
Show	All



Understanding	Outlook	e-mail
account	options
Microsoft	Outlook	supports	a	variety	of	e-mail	server	types	and	communicates
with	these	servers	in	different	ways.

A	MAPI-based	architecture	is	provided	if	you	use	Outlook	with	Microsoft
Exchange	Server	or	with	a	MAPI-based	store,	such	as	a	Personal	Folders	file
(.pst).	In	general,	the	Outlook	object	model	and	developer-related	features	were
designed	for	this	environment.	MAPI	uses	profiles	to	configure	how	an	e-mail
message	is	transmitted	and	where	it	is	stored.	Exchange	server	also	provides
many	of	the	collaborative	capabilities	in	Outlook,	such	as	the	Organizational
Forms	Library	and	public	folders.

If	Outlook	is	configured	with	an	Internet	service	provider	(ISP),	typically	using
the	POP	protocol,	you	can	create	many	types	of	Outlook	solutions.	However,
some	of	the	topics	in	this	documentation	apply	only	when	Outlook	is	used	in
conjunction	with	Microsoft	Exchange	Server,	because	that	is	the	mode	most
commonly	used	to	develop	solutions	based	on	Outlook.

Note		Developing	custom	forms	with	Outlook	configured	with	only	an	HTTP-
based	server	is	not	supported.



Show	All



Design	Outlook	Workgroup	Solutions
With	Microsoft	Outlook,	you	can	create	a	variety	of	workgroup	solutions	and
forms.	You	can	create	Workgroup	Solutions	by	using	custom	views	in	a
Microsoft	Exchange	public	folder.	You	can	also	create	simple	forms	with	no
programming	involved	or	create	advanced	forms	by	using	custom	controls,
properties,	and	Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

There	are	a	few	basic	approaches	to	creating	Outlook	solutions.	You	can	use
existing	items,	such	as	tasks	or	appointment	items,	put	the	items	in	a	public
folder,	and	assign	a	view	to	the	folder.	This	method	gives	you	an	instant
Workgroup	Solution	without	writing	any	code.	Another	method	is	to	modify	an
existing	item,	such	as	a	contact	entry	or	e-mail	message,	by	adding	additional
pages	and	fields.	With	this	method,	you	can	extend	the	use	of	the	item	by	adding
the	fields	and	pages	you	need	without	writing	any	code.	To	create	advanced
forms,	you	can	use	the	Control	Toolbox	and	VBScript	to	access	properties,
events,	methods,	and	objects	within	Outlook.



What	method	do	you	want	to	use?

Create	an	instant	workgroup	solution	using	public	folders

Extend	the	use	of	an	Outlook	item	by	adding	additional	fields	and	pages

Create	custom	forms	by	using	VBScript

Create	forms	by	using	Office	documents



Overview	of	a	Typical	Folder-based
Solution
When	used	with	Microsoft	Exchange	Server,	Microsoft	Outlook	provides
groupware	capabilities	that	allow	more	than	one	person	to	work	on	the	same
data.	Even	without	using	these	capabilities,	however,	you	can	still	customize
Outlook	folders	for	your	personal	use	or	to	create	a	solution	that	other	people	in
your	organization	can	use.

If	you’re	planning	to	build	a	groupware	solution,	you	should	consider	first
working	with	Outlook	to	develop	a	single-user	solution.	Since	a	groupware
solution	is	often	as	simple	as	placing	a	custom	form	in	a	Microsoft	Exchange
public	folder,	learning	the	basics	of	building	a	folder-based	personal	forms
solutions	will	be	fully	applicable	to	developing	solutions	in	public	folders.

Whether	it’s	in	one	of	your	personal	folders	or	in	a	Microsoft	Exchange	public
folder,	putting	together	an	Outlook	solution	typically	involves	the	following
steps:

1.	 Decide	which	type	of	folder	and/or	form	to	customize.	For	more
information,	see	Types	of	Forms	in	Outlook.

2.	 Open	a	new	form	and	customize	it	to	suit	your	needs.

3.	 Publish	the	form	to	the	folder	so	that	it’s	available	only	for	use	in	that
folder.

4.	 Set	the	custom	form	as	the	default	form	for	the	folder.	This	will	ensure	that
when	you	create	new	items	for	use	in	this	folder	they’ll	be	based	on	the
custom	form	you	created.

5.	 If	you	have	any	existing	items	in	the	folder,	update	these	items	so	they	will
use	the	new	form	when	they’re	opened.	For	more	information,	see	Change
the	Form	Used	by	Existing	Items	in	a	Folder.

Note		If	you	plan	to	use	a	custom	form	in	a	folder,	you	should	create	the	custom

mk:@MSITStore:olmain11.chm::/html/rehowPublishForm.htm


form	before	creating	any	items	based	on	the	form.	This	will	ensure	that	all	the
items	in	the	folder	use	the	same	set	of	fields.

If	you	need	to	update	the	form	after	having	created	some	items	in	the	folder,
follow	these	steps:

1.	 Open	a	new,	blank	item	based	on	your	custom	form.

2.	 Update	the	form	to	suit	your	needs.

3.	 Republish	the	form	to	the	folder	using	the	same	name.



Using	views	to	create	a	solution
Although	custom	forms	provide	a	powerful	way	to	work	with	data	in	a	folder,
you	can	also	customize	Microsoft	Outlook	to	a	great	extent	simply	by	creating	a
view	that	suits	your	needs.	In	some	cases,	depending	on	how	you	want	to	work
with	Outlook,	you	can	use	a	custom	view	instead	of	a	custom	form	to	enter	and
modify	data.

Entering	data	in	a	view	is	usually	done	be	selecting	one	of	the	Outlook	table
views,	wherein	each	row	contains	one	item	in	the	folder	and	each	column
represents	a	field	associated	with	an	item.	You	can	select	the	fields	that	Outlook
displays,	and	you	can	also	enter	or	change	the	contents	of	fields	directly	in	the
table	view.	This	allows	you	to	quickly	modify	items,	even	those	that	contain
custom	fields.

To	allow	field	editing	in	a	view

1.	 Click	View,	point	to	Arrange	By,	then	point	to	Current	View,	and	then
click	Customize	Current	View.

2.	 Click	Other	Settings.
3.	 Select	Allow	in-cell	editing.

Editing	items	in	a	table	view	lets	you	keep	track	of	custom	data,	view	multiple
items	at	the	same	time,	enter	data	into	an	item	without	having	to	open	the	item,
and	avoid	having	to	create	a	custom	form.



Show	All



Change	the	default	view	in	a	folder
1.	 If	the	Folder	List	is	not	visible,	click	the	View	menu,	and	then	click	Folder

List.

2.	 Right-click	the	folder	you	want	to	change	the	default	view	for.

3.	 Click	Properties	on	the	shortcut	menu.

4.	 Click	the	Administration	tab.

5.	 Note		If	the	Administration	tab	does	not	appear,	you	don't	have	owner
permission.

6.	 In	the	Initial	view	on	folder	box,	enter	the	view	that	you	want	to	appear
each	time	the	folder	is	opened.	The	Normal	view	displays	the	default
Microsoft	Outlook	view	for	the	type	of	items	in	the	folder.

To	change	the	default	view	for	a	public	folder,	you	must	have	owner	permission
for	the	folder,	and	there	must	be	at	least	one	custom	view	defined	that	is	visible
to	everyone	for	the	folder.



Show	only	the	custom	views	in	a
folder
1.	 On	the	View	menu,	select	Current	View,	click	Define	Views.

2.	 Select	the	Only	show	views	created	for	this	folder	check	box.



Show	All



Set	permissions	in	a	folder
If	you	are	the	owner	of	a	public	folder,	you	can	set	permissions	in	the	folder	to
give	users	the	ability	to	perform	certain	functions.	By	adding	the	user	names,
distribution	list	names,	or	public	folder	names	to	the	Name	box	on	the
Permissions	page,	you	can	determine	who	can:

Create	items
Read	items
Create	subfolders
Edit	items
Delete	items

You	can	also	determine	who	is	the	folder	owner	and	the	folder	contact	and	to
whom	the	folder	is	visible.

To	set	permissions

1.	 In	the	Folder	List,	right-click	the	public	folder	for	which	you	want	to	set
permissions,	and	then	click	Properties	on	the	shortcut	menu.

2.	 Click	the	Permissions	page.
3.	 To	add	a	user	name	to	the	list,	click	Add.
4.	 Choose	a	name	from	the	Address	Book,	and	then	click	OK.
5.	 Select	the	user's	name	in	the	Name	box	for	whom	you	want	to	change

permissions.
6.	 In	the	Roles	box,	choose	the	role	for	this	user.	The	permissions	check	boxes

will	automatically	revert	to	the	default	values	for	this	role.
7.	 If	you	want	to	define	a	custom	role,	select	the	permissions	check	boxes	that

you	require	for	this	user.	The	value	in	the	Roles	box	will	change	to
"Custom."

8.	 When	you	have	set	the	roles	for	all	the	users,	click	OK	on	the	Properties
page.

Note		To	remove	a	name,	select	the	name,	and	then	click	Remove.	You	can
remove	any	name	from	the	Name	box	except	Default.



Show	All



Create	a	custom	field
In	Outlook,	you	can	create	different	types	of	custom	fields	based	on	the	data	type
that	you	select.

If	you	want	to	enter	and	show	information	about	an	item,	you	can	create	a
simple	field	with	one	data	type.	For	example,	if	you	want	to	enter	a	date,
you	can	create	a	Date/Time	field.

If	you	want	to	show	more	than	one	field	in	a	column	in	a	table	(or	in	a	row
in	a	card),	you	can	create	a	combination	field	with	a	Combination	data	type.
You	can	either	show	all	the	selected	fields	joined	together	in	a	column	or
show	only	the	first	non-empty	field.	This	is	useful	if	you	want	to	optimize
the	use	of	screen	space	in	a	view.

If	you	want	to	show	the	results	of	calculations	on	standard	fields	or	fields
you	create,	you	can	create	a	formula	field.



What	do	you	want	to	do?

Create	a	simple	field	for	a	folder

Create	a	combination	field	for	a	folder

Create	a	formula	field	for	a	folder



Show	All



About	Outlook	forms
A	form	is	an	easy	way	to	distribute	and	collect	information	electronically.	For
example,	a	form	can	be	available	for	anyone	to	order	supplies	or	post
information	in	a	public	folder.	Microsoft	Outlook	provides	built-in	forms	such	as
the	Message	form	to	compose	messages	and	the	Contact	form	to	enter
information	for	a	contact.	If	you	have	sent	an	e-mail	message	or	created	an
appointment,	you	have	used	a	form.	Every	Outlook	item	is	based	on	a	form.

You	use	the	Outlook	Forms	design	environment	to	create	custom	forms.	Use	a
built-in	form	to	leverage	functionality	from	the	item	associated	with	it;	for
example,	to	include	automatic	name	checking	in	a	custom	form,	create	it	from	a
form	based	on	an	e-mail	message.	To	modify	a	form,	you	can	add	and	remove
fields,	controls,	options,	and	tabs.	A	form	can	be	saved	as	a	file	for	use	as	a
template	or	in	another	program	or	in	a	forms	library	to	make	the	form	available
to	others.

Developers	can	extend	forms	with	Microsoft	ActiveX	controls	and	put	World
Wide	Web	pages	on	their	forms	by	using	the	Web	Browser	control.	Forms	can	be
programmed	by	using	Microsoft	Visual	Basic	Scripting	Edition	(VBScript).

You	cannot	design	Outlook	forms	in	Microsoft	Visual	Basic	or	Visual	Basic	for
Applications	(VBA),	although	you	can	use	forms	created	with	the	Microsoft
Exchange	Electronic	Forms	Designer	(EFD)	in	Outlook.	In	order	to	use	EFD,
you	must	install	an	optional	EFD	run-time	component	that	you	can	download
from	the	Microsoft	Office	Download	Center.



How	Outlook	forms	and	items	work
together
Microsoft	Outlook	stores	its	information	in	the	form	of	individual	items	in	a
folder.	An	Outlook	item	is	similar	to	a	record	in	a	database	in	that	it	consists	of	a
group	of	fields	that	store	information	pertaining	to	the	specific	item.

Outlook	displays	the	contents	of	an	item	in	one	of	two	ways:	either	through	a
view	in	an	explorer	window,	or	through	a	form	in	an	inspector	window.	A	form
usually	provides	a	more	complete	display	of	the	information	and	lets	the	user
interact	with	the	contents	of	the	item	in	more	ways.	In	a	sense,	a	form	is	the
principal	user	interface	for	an	item.	Outlook	provides	one	or	more	standard
forms	for	each	type	of	item	(mail	message,	contact,	and	so	on).	You	can	create
customized	versions	of	these	forms	to	change	the	way	Outlook	displays	items.
You	can	display	additional	pages	that	are	usually	hidden,	and	you	can	add
controls	to	those	pages.	Typically,	these	controls	are	bound	to	fields	in	the	item
so	that	the	user	can	view	and	edit	the	contents	of	those	fields.	In	some	cases,	you
can	also	customize	the	default	pages	of	a	form.

Every	item	contains	a	Message	Class	field;	this	field	contains	the	name	of	the
form	that	Outlook	provides	to	view	and	edit	the	item.	For	example,	a	contact
item	will	have	a	default	message	class	of	IPM.Contact.	If	you	create	a	custom
form	called	Customer,	the	Message	Class	field	of	items	using	that	form	will
contain	IPM.Contact.Customer.	The	message	class	of	all	Outlook	items	always
begins	with	IPM.	The	second	part	of	the	message	class	denotes	the	type	of
Outlook	form	that	the	form	is	based	on.	The	third	portion	of	the	message	class	is
present	only	if	the	form	is	a	customized	version	of	a	standard	Outlook	form.



Types	of	forms	in	Outlook
To	create	a	custom	form	in	Microsoft	Outlook,	you	always	begin	by	choosing
one	of	the	Outlook	default	forms.	In	most	cases,	the	type	of	form	you	want	to
customize	is	determined	by	what	type	of	solution	you	are	creating.	The
following	table	lists	the	types	of	forms	and	how	they	would	typically	be	used.

Form Description
Contact Use	to	keep	track	of	information	about	a	person	or	organization.
Distribution
List

Use	to	create	a	lists	of	contacts	and	e-mail	addresses	that	can	be
used	as	a	single	e-mail	address.

Task Use	to	track	information	about	a	task	that	needs	to	be
accomplished.

Mail
Message

Use	to	send	information	to	someone	in	a	specific	format,	or	to
provide	a	means	for	them	to	enter	data	so	that	they	can	send	it
somewhere.

Post
Use	to	facilitate	a	threaded	conversation	in	a	Microsoft	Exchange
public	folder,	or	use	for	other	purposes,	such	as	posting	file
attachments	to	a	folder.

Appointment Use	to	represent	a	meeting	or	scheduled	event.
Journal
Entry Use	to	log	information	about	another	item	or	an	event.

Following	are	some	things	to	consider	when	deciding	which	type	of	form	to	use:

What	is	the	nature	of	the	solutions	you	are	creating?	If	the	form	will	be
sent,	then	an	e-mail	message	would	be	appropriate.	If	the	solution	will	be
used	to	track	information	in	a	folder,	then	a	post,	contact,	task,	or
appointment	form	would	be	more	appropriate.
Which	form	most	closely	provides	the	needed	functionality?	The	default
Outlook	forms	may	provide	much	of	the	functionality,	so	you	should
choose	the	one	that	would	require	the	least	customization.
Which	standard	fields	are	available	for	the	form?	Each	Outlook	form	has	its
own	set	of	standard	fields	to	keep	track	of	information	for	those	types	of
items.	You	should	consider	using	the	form	whose	fields	most	closely	match



you	needs.
Which	pages	of	the	form	are	customizable?	Some	pages	on	Outlook	forms
are	not	customizable,	although	you	can	hide	them	if	you	want.



Show	All



Change	the	default	form	for	a	folder
You	can	change	the	default	form	for	a	particular	folder	so	that	when	a	new	item
is	created,	it	will	use	a	custom	form.	This	procedure	requires	Owner	permission
for	a	public	folder.

1.	 Right-click	the	folder	for	which	you	want	to	specify	the	default	form,	and
then	click	Properties	on	the	shortcut	menu.

2.	 In	the	When	posting	to	this	folder,	use	box,	click	the	form	that	you	want
others	to	use.

Tip

To	copy,	install,	delete,	and	update	forms	in	this	folder,	click	Manage	on	the
Forms	tab.	You	can	also	specify	available	forms	in	a	public	folder	by	selecting
an	option	under	the	Allow	these	forms	in	this	folder	box.

Learn	how	to	change	the	form	for	existing	items	in	a	folder.



Globally	change	a	default	form
You	can	change	the	default	form	in	Microsoft	Outlook	by	making	changes	to	the
Microsoft	Windows	registry.	The	registry	settings	specify	which	forms	are
substituted	for	the	default	Outlook	forms.	For	example,	if	you	create	a	custom
form	called	"Default,"	that	custom	form	has	a	message	class	of
IPM.Note.Default,	instead	of	the	standard	Outlook	e-mail	message	class	of
IPM.Note.	You	can	add	certain	registry	keys	to	indicate	that	Outlook	should
substitute	the	IPM.Note.Default	form	for	the	standard	IPM.Note	form.

The	Forms	Administrator	utility	has	not	been	updated	for	Microsoft	Office
Outlook	2003,	and	it	does	not	create	the	registry	keys	in	the	correct	location	for
Office	Outlook	2003.	However,	you	can	use	the	Forms	Administrator	utility	to
create	a	Windows	registry	file	that	requires	only	minor	changes	to	work	with
Office	Outlook	2003.	To	use	a	Windows	registry	file	to	change	the	default	form
in	Office	Outlook	2003:

1.	 Download	the	Outlook	2000	Forms	Administrator	utility.
2.	 Run	the	Forms	Administrator	utility,	and	then	change	the	settings	as	you

would	for	Outlook	2000	or	Outlook	2002.
3.	 To	save	the	registry	settings	on	your	computer,	click	Save.	This	also	makes

the	Export	Saved	Settings	button	available.
4.	 Click	Export	Saved	Settings	to	save	a	Windows	registry	(.reg)	file.
5.	 Open	the	.reg	file	in	a	text	editor,	such	as	Notepad.
6.	 The	registry	key	paths	reference	9.0,	which	is	the	location	for	Outlook	2000

registry	settings.	Change	all	of	the	references	to	9.0	to	11.0,	which	is	where
Office	Outlook	2003	stores	registry	settings.

7.	 Save	the	.reg	file.
8.	 To	change	a	default	form	for	Office	Outlook	2003,	run	the	.reg	file	on	the

computer	so	that	the	keys	are	added	to	the	Windows	registry.

Note		If	you	used	the	Forms	Administrator	utility	to	change	the	default	forms	in
Outlook	2000	or	Outlook	2002,	and	you	then	upgrade	to	Office	Outlook	2003,
Microsoft	Office	or	Outlook	Setup	migrates	the	registry	keys	to	the	correct
location	so	that	Office	Outlook	2003	continues	to	use	the	substituted	forms.



Change	the	form	used	by	existing
items	in	a	folder
In	some	cases	you	may	need	to	change	the	form	associated	with	items	that	are
already	in	a	folder.	This	is	often	necessary	after	importing	items,	or	if	you	create
a	custom	form	after	you	have	already	created	items	based	on	a	standard
Microsoft	Outlook	form.

The	Message	Class	field	cannot	be	directly	changed	using	the	Outlook	user
interface,	but	you	can	use	VBScript,	Visual	Basic,	or	Visual	Basic	for
Applications	to	change	the	Message	Class	field.

The	following	Automation	code	can	be	used	as	a	basis	for	developing	your	own
solution.	This	code	assumes	that	the	name	of	the	new	form	is	MyForm.	It	will
change	all	contacts	in	your	default	contacts	folder	so	that	they	will	use	MyForm.

Sub	ChangeMessageClass()

Set	olApp	=	New	Outlook.Application

Set	olNS	=	olApp.GetNameSpace("MAPI")

Set	ContactsFolder	=	_

				olNS.GetDefaultFolder(olFolderContacts)

Set	ContactItems	=	ContactsFolder.Items

For	Each	Itm	in	ContactItems

			If	Itm.MessageClass	<>	"IPM.Contact.MyForm"	Then

						Itm.MessageClass	=	"IPM.Contact.MyForm"

						Itm.Save

			End	If

Next

End	Sub

	 	

Note		If	you	want	to	use	a	folder	other	than	a	default	folder,	use	the	Folders
collection	object	to	refer	to	any	folder	that	is	available	in	your	Folder	List.



Create	an	Outlook	form
All	custom	forms	must	be	based	on	existing	Microsoft	Outlook	forms.	If	you	do
not	wish	to	use	the	default	form	functionality	provided	by	Outlook,	you	can	hide
all	of	the	default	form	pages	and	use	only	the	extra	blank	pages	to	create	a
complete	custom	form.

To	begin	designing	an	Outlook	form:

1.	 Open	an	Outlook	item	by	doing	one	of	the	following:
To	open	a	mail	message,	click	the	New	Mail	Message	icon.
Click	the	arrow	beside	the	New	Mail	Message	icon,	and	then	click
Mail	Message.
On	the	File	menu,	click	New,	and	then	click	Mail	Message.
On	the	Actions	menu,	click	New	Mail	Message.
Double-click	anywhere	in	an	empty	area	of	the	Inbox	view	pane.

2.	 When	you	have	the	new	form	opened,	on	the	Tools	menu	of	the	form,	click
Forms,	and	then	click	Design	This	Form.	You	may	also	click	Design
Form,	and	then	select	to	design	a	different	form.

3.	 Add	the	fields,	controls,	and	code	that	you	want	to	your	new	form.



Customize	pages	on	a	form
In	general,	you	can	customize	up	to	five	pages	on	a	form.	For	e-mail	messages
and	posts,	you	can	customize	a	sixth	page,	the	Message	page;	and	for	contacts,
you	can	customize	the	General	page.

With	the	form	in	design	mode	:

1.	 Click	the	page	that	you	want	to	customize.

2.	 From	the	Field	Chooser,	drag	a	field	to	the	page.	Outlook	automatically
sizes	the	field	for	you.

If	the	field	that	you	want	doesn't	appear	in	the	Field	Chooser,	click	a
different	field	set	in	the	box	at	the	top	of	the	Field	Chooser.

3.	 To	align,	size,	or	remove	fields,	right-click	the	field,	and	then	select	the
options	that	you	want	on	the	shortcut	menu.

4.	 Add	and	remove	controls.

Tips

To	create	fields,	click	New	in	the	Field	Chooser.	Type	a	name	for	the	field
in	the	Name	box,	and	then	select	a	field	type	and	format.	Fields	support
calculated	expressions,	validation	formulas,	and	field	formatting.	

If	you	drag	a	field	or	control	to	a	hidden	page,	the	page	automatically
shows	on	the	form	at	run	time.

mk:@MSITStore:olmain11.chm::/html/rehowAddOrRemoveControlsFromForm.htm


Extend	the	use	of	an	Outlook	item	by
adding	additional	fields	and	pages
In	this	approach,	you	take	a	standard	Outlook	item,	such	as	a	contact,	mail
message,	task	request,	or	meeting	request	and	add	fields	and	extra	pages.

Note		All	custom	forms	must	be	based	on	existing	Outlook	forms.	If	you	do	not
wish	to	use	the	default	form	functionality	provided	by	Outlook,	you	can	hide	all
of	the	default	form	pages	and	use	only	the	extra	blank	pages	to	create	a	complete
custom	form.

1.	 Open	the	item	on	which	you	want	to	base	the	form.	For	example,	if	you
want	your	form	to	organize	and	collect	information	about	a	person	or
organization,	open	a	contact.	In	the	contact,	select	Forms	on	the	Tools
menu	and	click	Design	This	Form.	This	opens	the	item	in	design	mode.

2.	 Set	attributes	for	the	form.	In	design	mode,	you	add	attributes	such	as	a
caption,	password,	or	description	on	the	Properties	page.	The	Actions	page
lists	default	Reply	forms.	You	can	add	your	own	custom	Reply	forms	to	the
Actions	page	as	well	as	change	several	aspects	of	how	the	default	Reply
forms	work.	

3.	 Design	the	form	by	moving,	removing,	and	adding	fields	and	pages	in	the
form.	All	the	fields	in	the	form	and	all	the	fields	you	add	from	the	Field
Chooser	retain	their	built-in	properties	and	functionality.	For	procedures	on
designing	form	pages,	see	Creating	Forms	under	Solutions	with	Forms,
Public	Folders,	and	Views	on	the	Help	Contents	tab.

4.	 Test	and	publish	your	form.	You	can	instantly	see	how	your	form	looks;	just
open	your	new	form	in	run	mode	by	clicking	Run	This	Form	on	the	Form
menu	on	the	form.	You	can	publish	your	form	to	your	Personal	Forms
Library	or	to	a	folder	to	test	it,	and	then	publish	the	form	to	a	public	folder
or	to	the	Organization	Forms	Library	so	other	users	can	use	it.

mk:@MSITStore:olmain11.chm::/html/reconTypesOfFormsYouCanCreate.htm


Use	the	Field	Chooser
Although	you	can	add	a	control	to	a	form	and	then	bind	the	control	to	a	field,	it
is	usually	more	effective	to	use	the	Field	Chooser.	The	Field	Chooser	lets	you
add	a	control	and	bind	it	to	a	field	in	a	single	step.	Also,	in	many	cases,	the	built-
in	control	provided	by	the	Field	Chooser	has	special	features	and	capabilities
that	cannot	be	duplicated	by	binding	a	field	to	a	standard	control.

Microsoft	Outlook	displays	the	Field	Chooser	whenever	you	open	a	form	in
design	mode.

Note		Some	entries	in	the	Field	Chooser,	such	as	Categories,	display	ellipses
after	them.	These	entries	correspond	to	Outlook	windows.	When	you	drag	one	of
these	entries	in	the	Field	Chooser	to	a	form	page,	Outlook	creates	a	button	that
can	be	clicked	to	open	the	window.



How	to	open	a	form
You	can	open	custom	forms	that	you	create	in	Microsoft	Outlook.	How	you	open
a	custom	form	depends	on	where	you	saved	it.

To	open	a
form Do	this

In	the	Folder
Forms	Library

Select	the	folder	in	which	you	saved	the	form.	On	the	Actions
menu,	select	the	form	that	you	want	to	open.

In	the
Organizational
Forms	Library

On	the	File	menu,	click	New,	and	then	click	Choose	Form.	If
necessary,	on	the	Choose	Form	dialog	box,	click
Organizational	Forms	Library	in	the	Look	In	box.

In	the	Personal
Forms	Library

On	the	File	menu,	click	New,	and	then	click	Choose	Form.	If
necessary,	on	the	Choose	Form	dialog	box,	click	Personal
Forms	Library	in	the	Look	In	box.

Saved	as	an
Outlook
template

On	the	File	menu,	click	New,	and	then	click	Choose	Form.	If
necessary,	on	the	Choose	Form	dialog	box,	click	User
Templates	in	File	System	in	the	Look	In	box.

Saved	as	a	file

On	the	Tools	menu,	click	Find.	In	the	Find	pane,	click
Advanced	Find.	In	the	Look	for	box,	click	Files
(Outlook/Exchange),	and	then	type	the	name	of	the	file	in	the
Named	box.



How	to	edit	a	form
1.	 Open	the	form	.

How?

2.	 On	the	Tools	menu,	select	Forms	and	click	Design	This	Form	to	switch	to
the	design	mode	of	the	page.

3.	 Make	your	changes.

4.	 Save	the	form.

How?



Show	All



Create	custom	actions	for	a	form
Actions	are	a	very	powerful	feature	of	Microsoft	Outlook	forms	that	allow	you
to	create	a	wide	variety	of	solutions	without	writing	programming	code.	For
example,	you	can	use	actions	to	open	other	forms,	even	forms	of	a	different	type,
or	you	can	create	a	message	form	with	an	action	that	opens	a	contact	form.

With	the	form	in	design	mode:

1.	 Click	the	(Actions)	page.
2.	 Click	New.
3.	 Select	the	options	that	you	want.

Notes

You	can	specify	whether	you	want	an	action	to	appear	as	a	command	on
both	the	Actions	menu	of	the	form	and	the	Form	Design	toolbar,	or	just	on
the	item	menu.
You	can	also	use	actions	to	create	a	new	item.	For	example,	you	can	create
a	message	form	with	an	action	that	creates	a	new	contact.	The	new	item	is
created	in	the	open	folder,	not	in	the	Contacts	folder.
You	need	to	use	the	Forward	action	to	have	attachments	included	in	a
Reply.	So	even	if	your	Action	is	a	Reply	Action,	use	the	Forward	method
to	preserve	attachments.
There	is	no	direct	way	to	have	the	original	item	automatically	close	when
the	new	item	is	launched.	You	need	to	use	Microsoft	Visual	Basic	Scripting
Edition	(VBScript)	to	accomplish	this.



Create	a	reply	form
When	you	create	a	Message	form	,	you	often	want	users	to	send	a	reply	by	using
a	reply	form.

An	action	automatically	opens	a	reply	form,	typically	when	a	user	clicks	Reply,
Forward,	or	another	command	on	the	form.	For	example,	an	action	can	create	a
Forward	button,	that,	when	selected	by	the	user,	opens	a	Forward	form	for	the
user	to	fill	in	and	send	to	reply	to	your	message.	You	can	specify	that	the	form
use	standard	Reply	and	Forward	headers,	and	you	can	even	add	prefix	text,	such
as	RE:	to	the	Subject	field	of	your	custom	reply	form.

You	can	use	the	default	reply	forms	included	with	Outlook	(these	are	the	forms
listed	on	the	Actions	page),	or	you	can	disable	any	of	these	forms	and	create	a
custom	reply	form.	The	custom	reply	forms	that	you	create	are	listed	on	the
Actions	page	in	design	mode	in	the	form.

You	can	create	custom	buttons	and	menu	commands	and	specify	what	happens
when	the	user	chooses	them.	You	can	also	create	a	button	or	menu	command	that
opens	a	task,	a	Calendar	item,	or	even	a	note.

You	can	send	information	without	opening	a	reply	form	by	pre-addressing	a
custom	reply	form	to	go	to	a	specific	e-mail	address	or	to	a	public	folder.

mk:@MSITStore:olmain11.chm::/html/rehowHowDoIDisableStandardReplyForms.htm


What	do	you	want	to	do?

Create	a	custom	reply	form

Add	a	custom	button	or	menu	command	to	start	a	reply	form

Open	a	task,	Calendar	item,	or	note	from	a	custom	form

Use	standard	Reply	and	Forward	headers	on	a	form

Automatically	insert	text	into	the	Subject	field	of	a	reply	form

Specify	whether	a	form	prompts	the	user,	opens,	or	is	sent

Pre-address	a	reply	form	to	a	public	folder	or	an	e-mail	address

mk:@MSITStore:olmain11.chm::/html/rehowCreateReplyForms.htm
mk:@MSITStore:olmain11.chm::/html/rehowAddCustomButtonOrMenuItemToLaunchReplyForm.htm
mk:@MSITStore:olmain11.chm::/html/rehowUsingTaskCalendarOrNoteItemsInActions.htm
mk:@MSITStore:olmain11.chm::/html/rehowUsingStandardAddressingHeadersOnForms.htm
mk:@MSITStore:olmain11.chm::/html/rehowAutomaticallySetSubjectPrefixOnReplyForm.htm
mk:@MSITStore:olmain11.chm::/html/rehowGivingUsersChoiceWhetherToOpenReplyFormOrSendReplyImmediately.htm
mk:@MSITStore:olmain11.chm::/html/rehowPresetReplyFormToPublicFolder.htm


About	the	form	name	and	message
class
The	message	class	is	an	internal	identifier	used	by	Outlook	and	Microsoft
Exchange	to	locate	and	activate	a	form	.

The	MessageClass	property	corresponds	to	the	MAPI	property
PR_MESSAGE_CLASS.	This	class	property	determines	which	receiving	folder
the	message	should	be	routed	to	and	which	form	should	be	activated	to	view	the
message.

In	the	Publish	Form	As	dialog	box,	when	you	type	a	name	in	the	Display	name
field,	you	will	notice	that	the	Form	name	field	reflects	the	display	name	by
default.	You	can	leave	the	form	name	to	be	the	same	as	the	display	name	or	you
can	change	the	form	name.	The	display	name	will	be	the	caption	at	the	top	of
your	form.	The	display	name	will	also	be	used	to	construct	the	name	under
which	your	form	will	be	published.	When	you	publish	your	form,	the	display
name	will	be	listed	in	the	Choose	Form	dialog	box.

Outlook	automatically	constructs	a	message	class	for	the	form	by	preceding	the
form	name	with	IPM.	For	instance,	if	you	publish	a	mail	message	form	that	you
want	to	name	"MyForm",	in	the	Display	name	field,	type:	This	is	my	Form.	In
the	Form	name	field,	type:	MyForm.	At	the	bottom	of	the	dialog	box,	Outlook
will	display	the	message	class	for	your	new	form	as:	IPM.Note.MyForm.

When	you	search	in	the	Choose	Form	dialog	box,	you	will	see	"This	is	my
Form"	displayed	in	the	list.	If	you	select	it,	the	Display	name	field	at	the	bottom
of	the	dialog	box	will	display,	"This	is	my	Form"	and	the	Form	name	field	will
display,	"MyForm".

A	message	class,	which	is	generated	automatically	by	Outlook	from	the	form
name,	is	assigned	to	the	form.	When	a	form	with	that	message	class	is	selected,
Outlook	loads	and	displays	an	instance	of	that	form.	Outlook	will	use	the
message	class,	IPM.Note.MyForm,	to	locate	the	form	with	the	display	name,
"This	is	my	Form".

mk:@MSITStore:vbaol11.chm::/html/olproMessageClass.htm


Show	All



Item	types	and	message	classes
The	type	of	an	item	is	defined	by	its	Type	property.	The	message	class	for	an
item	is	defined	by	its	MessageClass	property.

Message	class	ID Item	type	is	used	to
IPM.Activity Create	journal	entries.
IPM.Appointment Create	appointments.
IPM.Contact Create	contacts.
IPM.DistList Create	distribution	lists
IPM.Document Create	documents.

IPM.OLE.Class Create	the	exception	item	of	a
recurrence	series.

IPM If	the	specified	form	cannot	be
found.

IPM.Note Create	e-mail	messages.

IPM.Note.IMC.Notification
Create	a	report	from	the	Internet
Mail	Connect	(the	Exchange	Server
gateway	to	the	Internet).

IPM.Note.Rules.Oof.Template.Microsoft Show	out-of-office	templates.
IPM.Post Post	a	note	in	a	folder.
IPM.StickyNote Create	a	note.
IPM.Recall.Report Create	a	message	recall	report.

IPM.Outlook.Recall Retrieve	sent	messages	from
recipient	Inboxes.

IPM.Remote Represent	a	Remote	Mail	message
header.

IPM.Note.Rules.ReplyTemplate.Microsoft Edit	rule	reply	templates.
IPM.Report Report	item	status.
IPM.Resend Resend	a	failed	message.
IPM.Schedule.Meeting.Canceled Send	meeting	cancellations.
IPM.Schedule.Meeting.Request Create	meeting	requests.
IPM.Schedule.Meeting.Resp.Neg Create	decline	meeting	responses.

mk:@MSITStore:vbaol11.chm::/html/olproType.htm
mk:@MSITStore:vbaol11.chm::/html/olproMessageClass.htm


IPM.Schedule.Meeting.Resp.Pos Create	accept	meeting	responses.
IPM.Schedule.Meeting.Resp.Tent Create	tentative	meeting	responses.

IPM.Note.Secure Send	encrypted	notes	to	other
people.

IPM.Note.Secure.Sign Send	digitally	signed	notes	to	other
people.

IPM.Task Create	tasks.
IPM.TaskRequest.Accept Create	accept	task	request	responses.

IPM.TaskRequest.Decline Create	decline	task	request
responses.

IPM.TaskRequest Create	task	requests.
IPM.TaskRequest.Update Create	updates	to	requested	tasks.



Outlook	fields	and	equivalent
properties
Name	of	field	in	Microsoft	Outlook

Field	Chooser
Name	of	equivalent	Outlook	object

model	property
%	Complete PercentComplete
Account Account
Actual	Work ActualWork
Address	Selected N/A
Address	Selector N/A
All	Day	Event AllDayEvent
Anniversary Anniversary
Assigned DelegationState
Assistant's	Name AssistantName
Assistant's	Phone AssistantTelephoneNumber
Attachment Attachments
Bcc BCC
Billing	Information BillingInformation
Birthday Birthday
Business	Address BusinessAddress
Business	Address	City BusinessAddressCity
Business	Address	Country BusinessAddressCountry
Business	Address	PO	Box BusinessAddressPostOfficeBox
Business	Address	Postal	Code BusinessAddressPostalCode
Business	Address	State BusinessAddressState
Business	Address	Street BusinessAddressStreet
Business	Fax BusinessFaxNumber
Business	Home	Page BusinessHomePage
Business	Phone BusinessTelephoneNumber
Business	Phone	2 Business2TelephoneNumber



Callback CallbackTelephoneNumber
Car	Phone CarTelephoneNumber
Categories Categories
Cc CC
Changed	By N/A
Children Children
City HomeAddressCity
Color Color
Company Companies
Company CompanyName
Company	Main	Phone CompanyMainTelephoneNumber
Complete Complete
Computer	Network	Name ComputerNetworkName
Contact FormDescription	.ContactName
Contacts Links
Content Body
Conversation ConversationTopic
Country HomeAddressCountry
Created CreationTime
Customer	ID CustomerID
Date	Completed DateCompleted
Defer	until DeferredDeliveryTime
Department Department
Distribution	List	Name DLName
Do	Not	AutoArchive NoAging
Download	State N/A
Due	By FlagDueBy
Due	Date DueDate
Duration Duration
E-mail Email1Address
E-mail	2 Email2Address
E-mail	3 Email3Address
E-mail	Selected N/A



E-mail	Selector N/A
End End
Entry	Type Type
Expires ExpiryTime
File	As FileAs
First	Name FirstName
Flag	Status FlagStatus
Follow-up	Flag FlagRequest
From SentOnBehalfOfName
FTP	Site FTPSite
Full	Name FullName
Gender Gender
Government	ID	Number GovernmentIDNumber
Have	Replies	Sent	To ReplyRecipientNames
Hobbies Hobby
Home	Address HomeAddress
Home	Address	City HomeAddressCity
Home	Address	Country HomeAddressCountry
Home	Address	PO	Box HomeAddressPostOfficeBox
Home	Address	Postal	Code HomeAddressPostalCode
Home	Address	State HomeAddressState
Home	Address	Street HomeAddressStreet
Home	Fax HomeFaxNumber
Home	Phone HomeTelephoneNumber
Home	Phone	2 Home2TelephoneNumber
Icon FormDescription	.Icon
Importance Importance
In	Folder Parent
Initials Initials
Internet	Free	Busy	Address InternetFreeBusyAddress
ISDN ISDNNumber
Job	Title JobTitle
Journal Journal



Junk	E-Mail	Type N/A
Language Language

Last	Name LastName
Last	Saved	Time N/A
Location Location
Mailing	Address MailingAddress
Mailing	Address	Indicator N/A
Manager's	Name ManagerName
Meeting	Status MeetingStatus
Message Body
Message	Class MessageClass
Message	Flag FlagStatus
Middle	Name MiddleName
Mileage Mileage
Mobile	Phone MobileTelephoneNumber
Modified LastModificationTime
Meeting	Workspace	URL MeetingWorkspaceURL
Nickname NickName
Notes Body
Office	Location OfficeLocation
Optional	Attendees OptionalAttendees
Organizational	ID	Number OrganizationalIDNumber
Organizer Organizer
Other	Address OtherAddress
Other	Address	City OtherAddressCity
Other	Address	Country OtherAddressCountry
Other	Address	PO	Box OtherAddressPostOfficeBox
Other	Address	Postal	Code OtherAddressPostalCode
Other	Address	State OtherAddressState
Other	Address	Street OtherAddressStreet
Other	Fax OtherFaxNumber
Other	Phone OtherTelephoneNumber
Outlook	Internal	Version OutlookInternalVersion



Outlook	Version OutlookVersion
Owner Owner

Pager PagerNumber
Personal	Home	Page PersonalHomePage
Phone	n	Selected N/A
Phone	n	Selector N/A
PO	Box HomeAddressPostOfficeBox
Primary	Phone PrimaryTelephoneNumber
Priority Importance
Private Sensitivity
Profession Profession
Radio	Phone RadioTelephoneNumber
Read UnRead
Received ReceivedTime
Recurrence RecurrencePattern	.RecurrenceType
Recurrence	Pattern N/A
Recurrence	Range	End RecurrencePattern	.PatternEndDate
Recurrence	Range	Start RecurrencePattern	.PatternStartDate
Recurring IsRecurring
Referred	By ReferredBy
Remind	Beforehand ReminderMinutesBeforeStart
Reminder ReminderSet
Reminder	Override	Default ReminderOverrideDefault
Reminder	Sound ReminderPlaySound
Reminder	Sound	File ReminderSoundFile
Reminder	Time ReminderTime
Reminder	Topic N/A
Remote	Status RemoteStatus
RequestStatus N/A
Requested	By N/A
Required	Attendess RequiredAttendees
Resources Resources



Response	Requested ResponseRequested
Retrieval	Time N/A
Role Role

Schedule+	Priority SchedulePlusPriority
Send	Plain	Text	Only N/A
Sensitivity Sensitivity
Sent SentOn
Show	Time	As BusyStatus
Size Size
Spouse Spouse
Start Start
Start	Date StartDate
State HomeAddressState
Status Status
Street	Address HomeAddressStreet
Subject Subject
Suffix Suffix
Team	Task TeamTask
Telex TelexNumber
Title Title
To To
Total	Work TotalWork
Tracking	Status TrackingStatus
TTY/TDD	Phone TTYTDDTelephoneNumber
User	Field	1 User1
User	Field	2 User2
User	Field	3 User3
User	Field	4 User4
Web	Page WebPage
ZIP/Postal	Code HomeAddressPostalCode



Understanding	the	forms	cache
The	forms	cache	is	a	folder	located	in	the	user's	C:\Windows\…\Application
Data\Forms	folder	that	serves	as	a	storage	location	for	forms.	The	forms	cache
improves	the	load	time	of	a	form	because	commonly	used	forms	are	loaded	from
the	hard	disk	rather	than	downloaded	from	the	server.	When	a	form	is	activated
for	the	first	time,	the	form	definition	file	is	copied	from	its	forms	library	to	the
Forms	folder.	The	forms	cache	keeps	a	temporary	copy	of	the	form	definition	in
a	subfolder	whose	name	roughly	matches	the	name	of	the	form.

The	form	table,	Frmcache.dat,	also	located	in	the	Forms	folder,	is	used	to	locate
a	form	and	to	prevent	multiple	instances	of	the	same	form	from	being	loaded	in
the	cache.	When	a	form	is	activated,	Microsoft	Outlook	checks	to	see	if	a	form
with	the	same	message	class	is	already	in	the	cache.	If	not,	it	copies	the	form
definition	to	the	cache.	In	addition,	if	a	change	has	been	made	to	a	form,	Outlook
copies	the	new	form	definition	to	the	cache.

Outlook	looks	for	forms	in	the	following	order.	When	a	match	is	found,	Outlook
opens	the	form	and	does	not	search	further.

1.	 Standard	Outlook	forms,	such	as	Note,	Post,	and	Contact,	in	the
Application	Forms	Library

2.	 Forms	already	cached	in	the	form	cache
3.	 Forms	published	in	the	folder	that’s	currently	selected
4.	 Forms	in	the	Personal	Forms	Library
5.	 Forms	in	the	Organizational	Forms	Library

Because	Outlook	caches	forms,	you	should	try	to	avoid	having	more	than	one
form	with	the	same	name	or	publishing	the	same	form	to	more	than	one	forms
library.	Forms	used	in	a	folder-based	solution	should	be	published	only	in	the
folder.	If	you’re	developing	a	solution	based	on	mail	message	forms,	you	can
temporarily	publish	the	forms	in	your	Personal	Forms	Library.	Once	the	form	is
finalized,	you	should	publish	the	form	to	the	Organizational	Forms	Library	on
the	Microsoft	Exchange	Server	and	delete	the	form	from	your	Personal	Forms
Library	after	making	a	backup	of	the	form.	If,	for	some	reason,	you	need	to
publish	a	form	in	more	than	one	location,	you	should	be	sure	to	keep	all	forms
libraries	up-to-date	with	the	current	version	of	the	form.



Note		It	is	not	possible	to	disable	the	forms	cache.	If	you	set	the	size	of	the	form
cache	to	0,	Outlook	will	not	be	able	to	open	any	custom	forms.



Show	All



Create	custom	forms	by	using	Visual
Basic	Scripting	Edition
Microsoft	VBScript	is	a	subset	of	Visual	Basic	for	Applications.	You	can	use
VBScript	to	create	procedures	that	control	Microsoft	Outlook	folders,	objects,
items,	and	properties.	VBScript	in	Outlook	requires	a	special	object	syntax	that
has	some	differences	from	referencing	objects	in	Visual	Basic	for	Applications.

Learn	about	the	Outlook	object	model.

You	can	choose	the	Outlook	item	on	which	to	base	your	custom	form.	Learn
about	choosing	an	item.

You	can	extend	Outlook	forms	by	using	custom	controls	from	the	Control
Toolbox.	Outlook	forms	can	use	most	of	the	properties	and	methods	that	come
with	the	controls.	Since	controls	cannot	store	values,	to	store	the	value	you	need
to	bind	the	control	to	an	Outlook	field.

Learn	about	binding.

The	Outlook	object	browser	displays	the	classes,	properties,	methods,	events,
and	constants	available	from	the	Outlook	object	library.	The	object	browser	lets
you	view	and	use	objects	in	the	Microsoft	Script	Editor	and	obtain	information
about	the	syntax	for	using	the	object.

Learn	about	viewing	and	using	the	object	browser.

The	Microsoft	Script	Debugger	provides	you	with	a	comprehensive	debugging
environment	for	testing	and	correcting	errors	in	the	VBScript	code	for	your
forms.

Learn	about	the	Script	Debugger.

mk:@MSITStore:olmain11.chm::/html/rerefChooseWhichItemToBaseFormOn.htm
mk:@MSITStore:olmain11.chm::/html/rehowBindControlsToFields.htm


Show	All



Troubleshooting	forms
I	can't	find	the	form	I	created.

The	form	may	be	visible	only	for	message	responses.	To	trigger	the
response	form,	create	a	form,	such	as	a	new	message	form,	and	then	send	it
to	yourself.	Open	the	response	form,	click	the	(Properties)	page,	and	then
clear	the	Use	form	only	for	responses	check	box.
The	form	may	not	have	been	saved,	or	it	may	not	have	been	saved	to	a
forms	library.
Based	on	the	item	type	used,	switching	to	a	table	view	may	make	it	easier
to	see	the	form.

My	data	is	not	being	saved	with	the	form.

You	probably	used	the	Control	Toolbox	to	add	controls	to	a	form.	When	you	add
controls	from	the	Control	Toolbox,	if	the	control	will	be	used	to	store	data,	you
should	bind	the	control	to	a	field.	Data	is	stored	in	fields,	not	controls.	If	a
control	is	not	bound	to	a	field,	the	data	will	be	lost	when	the	item	is	saved	or
sent.

Note		If	you	drag	a	field	from	the	Field	Chooser,	the	control	that	is	created	will
automatically	be	bound	to	the	field.

The	form	is	always	saved	with	the	item.

If	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	in	a	form	changes	the
form	itself,	Microsoft	Outlook	may	save	the	form	definition	with	the	item,
creating	a	one-off	item.

I	can't	change	the	default	e-mail	message	form.

You	cannot	set	a	custom	form	as	the	default	form	for	the	Inbox.	All	incoming	e-
mail	uses	the	default	mail	form	or	a	form	specified	by	the	sender.

However,	you	can	change	the	default	mail	message	form	that	Microsoft	Outlook



will	use	in	all	folders.	For	more	information,	see	Help.

New	items	aren't	using	my	custom	form.

You	need	to	set	the	default	form	for	the	folder	to	your	custom	form.

Old	items	aren't	using	my	custom	form.

You	need	to	change	the	Message	Class	field	of	all	the	older	items	in	the	folder.

Received	e-mail	messages	or	post	forms	don't	appear	customized	when
read.

E-mail	messages	and	post	forms	can	be	viewed	in	either	Compose	or	Read
mode.	You	can	disable	this	capability	so	that	there	is	only	one	mode	for	the
form,	or	you	can	modify	the	Read	and	Compose	pages	separately.	These	options
are	on	the	Form	menu	when	in	design	time.

An	incorrect	version	of	a	form	is	being	used.

You	probably	published	this	form	to	more	than	one	forms	library.	Make	sure	that
the	form	is	published	in	only	one	place.

I	can't	find	the	message	or	notes	property	for	an	item.

The	Message	or	Notes	field	on	a	form	is	referred	to	as	the	Body	property	in	the
Microsoft	Outlook	object	model.

I	cannot	open	a	password-protected	form.

Remember	that	the	password	is	case-sensitive.

If	a	form	has	been	password-protected	and	the	password	is	no	longer	known,
Microsoft	cannot	help	you	circumvent	the	password	protection.

Error:	A	field	on	this	form	requires	a	value.

Check	whether	controls	on	the	form	have	field	validation	enabled	in	the



Properties	dialog	box	of	the	control.

If	the	error	still	appears,	you	must	delete	any	unused	custom	fields	that	exist	in
the	item,	regardless	of	whether	they	appear	on	the	form.

Use	an	Outlook	Form	in	Microsoft	Exchange.

Microsoft	Exchange	Client	does	not	recognize	Microsoft	Outlook	forms.	A
Microsoft	Exchange	Client	user	who	opens	an	Outlook	form	sees	only	the
standard	message	form	properties;	that	is,	all	custom	fields	are	not	visible.
However,	Outlook	can	open	forms	designed	with	the	Microsoft	Exchange	Forms
Designer.

The	form	commands	are	missing	from	the	Tools	menu,	so	I	can't	display
the	design	environment.

If	you	are	using	Microsoft	Word	as	your	e-mail	editor,	the	form's	design
environment	isn't	available.	Turn	off	Word	as	your	e-mail	editor,	and	then	reopen
the	form.

1.	 In	the	main	Microsoft	Outlook	window,	on	the	Tools	menu,	click	Options,
and	then	click	the	Mail	Format	tab.

2.	 Clear	the	Use	Microsoft	Word	to	edit	e-mail	messages	check	box.

My	solution	doesn't	run	on	other	computers.

Use	the	following	troubleshooting	tips	to	help	troubleshoot	problems	if	your
forms	or	programming	solution	works	on	some	computers,	but	not	others.

Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	version			If	your	solution
involves	forms	that	use	VBScript,	you	may	need	to	make	sure	that	all	computers
are	using	the	same	version	of	VBScript	that	is	being	used	on	your	development
computer.	VBScript	is	a	shared	component.	Installing	other	software,	such	as	a
newer	version	of	Microsoft	Internet	Explorer,	may	result	in	newer	versions	of
VBScript	being	installed.	For	the	latest	information	about	VBScript	versions,	go
to	http://www.microsoft.com/scripting.

Controls			If	your	solution	uses	any	nonstandard	controls,	check	to	see	if	the
controls	are	properly	installed	on	all	of	the	user's	computers.	If	you	are	using	any



control	other	than	one	of	the	Forms	2.0	controls	that	are	installed	by	Microsoft
Office,	you	should	provide	your	users	with	a	Setup	program	to	ensure	that	all	of
your	controls	are	installed	correctly.

Permissions	or	user	rights			Make	sure	that	any	user	experiencing	problems	has
proper	permissions	or	rights	to	use	any	public	folders	or	other	resources	that
your	solution	uses.

Mail	forms	If	your	solution	sends	forms	from	one	user's	computer	to	another,
did	you	select	the	Send	form	definition	with	item	check	box	on	the	form's
Properties	page	when	in	design	mode?	If	not,	you	or	the	users	must	properly
install	the	form	so	that	it	is	available	for	users.	Also,	make	sure	that	the
computers	are	configured	with	the	same	type	of	mail	accounts.	Sometimes	the
type	of	message	format	(Microsoft	Rich	Text,	HTML,	or	plain	text)	can	play	a
role,	as	well	as	whether	or	not	Microsoft	Word	is	the	e-mail	editor.	When	the
message	is	received,	is	the	type	of	message	format	the	same	as	when	it	was	sent?
Is	it	possible	the	format	was	converted	during	the	send	process?

VBScript	code	in	the	form	does	not	run.

For	security	reasons,	Outlook	does	not	run	Microsoft	Visual	Basic	Scripting
Edition	(VBScript)	in	a	form	if	the	form	is	a	one-off	form.	Ideally,	you	should
avoid	one-off	forms	and	publish	forms	to	a	form	library	instead.	If	you	are	using
Microsoft	Exchange,	you	can	implement	custom	security	settings	in	the
Microsoft	Outlook	Security	Settings	folder	to	re-enable	VBScript	in	one-off
forms.

The	macro	virus	warning	keeps	appearing.

There	is	Microsoft	Visual	Basic	Scripting	Edition	(VBScript)	code	in	the	item.
To	prevent	this	message	from	appearing,	the	VBScript	code	should	be	located	in
a	published	form.	Published	forms	are	considered	safe,	and	therefore	the	macro
virus	warning	is	not	displayed	if	the	code	exists	in	the	published	form.

If	you	published	the	form	but	still	receive	the	warning	message,	this	usually
means	one	of	two	things:	the	Send	form	definition	with	item	check	box	is
selected	on	the	form's	Properties	page;	or	the	item	has	become	a	one-off	form
and	the	form	definition,	including	VBScript	code,	has	become	part	of	the	item
itself.



The	Click	event	of	a	control	doesn't	fire.

The	Click	event	doesn’t	fire	for	controls	bound	to	a	field.	Because	the	controls
are	bound	to	a	field,	when	the	value	of	the	field	changes	you	can	use	the
PropertyChange	or	CustomPropertyChange	event.



Overview	of	Appointment	Forms
The	default	pages	of	an	appointment	form	are	not	customizable.	Because	these
pages	provide	much	of	the	Microsoft	Outlook	appointment	scheduling
functionality,	it	is	recommended	that	you	do	not	hide	these	pages,	but	add
additional	functionality	to	a	new	page	on	the	form.

Note		Meeting	Request	forms	are	not	designed	to	be	customized.	Instead,
customize	an	appointment	form,	and	the	custom	form	will	be	used	when	the
appointment	is	converted	to	a	meeting.



Overview	of	Contact	Forms
The	General	page	of	a	contact	form	can	be	modified,	but	the	other	default	pages
cannot	be	customized.	You	can	hide	these	pages	and	create	new	pages	on	the
form	if	you	choose.	Learn	about	using	contact	item	selector	fields.

Note		On	the	General	page,	you	cannot	modify	the	address,	phone	and	e-mail
"selector"	lists	that	contain	the	names	of	standard	Microsoft	Outlook	fields.
Also,	the	FileAs	list	offers	two	choices	if	only	a	contact's	first	and	last	name
have	been	entered,	or	five	choices	if	a	company	name	has	also	been	entered.
This	list	of	choices	cannot	be	modified.



Show	All



Using	contact	item	selector	fields
You	can	customize	a	contact	form	using	specially	bound	controls	that	display
dialog	boxes	that	let	users	change	fields	in	the	item.

Most	of	these	controls	are	available	directly	from	the	Field	Chooser.	The
following	lists	these	controls.

Address	Selector Address	Selected
E-mail	Selector E-mail	Selected
Phone	x	Selector Phone	x	Selected

To	use	these	fields	on	a	contact	form	page,	open	the	form	in	design	mode	and
then	use	the	Field	Chooser	to	drag	the	field	onto	the	page.	This	will
automatically	create	the	appropriate	controls	and	labels	on	the	page.



Overview	of	Distribution	List	Forms
The	default	pages	of	distribution	list	form	are	not	customizable.	Because	these
pages	provide	much	of	the	Microsoft	Outlook	distribution	list	functionality,	it’s
recommended	that	you	do	not	hide	these	pages,	but	add	additional	functionality
to	a	new	page	on	the	form.



Overview	of	Journal	Forms
The	default	page	of	the	journal	form	cannot	be	modified,	but	you	can	hide	this
page	and	create	new	pages	on	the	form	if	you	choose.

Note		The	list	of	Entry	Type	entries	cannot	be	customized.



Overview	of	Mail	Forms
All	pages	of	an	e-mail	form	are	customizable.

Like	post	forms,	mail	forms	have	separate	Compose	and	Read	pages.	When	a
user	opens	a	new	e-mail	message,	the	form	is	displayed	in	Compose	mode	and
pages	are	displayed	so	that	the	user	can	fill	out	the	form	to	be	sent.	When	the
recipient	opens	the	item,	the	form	is	displayed	in	Read	mode,	and	a	different	set
of	pages	and	controls	can	be	used	to	display	the	data	in	the	fields.	When
designing	an	e-mail	message	form,	you	can	choose	to	disable	the	separate	Read
and	Compose	pages	so	that	the	form	is	identical	at	all	times.	If	you	use	separate
pages,	you	can	often	copy	and	paste	the	controls	from	the	one	set	of	pages	to	the
other.

Learn	about	making	separate	Compose	and	Read	pages.

If	you	are	customizing	a	mail	form	for	use	in	an	organization	that	is	using
Microsoft	Exchange	Server,	the	form	should	be	published	in	the	Organizational
Forms	Library.	If	you	do	this,	then	you	can	clear	the	Send	form	definition	with
item	check	box	on	the	form's	Properties	page	so	that	only	the	field	data	is
transmitted	when	the	item	is	sent.	This	will	greatly	reduce	network	traffic	and
also	make	updating	the	form	much	easier	in	the	future	because	each	client	will
be	using	the	shared	form	that	is	published	on	the	server.

When	designing	a	mail	form,	it	is	important	to	consider	which	type	of	message
format	the	form	should	be	in.	Choices	are	Microsoft	Rich	Text,	HTML	and	plain
text.	You	can	also	specify	that	Microsoft	Word	must	be	used	as	the	e-mail	editor
if	you	enable	the	option	on	the	Properties	tab	of	the	form.	Careful	consideration
should	be	given	to	what	versions	of	Microsoft	Outlook	or	Word	potential
recipients	will	be	using.	To	programmatically	set	HTML	in	a	mail	form,	see
HTMLBody	Property.	To	programmatically	access	the	Word	object	model	to
manipulate	a	Word	e-mail	message,	see	WordEditor	Property.

Note		Some	of	the	properties	and	objects	related	to	mail	formats	may	behave
differently	depending	on	whether	Outlook	98	or	Outlook	2000	was	running	in
Corporate	Workgroup	mode	or	Internet	Mail	Only	mode.	Outlook	2002	and	later
do	not	distinguish	between	the	Corporate	Workgroup	mode	and	Internet	Mail

mk:@MSITStore:vbaol11.chm::/html/olproHTMLBody.htm
mk:@MSITStore:vbaol11.chm::/html/olproWordEditor.htm


Only	mode.



Show	All



Make	separate	compose	and	read
versions	for	a	form
You	can	create	and	edit	separate	compose	and	read	versions	for	each	page	of	a
form.	The	compose	version	is	what	the	sender	sees—	for	example,	what	you	see
when	you	create	a	message.	The	read	version	is	what	the	recipient	sees—	for
example,	what	you	see	when	you	read	your	mail.

With	the	form	in	design	mode:

1.	 To	create	or	edit	the	compose	page,	click	Edit	Compose	Page	on	the	Form
menu.

To	create	or	edit	the	read	page,	click	Edit	Read	Page	on	the	Form	menu.

2.	 Customize	pages	on	the	form.

How?

Note		You	can	quickly	switch	between	the	two	versions	by	clicking	the	Edit
Compose	Page	and	Edit	Read	Page	buttons	on	the	Form	Design	toolbar.	If
these	buttons	are	not	available,	you	set	compose	and	read	versions	to	be	the
same.	To	have	separate	compose	and	read	versions,	click	Separate	Read
Layout	on	the	Form	menu.



Overview	of	Post	Forms
Like	mail	forms,	all	post	form	pages	are	customizable,	and	post	forms	also	have
separate	Compose	and	Read	pages	that	you	can	modify.

Learn	about	making	separate	Compose	and	Read	pages.

A	folder	containing	posts	is	usually	grouped	by	the	Conversation	field	to	keep
related	topics	together.	The	Conversation	field,	also	known	as	the
ConversationTopic	property	in	the	Microsoft	Outlook	object	model,	is	set	based
on	the	Subject	field	of	a	new	post	in	the	folder.	All	replies	to	this	item	will
inherit	the	Conversation	field	from	the	parent	item.	However,	if	the	user
changes	the	Subject	field,	the	Conversation	field	will	be	set	to	the	new	subject,
creating	a	new	conversation.

mk:@MSITStore:vbaol11.chm::/html/olproConversationTopic.htm


Overview	of	Task	Forms
The	default	pages	of	a	task	form	are	not	customizable.	However,	you	can	hide
these	pages	and	create	new	pages	on	the	form	if	you	choose.

When	tasks	are	used	in	a	personal	folder,	you	can	assign	tasks	to	other	people.
However,	when	task	items	are	placed	in	a	Microsoft	Exchange	public	folder,
they	cannot	be	assigned.	Instead,	the	Owner	field	can	be	modified	to	reflect	who
currently	owns	the	task.	It	may	be	advantageous	to	create	a	custom	view	so	that
the	tasks	are	grouped	by	their	owner.



Set	properties	for	a	form
With	the	form	in	design	mode:

1.	 Click	the	(Properties)	page.

2.	 To	protect	your	form	with	a	password,	select	the	Protect	form	design
check	box,	and	then	type	a	password	in	the	Password	and	the	Confirm
boxes.	Click	OK.

3.	 To	be	able	to	send	a	copy	of	the	form	in	e-mail,	select	the	Send	form
definition	with	item	check	box.

4.	 To	have	the	form	show	only	for	replies	to	messages,	select	the	Use	form
only	for	responses	check	box.

5.	 Select	other	options	that	you	want.



Show	All



Set	the	attributes	of	a	form
The	attributes	of	a	form	are	set	in	design	mode	on	the	Properties	and	Actions
pages.	On	the	Properties	page,	the	information	such	as	Description,	Category,
and	Form	Number	helps	users	find	and	identify	your	form	in	the	New	Form
dialog	box.	If	you	do	not	want	users	to	modify	your	form,	you	can	protect	a	form
by	assigning	a	password	to	it.

