Microsoft Excel Object Model

Application

-Addins | “Addin
~AutoRecover
~CellFormat
I‘Borders
| |‘Bordelr

FFont
L

Interior
~DefaultWebOptions

~Dialogs
|‘Dialog

~ErrorCheckingOptions

~Names
~ODBCErrors

~OLEDBErrors

|‘Range

~Areas

~Borders
|‘Bordelr

—Characters

~Comment

|‘Range (continued)

ListObject
I‘ListColumns

|‘ListRows

|‘XmlMap

~Phonetic

~Phonetics

~PivotCell
|‘PiVOtItemList

~PivotField
|‘CubeField

~Pivotltem

~PivotTable
|‘CalculatedMembers
I‘CubeFields

|‘PivotFormulas

~QueryTable
L

Parameters
~SoundNote
~Validation
~Worksheet
~AutoFilter

~Comments

~CustomProperties
~HPageBreaks

~RecentFiles

L

RecentFile
~RTD
~Sheets

|‘HPageBreaks
| |‘HPageBreak
L

VPageBreaks

|‘VPageBreak

~SmartTagRecogr

|‘SmalrtTagReco

Speech
~SpellingOptions
~UsedObjects
~Watches

|‘Watch

~Windows

|‘Window

L

Panes
~Workbook

~CustomViews

~Mailer
~PublishObjects
LpublishObje

~RoutingSlip

I‘FormatConditions ~ListObjects ~SmartTagOptic
|‘H¥perlinks ~Outline ~Styles
Interior ~PageSetup Lm
~Protection ~WebOptions
Legend ~QueryTables ‘XLmlMaps
. . —Shapes XmlMap
81;;§§ i?l(flycollectlon l:Lab LXLmlNames ac
VPageBreaks XmINamesp
|‘&ath ~Workbooks
|‘XmlMap |‘WorksheetFun(:ti

Please refer to the following links for more information on notable Excel objects

ChartObject object

Name object

Shapes collection

SmartTag object

Show All

New Objects

For the latest information about programming with Microsoft Excel, including
product news, technical articles, downloads, and samples, visit the Microsoft
Office Developer Center on the Microsoft Developer Network (MSDN) Web
site.

The following table lists objects added to the Microsoft Office Excel 2003 object
model.

Object Description

Represents a column in a list. The ListColumn object is a
member of the ListColumns collection. The ListColumns

List{olunn collection contains all the columns in a list (ListObject
object).
A collection of all the ListColumn objects in the specified

ListColumns ListObject object. Each ListColumn object represents a
column in the list.

ListDataFormat The ListDataFormat object holds all the data type

properties of the ListColumn object.

Represents a list object on a worksheet. The ListObject
object is a member of the ListObjects collection. The
ListObjects collection contains all the list objects on a
worksheet.

A collection of all the ListObject objects on a worksheet.
Each ListObject object represents a list in the worksheet.

Represents a row in a List object. The ListRow object is a
ListRow member of the ListRows collection. The ListRows
collection contains all the rows in a list object.

A collection of all the ListRow objects in the specified
ListRows ListObject object. Each ListRow object represents a row in
the list.

Represents the connection to the source data for an XmlMap
object.

ListObject

ListObjects

XmlDataBinding
XmlMap

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT010183231033&CTT=11&Origin=HV010492971033

XmlMaps
XmlNamespace
XmlNamespaces

XmlSchema
XmlSchemas

XPath

Represents an XML map that has been added to a workbook.

Represents the collection of XmlMap objects that have been
added to a workbook.

Represents a namespace that has been added to a workbook.

Represents the collection of XmlNamespace objects in a
workbook.

Represents an XML schema contained by an XmlMap
object.

Represents the collection of XmlSchema objects contained
by an XmlMap object.

Represents an XPath that has been mapped to a Range or
ListColumn object.

New Properties (Alphabetical List)

For the latest information about programming with Microsoft Excel, including
product news, technical articles, downloads, and samples, visit the Microsoft
Office Developer Center on the Microsoft Developer Network (MSDN) Web

site.

The following table lists properties added to the Microsoft Office Excel 2003

object model (sorted alphabetically).

New Property
Active
ActiveXControl
AllowFillIn

AppendOnlmport
ArbitraryXMIL.SupportAvailable

AutoExpandListRange
CheckboxState

Choices
DataBinding
DecimalPlaces
DefaultValue

DisplayDocumentActionTaskPane
DisplayInkComments
DocumentL.ibraryVersions
ExpandHelp

HeaderRowRange
InactiveL.istBorderVisible

InsertRowRange
InvalidData

IsExportable
IsPercent

Icid

Object(s)
ListObject
SmartTagAction
ListDataFormat
XmlMap
Application
AutoCorrect
SmartTagAction
ListDataFormat
XmlMap
ListDataFormat
ListDataFormat
Application
Application, Workbook
Workbook
SmartTagAction
ListObject
Workbook
ListObject
ListRow
XmlMap
ListDataFormat
ListDataFormat

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT010183231033&CTT=11&Origin=HV010492981033

ListColumns ListObject
ListDataFormat ListColumn
ListDataValidation ErrorCheckingOptions
ListObject QueryTable, Range
ListObjects Worksheet
ListRows ListObject
ListSelection SmartTagAction
Map XPath
MaxCharacters ListDataFormat
MaxNumber ListDataFormat
MinNumber ListDataFormat
Namespace XmlSchema
Permission Workbook
Prefix XmlNamespace
PresentInPane SmartTagAction
PreserveColumnFilter XmlMap
PreserveNumberFormatting XmlMap
RadioGroupSelection SmartTagAction
Repeating XPath

Required ListDataFormat
RootElementName XmlMap
RootElementNamespace XmlMap
SaveDataSourceDefinition XmlMap
Schemas XmlMap
SharedWorkspace Workbook
SharePointFormula ListColumn
SharePointURL ListObject
ShowAutoFilter ListObject
ShowImportExportValidationErrors XmlMap
ShowTotals ListObject
SmartDocument Workbook
SourceUrl XmlDataBinding
Sync Workbook

SyncScrollingSideBySide
TextboxText

TextFileVisuall.ayout
TotalsCalculation

TotalsRowRange
Uri

XmlMap
XmlMaps

XmlNamespaces
XPath

Windows
SmartTagAction
QueryTable
ListColumn
ListObject
XmlNamespace
ListObject
Workbook
Workbook

Range, ListColumn

New Properties (by Object)

For the latest information about programming with Microsoft Excel, including
product news, technical articles, downloads, and samples, visit the Microsoft
Office Developer Center on the Microsoft Developer Network (MSDN) Web
site.

The following table lists properties added to the Microsoft Office Excel 2003
object model (sorted by object name).

Object New Properties

ArbitraryXMIL.SupportAvailable,
DisplayDocumentActionTaskPane
AutoCorrect AutoExpandListRange

ErrorCheckingOptions ListDataValidation

Application

ListDataFormat, SharePointFormula,
TotalsCalculation, XPath

AllowFillln, Choices, DecimalPlaces, DefaultValue,
ListDataFormat IsPercent, Icid, MaxCharacters, MaxNumber,
MinNumber, Required

Active, HeaderRowRange, InsertRowRange,
ListColumns, ListRows, SharePointURI,
ShowAutoFilter, ShowTotals, TotalsRowRange,
XmlMap

ListRow InvalidData

QueryTable ListObject, TextFileVisuall.ayout
Range ListObject, XPath

ActiveXControl, CheckboxState, ExpandHelp,
SmartTagAction ListSelection, PresentInPane,
RadioGroupSelection, TextboxText

Windows SyncScrollingSideBySide

DisplayInkComments, DocumentLibraryVersions,
InactiveL istBorderVisible, Permission,

Workbook SharedWorkspace, SmartDocument, Sync,

ListColumn

ListObject

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT010183231033&CTT=11&Origin=HV010492991033

Worksheet
XmlDataBinding

XmlMap

XmlNamespace
XmlSchema
XPath

XmlMaps, XmINamespaces
ListObjects
SourceUrl

AppendOnImport, DataBinding, IsExportable,
PreserveColumnFilter,

PreserveNumberFormatting, RootElementName,

RootElementNamespace,
SaveDataSourceDefinition, Schemas,

ShowlmportExportValidationErrors
Prefix, Uri

Namespace

Map, Repeating

New Methods (Alphabetical List)

For the latest information about programming with Microsoft Excel, including
product news, technical articles, downloads, and samples, visit the Microsoft
Office Developer Center on the Microsoft Developer Network (MSDN) Web
site.

The following table lists methods added to the Microsoft Office Excel 2003
object model (sorted alphabetically).

New Method Object
BreakSideBySide Windows
ClearSettings XmlDataBinding

CompareSideBySideWith Windows
DisplayXMIL.SourcePane Application

ExportXml XmlMap
ImportXml XmlMap
InstallM anifest XmlNamespaces
LoadSettings XmlDataBinding
ResetPositionsSideBySide Windows
SaveAsXMI .Data Workbook
SendFaxOverInternet Workbook
SetValue XPath

Unlink ListObject
Unlist ListObject
UpdateChanges ListObject
XmlDataQuery Worksheet
XmlImport Workbook
XmlImportXml Workbook

XmlMapQuery Worksheet

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT010183231033&CTT=11&Origin=HV010492951033

New Methods (by Object)

For the latest information about programming with Microsoft Excel, including
product news, technical articles, downloads, and samples, visit the Microsoft
Office Developer Center on the Microsoft Developer Network (MSDN) Web
site.

The following table lists methods added to the Microsoft Office Excel 2003
object model (sorted by object name).

New Method Object
DisplayXMI.SourcePane
ListObject Unlink, Unlist, UpdateChanges

BreakSideBySide, CompareSideBySideWith,
ResetPositionsSideBySide

Workbook SaveAsXMI .Data, SendFaxOverlInternet, XmlImport,
XmlImportXml

Worksheet XmlDataQuery, XmlMapQuery

XmlDataBinding ClearSettings, L.oadSettings

XmlMap ExportXml, ImportXml

XmlNamespaces InstallManifest

XPath SetValue

Windows

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT010183231033&CTT=11&Origin=HV010492961033

New Events

For the latest information about programming with Microsoft Excel, including
product news, technical articles, downloads, and samples, visit the Microsoft
Office Developer Center on the Microsoft Developer Network (MSDN) Web
site.

The following table lists events added to the Microsoft Office Excel 2003 object
model.

New Event Object
AfterXmlExport Workbook
AfterXmlImport Workbook
BeforeXmlExport Workbook
BeforeXmlImport Workbook
Sync Workbook

WorkbookAfterXmlExport Application
WorkbookAfterXmllmport Application
WorkbookBeforeXmlExport Application

WorkbookBeforeXmlImport Application
WorkbookSync Application

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT010183231033&CTT=11&Origin=HV010492941033

AddIns Collection Object

Application |‘Addlns

|‘Addln

A collection of AddIn objects that represents all the add-ins available to
Microsoft Excel, regardless of whether they’re installed. This list corresponds to
the list of add-ins displayed in the Add-Ins dialog box (Tools menu).

Using the Addins Collection

Use the AddIns method to return the AddIns collection. The following example
creates a list that contains the names and installed states of all the available add-
ins.

Sub DisplayAddIns()
Worksheets("Sheet1").Activate
rw =1
For Each ad In Application.AddIns
Worksheets("Sheet1").Cells(rw, 1)
Worksheets("Sheet1").Cells(rw, 2)
rw=rw + 1
Next
End Sub

ad.Name
ad.Installed

Use the Add method to add an add-in to the list of available add-ins. The Add
method adds an add-in to the list but doesn’t install the add-in. Set the Installed
property of the add-in to True to install the add-in. To install an add-in that
doesn’t appear in the list of available add-ins, you must first use the Add method
and then set the Installed property. This can be done in a single step, as shown
in the following example (note that you use the name of the add-in, not its title,
with the Add method).

AddIns.Add("generic.x11").Installed = True

Use AddIns(index) where index is the add-in title or index number to return a
single AddIn object. The following example installs the Analysis Toolpak add-
in.

AddIns("analysis toolpak").Installed = True

Don’t confuse the add-in title, which appears in the Add-Ins dialog box, with the
add-in name, which is the file name of the add-in. You must spell the add-in title
exactly as it’s spelled in the Add-Ins dialog box, but the capitalization doesn’t
have to match.

AllowEditRanges Collection

L

Protection ~AllowEditRanges
|‘AllowE ditRange
L

Multiple objects

A collection of all the AllowEditRanges objects that represent the cells that can
be edited on a protected worksheet.

Using the AllowEditRanges Collection

Use the AllowEditRanges property of the Protection object to return an
AllowEditRanges collection.

Once an AllowEditRanges collection has been returned, you can use the Add
method to add a range that can be edited on a protected worksheet.

In this example, Microsoft Excel allows edits to range "A1:A4" on the active
worksheet and notifies the user of the title and address of the specified range.

Sub UseAllowEditRanges()

Dim wksOne As Worksheet
Dim wksPassword As String

Set wksOne = Application.ActiveSheet

' Unprotect worksheet.
wksOne.Unprotect

wksPassword = InputBox ("Enter password for the worksheet")

' Establish a range that can allow edits

' on the protected worksheet.

wksOne.Protection.AllowEditRanges.Add _
Title:="Classified", _
Range:=Range("Al1:A4"), _
Password:=wksPassword

' Notify the user
' the title and address of the range.
With wksOne.Protection.AllowEditRanges.Item(1)
MsgBox "Title of range: " & .Title
MsgBox "Address of range: " & .Range.Address
End With

End Sub

Areas Collection

Range |‘Alreas

|‘Range

|‘Multiple objects

A collection of the areas, or contiguous blocks of cells, within a selection.
There’s no singular Area object; individual members of the Areas collection are
Range objects. The Areas collection contains one Range object for each
discrete, contiguous range of cells within the selection. If the selection contains
only one area, the Areas collection contains a single Range object that
corresponds to that selection.

Using the Areas Collection

Use the Areas property to return the Areas collection. The following example
clears the current selection if it contains more than one area.

If Selection.Areas.Count <> 1 Then Selection.Clear

Use Areas(index), where index is the area index number, to return a single
Range object from the collection. The index numbers correspond to the order in
which the areas were selected. The following example clears the first area in the
current selection if the selection contains more than one area.

If Selection.Areas.Count <> 1 Then
Selection.Areas(1).Clear
End If

Some operations cannot be performed on more than one area in a selection at the
same time; you must loop through the individual areas in the selection and
perform the operations on each area separately. The following example performs
the operation named "myOperation” on the selected range if the selection
contains only one area; if the selection contains multiple areas, the example
performs myOperation on each individual area in the selection.

Set rangeToUse = Selection

If rangeToUse.Areas.Count = 1 Then
myOperation rangeToUse

Else
For Each singleArea in rangeToUse.Areas

myOperation singleArea

Next

End If

Axes Collection Object

L

Axis

Multiple objects

Axes

L

A collection of all the Axis objects in the specified chart.

Using the Axes Collection

Use the Axes method to return the Axes collection. The following example
displays the number of axes on embedded chart one on worksheet one.

With Worksheets(1).ChartObjects(1).Chart
MsgBox .Axes.Count
End wWith

Use Axes(type, group), where type is the axis type and group is the axis group,
to return a single Axis object. Type can be one of the following X1AxisType
constants: xlCategory, xlISeries, or xIValue. Group can be one of the following
XIAxisGroup constants: xIPrimary or xISecondary. For more information, see
the Axes method.

The following example sets the category axis title text on the chart sheet named
"Chart1."

wWith Charts("chartl").Axes(x1lCategory)
.HasTitle = True
.AxisTitle.Caption = "1994"

End wWith

Borders Collection

L

Multiple objects ~“Borders

Border

A collection of four Border objects that represent the four borders of a Range or
Style object.

Using the Borders Collection

Use the Borders property to return the Borders collection, which contains all
four borders. The following example adds a double border to cell A1 on
worksheet one.

Worksheets(1).Range("A1").Borders.LineStyle = x1lDouble

Use Borders(index), where index identifies the border, to return a single Border
object. The following example sets the color of the bottom border of cells A1:G1
to red.

