
Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

Microsoft	XML	Diff	1.0	and	XML
Patch	1.0
The	XmlDiff	is	a	class	used	to	compare	two	XML	documents,	detecting
additions,	deletions	and	other	changes	between	XML	documents.	XmlDiff
produces	an	XML	Diff	Language	Diffgram	that	describes	the	differences
between	the	two	XML	documents.

The	Microsoft®	XML	Patch	tool	enables	you	to	take	a	XmlDiff	Language
Diffgram	produced	from	the	XmlDiff	class,	and	apply	it	against	the	source
document	to	recreate	the	modified	document.

The	benefits	of	the	XmlDiff	class	are:

Detect	equivalence	between	two	XML	documents,	fragments,	or	nodes.
Concisely	report	the	differences	between	two	documents,	fragments,	or
nodes.
Contains	functionality	to	optionally	ignore	certain	differences,	such	as
comments	or	processing	instructions.

The	benefits	of	the	XmlPatch	class	are:

Apply	an	XmlDiff	Language	Diffgram	to	a	document,	fragment,	or	node,
and	re-create	the	changed	document.
Use	as	a	source	control	or	delta-encoding	file.	For	example,	if	you	have	an
array	of	servers	that	cache	information	as	XML.	Changes	to	one	server	can
be	sent	over	the	network	to	the	other	servers.	Rather	than	create	network
traffic	collisions	by	trying	to	ship	the	entire	cached	document	between
servers,	each	server	can	use	the	XML	Diff	functionality,	then	send	out	the
resulting	XDL	Diffgram	as	the	patch.

Note			This	scenario	assumes	that	the	changes	are	propagated	in	a	constant
direction	from	a	single	master.

These	two	classes	are	contained	in	the	XmlDiffPatch	namespace.

In	This	Section

Microsoft	XML	Diff	1.0

Describes	the	XmlDiff	class	used	to	compare	two	XML	documents,
fragments,	or	nodes.

Microsoft	XML	Patch	1.0

Describes	the	XmlPatch	class	that	applies	a	XML	Diff	Language
Diffgram	to	an	XML	document	to	create	a	modified	document.

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XML	Diff	Functionality
XmlDiff	is	a	class	used	to	compare	two	XML	documents.	XmlDiff	detects
additions,	deletions	and	other	changes	between	the	two	XML	documents.	It	also
detects	structural	changes,	for	example	when	an	XML	subtree	is	moved.
XmlDiff	produces	an	XDL	Diffgram	written	in	XML	Diff	Language	Diffgram
(XDL).	The	XDL	Diffgram	describes	the	differences	between	the	two	XML
documents.	The	XDL	Diffgram	can	be	used	to	display	differences,	or	to	perform
a	patch	operation	using	XmlPatch	Functionality.

XDL	Diffgrams	contain	information	regarding	additions,	changes,	or	removals
of	document	content,	or	content	being	moved	from	one	place	in	the	tree	to
another.	The	XDL	Diffgram	describes	the	changes	by	use	of	the	XML	Diff
Language	(XDL)	and	describes	in	detail	what	nodes	in	the	source	document
were	changed,	and	how	they	were	changed.

XmlDiff	class	performs	XML-based	comparison	of	the	XML	documents	as
opposed	to	a	common	lexical	comparison.	This	means	that	the	XmlDiff	class:

Ignores	the	order	attributes.
Ignores	insignificant	white	spaces.
Does	not	distinguish	between	an	empty	element	<a/>	and	element	with	no
content	<a>.
Is	not	affected	by	the	document	encoding.

You	can	also	set	one	or	more	properties	on	the	XmlDiff	class	to	direct	what
content	it	includes	in	the	comparison.	For	example,	you	can	set	a	flag	to	ignore
comments	that	are	different	between	the	two	documents,	or	ignore	processing
instructions.	For	more	information,	see	Setting	Options	that	Affect	the
Comparison.

There	are	also	different	algorithms	available	to	use	when	comparing	the	data.
The	algorithm	chosen	affects	the	speed	of	the	comparison,	as	well	as	the	output
in	the	XDL	Diffgram.	For	more	information,	see	Selecting	the	Algorithm	for	the
Comparison.

See	Also

Running	Comparisons	Between	Documents,	Fragments,	or	Nodes	|	XML	Diff
Language	(Diffgram)	|	Extended	Operations	|	Example	of	a	Diffgram	|	XmlDiff
Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

Running	Comparisons	Between
Documents,	Fragments,	or	Nodes
The	XmlDiff	class	can	compare	two	document,	two	fragments,	or	two	nodes	that
are	stored	in	files.	The	XmlDiff	class	can	also	compare	two	XmlReader	objects
or	two	XmlNode	objects.

For	output,	the	tool	returns	a	true/false	answer;	responding	true	when	both
inputs	are	the	same,	false	if	they	are	not	the	same.	To	enhance	the	true/false
flag,	the	tool	can	also	output	an	XDL	Diffgram	detailing	what	the	differences
are	between	the	documents,	fragments,	or	nodes.

There	are	two	constructors	for	the	XmlDiff	class.	One	constructor	initializes	the
class	using	the	default	option	values.	The	other	constructor	enables	you	to
customize	the	options	applied	when	the	documents	are	compared,	using	the
XmlDiffOptions.	The	following	code	sample	shows	how	to	create	the	XmlDiff
class	with	default	options:

[Visual	Basic]

Dim	xmlDiff	as	New	XmlDiff()

[C#]

XmlDiff	xmlDiff	=	new	XmlDiff();

To	create	the	XmlDiff	class	with	customized	options,	set	the	property	value,	then
create	the	class	with	the	options	as	parameters	with	an	or	keyword	between	each
option:

[Visual	Basic]

Dim	xmlDiff	As	New	XmlDiff(XmlDiffOptions.IgnoreComments	Or	XmlDiffOptions.IgnorePI)

[C#]

XmlDiff	xmlDiff	=	new	XmlDiff(XmlDiffOptions.IgnoreComments	|	XmlDiffOptions.IgnorePI);

For	more	information	on	the	XmlDiffOptions,	see	Setting	Options	that	Affect
the	Comparison.

There	are	several	overloaded	versions	of	the	Compare	method	that	allow	you	to
compare	documents	of	different	input	type.

The	following	illustration	shows	the	comparison	done	with	two	files.	The
fragment	flag,	when	true,	indicates	that	the	data	is	a	fragment.	The	fragment	flag
has	no	default	value,	it	must	always	be	specified.	If	the	overloaded	Compare
method	that	takes	an	XmlWriter	as	a	last	parameter	is	used,	then	it	will
additionally	output	an	XDL	Diffgram	to	the	specified	XmlWriter.

The	following	Compare	methods	are	used	to	implement	the	preceding
illustration:

[C#]

public	bool	Compare(string	sourceFile,	string	changedFile,	bool	bFragments);

[Visual	Basic]

Public	Function	Compare(sourceFile	As	String,	changedFile	As

String,	bFragments	As	Boolean)	As	Boolean

This	method	compares	two	XML	documents	or	fragments	stored	in	files,	and
returns	true	if	they	are	identical;	otherwise	returns	false.	The	following
overloaded	method	is	used	to	additionally	output	the	XDL	Diffgram.

[C#]

public	bool	Compare(string	sourceFile,	string	changedFile,	bool	bFragments,	XmlWriter	diffgramWriter);

[Visual	Basic]

Public	Function	Compare(sourceFile	As	String,	changedFile	As	String,	bFragments	As	Boolean,	diffgramWriter	As	XmlWriter)	As	Boolean

The	following	illustration	shows	the	comparison	done	with	XmlReader	objects
as	input.	One	of	the	overloaded	Compare	methods	takes	an	XmlWriter	as	a	last
parameter.	When	this	method	is	used,	the	Compare	method	additionally	outputs
an	XDL	Diffgram	to	the	specified	XmlWriter.

The	following	Compare	methods	are	used	to	implement	the	preceding
illustration:

[C#]

public	bool	Compare(XmlReader	sourceReader,	XmlReader	changedReader);

[Visual	Basic]

Public	Function	Compare(sourceReader	As	XmlReader,	changedReader	As	XmlReader)	As	Boolean

This	method	compares	two	XML	documents	or	fragments	parsed	by	the
XmlReader	objects	and	returns	true	if	they	are	identical;	otherwise	returns
false.	The	following	overloaded	method	is	used	to	additionally	output	the	XDL
Diffgram.

[C#]

public	bool	Compare(XmlReader	sourceReader,	XmlReader	changedReader,	XmlWriter	diffgramWriter);

[Visual	Basic]

Public	Function	Compare(sourceReader	As	XmlReader,	changedReader	As	XmlReader,	diffgramWriter	as	XmlWriter)	As	Boolean

The	following	illustration	shows	the	comparison	done	with	XmlNode	objects	as
input.	One	of	the	overloaded	Compare	methods	takes	an	XmlWriter	as	a	last
parameter.	When	this	method	is	used,	the	Compare	method	additionally	outputs
an	XDL	Diffgram	to	the	specified	XmlWriter.

These	are	the	Compare	methods	used	to	implement	the	preceding	illustration:

[C#]

public	bool	Compare(XmlNode	sourceNode,	XmlNode	changedNode);

[Visual	Basic]

Public	Function	Compare(sourceNode	As	XmlNode,	changedNode	As	XmlNode)	As	Boolean

This	method	compares	two	XmlNode	objects	and	returns	true	if	they	are
identical;	otherwise	returns	false.	The	types	of	nodes	that	can	be	passed	into	the
Compare	method	are	any	combination	of	the	following:

XmlDocument
XmlElement
XmlText
XmlCDataSection
XmlEntityReference
XmlComment
XmlDocumentType
XmlProcessingInstruction

The	Compare	method	cannot	be	used	to	compare	XmlAttribute,	XmlEntity,	or
XmlNotation	node	types.	The	following	Compare	overloaded	method	is	used	to
additionally	output	the	XDL	Diffgram.

[C#]

public	bool	Compare(XmlNode	sourceNode,	XmlNode	changedNode,	XmlWriter	diffgramWriter);

[Visual	Basic]

Public	Function	Compare(sourceNode	As	XmlNode,	changedNode	As	XmlNode,	diffgramWriter	As	XmlWriter)	As	Boolean

When	using	the	Compare	method,	the	results	may	differ	when	comparing
documents	loaded	in	an	XmlDocument	object,	and	documents	passed	in	through
files	or	as	XmlReader	objects,	if	the	XML	data	contains	entity	references	that
get	expanded	by	the	XmlDocument.	The	Patch	method	in	the	XmlPatch	class
will	reject	a	DOM	document	loaded	into	XmlDocument.	That	is,	if	it	contains
expanded	entity	references	and	if	the	XDL	Diffgram	supplied	for	patching	has
been	generated	by	a	Compare	method	that	takes	document	files	or	XmlReaders
as	input	parameters.

See	Also

XML	Diff	Functionality	|	Selecting	the	Algorithm	for	the	Comparison	|	Setting
Options	that	Affect	the	Comparison	|	XML	Diff	Language	(Diffgram)	|	Extended
Operations	|	Example	of	a	Diffgram	|	XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

Setting	Options	that	Affect	the
Comparison
The	XmlDiff	class	allows	you	to	set	different	options	that	affect	the	behavior	of
the	comparison,	as	well	as	the	resulting	XDL	Diffgram.	The	following	list
describes	the	enumeration	properties	that	affect	what	items	are	included	for
consideration	during	the	comparison.	For	more	information	see	the
XmlDiffOptions	Enumeration.

IgnoreComments:	Comment	nodes	are	not	compared	when	true.
IgnorePI:	Processing	instructions	are	not	compared	when	true.
IgnoreXmlDecl:	The	XML	declaration	is	not	compared	when	true.
IgnorePrefixes:	The	prefixes	of	element	and	attribute	names	are	not
compared	when	true.	When	this	option	is	selected,	then	two	names	that
have	the	same	local	name	and	namespace	URI,	but	have	a	different	prefix,
are	treated	as	the	same	names.
IgnoreNamespaces:	The	namespace	URIs	of	the	element	and	attribute
names	are	not	compared	when	true.	This	option	also	implies	that	the
prefixes	are	ignored.	When	this	option	is	selected,	then	two	names	with	the
same	local	name,	but	have	a	different	namespace	URI	and	prefix,	are
treated	as	the	same	names.
IgnoreChildOrder:	The	order	of	child	nodes	of	each	element	is	ignored
when	true.	When	this	option	is	selected,	two	nodes	with	the	same	value
that	differ	only	by	their	position	among	sibling	child	nodes	are	treated	as
the	same	nodes.
IgnoreWhitespace:	Significant	white	spaces	are	not	compared	when	true,
and	all	text	nodes	are	normalized	by	discarding	any	leading	and	trailing
white	space	characters	(#x9,	#x10,	#x13,	#x20),	and	by	replacing	sequences
of	white	space	characters	by	a	single	space	(#x20)	character.
IgnoreDtd:	The	XML	DTD	is	not	compared	when	true.

Note			The	order	of	attributes	is	always	ignored.

There	are	several	ways	to	set	the	options.	The	following	example	shows	how	to
set	the	IgnorePI	and	IgnoreComments	enumerations	by	using	the
XmlDiff.Options	property	explicitly.

[Visual	Basic]

Imports	System

Imports	System.Xml

Imports	System.IO

Imports	Microsoft.XmlDiffPatch

Namespace	TestCompare

			Class	Class1

						Shared	Sub	Main()

								Dim	myDiff	As	New	XmlDiff()

								Dim	diffgramWriter	=	New	XmlTextWriter(New	StreamWriter("diffgram.xml"))

								myDiff.Options	=	XmlDiffOptions.IgnorePI	Or	XmlDiffOptions.IgnoreComments

								Dim	bSame	As	Boolean	=	myDiff.Compare("Source.xml",	"Changed.xml",	False,	diffgramWriter)

								diffgramWriter.Close()

						End	Sub																												'Main

			End	Class																													'Class1

End	Namespace																												'TestCompare	

[C#]

using	System;

using	System.Xml;

using	System.IO;

using	Microsoft.XmlDiffPatch;

namespace	TestCompare

{

		class	Class1

				{

								static	void	Main()

										{

												XmlDiff	myDiff	=	new	XmlDiff();

												XmlWriter	diffgramWriter	=	new	XmlTextWriter(new	StreamWriter("diffgram.xml"));

												myDiff.Options	=	XmlDiffOptions.IgnorePI	|	XmlDiffOptions.IgnoreComments;

												bool	bSame	=	myDiff.Compare("Source.xml",	"Changed.xml",	false,	diffgramWriter);

												diffgramWriter.Close();

												}

				}

}

The	following	example	shows	how	to	run	the	compare	with	the	XmlDiffOptions
enumerations	of	IgnorePI	and	IgnoreComments	set	to	true	without	using	the
XmlDiff.Options	property.	Instead,	it	sets	them	as	a	property	of	the	XmlDiff
class.

