
New	Objects
Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	Web	site
for	the	latest	information	about	programming	with	Office	Outlook	2003,
including	product	news,	technical	articles,	downloads,	and	samples.

The	following	table	lists	objects	added	to	the	Office	Outlook	2003	object	model.

Object Description

Conflict Represents	an	Outlook	item	that	is	in	conflict	with	another	Outlook
item.

Conflicts Represents	a	collection	of	all	Outlook	items	that	are	in	conflict	with	aparticular	Outlook	item.



New	Properties	(Alphabetical	List)
Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	Web	site
for	the	latest	information	about	programming	with	Office	Outlook	2003,
including	product	news,	technical	articles,	downloads,	and	samples.

The	following	table	lists	properties	added	to	the	Office	Outlook	2003	object
model	(sorted	alphabetically).

New	Property Object(s)

AutoResolvedWinner

AppointmentItem,	ContactItem,	DistListItem,
DocumentItem,	JournalItem,	MailItem,
MeetingItem,	NoteItem,	PostItem,	RemoteItem,
ReportItem,	TaskItem,
TaskRequestAcceptItem,
TaskRequestDeclineItem,	TaskRequestItem,
TaskRequestUpdateItem

Conflicts

AppointmentItem,	ContactItem,	DistListItem,
DocumentItem,	JournalItem,	MailItem,
MeetingItem,	NoteItem,	PostItem,	RemoteItem,
ReportItem,	TaskItem,
TaskRequestAcceptItem,
TaskRequestDeclineItem,	TaskRequestItem,
TaskRequestUpdateItem

EnableSharedAttachments MailItem
ExchangeConnectionMode NameSpace
FlagIcon MailItem,	MeetingItem
HasCoverSheet MailItem
HasPicture ContactItem
IsIPFax MailItem
IsSharePointFolder MAPIFolder
MeetingWorkspaceURL AppointmentItem,	MeetingItem
Permission MailItem
SenderEmailAddress MailItem,	MeetingItem,	PostItem



SenderEmailType MailItem,	MeetingItem,	PostItem
ShowItemCount MAPIFolder



New	Properties	(by	Object)
Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	Web	site
for	the	latest	information	about	programming	with	Office	Outlook	2003,
including	product	news,	technical	articles,	downloads,	and	samples.

The	following	table	lists	properties	added	to	the	Office	Outlook	2003	object
model	(sorted	by	object	name).

Object New	Properties
AutoResolvedWinner

AppointmentItem Conflicts,	MeetingWorkspaceURL
ContactItem AutoResolvedWinner,	Conflicts,	HasPicture
DistListItem AutoResolvedWinner,	Conflicts
DocumentItem AutoResolvedWinner,	Conflicts
JournalItem AutoResolvedWinner,	Conflicts

MailItem

AutoResolvedWinner,	Conflicts,
EnableSharedAttachments,	FlagIcon,
HasCoverSheet,	IsIPFax,	Permission,
SenderEmailAddress,	SenderEmailType

MAPIFolder IsSharePointFolder,	ShowItemCount

MeetingItem
AutoResolvedWinner,	Conflicts,	FlagIcon,
MeetingWorkspaceURL,	SenderEmailAddress,
SenderEmailType

NameSpace ExchangeConnectionMode
NoteItem AutoResolvedWinner,	Conflicts

PostItem AutoResolvedWinner,	Conflicts,
SenderEmailAddress,	SenderEmailType

RemoteItem AutoResolvedWinner,	Conflicts
ReportItem AutoResolvedWinner,	Conflicts
TaskItem AutoResolvedWinner,	Conflicts
TaskRequestAcceptItem AutoResolvedWinner,	Conflicts
TaskRequestDeclineItem AutoResolvedWinner,	Conflicts



TaskRequestItem AutoResolvedWinner,	Conflicts
TaskRequestUpdateItem AutoResolvedWinner,	Conflicts



New	Methods	(Alphabetical	List)
Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	Web	site
for	the	latest	information	about	programming	with	Office	Outlook	2003,
including	product	news,	technical	articles,	downloads,	and	samples.

The	following	table	lists	methods	added	to	the	Office	Outlook	2003	object
model	(sorted	alphabetically).

New	Method Object
AddPicture ContactItem
AddStoreEx NameSpace
DeselectFolder Explorer
IsFolderSelected Explorer
RemovePicture ContactItem
SelectFolder Explorer



New	Methods	(by	Object)
Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	Web	site
for	the	latest	information	about	programming	with	Office	Outlook	2003,
including	product	news,	technical	articles,	downloads,	and	samples.

The	following	table	lists	methods	added	to	the	Office	Outlook	2003	object
model	(sorted	by	object	name).

New	Method Object
ContactItem AddPicture,	RemovePicture
Explorer DeselectFolder,	IsFolderSelected,	SelectFolder
NameSpace AddStoreEx



New	Events
Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	Web	site
for	the	latest	information	about	programming	with	Office	Outlook	2003,
including	product	news,	technical	articles,	downloads,	and	samples.

The	following	table	lists	events	added	to	the	Office	Outlook	2003	object	model.

New	Event Object
NewMailEx Application



Using	Visual	Basic	for	Applications	in
Outlook
Visual	Basic	for	Applications	(VBA)	in	Microsoft	Outlook	makes	it	easy	to
control	Outlook	within	Outlook	itself.	Using	Visual	Basic	for	Applications	in
Outlook,	you	can	create	macros	that	perform	complex	or	repetitive	tasks
automatically.	You	can	also	develop	program	code	that	responds	to	Outlook
events,	allowing	you	to	automate	common	tasks	(such	as	arranging	windows
when	Outlook	starts).

Visual	Basic	for	Applications	in	Outlook	allows	you	to	take	full	advantage	of	the
Outlook	object	model,	including	the	wide	range	of	application-level	events,
without	requiring	you	to	run	an	external	application	(such	as	another	Microsoft
Office	application	or	an	application	developed	using	Microsoft	Visual	Basic).
And	unlike	form	scripts	developed	using	Microsoft	Visual	Basic	Scripting
Edition	(VBScript),	Outlook	Visual	Basic	for	Applications	code	is	always
available	in	the	application;	an	item	does	not	have	to	be	open	to	run	the	code.

All	Outlook	Visual	Basic	for	Applications	code	is	contained	in	a	project.	The
project	is	associated	with	a	particular	user,	so	all	users	who	run	Outlook	on	a
computer	can	customize	Outlook	to	meet	their	own	needs.	A	project	can	contain
code	modules	and	User	Form	modules	(note	that	User	Form	modules	are	not	the
same	as	Outlook	forms	).

You	use	the	Visual	Basic	Editor	to	create	and	remove	modules,	to	design	User
Form	modules,	and	to	edit	code	in	modules.	This	editor	provides	a	powerful	set
of	tools,	including	a	built-in	Object	Browser	and	debugger	to	make	developing
and	troubleshooting	code	easy.	You	can	even	use	the	Visual	Basic	Editor	in
Outlook	to	develop	and	test	code	that	you	can	then	copy	to	a	standalone	Visual
Basic	application	or	a	Visual	Basic	for	Applications	application	in	another
Microsoft	Office	application.

You	can	export	a	module	to	a	file;	this	makes	it	easy	to	share	your	programs	with
other	users,	who	can	use	the	Visual	Basic	Editor	to	import	the	module	into	their
own	Outlook	Visual	Basic	for	Applications	projects.

mk:@MSITStore:olmain11.chm::/html/reconAboutForms.htm


Learn	about	writing	an	Outlook	macro,	responding	to	Outlook	events,	and
designing	Visual	Basic	for	Applications	forms.



Writing	an	Outlook	macro
A	macro	is	any	public	subroutine	in	a	code	module.	A	function	or	a	private
subroutine	cannot	be	a	macro,	and	a	macro	cannot	be	located	in	a	class	or	form
module.

To	create	a	new	macro

1.	 In	Outlook,	point	to	Macro	on	the	Tools	menu,	and	then	click	Visual	Basic
Editor.

2.	 In	the	Project	window,	double-click	the	module	you	want	to	contain	the
macro.

3.	 On	the	Insert	menu,	click	Procedure.
4.	 In	the	Name	box,	type	a	name	for	the	macro.	The	name	cannot	contain

spaces.
5.	 Click	OK.

The	template	for	the	macro	subroutine	appears	in	the	code	module	window.

6.	 Type	the	code	you	want	to	run	in	the	body	of	the	subroutine.

For	more	information	about	using	the	Visual	Basic	Editor,	see	the	Visual	Basic
Editor	Help.

Once	you’ve	created	a	macro,	you	can	create	a	menu	item	or	toolbar	button	that
will	run	the	macro	when	you	click	it.



Using	Outlook	Visual	Basic	for
Applications	to	respond	to	Outlook
events
You	write	an	event	procedure	(also	known	as	an	event	handler)	to	respond	to
events	that	occur	in	Microsoft	Outlook.	For	example,	you	can	write	an	event
procedure	that	automatically	maximizes	the	explorer	window	when	Outlook
starts.

Events	are	associated	with	particular	objects.	The	Application	object	is	the
topmost	object,	and	is	always	available	(that	is,	it	does	not	have	to	be	created).
You	can	add	an	Application	event	procedure	in	the	ThisOutlookSession
module	window	simply	by	selecting	Application	in	the	left	list	and	then
selecting	the	event	in	the	right	list.

Adding	an	event	handler	for	objects	other	than	the	Application	object	requires	a
few	additional	steps.

First,	you	must	declare	a	variable	using	the	WithEvents	keyword	to	identify	the
object	whose	event	you	want	to	handle.	For	example,	to	declare	a	variable
representing	the	OutlookBarPane	object,	you	would	add	the	following	to	a	code
module.

Dim	WithEvents	myOlBar	as	Outlook.OutlookBarPane

	 	

You	can	then	select	myOlBar	in	the	Objects	list	of	the	module	window	and	then
select	the	event	in	the	procedure	list.	The	Visual	Basic	Editor	will	then	add	the
template	for	the	event	procedure	to	the	module	window.	You	can	then	type	the
code	you	want	to	run	when	the	event	occurs.	The	following	example	shows	code
added	to	the	BeforeNavigate	event	procedure	for	the	OutlookBarPane	object.

Private	Sub	myOlBar_BeforeNavigate(ByVal	Shortcut	As	OutlookBarShortcut,	Cancel	As	Boolean)

				If	Shortcut.Name	=	"Notes"	Then

								MsgBox	"You	cannot	open	the	Notes	folder."

								Cancel	=	True



				End	If

End	Sub

	 	

The	final	step	is	to	add	code	to	set	the	object	variable	to	the	object	whose	event
you	want	to	handle.	This	code	can	exist	in	a	macro,	or	if	you	want	the	event	to
be	handled	whenever	Outlook	runs,	you	can	put	it	in	the	Startup	event
procedure,	as	in	the	following	example.

Private	Sub	Application_Startup()

				Set	myOlBar	=	Application.ActiveExplorer.Panes(1)

End	Sub

	 	



Working	with	forms	in	the	Visual
Basic	Editor
You	can	use	the	Visual	Basic	Editor	to	design	a	form	that	allows	your	users	to
interact	with	your	Microsoft	Visual	Basic	for	Applications	(VBA)	program.
Unlike	an	Outlook	form,	a	Visual	Basic	for	Applications	form	is	not	used	to
display	an	Outlook	item,	nor	can	a	control	on	a	Visual	Basic	for	Applications
form	be	bound	to	an	item	field.

Your	Visual	Basic	for	Applications	program	can	use	a	Visual	Basic	for
Applications	user	form	to	gather	information	from	your	users;	your	program	can
then	use	this	information	to	set	properties	of	new	or	existing	Outlook	items.	For
example,	a	program	that	creates	a	boilerplate	mail	message	could	use	a	Visual
Basic	for	Applications	form	to	allow	the	user	to	enter	the	specific	information
for	the	message	to	be	sent.	When	the	user	closes	the	form,	the	program	uses	the
information	in	the	form	to	set	the	properties	of	the	mail	message	and	then	sends
the	message.

The	following	sample	uses	the	text	in	two	text	boxes	to	add	information	to	a
message	before	sending	it.

Private	Sub	CommandButton1_Click()

				Dim	myMail	As	Outlook.MailItem

				Set	myMail	=	Application.CreateItem(olMailItem)

				With	myMail

								.To	=	TextBox1.Text

								.Subject	=	"Book	overdue:	"	&	TextBox2.Text

								.Body	=	"Please	return	this	book	as	soon	as	possible."

				End	With

				myMail.Send

End	Sub

	 	

You	can	also	use	controls	to	display	information	about	Outlook	items,	folders,
and	other	features	of	the	Outlook	object	model.	The	following	example	shows
how	to	fill	a	combo	box	control	with	the	subjects	of	the	items	in	the	user’s
Inbox.

mk:@MSITStore:olmain11.chm::/html/reconAboutForms.htm


Dim	myItems	As	Outlook.Items

Set	myItems	=	Application.GetNamespace("MAPI").GetDefaultFolder(olFolderInbox).Items

For	x	=	1	To	myItems.Count

				ComboBox1.AddItem	myItems.Item(x).Subject

Next	x

	 	

For	more	information	about	creating	and	using	forms	in	the	Visual	Basic	Editor,
see	the	Visual	Basic	Editor	Help.



Automating	Outlook	from	a	Visual
Basic	Applications
Because	Microsoft	Outlook	supports	Automation,	you	can	control	Outlook	from
any	program	written	with	Microsoft	Visual	Basic.	Automation	provides	a
standard	method	for	one	application	to	access	the	objects,	methods,	properties,
and	events	of	other	applications	that	support	Automation.

The	Outlook	object	model	provides	all	of	the	functionality	necessary	to
manipulate	data	stored	in	Outlook	folders,	and	it	provides	the	ability	to	control
many	aspects	of	the	Outlook	user	interface.

To	start	an	Outlook	automation	session,	you	can	use	either	early	or	late	binding.
Late	binding	uses	either	the	GetObject	or	the	CreateObject	function	to
initialize	Outlook.	For	example,	the	following	code	sets	an	object	variable	to	the
Outlook	Application	object,	which	is	the	highest-level	object	in	the	Outlook
object	model.	All	automation	code	must	first	define	an	Outlook	Application
object	to	be	able	to	access	any	other	Outlook	objects.

Dim	objOL	as	Object

Set	objOL	=	CreateObject("Outlook.Application")

	 	

To	use	early	binding,	you	first	need	to	set	a	reference	to	the	Outlook	object
library.	You	can	then	use	the	following	syntax	to	start	an	Outlook	session.

Dim	objOL	as	Outlook.Application

Set	objOL	=	New	Outlook.Application

	 	

Most	programming	solutions	interact	with	the	data	stored	in	Outlook.	Outlook
stores	all	of	its	information	in	Messaging	Application	Programming	Interface
(MAPI)	folders.	After	you	set	an	object	variable	to	the	Outlook	Application
object,	you	will	commonly	set	a	Namespace	object	to	refer	to	MAPI,	as	shown
in	the	following	example.

Set	objOL	=	New	Outlook.Application

Set	objNS	=	objOL.GetNameSpace("MAPI")



Set	objFolder	=	objNS.GetDefaultFolder(olFolderContacts)

	 	

Once	you	have	set	an	object	variable	to	reference	the	folder	that	contains	the
items	you	wish	to	work	with,	you	use	appropriate	code	to	accomplish	your	task,
as	shown	in	the	following	example.

Sub	CreateNewDefaultOutlookTask()

				Dim	objOLApp	As	Outlook.Application

				Dim	NewTask	As	Outlook.TaskItem

				'	Set	the	Application	object

				Set	objOLApp	=	New	Outlook.Application

				'	You	can	only	use	CreateItem	for	default	items

				Set	NewTask	=	objOLApp.CreateItem(olTaskItem)

				'	Display	the	new	task	form	so	the	user	can	fill	it	out

				NewTask.Display

End	Sub

	 	



Automating	Outlook	from	other
Microsoft	Office	applications
You	can	use	Microsoft	Visual	Basic	for	Applications	(VBA)	in	any	Microsoft
Office	application	to	control	Microsoft	Outlook.	For	example,	if	you	are
developing	a	cross-application	solution	using	one	primary	application	and
several	secondary	applications,	you	can	write	Visual	Basic	for	Applications	code
in	the	primary	application	to	automate	Outlook	to	send	messages	and	to	store
and	retrieve	information	in	Outlook	items.	For	example,	in	Microsoft	Excel	you
can	write	routines	that	send	a	workbook	to	an	Outlook	distribution	list.

To	control	Outlook	objects	from	outside	Outlook,	you	must	establish	a	reference
to	the	Outlook	object	library	from	the	project	in	which	you	are	writing	code.	To
do	this,	use	the	References	dialog	box	in	the	Visual	Basic	Editor	in	the	primary
application.	You	can	then	write	code	that	returns	a	reference	to	the	Outlook
Application	object.	Through	this	reference,	your	code	has	access	to	all	the
objects,	properties,	methods,	and	constants	defined	in	the	Outlook	type	library.

There	are	several	ways	to	return	a	reference	to	the	Outlook	Application	object:

You	can	use	the	CreateObject	function	to	start	a	new	session	of	Outlook
and	return	a	reference	to	the	Application	object	that	represents	the	new
session.
You	can	use	the	GetObject	function	to	return	a	reference	to	the
Application	object	that	represents	a	session	that’s	already	running.	Note
that	because	there	can	be	only	one	instance	of	Outlook	running	at	any	given
time,	GetObject	usually	serves	little	purpose	when	used	with	Outlook.
CreateObject	can	always	be	used	to	access	the	current	instance	of	Outlook
or	to	create	a	new	instance	if	one	does	not	exist.	However,	you	can	use	error
trapping	with	the	GetObject	method	to	determine	if	Outlook	is	currently
running.
You	can	use	the	New	keyword	in	several	types	of	statements	to	implicitly
create	a	new	instance	of	the	Outlook	Application	object	using	the	Set
statement	to	set	an	object	variable	to	the	new	instance	of	the	Application
object.	You	can	also	use	the	New	keyword	with	the	Dim,	Private,	Public,
or	Static	statement	to	declare	an	object	variable.	The	new	instance	of	the



Application	object	is	then	created	on	the	first	reference	to	the	variable.

Automating	Outlook	from	a	Visual	Basic	Application	provides	examples	of
using	these	methods	of	referencing	the	Outlook	Application	object.



Show	All



Working	with	Outlook	events
Microsoft	Outlook	provides	a	wide	range	of	events	through	which	it	can	notify
your	Microsoft	Visual	Basic,	Microsoft	Visual	Basic	for	Applications	(VBA),
and	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	programs	that	a
significant	change	has	occurred.	For	example,	Outlook	events	can	notify	a
program	when	an	item	has	been	opened	or	when	a	new	mail	arrives	in	the	InBox.

To	receive	notification	of	a	significant	event,	write	an	event-handler	procedure.
Depending	on	whether	the	event	is	handled	in	Visual	Basic	or	Visual	Basic	for
Applications	or	in	VBScript,	this	is	either	a	Sub	or	a	Function	that	Outlook	calls
when	the	event	is	called.	The	code	you	put	in	the	event	handler	allows	your
program	to	respond	appropriately	to	the	event	and,	in	some	cases,	even	lets	your
program	cancel	the	default	action	associated	with	the	event,	such	as	preventing	a
mail	item	from	being	sent.



Types	of	Events

Outlook	events	can	be	divided	into	two	main	categories:	item-level	events	and
application-level	events.

Item-level	events	pertain	to	a	particular	item,	and	are	typically	handled	by
VBScript	code	contained	within	the	form	associated	with	the	item.	These	events
notify	your	program	when	an	item	has	been	opened,	sent	or	posted,	saved,	or
closed,	and	when	the	user	has	replied	to	or	forwarded	a	message	or	initiated	a
custom	action.	Item-level	events	can	also	notify	your	program	when	the	user	has
clicked	a	control	on	the	form	or	when	an	item	property	has	changed.

Application-level	events	are	typically	handled	by	Visual	Basic	or	Visual	Basic
for	Applications	because	they	pertain	to	more	than	the	items	associated	with	a
particular	form.	Application-level	events	can	pertain	to	the	application	itself,	to
explorer	collections	and	windows	(including	the	Shortcuts	pane),	inspector
collections	and	windows,	folders	and	folders	collections,	items	collections,	and
synchronization	objects.



Responding	to	Events

To	respond	to	item-level	events,	add	event-handler	procedures	to	the	script	of	the
form	that	displays	the	item.	For	example,	to	run	code	when	an	item	is	opened	in
the	form,	add	a	procedure	like	the	following	to	the	script	in	the	form.

Function	Item_Open()

				MsgBox	"A	new	item	has	opened	in	this	form."

End	Function

	 	

Responding	to	application-level	events	is	somewhat	more	involved	because
steps	must	be	taken	to	associate	the	event	handler	with	the	part	of	Outlook	in
which	the	event	is	occurring.	Learn	about	writing	an	application-level	event
handler.



Order	of	Events

Except	for	certain	form	events,	your	program	cannot	assume	that	events	will
occur	in	a	particular	order,	even	if	they	appear	to	be	called	in	a	consistent
sequence.	The	order	in	which	Outlook	calls	event	handlers	might	change
depending	on	other	events	that	might	occur,	or	the	order	might	change	in	future
versions	of	Outlook.



Customizing	Outlook	using	COM
add-ins
You	can	use	Microsoft	Visual	Basic	version	5.0	or	later	(version	6.0	or	later	is
preferred)	or	the	Microsoft	Office	Developer	to	create	a	COM	add-in	to	extend
and	enhance	Microsoft	Outlook.

Creating	a	COM	add-in	involves	two	major	steps:

1.	 Implement	the	IDTExtensibility2	interface	in	a	class	module	of	a	dynamic
link	library	(DLL).

2.	 Register	the	COM	add-in.



Implement	the	IDTExtensibility2	interface

The	IDTExtensibility2	interface	consists	of	five	event	procedures.	To	implement
this	interface	in	a	Visual	Basic	program,	set	a	reference	to	the	Microsoft	Add-In
Designer	object	library	and	then	add	the	following	statement	to	the	Declarations
section	of	a	class	module:

Implements	IDTExtensibility2

	 	

You	can	then	add	the	empty	event	procedures	to	the	code	window	of	the	class
module	and	add	your	own	program	code	to	the	procedures.	You	can	also	copy
the	empty	procedures	from	an	Outlook	COM	Add-in	Template.



Register	the	COM	add-in

In	order	to	work	with	Outlook,	the	add-in	DLL	must	be	registered.	The	DLL's
class	ID	is	registered	beneath	the	\HKEY_CLASSES_ROOT	subtree	in	the
registry.

In	addition,	information	about	the	add-in	must	be	added	to	the	registry.	This
information	provides	the	add-in’s	name,	description,	target	application,	initial
load	behavior,	and	connection	state.

Note		If	you	use	Microsoft	Visual	Basic	6.0	or	later	Developer	to	design	your
COM	add-in,	the	add-in	designer	will	perform	the	steps	required	to	register	the
COM	add-in	for	you.

The	following	example	shows	the	contents	of	a	sample	registry-editor	(.reg)	file
that	illustrates	how	to	register	an	Outlook	COM	add-in.

[HKEY_CURRENT_USER\Software\Microsoft\Office\Outlook\Addins\SampleAddIn.AddInIFace]

"FriendlyName"="Sample	Add-in"

"Description"="Sample	Outlook	Add-In"

"LoadBehavior"=dword:00000008

	 	

When	the	COM	add-in	is	first	registered,	LoadBehavior	can	be	set	to	any	of	the
following	flags.

Value Description

2 Load	at	startup.	The	COM	add-in	is	to	be	loaded	and	connected	when
Outlook	starts.

8 Load	on	demand.	The	COM	add-in	is	to	be	loaded	and	connected	only
when	the	user	requests	it,	such	as	by	using	the	COM	Add-ins	dialog	box.

16

Connect	first	time.	The	COM	add-in	is	loaded	and	connected	the	first
time	the	user	runs	Outlook	after	the	COM	add-in	has	been	registered.	The
next	time	Outlook	is	run,	the	COM	add-in	is	loaded	when	the	user
requests	it.	Use	this	value	if	your	COM	add-in	modifies	the	user	interface
to	allow	the	user	to	request	the	COM	add-in	be	connected	on	demand	(by
clicking	a	button,	for	example).



After	the	COM	add-in	is	registered	and	loaded,	the	LoadBehavior	value	can	be
combined	with	either	of	the	following	two	flags	to	indicate	current	connection
state	of	the	COM	add-in.

Flag Description
0 Disconnected
1 Connected

To	connect	the	COM	add-in,	set	the	Connected	flag	in	LoadBehavior;	clear	the
flag	to	disconnect	the	COM	add-in.

The	FriendlyName	value	specifies	the	name	of	the	COM	add-in	as	it’s
displayed	in	the	COM	Add-in	dialog	box.	The	Description	value	provides
additional	information	about	the	COM	add-in.



Security	notes	for	COM	add-in
developers
COM	Add-ins	Using	Default	Security

In	Microsoft	Office	Outlook	2003,	all	COM	add-ins	that	run	on	a	computer	that
is	not	configured	to	obtain	security	settings	from	a	Microsoft	Exchange	Server
are	considered	trusted	by	default.	This	implies	that	the	add-ins	that	run	on	clients
that	are	not	Exchange	clients	and	the	add-ins	that	use	default	security	in
Exchange	environments	are	trusted	automatically.	As	in	Microsoft	Outlook
2002,	Microsoft	Office	Outlook	2003	trusts	only	the	main	Application	object
that	is	passed	to	the	OnConnection	event	of	the	add-in.

COM	Add-ins	Using	Security	Settings	from	an	Exchange	Server

There	has	been	no	change	in	the	way	Outlook	2003	trusts	COM	add-ins	in	an
Exchange	environment	when	the	security	settings	are	obtained	from	the
Exchange	server.	An	add-in	will	be	considered	trusted	only	if	it	is	registered	in
the	Security	Settings	folder.	As	in	Outlook	2002,	Outlook	2003	trusts	only	the
main	Application	object	that	is	passed	to	the	OnConnection	event	of	the	add-
in.

Improvements	to	Outlook	Object	Model	Guard	and	the	Impact

Outlook	2003	inherits	the	Outlook	2002	object	model	guard	behavior	and,	in
addition,	blocks	code	that	attempts	to	access	the	Body	and	HTMLBody
properties	of	various	Outlook	items.	This	allows	users	to	verify	that	the	program
or	add-in	accessing	the	Body	and	HTMLBody	properties	of	these	items	is
trustworthy,	before	they	allow	access	to	the	contents	of	the	items.	Although	this
change	forces	the	display	of	security	warnings	in	existing	COM	add-ins	that
access	the	Body	or	HTMLBody	properties	of	items,	this	will	help	prevent
malicious	code	from	running	unknown	to	the	user.

You	can	avoid	the	display	of	security	warnings	by	deriving	all	objects,
properties,	and	methods	from	the	Application	object	passed	to	the



OnConnection	procedure	of	the	add-in.	Outlook	2003	trusts	only	the
Application	object	passed	to	the	OnConnection	procedure	of	the	add-in.	If	you
create	a	new	Application	object,	for	example,	by	using	the	CreateObject
method,	that	object	and	any	of	its	subordinate	objects,	properties,	and	methods
will	not	be	trusted	and	the	blocked	properties	and	methods	will	raise	security
warnings.

New	Object	Model	Blocks

The	following	are	the	additional	properties	that	have	been	blocked	in	Outlook
2003:

The	IMAddress	property	of	a	ContactItem	object.
The	HTMLBody	property	of	a	MailItem	object.
The	Body	property	of	the	following	objects:	ContactItem,	MailItem,
PostItem,	AppointmentItem,	TaskItem,	TaskRequestItem,
TaskRequestAcceptItem,	TaskRequestDeclineItem,
TaskRequestUpdateItem,	DistListItem,	JournalItem,	MeetingItem,
ReportItem,	RemoteItem,	NoteItem,	or	DocumentItem.

Also,	if	you	use	a	third-party	add-ins,	custom	solutions,	or	other	programs	that
integrate	with	Outlook	2003,	you	may	receive	one	or	more	of	the	following
warnings:

"A	program	is	trying	to	automatically	send	e-mail	on	your	behalf.	Do	you
want	to	allow	this?	If	this	is	unexpected,	it	may	be	a	virus	and	you	should
choose	No.	"
"A	program	is	trying	to	access	e-mail	addresses	you	have	stored	in	Outlook.
Do	you	want	to	allow	this?	If	this	is	unexpected,	it	may	be	a	virus	and	you
should	choose	No.	"

These	warning	messages	are	commonly	associated	with	software	that	is	designed
to	synchronize	Outlook	data	with	handheld	computers,	but	may	occur	with	any
type	of	add-in	or	custom	solution.



Show	All



Actions	Object
Multiple	objects Actions

Action

A	collection	of	Action	objects	that	represent	all	the	specialized	actions	that	can
be	executed	on	an	Outlook	item.



Using	the	Actions	Object

Use	the	Actions	property	to	return	the	Actions	object	for	any	Outlook	item
object.

Use	Actions(index),	where	index	is	the	name	of	an	available	action,	to	return	a
single	Action	object.

The	following	Visual	Basic	for	Applications	(VBA)	example	uses	the	Reply
action	of	a	particular	item	to	send	a	reply.

Set	myOlApp	=	CreateObject("Outlook.Application")

myItem	=	CreateItem(olMailItem)

Set	myReply	=	myItem.Actions("Reply").Execute

	 	



AddressEntries	Object
Multiple	objects AddressEntries

AddressEntry
Multiple	objects

The	AddressEntries	collection	is	a	collection	of	addresses	in	an	AddressList
object.	The	object	may	contain	zero	or	more	AddressEntry	objects	and	provides
access	to	the	entries	in	a	transport	provider's	address	book	container.



Using	the	AddressEntries	Object

The	following	example	sets	a	reference	to	an	AddressEntries	object.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myNameSpace	=	myOlApp.GetNameSpace("MAPI")

Set	myAddressList	=	myNameSpace.AddressLists("Personal	Address	Book")

Set	myAddressEntries	=	myAddressList.AddressEntries

	 	

You	can	also	index	directly	into	the	AddressEntries	object,	returning	an
AddressEntry	object.

Set	myAddressEntry	=	myAddressList.AddressEntries(index)

	 	



Remarks

If	a	program	tries	to	reference	any	type	of	recipient	information	by	using	the
Outlook	object	model,	a	dialog	box	is	displayed	that	asks	you	to	confirm	access
to	this	information.	You	can	allow	access	to	the	Address	Book	or	recipient
information	for	up	to	ten	minutes	after	you	receive	the	dialog	box.	This	allows
features,	such	as	mobile	device	synchronization,	to	be	completed.

You	receive	the	confirmation	dialog	box	when	a	solution	tries	to
programmatically	access	the	AddressEntries	object.



Show	All



AddressLists	Object
NameSpace AddressLists

AddressList
AddressEntries

The	AddressLists	object	contains	a	set	of	AddressList	objects.	The
AddressLists	collection	provides	access	to	the	root	of	the	transport	provider's
address	book	hierarchy	for	the	current	session.



Using	the	AddressLists	Object

The	following	example	sets	a	reference	to	the	AddressLists	object.

Set	myAddressLists	=	myNameSpace.AddressLists

	 	



Show	All



Attachments	Object
Multiple	objects Attachments

Attachment

An	object	containing	Attachment	objects	that	represent	the	attachments	in	an
Outlook	item.



Using	the	Attachments	Object

Use	the	Attachments	property	to	return	the	Attachments	collection	for	any
Outlook	item	(except	notes).

Use	the	Add	method	to	add	an	attachment	to	an	item.

To	ensure	consistent	results,	always	save	an	item	before	adding	or	removing
objects	in	the	Attachments	collection	of	the	item.

The	following	Visual	Basic	for	Applications	(VBA)	example	creates	a	new	mail
message,	attaches	a	Q496.xls	as	an	attachment	(not	a	link),	and	gives	the
attachment	a	descriptive	caption.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olMailItem)

myItem.Save

Set	myAttachments	=	myItem.Attachments

myAttachments.Add	"C:\My	Documents\Q496.xls",	_

				olByValue,	1,	"4th	Quarter	1996	Results	Chart"

	 	

Use	Attachments(index),	where	index	is	the	index	number,	to	return	a	single
Attachment	object.



Conflicts	Object
Multiple	objects Conflicts

Conflict

The	Conflicts	object	is	a	collection	of	Conflict	objects	that	represent	all
Microsoft	Outlook	items	that	are	in	conflict	with	a	particular	Outlook	item.



Using	the	Conflicts	Object

Use	the	Conflicts	property	to	return	the	Conflicts	object	for	any	Outlook	item
object.

Use	the	Count	property	of	the	Conflicts	object	to	determine	if	the	item	is
invloved	in	a	conflict.	A	non-zero	value	indicates	conflict.

Use	the	Item	method	to	retrieve	a	particular	conflict	item	from	the	Conflicts
collection	object.

Use	the	GetFirst,	GetNext,	GetPrevious,	and	GetLast	methods	to	traverse	the
Conflicts	collection.

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example	uses	the
Count	property	of	the	Conflicts	object	to	determine	if	the	item	is	involved	in
any	conflict.	To	run	this	example,	make	sure	an	e-mail	item	is	open	in	the	active
window.

Sub	CheckConflicts()

Dim	myOlApp	As	Outlook.Application

Dim	myItem	As	Outlook.MailItem

Dim	myConflicts	As	Outlook.Conflicts

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.ActiveInspector.CurrentItem

Set	myConflicts	=	myItem.Conflicts

If	(myConflicts.Count	>	0)	Then

													MsgBox	("This	item	is	involved	in	a	conflict.")

Else

													MsgBox	("This	item	is	not	involved	in	any	conflicts.")

End	If

End	Sub



Exceptions	Object
RecurrencePattern Exceptions

Exception
Multiple	objects

The	Exceptions	object	contains	a	group	of	Exception	objects.	If	you	have	a
recurring	AppointmentItem,	the	RecurrencePattern	object	defines	the
recurrence	of	these	appointments.	The	Exceptions	object	contains	the	group	of
Exception	objects	that	define	the	exceptions	to	that	series	of	appointments.

Exception	objects	are	added	to	the	Exceptions	object	whenever	a	property	in
the	corresponding	AppointmentItem	object	is	altered.



Using	the	Exceptions	Object

The	following	example	sets	a	reference	to	the	Exceptions	object.

Set	myExceptions	=	myRecurrencePattern.Exceptions

	 	



Explorers	Object
Explorers Explorer

Multiple	objects

The	Explorers	object	contains	a	set	of	Explorer	objects	representing	all
explorers.	An	explorer	need	not	be	visible	to	be	included	in	the	collection.



Using	the	Explorers	Object

Use	the	Explorers	property	to	return	the	Explorers	object	from	the	Application
object.	The	following	example	shows	how	to	retrieve	the	Explorers	object	in
Microsoft	Visual	Basic	and	Microsoft	Visual	Basic	for	Applications	(VBA).

Dim	myOlApp	as	New	Outlook.Application

Set	myExplorers	=	myOLApp.Explorers

	 	

The	following	example	shows	how	to	retrieve	the	Explorers	object	in	Microsoft
Visual	Basic	Scripting	Edition	(VBScript).

Set	myExplorers=	Application.Explorers

	 	



Folders	Object
Folders MAPIFolder

View

An	object	containing	MAPIFolder	objects	that	represent	all	the	available
Microsoft	Outlook	folders	in	a	specific	subset	at	one	level	of	the	folder	tree.



Using	the	Folders	Object

Use	the	Folders	property	to	return	the	Folders	object	from	a	NameSpace	object
or	another	MAPIFolder	object.

Use	Folders(index),	where	index	is	the	name	or	index	number,	to	return	a	single
MAPIFolder	object.	Folder	names	are	case-sensitive.

The	following	Visual	Basic	for	Applications	(VBA)	example	returns	the	folder
named	Old	Contacts.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myNameSpace	=	myOlApp.GetNameSpace("MAPI")

Set	myFolder	=	_

				myNameSpace.GetDefaultFolder(olFolderContacts)

Set	myNewFolder	=	myFolder.Folders("Old	Contacts")

	 	

The	following	Visual	Basic	for	Applications	example	returns	the	first	folder.

Set	myNewFolder	=	myFolder.Folders(1)

	 	



Inspectors	Object
Inspectors Inspector

The	Inspectors	object	contains	a	set	of	Inspector	objects	representing	all
inspectors.	An	inspector	need	not	be	visible	to	be	included	in	the	collection.



Using	the	Inspectors	Object

Use	the	Inspectors	property	to	return	the	Inspectors	object	from	the
Application	object.	The	following	example	shows	how	to	retrieve	the
Inspectors	object	in	Microsoft	Visual	Basic	or	Microsoft	Visual	Basic	for
Applications	(VBA).

Dim	myOlApp	as	New	Outlook.Application

Set	myInspectors	=	myOLApp.Inspectors

	 	

The	following	example	shows	how	to	retrieve	the	Inspectors	object	in	Microsoft
Visual	Basic	Scripting	Edition	(VBScript).

Set	myInspectors=	Application.Inspectors

	 	



ItemProperties	Collection
Multiple	objects ItemProperties

ItemProperty

A	collection	of	all	properties	associated	with	the	item.



Using	the	ItemProperties	collection

Use	the	ItemProperties	property	to	return	the	ItemProperties	collection.	Use
ItemProperties.Item(index),	where	index	is	the	name	of	the	object	or	the
numeric	position	of	the	item	within	the	collection,	to	return	a	single
ItemProperty	object.	The	following	example	creates	a	new	MailItem	object
and	stores	its	ItemProperties	collection	in	a	variable	called	objItems.

Sub	ItemProperty()

'Creates	a	new	MailItem	and	access	its	properties

				Dim	olApp	As	Outlook.Application

				Dim	objMail	As	MailItem

				Dim	objItems	As	ItemProperties

				Dim	objItem	As	ItemProperty

				Set	olApp	=	Outlook.Application

				'Create	the	mail	item

				Set	objMail	=	olApp.CreateItem(olMailItem)

				'Create	a	reference	to	the	item	properties	collection

				Set	objItems	=	objMail.ItemProperties

				'Create	a	reference	to	the	item	property	page

				Set	objItem	=	objItems.item(0)

End	Sub

	 	

Use	the	Add	method	to	add	a	new	item	property	to	the	ItemProperties
collection.	Use	the	Remove	method	to	remove	an	item	property	from	the
ItemProperties	collection.

Note					You	can	only	add	or	remove	custom	properties.	Custom	properties	are
denoted	by	the	IsUserProperty	.

Note		The	ItemProperties	collection	is	zero-based,	meaning	that	the	first	item	in
the	collection	is	referenced	by	0,	instead	of	1.





Links	Object
Multiple	objects Links

Link

The	Links	object	contains	a	set	of	Link	objects	representing	all	items	linked	to	a
particular	Microsoft	Outlook	item.



Using	the	Links	Object

Use	the	Links	property	to	return	the	Links	object	from	the	item	object;	for
example:

Set	myLinks	=	myItem.Links

	 	



Show	All



OutlookBarGroups	Object
OutlookBarGroups OutlookBarGroup

The	OutlookBarGroups	object	contains	a	set	of	OutlookBarGroup	objects
representing	all	groups	in	the	Shortcuts	pane.



Using	the	OutlookBarGroups	Object

Use	the	Groups	property	to	return	the	OutlookBarGroups	object	from	the
OutlookBarStorage	object.	For	example:

Set	myGroups	=	myOutlookBarStorage.Groups

	 	



Show	All



OutlookBarShortcuts	Object
OutlookBarShortcuts OutlookBarShortcut

The	OutlookBarShortcuts	collection	contains	a	set	of	OutlookBarShortcut
objects	representing	all	shortcuts	in	a	group	in	the	Shortcuts	pane.



Using	the	OutlookBarShortcuts	Object

Use	the	Shortcuts	property	to	return	the	OutlookBarShortcuts	collection
object	from	the	OutlookBarGroup	object.	For	example:

Set	myShortcuts	=	myOutlookBarGroup.Shortcuts

	 	



Pages	Object
Pages

An	object	containing	pages	that	represent	the	pages	of	an	Inspector	window.
Every	Inspector	object	has	a	Pages	object	defined,	which	is	empty	(count	0)	if
the	Outlook	item	has	never	been	customized	before.



Using	the	Pages	Object

Use	the	ModifiedFormPages	property	to	return	the	Pages	object	from	an
Inspector	object.	The	following	example	returns	the	Pages	object	for	the	active
Inspector.

Set	myPages	=	myItem.GetInspector.ModifiedFormPages

	 	

Use	the	Add	method	to	create	a	custom	page	(you	can	add	as	many	as	5
customizable	pages).	Use	the	Name	argument	of	the	Add	method	to	set	the
display	name	of	the	returned	page.	In	addition	to	adding	custom	pages,	you	can
use	the	Name	argument	to	return	the	main	page	of	an	Inspector	object	for
modification.

The	following	example	returns	a	custom	page	with	a	default	name	(such	as
"Custom1").

Set	myPage	=	myPages.Add

	 	

The	following	example	returns	a	custom	page	named	"My	Page."

Set	myPage	=	myPages.Add("My	Page")

	 	

The	following	example	returns	the	Message	page	if	the	Inspector	contains	a	mail
message.

Set	myPage	=	myPages.Add("Message")

	 	

The	following	example	returns	the	General	(main)	page	if	the	inspector	contains
a	contact.

Set	myPage	=	myPages.Add("General")

	 	

Use	ModifiedFormPages(index),	where	index	is	the	name	or	index	number,	to
return	a	single	page	from	a	Pages	object.





Show	All



Panes	Object
Explorer Panes

The	Panes	object	contains	the	panes	displayed	by	the	specified	Explorer.



Using	the	Panes	Object

Use	the	Panes	property	to	return	the	Panes	collection	object	from	an	Explorer
object.

Set	myPanes	=	myExplorer.Panes

	 	

Use	the	Item	method	to	retrieve	a	specific	pane.	To	retrieve	the
OutlookBarPane	object	representing	the	Shortcuts	pane,	use	the	following:

Set	myOLBarPane	=	myExplorer.Panes.Item("OutlookBar")

	 	

For	Microsoft	Outlook	2000	and	later,	the	Shortcuts	pane	is	the	only	pane	that
you	can	access	through	the	Panes	object.



PropertyPages	Object
PropertyPages PropertyPage

The	PropertyPages	object	contains	the	custom	property	pages	that	have	been
added	to	the	Microsoft	Outlook	Options	dialog	box	or	to	the	folder	Properties
dialog	box.



Using	the	PropertyPages	Object

You	receive	a	PropertyPages	object	as	a	parameter	of	the	OptionsPagesAdd
event.	Use	the	Add	method	to	add	a	PropertyPage	object	to	the	PropertyPages
object.

Note		If	more	than	one	program	handles	the	OptionsPagesAdd	event,	the	order
in	which	the	programs	receive	the	event	(and	therefore,	the	order	in	which	pages
are	added	to	the	PropertyPages	object)	cannot	be	guaranteed.



Recipients	Object
Multiple	objects Recipients

Recipient
AddressEntry

The	Recipients	object	contains	Recipient	objects.



Using	the	Recipients	Object

Use	the	Recipients	property	to	return	the	Recipients	object	of	an
AppointmentItem,	JournalItem,	MailItem,	MeetingItem	or	TaskItem	object.

Use	the	Add	method	to	create	a	new	Recipient	object	and	add	it	to	the
Recipients	object.	The	Type	property	of	a	new	Recipient	object	is	set	to	the
default	for	the	associated	AppointmentItem,	JournalItem,	MailItem	or
TaskItem	object	and	must	be	reset	to	indicate	another	recipient	type.

The	following	example	creates	a	new	MailItem	object	and	adds	Jon	Grande	as
the	recipient	using	the	default	type	("To").

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olMailItem)

Set	myRecipient	=	myItem.Recipients.Add	("Jon	Grande")

	 	

The	following	example	creates	the	same	MailItem	object	as	the	preceding
example,	and	then	changes	the	type	of	the	Recipient	object	from	the	default
("To")	to	CC.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olMailItem)

Set	myRecipient	=	myItem.Recipients.Add	("Jon	Grande")

myRecipient.Type	=	olCC

	 	

Use	Recipients(index),	where	index	is	the	name	or	index	number,	to	return	a
single	Recipient	object.



Remarks

Outlook	blocks	code	that	attempts	to	access	the	Recipients	object	for	security
reasons.	If	you	run	a	third-party	add-in,	custom	solution,	or	other	program	that
uses	the	Recipients	object	in	Office	Outlook	2003,	you	may	receive	the
following	warning:

A	program	is	trying	to	access	e-mail	addresses	you	have	stored	in	Outlook.	Do
you	want	to	allow	this?	If	this	is	unexpected,	it	may	be	a	virus	and	you	should
choose	"No".



Reminders	Collection
Reminders Reminder

A	collection	of	all	the	Reminder	objects	in	a	Microsoft	Outlook	application	that
represents	the	reminders	for	all	pending	items.



Using	the	Reminders	collection

Use	the	Application	object's	Reminders	property	to	return	the	Reminders
collection.	Use	Reminders(index),	where	index	is	the	name	or	ordinal	value	of
the	reminder,	to	return	a	single	Reminder	object.	The	following	example
displays	the	captions	of	each	reminder	in	the	list.

Sub	ViewReminderInfo()

'Lists	reminder	caption	information

				Dim	olApp	As	Outlook.Application

				Dim	objRem	As	Reminder

				Dim	objRems	As	Reminders

				Dim	strTitle	As	String

				Dim	strReport	As	String

				Set	olApp	=	Outlook.Application

				Set	objRems	=	olApp.Reminders

				strTitle	=	"Current	Reminders:"

				'If	there	are	reminders,	display	message

				If	olApp.Reminders.Count	<>	0	Then

								For	Each	objRem	In	objRems

												'If	string	is	empty,	create	new	string

												If	strReport	=	""	Then

																strReport	=	objRem.Caption	&	vbCr

												Else

																'Add	info	to	string

																strReport	=	strReport	&	objRem.Caption	&	vbCr

												End	If

								Next	objRem

								'Display	report	in	dialog

								MsgBox	strTitle	&	vbCr	&	vbCr	&	strReport

				Else

								MsgBox	"There	are	no	reminders	in	the	collection."

				End	If

End	Sub

	 	

Reminders	are	created	programmatically	when	a	new	Microsoft	Outlook	item	is
created	with	a	reminder.	For	example,	a	reminder	is	created	when	an
AppointmentItem	object	is	created	and	the	AppointmentItem	object's
ReminderSet	property	is	set	to	True.	Use	the	AppointmentItem	object's



ReminderTime	property	to	set	the	time	in	minutes	at	which	the	reminder	will
occur.	The	following	example	creates	a	new	appointment	item	and	sets	the
ReminderSet	property	to	True,	adding	a	new	Reminder	object	to	the
Reminders	collection.

Sub	AddAppt()

'Adds	a	new	appointment	and	reminder	to	the	reminders	collection

				Dim	olApp	As	Outlook.Application

				Dim	objApt	As	AppointmentItem

				Set	olApp	=	Outlook.Application

				Set	objApt	=	olApp.CreateItem(olAppointmentItem)

				objApt.ReminderSet	=	True

				objApt.Subject	=	"Tuesday's	meeting"

				objApt.Save

End	Sub

	 	



Results	Collection
Results

Stores	data	and	results	returned	by	the	Search	object	and	the	AdvancedSearch
method.	The	Results	object	contains	properties	and	methods	that	allow	you	to
view	and	manipulate	data.	For	example	the	GetNext	,	GetPrevious,	GetFirst	,
and	GetLast	methods	allow	you	to	search	through	the	results	and	view	the	data
by	field.	The	Sort	method	allows	you	to	sort	the	data.



Using	the	Results	Collection

Use	the	SearchObject.Results	property	to	return	a	Results	object.	The
following	event	procedure	stores	the	results	of	a	search	in	a	variable	named
objRsts	and	displays	the	results	of	the	search	in	the	Immediate	window.

Private	Sub	Application_AdvancedSearchComplete(ByVal	SearchObject	As	Search)

				Dim	objRsts	As	Outlook.Results

				MsgBox	"The	search	"	&	SearchObject.Tag	&	_

								"has	completed.	The	scope	of	the	search	was	"	&	_

								SearchObject.Scope	&	"."

				Set	objRsts	=	SearchObject.Results

				'Print	out	number	in	Results	collection

				Debug.Print	objRsts.Count

				'Print	out	each	member	of	Results	collection

				For	Each	Item	In	objRsts

								Debug.Print	Item

				Next

End	Sub

	 	



SyncObjects	Object
NameSpace SyncObjects

SyncObject

The	SyncObjects	object	contains	a	set	of	SyncObject	objects	representing	the
Send\Receive	groups	for	a	user.



Using	the	SyncObjects	Object

Use	the	SyncObjects	property	to	return	the	SyncObjects	object	from	a
NameSpace	object.	For	example:

Set	mySyncObjects	=	Application.GetNameSpace("MAPI").SyncObjects

	 	

The	SyncObjects	object	is	read-only.	You	cannot	add	an	item	to	the	collection.
However,	note	that	you	can	add	one	Send/Receive	group	using	the	AppFolders
property	which	will	create	a	Send/Receive	group	called	Application	Folders.



Show	All



UserProperties	Object
Multiple	objects UserProperties

UserProperty

An	object	containing	UserProperty	objects	that	represent	the	custom	properties
of	an	Outlook	item.



Using	The	UserProperties	Object

Use	the	UserProperties	property	to	return	the	UserProperties	object	for	an
Outlook	item.

Use	the	Add	method	to	create	a	new	UserProperty	for	an	item	and	add	it	to	the
UserProperties	object.	The	Add	method	allows	you	to	specify	a	name	and	type
for	the	new	property.	The	following	example	adds	a	custom	text	property	named
MyPropName	to	myItem.

Set	myProp	=	myItem.UserProperties.Add("MyPropName",	olText)

	 	

Use	UserProperties(index),	where	index	is	a	name	or	index	number,	to	return	a
single	UserProperty	object.

When	you	create	a	custom	property,	a	field	is	added	in	the	folder	that	contains
the	item	(using	the	same	name	as	the	property).	That	field	can	be	used	as	a
column	in	folder	views.



Views	Collection
Views View

A	collection	of	all	View	objects	in	the	current	folder.



Using	the	Views	collection

Use	the	Views	property	of	the	MAPIFolder	object	to	return	the	Views
collection.	Use	Views.Item(index),where	index	is	the	object's	name	or	position
within	the	collection,	to	return	a	single	View	object.	The	following	example
returns	a	View	object	of	type	olTableView	called	Table	View.	Before	running
this	example,	make	sure	a	view	by	the	name	'Table	View'	exists.

Sub	GetView()

'Returns	a	view	called	Table	View

				Dim	olApp	As	Outlook.Application

				Dim	objName	As	NameSpace

				Dim	objViews	As	Views

				Dim	objView	As	View

				Set	olApp	=	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objViews	=	objName.GetDefaultFolder(olFolderInbox).Views

				'Return	a	view	called	Table	View

				Set	objView	=	objViews.Item("Table	View")

End	Sub

	 	

Use	the	Add	method	of	the	views	collection	to	add	a	new	view	to	the	collection.
The	following	example	adds	a	new	view	of	type	olIconView	in	the	user's	Notes
folder.

Note		The	Add	method	will	fail	if	a	view	with	the	same	name	already	exists.

Sub	CreateView()

'Creates	a	new	view

				Dim	olApp	As	Outlook.Application

				Dim	objName	As	NameSpace

				Dim	objViews	As	Views

				Dim	objNewView	As	View

				Set	olApp	=	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objViews	=	objName.GetDefaultFolder(olFolderNotes).Views

				Set	objNewView	=	objViews.Add(Name:="New	Icon	View	Type",	_



																					ViewType:=olIconView,	SaveOption:=olViewSaveOptionThisFolderEveryone)

End	Sub

	 	

Use	the	Remove	method	to	remove	a	view	from	the	collection.	The	following
example	removes	the	above	view,	"New	Icon	View	Type",	from	the	collection.

Sub	DeleteView()

'Deletes	a	view	from	the	collection

				Dim	olApp	As	Outlook.Application

				Dim	objName	As	NameSpace

				Dim	objViews	As	Views

				Dim	objNewView	As	View

				Set	olApp	=	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objViews	=	objName.GetDefaultFolder(olFolderNotes).Views

				objViews.Remove	("New	Icon	View	Type")

End	Sub

	 	



Show	All



Action	Object
Actions Action

Represents	a	specialized	action	(for	example,	the	voting	options	response)	that
can	be	executed	on	an	item.	The	Action	object	is	a	member	of	the	Actions
object.



Using	the	Action	Object

Use	Actions	(index),	where	index	is	the	name	of	an	available	action,	to	return	a
single	Action	object.

The	following	Visual	Basic	for	Applications	(VBA)	example	uses	the	Reply
action	of	a	particular	item	to	send	a	reply.

Set	myOlApp	=	CreateObject("Outlook.Application")

myItem	=	CreateItem(olMailItem)

Set	myReply	=	myItem.Actions("Reply").Execute

	 	

The	following	Visual	Basic	for	Applications	example	does	the	same	thing,	using
a	different	reply	style	for	the	reply.

Set	myOlApp	=	CreateObject("Outlook.Application")

myItem	=	CreateItem(olMailItem)

myItem.Actions("Reply").ReplyStyle	=	_

				olIncludeOriginalText

Set	myReply	=	myItem.Actions("Reply").Execute

	 	



AddressEntry	Object
Multiple	objects AddressEntry

Multiple	objects

The	AddressEntry	object	is	an	address	in	an	AddressEntries	object.	Each
AddressEntry	object	in	the	AddressEntries	object	holds	information	that
represents	a	person	or	process	to	which	the	messaging	system	can	deliver
messages.



Using	the	AddressEntry	Object

The	following	example	sets	a	reference	to	an	AddressEntry	object.

Set	myAddressEntry	=	myRecipient.AddressEntry

	 	

Use	AddressEntries(index),	where	index	is	the	index	number	of	an	address
entry	or	a	value	used	to	match	the	default	property	of	an	address	entry,	to	return
a	single	AddressEntry	object.

Set	myAddressEntry	=	myAddressEntries.Item(index)

	 	



Remarks

If	a	program	tries	to	reference	any	type	of	recipient	information	by	using	the
Outlook	object	model,	a	dialog	box	is	displayed	that	asks	you	to	confirm	access
to	this	information.	You	can	allow	access	to	the	Address	Book	or	recipient
information	for	up	to	ten	minutes	after	you	receive	the	dialog	box.	This	allows
features,	such	as	mobile	device	synchronization,	to	be	completed.

You	receive	the	confirmation	dialog	box	when	a	solution	tries	to
programmatically	access	the	AddressEntry	object.



Show	All



AddressList	Object
AddressLists AddressList

AddressEntries

The	AddressList	object	is	an	address	book	that	contains	a	set	of	AddressEntry
objects.	For	instance,	the	Personal	Address	List	is	an	AddressList	object,	as
shown	in	the	following	example:

Set	myAddressList	=	Application.Session.AddressLists("Personal	Address	Book")

	 	



Using	the	AddressList	Object

The	AddressList	object	supplies	a	list	of	address	entries	to	which	a	messaging
system	can	deliver	messages.	An	AddressList	object	represents	one	address
book	container	available	under	the	transport	provider's	address	book	hierarchy
for	the	current	session.	The	entire	hierarchy	is	available	through	the	parent
AddressLists	object.



Show	All



Application	Object
Application

Represents	the	entire	Microsoft	Outlook	application.	This	is	the	only	object	in
the	hierarchy	that	can	be	returned	by	using	the	CreateObject	method	or	the
intrinsic	Visual	Basic	GetObject	function.

The	Outlook	Application	object	has	several	purposes:

As	the	root	object,	it	allows	access	to	other	objects	in	the	Outlook	hierarchy.
It	allows	direct	access	to	a	new	item	created	by	using	CreateItem,	without
having	to	traverse	the	object	hierarchy.
It	allows	access	to	the	active	interface	objects	(the	explorer	and	the
inspector).



Using	the	Application	Object

When	you	use	Automation	to	control	Microsoft	Outlook	from	another
application,	you	use	the	CreateObject	method	to	create	an	Outlook	Application
object.

The	following	Visual	Basic	for	Application	example	starts	Microsoft	Outlook	(if
it's	not	already	running)	and	opens	the	default	Inbox	folder.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myNameSpace	=	myOlApp.GetNameSpace("MAPI")

Set	myFolder=	_

				myNameSpace.GetDefaultFolder(olFolderInbox)

myFolder.Display

	 	

The	following	Visual	Basic	for	Applications	(VBA)	example	uses	the
Application	object	to	create	and	open	a	new	contact.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olContactItem)

myItem.Display

	 	



AppointmentItem	Object
Exception AppointmentItem

Multiple	objects

Represents	an	appointment	in	the	Calendar	folder.	An	AppointmentItem	object
can	represent	a	meeting,	a	one-time	appointment,	or	a	recurring	appointment	or
meeting.



Using	the	AppointmentItem	Object

Use	the	CreateItem	method	to	create	an	AppointmentItem	object	that
represents	a	new	appointment.

The	following	Visual	Basic	for	Applications	(VBA)	example	returns	a	new
appointment.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olAppointmentItem)

	 	

Use	Items	(index),	where	index	is	the	index	number	of	an	appointment	or	a
value	used	to	match	the	default	property	of	an	appointment,	to	return	a	single
AppointmentItem	object	from	a	Calendar	folder.

You	can	also	return	an	AppointmentItem	object	from	a	MeetingItem	object	by
using	the	GetAssociatedAppointment	method.



Remarks

If	a	program	tries	to	reference	any	type	of	recipient	information	by	using	the
Outlook	object	model,	a	dialog	box	is	displayed	that	asks	you	to	confirm	access
to	this	information.	You	can	allow	access	to	the	Address	Book	or	recipient
information	for	up	to	ten	minutes	after	you	receive	the	dialog	box.	This	allows
features,	such	as	mobile	device	synchronization,	to	be	completed.

You	receive	the	confirmation	dialog	box	when	a	solution	tries	to
programmatically	access	the	following	properties	of	the	AppointmentItem
object:

Organizer
RequiredAttendees
OptionalAttendees
Resources
NetMeetingOrganizerAlias



Show	All



Attachment	Object
Attachments Attachment

Represents	a	document	or	link	to	a	document	contained	in	an	Outlook	item.



Using	the	Attachment	Object

Use	Attachments	(index),	where	index	is	the	index	number,	to	return	a	single
Attachment	object.

Use	the	Add	method	to	add	an	attachment	to	an	item.

The	following	Visual	Basic	for	Applications	(VBA)	example	creates	a	new	mail
message,	attaches	Q496.xls	as	an	attachment	(not	a	link),	and	gives	the
attachment	a	descriptive	caption.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olMailItem)

Set	myAttachments	=	myItem.Attachments

myAttachments.Add	"C:\My	Documents\Q496.xls",	_

				olByValue,	1,	"4th	Quarter	1996	Results	Chart"

	 	



Conflict	Object
Conflicts Conflict

Represents	a	Microsoft	Outlook	item	that	is	in	conflict	with	another	Outlook
item.	Each	Outlook	item	has	a	Conflicts	collection	object	associated	with	it	that
represents	all	the	items	that	are	in	conflict	with	that	item.



Using	the	Conflict	Object

Use	the	Item	method	to	retrieve	a	particular	Conflict	object	from	the	Conflicts
collection	object,	for	example:

Set	myConflictItem	=	myConflicts.Item(1)



ContactItem	Object
ContactItem Multiple	objects

Represents	a	contact	in	a	contacts	folder.	A	contact	can	represent	any	person
with	whom	you	have	any	personal	or	professional	contact.



Using	the	ContactItem	Object

Use	the	CreateItem	method	to	create	a	ContactItem	object	that	represents	a
new	contact.

The	following	Visual	Basic	for	Applications	(VBA)	example	returns	a	new
contact.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olContactItem)

	 	

The	following	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	example
returns	a	new	contact.

Set	myItem	=	Application.CreateItem(olContactItem)

	 	

Use	Items	(index),	where	index	is	the	index	number	of	a	contact	or	a	value	used
to	match	the	default	property	of	a	contact,	to	return	a	single	ContactItem	object
from	a	Contacts	folder.



Remarks

If	a	program	tries	to	reference	any	type	of	recipient	information	by	using	the
Outlook	object	model,	a	dialog	box	is	displayed	that	asks	you	to	confirm	access
to	this	information.	You	can	allow	access	to	the	Address	Book	or	recipient
information	for	up	to	ten	minutes	after	you	receive	the	dialog	box.	This	allows
features,	such	as	mobile	device	synchronization,	to	be	completed.

You	receive	the	confirmation	dialog	box	when	a	solution	tries	to
programmatically	access	the	following	properties	of	the	ContactItem	object:

Email1Address
Email1AddressType
Email1DisplayName
Email1EntryID
Email2Address
Email2AddressType
Email2DisplayName
Email2EntryID
Email3Address
Email3AddressType
Email3DisplayName
Email3EntryID
NetMeetingAlias
ReferredBy



DistListItem	Object
DistListItem Multiple	objects

Represents	a	distribution	list	in	a	contacts	folder.	A	distribution	list	can	contain
multiple	recipients	and	is	used	to	send	messages	to	everyone	in	the	list.



Using	the	DistListItem	Object

Use	the	CreateItem	method	to	create	a	DistListItem	object	that	represents	a
new	distribution	list.	The	following	Microsoft	Visual	Basic	for	Applications
(VBA)	example	creates	and	displays	a	new	distribution	list.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olDistributionListItem)

myItem.Display

	 	

Use	Items	(index),	where	index	is	the	index	number	of	an	item	in	a	contacts
folder	or	a	value	used	to	match	the	default	property	of	an	item	in	the	folder,	to
return	a	single	DistListItem	object	from	a	contacts	folder	(that	is,	a	folder	whose
default	item	type	is	olContactItem).	The	following	Visual	Basic	for
Applications	example	sets	the	current	folder	as	the	contacts	folder	and	displays
an	existing	distribution	list	named	Project	Team	in	the	folder.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderContacts)

myFolder.Display

Set	myItem	=	myFolder.Items("Project	Team")

myItem.Display

	 	



Show	All



DocumentItem	Object
DocumentItem Multiple	objects

A	DocumentItem	object	is	any	document	other	than	a	Microsoft	Outlook	item
as	an	item	in	an	Outlook	folder.	In	common	usage,	this	will	be	an	Office
document	but	may	be	any	type	of	document	or	executable	file.

Note		When	you	try	to	programmatically	add	a	user-defined	property	to	a
DocumentItem	object,	you	receive	the	following	error	message:	"Property	is
read-only."	This	is	because	the	Outlook	object	model	does	not	support	this
functionality.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	shows	how	to
create	a	DocumentItem.

Sub	AddDocItem()

				Dim	outApp	As	New	Outlook.Application

				Dim	nsp	As	Outlook.NameSpace

				Dim	mpfInbox	As	Outlook.MAPIFolder

				Dim	doci	As	Outlook.DocumentItem

				

				Set	nsp	=	outApp.GetNamespace("MAPI")

				Set	mpfInbox	=	nsp.GetDefaultFolder(olFolderInbox)

				Set	doci	=	mpfInbox.Items.Add(olWordDocumentItem)

				doci.Subject	=	"Word	Document	Item"

				doci.Save

End	Sub



Exception	Object
Exceptions Exception

Multiple	objects

The	Exception	object	holds	information	about	one	instance	of	an
AppointmentItem	object	which	is	an	exception	to	a	recurring	series.	Unlike
most	of	the	other	Microsoft	Outlook	objects,	the	Exception	object	is	a	read-only
object.	This	means	that	you	cannot	create	an	Exception	object	but,	rather,	the
object	is	created	when	a	property	of	an	AppointmentItem	is	altered.	For
example,	if	you	change	the	Start	property	of	one	AppointmentItem,	you	have
created	an	Exception	in	AppointmentItem.RecurrencePattern.Exceptions.

Note		The	Exceptions	object	is	on	the	RecurrencePattern,	not	the
AppointmentItem	object	itself.



Using	the	Exception	Object

The	Exception	object	can	be	accessed	from	the	RecurrencePattern	object
through	the	Exceptions	object.

In	Visual	Basic	for	Applications	(VBA):

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myNameSpace	=	myOlApp.GetNameSpace("MAPI")

Set	myFolder	=	myNameSpace.GetDefaultFolder(olFolderCalendar)

Set	myItems	=	myFolder.Items

Set	myApptItem	=	myItems("Daily	Meeting")

Set	myRecurrencePattern	=	myApptItem.GetRecurrencePattern

Set	myException	=	myRecurrencePattern.Exceptions.Item(1)

	 	

In	Microsoft	Visual	Basic	Scripting	Edition	(VBScript):

Set	myNameSpace	=	Application.GetNameSpace("MAPI")

Set	myFolder	=	myNameSpace.GetDefaultFolder(9)

Set	myItems	=	myFolder.Items

Set	myApptItem	=	myItems("Daily	Meeting")

Set	myRecurrencePattern	=	myApptItem.GetRecurrencePattern

Set	myException	=	myRecurrencePattern.Exceptions.Item(1)

	 	



Explorer	Object
Explorers Explorer

Multiple	objects

Represents	the	window	in	which	the	contents	of	a	folder	are	displayed.



Using	the	Explorer	Object

Use	the	Item	method	of	the	Explorers	object	to	return	the	object
representing	a	specific	explorer.

Use	the	ActiveExplorer	method	to	return	the	object	representing	the
currently	active	explorer	(if	there	is	one).

Use	the	GetExplorer	method	to	return	the	Explorer	object	associated	with
a	folder.

Use	the	Display	method	of	a	MAPIFolder	object	to	display	a	folder	in	its
associated	explorer.



Show	All



FormDescription	Object
Multiple	objects FormDescription

Contains	the	general	properties	of	a	Microsoft	Outlook	form.	The	properties	of
an	Outlook	form	are	displayed	on	the	Properties	page	of	a	form	in	design	time.

To	see	the	Properties	page	in	design	time,	open	the	Outlook	item,	select	Forms
on	the	Tools	menu,	click	Design	This	Form,	and	then	click	the	Properties	tab
in	the	item's	window.



Using	the	FormDescription	Object

Use	the	FormDescription	property	to	return	the	FormDescription	object
associated	with	an	Outlook	item.



Show	All



Inspector	Object
Inspectors Inspector

Represents	the	window	in	which	an	Outlook	item	is	displayed.



Using	the	Inspector	Object

Use	the	ActiveInspector	method	to	return	the	object	representing	the
currently	active	inspector	(if	there	is	one).

Use	the	GetInspector	property	to	return	the	Inspector	object	associated
with	an	item.

Use	the	Display	method	to	display	an	item	in	its	associated	inspector.



ItemProperty	Object
ItemProperties ItemProperty

Contains	information	about	a	given	item	property.	Each	item	property	defines	a
certain	attribute	of	the	item,	such	as	the	name,	type,	or	value	of	the	item.	The
ItemProperty	object	is	a	member	of	the	ItemProperties	collection.



Using	the	ItemProperty	object

Use	ItemProperties.Item(index),	where	index	is	the	object's	numeric	position
within	the	collection	or	it's	name	to	return	a	single	ItemProperty	object.	The
following	example	creates	a	reference	to	the	first	ItemProperty	object	in	the
ItemProperties	collection.

Sub	NewMail()

'Creates	a	new	MailItem	and	references	the	ItemProperties	collection.

				Dim	olApp	As	Outlook.Application

				Dim	objMail	As	MailItem

				Dim	objitems	As	ItemProperties

				Dim	objitem	As	ItemProperty

				Set	olApp	=	Outlook.Application

				'Create	a	new	mail	item

				Set	objMail	=	olApp.CreateItem(olMailItem)

				'Create	a	reference	to	the	ItemProperties	collection

				Set	objitems	=	objMail.ItemProperties

				'Create	reference	to	the	first	object	in	the	collection

				Set	objitem	=	objitems.item(0)

End	Sub

	 	



Items	Object
Items

An	object	containing	Microsoft	Outlook	item	objects	in	a	folder.



Using	the	Items	Object

Use	the	Items	property	to	return	the	Items	object	of	a	MAPIFolder	object.

Use	Items(index),	where	index	is	the	name	or	index	number,	to	return	a	single
Outlook	item.

Note		In	Office	Outlook	2003,	the	items	in	the	Items	collection	object	are	not
guaranteed	to	be	in	any	particular	order.

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example	returns
the	first	item	in	the	Inbox	with	the	Subject	"Need	your	advice."

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myNameSpace	=	myOlApp.GetNameSpace("MAPI")

Set	myFolder	=	_

				myNameSpace.GetDefaultFolder(olFolderInbox)

Set	myItem	=	myFolder.Items("Need	your	advice")

	 	

The	following	VBA	example	returns	the	first	item	in	the	Inbox.	In	Office
Outlook	2003,	the	Items	object	returns	the	items	in	an	Offline	Folders	file	(.ost)
in	the	reverse	order.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myNameSpace	=	myOlApp.GetNameSpace("MAPI")

Set	myFolder	=	_

				myNameSpace.GetDefaultFolder(olFolderInbox)

Set	myItem	=	myFolder.Items(1)

	 	

The	following	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	example
returns	the	first	item	in	the	Inbox.	In	Office	Outlook	2003,	the	Items	object
returns	the	items	in	an	Offline	Folders	file	(.ost)	in	the	reverse	order.

Set	myNameSpace	=	Application.GetNameSpace("MAPI")

Set	myFolder	=	myNameSpace.GetDefaultFolder(6)

Set	myItem	=	myFolder.Items(1)

	 	





JournalItem	Object
JournalItem Multiple	objects

Represents	a	journal	entry	in	a	Journal	folder.	A	journal	entry	represents	a	record
of	all	Microsoft	Outlook-moderated	transactions	for	any	given	period.



Using	the	JournalItem	Object

Use	the	CreateItem	method	to	create	a	JournalItem	object	that	represents	a
new	journal	entry.	The	following	example	returns	a	new	journal	entry.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olJournalItem)

	 	

Use	Items	(index),	where	index	is	the	index	number	of	a	journal	entry	or	a	value
used	to	match	the	default	property	of	a	journal	entry,	to	return	a	single
JournalItem	object	from	a	Journal	folder.



Link	Object
Links Link

Represents	an	item	that	is	linked	to	another	Microsoft	Outlook	item.	Each	item
has	a	Links	object	associated	with	it	that	represents	all	the	items	that	have	been
linked	to	the	item.

Note		For	Outlook	2000	and	later,	only	contacts	can	be	linked	to	other	items.



Using	the	Link	Object

Use	the	Item	method	to	retrieve	the	Link	object	from	a	Links	object.	Because
the	Name	property	is	the	default	property	of	the	Link	object,	you	can	identify
the	linked	item	by	name.

Set	myLink	=	myLinks.Item("Microsoft	Corporation")

	 	



MailItem	Object
MailItem Multiple	objects

Represents	a	mail	message	in	an	Inbox	(mail)	folder.



Using	the	MailItem	Object

Use	the	CreateItem	method	to	create	a	MailItem	object	that	represents	a	new
mail	message.	The	following	example	creates	and	displays	a	new	mail	message.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olMailItem)

myItem.Display

	 	

Use	Items	(index),	where	index	is	the	index	number	of	a	mail	message	or	a	value
used	to	match	the	default	property	of	a	message,	to	return	a	single	MailItem
object	from	an	Inbox	folder.	The	following	example	sets	the	current	folder	as	the
Inbox	and	displays	the	second	mail	message	in	the	folder.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderInbox)

myFolder.Display

Set	myItem	=	myFolder.Items(2)

myItem.Display

	 	



Remarks

If	a	program	tries	to	reference	any	type	of	recipient	information	by	using	the
Outlook	object	model,	a	dialog	box	is	displayed	that	asks	you	to	confirm	access
to	this	information.	You	can	allow	access	to	the	Address	Book	or	recipient
information	for	up	to	ten	minutes	after	you	receive	the	dialog	box.	This	allows
features,	such	as	mobile	device	synchronization,	to	be	completed.

You	receive	the	confirmation	dialog	box	when	a	solution	tries	to
programmatically	access	the	following	properties	of	the	MaiItem	object:

SentOnBehalfOfName
SenderName
ReceivedByName
ReceivedOnBehalfOfName
ReplyRecipientNames
To
CC
BCC
Body
HTMLBody
Recipients
SenderEmailAddress



Show	All



MAPIFolder	Object
Multiple	objects MAPIFolder

View

Represents	a	Microsoft	Outlook	folder.	A	MAPIFolder	object	can	contain	other
MAPIFolder	objects,	as	well	as	Outlook	items.	You	can	navigate	nested	folders
by	using	a	combination	of	Folders	(index),	which	returns	a	folder	within	a	name
space	or	another	folder,	and	the	Parent	property,	which	returns	the	containing
object.

Note		Search	folders	are	not	MAPIFolder	objects	and	therefore,	the	methods
and	properties	of	a	MAPIFolder	object	will	not	work	on	search	folders.



Using	the	MAPIFolder	Object

Use	Folders(index),	where	index	is	the	name	or	index	number,	to	return	a	single
MAPIFolder	object	from	a	NameSpace	object	or	another	MAPIFolder	object.

There	is	a	set	of	folders	within	an	Outlook	data	store	that	support	the	default
functionality	of	Outlook.	Use	GetDefaultFolder	(index),	where	index	is	one	of
the	OlDefaultFolders	constants	to	return	one	of	the	default	Outlook	folders	in
the	Outlook	NameSpace	object.	The	OlDefaultFolders	constants	are
olFolderCalendar,	olFolderContacts,	olFolderDeletedItems,	olFolderDrafts,
olFolderInbox,	olFolderJournal,	olFolderNotes,	olFolderOutbox,
olFolderSentMail,	olFolderTasks,	olPublicFoldersAllPublicFolders,	and
olFolderJunk.

Use	the	Add	method	to	add	a	folder	to	the	Folders	object.	The	Add	method	has
an	optional	argument	that	can	be	used	to	specify	the	type	of	items	that	can	be
stored	in	that	folder.	By	default,	folders	created	inside	another	folder	inherit	the
type	of	the	parent	folder.

Folders	within	the	Outlook	data	store	can	be	typed;	for	example,	the	Calendar
folder	will	only	contain	AppointmentItem	objects	and	the	Contacts	folder	will
only	contain	ContactItem	and	DistListItem	objects.

Note	that	when	items	of	a	specific	type	are	saved,	they	are	saved	directly	into
their	corresponding	default	folder.	For	example,	when	the
GetAssociatedAppointment	method	is	applied	to	a	MeetingItem	in	the	Inbox
folder,	the	appointment	that	is	returned	will	be	saved	to	the	default	Calendar
folder.



Show	All



MeetingItem	Object
MeetingItem Multiple	objects

Represents	an	item	in	an	Inbox	(mail)	folder.	A	MeetingItem	object	represents	a
change	to	the	recipient's	Calendar	folder	initiated	by	another	party	or	as	a	result
of	a	group	action.



Using	the	MeetingItem	Object

Unlike	other	Microsoft	Outlook	objects,	you	cannot	create	this	object.	It	is
created	automatically	when	you	set	the	MeetingStatus	property	of	an
AppointmentItem	object	to	olMeeting	and	send	it	to	one	or	more	users.	They
receive	it	in	their	inboxes	as	a	MeetingItem.

The	following	example	uses	the	CreateItem	method	to	create	an	appointment.	It
becomes	a	MeetingItem	with	both	a	required	and	an	optional	attendee	when	it	is
received	in	the	inbox	of	each	of	the	recipients.

Set	myItem	=	myOlApp.CreateItem(olAppointmentItem)

myItem.MeetingStatus	=	olMeeting

myItem.Subject	=	"Strategy	Meeting"

myItem.Location	=	"Conference	Room	B"

myItem.Start	=	#9/24/97	1:30:00	PM#

myItem.Duration	=	90

Set	myRequiredAttendee	=	myItem.Recipients.Add("Nate	_

				Sun")

myRequiredAttendee.Type	=	olRequired

Set	myOptionalAttendee	=	myItem.Recipients.Add("Kevin	_

				Kennedy")

myOptionalAttendee.Type	=	olOptional

Set	myResourceAttendee	=	_

				myItem.Recipients.Add("Conference	Room	B")

myResourceAttendee.Type	=	olResource

myItem.Send

	 	

Use	the	GetAssociatedAppointment	method	to	return	the	AppointmentItem
object	associated	with	a	MeetingItem	object,	and	work	directly	with	the
AppointmentItem	object	to	respond	to	the	request.



NameSpace	Object
NameSpace Multiple	objects

Represents	an	abstract	root	object	for	any	data	source.	The	object	itself	provides
methods	for	logging	in	and	out,	accessing	storage	objects	directly	by	ID,
accessing	certain	special	default	folders	directly,	and	accessing	data	sources
owned	by	other	users.



Using	the	NameSpace	Object

Use	GetNameSpace	("MAPI")	to	return	the	Outlook	NameSpace	object	from
the	Application	object.

The	only	data	source	supported	is	MAPI,	which	allows	access	to	all	Outlook
data	stored	in	the	user's	mail	stores.



NoteItem	Object
NoteItem Multiple	objects

Represents	a	note	in	a	Notes	folder.

A	NoteItem				is	not	customizable.	If	you	open	a	new	note,	you	will	notice	that	it
is	not	possible	to	place	it	in	design	time.

The	Subject	property	of	a	NoteItem				object	is	read-only	because	it	is
calculated	from	the	body	text	of	the	note.	Also,	the	NoteItem				Body	can	only
be	rich	text,	so	the	properties	that	correspond	to	HTML	and	Microsoft	Word
content	do	not	apply.	Although	the	GetInspector	property	will	work	on	notes,
because	notes	can't	be	customized,	some	of	the	Inspector	properties	and
methods	will	not	apply	to	a	NoteItem			.



Using	the	NoteItem	Object

Use	the	CreateItem	method	to	create	a	NoteItem				object	that	represents	a	new
note.	The	following	Microsoft	Visual	Basic	example	returns	a	new	note.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olNoteItem)

	 	

The	following	example	shows	how	to	create	a	NoteItem				object	using
Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

Set	myItem	=	Application.CreateItem(5)

	 	

Use	Items	(index),	where	index	is	the	index	number	of	a	note	or	a	value	used	to
match	the	default	property	of	a	note,	to	return	a	single	NoteItem				object	from	a
Notes	folder.



Show	All



OutlookBarGroup	Object
OutlookBarGroups OutlookBarGroup

Represents	a	group	of	shortcuts	in	the	Shortcuts	pane	of	an	explorer	window.



Using	the	OutlookBarGroup	Object

Use	the	Item	method	to	retrieve	the	OutlookBarGroup	object	from	an
OutlookBarGroups	object.	Because	the	Name	property	is	the	default	property
of	the	OutlookBarGroup	object,	you	can	identify	the	group	by	name.	For
example:

Set	myOlBarGroup	=	myOutlookBarGroups.Item("Other	Shortcuts")

	 	



Show	All



OutlookBarPane	Object
OutlookBarPane Multiple	objects

Represents	the	Shortcuts	pane	in	an	explorer	window.



Using	the	OutlookBarPane	Object

Use	the	Item	method	to	retrieve	the	OutlookBarPane	object	from	a	Panes
object.	Because	the	Name	property	is	the	default	property	of	the
OutlookBarPane	object,	you	can	identify	the	OutlookBarPane	object	by	name.
For	example:

Set	myOlBarPane	=	myPanes.Item("OutlookBar")

	 	



Show	All



OutlookBarShortcut	Object
OutlookBarShortcuts OutlookBarShortcut

Represents	a	shortcut	in	a	group	in	the	Shortcuts	pane.



Using	the	OutlookBarShortcut	Object

Use	the	Item	method	to	retrieve	the	OutlookBarShortcut	object	from	an
OutlookBarShortcuts	object.	Because	the	Name	property	is	the	default
property	of	the	OutlookBarShortcut	object,	you	can	identify	the	shortcut	by
name.	For	example:

Set	myOlBarShortcut	=	myOutlookBarShortcuts.Item("Calendar")

	 	



Show	All



OutlookBarStorage	Object
OutlookBarPane OutlookBarStorage

Represents	the	storage	for	objects	in	the	Shortcuts	pane.



Using	the	OutlookBarStorage	Object

Use	the	Contents	property	of	an	OutlookBarPane	object	to	retrieve	the
OutlookBarStorage	object	for	the	pane.	For	example:

Set	myOLBarStorage	=	myPanes.Item("OutlookBar").Contents

	 	

Use	the	Groups	property	to	retrieve	the	OutlookBarGroups	object	for	the
Shortcuts	pane.



PostItem	Object
PostItem Multiple	objects

Represents	a	post	in	a	public	folder	that	others	may	browse.	Unlike	a	MailItem
object,	a	PostItem	object	is	not	sent	to	a	recipient.	You	use	the	Post	method,
which	is	analogous	to	the	Send	method	for	the	MailItem	object,	to	save	the
PostItem	to	the	target	public	folder	instead	of	mailing	it.



Using	the	PostItem	Object

Use	the	CreateItem	or	CreateItemFromTemplate	method	to	create	a	PostItem
object	that	represents	a	new	post.	The	following	example	returns	a	new	post.

Set	myItem	=	myOlApp.CreateItem(olPostItem)

	 	

Use	Items	(index),	where	index	is	the	index	number	of	a	post	or	a	value	used	to
match	the	default	property	of	a	post,	to	return	a	single	PostItem	object	from	a
public	folder.



PropertyPage	Object
PropertyPages PropertyPage

Represents	a	custom	property	page	in	the	Microsoft	Outlook	Options	dialog	box
or	in	the	folder	Properties	dialog	box.	Outlook	uses	this	object	to	allow	a
custom	property	page	to	interact	with	the	Apply	button	in	the	dialog	box.



Using	the	PropertyPage	Object

The	PropertyPage	object	is	an	abstract	object.	That	is,	the	PropertyPage	object
in	the	Microsoft	Outlook	Object	Library	contains	no	implementation	code.
Instead,	it	is	provided	as	a	template	to	help	you	implement	the	object	in
Microsoft	Visual	Basic.	This	provides	a	predefined	set	of	interfaces	that	Outlook
can	use	to	determine	whether	your	custom	property	page	has	changed	and	to
notify	your	program	that	the	user	has	clicked	the	Apply	or	OK	button.	(If	your
custom	property	page	does	not	rely	on	the	Apply	button,	then	you	do	not	need	to
implement	the	PropertyPage	object.)

A	custom	property	page	is	an	ActiveX	control	that	is	displayed	by	Outlook	in	the
Options	dialog	box	or	in	the	folder	Properties	dialog	box	when	the	user	clicks
on	the	custom	property	page’s	tab.	To	implement	the	PropertyPage	object,	the
module	that	contains	the	implementation	code	must	contain	the	following
statement.

Implements	Outlook.PropertyPage

	 	

The	module	must	also	contain	procedures	that	implement	the	properties	and
methods	of	the	PropertyPage	object.	For	example,	to	implement	the	Dirty
property,	a	procedure	similar	to	the	following	appears	in	the	module.

Private	Property	Get	PropertyPage_Dirty()	As	Boolean

				PropertyPage_Dirty	=	gblDirty

End	Property

	 	

To	implement	a	method	of	the	PropertyPage	object,	the	module	must	contain	a
statement	similar	to	the	following.

Private	Sub	PropertyPage_Apply()

				'	Code	to	set	properties	according	to	the	user's

				'	selections	goes	here.

End	Sub

	 	





PropertyPageSite	Object
PropertyPageSite

Represents	the	container	of	a	custom	property	page.



Using	the	PropertyPageSite	Object

Use	the	Parent	property	of	the	ActiveX	control	that	implements	the
PropertyPage	object	associated	with	the	PropertyPageSite	object	to	return	the
PropertyPageSite	object.	The	Declarations	section	of	the	module	implementing
the	PropertyPage	object	must	contain	a	declaration	similar	to	the	following.

Private	myPropertyPageSite	As	Outlook.PropertyPageSite

	 	

The	object	is	then	returned	from	the	Parent	property.

Set	myPropertyPageSite	=	Parent

	 	

Use	the	OnStatusChange	method	to	notify	Microsoft	Outlook	that	the	property
page	has	changed.



Recipient	Object
Multiple	objects Recipients

Recipient
AddressEntry

Represents	a	user	or	resource	in	Outlook,	generally	a	mail	message	addressee.



Using	the	Recipient	Object

Use	Recipients	(index),	where	index	is	the	name	or	index	number,	to	return	a
single	Recipient	object.

Use	the	Add	method	to	create	a	new	Recipient	object	and	add	it	to	the
Recipients	object.	The	Type	property	of	a	new	Recipient	object	is	set	to	the
default	for	the	associated	AppointmentItem,	JournalItem,	MailItem,
MeetingItem	or	TaskItem	object	and	must	be	reset	to	indicate	another	recipient
type.

The	following	Visual	Basic	for	Applications	(VBA)	example	creates	a	new
MailItem	object	and	adds	Jon	Grande	as	the	recipient	using	the	default	type
("To").

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olMailItem)

Set	myRecipient	=	myItem.Recipients.Add	("Jon	Grande")

	 	

The	following	Visual	Basic	for	Applications	example	creates	the	same	MailItem
object	as	the	preceding	example,	and	then	changes	the	type	of	the	Recipient
object	from	the	default	(To)	to	CC.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olMailItem)

Set	myRecipient	=	myItem.Recipients.Add	("Jon	Grande")

myRecipient.Type	=	olCC

	 	



Remarks

If	a	program	tries	to	reference	any	type	of	recipient	information	by	using	the
Outlook	object	model,	a	dialog	box	is	displayed	that	asks	you	to	confirm	access
to	this	information.	You	can	allow	access	to	the	Address	Book	or	recipient
information	for	up	to	ten	minutes	after	you	receive	the	dialog	box.	This	allows
features,	such	as	mobile	device	synchronization,	to	be	completed.

You	receive	the	confirmation	dialog	box	when	a	solution	tries	to
programmatically	access	the	Recipient	object.



Show	All



RecurrencePattern	Object

RecurrencePattern Exceptions

Represents	the	pattern	of	incidence	of	recurring	appointments	and	tasks	for	the
associated	AppointmentItem	and	TaskItem	object.



Using	the	RecurrencePattern	Object

Use	the	GetRecurrencePattern	method	to	return	the	RecurrencePattern	object
associated	with	an	AppointmentItem	or	TaskItem	object.

Calling	GetRecurrencePattern	or	ClearRecurrencePattern	has	the	side	effect
of	setting	the	IsRecurring	property	of	the	item	accordingly.	This	property	can	be
used	as	required	for	efficient	filtering	of	the	Items	object.

The	type	of	recurrence	pattern	is	indicated	by	the	RecurrenceType	property.
The	RecurrenceType	property	is	the	first	property	you	should	set.

The	following	properties	are	valid	for	all	recurrence	patterns:	EndTime,
Occurrences,	StartDate,	StartTime,	or	Type.

The	following	table	shows	the	properties	that	are	valid	for	the	different
recurrence	types.	The	properties	listed	are	not	all	required	for	the	given	type;	an
error	occurs	if	the	item	is	saved	and	the	property	is	null	or	contains	an	invalid
value.	Monthly	and	yearly	patterns	are	only	valid	for	a	single	day.	Weekly
patterns	are	only	valid	as	the	Or	of	the	DayOfWeekMask.

RecurrenceType Properties Example
olRecursDaily Interval Every	N	days

DayOfWeekMask Every	Tuesday,	Wednesday,	and
Thursday

olRecursMonthly Interval Every	N	months
DayOfMonth The	Nth	day	of	the	month

olRecursMonthNth Interval Every	N	months
Instance The	Nth	Tuesday
DayOfWeekMask Every	Tuesday	and	Wednesday

olRecursWeekly Interval Every	N	weeks

DayOfWeekMask Every	Tuesday,	Wednesday,	and
Thursday

olRecursYearly DayOfMonth The	Nth	day	of	the	month
MonthOfYear February

olRecursYearNth Instance The	Nth	Tuesday



DayOfWeekMask Tuesday,	Wednesday,	Thursday
MonthOfYear February



Reminder	Object
Reminders Reminder

Represents	a	Microsoft	Outlook	reminder.	Reminders	allow	users	to	keep	track
of	upcoming	appointments	by	scheduling	a	pop-up	dialog	box	to	appear	at	a
given	time.	In	addition	to	appointments,	reminders	can	occur	for	tasks,	contacts
and	e-mail	messages.



Using	the	Reminder	object

Use	Reminders	(index),	where	index	is	the	name	or	index	number	of	the
reminder,	to	return	a	single	Reminder	object.	The	following	example	displays
the	caption	of	the	first	reminder	in	the	collection.

Sub	ViewReminderInfo()

'Displays	information	about	first	reminder	in	collection

				Dim	olApp	As	Outlook.Application

				Dim	objRem	As	Reminder

				Set	olApp	=	Outlook.Application

				'If	there	are	reminders,	display	message

				If	olApp.Reminders.Count	<>	0	Then

								Set	objRem	=	olApp.Reminders.Item(1)

								MsgBox	"The	caption	of	the	first	reminder	in	the	collection	is:	"	&	_

															objRem.Caption

				Else

								MsgBox	"There	are	no	reminders	in	the	collection."

				End	If

End	Sub

	 	

Reminders	are	created	programmatically	when	a	new	Microsoft	Outlook	item,
such	as	an	AppointmentItem	object,	is	created	and	the	item	's	ReminderSet
property	is	set	to	True.	Use	the	item's	ReminderTime	property	to	set	the	time	in
minutes	at	which	the	reminder	will	occur.	The	following	example	creates	a	new
appointment	item	and	sets	the	ReminderSet	property	to	True,	adding	a	new
Reminder	object	to	the	Reminders	collection.

Sub	AddAppt()

'Adds	a	new	appointment	and	reminder	to	the	reminders	collection

				Dim	olApp	As	Outlook.Application

				Dim	objApt	As	AppointmentItem

				Set	olApp	=	Outlook.Application

				Set	objApt	=	olApp.CreateItem(olAppointmentItem)

				objApt.ReminderSet	=	True



				objApt.Subject	=	"Tuesday's	meeting"

				objApt.Save

End	Sub

	 	

Use	the	Reminders	collection's	Remove	method	to	remove	a	Reminder	object
from	the	collection.	Once	a	reminder	is	removed	from	its	associated	item,	the
AppointmentItem	object's	ReminderSet	property	is	set	to	False.



Show	All



RemoteItem	Object
RemoteItem Multiple	objects

Represents	a	remote	item	in	an	Inbox	(mail)	folder.	The	RemoteItem	object	is
similar	to	the	MailItem	object,	but	it	contains	only	the	Subject,	Received	Date
and	Time,	Sender,	Size,	and	the	first	256	characters	of	the	body	of	the	message.
It	is	used	to	give	someone	connecting	in	remote	mode	enough	information	to
decide	whether	or	not	to	download	the	corresponding	mail	message.	However,
the	headers	in	items	contained	in	an	Offline	Folders	file	(.ost)	cannot	be	accessed
using	the	RemoteItem	object.



Using	the	RemoteItem	Object

Unlike	other	Microsoft	Outlook	objects,	you	cannot	create	this	object.	Remote
items	are	created	by	Outlook	automatically	when	you	use	a	Remote	Access
System	(RAS)	connection.	Each	RemoteItem	object	created	on	the	local	system
corresponds	to	a	preexisting	MailItem	object	on	the	remote	system.

The	RemoteItem	object	inherits	a	number	of	properties,	methods,	and	events
that,	because	of	the	nature	of	the	object,	have	no	function.	The	Object	Browser
shows	these	properties,	methods,	and	events	as	belonging	to	the	RemoteItem
object,	but	trying	to	use	them	will	produce	no	effect.

The	methods	that	do	not	work	for	the	RemoteItem	object	include	Close,	Copy,
Display,	Move,	and	Save.

The	properties	that	do	not	work	for	the	RemoteItem	object	include
BillingInformation,	Body,	Categories,	Companies,	and	Mileage.

The	events	that	do	not	work	for	the	RemoteItem	object	include	Open,	Close,
Forward,	Reply,	ReplyAll,	and	Send.



ReportItem	Object
ReportItem Multiple	objects

Represents	a	mail-delivery	report	in	an	Inbox	(mail)	folder.	The	ReportItem
object	is	similar	to	a	MailItem	object,	and	it	contains	a	report	(usually	the	non-
delivery	report)	or	error	message	from	the	mail	transport	system.



Using	the	ReportItem	Object

Unlike	other	Microsoft	Outlook	objects,	you	cannot	create	this	object.	Report
items	are	created	automatically	when	any	report	or	error	in	general	is	received
from	the	mail	transport	system.



Search	Object
Search

Contains	information	about	individual	searches	performed	against	Microsoft
Outlook	items.	The	Search	object	contains	properties	that	define	the	type	of
search	and	the	parameters	of	the	search	itself.



Using	the	Search	Object

Use	the	Application	object's	AdvancedSearch	method	to	return	a	Search
object.



Example

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example	returns	a
search	object	named	"SubjectSearch"	and	displays	the	object's	Tag	and	Filter
property	values.	The	Tag	property	is	used	to	identify	a	specific	search	once	it	has
completed.

Sub	SearchInboxFolder()

'Searches	the	Inbox

				Dim	objSch	As	Search

				Const	strF	As	String	=	_

								"urn:schemas:mailheader:subject	=	'Office	Christmas	Party'"

				Const	strS	As	String	=	"Inbox"

				Const	strTag	As	String	=	"SubjectSearch"

				Set	objSch	=	Application.AdvancedSearch(Scope:=strS,	_

								Filter:=strF,	SearchSubFolders:=True,	Tag:=strTag)

End	Sub

	 	

Use	the	AdvancedSearchComplete	event	to	determine	when	a	given	search	has
completed.	The	following	VBA	example	displays	information	about	the	search
and	the	results	of	the	search.