One	very	important	attribute	of	your	form	is	whether	to	send	the	form	definition
with	the	form.	The	form	definition	includes	all	the	fields	and	the	code	you	add	to
the	form.	If	you	do	not	plan	to	publish	your	form	to	a	forms	library,	then	you
must	select	the	Send	form	definition	with	item	check	box	(Properties	page).
The	form	definition	includes	all	the	new	data	you	add	to	the	form	when	you	send
the	form	to	another	user.	When	you	only	plan	to	use	your	form	one	time	and	do
not	want	to	publish	your	form,	this	type	of	form	is	commonly	referred	to	as	a
one-off	form.

If	you	plan	to	publish	your	form	to	a	forms	library	to	which	other	users	have
access,	such	as	an	Organizational	Forms	Library	or	a	public	folder	library,
you	do	not	need	to	send	the	form	definition;	it	is	stored	in	the	library.	The	form
definition	can	add	considerable	size	to	your	form.

If	you	want	to	change	how	users	reply	to	your	form,	click	the	Actions	page.	The
Actions	page	lists	the	default	Reply	forms	that	are	available.	You	can	add	your
own	custom	Reply	forms	as	well.	For	example,	forms	based	on	a	new	mail
message	have	built-in	Reply,	Reply	to	All,	Forward,	and	Reply	to	Folder	forms.
When	users	receive	your	form,	the	form	will	have	buttons	and	menu	commands
so	users	can	respond	to	the	form.	You	can	disable	some	or	all	of	these	default
forms	and	set	attributes	for	how	these	Reply	forms	appear.



Show	All



Set	default	properties	for	a	form
With	your	form	in	design	mode,	click	the	tab	for	the	Properties	page.

Category			You	can	specify	a	category	for	your	form	that	will	help	to
organize	the	forms	in	the	New	Form	dialog	box	when	you	are	selecting	a
form.

Sub-Category			You	can	further	refine	the	category	by	specifying	a	sub-
category.

Always	use	Microsoft	Word	as	the	e-mail	editor			Lets	you	specify	that
Microsoft	Word	will	be	the	editor	for	the	message	portion	(or	control)	of
your	form.	This	will	add	all	the	formatting	options	that	are	available	with
Word,	such	as	spell	checking	and	thesaurus.	In	order	for	these	options	to	be
available,	the	recipients	of	your	form	must	have	Word	installed.

Note		This	feature	has	not	been	changed	from	earlier	versions	of	Microsoft
Office.	Selecting	this	option	uses	an	older	architecture	for	using	Word	as
the	e-mail	editor	and	does	not	provide	exactly	the	same	user	experience	as
enabling	Word	as	the	e-mail	editor	by	clicking	Options	on	the	Tools	menu.

Template			You	can	specify	the	Word	template	that	is	used	to	format	the
text	in	the	message	control	of	the	form.

Contact			When	you	click	Contact,	you	have	access	to	the	Address	Book.
This	allows	you	to	select	the	names	of	people	who	are	responsible	for
maintaining,	upgrading,	or	providing	information	about	this	form.	The
contact	information	that	you	provide	will	show	in	the	Forms	Manager
dialog	box	and	the	form	Properties	page.

Description			You	can	type	a	description	of	your	form.	This	could	include
instructions	for	the	use	of	the	form	as	well	as	a	full	description	of	the	form's
purpose.	This	information	will	be	displayed	in	the	About	dialog	box	on	the
Help	menu	of	the	form	as	well	as	in	the	Properties	dialog	box	for	the	form.

Version			Allows	you	to	set	a	version	number	for	this	form.	This	is	a	free-



form	text	field	and	does	not	affect	Microsoft	Outlook	behavior	in	any	way.

Form	Number			Allows	you	to	set	a	form	number.	This	is	a	free-form	text
field	and	does	not	affect	Outlook	behavior	in	any	way.

Change	Large	Icon			When	you	click	this	button,	a	File	Open	dialog	box
allows	you	to	select	a	different	large	icon	for	your	form.	Large	icons	appear
in	the	form	Properties	dialog	box.

Change	Small	Icon				When	you	click	this	button,	a	File	Open	dialog	box
allows	you	to	select	a	different	small	icon	for	your	form.	Small	icons	appear
in	the	Outlook	folder	to	represent	an	item	of	the	type	created	with	the	form.

Protect	Form	Design			When	you	select	this	box,	you	gain	access	to	the
Password	dialog	box.	You	can	type	a	password	of	your	choice	in	the
Password	field,	and	then	retype	it	in	the	Confirm	field.	If	you	make	a
mistake	when	retyping,	a	message	box	will	inform	you	and	you	will	have
the	opportunity	to	type	the	confirmation	again.	Setting	a	password	for	your
form	means	that	others	are	prevented	from	changing	any	of	the	attributes	of
your	form	after	it	is	published.	If	you	clear	the	check	box,	you	no	longer
have	password	protection.

Set	Password			When	you	click	this	button,	the	Password	dialog	box	will
allow	you	to	set	a	password	for	the	protection	of	your	form.	This	has	the
affect	of	selecting	the	Protect	Form	Design	check	box.

Note		The	password	can	be	accessed	using	the	Outlook	object	model	so	it	is
not	fully	secure.	Setting	a	password	on	a	custom	form	only	serves	as	a
deterrent	so	that	users	cannot	easily	access	the	form	in	design	mode.

Send	form	definition	with	item			Specifies	that	the	form	definition	is
included	when	you	send	the	form.	This	causes	the	form	to	be	much	larger
than	if	this	option	is	not	selected.	Selecting	this	check	box	creates	a	self-
contained	form	that	will	allow	your	recipients	to	view	the	form	even	if	they
don't	have	access	to	the	same	forms	library	as	the	sender.

If	you	don't	specify	that	the	form	definition	should	be	sent	with	the	item,
the	recipient	will	receive	a	regular	form	instead	of	the	one	that	you	have
created.	Setting	this	option	allows	recipients	to	open	the	item	in	the	form	on
their	computer,	even	though	the	form	has	not	been	installed	on	their



Outlook	system.	This	is	especially	useful	for	one-off	forms	that	have	been
created	for	one-time	use.

Outlook	does	not	run	VBScript	code	if	the	form	definition	is	included	with
the	item.	In	most	cases,	it	is	better	to	publish	a	form	rather	than	to	include
the	form	definition	with	the	item.	If	you	do	send	the	form	with	the	item,
you	can	re-enable	the	VBScript	code	if	you	use	custom	security	settings	in
the	"Outlook	11	Security	Settings"	folder	on	the	Microsoft	Exchange	public
folder.	In	that	case,	if	you	send	a	form	with	this	box	checked,	the	recipients
will	see	a	Warning				dialog	box.	They	have	the	option	of	disabling	the
macros	since	the	form	is	not	published.	Harmful	macros	could	delete	or
copy	their	files,	or	send	mail	from	their	mailbox	to	another	user.

If	network	or	file	transfer	time	is	an	issue,	and	you	cannot	publish	the	form
for	some	reason,	an	alternative	to	sending	the	form	definition	is	to	save	the
form	and	send	it	as	an	attachment	to	another	form.	Recipients	can	take	the
attached	form	and	publish	it	in	their	own	forms	library.

Use	form	only	for	responses			Hides	a	form	when	it	is	published	to	a	forms
library.	This	option	is	useful	in	situations	when	you	have	created	a	form	that
is	intended	only	for	replies.	In	another	form,	you	can	specify	that	your	reply
form	will	be	used	instead	of	the	default	reply	form.

To	use	your	form	only	for	responses,	select	the	Use	form	only	for
responses	check	box,	and	then	publish	your	form.	Open	a	second	form	in
design	mode.	On	the	Actions	page	of	the	second	form,	you	can	specify
your	published	form	in	the	Reply	or	Reply	to	All	action.	To	use	your	form
as	the	default	reply	form,	double-click	the	Reply	action	in	the	second	form.
You	can	select	the	name	of	your	published	reply	form	in	the	Form	name:
field	of	the	Form	Action	Properties	dialog	box.	This	will	cause	your	reply
form	to	be	used	instead	of	the	default	reply	form.

mk:@MSITStore:olmain11.chm::/html/reconTypesOfFormsYouCanCreate.htm


Show	All



Add	Help	to	a	form
A	Help	file	cannot	be	associated	with	a	form,	so	you	cannot	use	the
HelpContextID	property	to	create	Help	for	a	Microsoft	Outlook	form.	Instead,
you	can	use	the	following	steps	to	add	a	page	of	explanatory	text	to	your	form.

1.	 Click	the	page	to	which	you	want	to	add	text.
2.	 On	the	Form	menu,	click	Rename	Page.
3.	 In	the	Page	name	box,	type	Help,	and	then	click	OK.
4.	 Drag	a	TextBox	control	from	the	Control	Toolbox	to	the	form.
5.	 Right-click	the	TextBox	control,	and	then	click	Properties	on	the	shortcut

menu.
6.	 On	the	Display	page,	select	Multi-line	check	box.
7.	 Type	the	explanatory	text	that	you	want	in	the	TextBox	control.
8.	 Right-click	the	TextBox	control,	and	then	click	Properties	on	the	shortcut

menu.
9.	 On	the	Display	page,	select	the	Read	only	check	box.

Note		If	the	Compose	page	is	different	from	the	Read	page,	you	may	need	to
create	separate	Help	pages.



Change	the	icons	associated	with	your
form
1.	 In	design	mode,	click	the	Properties	page.
2.	 Click	Change	Large	Icon	or	Change	Small	Icon.
3.	 Select	the	icon	you	want	to	use.

Note		Sometimes	you	may	find	that	even	if	you	specify	that	a	custom	form
should	use	a	specific	icon,	when	you	view	an	item	in	a	folder,	a	standard	icon	is
used	instead.	This	may	happen	in	the	following	scenarios:

You	published	the	form	in	a	location	that	is	not	accessible	to	everyone.	For
example,	when	they	receive	a	custom	e-mail	message	form,	they	do	not
have	access	to	the	custom	form.	Therefore,	Microsoft	Outlook	displays	the
standard	icon.
The	item	has	become	a	one-off	form.	In	this	case,	the	message	class	of	the
item	changes	to	the	default	message	class	for	that	particular	type	of	item
and	the	icon	reverts	back	to	the	default	icon	for	that	type	of	item.
You	replied	to	or	forwarded	an	item	in	a	folder	and	the	new	item	does	not
use	the	custom	icon.	In	this	case,	the	form	action	that	started	the	new	item
did	not	specify	a	custom	message	class.	Therefore,	the	new	item	is	a
standard	form	that	will	not	have	a	custom	icon.
You	replied	to	or	forwarded	an	item	in	a	folder.	In	this	case,	Outlook
replaces	the	custom	icon	with	the	standard	icon	so	that	the	reply	or	forward
indicator	arrows	can	be	displayed.

The	following	resolutions	correspond	to	the	causes	listed	above:

Publish	the	form	to	a	location	that	is	accessible	to	everyone	using	the	form,
typically	the	Organizational	Forms	Library.
Reset	the	message	class	of	the	item.
Disable	the	standard	Reply,	ReplyAll,	and	Forward	actions	and	create
custom	Reply,	ReplyAll,	or	Forward	actions	that	start	your	custom	form
instead.
This	is	a	design	limitation	of	Outlook.	The	forward	or	reply	icons	will
always	be	used	instead	of	your	custom	icon.



Show	or	hide	fields	when	printing
and	saving	a	form
1.	 In	design	mode,	right-click	the	field	that	you	want,	and	then	click

Properties	on	the	shortcut	menu.

2.	 Click	the	Validation	page.

3.	 Select	or	clear	the	Include	this	field	for	Printing	and	Save	As	check	box.



Hide	or	show	form	pages
While	in	design	mode:

1.	 Click	the	page	that	you	want	to	hide	or	show.

2.	 On	the	Form	menu,	click	Display	This	Page	to	clear	or	select	the	check
mark.

Notes

Parentheses	around	a	page	name	indicate	the	page	is	hidden.	You	cannot
show	the	(Properties)	or	(Actions)	pages.

If	you	drag	a	field	or	control	to	a	hidden	page,	the	page	automatically
shows.

To	change	what	appears	on	the	default	or	first	page	of	an	item,	hide	the	first
page,	and	then	create	a	new	version	on	one	of	the	custom	pages.

At	least	one	page	must	be	visible	in	a	form	.



Require	a	value	for	a	field	or	control
1.	 In	design	mode,	right-click	the	field	or	control	that	you	want,	and	then	click

Properties	on	the	shortcut	menu.

2.	 Click	the	Validation	page.

3.	 Select	the	A	value	is	required	for	this	field	check	box.



Show	All



About	standard	fields	in	Microsoft
Outlook
Microsoft	Outlook	provides	standard	fields	for	each	standard	item.	Some	fields
are	available	in	individual	items,	and	you	can	add	and	remove	all	fields	from	a
table	or	card	view	type.

The	value	for	fields	with	the	Yes/No	data	type	is	saved	as	-1	or	0.	The	value	for
fields	with	the	Duration	data	type	is	saved	as	minutes.



What	do	you	want	more	information	about?

Standard	fields	in	a	Calendar	item

Field
Edit
in
view

Data	type	and	meaning

All	Day
Event Yes Yes/No.	If	set	to	Yes,	the	Duration	field	is	set	to	24	hours

(1440	minutes).
Attachment No Yes/No.
Billing
Information Yes Text.

Categories Yes Text.	Field	used	to	group	and	find	related	items.	Multiple
categories	are	separated	by	commas.

Contacts No Text.	Names	of	contacts	linked	to	this	item.	Multiple	names
are	separated	by	commas.

Conversation No Text.	Value	of	the	Subject	field	in	the	original	message	in	a
conversation.

Created No Date/Time.	Date	and	time	the	Calendar	item	is	created.
Do	Not
AutoArchive Yes Yes/No.	Specifies	whether	to	archive	the	Calendar	item.

Duration No
Duration.	24	hours	(1440	minutes)	if	the	All	Day	Event
field	is	set	to	Yes.	Otherwise,	the	difference	between	the
values	of	the	End	and	Start	fields.	Saved	as	minutes.

End Yes Date/Time.	End	date	and	time	of	a	Calendar	item.

Importance Yes

The	following	settings	apply.
0	Low	importance
1	Normal	importance
2	High	importance

Icon Yes Internal	data	type.
In	Folder No Text.	Name	of	the	folder	that	contains	the	Calendar	item.
Location Yes Text.	Location	of	a	meeting	or	appointment.

The	following	settings	apply.
0	None



Meeting
Status No

1	Meeting	organizer
2	Tentatively	accepted
3	Accepted
4	Declined
5	Not	yet	accepted

Message
Class No Specifies	the	message	class	for	the	type	of	item.

Mileage Yes Text.
Modified No Date/Time.	Last	time	the	Calendar	item	was	modified.
NetMeeting
AutoStart Yes Yes/No.	Specifies	whether	an	online	meeting	starts

immediately	when	the	reminder	appears.
NetMeeting
Office
Document
Path

Yes Text.	Specifies	the	path	of	the	Microsoft	Office	document
used	for	online-meeting	collaboration.

NetMeeting
Organizer	E-
mail

Yes Text.	E-mail	address	of	the	online-meeting	organizer.

NetMeeting
Server Yes Text.	Name	of	the	NetMeeting	server	for	the	online	meeting.

NetMeeting
Type No

The	following	settings	apply.
0	NetMeeting
1	NetShow

NetMeeting
URL Yes Text.	The	URL	of	the	online	meeting.

Notes No Text.	Value	of	the	text	box	of	the	appointment.
Online
Meeting Yes Yes/No.

Online
Meeting
Type

Yes
The	following	settings	apply.
0	NetMeeting
1	NetShow

Optional
Attendees No Text.	Names	of	optional	attendees	for	a	meeting	or

appointment.	Multiple	names	are	separated	by	semicolons.
Organizer No Text.	Name	of	the	organizer	of	a	meeting	or	appointment.
Outlook



Internal
Version

No For	administrator	use	only.

Outlook
Version No Text.	Version	of	Outlook	that	the	Calendar	item	is	created

in.

Read No Yes/No.	Specifies	whether	the	Calendar	item	has	been
marked	as	read.

Recurrence No

The	following	settings	apply.
0	None
1	Daily
2	Weekly
3	Monthly
4	Yearly

Recurrence
Pattern No Text.	Combination	of	the	values	of	the	Recurrence,	Start,

and	End	fields.
Recurrence
Range	End No Date/Time.	Last	date	and	time	of	a	recurring	Calendar	item.

Recurrence
Range	Start No Date/Time.	First	date	and	time	of	a	recurring	Calendar	item.

Recurring No Yes/No.	Specifies	whether	the	Calendar	item	recurs.
Remind
Beforehand Yes Number.	Minutes	before	the	reminder	runs	prior	to	a	meeting

or	appointment.

Reminder Yes Yes/No.	If	the	start	time	for	the	meeting	or	appointment	has
already	passed,	the	Reminder	field	cannot	be	set.

Reminder
Override
Default

Yes

Yes/No.	If	set	to	Yes,	the	Remind	Beforehand,	Reminder
Sound,	and	Reminder	Sound	File	fields	are	used	to	control
the	reminder	for	the	item.	If	set	to	No,	the	options	in	the
Reminders	Options	dialog	box	(on	the	Tools	menu,	click
Options,	click	the	Other	tab,	click	Advanced	Options,	and
then	click	Reminder	Options)	are	used.

Reminder
Sound Yes Yes/No.	Specifies	whether	to	play	the	sound	file	as	a

reminder.
Reminder
Sound	File Yes Text.	Path	of	the	sound	file	to	be	played	as	a	reminder.

Required
Attendees No Text.	Names	of	required	attendees	for	a	meeting	or

appointment.	Multiple	names	are	separated	by	semicolons.

Resources No Text.	Names	of	resources	for	a	meeting	or	appointment.



Multiple	names	are	separated	by	semicolons.
Response
Requested Yes

Yes/No.	In	a	meeting	request,	specifies	whether	the	recipient
has	been	asked	to	respond.

Sensitivity No

The	following	settings	apply.
0	Normal
1	Personal
2	Private
3	Confidential

Show	Time
As Yes

The	following	settings	apply.
0	Free
1	Tentative
2	Busy
3	Out	of	Office

Size No Number.	Number	of	bytes	used	by	the	Calendar	item.
Start Yes Date/Time.	Start	time	of	a	Calendar	item.
Subject Yes Text.

Standard	fields	in	a	contact

Field
Edit
in
view

Data	type	and	meaning

Account Yes Text.

Address
Selected Yes

Displays	the	address	text	that	was	entered	into	the
Address	field	based	on	the	value	of	the	Address
Selector	field.

Address
Selector Yes

The	following	settings	apply.	
Home	Business
Other

Anniversary Yes
Date/Time.	When	the	Anniversary	field	has	a	value,	a
Calendar	item	is	attached	to	the	contact,	and	the
Attachment	field	is	set	to	Yes.

Assistant's
Name Yes Text.

Assistant's



Phone Yes Text.

Attachment No Yes/No.	Set	to	Yes	when	the	Anniversary	or	Birthday
field	is	a	non-empty	field.

Billing
Information Yes Text.

Birthday Yes
Date/Time.	When	the	Birthday	field	has	a	value,	a
Calendar	item	is	attached	to	the	contact,	and	the
Attachment	field	is	set	to	Yes.

Business
Address

Yes
(Card
view
only)

Text.

Business
Address	City Yes Text.

Business
Address
Country

Yes Text.

Business
Address	PO
Box

Yes Text.

Business
Address	Postal
Code

Yes Text.

Business
Address	State Yes Text.

Business
Address	Street

Yes
(Card
view
only)

Text.

Business	Fax Yes Text.
Business	Home
Page Yes Text.

Business	Phone Yes Text.
Business	Phone
2 Yes Text.



Callback Yes Text.
Car	Phone Yes Text.

Categories Yes Text.	Field	used	to	group	and	find	related	items.
Multiple	categories	are	separated	by	commas.

Children Yes Text.
City Yes Text.
Company Yes Text.
Company	Main
Phone Yes Text.

Computer
Network	Name Yes Text.

Contacts No Text.	Names	of	contacts	linked	to	this	item.	Multiple
names	are	separated	by	commas.

Country/Region Yes Text.
Created No Date/Time.	The	date	and	time	the	contact	is	created.
Customer	ID Yes Text.
Department Yes Text.
E-mail No Text.
E-mail	2 No Text.
E-mail	3 No Text.

E-mail	Selected Yes Displays	the	e-mail	address	that	was	entered	based	on
the	value	of	the	E-mail	Selector	field.

E-mail	Selector Yes

The	following	settings	apply.

0	E-mail
1	E-mail	2
2	E-mail	3

E-mail	Display
As Yes

Alternate	text	that	represents	the	e-mail	address	stored
in	the	E-mail	field.	This	text	displays	on	the	To	line
when	addressing	a	message	or	appointment.

E-mail2
Display	As Yes

Alternate	text	that	represents	the	e-mail	address	stored
in	the	E-mail	2	field.	This	text	displays	on	the	To	line
when	addressing	a	message	or	appointment.

E-mail3 Alternate	text	that	represents	the	e-mail	address	stored



Display	As Yes in	the	E-mail	3	field.	This	text	displays	on	the	To	line
when	addressing	a	message	or	appointment.

File	As No Text.	Value	of	the	Full	Name	field,	unless	modified	by
the	user.

First	Name Yes Text.
Follow	Up	Flag Yes Text.
FTP	Site Yes Text.	FTP	site	name	for	the	contact.

Full	Name Yes

Text.	Value	of	the	Title,	First,	Middle,	Last,	and	Suffix
fields	of	the	item,	separated	by	spaces.	Any	changes
made	to	the	Full	Name	field	are	reflected	in	its
component	fields.

Gender Yes

The	following	settings	apply.
0	Unspecified
1	Female
2	Male

Government	ID
Number Yes Text.

Hobbies Yes Text.

Home	Address

Yes
(Card
view
only)

Text.

Home	Address
City Yes Text.

Home	Address
Country Yes Text.

Home	Address
PO	Box Yes Text.

Home	Address
Postal	Code Yes Text.

Home	Address
State Yes Text.

Home	Address
Street

Yes
(Card
view
only)

Text.



Home	Fax Yes Text.
Home	Phone Yes Text.
Home	Phone	2 Yes Text.
Icon Yes Internal	Data	Type.

IM	Address Yes
Instant	Messaging	address.	(Instant	Messaging	is	a
feature	of	the	Microsoft	MSN	Messenger	Service	and
Microsoft	Exchange	Instant	Messaging	Service.)

In	Folder Yes Text.	Name	of	the	folder	that	contains	the	contact.
Initials Yes Text.

Internet	Free-
Busy	Address Yes

Text.	Refers	to	the	reading	and	publishing	of	a	calendar
user's	free/busy	map	of	events.	The	map	is	retrieved
when	a	user	plans	a	meeting.

ISDN Yes Text.	Phone	number	for	ISDN	connection.
Job	Title Yes Text.

Journal Yes Yes/No.	Specifies	whether	activities	are	automatically
recorded	in	the	Journal	for	the	contact.

Language Yes Text.
Last	Name Yes Text.
Location Yes Text.

Mailing
Address

Yes
(Card
view
only)

Text.

Mailing
Address
Indicator

Yes Yes/No.	Indicates	whether	the	address	specified	by	the
Address	Selector	field	is	the	mailing	address.

Manager’s
Name Yes Text.

Message	Class Text.	Specifies	the	message	class	for	the	type	of	item.
Middle	Name Yes Text.
Mileage Yes Text.
Mobile	Phone Yes Text.
Modified No Date/Time.	Last	date	and	time	the	contact	was	modified.
Nickname Yes Text.
Notes No Text.	Value	of	the	text	box	of	the	contact.



Office	Location Yes Text.
Organizational
ID	Number

Yes Text.

Other	Address

Yes
(Card
view
only)

Text.

Other	Address
City Yes Text.

Other	Address
Country Yes Text.

Other	Address
PO	Box Yes Text.

Other	Address
Postal	Code Yes Text.

Other	Address
State Yes Text.

Other	Address
Street

Yes
(Card
view
only)

Text.

Other	Fax Yes Text.
Other	Phone Yes Text.
Outlook
Internal	Version No For	administrator	use	only

Outlook
Version No Text.	Version	of	Outlook	that	the	contact	is	created	in.

Pager Yes Text.
Personal	Home
Page Yes Text.

Phone	1
Selected
(through	Phone
8	Selected)

Displays	the	phone	number	that	was	selected	in	the
corresponding	Phone	Selector	field.

Phone	1 The	following	settings	apply:



Selector
(through	Phone
8	Selector)

Business,	Home,	Business	Fax,	Mobile,	Radio,	Car,
Other,	and	ISDN

PO	Box Yes Text.
Primary	Phone Yes Text.

Private Yes Yes/No.	Indicates	whether	a	specific	contact	is	visible	to
others	who	have	access	to	the	Contacts	folder.

Profession Yes Text.
Radio	Phone Yes Text.

Read No Yes/No.	Specifies	whether	the	contact	has	been	marked
as	read.

Referred	By Yes Text.
Reminder Yes Yes/No.

Reminder	Time Yes Date/Time.	Date	and	time	that	a	reminder	is	run	for	a
contact.

Reminder
Topic Yes Text.	Caption	displayed	with	reminder	flag.

Sensitivity No

The	following	settings	apply.
0	Normal
1	Personal
2	Private
3	Confidential

Size No Number.	Number	of	bytes	used	by	the	contact.
Send	Plain	Text
Only
Spouse Yes Text.
State Yes Text.

Street	Address

Yes
(Card
view
only)

Text.

Subject Yes Text.	Value	of	the	Full	Name	field.	If	the	Full	Name
field	is	empty,	the	value	of	the	File	As	field	is	used.

Suffix Yes Text.	Name	suffix,	such	as	Jr.	or	Ph.D.
Telex Yes Text.



Title Yes Text.	Name	title,	such	as	Mr.,	Ms.,	or	Mrs.
TTY/TDD
Phone Yes Text.	Phone	number	for	TTY/TDD	connection.

User	Field	1	–	4 Yes
Text.	User-defined	fields	provided	for	compatibility
with	other	programs.

Web	Page Yes Text.
ZIP/Postal
Code Yes Text.

Standard	fields	in	a	distribution	list

Edit	in	view
Data	type

and
meaning

Categories Yes Text.	Field	used	to	group	and	find	related	items.
Multiple	categories	are	separated	by	commas.

Distribution
List	Name Yes Text.	The	name	of	the	distribution	list.

Icon Yes Internal	data	type.

In	Folder No Text.	Name	of	the	folder	that	contains	the
distribution	list	item.

Message
Class No Specifies	the	message	class	for	the	type	of	item.

Modified No Date/Time.	Last	time	the	distribution	list	item	was
modified.

Outlook
Internal
Version

No For	administrator	use	only.

Outlook
Version No Text.	Version	of	Outlook	that	the	distribution	list

item	is	created	in.

Sensitivity No

The	following	settings	apply.
0	Normal
1	Personal
2	Private
3	Confidential



Size No Number.	Number	of	bytes	used	by	the	distribution
list	item.

Standard	fields	in	a	Journal	entry

Edit	in	view
Data	type

and
meaning

Attachment No Yes/No.
Billing
Information Yes Text.

Categories Yes
Text.	User-defined	field	used	to	group	and	find
related	items.	Multiple	categories	are	separated	by
commas.

Company Yes Text.

Contact No Text.	Name	of	the	contact	the	Journal	entry	is
recorded	for.

Contacts No Text.	Names	of	contacts	linked	to	this	item.	Multiple
names	are	separated	by	commas.

Created No Date/Time.	Date	and	time	the	Journal	entry	is
created.

Do	Not
AutoArchive Yes

Yes/No.	Specifies	whether	to	archive	the	Journal
entry.

Duration No Duration.	Saved	as	minutes.

End Yes Date/Time.	End	date	and	time	set	for	the	Journal
entry.

Entry	Type No Text.	Type	of	entry	made	for	the	Journal	entry.
Icon Yes Internal	data	type.

In	Folder No Text.	Name	of	the	folder	that	contains	the	Journal
entry.

Message
Class No Text.	Specifies	the	message	class	for	the	type	of	item.

Mileage Yes Text.

Modified No Date/Time.	Last	time	the	Journal	entry	was
modified.



Notes No Text.	First	255	characters	in	the	body	of	the	Journal
entry.

Outlook
Internal
Version

No For	administrator	use	only.

Outlook
Version No Text.	Version	of	Outlook	that	the	Journal	entry	is

created	in.

Read No Yes/No.	Specifies	whether	the	Journal	entry	has
been	marked	as	read.

Sensitivity No

The	following	settings	apply.
0	Normal
1	Personal
2	Private
3	Confidential

Size No Number.	Number	of	bytes	used	by	the	Journal	entry.
Start Yes Date/Time.	Start	time	for	the	Journal	entry.
Subject Yes Text.

Standard	fields	in	an	e-mail	message

Field
Edit
in
view

Data	type	and	meaning

Attachment No Yes/No.
BCC No Text.	Names	in	the	Bcc	box	of	a	message.
Billing
Information Yes Text.

Categories Yes Text.	Field	used	to	group	and	find	related	items.	Multiple
categories	are	separated	by	commas.

CC No Text.	Names	in	the	Cc	box	of	a	message.

Contacts No Text.	Names	of	contacts	linked	to	this	item.	Multiple	names
are	separated	by	commas.

Conversation No Text.	Value	of	the	Subject	field	in	the	original	message	in	a
conversation.

Created No Date/Time.	Date	and	time	the	message	is	created.



Defer	Until Yes Date/Time.	Date	and	time	a	message	is	to	be	delivered.	The
server	delays	delivery	of	the	message.

Do	Not
AutoArchive Yes Yes/No.	Specifies	whether	to	archive	the	message.

Due	By Yes
Date/Time.	Date	and	time	the	action	associated	with	a
Message	Flag	is	set	to	be	completed	by.	When	a	value	is
entered	for	Due	By,	the	Flag	Status	field	is	set	to	2.

Expires Yes Date/Time.	Date	and	time	a	message	expires.

Flag	Status Yes

The	following	settings	apply.
0	Normal
1	Completed
2	Flagged

Follow	Up
Flag Yes Text.

From No Text.	Names	in	the	From	box	in	a	message.
Have
Replies	Sent
To

No Text.	Names	in	the	Have	replies	sent	to	box	in	a	message.

Header
status No Indicates	the	download	state	of	the	message.

Icon Yes Internal	data	type.

Importance Yes

The	following	settings	apply.
0	Low	importance
1	Normal	importance
2	High	importance

In	Folder No Text.	Name	of	the	folder	that	contains	the	message.
Junk	E-mail
type Yes Internal	data	type.

Message No Text.	Value	of	the	text	box	in	a	message.
Message
Class No Specifies	the	message	class	for	the	type	of	item.

Message
Flag Yes Text.	Action	associated	with	a	Message	Flag.	When	a	value

is	entered	for	Message	Flag,	the	Flag	Status	field	is	set	to	2.
Mileage Yes Text.
Modified No Date/Time.	Last	date	and	time	the	message	was	modified.



Outlook
Internal
Version

No For	administrator	use	only.

Outlook
Version No Text.	Version	of	Outlook	that	the	message	is	created	in.

Read No True/False.	Specifies	whether	the	message	has	been	marked
as	read.

Receipt
Requested No Yes/No.	Indicates	whether	message	was	sent	with	a	read	or

delivery	receipt	requested.
Received No Date/Time.	Date	and	time	the	message	is	received.
Relevance Yes Number.	User-defined	significance.

Remote
Status No

Specifies	the	status	of	Remote	Mail	header.	The	following
settings	apply.
0	None
1	Marked
2	Marked	for	download
3	Marked	for	copy

Retrieval
Time No Duration.	Specifies	the	time	it	takes	to	download	the

message	with	Remote	Mail.	Saved	as	minutes.

Sensitivity No

The	following	settings	apply.
0	Normal
1	Personal
2	Private
3	Confidential

Sent No Date/Time.	Date	and	time	the	message	is	sent.
Size No Number.	Number	of	bytes	used	by	the	message.
Subject Yes Text.
To No Text.	Names	in	the	To	box	in	a	message.

Tracking
Status No

Tracking	status	of	a	message.	The	following	settings	apply.
1	Delivered
5	Read
6	Not	Read

Standard	fields	in	a	note

Data	type



Edit	in	view and
meaning

Categories Yes Text.	Field	used	to	group	and	find	related	items.
Multiple	categories	are	separated	by	commas.

Color Yes

The	following	settings	apply.
0	Blue
1	Green
2	Pink
3	Yellow
4	White

Content No Text.	Value	of	the	text	box	of	a	note.
Created No Date/Time.	Date	and	time	the	note	is	created.
Do	Not
AutoArchive Yes Yes/No.	Specifies	whether	to	archive	the	note.

Icon Yes Internal	data	type.
In	Folder No Text.	Name	of	the	folder	that	contains	the	note.
Message
Class No Text.	Specifies	the	message	class	for	the	type	of

item.

Modified No Date/Time.	Last	date	and	time	the	note	was
modified.

Outlook
Internal
Version

No For	administrator	use	only.

Outlook
Version No Text.	Version	of	Outlook	that	the	note	is	created	in.

Read No Yes/No.	Specifies	whether	the	note	has	been
marked	as	read.

Size No Number.	Number	of	bytes	used	by	the	note.
Subject No Text.

Standard	fields	in	a	task

Edit	in	view Data	type	and
meaning

%	Complete Yes Percent.



Actual	Work Yes Duration.	Time	spent	on	a	task.	Saved	as	minutes.

Assigned No

The	following	settings	apply.
0	Not	assigned
1	Assigned	by	me
2	Assigned	to	me

Attachment No Yes/No.
Billing
Information Yes Text.

Categories Yes Text.	Field	used	to	group	and	find	related	items.
Multiple	categories	are	separated	by	commas.

Company Yes Text.

Complete Yes Yes/No.	Specifies	whether	the	task	is	marked	as
completed.

Contacts No Text.	Names	of	contacts	linked	to	this	item.
Multiple	names	are	separated	by	commas.

Conversation No Text.	Value	of	the	Subject	field	of	the	original
task.

Created No Date/Time.	Date	and	time	the	task	is	created.

Date
Completed

Yes	for	non-
recurring	tasks.
No	for
recurring	tasks.

Date/Time.	Date	and	time	the	task	is	completed.	If
the	Date	Completed	field	has	a	value,	the
Complete	field	is	set	to	Yes,	and	the	%
Complete	field	is	set	to	100.

Do	Not
AutoArchive Yes Yes/No.	Specifies	whether	to	archive	the	task.

Due	Date Yes Date/Time.
Icon Yes Internal	data	type.
In	Folder No Text.	Name	of	the	folder	that	contains	the	task.
Message
Class No Text.	Specifies	the	message	class	of	the	type	of

item.
Mileage Yes Text.

Modified No Date/Time.	Last	date	and	time	the	task	was
modified.

Notes Yes Text.	Value	of	the	text	box	of	the	task.
Outlook
Internal No For	administrator	use	only.



Version
Outlook
Version No Text.	Version	of	Outlook	that	the	task	is	created

in.

Owner

Yes,	if	task	is
in	a	public
folder;
otherwise,	No.

Text.	Owner	of	the	task.

Priority Yes

The	following	settings	apply.
0	Low	priority
1	Normal	priority
2	High	priority

Read No Yes/No.	Specifies	whether	the	task	has	been
marked	as	read.

Recurring No Yes/No.	Specifies	whether	the	task	recurs.

Reminder No Yes/No.	Specifies	whether	a	reminder	has	been
set	for	the	task.

Reminder
Override
Default

Yes Yes/No.

Reminder
Sound Yes Yes/No.	Specifies	whether	to	play	the	sound	file

as	a	reminder.
Reminder
Sound	File Yes Text.	Path	of	the	sound	file	to	be	played	as	a

reminder.
Reminder
Time Yes Date/Time.	Date	and	time	that	a	reminder	is	run

for	a	task.

Request
Status No

The	following	settings	apply.
0	No	setting
1	Not	responded
2	Accepted
3	Declined

Requested
By No Text.	In	a	task	request,	the	person's	name	who

assigned	the	task.
Role Yes Text.
Schedule+
Priority Yes Text.

The	following	settings	apply.



Sensitivity No
0	Normal
1	Personal
2	Private
3	Confidential

Size No Number.	Number	of	bytes	used	by	the	task.
Start	Date Yes Date/Time.	Start	date	and	time	for	the	task.

Status Yes

The	following	settings	apply.
0	Not	Started
1	In	Progress
2	Completed
3	Waiting	on	someone	else
4	Deferred

Subject Yes Text.
Team	Task Yes Yes/No.
To No The	owner	of	an	assigned	task.

Total	Work Yes Duration.	Time	the	task	is	expected	to	take.	Saved
as	minutes.

Standard	fields	in	a	post

Field Edit	in
view Data	type	and	meaning

Attachment No Yes/No.
Billing
Information Yes Text.

Categories Yes Text.	Field	used	to	group	and	find	related	items.	Multiple
categories	are	separated	by	commas.

Conversation No Text.	Value	of	the	Subject	field	in	the	original	item	in	a
conversation.

Created No Date/Time.	Date	and	time	the	message	is	created.

Defer	Until Yes Date/Time.	Date	and	time	a	message	is	to	be	delivered.
The	server	delays	delivery	of	the	message.

Do	Not
AutoArchive Yes Yes/No.	Specifies	whether	to	archive	the	message.

Expires Yes Date/Time.	Date	and	time	a	message	expires.



From No Text.	Names	in	the	From	box	in	a	message.
Header	status No Indicates	the	download	state	of	the	message.
Icon Yes Internal	data	type.

Importance Yes

The	following	settings	apply.
0	Low	importance
1	Normal	importance
2	High	importance

In	Folder No Text.	Name	of	the	folder	that	contains	the	message.
Message No Text.	Value	of	the	text	box	in	a	message.
Message
Class No Specifies	the	message	class	for	the	type	of	item.

Mileage Yes Text.
Modified No Date/Time.	Last	date	and	time	the	message	was	modified.
Outlook
Internal
Version

No For	administrator	use	only.

Outlook
Version No Text.	Version	of	Outlook	that	the	message	is	created	in.

Read No True/False.	Specifies	whether	the	message	has	been
marked	as	read.

Received No Date/Time.	Date	and	time	the	message	is	received.

Remote
Status No

Specifies	the	status	of	Remote	Mail	header.	The
following	settings	apply.
0	None
1	Marked
2	Marked	for	download
3	Marked	for	copy

Retrieval
Time No Duration.	Specifies	the	time	it	takes	to	download	the

message	with	Remote	Mail.	Saved	as	minutes.

Sensitivity No

The	following	settings	apply.
0	Normal
1	Personal
2	Private
3	Confidential

Sent No Date/Time.	Date	and	time	the	message	is	sent.
Size No Number.	Number	of	bytes	used	by	the	message.



Subject Yes Text.



Change	the	value	of	a	field
To	change	the	value	of	an	Outlook	field,	use	the	property	name	of	the	associated
standard	field.	For	example,	to	change	the	value	of	the	Subject	field,	use	the
following	code.

Item.Subject	=	"New	Subject"

	 	

To	change	the	value	of	a	custom	field,	use	the	following	code	to	refer	to	a
custom	field.

Item.UserProperties.Find("MyProperty").Value	=	"New	Value"

	 	



Show	All



Use	fields	with	controls
When	you	drag	a	field	from	the	Field	Chooser,	the	field	automatically	binds	to
the	appropriate	control.	Unless	you	have	a	special	requirement	to	use	a	standard
control	from	the	Control	Toolbox,	you	should	use	the	Field	Chooser	to	provide
access	to	fields	on	your	forms.

When	you	put	a	control	from	the	Control	Toolbox	on	a	form,	you	must	bind	the
control	to	a	form	if	you	want	to	save	a	value	to	or	from	a	control.	In	most	cases,
you	bind	TextBox,	CheckBox,	ListBox,	ComboBox,	and	OptionButton
controls	to	fields.	Other	controls,	such	as	Label	and	Image	controls,	that	contain
static	information	with	which	the	user	does	not	interact	are	generally	not	bound
to	a	field.

To	bind	a	control	to	a	field,	right-click	the	control,	and	then	click	Properties	on
the	shortcut	menu.	Click	the	Value	tab.	Click	Choose	Field,	and	then	click	a
field	or	click	New	to	create	a	custom	field.	Outlook	fields	are	based	on	MAPI
properties.	In	this	way,	the	values	of	fields	are	stored	with	the	item	when	you
save	or	send	the	item.	The	controls	from	the	Control	Toolbox	are	only	the	visual
containers	for	a	field	on	a	form	.	You	can	set	the	appearance	of	the	control	using
its	properties,	but	you	cannot	save	a	value.	Controls	only	exist	when	the	specific
form	appears	that	contains	the	controls.	Fields	can	be	used	on	any	form.	If	you
change	a	field	value	in	one	place,	this	value	changes	everywhere	the	field	is
used.

For	example,	to	change	the	value	of	a	custom	field	called	Fax,	you	use	the
following	code:

Item.UserProperties.Find("Fax").Value	=	"555-1234"

Note	that	since	this	is	a	field,	you	do	not	need	to	specify	the	page	or	the	control
the	field	is	bound	to.	In	the	following	code	example,	a	control	called	txtFax	is
made	invisible.	When	you	work	with	a	control,	you	must	specify	the	page	and
the	control	name.

Item.GetInspector.ModifiedFormPages("General").("txtFax").Visible	=

False



You	can	bind	a	control	to	a	field	at	run	time	by	using	the	internal	property	named
ItemProperty.	The	following	example	binds	a	TextBox	to	a	field	named
Business	Address.

Item.GetInspector.ModifiedFormPages("General").Textbox1.ItemProperty

=	"Business	Address"

Note		If	you	create	a	control	by	dragging	a	plain	text	field	to	a	form,	you	cannot
bind	the	control	to	a	field	of	a	different	type.	For	example,	you	cannot	drag	a
Subject	field	to	a	form	and	then	bind	it	to	a	field	containing	an	Email	type	(such
as	the	To	field).



Active	controls	and	selected	controls
In	design	mode,	all	controls	have	an	active	state	and	a	selected	state.	When	a
control	is	active,	it	means	you	are	working	with	the	contents	of	the	control;	when
a	control	is	selected,	it	means	you	are	working	with	the	control	itself.

Most	controls	are	automatically	selected	when	you	put	them	on	the	form	.	In
design	mode,	sizing	handles	appear	around	the	control	border	when	the	control
is	selected.	If	you	deselect	the	control,	you	can	select	it	again	by	clicking	the
control.

Clicking	a	control	that	is	selected	puts	the	control	in	the	active	state.	In	this	state,
you	can	directly	edit	the	control	Caption	or	Value	property,	depending	on	the
control.

In	both	the	selected	and	the	active	state,	you	can	use	DEL,	CTRL+X,	and
CTRL+C	for	the	Delete,	Cut,	and	Copy	commands,	respectively.	In	the	selected
state,	these	commands	are	available	on	the	shortcut	menu	and	affect	the	control
itself.	In	the	active	state,	these	commands	affect	whatever	text	is	selected	inside
the	control;	if	no	text	is	selected,	these	commands	have	no	effect.	These
commands	are	not	available	on	the	shortcut	menu	for	active	controls.



About	custom	fields	and	data	types
You	can	use	custom	fields	in	several	ways	in	Outlook.

You	can	create	new	data-entry	fields	for	a	view	or	form	so	users	can	add
their	own	custom	information.	For	example,	you	can	create	a	Date/Time
field	named	"Last	Talked	To"	in	a	contact	folder	and	then	add	the	field	to	a
Phone	List	view.

You	can	create	new	views	by	combining	the	standard	fields	in	a	single
column.	For	example,	you	can	create	a	column	that	combines	the	State	and
Country	fields	in	an	address	list	to	save	space.

You	can	create	a	formula	field	to	show	information	in	a	new	way.	For
example,	you	can	create	a	field	that	displays	"Large"	when	a	message	is
more	than	10,000	bytes	and	"Small"	when	a	message	is	under	the	same
limit.

Any	field	that	you	create	is	stored	in	the	folder	in	which	you	create	it.	To	use	a
field	in	more	than	one	folder,	you	must	recreate	the	field	in	each	folder.

You	can	create	and	view	custom	fields	in	table	views	and	card	views.	You	can
create	custom	fields	with	the	following	data	types	in	Outlook.

Data	type Use	to	represent

Combination

Combinations	of	values	of	fields	and	text	in	a	column	(table)	or
row	(card).	You	can	specify	whether	to	show	each	field	or	show
only	the	first	non-empty	field.	You	can	also	combine	text	with
fields	without	the	use	of	quotation	marks.

Currency Numeric	data	as	currency	or	mathematical	calculations	that
involve	money.

Date/Time Date	and	time	data.

Duration Numeric	data.	You	can	enter	a	duration	as	minutes,	hours,	or	days.
Values	are	saved	as	minutes.

Formula Calculations	based	on	standard	and	custom	fields.	You	can	use	any
appropriate	functions	and	operators	to	complete	the	formula.



Integer Non-decimal	numeric	data.

Keywords

When	filled	in,	this	user-defined	field	is	used	to	group	and	find
related	items	similar	to	the	way	the	Categories	field	is	used	in
Outlook.	Text	with	multiple	values	to	be	separated	by	commas.
Each	value	can	be	grouped	individually	in	a	view.

Number Numeric	data	or	mathematical	calculations	except	those	that
involve	money.	(For	money,	use	Currency	data	type.)

Percent Numeric	data	as	a	percentage.

Text Text	or	combinations	of	text	and	numbers,	such	as	addresses.	Can
be	up	to	255	characters	long.

Yes/No Data	that	contains	only	one	of	two	values,	such	as	Yes/No,
True/False,	On/Off.

Each	of	the	data	types	except	Combination,	Formula,	and	Keywords	has	a	series
of	standard	formats	you	can	use	to	show	the	values	of	the	fields.



Difference	between	a	field	and	a
column
Usually,	a	column	in	a	table	contains	the	value	of	a	single	field,	such	as	the
Received	field.	However,	you	can	show	several	fields	in	a	column	by	using	a
Formula	or	Combination	field.	Fields	can	also	be	shown	as	rows	in	a	card	view
or	as	controls	on	a	form.	A	column	is	just	one	way	to	show	the	contents	of	a
field.



Show	All



Create	a	simple	field	for	a	folder
1.	 Select	the	folder	for	which	you	want	to	create	the	field.
2.	 On	the	View	menu,	point	to	Arrange	By,	then	select	Current	View,	and

click	Customize	Current	View.
3.	 On	the	View	Summary	dialog	box,	click	Fields.
4.	 Click	New	Field.
5.	 In	the	Name	box,	type	a	name	for	the	field.
6.	 In	the	Type	box,	click	the	data	type	you	want	for	the	field.	Do	not	select

Combination	or	Formula.
7.	 In	the	Format	box,	select	the	format	you	want	for	the	field.
8.	 Click	OK.
9.	 To	position	the	field	between	the	other	fields	in	the	view,	click	Move	Up	or

Move	Down.

10.	 To	remove	the	field	from	the	view,	click	Remove.



Examples	of	standard	formats	for
data	types
You	can	format	fields	that	you	create	with	different	formats	based	on	the	data
type.	The	following	table	provides	a	list	of	some	of	the	formats	that	Microsoft
Outlook	includes.

For	a	complete	list	of	standard	formats	available	for	a	field	in	a	view,	click
Arrange	By	on	the	View	menu,	then	click	Current	View,	and	then	click
Format	Columns.	Select	the	field	you	want	to	format	in	the	Available	fields
box,	and	then	select	a	format	in	the	Format	list.	If	you	don't	find	the	format	you
want,	you	can	create	a	custom	format	with	a	Formula	data	type	and	the	Format
function.

Data	type Standard	format	examples

Currency $12,345.60	or	($12,345.60)
$12,346	or	($12,346)

Date/Time

Monday,	March	03,	1997	8:00	AM
3/03/97	8:00	AM
March	3,	1997
Mon	3/3	8:00	AM
8:00	AM

Duration

12h
12	hours
12h	(Work	Time)	(see	the	Note	below)
12	hours	(Work	Time)	(see	the	Note	below)

Integer 1,234
Keywords Text

Number

All	Digits:	1,234.567	or	-1,234.567
Truncated:	1,235	or	-1,235
Scientific:	1235E+03	or	-1235E+03
Computer:	64	K	or	128MB	or	1	GB

Percent
65.4321%
65.43%	or	-65.43%



65%	or	-65%
Text Text

Yes/No
Yes	or	No
On	or	Off
True	or	False

Note		Values	entered	in	a	field	of	a	Duration	data	type	with	a	regular	format
assume	a	24-hour	day.



Show	All



Create	a	combination	field	for	a
folder
1.	 Select	the	folder	for	which	you	want	to	create	the	combination	field.
2.	 On	the	View	menu,	point	to	Arrange	By,	then	select	Current	View,	and

click	Customize	Current	View.
3.	 On	the	View	Summary	dialog	box,	click	Fields.
4.	 Click	New	Field.
5.	 In	the	Name	box,	type	a	name	for	the	field.
6.	 In	the	Type	box,	click	Combination.
7.	 Click	Edit.
8.	 To	append	each	value	for	the	fields	that	you	want	to	use	together,	click

Joining	fields	and	any	text	fragments	to	each	other.

To	show	only	the	first	field	that	is	not	blank,	click	Showing	only	the	first
non-empty	field,	ignoring	subsequent	ones.

9.	 Click	Field,	point	to	the	field	set	that	you	want,	and	then	click	the	field	that
you	want	to	appear.

10.	 Repeat	step	9	to	add	each	field	that	you	want	to	appear.
11.	 Click	OK	twice.
12.	 To	position	the	field	between	the	other	fields	in	the	view,	click	Move	Up	or

Move	Down.

To	remove	the	field	from	the	view,	click	Remove.

Notes

Combination	fields	appear	with	the	default	format	of	the	data	type	used.	To
display	a	data	type	with	a	custom	format,	you	must	create	a	formula	field
and	use	the	Format	function.
You	cannot	sort,	group,	or	filter	the	contents	of	a	combination	field.



Show	All



Create	a	formula	field	for	a	folder
1.	 Select	the	folder	for	which	you	want	to	create	the	formula	field.
2.	 On	the	View	menu,	point	to	Arrange	By,	then	select	Current	View,	and

click	Customize	Current	View.

3.	 In	the	View	Summary	dialog	box,	click	Fields.

4.	 Click	New	Field.
5.	 In	the	Name	box,	type	a	name	for	the	field.
6.	 In	the	Type	box,	click	Formula.
7.	 Click	Edit.
8.	 To	insert	a	function	in	the	formula,	click	Function,	point	to	the	function	set

that	you	want,	and	then	click	the	formula	that	you	want.
9.	 To	insert	a	field	in	the	formula,	select	the	argument	that	you	want	to

replace,	click	Field,	point	to	the	field	set	that	you	want,	and	then	click	the
field	that	you	want.

10.	 Click	OK	twice.
11.	 To	position	the	field	between	the	other	fields	in	the	view,	click	Move	Up	or

Move	Down.
12.	 To	remove	the	field	from	the	view,	click	Remove.

Notes

Formula	fields	are	updated	with	any	change	to	a	view.	For	example,	if	you
change	the	width	of	a	column,	the	formula	fields	are	updated.
You	cannot	sort,	group,	or	filter	the	contents	of	a	formula	field.



Show	All



Examples	of	Formula	and
Combination	fields

What	you	want	to	show Custom	field Result	in	custom
field

Number	of	days	since	the	item
was	received.	(Formula	field)

DateValue	(Now())-
DateValue	([Received])
&	"	Day(s)"

6	Day(s)

Description	of	a	meeting	or
appointment	in	Calendar.
(Formula	field)

"This	meeting	occurs	"
&	[Recurrence	Pattern]
&	"	in	"	&	[Location]

The	meeting	occurs
every	day	from	12:00
P.M.	to	1:30	P.M.	in
room	1231

Amount	to	be	charged	for	a
phone	call	recorded	in	the
Journal	at	.75	a	minute.
(Formula	field)

IIF	([Entry	Type]	=
"Phone	call"	,	Format
([Duration]	*	.75,
"Currency"),	"None")

$1.50

Description	of	a	Message	Flag.
(Formula	field)

IIF	(	[Flag	Status]	=	"2",
[Message	Flag]	&	"	"	&
[Due	By],"")

Follow	up	3/5/97
8:00:00	A.M.

The	first	phone	number
recorded	for	a	contact,	in	order
of	appearance	in	the	formula.
(Combination	field)

[Business	Phone]
[Business	Phone	2]
[Home	Phone]	[Home
Phone	2]	[Car	Phone]

(555)	555-1234

A	description	of	a	field
combined	with	the	field	itself.
(Combination	field)

Task	Due:	[Due	Date] Task	Due:	3/5/97
8:00:00	A.M.



Show	All



Troubleshoot	custom	fields
The	custom	field	I	created	is	not	visible.

Custom	fields	are	stored	in	the	folder	in	which	you	create	them.	Open	the
folder	in	which	you	created	the	custom	field	to	see	if	it	is	visible.	You	must
recreate	a	custom	field	for	each	folder	in	which	you	want	to	use	it.
Custom	fields	are	stored	in	the	field	set	called	User-defined	fields	in	the
Field	Chooser	and	in	the	Show	Fields	dialog	box.	To	see	all	the	custom
fields	in	a	folder,	open	the	folder.	On	the	View	menu,	select	Arrange	By,
then	select	Current	View,	and	click	Customize	Current	View.	On	the
View	Summary	dialog	box,	click	Fields.	In	the	Select	available	fields
from	box,	click	User-defined	fields	in	folder.

When	I	try	to	sort,	group,	or	filter	a	formula	field	or	combination	field,	I
receive	an	error	message.

You	cannot	sort,	group,	or	filter	a	formula	field	or	combination	field	in	Microsoft
Outlook.



Set	properties	for	controls
There	are	two	types	of	properties	for	a	control:	Outlook	properties	and	advanced
properties.	Outlook	properties	are	the	basic	properties	needed	to	design	a
control.	Advanced	properties	offer	additional	functionality.

Outlook	properties	are	set	in	the	Properties	dialog	box,	and	must	be	set
individually.	Advanced	properties	are	set	in	the	Advanced	Properties	dialog
box	and	can	be	set	for	multiple	controls	at	once.

To	set	properties	for	a	control,	right-click	the	control,	and	then	click
Properties	on	the	shortcut	menu.	Select	the	options	that	you	want.

To	set	advanced	properties	for	controls,	select	the	controls	that	you	want,
right-click	one	of	the	controls,	and	then	click	Advanced	Properties	on	the
shortcut	menu.	Select	the	options	that	you	want.



Change	the	name	property	of	a
control
1.	 In	design	mode,	right-click	the	control	you	want,	and	then	click	Properties

on	the	shortcut	menu.

2.	 On	the	Display	page,	type	a	name	in	the	Name	box.

Note		Each	control	should	have	a	unique	name.

The	following	code	example	uses	the	ModifiedFormPages	property	of	the
current	Inspector	object	to	set	the	Name	property	of	a	CheckBox	on	a	page
named	"Test"	to	"Selection."

Item.GetInspector.ModifiedFormPages("Test").Checkbox1.Name	=

"Selection"

mk:@MSITStore:vbaol11.chm::/html/olproModifiedFormPages.htm
mk:@MSITStore:vbaol11.chm::/html/olobjInspector.htm


Show	All



Validate	user	input	to	a	field
You	can	require	that	any	field,	or	any	control	that	is	bound	to	a	field,	have	a
value.	For	example,	you	can	set	the	exact	text,	range	of	numbers,	or	any	other
criteria	for	the	field.	You	can	also	show	a	custom	message	(based	on	a	validation
formula)	that	tells	users	how	to	fill	in	the	field	if	their	entries	do	not	match	the
value	you	want.	For	example,	you	can	limit	the	number	of	characters	that	can	be
entered	in	a	TextBox.



What	do	you	want	to	do?

Require	a	value	for	a	field	or	control

Create	a	validation	formula	and	message

mk:@MSITStore:olmain11.chm::/html/rehowSetDataThatUserMustEnterIntoField.htm


Examples	of	validation	formulas
Use To	evaluate
<50 Numbers	less	than	fifty
>50 Numbers	greater	than	fifty
=50 Equal	to	fifty
? The	number	of	characters



Show	All



About	the	Control	Toolbox
The	Control	Toolbox	identifies	the	controls	you	can	add	to	a	Frame	or	page	of
a	form.

You	can	customize	the	Control	Toolbox	in	many	ways	including	the	following:

Add	pages	to	the	Control	Toolbox.

Move	controls	from	one	page	in	the	Control	Toolbox	to	another.

Rename	Control	Toolbox	pages.

Add	other	controls,	including	ActiveX	controls,	to	the	Control	Toolbox.

Copy	modified	controls	from	the	form	to	the	Control	Toolbox.

For	example,	OK	and	Cancel	buttons	are	special	types	of
CommandButtons.	If	you	copy	OK	and	Cancel	templates	to	the	Control
Toolbox,	you	can	quickly	add	them	to	other	forms.

Note		When	you	add	a	control	to	a	form	by	using	the	Control	Toolbox,	the
control	is	not	bound	to	a	field.



About	ToolTips	and	control	tips
Both	ToolTips	and	control	tips	are	short,	descriptive	phrases	that	appear	when
the	user	holds	the	mouse	pointer	briefly	over	a	control	or	another	part	of	the	user
interface.	The	difference	between	ToolTips	and	control	tips	is	that	Microsoft
Outlook	provides	ToolTips	to	developers	at	design	time,	and	developers	provide
control	tips	to	end-users	at	run	time.

You	can	customize	ToolTips	for	controls	and	for	the	Control	Toolbox.

A	control	tip	is	set	with	the	ControlTipText	property.



Add	a	page	to	the	Control	Toolbox
1.	 If	the	Control	Toolbox	is	not	visible,	click	Control	Toolbox	 	.

2.	 Right-click	the	label	of	any	page	in	the	Control	Toolbox,	and	then	click
New	Page	on	the	shortcut	menu.



Add	custom	controls	to	the	Control
Toolbox
You	can	add	a	modified	control	(based	on	modifications	made	to	the	advanced
properties)	to	the	Control	Toolbox.	You	can	also	add	other	custom	controls	to
the	Control	Toolbox,	such	as	ActiveX	controls	that	are	not	part	of	Outlook.

You	can	use	a	variety	of	custom	controls	in	Outlook	forms,	but	there	are	some
limitations.	Although	Outlook	supports	most	ActiveX	properties	and	methods,	it
does	not	support	custom	event	handling.	The	Click	event	is	the	only	event	for
which	you	can	write	code.	To	access	the	methods	of	an	ActiveX	control,	use
your	VBA	Object	Browser	to	browse	ActiveX	control	methods.



What	do	you	want	to	do?

Add	a	modified	control	to	the	Control	Toolbox

Add	other	custom	controls	to	the	Control	Toolbox

mk:@MSITStore:olmain11.chm::/html/rehowAddCustomizedControlToToolbox.htm
mk:@MSITStore:olmain11.chm::/html/rehowAddControlToToolbox.htm


Change	the	name	and	control	tip	of	a
page	in	the	Control	Toolbox
1.	 If	the	Control	Toolbox	is	not	visible,	click	Control	Toolbox	 	.

2.	 Right-click	the	label	of	the	page	that	you	want	in	the	Control	Toolbox,	and
then	click	Rename	on	the	shortcut	menu.

3.	 In	the	Caption	box,	type	a	new	name	for	the	page.

4.	 In	the	Control	Tip	Text	box,	type	new	text	for	the	control	tip.



Change	the	order	of	pages	in	the
Control	Toolbox
1.	 If	the	Control	Toolbox	is	not	visible,	click	Control	Toolbox	 	.

2.	 Right-click	the	label	of	any	page	in	the	Control	Toolbox,	and	then	click
Move	on	the	shortcut	menu.

3.	 In	the	Page	Order	box,	click	the	name	of	a	page	that	you	want	to	move.

4.	 Click	Move	Up	or	Move	Down.



Customize	an	icon	for	a	control	in	the
Control	Toolbox
1.	 If	the	Control	Toolbox	is	not	visible,	click	Control	Toolbox	 	.

2.	 Right-click	the	icon	for	the	control	you	want	in	the	Control	Toolbox,	and
then	click	Customize	control	name	on	the	shortcut	menu.

3.	 To	change	the	ToolTip,	enter	text	in	the	Tool	Tip	Text	box.

4.	 To	edit	the	icon,	click	Edit	Picture.	In	the	Color	box,	click	the	color	that
you	want	to	use,	and	then	click	the	pixel	in	the	Picture	box	where	you	want
to	apply	the	color.	Click	OK.

5.	 To	assign	a	new	bitmap,	click	Load	Picture.	In	the	File	name	box,	type	a
name	for	the	file	that	contains	the	bitmap	you	want	to	use	as	the	icon.	The
bitmap	cannot	be	larger	than	an	icon.



Delete	a	control	from	the	Control
Toolbox
1.	 If	the	Control	Toolbox	is	not	visible,	click	Control	Toolbox	 	.

2.	 In	the	Control	Toolbox,	right-click	the	control	that	you	want	to	delete,	and
then	click	Delete	control	name	on	the	shortcut	menu.



Delete	a	page	in	the	Control	Toolbox
1.	 If	the	Control	Toolbox	is	not	visible,	click	Control	Toolbox	 	.

2.	 Right-click	the	label	of	the	page	that	you	want	to	delete	in	the	Control
Toolbox,	and	then	click	Delete	Page	on	the	shortcut	menu.

Note		All	controls	on	a	page	are	deleted	when	the	page	is	deleted.



Import	or	export	a	Control	Toolbox
page
1.	 If	the	Control	Toolbox	is	not	visible,	click	Control	Toolbox	 	.

2.	 To	import	a	page,	right-click	the	label	of	any	page	in	the	Control	Toolbox,
and	then	click	Import	Page	on	the	shortcut	menu.

To	export	a	page,	right-click	the	label	of	the	page,	and	then	click	Export
Page	on	the	shortcut	menu.

3.	 In	the	File	name	box,	enter	the	name	of	the	page	that	you	want	to	import	or
enter	the	name	of	the	file	to	which	you	want	to	export	a	page.

Note		Exporting	a	page	does	not	remove	it	from	the	Control	Toolbox.