[Visual	Basic]

Imports	System

Imports	System.Xml

Imports	System.IO

Imports	Microsoft.XmlDiffPatch

Namespace	TestCompare

			Class	Class1

						Shared	Sub	Main()

								Dim	myDiff	As	New	XmlDiff()

								Dim	diffgramWriter	=	New	XmlTextWriter(New	StreamWriter("diffgram.xml"))

								myDiff.IgnorePI	=	True

								myDiff.IgnoreComments	=	True

								Dim	bSame	As	Boolean	=	myDiff.Compare("Source.xml",	"Changed.xml",	False,	diffgramWriter)

								diffgramWriter.Close()

						End	Sub

			End	Class	

End	Namespace

[C#]

using	System;

using	System.Xml;

using	System.IO;

using	Microsoft.XmlDiffPatch;

namespace	TestCompare

{

		class	Class1

				{

								static	void	Main()

												{

														XmlDiff	myDiff	=	new	XmlDiff();

														XmlWriter	diffgramWriter	=	new	XmlTextWriter(new	StreamWriter("diffgram.xml"));

														myDiff.IgnorePI	=	true;

														myDiff.IgnoreComments	=	true;

														bool	bSame	=	myDiff.Compare("Source.xml",	"Changed.xml",	false,	diffgramWriter);

														diffgramWriter.Close();

												}

				}

}

This	last	example	shows	the	options	being	set	inside	the	constructor	of	the
XmlDiff	class,	using	the	XmlDiffOptions,	as	viewed	in	the	first	line	of	code.

[Visual	Basic]

Imports	System

Imports	System.Xml

Imports	System.IO

Imports	Microsoft.XmlDiffPatch

Namespace	TestCompare

			Class	Class1

						Shared	Sub	Main()

								Dim	myDiff	As	New	XmlDiff(XmlDiffOptions.IgnorePI	Or	XmlDiffOptions.IgnoreComments)

								Dim	diffgramWriter	=	New	XmlTextWriter(New	StreamWriter("diffgram.xml"))

								Dim	bSame	As	Boolean	=	myDiff.Compare("Source.xml",	"Changed.xml",	False,	diffgramWriter)

								diffgramWriter.Close()

						End	Sub

			End	Class

End	Namespace

[C#]

using	System;

using	System.Xml;

using	System.IO;

using	Microsoft.XmlDiffPatch;

namespace	TestCompare

{

		class	Class1

				{

								static	void	Main()

												{

XmlDiff	myDiff	=	new	XmlDiff(XmlDiffOptions.IgnorePI	|	XmlDiffOptions.IgnoreComments);

XmlWriter	diffgramWriter	=	new	XmlTextWriter(new	StreamWriter("diffgram.xml"));

bool	bSame	=	myDiff.Compare("Source.xml",	"Changed.xml",	false,	diffgramWriter);

diffgramWriter.Close();

												}

				}

}

For	information	on	running	the	code	samples,	see	Running	XmlDiff	and
XmlPatch	Class	Code	Samples.

See	Also

XML	Diff	Functionality	|	Running	Comparisons	Between	Documents,
Fragments,	or	Nodes	|	Selecting	the	Algorithm	for	the	Comparison	|	Limitations	|
XML	Diff	Language	(Diffgram)	|	Extended	Operations	|	Example	of	a	Diffgram	|
XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

Selecting	the	Algorithm	for	the
Comparison
The	XmlDiff	class	has	implemented	two	algorithms	for	comparing	XML
documents:

XmlDiffAlgorithm.Precise:	Based	on	an	algorithm	for	finding	editing
distance	between	trees,	also	known	as	Zhang-Shasha	algorithm.	This
algorithm	gives	very	precise	results	but	it	may	be	very	slow	on	large	XML
documents	with	many	changes.
XmlDiffAlgorithm.Fast:	Compares	the	two	XML	documents	by	traversing
the	XML	tree	and	comparing	each	node.	This	algorithm	is	very	fast,	but
may	produce	less	precise	results.	For	example,	it	may	detect	an	xd:add	and
xd:remove	operation	on	a	node	instead	of	a	change	operation.	The	Fast
algorithm	is	as	accurate	as	the	Precise	algorithm.	For	example,	the	results	in
the	XDL	Diffgram	are	a	non-empty	XDL	Diffgram	whenever	the	files	are
different,	and	the	algorithm	will	produce	an	empty	XDL	Diffgram	when
the	files	are	equivalent,	with	regard	to	the	options	set.
XmlDiffAlgorithm.Auto:	Chooses	the	comparison	algorithm	for	you
depending	on	the	size	and	assumed	number	of	changes	in	the	compared
documents.

To	select	the	comparison	algorithm	you	want	to	use,	set	the	Algorithm	property
of	the	XmlDiff	class	before	calling	Compare.	The	default	value	of	this	property
is	XmlDiffAlgorithm.Auto.

For	more	information,	see	XmlDiffAlgorithm	Enumeration.

See	Also

XML	Diff	Functionality	|	Running	Comparisons	Between	Documents,
Fragments,	or	Nodes	|	Setting	Options	that	Affect	the	Comparison	|	Limitations	|
XML	Diff	Language	(Diffgram)	|	Extended	Operations	|	Example	of	a	Diffgram	|
XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

Limitations
The	current	version	of	the	XmlDiff	class	has	the	following	limitations:

The	XML	Diff	tool	uses	the	DOM	content	model.
The	XML	Diff	tool	compares	DTDs,	but	it	only	compares	the	DTD	name,
the	System	ID,	Public	ID,	and	the	text	content	of	the	internal	DTD	subset.

See	Also

XML	Diff	Functionality	|	Running	Comparisons	Between	Documents,
Fragments,	or	Nodes	|	Setting	Options	that	Affect	the	Comparison	|	Selecting	the
Algorithm	for	the	Comparison	|	XML	Diff	Language	(Diffgram)	|	Extended
Operations	|	Example	of	a	Diffgram	|	XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XML	Diff	Language	(Diffgram)
The	XML	Diff	Language	(XDL)	is	a	proprietary	XML-based	language	for
describing	differences	between	two	XML	documents.	Changes	between	two
XML	documents	are	described	in	a	document	called	an	XDL	Diffgram.

The	root	element	of	the	XDL	Diffgram	is	xd:xmldiff.	It	contains	the	version	of
the	XDL	Diffgram	in	the	version	attribute,	the	XDL	namespace	declaration	for
the	xd:	prefix,	and	the	XML	Diff	options	selected	in	the	options	attribute	when
the	XDL	Diffgram	was	created.	It	also	contains	a	srcDocHash	attribute	with	a
number	that	is	calculated	from	the	source	document,	and	is	called	a	hash	value.
This	number	allows	checking	if	an	XML	document	is	the	correct	source
document	the	XDL	Diffgram	was	created	on.	This	check	is	performed	by	XML
Patch	tool.	Additionally,	it	contains	a	fragments	attribute	with	value	of	yes	or
no.	A	value	of	yes	indicates	that	XML	fragments	were	compared.	A	value	of	no
indicates	that	XML	documents	were	compared.	The	child	nodes	of	the
xd:xmldiff	root	element	are	elements	describing	the	particular	differences
between	the	two	XML	documents	or	fragments.

The	following	example	shows	an	original	source	document,	a	changed
document,	and	the	XDL	Diffgram	that	results	when	a	Compare	method	is	run
against	the	Source	XML	and	Target	XML	documents,	shown	below.

Source	XML

				<a>Some	text	1

				Some	text	2

				<c>Some	text	3</c>

				<z>	Another	text	

								<fob/>

				</z>

Target	XML

				<yy>Some	text	1</yy>

				Some	text	2

				<c>Some	text	3</c>

				<d>Some	text	4</d>

				<z>Changed	text</z>

XDL	Diffgram

<?xml	version="1.0"	encoding="utf-16"	?>	

		<xd:xmldiff	version="1.0"	srcDocHash="1225038152287875577"	options="None"	fragments="no"	xmlns:xd="http://schemas.microsoft.com/xmltools/2002/xmldiff">

				<xd:node	match="1">

								<xd:change	match="1"	name="yy"	/>	

						<xd:node	match="3"	/>	

								<xd:add>

								<d>Some	text	4</d>	

								</xd:add>

				<xd:node	match="4">

								<xd:change	match="1">Changed	text</xd:change>	

								<xd:remove	match="2"	/>	

				</xd:node>

		</xd:node>

</xd:xmldiff>

See	Also

XML	Diff	Functionality	|	Example	of	a	Diffgram	|	Path	Descriptors	|	Extended
Operations	|	XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

Path	Descriptors
The	XML	Diff	Language	(XDL)	uses	path	descriptors	to	identify	the	nodes	in
the	source	XML	document.	Path	descriptors	work	on	DOM	data	model,	and	use
the	node	position	as	the	core	identifier	for	the	nodes.	XDL	does	not	use	XPath
because	the	XPath	data	model	differs	from	DOM.

All	path	descriptors	refer	to	the	original	source	XML	tree	before	any	changes	are
applied.	So	when	the	path	descriptor	applies	to	the	first	node	of	the	source	tree,
which	has	been	changed	to	be	the	third	node	in	the	changed	tree,	the	path
descriptor	for	this	node	is	"1"	as	the	node	is	first	in	the	source	document	(the
source	document	is	a	base).

The	XDL	Diffgram	shows	what	nodes	have	been	modified,	added,	or	removed.
It	uses	the	words	change,	add,	or	remove	inside	the	XDL	to	describe	the	change.
Next,	it	describes	what	node	the	changes	took	place	on,	by	giving	a	path
descriptor,	and	then	indicates	what	the	changes	were.

Here	is	the	formal	grammar	used	by	the	path	descriptors.

Attribute									:==			'@'Name

NodePosition			::=						Digit+

AttributeList						:==			Attribute	('|'	Attribute)*

PathDescriptor			::=	NodeList	|	AttributeList

			NodeList										::=	RelativeNodeList	|	AbsoluteNodeList

								RelativeNodeList	::=	NodeInterval	('|'	NodeInterval)*

								AbsoluteNodeList	::=	'/'	(NodePosition'/')*	RelativeNodeList

								NodeInterval						::=		NodePosition		|		NodePosition	'-'	NodePosition

The	following	table	shows	some	examples	of	path	descriptors,	and	provides	an
explanation	of	the	path	descriptors.

Example	path	descriptor Explanation

3 Means	the	third	child	node	of	the
current	node.

1-2 Means	the	first	and	second	child	of	the
current	node.

1-2|5 Means	the	first,	second,	and	fifth	child
of	the	current	node.

/1/2 Means	the	second	child	of	the	first
node	at	the	root	level.

1/2/3-6
Means	the	third,	fourth,	fifth,	and	sixth
child	of	the	second	child	of	the	first
node	at	root	level.

@value Means	the	attribute	named	value.

@value	|	@type Means	the	attribute	named	value	and
the	attribute	named	type.

The	path	descriptors	are	used	in	the	XDL	Diffgram	to	identify	nodes	in	the
original	document.	The	XDL	Diffgram	contains	elements	qualified	with	the	xd:
prefix	associated	with	the	namespace
http://schemas.microsoft.com/xmltools/2002/xmldiff.	The	XDL	Diffgram
element	names	indicate	what	action	has	occurred	(for	example	add,	remove,
change).	The	attributes	of	the	XDL	Diffgram	element	and	the	element	content
then	specifies	the	details	of	the	operation,	for	example	which	nodes	are	affected,
new	values	of	the	nodes,	and	so	on.

See	Also

XML	Diff	Functionality	|	XML	Diff	Language	(Diffgram)	|	XmlDiff	Operation
xd:node	|	XmlDiff	Operation	xd:add	|	XmlDiff	Operation	xd:remove	|
XmlDiffOperation	xd:change	|	Extended	Operations	|	Example	of	a	Diffgram
|XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff	Operation	xd:node
The	XDL	Diffgram	contains	xd:node	element	if	it	is	describing	changes	on	the
child	nodes	of	a	node	in	the	source	document,	or	if	it	is	describing	the	position	at
which	new	nodes	were	added.	The	xd:node	element	contains	the	match	attribute
with	a	path	descriptor	identifying	the	referenced	node.

Here	is	an	example	of	what	this	element	may	look	like:

<xd:node	match="4"/>

Here	is	an	example	of	xd:node	element	that	is	used	to	identify	the	fourth	node	of
the	current	source	element.	The	changes	on	the	child	nodes	of	the	fourth	node
are	described	in	the	child	nodes	of	the	xd:node	element.

<xd:node	match="4">	

		<xd:change	match="1">Changed	text</change>

		<xd:remove	match="2"	/>

</xd:node>

See	Also

XML	Diff	Functionality	|	XML	Diff	Language	(Diffgram)	|	Path	Descriptors	|
XmlDiff	Operation	xd:add	|	XmlDiff	Operation	xd:remove	|	XmlDiffOperation
xd:change	|	Extended	Operations	|	Example	of	a	Diffgram	|XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff	Operation	xd:add
An	xd:add	element	occurs	when	a	new	node	or	XML	fragment	is	found	in	the
changed	document	that	was	not	found	in	the	source	document.

Addition	of	a	single	node

The	following	is	an	example	of	what	an	xd:add	element	looks	like	when	new
nodes	are	found:

<xd:add	type="1"	name="Customer">

				<xd:add	type="2"	name="id">1001</xd:add>

</xd:add>

When	a	single	node	has	been	added,	the	xd:add	element	has	the	attribute	type
that	indicates	what	type	of	node	was	added,	using	the	W3C	DOM	Node	Types
enumeration.	The	xd:add	element	can	then	have	a	name	attribute,	which	is	the
local	name	for	the	new	element,	attribute,	DTD,	or	entity	reference.	The	element
can	also	contain	an	ns	attribute,	indicating	the	namespace,	and	a	prefix	attribute
indicating	the	prefix	for	the	new	element	or	attribute	name.	It	can	also	have	the
opid	attribute	which	contains	the	ID	number	of	the	add	operation.	If	the	new
node	type	is	a	DTD,	the	xd:add	element	may	contain	attributes	systemId	and
publicId	specifying	the	system	and	public	identifiers	for	the	DTD.