Private	Sub	Application_AdvancedSearchComplete(ByVal	SearchObject	As	Search)

				Dim	objRsts	As	Results

				MsgBox	"The	search	"	&	SearchObject.Tag	&	"has	completed.

				Set	objRsts	=	SearchObject.Results

				'Print	out	number	in	Results	collection

				Debug.Print	objRsts.Count

				'Print	out	each	member	of	Results	collection

				For	Each	Item	In	objRsts

								Debug.Print	Item

				Next

End	Sub

	 	





Show	All



Selection	Object
Explorer Selection

The	Selection	object	contains	a	set	of	Microsoft	Outlook	items	representing	the
items	currently	selected	in	an	explorer.



Using	the	Selection	Object

Use	the	Selection	property	to	return	the	Selection	collection	from	the	Explorer
object.	For	example:

Set	mySelectedItems	=	myExplorer.Selection

	 	



SyncObject	Object
SyncObjects SyncObject

Represents	a	Send\Receive	group	for	a	user.	A	Send\Receive	group	lets	users
configure	different	synchronization	scenarios,	selecting	which	folders	and	which
filters	apply.



Using	the	SyncObject	Object

Use	the	Item	method	to	retrieve	the	SyncObject	object	from	a	SyncObjects
object.	Because	the	Name	property	is	the	default	property	of	the	SyncObject
object,	you	can	identify	the	group	by	name.	For	example:

Set	mySyncObject	=	mySyncObjects.Item("Daily")

	 	

The	SyncObject	object	is	read-only;	you	cannot	change	its	properties	or	create
new	ones.	However,	note	that	you	can	add	one	Send/Receive	group	using	the
AppFolders	property	which	will	create	a	Send/Receive	group	called
Application	Folders.



TaskItem	Object
TaskItem Multiple	objects

Represents	a	task	(an	assigned,	delegated,	or	self-imposed	task	to	be	performed
within	a	specified	time	frame)	in	a	Tasks	folder.



Using	The	TaskItem	Object

Use	the	CreateItem	method	to	create	a	TaskItem	object	that	represents	a	new
task.

The	following	Visual	Basic	for	Applications	(VBA)	example	returns	a	new	task.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olTaskItem)

	 	

The	following	sample	shows	how	to	create	a	task	using	Microsoft	Visual	Basic
Scripting	Edition	(VBScript).

Set	myItem	=	Application.CreateItem(3)

	 	

Use	Items	(index),	where	index	is	the	index	number	of	a	task	or	a	value	used	to
match	the	default	property	of	a	task,	to	return	a	single	TaskItem	object	from	a
Tasks	folder.



Remarks

If	a	program	tries	to	reference	any	type	of	recipient	information	by	using	the
Outlook	object	model,	a	dialog	box	is	displayed	that	asks	you	to	confirm	access
to	this	information.	You	can	allow	access	to	the	Address	Book	or	recipient
information	for	up	to	ten	minutes	after	you	receive	the	dialog	box.	This	allows
features,	such	as	mobile	device	synchronization,	to	be	completed.

You	receive	the	confirmation	dialog	box	when	a	solution	tries	to
programmatically	access	the	following	properties	of	the	TaskItem	object:

ContactNames
Delegator
Owner
StatusUpdateRecipients
StatusOnCompletionRecipients



TaskRequestAcceptItem	Object
TaskRequestAcceptItem Multiple	objects

Represents	an	item	in	an	Inbox	(mail)	folder.

A	TaskRequestAcceptItem	object	represents	a	response	to	a	TaskRequestItem
sent	by	the	initiating	user.	If	the	delegated	user	accepts	the	task,	the
ResponseState	property	is	set	to	olTaskAccept.	The	associated	TaskItem	is
received	by	the	delegator	as	a	TaskRequestAcceptItem	object.



Using	the	TaskRequestAcceptItem	Object

Unlike	other	Microsoft	Outlook	objects,	you	cannot	create	this	object.

Use	the	GetAssociatedTask	method	to	return	the	TaskItem	object	that	is
associated	with	this	TaskRequestAcceptItem.	Work	directly	with	the	TaskItem
object.



TaskRequestDeclineItem	Object
TaskRequestDeclineItem Multiple	objects

Represents	an	item	in	an	Inbox	(mail)	folder.

A	TaskRequestDeclineItem	object	represents	a	response	to	a	TaskRequestItem
sent	by	the	initiating	user.	If	the	delegated	user	declines	the	task,	the
ResponseState	property	is	set	to	olTaskDecline.	The	associated	TaskItem	is
received	by	the	delegator	as	a	TaskRequestDeclineItem	object.



Using	the	TaskRequestDeclineItem	Object

Unlike	other	Microsoft	Outlook	objects,	you	cannot	create	this	object.

Use	the	GetAssociatedTask	method	to	return	the	TaskItem	object	that	is
associated	with	this	TaskRequestDeclineItem.	Work	directly	with	the	TaskItem
object.



Show	All



TaskRequestItem	Object
TaskRequestItem Multiple	objects

Represents	an	item	in	an	Inbox	(mail)	folder.	A	TaskRequestItem	object
represents	a	change	to	the	recipient's	Tasks	list	initiated	by	another	party	or	as	a
result	of	a	group	tasking.



Using	the	TaskRequestItem	Object

Unlike	other	Microsoft	Outlook	objects,	you	cannot	create	this	object.	When	the
sender	applies	the	Assign	and	Send	methods	to	a	TaskItem	object	to	assign
(delegate)	the	associated	task	to	another	user,	the	TaskRequestItem	object	is
created	when	the	item	is	received	in	the	recipient's	Inbox.

The	following	Visual	Basic	for	Applications	(VBA)	example	creates	a	simple
task,	assigns	it	to	another	user,	and	sends	it.	When	the	task	request	arrives	in	the
recipient's	Inbox,	it	is	received	as	a	TaskRequestItem.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olTaskItem)

myItem.Assign

Set	myDelegate	=	myItem.Recipients.Add("Jeff	Smith")

myItem.Subject	=	"Prepare	Agenda	For	Meeting"

myItem.DueDate	=	#9/20/97#

myItem.Send

	 	

The	following	example	shows	how	to	perform	the	same	task	using	Microsoft
Visual	Basic	Scripting	Edition	(VBScript).

Set	myItem	=	Application.CreateItem(3)

myItem.Assign

Set	myDelegate	=	myItem.Recipients.Add("Jeff	Smith")

myItem.Subject	=	"Prepare	Agenda	For	Meeting"

myItem.DueDate	=	#9/20/97#

myItem.Send

	 	

Use	the	GetAssociatedTask	method	to	return	the	TaskItem	object,	and	work
directly	with	the	TaskItem	object	to	respond	to	the	request.



TaskRequestUpdateItem	Object
TaskRequestUpdateItem Multiple	objects

Represents	an	item	in	an	Inbox	(mail)	folder.

A	TaskRequestUpdateItem	object	represents	a	response	to	a	TaskRequestItem
sent	by	the	initiating	user.	If	the	delegated	user	updates	the	task	by	changing
properties	such	as	the	DueDate	or	the	Status,	and	then	sends	it,	the	associated
TaskItem	is	received	by	the	delegator	as	a	TaskRequestUpdateItem	object.



Using	the	TaskRequestUpdateItem	Object

Unlike	other	Microsoft	Outlook	objects,	you	cannot	create	this	object.

Use	the	GetAssociatedTask	method	to	return	the	TaskItem	object	that	is
associated	with	this	TaskRequestUpdateItem.	Work	directly	with	the	TaskItem
object



Show	All



UserProperty	Object
UserProperties UserProperty

Represents	a	custom	property	of	a	Microsoft	Outlook	item.



Using	The	UserProperty	Object

Use	UserProperties	(index),	where	index	is	a	name	or	index	number,	to	return	a
single	UserProperty	object.

Use	the	Add	method	to	create	a	new	UserProperty	for	an	item	and	add	it	to	the
UserProperties	object.	The	Add	method	allows	you	to	specify	a	name	and	type
for	the	new	property.	The	following	example	adds	a	custom	text	property	named
MyPropName.

Set	myProp	=	myItem.UserProperties.Add("MyPropName",	olText)

	 	

Note		When	you	create	a	custom	property,	a	field	is	added	in	the	folder	that
contains	the	item	(using	the	same	name	as	the	property).	That	field	can	be	used
as	a	column	in	folder	views.



View	Object
Views View

The	View	object	allows	you	to	create	customizable	views	that	allow	you	to
better	sort,	group	and	ultimately	view	data	of	all	different	types.	There	are	a
variety	of	different	view	types	that	provide	the	flexibility	needed	to	create	and
maintain	your	important	data.

The	table	view	type	(olTableView)	allows	you	to	view	data	in	a	simple
field-based	table.

The	Calendar	view	type	(olCalendarView)	allows	you	to	view	data	in	a
calendar	format.

The	card	view	type	(olCardView)	allows	you	to	view	data	in	a	series	of
cards.	Each	card	displays	the	information	contained	by	the	item	and	can	be
sorted.

The	icon	view	type	(olIconView)	allows	you	to	view	data	as	icons,	similar
to	a	Windows	folder	or	explorer.

The	timeline	view	type	(olTimelineView)	allows	you	to	view	data	as	it	is
received	in	a	customizable	linear	time	line.

Views	are	defined	and	customized	using	the	View	object's	XML	property.	The
XML	property	allows	you	to	create	and	set	a	customized	XML	schema	that
defines	the	various	features	of	a	view.



Using	the	View	object

Use	Views(index),	where	index	is	the	name	of	the	View	object	or	its	ordinal
value,	to	return	a	single	View	object.	The	following	example	returns	a	view
called	Table	View	and	stores	it	in	a	variable	of	type	View	called	objView.	Before
running	this	example,	make	sure	a	view	by	the	name	'Table	View'	exists.

Sub	GetView()

'Creates	a	new	view

				Dim	olApp	As	Outlook.Application

				Dim	objName	As	NameSpace

				Dim	objViews	As	Views

				Dim	objView	As	View

				Set	olApp	=	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objViews	=	objName.GetDefaultFolder(olFolderInbox).Views

				'Return	a	view	called	Table	View

				Set	objView	=	objViews.Item("Table	View")

End	Sub

	 	

Use	the	Add	method	of	the	Views	collection	to	create	a	new	view.	The	following
example	creates	a	new	view	of	type	olTableView	called	New	Table.

Sub	CreateView()

'Creates	a	new	view

				Dim	olApp	As	Outlook.Application

				Dim	objName	As	NameSpace

				Dim	objViews	As	Views

				Dim	objNewView	As	View

				Set	olApp	=	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objViews	=	objName.GetDefaultFolder(olFolderInbox).Views

				Set	objNewView	=	objViews.Add(Name:="New	Table",	_

																					ViewType:=olTableView,	SaveOption:=olViewSaveOptionThisFolderEveryone)

End	Sub



	 	



Activate	Method
Activates	an	explorer	or	inspector	window	by	bringing	it	to	the	foreground	and
setting	keyboard	focus.

expression.Activate

expression	Required.	An	expression	that	returns	an	Explorer	or	Inspector
object.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	example	responds	to
the	NewMail	event	by	activating	the	explorer	window.	The	sample	code	must	be
placed	in	a	class	module,	and	the	Initialize_handlers	routine	must	be	called
before	the	event	procedure	can	be	called	by	Microsoft	Outlook.

Public	WithEvents	myOlApp	As	Outlook.Application

Public	WithEvents	myOlExp	As	Outlook.Explorer

Public	Sub	Initialize_handlers()

				Set	myOlApp	=	CreateObject("Outlook.Application")

				Set	myOlExp	=	myOlApp.ActiveExplorer

End	Sub

Private	Sub	myOlApp_NewMail()

				myOlExp.Activate

End	Sub

	 	



ActiveExplorer	Method
Returns	the	topmost	Explorer	object	on	the	desktop.	If	no	explorer	is	active,
returns	Nothing.	Use	this	method	to	return	the	Explorer	object	that	the	user	is
most	likely	viewing.	This	method	is	also	useful	for	determining	when	there	is	no
active	explorer,	so	a	new	one	can	be	opened.

expression.ActiveExplorer

expression				Required.	An	expression	that	returns	an	Application	object.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	uses	the	Count	property	and	Item	method	of	the	Selection	collection
returned	by	the	Selection	property	to	display	the	senders	of	all	mail	items
selected	in	the	active	explorer	window.	To	run	this	example,	you	need	to	have	at
least	one	mail	item	selected	in	the	active	Explorer	window.

Note		You	might	receive	an	error	if	you	select	items	other	than	a	mail	item	such
as	task	request	as	the	SenderName	property	does	not	exist	for	a
TaskRequestItem	object.

Sub	GetSelectedItems()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myOlExp	As	Outlook.Explorer

	 Dim	myOlSel	As	Outlook.Selection

	 Dim	MsgTxt	As	String

	 Dim	x	As	Integer

	 MsgTxt	=	"You	have	selected	items	from:	"

	 Set	myOlExp	=	myOlApp.ActiveExplorer

	 Set	myOlSel	=	myOlExp.Selection

	 For	x	=	1	To	myOlSel.Count

	 	 MsgTxt	=	MsgTxt	&	myOlSel.Item(x).SenderName	&	";"

	 Next	x

	 MsgBox	MsgTxt

End	Sub

	 	



ActiveInspector	Method
Returns	the	topmost	Inspector	object	on	the	desktop.	If	no	inspector	is	active,
returns	Nothing.	Use	this	method	to	access	the	Inspector	object	that	the	user	is
most	likely	to	be	viewing.

expression.ActiveInspector

expression				Required.	An	expression	that	returns	an	Application	object



Remarks

If	you	are	using	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a
Microsoft	Outlook	form,	you	should	typically	use	the	GetInspector	method	to
refer	to	the	Inspector	object	associated	with	the	form,	for	example:

Set	myInspector	=	Item.GetInspector



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	ActiveInspector
method	to	obtain	the	currently	active	Inspector	object	and	enables	the	display	of
keys	in	ToolTips	in	the	inspector.

Sub	DisplayKeys()

'Enables	key	in	ToolTips

				Dim	myolapp	As	Outlook.Application

				Dim	myinspector	As	Outlook.Inspector

				Set	myolapp	=	CreateObject("Outlook.Application")

				Set	myinspector	=	myolapp.ActiveInspector

				'Test	if	an	inspector	is	active

				If	Not	TypeName(myinspector)	=	"Nothing"	Then

										myinspector.CommandBars.DisplayKeysInTooltips	=	True

				End	If

End	Sub

	 	



ActiveWindow	Method
Returns	an	object	representing	the	topmost	Microsoft	Outlook	window	on	the
desktop,	either	an	Explorer	or	an	Inspector	object.	If	no	Outlook	explorer	or
inspector	is	open,	returns	Nothing.

expression.ActiveWindow

expression				Required.	An	expression	that	returns	an	Application	object.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
minimizes	the	topmost	Outlook	window	if	it	is	an	inspector	window.

Sub	MinimizeActiveWindow()

	 Dim	myOlApp	As	New	Outlook.Application

	 If	TypeName(myOlApp.ActiveWindow)	=	"Inspector"	Then

	 	 myOlApp.ActiveWindow.WindowState	=	olMinimized

	 End	If

End	Sub

	 	



Show	All



Add	Method
Add	method	as	it	applies	to	the	Actions	object.

Creates	a	new	action	in	the	Actions	collection	and	returns	the	new	action	as	an
Action	object.

expression.Add

expression				Required.	An	expression	that	returns	an	Actions	collection	object.

Add	method	as	it	applies	to	the	AddressEntries	object.

Adds	a	new	entry	to	the	AddressEntries	collection	and	returns	the	new	entry	as
an	AddressEntry	object.	Note			New	entries	or	changes	to	existing	entries	are
not	persisted	in	the	collection	until	after	calling	the	Update	method.

expression.Add(Type,	Name,	Address)

expression				Required.	An	expression	that	returns	an	AddressEntries	object.

Type			Required	String.	The	type	of	the	new	entry.

Name			Optional	Variant.	The	name	of	the	new	entry.

Address			Optional	Variant.	The	address.

Add	method	as	it	applies	to	the	Attachments	object.

Creates	a	new	attachment	in	the	Attachments	collection	and	returns	the	new
attachment	as	an	Attachment	object.

expression.Add(Source,	Type,	Position,	DisplayName)

expression	Required.	An	expression	that	returns	an	Attachments	collection
object.



Source					Required	String.	The	source	of	the	attachment.

Type					Optional	String.	The	type	of	the	attachment.

Position				Optional	String.	In	e-mail	messages	using	Microsoft	Outlook	Rich
Text	format,	position	where	the	attachment	should	be	placed.	A	value	of	1	for	the
Position	parameter	specifies	that	the	attachment	should	be	positioned	at	the
beginning	of	the	message	body.	A	value	'n'	greater	than	the	number	of	characters
in	the	body	of	the	e-mail	item	specifies	that	the	attachment	should	be	placed	at
the	end.	A	value	of	0	makes	the	attachment	hidden.

DisplayName				Optional	String.	Display	name	for	the	attachment.

Add	method	as	it	applies	to	the	Explorers	object.

Creates	a	new	instance	of	the	explorer	window	and	returns	a	new	instance	of	the
window	as	an	Explorer	object.

expression.Add(Folder,	DisplayMode)

expression				Required.	An	expression	that	returns	an	Explorers	collection.

Folder				Required.	The	Variant	object	to	display	in	the	explorer	window	when
it	is	created.

DisplayMode				Optional	Long.	The	display	mode	of	the	folder.	Can	be	one	of
the	following	OlFolderDisplayMode	constants:

OlFolderDisplayMode	can	be	one	of	these	OlFolderDisplayMode	constants.
olFolderDisplayFolderOnly
olFolderDisplayNoNavigation
olFolderDisplayNormal

Note		The	Folder	argument	can	represent	either	a	MAPIFolder	object	or	the
URL	to	that	folder.

Add	method	as	it	applies	to	the	Folders	object.

Creates	a	new	folder	in	the	Folders	collection,	and	returns	the	new	folder	as	a



MAPIFolder	object.

expression.Add(Name,	Type)

expression				Required.	An	expression	that	returns	a	Folders	object.

Name				Required	String.	The	display	name	for	the	new	folder.

Type				Optional	Long.	The	Outlook	folder	type	for	the	new	folder.	If	the	folder
type	is	not	specified,	the	new	folder	will	default	to	the	same	type	as	the	folder	in
which	it	is	created.	Can	be	one	of	the	following	OlDefaultFolders	constants:
olFolderCalendar,	olFolderContacts,	olFolderDrafts,	olFolderInbox,
olFolderJournal,	olFolderNotes,	olPublicFoldersAllPublicFolders,	or
olFolderTasks.	(The	constants	olFolderDeletedItems,	olFolderOutbox,
olFolderJunk,	olFolderConflicts,	olFolderLocalFailures,
olFolderServerFailures,	olFolderSyncIssues,	and	olFolderSentMail	cannot	be
specified	for	this	argument.)

Add	method	as	it	applies	to	the	Inspectors	object.

Creates	a	new	inspector	window	and	returns	the	resulting	Inspector	object.

expression.Add(Item)

expression				Required.	An	expression	that	returns	an	Inspectors	collection
object.

Item				Required	Object.	The	item	to	display	in	the	inspector	window	when	it	is
created.

Add	method	as	it	applies	to	the	ItemProperties	object.

Adds	an	ItemProperty	object	to	the	ItemProperties	collection.

expression.Add(Name,	Type,	AddToFolderFields,	DisplayFormat)

expression				Required.	An	expression	that	returns	an	ItemProperties	object.

Name			Required	String.	The	name	of	the	new	item	property	object.



Type			Required	OlUserPropertyType.	The	type	of	the	new	ItemProperty.

OlUserPropertyType	can	be	one	of	these	OlUserPropertyType	constants.
olCombination
olCurrency
olDateTime
olDuration
olFormula
olKeywords
olNumber
olOutlookInternal
olPercent
olText
olYesNo

AddToFolderFields			Optional	Variant.	Determines	if	the	item	property	will	be
added	to	the	folder	fields.

DisplayFormat			Optional	Variant.	Defines	the	format	of	the	field	as	it	appears
in	a	given	folder.

Add	method	as	it	applies	to	the	Items	object.

Creates	a	new	Outlook	item	in	the	Items	collection	for	the	folder	and	returns	the
new	item.	If	not	specified,	the	Type	of	the	item	defaults	to	the	type	of	the	folder
or	to	MailItem	if	the	parent	folder	is	not	typed.

expression.Add(Type)

expression	Required.	An	expression	that	returns	an	Items	collection	object.

Type				Optional.	Variant.	The	Outlook	item	type	for	the	new	item.	Can	be	one
of	the	following	OlItemType	constants:	olAppointmentItem,	olContactItem,
olJournalItem,	olMailItem,	olNoteItem,	olPostItem,	or	olTaskItem,	one	of
the	following	OlOfficeDocItemsType	constants:	olWordDocumentItem,
olExcelWorkSheetItem,	olPowerPointShowItem,	or	any	valid	message	class.
Specify	a	MessageClass	to	create	custom	forms.



Add	method	as	it	applies	to	the	Links	object.

Links	a	contact	item	to	another	item	by	adding	a	Link	object	to	the	Links
collection	associated	with	the	latter	item.

expression.Add(Item)

expression				Required.	An	expression	that	returns	a	Links	collection	object.

Item				Required	Object.	The	item	to	be	linked	to	the	item	associated	with	the
Links	collection.

Add	method	as	it	applies	to	the	OutlookBarGroups	object.

Adds	a	new,	empty	group	to	the	Shortcuts	pane	and	returns	the	new	group	as	an
OutlookBarGroup	object.

expression.Add(Name,	Index)

oexpression				Required.	An	expression	that	returns	an	OutlookBarGroups
collection	object.

Name				Required	String.	The	name	of	the	group	being	created.

Index				Optional	Long.	The	position	at	which	the	new	group	will	be	inserted	in
the	Shortcuts	pane.	Position	one	is	at	the	top	of	the	bar.

Add	method	as	it	applies	to	the	OutlookBarShortcuts	object.

Adds	a	new	shortcut	to	a	group	in	the	Shortcuts	pane	and	returns	the	new
shortcut	as	an	OutlookBarShortcut	object.

expression.Add(Target,	Name,	Index)

expression				Required.	An	expression	that	returns	an	OutlookBarShortcuts
collection	object.

Target				Required	Variant.	The	target	of	the	shortcut	being	created.

Name				Required	String.	The	name	of	the	shortcut	being	created.



Index				Optional	Long.	The	position	at	which	the	new	shortcut	will	be	inserted
in	the	Shortcuts	pane	group.	Position	one	is	at	the	top	of	the	group.

The	Target	type	depends	on	the	shortcut	type.	If	the	type	is	MAPIFolder,	the
shortcut	represents	a	Microsoft	Outlook	folder.	If	the	type	is	a	String,	the
shortcut	represents	a	file-system	path	or	a	URL.

Add	method	as	it	applies	to	the	Pages	object.

Creates	a	new	page	in	the	Pages	collection	and	returns	the	new	object.	The
Pages	collection	is	initially	empty,	and	there	is	a	limit	of	5	customizable	pages
per	collection.

expression.Add(Name)

expression	Required.	An	expression	that	returns	a	Pages	collection	object.

Name				Required.	String.	The	name	of	the	page.

Add	method	as	it	applies	to	the	PropertyPages	object.

Adds	a	new	custom	property	page	to	the	Microsoft	Outlook	Options	dialog	box
or	to	the	folder	Properties	dialog	box.

expression.Add(Page,	Title)

expression				Required.	An	expression	that	returns	a	PropertyPages	collection
object.

Page				Required	Variant.	The	property	page	being	added	to	the	dialog	box.

Title				Optional	String.	The	caption	to	be	displayed	on	the	property-page	tab.

Add	method	as	it	applies	to	the	Recipients	object.

Creates	a	new	recipient	in	the	Recipients	collection	and	returns	the	new
recipient	as	a	Recipient	object.

expression.Add(Name)



expression				Required.	An	expression	that	returns	a	Recipients	collection	object.

Name				Required	String.	The	display	name	of	the	recipient.

Add	method	as	it	applies	to	the	UserProperties	object.

Creates	a	new	user	property	in	the	UserProperties	collection,	and	returns	the
new	property	as	a	UserProperty	object.

expression.Add(Name,	Type,	AddToFolderFields,	DisplayFormat)

expression					Required.	An	expression	that	returns	a	UserProperties	collection
object.

Name				Required	String.	The	name	of	the	property.

Type			Required	OlUserPropertyType.	The	type	of	the	new	property.

OlUserPropertyType	can	be	one	of	these	OlUserPropertyType	constants.
olCombination
olCurrency
olDateTime
olDuration
olFormula
olKeywords
olNumber
olOutlookInternal
olPercent
olText
olYesNo

AddToFolderFields				Optional	Boolean.	True	if	the	property	will	be	added	to
the	folder	fields,	False	if	not.	The	default	value	is	True.

DisplayFormat				Optional	Long.	The	index	format	of	the	specified
OlUserPropertyType	constant.

Note		You	can	only	add	user-defined	fields	to	Outlook	items.	User-defined	fields



cannot	be	added	to	Microsoft	Office	document	items	such	as	Microsoft	Word,
Microsoft	Excel,	or	Microsoft	PowerPoint	files	even	though	you	can
programmatically	create	those	items	using	the	olOfficeDocItemsType	constants.
You	will	receive	an	error	when	you	try	to	programmatically	add	a	user-defined
field	to	a	DocumentItem	object.

Add	method	as	it	applies	to	the	Views	object.

Creates	a	new	view	in	the	Views	collection,	and	returns	the	new	view	as	a	View
object.OlViewType.

expression.Add(Name,	ViewType,	SaveOption)

expression				Required.	An	expression	that	returns	a	Views	object.

Name			Required	String.	The	name	of	the	new	view.

ViewType			Required	OlViewType.	The	type	of	the	new	view.

OlViewType	can	be	one	of	these	OlViewType	constants.
olCalendarView
olCardView
olIconView
olTableView
olTimelineView

SaveOption			Optional	olViewSaveOption.	The	save	option	that	specifies	the
permissions	of	the	new	view.

Note				The	save	option	values	are	as	follows:

olViewSaveOptionAllFoldersOfType	The	view	can	be	accessed	in	all
folders	of	this	type.

olViewSaveOptionThisFolderEveryOne	The	view	can	be	accessed	by	all
users	in	this	folder	only.

olViewSaveOptionThisFolderOnlyMe	The	view	can	be	accessed	in	this
folder	only	by	the	user.



Example

As	it	applies	to	the	Attachments	object.



Remarks

For	e-mail	messages	in	Microsoft	Outlook	Rich	Text	format,	a	value	of	1	for	the
Position	parameter	specifies	that	the	attachment	should	be	positioned	at	the
beginning	of	the	message	body.	A	value	'n'	greater	than	the	number	of	characters
in	the	body	of	the	mail	item	specifies	that	the	attachment	should	be	placed	at	the
end.	A	value	of	0	makes	the	attachment	hidden.

The	following	Microsoft	Visual	Basic	/Visual	Basic	for	Applications	(VBA)
example	creates	a	mail	item,	adds	an	attachment,	and	displays	it.	To	run	this
example,	make	sure	a	file	called	Test.Doc	exists	in	the	C:\	folder.

Sub	AddAttachment()

				Dim	myOlApp	As	New	Outlook.Application

				Dim	myItem	As	Outlook.MailItem

				Dim	myAttachments	As	Outlook.Attachments

				Set	myItem	=	myOlApp.CreateItem(olMailItem)

				Set	myAttachments	=	myItem.Attachments

				myAttachments.Add	"C:\Test.doc",	_

								olByValue,	1,	"Test"

				myItem.Display

End	Sub

	 	 	 	

As	it	applies	to	the	Explorers	object.



Remarks

The	explorer	window	is	initially	hidden.	You	must	call	the	Display	method	of
the	Explorer	object	to	make	it	visible.

The	following	Visual	Basic/VBA	example	displays	the	Drafts	folder	in	an
explorer	window	without	a	Navigation	Pane	or	Folder	List.

Sub	DisplayDrafts()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myExplorers	As	Outlook.Explorers

	Dim	myOlExpl	As	Outlook.Explorer

	Dim	myFolder	As	Outlook.MAPIFolder

	Set	myExplorers	=	myOlApp.Explorers

	Set	myFolder	=	myOlApp.GetNamespace("MAPI").GetDefaultFolder	_

				(olFolderDrafts)

	Set	myOlExpl	=	myExplorers.Add	_

				(myFolder,	olFolderDisplayNoNavigation)

	myOlExpl.Display

End	Sub

	 	 	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object,	and	you	cannot	use	named
constants.	This	example	shows	how	to	perform	the	same	task	using	VBScript
code.

Set	myExplorers	=	Application.Explorers

Set	myFolder	=	Application.GetNamespace("MAPI").GetDefaultFolder(16)

Set	myOlExpl	=	myExplorers.Add(myFolder,	2)

myOlExpl.Display

	 	 	 	

As	it	applies	to	the	Inspectors	object.



Remarks

This	method	is	essentially	identical	to	the	GetInspector	property.

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	example	prompts	the
user	for	a	company	name,	uses	the	Restrict	method	to	locate	all	contact	items	in
the	Contacts	folder	with	that	name,	and	displays	each	one.

Sub	DisplayMyContacts()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myFolder	As	MAPIFolder

	Dim	myItems	As	Items

	Dim	myRestrictItems	As	Items

	Dim	answer	As	String

	Dim	filter	As	String

	Dim	myInspector	As	Inspector

	Dim	x	As	Integer

	answer	=	InputBox("Enter	the	company	name")

	Set	myFolder	=	myOlApp.GetNamespace("MAPI")	_

				.GetDefaultFolder(olFolderContacts)

	filter	=	"[MessageClass]	=	'IPM.Contact'	AND	[CompanyName]	=	'"	&	answer	&	"'"

				

	Set	myItems	=	myFolder.Items

	Set	myRestrictItems	=	myItems.Restrict(filter)

	For	x	=	1	To	myRestrictItems.Count

				Set	myInspector	=	myOlApp.Inspectors.Add(myRestrictItems.Item(x))

				myInspector.Display

	Next	x

End	Sub

	 	 	 	

As	it	applies	to	the	Actions	object.

This	VBA	example	creates	a	new	mail	message	and	uses	the	Add	method	to	add
an	Action	to	it.	To	run	this	example	without	any	errors,	replace	'Dan	Wilson'
with	a	valid	recipient	name.

Sub	AddAction()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myItem	As	Outlook.MailItem

	Dim	myAction	As	Outlook.Action

	Set	myItem	=	myOlApp.CreateItem(olMailItem)

	Set	myAction	=	myItem.Actions.Add

	myAction.Name	=	"Link	Original"



	myAction.ShowOn	=	olMenuAndToolbar

	myAction.ReplyStyle	=	olLinkOriginalItem

	myItem.To	=	"Dan	Wilson"

	myItem.Send

End	Sub

	 	 	 	

If	you	use	VBScript	in	an	Outlook	form,	you	do	not	create	the	Application
object,	and	you	cannot	use	named	constants.	This	example	shows	how	to
perform	the	same	task	using	VBScript	code.

Set	myItem	=	Application.CreateItem(0)

Set	myAction	=	myItem.Actions.Add

	myAction.Name	=	"Link	Original"

	myAction.ShowOn	=	2

	myAction.ReplyStyle	=	4

	myItem.To	=	"Kim	Buhler"

	myItem.Send

	 	 	 	

As	it	applies	to	the	Links	collection.

This	Visual	Basic/VBA	example	creates	a	new	task	item,	and	then	prompts	the
user	for	the	name	of	a	contact	to	link	to	the	item.	If	the	contact	is	found,	it	is
added	to	the	item’s	Links	collection.

Sub	AddLink()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myNameSpace	As	Outlook.NameSpace

	Dim	myFolder	As	Outlook.MAPIFolder

	Dim	myTask	As	Outlook.TaskItem

	Dim	myContact	As	Outlook.ContactItem

	Dim	myItems	As	Outlook.Items

	Dim	tempstr	As	String

	Set	myTask	=	myOlApp.CreateItem(olTaskItem)

	Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	Set	myFolder	=	myNameSpace.GetDefaultFolder(olFolderContacts)

	tempstr	=	InputBox("Enter	the	name	of	the	contact	to	link	to	this	task")

	If	tempstr	<>	""	Then

				tempstr	=	"[Full	Name]	=	"""	&	tempstr	&	""""

				Set	myItems	=	myFolder.Items.Restrict("[MessageClass]	=	'IPM.Contact'")

				Set	myContact	=	myItems.Find(tempstr)

				myTask.Links.Add	myContact

				myTask.Display

	End	If

End	Sub

	 	 	 	



If	you	use	VBScript	in	an	Outlook	form,	you	do	not	create	the	Application
object,	and	you	cannot	use	named	constants.	This	example	shows	how	to
perform	the	same	task	using	VBScript	code.

Set	myTask	=	Application.CreateItem(3)

Set	myNameSpace	=	Application.GetNamespace("MAPI")

Set	myFolder	=	myNameSpace.GetDefaultFolder(10)

tempstr	=	InputBox("Enter	the	name	of	the	contact	to	link	to	this	task")

If	tempstr	<>	""	Then

				tempstr	=	"[Full	Name]	=	"""	&	tempstr	&	""""

				Set	myItems	=	myFolder.Items.Restrict("[MessageClass]	=	'IPM.Contact'")

				Set	myContact	=	myItems.Find(tempstr)

				myTask.Links.Add	myContact

myTask.Display

	 	 	 	

As	it	applies	to	the	Folders	collection.

This	VBA	example	uses	the	Add	method	to	add	the	new	folder	named	"My
Contacts"	to	the	current	(default)	Contacts	folder.

Sub	AddContactsFolder()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myNameSpace	As	Outlook.NameSpace

	Dim	myFolder	As	Outlook.MAPIFolder

	Dim	myNewFolder	As	Outlook.MAPIFolder

	Set	myOlApp	=	CreateObject("Outlook.Application")

	Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	Set	myFolder	=	myNameSpace.GetDefaultFolder(olFolderContacts)

	Set	myNewFolder	=	myFolder.Folders.Add("My	Contacts")

End	Sub

	 	 	 	

If	you	use	VBScript	in	an	Outlook	form,	you	do	not	create	the	Application
object,	and	you	cannot	use	named	constants.	This	example	shows	how	to
perform	the	same	task	using	VBScript.

Set	myNameSpace	=	Application.GetNameSpace("MAPI")

Set	myFolder	=	myNamespace.GetDefaultFolder(10)

Set	myNewFolder	=	myFolder.Folders.Add("My	Contacts")

	 	 	 	

This	VBA	example	uses	the	Add	method	to	add	three	new	folders	in	the	Tasks
folder.	The	first	folder,	"Notes	Folder",	will	contain	note	items.	The	second



folder,	"Contacts	Folder",	will	contain	contact	items.	The	third	folder,	“Public
Folder”	will	be	a	public	folder.	If	the	folders	already	exist,	a	message	box	will
inform	the	user.

Sub	AddFolders()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myNameSpace	As	Outlook.NameSpace

	Dim	myFolder	As	Outlook.MAPIFolder

	Dim	myNotesFolder	As	Outlook.MAPIFolder

	Dim	myContactsFolder	As	Outlook.MAPIFolder

	Dim	myPublicFolder	As	Outlook.MAPIFolder

	Set	myOlApp	=	CreateObject("Outlook.Application")

	Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	Set	myFolder	=	myNameSpace.GetDefaultFolder(olFolderTasks)

	On	Error	GoTo	ErrorHandler

	Set	myNotesFolder	=	myFolder.Folders.Add("Notes	Folder",	olFolderNotes)

	Set	myContactsFolder	=	myFolder.Folders.Add("Contacts	Folder",	olFolderContacts)

	Set	myPublicFolder	=	myFolder.Folders.Add("Public	Folder",	olPublicFoldersAllPublicFolders)

	Exit	Sub

ErrorHandler:

		MsgBox	"This	folder	already	exists!"

		Resume	Next

End	Sub

	 	 	 	

As	it	applies	to	the	Items	collection.

This	VBA	example	gets	the	current	Contacts	folder	and	adds	a	new
ContactItem	object	to	it	and	sets	some	initial	values	in	the	fields	based	on
another	contact.	To	run	this	example	without	any	error,	replace	'Dan	Wilson'
with	a	valid	contact	name	that	exists	in	your	Contacts	folder.

Sub	AddContact()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myNamespace	As	Outlook.NameSpace

	Dim	myFolder	As	Outlook.MAPIFolder

	Dim	myItem	As	Outlook.ContactItem

	Dim	myOtherItem	As	Outlook.ContactItem

	Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

	Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderContacts)

	Set	myOtherItem	=	myFolder.Items("Dan	Wilson")

	Set	myItem	=	myFolder.Items.Add

	myItem.CompanyName	=	myOtherItem.CompanyName

	myItem.BusinessAddress	=	myOtherItem.BusinessAddress

	myItem.BusinessTelephoneNumber	=	myOtherItem.BusinessTelephoneNumber

	myItem.Display



End	Sub

	 	 	

This	VBA	example	adds	a	custom	form	to	the	default	Tasks	folder.

Sub	AddForm()

	Dim	myOlApp	As	New	outlook.Application

	Dim	myNamespace	As	outlook.NameSpace

	Dim	myItems	As	outlook.Items

	Dim	myFolder	As	outlook.MAPIFolder

	Dim	myItem	As	outlook.TaskItem

	Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

	Set	myFolder	=	_

				myNamespace.GetDefaultFolder(olFolderTasks)

	Set	myItems	=	myFolder.Items

	Set	myItem	=	myItems.Add("IPM.Task.myTask")

End	Sub

	 	 	

As	it	applies	to	the	OutlookBarGroups	collection.

This	Visual	Basic/VBA	example	adds	a	group	named	Marketing	as	the	last	group
in	the	Shortcuts	pane.

Sub	AddGroup()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myolBar	As	Outlook.OutlookBarPane

	Set	myolBar	=	myOlApp.ActiveExplorer.Panes.Item("OutlookBar")

	myolBar.Contents.Groups.Add	"Marketing",	myolBar.Contents.Groups.Count	+	1

End	Sub

	 	

	 	 	 	

If	you	use	VBScript	in	an	Outlook	form,	you	do	not	create	the	Application
object.	This	example	shows	how	to	perform	the	same	task	using	VBScript.

Set	myolBar	=	Application.ActiveExplorer.Panes.Item("OutlookBar")

myolBar.Contents.Groups.Add	"Marketing",	myolBar.Contents.Groups.Count	+	1

	 	 	 	

As	it	applies	to	the	OutlookBarShortcuts	collection.

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	example
adds	a	shortcut	to	the	Microsoft	home	page	on	the	Web.



Sub	AddShortcut()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myOlBar	As	Outlook.OutlookBarPane

	Dim	myolGroup	As	Outlook.OutlookBarGroup

	Dim	myOlShortcuts	As	Outlook.OutlookBarShortcuts

	Set	myOlBar	=	myOlApp.ActiveExplorer.panes.Item("OutlookBar")

	Set	myolGroup	=	myOlBar.Contents.Groups.Item(1)

	Set	myOlShortcuts	=	myolGroup.Shortcuts

	myOlShortcuts.Add	"http://www.microsoft.com",	_

				"Microsoft	Home	Page",	1

End	Sub

	 	 	 	

If	you	use	VBScript	in	an	Outlook	form,	you	do	not	create	the	Application
object.	This	example	shows	how	to	perform	the	same	task	using	VBScript	code.

Set	myOlBar	=	_

				Application.ActiveExplorer.Panes.Item("OutlookBar")

Set	myolGroup	=	myOlBar.Contents.Groups.Item(1)

Set	myOlShortcuts	=	myolGroup.Shortcuts

myOlShortcuts.Add	"http://www.microsoft.com",	_

				"Microsoft	Home	Page",	1

	 	 	 	

As	it	applies	to	the	Recipients	collection.

This	VBA	example	creates	a	new	mail	message,	uses	the	Add	method	to	add
'Dan	Wilson'	as	a	To	recipient,	and	displays	the	message.	To	run	this	example
without	errors,	replace	'Dan	Wilson'	with	a	valid	recipient	name.

Sub	CreateStatusReportToBoss()

	Dim	myOlApp	As	Outlook.Application

	Dim	myItem	As	Outlook.MailItem

	Dim	myRecipient	As	Outlook.Recipient

	Set	myOlApp	=	CreateObject("Outlook.Application")

	Set	myItem	=	myOlApp.CreateItem(olMailItem)

	Set	myRecipient	=	myItem.Recipients.Add("Dan	Wilson")

	myItem.Subject	=	"Status	Report"

	myItem.Display

End	Sub

	 	 	 	

If	you	use	VBScript	in	an	Outlook	form,	you	do	not	create	the	Application
object,	and	you	cannot	use	named	constants.	This	example	shows	how	to
perform	the	same	task	using	VBScript	code.



Set	myItem	=	Application.CreateItem(0)

Set	myRecipient	=	myItem.Recipients.Add("Dan	Wilson")

myItem.Subject	=	"Status	Report"

myItem.Display

	 	 	 	

As	it	applies	to	the	UserProperties	collection.

This	VBA	example	creates	a	new	ContactItem	object	and	adds
"LastDateSpokenWith"	as	a	custom	property.

Sub	AddUserProperty()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myItem	As	Outlook.ContactItem

	Dim	myUserProperty	As	Outlook.UserProperty

	Set	myItem	=	myOlApp.CreateItem(olContactItem)

	Set	myUserProperty	=	myItem.UserProperties	_

				.Add("LastDateSpokenWith",	olDateTime)

	myItem.Display

End	Sub

	 	 	 	

This	VBA	example	creates	a	new	ContactItem	object	and	adds	"Notes"	as	a
user	property.	The	Value	is	set	by	changing	the	Value	property	of	the
UserProperty	object.

Sub	AddUserProperty()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myItem	As	Outlook.ContactItem

	Dim	myUserProperty	As	Outlook.UserProperty

	Set	myItem	=	myOlApp.CreateItem(olContactItem)

	Set	myUserProperty	=	myItem.UserProperties	_

				.Add("Notes",	olText)

	myUserProperty.Value	=	"Neighbor"

	myItem.Display

End	Sub

	 	 	 	

As	it	applies	to	the	Views	object.

The	following	Visual	Basic	for	Applications	(VBA)	example	creates	a	new	view
called	New	Table	and	stores	it	in	a	variable	called	objNewView.

Sub	CreateView()

'Creates	a	new	view



				Dim	olApp	As	Outlook.Application

				Dim	objName	As	Outlook.NameSpace

				Dim	objViews	As	Outlook.Views

				Dim	objNewView	As	Outlook.View

				Set	olApp	=	New	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objViews	=	objName.GetDefaultFolder(olFolderInbox).Views

				Set	objNewView	=	objViews.Add(Name:="New	Table",	_

																					ViewType:=olTableView,	SaveOption:=olViewSaveOptionThisFolderEveryone)

End	Sub

	 	 	 	



AddMember	Method
Adds	a	new	member	to	the	specified	distribution	list.	The	distribution	list
contains	Recipient	objects	that	represent	valid	e-mail	addresses.

expression.AddMember(Recipient)

expression				Required.	An	expression	that	returns	a	DistListItem	object.

Recipient			Required.	The	recipient	to	be	added	to	the	list.



Remarks

Use	the	AddMembers	method	to	add	multiple	members	to	a	given	recipients
list.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	creates	a	new	DistributionList	object	and	adds	a	recipient	to	it.	If	the
specified	recipient	is	not	valid,	the	AddMember	method	will	fail.	To	run	this
example,	replace	'Dan	Wilson'	with	a	valid	recipient	name.

Sub	AddNewMember()

	 'Adds	a	member	to	a	new	distribution	list

	 Dim	olApp	As	Outlook.Application

	 Dim	objItem	As	Outlook.DistListItem

	 Dim	objMail	As	Outlook.MailItem

	 Dim	objRcpnt	As	Outlook.Recipient

	 Set	olApp	=	New	Outlook.Application

	 Set	objMail	=	olApp.CreateItem(olMailItem)

				

	 Set	objItem	=	olApp.CreateItem(olDistributionListItem)

	 'Create	recipient	for	distlist

	 Set	objRcpnt	=	olApp.Session.CreateRecipient("Dan	Wilson")

	 objRcpnt.Resolve

	 objItem.AddMember	objRcpnt

	 'Add	note	to	list	and	display

	 objItem.DLName	=	"Northwest	Sales	Manager"

	 objItem.Body	=	"Regional	Sales	Manager	-	NorthWest"

	 objItem.Save

	 objItem.Display

End	Sub

	 	



AddMembers	Method
Adds	new	members	to	a	distribution	list.

expression.AddMembers(Recipients)

expression				Required.	An	expression	that	returns	a	DistListItem	object.

Recipients				Required	Recipients	object.	The	members	to	be	added	to	the
distribution	list.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
creates	a	new	distribution	list	and	adds	the	current	user	and	'Dan	Wilson'	to	the
list.	If	the	specified	recipient	is	not	valid,	the	AddMember	method	will	fail.
Therefore,	to	run	this	example,	replace	'Dan	Wilson'	with	a	valid	recipient	name.

Sub	AddNewMembers()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Dim	myDistList	As	Outlook.DistListItem

	 Dim	myTempItem	As	Outlook.MailItem

	 Dim	myRecipients	As	Outlook.Recipients

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 Set	myDistList	=	myOlApp.CreateItem(olDistributionListItem)

	 Set	myTempItem	=	myOlApp.CreateItem(olMailItem)

	 Set	myRecipients	=	myTempItem.Recipients

	 myDistList.DLName	=	_

	 	 InputBox("Enter	the	name	of	the	new	distribution	list")

	 myRecipients.Add	myNameSpace.CurrentUser.Name

	 myRecipients.Add	"Dan	Wilson"

	 myRecipients.ResolveAll

	 myDistList.AddMembers	myRecipients

	 myDistList.Save

	 myDistList.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript.

Set	myNameSpace	=	Application.GetNamespace("MAPI")

Set	myDistList	=	Application.CreateItem(7)

Set	myTempItem	=	Application.CreateItem(0)

Set	myRecipients	=	myTempItem.Recipients

myDistList.DLName	=	_

				InputBox("Enter	the	name	of	the	new	distribution	list")

myRecipients.Add	myNameSpace.CurrentUser.Name

myRecipients.Add	"Dan	Wilson"

myRecipients.ResolveAll

myDistList.AddMembers	myRecipients	

myDistList.Save



myDistList.Display

	 	



AddPicture	Method
Adds	a	picture	to	a	contact	item.

expression.AddPicture(Picture)

expression				Required.	An	expression	that	returns	a	ContactItem	object.

Picture			Required.	A	string	containing	the	complete	path	and	filename	of	the
picture	to	be	added	to	the	contact	item.



Remarks

If	the	contact	item	already	has	a	picture	attached	to	it,	this	method	will	overwrite
the	existing	picture.

The	picture	can	be	an	icon,	GIF,	JPEG,	BMP,	TIFF,	WMF,	EMF,	or	PNG	file.
Microsoft	Outlook	will	automatically	perform	the	necessary	resizing	of	the
picture.



Example

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example	prompts
the	user	to	specify	the	name	of	a	contact	and	the	file	name	containing	a	picture
of	the	contact,	and	then	adds	the	picture	to	the	contact	item.	If	a	picture	already
exists	for	the	contact	item,	the	example	prompts	the	user	to	specify	if	the
existing	picture	should	be	overwritten	by	the	new	file.

Sub	AddPictureToAContact()

				Dim	myOlApp	As	Outlook.Application

				Dim	myNms	As	Outlook.NameSpace

				Dim	myFolder	As	Outlook.MAPIFolder

				Dim	myContactItem	As	Outlook.ContactItem

				Dim	strName	As	String

				Dim	strPath	As	String

				Dim	strPrompt	As	String

				Set	myOlApp	=	CreateObject("Outlook.Application")

								

				Set	myNms	=	myOlApp.GetNamespace("MAPI")

				Set	myFolder	=	myNms.GetDefaultFolder(olFolderContacts)

				

				strName	=	InputBox("Type	the	name	of	the	contact:	")

								

				Set	myContactItem	=	myFolder.Items(strName)

				

				If	myContactItem.HasPicture	=	True	Then

					strPrompt	=	MsgBox("The	contact	already	has	a	picture	associated	with	it.	Do	you	want	to	overwrite	the	existing	picture?",	vbYesNo)

				

					If	strPrompt	=	vbNo	Then

						Exit	Sub

					End	If

				End	If

				

				strPath	=	InputBox("Type	the	file	name	for	the	contact:	")

				myContactItem.AddPicture	(strPath)

				myContactItem.Save

				myContactItem.Display

				

	End	Sub

	 	





AddStore	Method
Adds	a	Personal	Folders	(.pst)	file	to	the	current	profile.

expression.AddStore(Store)

expression				Required.	An	expression	that	returns	a	NameSpace	object.

Store				Required	Variant.	The	path	of	the	.pst	file	to	be	added	to	the	profile.	If
the	.pst	file	does	not	exist,	Microsoft	Outlook	creates	it.



Remarks

Use	the	RemoveStore	method	to	remove	a	.pst	that	is	already	added	to	a	profile.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example	adds
a	new	Personal	Folders	(.pst)	file	to	the	user’s	profile.

Sub	CreatePST()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 myNameSpace.AddStore	"c:\"	&	myNameSpace.CurrentUser	&	".pst"

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object.	This	example	shows	how	to
perform	the	same	task	using	VBScript.

Sub	CommandButton1_Click()

	Set	myNS	=	Application.GetNamespace("MAPI")

	myNS.AddStore	"c:\"	&	myNS.CurrentUser	&	".pst"

End	Sub

	 	



Show	All



AddStoreEx	Method
Adds	a	Personal	Folders	file	(.pst)	in	the	specified	format	to	the	current	profile.

expression.AddStoreEx(Store,	Type)

expression				Required.	An	expression	that	returns	a	Namespace	object.

Store				Required	Variant.	The	path	of	the	.pst	file	to	be	added	to	the	profile.	If
the	.pst	file	does	not	exist,	Microsoft	Outlook	creates	it.

Type				Required	OlStoreType	constant.	The	format	in	which	the	data	file	should
be	created.

OlStoreType	can	one	of	the	following	constants:

olStoreDefault	(1)
olStoreUnicode	(2)
olStoreANSI	(3)



Remarks

Use	the	olStoreUnicode	constant	to	add	a	new	.pst	file	that	has	greater	storage
capacity	for	items	and	folders	and	supports	multilingual	Unicode	data,	to	the
user's	profile.	The	olStoreANSI	constant	allows	you	to	create	.pst	files	that	do
not	provide	full	support	for	multilingual	Unicode	data,	but	are	compatible	with
earlier	versions	of	Outlook.	The	olStoreDefault	constant	helps	you	create	a	.pst
file	in	the	default	format	that	is	compatible	with	the	mailbox	mode	in	which
Outlook	runs	on	the	Microsoft	Exchange	Server.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example	adds
a	new	Personal	Folders	(.pst)	file	that	has	greater	storage	capacity	for	items	and
folders	and	supports	Unicode	to	the	user’s	profile.

Sub	CreateUnicodePST()

				Dim	myOlApp	As	New	Outlook.Application

				Dim	myNameSpace	As	Outlook.NameSpace

				Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

				myNameSpace.AddStoreEx	"c:\"	&	myNameSpace.CurrentUser	&	".pst",olStoreUnicode

End	Sub

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object.	This	example	shows	how	to
perform	the	same	task	using	VBScript.

Sub	CreateUnicodePST()

	 Set	myNS	=	Application.GetNamespace("MAPI")

	 myNS.AddStoreEx	"c:\"	&	myNS.CurrentUser	&	".pst",	2

End	Sub

	 	



AddToFavorites	Method
Adds	the	current	MAPI	folder	to	the	Microsoft	Internet	Explorer	Favorites	list.

Note		The	favorites	are	not	accessible	from	the	Microsoft	Outlook	user	interface.
However,	you	can	still	access	them	from	Internet	Explorer.

expression.AddToFavorites(fNoUI,	Name)

expression				Required.	An	expression	that	returns	a	MAPIFolder	object.

fNoUI			Optional	Variant.	Specifies	whether	the	Add	Favorite	dialog	will	be
displayed.	The	default	value	is	False,	which	displays	the	dialog.	Specify	True	if
you	do	not	want	to	show	the	dialog	to	the	user.

Name			Optional	Variant.	Specifies	the	name	of	the	favorite	folder.	The	default
value	is	the	name	of	the	folder.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	adds	the	current	folder	to	the	Favorites	list	in	Internet	Explorer.	The
subroutine	accepts	a	MAPIFolder	object	and	a	String	that	represents	the
folder's	name	in	the	Favorites	list.	It	executes	the	AddToFavorites	method,
using	the	String	value	supplied	by	the	user	as	its	argument.

Sub	FaveChange()

				Dim	appolApp	As	Outlook.Application

				Dim	nmsName	As	Outlook.NameSpace

				Dim	fldFolder	As	Outlook.MAPIFolder

				Dim	strName	As	String

				Set	appolApp	=	New	Outlook.Application

				'Create	instance	of	namespace

				Set	nmsName	=	appolApp.GetNamespace("MAPI")

				Set	fldFolder	=	nmsName.GetDefaultFolder(olFolderInbox)

				'Prompt	user	for	a	Favorites	list	name

				strName	=	_

								InputBox("Type	the	name	of	the	folder	as	it	will	appear	in	the	Favorites	list.")

				Call	FaveList(fldFolder,	strName)

End	Sub

Sub	FaveList(ByRef	fldFolder	As	MAPIFolder,	ByVal	strName	As	String)

'Add	a	Folder	object	to	the	Favorites	list	in	Internet	Explorer

				'Call	method	with	strName	as	name	argument

				fldFolder.AddToFavorites	fNoUI:=	True,	Name:=strName

				'Display	a	message	to	the	user

				MsgBox	"The	folder	"	&	fldFolder.Name	&	_

											"	was	added	to	the	Internet	Explorer	Favorites	list	as	"	&	strName	&	"."

End	Sub

	 	





AddToPFFavorites	Method
Adds	a	Microsoft	Exchange	public	folder	to	the	public	folder's	Favorites	folder.

expression.AddToPFFavorites

expression				Required.	An	expression	that	returns	a	MAPIFolder	object.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	adds	the	public
folder	GroupDiscussion	to	the	user's	Favorites	folder	by	using	the
AddToPFFavorites	method.	To	run	this	example,	you	need	to	replace
'GroupDiscussion'	with	a	valid	public	folder	name.

Sub	AddToFavorites()

	 'Adds	a	Public	Folder	to	the	list	of	favorites

	 Dim	olapp	As	Outlook.Application

	 Dim	objFolder	As	Outlook.MAPIFolder

	 Set	olapp	=	New	Outlook.Application

	 Set	objFolder	=	olapp.Session.GetDefaultFolder(olPublicFoldersAllPublicFolders).Folders.Item("GroupDiscussion")

	 objFolder.AddToPFFavorites

End	Sub

	 	



AdvancedSearch	Method
Performs	a	search	based	on	a	specified	Microsoft	SQL	Server	search	string	and
returns	a	Search	object.

expression.AdvancedSearch(Scope,	Filter,	SearchSubFolders,	Tag)

expression				Required.	An	expression	that	returns	an	Application	object.

Scope			Required	String.	The	scope	of	the	search.	For	example,	the	name	of	a
folder.	It	is	recommended	that	the	folder	name	is	enclosed	within	single	quotes.
Otherwise,	the	search	might	not	return	correct	results	if	the	folder	name	contains
special	characters	including	Unicode	characters.

Filter			Optional	Variant.	The	DASL	search	filter	that	defines	the	parameters	of
the	search.

SearchSubFolders			Optional	Variant.	Determines	if	the	search	will	include	any
of	the	folder's	subfolders.

Tag			Optional	Variant.	The	name	given	as	an	identifier	for	the	search.



Remarks

You	can	run	multiple	searches	simultaneously	by	calling	the	AdvancedSearch
method	in	successive	lines	of	code.	A	maximum	of	100	simultaneous	searches
can	be	performed	by	using	the	Microsoft	Outlook	user	interface	and	the	Outlook
object	model.

The	AdvancedSearch	method	and	related	features	in	the	Outlook	object	model
do	not	create	a	Search	Folder	that	will	appear	in	the	Outlook	user	interface.
However,	you	can	use	the	Save	method	of	the	Search	object	that	is	returned	to
create	a	Search	Folder	that	will	appear	in	the	Search	Folders	list	in	the	Outlook
user	interface.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	searches	the	Inbox
for	items	with	subject	equal	to	Test	and	displays	the	names	of	the	senders	of	the
e-mail	items	returned	by	the	search.	The	AdvanceSearchComplete	event
procedure	sets	the	boolean	blnSearchComp	to	True	when	the	the	search	is
complete.	This	boolean	variable	is	used	by	the	TestAdvancedSearchComplete()
procedure	to	determine	when	the	search	is	complete.	The	sample	code	must	be
placed	in	a	class	module	such	as	ThisOutlookSession,	and	the
TestAdvancedSearchComplete()	procedure	must	be	called	before	the	event
procedure	can	be	called	by	Outlook.

Public	blnSearchComp	As	Boolean

Private	Sub	Application_AdvancedSearchComplete(ByVal	SearchObject	As	Search)

	 MsgBox	"The	AdvancedSearchComplete	Event	fired"

	 blnSearchComp	=	True

End	Sub

Sub	TestAdvancedSearchComplete()

	 Dim	sch	As	Outlook.Search

	 Dim	rsts	As	Outlook.Results

	 Dim	i	As	Integer

		 blnSearchComp	=	False

	 Const	strF	As	String	=	"urn:schemas:mailheader:subject	=	'Test'"

	 Const	strS	As	String	=	"Inbox"			

	 Set	sch	=	Application.AdvancedSearch(strS,	strF)	

	 While	blnSearchComp	=	False

	 	 DoEvents

	 Wend	

	 Set	rsts	=	sch.Results

	 For	i	=	1	To	rsts.Count

	 	 MsgBox	rsts.Item(i).SenderName

	 Next

End	Sub

	 	

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	example
uses	the	AdvancedSearch	method	to	create	a	new	search.	The	parameters	of	the
search,	as	specified	by	the	Filter	argument	of	the	AdvancedSearch	method,	will
return	all	items	in	the	Inbox	that	have	the	Subject	as	'Test'.	The	user's	Inbox	is
specified	as	the	scope	of	the	search	and	the	SearchSubFolders	property	is	set	to



True.	The	event	subroutine	occurs	when	the	search	has	completed	and	displays
the	Tag	and	Scope	properties	for	the	new	object	as	well	as	the	results	of	the
search.

Public	blnSearchComp	As	Boolean

Private	Sub	Application_AdvancedSearchComplete(ByVal	SearchObject	As	Search)

	 MsgBox	"The	AdvancedSearchComplete	Event	fired	for	"	&	SearchObject.Tag	&	"	and	the	scope	was	"	&	SearchObject.

	 blnSearchComp	=	True

End	Sub

Sub	TestAdvancedSearchComplete()

	 Dim	objSch	As	Outlook.Search

	 Dim	rsts	As	Outlook.Results

	 Dim	i	As	Integer

	 blnSearchComp	=	False

	 Const	strF1	As	String	=	"urn:schemas:mailheader:subject	=	'Test'"

	 Const	strS1	As	String	=	"Inbox"

	 Set	objSch	=	_

								Application.AdvancedSearch(Scope:=strS1,	Filter:=strF1,	SearchSubFolders:=True,	Tag:="SubjectSearch")

	 While	blnSearchComp	=	False

	 	 DoEvents

	 Wend

	 Set	rsts	=	objSch.Results

	 For	i	=	1	To	rsts.Count

	 	 MsgBox	rsts.Item(i).SenderName

	 Next

End	Sub

	 	

You	can	also	conduct	searches	on	multiple	folders	simultaneously.	The	following
example	searches	for	all	items	with	the	subject	"Fiftieth	Birthday	Party"	in	the
user's	Inbox,	Calendar,	and	Tasks	folders.	Note	that	you	need	to	use	the
AdvancedSearchComplete	event	to	determine	when	the	search	is	complete	and
work	on	the	results.

Sub	SearchForSubject()

'Search	for	all	items	with	a	certain	subject

'in	multiple	folders

				Dim	objSch	As	Outlook.Search

				'Search	for	items	where	subject	is	not	an	empty	string

				Const	strFilter	As	String	=	_

								"urn:schemas:httpmail:subject	=	'Fiftieth	Birthday	Party'"

				'In	the	Inbox,	Calendar,	and	Tasks	folders

				Const	strScope	As	String	=	"'Inbox',	'Calendar',	'Tasks'"



				Set	objSch	=	Application.AdvancedSearch(strScope,	strFilter)

End	Sub

	 	

The	following	is	another	example	that	uses	the	AdvancedSearch	method.

Public	sch	As	Outlook.Search

Private	Sub	Application_AdvancedSearchComplete(ByVal	SearchObject	As	Search)

				Dim	rsts	As	Outlook.Results

				If	(SearchObject.Tag	=	"Search1")	Then

								Set	rsts	=	sch.Results

								MsgBox	"Search1	returned	"	&	rsts.Count	&	"	items"

				

				End	If

End	Sub

Sub	TestAdvancedSearchComplete()

				Dim	rsts	As	Outlook.Results

				Dim	i	As	Integer

				Const	strF	As	String	=	"urn:schemas:mailheader:subject	=	'Thnx'"

				Const	strS	As	String	=	"Inbox"

				Set	sch	=	Application.AdvancedSearch(strS,	strF,	,	"Search1")

End	Sub

	 	



Apply	Method
Applies	the	view	or	applies	the	changes	that	have	been	made	in	a	custom
property	page.

expression.Apply

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Because	the	PropertyPage	is	an	abstract	object	that	is	implemented	in	your
application	(rather	than	by	Microsoft	Outlook	itself),	the	implementation	of	the
Apply	method	resembles	an	event	procedure	in	your	program	code.	That	is,	you
write	the	code	that	implements	the	method	in	much	the	same	way	you	would
write	an	event	procedure.	In	other	words,	Outlook	calls	the	Apply	method	to
notify	your	program	that	the	user	has	taken	an	action	in	the	dialog	box
displaying	the	custom	property	page	that	requires	your	program	to	apply	the
property	values	changed	by	the	user.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example	sets
two	global	variables	to	reflect	the	values	in	controls	on	a	form	and	then	sets	a
global	variable	representing	the	Dirty	property	to	False.

Private	Sub	PropertyPage_Apply()

				globWorkGroup	=	Form1.Text1.Text

				globUserType	=	Form1.Combo1.Text

				globDirty	=	False

End	Sub

	 	

The	following	Visual	Basic	for	Applications	(VBA)	example	creates	a	new	view
called	New	Table	and	applies	it.

Sub	CreateView()

'Creates	a	new	view

				Dim	olApp	As	Outlook.Application

				Dim	objName	As	Outlook.NameSpace

				Dim	objViews	As	Outlook.Views

				Dim	objNewView	As	Outlook.View

				Set	olApp	=	New	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objViews	=	objName.GetDefaultFolder(olFolderInbox).Views

				Set	objNewView	=	objViews.Add(Name:="New	Table",	_

																					ViewType:=olTableView)

				objNewView.Save

				objNewView.Apply

End	Sub



Assign	Method
Assigns	a	task	and	returns	a	TaskItem	object	that	represents	it.	This	method
allows	a	task	to	be	assigned	(delegated)	to	another	user.	You	must	create	a	task
before	you	can	assign	it,	and	you	must	assign	a	task	before	you	can	send	it.	An
assigned	task	is	sent	as	a	TaskRequestItem	object.

expression.Assign

expression				Required.	An	expression	that	returns	a	TaskItem	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	CreateItem	to	create	a
simple	task	and	delegate	it	as	a	task	request	to	another	user.	To	run	this	example,
replace	'Dan	Wilson'	with	a	valid	recipient	name.

Sub	AssignTask()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myItem	As	Outlook.TaskItem

	 Dim	myDelegate	As	Outlook.Recipient

	 Set	MyItem	=	myOlApp.CreateItem(olTaskItem)

	 MyItem.Assign

	 Set	myDelegate	=	MyItem.Recipients.Add("Dan	Wilson")

	 myDelegate.Resolve

	 If	myDelegate.Resolved	Then

	 	 myItem.Subject	=	"Prepare	Agenda	For	Meeting"

	 	 myItem.DueDate	=	Now	+	30

	 	 myItem.Display

	 	 myItem.Send

	 End	If

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	assign	a	task	item	using	VBScript.

Set	myItem	=	Application.CreateItem(3)

myItem.Assign

Set	myDelegate	=	myItem.Recipients.Add("Dan	Wilson")

myItem.Subject	=	"Prepare	Agenda	For	Meeting"

myItem.DueDate	=	#9/20/03#

myItem.Send

	 	



CancelResponseState	Method
Resets	an	unsent	response	to	a	task	request	back	to	a	simple	task.	After	you
receive	a	task	request	and	respond	to	it,	but	before	sending	the	response,	you	can
use	this	method	to	revert	the	task	to	its	state	before	you	responded.

expression.CancelResponseState

expression				Required.	An	expression	that	returns	a	TaskItem	object.



ClearConversationIndex	Method
Clears	the	index	of	the	conversation	thread	for	the	mail	message	or	post.

expression.ClearConversationIndex

expression					Required.	An	expression	that	returns	a	MailItem	or	PostItem
object.



ClearRecurrencePattern	Method
Removes	the	recurrence	settings	and	restores	the	single-occurrence	state	for	an
appointment	or	task.

expression.ClearRecurrencePattern

expression					Required.	An	expression	that	returns	an	AppointmentItem	or
TaskItem	object.



Show	All



Close	Method
For	the	Explorer	object,	the	Close	method	closes	the	explorer.

For	an	Inspector	or	Microsoft	Outlook	item	object,	the	Close	method	closes	the
inspector	or	item	and	optionally	saves	changes	to	the	displayed	Outlook	item.

expression.Close(SaveMode)

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

SaveMode				This	argument	is	used	with	all	objects	in	the	Applies	To	list	except
for	the	Explorer	object.	Required	OlInspectorClose.	The	close	behavior.	If	the
item	displayed	within	the	inspector	has	not	been	changed,	this	argument	has	no
effect.

OlInspectorClose	can	be	one	of	these	OlInspectorClose	constants.
olDiscard	Discard	all	changes	without	prompting.
olPromptForSave	Prompt	to	save	or	discard	all	changes.
olSave	Save	all	changes	without	prompting.



Example

This	Visual	Basic	for	Applications	(VBA)	example	saves	and	closes	the	item
displayed	in	the	active	inspector	without	prompting	the	user.	To	run	this
example,	you	need	to	have	an	item	displayed	in	an	inspector	window.

Sub	CloseItem()

	 Dim	myolapp	As	Outlook.Application

	 Dim	myinspector	As	Outlook.Inspector

	 Dim	myItem	As	Outlook.MailItem

	 Set	myolapp	=	CreateObject("Outlook.Application")

	 Set	myinspector	=	myolapp.ActiveInspector

	 Set	myItem	=	myinspector.CurrentItem

	 myItem.Close	olSave

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object,	and	you	cannot	use	named
constants.	This	example	shows	how	to	create	a	mail	item,	add	a	recipient,	and
close	the	item	after	prompting	the	user	to	save	changes.

Set	myItem	=	Application.CreateItem(0)

myItem.Recipients.Add	"David	Goodhand"

myItem.Close	2

	 	



Show	All



Copy	Method
Copy	method	as	it	applies	to	the	View	object.

Creates	a	new	instance	of	a	View	object.

expression.Copy(Name,	SaveOption)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Name			Required	String.	Represents	the	name	of	the	new	View	object.

SaveOption			Optional	OlViewSaveOption.	The	save	option	that	defines	the
permissions	of	the	View	object.

OlViewSaveOption	can	be	one	of	these	OlViewSaveOption	constants.
olViewSaveOptionAllFoldersOfType
olViewSaveOptionThisFolderEveryone
olViewSaveOptionThisFolderOnlyMe

Copy	method	as	it	applies	to	the	AppointmentItem,	ContactItem,
DistListItem,	DocumentItem,	JournalItem,	MailItem,	MeetingItem,
NoteItem			,	PostItem,	RemoteItem,	ReportItem,	TaskItem,
TaskRequestAcceptItem,	TaskRequestDeclineItem,	TaskRequestItem,	and
TaskRequestUpdateItem	objects.

Creates	another	instance	of	an	object.

expression.Copy

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	View	object.

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	creates	a	copy	of	a	view	called	"New	Table	View"	and	saves	it	in	the
current	folder.	To	run	this	example,	you	need	to	first	create	a	view	called	'New
Table	View'	programmatically	or	by	using	the	Microsoft	Outlook	user	interface.

Sub	CopyView()

'Copies	a	view

				Dim	olApp	As	Outlook.Application

				Dim	objViews	As	Outlook.Views

				Dim	objNewView	As	Outlook.View

				Set	olApp	=	New	Outlook.Application

				Set	objViews	=	_

				olApp.GetNamespace("MAPI").GetDefaultFolder(olFolderInbox).Views

				'Create	copy	of	View	object

				Set	objNewView	=	objViews("New	Table	View").Copy(Name:="Table	View	Copy",	_

				SaveOption:=olViewSaveOptionThisFolderEveryone)

End	Sub

	 	 	 	

As	it	applies	to	the	AppointmentItem,	ContactItem,	DistListItem,
DocumentItem,	JournalItem,	MailItem,	MeetingItem,	NoteItem			,
PostItem,	RemoteItem,	ReportItem,	TaskItem,	TaskRequestAcceptItem,
TaskRequestDeclineItem,	TaskRequestItem,	and	TaskRequestUpdateItem
objects.

This	Visual	Basic	for	Applications	example	creates	an	e-mail	message,	sets	the
Subject	to	"Speeches",	uses	the	Copy	method	to	copy	it,	then	moves	the	copy
into	a	newly	created	e-mail	folder	named	"Saved	Mail"	within	the	Inbox	folder.

Sub	CopyItem()

	 Dim	myolApp	As	New	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Dim	myFolder	As	Outlook.MAPIFolder

	 Dim	myNewFolder	As	Outlook.MAPIFolder

	 Dim	myItem	As	Outlook.MailItem



	 Dim	myCopiedItem	As	Outlook.MailItem

	 Set	myolApp	=	CreateObject("Outlook.Application")

	 Set	myNameSpace	=	myolApp.GetNamespace("MAPI")

	 Set	myFolder	=	myNameSpace.GetDefaultFolder(olFolderInbox)

	 Set	myNewFolder	=	myFolder.Folders.Add("Saved	Mail",	olFolderDrafts)

	 Set	myItem	=	myolApp.CreateItem(olMailItem)

	 myItem.Subject	=	"Speeches"

	 Set	myCopiedItem	=	myItem.Copy

	 myCopiedItem.Move	myNewFolder

End	Sub

	 	 	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object	and	you	cannot	use	named
constants.	This	example	shows	how	to	perform	the	same	task	using	VBScript
code.

Set	myNamespace	=	Application.GetNamespace("MAPI")

Set	myFolder	=	myNamespace.GetDefaultFolder(6)

Set	myNewFolder	=	myFolder.Folders.Add("Saved	Mail",	16)

Set	myItem	=	Application.CreateItem(0)

myItem.Subject	=	"Speeches"

Set	myCopiedItem	=	myItem.Copy

myCopiedItem.Move	myNewFolder

	 	 	 	



CopyFile	Method
Copies	a	file	from	a	specified	location	into	a	Microsoft	Outlook	store	and	returns
an	Object	representing	the	copied	document.

expression.CopyFile(FilePath,	DestFolderPath)

expression				Required.	An	expression	that	returns	an	Application	object.

FilePath			Required	String.	The	path	name	of	the	object	you	want	to	copy.

DestFolderPath			Required	String.	The	location	you	want	to	copy	the	file	to.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	creates	a	Microsoft
Excel	worksheet	called	'MyExcelDoc.xls'	and	then	copies	it	from	the	user's	hard
drive	to	the	user's	Inbox.

Sub	CopyFileSample()

				Dim	strPath	As	String

				Dim	ExcelApp	As	Object

				Dim	ExcelSheet	As	Object

				Dim	olApp	As	New	Outlook.Application

				Dim	doc	As	Object

				

				

				strPath	=	"C:\MyExcelDoc.xls"

				Set	ExcelApp	=	CreateObject("Excel.Application")

				Set	ExcelSheet	=	ExcelApp.Workbooks.Add

				ExcelSheet.ActiveSheet.cells(1,	1).Value	=	10

				ExcelSheet.SaveAs	strPath

				ExcelApp.Quit

				Set	ExcelApp	=	Nothing

				

				Set	doc	=	olApp.CopyFile(strPath,	"Inbox")

				

End	Sub

	 	



CopyTo	Method
Copies	the	current	folder	in	its	entirety	to	the	destination	folder.	Returns	a
MAPIFolder	object	that	represents	the	new	copy.

expression.CopyTo(DestinationFolder)

expression					Required.	An	expression	that	returns	a	MAPIFolder	object	(source
folder).

DestinationFolder				Required	MAPIFolder	object	(the	destination	folder	for
the	copied	folder).



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	CopyTo	method	to
copy	the	default	Contacts	folder	to	the	default	Inbox	folder.

Sub	CopyFolder()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Dim	myInboxFolder	As	Outlook.MAPIFolder

	 Dim	myContactsFolder	As	Outlook.MAPIFolder

	 Dim	myNewFolder	As	Outlook.MAPIFolder

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 Set	myInboxFolder	=	myNameSpace.GetDefaultFolder(olFolderInbox)

	 Set	myContactsFolder	=	myNameSpace.GetDefaultFolder(olFolderContacts)

	 Set	myNewFolder	=	myContactsFolder.CopyTo(myInboxFolder)

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myNameSpace	=	Application.GetNameSpace("MAPI")

Set	myInboxFolder	=	myNameSpace.GetDefaultFolder(6)

Set	myCurrentFolder	=	myNameSpace.GetDefaultFolder(10)

Set	myNewFolder	=	myCurrentFolder.CopyTo(myInboxFolder)

	 	



Show	All



CreateItem	Method
Creates	a	new	Microsoft	Outlook	item	and	returns	it.	The	CreateItem	method
can	only	create	default	Outlook	items.	To	create	new	items	using	a	custom	form,
use	the	Add	method	on	the	Items	collection.

expression.CreateItem(ItemType)

expression				Required.	An	expression	that	returns	an	Application	object.

ItemType				Required	OlItemType.	The	Outlook	item	Type	for	the	new	item.

OlItemType	can	be	one	of	these	OlItemType	constants.
olAppointmentItem
olContactItem
olDistributionListItem
olJournalItem
olMailItem
olNoteItem
olPostItem
olTaskItem



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	creates	a	new	MailItem	object	and	sets	the	BodyFormat	property	to
olFormatHTML.	The	Body	text	of	the	e-mail	item	will	now	appear	in	HTML
format.

Sub	CreateHTMLMail()

'Creates	a	new	e-mail	item	and	modifies	its	properties

				Dim	olApp	As	Outlook.Application

				Dim	objMail	As	Outlook.MailItem

				Set	olApp	=	Outlook.Application

				'Create	e-mail	item

				Set	objMail	=	olApp.CreateItem(olMailItem)

				With	objMail

							'Set	body	format	to	HTML

							.BodyFormat	=	olFormatHTML

							.HTMLBody	=	"<HTML><H2>The	body	of	this	message	will	appear	in	HTML.</H2><BODY>Please	enter	the	message	text	here.	</BODY></HTML>"

							.Display

				End	With

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	create	a	contact	item	in	the	default
Contacts	folder	using	VBScript	code.

Sub	CommandButton1_Click()

	Set	myNameSpace	=	Application.GetNameSpace("MAPI")

	Set	myFolder	=	myNameSpace.GetDefaultFolder(10)

	Set	myItem	=	Application.CreateItem(2)

	myItem.Display

End	Sub

	 	





Show	All



CreateItemFromTemplate	Method
Creates	a	new	Microsoft	Outlook	item	from	an	Outlook	template	(.oft)	and
returns	the	new	item.

expression.CreateItemFromTemplate(TemplatePath,	InFolder)

expression				Required.	An	expression	that	returns	an	Application	object.

TemplatePath				Required	String.	The	path	and	file	name	of	the	Outlook
template	for	the	new	item.

InFolder				Optional	Variant.	The	folder	in	which	the	item	is	to	be	created.	If
this	argument	is	omitted,	the	default	folder	for	the	item	type	will	be	used.



Remarks

New	items	will	always	open	in	compose	mode,	as	opposed	to	read	mode,
regardless	of	the	mode	in	which	the	items	were	saved	to	disk.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses
CreateItemFromTemplate	to	create	a	new	item	from	an	Outlook	template	and
then	displays	it.	The	CreateTemplate	macro	shows	you	how	to	create	the
template	that	is	used	in	the	first	example.	To	avoid	errors,	replace	'Dan	Wilson'
with	a	valid	name	in	your	address	book.

Sub	CreateFromTemplate()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	MyItem	As	Outlook.MailItem

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	MyItem	=	myOlApp.CreateItemFromTemplate("C:\statusrep.oft")

	 MyItem.Display

End	Sub

Sub	CreateTemplate()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	MyItem	As	Outlook.MailItem

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	MyItem	=	myOlApp.CreateItem(olMailItem)

	 MyItem.Subject	=	"Status	Report"

	 MyItem.To	=	"Dan	Wilson"

	 MyItem.Display

	 MyItem.SaveAs	"C:\statusrep.oft",	OlSaveAsType.olTemplate

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object.	This	example	shows	how	to
perform	the	same	task	using	VBScript	code.

Sub	CommandButton1_Click()

	Set	myItem	=	Application.CreateItemFromTemplate		_

	("C:\Program	Files\Microsoft	Office\Templates\Outlook\While	You	Were	Out.oft")

	myItem.Display

End	Sub

The	following	Visual	Basic	for	Applications	(VBA)	example	shows	how	to	use
the	optional	InFolder	parameter	when	calling	the	CreateItemFromTemplate
method.



Sub	CreateFromTemplate2()

				Dim	myOlApp	As	Outlook.Application

				Dim	MyItem	As	Outlook.MailItem

				Set	myOlApp	=	CreateObject("Outlook.Application")

				Set	MyItem	=	myOlApp.CreateItemFromTemplate("C:\statusrep.oft",		_

												myOlApp.Session.GetDefaultFolder(olFolderDrafts))

				MyItem.Save

End	Sub

	 	



Show	All



CreateObject	Method
Creates	an	Automation	object	of	the	specified	class.	If	the	application	is	already
running,	CreateObject	will	create	a	new	instance.

This	method	is	provided	so	that	other	applications	can	be	automated	from
Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	1.0,	which	did	not	include	a
CreateObject	method.	CreateObject	has	been	included	in	VBScript	version	2.0
and	later.	This	method	should	not	be	used	to	automate	Microsoft	Outlook	from
VBScript.

Note		The	CreateObject	methods	commonly	used	in	the	example	code	within
this	Help	file	(available	when	you	click	"Example")	are	made	available	by
Microsoft	Visual	Basic	or	Microsoft	Visual	Basic	for	Applications	(VBA).	These
examples	do	not	use	the	same	CreateObject	method	that	is	implemented	as	part
of	the	object	model	in	Outlook.

expression.CreateObject(ObjectName)

expression					Required.	An	expression	that	returns	an	Application	object.

ObjectName				Required	String.	The	class	name	of	the	object	to	create.	For
information	about	valid	class	names,	see	OLE	Programmatic	Identifiers.



Example

This	VBScript	example	uses	the	Open	event	of	the	item	to	access	Microsoft
Internet	Explorer	and	display	the	Web	page.

Sub	Item_Open()

			Set	Web	=	CreateObject("InternetExplorer.Application")

			Web.Visible	=	True

			Web.Navigate	"www.microsoft.com"

End	Sub

	 	

This	VBScript	example	uses	the	Click	event	of	a	CommandButton	control	on
the	item	to	access	Microsoft	Word	and	open	a	document	in	the	root	directory
named	"Resume.doc".

Sub	CommandButton1_Click()

				Set	Word	=	Application.CreateObject("Word.Application")

				Word.Visible	=	True

				Word.Documents.Open("C:\Resume.doc")

End	Sub

	 	



CreateRecipient	Method
Creates	and	returns	a	Recipient	object.	This	method	is	most	commonly	used	to
create	a	Recipient	object	for	use	with	the	GetSharedDefaultFolder	method,	for
example,	to	open	a	delegator's	folder.	It	can	also	be	used	to	verify	a	given	name
against	an	address	book.

expression.CreateRecipient(RecipientName)

expression					Required.	An	expression	that	returns	a	NameSpace	object.

RecipientName				Required	String.	The	display	name	of	the	recipient.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the
GetSharedDefaultFolder	method	to	resolve	the	Recipient	object	representing
Dan	Wilson,	and	then	returns	Dan's	shared	default	Calendar	folder.	To	run	this
example,	replace	'Dan	Wilson'	with	a	valid	recipient	name	and	make	sure	the
calendar	is	shared	and	you	have	permissions	to	view	the	calendar.

Sub	ResolveName()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myNamespace	As	Outlook.NameSpace

	 Dim	myRecipient	As	Outlook.Recipient

	 Dim	CalendarFolder	As	Outlook.MAPIFolder

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

	 Set	myRecipient	=	myNamespace.CreateRecipient("Dan	Wilson")

	 myRecipient.Resolve

	 If	myRecipient.Resolved	Then

	 	 Call	ShowCalendar(myNamespace,	myRecipient)

	 End	If

End	Sub

Sub	ShowCalendar(myNamespace,	myRecipient)

	 Dim	CalendarFolder	As	MAPIFolder

	 Set	CalendarFolder	=	_

								myNamespace.GetSharedDefaultFolder	_

								(myRecipient,	olFolderCalendar)

	 CalendarFolder.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Sub	CommandButton1_Click()

	Set	myNameSpace	=	Application.GetNameSpace("MAPI")

	Set	myRecipient	=	myNameSpace.CreateRecipient("Dan	Wilson")

	myRecipient.Resolve

	If	myRecipient.Resolved	Then

					Set	CalendarFolder	=	_

								myNameSpace.GetSharedDefaultFolder	_

								(myRecipient,	9)



						CalendarFolder.Display

	End	If

End	Sub

	 	



Delete	Method
Deletes	an	object	from	a	collection.

expression.Delete

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Delete	method	to
delete	the	PersonalTasks	folder	within	the	Tasks	folder.	To	run	this	example,
you	need	to	create	a	Tasks	subfolder	called	PersonalTasks.

Sub	DeleteTaskFolder()

	 Dim	myolApp	As	New	Outlook.Application

	 Dim	oNamespace	As	Outlook.NameSpace

	 Dim	oFolder	As	Outlook.MAPIFolder

	 Dim	oOldFolder	As	Outlook.MAPIFolder

	 Dim	strPrompt	As	String

	 Set	oNamespace	=	myolApp.GetNamespace("MAPI")

	 Set	oFolder	=	oNamespace.GetDefaultFolder(olFolderTasks)

	 Set	oOldFolder	=	oFolder.Folders("PersonalTasks")

	 'Prompt	the	user	for	confirmation

	 strPrompt	=	"Are	you	sure	you	want	to	delete	the	folder?"

	 If	MsgBox(strPrompt,	vbYesNo	+	vbQuestion)	=	vbYes	Then

					 oOldFolder.Delete

					 MsgBox	("Folder	deleted")

	 End	If

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Sub	CommandButton1_Click()

	Set	oNameSpace	=	Application.GetNameSpace("MAPI")

	Set	oFolder	=	oNameSpace.GetDefaultFolder(13)	

	Set	oOldFolder	=	oFolder.Folders("PersonalTasks")

	'Prompt	the	user	for	confirmation

	Dim	strPrompt

	strPrompt	=	"Are	you	sure	you	want	to	delete	the	folder?"

	If	MsgBox(strPrompt,	vbYesNo	+	vbQuestion)	=	vbYes	Then

		oOldFolder.Delete

		MsgBox("Folder	deleted")

	End	If



End	Sub

	 	



DeselectFolder	Method
If	the	explorer	is	currently	displaying	the	Calendar	folder	simultaneously	with
another	Calendar	folder,	the	specified	folder	will	be	closed.	Returns	Nothing.

expression.DeselectFolder(MAPIFolder)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

MAPIFolder				Required.	The	MAPIFolder	object	representing	the	Calendar
folder	to	be	closed	in	the	explorer.



Remarks

The	DeselectFolder	method	works	only	with	Calendar	folders.

If	the	folder	is	the	only	folder	that	is	currently	displayed	in	the	explorer,	the
folder	is	not	closed.	Instead,	Outlook	will	display	an	error.



Example

This	Microsoft	Visual	Basic	for	Applications	(VBA)	example	closes	a	shared
calendar	that	is	displayed	simultaneously	with	the	current	user's	default	calendar
folder.	To	run	this	example	without	errors,	replace	Dan	Wilson	with	a	valid
recipient	name	whose	calendar	is	shared	and	whose	calendar	you	have
permissions	to	view.	You	also	need	to	display	the	shared	calendar	in	Shared
Calendar	view.	To	do	this,	you	can	run	the	DispCalendars	procedure	before
running	the	CloseSharedCalendar	procedure.

Sub	CloseSharedCalendar()

				Dim	myOlApp	As	Outlook.Application

				Dim	myNms	As	Outlook.NameSpace

				

				Dim	myRecipient	As	Outlook.Recipient

				Dim	myExplorer	As	Outlook.Explorer

				Dim	SharedFolder	As	Outlook.MAPIFolder

				

				Set	myOlApp	=	CreateObject("Outlook.Application")

								

				Set	myNms	=	myOlApp.GetNamespace("MAPI")

				Set	myExplorer	=	myOlApp.ActiveExplorer

				Set	myRecipient	=	myNms.CreateRecipient("Dan	Wilson")

				Set	SharedFolder	=	myNms.GetSharedDefaultFolder(myRecipient,	olFolderCalendar)

				If	myExplorer.IsFolderSelected(SharedFolder)	=	True	Then

								myExplorer.DeselectFolder	SharedFolder

				End	If

End	Sub

Sub	DispCalendars()

				Dim	myOlApp	As	Outlook.Application

				Dim	myNms	As	Outlook.NameSpace

				Dim	myFolder	As	Outlook.MAPIFolder

				Dim	myRecipient	As	Outlook.Recipient

				Dim	myExplorer	As	Outlook.Explorer

				Dim	SharedFolder	As	Outlook.MAPIFolder

				

				Set	myOlApp	=	CreateObject("Outlook.Application")

								

				Set	myNms	=	myOlApp.GetNamespace("MAPI")

				Set	myFolder	=	myNms.GetDefaultFolder(olFolderCalendar)

				

				Set	myExplorer	=	myOlApp.ActiveExplorer

				Set	myExplorer.CurrentFolder	=	myFolder

				Set	myRecipient	=	myNms.CreateRecipient("Dan	Wilson")



				Set	SharedFolder	=	myNms.GetSharedDefaultFolder(myRecipient,	olFolderCalendar)

				myExplorer.SelectFolder	SharedFolder

End	Sub



Details	Method
The	Details	method	displays	a	modal	dialog	box	that	provides	detailed
information	about	an	AddressEntry	object.	You	must	use	error	handling	to
handle	run-time	errors	when	the	user	clicks	Cancel	in	the	dialog	box.	The
Details	method	actually	stops	the	code	from	running	while	the	dialog	box	is
displayed.

Note		The	Details	method	fails	if	the	Name	property	is	empty.

expression.Details(HWnd)

expression				Required	AddressEntry	object.

HWnd							Optional	Variant.	The	parent	window	handle	for	the	Details	dialog
box.	A	zero	value	(the	default)	specifies	a	modal	dialog	box.



Dial	Method
Displays	the	New	Call	dialog	box	that	allows	users	to	dial	the	primary	phone
number	of	a	specified	contact.

expression.Dial(ContactItem)

expression				Required.	An	expression	that	returns	a	NameSpace	object.

ContactItem			Optional	Variant.	The	ContactItem	object	of	the	contact	you
want	to	dial.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	opens	the	New	Call	dialog	box.

Sub	DialContact()

'Opens	the	New	Call	dialog

				Dim	olApp	As	Outlook.Application

				Set	olApp	=	Outlook.Application

				olApp.GetNamespace("MAPI").Dial

End	Sub

	 	

The	following	Visual	Basic	for	Applications	(VBA)	example	opens	the	New
Call	dialog	box	with	the	contact's	information.	To	run	this	example,	replace	'Jeff
Smith'	with	a	valid	contact	name.

Sub	DialContact()

'Opens	the	New	Call	dialog	with	the	contact	info

				Dim	olApp	As	Outlook.Application

				Dim	objContact	As	Outlook.ContactItem

				Set	olApp	=	New	Outlook.Application

				Set	objContact	=	olApp.GetNamespace("MAPI").	_

					GetDefaultFolder(olFolderContacts).Items("Jeff	Smith")

				olApp.GetNamespace("MAPI").Dial	objContact

End	Sub

	 	



Dismiss	Method
Dismisses	the	current	reminder.

expression.Dismiss

expression				Required.	An	expression	that	returns	a	Reminder	object.



Remarks

The	Dismiss	method	will	fail	if	there	is	no	visible	reminder.



Example

The	following	example	dismisses	all	active	reminders.	A	reminder	is	active	if	its
IsVisible	property	is	set	to	True.

SSub	DismissReminders()

'Dismisses	any	active	reminders.

				Dim	olApp	As	Outlook.Application

				Dim	objRems	As	Outlook.Reminders

				Dim	objRem	As	Outlook.Reminder

				Dim	i	As	Integer

			

				Set	olApp	=	New	Outlook.Application

				Set	objRems	=	olApp.Reminders

			

				For	i	=	objRems.Count	To	1	Step	-1

								If	objRems(i).IsVisible	=	True	Then

												objRems(i).Dismiss

								End	If

				Next

				Set	olApp	=	Nothing

				Set	objRems	=	Nothing

				Set	objRem	=	Nothing

End	Sub

	 	



Show	All



Display	Method
For	an	Explorer	or	MAPIFolder	object,	the	Display	method	displays	a	new
Explorer	object	for	the	folder.

For	specified	Microsoft	Outlook	items,	the	Display	method	displays	a	new
Inspector	object	for	the	item.

Note		The	Display	method	is	supported	for	explorer	and	inspector	windows	for
the	sake	of	backward	compatibility.	To	activate	an	explorer	or	inspector	window,
use	the	Activate	method.

expression.Display(Modal)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Modal				This	argument	is	used	with	all	objects	in	the	Applies	To	list	except	for
the	Explorer	and	MAPIFolder	objects.	Optional	Variant.	True	to	make	the
window	modal.	The	default	value	is	False.



Remarks

If	you	attempt	to	open	an	"unsafe"	file	system	object	(or	"freedoc"	file)	by	using
the	Microsoft	Outlook	object	model,	you	receive	the	E_FAIL	return	code	in	the
C	or	C++	programming	languages.	In	Outlook	2000	and	earlier,	you	could	open
an	"unsafe"	file	system	object	by	using	the	Display	method.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Display	method	to
display	the	default	Inbox	folder.	This	example	will	not	return	an	error,	even	if
there	are	no	items	in	the	Inbox,	because	you	are	not	asking	for	the	display	of	a
specific	item.

Sub	DisplayInbox()

	 Dim	myolApp	As	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Dim	myFolder	As	Outlook.MAPIFolder

	 Set	myolApp	=	CreateObject("Outlook.Application")

	 Set	myNameSpace	=	myolApp.GetNamespace("MAPI")

	 Set	myFolder	=	myNameSpace.GetDefaultFolder(olFolderInbox)

	 myFolder.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object,	and	you	cannot	use	named
constants.	This	example	shows	how	to	perform	the	same	task	using	VBScript
code.

Set	myNameSpace	=	Application.GetNameSpace("MAPI")

Set	myFolder	=	myNameSpace.GetDefaultFolder(6)

myFolder.Display

	 	

This	Visual	Basic	for	Applications	example	displays	the	first	item	in	the	Inbox
folder.	This	example	will	return	an	error	if	the	Inbox	is	empty,	because	you	are
trying	to	display	a	specific	item.	If	there	are	no	items	in	the	folder,	a	message
box	will	be	displayed	to	inform	the	user.

Note		In	Office	Outlook	2003,	the	items	in	the	Items	collection	object	are	not
guaranteed	to	be	in	any	particular	order.

Sub	DisplayFirstItem()

	 Dim	myolApp	As	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Dim	myFolder	As	Outlook.MAPIFolder

	 Set	myolApp	=	CreateObject("Outlook.Application")

	 Set	myNameSpace	=	myolApp.GetNamespace("MAPI")



	 Set	myFolder	=	myNameSpace.GetDefaultFolder(olFolderInbox)

	 On	Error	GoTo	ErrorHandler

	 myFolder.Items(1).Display

	 Exit	Sub

	 ErrorHandler:

	 MsgBox	"There	are	no	items	to	display."

End	Sub

	 	



Show	All



Execute	Method
Executes	the	action	for	the	specified	item.	Returns	the	Microsoft	Outlook	item
created	by	the	action.

expression.Execute

expression				Required.	An	expression	that	returns	an	Action	object.



