the	cause	of	action

accrues.	National	Instruments	shall	not	be	liable	for	any	delay	in
performance	due	to	causes	beyond	its	reasonable	control.	The	warranty
provided	herein	does	not	cover	damages,	defects,	malfunctions,	or
service	failures	caused	by	owner's	failure	to	follow	the	National
Instruments	installation,	operation,	or	maintenance	instructions;	owner's
modification	of	the	product;	owner's	abuse,	misuse,	or	negligent	acts;
and	power	failure	or	surges,	fire,	flood,	accident,	actions	of	third	parties,
or	other	events	outside	reasonable	control.

Copyright
Under	the	copyright	laws,	this	publication	may	not	be	reproduced	or
transmitted	in	any	form,	electronic	or	mechanical,	including	photocopying,
recording,	storing	in	an	information	retrieval	system,	or	translating,	in
whole	or	in	part,	without	the	prior	written	consent	of	National	Instruments
Corporation.
National	Instruments	respects	the	intellectual	property	of	others,	and	we
ask	our	users	to	do	the	same.	NI	software	is	protected	by	copyright	and
other	intellectual	property	laws.	Where	NI	software	may	be	used	to
reproduce	software	or	other	materials	belonging	to	others,	you	may	use
NI	software	only	to	reproduce	materials	that	you	may	reproduce	in
accordance	with	the	terms	of	any	applicable	license	or	other	legal
restriction.

Trademarks
National	Instruments,	NI,	ni.com,	and	LabVIEW	are	trademarks	of
National	Instruments	Corporation.	Refer	to	the	Terms	of	Use	section	on
ni.com/legal	for	more	information	about	National	Instruments	trademarks.
FireWire®	is	the	registered	trademark	of	Apple	Inc.
Handle	Graphics®,	MATLAB®,	Real-Time	Workshop®,	Simulink®,
Stateflow®,	and	xPC	TargetBox®	are	registered	trademarks,	and
TargetBox™	and	Target	Language	Compiler™	are	trademarks	of	The
MathWorks,	Inc.
Tektronix®	and	Tek	are	registered	trademarks	of	Tektronix,	Inc.
The	Bluetooth®	word	mark	is	a	registered	trademark	owned	by	the
Bluetooth	SIG,	Inc.
Other	product	and	company	names	mentioned	herein	are	trademarks	or
trade	names	of	their	respective	companies.
Members	of	the	National	Instruments	Alliance	Partner	Program	are
business	entities	independent	from	National	Instruments	and	have	no
agency,	partnership,	or	joint-venture	relationship	with	National
Instruments.

javascript:WWW(WWW_Trademark)

Patents
For	patents	covering	the	National	Instruments	products/technology,	refer
to	the	appropriate	location:	Help»Patents	in	your	software,	the	patents.txt
file	on	your	media,	or	the	National	Instruments	Patent	Notice	at
ni.com/patents.

javascript:WWW(WWW_Patents)