Worksheets("Sheet1").Range("A1:G1"). _
Borders(xlEdgeBottom).Color = RGB(255, 0, 0)

Index can be one of the following XIBordersIndex constants: xIDiagonalDown,
xIDiagonalUp, xIEdgeBottom, xIEdgeL eft, xIEdgeRight, or xIEdgeTop,
xlInsideHorizontal, or xlInsideVertical.

Remarks

You can set border properties for an individual border only with Range and
Style objects. Other bordered objects, such as check boxes and chart areas, have
a border that’s treated as a single entity, regardless of how many sides it has. For
these objects, you must return and set properties for the entire border as a unit.
For more information, see the Border object.

Show All

CalculatedFields Collection Object

LpivotField

Multiple objects

CalculatedFields
L

A collection of PiveotField objects that represents all the calculated fields in the
specified PivotTable report. For example, a report that contains Revenue and
Expense fields could have a calculated field named “Profit” defined as the
amount in the Revenue field minus the amount in the Expense field.

Remarks

For OLAP data sources, you cannot set this collection, and it always returns
Nothing.

Using the CalculatedFields Collection

Use the CalculatedFields method to return the CalculatedFields collection The
following example deletes the calculated fields from the PivotTable report
named “Pivot1”.

For Each fld in _
Worksheets(1).PivotTables("Pivot1").CalculatedFields
fld.Delete
Next

Use CalculatedFields(index), where index is specified field’s name or index
number, to return a single PivotField object from the CalculatedFields
collection.

CalculatedItems Collection Object

L

CalculatedItems Pivotltem

L

Multiple objects

A collection of PivetItem objects that represent all the calculated items in the
specified PivotTable report. For example, a PivotTable report that contains
January, February, and March items could have a calculated item named
“FirstQuarter” defined as the sum of the amounts in January, February, and
March.

Using the CalculatedItems Collection

Use the CalculatedItems method to return the CalculatedItems collection The
following example creates a list of the calculated items in the first PivotTable
report on worksheet one, along with their formulas.

Set pt = Worksheets(1).PivotTables(1)
For Each ci In pt.PivotFields("Sales").CalculatedItems
r=r +1
With Worksheets(2)
.Cells(r, 1).value
.Cells(r, 2).value
End With
Next

ci.Name
ci.Formula

Use CalculatedFields(index), where index is the name or index number of the
field, to return a single PivotField object from the CalculatedFields collection.

Show All

CalculatedMembers Collection

PivotTable |‘CalculatedMembelrs
|‘CalculatedMeInbelr

A collection of all the CalculatedMember objects on the specified PivotTable.
Each CalculatedMember object represents a calculated member or calculated

measure.

Using the CalculatedMembers collection

Use the CalculatedMembers property of the PivotTable object to return a
CalculatedMembers collection. The following example adds a set to a
PivotTable, assuming a PivotTable exists on the active worksheet.

Sub UseCalculatedMember ()
Dim pvtTable As PivotTable
Set pvtTable = ActiveSheet.PivotTables(1)
pvtTable.CalculatedMembers.Add Name:="[Beef]", _
Formula:=""'{[Product].[All Products].Children}'", _
Type:=x1CalculatedSet

End Sub

Note For the Add method in the previous example, the Formula argument must
have a valid MDX syntax statement. The Name argument has to be acceptable to

the Online Analytical Processing (OLLAP) provider and the Type argument has to
be defined.

ChartGroups Collection

ChartGroups -

L

ChartGroup
Multiple objects

A collection of all the ChartGroup objects in the specified chart. Each
ChartGroup object represents one or more series plotted in a chart with the
same format. A chart contains one or more chart groups, each chart group
contains one or more series, and each series contains one or more points. For
example, a single chart might contain both a line chart group, containing all the
series plotted with the line chart format, and a bar chart group, containing all the
series plotted with the bar chart format.

Using the ChartGroups Collection

Use the ChartGroups method to return the ChartGroups collection. The
following example displays the number of chart groups on embedded chart one
on worksheet one.

MsgBox Worksheets(1).ChartObjects(1).Chart.ChartGroups.Count

Use ChartGroups(index), where index is the chart-group index number, to
return a single ChartGroup object. The following example adds drop lines to
chart group one on chart sheet one.

Charts(1).ChartGroups(1).HasDropLines = True

If the chart has been activated, you can use ActiveChart:

Charts(1).Activate
ActiveChart.ChartGroups(1).HasDropLines = True

Because the index number for a particular chart group can change if the chart
format used for that group is changed, it may be easier to use one of the named
chart group shortcut methods to return a particular chart group. The PieGroups
method returns the collection of pie chart groups in a chart, the LineGroups
method returns the collection of line chart groups, and so on. Each of these
methods can be used with an index number to return a single ChartGroup
object, or without an index number to return a ChartGroups collection. The
following chart group methods are available:

AreaGroups method
BarGroups method
ColumnGroups method
DoughnutGroups method
LineGroups method
PieGroups method

ChartObjects Collection Object

L

ChartObjects ~Multiple objects

A collection of all the ChartObject objects on the specified chart sheet, dialog
sheet, or worksheet. Each ChartObject object represents an embedded chart.
The ChartObject object acts as a container for a Chart object. Properties and
methods for the ChartObject object control the appearance and size of the
embedded chart on the sheet.

Using the ChartObjects Collection

Use the ChartObjects method to return the ChartObjects collection. The

following example deletes all the embedded charts on the worksheet named
"Sheet1."

wWorksheets("sheetl").ChartObjects.Delete

Use the Add method to create a new, empty embedded chart and add it to the
collection. Use the ChartWizard method to add data and format the new chart.
The following example creates a new embedded chart and then adds the data
from cells A1:A20 as a line chart.

Dim ch As ChartObject

Set ch = Worksheets("sheetl").ChartObjects.Add(100, 30, 400, 250)

ch.Chart.ChartWizard source:=Worksheets('"sheet1").Range("al:a20"), _
gallery:=x1lLine, title:="New Chart"

Use ChartObjects(index), where index is the embedded chart index number or
name, to return a single ChartObject object. The following example sets the
pattern for the chart area in embedded chart one on the worksheet named
"Sheet1."

Worksheets("Sheet1").ChartObjects(1).Chart. _
ChartArea.Interior.Pattern = xlLightDown

Charts Collection

L

Charts ~Multiple objects

A collection of all the chart sheets in the specified or active workbook. Each
chart sheet is represented by a Chart object. This doesn’t include charts
embedded on worksheets or dialog sheets. For information about embedded
charts, see the Chart or ChartObject object.

Using the Charts Collection

Use the Charts property to return the Charts collection. The following example
prints all chart sheets in the active workbook.

Charts.PrintOut

Use the Add method to create a new chart sheet and add it to the workbook. The
following example adds a new chart sheet to the active workbook and places the
new chart sheet immediately after the worksheet named Sheet1.

Charts.Add After:=Worksheets('"Sheetl1")

You can combine the Add method with the ChartWizard method to add a new
chart that contains data from a worksheet. The following example adds a new
line chart based on data in cells A1:A20 on the worksheet named Sheet1.

wWith Charts.Add
.ChartWizard source:=Worksheets("Sheetl").Range("A1:A20"), _
Gallery:=x1lLine, Title:="February Data"
End with

Use Charts(index), where index is the chart-sheet index number or name, to
return a single Chart object. The following example changes the color of series
one on chart sheet one to red.

Charts(1).SeriesCollection(1).Interior.Color = RGB(255, 0, 0)

The Sheets collection contains all the sheets in the workbook (both chart sheets
and worksheets). Use Sheets(index), where index is the sheet name or number, to
return a single sheet.

Comments Collection Object

Worksheet L

L

Comment

|‘Shape

Comments

A collection of cell comments. Each comment is represented by a Comment
object.

Using the Comments Collection

Use the Comments property to return the Comments collection. The following
example hides all the comments on worksheet one.

Set cmt = Worksheets(1).Comments
For Each ¢ In cmt

c.Visible = False
Next

Use the AddComment method to add a comment to a range. The following
example adds a comment to cell E5 on worksheet one.

With Worksheets(1).Range("e5").AddComment
.Visible = False
.Text "reviewed on " & Date

End With

Use Comments(index), where index is the comment number, to return a single
comment from the Comments collection. The following example hides
comment two on worksheet one.

Worksheets(1).Comments(2).Visible = False

Show All

CubeFields Collection Object

PivotTable |‘CubeFields

|‘CubeField
L

Multiple objects

A collection of all CubeField objects in a PivotTable report that is based on an
OLAP cube. Each CubeField object represents a hierarchy or measure field
from the cube.

Using the CubeFields Collection

Use the CubeFields property to return the CubeFields collection. The following
example creates a list of cube field names of the data fields in the first OLAP-
based PivotTable report on Sheet1.

Set objNewSheet = Worksheets.Add
intRow = 1
For Each objCubeFld In _
Worksheets("Sheet1").PivotTables(1).CubeFields
If objCubeFld.Orientation = xlDataField Then
objNewSheet.Cells(intRow, 1).Value = objCubeFld.Name
intRow = intRow + 1
End If
Next objCubeFld

Use CubeFields(index), where index is the cube field’s index number, to return a
single CubeField object. The following example determines the name of the
second cube field in the first PivotTable report on the active worksheet.

strAlphaName = _
ActiveSheet.PivotTables(1).CubeFields(2).Name

CustomProperties Collection

L

Multiple objects ~CustomProperties

CustomProperty

A collection of CustomProperty objects that represent additional information.
The information can be used as metadata for XML.

Using the CustomProperties collection

Use the Properties property of the SmartTag object, or the CustomProperties
property of the Worksheet object, to return a CustomProperties collection.

Once a CustomProperties collection is returned, you can add metadata to
worksheets and smart tags depending on which you choose to work with.

To add metadata to a worksheet, use the CustomProperties property with the
Add method.

The following example demonstrates this feature. In this example, Microsoft
Excel adds identifier information to the active worksheet and returns the name
and value to the user.

Sub CheckCustomProperties()
Dim wksSheetl As Worksheet
Set wksSheetl = Application.ActiveSheet

' Add metadata to worksheet.
wksSheetl.CustomProperties.Add _
Name:="Market", Value:='"Nasdaq"

' Display metadata.

With wksSheetl.CustomProperties.Item(1)
MsgBox .Name & vbTab & .Value

End With

End Sub

To add metadata to a smart tag, use the Properties property with the Add
method.

The following example demonstrates this feature. In this example, Microsoft
Excel adds a smart tag titled "MSFT" to cell A1, then adds extra metadata called
"Market" with the value of "Nasdaq" to the smart tag and then returns the value
of the property to the user. This example assumes the host system is connected to
the Internet when running this code sample and the checked recognizer called
"Stock Ticker Symbol Recognizer" is enabled for Microsoft Excel.

Sub UseProperties()

Dim strLink As String
Dim strType As String

' Define smart tag variables.
strLink "urn:schemas-microsoft-com:smarttags#stocktickerSymbol
strType "stockview"

Range("A1").Formula = "MSFT"

' Add a property for MSFT smart tag and define its value.

Range("A1").SmartTags.Add(strLink).Properties.Add _
Name:="Market", Value:="Nasdaq"

' Notify the user of the smart tag's value.
MsgBox Range("Al1").SmartTags.Add(strLink).Properties("Market").Vv

End Sub

CustomViews Collection Object

L

Workbook —CustomViews

L

CustomView

A collection of custom workbook views. Each view is represented by a
CustomView object.

Using the CustomViews Collection

Use the CustomViews property to return the CustomViews collection. Use the
Add method to create a new custom view and add it to the CustomViews
collection. The following example creates a new custom view named
"Summary."

ActiveWorkbook.CustomViews.Add "Summary'", True, True

Datal.abels Collection Object

L

Datal.abels ~Multiple objects

A collection of all the Datal.abel objects for the specified series. Each
Datal.abel object represents a data label for a point or trendline. For a series
without definable points (such as an area series), the DataL.abels collection
contains a single data label.

Using the Datalabels Collection

Use the DataLabels method to return the DataL.abels collection. The following
example sets the number format for data labels on series one on chart sheet one.

With Charts(1).SeriesCollection(1)
.HasDatalLabels = True
.DatalLabels.NumberFormat = "##.##"

End With

Use DataLabels(index), where index is the data-label index number, to return a
single DataL.abel object. The following example sets the number format for the
fifth data label in series one in embedded chart one on worksheet one.

Worksheets(1).ChartObjects(1).Chart _
.SeriesCollection(1).DatalLabels(5).NumberFormat = "0.000"

DiagramNodes Collection

Diagram |‘DiagramNodes
L

DiagramNode
|‘Multiple objects

A collection of DiagramNode objects that represents all the nodes in a diagram.

Using the DiagramNodes collection

Use the Nodes property of the Diagram object to return a DiagramNodes
collection. Use the Item method to select and work with a single diagram node
in a diagram. This example assumes the first shape in the active worksheet is a
diagram, selects the first node, and deletes it.

Sub FillDiagramNode()
ActiveSheet.Shapes(1).Diagram.Nodes.Item(1).Delete
End Sub

Use the SelectAll method to select and work with all nodes in a diagram. This
example assumes the first shape in the active worksheet is a diagram, selects all
nodes, and fills them with the specified pattern.

Sub FillDiagramNodes()
ActiveSheet.Shapes(1).Diagram.Nodes.SelectAll
Selection.ShapeRange.Fill.Patterned msoPatternSmallConfetti

End Sub

Dialogs Collection Object

Application |‘Dialogs
|‘Dialog

A collection of all the Dialog objects in Microsoft Excel. Each Dialog object
represents a built-in dialog box. You cannot create a new built-in dialog box or
add one to the collection. The only useful thing you can do with a Dialog object
is use it with the Show method to display the dialog corresponding dialog box.

Using the Dialogs Collection

Use the Dialogs property to return the Dialogs collection. The following
example displays the number of available built-in Microsoft Excel dialog boxes.

MsgBox Application.Dialogs.Count

Use Dialogs(index), where index is a built-in constant identifying the dialog box,
to return a single Dialog object. The following example runs the built-in File
Open dialog box.

dlgAnswer = Application.Dialogs(xlDialogOpen).Show

The Microsoft Excel Visual Basic object library includes built-in constants for
many of the built-in dialog boxes. Each constant is formed from the prefix
"x]Dialog" followed by the name of the dialog box. For example, the Apply
Names dialog box constant is xIDialogApplyNames, and the Find File dialog
box constant is xIDialogFindFile. These constants are members of the
XlBuiltinDialog enumerated type. For more information about the available
constants, see Built-in Dialog Box Argument Lists.

Errors Object

Range |‘Errors

L

Error

Represents the various spreadsheet errors for a range.

Using the Errors object

Use the Errors property of the Range collection to return an Errors object.

Once an Errors object is returned, you can use the Value property of the Error
object to check for particular error-checking conditions. The following example
places a number as text in cell A1 and then notifies the user when the value of
cell A1 contains a number as text.

Sub ErrorValue()

' Place a number written as text in cell A1l.
Range("A1").Formula = "'1"

If Range("A1").Errors.Item(x1NumberAsText).Value = True Then
MsgBox "Cell Al has a number as text."

Else
MsgBox "Cell A1 is a number."

End If

End Sub

Filters Collection Object

L

AutoFilter ~Filters

|‘Filter

A collection of Filter objects that represents all the filters in an autofiltered
range.

Using the Filters Collection

Use the Filters method to return the Filters collection. The following example
creates a list that contains the criteria and operators for the filters in the
autofiltered range on the Crew worksheet.

Dim f As Filter
Dim w As Worksheet
Const ns As String = "Not set"

Set w = Worksheets("Crew")
Set w2 = Worksheets("FilterData")
rw =1
For Each f In w.AutoFilter.Filters
If f.0n Then
cl = Right(f.Criterial, Len(f.Criterial) - 1)
If f.Operator Then

op = f.Operator
c2 = Right(f.Criteria2, Len(f.Criteria2) - 1)
Else
op = ns
c2 = ns
End If
Else
cl = ns
op = ns
c2 = ns
End If
w2.Cells(rw, 1) = c1
w2.Cells(rw, 2) = op
w2.Cells(rw, 3) = c2

rw=rw+ 1
Next

Use Filters(index), where index is the filter title or index number, to return a
single Filter object. The following example sets a variable to the value of the
On property of the filter for the first column in the filtered range on the Crew
worksheet.