Remarks

When	you	run	a	program	that	uses	the	Microsoft	Outlook	object	model	to	call
the	Execute	method,	you	receive	a	warning	message.	This	warning	message	tells
you	that	a	program	is	trying	to	execute	an	action	or	verb	on	your	behalf	and	asks
if	you	want	to	allow	that.	The	warning	message	contains	both	a	Yes	and	a	No
button.	However,	the	Yes	button	is	not	available	until	five	seconds	have	passed
since	the	warning	message	appeared.	You	can	dismiss	the	warning	message
immediately	if	you	click	No.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Execute	method	to
look	through	all	the	actions	for	the	given	e-mail	message	and	executes	the	action
called	"Reply."

Sub	SendReply()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Dim	MyItem	As	Outlook.MailItem

	 Dim	myItem2	As	Outlook.MailItem

	 Dim	myAction	As	Outlook.Action

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 On	Error	GoTo	ErrorHandler

	 Set	MyItem	=	myOlApp.ActiveInspector.CurrentItem

	 For	Each	myAction	In	MyItem.Actions

	 	 If	myAction.Name	=	"Reply"	Then

	 	 	 Set	myItem2	=	myAction.Execute

	 	 	 myItem2.Send

	 	 	 Exit	For

	 	 End	If

	 Next	myAction

	 Exit	Sub

	 ErrorHandler:

	 	 MsgBox	"There	is	no	current	item."

End	Sub

	 	



Show	All



Find	Method
Find	method	as	it	applies	to	the	Items	object.

Locates	and	returns	an	item.

expression.Find(Filter)

expression				Required.	An	expression	that	returns	an	Items	object.

Filter				Required	String.	The	filter	of	the	search.



Remarks

The	method	will	cause	an	error	with	the	following	properties:

Body

Categories

Children

Class

Companies

CompanyLastFirstNoSpace

CompanyLastFirstSpaceOnly

ContactNames

Contacts

ConversationIndex

DLName

Email1EntryID

Email2EntryID

Email3EntryID

EntryID

HTMLBody

IsOnlineMeeting

LastFirstAndSuffix

LastFirstNoSpaceCompany

LastFirstSpaceOnly

LastFirstSpaceOnlyCompany

LastFirstNoSpaceAndSuffix

MemberCount

NetMeetingAlias

NetMeetingAutoStart

NetMeetingOrganizerAlias

NetMeetingServer

NetMeetingType

RecurrenceState

ReplyRecipients

ReceivedByEntryID

RecevedOnBehalfOfEntryID

ResponseState

Saved

Sent



LastFirstNoSpace

AutoResolvedWinner

BodyFormat

InternetCodePage

Permission

Submitted

VotingOptions

DownloadState

IsConflict

MeetingWorkspaceURL

Creating	Filters	for	the	Find	and	Restrict	Methods

The	syntax	for	the	filter	varies	depending	on	the	type	of	field	you	are	filtering
on.

String	(for	Text	fields)

When	searching	Text	fields,	you	can	use	either	an	apostrophe	(')	or	double
quotation	marks	("")	to	delimit	the	values	that	are	part	of	the	filter.	For	example,
all	of	the	following	lines	function	correctly	when	the	field	is	of	type	String:

sFilter	=	"[CompanyName]	=	'Microsoft'"

sFilter	=	"[CompanyName]	=	""Microsoft"""

sFilter	=	"[CompanyName]	=	"	&	Chr(34)	&	"Microsoft"	&	Chr(34)

Note		If	the	search	string	contains	a	single	quote	character,	escape	the	single
quote	character	in	the	string	with	another	single	quote	character.	For	example,

sFilter	=	"[Subject]	=	'Can''t'"

Similarly,	if	the	search	string	contains	a	double	quote	character,	escape	the
double	quote	character	in	the	string	with	another	double	quote	character.

Date

Although	dates	and	times	are	typically	stored	with	a	Date	format,	the	Find	and
Restrict	methods	require	that	the	date	and	time	be	converted	to	a	string



representation.	To	make	sure	that	the	date	is	formatted	as	Microsoft	Outlook
expects,	use	the	Format	function.	The	following	example	creates	a	filter	to	find
all	contacts	that	have	been	modified	after	January	15,	1999	at	3:30	P.M.

sFilter	=	"[LastModificationTime]	>	'"	&	Format("1/15/99	3:30pm",	"ddddd	h:nn
AMPM")	&	"'"

Boolean	Operators

Boolean	operators,	TRUE/FALSE,	YES/NO,	ON/OFF,	and	so	on,	should	not	be
converted	to	a	string.	For	example,	to	determine	whether	journaling	is	enabled
for	contacts,	you	can	use	this	filter:

sFilter	=	"[Journal]	=	True"

Note		If	you	use	quotation	marks	as	delimiters	with	Boolean	fields,	then	an
empty	string	will	find	items	whose	fields	are	False	and	all	non-empty	strings	will
find	items	whose	fields	are	True.

Keywords	(or	Categories)

The	Categories	field	is	of	type	keywords,	which	is	designed	to	hold	multiple
values.	When	accessing	it	programmatically,	the	Categories	field	behaves	like	a
Text	field,	and	the	string	must	match	exactly.	Values	in	the	text	string	are
separated	by	a	comma	and	a	space.	This	typically	means	that	you	cannot	use	the
Find	and	Restrict	methods	on	a	keywords	field	if	it	contains	more	than	one
value.	For	example,	if	you	have	one	contact	in	the	Business	category	and	one
contact	in	the	Business	and	Social	categories,	you	cannot	easily	use	the	Find	and
Restrict	methods	to	retrieve	all	items	that	are	in	the	Business	category.	Instead,
you	can	loop	through	all	contacts	in	the	folder	and	use	the	Instr	function	to	test
whether	the	string	"Business"	is	contained	within	the	entire	keywords	field.

Note		A	possible	exception	is	if	you	limit	the	Categories	field	to	two,	or	a	low
number	of	values.	Then	you	can	use	the	Find	and	Restrict	methods	with	the	OR
logical	operator	to	retrieve	all	Business	contacts.	For	example	(in	pseudocode):
"Business"	OR	"Business,	Personal"	OR	"Personal,	Business."	Category	strings
are	not	case	sensitive.

Integer



You	can	search	for	Integer	fields	with	or	without	quotation	marks	as	delimiters.
The	following	filters	will	find	contacts	that	were	created	with	Outlook	2000:

sFilter	=	"[OutlookInternalVersion]	=	92711"

sFilter	=	"[OutlookInternalVersion]	=	'92711'"

Using	Variables	as	Part	of	the	Filter

As	the	Restrict	method	example	illustrates,	you	can	use	values	from	variables	as
part	of	the	filter.	The	following	Microsoft	Visual	Basic	Scripting	Edition
(VBScript)	code	sample	illustrates	syntax	that	uses	variables	as	part	of	the	filter.

sFullName	=	"Dan	Wilson"

'	This	approach	uses	Chr(34)	to	delimit	the	value.

sFilter	=	"[FullName]	=	"	&	Chr(34)	&	sFullName	&	Chr(34)

'	This	approach	uses	double	quotation	marks	to	delimit	the	value.

sFilter	=	"[FullName]	=	"""	&	sFullName	&	""""

Using	Logical	Operators	as	Part	of	the	Filter

Logical	operators	that	are	allowed	are	AND,	OR,	and	NOT.	The	following	are
variations	of	the	clause	for	the	Restrict	method,	so	you	can	specify	multiple
criteria.

OR:	The	following	code	returns	all	contact	items	that	have	either	Business	or
Personal	as	their	category.

sFilter	=	"[Categories]	=	'Personal'	Or	[Categories]	=	'Business'"

AND:	The	following	code	retrieves	all	personal	contacts	who	work	at	Microsoft.

sFilter	=	"[Categories]	=	'Personal'	And	[CompanyName]	=	'Microsoft'"

NOT:	The	following	code	retrieves	all	personal	contacts	who	don't	work	at
Microsoft.



sFilter	=	"[Categories]	=	'Personal'	And	Not([CompanyName]	=	'Microsoft')"

Additional	Notes

If	you	are	trying	to	use	the	Find	or	Restrict	methods	with	user-defined	fields,
the	fields	must	be	defined	in	the	folder,	otherwise	an	error	will	occur.	There	is	no
way	to	perform	a	"contains"	operation.	For	example,	you	cannot	use	Find	or
Restrict	to	search	for	items	that	have	a	particular	word	in	the	Subject	field.
Instead,	you	can	use	the	AdvancedSearch	method,	or	you	can	loop	through	all
of	the	items	in	the	folder	and	use	the	InStr	function	to	perform	a	search	within	a
field.	You	can	use	the	Find	and	Restrict	methods	to	search	for	items	that	begin
within	a	certain	range	of	characters.	For	example,	to	search	for	all	contacts	with
a	last	name	beginning	with	the	letter	M,	use	this	filter:

sFilter	=	"[LastName]	>	'LZZZ'	And	[LastName]	<	'N'"

Find	method	as	it	applies	to	the	UserProperties	object.

Locates	and	returns	a	UserProperty	object	for	the	requested	property	name,	if	it
exists.

expression.Find(Name,	Custom)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Name			Required	String.	The	name	of	the	requested	property.

Custom			Optional	Variant.	A	Boolean	value	that	defines	the	search	parameters.
If	Custom	parameter	is	True,	only	custom	user	properties	will	be	searched.	The
default	value	is	True.	To	find	a	non	custom	property	such	as	Subject,	specify
Custom	parameter	as	False,	otherwise	will	return	Nothing.



Example

This	Visual	Basic	for	Applications	(VBA)	example	finds	a	custom	property
named	"LastDateContacted"	for	the	contact	'Jeff	Smith'.	To	run	this	example,
replace	'Jeff	Smith'	with	a	valid	contact	name	and	create	a	custom	property
called	'LastDateContacted'	for	the	contact.

Sub	FindContact()

'Finds	and	displays	last	contacted	info	for	a	contact

				Dim	olApp	As	Outlook.Application

				Dim	objContact	As	Outlook.ContactItem

				Dim	objContacts	As	Outlook.MAPIFolder

				Dim	objNameSpace	As	Outlook.NameSpace

				Dim	objProperty	As	Outlook.UserProperty

				Set	olApp	=	CreateObject("Outlook.Application")

				Set	objNameSpace	=	olApp.GetNamespace("MAPI")

				Set	objContacts	=	objNameSpace.GetDefaultFolder(olFolderContacts)

				Set	objContact	=	objContacts.Items.Find("[FileAs]	=	""Smith,	Jeff""	and	[FirstName]	=	""Jeff""")

				If	Not	TypeName(objContact)	=	"Nothing"	Then

								Set	objProperty	=	objContact.UserProperties.Find("LastDateContacted")

								If	TypeName(objProperty)	<>	"Nothing"	Then

												MsgBox	"Last	Date	Contacted:	"	&	objProperty.Value

								End	If

				Else

								MsgBox	"Contact	not	found."

				End	If

End	Sub

	 	



Show	All



FindNext	Method
After	the	Find	method	runs,	this	method	finds	and	returns	the	next	Microsoft
Outlook	item	in	the	specified	collection.	The	search	operation	begins	from	the
current	position,	which	matches	the	expression	previously	set	through	the	Find
method.

expression.FindNext

expression				Required.	An	expression	that	returns	an	Items	collection	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	GetDefaultFolder
method	to	return	the	MAPIFolder	object	that	represents	the	default	Calendar
folder	for	the	current	user.	It	then	uses	the	Find	and	FindNext	methods	to	locate
all	the	appointments	that	occur	today	and	display	them	in	a	series	of	message
boxes.

Sub	DemoFindNext()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Dim	tdystart	As	Date

	 Dim	tdyend	As	Date

	 Dim	myAppointments	As	Outlook.Items

	 Dim	currentAppointment	As	Outlook.AppointmentItem

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 tdystart	=	VBA.Format(Now,	"Short	Date")

	 tdyend	=	VBA.Format(Now	+	1,	"Short	Date")

	 Set	myAppointments	=	myNameSpace.GetDefaultFolder(olFolderCalendar).Items

	 Set	currentAppointment	=	myAppointments.Find("[Start]	>=	"""	&	tdystart	&	"""	and	[Start]	<=	"""	&	tdyend	&	"""")

	 While	TypeName(currentAppointment)	<>	"Nothing"

							MsgBox	currentAppointment.Subject

							Set	currentAppointment	=	myAppointments.FindNext

Wend

End	Sub

	 	



Forward	Method
Executes	the	Forward	action	for	an	item.	Returns	the	resulting	copy	as	a	new
object	(as	a	MeetingItem	object	for	the	MeetingItem	object	or	a	MailItem
object	for	all	other	objects	in	the	Applies	To	list).

expression.Forward

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Remove	method	to
remove	all	attachments	from	a	forwarded	message	before	sending	it	on	to	Dan
Wilson.	To	run	this	example,	replace	'Dan	Wilson'	with	a	valid	recipient	name
and	keep	a	mail	item	that	contains	at	least	one	attachment	open	in	the	active
window.

Sub	RemoveAttachmentBeforeForwarding()

				Dim	myolApp	As	Outlook.Application

				Dim	myinspector	As	Outlook.Inspector

				Dim	myItem	As	Outlook.MailItem

				Dim	myattachments	As	Outlook.Attachments

				Set	myolApp	=	CreateObject("Outlook.Application")

				Set	myinspector	=	myolApp.ActiveInspector

				If	Not	TypeName(myinspector)	=	"Nothing"	Then

								Set	myItem	=	myinspector.CurrentItem.Forward

								Set	myattachments	=	myItem.Attachments

								While	myattachments.Count	>	0

															myattachments.Remove	1

								Wend

								myItem.Display

								myItem.Recipients.Add	"Dan	Wilson"

								myItem.Send

				Else

								MsgBox	"There	is	no	active	inspector."

				End	If

End	Sub

	 	



ForwardAsVcal	Method
Forwards	the	AppointmentItem	as	a	vCal;	virtual	calendar	item.	The
ForwardAsVcal	method	returns	a	MailItem	with	the	vCal	file	attached.

expression.ForwardAsVcal

expression				Required.	An	expression	that	returns	an	AppointmentItem	object.



ForwardAsVcard	Method
Forwards	the	ContactItem	as	a	vCard,	the	Internet	standard	for	creating	and
sharing	virtual	business	cards.	The	ForwardAsVcard	method	returns	a
MailItem	with	the	vCard	file	attached.

expression.ForwardAsVcard

expression				Required.	An	expression	that	returns	a	ContactItem	object.



FreeBusy	Method
Returns	free/busy	information	for	the	recipient.	The	default	is	to	return	a	string
representing	one	month	of	free/busy	information	compatible	with	the	Microsoft
Schedule+	Automation	format	(that	is,	the	string	contains	one	character	for	each
MinPerChar	minute,	up	to	one	month	of	information	from	the	specified	Start
date).

If	the	optional	argument	CompleteFormat	is	omitted	or	False,	then	"free"	is
indicated	by	the	character	0	and	all	other	states	by	the	character	1.

If	CompleteFormat	is	True,	then	the	same	length	string	is	returned	as	defined
above,	but	the	characters	now	correspond	to	the	OlBusyStatus	constants:
olBusy,	olFree,	olOutOfOffice,	or	olTentative.

expression.FreeBusy(Start,	MinPerChar,	CompleteFormat)

expression				Required.	An	expression	that	returns	a	Recipient	object.

Start				Required	Date.	The	start	date	for	the	returned	period	of	free/busy
information.

MinPerChar				Required	Long.	The	number	of	minutes	per	character
represented	in	the	returned	free/busy	string.

CompleteFormat				Optional	Variant.	True	if	the	returned	string	should	contain
not	only	free/busy	information,	but	also	values	for	each	character	according	to
the	OlBusyStatus	constants:	olBusy,	olFree,	olOutOfOffice,	and	olTentative.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	FreeBusy	method	to
return	a	string	of	free/busy	information	with	one	character	for	each	day.	This
example	allows	for	the	possibility	that	the	free/busy	information	for	this
recipient	is	not	accessible.	To	run	this	example,	you	need	to	replace	'Nate	Sun'
with	a	valid	recipient	name.

Public	Sub	GetFreeBusyInfo()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Dim	myRecipient	As	Outlook.Recipient

	 Dim	myFBInfo	As	String

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 Set	myRecipient	=	myNameSpace.CreateRecipient("Nate	Sun")

	 On	Error	GoTo	ErrorHandler

	 myFBInfo	=	myRecipient.FreeBusy(#11/11/2003#,	60	*	24)

	 MsgBox	myFBInfo

	 Exit	Sub

	 ErrorHandler:					

	 	 MsgBox	"Cannot	access	the	information.	"

End	Sub

	 	

This	VBA	example	returns	a	string	of	free/busy	information	with	one	character
for	each	hour	(complete	format).

Set	myRecipient	=	myNameSpace.CreateRecipient("Nate	Sun")

myFBInfo	=	myRecipient.FreeBusy(#8/1/03#,	60,	True)

	 	



GetAssociatedAppointment	Method
Returns	an	AppointmentItem	object	that	represents	the	appointment	associated
with	the	meeting	request.

expression.GetAssociatedAppointment(AddToCalendar)

expression					Required.	An	expression	that	returns	a	MeetingItem	object.

AddToCalendar				Required	Boolean.	True	to	add	the	meeting	to	the	default
Calendar	folder.



Example

This	Visual	Basic	for	Applications	(VBA)	example	finds	a	MeetingItem	in	the
default	Inbox	folder	that	has	not	been	responded	to	yet	and	adds	the	associated
appointment	to	the	Calendar	folder.	It	then	responds	to	the	sender	by	accepting
the	meeting.

Sub	AcceptMeeting()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Dim	myFolder	As	Outlook.MAPIFolder

	 Dim	myMtgReq	As	Outlook.MeetingItem

	 Dim	myAppt	As	Outlook.AppointmentItem

	 Dim	myMtg	As	Outlook.MeetingItem

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 Set	myFolder	=	myNameSpace.GetDefaultFolder(olFolderInbox)

	 Set	myMtgReq	=	myFolder.Items.Find("[MessageClass]	=	'IPM.Schedule.Meeting.Request'")

	 If	TypeName(myMtgReq)	<>	"Nothing"	Then

	 	 Set	myAppt	=	myMtgReq.GetAssociatedAppointment(True)

	 	 Set	myMtg	=	myAppt.Respond(olResponseAccepted,	True)

	 	 myMtg.Send

	 End	If

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	obtain	the	associated	appointment
item	for	a	meeting	request	using	VBScript	code.

Set	myNameSpace	=	Application.GetNameSpace("MAPI")

Set	myFolder	=	myNameSpace.GetDefaultFolder(6)

Set	myMtgReq	=	myFolder.Items.Find	_

				("[MessageClass]	=	'IPM.Schedule.Meeting.Request'")

If	TypeName(myMtgReq)	<>	"Nothing"	Then

			Set	myAppt	=	myMtgReq.GetAssociatedAppointment(True)

End	If

	 	





GetAssociatedTask	Method
Returns	a	TaskItem	object	that	represents	the	requested	task.

Note			The	GetAssociatedTask	method	will	not	work	unless	the	TaskItem	is
processed	before	the	method	is	called.	To	do	so,	call	the	Display	method	before
calling	GetAssociatedTask.

expression.GetAssociatedTask(AddToTaskList)

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

AddToTaskList				Required	Boolean.	True	if	the	task	is	added	to	the	default
Tasks	folder.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
accepts	a	TaskRequestItem,	sending	the	response	without	displaying	the
inspector.

Sub	AcceptTask()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Dim	myTasks	As	Outlook.MAPIFolder

	 Dim	myNewTaskItem	As	Outlook.TaskItem

	 Dim	mytaskreqItem	As	Outlook.TaskRequestItem

	 Dim	myItem	As	Outlook.TaskItem

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 Set	myTasks	=	myNameSpace.GetDefaultFolder(olFolderInbox)

	 Set	mytaskreqItem	=	myTasks.Items.Find("[Subject]	=	""Meeting	w/	Nate	Sun""")

	 If	Not	TypeName(mytaskreqItem)	=	"Nothing"	Then

	 	 Set	myNewTaskItem	=	mytaskreqItem.GetAssociatedTask(True)

	 	 Set	myItem	=	myNewTaskItem.Respond(olTaskAccept,	True,	True)

	 	 myItem.Send

	 End	If

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myNameSpace	=	Application.GetNamespace("MAPI")

Set	myTasks	=	myNameSpace.GetDefaultFolder(6)

Set	myTaskReqItem	=	myTasks.Items.Find("[Subject]	=	""Meeting	w/	Nate	Sun""")

If	Not	TypeName(myTaskReqItem)	=	"Nothing"	Then

			'The	task	is	displayed.

			myTaskReqItem.Display

			Set	myNewTaskItem	=	myTaskReqItem.GetAssociatedTask(True)

			myItem	=	myNewTaskItem.Respond	2,	True,	True

			myItem.Send

End	If

	 	





Show	All



GetDefaultFolder	Method
Returns	a	MAPIFolder	object	that	represents	the	default	folder	of	the	requested
type	for	the	current	profile,	for	example,	obtains	the	default	Calendar	folder	for
the	user	who	is	currently	logged	on.

Note			To	return	a	specific	non-default	folder,	use	the	Folders	collection.

expression.GetDefaultFolder(FolderType)

expression					Required.	An	expression	that	returns	a	NameSpace	object.

FolderType				Required	OlDefaultFolders.	The	type	of	default	folder	to	return.

OlDefaultFolders	can	be	one	of	these	OlDefaultFolders	constants.
olFolderCalendar
olFolderContacts
olFolderDeletedItems
olFolderDrafts
olFolderInbox
olFolderJournal
olFolderNotes
olFolderOutbox
olFolderSentMail
olFolderTasks
olPublicFoldersAllPublicFolders
olFolderJunk



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	CurrentFolder
property	to	change	the	displayed	folder	to	the	user's	default	Calendar	folder.

Sub	ChangeCurrentFolder()

	 Dim	myolApp	As	Outlook.Application

	 Dim	myNamespace	As	Outlook.NameSpace

	 Set	myolApp	=	CreateObject("Outlook.Application")

	 Set	myNamespace	=	myolApp.GetNamespace("MAPI")

	 Set	myolApp.ActiveExplorer.CurrentFolder	=	_

	 myNamespace.GetDefaultFolder(olFolderCalendar)

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myNameSpace	=	Application.GetNameSpace("MAPI")

Set	Application.ActiveExplorer.CurrentFolder	=	_

myNameSpace.GetDefaultFolder(9)

	 	

This	VBA	example	returns	the	first	folder	in	the	Tasks	Folders	collection.

Sub	DisplayATaskFolder()

Dim	myolApp	As	Outlook.Application

Dim	myNamespace	As	Outlook.NameSpace

Dim	myTasks	As	Outlook.MAPIFolder

Dim	myFolder	As	Outlook.MAPIFolder

Set	myolApp	=	CreateObject("Outlook.Application")

Set	myNamespace	=	myolApp.GetNamespace("MAPI")

Set	myTasks	=	myNamespace.GetDefaultFolder(olFolderTasks)

Set	myFolder	=	myTasks.Folders(1)

myFolder.Display

End	Sub

	 	





Show	All



GetExplorer	Method
Returns	an	Explorer	object	that	represents	a	new,	inactive	Explorer	object
initialized	with	the	specified	folder	as	the	current	folder.	This	method	is	useful
for	returning	a	new	Explorer	object	in	which	to	display	the	folder,	as	opposed	to
using	the	ActiveExplorer	method	and	setting	the	CurrentFolder	property.

The	Display	method	can	be	used	to	activate	or	show	the	Explorer.

The	GetExplorer	method	takes	an	optional	argument	of	an
OlFolderDisplayMode	constant.

By	default,	the	new	Explorer	will	be	displayed	in	the	Normal	mode
(olFolderDisplayNormal)	with	all	interface	elements	displayed:	a	message
panel	on	the	right	and	the	Navigation	Pane	on	the	left.	The	exception	to	this	rule
is	when	you	are	calling	GetExplorer	on	delegated	folders	which	are	in	No-
Navigation	mode	by	default.	You	can	apply	more	restrictions	to	a	default	mode,
but	you	cannot	lessen	the	restrictions	by	changing	the	OlFolderDisplayMode.

The	explorer	can	also	be	displayed	in	Folder-Only	mode
(olFolderDisplayFolderOnly).	This	mode	is	essentially	same	as	the	Normal
mode,	in	that	it	too	displays	the	Navigation	Pane	on	the	left.

The	most	restrictive	mode	you	can	use	is	No-Navigation	mode
(olFolderDisplayNoNavigation).	In	this	mode,	the	Explorer	will	display	with
no	folder	list,	no	drop-down	folder	list,	and	any	"Go"-type	menu/command	bar
options	should	be	disabled.	Basically,	the	user	should	not	be	able	to	navigate	to
any	other	folder	within	that	Explorer	window.	By	default,	a	delegated	(shared)
folder	appears	in	No-Navigation	mode.

expression.GetExplorer(DisplayMode)

expression				Required.	An	expression	that	returns	a	MAPIFolder	object.

DisplayMode				Optional	Variant.	The	display	mode	of	the	folder.	Can	be	one	of
the	following	OlFolderDisplayMode	constants:	olFolderDisplayFolderOnly,
olFolderDisplayNoNavigation	or	olFolderDisplayNormal	(default).



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	GetExplorer
method	to	return	a	new,	inactive	Explorer	for	the	default	Contacts	folder,
disables	the	user	from	customizing	the	commandbars,	and	then	displays	it	in	the
default	mode	of	olFolderDisplayNormal.	Once	the	sub	routine	is	run,	the	user
will	not	be	able	to	add	or	remove	toolbar	buttons	or	customize	the	menu	options.

Sub	DisableCustomize()

	 Dim	outApp	As	New	Outlook.Application

	 Dim	nsp	As	Outlook.NameSpace

	 Dim	mpfContacts	As	Outlook.MAPIFolder

	 Dim	expContacts	As	Outlook.Explorer

	 Set	nsp	=	outApp.GetNamespace("MAPI")

	 Set	mpfContacts	=	nsp.GetDefaultFolder(olFolderContacts)

	 Set	expContacts	=	mpfContacts.GetExplorer

	 expContacts.CommandBars.DisableCustomize	=	True

	 expContacts.Activate

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object,	and	you	cannot	use	named
constants.	This	example	shows	how	to	display	an	explorer	using	VBScript.

Set	myNameSpace	=	Application.GetNameSpace("MAPI")

Set	myFolder	=	myNameSpace.GetDefaultFolder(6)

Set	myExplorer	=	myFolder.GetExplorer

myExplorer.Display

	 	



GetFirst	Method
The	GetFirst	method	returns	the	first	object	in	the	specified	collection.	Returns
Nothing	if	no	first	object	exists,	for	example,	if	there	are	no	objects	in	the
collection.

Note		To	ensure	correct	operation	of	the	GetFirst,	GetLast,	GetNext,	and
GetPrevious	methods	in	a	large	collection,	call	GetFirst	before	calling	GetNext
on	that	collection	and	call	GetLast	before	calling	GetPrevious.	To	ensure	that
you	are	always	making	the	calls	on	the	same	collection,	create	an	explicit
variable	that	refers	to	that	collection	before	entering	the	loop.

expression.GetFirst

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	GetFirst	method	to
locate	the	first	folder	in	the	Contacts	folder	and	then	copies	the	folder	to	the	Test
folder.	Before	running	this	example,	you	need	to	make	sure	the	necessary	folders
exist	in	the	default	Contacts	and	Inbox	folders.

Sub	CopyItems()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Dim	myDestFolder	As	Outlook.MAPIFolder

	 Dim	mySourceFolder	As	Outlook.MAPIFolder

	 Dim	myNewFolder	As	Outlook.MAPIFolder

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 Set	myDestFolder	=	myNameSpace.GetDefaultFolder(olFolderInbox).Folders("Test")

	 Set	mySourceFolder	=	myNameSpace.GetDefaultFolder(olFolderContacts).Folders.

	 Set	myNewFolder	=	mySourceFolder.CopyTo(myDestFolder)

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	delete	the	first	folder	in	the	default
Tasks	folder	using	VBScript	code.

Set	myNameSpace	=	Application.GetNameSpace("MAPI")

Set	myFolder	=	myNameSpace.GetDefaultFolder(13)

Set	myOldFolder	=	myFolder.Folders.GetFirst

'Prompt	the	user	for	confirmation

Dim	strPrompt	As	String

strPrompt	=	"Are	you	sure	you	want	to	delete	the	folder?"

If	MsgBox(strPrompt,	vbYesNo	+	vbQuestion)	=	vbYes	Then

	 myOldFolder.Delete

	 MsgBox("Folder	deleted")

End	If

	 	





GetFolderFromID	Method
Returns	a	MAPIFolder	object	identified	by	the	specified	entry	ID	(if	valid).
This	method	is	used	for	ease	of	transition	between	MAPI	and	OLE/Messaging
applications	and	Microsoft	Outlook.

expression.GetFolderFromID(EntryIDFolder,	EntryIDStore)

expression				Required.	An	expression	that	returns	a	NameSpace	object.

EntryIDFolder				Required	String.	The	EntryID	of	the	folder.

EntryIDStore				Optional	Variant.	The	StoreID	for	the	folder.



Example

This	Visual	Basic	for	Applications	(VBA)	example	obtains	the	EntryID	and
StoreID	for	the	default	Tasks	folder	and	then	calls	the	GetFolderFromID
method	using	these	values	to	obtain	the	same	folder.	The	folder	is	then
displayed.

Sub	GetWithID()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myFolder	As	Outlook.MAPIFolder

	 Dim	myEntryID	As	String

	 Dim	myStoreID	As	String

	 Dim	myNewFolder	As	Outlook.MAPIFolder

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myFolder	=	myOlApp.Session.GetDefaultFolder(olFolderTasks)

	 myEntryID	=	myFolder.EntryID

	 myStoreID	=	myFolder.StoreID

	 Set	myNewFolder	=	myOlApp.Session.GetFolderFromID(myEntryID,	myStoreID)

	 myNewFolder.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object,	and	you	cannot	use	named
constants.	This	example	shows	how	to	perform	the	same	task	using	VBScript
code.

Set	myNameSpace	=	Application.GetNamespace("MAPI")

Set	myFolder	=	myNameSpace.GetDefaultFolder(13)

myEntryID	=	myFolder.EntryID

myStoreID	=	myFolder.StoreID

Set	myNewFolder	=	myNameSpace.GetFolderFromID(myEntryID,	myStoreID)

myNewFolder.Display

	 	



GetFreeBusy	Method
The	GetFreeBusy	method	returns	a	String	representing	the	availability	of	the
individual	user	for	a	period	of	30	days	from	the	start	date,	beginning	at	midnight
of	the	date	specified.

Note		If	an	address	entry	represents	a	distribution	list,	the	status	of	its	individual
members	cannot	be	returned	to	you	with	the	GetFreeBusy	method.	A	meeting
request	should	be	sent	only	to	single	messaging	users.	You	can	determine	if	a
messaging	user	is	a	distribution	list	by	determining	if	its	DisplayType	property
is	olDistList	or	olPrivateDistList.

expression.GetFreeBusy(Start,	MinPerChar,	CompleteFormat)

expression				Required.	The	AddressEntry	object.

Start								Required	Date.	Specifies	the	date.

MinPerChar				Required	Long.	Specifies	the	length	of	each	time	slot	in	minutes.
Default	is	30	minutes.

CompleteFormat				Optional	Variant.



Show	All



GetItemFromID	Method
Returns	a	Microsoft	Outlook	item	identified	by	the	specified	entry	ID	(if	valid).
This	method	is	used	for	ease	of	transition	between	MAPI	and	OLE/Messaging
applications	and	Outlook.

expression.GetItemFromID(EntryIDItem,	EntryIDStore)

expression					Required.	An	expression	that	returns	a	NameSpace	object.

EntryIDItem				Required	String.	The	EntryID	of	the	item.

EntryIDStore				Optional	Variant.	The	StoreID	for	the	folder.	EntryIDStore
usually	must	be	provided	when	retrieving	an	item	based	on	its	MAPI	IDs.



Remarks

For	more	information	about	Entry	IDs,	see	the	EntryID	property.



GetLast	Method
The	GetLast	method	returns	the	last	object	in	the	specified	collection.	It	returns
Nothing	if	no	last	object	exists,	for	example,	if	the	collection	is	empty.

Note		To	ensure	correct	operation	of	the	GetFirst,	GetLast,	GetNext,	and
GetPrevious	methods	in	a	large	collection,	call	GetFirst	before	calling	GetNext
on	that	collection,	and	call	GetLast	before	calling	GetPrevious.	To	ensure	that
you	are	always	making	the	calls	on	the	same	collection,	create	an	explicit
variable	that	refers	to	that	collection	before	entering	the	loop.

expression.GetLast

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	Visual	Basic	for	Applications	example	searches	the	subfolders	of
Inbox	for	a	folder	called	MyPersonalEmails	and	displays	a	message	to	the	user.
If	you	do	not	have	a	subfolder	called	MyPersonalEmails	in	your	Inbox	folder,
the	example	will	display	nothing.

Sub	TestGetLast()

				Dim	outApp	As	New	Outlook.Application

				Dim	nsp	As	Outlook.NameSpace

				Dim	mpf	As	Outlook.MAPIFolder

				Dim	mpfSubFolder	As	Outlook.MAPIFolder

				Dim	flds	As	Outlook.Folders

				Dim	idx	As	Integer

				Set	nsp	=	outApp.GetNamespace("MAPI")

				Set	mpf	=	nsp.GetDefaultFolder(olFolderInbox)

				Set	flds	=	mpf.Folders

				Set	mpfSubFolder	=	flds.GetLast

				Do	While	Not	mpfSubFolder	Is	Nothing

								If	mpfSubFolder.Name	=	"MyPersonalEmails"	Then

												MsgBox	"The	folder	was	found."

												Exit	Do

								End	If

												

								Set	mpfSubFolder	=	flds.GetPrevious

				

				Loop

End	Sub



GetMember	Method
Returns	a	Recipient	object	representing	a	member	in	a	distribution	list.

expression.GetMember(Index)

expression				Required.	An	expression	that	returns	a	DistListItem	object.

Index				Required	Long.	The	index	number	of	the	member	to	be	retrieved.



Remarks

If	a	program	tries	to	reference	any	type	of	recipient	information	by	using	the
Microsoft	Outlook	object	model,	a	dialog	box	is	displayed	that	asks	you	to
confirm	access	to	this	information.	You	can	allow	access	to	the	Address	Book	or
recipient	information	for	up	to	ten	minutes	after	you	receive	the	dialog	box.	This
allows	features,	such	as	mobile	device	synchronization,	to	be	completed.

You	receive	the	confirmation	dialog	box	when	a	solution	tries	to
programmatically	access	the	GetMember	method.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
locates	every	distribution	list	in	the	default	Contacts	folder	and	determines
whether	the	list	contains	the	current	user.

Sub	DisplayYourDLNames()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Dim	myFolder	As	Outlook.MAPIFolder

	 Dim	myDistList	As	Outlook.DistListItem

	 Dim	myFolderItems	As	Outlook.Items

	 Dim	x	As	Integer

	 Dim	y	As	Integer

	 Dim	iCount	As	Integer

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 Set	myFolder	=	myNameSpace.GetDefaultFolder(olFolderContacts)

	 Set	myFolderItems	=	myFolder.Items

	 iCount	=	myFolderItems.Count

	 For	x	=	1	To	iCount

	 	 If	TypeName(myFolderItems.Item(x))	=	"DistListItem"	Then

	 	 Set	myDistList	=	myFolderItems.Item(x)

	 	 For	y	=	1	To	myDistList.MemberCount

	 	 	 If	myDistList.GetMember(y).Name	=	myNameSpace.CurrentUser.Name	Then

	 	 	 	 MsgBox	"Your	are	a	member	of	"	&	myDistList.DLName

	 	 	 End	If

	 	 	 Next	y

	 	 End	If

	 Next	x

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object,	and	you	cannot	use	named
constants.	This	example	shows	how	to	perform	the	same	task	using	VBScript
code.

Set	myNameSpace	=	Application.GetNamespace("MAPI")

Set	myFolder	=	myNameSpace.GetDefaultFolder(10)

Set	myFolderItems	=	myFolder.Items

iCount	=	myFolderItems.Count

For	x	=	1	To	iCount

				If	TypeName(myFolderItems.Item(x))	=	"DistListItem"	Then

								Set	myDistList	=	myFolderItems.Item(x)

								For	y	=	1	To	myDistList.MemberCount



												If	myDistList.GetMember(y).Name	=	myNameSpace.CurrentUser.Name	Then

																MsgBox	"Your	are	a	member	of	"	&	myDistList.DLName

												End	If

								Next	

				End	If

Next

	 	



GetNext	Method
The	GetNext	method	returns	the	next	object	in	the	specified	collection.	It	returns
Nothing	if	no	next	object	exists,	for	example,	if	already	positioned	at	the	end	of
the	collection.

Note		To	ensure	correct	operation	of	the	GetFirst,	GetLast,	GetNext,	and
GetPrevious	methods	in	a	large	collection,	call	GetFirst	before	calling	GetNext
on	that	collection,	and	call	GetLast	before	calling	GetPrevious.	To	ensure	that
you	are	always	making	the	calls	on	the	same	collection,	create	an	explicit
variable	that	refers	to	that	collection	before	entering	the	loop.

expression.GetNext

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	Visual	Basic	for	Applications	example	searches	the	subfolders	of
Inbox	for	a	folder	called	MyPersonalEmails	and	displays	a	message	to	the	user.
If	you	do	not	have	a	subfolder	called	MyPersonalEmails	in	your	Inbox	folder,
the	example	will	display	nothing.

Sub	TestGetNext()

				Dim	outApp	As	New	Outlook.Application

				Dim	nsp	As	Outlook.NameSpace

				Dim	mpf	As	Outlook.MAPIFolder

				Dim	mpfSubFolder	As	Outlook.MAPIFolder

				Dim	flds	As	Outlook.Folders

				Dim	idx	As	Integer

				Set	nsp	=	outApp.GetNamespace("MAPI")

				Set	mpf	=	nsp.GetDefaultFolder(olFolderInbox)

				Set	flds	=	mpf.Folders

				Set	mpfSubFolder	=	flds.GetFirst

				Do	While	Not	mpfSubFolder	Is	Nothing

								If	mpfSubFolder.Name	=	"MyPersonalEmails"	Then

												MsgBox	"The	folder	was	found."

												Exit	Do

								End	If

								Set	mpfSubFolder	=	flds.GetNext

				

				Loop

End	Sub



GetOccurrence	Method
The	GetOccurrence	method	returns	a	specific	instance	of	the
AppointmentItem	object	on	the	specified	date.

Note		The	GetOccurrence	method	generates	an	error	if	no	appointment	of	that
series	exists	on	the	specified	date.

expression.GetOccurrence(StartDate)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

StartDate			Required	Date	that	represents	local	time.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	CreateItem	to	create	an
AppointmentItem	object.	The	RecurrencePattern	is	obtained	for	this	item
using	the	GetRecurrencePattern	method.	By	setting	the	RecurrencePattern
properties,	RecurrenceType,	PatternStartDate,	and	PatternEndDate,	the
appointments	are	now	a	recurring	series	that	occur	on	a	daily	basis	for	the	period
of	one	year.

An	Exception	object	is	created	when	one	instance	of	this	recurring	appointment
is	obtained	using	the	GetOccurrence	method	and	properties	for	this	instance	are
altered.	This	exception	to	the	series	of	appointments	is	obtained	using	the
GetRecurrencePattern	method	to	access	the	Exceptions	collection	associated
with	this	series.	Message	boxes	display	the	original	Subject	and	OriginalDate
for	this	exception	to	the	series	of	appointments	and	the	current	date,	time,	and
subject	for	this	exception.

For	a	description	of	changes	required	for	this	example	to	work	in	Microsoft
Visual	Basic	Scripting	Edition	(VBScript),	see	the	Note	at	the	end	of	the
example.

Public	Sub	cmdExample()

				Dim	myOlApp	As	Outlook.Application

				Dim	myApptItem	As	Outlook.AppointmentItem

				Dim	myRecurrPatt	As	Outlook.RecurrencePattern

				Dim	myNamespace	As	Outlook.NameSpace

				Dim	myFolder	As	Outlook.MAPIFolder

				Dim	myItems	As	Outlook.Items

				Dim	myDate	As	Date

				Dim	myOddApptItem	As	Outlook.AppointmentItem

				Dim	saveSubject	As	String

				Dim	newDate	As	Date

				Dim	myException	As	Outlook.Exception

				Set	myOlApp	=	New	Outlook.Application

				Set	myApptItem	=	myOlApp.CreateItem(olAppointmentItem)

				myApptItem.Start	=	#2/2/2003	3:00:00	PM#

				myApptItem.End	=	#2/2/2003	4:00:00	PM#

				myApptItem.Subject	=	"Meet	with	Boss"

				

				'Get	the	recurrence	pattern	for	this	appointment

				'and	set	it	so	that	this	is	a	daily	appointment

				'that	begins	on	2/2/03	and	ends	on	2/2/04



				'and	save	it.

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				myRecurrPatt.RecurrenceType	=	olRecursDaily

				myRecurrPatt.PatternStartDate	=	#2/2/2003#

				myRecurrPatt.PatternEndDate	=	#2/2/2004#

				myApptItem.Save

				

				'Access	the	items	in	the	Calendar	folder	to	locate

				'the	master	AppointmentItem	for	the	new	series.

				Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

				Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderCalendar)

				Set	myItems	=	myFolder.Items

				Set	myApptItem	=	myItems("Meet	with	Boss")

				

				'Get	the	recurrence	pattern	for	this	appointment

				'and	obtain	the	occurrence	for	3/12/03.

				myDate	=	#3/12/2003	3:00:00	PM#

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				Set	myOddApptItem	=	myRecurrPatt.GetOccurrence(myDate)

					

				'Save	the	existing	subject.	Change	the	subject	and

				'starting	time	for	this	particular	appointment

				'and	save	it.

				saveSubject	=	myOddApptItem.Subject

				myOddApptItem.Subject	=	"Meet	NEW	Boss"

				newDate	=	#3/12/2003	3:30:00	PM#

				myOddApptItem.Start	=	newDate

				myOddApptItem.Save

				

				'Get	the	recurrence	pattern	for	the	master

				'AppointmentItem.	Access	the	collection	of

				'exceptions	to	the	regular	appointments.

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				Set	myException	=	myRecurrPatt.Exceptions.item(1)

			

				'Display	the	original	date,	time,	and	subject

				'for	this	exception.

				MsgBox	myException.OriginalDate	&	":	"	&	saveSubject

				'Display	the	current	date,	time,	and	subject

				'for	this	exception.

				MsgBox	myException.AppointmentItem.Start	&	":	"	&	_

				myException.AppointmentItem.Subject

End	Sub

	 	

Note		For	this	example	to	work	properly	in	VBScript,	there	are	only	a	few
simple	changes	that	need	to	be	made	in	the	code.



You	don't	have	to	retrieve	the	application	as	an	object	and	you	must	use	the
values	of	the	constants,	so:

Set	myOlApp	=	New	Outlook.Application

Set	myApptItem	=	myOlApp.CreateItem(olAppointmentItem)

	 	

becomes:

Set	myApptItem	=	Application.CreateItem(1)

	 	

and

myRecurrPatt.RecurrenceType	=	olRecursDaily

	 	

becomes:

myRecurrPatt.RecurrenceType	=	0

	 	

and

Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderCalendar)

	 	

becomes:

Set	myFolder	=	myNamespace.GetDefaultFolder(9)

	 	



GetPageInfo	Method
Returns	information	about	a	custom	property	page.

expression.GetPageInfo(HelpFile,	HelpContext)

expression					Required.	An	expression	that	returns	a	PropertyPage	object.

HelpFile				Required	String.	Specifies	the	Help	file	associated	with	the	property
page.

HelpContext				Required	Long.	Specifies	the	context	ID	of	the	Help	topic
associated	with	the	property	page.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
returns	the	name	of	the	Help	file	and	the	context	ID	of	the	topic	to	be	displayed.

Private	Sub	PropertyPage_GetPageInfo(HelpFile	As	String,	HelpContext	As	Long)

				HelpFile	=	"ProjPage.chm"

				HelpContext	=	IDH_PageInfo

End	Sub

	 	



GetPrevious	Method
The	GetPrevious	method	returns	the	previous	object	in	the	specified	collection.
It	returns	Nothing	if	no	previous	object	exists,	for	example,	if	already	positioned
at	the	beginning	of	the	collection.

Note		To	ensure	correct	operation	of	the	GetFirst,	GetLast,	GetNext,	and
GetPrevious	methods	in	a	large	collection,	call	GetFirst	before	calling	GetNext
on	that	collection,	and	call	GetLast	before	calling	GetPrevious.	To	ensure	that
you	are	always	making	the	calls	on	the	same	collection,	create	an	explicit
variable	that	refers	to	that	collection	before	entering	the	loop.

expression.GetPrevious

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	Visual	Basic	for	Applications	example	searches	the	subfolders	of
Inbox	for	a	folder	called	MyPersonalEmails	and	displays	a	message	to	the	user.
If	you	do	not	have	a	subfolder	called	MyPersonalEmails	in	your	Inbox	folder,
the	example	will	display	nothing.

Sub	TestGetPrevious()

				Dim	outApp	As	New	Outlook.Application

				Dim	nsp	As	Outlook.NameSpace

				Dim	mpf	As	Outlook.MAPIFolder

				Dim	mpfSubFolder	As	Outlook.MAPIFolder

				Dim	flds	As	Outlook.Folders

				Dim	idx	As	Integer

				Set	nsp	=	outApp.GetNamespace("MAPI")

				Set	mpf	=	nsp.GetDefaultFolder(olFolderInbox)

				Set	flds	=	mpf.Folders

				Set	mpfSubFolder	=	flds.GetLast

				Do	While	Not	mpfSubFolder	Is	Nothing

								If	mpfSubFolder.Name	=	"MyPersonalEmails"	Then

												MsgBox	"The	folder	was	found."

												Exit	Do

								End	If

												

								Set	mpfSubFolder	=	flds.GetPrevious

				

				Loop

End	Sub



GetRecipientFromID	Method
Returns	a	Recipient	object	identified	by	the	specified	entry	ID	(if	valid).	This
method	is	used	for	ease	of	transition	between	MAPI	and	OLE/Messaging
applications	and	Microsoft	Outlook.

expression.GetRecipientFromID(EntryID)

expression					Required.	An	expression	that	returns	a	NameSpace	object.

EntryID				Required	String.	The	EntryID	of	the	recipient.



Remarks

If	a	program	tries	to	reference	any	type	of	recipient	information	by	using	the
Outlook	object	model,	a	dialog	box	is	displayed	that	asks	you	to	confirm	access
to	this	information.	You	can	allow	access	to	the	Address	Book	or	recipient
information	for	up	to	ten	minutes	after	you	receive	the	dialog	box.	This	allows
features,	such	as	mobile	device	synchronization,	to	be	completed.

You	receive	the	confirmation	dialog	box	when	a	solution	tries	to
programmatically	access	the	GetRecipientFromID	method.



Example

This	Visual	Basic	for	Applications	(VBA)	example	gets	the	entry	ID	of	the	first
recipient	in	the	item	in	the	Inbox	folder	with	subject	'Test',	obtains	the	recipient
from	the	entry	ID,	and	displays	the	recipient	name.	To	run	this	example	without
any	errors,	make	sure	there	is	a	mail	item	with	subject	'Test'	in	the	Inbox.	The
example	may	also	fail	if	there	are	other	types	of	items	with	subject	'Test'	other
than	mail	item	in	the	Inbox.

Public	Sub	GetFromID()

	 Dim	nsp	As	Outlook.NameSpace

	 Dim	mpfInbox	As	Outlook.MAPIFolder

	 Dim	mail	As	Outlook.MailItem

	 Dim	rcp	As	Outlook.Recipient

	 Dim	rcp1	As	Outlook.Recipient

	 Dim	strEntryId	As	String

	 Set	nsp	=	Application.GetNamespace("MAPI")

	 Set	mpfInbox	=	nsp.GetDefaultFolder(olFolderInbox)

	 Set	mail	=	mpfInbox.Items("Test")

	 Set	rcp	=	mail.Recipients.Item(1)

	 strEntryId	=	rcp.EntryID

	 Set	rcp1	=	nsp.GetRecipientFromID(strEntryId)

	 MsgBox	rcp1.Name

End	Sub



GetRecurrencePattern	Method
Returns	a	RecurrencePattern	object	that	represents	the	recurrence	attributes	of
an	appointment	or	task.	If	there	is	no	existing	recurrence	pattern,	a	new	empty
RecurrencePattern	object	is	returned.

expression.GetRecurrencePattern

expression					Required.	An	expression	that	returns	an	AppointmentItem	or
TaskItem	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	CreateItem	to	create	an
AppointmentItem	object.	The	RecurrencePattern	is	obtained	for	this	item
using	the	GetRecurrencePattern	method.	By	setting	the	RecurrencePattern
properties,	RecurrenceType,	PatternStartDate,	and	PatternEndDate,	the
appointments	are	now	a	recurring	series	that	occur	on	a	daily	basis	for	the	period
of	one	year.

An	Exception	object	is	created	when	one	instance	of	this	recurring	appointment
is	obtained	using	the	GetOccurrence	method	and	properties	for	this	instance	are
altered.	This	exception	to	the	series	of	appointments	is	obtained	using	the
GetRecurrencePattern	method	to	access	the	Exceptions	collection	associated
with	this	series.	Message	boxes	display	the	original	Subject	and	OriginalDate
for	this	exception	to	the	series	of	appointments	and	the	current	date,	time,	and
subject	for	this	exception.

For	a	description	of	changes	required	for	this	example	to	work	in	Microsoft
Visual	Basic	Scripting	Edition	(VBScript),	see	the	Note	at	the	end	of	the
example.

Public	Sub	cmdExample()

				Dim	myOlApp	As	Outlook.Application

				Dim	myApptItem	As	Outlook.AppointmentItem

				Dim	myRecurrPatt	As	Outlook.RecurrencePattern

				Dim	myNamespace	As	Outlook.NameSpace

				Dim	myFolder	As	Outlook.MAPIFolder

				Dim	myItems	As	Outlook.Items

				Dim	myDate	As	Date

				Dim	myOddApptItem	As	Outlook.AppointmentItem

				Dim	saveSubject	As	String

				Dim	newDate	As	Date

				Dim	myException	As	Outlook.Exception

				Set	myOlApp	=	New	Outlook.Application

				Set	myApptItem	=	myOlApp.CreateItem(olAppointmentItem)

				myApptItem.Start	=	#2/2/2003	3:00:00	PM#

				myApptItem.End	=	#2/2/2003	4:00:00	PM#

				myApptItem.Subject	=	"Meet	with	Boss"

				

				'Get	the	recurrence	pattern	for	this	appointment

				'and	set	it	so	that	this	is	a	daily	appointment

				'that	begins	on	2/2/03	and	ends	on	2/2/04



				'and	save	it.

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				myRecurrPatt.RecurrenceType	=	olRecursDaily

				myRecurrPatt.PatternStartDate	=	#2/2/2003#

				myRecurrPatt.PatternEndDate	=	#2/2/2004#

				myApptItem.Save

				

				'Access	the	items	in	the	Calendar	folder	to	locate

				'the	master	AppointmentItem	for	the	new	series.

				Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

				Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderCalendar)

				Set	myItems	=	myFolder.Items

				Set	myApptItem	=	myItems("Meet	with	Boss")

				

				'Get	the	recurrence	pattern	for	this	appointment

				'and	obtain	the	occurrence	for	3/12/03.

				myDate	=	#3/12/2003	3:00:00	PM#

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				Set	myOddApptItem	=	myRecurrPatt.GetOccurrence(myDate)

					

				'Save	the	existing	subject.	Change	the	subject	and

				'starting	time	for	this	particular	appointment

				'and	save	it.

				saveSubject	=	myOddApptItem.Subject

				myOddApptItem.Subject	=	"Meet	NEW	Boss"

				newDate	=	#3/12/2003	3:30:00	PM#

				myOddApptItem.Start	=	newDate

				myOddApptItem.Save

				

				'Get	the	recurrence	pattern	for	the	master

				'AppointmentItem.	Access	the	collection	of

				'exceptions	to	the	regular	appointments.

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				Set	myException	=	myRecurrPatt.Exceptions.item(1)

			

				'Display	the	original	date,	time,	and	subject

				'for	this	exception.

				MsgBox	myException.OriginalDate	&	":	"	&	saveSubject

				'Display	the	current	date,	time,	and	subject

				'for	this	exception.

				MsgBox	myException.AppointmentItem.Start	&	":	"	&	_

				myException.AppointmentItem.Subject

End	Sub

	 	

Note		For	this	example	to	work	properly	in	VBScript,	there	are	only	a	few
simple	changes	that	need	to	be	made	in	the	code.



You	don't	have	to	retrieve	the	application	as	an	object	and	you	must	use	the
values	of	the	constants,	so:

Set	myOlApp	=	New	Outlook.Application

Set	myApptItem	=	myOlApp.CreateItem(olAppointmentItem)

	 	

becomes:

Set	myApptItem	=	Application.CreateItem(1)

	 	

and

myRecurrPatt.RecurrenceType	=	olRecursDaily

	 	

becomes:

myRecurrPatt.RecurrenceType	=	0

	 	

and

Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderCalendar)

	 	

becomes:

Set	myFolder	=	myNamespace.GetDefaultFolder(9)

	 	



Show	All



GetSharedDefaultFolder	Method
Returns	a	MAPIFolder	object	that	represents	the	specified	default	folder	for	the
specified	user.	This	method	is	used	in	a	delegation	scenario,	where	one	user	has
delegated	access	to	another	user	for	one	or	more	of	their	default	folders	(for
example,	their	shared	Calendar	folder).

expression.GetSharedDefaultFolder(Recipient,	FolderType)

expression				Required.	An	expression	that	returns	a	NameSpace	object.

Recipient				Required	Recipient	object.	The	owner	of	the	folder.	The	Recipient
object	must	be	resolved.

FolderType				Required	OlDefaultFolders	object.	The	type	of	folder.

OlDefaultFolders	can	be	one	of	these	OlDefaultFolders	constants.
olFolderCalendar
olFolderContacts
olFolderDrafts
olFolderInbox
olFolderJournal
olFolderNotes
olFolderSharedRoot
olFolderTasks
olFolderJunk



Remarks

Microsoft	Outlook	does	not	allow	you	to	open	the	following	folders	using	the
GetSharedDefaultFolder	method.	Therefore,	the	following	constants	cannot	be
used	with	this	method:

Deleted	Items	-	olFolderDeletedItems
OutBox	-	olFolderOutbox
Sent	Items	-	olFolderSentMail
All	Public	Folders	-	olPublicFoldersAllPublicFolders



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the
GetSharedDefaultFolder	method	to	resolve	the	Recipient	object	representing
Dan	Wilson,	and	then	returns	Dan's	shared	default	Calendar	folder.

Sub	ResolveName()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myNamespace	As	Outlook.NameSpace

	 Dim	myRecipient	As	Outlook.Recipient

	 Dim	CalendarFolder	As	Outlook.MAPIFolder

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

	 Set	myRecipient	=	myNamespace.CreateRecipient("Dan	Wilson")

	 myRecipient.Resolve

	 If	myRecipient.Resolved	Then

	 	 Call	ShowCalendar(myNamespace,	myRecipient)

	 End	If

End	Sub

Sub	ShowCalendar(myNamespace,	myRecipient)

	 Dim	CalendarFolder	As	Outlook.MAPIFolder

	 Set	CalendarFolder	=	_

								myNamespace.GetSharedDefaultFolder	_

								(myRecipient,	olFolderCalendar)

	 CalendarFolder.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object,	and	you	cannot	use	named
constants.	This	example	shows	how	to	perform	the	same	task	using	VBScript
code.

Set	myNameSpace	=	Application.GetNameSpace("MAPI")

Set	myRecipient	=	myNameSpace.CreateRecipient("Dan	Wilson")

myRecipient.Resolve

If	myRecipient.Resolved	Then

				Set	CalendarFolder	=	_

								myNameSpace.GetSharedDefaultFolder	_

								(myRecipient,	9)

				CalendarFolder.Display

End	If

	 	





HideFormPage	Method
Hides	a	form	page	in	the	inspector.

expression.HideFormPage(PageName)

expression				Required.	An	expression	that	returns	an	Inspector	object.

PageName	Required	String.	The	display	name	of	the	page	to	be	hidden.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	HideFormPage	to	hide
the	"General"	page	of	a	newly-created	ContactItem	and	displays	the	item.

Sub	HidePage()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	MyItem	As	Outlook.ContactItem

	 Dim	myPages	As	Outlook.Pages

	 Dim	myinspector	As	Outlook.Inspector

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	MyItem	=	myOlApp.CreateItem(olContactItem)

	 Set	myPages	=	MyItem.GetInspector.ModifiedFormPages

	 myPages.Add	"General"

	 Set	myinspector	=	myOlApp.ActiveInspector

	 myinspector.HideFormPage	"General"

	 MyItem.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myItem	=	Application.CreateItem(2)

Set	myInspector	=	myItem.GetInspector

Set	myPages	=	myInspector.ModifiedFormPages

myPages.Add	"General"

myInspector.HideFormPage"General"

myItem.Display

	 	



IsFolderSelected	Method
Returns	a	Boolean	that	determines	if	the	folder	is	currently	displayed	in	the
explorer.

expression.IsFolderSelected(MAPIFolder)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

MAPIFolder				Required.	The	MAPIFolder	object	representing	the	folder	that	is
displayed	in	the	explorer.



Example

This	Microsoft	Visual	Basic	for	Applications	(VBA)	example	closes	a	shared
calendar	that	is	displayed	simultaneously	with	the	current	user's	default
Calendar	folder.	To	run	this	example	without	errors,	replace	Dan	Wilson	with	a
valid	recipient	name	whose	calendar	is	shared	and	whose	calendar	you	have
permissions	to	view.	You	also	need	to	display	the	shared	calendar	in	Shared
Calendar	view.	To	do	this,	you	can	run	the	DispCalendars	procedure	before
running	the	CloseSharedCalendar	procedure.

Sub	CloseSharedCalendar()

				Dim	myOlApp	As	Outlook.Application

				Dim	myNms	As	Outlook.NameSpace

				

				Dim	myRecipient	As	Outlook.Recipient

				Dim	myExplorer	As	Outlook.Explorer

				Dim	SharedFolder	As	Outlook.MAPIFolder

				

				Set	myOlApp	=	CreateObject("Outlook.Application")

								

				Set	myNms	=	myOlApp.GetNamespace("MAPI")

				Set	myExplorer	=	myOlApp.ActiveExplorer

				Set	myRecipient	=	myNms.CreateRecipient("Dan	Wilson")

				Set	SharedFolder	=	myNms.GetSharedDefaultFolder(myRecipient,	olFolderCalendar)

				If	myExplorer.IsFolderSelected(SharedFolder)	=	True	Then

								myExplorer.DeselectFolder	SharedFolder

				End	If

End	Sub

Sub	DispCalendars()

				Dim	myOlApp	As	Outlook.Application

				Dim	myNms	As	Outlook.NameSpace

				Dim	myFolder	As	Outlook.MAPIFolder

				Dim	myRecipient	As	Outlook.Recipient

				Dim	myExplorer	As	Outlook.Explorer

				Dim	SharedFolder	As	Outlook.MAPIFolder

				

				Set	myOlApp	=	CreateObject("Outlook.Application")

								

				Set	myNms	=	myOlApp.GetNamespace("MAPI")

				Set	myFolder	=	myNms.GetDefaultFolder(olFolderCalendar)

				

				Set	myExplorer	=	myOlApp.ActiveExplorer

				Set	myExplorer.CurrentFolder	=	myFolder

				Set	myRecipient	=	myNms.CreateRecipient("Dan	Wilson")



				Set	SharedFolder	=	myNms.GetSharedDefaultFolder(myRecipient,	olFolderCalendar)

				myExplorer.SelectFolder	SharedFolder

End	Sub



Show	All



IsPaneVisible	Method
Returns	a	Boolean	indicating	whether	a	specific	explorer	pane	is	visible.	Returns
True	if	the	specified	pane	is	displayed	in	the	explorer.

Note		You	can	also	use	the	Visible	property	of	the	OutlookBarPane	object	to
determine	whether	the	Shortcuts	pane	is	visible.

object.IsPaneVisible(Pane)

object	Required.	An	expression	that	returns	an	Explorer	object.

Pane				Required

OlPane

OlPane	can	be	one	of	these	OlPane	constants.
olFolderList	(2)
olOutlookBar	(1)
olPreview	(3)
olNavigationPane	(4)



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	sample	uses
the	IsPaneVisible	method	to	determine	whether	the	preview	pane	is	visible	and
uses	the	ShowPane	method	to	display	it	if	it	is	not	visible.	Use	the
olNavigationPane	constant	to	hide	or	display	the	Navigation	Pane.

Sub	HidePreviewPane()

				Dim	myOlApp	As	New	Outlook.Application

				Dim	myOlExp	As	Outlook.Explorer

				Set	myOlExp	=	myOlApp.ActiveExplorer

				If	myOlExp.IsPaneVisible(olPreview)	=	False	Then

								myOlExp.ShowPane	olPreview,	True

				End	If

				Set	myOlApp	=	Nothing

				Set	myOlExp	=	Nothing

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myOlExp	=	Application.ActiveExplorer

If	myOlExp.IsPaneVisible(3)	=	False	Then

				myOlExp.ShowPane	3,True

			Set	myOlExp	=	Nothing

End	If

	 	



IsSearchSynchronous	Method
Returns	a	Boolean	indicating	if	a	search	will	be	synchronous	or	asynchronous.
Read-only.

Note		If	the	search	is	synchronous,	the	AdvancedSearch	method	will	not	return
until	the	search	has	completed.	Conversely,	if	the	search	is	asynchronous,	the
AdvancedSearch	method	will	immediately	return.	In	this	case,	use	the	Search
object's	Stop	method	to	halt	the	search.	In	order	to	get	meaningful	results	from
an	asynchronous	search,	use	the	AdvancedSearchComplete	event	to	notify	you
when	the	search	has	finished.

expression.IsSearchSynchronous(LookInFolders)

expression				Required.	An	expression	that	returns	an	Application	object.

LookInFolders			Required	String.	The	path	name	of	the	folders	that	the	search
will	search	through.	It	is	recommended	that	the	folder	name	is	enclosed	within
single	quotes.



IsWordMail	Method
Determines	whether	the	mail	message	associated	with	an	inspector	is	displayed
in	an	Outlook	Inspector	or	in	Microsoft	Word.	Returns	True	if	the	mail	message
is	displayed	in	Microsoft	Word	(that	is,	if	Word	Mail	is	in	use).	The
OlEditorType	constant	will	be	olEditorWord.

expression.IsWordMail

expression					Required.	An	expression	that	returns	an	Inspector	object.



Show	All



Item	Method
Returns	an	object	from	a	collection.	The	following	table	shows	the	collections
supported	and	the	object	type	returned.

Collection Object	Returned
Actions Action
AddressEntries AddressEntry
AddressLists AddressList
Attachments Attachment
Exceptions Exception
Explorers Explorer
Folders MAPIFolder
Inspectors Inspector
Items Outlook	item
Links Link
OutlookBarGroups OutlookBarGroup
OutlookBarShortcuts OutlookBarShortcut
Pages Page
Panes Pane
PropertyPages PropertyPage
Selection Outlook	item
SyncObjects SyncObject
Recipients Recipient
UserProperties UserProperty
All	other	Microsoft	Outlook
collections

A	generic	Object	representing	a	single	object	in
the	specified	collection

expression.Item(Index)

expression				Required.	An	expression	that	returns	a	valid	collection	object.

Index				Required	Variant.	Either	the	index	number	of	the	object,	or	a	value	used



to	match	the	default	property	of	an	object	in	the	collection.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	uses	the	Count	property	and	Item	method	of	the	Selection	collection
returned	by	the	Selection	property	to	display	the	senders	of	all	messages	selected
in	the	active	explorer	window.	To	run	this	example	without	errors,	select	items	of
type	MailItem	only.	Other	types	such	as	ReportItem	do	not	have	the
SenderName	property	and	will	cause	an	error.

Sub	GetSelectedItems()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myOlExp	As	Outlook.Explorer

	 Dim	myOlSel	As	Outlook.Selection

	 Dim	MsgTxt	As	String

	 Dim	x	As	Integer

	 MsgTxt	=	"You	have	selected	items	from:	"

	 Set	myOlExp	=	myOlApp.ActiveExplorer

	 Set	myOlSel	=	myOlExp.Selection

	 For	x	=	1	To	myOlSel.Count

	 	 MsgTxt	=	MsgTxt	&	myOlSel.Item(x).SenderName	&	";"

	 Next	x

	 MsgBox	MsgTxt

End	Sub

	 	

The	following	example	adds	the	public	folder	Internal	to	the	user's	Favorites
folder	by	using	the	AddToPFFavorites	method.

Sub	AddToFavorites()

	 'Adds	a	Public	Folder	to	the	List	of	favorites

	 Dim	olapp	As	Outlook.Application

	 Dim	objFolder	As	Outlook.MAPIFolder

	 Set	olapp	=	Outlook.Application

	 Set	objFolder	=	olapp.Session.GetDefaultFolder(olPublicFoldersAllPublicFolders).Folders.Item("GroupDiscussion").Folders.Item("Standards").Folders.Item("Internal")

	 objFolder.AddToPFFavorites

End	Sub

	 	





Show	All



Logoff	Method
Logs	the	user	off	from	the	current	MAPI	session.

expression.Logoff

expression				An	expression	that	returns	a	NameSpace	object.



Show	All



Logon	Method
Logs	the	user	on	to	MAPI,	obtaining	a	MAPI	session.

expression.Logon(Profile,	Password,	ShowDialog,	NewSession)

expression				An	expression	that	returns	a	NameSpace	object.

Profile				Optional	Variant.	The	MAPI	profile	name,	as	a	String,	to	use	for	the
session.

Password				Optional	Variant.	The	password	(if	any),	as	a	String,	associated
with	the	profile.	This	parameter	exists	only	for	backwards	compatibility	and	for
security	reasons,	it	is	not	recommended	for	use.	Microsoft	Oultook	will	prompt
the	user	to	specify	a	password	in	most	system	configurations.	This	is	your	logon
password	and	should	not	be	confused	with	PST	passwords.

ShowDialog				Optional	Variant.	True	to	display	the	MAPI	logon	dialog	box	to
allow	the	user	to	select	a	MAPI	profile.

NewSession	Optional	Variant.	True	to	create	a	new	Outlook	session.	Since
multiple	sessions	cannot	be	created	in	Outlook,	this	parameter	should	be
specified	as	True	only	if	a	session	does	not	already	exist.



Example

This	Microsoft	Visual	Basic	example	uses	the	Logon	method	to	log	on	to	a	new
session,	displaying	the	dialog	box	to	verify	the	profile	name	and	enter	password.

Sub	StartOutlook()

	Dim	myOlApp	As	Outlook.Application

	Dim	myNameSpace	As	Outlook.NameSpace

	Set	myOlApp	=	CreateObject("Outlook.Application")

	Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	myNameSpace.Logon	"LatestProfile",	,	True,	True

End	Sub



MarkComplete	Method
Marks	the	task	as	completed.	Sets	PercentComplete	to	"100%",	Complete	to
True,	and	DateCompleted	to	the	current	date.

expression.MarkComplete

expression				Required.	An	expression	that	returns	a	TaskItem	object.



Show	All



Move	Method
Moves	a	Microsoft	Outlook	item	to	a	new	folder.

expression.Move(DestFldr)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

DestFldr				Required.	An	expression	that	returns	a	MAPIFolder	object.	The
destination	folder.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	GetDefaultFolder	to
return	the	MAPIFolder	object	that	represents	the	default	folder.	It	then	uses	the
Find	and	FindNext	methods	to	find	all	messages	sent	by	Dan	Wilson	and	uses
the	Move	method	to	move	all	e-mail	messages	sent	by	Dan	Wilson	from	the
default	Inbox	folder	to	the	Personal	Mail	folder.	To	run	this	example	without
any	errors,	replace	'Dan	Wilson'	with	a	vaid	sender	name	and	make	sure	there's	a
folder	under	Inbox	called	'Personal	Mail'.	Note	that	myItem	is	declared	as	type
Object	so	that	it	can	represent	all	types	of	Outlook	items	including	meeting
request	and	task	request	items.

Sub	MoveItems()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Dim	myInbox	As	Outlook.MAPIFolder

	 Dim	myDestFolder	As	Outlook.MAPIFolder

	 Dim	myItems	As	Outlook.Items

	 Dim	myItem	As	Object

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 Set	myInbox	=	myNameSpace.GetDefaultFolder(olFolderInbox)

	 Set	myItems	=	myInbox.Items

	 Set	myDestFolder	=	myInbox.Folders("Personal	Mail")

	 Set	myItem	=	myItems.Find("[SenderName]	=	'Dan	Wilson'")

	 While	TypeName(myItem)	<>	"Nothing"

	 	 myItem.Move	myDestFolder

	 	 Set	myItem	=	myItems.FindNext

	 Wend

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myNameSpace	=	Application.GetNameSpace("MAPI")

Set	myInbox	=	myNameSpace.GetDefaultFolder(6)

Set	myItems	=	myInbox.Items

Set	myDestFolder	=	myInbox.Folders("Personal	Mail")

Set	myItem	=	myItems.Find("[SenderName]	=	'Dan	Wilson'")

While	TypeName(myItem)	<>	"Nothing"

				myItem.Move	myDestFolder



				Set	myItem	=	myItems.FindNext

Wend

	 	



MoveTo	Method
Moves	a	folder	to	the	specified	destination	folder.

expression.MoveTo(DestinationFolder)

expression					Required.	An	expression	that	returns	a	MAPIFolder	object.

DestinationFolder				Required.	An	expression	that	returns	a	MAPIFolder
object.	The	destination	folder	for	the	folder	that	is	being	moved.



Example

TThis	Visual	Basic	for	Applications	(VBA)	example	uses	the	MoveTo	method
to	move	the	My	Test	Contacts	folder	in	the	default	Contacts	folder	to	the	Inbox
folder.

Sub	MoveFolder()

				Dim	myOlApp	As	New	Outlook.Application

				Dim	myNameSpace	As	Outlook.NameSpace

				Dim	myFolder	As	Outlook.MAPIFolder

				Dim	myNewFolder	As	Outlook.MAPIFolder

				

				Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

				Set	myFolder	=	myNameSpace.GetDefaultFolder(olFolderContacts)

				Set	myNewFolder	=	myFolder.Folders.Add("My	Test	Contacts")

				myNewFolder.MoveTo	myNameSpace.GetDefaultFolder(olFolderInbox)

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	move	a	new	folder	created	in	the
Contacts	folder	to	the	default	Inbox	folder	using	VBScript	code.

Set	myNameSpace	=	Application.GetNameSpace("MAPI")

Set	myFolder	=	myNameSpace.GetDefaultFolder(10)

Set	myNewFolder	=	myFolder.Folders.Add("My	Contacts")

myNewFolder.MoveTo	myNameSpace.GetDefaultFolder(6)

	 	



OnStatusChange	Method
Notifies	Microsoft	Outlook	that	a	custom	property	page	has	changed.

expression.OnStatusChange

expression				Required.	An	expression	that	returns	a	PropertyPageSite	object.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
shows	how	to	call	the	OnStatusChange	method	to	notify	Outlook	that	the	user
has	changed	a	value	on	a	custom	property	page.

Private	Sub	Option1_Click()

				Dim	myPPSite	As	Outlook.PropertyPageSite

				Set	myPPSite	=	Parent

				If	Not	TypeName(myPPSite)	=	"Nothing"	Then

								globNewUserType	=	globAdministrator

							If	globUserType	<>	globNewUserType	Then

								globDirty	=	True

								myPPSite.OnStatusChange

							End	If

				Else

							If	TypeName(myPPSite)	=	"Nothing"	Then

									MsgBox	"The	Property	Page	returned	an	empty	result."

							End	If

				End	If

End	Sub

	 	



PickFolder	Method
The	PickFolder	method	displays	the	Pick	Folder	dialog	box.	This	is	a	modal
dialog	box	which	means	that	code	execution	will	not	continue	until	the	user
either	selects	a	folder	or	cancels	the	dialog	box.	Returns	a	MAPIFolder	object
corresponding	to	the	folder	that	the	user	selects	in	the	dialog	box.	Returns
Nothing	when	the	dialog	box	is	canceled	by	the	user.

expression.PickFolder

expression					Required.	A	NameSpace	object.



Post	Method
Sends	(posts)	the	PostItem	object.	The	Post	method,	which	is	analogous	to	the
Send	method	for	the	MailItem	object,	is	used	to	save	the	post	to	the	target
public	folder	instead	of	mailing	it.

expression.Post

expression				Required.	An	expression	that	returns	a	PostItem	object.



Show	All



PrintOut	Method
Prints	the	Outlook	item	using	all	default	settings.

Note		The	PrintOut	method	is	the	only	Outlook	method	that	can	be	used	for
printing.

expression.PrintOut

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Show	All



PublishForm	Method
Saves	the	definition	of	the	FormDescription	object	in	the	specified	form
registry	(library).

Forms	are	registered	as	one	of	three	classes:	Folder,	Organization,	or	Personal.
The	Folder	form	registry	holds	a	set	of	forms	that	are	only	accessible	from	that
specific	folder,	whether	public	or	private.	The	Organization	form	registry	holds
forms	that	are	shared	across	an	entire	enterprise	and	are	accessible	to	everyone.
The	Personal	form	registry	holds	forms	that	are	accessible	only	to	the	current
store	user.

Note		The	Name	property	must	be	set	before	you	can	use	the	PublishForm
method.

expression.PublishForm(Registry,	Folder)

expression				Required.	An	expression	that	returns	a	FormDescription	object.

Registry				Required	OlFormRegistry.	The	form	class.

OlFormRegistry	can	be	one	of	these	OlFormRegistry	constants.
olDefaultRegistry	Handles	items	without	regard	to	their	form	class.
olFolderRegistry
olOrganizationRegistry
olPersonalRegistry

Folder				Optional	except	with	olFolderRegistry.	Expression	that	returns	a
MAPIFolder	object.	Used	only	with	Folder	form	registry.	The	folder	object
from	which	the	forms	must	be	accessed.



Example

This	Visual	Basic	for	Applications	(VBA)	example	creates	a	contact,	obtains	its
FormDescription	object,	and	saves	it	in	the	Folder	form	registry	of	the	default
Contacts	folder.

Note		The	PublishForm	method	will	return	an	error	if	the	caption	(Name)	for
the	form	is	not	set	first.

Sub	PublishToFolder()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myNamespace	As	Outlook.NameSpace

	Dim	myFolder	As	Outlook.MAPIFolder

	Dim	myItem	As	Outlook.ContactItem

	Dim	myForm	As	Outlook.FormDescription

	Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

	Set	myFolder	=	_

				myNamespace.GetDefaultFolder(olFolderContacts)

	Set	myItem	=	myOlApp.CreateItem(olContactItem)

	Set	myForm	=	myItem.FormDescription

	myForm.Name	=	"My	Contact"

	myForm.PublishForm	olFolderRegistry,	myFolder

End	Sub

	 	

This	VBA	example	creates	an	appointment,	obtains	its	FormDescription	object,
and	saves	it	in	the	user's	Personal	form	registry.

To	view	the	form	after	you	have	published	it,	on	the	File	menu,	point	to	New,
and	click	Choose	Form.	In	the	Look	in	box,	click	Personal	Forms	Library.	To
open	your	new	form,	double-click	Interview	Scheduler.

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olAppointmentItem)

Set	myForm	=	myItem.FormDescription

myForm.Name	=	"Interview	Scheduler"

myForm.PublishForm	olPersonalRegistry

	 	





Show	All



Quit	Method
Closes	all	currently	open	windows.	The	associated	Microsoft	Outlook	session	is
closed	completely;	the	user	is	logged	out	of	the	messaging	system	and	any
changes	to	items	not	already	saved	are	discarded.

expression.Quit

expression					Required.	An	expression	that	returns	an	Application	object.



Show	All



Remove	Method
Remove	method	as	it	applies	to	the	Actions,	Attachments,	Folders,

Items,	ItemProperties,	Pages,	Recipients,	and	UserProperties	objects.

Removes	an	object	from	one	of	the	above	collections.

expression.Remove(Index)

expression				Required.	An	expression	that	returns	one	of	the	above	collections.

Index			Required	Long.	The	index	value	of	the	object	within	the	collection.

Remove	method	as	it	applies	to	the	Links,	OutlookBarGroups,
OutlookBarShortcuts,	PropertyPages,	Reminders,	and	Views	objects.

Removes	an	object	from	the	specified	list.

expression.Remove(Index)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Index			Required	Variant.	The	name	or	ordinal	value	of	an	object	within	a	list.



Example

As	it	applies	to	the	Actions,	Attachments,	Folders,
Items,ItemProperties,	Pages,	Recipients,	and	UserProperties	objects.

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Remove	method	to
remove	all	attachments	from	a	forwarded	message	before	sending	it	on	to	Dan
Wilson.	Before	running	this	example,	replace	'Dan	Wilson'	with	a	valid	recipient
name.

Sub	RemoveAttachmentBeforeForwarding()

				Dim	myolApp	As	Outlook.Application

				Dim	myinspector	As	Outlook.Inspector

				Dim	myItem	As	Outlook.MailItem

				Dim	myattachments	As	Outlook.Attachments

				Set	myolApp	=	CreateObject("Outlook.Application")

				Set	myinspector	=	myolApp.ActiveInspector

				If	Not	TypeName(myinspector)	=	"Nothing"	Then

								Set	myItem	=	myinspector.CurrentItem.Forward

								Set	myattachments	=	myItem.Attachments

								While	myattachments.Count	>	0

															myattachments.Remove	1

								Wend

								myItem.Display

								myItem.Recipients.Add	"Dan	Wilson"

								myItem.Send

				Else

								MsgBox	"There	is	no	active	inspector."

				End	If

End	Sub

	 	

As	it	applies	to	the	Links,	OutlookBarGroups,	OutlookBarShortcuts,
PropertyPages,	Reminders,	and	Views	objects.

The	following	example	removes	a	View	object	from	the	Views	collection.

Sub	DeleteView()

'Deletes	a	view	from	the	collection

				Dim	olApp	As	Outlook.Application

				Dim	objName	As	Outlook.NameSpace

				Dim	objViews	As	Outlook.Views



				Dim	objView	As	Outlook.View

				Dim	strName	As	String

				

				strName	=	"New	Icon	View"

				Set	olApp	=	New	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objViews	=	objName.GetDefaultFolder(olFolderNotes).Views

				

				For	Each	objView	In	objViews

								If	objView.Name	=	strName	Then

												objViews.Remove	(strName)

								End	If

				Next	objView

End	Sub

	 	 	 	



RemoveMember	Method
Removes	an	individual	member	from	a	given	distribution	list.

expression.RemoveMember(Recipient)

expression				Required.	An	expression	that	returns	a	DistListItem	object.

Recipient			Required	Recipient.	The	Recipient	to	be	removed	from	the
distribution	list.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	removes	a	member	from	the	distribution	list	called	Group	List.	The
RemoveMember	method	will	fail	if	the	specified	recipient	is	not	valid.	Before
running	the	example,	create	or	make	sure	a	distribution	list	called	'Group	List'
exists	in	your	default	Contacts	folder.

Sub	RemoveRec()

'Remove	a	recipient	from	the	list,	and	displays	new	list.

				Dim	olApp	As	Outlook.Application

				Dim	objDstList	As	Outlook.DistListItem

				Dim	objName	As	Outlook.NameSpace

				Dim	objRcpnt	As	Outlook.Recipient

				Dim	objMail	As	Outlook.MailItem

				Set	olApp	=	New	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objDstList	=	objName.GetDefaultFolder(olFolderContacts).Items("Group	List")

				Set	objMail	=	olApp.CreateItem(olMailItem)

				Set	objRcpnt	=	objMail.Recipients.Add(Name:="someone@example.com")

				objRcpnt.Resolve

				objDstList.RemoveMember	Recipient:=objRcpnt

				objDstList.Display

				objDstList.Body	=	"Last	Modified:	"	&	Now

End	Sub

	 	



RemoveMembers	Method
Removes	members	from	a	distribution	list.

expression.RemoveMembers(Recipients)

expression				Required.	An	expression	that	returns	a	DistListItem	object.

Recipients				Required	Recipients.	The	members	to	be	removed	from	the
distribution	list.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	removes	two	members	from	the	distribution	list	called	Group	List.	The
RemoveMembers	method	will	fail	if	the	specified	recipients	are	not	valid.
Before	running	the	example,	create	or	make	sure	a	distribution	list	called	'Group
List'	exists	in	your	default	Contacts	folder.

Sub	RemoveRecs()

'Remove	a	recipient	from	the	list	and	displays	new	list.

				Dim	olApp	As	Outlook.Application

				Dim	objDstList	As	Outlook.DistListItem

				Dim	objName	As	Outlook.NameSpace

				Dim	objRcpnt	As	Outlook.Recipient

				Dim	objRcpnt2	As	Outlook.Recipient

				Dim	objMail	As	Outlook.MailItem

				Dim	objRcpnts	As	Outlook.Recipients

				Set	olApp	=	New	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objDstList	=	objName.GetDefaultFolder(olFolderContacts).Items("Group	List")

				Set	objMail	=	olApp.CreateItem(olMailItem)

				Set	objRcpnts	=	objMail.Recipients

				Set	objRcpnt	=	objRcpnts.Add(Name:="someone@example.com")

				Set	objRcpnt2	=	objRcpnts.Add(Name:="someone@example.org")

				objRcpnts.ResolveAll

				objDstList.RemoveMembers	objRcpnts

				objDstList.Display

				objDstList.Body	=	"Last	Modified:	"	&	Now

End	Sub

	 	



RemovePicture	Method
Removes	a	picture	from	a	Contacts	item.	Returns	Nothing.

expression.RemovePicture

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example	prompts
the	user	to	specify	a	name	of	a	contact	and	removes	the	picture	from	the	contact
item.	If	a	picture	does	not	exist	for	the	contact,	the	example	displays	a	message
to	the	user.

Sub	RemovePictureFromContact()

				Dim	myOlApp	As	Outlook.Application

				Dim	myNms	As	Outlook.NameSpace

				Dim	myFolder	As	Outlook.MAPIFolder

				Dim	myContactItem	As	Outlook.ContactItem

				Dim	strName	As	String

				Dim	strPath	As	String

				Dim	strPrompt	As	String

				Set	myOlApp	=	CreateObject("Outlook.Application")

								

				Set	myNms	=	myOlApp.GetNamespace("MAPI")

				Set	myFolder	=	myNms.GetDefaultFolder(olFolderContacts)

				

				strName	=	InputBox("Type	the	name	of	the	contact:	")

								

				Set	myContactItem	=	myFolder.Items(strName)

				

				If	myContactItem.HasPicture	=	False	Then

								MsgBox	"The	contact	does	not	have	a	picture	associated	with	it."

			

				Else

								myContactItem.RemovePicture

								myContactItem.Save

								myContactItem.Display

					End	If

				

End	Sub



RemoveStore	Method
Removes	a	Personal	Folders	file	(.pst)	from	the	current	MAPI	profile	or	session.

expression.RemoveStore(Folder)

expression				Required.	An	expression	that	returns	a	Namespace	object.

Folder			Required	MAPIFolder	object.	The	Personal	Folders	file	(.pst)	to	be
deleted	from	the	list.



Remarks

This	method	removes	a	store	only	from	the	Microsoft	Outlook	user	interface.
You	cannot	remove	a	store	from	the	main	mailbox	on	the	server	or	from	a	user's
hard	disk	using	the	Outlook	object	model.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
examples	removes	a	folder	called	Personal	Folders	from	the	list	of	folders.

Sub	RemovePST()

	 Dim	objOL	As	New	Outlook.Application

	 Dim	objName	As	Outlook.NameSpace

	 Dim	objFolder	As	Outlook.MAPIFolder

	 Set	objName	=	objOL.GetNamespace("MAPI")

	 Set	objFolder	=	objName.Folders.Item("Personal	Folders")

	 'Prompt	the	user	for	confirmation

	 Dim	strPrompt	As	String

	 strPrompt	=	"Are	you	sure	you	want	to	remove	the	Personal	Folders	file?"

	 If	MsgBox(strPrompt,	vbYesNo	+	vbQuestion)	=	vbYes	Then

	 	 objName.RemoveStore	objFolder

	 End	If

End	Sub

	 	



Reply	Method
Creates	a	reply,	pre-addressed	to	the	original	sender,	from	the	original	message.
Returns	the	reply	as	a	MailItem	object.

expression.Reply

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



ReplyAll	Method
Creates	a	reply	to	all	original	recipients	from	the	original	message.	Returns	the
reply	as	a	MailItem	object.

expression.ReplyAll

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Reset	Method
Resets	a	built-in	Microsoft	Outlook	view	to	its	original	settings.

expression.Reset

expression				Required.	An	expression	that	returns	an	object	in	the	Applies	To
list.



Remarks

This	method	works	only	on	built-in	Outlook	views.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	resets	all	built-in	views	in	the	user's	Inbox	to	their	original	settings.	The
Standard	property	is	returned	to	determine	if	the	view	is	a	built-in	Outlook
view.

Sub	ResetViews()

'Resets	all	standard	views	in	the	user's	Inbox

				Dim	olApp	As	Outlook.Application

				Dim	objName	As	Outlook.NameSpace

				Dim	objViews	As	Outlook.Views

				Dim	objView	As	Outlook.View

								

				Set	olApp	=	New	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objViews	=	objName.GetDefaultFolder(olFolderInbox).Views

				For	Each	objView	In	objViews

								If	objView.Standard	=	True	Then

												objView.Reset

								End	If

				Next	objView

End	Sub

	 	



ResetColumns	Method
The	ResetColumns	method	clears	the	properties	that	have	been	cached	with	the
SetColumns	method.	All	properties	are	accessible	after	calling	the
ResetColumns	method.	SetColumns	should	be	reused	to	store	new	properties
again.	ResetColumns	does	nothing	if	SetColumns	has	not	been	called	first.

expression.ResetColumns

expression	Required.	An	expression	that	returns	one	of	the	objects	in	the	Applies
To	list.



Resolve	Method
Attempts	to	resolve	a	Recipient	object	against	the	Address	Book.	Returns	True
if	the	object	was	resolved,	False	if	it	was	not.

expression.Resolve

expression				Required.	An	expression	that	returns	a	Recipient	object.



Remarks

When	you	run	a	program	that	uses	the	Microsoft	Outlook	object	model	to	call
the	Resolve	method,	you	receive	a	warning	message.	This	warning	message	tells
you	that	a	program	is	trying	to	access	the	Address	Book	on	your	behalf	and	asks
if	you	want	to	allow	this.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	CreateItem	to	create	a
simple	task	and	delegate	it	as	a	task	request	to	another	user.	Before	running	this
example,	replace	'Dan	Wilson'	with	a	valid	recipient	name.

Sub	AssignTask()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myItem	As	Outlook.TaskItem

	 Dim	myDelegate	As	Outlook.Recipient

	 Set	MyItem	=	myOlApp.CreateItem(olTaskItem)

	 MyItem.Assign

	 Set	myDelegate	=	MyItem.Recipients.Add("Dan	Wilson")

	 myDelegate.Resolve

	 If	myDelegate.Resolved	Then

	 	 myItem.Subject	=	"Prepare	Agenda	For	Meeting"

	 	 myItem.DueDate	=	Now	+	30

	 	 myItem.Display

	 	 myItem.Send

	 End	If

End	Sub

	 	



ResolveAll	Method
Attempts	to	resolve	all	the	Recipient	objects	in	the	Recipients	collection	against
the	Address	Book.	Returns	True	if	all	of	the	objects	were	resolved,	False	if	one
or	more	were	not.

expression.ResolveAll

expression				Required.	An	expression	that	returns	a	Recipients	collection.



Remarks

When	you	run	a	program	that	uses	the	Microsoft	Outlook	object	model	to	call
the	ResolveAll	method,	you	receive	a	warning	message.	This	warning	message
tells	you	that	a	program	is	trying	to	access	the	Address	Book	on	your	behalf	and
asks	if	you	want	to	allow	this.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	ResolveAll	method
to	attempt	to	resolve	all	recipients	and,	if	unsuccessful,	displays	a	message	box
for	each	unresolved	recipient.

Sub	CheckRecipients()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	MyItem	As	Outlook.MailItem

	Dim	myRecipients	As	Outlook.Recipients

	Dim	myRecipient	As	Outlook.Recipient	

	Set	myOlApp	=	CreateObject("Outlook.Application")

	Set	myItem	=	myOlApp.CreateItem(olMailItem)

	Set	myRecipients	=	myItem.Recipients

	myRecipients.Add("Aaron	Con")

	myRecipients.Add("Nate	Sun")

	myRecipients.Add("Dan	Wilson")

	If	Not	myRecipients.ResolveAll	Then

				For	Each	myRecipient	In	myRecipients

								If	Not	myRecipient.Resolved	Then

												MsgBox	myRecipient.Name

								End	If

					Next

	End	If

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	within	an
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code	in	a	CommandButton	Click	event.

Sub	CommandButton1_Click()

	Set	myItem	=	Application.CreateItem(0)

	Set	myRecipients	=	myItem.Recipients

	myRecipients.Add("Aaron	Con")

	myRecipients.Add("Nate	Sun")

	myRecipients.Add("Dan	Wilson")

	If	Not	myRecipients.ResolveAll	Then

				For	Each	myRecipient	In	myRecipients

								If	Not	myRecipient.Resolved	Then

												MsgBox	myRecipient.Name

								End	If

					Next

	End	If



End	Sub

	 	



Show	All



Respond	Method
Responds	to	a	meeting	request	for	the	AppointmentItem	object	or	a	task	request
for	the	TaskItem	object.

expression.Respond(Response,	fNoUI,	fAdditionalTextDialog)

expression				Required.	An	expression	that	returns	an	AppointmentItem	or
TaskItem	object.

Response				Required	OlMeetingResponse.	The	response	to	the	request.

OlMeetingResponse	can	be	one	of	these	OlMeetingResponse	constants.
For	an	AppointmentItem	object:
olMeetingAccepted
olMeetingDeclined
olMeetingTentative
For	a	TaskItem	object:
olTaskAccept
olTaskAssign
olTaskDecline
olTaskSimple

fNoUI				Optional	for	AppointmentItem,	required	for	TaskItem.	Boolean.	True
to	not	display	a	dialog	box;	the	response	is	sent	automatically.	False	to	display
the	dialog	box	for	responding.

fAdditionalTextDialog	Optional	for	AppointmentItem,	required	for	TaskItem.
Boolean.	False	to	not	prompt	the	user	for	input;	the	response	is	displayed	in	the
inspector	for	editing.	True	to	prompt	the	user	to	either	send	or	send	with
comments.	This	argument	is	valid	only	if	fNoUI	is	False.

Note				The	possible	values	for	the	optional	parameters,	fNoUI	and
fAdditionalTextDialog	and	the	subsequent	results	are	as	follows:



Remarks

When	you	run	a	program	that	uses	the	Microsoft	Outlook	object	model	to	call
the	Respond	method,	you	receive	a	warning	message.	This	warning	message
tells	you	that	a	program	is	trying	to	send	an	item	on	your	behalf	and	asks	if	you
want	to	allow	this.

fNoUI,
fAdditionalTextDialog Result

True,	True

For	AppointmentItem	and	TaskItem:

Response	item	is	returned	with	no	user	interface.	To
send	the	response,	you	must	call	the	Send	method.

True,	False
For	AppointmentItem	and	TaskItem:

Same	result	as	with	True,	True.

False,	True

For	AppointmentItem:

Prompts	user	to	Send	or	Edit	before	sending	the
response.

For	TaskItem:

If	the	Display	method	has	been	called,	the	user	prompt
appears.	Otherwise,	the	item	is	sent	without	prompting
and	the	resulting	item	is	nothing.

False,	False

For	AppointmentItem:

New	response	item	appears	in	the	user	interface,	but	no
prompt	is	displayed.

For	TaskItem:

Does	nothing.



Example

This	Visual	Basic	for	Applications	(VBA)	example	finds	a	MeetingItem	in	the
default	Inbox	folder	and	adds	the	associated	appointment	to	the	Calendar
folder.	It	then	responds	to	the	sender	by	accepting	the	meeting.

Sub	AcceptMeeting()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Dim	myFolder	As	Outlook.MAPIFolder

	 Dim	myMtgReq	As	Outlook.MeetingItem

	 Dim	myAppt	As	Outlook.AppointmentItem

	 Dim	myMtg	As	Outlook.MeetingItem

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 Set	myFolder	=	myNameSpace.GetDefaultFolder(olFolderInbox)

	 Set	myMtgReq	=	myFolder.Items.Find("[MessageClass]	=	'IPM.Schedule.Meeting.Request'")

	 If	TypeName(myMtgReq)	<>	"Nothing"	Then

	 	 Set	myAppt	=	myMtgReq.GetAssociatedAppointment(True)

	 	 Set	myMtg	=	myAppt.Respond(olResponseAccepted,	True)

	 	 myMtg.Send

	 End	If

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object,	and	you	cannot	use	named
constants.	This	example	shows	how	to	perform	the	same	task	using	VBScript	in
a	CommandButton	Click	event.

Sub	CommandButton1_Click()

	Set	myNamespace	=	Application.GetNamespace("MAPI")

	Set	myFolder	=	myNamespace.GetDefaultFolder(6)

	Set	myMtgReq	=	myFolder.Items.Find("[MessageClass]	=	'IPM.Schedule.Meeting.Request'")

	If	TypeName(myMtgReq)	<>	"Nothing"	Then

					Set	myAppt	=	myMtgReq.GetAssociatedAppointment(True)

					myAppt.Respond	3,	False,	True

	Else

					MsgBox	"You	have	no	meeting	requests."