The	value	of	the	added	node,	that	is,	the	value	of	an	attribute	or	xml	declaration,
is	specified	as	the	content	of	the	xd:add	element.

The	preceding	example	shows	that	a	new	Customer	element	was	added.	The
two	lines	below	show	an	addition	of	a	type	2	node,	which	is	a	new	attribute,	with
an	attribute	name	of	id,	and	an	attribute	value	of	1001.

Currently,	the	xd:add	element	for	showing	the	addition	of	a	single	node	is	used
only	when	a	new	element,	attribute,	xml	declaration,	DTD,	or	entity	reference
has	been	added.	For	other	node	types,	the	xd:add	element	used	when	adding
fragments	is	shown.	For	more	information,	see	Adding	Fragments	and	Multiple
Nodes.

The	following	table	describes	the	attributes	that	the	xd:add	element	might	have:

Attribute	name Data	type Description

type unsigned	int

Type	of	the	new	node
according	to	the	values	of
the	DOM	node	type
enumeration	(1=element,
2=attribute,	and	so	on).

name NCName

Local	name	for	the	new
element	or	attribute,	or	a
name	for	the	new
processing	instruction,
DTD,	or	entity	reference.

ns Namespace	URI Namespace	for	the	new
element	or	attribute.

prefix NCName Prefix	for	the	new	element
or	attribute.

systemId string System	identifier	for	the
new	DTD	node.

publicId string Public	identifier	for	the
new	DTD.

opid unsigned	int Operation	ID.

The	following	table	describes	the	content	that	the	xd:add	element	might	have:

Content	type Description

text	value The	value	for	the	new	attribute,	or	the
value	for	the	new	xml	declaration.

CDATA	section Internal	subset	of	the	new	DTD
enclosed	in	a	CDATA	section.

(xd:add)*
Child	nodes	of	the	new	node.	This
xd:add	child	nodes	are	only	available
for	an	add	of	type=1	(element).

See	Also

XML	Diff	Functionality	|	XML	Diff	Language	(Diffgram)	|	Path	Descriptors	|
XmlDiff	Operation	xd:node	|	XmlDiff	Operation	xd:remove	|	XmlDiffOperation

xd:change	|	Extended	Operations	|	Example	of	a	Diffgram	|XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

W3C	DOM	Node	Types
The	following	table	shows	the	node	type	and	its	numeric	equivalent.	These
numeric	values	are	used	in	the	XDL	when	describing	what	type	of	node	has	been
added	in	an	xd:add	element.

Node	type Value
Element 1
Attribute 2
Text 3
CDATA 4
EntityReference 5
Entity 6
ProcessingInstruction 7
Comment 8
Document 9
DocumentType 10
DocumentFragment 11
Notation 12
Whitespace 13
SignificantWhitespace 14
XmlDeclaration 18

Note			Values	15	and	16	are	EndElement	and	EndEntity,	respectively.
These	are	part	of	the	Microsoft	DOM	but	not	W3C	DOM.

See	Also

XML	Diff	Functionality	|	XML	Diff	Language	(Diffgram)	|	Path
Descriptors	|	XmlDiff	Operation	xd:node	|	XmlDiff	Operation	xd:add	|
Adding	Fragments	and	Multiple	Nodes	|	Copying	an	Existing	Node	or
Fragment	|	Extended	Operations	|	XmlDiff	Operation	xd:remove	|	XmlDiff
Operation	xd:change	|	Example	of	a	Diffgram	|	XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

Adding	Fragments	and	Multiple
Nodes
The	xd:add	element	is	also	used	to	indicate	that	a	fragment	or	multiple	nodes
were	added.	When	fragments	or	multiple	nodes	are	added,	there	are	no
additional	attributes	on	the	xd:add	element,	except	an	opid	attribute	that	can
contain	the	ID	number	of	the	operation	when	multiple	nodes	are	added.	The	new
fragment	is	specified	as	the	content	of	the	xd:add	element	between	the	<xd:add>
and	</xd:add>	tags.	The	xd:add	element	that	has	no	attributes,	is	also	used	to
indicate	the	addition	of	single	text	nodes,	CDATA	sections,	processing
instructions,	or	comments.

Here	is	an	example	of	what	an	xd:add	element	looks	like	when	a	new	fragment
is	found:

<xd:add>

				<Customer>James	Brown</Customer>

</xd:add>

The	following	table	describes	the	attributes	of	the	xd:add	element	when	a
fragment	is	added.

Attribute	name Data	type Description
opid unsigned	int Operation	ID

If	content	is	found	in	an	xd:add	element	when	a	fragment	is	added,	then	the
content	represents	the	XML	fragment	that	was	added.

For	information	on	an	xd:add	for	single	node	additions,	see	XmlDiff	Operation
xd:add.

See	Also

XML	Diff	Functionality	|	XML	Diff	Language	(Diffgram)	|	Path	Descriptors	|
XmlDiff	Operation	xd:node	|	XmlDiff	Operation	xd:add	|	W3C	DOM	Node
Types	|	Copying	an	Existing	Node	or	Fragment	|	Extended	Operations	|	XmlDiff

Operation	xd:remove	|	XmlDiff	Operation	xd:change	|	Example	of	a	Diffgram	|
XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

Copying	an	Existing	Node	or
Fragment	to	a	New	Position	in	the
Tree
The	XmlDiff	tool	distinguishes	when	a	node	has	simply	moved	to	a	new
position	in	the	tree.	When	this	occurs,	the	XDL	Diffgram	reports	this	as	a	pair
of	an	add	and	a	remove	operation.	The	xd:remove	operation	is	shown	where	the
nodes	have	been	moved	from	and	the	xd:add	operation	is	where	the	nodes	have
been	moved	to.	In	this	case,	XDL	has	a	special	xd:add	element	with	the	match
attribute	specifying	from	where	the	nodes	have	been	copied.	It	may	also	have	a
subtree	attribute	specifying	whether	whole	subtree	or	just	the	root	node	has	been
copied.

For	example,	the	following	xd:add	element	indicates	that	the	fifth	and	sixth
child	nodes	of	the	first	node,	at	the	root	level,	have	been	copied	at	the	current
position	in	the	source	tree.

<xd:add	match="/1/5-6"/>

The	following	table	describes	the	attributes	of	the	xd:add	element	when	a
fragment	or	node	is	moved	to	a	new	position	in	the	tree.

Attribute	name Data	type Description

match path	descriptor

Absolute	path	descriptor
evaluating	to	a	set	of
nodes	in	the	source	XML
document.	The	node	set
cannot	contain	attributes.

subtree bool

An	option	indicating
whether	to	copy	the
descendants	of	the	nodes
in	the	selected	node	set
(copy	whole	subtrees)	or
not.	Default	is	yes.	If	the

value	is	no,	then	the
match	attribute	must
evaluate	to	a	single	node.

opid unsigned	int

Operation	ID.	The
corresponding	xd:remove
operation	has	the	same
operation	ID.

The	following	table	describes	the	attributes	of	the	xd:add	element	when	a
fragment	or	node	is	moved	to	a	new	position	in	the	tree.

Content Description

(xd:add)*

Child	nodes	of	the	new	node	(for
element	only)	when	the	subtree	option
is	no.	Otherwise	the	content	of	the	node
must	be	empty.

See	Also

XML	Diff	Functionality	|	XML	Diff	Language	(Diffgram)	|	Path	Descriptors	|
XmlDiff	Operation	xd:node	|	XmlDiff	Operation	xd:add	|	W3C	DOM	Node
Types	|	Adding	Fragments	and	Multiple	Nodes	|	Extended	Operations	|	XmlDiff
Operation	xd:remove	|	XmlDiff	Operation	xd:change	|	Example	of	a	Diffgram	|
XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff	Operation	xd:remove
An	xd:remove	operation	occurs	when	a	node	or	an	XML	fragment	has	been
removed	from	the	original	source	document,	and	no	longer	appears	in	the
changed	document.	The	following	is	an	example	of	what	a	xd:remove	element
might	look	like:

<xd:remove	match="3"/	>

The	preceding	shows	that	the	third	child	of	the	current	element	has	been
removed.

The	following	table	describes	the	attributes	of	the	xd:remove	element.

Attribute	name Data	Type Description

match path	descriptor

Relative	path	descriptor
evaluating	to	a	list	of
nodes	or	a	list	of	attributes
that	have	been	removed.

subtree bool

An	option	indicating
whether	the	descendants
of	the	nodes	have	been
removed	as	well	(whole
subtrees	removed)	or	not.
Default	is	yes.	If	the	value
is	no,	then	the	match
attribute	must	evaluate	to
a	single	node.

opid unsigned	int Operation	ID.

The	following	table	describes	the	content	of	the	xd:remove	element.

Content Description

(xd:node,	xd:add,	xd:remove,

Diff	operations	for	the	child	nodes	of
the	removed	node	(for	element	only)
when	the	subtree	options	is	set	to	false.

xd:change)* The	child	nodes	of	the	removed	node
become	child	nodes	of	the	parent	node
of	the	removed	node.

See	Also

XML	Diff	Functionality	|	XML	Diff	Language	(Diffgram)	|	Path	Descriptors	|
XmlDiff	Operation	xd:node	|	XmlDiff	Operation	xd:add	|	XmlDiffOperation
xd:change	|	Extended	Operations	|	Example	of	a	Diffgram	|XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff	Operation	xd:change
An	xd:change	operation	occurs	when	a	node	in	the	source	document	has	had	its
name	or	value	modified,	or	both.	The	following	is	an	example	of	what	a	change
element	might	look	like:

<xd:change	match="1"	ns="http://New.Namespace.Uri"/>

The	preceding	example	shows	that	the	namespace	URI	of	the	first	child	of	the
current	node	has	changed	to	"http://New.Namespace.Uri".

The	following	table	describes	the	attributes	of	the	xd:change	element.

Attribute	name Data	type Description

match path	descriptor

Relative	path	descriptor
evaluating	to	a	single	child
node	or	a	single	attribute
of	the	current	parent
element.

name NCName

Changed	local	name	for
the	element	or	attribute,	or
changed	target	name	for
the	processing	instruction.

ns Namespace	URI
Changed	namespace	URI
for	the	element	or
attribute.

prefix NCName Changed	prefix	for	the
element	or	attribute.

systemId string System	identifier	for	the
changed	DTD	node.

publicId string Public	identifier	for	the
changed	DTD.

opid unsigned	int Operation	ID.

The	following	table	describes	the	content	of	the	xd:change	element.

Content Description

text	value
Text	value	of	the	new	node	for	a	text
node	or	attribute	value,	or	xml
declaration.

CDATA	section
Changed	CDATA	section,	or	the	new
value	of	the	internal	subset	of	the
changed	DTD.

processing	instruction Changed	processing	instruction.
comment Changed	comment.
(xd:node,	xd:add,	xd:remove,
xd:change)*

Diff	operations	for	the	child	nodes	of
the	changed	node	(for	element	only).

See	Also

XML	Diff	Functionality	|	XML	Diff	Language	(Diffgram)	|	Path	Descriptors	|
XmlDiff	Operation	xd:node	|	XmlDiff	Operation	xd:add	|	XmlDiffOperation
xd:remove	|	Extended	Operations	|	Example	of	a	Diffgram	|XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

Extended	Operations
Diff	operations	can	be	grouped	together	and	form	an	extended	operation.	Each
extended	operation	has	an	ID	number,	and	all	the	related	XML	Diff	operations
carry	this	number	in	their	opid	attribute.	The	extended	operation	also	has	a
descriptor	that	further	describes	the	operation.

For	example,	a	move	operation	is	considered	an	extended	operation.	It	consists
of	two	types	of	operations;	one	remove	operation	and	one	add	operation.	Both	of
these	operations	are	indicated	in	the	XDL	Diffgram	in	the	places	where	the
nodes	have	been	removed	and	added.	The	same	ID	number	connects	these	two
operations	together	with	the	operation	descriptor,	and	indicates	that	the	remove
and	add	pair	are	in	fact	a	move	operation.

The	descriptors	of	the	extended	operations	appear	as	elements	named
xd:descriptor.	The	following	table	describes	the	mandatory	attributes	of	all	the
xd:descriptor	elements:

Attribute	name Data	type Description
opid unsigned	int Operation	ID.

type string Type	of	the
descriptor.

See	Also

XML	Diff	Functionality	|	Running	Comparisons	Between	Documents,
Fragments,	or	Nodes	|	Setting	Options	that	Affect	the	Comparison	|	Selecting	the
Algorithm	for	the	Comparison	|	Limitations	|	XML	Diff	Language	(Diffgram)	|
Path	Descriptors	|	Example	of	a	Diffgram	|XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

Move	Operation
Identifies	a	move	operation	of	a	node	or	XML	fragment.	There	can	be	one
xd:add	operation	and	one	xd:remove	operation	with	the	same	corresponding
opid.

The	following	is	an	example	of	a	move	operation	descriptor:

<xd:descriptor	type="move"	opid="2"/>

The	preceding	example	shows	that	all	operations	with	an	opid	attribute	with	the
value	2	from	a	move	operation.

There	are	no	other	attributes	for	the	move	descriptor	element.	Its	content	must	be
empty.

See	Also

XML	Diff	Functionality	|	Running	Comparisons	Between	Documents,
Fragments,	or	Nodes	|	Setting	Options	that	Affect	the	Comparison	|	Selecting	the
Algorithm	for	the	Comparison	|	Limitations	|	XML	Diff	Language	(Diffgram)	|
Path	Descriptors	|	Extended	Operations	|	Namespace	Change	Operation	|	Prefix
Change	Operation	|	XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

Namespace	Change	Operation
This	extended	operation	identifies	a	change	of	namespace	declaration.	It	consists
of	one	xd:add	operation,	to	show	the	addition	of	the	new	namespace	declaration,
and	one	xd:remove	operation,	to	show	the	removal	of	the	old	namespace
declaration.	Additionally,	the	XDL	Diffgram	may	contain	any	number	of	the
xd:change	operations	with	the	same	opid	for	every	element	or	attribute	name
that	has	its	namespace	URI	changed	due	to	this	action.