Move	a	control	to	another	page	in	the
Control	Toolbox
1.	 If	the	Control	Toolbox	is	not	visible,	click	Control	Toolbox	 	.

2.	 Drag	a	control	on	any	page	to	the	label	of	another	page.	Hold	the	mouse
pointer	over	the	label	until	the	page	appears	on	top,	and	then	drag	on	to	the
page.

Note		If	the	page	to	which	you	want	to	move	a	control	is	not	visible,	increase	the
width	of	the	Control	Toolbox	to	show	all	the	pages,	and	then	drag	the	control	to
the	appropriate	page.



Show	or	hide	the	Control	Toolbox
In	design	mode,	click	Control	Toolbox	 	.



About	groups	of	controls
A	group	is	two	or	more	controls	on	a	form	that	you	can	work	with	as	a	single
unit.	You	can	include	any	control	on	the	form	in	a	group.	Once	controls	belong
to	a	group,	you	can	work	with	the	entire	group,	or	you	can	select	a	single
control.

There	are	many	ways	to	work	with	groups	and	the	controls	in	groups.	After	you
select	a	group,	you	can	do	any	of	the	following.

Size	all	controls	in	the	group	at	the	same	time.	

Separate	controls	in	the	group	so	each	is	independent	of	the	others.	

Show	the	group	shortcut	menu	for	quick	access	to	commands	that	affect	the
group.	

Select	a	single	control	within	the	group	without	separating	controls	in	the
group.	You	can	then	change	property	settings	of	the	selected	control	without
affecting	any	other	control	in	the	group.



Add	a	control	to	a	form
Use	any	of	the	following	methods	to	add	a	control	from	the	Control	Toolbox	to
your	form	.	You	can	also	use	these	methods	to	insert	a	control	in	a	Frame,
TabStrip,	or	MultiPage	on	the	form.

Click	a	control	in	the	Control	Toolbox	and	then	click	in	the	form.	The
control	appears	in	its	default	size.	You	can	then	drag	the	border	of	the
control	to	change	its	size.

Drag	a	control	from	the	Control	Toolbox	to	the	form.	The	control	appears
in	its	default	size.

Double-click	the	control	in	the	Control	Toolbox,	and	then	click	in	the	form
once	for	each	control	you	want	to	create.	For	example,	to	create	four
command	buttons,	double-click	the	CommandButton	control	in	the
Control	Toolbox,	and	then	click	four	times	in	the	form.



Show	All



Align	controls
1.	 Select	the	controls	that	you	want	to	align	to	part	of	the	dominant	control.

How?

2.	 On	the	Layout	menu,	point	to	Align,	and	then	click	one	of	the	following.
Click To
Left Align	controls	to	the	left	edge	of	the	dominant	control.

Center Align	the	center	of	controls	to	the	vertical	center	of	the	dominant
control.

Right Align	controls	to	the	right	edge	of	the	dominant	control.
Top Align	controls	to	the	top	edge	of	the	dominant	control.

Middle Align	the	center	of	controls	to	the	horizontal	center	of	thedominant	control.
Bottom Align	controls	to	the	bottom	edge	of	the	dominant	control.

To
Grid

Align	the	upper-left	corner	of	controls	with	their	nearest	grid
point.	Note	that	this	option	is	not	based	on	the	position	of	the
dominant	control.



Align	text	in	a	control
This	procedure	is	only	available	for	the	ComboBox,	Label,	and	TextBox
controls.

1.	 Right-click	the	control	you	want,	and	then	click	Advanced	Properties	on
the	shortcut	menu.

2.	 To	set	the	TextAlign	property,	click	the	property	and	enter	a	value	in	the
Apply	box.
Set	the	TextAlign	property

to To

Left Align	the	text	with	the	left	edge	of	the	control

Right Align	the	text	with	the	right	edge	of	the
control

Center Center	the	text	relative	to	the	length	of	the
control



Allow	multiple	lines	of	text	in	a
control
1.	 In	design	mode,	right-click	the	control	you	want,	and	then	click	Properties

on	the	shortcut	menu.

2.	 On	the	Display	page,	select	the	Multi-line	check	box.

The	following	code	example	uses	the	ModifiedFormPages	property	of	the
current	Inspector	object	to	set	the	multi-line	property	of	a	TextBox	on	a
page	called	"Test."

Item.GetInspector.ModifiedFormPages("Test").Textbox1.MultiLine

=	True

mk:@MSITStore:vbaol11.chm::/html/olproModifiedFormPages.htm
mk:@MSITStore:vbaol11.chm::/html/olobjInspector.htm


Show	All



Assign	a	control	tip,	caption,	and
accelerator	key	to	a	control
1.	 Right-click	the	control	that	you	want,	and	then	click	Advanced	Properties

on	the	shortcut	menu.

2.	 To	set	the	property,	click	the	property	and	enter	a	value	in	the	Apply	box.
Set	the
property To	assign

ControlTipText The	string	you	want	to	use	as	the	control	tip
Caption The	string	you	want	to	use	as	the	caption

Accelerator
A	single	character	as	the	value	for	ALT+Key	entry.	If	you
use	a	character	from	the	caption	of	the	control,	the
character	is	underlined

Note		You	can	also	set	the	value	of	these	properties	with	code.	For	example,	to
set	the	caption	of	the	Label1	control	on	the	Message	page,	use:

Item.GetInspector.ModifiedFormPages("Message").Label1.Caption	=	"New	Caption"



Show	All



Create	a	set	of	OptionButton	controls
By	default,	all	OptionButton	controls	in	a	container	are	part	of	a	single	option
group.	This	means	that	selecting	one	of	the	buttons	automatically	sets	all	other
option	buttons	on	the	page	to	False.

If	you	want	more	than	one	option	group	on	the	page,	there	are	two	ways	to
create	additional	groups:

Use	the	GroupName	property	to	identify	related	buttons.	This	method
reduces	the	number	of	controls	required	on	the	form	,	which	can	reduce	the
hard	disk	space	required	and	improve	the	performance	of	the	form.	If	you
want	to	create	an	option	group	in	a	TabStrip	(which	is	not	a	container),	you
must	use	the	GroupName	property.

Put	related	buttons	in	a	Page,	MultiPage	,	or	Frame	on	the	form.



What	do	you	want	to	do?

Create	a	set	of	OptionButtons	using	the	GroupName	property

Add	a	control	to	a	form

mk:@MSITStore:olmain11.chm::/html/rehowCreateOptionGroupUsingGroupNameProperty.htm


Enable	or	disable	a	control	on	a	page
1.	 In	design	mode,	right-click	the	control	you	want,	and	then	click	Properties

on	the	shortcut	menu.

2.	 On	the	Display	page,	select	or	clear	the	Enabled	check	box.

The	following	code	example	uses	the	ModifiedFormPages	property	of	the
current	Inspector	object	to	set	the	Enabled	property	of	a	CheckBox	on	a
page	named	"Test."

Item.GetInspector.ModifiedFormPages("Test").Checkbox1.Enabled	=

False

mk:@MSITStore:vbaol11.chm::/html/olproModifiedFormPages.htm
mk:@MSITStore:vbaol11.chm::/html/olobjInspector.htm


Give	a	control	a	3-D	appearance
1.	 In	design	mode,	right-click	the	control	you	want,	and	then	click	Advanced

Properties	on	the	shortcut	menu.

2.	 Click	SpecialEffect,	and	then	click	the	option	you	want	in	the	box	above.

The	following	code	example	uses	the	ModifiedFormPages	property	of	the
current	Inspector	object	to	set	the	SpecialEffect	property	of	a	CheckBox
on	a	page	named	"Test."

Item.GetInspector.ModifiedFormPpages("Test").Checkbox1.SpecialEffect

=	2

mk:@MSITStore:vbaol11.chm::/html/olproModifiedFormPages.htm
mk:@MSITStore:vbaol11.chm::/html/olobjInspector.htm


Hide	or	show	a	control
1.	 In	design	mode,	right-click	the	control	you	want,	and	then	click	Properties

on	the	shortcut	menu.

2.	 On	the	Display	page,	select	or	clear	the	Visible	check	box.

The	following	code	example	uses	the	ModifiedFormPages	property	of	the
current	Inspector	object	to	set	the	Visible	property	of	a	CheckBox	on	a
page	named	"Test."

Item.GetInspector.ModifiedFormPages("Test").Checkbox1.Visible	=

False

mk:@MSITStore:vbaol11.chm::/html/olproModifiedFormPages.htm
mk:@MSITStore:vbaol11.chm::/html/olobjInspector.htm


Make	a	control	read-only
1.	 In	design	mode,	right-click	the	control	you	want,	and	then	click	Properties

on	the	shortcut	menu.

2.	 On	the	Display	page,	select	the	Read	only	check	box.

The	following	code	example	uses	the	ModifiedFormPages	property	of	the
current	Inspector	object	to	make	TextBox1	read-only.

Item.GetInspector.ModifiedFormPages("P.2").TextBox1.ReadOnly	=

True

mk:@MSITStore:vbaol11.chm::/html/olproModifiedFormPages.htm
mk:@MSITStore:vbaol11.chm::/html/olobjInspector.htm


Move	a	control	one	unit	at	a	time
1.	 In	design	mode,	right-click	the	control	you	want,	and	then	click	Properties

on	the	shortcut	menu.

2.	 On	the	Display	page,	type	a	number	in	the	Top	and	Left	boxes.



Show	the	shortcut	menu	for	controls
and	groups	of	controls
To	show	the	shortcut	menu	for	a Right-click
page the	caption	of	the	appropriate	page.

MultiPage anywhere	in	the	control,	but	not	on	the
caption	of	any	page	in	the	control.

Group	of	controls	(groups	created
with	the	Group	command)

anywhere	inside	the	rectangle	that
surrounds	the	group.

tab the	caption	of	the	appropriate	tab.

TabStrip anywhere	in	the	control,	but	not	on	the
caption	of	any	tab	in	the	control.

Any	other	control	or	container the	control	or	container.

Note		The	commands	on	a	shortcut	menu	vary	based	on	the	object	you	select.
For	example,	if	you	select	multiple	controls	that	aren't	in	a	group,	the	shortcut
menu	includes	the	Group	command;	the	shortcut	menu	for	a	text	box	does	not
include	this	command.



Show	All



Ways	to	protect	sensitive	information
Many	applications	use	data	that	is	for	authorized	users	only.	The	following	list
suggests	ways	you	can	protect	sensitive	information	in	a	form.	Note	however,
that	the	fields	associated	with	a	form	can	still	be	exposed	in	a	view.

Write	code	that	makes	a	control	(and	its	data)	invisible	to	unauthorized
users.	To	identify	a	particular	user	in	code,	use	the	following	code.

Application.GetNameSpace("MAPI").CurrentUser

The	Visible	property	makes	a	control	visible	or	invisible.

Write	code	that	sets	the	control	foreground	and	background	to	the	same
color	when	unauthorized	users	run	the	application.	This	hides	the
information	from	unauthorized	users.	The	ForeColor	and	BackColor
properties	determine	the	foreground	color	and	the	background	color.
Disable	the	control	when	unauthorized	users	run	the	application.	The
Enabled	property	determines	when	a	control	is	disabled.
Require	a	password	to	alter	a	form.
Require	a	password	for	access	to	the	application	or	a	specific	control.	You
can	use	placeholders	as	the	user	types	each	character.	The	PasswordChar
property	defines	placeholder	characters.
If	the	form	only	appears	in	a	public	folder,	you	can	set	permissions	for	the
folder	to	determine	who	can	open	the	form.

Note		Using	passwords	or	any	other	techniques	listed	above	can	improve	the
security	of	your	application,	but	these	methods	do	not	guarantee	the	prevention
of	unauthorized	access	to	your	data.



Show	All



Center	controls	in	a	form
1.	 Select	the	controls	or	groups	of	controls	that	you	want	to	center.	The

dominant	control	does	not	affect	this	procedure.

How?

2.	 On	the	Layout	menu,	point	to	Center	in	Form,	and	then	click
Horizontally	or	Vertically.



Right-align	a	control	on	a	form
1.	 Drag	a	Label	control	from	the	Control	Toolbox	to	the	left	of	the	spot

where	you	would	like	to	align	a	control.

2.	 Remove	any	text	from	the	Caption	property.

3.	 Right-click	the	label,	and	then	click	Properties	on	the	shortcut	menu.

4.	 On	the	Display	page,	select	the	Resize	with	form	check	box.

5.	 Create	the	control	you	want	to	align.

6.	 Place	the	control	to	the	right	of	the	Label	control.



Show	All



Space	controls
1.	 Select	the	controls	for	which	you	want	to	adjust	spacing.

2.	 On	the	Layout	menu,	point	to	Horizontal	Spacing	or	Vertical	Spacing,
and	then	click	one	of	the	following.
Click To

Make
Equal

Make	all	horizontal	and	vertical	spaces	between	controls	the
same	size.	The	amount	of	horizontal	and	vertical	space	will	vary
based	on	the	area	available	to	show	controls	and	the	combined
width	of	all	controls.

Increase Increase	the	space	between	controls	by	one	grid	block.
Decrease Decrease	the	space	between	controls	by	one	grid	block.

Remove Remove	the	space	between	controls.	The	controls	do	not	overlap,
but	are	immediately	adjacent	to	each	other.



Show	All



Size	controls
1.	 Select	the	controls	that	you	want	to	size	to	the	dominant	control.

How?

2.	 On	the	Layout	menu,	point	to	Make	Same	Size,	and	then	click	one	of	the
following.
Click To
Width Make	all	selected	controls	the	same	width	as	the	dominant	control.
HeightMake	all	selected	controls	the	same	height	as	the	dominant	control.

Both Make	all	selected	controls	the	same	height	and	width	as	the
dominant	control.

Note		To	size	a	control	to	fit	its	contents	(both	its	picture	and	any	text	assigned	to
the	Caption	or	Text	property),	select	the	control,	and	then	click	Size	to	Fit	on
the	Layout	menu.



Automatically	resize	controls
You	can	set	controls	to	resize	horizontally	or	vertically	when	a	user	changes	the
size	of	the	form.	The	size	of	the	control	changes	in	proportion	to	the	size	of	the
form.	For	example,	when	a	user	changes	the	size	of	a	message,	the	body	resizes
automatically.

Resize	a	control	horizontally	with	the	form

Resize	a	control	vertically	with	the	form

Resize	a	control	horizontally	and	vertically	with	the	form

mk:@MSITStore:olmain11.chm::/html/rehowResizeControlHorizontallyAtRunTime.htm


Show	All



Resize	a	control	horizontally	and
vertically	with	the	form
This	procedure	sets	an	invisible	property.	After	you	complete	the	procedure,	you
should	remove	the	code	from	the	Script	Editor.

1.	 In	design	mode,	select	the	control,	and	then	size	it	relative	to	the	form.	For
example,	if	you	want	the	control	to	always	be	same	as	the	height	of	the
form,	make	the	bottom	edge	of	the	control	equal	to	the	bottom	edge	of	the
form.

2.	 On	the	Form	menu,	click	View	Code.

3.	 Add	the	following	code	to	the	Script	Editor.	Replace	"TextBox1"	with	the
name	of	the	control	you	want	to	resize,	and	replace	"P.	2"	with	the	name	of
your	page.	Although	this	example	uses	the	Write	event,	you	can	use	any
event	to	run	the	code.

Sub	Item_Write

Item.GetInspector.ModifiedFormPages("P.2").TextBox1.LayoutFlags

=	65

End	Sub

4.	 On	the	Form	menu	of	the	form,	click	Run	This	Form.

5.	 On	the	File	menu	of	the	form,	click	Save.

Note		To	reset	the	LayoutFlags	property,	right-click	the	control,	and	then	click
Properties	on	the	shortcut	menu.	On	the	Display	page,	if	the	Resize	with	form
check	box	is	selected,	clear	it;	if	the	Resize	with	form	check	box	is	cleared,
select	it	and	then	clear	it.



Show	All



Resize	a	control	vertically	with	the
form
This	procedure	sets	an	invisible	property.	After	you	complete	the	procedure,	you
can	remove	the	code	from	the	Script	Editor.

1.	 In	design	mode,	select	the	control,	and	then	size	it	relative	to	the	form.	For
example,	if	you	want	the	control	to	always	be	the	height	of	the	form,	make
the	bottom	edge	equal	to	the	bottom	edge	of	the	form.

2.	 On	the	Form	menu,	click	View	Code.

3.	 Add	the	following	code	to	the	Script	Editor.	Replace	"TextBox1"	with	the
name	of	the	control	you	want	to	resize,	and	replace	"P.	2"	with	the	name	of
your	page.	Although	this	example	uses	the	Write	event,	you	can	use	any
event	to	run	the	code.

Sub	Item_Write

Item.GetInspector.ModifiedFormPages("P.2").TextBox1.LayoutFlags

=	68

End	Sub

4.	 On	the	Form	menu	of	the	form,	click	Run	This	Form.

5.	 On	the	File	menu	of	the	form	in	run	mode,	click	Save.

Note		To	reset	the	LayoutFlags	property,	right-click	the	control,	and	then	click
Properties	on	the	shortcut	menu.	On	the	Display	page,	if	the	Resize	with	form
check	box	is	selected,	clear	it;	if	the	Resize	with	form	check	box	is	cleared,
select	it	and	then	clear	it.



Select	multiple	controls	and	the
dominant	control
You	can	select	more	than	one	control	in	three	ways.	In	addition,	when	you	select
multiple	controls,	one	of	the	controls	becomes	a	reference	for	the	rest	and	is
called	the	dominant	control.

Selection	method What	is	selected Dominant	control

SHIFT+CLICK
All	controls	in	an	invisible
rectangle	around	the
selected	controls.

First	control	you	select

CTRL+CLICK Individual	controls,	one	at	a
time. Last	control	you	select.

Select	Objects
pointer	in	Control
Toolbox

All	controls	that	fall	within
or	touch	a	rectangle	you
draw.

Control	nearest	the	mouse
pointer	when	you	begin
drawing	the	rectangle.

Tips

Occasionally	the	CTRL+CLICK	method	may	select	additional	controls	that
are	near	to	or	adjacent	to	the	selected	controls.	For	more	accuracy,	use	the
Select	Objects	pointer	method.

If	you	CTRL+CLICK	twice	on	a	selected	control,	that	control	becomes	the
dominant	control.



Show	All



Use	z-order	to	layer	controls
1.	 Select	the	controls	you	want	to	reposition	in	the	z-order.
2.	 On	the	Layout	menu,	point	to	Order,	and	then	click	one	of	the	following.

Click To	move	control
Bring	to	Front To	the	top	of	the	z-order.
Send	to	Back To	the	bottom	of	the	z-order.
Bring	Forward Up	one	position	in	the	z-order.
Send	BackwardDown	one	position	in	the	z-order.

Notes

You	can't	Undo	or	Redo	layering	commands,	such	as	Send	to	Back	or
Bring	to	Front.
If	the	form	includes	any	ListBox,	Frame,	or	MultiPage	controls,	these
controls	automatically	move	as	close	as	possible	to	the	top	of	the	stack.	For
example,	applying	Send	Backward	to	a	ListBox,	Frame,	or	MultiPage
control	moves	the	control	below	other	ListBox,	Frame,	or	MultiPage
controls,	but	does	not	move	the	control	below	any	other	type	of	control	in
the	stack.	Similarly,	applying	Bring	Forward	to	a	control	other	than	a
ListBox,	Frame,	or	MultiPage	control	moves	the	control	closer	to	the	top
of	the	stack,	but	does	not	move	the	control	above	any	ListBox,	Frame,	or
MultiPage	control	in	the	stack.

Visually,	this	means	that	if	a	ListBox,	Frame,	or	MultiPage	control	and
any	other	Microsoft	Forms	controls	are	in	the	same	location	on	a	form,	the
ListBox,	Frame,	or	MultiPage	control	always	appears	on	top	of	the	other
control(s).	If	a	ListBox,	Frame,	or	MultiPage	control	is	in	the	same	place
as	another	ListBox,	Frame,	or	MultiPage	control,	the	z-order	of	the
controls	determines	which	control	appears	on	top	of	the	other.



Show	or	hide	the	grid
In	design	mode,	click	Show	Grid	on	the	Layout	menu.



Show	All



Set	the	grid	size
1.	 In	design	mode,	click	Set	Grid	Size	on	the	Form	menu.

2.	 In	the	Height	and	Width	boxes,	type	the	dimensions	that	you	want.

Tip

If	you	use	the	Arrange	command	(Layout	menu)	to	position	command	buttons
in	your	application,	use	small	grid	settings	so	that	you	can	position	the	command
buttons	closer	to	the	edge	of	the	form.



Turn	on	or	off	sizing	controls	to	the
grid

In	design	mode,	click	Snap	to	Grid	on	the	Layout	menu	or	click	the	Snap
to	Grid	icon	on	the	toolbar.



Show	All



Create	a	group	of	controls
1.	 Select	each	control	that	you	want	to	include	in	the	group.	The	dominant

control	does	not	affect	this	procedure.

How?

2.	 On	the	Layout	menu,	click	Group.



Select	and	edit	a	control	within	a
group
1.	 Select	the	group	of	controls.

2.	 Select	a	single	control	within	the	group.	The	sizing	handles	around	the
group	become	lighter,	and	dark	sizing	handles	appear	on	the	selected
control.

3.	 Make	the	changes	that	you	want	to	the	selected	control	properties.	Any
change	you	make	affects	only	the	selected	control.

4.	 When	you're	finished,	click	anywhere	in	the	group,	but	don't	click	on	the
selected	control.	The	group	is	still	selected.

5.	 Select	another	control	in	the	group	or	go	on	to	another	task.



Separate	controls	in	a	group
1.	 Select	the	group	of	controls.

2.	 On	the	Layout	menu,	click	Ungroup.



Show	All



Assign	a	control	tip,	caption,	and
accelerator	key	to	a	page	or	tab
This	procedure	sets	properties	on	a	Page	or	Tab	in	a	MultiPage	or	TabStrip
control	only.

1.	 In	design	mode,	select	a	page	or	tab	in	a	MultiPage	or	TabStrip	control.

How?

Be	sure	to	select	an	individual	page	or	tab,	not	the	corresponding
MultiPage	or	TabStrip.	When	a	page	or	tab	is	selected,	a	rectangle	appears
around	its	caption.

2.	 Right-click	the	caption	of	the	selected	page	or	tab,	and	then	click	Rename
on	the	shortcut	menu.

3.	 In	the	Control	Tip	Text	box,	type	the	string	you	want	to	use	as	the	control
tip.	

4.	 In	the	Caption	box,	type	the	string	you	want	to	use	as	the	caption.

5.	 In	the	Accelerator	Key	box,	type	a	single	character.	Use	a	character	from
the	caption	of	the	control.	Note	that	the	selected	character	is	underlined	in
the	control	caption.

Tip

To	assign	a	control	tip	for	a	MultiPage	or	TabStrip,	use	the	ControlTipText
property.	If	you	assign	a	control	tip	to	a	MultiPage	or	a	TabStrip,	control	tips
for	the	individual	page	or	tab	objects	within	the	MultiPage	do	not	appear.



Change	the	order	of	pages	in	a
MultiPage	or	TabStrip
This	procedure	sets	properties	on	a	Page	or	Tab	only	in	a	MultiPage	or
TabStrip	control.

1.	 In	design	mode,	select	any	page	in	the	MultiPage	or	TabStrip	control.

How?

2.	 Right-click	the	caption	of	the	page,	and	then	click	Move	on	the	shortcut
menu.

3.	 In	the	Page	Order	box,	click	the	page	you	want	to	move.

4.	 Click	Move	Up	or	Move	Down.

Note		You	can	also	change	the	page	order	by	changing	the	Index	property.	The
index	of	the	first	page	is	0;	the	index	of	the	second	page	is	1,	and	so	on.



Set	tab	order	of	controls	on	a	page
1.	 In	design	mode,	right-click	on	a	page	in	a	form,	but	not	on	a	control,	and

then	click	Tab	Order	on	the	shortcut	menu.

2.	 Select	the	name	of	a	control	you	want	to	reposition	in	the	tab	order.

3.	 Click	Move	Up	or	Move	Down.

Note		You	can	also	set	the	tab	order	by	changing	the	TabIndex	property.	The	tab
index	of	the	first	control	in	the	tab	order	is	0;	the	tab	index	of	the	second	control
is	1,	and	so	on.



Should	I	use	a	MultiPage	or	a
TabStrip?
If	you	use	a	single	layout	for	data,	use	a	TabStrip,	and	then	map	each	set	of	data
to	its	own	tab.	If	you	need	several	layouts	for	data,	use	a	MultiPage,	and	then
assign	each	layout	to	its	own	page.

Unlike	a	page	of	a	MultiPage,	the	client	region	of	a	TabStrip	is	not	a	separate
form	but	a	portion	of	the	form	that	contains	the	TabStrip.	The	border	of	a
TabStrip	defines	a	region	of	the	form	that	you	can	associate	with	the	tabs.	When
you	place	a	control	in	the	client	region	of	a	TabStrip,	you	are	adding	a	control	to
the	form	that	contains	the	TabStrip.



Create	a	list	box
1.	 In	design	mode,	drag	the	ListBox	control	from	the	Control	Toolbox	to	the

form	.

2.	 Right-click	the	list	box,	and	then	click	Advanced	Properties	on	the
shortcut	menu.

3.	 To	create	a	standard	list	box,	set	the	ListStyle	property	to	Plain.	To	set	the
property,	click	the	property	and	enter	a	value	in	the	Apply	box.

To	create	a	list	box	with	option	buttons	or	check	boxes,	set	the	ListStyle
property	to	Option.

4.	 Fill	the	list	at	design	time	or	run	time.

How?

Note		When	the	ListStyle	property	is	set	to	Option,	the	MultiSelect	property
determines	whether	check	boxes	or	option	buttons	appear	in	the	list.	When
MultiSelect	is	set	to	Single,	option	buttons	appear	in	the	list.	When	MultiSelect
is	set	to	Multi	or	Extended,	check	boxes	appear	in	the	list.



Add	items	to	a	list
You	can	add	items	to	a	list	box	or	a	combo	box	at	design	time	and	at	run	time.	To
save	its	contents	in	an	item,	a	ListBox	and	a	ComboBox	control	must	be	bound
to	a	field.



What	do	you	want	to	do?

Add	items	to	a	list	at	design	time

Add	items	to	a	list	at	run	time

mk:@MSITStore:olmain11.chm::/html/redccAddItemsToListAtDesignTime.htm


Show	All



Add	items	to	a	list	at	run	time
In	a	ListBox	or	ComboBox	with	a	single	column,	use	the	AddItem	method	to
add	an	individual	entry	to	the	list.

In	a	multicolumn	list	box	or	combo	box,	you	can	use	the	List	and	Column
properties	to	load	the	list	from	a	two-dimensional	array,	as	shown	in	the
following	steps.

1.	 Create	a	multicolumn	ListBox	or	ComboBox	control.

2.	 In	VBScript,	create	a	two-dimensional	array	that	contains	the	items	you
want	to	put	in	the	list.

3.	 Set	the	ColumnCount	property	of	the	list	box	or	combo	box	to	match	the
number	of	entries	in	the	list.	To	set	the	property,	click	the	property	and	enter
a	value	in	the	Apply	box.

4.	 Do	one	of	the	following:
Assign	the	array	as	the	value	of	the	List	property.	The	contents	of	the
list	box	will	match	the	contents	of	the	array	exactly.

Assign	the	array	as	the	value	of	the	Column	property.	Column
transposes	rows	and	columns,	so	each	row	of	the	list	box	matches	the
corresponding	column	of	the	array.



Match	entries	in	a	list	to	entries	typed
by	users
1.	 In	design	mode,	drag	the	ListBox	or	ComboBox	control	from	the	Control

Toolbox	to	the	form	.

2.	 Right-click	the	list	box	or	combo	box,	and	then	click	Advanced	Properties
on	the	shortcut	menu.

3.	 To	set	the	MatchEntry	property,	click	the	property	and	enter	a	value	in	the
Apply	box.

Set	the
MatchEntry
property	to

To

No	matching Provide	no	matching

First	letter
Compare	the	most	recently	typed	letter	to	the	first	letter
of	each	entry	in	the	list	(the	first	match	in	the	list	is
selected)

Complete Compare	the	user's	entry	and	an	exact	match	in	an	entry
from	the	list

Notes

The	matching	feature	resets	after	2	seconds	(6	seconds	in	the	East	Asian
version).	For	example,	if	you	have	a	list	of	the	50	United	States	and	you
type	"CO"	quickly,	you	will	find	"Colorado."	But	if	you	type	"CO"	in
longer	than	2	seconds,	you	will	find	"Ohio"	because	the	auto-complete
search	resets	between	letters.

If	you	select	Complete	matching,	it	is	a	good	idea	to	sort	the	list	entries
alphabetically	(you	can	use	the	TextColumn	property	to	do	this).	If	the	list
is	not	sorted	alphabetically,	matching	may	not	work	correctly.	For	example,
if	the	list	includes	Alabama,	Louisiana,	and	Alaska,	respectively,	then
"Alabama"	is	considered	a	complete	match	if	the	user	types	"ala."	In	fact,
this	result	is	not	complete	because	there	are	two	entries	in	the	list	that	could



match	what	the	user	entered.	Sorting	alphabetically	eliminates	this.



Things	you	can	do	with	a
multicolumn	ListBox	or	ComboBox
To	control	the	column	widths	of	a	multicolumn	ListBox	or	ComboBox,	you	can
specify	the	width,	in	points,	for	all	the	columns	in	the	ColumnWidths	property.
Specifying	zero	for	a	specific	column	hides	that	column	of	information.

If	you	want	to	hide	all	but	one	column	of	a	ListBox	or	ComboBox	from	the
user,	you	can	identify	the	column	of	information	to	appear	by	using	the
TextColumn	property.

Similarly,	you	can	control	which	column	of	values	is	used	for	the	control	when
the	user	makes	a	selection	by	specifying	the	column	number	in	the
BoundColumn	property.



Align	a	picture	on	a	control
1.	 Right-click	the	control	that	has	the	bitmap	you	want	to	align,	and	then	click

Advanced	Properties	on	the	shortcut	menu.

2.	 Set	one	or	all	of	the	following	properties.	To	set	the	property,	click	the
property	and	enter	a	value	in	the	Apply	box.
Set	the	property To

PictureAlignment
Center	the	picture	within	the	Image	or	align	any	corner
of	the	picture	with	the	corresponding	corner	of	the
Image.

PictureSizeMode
Clip,	stretch,	or	zoom	the	picture	within	the	Image
(stretching	can	distort	the	picture	but	zooming	does
not).

PictureTiling Show	multiple	copies	of	the	picture	within	the	Image.



Assign	a	picture	to	a	control
1.	 Right-click	the	control	you	want	to	assign	a	picture	to,	and	then	click

Advanced	Properties	on	the	shortcut	menu.

2.	 Set	the	Picture	property.	To	set	the	property,	click	the	property	and	enter	a
value	in	the	Apply	box.

3.	 In	the	Load	Picture	dialog	box,	enter	the	name	of	the	picture	in	the	File
name	box.

Note		If	the	picture	is	larger	than	the	control,	Outlook	scales	the	picture	to	fit	the
control.



Assign	a	picture	to	a	form
1.	 On	the	form,	right-click	the	page	you	want	to	assign	a	picture	to,	and	then

click	Advanced	Properties	on	the	shortcut	menu.

2.	 To	set	the	property,	click	the	property	and	enter	a	value	in	the	Apply	box.
Set	the	property To	the	value
Picture The	name	of	the	picture	you	want	to	use
PictureAlignment TopLeft
PictureSizeMode Clip
PictureTiling True



Show	All



Change	the	appearance	of	a	control
Outlook	includes	several	properties	you	can	use	to	define	the	appearance	of
controls	in	your	form:	ForeColor,	BackColor,	BackStyle,	BorderColor,
BorderStyle,	and	SpecialEffect.

ForeColor	determines	the	foreground	color.	The	foreground	color	applies
to	any	text	associated	with	the	control,	such	as	the	caption	or	the	control
contents.

BackColor	and	BackStyle	apply	to	the	control	background.	The
background	is	the	area	within	the	control	boundaries,	such	as	the	area
surrounding	the	text	in	a	control,	but	not	the	control	border.	BackColor
determines	the	background	color	.	BackStyle	determines	whether	the
background	is	transparent	.	A	transparent	control	background	is	useful	if
your	form	has	a	background	picture.

For	ForeColor	and	BackColor,	you	can	use	the	color	scheme	defined	by
your	system,	or	you	can	use	a	custom	color	that	you	pick	from	the	color
palette.	Using	a	system	color,	such	as	Menu	Text,	ensures	that	your	form
matches	the	colors	and	palette	used	by	your	applications.	Custom	colors	do
not	always	appear	the	same	across	systems	and	screen	resolutions,	but	they
do	offer	the	widest	choice	of	colors.

BorderColor,	BorderStyle,	and	SpecialEffect	apply	to	the	control	border.
You	can	use	BorderStyle	or	SpecialEffect	to	choose	a	border	type.	Only
one	of	these	two	properties	can	be	used	at	a	time.	When	you	assign	a	value
to	one	of	these	properties,	the	system	sets	the	other	property	to	None.	With
SpecialEffect,	you	can	choose	one	of	several	border	styles,	but	you	can
only	use	system	colors	for	the	border.	BorderStyle	supports	only	one
border	style,	but	you	can	choose	any	color	that	is	a	valid	setting	for
BorderColor.	BorderColor	specifies	the	color	of	the	control	border	and	is
only	valid	when	you	use	BorderStyle	to	create	the	border.

Outlook	supports	transparency,	the	display	of	whatever	is	behind	an	object
instead	of	its	background,	in	two	areas:	the	background	of	certain	controls	and	in
bitmaps	used	on	certain	controls.



You	can	show	a	bitmap	on	many	controls.	Certain	controls	support	transparent
bitmaps—	that	is,	bitmaps	in	which	one	or	more	background	colors	are
transparent.	Bitmap	transparency	is	not	controlled	by	any	control	property;	it	is
controlled	by	the	color	of	the	lower-left	pixel	in	the	image.	Outlook	does	not
provide	a	way	to	edit	a	bitmap	and	make	it	transparent;	you	must	use	a	picture
editor	for	this	purpose.

Bitmaps	are	always	transparent	on	the	following	controls:	CheckBox,
CommandButton,	Label,	OptionButton,	and	ToggleButton.	In	Outlook,	the
following	do	not	support	transparent	bitmaps:	the	form,	Frame	control,	Image
control,	and	MultiPage	control.

Transparent	pictures	sometimes	have	a	hazy	appearance.	If	you	do	not	like	this
appearance,	show	the	picture	on	a	control	that	supports	opaque	images.	If	you
use	a	transparent	bitmap	on	a	control	that	does	not	support	transparent	bitmaps,
the	bitmap	appears	correctly,	but	you	can't	see	what's	behind	the	bitmap.



What	do	you	want	to	do?

Use	a	system	color	for	a	background	or	foreground

Use	a	custom	color	for	the	background	or	foreground	of	a	control

Set	the	background	color	of	a	form

Make	a	control	transparent

mk:@MSITStore:olmain11.chm::/html/rehowUseSystemColorForBackgroundOrForeground.htm
mk:@MSITStore:olmain11.chm::/html/rehowUseCustomColorForBackgroundOrForegroundOfControl.htm
mk:@MSITStore:olmain11.chm::/html/rehowSetBackgroundColorOfForm.htm
mk:@MSITStore:olmain11.chm::/html/rehowCreateTransparentControl.htm


Delete	a	picture	from	a	control
1.	 Right-click	the	control,	and	then	click	Advanced	Properties	on	the

shortcut	menu.

2.	 Highlight	the	value	of	the	Picture	property	(the	word	"bitmap").

3.	 Press	DELETE.



Test	a	form	in	run	mode
To	switch	between	the	design	mode	and	the	run	mode	(as	it	appears	when	used)
of	the	form	,	on	the	Form	menu,	click	Run	This	Form.

Note		You	can	test	the	form	outside	the	Outlook	design	environment.	Open	a
new	instance	of	the	form.

Enter	information	in	the	form,	send	or	post	it,	and	then	open	the	form	to	make
sure	it	appears	correctly.	If	the	form	is	not	correct,	you	can	make	changes	to	it.



Show	All



Save	and	distribute	a	form
There	are	three	ways	to	save	a	form	that	you	have	created.

Save	the	form	in	a	forms	library.	Use	this	option	when	you	want	to	save	a
form	to	a	location	(library)	for	easy	access.	There	are	three	forms	libraries.

Personal	Forms	Library			Forms	saved	in	this	library	are	accessible
only	to	you	and	are	stored	in	your	mailbox.	These	forms	are	available
on	the	item	menu	from	the	Choose	Form	command.	Use	this	library
when	you	have	created	a	form	for	your	own	personal	use,	such	as	a
form	to	track	mileage.
Outlook	Folders			Forms	saved	in	this	library	can	be	accessible	to
everyone	(in	a	public	folder)	or	only	to	you	(in	a	private	folder).	If	the
form	is	saved	in	a	library	on	your	hard	disk,	it	is	accessible	to	you	only
while	you	are	working	in	the	folder.	These	forms	are	available	on	the
item	menu	while	you	are	in	the	folder.	Use	this	library	when	saving
forms	to	a	specific	folder,	generally	a	public	folder.	For	example,	in	a
customer-tracking	public	folder,	you	could	have	a	meeting	report	form
and	a	customer	profile	form.
Organizational	Forms	Library			Forms	saved	in	this	library	are
accessible	to	everyone	in	your	organization	and	are	stored	on	the
server.	You	must	have	write	permission	to	save	to	the	server.	For	more
information,	see	your	administrator.	These	forms	are	available	on	the
item	menu	from	the	Choose	Form	command.	Use	this	library	when
you	want	to	make	the	form	available	to	everyone	in	your	organization,
such	as	a	form	to	report	vacation	time.	Saving	to	this	library	provides	a
quick	and	easy	way	to	distribute	and	update	forms.

Save	the	form	in	the	open	folder.	Use	this	option	when	you	want	to	send	a
form	to	others	by	using	e-mail	or	when	you	do	not	plan	to	share	the	form.
Save	the	form	as	a	file.	Use	this	option	when	you	want	to	work	with	the
form	in	another	program	or	you	want	to	save	the	form	as	a	template.	You	do
not	plan	to	share	the	form	with	others,	or	you	want	to	send	the	form	to
others	by	using	e-mail.



What	do	you	want	to	do?

Save	a	form	in	the	open	folder

Save	a	form	as	a	file

Save	a	form	in	a	forms	library

Send	a	form	to	others	by	using	e-mail

mk:@MSITStore:olmain11.chm::/html/rehowSaveFormFileSave.htm
mk:@MSITStore:olmain11.chm::/html/rehowSaveFormAsFileFileSaveAs.htm
mk:@MSITStore:olmain11.chm::/html/rehowSaveFormIntoFormsLibraryPublishFormAs.htm
mk:@MSITStore:olmain11.chm::/html/rehowSendFormToOtherIndividualOverEmail.htm


Save	a	form	with	the	item	(one-off
forms)
When	you	are	creating	solutions	using	custom	forms	in	Microsoft	Outlook,	it	is
important	to	understand	how	Outlook	is	using	your	custom	form	in	relation	to
the	items	in	a	folder.

For	instance,	if	you	want	to	create	a	custom	contact	form	to	replace	the	default
Outlook	contact	form,	you	would	typically	follow	these	steps:

1.	 Start	with	a	new,	default	contact	item	to	use	as	the	basis	for	your	custom
form.

2.	 Modify	the	form	to	suit	your	needs.
3.	 Publish	the	form	to	the	Contacts	folder.
4.	 Set	the	form	as	the	default	form	for	the	Contacts	folder	by	changing	the

folder	properties.

In	this	typical	scenario,	information	about	the	form	(the	form	definition)	is	not
saved	with	each	item.	Instead,	the	form	is	stored	in	the	location	where	it	was
published	and	is	referenced	using	the	Message	Class	field.	This	way,	each	item
only	stores	the	data	associated	with	it,	and	its	size	is	relatively	small.

However,	it	is	possible	to	have	Outlook	store	the	form	definition	within
individual	items	in	a	folder.	These	items	are	called	one-off	items	and	will	always
use	the	form	definition	that	is	stored	within	the	item	instead	of	the	published
form.

In	most	situations,	the	form	definition	should	not	be	stored	within	the	item.	The
most	common	exception	to	this	is	a	custom	e-mail	message	form.	If	you	are
using	Microsoft	Exchange	Server,	you	can	publish	a	custom	e-mail	message
form	to	the	Organizational	Forms	Library	so	that	it	will	always	be	available	for
use	by	everyone	within	the	organization.	In	this	way,	you	would	not	have	to
store	the	form	definition	within	the	item.	However,	if	you	are	not	using
Exchange	server,	or	if	you	are	sending	the	form	to	another	organization	where
the	form	is	not	available,	you	should	select	the	Send	form	definition	with	item
check	box	on	the	Properties	page	of	the	form	when	in	design	mode.	This	will



ensure	that	the	recipient	will	be	able	to	view	the	mail	message	with	the	custom
form.

Note		If	the	recipient	is	still	unable	to	view	your	custom	form,	be	sure	that	you
customized	or	disabled	the	Read	page	of	the	custom	e-mail	form.

If	the	custom	form	contains	Microsoft	Visual	Basic	Scripting	Edition
(VBScript),	Outlook	will	display	the	macro	virus	warning	unless	the	form	is
published	in	the	Microsoft	Exchange	Server	Organizational	Forms	Library.

The	following	scenarios	commonly	result	in	items	becoming	one-off	items.

You	have	a	folder-based	solution	whereby	the	form	is	published	in	the
folder	and	the	items	are	using	the	published	form.	You	open	an	existing
item	in	a	folder,	make	changes	to	the	form	in	design	mode,	and	then	save
the	item.

Because	the	form	definition	has	changed	and	the	form	was	not	republished,
Outlook	will	save	the	new	form	definition	with	the	item.	If	you	want	to
change	the	form	for	all	of	the	items	in	the	folder,	instead	of	opening	an
existing	item,	follow	these	steps:

1.	 Open	a	new	item	based	on	your	custom	form.
2.	 Make	form	design	changes	to	that	item.
3.	 Republish	the	form	with	the	same	name.
4.	 Close	and	do	not	save	changes	to	the	item.

All	of	the	items	in	the	folder	will	now	use	the	updated	custom	form	the	next
time	the	items	are	opened,	because	the	message	class	of	the	items	still	refers
to	the	published	form.

VBScript	code	in	the	custom	form	changed	the	form	definition	of	the	item.

If	VBScript	code	within	an	item	programmatically	changes	the	form,	in
many	cases	this	will	result	in	the	form	definition	being	saved	with	the	item.
The	following	Outlook	object	model	methods	most	commonly	cause	this
behavior:

UserProperties	.Add
Methods	and	properties	of	the	FormDescription	object.

mk:@MSITStore:vbaol11.chm::/html/olobjUserProperties.htm
mk:@MSITStore:vbaol11.chm::/html/olmthAdd.htm
mk:@MSITStore:vbaol11.chm::/html/olobjFormDescription.htm


Some	methods	or	properties	of	controls,	such	as	Enabled.
Methods	and	properties	of	the	Actions	collection	object.

Although	solutions	and	situations	vary	greatly,	there	are	some	signs	you	should
be	aware	of	that	can	indicate	that	an	item	has	become	a	one-off	item.

VBScript	code	in	the	form	does	not	run,	or	a	macro	virus	warning
unexpectedly	appears,	indicating	that	the	item	itself,	and	not	just	a
published	form,	contains	VBScript	code.
The	size	of	an	item	increases	unexpectedly.
An	item’s	icon	changes	unexpectedly.

mk:@MSITStore:vbaol11.chm::/html/olobjActions.htm


Show	All



Using	Visual	Basic	with	Outlook
You	can	use	Visual	Basic	to	customize	and	extend	Microsoft	Outlook.	Outlook
allows	you	to	control	Outlook	by	using	Visual	Basic,	Visual	Basic	for
Applications	and	VBScript.	Which	you	use	depends	on	what	you	want	your
program	to	do.

Visual	Basic	is	a	full-featured	programming	language	you	can	use	to	create
stand-alone	applications	or	dynamic-link	libraries	(DLLs)	that	extend	other
applications.	Visual	Basic	for	Applications	is	a	subset	of	Visual	Basic	that	is	run
within	an	application	to	extend	its	capabilities.	VBScript	is	a	simplified	version
of	Visual	Basic	for	Applications	and	is	run	within	an	Outlook	item.	In	all	cases,
these	programming	languages	control	Outlook	through	its	object	model.

Learn	about	the	Outlook	object	model.

If	you	want	to	create	a	separate	application	that	accesses	data	stored	by	Outlook
and	uses	Outlook	to	send	and	receive	messages,	use	Visual	Basic	to	create	the
application	(you	can	also	use	other	programming	languages,	such	as	C++,	to
control	Outlook	through	its	object	model).	You	can	also	use	Visual	Basic	to
create	a	DLL	that	can	extend	Outlook	as	a	COM	add-in.

You	use	Visual	Basic	for	Applications	in	one	of	two	ways:	You	can	use	Visual
Basic	for	Applications	in	other	applications	(such	as	Microsoft	Excel	or
Microsoft	Word)	to	automate	Outlook,	or	you	can	use	Visual	Basic	for
Applications	within	Outlook	to	control	Outlook.	If	you	expect	your	users	to	be
using	another	application	most	of	the	time,	and	you	want	to	give	them	the	ability
to	send	a	message	using	Outlook	or	to	access	information	stored	by	Outlook,
write	Visual	Basic	for	Applications	programs	in	that	application	that	control
Outlook	through	the	Outlook	object	model.	If,	on	the	other	hand,	you	want	to
write	Visual	Basic	code	that	customizes	how	Outlook	works	(like	a	macro),	use
Visual	Basic	for	Applications	within	Outlook.

You	can	extend	the	functionality	of	Outlook	forms	by	using	VBScript.	VBScript
programs	are	stored	within	a	form.	Because	the	program	code	is	contained
within	the	form,	it	can	be	sent	with	an	item	to	another	user.	An	important
consideration	in	choosing	which	kind	of	the	Visual	Basic	programming	language



you	will	use	is	the	type	of	events	you	want	your	program	to	respond	to.	Because
VBScript	code	is	associated	with	a	particular	item,	code	that	responds	to	events
in	specific	items	(such	as	when	a	particular	item	is	opened	or	a	value	in	a	field	is
changed)	is	easiest	to	write	using	VBScript.	If,	on	the	other	hand,	you	want	your
program	to	respond	to	events	that	occur	in	the	application,	in	Windows	Explorer,
in	folders,	or	in	all	items,	then	you	should	write	your	program	using	Visual	Basic
or	Visual	Basic	for	Applications.

Code	written	for	Visual	Basic	or	Visual	Basic	for	Applications	often	does	not
work	in	VBScript	without	modification.	For	example,	you	must	replace	all	built-
in	constants	written	in	Visual	Basic	for	Applications	with	the	literal	numeric
values	of	those	constants	in	VBScript.	And	VBScript	uses	only	the	Variant	data
type.

Learn	about	constants	and	variables	in	VBScript.

In	Outlook	Visual	Basic	for	Applications	and	VBScript,	when	you	reference	the
Application	object	to	use	CreateObject	or	GetObject,	you	simply	use
Application.	For	example,	the	following	code	displays	the	Tasks	folder:

Set	olMAPI	=	Application.GetNameSpace("MAPI")

olMAPI.GetDefaultFolder(13).Display

	 	

In	Visual	Basic	or	Visual	Basic	for	Applications	in	other	applications,	you	must
explicitly	create	the	Application	object:

Set	myOlApp	=	CreateObject("Outlook.Application")

Set	olMAPI	=	myOlApp.GetNameSpace("MAPI")

olMAPI.GetDefaultFolder(olFolderTasks).Display

	 	



About	using	VBScript	in	Outlook
Microsoft	VBScript	is	a	powerful	scripting	language	based	on	Microsoft	Visual
Basic	that	enables	you	to	control	objects,	folders,	forms,	items,	and	controls
within	a	form.	For	example,	you	can	change	properties	and	values	of	controls	on
a	page,	modify	the	default	Microsoft	Outlook	item	events,	and	even	create
automated	procedures,	such	as	mailing	a	notice	to	all	the	contacts	in	a	Contacts
folder.

You	add	VBScript	code	to	an	Outlook	form	to	respond	to	Click	events	that	are
fired	by	controls	on	the	form,	or	to	respond	to	events	fired	by	the	items	that	have
the	same	message	class	as	the	form.	VBScript	makes	it	especially	easy	to
respond	to	item	events	because	the	VBScript	code	executes	in	the	context	of	the
item,	so	you	don’t	have	to	set	an	object	variable	to	point	to	the	item.	In	addition,
VBScript	code	is	compact	and	can	be	contained	within	a	form	sent	to	other
users.

With	VBScript,	you	have	full	access	to	the	Microsoft	Outlook	object	model,
except	for	two	areas:	VBScript	code	cannot	respond	to	events	other	than	item
and	form	events,	and	you	cannot	use	named	constants	defined	in	the	Outlook
object	type	library.

You	can	also	use	Visual	Basic	for	Applications	in	Outlook	to	respond	to	Outlook
events	and	to	create	macros	that	automate	procedures.	Unlike	VBScript	code,
however,	Visual	Basic	for	Applications	code	cannot	be	contained	in	a	form	and
so	cannot	accompany	an	item	that	is	sent	to	other	users.

For	more	information	about	using	VBScript,	see	Create	custom	forms	by	using
VBScript.



Show	All



How	can	I	prevent	the	VBScript	code
from	running?
To	prevent	any	VBScript	code	from	running,	hold	down	the	SHIFT	key.	For
example,	hold	down	SHIFT	while	you	open	an	item	to	prevent	the	VBScript
code	for	the	Open	event	from	running.



Variants	supported	in	VBScript
Microsoft	VBScript	in	Outlook	uses	only	the	Variant	data	type.

A	Variant	is	a	special	kind	of	data	type	that	can	contain	different	kinds	of
information,	depending	on	how	it's	used.	Because	Variant	is	the	only	data	type
in	VBScript,	it's	also	the	data	type	returned	by	all	functions	in	VBScript.

At	its	simplest,	a	Variant	can	contain	either	numeric	or	string	information.	A
Variant	behaves	as	a	number	when	you	use	it	in	a	numeric	context	and	as	a
string	when	you	use	it	in	a	string	context.	That	is,	if	you're	working	with	data
that	looks	like	numbers,	VBScript	assumes	that	it	is	numbers	and	does	the	thing
that	is	most	appropriate	for	numbers.	Similarly,	if	you're	working	with	data	that
can	only	be	string	data,	VBScript	treats	it	as	string	data.	Of	course,	you	can
always	make	numbers	behave	as	strings	by	enclosing	them	in	quotation	marks	("
").



Show	All



Using	the	Script	Editor
The	Microsoft	Script	Editor	allows	you	to	add	VBScript	procedures	that	respond
to	events	generated	by	items	or	form	controls.

To	open	the	Script	Editor

1.	 Open	an	item	of	the	type	to	which	you	want	to	add	code.
2.	 On	the	Tools	menu,	point	to	Forms	and	then	click	Design	This	Form.
3.	 On	the	Form	menu,	click	View	Code.

The	Script	Editor	makes	it	easy	to	insert	the	template	for	an	item	event	handler.

To	insert	a	blank	item	event	handler

1.	 On	the	Script	menu,	click	Event	Handler.
2.	 Select	the	event	you	want	to	respond	to,	and	then	click	OK.

The	Script	Editor	can	move	the	insertion	point	to	a	specific	line	of	code.	This
makes	it	easy	to	debug	the	script	when	Microsoft	Outlook	reports	an	error	at	a
specific	location.

To	move	to	a	specific	line

1.	 On	the	Edit	menu,	click	Go	To.
2.	 In	the	Line	Number	box,	type	in	the	number	of	the	line	of	code	to	which

you	want	to	go.

Learn	about	the	Script	Debugger.

Learn	about	the	Outlook	object	browser.



Show	All



About	the	Outlook	object	browser
The	Microsoft	Outlook	object	browser	displays	the	classes,	properties,	methods,
and	events	available	from	the	Outlook	object	library.	The	object	browser	lets	you
view	and	insert	these	objects	into	the	Script	Editor	and	obtain	information	about
the	syntax	for	using	the	object.

Learn	about	viewing	and	using	the	object	browser.



Show	All



About	the	Outlook	script	debugger
The	Microsoft	Script	Debugger	provides	you	with	a	comprehensive	debugging
environment	for	testing	and	correcting	errors	in	the	VBScript	code	that	you
created	for	your	Microsoft	Outlook	forms.	The	Script	Debugger	is	a	shared
component	that	can	also	be	used	to	track	down	errors	in	any	Microsoft	ActiveX-
enabled	scripting	language	and	to	debug	Java	applets,	beans,	and	ActiveX
components.

The	Microsoft	Script	Debugger	lets	you	debug	both	client	scripts	and	server
scripts.

The	Microsoft	Script	Debugger	works	the	way	many	debuggers	do,	by	allowing
you	to:

View	the	source	code	of	the	script	that	you	are	debugging.
Control	the	pace	of	the	script	execution.
View	and	change	variable	and	property	values.
View	and	control	script	flow.

The	script	debugger	is	only	available	in	Outlook	at	run	time.

Learn	about	using	the	Script	Debugger	in	Outlook.



Common	things	you	can	do	with
VBScript
The	following	are	common	things	you	can	do	with	VBScript	in	an	Outlook
Form.



What	do	you	want	to	do?

Create	an	Outlook	item

Add	a	Click	event	for	a	control

Add	an	Outlook	event

Reference	the	active	user

Change	the	value	of	a	field

Reference	a	folder

Use	properties	from	the	Microsoft	Exchange	Server	global	address	list

Put	a	list	of	fields	and	values	in	the	message	body



Show	All



Create	custom	forms	by	using
VBScript
Microsoft	VBScript	is	a	subset	of	Visual	Basic	for	Applications.	You	can	use
VBScript	to	create	procedures	that	control	Microsoft	Outlook	folders,	objects,
items,	and	properties.	VBScript	in	Outlook	requires	a	special	object	syntax	that
has	some	differences	from	referencing	objects	in	Visual	Basic	for	Applications.

Learn	about	the	Outlook	object	model.

You	can	choose	the	Outlook	item	on	which	to	base	your	custom	form.

You	can	extend	Outlook	forms	by	using	custom	controls	from	the	Control
Toolbox.	Outlook	forms	can	use	most	of	the	properties	and	methods	that	come
with	the	controls.	Since	controls	cannot	store	values,	to	store	the	value	you	need
to	bind	the	control	to	an	Outlook	field.

The	Outlook	object	browser	displays	the	classes,	properties,	methods,	events,
and	constants	available	from	the	Outlook	object	library.	The	object	browser	lets
you	view	and	use	objects	in	the	Microsoft	Script	Editor	and	obtain	information
about	the	syntax	for	using	the	object.

Learn	about	viewing	and	using	the	object	browser.

The	Microsoft	Script	Debugger	provides	you	with	a	comprehensive	debugging
environment	for	testing	and	correcting	errors	in	the	VBScript	code	for	your
forms.

Learn	about	the	Script	Debugger.



Set	global	variables	for	a	form
A	global	variable	is	available	to	any	procedure	in	a	form	while	the	script	is
running.	To	set	a	global	variable,	assign	the	value	to	the	variables	before	any
procedures.



Show	All



Referencing	controls	on	an	Outlook
form
If	you	need	to	refer	to	a	control	on	an	Outlook	form	within	a	procedure,	you
must	also	reference	the	inspector,	page,	and	controls	collection	that	contains	the
control,	even	if	you	are	referencing	the	control	with	its	own	event	procedure.
The	following	example	shows	how	to	change	the	caption	of	a	command	button
when	it’s	clicked.	To	test	this	example,	in	design	mode	create	a	command	button
with	the	default	name	CommandButton1	on	the	page	P.2.

Sub	CommandButton1_Click

				Set	myButton	=	Item.GetInspector.ModifiedFormPages("P.2")_

							.Controls("CommandButton1")

				myButton.Caption	=	"New	Caption"

End	Sub

	 	



Form	Events
Form	events	occur	when	something	happens	to	an	item	displayed	in	a	form,	such
as	when	it's	saved	or	opened	or	when	a	user-defined	action	is	started.

Most	often,	form	events	are	handled	by	VBScript	code	within	the	form	itself.

Some	events	can	be	cancelled.	That	is,	your	event	handler	can	prevent	Microsoft
Outlook	from	performing	the	default	action	associated	with	the	event.	For
example,	you	can	write	an	event	handler	for	the	Forward	event	to	prevent	an
item	from	being	sent	to	recipients	who	are	not	on	a	list	of	approved	recipients.
Learn	about	canceling	an	event.

The	following	table	lists	the	form	events	supported	by	Outlook.

Event Cancelable? Description

AttachmentAdd No Occurs	when	an	attachment	has	been
added	to	the	item

AttachmentRead No Occurs	when	an	attachment	has	been
opened	for	reading

BeforeAttachmentSave Yes Occurs	before	an	attachment	is	saved

BeforeCheckNames Yes
Occurs	before	Outlook	starts	resolving
names	in	the	recipients	collection	of	the
item

Close Yes Occurs	before	Outlook	closes	the
inspector	displaying	the	item

CustomAction Yes Occurs	before	Outlook	executes	a
custom	action	of	an	item

CustomPropertyChange No Occurs	when	a	custom	item	property
has	changed

Forward Yes Occurs	before	Outlook	executes	the
Forward	action	of	an	item

Open Yes Occurs	before	Outlook	opens	an
inspector	to	display	the	item

PropertyChange No Occurs	when	an	item	property	has



changed

Read No Occurs	when	an	item	is	opened	for
editing	by	a	user

Reply Yes Occurs	before	Outlook	executes	the
Reply	action	of	an	item

ReplyAll Yes Occurs	before	Outlook	executes	the
Reply	to	All	action	of	an	item

Send Yes Occurs	before	Outlook	sends	the	item

Write Yes Occurs	before	Outlook	saves	the	item
in	a	folder



Control	Events
Outlook	form	controls	support	only	one	event,	the	Click	event.

A	control	bound	to	a	field	does	not	fire	the	Click	event.	You	must	handle	the
appropriate	field	event	to	detect	a	user’s	interaction	with	a	control	bound	to	a
field.

The	following	controls	fire	the	Click	event	whenever	a	user	clicks	anywhere	in
the	control.

CheckBox

CommandButton

Frame

Image

Label

OptionButton

ToggleButton

The	following	controls	fire	the	Click	event	when	the	user	selects	an	item	in	the
list.

ComboBox

ListBox

The	following	controls	do	not	support	the	Click	event.

MultiPage

ScrollBar



SpinButton

TabStrip

TextBox

While	the	MultiPage	control	itself	does	not	support	the	Click	event,	an
individual	Page	on	a	MultiPage	control	will	fire	the	Click	event	if	the	user
clicks	inside	the	client	area	of	the	page,	but	not	if	the	user	clicks	the	tab
associated	with	the	page.

To	detect	a	change	in	a	TextBox	control,	bind	the	control	to	a	field	and	then
handle	the	appropriate	field	event.



Field	Events
Microsoft	Outlook	provides	two	events	to	notify	your	program	that	a	field
(property)	in	an	item	has	changed.	The	PropertyChange	event	is	fired	whenever
a	standard	Outlook	field	in	an	item	has	changed.	Outlook	fires	the
CustomPropertyChange	event	whenever	a	user-defined	field	changes.

A	control	that	is	bound	to	a	field	does	not	fire	the	Click	event,	whether	the
control	was	selected	from	the	Control	Toolbox	and	subsequently	bound	to	a
field,	or	was	selected	from	the	Field	Chooser.	Consequently,	you	must	use	the
PropertyChange	or	CustomPropertyChange	event	to	detect	user	interaction
with	a	bound	control.



Add	an	Outlook	event
1.	 Open	the	Script	Editor.

How?

2.	 On	the	Script	menu,	click	Event	Handler.
3.	 In	the	Insert	Events	Handler	box,	click	the	event	that	you	want	to	use,	and

then	click	Add.



Canceling	an	event
Microsoft	Outlook	calls	event	handlers	in	your	program	to	allow	your	program
to	respond	to	such	events	as	actions	that	the	user	takes	or	changes	in	the	message
store.	Each	event	is	accompanied	by	a	default	action	that	Outlook	performs	as	a
result	of	the	event.	For	example,	when	the	Open	event	occurs	for	an	item,	by
default	Outlook	displays	the	item	in	an	inspector	window.

Some	events	only	notify	your	program	that	a	particular	event	has	occurred.	For
these	events,	your	event	handler	simply	responds	to	the	event.	With	other	events,
Outlook	allows	your	event	handler	to	cancel	the	event,	that	is,	to	instruct
Outlook	not	to	perform	the	default	action	associated	with	the	event.	In	the	case
of	the	Open	event,	for	example,	your	program	can	prevent	Outlook	from
displaying	the	item	in	an	inspector.	If	an	event	can	be	cancelled,	the	reference
topic	describing	the	event	indicates	how	to	cancel	the	event.

If	an	event	can	be	cancelled,	an	event	handler	written	in	Microsoft	Visual	Basic
or	Microsoft	Visual	Basic	for	Applications	receives	a	parameter	that	it	sets
before	returning	to	indicate	whether	the	event	should	be	cancelled.	For	example,
an	event	handler	for	the	Open	event	written	in	Visual	Basic	for	Applications
might	look	like	this.	This	example	assumes	that	the	value	of	OpenOK	is	set
elsewhere.

Sub	myItem_Open(byRef	Cancel	as	Boolean)

				If	OpenOK	Then

								Cancel	=	False	'	Outlook	performs	default	action

				Else

								Cancel	=	True		'	Outlook	does	not	perform	default	action

				EndIf

End	Sub

	 	

Because	of	limitations	in	VBScript,	however,	this	syntax	cannot	be	used.	An
event	handler	for	the	Open	event	in	the	script	of	an	item	must	be	written	as	a
function.	To	cancel	the	event,	the	value	of	the	function	is	set	to	False	before
returning,	as	in	the	following	example.

Function	Item_Open()

				If	OpenOK	Then



								Item_Open	=	True		'	Outlook	performs	default	action

				Else

								Item_Open	=	False	'	Outlook	does	not	perform	default	action

				End	If

End	Function

	 	



Show	All



Test	tips	for	using	VBScript	in
Outlook
There	are	several	ways	to	test	code	in	Outlook.	If	there	is	a	syntax	error	in	the
code,	when	you	run	the	form,	an	error	message	appears	with	the	line	number	of
the	code.	You	can	then	go	to	the	specific	line	of	code.	You	can	also	use	the	Script
Debugger	and	other	methods	to	isolate	run-time	errors.