	End	If

End	Sub

	 	





Restrict	Method
Applies	a	filter	to	the	Items	collection,	returning	a	new	collection	containing	all
of	the	items	from	the	original	that	match	the	filter.	This	method	is	an	alternative
to	using	the	Find	method	or	FindNext	method	to	iterate	over	specific	items
within	a	collection.	The	Find	or	FindNext	methods	are	faster	than	filtering	if
there	are	a	small	number	of	items.	The	Restrict	method	is	significantly	faster	if
there	is	a	large	number	of	items	in	the	collection,	especially	if	only	a	few	items
in	a	large	collection	are	expected	to	be	found.

Note		If	you	are	using	user-defined	fields	as	part	of	a	Find	or	Restrict	clause,
the	user-defined	fields	must	exist	in	the	folder.	Otherwise	the	code	will	generate
an	error	stating	that	the	field	is	unknown.	You	can	add	a	field	to	a	folder	by
displaying	the	Field	Chooser	and	clicking	New.

expression.Restrict(Filter)

expression				Required.	An	expression	that	returns	an	Items	object.

Filter				Required	String.	A	filter	string	expression	to	be	applied.	For	details,	see
the	Find	method.



Remarks

This	method	cannot	be	used	and	will	cause	an	error	with	the	following
properties:

Body

Categories

Children

Class

Companies

CompanyLastFirstNoSpace

CompanyLastFirstSpaceOnly

ContactNames

Contacts

ConversationIndex

DLName

Email1EntryID

Email2EntryID

Email3EntryID

EntryID

HTMLBody

IsOnlineMeeting

LastFirstNoSpaceCompany

LastFirstSpaceOnly

LastFirstSpaceOnlyCompany

LastFirstNoSpaceAndSuffix

MemberCount

NetMeetingAlias

NetMeetingAutoStart

NetMeetingOrganizerAlias

NetMeetingServer

NetMeetingType

RecurrenceState

ReplyRecipients

ReceivedByEntryID

RecevedOnBehalfOfEntryID

ResponseState

Saved

Sent



LastFirstAndSuffix

LastFirstNoSpace

AutoResolvedWinner

BodyFormat

InternetCodePage

Permission

Submitted

VotingOptions

DownloadState

IsConflict

MeetingWorkspaceURL

Creating	Filters	for	the	Find	and	Restrict	Methods

The	syntax	for	the	filter	varies	depending	on	the	type	of	field	you	are	filtering
on.

String	(for	Text	fields)

When	searching	Text	fields,	you	can	use	either	an	apostrophe	('),	or	double
quotation	marks	(""),	to	delimit	the	values	that	are	part	of	the	filter.	For	example,
all	of	the	following	lines	function	correctly	when	the	field	is	of	type	String:

sFilter	=	"[CompanyName]	=	'Microsoft'"

sFilter	=	"[CompanyName]	=	""Microsoft"""

sFilter	=	"[CompanyName]	=	"	&	Chr(34)	&	"Microsoft"	&	Chr(34)

Note		If	the	search	string	contains	a	single	quote	character,	escape	the	single
quote	character	in	the	string	with	another	single	quote	character.	For	example,

sFilter	=	"[Subject]	=	'Can''t'"

Similarly,	if	the	search	string	contains	a	double	quote	character,	escape	the
double	quote	character	in	the	string	with	another	double	quote	character.

Date

Although	dates	and	times	are	typically	stored	with	a	Date	format,	the	Find	and



Restrict	methods	require	that	the	date	and	time	be	converted	to	a	string
representation.	To	make	sure	that	the	date	is	formatted	as	Microsoft	Outlook
expects,	use	the	Format	function.	The	following	example	creates	a	filter	to	find
all	contacts	that	have	been	modified	after	January	15,	1999	at	3:30	P.M.

sFilter	=	"[LastModificationTime]	>	'"	&	Format("1/15/99	3:30pm",	"ddddd	h:nn
AMPM")	&	"'"

Boolean	Operators

Boolean	operators,	TRUE/FALSE,	YES/NO,	ON/OFF,	and	so	on,	should	not	be
converted	to	a	string.	For	example,	to	determine	whether	journaling	is	enabled
for	contacts,	you	can	use	this	filter:

sFilter	=	"[Journal]	=	True"

Note		If	you	use	quotation	marks	as	delimiters	with	Boolean	fields,	then	an
empty	string	will	find	items	whose	fields	are	False	and	all	non-empty	strings
will	find	items	whose	fields	are	True.

Keywords	(or	Categories)

The	Categories	field	is	of	type	keywords,	which	is	designed	to	hold	multiple
values.	When	accessing	it	programmatically,	the	Categories	field	behaves	like	a
Text	field,	and	the	string	must	match	exactly.	Values	in	the	text	string	are
separated	by	a	comma	and	a	space.	This	typically	means	that	you	cannot	use	the
Find	and	Restrict	methods	on	a	keywords	field	if	it	contains	more	than	one
value.	For	example,	if	you	have	one	contact	in	the	Business	category	and	one
contact	in	the	Business	and	Social	categories,	you	cannot	easily	use	the	Find	and
Restrict	methods	to	retrieve	all	items	that	are	in	the	Business	category.	Instead,
you	can	loop	through	all	contacts	in	the	folder	and	use	the	Instr	function	to	test
whether	the	string	"Business"	is	contained	within	the	entire	keywords	field.

Note		A	possible	exception	is	if	you	limit	the	Categories	field	to	two,	or	a	low
number	of	values.	Then	you	can	use	the	Find	and	Restrict	methods	with	the	OR
logical	operator	to	retrieve	all	Business	contacts.	For	example	(in	pseudocode):
"Business"	OR	"Business,	Personal"	OR	"Personal,	Business."	Category	strings
are	not	case	sensitive.

Integer



You	can	search	for	Integer	fields	with,	or	without	quotation	marks	as	delimiters.
The	following	filters	will	find	contacts	that	were	created	using	Outlook	2000:

sFilter	=	"[OutlookInternalVersion]	=	92711"

sFilter	=	"[OutlookInternalVersion]	=	'92711'"

Using	Variables	as	Part	of	the	Filter

As	the	Restrict	method	example	illustrates,	you	can	use	values	from	variables	as
part	of	the	filter.	The	following	Microsoft	Visual	Basic	Scripting	Edition
(VBScript)	code	sample	illustrates	syntax	that	uses	variables	as	part	of	the	filter.

sFullName	=	"Dan	Wilson"

'	This	approach	uses	Chr(34)	to	delimit	the	value.

sFilter	=	"[FullName]	=	"	&	Chr(34)	&	sFullName	&	Chr(34)

'	This	approach	uses	double	quotation	marks	to	delimit	the	value.

sFilter	=	"[FullName]	=	"""	&	sFullName	&	""""

Using	Logical	Operators	as	Part	of	the	Filter

Logical	operators	that	are	allowed	are	AND,	OR,	and	NOT.	The	following	are
variations	of	the	clause	for	the	Restrict	method	so	you	can	specify	multiple
criteria.

OR:	The	following	code	returns	all	contact	items	that	have	either	Business	or
Personal	as	their	category.

sFilter	=	"[Categories]	=	'Personal'	Or	[Categories]	=	'Business'"

AND:	The	following	code	retrieves	all	personal	contacts	who	work	at	Microsoft.

sFilter	=	"[Categories]	=	'Personal'	And	[CompanyName]	=	'Microsoft'"

NOT:	The	following	code	retrieves	all	personal	contacts	who	don't	work	at
Microsoft.



sFilter	=	"[Categories]	=	'Personal'	And	Not([CompanyName]	=	'Microsoft')"

Additional	Notes

If	you	are	trying	to	use	the	Find	or	Restrict	methods	with	user-defined	fields,
the	fields	must	be	defined	in	the	folder,	otherwise	an	error	will	occur.	There	is	no
way	to	perform	a	"contains"	operation.	For	example,	you	cannot	use	Find	or
Restrict	to	search	for	items	that	have	a	particular	word	in	the	Subject	field.
Instead,	you	can	use	the	AdvancedSearch	method,	or	you	can	loop	through	all
of	the	items	in	the	folder	and	use	the	InStr	function	to	perform	a	search	within	a
field.	You	can	use	the	Find	and	Restrict	methods	to	search	for	items	that	begin
within	a	certain	range	of	characters.	For	example,	to	search	for	all	contacts	with
a	last	name	beginning	with	the	letter	M,	use	this	filter:

sFilter	=	"[LastName]	>	'LZZZ'	And	[LastName]	<	'N'"



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Restrict	method	to
get	all	Inbox	items	of	Business	category	and	moves	them	to	the	Business	folder.
To	run	this	example,	create	or	make	sure	a	subfolder	called	'Business'	exists
under	Inbox.

Sub	MoveItems()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myNamespace	As	Outlook.NameSpace

	 Dim	myFolder	As	Outlook.MAPIFolder

	 Dim	myItems	As	Outlook.Items

	 Dim	myRestrictItems	As	Outlook.Items

	 Dim	myItem	As	Outlook.MailItem

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

	 Set	myFolder	=	_

	 myNamespace.GetDefaultFolder(olFolderInbox)

	 Set	myItems	=	myFolder.Items

	 Set	myRestrictItems	=	myItems.Restrict("[Categories]	=	'Business'")

	 For	i	=		myRestrictItems.Count	To	1	Step	-1

	 	 myRestrictItems(i).Move	myFolder.Folders("Business")

	 Next

End	Sub

	 	

If	you	use	VBScript	in	an	Outlook	form,	you	do	not	create	the	Application
object,	and	you	cannot	use	named	constants.	This	example	shows	how	to
perform	the	same	task	using	VBScript.

Sub	CommandButton1_Click()

	Set	myNameSpace	=	Application.GetNameSpace("MAPI")

	Set	myFolder	=	myNameSpace.GetDefaultFolder(6)

	Set	myItems	=	myFolder.Items

	Set	myRestrictItems	=	myItems.Restrict	_					("[Categories]	=	'Business'")

	For	i	=		myRestrictItems.Count	To	1	Step	-1

	 	 myRestrictItems(i).Move	myFolder.Folders("Business")

	Next

End	Sub

	 	

This	Visual	Basic	for	Applications	example	uses	the	Restrict	method	to	apply	a
filter	to	contact	items	based	on	the	item's	LastModificationTime	property.



Public	Sub	ContactDateCheck()

				Dim	myOlApp	As	Outlook.Application

				Dim	myNamespace	As	Outlook.NameSpace

				Dim	myContacts	As	Outlook.Items

				Dim	myItems	As	Outlook.Items

				Dim	myItem	As	Object

				Set	myOlApp	=	CreateObject("Outlook.Application")

				Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

				Set	myContacts	=	myNamespace.GetDefaultFolder(olFolderContacts).Items

				Set	myItems	=	myContacts.Restrict("[LastModificationTime]	>	'01/1/2003'")

				For	Each	myItem	In	myItems

								If	(myItem.Class	=	olContact)	Then

												MsgBox	myItem.FullName	&	":	"	&	myItem.LastModificationTime

								End	If

				Next

End	Sub

	 	

The	following	Visual	Basic	for	Applications	example	is	the	same	as	the	example
above,	except	that	it	demonstrates	the	use	of	a	variable	in	the	filter.

Public	Sub	ContactDateCheck2()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myNamespace	As	Outlook.NameSpace

	 Dim	myContacts	As	Outlook.Items

	 Dim	myItem	As	Outlook.Object

	 Dim	DateStart	As	Date

	 Dim	DateToCheck	As	String

	 Dim	myRestrictItems	As	Outlook.Items

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 Set	myContacts	=	myNameSpace.GetDefaultFolder(olFolderContacts).Items

	 DateStart	=	#01/1/2003#

	 DateToCheck	=	"[LastModificationTime]	>=	"""	&	DateStart	&	""""

	 Set	myRestrictItems	=	myContacts.Restrict(DateToCheck)

	 For	Each	myItem	In	myRestrictItems

	 	 	If	(myItem.Class	=	olContact)	Then

												MsgBox	myItem.FullName	&	":	"	&	myItem.LastModificationTime

								End	If

	 Next

End	Sub

	 	





Show	All



Save	Method
As	it	applies	to	the	Search	object

Saves	the	search	results	to	a	Search	Folder.

expression.Save(SchFldrName)

expression				Required.	An	expression	that	returns	a	Search	object.

SchFldrName				Required.	A	string	that	represents	the	Search	Folder	name.

As	it	applies	to	the	View	object

Saves	the	view,	or	saves	the	changes	to	a	view.

expression.Save

expression				Required.	An	expression	that	returns	a	View	object.

As	it	applies	to	the	other	objects	in	the	Applies	To	list

Saves	the	Microsoft	Outlook	item	to	the	current	folder	or,	if	this	is	a	new	item,	to
the	Outlook	default	folder	for	the	item	type.

expression.Save

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	Save	method	displays	an	error	if	a	Search	Folder	with	the	same	name
already	exists.



Example

As	it	applies	to	the	Search	object

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example	searches
the	Inbox	for	items	with	Subject	line	equal	to	'Test'	and	saves	the	results	in	a
Search	Folder.	The	AdvanceSearchComplete	event	procedure	sets	the	Boolean
blnSearchComp	to	True	when	the	the	search	is	complete.	This	Boolean	variable
is	used	by	the	TestAdvancedSearchComplete()	procedure	to	determine	when
the	search	is	complete.	The	sample	code	must	be	placed	in	a	class	module	such
as	ThisOutlookSession,	and	the	TestAdvancedSearchComplete()	procedure
must	be	called	before	the	event	procedure	can	be	called	by	Outlook.

Public	blnSearchComp	As	Boolean

Private	Sub	Application_AdvancedSearchComplete(ByVal	SearchObject	As	Search)

	 MsgBox	"The	AdvancedSearchComplete	Event	fired"

	 blnSearchComp	=	True

End	Sub

Sub	TestAdvancedSearchComplete()

	 Dim	sch	As	Outlook.Search

	 Dim	rsts	As	Outlook.Results

	 Dim	i	As	Integer

		 blnSearchComp	=	False

	 Const	strF	As	String	=	"urn:schemas:mailheader:subject	=	'Test'"

	 Const	strS	As	String	=	"Inbox"			

	 Set	sch	=	Application.AdvancedSearch(strS,	strF)	

	 While	blnSearchComp	=	False

	 	 DoEvents

	 Wend	

	 sch.Save("Subject	Test")

End	Sub

	 	

As	it	applies	to	the	View	object

The	following	VBA	example	creates	a	new	view	called	New	Table	and	applies
it.

Sub	CreateView()



'Creates	a	new	view

				Dim	olApp	As	Outlook.Application

				Dim	objName	As	Outlook.NameSpace

				Dim	objViews	As	Outlook.Views

				Dim	objNewView	As	Outlook.View

				Set	olApp	=	New	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objViews	=	objName.GetDefaultFolder(olFolderInbox).Views

				Set	objNewView	=	objViews.Add(Name:="New	Table",	_

																					ViewType:=olTableView)

				objNewView.Save

				objNewView.Apply

End	Sub

As	it	applies	to	the	other	objects	in	the	Applies	To	list

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
creates	an	appointment	item	and	sets	the	ReminderSet	property	before	saving	it.

Sub	AddAppointment()

	 Dim	OutApp	As	Outlook.Application

	 Dim	apti	As	Outlook.AppointmentItem

	 Set	OutApp	=	CreateObject("Outlook.Application")

	 Set	apti	=	OutApp.CreateItem(olAppointmentItem)

	 apti.Subject	=	"Car	Servicing"

	 apti.Start	=	DateAdd("n",	16,	Now)

	 apti.End	=	DateAdd("n",	60,	apti.Start)

	 apti.ReminderSet	=	True

	 apti.ReminderMinutesBeforeStart	=	60

	 apti.Save

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object,	and	you	cannot	use	named
constants.	This	example	shows	how	to	perform	the	same	task	using	VBScript.

Sub	CommandButton1_Click()

	Set	apti	=	Application.CreateItem(1)

	apti.Subject	=	"Car	Servicing"

	apti.Start	=	DateAdd("n",	16,	Now)

	apti.End	=	DateAdd("n",	60,	apti.Start)

	apti.ReminderSet	=	True

	apti.ReminderMinutesBeforeStart	=	60



	apti.Save

End	Sub

	 	



Show	All



SaveAs	Method
Saves	the	Microsoft	Outlook	item	to	the	specified	path	and	in	the	format	of	the
specified	file	type.	If	the	file	type	is	not	specified,	the	MSG	format	(.msg)	is
used.

expression.SaveAs(Path,	Type)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Path				Required	String.	The	path	in	which	to	save	the	item.

Type				Optional	Variant.	The	file	type	to	save.	Can	be	one	of	the	following
OlSaveAsType	constants:	olHTML,	olMSG,	olRTF,	olTemplate,	olDoc,
olTXT,	olVCal,	olVCard,	olICal,	or	olMSGUnicode.



Remarks

When	you	use	the	SaveAs	method	to	save	items	to	the	file	system,	you	receive
an	"address	book"	warning	message.	This	includes	all	types	of	items,	whether	or
not	the	items	have	attachments	or	active	content.	This	change	has	been	made	so
that	someone	cannot	programmatically	save	items	to	a	file	and	then	parse	the	file
to	retrieve	e-mail	addresses.

Also	note	that	even	though	olDoc	is	a	valid	OlSaveAsType	constant,	messages
in	HTML	format	cannot	be	saved	in	Document	format,	and	the	olDoc	constant
works	only	if	Microsoft	Word	is	set	up	as	the	default	email	editor.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	SaveAs	method	to
save	the	currently	open	item	as	a	text	file	in	the	C:\	folder,	using	the	subject	as
the	file	name.	To	run	this	example,	make	sure	a	mail	item	in	plain	text	format	is
open	in	the	active	window.

Sub	SaveAsTXT()

	 Dim	myItem	As	Outlook.Inspector

	 Dim	objItem	As	Object

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	myOlApp.ActiveInspector

	 If	Not	TypeName(myItem)	=	"Nothing"	Then

	 	 Set	objItem	=	myItem.CurrentItem

	 	 strname	=	objItem.Subject

	 	 'Prompt	the	user	for	confirmation

	 	 Dim	strPrompt	As	String

	 	 strPrompt	=	"Are	you	sure	you	want	to	save	the	item?	If	a	file	with	the	same	name	already	exists,	it	will	be	overwritten	with	this	copy	of	the	file."	

	 	 If	MsgBox(strPrompt,	vbYesNo	+	vbQuestion)	=	vbYes	Then

	 	 	 objItem.SaveAs	"C:\"	&		strname	&	".txt",	olTXT

	 	 End	If

	 Else

							 	 MsgBox	"There	is	no	current	active	inspector."

	 End	If

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object,	and	you	cannot	use	named
constants.	This	example	shows	how	to	save	the	current	item	using	VBScript
code.

Sub	CommandButton1_Click()

		Const	OLTXT	=	0

		strname	=	Item.Subject

		 'Prompt	the	user	for	confirmation

		 Dim	strPrompt

	 	strPrompt	=	"Are	you	sure	you	want	to	save	the	item?	If	a	file	with	the	same	name	already	exists,	it	will	be	overwritten	with	this	copy	of	the	file."	

		 If	MsgBox(strPrompt,	vbYesNo	+	vbQuestion)	=	vbYes	Then

	 		 Item.SaveAs	"C:\"	&		strname	&	".txt",	olTXT

		 End	If

End	Sub

	 	



This	Visual	Basic	for	Applications	example	shows	you	how	to	create	a	template
using	the	Save	As	method.

Sub	CreateTemplate()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	MyItem	As	Outlook.MailItem

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	MyItem	=	myOlApp.CreateItem(olMailItem)

	 MyItem.Subject	=	"Status	Report"

	 MyItem.To	=	"Dan	Wilson"

	 MyItem.Display

	 MyItem.SaveAs	"C:\statusrep.oft",	OlSaveAsType.olTemplate

End	Sub

	 	



Show	All



SaveAsFile	Method
Saves	the	attachment	to	the	specified	path.

expression.SaveAsFile(Path)

expression				Required.	An	expression	that	returns	an	Attachment	object.

Path				Required	String.	The	location	at	which	to	save	the	attachment.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	SaveAsFile	method
to	save	the	first	attachment	of	the	currently	open	item	as	a	file	in	the	C:\	folder,
using	the	attachment's	display	name	as	the	file	name.

Sub	SaveAttachment()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myInspector	As	Outlook.Inspector

	 Dim	myItem	As	Outlook.MailItem

	 Dim	myAttachments	As	Outlook.Attachments

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myInspector	=	myOlApp.ActiveInspector

	 If	Not	TypeName(myInspector)	=	"Nothing"	Then

	 	 If	TypeName(myInspector.CurrentItem)	=	"MailItem"	Then

	 	 	 Set	myItem	=	myInspector.CurrentItem

	 	 	 Set	myAttachments	=	myItem.Attachments

	 	 	 'Prompt	the	user	for	confirmation

	 	 	 Dim	strPrompt	As	String

	 	 	 strPrompt	=	"Are	you	sure	you	want	to	save	the	first	attachment	in	the	current	item	to	the	C:\	folder?	If	a	file	with	the	same	name	already	exists	in	the	destination	folder,	it	will	be	overwritten	with	this	copy	of	the	file."

	 	 	 If	MsgBox(strPrompt,	vbYesNo	+	vbQuestion)	=	vbYes	Then

	 	 	 	 myAttachments.Item(1).SaveAsFile	"C:\"	&	_

	 	 	 	 myAttachments.Item(1).DisplayName

	 	 	 End	If

	 	 Else

	 	 	 MsgBox	"The	item	is	of	the	wrong	type."

	 	 End	If

	 End	If

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object.	This	example	shows
how	to	use	VBScript	code	to	save	the	first	attachment	in	the	current	item.

Sub	CommandButton1_Click()

		 If	TypeName(Item)	=	"MailItem"	Then

	 		 Set	myAttachments	=	Item.attachments

	 		 'Prompt	the	user	for	confirmation

	 		 Dim	strPrompt

	 		 strPrompt	=	"Are	you	sure	you	want	to	save	the	first	attachment	to	the	C:\	folder?	If	a	file	with	the	same	name	already	exists	in	the	destination	folder,	it	will	be	overwritten	with	this	copy	of	the	file."

	 	 	If	MsgBox(strPrompt,	vbYesNo	+	vbQuestion)	=	vbYes	Then

	 	 	 	myAttachments.Item(1).SaveAsFile	"C:\"	&	_

	 	 		 myAttachments.Item(1).DisplayName

	 		 End	If



		 Else

	 		 MsgBox	"The	item	is	of	the	wrong	type."

	 	End	If

End	Sub

	 	



SelectFolder	Method
Displays	the	folder	if	it	can	be	displayed	simultaneously	with	the	current	folder
in	the	explorer.	Otherwise,	the	explorer	switches	to	the	specified	folder.

expression.SelectFolder(MAPIFolder)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

MAPIFolder				Required.	The	MAPIFolder	object	representing	the	folder	to	be
displayed	in	the	explorer.



Remarks

You	can	display	multiple	calendars	simultaneously	using	this	method.



Example

This	Microsoft	Visual	Basic	for	Applications	(VBA)	example	displays	a	shared
calendar	simultaneously	with	the	current	user's	default	Calendar	folder.	To	run
this	example	without	errors,	replace	Dan	Wilson	with	a	valid	recipient	name
whose	Calendar	is	shared	and	whose	calendar	you	have	permissions	to	view.

Sub	DispCalendars()

				Dim	myOlApp	As	Outlook.Application

				Dim	myNms	As	Outlook.NameSpace

				Dim	myFolder	As	Outlook.MAPIFolder

				Dim	myRecipient	As	Outlook.Recipient

				Dim	myExplorer	As	Outlook.Explorer

				Dim	SharedFolder	As	Outlook.MAPIFolder

				

				Set	myOlApp	=	CreateObject("Outlook.Application")

								

				Set	myNms	=	myOlApp.GetNamespace("MAPI")

				Set	myFolder	=	myNms.GetDefaultFolder(olFolderCalendar)

				

				Set	myExplorer	=	myOlApp.ActiveExplorer

				Set	myExplorer.CurrentFolder	=	myFolder

				Set	myRecipient	=	myNms.CreateRecipient("Dan	Wilson")

				Set	SharedFolder	=	myNms.GetSharedDefaultFolder(myRecipient,	olFolderCalendar)

				myExplorer.SelectFolder	SharedFolder

End	Sub



Send	Method
Sends	the	appointment,	meeting	item,	e-mail	message,	or	task.

expression.Send

expression				Required.	An	expression	that	returns	an	AppointmentItem,
MeetingItem,	MailItem,	or	TaskItem	object.



Remarks

When	you	run	a	program	that	uses	the	Microsoft	Outlook	object	model	to	call
the	Send	method,	you	receive	a	warning	message.	This	warning	message	tells
you	that	a	program	is	trying	to	send	a	message	on	your	behalf	and	asks	if	you
want	to	allow	the	message	to	be	sent.	The	warning	message	contains	both	a	Yes
and	a	No	button.	However,	the	Yes	button	is	not	available	until	five	seconds	have
passed	since	the	warning	message	appeared.	You	can	dismiss	the	warning
message	immediately	if	you	click	No.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	CreateItem	to	create	a
simple	task	and	delegate	it	as	a	task	request	to	another	user.	Replace	'Dan
Wilson'	with	a	valid	recipient	name	before	running	this	example.

Sub	AssignTask()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myItem	As	Outlook.TaskItem

	 Dim	myDelegate	As	Outlook.Recipient

	 Set	MyItem	=	myOlApp.CreateItem(olTaskItem)

	 MyItem.Assign

	 Set	myDelegate	=	MyItem.Recipients.Add("Dan	Wilson")

	 myDelegate.Resolve

	 If	myDelegate.Resolved	Then

	 	 myItem.Subject	=	"Prepare	Agenda	for	Meeting"

	 	 myItem.DueDate	=	Now	+	30

	 	 myItem.Display

	 	 myItem.Send

	 End	If

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object,	and	you	cannot	use	named
constants.	This	example	shows	how	to	forward	a	mail	item	using	VBScript	code.

Sub	CommandButton1_Click()

	Set	myNameSpace	=	Application.GetNameSpace("MAPI")

	Set	myFolder	=	myNameSpace.GetDefaultFolder(6)

	Set	myForward	=	myFolder.Items(1).Forward

	myForward.Recipients.Add	"Laura	Jennings"

	myForward.Send

End	Sub

	 	



SetColumns	Method
The	SetColumns	method	allows	the	user	to	cache	certain	properties	for
extremely	fast	access	to	those	particular	properties	of	the	item.	The	SetColumns
method	is	useful	for	iterating	through	the	Items	object.	If	you	don't	use	this
method,	Microsoft	Outlook	must	open	each	item	to	access	the	property.	With	the
SetColumns	method,	Outlook	only	checks	the	properties	that	you	have	cached.
Properties	which	are	not	cached	are	returned	empty.

expression.SetColumns(Columns)

expression	Required.	An	expression	that	returns	one	of	the	objects	in	the	Applies
To	list.

Columns				Required.	A	String	containing	the	names	of	the	properties	to	be
cached,	separated	by	commas.

Remarks

For	the	Items	object,	SetColumns	cannot	be	used,	and	will	cause	an	error,	with
any	property	that	returns	an	object,	and	it	cannot	be	used	with	the	following
properties:

Body

Categories

Children

Class

Companies

Contacts

DLName

EntryID

MemberCount

RecurrenceState

ReplyRecipients

ResponseState

Saved

Sent

Submitted



HTMLBody

ReceivedOnBehalfOfEntryID

ReceivedByEntryID

DownloadState

MeetingWorkspaceURL

VotingOptions

BodyFormat

IsConflict

InternetCodePage

AutoResolvedWinner

Note		The	ConversationIndex	property	cannot	be	cached	using	the
SetColumns	method	in	Office	Outlook	2003.	However,	this	property	will	not
result	in	an	error	like	the	other	properties	listed	above.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	uses	the	Items
collection	to	get	the	items	in	default	Tasks	folder,	caches	the	Subject	and
DueDate	properties	and	then	displays	the	subject	and	due	dates	each	in	turn.

Sub	SortByDueDate()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Dim	myFolder	As	Outlook.MAPIFolder

	 Dim	myItem	As	Object

	 Dim	myItems	As	Outlook.Items

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 Set	myFolder	=	myNameSpace.GetDefaultFolder(olFolderTasks)

	 Set	myItems	=	myFolder.Items

	 myItems.SetColumns	("Subject,	DueDate")

	 For	Each	myItem	In	myItems

	 	 MsgBox	myItem.Subject	&	"		"	&	myItem.DueDate

	 Next	myItem

End	Sub

	 	



SetControlItemProperty	Method
Binds	an	Outlook	object	model	property	to	a	control	on	an	inspector.

expression.SetControlItemProperty(Control,	PropertyName)

expression				Required.	An	expression	that	returns	an	Inspector	object.

Control				Required	Object.	The	control	that	will	be	bound	to	a	property.

PropertyName				Required	String.	The	name	of	the	property	that	will	be	bound
to	the	control.



Remarks

You	can	also	use	the	following	line	of	code
myPage.Controls("bar").ItemProperty	=	"subject"	to	bind	the	subject
property	to	a	control.	However,	note	that	this	will	trigger	the	security	warning	if
the	property	is	protected	by	the	object	model	security	guard	such	as	To.	You	can
use	the	SetControlItemProperty	method	to	avoid	security	warnings	with
trusted	objects.



Example

The	following	Visual	Basic	for	Applications	(VBA)	code	adds	a	custom	page	to
an	appointment	item,	adds	a	custom	textbox	control,	and	binds	that	control	to
Subject	property.

Sub	Example()

				Dim	myIns	As	Outlook.Inspector

				Dim	myAppt	As	Outlook.AppointmentItem

				Dim	ctrl	As	Object

				Dim	ctrls	As	Object

				Dim	myPages	As	Outlook.Pages

				Dim	myPage	As	Object

				

				Set	myAppt	=	Application.CreateItem(olAppointmentItem)

				Set	myIns	=	apti.GetInspector

				

				Set	myPages	=	myIns.ModifiedFormPages

				Set	myPage	=	myPages.Add("New	Page")

				myIns.ShowFormPage	("New	Page")

				Set	ctrls	=	myPage.Controls

				Set	ctrl	=	ctrls.Add("Forms.TextBox.1")

				

				myIns.SetControlItemProperty	ctrl,	"Subject"

				

				myAppt.Display

End	Sub



Show	All



SetCurrentFormPage	Method
Displays	the	specified	form	page	in	the	inspector.

expression.SetCurrentFormPage(PageName)

expression				Required.	An	expression	that	returns	an	Inspector	object.

PageName				Required	String.	The	display	name	of	the	form	page.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the
SetCurrentFormPage	method	to	show	the	All	Fields	page	of	the	currently	open
item.	If	no	items	are	currently	open,	a	message	box	will	inform	the	user.

Sub	ShowAllFieldsPage()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myInspector	As	Inspector

	Dim	myItem	As	Object

	Set	myInspector	=	myOlApp.ActiveInspector

	On	Error	GoTo	ErrorHandler

	myInspector.SetCurrentFormPage	("All	Fields")

	Set	myItem	=	myInspector.CurrentItem

	myItem.Display

	Exit	Sub

	ErrorHandler:

					MsgBox	"No	current	item	to	display."

End	Sub

	 	



Show	All



SetIcon	Method
Sets	the	icon	for	the	specified	shortcut	on	the	Shortcuts	pane.

expression.SetIcon(Icon)

expression				Required.	An	expression	that	returns	an	OutlookBarShortcut
object.

Icon			Required	Variant.	The	path	of	the	icon.



Example

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example	creates	a
group	called	MicrosoftSites	and	adds	a	shortcut	to	the	Microsoft	Network	Web
page.	Then	it	sets	the	icon	of	the	shortcut	to	the	icon	image	MSN.ico	located	on
the	user's	computer.	The	example	assumes	that	this	icon	exists	in	the	specified
location.

	Sub	CreateMSNShortcutWithIcon()

				Dim	outApp	As	New	Outlook.Application

				Dim	exp	As	Outlook.Explorer

				Dim	pans	As	Outlook.Panes

				Dim	bpan	As	Outlook.OutlookBarPane

				Dim	bgrps	As	Outlook.OutlookBarGroups

				Dim	bgrp	As	Outlook.OutlookBarGroup

				Dim	bscs	As	Outlook.OutlookBarShortcuts

				Dim	bsc	As	Outlook.OutlookBarShortcut

				Dim	bsc2	As	Outlook.OutlookBarShortcut

				Set	exp	=	outApp.ActiveExplorer

				Set	pans	=	exp.Panes

				Set	bpan	=	pans.Item("OutlookBar")

				Set	bgrps	=	bpan.Contents.Groups

				Set	bgrp	=	bgrps.Add("MicrosoftSites")

				Set	bscs	=	bgrp.Shortcuts

				Set	bsc	=	bscs.Add("http://www.msn.com",	"MSN	Home	Page")

				bsc.SetIcon	"C:\MSN.ico"

End	Sub

	 	



ShowCategoriesDialog	Method
Displays	the	Show	Categories	dialog	box,	which	allows	you	to	select	categories
that	correspond	to	the	subject	of	the	item.

expression.ShowCategoriesDialog

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	creates	a	new	appointment	item,	displays	the	item	on	the	screen,	and
opens	up	the	Show	Categories	dialog	box.

Sub	Appointment()

'Creates	an	appointment	item	to	access	ShowCategoriesDialog

				Dim	appolApp	As	Outlook.Application

				Dim	olApptItem	As	Outlook.AppointmentItem

				'Create	an	instance	of	the	application

				Set	appolApp	=	New	Outlook.Application

				'Create	appointment	item

				Set	olApptItem	=	appolApp.CreateItem(olAppointmentItem)

				olApptItem.Body	=	"Please	meet	with	me	regarding	these	sales	figures."

				olApptItem.Recipients.Add	("Jeff	Smith")

				olApptItem.Subject	=	"Sales	Reports"

				'Display	the	item

				olApptItem.Display

				'Display	the	Show	categories	dialog

				olApptItem.ShowCategoriesDialog

End	Sub

	 	



Show	All



ShowFormPage	Method
Shows	a	form	page	in	the	inspector.

expression.ShowFormPage(PageName)

expression				Required.	An	expression	that	returns	an	Inspector	object.

PageName				Required	String.	The	display	name	of	the	page	to	be	shown.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	ShowFormPage
method	to	show	the	All	Fields	page	of	the	currently	open	item.	If	there	is	no
currently	open	item,	a	message	box	will	inform	the	user.

Sub	ShowAllFieldsPage()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myInspector	As	Outlook.Inspector

	Dim	myItem	As	Object

	Set	myInspector	=	myOlApp.ActiveInspector

	On	Error	GoTo	ErrorHandler

	myInspector.ShowFormPage	("All	Fields")

	Set	myItem	=	myInspector.CurrentItem

	myItem.Display

	Exit	Sub

	ErrorHandler:

					MsgBox	"No	current	item	to	display."

End	Sub

	 	



Show	All



ShowPane	Method
Displays	or	hides	a	specific	pane	in	the	explorer.

Note		You	can	also	use	the	Visible	property	of	the	OutlookBarPane	object	to
display	or	hide	the	Shortcuts	pane.

expression.ShowPane(Pane,	Visible)

expression	Required.	An	expression	that	returns	an	Explorer	object.

Pane				Required

OlPane

OlPane	can	be	one	of	these	OlPane	constants.
olFolderList
olOutlookBar
olPreview
olNavigationPane

Visible				Required.	True	to	make	the	pane	visible,	False	to	hide	the	pane.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example	uses
the	ShowPane	and	IsPaneVisible	methods	to	hide	the	preview	pane	if	it	is
visible	or	to	display	it	if	it	is	hidden.

Sub	ShowHidePreviewPane()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myOlExp	As	Outlook.Explorer

	 Set	myOlExp	=	myOlApp.ActiveExplorer

	 myOlExp.ShowPane	olPreview,	_

					Not	myOlExp.IsPaneVisible(olPreview)

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object.	This	example	shows
how	to	perform	the	same	task	using	VBScript.

Sub	CommandButton1_Click()

	Set	myOlExp	=	Application.ActiveExplorer

	myOlExp.ShowPane	3,	Not	myOlExp.IsPaneVisible(3)

End	Sub

	 	



SkipRecurrence	Method
Clears	the	current	instance	of	a	recurring	task	and	sets	the	recurrence	to	the	next
instance	of	that	task.

expression.SkipRecurrence

expression				Required.	An	expression	that	returns	a	TaskItem	object.



Snooze	Method
Delays	the	reminder	by	a	specified	time.	This	is	equivalent	to	the	user	clicking
the	Snooze	button.

expression.Snooze(SnoozeTime)

expression				Required.	An	expression	that	returns	a	Reminder	object.

SnoozeTime			Optional	Variant.	Indicates	the	amount	of	time	(in	minutes)	to
delay	the	reminder.	The	default	value	is	5	minutes.



Remarks

This	method	will	fail	if	the	current	reminder	is	not	active.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	delays	all	active	reminders	by	a	specified	amount	of	time.

Sub	SnoozeReminders()

'Delays	all	reminders	by	a	specified	amount	of	time

				Dim	olApp	As	Outlook.Application

				Dim	objRems	As	Outlook.Reminders

				Dim	objRem	As	Outlook.Reminder

				Dim	varTime	As	Variant

				Set	olApp	=	New	Outlook.Application

				Set	objRems	=	olApp.Reminders

				varTime	=	InputBox("Type	the	number	of	minutes	to	delay")

				For	Each	objRem	In	objRems

								If	objRem.IsVisible	=	True	Then

												objRem.Snooze	(varTime)

								End	If

				Next	objRem

End	Sub

	 	



Sort	Method
Sorts	the	collection	of	items	by	the	specified	property.	The	index	for	the
collection	is	reset	to	1	upon	completion	of	this	method.

expression.Sort(Property,	Descending,	Order)

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Property				Required	String.	The	name	of	the	property	by	which	to	sort,	which
may	be	enclosed	in	brackets	(for	example,	"[CompanyName]").	May	not	be	a
user-defined	field,	and	may	not	be	a	multi-valued	property,	such	as	a	category.

Descending				Applies	to	all	objects	in	the	Applies	To	list	except	the
AddressEntries	object.	Optional	Variant	for	the	Results	object;	optional
Boolean	for	all	other	objects.	True	to	sort	in	descending	order.	The	default	value
is	False	(ascending).

Order			Applies	to	the	AddressEntries	object	only.	Optional	Variant.	The	order
for	the	specified	address	entries.	Can	be	one	of	these	OlSortOrder	constants:
olAscending,	olDescending,	or	olSortNone.

Remarks

For	the	Items	collection,	Sort	cannot	be	used	and	will	cause	an	error	with	the
following	properties:

Categories

Children

Class

Companies

CompanyLastFirstNoSpace

LastFirstSpaceOnly

LastFirstSpaceOnlyCompany

MemberCount

NetMeetingAlias

NetMeetingAutoStart



CompanyLastFirstSpaceOnly

Contacts

DLName

IsOnlineMeeting

LastFirstAndSuffix

LastFirstNoSpace

LastFirstNoSpaceCompany

NetMeetingOrganizerAlias

NetMeetingServer

NetMeetingType

RecurrenceState

ResponseState

Sent

Saved

Sort	only	affects	the	order	of	items	in	a	collection.	It	does	not	affect	the	order	of
items	in	an	explorer	view.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	uses	the	Sort
method	to	sort	the	Items	collection	for	the	default	Tasks	folder	by	the
"DueDate"	property	and	displays	the	due	dates	each	in	turn.

Sub	SortByDueDate()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myNameSpace	As	Outlook.NameSpace

	 Dim	myFolder	As	Outlook.MAPIFolder

	 Dim	myItem	As	Outlook.TaskItem

	 Dim	myItems	As	Outlook.Items

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 Set	myFolder	=	myNameSpace.GetDefaultFolder(olFolderTasks)

	 Set	myItems	=	myFolder.Items

	 myItems.Sort	"[DueDate]",	False

	 For	Each	myItem	In	myItems

	 	 MsgBox	myItem.Subject	&	"--	"	&	myItem.DueDate

	 Next	myItem

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	sort	the	Contacts	folder	by
CompanyName	property	using	VBScript.

Sub	CommandButton1_Click()

	Set	myNamespace	=	Application.GetNamespace("MAPI")

	Set	myFolder	=	_

					myNameSpace.GetDefaultFolder(10)

	Set	myItems	=	myFolder.Items

	myItems.Sort	"[CompanyName]",	False

	For	Each	myItem	in	myItems

					MsgBox	myItem.CompanyName

	Next

End	Sub

	 	





Start	Method
Begins	synchronizing	a	user’s	folders	using	the	specified	Send\Receive	group.

expression.Start

expression				Required.	An	expression	that	returns	a	SyncObject	object.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
displays	all	the	Send\Receive	groups	set	up	for	the	user	and	starts	the
synchronization	based	on	user’s	response.

Public	Sub	Sync()

	 Dim	nsp	As	Outlook.NameSpace

	 Dim	sycs	As	Outlook.SyncObjects

	 Dim	syc	As	Outlook.SyncObject

	 Dim	i	As	Integer

	 Dim	strPrompt	As	Integer

	 Set	nsp	=	Application.GetNamespace("MAPI")

	 Set	sycs	=	nsp.SyncObjects

	 For	i	=	1	To	sycs.Count

	 	 Set	syc	=	sycs.Item(i)

	 	 strPrompt	=	MsgBox("Do	you	wish	to	synchronize	"	&	syc.Name	&"?",	vbYesNo)

	 	 If	strPrompt	=	vbYes	Then

	 	 	 syc.Start

	 	 End	If

	 Next

End	Sub

	 	



StartTimer	Method
Starts	the	timer	on	the	journal	entry.	This	method	allows	programmatic	control
of	the	timer	function.	The	Duration,	End	and	Start	properties	are	automatically
updated	when	the	timer	is	stopped.

expression.StartTimer

expression					Required.	An	expression	that	returns	a	JournalItem	object.



StatusReport	Method
Sends	a	status	report	to	all	Cc	recipients	(recipients	returned	by	the
StatusUpdateRecipients	property)	with	the	current	status	for	the	task.	Returns
an	Object	representing	the	status	report.

expression.StatusReport

expression					Required.	An	expression	that	returns	a	TaskItem	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	StatusReport
method	to	report	the	status	of	the	currently	open	task.

Sub	SendStatusReport()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myTask	As	Outlook.TaskItem

	 Dim	myinspector	As	Outlook.Inspector

	 Dim	myReport	As	Object

	 Set	myinspector	=	myOlApp.ActiveInspector

	 If	Not	TypeName(myinspector)	=	"Nothing"	Then

	 	 If	TypeName(myinspector.CurrentItem)	=	"TaskItem"	Then

	 	 	 Set	myTask	=	myinspector.CurrentItem

	 	 	 Set	myReport	=	myTask.StatusReport

	 	 	 myReport.Send

	 	 Else

	 	 	 MsgBox	"No	task	item	is	currently	open."

	 	 End	If

	 Else

	 	 MsgBox	"No	inspector	is	currently	open."

	 End	If

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object.	This	example	shows
how	to	perform	the	same	task	using	VBScript.

Sub	CommandButton1_Click()

			If	TypeName(Item)	=	"TaskItem"	Then

					Set	myReport	=	Item.StatusReport

					myReport.Send

			Else

					MsgBox	"The	current	item	is	not	a	task	item."

	End	If

End	Sub

	 	





Show	All



Stop	Method
As	it	applies	to	the	SyncObject	object

Immediately	ends	synchronizing	a	user’s	folders	using	the	specified
Send\Receive	group.	This	method	does	not	undo	any	synchronization	that	has
already	occurred.

expression.Stop

expression				Required.	An	expression	that	returns	the	SyncObject	object.

As	it	applies	to	the	Search	object

Immediately	ends	the	search	that	is	being	performed	currently.

expression.Stop

expression				Required.	An	expression	that	returns	the	Search	object.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
displays	all	the	Send\Receive	groups	set	up	for	the	user	and	starts	the
synchronization	based	on	the	user’s	response.	The	sub	routine	following	the	one
below	immediately	stops	the	synchronization.

The	syc	variable	is	declared	as	a	public	variable	so	it	can	be	referenced	by	both
the	sub	routines.

Public	syc	As	Outlook.SyncObject

Public	Sub	Sync()

	 Dim	nsp	As	Outlook.NameSpace

	 Dim	sycs	As	Outlook.SyncObjects

	 Dim	i	As	Integer

	 Dim	strPrompt	As	Integer

	 Set	nsp	=	Application.GetNamespace("MAPI")

	 Set	sycs	=	nsp.SyncObjects

	 For	i	=	1	To	sycs.Count

	 	 Set	syc	=	sycs.Item(i)

	 	 strPrompt	=	MsgBox("Do	you	wish	to	synchronize	"	&	syc.Name	&"?",	vbYesNo)

	 	 If	strPrompt	=	vbYes	Then

	 	 	 syc.Start

	 	 End	If

	 Next

End	Sub

	 	

Private	Sub	StopSync()

				MsgBox	"Synchronization	stopped	by	the	user."

				syc.Stop

End	Sub

	 	



StopTimer	Method
Stops	the	timer	on	the	journal	entry.	This	method	allows	programmatic	control	of
the	timer	function.	The	Duration,	End	and	Start	properties	are	automatically
updated	when	the	timer	is	stopped.

expression.StopTimer

expression				Required.	An	expression	that	returns	a	JournalItem	object.



Update	Method
The	Update	method	posts	a	change	to	the	AddressEntry	object	in	the
messaging	system.

expression.Update(MakePermanent,	Refresh)

expression				Required.	An	expression	that	returns	an	AddressEntry	object.

MakePermanent				Optional	Variant.	A	value	of	True	indicates	that	the	property
cache	is	flushed	and	all	changes	are	committed	in	the	underlying	address	book.
A	value	of	False	indicates	that	the	property	cache	is	flushed	but	not	committed
to	persistent	storage.	The	default	value	is	True.

Refresh				Optional	Variant.	A	value	of	True	indicates	that	the	property	cache	is
reloaded	from	the	values	in	the	underlying	address	book.	A	value	of	False
indicates	that	the	property	cache	is	not	reloaded.	The	default	value	is	False.



Remarks

New	entries	or	changes	to	existing	entries	are	not	persisted	in	the	collection	until
the	Update	method	has	been	called	with	its	MakePermanent	parameter	set	to
True.

To	flush	the	cache	and	then	reload	the	values	from	the	address	book,	call	Update
with	the	MakePermanent	parameter	set	to	False	and	the	Refresh	parameter	set
to	True.



Account	Property
Returns	or	sets	a	String	representing	the	account	for	the	contact.	Read/write.

expression.Account

expression								Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



Actions	Property
Returns	an	Actions	collection	that	represents	all	the	available	actions	for	the
Outlook	item.

expression.Actions

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	Visual	Basic	for	Applications	(VBA)	example	creates	a	new	mail	item	and
uses	the	Add	method	to	add	an	Action	to	it.	Then	it	sends	the	mail	item	to	the
current	user.	The	mail	item	received	will	have	the	'Agree'	action	in	addition	to
the	standard	actions	such	as	'Reply'	and	'Reply	All'.

Sub	AddAction()

	 Dim	myolApp	As	New	Outlook.Application

	 Dim	myItem	As	Outlook.MailItem

	 Dim	myAction	As	Outlook.Action

	 Set	myItem	=	myOlApp.CreateItem(olMailItem)

	 Set	myAction	=	myItem.Actions.Add

	 myAction.Name	=	"Agree"

	 myItem.To	=	myolApp.GetNamespace("MAPI").CurrentUser

	 myItem.Send

End	Sub

	 	

The	following	Visual	Basic	for	Applications	example	creates	a	new	mail	item
and	uses	the	Add	method	to	add	an	Action	called	'Link	Original'	to	it.	Executing
this	action	will	insert	a	link	to	the	original	mail	item.

Sub	AddAction2()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myItem	As	Outlook.MailItem

	Dim	myAction	As	Outlook.Action

	Set	myItem	=	myOlApp.CreateItem(olMailItem)

	Set	myAction	=	myItem.Actions.Add

	myAction.Name	=	"Link	Original"

	myAction.ShowOn	=	olMenuAndToolbar

	myAction.ReplyStyle	=	olLinkOriginalItem

	myItem.To	=	"Dan	Wilson"

	myItem.Send

End	Sub

	 	 	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript.

Set	myItem	=	Application.CreateItem(0)



Set	myAction	=	myItem.Actions.Add

	myAction.Name	=	"Link	Original"

	myAction.ShowOn	=	2

	myAction.ReplyStyle	=	4

	myItem.To	=	"Dan	Wilson"

	myItem.Send

	 	 	 	



ActualWork	Property
Returns	or	sets	a	Long	indicating	the	actual	effort	(in	minutes)	spent	on	the	task.
Read/write.

expression.ActualWork

expression				Required.	An	expression	that	returns	a	TaskItem	object.



Address	Property
Returns	or	sets	a	String	representing	the	e-mail	address	of	the	recipient.
Read/write	for	the	AddressEntry	object;	read-only	for	the	Recipient	object.

Note		The	Address	property	must	be	set	before	calling	the	Details	method.

expression.Address

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



AddressBookName	Property
Returns	or	sets	a	String	that	indicates	the	Address	Book	name	for	the
MAPIFolder	object	representing	a	contact	items	folder.	Read/write.

expression.AddressBookName

expression				Required.	An	expression	that	returns	a	MAPIFolder	object
representing	a	contact	items	folder.



Remarks

If	you	try	to	set	the	AddressBookName	property	in	a	non-Contacts	items	folder,
an	error	will	be	returned.



Example

The	following	example	changes	the	Address	Book	name	for	the	contact	items
folder	and	displays	the	new	name	to	the	user.	The	subroutine	accepts	the	folder
object	and	a	String	representing	the	new	address	book	name.

Sub	BookName()

				Dim	olApp	As	Outlook.Application

				Dim	nmsName	As	Outlook.NameSpace

				Dim	fldFolder	As	Outlook.MAPIFolder

				Dim	strAns	As	String

				Set	olApp	=	New	Outlook.Application

				'Create	a	reference	to	namepsace

				Set	nmsName	=	olApp.GetNamespace("MAPI")

				'Create	an	instance	of	the	Contacts	folder

				Set	fldFolder	=	nmsName.GetDefaultFolder(olFolderContacts)

				'Prompt	user	for	input

				strAns	=	InputBox("Type	the	name	of	the	new	address	book")

				'Call	Sub	procedure

				Call	Changebook(fldFolder,	strAns)

End	Sub

Sub	Changebook(ByRef	fldFolder	As	MAPIFolder,	ByVal	strName	As	String)

'Changes	the	name	of	the	address	book	for	a	given	folder

				'Set	address	book	name	to	user	input

				fldFolder.AddressBookName	=	strName

				'Display	message	to	user

				MsgBox	("The	new	address	book	name	for	the	"	&	fldFolder.Name	&	"	folder	is	"	_

													&	strName	&	".")

End	Sub

	 	



AddressEntries	Property
Returns	the	AddressEntries	collection	for	the	specified	object.

expression.AddressEntries

expression				Required.	An	expression	that	returns	an	AddressList	object.



AddressEntry	Property
Returns	the	AddressEntry	object	corresponding	to	the	resolved	recipient.
Accessing	the	AddressEntry	property	forces	resolution	of	an	unresolved
recipient	name.	If	the	name	cannot	be	resolved,	an	error	is	returned.	If	the
recipient	is	resolved,	the	Resolved	property	is	True.

expression.AddressEntry

expression					Required.	An	expression	that	returns	a	Recipient	object.



Show	All



AddressLists	Property
Returns	an	AddressLists	collection	representing	a	collection	of	the	address	lists
available	for	this	session.	The	AddressLists	collection	represents	the	root	of	the
address	book	hierarchy	for	the	current	session.	A	particular	AddressList	object
represents	one	of	the	available	address	books.	The	type	of	access	you	obtain
depends	on	the	access	permissions	granted	to	you	by	each	individual	address
book	provider.

expression.AddressLists

expression					Required.	An	expression	that	returns	a	NameSpace	object.



AllDayEvent	Property
True	if	the	appointment	is	an	all-day	event	(as	opposed	to	a	specified	time).
Read/write	Boolean.

expression.AllDayEvent

expression				Required.	An	expression	that	returns	an	AppointmentItem	object.



AlternateRecipientAllowed	Property
True	if	the	mail	message	can	be	forwarded.	Read/write	Boolean.

expression.AlternateRecipientAllowed

expression				Required.	An	expression	that	returns	a	MailItem	object.



Anniversary	Property
Returns	or	sets	a	Date	indicating	the	anniversary	date	for	the	contact.
Read/write.

expression.Anniversary

expression				Required.	An	expression	that	returns	a	ContactItem	object.



AnswerWizard	Property
Returns	the	AnswerWizard	object	for	the	application.

expression.AnswerWizard()

expression				Required.	An	expression	that	returns	an	Application	object.



AppFolders	Property
This	property	returns	the	"Application	Folders"	SyncObject.	The	SyncObject	is
where	folders	are	automatically	added	when	the	InAppFolderSyncObject
property	of	the	MapiFolder	object	is	set	to	True.	The	SyncObject	allows	users
to	synchronize	Microsoft	Outlook	folders,	address	books,	and	folder	home	pages
for	offline	use.

expression.AppFolders

expression				Required.	An	expression	that	returns	a	SyncObjects	object.



Example

The	following	example	sets	the	SyncObject	for	the	application	folders	and
synchronizes	the	user's	Inbox.

Public	Sub	SetAppfolders()

				Dim	olApp	As	New	Outlook.Application

				Dim	nsp	As	Outlook.NameSpace

				Dim	objSycs	As	Outlook.SyncObjects

				Dim	objSyc	As	Outlook.SyncObject

				Dim	mpfInbox	As	Outlook.MAPIFolder

				Set	nsp	=	olApp.GetNamespace("MAPI")

				Set	objSycs	=	nsp.SyncObjects

				Set	objSyc	=	objSycs.AppFolders

				Set	mpfInbox	=	nsp.GetDefaultFolder(olFolderInbox)

				mpfInbox.InAppFolderSyncObject	=	True

				objSyc.Start

End	Sub

	 	



Application	Property
Returns	an	Application	object	that	represents	the	parent	application	(Microsoft
Outlook)	for	an	object.	Read-only.

expression.Application

expression				Required.	An	expression	that	returns	an	Outlook	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Application
property	to	access	Outlook	and	then	creates	a	new	MailItem	and	displays	the
version	of	Outlook	used	to	create	the	item.

Sub	CreateMailItem()

				Dim	myolApp	As	Outlook.Application

				Dim	myItem	As	Outlook.MailItem

				Set	myolApp	=	CreateObject("Outlook.Application")

				Set	myItem	=	myolApp.CreateItem(olMailItem)

				MsgBox	myItem.Application.Version

End	Sub

	 	

If	you	use	VBScript,	you	do	not	use	the	Application	property	to	retrieve	the
Application	object.	Instead,	you	reference	the	Application	object	directly.

Set	myItem	=	Application.CreateItem(0)

myItem.Display

	 	



AppointmentItem	Property
Returns	the	AppointmentItem	object	that	is	the	exception.	Not	valid	for	deleted
appointments.

expression.AppointmentItem

expression					Required.	An	expression	that	returns	an	Exception	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	CreateItem	to	create	an
AppointmentItem	object.	The	RecurrencePattern	is	obtained	for	this	item
using	the	GetRecurrencePattern	method.	By	setting	the	RecurrencePattern
properties,	RecurrenceType,	PatternStartDate,	and	PatternEndDate,	the
appointments	are	now	a	recurring	series	that	occur	on	a	daily	basis	for	the	period
of	one	year.

An	Exception	object	is	created	when	one	instance	of	this	recurring	appointment
is	obtained	using	the	GetOccurrence	method	and	properties	for	this	instance	are
altered.	This	exception	to	the	series	of	appointments	is	obtained	using	the
GetRecurrencePattern	method	to	access	the	Exceptions	collection	associated
with	this	series.	Message	boxes	display	the	original	Subject	and	OriginalDate
for	this	exception	to	the	series	of	appointments	and	the	current	date,	time,	and
subject	for	this	exception.

For	a	description	of	changes	required	for	this	example	to	work	in	Microsoft
Visual	Basic	Scripting	Edition	(VBScript),	see	the	Note	at	the	end	of	the
example.

Public	Sub	cmdExample()

				Dim	myOlApp	As	Outlook.Application

				Dim	myApptItem	As	Outlook.AppointmentItem

				Dim	myRecurrPatt	As	Outlook.RecurrencePattern

				Dim	myNamespace	As	Outlook.NameSpace

				Dim	myFolder	As	Outlook.MAPIFolder

				Dim	myItems	As	Outlook.Items

				Dim	myDate	As	Date

				Dim	myOddApptItem	As	Outlook.AppointmentItem

				Dim	saveSubject	As	String

				Dim	newDate	As	Date

				Dim	myException	As	Outlook.Exception

				Set	myOlApp	=	New	Outlook.Application

				Set	myApptItem	=	myOlApp.CreateItem(olAppointmentItem)

				myApptItem.Start	=	#2/2/2003	3:00:00	PM#

				myApptItem.End	=	#2/2/2003	4:00:00	PM#

				myApptItem.Subject	=	"Meet	with	Boss"

				

				'Get	the	recurrence	pattern	for	this	appointment

				'and	set	it	so	that	this	is	a	daily	appointment

				'that	begins	on	2/2/03	and	ends	on	2/2/04



				'and	save	it.

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				myRecurrPatt.RecurrenceType	=	olRecursDaily

				myRecurrPatt.PatternStartDate	=	#2/2/2003#

				myRecurrPatt.PatternEndDate	=	#2/2/2004#

				myApptItem.Save

				

				'Access	the	items	in	the	Calendar	folder	to	locate

				'the	master	AppointmentItem	for	the	new	series.

				Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

				Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderCalendar)

				Set	myItems	=	myFolder.Items

				Set	myApptItem	=	myItems("Meet	with	Boss")

				

				'Get	the	recurrence	pattern	for	this	appointment

				'and	obtain	the	occurrence	for	3/12/03.

				myDate	=	#3/12/2003	3:00:00	PM#

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				Set	myOddApptItem	=	myRecurrPatt.GetOccurrence(myDate)

					

				'Save	the	existing	subject.	Change	the	subject	and

				'starting	time	for	this	particular	appointment

				'and	save	it.

				saveSubject	=	myOddApptItem.Subject

				myOddApptItem.Subject	=	"Meet	NEW	Boss"

				newDate	=	#3/12/2003	3:30:00	PM#

				myOddApptItem.Start	=	newDate

				myOddApptItem.Save

				

				'Get	the	recurrence	pattern	for	the	master

				'AppointmentItem.	Access	the	collection	of

				'exceptions	to	the	regular	appointments.

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				Set	myException	=	myRecurrPatt.Exceptions.item(1)

			

				'Display	the	original	date,	time,	and	subject

				'for	this	exception.

				MsgBox	myException.OriginalDate	&	":	"	&	saveSubject

				'Display	the	current	date,	time,	and	subject

				'for	this	exception.

				MsgBox	myException.AppointmentItem.Start	&	":	"	&	_

				myException.AppointmentItem.Subject

End	Sub

	 	

Note		For	this	example	to	work	properly	in	VBScript,	a	few	changes	need	to	be
made	in	the	code.



You	don't	have	to	retrieve	the	application	as	an	object,	and	you	must	use	the
values	of	the	constants,	therefore:

Set	myOlApp	=	New	Outlook.Application

Set	myApptItem	=	myOlApp.CreateItem(olAppointmentItem)

	 	

becomes:

Set	myApptItem	=	Application.CreateItem(1)

	 	

and

myRecurrPatt.RecurrenceType	=	olRecursDaily

	 	

becomes:

myRecurrPatt.RecurrenceType	=	0

	 	

and

Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderCalendar)

	 	

becomes:

Set	myFolder	=	myNamespace.GetDefaultFolder(9)

	 	



Assistant	Property
Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	an	Assistant	object	that	represents	the	Microsoft	Office	Assistant.

expression.Assistant

expression	Required.	An	expression	that	returns	one	of	the	objects	in	the	Applies
To	list.



AssistantName	Property
Returns	or	sets	a	String	representing	the	name	of	the	person	who	is	the	assistant
for	the	contact.	Read/write.

expression.AssistantName

expression				Required.	An	expression	that	returns	a	ContactItem	object.



AssistantTelephoneNumber	Property
Returns	or	sets	a	String	representing	the	telephone	number	of	the	person	who	is
the	assistant	for	the	contact.	Read/write.

expression.AssistantTelephoneNumber

expression					Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



Attachments	Property
Returns	an	Attachments	object	that	represents	all	the	attachments	for	the
specified	item.

expression.Attachments

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Remove	method	to
remove	all	attachments	from	a	forwarded	message	before	sending	it	on	to	'Dan
Wilson'.	To	run	this	example,	replace	'Dan	Wilson'	with	a	valid	recipient's	name
and	keep	an	item	with	attachments	open	in	an	inspector	window.

Sub	RemoveAttachmentBeforeForwarding()

				Dim	myolApp	As	Outlook.Application

				Dim	myinspector	As	Outlook.Inspector

				Dim	myItem	As	Outlook.MailItem

				Dim	myattachments	As	Outlook.Attachments

				Set	myolApp	=	CreateObject("Outlook.Application")

				Set	myinspector	=	myolApp.ActiveInspector

				If	Not	TypeName(myinspector)	=	"Nothing"	Then

								Set	myItem	=	myinspector.CurrentItem.Forward

								Set	myattachments	=	myItem.Attachments

								While	myattachments.Count	>	0

															myattachments.Remove	1

								Wend

								myItem.Display

								myItem.Recipients.Add	"Dan	Wilson"

								myItem.Send

				Else

								MsgBox	"There	is	no	active	inspector."

				End	If

End	Sub

	 	



AutoForwarded	Property
True	if	the	mail	message	was	automatically	forwarded.	Read/write	Boolean.

expression.AutoForwarded

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



AutoResolvedWinner	Property
Returns	a	Boolean	that	determines	if	the	item	is	a	winner	of	an	automatic
conflict	resolution.	Read-only.

Note		A	value	of	False	does	not	necessarily	indicate	that	the	item	is	a	loser	of	an
automatic	conflict	resolution.	The	item	should	be	in	conflict	with	another	item.

expression.AutoResolvedWinner

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	an	item	has	its	Conflicts.Count	property	greater	than	zero	and	if	its
AutoResolvedWinner	property	is	True,	it	is	a	winner	of	an	automatic	conflict
resolution.	On	the	other	hand,	if	the	item	is	in	conflict	and	has	its
AutoResolvedWinner	property	as	False,	it	is	a	loser	in	an	automatic	conflict
resolution.



Example

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example	used	the
AutoResolvedWinner	property	to	determine	if	an	item	is	a	winner	or	loser	in	an
automatic	conflict	resolution.	To	run	this	example,	make	sure	an	e-mail	item	is
open	in	the	active	window.

Sub	ConflictStatus()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	mail	As	Outlook.MailItem

	Set	mail	=	myOlApp.ActiveInspector.CurrentItem

	If	mail.Conflicts.Count	>	0	Then

		If	mail.AutoResolvedWinner	=	True	Then

			MsgBox	"This	item	is	a	winner	in	an	automatic	conflict	resolution."

		Else

			MsgBox	"This	item	is	a	loser	in	an	automatic	conflict	resolution."

		End	If

	Else

		MsgBox	"This	item	is	not	in	conflict	with	any	item."

	End	If

End	Sub



AutoResponse	Property
Returns	or	sets	a	String	representing	the	text	of	an	automatic	response	for	a
Recipient.	Read/write.

expression.AutoResponse

expression					Required.	An	expression	that	returns	a	Recipient	object.



BCC	Property
Returns	a	String	representing	the	display	list	of	blind	carbon	copy	(BCC)	names
for	a	MailItem.	This	property	contains	the	display	names	only.	The	Recipients
collection	should	be	used	to	modify	the	BCC	recipients.	Read/write.

expression.BCC

expression					Required.	An	expression	that	returns	a	MailItem	object.



Show	All



BillingInformation	Property
Returns	or	sets	a	String	representing	the	billing	information	associated	with	the
Outlook	item.	This	is	a	free-form	text	field.	Read/write.

expression.BillingInformation

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Birthday	Property
Returns	or	sets	a	Date	indicating	the	birthday	for	the	contact.	Read/write.

expression.Birthday

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



Body	Property
Returns	or	sets	a	String	representing	the	clear-text	body	of	the	Microsoft
Outlook	item.	Read/write.

The	BodyFormat	property	allows	you	to	programmatically	change	the	editor
that	is	used	for	the	body	of	an	item.

expression.Body

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Microsoft	Office	Outlook	2003	inherits	the	Outlook	2002	object	model	guard
behavior.	In	addition,	it	blocks	code	that	attempts	to	access	the	Body	property	of
various	Outlook	items.	This	allows	users	to	verify	that	the	program	or	add-in
accessing	the	Body	property	of	items	is	trustworthy,	before	they	allow	access	to
the	contents	of	the	items.	Even	though	this	leads	to	the	display	of	security
warnings	in	the	existing	COM	add-ins	that	access	the	Body	property	of	items,
this	will	help	prevent	malicious	code	from	running	without	the	user	being	aware
of	it.

You	can	avoid	the	display	of	security	warnings	by	deriving	all	objects,
properties,	and	methods	from	the	Application	object	passed	in	the
OnConnection	procedure	of	the	add-in.	Outlook	trusts	only	the	Application
object	passed	in	the	OnConnection	procedure	of	the	add-in.	If	you	create	a	new
Application	object—	for	example,	by	using	the	CreateObject	method—	that
object	and	any	of	its	subordinate	objects,	properties,	and	methods	will	not	be
trusted	and	the	blocked	properties	and	methods	will	throw	security	warnings.



Example

This	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	example	uses	the
Open	event	of	an	item	to	set	its	Body	property.

Function	Item_Open()

				Item.Body	=	"This	is	the	message	body."

End	Function

	 	



Show	All



BodyFormat	Property
Returns	or	sets	an	OlBodyFormat	constant	indicating	the	format	of	the	body
text.	The	body	text	format	determines	the	standard	used	to	display	the	text	of	the
message.	Microsoft	Outlook	provides	three	body	text	format	options:	Plain	Text,
Rich	Text	(RTF),	and	HTML.	Read/write.

OlBodyFormat	can	be	one	of	the	following	OlBodyFormat	constants.
olFormatHTML
olFormatPlain
olFormatRichText
olFormatUnspecified

expression.BodyFormat

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

All	text	formatting	will	be	lost	when	the	BodyFormat	property	is	switched	from
RTF	to	HTML	and	vice-versa.

In	earlier	versions	of	Outlook,	the	BodyFormat	property	returned	the
olFormatUnspecified	constant	for	a	newly	created	item	that	has	not	been
displayed	or	whose	BodyFormat	property	is	not	yet	set	programmatically.	In
Microsoft	Office	Outlook	2003,	the	property	returns	the	format	that	is	currently
set	in	the	Outlook	user	interface.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	creates	a	new	MailItem	object	and	sets	the	BodyFormat	property	to
olFormatHTML.	The	body	text	of	the	e-mail	item	will	now	appear	in	HTML
format.

Sub	CreateHTMLMail()

'Creates	a	new	e-mail	item	and	modifies	its	properties.

				Dim	olApp	As	Outlook.Application

				Dim	objMail	As	MailItem

				Set	olApp	=	Outlook.Application

				'Create	mail	item

				Set	objMail	=	olApp.CreateItem(olMailItem)

				With	objMail

							'Set	body	format	to	HTML

							.BodyFormat	=	olFormatHTML

							.HTMLBody	=	"<HTML><H2>The	body	of	this	message	will	appear	in	HTML.</H2><BODY>Type	the	message	text	here.	</BODY></HTML>"

							.Display

				End	With

End	Sub

	 	



Business2TelephoneNumber	Property
Returns	or	sets	a	String	representing	the	second	business	telephone	number	for
the	contact.	Read/write.

expression.Business2TelephoneNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



BusinessAddress	Property
Returns	or	sets	a	String	representing	the	whole,	unparsed	business	address	for
the	contact.	Read/write.

expression.BusinessAddress

expression				Required.	An	expression	that	returns	a	ContactItem	object.



BusinessAddressCity	Property
Returns	or	sets	a	String	representing	the	city	name	portion	of	the	business
address	for	the	contact.	Read/write.

expression.BusinessAddressCity

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	BusinessAddress	property,	but	may	be	changed
or	entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	the	BusinessAddress	property.



BusinessAddressCountry	Property
Returns	or	sets	a	String	representing	the	country/region	code	portion	of	the
business	address	for	the	contact.	Read/write.

expression.BusinessAddressCountry

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	BusinessAddress	property,	but	may	be	changed
or	entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	the	BusinessAddress	property.



BusinessAddressPostalCode	Property
Returns	or	sets	a	String	representing	the	postal	code	(zip	code)	portion	of	the
business	address	for	the	contact.	Read/write.

expression.BusinessAddressPostalCode

expression					Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	BusinessAddress	property,	but	may	be	changed
or	entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	the	BusinessAddress	property.



BusinessAddressPostOfficeBox
Property
Returns	or	sets	a	String	representing	the	post	office	box	number	portion	of	the
business	address	for	the	contact.	Read/write.

expression.BusinessAddressPostOfficeBox

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	BusinessAddress	property,	but	may	be	changed
or	entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	the	BusinessAddress	property.



BusinessAddressState	Property
Returns	or	sets	a	String	representing	the	state	code	portion	of	the	business
address	for	the	contact.	Read/write.

expression.BusinessAddressState

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	BusinessAddress	property,	but	may	be	changed
or	entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	the	BusinessAddress	property.



BusinessAddressStreet	Property
Returns	or	sets	a	String	representing	the	street	address	portion	of	the	business
address	for	the	contact.	Read/write.

expression.BusinessAddressStreet

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	BusinessAddress	property,	but	may	be	changed
or	entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	the	BusinessAddress	property.



BusinessFaxNumber	Property
Returns	or	sets	a	String	representing	the	business	fax	number	for	the	contact.
Read/write.

expression.BusinessFaxNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



BusinessHomePage	Property
Returns	or	sets	a	String	representing	the	URL	of	the	business	Web	page	for	the
contact.	Read/write.

expression.BusinessHomePage

expression				Required.	An	expression	that	returns	a	ContactItem	object.



BusinessTelephoneNumber	Property
Returns	or	sets	a	String	representing	the	first	business	telephone	number	for	the
contact.	Read/write.

expression.BusinessTelephoneNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



BusyStatus	Property
Returns	or	sets	an	OlBusyStatus	constant	indicating	the	busy	status	of	the	user
for	the	appointment.	Read/write.

OlBusyStatus	can	be	one	of	these	OlBusyStatus	constants.
olBusy
olFree
olOutOfOffice
olTentative

expression.BusyStatus

expression				Required.	An	expression	that	returns	an	AppointmentItem	object.



CallbackTelephoneNumber	Property
Returns	or	sets	a	String	representing	the	callback	telephone	number	for	the
contact.	Read/write.

expression.CallbackTelephoneNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Caption	Property
Returns	a	String	representing	the	window	caption	(title	bar	text)	of	an	explorer
or	inspector	window.	Read-only.

expression.Caption

expression				Required.	An	expression	that	returns	an	Explorer	or	Inspector
object.



CardData	Property
Returns	or	sets	a	String	representing	the	text	of	the	card	data	for	the	task.
Read/write.

expression.CardData

expression				Required.	An	expression	that	returns	a	TaskItem	object.



CarTelephoneNumber	Property
Returns	or	sets	a	String	representing	the	car	telephone	number	for	the	contact.
Read/write.

expression.CarTelephoneNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



Categories	Property
Returns	or	sets	a	String	representing	the	categories	assigned	to	the	Microsoft
Outlook	item.	Read/write.

expression.Categories

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	creates	a	new	appointment,	displays	the	appointment	on	the	screen,	and
opens	the	Show	Categories	dialog	box.	Finally,	it	displays	the	categories	that
the	user	assigned	using	ShowCategoriesDialog.	Replace	'Dan	Wilson'	with	a
valid	recipient	name	before	running	the	example.

Sub	Appointment()

'Creates	an	appointment	to	access	ShowCategoriesDialog

				Dim	appolApp	As	Outlook.Application

				Dim	olApptItem	As	Outlook.AppointmentItem

				'Creates	an	instance	of	the	application

				Set	appolApp	=	Outlook.Application

				'Creates	appointment	item

				Set	olApptItem	=	appolApp.CreateItem(olAppointmentItem)

				olApptItem.Body	=	"Please	meet	with	me	regarding	these	sales	figures."

				olApptItem.Recipients.Add	("Dan	Wilson")

				olApptItem.Subject	=	"Sales	Reports"

				'Display	the	appointment

				olApptItem.Display

				'Display	the	Show	Categories	dialog	box

				olApptItem.ShowCategoriesDialog

				MsgBox	olApptItem.Categories

End	Sub

	 	



Category	Property
Returns	or	sets	a	String	representing	the	category	assigned	to	the	form
description.	Read/write.

expression.Category

expression					Required.	An	expression	that	returns	a	FormDescription	object.



CategorySub	Property
Returns	or	sets	a	String	representing	the	subcategory	assigned	to	the	form
description.	Read/write.

expression.CategorySub

expression					Required.	An	expression	that	returns	a	FormDescription	object.



CC	Property
Returns	a	String	representing	the	display	list	of	carbon	copy	(CC)	names	for	a
MailItem.	This	property	contains	the	display	names	only.	The	Recipients
collection	should	be	used	to	modify	the	CC	recipients.	Read/write.

expression.CC

expression					Required.	An	expression	that	returns	a	MailItem	object.



Children	Property
Returns	or	sets	a	String	representing	the	names	of	the	children	of	the	contact.
Read/write.

expression.Children

expression					Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



Class	Property
Returns	an	OlObjectClass	constant	indicating	the	object's	class.	Read-only.

OlObjectClass	can	be	one	of	these	OlObjectClass	constants.
olAction
olActions
olAddressEntries
olAddressEntry
olAddressList
olAddressLists
olApplication
olAppointment
olAttachment
olAttachments
olAutoFormatRule
olAutoFormatRules
olCalendarViewField
olCalendarViewFields
olCardViewField
olCardViewFields
olClassCalendarView
olClassCardView
olClassIconView
olClassTableView
olClassTimelineView
olConflict
olConflicts
olContact
olDistributionList
olDocument
olException



olExceptions
olExplorer
olExplorers
olFolder
olFolders
olFormDescription
olIconViewField
olIconViewFields
olInspector
olInspectors
olItemProperties
olItemProperty
olItems
olJournal
olLink
olLinks
olMail
olMeetingCancellation
olMeetingRequest
olMeetingResponseNegative
olMeetingResponsePositive
olMeetingResponseTentative
olNamespace
olNote
olObjects
olOutlookBarGroup
olOutlookBarGroups
olOutlookBarPane
olOutlookBarShortcut
olOutlookBarShortcuts
olOutlookBarStorage
olPages
olPanes



olPost
olPropertyPages
olPropertyPageSite
olRecipient
olRecipients
olRecurrencePattern
olRemote
olReport
olResults
olSearch
olSelection
olSyncObject
olSyncObjects
olTableViewField
olTableViewFields
olTask
olTaskRequest
olTaskRequestAccept
olTaskRequestDecline
olTaskRequestUpdate
olTimelineViewField
olTimelineViewFields
olUserProperties
olUserProperty
olViews

expression.Class

expression				Required.	An	expression	that	returns	a	Microsoft	Outlook	object.





Color	Property
Returns	or	sets	a	Long	indicating	the	color	of	the	note.	Can	be	one	of	the
following	OlNoteColor	constants:	olBlue,	olGreen,	olPink,	olWhite,	or
olYellow.	Read/write.

objNoteItem.Color

objNoteItem					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	NoteItem				and	sets	the	color	to	blue.

Sub	CreatePersonalNote()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myItem	As	Outlook.NoteItem

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	myOlApp.CreateItem(olNoteItem)

	 myItem.Color	=	olBlue

	 myItem.Display

End	Sub

	 	

If	you	use	VBScript,	you	do	not	create	the	Application	object,	and	you	cannot
use	named	constants.	This	example	shows	how	to	use	the	Color	property	using
VBScript.

Set	myItem	=	Application.CreateItem(5)

myItem.Color	=	0

	 	



COMAddIns	Property
Returns	a	COMAddIns	collection	that	represents	all	the	Component	Object
Model	(COM)	add-ins	currently	loaded	in	Microsoft	Outlook.

expression.COMAddIns

expression				Required.	An	expression	that	returns	an	Application	object.



Example

This	Microsoft	Visual	Basic	for	Applications	(VBA)	example	displays	the
number	of	COM	add-ins	currently	loaded.

Dim	myOlApp	As	New	Outlook.Application

Private	Sub	CountCOMAddins()

				MsgBox	"There	are	"	&	_

								myOlApp.COMAddIns.Count	&	"	COM	add-ins."

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	declare	an	Application	object	variable.	This	example
shows	how	to	perform	the	same	task	using	VBScript	code	in	an	Outlook	form.

Sub	Commandbutton1_Click()

				MsgBox	"There	are	"	&	_

							Application.COMAddIns.Count	&	"	COM	add-ins."

End	Sub

	 	



CommandBars	Property
Returns	a	CommandBars	collection	object	that	represents	all	the	menus	and
toolbars	in	the	Explorer	or	Inspector.

expression.CommandBars

expression					Required.	An	expression	that	returns	an	Explorer	or	Inspector
object.



Comment	Property
Returns	or	sets	a	String	representing	the	text	of	a	comment	assigned	to	the	form
description.	Read/write.

expression.Comment

expression					Required.	An	expression	that	returns	a	FormDescription	object.



Show	All



Companies	Property
Returns	or	sets	a	String	representing	the	names	of	the	companies	associated	with
the	Microsoft	Outlook	item.	This	is	a	free-form	text	field.	Read/write.

expression.Companies

expression	Required.	An	expression	that	returns	one	of	the	objects	in	the	Applies
To	list.



CompanyAndFullName	Property
Returns	a	String	representing	the	concatenated	company	name	and	full	name	for
the	contact.	Read-only.

expression.CompanyAndFullName

expression				Required.	An	expression	that	returns	a	ContactItem	object.



CompanyLastFirstNoSpace	Property
Returns	a	String	representing	the	company	name	for	the	contact	followed	by	the
concatenated	last	name,	first	name,	and	middle	name	with	no	space	between	the
last	and	first	names.	This	property	is	parsed	from	the	CompanyName,
LastName,	FirstName	and	MiddleName	properties.	Read-only.

Note		The	LastName,	FirstName,	and	MiddleName	properties	are	themselves
parsed	from	the	FullName	property.

expression.CompanyLastFirstNoSpace

expression				Required.	An	expression	that	returns	a	ContactItem	object.

Note		The	value	of	this	property	is	only	filled	when	its	associated	property
(FirstName,	LastName,	MiddleName,	CompanyName,	and	Suffix)	contain
Asian	(DBCS)	characters.	If	the	corresponding	field	does	not	contain	Asian
characters,	the	property	will	be	empty.



CompanyLastFirstSpaceOnly
Property
Returns	a	String	representing	the	company	name	for	the	contact	followed	by	the
concatenated	last	name,	first	name,	and	middle	name	with	spaces	between	the
last,	first,	and	middle	names.	This	property	is	parsed	from	the	CompanyName,
LastName,	FirstName	and	MiddleName	properties.	Read-only.

Note		The	LastName,	FirstName,	and	MiddleName	properties	are	themselves
parsed	from	the	FullName	property.

expression.CompanyLastFirstSpaceOnly

expression				Required.	An	expression	that	returns	a	ContactItem	object.

Note		The	value	of	this	property	is	only	filled	when	its	associated	property
(FirstName,	LastName,	MiddleName,	CompanyName,	and	Suffix)	contain
Asian	(DBCS)	characters.	If	the	corresponding	field	does	not	contain	Asian
characters,	the	property	will	be	empty.



CompanyMainTelephoneNumber
Property
Returns	or	sets	a	String	representing	the	company	main	telephone	number	for
the	contact.	Read/write.

expression.CompanyMainTelephoneNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



CompanyName	Property
Returns	or	sets	a	String	representing	the	company	name	for	the	contact.
Read/write.

expression.CompanyName

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Complete	Property
True	if	the	task	is	completed.	Read/write	Boolean.

expression.Complete

expression				Required.	An	expression	that	returns	a	TaskItem	object.



ComputerNetworkName	Property
Returns	or	sets	a	String	representing	the	name	of	the	computer	network	for	the
contact.	Read/write.

expression.ComputerNetworkName

expression				Required.	An	expression	that	returns	a	ContactItem	object.



ConferenceServerAllowExternal
Property
Reserved	for	future	use.



ConferenceServerPassword	Property
Reserved	for	future	use.



Conflicts	Property
Return	the	Conflicts	object	that	represents	the	items	that	are	in	conflict	for	any
Microsoft	Outlook	item	object.	Read-only.

expression.Conflicts

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example	uses	the
Count	property	of	the	Conflicts	object	to	determine	if	the	item	is	involved	in
any	conflict.	To	run	this	example,	make	sure	a	mail	item	is	open	in	the	active
window.

Sub	CheckConflicts()

	Dim	myOlApp	As	Outlook.Application

	Dim	myItem	As	Outlook.MailItem

	Dim	myConflicts	As	Outlook.Conflicts

	Set	myOlApp	=	CreateObject("Outlook.Application")

	Set	myItem	=	myOlApp.ActiveInspector.CurrentItem

	Set	myConflicts	=	myItem.Conflicts

	If	(myConflicts.Count	>	0)	Then

													MsgBox	("This	item	is	involved	in	a	conflict.")

	Else

													MsgBox	("This	item	is	not	involved	in	any	conflicts.")

	End	If

End	Sub



ContactName	Property
Returns	or	sets	a	String	representing	the	name	of	the	person	to	contact	for
information	regarding	the	custom	form	for	this	FormDescription	object.
Read/write.

expression.ContactName

expression				Required.	An	expression	that	returns	a	FormDescription	object.



ContactNames	Property
Sets	or	returns	a	String	representing	the	contact	names	associated	with	the	task
item	or	journal	entry.	Read/write.

expression.ContactNames

expression				Required.	An	expression	that	returns	a	JournalItem	or	TaskItem
object.



Remarks

If	a	program	tries	to	reference	any	type	of	recipient	information	by	using	the
Outlook	object	model,	a	dialog	box	is	displayed	that	asks	you	to	confirm	access
to	this	information.	You	can	allow	access	to	the	Address	Book	or	recipient
information	for	up	to	ten	minutes	after	you	receive	the	dialog	box.	This	allows
features,	such	as	mobile	device	synchronization,	to	be	completed.

You	receive	the	confirmation	dialog	box	when	a	solution	tries	to
programmatically	access	the	ContactNames	property.



Show	All



Contents	Property
Returns	the	OutlookBarStorage	object	for	the	specified	Outlook	Bar	pane.

expression.Contents

expression				Required.	An	expression	that	returns	an	OutlookBarPane	object.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	example	displays	a
message	listing	the	groups	in	the	Outlook	Bar.

Dim	myOlApp	As	New	Outlook.Application

Dim	myOlBar	As	Outlook.OutlookBarPane

Dim	myOlGroups	As	Outlook.OutlookBarGroups

myMsg	=	"The	groups	in	the	Outlook	Bar	are:"

Set	myOlBar	=	myOlApp.ActiveExplorer.Panes.Item("OutlookBar")

Set	myOlGroups	=	myOlBar.Contents.Groups

For	x	=	1	To	myOlGroups.Count

				myMsg	=	myMsg	&	Chr(13)	&	myOlGroups.Item(x)

Next	x

MsgBox	myMsg

	 	

If	you	use	VBScript,	you	do	not	create	the	Application	object.	This	example
shows	how	to	perform	the	same	task	using	VBScript.

myMsg	=	"The	groups	in	the	Outlook	Bar	are:"

Set	myOlBar	=	Application.ActiveExplorer.Panes.Item("OutlookBar")

Set	myOlGroups	=	myOlBar.Contents.Groups

For	x	=	1	To	myOlGroups.Count

				myMsg	=	myMsg	&	Chr(13)	&	myOlGroups.Item(x)

Next	

MsgBox	myMsg

	 	



Show	All



ConversationIndex	Property
Returns	a	String	representing	the	index	of	the	conversation	thread	of	the	item.
Read-only.

expression.ConversationIndex

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Show	All



ConversationTopic	Property
Returns	a	String	representing	the	topic	of	the	conversation	thread	of	the	item.
Read-only.

expression.ConversationTopic

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Show	All



CopyLike	Property
Returns	or	sets	an	OlActionCopyLike	constant	indicating	the	property
inheritance	style	to	use	for	the	action.	The	inheritance	style	is	used	when	the
action	is	executed	to	control	how	properties	are	copied	to	the	new	item	created
by	the	action.	Read/write.

OlActionCopyLike	can	be	one	of	these	OlActionCopyLike	constants.
olForward
olReply
olReplyAll
olReplyFolder
olRespond

expression.Copy

expression				Required.	An	expression	that	returns	an	Action	object.



Count	Property
Returns	a	Long	indicating	the	count	of	objects	in	the	specified	collection.	Read-
only.

expression.Count

expression					Required.	An	expression	that	returns	a	Microsoft	Outlook
collection	object.



Show	All



CreationTime	Property
Returns	a	Date	indicating	the	creation	time	for	the	Outlook	item.	This	property
corresponds	to	the	MAPI	property	PR_CREATION_TIME.	Read-only.

expression.CreationTime

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



CurrentFolder	Property
Returns	or	sets	a	MAPIFolder	object	that	represents	the	current	folder	displayed
in	the	explorer.	Use	this	property	to	change	the	folder	the	user	is	viewing.

expression.CurrentFolder

expression					Required.	An	expression	that	returns	an	Explorer	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	CurrentFolder
property	to	change	the	displayed	folder	to	the	user's	Calendar	folder.

Sub	ChangeCurrentFolder()

	 Dim	myolApp	As	Outlook.Application

	 Dim	myNamespace	As	Outlook.NameSpace

	 Set	myolApp	=	CreateObject("Outlook.Application")

	 Set	myNamespace	=	myolApp.GetNamespace("MAPI")

	 Set	myolApp.ActiveExplorer.CurrentFolder	=	_

	 myNamespace.GetDefaultFolder(olFolderCalendar)

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myNameSpace	=	Application.GetNameSpace("MAPI")

Set	Application.ActiveExplorer.CurrentFolder	=	_

				myNameSpace.GetDefaultFolder(9)

	 	



Show	All



CurrentGroup	Property
With	the	new	Navigation	Pane	and	Shortcuts	pane	in	Microsoft	Office
Outlook	2003,	this	property	does	not	have	any	use	in	Office	Outlook	2003.



Show	All



CurrentItem	Property
Returns	an	Object	representing	the	current	item	being	displayed	in	the	inspector.

Note		If	no	item	is	currently	open,	an	error	message	will	be	returned.

expression.CurrentItem

expression					Required.	An	expression	that	returns	an	Inspector	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	CurrentItem
property	to	obtain	the	current	item	that	the	user	is	viewing	and	closes	it.	If	no
item	is	currently	open,	an	error	message	will	be	returned.

Sub	CloseItem()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myItem	As	Object

	 Set	myItem	=	myOlApp.ActiveInspector.CurrentItem

	 myItem.Close	olSave

End	Sub

	 	



CurrentUser	Property
Returns	the	display	name	of	the	currently	logged-on	user	as	a	Recipient	object.
Read-only.

expression.CurrentUser

expression					Required.	An	expression	that	returns	a	NameSpace	object.



Remarks

Outlook	blocks	code	that	attempts	to	access	the	CurrentUser	property	for
security	reasons.	If	you	run	a	third-party	add-in,	custom	solution,	or	other
program	that	uses	the	CurrentUser	property	in	Office	Outlook	2003,	you	may
receive	the	following	warning:

A	program	is	trying	to	access	e-mail	addresses	you	have	stored	in	Outlook.	Do
you	want	to	allow	this?	If	this	is	unexpected,	it	may	be	a	virus	and	you	should
choose	"No".



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	CurrentUser
property	to	obtain	the	name	of	the	currently	logged-on	user	and	then	displays	a
message	box	containing	the	name.

Sub	DisplayCurrentUser()

	 Dim	myolApp	As	Outlook.Application

	 Dim	myNamespace	As	Outlook.NameSpace

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myNameSpace	=	myOlApp.GetNameSpace("MAPI")

	 MsgBox	myNameSpace.CurrentUser

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object.	This	example	shows
how	to	perform	the	same	task	using	VBScript	code.

Sub	CommandButton1_Click()

	Set	myNameSpace	=	Application.GetNameSpace("MAPI")

	MsgBox	myNameSpace.CurrentUser

End	Sub

	 	



Show	All



CurrentView	Property
Returns	or	sets	a	View	object	(for	the	MAPIFolder	object)	or	Variant	(for	the
Explorer	object)	representing	the	current	view.	Read-only	for	the	MAPIFolder
object.	Read/write	for	the	Explorer	object.

expression.CurrentView

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

When	this	property	is	set,	two	events	occur:	BeforeViewSwitch	occurs	before
the	actual	view	change	takes	place	and	can	be	used	to	cancel	the	change	and
ViewSwitch	takes	place	after	the	change	is	effective.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	sets	the	current
view	in	the	active	explorer	to	messages	if	the	Inbox	is	displayed.

Sub	ChangeCurrentView()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myOlExp	As	Outlook.Explorer

	 Set	myOlExp	=	myOlApp.ActiveExplorer

	 If	myOlExp.CurrentFolder	=	"Inbox"	Then

	 	 myOlExp.CurrentView	=	"Messages"

	 End	If

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object.	This	example	shows
how	to	perform	the	same	task	using	VBScript	code.

Sub	CommandButton1_Click()

			Application.ActiveExplorer.CurrentView	=	"Messages"

End	Sub

	 	

The	following	VBA	example	displays	the	current	view	of	the	Inbox	folder.

Sub	TestMAPIFolderCurrentView()

				Dim	nsp	As	Outlook.NameSpace

				Dim	mpFolder	As	Outlook.MAPIFolder

				Dim	vw	As	Outlook.View

				Dim	strView	As	String

				

				Set	nsp	=	Application.Session

				Set	mpFolder	=	nsp.GetDefaultFolder(olFolderInbox)

				Set	vw	=	mpFolder.CurrentView

				MsgBox	"The	Current	View	is:	"	&	vw.Name

				

End	Sub





CustomerID	Property
Returns	or	sets	a	String	representing	the	customer	ID	for	the	contact.
Read/write.

objContactItem.CustomerID

objContactItem					Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



CustomViewsOnly	Property
Returns	or	sets	a	Boolean	that	determines	which	views	are	displayed	on	the
View	menu	for	a	given	folder.	If	set	to	the	True,	only	user-created	views	will
appear	on	the	menu.	Read/write.

expression.CustomViewsOnly

expression				Required.	An	expression	that	returns	a	MAPIFolder	object.



Remarks

This	property	has	an	effect	only	on	the	View	menu.	It	does	not	affect	the	display
of	views	in	the	Navigation	Pane.



Example

The	following	example	prompts	the	user	to	select	a	view	option.	If	the	user
chooses	to	view	all	views,	the	CustomViewsOnly	property	is	set	to	False.	If	the
user	chooses	to	view	only	custom	views,	the	CustomViewsOnly	property	is	set
to	True.	Once	the	property	is	changed,	the	outcome	of	the	change	can	be	seen	in
the	user	interface.

Sub	SetCusView()

'Sets	the	CustomViewsOnly	property	depending	on	the	user's	response

				Dim	olApp	As	Outlook.Application

				Dim	nmsName	As	Outlook.NameSpace

				Dim	fldFolder	As	Outlook.MAPIFolder

				Dim	lngAns	As	Long

				Set	olApp	=	New	Outlook.Application

				Set	nmsName	=	olApp.GetNamespace("MAPI")

				Set	fldFolder	=	nmsName.GetDefaultFolder(olFolderInbox)

				'Prompt	user	for	input

				lngAns	=	MsgBox("Would	you	like	to	view	only	custom	views	in	the	View	menu?",	vbYesNo)

				Call	SetVal(fldFolder,	lngAns)

End	Sub

Sub	SetVal(ByRef	fldFolder	As	MAPIFolder,	ByVal	lngAns	As	Long)

'Modifies	the	CustomViewsOnly	property	to	display	views	on	the	View	menu

				If	lngAns	=	vbYes	Then

								fldFolder.CustomViewsOnly	=	True

				Else

								fldFolder.CustomViewsOnly	=	False

				End	If

				'Display	only	custom	views

				If	lngAns	=	vbYes	Then

							MsgBox	"The	View	menu	for	the	"	&	fldFolder.Name	&	"	folder	will	now	display	only	custom	views."

				'Display	all	views

				Else

							MsgBox	"The	View	menu	for	the	"	&	fldFolder.Name	&	"	folder	will	now	display	all	views."

				End	If

End	Sub



	 	



DateCompleted	Property
Returns	or	sets	a	Date	indicating	the	completion	date	of	the	task.	Read/write.

expression.DateCompleted

expression					Required.	An	expression	that	returns	a	TaskItem	object.



DayOfMonth	Property
Returns	or	sets	a	Long	indicating	the	day	of	the	month	on	which	the	recurring
appointment	or	task	occurs.	Read/write.

expression.DayOfMonth

expression					Required.	An	expression	that	returns	a	RecurrencePattern	object.