The	following	is	an	example	of	what	a	namespace	change	element	looks	like:

<xd:descriptor	type="namespace	change"	opid="3"	oldNs="http://some.uri"	newNs="http://updated.uri"/>

This	shows	that	a	namespace	change	has	occurred,	and	shows	the	old	namespace
and	new	namespace.	All	operations	with	an	opid	attribute	with	the	value	3	are
part	of	this	action.

The	following	table	describes	additional	attributes	of	the	xd:descriptor
element	for	a	namespace	change	operation.

Attribute	name Description
oldNs Old	namespace	URI.
newNs New	namespace	URI

See	Also

XML	Diff	Functionality	|	Running	Comparisons	Between	Documents,
Fragments,	or	Nodes	|	Setting	Options	that	Affect	the	Comparison	|	Selecting	the
Algorithm	for	the	Comparison	|	Limitations	|	XML	Diff	Language	(Diffgram)	|
Path	Descriptors	|	Extended	Operations	|	Move	Operation	|	Prefix	Change
Operation	|XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

Prefix	Change	Operation
This	extended	operation	identifies	a	change	of	prefix.	It	consists	of	one	xs:add
operation,	which	show	the	addition	of	the	new	prefix,	and	one	xd:remove
operation,	which	show	the	removal	of	the	prefix.	There	can	also	be	any	number
of	the	xd:change	operations	with	the	same	opid	for	each	element	or	attribute
name	that	is	affected	by	the	changed	prefix.

The	following	is	an	example	of	what	a	prefix	change	element	looks	like:

<xd:descriptor	type="prefix	change"	opid="3"	oldPrefix="xslt"	newPrefix="xsl"/>

The	preceding	example	shows	that	a	prefix	change	has	occurred,	and	shows	the
old	and	new	prefixes.	All	operations	with	an	opid	attribute	with	value	3	are	part
of	this	action.

The	following	table	describes	additional	attributes	of	the	xd:descriptor
element	for	a	prefix	change	operation.

Attribute	name Description
oldPrefix Old	prefix.
newPrefix New	prefix

See	Also

XML	Diff	Functionality	|	Running	Comparisons	Between	Documents,
Fragments,	or	Nodes	|	Setting	Options	that	Affect	the	Comparison	|	Selecting	the
Algorithm	for	the	Comparison	|	Limitations	|	XML	Diff	Language	(Diffgram)	|
Path	Descriptors	|	Extended	Operations	|	Move	Operation	|	Namespace	Change
Operation	|XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

Example	of	a	Diffgram
The	following	table	shows	two	XML	documents:	one	is	the	source	and	the	other
is	the	changed	document.	These	documents	are	the	input	to	a	Compare	method
that	creates	an	XDL	Diffgram.	The	line	number	shown	is	added	for	readability
purposes.

Line
number Source	XML	document Line

number Changed	XML	document

1 <?xml	version="1.0"?> 1 <?xml	version="1.0"?>
2 2
3 		<a>Some	text	1 3 		<yy>Some	text	1</yy>
4 		Some	text	2 4 		Some	text	2
5 		<c>Some	text	3</c> 5 		<c>Some	text	3</c>
6 		<d> 6 		<e>Some	text	4</e>
7 				Another	text 7 		<f>Some	text	5</f>
8 				<fob/> 8 		<d>Changed	text</d>

9 		</d> 9
		<x	firstAttr="changed
attribute	value"
newAttr="new	value"/>

10 		<x	firstAttr="value1"
secondAttr="value2"/> 10 		<p>

11 		<y> 11 				<q>
12 				<!--Any	comments?--> 12 								<y>

13 				<z	id="10">Just	another
text</z> 13 										<!--Any	comments?-->

14 		</y> 14 										<z	id="10">Just
another	text</z>

15 15 								</y>
16 	 16 				</q>
17 	 17 		</p>
18 	 18
19 	 19

Following	is	the	XDL	Diffgram	produced	when	a	Compare	method	is	run
against	the	two	documents	shown	in	the	preceding	table.	The	line	number	is
added	for	readability	purposes.

Line
number XDL	Diffgram	output

1 <?xml	version="1.0"	encoding="utf-16"?>

2
<xd:xmldiff	version="1.0"	srcDocHash="5346998544451918424"
options="None"
xmlns:xd="http://schemas.microsoft.com/xmltools/2002/xmldiff">

3 		<xd:node	match="2">
4 				<xd:change	match="1"	name="yy"	/>
5 				<xd:node	match="3"	/>
6 				<xd:add>
7 						<e>Some	text	4</e>
8 						<f>Some	text	5</f>
9 				</xd:add>
10 				<xd:node	match="4">
11 						<xd:change	match="1">Changed	text</xd:change>
12 						<xd:remove	match="2"	/>
13 				</xd:node>
14 				<xd:node	match="5">
15 						<xd:remove	match="@secondAttr"	/>
16 						<xd:add	type="2"	name="newAttr">new	value</xd:add>

17 						<xd:change	match="@firstAttr">changed	attribute
value</xd:change>

18 				</xd:node>
19 				<xd:remove	match="6"	opid="1"	/>
20 				<xd:add	type="1"	name="p">
21 						<xd:add	type="1"	name="q">
22 								<xd:add	match="/2/6"	opid="1"	/>
23 						</xd:add>
24 				</xd:add>
25 		</xd:node>

26 		<xd:descriptor	opid="1"	type="move"	/>
27 </xd:xmldiff>

The	following	list	shows	each	line	in	the	XDL	Diffgram	output	from	the
preceding	table.	Here	you	can	see	why	each	line	was	generated.

Line	1:	is	required	to	create	a	well-formed	XML	document.

Line	2:	is	the	root	element	of	the	XDL	Diffgram	xd:xmldiff.	It	contains	the
version	of	the	XDL	Diffgram	in	the	version	attribute,	the	XDL	namespace
declaration	for	the	xd:	prefix,	and	the	XML	Diff	options	selected	when	the	XDL
Diffgram	was	created	in	the	options	attribute.	It	also	contains	srcDocHash
attribute	with	a	number	that	is	calculated	from	the	source	document	and	is	called
a	hash	value.	This	number	allows	checking	if	an	XML	document	is	the	correct
source	document	the	XDL	Diffgram	was	created	on.	This	check	is	performed	by
XML	Patch	tool.

Line	3:	is	an	xd:node	element	with	a	match	attribute	containing	a	path
descriptor	pointing	to	the	second	element	at	the	source	tree	root	level,	which	is
the		element	on	line	2	on	the	source	document.	It	indicates	that	there	will	be
some	changes	described	on	either	the	child	nodes	of	the		element,	or	on	the
sibling	nodes	following	the		element,	or	both.	In	this	particular	case,	the	child
nodes	of	xd:node	describes	the	changes	on	the	child	nodes	of	the		element.

Line	4:	indicates	a	change	has	occurred.	The	changed	node	is	identified	with	a
path	descriptor	"1"	which	points	to	<a>,	the	first	child	node	of	the		element.
The	name	attribute	is	the	new	local	name	for	the	node.	In	this	particular	case,
the	xd:change	is	indicating	that	element	<a>	in	the	source	document	has	been
changed	to	an	element	with	a	name	of	"yy"	in	the	new	document.

Line	5:	is	an	xd:node	element	with	a	match	attribute	containing	a	path
descriptor	pointing	to	the	third	child	node	of	the		element,	which	is	the	<c>
element.	The	path	descriptor	is	relative	to	the	xd:node	match	element	that	it	is
nested	under,	so	it	is	pointing	to	the	third	child	node	(<c>	element)	under	the
second	node	at	root	level	(element,	see	line	3).	In	this	case,	the	xd:node	has
no	child	nodes	and	it	is	indicating	that	there	will	be	some	changes	described	on
the	following	sibling	nodes.	In	other	words,	it	indicates	that	something	is
happening,	starting	at	this	location.

Line	6:	indicates	an	add	operation,	which	is	occurring	under	after	the	<c>
element	of	the	source	document.	The	<c>	element	has	been	specified	by	the
previous	<xd:node>	operation	(line	5).	Note	that	there	are	no	attributes
associated	with	the	xd:add,	so	the	content	of	this	element	is	the	new	fragment
that	has	been	added	in	the	changed	document.

Line	7-8:	shows	the	XML	fragment	that	has	been	added	in	the	changed
document	after	the	<c>	element.	It	adds	the	<e>	and	<f>	element	from	lines	6-7
of	the	changed	document.

Line	9:	is	an	end	element,	indicating	the	end	of	the	add	operation.

Line	10:	is	a	match	operation,	with	its	path	descriptor	pointing	to	the	fourth
child	node.	They	are	still	nested	under	the	match	operation	from	line	3,	which	is
a	match	of	element	2,	the		element,	so	the	fourth	child	node	under	the	
element	is	the	<d>	element.	It	is	now	pointing	at	the	<d>	element.	The	child
nodes	of	the	xd:node	element	will	describe	changes	of	the	child	nodes	of	the	<d>
element.

Line	11:	xd:change	element	that	indicates	that	a	change	has	occurred.	The
changed	node	is	identified	with	a	path	descriptor	"1"	that	points	to	the	first	child
node	of	the	<d>	element,	which	is	a	text	node,	"Another	text"	(line	7	of	the
source	document).	The	content	of	the	xd:change	element	is	the	new	value	of	the
text	node.

Line	12:	xd:remove	element	that	indicates	a	node	has	been	removed.	The	path
descriptor	points	to	the	second	child	node	of	the	<d>	element,	which	is	the
<fob/>	element.	So	this	indicates	that	the	<fob/>	element	has	been	removed	and
is	no	longer	present	in	the	changed	document.

Line	13:	is	the	end	element	for	the	xd:node	element	from	line	10.	Now	you	see
they	are	nested	under	the		element	again.

Line	14:	is	an	xd:node	element	with	the	path	descriptor	pointing	to	the	fifth
child	node	of	the		element,	which	is	the	<x>	element.	The	child	nodes	of	this
xd:node	element	will	describe	changes	of	the	child	nodes	of	the	<x>	element.

Line	15:	is	a	remove	operation,	and	is	using	a	path	descriptor	that	contains	the
"@"	symbol.	The	"@"	symbol	indicates	that	the	patch	descriptor	points	to	an
attribute.	The	attribute	name	follows	the	"@"	symbol	and	it	is	"secondAttr".	So

this	xd:remove	element	is	showing	the	removal	of	the	secondAttr	attribute	from
the	<x>	element.

Line	16:	shows	an	add	operation	on	a	node	type	of	2,	which	is	the	addition	of	an
attribute	node.	Its	name	is	newAttr	and	the	value	is	"new	value".	So	in	the
changed	document	the	<x>	element	has	a	new	attribute	with	the	name	newAttr
and	value	of	"new	value".	This	is	shown	in	the	changed	document	on	line	9.

Line	17:	shows	a	change	operation.	The	match	attribute	indicates	that	the
change	is	occurring	to	the	attribute	named	"firstAttr",	and	the	content	shows	the
new	value	of	the	attribute.	This	indicates	that	in	the	changed	document	the
"firstAttr"	attribute	has	its	value	changed	to	"changed	attribute	value".	The	old
attribute	value	of	"value1"	has	been	replaced.	The	old	attribute	value	is	seen	in
the	original	document	at	line	10.	The	new,	modified	value	is	shown	in	the
changed	document	at	line	9.

Line	18:	is	the	end	of	the	xd:node	element	from	line	14.	Now	you	can	see	that
they	are	nested	under	the		element	again.

Line	19:	is	a	remove	operation	of	the	sixth	child	node	of	the		element,	which
is	the	<y>	element	(and	all	its	descendant	nodes).	Notice	that	there	is	an	opid,	so
this	remove	operation	is	part	of	an	extended	operation.	The	extended	operation
will	be	found	later	in	the	XDL	Diffgram	under	an	xd:descriptor	element	with
the	same	opid.	Line	26	is	the	xd:descriptor	with	the	matching	opid,	and	shows
that	this	remove	operation	is	part	of	a	larger	move	operation.

Line	20:	is	an	add	operation,	adding	a	node	of	type	1,	which	is	an	element	node.
The	new	element	name	is	"p".	This	new	element	is	shown	in	the	modified
document	at	line	10.	The	child	nodes	of	this	<xd:add>	element	describes	the
child	nodes	of	the	new	<p>	element.	So	you	can	see	that	they	now	nested	under
the	<p>	element.

Line	21:	is	an	add	operation,	adding	a	node	of	type	1,	which	is	an	element	node.
The	new	element	name	is	"q".	This	new	element	is	shown	in	the	modified
document	at	line	11.	The	<q>	element	is	a	child	of	the	<p>	element.	The	child
nodes	of	this	<xd:add>	element	describes	the	child	nodes	of	the	<q>	element.
Now	they	are	nested	under	the	<q>	element.

Line	22:	is	an	add	operation	with	a	path	descriptor	/2/6,	which	is	an	absolute
path	descriptor.	It	points	to	the	sixth	child	node	of	the	second	node	at	root	level,

which	is	the	<y>	element	shown	in	the	original	document	at	line	11.	Note	that	the
xd:add	operation	has	an	opid	attribute,	so	this	operation	is	part	of	an	extended
operation.	The	extended	operation	will	be	found	later	in	the	XDL	Diffgram
under	an	xd:descriptor	element	with	the	same	opid.	Line	26	is	the
xd:descriptor	with	the	matching	opid,	and	shows	that	this	add	operation	is	part
of	a	larger	move	operation.

Line	23:	is	an	end	element,	ending	the	xd:add	operation	from	line	21.	Now	they
are	nested	under	the	<p>	element.

Line	24:	is	an	end	element,	ending	the	xd:add	operation	from	line	20.	Now	they
are	nested	under	the		element.

Line	25:	is	an	end	element,	ending	the	xd:node	from	line	3.	Now	they	are	nested
under	the	original	document	root	node.

Line	26:	is	an	xd:descriptor	describing	an	extended	operation.	It	shows	an
operation	ID	of	"1"	in	the	opid	attribute	and	the	type	of	the	operation	"move"	in
the	type	attribute.	It	means	that	there	is	a	remove	and	add	operation	somewhere
in	the	XDL	Diffgram,	both	with	an	opid	of	"1",	and	it	indicates	that	an	existing
node	was	removed	from	the	original	document	and	added	back	into	a	different
spot	in	the	changed	document,	which	is	basically	a	move	operation.	Reviewing
the	XDL	Diffgram,	the	moved	node	was	the	<y>	node	(and	all	its	descendants)
at	line	11	of	the	original	document.	In	the	XDL	Diffgram,	there	is	a	remove
operation	with	an	opid	attribute	value	of	1	back	at	line	18,	and	an	add	operation
back	at	line	22.	The	<y>	element	has	been	moved	to	line	12	in	the	changed
document.