What	do	you	want	to	do?

Go	to	a	line	of	code

Use	the	Script	Debugger

Use	message	boxes	to	return	values

Set	global	variables	for	a	form

Use	the	PropertyChange	event	to	test	procedures



About	the	object	environment
There	are	two	ways	to	write	code	for	Outlook:

From	outside	the	application,	such	as	by	using	Microsoft	Visual	Basic	or
Microsoft	Visual	Basic	for	Applications	in	Microsoft	Excel	or	another
application.
From	inside	the	application,	such	as	by	using	Visual	Basic	for	Applications
or	by	using	VBScript	with	an	Outlook	form.

Learn	more	about	the	differences	between	using	Visual	Basic	for	Applications
and	VBScript



The	major	components	of	the	Outlook	object	model
are:

Application

The	top	of	the	object	hierarchy	that	represents	the	entire	application.	Enables	you	to	reference	other	objects	in
the	application	and	create	items	and	objects.	For	example,	this	code	creates	an	appointment	in	Outlook	Visual
Basic	for	Applications	or	VBScript:

Application.CreateItem(1).Display

	 	 	 	 	

NameSpace

Represents	the	MAPI	message	store	where	all	the	Outlook	items	are	stored.	Provides	methods	for	logging	on
and	off	Outlook	and	for	referencing	the	default	folders	such	as	Mailbox,	Inbox,	Contacts,	and	others.	For
example,	this	code	references	the	active	user	in	Outlook	Visual	Basic	for	Applications	or	VBScript:

Application.GetNameSpace("MAPI").CurrentUser

	 	 	 	 	

Explorer

Represents	the	Outlook	window.	Enables	you	to	show,	return,	and	close	the	active	window.	For	example,	this
code	shows	the	active	Outlook	window	in	Outlook	Visual	Basic	for	Applications	or	VBScript:

Application.ActiveExplorer.Display

	 	 	 	 	

Folders

There	are	two	folder	objects,	the	Folders	collection	object	that	enables	you	to	work	with	collections	of	folders
and	the	MAPIFolder	object	that	enables	you	to	work	with	a	single	folder.	For	example,	this	code	shows	the
collection	of	folders	named	Personal	Folders	in	Outlook	Visual	Basic	for	Applications	or	VBScript:

Application.GetNameSpace("MAPI").Folders("Personal	Folders")

	 	 	 	 	

Outlook	items

There	are	two	item	objects,	the	Items	collection	object	that	enables	you	to	work	with	items	within	a	folder	and
the	item	objects	that	represents	the	standard	item	types	in	Outlook,	such	as	
message.	In	VBScript,	the	active	item	is	assumed,	so	you	do	not	need	to	enter	the	object	model	to	reference	it.
For	example,	this	code	sets	the	Subject	field	of	the	active	message	in	VBScript:

Item.Subject	=	"New	Subject"

	 	 	 	 	

Inspector

References	forms.	Use	to	show	forms	and	pages.	For	example,	this	code	shows	the	
Outlook	Visual	Basic	for	Applications	or	VBScript:



Application.ActiveInspector.SetCurrentFormPage("Options")

	 	 	 	 	

AddressEntry Each	AddressEntry	object	in	the	AddressEntries	collection	holds	information	that	represents	a	person	orprocess	to	which	the	messaging	system	can	deliver	messages.

AddressList The	AddressList	object	is	an	address	book	that	contains	a	set	of	AddressEntry
available	through	the	parent	AddressLists	collection.

Exception
The	Exception	object	holds	information	about	one	instance	of	an	
exception	to	a	recurring	series.	Unlike	most	of	the	other	Outlook	objects,	the	
object.

Control

There	are	two	control	objects,	the	Controls	collection	object	that	enables	you	to	work	with	all	the	controls	on	a
page	and	the	specific	control	object	that	enables	you	to	work	with	a	control.	For	example,	this	code	sets	the
Caption	of	a	CommandButton	control	named	"CommandButton1"	on	a	page	named	"Test"	in	VBScript:

Item.GetInspector.ModifiedFormPages("Test").Controls("CommandButton1").Caption	=	"New	Caption"

	 	 	 	 	



Show	All



Use	the	Outlook	Object	Browser
The	Outlook	object	browser	displays	the	classes,	properties,	methods,	events,
and	constants	available	from	the	Outlook	object	library.	The	object	browser	lets
you	view	and	use	objects	in	the	Script	Editor	and	obtain	information	about	the
syntax	for	using	the	object.



Show	All



How	to	use	the	Outlook	object
browser
To	view	the	Outlook	object	browser:

1	Open	a	form	in	design	mode.

2	In	the	Form	menu,	click	View	Code	to	view	the	Script	Editor.

3	In	the	Script	Editor,	click	Object	Browser	on	the	Script	menu	or	press	F2.

All	of	the	available	Outlook	objects	are	listed	in	the	Classes	pane	of	the	object
browser	in	alphabetical	order.

To	view	the	members	of	an	object,	select	the	object	in	the	Classes	pane.	The
members	of	this	object	appear	in	alphabetical	order	in	the	Members	of	pane.
The	heading	at	the	top	of	this	pane	will	reflect	the	name	of	the	object	that	you
select.	For	example,	if	you	select	the	AppointmentItem	object	in	the	Classes
pane,	the	heading	of	the	Members	of	pane	will	appear	as	Members	of
AppointmentItem.

The	details	pane	shows	the	definition	of	the	selected	member.	This	text	is	read-
only	and	cannot	be	copied	and	pasted	into	the	Script	Editor.

To	insert	an	item	from	the	object	browser	into	the	Script	Editor:

1	In	the	Script	Editor,	position	your	cursor	at	the	location	for	insertion.

2	Select	the	desired	object	in	the	Classes	pane.

3	Select	the	desired	member	of	this	object	in	the	Members	of	pane.

4	Click	the	Insert	button.

Note		The	Insert	button	remains	unavailable	until	a	member	of	the	object	is
selected.



Show	All



How	to	use	the	Outlook	script
debugger
To	use	the	script	debugger,	open	a	form	in	design	mode.

To	add	VBScript	to	the	form,	on	the	Form	menu,	click	on	View	Code.	In	the
Script	Editor	window,	add	the	necessary	VBScript	for	your	form.

On	the	Form	menu,	click	Run	This	Form.

While	your	form	is	in	run	mode,	on	the	Tools	menu,	select	Forms	and	click
Script	Debugger.

You	can	also	use	the	Stop	statement	in	code	to	launch	the	debugger.

Note		If	there	is	no	VBScript	for	this	form,	the	Script	Debugger	menu	item	will
be	unavailable.

The	VBScript	for	this	form	will	appear	in	a	read-only	window.	You	cannot
change	text	in	this	window.

On	the	Help	menu	of	the	Microsoft	Script	Debugger,	select	Help	Topics	for	more
detailed	information	about:

Debugging	scripts
Viewing	source	code
Controlling	program	execution
Viewing	and	changing	values
Viewing	and	controlling	program	flow



Constants	and	variables	in	VBScript
In	VBScript,	constants	must	be	referenced	by	their	numeric	values.	The	constant
string	does	not	work	and	returns	a	value	of	0,	which	gives	unpredictable	results.

There	are	two	types	of	variables.	Procedure-level	variables	that	are	used	only
within	a	procedure	and	script-level	variables	that	are	available	to	all	the
procedures	within	your	script.	Declare	script-level	variables	at	the	top	of	your
script.	Declare	procedure-level	variables	inside	procedures.	You	can	use
procedure-level	variables	with	the	same	name	in	different	procedures	because
each	variable	is	recognized	only	by	the	procedure	in	which	it's	declared.	When
the	procedure	exits,	the	variable	ends.	Variables	that	refer	to	Outlook	objects	can
be	either	procedure-level	or	script-level	variables.	However,	the	value	of	the
variable	must	be	set	within	a	procedure.	Do	not	attempt	to	access	Outlook
objects	outside	of	a	procedure.



Rules	about	variables:

Must	begin	with	an	alphanumeric	character.
Cannot	contain	an	embedded	period.
Cannot	exceed	255	characters.
Cannot	use	more	than	127	procedure-level	variables	(arrays	count	as	a
single	variable).
Cannot	use	more	than	127	script-level	variables.



Referencing	fields
When	you	need	to	access	the	fields	in	an	item,	the	method	you	use	depends	on
whether	the	field	is	a	standard,	built-in	Microsoft	Outlook	field,	or	a	custom
field.

In	either	case,	you	do	not	access	the	field	directly.	Instead,	you	refer	to	the	field
as	a	property	of	the	item	you’	re	working	with.

For	example,	to	retrieve	the	text	from	the	Subject	field	of	a	mail	message,	you
use	the	Subject	property	of	the	item,	as	shown	in	the	following	VBScript
example.

mySubject	=	Item.Subject

	 	

If	the	field	is	a	custom	(user-defined)	field,	you	access	it	using	the
UserProperties	property	of	the	item,	as	shown	in	the	following	VBScript
example.	This	example	assumes	that	the	item	already	contains	a	custom	field
named	ReferredBy.

MyReferral	=	Item.UserProperties("ReferredBy")

	 	



Reference	a	folder
To	reference	a	folder	by	the	name	of	the	folder,	use	the	following	code.

Application.GetNameSpace("MAPI").Folders("Personal	Folders").Folders("Product	Ideas")

	 	

To	reference	a	folder	by	a	number,	use	the	following	code.	In	this	example,	the
first	folder	in	the	folder	collection	Personal	Folders	is	referenced.

Application.GetNameSpace("MAPI").Folders("Personal	Folders").Folders(1)

	 	

To	reference	any	of	the	default	Outlook	folders,	use	the	GetDefaultFolder
method.	Use	the	value	from	the	table	below	to	specify	the	folder	you	want	to
create.

Application.GetNameSpace("MAPI").GetDefaultFolder(6)

	 	

Default	folder Has	the	value
Deleted	Items 3
Outbox 4
Sent	Items 5
Inbox 6
Calendar 9
Contacts 10
Journal 11
Notes 12
Tasks 13



Creating	a	new	item
To	create	a	new	item,	use	the	CreateItem	method	of	the	Application	object.
This	method	returns	an	object	that	you	can	then	use	to	work	with	the	item.

The	following	Microsoft	Visual	Basic	for	Applications	example	shows	how	to
create	a	mail	message,	add	text	to	its	subject	and	body,	and	display	it.	To	use	this
sample,	create	a	command	button	named	Command1	on	a	form.

Private	Sub	Command1_Click()

				Dim	myOLApp	As	New	Outlook.Application

				Dim	myOLItem	As	Outlook.MailItem

				Set	myOLItem	=	myOLApp.CreateItem(olMailItem)

				With	myOLItem

								.Subject	=	"Sample	item"

								.Body	=	"This	is	a	sample	message."

				End	With

				myOLItem.Display

End	Sub

	 	

The	following	example	shows	how	to	perform	the	same	task	using	VBScript	in	a
form.

Sub	CommandButton1_Click()

				Set	myOLItem	=	Application.CreateItem(0)

				myOLItem.Subject	=	"Sample	item"

				myOLItem.Body	=	"This	is	a	sample	message."

				myOLItem.Display

End	Sub

	 	



Show	All



Create	an	Outlook	item
This	procedure	uses	the	Click	event	to	call	CreateItem	to	create	and	show	an
appointment	when	a	user	clicks	CommandButton1.

In	design	mode:

1.	 Using	the	Control	Toolbox,	place	a	CommandButton	on	your	form.
2.	 Open	the	Script	Editor.

How?

3.	 Enter	the	following	code,	using	the	value	from	the	table	below	to	specify
the	type	of	item	that	you	want	to	create.

Sub	CommandButton1_Click

				Application.CreateItem(1).Display

End	Sub

	 	 	 	

Type	of	item Has	the	value
MailItem 0
AppointmentItem 1
ContactItem 2
TaskItem 3
JournalItem 4
NoteItem			 5
PostItem 6
DistListItem 7



Referencing	existing	items	in	a	folder
There	are	a	number	of	ways	you	can	reference	existing	items	in	a	folder	using
Microsoft	Visual	Basic.	This	topic	provides	information	about:

Using	a	For	…	Next	or	For	Each	…	Next	loop
Using	the	Items	collection
Using	the	Find	method
Using	the	Restrict	method

Using	a	For…Next	or	For	Each...Next	Loop

Typically	these	statements	are	used	to	loop	through	all	of	the	items	in	a	folder.
The	Items	collection	contains	all	the	items	in	a	particular	folder,	and	you	can
specify	which	item	to	reference	by	using	an	index	with	the	Items	collection.
This	is	typically	used	with	the	For	I	=	1	to	n	programming	construct.

You	can	use	For	Each...Next	to	loop	through	the	items	in	the	collection
without	specifying	an	index.	Both	approaches	achieve	the	same	result.

The	following	examples	use	For…Next	to	loop	through	all	the	contacts	in	the
Contacts	folder	and	display	the	Full	Name	field	in	a	dialog	box.

'	Visual	Basic/Visual	Basic	for	Applications	code	example.

Set	ol	=	New	Outlook.Application

Set	olns	=	ol.GetNameSpace("MAPI")

'	Set	MyFolder	to	the	default	contacts	folder.

Set	MyFolder	=	olns.GetDefaultFolder(olFolderContacts)

'	Get	the	number	of	items	in	the	folder.

NumItems	=	MyFolder.Items.Count

'	Set	MyItem	to	the	collection	of	items	in	the	folder.

Set	myItems	=	myFolder.Items.Restrict("[MessageClass]	=	'IPM.Contact'")

'	Loop	through	all	of	the	items	in	the	folder.

For	I	=	1	to	NumItems

			MsgBox	MyItems(I).FullName

Next

'	VBScript	code	example.

Set	olns	=	Item.Application.GetNameSpace("MAPI")

'	Set	MyFolder	to	the	default	contacts	folder.

Set	MyFolder	=	olns.GetDefaultFolder(10)



'	Get	the	number	of	items	in	the	folder.

NumItems	=	MyFolder.Items.Count

'	Set	MyItem	to	the	collection	of	items	in	the	folder.

Set	myItems	=	myFolder.Items.Restrict("[MessageClass]	=	'IPM.Contact'")

'	Loop	through	all	of	the	items	in	the	folder.

For	I	=	1	to	NumItems

			MsgBox	MyItems(I).FullName

Next

	 	

The	following	examples	use	For	Each...Next	to	achieve	the	same	result	as	the
preceding	examples:

'	Visual	Basic/Visual	Basic	for	Applications	code	example.

Set	ol	=	New	Outlook.Application

Set	olns	=	ol.GetNameSpace("MAPI")

'	Set	MyFolder	to	the	default	contacts	folder.

Set	MyFolder	=	olns.GetDefaultFolder(olFolderContacts)

'	Set	MyItems	to	the	collection	of	items	in	the	folder.

Set	myItems	=	myFolder.Items.Restrict("[MessageClass]	=	'IPM.Contact'")

For	Each	SpecificItem	in	MyItems

			MsgBox	SpecificItem.FullName

Next

	 	

'	VBScript	code	example.

Set	olns	=	Item.Application.GetNameSpace("MAPI")

'	Set	MyFolder	to	the	default	contacts	folder.

Set	MyFolder	=	olns.GetDefaultFolder(10)

'	Set	MyItem	to	the	collection	of	items	in	the	folder.

Set	myItems	=	myFolder.Items.Restrict("[MessageClass]	=	'IPM.Contact'")

For	Each	SpecificItem	in	MyItems

			MsgBox	SpecificItem.FullName

Next

	 	

Using	the	Items	Collection

You	can	also	use	the	Items	collection	and	specify	a	text	string	that	matches	the
Subject	field	of	an	item.	The	following	examples	display	an	item	in	the	Inbox
whose	subject	contains	"Please	help	on	Friday!"

'	Visual	Basic/Visual	Basic	for	Applications	code	example.

Set	ol	=	New	Outlook.Application

Set	olns	=	ol.GetNameSpace("MAPI")

'	Set	MyFolder	to	the	default	Inbox.

Set	MyFolder	=	olns.GetDefaultFolder(olFolderInbox)



Set	MyItem	=	MyFolder.Items("Please	help	on	Friday!")

MyItem.Display

'	VBScript	code	example.

Set	olns	=	Item.Application.GetNameSpace("MAPI")

'	Set	MyFolder	to	the	default	Inbox.

Set	MyFolder	=	olns.GetDefaultFolder(6)

Set	MyItem	=	MyFolder.Items("Please	help	on	Friday!")

MyItem.Display

	 	

Using	the	Find	Method

Use	the	Find	method	to	search	for	an	item	in	a	folder	based	on	the	value	of	one
of	its	fields.	If	the	search	is	successful,	you	can	then	use	the	FindNext	method	to
check	for	additional	items	that	meet	the	same	search	criteria.

The	following	examples	search	to	see	if	you	have	any	high	priority	tasks.

'	Visual	Basic/Visual	Basic	for	Applications	code	example.

Set	ol	=	New	Outlook.Application

Set	olns	=	ol.GetNamespace("MAPI")

Set	myFolder	=	olns.GetDefaultFolder(olFolderTasks)

Set	MyTasks	=	myFolder.Items

'	Importance	corresponds	to	Priority	on	the	task	form.

Set	MyTask	=	MyTasks.Find("[Importance]	=	""High""")

If	MyTask	Is	Nothing	Then	'	the	Find	failed

			MsgBox	"Nothing	important.	Go	party!"

Else

			MsgBox	"You	have	something	important	to	do!"

End	If

'	VBScript	code	example.

Set	olns	=	Item.Application.GetNamespace("MAPI")

Set	myFolder	=	olns.GetDefaultFolder(13)

Set	MyTasks	=	myFolder.Items

'	Importance	corresponds	to	Priority	on	the	task	form.

Set	MyTask	=	MyTasks.Find("[Importance]	=	""High""")

If	MyTask	Is	Nothing	Then	'	the	Find	failed

			MsgBox	"Nothing	important.	Go	party!"

Else

			MsgBox	"You	have	something	important	to	do!"

End	If

	 	

Using	the	Restrict	Method



The	Restrict	method	is	similar	to	the	Find	method,	but	instead	of	returning	a
single	item,	it	returns	a	collection	of	items	that	meet	the	search	criteria.	For
example,	you	could	use	this	method	to	find	all	contacts	that	work	at	the	same
company.

The	following	examples	display	all	of	the	contacts	that	work	atProseWare
Corporation:

'	Automation	code	example.

Set	ol	=	New	Outlook.Application

Set	olns	=	ol.GetNameSpace("MAPI")

Set	MyFolder	=	olns.GetDefaultFolder(olFolderContacts)

Set	myItems	=	myFolder.Items.Restrict("[MessageClass]	=	'IPM.Contact'")

MyClause	=	"[CompanyName]	=	""ProseWare"""

Set	MyPWItems	=	MyItems.Restrict(MyClause)

For	Each	MyItem	in	MyPWItems

			MyItem.Display

Next

'	VBScript	code	example.

Set	olns	=	Item.Application.GetNameSpace("MAPI")

Set	MyFolder	=	olns.GetDefaultFolder(10)

Set	myItems	=	myFolder.Items.Restrict("[MessageClass]	=	'IPM.Contact'")

MyClause	=	"[CompanyName]	=	""ProseWare"""

Set	MyPWItems	=	MyItems.Restrict(MyClause)

For	Each	MyItem	in	MyPWItems

			MyItem.Display

Next

	 	



Filtering	items	in	a	collection
You	can	use	the	Microsoft	Outlook	object	model	to	return	information	about	all
items	in	a	folder.	Often,	however,	the	desired	objective	is	to	search	for	a	specific
item	or	to	retrieve	a	subset	of	the	items	in	the	folder.	Consider	the	following
examples:

You	are	developing	a	Microsoft	Access	database.	When	the	user	enters	a
new	contact	record,	you	want	to	give	the	user	the	ability	to	click	a	button	to
check	whether	a	contact	with	the	same	name	already	exists	in	Outlook.	If	a
match	is	found,	you	can	retrieve	all	the	fields	for	the	contact	and
automatically	fill	in	the	Access	database	record.	In	this	situation,	if	the	user
filled	in	the	first	and	last	name	fields	on	the	Access	form,	you	can	use	the
Find	method	in	the	Outlook	object	model	to	search	for	a	match	against	the
Outlook	Full	Name	field.	If	you	want	to	make	sure	there	are	no	additional
contacts	in	Outlook	with	the	same	name,	you	can	then	use	the	FindNext
method	to	conduct	the	same	search	again.
You	are	writing	a	Microsoft	Visual	Basic	program	to	automatically	schedule
appointments	in	users’	calendars.	In	order	to	do	this,	you	need	to	retrieve	a
user’s	appointments	for	a	given	day.	In	this	case,	you	would	use	the
Restrict	method	to	retrieve	all	appointments	that	fall	on	a	particular	day.

While	the	Find	and	Restrict	methods	perform	different	functions,	the	syntax	for
both	is	similar.	Following	are	some	tips	for	using	these	methods:

The	filters	used	with	Find	and	Restrict	are	not	case-sensitive.
It	is	not	possible	to	use	these	methods	if	you	need	to	search	for	a	string
that’s	contained	within	an	Outlook	field,	commonly	called	a	"Contains"
operation.	If	you	need	to	perform	a	Contains	operation,	you	can	iterate
through	all	of	the	items	in	the	folder	and	use	the	Visual	Basic	InStr
function	to	see	if	your	search	string	is	contained	within	an	Outlook	field.
To	create	a	filter	that	performs	a	"begins	with"	operation,	use	the	>,	<	,	>=,
and	<=	operators.	For	example,	to	search	for	all	contacts	whose	last	names
begin	with	"Mc",	use	this	filter:	""[LastName]	>=	""Mc""	and	[LastName]
<	""Md"""
You	can	use	the	contents	of	a	variable	as	part	of	the	filter.



Working	with	command	bars
In	Microsoft	Outlook	2000,	toolbars,	menu	bars,	and	shortcut	menus	are	all
controlled	programmatically	as	one	type	of	object:	command	bars.	All	the
following	items	are	represented	in	Microsoft	Visual	Basic	by	CommandBar
objects:

Menu	bars,	toolbars,	and	shortcut	menus
Menus	on	menu	bars	and	toolbars
Submenus	on	menus,	submenus,	and	shortcut	menus

You	can	modify	any	built-in	menu	bar	or	toolbar,	and	you	can	create	and	modify
custom	toolbars,	menu	bars,	and	shortcut	menus	to	deliver	with	your	Visual
Basic	application.	You	can	present	the	features	of	your	application	as	buttons	on
toolbars	or	as	groups	of	command	names	on	menus.	Because	toolbars	and	menus
are	both	command	bars,	you	use	the	same	kind	of	controls	on	both	of	them.
Menu	bars	and	toolbars	can	both	contain	menus.

In	Visual	Basic,	buttons	and	menu	items	are	represented	by
CommandBarButton	objects.	The	pop-up	controls	that	display	menus	and
submenus	are	represented	by	CommandBarPopup	objects.

You	can	also	add	text	boxes,	drop-down	list	boxes,	and	combo	boxes	to	any
command	bar.	These	three	types	of	controls	are	all	represented	in	Visual	Basic
by	CommandBarComboBox	objects.

Note		Although	they	share	similar	appearances	and	behaviors,	command	bar
controls	and	ActiveX	controls	are	not	the	same.	You	cannot	add	ActiveX
controls	to	command	bars,	and	you	cannot	add	command	bar	controls	to
documents	or	forms.

The	built-in	command	bar	controls	in	Outlook	are	also	represented	by
CommandBarButton,	CommandBarPopup,	and	CommandBarComboBox
objects,	but	their	appearances	and	behaviors	may	be	different	from	those	you	can
add	yourself.	You	can	modify	the	location	and	appearance	of	built-in	controls,
you	cannot	modify	their	built-in	behavior.



Reference	the	active	user
Use	GetNameSpace	to	return	the	Outlook	NameSpace	object	from	the
Application	object,	and	then	use	the	CurrentUser	property	to	return	a
Recipient	object	repesenting	the	active	user,	as	shown	in	the	following	example.

Set	myUser	=	Application.GetNameSpace("MAPI").CurrentUser

	 	



Use	current	user	properties	from	the
Microsoft	Exchange	Server	global
address	list
In	code,	open	an	OLE	messaging	session	and	log	on,	and	then	use	the	following
table	to	reference	the	property	you	want	to	use.

Set	olemSession	=	Application.CreateObject("MAPI.Session")

ReturnCode	=	olemSession.Logon(	Application.GetNameSpace("MAPI").CurrentUser,	"",	False,	False,	0	)

myPage	=	Item.GetInspector.ModifiedFormPages("Message")

Set	myUser	=	olemSession.CurrentUser

Item.UserProperties.Find("Name")	=	myUser.Name

Item.UserProperties.Find("Messaging	Address")	=	myUser.Address

Item.UserProperties.Find("MAPI	First	Name")	=	myUser.Fields.item(&h3a06001e)

	 	

Address	Book	Property Reference
PR_GIVEN_NAME &h3a06001e
PR_INITIALS &h3a0a001e
PR_SURNAME &h3a11001e
PR_7BIT_DISPLAY_NAME &h39ff001e
PR_STREET_ADDRESS &h3a29001e
PR_LOCALITY &h3a27001e
PR_STATE_OR_PROVINCE &h3a28001e
PR_POSTAL_CODE &h3a2a001e
PR_COUNTRY &h3a26001e
PR_TITLE &h3a17001e
PR_COMPANY_NAME &h3a16001e
PR_DEPARTMENT_NAME &h3a18001e
PR_OFFICE_LOCATION &h3a19001e
PR_ASSISTANT &h3a30001e
PR_BUSINESS_TELEPHONE_NUMBER&h3a08001e



Use	the	PropertyChange	event	to	test
procedures
Perform	the	following	steps	to	test	simple	procedures.	Replace	the	code	below
with	the	code	that	you	want	to	test.	Each	time	a	user	changes	the	value	of	the
Importance	field,	or	any	other	default	field,	the	code	runs.

1.	 Open	the	Script	Editor.

How?

2.	 On	the	Script	menu,	click	Event	Handler.
3.	 In	the	Events	box,	double-click	PropertyChange.
4.	 Add	the	following	code	in	the	event:

MsgBox	"This	is	my	test	procedure"

5.	 On	the	Form	menu,	click	Run	This	Form.
6.	 Click	the	!	icon	on	the	toolbar.	The	message	box	will	appear.
7.	 Click	OK	to	close	the	message	box.



Show	All



CheckBox	control
Displays	the	selection	state	of	an	item.

Remarks

Use	a	CheckBox	to	give	the	user	a	choice	between	two	values	such	as	Yes/No,
True/False,	or	On/Off.	When	the	user	selects	a	CheckBox,	it	displays	a	special
mark	(such	as	an	X)	and	its	current	setting	is	Yes,	True,	or	On.	If	the	user	does
not	select	the	CheckBox,	it	is	empty	and	its	setting	is	No,	False,	or	Off.
Depending	on	the	value	of	the	TripleState	property,	a	CheckBox	can	also	have
a	null	value.

If	a	CheckBox	is	bound	to	a	data	source,	changing	the	setting	changes	the	value
of	that	source.	A	disabled	CheckBox	shows	the	current	value,	but	is	dimmed	and
does	not	allow	changes	to	the	value	from	the	user	interface.

You	can	also	use	check	boxes	inside	a	group	box	to	select	one	or	more	of	a
group	of	related	items.	For	example,	you	can	create	an	order	form	that	contains	a
list	of	available	items,	with	a	CheckBox	preceding	each	item.	The	user	can
select	a	particular	item	or	items	by	checking	the	corresponding	CheckBox.

The	default	property	of	a	CheckBox	is	the	Value	property.

Note		The	ListBox	also	lets	you	put	a	check	mark	by	selected	options.
Depending	on	your	application,	you	can	use	the	ListBox	instead	of	using	a
group	of	CheckBox	controls.



Show	All



ComboBox	control
Combines	the	features	of	a	ListBox	and	a	TextBox.	The	user	can	enter	a	new
value,	as	with	a	TextBox,	or	the	user	can	select	an	existing	value	as	with	a
ListBox.

Remarks

If	a	ComboBox	is	bound	to	a	data	source,	the	ComboBox	inserts	the	value
entered	or	selected	by	the	user	into	that	data	source.	If	a	multicolumn	combo	box
is	bound,	then	the	BoundColumn	property	determines	which	value	is	stored	in
the	bound	data	source.

The	list	in	a	ComboBox	consists	of	rows	of	data.	Each	row	can	have	one	or
more	columns,	which	can	appear	with	or	without	headings.	Some	applications
do	not	support	column	headings,	others	provide	only	limited	support.

The	default	property	of	a	ComboBox	is	the	Value	property.

Note		If	you	want	more	than	a	single	line	of	the	list	to	appear	at	all	times,	you
might	want	to	use	a	ListBox	instead	of	a	ComboBox.	If	you	want	to	use	a
ComboBox	and	limit	values	to	those	in	the	list,	you	can	set	the	Style	property	of
the	ComboBox	so	the	control	looks	like	a	drop-down	list	box.



CommandButton	control
Starts,	ends,	or	interrupts	an	action	or	series	of	actions.

Remarks

Requires	VBScript.

Syntax

Sub	CommandButton_Click(	)

'write	event	code	here

End	Sub

The	macro	or	event	procedure	assigned	to	the	CommandButton's	Click	event
determines	what	the	CommandButton	does.	For	example,	you	can	create	a
CommandButton	that	opens	another	form.	You	can	also	display	text,	a	picture,
or	both	on	a	CommandButton.

The	default	property	of	a	CommandButton	is	the	Value	property.

The	only	event	for	a	CommandButton	is	the	Click	event.



Font	Object
Defines	the	characteristics	of	the	text	used	by	a	control.

Each	control	has	its	own	Font	object	to	let	you	set	its	text	characteristics
independently	of	the	characteristics	defined	for	other	controls.	Use	font
properties	to	specify	the	font	name,	to	set	bold,	italic,	or	underlined	text,	or	to
adjust	the	size	of	the	text.

The	default	property	for	the	Font	object	is	the	Name	property.



Show	All



Frame	control
Creates	a	functional	and	visual	control	group.

Remarks

All	option	buttons	in	a	Frame	are	mutually	exclusive,	so	you	can	use	the	Frame
to	create	an	option	group.	You	can	also	use	a	Frame	to	group	controls	with
closely	related	contents.For	example,	in	an	application	that	processes	customer
orders,	you	might	use	a	Frame	to	group	the	name,	address,	and	account	number
of	customers.

You	can	also	use	a	Frame	to	create	a	group	of	ToggleButtons,	but	the	toggle
buttons	are	not	mutually	exclusive.

To	create	a	group	of	mutually	exclusive	OptionButton	controls,	you	can	put	the
buttons	in	a	Frameon	your	form,	or	you	can	use	the	GroupName	property.



Show	All



Image	control
Displays	a	picture	on	a	form.

Remarks

The	Image	control	lets	you	display	a	picture	as	part	of	the	data	in	a	form.	For
example,	you	might	use	an	Image	to	display	employee	photographs	in	a
personnel	form.

The	Image	lets	you	crop,	size,	or	zoom	a	picture,	but	does	not	allow	you	to	edit
the	contents	of	the	picture.	For	example,	you	cannot	use	the	Image	to	change	the
colors	in	the	picture,	to	make	the	picture	transparent,	or	to	refine	the	image	of
the	picture.	You	must	use	image	editing	software	for	these	purposes.

The	Image	supports	the	following	file	formats:

*.bmp
*.cur
*.gif
*.ico
*.jpg
*.wmf

Note		You	can	also	display	a	picture	on	a	Label.	However,	a	Label	does	not	let
you	crop,	size,	or	zoom	the	picture.<P>



Label	control
Displays	descriptive	text.

Remarks

A	Label	control	on	a	form	displays	descriptive	text	such	as	titles,	captions,
pictures,	or	brief	instructions.	For	example,	labels	for	an	address	book	might
include	a	Label	for	a	name,	street,	or	city.

The	default	property	for	a	Label	is	the	Caption	property.

Note		You	can	also	display	a	picture	on	a	Label.	However,	a	Label	does	not	let
you	crop,	size,	or	zoom	the	picture.



Show	All



ListBox	control
Displays	a	list	of	values	and	lets	you	select	one	or	more.

Remarks

If	the	ListBox	is	bound	to	a	data	source,	the	ListBox	stores	the	selected	value	in
that	data	source.

The	ListBox	can	either	appear	as	a	list	or	as	a	group	of	OptionButton	controls
or	CheckBox	controls.

The	default	property	for	a	ListBox	is	the	Value	property.

The	default	event	for	a	ListBox	is	the	Click	event.

Note		You	can't	drop	text	into	a	drop-down	ListBox.

ListBox	styles

You	can	choose	between	two	presentation	styles	for	a	ListBox.	Each	style
provides	different	ways	for	users	to	select	items	in	the	list.

If	the	style	is	Plain,	each	item	is	on	a	separate	row;	the	user	selects	an	item	by
highlighting	one	or	more	rows.

If	the	style	is	Option,	an	OptionButton	or	CheckBox	appears	at	the	beginning
of	each	row.	With	this	style,	the	user	selects	an	item	by	clicking	the	option
button	or	check	box.	Check	boxes	appear	only	when	the	MultiSelect	property	is
True.



Show	All



MultiPage	control
Presents	multiple	screens	of	information	as	a	single	set.

Remarks

A	MultiPage	is	useful	when	you	work	with	a	large	amount	of	information	that
can	be	sorted	into	several	categories.	For	example,	use	a	MultiPage	to	display
information	from	an	employment	application.	One	page	might	contain	personal
information	such	as	name	and	address;	another	page	might	list	previous
employers;	a	third	page	might	list	references.	The	MultiPage	lets	you	visually
combine	related	information,	while	keeping	the	entire	record	readily	accessible.

New	pages	are	added	to	the	right	of	the	currently	selected	page	rather	than
adjacent	to	it.

A	MultiPage	is	a	control	that	contains	a	collection	of	one	or	more	pages.

Each	Page	of	a	MultiPage	is	a	form	that	contains	its	own	controls,	and	as	such,
can	have	a	unique	layout.	Typically,	the	pages	in	a	MultiPage	have	tabs	so	the
user	can	select	the	individual	pages.

By	default,	a	MultiPage	includes	two	pages,	called	Page1	and	Page2.	Each	of
these	is	a	Page	object,	and	together	they	represent	the	Pages	collection	of	the
MultiPage.	If	you	add	more	pages,	they	become	part	of	the	same	Pages
collection.

The	default	property	for	a	MultiPage	is	the	Value	property,	which	returns	the
index	of	the	currently	active	Page	in	the	Pages	collection	of	the	MultiPage.

Note		The	MultiPage	control	does	not	support	the	Click	event.





Show	All



OptionButton	control
Shows	the	selection	status	of	one	item	in	a	group	of	choices.

Remarks

Use	an	OptionButton	to	show	whether	a	single	item	in	a	group	is	selected.	Note
that	each	OptionButton	in	a	Frame	is	mutually	exclusive.

If	an	OptionButton	is	bound	to	a	data	source,	the	OptionButton	can	show	the
value	of	that	data	source	as	either	Yes/No,	True/False,	or	On/Off.	If	the	user
selects	the	OptionButton,	the	current	setting	is	Yes,	True,	or	On.	If	the	user	does
not	select	the	OptionButton,	the	setting	is	No,	False,	or	Off.	For	example,	an
OptionButton	in	an	inventory-tracking	application	might	show	whether	an	item
is	discontinued.	If	the	OptionButton	is	bound	to	a	data	source,	then	changing
the	setting	changes	the	value	of	that	data	source.	A	disabled	OptionButton	is
dimmed	and	does	not	show	a	value.

Depending	on	the	value	of	the	TripleState	property,	an	OptionButton	can	also
have	a	null	value.

You	can	also	use	an	OptionButton	inside	a	group	box	to	select	one	or	more	of	a
group	of	related	items.	For	example,	you	can	create	an	order	form	with	a	list	of
available	items,	with	an	OptionButton	preceding	each	item.	The	user	can	select
a	particular	item	by	checking	the	corresponding	OptionButton.

The	default	property	for	an	OptionButton	is	the	Value	property.



Pages	Collection
A	Pages	collection	includes	all	the	pages	of	a	MultiPage.

Remarks

Each	Pages	collection	provides	the	features	to	manage	the	number	of	pages	in
the	collection	and	to	identify	the	page	that	is	currently	in	use.

The	default	value	of	the	Pages	collection	identifies	the	current	Page	of	a
collection.

You	can	reference	a	Page	by	its	index	value.	The	index	value	reflects	the	ordinal
position	of	the	Page	within	the	collection.	The	index	of	the	first	Page	in	a
collection	is	0;	the	index	of	the	second	Page	is	1;	and	so	on.



Page	Object
One	page	of	a	MultiPage	or	a	single	member	of	a	Pages	collection.

Remarks

Each	Page	object	contains	its	own	set	of	controls	and	does	not	necessarily	rely
on	other	pages	in	the	collection	for	information.	A	Page	inherits	some	properties
from	its	container;	the	value	of	each	inherited	property	is	set	by	the	container.

You	can	reference	a	Page	by	its	index	value.	The	index	value	reflects	the	ordinal
position	of	the	Page	within	the	collection.	The	index	of	the	first	Page	in	a
collection	is	0;	the	index	of	the	second	Page	is	1;	and	so	on.

The	default	name	for	the	first	Page	is	Page1.	The	default	name	for	the	second
Page	is	Page2.



ScrollBar	control
Returns	or	sets	the	value	of	another	control	based	on	the	position	of	the	scroll
box.

Remarks

Requires	VBScript.

A	ScrollBar	is	a	stand-alone	control	you	can	place	on	a	form.	It	is	visually	like
the	scroll	bar	you	see	in	certain	objects	such	as	a	ListBox	or	the	drop-down
portion	of	a	ComboBox.	However,	unlike	the	scroll	bars	in	these	controls,	the
stand-alone	ScrollBar	is	not	an	integral	part	of	any	other	control.

To	use	the	ScrollBar	to	set	or	read	the	value	of	another	control,	you	must	write
code	that	uses	the	ScrollBar's	Value	property.	For	example,	to	use	the
ScrollBar	to	update	the	value	of	a	TextBox,	you	can	write	code	that	reads	the
Value	property	of	the	ScrollBar	and	then	sets	the	Value	property	of	the
TextBox.

The	default	property	for	a	ScrollBar	is	the	Value	property.

Note		To	create	a	horizontal	or	vertical	ScrollBar,	drag	the	sizing	handles	of	the
ScrollBar	horizontally	or	vertically	on	the	form.



SpinButton	control
Increments	and	decrements	numbers.

Remarks

Requires	VBScript.

Clicking	a	SpinButton	changes	only	the	value	of	the	SpinButton.	You	can	write
code	that	uses	the	SpinButton	to	update	the	displayed	value	of	another	control.
For	example,	you	can	use	a	SpinButton	to	change	the	month,	the	day,	or	the
year	shown	on	a	date.	You	can	also	use	a	SpinButton	to	scroll	through	a	range
of	values	or	a	list	of	items,	or	to	change	the	value	displayed	in	a	text	box.

To	display	a	value	updated	by	a	SpinButton,	you	must	assign	the	value	of	the
SpinButton	to	the	displayed	portion	of	a	control,	such	as	the	Caption	property
of	a	Label	or	the	Text	property	of	a	TextBox.	To	create	a	horizontal	or	vertical
SpinButton,	drag	the	sizing	handles	of	the	SpinButton	horizontally	or	vertically
on	the	form.

The	default	property	for	a	SpinButton	is	the	Value	property.



Tab	Object
A	Tab	is	an	individual	member	of	a	Tabs	collection.

Remarks

Visually,	a	Tab	object	appears	as	a	rectangle	protruding	from	a	larger	rectangular
area,	or	as	a	button	adjacent	to	a	rectangular	area.

In	contrast	to	a	Page,	a	Tab	does	not	contain	any	controls.	Controls	that	appear
within	the	region	bounded	by	a	TabStrip	are	contained	on	the	form,	as	is	the
TabStrip.

You	can	reference	a	Tab	by	its	index	value.	The	index	value	reflects	the	ordinal
position	of	the	Tab	within	the	collection.	The	index	of	the	first	Tab	in	a
collection	is	0;	the	index	of	the	second	Tab	is	1;	and	so	on.



Tabs	Collection
A	Tabs	collection	includes	all	Tabs	of	a	TabStrip.

Remarks

Each	Tabs	collection	provides	the	features	to	manage	the	number	of	tabs	in	the
collection	and	to	identify	the	tab	that	is	currently	in	use.

The	default	value	of	the	Tabs	collection	identifies	the	current	Tab	of	a
collection.

You	can	reference	a	Tab	by	its	index	value.	The	index	value	reflects	the	ordinal
position	of	the	Tab	within	the	collection.	The	index	of	the	first	Tab	in	a
collection	is	0;	the	index	of	the	second	Tab	is	1;	and	so	on.



Show	All



TabStrip	control
Presents	a	set	of	related	controls	as	a	visual	group.

Remarks

You	can	use	a	TabStrip	to	view	different	sets	of	information	for	related	controls.

A	TabStrip	is	a	control	that	contains	a	collection	of	one	or	more	tabs.

Each	Tab	of	a	TabStrip	is	a	separate	object	that	users	can	select.	Visually,	a
TabStrip	also	includes	a	client	area	that	all	the	tabs	in	the	TabStrip	share.

By	default,	a	TabStrip	includes	two	pages,	called	Tab1	and	Tab2.	Each	of	these
is	a	Tab	object,	and	together	they	represent	the	Tabs	collection	of	the	TabStrip.
If	you	add	more	pages,	they	become	part	of	the	same	Tabs	collection.

For	example,	the	controls	might	represent	information	about	a	daily	schedule	for
a	group	of	individuals,	with	each	set	of	information	corresponding	to	a	different
individual	in	the	group.	Set	the	title	of	each	tab	to	show	one	individual's	name.
Then,	you	can	write	code	that,	after	you	click	a	tab,	updates	the	controls	to	show
information	about	the	person	identified	on	the	tab.

Note		The	TabStrip	is	implemented	as	a	container	of	a	Tabs	collection,	which	in
turn	contains	a	group	of	Tab	objects.	The	TabStrip	control	does	not	support	the
Click	event.

Note		The	default	property	for	a	TabStrip	is	the	SelectedItem	property.



Show	All



TextBox	control
Displays	information	from	a	user	or	from	an	organized	set	of	data.

Remarks

A	TextBox	is	the	control	most	commonly	used	to	display	information	entered	by
a	user.	Also,	it	can	display	a	set	of	data,	such	as	a	table,	query,	worksheet,	or	a
calculation	result.	If	a	TextBox	is	bound	to	a	data	source,	then	changing	the
contents	of	the	TextBox	also	changes	the	value	of	the	bound	data	source.

Formatting	applied	to	any	piece	of	text	in	a	TextBox	will	affect	all	text	in	the
control.	For	example,	if	you	change	the	font	or	point	size	of	any	character	in	the
control,	the	change	will	affect	all	characters	in	the	control.

The	default	property	for	a	TextBox	is	the	Value	property.

Tips	on	using	text	boxes

The	TextBox	is	a	flexible	control	governed	by	the	following	properties:	Text,
MultiLine,	WordWrap,	and	AutoSize.

Text	contains	the	text	that's	displayed	in	the	text	box.

MultiLine	controls	whether	the	TextBox	can	display	text	as	a	single	line	or	as
multiple	lines.	Newline	characters	identify	where	one	line	ends	and	another
begins.	If	MultiLine	is	False	(the	default	value),	the	text	is	truncated	instead	of
wrapped.

WordWrap	allows	the	TextBox	to	wrap	lines	of	text	that	are	longer	than	the
width	of	the	TextBox	into	shorter	lines	that	fit.	The	default	value	is	True.

If	you	do	not	use	WordWrap,	the	TextBox	starts	a	new	line	of	text	when	it
encounters	a	newline	character	in	the	text.	If	WordWrap	is	turned	off,	you	can
have	text	lines	that	do	not	fit	completely	in	the	TextBox.	The	TextBox	displays
the	portions	of	text	that	fit	inside	its	width	and	truncates	the	portions	of	text	that
do	not	fit.	WordWrap	is	not	applicable	unless	MultiLine	is	True.



AutoSize	controls	whether	the	TextBox	adjusts	to	display	all	of	the	text.	When
using	AutoSize	with	a	TextBox,	the	width	of	the	TextBox	shrinks	or	expands
according	to	the	amount	of	text	in	the	TextBox	and	the	font	size	used	to	display
the	text.	The	default	value	is	False.

AutoSize	works	well	in	the	following	situations:

Displaying	a	caption	of	one	or	more	lines.
Displaying	the	contents	of	a	single-line	TextBox.
Displaying	the	contents	of	a	multiline	TextBox	that	is	read-only	to	the	user.

Note		Avoid	using	AutoSize	with	an	empty	TextBox	that	also	uses	the
MultiLine	and	WordWrap	properties.	When	the	user	enters	text	into	a	TextBox
with	these	properties,	the	TextBox	automatically	sizes	to	a	long	narrow	box	one
character	wide	and	as	long	as	the	line	of	text.



Show	All



ToggleButton	control
Shows	the	selection	state	of	an	item.

Remarks

Use	a	ToggleButton	to	show	whether	an	item	is	selected.	If	a	ToggleButton	is
bound	to	a	data	source,	the	ToggleButton	shows	the	current	value	of	that	data
source	as	either	Yes/No,	True/False,	On/Off,	or	some	other	choice	of	two
settings.	If	the	user	selects	the	ToggleButton,	the	current	setting	is	Yes,	True,	or
On.	If	the	user	does	not	select	the	ToggleButton,	the	setting	is	No,	False,	or	Off.
If	the	ToggleButton	is	bound	to	a	data	source,	changing	the	setting	changes	the
value	of	that	data	source.	A	disabled	ToggleButton	shows	a	value,	but	is
dimmed	and	does	not	allow	changes	from	the	user	interface.

You	can	also	use	a	ToggleButton	inside	a	Frame	to	select	one	or	more	of	a
group	of	related	items.	For	example,	you	can	create	an	order	form	with	a	list	of
available	items,	with	a	ToggleButton	preceding	each	item.	The	user	can	select	a
particular	item	by	selecting	the	appropriate	ToggleButton.

The	default	property	of	a	ToggleButton	is	the	Value	property.

The	only	event	for	a	ToggleButton	is	the	Click	event.



Show	All



About	the	order	of	events
The	following	events	occur	in	the	order	specified	when	a	user	completes	an
action.

Events When
Open A	form	is	opened	to	compose	an	item.
Send,	Write,	Close An	item	is	sent.
Write,	Close An	item	is	posted.
Write An	item	is	saved.
Close An	item	is	closed.
Read,	Open An	item	is	opened	in	a	folder.
Reply A	user	replies	to	an	item's	sender.
ReplyAll A	user	replies	to	an	item's	sender	and	all	recipients.

Forward The	newly-created	item	is	passed	to	the	procedure
after	the	user	selects	the	Forward	action	for	an	item.

PropertyChange One	of	the	item's	standard	properties	is	changed.
CustomPropertyChange One	of	the	item's	custom	properties	is	changed.
CustomAction A	user-defined	action	is	initiated.

The	Click	event	occurs	only	when	you	have	defined	it	for	a	control	in	the	Script
Editor.



Add	a	Click	event	for	a	control
1.	 Open	the	Script	Editor.

How?

2.	 For	the	control	to	which	you	want	to	add	a	Click	event,	add	the	following,
where	CommandButton1	is	the	name	of	the	control.

Sub	CommandButton1_Click

End	Sub

3.	 Enter	the	code	that	you	want	in	the	event.



Show	All



Click	Event
The	Click	event	occurs	only	if	it	has	been	defined	for	a	control	in	the	Script
Editor.

The	TabStrip	and	MultiPage	controls	do	not	support	the	Click	event.	However,
individual	the	Page	objects	of	the	MultiPage	control	do	support	the	click	event.

ScrollBars	and	SpinButtons	do	not	support	the	Click	event	but	you	can	bind
them	to	fields	and	use	the	CustomPropertyChange	event.

Syntax

Sub	object_Click(	)

The	Click	event	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Example:

Sub	CommandButton1_Click()

				MsgBox	"You	just	clicked	my	button!	"

End	Sub

	 	

Remarks

The	Click	event	occurs	in	one	of	two	cases:

The	user	clicks	a	control	with	the	mouse.
The	user	definitively	selects	a	value	for	a	control	with	more	than	one
possible	value.

Of	the	two	cases	where	the	Click	event	occurs,	the	first	case	applies	to	the
CommandButton,	Frame,	Image,	Label,	and	Page.



The	second	case	applies	to	the	CheckBox,	ComboBox,	ListBox,	and
ToggleButton.	It	also	applies	to	an	OptionButton	when	the	value	changes	to
True.

The	following	are	examples	of	actions	that	initiate	the	Click	event:

Clicking	a	blank	area	of	a	form	or	a	disabled	control	(other	than	a	list	box)
on	the	form.
Clicking	a	CommandButton.
Pressing	the	SPACEBAR	when	a	CommandButton	has	the	focus.
Clicking	a	control	with	the	left	mouse	button	(left-clicking).
Pressing	ENTER	on	a	form	that	has	a	command	button	whose	Default
property	is	set	to	True,	as	long	as	no	other	command	button	has	the	focus.
Pressing	ESC	on	a	form	that	has	a	command	button	whose	Cancel	property
is	set	to	True,	as	long	as	no	other	command	button	has	the	focus.
Pressing	a	control's	accelerator	key.

For	some	controls,	the	Click	event	occurs	when	the	Value	property	changes.
However,	using	the	PropertyChange	or	CustomPropertyChange	event	is	the
preferred	technique	for	detecting	a	new	value	for	a	property.	The	following	are
examples	of	actions	that	initiate	the	Click	event	due	to	assigning	a	new	value	to
a	control:

Clicking	a	CheckBox	or	ToggleButton,	pressing	the	SPACEBAR	when
one	of	these	controls	has	the	focus,	pressing	the	accelerator	key	for	one	of
these	controls,	or	changing	the	value	of	the	control	in	code.
Changing	the	value	of	an	OptionButton	to	True.	Setting	one
OptionButton	in	a	group	to	True	sets	all	other	buttons	in	the	group	to
False,	but	the	Click	event	occurs	only	for	the	button	whose	value	changes
to	True.
Selecting	a	value	for	a	ComboBox	or	ListBox	so	that	it	unquestionably
matches	an	item	in	the	control's	drop-down	list.	For	example,	if	a	list	is	not
sorted,	the	first	match	for	characters	typed	in	the	edit	region	may	not	be	the
only	match	in	the	list,	so	choosing	such	a	value	does	not	initiate	the	Click
event.	In	a	sorted	list,	you	can	use	entry-matching	to	ensure	that	a	selected
value	is	a	unique	match	for	text	the	user	types.

The	Click	event	is	not	initiated	when	Value	is	set	to	Null.



Note		Left-clicking	changes	the	value	of	a	control,	thus	it	initiates	the	Click
event.	Right-clicking	does	not	change	the	value	of	the	control,	so	it	does	not
initiate	the	Click	event.

Also	Note	If	you	bind	a	ListBox,	ComboBox,	OptionButton,	or	CheckBox	to
a	field,	then	the	Click	event	does	not	fire.	You	need	to	use	the	PropertyChange
or	CustomPropertyChange	event	to	detect	the	change	via	code.

Example:

Sub	Item_PropertyChange(ByVal	Name)

Set	MyListBox	=	Item.GetInspector.ModifiedFormPages("Message").Controls("ListBox1")

Select	Case	Name

				Case	"Mileage"

								Item.CC	=	MyListBox.Value

								Item.Subject	=	MyListBox.Value

				Case	Else

End	Select

End	Sub

	 	



Show	All



Add	Method
Adds	a	control	by	its	programmatic	identifier	(ProgID)	to	a	page	or	adds	or
inserts	a	Tab	or	Page	in	a	TabStrip	or	MultiPage.

Syntax

For	MultiPage,	TabStrip
Set	Object	=	object.Add(	[	Name	[,	Caption	[,	index]]])

For	other	controls
Set	Control	=	object.Add(	ProgID	[,	Name	[,	Visible]])

The	Add	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object	name.

Name
Optional.	Specifies	the	name	of	the	object	being	added.	If	a	name	is	not
specified,	the	system	generates	a	default	name	based	on	the	rules	of	the
application	where	the	form	is	used.

Caption
Optional.	Specifies	the	caption	to	appear	on	a	tab	or	a	control.	If	a
caption	is	not	specified,	the	system	generates	a	default	caption	based	on
the	rules	of	the	application	where	the	form	is	used.

index

Optional.	Identifies	the	position	of	a	page	or	tab	within	a	Pages	or	Tabs
collection.	If	an	index	is	not	specified,	the	system	appends	the	page	or
tab	to	the	end	of	the	Pages	or	Tabs	collection	and	assigns	the
appropriate	index	value.

ProgID

Required.	Programmatic	identifier.	A	text	string	with	no	spaces	that
identifies	an	object	class.	The	standard	syntax	for	a	ProgID	is
<Vendor>.<Component>.<Version>.	A	ProgID	is	mapped	to	a	class
identifier	(CLSID).

Visible Optional.	True	if	the	object	is	visible	(default).	False	if	the	object	is
hidden.

Settings



ProgID	values	for	individual	controls	are:

CheckBox Forms.CheckBox.1
ComboBox Forms.ComboBox.1
CommandButton Forms.CommandButton.1
Frame Forms.Frame.1
Image Forms.Image.1
Label Forms.Label.1
ListBox Forms.ListBox.1
MultiPage Forms.MultiPage.1
OptionButton Forms.OptionButton.1
ScrollBar Forms.ScrollBar.1
SpinButton Forms.SpinButton.1
TabStrip Forms.TabStrip.1
TextBox Forms.TextBox.1
ToggleButton Forms.ToggleButton.1

Remarks

For	a	MultiPage	control,	the	Add	method	returns	a	Page	object.	For	a	TabStrip,
it	returns	a	Tab	object.	The	index	value	for	the	first	Page	or	Tab	of	a	collection
is	0,	the	value	for	the	second	Page	or	Tab	is	1,	and	so	on.

For	the	Controls	collection	of	an	object,	the	Add	method	returns	a	control
corresponding	to	the	specified	ProgID.	The	AddControl	event	occurs	after	the
control	is	added.

The	following	syntax	will	return	the	Text	property	of	a	control	added	at	design
time:

userform1.thebox.text

	 	

If	you	add	a	control	at	run	time,	you	must	use	the	exclamation	syntax	to
reference	properties	of	that	control.	For	example,	to	return	the	Text	property	of	a
control	added	at	run	time,	use	the	following	syntax:



userform1!thebox.text

	 	

Note		You	can	change	a	control's	Name	property	at	run	time	only	if	you	added
that	control	at	run	time	with	the	Add	method.



Show	All



AddItem	Method
For	a	single-column	ListBox	or	ComboBox,	the	AddItem	method	adds	an	item
to	the	list.	For	a	multicolumn	ListBox	or	ComboBox,	this	method	adds	a	row	to
the	list.

Syntax

Variant	=	object.AddItem(	[	item	[,	varIndex]])

The	AddItem	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Item Optional.	Specifies	the	item	or	row	to	add.	The	number	of	the	first
item	or	row	is	0;	the	number	of	the	second	item	or	row	is	1,	and	so	on.

varIndex Optional.	Integer	specifying	the	position	within	the	object	where	thenew	item	or	row	is	placed.

Remarks

If	you	supply	a	valid	value	for	varIndex,	the	AddItem	method	places	the	item	or
row	at	that	position	within	the	list.	If	you	omit	varIndex,	the	method	adds	the
item	or	row	at	the	end	of	the	list.

The	value	of	varIndex	must	not	be	greater	than	the	value	of	the	ListCount
property.

For	a	multicolumn	ListBox	or	ComboBox,	AddItem	inserts	an	entire	row,	that
is,	it	inserts	an	item	for	each	column	of	the	control.	To	assign	values	to	an	item
beyond	the	first	column,	use	the	List	or	Column	property	and	specify	the	row
and	column	of	the	item.

If	the	control	is	bound	to	data,	the	AddItem	method	fails.

Note		You	can	add	more	than	one	row	at	a	time	to	a	ComboBox	or	ListBox	by
using	List.





Show	All



Clear	Method
Removes	all	objects	from	an	object	or	collection.

Syntax

object.Clear

The	Clear	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

For	a	MultiPage	or	TabStrip,	the	Clear	method	deletes	individual	pages	or
tabs.

For	a	ListBox	or	ComboBox,	Clear	removes	all	entries	in	the	list.

For	a	Controls	collection,	Clear	deletes	controls	that	were	created	at	run-time
with	the	Add	method.	Using	Clear	on	controls	created	at	design-time	causes	an
error.

Note		If	the	control	is	bound	to	data,	the	Clear	method	fails.



Copy	Method
Copies	the	contents	of	an	object	to	the	Clipboard.

Syntax

object.Copy

The	Copy	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

The	original	content	remains	on	the	object.

The	actual	content	that	is	copied	depends	on	the	object.	For	example,	on	a	Page,
the	Copy	method	copies	the	currently	selected	control	or	controls.	On	a	TextBox
or	ComboBox,	it	copies	the	currently	selected	text.

Using	Copy	for	a	form,	Frame,	or	Page	copies	the	currently-active	control.



Show	All



Cut	Method
Removes	selected	information	from	an	object	and	transfers	it	to	the	Clipboard.

Syntax

object.Cut

The	Cut	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

For	a	ComboBox	or	TextBox,	the	Cut	method	removes	currently	selected	text
in	the	control	to	the	Clipboard.	This	method	does	not	require	that	the	control
have	the	focus.

On	a	Page,	Frame,	or	form,	Cut	removes	currently	selected	controls	to	the
Clipboard.	This	method	only	removes	controls	created	at	run	time.



DropDown	Method
Displays	the	list	portion	of	a	ComboBox.

Syntax

object.DropDown

The	DropDown	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

Use	the	DropDown	method	to	open	the	list	in	a	combo	box.



Show	All



GetFormat	Method
Returns	an	integer	value	indicating	whether	a	specific	format	is	on	the
DataObject.

Syntax

Boolean	=	object.GetFormat(	format)

The	GetFormat	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

format
Required.	An	integer	or	string	specifying	a	specific	format	that	might
exist	in	the	DataObject.	If	the	specified	format	exists	in	the
DataObject,	GetFormat	returns	True.

Settings

The	settings	for	format	are:

Value Description
1 Text	format.
A	string	or	any	integer
other	than	1

A	user-defined	DataObject	format	passed	to	the
DataObject	from	SetText.

Remarks

The	GetFormat	method	searches	for	a	format	in	the	current	list	of	formats	on
the	DataObject.	If	the	format	is	on	the	DataObject,	GetFormat	returns	True;
if	not,	GetFormat	returns	False.

The	DataObject	currently	supports	only	text	formats.





GetFromClipboard	Method
Copies	data	from	the	Clipboard	to	a	DataObject.

Syntax

String	=	object.GetFromClipboard(	)

The	GetFromClipboard	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object	name.

Remarks

The	DataObject	can	contain	multiple	data	items,	but	each	item	must	be	in	a
different	format.	For	example,	the	DataObject	might	include	one	text	item	and
one	item	in	a	custom	format;	but	cannot	include	two	text	items.



Show	All



GetText	Method
Retrieves	a	text	string	from	the	DataObject	using	the	specified	format.

Syntax

String	=	object.GetText(	[	format])

The	GetText	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object	name.

format Optional.	A	string	or	integer	specifying	the	format	of	the	data	to	retrievefrom	the	DataObject.

Settings

The	settings	for	format	are:

Value Description
1 Text	format.
A	string	or	any	integer
other	than	1

A	user-defined	DataObject	format	passed	to	the
DataObject	from	SetText.

Remarks

The	DataObject	supports	multiple	formats,	but	only	supports	one	data	item	of
each	format.	For	example,	the	DataObject	might	include	one	text	item	and	one
item	in	a	custom	format;	but	cannot	include	two	text	items.

If	no	format	is	specified,	the	GetText	method	requests	information	in	the	Text
format	from	the	DataObject.





Show	All



Item	Method
Returns	a	member	of	a	collection,	either	by	position	or	by	name.

Syntax

Set	Object	=	object.Item(	collectionindex)

The	Item	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
collectionindex Required.	A	member's	position,	or	index,	within	a	collection.

Settings

The	collectionindex	can	be	either	a	string	or	an	integer.	If	it	is	a	string,	it	must	be
a	valid	member	name.	If	it	is	an	integer,	the	minimum	value	is	0	and	the
maximum	value	is	one	less	than	the	number	of	items	in	the	collection.

Remarks

If	an	invalid	index	or	name	is	specified,	an	error	occurs.



Move	Method
Moves	a	form	or	control,	or	moves	all	the	controls	in	the	Controls	collection..

Syntax

For	a	form	or	control
object.Move(	[Left	[,	Top	[,	Width	[,	Height	[,	Layout]]]]])

For	the	Controls	collection
object.Move(	X,	Y)

The	Move	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object	name.

Left Optional.	Single-precision	value,	in	points,	indicating	the	horizontal
coordinate	for	the	left	edge	of	the	object.

Top Optional.	Single-precision	value,	in	points,	that	specifies	the	vertical
coordinate	for	the	top	edge	of	the	object.

Width Optional.	Single-precision	value,	in	points,	indicating	the	width	of	the
object.

Height Optional.	Single-precision	value,	in	points,	indicating	the	height	of	theobject.

Layout
Optional.	A	Boolean	value	indicating	whether	the	Layout	event	is
initiated	for	the	control's	parent	following	this	move.	False	is	the	default
value.

X,	Y
Required.	Single-precision	value,	in	points,	that	specifies	the	change
from	the	current	horizontal	and	vertical	position	for	each	control	in	the
Controls	collection.

Settings

The	maximum	and	minimum	values	for	the	Left,	Top,	Width,	Height,	X,	and	Y
arguments	vary	from	one	application	to	another.



Remarks

For	a	form	or	control,	you	can	move	a	selection	to	a	specific	location	relative	to
the	edges	of	the	form	that	contains	the	selection.