Show	All



DayOfWeekMask	Property
Returns	or	sets	an	OlDaysOfWeek	constant	representing	the	mask	for	the	days
of	the	week	on	which	the	recurring	appointment	or	task	occurs.	Monthly	and
yearly	patterns	are	only	valid	for	a	single	day.	Weekly	patterns	are	only	valid	as
the	Or	of	the	DayOfWeekMask.	Read/write.

OlDaysOfWeek	can	be	one	of	these	OlDaysOfWeek	constants.
olFriday
olMonday
olSaturday
olSunday
olThursday
olTuesday
olWednesday

expression.DayOfWeekMask

expression					Required.	An	expression	that	returns	a	RecurrencePattern	object.



Example

This	Visual	Basic	for	Applications	example	uses	GetRecurrencePattern	to
obtain	the	RecurrencePattern	object	for	the	newly-created	AppointmentItem.
The	properties,	RecurrenceType,	DayOfWeekMask	,	PatternStartDate,
Interval,	PatternEndDate,	and	Subject	are	set,	the	appointment	is	saved	and
then	displayed	with	the	pattern:	"Occurs	every	3	week(s)	on	Monday	effective
1/21/98	until	12/21/2001	from	2:00	PM	to	5:00	PM."

Sub	CreateAppointment()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myApptItem	As	AppointmentItem

	 Dim	myRecurrPatt	As	RecurrencePattern

	 Set	myOlApp	=	New	outlook.Application

	 Set	myApptItem	=	myOlApp.CreateItem(olAppointmentItem)

	 Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

	 myRecurrPatt.RecurrenceType	=	olRecursWeekly

	 myRecurrPatt.DayOfWeekMask	=	olMonday

	 myRecurrPatt.PatternStartDate	=	#1/21/1998	2:00:00	PM#

	 myRecurrPatt.Interval	=	3

	 myRecurrPatt.PatternEndDate	=	#12/21/2001	5:00:00	PM#

	 myApptItem.Subject	=	"Important	Appointment"

	 myApptItem.Save

	 myApptItem.Display

End	Sub

	 	

If	you	use	VBScript,	you	do	not	create	the	Application	object,	and	you	cannot
use	named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript.

Set	myApptItem	=	Application.CreateItem(1)

Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

myRecurrPatt.RecurrenceType	=	1

myRecurrPatt.DayOfWeekMask	=	2

myRecurrPatt.PatternStartDate	=	#1/21/98	2:00:00	PM#

myRecurrPatt.Interval	=	3

myRecurrPatt.PatternEndDate	=	#12/21/2001	5:00:00	PM#

myApptItem.Subject	=	"Important	Appointment"

myApptItem.Save

myApptItem.Display

	 	





Show	All



DefaultItemType	Property
Returns	an	OlItemType	constant	indicating	the	default	Outlook	item	type
contained	in	the	folder.	Read/write	for	the	Results	object;	read-only	for	the
MAPIFolder	object.

OlItemType	can	be	one	of	these	OlItemType	constants.
olAppointmentItem
olContactItem
olDistributionListItem
olJournalItem
olMailItem
olNoteItem
olPostItem
olTaskItem

expression.DefaultItemType

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



DefaultMessageClass	Property
Returns	a	String	representing	the	default	message	class	for	items	in	the	folder.
Read-only.

expression.DefaultMessageClass

expression					Required.	An	expression	that	returns	a	MAPIFolder	object.



DeferredDeliveryTime	Property
Returns	or	sets	a	Date	indicating	the	date	and	time	the	mail	message	is	to	be
delivered.	This	property	corresponds	to	the	MAPI	property
PR_DEFERRED_DELIVERY_TIME.	Read/write.

expression.DeferredDeliveryTime

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Show	All



DelegationState	Property
Returns	an	OlTaskDelegationState	constant	indicating	the	delegation	state	of
the	task.	Read-only.

OlTaskDelegationState	can	be	one	of	these	OlTaskDelegationState	constants.
olTaskDelegationAccepted
olTaskDelegationDeclined
olTaskDelegationUnknown
olTaskNotDelegated

expression.DelegationState

expression					Required.	An	expression	that	returns	a	TaskItem	object.



Delegator	Property
Returns	a	String	representing	the	display	name	of	the	delegator	for	the	task.
Read-only.

expression.Delegator

expression					Required.	An	expression	that	returns	a	TaskItem	object.



DeleteAfterSubmit	Property
True	if	a	copy	of	the	mail	message	is	not	saved	upon	being	sent.	False	if	a	copy
is	saved.	Read/write	Boolean.

expression.DeleteAfterSubmit

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Deleted	Property
Indicates	that	the	appointment	became	an	exception	because	it	was	deleted	from
the	recurring	pattern.	The	Deleted	property	is	True	if	the	AppointmentItem
was	deleted.	Read-only	Boolean.

expression.Deleted

expression				Required.	An	expression	that	returns	an	Exception	object.



Department	Property
Returns	or	sets	a	String	representing	the	department	name	for	the	contact.
Read/write.

expression.Department

expression					Required.	An	expression	that	returns	a	ContactItem	object.



Description	Property
Returns	or	sets	a	String	representing	the	description	of	the	folder.	This	property
corresponds	to	the	MAPI	property	PR_COMMENT.	Read/write.

expression.Description

expression					Required.	An	expression	that	returns	a	MAPIFolder	object.



Dirty	Property
Returns	True	if	the	contents	of	a	custom	property	page	have	been	altered.	The
ActiveX	control	that	implements	the	PropertyPage	object	sets	the	value	of	this
property,	and	Microsoft	Outlook	queries	this	in	response	to	the
OnStatusChange	method	of	a	PropertyPageSite	object.	Read-only	Boolean.

expression.Dirty

expression				Required.	An	expression	that	returns	a	PropertyPage	object.



Example

This	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example	returns	the
value	of	the	Dirty	property	as	the	value	of	a	global	variable.

Private	Property	Get	PropertyPage_Dirty()	As	Boolean

				PropertyPage_Dirty	=	globDirty

End	Property

	 	



DisplayName	Property
For	the	Attachment	object:

Returns	or	sets	a	String	representing	the	name,	which	does	not	need	to	be	the
actual	file	name,	displayed	below	the	icon	representing	the	embedded
attachment.	This	property	corresponds	to	the	MAPI	property
PR_DISPLAY_NAME.	Read/write.

For	the	FormDescription	object:

Returns	or	sets	a	String	representing	the	name	of	the	form,	which	is	displayed	in
the	Choose	Forms	dialog	box.	If	both	the	FormDescription.Name	and
FormDescription.DisplayName	properties	are	empty,	setting	one	will	set	the
other.	If	one	has	been	previously	set,	setting	the	other	will	not	change	the	value.
Read/write.

expression.DisplayName

expression					Required.	An	expression	that	returns	an	Attachment	or
FormDescription	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	SaveAsFile	method
to	save	the	first	attachment	of	the	currently	open	item	as	a	file	in	the	C:\	folder,
using	the	attachment's	display	name	as	the	file	name.

Sub	SaveAttachment()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myInspector	As	Outlook.Inspector

	 Dim	myItem	As	Outlook.MailItem

	 Dim	myAttachments	As	Outlook.Attachments

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myInspector	=	myOlApp.ActiveInspector

	 If	Not	TypeName(myInspector)	=	"Nothing"	Then

	 	 If	TypeName(myInspector.CurrentItem)	=	"MailItem"	Then

	 	 	 Set	myItem	=	myInspector.CurrentItem

	 	 	 Set	myAttachments	=	myItem.Attachments

	 	 	 'Prompt	the	user	for	confirmation

	 	 	 Dim	strPrompt	As	String

	 	 	 strPrompt	=	"Are	you	sure	you	want	to	save	the	first	attachment	in	the	current	item	to	the	C:\	folder?	If	a	file	with	the	same	name	already	exists	in	the	destination	folder,	it	will	be	overwritten	with	this	copy	of	the	file."

	 	 	 If	MsgBox(strPrompt,	vbYesNo	+	vbQuestion)	=	vbYes	Then

	 	 	 	 myAttachments.Item(1).SaveAsFile	"C:\"	&	_

	 	 	 	 myAttachments.Item(1).DisplayName

	 	 	 End	If

	 	 Else

	 	 	 MsgBox	"The	item	is	of	the	wrong	type."

	 	 End	If

	 End	If

End	Sub

		

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object.	This	example	shows
how	to	perform	the	same	task	using	VBScript	code.

Set	myAttachments	=	Item.attachments

	 	 'Prompt	the	user	for	confirmation

	 	 Dim	strPrompt

	 	 strPrompt	=	"Are	you	sure	you	want	to	save	the	first	attachment	in	the	current	item	to	the	C:\	folder?	If	a	file	with	the	same	name	already	exists	in	the	destination	folder,	it	will	be	overwritten	with	this	copy	of	the	file."

	 	 If	MsgBox(strPrompt,	vbYesNo	+	vbQuestion)	=	vbYes	Then

	 	 	 myAttachments.Item(1).SaveAsFile	"C:\"	&	_

	 	 	 myAttachments.Item(1).DisplayName

	 	 End	If

	 	





Show	All



DisplayType	Property
Returns	an	OlDisplayType	constant	that	describes	the	nature	of	the	recipient.
Read-only.

OlDisplayType	can	be	one	of	these	OlDisplayType	constants.
olAgent
olDistList
olForum
olOrganization
olPrivateDistList
olRemoteUser
olUser

You	can	use	the	DisplayType	property	to	filter	recipients.	The	DisplayType
property	corresponds	to	the	MAPI	property	PR_DISPLAY_TYPE.

expression.DisplayType

expression				Required.	An	expression	that	returns	an	AddressEntry	or
Recipient	object.



DLName	Property
Returns	or	sets	a	String	representing	the	display	name	of	a	distribution	list.
Read/write.

expression.DLName

expression				Required.	An	expression	that	returns	a	DistListItem	object.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
creates	a	new	distribution	list	and	then	prompts	the	user	for	a	name.

Sub	CreateDL()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myDistList	As	Outlook.DistListItem

	 Set	myDistList	=	myOlApp.CreateItem(olDistributionListItem)

	 myDistList.DLName	=	InputBox("Type	the	name	of	the	new	distribution	list.")

	 myDistList.Save

	 myDistList.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myDistList	=	Application.CreateItem(7)

myDistList.DLName	=	_

				InputBox("Type	the	name	of	the	new	distribution	list.")

myDistList.Save

myDistList.Display

	 	



Show	All



DocPosted	Property
True	if	the	journalized	item	was	posted	as	part	of	the	journalized	session.
Read/write	Boolean.

expression.DocPosted

expression					Required.	An	expression	that	returns	a	JournalItem	object.



Show	All



DocPrinted	Property
True	if	the	journalized	item	was	printed	as	part	of	the	journalized	session.
Read/write	Boolean.

expression.DocPrinted

expression					Required.	An	expression	that	returns	a	JournalItem	object.



Show	All



DocRouted	Property
True	if	the	journalized	item	was	routed	as	part	of	the	journalized	session.
Read/write	Boolean.

expression.DocRouted

expression					Required.	An	expression	that	returns	a	JournalItem	object.



Show	All



DocSaved	Property
True	if	the	journalized	item	was	saved	as	part	of	the	journalized	session.
Read/write	Boolean.

expression.DocSaved

expression					Required.	An	expression	that	returns	a	JournalItem	object.



Show	All



DownloadState	Property
Returns	an	OlDownloadState	constant	indicating	the	download	state	of	the
item.	Read-only	OlDownloadState.

OlDownloadState	can	be	one	of	these	OlDownloadState	constants.
olFullItem	The	entire	item	has	been	downloaded.
olHeaderOnly	Only	the	header	has	been	downloaded.

expression.DownloadState

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	searches	through	the	user's	Inbox	for	items	that	have	not	yet	been	fully
downloaded.	If	any	not	yet	fully	downloaded	items	are	found,	a	message	is
displayed	to	the	user,	and	the	item	is	marked	for	download.

Sub	DownloadItems()

				Dim	outApp	As	Outlook.Application

				Dim	mpfInbox	As	Outlook.MAPIFolder

				Dim	objItems	As	Outlook.Items

				Dim	obj	As	Object

				Dim	i	As	Integer

				Dim	iCount	As	Integer

				Set	outApp	=	CreateObject("Outlook.Application")

				Set	mpfInbox	=	outApp.GetNamespace("MAPI").GetDefaultFolder(olFolderInbox)

				

				Set	objItems	=	mpfInbox.Items

				iCount	=	objItems.Count

				'Loop	all	items	in	the	Inbox	folder

				For	i	=	1	To	iCount

								Set	obj	=	objItems.Item(i)

								'Verify	if	the	state	of	the	item	is	olHeaderOnly

								If	obj.DownloadState	=	olHeaderOnly	Then

												MsgBox	"This	item	has	not	been	fully	downloaded."

												'Mark	the	item	to	be	downloaded

												obj.MarkForDownload	=	olMarkedForDownload

												obj.Save

								End	If

				Next

End	Sub

	 	



DueDate	Property
Returns	or	sets	a	Date	indicating	the	due	date	for	the	task.	Read/write.

expression.DueDate

expression					Required.	An	expression	that	returns	a	TaskItem	object.



Duration	Property
Returns	or	sets	a	Long	indicating	the	duration	(in	minutes)	of	the	appointment,
journal	entry,	or	recurrence	pattern.	For	recurrences,	this	property	is	only	valid
for	appointments.	Read/write.

expression.Duration

expression					Required.	An	expression	that	returns	an	AppointmentItem,
RecurrencePattern,	or	JournalItem	object.



Example

This	Visual	Basic	for	Applications	example	uses	CreateItem	to	create	an
appointment	and	uses	MeetingStatus	to	set	the	meeting	status	to	"Meeting"	to
turn	it	into	a	meeting	request	with	both	a	required	and	an	optional	attendee.

Sub	ScheduleMeeting()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myItem	as	AppointmentItem

	 Dim	myRequiredAttendee	As	Recipient

	 Dim	myOptionalAttendee	As	Recipient

	 Dim	myResourceAttendee	As	Recipient

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	myOlApp.CreateItem(olAppointmentItem)

	 myItem.MeetingStatus	=	olMeeting

	 myItem.Subject	=	"Strategy	Meeting"

	 myItem.Location	=	"Conference	Room	B"

	 myItem.Start	=	#9/24/2002	1:30:00	PM#

	 myItem.Duration	=	90

	 Set	myRequiredAttendee	=	myItem.Recipients.Add	("Nate	Sun")

	 myRequiredAttendee.Type	=	olRequired

	 Set	myOptionalAttendee	=	myItem.Recipients.Add	("Kevin	Kennedy")

	 myOptionalAttendee.Type	=	olOptional

	 Set	myResourceAttendee	=	myItem.Recipients.Add("Conference	Room	B")

	 myResourceAttendee.Type	=	olResource

	 myItem.Send

End	Sub

	 	

If	you	use	VBScript,	you	do	not	create	the	Application	object,	and	you	cannot
use	named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript.

Set	myItem	=	Application.CreateItem(1)

myItem.MeetingStatus	=	1

myItem.Subject	=	"Strategy	Meeting"

myItem.Location	=	"Conference	Room	B"

myItem.Start	=	#9/24/97	1:30:00	PM#

myItem.Duration	=	90

Set	myRequiredAttendee	=	myItem.Recipients.Add	("Nate	Sun")

myRequiredAttendee.Type	=	1

Set	myOptionalAttendee	=	myItem.Recipients.Add	("Kevin	Kennedy")

myOptionalAttendee.Type	=	2

Set	myResourceAttendee	=	myItem.Recipients.Add("Conference	Room	B")

myResourceAttendee.Type	=	3



myItem.Send

	 	



Show	All



EditorType	Property
Returns	an	OlEditorType	constant	indicating	the	type	of	editor.	Read-only.

OlEditorType	can	be	one	of	these	OlEditorType	constants.
olEditorHTML
olEditorRTF
olEditorText
olEditorWord

expression.EditorType

expression				Required.	An	expression	that	returns	an	Inspector	object.



Example

This	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	example	uses	the
Open	event	to	access	the	HTMLBody	property	of	an	item.	This	sets	the
EditorType	property	of	the	item’s	Inspector	to	olEditorHTML.	When	the
item's	Body	property	is	set,	the	EditorType	property	is	changed	to	the	default.
For	example,	if	the	default	editor	is	set	to	RTF,	the	EditorType	is	set	to
olEditorRTF.

If	this	code	is	placed	in	the	Script	Editor	of	a	form	in	design	mode,	the	message
boxes	during	run	time	will	reflect	the	change	in	the	EditorType	as	the	body	of
the	form	changes.	The	final	message	box	utilizes	the	ScriptText	property	to
display	all	the	VBScript	code	in	the	Script	Editor.

Function	Item_Open()

				'Set	the	HTMLBody	of	the	item.

				Item.HTMLBody	=	"<HTML><H2>My	HTML	page.</H2><BODY>My	body.</BODY></HTML>"

				'Item	displays	HTML	message.

				Item.Display

				'MsgBox	shows	EditorType	is	2.

				MsgBox	"HTMLBody	EditorType	is	"	&	Item.GetInspector.EditorType

				'Access	the	Body	and	show

				'the	text	of	the	Body.

				MsgBox	"This	is	the	Body:	"	&	Item.Body

				'After	accessing,	EditorType

				'is	still	2.

				MsgBox	"After	accessing,	the	EditorType	is	"	&	Item.GetInspector.

				'Set	the	item's	Body	property.

				Item.Body	=	"Back	to	default	body."

				'After	setting,	EditorType	is

				'now	back	to	the	default.

				MsgBox	"After	setting,	the	EditorType	is	"	&	Item.GetInspector.EditorType

				'Access	the	items's

				'FormDescription	object.

				Set	myForm	=	Item.FormDescription

				'Display	all	the	code

				'in	the	Script	Editor.

				MsgBox	myForm.ScriptText

End	Function

	 	





Email1Address	Property
Returns	or	sets	a	String	representing	the	e-mail	address	of	the	first	e-mail	entry
for	the	contact.	Read/write.

expression.Email1Address

expression					Required.	An	expression	that	returns	a	ContactItem	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	sets
"someone@example.com"	as	the	e-mail	address	for	the	first	e-mail	entry	of	a
contact.

Sub	CreatePeerContact()

				Dim	myOlApp	As	Outlook.Application

				Dim	myItem	As	Outlook.ContactItem

				Set	myOlApp	=	CreateObject("Outlook.Application")

				Set	myItem	=	myOlApp.CreateItem(olContactItem)

				myItem.Email1Address	=	"someone@example.com"

				myItem.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myItem	=	Application.CreateItem(2)

myItem.Email1Address	=	"someone@example.com"

myItem.Display

	 	



Email1AddressType	Property
Returns	or	sets	a	String	representing	the	address	type	(such	as	EX	or	SMTP)	of
the	first	e-mail	entry	for	the	contact.	This	is	a	free-form	text	field,	but	it	must
match	the	actual	type	of	an	existing	e-mail	transport.	Read/write.

expression.Email1AddressType

expression								Required.	An	expression	that	returns	a	ContactItem	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	sets	"SMTP"	as	the	address
type	for	the	first	e-mail	entry	of	a	contact.

Sub	SetType()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myItem	As	Outlook.ContactItem

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	myOlApp.CreateItem(olContactItem)

		 myItem.Email1Address	=	"someone@example.com"

	 myItem.Email1AddressType	=	"SMTP"

	 myItem.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myItem	=	Application.CreateItem(2)

myItem.Email1Address	=	"someone@example.com"

myItem.Email1AddressType	=	"SMTP"

	 	



Email1DisplayName	Property
Returns	a	String	representing	the	display	name	of	the	first	e-mail	address	for	the
contact.	This	property	is	set	to	the	value	of	the	FullName	property	by	default.
Read-only.

expression.Email1DisplayName

expression								Required.	An	expression	that	returns	a	ContactItem	object.



Email1EntryID	Property
Returns	a	String	representing	the	entry	ID	of	the	first	e-mail	address	for	the
contact.	Read-only.

expression.Email1EntryID

expression								Required.	An	expression	that	returns	a	ContactItem	object.



Email2Address	Property
Returns	or	sets	a	String	representing	the	e-mail	address	of	the	second	e-mail
entry	for	the	contact.	Read/write.

expression.Email2Address

expression								Required.	An	expression	that	returns	a	ContactItem	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	sets
"someone@example.com"	as	the	e-mail	address	for	the	second	e-mail	entry	of	a
contact.

Sub	CreatePeerContact()

				Dim	myOlApp	As	Outlook.Application

				Dim	myItem	As	Outlook.ContactItem

				Set	myOlApp	=	CreateObject("Outlook.Application")

				Set	myItem	=	myOlApp.CreateItem(olContactItem)

				myItem.Email2Address	=	"someone@example.com"

				myItem.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myItem	=	Application.CreateItem(2)

myItem.Email2Address	=	"someone@example.com"

myItem.Display

	 	



Email2AddressType	Property
Returns	or	sets	a	String	representing	the	address	type	(such	as	EX	or	SMTP)	of
the	second	e-mail	entry	for	the	contact.	This	is	a	free-form	text	field,	but	it	must
match	the	actual	type	of	an	existing	e-mail	transport.	Read/write.

expression.Email2AddressType

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	sets	"SMTP"	as	the	address
type	for	the	second	e-mail	entry	of	a	contact.

Sub	SetType()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myItem	As	Outlook.ContactItem

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	myOlApp.CreateItem(olContactItem)

	 myItem.Email2Address	=	"someone@example.com"

	 myItem.Email2AddressType	=	"SMTP"

	 myItem.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myItem	=	Application.CreateItem(2)

myItem.Email2Address	=	"someone@example.com"

myItem.Email2AddressType	=	"SMTP"

	 	



Email2DisplayName	Property
Returns	a	String	representing	the	display	name	of	the	second	e-mail	entry	for
the	contact.	This	property	is	set	to	the	value	of	the	FullName	property	by
default.	Read-only.

expression.Email2DisplayName

expression								Required.	An	expression	that	returns	a	ContactItem	object.



Email2EntryID	Property
Returns	a	String	representing	the	entry	ID	of	the	second	e-mail	entry	for	the
contact.	Read-only.

expression.Email2EntryID

expression								Required.	An	expression	that	returns	a	ContactItem	object.



Email3Address	Property
Returns	or	sets	a	String	representing	the	e-mail	address	of	the	third	e-mail	entry
for	the	contact.	Read/write.

expression.Email3Address

expression								Required.	An	expression	that	returns	a	ContactItem	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	sets
"someone@example.com"	as	the	e-mail	address	for	the	third	e-mail	entry	of	a
contact.

Sub	CreatePeerContact()

				Dim	myOlApp	As	Outlook.Application

				Dim	myItem	As	Outlook.ContactItem

				Set	myOlApp	=	CreateObject("Outlook.Application")

				Set	myItem	=	myOlApp.CreateItem(olContactItem)

				myItem.Email3Address	=	"someone@example.com"

				myItem.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myItem	=	Application.CreateItem(2)

myItem.Email3Address	=	"someone@example.com"

myItem.Display

	 	



Email3AddressType	Property
Returns	or	sets	a	String	representing	the	address	type	(such	as	EX	or	SMTP)	of
the	third	e-mail	entry	for	the	contact.	This	is	a	free-form	text	field,	but	it	must
match	the	actual	type	of	an	existing	e-mail	transport.	Read/write.

expression.Email3AddressType

expression								Required.	An	expression	that	returns	a	ContactItem	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	sets	"SMTP"	as	the	address
type	for	the	third	e-mail	entry	of	a	contact.

Sub	SetType()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myItem	As	ContactItem

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	myOlApp.CreateItem(olContactItem)

	 myItem.Email3Address	=	"someone@example.com"

	 myItem.Email3AddressType	=	"SMTP"

	 myItem.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myItem	=	Application.CreateItem(2)

myItem.Email3Address	=	"someone@example.com"

myItem.Email3AddressType	=	"SMTP"

	 	



Email3DisplayName	Property
Returns	a	String	representing	the	display	name	of	the	third	e-mail	entry	for	the
contact.	This	property	is	set	to	the	value	of	the	FullName	property	by	default.
Read-only.

expression.Email3DisplayName

expression								Required.	An	expression	that	returns	a	ContactItem	object.



Email3EntryID	Property
Returns	a	String	representing	the	entry	ID	of	the	third	e-mail	entry	for	the
contact.	Read-only.

expression.Email3EntryID

expression								Required.	An	expression	that	returns	a	ContactItem	object.



Enabled	Property
True	if	the	action	is	enabled	in	the	application.	Read/write	Boolean.

expression.Enabled

expression								Required.	An	expression	that	returns	an	Action	object.



End	Property
Returns	or	sets	a	Date	indicating	the	end	date	and	time	of	an	appointment	or
Journal	entry.	Read/write.

expression.End

expression					Required.	An	expression	that	returns	an	AppointmentItem	or	a
JournalItem	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	CreateItem	to	create	an
AppointmentItem	object.	The	RecurrencePattern	is	obtained	for	this	item
using	the	GetRecurrencePattern	method.	By	setting	the	RecurrencePattern
properties,	RecurrenceType,	PatternStartDate,	and	PatternEndDate,	the
appointments	are	now	a	recurring	series	that	occur	on	a	daily	basis	for	the	period
of	one	year.

An	Exception	object	is	created	when	one	instance	of	this	recurring	appointment
is	obtained	using	the	GetOccurrence	method	and	properties	for	this	instance	are
altered.	This	exception	to	the	series	of	appointments	is	obtained	using	the
GetRecurrencePattern	method	to	access	the	Exceptions	collection	associated
with	this	series.	Message	boxes	display	the	original	Subject	and	OriginalDate
for	this	exception	to	the	series	of	appointments	and	the	current	date,	time,	and
subject	for	this	exception.

For	a	description	of	changes	required	for	this	example	to	work	in	Microsoft
Visual	Basic	Scripting	Edition	(VBScript),	see	the	Note	at	the	end	of	the
example.

Public	Sub	cmdExample()

				Dim	myOlApp	As	Outlook.Application

				Dim	myApptItem	As	Outlook.AppointmentItem

				Dim	myRecurrPatt	As	Outlook.RecurrencePattern

				Dim	myNamespace	As	Outlook.NameSpace

				Dim	myFolder	As	Outlook.MAPIFolder

				Dim	myItems	As	Outlook.Items

				Dim	myDate	As	Date

				Dim	myOddApptItem	As	Outlook.AppointmentItem

				Dim	saveSubject	As	String

				Dim	newDate	As	Date

				Dim	myException	As	Outlook.Exception

				Set	myOlApp	=	New	Outlook.Application

				Set	myApptItem	=	myOlApp.CreateItem(olAppointmentItem)

				myApptItem.Start	=	#2/2/2003	3:00:00	PM#

				myApptItem.End	=	#2/2/2003	4:00:00	PM#

				myApptItem.Subject	=	"Meet	with	Boss"

				

				'Get	the	recurrence	pattern	for	this	appointment

				'and	set	it	so	that	this	is	a	daily	appointment

				'that	begins	on	2/2/03	and	ends	on	2/2/04



				'and	save	it.

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				myRecurrPatt.RecurrenceType	=	olRecursDaily

				myRecurrPatt.PatternStartDate	=	#2/2/2003#

				myRecurrPatt.PatternEndDate	=	#2/2/2004#

				myApptItem.Save

				

				'Access	the	items	in	the	Calendar	folder	to	locate

				'the	master	AppointmentItem	for	the	new	series.

				Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

				Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderCalendar)

				Set	myItems	=	myFolder.Items

				Set	myApptItem	=	myItems("Meet	with	Boss")

				

				'Get	the	recurrence	pattern	for	this	appointment

				'and	obtain	the	occurrence	for	3/12/03.

				myDate	=	#3/12/2003	3:00:00	PM#

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				Set	myOddApptItem	=	myRecurrPatt.GetOccurrence(myDate)

					

				'Save	the	existing	subject.	Change	the	subject	and

				'starting	time	for	this	particular	appointment

				'and	save	it.

				saveSubject	=	myOddApptItem.Subject

				myOddApptItem.Subject	=	"Meet	NEW	Boss"

				newDate	=	#3/12/2003	3:30:00	PM#

				myOddApptItem.Start	=	newDate

				myOddApptItem.Save

				

				'Get	the	recurrence	pattern	for	the	master

				'AppointmentItem.	Access	the	collection	of

				'exceptions	to	the	regular	appointments.

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				Set	myException	=	myRecurrPatt.Exceptions.item(1)

			

				'Display	the	original	date,	time,	and	subject

				'for	this	exception.

				MsgBox	myException.OriginalDate	&	":	"	&	saveSubject

				'Display	the	current	date,	time,	and	subject

				'for	this	exception.

				MsgBox	myException.AppointmentItem.Start	&	":	"	&	_

				myException.AppointmentItem.Subject

End	Sub

	 	

Note		For	this	example	to	work	properly	in	VBScript	in	a	Microsoft	Outlook
form,	a	few	changes	need	to	be	made	in	the	code.



You	do	not	have	to	retrieve	the	application	as	an	object,	and	you	must	use	the
values	of	the	constants,	so:

Set	myOlApp	=	New	Outlook.Application

Set	myApptItem	=	myOlApp.CreateItem(olAppointmentItem)

	 	

becomes:

Set	myApptItem	=	Application.CreateItem(1)

	 	

and

myRecurrPatt.RecurrenceType	=	olRecursDaily

	 	

becomes:

myRecurrPatt.RecurrenceType	=	0

	 	

and

Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderCalendar)

	 	

becomes:

Set	myFolder	=	myNamespace.GetDefaultFolder(9)

	 	



EndTime	Property
Returns	or	sets	a	Date	indicating	the	end	time	for	a	recurrence	pattern.	This
property	is	only	valid	for	appointments.	Read/write.

expression.End

expression					Required.	An	expression	that	returns	a	RecurrencePattern	object.



EntryID	Property
Returns	a	String	representing	the	unique	entry	ID	of	the	object.	This	property
corresponds	to	the	MAPI	property	PR_ENTRYID.	Read-only.

expression.EntryID

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

A	MAPI	store	provider	assigns	a	unique	ID	string	when	an	item	is	created	in	its
store.	Therefore,	the	EntryID	property	is	not	set	for	a	Microsoft	Outlook	item
until	it	is	saved	or	sent.	The	EntryID	changes	when	an	item	is	moved	into
another	store,	for	example,	from	your	Inbox	to	a	Microsoft	Exchange	Server
public	folder,	or	from	one	Personal	Folders	(.pst)	file	to	another	.pst	file.
Solutions	should	not	depend	on	the	EntryID	property	to	be	unique	unless	items
will	not	be	moved.	The	EntryID	property	returns	a	MAPI	long-term	EntryID.
For	more	information	about	long-	and	short-term	EntryIDs,	search
http://msdn.microsoft.com	for	PR_ENTRYID.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	EntryID	property	to
compare	the	entry	ID	of	one	contact	to	the	entry	ID	of	a	contact	returned	by	a
search	operation	to	determine	whether	the	objects	represent	the	same	contact.
Replace	the	name	with	a	valid	contact	name	in	your	Contacts	folder	before
running	this	example.

Sub	UseEntryID()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myNamespace	As	Outlook.NameSpace

	 Dim	myContacts	As	Outlook.MAPIFolder

	 Dim	myItem1	As	Outlook.ContactItem

	 Dim	myItem2	As	Outlook.ContactItem

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 Set	myContacts	=	myNameSpace.GetDefaultFolder(olFolderContacts)

	 Set	myItem1	=	myContacts.Items.Find("[FirstName]	=	""Dan""")

	 Set	myitem2	=	myContacts.Items.Find("[FileAs]	=	""Wil""	and	[FirstName]	=	""Dan""")

	 If	Not	TypeName(myitem2)	=	"Nothing"	Then

				 		 If	myItem1.EntryID	=	myitem2.EntryID	Then

									 	 MsgBox	"These	two	contact	items	refer	to	the	same	contact."

				 		 End	If

	 Else

				 		 MsgBox	"The	contact	items	were	not	found."

	 End	If

End	Sub

	 	



Exceptions	Property
Returns	the	Exceptions	collection	for	a	specified	series	of	recurring
appointments.

expression.Exceptions

expression				Required.	An	expression	that	returns	a	RecurrencePattern	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	CreateItem	to	create	an
AppointmentItem	object.	The	RecurrencePattern	is	obtained	for	this	item
using	the	GetRecurrencePattern	method.	By	setting	the	RecurrencePattern
properties,	RecurrenceType,	PatternStartDate,	and	PatternEndDate,	the
appointments	are	now	a	recurring	series	that	occur	on	a	daily	basis	for	the	period
of	one	year.

An	Exception	object	is	created	when	one	instance	of	this	recurring	appointment
is	obtained	using	the	GetOccurrence	method	and	properties	for	this	instance	are
altered.	This	exception	to	the	series	of	appointments	is	obtained	using	the
GetRecurrencePattern	method	to	access	the	Exceptions	collection	associated
with	this	series.	Message	boxes	display	the	original	Subject	and	OriginalDate
for	this	exception	to	the	series	of	appointments	and	the	current	date,	time,	and
subject	for	this	exception.

For	a	description	of	changes	required	for	this	example	to	work	in	Microsoft
Visual	Basic	Scripting	Edition	(VBScript),	see	the	Note	at	the	end	of	the
example.

Public	Sub	cmdExample()

				Dim	myOlApp	As	Outlook.Application

				Dim	myApptItem	As	Outlook.AppointmentItem

				Dim	myRecurrPatt	As	Outlook.RecurrencePattern

				Dim	myNamespace	As	Outlook.NameSpace

				Dim	myFolder	As	Outlook.MAPIFolder

				Dim	myItems	As	Outlook.Items

				Dim	myDate	As	Date

				Dim	myOddApptItem	As	Outlook.AppointmentItem

				Dim	saveSubject	As	String

				Dim	newDate	As	Date

				Dim	myException	As	Outlook.Exception

				Set	myOlApp	=	New	Outlook.Application

				Set	myApptItem	=	myOlApp.CreateItem(olAppointmentItem)

				myApptItem.Start	=	#2/2/2003	3:00:00	PM#

				myApptItem.End	=	#2/2/2003	4:00:00	PM#

				myApptItem.Subject	=	"Meet	with	Boss"

				

				'Get	the	recurrence	pattern	for	this	appointment

				'and	set	it	so	that	this	is	a	daily	appointment

				'that	begins	on	2/2/03	and	ends	on	2/2/04



				'and	save	it.

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				myRecurrPatt.RecurrenceType	=	olRecursDaily

				myRecurrPatt.PatternStartDate	=	#2/2/2003#

				myRecurrPatt.PatternEndDate	=	#2/2/2004#

				myApptItem.Save

				

				'Access	the	items	in	the	Calendar	folder	to	locate

				'the	master	AppointmentItem	for	the	new	series.

				Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

				Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderCalendar)

				Set	myItems	=	myFolder.Items

				Set	myApptItem	=	myItems("Meet	with	Boss")

				

				'Get	the	recurrence	pattern	for	this	appointment

				'and	obtain	the	occurrence	for	3/12/03.

				myDate	=	#3/12/2003	3:00:00	PM#

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				Set	myOddApptItem	=	myRecurrPatt.GetOccurrence(myDate)

					

				'Save	the	existing	subject.	Change	the	subject	and

				'starting	time	for	this	particular	appointment

				'and	save	it.

				saveSubject	=	myOddApptItem.Subject

				myOddApptItem.Subject	=	"Meet	NEW	Boss"

				newDate	=	#3/12/2003	3:30:00	PM#

				myOddApptItem.Start	=	newDate

				myOddApptItem.Save

				

				'Get	the	recurrence	pattern	for	the	master

				'AppointmentItem.	Access	the	collection	of

				'exceptions	to	the	regular	appointments.

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				Set	myException	=	myRecurrPatt.Exceptions.item(1)

			

				'Display	the	original	date,	time,	and	subject

				'for	this	exception.

				MsgBox	myException.OriginalDate	&	":	"	&	saveSubject

				'Display	the	current	date,	time,	and	subject

				'for	this	exception.

				MsgBox	myException.AppointmentItem.Start	&	":	"	&	_

				myException.AppointmentItem.Subject

End	Sub

	 	

Note		For	this	example	to	work	properly	in	VBScript,	a	few	changes	need	to	be
made	in	the	code.



You	do	not	have	to	retrieve	the	application	as	an	object,	and	you	must	use	the
values	of	the	constants,	so:

Set	myOlApp	=	New	Outlook.Application

Set	myApptItem	=	myOlApp.CreateItem(olAppointmentItem)

	 	

becomes:

Set	myApptItem	=	Application.CreateItem(1)

	 	

and

myRecurrPatt.RecurrenceType	=	olRecursDaily

	 	

becomes:

myRecurrPatt.RecurrenceType	=	0

	 	

and

Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderCalendar)

	 	

becomes:

Set	myFolder	=	myNamespace.GetDefaultFolder(9)

	 	



Show	All



ExchangeConnectionMode	Property
Returns	an	OlExchangeConnectionMode	constant	that	indicates	the	current
connection	mode	the	user	is	using.	Read-only.

OlExchangeConnectionMode	can	be	one	of	the	following	constants:

olOffline(100)
olOnline	(500)
olDisconnected	(200)
olConnectedHeaders	(300)
olConnected	(400)
olNoExchange	(0)

expression.ExchangeConnectionMode

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	Namespace.Offline	property	will	also	return	True	if	the	connection	mode	is
offline.	However,	if	the	connection	mode	is	low	bandwidth	or	online,	the
Namespace.Offline	property	will	return	False.



Example

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example	marks
the	items	that	are	sent	with	high	importance	for	download	if	the	connection
mode	is	'Connected	Headers'	and	download	state	is	'Header	Only'	in	the	Inbox
folder.

Sub	MarkHighImportance()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myNamespace	As	Outlook.NameSpace

	Dim	mpfInbox	As	Outlook.MAPIFolder

	Dim	obj	As	Object

	Dim	ctr	As	Integer

	Dim	i	As	Integer

	Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

	Set	mpfInbox	=	myNamespace.GetDefaultFolder(olFolderInbox)

	ctr	=	mpfInbox.Items.count

	If	(myNamespace.ExchangeConnectionMode	=	olConnectedHeaders)	Then

		For	i	=	1	To	ctr

			Set	obj	=	mpfInbox.Items.Item(i)

			If	(obj.Importance	<>	olImportanceHigh	And	obj.DownloadState	=	olHeaderOnly)	Then

				obj.MarkForDownload	=	olMarkedForDownload

			End	If

		Next

	End	If

End	Sub



ExpiryTime	Property
Returns	or	sets	a	Date	indicating	the	date	and	time	at	which	the	item	becomes
invalid	and	can	be	deleted.	Read/write.

expression.ExpiryTime

expression				Required.	An	expression	that	returns	a	MailItem,	MeetingItem,	or
PostItem	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Send	event	and
sends	an	item	with	an	automatic	expiration	date.

Public	WithEvents	myItem	As	MailItem

		

Sub	SendMyMail()

	 Set	myItem	=	Outlook.CreateItem(olMailItem)

	 myItem.To	=	"Laura	Jennings"

	 myItem.Subject	=	"Data	files	information"

	 myItem.Send

End	Sub

Private	Sub	myItem_Send(Cancel	As	Boolean)

	 myItem.ExpiryTime	=	#2/2/2003	4:00:00	PM#

End	Sub

	 	



Explorers	Property
Returns	an	Explorers	collection	object	that	contains	the	Explorer	objects
representing	all	open	explorers.

expression.Explorers

expression				Required.	An	expression	that	returns	an	Application	object.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	displays	the	number	of	explorer	windows	that	are	open.

Dim	myOlApp	As	New	Outlook.Application

Private	Sub	CountExplorers()

				MsgBox	"There	are	"	&	_

									myOlApp.Explorers.Count	&	"	Explorers."

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	declare	an	Application	object	variable.	This	example
shows	how	to	perform	the	same	task	using	VBScript.

Sub	CommandButton1_Click()

				MsgBox	"There	are	"	&	_

								Application.Explorers.Count	&	"	Explorers."

End	Sub

	 	

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	uses	the	Count	property	and	Item	method	of	the	Selection	collection
returned	by	the	Selection	property	to	display	the	senders	of	all	mail	items
selected	in	the	explorer	that	displays	the	Inbox.	To	run	this	example,	you	need	to
have	at	least	one	mail	item	selected	in	the	explorer	displaying	the	Inbox.

Note		You	might	receive	an	error	if	you	select	items	other	than	a	mail	item	such
as	task	request	as	the	SenderName	property	does	not	exist	for	a
TaskRequestItem	object.

Sub	GetSelectedItems()

				Dim	myOlApp	As	New	Outlook.Application

				Dim	myOlExp	As	Outlook.Explorer

				Dim	myOlSel	As	Outlook.Selection

				Dim	MsgTxt	As	String

				Dim	x	As	Integer

				MsgTxt	=	"You	have	selected	items	from:	"

				Set	myOlExp	=	myOlApp.Explorers.Item(1)

				If	myOlExp	=	"Inbox"	Then

				Set	myOlSel	=	myOlExp.Selection

				For	x	=	1	To	myOlSel.Count



								MsgTxt	=	MsgTxt	&	myOlSel.Item(x).SenderName	&	";"

				Next	x

				MsgBox	MsgTxt

End	If

End	Sub

	 	



FileAs	Property
Returns	or	sets	a	String	indicating	the	default	keyword	string	assigned	to	the
contact	when	it	is	filed.	Read/write.

expression.FileAs

expression				Required.	An	expression	that	returns	a	ContactItem	object.



FileName	Property
Returns	a	String	representing	the	file	name	of	the	attachment.	Use	this	property
in	conjunction	with	the	PathName	property.	Read-only.

expression.FileName

expression				Required.	An	expression	that	returns	an	Attachment	object.



Filter	Property
The	DASL	statement	used	to	restrict	the	search	to	a	specified	subset	of	data.	This
property	is	set	by	the	Application	object's	AdvancedSearch	method.	Read-only
String.

expression.Filter

expression				Required.	An	expression	that	returns	a	Search	object.



Remarks

The	Filter	property	is	set	by	the	Filter	argument	when	the	Search	object	is	first
created.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	creates	a	new	Search	object.	The	event	subroutine	fires	after	the	search
has	finished	and	displays	the	Tag	and	Filter	properties	of	the	Search	object	in
addition	to	the	results	of	the	search.

Sub	SearchInboxFolder()

'Searches	the	Inbox	folder

				Dim	objSch	As	Outlook.Search

				Const	strF	As	String	=	_

				"urn:schemas:mailheader:subject	=	'Office	Holiday	Party'"

				Const	strS	As	String	=	"Inbox"

				Const	strTag	As	String	=	"SubjectSearch"

				Set	objSch	=	_

								Application.AdvancedSearch(Scope:=strS,	Filter:=strF,	Tag:=strTag)

End	Sub

	 	

Use	an	AdvancedSearchComplete	event	subroutine	to	ensure	the	integrity	of	the
data	stored	in	the	Search	object.

Private	Sub	Application_AdvancedSearchComplete(ByVal	SearchObject	As	Search)

				Dim	objRsts	As	Outlook.Results

				Dim	Item	as	Outlook.MailItem

				MsgBox	"The	search	"	&	SearchObject.Tag	&	"has	finished.	The	filter	used	was	"	&	_

								SearchObject.Filter	&	"."

				Set	objRsts	=	SearchObject.Results

				'Print	out	number	in	results	collection

				MsgBox	objRsts.Count

				'Print	out	each	member	of	results	collection

				For	Each	Item	In	objRsts

								MsgBox	Item

				Next

End	Sub

	 	

Searching	String	Text	fields

When	searching	Text	fields,	you	can	use	either	an	apostrophe	(')	or	double



quotation	marks	("")	to	delimit	the	values	that	are	part	of	the	filter.	For	example,
all	of	the	following	lines	function	correctly	when	the	field	is	of	type	String:

sFilter	=	"[CompanyName]	=	'Microsoft'"

sFilter	=	"[CompanyName]	=	""Microsoft"""

sFilter	=	"[CompanyName]	=	"	&	Chr(34)	&	"Microsoft"	&	Chr(34)



FirstName	Property
Returns	or	sets	a	String	representing	the	first	name	for	the	contact.	Read/write.

expression.FirstName

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	FullName	property,	but	may	be	changed	or
entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	of	entries	to	FullName.



FlagDueBy	Property
Returns	or	sets	a	Date	specifying	the	date	by	which	an	e-mail	message	is	due.
This	property	is	only	valid	if	the	FlagStatus	property	is	also	set	for	the	message.
This	property	corresponds	to	the	MAPI	property	PR_REPLY_TIME.	Read/write.

expression.FlagDueBy

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Show	All



FlagIcon	Property
Returns	or	sets	an	olFlagIcon	constant	indicating	one	or	none	of	the	six	flag
types	in	Microsoft	Office	Outlook	2003	for	e-mail	messages.	Read/write.

object.FlagIcon

object	Required.	An	expression	that	returns	one	of	the	objects	in	the	Applies	To
list.

olFlagIcon	can	be	one	of	the	following	constants:

olNoFlagIcon	(0)
olPurpleFlagIcon	(1)
olOrangeFlagIcon	(2)
olGreenFlagIcon	(3)
olYellowFlagIcon	(4)
olBlueFlagIcon	(5)
olRedFlagIcon	(6)



Remarks

Setting	the	FlagIcon	property	before	sending	an	item	will	not	set	the	flag	on	the
item	when	the	recipient	receives	it.



Example

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example	loops	all
items	in	a	folder	named	Test	in	the	Inbox	and	sets	the	yellow	flag	on	items	sent
by	Dan	Wilson.	To	run	this	example	without	errors,	make	sure	the	Test	folder
exists	in	the	default	Inbox	folder	and	replace	'Dan	Wilson'	with	a	valid	sender
name	in	the	Test	folder.

Sub	SetFlagIcon()

				Dim	myOlApp	As	Outlook.Application

				Dim	mpfInbox	As	Outlook.MAPIFolder

				Dim	obj	As	Outlook.MailItem

				Dim	i	As	Integer

	

				Set	myOlApp	=	CreateObject("Outlook.Application")

				Set	mpfInbox	=	myOlApp.GetNamespace("MAPI").GetDefaultFolder(olFolderInbox).Folders("Test")

	'	Loop	all	items	in	the	Inbox\Test	Folder

				For	i	=	1	To	mpfInbox.Items.count

								If	mpfInbox.Items(i).Class	=	olMail	Then		

												Set	obj	=	mpfInbox.Items.Item(i)

																If	obj.SenderName	=	"Dan	Wilson"	Then

																'Set	the	yellow	flag	icon

																obj.FlagIcon	=	olYellowFlagIcon

																obj.Save

												End	If

								End	If

				Next

End	Sub



FlagRequest	Property
Returns	or	sets	a	String	indicating	the	requested	action	for	an	e-mail	message.
This	is	a	free-form	text	field.	This	property	is	only	valid	if	the	FlagStatus
property	is	also	set	for	the	message.	Read/write.

expression.FlagRequest

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Show	All



FlagStatus	Property
Returns	or	sets	an	OlFlagStatus	constant	indicating	the	flag	status	for	an	e-mail
message.	Read/write.

OlFlagStatus	can	be	one	of	these	OlFlagStatus	constants.
olFlagComplete
olFlagMarked
olNoFlag

expression.FlagStatus

expression					Required.	An	expression	that	returns	one	of	the	items	in	the
Applies	To	list.



FolderPath	Property
Returns	a	String	that	indicates	the	path	of	the	current	folder.	Read-only.

expression.FolderPath

expression				Required.	An	expression	that	returns	a	MAPIFolder	object.



Example

The	following	example	displays	information	about	the	default	Contacts	folder.
The	subroutine	accepts	a	MAPIFolder	object	and	displays	the	folder's	name,
path,	and	address	book	information.

Sub	Folderpaths()

				Dim	olApp	As	Outlook.Application

				Dim	nmsName	As	NameSpace

				Dim	fldFolder	As	MAPIFolder

				Set	olApp	=	Outlook.Application

				'Create	namespace	reference

				Set	nmsName	=	olApp.GetNamespace("MAPI")

				'create	folder	instance

				Set	fldFolder	=	nmsName.GetDefaultFolder(olFolderContacts)

				'call	sub	program

				Call	FolderInfo(fldFolder)

End	Sub

Sub	FolderInfo(ByVal	fldFolder	As	MAPIFolder)

'Displays	information	about	a	given	folder

				MsgBox	fldFolder.Name	&	"'s	current	path	is	"	&	fldFolder.FolderPath

													".	The	current	address	book	name	is	"	&	fldFolder.AddressBookName	&	"."

End	Sub

	 	



Folders	Property
Returns	the	Folders	collection	that	represents	all	the	folders	contained	in	the
specified	folder	or	name	space.	The	NameSpace	object	is	the	root	of	all	the
folders	for	the	given	name	space.

expression.Folders

expression				Required.	An	expression	that	returns	a	MAPIFolder	object	or	a
NameSpace	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Add	method	to	add
the	new	folder	named	"My	Personal	Contacts"	to	the	default	Contacts	folder.

Sub	CreatePersonalContacts()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myNamespace	As	Outlook.NameSpace

	 Dim	myFolder	As	Outlook.MAPIFolder

	 Dim	myNewFolder	As	Outlook.MAPIFolder

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

	 Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderContacts)

	 Set	myNewFolder	=	myFolder.Folders.Add("My	Personal	Contacts")

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript.

Sub	CommandButton1_Click()

	Set	myNameSpace	=	Application.GetNameSpace("MAPI")

	Set	myFolder	=	myNamespace.GetDefaultFolder(10)

	Set	myNewFolder	=	myFolder.Folders.Add("My	Personal	Contacts")

End	Sub

	 	

This	VBA	example	uses	the	Add	method	to	add	two	new	folders	in	the	Tasks
folder.	The	first	folder,	"My	Notes	Folder",	will	contain	note	items.	The	second
folder,	"My	Contacts	Folder",	will	contain	contact	items.	If	the	folders	already
exist,	a	message	box	will	inform	the	user.

Sub	CreateFolders()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myNamespace	As	Outlook.NameSpace

	 Dim	myFolder	As	Outlook.MAPIFolder

	 Dim	myNotesFolder	As	Outlook.MAPIFolder

	 Dim	myContactFolder	As	Outlook.MAPIFolder

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

	 Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderTasks)



	 On	Error	GoTo	ErrorHandler

	 Set	myNotesFolder	=	myFolder.Folders.Add("My	Notes	Folder",	olFolderNotes)

	 Set	myContactFolder	=	myFolder.Folders.Add("My	Contacts	Folder",	olFolderContacts)

	 Exit	Sub

	 ErrorHandler:

	 	 MsgBox	"Error	creating	the	folder.	The	folder	may	already	exist."

		 	 Resume	Next

End	Sub

	 	



Show	All



FormDescription	Property
Returns	the	FormDescription	object	that	represents	the	form	description	for	the
specified	Microsoft	Outlook	item.

expression.FormDescription

expression				Required.	An	expression	that	returns	one	of	the	objects	listed	in	the
Applies	To	list.



Formula	Property
Returns	or	sets	a	String	representing	the	formula	for	the	user	property.
Read/write.

expression.Formula

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	a	program	tries	to	reference	any	type	of	recipient	information	by	using	the
Outlook	object	model,	a	dialog	box	is	displayed	that	asks	you	to	confirm	access
to	this	information.	You	can	allow	access	to	the	Address	Book	or	recipient
information	for	up	to	ten	minutes	after	you	receive	the	dialog	box.	This	allows
features,	such	as	mobile	device	synchronization,	to	be	completed.

You	receive	the	confirmation	dialog	box	when	a	solution	tries	to
programmatically	access	the	Formula	property.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	shows	how	to	use
the	Formula	property.

Sub	TestFormula()

				Dim	outApp	As	New	Outlook.Application

				Dim	tki	As	Outlook.TaskItem

				Dim	uprs	As	Outlook.UserProperties

				Dim	upr	As	Outlook.UserProperty

				

				Set	tki	=	outApp.CreateItem(olTaskItem)

				tki.Subject	=	"Work	hours	-	Test	Formula"

				tki.TotalWork	=	4

				tki.ActualWork	=	3

				Set	uprs	=	tki.UserProperties

				Set	upr	=	uprs.Add("Total&ActualWork",	olFormula)

				upr.Formula	=	"[Total	Work]	+	[Actual	Work]"

				tki.Save

				

				tki.Display

			MsgBox	"The	Work	Hours	are:	"	&	upr.Value

End	Sub



FTPSite	Property
Returns	or	sets	a	String	representing	the	FTP	site	entry	for	the	contact.
Read/write.

expression.FTPSite

expression				Required.	An	expression	that	returns	a	ContactItem	object.



FullName	Property
Returns	or	sets	a	String	specifying	the	whole,	unparsed	full	name	for	the
contact.	Read/write.

expression.FullName

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	into	the	FirstName,	MiddleName	,	LastName,	and
Suffix	properties,	which	may	be	changed	or	typed	independently	if	they	are
parsed	incorrectly.	Any	changes	or	entries	to	the	FirstName,	LastName,
MiddleName,	or	Suffix	properties	will	be	overwritten	by	any	subsequent
changes	or	entries	to	FullName.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Restrict	method	to
apply	a	filter	to	the	contact	items	based	on	the	item's	LastModificationTime
property,	and	then	it	displays	the	full	name	of	the	contacts	returned	by	the	filter.

Public	Sub	ContactDateCheck()

				Dim	myOlApp	As	Outlook.Application

				Dim	myNamespace	As	Outlook.NameSpace

				Dim	myContacts	As	Outlook.Items

				Dim	myItems	As	Outlook.Items

				Dim	myItem	As	Object

				Set	myOlApp	=	CreateObject("Outlook.Application")

				Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

				Set	myContacts	=	myNamespace.GetDefaultFolder(olFolderContacts).Items

				Set	myItems	=	myContacts.Restrict("[LastModificationTime]	>	'01/1/2003'")

				For	Each	myItem	In	myItems

								If	(myItem.Class	=	olContact)	Then

												MsgBox	myItem.FullName	&	":	"	&	myItem.LastModificationTime

								End	If

				Next

End	Sub

	 	



FullNameAndCompany	Property
Returns	a	String	representing	the	full	name	and	company	of	the	contact	by
concatenating	the	values	of	the	FullName	and	CompanyName	properties.
Read-only.

expression.FullNameAndCompany

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



Gender	Property
Returns	or	sets	an	OlGender	constant	indicating	the	gender	of	the	contact.
Read/write.

OlGender	can	be	one	of	these	OlGender	constants.
olFemale
olMale
olUnspecified

expression.Gender

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



GetInspector	Property
Returns	an	Inspector	object	that	represents	an	inspector	initialized	to	contain	the
specified	item.	This	property	is	useful	for	returning	a	new	Inspector	object	in
which	to	display	the	item,	as	opposed	to	using	the	ActiveInspector	method	and
setting	the	CurrentItem	property.

expression.GetInspector

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	GetInspector
property	to	return	a	new,	inactive	inspector	for	myItem,	and	then	toggles	the
AdaptiveMenus	property.

Sub	DisplayAdaptiveMenus()

Dim	myOlApp	As	Outlook.Application

Dim	myItem	As	Outlook.MailItem

Dim	myInspector	As	Outlook.Inspector

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	myItem	=	myOlApp.CreateItem(olMailItem)

Set	myInspector	=	myItem.GetInspector

myInspector.CommandBars.AdaptiveMenus	=	Not	myInspector.CommandBars.AdaptiveMenus

myInspector.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myItem	=	Application.CreateItem(0)

Set	myInspector	=	myItem.GetInspector

myInspector.CommandBars.AdaptiveMenus	=	Not	myInspector.CommandBars.AdaptiveMenus

myInspector.Display

	 	



GovernmentIDNumber	Property
Returns	or	sets	a	String	representing	the	government	ID	number	for	the	contact.
Read/write.

expression.GovernmentIDNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



Groups	Property
Returns	an	OutlookBarGroups	object	representing	the	set	of	groups	in	the
Shortcuts	pane.

expression.Groups

expression				Required.	An	expression	that	returns	an	OutlookBarStorage
object.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	displays	the	number	of	groups	in	the	Shortcuts	pane.

Sub	CountOlBarGroups()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myOlBar	As	Outlook.OutlookBarPane

	 Dim	myCount	As	Integer

	 Set	myOlBar	=	myOlApp.ActiveExplorer.Panes.Item("OutlookBar")

	 myCount	=	myOlBar.Contents.Groups.Count

	 MsgBox	"There	are	"	&	myCount	&	"	groups	in	the	Shortcuts	pane"

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object.	This	example	shows
how	to	perform	the	same	task	using	VBScript	code.

Set	myOlBar	=	Application.ActiveExplorer.Panes.Item("OutlookBar")

myCount	=	myOlBar.Contents.Groups.Count

MsgBox	"There	are	"	&	myCount	&	"	groups	in	the	Shortcuts	pane"

	 	



HasAttachment	Property
True	(default)	if	the	remote	item	has	an	attachment	associated	with	it.	Read-only
Boolean.

expression.HasAttachment

expression				Required.	An	expression	that	returns	a	RemoteItem	object.



HasPicture	Property
True	if	a	Contacts	item	has	a	picture	associated	with	it.	Read-only	Boolean.

expression.HasPicture

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Example

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example	prompts
the	user	to	specify	the	name	of	a	contact	and	the	file	name	containing	a	picture
of	the	contact,	and	then	adds	the	picture	to	the	contact	item.	If	a	picture	already
exists	for	the	contact	item,	the	example	prompts	the	user	to	specify	if	the
existing	picture	should	be	overwritten	by	the	new	file.

Sub	AddPictureToAContact()

				Dim	myOlApp	As	Outlook.Application

				Dim	myNms	As	Outlook.NameSpace

				Dim	myFolder	As	Outlook.MAPIFolder

				Dim	myContactItem	As	Outlook.ContactItem

				Dim	strName	As	String

				Dim	strPath	As	String

				Dim	strPrompt	As	String

				Set	myOlApp	=	CreateObject("Outlook.Application")

								

				Set	myNms	=	myOlApp.GetNamespace("MAPI")

				Set	myFolder	=	myNms.GetDefaultFolder(olFolderContacts)

				

				strName	=	InputBox("Type	the	name	of	the	contact:	")

								

				Set	myContactItem	=	myFolder.Items(strName)

				

				If	myContactItem.HasPicture	=	True	Then

					strPrompt	=	MsgBox("The	contact	already	has	a	picture	associated	with	it.	Do	you	want	to	overwrite	the	existing	picture?",	vbYesNo)

				

					If	strPrompt	=	vbNo	Then

						Exit	Sub

					End	If

				End	If

				

				strPath	=	InputBox("Type	the	file	name	for	the	contact:	")

				myContactItem.AddPicture	(strPath)

				myContactItem.Save

				myContactItem.Display

				

	End	Sub

	 	





Height	Property
Returns	or	sets	a	Long	specifying	the	height	(in	pixels)	of	the	explorer,
inspector,	or	note	window.	Read/write.

expression.Height

expression				Required.	An	expression	that	returns	an	Explorer,	Inspector,	or
NoteItem				object.



Hidden	Property
True	to	cause	the	specified	custom	form	to	be	hidden.	It	will	not	appear	on	the
menu	or	in	the	Choose	Form	dialog	box	and	will	be	used	only	if	it	is	designated
as	the	response	form	from	another	custom	form.	The	default	value	is	False.
Read/write	Boolean.

expression.Hidden

expression					Required.	An	expression	that	returns	a	FormDescription	object.



Hobby	Property
Returns	or	sets	a	String	representing	the	hobby	for	the	contact.	Read/write.

expression.Hobby

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Home2TelephoneNumber	Property
Returns	or	sets	a	String	representing	the	second	home	telephone	number	for	the
contact.	Read/write.

expression.Home2TelephoneNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



HomeAddress	Property
Returns	or	sets	a	String	representing	the	full,	unparsed	text	of	the	home	address
for	the	contact.	Read/write.

expression.HomeAddress

expression				Required.	An	expression	that	returns	a	ContactItem	object.



HomeAddressCity	Property
Returns	or	sets	a	String	representing	the	city	portion	of	the	home	address	for	the
contact.	Read/write.

expression.HomeAddressCity

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	HomeAddress	property,	but	may	be	changed	or
entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	HomeAddress.



HomeAddressCountry	Property
Returns	or	sets	a	String	representing	the	country/region	portion	of	the	home
address	for	the	contact.	Read/write.

expression.HomeAddressCountry

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	HomeAddress	property,	but	may	be	changed	or
entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	HomeAddress.



HomeAddressPostalCode	Property
Returns	or	sets	a	String	representing	the	postal	code	portion	of	the	home	address
for	the	contact.	Read/write.

expression.HomeAddressPostalCode

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	HomeAddress	property,	but	may	be	changed	or
entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	HomeAddress.



HomeAddressPostOfficeBox	Property
Returns	or	sets	a	String	the	post	office	box	number	portion	of	the	home	address
for	the	contact.	Read/write.

expression.HomeAddressPostOfficeBox

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	HomeAddress	property,	but	may	be	changed	or
entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	HomeAddress.



HomeAddressState	Property
Returns	or	sets	a	String	representing	the	state	portion	of	the	home	address	for
the	contact.	Read/write.

expression.HomeAddressState

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	HomeAddress	property,	but	may	be	changed	or
entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	HomeAddress.



HomeAddressStreet	Property
Returns	or	sets	a	String	representing	the	street	portion	of	the	home	address	for
the	contact.	Read/write.

expression.HomeAddressStreet

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	HomeAddress	property,	but	may	be	changed	or
entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	HomeAddress.



HomeFaxNumber	Property
Returns	or	sets	a	String	representing	the	home	fax	number	for	the	contact.
Read/write.

expression.HomeFaxNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



HomeTelephoneNumber	Property
Returns	or	sets	a	String	representing	the	first	home	telephone	number	for	the
contact.	Read/write.

expression.HomeTelephoneNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



HTMLBody	Property
Returns	or	sets	a	String	representing	the	HTML	body	of	the	specified	item.	The
HTMLBody	property	should	be	an	HTML	syntax	string.	Read/write.

Setting	the	HTMLBody	property	sets	the	EditorType	property	of	the	item's
Inspector	to	olEditorHTML.

Setting	the	HTMLBody	property	will	always	update	the	Body	property
immediately.

Setting	the	Body	property	will	clear	the	contents	of	the	HTMLBody	property	on
HTML-aware	stores.

expression.HTMLBody

expression				Required.	An	expression	that	returns	a	PostItem	or	MailItem
object.



Remarks

Outlook	blocks	code	that	attempts	to	access	the	HTMLBody	property	for
security	reasons.	If	you	run	a	third-party	add-in,	custom	solution,	or	other
program	that	uses	the	HTMLBody	property	in	Office	Outlook	2003,	you	may
receive	the	following	warning:

A	program	is	trying	to	access	e-mail	addresses	you	have	stored	in	Outlook.	Do
you	want	to	allow	this?	If	this	is	unexpected,	it	may	be	a	virus	and	you	should
choose	"No".



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	creates	a	new
MailItem	object	and	sets	the	BodyFormat	property	to	olFormatHTML.	The
body	text	of	the	e-mail	item	will	now	appear	in	HTML	format.

Sub	CreateHTMLMail()

'Creates	a	new	e-mail	item	and	modifies	its	properties.

				Dim	olApp	As	Outlook.Application

				Dim	objMail	As	Outlook.MailItem

				Set	olApp	=	Outlook.Application

				'Create	e-mail	item

				Set	objMail	=	olApp.CreateItem(olMailItem)

				With	objMail

							'Set	body	format	to	HTML

							.BodyFormat	=	olFormatHTML

							.HTMLBody	=	"<HTML><H2>The	body	of	this	message	will	appear	in	HTML.</H2><BODY>Enter	the	message	text	here.	</BODY></HTML>"

							.Display

				End	With

End	Sub

	 	

This	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	example	uses	the
Open	event	to	access	the	HTMLBody	property	of	an	item.	This	sets	the
EditorType	property	of	the	item’s	Inspector	to	olEditorHTML.	When	the
item's	Body	property	is	set,	the	EditorType	property	is	changed	to	the	default.
For	example,	if	the	default	e-mail	editor	is	set	to	RTF,	the	EditorType	is	set	to
olEditorRTF.

If	this	code	is	placed	in	the	Script	Editor	of	a	form	in	design	time,	the	message
boxes	during	run	time	will	reflect	the	change	in	the	EditorType	as	the	body	of
the	form	changes.	The	final	message	box	uses	the	ScriptText	property	to	display
all	the	VBScript	code	in	the	Script	Editor.

Function	Item_Open()

				'Set	the	HTMLBody	of	the	item.

				Item.HTMLBody	=	"<HTML><H2>My	HTML	page.</H2><BODY>My	body.</BODY></HTML>"

				'Item	displays	HTML	message.

				Item.Display

				'MsgBox	shows	EditorType	is	2.



				MsgBox	"HTMLBody	EditorType	is	"	&	Item.GetInspector.EditorType

				'Access	the	body	and	show

				'the	text	of	the	Body.

				MsgBox	"This	is	the	Body:	"	&	Item.Body

				'After	accessing,	EditorType

				'is	still	2.

				MsgBox	"After	accessing,	the	EditorType	is	"	&	Item.GetInspector.EditorType

				'Set	the	item's	Body	property.

				Item.Body	=	"Back	to	default	body."

				'After	setting,	EditorType	is

				'now	back	to	the	default.

				MsgBox	"After	setting,	the	EditorType	is	"	&	Item.GetInspector.EditorType

				'Access	the	item's

				'FormDescription	object.

				Set	myForm	=	Item.FormDescription

				'Display	all	the	code

				'in	the	Script	Editor.

				MsgBox	myForm.ScriptText

End	Function

	 	



HTMLDocument	Property
Returns	an	HTMLDocument	object	that	specifies	the	HTML	object	model
associated	with	the	HTML	document	in	the	current	view	(assuming	one	exists).

expression.HTMLDocument

expression				Required.	An	expression	that	returns	an	Explorer	object.



Remarks

In	order	to	use	this	property,	a	folder	must	be	using	a	folder	home	page,	or	you
can	set	the	WebViewURL	property	of	the	MAPIFolder	object	to	a	Web	page.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	accesses	the	Microsoft	Outlook	View	Control.

	Sub	GetHTML()

'Returns	the	Outlook	View	Control

												

				Dim	objVC	As	OLXLib.ViewCtl

				Dim	objExp	As	Outlook.Explorer

				Dim	HTMLDoc	As	MSHTML.HTMLDocument

								

				'Reference	the	current	folder

				Set	objExp	=	Application.ActiveExplorer

				'Reference	the	HTML	file	that	is	the	home	page

				Set	HTMLDoc	=	objExp.HTMLDocument

				'Reference	an	Outlook	View	Control	that	is	on	the	HTML	page

				Set	objVC	=	HTMLDoc.all.tags("object").Item(0).Object

				'Have	the	control	display	an	address	book	window

				objVC.AddressBook

	

End	Sub

	 	



HTMLEditor	Property
Returns	an	Object	representing	the	HTML	Document	Object	Model	of	the
message	being	displayed.	The	HTML	Document	Object	Model	is	defined	by
Microsoft	Internet	Explorer	and	is	the	same	one	used	for	Dynamic	HTML.	This
object	may	be	temporary	and	should	not	be	stored	for	later	use.	Read-only.

The	HTMLEditor	property	is	only	valid	if	the	EditorType	property	of	the
item's	associated	Inspector	is	set	to	olEditorHTML.

expression.HTMLEditor

expression				Required.	An	expression	that	returns	an	Inspector	object.



Remarks

Outlook	blocks	code	that	attempts	to	access	the	HTMLEditor	property	for
security	reasons.	If	you	run	a	third-party	add-in,	custom	solution,	or	other
program	that	uses	the	HTMLEditor	property	in	Office	Outlook	2003,	you	may
receive	the	following	warning:

A	program	is	trying	to	access	e-mail	addresses	you	have	stored	in	Outlook.	Do
you	want	to	allow	this?	If	this	is	unexpected,	it	may	be	a	virus	and	you	should
choose	"No".



Example

The	following	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	example
uses	the	Click	event	of	a	CommandButton	control	named	"CommandButton1"
to	demonstrate	the	listing	of	all	HTML	elements.

Sub	CommandButton1_Click()

				Dim	i									'As	Integer

				Dim	strHTMLType				'As	String

				Dim	strHTMLText				'As	String

				Dim	NL								'As	String

				NL	=	chr(10)	&	chr(13)

				Set	myInspector	=	Item.GetInspector

				Set	myIExplorer	=	myInspector.HTMLEditor

				If	myIExplorer.ReadyState	<>	"complete"	Then		

'Test	for	complete	loading	of	HTML	doc

								For	i	=	0	To	myIExplorer.All.Length	-	1

												strHTMLType	=	TypeName(myIExplorer.All.Item(i))

												On	Error	Resume	Next

'because	not	all	elements	support	OuterHTML

												strHTMLText	=	":	"	&	NL	&					myIExplorer.All.Item(i).outerHTML

												On	Error	GoTo	0

												MsgBox	strHTMLType	&	strHTMLText

												strHTMLText	=	""

								Next

				End	If

End	Sub

	 	



Icon	Property
Returns	or	sets	a	String	representing	the	file	name	of	the	icon	to	be	displayed	for
the	form.	Read/write.

expression.Icon

expression					Required.	An	expression	that	returns	a	FormDescription	object.



Show	All



ID	Property
Returns	a	String	representing	the	unique	identifier	for	the	object.	The	transport
provider	assigns	a	permanent,	unique	string	ID	property	when	an	individual
member	object	is	created.	These	identifiers	do	not	change	from	one	session	to
another.	Read-only.

expression.ID

expression				Required.	An	expression	that	returns	an	AddressEntry	or
AddressList	object.



IMAddress	Property
Returns	or	sets	a	String	that	represents	a	contact's	Microsoft	Instant	Messenger
address.	Read/write.

expression.IMAddress

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

Unlike	the	Recipients	or	To	properties,	there	is	no	way	to	verify	that	the
IMAddress	property	contains	a	valid	address.

Outlook	blocks	code	that	attempts	to	access	the	Recipients	object	for	security
reasons.	If	you	run	a	third-party	add-in,	custom	solution,	or	other	program	that
uses	the	Recipients	object	in	Office	Outlook	2003,	you	may	receive	the
following	warning:

A	program	is	trying	to	access	e-mail	addresses	you	have	stored	in	Outlook.	Do
you	want	to	allow	this?	If	this	is	unexpected,	it	may	be	a	virus	and	you	should
choose	"No".



Example

The	following	example	creates	a	new	contact	and	prompts	the	user	to	enter	an
Instant	Messenger	address	for	the	contact.

Sub	SetImAddress()

'Sets	a	new	IM	Address

				Dim	olApp	As	Outlook.Application

				Dim	objNewContact	As	ContactItem

				Set	olApp	=	Outlook.Application

				Set	objNewContact	=	olApp.CreateItem(olContactItem)

				objNewContact.IMAddress	=	_

								InputBox("Enter	the	new	contact's	Microsoft	Instant	Messenger	address")

				objNewContact.Save

End	Sub

	 	



Show	All



Importance	Property
Returns	or	sets	an	OlImportance	constant	indicating	the	relative	importance
level	for	the	Outlook	item.	This	property	corresponds	to	the	MAPI	property
PR_IMPORTANCE.	Read/write.

OlImportance	can	be	one	of	these	OlImportance	constants.
olImportanceHigh
olImportanceLow
olImportanceNormal

expression.Importance

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	Visual	Basic	for	Applications	(VBA)	example	checks	if	the	item	displayed
in	the	topmost	inspector	is	sent	by	'Dan	Wilson'	with	'High'	importance.	If	it	is,
then	it	displays	a	message	box	to	the	user.	Before	running	this	example,	replace
'Dan	Wilson'	with	a	valid	name	in	your	address	book.

Sub	CheckSenderName

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myItem	As	Outlook.MailItem

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	myOlApp.ActiveInspector.CurrentItem

	 If	myItem.Importance	=	2	And	myItem.SenderName	=	"Dan	Wilson"	Then

	 	 MsgBox	"This	message	is	sent	by	your	manager	with	High	importance."

	 End	If

End	Sub

	



InAppFolderSyncObject	Property
Returns	or	sets	a	Boolean	that	determines	if	the	specified	folder	will	be
synchronized	with	the	e-mail	server.	If	True,	this	folder	will	be	synchronized
when	the	"Application	Folders"	SyncObject	is	synchronized.	If	False,	the	folder
will	not	synchronize.	Read/write.

expression.InAppFolderSyncObject

expression				Required.	An	expression	that	returns	a	MAPIFolder	object.



Remarks

This	is	equivalent	to	selecting	the	check	box	for	this	folder	in	the	Application
Folders	group	on	the	Send/Receive	dialog	box.

If	this	property	is	set	to	True,	and	the	"Application	Folders"	SyncObject	does
not	already	exist,	a	SyncObject	will	be	automatically	created.	The	"Application
Folders"	SyncObject	is	the	only	Send/Receive	group	that	can	be
programmatically	modified.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	sets	the	Inbox	folder	to	be	synchronized	when	the	"Application
Folders"	SyncObject	object	is	synchronized.	The	InAppFolderSyncObject
property	is	used	in	conjunction	with	the	AppFolders	property	of	the
SyncObjects	collection.

Public	Sub	appfolders()

				Dim	olApp	As	New	Outlook.Application

				Dim	nsp	As	Outlook.NameSpace

				Dim	sycs	As	Outlook.SyncObjects

				Dim	syc	As	Outlook.SyncObject

				Dim	mpfInbox	As	Outlook.MAPIFolder

				Set	nsp	=	olApp.GetNamespace("MAPI")

				Set	sycs	=	nsp.SyncObjects

				'Return	the	Application	Folder	SyncObject.

				Set	syc	=	sycs.AppFolders

				'Get	the	Inbox	folder.

				Set	mpfInbox	=	nsp.GetDefaultFolder(olFolderInbox)

				'Set	the	Inbox	folder	to	be	synchronized	when	the	Application

				'Folder's	SyncObject	is	synchronized.

				mpfInbox.InAppFolderSyncObject	=	True

				'Start	the	synchronization.

				syc.Start

End	Sub

	 	



IncludeRecurrences	Property
True	if	the	Items	collection	should	include	recurrence	patterns.	This	property
only	has	an	effect	if	the	Items	collection	contains	appointments	and	is	not	sorted
by	any	property	other	than	Start	in	ascending	order.	The	default	value	is	False.
Read/write	Boolean.

expression.IncludeRecurrences

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	this	property	when	you	want	to	retrieve	all	appointments	for	a	given	date,
where	recurring	appointments	would	not	normally	appear	because	they	are	not
associated	with	any	specific	date.	If	the	collection	includes	recurring
appointments	with	no	end	date,	setting	the	property	to	True	may	cause	the
collection	to	be	of	infinite	count.	Be	sure	to	include	a	test	for	this	in	any	loop.

You	should	not	use	Count	property	of	Items	collection	when	iterating	Items
collection	with	IncludeRecurrence	property	set	to	True.	The	value	of	Count
will	be	an	undefined	value.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	displays	the	subject
of	the	appointments	that	occur	between	today	and	tomorrow	including	recurring
appointments.

Sub	DemoFindNext()

				Dim	myOlApp	As	Outlook.Application

				Dim	myNameSpace	As	Outlook.NameSpace

				Dim	tdystart	As	Date

				Dim	tdyend	As	Date

				Dim	myAppointments	As	Outlook.Items

				Dim	currentAppointment	As	Outlook.AppointmentItem

				Set	myOlApp	=	CreateObject("Outlook.Application")

				Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

				tdystart	=	VBA.Format(Now,	"Short	Date")

				tdyend	=	VBA.Format(Now	+	1,	"Short	Date")

				Set	myAppointments	=	myNameSpace.GetDefaultFolder(olFolderCalendar).Items

				myAppointments.Sort	"[Start]"

				myAppointments.IncludeRecurrences	=	True

				Set	currentAppointment	=	myAppointments.Find("[Start]	>=	"""	&	tdystart	&	"""	and	[Start]	<=	"""	&	tdyend	&	"""")

				While	TypeName(currentAppointment)	<>	"Nothing"

							MsgBox	currentAppointment.Subject

							Set	currentAppointment	=	myAppointments.FindNext

Wend

End	Sub



Show	All



Index	Property
Returns	a	Long	indicating	the	position	of	the	object	within	the	collection.	The
Index	property	is	only	valid	during	the	current	session	and	can	change	as	objects
are	added	to	and	deleted	from	the	collection.	The	first	object	in	the	collection	has
an	Index	value	of	1.	Read-only.

expression.Index

expression				Required.	An	expression	that	returns	an	AddressList,	Attachment,
or	Recipient	object.



Initials	Property
Returns	or	sets	a	String	representing	the	initials	for	the	contact.	Read/write.

expression.Initials

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Inspectors	Property
Returns	an	Inspectors	collection	object	that	contains	the	Inspector	objects
representing	all	open	inspectors.

expression.Inspectors

expression				Required.	An	expression	that	returns	an	Application	object.



Example

This	Microsoft	Visual	Basic	example	uses	the	Inspectors	property	and	the
Count	property	and	Item	method	of	the	Inspectors	object	to	display	the
captions	of	all	inspector	windows.

Private	Sub	CommandButton1_Click()

				Dim	myOlApp	As	New	Outlook.Application

				Dim	myInspectors	As	Outlook.Inspectors

				Dim	x	as	Integer

				Dim	iCount	As	Integer

				Set	myInspectors	=	myOlApp.Inspectors

				iCount	=	myOlApp.Inspectors.Count

				If	iCount	>	0	Then

								For	x	=	1	To	iCount

												MsgBox	myInspectors.Item(x).Caption

								Next	x

				Else

								MsgBox	"No	inspector	windows	are	open."

				End	If

End	Sub

			

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	declare	an	Application	object	variable.	This	example
shows	how	to	perform	the	same	task	using	VBScript	code.

Sub	CommandButton1_Click()

				Dim	x

				iCount	=	Application.Inspectors.Count

				Set	myInspectors	=	Application.Inspectors

				If	iCount	>	0	Then

								For	x	=	1	To	iCount

												MsgBox	myInspectors.Item(x).Caption

								Next

				Else

								MsgBox	"No	Inspector	windows	are	open."

				End	If

End	Sub

	 	





Instance	Property
Returns	or	sets	a	Long	specifying	the	count	for	which	the	recurrence	pattern	is
valid	for	a	given	interval.	This	property	is	only	valid	for	recurrences	of	the
olRecursMonthNth	and	olRecursYearNth	type	and	allows	the	definition	of	a
recurrence	pattern	that	is	only	valid	for	the	Nth	occurrence,	such	as	"the	2nd
Sunday	in	March"	pattern.	The	count	is	set	numerically:	1	for	the	first,	2	for	the
second,	and	so	on	through	5	for	the	last.	Values	greater	than	5	will	generate
errors	when	the	pattern	is	saved.	Read/write.

expression.Instance

expression					Required.	An	expression	that	returns	a	RecurrencePattern	object.



InternetCodepage	Property
Returns	or	sets	a	Long	that	determines	the	Internet	code	page	used	by	the	item.
The	Internet	code	page	defines	the	text	encoding	scheme	used	by	the	item.
Read/write.

expression.InternetCodepage

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	following	table	lists	the	values	that	are	supported	by	the	InternetCodePage
property.

Name	 																									Character	Set	Code	Page

Arabic	(ISO)																						iso-8859-6						28596

Arabic	(Windows)																		windows-1256				1256

Baltic	(ISO)																						iso-8859-4						28594

Baltic	(Windows)																		windows-1257				1257

Central	European	(ISO)												iso-8859-2						28592

Central	European	(Windows)								windows-1250				1250

Chinese	Simplified	(GB2312)							gb2312										936

Chinese	Simplified	(HZ)											hz-gb-2312						52936

Chinese	Traditional	(Big5)								big5												950

Cyrillic	(ISO)																				iso-8859-5						28595

Cyrillic	(KOI8-R)																	koi8-r										20866

Cyrillic	(KOI8-U)																	koi8-u										21866

Cyrillic	(Windows)																windows-1251				1251

Greek	(ISO)																							iso-8859-7						28597

Greek	(Windows)																			windows-1253				1253

Hebrew	(ISO-Logical)														iso-8859-8-i				38598

Hebrew	(Windows)																		windows-1255				1255

Japanese	(EUC)																				euc-jp										51932

Japanese	(JIS)																				iso-2022-jp					50220

Japanese	(JIS-Allow	1	byte	Kana)		csISO2022JP					50221

Japanese	(Shift-JIS)														iso-2022-jp					932

Korean																												ks_c_5601-1987		949

Korean	(EUC)																						euc-kr										51949

Latin	3	(ISO)																					iso-8859-3						28593

Latin	9	(ISO)																					iso-8859-15					28605

Thai	(Windows)																				windows-874					874

Turkish	(ISO)																					iso-8859-9						28599

Turkish	(Windows)																	windows-1254				1254

Unicode	(UTF-7)																			utf-7											65000

Unicode	(UTF-8)																			utf-8											65001

US-ASCII																										us-ascii								20127

Vietnamese	(Windows)														windows-1258				1258

Western	European	(ISO)												iso-8859-1						28591

Western	European	(Windows)								Windows-1252				1252

The	following	table	lists	the	code	pages	Microsoft	recommends	that	you	use	for
the	best	compatiblity	with	older	e-mail	systems.

Name	 																									Character	Set	Code	Page



Arabic	(Windows)																		windows-1256				1256

Baltic	(ISO)																						iso-8859-4						28594

Central	European	(ISO)												iso-8859-2						28592

Chinese	Simplified	(GB2312)							gb2312										936

Chinese	Traditional	(Big5)								big5												950

Cyrillic	(KOI8-R)																	koi8-r										20866

Cyrillic	(Windows)																windows-1251				1251

Greek	(ISO)																							iso-8859-7						28597

Hebrew	(Windows)																		windows-1255				1255

Japanese	(JIS)																				iso-2022-jp					50220

Korean																												ks_c_5601-1987		949

Thai	(Windows)																				windows-874					874

Turkish	(ISO)																					iso-8859-9						28599

Unicode	(UTF-8)																			utf-8											65001

US-ASCII																										us-ascii								20127

Vietnamese	(Windows)														windows-1258				1258

Western	European	(ISO)												iso-8859-1						28591



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	displays	the	sender	name	of	the	current	e-mail	item	if	its	Internet	code
page	value	is	1256.	This	value	corresponds	to	the	Internet	code	page	value	for
Arabic	text.

Sub	FindArabicUser()

	 'Tells	if	the	sender	of	the	current	item	used	the	Arabic	codepage

	 Dim	olApp	As	Outlook.Application

	 Dim	objMail	As	Outlook.MailItem

	 Const	cstArabic	As	Long	=	1256

	 Set	olApp	=	CreateObject("Outlook.Application")

	 Set	objMail	=	olApp.ActiveInspector.CurrentItem

	 If	objMail.InternetCodePage	=	cstArabic	Then

	 	 MsgBox	objMail.SenderName	&	"	uses	an	Arabic	code	page."

	 End	If

	 Set	objMail	=	Nothing

	 Set	olApp	=	Nothing

End	Sub

	 	



InternetFreeBusyAddress	Property
Returns	or	sets	a	String	corresponding	to	the	Address	box	on	the	Details	tab	for
a	contact.	This	box	can	contain	the	URL	location	of	the	user's	free-busy
information	in	vCard	Free-Busy	standard	format.	Read/write.

expression.InternetFreeBusyAddress

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Interval	Property
Returns	or	sets	a	Long	specifying	the	number	of	units	of	a	given	recurrence	type
between	occurrences.	For	example,	setting	the	Interval	property	to	2	and	the
RecurrenceType	property	to	Weekly	would	cause	the	pattern	to	occur	every
second	week.	Read/write.

Note		The	Interval	property	must	be	set	before	setting	PatternEndDate.	Also,
the	Interval	property	is	not	valid	for	yearly	recurrence	patterns.

expression.Interval

expression				Required.	An	expression	that	returns	a	RecurrencePattern	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	GetRecurrencePattern
to	obtain	the	RecurrencePattern	object	for	the	newly	created
AppointmentItem.	When	the	properties	RecurrenceType,	DayOfWeekMask,
PatternStartDate,	Interval,	PatternEndDate,	and	Subject	are	set,	the
appointment	is	saved	and	then	displayed	with	the	pattern:	"Occurs	every	3
week(s)	on	Monday	effective	1/21/2003	until	12/21/2004	from	2:00	PM	to	5:00
PM."

Sub	CreateAppointment()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myApptItem	As	Outlook.AppointmentItem

	 Dim	myRecurrPatt	As	Outlook.RecurrencePattern

	 Set	myOlApp	=	New	Outlook.Application

	 Set	myApptItem	=	myOlApp.CreateItem(olAppointmentItem)

	 Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

	 myRecurrPatt.RecurrenceType	=	olRecursWeekly

	 myRecurrPatt.DayOfWeekMask	=	olMonday

	 myRecurrPatt.PatternStartDate	=	#1/21/2003	2:00:00	PM#

	 myRecurrPatt.Interval	=	3

	 myRecurrPatt.PatternEndDate	=	#12/21/2004	5:00:00	PM#

	 myApptItem.Subject	=	"Important	Appointment"

	 myApptItem.Save

	 myApptItem.Display

	 Set	myOlApp	=	Nothing

	 Set	myApptItem	=	Nothing

	 Set	myRecurrPatt	=	Nothing

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myApptItem	=	Application.CreateItem(1)

Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

myRecurrPatt.RecurrenceType	=	1

myRecurrPatt.DayOfWeekMask	=	2

myRecurrPatt.PatternStartDate	=	#1/21/03	2:00:00	PM#

myRecurrPatt.Interval	=	3



myRecurrPatt.PatternEndDate	=	#12/21/04	5:00:00	PM#

myApptItem.Subject	=	"Important	Appointment"

myApptItem.Save

myApptItem.Display

Set	myApptItem	=	Nothing

Set	myRecurrPatt	=	Nothing

	 	



IsConflict	Property
Returns	a	Boolean	that	determines	if	the	e-mail	item	is	in	conflict.	Whether	or
not	an	item	is	in	conflict	is	determined	by	the	state	of	the	application.	For
example,	when	a	user	is	offline	and	tries	to	access	an	online	folder	the	action
will	fail.	In	this	scenario,	the	IsConflict	property	will	return	True.	Read-only.

expression.IsConflict

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	True,	the	specified	item	is	in	conflict.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	creates	a	new	mail	item	and	attempts	to	send	it.	If	the	IsConflict
property	returns	True,	the	item	will	not	be	sent.

Sub	NewMail()

'Creates	and	tries	to	send	a	new	e-mail	message.

				Dim	olApp	As	Outlook.Application

				Dim	objNewMail	As	Outlook.MailItem

				Set	olApp	=	New	Outlook.Application

				Set	objNewMail	=	olApp.CreateItem(olMailItem)

				objNewMail.Body	=	"This	e-mail	message	was	created	automatically	on	"	&	Now

				objNewMail.To	=	"Jeff	Smith"

				If	objNewMail.IsConflict	=	False	Then

								objNewMail.Send

				Else

								MsgBox	"Conflict:	Cannot	send	mail	item."

				End	If

				Set	olApp	=	Nothing

				Set	objNewMail	=	Nothing

End	Sub

	 	



ISDNNumber	Property
Returns	or	sets	a	String	representing	the	ISDN	number	for	the	contact.
Read/write.

expression.ISDNNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



IsOnlineMeeting	Property
True	if	this	is	an	online	meeting.	Read/write	Boolean.

expression.IsOnlineMeeting

expression				Required.	An	expression	that	returns	an	AppointmentItem	object.



IsReadOnly	Property
Indicates	that	the	AddressList	object	cannot	be	modified.	The	IsReadOnly
property	refers	to	adding	and	deleting	the	entries	in	the	address	book	container
represented	by	the	AddressList	object.	The	property	is	True	if	no	entries	can	be
added	or	deleted.	The	property	is	False	if	the	container	can	be	modified,	that	is,
if	address	entries	can	be	added	to	and	deleted	from	the	container.

The	IsReadOnly	property	refers	to	the	address	book	entries	in	the	context	of	the
address	book	container.	It	does	not	indicate	whether	the	contents	of	the
individual	entries	themselves	can	be	modified.

Read-only	Boolean.

expression.IsReadOnly

expression				Required.	An	expression	that	returns	an	AddressList	object.



IsRecurring	Property
True	if	the	appointment	or	task	is	a	recurring	appointment	or	task.	When	the
GetRecurrencePattern	method	is	used	with	an	AppointmentItem	or	TaskItem
object,	this	property	is	set	to	True.	Read-only	Boolean.

expression.IsRecurring

expression				Required.	An	expression	that	returns	a	TaskItem	or	an
AppointmentItem	object.



Show	All



IsSharePointFolder	Property
Returns	a	Boolean	that	determines	if	the	folder	is	a	Microsoft	Windows
SharePoint	Services	folder.	Read-only.

expression.IsSharePointFolder

expression				Required.	An	expression	that	returns	a	MAPIFolder	object.



Remarks

A	Windows	SharePoint	Services	folder	is	a	custom	folder	in	Microsoft	Outlook
that	contains	a	live	copy	of	the	contact	list	or	event	list	that	lives	on	a	Windows
SharePoint	Services	Web	site.	The	contact	list	maps	to	a	Contacts	folder	in
Outlook	and	the	event	list	maps	to	a	Calendar	folder.

SharePoint	folders	are	automatically	created	under	the	SharePoint	Folders	node
in	the	Navigation	Pane	when	a	contact	list	or	an	event	list	is	exported	from	the
Windows	SharePoint	Services	Web	site.

Though	Windows	SharePoint	Services	folders	work	the	same	way	as
MAPIFolders,	there	are	a	few	exceptions.	The	folders	are	read-only	and	any
attempt	to	edit	folder	properties	or	add,	edit,	or	remove	existing	items	will	fail.	If
you	attempt	to	perform	an	action	that	tries	to	write	data	to	the	folder,	Outlook
will	display	the	error	message	"SharePoint	Team	Services	folders	are	read-only
in	Outlook."

Note		A	folder	in	the	user’s	Microsoft	Exchange	server	folder	will	never	be	a
SharePoint	folder,	and	no	folder	in	the	user’s	default	Personal	Folders	file	(.pst)
will	ever	be	a	SharePoint	folder.	Typically	the	SharePoint	folders	will	be	under
the	node	SharePoint	Folders	in	the	Navigation	Pane.



Example

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example	changes
the	Subject	line	of	the	appointment	item	displayed	in	the	active	inspector	and
saves	the	item.	If	the	item	is	contained	in	a	SharePoint	folder,	it	displays	a
message	to	the	user	that	the	item	cannot	be	modified.	To	run	this	example,	make
sure	that	an	appointment	item	is	displayed	in	the	active	inspector	window.	This
example	will	modify	the	subject	of	the	appointment	item.

Sub	ChangeItem()

'Checks	if	the	item	is	contained	in	a	SharePoint	folder.	If	it	is	not,	it	changes	the	Subject	line,	and	then	saves	the	item.

				Dim	myOlApp	As	New	Outlook.Application

				Dim	myItem	As	Outlook.AppointmentItem

				Dim	fldFolder	As	Outlook.MAPIFolder

				Set	myItem	=	myOlApp.ActiveInspector.CurrentItem

				Set	fldFolder	=	myItem.Parent

				If	fldFolder.IsSharePointFolder	=	True	Then

								MsgBox	"The	item	is	contained	in	a	Windows	SharePoint	Services	folder	and	cannot	be	modified."

				Else

				myItem.Subject	=	myItem.Subject	+	"	Changed	by	VBA"

				myItem.Save

								MsgBox	"The	item	has	been	changed."

				End	If

End	Sub



IsSynchronous	Property
Returns	a	Boolean	indicating	whether	the	search	is	synchronous.

expression.IsSynchronous

expression				Required.	An	expression	that	returns	a	Search	object.



Remarks

If	the	search	is	synchronous,	the	user's	computer	will	wait	until	the	search	has
completed.	Conversely,	if	the	search	is	asynchronous,	the	search	could	still
execute	when	the	code	has	finished	running.	In	this	case,	use	the	Search	object's
Stop	method	to	halt	the	search.

In	order	to	get	meaningful	results	from	an	asynchronous	search,	use	the
AdvancedSearchComplete	event	to	notify	you	when	the	search	has	finished.



IsUserProperty	Property
Returns	a	Boolean	value	that	indicates	if	the	item	property	is	a	custom	property
created	by	the	user.	Read-only.

expression.IsUserProperty

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	collection	is	0	based.	In	other	words,	the	first	object	in	the	collection	is
accessed	with	an	index	value	of	(0)	zero.



Example

The	following	example	displays	the	names	of	all	properties	created	by	the	user.
The	subroutine	DisplayUserProps	accepts	an	ItemProperties	collection	and
searches	through	it,	displaying	the	names	of	all	ItemProperty	objects	where	the
IsUserProperty	value	is	True.

Sub	ItemProperty()

'Creates	a	new	mail	item	and	access	it's	properties

				Dim	olApp	As	Outlook.Application

				Dim	objMail	As	MailItem

				Dim	objitems	As	ItemProperties

				Set	olApp	=	Outlook.Application

				'Create	the	mail	item

				Set	objMail	=	olApp.CreateItem(olMailItem)

				'Create	a	reference	to	the	item	properties	collection

				Set	objitems	=	objMail.ItemProperties

				'Create	a	reference	to	the	item	property	page

				Call	DisplayUserProps(objitems)

End	Sub

Sub	DisplayUserProps(ByVal	objitems	As	ItemProperties)

'Displays	the	names	of	all	user-created	item	properties	in	the	collection

				For	i	=	0	To	objitems.Count	-	1

								'Display	name	of	property	if	it	was	created	by	the	user

								If	objitems.Item(i).IsUserProperty	=	True	Then

											MsgBox	"The	property	"	&	objitems(i).Name	&	"	was	created	by	the	user."