WARNING	REGARDING	USE	OF	NATIONAL
INSTRUMENTS	PRODUCTS
(1)	NATIONAL	INSTRUMENTS	PRODUCTS	ARE	NOT	DESIGNED
WITH	COMPONENTS	AND	TESTING	FOR	A	LEVEL	OF	RELIABILITY
SUITABLE	FOR	USE	IN	OR	IN	CONNECTION	WITH	SURGICAL
IMPLANTS	OR	AS	CRITICAL	COMPONENTS	IN	ANY	LIFE	SUPPORT
SYSTEMS	WHOSE	FAILURE	TO	PERFORM	CAN	REASONABLY	BE
EXPECTED	TO	CAUSE	SIGNIFICANT	INJURY	TO	A	HUMAN.
(2)	IN	ANY	APPLICATION,	INCLUDING	THE	ABOVE,	RELIABILITY	OF
OPERATION	OF	THE	SOFTWARE	PRODUCTS	CAN	BE	IMPAIRED	BY
ADVERSE	FACTORS,	INCLUDING	BUT	NOT	LIMITED	TO
FLUCTUATIONS	IN	ELECTRICAL	POWER	SUPPLY,	COMPUTER
HARDWARE	MALFUNCTIONS,	COMPUTER	OPERATING	SYSTEM
SOFTWARE	FITNESS,	FITNESS	OF	COMPILERS	AND
DEVELOPMENT	SOFTWARE	USED	TO	DEVELOP	AN	APPLICATION,
INSTALLATION	ERRORS,	SOFTWARE	AND	HARDWARE
COMPATIBILITY	PROBLEMS,	MALFUNCTIONS	OR	FAILURES	OF
ELECTRONIC	MONITORING	OR	CONTROL	DEVICES,	TRANSIENT
FAILURES	OF	ELECTRONIC	SYSTEMS	(HARDWARE	AND/OR
SOFTWARE),	UNANTICIPATED	USES	OR	MISUSES,	OR	ERRORS	ON
THE	PART	OF	THE	USER	OR	APPLICATIONS	DESIGNER	(ADVERSE
FACTORS	SUCH	AS	THESE	ARE	HEREAFTER	COLLECTIVELY
TERMED	"SYSTEM	FAILURES").	ANY	APPLICATION	WHERE	A
SYSTEM	FAILURE	WOULD	CREATE	A	RISK	OF	HARM	TO
PROPERTY	OR	PERSONS	(INCLUDING	THE	RISK	OF	BODILY
INJURY	AND	DEATH)	SHOULD	NOT	BE	RELIANT	SOLELY	UPON	ONE
FORM	OF	ELECTRONIC	SYSTEM	DUE	TO	THE	RISK	OF	SYSTEM
FAILURE.	TO	AVOID	DAMAGE,	INJURY,	OR	DEATH,	THE	USER	OR
APPLICATION	DESIGNER	MUST	TAKE	REASONABLY	PRUDENT
STEPS	TO	PROTECT	AGAINST	SYSTEM	FAILURES,	INCLUDING	BUT
NOT	LIMITED	TO	BACK-UP	OR	SHUT	DOWN	MECHANISMS.
BECAUSE	EACH	END-USER	SYSTEM	IS	CUSTOMIZED	AND
DIFFERS	FROM	NATIONAL	INSTRUMENTS'	TESTING	PLATFORMS
AND	BECAUSE	A	USER	OR	APPLICATION	DESIGNER	MAY	USE
NATIONAL	INSTRUMENTS	PRODUCTS	IN	COMBINATION	WITH
OTHER	PRODUCTS	IN	A	MANNER	NOT	EVALUATED	OR
CONTEMPLATED	BY	NATIONAL	INSTRUMENTS,	THE	USER	OR

APPLICATION	DESIGNER	IS	ULTIMATELY	RESPONSIBLE	FOR
VERIFYING	AND	VALIDATING	THE	SUITABILITY	OF	NATIONAL
INSTRUMENTS	PRODUCTS	WHENEVER	NATIONAL	INSTRUMENTS
PRODUCTS	ARE	INCORPORATED	IN	A	SYSTEM	OR	APPLICATION,
INCLUDING,	WITHOUT	LIMITATION,	THE	APPROPRIATE	DESIGN,
PROCESS	AND	SAFETY	LEVEL	OF	SUCH	SYSTEM	OR
APPLICATION.