You	can	use	named	arguments,	or	you	can	enter	the	arguments	by	position.	If
you	use	named	arguments,	you	can	list	the	arguments	in	any	order.	If	not,	you
must	enter	the	arguments	in	the	order	shown,	using	commas	to	indicate	the
relative	position	of	arguments	you	do	not	specify.	Any	unspecified	arguments
remain	unchanged.

For	the	Controls	collection,	you	can	move	all	the	controls	in	this	collection	a
specific	distance	from	their	current	positions	on	a	Frame	or	Page.



Paste	Method
Transfers	the	contents	of	the	Clipboard	to	an	object.

Syntax

object.Paste

The	Paste	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

Data	pasted	into	a	ComboBox	or	TextBox	is	treated	as	text.



PutInClipboard	Method
Moves	data	from	a	DataObject	to	the	Clipboard.

Syntax

object.PutInClipboard

The	PutInClipboard	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

The	PutInClipboard	method	replaces	the	contents	of	the	Clipboard	with	the
contents	of	the	DataObject	that	is	in	Text	format.



RedoAction	Method
Reverses	the	effect	of	the	most	recent	Undo	action.

Syntax

Boolean	=	object.RedoAction

The	RedoAction	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

Redo	reverses	the	last	Undo,	which	is	not	necessarily	the	last	action	taken.	Not
all	actions	can	be	undone.

RedoAction	returns	True	if	it	was	successful.



Show	All



Remove	Method
Removes	a	member	from	a	collection;	or,	removes	a	control	from	a	Frame,	or
Page.

Syntax

object.Remove(	collectionindex)

The	Remove	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

collectionindex

Required.	A	member's	position,	or	index,	within	a	collection.
Numeric	as	well	as	string	values	are	acceptable.	If	the	value	is	a
number,	the	minimum	value	is	zero,	and	the	maximum	value	is
one	less	than	the	number	of	members	in	the	collection.	If	the
value	is	a	string,	it	must	correspond	to	a	valid	member	name.



Show	All



RemoveItem	Method
Removes	a	row	from	the	list	in	a	list	box	or	combo	box.

Syntax

Boolean	=	object.RemoveItem(	index)

The	RemoveItem	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

index Required.	Specifies	the	row	to	delete.	The	number	of	the	first	row	is	0;
the	number	of	the	second	row	is	1,	and	so	on.

This	method	will	not	remove	a	row	from	the	list	if	the	ListBox	is	data	bound
(that	is,	when	the	RowSource	property	specifies	a	data	source	for	the	ListBox).



Repaint	Method
Updates	the	display	by	redrawing	the	frame	or	page.

Syntax

Boolean	=	object.Repaint

The	Repaint	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

The	Repaint	method	is	useful	if	the	contents	or	appearance	of	an	object	changes
significantly,	and	you	don't	want	to	wait	until	the	system	automatically	repaints
the	area.



Scroll	Method
Moves	the	scroll	bar	on	an	object.

Syntax

object.Scroll(	[	ActionX	[,	ActionY]])

The	Scroll	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object	name.
ActionX Optional.	Identifies	the	action	to	occur	in	the	horizontal	direction.
ActionY Optional.	Identifies	the	action	to	occur	in	the	vertical	direction.

Settings

The	settings	for	ActionX	and	ActionY	are:

Value Description
0 Do	not	scroll	in	the	specified	direction.

1
Move	up	on	a	vertical	scroll	bar	or	left	on	a	horizontal	scroll	bar.
Movement	is	equivalent	to	pressing	the	up	or	left	arrow	key	on	the
keyboard	to	move	the	scroll	bar.

2
Move	down	on	a	vertical	scroll	bar	or	right	on	a	horizontal	scroll	bar.
Movement	is	equivalent	to	pressing	the	right	or	down	arrow	key	on	the
keyboard	to	move	the	scroll	bar.

3
Move	one	pageup	on	a	vertical	scroll	bar	or	one	page	left	on	a	horizontal
scroll	bar.	Movement	is	equivalent	to	pressing	PAGE	UP	on	the	keyboard
to	move	the	scroll	bar.

4
Move	one	pagedown	on	a	vertical	scroll	bar	or	one	page	right	on	a
horizontal	scroll	bar.	Movement	is	equivalent	to	pressing	PAGE	DOWN
on	the	keyboard	to	move	the	scroll	bar.

5 Move	to	the	top	of	a	vertical	scroll	bar	or	to	the	left	end	of	a	horizontal
scroll	bar.



6 Move	to	the	bottom	of	a	vertical	scroll	bar	or	to	the	right	end	of	a
horizontal	scroll	bar.

Remarks

The	Scroll	method	applies	scroll	bars	that	appear	on	a	form,	Frame,	or	Page
that	is	larger	than	its	display	area.	This	method	does	not	apply	to	the	stand-alone
ScrollBar	or	to	scroll	bars	that	appear	on	a	TextBox.



Show	All



SetDefaultTabOrder	Method
Sets	the	TabIndex	property	of	each	control	on	a	frame	or	page,	using	a	default
top-to-bottom,	left-to-right	tab	order.

Syntax

object.SetDefaultTabOrder

The	SetDefaultTabOrder	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.



Show	All



SetFocus	Method
Moves	the	focus	to	this	instance	of	an	object.

Syntax

object.SetFocus

The	SetFocus	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

If	setting	the	focus	fails,	the	focus	reverts	to	the	previous	object	and	an	error	is
generated.

By	default,	setting	the	focus	to	a	control	does	not	activate	the	control's	window
or	place	it	on	top	of	other	controls.

The	SetFocus	method	is	valid	for	an	empty	Frame	as	well	as	a	Frame	that
contains	other	controls.	An	empty	Frame	will	take	the	focus	itself,	and	any
subsequent	keyboard	events	apply	to	the	Frame.	In	a	Frame	that	contains	other
controls,	the	focus	moves	to	the	first	control	in	the	Frame,	and	subsequent
keyboard	events	apply	to	the	control	that	has	the	focus.



Show	All



SetText	Method
Copies	a	text	string	to	the	DataObject	using	a	specified	format.

Syntax

object.SetText(	StoreData	[,	format])

The	SetText	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
StoreData Required.	Defines	the	data	to	store	on	the	DataObject.

format
Optional.	An	integer	or	string	specifying	the	format	of	StoreData.
When	retrieving	data	from	the	DataObject,	the	format	identifies	the
piece	of	data	to	retrieve.

Settings

The	settings	for	format	are:

Value Description
1 Text	format.
A	string	or	integer	value	other	than	1 A	user-defined	DataObject	format.

Remarks

The	DataObject	stores	data	according	to	its	format.	When	the	user	supplies	a
string,	the	DataObject	saves	the	text	under	the	specified	format.

If	the	DataObject	contains	data	in	the	same	format	as	new	data,	the	new	data
replaces	the	existing	data	in	the	DataObject.	If	the	new	data	is	in	a	new	format,
the	new	data	and	the	new	format	are	both	added	to	the	DataObject,	and	the
previously	existing	data	is	there	as	well.



If	no	format	is	specified,	the	SetText	method	assigns	the	Text	format	to	the	text
string.	If	a	new	format	is	specified,	the	DataObject	registers	the	new	format
with	the	system.



StartDrag	Method
Initiates	a	drag-and-drop	operation	for	a	DataObject.

Syntax

DropEffect=Object.StartDrag([Effect	as	DropEffect])

The	StartDrag	method	syntax	has	these	parts:

Part Description
Object Required.	A	valid	object.
Effect Optional.	Effect	of	the	drop	operation	on	the	target	control.

Settings

The	settings	for	Effect	are:

Value Description
0 Does	not	copy	or	move	the	drop	source	to	the	drop	target.
1 Copies	the	drop	source	to	the	drop	target.
2 Moves	the	drop	source	to	the	drop	target.
3 Copies	or	moves	the	drop	source	to	the	drop	target.

Remarks

The	drag	action	starts	at	the	current	mouse	pointer	position	with	the	current
keyboard	state	and	ends	when	the	user	releases	the	mouse.	The	effect	of	the
drag-and-drop	operation	depends	on	the	effect	chosen	for	the	drop	target.

For	example,	a	control's	MouseMove	event	might	include	the	StartDrag
method.	When	the	user	clicks	the	control	and	moves	the	mouse,	the	mouse
pointer	changes	to	indicate	whether	Effect	is	valid	for	the	drop	target.





UndoAction	Method
Reverses	the	most	recent	action	that	supports	the	Undo	command.

Syntax

Boolean	=	object.UndoAction

The	UndoAction	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

Not	all	user	actions	can	be	undone.	If	an	action	cannot	be	undone,	the	Undo
command	is	unavailable	following	the	action.

You	must	apply	this	method	before	the	form	or	control	is	updated.	You	may	want
to	include	this	method	in	a	form's	PropertyChange	event.



Show	All



ZOrder	Method
Places	the	object	at	the	front	or	back	of	the	z-order.

Syntax

object.ZOrder(	[	zPosition])

The	ZOrder	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
zPosition Optional.	A	control's	position,	front	or	back,	in	the	container's	z-order.

Settings

The	settings	for	zPosition	are:

Value Description

0 Places	the	control	at	the	front	of	the	z-order.	The	control	appears	on	top
of	other	controls	(default).

1 Places	the	control	at	the	back	of	the	z-order.	The	control	appears
underneath	other	controls.

Remarks

The	z-order	determines	how	windows	and	controls	are	stacked	when	they	are
presented	to	the	user.	Items	at	the	back	of	the	z-order	are	overlaid	by	closer
items;	items	at	the	front	of	the	z-order	appear	to	be	on	top	of	items	at	the	back.
When	the	zPosition	argument	is	omitted,	the	object	is	brought	to	the	front.

In	design	mode,	the	Bring	to	Front	or	Send	To	Back	commands	set	the	z-order.
Bring	to	Front	is	equivalent	to	using	the	ZOrder	method	and	putting	the	object
at	the	front	of	the	z-order.	Send	to	Back	is	equivalent	to	using	ZOrder	and
putting	the	object	at	the	back	of	the	z-order.



This	method	does	not	affect	content	or	sequence	of	the	controls	in	the	Controls
collection.

Note		You	can't	Undo	or	Redo	layering	commands,	such	as	Send	to	Back	or
Bring	to	Front.	For	example,	if	you	select	an	object	and	click	Move	Backward
on	the	shortcut	menu,	you	won't	be	able	to	Undo	or	Redo	that	action.



Show	All



Accelerator	Property
Sets	or	retrieves	the	accelerator	key	for	a	control.

Syntax

object.Accelerator	[=	String]

The	Accelerator	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
StringOptional.	The	character	to	use	as	the	accelerator	key.

Remarks

To	designate	an	accelerator	key,	enter	a	single	character	for	the	Accelerator
property.	You	can	set	Accelerator	in	the	control's	property	sheet	or	in	code.	If
the	value	of	this	property	contains	more	than	one	character,	the	first	character	in
the	string	becomes	the	value	of	Accelerator.

When	an	accelerator	key	is	used,	there	is	no	visual	feedback	(other	than	focus)	to
indicate	that	the	control	initiated	the	Click	event.	For	example,	if	the	accelerator
key	applies	to	a	CommandButton,	the	user	will	not	see	the	button	pressed	in	the
interface.	The	button	receives	the	focus,	however,	when	the	user	presses	the
accelerator	key.



ActiveControl	Property
Identifies	and	allows	manipulation	of	the	control	that	has	the	focus.

Syntax

object.ActiveControl

The	ActiveControl	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

The	ActiveControl	property	is	read-only	and	is	set	when	you	select	a	control	in
the	interface.	You	can	use	ActiveControl	as	a	substitute	for	the	control	name
when	setting	properties	or	calling	methods.



Alignment	Property
Specifies	the	position	of	a	control	relative	to	its	caption.

Syntax

object.Alignment	[=	0,1]

The	Alignment	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Settings

The	Settings	for	Alignment	are:

Value Description
0 Places	the	caption	to	the	left	of	the	control.
1 Places	the	caption	to	the	right	of	the	control	(default).

Remarks

The	caption	text	for	a	control	is	left-aligned.



AutoSize	Property
Specifies	whether	an	object	automatically	resizes	to	display	its	entire	contents.

Syntax

object.AutoSize	[=	Boolean]

The	AutoSize	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	control	is	resized.

Settings

The	settings	for	Boolean	are:

Value Description
True Automatically	resizes	the	control	to	display	its	entire	contents.

False Keeps	the	size	of	the	control	constant.	Contents	are	clipped	when	they
exceed	the	area	of	the	control	(default).

Remarks

For	controls	with	captions,	the	AutoSize	property	specifies	whether	the	control
automatically	adjusts	to	display	the	entire	caption.

For	controls	without	captions,	this	property	specifies	whether	the	control
automatically	adjusts	to	display	the	information	stored	in	the	control.	In	a
ComboBox,	for	example,	setting	AutoSize	to	True	automatically	sets	the	width
of	the	display	area	to	match	the	length	of	the	current	text.

For	a	single-line	TextBox,	setting	AutoSize	to	True	automatically	sets	the	width
of	the	display	area	to	the	length	of	the	text	in	the	text	box.



For	a	multiline	TextBox	that	contains	no	text,	setting	AutoSize	to	True
automatically	displays	the	text	as	a	column.	The	width	of	the	text	column	is	set
to	accommodate	the	widest	letter	of	that	font	size.	The	height	of	the	text	column
is	set	to	display	the	entire	text	of	the	TextBox.

For	a	multiline	TextBox	that	contains	text,	setting	AutoSize	to	True
automatically	enlarges	the	TextBox	vertically	to	display	the	entire	text.	The
width	of	the	TextBox	does	not	change.

Note		If	you	manually	change	the	size	of	a	control	while	AutoSize	is	True,	the
manual	change	overrides	the	size	previously	set	by	AutoSize.



Show	All



AutoTab	Property
Specifies	whether	an	automatic	tab	occurs	when	a	user	enters	the	maximum
allowable	number	of	characters	into	a	TextBox	or	the	text	box	portion	of	a
ComboBox.

Syntax

object.AutoTab	[=	Boolean]

The	AutoTab	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Specifies	whether	an	automatic	tab	occurs.

Settings

The	settings	for	Boolean	are:

Value Description
True Tab	occurs.
False Tab	does	not	occur	(default).

Remarks

The	MaxLength	property	specifies	the	maximum	number	of	characters	allowed
in	a	TextBox	or	the	text	box	portion	of	a	ComboBox.

You	can	specify	the	AutoTab	property	for	a	TextBox	or	ComboBox	on	a	form
for	which	you	usually	enter	a	set	number	of	characters.	Once	a	user	enters	the
maximum	number	of	characters,	the	focus	automatically	moves	to	the	next
control	in	the	tab	order.	For	example,	if	a	TextBox	displays	inventory	stock
numbers	that	are	always	five	characters	long,	you	can	use	MaxLength	to	specify
the	maximum	number	of	characters	to	enter	into	the	TextBox	and	AutoTab	to



automatically	tab	to	the	next	control	after	the	user	enters	five	characters.



AutoWordSelect	Property
Specifies	whether	the	basic	unit	used	to	extend	a	selection	is	a	word	or	a	single
character.

Syntax

object.AutoWordSelect	[=	Boolean]

The	AutoWordSelect	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Specifies	the	basic	unit	used	to	extend	a	selection.

Settings

The	settings	for	Boolean	are:

Value Description
True Uses	a	word	as	the	basic	unit	(default).
False Uses	a	character	as	the	basic	unit.

Remarks

The	AutoWordSelect	property	specifies	how	the	selection	extends	or	contracts
in	the	edit	region	of	a	TextBox	or	ComboBox.

If	the	user	places	the	insertion	point	in	the	middle	of	a	word	and	then	extends	the
selection	while	AutoWordSelect	is	True,	the	selection	includes	the	entire	word.





Show	All



BackColor	Property
Specifies	the	background	color	of	the	object.

Syntax

object.BackColor	[=	Long]

The	BackColor	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Long Optional.	A	value	or	constant	that	determines	the	background	color	of	an
object.

Settings

You	can	use	any	integer	that	represents	a	valid	color.	You	can	also	specify	a
color	by	using	the	RGB	function	with	red,	green,	and	blue	color	components.
The	value	of	each	color	component	is	an	integer	that	ranges	from	zero	to	255.
For	example,	you	can	specify	teal	blue	as	the	integer	value	4966415	or	as	red,
green,	and	blue	color	components	15,	200,	75,	as	shown	in	the	following
example.

RGB(15,200,75)

	 	

Remarks

You	can	only	see	the	background	color	of	an	object	if	the	BackStyle	property	is
set	to	1.





Show	All



BackStyle	Property
Returns	or	sets	the	background	style	for	an	object.

Syntax

object.BackStyle	[=BackStyle]

The	BackStyle	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
BackStyleOptional.	Specifies	the	control	background.

Settings

The	settings	for	BackStyle	are:

Value Description
0 The	background	is	transparent.
1 The	background	is	opaque	(default).

Remarks

The	BackStyle	property	determines	whether	a	control	is	transparent.	If
BackStyle	is	1,	the	control	is	not	transparent	and	you	cannot	see	anything	behind
the	control	on	a	form.	If	BackStyle	is	0,	you	can	see	through	the	control	and
look	at	anything	on	the	form	located	behind	the	control.	The	BackColor
property	is	only	valid	if	the	BackStyle	property	is	set	to	1.

Note		does	not	affect	the	transparency	of	bitmaps.	You	must	use	a	picture	editor
such	as	Paintbrush	to	make	a	bitmap	transparent.	Not	all	controls	support
transparent	bitmaps.





Show	All



Bold,	Italic,	Size,	StrikeThrough,
Underline,	Weight	Properties
Specifies	the	visual	attributes	of	text	on	a	displayed	or	printed	form.

Syntax

object.Bold	[=	Boolean]

object.Italic	[=	Boolean]

object.Size	[=	Currency]

object.StrikeThrough	[=	Boolean]

object.Underline	[=	Boolean]

object.Weight	[=	Integer]

The	Bold,	Italic,	Size,	StrikeThrough,	Underline,	and	Weight	property
syntaxes	have	these	parts:

Part Description
object Required.	A	valid	object	name.
Boolean Optional.	Specifies	the	font	style.
CurrencyOptional.	A	number	indicating	the	font	size.
Integer Optional.	Specifies	the	font	style.

The	settings	for	Boolean	are:

Value Description

True The	text	has	the	specified	attribute	(that	is	bold,	italic,	size,	strikethrough
or	underline	marks,	or	weight).

False The	text	does	not	have	the	specified	attribute	(default).



The	Weight	property	accepts	values	from	0	to	1000.	A	value	of	zero	allows	the
system	to	pick	the	most	appropriate	weight.	A	value	from	1	to	1000	indicates	a
specific	weight,	where	1	represents	the	lightest	type	and	1000	represents	the
darkest	type.

Remarks

These	properties	define	the	visual	characteristics	of	text.	The	Bold	property
determines	whether	text	is	normal	or	bold.	The	Italic	property	determines
whether	text	is	normal	or	italic.	The	Size	property	determines	the	height,	in
points,	of	displayed	text.	The	Underline	property	determines	whether	text	is
underlined.	The	StrikeThrough	property	determines	whether	the	text	appears
with	strikethrough	marks.	The	Weight	property	determines	the	darkness	of	the
type.

The	font's	appearance	on	screen	and	in	print	may	differ,	depending	on	your
computer	and	printer.	If	you	select	a	font	that	your	system	can't	display	with	the
specified	attribute	or	that	isn't	installed,	Windows	substitutes	a	similar	font.	The
substitute	font	will	be	as	similar	as	possible	to	the	font	originally	requested.

Changing	the	value	of	Bold	also	changes	the	value	of	Weight.	Setting	Bold	to
True	sets	Weight	to	700;	setting	Bold	to	False	sets	Weight	to	400.	Conversely,
setting	Weight	to	anything	over	550	sets	Bold	to	True;	setting	Weight	to	550	or
less	sets	Bold	to	False.

The	default	point	size	is	determined	by	the	operating	system.



Show	All



BorderColor	Property
Specifies	the	color	of	an	object's	border.

Syntax

object.BorderColor	[=	Long]

The	BorderColor	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Long Optional.	A	value	that	determines	the	border	color	of	an	object.

Settings

You	can	use	any	integer	that	represents	a	valid	color.	You	can	also	specify	a
color	by	using	the	RGB	function	with	red,	green,	and	blue	color	components.
The	value	of	each	color	component	is	an	integer	that	ranges	from	zero	to	255.
For	example,	you	can	specify	teal	blue	as	the	integer	value	4966415	or	as	red,
green,	and	blue	color	components	15,	200,	75,	as	shown	in	the	following
example.

RGB(15,200,75)

	 	

Remarks

To	use	the	BorderColor	property,	the	BorderStyle	property	must	be	set	to	a
value	other	than	0.

BorderStyle	uses	BorderColor	to	define	the	border	colors.	The	SpecialEffect
property	uses	system	colors	exclusively	to	define	its	border	colors.	For	Windows
operating	systems,	system	color	settings	are	set	using	the	Display	icon	in
Control	Panel.	In	Windows	NT	3.51,	system	color	settings	are	set	using	the
Color	icon	in	Control	Panel.





BorderStyle	Property
Specifies	the	type	of	border	used	by	a	control	or	a	form.

Syntax

object.BorderStyle	[=BorderStyle]

The	BorderStyle	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
BorderStyleOptional.	Specifies	the	border	style.

Settings

The	settings	for	BorderStyle	are:

Value Description
0 The	control	has	no	visible	border	line.
1 The	control	has	a	single-line	border	(default).

The	default	value	for	a	ComboBox,	Frame,	Label,	ListBox	or	TextBox	is	0
(None).	The	default	value	for	an	Image	is	1	(Single).

Remarks

For	a	Frame,	the	BorderStyle	property	is	ignored	if	the	SpecialEffect	property
is	None.

You	can	use	either	BorderStyle	or	SpecialEffect	to	specify	the	border	for	a
control,	but	not	both.	If	you	specify	a	nonzero	value	for	one	of	these	properties,
the	system	sets	the	value	of	the	other	property	to	zero.	For	example,	if	you	set
BorderStyle	to	1,	the	system	sets	SpecialEffect	to	zero	(Flat).	If	you	specify	a
nonzero	value	for	SpecialEffect,	the	system	sets	BorderStyle	to	zero.



BorderStyle	uses	BorderColor	to	define	the	colors	of	its	borders.	To	use	the
BorderColor	property,	the	BorderStyle	property	must	be	set	to	a	value	other
than	0.



Show	All



BoundColumn	Property
Identifies	the	source	of	data	in	a	multicolumn	ComboBox	or	ListBox.

Syntax

object.BoundColumn	[=	Variant]

The	BoundColumn	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
VariantOptional.	Indicates	how	the	BoundColumn	value	is	selected.

Settings

The	settings	for	Variant	are:

Value Description
0 Assigns	the	value	of	the	ListIndex	property	to	the	control.
1	or
greater

Assigns	the	value	from	the	specified	column	to	the	control.	Columns	are
numbered	from	1	when	using	this	property	(default).

Remarks

When	the	user	chooses	a	row	in	a	multicolumn	ListBox	or	ComboBox,	the
BoundColumn	property	identifies	which	item	from	that	row	to	store	as	the
value	of	the	control.	For	example,	if	each	row	contains	8	items	and
BoundColumn	is	3,	the	system	stores	the	information	in	the	third	column	of	the
currently-selected	row	as	the	value	of	the	object.

You	can	display	one	set	of	data	to	users	but	store	different,	associated	values	for
the	object	by	using	the	BoundColumn	and	the	TextColumn	properties.
TextColumn	identifies	the	column	of	data	displayed	in	a	ComboBox	or
ListBox;	BoundColumn	identifies	the	column	of	associated	data	values	stored



for	the	control.	For	example,	you	could	set	up	a	multicolumn	ListBox	that
contains	the	names	of	holidays	in	one	column	and	dates	for	the	holidays	in	a
second	column.	To	present	the	holiday	names	to	users,	specify	the	first	column
as	the	TextColumn.	To	store	the	dates	of	the	holidays,	specify	the	second
column	as	the	BoundColumn.

If	the	control	is	bound	to	a	data	source,	the	value	in	the	column	specified	by
BoundColumn	is	stored	in	the	data	source	named	in	the	ControlSource
property.

The	ListIndex	value	retrieves	the	number	of	the	selected	row.	For	example,	if
you	want	to	know	the	row	of	the	selected	item,	set	BoundColumn	to	0	to	assign
the	number	of	the	selected	row	as	the	value	of	the	control.	Be	sure	to	retrieve	a
current	value,	rather	than	relying	on	a	previously	saved	value,	if	you	are
referencing	a	list	whose	contents	might	change.

The	Column,	List,	and	ListIndex	properties	all	use	zero-based	numbering.	That
is,	the	value	of	the	first	item	(column	or	row)	is	zero;	the	value	of	the	second
item	is	one,	and	so	on.	This	means	that	if	BoundColumn	is	set	to	3,	you	could
access	the	value	stored	in	that	column	using	the	expression	Column(2).



Show	All



Cancel	Property
Returns	or	sets	a	value	indicating	whether	a	CommandButton	is	the	Cancel
button	on	a	form.

Syntax

object.Cancel	[=	Boolean]

The	Cancel	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	object	is	the	Cancel	button.

Settings

The	settings	for	Boolean	are:

Value Description
True The	CommandButton	is	the	Cancel	button.
False The	CommandButton	is	not	the	Cancel	button	(default).

Remarks

A	CommandButton	or	an	object	that	acts	like	a	command	button	can	be
designated	as	the	default	command	button.	For	OLE	container	controls,	the
Cancel	property	is	provided	only	for	those	objects	that	specifically	behave	as
command	buttons.

Only	one	CommandButton	on	a	form	can	be	the	Cancel	button.	Setting	Cancel
to	True	for	one	command	button	automatically	sets	it	to	False	for	all	other
objects	on	the	form.	When	a	CommandButton's	Cancel	property	is	set	to	True
and	the	form	is	the	active	form,	the	user	can	choose	the	command	button	by
clicking	it,	pressing	ESC,	or	pressing	ENTER	when	the	button	has	the	focus.



A	typical	use	of	Cancel	is	to	give	the	user	the	option	of	canceling	uncommitted
changes	and	returning	the	form	to	its	previous	state.

You	should	consider	making	the	Cancel	button	the	default	button	for	forms	that
support	operations	that	can't	be	undone	(such	as	delete).	To	do	this,	set	both
Cancel	and	the	Default	property	to	True.



CanPaste	Property
Specifies	whether	the	Clipboard	contains	data	that	the	object	supports.

Syntax

object.CanPaste

The	CanPaste	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Return	Values

The	CanPaste	property	return	values	are:

Value Description
True The	object	can	receive	information	pasted	from	the	Clipboard.
False The	object	cannot	receive	information	pasted	from	the	Clipboard.

Remarks

CanPaste	is	read-only.

If	the	Clipboard	data	is	in	a	format	that	the	object	does	not	support,	the
CanPaste	property	is	False.	For	example,	if	you	try	to	paste	a	bitmap	into	an
object	that	only	supports	text,	CanPaste	will	be	False.



CanRedo	Property
Indicates	whether	the	most	recent	Undo	can	be	reversed.

Syntax

object.CanRedo

The	CanRedo	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Return	Values

The	CanRedo	property	syntax	return	values	are:

Value Description
True The	most	recent	Undo	can	be	reversed.
False The	most	recent	Undo	is	irreversible.

Remarks

CanRedo	is	read-only.

To	Redo	an	action	means	to	reverse	an	Undo;	it	does	not	necessrily	mean	to
repeat	the	last	user	action.



CanUndo	Property
Indicates	whether	the	last	user	action	can	be	undone.

Syntax

object.CanUndo

The	CanUndo	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Return	Values

The	CanUndo	property	syntax	return	values	are:

Value Description
True The	most	recent	user	action	can	be	undone.
False The	most	recent	user	action	cannot	be	undone.

Remarks

CanUndo	is	read-only.

Many	user	actions	can	be	undone	with	the	Undo	command.	The	CanUndo
property	indicates	whether	the	most	recent	action	can	be	undone.



Caption	Property
Descriptive	text	that	appears	on	an	object	to	identify	or	describe	it.

Syntax

object.Caption	[=	String]

The	Caption	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

StringOptional.	A	string	expression	that	evaluates	to	the	text	displayed	as	thecaption.

Settings

The	default	setting	for	a	control	is	a	unique	name	based	on	the	type	of	control.
For	example,	CommandButton1	is	the	default	caption	for	the	first	command
button	in	a	form.

Remarks

The	text	identifies	or	describes	the	object	with	which	it	is	associated.	For	buttons
and	labels,	the	Caption	property	specifies	the	text	that	appears	in	the	control.
For	Page	and	Tab	objects,	it	specifies	the	text	that	appears	on	the	tab.	For	the
Explorer	object,	it	specifies	the	text	that	appears	in	the	explorer’s	title	bar.

If	a	control's	caption	is	too	long,	the	caption	is	truncated.	If	a	form's	caption	is
too	long	for	the	title	bar,	the	title	is	displayed	with	an	ellipsis.

The	ForeColor	property	of	the	control	determines	the	color	of	the	text	in	the
caption.

Tip	If	a	control	has	both	the	Caption	and	AutoSize	properties,	setting	AutoSize
to	True	automatically	adjusts	the	size	of	the	control	to	frame	the	entire	caption.





Show	All



ClientHeight,	ClientLeft,	ClientTop,
ClientWidth	Properties
Define	the	dimensions	and	location	of	the	display	area	of	a	TabStrip.

Syntax

object.ClientHeight	[	=Single]

object.ClientLeft	[	=Single]

object.ClientTop	[	=Single]

object.ClientWidth	[	=Single]

The	ClientHeight,	ClientLeft,	ClientTop,	and	ClientWidth	property	syntaxes
have	these	parts:

Part Description
object Required.	A	valid	object.

Single

Optional.	For	ClientHeight	and	ClientWidth,	specifies	the	height	or
width,	in	points,	of	the	display	area.	For	ClientLeft	and	ClientTop,
specifies	the	distance,	in	points,	from	the	top	or	left	edge	of	the
TabStrip's	container.

Remarks

At	run	time,	ClientLeft,	ClientTop,	ClientHeight,	and	ClientWidth
automatically	store	the	coordinates	and	dimensions	of	the	TabStrip's	internal
area,	which	is	shared	by	objects	in	the	TabStrip.





Show	All



Column	Property
Specifies	one	or	more	items	in	a	ListBox	or	ComboBox.

Syntax

object.Column(	column,	row	)	[=	Variant]

The	Column	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

columnOptional.	An	integer	with	a	range	from	0	to	one	less	than	the	totalnumber	of	columns.

row Optional.	An	integer	with	a	range	from	0	to	one	less	than	the	total
number	of	rows.

VariantOptional.	Specifies	a	single	value,	a	column	of	values,	or	a	two-dimensional	array	to	load	into	a	ListBox	or	ComboBox.

Settings

If	you	specify	both	the	column	and	row	values,	Column	reads	or	writes	a
specific	item.

If	you	specify	only	the	column	value,	the	Column	property	reads	or	writes	the
specified	column	in	the	current	row	of	the	object.	For	example,
MyListBox.Column	(3)	reads	or	writes	the	third	column	in	MyListBox.

Column	returns	a	Variant	from	the	cursor.	When	a	built-in	cursor	provides	the
value	for	Variant	(such	as	when	using	the	AddItem	method),	the	value	is	a
string.	When	an	external	cursor	provides	the	value	for	Variant,	formatting
associated	with	the	data	is	not	included	in	the	Variant.

Remarks

You	can	use	Column	to	assign	the	contents	of	a	combo	box	or	list	box	to	another
control,	such	as	a	text	box.	For	example,	you	can	set	the	ControlSource



property	of	a	text	box	to	the	value	in	the	second	column	of	a	list	box.

If	the	user	makes	no	selection	when	you	refer	to	a	column	in	a	combo	box	or	list
box,	the	Column	setting	is	Null.	You	can	check	for	this	condition	by	using	the
IsNull	function.

You	can	also	use	Column	to	copy	an	entire	two-dimensional	array	of	values	to	a
control.	This	syntax	lets	you	quickly	load	a	list	of	choices	rather	than
individually	loading	each	element	of	the	list	using	AddItem.

Note		When	copying	data	from	a	two-dimensional	array,	Column	transposes	the
contents	of	the	array	in	the	control	so	that	the	contents	of	ListBox1.Column(X,
Y)	is	the	same	as	MyArray(Y,	X).	You	can	also	use	List	to	copy	an	array	without
transposing	it.



Show	All



ColumnCount	Property
Specifies	the	number	of	columns	to	display	in	a	list	box	or	combo	box.

Syntax

object.ColumnCount	[=	Long]

The	ColumnCount	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Long Optional.	Specifies	the	number	of	columns	to	display.

Remarks

If	you	set	the	ColumnCount	property	for	a	list	box	to	3	on	an	employee	form,
one	column	can	list	last	names,	another	can	list	first	names,	and	the	third	can	list
employee	ID	numbers.

Setting	ColumnCount	to	0	displays	zero	columns,	and	setting	it	to	-1	displays
all	the	available	columns.	For	an	unbound	data	source,	there	is	a	10-column	limit
(0	to	9).

You	can	use	the	ColumnWidths	property	to	set	the	width	of	the	columns
displayed	in	the	control.



ColumnHeads	Property
Displays	a	single	row	of	column	headings	for	list	boxes,	combo	boxes,	and
objects	that	accept	column	headings.

Syntax

object.ColumnHeads	[=	Boolean]

The	ColumnHeads	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Specifies	whether	the	column	headings	are	displayed.

Settings

The	settings	for	Boolean	are:

Value Description
True Display	column	headings.
False Do	not	display	column	headings	(default).

Headings	in	combo	boxes	appear	only	when	the	list	drops	down.

Remarks

When	the	system	uses	the	first	row	of	data	items	as	column	headings,	they	can't
be	selected.





Show	All



ColumnWidths	Property
Specifies	the	width	of	each	column	in	a	multicolumn	ComboBox	or	ListBox.

Syntax

object.ColumnWidths	[=	String]

The	ColumnWidths	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

String

Optional.	Sets	the	column	width	in	points.	A	setting	of	–1	or	blank	results
in	a	calculated	width.	A	width	of	0	hides	a	column.	To	specify	a	different
unit	of	measurement,	include	the	unit	of	measure.	A	value	greater	than	0
explicitly	specifies	the	width	of	the	column.

Settings

To	separate	column	entries,	use	semicolons	(;)	as	list	separators.	Or	use	the	list
separator	specified	in	the	Regional	Settings	section	of	the	Windows	Control
Panel.

Any	or	all	of	the	ColumnWidths	property	settings	can	be	blank.	You	create	a
blank	setting	by	typing	a	list	separator	without	a	preceding	value.

If	you	specify	a	–1	in	the	property	page,	the	displayed	value	in	the	property	page
is	a	blank.

To	calculate	column	widths	when	ColumnWidths	is	blank	or	–1,	the	width	of
the	control	is	divided	equally	among	all	columns	of	the	list.	If	the	sum	of	the
specified	column	widths	exceeds	the	width	of	the	control,	the	list	is	left-aligned
within	the	control	and	one	or	more	of	the	rightmost	columns	are	not	displayed.
Users	can	scroll	the	list	using	the	horizontal	scroll	bar	to	display	the	rightmost
columns.

The	minimum	calculated	column	width	is	72	points	(1	inch).	To	produce



columns	narrower	than	this,	you	must	specify	the	width	explicitly.

Unless	specified	otherwise,	column	widths	are	measured	in	points.	To	specify
another	unit	of	measure,	include	the	units	as	part	of	the	values.	The	following
examples	specify	column	widths	in	several	units	of	measure	and	describe	how
the	various	settings	would	fit	in	a	three-column	list	box	that	is	4	inches	wide.

Setting Effect

90;72;90 The	first	column	is	90	points	(1.25	inch);	the	second	column	is	72points	(1	inch);	the	third	column	is	90	points.

6	cm;0;6
cm

The	first	column	is	6	centimeters;	the	second	column	is	hidden;	the
third	column	is	6	centimeters.	Because	part	of	the	third	column	is
visible,	a	horizontal	scroll	bar	appears.

1.5
in;0;2.5
in

The	first	column	is	1.5	inches,	the	second	column	is	hidden,	and	the
third	column	is	2.5	inches.

2	in;;2
in

The	first	column	is	2	inches,	the	second	column	is	1	inch	(default),	and
the	third	column	is	2	inches.	Because	only	half	of	the	third	column	is
visible,	a	horizontal	scroll	bar	appears.

(Blank) All	three	columns	are	the	same	width	(1.33	inches).

Remarks

In	a	ComboBox,	the	system	displays	the	column	designated	by	the	TextColumn
property	in	the	text	box	portion	of	the	control.	Setting	TextColumn	to	–1
displays	the	first	column	that	has	a	ColumnWidths	value	greater	than	0.



Show	All



ControlTipText	Property
Specifies	text	that	appears	when	the	user	briefly	holds	the	mouse	pointer	over	a
control	without	clicking.

Syntax

object.ControlTipText	[=	String]

The	ControlTipText	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

StringOptional.	The	text	that	appears	when	the	user	holds	the	mouse	pointerover	a	control.

Remarks

The	ControlTipText	property	lets	you	give	users	tips	about	a	control	in	a
running	form.	The	property	can	be	set	during	design	time	but	only	appears	by
the	control	during	run	time.

The	default	value	of	ControlTipText	is	an	empty	string.	When	the	value	of
ControlTipText	is	set	to	an	empty	string,	no	tip	is	available	for	that	control.



Show	All



Count	Property
Returns	the	number	of	objects	in	a	collection.

Syntax

object.Count

The	Count	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

The	Count	property	is	read	only.

Note	that	the	index	value	for	the	first	page	or	tab	of	a	collection	is	zero,	the	value
for	the	second	page	or	tab	is	one,	and	so	on.	For	example,	if	a	MultiPage
contains	two	pages,	the	indexes	of	the	pages	are	0	and	1,	and	the	value	of	Count
is	2.



CurLine	Property
Specifies	the	current	line	of	a	control.

Syntax

object.CurLine	[=	Long]

The	CurLine	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Long Optional.	Specifies	the	current	line	of	a	control.

Remarks

The	current	line	of	a	control	is	the	line	that	contains	the	insertion	point.	The
number	of	the	first	line	is	0.

The	CurLine	property	is	valid	when	the	control	has	focus.



Show	All



CurTargetX	Property
Retrieves	the	preferred	horizontal	position	of	the	insertion	point	in	a	multiline
TextBox	or	ComboBox.

Syntax

object.CurTargetX

The	CurTargetX	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Return	Values

The	CurTargetX	property	retrieves	the	preferred	position,	measured	in	himetric
units.	A	himetric	is	0.0001	meter.

Remarks

The	target	position	is	relative	to	the	left	edge	of	the	control.	If	the	length	of	a	line
is	less	than	the	value	of	the	CurTargetX	property,	you	can	place	the	insertion
point	at	the	end	of	the	line.	The	value	of	CurTargetX	changes	when	the	user
sets	the	insertion	point	or	when	the	CurX	property	is	set.	CurTargetX	is	read-
only.

The	return	value	is	valid	when	the	object	has	focus

You	can	use	CurTargetX	and	CurX	to	move	the	insertion	point	as	the	user
scrolls	through	the	contents	of	a	multiline	TextBox	or	ComboBox.	When	the
user	moves	the	insertion	point	to	another	line	of	text	by	scrolling	the	content	of
the	object,	CurTargetX	specifies	the	preferred	position	for	the	insertion	point.
CurX	is	set	to	this	value	if	the	line	of	text	is	longer	than	the	value	of
CurTargetX.	Otherwise,	CurX	is	set	to	the	end	of	the	line	of	text.





Show	All



CurX	Property
Specifies	the	current	horizontal	position	of	the	insertion	point	in	a	multiline
TextBox	or	ComboBox.

Syntax

object.CurX	[=	Long]

The	CurX	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Long Optional.	Indicates	the	current	position,	measured	in	himetrics.	A
himetric	is	0.0001	meter.

Remarks

The	CurX	property	applies	to	a	multiline	TextBox	or	ComboBox.	The	return
value	is	valid	when	the	object	has	the	focus

You	can	use	CurTargetX	and	CurX	to	position	the	insertion	point	as	the	user
scrolls	through	the	contents	of	a	multiline	TextBox	or	ComboBox.	When	the
user	moves	the	insertion	point	to	another	line	of	text	by	scrolling	the	content	of
the	object,	CurTargetX	specifies	the	preferred	position	for	the	insertion	point.
CurX	is	set	to	this	value	if	the	line	of	text	is	longer	than	the	value	of
CurTargetX.	Otherwise,	CurX	is	set	to	the	end	of	the	line	of	text.



Show	All



Cycle	Property
Specifies	the	action	to	take	when	the	user	leaves	the	last	control	on	a	Frame	or
Page.

Syntax

object.Cycle	[=Cycle]

The	Cycle	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Cycle Optional.	Specifies	whether	cycling	includes	controls	nested	in	a	Frameor	MultiPage.

Settings

The	settings	for	Cycle	are:

Value Description

0 Cycles	through	the	controls	on	the	form	and	the	controls	of	the	Frame
and	MultiPage	controls	that	are	currently	displayed	on	the	form.

2
Cycles	through	the	controls	on	the	form,	Frame,	or	MultiPage.	The
focus	stays	within	the	form,	Frame,	or	MultiPage	until	the	focus	is
explicitly	set	to	a	control	outside	the	form,	Frame,	or	MultiPage.

If	you	specify	a	non-integer	value	for	Cycle,	the	value	is	rounded	up	to	the
nearest	integer.

Remarks

The	tab	order	identifies	the	order	in	which	controls	receive	the	focus	as	the	user
tabs	through	a	form	or	subform.	The	Cycle	property	determines	the	action	to
take	when	a	user	tabs	from	the	last	control	in	the	tab	order.



The	0	setting	transfers	the	focus	to	the	first	control	of	the	next	Frame	or
MultiPage	on	the	form	when	the	user	tabs	from	the	last	control	in	the	tab	order.

The	2	setting	transfers	the	focus	to	the	first	control	of	the	same	form,	Frame,	or
MultiPage	when	the	user	tabs	from	the	last	control	in	the	tab	order.



Show	All



Default	Property
Designates	the	default	CommandButton	on	a	form.

Syntax

object.Default	[=	Boolean]

The	Default	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	command	button	is	the	default.

Settings

The	settings	for	Boolean	are:

Value Description
True The	CommandButton	is	the	default	button.
False The	CommandButton	is	not	the	default	button	(default).

Remarks

A	CommandButton	or	an	object	that	acts	like	a	command	button	can	be
designated	as	the	default	command	button.	Only	one	object	on	a	form	can	be	the
default	command	button.	Setting	the	Default	property	to	True	for	one	object
automatically	sets	it	to	False	for	all	other	objects	on	the	form.

To	choose	the	default	command	button	on	an	active	form,	the	user	can	click	the
button,	or	press	ENTER	when	no	other	CommandButton	has	the	focus.

Default	is	provided	for	OLE	container	controls	that	specifically	act	like
CommandButton	controls.

Tip	You	should	consider	making	the	Cancel	button	the	default	button	for	forms



that	support	operations	that	can't	be	undone	(such	as	delete).	To	do	this,	set	both
Default	and	the	Cancel	property	to	True.



Delay	Property
Specifies	the	delay	on	a	SpinButton	or	ScrollBar.

Syntax

object.Delay	[=	Long]

The	Delay	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Long Optional.	The	delay,	in	milliseconds,	between	events.

Remarks

The	Delay	property	affects	the	amount	of	time	between	consecutive	SpinUp,
SpinDown,	and	Change	events	generated	when	the	user	clicks	and	holds	down	a
button	on	a	SpinButton	or	ScrollBar.	The	first	event	occurs	immediately.	The
delay	to	the	second	occurrence	of	the	event	is	five	times	the	value	of	the
specified	Delay.	This	initial	lag	makes	it	easy	to	generate	a	single	event	rather
than	a	stream	of	events.

After	the	initial	lag,	the	interval	between	events	is	the	value	specified	for	Delay.

The	default	value	of	Delay	is	50	milliseconds.	This	means	the	object	initiates	the
first	event	after	250	milliseconds	(5	times	the	specified	value)	and	initiates	each
subsequent	event	after	50	milliseconds.



DragBehavior	Property
Specifies	whether	the	system	enables	the	drag-and-drop	feature	for	a	TextBox	or
ComboBox.

Syntax

object.DragBehavior	[=DragBehavior]

The	DragBehavior	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
DragBehavior Optional.	Specifies	whether	the	drag-and-drop	feature	is	enabled.

Settings

The	settings	for	DragBehavior	are:

Value Description
0 Does	not	allow	a	drag-and-drop	action	(default).
1 Allows	a	drag-and-drop	action.

Remarks

If	the	DragBehavior	property	is	enabled,	dragging	in	a	text	box	or	combo	box
starts	a	drag-and-drop	operation	on	the	selected	text.	If	DragBehavior	is
disabled,	dragging	in	a	text	box	or	combo	box	selects	text.

The	drop-down	portion	of	a	ComboBox	does	not	support	drag-and-drop
processes,	nor	does	it	support	selection	of	list	items	within	the	text.

DragBehavior	has	no	effect	on	a	ComboBox	whose	Style	property	is	set	to	2.

Note		You	can	combine	the	effects	of	the	EnterFieldBehavior	property	and
DragBehavior	to	create	a	large	number	of	text	box	styles.





DropButtonStyle	Property
Specifies	the	symbol	displayed	on	the	drop	button	in	a	ComboBox.

Syntax

object.DropButtonStyle	[=DropButtonStyle]

The	DropButtonStyle	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
DropButtonStyle Optional.	The	appearance	of	the	drop	button.

Settings

The	settings	for	DropButtonStyle	are:

Value Description
0 Displays	a	plain	button,	with	no	symbol.
1 Displays	a	down	arrow	(default).
2 Displays	an	ellipsis	(...).
3 Displays	a	horizontal	line	like	an	underscore	character.

Remarks

The	recommended	setting	for	showing	items	in	a	list	is	1.



Show	All



Enabled	Property
Specifies	whether	a	control	can	receive	the	focus	and	respond	to	user-generated
events.

Syntax

object.Enabled	[=	Boolean]

The	Enabled	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	object	can	respond	to	user-generated	events.

Settings

The	settings	for	Boolean	are:

Value Description

True The	control	can	receive	the	focus	and	respond	to	user-generated	events,
and	is	accessible	through	code	(default).

False
The	user	cannot	interact	with	the	control	by	using	the	mouse,	keystrokes,
accelerators,	or	hotkeys.	The	control	is	generally	still	accessible	through
code.

Remarks

Use	the	Enabled	property	to	enable	and	disable	controls.	A	disabled	control
appears	dimmed,	while	an	enabled	control	does	not.	Also,	if	a	control	displays	a
bitmap,	the	bitmap	is	dimmed	whenever	the	control	is	dimmed.	If	Enabled	is
False	for	an	Image,	the	control	does	not	initiate	events	but	does	not	appear
dimmed.

The	Enabled	and	Locked	properties	work	together	to	achieve	the	following



effects:

If	Enabled	and	Locked	are	both	True,	the	control	can	receive	focus	and
appears	normally	(not	dimmed)	in	the	form.	The	user	can	copy,	but	not	edit,
data	in	the	control.
If	Enabled	is	True	and	Locked	is	False,	the	control	can	receive	focus	and
appears	normally	in	the	form.	The	user	can	copy	and	edit	data	in	the
control.
If	Enabled	is	False	and	Locked	is	True,	the	control	cannot	receive	focus
and	is	dimmed	in	the	form.	The	user	can	neither	copy	nor	edit	data	in	the
control.
If	Enabled	and	Locked	are	both	False,	the	control	cannot	receive	focus
and	is	dimmed	in	the	form.	The	user	can	neither	copy	nor	edit	data	in	the
control.

You	can	combine	the	settings	of	the	Enabled	and	the	TabStop	properties	to
prevent	the	user	from	selecting	a	command	button	with	TAB,	while	still	allowing
the	user	to	click	the	button.	Setting	TabStop	to	False	means	that	the	command
button	won't	appear	in	the	tab	order.	However,	if	Enabled	is	True,	then	the	user
can	still	click	the	command	button,	as	long	as	TakeFocusOnClick	is	set	to
True.

When	the	user	tabs	into	an	enabled	MultiPage	or	TabStrip,	the	first	page	or	tab
in	the	control	receives	the	focus.	If	the	first	page	or	tab	of	a	MultiPage	or
TabStrip	is	disabled,	the	first	enabled	page	or	tab	of	that	control	receives	the
focus.	If	all	pages	or	tabs	of	a	MultiPage	or	TabStrip	are	disabled,	the	control	is
disabled	and	cannot	receive	the	focus.

If	a	Frame	is	disabled,	all	controls	that	it	contains	are	disabled.

Clicking	a	disabled	ListBox	does	not	initiate	the	Click	event.



Show	All



EnterFieldBehavior	Property
Specifies	the	selection	behavior	when	entering	a	TextBox	or	ComboBox.

Syntax

object.EnterFieldBehavior	[=EnterFieldBehavior]

The	EnterFieldBehavior	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
EnterFieldBehaviorOptional.	The	desired	selection	behavior.

Settings

The	settings	for	EnterFieldBehavior	are:

Value Description

0 Selects	the	entire	contents	of	the	edit	region	when	entering	the	control
(default).

1 Leaves	the	selection	unchanged.	Visually,	this	uses	the	selection	that	was
in	effect	the	last	time	the	control	was	active.

Remarks

The	EnterFieldBehavior	property	controls	the	way	text	is	selected	when	the
user	tabs	to	the	control,	not	when	the	control	receives	focus	as	a	result	of	the
SetFocus	method.	Following	SetFocus,	the	contents	of	the	control	are	not
selected	and	the	insertion	point	appears	after	the	last	character	in	the	control's
edit	region.

Note		You	can	combine	the	effects	of	the	EnterFieldBehavior	property	and
DragBehavior	to	create	a	large	number	of	text	box	styles.





Show	All



EnterKeyBehavior	Property
Defines	the	effect	of	pressing	ENTER	in	a	TextBox.

Syntax

object.EnterKeyBehavior	[=	Boolean]

The	EnterKeyBehavior	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Specifies	the	effect	of	pressing	ENTER.

Settings

The	settings	for	Boolean	are:

Value Description
True Pressing	ENTER	creates	a	new	line.

False Pressing	ENTER	moves	the	focus	to	the	next	object	in	the	tab	order
(default).

Remarks

The	EnterKeyBehavior	and	MultiLine	properties	are	closely	related.	The
values	described	above	only	apply	if	MultiLine	is	True.	If	MultiLine	is	False,
pressing	ENTER	always	moves	the	focus	to	the	next	control	in	the	tab	order
regardless	of	the	value	of	EnterKeyBehavior.

The	effect	of	pressing	CTRL+ENTER	also	depends	on	the	value	of	MultiLine.
If	MultiLine	is	True,	pressing	CTRL+ENTER	creates	a	new	line	regardless	of
the	value	of	EnterKeyBehavior.	If	MultiLine	is	False,	pressing
CTRL+ENTER	has	no	effect.





Show	All



ForeColor	Property
Specifies	the	foreground	color	of	an	object.

Syntax

object.ForeColor	[=	Long]

The	ForeColor	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Long Optional.	A	value	or	constant	that	determines	the	foreground	color	of	an
object.

Settings

You	can	use	any	integer	that	represents	a	valid	color.	You	can	also	specify	a
color	by	using	the	RGB	function	with	red,	green,	and	blue	color	components.
The	value	of	each	color	component	is	an	integer	that	ranges	from	zero	to	255.
For	example,	you	can	specify	teal	blue	as	the	integer	value	4966415	or	as	red,
green,	and	blue	color	components	15,	200,	75,	as	shown	in	the	following
example.

RGB(15,200,75)

	 	

Remarks

Use	the	ForeColor	property	for	controls	on	forms	to	make	them	easy	to	read	or
to	convey	a	special	meaning.	For	example,	if	a	text	box	reports	the	number	of
units	in	stock,	you	can	change	the	color	of	the	text	when	the	value	falls	below
the	reorder	level.

For	a	ScrollBar	or	SpinButton,	ForeColor	sets	the	color	of	the	arrows.	For	a
Frame,	ForeColor	changes	the	color	of	the	caption.	For	a	Font	object,
ForeColor	determines	the	color	of	the	text.





Show	All



GroupName	Property
Creates	a	group	of	mutually	exclusive	OptionButton	controls.

Syntax

object.GroupName	[=	String]

The	GroupName	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	OptionButton.

String
Optional.	The	name	of	the	group	that	includes	the	OptionButton.	Use
the	same	setting	for	all	buttons	in	the	group.	The	default	setting	is	an
empty	string.

Remarks

To	create	a	group	of	mutually	exclusive	OptionButton	controls,	you	can	put	the
buttons	in	a	Frame	on	your	form,	or	you	can	use	the	GroupName	property.
GroupName	is	more	efficient	for	the	following	reasons:

You	do	not	have	to	include	a	Frame	for	each	group.	By	not	using	a	Frame,
you	reduce	the	number	of	controls	on	the	form,	and	in	turn,	improve
performance	and	reduce	the	size	of	the	form.
You	have	more	design	flexibility.	If	you	use	a	Frame	to	create	the	group,
all	the	buttons	must	be	inside	the	Frame.	If	you	want	more	than	one	group,
you	must	have	one	Frame	for	each	group.	However,	if	you	use
GroupName	to	create	the	group,	the	group	can	include	option	buttons
anywhere	on	the	form.	If	you	want	more	than	one	group,	specify	a	unique
name	for	each	group;	you	can	still	place	the	individual	controls	anywhere
on	the	form.
You	can	create	buttons	with	transparent	backgrounds,	which	can	improve
the	visual	appearance	of	your	form.	The	Frame	is	not	a	transparent	control.

Regardless	of	which	method	you	use	to	create	the	group	of	buttons,	clicking	one
button	in	a	group	sets	all	other	buttons	in	the	same	group	to	False.	All	option



buttons	with	the	same	GroupName	within	a	single	container	are	mutually
exclusive.	You	can	use	the	same	group	name	in	two	containers,	but	doing	so
creates	two	groups	(one	in	each	container)	rather	than	one	group	that	includes
both	containers.

For	example,	assume	your	form	includes	some	option	buttons	and	a	MultiPage
that	also	includes	option	buttons.	The	option	buttons	on	the	MultiPage	are	one
group	and	the	buttons	on	the	form	are	another	group.	The	two	groups	do	not
affect	each	other.	Changing	the	setting	of	a	button	on	the	MultiPage	does	not
affect	the	buttons	on	the	form.



Show	All



Height,	Width	Properties
The	height	or	width,	in	points,	of	an	object.

Syntax

object.Height	[=	Single]

object.Width	[=	Single]

The	Height	and	Width	property	syntaxes	have	these	parts:

Part Description
object Required.	A	valid	object.
SingleOptional.	A	numeric	expression	specifying	the	dimensions	of	an	object.

Remarks

The	Height	and	Width	properties	are	automatically	updated	when	you	move	or
size	a	control.	If	you	specify	a	setting	for	the	Left	or	Top	property	that	is	less
than	zero,	that	value	will	be	used	to	calculate	the	height	or	width	of	the	control,
but	a	portion	of	the	control	will	not	be	visible	on	the	form.

If	you	move	a	control	from	one	part	of	a	form	to	another,	the	setting	of	Height	or
Width	only	changes	if	you	size	the	control	as	you	move	it.	The	settings	of	the
control's	Left	and	Top	properties	will	change	to	reflect	the	control's	new	position
relative	to	the	edges	of	the	form	that	contains	it.

The	value	assigned	to	Height	or	Width	must	be	greater	than	or	equal	to	zero.
For	most	systems,	the	recommended	range	of	values	is	from	0	to	+32,767.
Higher	values	may	also	work	depending	on	your	system	configuration.

For	most	systems,	the	recommended	range	of	values	for	Left	and	Top	is	from
-32,767	to	+32,767.	Other	values	may	also	work	depending	on	your	system
configuration.	For	a	ComboBox,	values	of	Left	and	Top	apply	to	the	text
portion	of	the	control,	not	to	the	list	portion.	When	you	move	or	size	a	control,
its	new	Left	setting	is	automatically	entered	in	the	property	sheet.	When	you



print	a	form,	the	control's	horizontal	or	vertical	location	is	determined	by	its	Left
or	Top	setting.



Show	All



HideSelection	Property
Specifies	whether	selected	text	remains	highlighted	when	a	control	does	not
have	the	focus.

Syntax

object.HideSelection	[=	Boolean]

The	HideSelection	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Boolean Optional.	Whether	the	selected	text	remains	highlighted	even	when	the
control	does	not	have	the	focus.

Settings

The	settings	for	Boolean	are:

Value Description
True Selected	text	is	not	highlighted	unless	the	control	has	the	focus	(default).
False Selected	text	always	appears	highlighted.

Remarks

You	can	use	the	HideSelection	property	to	maintain	highlighted	text	when
another	form	or	a	dialog	box	receives	the	focus,	such	as	in	a	spell-checking
procedure.





Show	All



IMEMode	Property
The	feature	or	some	of	the	options	described	in	this	Help	topic	are	only	available
if	support	for	Japanese,	Simplified	Chinese,	Traditional	Chinese,	or	Korean	is
enabled	through	Microsoft	Office	Language	Settings.

Specifies	the	default	run-time	mode	of	the	Input	Method	Editor	(IME)	for	a
control.	This	property	applies	only	to	applications	written	for	Asian	languages
and	is	ignored	in	other	applications.

Syntax

object.IMEMode	[=	fmIMEMode]

The	IMEMode	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
fmIMEMode Optional.	The	mode	of	the	Input	Method	Editor	(IME).

Settings

The	settings	for	fmIMEMode	are:

Value Description
0 Does	not	control	IME	(default).
1 IME	on.
2 IME	off.	English	mode.
3 IME	off.	User	can’t	turn	on	IME	by	keyboard.
4 IME	on	with	Full-width	Hiragana	mode.
5 IME	on	with	Full-width	Katakana	mode.
6 IME	on	with	Half-width	Katakana	mode.
7 IME	on	with	Full-width	Alphanumeric	mode.
8 IME	on	with	Half-width	Alphanumeric	mode.
9 IME	on	with	Full-width	Hangul	mode.



10 IME	on	with	Half-width	Hangul	mode.

A	setting	of	0	indicates	that	the	mode	of	the	IME	does	not	change	when	the
control	receives	focus	at	run	time.	For	any	other	value,	the	mode	of	the	IME	is
set	to	the	value	specified	by	the	IMEMode	property	when	the	control	receives
focus	at	run	time.



Index	Property
The	position	of	a	Tab	object	within	a	Tabs	collection	or	a	Page	object	in	a
Pages	collection.

Syntax

object.Index	[=	Integer]

The	Index	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
IntegerOptional.	The	index	of	the	currently	selected	Tab	object.

Remarks

The	Index	property	specifies	the	order	in	which	tabs	appear.	Changing	the	value
of	Index	visually	changes	the	order	of	Pages	in	a	MultiPage	or	Tabs	on	a
TabStrip.	The	index	value	for	the	first	page	or	tab	is	zero,	the	index	value	of	the
second	page	or	tab	is	one,	and	so	on.

In	a	MultiPage,	Index	refers	to	a	Page	as	well	as	the	page's	Tab.	In	a	TabStrip,
Index	refers	to	the	tab	only.



Show	All



InsideHeight,	InsideWidth	Properties
InsideHeight	returns	the	height,	in	points,	of	the	client	region	inside	a	Frame.
InsideWidth	returns	the	width,	in	points,	of	the	client	region	inside	a	Frame.

Syntax

object.InsideHeight

object.InsideWidth

The	InsideHeight	and	InsideWidth	property	syntaxes	have	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

The	InsideHeight	and	InsideWidth	properties	are	read-only.



IntegralHeight	Property
Indicates	whether	a	ListBox	or	TextBox	displays	full	lines	of	text	in	a	list	or
partial	lines.

Syntax

object.IntegralHeight	[=	Boolean]

The	IntegralHeight	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	list	displays	partial	lines	of	text.

Settings

The	settings	for	Boolean	are:

Value Description
True The	list	resizes	itself	to	display	only	complete	items	(default).

False The	list	does	not	resize	itself	even	if	the	item	is	too	tall	to	display
completely.

Remarks

The	IntegralHeight	property	relates	to	the	height	of	the	list,	just	as	the	AutoSize
property	relates	to	the	width	of	the	list.

If	IntegralHeight	is	True,	the	list	box	automatically	resizes	when	necessary	to
show	full	rows.	If	False,	the	list	remains	a	fixed	size;	if	items	are	taller	than	the
available	space	in	the	list,	the	entire	item	is	not	shown.





KeepScrollBarsVisible	Property
Specifies	whether	scroll	bars	remain	visible	when	not	required.

Syntax

object.KeepScrollBarsVisible	[=ScrollBars]

The	KeepScrollBarsVisible	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
ScrollBarsOptional.	Where	scroll	bars	are	displayed.

Settings

The	settings	for	ScrollBars	are:

Value Description
0 Displays	no	scroll	bars.
1 Displays	a	horizontal	scroll	bar.
2 Displays	a	vertical	scroll	bar.
3 Displays	both	a	horizontal	and	a	vertical	scroll	bar	(default).

Remarks

If	the	visible	region	is	large	enough	to	display	all	the	controls	on	an	object	such
as	a	Page	object,	scroll	bars	are	not	required.	The	KeepScrollBarsVisible
property	determines	whether	the	scroll	bars	remain	visible	when	they	are	not
required.

If	the	scroll	bars	are	visible	when	they	are	not	required,	they	appear	normal	in
size,	and	the	scroll	box	fills	the	entire	width	or	height	of	the	scroll	bar.

If	the	KeepScrollBarsVisible	property	is	True,	any	scroll	bar	on	a	form	or	page



is	always	visible,	regardless	of	whether	the	object's	contents	fit	within	the
object's	borders.



LargeChange	Property
Specifies	the	amount	of	movement	that	occurs	when	the	user	clicks	between	the
scroll	box	and	scroll	arrow.

Syntax

object.LargeChange	[=	Long]

The	LargeChange	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Long Optional.	An	integer	that	specifies	the	amount	of	change	to	the	Value
property.

Remarks

The	LargeChange	property	applies	only	to	the	ScrollBar.	It	does	not	apply	to
the	scrollbars	in	other	controls	such	as	a	TextBox	or	a	drop-down	ComboBox.