								End	If

				Next	i

End	Sub

	 	





IsVisible	Property
Returns	a	Boolean	that	determines	if	the	reminder	is	currently	visible.	All	active
reminders	are	visible.	If	True,	the	reminder	is	visible.	Read-only.

expression.IsVisible

expression				Required.	An	expression	that	returns	a	Reminder	object.



Remarks

Microsoft	Outlook	determines	the	return	value	of	this	property	based	on	the	state
of	the	current	reminder.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	dismisses	all	reminders	that	are	currently	visible.	For	example,	if	the
current	reminder	is	active,	the	IsVisible	property	will	return	True.

Sub	DismissReminders()

'Dismisses	any	active	reminders.

				Dim	olApp	As	Outlook.Application

				Dim	objRems	As	Outlook.Reminders

				Dim	objRem	As	Outlook.Reminder

				Dim	i	As	Integer

			

				Set	olApp	=	New	Outlook.Application

				Set	objRems	=	olApp.Reminders

			

				For	i	=	objRems.Count	To	1	Step	-1

								If	objRems(i).IsVisible	=	True	Then

												objRems(i).Dismiss

								End	If

				Next

				Set	olApp	=	Nothing

				Set	objRems	=	Nothing

				Set	objRem	=	Nothing

End	Sub

	 	



Item	Property
Returns	an	Object	corresponding	to	the	specified	Microsoft	Outlook	item.

expression.Item

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



ItemProperties	Property
Returns	an	ItemProperties	collection	that	represents	all	standard	and	user-
defined	properties	associated	with	an	e-mail	item.

expression.ItemProperties

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	ItemProperties	collection	is	a	zero	(0)	based	collection,	meaning	that	the
first	object	in	the	collection	is	referenced	by	the	index	0,	instead	of	1.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	returns	the	ItemProperties	collection	associated	with	a	MailItem
object.

Sub	ItemProperty()

'Creates	a	new	e-mail	item	and	accesses	its	properties.

				Dim	olApp	As	Outlook.Application

				Dim	objMail	As	Outlook.MailItem

				Dim	objItems	As	Outlook.ItemProperties

				Dim	objItem	As	Outlook.ItemProperty

				Set	olApp	=	New	Outlook.Application

				'Create	the	e-mail	item.

				Set	objMail	=	olApp.CreateItem(olMailItem)

				'Create	a	reference	to	the	e-mail	item's	properties	collection.

				Set	objItems	=	objMail.ItemProperties

				'Create	a	reference	to	the	third	e-mail	item	property.

				Set	objItem	=	objItems.Item(2)

				MsgBox	objItem.Name	&	"		=		"	&	objItem.Value

End	Sub

	 	



Items	Property
Returns	an	Items	collection	as	a	collection	of	Microsoft	Outlook	items	in	the
specified	folder.

expression.Items

expression				Required.	An	expression	that	returns	a	MAPIFolder	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Items	property	to
obtain	the	collection	of	ContactItem	objects	from	the	default	Contacts	folder.

Sub	ContactDateCheck()

				Dim	myOlApp	As	Outlook.Application

				Dim	myNamespace	As	Outlook.NameSpace

				Dim	myContacts	As	Outlook.Items

				Dim	myItems	As	Outlook.Items

				Dim	myItem	As	Object

				Set	myOlApp	=	CreateObject("Outlook.Application")

				Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

				Set	myContacts	=	myNamespace.GetDefaultFolder(olFolderContacts).

				Set	myItems	=	myContacts.Restrict("[LastModificationTime]	>	'01/1/2003'")

				For	Each	myItem	In	myItems

								If	(myItem.Class	=	olContact)	Then

												MsgBox	myItem.FullName	&	":	"	&	myItem.LastModificationTime

								End	If

				Next

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object,	and	you	cannot	use	named
constants.	This	example	shows	how	to	use	the	Items	property	in	VBScript	code.

Set	myNameSpace	=	Application.GetNameSpace("MAPI")

Set	myFolder	=	myNameSpace.GetDefaultFolder(10)

Set	myItems	=	myFolder.Items

	 	



JobTitle	Property
Returns	or	sets	a	String	representing	the	job	title	for	the	contact.	Read/write.

expression.JobTitle

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Journal	Property
True	if	the	transaction	of	the	contact	will	be	journalized.	The	default	value	is
False.	Read/write	Boolean.

expression.Journal

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Language	Property
Returns	or	sets	the	language	setting	for	the	object	that	defines	the	language	used
in	the	menu.	The	Language	property	uses	a	String	to	represent	an	ISO	language
tag.	For	example,	the	string	"EN-US"	represents	the	ISO	code	for	"United	States
-	English."	Read/write.

expression.Language

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	a	valid	language	code	is	specified,	the	object	will	only	be	available	in	the
View	menu	for	the	specified	language	type.	If	no	value	is	specified,	the	object
item	is	available	for	all	language	types.	The	default	value	for	this	property	is	an
empty	String.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	sets	the	language	type	of	all	View	objects	of	type	olTableView	to	U.S.
English.

Sub	SetLanguage()

'Sets	the	language	of	all	table	views	to	U.S.	English.

				Dim	olApp	As	Outlook.Application

				Dim	objViews	As	Outlook.Views

				Dim	objView	As	Outlook.View

				Set	olApp	=	New	Outlook.Application

				Set	objViews	=	_

								olApp.GetNamespace("MAPI").GetDefaultFolder(olFolderInbox).Views

				'Iterate	through	each	view	in	the	collection.

				For	Each	objView	In	objViews

								Debug.Print	objView.Name

								'If	view	is	of	type	olTableVIew	then	set	language.

								If	objView.ViewType	=	olTableView	And	objView.Standard	=	False	Then

												objView.Language	=	"EN-US"

								End	If

				Next	objView

End	Sub

	 	



LanguageSettings	Property
Returns	a	LanguageSettings	object	for	the	application	that	contains	the
language-specific	attributes	of	Microsoft	Outlook.

expression.LanguageSettings

expression				Required.	An	expression	that	returns	an	Application	object.



LastFirstAndSuffix	Property
Returns	a	String	representing	the	last	name,	first	name,	middle	name,	and	suffix
of	the	contact.	There	is	a	comma	between	the	last	and	first	names	and	spaces
between	all	the	names	and	the	suffix.	This	property	is	parsed	from	the
LastName,	FirstName,	MiddleName	and	Suffix	properties.	Read-only.

Note		The	LastName,	FirstName,	MiddleName,	and	Suffix	properties	are
themselves	parsed	from	the	FullName	property.

expression.LastFirstAndSuffix

expression				Required.	An	expression	that	returns	a	ContactItem	object.

Note		The	value	of	this	property	is	only	filled	when	its	associated	property
(FirstName,	LastName,	MiddleName,	CompanyName,	and	Suffix)	contain
Asian	(DBCS)	characters.	If	the	corresponding	field	does	not	contain	Asian
characters,	the	property	will	be	empty.



LastFirstNoSpace	Property
Returns	a	String	representing	the	concatenated	last	name,	first	name,	and	middle
name	of	the	contact	with	no	space	between	the	last	name	and	the	first	name.	This
property	is	parsed	from	the	LastName,	FirstName	and	MiddleName
properties.	Read-only.

Note		The	LastName,	FirstName,	and	MiddleName	properties	are	themselves
parsed	from	the	FullName	property.

expression.LastFirstNoSpace

expression				Required.	An	expression	that	returns	a	ContactItem	object.

Note		The	value	of	this	property	is	only	filled	when	its	associated	property
(FirstName,	LastName,	MiddleName,	CompanyName,	and	Suffix)	contain
Asian	(DBCS)	characters.	If	the	corresponding	field	does	not	contain	Asian
characters,	the	property	will	be	empty.



LastFirstNoSpaceAndSuffix	Property
Returns	the	last	name,	first	name,	and	suffix	of	the	user	without	a	space.	Read-
only	String.

expression.LastFirstNoSpaceAndSuffix

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	is	used	only	when	the	FirstName,	LastName,	and	Suffix
properties	(the	fields	that	define	this	property)	contain	Asian	(DBCS)	characters.
Note	that	any	such	changes	or	entries	to	the	FirstName,	LastName,	or	Suffix
properties	will	be	overwritten	by	any	subsequent	changes	or	entries	to
FullName.



LastFirstNoSpaceCompany	Property
Returns	a	String	representing	the	concatenated	last	name,	first	name,	and	middle
name	of	the	contact	with	no	space	between	the	last	name	and	the	first	name.	The
company	name	for	the	contact	is	included	after	the	middle	name.	This	property
is	parsed	from	the	LastName,	FirstName,	MiddleName,	and	CompanyName
properties.	Read-only.

Note		The	LastName,	FirstName,	and	MiddleName	properties	are	themselves
parsed	from	the	FullName	property.

expression.LastFirstNoSpaceCompany

expression				Required.	An	expression	that	returns	a	ContactItem	object.

Note		The	value	of	this	property	is	only	filled	when	its	associated	property
(FirstName,	LastName,	MiddleName,	CompanyName,	and	Suffix)	contain
Asian	(DBCS)	characters.	If	the	corresponding	field	does	not	contain	Asian
characters,	the	property	will	be	empty.



LastFirstSpaceOnly	Property
Returns	a	String	representing	the	concatenated	last	name,	first	name,	and	middle
name	of	the	contact	with	spaces	between	them.	This	property	is	parsed	from	the
LastName,	FirstName	and	MiddleName	properties.	Read-only.

Note		The	LastName,	FirstName,	and	MiddleName	properties	are	themselves
parsed	from	the	FullName	property.

expression.LastFirstSpaceOnly

expression				Required.	An	expression	that	returns	a	ContactItem	object.

Note		The	value	of	this	property	is	only	filled	when	its	associated	property
(FirstName,	LastName,	MiddleName,	CompanyName,	and	Suffix)	contain
Asian	(DBCS)	characters.	If	the	corresponding	field	does	not	contain	Asian
characters,	the	property	will	be	empty.



LastFirstSpaceOnlyCompany
Property
Returns	a	String	representing	the	concatenated	last	name,	first	name,	and	middle
name	of	the	contact	with	spaces	between	them.	The	company	name	for	the
contact	is	after	the	middle	name.	This	property	is	parsed	from	the	LastName,
FirstName,	MiddleName,	and	CompanyName	properties.	Read-only.

Note		The	LastName,	FirstName,	and	MiddleName	properties	are	themselves
parsed	from	the	FullName	property.

expression.LastFirstSpaceOnlyCompany

expression				Required.	An	expression	that	returns	a	ContactItem	object.

Note		The	value	of	this	property	is	only	filled	when	its	associated	property
(FirstName,	LastName,	MiddleName,	CompanyName,	and	Suffix)	contain
Asian	(DBCS)	characters.	If	the	corresponding	field	does	not	contain	Asian
characters,	the	property	will	be	empty.



Show	All



LastModificationTime	Property
Returns	a	Date	specifying	the	date	and	time	that	the	Microsoft	Outlook	item	was
last	modified.	This	property	corresponds	to	the	MAPI	property
PR_LAST_MODIFICATION_TIME.	Read-only.

expression.LastModificationTime

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	Visual	Basic	for	Applications	example	uses	the	Restrict	method	to	apply	a
filter	to	contact	items	based	on	the	item's	LastModificationTime	property.

Public	Sub	ContactDateCheck()

				Dim	myOlApp	As	Outlook.Application

				Dim	myNamespace	As	Outlook.NameSpace

				Dim	myContacts	As	Outlook.Items

				Dim	myItems	As	Outlook.Items

				Dim	myItem	As	Object

				Set	myOlApp	=	CreateObject("Outlook.Application")

				Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

				Set	myContacts	=	myNamespace.GetDefaultFolder(olFolderContacts).Items

				Set	myItems	=	myContacts.Restrict("[LastModificationTime]	>	'01/1/2003'")

				For	Each	myItem	In	myItems

								If	(myItem.Class	=	olContact)	Then

												MsgBox	myItem.FullName	&	":	"	&	myItem.LastModificationTime

								End	If

				Next

End	Sub

	 	

The	following	Visual	Basic	for	Applications	example	is	the	same	as	the	example
above,	except	that	it	demonstrates	the	use	of	a	variable	in	the	filter.

Public	Sub	ContactDateCheck2()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myNamespace	As	Outlook.NameSpace

	 Dim	myContacts	As	Outlook.Items

	 Dim	myItem	As	Outlook.Object

	 Dim	DateStart	As	Date

	 Dim	DateToCheck	As	String

	 Dim	myRestrictItems	As	Outlook.Items

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myNameSpace	=	myOlApp.GetNamespace("MAPI")

	 Set	myContacts	=	myNameSpace.GetDefaultFolder(olFolderContacts).Items

	 DateStart	=	#01/1/2003#

	 DateToCheck	=	"[LastModificationTime]	>=	"""	&	DateStart	&	""""

	 Set	myRestrictItems	=	myContacts.Restrict(DateToCheck)

	 For	Each	myItem	In	myRestrictItems

	 	 	If	(myItem.Class	=	olContact)	Then

												MsgBox	myItem.FullName	&	":	"	&	myItem.LastModificationTime

								End	If

	 Next



End	Sub

	 	



LastName	Property
Returns	or	sets	a	String	representing	the	last	name	for	the	contact.	Read/write.

expression.LastName

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	FullName	property,	but	may	be	changed	or
entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	of	entries	to	FullName.



LastNameAndFirstName	Property
Returns	a	String	representing	the	concatenated	last	name	and	first	name	for	the
contact.	Read-only.

expression.LastNameAndFirstName

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	FirstName	and	LastName	properties	for	the
contact,	which	are	themselves	parsed	from	the	FullName	property.



Left	Property
Returns	or	sets	a	Long	specifying	the	position	(in	pixels)	of	the	left	vertical	edge
of	an	explorer,	inspector,	or	note	window	from	the	edge	of	the	screen.
Read/write.

expression.Left

expression				Required.	An	expression	that	returns	an	Explorer,	Inspector,	or
NoteItem				object.



Links	Property
Returns	a	Links	collection	of	Link	objects	that	represent	the	contacts	to	which
the	item	is	linked.

expression.Links

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example	steps
through	the	items	in	the	Tasks	folder	and,	if	a	task	is	not	complete,	displays	the
number	of	contacts	linked	to	the	item.

Sub	CountLinks()

Dim	myOlApp	As	New	Outlook.Application

Dim	myNSpace	As	Outlook.NameSpace

Dim	myItems	As	Outlook.Items

Dim	myItem	As	Outlook.TaskItem

Dim	myLinks	As	Outlook.Links

Dim	myLink	As	Outlook.Link

Dim	x	As	Integer

Dim	msg	As	String

Set	myNSpace	=	myOlApp.GetNamespace("MAPI")

Set	myItems	=	myNSpace.GetDefaultFolder(olFolderTasks).Items

For	x	=	1	To	myItems.Count

				If	TypeName(myItems.Item(x))	=	"TaskItem"	Then

								Set	myItem	=	myItems.Item(x)

								Set	myLinks	=	myItem.Links

								Msg	=	myItem.Subject	&	"	has	"	&	myLinks.Count	&	"	links."

								If	myItem.Complete	=	False	Then

												If	MsgBox(Msg,	vbOKCancel)	=	vbCancel	Then	Exit	For

								End	If

				End	If

	Next	x

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myNSpace	=	Application.GetNamespace("MAPI")

Set	myItems	=	myNSpace.GetDefaultFolder(13).Items

For	x	=	1	To	myItems.Count

				If	TypeName(myItems.Item(x))	=	"TaskItem"	Then

								Set	myItem	=	myItems.Item(x)

								Set	myLinks	=	myItem.Links

								Msg	=	myItem.Subject	&	"	has	"	&	myLinks.Count	&	"	links."

								If	myItem.Complete	=	False	Then

												If	MsgBox(Msg,	1)	=	2	Then	Exit	For

								End	If



				End	If

	Next

	 	



Location	Property
Returns	or	sets	a	String	representing	the	specific	office	location	(for	example,
Building	1	Room	1	or	Suite	123)	for	the	appointment.	This	property	corresponds
to	the	MAPI	property	PR_OFFICE_LOCATION.	Read/write.

expression.Location

expression				Required.	An	expression	that	returns	an	AppointmentItem	object.



Example

This	Visual	Basic	for	Applications	example	uses	CreateItem	to	create	an
appointment	and	uses	MeetingStatus	to	set	the	meeting	status	to	"Meeting"	to
turn	it	into	a	meeting	request	with	both	a	required	and	an	optional	attendee.

Sub	ScheduleMeeting()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myItem	as	AppointmentItem

	 Dim	myRequiredAttendee	As	Recipient

	 Dim	myOptionalAttendee	As	Recipient

	 Dim	myResourceAttendee	As	Recipient

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	myOlApp.CreateItem(olAppointmentItem)

	 myItem.MeetingStatus	=	olMeeting

	 myItem.Subject	=	"Strategy	Meeting"

	 myItem.Location	=	"Conference	Room	B"

	 myItem.Start	=	#9/24/2002	1:30:00	PM#

	 myItem.Duration	=	90

	 Set	myRequiredAttendee	=	myItem.Recipients.Add	("Nate	Sun")

	 myRequiredAttendee.Type	=	olRequired

	 Set	myOptionalAttendee	=	myItem.Recipients.Add	("Kevin	Kennedy")

	 myOptionalAttendee.Type	=	olOptional

	 Set	myResourceAttendee	=	myItem.Recipients.Add("Conference	Room	B")

	 myResourceAttendee.Type	=	olResource

	 myItem.Send

End	Sub

If	you	use	VBScript,	you	do	not	create	the	Application	object,	and	you	cannot
use	named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript.

Set	myItem	=	Application.CreateItem(1)

myItem.MeetingStatus	=	1

myItem.Subject	=	"Strategy	Meeting"

myItem.Location	=	"Conference	Room	B"

myItem.Start	=	#9/24/97	1:30:00	PM#

myItem.Duration	=	90

Set	myRequiredAttendee	=	myItem.Recipients.Add	("Nate	Sun")

myRequiredAttendee.Type	=	1

Set	myOptionalAttendee	=	myItem.Recipients.Add	("Kevin	Kennedy")

myOptionalAttendee.Type	=	2

Set	myResourceAttendee	=	myItem.Recipients.Add("Conference	Room	B")

myResourceAttendee.Type	=	3

myItem.Send



	 	



Locked	Property
True	if	the	form	cannot	be	modified.	Read/write	Boolean.

expression.Locked

expression				Required.	An	expression	that	returns	a	FormDescription	object.



LockUserChanges	Property
Returns	or	sets	a	value	that	indicates	whether	a	user	can	modify	the	settings	of
the	current	view.	Read/write	Boolean.

expression.LockUserChanges

expression				Required.	An	expression	that	returns	a	View	object.



Remarks

If	True,	the	user	can	modify	the	settings	of	the	current	view.	However,	changes
made	to	the	interface	will	not	be	saved.	If	False	(the	default),	any	changes	will
be	saved.



Example

The	following	example	locks	the	user	interface	for	all	views	that	are	available	to
all	users.	The	subroutine	LockView	accepts	the	View	object	and	a	Boolean	value
that	indicates	if	the	View	interface	will	be	locked.	In	this	example	the	procedure
is	always	called	with	the	Boolean	value	set	to	True.

Sub	LocksPublicViews()

'Locks	the	interface	of	all	views	that	are	available	to

'all	users	of	this	folder.

				Dim	olApp	As	Outlook.Application

				Dim	objName	As	Outlook.NameSpace

				Dim	objViews	As	Outlook.Views

				Dim	objView	As	Outlook.View

				Set	olApp	=	New	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objViews	=	objName.GetDefaultFolder(olFolderNotes).Views

				For	Each	objView	In	objViews

								If	objView.SaveOption	=	olViewSaveOptionThisFolderEveryone	Then

											Call	LockView(objView,	True)

								End	If

				Next	objView

End	Sub

Sub	LockView(ByRef	objView	As	View,	ByVal	blnAns	As	Boolean)

'Locks	the	user	interface	of	the	view.

'Accepts	and	returns	a	View	object	and	user	response.

				With	objView

								If	blnAns	=	True	Then

												'if	true	lock	UI

												.LockUserChanges	=	True

												.Save

								Else

												'if	false	don't	lock	UI

												.LockUserChanges	=	False

								End	If

				End	With

End	Sub

	 	





MailingAddress	Property
Returns	or	sets	a	String	representing	the	full,	unparsed	selected	mailing	address
for	the	contact.	Read/write.

expression.MailingAddress

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	replicates	the	property	indicated	by	the	SelectedMailingAddress
property,	which	is	one	of	the	following	OlMailingAddress	constants:
olBusiness,	olHome,	olNone,	or	olOther.	While	it	can	be	changed	or	entered
independently,	any	such	changes	or	entries	to	this	property	will	be	overwritten
by	any	subsequent	changes	or	entries	to	the	property	indicated	by
SelectedMailingAddress.



MailingAddressCity	Property
Returns	or	sets	a	String	representing	the	city	name	portion	of	the	selected
mailing	address	of	the	contact.	Read/write.

expression.MailingAddressCity

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	replicates	the	property	indicated	by	the	SelectedMailingAddress
property,	which	is	one	of	the	following	OlMailingAddress	constants:
olBusiness,	olHome,	olNone,	or	olOther.	While	it	can	be	changed	or	entered
independently,	any	such	changes	or	entries	to	this	property	will	be	overwritten
by	any	subsequent	changes	or	entries	to	the	property	indicated	by
SelectedMailingAddress.



MailingAddressCountry	Property
Returns	or	sets	a	String	representing	the	country/region	code	portion	of	the
selected	mailing	address	of	the	contact.	Read/write.

expression.MailingAddressCountry

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	replicates	the	property	indicated	by	the	SelectedMailingAddress
property,	which	is	one	of	the	following	OlMailingAddress	constants:
olBusiness,	olHome,	olNone,	or	olOther.	While	it	can	be	changed	or	entered
independently,	any	such	changes	or	entries	to	this	property	will	be	overwritten
by	any	subsequent	changes	or	entries	to	the	property	indicated	by
SelectedMailingAddress.



MailingAddressPostalCode	Property
Returns	or	sets	a	String	representing	the	postal	code	(zip	code)	portion	of	the
selected	mailing	address	of	the	contact.	Read/write.

expression.MailingAddressPostalCode

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	replicates	the	property	indicated	by	the	SelectedMailingAddress
property,	which	is	one	of	the	following	OlMailingAddress	constants:
olBusiness,	olHome,	olNone,	or	olOther.	While	it	can	be	changed	or	entered
independently,	any	such	changes	or	entries	to	this	property	will	be	overwritten
by	any	subsequent	changes	or	entries	to	the	property	indicated	by
SelectedMailingAddress.



MailingAddressPostOfficeBox
Property
Returns	or	sets	a	String	representing	the	post	office	box	number	portion	of	the
selected	mailing	address	of	the	contact.	Read/write.

expression.MailingAddressPostOfficeBox

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	replicates	the	property	indicated	by	the	SelectedMailingAddress
property,	which	is	one	of	the	following	OlMailingAddress	constants:
olBusiness,	olHome,	olNone,	or	olOther.	While	it	can	be	changed	or	entered
independently,	any	such	changes	or	entries	to	this	property	will	be	overwritten
by	any	subsequent	changes	or	entries	to	the	property	indicated	by
SelectedMailingAddress.



MailingAddressState	Property
Returns	or	sets	a	String	representing	the	state	code	portion	for	the	selected
mailing	address	of	the	contact.	Read/write.

expression.MailingAddressState

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	replicates	the	property	indicated	by	the	SelectedMailingAddress
property,	which	is	one	of	the	following	OlMailingAddress	constants:
olBusiness,	olHome,	olNone,	or	olOther.	While	it	can	be	changed	or	entered
independently,	any	such	changes	or	entries	to	this	property	will	be	overwritten
by	any	subsequent	changes	or	entries	to	the	property	indicated	by
SelectedMailingAddress.



MailingAddressStreet	Property
Returns	or	sets	a	String	representing	the	street	address	portion	of	the	selected
mailing	address	of	the	contact.	Read/write.

expression.MailingAddressStreet

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	replicates	the	property	indicated	by	the	SelectedMailingAddress
property,	which	is	one	of	the	following	OlMailingAddress	constants:
olBusiness,	olHome,	olNone,	or	olOther.	While	it	can	be	changed	or	entered
independently,	any	such	changes	or	entries	to	this	property	will	be	overwritten
by	any	subsequent	changes	or	entries	to	the	property	indicated	by
SelectedMailingAddress.



Manager	Property
Returns	an	AddressEntry	object	that	represents	the	manager	of	the	user	that
corresponds	to	this	address	entry.	If	the	user's	manager	is	not	available	in	the
messaging	system,	the	Manager	property	returns	Nothing.

expression.Manager

expression				Required.	An	expression	that	returns	an	AddressEntry	object.



ManagerName	Property
Returns	or	sets	a	String	representing	the	manager	name	for	the	contact.
Read/write.

expression.ManagerName

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



MarkForDownload	Property
Returns	or	sets	an	OlRemoteStatus	constant	that	determines	the	status	of	an
item	once	it	is	received	by	a	remote	user.	This	property	gives	remote	users	with
less-than-ideal	data-transfer	capabilities	increased	messaging	flexibility.
Read/write.

OlRemoteStatus	can	be	one	of	these	OlRemoteStatus	constants.
olMarkedForCopy	The	item	will	be	copied	to	the	remote	site.
olMarkedForDelete	The	item	will	be	deleted.
olMarkedForDownload	The	item	will	be	downloaded	in	its	entirety.
olRemoteStatusNone	The	item	has	no	remote	status.
olUnMarked	The	item	isn't	marked	for	remote	status	and	will	be	disregarded.

expression.MarkForDownload

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	searches	through	the	user's	Inbox	for	items	that	have	not
yet	been	fully	downloaded.	If	any	items	are	found	that	are	not	fully	downloaded,
a	message	is	displayed	and	the	item	is	marked	for	download.

Sub	DownloadItems()

				Dim	outApp	As	Outlook.Application

				Dim	mpfInbox	As	Outlook.MAPIFolder

				Dim	obj	As	Object

				Dim	i	As	Integer

				Set	outApp	=	CreateObject("Outlook.Application")

				Set	mpfInbox	=	outApp.GetNamespace("MAPI").GetDefaultFolder(olFolderInbox)

				'Loop	all	items	in	the	Inbox	folder

				For	i	=	1	To	mpfInbox.Items.Count

								Set	obj	=	mpfInbox.Items.Item(i)

								'Verify	if	the	state	of	the	item	is	olHeaderOnly

								If	obj.DownloadState	=	olHeaderOnly	Then

												MsgBox	("This	item	has	not	been	fully	downloaded.")

												'Mark	the	item	to	be	downloaded.

												obj.MarkForDownload	=	olMarkedForDownload

								End	If

				Next

End	Sub

	 	



Show	All



MeetingResponseStatus	Property
Returns	an	OlResponseStatus	constant	indicating	the	overall	status	of	the
response	to	the	meeting	request	for	the	recipient.	Read-only.

OlResponseStatus	can	be	one	of	these	OlResponseStatus	constants.
olResponseAccepted
olResponseDeclined
olResponseNone
olResponseNotResponded
olResponseOrganized
olResponseTentative

expression.MeetingResponseStatus

expression				Required.	An	expression	that	returns	a	Recipient	object.



Show	All



MeetingStatus	Property
Returns	or	sets	an	OlMeetingStatus	constant	specifying	the	meeting	status	of
the	appointment.	Use	this	property	to	make	a	MeetingItem	object	available	for
the	appointment.	Read/write.

OlMeetingStatus	can	be	one	of	these	OlMeetingStatus	constants.
olMeeting
olMeetingCanceled
olMeetingReceived
olNonMeeting

expression.MeetingStatus

expression					Required.	An	expression	that	returns	an	AppointmentItem	object.



Example

This	Visual	Basic	for	Applications	example	uses	CreateItem	to	create	an
appointment	and	uses	MeetingStatus	to	set	the	meeting	status	to	"Meeting"	to
turn	it	into	a	meeting	request	with	both	a	required	and	an	optional	attendee.

Sub	CreateAppt()

	Set	myOlApp	=	CreateObject("Outlook.Application")

	Set	myItem	=	myOlApp.CreateItem(olAppointmentItem)

	myItem.MeetingStatus	=	olMeeting

	myItem.Subject	=	"Strategy	Meeting"

	myItem.Location	=	"Conference	Room	B"

	myItem.Start	=	#9/24/1997	1:30:00	PM#

	myItem.Duration	=	90

	Set	myRequiredAttendee	=	myItem.Recipients.Add("Nate	Sun")

	myRequiredAttendee.Type	=	olRequired

	Set	myOptionalAttendee	=	myItem.Recipients.Add("Kevin	Kennedy")

	myOptionalAttendee.Type	=	olOptional

	Set	myResourceAttendee	=	myItem.Recipients.Add("Conference	Room	B")

	myResourceAttendee.Type	=	olResource

	myItem.Display

End	Sub

	 	

If	you	use	VBScript,	you	do	not	create	the	Application	object,	and	you	cannot
use	named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript.

Sub	CommandButton1_Click()

	Set	myItem	=	Application.CreateItem(1)

	myItem.MeetingStatus	=	1

	myItem.Subject	=	"Strategy	Meeting"

	myItem.Location	=	"Conference	Room	B"

	myItem.Start	=	#9/24/97	1:30:00	PM#

	myItem.Duration	=	90

	Set	myRequiredAttendee	=	myItem.Recipients.Add	("Nate	Sun")

	myRequiredAttendee.Type	=	1

	Set	myOptionalAttendee	=	myItem.Recipients.Add	("Kevin	Kennedy")

	myOptionalAttendee.Type	=	2

	Set	myResourceAttendee	=	myItem.Recipients.Add("Conference	Room	B")

	myResourceAttendee.Type	=	3

	myItem.Display

End	Sub

	 	





MeetingWorkspaceURL	Property
Returns	the	URL	for	the	Meeting	Workspace	that	the	meeting	or	appointment
item	is	linked	to.	Read-only.	A	Meeting	Workspace	is	a	shared	Web	site	for
planning	the	meeting	and	tracking	the	results.

expression.MeetingWorkspaceURL

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



MemberCount	Property
Returns	a	Long	indicating	the	number	of	members	in	a	distribution	list.	Read-
only.

expression.MemberCount

expression				Required.	An	expression	that	returns	a	DistListItem	object.



Remarks

The	value	returned	represents	all	members	of	the	distribution	list,	including
member	distribution	lists.	Each	member	distribution	list	is	counted	as	a	single
member.	That	is,	MemberCount	is	not	an	aggregate	sum	of	the	recipients	in	the
distribution	list	plus	recipients	in	member	distribution	lists.	For	example,	if	a
distribution	list	contains	10	recipients	plus	one	distribution	list	containing	15
recipients,	MemberCount	returns	11.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	example	steps
through	the	default	Contacts	folder,	and	if	it	finds	a	distribution	list	with	more
than	20	members	it	displays	the	item.

Sub	CheckDLs()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myOlFolder	As	Outlook.MAPIFolder

	 Dim	myOlItems	As	Outlook.Items

	 Dim	myOlDistList	As	Outlook.DistListItem

	 Dim	x	as	Integer

	 Set	myOlFolder	=	myOlApp.GetNamespace("MAPI").GetDefaultFolder(olFolderContacts)

	 Set	myOlItems	=	myOlFolder.Items

	 For	x	=	1	To	myOlItems.Count

	 	 If	TypeName(myOlItems.Item(x))	=	"DistListItem"	Then

	 	 	 Set	myOlDistList	=	myOlItems.Item(x)

	 	 	 If	myOlDistList.MemberCount	>	20	Then

	 	 	 	 MsgBox	myOlDistList.DLName	&	"	has	more	than	20	members."

	 	 	 	 myOlDistList.Display

	 	 	 End	If

	 	 End	If

	 Next	x

End	Sub

	 	

If	you	use	VBScript,	you	do	not	create	the	Application	object,	and	you	cannot
use	named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript.

Set	myOlFolder	=	_

				Application.GetNamespace("MAPI").GetDefaultFolder(10)

Set	myOlItems	=	myOlFolder.Items

For	x	=	1	To	myOlItems.Count

				If	TypeName(myOlItems.Item(x))	=	"DistListItem"	Then

								Set	myOlDistList	=	myOlItems.Item(x)

								If	myOlDistList.MemberCount	>	20	Then

												MsgBox	myOlDistList.DLName	&	_

																"	has	more	than	20	members."

												myOlDistList.Display

								End	If

				End	If

Next

	 	





Members	Property
Returns	an	AddressEntries	collection	object	representing	the	members	of	a
distribution	list	in	an	address	book.

A	distribution	list	is	an	AddressEntry	object	whose	DisplayType	property	is	set
to	olDistList	or	olPrivateDistList.

The	Members	property	returns	Nothing	if	the	AddressEntry	is	not	a
distribution	list.

Read-only.

expression.Members

expression				Required.	An	expression	that	returns	an	AddressEntry	object.



Show	All



MessageClass	Property
Returns	or	sets	a	String	representing	the	message	class	for	the	Microsoft
Outlook	item	or	Action.	This	property	corresponds	to	the	MAPI	property
PR_MESSAGE_CLASS.	The	MessageClass	property	links	the	item	to	the	form
on	which	it	is	based.	When	an	item	is	selected,	Outlook	uses	the	message	class
to	locate	the	form	and	expose	its	properties,	such	as	Reply	commands.	Read-
only	for	the	FormDescription	object;	read/write	for	all	other	objects	in	the
Applies	To	list.

expression.MessageClass

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



MiddleName	Property
Returns	or	sets	a	String	representing	the	middle	name	for	the	contact.
Read/write.

expression.MiddleName

expression					Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	FullName	property,	but	may	be	changed	or
entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	of	entries	to	FullName.



Show	All



Mileage	Property
Returns	or	sets	a	String	representing	the	mileage	for	an	item.	This	is	a	free-form
string	field	and	can	be	used	to	store	mileage	information	associated	with	the	item
(for	example,	100	miles	documented	for	an	appointment,	contact,	or	task)	for
purposes	of	reimbursement.	Read/write.

expression.Mileage

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



MiniIcon	Property
Returns	or	sets	a	String	representing	the	file	name	of	the	mini-icon	to	be
displayed	for	the	form.	Read/write.

expression.MiniIcon

expression				Required.	An	expression	that	returns	a	FormDescription	object.



MobileTelephoneNumber	Property
Returns	or	sets	a	String	representing	the	mobile	telephone	number	for	the
contact.	Read/write.

expression.MobileTelephoneNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



ModifiedFormPages	Property
Returns	the	Pages	collection	that	represents	all	the	pages	for	the	item	in	the
inspector.	The	main	page	and	up	to	five	customizable	pages	can	be	obtained
using	the	Add	method.

expression.ModifiedFormPages

expression				Required.	An	expression	that	returns	an	Inspector	object.



Example

This	Visual	Basic	for	Applications	(VBA)	displays	the	count	of	pages	in	the
ModifiedFormPages	collection.	To	run	this	example	without	any	errors,	display
a	contact	item	in	the	active	window.

Sub	CountModifiedFormPages()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myItem	As	Outlook.ContactItem

	 Dim	myPages	As	Outlook.Pages

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	myOlApp.ActiveInspector.CurrentItem

	 Set	myPages	=	myItem.GetInspector.ModifiedFormPages

	 MsgBox	myPages.Count

End	Sub

	 	



MonthOfYear	Property
Returns	or	sets	a	Long	indicating	which	month	of	the	year	is	valid	for	the
specified	recurrence	pattern.	Can	be	a	number	from	1	through	12.	For	example,
setting	this	property	to	5	and	the	RecurrenceType	property	to	olRecursYearly
would	cause	this	recurrence	pattern	to	occur	every	May.	Read/write.

expression.MonthOfYear

expression				Required.	An	expression	that	returns	a	RecurrencePattern	object.

Note		This	property	is	only	valid	for	recurrence	patterns	whose	RecurrenceType
property	is	set	to	olRecursYearly	or	olRecursYearNth.



Name	Property
Returns	or	sets	the	display	name	for	an	object	in	the	Applies	To	list.	The	Name
property	is	also	the	caption	for	a	form.	Read/write	depending	on	the	object.

expression.Name

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Note		The	Name	property	must	be	set	before	you	can	use	the	PublishForm
method.	It	is	also	necessary	for	the	Name	property	to	be	set	before	calling	the
Details	method.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Name	property	to
obtain	the	name	of	the	folder	displayed	in	the	active	explorer.

Sub	DisplayCurrentFolderName()

				Dim	myOlApp	As	Outlook.Application

				Dim	myExplorer	As	Outlook.Explorer

				Dim	myFolder	As	Outlook.MAPIFolder

				Set	myOlApp	=	CreateObject("Outlook.Application")

				Set	myExplorer	=	myOlApp.ActiveExplorer

				Set	myFolder	=	myExplorer.CurrentFolder

				MsgBox	myFolder.Name

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object.	This	example	shows
how	to	perform	the	same	task	using	VBScript	code.

Sub	CommandButton1_Click()

	Set	myExplorer	=	Application.ActiveExplorer

	Set	myFolder	=	myExplorer.CurrentFolder

	MsgBox	myFolder.Name

End	Sub

	 	



NetMeetingAlias	Property
Returns	or	sets	a	String	indicating	the	user's	Microsoft	NetMeeting	ID,	or	alias.
Read/write.

expression.NetMeetingAlias

expression				Required.	An	expression	that	returns	a	ContactItem	object.



NetMeetingAutoStart	Property
True	if	this	online	meeting	starts	automatically.	Read/write	Boolean.

expression.NetMeetingAutoStart

expression				Required.	An	expression	that	returns	an	AppointmentItem	object.



Show	All



NetMeetingDocPathName	Property
Returns	or	sets	a	String	representing	the	full	path	to	the	Microsoft	Office
document	specified	for	a	Microsoft	NetMeeting	online	meeting.	Read/write.

expression.NetMeetingDocPathName

expression				Required.	An	expression	that	returns	an	AppointmentItem	object.



NetMeetingOrganizerAlias	Property
Returns	or	sets	a	String	representing	the	alias	of	the	meeting	organizer,	if	this	is
an	online	meeting.	Read/write.

expression.NetMeetingOrganizerAlias

expression				Required.	An	expression	that	returns	an	AppointmentItem	object.



NetMeetingServer	Property
Returns	or	sets	a	String	specifying	the	name	of	the	Microsoft	NetMeeting	server
being	used	for	an	online	meeting.	Read/write.

expression.NetMeetingServer

expression				Required.	An	expression	that	returns	an	AppointmentItem	or
ContactItem	object.



Show	All



NetMeetingType	Property
Sets	or	returns	an	OlNetMeetingType	constant	specifying	the	type	of	Microsoft
NetMeeting.	Read/write.

OlNetMeetingType	can	be	one	of	these	OlNetMeetingType	constants.
olChat
olNetMeeting
olNetShow

expression.NetMeetingType

expression				Required.	An	expression	that	returns	an	AppointmentItem	object.



NetShowURL	Property
Returns	or	sets	a	String	specifying	the	URL	for	a	Microsoft	NetShow	online
meeting.	Read/write.

expression.NetShowURL

expression				Required.	An	expression	that	returns	an	AppointmentItem	object.



NextReminderDate	Property
Returns	a	Date	that	indicates	the	next	time	the	specified	reminder	will	occur.
Read-only.

expression.NextReminderDate

expression				Required.	An	expression	that	returns	a	Reminder	object.



Remarks

The	NextReminderDate	property	value	changes	every	time	the	object's	Snooze
method	is	executed	or	when	the	user	clicks	the	Snooze	button.



Example

The	following	example	creates	a	report	of	all	reminders	in	the	collection	and	the
dates	when	they	will	next	occur.	The	subroutine	concatenates	the	Caption	and
NextReminderDate	properties	into	a	string	and	displays	the	string	in	a	dialog
box.

Sub	DisplayNextDateReport()

'Displays	the	next	time	all	reminders	will	be	displayed.

				Dim	olApp	As	Outlook.Application

				Dim	objRems	As	Outlook.Reminders

				Dim	objRem	As	Outlook.Reminder

				Dim	strTitle	As	String

				Dim	strReport	As	String

				Set	olApp	=	New	Outlook.Application

				Set	objRems	=	olApp.Reminders

				strTitle	=	"Current	Reminder	Schedule:"

				strReport	=	""

				'Check	if	any	reminders	exist.

				If	objRems.Count	=	0	Then

								MsgBox	"There	are	no	current	reminders."

				Else

								For	Each	objRem	In	objRems

																'Add	information	to	string.

																strReport	=	strReport	&	objRem.Caption	&	vbTab	&	_

																												objRem.NextReminderDate	&	vbCr

									Next	objRem

								'Display	report	in	dialog	box

								MsgBox	strTitle	&	vbCr	&	vbCr	&	strReport

				End	If

End	Sub

	 	



NickName	Property
Returns	or	sets	a	String	representing	the	nickname	for	the	contact.	Read/write.

expression.Nickname

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



NoAging	Property
True	to	not	age	the	Outlook	item.	Read/write	Boolean.

expression.NoAging

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



NoEndDate	Property
True	if	the	recurrence	pattern	has	no	end	date.	Read/write	Boolean.

expression.NoEndDate

expression				Required.	An	expression	that	returns	a	RecurrencePattern	object.



Remarks

This	property	must	be	coordinated	with	other	properties	when	setting	up	a
recurrence	pattern.	If	the	PatternEndDate	property	or	the	Occurrences
property	is	set,	the	pattern	is	considered	to	be	finite	and	the	NoEndDate
property	is	False.	If	neither	PatternEndDate	nor	Occurrences	is	set,	the	pattern
is	considered	infinite	and	NoEndDate	is	True.



Number	Property
Returns	or	sets	a	String	corresponding	to	the	number	for	the	specified	form.
Read/write.

expression.Number

expression				Required.	An	expression	that	returns	a	FormDescription	object.



Occurrences	Property
Returns	or	sets	a	Long	indicating	the	number	of	occurrences	of	the	recurrence
pattern.	This	property	allows	the	definition	of	a	recurrence	pattern	that	is	only
valid	for	the	specified	number	of	subsequent	occurrences.	For	example,	you	can
set	this	property	to	10	for	a	formal	training	course	that	will	be	held	on	the	next
ten	Thursday	evenings.	Read/write.

expression.Occurrences

expression				Required.	An	expression	that	returns	a	RecurrencePattern	object.



Remarks

This	property	must	be	coordinated	with	other	properties	when	setting	up	a
recurrence	pattern.	If	the	PatternEndDate	property	or	the	Occurrences
property	is	set,	the	pattern	is	considered	to	be	finite	and	the	NoEndDate
property	is	False.	If	neither	PatternEndDate	nor	Occurrences	is	set,	the	pattern
is	considered	infinite	and	NoEndDate	is	True.



OfficeLocation	Property
Returns	or	sets	a	String	specifying	the	specific	office	location	(for	example,
Building	1	Room	1	or	Suite	123)	for	the	contact.	This	property	corresponds	to
the	MAPI	property	PR_OFFICE_LOCATION.	Read/write.

expression.OfficeLocation

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Offline	Property
Returns	a	Boolean	indicating	whether	Microsoft	Outlook	is	online	(connected	to
a	server)	or	offline	(not	connected	to	a	server).	Returns	True	if	Outlook	is
offline.	Read-only.

expression.Offline

expression				Required.	An	expression	that	returns	a	Namespace	object.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	returns	True	or	False	depending	on	whether	the	Namespace	object	is
currently	online.

Sub	Off()

'Determines	whether	Outlook	is	currently	offline.

				Dim	olapp	As	Outlook.Application

				Dim	nmsName	As	Outlook.NameSpace

				Set	olapp	=	New	Outlook.Application

				Set	nmsName	=	olapp.GetNamespace("MAPI")

				MsgBox	nmsName.Offline

End	Sub

	 	



OneOff	Property
True	if	the	form	will	be	discarded	after	using	once	(one-off).	False	if	the	form	is
retained	as	a	custom	form.	Read/write	Boolean.

expression.OneOff

expression				Required.	An	expression	that	returns	a	FormDescription	object.



OptionalAttendees	Property
Returns	or	sets	a	String	representing	the	display	string	of	optional	attendees
names	for	the	appointment.	This	property	corresponds	to	the	MAPI	property
PR_DISPLAY_CC.	Read/write.

expression.OptionalAttendees

expression				Required.	An	expression	that	returns	an	AppointmentItem	object.



Ordinal	Property
Returns	or	sets	a	Long	specifying	the	position	in	the	view	(ordinal)	for	the	task.
Read/write.

expression.Ordinal

expression				Required.	An	expression	that	returns	a	TaskItem	object.



OrganizationalIDNumber	Property
Returns	or	sets	a	String	representing	the	organizational	ID	number	for	the
contact.	Read/write.

expression.OrganizationalIDNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Organizer	Property
Returns	a	String	representing	the	name	of	the	organizer	of	the	appointment.
Read-only.

expression.Organizer

expression				Required.	An	expression	that	returns	an	AppointmentItem	object.



OriginalDate	Property
Returns	a	Date	indicating	the	original	date	and	time	of	an	AppointmentItem
before	it	was	altered.	This	property	will	return	the	original	date	even	if	the
AppointmentItem	has	been	deleted.	However,	it	will	not	return	the	original
time	if	deletion	has	occurred.	Read-only.

expression.OriginalDate

expression				Required.	An	expression	that	returns	an	Exception	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	CreateItem	to	create	an
AppointmentItem	object.	The	RecurrencePattern	is	obtained	for	this	item
using	the	GetRecurrencePattern	method.	By	setting	the	RecurrencePattern
properties,	RecurrenceType,	PatternStartDate,	and	PatternEndDate,	the
appointments	are	now	a	recurring	series	that	occur	on	a	daily	basis	for	the	period
of	one	year.

An	Exception	object	is	created	when	one	instance	of	this	recurring	appointment
is	obtained	using	the	GetOccurrence	method	and	properties	for	this	instance	are
altered.	This	exception	to	the	series	of	appointments	is	obtained	using	the
GetRecurrencePattern	method	to	access	the	Exceptions	collection	associated
with	this	series.	Message	boxes	display	the	original	Subject	and	OriginalDate
for	this	exception	to	the	series	of	appointments	and	the	current	date,	time,	and
subject	for	this	exception.

For	a	description	of	changes	required	for	this	example	to	work	in	Microsoft
Visual	Basic	Scripting	Edition	(VBScript),	see	the	Note	at	the	end	of	the
example.

Public	Sub	cmdExample()

				Dim	myOlApp	As	Outlook.Application

				Dim	myApptItem	As	Outlook.AppointmentItem

				Dim	myRecurrPatt	As	Outlook.RecurrencePattern

				Dim	myNamespace	As	Outlook.NameSpace

				Dim	myFolder	As	Outlook.MAPIFolder

				Dim	myItems	As	Outlook.Items

				Dim	myDate	As	Date

				Dim	myOddApptItem	As	Outlook.AppointmentItem

				Dim	saveSubject	As	String

				Dim	newDate	As	Date

				Dim	myException	As	Outlook.Exception

				Set	myOlApp	=	New	Outlook.Application

				Set	myApptItem	=	myOlApp.CreateItem(olAppointmentItem)

				myApptItem.Start	=	#2/2/2003	3:00:00	PM#

				myApptItem.End	=	#2/2/2003	4:00:00	PM#

				myApptItem.Subject	=	"Meet	with	Boss"

				

				'Get	the	recurrence	pattern	for	this	appointment

				'and	set	it	so	that	this	is	a	daily	appointment

				'that	begins	on	2/2/03	and	ends	on	2/2/04



				'and	save	it.

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				myRecurrPatt.RecurrenceType	=	olRecursDaily

				myRecurrPatt.PatternStartDate	=	#2/2/2003#

				myRecurrPatt.PatternEndDate	=	#2/2/2004#

				myApptItem.Save

				

				'Access	the	items	in	the	Calendar	folder	to	locate

				'the	master	AppointmentItem	for	the	new	series.

				Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

				Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderCalendar)

				Set	myItems	=	myFolder.Items

				Set	myApptItem	=	myItems("Meet	with	Boss")

				

				'Get	the	recurrence	pattern	for	this	appointment

				'and	obtain	the	occurrence	for	3/12/03.

				myDate	=	#3/12/2003	3:00:00	PM#

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				Set	myOddApptItem	=	myRecurrPatt.GetOccurrence(myDate)

					

				'Save	the	existing	subject.	Change	the	subject	and

				'starting	time	for	this	particular	appointment

				'and	save	it.

				saveSubject	=	myOddApptItem.Subject

				myOddApptItem.Subject	=	"Meet	NEW	Boss"

				newDate	=	#3/12/2003	3:30:00	PM#

				myOddApptItem.Start	=	newDate

				myOddApptItem.Save

				

				'Get	the	recurrence	pattern	for	the	master

				'AppointmentItem.	Access	the	collection	of

				'exceptions	to	the	regular	appointments.

				Set	myRecurrPatt	=	myApptItem.GetRecurrencePattern

				Set	myException	=	myRecurrPatt.Exceptions.item(1)

			

				'Display	the	original	date,	time,	and	subject

				'for	this	exception.

				MsgBox	myException.OriginalDate	&	":	"	&	saveSubject

				'Display	the	current	date,	time,	and	subject

				'for	this	exception.

				MsgBox	myException.AppointmentItem.Start	&	":	"	&	_

				myException.AppointmentItem.Subject

End	Sub

	 	

Note		For	this	example	to	work	properly	in	VBScript,	a	few	changes	need	to	be
made	in	the	code.



You	do	not	have	to	retrieve	the	application	as	an	object,	and	you	must	use	the
values	of	the	constants,	so:

Set	myOlApp	=	New	Outlook.Application

Set	myApptItem	=	myOlApp.CreateItem(olAppointmentItem)

	 	

becomes:

Set	myApptItem	=	Application.CreateItem(1)

	 	

and

myRecurrPatt.RecurrenceType	=	olRecursDaily

	 	

becomes:

myRecurrPatt.RecurrenceType	=	0

	 	

and

Set	myFolder	=	myNamespace.GetDefaultFolder(olFolderCalendar)

	 	

becomes:

Set	myFolder	=	myNamespace.GetDefaultFolder(9)

	 	



OriginalReminderDate	Property
Returns	a	Date	that	specifies	the	original	date	and	time	that	the	specified
reminder	is	set	to	occur.	Read-only.

expression.OriginalReminderDate

expression				Required.	An	expression	that	returns	a	Reminder	object.



Remarks

This	value	corresponds	to	the	original	date	and	time	value	before	the	Snooze
method	is	executed	or	the	user	clicks	the	Snooze	button.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	creates	a	report	of	all	reminders	in	the	Reminders	collection	and	the
dates	at	which	they	are	scheduled	to	occur.	The	subroutine	concatenates	the
Caption	and	OriginalReminderDate	properties	of	all	Reminder	objects	in	the
collection	into	a	string	and	displays	the	string	in	a	dialog	box.

Sub	DisplayOriginalDateReport()

'Displays	the	time	at	which	all	reminders	will	be	displayed.

				Dim	olApp	As	Outlook.Application

				Dim	objRems	As	Outlook.Reminders

				Dim	objRem	As	Outlook.Reminder

				Dim	strTitle	As	String

				Dim	strReport	As	String

				Set	olApp	=	New	Outlook.Application

				Set	objRems	=	olApp.Reminders

				strTitle	=	"Original	Reminder	Schedule:"

				strReport	=	""

				'Check	if	any	reminders	exist.

				If	objRems.Count	=	0	Then

								MsgBox	"There	are	no	current	reminders."

				Else

								For	Each	objRem	In	objRems

																'Add	info	to	string

																strReport	=	strReport	&	objRem.Caption	&	vbTab	&	vbTab	&	_

																												objRem.OriginalReminderDate	&	vbCr

								Next	objRem

								'Display	report	in	dialog

								MsgBox	strTitle	&	vbCr	&	vbCr	&	strReport

				End	If

End	Sub

	 	





OriginatorDeliveryReportRequested
Property
Returns	or	sets	a	Boolean	value	that	determines	whether	the	originator	of	the
meeting	item	or	mail	message	will	receive	a	delivery	report.	Each	transport
provider	that	handles	your	message	sends	you	a	single	delivery	notification
containing	the	names	and	addresses	of	each	recipient	to	whom	it	was	delivered.
Note	that	delivery	does	not	imply	that	the	message	has	been	read.	The
OriginatorDeliveryReportRequested	property	corresponds	to	the	MAPI
property	PR_ORIGINATOR_DELIVERY_REPORT_REQUESTED.	True	if	the
originator	requested	a	delivery	receipt	on	the	message.	Read/write.

expression.OriginatorDeliveryReportRequested

expression				Required.	An	expression	that	returns	a	MailItem	or	a	MeetingItem
object.



OtherAddress	Property
Returns	or	sets	a	String	representing	the	other	address	for	the	contact.
Read/write.

expression.OtherAddress

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	contains	the	full,	unparsed	other	address	for	the	contact.



OtherAddressCity	Property
Returns	or	sets	a	String	representing	the	city	portion	of	the	other	address	for	the
contact.	Read/write.

expression.OtherAddressCity

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	OtherAddress	property,	but	may	be	changed	or
entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	OtherAddress.



OtherAddressCountry	Property
Returns	or	sets	a	String	representing	the	country/region	portion	of	the	other
address	for	the	contact.	Read/write.

expression.OtherAddressCountry

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	OtherAddress	property,	but	may	be	changed	or
entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	OtherAddress.



OtherAddressPostalCode	Property
Returns	or	sets	a	String	representing	the	postal	code	portion	of	the	other	address
for	the	contact.	Read/write.

expression.OtherAddressPostalCode

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	OtherAddress	property,	but	may	be	changed	or
entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	OtherAddress.



OtherAddressPostOfficeBox	Property
Returns	or	sets	a	String	representing	the	post	office	box	portion	of	the	other
address	for	the	contact.	Read/write.

expression.OtherAddressPostOfficeBox

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	OtherAddress	property,	but	may	be	changed	or
entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	OtherAddress.



OtherAddressState	Property
Returns	or	sets	a	String	representing	the	state	portion	of	the	other	address	for	the
contact.	Read/write.

expression.OtherAddressState

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	OtherAddress	property,	but	may	be	changed	or
entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	OtherAddress.



OtherAddressStreet	Property
Returns	or	sets	a	String	representing	the	street	portion	of	the	other	address	for
the	contact.	Read/write.

expression.OtherAddressStreet

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Remarks

This	property	is	parsed	from	the	OtherAddress	property,	but	may	be	changed	or
entered	independently	should	it	be	parsed	incorrectly.	Note	that	any	such
changes	or	entries	to	this	property	will	be	overwritten	by	any	subsequent
changes	or	entries	to	OtherAddress.



OtherFaxNumber	Property
Returns	or	sets	a	String	representing	the	other	fax	number	for	the	contact.
Read/write.

expression.OtherFaxNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



OtherTelephoneNumber	Property
Returns	or	sets	a	String	representing	the	other	telephone	number	for	the	contact.
Read/write.

expression.OtherTelephoneNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



OutlookInternalVersion	Property
Returns	a	Long	representing	the	build	number	of	the	Microsoft	Outlook
application	for	an	Outlook	item.	Read-only.

expression.OutlookInternalVersion

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Show	All



OutlookVersion	Property
Returns	a	String	indicating	the	major	and	minor	version	number	of	the
Microsoft	Outlook	application	for	an	Outlook	item.	Read-only.

expression.OutlookVersion

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Owner	Property
Returns	or	sets	a	String	indicating	the	owner	for	the	task.	This	is	a	free-form
string	field.	Setting	this	property	to	someone	other	than	the	current	user	does	not
have	the	effect	of	delegating	the	task.	Read/write	if	the	task	is	stored	on	the
Exchange	Server	public	folder.	Read-only	if	it's	stored	in	a	user's	mailbox	or
personal	folders	file.

expression.Owner

expression				Required.	An	expression	that	returns	a	TaskItem	object.



Show	All



Ownership	Property
Returns	an	OlTaskOwnership	specifying	the	ownership	state	of	the	task.	Read-
only.

OlTaskOwnership	can	be	one	of	these	OlTaskOwnership	constants.
olDelegatedTask
olNewTask
olOwnTask

expression.Ownership

expression				Required.	An	expression	that	returns	a	TaskItem	object.



PagerNumber	Property
Returns	or	sets	a	String	representing	the	pager	number	for	the	contact.
Read/write.

expression.PagerNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



Panes	Property
Returns	a	Panes	collection	object	representing	the	panes	displayed	by	the
specified	explorer.

expression.Panes

expression				Required.	An	expression	that	returns	an	Explorer	object.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example	adds
a	group	named	"Marketing"	as	the	second	group	in	the	Shortcuts	pane.

Sub	AddGroup()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myolBar	As	Outlook.OutlookBarPane

	 Set	myolBar	=	myOlApp.ActiveExplorer.Panes.Item("OutlookBar")

	 myolBar.Contents.Groups.Add	"Sales",	myolBar.Contents.Groups.Count	+	1

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object.	This	example	shows
how	to	perform	the	same	task	using	VBScript	code.

Set	myolBar	=	Application.ActiveExplorer.Panes.Item("OutlookBar")

myolBar.Contents.Groups.Add	"Marketing",	myolBar.Contents.Groups.Count	+	1

	 	



Parent	Property
Returns	the	parent	Object	of	the	specified	object.	Read-only.

expression.Parent

expression				Required.	An	expression	that	returns	a	Microsoft	Outlook	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	displays	the	folders	in	the
parent	folder	of	Inbox.

Sub	GetRootFolder()

				Dim	mpfRoot	As	Outlook.MAPIFolder

				Dim	mpf	As	Outlook.MAPIFolder

				Dim	idx	As	Integer

				

				Set	mpf	=	Application.Session.GetDefaultFolder(olFolderInbox)

				Set	mpfRoot	=	mpf.Parent

				For	idx	=	1	To	mpfRoot.Folders.count

								MsgBox	mpfRoot.Folders.Item(idx).Name

				Next

				

End	Sub

	 	



Password	Property
Returns	or	sets	a	String	specifying	the	password	for	modifying	the	form.
Read/write.

expression.Password

expression				Required.	An	expression	that	returns	a	FormDescription	object.



PathName	Property
Returns	a	String	representing	the	full	path	to	the	linked	attached	file.	This
property	is	only	valid	for	linked	files.	Read-only.

expression.PathName

expression				Required.	An	expression	that	returns	an	Attachment	object.



PatternEndDate	Property
Returns	or	sets	a	Date	indicating	the	end	date	for	the	recurrence	pattern.
Read/write.

expression.PatternEndDate

expression				Required.	An	expression	that	returns	a	RecurrencePattern	object.



Remarks

This	property	is	optional	but	must	be	coordinated	with	other	properties	when
setting	up	a	recurrence	pattern.	If	this	property	or	the	Occurrences	property	is
set,	the	pattern	is	considered	to	be	finite,	and	the	NoEndDate	property	is	False.
If	neither	PatternEndDate	nor	Occurrences	is	set,	the	pattern	is	considered
infinite	and	NoEndDate	is	True.	The	Interval	property	must	be	set	before
setting	PatternEndDate.



PatternStartDate	Property
Returns	or	sets	a	Date	indicating	the	start	date	for	the	recurrence	pattern.
Read/write.

expression.PatternStartDate

expression				Required.	An	expression	that	returns	a	RecurrencePattern	object.



PercentComplete	Property
Returns	or	sets	a	Long	indicating	the	percentage	of	the	task	completed	at	the
current	date	and	time.	Read/write.

expression.PercentComplete

expression				Required.	An	expression	that	returns	a	TaskItem	object.



Show	All



Permission	Property
Sets	or	returns	an	OlPermission	constant	that	determines	the	permissions	the
recipients	will	have	on	the	e-mail	item.	Read/write.

OlPermission	can	be	one	of	the	following:

olUnrestricted	(0)
olDoNotForward	(1)
olPermissionTemplate	(2)

expression.Permission

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	Microsoft	Visual	Basic	for	Applications	(VBA)	example	uses	the	Send
event	and	sends	an	item	with	a	'Do	not	forward'	restriction.	The	sample	code
must	be	placed	in	a	class	module	such	as	ThisOutlookSession,	and	the
SendMyMail	procedure	must	be	called	before	the	event	procedure	can	be	called
by	Microsoft	Outlook.	Replace	'Dan	Wilson'	with	a	valid	recipient	name	before
running	this	example.

Public	WithEvents	myItem	As	Outlook.MailItem

		

Sub	SendMyMail()

				Set	myItem	=	Outlook.CreateItem(olMailItem)

				myItem.To	=	"Dan	Wilson"

				myItem.Subject	=	"Data	files	information"

				myItem.Send

End	Sub

Private	Sub	myItem_Send(Cancel	As	Boolean)

					myItem.Permission	=	olDoNotForward

End	Sub

	 	



Show	All



PermissionService	Property
Sets	or	returns	an	OlPermissionService	constant	that	determines	the	permission
service	that	will	be	used	when	sending	an	IRM	protected	message.	Note	that	this
property	is	useful	only	if	you	have	more	than	one	permission	identity	for	a
particular	SMTP	address.	Read/write.

OlPermissionService	can	be	one	of	the	following:

olUnknown	(0)
olWindows	(1)
olPassport	(2)

expression.PermissionService

expression				Required.	An	expression	that	returns	a	MailItem	object.



Example

This	Microsoft	Visual	Basic	for	Applications	(VBA)	example	demonstrates	how
to	specify	the	permission	service	before	sending	an	item.	Replace	'Dan	Wilson'
with	a	valid	recipient	name	before	running	this	example.

Sub	SendMyMail()

				Set	myItem	=	Outlook.CreateItem(olMailItem)

				myItem.To	=	"Dan	Wilson"

				myItem.Subject	=	"Data	files	information"

				myItem.PermissionService	=	olWindows

				myItem.Send

End	Sub

	 	



PersonalHomePage	Property
Returns	or	sets	a	String	representing	the	URL	of	the	personal	Web	page	for	the
contact.	Read/write.

expression.PersonalHomePage

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



Position	Property
Returns	or	sets	a	Long	indicating	the	position	of	the	attachment	within	the	body
of	the	item.	Read/write.

expression.Position

expression				Required.	An	expression	that	returns	an	Attachment	object.



Prefix	Property
Returns	or	sets	a	String	specifying	the	prefix	(for	example,	"Re")	to	use	with	the
subject	of	the	item	when	the	action	is	executed.	Note	that	Outlook	automatically
adds	a	colon	(:)	to	the	value	of	the	Prefix	property	when	setting	the	subject	of
the	item.	Read/write.

expression.Prefix

expression				Required.	An	expression	that	returns	an	Action	object.



PrimaryTelephoneNumber	Property
Returns	or	sets	a	String	specifying	the	primary	telephone	number	for	the
contact.	Read/write.

expression.PrimaryTelephoneNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



ProductCode	Property
Returns	a	String	specifying	the	Microsoft	Outlook	globally	unique	identifier
(GUID).	Read-only.

expression.ProductCode()

expression				Required.	An	expression	that	returns	an	Application	object.



Profession	Property
Returns	or	sets	a	String	indicating	the	profession	for	the	contact.	Read/write.

expression.Profession

expression				Required.	An	expression	that	returns	a	ContactItem	object.



RadioTelephoneNumber	Property
Returns	or	sets	a	String	indicating	the	radio	telephone	number	for	the	contact.
Read/write.

expression.RadioTelephoneNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



ReadReceiptRequested	Property
True	if	a	read	receipt	has	been	requested	by	the	sender.	This	property
corresponds	to	the	MAPI	property	PR_READ_RECEIPT_REQUESTED.
Read/write.

expression.ReadReceiptRequested

expression				Required.	An	expression	that	returns	a	MailItem	object.



ReceivedByEntryID	Property
Returns	a	String	representing	the	EntryID	for	the	true	recipient	as	set	by	the
transport	provider	delivering	the	mail	message.	This	property	corresponds	to	the
MAPI	property	PR_RECEIVED_BY_ENTRYID.	Read-only.

expression.ReceivedByEntryID

expression				Required.	An	expression	that	returns	a	MailItem	object.



ReceivedByName	Property
Returns	a	String	representing	the	display	name	of	the	true	recipient	for	the	mail
message.	This	property	corresponds	to	the	MAPI	property
PR_RECEIVED_BY_NAME.	Read-only.

expression.ReceivedByName

expression				Required.	An	expression	that	returns	a	MailItem	object.



ReceivedOnBehalfOfEntryID
Property
Returns	a	String	representing	the	EntryID	of	the	user	delegated	to	represent	the
recipient	for	the	mail	message.	This	property	corresponds	to	the	MAPI	property
PR_RCVD_REPRESENTING_ENTRYID.	Read-only.

expression.ReceivedOnBehalfOfEntryID

expression				Required.	An	expression	that	returns	a	MailItem	object.



ReceivedOnBehalfOfName	Property
Returns	a	String	representing	the	display	name	of	the	user	delegated	to	represent
the	recipient	for	the	mail	message.	This	property	corresponds	to	the	MAPI
property	PR_RCVD_REPRESENTING_NAME.	Read-only.

expression.ReceivedOnBehalfOfName

expression				Required.	An	expression	that	returns	a	MailItem	object.



ReceivedTime	Property
Returns	or	sets	a	Date	indicating	the	date	and	time	at	which	the	mail	message,
meeting	item,	or	post	was	received.	Read/write	for	the	MeetingItem	object;
read-only	for	the	MailItem	and	PostItem	objects.

expression.ReceivedTime

expression				Required.	An	expression	that	returns	a	MailItem,	MeetingItem,	or
PostItem	object.



RecipientReassignmentProhibited
Property
True	if	the	recipient	cannot	forward	the	mail	message.	Read/write	Boolean.

expression.RecipientReassignmentProhibited

expression				Required.	An	expression	that	returns	a	MailItem	object.



Show	All



Recipients	Property
Returns	a	Recipients	collection	that	represents	all	the	recipients	for	the
Microsoft	Outlook	item.	Read-only.

expression.Recipients

expression				Required.	An	expression	that	returns	an	AppointmentItem,
JournalItem,	MailItem,	MeetingItem,	or	TaskItem	object.



Remarks

Outlook	blocks	code	that	attempts	to	access	the	Recipients	property	for	security
reasons.	If	you	run	a	third-party	add-in,	custom	solution,	or	other	program	that
uses	the	Recipients	property	in	Office	Outlook	2003,	you	may	receive	the
following	warning:

A	program	is	trying	to	access	e-mail	addresses	you	have	stored	in	Outlook.	Do
you	want	to	allow	this?	If	this	is	unexpected,	it	may	be	a	virus	and	you	should
choose	"No".



Example

This	Visual	Basic	for	Applications	(VBA)	example	creates	a	new	e-mail
message,	uses	the	Add	method	to	add	"Dan	Wilson"	as	a	To	recipient,	and
displays	the	message.

Sub	CreateStatusReportToBoss()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myItem	As	Outlook.MailItem

	 Dim	myRecipient	As	Outlook.Recipient

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	myOlApp.CreateItem(olMailItem)

	 Set	myRecipient	=	myItem.Recipients.Add("Dan	Wilson")

	 myItem.Subject	=	"Status	Report"

	 myItem.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object,	and	you	cannot	use	named
constants.	This	example	shows	how	to	perform	the	same	task	using	VBScript
code.

Set	myItem	=	Application.CreateItem(0)

Set	myRecipient	=	myItem.Recipients.Add("Dan	Wilson")

myItem.Subject	=	"Status	Report"

myItem.Display

	 	



Show	All



RecurrenceState	Property
Returns	an	OlRecurrenceState	constant	indicating	the	recurrence	property	of
the	specified	object.	Read-only.

OlRecurrenceState	can	be	one	of	these	OlRecurrenceState	constants.
olApptException
olApptMaster
olApptNotRecurring
olApptOccurrence

expression.RecurrenceState

expression				Required.	An	expression	that	returns	an	AppointmentItem	object.



Show	All



RecurrenceType	Property
Returns	or	sets	an	OlRecurrenceType	constant	specifying	the	frequency	of
occurrences	for	the	recurrence	pattern.	Read/write.

OlRecurrenceType	can	be	one	of	these	OlRecurrenceType	constants.
olRecursDaily
olRecursMonthly
olRecursMonthNth
olRecursWeekly
olRecursYearly
olRecursYearNth

expression.RecurrenceType

expression					Required.	An	expression	that	returns	a	RecurrencePattern	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	creates	a	task	called	"Oil
Change"	that	recurs	every	three	months	and	uses	the	Regenerate	property	to	set
it	to	regenerate	after	each	recurrence.

Sub	CreateTaskOilChange()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myItem	As	Outlook.TaskItem

	 Dim	myPattern	As	Outlook.RecurrencePattern

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	myOlApp.CreateItem(olTaskItem)

	 Set	myPattern	=	myItem.GetRecurrencePattern

	 myPattern.RecurrenceType	=	olRecursMonthly

	 myPattern.Regenerate	=	True

	 myPattern.Interval	=	3

	 myItem.Subject	=	"Oil	Change"

	 myItem.Save

	 myItem.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myItem	=	Application.CreateItem(3)

Set	myPattern	=	myItem.GetRecurrencePattern

myPattern.RecurrenceType	=	2

myPattern.Regenerate	=	True

myPattern.Interval	=	3

myItem.Subject	=	"Oil	Change"

myItem.Save

myItem.Display

	 	





ReferredBy	Property
Returns	or	sets	a	String	specifying	the	referral	name	entry	for	the	contact.
Read/write.

expression.ReferredBy

expression					Required.	An	expression	that	returns	a	ContactItem	object.



Regenerate	Property
True	if	the	task	should	be	regenerated	following	this	pass	through	the	recurrence
pattern.	This	property	is	used	to	control	the	regeneration	of	the	task	as	each
occurrence	of	a	recurring	task	is	completed.	Read/write	Boolean.

expression.Regenerate

expression					Required.	An	expression	that	returns	a	RecurrencePattern	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	creates	a	task	called	"Oil
Change"	that	recurs	every	three	months	and	uses	the	Regenerate	property	to	set
it	to	regenerate	after	each	recurrence.

Sub	CreateTaskOilChange()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myItem	As	Outlook.TaskItem

	 Dim	myPattern	As	Outlook.RecurrencePattern

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	myOlApp.CreateItem(olTaskItem)

	 Set	myPattern	=	myItem.GetRecurrencePattern

	 myPattern.RecurrenceType	=	olRecursMonthly

	 myPattern.Regenerate	=	True

	 myPattern.Interval	=	3

	 myItem.Subject	=	"Oil	Change"

	 myItem.Save

	 myItem.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Set	myItem	=	Application.CreateItem(3)

Set	myPattern	=	myItem.GetRecurrencePattern

myPattern.RecurrenceType	=	2

myPattern.Regenerate	=	True

myPattern.Interval	=	3

myItem.Subject	=	"Oil	Change"

myItem.Save

myItem.Display

	 	





ReminderMinutesBeforeStart
Property
Returns	or	sets	a	Long	indicating	the	number	of	minutes	the	reminder	should
occur	prior	to	the	start	of	the	appointment.	Read/write.

expression.ReminderMinutesBeforeStart

expression					Required.	An	expression	that	returns	an	AppointmentItem	object.



ReminderOverrideDefault	Property
True	if	the	reminder	overrides	the	default	reminder	behavior	for	the
appointment,	mail	item,	or	task.	Read/write	Boolean.

Note		You	must	set	the	ReminderOverrideDefault	property	to	validate	the
ReminderPlaySound	and	the	ReminderSoundFile	properties.

expression.ReminderOverrideDefault

expression					Required.	An	expression	that	returns	an	AppointmentItem,
MailItem,	or	TaskItem	object.



ReminderPlaySound	Property
True	if	the	reminder	should	play	a	sound	when	it	occurs	for	this	appointment	or
task.	The	ReminderPlaySound	property	must	be	set	in	order	to	validate	the
ReminderSoundFile	property.	Read/write	Boolean.

Note		This	property	is	only	valid	if	the	ReminderOverrideDefault	property	is
set	to	True.

expression.ReminderPlaySound

expression					Required.	An	expression	that	returns	an	AppointmentItem,
MailItem,	or	TaskItem	object.



Reminders	Property
Returns	a	Reminders	collection	that	represents	all	current	reminders.	Read-only.

expression.Reminders

expression				Required.	An	expression	that	returns	an	Application	object.



Example

The	following	example	returns	the	Reminders	collection	and	displays	the
captions	of	all	reminders	in	the	collection.	If	no	current	reminders	are	available,
a	message	is	displayed	to	the	user.

Sub	ViewReminderInfo()

'Lists	reminder	caption	information

				Dim	olApp	As	Outlook.Application

				Dim	objRem	As	Outlook.Reminder

				Dim	objRems	As	Outlook.Reminders

				Dim	strTitle	As	String

				Dim	strReport	As	String

				Set	olApp	=	New	Outlook.Application

				Set	objRems	=	olApp.Reminders

				strTitle	=	"Current	Reminders:"

				strReport	=	""

				'If	there	are	reminders,	display	message

				If	olApp.Reminders.Count	<>	0	Then

								For	Each	objRem	In	objRems

																'Add	information	to	string

																strReport	=	strReport	&	objRem.Caption	&	vbCr

									Next	objRem

								'Display	report	in	dialog

								MsgBox	strTitle	&	vbCr	&	vbCr	&	strReport

				Else

								MsgBox	"There	are	no	reminders	in	the	collection."

				End	If

End	Sub



ReminderSet	Property
True	if	a	reminder	has	been	set	for	this	appointment,	e-mail	item,	or	task.
Read/write	Boolean.

expression.ReminderSet

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	an	appointment	item	and	sets	the	ReminderSet	property
before	saving	it.

Sub	AddAppointment()

	 Dim	OutApp	As	Outlook.Application

	 Dim	apti	As	Outlook.AppointmentItem

	 Set	OutApp	=	CreateObject("Outlook.application")

	 Set	apti	=	OutApp.CreateItem(olAppointmentItem)

	 apti.Subject	=	"Car	Servicing"

	 apti.Start	=	DateAdd("n",	16,	Now)

	 apti.End	=	DateAdd("n",	60,	apti.Start)

	 apti.ReminderSet	=	True

	 apti.ReminderMinutesBeforeStart	=	60

	 apti.Save

End	Sub

	 	



ReminderSoundFile	Property
Returns	or	sets	a	String	indicating	the	path	and	file	name	of	the	sound	file	to
play	when	the	reminder	occurs	for	the	appointment,	mail	message,	or	task.	This
property	is	only	valid	if	the	ReminderOverrideDefault	and
ReminderPlaySound	properties	are	set	to	True.	Read/write.

expression.ReminderSoundFile

expression					Required.	An	expression	that	returns	an	AppointmentItem,
MailItem,	or	TaskItem	object.



Show	All



ReminderTime	Property
Returns	or	sets	a	Date	indicating	the	date	and	time	at	which	the	reminder	should
occur	for	the	specified	item.	Read/write.

expression.ReminderTime

expression					Required.	An	expression	that	returns	a	MailItem,	MeetingItem	or
TaskItem	object.



RemoteMessageClass	Property
Returns	a	String	indicating	the	message	class	for	the	remote	item.	Read-only.

expression.RemoteMessageClass

expression					Required.	An	expression	that	returns	a	RemoteItem	object.



Show	All



RemoteStatus	Property
Returns	or	sets	an	OlRemoteStatus	constant	specifying	the	remote	status	of	the
mail	message.	Read/write.

OlRemoteStatus	can	be	one	of	these	OlRemoteStatus	constants.
olMarkedForCopy
olMarkedForDelete
olMarkedForDownload
olRemoteStatusNone
olUnMarked

expression.RemoteStatus

expression					Required.	An	expression	that	returns	a	MailItem	object.



ReplyRecipientNames	Property
Returns	a	semicolon-delimited	String	list	of	reply	recipients	for	the	mail
message.	This	property	only	contains	the	display	names	for	the	reply	recipients.
The	reply	recipients	list	should	be	set	by	using	the	ReplyRecipients	collection.
Read-only.

expression.ReplyRecipientNames

expression				Required.	An	expression	that	returns	a	MailItem	object.



ReplyRecipients	Property
Returns	a	Recipients	collection	that	represents	all	the	reply	recipient	objects	for
the	mail	message.

expression.ReplyRecipients

expression				Required.	An	expression	that	returns	a	MailItem	object.



Remarks

Outlook	blocks	code	that	attempts	to	access	the	ReplyRecipients	property	for
security	reasons.	If	you	run	a	third-party	add-in,	custom	solution,	or	other
program	that	uses	the	ReplyRecipients	property	in	Office	Outlook	2003,	you
may	receive	the	following	warning:

A	program	is	trying	to	access	e-mail	addresses	you	have	stored	in	Outlook.	Do
you	want	to	allow	this?	If	this	is	unexpected,	it	may	be	a	virus	and	you	should
choose	"No".



Show	All



ReplyStyle	Property
Returns	or	sets	an	OlActionReplyStyle	constant	indicating	the	text	formatting
reply	style	for	the	specified	action.	Read/write.

OlActionReplyStyle	can	be	one	of	these	OlActionReplyStyle	constants.
olEmbedOriginalItem
olIncludeOriginalText
olIndentOriginalText
olLinkOriginalItem
olOmitOriginalText
olReplyTickOriginalText
olUserPreference

expression.ReplyStyle

expression				Required.	An	expression	that	returns	an	Action	object.



ReplyTime	Property
Returns	or	sets	a	Date	indicating	the	reply	time	for	the	appointment.	Read/write.

expression.ReplyTime

expression				Required.	An	expression	that	returns	an	AppointmentItem	object.



RequiredAttendees	Property
Returns	a	semicolon-delimited	String	of	required	attendee	names	for	the
meeting	appointment.	This	property	only	contains	the	display	names	for	the
required	attendees.	The	attendee	list	should	be	set	by	using	the	Recipients
collection.	Read/write.

expression.RequiredAttendees

expression				Required.	An	expression	that	returns	an	AppointmentItem	object.



Resolved	Property
True	if	the	recipient	has	been	validated	against	the	Address	Book.	Read-only
Boolean.

expression.Resolved

expression				Required.	An	expression	that	returns	a	Recipient	object.



Remarks

When	you	run	a	program	that	uses	the	Microsoft	Outlook	object	model	to	call
the	Resolved	method,	you	receive	a	warning	message.	This	warning	message
tells	you	that	a	program	is	trying	to	access	the	Address	Book	on	your	behalf	and
asks	if	you	want	to	allow	this.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Resolve	method	to
resolve	the	Recipient	object	representing	Dan	Wilson,	and	then	returns	Dan's
shared	default	Calendar	folder.

Sub	ResolveName()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myNamespace	As	Outlook.NameSpace

	 Dim	myRecipient	As	Outlook.Recipient

	 Dim	CalendarFolder	As	Outlook.MAPIFolder

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myNamespace	=	myOlApp.GetNamespace("MAPI")

	 Set	myRecipient	=	myNamespace.CreateRecipient("Dan	Wilson")

	 myRecipient.Resolve

	 If	myRecipient.Resolved	Then

	 	 Call	ShowCalendar(myNamespace,	myRecipient)

	 End	If

End	Sub

Sub	ShowCalendar(myNamespace,	myRecipient)

	 Dim	CalendarFolder	As	Outlook.MAPIFolder

	 Set	CalendarFolder	=	_

								myNamespace.GetSharedDefaultFolder	_

								(myRecipient,	olFolderCalendar)

	 CalendarFolder.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object,	and	you	cannot	use	named
constants.	This	example	shows	how	to	perform	the	same	task	using	VBScript
code	in	a	CommandButton	Click	event.

Sub	CommandButton1_Click()

	Set	myNameSpace	=	Application.GetNameSpace("MAPI")

	Set	myRecipient	=	myNameSpace.CreateRecipient("Dan	Wilson")

	myRecipient.Resolve

	If	myRecipient.Resolved	Then

					Set	CalendarFolder	=	_

									myNameSpace.GetSharedDefaultFolder	_

									(myRecipient,	9)

					CalendarFolder.Display

	End	If

End	Sub



	 	



Resources	Property
Returns	a	semicolon-delimited	String	of	resource	names	for	the	meeting.	This
property	contains	the	display	names	only.	The	Recipients	collection	should	be
used	to	modify	the	resource	recipients.	Resources	are	added	as	BCC	recipients
to	the	collection.	Read/write.

expression.Resources

expression					Required.	An	expression	that	returns	an	AppointmentItem	object.



ResponseRequested	Property
True	if	the	sender	would	like	a	response	to	the	meeting	request	for	the
appointment.	Read/write	Boolean.

expression.ResponseRequested

expression					Required.	An	expression	that	returns	an	AppointmentItem	object.



Show	All



ResponseState	Property
Returns	an	OlTaskResponse	constant	indicating	the	overall	status	of	the
response	to	the	specified	task	request.	Read-only.

OlTaskResponse	can	be	one	of	these	OlTaskResponse	constants.
olTaskAccept
olTaskAssign
olTaskDecline
olTaskSimple

expression.ResponseState

expression				Required.	An	expression	that	returns	a	TaskItem	object.



Show	All



ResponseStatus	Property
Returns	an	OlResponseStatus	constant	indicating	the	overall	status	of	the
meeting	for	the	current	user	for	the	appointment.	Read-only.

OlResponseStatus	can	be	one	of	these	OlResponseStatus	constants.
olResponseAccepted
olResponseDeclined
olResponseNone
olResponseNotResponded
olResponseOrganized
olResponseTentative

expression.ResponseStatus

expression					Required.	An	expression	that	returns	an	AppointmentItem	object.



Show	All



ResponseStyle	Property
Returns	or	sets	an	OlActionResponseStyle	constant	indicating	the	response
style	used	when	the	specified	action	is	executed.	Read/write.

OlActionResponseStyle	can	be	one	of	these	OlActionResponseStyle	constants.
olOpen
olPrompt
olSend

expression.ResponseStyle

expression					Required.	An	expression	that	returns	an	Action	object.



Results	Property
Returns	a	Results	collection	that	specifies	the	results	of	the	search.

expression.Results

expression				Required.	An	expression	that	returns	a	Search	object.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	searches	the	Inbox
for	items	with	a	subject	that	equals	"Test"	and	displays	the	names	of	the	senders
of	the	e-mail	items	returned	by	the	search.	The	AdvanceSearchComplete	event
procedure	sets	the	boolean	blnSearchComp	to	True	when	the	search	is	complete.
This	boolean	variable	is	used	by	the	TestAdvancedSearchComplete()	procedure
to	determine	when	the	search	is	complete.	The	sample	code	must	be	placed	in	a
class	module,	such	as	ThisOutlookSession,	and	the
TestAdvancedSearchComplete()	procedure	must	be	called	before	the	event
procedure	can	be	called	by	Microsoft	Outlook.

Public	blnSearchComp	As	Boolean

Private	Sub	Application_AdvancedSearchComplete(ByVal	SearchObject	As	Search)

	 MsgBox	"The	AdvancedSearchComplete	Event	fired"

	 blnSearchComp	=	True

End	Sub

Sub	TestAdvancedSearchComplete()

	 Dim	sch	As	Outlook.Search

	 Dim	rsts	As	Outlook.Results

	 Dim	i	As	Integer

		 blnSearchComp	=	False

	 Const	strF	As	String	=	"urn:schemas:mailheader:subject	=	'Test'"

	 Const	strS	As	String	=	"Inbox"			

	 Set	sch	=	Application.AdvancedSearch(strS,	strF)	

	 While	blnSearchComp	=	False

	 	 DoEvents

	 Wend	

	 Set	rsts	=	sch.Results

	 For	i	=	1	To	rsts.Count

	 	 MsgBox	rsts.Item(i).SenderName

	 Next

End	Sub

	 	





Role	Property
Returns	or	sets	a	String	containing	the	free-form	text	string	associating	the
owner	of	a	task	with	a	role	for	the	task.	Read/write.

expression.Role

expression				Required.	An	expression	that	returns	a	TaskItem	object.



Show	All



Saved	Property
True	if	the	Microsoft	Outlook	item	has	not	been	modified	since	the	last	save.
Read-only	Boolean.

expression.Saved

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example	tests
for	the	Close	event	and	if	the	item	has	not	been	Saved,	it	uses	the	Save	method
to	save	the	item	without	prompting	the	user.

Public	WithEvents	myItem	As	Outlook.MailItem

Public	Sub	Initalize_Handler()

	 Set	myItem	=	Application.ActiveInspector.CurrentItem

End	Sub

Private	Sub	myItem_Close(Cancel	As	Boolean)

	 If	Not	myItem.Saved	Then

		 			myItem.Save

	 			MsgBox	"Item	was	saved."

	 End	If

End	Sub

	 	



Show	All



SaveOption	Property
Returns	an	OlViewSaveOption	constant	that	specifies	the	folders	in	which	the
specified	view	is	available	and	the	read	permissions	attached	to	the	view.	The
SaveOption	property	is	set	when	the	View	object	is	created	by	using	the	Add
method.	Read-only.

OlViewSaveOption	can	be	one	of	these	OlViewSaveOption	constants.
olViewSaveOptionAllFoldersOfType	All	folders	of	this	type	can	use	the	view.
olViewSaveOptionThisFolderEveryone	All	users	who	can	access	the	current
folder	can	use	the	view.	The	view	is	only	associated	with	this	folder.
olViewSaveOptionThisFolderOnlyMe	The	view	is	only	associated	with	the
current	folder	and	only	the	user	can	access	the	view.

expression.SaveOption

expression				Required.	An	expression	that	returns	a	View	object.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	displays	the	names	of	all	views	that	can	be	accessed	by	all	users	in	the
Notes	folder.

The	following	example	locks	the	user	interface	for	all	views	that	are	available	to
all	users.	The	subroutine	LockView	accepts	the	View	object	and	a	Boolean	value
that	indicates	if	the	View	interface	will	be	locked.	In	this	example	the	procedure
is	always	called	with	the	Boolean	value	set	to	True.

Sub	LocksPublicViews()

'Locks	the	interface	of	all	views	that	are	available	to

'all	users	of	this	folder.

				Dim	olApp	As	Outlook.Application

				Dim	objName	As	Outlook.NameSpace

				Dim	objViews	As	Outlook.Views

				Dim	objView	As	Outlook.View

				Set	olApp	=	New	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objViews	=	objName.GetDefaultFolder(olFolderNotes).Views

				For	Each	objView	In	objViews

								If	objView.SaveOption	=	olViewSaveOptionThisFolderEveryone	Then

											Call	LockView(objView,	True)

								End	If

				Next	objView

End	Sub

Sub	LockView(ByRef	objView	As	View,	ByVal	blnAns	As	Boolean)

'Locks	the	user	interface	of	the	view.

'Accepts	and	returns	a	View	object	and	user	response.

				With	objView

								If	blnAns	=	True	Then

												'if	true	lock	UI

												.LockUserChanges	=	True

												.Save

								Else

												'if	false	don't	lock	UI

												.LockUserChanges	=	False

								End	If



				End	With

End	Sub

	 	

	 	



SaveSentMessageFolder	Property
Returns	a	MAPIFolder	object	that	represents	the	folder	in	which	a	copy	of	the
e-mail	message	will	be	saved	after	being	sent.

expression.SaveSentMessageFolder

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	Visual	Basic	for	Applications	(VBA)	example	sends	a	reply	to	Dan	Wilson
and	sets	the	SaveMyPersonalItems	folder	as	the	folder	in	which	a	copy	of	the
item	will	be	saved	after	being	sent.	To	run	this	example	without	errors,	make
sure	a	mail	item	is	open	in	the	active	inspector	window	and	replace	'Dan	Wilson'
with	a	valid	recipient	name.

Sub	SetSentFolder()

				Dim	myItem	As	Outlook.MailITem

				Dim	myResponse	As	Outlook.MailITem

				Dim	mpfInbox	As	Outlook.MAPIFolder

				Dim	mpf	As	Outlook.MAPIFolder

				Set	mpfInbox	=	Application.Session.GetDefaultFolder(olFolderInbox)

				Set	mpf	=	mpfInbox.Folders.Add("SaveMyPersonalItems")

				Set	myItem	=	Application.ActiveInspector.CurrentItem

				Set	myResponse	=	myItem.Reply

				myResponse.Display

				myResponse.To	=	"Dan	Wilson"

				Set	myResponse.SaveSentMessageFolder	=	mpf

				myResponse.Send

End	Sub

	 	



SchedulePlusPriority	Property
Returns	or	sets	a	String	representing	the	Microsoft	Schedule+	priority	for	the
task.	Can	be	1	through	9,	A	through	Z,	or	A1	through	Z9.	Priority	1	is	the
highest.	Read/write.

expression.SchedulePlusPriority

expression				Required.	An	expression	that	returns	a	TaskItem	object.



Scope	Property
Returns	a	String	that	specifies	the	scope	of	the	specified	search.	Read-only.

expression.Scope

expression				Required.	An	expression	that	returns	a	Search	object.



Remarks

The	scope	of	the	search	is	defined	when	the	search	is	initiated.	For	more
information,	see	the	AdvancedSearch	method.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	creates	a	Search	object.	The	user's	Inbox	is	specified	as	the	scope	of
the	search.	The	event	subroutine	occurs	when	the	search	has	completed	and
displays	the	Tag	and	Scope	properties	for	the	new	object	in	addition	to	the
results	of	the	search.

Public	blnSearchComp	As	Boolean

Private	Sub	Application_AdvancedSearchComplete(ByVal	SearchObject	As	Search)

	 MsgBox	"The	AdvancedSearchComplete	Event	fired	for	"	&	SearchObject.Tag	&	"	and	the	scope	was	"	&	SearchObject.

	 blnSearchComp	=	True

End	Sub

Sub	TestAdvancedSearchComplete()

	 'List	all	items	in	the	Inbox	that	do	NOT	have	a	flag.

	 Dim	objSch	As	Outlook.Search

	 Const	strF	As	String	=	"urn:schemas:httpmail:messageflag	IS	NULL"

	 Const	strS	As	String	=	"Inbox"

	 Dim	rsts	As	Outlook.Results

	 Dim	i	As	Integer

	 blnSearchComp	=	False

	 Const	strF1	As	String	=	"urn:schemas:mailheader:subject	=	'Test'"

	 Const	strS1	As	String	=	"Inbox"

	 Set	objSch	=	_

								Application.AdvancedSearch(Scope:=strS1,	Filter:=strF1,	Tag:="FlagSearch")

	 While	blnSearchComp	=	False

	 	 DoEvents

	 Wend

	 Set	rsts	=	objSch.Results

	 For	i	=	1	To	rsts.Count

	 	 MsgBox	rsts.Item(i).SenderName

	 Next

End	Sub

	 	





ScriptText	Property
Returns	a	String	containing	all	the	VBScript	code	in	the	form's	Script	Editor.
Read-only.

expression.ScriptText

expression				Required.	An	expression	that	returns	a	FormDescription	object.



Example

This	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	example	uses	the
Open	event	to	access	the	HTMLBody	property	of	an	item.	This	sets	the
EditorType	property	of	the	item’s	Inspector	to	olEditorHTML.	When	the
item's	Body	property	is	set,	the	EditorType	property	is	changed	to	the	default.
For	example,	if	the	default	e-mail	editor	is	set	to	RTF,	the	EditorType	is	set	to
olEditorRTF.

If	this	code	is	placed	in	the	Script	Editor	of	a	form	in	design	mode,	the	message
boxes	during	run	time	will	reflect	the	change	in	the	EditorType	as	the	body	of
the	form	changes.	The	final	message	box	uses	the	ScriptText	property	to	display
all	the	VBScript	code	in	the	Script	Editor.

Function	Item_Open()

				'Set	the	HTMLBody	of	the	item.

				Item.HTMLBody	=	"<HTML><H2>My	HTML	page.</H2><BODY>My	body.</BODY></HTML>"

				'Item	displays	HTML	message.

				Item.Display

				'MsgBox	shows	EditorType	is	2.

				MsgBox	"HTMLBody	EditorType	is	"	&	Item.GetInspector.EditorType

				'Access	the	Body	and	show

				'the	text	of	the	Body.

				MsgBox	"This	is	the	Body:	"	&	Item.Body

				'After	accessing,	EditorType

				'is	still	2.

				MsgBox	"After	accessing,	the	EditorType	is	"	&	Item.GetInspector.EditorType

				'Set	the	item's	Body	property.

				Item.Body	=	"Back	to	default	body."

				'After	setting,	EditorType	is

				'now	back	to	the	default.

				MsgBox	"After	setting,	the	EditorType	is	"	&	Item.GetInspector.EditorType

				'Access	the	items's

				'FormDescription	object.

				Set	myForm	=	Item.FormDescription

				'Display	all	the	code

				'in	the	Script	Editor.

				MsgBox	myForm.ScriptText

End	Function

	 	





SearchSubFolders	Property
Returns	a	Boolean	indicating	whether	the	scope	of	the	specified	search	included
the	subfolders	of	any	folders	searched.	This	property	is	determined	by	the
SearchSubfolders	argument	of	the	AdvancedSearch	method	and	is	specified
when	the	search	is	initiated.	Read-only.

expression.SearchSubFolders

expression				Required.	An	expression	that	returns	a	Search	object.