Line	27:	indicates	the	end	of	the	xd:xmldiff	element,	and	the	end	of	the	XDL
Diffgram.

See	Also

XML	Diff	Functionality	|	Running	Comparisons	Between	Documents,
Fragments,	or	Nodes	|	Setting	Options	that	Affect	the	Comparison	|	Selecting	the
Algorithm	for	the	Comparison	|	Limitations	|	XML	Diff	Language	(Diffgram)	|
Path	Descriptors	|	Extended	Operations	|XmlDiff	Class

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XML	Patch	Functionality
The	Microsoft	XML	Patch	enables	you	to	take	an	XDL	Diffgram	produced	from
the	Microsoft	XML	Diff	tool,	and	apply	it	to	the	original	source	document	to
recreate	the	changed	document.

This	is	useful	if	you	have	multiple	source	documents	at	various	physical
locations,	and	one	of	these	documents	changes.	You	may	use	the	XDL	Diffgram
and	XML	Patch	tool	to	propagate	the	change	to	all	the	other	source	documents
by	applying	the	XDL	Diffgram	to	them.

A	custom	application	could	use	the	XDL	Diffgram	as	a	file	that	shows
modifications	made	to	a	source	document,	similar	to	change	tracking	for	audit
purposes.	Whatever	your	need,	the	XML	Patch	tool	allows	the	use	of	the	XDL
Diffgram	to	create	the	changed	document,	fragment	or	node	from	the	original
source	document,	fragment	or	node.

The	XmlPatch	class	is	the	class	that	performs	the	document,	fragment	or	node
modification.	It	uses	the	Patch	method	to	apply	the	XDL	Diffgram	to	a	source
document	to	create	a	patched	document.	There	are	several	overloaded	Patch
methods	offered,	each	reading	in	the	source	document	from	different	formats,
and	then	saving	the	patched	document	in	different	formats.	For	more	information
on	the	overloaded	Patch	methods,	see	XmlPatch.Patch	Method.

The	following	code	sample	loads	a	source	document	and	an	XDL	Diffgram,	and
saves	the	changed	sourceDoc	into	a	new	file	called	changed_doc.xml.

[Visual	Basic]

Imports	System

Imports	System.IO

Imports	System.Xml

Imports	Microsoft.XmlDiffPatch

Public	Class	Sample

			Public	Shared	Sub	Main()

						Dim	sourceDoc	As	New	XmlDocument()

						sourceDoc.Load("source.xml")

						Dim	myPatch	As	New	XmlPatch()

						Dim	myRdr	As	New	XmlTextReader("diffgram.xml")

						myPatch.Patch(sourceDoc,	myRdr)

						sourceDoc.Save("changed_doc.xml")

			End	Sub	'Main

End	Class	'Sample

[C#]

using	System;

using	System.IO;

using	System.Xml;

using	Microsoft.XmlDiffPatch;

public	class	Sample

{

				public	static	void	Main()

				{

								XmlDocument	sourceDoc	=	new	XmlDocument();

								sourceDoc.Load("source.xml");

								XmlPatch	myPatch	=	new	XmlPatch();

								XmlTextReader	myRdr	=	new	XmlTextReader("diffgram.xml");

								myPatch.Patch(sourceDoc,	myRdr);

								sourceDoc.Save("changed_doc.xml");

				}

}

For	more	information	on	running	the	code	sample,	see	Running	XmlDiff	and
XmlPatch	Class	Code	Samples.

One	Patch	method	takes	an	XmlDocument	as	the	source	document,	and	applies
the	XDL	Diffgram	that	is	parsed	by	a	derived	class	of	the	XmlReader.	The
Patch	method	will	reject	a	document	with	entity	references	that	is	loaded	into
the	XmlDocument,	and	whose	XDL	Diffgram	has	been	generated	by	a
Compare	that	compared	documents	parsed	by	an	XmlTextReader,	as	that	XDL
Diffgram	will	not	have	expanded	entity	references.	The	Patch	method	in	the
XmlPatch	class	will	reject	a	DOM	document	loaded	into	XmlDocument.	That
is,	if	it	contains	expanded	entity	references	and	if	the	XDL	Diffgram	supplied
for	patching	has	been	generated	by	a	Compare	method	that	takes	document	files
or	XmlReaders	as	input	parameters.

For	more	information	on	the	XmlPatch	methods	and	properties,	see	XmlPatch
Class.

See	Also

Xml	Diff	Functionality	|	XML	Diff	Language	(Diffgram)	|
Microsoft.XMLDiffPatch	Namespace

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

Running	XmlDiff	and	XmlPatch
Class	Code	Samples
The	code	samples	shown	in	this	documentation	assumes	that	the	common
language	runtime	has	been	downloaded	from
http://msdn.microsoft.com/netframework/downloads/howtoget.asp.

For	full	code	samples,	copy	and	paste	the	code	into	Notepad,	and	save	the	file	as
CompareNodes.txt.	Next,	open	up	a	command	prompt.	The	following	examples
show	that	two	different	commands	are	used	for	running	code,	depending	on	the
language	of	the	code	sample.

The	following	command	compiles	the	code	for	Visual	Basic	code	samples.	This
command	assumes	that	the	code	is	stored	on	the	C	drive	and	is	called
CompareNodes.txt.

Visual	Basic	Samples

C:\>vbc	/r:system.xml.dll	/r:system.dll	/r:xmldiffpatch.dll	C:\CompareNodes.txt

When	the	code	compiles	successfully,	the	executable	version	of	the	code	is	saved
in	another	file	that	has	the	same	name,	however	the	extension	of	the	file	is	.exe.
You	can	now	run	the	executable	by	issuing	the	command:

C:\>C:\CompareNodes

The	following	command	compiles	the	code	for	C#	code	samples.	This	command
assumes	that	the	code	is	stored	on	the	C	drive	and	is	called	CompareNodes.txt.

C#	Samples

C:\>csc	/r:system.xml.dll;system.dll;	C:\CompareNodes.txt

When	the	code	compiles	successfully,	the	executable	version	of	the	code	is	saved
in	another	file	that	has	the	same	name,	however	the	extension	of	the	file	is	.exe.
You	can	now	run	the	executable	by	issuing	the	command:

C:\>C:\CompareNodes

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

Microsoft.XmlDiffPatch	Namespace
The	Microsoft.XmlDiffPatch	namespace	contains	two	classes,	the	Microsoft
XML	Diff	and	Patch	1.0	tool.	The	XML	diff	functionality	is	used	to	compare
two	documents,	fragments,	or	nodes	for	differences;	it	creates	an	XDL	Diffgram
describing	the	differences.

The	XML	patch	functionality	takes	an	XDL	Diffgram	and	applies	it	to	a
document	or	nodes	to	recreate	the	changed	document.

Classes

Class Description

XmlDiff
Represents	the	class	that	performs	a
comparison	of	XML	documents,
fragments,	or	nodes.

XmlPatch
Applies	an	XDL	Diffgram	to	a	source
document	to	create	a	modified
document	in	place	in	memory.

Enumerations

Enum Description

XmlDiffOptions Specifies	what	options	to	include	in	the
comparison.

XmlDiffAlgorithm Specifies	which	algorithm	the	XML
diff	should	use	for	the	comparison.

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff	Class
Represents	the	class	that	performs	a	comparison	of	XML	documents,	fragments,
or	nodes.

For	a	list	of	all	members	of	this	type,	see	XmlDiff	Members.

Object

		XmlDiff

[Visual	Basic]

Public	Class	XmlDiff

[C#]

public	class	XmlDiff;

Requirements

Namespace:	Microsoft.XmlDiffPatch

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

Assembly:	Microsoft.XmlDiffPatch	(in	XmlDiffPatch.dll)

See	Also

XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff	Members
XmlDiff	overview

Public	Instance	Constructors

XmlDiff	Constructor Overloaded.	Initializes	a	new	instance
of	the	XmlDiff	class.

Public	Instance	Properties

IgnoreChildOrder

The	order	of	child	nodes	of	each
element	is	ignored	when	true.	When
this	option	is	selected,	two	nodes	with
the	same	value	that	differ	only	by	their
position	among	sibling	child	nodes	are
treated	as	the	same	nodes.

IgnoreComments Comment	nodes	are	not	compared
when	true.

IgnoreDtd The	XML	Document	Type	Declaration
(DTD)	is	not	compared	when	true.

IgnoreNamespaces

The	namespace	URIs	of	the	element
and	attribute	names	are	not	compared
when	true.	This	option	also	implies
that	the	prefixes	are	ignored.	When	this
option	is	selected,	then	two	names	with
the	same	local	name,	but	have	a
different	namespace	URI	and	prefix,
are	treated	as	the	same	names.

IgnorePI Processing	instructions	are	not
compared	when	true.
The	prefixes	of	element	and	attribute
names	are	not	compared	when	true.
When	this	option	is	selected,	then	two

IgnorePrefixes names	that	have	the	same	local	name
and	namespace	URI,	but	have	a
different	prefix,	are	treated	as	the	same
names.

IgnoreWhitespace

Significant	white	spaces	are	not
compared	when	true,	and	all	text	nodes
are	normalized	by	discarding	any
leading	and	trailing	white	space
characters	(#x9,	#x10,	#x13,	#x20),	and
by	replacing	sequences	of	white	space
characters	by	a	single	space	(#x20)
character.

IgnoreXmlDecl The	XML	declaration	is	not	compared
when	true.

Options Set	all	the	properties	of	the
XmlDiffOptions	enumeration.

Algorithm

Specifies	the	algorithm	that	the	will	be
used	for	comparing	the	documents.	The
type	is	XmlDiffAlgorithm
Enumeration.

Public	Instance	Methods

Compare Overloaded.	Performs	a	comparison	of
XML	documents,	fragments,	or	nodes.

Equals	(Inherited	from	Object) Determines	whether	two	Object
instances	are	equal.

GetHashCode	(Inherited	from	Object)

Serves	as	a	hash	function	for	a
particular	type,	suitable	for	use	in
hashing	algorithms	and	data	structures
like	a	hash	table.

GetType	(Inherited	from	Object) Gets	the	Type	of	the	current	instance.

ParseOptions

Parses	the	options	attribute	from	an
existing	XDL	Diffgram	root	element
and	returns	an	XmlDiffOptions
enumeration.

ToString	(Inherited	from	Object) Creates	and	returns	a	string
representation	of	the	current	Object.

VerifySource

Returns	true	if	the	source	document	is
the	document,	node,	or	fragment	that
the	XDL	Diffgram	was	generated
from.

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff	Constructor
Initializes	a	new	instance	of	the	XmlDiff	class.

Overload	List

Initializes	the	XmlDiff	class	with	default	options.

[Visual	Basic]	Overloads	Public	Sub	New();

[C#]	public	XmlDiff();

Initializes	the	XmlDiff	class	with	the	specified	options.

[Visual	Basic]	Overloads	Public	Sub	New(XmlDiffOptions);

[C#]	public	XmlDiff(XmlDiffOptions);

Example

The	following	example	creates	the	XmlDiff	class	with	no	options.

[Visual	Basic]

Dim	xmlDiff	As	New	XmlDiff()

[C#]

XmlDiff	xmlDiff	=	new	XmlDiff();

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff	Constructor	()
Initializes	the	XmlDiff	class	with	default	options.

[Visual	Basic]

Overloads	Public	Sub	New()

[C#]

public	XmlDiff();

Example

The	following	example	creates	the	XmlDiff	class	with	no	options.

[Visual	Basic]

Dim	xmlDiff	As	New	XmlDiff()

[C#]

XmlDiff	xmlDiff	=	new	XmlDiff();

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff	Constructor
(XmlDiffOptions)
Initializes	the	XmlDiff	class	with	the	specified	options.

[Visual	Basic]

Overloads	Public	Sub	New(XmlDiffOptions	options)

[C#]

public	XmlDiff(XmlDiffOptions	options);

Parameters

options
A	pipe	(|)	delineated	list	(or	in	Visual	Basic)	of	the	XmlDiffOptions
enumerations	to	use,	or	the	enumeration	None	to	run	the	comparison	with
all	of	the	XmlDiffOptions	set	to	false.

Example

[Visual	Basic]

Dim	xmlDiff	As	New	XmlDiff(XmlDiffOptions.IgnoreComments	Or	XmlDiffOptions.IgnoreDtd)

[C#]

XmlDiff	xmlDiff	=	new	XmlDiff(XmlDiffOptions.IgnoreComments	|	XmlDiffOptions.IgnoreDtd);

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff	Properties
The	properties	of	the	XmlDiff	class	are	listed	here.	For	a	complete	list	of
XmlDiff	class	members,	see	the	XmlDiff	Members	topic.

Public	Instance	Properties

IgnoreChildOrder

The	order	of	child	nodes	of	each
element	is	ignored	when	true.	When
this	option	is	selected,	two	nodes	with
the	same	value	that	differ	only	by	their
position	among	sibling	child	nodes	are
treated	as	the	same	nodes.

IgnoreComments Comment	nodes	are	not	compared
when	true.

IgnoreDtd The	XML	DTD	is	not	compared	when
true.

IgnoreNamespaces

The	namespace	URIs	of	the	element
and	attribute	names	are	not	compared
when	true.	This	option	also	implies
that	the	prefixes	are	ignored.	When	this
option	is	selected,	then	two	names	with
the	same	local	name,	but	have	a
different	namespace	URI	and	prefix,
are	treated	as	the	same	names.

IgnorePI Processing	instructions	are	not
compared	when	true.

IgnorePrefixes

The	prefixes	of	element	and	attribute
names	are	not	compared	when	true.
When	this	option	is	selected,	then	two
names	that	have	the	same	local	name
and	namespace	URI,	but	have	a
different	prefix,	are	treated	as	the	same
names.
Significant	white	spaces	are	not

IgnoreWhitespace

compared	when	true,	and	all	text	nodes
are	normalized	by	discarding	any
leading	and	trailing	white	space
characters	(#x9,	#x10,	#x13,	#x20),	and
by	replacing	sequences	of	white	space
characters	by	a	single	space	(#x20)
character.