The	value	of	LargeChange	is	the	amount	by	which	the	ScrollBar's	Value
property	changes	when	the	user	clicks	the	area	between	the	scroll	box	and	scroll
arrow.	The	direction	of	the	movement	is	always	toward	the	place	where	the	user
clicks.	For	example,	in	a	horizontal	ScrollBar,	clicking	to	the	left	of	the	scroll
box	moves	the	scroll	box	to	the	left.	In	a	vertical	ScrollBar,	clicking	above	the
scroll	box	moves	the	scroll	box	up.

LargeChange	does	not	have	units.	Any	integer	is	a	valid	setting	for
LargeChange.	The	recommended	range	of	values	is	from	–32,767	to	+32,767,
and	the	value	must	be	between	the	values	of	the	Max	and	Min	properties	of	the
ScrollBar.





Show	All



Left,	Top	Properties
The	distance	between	a	control	and	the	left	or	top	edge	of	the	form	that	contains
it.

Syntax

object.Left	[=	Single]

object.Top	[=	Single]

The	Left	and	Top	property	syntaxes	have	these	parts:

Part Description
object Required.	A	valid	object.
SingleOptional.	A	numeric	expression	specifying	the	coordinates	of	an	object.

Settings

Setting	the	Left	or	Top	property	to	0	places	the	control's	edge	at	the	left	or	top
edge	of	its	container.

Remarks

For	most	systems,	the	recommended	range	of	values	for	Left	and	Top	is	from
-32,767	to	+32,767.	Other	values	may	also	work	depending	on	your	system
configuration.	For	a	ComboBox,	values	of	Left	and	Top	apply	to	the	text
portion	of	the	control,	not	to	the	list	portion.	When	you	move	or	size	a	control,
its	new	Left	setting	is	automatically	entered	in	the	property	sheet.	When	you
print	a	form,	the	control's	horizontal	or	vertical	location	is	determined	by	its	Left
or	Top	setting.

The	Height	and	Width	properties	are	automatically	updated	when	you	move	or
size	a	control.	If	you	specify	a	setting	for	the	Left	or	Top	property	that	is	less
than	zero,	that	value	will	be	used	to	calculate	the	height	or	width	of	the	control,
but	a	portion	of	the	control	will	not	be	visible	on	the	form.



If	you	move	a	control	from	one	part	of	a	form	to	another,	the	setting	of	Height	or
Width	only	changes	if	you	size	the	control	as	you	move	it.	The	settings	of	the
control's	Left	and	Top	properties	will	change	to	reflect	the	control's	new	position
relative	to	the	edges	of	the	form	that	contains	it.

The	value	assigned	to	Height	or	Width	must	be	greater	than	or	equal	to	zero.
For	most	systems,	the	recommended	range	of	values	is	from	0	to	+32,767.
Higher	values	may	also	work	depending	on	your	system	configuration.



LineCount	Property
Returns	the	number	of	text	lines	in	a	TextBox	or	ComboBox.

Syntax

object.LineCount

The	LineCount	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

The	LineCount	property	is	read-only.

Note		A	ComboBox	will	only	have	one	line.



Show	All



List	Property
Returns	or	sets	the	list	entries	of	a	ListBox	or	ComboBox.

Syntax

object.List(	row,	column	)	[=	Variant]

The	List	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

row Required.	An	integer	with	a	range	from	0	to	one	less	than	the	number	of
entries	in	the	list.

column Required.	An	integer	with	a	range	from	0	to	one	less	than	the	number	ofcolumns.

VariantOptional.	The	contents	of	the	specified	entry	in	the	ListBox	orComboBox.

Settings

Row	and	column	numbering	begins	with	zero.	That	is,	the	row	number	of	the
first	row	in	the	list	is	zero;	the	column	number	of	the	first	column	is	zero.	The
number	of	the	second	row	or	column	is	1,	and	so	on.

Remarks

The	List	property	works	with	the	ListCount	and	ListIndex	properties.	Use	List
to	access	list	items.	A	list	is	a	variant	array;	each	item	in	the	list	has	a	row
number	and	a	column	number.

Initially,	ComboBox	and	ListBox	contain	empty	lists.

Note		To	specify	items	you	want	to	display	in	a	ComboBox	or	ListBox,	use	the
AddItem	method.	To	remove	items,	use	the	RemoveItem	method.

Use	List	to	copy	an	entire	two-dimensional	array	of	values	to	a	control.	Use



AddItem	to	load	a	one-dimensional	array	or	to	load	an	individual	element.



ListCount	Property
Returns	the	number	of	list	entries	in	a	control.

Syntax

object.ListCount

The	ListCount	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

The	ListCount	property	is	read-only.	ListCount	is	the	number	of	rows	over
which	you	can	scroll.	ListCount	is	always	one	greater	than	the	largest	value	for
the	ListIndex	property,	because	index	numbers	begin	with	0	and	the	count	of
items	begins	with	1.	If	no	item	is	selected,	ListCount	is	0	and	ListIndex	is	–1.



Show	All



ListIndex	Property
Identifies	the	currently	selected	item	in	a	ListBox	or	ComboBox.

Syntax

object.ListIndex	[=	Variant]

The	ListIndex	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
VariantOptional.	The	currently	selected	item	in	the	control.

Remarks

The	ListIndex	property	contains	an	index	of	the	selected	row	in	a	list.	Values	of
ListIndex	range	from	–1	to	one	less	than	the	total	number	of	rows	in	a	list	(that
is,	ListCount	–	1).	When	no	rows	are	selected,	ListIndex	returns	–1.	When	the
user	selects	a	row	in	a	ListBox	or	ComboBox,	the	system	sets	the	ListIndex
value.	The	ListIndex	value	of	the	first	row	in	a	list	is	0,	the	value	of	the	second
row	is	1,	and	so	on.

Note		If	you	use	the	MultiSelect	property	to	create	a	ListBox	that	allows
multiple	selections,	the	Selected	property	of	the	ListBox	(rather	than	the
ListIndex	property)	identifies	the	selected	rows.	The	Selected	property	is	an
array	with	the	same	number	of	values	as	the	number	of	rows	in	the	ListBox.	For
each	row	in	the	list	box,	Selected	is	True	if	the	row	is	selected	and	False	if	it	is
not.	In	a	ListBox	that	allows	multiple	selections,	ListIndex	returns	the	index	of
the	row	that	has	focus,	regardless	of	whether	that	row	is	currently	selected.

The	ListIndex	value	is	also	available	by	setting	the	BoundColumn	property	to
0	for	a	combo	box	or	list	box.	If	BoundColumn	is	0,	the	underlying	data	source
to	which	the	combo	box	or	list	box	is	bound	contains	the	same	list	index	value	as
ListIndex.





ListRows	Property
Specifies	the	maximum	number	of	rows	to	display	in	the	list.

Syntax

object.ListRows	[=	Long]

The	ListRows	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Long Optional.	An	integer	indicating	the	maximum	number	of	rows.	The
default	value	is	8.

Remarks

If	the	number	of	items	in	the	list	exceeds	the	value	of	the	ListRows	property,	a
scroll	bar	appears	at	the	right	edge	of	the	list-box	portion	of	the	combo	box.



ListStyle	Property
Specifies	the	visual	appearance	of	the	list	in	a	ListBox	or	ComboBox.

Syntax

object.ListStyle	[=ListStyle]

The	ListStyle	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
ListStyleOptional.	The	visual	style	of	the	list.

Settings

The	settings	for	ListStyle	are:

Value Description
0 Looks	like	a	regular	list	box,	with	the	background	of	items	highlighted.

1

Shows	option	buttons,	or	check	boxes	for	a	multi-select	list	(default).
When	the	user	selects	an	item	from	the	group,	the	option	button
associated	with	that	item	is	selected	and	the	option	buttons	for	the	other
items	in	the	group	are	deselected.

Remarks

The	ListStyle	property	lets	you	change	the	visual	presentation	of	a	ListBox	or
ComboBox.	By	specifying	a	setting	other	than	0,	you	can	present	the	contents	of
either	control	as	a	group	of	individual	items,	with	each	item	including	a	visual
cue	to	indicate	whether	it	is	selected.

If	the	control	supports	a	single	selection	(the	MultiSelect	property	is	set	to	0),
the	user	can	press	one	button	in	the	group.	If	the	control	supports	multi-select,
the	user	can	press	two	or	more	buttons	in	the	group.





ListWidth	Property
Specifies	the	width	of	the	list	in	a	ComboBox.

Syntax

object.ListWidth	[=	Variant]

The	ListWidth	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Variant
Optional.	The	width	of	the	list.	A	value	of	zero	makes	the	list	as	wide	as
the	ComboBox.	The	default	value	is	to	make	the	list	as	wide	as	the	text
portion	of	the	control.

Remarks

If	you	want	to	display	a	multicolumn	list,	enter	a	value	that	will	make	the	list
box	wide	enough	to	fit	all	the	columns.

Tip	When	designing	combo	boxes,	be	sure	to	leave	enough	space	to	display	your
data	and	for	a	vertical	scroll	bar.



Show	All



Locked	Property
Specifies	whether	a	control	can	be	edited.

Syntax

object.Locked	[=	Boolean]

The	Locked	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	control	can	be	edited.

Settings

The	settings	for	Boolean	are:

Value Description
True You	can't	edit	the	value.
False You	can	edit	the	value	(default).

Remarks

When	a	control	is	locked	and	enabled,	it	can	still	initiate	events	and	can	still
receive	the	focus.

The	Enabled	and	Locked	properties	work	together	to	achieve	the	following
effects:

If	Enabled	and	Locked	are	both	True,	the	control	can	receive	focus	and
appears	normally	(not	dimmed)	in	the	form.	The	user	can	copy,	but	not	edit,
data	in	the	control.
If	Enabled	is	True	and	Locked	is	False,	the	control	can	receive	focus	and
appears	normally	in	the	form.	The	user	can	copy	and	edit	data	in	the



control.
If	Enabled	is	False	and	Locked	is	True,	the	control	cannot	receive	focus
and	is	dimmed	in	the	form.	The	user	can	neither	copy	nor	edit	data	in	the
control.
If	Enabled	and	Locked	are	both	False,	the	control	cannot	receive	focus
and	is	dimmed	in	the	form.	The	user	can	neither	copy	nor	edit	data	in	the
control.



Show	All



MatchEntry	Property
Returns	or	sets	a	value	indicating	how	a	ListBox	or	ComboBox	searches	its	list
as	the	user	types.

Syntax

object.MatchEntry	[=MatchEntry]

The	MatchEntry	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
MatchEntry Optional.	The	rule	used	to	match	entries	in	the	list.

Settings

The	settings	for	MatchEntry	are:

Value Description

0
Basic	matching.	The	control	searches	for	the	next	entry	that	starts	with
the	character	entered.	Repeatedly	typing	the	same	letter	cycles	through
all	entries	beginning	with	that	letter.

1 Extended	matching.	As	each	character	is	typed,	the	control	searches	for
an	entry	matching	all	characters	entered	(default).

2 No	matching.

Remarks

The	MatchEntry	property	searches	entries	from	the	TextColumn	property	of	a
ListBox	or	ComboBox.

The	control	searches	the	column	identified	by	TextColumn	for	an	entry	that
matches	the	user's	typed	entry.	Upon	finding	a	match,	the	row	containing	the
match	is	selected,	the	contents	of	the	column	are	displayed,	and	the	contents	of



its	BoundColumn	property	become	the	value	of	the	control.	If	the	match	is
unambiguous,	finding	the	match	initiates	the	Click	event.

The	control	initiates	the	Click	event	as	soon	as	the	user	types	a	sequence	of
characters	that	match	exactly	one	entry	in	the	list.	As	the	user	types,	the	entry	is
compared	with	the	current	row	in	the	list	and	with	the	next	row	in	the	list.	When
the	entry	matches	only	the	current	row,	the	match	is	unambiguous.

In	Microsoft	Forms,	this	is	true	regardless	of	whether	the	list	is	sorted.	This
means	the	control	finds	the	first	occurrence	that	matches	the	entry,	based	on	the
order	of	items	in	the	list.	For	example,	entering	either	"abc"	or	"bc"	will	initiate
the	Click	event	for	the	following	list:

abcde

bcdef

abcxyz

bchij

	 	

Note	that	in	either	case,	the	matched	entry	is	not	unique;	however,	it	is
sufficiently	different	from	the	adjacent	entry	that	the	control	interprets	the	match
as	unambiguous	and	initiates	the	Click	event.



MatchFound	Property
Indicates	whether	the	text	that	a	user	has	typed	into	a	ComboBox	matches	any
of	the	entries	in	the	list.

Syntax

object.MatchFound

The	MatchFound	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Return	Values

The	MatchFound	property	return	values	are:

Value Description
True The	contents	of	the	Value	property	matches	one	of	the	records	in	the	list.

False The	contents	of	Value	does	not	match	any	of	the	records	in	the	list
(default).

Remarks

The	MatchFound	property	is	read-only.	It	is	not	applicable	when	the
MatchEntry	property	is	set	to	2.



Show	All



MatchRequired	Property
Specifies	whether	a	value	entered	in	the	text	portion	of	a	ComboBox	must
match	an	entry	in	the	existing	list	portion	of	the	control.	The	user	can	enter	non-
matching	values,	but	may	not	leave	the	control	until	a	matching	value	is	entered.

Syntax

object.MatchRequired	[=	Boolean]

The	MatchRequired	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Boolean Optional.	Whether	the	text	entered	must	match	an	existing	item	in	the
list.

Settings

The	settings	for	Boolean	are:

Value Description
True The	text	entered	must	match	an	existing	list	entry.
False The	text	entered	can	be	different	from	all	existing	list	entries	(default).

Remarks

If	the	MatchRequired	property	is	True,	the	user	cannot	exit	the	ComboBox
until	the	text	entered	matches	an	entry	in	the	existing	list.	MatchRequired
maintains	the	integrity	of	the	list	by	requiring	the	user	to	select	an	existing	entry.

Note		Not	all	containers	enforce	this	property.





Max,	Min	Properties
Specify	the	maximum	and	minimum	acceptable	values	for	the	Value	property	of
a	ScrollBar	or	SpinButton.

Syntax

object.Max	[=	Long]

object.Min	[=	Long]

The	Max	and	Min	property	syntaxes	have	these	parts:

Part Description
object Required.	A	valid	object.

Long Optional.	A	numeric	expression	specifying	the	maximum	or	minimum
Value	property	setting.

Remarks

Clicking	a	SpinButton	or	moving	the	scroll	box	in	a	ScrollBar	changes	the
Value	property	of	the	control.

The	value	for	the	Max	property	corresponds	to	the	lowest	position	of	a	vertical
ScrollBar	or	the	rightmost	position	of	a	horizontal	ScrollBar.	The	value	for	the
Min	property	corresponds	to	the	highest	position	of	a	vertical	ScrollBar	or	the
leftmost	position	of	a	horizontal	ScrollBar.

Any	integer	is	an	acceptable	setting	for	this	property.	The	recommended	range	of
values	is	from	–32,767	to	+32,767.	The	default	value	is	1.

Note	Min				and	Max	refer	to	locations,	not	to	relative	values,	on	the	ScrollBar.
That	is,	the	value	of	Max	could	be	less	than	the	value	of	Min.	If	this	is	the	case,
moving	toward	the	Max	(bottom)	position	means	decreasing	Value;	moving
toward	the	Min	(top)	position	means	increasing	Value.





MaxLength	Property
Specifies	the	maximum	number	of	characters	a	user	can	enter	in	a	TextBox	or
ComboBox.

Syntax

object.MaxLength	[=	Long]

The	MaxLength	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Long Optional.	An	integer	indicating	the	allowable	number	of	characters.

Remarks

Setting	the	MaxLength	property	to	0	indicates	there	is	no	limit	other	than	that
created	by	memory	constraints.



MouseIcon	Property
Assigns	a	custom	icon	to	an	object.

Syntax

object.MouseIcon	=	LoadPicture(	pathname	)

The	MouseIcon	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

pathname Required.	A	string	expression	specifying	the	path	and	filename	of	thefile	containing	the	custom	icon.

Remarks

The	MouseIcon	property	is	valid	when	the	MousePointer	property	is	set	to	99.
The	mouse	icon	of	an	object	is	the	image	that	appears	when	the	user	moves	the
mouse	across	that	object.

To	assign	an	image	for	the	mouse	pointer,	you	can	either	assign	a	picture	to	the
MouseIcon	property	or	load	a	picture	from	a	file	using	the	LoadPicture
function.



MousePointer	Property
Specifies	the	type	of	pointer	displayed	when	the	user	positions	the	mouse	over	a
particular	object.

Syntax

object.MousePointer	[=MousePointer]

The	MousePointer	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
MousePointer Optional.	The	shape	you	want	for	the	mouse	pointer.

Settings

The	settings	for	MousePointer	are:

Value Description
0 Standard	pointer.	The	image	is	determined	by	the	object	(default).
1 Arrow.
2 Cross-hair	pointer.
3 I-beam.
6 Double	arrow	pointing	northeast	and	southwest.
7 Double	arrow	pointing	north	and	south.
8 Double	arrow	pointing	northwest	and	southeast.
9 Double	arrow	pointing	west	and	east.
10 Up	arrow.
11 Hourglass.

12 "Not"	symbol	(circle	with	a	diagonal	line)	on	top	of	the	object	being
dragged.	Indicates	an	invalid	drop	target.

13 Arrow	with	an	hourglass.
14 Arrow	with	a	question	mark.



15 Size	all	cursor	(arrows	pointing	north,	south,	east,	and	west).
99 Uses	the	icon	specified	by	the	MouseIcon	property.

Remarks

Use	the	MousePointer	property	when	you	want	to	indicate	changes	in
functionality	as	the	mouse	pointer	passes	over	controls	on	a	form.	For	example,
the	hourglass	setting	(11)	is	useful	to	indicate	that	the	user	must	wait	for	a
process	or	operation	to	finish.

Some	icons	vary	depending	on	system	settings,	such	as	the	icons	associated	with
desktop	themes.



Show	All



MultiLine	Property
Specifies	whether	a	control	can	accept	and	display	multiple	lines	of	text.

Syntax

object.MultiLine	[=	Boolean]

The	MultiLine	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	control	supports	more	than	one	line	of	text.

Settings

The	settings	for	Boolean	are:

Value Description
True The	text	is	displayed	across	multiple	lines	(default).
False The	text	is	not	displayed	across	multiple	lines.

Remarks

A	multiline	TextBox	allows	absolute	line	breaks	and	adjusts	its	quantity	of	lines
to	accommodate	the	amount	of	text	it	holds.	If	needed,	a	multiline	control	can
have	vertical	scroll	bars.

A	single-line	TextBox	doesn't	allow	absolute	line	breaks	and	doesn't	use	vertical
scroll	bars.

For	controls	that	support	the	MultiLine	property	as	well	as	the	WordWrap
property,	WordWrap	is	ignored	when	MultiLine	is	False.

Single-line	controls	ignore	the	value	of	the	WordWrap	property.



Note		If	you	change	MultiLine	to	False	in	a	multiline	TextBox,	all	the
characters	in	the	TextBox	will	be	combined	into	one	line,	including	non-printing
characters	(such	as	carriage	returns	and	new-lines).

The	EnterKeyBehavior	and	MultiLine	properties	are	closely	related.	The
EnterKeyBehavior	values	of	True	and	False	only	apply	if	MultiLine	is	True.
If	MultiLine	is	False,	pressing	ENTER	always	moves	the	focus	to	the	next
control	in	the	tab	order	regardless	of	the	value	of	EnterKeyBehavior.

The	effect	of	pressing	CTRL+ENTER	also	depends	on	the	value	of	MultiLine.
If	MultiLine	is	True,	pressing	CTRL+ENTER	creates	a	new	line	regardless	of
the	value	of	EnterKeyBehavior.	If	MultiLine	is	False,	pressing
CTRL+ENTER	has	no	effect.

The	TabKeyBehavior	and	MultiLine	properties	are	closely	related.	The	values
described	above	only	apply	if	MultiLine	is	True.	If	MultiLine	is	False,
pressing	TAB	always	moves	the	focus	to	the	next	control	in	the	tab	order
regardless	of	the	value	of	TabKeyBehavior.

The	effect	of	pressing	CTRL+TAB	also	depends	on	the	value	of	MultiLine.	If
MultiLine	is	True,	pressing	CTRL+TAB	creates	a	new	line	regardless	of	the
value	of	TabKeyBehavior.	If	MultiLine	is	False,	pressing	CTRL+TAB	has	no
effect.



MultiRow	Property
Specifies	whether	the	control	has	more	than	one	row	of	tabs.

Syntax

object.MultiRow	[=	Boolean]

The	MultiRow	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	control	has	more	than	one	row	of	tabs.

Settings

The	settings	for	Boolean	are:

Value Description
True Allows	more	than	one	row	of	tabs.
False Restricts	tabs	to	a	single	row	(default).

Remarks

The	width	and	number	of	tabs	determines	the	number	of	rows.	Changing	the
control's	size	also	changes	the	number	of	rows.	This	allows	the	developer	to
resize	the	control	and	ensure	that	tabs	wrap	to	fit	the	control.	If	the	MultiRow
property	is	False,	then	truncation	occurs	if	the	width	of	the	tabs	exceeds	the
width	of	the	control.

If	MultiRow	is	False	and	tabs	are	truncated,	there	will	be	a	small	scroll	bar	on
the	TabStrip	to	allow	scrolling	to	the	other	tabs	or	pages.





Show	All



MultiSelect	Property
Indicates	whether	the	object	permits	multiple	selections.

Syntax

object.MultiSelect	[=MultiSelect]

The	MultiSelect	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
MultiSelect Optional.	The	selection	mode	that	the	control	uses.

Settings

The	settings	for	MultiSelect	are:

Value Description
0 Only	one	item	can	be	selected	(default).

1 Pressing	the	SPACEBAR	or	clicking	selects	or	deselects	an	item	in	the
list.

2

Pressing	SHIFT	and	clicking	the	mouse,	or	pressing	SHIFT	and	one	of
the	arrow	keys,	extends	the	selection	from	the	previously	selected	item	to
the	current	item.	Pressing	CTRL	and	clicking	the	mouse	selects	or
deselects	an	item.

Remarks

When	the	MultiSelect	property	is	set	to	Extended	or	Simple,	you	must	use	the
list	box's	Selected	property	to	determine	the	selected	items.	Also,	the	Value
property	of	the	control	is	always	Null.

The	ListIndex	property	returns	the	index	of	the	row	with	the	keyboard	focus.
<P>





Show	All



Name	Property
Specifies	the	name	of	a	control	or	an	object,	or	the	name	of	a	font	to	associate
with	a	Font	object.

Syntax

For	Font
Font.Name	[=	String]

For	all	other	controls	and	objects
object.Name	[=	String]

The	Name	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
StringOptional.	The	name	you	want	to	assign	to	the	font	or	control.

Settings

Guidelines	for	assigning	a	string	to	Name,	such	as	the	maximum	length	of	the
name,	vary	from	one	application	to	another.

Remarks

For	objects,	the	default	value	of	Name	consists	of	the	object's	class	name
followed	by	an	integer.	For	example,	the	default	name	for	the	first	TextBox	you
place	on	a	form	is	TextBox1.	The	default	name	for	the	second	TextBox	is
TextBox2.

You	can	set	the	Name	property	for	a	control	from	the	control's	property	sheet	or,
for	controls	added	at	run	time,	by	using	program	statements.	If	you	add	a	control
at	design	time,	you	cannot	modify	its	Name	property	at	run	time.

Each	control	added	to	a	form	at	design	time	must	have	a	unique	name.



For	Font	objects,	Name	identifies	a	particular	typeface	to	use	in	the	text	portion
of	a	control,	object,	or	form.	The	font's	appearance	on	screen	and	in	print	may
differ,	depending	on	your	computer	and	printer.	If	you	select	a	font	that	your
system	can't	display	or	that	isn't	installed,	Windows	substitutes	a	similar	font.



Object	Property
Overrides	a	standard	property	or	method	when	a	new	control	has	a	property	or
method	of	the	same	name.

Syntax

object.Object[.property	|.method]

The	Object	property	syntax	has	these	parts:

Part Description

object Required.	The	name	of	an	object	you	have	added	to	the	Microsoft
Forms	Toolbox.

property Optional.	A	property	that	has	the	same	name	as	a	standard	Microsoft
Forms	property.

method Optional.	A	method	that	has	the	same	name	as	a	standard	Microsoft
Forms	method.

Remarks

Object	is	read-only.

If	you	add	a	new	control	to	the	Microsoft	Forms	Toolbox,	it	is	possible	that	the
added	control	will	have	a	property	or	method	with	the	same	name	as	a	standard
Microsoft	Forms	property	or	method.	The	Object	property	lets	you	use	the
property	or	method	from	the	added	control,	rather	than	the	standard	property	or
method.



Orientation	Property
Specifies	whether	the	SpinButton	or	ScrollBar	is	oriented	vertically	or
horizontally.

Syntax

object.Orientation	[=Orientation]

The	Orientation	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Orientation Optional.	Orientation	of	the	control.

Settings

The	settings	for	Orientation	are:

Value Description

–1 Automatically	determines	the	orientation	based	upon	the	dimensions	of
the	control	(default).

0 Control	is	rendered	vertically.
1 Control	is	rendered	horizontally.

Remarks

If	you	specify	automatic	orientation,	the	height	and	width	of	the	control
determine	whether	it	appears	horizontally	or	vertically.	For	example,	if	the
control	is	wider	than	it	is	tall,	it	appears	horizontally;	if	it	is	taller	than	it	is	wide,
the	control	appears	vertically.





Show	All



Parent	Property
Returns	the	name	of	the	form,	object,	or	collection	that	contains	a	specific
control,	object,	or	collection.

Syntax

object.Parent

The	Parent	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

Parent	is	read-only.

Use	the	Parent	property	to	access	the	properties,	methods,	or	controls	of	an
object's	parent.

This	property	is	useful	in	an	application	in	which	you	pass	objects	as	arguments.
For	example,	you	could	pass	a	control	variable	to	a	general	procedure	in	a
module,	and	use	Parent	to	access	its	parent	form.



Show	All



PasswordChar	Property
Specifies	whether	placeholder	characters	are	displayed	instead	of	the	characters
actually	entered	in	a	TextBox.

Syntax

object.PasswordChar	[=	String]

The	PasswordChar	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
StringOptional.	A	string	expression	specifying	the	placeholder	character.

Remarks

You	can	use	the	PasswordChar	property	to	protect	sensitive	information,	such
as	passwords	or	security	codes.	The	value	of	PasswordChar	is	the	character
(usually	an	asterisk)	that	appears	in	a	control	instead	of	the	actual	characters	that
the	user	types.	If	you	don't	specify	a	character,	the	control	displays	the	characters
that	the	user	types.



Show	All



Picture	Property
Specifies	the	bitmap	to	display	on	an	object.

Syntax

object.Picture	=	LoadPicture(	pathname	)

The	Picture	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
pathname Required.	The	full	path	to	a	picture	file.

Remarks

You	must	use	the	control's	property	page	to	assign	a	bitmap	to	the	Picture
property.	You	cannot	use	the	LoadPicture	function	to	assign	a	bitmap	to
Picture.

To	remove	a	picture	that	is	assigned	to	a	control,	click	the	value	of	the	Picture
property	in	the	property	page	and	then	press	DELETE.	Pressing	BACKSPACE
will	not	remove	the	picture.

Note		For	controls	with	captions,	use	the	PicturePosition	property	to	specify
where	to	display	the	picture	on	the	object.	Use	the	PictureSizeMode	property	to
determine	how	the	picture	fills	the	object.

Transparent	pictures	sometimes	have	a	hazy	appearance.	If	you	do	not	like	this
appearance,	display	the	picture	on	a	control	that	supports	opaque	images.	Image
and	MultiPage	support	opaque	images.





Show	All



PictureAlignment	Property
Specifies	the	location	of	a	background	picture.

Syntax

object.PictureAlignment	[=PictureAlignment]

The	PictureAlignment	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

PictureAlignment Optional.	The	position	where	the	picture	aligns	with	thecontrol.

Settings

The	settings	for	PictureAlignment	are:

Value Description
0 The	top	left	corner.
1 The	top	right	corner.
2 The	center.
3 The	bottom	left	corner.
4 The	bottom	right	corner.

Remarks

The	PictureAlignment	property	identifies	which	corner	of	the	picture	is	the
same	as	the	corresponding	corner	of	the	control	or	container	where	the	picture	is
used.

For	example,	setting	PictureAlignment	to	0	means	that	the	top	left	corner	of	the
picture	coincides	with	the	top	left	corner	of	the	control	or	container.	Setting
PictureAlignment	to	2	positions	the	picture	in	the	middle,	relative	to	the	height



as	well	as	the	width	of	the	control	or	container.

If	you	tile	an	image	on	a	control	or	container,	the	setting	of	PictureAlignment
affects	the	tiling	pattern.	For	example,	if	PictureAlignment	is	set	to	0,	the	first
copy	of	the	image	is	laid	in	the	upper	left	corner	of	the	control	or	container	and
additional	copies	are	tiled	from	left	to	right	across	each	row.	If
PictureAlignment	is	2,	the	first	copy	of	the	image	is	laid	at	the	center	of	the
control	or	container,	additional	copies	are	laid	to	the	left	and	right	to	complete
the	row,	and	additional	rows	are	added	to	fill	the	control	or	container.

Note		Setting	the	PictureSizeMode	property	to	2	overrides	PictureAlignment.
When	PictureSizeMode	is	set	to	2,	the	picture	fills	the	entire	control	or
container.



PicturePosition	Property
Specifies	the	location	of	the	picture	relative	to	its	caption.

Syntax

object.PicturePosition	[=PicturePosition]

The	PicturePosition	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
PicturePositionOptional.	How	the	picture	aligns	with	its	container.

Settings

The	settings	for	PicturePosition	are:

Value Description

0 The	picture	appears	to	the	left	of	the	caption.	The	caption	is	aligned	with
the	top	of	the	picture.

1 The	picture	appears	to	the	left	of	the	caption.	The	caption	is	centered
relative	to	the	picture.

2 The	picture	appears	to	the	left	of	the	caption.	The	caption	is	aligned	with
the	bottom	of	the	picture.

3 The	picture	appears	to	the	right	of	the	caption.	The	caption	is	aligned
with	the	top	of	the	picture.

4 The	picture	appears	to	the	right	of	the	caption.	The	caption	is	centered
relative	to	the	picture.

5 The	picture	appears	to	the	right	of	the	caption.	The	caption	is	aligned
with	the	bottom	of	the	picture.

6 The	picture	appears	above	the	caption.	The	caption	is	aligned	with	the
left	edge	of	the	picture.

7 The	picture	appears	above	the	caption.	The	caption	is	centered	below	the
picture	(default).



8 The	picture	appears	above	the	caption.	The	caption	is	aligned	with	the
right	edge	of	the	picture.

9 The	picture	appears	below	the	caption.	The	caption	is	aligned	with	the
left	edge	of	the	picture.

10 The	picture	appears	below	the	caption.	The	caption	is	centered	above	the
picture.

11 The	picture	appears	below	the	caption.	The	caption	is	aligned	with	the
right	edge	of	the	picture.

12 The	picture	appears	in	the	center	of	the	control.	The	caption	is	centered
horizontally	and	vertically	on	top	of	the	picture.

Remarks

The	picture	and	the	caption,	as	a	unit,	are	centered	on	the	control.	If	no	caption
exists,	the	picture's	location	is	relative	to	the	center	of	the	control.

This	property	is	ignored	if	the	Picture	property	does	not	specify	a	picture.



Show	All



PictureSizeMode	Property
Specifies	how	to	display	the	background	picture	on	a	control,	form,	or	page.

Syntax

object.PictureSizeMode	[=PictureSizeMode]

The	PictureSizeMode	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

PictureSizeModeOptional.	The	action	to	take	if	the	picture	and	the	form	or	pagethat	contains	it	are	not	the	same	size.

Settings

The	settings	for	PictureSizeMode	are:

Value Description
0 Crops	any	part	of	the	picture	that	is	larger	than	the	form	or	page	(default).

1 Stretches	the	picture	to	fill	the	form	or	page.	This	setting	distorts	the
picture	in	either	the	horizontal	or	vertical	direction.

3 Enlarges	the	picture,	but	does	not	distort	the	picture	in	either	the
horizontal	or	vertical	direction.

Remarks

The	PictureSizeModeClip	setting	indicates	you	want	to	show	the	picture	in	its
original	size	and	scale.	If	the	form	or	page	is	smaller	than	the	picture,	this	setting
only	shows	the	part	of	the	picture	that	fits	within	the	form	or	page.

The	1	and	3	settings	both	enlarge	the	image,	but	1	causes	distortion.	The	1
setting	enlarges	the	image	horizontally	and	vertically	until	the	image	reaches	the
corresponding	edges	of	the	container	or	control.	The	3	setting	enlarges	the	image



until	it	reaches	either	the	horizontal	or	vertical	edges	of	the	container	or	control.
If	the	image	reaches	the	horizontal	edges	first,	any	remaining	distance	to	the
vertical	edges	remains	blank.	If	it	reaches	the	vertical	edges	first,	any	remaining
distance	to	the	horizontal	edges	remains	blank.

Note			Setting	the	PictureSizeMode	property	to	2	overrides	PictureAlignment.
When	PictureSizeMode	is	set	to	2,	the	picture	fills	the	entire	control	or
container.



PictureTiling	Property
Lets	you	tile	a	picture	in	a	form	or	page.

Syntax

object.PictureTiling	[=	Boolean]

The	PictureTiling	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	a	picture	is	repeated	across	a	background.

Settings

The	settings	for	Boolean	are:

Value Description
True The	picture	is	tiled	across	the	background.
False The	picture	is	not	tiled	across	the	background	(default).

Remarks

If	a	picture	is	smaller	than	the	form	or	page	that	contains	it,	you	can	tile	the
picture	on	the	form	or	page.

The	tiling	pattern	depends	on	the	current	setting	of	the	PictureAlignment	and
PictureSizeMode	properties.	For	example,	if	PictureAlignment	is	set	to	0,	the
tiling	pattern	starts	at	the	upper	left	and	repeats	the	picture	across	the	form	or
page	and	down	the	height	of	the	form	or	page.	If	PictureSizeMode	is	set	to	0,
the	tiling	pattern	crops	the	last	tile	if	it	doesn't	completely	fit	on	the	form	or
page.





ProportionalThumb	Property
Specifies	whether	the	size	of	the	scroll	box	is	proportional	to	the	scrolling	region
or	fixed.

Syntax

object.ProportionalThumb	[=	Boolean]

The	ProportionalThumb	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	scroll	box	is	proportional	or	fixed.

Settings

The	settings	for	Boolean	are:

Value Description
True The	scroll	box	is	proportional	in	size	to	the	scrolling	region	(default).
False The	scroll	box	is	a	fixed	size.

Remarks

The	size	of	a	proportional	scroll	box	graphically	represents	the	percentage	of	the
object	that	is	visible	in	the	window.	For	example,	if	75	percent	of	an	object	is
visible,	the	scroll	box	covers	three-fourths	of	the	scrolling	region	in	the	scroll
bar.

If	the	scroll	box	is	a	fixed	size,	the	system	determines	its	size	based	on	the	height
and	width	of	the	scroll	bar.





RowSource	Property
Specifies	the	source	providing	a	list	for	a	ComboBox	or	ListBox.

Syntax

object.RowSource	[=	String]

The	RowSource	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
StringOptional.	The	source	of	the	list	for	the	ComboBox	or	ListBox.

Remarks

The	RowSource	property	accepts	worksheet	ranges	from	Microsoft	Excel.



ScrollBars	Property
Specifies	whether	a	control,	form,	or	page	has	vertical	scroll	bars,	horizontal
scroll	bars,	or	both.

Syntax

object.ScrollBars	[=ScrollBars]

The	ScrollBars	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
ScrollBarsOptional.	Where	scroll	bars	should	be	displayed.

Settings

The	settings	for	ScrollBars	are:

Value Description
0 Displays	no	scroll	bars	(default).
1 Displays	a	horizontal	scroll	bar.
2 Displays	a	vertical	scroll	bar.
3 Displays	both	a	horizontal	and	a	vertical	scroll	bar.

Remarks

If	the	KeepScrollBarsVisible	property	is	True,	any	scroll	bar	on	a	form	or	page
is	always	visible,	regardless	of	whether	the	object's	contents	fit	within	the
object's	borders.

If	visible,	a	scroll	bar	constrains	its	scroll	box	to	the	visible	region	of	the	scroll
bar.	It	also	modifies	the	scroll	position	as	needed	to	keep	the	entire	scroll	bar
visible.	The	range	of	a	scroll	bar	changes	when	the	value	of	the	ScrollBars
property	changes,	the	scroll	size	changes,	or	the	visible	size	changes.



If	a	scroll	bar	is	not	visible,	then	you	can	set	its	scroll	position	to	any	value.
Negative	values	and	values	greater	than	the	scroll	size	are	both	valid.

For	a	single-line	control,	you	can	display	a	horizontal	scroll	bar	by	using	the
ScrollBars	and	AutoSize	properties.	Scroll	bars	are	hidden	or	displayed
according	to	the	following	rules:

1.	 When	ScrollBars	is	set	to	ScrollBarsNone,	no	scroll	bar	is	displayed.
2.	 When	ScrollBars	is	set	to	1	or	3,	the	control	displays	a	horizontal	scroll	bar

if	the	text	is	longer	than	the	edit	region	and	if	the	control	has	enough	room
to	include	the	scroll	bar	underneath	its	edit	region.

3.	 When	AutoSize	is	True,	the	control	enlarges	itself	to	accommodate	the
addition	of	a	scroll	bar	unless	the	control	is	at	or	near	its	maximum	size.

For	a	multiline	TextBox,	you	can	display	scroll	bars	by	using	the	ScrollBars,
WordWrap,	and	AutoSize	properties.	Scroll	bars	are	hidden	or	displayed
according	to	the	following	rules:

1.	 When	ScrollBars	is	set	to	0,	no	scroll	bar	is	displayed.
2.	 When	ScrollBars	is	set	to	2	or	3,	the	control	displays	a	vertical	scroll	bar	if

the	text	is	longer	than	the	edit	region	and	if	the	control	has	enough	room	to
include	the	scroll	bar	at	the	right	edge	of	its	edit	region.

3.	 When	WordWrap	is	True,	the	multiline	control	will	not	display	a
horizontal	scroll	bar.	Most	multiline	controls	do	not	use	a	horizontal	scroll
bar.

4.	 A	multiline	control	can	display	a	horizontal	scroll	bar	if	the	following
conditions	occur	simultaneously:

The	edit	region	contains	a	word	that	is	longer	than	the	edit	region's
width.
The	control	has	enabled	horizontal	scroll	bars.
The	control	has	enough	room	to	include	the	scroll	bar	under	the	edit
region.
The	WordWrap	property	is	set	to	False.





Show	All



ScrollHeight,	ScrollWidth	Properties
Specify	the	height,	in	points,	of	the	total	area	that	can	be	viewed	by	moving	the
scroll	bars	on	the	control,	form,	or	page.

Syntax

object.ScrollHeight	[=	Single]

object.ScrollWidth	[=	Single]

The	ScrollHeight	and	ScrollWidth	property	syntaxes	have	these	parts:

Part Description
object Required.	A	valid	object.
SingleOptional.	The	height	or	width	of	the	scrollable	region.



Show	All



ScrollLeft,	ScrollTop	Properties
Specify	the	distance,	in	points,	of	the	left	or	top	edge	of	the	visible	form	from	the
left	or	top	edge	of	the	logical	form,	page,	or	control.

Syntax

object.ScrollLeft	[=	Single]

object.ScrollTop	[=	Single]

The	ScrollLeft	and	ScrollTop	property	syntaxes	have	these	parts:

Part Description
object Required.	A	valid	object.
SingleOptional.	The	distance	from	the	edge	of	the	form.

Remarks

The	minimum	value	is	zero;	the	maximum	value	is	the	difference	between	the
value	of	the	ScrollWidth	property	and	the	value	of	the	Width	property	for	the
form	or	page.



Show	All



Selected	Property
Returns	or	sets	the	selection	state	of	items	in	a	ListBox.

Syntax

object.Selected(	index	)	[=	Boolean]

The	Selected	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

index Required.	An	integer	with	a	range	from	0	to	one	less	than	the	number
of	items	in	the	list.

Boolean Optional.	Whether	an	item	is	selected.

Settings

The	settings	for	Boolean	are:

Value Description
True The	item	is	selected.
False The	item	is	not	selected.

Remarks

The	Selected	property	is	useful	when	users	can	make	multiple	selections.	You
can	use	this	property	to	determine	the	selected	rows	in	a	multi-select	list	box.
You	can	also	use	this	property	to	select	or	deselect	rows	in	a	list	from	code.

The	default	value	of	this	property	is	based	on	the	current	selection	state	of	the
ListBox.

For	single-selection	list	boxes,	the	Value	or	ListIndex	properties	are
recommended	for	getting	and	setting	the	selection.	In	this	case,	ListIndex



returns	the	index	of	the	selected	item.	However,	in	a	multiple	selection,
ListIndex	returns	the	index	of	the	row	contained	within	the	focus	rectangle,
regardless	of	whether	the	row	is	actually	selected.

When	a	list	box	control's	MultiSelect	property	is	set	to	None,	only	one	row	can
have	its	Selected	property	set	to	True.

Entering	a	value	that	is	out	of	range	for	the	index	does	not	generate	an	error
message,	but	does	not	set	a	property	for	any	item	in	the	list.



SelectedItem	Property
Returns	the	currently	selected	Tab	or	Page	object.

Syntax

object.SelectedItem

The	SelectedItem	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	TabStrip	or	MultiPage.

Remarks

The	SelectedItem	property	is	read-only.	Use	SelectedItem	to	programmatically
control	the	currently	selected	Tab	or	Page	object.	For	example,	you	can	use
SelectedItem	to	assign	values	to	properties	of	a	Tab	or	Page	object.



SelectionMargin	Property
Specifies	whether	the	user	can	select	a	line	of	text	by	clicking	in	the	region	to	the
left	of	the	text.

Syntax

object.SelectionMargin	[=	Boolean]

The	SelectionMargin	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	clicking	in	the	margin	selects	a	line	of	text.

Settings

The	settings	for	Boolean	are:

Value Description
True Clicking	in	margin	causes	selection	of	text	(default).
False Clicking	in	margin	does	not	cause	selection	of	text.

Remarks

When	the	SelectionMargin	property	is	True,	the	selection	margin	occupies	a
thin	strip	along	the	left	edge	of	a	control's	edit	region.	When	set	to	False,	the
entire	edit	region	can	store	text.

If	the	SelectionMargin	property	is	set	to	True	when	a	control	is	printed,	the
selection	margin	also	prints.





Show	All



SelLength	Property
The	number	of	characters	selected	in	a	TextBox	or	the	text	portion	of	a
ComboBox.

Syntax

object.SelLength	[=	Long]

The	SelLength	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Long

Optional.	A	numeric	expression	specifying	the	number	of	characters
selected.	For	SelLength	and	SelStart,	the	valid	range	of	settings	is	0	to
the	total	number	of	characters	in	the	edit	area	of	a	ComboBox	or
TextBox.

Remarks

The	SelLength	property	is	always	valid,	even	when	the	control	does	not	have
focus.	Setting	SelLength	to	a	value	less	than	zero	creates	an	error.	Attempting	to
set	SelLength	to	a	value	greater	than	the	number	of	characters	available	in	a
control	results	in	a	value	equal	to	the	number	of	characters	in	the	control.

Note		Changing	the	value	of	the	SelStart	property	cancels	any	existing	selection
in	the	control,	places	an	insertion	point	in	the	text,	and	sets	SelLength	to	zero.

The	default	value,	zero,	means	that	no	text	is	currently	selected.



Show	All



SelStart	Property
Indicates	the	starting	point	of	selected	text,	or	the	insertion	point	if	no	text	is
selected.

Syntax

object.SelStart	[=	Long]

The	SelStart	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Long

Optional.	A	numeric	expression	specifying	the	starting	point	of	text
selected.	For	SelLength	and	SelStart,	the	valid	range	of	settings	is	0	to
the	total	number	of	characters	in	the	edit	area	of	a	ComboBox	or
TextBox.	The	default	value	is	zero.

Remarks

The	SelStart	property	is	always	valid,	even	when	the	control	does	not	have
focus.	Setting	SelStart	to	a	value	less	than	zero	creates	an	error.	Attempting	to
set	SelStart	to	a	value	greater	than	the	number	of	characters	available	in	a
control	results	in	a	value	equal	to	the	number	of	characters	in	the	control.

Changing	the	value	of	SelStart	cancels	any	existing	selection	in	the	control,
places	an	insertion	point	in	the	text,	and	sets	the	SelLength	property	to	zero.



Show	All



SelText	Property
Returns	or	sets	the	selected	text	of	a	control.

Syntax

object.SelText	[=	String]

The	SelText	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
StringOptional.	A	string	expression	containing	the	selected	text.

Remarks

If	no	characters	are	selected	in	the	edit	region	of	the	control,	the	SelText
property	returns	a	zero	length	string.	This	property	is	valid	regardless	of	whether
the	control	has	the	focus.



ShowDropButtonWhen	Property
Specifies	when	to	show	the	drop-down	button	for	a	ComboBox.

Syntax

object.ShowDropButtonWhen	[=ShowDropButtonWhen]

The	ShowDropButtonWhen	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

ShowDropButtonWhen Optional.	The	circumstances	under	which	the	drop-downbutton	will	be	visible.

Settings

The	settings	for	ShowDropButtonWhen	are:

Value Description
0 Do	not	show	the	drop-down	button	under	any	circumstances.
1 Show	the	drop-down	button	when	the	control	has	the	focus.
2 Always	show	the	drop-down	button.

For	a	ComboBox,	the	default	value	is	2.



SmallChange	Property
Specifies	the	amount	of	movement	that	occurs	when	the	user	clicks	either	scroll
arrow	in	a	ScrollBar	or	SpinButton.

Syntax

object.SmallChange	[=	Long]

The	SmallChange	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Long Optional.	An	integer	that	specifies	the	amount	of	change	to	the	Value
property.

Remarks

The	SmallChange	property	does	not	have	units.

Any	integer	is	an	acceptable	setting	for	this	property.	The	recommended	range	of
values	is	from	–32,767	to	+32,767.	The	default	value	is	1.



Show	All



SpecialEffect	Property
Specifies	the	visual	appearance	of	an	object.

Syntax

object.SpecialEffect	[=SpecialEffect]

The	SpecialEffect	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

SpecialEffect Optional.	The	desired	visual	appearance	of	an	object	other	than	aCheckBox,	OptionButton,	or	ToggleButton.

Settings

The	settings	for	SpecialEffect	are:

Value Description

0
Object	appears	flat,	distinguished	from	the	surrounding	form	by	a	border,
a	change	of	color,	or	both.	Default	for	Image	and	Label,	valid	for	all
controls.

1 Object	has	a	highlight	on	the	top	and	left	and	a	shadow	on	the	bottom	and
right.	Not	valid	for	check	boxes	or	option	buttons.

2

Object	has	a	shadow	on	the	top	and	left	and	a	highlight	on	the	bottom	and
right.	The	control	and	its	border	appear	to	be	carved	into	the	form	that
contains	them.	Default	for	CheckBox	and	OptionButton,	valid	for	all
controls	(default).

3 Border	appears	to	be	carved	around	the	edge	of	the	control.	Not	valid	for
check	boxes	or	option	buttons.

6 Object	has	a	ridge	on	the	bottom	and	right	and	appears	flat	on	the	top	and
left.	Not	valid	for	check	boxes	or	option	buttons.

For	a	Frame,	the	default	value	is	2.



Note	that	only	0	and	2	are	acceptable	values	for	CheckBox,	OptionButton,	and
ToggleButton.	All	values	listed	are	acceptable	for	other	controls.

Remarks

You	can	use	either	the	SpecialEffect	or	the	BorderStyle	property	to	specify	the
edging	for	a	control,	but	not	both.	If	you	specify	a	nonzero	value	for	one	of	these
properties,	the	system	sets	the	value	of	the	other	property	to	zero.	For	example,
if	you	set	SpecialEffect	to	1,	the	system	sets	BorderStyle	to	0.

For	a	Frame,	BorderStyle	is	ignored	if	SpecialEffect	is	0.

SpecialEffect	uses	the	system	colors	to	define	its	borders.

Note		Although	the	SpecialEffect	property	exists	on	the	ToggleButton,	the
property	is	disabled.	You	cannot	set	or	return	a	value	for	this	property	on	the
ToggleButton.



Style	Property
For	ComboBox,	specifies	how	the	user	can	choose	or	set	the	control's	value.	For
MultiPage	and	TabStrip,	identifies	the	style	of	the	tabs	on	the	control.

Syntax

object.Style	[=Style]

The	Style	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Style Optional.	Specifies	how	a	user	sets	the	value	of	a	ComboBox.

Settings

The	settings	for	ComboBox	are:

Value Description

0
The	ComboBox	behaves	as	a	drop-down	combo	box.	The	user	can	type	a
value	in	the	edit	region	or	select	a	value	from	the	drop-down	list
(default).

2 The	ComboBox	behaves	as	a	list	box.	The	user	must	choose	a	value	from
the	list.

The	settings	for	MultiPage	and	TabStrip	are::

Value Description
0 Displays	tabs	on	the	tab	bar	(default).
1 Displays	buttons	on	the	tab	bar.
2 Does	not	display	the	tab	bar.





Show	All



TabFixedHeight,	TabFixedWidth
Properties
Sets	or	returns	the	fixed	height	or	width	of	the	tabs	in	points.

Syntax

object.TabFixedHeight	[=	Single]

object.TabFixedWidth	[=	Single]

The	TabFixedHeight	and	TabFixedWidth	property	syntaxes	have	these	parts:

Part Description
object Required.	A	valid	object.

SingleOptional.	The	number	of	points	of	the	height	or	width	of	the	tabs	on	aTabStrip	or	MultiPage.

Settings

If	the	value	is	0,	tab	widths	are	automatically	adjusted	so	that	each	tab	is	wide
enough	to	accommodate	its	contents	and	each	row	of	tabs	spans	the	width	of	the
control.

If	the	value	is	greater	than	0,	all	tabs	have	an	identical	width	as	specified	by	this
property.

Remarks

The	minimum	size	is	4	points.





Show	All



TabIndex	Property
Specifies	the	position	of	a	single	object	in	the	form's	tab	order.

Syntax

object.TabIndex	[=	Integer]

The	TabIndex	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Integer

Optional.	An	integer	from	0	to	one	less	than	the	number	of	controls	on
the	form	that	have	a	TabIndex	property.	Assigning	a	TabIndex	value	of
less	than	0	generates	an	error.	If	you	assign	a	TabIndex	value	greater
than	the	largest	index	value,	the	system	resets	the	value	to	the	maximum
allowable	value.

Remarks

The	index	value	of	the	first	object	in	the	tab	order	is	zero.



Show	All



TabKeyBehavior	Property
Determines	whether	tabs	are	allowed	in	the	edit	region.

Syntax

object.TabKeyBehavior	[=	Boolean]

The	TabKeyBehavior	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	The	effect	of	pressing	TAB.

Settings

The	settings	for	Boolean	are:

Value Description
True Pressing	TAB	inserts	a	tab	character	in	the	edit	region.

False Pressing	TAB	moves	the	focus	to	the	next	object	in	the	tab	order
(default).

Remarks

The	TabKeyBehavior	and	MultiLine	properties	are	closely	related.	The	values
described	above	only	apply	if	MultiLine	is	True.	If	MultiLine	is	False,
pressing	TAB	always	moves	the	focus	to	the	next	control	in	the	tab	order
regardless	of	the	value	of	TabKeyBehavior.

The	effect	of	pressing	CTRL+TAB	also	depends	on	the	value	of	MultiLine.	If
MultiLine	is	True,	pressing	CTRL+TAB	creates	a	new	line	regardless	of	the
value	of	TabKeyBehavior.	If	MultiLine	is	False,	pressing	CTRL+TAB	has	no
effect.





TabOrientation	Property
Specifies	the	location	of	the	tabs	on	a	MultiPage	or	TabStrip.

Syntax

object.TabOrientation	[=TabOrientation]

The	TabOrientation	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
TabOrientation Optional.	Where	the	tabs	will	appear.

Settings

The	settings	for	TabOrientation	are:

Value Description
0 The	tabs	appear	at	the	top	of	the	control	(default).
1 The	tabs	appear	at	the	bottom	of	the	control.
2 The	tabs	appear	at	the	left	side	of	the	control.
3 The	tabs	appear	at	the	right	side	of	the	control.

Remarks

If	you	use	TrueType	fonts,	the	text	rotates	when	the	TabOrientation	property	is
set	to	2	or	3.	If	you	use	bitmapped	fonts,	the	text	does	not	rotate.





Show	All



TabStop	Property
Indicates	whether	an	object	can	receive	focus	when	the	user	tabs	to	it.

Syntax

object.TabStop	[=	Boolean]

The	TabStop	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	object	is	a	tab	stop.

Settings

The	settings	for	Boolean	are:

Value Description
True Designates	the	object	as	a	tab	stop	(default).

False
Bypasses	the	object	when	the	user	is	tabbing,	although	the	object	still
holds	its	place	in	the	actual	tab	order,	as	determined	by	the	TabIndex
property.

Remarks

You	can	combine	the	settings	of	the	Enabled	and	the	TabStop	properties	to
prevent	the	user	from	selecting	a	command	button	with	TAB,	while	still	allowing
the	user	to	click	the	button.	Setting	TabStop	to	False	means	that	the	command
button	won't	appear	in	the	tab	order.	However,	if	Enabled	is	True,	then	the	user
can	still	click	the	command	button,	as	long	as	TakeFocusOnClick	is	set	to
True.

When	the	user	tabs	into	an	enabled	MultiPage	or	TabStrip,	the	first	page	or	tab
in	the	control	receives	the	focus.	If	the	first	page	or	tab	of	a	MultiPage	or



TabStrip	is	disabled,	the	first	enabled	page	or	tab	of	that	control	receives	the
focus.	If	all	pages	or	tabs	of	a	MultiPage	or	TabStrip	are	disabled,	the	control	is
disabled	and	cannot	receive	the	focus.



Tag	Property
Stores	additional	information	about	an	object.

Syntax

object.Tag	[=	String]

The	Tag	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

StringOptional.	A	string	expression	identifying	the	object.	The	default	is	a	zero-length	string	("").

Remarks

Use	the	Tag	property	to	assign	an	identification	string	to	an	object	without
affecting	other	property	settings	or	attributes.

For	example,	you	can	use	Tag	to	check	the	identity	of	a	form	or	control	that	is
passed	as	a	variable	to	a	procedure.



Show	All



TakeFocusOnClick	Property
Specifies	whether	a	control	takes	the	focus	when	clicked.

Syntax

object.TakeFocusOnClick	[=	Boolean]

The	TakeFocusOnClick	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Specifies	whether	a	control	takes	the	focus	when	clicked.

Settings

The	settings	for	Boolean	are:

Value Description
True The	button	takes	the	focus	when	clicked	(default).
False The	button	does	not	take	the	focus	when	clicked.

Remarks

The	TakeFocusOnClick	property	defines	only	what	happens	when	the	user
clicks	a	control.	If	the	user	tabs	to	the	control,	the	control	takes	the	focus
regardless	of	the	value	of	TakeFocusOnClick.

Use	this	property	to	complete	actions	that	affect	a	control	without	requiring	that
control	to	give	up	focus.	For	example,	assume	your	form	includes	a	TextBox	and
a	CommandButton	that	checks	for	correct	spelling	of	text.	You	would	like	to	be
able	to	select	text	in	the	TextBox,	then	click	the	CommandButton	and	run	the
spelling	checker	without	taking	focus	away	from	the	TextBox.	You	can	do	this
by	setting	the	TakeFocusOnClick	property	of	the	CommandButton	to	False.





Text	Property
Returns	or	sets	the	text	in	a	TextBox.	Changes	the	selected	row	in	a	ComboBox
or	ListBox.

Syntax

object.Text	[=	String]

The	Text	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

StringOptional.	A	string	expression	specifying	text.	The	default	value	is	a	zero-length	string	("").

Remarks

For	a	TextBox,	any	value	you	assign	to	the	Text	property	is	also	assigned	to	the
Value	property.

For	a	ComboBox,	you	can	use	Text	to	update	the	value	of	the	control.	If	the
value	of	Text	matches	an	existing	list	entry,	the	value	of	the	ListIndex	property
(the	index	of	the	current	row)	is	set	to	the	row	that	matches	Text.	If	the	value	of
Text	does	not	match	a	row,	ListIndex	is	set	to	–1.

For	a	ListBox,	the	value	of	Text	must	match	an	existing	list	entry.	Specifying	a
value	that	does	not	match	an	existing	list	entry	causes	an	error.

When	the	Text	property	of	a	ComboBox	changes	(such	as	when	a	user	types	an
entry	into	the	control),	the	new	text	is	compared	to	the	column	of	data	specified
by	TextColumn.

You	cannot	use	Text	to	change	the	value	of	an	entry	in	a	ComboBox	or	ListBox;
use	the	Column	or	List	property	for	this	purpose.

The	ForeColor	property	determines	the	color	of	the	text.





TextAlign	Property
Specifies	how	text	is	aligned	in	a	control.

Syntax

object.TextAlign	[=TextAlign]

The	TextAlign	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
TextAlignOptional.	How	text	is	aligned	in	the	control.

Settings

The	settings	for	TextAlign	are:

Value Description

1 Aligns	the	first	character	of	displayed	text	with	the	left	edge	of	the
control's	display	or	edit	area	(default).

2 Centers	the	text	in	the	control's	display	or	edit	area.

3 Aligns	the	last	character	of	displayed	text	with	the	right	edge	of	the
control's	display	or	edit	area.

Remarks

For	a	ComboBox,	the	TextAlign	property	only	affects	the	edit	region;	this
property	has	no	effect	on	the	alignment	of	text	in	the	list.	For	stand-alone	labels,
TextAlign	determines	the	alignment	of	the	label's	caption.





TextColumn	Property
Identifies	the	column	in	a	ComboBox	or	ListBox	to	display	to	the	user.

Syntax

object.TextColumn	[=	Variant]

The	TextColumn	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
VariantOptional.	The	column	to	be	displayed.

Settings

Values	for	the	TextColumn	property	range	from	–1	to	the	number	of	columns	in
the	list.	The	TextColumn	value	for	the	first	column	is	1,	the	value	of	the	second
column	is	2,	and	so	on.	Setting	TextColumn	to	0	displays	the	ListIndex	values.
Setting	TextColumn	to	–1	displays	the	first	column	that	has	a	ColumnWidths
value	greater	than	0.

Remarks

When	the	user	selects	a	row	from	a	ComboBox	or	ListBox,	the	column
referenced	by	TextColumn	is	stored	in	the	Text	property.For	example,	you
could	set	up	a	multicolumn	ListBox	that	contains	the	names	of	holidays	in	one
column	and	dates	for	the	holidays	in	a	second	column.	To	present	the	holiday
names	to	users,	specify	the	first	column	as	the	TextColumn.	To	store	the	dates
of	the	holidays,	specify	the	second	column	as	the	BoundColumn.

When	the	Text	property	of	a	ComboBox	changes	(such	as	when	a	user	types	an
entry	into	the	control),	the	new	text	is	compared	to	the	column	of	data	specified
by	TextColumn.





TextLength	Property
Returns	the	length,	in	characters,	of	text	in	the	edit	region	of	a	TextBox	or
ComboBox.

Syntax

object.TextLength

The	TextLength	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Remarks

The	TextLength	property	is	read-only.	For	a	multiline	TextBox,	TextLength
includes	LF	(line	feed)	and	CR	(carriage	return)	characters.



TopIndex	Property
Sets	and	returns	the	item	that	appears	in	the	topmost	position	in	the	list.

Syntax

object.TopIndex	[=	Variant]

The	TopIndex	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

VariantOptional.	The	number	of	the	list	item	that	is	displayed	in	the	topmostposition.	The	default	is	0,	or	the	first	item	in	the	list.

Settings

Returns	the	value	–1	if	the	list	is	empty	or	not	displayed.



Show	All



TripleState	Property
Determines	whether	a	user	can	specify,	from	the	user	interface,	the	Null	state	for
a	CheckBox	or	ToggleButton.

Syntax

object.TripleState	[=	Boolean]

The	TripleState	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	control	supports	the	Null	state.

Settings

The	settings	for	Boolean	are:

Value Description
True The	button	clicks	through	three	states.
False The	button	only	supports	True	and	False	(default).

Remarks

Although	the	TripleState	property	exists	on	the	OptionButton,	the	property
does	not	affect	the	action	of	the	control.	Regardless	of	the	value	of	TripleState,
you	cannot	set	the	control	to	Null	through	the	user	interface.

When	the	TripleState	property	is	True,	a	user	can	choose	from	the	values	of
Null,	True,	and	False.	The	null	value	is	displayed	as	a	shaded	button.

When	TripleState	is	False,	the	user	can	choose	either	True	or	False.

A	control	set	to	Null	does	not	initiate	the	Click	event.



Regardless	of	the	property	setting,	the	Null	value	can	always	be	assigned
programmatically	to	an	OptionButton,	CheckBox	or	ToggleButton,	causing
that	control	to	appear	shaded.



Show	All



Value	Property
Specifies	the	state	or	content	of	a	given	control.

Syntax

object.Value	[=	Variant]

The	Value	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
VariantOptional.	The	state	or	content	of	the	control.

Settings

Control Description
CheckBox An	integer	value	indicating	whether	the	item	is	selected:

Null	Indicates	the	item	is	in	a	null	state,	neither	selected	nor
cleared.
–1	True.	Indicates	the	item	is	selected.
0	False.	Indicates	the	item	is	cleared.

OptionButton Same	as	CheckBox.
ToggleButton Same	as	CheckBox.

ScrollBar An	integer	between	the	values	specified	for	the	Max	and
Min	properties.

SpinButton Same	as	ScrollBar.
ComboBox,
ListBox

The	value	in	the	BoundColumn	of	the	currently	selected
rows.

CommandButtonAlways	False.
MultiPage An	integer	indicating	the	currently	active	page.

Zero	(0)	indicates	the	first	page.	The	maximum	value	is	one
less	than	the	number	of	pages.

TextBox The	text	in	the	edit	region.