Set w = Worksheets("Crew")
If w.AutoFilterMode Then

filterIsOn = w.AutoFilter.Filters(1).0n
End If

FormatConditions Collection Object

L

Range ~FormatConditions

|‘FormatCondition

L

Multiple objects

Represents the collection of conditional formats for a single range. The
FormatConditions collection can contain up to three conditional formats. Each
format is represented by a FormatCondition object.

Using the FormatConditions Collection

Use the FormatConditions property to return a FormatConditions object. Use
the Add method to create a new conditional format, and use the Modify method
to change an existing conditional format.

The following example adds a conditional format to cells E1:E10.

With Worksheets(1).Range("el:e10").FormatConditions _
.Add(x1Cellvalue, xlGreater, "=%a%$1")
wWith .Borders
.LineStyle = x1Continuous
.Weight = x1Thin
.ColorIndex = 6

End With
With .Font
.Bold = True
.ColorIndex = 3
End With

End With

Remarks

If you try to create more than three conditional formats for a single range, the
Add method fails. If a range has three formats, you can use the Modify method
to change one of the formats, or you can use the Delete method to delete a
format and then use the Add method to create a new format.

For more information about conditional formats, see the FormatCondition
object.

HPageBreaks Collection Object

L

Multiple objects “"HPageBreaks

|‘HPageBreak
|‘Multiple objects

The collection of horizontal page breaks within the print area. Each horizontal
page break is represented by an HPageBreak object.

Using the HPageBreaks Collection

Use the HPageBreaks property to return the HPageBreaks collection. Use the
Add method to add a horizontal page break. The following example adds a
horizontal page break above the active cell.

ActiveSheet.HPageBreaks.Add Before:=ActiveCell

If you add a page break that does not intersect the print area, then the newly-
added HPageBreak object will not appear in the HPageBreaks collection for
the print area. The contents of the collection may change if the print area is
resized or redefined.

When the Application property, Count property, Creator property, Item
property, Parent property or Add method is used in conjunction with the
HPageBreaks property:

e For an automatic print area, the HPageBreaks property applies only to the
page breaks within the print area.

e For a user-defined print area of the same range, the HPageBreaks property
applies to all of the page breaks.

Note There is a limit of 1026 horizontal page breaks per sheet.

Hyperlinks Collection

Multiple objects L

LHyperlink
|‘Multiple objects

Hyperlinks

Represents the collection of hyperlinks for a worksheet or range. Each hyperlink
is represented by a Hyperlink object.

Using the Hyperlinks Collection

Use the Hyperlinks property to return the Hyperlinks collection. The following
example checks the hyperlinks on worksheet one for a link that contains the
word Microsoft.

For Each h in Worksheets(1).Hyperlinks
If Instr(h.Name, "Microsoft") <> 0 Then h.Follow
Next

Use the Add method to create a hyperlink and add it to the Hyperlinks
collection. The following example creates a new hyperlink for cell ES.

With Worksheets(1)

.Hyperlinks.Add .Range("E5"), "http://example.microsoft.com"
End With

LegendEntries Collection Object

LegendEntries |‘LegendEntr;z

|‘Multiple objects

A collection of all the LegendEntry objects in the specified chart legend. Each
legend entry has two parts: the text of the entry, which is the name of the series
or trendline associated with the legend entry; and the entry marker, which
visually links the legend entry with its associated series or trendline in the chart.
The formatting properties for the entry marker and its associated series or
trendline are contained in the LegendKey object.

Using the LegendEntries Collection

Use the LegendEntries method to return the LegendEntries collection. The
following example loops through the collection of legend entries in embedded
chart one and changes their font color.

wWith Worksheets("sheetl1").ChartObjects(1).Chart.Legend
For i = 1 To .LegendEntries.Count
.LegendEntries(i).Font.ColorIndex = 5
Next
End With

Use LegendEntries(index), where index is the legend entry index number, to
return a single LegendEntry object. You cannot return legend entries by name.

The index number represents the position of the legend entry in the legend.
LegendEntries(1) is at the top of the legend;
LegendEntries(LegendEntries.Count) is at the bottom. The following
example changes the font style for the text of the legend entry at the top of the
legend (this is usually the legend for series one) in embedded chart one to italic.

Worksheets("sheet1").ChartObjects(1).Chart _
.Legend.LegendEntries(1).Font.Italic = True

Show All

ListColumns Collection

L

ListObject ~ListColumns

L

ListColumn

|‘Multiple objects

A collection of all the ListColumn objects in the specified ListObject object.
Each ListColumn object represents a column in the list.

Using the ListColumns Collection

Use the ListColumns property of the ListObject object to return the
ListColumns collection. The following example adds a new column to the
default ListObject object in the first worksheet of the workbook. Because no
position is specified, a new rightmost column is added.

Set myNewColumn = Worksheets(1l).ListObject(1).ListColumns.Add

Note A name for the column is automatically generated. You can change the
name after the column has been added.

ListObjects Collection

Worksheet L

|‘ListObj ect

|‘Multiple objects

ListObjects

A collection of all the ListObject objects on a worksheet. Each ListObject
object represents a list in the worksheet.

Using the ListObjects Collection

Use the ListObjects property of the Worksheet object to return the ListObjects
collection. The following example creates a new ListObjects collection which
represents all the lists in a worksheet.

Set myWorksheetLists = Worksheets(1).ListObjects

ListRows Collection

ListObject -

L

ListRow

|‘Range

ListRows

A collection of all the ListRow objects in the specified ListObject object. Each
ListRow object represents a row in the list.

Using the ListRows Collection

Use the ListRows property of the ListObject object to return the ListRows
Object collection. The following example adds a new row to the default
ListObject object in the first worksheet of the workbook. Because no position is
specified, a new row is added to the end of the list.

Set myNewRow = Worksheets(1).ListObject(0).ListRows.Add

Names Collection Object

L

Multiple objects “Names

Name

|‘Range

A collection of all the Name objects in the application or workbook. Each Name
object represents a defined name for a range of cells. Names can be either built-
in names— such as Database, Print_Area, and Auto_Open— or custom names.

Using the Names Collection

Use the Names property to return the Names collection. The following example
creates a list of all the names in the active workbook, plus the addresses they
refer to.

Set nms ActiveWorkbook.Names
Set wks = Worksheets(1)
For r = 1 To nms.Count
wks.Cells(r, 2).Value
wks.Cells(r, 3).Value
Next

nms(r).Name
nms(r).RefersToRange.Address

Use the Add method to create a name and add it to the collection.The following
example creates a new name that refers to cells A1:C20 on the worksheet named
"Sheet1."

Names.Add Name:="test", RefersTo:="=sheetl!al:c20"

The RefersTo argument must be specified in A1-style notation, including dollar
signs ($) where appropriate. For example, if cell A10 is selected on Sheet1 and
you define a name by using the RefersTo argument "=sheet1!A1:B1", the new
name actually refers to cells A10:B10 (because you specified a relative
reference). To specify an absolute reference, use "=sheet1!A1:B1".

Use Names(index), where index is the name index number or defined name, to
return a single Name object.The following example deletes the name
"mySortRange" from the active workbook.

ActiveWorkbook.Names("mySortRange") .Delete

ODBCErrors Collection Object

Application |‘ODBCErrors
LODBCError

A collection of ODBCError objects. Each ODBCError object represents an
error returned by the most recent ODBC query. If the specified ODBC query
runs without error, the ODBCErrors collection is empty. The errors in the
collection are indexed in the order in which they’re generated by the ODBC data
source. You cannot add members to the collection.

Using the ODBCErrors Collection

Use the ODBCErrors property to return the ODBCErrors collection. The
following example refreshes query table one and displays any ODBC errors that
occur.

With Worksheets(1).QueryTables(1)
.Refresh
Set errs = Application.ODBCErrors
If errs.Count > 0 Then
Set r = .Destination.Cells(1)

r.Value = "The following errors occurred:"
c =20
For Each er In errs

c=c+1

r.offset(c, 0).value
r.offset(c, 1).value
Next
Else
MsgBox "Query complete: all records returned."
End If
End With

er.ErrorString
er.SqlState

OLEDBErrors Collection Object

Application LOLEDBErrors
|‘OLEDBError

A collection of OLEDBETrror objects. Each OLEDBError object represents an
error returned by the most recent OLE DB query. If the specified OLE DB query
runs without error, the OLEDBErrors collection is empty. The errors in the
collection are indexed in the order in which they're generated by the OLE DB
provider. You cannot add members to the collection.

Using the OLEDBErrors Collection

Use the OLEDBEr rrors property to return the OLEDBErrors collection. The
following example displays the error description and the SqlState property’s
value for each OLE DB error in the collection.

For Each objEr in Application.OLEDBErrors
MsgBox "The following error occurred:" & _
objEr.ErrorString & " : " & objEr.SqlState
Next objEr

Use OLEDBErrors(index), where index is the index number of the OLE DB
error, to return a single OLEDBETrror object. The following example displays
the error description and the SglState property’s value for the first error returned
by the most recent OLE DB query.

Set objEr = Application.OLEDBErrors(1)
MsgBox "The following error occurred:" & _
objEr.ErrorString & " : " & objEr.SqlState

OLEODbjects Collection Object

L

OLEObjects ~Multiple objects

A collection of all the OLEQObject objects on the specified worksheet. Each
OLEODbject object represents an ActiveX control or a linked or embedded OLE

object.

Using the OLEQODbjects Collection

Use the OLEObjects method to return the OLEODbjects collection. The
following example hides all the OLE objects on worksheet one.

Worksheets(1).0LEObjects.Visible = False

Use the Add method to create a new OLE object and add it to the OLEObjects
collection. The following example creates a new OLE object representing the
bitmap file Arcade.bmp and adds it to worksheet one.

Worksheets(1).0LEObjects.Add FileName:="arcade.gif"
The following example creates a new ActiveX control (a list box) and adds it to
worksheet one.

Worksheets(1).0LEObjects.Add ClassType:="Forms.ListBox.1"

For more information, see Using ActiveX controls on sheets.

Remarks

An ActiveX control on a sheet has two names: the name of the shape that
contains the control, which you can see in the Name box when you view the
sheet, and the code name for the control, which you can see in the cell to the
right of (Name) in the Properties window. When you first add a control to a
sheet, the shape name and code name match. However, if you change either the
shape name or code name, the other is not automatically changed to match.

You use the code name of a control in the names of its event procedures.
However, when you return a control from the Shapes or OLEObjects collection
for a sheet, you must use the shape name, not the code name, to refer to the
control by name. For example, assume that you add a check box to a sheet and
that both the default shape name and the default code name are CheckBox1. If
you then change the control code name by typing chkFinished next to (Name) in
the Properties window, you must use chkFinished in event procedures names,
but you still have to use CheckBox1 to return the control from the Shapes or
OLEODbject collection, as shown in the following example.

Private Sub chkFinished_Click()
ActiveSheet.OLEObjects("CheckBox1").0Object.Value = 1
End Sub

Panes Collection Object

Window L

L

Pane

|‘Range

Panes

A collection of all the Pane objects shown in the specified window. Pane objects
exist only for worksheets and Microsoft Excel 4.0 macro sheets.

Using the Panes Collection

Use the Panes property to return the Panes collection. The following example
freezes panes in the active window if the window contains more than one pane.

If ActiveWindow.Panes.Count > 1 Then _
ActiveWindow.FreezePanes = True

Use Panes(index), where index is the pane index number, to return a single Pane
object. The following example scrolls through the upper-left pane of the window
in which Sheet1 is displayed.

Worksheets("sheet1").Activate
Windows(1).Panes(1).LargeScroll down:=1

Parameters Collection Object

QueryTable -

L

Parameter

|‘Range

Parameters

A collection of Parameter objects for the specified query table. Each
Parameter object represents a single query parameter. Every query table
contains a Parameters collection, but the collection is empty unless the query
table is using a parameter query.

Using the Parameters Collection

Use the Parameters property to return the Parameters collection. The
following example displays the number of parameters in query table one.

MsgBox Workbooks(1).ActiveSheet.QueryTables(1).Parameters.Count

Use the Add method to create a new parameter for a query table. The following
example changes the SQL statement for query table one. The clause “(city=?)”
indicates that the query is a parameter query, and the value of city is set to the
constant “Oakland.”

Set qt = Sheets("sheetl").QueryTables(1)

gt.Sgl = "SELECT * FROM authors WHERE (city=?)"

Set paraml = qt.Parameters.Add("City Parameter", _
x1lParamTypeVarChar)

paraml.SetParam xlConstant, "Oakland"

gt.Refresh

You cannot use the Add method on a URL connection query table. For URL
connection query tables, Microsoft Excel creates the parameters based on the
Connection and PostText properties.

Phonetics Collection Object

L

Range ~Phonetics

L

Font

A collection of all the Phonetic objects in the specified range. Each Phonetic
object contains information about a specific phonetic text string.

Using the Phonetics Collection

Use the Phonetics property to return the Phonetics collection. The following
example makes all phonetic text in the range A1:C4 visible.

Range("A1:C4") .Phonetics.Visible = True

Use Phonetics(index), where index is the index number of the phonetic text, to
return a single Phonetic object. The following example sets the first phonetic
text string in the active cell to "71J#™}".

ActiveCell.Phonetics(1).Text = "7Up™i"

PivotCaches Collection Object

L

PivotCaches PivotCache

Represents the collection of memory caches from the PivotTable reports in a
workbook. Each memory cache is represented by a PivetCache object.

Using the PivotCaches Collection

Use the PivotCaches method to return the PivotCaches collection. The
following example sets the RefreshOnFileOpen property for all memory caches
in the active workbook.

For Each pc In ActiveWorkbook.PivotCaches
pc.RefreshOnFileOpen = True
Next

PivotFields Collection Object

CubeField |‘PivotFields

|‘PivotTable

A collection of all the PivotField objects in a PivotTable report.

Using the PivotFields Collection

Use the PivotFields method of the PivotTable object to return the PivotFields
collection. The following example enumerates the field names in the first
PivotTable report on Sheet3.

With Worksheets("sheet3").PivotTables(1)
For i = 1 To .PivotFields.Count
MsgBox .PivotFields(i).Name
Next
End wWith

Use PivotFields(index), where index is the field name or index number, to return
a single PivotField object. The following example makes the Year field a row
field in the first PivotTable report on Sheet3.

wWorksheets("sheet3").PivotTables(1) _
.PivotFields("year").Orientation = x1lRowField

In some cases, it may be easier to use one of the properties that returns a subset
of the PivotTable fields. The following accessor methods are available:

ColumnFields property
DataFields property
HiddenFields property
PageFields property
RowFields property
VisibleFields property

Show All

PivotFormulas Collection Object

L

PivotTable —PivotFormulas

L

PivotFormula

Represents the collection of formulas for a PivotTable report. Each formula is
represented by a PivotFormula object.

Remarks

This object and its associated properties and methods aren’t available for OLAP
data sources because calculated fields and items aren’t supported.

Using the PivotFormulas Collection

Use the PivotFormulas method to return the PivotFormulas collection. The
following example creates a list of PivotTable formulas for the first PivotTable
report on the active worksheet.

For Each pf in ActiveSheet.PivotTables(1).PivotFormulas
Cells(r, 1).Value = pf.Formula
r=r +1

Next

PivotItemList Collection

L

PivotCell —PivotltemList

L

Pivotltem

|‘Multiple objects

A collection of all the PivotItem objects in the specified PivotTable. Each
PivotItem represents an item in a PivotTable field.

Using the PivotItemList collection

Use the RowItems or Columnltems property of the PivotCell object to return a
PivotItemList collection.

Once a PivotItemList collection is returned, you can use the Item method to
identify a particular PivotItem list. The following example displays the
Pivotltem list associated with cell B5 to the user. This example assumes a
PivotTable exists on the active worksheet.