IgnoreXmlDecl The	XML	declaration	is	not	compared
when	true.

Options Set	all	the	properties	of	the
XmlDiffOptions	enumeration.

Algorithm

Specifies	the	algorithm	that	the	will	be
used	for	comparing	the	documents.	The
type	is	XmlDiffAlgorithm
Enumeration.

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.IgnoreChildOrder	Property
The	order	of	child	nodes	of	each	element	is	ignored	when	true.	When	this	option
is	selected,	two	nodes	with	the	same	value	that	differ	only	by	their	position
among	sibling	child	nodes	are	treated	as	the	same	nodes.

[Visual	Basic]

Public	Property	IgnoreChildOrder()	As	Boolean

[C#]

public	Boolean	IgnoreChildOrder	{get;	set;};

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.IgnoreComments	Property
Comment	nodes	are	not	compared	when	true.

[Visual	Basic]

Public	Property	IgnoreComments()	As	Boolean

[C#]

public	Boolean	IgnoreComments	{get;	set;}

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.IgnoreDtd	Property
The	XML	Document	Type	Declaration	(DTD)	is	not	compared	when	true.

[Visual	Basic]

Public	Property	IgnoreDtd()	As	Boolean

[C#]

public	Boolean	IgnoreDtd	{get;	set;}

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.IgnoreNamespaces	Property
The	namespace	URIs	of	the	element	and	attribute	names	are	not	compared	when
true.	This	option	also	implies	that	the	prefixes	are	ignored.

When	this	option	is	selected,	then	two	names	that	have	the	same	local	name,	but
have	a	different	namespace	URI	and	prefix,	are	treated	as	the	same.

[Visual	Basic]

Public	Property	IgnoreNamespaces()	As	Boolean

[C#]

public	Boolean	IgnoreNamespaces	{get;	set;}

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.IgnorePI	Property
Processing	instructions	are	not	compared	when	true.

[Visual	Basic]

Public	Property	IgnorePI()	As	Boolean

[C#]

public	Boolean	IgnorePI	{get;	set;}

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.IgnorePrefixes	Property
The	prefixes	of	element	and	attribute	names	are	not	compared	when	true.	When
this	option	is	selected,	then	two	names	that	have	the	same	local	name	and
namespace	URI,	but	have	a	different	prefix,	are	treated	as	the	same.

[Visual	Basic]

Public	Property	IgnorePrefixes()	As	Boolean

[C#]

public	Boolean	IgnorePrefixes	{get;	set;}

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.IgnoreWhitespace	Property
Significant	white	spaces	are	not	compared	when	true,	and	all	text	nodes	are
normalized	by	discarding	any	leading	and	trailing	white	space	characters	(#x9,
#x10,	#x13,	#x20),	and	by	replacing	sequences	of	white	space	characters	by	a
single	space	(#x20)	character.

[Visual	Basic]

Public	Property	IgnoreWhitespace()	As	Boolean

[C#]

public	Boolean	IgnoreWhitespace	{get;	set;}

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.IgnoreXmlDecl	Property
The	XML	declaration	is	not	compared	when	true.

[Visual	Basic]

Public	Property	IgnoreXmlDecl()	As	Boolean

[C#]

public	Boolean	IgnoreXmlDecl	{get;	set;}

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.Options	Property
Sets	all	the	properties	of	the	XmlDiffOptions	enumeration.

[Visual	Basic]

Public	Property	Options()	As	XmlDiffOptions

[C#]

public	XmlDiffOptions	Options	{set;}

Example

The	following	example	shows	how	to	set	the	IgnorePI	and	IgnoreComments
enumerations	by	using	the	XmlDiff.Options	property	explicitly.

[Visual	Basic]

Imports	System

Imports	System.Xml

Imports	System.IO

Imports	Microsoft.XmlDiffPatch

Namespace	TestCompare

			Class	Class1

						Shared	Sub	Main()

								Dim	myDiff	As	New	XmlDiff()

								Dim	diffgramWriter	=	New	XmlTextWriter(New	StreamWriter("diffgram.xml"))

								myDiff.Options	=	XmlDiffOptions.IgnorePI	Or	XmlDiffOptions.IgnoreComments

								Dim	bSame	As	Boolean	=	myDiff.Compare("Source.xml",	"Changed.xml",	False,	diffgramWriter)

								diffgramWriter.Close()

						End	Sub

			End	Class

End	Namespace	

[C#]

using	System;

using	System.Xml;

using	System.IO;

using	Microsoft.XmlDiffPatch;

namespace	TestCompare

{

		class	Class1

				{

								static	void	Main()

										{

												XmlDiff	myDiff	=	new	XmlDiff();

												XmlWriter	diffgramWriter	=	new	XmlTextWriter(new	StreamWriter("diffgram.xml"));

myDiff.Options	=	XmlDiffOptions.IgnorePI	|	XmlDiffOptions.IgnoreComments;

												bool	bSame	=	myDiff.Compare("Source.xml",	"Changed.xml",	false,	diffgramWriter);

												diffgramWriter.Close();

												}

				}

}

For	information	on	running	the	code	samples,	see	Running	XmlDiff	and
XmlPatch	Class	Code	Samples.

There	are	several	other	ways	to	set	the	comparison	options.	For	examples,	see
Setting	Options	that	Affect	the	Comparison.

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.Agorithm	Property
Specifies	the	algorithm	that	the	will	be	used	for	comparing	the	documents.	The
type	is	XmlDiffAlgorithm	Enumeration.	The	default	is	Auto.

[Visual	Basic]

Public	Property	Algorithm()	As	XmlDiffAlgorithmn	[C#]

public	XmlDiffAlgorithm	Options	{set;}

Remarks

The	following	code	sample	shows	how	to	use	the	Precise	algorithm	when
comparing	two	documents.

[Visual	Basic]

Imports	System

Imports	System.Xml

Imports	Microsoft.XmlDiffPatch

Namespace	TestCompare

			Class	Class1

						Shared	Sub	Main()

								Dim	diffWriter	=	New	XmlTextWriter("diffgram.xml",	New	System.Text.UnicodeEncoding())

								Dim	myDiff	As	New	XmlDiff()

								myDiff.Algorithm	=	XmlDiffAlgorithm.Precise

								Dim	bSame	As	Boolean	=	myDiff.Compare("source.xml",	"changed.xml",	False,	diffWriter)

								Console.WriteLine("The	answer	is	{0}	",	bSame)

						End	Sub

			End	Class

End	Namespace	

[C#]

using	System;

using	System.Xml;

using	Microsoft.XmlDiffPatch;

namespace	TestCompare

{

		class	Class1

				{

								static	void	Main()

												{

												XmlWriter	diffWriter	=	new	XmlTextWriter("diffgram.xml",	new	System.Text.UnicodeEncoding());	

												XmlDiff	myDiff	=	new	XmlDiff();

												myDiff.Algorithm	=	XmlDiffAlgorithm.Precise;

												bool	bSame	=	myDiff.Compare("source.xml",	"changed.xml",	false,	diffWriter);

								Console.WriteLine("The	answer	is	{0}	",	bSame);

												}

				}

}

For	information	on	running	the	code	samples,	see	Running	XmlDiff	and
XmlPatch	Class	Code	Samples.

For	more	information	on	the	enumerations,	see	XmlDiffAlgorithm	Enumeration.

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff	Methods
The	methods	of	the	XmlDiff	class	are	listed	here.	For	a	complete	list	of	XmlDiff
class	members,	see	the	XmlDiff	Members	topic.

Public	Instance	Methods

Compare Overloaded.	Performs	a	comparison	of
XML	documents,	fragments,	or	nodes.

Equals	(Inherited	from	Object) Determines	whether	two	Object
instances	are	equal.

GetHashCode	(Inherited	from	Object)

Serves	as	a	hash	function	for	a
particular	type,	suitable	for	use	in
hashing	algorithms	and	data	structures
like	a	hash	table.

GetType	(Inherited	from	Object) Gets	the	Type	of	the	current	instance.

ParseOptions
Parses	the	options	attribute	from	an
existing	XDL	Diffgram	and	returns	an
XmlDiffOptions	enumeration.

ToString	(Inherited	from	Object) Creates	and	returns	a	string
representation	of	the	current	Object.

VerifySource

Returns	true	if	the	source	document	is
the	document,	node,	or	fragment	that
the	XDL	Diffgram	was	generated
from.

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.Compare	Method
Performs	a	comparison	of	XML	documents,	fragments,	or	nodes.

Overload	List

Performs	a	comparison	of	XML	documents	or	fragments.

[Visual	Basic]	Overloads	Public	Function	Compare(String,	String,	Boolean)
As	Boolean

[C#]	public	Boolean	Compare(String,	String,	Boolean)

Performs	a	comparison	of	XML	documents	or	fragments	and	outputs	an	XDL
Diffgram	describing	the	differences.

[Visual	Basic]	Overloads	Public	Function	Compare(String,	String,	Boolean,
XmlWriter)	As	Boolean

[C#]	public	Boolean	Compare(String,	String,	Boolean,	XmlWriter)

Performs	a	comparison	of	XML	nodes.

[Visual	Basic]	Overloads	Public	Function	Compare(XmlNode,	XmlNode)
As	Boolean

[C#]	public	Boolean	Compare(XmlNode,	XmlNode)

Performs	a	comparison	of	XML	nodes	and	outputs	an	XDL	Diffgram	describing
the	differences.

[Visual	Basic]	Overloads	Public	Function	Compare(XmlNode,	XmlNode,
XmlWriter)	As	Boolean

[C#]	public	Boolean	Compare(XmlNode,	XmlNode,	XmlWriter)

Performs	a	comparison	of	XML	documents	parsed	by	an	XmlReader.

[Visual	Basic]	Overloads	Public	Function	Compare(XmlReader,
XmlReader)	As	Boolean

[C#]	public	Boolean	Compare(XmlReader,	XmlReader)

Performs	a	comparison	of	XML	documents	parsed	by	an	XmlReader	and
outputs	an	XDL	Diffgram	describing	the	differences.

[Visual	Basic]	Overloads	Public	Function	Compare(XmlReader,
XmlReader,	XmlWriter)	As	Boolean

[C#]	public	Boolean	Compare(XmlReader,	XmlReader,	XmlWriter)

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.Compare	Method	(String,
String,	Boolean)
Performs	a	comparison	of	XML	documents	or	fragments.

[Visual	Basic]

Overloads	Public	Function	Compare(_

		ByVal	sourceFile	As	String,	_

		ByVal	changedFile	As	String,	_

		ByVal	bFragments	As	Boolean	_

)	As	Boolean

[C#]

public	Boolean	Compare(

		String	sourceFile,

		String	changedFile,

		Boolean	bFragments

);

Parameters

sourceFile
A	file	name	or	URL	containing	the	original	source	XML	document	or
fragment	to	be	used	in	the	comparison.

changedFile
A	file	name	or	URL	containing	the	changed	XML	document	or	fragment	to
be	used	in	the	comparison.

bFragments
A	flag	indicating	whether	the	sourceFile	and	changedFile	are	well-formed
XML	documents	(false)	or	whether	they	are	fragments	(true).

Example

[Visual	Basic]

Imports	System

Imports	System.Xml

Imports	System.IO

Imports	Microsoft.XmlDiffPatch

Namespace	XDConsole_CS

			Class	Class1

						Public	Overloads	Shared	Sub	Main()

									Main(System.Environment.GetCommandLineArgs())

						End	Sub

						

						Overloads	Shared	Sub	Main(args()	As	String)

									Dim	xmlDiff	As	New	XmlDiff()

									Dim	bSame	As	Boolean	=	xmlDiff.Compare("Source.xml",	"Changed.xml",	False)

						End	Sub

			End	Class

End	Namespace	

[C#]

using	System;

using	System.Xml;

using	System.IO;

using	Microsoft.XmlDiffPatch;

namespace	XDConsole_CS

{

				class	Class1

				{

								static	void	Main(string[]	args)

								{

												XmlDiff	xmlDiff	=	new	XmlDiff();

												bool	bSame	=	xmlDiff.Compare("Source.xml",	"Changed.xml",	false);

								}

				}

}

For	information	on	running	the	code	samples,	see	Running	XmlDiff	and
XmlPatch	Class	Code	Samples.

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.Compare	Method	(String,
String,	Boolean,	XmlWriter)
Performs	a	comparison	of	XML	documents	or	fragments	and	outputs	an	XDL
Diffgram	describing	the	differences.

[Visual	Basic]

Overloads	Public	Function	Compare(_

		ByVal	sourceFile	As	String,	_

		ByVal	changedFile	As	String,	_

		ByVal	bFragments	As	Boolean,	_

		ByVal	diffgramWriter	As	XmlWriter	_

)	As	Boolean

[C#]

public	Boolean	Compare(

		String	sourceFile,

		String	changedFile,

		Boolean	bFragments,

		XmlWriter	diffgramWriter

);

Parameters

sourceFile
A	file	name	or	URL	containing	the	original	source	XML	document	or
fragment	to	be	used	in	the	comparison.

changedFile
A	file	name	or	URL	containing	the	changed	XML	document	or	fragment	to
be	used	in	the	comparison.

bFragments
A	flag	indicating	whether	the	sourceFile	and	changedFile	are	well-formed
XML	documents	(false)	or	whether	they	are	fragments	(true).

diffgramWriter
The	XmlWriter	to	which	you	want	to	output	the	XDL	Diffgram.

Example

[Visual	Basic]

Imports	System

Imports	System.Xml

Imports	Microsoft.XmlDiffPatch

Namespace	TestCompare

			Class	Class1

						Shared	Sub	Main()

								Dim	diffgramWriter	=	New	XmlTextWriter("diffgram.xml",	New	System.Text.UnicodeEncoding())

								Dim	xmlDiff	As	New	XmlDiff()

								Dim	bSame	As	Boolean	=	xmlDiff.Compare("Source.xml",	"Changed.xml",	False,	diffgramWriter)

								diffgramWriter.Flush()

								diffgramWriter.Close()

						End	Sub			End	Class

End	Namespace	

[C#]

using	System;

using	System.Xml;

using	Microsoft.XmlDiffPatch;

namespace	TestCompare

{

		class	Class1

				{

								static	void	Main()

												{

																XmlWriter	diffgramWriter	=	new	XmlTextWriter("diffgram.xml",	new	System.Text.UnicodeEncoding());

																XmlDiff	xmlDiff	=	new	XmlDiff();

																bool	bSame	=	xmlDiff.Compare("Source.xml",	"Changed.xml",	false,	diffgramWriter);

																diffgramWriter.Flush();

																diffgramWriter.Close();

												}

				}

}

For	information	on	running	the	code	samples,	see	Running	XmlDiff	and
XmlPatch	Class	Code	Samples.