Remarks

If	True,	the	Search	object	searches	through	any	subfolders	in	the	specified	filter
path.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	creates	a	Search	object.	The	user's	Inbox	is	specified	as	the	scope	of
the	search	and	the	SearchSubFolders	property	is	set	to	True.	The	event
subroutine	fires	when	the	search	has	completed	and	displays	the	Tag	and	Scope
properties	for	the	new	object	as	well	as	the	results	of	the	search.

Public	blnSearchComp	As	Boolean

Private	Sub	Application_AdvancedSearchComplete(ByVal	SearchObject	As	Search)

	 MsgBox	"The	AdvancedSearchComplete	Event	fired	for	"	&	SearchObject.Tag	&	"	and	the	scope	was	"	&	SearchObject.

	 blnSearchComp	=	True

End	Sub

Sub	TestAdvancedSearchComplete()

	 'List	all	items	in	the	Inbox	that	do	NOT	have	a	flag:

	 Dim	objSch	As	Outlook.Search

	 Const	strF	As	String	=	"urn:schemas:httpmail:messageflag	IS	NULL"

	 Const	strS	As	String	=	"Inbox"

	 Dim	rsts	As	Outlook.Results

	 Dim	i	As	Integer

	 blnSearchComp	=	False

	 Const	strF1	As	String	=	"urn:schemas:mailheader:subject	=	'Test'"

	 Const	strS1	As	String	=	"Inbox"

	 Set	objSch	=	_

								Application.AdvancedSearch(Scope:=strS1,	Filter:=strF1,	SearchSubFolders

	 While	blnSearchComp	=	False

	 	 DoEvents

	 Wend

	 Set	rsts	=	objSch.Results

	 For	i	=	1	To	rsts.Count

	 	 MsgBox	rsts.Item(i).SenderName

	 Next

End	Sub

	 	





Show	All



SelectedMailingAddress	Property
Returns	or	sets	an	OlMailingAddress	constant	indicating	the	type	of	the	mailing
address	for	the	contact.	Read/write.

OlMailingAddress	can	be	one	of	these	OlMailingAddress	constants.
olBusiness
olHome
olNone
olOther

expression.SelectedMailingAddress

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Selection	Property
Returns	a	Selection	object	consisting	of	one	or	more	items	selected	in	the
current	view.

expression.Selection

expression				Required.	An	expression	that	returns	an	Explorer	object.



Remarks

If	the	current	folder	is	a	file-system	folder,	or	if	Microsoft	Outlook	Today	or	any
folder	with	a	Web	view	is	currently	displayed,	this	property	returns	an	empty
collection.

Also	if	a	group	header	is	selected,	the	Count	property	on	the	selection	returns
zero.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	uses	the	Count	property	and	Item	method	of	the	Selection	collection
returned	by	the	Selection	property	to	display	the	senders	of	all	messages	selected
in	the	active	explorer	window.	To	run	this	example	without	any	errors,	select
mail	items	only.	Selecting	an	item	that	does	not	have	the	SenderName	property
will	result	in	an	error.

Sub	GetSelectedItems()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myOlExp	As	Outlook.Explorer

	 Dim	myOlSel	As	Outlook.Selection

	 Dim	MsgTxt	As	String

	 Dim	x	As	Integer

	 MsgTxt	=	"You	have	selected	items	from:	"

	 Set	myOlExp	=	myOlApp.ActiveExplorer

	 Set	myOlSel	=	myOlExp.Selection

	 For	x	=	1	To	myOlSel.Count

	 	 MsgTxt	=	MsgTxt	&	myOlSel.Item(x).SenderName	&	";"

	 Next	x

	 MsgBox	MsgTxt

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object.	This	example	shows	how	to
perform	the	same	task	using	VBScript	code.

Sub	CommandButton1_Click()

	MsgTxt	=	"You	have	selected	items	from:	"

	Set	myOlSel	=	Application.ActiveExplorer.Selection

	For	x	=	1	To	myOlSel.Count

					MsgTxt	=	MsgTxt	&	myOlSel.Item(x).SenderName	&	";"

	Next	x

	MsgBox	MsgTxt

End	Sub

	 	





SenderEmailAddress	Property
Returns	a	String	that	represents	the	e-mail	address	of	the	sender	of	the	e-mail
message,	meeting	item,	or	post.	This	property	corresponds	to	the	MAPI	property
PR_SENDER_EMAIL_ADDRESS.	Read-only.

expression.SenderEmailAddress

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Microsoft	Outlook	blocks	code	that	attempts	to	access	the	SenderEmailAddress
property	for	security	reasons.	If	you	run	a	third-party	add-in,	custom	solution,	or
other	program	that	uses	the	SenderEmailAddress	property	in	Microsoft	Office
Outlook	2003,	you	may	receive	the	following	warning:

A	program	is	trying	to	access	e-mail	addresses	you	have	stored	in	Outlook.	Do
you	want	to	allow	this?	If	this	is	unexpected,	it	may	be	a	virus	and	you	should
choose	"No".



Example

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example	loops	all
items	in	a	folder	named	Test	in	the	Inbox	and	sets	the	yellow	flag	on	items	sent
by	'someone@example.com'.	To	run	this	example	without	errors,	make	sure	the
Test	folder	exists	in	the	default	Inbox	folder	and	replace
'someone@example.com'	with	a	valid	sender	e-mail	address	in	the	Test	folder.

Sub	SetFlagIcon()

	Dim	myOlApp	As	Outlook.Application

	Dim	mpfInbox	As	Outlook.MAPIFolder

	Dim	obj	As	Outlook.MailItem

	Dim	i	As	Integer

	Set	myOlApp	=	CreateObject("Outlook.Application")

	Set	mpfInbox	=	myOlApp.GetNamespace("MAPI").GetDefaultFolder(olFolderInbox).Folders("Test")

	'	Loop	all	items	in	the	Inbox\Test	Folder

	For	i	=	1	To	mpfInbox.Items.Count

		If	mpfInbox.Items(i).Class	=	olMail	Then		

			Set	obj	=	mpfInbox.Items.Item(i)

				If	obj.SenderEmailAddress	=	"someone@example.com"	Then

				'Set	the	yellow	flag	icon

				obj.FlagIcon	=	olYellowFlagIcon

				obj.Save

			End	If

		End	If

	Next

End	Sub



SenderEmailType	Property
Returns	a	String	that	represents	the	type	of	entry	for	the	e-mail	address	of	the
sender	of	the	message,	meeting	item,	or	post,	such	as	'SMTP'	for	Internet
address,	'EX'	for	a	Microsoft	Exchange	server	address,	etc.	Read-only.

expression.SenderEmailType

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example
demonstrates	how	to	use	the	SenderEmailType	property.	To	run	this	example
without	errors,	an	e-mail	item	should	be	open	in	the	active	inspector	window.

Sub	SenderEmailTypeExample()

				Dim	myOlApp	As	New	Outlook.Application

				Dim	mail	As	Outlook.MailItem

				Set	mail	=	myOlApp.ActiveInspector.CurrentItem

				MsgBox	mail.SenderEmailType

				If	mail.SenderEmailType	=	"SMTP"	Then

								MsgBox	"Message	from	Internet	e-mail	user."

				Else

				If	mail.SenderEmailType	=	"EX"	Then

								MsgBox	"Message	from	internal	Exchange	user."

				End	If

				End	If

End	Sub



SenderName	Property
Returns	a	String	indicating	the	display	name	of	the	sender	for	the	e-mail
message,	meeting	item,	or	post.	This	property	corresponds	to	the	MAPI	property
PR_SENDER_NAME.	Read-only.

Note		If	you	wish	to	retrieve	the	fully	qualified	e-mail	address	of	the	sender,	use
the	SenderEmailAddress	property.

expression.SenderName

expression				Required.	An	expression	that	returns	a	MailItem,	MeetingItem,	or
PostItem	object.



Remarks

Outlook	blocks	code	that	attempts	to	access	the	SenderName	property	for
security	reasons.	If	you	run	a	third-party	add-in,	custom	solution,	or	other
program	that	uses	the	SenderName	property	in	Office	Outlook	2003,	you	may
receive	the	following	warning:

A	program	is	trying	to	automatically	send	e-mail	on	your	behalf.	Do	you	want	to
allow	this?	If	this	is	unexpected,	it	may	be	a	virus	and	you	should	choose	"No".



Example

This	Visual	Basic	for	Applications	(VBA)	example	checks	if	the	item	displayed
in	the	topmost	inspector	is	sent	by	'Dan	Wilson'	with	'High'	importance.	If	it	is,
then	it	displays	a	message	box	to	the	user.	Before	running	this	example,	replace
'Dan	Wilson'	with	a	valid	name	in	your	address	book.

Sub	CheckSenderName

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myItem	As	Outlook.MailItem

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	myOlApp.ActiveInspector.CurrentItem

	 If	myItem.Importance	=	2	And	myItem.SenderName	=	"Dan	Wilson"	Then

	 	 MsgBox	"This	message	is	sent	by	your	manager	with	High	importance."

	 End	If

End	Sub

	



Show	All



Sensitivity	Property
Returns	or	sets	an	OlSensitivity	constant	indicating	the	sensitivity	for	the
Microsoft	Outlook	item.	This	property	corresponds	to	the	MAPI	property
PR_SENSITIVITY.	Read/write.

OlSensitivity	can	be	one	of	these	OlSensitivity	constants.
olConfidential
olNormal
olPersonal
olPrivate

expression.Sensitivity

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Sent	Property
Returns	a	Boolean	value	that	indicates	if	a	message	has	been	sent.	True	if	sent,
False	if	not	sent.	Read-only.

In	general,	there	are	three	different	kinds	of	messages:	sent,	posted,	and	saved.
Sent	messages	are	traditional	e-mail	messages	or	meeting	items	sent	to	a
recipient	or	public	folder.	Posted	messages	are	created	in	a	public	folder.	Saved
messages	are	created	and	saved	without	either	sending	or	posting.

expression.Sent

expression				Required.	An	expression	that	returns	a	MeetingItem	or	MailItem
object.



SentOn	Property
Returns	a	Date	indicating	the	date	and	time	on	which	the	mail	message,	meeting
item,	or	post	was	sent.	This	property	corresponds	to	the	MAPI	property
PR_CLIENT_SUBMIT_TIME.	When	you	send	a	meeting	request	item	using	the
object's	Send	method,	the	transport	provider	sets	the	ReceivedTime	and	SentOn
properties	for	you.	Read-only.

expression.SentOn

expression					Required.	An	expression	that	returns	a	MailItem,	MeetingItem	or
PostItem	object.



SentOnBehalfOfName	Property
Returns	a	String	indicating	the	display	name	for	the	intended	sender	of	the	mail
message.	This	property	corresponds	to	the	MAPI	property
PR_SENT_REPRESENTING_NAME.	Read/write.

expression.SentOnBehalfOfName

expression					Required.	An	expression	that	returns	a	MailItem	object.



Show	All



Session	Property
Returns	the	NameSpace	object	for	the	current	session.

Note		The	Session	property	and	the	GetNamespace	method	can	be	used
interchangeably	to	obtain	the	Namespace	object	for	the	current	session.	Both
members	serve	the	same	purpose.	For	example,	the	following	statements	do	the
same	function:
Set	objNamespace	=	Application.GetNamespace("MAPI")	

Set	objSession	=	Application.Session

expression.Session

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list	to	which	the	Session	property	is	being	applied.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	shows	how	to	use
the	Session	property.

Sub	GetSession()

				Dim	outApp	As	Outlook.Application

				Dim	nsp	As	Outlook.NameSpace

				

				Set	outApp	=	CreateObject("Outlook.Application")

				Set	nsp	=	outApp.Session

				

End	Sub



Show	All



Shortcuts	Property
Returns	an	OutlookBarShortcuts	collection	of	shortcuts	contained	within	the
Shortcuts	pane.

expression.Shortcuts

expression				Required.	An	expression	that	returns	an	OutlookBarGroup	object.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
deletes	all	empty	groups	in	the	Shortcuts	pane.

Sub	DeleteEmptyGroups()

	Dim	myOlApp	As	New	Outlook.Application

	Dim	myOlBar	As	Outlook.OutlookBarPane

	Dim	myOlGroup	As	Outlook.OutlookBarGroup

	Dim	x	As	Integer

	Set	myOlBar	=	myOlApp.ActiveExplorer.Panes.Item("OutlookBar")

	For	x	=	myOlBar.Contents.Groups.Count	To	1	Step	-1

				Set	myOlGroup	=	myOlBar.Contents.Groups.Item(x)

				If	myOlGroup.Shortcuts.Count	=	0	Then

								myOlBar.Contents.Groups.Remove	x

				End	If

	Next	x

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object.	This	example	shows
how	to	perform	the	same	task	using	VBScript	code.

Sub	CommandButton1_Click()

	Set	myOlBar	=	Application.ActiveExplorer.Panes.Item("OutlookBar")

	For	x	=	myOlBar.Contents.Groups.Count	To	1	Step	-1

					Set	myOlGroup	=	myOlBar.Contents.Groups.Item(x)

					If	myOlGroup.Shortcuts.Count	=	0	Then

									myOlBar.Contents.Groups.Remove	x

					End	If

	Next	

End	Sub

	 	



ShowAsOutlookAB	Property
Returns	or	sets	a	Boolean	variable	that	specifies	whether	the	contact	items	folder
will	be	displayed	as	a	Microsoft	Outlook	Address	Book.	Read-write.

expression.ShowAsOutlookAB

expression				Required.	An	expression	that	returns	a	MAPIFolder	object
representing	a	contact	items	folder.



Remarks

If	you	set	the	ShowAsOutlookAB	property	of	a	contact	items	folder	to	False,	it
will	not	be	available	in	the	Show	Names	from	the:	list	in	the	Select	Names
dialog	box.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	creates	a	reference
to	the	default	Contacts	folder	and	modifies	its	ShowAsOutlookAB	property	to
be	displayed	as	an	Address	Book.

Sub	ShowAsAddressBookChange()

				Dim	olApp	As	Outlook.Application

				Dim	nmsName	As	Outlook.Namespace

				Dim	fldFolder	As	Outlook.MAPIFolder

				Set	olApp	=	Outlook.Application

				'Create	instance	of	namespace

				Set	nmsName	=	olApp.GetNamespace("Mapi")

				Set	fldFolder	=	nmsName.GetDefaultFolder(olFolderContacts)

				'Display	the	folder	as	Outlook	Address	Book

				fldFolder.ShowAsOutlookAB	=	True

End	Sub

	 	



Show	All



ShowItemCount	Property
Sets	or	returns	an	OlShowItemCount	constant	that	indicates	whether	to	display
the	number	of	unread	messages	in	the	folder	or	the	total	number	of	items	in	the
folder	in	the	Navigation	Pane.	Read/write.

The	OlShowItemCount	constant	can	be	one	of	the	following:

olShowNoItemCount	(0)
olShowUnreadItemCount	(1)
olShowTotalItemCount	(2)

expression.ShowItemCount

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	ShowItemCount	property	does	not	work	with	public	folders.



Example

This	Microsoft	Visual	Basic	for	Applications	(VBA)	example	displays	the
unread	count	for	the	Inbox	in	the	Navigation	Pane.

Sub	ShowTotalItemCount()

	Dim	olApp	As	New	Outlook.Application

	Dim	nmsName	As	Outlook.NameSpace

	Dim	fldFolder	As	Outlook.MAPIFolder

	Set	nmsName	=	olApp.GetNamespace("MAPI")

	Set	fldFolder	=	nmsName.GetDefaultFolder(olFolderInbox)

	fldFolder.ShowItemCount	=	olShowUnreadItemCount

End	Sub



Show	All



ShowOn	Property
Returns	or	sets	an	OlActionShowOn	constant	representing	the	location	where
the	action	will	be	shown.	Read/write.

OlActionShowOn	can	be	one	of	these	OlActionShowOn	constants.
olDontShow
olMenu
olMenuAndToolbar

expression.ShowOn

expression				Required.	An	expression	that	returns	an	Action	object.



Size	Property
Returns	a	Long	indicating	the	size	(in	bytes)	of	the	Outlook	item.	Read-only.

expression.Size

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Spouse	Property
Returns	or	sets	a	String	indicating	the	spouse	name	entry	for	the	contact.
Read/write.

expression.Spouse

expression					Required.	An	expression	that	returns	a	ContactItem	object.



Standard	Property
Returns	a	Boolean	that	specifies	whether	or	not	the	view	is	a	built-in	Microsoft
Outlook	view.

expression.Standard

expression				Required.	An	expression	that	returns	a	View	object.



Start	Property
Returns	or	sets	a	Date	indicating	the	starting	date	and	time	for	the	appointment
or	Journal	entry.	Read/write.

expression.Start

expression				Required.	An	expression	that	returns	an	AppointmentItem	or
JournalItem	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	CreateItem	to	create	an
appointment	and	uses	MeetingStatus	to	set	the	meeting	status	to	"Meeting"	and
to	make	it	a	meeting	request	with	both	a	required	and	an	optional	attendee.

Sub	ScheduleMeeting()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myItem	as	Outlook.AppointmentItem

	 Dim	myRequiredAttendee	As	Outlook.Recipient

	 Dim	myOptionalAttendee	As	Outlook.Recipient

	 Dim	myResourceAttendee	As	Outlook.Recipient

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	myOlApp.CreateItem(olAppointmentItem)

	 myItem.MeetingStatus	=	olMeeting

	 myItem.Subject	=	"Strategy	Meeting"

	 myItem.Location	=	"Conference	Room	B"

	 myItem.Start	=	#9/24/2003	1:30:00	PM#

	 myItem.Duration	=	90

	 Set	myRequiredAttendee	=	myItem.Recipients.Add	("Nate	Sun")

	 myRequiredAttendee.Type	=	olRequired

	 Set	myOptionalAttendee	=	myItem.Recipients.Add	("Kevin	Kennedy")

	 myOptionalAttendee.Type	=	olOptional

	 Set	myResourceAttendee	=	myItem.Recipients.Add("Conference	Room	B")

	 myResourceAttendee.Type	=	olResource

	 myItem.Send

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Sub	CommandButton1_Click()

	Set	myItem	=	Application.CreateItem(1)

	myItem.MeetingStatus	=	1

	myItem.Subject	=	"Strategy	Meeting"

	myItem.Location	=	"Conference	Room	B"

	myItem.Start	=	#9/24/03	1:30:00	PM#

	myItem.Duration	=	90

	Set	myRequiredAttendee	=	myItem.Recipients.Add	("Nate	Sun")

	myRequiredAttendee.Type	=	1

	Set	myOptionalAttendee	=	myItem.Recipients.Add	("Kevin	Kennedy")

	myOptionalAttendee.Type	=	2



	Set	myResourceAttendee	=	myItem.Recipients.Add("Conference	Room	B")

	myResourceAttendee.Type	=	3

	myItem.Send

End	Sub

	 	



StartDate	Property
Returns	or	sets	a	Date	specifying	the	starting	date	and	time	for	the	specified
task.	Read/write.

expression.StartDate

expression					Required.	An	expression	that	returns	a	TaskItem	object.



StartTime	Property
Returns	or	sets	a	Date	indicating	the	start	time	for	a	given	occurrence	of	the
recurrence	pattern.	This	property	is	only	valid	for	appointments.	Read/write.

expression.StartTime

expression				Required.	An	expression	that	returns	a	RecurrencePattern	object.



Show	All



Status	Property
Returns	or	sets	an	OlTaskStatus	constant	specifying	the	status	for	the	task.
Corresponds	to	the	Status	field	of	a	TaskItem.	Read/write.

OlTaskStatus	can	be	one	of	these	OlTaskStatus	constants.
olTaskComplete
olTaskDeferred
olTaskInProgress
olTaskNotStarted
olTaskWaiting

expression.Status

expression					Required.	An	expression	that	returns	a	TaskItem	object.



StatusOnCompletionRecipients
Property
Returns	or	sets	a	semicolon-delimited	String	of	display	names	for	recipients
who	will	receive	status	upon	completion	of	the	task.	This	property	is	calculated
from	the	Recipients	property.	Recipients	returned	by	the
StatusOnCompletionRecipients	property	correspond	to	BCC	recipients	in	the
Recipients	collection.	Read/write.

expression.StatusOnCompletionRecipients

expression					Required.	An	expression	that	returns	a	TaskItem	object.



StatusUpdateRecipients	Property
Returns	a	semicolon-delimited	String	of	display	names	for	recipients	who
receive	status	updates	for	the	task.	This	property	is	calculated	from	the
Recipients	property.	Recipients	returned	by	the	StatusUpdateRecipients
property	correspond	to	CC	recipients	in	the	Recipients	collection.	Read-only.

expression.StatusUpdateRecipients

expression					Required.	An	expression	that	returns	a	TaskItem	object.



StoreID	Property
Returns	a	String	indicating	the	store	ID	for	the	folder.	Read-only.

expression.StoreID

expression					Required.	An	expression	that	returns	a	MAPIFolder	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	obtains	the	EntryID	and
StoreID	for	the	default	Tasks	folder	and	then	calls	the	GetFolderFromID
method	using	these	values	to	obtain	the	same	folder.	The	folder	is	then
displayed.

Sub	GetWithID()

	Dim	myOlApp	As	Outlook.Application

	Dim	myFolder	As	Outlook.MAPIFolder

	Dim	myEntryID	As	String

	Dim	myStoreID	As	String

	Dim	myNewFolder	As	Outlook.MAPIFolder

	Set	myOlApp	=	CreateObject("Outlook.Application")

	Set	myFolder	=	myOlApp.Session.GetDefaultFolder(olFolderTasks)

	myEntryID	=	myFolder.EntryID

	myStoreID	=	myFolder.StoreID

	Set	myNewFolder	=	myOlApp.Session.GetFolderFromID(myEntryID,	myStoreID)

	myNewFolder.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	use	the	StoreID	property	using
VBScript	code.

Sub	CommandButton1_Click()

	Set	myNameSpace	=	Application.GetNameSpace("MAPI")

	Set	myFolder	=	myNameSpace.GetDefaultFolder(13)

	Set	myOwnFolder	=	myFolder.Folders("MySubFolder")

	myEntryID	=	myOwnFolder.EntryID

	myStoreID	=	myOwnFolder.StoreID

	Set	myNewFolder	=	myNameSpace.GetFolderFromID(myEntryID,	myStoreID)

	myNewFolder.Display

End	Sub

	 	





Subject	Property
Returns	or	sets	a	String	indicating	the	subject	for	the	Microsoft	Outlook	item.
This	property	corresponds	to	the	MAPI	property	PR_SUBJECT.	The	Subject
property	is	the	default	property	for	Outlook	items.	Read/write.

Note		For	a	NoteItem	object,	the	Subject	property	is	a	read-only	String	that	is
calculated	from	the	body	text	of	the	note.

expression.Subject

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	Microsoft	Visual	Basic	for	Applications	(VBA)	example	creates	a	new	e-
mail	message,	uses	the	Add	method	to	add	"Dan	Wilson"	as	a	To	recipient,	sets
the	Subject	property,	and	displays	the	message.

Sub	CreateStatusReportToBoss()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myItem	As	Outlook.MailItem

	 Dim	myRecipient	As	Outlook.Recipient

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	myOlApp.CreateItem(olMailItem)

	 Set	myRecipient	=	myItem.Recipients.Add("Dan	Wilson")

	 myItem.Subject	=	"Status	Report"

	 myItem.Display

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Sub	CommandButton1_Click()

	Set	myItem	=	Application.CreateItem(0)

	Set	myRecipient	=	myItem.Recipients.Add("Dan	Wilson")

	myItem.Subject	=	"Status	Report"

	myItem.Display

End	Sub

	 	



Show	All



Submitted	Property
Returns	a	Boolean	value	that	indicates	if	the	item	has	been	submitted.	True	if
the	item	has	been	submitted.	A	message	is	always	created	and	submitted	in	a
folder,	usually	the	Outbox.	Read-only.

expression.Submitted

expression				Required.	An	expression	that	returns	a	MeetingItem	or	MailItem
object.



Suffix	Property
Returns	or	sets	a	String	indicating	the	name	suffix	(such	as	Jr.,	III,	or	Ph.D.)	for
the	specified	contact.	Read/write.

expression.Suffix

expression					Required.	An	expression	that	returns	a	ContactItem	object.

Note				The	LastName,	FirstName,	MiddleName,	and	Suffix	properties	are
parsed	from	the	FullName	property.



SyncObjects	Property
Returns	a	SyncObjects	collection	containing	all	Send\Receive	groups.	Read-
only.

expression.SyncObjects

expression					Required.	An	expression	that	returns	a	NameSpace	object.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
displays	all	the	Send\Receive	groups	set	up	for	the	user	and	starts	the
synchronization	based	on	the	user’s	response.

Public	Sub	Sync()

	 Dim	nsp	As	Outlook.NameSpace

	 Dim	sycs	As	Outlook.SyncObjects

	 Dim	syc	As	Outlook.SyncObject

	 Dim	i	As	Integer

	 Dim	strPrompt	As	Integer

	 Set	nsp	=	Application.GetNamespace("MAPI")

	 Set	sycs	=	nsp.SyncObjects

	 For	i	=	1	To	sycs.Count

	 	 Set	syc	=	sycs.Item(i)

	 	 strPrompt	=	MsgBox("Do	you	wish	to	synchronize	"	&	syc.Name	&"?",	vbYesNo)

	 	 If	strPrompt	=	vbYes	Then

	 	 	 syc.Start

	 	 End	If

	 Next

End	Sub

	 	



Tag	Property
Returns	a	String	specifying	the	name	of	the	current	search.	The	Tag	property	is
used	to	identify	a	specific	search.

expression.Tag

expression				Required.	An	expression	that	returns	a	Search	object.



Remarks

The	Tag	property	is	set	by	using	the	AdvancedSearch	method	when	the	Search
object	is	created.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	searches	through
the	user's	Inbox	for	all	items	that	do	not	have	a	flag.	The	name	"FlagSearch",
specified	by	the	Tag	property,	is	given	to	the	search.	The
AdvanceSearchComplete	event	procedure	sets	the	boolean	blnSearchComp	to
True	when	the	search	is	complete.	This	boolean	variable	is	used	by	the
TestAdvancedSearchComplete()	procedure	to	determine	when	the	search	is
complete.	The	sample	code	must	be	placed	in	a	class	module	such	as
ThisOutlookSession,	and	the	TestAdvancedSearchComplete()	sub	routine
must	be	called	before	the	event	procedure	can	be	called	by	Microsoft	Outlook.
The	AdvanceSearchComplete	event	procedure	displays	the	tag	to	the	user	so	the
user	can	identify	which	search	was	completed	because	usually	the	search	is
asynchronous	(use	the	IsSynchronous	property	to	determine	if	the	search	will	be
synchronous	or	asynchronous),	and	you	can	execute	multiple	searches
simultaneously.

Public	blnSearchComp	As	Boolean

Private	Sub	Application_AdvancedSearchComplete(ByVal	SearchObject	As	Search)

	 MsgBox	"The	AdvancedSearchComplete	Event	fired	for	"	&	SearchObject.

	 blnSearchComp	=	True

End	Sub

Sub	TestAdvancedSearch111Complete()

	 'List	all	items	in	the	Inbox	that	do	NOT	have	a	flag:

	 Dim	objSch	As	Outlook.Search

	 Const	strF	As	String	=	"urn:schemas:httpmail:messageflag	IS	NULL"

	 Const	strS	As	String	=	"Inbox"

	 Dim	rsts	As	Outlook.Results

	 Dim	i	As	Integer

	 blnSearchComp	=	False

	 Const	strF1	As	String	=	"urn:schemas:mailheader:subject	=	'Test'"

	 Const	strS1	As	String	=	"Inbox"

	 Set	objSch	=	_

								Application.AdvancedSearch(Scope:=strS1,	Filter:=strF1,	Tag:="FlagSearch")

	 While	blnSearchComp	=	False

	 	 DoEvents

	 Wend

	 Set	rsts	=	objSch.Results

	 For	i	=	1	To	rsts.Count

	 	 MsgBox	rsts.Item(i).SenderName

	 Next



End	Sub

	 	



Target	Property
Returns	a	Variant	indicating	the	target	of	the	specified	shortcut	in	a	Shortcuts
pane	group.	Read-only.

expression.Target

expression				Required.	An	expression	that	returns	an	OutlookBarShortcut
object.



Remarks

The	return	type	depends	on	the	shortcut	type.	If	the	shortcut	represents	a
Microsoft	Outlook	folder,	the	return	type	is	MAPIFolder.	If	the	shortcut
represents	a	file-system	folder,	the	return	type	is	an	Object.	If	the	shortcut
represents	a	file-system	path	or	URL,	the	return	type	is	a	String.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example	steps
through	the	shortcuts	in	the	first	Shortcuts	pane	group.	If	it	finds	a	shortcut	that
is	not	an	Outlook	folder,	it	deletes	it.

Sub	DeleteShortcuts()

Dim	myOlApp	As	New	Outlook.Application

Dim	myOlBar	As	Outlook.OutlookBarPane

Dim	myolGroup	As	Outlook.OutlookBarGroup

Dim	myOlShortcuts	As	Outlook.OutlookBarShortcuts

Dim	myOlShortcut	As	Outlook.OutlookBarShortcut

Dim	myTop	As	Integer

Dim	x	As	Integer

Set	myOlBar	=	myOlApp.ActiveExplorer.Panes.Item("OutlookBar")

Set	myolGroup	=	myOlBar.Contents.Groups.Item(1)

Set	myOlShortcuts	=	myolGroup.Shortcuts

myTop	=	myOlShortcuts.Count

'Prompt	the	user	for	confirmation

Dim	strPrompt	As	String

strPrompt	=	"Are	you	sure	you	want	to	remove	all	the	shortcuts	on	the	Shortcuts	pane	that	are	not	Outlook	folders?"

If	MsgBox(strPrompt,	vbYesNo	+	vbQuestion)	=	vbYes	Then

				For	x	=	myTop	To	1	Step	-1

								Set	myOlShortcut	=	myOlShortcuts.Item(x)

								If	TypeName(myOlShortcut.Target)	<>	"MAPIFolder"	Then

												myOlShortcuts.Remove	x

								End	If

				Next	x

End	If

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object.	This	example	shows	how	to
perform	the	same	task	using	VBScript	code.

Sub	CommandButton1_Click()

	Set	myOlBar	=	_

				Application.ActiveExplorer.Panes.Item("OutlookBar")

	Set	myolGroup	=	myOlBar.Contents.Groups.Item(1)

	Set	myOlShortcuts	=	myolGroup.Shortcuts

	myTop	=	myOlShortcuts.Count	

	'Prompt	the	user	for	confirmation

	Dim	strPrompt

	strPrompt	=	"Are	you	sure	you	want	to	remove	all	the	shortcuts	on	the	Shortcuts	pane	that	are	not	Outlook	folders?"



	If	MsgBox(strPrompt,	vbYesNo	+	vbQuestion)	=	vbYes	Then

		 For	x	=	myTop	To	1	Step	-1

	 	 	Set	myOlShortcut	=	myOlShortcuts.Item(x)

	 		 If	TypeName(myOlShortcut.Target)	<>	"MAPIFolder"	Then

	 	 		 myOlShortcuts.Remove	x

		 	 End	If

		 Next

	End	If

End	Sub

	 	



TeamTask	Property
True	if	the	task	is	a	team	task.	Read/write	Boolean.

expression.TeamTask

expression					Required.	An	expression	that	returns	a	TaskItem	object.



TelexNumber	Property
Returns	or	sets	a	String	indicating	the	telex	number	for	the	contact.	Read/write.

expression.TelexNumber

expression					Required.	An	expression	that	returns	a	ContactItem	object.



Template	Property
Returns	or	sets	a	String	indicating	the	name	of	the	template	for	the	form.
Read/write.

Note		This	property	refers	to	a	Microsoft	Word	.DOT	template	file,	and	so	is
applicable	for	forms	with	UseWordMail	=	True.

expression.Template

expression					Required.	An	expression	that	returns	a	FormDescription	object.



Title	Property
Returns	or	sets	a	String	indicating	the	title	for	the	contact.	Read/write.

expression.Title

expression					Required.	An	expression	that	returns	a	ContactItem	object.



To	Property
Returns	or	sets	a	semicolon-delimited	String	list	of	display	names	for	the	To
recipients	for	the	Outlook	item.	This	property	contains	the	display	names	only.
The	To	property	corresponds	to	the	MAPI	property	PR_DISPLAY_TO.	The
Recipients	collection	should	be	used	to	modify	this	property.	Read/write.

expression.To

expression					Required.	An	expression	that	returns	a	MailItem	object.



Top	Property
Returns	or	sets	a	Long	indicating	the	position	(in	pixels)	of	the	top	horizontal
edge	of	an	explorer,	inspector,	or	note	window	from	the	edge	of	the	screen.
Read/write.

expression.Top

expression				Required.	An	expression	that	returns	an	Explorer,	Inspector,	or
NoteItem				object.



TotalWork	Property
Returns	or	sets	a	Long	indicating	the	total	work	for	the	task.	Corresponds	to	the
Total	work	field	on	the	Details	tab	of	a	Task	item.	Read/write.

expression.TotalWork

expression				Required.	An	expression	that	returns	a	TaskItem	object.



Show	All



TrackingStatus	Property
Returns	or	sets	an	OlTrackingStatus	constant	indicating	the	tracking	status	for
the	recipient.	Read/write.

OlTrackingStatus	can	be	one	of	these	OlTrackingStatus	constants.
olTrackingDelivered
olTrackingNone
olTrackingNotDelivered
olTrackingNotRead
olTrackingRead
olTrackingRecallFailure
olTrackingRecallSuccess
olTrackingReplied

expression.TrackingStatus

expression				Required.	An	expression	that	returns	a	Recipient	object.



TrackingStatusTime	Property
Returns	or	sets	a	Date	indicating	the	tracking	status	date	and	time	for	the
recipient.	Read/write.

expression.TrackingStatusTime

expression				Required.	An	expression	that	returns	a	Recipient	object.



TransferSize	Property
Returns	a	Long	specifying	the	transfer	size	(in	bytes)	for	the	remote	item.	Read-
only.

expression.TransferSize

expression				Required.	An	expression	that	returns	a	RemoteItem	object.



TransferTime	Property
Returns	a	Long	indicating	the	transfer	time	(in	seconds)	for	the	remote	item.
Read-only.

expression.TransferTime

expression				Required.	An	expression	that	returns	a	RemoteItem	object.



TTYTDDTelephoneNumber	Property
Returns	or	sets	a	String	specifying	the	TTY/TDD	telephone	number	for	the
contact.	Read/write.

expression.TTYTDDTelephoneNumber

expression				Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



Type	Property
Type	property	as	it	applies	to	the	Attachment	object.

Returns	an	OlAttachmentType	constant	indicating	the	type	of	the	specified
object.	Read-only.

OlAttachmentType	can	be	one	of	these	OlAttachmentType	constants.
olByReference
olByValue
olEmbeddeditem
olOLE

expression.Type

expression				Required.	An	expression	that	returns	an	Attachment	object.

Type	property	as	it	applies	to	the	Link	or	Conflict	object.

Returns	an	OlObjectClass	constant	indicating	the	type	of	item	represented	by
the	Link	or	Conflict	object.	Read-only.

OlObjectClass	can	be	one	of	these	OlObjectClass	constants.
olAction
olActions
olAddressEntries
olAddressEntry
olAddressList
olAddressLists
olApplication
olAppointment
olAttachment
olAttachments



olConflict
olConflicts
olContact
olDistributionList
olDocument
olException
olExceptions
olExplorer
olExplorers
olFolder
olFolders
olFormDescription
olInspector
olInspectors
olItemProperties
olItemProperty
olItems
olJournal
olLink
olLinks
olMail
olMeetingCancellation
olMeetingRequest
olMeetingResponseNegative
olMeetingResponsePositive
olMeetingResponseTentative
olNamespace
olNote
olObjects
olOutlookBarGroup
olOutlookBarGroups
olOutlookBarPane
olOutlookBarShortcut



olOutlookBarShortcuts
olOutlookBarStorage
olPages
olPanes
olPost
olPropertyPages
olPropertyPageSite
olRecipient
olRecipients
olRecurrencePattern
olReminder
olReminders
olRemote
olReport
olResults
olSearch
olSelection
olSyncObject
olSyncObjects
olTask
olTaskRequest
olTaskRequestAccept
olTaskRequestDecline
olTaskRequestUpdate
olUserProperties
olUserProperty
olView
olViews

expression.Type

expression				Required.	An	expression	that	returns	a	Link	object.

Type	property	as	it	applies	to	the	ItemProperty	and	UserProperty



objects.

Returns	an	OlUserPropertyType	constant	indicating	the	type	of	the	specified
object.	Read-only.

OlUserPropertyType	can	be	one	of	these	OlUserPropertyType	constants.
olCombination
olCurrency
olDateTime
olDuration
olFormula
olKeywords
olNumber
olOutlookInternal
olPercent
olText
olYesNo

expression.Type

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	Recipient	object.

Depending	on	the	type	of	recipient,	returns	or	sets	a	Long	corresponding	to	the
numeric	equivalent	of	one	of	the	following	constants:

JournalItem	recipient:	the	OlJournalRecipientType	constant
olAssociatedContact.

MailItem	recipient:	one	of	the	following	OlMailRecipientType	constants:
olBCC,	olCC,	olOriginator,	or	olTo.

MeetingItem	recipient:	one	of	the	following	OlMeetingRecipientType
constants:	olOptional,	olOrganizer,	olRequired,	or	olResource.

TaskItem	recipient:	either	of	the	following	OlTaskRecipientType



constants:	olFinalStatus,	or	olUpdate.

This	property	is	read/write.

expression.Type

expression				Required.	An	expression	that	returns	a	Recipient	object.

Type	property	as	it	applies	to	the	AddressEntry	and	JournalItem	objects.

Returns	or	sets	a	String	representing	the	type	of	entry	for	this	address	such	as	an
Internet	Address,	MacMail	Address,	or	Microsoft	Mail	Address	(for	the
AddressEntry	object),	or	a	free-form	String	field,	usually	containing	the
display	name	of	the	journalizing	application	(for	example,	"MSWord")	(for	the
JournalItem	object).	Read/write.

expression.Type

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	NameSpace	object.

Returns	a	String	indicating	the	type	of	the	specified	object.	The	only	supported
string	is	"MAPI."	Read-only.

expression.Type

expression				Required.	An	expression	that	returns	a	NameSpace	object.

Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	CreateItem	to	create	an
appointment	and	uses	MeetingStatus	to	set	the	meeting	status	to	"Meeting"	to
turn	it	into	a	meeting	request	with	both	a	required	and	an	optional	attendee.	The
recipient	names	should	be	replaced	with	valid	names	to	avoid	errors.

Sub	ScheduleMeeting()

	 Dim	myOlApp	As	Outlook.Application

	 Dim	myItem	as	Outlook.AppointmentItem

	 Dim	myRequiredAttendee	As	Outlook.Recipient

	 Dim	myOptionalAttendee	As	Outlook.Recipient



	 Dim	myResourceAttendee	As	Outlook.Recipient

	 Set	myOlApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	myOlApp.CreateItem(olAppointmentItem)

	 myItem.MeetingStatus	=	olMeeting

	 myItem.Subject	=	"Strategy	Meeting"

	 myItem.Location	=	"Conference	Room	B"

	 myItem.Start	=	#9/24/2003	1:30:00	PM#

	 myItem.Duration	=	90

	 Set	myRequiredAttendee	=	myItem.Recipients.Add	("Nate	Sun")

	 myRequiredAttendee.Type	=	olRequired

	 Set	myOptionalAttendee	=	myItem.Recipients.Add	("Kevin	Kennedy")

	 myOptionalAttendee.Type	=	olOptional

	 Set	myResourceAttendee	=	myItem.Recipients.Add("Conference	Room	B")

	 myResourceAttendee.Type	=	olResource

	 myItem.Send

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object,	and	you	cannot	use
named	constants.	This	example	shows	how	to	perform	the	same	task	using
VBScript	code.

Sub	CommandButton1_Click()

	Set	myItem	=	Application.CreateItem(1)

	myItem.MeetingStatus	=	1

	myItem.Subject	=	"Strategy	Meeting"

	myItem.Location	=	"Conference	Room	B"

	myItem.Start	=	#9/24/03	1:30:00	PM#

	myItem.Duration	=	90

	Set	myRequiredAttendee	=	myItem.Recipients.Add	("Nate	Sun")

	myRequiredAttendee.Type	=	1

	Set	myOptionalAttendee	=	myItem.Recipients.Add	("Kevin	Kennedy")

	myOptionalAttendee.Type	=	2

	Set	myResourceAttendee	=	myItem.Recipients.Add("Conference	Room	B")

	myResourceAttendee.Type	=	3

	myItem.Send

End	Sub

	 	



UnRead	Property
True	if	the	Microsoft	Outlook	item	has	not	been	opened	(read).	Read/write
Boolean.

expression.UnRead

expression				Required.	An	expression	that	returns	one	of	the	objects	in	Applies
To	list.



UnReadItemCount	Property
Returns	a	Long	indicating	the	number	of	unread	items	in	the	folder.	Read-only.

expression.UnReadItemCount

expression				Required.	An	expression	that	returns	a	MAPIFolder	object.



User1	Property
Returns	or	sets	a	String	specifying	the	first	Microsoft	Schedule+	user	for	the
contact.	Read/write.

expression.User1

expression				Required.	An	expression	that	returns	a	ContactItem	object.



User2	Property
Returns	or	sets	a	String	specifying	the	second	Microsoft	Schedule+	user	for	the
contact.	Read/write.

expression.User2

expression				Required.	An	expression	that	returns	a	ContactItem	object.



User3	Property
Returns	or	sets	a	String	specifying	the	third	Microsoft	Schedule+	user	for	the
contact.	Read/write.

expression.User3

expression				Required.	An	expression	that	returns	a	ContactItem	object.



User4	Property
Returns	or	sets	a	String	specifying	the	fourth	Microsoft	Schedule+	user	for	the
contact.	Read/write.

expression.User4

expression					Required.	An	expression	that	returns	a	ContactItem	object.



UserCertificate	Property
This	property	is	not	functional	and	is	not	intended	for	use.



UserProperties	Property
Returns	the	UserProperties	collection	that	represents	all	the	user	properties	for
the	Microsoft	Outlook	item.

expression.UserProperties

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Even	though	olWordDocumentItem	is	a	valid	OlItemType	constant,	user-
defined	fields	cannot	to	be	added	to	a	DocumentItem	object	and	you	will
receive	an	error	when	you	try	to	programmatically	add	a	user-defined	field	to	a
DocumentItem	object.

Note		



Example

This	Visual	Basic	for	Applications	(VBA)	example	finds	a	custom	property
named	"LastDateContacted"	for	the	contact	'Jeff	Smith'	and	displays	it	to	the
user.	To	run	this	example,	you	need	to	replace	'Jeff	Smith'	with	a	valid	contact
name	and	create	a	user-defined	property	called	LastDateContacted	for	the
contact.

Sub	FindContact()

'Finds	and	displays	last	contacted	info	for	a	contact

				Dim	olApp	As	Outlook.Application

				Dim	objContact	As	Outlook.ContactItem

				Dim	objContacts	As	Outlook.MAPIFolder

				Dim	objNameSpace	As	Outlook.NameSpace

				Dim	objProperty	As	Outlook.UserProperty

				Set	olApp	=	CreateObject("Outlook.Application")

				Set	objNameSpace	=	olApp.GetNamespace("MAPI")

				Set	objContacts	=	objNameSpace.GetDefaultFolder(olFolderContacts)

				Set	objContact	=	objContacts.Items.Find("[FileAs]	=	""Smith,	Jeff""	and	[FirstName]	=	""Jeff""")

				If	Not	TypeName(objContact)	=	"Nothing"	Then

								Set	objProperty	=	objContact.UserProperties.Find("LastDateContacted")

								If	TypeName(objProperty)	<>	"Nothing"	Then

												MsgBox	"Last	Date	Contacted:	"	&	objProperty.Value

								End	If

				Else

								MsgBox	"The	contact	was	not	found."

				End	If

End	Sub

	 	



UseWordMail	Property
True	to	use	Microsoft	Word	as	the	default	editor	for	the	form.	Read/write
Boolean.

expression.UseWordMail

expression				Required.	An	expression	that	returns	a	FormDescription	object.



ValidationFormula	Property
Returns	or	sets	a	String	indicating	the	validation	formula	for	the	user	property.
Read/write.

expression.ValidationFormula

expression					Required.	An	expression	that	returns	a	UserProperty	object.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	demonstrates	the
use	of	ValidationText	and	ValidationFormula	properties.

Sub	TestValidation()

				Dim	outApp	As	New	Outlook.Application

				Dim	tki	As	Outlook.TaskItem

				Dim	uprs	As	Outlook.UserProperties

				Dim	upr	As	Outlook.UserProperty

				

				Set	tki	=	outApp.CreateItem(olTaskItem)

				tki.Subject	=	"Work	hours"

				tki.TotalWork	=	3000

				Set	uprs	=	tki.UserProperties

				Set	upr	=	uprs.Add("TotalWork",	olFormula)

				upr.Formula	=	"[Total	Work]"

				upr.ValidationFormula	=	">=	2400"

				upr.ValidationText	=	"""The	WorkHours	(Total	Work)	should	be	equal	or	greater	than	5	days	"""

				tki.Save

				tki.Display

				

			MsgBox	"The	Work	Hours	are:	"	&	upr.Value

End	Sub



ValidationText	Property
Returns	or	sets	a	String	specifying	the	validation	text	for	the	specified	user
property.	Read/write.

expression.ValidationText

expression					Required.	An	expression	that	returns	a	UserProperty	object.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	demonstrates	the
use	of	ValidationText	and	ValidationFormula	properties.

Sub	TestValidation()

				Dim	outApp	As	New	Outlook.Application

				Dim	tki	As	Outlook.TaskItem

				Dim	uprs	As	Outlook.UserProperties

				Dim	upr	As	Outlook.UserProperty

				

				Set	tki	=	outApp.CreateItem(olTaskItem)

				tki.Subject	=	"Work	hours"

				tki.TotalWork	=	3000

				Set	uprs	=	tki.UserProperties

				Set	upr	=	uprs.Add("TotalWork",	olFormula)

				upr.Formula	=	"[Total	Work]"

				upr.ValidationFormula	=	">=	2400"

				upr.ValidationText	=	"""The	WorkHours	(Total	Work)	should	be	equal	or	greater	than	5	days	"""

				tki.Save

				tki.Display

				

			MsgBox	"The	Work	Hours	are:	"	&	upr.Value

End	Sub



Value	Property
Returns	or	sets	a	Variant	indicating	the	value	for	the	specified	user	or	item
property.	Read/write.

expression.Value

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	creates	a	contact
item	and	sets	its	Body	property.

Sub	ValueItemProperty()

				Dim	outApp	As	New	Outlook.Application

				Dim	cti	As	Outlook.ContactItem

				Dim	itms	As	Outlook.ItemProperties

				Dim	itm	As	Outlook.ItemProperty

				

				Set	cti	=	outApp.CreateItem(olContactItem)

				cti.FullName	=	"Dan	Wilson"

				Set	itms	=	cti.ItemProperties

				Set	itm	=	itms.Item("Body")

				itm.Value	=	"My	friend	from	school"

				cti.Save

				

				cti.Display

End	Sub



Version	Property
Returns	or	sets	a	String	indicating	the	number	of	the	version.	Read/write	for	the
FormDescription	object;	read-only	for	all	other	objects	in	the	Applies	To	list.

expression.Version

expression					Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Views	Property
Returns	the	Views	collection	object	of	the	MAPIFolder	object.

expression.Views

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	creates	an	instance	of	the	Views	collection	and	displays	the	XML
definition	of	a	view	called	"Table	View".	If	the	view	does	not	exist,	it	creates
one.

Sub	DisplayViewDef()

'Displays	the	XML	definition	of	a	View	object

				Dim	olApp	As	Outlook.Application

				Dim	objName	As	Outlook.NameSpace

				Dim	objViews	As	Outlook.Views

				Dim	objView	As	Outlook.View

				Set	olApp	=	New	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objViews	=	objName.GetDefaultFolder(olFolderInbox).Views

						

				'Return	a	view	called	Table	View	if	it	already	exists,	else	create	one

				Set	objView	=	objViews.Item("Table	View")

				If	objView	Is	Nothing	Then

										Set	objView	=	objViews.Add("Table	View",	olTableView,	olViewSaveOptionAllFoldersOfType)

				End	If

				MsgBox	objView.XML

End	Sub

	 	



Show	All



ViewType	Property
ViewType	property	as	it	applies	to	the	OutlookBarGroup	object.

This	property	does	not	have	any	effect	on	the	icons	displayed	in	the	Shortcuts
pane.	Large	icons	have	been	removed	and	if	this	property	is	set	to	olLargeIcon,
it	will	not	have	any	effect.	In	previous	versions	of	Microsoft	Outlook,	it	returns
or	sets	the	icon	view	displayed	by	the	specified	Outlook	Bar	group.	Read/write
OlOutlookBarViewType.

OlOutlookBarViewType	can	be	one	of	these	OlOutlookBarViewType	constants.
olLargeIcon
olSmallIcon

expression.ViewType

expression				Required.	An	expression	that	returns	an	OutlookBarGroup	object.

ViewType	property	as	it	applies	to	the	View	object.

Returns	an	OlViewType	constant	that	represents	the	type	of	the	current	view.
Read-only.

OlViewType	can	be	one	of	these	OlViewType	constants.
olCalendarView
olCardView
olIconView
olTableView
olTimelineView

expression.ViewType

expression				Required.	An	expression	that	returns	a	View	object.



Example

As	it	applies	to	the	OutlookBarGroup	object.

This	property	does	not	have	any	effect	on	the	icons	displayed	in	the	Shortcuts
pane	in	Office	Outlook	2003.	Large	icons	have	been	removed	in	Office
Outlook	2003	and	if	this	property	is	set	to	olLargeIcon,	it	will	not	have	any
effect.

As	it	applies	to	the	View	object.

The	following	Visual	Basic	for	Applicatons	(VBA)	example	displays	the	name
and	type	of	all	views	in	the	user's	Inbox.

Sub	DisplayViewMode()

'Displays	the	names	and	view	modes	for	all	views

				Dim	olApp	As	Outlook.Application

				Dim	objName	As	Outlook.NameSpace

				Dim	objViews	As	Outlook.Views

				Dim	objView	As	Outlook.View

				Dim	strTypes	As	String

				Set	olApp	=	New	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objViews	=	objName.GetDefaultFolder(olFolderInbox).Views

				'Collect	names	and	view	types	for	all	views

				For	Each	objView	In	objViews

								strTypes	=	strTypes	&	objView.Name	&	vbTab	&	vbTab	&	objView.

				Next	objView

				'Display	message	box

				MsgBox	"Current	Inbox	Views	and	Viewtypes:"	&	vbCr	&	_

								vbCr	&	strTypes

End	Sub

	 	 	 	





Show	All



Visible	Property
Returns	or	sets	a	Boolean	indicating	the	visible	state	of	the	specified	object.
True	to	display	the	object;	False	to	hide	the	object.	Read/write.

expression.Visible

expression				Required.	An	expression	that	returns	one	of	the	items	in	the	Applies
To	list.



Remarks

You	can	also	use	the	ShowPane	method	or	the	IsPaneVisible	method	of	an
Explorer	object	to	set	or	retrieve	this	value.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
toggles	the	visible	state	of	the	Shortcuts	pane.

Sub	ShowHideShortcutsBar()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myOlBar	As	Outlook.OutlookBarPane

	 Set	myOlBar	=	myOlApp.ActiveExplorer.Panes.Item("OutlookBar")

	 myOlBar.Visible	=	Not	myOlBar.Visible

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	Microsoft
Outlook	form,	you	do	not	create	the	Application	object.	This	example	shows
how	to	perform	the	same	task	using	VBScript	code.

Sub	CommandButton1_Click()

	Set	myOlBar	=	Application.ActiveExplorer.Panes.Item("OutlookBar")

	myOlBar.Visible	=	Not	myOlBar.Visible

End	Sub

	 	



VotingOptions	Property
Returns	or	sets	a	String	specifying	a	delimited	string	containing	the	voting
options	for	the	mail	message.	Read/write.

expression.VotingOptions

expression					Required.	An	expression	that	returns	a	MailItem	object.



VotingResponse	Property
Returns	or	sets	a	String	specifying	the	voting	response	for	the	mail	message.
This	property	is	usually	set	to	one	of	the	delimited	values	returned	by	the
VotingOptions	property	on	a	reply	to	the	original	message.	Read/write.

expression.VotingResponse

expression					Required.	An	expression	that	returns	a	MailItem	object.



Show	All



WebPage	Property
Returns	or	sets	a	String	indicating	the	URL	of	the	Web	page	for	the	contact.
Read/write.

expression.WebPage

expression					Required.	An	expression	that	returns	a	ContactItem	object.



Show	All



WebViewOn	Property
Returns	or	sets	a	Boolean	indicating	the	Web	view	state	for	a	folder.	True	to
display	the	Web	page	specified	by	the	WebViewURL	property.	Read/write.

expression.WebViewOn

expression				Required.	An	expression	that	returns	a	MAPIFolder	object.



Remarks

This	property	is	always	False	if	the	value	of	the	WebViewURL	property	is
empty.

Also,	setting	the	WebViewOn	property	to	True	before	setting	the
WebViewURL	property	will	not	display	the	home	page	specified	in	the
WebViewURL	property.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	creates	a	subfolder
under	the	Inbox	folder	and	assigns	a	home	page	to	it.

Sub	SetupFolderHomePage()

				Dim	outApp	As	New	Outlook.Application

				Dim	nsp	As	Outlook.NameSpace

				Dim	mpfInbox	As	Outlook.MAPIFolder

				Dim	mpfNew	As	Outlook.MAPIFolder

				

				Set	nsp	=	outApp.GetNamespace("MAPI")

				Set	mpfInbox	=	nsp.GetDefaultFolder(olFolderInbox)

				Set	mpfNew	=	mpfInbox.Folders.Add("MyFolderHomePage")

				mpfNew.WebViewURL	=	"http://www.microsoft.com"

				mpfNew.WebViewOn	=	True

End	Sub



Show	All



WebViewURL	Property
Returns	or	sets	a	String	indicating	the	URL	of	the	Web	page	that	is	assigned	to	a
folder.	Read/write.

expression.WebViewURL

expression				Required.	An	expression	that	returns	a	MAPIFolder	object.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	creates	a	subfolder
under	the	Inbox	folder	and	assigns	a	home	page	to	it.

Sub	SetupFolderHomePage()

				Dim	outApp	As	New	Outlook.Application

				Dim	nsp	As	Outlook.NameSpace

				Dim	mpfInbox	As	Outlook.MAPIFolder

				Dim	mpfNew	As	Outlook.MAPIFolder

				

				Set	nsp	=	outApp.GetNamespace("MAPI")

				Set	mpfInbox	=	nsp.GetDefaultFolder(olFolderInbox)

				Set	mpfNew	=	mpfInbox.Folders.Add("MyFolderHomePage")

				mpfNew.WebViewURL	=	"http://www.microsoft.com"

				mpfNew.WebViewOn	=	True

End	Sub



Width	Property
Returns	or	sets	a	Long	indicating	the	width	(in	pixels)	of	the	specified	object.
Read/write.

object.Width

object				Required.	An	expression	that	returns	one	of	the	objects	in	the	Applies
To	list.



Show	All



WindowState	Property
Returns	or	sets	an	OlWindowState	constant	specifying	the	window	state	of	an
explorer	or	inspector	window.	Read/write.

OlWindowState	can	be	one	of	these	OlWindowState	constants.
olMaximized
olMinimized
olNormalWindow

object.WindowState

object				Required.	An	expression	that	returns	an	Explorer	or	Inspector	object.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	example	minimizes
all	open	explorer	windows.	It	uses	the	Count	property	and	Item	method	of	the
Explorers	collection	to	enumerate	the	open	explorer	windows.

Sub	MinimizeWindows()

	 Dim	myOlApp	As	New	Outlook.Application

	 Dim	myOlExp	As	Outlook.Explorer

	 Dim	myOlExps	As	Outlook.Explorers

	 Set	myOlExps	=	myOlApp.Explorers

	 For	x	=	1	To	myOlExps.Count

					 	 myOlExps.Item(x).WindowState	=	olMinimized

	 Next	x

End	Sub

	 	

If	you	use	VBScript,	you	do	not	create	the	Application	object,	and	you	cannot
use	named	constants.	This	example	shows	how	to	use	the	WindowState	property
using	VBScript.

For	x	=	1	To	Application.Explorers.Count

				Application.Explorers.Item(x).WindowState	=	2

Next

	 	



WordEditor	Property
Returns	the	Microsoft	Word	Document	Object	Model	of	the	message	being
displayed.	This	object	model	may	be	temporary	and	should	not	be	stored	for
later	use.	The	WordEditor	property	is	only	valid	if	IsWordMail	returns	True
and	the	EditorType	is	olEditorWord.	Read-only.

objInspector.WordEditor

objInspector				Required.	An	expression	that	returns	an	Inspector	object.



Remarks

Microsoft	Outlook	blocks	code	that	attempts	to	access	the	WordEditor	property
for	security	reasons.	If	you	run	a	third-party	add-in,	custom	solution,	or	other
program	that	uses	the	WordEditor	property	in	Office	Outlook	2003,	you	may
receive	the	following	warning:

A	program	is	trying	to	access	e-mail	addresses	you	have	stored	in	Outlook.	Do
you	want	to	allow	this?	If	this	is	unexpected,	it	may	be	a	virus	and	you	should
choose	"No".



Example

The	following	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	example
shows	how	to	add	a	filled	rectangle	to	the	message	area	of	the	item.

Sub	CommandButton1_Click()

				Set	myInspector	=	Item.GetInspector

				Set	WordDoc	=	myInspector.WordEditor

				Set	Fill	=	WordDoc.Shapes.AddShape(1,	90,	90,	90,	50).Fill			'msoShapeRectangle=1

				Fill.ForeColor.RGB	=	RGB(128,	0,	0)

				Fill.BackColor.RGB	=	RGB(170,	170,	170)

				Fill.TwoColorGradient	4,	1			'msoGradientDiagonalDown=4

End	Sub

	 	



XML	Property
Returns	or	sets	a	value	that	specifies	the	XML	definition	of	the	current	view.	The
XML	definition	describes	the	view	type	by	using	a	series	of	tags	and	keywords
corresponding	to	various	properties	of	the	view	itself.	When	the	view	is	created,
the	XML	definition	is	parsed	to	render	the	settings	for	the	new	view.	Read/write
String.

expression.XML

expression				Required.	An	expression	that	returns	a	View	object.



Remarks

To	determine	how	the	XML	should	be	structured	when	creating	views,	you	can
create	a	view	by	using	the	Outlook	user	interface	and	then	you	can	retrieve	the
XML	property	for	that	view.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	creates	an	instance	of	the	Views	collection	and	displays	the	XML
definition	of	a	view	called	"Table	View".	If	the	view	does	not	exist,	it	creates
one.

Sub	DisplayViewDef()

'Displays	the	XML	definition	of	a	View	object

				Dim	olApp	As	Outlook.Application

				Dim	objName	As	Outlook.NameSpace

				Dim	objViews	As	Outlook.Views

				Dim	objView	As	Outlook.View

				Set	olApp	=	Outlook.Application

				Set	objName	=	olApp.GetNamespace("MAPI")

				Set	objViews	=	objName.GetDefaultFolder(olFolderInbox).Views

						

				'Return	a	view	called	Table	View	if	it	already	exists,	else	create	one

				Set	objView	=	objViews.Item("Table	View")

				If	objView	Is	Nothing	Then

										Set	objView	=	objViews.Add("Table	View",	olTableView,	olViewSaveOptionAllFoldersOfType)

				End	If

				MsgBox	objView.XML

End	Sub

	 	

Following	are	the	modified	properties	that	are	visible	in	the	following	XML
source	code.	In	addition	to	the	property	definitions,	the	XML	source	also	defines
any	objects	that	make	up	the	view.	The	following	example	displays	the	XML
definition	of	columns	that	appear	in	the	above	view.

<column>
<heading>Flag	Status</heading>
<prop>http://schemas.microsoft.com/mapi/proptag/0x10900003</prop>
<type>i4</type>
<bitmap>1</bitmap>
<style>padding-left:3px;text-align:center;padding-left:3px</style>
</column>
<column>
<format>boolicon</format>



<heading>Attachment</heading>
<prop>urn:schemas:httpmail:hasattachment</prop>
<type>boolean</type>
<bitmap>1</bitmap>
<style>padding-left:3px;text-align:center;padding-left:3px</style>
<displayformat>3</displayformat>
</column>



YomiCompanyName	Property
Returns	or	sets	a	String	indicating	the	Japanese	phonetic	rendering	(yomigana)
of	the	company	name	for	the	contact.	Read/write.

objContactItem.YomiCompanyName

objContactItem					Required.	An	expression	that	returns	a	ContactItem	object.



YomiFirstName	Property
Returns	or	sets	a	String	indicating	the	Japanese	phonetic	rendering	(yomigana)
of	the	first	name	for	the	contact.	Read/write.

objContactItem.YomiFirstName

objContactItem					Required.	An	expression	that	returns	a	ContactItem	object.



YomiLastName	Property
Returns	or	sets	a	String	indicating	the	Japanese	phonetic	rendering	(yomigana)
of	the	last	name	for	the	contact.	Read/write.

objContactItem.YomiLastName

objContactItem					Required.	An	expression	that	returns	a	ContactItem	object.



Activate	Event
Occurs	when	an	explorer	or	inspector	becomes	the	active	window,	either	as	a
result	of	user	action	or	through	program	code.	This	event	is	not	available	in
VBScript.

Sub	object_Activate()

object				An	expression	that	evaluates	to	an	Explorer	or	Inspector	object.



Example

This	code	example	uses	the	WindowState	property	to	maximize	the	topmost
explorer	window	when	the	Activate	event	occurs.	The	sample	code	must	be
placed	in	a	class	module,	and	the	Initialize_handler	routine	must	be	called
before	the	event	procedure	can	be	called	by	Microsoft	Outlook.

Dim	myOlApp	As	New	Outlook.Application

Public	WithEvents	myOlExp	As	Outlook.Explorer

Public	Sub	Initialize_handler()

				Set	myOlExp	=	myOlApp.ActiveExplorer

End	Sub

Private	Sub	myOlExp_Activate()

				If	myOlExp.WindowState	=	olNormalWindow	Then	_

								myOlExp.WindowState	=	olMaximized

End	Sub

	 	



AdvancedSearchComplete	Event
Occurs	when	the	AdvancedSearch	method	has	completed.	The
AdvancedSearchComplete	event	is	used	to	return	the	object	that	was	created	by
the	AdvancedSearch	method.

Private	Sub	expression_	AdvancedSearchComplete(ByVal	SearchObject	As
Object)

expression				A	variable	which	references	an	object	of	type	Application	declared
with	events	in	a	class	module.

SearchObject				The	Search	object	returned	by	the	AdvancedSearch	method.



Remarks

This	event	only	fires	when	the	AdvancedSearch	method	is	executed
programmatically.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	searches	the	Inbox
for	items	where	the	subject	is	equal	to	"Test"	and	displays	the	names	of	the
senders	of	the	e-mail	items	returned	by	the	search.	The	AdvanceSearchComplete
event	procedure	sets	the	boolean	blnSearchComp	to	True	when	the	search	is
complete.	This	boolean	variable	is	used	by	the	TestAdvancedSearchComplete()
procedure	to	determine	when	the	search	is	complete.	The	sample	code	must	be
placed	in	a	class	module	such	as	ThisOutlookSession.	The
TestAdvancedSearchComplete()	procedure	must	be	called	before	the	event
procedure	can	be	called	by	Microsoft	Outlook.

Public	blnSearchComp	As	Boolean

Private	Sub	Application_AdvancedSearchComplete(ByVal	SearchObject	As	Search)

	 MsgBox	"The	AdvancedSearchComplete	Event	fired."

	 blnSearchComp	=	True

End	Sub

Sub	TestAdvancedSearchComplete()

	 Dim	sch	As	Outlook.Search

	 Dim	rsts	As	Outlook.Results

	 Dim	i	As	Integer

		 blnSearchComp	=	False

	 Const	strF	As	String	=	"urn:schemas:mailheader:subject	=	'Test'"

	 Const	strS	As	String	=	"Inbox"			

	 Set	sch	=	Application.AdvancedSearch(strS,	strF)	

	 While	blnSearchComp	=	False

	 	 DoEvents

	 Wend	

	 Set	rsts	=	sch.Results

	 For	i	=	1	To	rsts.Count

	 	 MsgBox	rsts.Item(i).SenderName

	 Next

End	Sub

	 	





AdvancedSearchStopped	Event
Occurs	when	a	specified	Search	object's	Stop	method	has	been	executed.

Private	Sub	application_	AdvancedSearchStopped(ByVal	SearchObject	As
Object)

expression				A	variable	that	references	an	object	of	type	Application	declared
with	events	in	a	class	module.

SearchObject				The	Search	object	returned	by	the	AdvancedSearch	method.



Remarks

After	this	event	is	fired,	the	Search	object’s	Results	collection	will	no	longer	be
updated.	This	event	can	only	be	triggered	programmatically.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	starts	searching	the
Inbox	for	items	with	subject	equal	to	"Test"	and	immediately	stops	the	search.
This	causes	the	AdvanceSearchStopped	event	procedure	to	be	run.	The	sample
code	must	be	placed	in	a	class	module	such	as	ThisOutlookSession.	The
StopSearch()	procedure	must	be	called	before	the	event	procedure	can	be	called
by	Microsoft	Outlook.

Sub	StopSearch()

	 Dim	sch	As	Outlook.Search

	 Dim	strScope	As	String

	 Dim	strFilter	As	String

	 strScope	=	"Inbox"

	 strFilter	=	"urn:schemas:httpmail:subject	=	'Test'"

	 Set	sch	=	Application.AdvancedSearch(strScope,	strFilter)

	 sch.Stop

End	Sub

	

Private	Sub	Application_AdvancedSearchStopped(ByVal	SearchObject	As	Search)

	 'Inform	the	user	that	the	search	has	stopped.

	 MsgBox	"An	AdvancedSearch	has	been	interrupted	and	stopped.	"

End	Sub

	 	



AttachmentAdd	Event
Occurs	when	an	attachment	has	been	added	to	an	item.

Sub	object_AttachmentAdd(Attachment	As	Attachment)

object				An	object	that	evaluates	to	one	of	the	objects	in	the	Applies	To	list.	In
Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook	form,	use	the
word	Item.

Attachment	Required.	The	Attachment	that	was	added	to	the	item.



Example

This	Visual	Basic	for	Applications	(VBA)	example	checks	the	size	of	the	item
after	an	attachment	has	been	added	and	displays	a	warning	if	the	size	exceeds
500,000	bytes.	The	sample	code	must	be	placed	in	a	class	module	such	as
ThisOutlookSession,	and	the	TestAttachAdd()	procedure	should	be	called
before	the	event	procedure	can	be	called	by	Microsoft	Outlook.

Public	WithEvents	newItem	As	Outlook.MailItem

Private	Sub	newItem_AttachmentAdd(ByVal	newAttachment	As	Attachment)

	 If	newAttachment.Type	=	olByValue	Then

	 	 newItem.Save

	 	 If	newItem.Size	>	500000	Then

	 	 	 MsgBox	"Warning:	Item	size	is	now	"	&	newItem.Size	&	"	bytes."

	 	 End	If

	 End	If

End	Sub

Public	Sub	TestAttachAdd()

	 Dim	olApp	As	New	Outlook.Application

	 Dim	atts	As	Outlook.Attachments

	 Dim	newAttachment	As	Outlook.Attachment

	 Set	newItem	=	olApp.CreateItem(olMailItem)	

	 newItem.Subject	=	"Test	attachment"

	 Set	atts	=	newItem.Attachments

	 Set	newAttachment	=	atts.Add("C:\Test.txt",	olByValue)

End	Sub

	 	

This	VBScript	example	shows	how	to	use	the	AttachmentAdd	event	in
VBScript.

Sub	Item_AttachmentAdd(ByVal	newAttachment)

	 If	newAttachment.Type	=	1	Then

	 	 Item.Save

	 	 If	Item.Size	>	500000	Then

	 	 	 MsgBox	"Warning:	Item	size	is	now	"	&	Item.Size	&	"	bytes."

	 	 End	If

	 End	If

End	Sub





AttachmentRead	Event
Occurs	when	an	attachment	in	an	e-mail	item	has	been	opened	for	reading.

Sub	object_AttachmentRead(ByVal	Attachment	As	Attachment)

object					An	object	that	evaluates	to	one	of	the	objects	in	the	Applies	To	list.	In
Microsoft	Visual	Basic	Scripting	Edition	(VBScript),	use	the	word	Item.

Attachment	Required.	The	Attachment	that	was	opened.



Example

This	Visual	Basic	for	Applications	(VBA)	example	displays	a	message	when	the
user	tries	to	read	an	attachment.	The	sample	code	must	be	placed	in	a	class
module	such	as	ThisOutlookSession,	and	the	TestAttachRead()	procedure
should	be	called	before	the	event	procedure	can	be	called	by	Microsoft	Outlook.
For	this	example	to	run,	there	has	to	be	at	least	one	item	in	the	Inbox	with
subject	as	'Test'	and	containing	at	least	one	attachment.

Public	WithEvents	myItem	As	outlook.MailItem

Public	olApp	As	New	Outlook.Application

Private	Sub	myItem_AttachmentRead(ByVal	myAttachment	As	Outlook.Attachment)

	 If	myAttachment.Type	=	olByValue	Then

	 	 MsgBox	"If	you	change	this	file,	also	save	your	changes	to	the	original	file."

	 End	If

End	Sub

Public	Sub	TestAttachRead()

	 Dim	atts	As	Outlook.Attachments

	 Dim	myAttachment	As	Outlook.Attachment

	 Set	olApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	olApp.ActiveExplorer.CurrentFolder.Items("Test")

	 Set	atts	=	myItem.Attachments

	 myItem.Display

End	Sub

	 	

This	VBScript	example	reminds	the	user	to	also	save	changes	to	the	original	file.

Sub	Item_AttachmentRead(ByVal	ReadAttachment)

	 If	ReadAttachment.Type	=	1	then

	 	 MsgBox	"If	you	change	this	file,	also	save	your	changes	to	the	original	file."

	 End	If

End	Sub

	 	





BeforeAttachmentSave	Event
Occurs	just	before	an	attachment	is	saved.

Sub	object_BeforeAttachmentSave(ByVal	Attachment	As	Attachment,
Cancel	As	Boolean)

object				An	expression	that	evaluates	to	one	of	the	objects	in	the	Applies	To	list.
In	Microsoft	Visual	Basic	Scripting	Edition	(VBScript),	use	the	word	Item.

Attachment					Required.	The	Attachment	to	be	saved.

Cancel	Optional	(not	used	in	VBScript).	False	when	the	event	occurs.	If	the
event	procedure	sets	this	argument	to	True,	the	save	operation	is	not	completed
and	the	attachment	is	not	changed.



Remarks

This	event	corresponds	to	when	attachments	are	saved	to	the	messaging	store.
The	BeforeAttachmentSave	event	occurs	just	before	an	attachment	is	saved
when	an	item	is	saved.	If	a	user	edits	an	attachment	and	then	saves	those
changes,	the	BeforeAttachmentSave	event	will	not	occur	at	that	time;	instead	it
will	occur	when	the	item	itself	is	later	saved.	It	also	does	not	occur	when	the
attachment	is	saved	on	the	hard	disk	using	the	SaveAsFile	method.

In	VBScript,	if	you	set	the	return	value	of	this	function	to	False,	the	save
operation	is	cancelled	and	the	attachment	is	not	changed.



Example

This	Visual	Basic	for	Applications	(VBA)	example	notifies	the	user	that	the	user
is	not	allowed	to	save	the	attachment.	The	Cancel	argument	is	set	to	True	to
cancel	the	save	operation.	The	sample	code	must	be	placed	in	a	class	module
such	as	ThisOutlookSession,	and	the	TestAttachSave()	procedure	should	be
called	before	the	event	procedure	can	be	called	by	Microsoft	Outlook.

Public	WithEvents	myItem	As	Outlook.MailItem

Public	olApp	As	New	Outlook.Application

Private	Sub	myItem_BeforeAttachmentSave(ByVal	myAttachment	As	Attachment,	Cancel	As	Boolean)

	 MsgBox	"You	are	not	allowed	to	save	"	&	myAttachment.FileName

	 Cancel	=	True

End	Sub

Public	Sub	TestAttachSave()

	 Set	olApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	olApp.ActiveInspector.CurrentItem

End	Sub

	 	



BeforeCheckNames	Event
Occurs	just	before	Microsoft	Outlook	starts	resolving	names	in	the	recipient
collection	for	an	e-mail	item.

Sub	object_BeforeCheckNames(Cancel	As	Boolean)

object				An	expression	that	evaluates	to	an	object	in	the	Applies	To	list.	In
Microsoft	Visual	Basic	Scripting	Edition	(VBScript),	use	the	word	Item.

Cancel	Optional	(not	used	in	VBScript).	False	when	the	event	occurs.	If	the
event	procedure	sets	this	argument	to	True,	the	operation	is	cancelled	and	the
names	in	the	recipients	collection	are	not	resolved.



Remarks

You	use	the	BeforeCheckNames	event	in	VBScript,	but	the	event	does	not	fire
when	an	e-mail	name	is	resolved	on	the	form.

The	event	does	not	fire	under	the	following	circumstances:

You	customized	a	Journal	Entry	form	and	then	resolved	a	contact	in	the
Contacts	field.
You	customized	a	Contact	form	and	then	resolved	a	contact	in	the	Contacts
field.
You	customized	any	type	of	form	and	Outlook	automatically	resolved	the
name	in	the	background.
You	programmatically	created	and	resolved	a	recipient.



Example

This	Visual	Basic	for	Applications	(VBA)	example	asks	the	user	if	the	user
wants	to	resolve	names	and	returns	False	to	cancel	the	operation	if	the	user
answers	no.	The	sample	code	must	be	placed	in	a	class	module	such	as
ThisOutlookSession,	and	the	SendMail()	procedure	should	be	called	before	the
event	procedure	can	be	called	by	Outlook.

Public	WithEvents	myItem	As	Outlook.MailItem

Public	olApp	As	New	Outlook.Application

Private	Sub	myItem_BeforeCheckNames(Cancel	As	Boolean)

	 If	MsgBox("Do	you	want	to	resolve	names	now?",	4)	=	vbOK	Then

	 	 Cancel	=	True

	 End	If

End	Sub

Public	Sub	SendMail()

	 Set	olApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	olApp.CreateItem(olMailItem)

	 myItem.Recipients.Add	("Dan	Wilson")

	 myItem.Recipients.Add	("Nate	Sun")

	 myItem.Body	=	"Good	morning!"

	 myItem.Send

End	Sub

	 	



BeforeDelete	Event
Occurs	before	an	e-mail	item	is	deleted.

Sub	expression_	BeforeDelete(ByVal	Item	As	Object,	Cancel	As	Boolean)

expression				An	object	in	the	Applies	To	list	declared	with	events	in	a	class
module.

Item				Required	Object.The	item	being	deleted.

Cancel				Required	Boolean.	False	when	the	event	occurs.	If	the	event	procedure
sets	this	argument	to	True,	the	operation	is	not	completed	and	the	item	is	not
deleted.



Remarks

In	order	for	this	event	to	fire	when	an	e-mail	message,	distribution	list,	journal
entry,	task,	contact,	or	post	are	deleted	through	an	action,	an	inspector	must	be
open.

The	event	occurs	each	time	an	item	is	deleted.



Example

The	following	Visual	Basic	for	Applications	(VBA)	example	prompts	the	user
regarding	whether	to	delete	the	item	currently	open.	For	this	example	to	run,	you
need	to	have	an	open	e-mail	item	that	can	be	deleted.	If	you	click	No,	the	item
will	not	be	deleted.	If	this	event	is	canceled,	Microsoft	Outlook	displays	an	error
message.	Therefore,	you	need	to	capture	this	event	in	your	code.	One	way	to	do
this	is	shown	below.	The	sample	code	must	be	placed	in	a	class	module	such	as
ThisOutlookSession,	and	the	DeleteMail()	procedure	should	be	called	before
the	event	procedure	can	be	called	by	Outlook.

Public	WithEvents	myItem	As	Outlook.MailItem

Public	olApp	As	New	Outlook.Application

Public	Sub	DeleteMail()

	 Const	strCancelEvent	=	"Application-defined	or	object-defined	error"

	 On	Error	GoTo	ErrHandler

	 Set	olApp	=	CreateObject("Outlook.Application")

	 Set	myItem	=	olApp.ActiveInspector.CurrentItem

	 myItem.Delete

	 Exit	Sub

	 ErrHandler:

	 	 MsgBox	Err.Description

	 	 If	Err.Description	=	strCancelEvent	Then

	 	 	 	 MsgBox	"The	event	was	cancelled."

	 	 	 End	If

	 	 'If	you	want	to	execute	the	next	instruction

	 	 	 Resume	Next

	 	 'Otherwise	it	will	finish	here

End	Sub

Private	Sub	myItem_BeforeDelete(ByVal	Item	As	Object,	Cancel	As	Boolean)

	 'Prompts	the	user	before	deleting	an	item

	 Dim	strPrompt	As	String

	 'Prompt	the	user	for	a	response

	 strPrompt	=	"Are	you	sure	you	want	to	delete	the	item?"

	 If	MsgBox(strPrompt,	vbYesNo	+	vbQuestion)	=	vbNo	Then

	 	 'Don't	delete	the	item

	 	 Cancel	=	True

	 End	If

End	Sub

	 	





BeforeFolderSwitch	Event
Occurs	before	the	explorer	goes	to	a	new	folder,	either	as	a	result	of	user	action
or	through	program	code.	This	event	is	not	available	in	Microsoft	Visual	Basic
Scripting	Edition	(VBScript).

Note		If	the	folder	being	switched	to	is	in	a	namespace	that	doesn’t	support
Automation	(such	as	the	file	system),	NewFolder	is	Nothing.

Sub	object_BeforeFolderSwitch(ByVal	NewFolder	As	Object,	Cancel	As
Boolean)

object				An	expression	that	evaluates	to	an	Explorer	object.

NewFolder				Required.	The	MAPIFolder	object	the	explorer	is	switching	to.

Cancel					Optional.	False	when	the	event	occurs.	If	the	event	procedure	sets	this
argument	to	True,	navigation	is	cancelled,	and	the	current	folder	is	not	changed.



Example

This	sample	prevents	a	user	from	switching	to	a	folder	named	"Off	Limits".	The
sample	code	must	be	placed	in	a	class	module	such	as	ThisOutlookSession,	and
the	Initialize_handler	routine	must	be	called	before	the	event	procedure	can
be	called	by	Microsoft	Outlook.	To	run	this	example	without	errors,	make	sure	a
folder	by	the	name	'Off	Limits'	exists	in	the	folder	displayed	in	the	active
explorer.

Dim	myOlApp	As	New	Outlook.Application

Public	WithEvents	myOlExp	As	Outlook.Explorer

Public	Sub	Initialize_handler()

				Set	myOlExp	=	myOlApp.ActiveExplorer

End	Sub

Private	Sub	myOlExp_BeforeFolderSwitch(ByVal	NewFolder	As	Object,	Cancel	As	Boolean)

				If	NewFolder.Name	=	"Off	Limits"	Then

								MsgBox	"You	do	not	have	permission	to	access	this	folder."

								Cancel	=	True

				End	If

End	Sub

	 	



Show	All



BeforeGroupAdd	Event
Occurs	before	a	new	group	is	added	to	the	Shortcuts	pane,	either	as	a	result	of
user	action	or	through	program	code.	This	event	is	not	available	in	Microsoft
Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_BeforeGroupAdd(Cancel	As	Boolean)

object				An	expression	that	evaluates	to	an	OutlookBarGroups	collection
object.

Cancel					Optional.	False	when	the	event	occurs.	If	the	event	procedure	sets	this
argument	to	True,	the	group	is	not	added	to	the	Shortcuts	pane.



Example

This	Visual	Basic	for	Applications	(VBA)	example	prevents	the	user	from
adding	a	group	to	the	Shortcuts	pane.	The	sample	code	must	be	placed	in	a	class
module	such	as	ThisOutlookSession,	and	the	Initialize_handler	routine	must
be	called	before	the	event	procedure	can	be	called	by	Outlook.

Dim	myOlApp	As	New	Outlook.Application

Dim	WithEvents	myOlGroups	As	Outlook.OutlookBarGroups

Dim	myOlBar	As	Outlook.OutlookBarPane

Sub	Initialize_handler()

				Set	myOlBar	=	myOlApp.ActiveExplorer.Panes.Item("OutlookBar")

				Set	myOlGroups	=	myOlBar.Contents.Groups

End	Sub

Private	Sub	myOlGroups_BeforeGroupAdd(Cancel	As	Boolean)

				Cancel	=	True

End	Sub

	 	



Show	All



BeforeGroupRemove	Event
Occurs	before	a	new	group	is	removed	from	the	Shortcuts	pane,	either	as	a	result
of	user	action	or	through	program	code.	This	event	is	not	available	in	Microsoft
Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_BeforeGroupRemove(ByVal	Group	As	OutlookBarGroup,
Cancel	As	Boolean)

object				An	expression	that	evaluates	to	an	OutlookBarGroups	collection
object.

Group				Required.	The	OutlookBarGroup	that	is	being	removed.

Cancel					Optional.	False	when	the	event	occurs.	If	the	event	procedure	sets	this
argument	to	True,	the	group	is	not	removed	from	the	Shortcuts	pane.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
prevents	the	user	from	removing	a	group	from	the	Shortcuts	pane.	The	sample
code	must	be	placed	in	a	class	module	such	as	ThisOutlookSession,	and	the
Initialize_handler	routine	must	be	called	before	the	event	procedure	can	be
called	by	Outlook.	You	will	still	be	prompted	when	you	try	to	delete	a	shortcut.
However,	the	group	will	not	be	deleted	even	if	you	clicked	Yes.

Dim	myOlApp	As	New	Outlook.Application

Dim	WithEvents	myOlGroups	As	Outlook.OutlookBarGroups

Dim	myOlBar	As	Outlook.OutlookBarPane

Sub	Initialize_handler()

				Set	myOlBar	=	myOlApp.ActiveExplorer.Panes.item("OutlookBar")

				Set	myOlGroups	=	myOlBar.Contents.Groups

End	Sub

Private	Sub	myOlGroups_BeforeGroupRemove(ByVal	Group	As	OutlookBarGroup,	Cancel	As	Boolean)

				Cancel	=	True

End	Sub

	 	



Show	All



BeforeGroupSwitch	Event
With	the	new	Navigation	Pane	and	Shortcuts	pane	in	Microsoft	Office
Outlook	2003,	this	event	does	not	fire	in	Office	Outlook	2003.



BeforeItemCopy	Event
Occurs	when	an	item	is	copied.	This	event	can	be	cancelled	after	it	has	started.

Private	Sub	expression_BeforeItemCopy(Cancel	As	Boolean)

expression				An	expression	that	returns	an	Explorer	object	declared	with	events
in	a	class	module.

Cancel				Required	Boolean.	False	when	the	event	occurs.	If	the	event	procedure
sets	this	argument	to	True,	the	operation	is	not	completed	and	the	item	is	not
copied.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	prompts	the	user	before	an	item	is	copied.	A	message	is	displayed	to	the
user	verifying	that	the	item	should	be	copied.	If	the	user	clicks	Yes,	the	item	is
copied	to	the	Clipboard.	The	sample	code	must	be	placed	in	a	class	module	such
as	ThisOutlookSession,	and	the	Initialize_handler	routine	must	be	called
before	the	event	procedure	can	be	called	by	Microsoft	Outlook.

Public	WithEvents	myOlExp	As	Outlook.Explorer

Sub	Initalize_Handler()

Set	myOlExp	=	Application.ActiveExplorer

End	Sub

Private	Sub	myOlExp_BeforeItemCopy(Cancel	As	Boolean)

'Prompts	the	user	before	copying	an	item

			Dim	lngAns	As	Long	'user	answer

			'Display	question	to	user

			lngAns	=	MsgBox("Are	you	sure	you	want	to	copy	the	item?",	vbYesNo)

			If	lngAns	=	vbYes	Then

							Cancel	=	False

			Else

							'Set	Cancel	argument	based	on	answer

							Cancel	=	True

			End	If

End	Sub

	 	



BeforeItemCut	Event
Occurs	when	an	item	is	cut	from	a	folder.	This	method	can	be	cancelled	after	it
has	started.	If	the	event	is	cancelled,	then	the	item	will	not	be	removed.

Private	Sub	explorer_BeforeItemCut(Cancel	As	Boolean)

explorer				An	expression	that	returns	an	Explorer	object.

Cancel				Optional.	False	when	the	event	occurs.	If	the	event	procedure	sets	this
argument	to	True,	the	operation	is	not	completed	and	the	item	is	not	deleted.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	prompts	the	user	with	a	warning	message	before	the	item	is	cut	from
the	folder.	If	the	user	clicks	Yes,	the	item	is	cut	from	the	folder.	If	the	user	clicks
No,	the	item	will	not	be	removed	from	the	folder.	The	sample	code	must	be
placed	in	a	class	module	such	as	ThisOutlookSession,	and
theInitialize_handler	routine	must	be	called	before	the	event	procedure	can
be	called	by	Microsoft	Outlook.

Public	WithEvents	myOlExp	As	Outlook.Explorer

Sub	Initalize_Handler()

Set	myOlExp	=	Application.ActiveExplorer

End	Sub

Private	Sub	myOlExp_BeforeItemCut(Cancel	As	Boolean)

'Prompts	the	user	before	cutting	an	item

			Dim	lngAns	As	Long

			'Display	question	to	user

			lngAns	=	MsgBox("Are	you	sure	you	want	to	cut	the	item?",	vbYesNo)

			'Set	cancel	argument	based	on	user's	answer

			If	lngAns	=	vbYes	Then

							Cancel	=	False

			ElseIf	lngAns	=	vbNo	Then

							Cancel	=	True

			End	If

End	Sub

	 	



BeforeItemPaste	Event
Occurs	when	a	Microsoft	Outlook	item	is	pasted.	This	event	can	be	cancelled
after	it	has	started.

Private	Sub	expression_BeforeItemPaste(ClipboardContent	As	Variant,
ByVal	Target	As	MAPIFolder,	Cancel	As	Boolean)

expression				An	expression	that	returns	an	Explorer	object	declared	with	events
in	a	class	module.

ClipboardContent					Required	Variant.	The	content	to	be	pasted.

Target				Required	MAPIFolder.	The	destination	of	the	paste.

Cancel				Required	Boolean.	False	when	the	event	occurs.	If	the	event	procedure
sets	this	argument	to	True,	the	operation	is	not	completed	and	the	item	is	not
deleted.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	prompts	the	user	before	pasting	the	contents	of	the	Clipboard	to	the
specified	target.	If	the	user	clicks	Yes,	the	current	content	in	the	Clipboard	is
copied	to	the	specified	target	destination.	The	sample	code	must	be	placed	in	a
class	module	such	as	ThisOutlookSession,	and	the	Initialize_handler	routine
must	be	called	before	the	event	procedure	can	be	called	by	Outlook.

Public	WithEvents	myOlExp	As	Outlook.Explorer

Sub	Initalize_Handler()

	 Set	myOlExp	=	Application.ActiveExplorer

End	Sub

Private	Sub	myOlExp_BeforeItemPaste(ClipboardContent	As	Variant,	ByVal	Target	As	MAPIFolder,	Cancel	As	Boolean)

	 Dim	lngAns	As	Integer	'users'	answer

	 'Prompt	user	about	paste

	 lngAns	=	MsgBox("Are	you	sure	you	want	to	paste	the	contents	of	the	clipboard	into	the	"	_

																				&	Target.Name	&	"?",	vbYesNo)

	 If	lngAns	=	vbNo	Then

	 	 Cancel	=	True

	 End	If

End	Sub

	 	



BeforeMaximize	Event
Occurs	when	an	explorer	or	inspector	is	maximized	by	the	user.	This	event	can
be	cancelled	after	it	has	started.

Private	Sub	expression_BeforeMaximize(Cancel	As	Boolean)

expression				An	expression	that	returns	an	object	in	the	Applies	To	list	declared
with	events	in	a	class	module.

Cancel				Required	Boolean.	False	when	the	event	occurs.	If	the	event	procedure
sets	this	argument	to	True,	the	operation	is	not	completed	and	the	explorer	or
inspector	is	not	maximized.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	prompts	the	user	with	a	warning	message	before	maximizing	the
current	window.	If	the	user	clicks	Yes,	the	explorer	will	maximize.	The	sample
code	must	be	placed	in	a	class	module	such	as	ThisOutlookSession,	and	the
Initialize_Handler()	subroutine	should	be	called	before	the	event	procedure
can	be	called	by	Microsoft	Outlook.

Public	WithEvents	myOlExp	As	Outlook.Explorer

Sub	Initalize_Handler()

				Set	myOlExp	=	Application.ActiveExplorer

End	Sub

Private	Sub	myOlExp_BeforeMaximize(Cancel	As	Boolean)

'Prompts	the	user	before	maximizing	the	explorer

				Dim	lngAns	As	Long

				lngAns	=	MsgBox("Are	you	sure	you	want	to	maximize	the	current	window?",	vbYesNo)

				If	lngAns	=	vbYes	Then

								Cancel	=	False

				Else

								Cancel	=	True

				End	If

End	Sub

	 	



BeforeMinimize	Event
Occurs	when	the	active	explorer	or	inspector	is	minimized	by	the	user.	This
event	can	be	cancelled	after	it	has	started.

Private	Sub	expression_BeforeMinimize(Cancel	As	Boolean)

expression				An	expression	that	returns	one	of	the	objects	in	the	Applies	To	list
declared	with	events	in	a	class	module.

Cancel				Required	Boolean.	False	when	the	event	occurs.	If	the	event	procedure
sets	this	argument	to	True,	the	operation	is	not	completed	and	the	explorer	or
inspector	is	not	minimized.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	prompts	the	user	with	a	message	before	the	window	is	minimized.	If	the
user	clicks	Yes,	the	explorer	is	minimized.	The	sample	code	must	be	placed	in	a
class	module	such	as	ThisOutlookSession,	and	the	Initialize_Handler()
subroutine	should	be	called	before	the	event	procedure	can	be	called	by
Microsoft	Outlook.

Public	WithEvents	myOlExp	As	Outlook.Explorer

Sub	Initalize_Handler()

				Set	myOlExp	=	Application.ActiveExplorer

End	Sub

Private	Sub	myOlExp_BeforeMinimize(Cancel	As	Boolean)

'Prompts	the	user	before	minimizing	the	Explorer

				Dim	lngAns	As	Long

				lngAns	=	MsgBox("Are	you	sure	you	want	to	minimize	the	current	window?",	vbYesNo)

				If	lngAns	=	vbYes	Then

								Cancel	=	False

				Else

								Cancel	=	True

				End	If

End	Sub

	 	



BeforeMove	Event
Occurs	when	the	Inspector	or	Explorer	is	moved	by	the	user.	This	event	can	be
cancelled	after	it	has	started.

Private	Sub	expression_BeforeMove(Cancel	As	Boolean)

expression				An	expression	that	returns	an	object	in	the	Applies	To	list	declared
with	events	in	a	class	module.

Cancel				Required	Boolean.	False	when	the	event	occurs.	If	the	event	procedure
sets	this	argument	to	True,	the	operation	is	not	completed	and	the	explorer	or
inspector	is	not	moved.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	prompts	the	user	with	a	message	before	the	explorer	is	moved	by	the
user.	If	the	user	clicks	Yes,	the	explorer	can	be	moved	by	the	user.	The	sample
code	must	be	placed	in	a	class	module	such	as	ThisOutlookSession,	and	the
Initialize_Handler()	subroutine	should	be	called	before	the	event	procedure
can	be	called	by	Microsoft	Outlook.

Public	WithEvents	myOlExp	As	Outlook.Explorer

Sub	Initalize_Handler()

				Set	myOlExp	=	Application.ActiveExplorer

End	Sub

Private	Sub	myOlExp_BeforeMove(Cancel	As	Boolean)

'Prompts	the	user	before	moving	the	window

				Dim	lngAns	As	Long

				lngAns	=	MsgBox("Are	you	sure	you	want	to	move	the	current	window?	Use	your	keyboard	to	make	your	selection.",	vbYesNo)

				If	lngAns	=	vbYes	Then

								Cancel	=	False

				Else

								Cancel	=	True

				End	If

End	Sub

	 	



Show	All



BeforeNavigate	Event
Occurs	when	the	user	clicks	a	shortcut	in	the	Shortcuts	pane	to	navigate	to	a
different	folder.	This	event	is	not	available	in	Microsoft	Visual	Basic	Scripting
Edition	(VBScript).

Sub	object_BeforeNavigate(ByVal	Shortcut	As	OutlookBarShortcut,	Cancel
As	Boolean)

object				An	expression	that	evaluates	to	an	OutlookBarPane	object.

Shortcut	Required.	The	shortcut	that	the	user	clicked.

Cancel							Optional.	False	when	the	event	occurs.	If	the	event	procedure	sets
this	argument	to	True,	the	current	folder	is	not	changed.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
prevents	the	user	from	using	the	Shortcuts	pane	to	open	the	Notes	folder.	The
sample	code	must	be	placed	in	a	class	module,	and	the	Initialize_handler
routine	must	be	called	before	the	event	procedure	can	be	called	by	Microsoft
Outlook.	If	you	do	not	have	a	shortcut	to	the	Notes	folder	already,	you	need	to
create	one	to	run	this	example.