Sub CheckPivotItemList()
' Identify contents associated with PivotItemList.
MsgBox '"Contents associated with cell B5: " & _
Application.Range("B5").PivotCell.RowItems.Item(1)

End Sub

Pivotlitems Collection Object

L

Pivotltems PivotField

A collection of all the PivotItem objects in a PivotTable field. The items are the
individual data entries in a field category.

Using the PivotItems Collection

Use the PivotItems method to return the PivotItems collection. The following
example creates an enumerated list of field names and the items contained in
those fields for the first PivotTable report on Sheet4.

Worksheets("sheet4").Activate

With Worksheets("sheet3").PivotTables(1)
c=1
For i To .PivotFields.Count

1s(

, €C) = .PivotFields(i).Name

=S O
o o
Ho=

=

To .PivotFields(i).PivotItems.Count
ells(r, c) = .PivotFields(i).PivotItems(x).Name
+ 1

SOXSn R,
1 + =
S0 RrR

Next
c=c¢c+1
Next
End with

Use PivotItems(index), where index is the item index number or name, to return
a single PivotItem object. The following example hides all entries in the first
PivotTable report on Sheet3 that contain "1998" in the Year field.

Worksheets("sheet3").PivotTables(1) _
.PivotFields("year").PivotItems("1998").Visible = False

PivotTables Collection Object

|‘PivotTable

Multiple objects

PivotTables
L

A collection of all the PivotTable objects on the specified worksheet.

Using the PivotTables Collection

Use the PivotTables method to return the PivotTables collection. The following
example displays the number of PivotTable reports on Sheet3.

MsgBox Worksheets('"sheet3").PivotTables.Count

Use the PivotTableWizard method to create a new PivotTable report and add it
to the collection. The following example creates a new PivotTable report from a
Microsoft Excel database (contained in the range A1:C100).

ActiveSheet.PivotTablewWizard xlDatabase, Range("A1:C100")

Use PivotTables(index), where index is the PivotTable index number or name, to
return a single PivotTable object. The following example makes the Year field a
row field in the first PivotTable report on Sheet3.

wWorksheets("sheet3").PivotTables(1) _
.PivotFields("year").Orientation = x1lRowField

Remarks

Because PivotTable report programming can be complex, it’s generally easiest to
record PivotTable report actions and then revise the recorded code. To record a
macro, point to Macro on the Tools menu and click Record New Macro.

Points Collection Object

L

Points Point

L

Multiple objects

A collection of all the Point objects in the specified series in a chart.

Using the Points Collection

Use the Points method to return the Points collection. The following example
adds a data label to the last point on series one in embedded chart one on
worksheet one.

Dim pts As Points

Set pts = Worksheets(1).ChartObjects(1).Chart. _
SeriesCollection(1).Points

pts(pts.Count).ApplyDatalLabels type:=x1ShowValue

Use Points(index), where index is the point index number, to return a single
Point object. Points are numbered from left to right on the series. Points(1) is
the leftmost point, and Points(Points.Count) is the rightmost point. The
following example sets the marker style for the third point in series one in
embedded chart one on worksheet one. The specified series must be a 2-D line,
scatter, or radar series.

Worksheets(1).ChartObjects(1).Chart. _
SeriesCollection(1).Points(3).MarkerStyle = x1Diamond

PublishObjects Collection Object

Workbook |‘Publish()bjects
|‘PublishObj ect

A collection of all PublishObject objects in the workbook. Each PublishObject
object represents an item in a workbook that has been saved to a Web page and
can be refreshed according to values specified by the properties and methods of
the object.

Using the PublishObjects Collection

Use the PublishObjects property to return the PublishObjects collection. The
following example saves all static PublishObject objects in the active workbook
to the Web page.

Set objPObjs = ActiveWorkbook.PublishObjects
For Each objPO in objPObjs
If objPO.HtmlType = x1HTMLStatic Then
objP0O.Publish
End If
Next objPO

Use PublishObjects(index), where index is the index number of the specified
item in the workbook, to return a single PublishObject object. The following
example sets the location where the first item in workbook three is saved.

Workbooks(3) .PublishObjects(1).FileName = _
"\\myserver\public\finacct\statemnt.htm"

QueryTables Collection Object

Worksheet |‘OueryTables

Lg JueryTable
|‘Multiple objects

A collection of QueryTable objects. Each QueryTable object represents a
worksheet table built from data returned from an external data source.

Using the QueryTables Collection

Use the QueryTables property to return the QueryTables collection. The
following example displays the number of query tables on the active worksheet.

MsgBox ActiveSheet.QueryTables.Count

Use the Add method to create a new query table and add it to the QueryTables
collection. The following example creates a new query table.

Dim gt As QueryTable
sqlstring = "select 96Sales.totals from 96Sales where profit < 5"
connstring = _

"ODBC; DSN=96SalesData; UID=Rep21; PWD=NUyHwYQI; Database=96Sales"
With ActiveSheet.QueryTables.Add(Connection:=connstring, _

Destination:=Range("B1"), Sql:=sqlstring)

.Refresh

End With

Range Collection

L

Multiple objects ~Range

|‘Multiple objects

Represents a cell, a row, a column, a selection of cells containing one or more
contiguous blocks of cells, or a 3-D range.

Using the Range Collection

The following properties and methods for returning a Range object are
described in this section:

Range property
Cells property
Range and Cells
Offset property
Union method

Range Property

Use Range(arg), where arg names the range, to return a Range object that
represents a single cell or a range of cells. The following example places the
value of cell A1l in cell AS.

wWorksheets("Sheetl").Range("A5").Value = _
Worksheets("Sheet1").Range("A1").Value

The following example fills the range A1:H8 with random numbers by setting
the formula for each cell in the range. When it’s used without an object qualifier
(an object to the left of the period), the Range property returns a range on the
active sheet. If the active sheet isn’t a worksheet, the method fails. Use the
Activate method to activate a worksheet before you use the Range property
without an explicit object qualifier.

Worksheets("Sheet1").Activate
Range("A1:H8").Formula = "=Rand()" 'Range is on the active sheet

The following example clears the contents of the range named Criteria.

Worksheets(1).Range("Criteria").ClearContents

If you use a text argument for the range address, you must specify the address in
Al-style notation (you cannot use R1C1-style notation).

Cells Property

Use Cells(row, column) where row is the row index and column is the column
index, to return a single cell. The following example sets the value of cell Al to
24,

Worksheets(1).Cells(1, 1).vValue = 24

The following example sets the formula for cell A2.

ActiveSheet.Cells(2, 1).Formula = "=Sum(B1:B5)"

Although you can also use Range("A1") to return cell A1, there may be times
when the Cells property is more convenient because you can use a variable for
the row or column. The following example creates column and row headings on
Sheet1. Notice that after the worksheet has been activated, the Cells property can
be used without an explicit sheet declaration (it returns a cell on the active
sheet).

Sub SetUpTable()
Worksheets("Sheet1").Activate
For TheYear = 1 To 5
Cells(1, TheYear + 1).Value = 1990 + TheYear
Next TheYear
For TheQuarter = 1 To 4
Cells(TheQuarter + 1, 1).vValue = "Q" & TheQuarter
Next TheQuarter
End Sub

Although you could use Visual Basic string functions to alter A1-style
references, it's much easier (and much better programming practice) to use the
Cells(1, 1) notation.

Use expression.Cells(row, column) , where expression is an expression that
returns a Range object, and row and column are relative to the upper-left corner
of the range, to return part of a range. The following example sets the formula
for cell C5.

Worksheets(1).Range("C5:C10").Cells(1, 1).Formula = "=Rand()"

Range and Cells

Use Range(celll, cell?), where celll and cell2 are Range objects that specify the
start and end cells, to return a Range object. The following example sets the
border line style for cells A1:J10.

With Worksheets(1)
.Range(.Cells(1, 1), _
.Cells(10, 10)).Borders.LineStyle = x1Thick
End With

Notice the period in front of each occurrence of the Cells property. The period is
required if the result of the preceding With statement is to be applied to the
Cells property— in this case, to indicate that the cells are on worksheet one
(without the period, the Cells property would return cells on the active sheet).

Offset Property

Use Offset(row, column), where row and column are the row and column offsets,
to return a range at a specified offset to another range. The following example
selects the cell three rows down from and one column to the right of the cell in
the upper-left corner of the current selection. You cannot select a cell that isn’t
on the active sheet, so you must first activate the worksheet.

Worksheets("Sheet1").Activate
'Can't select unless the sheet is active
Selection.Offset(3, 1).Range("A1l").Select

Union Method

Use Union(rangel, rangeZ, ...) to return multiple-area ranges— that is, ranges
composed of two or more contiguous blocks of cells. The following example
creates an object defined as the union of ranges A1:B2 and C3:D4, and then
selects the defined range.

Dim r1 As Range, r2 As Range, myMultiAreaRange As Range
Worksheets("sheet1").Activate

Set r1 = Range("A1:B2")

Set r2 = Range("C3:D4")

Set myMultiAreaRange = Union(rl, r2)
myMultiAreaRange.Select

If you work with selections that contain more than one area, the Areas property
is very useful. It divides a multiple-area selection into individual Range objects
and then returns the objects as a collection. You can use the Count property on
the returned collection to check for a selection that contains more than one area,
as shown in the following example.

Sub NoMultiAreaSelection()
NumberOfSelectedAreas = Selection.Areas.Count
If NumberOfSelectedAreas > 1 Then
MsgBox "You cannot carry out this command " & _
"on multi-area selections"
End If
End Sub

RecentFiles Collection Object

L

Application ~RecentFiles

L

RecentFile

Represents the list of recently used files. Each file is represented by a
RecentFile object.

Using the RecentFiles Collection

Use the RecentFiles property to return the RecentFiles collection. The
following example sets the maximum number of files in the list of recently used
files.

Application.RecentFiles.Maximum = 6

Scenarios Collection Object

L

Scenarios Scenario

|‘Range

A collection of all the Scenario objects on the specified worksheet. A scenario is
a group of input values (called changing cells) that’s named and saved.

Using the Scenarios Collection

Use the Scenarios method to return the Scenarios collection. The following
example creates a summary for the scenarios on the worksheet named "Options,'
using cells J10 and J20 as the result cells.

1

Worksheets("options").Scenarios.CreateSummary _
resultCells:=Worksheets("options").Range("j10,j20")

Use the Add method to create a new scenario and add it to the collection. The
following example adds a new scenario named "Typical" to the worksheet
named "Options." The new scenario has two changing cells, A2 and A12, with
the respective values 55 and 60.

Worksheets("options").Scenarios.Add name:="Typical", _
changingCells:=Worksheets("options").Range("A2,A12"), _
values:=Array("55", "60")

Use Scenarios(index), where index is the scenario name or index number, to
return a single Scenario object. The following example shows the scenario
named "Typical" on the worksheet named “Options.”

wWorksheets("options").Scenarios("typical").Show

SeriesCollection Collection Object

L

SeriesCollection Series

L

Multiple objects

A collection of all the Series objects in the specified chart or chart group.

Using the SeriesCollection Collection

Use the SeriesCollection method to return the SeriesCollection collection. The
following example adds the data in cells C1:C10 on worksheet one to an existing
series in the series collection in embedded chart one.

Worksheets(1).ChartObjects(1).Chart. _
SeriesCollection.Extend Worksheets(1).Range('"c1l:c10")

Use the Add method to create a new series and add it to the chart. The following
example adds the data from cells A1:A19 as a new series on the chart sheet
named "Chart1."

Charts("chartl").SeriesCollection.Add _
source:=Worksheets("sheetl").Range("al:a19")

Use SeriesCollection(index), where index is the series index number or name, to
return a single Series object. The following example sets the color of the interior
for the first series in embedded chart one on Sheet].

Worksheets("sheet1").ChartObjects(1).Chart. _
SeriesCollection(1).Interior.Color = RGB(255, 0, 0)

ShapeNodes Collection Object

L

Multiple objects ~ShapeNodes

|‘ShapeNode

A collection of all the ShapeNode objects in the specified freeform. Each
ShapeNode object represents either a node between segments in a freeform or a
control point for a curved segment of a freeform. You can create a freeform
manually or by using the BuildFreeform and ConvertToShape methods.

Using the ShapeNodes Collection

Use the Nodes property to return the ShapeNodes collection. The following
example deletes node four in shape three on mybocument. For this example to
work, shape three must be a freeform with at least four nodes.

Set myDocument = Worksheets(1)
myDocument .Shapes(3).Nodes.Delete 4

Use the Insert method to create a new node and add it to the ShapeNodes
collection. The following example adds a smooth node with a curved segment
after node four in shape three on myDocument. For this example to work, shape
three must be a freeform with at least four nodes.

Set myDocument = Worksheets(1)
With myDocument.Shapes(3).Nodes

.Insert 4, msoSegmentCurve, msoEditingSmooth, 210, 100
End With

Use Nodes(index), where index is the node index number, to return a single
ShapeNode object. If node one in shape three on myDocument is a corner point,
the following example makes it a smooth point. For this example to work, shape
three must be a freeform.

Set myDocument = Worksheets(1)
wWith myDocument.Shapes(3)
If .Nodes(1).EditingType = msoEditingCorner Then
.Nodes.SetEditingType 1, msoEditingSmooth
End If
End With

ShapeRange Collection

L

Multiple objects “ShapeRange

|‘Multiple objects

Represents a shape range, which is a set of shapes on a document. A shape range
can contain as few as a single shape or as many as all the shapes on the
document. You can include whichever shapes you want— chosen from among
all the shapes on the document or all the shapes in the selection— to construct a
shape range. For example, you could construct a ShapeRange collection that
contains the first three shapes on a document, all the selected shapes on a
document, or all the freeforms on a document.

For an overview of how to work with either a single shape or with more than one
shape at a time, see Working with Shapes (Drawing Objects).

Using the ShapeRange Collection

This section describes how to:

e Return a set of shapes you specify by name or index number.
e Return all or some of the selected shapes on a document.

Returning a Set of Shapes You Specify by Name or
Index Number

Use Shapes.Range(index), where index is the name or index number of the
shape or an array that contains either names or index numbers of shapes, to
return a ShapeRange collection that represents a set of shapes on a document.
You can use the Array function to construct an array of names or index
numbers. The following example sets the fill pattern for shapes one and three on
myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes.Range(Array(1, 3)).Fill.Patterned _
msoPatternHorizontalBrick

The following example sets the fill pattern for the shapes named Oval 4 and
Rectangle 5 on myDocument.

Set myDocument = Worksheets(1)

Set myRange = myDocument.Shapes.Range(Array("Oval 4", _
"Rectangle 5"))

myRange.Fill.Patterned msoPatternHorizontalBrick

Although you can use the Range property to return any number of shapes or
slides, it's simpler to use the Item method if you want to return only a single
member of the collection. For example, Shapes(1) is simpler than
Shapes.Range(1).

Returning All or Some of the Selected Shapes on a
Document

Use the ShapeRange property of the Selection object to return all the shapes in
the selection. The following example sets the fill foreground color for all the
shapes in the selection in window one, assuming that there’s at least one shape in
the selection.

Windows(1).Selection.ShapeRange.Fill.ForeColor.RGB = _
RGB(255, 0, 255)

Use Selection.ShapeRange(index), where index is the shape name or the index
number, to return a single shape within the selection. The following example sets
the fill foreground color for shape two in the collection of selected shapes in
window one, assuming that there are at least two shapes in the selection.

Windows(1).Selection.ShapeRange(2).Fill.ForeColor.RGB = _
RGB(255, 0, 255)

Shapes Collection

Multiple objects L

|‘ShapeRange

Shapes

A collection of all the Shape objects on the specified sheet. Each Shape object
represents an object in the drawing layer, such as an AutoShape, freeform, OLE
object, or picture.

Note If you want to work with a subset of the shapes on a document— for
example, to do something to only the AutoShapes on the document or to only the
selected shapes— you must construct a ShapeRange collection that contains the
shapes you want to work with. For an overview of how to work either with a
single shape or with more than one shape at a time, see Working with Shapes

(Drawing Objects).