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.Compare	Method	(XmlNode,
XmlNode)
Performs	a	comparison	of	XML	nodes.

[Visual	Basic]

Overloads	Public	Function	Compare(_

		ByVal	sourceNode	As	XmlNode,	_

		ByVal	changedNode	As	XmlNode	_

)	As	Boolean

[C#]

public	Boolean	Compare(

		XmlNode	sourceNode,

		XmlNode	changedNode

);

Parameters

sourceNode
An	XmlNode	containing	the	original	source	node	to	be	used	in	the
comparison.

changedNode
An	XmlNode	containing	the	changed	node	to	be	used	in	the	comparison.

Remarks

The	types	of	nodes	that	can	be	passed	into	the	Compare	method	are	any
combination	of	the	following:

XmlDocument
XmlElement
XmlText
XmlCDataSection
XmlEntityReference
XmlComment
XmlDocumentType
XmlProcessingInstruction

The	Compare	method	cannot	be	used	to	compare	XmlAttribute,	XmlEntity,	or
XmlNotation	node	types.

Example

[Visual	Basic]

Imports	System

Imports	System.Xml

Imports	Microsoft.XmlDiffPatch

Namespace	TestCompare

			Class	Class1

						Shared	Sub	Main()

									Dim	sourceDoc	As	New	XmlDocument()

									sourceDoc.Load("source.xml")

									Dim	changedDoc	As	New	XmlDocument()

									sourceDoc.Load("target.xml")

									Dim	xmlDiff	As	New	XmlDiff()

									Dim	bSame	As	Boolean	=	xmlDiff.Compare(sourceDoc,	changedDoc)

									Console.WriteLine("The	answer	is	{0}	",	bSame)

						End	Sub

			End	Class

End	Namespace	

[C#]

using	System;

using	System.Xml;

using	Microsoft.XmlDiffPatch;

namespace	TestCompare

{

		class	Class1

				{

								static	void	Main()

												{

																XmlDocument	sourceDoc	=	new	XmlDocument();

																sourceDoc.Load("source.xml");

																XmlDocument	changedDoc	=	new	XmlDocument();

																sourceDoc.Load("target.xml");

																XmlDiff	xmlDiff	=	new	XmlDiff();

																bool	bSame	=	xmlDiff.Compare(sourceDoc,	changedDoc);

																Console.WriteLine("The	answer	is	"	+	bSame);

												}

				}

}

For	information	on	running	the	code	samples,	see	Running	XmlDiff	and
XmlPatch	Class	Code	Samples.

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.Compare	Method	(XmlNode,
XmlNode,	XmlWriter)
Performs	a	comparison	of	XML	nodes	and	outputs	an	XDL	Diffgram	describing
the	differences.

[Visual	Basic]

Overloads	Public	Function	Compare(_

		ByVal	sourceNode	As	XmlNode,	_

		ByVal	changedNode	As	XmlNode,	_

		ByVal	diffgramWriter	As	XmlWriter	_

)	As	Boolean

[C#]

public	Boolean	Compare(

		XmlNode	sourceNode,

		XmlNode	changedNode,

		XmlWriter	diffgramWriter

);

Parameters

sourceFile
An	XmlNode	containing	the	original	source	node	to	be	used	in	the
comparison.

changedFile
An	XmlNode	containing	the	changed	node	to	be	used	in	the	comparison.

diffgramWriter
The	XmlWriter	to	which	you	want	to	output	the	XDL	Diffgram.

Remarks

The	types	of	nodes	that	can	be	passed	into	the	Compare	method	are	any
combination	of	the	following:

XmlDocument
XmlElement
XmlText

XmlCDataSection
XmlEntityReference
XmlComment
XmlDocumentType
XmlProcessingInstruction

The	Compare	method	cannot	be	used	to	compare	XmlAttribute,	XmlEntity,	or
XmlNotation	node	types.

Example

[Visual	Basic]

Imports	System

Imports	System.Xml

Imports	Microsoft.XmlDiffPatch

Namespace	TestCompare

			Class	Class1

						

						Shared	Sub	Main()

									Dim	sourceDoc	As	New	XmlDocument()

									sourceDoc.Load("source.xml")

									Dim	changedDoc	As	New	XmlDocument()

									sourceDoc.Load("changed.xml")

									Dim	diffgramWriter	=	New	XmlTextWriter("testdiff.xml",	New	System.Text.UnicodeEncoding())

									Dim	xmlDiff	As	New	XmlDiff()

									Dim	bSame	As	Boolean	=	xmlDiff.Compare(sourceDoc,	changedDoc,	diffgramWriter)

									diffgramWriter.Flush()

									diffgramWriter.Close()

						End	Sub

			End	Class

End	Namespace

[C#]

using	System;

using	System.Xml;

using	Microsoft.XmlDiffPatch;

namespace	TestCompare

{

		class	Class1

				{

								static	void	Main()

												{

																XmlDocument	sourceDoc	=	new	XmlDocument();

																sourceDoc.Load("source.xml");

																XmlDocument	changedDoc	=	new	XmlDocument();

																sourceDoc.Load("changed.xml");

																XmlWriter	diffgramWriter	=	new	XmlTextWriter("testdiff.xml",	new	System.Text.UnicodeEncoding());

																XmlDiff	xmlDiff	=	new	XmlDiff();

																bool	bSame	=	xmlDiff.Compare(sourceDoc,	changedDoc,	diffgramWriter);

																diffgramWriter.Flush();

																diffgramWriter.Close();

												}

				}

}

For	information	on	running	the	code	samples,	see	Running	XmlDiff	and
XmlPatch	Class	Code	Samples.

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.Compare	Method
(XmlReader,	XmlReader)
Performs	a	comparison	of	two	XML	documents	or	fragments	parsed	by
XmlReader	objects.

[Visual	Basic]

Overloads	Public	Function	Compare(_

		ByVal	sourceReader	As	XmlReader,	_

		ByVal	changedReader	As	XmlReader	_

)	As	Boolean

[C#]

public	Boolean	Compare(

		XmlReader	sourceReader,

		XmlReader	changedReader

);

Parameters

sourceReader
An	XmlReader	parsing	the	original	source	XML	document	or	fragment	to
be	used	in	the	comparison.

changedReader
An	XmlReader	parsing	the	changed	XML	document	or	fragment	to	be
used	in	the	comparison.

Remarks

The	result	of	Compare	method	may	differ	when	comparing	documents	loaded	in
DOM	and	documents	parsed	by	XmlTextReader.	That	is,	if	the	document
contains	entity	references	that	are	expanded	by	the	DOM.

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.Compare	Method
(XmlReader,	XmlReader,	XmlWriter)
Performs	a	comparison	of	two	XML	documents	or	fragments	parsed	by
XmlReader	objects	and	outputs	an	XDL	Diffgram	describing	the	differences.

[Visual	Basic]

Overloads	Public	Function	Compare(_

		ByVal	sourceReader	As	XmlReader,	_

		ByVal	changedReader	As	XmlReader,	_

		ByVal	diffgramWriter	As	XmlWriter	_

)	As	Boolean

[C#]

public	Boolean	Compare(

		XmlReader	sourceReader,

		XmlReader	changedReader,

		XmlWriter	diffgramWriter

);

Parameters

sourceReader
An	XmlReader	parsing	the	original	source	XML	document	or	fragment	to
be	used	in	the	comparison.

changedReader
An	XmlReader	parsing	the	changed	XML	document	or	fragment	to	be
used	in	the	comparison.

diffgramWriter
The	XmlWriter	to	which	you	want	to	output	the	XDL	Diffgram.

Remarks

The	result	of	Compare	method	may	differ	when	comparing	documents	loaded	in
DOM	and	documents	parsed	by	XmlTextReader.	That	is,	if	the	document
contains	entity	references	that	are	expanded	by	the	DOM.

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.ParseOptions	Method
(String)
Takes	an	options	attribute	from	an	existing	XDL	Diffgram	root	element
xd:xmldiff,	parses	it,	and	returns	the	XmlDiffOptions	enumeration.

[Visual	Basic]

Public	Function	ParseOptions(_

		ByVal	options	As	String	_

)	As	XmlDiffOptions

[C#]

public	XmlDiffOptions	ParseOptions(

		String	options

);

Parameters

options
The	options	attribute	from	the	root	element	xd:xmldiff	of	the	XDL
Diffgram.

Remarks

This	method	is	useful	when	consuming	the	XDL	Diffgram.	The	options
attribute	on	the	xd:xmldiff	element	contains	a	space-separated	list	of	options
used	when	the	XDL	Diffgram	was	generated.	The	ParseOptions	method
translates	this	list	back	into	the	XmlDiffOptions	enumeration.

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiff.VerifySource	Method
(XmlNode,	UInt64,	XmlDiffOptions)
Returns	true	if	the	passed	document,	node	or	fragment	is	the	source	document,
node,	or	fragment	the	XDL	Diffgram	was	generated	from.

[Visual	Basic]

Public	Function	VerifySource(_

		ByVal	node	As	XmlNode,	_

		ByVal	hashValue	As	UInt64,	_

		ByVal	options	As	XmlDiffOptions	_

)	As	Boolean

[C#]

public	Boolean	VerifySource(

		XmlNode	node,

		UInt64	hashValue,

		XmlDiffOptions	options

);

Parameters

node
The	document,	node,	or	fragment	to	be	verified.

hashValue
The	value	of	the	sourceXmlHash	attribute	from	the	xd:xmldiff	element
that	identifies	the	source	document	that	the	XDL	Diffgram	was	generated
from.	This	is	an	example	of	the	xd:xmldiff	element	with	the
sourceXmlHash	attribute:

<xmldiff

xmlns="http://schemas.microsoft.com/xmltools/2002/xmldiff"

sourceXmlHash="	3299133317929493637">

options
The	XmlDiffOption	enumeration	specifying	the	options	used	when	the
XDL	Diffgram	was	generated.	The	enumeration	can	be	obtained	by
passing	the	options	attribute	from	the	xd:xmldiff	element	of	an	XDL
Diffgram	into	the	ParseOptions	method.

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlDiff	Class	|	XmlDiff	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiffOptions	Enumeration
The	XmlDiff	class	allows	the	setting	of	different	options	that	affects	the
behavior	of	the	comparison,	as	well	as	the	resulting	XDL	Diffgram.	The
following	table	describes	the	enumeration	property	that	affects	what	items	are
included	for	consideration	during	the	comparison.	The	default	values	of	the
options	are	false.

Member	Name Description

IgnoreChildOrder

The	order	of	child	nodes	of	each
element	is	ignored	when	true.	When
this	option	is	selected,	two	nodes	with
the	same	value	that	differ	only	by	their
position	among	sibling	child	nodes,	are
treated	as	the	same	nodes.

IgnoreComments Comment	nodes	are	not	compared
when	true.

IgnoreDtd Document	Type	Declaration	(DTD)	is
not	compared	when	true.

IgnoreNamespaces

The	namespace	URIs	of	the	element
and	attribute	names	are	not	compared
when	true.	This	option	also	implies
that	the	name	prefixes	are	ignored.

When	this	option	is	selected,	then	two
names	with	the	same	local	name,	but
having	a	different	namespace	URI	and
prefix,	are	treated	as	the	same	names.

IgnorePI Processing	instructions	are	not
compared	when	true.

IgnorePrefixes

The	prefixes	of	element	and	attribute
names	are	not	compared	when	true.
When	this	option	is	selected,	then	two
names	that	have	the	same	local	name

and	namespace	URI,	but	have	a
different	prefix,	are	treated	as	the	same
names.

IgnoreWhitespace

Significant	white	spaces	are	not
compared	when	true,	and	all	text	nodes
are	normalized	by	discarding	any
leading	and	trailing	white	space
characters	(#x9,	#x10,	#x13,	#x20),	and
by	replacing	sequences	of	white	space
characters	by	a	single	space	(#x20)
character.

IgnoreXmlDecl The	XML	declaration	is	not	compared
when	true.

None

When	passed	into	the	XmlDiff
constructor	as	its	argument,	specifies
that	all	the	options	in	the	enumeration
are	false.

See	Also

Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlDiffAlgorithm	Enumeration
Specifies	which	algorithm	to	use	when	comparing	XML	documents.

[Visual	Basic]

Public	property	Algorithm(ByVal	value	As	XmlDiffAlgorithm)

[C#]

public	XmlDiffAlborithm	Algorithm	{get;	set;}

Members

Member	name Description

Auto

Default.	Chooses	the	comparison
algorithm	for	you	depending	on	the	size
and	assumed	number	of	changes	in	the
compared	documents.

Fast

Compares	the	two	XML	documents	by
traversing	the	XML	tree	and	comparing
it	node-by-node.	This	algorithm	is	very
fast	but	may	produce	less	precise
results.	For	example	it	may	detect	an
add	and	remove	operation	on	a	node
instead	of	a	move	operation.

Precise

Is	based	on	an	algorithm	for	finding
editing	distance	between	trees,	also
known	as	Zhang-Shasha	algorithm.
This	algorithm	gives	very	precise
results	but	it	may	be	very	slow	on	large
XML	documents	with	many	changes.