Remarks

For	a	CommandButton,	setting	the	Value	property	to	True	in	a	macro	or
procedure	initiates	the	button's	Click	event.

For	a	ComboBox,	changing	the	contents	of	Value	does	not	change	the	value	of
BoundColumn.	To	add	or	delete	entries	in	a	ComboBox,	you	can	use	the
AddItem	or	RemoveItem	method.

For	a	TextBox,	any	value	you	assign	to	the	Text	property	is	also	assigned	to	the
Value	property.

Value	cannot	be	used	with	a	multi-select	ListBox.



VerticalScrollBarSide	Property
Specifies	whether	a	vertical	scroll	bar	appears	on	the	right	or	left	side	of	a	frame.

Syntax

object.VerticalScrollBarSide	[=	VerticalScrollBarSide]

The	VerticalScrollBarSide	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
VerticalScrollBarSide Optional.	Where	the	scroll	bar	should	appear.

Settings

Value Description
0 Puts	the	scroll	bar	on	the	right	side	(default).
1 Puts	the	scroll	bar	on	the	left	side.



Show	All



Visible	Property
Specifies	whether	an	object	is	visible	or	hidden.

Syntax

object.Visible	[=	Boolean]

The	Visible	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	object	is	visible	or	hidden.

Settings

The	settings	for	Boolean	are:

Value Description
True Object	is	visible	(default).
False Object	is	hidden.

Remarks

Use	the	Visible	property	to	control	access	to	information	without	displaying	it.
For	example,	you	could	use	the	value	of	a	control	on	a	hidden	form	as	the
criteria	for	a	query.

All	controls	are	visible	at	design	time.





WordWrap	Property
Indicates	whether	the	contents	of	a	control	automatically	wrap	at	the	end	of	a
line.

Syntax

object.WordWrap	[=	Boolean]

The	WordWrap	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	control	expands	to	fit	the	text.

Settings

The	settings	for	Boolean	are:

Value Description
True The	text	wraps	(default).
False The	text	does	not	wrap.

Remarks

For	controls	that	support	the	MultiLine	property	as	well	as	the	WordWrap
property,	WordWrap	is	ignored	when	MultiLine	is	False.



Zoom	Property
Specifies	how	much	to	change	the	size	of	a	displayed	object.

Syntax

object.Zoom	[=	Integer]

The	Zoom	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Integer The	percentage	to	increase	or	decrease	the	displayed	image.

Remarks

The	value	of	the	Zoom	property	specifies	a	percentage	of	image	enlargement	or
reduction	by	which	an	image	display	should	change.	Values	from	10	to	400	are
valid.	The	value	specified	is	a	percentage	of	the	object’s	original	size;	thus,	a
setting	of	400	means	you	want	to	enlarge	the	image	to	four	times	its	original	size
(or	400	percent),	while	a	setting	of	10	means	you	want	to	reduce	the	image	to
one-tenth	of	its	original	size	(or	10	percent).



Accelerator,	Caption	Properties
Example
This	example	changes	the	Accelerator	and	Caption	properties	of	a
CommandButton	each	time	the	user	clicks	the	button	by	using	the	mouse	or	the
accelerator	key.	The	Click	event	contains	the	code	to	change	the	Accelerator
and	Caption	properties.

To	try	this	example,	paste	the	code	into	the	Script	Editor	of	a	form	containing	a
CommandButton	named	CommandButton1.	To	run	the	code	you	need	to	open
the	form	so	the	Open	event	will	activate.

Dim	CommandButton1

Sub	Item_Open()

		Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").CommandButton1

		CommandButton1.Accelerator		=	"C"									'Set	Accelerator	key	to	ALT	+	C

End	Sub

Sub	CommandButton1_Click	()

		If	CommandButton1.Caption	=	"OK"	Then					'Check	caption,	then	change	it.

				CommandButton1.Caption	=	"Clicked"				

				CommandButton1.Accelerator		=	"C"									'Set	Accelerator	key	to	ALT	+	C

		Else

				CommandButton1.Caption	=	"OK"		

				CommandButton1.Accelerator		=	"O"									'Set	Accelerator	key	to	ALT	+	O

		End	If

End	Sub

	 	



Accessing	a	Page	Example
The	following	example	accesses	an	individual	page	of	a	MultiPage	in	several
ways:

Using	the	Pages	collection	with	a	numeric	index.
Using	the	name	of	the	individual	page	in	the	MultiPage.
Using	the	SelectedItem	property.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	Make
sure	that	the	form	contains	a	MultiPage	named	MultiPage1	and	a
CommandButton	named	CommandButton1.

Sub	CommandButton1_Click

		Dim	PageName

		Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages("P.2").MultiPage1

		For	i	=	0	To	MultiPage1.Count	-	1

				'Use	index	(numeric	or	string)

				MsgBox	"MultiPage1.Pages(i).Caption	=	"	&	MultiPage1.Pages(i).Caption

				MsgBox	"MultiPage1.Pages.Item(i).Caption	=	"	&	MultiPage1.Pages.Item(i).Caption

				

				'Use	Page	object	without	referring	to	Pages	collection

				If	i	=	0	Then

						MsgBox	"MultiPage1.Page1.Caption	=	"	&	MultiPage1.Page1.Caption

				ElseIf	i	=	1	Then

						MsgBox	"MultiPage1.Page2.Caption	=	"	&	MultiPage1.Page2.Caption

				End	If

				

				'Use	SelectedItem	Property

				MultiPage1.Value	=	i

				MsgBox	"MultiPage1.SelectedItem.Caption	=	"	&	MultiPage1.SelectedItem.Caption

		Next

End	Sub

	 	



Accessing	a	Tab	Example
The	following	example	accesses	an	individual	tab	of	a	TabStrip	in	several	ways:

Using	the	Tabs	collection	with	a	numeric	index.
Using	the	name	of	the	individual	Tab.
Using	the	SelectedItem	property.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains	a	TabStrip	named	TabStrip1.

Sub	Item_Open()

				Dim	TabStrip1

				Dim	TabName

					Set	TabStrip1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("TabStrip1")

				For	i	=	0	To	TabStrip1.Count	-	1

								'Using	index	(numeric	or	string)

								MsgBox	"TabStrip1.Tabs(i).Caption	=	"	&	TabStrip1.Tabs(i).Caption

								MsgBox	"TabStrip1.Tabs.Item(i).Caption	=	"	&	TabStrip1.Tabs.Item(i).Caption

								

								'Use	Tab	object	without	referring	to	Tabs	collection

								If	i	=	0	Then

												MsgBox	"TabStrip1.Tab1.	Caption	=	"	&	TabStrip1.Tab1.Caption

								ElseIf	i	=	1	Then

												MsgBox	"TabStrip1.Tab2.	Caption	=	"	&	TabStrip1.Tab2.Caption

								End	If

								'Use	SelectedItem	Property

								TabStrip1.Value	=	i

								MsgBox	"	TabStrip1.SelectedItem.Caption	=	"	&	TabStrip1.SelectedItem.Caption

				Next

End	Sub

	 	



Accessing	Controls	Through	the
Controls	Collection	Example
The	following	example	accesses	individual	controls	from	the	Controls
collection	using	a	For	Each...Next	loop.	When	the	user	presses
CommandButton1,	the	other	controls	are	placed	in	a	column	along	the	left	edge
of	the	form	using	the	Move	method.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains	a	CommandButton	named	CommandButton1	and	several
other	controls.

Dim	CtrlHeight	

Dim	CtrlTop	

Dim	CtrlGap

Dim	CommandButton1	

Sub	Item_Open()

		Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").CommandButton1

		CtrlHeight	=	20

		CtrlGap	=	5

				

		CommandButton1.Caption	=	"Click	to	move	controls"

		CommandButton1.AutoSize	=	True

		CommandButton1.Left	=	120

		CommandButton1.Top	=	CtrlTop

End	Sub

Sub	CommandButton1_Click()

		Dim	MyControl

		Set	AllControls	=	Item.GetInspector.ModifiedFormPages("P.2").Controls

		CtrlTop	=	5

		For	i	=	0	to	AllControls.Count	-	1

				Set	MyControl	=	AllControls(i)

				If	MyControl.Name	=	"CommandButton1"	Then

				'Don't	move	or	resize	this	control.

				Else



						'Move	method	using	unnamed	arguments	(left,	top,	width,	height)

						MyControl.Move	5,	CtrlTop,	,CtrlHeight

												

						'Calculate	top	coordinate	for	next	control

						CtrlTop	=	CtrlTop	+	CtrlHeight	+	CtrlGap

				End	If

		Next

End	Sub

	 	



Show	All



Adding	a	Control	Example
The	following	example	uses	the	Add	method	to	add	a	control	to	a	form	at	run
time.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	Make
sure	that	the	form	contains:

A	CommandButton	named	CommandButton1.

Dim	Mycmd	

Sub	CommandButton1_Click()

			

			Set	Mycmd	=	Item.GetInspector.ModifiedFormPages("P.2").Controls.Add("Forms.CommandButton.1")	',	CommandButton2,	Visible)

		Mycmd.Left	=	18

		Mycmd.Top	=	150

		Mycmd.Width	=	175

		Mycmd.Height	=	20

		Mycmd.Caption	=	"This	is	fun."	&	Mycmd.Name

				

End	Sub

	 	



Adding	a	Control	to	a	MultiPage
Example
The	following	example	uses	the	Add,	Clear,	and	Remove	methods	to	add	and
remove	a	control	to	a	Page	of	a	MultiPage	at	run	time.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	MultiPage	named	MultiPage1.
Three	CommandButton	controls	named	CommandButton1	through
CommandButton3.

Dim	MyTextBox	

Dim	MultiPage1

Sub	Item_Open()

		Set	MyPage	=	Item.GetInspector.ModifiedFormPages("P.2")

		Set	MultiPage1	=	MyPage.MultiPage1

		MyPage.CommandButton1.Caption	=	"Add	control"

		MyPage.CommandButton2.Caption	=	"Clear	controls"

		MyPage.CommandButton3.Caption	=	"Remove	control"

End	Sub

Sub	CommandButton1_Click()

		Set	MyTextBox	=	MultiPage1.Pages(0).Controls.Add("Forms.TextBox.1",	"MyTextBox",	1)

End	Sub

Sub	CommandButton2_Click()

		MultiPage1.Pages(0).Controls.Clear

End	Sub

Sub	CommandButton3_Click()

		If	MultiPage1.Pages(0).Controls.Count	>	0		Then

				MultiPage1.Pages(0).Controls.Remove	"MyTextBox"

		End	If

End	Sub

	 	



Alignment	Property	Example
The	following	example	demonstrates	the	Alignment	property	used	with	several
OptionButton	controls.	In	this	example,	the	user	can	change	the	alignment	by
clicking	a	ToggleButton.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains	the	following	controls:

Two	OptionButton	controls	named	OptionButton1	and	OptionButton2.
A	ToggleButton	named	ToggleButton1.

Dim	OptionButton1

Dim	OptionButton2

Dim	ToggleButton1

Sub	Item_Open()

					Set	OptionButton1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("OptionButton1")

					Set	OptionButton2	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("OptionButton2")

					Set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("ToggleButton1")

				OptionButton1.Alignment	=	0	'fmAlignmentLeft

				OptionButton2.Alignment	=	0	'fmAlignmentLeft

				OptionButton1.Caption	=	"Alignment	with	AutoSize"

				OptionButton2.Caption	=	"Choice	2"

				OptionButton1.AutoSize	=	True

				OptionButton2.AutoSize	=	True

				

				ToggleButton1.Caption	=	"Left	Align"

				ToggleButton1.WordWrap	=	True

				ToggleButton1.Value	=	True

End	Sub

Sub	ToggleButton1_Click()

				If	ToggleButton1.Value	=	True	Then

								ToggleButton1.Caption	=	"Left	Align"

								OptionButton1.Alignment	=	0	'fmAlignmentLeft

								OptionButton2.Alignment	=	0	'fmAlignmentLeft

				Else

								ToggleButton1.Caption	=	"Right	Align"

								OptionButton1.Alignment	=	1	'fmAlignmentRight



								OptionButton2.Alignment	=	1	'fmAlignmentRight

				End	If

End	Sub

	 	



AutoSize	Property	Example
The	following	example	demonstrates	the	effects	of	the	AutoSize	property	with	a
single-line	TextBox	and	a	multiline	TextBox.	The	user	can	enter	text	into	either
of	the	TextBox	controls	and	turn	AutoSize	on	or	off	independently	of	the
contents	of	the	TextBox.	This	code	sample	also	uses	the	Text	property.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

Two	TextBox	controls	named	TextBox1	and	TextBox2.
A	ToggleButton	named	ToggleButton1.

Dim	ToggleButton1

Dim	TextBox1

Dim	TextBox2

Sub	Item_Open()

		Set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages("P.2").ToggleButton1

		Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").TextBox1

		Set	TextBox2	=	Item.GetInspector.ModifiedFormPages("P.2").TextBox2

		TextBox1.Text	=	"Single-line	TextBox.	Type	your	text	here."

				

		TextBox2.MultiLine	=	True

		TextBox2.Text	=	"Multi-line	TextBox.	Type	your	text	here.	Use	SHIFT+ENTER	to	start	a	new	line."

				

		ToggleButton1.Value	=	True

		ToggleButton1.Caption	=	"AutoSize	On"

		TextBox1.AutoSize	=	True

		TextBox2.AutoSize	=	True

End	Sub

Sub	ToggleButton1_Click()

		If	ToggleButton1.Value	=	True	Then

				ToggleButton1.Caption	=	"AutoSize	On"

				TextBox1.AutoSize	=	True

				TextBox2.AutoSize	=	True

		Else

				ToggleButton1.Caption	=	"AutoSize	Off"

				TextBox1.AutoSize	=	False

				TextBox2.AutoSize	=	False



		End	If

End	Sub

	 	



Bold,	Italic,	Size,	StrikeThrough,
Underline,	Weight	Properties
Example
The	following	example	demonstrates	a	Font	object	and	the	Bold,	Italic,	Size,
StrikeThrough,	Underline,	and	Weight	properties	related	to	fonts.	You	can
manipulate	font	properties	of	an	object	directly	or	by	using	an	alias,	as	this
example	also	shows.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	Label	named	Label1.
Four	ToggleButton	controls	named	ToggleButton1	through	ToggleButton4.
A	second	Label	and	a	TextBox	named	Label2	and	TextBox1.

Dim	MyFont	

Dim	ToggleButton1

Dim	ToggleButton2

Dim	ToggleButton3

Dim	ToggleButton4

Dim	Label1

Dim	Label2

Dim	TextBox1

Sub	Item_Open()

		Set	MyPage	=	Item.GetInspector.ModifiedFormPages("P.2")

		Set	ToggleButton1	=	MyPage.ToggleButton1

		Set	ToggleButton2	=	MyPage.ToggleButton2

		Set	ToggleButton3	=	MyPage.ToggleButton3	

		Set	ToggleButton4	=	MyPage.ToggleButton4

		Set	Label1	=	MyPage.Label1

		Set	Label2	=	MyPage.Label2

		Set	TextBox1	=	MyPage.TextBox1

		Set	MyFont	=	Label1.Font

				

		ToggleButton1.Value	=	True

		ToggleButton1.Caption	=	"Bold	On"



				

		Label1.AutoSize	=	True								'Set	size	of	Label1

		Label1.AutoSize	=	False

								

		ToggleButton2.Value	=	False

		ToggleButton2.Caption	=	"Italic	Off"

				

		ToggleButton3.Value	=	False

		ToggleButton3.Caption	=	"StrikeThrough	Off"

								

		ToggleButton4.Value	=	False

		ToggleButton4.Caption	=	"Underline	Off"

				

		Label2.Caption	=	"Font	Weight"

		TextBox1.Text	=	Label1.Font.Weight

		TextBox1.Enabled	=	False

End	Sub

Sub	ToggleButton1_Click()

		If	ToggleButton1.Value	=	True	Then

				MyFont.Bold	=	True												'Using	MyFont	alias	to	control	font

				ToggleButton1.Caption	=	"Bold	On"			

				MyFont.Size	=	22														'Increase	the	font	size

		Else

				MyFont.Bold	=	False

				ToggleButton1.Caption	=	"Bold	Off"

				MyFont.Size	=	8															'Return	font	size	to	initial	size

		End	If

			

		TextBox1.Text	=	CStr(MyFont.Weight)		'Bold	and	Weight	are	related

End	Sub

Sub	ToggleButton2_Click()

		If	ToggleButton2.Value	=	True	Then

				Label1.Font.Italic	=	True												'Using	Label1.Font	directly

				ToggleButton2.Caption	=	"Italic	On"

		Else

				Label1.Font.Italic	=	False

				ToggleButton2.Caption	=	"Italic	Off"

		End	If

End	Sub

Sub	ToggleButton3_Click()

		If	ToggleButton3.Value	=	True	Then

				Label1.Font.Strikethrough	=	True												'Using	Label1.Font	directly

				ToggleButton3.Caption	=	"StrikeThrough	On"

		Else

				Label1.Font.Strikethrough	=	False

				ToggleButton3.Caption	=	"StrikeThrough	Off"



		End	If

End	Sub

Sub	ToggleButton4_Click()

		If	ToggleButton4.Value	=	True	Then

				MyFont.Underline	=	True												'Using	MyFont	alias	for	Label1.Font

				ToggleButton4.Caption	=	"Underline	On"

		Else

				Label1.Font.Underline	=	False

				ToggleButton4.Caption	=	"Underline	Off"

		End	If

End	Sub

	 	



Border,	Color	Enhancements
Example
The	following	example	demonstrates	the	BorderStyle	and	SpecialEffect
properties,	showing	each	border	available	through	these	properties.	The	example
also	demonstrates	how	to	control	color	settings	by	using	the	BackColor,
BackStyle,	BorderColor,	and	ForeColor	properties.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

Six	TextBox	controls	named	TextBox1	through	TextBox6.
Two	ToggleButton	controls	named	ToggleButton1	and	ToggleButton2.

Dim	TextBox1

Dim	TextBox2

Dim	TextBox3

Dim	TextBox4

Dim	TextBox5

Dim	TextBox6

Dim	ToggleButton1

Dim	ToggleButton2

Sub	Item_Open()

Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").TextBox1

Set	TextBox2	=	Item.GetInspector.ModifiedFormPages("P.2").TextBox2

Set	TextBox3	=	Item.GetInspector.ModifiedFormPages("P.2").TextBox3

Set	TextBox4	=	Item.GetInspector.ModifiedFormPages("P.2").TextBox4

Set	TextBox5	=	Item.GetInspector.ModifiedFormPages("P.2").TextBox5

Set	TextBox6	=	Item.GetInspector.ModifiedFormPages("P.2").TextBox6

Set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages("P.2").ToggleButton1

Set	ToggleButton2	=	Item.GetInspector.ModifiedFormPages("P.2").ToggleButton2

'Initialize	each	TextBox	with	a	border	style	or	special	effect,

'and	foreground	and	background	colors

'TextBox1	initially	uses	a	borderstyle

TextBox1.Text	=	"BorderStyle-Single"

TextBox1.BorderStyle	=	1

TextBox1.BorderColor	=	RGB(255,	128,	128)			'Color	-	Salmon

TextBox1.ForeColor	=	RGB(255,	255,	0)							'Color	-	Yellow



TextBox1.BackColor	=	RGB(0,	128,	64)								'Color	-	Green	#2

'TextBoxes	2	through	6	initially	use	special	effects

TextBox2.Text	=	"Flat"

TextBox2.SpecialEffect	=	0

TextBox2.ForeColor	=	RGB(64,	0,	0)										'Color	-	Brown

TextBox2.BackColor	=	RGB(0,	0,	255)									'Color	-	Blue

'Ensure	the	background	style	for	TextBox2	is	initially	opaque.

TextBox2.BackStyle	=	1

TextBox3.Text	=	"Etched"

TextBox3.SpecialEffect	=	3

TextBox3.ForeColor	=	RGB(128,	0,	255)							'Color	-	Purple

TextBox3.BackColor	=	RGB(0,	255,	255)							'Color	-	Cyan

'Define	BorderColor	for	later	use	(when	borderstyle=fmBorderStyleSingle)

TextBox3.BorderColor	=	RGB(0,	0,	0)									'Color	-	Black

TextBox4.Text	=	"Bump"

TextBox4.SpecialEffect	=	6

TextBox4.ForeColor	=	RGB(255,	0,	255)							'Color	-	Magenta

TextBox4.BackColor	=	RGB(0,	0,	100)									'Color	-	Navy	blue

TextBox5.Text	=	"Raised"

TextBox5.SpecialEffect	=	1

TextBox5.ForeColor	=	RGB(255,	0,	0)									'Color	-	Red

TextBox5.BackColor	=	RGB(128,	128,	128)					'Color	-	Gray

TextBox6.Text	=	"Sunken"

TextBox6.SpecialEffect	=	2

TextBox6.ForeColor	=	RGB(0,	64,	0)										'Color	-	Olive

TextBox6.BackColor	=	RGB(0,	255,	0)									'Color	-	Green	#1

ToggleButton1.Caption	=	"Swap	styles"

ToggleButton2.Caption	=	"Transparent/Opaque	background"

End	Sub

Sub	ToggleButton1_Click()

'Swap	borders	between	TextBox1	and	TextBox3

If	ToggleButton1.Value	=	True	Then

				'Change	TextBox1	from	BorderStyle	to	Etched

				TextBox1.Text	=	"Etched"

				TextBox1.SpecialEffect	=	3

				

				'Change	TextBox3	from	Etched	to	BorderStyle

				TextBox3.Text	=	"BorderStyle-Single"

				TextBox3.BorderStyle	=	1

Else



				'Change	TextBox1	back	to	BorderStyle

				TextBox1.Text	=	"BorderStyle-Single"

				TextBox1.BorderStyle	=	1

				

				'Change	TextBox3	back	to	Etched

				TextBox3.Text	=	"Etched"

				TextBox3.SpecialEffect	=	3

End	If

End	Sub

				

Sub	ToggleButton2_Click()

'Set	background	to	Opaque	or	Transparent

If	ToggleButton2.Value	=	True	Then

				'Change	TextBox2	to	a	transparent	background

				TextBox2.BackStyle	=	0

Else

				'Change	TextBox2	back	to	opaque	background

				TextBox2.BackStyle	=	1

End	If

End	Sub

	 	



BoundColumn	Property	Example
The	following	example	demonstrates	how	the	BoundColumn	property
influences	the	value	of	a	ListBox.	The	user	can	choose	to	set	the	value	of	the
ListBox	to	the	index	value	of	the	specified	row,	or	to	a	specified	column	of	data
in	the	ListBox.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	ListBox	named	ListBox1.
A	Label	named	Label1.
Three	OptionButton	controls	named	OptionButton1,	OptionButton2,	and
OptionButton3.

Dim	Listbox1

Dim	OptionButton1

Dim	OptionButton2

Dim	OptionButton3

Dim	Label1

Sub	Item_Open

		Set	Listbox1	=	Item.GetInspector.ModifiedFormPages("P.2").Listbox1

		Set	OptionButton1	=	Item.GetInspector.ModifiedFormPages("P.2").OptionButton1

		Set	OptionButton2	=	Item.GetInspector.ModifiedFormPages("P.2").OptionButton2

		Set	OptionButton3	=	Item.GetInspector.ModifiedFormPages("P.2").OptionButton3

		Set	Label1	=	Item.GetInspector.ModifiedFormPages("P.2").Label1

		Listbox1.ColumnCount	=	2

		Listbox1.AddItem	"Item	1,	Column	1"

		Listbox1.List(0,	1)	=	"Item	1,	Column	2"

		Listbox1.AddItem	"Item	2,	Column	1"

		Listbox1.List(1,	1)	=	"Item	2,	Column	2"

		Listbox1.Value		=	"Item	1,	Column	1"

		OptionButton1.Caption	=	"List	Index"

		OptionButton2.Caption	=	"Column	1"

		OptionButton3.Caption	=	"Column	2"

		OptionButton2.Value	=	True

End	Sub

Sub	OptionButton1_Click



		Listbox1.BoundColumn	=	0

		Label1.Caption	=	Listbox1.Value

End	Sub

Sub	OptionButton2_Click

		Listbox1.BoundColumn	=	1

		Label1.Caption	=	Listbox1.Value

End	Sub

		

Sub	OptionButton3_Click

		Listbox1.BoundColumn	=	2

		Label1.Caption	=	Listbox1.Value

End	Sub

Sub	Listbox1_Click

		Label1.Caption	=	Listbox1.Value

End	Sub

	 	



ClientHeight,	ClientLeft,	ClientTop,
ClientWidth	Properties	Example
The	following	example	sets	the	dimensions	of	an	Image	to	the	size	of	a
TabStrip's	client	area	when	the	user	clicks	a	CommandButton.	This	code
sample	uses	the	following	properties:	Height,	Left,	Top,	Width,	ClientHeight,
ClientLeft,	ClientTop,	and	ClientWidth.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	CommandButton	named	CommandButton1.
A	TabStrip	named	TabStrip1.
An	Image	named	Image1.

Dim	CommandButton1

Dim	Image1

Dim	TabStrip1

Sub	Item_Open

		Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").CommandButton1

		Set	Image1	=	Item.GetInspector.ModifiedFormPages("P.2").Image1

		Set	TabStrip1	=	Item.GetInspector.ModifiedFormPages("P.2").TabStrip1

		CommandButton1.Caption	=	"Size	Image	to	Tab	Area"

		CommandButton1.WordWrap	=	True

		CommandButton1.AutoSize	=	True

End	Sub

Sub	CommandButton1_Click

		Image1.ZOrder	(fmFront)	'Place	Image	in	front	of	TabStrip

'Client	Left	and	ClientTop	are	measured	from	the	edge	of	the	TabStrip,

'not	from	the	edges	of	the	form	containing	the	TabStrip.

		Image1.Left	=	TabStrip1.Left	+	TabStrip1.ClientTop

		Image1.Top	=	TabStrip1.Top	+	TabStrip1.ClientTop

		Image1.Width	=	TabStrip1.ClientWidth

		Image1.Height	=	TabStrip1.ClientHeight

End	Sub

	 	



Column	Property	Example
The	following	example	loads	a	two-dimensional	array	with	data	and,	in	turn,
loads	two	ListBox	controls	using	the	Column	and	List	properties.	Note	that	the
Column	property	transposes	the	array	elements	during	loading.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains	two	ListBox	controls	named	ListBox1	and	ListBox2.

Dim	MyArray(6,3)

Sub	Item_Open()

				Dim	i	

				Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").ListBox1

				Set	ListBox2	=	Item.GetInspector.ModifiedFormPages("P.2").ListBox2

				ListBox1.ColumnCount	=	3								'The	1st	list	box	contains	3	data	columns

				ListBox2.ColumnCount	=	6								'The	2nd	box	contains	6	data	columns

				'Load	integer	values	into	first	column	of	MyArray

				For	i	=	0	To	5

								MyArray(i,	0)	=	i

				Next	

				'Load	columns	2	and	three	of	MyArray

				MyArray(0,	1)	=	"Zero"

				MyArray(1,	1)	=	"One"

				MyArray(2,	1)	=	"Two"

				MyArray(3,	1)	=	"Three"

				MyArray(4,	1)	=	"Four"

				MyArray(5,	1)	=	"Five"

				MyArray(0,	2)	=	"Zero"

				MyArray(1,	2)	=	"Un	ou	Une"

				MyArray(2,	2)	=	"Deux"

				MyArray(3,	2)	=	"Trois"

				MyArray(4,	2)	=	"Quatre"

				MyArray(5,	2)	=	"Cinq"

				'Load	data	into	ListBox1	and	ListBox2

				ListBox1.List()	=	MyArray

				ListBox2.Column()	=	MyArray



End	Sub

	 	



ColumnWidths	Property	Example
The	following	example	uses	the	ColumnWidths	property	to	change	the	column
widths	of	a	multicolumn	ListBox.	The	example	uses	three	TextBox	controls	to
specify	the	individual	column	widths	and	uses	the	Exit	event	to	specify	the	units
of	measure	of	each	TextBox.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	ListBox	named	ListBox1.
Three	custom	text	fields	named	Text1,	Text2,	and	Text3.
Three	TextBox	controls	named	TextBox1,	TextBox2,	and	TextBox3	that	are
bound	to	the	custom	text	fields	above.
A	CommandButton	named	CommandButton1.

Try	entering	the	value	0	to	hide	a	column.

Dim	MyArray(2,	3)	

Dim	ListBox1

Dim	TextBox1

Dim	TextBox2

Dim	TextBox3

Dim	CommandButton1

Sub	Item_Open()

Dim	i,	j,	Rows	

Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").ListBox1

Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").TextBox1

Set	TextBox2	=	Item.GetInspector.ModifiedFormPages("P.2").TextBox2

Set	TextBox3	=	Item.GetInspector.ModifiedFormPages("P.2").TextBox3

Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").CommandButton1

ListBox1.ColumnCount	=	3

Rows	=	2

For	j	=	0	To	ListBox1.ColumnCount	-	1

				For	i	=	0	To	Rows	-	1

								MyArray(i,	j)	=	"Row	"	&	i	&	",	Column	"	&	j

				Next	



Next	

				

ListBox1.List()	=	MyArray											'Load	MyArray	into	ListBox1

			

TextBox1.Text	=	"1	in"														'1-inch	columns	initially

TextBox2.Text	=	"1	in"

TextBox3.Text	=	"1	in"

End	Sub

Sub	CommandButton1_Click()

				'ColumnWidths	requires	a	value	for	each	column	separated	by	semicolons

				ListBox1.ColumnWidths	=	TextBox1.Text	&	";"	&	TextBox2.Text	&	";"	&	TextBox3.Text

End	Sub

				

Sub	Item_CustomPropertyChange(ByVal	Name)

msgbox	Name

Select	Case	Name

Case	"Text1"

		'ColumnWidths	accepts	points	(no	units),	inches	or	centimeters;	make	inches	the	default

				If	Not	(InStr(TextBox1.Text,	"in")	>	0	Or	InStr(TextBox1.Text,	"cm")	>	0)	Then

								TextBox1.Text	=	TextBox1.Text	&	"	in"

				End	If

Case	"Text2"

				'ColumnWidths	accepts	points	(no	units),	inches	or	centimeters;	make	inches	the	default

				If	Not	(InStr(TextBox2.Text,	"in")	>	0	Or	InStr(TextBox2.Text,	"cm")	>	0)	Then

								TextBox2.Text	=	TextBox2.Text	&	"	in"

				End	If

Case	"Text3"

				'ColumnWidths	accepts	points	(no	units),	inches	or	centimeters;	make	inches	the	default

				If	Not	(InStr(TextBox3.Text,	"in")	>	0	Or	InStr(TextBox3.Text,	"cm")	>	0)	Then

								TextBox3.Text	=	TextBox3.Text	&	"	in"

				End	If

End	Select

End	Sub

	 	



ControlTipText	Property	Example
The	following	example	defines	the	ControlTipText	property	for	three
CommandButton	controls	and	two	Page	objects	in	a	MultiPage.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	MultiPage	named	MultiPage1.
Three	CommandButton	controls	named	CommandButton1	through
CommandButton3.

Note		For	an	individual	Page	of	a	MultiPage,	ControlTipText	becomes	enabled
when	the	MultiPage	or	a	control	on	the	current	page	of	the	MultiPage	has	the
focus.

Sub	Item_Open()

		Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages("P.2").MultiPage1

		Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").CommandButton1

		Set	CommandButton2	=	Item.GetInspector.ModifiedFormPages("P.2").CommandButton2

		Set	CommandButton3	=	Item.GetInspector.ModifiedFormPages("P.2").CommandButton3

		

		MultiPage1.Page1.ControlTipText	=	"Here	in	page	1"

		MultiPage1.Page2.ControlTipText	=	"Now	in	page	2"

				

		CommandButton1.ControlTipText	=	"And	now	here's"

		CommandButton2.ControlTipText	=	"a	tip	from"

		CommandButton3.ControlTipText	=	"your	controls!"

End	Sub

	 	



Show	All



Count	Property	Example
The	following	example	displays	the	Count	property	of	the	Controls	collection
for	the	form,	and	the	Count	property	identifying	the	number	of	pages	and	tabs	of
each	MultiPage	and	TabStrip.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	The	form
can	contain	any	number	of	controls,	with	the	following	restrictions:

Names	of	MultiPage	controls	must	start	with	"MultiPage".
Names	of	TabStrip	controls	must	start	with	"TabStrip".

Note		You	can	add	pages	to	a	MultiPage	or	add	tabs	to	a	TabStrip	while	in
design	mode.	Double-click	on	the	control,	then	right	click	in	the	tab	area	of	the
control	and	choose	New	Page	from	the	shortcut	menu.

Sub	Item_Open

				Dim	Controls

				Dim	MyControl

				Set	Controls	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls

				MsgBox	"Controls.Count	=	"	&	Controls.Count

				For	i	=	0	to	Controls.Count	-1

								Set	MyControl	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls.Item(i)

								If	(MyControl.Name	=	"MultiPage1")	Then

												MsgBox	MyControl.Name	&	".Pages.Count	=	"	&	MyControl.Pages.Count

								ElseIf	(MyControl.Name	=	"TabStrip1")	Then

												MsgBox	MyControl.Name	&	".Tabs.Count	=	"	&	MyControl.Tabs.Count

								End	If

				Next

End	Sub

	 	



Cut	and	Paste	From	a	Page	Example
The	following	example	uses	the	Add,	Cut,	and	Paste	methods	to	cut	and	paste	a
control	from	a	Page	of	a	MultiPage.	The	control	involved	in	the	cut	and	paste
operations	is	dynamically	added	to	the	form.

This	example	assumes	the	user	will	add,	then	cut,	then	paste	the	new	control.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

Three	CommandButton	controls	named	CommandButton1	through
CommandButton3.
A	MultiPage	named	MultiPage1.

Dim	CommandButton1

Dim	CommandButton2

Dim	CommandButton3

Dim	MultiPage1

Dim	MyTextBox

Sub	CommandButton1_Click()

				Set	MyTextBox	=	MultiPage1.Pages(MultiPage1.Value).Controls.Add("Forms.TextBox.1",	"MyTextBox",	1)

				CommandButton2.Enabled	=	True

				CommandButton1.Enabled	=	False

End	Sub

Sub	CommandButton2_Click()

				MultiPage1.Pages(MultiPage1.Value).Controls.Cut

				CommandButton3.Enabled	=	True

				CommandButton2.Enabled	=	False

End	Sub

Sub	CommandButton3_Click()

				Dim	MyPage

				Set	MyPage	=	MultiPage1.Pages.Item(MultiPage1.Value)

				

				MyPage.Paste

				CommandButton3.Enabled	=	False

End	Sub

Sub	Item_Open()



				Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("CommandButton1")

				Set	CommandButton2	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("CommandButton2")

				Set	CommandButton3	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("CommandButton3")

				Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("MultiPage1")

				CommandButton1.Caption	=	"Add"

				CommandButton2.Caption	=	"Cut"

				CommandButton3.Caption	=	"Paste"

				

				CommandButton1.Enabled	=	True

				CommandButton2.Enabled	=	False

				CommandButton3.Enabled	=	False

End	Sub

	 	



Cut	and	Paste	From	a	TextBox
Example
The	following	example	uses	the	Cut	and	Paste	methods	to	cut	text	from	one
TextBox	and	paste	it	into	another	TextBox.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

Two	TextBox	controls	named	TextBox1	and	TextBox2.
A	CommandButton	named	CommandButton1.

Dim	TextBox1

Dim	TextBox2

Dim	CommandButton1

Sub	Item_Open()

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("TextBox1")

				Set	TextBox2	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("TextBox2")

				Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("CommandButton1")

				TextBox1.Text	=	"From	TextBox1!"

				TextBox2.Text	=	"Hello	"

				

				CommandButton1.Caption	=	"Cut	and	Paste"

				CommandButton1.AutoSize	=	True

End	Sub

Sub	CommandButton1_Click()

				TextBox2.SelStart	=	0

				TextBox2.SelLength	=	TextBox2.TextLength

				TextBox2.Cut

				TextBox1.SetFocus

				TextBox1.SelStart	=	0

				

				TextBox1.Paste

				TextBox2.SelStart	=	0

End	Sub

	 	



Cycle	Property	Example
The	following	example	defines	the	Cycle	property	for	a	Frame	and	two	Page
objects	in	a	MultiPage.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	Frame	named	Frame1.
A	MultiPage	named	MultiPage1	that	contains	two	objects	named	Page1
and	Page2.
Two	CommandButton	controls	named	CommandButton1	and
CommandButton2.

In	the	form,	the	Frame,	and	each	Page	of	the	MultiPage,	place	a	couple	of
controls,	so	you	can	see	how	Cycle	affects	the	tab	order	of	the	Frame	and
MultiPage.

The	user	should	tab	through	the	controls	to	observe	how	Cycle	affects	the	tab
order.	Pressing	CommandButton1	extends	the	tab	order	to	include	controls	in	the
Frame	and	Page	objects.	Pressing	CommandButton2	restricts	the	tab	order.

Dim	Frame1

Dim	MultiPage1

Sub	Item_Open()

		Set	Frame1	=	Item.GetInspector.ModifiedFormPages("P.2").Frame1

		Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages("P.2").MultiPage1

		RestrictCycles

End	Sub

Sub	RestrictCycles()

		'Limit	tab	order	for	the	Frame	and	Page	objects

		Frame1.Cycle	=	2

		MultiPage1.Page1.Cycle	=	2

		MultiPage1.Page2.Cycle	=	2

End	Sub

Sub	CommandButton1_Click()

		'Extend	tab	order	subforms	(the	Frame	and	Page	objects)

		Frame1.Cycle	=	0



		MultiPage1.Page1.Cycle	=	0

		MultiPage1.Page2.Cycle	=	0

End	Sub

Sub	CommandButton2_Click()

		RestrictCycles

End	Sub

	 	



DragBehavior,	EnterFieldBehavior
Properties	Example
The	following	example	uses	the	DragBehavior	and	EnterFieldBehavior
properties	to	demonstrate	the	different	effects	that	you	can	provide	when
entering	a	control	and	when	dragging	information	from	one	control	to	another.

The	sample	uses	two	TextBox	controls.	You	can	set	DragBehavior	and
EnterFieldBehavior	for	each	control	and	see	the	effects	of	dragging	from	one
control	to	another.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	TextBox	named	TextBox1.
Two	ToggleButton	controls	named	ToggleButton1	and	ToggleButton2.
These	controls	are	associated	with	TextBox1.
A	TextBox	named	TextBox2.
Two	ToggleButton	controls	named	ToggleButton3	and	ToggleButton4.
These	controls	are	associated	with	TextBox2.

Dim	TextBox1,	TextBox2

Dim	ToggleButton1,	ToggleButton2,	ToggleButton3,	ToggleButton4

Sub	Item_Open()

					set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

					set	TextBox2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox2")

					set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ToggleButton1")

					set	ToggleButton2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ToggleButton2")

					set	ToggleButton3	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ToggleButton3")

					set	ToggleButton4	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ToggleButton4")

				TextBox1.Text	=	"Once	upon	a	time	in	a	land	...,"

				ToggleButton1.Value	=	True

				ToggleButton1.Caption	=	"Drag	Enabled"

				ToggleButton1.WordWrap	=	True

				TextBox1.DragBehavior	=	1	'fmDragBehaviorEnabled

				ToggleButton2.Value	=	True



				ToggleButton2.Caption	=	"Recall	Selection"

				ToggleButton2.WordWrap	=	True

				TextBox1.EnterFieldBehavior	=	1	'fmEnterFieldBehaviorRecallSelection

				

				TextBox2.Text	=	"XXX,	YYYY"

				ToggleButton3.Value	=	False

				ToggleButton3.Caption	=	"Drag	Disabled"

				ToggleButton3.WordWrap	=	True

				TextBox2.DragBehavior	=	0	'fmDragBehaviorDisabled

				

				ToggleButton4.Value	=	False

				ToggleButton4.Caption	=	"Select	All"

				ToggleButton4.WordWrap	=	True

				TextBox2.EnterFieldBehavior	=	0	'fmEnterFieldBehaviorSelectAll

End	Sub

Sub	ToggleButton1_Click()

				If	ToggleButton1.Value	=	True	Then

							ToggleButton1.Caption	=	"Drag	Enabled"

							TextBox1.DragBehavior	=	1	'fmDragBehaviorEnabled

				Else

							ToggleButton1.Caption	=	"Drag	Disabled"

							TextBox1.DragBehavior	=	0	'fmDragBehaviorDisabled

				End	If

End	Sub

Sub	ToggleButton2_Click()

				If	ToggleButton2.Value	=	True	Then

								ToggleButton2.Caption	=	"Recall	Selection"

								TextBox1.EnterFieldBehavior	=	1	'fmEnterFieldBehaviorRecallSelection

				Else

								ToggleButton2.Caption	=	"Select	All"

								TextBox1.EnterFieldBehavior	=	0	'fmEnterFieldBehaviorSelectAll

				End	If

End	Sub

Sub	ToggleButton3_Click()

				If	ToggleButton3.Value	=	True	Then

							ToggleButton3.Caption	=	"Drag	Enabled"

							TextBox2.DragBehavior	=	1	'fmDragBehaviorEnabled

				Else

							ToggleButton3.Caption	=	"Drag	Disabled"

							TextBox2.DragBehavior	=	0	'fmDragBehaviorDisabled

				End	If

End	Sub

Sub	ToggleButton4_Click()

				If	ToggleButton4.Value	=	True	Then

								ToggleButton4.Caption	=	"Recall	Selection"

								TextBox2.EnterFieldBehavior	=	1	'fmEnterFieldBehaviorRecallSelection



				Else

							ToggleButton4.Caption	=	"Select	All"

							TextBox2.EnterFieldBehavior	=	0	'fmEnterFieldBehaviorSelectAll

				End	If

End	Sub

	 	



DropButtonStyle,
ShowDropButtonWhen	Properties
Example
The	following	example	demonstrates	the	different	symbols	that	you	can	specify
for	a	drop-down	arrow	in	a	ComboBox	or	TextBox.	In	this	example,	the	user
chooses	a	drop-down	arrow	style	from	a	ComboBox.	This	example	also	uses	the
Locked	property.	To	use	this	example,	copy	this	sample	code	to	the	Script	Editor
of	a	form.	Make	sure	that	the	form	contains:

A	ComboBox	named	ComboBox1.
A	Label	named	Label1.
A	TextBox	named	TextBox1	placed	beneath	Label1.

Dim	TextBox1

Dim	ComboBox1

Dim	Label1

Sub	ComboBox1_Click()

				ComboBox1.DropButtonStyle	=	ComboBox1.Value

				TextBox1.DropButtonStyle	=	ComboBox1.Value

End	Sub

Sub	Item_Open()

					Set	TextBox1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("TextBox1")

					Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("ComboBox1")

					Set	Label1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("Label1")

				ComboBox1.ColumnCount	=	2

				ComboBox1.BoundColumn	=	2

				ComboBox1.TextColumn	=	1

				

				ComboBox1.AddItem	"Blank	Button"

				ComboBox1.List(0,	1)	=	0

				ComboBox1.AddItem	"Down	Arrow"

				ComboBox1.List(1,	1)	=	1

				ComboBox1.AddItem	"Ellipsis"

				ComboBox1.List(2,	1)	=	2

				ComboBox1.AddItem	"Underscore"

				ComboBox1.List(3,	1)	=	3



				

				ComboBox1.Value	=	0

				

				TextBox1.Text	=	"TextBox1"

				TextBox1.ShowDropButtonWhen	=	2	'fmShowDropButtonWhenAlways

				TextBox1.Locked	=	True

				

				Label1.Caption	=	"TheDropButton	also	applies	to	a	TextBox."

				Label1.AutoSize	=	True

				Label1.WordWrap	=	False

End	Sub

	 	



DropDown	Method	Example
The	following	example	uses	the	DropDown	method	to	display	the	list	in	a
ComboBox.	The	user	can	display	the	list	of	a	ComboBox	by	clicking	the
CommandButton.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	ComboBox	named	ComboBox1.
A	CommandButton	named	CommandButton1.

Dim	ComboBox1

Sub	CommandButton1_Click()

				ComboBox1.DropDown

End	Sub

Sub	Item_Open()

					Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("ComboBox1")

				ComboBox1.AddItem	"Turkey"

				ComboBox1.AddItem	"Chicken"

				ComboBox1.AddItem	"Duck"

				ComboBox1.AddItem	"Goose"

				ComboBox1.AddItem	"Grouse"

End	Sub

	 	



Enabled,	Locked	Properties	Example
The	following	example	demonstrates	the	Enabled	and	Locked	properties	and
how	they	complement	each	other.	This	example	exposes	each	property
independently	with	a	CheckBox,	so	you	observe	the	settings	individually	and
combined.	This	example	also	includes	a	second	TextBox	so	you	can	copy	and
paste	information	between	the	TextBox	controls	and	verify	the	activities
supported	by	the	settings	of	these	properties.

Note		You	can	copy	the	selection	to	the	Clipboard	using	CTRL+C	and	paste
using	CTRL+V.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	Make
sure	that	the	form	contains:

A	TextBox	named	TextBox1.
Two	CheckBox	controls	named	CheckBox1	and	CheckBox2.
A	second	TextBox	named	TextBox2.

Dim	TextBox1

Dim	TextBox2

Dim	CheckBox1

Dim	CheckBox2

Sub	CheckBox1_Click()

				TextBox2.Text	=	"TextBox2"

				TextBox1.Enabled	=	CheckBox1.Value

End	Sub

Sub	CheckBox2_Click()

				TextBox2.Text	=	"TextBox2"

				TextBox1.Locked	=	CheckBox2.Value

End	Sub

Sub	Item_Open()

					Set	TextBox1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("TextBox1")

					Set	TextBox2	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("TextBox2")

					Set	CheckBox1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("CheckBox1")

					Set	CheckBox2	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("CheckBox2")

				TextBox1.Text	=	"TextBox1"

				TextBox1.Enabled	=	True



				TextBox1.Locked	=	False

				

				CheckBox1.Caption	=	"Enabled"

				CheckBox1.Value	=	True

				

				CheckBox2.Caption	=	"Locked"

				CheckBox2.Value	=	False

				

				TextBox2.Text	=	"TextBox2"

End	Sub

	 	



EnterKeyBehavior	Property	Example
The	following	example	uses	the	EnterKeyBehavior	property	to	control	the
effect	of	ENTER	in	a	TextBox.	In	this	example,	the	user	can	specify	either	a
single-line	or	multiline	TextBox.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	TextBox	named	TextBox1.
Two	ToggleButton	controls	named	ToggleButton1	and	ToggleButton2.

Dim	TextBox1

Dim	ToggleButton1

Dim	ToggleButton2

Sub	Item_Open()

				set	TextBox1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("TextBox1")

				set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("ToggleButton1")

				set	ToggleButton2	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("ToggleButton2")

				TextBox1.EnterKeyBehavior	=	True

				ToggleButton1.Caption	=	"EnterKeyBehavior	is	True"

				ToggleButton1.Width	=	70

				ToggleButton1.Value	=	True

				

				TextBox1.MultiLine	=	True

				ToggleButton2.Caption	=	"MultiLine	is	True"

				ToggleButton2.Width	=	70

				ToggleButton2.Value	=	True

				

				TextBox1.Height	=	100

				TextBox1.WordWrap	=	True

				TextBox1.Text	=	"Type	your	text	here.	If	EnterKeyBehavior	is	True,"&	_

				"	press	Enter	to	start	a	new	line.	Otherwise,	press	SHIFT+ENTER."

End	Sub

Sub	ToggleButton1_Click()

				If	ToggleButton1.Value	=	True	Then

								TextBox1.EnterKeyBehavior	=	True

								ToggleButton1.Caption	=	"EnterKeyBehavior	is	True"

				Else

								TextBox1.EnterKeyBehavior	=	False



								ToggleButton1.Caption	=	"EnterKeyBehavior	is	False"

				End	If

End	Sub

Sub	ToggleButton2_Click()

				If	ToggleButton2.Value	=	True	Then

								TextBox1.MultiLine	=	True

								ToggleButton2.Caption	=	"MultiLine	TextBox"

				Else

								TextBox1.MultiLine	=	False

								ToggleButton2.Caption	=	"Single-line	TextBox"

				End	If

End	Sub

	 	



GroupName	Property	Example
The	following	example	uses	the	GroupName	property	to	create	two	groups	of
OptionButton	controls	on	the	same	form.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains	five	OptionButton	controls	named	OptionButton1
through	OptionButton5.

Sub	Item_Open()

				set	OptionButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton1")

				set	OptionButton2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton2")

				set	OptionButton3	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton3")

				set	OptionButton4	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton4")

				set	OptionButton5	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton5")

				OptionButton1.Caption	=	"Widgets"

				OptionButton2.Caption	=	"Widgets"

				OptionButton3.Caption	=	"Widgets"

				OptionButton1.GroupName	=	"Widgets"

				OptionButton2.GroupName	=	"Widgets"

				OptionButton3.GroupName	=	"Widgets"

				OptionButton4.Caption	=	"Gadgets-Group2"

				OptionButton5.Caption	=	"Gadgets-Group2"

				OptionButton4.GroupName	=	"Gadgets-Group2"

				OptionButton5.GroupName	=	"Gadgets-Group2"

End	Sub

	 	



Index	Property	Example
The	following	example	uses	the	Index	property	to	change	the	order	of	the	pages
and	tabs	in	a	MultiPage	and	TabStrip.	The	user	chooses	CommandButton1	to
move	the	third	page	and	tab	to	the	front	of	the	MultiPage	and	TabStrip.	The
user	chooses	CommandButton2	to	move	the	selected	page	and	tab	to	the	back	of
the	MultiPage	and	TabStrip.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	Make
sure	that	the	form	contains:

Two	CommandButton	controls	named	CommandButton1	and
CommandButton2.
A	MultiPage	named	MultiPage1.
A	TabStrip	named	TabStrip1.

Dim	MyPageOrTab

Dim	MultiPage1

Dim	TabStrip1

Sub	CommandButton1_Click()

'Move	third	page	and	tab	to	front	of	control

				MultiPage1.page3.Index	=	0

				TabStrip1.Tab3.Index	=	0

End	Sub

Sub	CommandButton2_Click()

'Move	selected	page	and	tab	to	back	of	control

				Set	MyPageOrObject	=	MultiPage1.SelectedItem

				MsgBox	"MultiPage1.SelectedItem	=	"	&	MultiPage1.SelectedItem.Name

				MyPageOrObject.Index	=	4

				Set	MyPageOrObject	=	TabStrip1.SelectedItem

				MsgBox	"TabStrip1.SelectedItem	=	"	&	TabStrip1.SelectedItem.Caption

				MyPageOrObject.Index	=	4

End	Sub

Sub	Item_Open()

					Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("MultiPage1")

					Set	TabStrip1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("TabStrip1")

					Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("CommandButton1")

					Set	CommandButton2	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("CommandButton2")



				MultiPage1.Width	=	200

				MultiPage1.Pages.Add

				MultiPage1.Pages.Add

				MultiPage1.Pages.Add

				

				TabStrip1.Width	=	200

				TabStrip1.Tabs.Add

				TabStrip1.Tabs.Add

				TabStrip1.Tabs.Add

				

				CommandButton1.Caption	=	"Move	third	page/tab	to	front"

				CommandButton1.Width	=	120

				

				CommandButton2.Caption	=	"Move	selected	item	to	back"

				CommandButton2.Width	=	120

	End	Sub

	 	



InsideHeight,	InsideWidth	Properties
Example
The	following	example	uses	the	InsideHeight	and	InsideWidth	properties	to
resize	a	CommandButton.	The	user	clicks	the	CommandButton	to	resize	it.

Note		InsideHeight	and	InsideWidth	are	read-only	properties.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	CommandButton	named	CommandButton1.

Dim	Resize	

Sub	Item_Open()

				Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CommandButton1")

				Resize	=	0.75

				CommandButton1.Caption	=	"Resize	Button"

				

End	Sub

Sub	CommandButton1_Click()

				Set	Form	=	Item.GetInspector.ModifiedFormPages("P.2")

				Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CommandButton1")

				CommandButton1.Move	10,	10,	Form.InsideWidth	*	Resize,	Form.InsideHeight	*	Resize

				CommandButton1.Caption	=	"Button	resized	using	InsideHeight	and	InsideWidth!"

End	Sub

	 	



Item	Method	Example
The	following	example	uses	the	Item	method	to	access	individual	members	of
the	Controls	and	Pages	collections.	The	user	chooses	an	option	button	for	either
the	Controls	collection	or	the	MultiPage,	and	then	clicks	the
CommandButton.	The	name	of	the	appropriate	control	is	returned	in	the	Label.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	CommandButton	named	CommandButton1.
A	Label	named	Label1.
Two	OptionButton	controls	named	OptionButton1	and	OptionButton2.
A	MultiPage	named	MultiPage1.

Dim	ControlsIndex

Sub	CommandButton1_Click()

				Set	Controls	=	Item.GetInspector.ModifiedFormPages("P.2").Controls

				Set	OptionButton1	=	Controls("OptionButton1")

				Set	OptionButton2	=	Controls("OptionButton2")

				Set	Label1	=	Controls("Label1")

				Set	MultiPage1	=	Controls("MultiPage1")

				

				If	OptionButton1.Value	=	True	Then

								'Process	Controls	collection	for	UserForm

								Set	MyControl	=	Controls.Item(ControlsIndex)

								Label1.Caption	=	MyControl.Name

								

								'Prepare	index	for	next	control	on	Userform

								ControlsIndex	=	ControlsIndex	+	1

								If	ControlsIndex	>=	Controls.Count	Then

												ControlsIndex	=	0

								End	If

				

				ElseIf	OptionButton2.Value	=	True	Then

								'Process	Current	Page	of	Pages	collection

								Set	MyControl	=	MultiPage1.Pages.Item(MultiPage1.Value)

								Label1.Caption	=	MyControl.Name

				End	If

End	Sub



Sub	Item_Open()

				ControlsIndex	=	0

				Set	OptionButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton1")

				Set	OptionButton2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton2")

				Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CommandButton1")

				

				OptionButton1.Caption	=	"Controls	Collection"

				OptionButton2.Caption	=	"Pages	Collection"

				OptionButton1.Value	=	True

				

				CommandButton1.Caption	=	"Get	Member	Name"

End	Sub

	 	



LargeChange,	SmallChange
Properties	Example
The	following	example	demonstrates	the	LargeChange	and	SmallChange
properties	when	used	with	a	stand-alone	ScrollBar.	The	user	can	set	the
LargeChange	and	SmallChange	values	to	any	integer	in	the	range	of	0	to	100.
This	example	also	uses	the	MaxLength	property	to	restrict	the	number	of
characters	entered	for	the	LargeChange	and	SmallChange	values.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	Label	named	Label1
A	TextBox	named	TextBox1	that	is	bound	to	the	custom	number	field
named	ScrollBarSmallChange
A	Label	named	Label2
A	TextBox	named	TextBox2	that	is	bound	to	the	custom	number	field
named	ScrollBarLargeChange.
A	ScrollBar	named	ScrollBar1	that	is	bound	to	the	custom	number	field
named	ScrollBarValue.
A	Label	named	Label3.

Sub	Item_Open()

				Set	Label1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label1")

				Set	ScrollBar1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ScrollBar1")

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				Set	Label2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label2")

				Set	TextBox2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox2")

				Set	Label3	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label3")

				ScrollBar1.Min	=	-1000

				ScrollBar1.Max	=	1000

				

				Label1.Caption	=	"SmallChange	0	to	100"

				ScrollBar1.SmallChange	=	1

				TextBox1.Text	=	ScrollBar1.SmallChange

				TextBox1.MaxLength	=	3

				



				Label2.Caption	=	"LargeChange	0	to	100"

				ScrollBar1.LargeChange	=	100

				TextBox2.Text	=	ScrollBar1.LargeChange

				TextBox2.MaxLength	=	3

				

				ScrollBar1.Value	=	0

				Label3.Caption	=	ScrollBar1.Value

End	Sub

Sub	Item_CustomPropertyChange(byval	pname)

				Set	ScrollBar1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ScrollBar1")

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				Set	TextBox2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox2")

				Set	Label3	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label3")

				If	pname	=	"ScrollBarMin"	Then

								If	IsNumeric(TextBox1.Text)	Then

												TempNum	=	CInt(TextBox1.Text)

												If	TempNum	>=	0	And	TempNum	<=	100	Then

																ScrollBar1.SmallChange	=	TempNum

												Else

																TextBox1.Text	=	ScrollBar1.SmallChange

												End	If

								Else

												TextBox1.Text	=	ScrollBar1.SmallChange

								End	If

				ElseIf	pname	=	"ScrollBarMax"	Then

								If	IsNumeric(TextBox2.Text)	Then

												TempNum	=	CInt(TextBox2.Text)

												If	TempNum	>=	0	And	TempNum	<=	100	Then

																ScrollBar1.LargeChange	=	TempNum

												Else

																TextBox2.Text	=	ScrollBar1.LargeChange

												End	If

								Else

												TextBox2.Text	=	ScrollBar1.LargeChange

								End	If

				ElseIf	pname	=	"ScrollBarValue"	Then

								Label3.Caption	=	ScrollBar1.Value

				End	If

End	Sub

	 	



LineCount,	TextLength	Properties
Example
The	following	example	counts	the	characters	and	the	number	of	lines	of	text	in	a
TextBox	by	using	the	LineCount	and	TextLength	properties,	and	the	SetFocus
method.	In	this	example,	the	user	can	type	into	a	TextBox,	and	can	retrieve
current	values	of	the	LineCount	and	TextLength	properties.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains	the	following	controls:

A	TextBox	named	TextBox1.
A	CommandButton	named	CommandButton1.
Two	Label	controls	named	Label1	and	Label2.

'Type	SHIFT+ENTER	to	start	a	new	line	in	the	text	box.

Dim	CommandButton1

Dim	TextBox1

Dim	Label1

Dim	Label2

Sub	CommandButton1_Click()

				'Must	first	give	TextBox1	the	focus	to	get	line	count

				TextBox1.SetFocus

				Label1.Caption	=	"LineCount	=	"	&	TextBox1.LineCount

				Label2.Caption	=	"TextLength	=	"	&	TextBox1.TextLength

End	Sub

Sub	Item_Open()

					Set	TextBox1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("TextBox1")

					Set	Label1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("Label1")

					Set	Label2	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("Label2")

					Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("CommandButton1")

				CommandButton1.WordWrap	=	True

				CommandButton1.AutoSize	=	True

				CommandButton1.Caption	=	"Get	Counts"

				Label1.Caption	=	"LineCount	=	"



				Label2.Caption	=	"TextLength	=	"

				TextBox1.MultiLine	=	True

				TextBox1.WordWrap	=	True

				TextBox1.Text	=	"Enter	your	text	here."

End	Sub

	 	



List	Property	Example
The	following	example	swaps	columns	of	a	multicolumn	ListBox.	The	sample
uses	the	List	property	in	two	ways:

1.	 To	access	and	exchange	individual	values	in	the	ListBox.	In	this	usage,	List
has	subscripts	to	designate	the	row	and	column	of	a	specified	value.

2.	 To	initially	load	the	ListBox	with	values	from	an	array.	In	this	usage,	List
has	no	subscripts.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains	a	ListBox	named	ListBox1	and	a	CommandButton
named	CommandButton1.

Dim	Listbox1

Dim	MyArray(6,	3)

Sub	Item_Open

		Dim	i

		Set	Listbox1	=	Item.GetInspector.ModifiedFormPages("P.2").Listbox1

		

		Listbox1.ColumnCount	=	3

		For	i	=	0	to	5

				MyArray(i,	0)	=	i

				MyArray(i,	1)	=	Rnd

				MyArray(i,	2)	=	Rnd

		Next

		Listbox1.List()	=	MyArray

End	Sub

Sub	CommandButton1_Click

		Dim	i

		Dim	Temp

		

		For	i	=	0	to	5

				Temp	=	Listbox1.List(i,	0)

				Listbox1.List(i,	0)	=	Listbox1.List(i,	2)

				Listbox1.List(i,	2)	=	Temp

		Next

End	Sub

	 	



ListBox	Control	Example
The	following	example	adds	and	deletes	the	contents	of	a	ListBox	using	the
AddItem,	RemoveItem,	and	SetFocus	methods,	and	the	ListIndex	and
ListCount	properties.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	ListBox	named	ListBox1.
Two	CommandButton	controls	named	CommandButton1	and
CommandButton2.

Dim	EntryCount	

Dim	Listbox1

Sub	Item_Open()

		Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").ListBox1

		Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").CommandButton1

		Set	CommandButton2	=	Item.GetInspector.ModifiedFormPages("P.2").CommandButton2

		EntryCount	=	0

		CommandButton1.Caption	=	"Add	Item"

		CommandButton2.Caption	=	"Remove	Item"

End	Sub

Sub	CommandButton1_Click()

		EntryCount	=	EntryCount	+	1

		ListBox1.AddItem	(EntryCount	&	"	-	Selection")

End	Sub

				

Sub	CommandButton2_Click()

		ListBox1.SetFocus

		'Ensure	ListBox	contains	list	items

		If	ListBox1.ListCount	>=	1	Then

						'If	no	selection,	choose	last	list	item.

						If	ListBox1.ListIndex	=	-1	Then

										ListBox1.ListIndex	=	ListBox1.ListCount	-	1

						End	If

						ListBox1.RemoveItem	(ListBox1.ListIndex)

		End	If



End	Sub

	 	



ListRows	Property	Example
The	following	example	uses	a	SpinButton	to	control	the	number	of	rows	in	the
drop-down	list	of	a	ComboBox.	The	user	changes	the	value	of	the	SpinButton,
then	clicks	on	the	drop-down	arrow	of	the	ComboBox	to	display	the	list.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	ComboBox	named	ComboBox1.
A	SpinButton	named	SpinButton1	that	is	bound	to	a	custom	number	field
named	SpinButtonValue.
A	Label	named	Label1.