Using the Shapes Collection

Use the Shapes property to return the Shapes collection.The following example
selects all the shapes on myDocument.

Set myDocument = Worksheets(1)
myDocument .Shapes.SelectAll

Note If you want to do something (like delete or set a property) to all the shapes
on a sheet at the same time, select all the shapes and then use the ShapeRange
property on the selection to create a ShapeRange object that contains all the
shapes on the sheet, and then apply the appropriate property or method to the
ShapeRange object.

Use Shapes(index), where index is the shape’s name or index number, to return a
single Shape object. The following example sets the fill to a preset shade for
shape one on myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes(1).Fill.PresetGradient _
msoGradientHorizontal, 1, msoGradientBrass

Use Shapes.Range(index), where index is the shape’s name or index number or
an array of shape names or index numbers, to return a ShapeRange collection
that represents a subset of the Shapes collection. The following example sets the
fill pattern for shapes one and three on myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes.Range(Array(1, 3)).Fill.Patterned _
msoPatternHorizontalBrick

Remarks

An ActiveX control on a sheet has two names: the name of the shape that
contains the control, which you can see in the Name box when you view the
sheet, and the code name for the control, which you can see in the cell to the
right of (Name) in the Properties window. When you first add a control to a
sheet, the shape name and code name match. However, if you change either the
shape name or code name, the other isn’t automatically changed to match.

You use the code name of a control in the names of its event procedures.
However, when you return a control from the Shapes or OLEObjects collection
for a sheet, you must use the shape name, not the code name, to refer to the
control by name. For example, assume that you add a check box to a sheet and
that both the default shape name and the default code name are CheckBox1. If
you then change the control code name by typing chkFinished next to (Name) in
the Properties window, you must use chkFinished in event procedures names,
but you still have to use CheckBox1 to return the control from the Shapes or
OLEODbject collection, as shown in the following example.

Private Sub chkFinished_Click()
ActiveSheet.OLEObjects("CheckBox1").0Object.Value = 1
End Sub

Sheets Collection Object

L

Multiple objects ~Sheets

|‘Multiple objects

A collection of all the sheets in the specified or active workbook. The Sheets
collection can contain Chart or Worksheet objects.

The Sheets collection is useful when you want to return sheets of any type. If
you need to work with sheets of only one type, see the object topic for that sheet

type.

Using the Sheets Collection

Use the Sheets property to return the Sheets collection. The following example
prints all sheets in the active workbook.

Sheets.PrintOut

Use the Add method to create a new sheet and add it to the collection. The
following example adds two chart sheets to the active workbook, placing them
after sheet two in the workbook.

Sheets.Add type:=xlChart, count:=2, after:=Sheets(2)

Use Sheets(index), where index is the sheet name or index number, to return a
single Chart or Worksheet object. The following example activates the sheet
named "sheet1."

Sheets("sheet1").Activate

Use Sheets(array) to specify more than one sheet. The following example
moves the sheets named "Sheet4" and "Sheet5" to the beginning of the
workbook.

Sheets(Array("Sheet4", "Sheet5")).Move before:=Sheets(1)

SmartTagActions Collection

SmartTa |‘SmartTagActions
omartiag

|‘SInalrtTagAction

A collection of SmartTagAction objects that represent the actions that can be
performed with smart tags.

Using the SmartTagActions collection

Use the SmartTagActions property of the SmartTag object to return a
SmartTagActions collection.

This example inserts a refreshable stock quote for the ticker symbol "MSFT" and
it assumes the host system is connected to the Internet.

Sub ExecuteASmartTag()
Dim strAction As String
strAction = "Insert refreshable stock price"

' Enable smart tags to be embedded and recognized.
ActiveWorkbook.SmartTagOptions.EmbedSmartTags = True
Application.SmartTagRecognizers.Recognize = True

' Invoke a smart tag for the Microsoft ticker symbol.
wWith Range("A1")

.Formula = "MSFT"

.SmartTags(_
"urn:schemas-microsoft-com:office:smarttags#stockticker"
.SmartTagActions(strAction).Execute

End With

End Sub

SmartTagRecognizers Collection

Application |‘SInalrtTagRecognizelrs
|‘SInalrtTagRec:ognizer

A collection of SmartTagRecognizer objects that represent recognition engines
which label data with types of information as you work in Microsoft Excel.

Using the SmartTagRecognizers collection

Use the SmartTagRecognizers property of the Application object to return a
SmartTagRecognizers collection.

This example displays the first smart tag recognizer item available for the
application or displays a message that none exist.

Sub CheckforSmartTagRecognizers()

' Handle run-time error if no smart tag recognizers exist.
On Error Goto No_SmartTag_Recognizers_In_List

' Notify the user of the first smart tag recognizer item.

MsgBox "The first smart tag recognizer is: " & _
Application.SmartTagRecognizers.Item(1)

Exit Sub

No_SmartTag_Recognizers_In_List:
MsgBox '"No smart tag recognizers exist in list."

End Sub

SmartTags Collection

Multiple objects L

|‘SInalrtTag
|‘Multiple objects

SmartTags

A collection of SmartTag objects that represent the identifiers assigned to each
cell.

Using the SmartTags collection

Use the SmartTags property of the Range collection or Worksheet object, to
return a SmartTag collection. The following example demonstrates the use of
the SmartTags property with the Add method.

This example adds a smart tag titled "MSFT" to cell A1, then adds extra
metadata called "Market" with the value of "Nasdaq" to the smart tag and then
returns the value of the property to the user. This example assumes the host
system is connected to the Internet.

Sub UseProperties()

Dim strLink As String
Dim strType As String

' Define smart tag variables.
strLink = "urn:schemas-microsoft-com:smarttags#StockTickerSymbol
strType = "stockview"

' Enable smart tags to be embedded and recognized.
ActiveWorkbook.SmartTagOptions.EmbedSmartTags = True
Application.SmartTagRecognizers.Recognize = True

Range("A1").Formula = "MSFT"

' Add a property for MSFT smart tag and define it's value.

Range("A1").SmartTags.Add(strLink).Properties.Add _
Name:="Market", Value:='"Nasdaq"

' Notify the user of the smart tag's value.
MsgBox Range("Al1").SmartTags.Add(strLink).Properties("Market").Vv

End Sub

Styles Collection

Workbook L

|‘St;[le
|‘Multiple objects

Styles

A collection of all the Style objects in the specified or active workbook. Each
Style object represents a style description for a range. The Style object contains
all style attributes (font, number format, alignment, and so on) as properties.
There are several built-in styles— including Normal, Currency, and Percent

— which are listed in the Style name box in the Style dialog box (Format
menu).

Using the Styles Collection

Use the Styles property to return the Styles collection. The following example
creates a list of style names on worksheet one in the active workbook.

For i = 1 To ActiveWorkbook.Styles.Count
wWorksheets(1).Cells(i, 1) = ActiveWorkbook.Styles(i).Name
Next

Use the Add method to create a new style and add it to the collection. The
following example creates a new style based on the Normal style, modifies the
border and font, and then applies the new style to cells A25:A30.

wWith ActiveWorkbook.Styles.Add(Name:="Bookman Top Border")
.Borders(x1Top).LineStyle = xlDouble
.Font.Bold = True
.Font.Name = "Bookman"

End wWith

Worksheets(1).Range("A25:A30").Style = "Bookman Top Border"

Use Styles(index), where index is the style index number or name, to return a
single Style object from the workbook Styles collection. The following example
changes the Normal style for the active workbook by setting its Bold property.

ActiveWorkbook.Styles("Normal").Font.Bold = True

Trendlines Collection Object

Trendlines |‘Trendline

|‘Multiple objects

A collection of all the Trendline objects for the specified series. Each Trendline
object represents a trendline in a chart. A trendline shows the trend, or direction,
of data in a series.

Using the Trendlines Collection

Use the Trendlines method to return the Trendlines collection. The following
example displays the number of trendlines for series one in Chart1.

MsgBox Charts(1).SeriesCollection(1).Trendlines.Count

Use the Add method to create a new trendline and add it to the series. The
following example adds a linear trendline to the first series in embedded chart
one on Sheet]1.

Worksheets("sheet1").ChartObjects(1).Chart.SeriesCollection(1) _
.Trendlines.Add type:=xlLinear, name:="Linear Trend"

Use Trendlines(index), where index is the trendline index number, to return a
single TrendLine object. The following example changes the trendline type for
the first series in embedded chart one on worksheet one. If the series has no
trendline, this example will fail.

Worksheets(1).ChartObjects(1).Chart. _
SeriesCollection(1).Trendlines(1).Type = x1lMovingAvg

The index number denotes the order in which the trendlines were added to the
series. Trendlines(1) is the first trendline added to the series, and
Trendlines(Trendlines.Count) is the last one added.

UsedObjects Collection

L

Application ~UsedObjects

Represents objects that have been allocated in a workbook.

Using the UsedObjects collection

Use the UsedObjects property of the Application object to return a
UsedObjects collection.

Once a UsedObjects collection is returned, you can determine the quantity of
used objects in a Microsoft Excel application using the Count property.

In this example, Microsoft Excel determines the quantity of objects that have
been allocated and notifies the user. This example assumes a recalculation was
performed in the application and was interrupted before finishing.

Sub CountUsedObjects()

MsgBox "The number of used objects in this application is: " & _

Application.UsedObjects.Count

End Sub

UserAccessList Collection

L

AllowEditRange —UserAccessL.ist

L

UserAccess

A collection of UserAccess objects that represent the user access for protected
ranges.

Using the UserAccessList Collection

Use the Users property of the ProtectedRange object to return a
UserAccessList collection.

Once a UserAccessList collection is returned you can use the Count property to
determine the number of users that have access to a protected range. In the
following example, Microsoft Excel notifies the user the numbers users that have
access to the first protected range. This example assumes that a protected range
exists on the active worksheet.

Sub UseDeleteAll()
Dim wksSheet As Worksheet
Set wksSheet = Application.ActiveSheet

' Notify the user the number of users that can access the protec
MsgBox wksSheet.Protection.AllowEditRanges(1).Users.Count

End Sub

VPageBreaks Collection Object

Multiple objects |‘VPageBreaks
|‘VPageBreak
L

Multiple objects

A collection of vertical page breaks within the print area. Each vertical page
break is represented by a VPageBreak object.

Using the VPageBreaks Collection

Use the VPageBreaks property to return the VPageBreaks collection. Use the
Add method to add a vertical page break. The following example adds a vertical
page break to the left of the active cell.

ActiveSheet.VPageBreaks.Add Before:=ActiveCell

If you add a page break that does not intersect the print area, then the newly-
added VPageBreak object will not appear in the VPageBreaks collection for
the print area. The contents of the collection may change if the print area is
resized or redefined.

When the Application property, Count property, Creator property, Item
property, Parent property or Add method is used in conjunction with the
VPageBreaks property:

¢ For an automatic print area, the VPageBreaks property applies only to the
page breaks within the print area.

e For a user-defined print area of the same range, the VPageBreaks property
applies to all of the page breaks.

Watches Collection

Application |‘Watches

|‘Watch

A collection of all the Watch objects in a specified application.

Using the Watches collection

Use the Watches property of the Application object to return a Watches
collection.

In the following example, Microsoft Excel creates a new Watch object using the
Add method. This example creates a summation formula in cell A3, and then
adds this cell to the watch facility.

Sub Addwatch()

wWith Application

.Range("A1").Formula = 1
.Range("A2").Formula = 2
.Range("A3").Formula = "=Sum(A1:A2)"

.Range("A3").Select
.Watches.Add Source:=ActiveCell
End With

End Sub

You can specify to remove individual cells from the watch facility by using the
Delete method of the Watches collection. This example deletes cell A3 on
worksheet 1 of book 1 from the Watch Window. This example assumes you have
added the cell A3 on sheet 1 of book 1 (using the previous example to add a
Watch object).

Sub DeleteAwatch()
Application.Watches(Workbooks("Book1").Sheets("Sheetl").Range("A

End Sub

You can also specify to remove all cells from the Watch Window, by using the
Delete method of the Watches collection. This example deletes all cells from the
Watch Window.

Sub DeleteAllwatches()

Application.Watches.Delete

End Sub

Windows Collection Object

L

Multiple objects “Windows

Window

|‘Multiple objects

A collection of all the Window objects in Microsoft Excel. The Windows
collection for the Application object contains all the windows in the application,
whereas the Windows collection for the Workbook object contains only the
windows in the specified workbook.

Using the Windows Collection

Use the Windows property to return the Windows collection. The following
example cascades all the windows that are currently displayed in Microsoft
Excel.

wWindows.Arrange arrangeStyle:=x1Cascade

Use the NewWindow method to create a new window and add it to the
collection. The following example creates a new window for the active
workbook.

ActiveWorkbook.NewWindow

Use Windows(index), where index is the window name or index number, to
return a single Window object. The following example maximizes the active
window.

Windows(1).WindowState = x1Maximized

Note that the active window is always Windows(1).

Workbooks Collection

Application |‘Workbooks
L

Workbook

|‘Multiple objects

A collection of all the Workbook objects that are currently open in the
Microsoft Excel application.

Using the Workbooks Collection

Use the Workbooks property to return the Workbooks collection. The
following example closes all open workbooks.

Workbooks.Close

Use the Add method to create a new, empty workbook and add it to the
collection. The following example adds a new, empty workbook to Microsoft
Excel.

Workbooks.Add

Use the Open method to open a file. This creates a new workbook for the
opened file. The following example opens the file Array.xls as a read-only
workbook.

Workbooks.Open FileName:="Array.xls", ReadOnly:=True

For more information about using a single Workbook object, see the Workbook
object.

Worksheets Collection

L

Worksheets ~Multiple objects

A collection of all the Worksheet objects in the specified or active workbook.
Each Worksheet object represents a worksheet.

Using the Worksheets Collection

Use the Worksheets property to return the Worksheets collection.The following
example moves all the worksheets to the end of the workbook.

Worksheets.Move After:=Sheets(Sheets.Count)

Use the Add method to create a new worksheet and add it to the collection. The
following example adds two new worksheets before sheet one of the active
workbook.

Worksheets.Add Count:=2, Before:=Sheets(1)

Use Worksheets(index), where index is the worksheet index number or name, to
return a single Worksheet object. The following example hides worksheet one
in the active workbook.

Worksheets(1).Visible = False

The Worksheet object is also a member of the Sheets collection. The Sheets
collection contains all the sheets in the workbook (both chart sheets and
worksheets).

XmlMaps Collection

Workbook |‘XmlMaps
L

XmlMap
|‘Multiple objects

Note XML features, except for saving files in the XML Spreadsheet format, are
available only in Microsoft Office Professional Edition 2003 and Microsoft
Office Excel 2003.

Represents the collection of XmlMap objects that have been added to a
workbook.

Using the XmIMaps Collection

Use the Add method to add an XML map to a workbook.

Sub AddXmlMap()
Dim strSchemaLocation As String

strSchemalLocation = "http://example.microsoft.com/schemas/Custon
ActiveWorkbook.XmlMaps.Add strSchemaLocation, "Root"
End Sub

XmlINamespaces Collection

Workbook |‘XmlNamespaces
L

XmlNamespace

Note XML features, except for saving files in the XML Spreadsheet format, are
available only in Microsoft Office Professional Edition 2003 and Microsoft
Office Excel 2003.

Represents the collection of XmlNamespace objects in a workbook.

Using the XmINamespaces Collection

Use the Item method to access a particular XmlNamespace object.

Use the Value property to return a String that lists the namespaces that have
been added to a workbook.

XmlSchemas Collection

L

XmlMap ~XmlSchemas

L

XmlSchema

|‘XmlNamespace

Note XML features, except for saving files in the XML Spreadsheet format, are
available only in Microsoft Office Professional Edition 2003 and Microsoft
Office Excel 2003.

Represents the collection of XmlSchema objects contained by an XmlMap
object.

Using the XmlSchemas Collection

Use the Schemas property of the XmlMap object to return the XmlSchemas
collection.

Use the Item method to return an XmlSchema object from the XmlSchemas
collection.