Example

[Visual	Basic]

Imports	System

Imports	System.Xml

Imports	Microsoft.XmlDiffPatch

Namespace	TestCompare

			Class	Class1

						Shared	Sub	Main()

								Dim	diffWriter	=	New	XmlTextWriter("diffgram.xml",	New	System.Text.UnicodeEncoding())

								Dim	myDiff	As	New	XmlDiff()

								myDiff.Algorithm	=	XmlDiffAlgorithm.Precise

								Dim	bSame	As	Boolean	=	myDiff.Compare("source.xml",	"changed.xml",	False,	diffWriter)

								Console.WriteLine("The	answer	is	{0}	",	bSame)

						End	Sub							'Main

			End	Class							'Class1

End	Namespace							'TestCompare		

[C#]

using	System;

using	System.Xml;

using	Microsoft.XmlDiffPatch;

namespace	TestCompare

{

		class	Class1

				{

								static	void	Main()

												{

												XmlWriter	diffWriter	=	new	XmlTextWriter("diffgram.xml",	new	System.Text.UnicodeEncoding());	

												XmlDiff	myDiff	=	new	XmlDiff();

												myDiff.Algorithm	=	XmlDiffAlgorithm.Precise;

												bool	bSame	=	myDiff.Compare("source.xml",	"changed.xml",	false,	diffWriter);

				Console.WriteLine("The	answer	is	{0}	",	bSame);

												}

				}

}

Remarks

To	select	the	comparison	algorithm	you	want	to	use,	set	the	Algorithm	property
of	the	XmlDiff	class	before	calling	the	Compare	method.	The	default	value	of
this	property	is	XmlDiffAlgorithm.Auto,	which	means	the	comparison
algorithm	will	be	automatically	selected	depending	on	the	size	and	assumed
number	of	changes	in	the	compared	documents.

Requirements

Namespace:	Microsoft.XmlDiffPatch

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

Assembly:	Microsoft.XmlDiffPatch	(in	XmlDiffPatch.dll)

See	Also

Microsoft.XmlDiffPatch	|	Microsoft	XML	Diff	1.0	|	Microsoft	XML	Patch	1.0

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlPatch	Class
Applies	an	XDL	Diffgram	to	a	source	document	to	create	a	modified	document.

For	a	list	of	all	members	of	this	type,	see	XmlPatch	Members.

Object

		XmlPatch

[Visual	Basic]

Public	Class	XmlPatch

[C#]

public	class	XmlPatch;

Requirements

Namespace:	Microsoft.XmlDiffPatch

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

Assembly:	Microsoft.XmlDiffPatch	(in	XmlDiffPatch.dll)

See	Also

XmlPatch	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlPatch	Members
XmlPatch	overview

Public	Instance	Constructors

XmlPatch	Constructor Initializes	a	new	instance	of	the
XmlPatch	class.

Public	Instance	Methods

Equals	(Inherited	from	Object) Determines	whether	two	Object
instances	are	equal.

GetHashCode	(Inherited	from	Object)

Serves	as	a	hash	function	for	a
particular	type,	suitable	for	use	in
hashing	algorithms	and	data	structures
like	a	hash	table.

GetType	(Inherited	from	Object) Gets	the	Type	of	the	current	instance.

Patch
Overloaded.	Applies	the	XDL
Diffgram	to	a	source	document	to
create	the	modified	document.

ToString	(Inherited	from	Object) Creates	and	returns	a	string
representation	of	the	current	Object.

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlPatch	Constructor	()
Initializes	a	new	instance	of	the	XmlPatch	class.

[Visual	Basic]

Public	Sub	New()

[C#]

public	XmlPatch();

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlPatch	Class	|	XmlPatch	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlPatch	Methods
The	methods	of	the	XmlPatch	class	are	listed	here.	For	a	complete	list	of
XmlPatch	class	members,	see	the	XmlPatch	Members	topic.

Public	Instance	Methods

Equals	(Inherited	from	Object) Determines	whether	two	Object
instances	are	equal.

GetHashCode	(Inherited	from	Object)

Serves	as	a	hash	function	for	a
particular	type,	suitable	for	use	in
hashing	algorithms	and	data	structures
like	a	hash	table.

GetType	(Inherited	from	Object) Gets	the	Type	of	the	current	instance.

Patch
Overloaded.	Applies	the	XDL
Diffgram	to	a	source	document	to
create	a	modified	document.

ToString	(Inherited	from	Object) Creates	and	returns	a	string
representation	of	the	current	Object.

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlPatch.Patch	Method
Applies	the	XDL	Diffgram	to	a	source	document	to	create	a	modified
document.

Overload	List

Modifies	the	document	in	the	XmlDocument	by	applying	the	XDL	Diffgram
parsed	by	an	XmlReader.

[Visual	Basic]	Overloads	Public	Sub	Patch(XmlDocument,	XmlReader)

[C#]	public	void	Patch(XmlDocument,	XmlReader)

Modifies	the	node	tree	in	the	XmlNode	by	applying	the	XDL	Diffgram	parsed
by	an	XmlReader.

[Visual	Basic]	Overloads	Public	Sub	Patch(XmlNode,	XmlReader)

[C#]	public	void	Patch(XmlNode,	XmlReader)

Modifies	the	document	or	fragment	identified	by	the	file	name	or	URL	by
applying	the	XDL	Diffgram	parsed	by	an	XmlReader.	The	resulting	patched
document	or	fragment	is	outputted	to	a	Stream.

[Visual	Basic]	Overloads	Public	Sub	Patch(String,	Stream,	XmlReader)

[C#]	public	void	Patch(String,	Stream,	XmlReader)

Modifies	the	document	or	fragment	parsed	by	an	XmlReader	by	applying	the
XDL	Diffgram	that	is	also	parsed	by	an	XmlReader.	The	resulting	patched
document	is	outputted	to	a	Stream.

[Visual	Basic]	Overloads	Public	Sub	Patch(XmlReader,	Stream,
XmlReader)

[C#]	public	void	Patch(XmlReader,	Stream,	XmlReader)

See	Also

XmlPatch	Class	|	XmlPatch	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlPatch.Patch	Method
(XmlDocument,	XmlReader)
Modifies	the	document	in	the	XmlDocument	by	applying	the	XDL	Diffgram
parsed	by	an	XmlReader.

[Visual	Basic]

Overloads	Public	Sub	Patch(_

		ByVal	sourceDoc	As	XmlDocument,	_

		ByVal	diffgram	As	XmlReader	_

)

[C#]

public	void	Patch(

		XmlDocument	sourceDoc,

		XmlReader	diffgram

);

Parameters

sourceDoc
An	XmlDocument	containing	the	source	document	to	be	modified.

diffgram
The	XDL	Diffgram	that	is	parsed	by	the	XmlReader	to	apply	to	the	source
document.

Example

The	following	code	sample	loads	a	source	document	and	an	XDL	Diffgram,	and
saves	the	changed	sourceDoc	into	a	new	file	called	changed_doc.xml.

[Visual	Basic]

Imports	System

Imports	System.IO

Imports	System.Xml

Imports	Microsoft.XmlDiffPatch

Public	Class	Sample

			Public	Shared	Sub	Main()

						Dim	sourceDoc	As	New	XmlDocument()

						sourceDoc.Load("source.xml")

						Dim	myPatch	As	New	XmlPatch()

						Dim	myRdr	As	New	XmlTextReader("diffgram.xml")

						myPatch.Patch(sourceDoc,	myRdr)

						sourceDoc.Save("changed_doc.xml")

			End	Sub	'Main

End	Class	'Sample	

[C#]

using	System;

using	System.IO;

using	System.Xml;

using	Microsoft.XmlDiffPatch;

public	class	Sample	

{

				public	static	void	Main()	

				{

								XmlDocument	sourceDoc	=	new	XmlDocument();

								sourceDoc.Load("source.xml");

								XmlPatch	myPatch	=	new	XmlPatch();

								XmlTextReader	myRdr	=	new	XmlTextReader("diffgram.xml");

								myPatch.Patch(sourceDoc,	myRdr);

								sourceDoc.Save("changed_doc.xml");

				}

}

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlPatch	Class	|	XmlPatch	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlPatch.Patch	Method	(XmlNode,
XmlReader)
Modifies	the	node	tree	that	is	rooted	in	the	XmlNode	by	applying	the	XDL
Diffgram	parsed	by	an	XmlReader.

[Visual	Basic]

Overloads	Public	Sub	Patch(_

		ByRef	sourceNode	As	XmlNode,	_

		ByVal	diffgram	As	XmlReader	_

)

[C#]

public	void	Patch(

		ref	XmlNode	sourceNode,

		XmlReader	diffgram

);

Parameters

sourceNode
An	XmlNode	containing	the	source	node	to	be	modified.	The	parameter
must	be	passed	by	reference.

diffgram
The	XDL	Diffgram	that	is	parsed	by	the	XmlReader	to	apply	to	the	source
document.

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlPatch	Class	|	XmlPatch	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlPatch.Patch	Method	(String,
Stream,	XmlReader)
Modifies	the	document	or	fragment	indicated	by	the	file	name	or	URL	by
applying	the	XDL	Diffgram	parsed	by	an	XmlReader.	The	resulting	patched
document	or	fragment	is	outputted	to	a	Stream.

	[Visual	Basic]

Overloads	Public	Sub	Patch(_

		ByVal	sourceFile	As	String,	_

		ByVal	outputStream	As	Stream,	_

		ByVal	diffgramReader	As	XmlReader	_

)

[C#]

public	void	Patch(

		String	sourceFile,

		Stream	outputStream,

		XmlReader	diffgramReader

);

Parameters

sourceFile
A	file	name	or	URL	containing	the	original	source	XML	document	or
fragment	to	be	modified.

outputStream
The	stream	to	which	you	want	to	output	the	resulting	patched	document	or
fragment.

diffgramReader
The	XDL	Diffgram	parsed	by	the	XmlReader	that	is	applied	to	the	source
XML	document	or	fragment.

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlPatch	Class	|	XmlPatch	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

XmlPatch.Patch	Method	(XmlReader,
Stream,	XmlReader)
Modifies	the	document	or	fragment	parsed	by	an	XmlReader	by	applying	the
XDL	Diffgram,	which	is	also	parsed	by	an	XmlReader.	The	resulting	patched
document	or	fragment	is	outputted	to	a	Stream.

	[Visual	Basic]

Overloads	Public	Sub	Patch(_

		ByVal	sourceReader	As	XmlReader,	_

		ByVal	outputStream	As	Stream,	_

		ByVal	diffgramReader	As	XmlReader	_

)

[C#]

public	void	Patch(

		XmlReader	sourceReader,

		Stream	outputStream,

		XmlReader	diffgramReader

);

Parameters

sourceReader
The	XmlReader	parsing	the	original	source	XML	document	or	fragment
that	will	be	patched.

outputStream
The	stream	to	which	you	want	to	output	the	resulting	patched	document	or
fragment.

diffgramReader
The	XDL	Diffgram	parsed	by	the	XmlReader	that	is	applied	to	the	source
XML	document	or	fragment.

Requirements

Platforms:	Windows	98,	Windows	NT	4.0,	Windows	Millennium	Edition,
Windows	2000,	Windows	XP,	Windows	.NET	Server

See	Also

XmlPatch	Class	|	XmlPatch	Members	|	Microsoft.XmlDiffPatch

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	XML	Diff	1.0	and	XML	Patch	1.0

Copyright	and	Legal	Information
Information	in	this	document,	including	URL	and	other	Internet	Web	site
references,	is	subject	to	change	without	notice.	Unless	otherwise	noted,	the
example	companies,	organizations,	products,	domain	names,	e-mail	addresses,
logos,	people,	places	and	events	depicted	herein	are	fictitious,	and	no	association
with	any	real	company,	organization,	product,	domain	name,	e-mail	address,
logo,	person,	place	or	event	is	intended	or	should	be	inferred.	Complying	with
all	applicable	copyright	laws	is	the	responsibility	of	the	user.	Without	limiting
the	rights	under	copyright,	no	part	of	this	document	may	be	reproduced,	stored
in	or	introduced	into	a	retrieval	system,	or	transmitted	in	any	form	or	by	any
means	(electronic,	mechanical,	photocopying,	recording,	or	otherwise),	or	for
any	purpose,	without	the	express	written	permission	of	Microsoft	Corporation.

Microsoft	may	have	patents,	patent	applications,	trademarks,	copyrights,	or	other
intellectual	property	rights	covering	subject	matter	in	this	document.	Except	as
expressly	provided	in	any	written	license	agreement	from	Microsoft,	the
furnishing	of	this	document	does	not	give	you	any	license	to	these	patents,
trademarks,	copyrights,	or	other	intellectual	property.

©	2002	Microsoft	Corporation.	All	rights	reserved.

Microsoft	is	a	registered	trademark	of	Microsoft	Corporation	in	the	United
States	and/or	other	countries.

©	2002	Microsoft	Corporation.	All	rights	reserved.

	Microsoft XML Diff 1.0 and XML Patch 1.0
	XML Diff Functionality
	Running Comparisons Between Documents, Fragments, or Nodes
	Setting Options that Affect the Comparison
	Selecting the Algorithm for the Comparison
	Limitations

	XML Diff Language (Diffgram)
	Path Descriptors
	XmlDiff Operation xd:node
	XmlDiff Operation xd:add
	W3C DOM Node Types
	Adding Fragments and Multiple Nodes
	Copying an Existing Node or Fragment to a New Position in the Tree

	XmlDiff Operation xd:remove
	XmlDiff Operation xd:change
	Extended Operations
	Move Operation
	Namespace Change Operation
	Prefix Change Operation

	Example of a Diffgram

	XML Patch Functionality
	Running XmlDiff and XmlPatch Class Code Samples
	Microsoft.XmlDiffPatch Namespace
	XmlDiff Class
	XmlDiff Members
	XmlDiff Constructor
	XmlDiff Constructor ()
	XmlDiff Constructor (XmlDiffOptions)

	XmlDiff Properties
	IgnoreChildOrder Property
	IgnoreComments Property
	IgnoreDtd Property
	IgnoreNamespaces Property
	IgnorePI Property
	IgnorePrefixes Property
	IgnoreWhitespace Property
	IgnoreXmlDecl Property
	Options Property
	Algorithm Property

	XmlDiff Methods
	Compare Method
	Compare Method (String, String, Boolean)
	Compare Method (String, String, Boolean, XmlWriter)
	Compare Method (XmlNode, XmlNode)
	Compare Method (XmlNode, XmlNode, XmlWriter)
	Compare Method (XmlReader, XmlReader)
	Compare Method (XmlReader, XmlReader, XmlWriter)

	ParseOptions Method
	VerifySource Method

	XmlDiffOptions Enumeration
	XmlDiffAlgorithm Enumeration
	XmlPatch Class
	XmlPatch Members
	XmlPatch Constructor ()
	XmlPatch Methods
	Patch Method
	Patch Method (XmlDocument, XmlReader)
	Patch Method (XmlNode, XmlReader)
	Patch Method (String, Stream, XmlReader)
	Patch Method (XmlReader, Stream, XmlReader)

	Copyright and Legal Information