Sub	Item_Open()

				Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ComboBox1")

				Set	SpinButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("SpinButton1")

				Set	Label1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label1")

				For	i	=	1	To	20

								ComboBox1.AddItem	"Choice	"	&	(ComboBox1.ListCount	+	1)

				Next	

				

				SpinButton1.Min	=	0

				SpinButton1.Max	=	12

				SpinButton1.Value	=	ComboBox1.ListRows

				Label1.Caption	=	"ListRows	=	"	&	SpinButton1.Value

End	Sub

Sub	Item_CustomPropertyChange(byval	pname)

				If	pname	=	"SpinButtonValue"	Then

								Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ComboBox1")

								Set	SpinButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("SpinButton1")

								Set	Label1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label1")

												ComboBox1.ListRows	=	SpinButton1.Value

								Label1.Caption	=	"ListRows	=	"	&	SpinButton1.Value

				End	If

End	Sub

	 	



ListStyle,	MultiSelect	Properties
Example
The	following	example	uses	the	ListStyle	and	MultiSelect	properties	to	control
the	appearance	of	a	ListBox.	The	user	chooses	a	value	for	ListStyle	using	the
ToggleButton	and	chooses	an	OptionButton	for	one	of	the	MultiSelect	values.
The	appearance	of	the	ListBox	changes	accordingly,	as	well	as	the	selection
behavior	within	the	ListBox.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	ListBox	named	ListBox1.
A	Label	named	Label1.
Three	OptionButton	controls	named	OptionButton1	through
OptionButton3.
A	ToggleButton	named	ToggleButton1.

Sub	Item_Open()

				Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ListBox1")

				Set	Label1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label1")

				Set	OptionButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton1")

				Set	OptionButton2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton2")

				Set	OptionButton3	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton3")

				Set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ToggleButton1")

				For	i	=	1	To	8

								ListBox1.AddItem	"Choice"	&	(ListBox1.ListCount	+	1)

				Next

				

				Label1.Caption	=	"MultiSelect	Choices"

				Label1.AutoSize	=	True

				

				ListBox1.MultiSelect	=	0								'0=fmMultiSelectSingle

				OptionButton1.Caption	=	"Single	entry"

				OptionButton1.Value	=	True

				OptionButton2.Caption	=	"Multiple	entries"

				OptionButton3.Caption	=	"Extended	entries"

				



				ToggleButton1.Caption	=	"ListStyle	-	Plain"

				ToggleButton1.Value	=	True

				ToggleButton1.Width	=	90

				ToggleButton1.Height	=	30

End	Sub

Sub	OptionButton1_Click()

				Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ListBox1")

				ListBox1.MultiSelect	=	0								'0=fmMultiSelectSingle

End	Sub

Sub	OptionButton2_Click()

				Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ListBox1")

				ListBox1.MultiSelect	=	1								'1=fmMultiSelectMulti

End	Sub

Sub	OptionButton3_Click()

				Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ListBox1")

				ListBox1.MultiSelect	=	2								'2=fmMultiSelectExtended

End	Sub

Sub	ToggleButton1_Click()

				Set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ToggleButton1")

				Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ListBox1")

				If	ToggleButton1.Value	=	True	Then

								ToggleButton1.Caption	=	"Plain	ListStyle"

								ListBox1.ListStyle	=	0				'0=fmListStylePlain

				Else

								ToggleButton1.Caption	=	"OptionButton	or	CheckBox"

								ListBox1.ListStyle	=	1				'1=fmListStyleOption

				End	If

End	Sub

	 	



ListWidth	Property	Example
The	following	example	uses	a	SpinButton	to	control	the	width	of	the	drop-down
list	of	a	ComboBox.	The	user	changes	the	value	of	the	SpinButton,	then	clicks
on	the	drop-down	arrow	of	the	ComboBox	to	display	the	list.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	ComboBox	named	ComboBox1.
A	SpinButton	named	SpinButton1	that	is	bound	to	a	custom	number	field
named	SpinButtonValue.
A	Label	named	Label1.

Sub	Item_Open()

				Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ComboBox1")

				Set	SpinButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("SpinButton1")

				Set	Label1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label1")

				For	i	=	1	To	20

								ComboBox1.AddItem	"Choice	"	&	(ComboBox1.ListCount	+	1)

				Next

				SpinButton1.Min	=	0

				SpinButton1.Max	=	130

				'convert	listwidth	value	from	'122	pt'	to	an	integer

				intpos	=	instr(combobox1.listwidth,"	")

				intwidth	=	left(combobox1.listwidth,intpos-1)

				SpinButton1.Value	=	intwidth

				SpinButton1.SmallChange	=	5

				Label1.Caption	=	"ListWidth	=	"	&	SpinButton1.Value

End	Sub

Sub	Item_CustomPropertyChange(byval	pname)

				If	pname	=	"SpinButtonValue"	Then

								Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ComboBox1")

								Set	SpinButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("SpinButton1")

								Set	Label1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label1")

				ComboBox1.ListWidth	=	SpinButton1.Value

				Label1.Caption	=	"ListWidth	=	"	&	SpinButton1.Value

				End	If



End	Sub

	 	



MatchEntry	Property	Example
The	following	example	uses	the	MatchEntry	property	to	demonstrate	character
matching	that	is	available	for	ComboBox	and	ListBox.	In	this	example,	the	user
can	set	the	type	of	matching	with	the	OptionButton	controls	and	then	type	into
the	ComboBox	to	specify	an	item	from	its	list.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

Three	OptionButton	controls	named	OptionButton1	through
OptionButton3.
A	ComboBox	named	ComboBox1.

Sub	OptionButton1_Click()

				Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ComboBox1")

				ComboBox1.MatchEntry	=	2								'2=fmMatchEntryNone

End	Sub

Sub	OptionButton2_Click()

				Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ComboBox1")

				ComboBox1.MatchEntry	=	0								'0=fmMatchEntryFirstLetter

End	Sub

Sub	OptionButton3_Click()

				Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ComboBox1")

								ComboBox1.MatchEntry	=	1				'1=fmMatchEntryComplete

End	Sub

Sub	Item_Open()

				Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ComboBox1")

				Set	OptionButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton1")

				Set	OptionButton2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton2")

				Set	OptionButton3	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton3")

				

				For	i	=	1	To	9

								ComboBox1.AddItem	"Choice	"	&	i

				Next	

				ComboBox1.AddItem	"Chocoholic"

			

				OptionButton1.Caption	=	"No	matching"

				OptionButton1.Value	=	True



				

				OptionButton2.Caption	=	"Basic	matching"

				OptionButton3.Caption	=	"Extended	matching"

End	Sub

	 	



MatchFound,	MatchRequired
Properties	Example
The	following	example	uses	the	MatchFound	and	MatchRequired	properties
to	demonstrate	additional	character	matching	for	ComboBox.	The	matching
verification	occurs	in	the	Change	event.

In	this	example,	the	user	specifies	whether	the	text	portion	of	a	ComboBox	must
match	one	of	the	listed	items	in	the	ComboBox.	The	user	can	specify	whether
matching	is	required	by	using	a	CheckBox	and	then	type	into	the	ComboBox	to
specify	an	item	from	its	list.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	ComboBox	named	ComboBox1	that	is	bound	to	the	Subject	field.
A	CheckBox	named	CheckBox1.

Sub	CheckBox1_Click()

				Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ComboBox1")

				Set	CheckBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CheckBox1")

				If	CheckBox1.Value	=	True	Then

								ComboBox1.MatchRequired	=	True

								MsgBox	"To	move	the	focus	from	the	ComboBox,	you	must	match	an	entry	in	the	list	or	press	ESC."

				Else

								ComboBox1.MatchRequired	=	False

								MsgBox	"	To	move	the	focus	from	the	ComboBox,	just	tab	to	or	click	another	control.	Matching	is	optional."

				End	If

End	Sub

Sub	Item_PropertyChange(byval	pname)

				if	pname	=	"Subject"	then

								Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ComboBox1")

								If	ComboBox1.MatchRequired	=	True	Then

								'MSForms	handles	this	case	automatically

								Else

												If	ComboBox1.MatchFound	=	True	Then

																MsgBox	"Match	Found;	matching	optional."



												Else

																MsgBox	"Match	not	Found;	matching	optional."

												End	If

								End	If

				end	if

End	Sub

Sub	Item_Open()

				Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ComboBox1")

				Set	CheckBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CheckBox1")

				For	i	=	1	To	9

												ComboBox1.AddItem	"Choice	"	&	i

				Next	

				ComboBox1.AddItem	"Chocoholic"

				CheckBox1.Caption	=	"MatchRequired"

				CheckBox1.Value	=	True

End	Sub

	 	



Max,	Min,	MaxLength	Properties
Example
The	following	example	demonstrates	the	Max	and	Min	properties	when	used
with	a	stand-alone	ScrollBar.	The	user	can	set	the	Max	and	Min	values	to	any
integer	in	the	range	of	–1000	to	1000.	This	example	also	uses	the	MaxLength
property	to	restrict	the	number	of	characters	entered	for	the	Max	and	Min
values.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	Label	named	Label1
A	TextBox	named	TextBox1	that	is	bound	to	the	custom	number	field
named	ScrollBarMin.
A	Label	named	Label2
A	TextBox	named	TextBox2	that	is	bound	to	the	custom	number	field
named	ScrollBarMax.
A	ScrollBar	named	ScrollBar1	that	is	bound	to	the	custom	number	field
named	ScrollBarValue.
A	Label	named	Label3.

Sub	Item_Open()

				Set	Label1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label1")

				Set	ScrollBar1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ScrollBar1")

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				Set	Label2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label2")

				Set	TextBox2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox2")

				Set	Label3	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label3")

				Label1.Caption	=	"Min	-1000	to	1000"

				ScrollBar1.Min	=	-1000

				TextBox1.Text	=	ScrollBar1.Min

				TextBox1.MaxLength	=	5

				

				Label2.Caption	=	"Max	-1000	to	1000"

				ScrollBar1.Max	=	1000

				TextBox2.Text	=	ScrollBar1.Max



				TextBox2.MaxLength	=	5

				

				ScrollBar1.SmallChange	=	1

				ScrollBar1.LargeChange	=	100

				ScrollBar1.Value	=	0

				Label3.Caption	=	ScrollBar1.Value

End	Sub

Sub	Item_CustomPropertyChange(byval	pname)

				Set	ScrollBar1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ScrollBar1")

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				Set	TextBox2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox2")

				Set	Label3	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label3")

				If	pname	=	"ScrollBarMin"	Then

								If	IsNumeric(TextBox1.Text)	Then

																TempNum	=	CInt(TextBox1.Text)

												If	TempNum	>=	-1000	And	TempNum	<=	1000	Then

																				ScrollBar1.Min	=	TempNum

																Else

																				TextBox1.Text	=	ScrollBar1.Min

												End	If

												Else

																TextBox1.Text	=	ScrollBar1.Min

								End	If

				ElseIf	pname	=	"ScrollBarMax"	Then

								If	IsNumeric(TextBox2.Text)	Then

																TempNum	=	CInt(TextBox2.Text)

																If	TempNum	>=	-1000	And	TempNum	<=	1000	Then

																				ScrollBar1.Max	=	TempNum

												Else

																				TextBox2.Text	=	ScrollBar1.Max

																End	If

								Else

																TextBox2.Text	=	ScrollBar1.Max

								End	If

				ElseIf	pname	=	"ScrollBarValue"	Then

								Label3.Caption	=	ScrollBar1.Value

				End	If

End	Sub

	 	



MouseIcon,	MousePointer	Properties
Example
The	following	example	demonstrates	how	to	specify	a	mouse	pointer	that	is
appropriate	for	a	specific	control	or	situation.	You	can	assign	one	of	several
available	mouse	pointers	using	the	MousePointer	property.

This	example	works	in	the	following	ways:

Choose	a	mouse	pointer	from	the	ListBox	to	change	the	mouse	pointer
associated	with	the	ListBox.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	ListBox	named	ListBox1.

Dim	ListBox1

Sub	Item_Open()

				set	ListBox1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("ListBox1")

				'Load	ListBox	with	MousePointer	choices

				ListBox1.Clear	

				ListBox1.AddItem	"Default"

				ListBox1.AddItem	"Arrow"

				ListBox1.AddItem	"Cross"

				ListBox1.AddItem	"IBeam"

				ListBox1.AddItem	"SizeNESW"

				ListBox1.AddItem	"SizeNS"

				ListBox1.AddItem	"SizeNWSE"

				ListBox1.AddItem	"SizeWE"

				ListBox1.AddItem	"UpArrow"

				ListBox1.AddItem	"Hourglass"

				ListBox1.AddItem	"NoDrop"				

				ListBox1.AddItem	"AppStarting"

				ListBox1.AddItem	"Help"

				ListBox1.AddItem	"SizeAll"

End	Sub

Sub	ListBox1_Click()



			If	IsNull(ListBox1.Value)	=	False	Then

				Select	Case	ListBox1.Value

								Case	"Default"	

												pointer	=	0								'Standard	pointer.

												Case	"Arrow"

												pointer	=	1								'Arrow.

								Case	"Cross"

												pointer	=	2								'Cross-hair	pointer.

								Case	"IBeam"

												pointer	=	3								'I-beam.

								Case	"SizeNESW"

												pointer	=	6								'Double	arrow	pointing	northeast	and	southwest.

								Case	"SizeNS"

												pointer	=	7								'Double	arrow	pointing	north	and	south.

									Case	"SizeNWSE"

												pointer	=	8								'Double	arrow	pointing	northwest	and	southeast.

								Case	"SizeWE"

												pointer	=	9								'Double	arrow	pointing	west	and	east.

								Case	"UpArrow"

												pointer	=	10				'Up	arrow.

								Case	"Hourglass"

												pointer	=	11				'Hourglass.

								Case	"NoDrop"

												pointer	=	12				'"Not"	symbol	(circle	with	a	diagonal	line)	on	top	of	the	object	being	dragged.	Indicates	an	invalid	drop	target.

								Case	"AppStarting"

												pointer	=	13				'Arrow	with	an	hourglass.

								Case	"Help"

												pointer	=	14				'Arrow	with	a	question	mark.

								Case	"SizeAll"

												pointer	=	15				'Size	all	cursor	(arrows	pointing	north,	south,	east,	and	west).

				End	Select

				ListBox1.MousePointer	=	pointer

			End	If

End	Sub

	 	



Move	Method	Example	for	Controls
Collection
The	following	example	demonstrates	moving	all	the	controls	on	a	form	by	using
the	Move	method	with	the	Controls	collection.	The	user	clicks	on	the
CommandButton	to	move	the	controls.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	Make
sure	that	the	form	contains	a	CommandButton	named	CommandButton1	and
several	other	controls.

Sub	CommandButton1_Click()

		Set	Controls	=	Item.GetInspector.ModifiedFormPages("P.2").Controls

		'Move	each	control	on	the	form	right	25	points	and	up	25	points.	

		Controls.Move	25,	-25

End	Sub

	 	



MultiLine,	WordWrap,	ScrollBars
Properties	Example
The	following	example	demonstrates	the	MultiLine,	WordWrap,	and
ScrollBars	properties	on	a	TextBox.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	TextBox	named	TextBox1.
Four	ToggleButton	controls	named	ToggleButton1	through	ToggleButton4.

To	see	the	entire	text	placed	in	the	TextBox,	set	MultiLine	and	WordWrap	to
True	by	clicking	the	ToggleButton	controls.

When	MultiLine	is	True,	you	can	enter	new	lines	of	text	by	pressing
SHIFT+ENTER.

ScrollBars	appears	when	you	manually	change	the	content	of	the	TextBox.

Dim	ToggleButton1

Dim	ToggleButton2

Dim	ToggleButton3

Dim	ToggleButton4

Dim	TextBox1

Sub	Item_Open

'Initialize	TextBox	properties	and	toggle	buttons

		Set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages("P.2").ToggleButton1

		Set	ToggleButton2	=	Item.GetInspector.ModifiedFormPages("P.2").ToggleButton2

		Set	ToggleButton3	=	Item.GetInspector.ModifiedFormPages("P.2").ToggleButton3

		Set	ToggleButton4	=	Item.GetInspector.ModifiedFormPages("P.2").ToggleButton4

		Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").TextBox1

		TextBox1.Text	=	"Type	your	text	here.		Enter	SHIFT+ENTER	to	move	to	a	new	line."

		TextBox1.AutoSize	=	False

		ToggleButton1.Caption	=	"AutoSize	Off"

		ToggleButton1.Value	=	False



		ToggleButton1.AutoSize	=	True

		TextBox1.WordWrap	=	False

		ToggleButton2.Caption	=	"WordWrap	Off"

		ToggleButton2.Value	=	False

		ToggleButton2.AutoSize	=	True

		TextBox1.ScrollBars	=	0

		ToggleButton3.Caption	=	"ScrollBars	Off"

		ToggleButton3.Value	=	False

		ToggleButton3.AutoSize	=	True

		

		TextBox1.MultiLine	=	False

		ToggleButton4.Caption	=	"Single	Line"

		ToggleButton4.Value	=	False

		ToggleButton4.AutoSize	=	True

End	Sub

Sub	ToggleButton1_Click

'Set	AutoSize	property	and	associated	ToggleButton

		If	ToggleButton1.Value	=	True	Then

				TextBox1.AutoSize	=	True

				ToggleButton1.Caption	=	"AutoSize	On"

		Else

				TextBox1.AutoSize	=	False

				ToggleButton1.Caption	=	"AutoSize	Off"

		End	if

End	Sub

Sub	ToggleButton2_Click

'Set	WordWrap	property	and	associated		ToggleButton

		If	ToggleButton2.Value	=	True	Then

				TextBox1.WordWrap	=	True

				ToggleButton2.Caption	=	"WordWrap	On"

		Else

				TextBox1.WordWrap	=	False

				ToggleButton2.Caption	=	"WordWrap	Off"

		End	if

End	Sub

Sub	ToggleButton3_Click

'Set	ScrollBars	property	and	associated	ToggleButton

		If	ToggleButton3.Value	=	True	Then

				TextBox1.ScrollBars	=	3

				ToggleButton3.Caption	=	"ScrollBars	On"

		Else



				TextBox1.ScrollBars	=	0

				ToggleButton3.Caption	=	"ScrollBars	Off"

		End	if

End	Sub

Sub	ToggleButton4_Click

'Set	MultiLine	property	and	associated	ToggleButton

		If	ToggleButton4.Value	=	True	Then

				TextBox1.MultiLine	=	True

				ToggleButton4.Caption	=	"Multiple	Lines"

		Else

				TextBox1.MultiLine	=	False

				ToggleButton4.Caption	=	"Single	Line"

		End	if

	End	Sub

	 	



MultiSelect,	Selected	Properties
Example
The	following	example	uses	the	MultiSelect	and	Selected	properties	to
demonstrate	how	the	user	can	select	one	or	more	items	in	a	ListBox.	The	user
specifies	a	selection	method	by	choosing	an	option	button	and	then	selects	an
item(s)	from	the	ListBox.	The	user	can	display	the	selected	items	in	a	second
ListBox	by	clicking	the	CommandButton.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

Two	ListBox	controls	named	ListBox1	and	ListBox2.
A	CommandButton	named	CommandButton1.
Three	OptionButton	controls	named	OptionButton1	through
OptionButton3.

Sub	CommandButton1_Click()

				Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ListBox1")

				Set	ListBox2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ListBox2")

				ListBox2.Clear

				

				For	i	=	0	To	9

								If	ListBox1.Selected(i)	=	True	Then

												ListBox2.AddItem	ListBox1.List(i)

								End	If

				Next	

End	Sub

Sub	OptionButton1_Click()

				Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ListBox1")

				ListBox1.MultiSelect	=	0								'0=fmMultiSelectSingle

End	Sub

Sub	OptionButton2_Click()

				Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ListBox1")

				ListBox1.MultiSelect	=	1								'1=fmMultiSelectMulti

End	Sub



Sub	OptionButton3_Click()

				Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ListBox1")

				ListBox1.MultiSelect	=	2								'2=fmMultiSelectExtended

End	Sub

Sub	Item_Open()

				Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ListBox1")

				Set	OptionButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton1")

				Set	OptionButton2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton2")

				Set	OptionButton3	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton3")

				Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CommandButton1")

				For	i	=	0	To	9

								ListBox1.AddItem	"Choice	"	&	(ListBox1.ListCount	+	1)

				Next	

				

				OptionButton1.Caption	=	"Single	Selection"

				ListBox1.MultiSelect	=	0								'0=fmMultiSelectSingle

				OptionButton1.Value	=	True

				

				OptionButton2.Caption	=	"Multiple	Selection"

				OptionButton3.Caption	=	"Extended	Selection"

				

				CommandButton1.Caption	=	"Show	selections"

				CommandButton1.AutoSize	=	True

End	Sub

	 	



Show	All



Name	Property	Example
The	following	example	displays	the	Name	property	of	each	control	on	a	form.
This	example	uses	the	Controls	collection	to	cycle	through	all	the	controls
placed	directly	on	the	User	form.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	Make
sure	that	the	form	contains	a	CommandButton	named	CommandButton1	and
several	other	controls.

Sub	CommandButton1_Click()

				Set	Controls	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls

				For	i	=	0	to	Controls.Count	-	1

								MsgBox	"MyControl.Name	=	"	&	Controls.Item(i).Name

				Next

End	Sub

	 	



Object	Property	Example
Assume	a	new	control	has	a	Top	property	that	is	different	from	the	standard	Top
property	in	Microsoft	Forms.	You	can	use	either	property,	based	on	the	syntax:

control.Top	uses	the	standard	Top	property.
control.Object.Top	uses	the	Top	property	from	the	added	control.



Parent	Property	Example
The	following	example	uses	the	Parent	property	to	refer	to	the	control	or	form
that	contains	a	specific	control.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

Two	Label	controls	named	Label1	and	Label2.
A	CommandButton	named	CommandButton1.
One	or	more	additional	controls	of	your	choice.

Dim	MyControl

Dim	MyParent	

Dim	ControlsIndex

Sub	Item_Open()

		Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").CommandButton1

		ControlsIndex	=	0

		CommandButton1.Caption	=	"Get	Control	and	Parent"

		CommandButton1.AutoSize	=	True

		CommandButton1.WordWrap	=	True

End	Sub

Sub	CommandButton1_Click()

		Set	Label1	=	Item.GetInspector.ModifiedFormPages("P.2").Label1

		Set	Label2	=	Item.GetInspector.ModifiedFormPages("P.2").Label2

		'Process	Controls	collection	for	UserForm

		Set	MyControl	=	Item.GetInspector.ModifiedFormPages("P.2").Controls.Item(ControlsIndex)

		Set	MyParent	=	MyControl.Parent

		Label1.Caption	=	MyControl.Name

		Label2.Caption	=	MyParent.Name

						

		'Prepare	index	for	next	control	on	Userform

		ControlsIndex	=	ControlsIndex	+	1

		If	ControlsIndex	>=	Item.GetInspector.ModifiedFormPages("P.2").Controls.Count	Then

				ControlsIndex	=	0

		End	If

End	Sub

	 	



Picture,	PicturePosition	Properties
Example
The	following	example	uses	a	ComboBox	to	show	the	picture	placement	options
for	a	control.	Each	time	the	user	clicks	a	list	choice,	the	picture	and	caption	are
updated	on	the	CommandButton.	This	code	sample	also	uses	the	AddItem
method	to	populate	the	ComboBox	choices.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	Label	named	Label1.
A	CommandButton	named	CommandButton1	with	the	Picture	property
set	to	use	an	image	on	your	computer.
A	ComboBox	named	ComboBox1.

Dim	Label1

Dim	CommandButton1

Dim	ComboBox1

Sub	Item_Open()

Set	Label1	=	Item.GetInspector.ModifiedFormPages("P.2").Label1

Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").CommandButton1

Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages("P.2").ComboBox1

				Label1.Left	=	18

				Label1.Top	=	12

				Label1.Height	=	12

				Label1.Width	=	190

				Label1.Caption	=	"Select	picture	placement	relative	to	the	caption."

				

				'Add	list	entries	to	combo	box.	The	value	of	each	entry	matches	the

				'corresponding	ListIndex	value	in	the	combo	box.

				ComboBox1.AddItem	"Left	Top"								'ListIndex	=	0

				ComboBox1.AddItem	"Left	Center"					'ListIndex	=	1

				ComboBox1.AddItem	"Left	Bottom"					'ListIndex	=	2

				ComboBox1.AddItem	"Right	Top"							'ListIndex	=	3

				ComboBox1.AddItem	"Right	Center"				'ListIndex	=	4

				ComboBox1.AddItem	"Right	Bottom"				'ListIndex	=	5

				



				ComboBox1.AddItem	"Above	Left"						'ListIndex	=	6

				ComboBox1.AddItem	"Above	Center"				'ListIndex	=	7

				ComboBox1.AddItem	"Above	Right"				'ListIndex	=	8

				ComboBox1.AddItem	"Below	Left"						'ListIndex	=	9

				ComboBox1.AddItem	"Below	Center"				'ListIndex	=	10

				ComboBox1.AddItem	"Below	Right"				'ListIndex	=	11

				

				ComboBox1.AddItem	"Centered"								'ListIndex	=	12

				

				ComboBox1.Style	=	2		'Use	drop-down	list

				ComboBox1.BoundColumn	=	0												'Combo	box	values	are	ListIndex	values

				ComboBox1.ListIndex	=	0														'Set	combo	box	to	first	entry

				ComboBox1.Left	=	18

				ComboBox1.Top	=	36

				ComboBox1.Width	=	90

				ComboBox1.ListWidth	=	90

				

				'Initialize	CommandButton1

				CommandButton1.Left	=	230

				CommandButton1.Top	=	36

				CommandButton1.Height	=	120

				CommandButton1.Width	=	120

				

				'Note:	Be	sure	to	refer	to	have	set	the	CommandButton1	to	a	bitmap	file	

						'Note:	that	is	present	on	your	system

				CommandButton1.PicturePosition	=	ComboBox1.Value

End	Sub

Sub	ComboBox1_Click()

				Select	Case	ComboBox1.Value

				Case	0		'Left	Top

								CommandButton1.Caption	=	"Left	Top"

								CommandButton1.PicturePosition	=	0

				

				Case	1		'Left	Center

								CommandButton1.Caption	=	"Left	Center"

								CommandButton1.PicturePosition	=	1

												

				Case	2		'Left	Bottom

								CommandButton1.Caption	=	"Left	Bottom"

								CommandButton1.PicturePosition	=	2

								

				Case	3		'Right	Top

								CommandButton1.Caption	=	"Right	Top"

								CommandButton1.PicturePosition	=	3

				

				Case	4		'Right	Center

								CommandButton1.Caption	=	"Right	Center"

								CommandButton1.PicturePosition	=	4



				

				Case	5		'Right	Bottom

								CommandButton1.Caption	=	"Right	Bottom"

								CommandButton1.PicturePosition	=	5

				

				Case	6		'Above	Left

								CommandButton1.Caption	=	"Above	Left"

								CommandButton1.PicturePosition	=	6

				

				Case	7		'Above	Center

								CommandButton1.Caption	=	"Above	Center"

								CommandButton1.PicturePosition	=	7

								

				Case	8		'Above	Right

								CommandButton1.Caption	=	"Above	Right"

								CommandButton1.PicturePosition	=	8

				

				Case	9		'Below	Left

								CommandButton1.Caption	=	"Below	Left"

								CommandButton1.PicturePosition	=	9

				

				Case	10	'Below	Center

								CommandButton1.Caption	=	"Below	Center"

								CommandButton1.PicturePosition	=	10

				

				Case	11	'Below	Right

								CommandButton1.Caption	=	"Below	Right"

								CommandButton1.PicturePosition	=	11

				

				Case	12	'Centered

								CommandButton1.Caption	=	"Centered"

								CommandButton1.PicturePosition	=	12

				

				End	Select

				

End	Sub

	 	



ScrollBars,	KeepScrollBarsVisible
Properties	Example
The	following	example	uses	the	ScrollBars	and	the	KeepScrollBarsVisible
properties	to	add	scroll	bars	to	a	page	of	a	MultiPage	and	to	a	Frame.	The	user
chooses	an	option	button	that,	in	turn,	specifies	a	value	for
KeepScrollBarsVisible.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	MultiPage	named	MultiPage1.
A	Frame	named	Frame1.
Four	OptionButton	controls	named	OptionButton1	through
OptionButton4.

Sub	Item_Open()

				Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("MultiPage1")

				Set	Frame1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Frame1")

				Set	OptionButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton1")

				Set	OptionButton2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton2")

				Set	OptionButton3	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton3")

				Set	OptionButton4	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton4")

				MultiPage1.Pages(0).ScrollBars	=	3				'3=fmScrollBarsBoth

				MultiPage1.Pages(0).KeepScrollBarsVisible	=	0				'0=fmScrollBarsNone

				

				Frame1.ScrollBars	=	3				'3=fmScrollBarsBoth

				Frame1.KeepScrollBarsVisible	=	0				'0=fmScrollBarsNone

				

				OptionButton1.Caption	=	"No	scroll	bars"

				OptionButton1.Value	=	True

				OptionButton2.Caption	=	"Horizontal	scroll	bars"

				OptionButton3.Caption	=	"Vertical	scroll	bars"

				OptionButton4.Caption	=	"Both	scroll	bars"

End	Sub

Sub	OptionButton1_Click()

				Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("MultiPage1")

				Set	Frame1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Frame1")



				MultiPage1.Pages(0).KeepScrollBarsVisible	=	0				'0=fmScrollBarsNone

				Frame1.KeepScrollBarsVisible	=	0				'0=fmScrollBarsNonefmScrollBarsNone

End	Sub

Sub	OptionButton2_Click()

				Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("MultiPage1")

				Set	Frame1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Frame1")

				MultiPage1.Pages(0).KeepScrollBarsVisible	=	1				'1=fmScrollBarsHorizontal

				Frame1.KeepScrollBarsVisible	=	1				'1=fmScrollBarsHorizontal

End	Sub

Sub	OptionButton3_Click()

				Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("MultiPage1")

				Set	Frame1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Frame1")

				MultiPage1.Pages(0).KeepScrollBarsVisible	=	2				'2=fmScrollBarsVertical

				Frame1.KeepScrollBarsVisible	=	2				'2=fmScrollBarsVertical

End	Sub

Sub	OptionButton4_Click()

				Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("MultiPage1")

				Set	Frame1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Frame1")

				MultiPage1.Pages(0).KeepScrollBarsVisible	=	3				'3=fmScrollBarsBoth

				Frame1.KeepScrollBarsVisible	=	3				'3=fmScrollBarsBoth

End	Sub

	 	



Style	Property	Example	for
ComboBox
The	following	example	uses	the	Style	property	to	change	the	effect	of	typing	in
the	text	area	of	a	ComboBox.	The	user	chooses	a	style	by	selecting	an
OptionButton	control	and	then	types	into	the	ComboBox	to	select	an	item.
When	Style	is	StyleDropDownList,	the	user	must	choose	an	item	from	the	drop-
down	list.	When	Style	is	StyleDropDownCombo,	the	user	can	type	into	the	text
area	to	specify	an	item	in	the	drop-down	list.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

Two	OptionButton	controls	named	OptionButton1	and	OptionButton2.
A	ComboBox	named	ComboBox1.

Sub	OptionButton1_Click()

				Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ComboBox1")

				ComboBox1.Style	=	0								'0=fmStyleDropDownCombo

End	Sub

Sub	OptionButton2_Click()

				Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ComboBox1")

				ComboBox1.Style	=	2								'2=fmStyleDropDownList

End	Sub

Sub	Item_Open()

				Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ComboBox1")

				Set	OptionButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton1")

				Set	OptionButton2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton2")

				For	i	=	1	To	10

								ComboBox1.AddItem	"Choice	"	&	i

				Next

				

				OptionButton1.Caption	=	"Select	like	ComboBox"

				OptionButton1.Value	=	True

				ComboBox1.Style	=	0								'0=fmStyleDropDownCombo

				

				OptionButton2.Caption	=	"Select	like	ListBox"



End	Sub

	 	



Style	Property	Example	for
MultiPage	and	TabStrip
The	following	example	uses	the	Style	property	to	specify	the	appearance	of	the
tabs	in	MultiPage	and	TabStrip.	This	example	also	demonstrates	using	a	Label.
The	user	chooses	a	style	by	selecting	an	OptionButton.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	Label	named	Label1.
Three	OptionButton	controls	named	OptionButton1	through
OptionButton3.
A	MultiPage	named	MultiPage1.
A	TabStrip	named	TabStrip1.
Any	control	inside	the	TabStrip.
Any	control	in	each	page	of	the	MultiPage.

Sub	OptionButton1_Click()

				Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("MultiPage1")

				Set	TabStrip1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TabStrip1")

				MultiPage1.Style	=	0								'0=fmTabStyleTabs

				TabStrip1.Style	=	0								'0=fmTabStyleTabs

End	Sub

Sub	OptionButton2_Click()

				'Note	that	the	page	borders	are	invisible

				Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("MultiPage1")

				Set	TabStrip1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TabStrip1")

				MultiPage1.Style	=	1								'1=fmTabStyleButtons

				TabStrip1.Style	=	1								'1=fmTabStyleButtons

End	Sub

Sub	OptionButton3_Click()

				'Note	that	the	page	borders	are	invisible	and

				'the	page	body	begins	where	the	tabs	normally	appear.

				Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("MultiPage1")

				Set	TabStrip1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TabStrip1")

				MultiPage1.Style	=	2								'2=fmTabStyleNone



				TabStrip1.Style	=	2								'2=fmTabStyleNone

End	Sub

Sub	Item_Open()

				Set	Label1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label1")

				Set	OptionButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton1")

				Set	OptionButton2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton2")

				Set	OptionButton3	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("OptionButton3")

				Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("MultiPage1")

				Set	TabStrip1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TabStrip1")

				Label1.Caption	=	"Page/Tab	Style"

				OptionButton1.Caption	=	"Tabs"

				OptionButton1.Value	=	True

				MultiPage1.Style	=	0								'0=fmTabStyleTabs

				TabStrip1.Style	=	0								'0=fmTabStyleTabs

				

				OptionButton2.Caption	=	"Buttons"

				OptionButton3.Caption	=	"No	Tabs	or	Buttons"

End	Sub

	 	



TabFixedHeight,	TabFixedWidth
Properties	Example
The	following	example	uses	the	TabFixedHeight	and	TabFixedWidth
properties	to	set	the	size	of	the	tabs	used	in	MultiPage	and	TabStrip.	The	user
clicks	the	SpinButton	controls	to	adjust	the	height	and	width	of	the	tabs	within
the	MultiPage	and	TabStrip.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	MultiPage	named	MultiPage1.
A	TabStrip	named	TabStrip1.
A	Label	named	Label1	for	the	width	control.
A	SpinButton	named	SpinButton1	for	the	width	control	that	is	bound	to	a
custom	number	field	named	SpinButtonWidth.
A	TextBox	named	TextBox1	for	the	width	control.
A	Label	named	Label2	for	the	height	control.
A	SpinButton	named	SpinButton2	for	the	height	control	that	is	bound	to	a
custom	number	field	named	SpinButtonHeight.
A	TextBox	named	TextBox2	for	the	height	control.

Sub	UpdateTabWidth()

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				Set	SpinButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("SpinButton1")

				Set	TabStrip1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TabStrip1")

				Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("MultiPage1")

				TextBox1.Text	=	SpinButton1.Value

				TabStrip1.TabFixedWidth	=	SpinButton1.Value

				MultiPage1.TabFixedWidth	=	SpinButton1.Value

End	Sub

Sub	UpdateTabHeight()

				Set	TextBox2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox2")

				Set	SpinButton2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("SpinButton2")

				Set	TabStrip1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TabStrip1")

				Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("MultiPage1")



				TextBox2.Text	=	SpinButton2.Value

				TabStrip1.TabFixedHeight	=	SpinButton2.Value

				MultiPage1.TabFixedHeight	=	SpinButton2.Value

End	Sub

Sub	Item_Open()

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				Set	TextBox2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox2")

				Set	SpinButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("SpinButton1")

				Set	SpinButton2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("SpinButton2")

				Set	TabStrip1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TabStrip1")

				Set	MultiPage1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("MultiPage1")

				Set	Label1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label1")

				Set	Label2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label2")

				MultiPage1.Style	=	1								'1=fmTabStyleButtons

				

				Label1.Caption	=	"Tab	Width"

				SpinButton1.Min	=	0

				SpinButton1.Max	=	TabStrip1.Width	/	TabStrip1.Tabs.Count

				SpinButton1.Value	=	0

				TextBox1.Locked	=	True

				

				UpdateTabWidth

				

				Label2.Caption	=	"Tab	Height"

				SpinButton2.Min	=	0

				SpinButton2.Max	=	TabStrip1.Height

				SpinButton2.Value	=	0

				TextBox2.Locked	=	True

				

				UpdateTabHeight

End	Sub

Sub	Item_CustomPropertyChange(byval	pname)

'msgbox	pname

				If	pname	=	"SpinButtonWidth"	Then

								UpdateTabWidth

				ElseIf	pname	=	"SpinButtonHeight"	Then

								UpdateTabHeight

				End	If

End	Sub

	 	



TabIndex	Property	Example
The	following	example	uses	the	TabIndex	property	to	display	and	set	the	tab
order	for	individual	controls.	The	user	can	press	TAB	to	reach	the	next	control	in
the	tab	order	and	to	display	the	TabIndex	of	that	control.	The	user	can	also	click
on	any	control,	except	a	TextBox	or	ScrollBar,	to	display	its	TabIndex.	The
user	can	change	the	TabIndex	of	a	control	by	specifying	a	new	index	value	in
the	TextBox	and	clicking	CommandButton3.	Changing	the	TabIndex	for	one
control	also	updates	the	TabIndex	for	other	controls	in	the	Frame.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	Label	named	Label1.
A	TextBox	named	TextBox1.
A	Frame	named	Frame1.
A	TextBox	in	the	Frame	named	TextBox2.
Two	CommandButton	controls	in	the	Frame	named	CommandButton1
and	CommandButton2.
A	ScrollBar	in	the	Frame	named	ScrollBar1.
A	CommandButton	(not	in	the	Frame)	named	CommandButton3.

Sub	MoveToFront()

				Set	Frame1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Frame1")

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				

				Temp	=	Frame1.ActiveControl.TabIndex

				For	i	=	0	To	Temp	-	1

								Frame1.Controls.Item(i).TabIndex	=	i	+	1

				Next

								

				Frame1.ActiveControl.TabIndex	=	0

				TextBox1.Text	=	Frame1.ActiveControl.TabIndex

End	Sub

Sub	CommandButton3_Click()

				Set	Frame1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Frame1")

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				

				If	IsNumeric(TextBox1.Text)	Then



								Temp	=	CInt(TextBox1.Text)

				

								If	Temp	>=	Frame1.Controls.Count	Or	Temp	<	0	Then

												'Entry	out	of	range;	move	control	to	front	of	tab	order

												MoveToFront

								ElseIf	Temp	>	Frame1.ActiveControl.TabIndex	Then

												'Move	entry	down	the	list

												For	i	=	Frame1.ActiveControl.TabIndex	+	1	To	Temp

																Frame1.Controls.Item(i).TabIndex	=	i	-	1

												Next

												Frame1.ActiveControl.TabIndex	=	Temp

												TextBox1.Text	=	Frame1.ActiveControl.TabIndex

								Else

												'Move	Entry	up	the	list

												For	i	=	Frame1.ActiveControl.TabIndex	-	1	To	Temp

																Frame1.Controls.Item(i).TabIndex	=	i	+	1

												Next

												Frame1.ActiveControl.TabIndex	=	Temp

												TextBox1.Text	=	Frame1.ActiveControl.TabIndex

								End	If

				Else

								'Text	entry;	move	control	to	front	of	tab	order

								MoveToFront

				End	If

End	Sub

Sub	Item_Open()

				Set	Frame1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Frame1")

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				Set	Label1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label1")

				Set	CommandButton3	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CommandButton3")

				Label1.Caption	=	"TabIndex"

				Frame1.Controls(0).SetFocus

				TextBox1.Text	=	Frame1.ActiveControl.TabIndex

				Frame1.Cycle	=	2								'2=fmCycleCurrentForm

				CommandButton3.Caption	=	"Set	TabIndex"

				CommandButton3.TakeFocusOnClick	=	False

End	Sub

Sub	CommandButton1_Click()

				Set	Frame1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Frame1")

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				TextBox1.Text	=	Frame1.ActiveControl.TabIndex

End	Sub



Sub	CommandButton2_Click()

				Set	Frame1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Frame1")

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				TextBox1.Text	=	Frame1.ActiveControl.TabIndex

End	Sub

	 	



TabStop	Property	Example
The	following	example	uses	the	TabStop	property	to	control	whether	a	user	can
press	TAB	to	move	the	focus	to	a	particular	control.	The	user	presses	TAB	to
move	the	focus	among	the	controls	on	the	form,	and	then	clicks	the
ToggleButton	to	change	TabStop	for	CommandButton1.	When	TabStop	is
False,	CommandButton1	will	not	receive	the	focus	by	using	TAB.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	CommandButton	named	CommandButton1.
A	ToggleButton	named	ToggleButton1.
One	or	two	other	controls,	such	as	an	OptionButton	or	ListBox.

Sub	CommandButton1_Click()

				MsgBox	"Clicked	CommandButton1."

End	Sub

Sub	ToggleButton1_Click()

				Dim	CommandButton1

				Set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ToggleButton1")

				Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CommandButton1")

				If	ToggleButton1	=	True	Then

								CommandButton1.TabStop	=	True

								ToggleButton1.Caption	=	"TabStop	On"

				Else

								CommandButton1.TabStop	=	False

								ToggleButton1.Caption	=	"TabStop	Off"

				End	If

End	Sub

Sub	Item_Open()

				Set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ToggleButton1")

				Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CommandButton1")

				CommandButton1.Caption	=	"Show	Message"

				

				ToggleButton1.Caption	=	"TabStop	On"

				ToggleButton1.Value	=	True



				ToggleButton1.Width	=	90

End	Sub

	 	



Tag	Property	Example
The	following	example	uses	the	Tag	property	to	store	additional	information
about	each	control	on	the	UserForm.	The	user	clicks	a	control	and	then	clicks
the	CommandButton.	The	contents	of	Tag	for	the	appropriate	control	are
returned	in	the	TextBox.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	TextBox	named	TextBox1.
A	CommandButton	named	CommandButton1.
A	ScrollBar	named	ScrollBar1.
A	ComboBox	named	ComboBox1.
A	MultiPage	named	MultiPage1.

Sub	CommandButton1_Click()

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				Set	MultiPage1=	Item.GetInspector.ModifiedFormPages("P.2").Controls("MultiPage1")

				TextBox1.Text	=	Item.GetInspector.ModifiedFormPages("P.2").ActiveControl.Tag

End	Sub

Sub	Item_Open()

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				Set	CommandButton1=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CommandButton1")

				Set	ComboBox1=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ComboBox1")

				Set	ScrollBar1=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ScrollBar1")

				Set	MultiPage1=	Item.GetInspector.ModifiedFormPages("P.2").Controls("MultiPage1")

				TextBox1.Locked	=	True

				TextBox1.Tag	=	"Display	area	for	Tag	properties."

				TextBox1.AutoSize	=	True

				

				CommandButton1.Caption	=	"Show	Tag	of	Current	Control."

				CommandButton1.AutoSize	=	True

				CommandButton1.WordWrap	=	True

				CommandButton1.TakeFocusOnClick	=	False

				CommandButton1.Tag	=	"Shows	tag	of	control	that	has	the	focus."

								

				ComboBox1.Style	=	fmStyleDropDownList



				ComboBox1.Tag	=	"ComboBox	Style	is	that	of	a	ListBox."

				

				ScrollBar1.Max	=	100

				ScrollBar1.Min	=	-273

				ScrollBar1.Tag	=	"Max	=	"	&	ScrollBar1.Max	&	"	,	Min	=	"	&	ScrollBar1.Min

				

				MultiPage1.Pages.Add

				MultiPage1.Pages.Add

				MultiPage1.Tag	=	"This	MultiPage	has	"	&	MultiPage1.Pages.Count	&	"	pages."

End	Sub

	 	



TakeFocusOnClick	Property
Example
The	following	example	uses	the	TakeFocusOnClick	property	to	control	whether
a	CommandButton	receives	the	focus	when	the	user	clicks	on	it.	The	user
clicks	a	control	other	than	CommandButton1	and	then	clicks	CommandButton1.
If	TakeFocusOnClick	is	True,	CommandButton1	receives	the	focus	after	it	is
clicked.	The	user	can	change	the	value	of	TakeFocusOnClick	by	clicking	the
ToggleButton.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	CommandButton	named	CommandButton1.
A	ToggleButton	named	ToggleButton1.
One	or	two	other	controls,	such	as	an	OptionButton	or	ListBox.

Sub	CommandButton1_Click()

				MsgBox	"Watch	CommandButton1	to	see	if	it	takes	the	focus."

End	Sub

Sub	ToggleButton1_Click()

				Set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ToggleButton1")

				Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CommandButton1")

				If	ToggleButton1	=	True	Then

								CommandButton1.TakeFocusOnClick	=	True

								ToggleButton1.Caption	=	"TakeFocusOnClick	On"

				Else

								CommandButton1.TakeFocusOnClick	=	False

								ToggleButton1.Caption	=	"TakeFocusOnClick	Off"

				End	If

End	Sub

Sub	Item_Open()

				Set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ToggleButton1")

				Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CommandButton1")

				CommandButton1.Caption	=	"Show	Message"

				



				ToggleButton1.Caption	=	"TakeFocusOnClick	On"

				ToggleButton1.Value	=	True

				ToggleButton1.Width	=	90

End	Sub

	 	



TextColumn	Property	Example
The	following	example	uses	the	TextColumn	property	to	identify	the	column	of
data	in	a	ListBox	that	supplies	data	for	its	Text	property.	This	example	sets	the
third	column	of	the	ListBox	as	the	text	column.	As	you	select	an	entry	from	the
ListBox,	the	value	from	the	TextColumn	will	be	displayed	in	the	TextBox.

This	example	also	demonstrates	how	to	load	a	multicolumn	ListBox	using	the
AddItem	method	and	the	List	property.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	ListBox	named	ListBox1.
A	TextBox	named	TextBox1.

Dim	ListBox1

Dim	TextBox1

Sub	Item_Open()

				Set	ListBox1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("ListBox1")

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages.Item("P.2").Controls("TextBox1")

				ListBox1.ColumnCount	=	3

				ListBox1.AddItem	"Row	1,	Col	1"

				ListBox1.List(0,	1)	=	"Row	1,	Col	2"	

				ListBox1.List(0,	2)	=	"Row	1,	Col	3"

				ListBox1.AddItem	"Row	2,	Col	1"

				ListBox1.List(1,	1)	=	"Row	2,	Col	2"

				ListBox1.List(1,	2)	=	"Row	2,	Col	3"

				ListBox1.AddItem	"Row	3,	Col	1"

				ListBox1.List(2,	1)	=	"Row	3,	Col	2"

				ListBox1.List(2,	2)	=	"Row	3,	Col	3"

				ListBox1.TextColumn	=	3

End	Sub



Sub	ListBox1_Click()

				TextBox1.Text	=	ListBox1.Text

End	Sub

	 	



TopIndex	Property	Example
The	following	example	identifies	the	top	item	displayed	in	a	ListBox	and	the
item	that	has	the	focus	within	the	ListBox.	This	example	uses	the	TopIndex
property	to	identify	the	item	displayed	at	the	top	of	the	ListBox	and	the
ListIndex	property	to	identify	the	item	that	has	the	focus.	The	user	selects	an
item	in	the	ListBox.	The	displayed	values	of	TopIndex	and	ListIndex	are
updated	when	the	user	selects	an	item	or	when	the	user	clicks	the
CommandButton.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	Label	named	Label1.
A	TextBox	named	TextBox1.
A	Label	named	Label2.
A	TextBox	named	TextBox2.
A	CommandButton	named	CommandButton1.
A	ListBox	named	ListBox1	that	is	bound	to	the	Subject	field.

Sub	CommandButton1_Click()

				Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ListBox1")

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				Set	TextBox2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox2")

				ListBox1.TopIndex	=	ListBox1.ListIndex

				TextBox1.Text	=	ListBox1.TopIndex

				TextBox2.Text	=	ListBox1.ListIndex

End	Sub

Sub	Item_PropertyChange(byval	pname)

				if	pname	=	"Subject"	then

								Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

								Set	TextBox2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox2")

								Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ListBox1")

								TextBox1.Text	=	ListBox1.TopIndex

								TextBox2.Text	=	ListBox1.ListIndex

				end	if

End	Sub



Sub	Item_Open()

				Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ListBox1")

				Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CommandButton1")

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				Set	TextBox2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox2")

				Set	Label1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label1")

				Set	Label2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("Label2")

				For	i	=	0	To	24

								ListBox1.AddItem	"Choice	"	&	(i	+	1)

				Next

				ListBox1.Height	=	66

				CommandButton1.Caption	=	"Move	to	top	of	list"

				CommandButton1.AutoSize	=	True

				CommandButton1.TakeFocusOnClick	=	False

								

				Label1.Caption	=	"Index	of	top	item"

				TextBox1.Text	=	ListBox1.TopIndex

				Label2.Caption	=	"Index	of	current	item"

				Label2.AutoSize	=	True

				Label2.WordWrap	=	False

				TextBox2.Text	=	ListBox1.ListIndex

End	Sub

	 	



Show	All



TripleState	Property	Example
The	following	example	uses	the	TripleState	property	to	allow	Null	as	a	legal
value	of	a	CheckBox	and	a	ToggleButton.	The	user	controls	the	value	of
TripleState	through	ToggleButton2.	The	user	can	set	the	value	of	a	CheckBox
or	ToggleButton	based	on	the	value	of	TripleState.	However,	when	a	control	is
set	to	Null,	no	event	is	fired.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	CheckBox	named	CheckBox1.
A	ToggleButton	named	ToggleButton1.
A	ToggleButton	named	ToggleButton2.

Sub	Item_Open()

				Set	CheckBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CheckBox1")

				Set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ToggleButton1")

				Set	ToggleButton2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ToggleButton2")

				CheckBox1.Caption	=	"Value	is	True"

				CheckBox1.Value	=	True

				CheckBox1.TripleState	=	False

				

				ToggleButton1.Caption	=	"Value	is	True"

				ToggleButton1.Value	=	True

				ToggleButton1.TripleState	=	False

				ToggleButton2.Value	=	False

				ToggleButton2.Caption	=	"Triple	State	Off"

End	Sub

Sub	ToggleButton2_Click()

				Set	CheckBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CheckBox1")

				Set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ToggleButton1")

				Set	ToggleButton2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ToggleButton2")

				If	ToggleButton2.Value	=	True	Then

								ToggleButton2.Caption	=	"Triple	State	On"

								CheckBox1.TripleState	=	True

								ToggleButton1.TripleState	=	True



				Else

								ToggleButton2.Caption	=	"Triple	State	Off"

								CheckBox1.TripleState	=	False

								ToggleButton1.TripleState	=	False

				End	If

End	Sub

Sub	CheckBox1_Click()

				Set	CheckBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CheckBox1")

				If	IsNull(CheckBox1.Value)	Then

								CheckBox1.Caption	=	"Value	is	Null"

				ElseIf	CheckBox1.Value	=	False	Then

								CheckBox1.Caption	=	"Value	is	False"

				ElseIf	CheckBox1.Value	=	True	Then

								CheckBox1.Caption	=	"Value	is	True"

				End	If

End	Sub

Sub	ToggleButton1_Click()

				Set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ToggleButton1")

				If	IsNull(ToggleButton1.Value)	Then

								ToggleButton1.Caption	=	"Value	is	Null"

				ElseIf	ToggleButton1.Value	=	False	Then

								ToggleButton1.Caption	=	"Value	is	False"

				ElseIf	ToggleButton1.Value	=	True	Then

								ToggleButton1.Caption	=	"Value	is	True"

				End	If

End	Sub

	 	



UndoAction,	RedoAction	Methods
Example
The	following	example	demonstrates	how	to	undo	or	redo	text	editing	within	a
text	box	or	within	the	text	area	of	a	ComboBox.	This	sample	checks	whether	an
undo	or	redo	operation	can	occur	and	then	performs	the	appropriate	action.	The
sample	uses	the	CanUndo	and	CanRedo	properties,	and	the	UndoAction	and
RedoAction	methods.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	TextBox	named	TextBox1.
A	ComboBox	named	ComboBox1.
Two	CommandButton	controls	named	CommandButton1	and
CommandButton2.

Dim	UserForm1

Sub	CommandButton1_Click()

				If	UserForm1.CanUndo	=	True	Then

								UserForm1.UndoAction

								MsgBox	"Undid	IT"

				Else

								MsgBox	"No	undo	performed."

				End	If

End	Sub

Sub	CommandButton2_Click()

				If	UserForm1.CanRedo	=	True	Then

								UserForm1.RedoAction

								MsgBox	"Redid	IT"

				Else

								MsgBox	"No	redo	performed."

				End	If

End	Sub

Sub	Item_Open()

					Set	UserForm1	=	Item.GetInspector.ModifiedFormPages("P.2")

					Set	TextBox1	=	UserForm1.Controls("TextBox1")



					Set	ComboBox1	=	UserForm1.Controls("ComboBox1")

					Set	CommandButton1	=	UserForm1.Controls("CommandButton1")

					Set	CommandButton2	=	UserForm1.Controls("CommandButton2")

				TextBox1.Text	=	"Type	your	text	here."

				

				ComboBox1.ColumnCount	=	3

				ComboBox1.AddItem	"Choice	1,	column	1"

				ComboBox1.List(0,	1)	=	"Choice	1,	column	2"

				ComboBox1.List(0,	2)	=	"Choice	1,	column	3"

				CommandButton1.Caption	=	"Undo"

				CommandButton2.Caption	=	"Redo"

End	Sub

	 	



Value	Property	Example
The	following	example	demonstrates	the	values	that	the	different	types	of
controls	can	have	by	displaying	the	Value	property	of	a	selected	control.	The
user	chooses	a	control	by	pressing	TAB	or	by	clicking	on	the	control.	Depending
on	the	type	of	control,	the	user	can	also	specify	a	value	for	the	control	by	typing
in	the	text	area	of	the	control,	by	clicking	one	or	more	times	on	the	control,	or	by
selecting	an	item,	page,	or	tab	within	the	control.	The	user	can	display	the	value
of	the	selected	control	by	clicking	the	appropriately	labeled	CommandButton.

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

A	CommandButton	named	CommandButton1.
A	TextBox	named	TextBox1.
A	CheckBox	named	CheckBox1.
A	ComboBox	named	ComboBox1.
A	CommandButton	named	CommandButton2.
A	ListBox	named	ListBox1.
A	MultiPage	named	MultiPage1.
Two	OptionButton	controls	named	OptionButton1	and	OptionButton2.
A	ScrollBar	named	ScrollBar1.
A	SpinButton	named	SpinButton1.
A	TabStrip	named	TabStrip1.
A	TextBox	named	TextBox2.
A	ToggleButton	named	ToggleButton1.

Sub	CommandButton1_Click()

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				Set	Form	=	Item.GetInspector.ModifiedFormPages("P.2")

					TextBox1.Text	=	"Value	of	"	&	Form.ActiveControl.Name	&	"	is	"	&					Form.ActiveControl.Value

End	Sub

Sub	Item_Open()

				Set	CommandButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CommandButton1")

				Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox1")

				Set	ComboBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ComboBox1")

				Set	ListBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ListBox1")



				Set	CheckBox1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("CheckBox1")

				Set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("ToggleButton1")

				Set	TextBox2	=	Item.GetInspector.ModifiedFormPages("P.2").Controls("TextBox2")

				CommandButton1.Caption	=	"Get	value	of	current	control"

				CommandButton1.AutoSize	=	True

				CommandButton1.TakeFocusOnClick	=	False

				CommandButton1.TabStop	=	False

				

				TextBox1.AutoSize	=	True

				

				For	i	=	0	To	10

								ComboBox1.AddItem	"Choice	"	&	(i	+	1)

								ListBox1.AddItem	"Selection	"	&	(100	-	i)

				Next	

				

				CheckBox1.TripleState	=	True

				ToggleButton1.TripleState	=	True

				

				TextBox2.Text	=	"Enter	text	here."

End	Sub

	 	



ZOrder	Method	Example
The	following	example	sets	the	z-order	of	a	TextBox,	so	the	user	can	display	the
entire	TextBox	(by	bringing	it	to	the	front	of	the	z-order)	or	can	place	the
TextBox	behind	other	controls	(by	sending	it	to	the	back	of	the	z-order).

To	use	this	example,	copy	this	sample	code	to	the	Script	Editor	of	a	form.	To	run
the	code	you	need	to	open	the	form	so	the	Open	event	will	activate.	Make	sure
that	the	form	contains:

Three	TextBox	controls	named	TextBox1	through	TextBox3.
A	ToggleButton	named	ToggleButton1.

Dim	ToggleButton1

Dim	TextBox1

Dim	TextBox2

Dim	TextBox3

Sub	Item_Open()

Set	TextBox1	=	Item.GetInspector.ModifiedFormPages("P.2").TextBox1

Set	TextBox2	=	Item.GetInspector.ModifiedFormPages("P.2").TextBox2

Set	TextBox3	=	Item.GetInspector.ModifiedFormPages("P.2").TextBox3

Set	ToggleButton1	=	Item.GetInspector.ModifiedFormPages("P.2").ToggleButton1

'Set	up	text	boxes	to	show	z-order	in	the	form

TextBox1.Text	=	"TextBox	1"

TextBox2.Text	=	"TextBox	2"

TextBox3.Text	=	"TextBox	3"

TextBox1.Height	=	40

TextBox2.Height	=	40

TextBox3.Height	=	40

TextBox1.Width	=	60

TextBox2.Width	=	60

TextBox3.Width	=	60

TextBox1.Left	=	10

TextBox1.Top	=	10

TextBox2.Left	=	25						'Overlap	TextBox2	on	TextBox1

TextBox2.Top	=	25



TextBox3.Left	=	40						'Overlap	TextBox3	on	TextBox2,	TextBox1

TextBox3.Top	=	40

ToggleButton1.Value	=	False

ToggleButton1.Caption	=	"Bring	TextBox2	to	Front"

ToggleButton1.Left	=	10

ToggleButton1.Top	=	90

ToggleButton1.Width	=	50

ToggleButton1.Height	=	50

End	Sub

Sub	ToggleButton1_Click()

If	ToggleButton1.Value	=	True	Then

		TextBox2.ZOrder	(fmTop)										'Place	TextBox2	on	Top	of	z-order

				

		'Update	ToggleButton	caption	to	identify	next	state

		ToggleButton1.Caption	=	"Send	TextBox2	to	back"

Else

				TextBox2.ZOrder	(1)														'Place	TextBox2	on	Bottom	of	z-order

				

				'Update	ToggleButton	caption	to	identify	next	state

				ToggleButton1.Caption	=	"Bring	TextBox2	to	front"

End	If

End	Sub

	 	



Show	All



Create	an	instant	workgroup	solution
using	public	folders
By	using	custom	views	in	a	public	folder,	you	can	take	an	existing	item,	such	as
a	contact,	and	turn	it	into	a	workgroup	form	from	which	any	user	of	the	public
folder	can	get	information	or	to	which	they	can	add	data.	With	this	method,	you
create	an	appointment,	task,	or	contact	in	a	public	folder,	create	a	custom	view
for	the	information	in	the	folder,	and	then	give	permission	to	those	who	you
want	to	use	the	folder.



Click	a	step	below	to	begin:

Step	1:	Create	a	public	folder

Step	2:	Create	an	Outlook	item	in	a	public	folder

Step	3:	Create	and	use	a	custom	view	in	a	public	folder



Put	a	list	of	fields	and	values	in	the
message	body
To	add	a	list	of	fields	and	values	in	the	body	of	an	item,	define	a	variable	to
contain	the	string,	and	then	use	Outlook	properties	that	refer	to	the	field	you
want	to	include.	For	example,	to	include	the	To	field	in	the	message	body,	use
the	following.	Chr	(13)	is	the	return	character.

MessageString	=	"This	letter	is	sent	to	"	&	Item.To	&	chr(13)

MessageString	=	MessageString	&	"second	line	goes	here"

Item.Body	=	MessageString

	 	



Go	to	a	line	of	code
1.	 Open	the	Script	Editor.

How?

2.	 On	the	Edit	menu,	click	Go	To.
3.	 In	the	Line	Number	box,	type	in	the	number	of	the	line	of	code	to	which

you	want	to	go.



Use	message	boxes	to	return	values
One	way	to	isolate	errors	is	to	use	a	message	box	to	display	the	value	of	a
variable	or	property	at	a	particular	point	in	the	coce.	This	code	example	shows
the	selection	length	returned	from	the	SelLength	property	in	a	message	box.

MsgBox	Item.GetInspector.ModifiedFormPages("Test").Textbox1.SelLength

	 	



Show	All



Step	1:	Create	a	public	folder
To	create	a	public	folder,	you	must	have	permission	to	create	folders	in	an
existing	public	folder.	For	information	about	how	to	obtain	permission,	see	your
administrator.

1.	 On	the	File	menu,	select	New,	and	then	click	Folder.	(CTRL+SHIFT+E)
2.	 In	the	Name	box,	enter	a	name	for	the	folder.
3.	 In	the	Folder	contains	box,	click	the	type	of	item	that	you	want	the	folder

to	contain.	A	folder	can	only	contain	one	type	of	item.
4.	 Click	the	Select	Folder	button,	and	then	click	the	public	folder	in	which

you	want	your	new	public	folder	to	appear.
5.	 If	you	do	not	want	to	add	a	Shortcut	for	the	public	folder	to	your

Navigation	Pane,	click	No	in	the	Add	shortcut	to	Outlook	Bar?	box.

Note		You	can	copy	a	private	folder	to	a	public	folder	for	quick	creation	of	a
public	folder	with	existing	items.

To	go	on	to	Step	2,	click	



Show	All



Step	2:	Create	an	Outlook	item	in	a
public	folder
1.	 If	the	public	folder,	that	you	want	to	use	does	not	exist,	you	can	create	it.

How?

2.	 In	the	Folder	List	or	on	the	Navigation	Pane,	select	the	public	folder	in
which	you	want	to	add	the	new	item.

3.	 On	the	File	menu,	point	to	New,	and	then	click	the	item	that	you	want	to
create.

Tip	To	quickly	let	others	add	the	public	folder	to	their	Public	Folders	folder,	you
can	send	a	shortcut	in	a	mail	message.

To	go	on	to	Step	3,	click	 .



Show	All



Step	3:	Create	and	use	a	custom	view
in	a	public	folder
With	custom	views,	you	can	arrange	information	in	a	public	folder,	exactly	how
you	want	it.	You	can	set	which	view	is	initially	shown	when	a	user	opens	the
public	folder,	and	you	can	remove	all	the	standard	views	from	a	public	folder
and	only	show	the	custom	views	you	create.	By	setting	the	permission	for	a
public	folder,	you	can	determine	who	has	access	to	the	folder.