AddIn Object

Application |‘Addlns

|‘Addln

Represents a single add-in, either installed or not installed. The AddIn object is
a member of the AddIns collection. The AddIns collection contains a list of all
the add-ins available to Microsoft Excel, regardless of whether they’re installed.
This list corresponds to the list of add-ins displayed in the Add-Ins dialog box
(Tools menu).

Using the Addin Object

Use AddIns(index), where index is the add-in title or index number, to return a
single AddIn object. The following example installs the Analysis Toolpak add-
in.

AddIns("analysis toolpak").Installed = True

Don’t confuse the add-in title, which appears in the Add-Ins dialog box, with the
add-in name, which is the file name of the add-in. You must spell the add-in title
exactly as it’s spelled in the Add-Ins dialog box, but the capitalization doesn’t
have to match.

The index number represents the position of the add-in in the Add-ins available
box in the Add-Ins dialog box. The following example creates a list that
contains specified properties of the available add-ins.

With Worksheets("sheet1")
.Rows(1).Font.Bold = True
.Range("al:d1").value = _
Array("Name", "Full Name", "Title", "Installed")
For i = 1 To AddIns.Count

.Cells(i + 1, 1) = AddIns(i).Name
.Cells(i + 1, 2) = AddIns(i).FullName
.Cells(i + 1, 3) = AddIns(i).Title
.Cells(i + 1, 4) = AddIns(i).Installed

Next
.Range("al").CurrentRegion.Columns.AutoFit
End With

Remarks

The Add method adds an add-in to the list of available add-ins but doesn’t install
the add-in. Set the Installed property of the add-in to True to install the add-in.
To install an add-in that doesn’t appear in the list of available add-ins, you must
first use the Add method and then set the Installed property. This can be done in
a single step, as shown in the following example (note that you use the name of
the add-in, not its title, with the Add method).

AddIns.Add("generic.x11").Installed = True

Use Workbooks(index) where index is the add-in filename (not title) to return a
reference to the workbook corresponding to a loaded add-in. You must use the
file name because loaded add-ins don’t normally appear in the Workbooks
collection. This example sets the wb variable to the workbook for Myaddin.xla.

Set wb = Workbooks("myaddin.xla")

The following example sets the wb variable to the workbook for the Analysis
Toolpak add-in.

Set wb = Workbooks(AddIns("analysis toolpak").Name)

If the Installed property returns True, but calls to functions in the add-in still
fail, the add-in may not actually be loaded. This is because the Addin object
represents the existence and installed state of the add-in but doesn't represent the
actual contents of the add-in workbook.To guarantee that an installed add-in is
loaded, you should open the add-in workbook. The following example opens the
workbook for the add-in named "My Addin" if the add-in isn’t already present in
the Workbooks collection.

On Error Resume Next " turn off error checking

Set wbMyAddin = Workbooks(Addins("My Addin").Name)

lastError = Err

On Error Goto 0 ' restore error checking

If lastError <> 0 Then
' the add-in workbook isn't currently open. Manually open it.
Set wbMyAddin = Workbooks.Open(Addins("My Addin").FullName)

End If

Adjustments Object

L

Multiple objects ~Adjustments

Contains a collection of adjustment values for the specified AutoShape, WordArt
object, or connector. Each adjustment value represents one way an adjustment
handle can be adjusted. Because some adjustment handles can be adjusted in two
ways— for instance, some handles can be adjusted both horizontally and
vertically— a shape can have more adjustment values than it has adjustment
handles. A shape can have up to eight adjustments.

Using the Adjustments Object

Use the Adjustments property to return an Adjustments object. Use
Adjustments(index), where index is the adjustment value’s index number, to
return a single adjustment value.

Different shapes have different numbers of adjustment values, different kinds of
adjustments change the geometry of a shape in different ways, and different
kinds of adjustments have different ranges of valid values. For example, the
following illustration shows what each of the four adjustment values for a right-
arrow callout contributes to the definition of the callout’s geometry.

This adjustment handle _ This adjustment handle contains
contains A djustments(l), which A djustments(3), which adjusts the
adjusts the width of the text box

length of the atrow neck, and
Adjustments(d), which adjusts the
width of the arrow neck.

Thiz adjustment handle contains
o Adjustments(d), which adjusts the
width of the arrowhead

[m}

Note Because each adjustable shape has a different set of adjustments, the best
way to verify the adjustment behavior for a specific shape is to manually create
an instance of the shape, make adjustments with the macro recorder turned on,
and then examine the recorded code.

The following table summarizes the ranges of valid adjustment values for
different types of adjustments. In most cases, if you specify a value that’s beyond
the range of valid values, the closest valid value will be assigned to the
adjustment.

Type of

. Valid values
adjustment

Generally the value 0.0 represents the left or top edge of the shape
and the value 1.0 represents the right or bottom edge of the shape.
Valid values correspond to valid adjustments you can make to the
shape manually. For example, if you can only pull an adjustment

Linear handle half way across the shape manually, the maximum value for

(horizontal

or vertical) the corresponding adjustment will be 0.5. For shapes such as
connectors and callouts, where the values 0.0 and 1.0 represent the
limits of the rectangle defined by the starting and ending points of
the connector or callout line, negative numbers and numbers
greater than 1.0 are valid values.

An adjustment value of 1.0 corresponds to the width of the shape.
The maximum value is 0.5, or half way across the shape.

Values are expressed in degrees. If you specify a value outside the
range — 180 to 180, it will be normalized to be within that range.

Radial

Angle

The following example adds a right-arrow callout to myDocument and sets
adjustment values for the callout. Note that although the shape has only three
adjustment handles, it has four adjustments. Adjustments three and four both
correspond to the handle between the head and neck of the arrow.

Set myDocument = Worksheets(1)

Set rac = myDocument.Shapes.AddShape(msoShapeRightArrowCallout, _
10, 10, 250, 190)

With rac.Adjustments

.Item(1) = 0.5 'adjusts width of text box

.Item(2) = 0.15 'adjusts width of arrow head
.Item(3) = 0.8 'adjusts length of arrow head
.Item(4) = 0.4 'adjusts width of arrow neck

End With

AllowEditRange Object

L

Protection ~AllowEditRanges
|‘AllowE ditRange
L

Multiple objects

Represents the cells that can be edited on a protected worksheet.

Using the AllowEditRange Object

Use the Add method or the Item property of the AllowEditRanges collection to
return an AllowEditRange object.

Once an AllowEditRange object has been returned, you can use the
ChangePassword method to change the password to access a range that can be
edited on a protected worksheet.

In this example, Microsoft Excel allows edits to range "A1:A4" on the active
worksheet, notifies the user, then changes the password for this specified range
and notifies the user of this change.

Sub UseChangePassword()

Dim wksOne As Worksheet
Dim wksPassword As String

Set wksOne = Application.ActiveSheet
wksPassword = InputBox ("Enter password for the worksheet")
' Establish a range that can allow edits
' on the protected worksheet.
wksOne.Protection.AllowEditRanges.Add _
Title:="Classified", _
Range:=Range("Al1:A4"), _
Password:=wksPassword
MsgBox '"Cells Al to A4 can be edited on the protected worksheet.
' Change the password.
wksPassword = InputBox ("Enter the new password for the workshee

wksOne.Protection.AllowEditRanges(1).ChangePassword _
Password:=wksPassword

MsgBox "The password for these cells has been changed."

End Sub

Application Object

L

Application ~Multiple objects

Represents the entire Microsoft Excel application. The Application object
contains:

e Application-wide settings and options (many of the options in the Options
dialog box (Tools menu), for example).

e Methods that return top-level objects, such as ActiveCell, ActiveSheet, and
SO On.

Using the Application Object

Use the Application property to return the Application object. The following
example applies the Windows property to the Application object.

Application.Windows("book1l.x1s").Activate

The following example creates a Microsoft Excel workbook object in another
application and then opens a workbook in Microsoft Excel.

Set x1 = CreateObject("Excel.Sheet")
x1l.Application.Workbooks.Open '"newbook.xls"

Remarks

Many of the properties and methods that return the most common user-interface
objects, such as the active cell (ActiveCell property), can be used without the
Application object qualifier. For example, instead of writing
Application.ActiveCell.Font.Bold = True, you can write
ActiveCell.Font.Bold = True.

AutoCorrect Object

L

Application ~AutoCorrect

Contains Microsoft Excel AutoCorrect attributes (capitalization of names of
days, correction of two initial capital letters, automatic correction list, and so
on).

Using the AutoCorrect Object

Use the AutoCorrect property to return the AutoCorrect object. The following
example sets Microsoft Excel to correct words that begin with two initial capital
letters.

With Application.AutoCorrect
.TwoInitialCapitals = True
.ReplaceText = True

End With

AutoFilter Object

|‘AutoFilter

Multiple objects

Worksheet
L

Represents autofiltering for the specified worksheet.

Using the AutoFilter Object

Use the AutoFilter property to return the AutoFilter object. Use the Filters
method to return a collection of individual column filters. Use the Range
method to return the Range object that represents the entire filtered range. The
following example stores the address and filtering criteria for the current
filtering and then applies new filters.

Dim w As Worksheet
Dim filterArray()
Dim currentFiltRange As String

Sub ChangeFilters()

Set w = Worksheets("Crew")
With w.AutoFilter
currentFiltRange = .Range.Address
wWith .Filters
ReDim filterArray(1 To .Count, 1 To 3)
For f = 1 To .Count
With .Item(f)
If .0On Then
filterArray(f, 1) = .Criterial
If .Operator Then

filterArray(f, 2) = .Operator
filterArray(f, 3) = .Criteria2
End If
End If
End wWith
Next
End With

End With

w.AutoFilterMode = False
w.Range("A1").AutoFilter field:=1, Criteriail:="S"

End Sub

To create an AutoFilter object for a worksheet, you must turn autofiltering on
for a range on the worksheet either manually or using the AutoFilter method of
the Range object. The following example uses the values stored in module-level
variables in the previous example to restore the original autofiltering to the Crew
worksheet.

Sub RestoreFilters()
Set w = Worksheets("Crew")
w.AutoFilterMode = False
For col = 1 To UBound(filterArray(), 1)
If Not IsEmpty(filterArray(col, 1)) Then
If filterArray(col, 2) Then

w.Range(currentFiltRange) .AutoFilter field:=col, _

Criterial:=filterArray(col, 1), _
Operator:=filterArray(col, 2), _
Criteria2:=filterArray(col, 3)
Else
w.Range(currentFiltRange) .AutoFilter field:=col,
Criterial:=filterArray(col, 1)
End If
End If
Next
End Sub

AutoRecover Object

L

Application ~AutoRecover

Represents the automatic recovery features of a workbook. Properties for the
AutoRecover object determine the path and time interval for backing up all
files.

Using the AutoRecover object

Use the AutoRecover property of the Application object to return an
AutoRecover object.

Use the Path property of the AutoRecover object to set the path for where the
AutoRecover file will be saved. The following example sets the path of the
AutoRecover file to drive C.

Sub SetPath()
Application.AutoRecover.Path = "C:\"

End Sub

Use the Time property of the AutoRecover object to set the time interval for
backing up all files.

Note Units for the Time property are in minutes.
Sub SetTime()
Application.AutoRecover.Time = 5

End Sub

Axis Object

Axes |‘Axis

|‘Multiple objects

Represents a single axis in a chart. The Axis object is a member of the Axes
collection.

Using the Axis Object

Use Axes(type, group) where type is the axis type and group is the axis group to
return a single Axis object. Type can be one of the following XI1AxisType
constants: xlCategory, xlISeries, or xIValue. Group can be one of the following
XIAxisGroup constants: xIPrimary or xISecondary. For more information, see
the Axes method.

The following example sets the category axis title text on the chart sheet named
"Chart1."

wWith Charts("chartl").Axes(x1lCategory)
.HasTitle = True
.AxisTitle.Caption = "1994"

End wWith

AxisTitle Object

Axis |‘AxisTitle
L

Multiple objects

Represents a chart axis title.

Using the AxisTitle Object

Use the AxisTitle property to return an AxisTitle object. The following example
activates embedded chart one, sets the value axis title text, sets the font to
Bookman 10 point, and formats the word millions as italic.

Worksheets("sheetl").ChartObjects(1).Activate
With ActiveChart.Axes(x1lValue)
.HasTitle = True
wWith .AxisTitle
.Caption = "Revenue (millions)"
.Font.Name = "bookman"
.Font.Size = 10
.Characters(10, 8).Font.Italic = True
End With
End With

Remarks

The AxisTitle object doesn’t exist and cannot be used unless the HasTitle
property for the axis is True.

Border Object

L

Multiple objects ~“Border

Represents the border of an object.

Using the Border Object

Most bordered objects (all except for the Range and Style objects) have a border
that’s treated as a single entity, regardless of how many sides it has. The entire
border must be returned as a unit. Use the Border property to return the Border
object for this kind of object. The following example activates the chart sheet
named Chart1 places a dashed border around the chart area for the active chart
and places a dotted border around the plot area.

Charts('"charti1").Activate

With ActiveChart
.ChartArea.Border.LineStyle = x1Dash
.PlotArea.Border.LineStyle = x1Dot

End With

Range and Style objects have four discrete borders— left, right, top, and bottom
— which can be returned individually or as a group. Use the Borders property
to return the Borders collection, which contains all four borders and treats the
borders as a unit. The following example adds a double border to cell A1 on
worksheet one.

Worksheets(1).Range("A1").Borders.LineStyle = x1lDouble

Use Borders(index), where index identifies the border, to return a single Border
object. The following example sets the color of the bottom border of cells
Al:G1.

Worksheets("Sheet1").Range("A1:G1"). _
Borders(xlEdgeBottom).Color = RGB(255, 0, 0)

Index can be one of the following XIBordersIndex constants: xIDiagonalDown,
xIDiagonalUp, xIEdgeBottom, xIEdgeL eft, xIEdgeRight, xIEdgeTop,
xlInsideHorizontal, or xlInsideVertical.

Show All

CalculatedMember Object

PivotTable |‘CalculatedMembelrs
|‘CalculatedMeInbelr

Represents the calculated fields and calculated items for PivotTables with Online
Analytical Processing (OLAP) data sources.

Using the CalculatedMember object

Use the Add method or the Item property of the CalculatedMembers collection
to return a CalculatedMember object.

With a CalculatedMember object you can check the validity of a calculated
field or item in a PivotTable using the IsValid property.

Note The IsValid property will return True if the PivotTable is not currently
connected to the data source. Use the MakeConnection method before testing
the IsValid property.

The following example notifies the user if the calculated member is valid or not.
This example assumes a PivotTable exists on the active worksheet that contains
either a valid or invalid calculated member.

Sub CheckValidity()

Dim pvtTable As PivotTable
Dim pvtCache As PivotCache

Set pvtTable
Set pvtCache

= ActiveSheet.PivotTables(1)

= Application.ActiveWorkbook.PivotCaches.Item(1)

' Handle run-time error if external source is not an OLEDB data
On Error GoTo Not_OLEDB

' Check connection setting and make connection if necessary.

If pvtCache.IsConnected = False Then
pvtCache.MakeConnection

End If

' Check if calculated member is valid.

If pvtTable.CalculatedMembers.Item(1).IsValid = True Then
MsgBox "The calculated member is valid."

Else
MsgBox "The calculated member is not valid."

End If

End Sub

CalloutFormat Object

L

Multiple objects ~CalloutFormat

Contains properties and methods that apply to line callouts.

Using the CalloutFormat Object

Use the Callout property to return a CalloutFormat object. The following
example specifies the following attributes of shape three (a line callout) on
myDocument: the callout will have a vertical accent bar that separates the text
from the callout line; the angle between the callout line and the side of the
callout text box will be 30 degrees; there will be no border around the callout
text; the callout line will be attached to the top of the callout text box; and the
callout line will contain two segments. For this example to work, shape three
must be a callout.

Set myDocument = Worksheets(1)
wWith myDocument.Shapes(3).Callout
.Accent = True
.Angle = msoCalloutAngle30
.Border = False
.PresetDrop msoCalloutDropTop
.Type = msoCalloutThree
End wWith

CellFormat Object

L

Application ~CellFormat

|‘Multiple objects

Represents the search criteria for the cell format.