Dim	myOlApp	As	New	Outlook.Application

Public	WithEvents	myOlPane	As	Outlook.OutlookBarPane

Public	Sub	Initialize_handler()

				Set	myOlPane	=	myOlApp.ActiveExplorer.Panes.Item("OutlookBar")

End	Sub

Private	Sub	myOlPane_BeforeNavigate(ByVal	Shortcut	As	Outlook.OutlookBarShortcut,	Cancel	As	Boolean)

				If	Shortcut.Name	=	"Notes"	Then

								MsgBox	"You	cannot	view	the	Notes	folder."

								Cancel	=	True

				End	If

End	Sub

	 	



BeforeReminderShow	Event
Occurs	before	the	Reminder	dialog	box	is	displayed.

Private	Sub	expression_BeforeReminderShow(Cancel	As	Boolean)

expression				A	variable	which	references	an	object	of	type	Reminders	declared
with	events	in	a	class	module.

Cancel					Required.	True	to	cancel	the	event.	The	default	value	is	False.



Show	All



BeforeShortcutAdd	Event
Occurs	before	a	new	shortcut	is	added	to	a	group	in	the	Shortcuts	pane,	either	as
a	result	of	user	action	or	through	program	code.	This	event	is	not	available	in
Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_BeforeShortcutAdd(Cancel	As	Boolean)

object				An	expression	that	evaluates	to	an	OutlookBarShortcuts	collection
object.

Cancel							Optional.	False	when	the	event	occurs.	If	the	event	procedure	sets
this	argument	to	True,	the	shortcut	is	not	added	to	the	group.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	prevents	a	user	from	adding	a	shortcut	to	the	first	group	in	the	Shortcuts
pane.	The	sample	code	must	be	placed	in	a	class	module,	and	the
Initialize_handler	routine	must	be	called	before	the	event	procedure	can	be
called	by	Microsoft	Outlook.

Dim	myOlApp	As	New	Outlook.Application

Dim	WithEvents	myOlShortcuts	As	Outlook.OutlookBarShortcuts

Dim	myOlBar	As	Outlook.OutlookBarPane

Sub	Initialize_handler()

				Set	myOlBar	=	myOlApp.ActiveExplorer.Panes.Item("OutlookBar")

				Set	myOlShortcuts	=	myOlBar.Contents.Groups.Item(1).Shortcuts

End	Sub

Private	Sub	myOlShortcuts_BeforeShortcutAdd(Cancel	As	Boolean)

				MsgBox	"You	are	not	allowed	to	add	a	shortcut	to	this	group."

				Cancel	=	True

End	Sub

	 	



Show	All



BeforeShortcutRemove	Event
Occurs	before	a	new	shortcut	is	removed	from	a	group	in	the	Shortcuts	pane,
either	as	a	result	of	user	action	or	through	program	code.	This	event	is	not
available	in	Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_BeforeShortcutRemove(ByVal	Shortcut	As	OutlookBarShortcut,
Cancel	As	Boolean)

object				An	expression	that	evaluates	to	an	OutlookBarShortcuts	collection
object.

Shortcut	Required.	The	OutlookBarShortcut	that	is	being	removed.

Cancel							Optional.	False	when	the	event	occurs.	If	the	event	procedure	sets
this	argument	to	True,	the	shortcut	is	not	removed	from	the	group.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	prevents	a	user	from	removing	a	shortcut	from	the	Shortcuts	pane.	The
sample	code	must	be	placed	in	a	class	module,	and	the	Initialize_handler
routine	must	be	called	before	the	event	procedure	can	be	called	by	Microsoft
Outlook.

Dim	myOlApp	As	New	Outlook.Application

Dim	WithEvents	myOlShortcuts	As	Outlook.OutlookBarShortcuts

Dim	myOlBar	As	Outlook.OutlookBarPane

Sub	Initialize_handler()

				Set	myOlBar	=	myOlApp.ActiveExplorer.Panes.Item("OutlookBar")

				Set	myOlShortcuts	=	myOlBar.Contents.Groups.Item(1).Shortcuts

End	Sub

Private	Sub	myOlShortcuts_BeforeShortcutRemove(ByVal	Shortcut	As	OutlookBarShortcut,	Cancel	As	Boolean)

				MsgBox	"You	are	not	allowed	to	remove	a	shortcut	from	this	group."

				Cancel	=	True

End	Sub

	 	



BeforeSize	Event
Occurs	when	the	user	sizes	the	current	Explorer	or	Inspector.	This	event	can	be
cancelled	after	it	has	started.	If	the	event	is	cancelled,	the	window	is	not	sized.

Private	Sub	expression_BeforeSize(Cancel	As	Boolean)

expression				An	expression	that	returns	an	object	in	the	Applies	To	list	declared
with	events	in	a	class	module.

Cancel				Required	Boolean.	False	when	the	event	occurs.	If	the	event	procedure
sets	this	argument	to	True,	the	operation	is	not	completed	and	the	Explorer	or
Inspector	is	not	sized.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	prompts	the	user	with	a	warning	message	before	the	Inspector	is	sized.
If	the	user	clicks	Yes,	the	inspector	can	be	sized.	The	sample	code	must	be
placed	in	a	class	module	such	as	ThisOutlookSession,	and	the
Initialize_Handler()	subroutine	should	be	called	before	the	event	procedure
can	be	called	by	Microsoft	Outlook.

Public	WithEvents	myIns	As	Outlook.Inspector

Public	Sub	Initalize_Handler()

	 Set	myIns	=	Application.ActiveInspector

End	Sub

Private	Sub	myIns_BeforeSize(Cancel	As	Boolean)

	 'Prompts	the	user	before	resizing	the	window

	 Dim	lngAns	As	Long

	 lngAns	=	MsgBox("Are	you	sure	you	want	to	resize	the	current	window?	Use	your	keyboard	to	make	your	selection.",	vbYesNo)

	 If	lngAns	=	vbYes	Then

	 	 Cancel	=	False

	 Else

	 	 Cancel	=	True

	 End	If

End	Sub

	 	



Show	All



BeforeViewSwitch	Event
Occurs	before	the	explorer	changes	to	a	new	view,	either	as	a	result	of	user
action	or	through	program	code.	This	event	is	not	available	in	Microsoft	Visual
Basic	Scripting	Edition	(VBScript).

Sub	object_BeforeViewSwitch(ByVal	NewView	As	String,	Cancel	As
Boolean)

object				An	expression	that	evaluates	to	an	Explorer	object.

NewView	Required.	The	name	of	the	view	the	explorer	is	switching	to.

Cancel					Optional.	False	when	the	event	occurs.	If	the	event	procedure	sets	this
argument	to	True,	the	switch	is	cancelled	and	the	current	view	is	not	changed.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
confirms	that	the	user	wants	to	switch	views	and	cancels	the	switch	if	the	user
answers	No.	The	sample	code	must	be	placed	in	a	class	module,	and	the
Initialize_handler	routine	must	be	called	before	the	event	procedure	can	be
called	by	Microsoft	Outlook.

Dim	myOlApp	As	New	Outlook.Application

Public	WithEvents	myOlExp	As	Outlook.Explorer

Public	Sub	Initialize_handler()

				Set	myOlExp	=	myOlApp.ActiveExplorer

End	Sub

Private	Sub	myOlExp_BeforeViewSwitch(ByVal	NewView	As	Variant,	Cancel	As	Boolean)

				Dim	Prompt	As	String

				Prompt	=	"Are	you	sure	you	want	to	switch	to	the	"	&	NewView	&	"	view?"

				If	MsgBox(Prompt,	vbYesNo	+	vbQuestion)	=	vbNo	Then	Cancel	=	True

End	Sub

	 	



Show	All



Close	Event
Occurs	when	the	inspector	associated	with	a	Microsoft	Outlook	item	or	when	an
explorer	is	being	closed.

Sub	object_Close(Cancel	As	Boolean)

object				An	expression	that	evaluates	to	an	object	in	the	Applies	To	list.	In
Microsoft	Visual	Basic	Scripting	Edition	(VBScript),	use	the	word	Item.

Cancel	Optional	(not	used	in	VBScript).	False	when	the	event	occurs.	If	the
event	procedure	sets	this	argument	to	True,	the	close	operation	is	not	completed
and	the	inspector	is	left	open.



Remarks

In	Microsoft	Visual	Basic	Scripting	Edition	(VBScript),	if	you	set	the	return
value	of	this	function	to	False,	the	close	operation	isn't	completed	and	the
inspector	is	left	open.	This	event	cannot	be	cancelled	for	the	Inspector	and
Explorer	objects.

If	you	use	the	Close	method	to	fire	this	event,	it	can	only	be	canceled	if	the
Close	method	uses	the	olPromptForSave	argument.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example	tests
for	the	Close	event	and	if	the	item	has	not	been	Saved,	it	uses	the	Save	method
to	save	the	item	without	prompting	the	user.

Public	WithEvents	myItem	As	Outlook.MailItem

Public	Sub	Initalize_Handler()

	 Set	myItem	=	Application.ActiveInspector.CurrentItem

End	Sub

Private	Sub	myItem_Close(Cancel	As	Boolean)

	 If	Not	myItem.Saved	Then

		 			myItem.Save

	 			MsgBox	"	The	item	was	saved."

	 End	If

End	Sub

	 	



Show	All



CustomAction	Event
Occurs	when	a	custom	action	of	a	Microsoft	Outlook	item	executes.	The	Action
object	and	the	newly	created	item	resulting	from	the	custom	action	are	passed	to
the	event.

Sub	object_CustomAction(ByVal	Action	As	Object,	ByVal	Response	As
Object,	Cancel	As	Boolean)

object				An	expression	that	evaluates	to	one	of	the	objects	in	the	Applies	To	list.
In	VBScript,	use	the	word	Item.

Action							Required.	The	Action	object.

Response				Required.	The	newly	created	item	resulting	from	the	custom	action.

Cancel	Optional	(not	used	in	VBScript).	False	when	the	event	occurs.	If	the
event	procedure	sets	this	argument	to	True,	the	custom	action	is	not	completed.



Remarks

In	Microsoft	Visual	Basic	Scripting	Edition	(VBScript),	if	you	set	the	return
value	of	this	function	to	False,	the	custom	action	operation	is	not	completed.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	CustomAction
event	to	set	the	Subject	property	on	the	response	item.	Execute	the	AddAction
procedure	before	executing	the	Initialize_Handler	to	create	an	item	with	a
custom	event	called	'Link	Original'.

Public	WithEvents	myItem	As	Outlook.MailItem

Dim	myOlApp	As	New	Outlook.Application

				

Sub	AddAction()

	Dim	myAction	As	Outlook.Action

	Set	myItem	=	myOlApp.CreateItem(olMailItem)

	Set	myAction	=	myItem.Actions.Add

	myAction.Name	=	"Link	Original"

	myAction.ShowOn	=	olMenuAndToolbar

	myAction.ReplyStyle	=	olLinkOriginalItem

	myItem.To	=	"Dan	Wilson"

	myItem.Subject	=	"Before"

	myItem.Send

End	Sub

Sub	Initialize_Handler()

	Set	myItem	=	myOlApp.ActiveInspector.CurrentItem

End	Sub

Private	Sub	myItem_CustomAction(ByVal	Action	As	Object,	ByVal	Response	As	Object,	Cancel	As	Boolean)

	Select	Case	Action.Name

								Case	"Link	Original"

												Response.Subject	=	"Changed	by	VB	Script"

								Case	Else

		End	Select

End	Sub

	 	



Show	All



CustomPropertyChange	Event
Occurs	when	a	custom	property	of	a	Microsoft	Outlook	item	is	changed.	The
property	name	is	passed	to	the	procedure	so	that	you	can	determine	which
custom	property	changed.

Sub	object_CustomPropertyChange(ByVal	Name	As	String)

object				An	object	that	evaluates	to	one	of	the	objects	in	the	Applies	To	list.	In
VBScript,	use	the	word	Item.

Name				Required.	The	name	of	the	custom	property	that	was	changed.



Example

This	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	example	uses	the
CustomPropertyChange	event	to	enable	a	control	when	a	Boolean	field	is	set
to	True.

For	this	example,	create	two	custom	fields	on	the	second	page	of	a	form.	The
first,	a	Boolean	field,	is	named	"RespondBy".	The	second	field	is	named
"DateToRespond".

Sub	Item_CustomPropertyChange(ByVal	myPropName)

				Select	Case	myPropName

								Case	"RespondBy"

												Set	myPages	=	Item.GetInspector.ModifiedFormPages

												Set	myCtrl	=	myPages("P.2").Controls("DateToRespond")

												If	Item.UserProperties("RespondBy").Value	Then

																myCtrl.Enabled	=	True

																myCtrl.Backcolor	=	65535	'Yellow

												Else

																myCtrl.Enabled	=	False

																myCtrl.Backcolor	=	0	'Black

												End	If

								Case	Else

				End	Select

End	Sub

	 	



Deactivate	Event
Occurs	when	an	explorer	or	inspector	stops	being	the	active	window,	either	as	a
result	of	user	action	or	through	program	code.	This	event	is	not	available	in
Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_Deactivate()

object				An	expression	that	evaluates	to	an	Explorer	or	Inspector	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	WindowState
property	to	minimize	the	topmost	explorer	window	when	it	is	not	active.	The
sample	code	must	be	placed	in	a	class	module,	and	the	Initialize_handler
routine	must	be	called	before	the	event	procedure	can	be	called	by	Microsoft
Outlook.

Dim	myOlApp	As	New	Outlook.Application

Public	WithEvents	myOlExp	As	Outlook.Explorer

Public	Sub	Initialize_handler()

				Set	myOlExp	=	myOlApp.ActiveExplorer

End	Sub

Private	Sub	myOlExp_Deactivate()

				myOlExp.WindowState	=	olMinimized

End	Sub

	 	



FolderAdd	Event
Occurs	when	a	folder	is	added	to	the	specified	Folders	collection.	This	event	is
not	available	in	Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_FolderAdd(ByVal	Folder	As	MAPIFolder)

object				An	expression	that	evaluates	to	a	Folders	collection	object.

Folder	Required.	The	MAPIFolder	that	was	added	to	the	collection.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	displays	a	new	folder	created	in	the	user’s	Inbox	folder.

Dim	myOlApp	As	New	Outlook.Application

Public	WithEvents	myOlFolders	As	Outlook.Folders

Public	Sub	Initialize_handler()

				Set	myOlFolders	=	myOlApp.GetNamespace("MAPI").GetDefaultFolder(olFolderInbox).Folders

End	Sub

Private	Sub	myOlFolders_FolderAdd(ByVal	Folder	As	Outlook.MAPIFolder)

				Folder.Display

End	Sub

	 	



FolderChange	Event
Occurs	when	a	folder	in	the	specified	Folders	collection	is	changed.	This	event
is	not	available	in	Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_FolderChange(ByVal	Folder	As	MAPIFolder)

object				An	expression	that	evaluates	to	a	Folders	collection	object.

Folder	Required.	The	MAPIFolder	that	was	changed.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
prompts	the	user	to	remove	a	folder	from	the	Deleted	Items	folder	if	the	folder
is	empty.	The	sample	code	must	be	placed	in	a	class	module,	and	the
Initialize_handler	routine	must	be	called	before	the	event	procedure	can	be
called	by	Microsoft	Outlook.

Dim	myolapp	As	New	Outlook.Application

Dim	WithEvents	myFolders	As	Outlook.Folders

Sub	Initialize_handler()

				Set	myNS	=	myolapp.GetNamespace("MAPI")

				Set	myFolders	=	myNS.GetDefaultFolder(olFolderDeletedItems).Folders

End	Sub

Private	Sub	myFolders_FolderChange(ByVal	Folder	As	Outlook.MAPIFolder)

				If	Folder.Items.Count	=	0	Then

								MyPrompt	=	Folder.Name	&	"	is	empty.	Do	you	want	to	delete	it?"

								If	MsgBox(MyPrompt,	vbYesNo	+	vbQuestion)	=	vbYes	Then

												Folder.Delete

								End	If

				End	If

End	Sub

	 	



FolderRemove	Event
Occurs	when	a	folder	is	removed	from	the	specified	Folders	collection.	This
event	is	not	available	in	Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_FolderRemove()

object				An	expression	that	evaluates	to	a	Folders	collection	object.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	displays	a	warning	message	when	the	user	tries	to	a	delete	a	folder	in
the	Inbox.	The	sample	code	must	be	placed	in	a	class	module,	and	the
Initialize_handler	routine	must	be	called	before	the	event	procedure	can	be
called	by	Microsoft	Outlook.

Dim	myolapp	As	New	Outlook.Application

Dim	myNS	As	Outlook.NameSpace

Dim	WithEvents	myFolders	As	Outlook.Folders

Sub	Initialize_handler()

	 Set	myNS	=	myolapp.GetNamespace("MAPI")

	 Set	myFolders	=	myNS.GetDefaultFolder(olFolderInbox).Folders

End	Sub

Private	Sub	myFolders_FolderRemove()

	 MsgBox	("All	the	items	in	the	folder	are	deleted	as	well.")

End	Sub

	 	



FolderSwitch	Event
Occurs	when	the	explorer	goes	to	a	new	folder,	either	as	a	result	of	user	action	or
through	program	code.	This	event	is	not	available	in	Microsoft	Visual	Basic
Scripting	Edition	(VBScript).

Sub	object_FolderSwitch()

object				An	expression	that	evaluates	to	an	Explorer	object.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	displays	the	Inbox	folder	in	"Messages"	view	whenever	the	user
switches	to	the	Inbox	folder.	The	sample	code	must	be	placed	in	a	class	module,
and	the	Initialize_handler	routine	must	be	called	before	the	event	procedure
can	be	called	by	Microsoft	Outlook.

Dim	myOlApp	As	New	Outlook.Application

Public	WithEvents	myOlExp	As	Outlook.Explorer

Public	Sub	Initialize_handler()

				Set	myOlExp	=	myOlApp.ActiveExplorer

End	Sub

Private	Sub	myOlExp_FolderSwitch()

				Select	Case	myOlExp.CurrentFolder.Name

								Case	"Inbox"

												myOlExp.CurrentView	=	"Messages"

								Case	Else

				End	Select

End	Sub

	 	



Show	All



Forward	Event
Occurs	when	the	user	selects	the	Forward	action	for	a	Microsoft	Outlook	item.

Sub	object_Forward(ByVal	Forward	As	Object,	Cancel	As	Boolean)

object				An	expression	that	evaluates	to	one	of	the	objects	in	the	Applies	To	list.
In	Microsoft	Visual	Basic	Scripting	Edition	(VBScript),	use	the	word	Item.

Forward	The	new	item	being	forwarded.

Cancel	Optional	(not	used	in	VBScript).	False	when	the	event	occurs.	If	the
event	procedure	sets	this	argument	to	True,	the	forward	operation	is	not
completed	and	the	new	item	is	not	displayed.



Remarks

In	VBScript,	if	you	set	the	return	value	of	this	function	to	False,	the	forward
action	is	not	completed	and	the	new	item	is	not	displayed.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example	uses
the	Forward	event	to	disable	forwarding	on	an	item	that	has	the	subject	"Do	not
forward"	by	setting	the	Cancel	argument	to	True	and	it	also	displays	a	message
that	the	item	may	not	be	forwarded.	The	sample	code	must	be	placed	in	a	class
module	such	as	ThisOutlookSession,	and	the	Initialize_Handler()	routine
should	be	called	before	the	event	procedure	can	be	called	by	Microsoft	Outlook.
A	e-mail	item	must	be	open	when	you	run	Initialize_Handler().

Public	WithEvents	myItem	As	Outlook.MailItem

Public	Sub	Initialize_Handler()

	 Set	myItem	=	Application.ActiveInspector.CurrentItem

End	Sub

Private	Sub	myItem_Forward(ByVal	Forward	As	Object,	Cancel	As	Boolean)

	 If	myItem.Subject	=	"Do	not	forward"	Then

	 	 MsgBox	"You	may	not	forward	this	message!"

	 	 Cancel	=	True

	 End	If

End	Sub

	 	



Show	All



GroupAdd	Event
Occurs	when	a	new	group	has	been	added	to	the	Shortcuts	pane.	This	event	is
not	available	in	Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_GroupAdd(ByVal	NewGroup	As	OutlookBarGroup)

object				An	expression	that	evaluates	to	an	OutlookBarGroups	object.

NewGroup				Required.	The	OutlookBarGroup	that	was	added.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example	adds
a	shortcut	to	the	Calendar	whenever	a	group	is	created.	The	sample	code	must
be	placed	in	a	class	module,	and	the	Initialize_handler	routine	must	be	called
before	the	event	procedure	can	be	called	by	Microsoft	Outlook.

Dim	myOlApp	As	New	Outlook.Application

Dim	WithEvents	myOlGroups	As	Outlook.OutlookBarGroups

Dim	myOlBar	As	Outlook.OutlookBarPane

Sub	Initialize_handler()

				Set	myOlBar	=	myOlApp.ActiveExplorer.Panes.Item("OutlookBar")

				Set	myOlGroups	=	myOlBar.Contents.Groups

End	Sub

Private	Sub	myOlGroups_GroupAdd(ByVal	NewGroup	As	Outlook.OutlookBarGroup)

				Dim	myFolder	As	Outlook.MAPIFolder

				Set	myFolder	=	myOlApp.GetNamespace("MAPI").GetDefaultFolder(olFolderCalendar)

				NewGroup.Shortcuts.Add	myFolder,	"Calendar"

End	Sub

	 	



ItemAdd	Event
Occurs	when	one	or	more	items	are	added	to	the	specified	collection.	This	event
does	not	run	when	a	large	number	of	items	are	added	to	the	folder	at	once.	This
event	is	not	available	in	Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_ItemAdd(ByVal	Item	As	Object)

object				An	expression	that	evaluates	to	one	of	the	objects	in	the	Applies	To	list.

Item				Required.	The	item	that	was	added.



Example

In	this	Visual	Basic	for	Applications	(VBA)	example,	when	a	new	contact	is
added	to	the	Contacts	folder,	the	contact	item	is	attached	to	an	e-mail	message
and	sent	to	a	distribution	list	named	"Sales	Team".	The	sample	code	must	be
placed	in	a	class	module,	and	the	Initialize_handler	routine	must	be	called
before	the	event	procedure	can	be	called	by	Microsoft	Outlook.

Dim	myOlApp	As	New	Outlook.Application

Public	WithEvents	myOlItems	As	Outlook.Items

Public	Sub	Initialize_handler()

				Set	myOlItems	=	myOlApp.GetNamespace("MAPI").GetDefaultFolder(olFolderContacts).Items

End	Sub

Private	Sub	myOlItems_ItemAdd(ByVal	Item	As	Object)

				Dim	myOlMItem	As	Outlook.MailItem

				Dim	myOlAtts	As	Outlook.Attachments

				Set	myOlMItem	=	myOlApp.CreateItem(olMailItem)

				myOlMItem.Save

				Set	myOlAtts	=	myOlMItem.Attachments

				'	Add	new	contact	to	attachments	in	mail	message

				myOlAtts.Add	Item,	olByValue

				myOlMItem.To	=	"Sales	Team"

				myOlMItem.Subject	=	"New	contact"

				myOlMItem.Send

End	Sub

	 	



ItemChange	Event
Occurs	when	an	item	in	the	specified	collection	is	changed.	This	event	is	not
available	in	Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_ItemChange(ByVal	Item	As	Object)

object				An	expression	that	evaluates	to	one	of	the	objects	in	the	Applies	To	list.

Item				Required.	The	item	that	was	changed.



Example

This	example	uses	the	Start	property	of	the	AppointmentItem	object	to
determine	if	the	appointment	starts	after	normal	business	hours.	If	it	does,	and	if
the	Sensitivity	property	of	the	AppointmentItem	object	is	not	already	set	to
olPrivate,	the	example	offers	to	mark	the	appointment	as	private.

Dim	myOlApp	As	New	Outlook.Application

Public	WithEvents	myOlItems	As	Outlook.Items

Public	Sub	Initialize_handler()

				Set	myOlItems	=	myOlApp.GetNamespace("MAPI").GetDefaultFolder(olFolderCalendar).Items

End	Sub

Private	Sub	myOlItems_ItemChange(ByVal	Item	As	Object)

Dim	prompt	As	String

				If	VBA.Format(Item.Start,	"h")	>=	"17"	And	Item.Sensitivity	<>	olPrivate	Then

								prompt	=	"Appointment	occurs	after	hours.	Mark	it	private?"

								If	MsgBox(prompt,	vbYesNo	+	vbQuestion)	=	vbYes	Then

												Item.Sensitivity	=	olPrivate

												Item.Display

								End	If

				End	If

End	Sub

	 	



ItemRemove	Event
Occurs	when	an	item	is	deleted	from	the	specified	collection.	This	event	does
not	run	when	the	last	item	in	a	Personal	Folders	file	(.pst)	is	deleted,	or	if	16	or
more	items	are	deleted	at	once	from	a	.pst	file,	Microsoft	Exchange	mailbox,	or
an	Exchange	public	folder.	This	event	is	not	available	in	Microsoft	Visual	Basic
Scripting	Edition	(VBScript).

Sub	object_ItemRemove()

object				An	expression	that	evaluates	to	one	of	the	objects	in	the	Applies	To	list.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
optionally	sends	a	notification	message	to	a	workgroup	when	the	user	removes	a
contact	from	the	default	Contacts	folder.	The	sample	code	must	be	placed	in	a
class	module,	and	the	Initialize_handler	routine	must	be	called	before	the
event	procedure	can	be	called	by	Microsoft	Outlook.

Dim	myOlApp	As	New	Outlook.Application

Public	WithEvents	myOlItems	As	Outlook.Items

Public	Sub	Initialize_handler()

				Set	myOlItems	=	myOlApp.GetNamespace("MAPI").GetDefaultFolder(olFolderContacts).Items

End	Sub

Private	Sub	myOlItems_ItemRemove()

				Dim	myOlMItem	As	Outlook.MailItem

				If	MsgBox("Do	you	want	to	notify	the	Sales	Team?",	vbYesNo	+	vbQuestion)	=	vbYes	Then

								Set	myOlMItem	=	myOlApp.CreateItem(olMailItem)

								myOlMItem.To	=	"Sales	Team"

								myOlMItem.Subject	=	"Remove	Contact"

								myOlMItem.Body	=	"Remove	the	following	contact	from	your	list:"

								myOlMItem.Display

				End	If

End	Sub

	 	



ItemSend	Event
Occurs	whenever	an	item	is	sent,	either	by	the	user	through	an	Inspector	(before
the	inspector	is	closed,	but	after	the	user	clicks	the	Send	button)	or	when	the
Send	method	is	used	in	a	program.	This	event	is	not	available	in	Microsoft
Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_ItemSend(ByVal	Item	As	Object,	Cancel	As	Boolean)

object				An	expression	that	evaluates	to	an	Application	object.

Item				Required.	The	item	being	sent.

Cancel					Optional.	False	when	the	event	occurs.	If	the	event	procedure	sets	this
argument	to	True,	the	send	action	is	not	completed	and	the	inspector	is	left	open.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	shows	how	to	cancel	the	ItemSend	event	in	response	to	user	input.	The
sample	code	must	be	placed	in	a	class	module,	and	the	Initialize_handler
routine	must	be	called	before	the	event	procedure	can	be	called	by	Microsoft
Outlook.

Public	WithEvents	myOlApp	As	Outlook.Application

Public	Sub	Initialize_handler()

	 Set	myOlApp	=	CreateObject("Outlook.Application")

End	Sub

Private	Sub	myOlApp_ItemSend(ByVal	Item	As	Object,	Cancel	As	Boolean)

	 Dim	prompt	As	String

	 prompt	=	"Are	you	sure	you	want	to	send	"	&	Item.Subject	&	"?"

	 If	MsgBox(prompt,	vbYesNo	+	vbQuestion,	"Sample")	=	vbNo	Then

	 	 Cancel	=	True

	 End	If

End	Sub

	 	



NewExplorer	Event
Occurs	whenever	a	new	explorer	window	is	opened,	either	as	a	result	of	user
action	or	through	program	code.	This	event	is	not	available	in	Microsoft	Visual
Basic	Scripting	Edition	(VBScript).

Sub	object_NewExplorer(ByVal	Explorer	As	Explorer)

object				An	expression	that	evaluates	to	an	Explorers	collection	object.

Explorer	Required.	The	explorer	that	was	opened.



Remarks

The	event	occurs	after	the	new	Explorer	object	is	created	but	before	the	explorer
window	appears.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
minimizes	the	currently	active	explorer	window	when	a	new	explorer	is	about	to
appear.	The	sample	code	must	be	placed	in	a	class	module,	and	the
Initialize_handler	routine	must	be	called	before	the	event	procedure	can	be
called	by	Microsoft	Outlook.

Dim	myOlApp	As	New	Outlook.Application

Public	WithEvents	myOlExplorers	As	Outlook.Explorers

Public	Sub	Initialize_handler()

				Set	myOlExplorers	=	myOlApp.Explorers

End	Sub

Private	Sub	myOlExplorers_NewExplorer(ByVal	Explorer	As	Outlook.Explorer)

				If	TypeName(myOlApp.ActiveExplorer)	<>	"Nothing"	Then

								myOlApp.ActiveExplorer.WindowState	=	olMinimized

				End	If

End	Sub

	 	



NewInspector	Event
Occurs	whenever	a	new	inspector	window	is	opened,	either	as	a	result	of	user
action	or	through	program	code.	This	event	is	not	available	in	Microsoft	Visual
Basic	Scripting	Edition	(VBScript).

Sub	object_NewInspector(ByVal	Inspector	As	Inspector)

object				An	expression	that	evaluates	to	an	Inspectors	collection	object.

Inspector				Required.	The	inspector	that	was	opened.



Remarks

The	event	occurs	after	the	new	Inspector	object	is	created	but	before	the
inspector	window	appears.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
displays	the	Standard	and	Formatting	toolbars	of	an	inspector	when	it	is
opened.	The	sample	code	must	be	placed	in	a	class	module,	and	the
Initialize_handler	routine	must	be	called	before	the	event	procedure	can	be
called	by	Microsoft	Outlook.

Dim	myOlApp	As	New	Outlook.Application

Public	WithEvents	myOlInspectors	As	Outlook.Inspectors

Public	Sub	Initialize_handler()

	 Set	myOlInspectors	=	myOlApp.Inspectors

End	Sub

Private	Sub	myOlInspectors_NewInspector(ByVal	Inspector	As	outlook.Inspector)

	 Inspector.CommandBars.Item("Standard").Visible	=	True

	 Inspector.CommandBars.Item("Formatting").Visible	=	True

End	Sub

	 	



NewMail	Event
Occurs	when	one	or	more	new	e-mail	messages	are	received	in	the	Inbox.	This
event	is	not	available	in	Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_NewMail()

object				An	expression	that	evaluates	to	an	Application	object.



Remarks

The	NewMail	event	is	useful	for	scenarios	in	which	you	want	to	be	notified
when	a	new	e-mail	message	arrives.	If	you	want	to	process	items	that	arrive	in
the	Inbox,	consider	using	the	ItemAdd	event	on	the	collection	of	items	in	the
Inbox.	The	ItemAdd	event	passes	a	reference	to	each	item	that	is	added	to	a
folder.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
displays	the	Inbox	folder	when	a	new	e-mail	message	arrives.	The	sample	code
must	be	placed	in	a	class	module,	and	the	Initialize_handler	routine	must	be
called	before	the	event	procedure	can	be	called	by	Microsoft	Outlook.

Public	WithEvents	myOlApp	As	Outlook.Application

Sub	Initialize_handler()

				Set	myOlApp	=	CreateObject("Outlook.Application")

End	Sub

Private	Sub	myOlApp_NewMail()

				Dim	myExplorers	As	Outlook.Explorers

				Dim	myFolder	As	Outlook.MAPIFolder

				Dim	x	As	Integer

				Set	myExplorers	=	myOlApp.Explorers

				Set	myFolder	=	myOlApp.GetNamespace("MAPI").GetDefaultFolder(olFolderInbox)

				If	myExplorers.Count	<>	0	Then

								For	x	=	1	To	myExplorers.Count

												On	Error	GoTo	skipif

												If	myExplorers.Item(x).CurrentFolder.Name	=	"Inbox"	Then

																myExplorers.Item(x).Display

																myExplorers.Item(x).Activate

																Exit	Sub

												End	If

skipif:

								Next	x

					End	If

					On	Error	GoTo	0

					myFolder.Display

End	Sub

	 	



NewMailEx	Event
Occurs	when	one	or	more	new	items	are	received	in	the	Inbox.	This	event
passes	a	list	of	entry	IDs	of	all	the	items	received	in	the	Inbox	since	the	last	time
the	event	was	fired.	This	event	is	not	available	in	Microsoft	Visual	Basic
Scripting	Edition	(VBScript).

Sub	object_NewMailEx(EntryIDs	as	String)

object				An	expression	that	evaluates	to	an	Application	object.

EntryIDs				A	string	containing	entry	IDs	of	all	items	received	in	the	Inbox	since
the	last	time	the	event	was	fired.	The	entry	IDs	are	comma-delimited.	The
maximum	number	of	entry	IDs	in	the	string	are	limited	only	by	the	available
memory	on	the	computer.

The	NewMailEx	event	will	fire	for	all	item	types	received	in	the	Inbox	such	as
e-mail	messages,	meeting	requests,	and	task	requests.	The	behavior	will	be	the
same	as	the	NewMail	event.

The	NewMailEx	event	will	only	fire	for	mailboxes	in	Microsoft	Outlook	that
provide	notification	for	received	message	such	as	Microsoft	Exchange	Server.
Also,	the	event	will	fire	only	if	Outlook	is	running.	In	other	words,	it	will	not
fire	for	the	new	items	that	are	received	in	the	Inbox	when	Outlook	was	not	open.
Developers	who	want	to	access	these	items	for	customers	running	Outlook	on	an
Exchange	server	e-mail	account	need	to	implement	their	code	on	the	server.
However,	the	NewMailEx	event	will	fire	against	Cached	Exchange	Mode	in	all
settings:	Download	Full	Items,	Download	Headers,	and	Download	Headers
and	then	Full	Items.



Example

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example
demonstrates	how	the	NewMailEx	event	returns	the	entry	IDs.	To	run	the
example,	run	the	Initialize_Handler	routine.	The	event	will	fire	when	one	or
more	messages	are	received	in	the	Inbox.

Public	WithEvents	outApp	As	Outlook.Application

Sub	Intialize_Handler()

				Set	outApp	=	Application

End	Sub

Private	Sub	outApp_NewMailEx(ByVal	EntryIDCollection	As	String)

				Dim	mai	As	Object

				Dim	intInitial	As	Integer

				Dim	intFinal	As	Integer

				Dim	strEntryId	As	String

				Dim	intLength	As	Integer

				

				intInitial	=	1

				intLength	=	Len(EntryIDCollection)

				MsgBox	"Collection	of	EntryIds:	"	&	EntryIDCollection

				intFinal	=	InStr(intInitial,	EntryIDCollection,	",")

				Do	While	intFinal	<>	0

								strEntryId	=	Strings.Mid(EntryIDCollection,	intInitial,	(intFinal	-	intInitial))

								MsgBox	"EntryId:	"	&	strEntryId

								Set	mai	=	Application.Session.GetItemFromID(strEntryId)

								MsgBox	mai.Subject

								intInitial	=	intFinal	+	1

								intFinal	=	InStr(intInitial,	EntryIDCollection,	",")

				Loop

				strEntryId	=	Strings.Mid(EntryIDCollection,	intInitial,	(intLength	-	intInitial)	+	1)

				MsgBox	strEntryId

				Set	mai	=	Application.Session.GetItemFromID(strEntryId)

				MsgBox	mai.Subject

End	Sub

	 	 	





OnError	Event
Occurs	when	Microsoft	Outlook	encounters	an	error	while	synchronizing	a
user’s	folders	using	the	specified	Send\Receive	group.	This	event	is	not	available
in	Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_OnError(ByVal	Code	As	Long,	ByVal	Description	As	String)

object				An	expression	that	evaluates	to	a	SyncObject	object.

Code				A	unique	value	that	identifies	the	error.

Description				Required.	A	textual	description	of	the	error.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
displays	a	message	box	describing	the	synchronization	error	when	an	error
occurs	during	synchronization.	The	sample	code	must	be	placed	in	a	class
module,	and	the	Initialize_handler	routine	must	be	called	before	the	event
procedure	can	be	called	by	Microsoft	Outlook.

Dim	myOlApp	As	New	Outlook.Application

Public	WithEvents	mySync	As	Outlook.SyncObject

Sub	Initialize_handler()

				Set	mySync	=	myOlApp.Session.SyncObjects.Item(1)

				mySync.Start

				mySync.Stop

End	Sub

Private	Sub	mySync_OnError(ByVal	Code	As	Long,	ByVal	Description	As	String)

				MsgBox	"Unexpected	sync	error"	&	Code	&	":	"	&	Description

End	Sub

	 	



Show	All



Open	Event
Occurs	when	a	Microsoft	Outlook	item	is	being	opened	in	an	Inspector.	When
this	event	occurs,	the	Inspector	object	is	initialized	but	not	yet	displayed.	The
Open	event	differs	from	the	Read	event	in	that	Read	occurs	whenever	the	user
selects	the	item	in	a	view	that	supports	in-cell	editing	as	well	as	when	the	item	is
being	opened	in	an	inspector.

Sub	object_Open(Cancel	As	Boolean)

object				An	expression	that	evaluates	to	one	of	the	objects	in	the	Applies	To	list.
In	VBScript,	use	the	word	Item.

Cancel	Optional	(not	used	in	VBScript).	False	when	the	event	occurs.	If	the
event	procedure	sets	this	argument	to	True,	the	open	operation	is	not	completed
and	the	inspector	is	not	displayed.



Remarks

In	Microsoft	Visual	Basic	Scripting	Edition	(VBScript),	if	you	set	the	return
value	of	this	function	to	False,	the	open	operation	is	not	completed	and	the
inspector	is	not	displayed.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Open	event	to
display	the	"All	Fields"	page	every	time	the	item	is	opened.

Public	WithEvents	myItem	As	Outlook.MailItem

Sub	Initialize_handler()

	 Set	myItem	=	Application.Session.GetDefaultFolder(olFolderInbox).Items(1)

	 myItem.Display

End	Sub

Private	Sub	myItem_Open(Cancel	As	Boolean)

	 myItem.GetInspector.SetCurrentFormPage	"All	Fields"

End	Sub

	 	

This	Visual	Basic	for	Applications	example	uses	the	Unread	property	to	detect
whether	the	item	has	been	previously	read.	If	it	has,	then	it	asks	if	the	user	wants
to	open	it.	If	the	user	answers	No,	the	return	value	is	set	to	False	to	prevent	the
item	from	opening.

Public	WithEvents	myItem	As	Outlook.MailItem

Sub	Initialize_handler()

	 Set	myItem	=	Application.Session.GetDefaultFolder(olFolderInbox).Items(1)

	 myItem.Display

End	Sub

Private	Sub	myItem_Open(Cancel	As	Boolean)

	 Dim	mymsg	As	String

	 If	myItem.UnRead	=	False	Then

	 	 mymsg	=	"You	have	already	read	this	message.	Do	you	want	to	open	this	message	again?"

	 	 If	MsgBox(mymsg,	4)	=	6	Then

	 	 	 Cancel	=	False

	 	 Else

			 	 	 Cancel	=	True

	 	 End	If

	 End	If

End	Sub

	 	





OptionsPagesAdd	Event
Occurs	whenever	the	Options	dialog	box	(on	the	Tools	menu)	or	a	folder
Properties	dialog	box	is	opened.	This	event	is	not	available	in	Microsoft	Visual
Basic	Scripting	Edition	(VBScript).

Sub	object_OptionsPagesAdd(ByVal	Pages	As	PropertyPages,	ByVal	Folder
As	MAPIFolder)

object				An	expression	that	evaluates	to	an	Application	or	a	NameSpace	object.

Pages	Required.	The	collection	of	property	pages	that	have	been	added	to	the
dialog	box.	This	collection	includes	only	custom	property	pages.	It	does	not
include	standard	Microsoft	Outlook	property	pages.

Folder				This	argument	is	only	used	with	the	MAPIFolder	object.	Required.
The	MAPIFolder	object	for	which	the	Properties	dialog	box	is	being	opened.



Remarks

Your	program	handles	this	event	to	add	a	custom	property	page.	If	object	is	an
Application	object,	the	property	page	will	be	added	to	the	Options	dialog	box.
If	object	is	a	NameSpace	object,	the	property	page	will	be	added	to	Properties
dialog	box	of	the	specified	folder.	When	the	event	fires,	the	PropertyPages
collection	object	identified	by	Pages	contains	the	property	pages	that	have	been
added	prior	to	the	event	handler	being	called.	To	add	your	property	page	to	the
collection,	use	the	Add	method	of	the	PropertyPages	collection	before	exiting
the	event	handler.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example	adds
a	new	property	page	to	the	Outlook	Options	dialog	box.	The	sample	code	must
be	placed	in	a	class	module	of	a	Component	Object	Model	(COM)	add-in.

Implements	IDTExtensibility2

Private	WithEvents	OutlApp	As	Outlook.Application

Private	Sub	IDTExtensibility2_OnConnection(ByVal	Application	As	Object,	ByVal	ConnectMode	As	AddInDesignerObjects.ext_ConnectMode,	ByVal	AddInInst	As	Object,	custom()	As	Variant)

				Set	OutlApp	=	Application

End	Sub

Private	Sub	OutlApp_OptionsPagesAdd(ByVal	Pages	As	Outlook.PropertyPages)

		Pages.Add	"PPE.SimplePage",	"Simple	Page"	

		'PPE.SimplePage	is	a	ProgID	of	the	registered	ActiveX	Control	-	the	property	page	that	is	to	be	displayed	in	the	COM	add-in

End	Sub

	 	



Progress	Event
Occurs	periodically	while	Microsoft	Outlook	is	synchronizing	a	user’s	folders
using	the	specified	Send\Receive	group.	This	event	is	not	available	in	Microsoft
Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_Progress(ByVal	State	As	OlSyncState,	ByVal	Description	As
String,	ByVal	Value	As	Long,	ByVal	Max	As	Long)

object				An	expression	that	evaluates	to	a	SyncObject	object.

State				Required.	A	value	that	identifies	the	current	state	of	the	synchronization
process.	Can	be	either	of	the	following	OlSyncState	constants:	olSyncStarted
or	olSyncStopped.

Description				Required.	A	textual	description	of	the	current	state	of	the
synchronization	process.

Value				Required.	Specifies	the	current	value	of	the	synchronization	process
(such	as	the	number	of	items	synchronized).

Max	Required.	The	maximum	that	Value			can	reach.	The	ratio	of	Value			to
Max			represents	the	percent	complete	of	the	synchronization	process.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
shows	the	progress	of	synchronization.	The	sample	code	must	be	placed	in	a
class	module,	and	the	Initialize_handler	routine	must	be	called	before	the
event	procedure	can	be	called	by	Microsoft	Outlook.

Dim	myOlApp	As	New	Outlook.Application

Public	WithEvents	mySync	As	Outlook.SyncObject

Sub	Initialize_handler()

	Set	mySync	=	myOlApp.Session.SyncObjects.Item(1)

	mySync.Start

End	Sub

Private	Sub	mySync_Progress(ByVal	State	As	Outlook.OlSyncState,	ByVal	Description	As	String,	ByVal	Value	As	Long,	ByVal	Max	As	Long)

	If	Not	Description	=	""	Then

		MsgBox	Description

	End	If

End	Sub

	 	



Show	All



PropertyChange	Event
Occurs	when	a	standard	property	(for	example,	Subject	or	To)	of	a	Microsoft
Outlook	item	is	changed.	The	property	name	is	passed	to	the	event	so	that	you
can	determine	which	property	was	changed.

Sub	object_PropertyChange(ByVal	Name	As	String)

object				One	of	the	objects	in	the	Applies	To	list.	In	Microsoft	Visual	Basic
Scripting	Edition	(VBScript),	use	the	word	Item.

Name				Required.	The	name	of	the	property	that	was	changed.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	PropertyChange
event	to	prevent	someone	from	disabling	a	reminder	on	an	item.

Public	WithEvents	myItem	As	Outlook.AppointmentItem

Sub	Initialize_handler()

	 Set	myItem	=	Application.GetNamespace("MAPI").GetDefaultFolder(olFolderCalendar).Items("Status	Meeting")

End	Sub

Private	Sub	myItem_PropertyChange(ByVal	Name	As	String)

	 Select	Case	Name

	 Case	"ReminderSet"

	 	 MsgBox	"You	may	not	remove	a	reminder	on	this	item."

	 	 myItem.ReminderSet	=	True

	 Case	Else

	 End	Select

End	Sub

	 	



Quit	Event
Occurs	when	Microsoft	Outlook	begins	to	close.	This	event	is	not	available	in
Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_Quit()

object				An	expression	that	evaluates	to	an	Application	object.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
displays	a	farewell	message	when	Microsoft	Outlook	exits.	The	sample	code
must	be	placed	in	a	class	module.

Private	Sub	Application_Quit()

				MsgBox	"Goodbye,	"	&	Application.GetNamespace("MAPI").CurrentUser

End	Sub

	 	



Show	All



Read	Event
Occurs	when	an	existing	Microsoft	Outlook	item	is	opened	for	editing	by	the
user.	The	Read	event	differs	from	the	Open	event	in	that	Read	occurs	whenever
the	user	selects	the	item	in	a	view	that	supports	in-cell	editing	as	well	as	when
the	item	is	being	opened	in	an	Inspector.

Sub	object_Read()

object	An	object	that	evaluates	to	one	of	the	objects	in	the	Applies	To	list.	In
Microsoft	Visual	Basic	Scripting	Edition	(VBScript),	use	the	word	Item.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Read	event	to
increment	a	counter	that	tracks	how	often	an	item	is	read.

Public	WithEvents	myItem	As	Outlook.MailItem

Sub	Initialize_handler()

	 Set	myItem	=	Application.ActiveExplorer.CurrentFolder.Items(1)

	 myItem.Display

End	Sub

Sub	myItem_Read()

				Dim	myProperty	As	Outlook.UserProperty

				Set	myProperty	=	myItem.UserProperties("ReadCount")

				If	(myProperty	Is	Nothing)	Then

								Set	myProperty	=	myItem.UserProperties.Add("ReadCount",	olNumber)

				End	If

				myProperty.Value	=	myProperty.Value	+	2

				myItem.Save

End	Sub

	 	



Show	All



Reminder	Event
Occurs	immediately	before	a	reminder	is	displayed.

Sub	object_Reminder(ByVal	Item	As	Object)

object				An	expression	that	evaluates	to	an	Application	object.

Item							The	AppointmentItem,	MailItem,	ContactItem,	or	TaskItem
associated	with	the	reminder.	If	the	appointment	associated	with	the	reminder	is
a	recurring	appointment,	Item				is	the	specific	occurrence	of	the	appointment
that	displayed	the	reminder,	not	the	master	appointment.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
displays	the	item	that	fired	the	Reminder	event	when	the	event	fires.	The
sample	code	must	be	placed	in	a	class	module,	and	the	Initialize_handler
routine	must	be	called	before	the	event	procedure	can	be	called	by	Microsoft
Outlook.

Dim	WithEvents	myolapp	As	Outlook.Application

Sub	Initialize_handler()

	 Set	myolapp	=	CreateObject("Outlook.Application")

End	Sub

Private	Sub	myolapp_Reminder(ByVal	Item	As	Object)

	 Item.Display

End	Sub

	 	



ReminderAdd	Event
Occurs	after	a	reminder	is	added.

Private	Sub	expression_ReminderAdd(ByVal	ReminderObject	As	Reminder)

expression				A	variable	which	references	an	object	of	type	Reminders	declared
with	events	in	a	class	module.

ReminderObject	Required.	The	Reminder	object	added	to	the	collection.



Remarks

A	reminder	is	not	actually	created	until	the	associated	Microsoft	Outlook	item
has	been	saved.	Therefore,	this	event	will	not	occur	until	the	associated	item
object	has	been	saved.



Example

The	following	example	displays	the	date	of	the	next	reminder	when	a	reminder
is	added	to	the	collection.

Public	WithEvents	objReminders	As	Outlook.Reminders

Sub	Initialize_handler()

	 Set	objReminders	=	Application.Reminders

End	Sub

Private	Sub	objReminders_ReminderAdd(ByVal	ReminderObject	As	Reminder)

	 'Occurs	when	a	Reminder	object	is	added	to	the	collection	using	the	user	interface	or	object	model

	 MsgBox	"A	new	reminder	is	added	that	will	fire	at:	"	&	_

												ReminderObject.NextReminderDate

End	Sub

	 	



ReminderChange	Event
Occurs	after	a	reminder	has	been	modified.

Private	Sub	expression_ReminderChange(ByVal	ReminderObject	As
Reminder)

expression				A	variable	which	references	an	object	of	type	Reminders	declared
with	events	in	a	class	module.

ReminderObject					Required.	The	Reminder	object	that	has	been	modified.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	prompts	the	user	with	a	message	every	time	a	reminder	is	modified.

Public	WithEvents	objReminders	As	Outlook.Reminders

Sub	Initialize_handler()

	 Set	objReminders	=	Application.Reminders

End	Sub

Private	Sub	objReminders_ReminderChange(ByVal	ReminderObject	As	Reminder)

	 'Occurs	when	reminder	is	changed

	 MsgBox	"The	reminder	"	&	ReminderObject.Caption	&	"	has	changed."

End	Sub

	 	



ReminderFire	Event
Occurs	before	the	reminder	is	executed.

Private	Sub	expression_ReminderFire(ByVal	ReminderObject	As	Reminder)

expression				A	variable	which	references	an	object	of	type	Reminders	declared
with	events	in	a	class	module.

ReminderObject					Required.	The	Reminder	object	that	has	been	executed.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	displays	the	item	that	fired	the	Reminder	event	every	time	a	reminder
is	executed.

Public	WithEvents	objReminders	As	Outlook.Reminders

Sub	Initialize_handler()

	 Set	objReminders	=	Application.Reminders

End	Sub

Private	Sub	objReminders_ReminderFire(ByVal	ReminderObject	As	Reminder)

	 'Opens	the	item	when	a	reminder	executes

	 ReminderObject.Item.Display

End	Sub

	 	



ReminderRemove	Event
Occurs	when	a	Reminder	object	has	been	removed	from	the	collection.

Private	Sub	expression_ReminderRemove()

expression				A	variable	which	references	an	object	of	type	Reminders	declared
with	events	in	a	class	module.



Remarks

A	reminder	can	be	removed	from	the	Reminders	collection	by	any	of	the
following	means:

The	Reminders	collection's	Remove	method.
The	Reminder	object's	Dismiss	method.
When	the	user	clicks	the	Dismiss	button.
When	a	user	turns	off	a	meeting	reminder	from	within	the	associated	item.
When	a	user	deletes	an	item	that	contains	a	reminder.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	displays	a	message	to	the	user	when	a	Reminder	object	is	removed
from	the	collection.

Public	WithEvents	objReminders	As	Outlook.Reminders

Sub	Initialize_handler()

				Set	objReminders	=	Application.Reminders

End	Sub

Private	Sub	objReminders_ReminderRemove()

'Occurs	when	a	reminder	is	removed	from	the	collection

'or	the	user	clicks	Dismiss

				MsgBox	"A	reminder	has	been	removed	from	the	collection."

End	Sub

	 	



Show	All



Reply	Event
Occurs	when	the	user	selects	the	Reply	action	for	a	Microsoft	Outlook	item.

Sub	object_Reply(ByVal	Response	As	Object,	Cancel	As	Boolean)

object				An	expression	that	evaluates	to	one	of	the	objects	in	the	Applies	To	list.
In	VBScript,	use	the	word	Item.

Response				The	new	item	being	sent	in	response	to	the	original	message.

Cancel				Optional	(not	used	in	VBScript).	False	when	the	event	occurs.	If	the
event	procedure	sets	this	argument	to	True,	the	reply	operation	is	not	completed
and	the	new	item	is	not	displayed.



Remarks

In	Microsoft	Visual	Basic	Scripting	Edition	(VBScript),	if	you	set	the	return
value	of	this	function	to	False,	the	reply	action	is	not	completed	and	the	new
item	is	not	displayed.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Reply	event	and
sets	the	Sent	Items	folder	for	the	reply	item	to	the	folder	in	which	the	original
item	resides.	To	use	this	example,	open	an	existing	mailitem,	run	the	Initialize
Handler()	procedure,	then	reply	to	the	open	item.

Public	WithEvents	myItem	As	MailItem

Sub	Initialize_Handler()

	 Set	myItem	=	Application.ActiveInspector.CurrentItem

End	Sub

Private	Sub	myItem_Reply(ByVal	Response	As	Object,	Cancel	As	Boolean)

	 Set	Response.SaveSentMessageFolder	=	myItem.Parent

End	Sub

	 	



Show	All



ReplyAll	Event
Occurs	when	the	user	selects	the	ReplyAll	action	for	a	Microsoft	Outlook	item.

Sub	object_ReplyAll(ByVal	Response	As	Object,	Cancel	As	Boolean)

object				An	expression	that	evaluates	to	one	of	the	objects	in	the	Applies	To	list.

Response				The	new	item	being	sent	in	response	to	the	original	message.

Cancel				Optional.	False	when	the	event	occurs.	If	the	event	procedure	sets	this
argument	to	True,	the	reply	all	operation	is	not	completed	and	the	new	item	is
not	displayed.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	ReplyAll	event	and
reminds	the	user	that	proceeding	will	reply	to	all	original	recipients	of	an	item
and,	depending	on	the	user's	response,	either	allows	the	action	to	continue	or
stops	it.	To	use	this	example,	open	an	existing	mail	item,	run	the	Initialize
Handler()	procedure,	then	reply	to	the	item.

Public	WithEvents	myItem	As	MailItem

Sub	Initialize_Handler()

	 Set	myItem	=	Application.ActiveInspector.CurrentItem

End	Sub

Private	Sub	myItem_ReplyAll(ByVal	Response	As	Object,	Cancel	As	Boolean)

	 Dim	mymsg	As	String

	 Dim	myResult	As	Integer

	 mymsg	=	"Do	you	really	want	to	reply	to	all	original	recipients?"

	 myResult	=	MsgBox(mymsg,	vbYesNo,	"Flame	Protector")

	 If	myResult	=	vbNo	Then

	 	 Cancel	=	True

	 End	If

End	Sub

	 	



SelectionChange	Event
Occurs	when	the	user	switches	to	a	different	item	in	a	folder	using	the	user
interface	(UI)	or	programmatically.	This	event	also	occurs	when	the	user,	either
programmatically	or	using	the	UI,	clicks	or	switches	to	a	different	folder	that
contains	items	as	Microsoft	Outlook	automatically	selects	the	first	item	in	that
folder.	However,	this	event	does	not	occur	if	the	folder	is	a	file-system	folder	or
if	Outlook	Today	or	any	folder	with	a	current	Web	view	is	displayed.	This	event
is	not	available	in	Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_SelectionChange()

object				An	expression	that	evaluates	to	an	Explorer	object.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
displays	the	number	of	items	selected	in	the	active	explorer	window	whenever
the	selection	changes.	The	sample	code	must	be	placed	in	a	class	module,	and
the	Initialize_handler	routine	must	be	called	before	the	event	procedure	can
be	called	by	Microsoft	Outlook.

Dim	myOlApp	As	New	Outlook.Application

Public	WithEvents	myOlExp	As	Outlook.Explorer

Public	Sub	Initialize_handler()

				Set	myOlExp	=	myOlApp.ActiveExplorer

End	Sub

Private	Sub	myOlExp_SelectionChange()

				MsgBox	myOlExp.Selection.Count	&	"	items	selected."

End	Sub

	 	



Show	All



Send	Event
Occurs	when	the	user	selects	the	Send	action	for	a	Microsoft	Outlook	item.

Sub	object_Send(Cancel	As	Boolean)

object				An	expression	that	evaluates	to	one	of	the	objects	in	the	Applies	To	list.
In	VBScript,	use	the	word	Item.

Cancel	Optional	(not	used	in	VBScript).	False	when	the	event	occurs.	If	the
event	procedure	sets	this	argument	to	True,	the	send	operation	is	not	completed
and	the	inspector	is	left	open.



Remarks

In	Microsoft	Visual	Basic	Scripting	Edition	(VBScript),	if	you	set	the	return
value	of	this	function	to	False,	the	item	is	not	sent.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Send	event	and
sends	an	item	with	an	automatic	expiration	date.	The	sample	code	must	be
placed	in	a	class	module	such	as	ThisOutlookSession,	and	the	SendMyMail
procedure	must	be	called	before	the	event	procedure	can	be	called	by	Microsoft
Outlook.

Public	WithEvents	myItem	As	Outlook.MailItem

		

Sub	SendMyMail()

	 Set	myItem	=	Outlook.CreateItem(olMailItem)

	 myItem.To	=	"Dan	Wilson"

	 myItem.Subject	=	"Data	files	information"

	 myItem.Send

End	Sub

Private	Sub	myItem_Send(Cancel	As	Boolean)

	 myItem.ExpiryTime	=	#2/2/2003	4:00:00	PM#

End	Sub

	 	



Show	All



ShortcutAdd	Event
Occurs	when	a	new	shortcut	is	added	to	a	Shortcuts	pane	group.	This	event	is	not
available	in	Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_ShortcutAdd(ByVal	NewShortcut	As	OutlookBarShortcut)

object				An	expression	that	evaluates	to	an	OutlookBarShortcuts	collection
object.

NewShortcut	Required	OutlookBarShortcut	object.	The	shortcut	that	is	being
added.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
changes	the	name	of	a	Calendar	shortcut	when	it	is	added	to	the	first	group	in
the	Shortcuts	pane.	The	sample	code	must	be	placed	in	a	class	module,	and	the
Initialize_handler	routine	must	be	called	before	the	event	procedure	can	be
called	by	Microsoft	Outlook.

Dim	myOlApp	As	New	Outlook.Application

Dim	WithEvents	myOlSCuts	As	Outlook.OutlookBarShortcuts

Dim	myOlBar	As	Outlook.OutlookBarPane

Sub	Initialize_handler()

	 Set	myOlBar	=	myOlApp.ActiveExplorer.Panes.Item("OutlookBar")

	 Set	myOlSCuts	=	myOlBar.Contents.Groups.Item(1).Shortcuts

End	Sub

Private	Sub	myOlSCuts_ShortcutAdd(ByVal	NewShortcut	As	outlook.OutlookBarShortcut)

	 Dim	myNS	As	Outlook.NameSpace

	 Set	myNS	=	myOlApp.GetNamespace("MAPI")

	 If	NewShortcut.Target.Name	=	"Calendar"	Then

	 	 NewShortcut.Name	=	myNS.CurrentUser	&	"'s	Schedules"

	 End	If

End	Sub

	 	



Snooze	Event
Occurs	when	a	reminder	is	dismissed	using	the	Snooze	button.

Private	Sub	expression_Snooze(ByVal	ReminderObject	As	Reminder)

expression				A	variable	which	references	an	object	of	type	Reminders	declared
with	events	in	a	class	module.



Remarks

This	event	will	fire	when	the	Snooze	method	is	executed,	or	when	the	user	clicks
the	Snooze	button.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	displays	the	original	date	and	time	set	for	the	Reminder	object	that	has
been	snoozed.

Public	WithEvents	objReminders	As	Outlook.Reminders

Sub	Initialize_Handler()

	 Set	objReminders	=	Application.Reminders

End	Sub

Private	Sub	objReminders_Snooze(ByVal	ReminderObject	As	Reminder)

	 'Occurs	when	a	user	clicks	Snooze	or	when	snooze	is

	 'programmatically	executed.

	 MsgBox	"The	reminder	was	originally	set	at	"	&	ReminderObject.OriginalReminderDate

End	Sub

	 	



Startup	Event
Occurs	when	Microsoft	Outlook	is	starting,	but	after	all	add-in	programs	have
been	loaded.	This	event	is	not	available	in	Microsoft	Visual	Basic	Scripting
Edition	(VBScript).

Sub	object_Startup()

object				An	expression	that	evaluates	to	an	Application	object.



Remarks

An	Outlook	Visual	Basic	for	Applications	(VBA)	macro	can	use	this	event
procedure	to	initialize	itself	when	Outlook	starts.



Example

This	Microsoft	Outlook	Visual	Basic	for	Applications	example	displays	a
welcome	message	to	the	user	and	maximizes	the	Outlook	explorer	window	when
Outlook	starts.

Private	Sub	Application_Startup()

	 MsgBox	"Welcome,	"	&	Application.GetNamespace("MAPI").CurrentUser

	 Application.ActiveExplorer.WindowState	=	olMaximized

End	Sub

	 	



SyncEnd	Event
Occurs	immediately	after	Microsoft	Outlook	finishes	synchronizing	a	user’s
folders	using	the	specified	Send\Receive	group.	This	event	is	not	available	in
Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

Sub	object_SyncEnd()

object				An	expression	that	evaluates	to	a	SyncObject	object.



Example

This	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)	example
displays	a	message	when	synchronization	is	complete.	The	sample	code	must	be
placed	in	a	class	module,	and	the	Initialize_handler	routine	must	be	called
before	the	event	procedure	can	be	called	by	Microsoft	Outlook.

Dim	myOlApp	As	New	Outlook.Application

Dim	WithEvents	mySync	As	Outlook.SyncObject

Sub	Initialize_handler()

	Set	mySync	=	myOlApp.Session.SyncObjects.Item(1)

	mySync.Start

End	Sub

			

Private	Sub	mySync_SyncEnd()

	MsgBox	"Synchronization	is	complete."

End	Sub

	 	



SyncStart	Event
Occurs	when	Microsoft	Outlook	begins	synchronizing	a	user’s	folders	using	the
specified	Send\Receive	group.	This	event	is	not	available	in	Microsoft	Visual
Basic	Scripting	Edition	(VBScript).

Sub	object_SyncStart()

object				An	expression	that	evaluates	to	a	SyncObject	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	displays	a	message	telling
the	user	that	the	synchronization	might	take	a	long	time.	The	sample	code	must
be	placed	in	a	class	module,	and	the	Initialize_handler	routine	must	be	called
before	the	event	procedure	can	be	called	by	Microsoft	Outlook.

Dim	myOlApp	As	New	Outlook.Application

Dim	WithEvents	mySync	As	Outlook.SyncObject

Sub	Initialize_handler()

	Set	mySync	=	myOlApp.Session.SyncObjects.Item(1)

	mySync.Start

End	Sub

Private	Sub	mySync_SyncStart()

	MsgBox	"Synchronization	is	about	to	start.	It	might	take	a	long	time	to	complete."

End	Sub

	 	



ViewAdd	Event
Occurs	when	a	view	is	added	to	the	collection.	Microsoft	Outlook	creates	the
new	view	and	passes	it	to	this	event.

Sub	expression_ViewAdd(ByVal	View	As	View)

expression					A	variable	which	references	an	object	of	type	Views	declared	with
events	in	a	class	module.

View							The	new	view	added	to	the	collection	prior	to	this	event.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	displays	the	view's	name	and	saves	it	when	the	ViewAdd	event	is	fired.
Use	the	Save	method	after	the	properties	have	been	modified	to	save	the	changes
to	the	view.	The	sample	code	must	be	placed	in	a	class	module	such	as
ThisOutlookSession,	and	the	AddView()	procedure	should	be	called	before	the
event	procedure	can	be	called	by	Microsoft	Outlook.

Public	WithEvents	objViews	As	Outlook.Views

Sub	AddView()

				Dim	myOlApp	As	New	Outlook.Application

				Dim	objView	As	Outlook.View

				Set	objViews	=	myOlApp.ActiveExplorer.CurrentFolder.Views

				Set	objView	=	objViews.Add("Latest	View1",	olTableView,	olViewSaveOptionAllFoldersOfType)

End	Sub

Sub	objViews_ViewAdd(ByVal	View	As	View)

'Displays	name	of	new	view

			With	View

							Msgbox	.Name	&	"	was	created	programmatically."

							.Save

			End	With

End	Sub

	 	



ViewRemove	Event
Occurs	when	a	view	has	been	removed	from	the	specified	collection.

Sub	expression_	ViewRemove(ByVal	View	As	View)

expression					A	variable	which	references	an	object	of	type	Views	declared	with
events	in	a	class	module.

View							The	view	which	was	removed	from	the	collection	prior	to	this	event.



Example

The	following	Microsoft	Visual	Basic/Visual	Basic	for	Applications	(VBA)
example	displays	the	name	of	the	view	that	has	been	removed	from	the
collection	when	the	ViewRemove	event	is	fired.	The	sample	code	must	be
placed	in	a	class	module	such	as	ThisOutlookSession,	and	the	DeleteView()
procedure	should	be	called	before	the	event	procedure	can	be	called	by
Microsoft	Outlook.

Public	WithEvents	objViews	As	Outlook.Views

Sub	DeleteView()

	 Dim	myolapp	As	New	Outlook.Application

	 Set	objViews	=	myolapp.Application.ActiveExplorer.CurrentFolder.Views

	 objViews.Item("New	Table	View").Delete

End	Sub

Sub	objViews_ViewRemove(ByVal	View	As	View)

	 'Displays	view	name

	 MsgBox	"The	view:	"	&	View.Name	&	"	was	removed	programmatically."

End	Sub

	 	



ViewSwitch	Event
Occurs	when	the	view	in	the	explorer	changes,	either	as	a	result	of	user	action	or
through	program	code.	This	event	is	not	available	in	Microsoft	Visual	Basic
Scripting	Edition	(VBScript).

Sub	object_ViewSwitch()

object				An	expression	that	evaluates	to	an	Explorer	object.



Example

This	Visual	Basic	for	Applications	(VBA)	example	hides	the	preview	pane	if	it
is	visible	when	the	user	switches	to	Messages	with	AutoPreview	view.	The
sample	code	must	be	placed	in	a	class	module,	and	the	Initialize_handler
routine	must	be	called	before	the	event	procedure	can	be	called	by	Microsoft
Outlook.

Dim	myolapp	As	New	Outlook.Application

Dim	WithEvents	myOlExpl	As	Outlook.Explorer

Sub	Initialize_handler()

				Set	myOlExpl	=	myolapp.ActiveExplorer

End	Sub

Private	Sub	myOlExpl_ViewSwitch()

				If	myOlExpl.CurrentView	=	"Messages	with	AutoPreview"	And	myOlExpl.IsPaneVisible(olPreview)	=	True	Then

								myOlExpl.ShowPane	olPreview,	False

				End	If

End	Sub

	 	



Show	All



Write	Event
Occurs	when	a	Microsoft	Outlook	item	is	saved,	either	explicitly	(for	example,
using	the	Save	or	SaveAs	methods)	or	implicitly	(for	example,	in	response	to	a
prompt	when	closing	the	item's	inspector).

Sub	object_Write(Cancel	As	Boolean)

object				An	expression	that	evaluates	to	one	of	the	objects	in	the	Applies	To	list.
In	VBScript,	use	the	word	Item.

Cancel				Optional	Boolean	(not	used	in	VBScript).	False	when	the	event
occurs.	If	the	event	procedure	sets	this	argument	to	True,	the	save	operation	is
not	completed.



Remarks

In	Microsoft	Visual	Basic	Scripting	Edition	(VBScript),	if	you	set	the	return
value	of	this	function	to	False,	the	save	operation	is	not	completed.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	Write	event	and
warns	the	user	that	the	item	is	about	to	be	saved	and	will	overwrite	any	existing
item	and,	depending	on	the	user's	response,	either	allows	the	operation	to
continue	or	stops	it.	If	this	event	is	canceled,	Microsoft	Outlook	displays	an	error
message.	Therefore,	you	need	to	capture	this	event	in	your	code.	One	way	to	do
this	is	shown	below.	The	sample	code	must	be	placed	in	a	class	module	such	as
ThisOutlookSession,	and	the	Initialize_Handler()	subroutine	must	be	called
before	the	event	procedure	can	be	called	by	Microsoft	Outlook.

Public	WithEvents	myItem	As	Outlook.MailItem

Private	Sub	myItem_Write(Cancel	As	Boolean)

	 Dim	myResult	As	Integer

	 myItem	=	"The	item	is	about	to	be	saved.	Do	you	wish	to	overwrite	the	existing	item?"

	 myResult	=	MsgBox(myItem,	vbYesNo,	"Save")

	 If	myResult	=	vbNo	Then

	 	 Cancel	=	True

	 End	If

End	Sub

Public	Sub	Initalize_Handler()

	 Const	strCancelEvent	=	"Application-defined	or	object-defined	error"

	

	 On	Error	GoTo	ErrHandler

	

	 Set	myItem	=	Application.ActiveInspector.CurrentItem

	 myItem.Save

	 Exit	Sub

	

	 ErrHandler:

	 	 MsgBox	Err.Description

	 	 If	Err.Description	=	strCancelEvent	Then

	 	 	 MsgBox	"The	event	was	cancelled."

	 	 End	If

End	Sub

	 	





Show	All



Outlook	Constants
This	topic	provides	a	list	of	all	constants	in	the	Outlook	object	model.

OlActionCopyLike

Constant Value
olForward 2
olReply 0
olReplyAll 1
olReplyFolder 3
olRespond 4

OlActionReplyStyle

Constant Value
olEmbedOriginalItem 1
olIncludeOriginalText 2
olIndentOriginalText 3
olLinkOriginalItem 4
olOmitOriginalText 0
olReplyTickOriginalText 1000
olUserPreference 5

OlActionResponseStyle

Constant Value
olOpen 0
olPrompt 2
olSend 1

OlActionShowOn



Constant Value
olDontShow 0
olMenu 1
olMenuAndToolbar 2

OlAttachmentType

Constant Value
olByReference 4
olByValue 1
olEmbeddeditem 5
olOLE 6

OlBodyFormat

Constant Value
olFormatHTML 2
olFormatPlain 1
olFormatRichText 3
olFormatUnspecified 0

OlBusyStatus

Constant Value
olBusy 2
olFree 0
olOutOfOffice 3
olTentative 1

OlConnectionMode

Constant Value
olLowBandwidth 200
olOffline 100



olOnline 300

OlDaysOfWeek

Constant Value
olFriday 32
olMonday 2
olSaturday 64
olSunday 1
olThursday 16
olTuesday 4
olWednesday 8

OlDefaultFolders

Constant Value
olFolderCalendar 9
olFolderContacts 10
olFolderDeletedItems 3
olFolderDrafts 16
olFolderInbox 6
olFolderJournal 11
olFolderJunk 23
olFolderNotes 12
olFolderOutbox 4
olFolderSentMail 5
olFolderTasks 13
olPublicFoldersAllPublicFolders 18
olFolderConflicts 19
olFolderLocalFailures 21
olFolderServerFailures 22
olFolderSyncIssues 20

OlDisplayType



Constant Value
olAgent 3
olDistList 1
olForum 2
olOrganization 4
olPrivateDistList 5
olRemoteUser 6
olUser 0

OlDownloadState

Constant Value
olFullItem 1
olHeaderOnly 0

OlEditorType

Constant Value
olEditorHTML 2
olEditorRTF 3
olEditorText 1
olEditorWord 4

OlExchangeConnectionMode

Constant Value
olConnected 400
olConnectedHeaders 300
olDisconnected 200
olNoExchange 0
olOffline 100
olOnline 500

OlFlagIcon



Constant Value
olBlueFlagIcon 5
olGreenFlagIcon 3
olNoFlagIcon 0
olOrangeFlagIcon 2
olPurpleFlagIcon 1
olRedFlagIcon 6
olYellowFlagIcon 4

OlFlagStatus

Constant Value
olFlagComplete 1
olFlagMarked 2
olNoFlag 0

OlFolderDisplayMode

Constant Value
olFolderDisplayFolderOnly 1
olFolderDisplayNoNavigation 2
olFolderDisplayNormal 0

OlFormRegistry

Constant Value
olDefaultRegistry 0
olFolderRegistry 3
olOrganizationRegistry 4
olPersonalRegistry 2

OlGender

Constant Value



olFemale 1
olMale 2
olUnspecified 0

OlImportance

Constant Value
olImportanceHigh 2
olImportanceLow 0
olImportanceNormal 1

OlInspectorClose

Constant Value
olDiscard 1
olPromptForSave 2
olSave 0

OlItemType

Constant Value
olAppointmentItem 1
olContactItem 2
olDistributionListItem 7
olJournalItem 4
olMailItem 0
olNoteItem 5
olPostItem 6
olTaskItem 3

OlJournalRecipientType

Constant Value
olAssociatedContact 1



OlMailingAddress

Constant Value
olBusiness 2
olHome 1
olNone 0
olOther 3

OlMailRecipientType

Constant Value
olBCC 3
olCC 2
olOriginator 0
olTo 1

OlMeetingRecipientType

Constant Value
olOptional 2
olOrganizer 0
olRequired 1
olResource 3

OlMeetingResponse

Constant Value
olMeetingAccepted 3
olMeetingDeclined 4
olMeetingTentative 2

OlMeetingStatus

Constant Value



olMeeting 1
olMeetingCanceled 5
olMeetingReceived 3
olNonMeeting 0

OlNetMeetingType

Constant Value
olExchangeConferencing 2
olNetMeeting 0
olNetShow 1

OlNoteColor

Constant Value
olBlue 0
olGreen 1
olPink 2
olWhite 4
olYellow 3

OlObjectClass

Constant Value
olAction 32
olActions 33
olAddressEntries 21
olAddressEntry 8
olAddressList 7
olAddressLists 20
olApplication 0
olAppointment 26
olAttachment 5
olAttachments 18



olConflict 117
olConflicts 118
olContact 40
olDistributionList 69
olDocument 41
olException 30
olExceptions 29
olExplorer 34
olExplorers 60
olFolder 2
olFolders 15
olFormDescription 37
olInspector 35
olInspectors 61
olItemProperties 98
olItemProperty 99
olItems 16
olJournal 42
olLink 75
olLinks 76
olMail 43
olMeetingCancellation 54
olMeetingRequest 53
olMeetingResponseNegative 55
olMeetingResponsePositive 56
olMeetingResponseTentative 57
olNamespace 1
olNote 44
olOutlookBarGroup 66
olOutlookBarGroups 65
olOutlookBarPane 63
olOutlookBarShortcut 68
olOutlookBarShortcuts 67



olOutlookBarStorage 64
olPages 36
olPanes 62
olPost 45
olPropertyPages 71
olPropertyPageSite 70
olRecipient 4
olRecipients 17
olRecurrencePattern 28
olReminder 101
olReminders 100
olRemote 47
olReport 46
olResults 78
olSearch 77
olSelection 74
olSyncObject 72
olSyncObjects 73
olTask 48
olTaskRequest 49
olTaskRequestAccept 51
olTaskRequestDecline 52
olTaskRequestUpdate 50
olUserProperties 38
olUserProperty 39
olView 80
olViews 79

OlOfficeDocItemsType

Constant Value
olExcelWorkSheetItem 8
olPowerPointShowItem 10



olWordDocumentItem 9

OlOutlookBarViewType

Constant Value
olLargeIcon 0
olSmallIcon 1

OlPane

Constant Value
olFolderList 2
olNavigationPane 4
olOutlookBar 1
olPreview 3

OlPermission

Constant Value
olDoNotForward 1
olPermissionTemplate 2
olUnrestricted 0

OlPermissionService

Constant Value
olUnknown 0
olWindows 1
olPassport 2

OlRecurrenceState

Constant Value
olApptException 3



olApptMaster 1
olApptNotRecurring 0
olApptOccurrence 2

OlRecurrenceType

Constant Value
olRecursDaily 0
olRecursMonthly 2
olRecursMonthNth 3
olRecursWeekly 1
olRecursYearly 5
olRecursYearNth 6

OlRemoteStatus

Constant Value
olMarkedForCopy 3
olMarkedForDelete 4
olMarkedForDownload 2
olRemoteStatusNone 0
olUnMarked 1

OlResponseStatus

Constant Value
olResponseAccepted 3
olResponseDeclined 4
olResponseNone 0
olResponseNotResponded 5
olResponseOrganized 1
olResponseTentative 2

OlSaveAsType



Constant Value
olDoc 4
olHTML 5
olICal 8
olMSG 3
olMSGUnicode 9
olRTF 1
olTemplate 2
olTXT 0
olVCal 7
olVCard 6

OlSensitivity

Constant Value
olConfidential 3
olNormal 0
olPersonal 1
olPrivate 2

OlShowItemCount

Constant Value
olNoItemCount 0
olShowTotalItemCount 2
olShowUnreadItemCount 1

OlSortOrder

Constant Value
olAscending 1
olDescending 2
olSortNone 0



OlStoreType

Constant Value
olStoreANSI 3
olStoreDefault 1
olStoreUnicode 2

OlSyncState

Constant Value
olSyncStarted 1
olSyncStopped 0

OlTaskDelegationState

Constant Value
olTaskDelegationAccepted 2
olTaskDelegationDeclined 3
olTaskDelegationUnknown 1
olTaskNotDelegated 0

OlTaskOwnership

Constant Value
olDelegatedTask 1
olNewTask 0
olOwnTask 2

OlTaskRecipientType

Constant Value
olFinalStatus 3
olUpdate 2



OlTaskResponse

Constant Value
olTaskAccept 2
olTaskAssign 1
olTaskDecline 3
olTaskSimple 0

OlTaskStatus

Constant Value
olTaskComplete 2
olTaskDeferred 4
olTaskInProgress 1
olTaskNotStarted 0
olTaskWaiting 3

OlTrackingStatus

Constant Value
olTrackingDelivered 1
olTrackingNone 0
olTrackingNotDelivered 2
olTrackingNotRead 3
olTrackingRead 6
olTrackingRecallFailure 4
olTrackingRecallSuccess 5
olTrackingReplied 7

OlUserPropertyType

Constant Value
olCombination 19
olCurrency 14



olDateTime 5
olDuration 7
olFormula 18
olKeywords 11
olNumber 3
olOutlookInternal 0
olPercent 12
olText 1
olYesNo 6

OlViewSaveOption

Constant Value
olViewSaveOptionAllFoldersOfType 2
olViewSaveOptionThisFolderEveryone 0
olViewSaveOptionThisFolderOnlyMe 1

OlViewType

Constant Value
olCalendarView 2
olCardView 1
olIconView 3
olTableView 0
olTimelineView 4

OlWindowState

Constant Value
olMaximized 0
olMinimized 1
olNormalWindow 2



EnableSharedAttachments	Property
Sets	or	returns	a	Boolean	that	determines	whether	the	Attachment	Options	task
pane	will	be	displayed	in	the	Microsoft	Outlook	user	interface	for	an	e-mail
item.	Read/write.

expression.EnableSharedAttachments

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	Microsoft	Visual	Basic	for	Applications	(VBA)	example	hides	the
Attachment	Options	task	pane	when	an	attachment	is	added	to	an	e-mail	item.
The	sample	code	must	be	placed	in	a	class	module	such	as	ThisOutlookSession,
and	the	TestAttachRead()	procedure	should	be	called	before	the	event
procedure	can	be	called	by	Outlook.	For	this	example	to	run	without	errors,	a	file
called	Test.txt	should	exist	in	the	C:\	folder.

Public	WithEvents	newItem	As	Outlook.MailItem

Private	Sub	newItem_AttachmentAdd(ByVal	newAttachment	As	Attachment)

			newItem.EnableSharedAttachments	=	False

			newItem.Display

End	Sub

Public	Sub	TestAttachAdd()

				Dim	olApp	As	New	Outlook.Application

				Dim	atts	As	Outlook.Attachments

				Dim	newAttachment	As	Outlook.Attachment

				Set	newItem	=	olApp.CreateItem(olMailItem)

				newItem.Subject	=	"Test	attachment"

				Set	atts	=	newItem.Attachments

				Set	newAttachment	=	atts.Add("C:\Test.txt",	olByValue)

End	Sub



HasCoverSheet	Property
Sets	or	returns	a	Boolean	that	determines	the	setting	of	the	Use	Cover	Sheet
option	in	the	Fax	UI,	which	in	turn	controls	what	is	displayed	in	the	body	of	the
mail	item.	Read/write.

expression.HasCoverSheet

expression				Required.	An	expression	that	returns	a	MailItem	object.



IsIPFax	Property
Sets	or	returns	a	Boolean	that	determines	if	a	mail	item	is	a	fax.	Read/write.

expression.IsIPFax

expression				Required.	An	expression	that	returns	a	MailItem	object.



Outlook	Object	Model
Application	object

NameSpace	object PropertyPages	collection
PropertyPage	object

SyncObjects	collection	
SyncObject	object

AddressLists	collection
AddressList	object
AddressEntries	collection
AddressEntry	object

Folders	collection
MAPIFolder	object

Items	collection
Item	object

Links	collection
Link	object

UserProperties	collection
UserProperty	object

FormDescription	object
Actions	collection
Action	object

Attachments	collection
Attachment	object

Recipients	collection
Recipient	object

RecurrencePattern	object
Exceptions	collection

Assistant	object
COMAddIns	collection
COMAddIn	object

Explorers	collection
Explorer	object
Selection	collection
Items	object

MAPIFolder	object
Views	collection
View	object

CommandBars	collection
CommandBar	object

Panes	collection
Pane	object

OutlookBarPane	object
OutlookBarStorage	object
OutlookBarGroups	collection
OutlookBarGroup	object
OutlookBarShortcuts	collection
OutlookBarShortcut	object

Inspectors	collection

mk:@MSITStore:vbaof10.chm::/html/ofobjCOMAddIns.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjCOMAddIn.htm


Exception	object
PropertyPages	collection
PropertyPage	object

LanguageSettings	object
AnswerWizard	object
Search	object
Results	object

Reminders	collection
Reminder	object

Legend

		Collection
		Object

	

Inspector	object
WordEditor	object
HTMLEditor	object
Pages	collection
Page	object

CommandBars	collection
CommandBar	object

Item	object
ItemProperties	collection
ItemProperty	object

Conflicts	collection
Conflict	object

mk:@MSITStore:vbaof10.chm::/html/ofobjAnswerWizard.htm


Using	events	with	Automation
To	create	an	event	handler	for	Microsoft	Outlook	objects	in	Microsoft	Visual
Basic	or	Microsoft	Visual	Basic	for	Applications	(VBA)	in	another	application,
you	need	to	complete	the	following	four	steps:

1.	 Set	a	reference	to	the	Microsoft	Outlook	Object	Library.
2.	 Declare	an	object	variable	to	respond	to	the	events.
3.	 Write	the	specific	event	procedures.
4.	 Initialize	the	declared	object.

Learn	about	working	with	events	in	Outlook	Visual	Basic	for	Applications.



Set	the	Reference	to	the	Outlook	Object	Library

Before	you	can	use	an	Outlook	object	in	Visual	Basic	or	Visual	Basic	for
Applications	code,	you	must	first	set	a	reference	to	the	Outlook	Object	Model	in
the	References	dialog	box.	For	more	information	about	using	this	dialog	box,
see	the	online	Help	for	your	programming	environment.



Declare	the	Object	Variable

Once	you’ve	referenced	the	object	model	library,	you	must	declare	variables	that
reference	the	object	you	want	to	use.	You	can	declare	the	variable	in	the	module
in	which	the	object	will	be	used	(that	is,	the	module	containing	the	event-handler
procedure),	but	more	commonly	you’	ll	declare	it	in	a	class	module	so	it	can	be
used	in	any	module	in	your	program.

For	example,	to	declare	an	object	variable	for	the	Application	object	in	a	class
module,	you	use	code	like	the	following.

Public	WithEvents	myOlApp	As	Outlook.Application

	 	

You	must	use	the	WithEvents	keyword	to	specify	that	the	object	variable	will	be
used	to	respond	to	events	triggered	by	the	object.



Write	the	Event	Procedure

After	the	new	object	has	been	declared	with	events,	it	appears	in	the	Object	list
in	the	class	module	Code	window,	and	you	can	select	the	object’s	event
procedures	from	the	Procedures/Events	list.	For	example,	when	you	select	the
ItemSend	event	for	an	Application	object	declared	as	myOlApp,	the	following
empty	procedure	appears	in	the	Code	window.

Private	Sub	myOlApp_ItemSend(Item	as	Object,	Cancel	as	Boolean)

End	Sub

	 	



Initialize	the	Declared	Object

Before	the	procedure	will	run,	you	must	connect	the	declared	object	(in	this
example,	myOlApp)	with	the	Application	object.	If	you	declared	the	object	in	a
class	module	named	EventClassModule,	then	you	can	use	the	following	code	in
any	module.

Dim	myClass	as	New	EventClassModule

	 	

Sub	Register_Event_Handler()

Set	myClass.myOlApp	=	CreateObject("Outlook.Application")

End	Sub

When	the	Register_Event_Handler	procedure	is	run,	the	myOlApp	object	in
the	form	or	class	module	points	to	the	Outlook	Application	object,	and	the	event
procedure	will	run	when	the	event	occurs.



Outlook	COM	add-in	template
The	following	code	example	provides	the	empty	event	procedures	required	to
implement	a	COM	add-in.

Implements	IDTExtensibility2

Private	Sub	IDTExtensibility2_OnAddInsUpdate(custom()	As	Variant)

'	Occurs	when	the	set	of	connected	COM	add-ins	changes,	that	is	when

'	any	other	add-in	is	connected	or	disconnected.

'	The	custom	argument	is	ignored.

End	Sub

Private	Sub	IDTExtensibility2_OnBeginShutdown(custom()	As	Variant)

'	If	the	COM	add-in	is	connected,	occurs	when	Outlook	begins	its

'	shutdown	routines.

'	The	custom	argument	is	ignored.

End	Sub

Private	Sub	IDTExtensibility2_OnConnection(ByVal	Application	As	Object,	ByVal	ConnectMode	As	AddInDesignerObjects.ext_ConnectMode,	ByVal	AddInInst	As	Object,	custom()	As	Variant)

'	Occurs	when	the	COM	add-in	is	connected.

'	The	Application	argument	is	the	Outlook	Application	object.

'	The	ConnectMode	argument	specifies	how	the	COM	add-in	was	connected.

'	It	can	be

'					ext_cm_AfterStartup					Add-in	was	connected	after	Outlook	started,

'																													or	the	Connect	property	of	the	corresponding

'																													COMAddIn	object	was	set	to	True

'					ext_cm_Startup										Add-in	was	connected	on	startup

'					ext_cm_External

'					ext_cm_CommandLine

'	The	AddInInst	argument	is	the	COMAddIn	object	that	refers	to	the	current

'					instance	of	the	add-in	itself.

'	The	custom	argument	is	ignored.

End	Sub

Private	Sub	IDTExtensibility2_OnDisconnection(ByVal	RemoveMode	As	AddInDesignerObjects.ext_DisconnectMode,	custom()	As	Variant)

'	Occurs	when	the	COM	add-in	is	disconnected.

'	The	RemoveMode	argument	specifies	how	the	COM	add-in	was	disconnected.

'	It	can	be

'					ext_dm_HostShutdown						Add-in	was	disconnected	when	Outlook	was

'																														closed.

'					ext_dm_UserClosed								Add-in	was	disconnected	when	the	user

'																														cleared	the	corresponding	check	box	in	the

'																														COM	Add-ins	dialog	box,	or	the	Connect



'																														property	of	the	corresponding	COMAddIn

'																														object	was	set	to	False.

'	The	custom	argument	is	ignored.

End	Sub

Private	Sub	IDTExtensibility2_OnStartupComplete(custom()	As	Variant)

'	If	the	COM	add-in	connects	at	startup,	occurs	when	Outlook	completes

'	its	startup	routines.	This	event	does	not	occur	if	the	COM	add-in	is	not

'	connected	when	Outlook	loads,	even	when	the	user	connects	the	add-in	in

'	the	COM	Add-ins	dialog	box.

'	The	custom	argument	is	ignored.

End	Sub

	 	



Outlook	Item	Objects
Outlook	items	include

AppointmentItem
ContactItem
DistListItem
DocumentItem
JournalItem
MailItem
MeetingItem
NoteItem			
PostItem
RemoteItem
ReportItem
TaskItem
TaskRequestAcceptItem
TaskRequestDeclineItem
TaskRequestItem
TaskRequestUpdateItem



GetNameSpace	Method
Returns	a	NameSpace	object	of	the	specified	type.

expression.GetNameSpace(Type)

expression					Required.	An	expression	that	returns	an	Application	object.

Type				Required	String.	The	type	of	name	space	to	return.



Remarks

The	only	supported	name	space	type	is	"MAPI".	The	GetNameSpace	method	is
functionally	equivalent	to	the	Session	property,	which	was	introduced	in
Microsoft	Outlook	98.



Example

This	Visual	Basic	for	Applications	(VBA)	example	uses	the	CurrentFolder
property	to	change	the	displayed	folder	to	the	user's	Calendar	folder.

Sub	ChangeCurrentFolder()

	 Dim	myolApp	As	Outlook.Application

	 Dim	myNamespace	As	Outlook.NameSpace

	 Set	myolApp	=	CreateObject("Outlook.Application")

	 Set	myNamespace	=	myolApp.GetNamespace("MAPI")

	 Set	myolApp.ActiveExplorer.CurrentFolder	=	_

	 myNamespace.GetDefaultFolder(olFolderCalendar)

End	Sub

	 	

If	you	use	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	an	Outlook
form,	you	do	not	create	the	Application	object,	and	you	cannot	use	named
constants.	This	example	shows	how	to	perform	the	same	task	using	VBScript
code.

Sub	CommandButton1_Click()

	Set	myNameSpace	=	Application.GetNameSpace("MAPI")

	Set	Application.ActiveExplorer.CurrentFolder	=	_

	myNameSpace.GetDefaultFolder(9)

End	Sub

	 	



OLE	Programmatic	Identifiers
You	can	use	an	OLE	programmatic	identifier	(sometimes	called	a	ProgID)	to
create	an	Automation	object.	The	following	tables	list	OLE	programmatic
identifiers	for	ActiveX	controls,	Microsoft	Office	applications,	and	Microsoft
Office	Web	Components.

ActiveX	Controls

Microsoft	Access

Microsoft	Excel

Microsoft	Graph

Microsoft	Office	Web	Components

Microsoft	Outlook

Microsoft	PowerPoint

Microsoft	Word



ActiveX	Controls

To	create	the	ActiveX	controls	listed	in	the	following	table,	use	the
corresponding	OLE	programmatic	identifier.

To	create	this	control Use	this	identifier
CheckBox Forms.CheckBox.1
ComboBox Forms.ComboBox.1
CommandButton Forms.CommandButton.1
Frame Forms.Frame.1
Image Forms.Image.1
Label Forms.Label.1
ListBox Forms.ListBox.1
MultiPage Forms.MultiPage.1
OptionButton Forms.OptionButton.1
ScrollBar Forms.ScrollBar.1
SpinButton Forms.SpinButton.1
TabStrip Forms.TabStrip.1
TextBox Forms.TextBox.1
ToggleButton Forms.ToggleButton.1



Microsoft	Access

To	create	the	Microsoft	Access	objects	listed	in	the	following	table,	use	one	of
the	corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier	without
a	version	number	suffix,	you	create	an	object	in	the	most	recent	version	of
Access	available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers
Application Access.Application
CurrentData Access.CodeData,	Access.CurrentData
CurrentProject Access.CodeProject,	Access.CurrentProject
DefaultWebOptions Access.DefaultWebOptions



Microsoft	Excel

To	create	the	Microsoft	Excel	objects	listed	in	the	following	table,	use	one	of	the
corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier	without	a
version	number	suffix,	you	create	an	object	in	the	most	recent	version	of	Excel
available	on	the	machine	where	the	macro	is	running.

To	create
this	object

Use	one	of	these
identifiers Comments

Application Excel.Application
Workbook Excel.AddIn

Workbook Excel.Chart
Returns	a	workbook	containing	two	worksheets;
one	for	the	chart	and	one	for	its	data.	The	chart
worksheet	is	the	active	worksheet.

Workbook Excel.Sheet Returns	a	workbook	with	one	worksheet.



Microsoft	Graph

To	create	the	Microsoft	Graph	objects	listed	in	the	following	table,	use	one	of	the
corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier	without	a
version	number	suffix,	you	create	an	object	in	the	most	recent	version	of	Graph
available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers
Application MSGraph.Application
Chart MSGraph.Chart



Microsoft	Office	Web	Components

To	create	the	Microsoft	Office	Web	Components	objects	listed	in	the	following
table,	use	one	of	the	corresponding	OLE	programmatic	identifiers.	If	you	use	an
identifier	without	a	version	number	suffix,	you	create	an	object	in	the	most
recent	version	of	Microsoft	Office	Web	Components	available	on	the	machine
where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers
ChartSpace OWC.Chart
DataSourceControl OWC.DataSourceControl
ExpandControl OWC.ExpandControl
PivotTable OWC.PivotTable
RecordNavigationControlOWC.RecordNavigationControl
Spreadsheet OWC.Spreadsheet



Microsoft	Outlook

To	create	the	Microsoft	Outlook	object	given	in	the	following	table,	use	one	of
the	corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier	without
a	version	number	suffix,	you	create	an	object	in	the	most	recent	version	of
Outlook	available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers
Application Outlook.Application



Microsoft	PowerPoint

To	create	the	Microsoft	PowerPoint	object	given	in	the	following	table,	use	one
of	the	corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier
without	a	version	number	suffix,	you	create	an	object	in	the	most	recent	version
of	PowerPoint	available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers
Application PowerPoint.Application



Microsoft	Word

To	create	the	Microsoft	Word	objects	listed	in	the	following	table,	use	one	of	the
corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier	without	a
version	number	suffix,	you	create	an	object	in	the	most	recent	version	of	Word
available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers
Application Word.Application
Document Word.Document,	Word.Template
Global Word.Global