Technical	Support	and	Professional	Services
Visit	the	following	sections	of	the	award-winning	National	Instruments
Web	site	at	ni.com	for	technical	support	and	professional	services:

Support—Technical	support	at	ni.com/support	includes	the
following	resources:

Self-Help	Resources—For	answers	and	solutions,	visit
ni.com/support	for	software	drivers	and	updates,	a
searchable	KnowledgeBase,	product	manuals,	step-by-
step	troubleshooting	wizards,	thousands	of	example
programs,	tutorials,	application	notes,	instrument	drivers,
and	so	on.	Registered	users	also	receive	access	to	the	NI
Discussion	Forums	at	ni.com/forums.	NI	Applications
Engineers	make	sure	every	question	submitted	online
receives	an	answer.
Standard	Service	Program	Membership—This
program	entitles	members	to	direct	access	to	NI
Applications	Engineers	via	phone	and	email	for	one-to-
one	technical	support,	as	well	as	exclusive	access	to	on
demand	training	modules	via	the	Services	Resource
Center.	NI	offers	complementary	membership	for	a	full
year	after	purchase,	after	which	you	may	renew	to
continue	your	benefits.
For	information	about	other	technical	support	options	in
your	area,	visit	ni.com/services	or	contact	your	local	office
at	ni.com/contact.

Training	and	Certification—Visit	ni.com/training	for	self-paced
training,	eLearning	virtual	classrooms,	interactive	CDs,	and
Certification	program	information.	You	also	can	register	for
instructor-led,	hands-on	courses	at	locations	around	the	world.
System	Integration—If	you	have	time	constraints,	limited	in-
house	technical	resources,	or	other	project	challenges,	National
Instruments	Alliance	Partner	members	can	help.	To	learn	more,
call	your	local	NI	office	or	visit	ni.com/alliance.

If	you	searched	ni.com	and	could	not	find	the	answers	you	need,	contact
your	local	office	or	NI	corporate	headquarters.	You	also	can	visit	the
Worldwide	Offices	section	of	ni.com/niglobal	to	access	the	branch	office

javascript:WWW(WWW_Support)
javascript:WWW(WWW_KB)
javascript:WWW(WWW_Manuals)
javascript:WWW(WWW_Exchange)
javascript:WWW(WWW_SRC)
javascript:WWW(WWW_Service)
javascript:WWW(WWW_Contact)
javascript:WWW(WWW_Customer_Education)
javascript:WWW(WWW_Integration)
javascript:WWW(WWW_Global)

Web	sites,	which	provide	up-to-date	contact	information,	support	phone
numbers,	email	addresses,	and	current	events.

Note		Modbus	LabVIEW	library	support	is	by	e-mail	only;	phone
support	is	not	available.

Branch	Offices
Office Telephone	Number
Australia 1800	300	800
Austria 43	662	457990-0
Belgium 32	(0)	2	757	0020
Brazil 55	11	3262	3599
Canada 800	433	3488
China 86	21	5050	9800
Czech	Republic 420	224	235	774
Denmark 45	45	76	26	00
Finland 358	(0)	9	725	72511
France 33	(0)	1	57	66	24	24
Germany 49	89	7413130
India 91	80	41190000
Israel 972	0	3	6393737
Italy 39	02	41309277
Japan 0120-527196	/	81	3	5472	2970
Korea 82	02	3451	3400
Lebanon 961	(0)	1	33	28	28
Malaysia 1800	887710
Mexico 01	800	010	0793
Netherlands 31	(0)	348	433	466
New	Zealand 0800	553	322
Norway 47	(0)	66	90	76	60
Poland 48	22	328	90	10
Portugal 351	210	311	210
Russia 7	495	783	6851
Singapore 1800	226	5886
Slovenia 386	3	425	42	00

South	Africa 27	0	11	805	8197
Spain 34	91	640	0085
Sweden 46	(0)	8	587	895	00
Switzerland 41	56	2005151
Taiwan 886	02	2377	2222
Thailand 662	278	6777
Turkey 90	212	279	3031
United	Kingdom 44	(0)	1635	523545
United	States	(Corporate) 512	683	0100

	Modbus LabVIEW Library Help
	Using Help
	Conventions
	Navigating Help
	Searching Help
	Printing Help File Topics

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	Warning Regarding the Use of NI Products

	Technical Support and Professional Services