Using the CellFormat object

Use the FindFormat or ReplaceFormat properties of the Application object to
return a CellFormat object.

With a CellFormat object, you can use the Borders,Font, orInterior properties
of the CellFormat object, to define the search criteria for the cell format. The
following example sets the search criteria for the interior of the cell format. In
this scenario, the interior of cell A1 is set to yellow, which is then found and
replaced with a green interior.

Sub ChangeCellFormat()

' Set the interior of cell Al to yellow.
Range("A1").Select

Selection.Interior.ColorIndex = 36

MsgBox "The cell format for cell A1 is a yellow interior."

' Set the CellFormat object to replace yellow with green.
wWith Application
.FindFormat.Interior.ColorIndex = 36
.ReplaceFormat.Interior.ColorIndex = 35
End With

' Find and replace cell Al's yellow interior with green.

ActiveCell.Replace What:="", Replacement:="", LookAt:=xlPart, _
SearchOrder:=x1ByRows, MatchCase:=False, SearchFormat:=True,
ReplaceFormat:=True

MsgBox "The cell format for cell Al is replaced with a green int

End Sub

Characters Object

L

Multiple objects ~Characters

Font

Represents characters in an object that contains text. The Characters object lets
you modify any sequence of characters contained in the full text string.

Using the Characters Object

Use Characters(start, length), where start is the start character number and
length is the number of characters, to return a Characters object. The following
example adds text to cell B1 and then makes the second word bold.

With Worksheets("Sheet1").Range("B1")
.Value = "New Title"
.Characters(5, 5).Font.Bold = True

End With

Remarks

The Characters method is necessary only when you need to change some of an
object’s text without affecting the rest (you cannot use the Characters method to
format a portion of the text if the object doesn’t support rich text). To change all
the text at the same time, you can usually apply the appropriate method or
property directly to the object. The following example formats the contents of
cell A5 as italic.

Worksheets("Sheet1").Range("A5").Font.Italic = True

Chart Object

|‘Chart

|‘Multiple objects

Multiple objects

Represents a chart in a workbook. The chart can be either an embedded chart
(contained in a ChartObject) or a separate chart sheet.

Using the Chart Object

The following properties and methods for returning a Chart object are described
in this section:

Chart property
Charts method
ActiveChart property
ActiveSheet property

Chart Property

Use the Chart property to return a Chart object that represents the chart
contained in a ChartObject object. The following example sets the pattern for
the chart area in embedded chart one on the worksheet named "Sheet1."

Worksheets("Sheet1").ChartObjects(1).Chart. _
ChartArea.Interior.Pattern = xlLightDown

Charts Method

The Charts collection contains a Chart object for each chart sheet in a
workbook. Use Charts(index), where index is the chart-sheet index number or
name, to return a single Chart object. The following example changes the color
of series one on chart sheet one.

Charts(1).SeriesCollection(1).Interior.Color = RGB(255, 0, 0)

The chart index number represents the position of the chart sheet on the
workbook tab bar. charts(1) is the first (leftmost) chart in the workbook;
Charts(Charts.Count) is the last (rightmost). All chart sheets are included in
the index count, even if they’re hidden. The chart-sheet name is shown on the
workbook tab for the chart. You can use the Name property to set or return the
chart name.

The following example moves the chart named Sales to the end of the active
workbook.

Charts("Sales").Move after:=Sheets(Sheets.Count)

The Chart object is also a member of the Sheets collection. The Sheets
collection contains all the sheets in the workbook (both chart sheets and
worksheets). Use Sheets(index), where index is the sheet index number or name,
to return a single sheet.

ActiveChart Property

When a chart is the active object, you can use the ActiveChart property to refer
to it. A chart sheet is active if the user has selected it or it’s been activated with
the Activate method. The following example activates chart sheet one and then
sets the chart type and title.

Charts(1).Activate
wWith ActiveChart

.Type = xlLine

.HasTitle = True

.ChartTitle.Text = "January Sales"
End wWith

An embedded chart is active if the user has selected it or the ChartObject object
that it’s contained in has been activated with the Activate method. The following
example activates embedded chart one on worksheet one and then sets the chart
type and title. Notice that after the embedded chart has been activated, the code
in this example is the same as that in the previous example. Using the
ActiveChart property allows you to write Visual Basic code that can refer to
either an embedded chart or a chart sheet (whichever is active).

Worksheets(1).ChartObjects(1).Activate
ActiveChart.Type = xlLine
ActiveChart.HasTitle = True
ActiveChart.ChartTitle.Text = "January Sales"

ActiveSheet Property

When a chart sheet is the active sheet, you can use the ActiveSheet property to
refer to it. The following example uses the Activate method to activate the chart
sheet named Chart1 and then sets the interior color for series one in the chart to
blue.

Charts('"charti1").Activate
ActiveSheet.SeriesCollection(1).Interior.ColorIndex = 5

ChartArea Object

|‘ChartAlrea

Multiple objects

Chart
L

Represents the chart area of a chart. The chart area on a 2-D chart contains the
axes, the chart title, the axis titles, and the legend. The chart area on a 3-D chart
contains the chart title and the legend; it doesn’t include the plot area (the area
within the chart area where the data is plotted). For information about formatting
the plot area, see the PlotArea object.

Using the ChartArea Object

Use the ChartArea property to return the ChartArea object. The following
example sets the pattern for the chart area in embedded chart one on the
worksheet named "Sheet1."

Worksheets("sheet1").ChartObjects(1).Chart. _
ChartArea.Interior.Pattern = xlLightDown

ChartColorFormat Object

L

ChartFillFormat —ChartColorFormat

Used only with charts. Represents the color of a one-color object or the
foreground or background color of an object with a gradient or patterned fill.

Using the ChartColorFormat Object

Use one of the properties listed in the following table to return a
ChartColorFormat object.

To return a ChartColorFormat object that Use this

represents this property

Background fill color (used in a shaded or
patterned fill)

Foregrognd fill color (or just the fill color for ForeColor ChartFillFormat
a solid fill) —

With this object

BackColor ChartFillFormat

ChartFillFormat Object

Multiple objects |‘ChartFﬂlFormat
LChartColorFormat

Used only with charts. Represents fill formatting for chart elements.

Using the ChartFillFormat Object

Use the Fill property to return a ChartFillFormat object. The following
example sets the foreground color, background color, and gradient for the chart
area fill on chart one.

With Charts(1).ChartArea.Fill

.Visible = True

.ForeColor.SchemeColor 15

.BackColor.SchemeColor 17

.TwoColorGradient Style:=msoGradientHorizontal, Variant:=1
End With

ChartGroup Object

ChartGroups -

L

ChartGroup
Multiple objects

Represents one or more series plotted in a chart with the same format. A chart
contains one or more chart groups, each chart group contains one or more series,
and each series contains one or more points. For example, a single chart might
contain both a line chart group, containing all the series plotted with the line
chart format, and a bar chart group, containing all the series plotted with the bar
chart format. The ChartGroup object is a member of the ChartGroups
collection.

Using the ChartGroup Object

Use ChartGroups(index), where index is the chart-group index number, to
return a single ChartGroup object. The following example adds drop lines to
chart group one on chart sheet one.

Charts(1).ChartGroups(1).HasDropLines = True

If the chart has been activated, you can use the ActiveChart property.

Charts(1).Activate
ActiveChart.ChartGroups(1).HasDropLines = True

Because the index number for a particular chart group can change if the chart
format used for that group is changed, it may be easier to use one of the named
chart group shortcut methods to return a particular chart group. The PieGroups
method returns the collection of pie chart groups in a chart, the LineGroups
method returns the collection of line chart groups, and so on. Each of these
methods can be used with an index number to return a single ChartGroup
object, or without an index number to return a ChartGroups collection. The
following chart group methods are available:

AreaGroups method
BarGroups method
ColumnGroups method
DoughnutGroups method
LineGroups method
PieGroups method

ChartObject Object

ChartObjects -

L

ChartObject
Multiple objects

Represents an embedded chart on a worksheet. The ChartObject object acts as
a container for a Chart object. Properties and methods for the ChartObject
object control the appearance and size of the embedded chart on the worksheet.
The ChartObject object is a member of the ChartObjects collection. The
ChartObjects collection contains all the embedded charts on a single sheet.

Using the ChartObject Object

Use ChartObjects(index), where index is the embedded chart index number or
name, to return a single ChartObject object. The following example sets the
pattern for the chart area in embedded chart one on the worksheet named
"Sheet1."

Worksheets("Sheet1").ChartObjects(1).Chart. _
ChartArea.Interior.Pattern = xlLightDown

The embedded chart name is shown in the Name box when the embedded chart
is selected. Use the Name property to set or return the name of the ChartObject
object. The following example puts rounded corners on the embedded chart
named "Chart 1" on the worksheet named "Sheet1."

wWorksheets("sheetl").ChartObjects("chart 1").RoundedCorners = True

ChartTitle Object

Chart L

L

ChartTitle
Multiple objects

Represents the chart title.

Using the ChartTitle Object

Use the ChartTitle property to return the ChartTitle object. The following
example adds a title to embedded chart one on the worksheet named "Sheet1."

With Worksheets("sheet1").ChartObjects(1).Chart
.HasTitle = True
.ChartTitle.Text = "February Sales"

End wWith

Remarks

The ChartTitle object doesn’t exist and cannot be used unless the HasTitle
property for the chart is True.

ColorFormat Object

L

Multiple objects ~ColorFormat

Represents the color of a one-color object, the foreground or background color
of an object with a gradient or patterned fill, or the pointer color. You can set
colors to an explicit red-green-blue value (by using the RGB property) or to a
color in the color scheme (by using the SchemeColor property).

Using the ColorFormat Object

Use one of the properties listed in the following table to return a ColorFormat
object.

Use this With this To return a ColorFormat object that
property object represents this

The background fill color (used in a shaded

BackColor FillFormat or patterned fill)

The foreground fill color (or simply the fill

ForeColor FillFormat color for a solid fill)

BackColor LineFormat The backgfound line color (used in a
patterned line)

ForeColor LineFormat The foreground line color (or just the line

color for a solid line)
ForeColor ShadowFormat The shadow color
ExtrusionColor ThreeDFormat The color of the sides of an extruded object

Use the RGB property to set a color to an explicit red-green-blue value. The
following example adds a rectangle to myDocument and then sets the
foreground color, background color, and gradient for the rectangle's fill.

Set myDocument = Worksheets(1)
wWith myDocument.Shapes.AddShape(msoShapeRectangle, _
90, 90, 90, 50).Fill
.ForeColor.RGB = RGB(128, 0, 0)
.BackColor.RGB = RGB(170, 170, 170)
.TwoColorGradient msoGradientHorizontal, 1
End With

Comment Object

L

Worksheet "Comments

L

Comment

|‘Shape

Represents a cell comment. The Comment object is a member of the
Comments collection.

Using the Comment Object

Use the Comment property to return a Comment object. The following example
changes the text in the comment in cell E5.

Worksheets(1).Range("E5").Comment.Text "reviewed on " & Date

Use Comments(index), where index is the comment number, to return a single
comment from the Comments collection. The following example hides
comment two on worksheet one.

Worksheets(1).Comments(2).Visible = False

Use the AddComment method to add a comment to a range. The following
example adds a comment to cell E5 on worksheet one.

With Worksheets(1).Range("e5").AddComment
.Visible = False
.Text "reviewed on " & Date

End With

ConnectorFormat Object

L

ConnectorFormat

Multiple objects
Shape

Contains properties and methods that apply to connectors. A connector is a line
that attaches two other shapes at points called connection sites. If you rearrange
shapes that are connected, the geometry of the connector will be automatically
adjusted so that the shapes remain connected.

Using the ConnectorFormat Object

Use the ConnectorFormat property to return a ConnectorFormat object. Use
the BeginConnect and EndConnect methods to attach the ends of the connector
to other shapes in the document. Use the RerouteConnections method to
automatically find the shortest path between the two shapes connected by the
connector. Use the Connector property to see whether a shape is a connector.

Note that you assign a size and a position when you add a connector to the
Shapes collection, but the size and position are automatically adjusted when you
attach the beginning and end of the connector to other shapes in the collection.
Therefore, if you intend to attach a connector to other shapes, the initial size and
position you specify are irrelevant. Likewise, you specify which connection sites
on a shape to attach the connector to when you attach the connector, but using
the RerouteConnections method after the connector is attached may change
which connection sites the connector attaches to, making your original choice of
connection sites irrelevant.

The following example adds two rectangles to myDocument and connects them
with a curved connector.

Set myDocument = Worksheets(1)

Set s = myDocument.Shapes

Set firstRect = s.AddShape(msoShapeRectangle, 100, 50, 200, 100)

Set secondRect = s.AddShape(msoShapeRectangle, 300, 300, 200, 100)

Setc ¢ = s.AddConnector(msoConnectorCurve, 0, 0, 0, 0)

With c.ConnectorFormat
.BeginConnect ConnectedShape:=firstRect, ConnectionSite:=1
.EndConnect ConnectedShape:=secondRect, ConnectionSite:=1
c.RerouteConnections

End wWith

Remarks

Connection sites are generally numbered according to the rules presented in the
following table.

Shape type Connection site numbering scheme

AutoShapes, WordArt, The connection sites are numbered starting at the
pictures, and OLE objects top and proceeding counterclockwise.

The connection sites are the vertices, and they

Freeforms
correspond to the vertex numbers.

To figure out which number corresponds to which connection site on a complex
shape, you can experiment with the shape while the macro recorder is turned on
and then examine the recorded code; or you can create a shape, select it, and
then run the following example. This code will number each connection site and
attach a connector to it.

Set mainshape = ActiveWindow.Selection.ShapeRange(1)
wWith mainshape
bx = .Left + .Width + 50
by = .Top + .Height + 50
End With
With ActiveSheet
For j = 1 To mainshape.ConnectionSiteCount
With .Shapes.AddConnector(msoConnectorStraight, _
bx, by, bx + 50, by + 50)
.ConnectorFormat.EndConnect mainshape, j
.ConnectorFormat.Type = msoConnectorElbow
.Line.ForeColor.RGB = RGB(255, 0, 0)

1l = .Left
t = .Top
End With

With .Shapes.AddTextbox(msoTextOrientationHorizontal, _
1, t, 36, 14)

.Fill.Vvisible = False
.Line.Visible = False
.TextFrame.Characters.Text = j

End wWith

Next j
End With

Show All

ControlFormat Object

L

Shape —ControlFormat

Contains Microsoft Excel control properties.

Using the ControlFormat Object

Use the ControlFormat property to return a ControlFormat object. The
following example sets the fill range for a list box control on worksheet one.

Worksheets(1).Shapes(1).ControlFormat.ListFillRange = "A1:A10"

If the shape isn’t a control, the ControlFormat property fails; and if the control
isn’t a list box, the ListFillRange property fails.

Corners Object

L

Chart —Corners

Represents the corners of a 3-D chart. This object isn’t a collection.

Using the Corners Object

Use the Corners property to return the Corners object. The following example
selects the corners of chart one.

Charts(1).Corners.Select

If the chart isn’t a 3-D chart, the Corners property fails.

Show All

CubeField Object

|‘CubeField

|‘Multiple objects

Multiple objects

Represents a hierarchy or measure field from an OLAP cube. In a PivotTable
report, the CubeField object is a member of the CubeFields collection.

Using the CubeField Object

Use the CubeField property to return the CubeField object. This example
creates a list of the cube field names for all the hierarchy fields in the first
OLAP-based PivotTable report on Sheet1.

Set objNewSheet = Worksheets.Add
objNewSheet.Activate
intRow = 1
For Each objPF in _
Worksheets("Sheet1").PivotTables(1).PivotFields
If objPF.CubeField.CubeFieldType = xlHierarchy Then
objNewSheet.Cells(intRow, 1).Value = objPF.Name
intRow = intRow + 1
End If
Next objPF

Use CubeFields(index), where index is the cube field’s index number, to return a
single CubeField object. The following example determines the name of the
second cube field in the first PivotTable report on the active worksheet.

strAlphaName = _
ActiveSheet.PivotTables(1).CubeFields(2).Name

CustomProperty Object

L

Multiple objects ~CustomProperties

CustomProperty

Represents identifier information. Identifier information can be used as metadata
for XML.

Using the CustomProperty object

Use the Add method or the Item property of the CustomProperties collection
to return a CustomProperty object.

Once a CustomProperty object is returned, you can add metadata to worksheets
using the CustomProperties property with the Add method.

The following example demonstrates this feature. In this example, Microsoft
Excel adds identifier information to the active worksheet and returns the name
and value to the user.

Sub CheckCustomProperties()

Dim wksSheetl As Worksheet

Set wksSheetl = Application.ActiveSheet

' Add metadata to worksheet.

wksSheetl.CustomProperties.Add _
Name:="Market", Value:='"Nasdaq"

' Display metadata.

With wksSheetl.CustomProperties.Item(1)
MsgBox .Name & vbTab & .Value

End With

End Sub

CustomView Object

L

CustomViews —CustomView

Represents a custom workbook view. The CustomView object is a member of
the CustomViews collection.

Using the CustomView Object

Use CustomViews(index), where index is the name or index number of the
custom view, to return a CustomView object. The following example shows the
custom view named "Current Inventory."

ThiswWorkbook.CustomViews("Current Inventory").Show

Datal.abel Object

|‘DataLabel

|‘Multiple objects

Multiple objects

Represents the data label on a chart point or trendline. On a series, the
Datal.abel object is a member of the Datal.abels collection. The DataLabels
collection contains a DataLabel object for each point. For a series without
definable points (such as an area series), the DataL.abels collection contains a
single DataL.abel object.

Using the Datal.abel Object

Use DataLabels(index), where index is the data-label index number, to return a
single DataLabel object. The following example sets the number format for the
fifth data label in series one in embedded chart one on worksheet one.

Worksheets(1).ChartObjects(1).Chart _
.SeriesCollection(1).DatalLabels(5).NumberFormat = "0.000"

Use the DataLabel property to return the DataL.abel object for a single point.
The following example turns on the data label for the second point in series one
on the chart sheet named "Chart1" and sets the data label text to "Saturday."

wWith Charts("chart1")

With .SeriesCollection(1).Points(2)
.HasDatalLabel = True
.DatalLabel.Text = "Saturday"

End With

End wWith

On a trendline, the DataL.abel property returns the text shown with the trendline.
This can be the equation, the R-squared value, or both (if both are showing). The
following example sets the trendline text to show only the equation and then
places the data label text in cell A1 on the worksheet named "Sheet1."

wWith Charts("chartl").SeriesCollection(1).Trendlines(1)
.DisplayRSquared = False
.DisplayEquation = True
Worksheets("sheet1").Range("al").Value = .DatalLabel.Text
End With

DataTable Object

Chart |‘DataTable

L

Multiple objects

Represents a chart data table.

Using the DataTable Object

Use the DataTable property to return a DataTable object. The following
example adds a data table with an outline border to embedded chart one.

With Worksheets(1).ChartObjects(1).Chart
.HasDataTable = True
.DataTable.HasBorderOutline = True

End with

DefaultWebOptions Object

L

Application ~DefaultWebOptions

Contains global application-level attributes used by Microsoft Excel when you
save a document as a Web page or open a Web page. You can return or set
attributes either at the application (global) level or at the workbook level. (Note
that attribute values can be different from one workbook to another, depending
on the attribute value at the time the workbook was saved.) Workbook-level
attribute settings override application-level attribute settings. Workbook-level
attributes are contained in the WebQOptions object.

Using the DefaultWebOptions Object

Use the DefaultWebOptions property to return the DefaultWebOptions object.
The following example checks to see whether PNG (Portable Network Graphics)
is allowed as an image format and sets the strImageFileType variable
accordingly.

Set objAppwWebOptions = Application.DefaultWebOptions
wWith objAppwWebOptions
If .AllowPNG = True Then
strImageFileType = "PNG"
Else
strImageFileType = "JPG"
End If
End wWith

Diagram Object

L

Multiple objects “Diagram

|‘DiagramNodes

Represents a diagram.

Using the Diagram object

Use the Diagram property of the Shape object or ShapeRange collection to a
return a Diagram object. The following example adds a radial diagram to the
active worksheet.

Sub NewDiagram()

Dim wksActiveSheet As Worksheet
Dim shDiagram As Shape

Set wksActiveSheet = ActiveSheet

Set shDiagram = wksActiveSheet.Shapes.AddDiagram(_
Type:=msoDiagramRadial, _
Left:=20, Top:=40, _
width:=400, Height:=200)

" Fill the diagram to make it visible to the user
shDiagram.Fill.Visible = msoTrue

End Sub

You can also convert the current diagram to a different diagram by using the
Convert method.

Note If the current diagram is an organization chart (msoDiagramOrgChart) a
run-time error will occur. In this example, a radial diagram is converted into a
target diagram.

Sub NewDiagram()

Dim wksActiveSheet As Worksheet
Dim shDiagram As Shape

Set wksActiveSheet = ActiveSheet

Set shDiagram = wksActiveSheet.Shapes.AddDiagram(_
Type:=msoDiagramRadial, _
Left:=20, Top:=40, _
width:=400, Height:=200)

' Fill the diagram to make it visible to the user
shDiagram.Fill.Visible = msoTrue

' Convert the diagram.
shDiagram.Diagram.Convert Type:=msoDiagramTarget

End Sub

There are several types of diagrams to chose from when working with the
Diagram object. Refer to the AddDiagram method to view a list of available

diagram types.

DiagramNode Object

L

Multiple objects “DiagramNode

|‘Multiple objects

Represents a node in a diagram.

Using the DiagramNode object

Use the AddNode method to add a node to a diagram or to a diagram node. This
example assumes the third shape in the active worksheet is a diagram and adds a
node to it.

Sub AddDiagramNode()
ActiveSheet.Shapes(3).DiagramNode.Children.AddNode
End Sub

Use the Delete method to remove a node from a diagram or diagram node. This
example assumes the second shape in the active worksheet is a diagram and
removes the first node from it.

Sub DeleteDiagramNode()
ActiveSheet.Shapes(2).DiagramNode.Children(1).Delete
End Sub

To return a DiagramNode object, use one of the following:

e The DiagramNode object's AddNode, CloneNode, NextNode or
PrevNode methods, or Root property

e The DiagramNodeChildren collection's AddNode or Item methods, or
FirstChild or LastChild properties

e The DiagramNodes collection's Item method
e The Shape object's or ShapeRange collection's DiagramNode property

A diagram node can terminate, or contain other child diagrams, child diagram
nodes, or child shapes:

To refer to a child diagram, use the Diagram property.

To refer to an individual child diagram node, use the AddNode,
CloneNode, NextNode or PrevNode methods, or Root property.

To refer to a collection of child diagram nodes, use the Children property.
To refer to a shape, use the Shape or TextShape properties.

DiagramNodeChildren Collection

DiagramNode |‘DiagramNodeChildren

|‘DiagramNode

A collection of DiagramNode objects that represents child nodes in a diagram.

Using the DiagramNodeChildren collection

Use the Children property of the DiagramNode object to return a
DiagamNodeChildren collection. To add an individual child diagram node to
the collection, use the AddNode method. To return individual child diagram
nodes in the collection, use the FirstChild or LastChild properties, or the Item
method.

This example deletes the first child of the second node in the first diagram in the
worksheet. This example assumes that the first shape in the active worksheet is a
diagram with at least two nodes, one with child nodes.

Sub DiagramNodeChild()
ActiveSheet.Shapes(1).Diagram.Nodes.Item(2) _
.Children.FirstChild.Delete
End Sub

Dialog Object

Application |‘Dialogs
|‘Dialog

Represents a built-in Microsoft Excel dialog box. The Dialog object is a member
of the Dialogs collection. The Dialogs collection contains all the built-in dialog
boxes in Microsoft Excel. You cannot create a new built-in dialog box or add
one to the collection. The only useful thing you can do with a Dialog object is
use it with the Show method to display the corresponding dialog box.

Using the Dialog Object

Use Dialogs(index), where index is a built-in constant identifying the dialog box,
to return a single Dialog object. The following example runs the built-in Open
dialog box (File menu). The Show method returns True if Microsoft Excel
successfully opens a file; it returns False if the user cancels the dialog box.

dlgAnswer = Application.Dialogs(xlDialogOpen).Show

The Microsoft Excel Visual Basic object library includes built-in constants for
many of the built-in dialog boxes. Each constant is formed from the prefix
"x]Dialog" followed by the name of the dialog box. For example, the Apply
Names dialog box constant is xIDialogApplyNames, and the Find File dialog
box constant is xIDialogFindFile. These constants are members of the
XlBuiltinDialog enumerated type. For more information about the available
constants, see Built-in Dialog Box Argument Lists.

DisplayUnitLabel Object

|‘Displa;gUnitLabel

Multiple objects

Axis

L

Represents a unit label on an axis in the specified chart. Unit labels are useful for
charting large values— for example, in the millions or billions. You can make
the chart more readable by using a single unit label instead of large numbers at
each tick mark.

Using the DisplayUnitLabel Object

Use the DisplayUnitL.abel property to return the DisplayUnitLabel object. The
following example sets the display label caption to "Millions" on the value axis
in Chart1, and then it turns off automatic font scaling.

With Charts("Chartl").Axes(x1lValue).DisplayUnitLabel
.Caption = "Millions"
.AutoScaleFont = False

End With

DownBars Object

L

ChartGroup ~DownBars

L

Multiple objects

Represents the down bars in a chart group. Down bars connect points on the first
series in the chart group with lower values on the last series (the lines go down
from the first series). Only 2-D line groups that contain at least two series can
have down bars. This object isn’t a collection. There’s no object that represents a
single down bar; you either have up bars and down bars turned on for all points
in a chart group or you have them turned off.

Using the DownBars Object

Use the DownBars property to return the DownBars object. The following
example turns on up and down bars for chart group one in embedded chart one
on the worksheet named "Sheet5." The example then sets the up bar color to blue
and the down bar color to red.

With Worksheets("sheet5").ChartObjects(1).Chart.ChartGroups(1)
.HasUpDownBars = True
.UpBars.Interior.Color = RGB(0, 0, 255)
.DownBars.Interior.Color = RGB(255, 0, 0)

End With

Remarks

If the HasUpDownBars property is False, most properties of the DownBars
object are disabled.

DropLines Object

L

ChartGroup ~DropLines
|‘Bordelr

Represents the drop lines in a chart group. Drop lines connect the points in the
chart with the x-axis. Only line and area chart groups can have drop lines. This
object isn’t a collection. There’s no object that represents a single drop line; you
either have drop lines turned on for all points in a chart group or you have them
turned off.

Using the DropLines Object

Use the DropLines property to return the DropLines object. The following
example turns on drop lines for chart group one in embedded chart one and then
sets the drop line color to red.

Worksheets("sheetl").ChartObjects(1).Activate
ActiveChart.ChartGroups(1).HasDropLines = True
ActiveChart.ChartGroups(1).DropLines.Border.ColorIndex = 3

Remarks

If the HasDropL.ines property is False, most properties of the DropLines object
are disabled.

Error Object

Range |‘Errors

L

Error

Represents a spreadsheet error for a range.

Using the Error object

Use the Item property of the Errors object to return an Error object.

Once an Error object is returned, you can use the Value property, in conjunction
with the Errors property to check whether a particular error checking option is
enabled.

The following example creates a formula in cell A1 referencing empty cells, and
then it uses Item(index), where index identifies the error type, to display a
message stating the situation.

Sub CheckEmptyCells()

Dim rngFormula As Range
Set rngFormula = Application.Range("A1")

' Place a formula referencing empty cells.
Range("A1").Formula = "=A2+A3"
Application.ErrorCheckingOptions.EmptyCellReferences = True

' Perform check to see if EmptyCellReferences check is on.
If rngFormula.Errors.Item(xlEmptyCellReferences).Value = True Th
MsgBox "The empty cell references error checking feature is

Else
MsgBox "The empty cell references error checking feature is

End If

End Sub

Note Be careful not to confuse the Error object with error handling features of
Visual Basic.

ErrorBars Object

Series |‘ErrorBalrs

|‘Bordelr

Represents the error bars on a chart series. Error bars indicate the degree of
uncertainty for chart data. Only series in area, bar, column, line, and scatter
groups on a 2-D chart can have error bars. Only series in scatter groups can have
x and y error bars. This object isn’t a collection. There’s no object that represents
a single error bar; you either have x error bars or y error bars turned on for all
points in a series or you have them turned off.

Using the ErrorBars Object

Use the ErrorBars property to return the ErrorBars object. The following
example turns on error bars for series one in embedded chart one and then sets
the end style for the error bars.

Worksheets("sheetl").ChartObjects(1).Activate
ActiveChart.SeriesCollection(1).HasErrorBars = True
ActiveChart.SeriesCollection(1).ErrorBars.EndStyle = x1NoCap

Remarks

The ErrorBar method changes the error bar format and type.

ErrorCheckingOptions Object

Application LEFFOFChECkiHQOptiODS

Represents the error-checking options for an application.

Using the ErrorCheckingOptions Object

Use the ErrorCheckingOptions property of the Application object to return an
ErrorCheckingOptions object.

Reference the Item property of the Errors object to view a list of index values
associated with error-checking options.

Once an ErrorCheckingOptions object is returned, you can use the following
properties, which are members of the ErrorCheckingOptions object, to set or
return error checking options.

BackgroundChecking

EmptyCellReferences
EvaluateToError

InconsistentFormula
IndicatorColorIndex
NumberAsText
OmittedCells

TextDate
UnlockedFormulaCells

The following example uses the TextDate property to enable error checking for
two-digit-year text dates and notifies the user.

Sub

End

CheckTextDates()

Dim rngFormula As Range
Set rngFormula = Application.Range("A1")

Range("A1").Formula = "'April 23, 00"
Application.ErrorCheckingOptions.TextDate = True

' Perform check to see if 2 digit year TextDate check is on.
If rngFormula.Errors.Item(xlTextDate).Value = True Then
MsgBox "The text date error checking feature is enabled."
Else
MsgBox "The text date error checking feature is not on."
End If

Sub

FillFormat Object

L

Multiple objects ~FillFormat

ColorFormat

Represents fill formatting for a shape. A shape can have a solid, gradient,
texture, pattern, picture, or semi-transparent fill.

Using the FillFormat Object

Use the Fill property to return a FillFormat object. The following example adds

a rectangle to myDocument and then sets the gradient and color for the rectangle's
fill.

Set myDocument = Worksheets(1)
wWith myDocument.Shapes.AddShape(msoShapeRectangle, _
90, 90, 90, 80).Fill
.ForeColor.RGB = RGB(0, 128, 128)
.0OneColorGradient msoGradientHorizontal, 1, 1
End With

Remarks

Many of the properties of the FillFormat object are read-only. To set one of
these properties, you have to apply the corresponding method.

Filter Object

L

AutoFilter ~Filters

|‘Filter

Represents a filter for a single column. The Filter object is a member of the
Filters collection. The Filters collection contains all the filters in an autofiltered
range.

Using the Filter Object

Use Filters(index), where index is the filter title or index number, to return a
single Filter object. The following example sets a variable to the value of the
On property of the filter for the first column in the filtered range on the Crew
worksheet.

Set w = Worksheets("Crew")
If w.AutoFilterMode Then

filterIsOn = w.AutoFilter.Filters(1).0n
End If

Note that all the properties of the Filter object are read-only. To set these
properties, apply autofiltering manually or using the AutoFilter method of the
Range object, as shown in the following example.

Set w = Worksheets("Crew")
w.Cells.AutoFilter field:=2, Criterial:="Crucial", _
Operator:=x10r, Criteria2:="Important"

Floor Object

Chart L

L

Floor

Multiple objects

Represents the floor of a 3-D chart

Using the Floor Object

Use the Floor property to return the Floor object. The following example sets
the floor color for embedded chart one to cyan. The example will fail if the chart
isn’t a 3-D chart.

Worksheets("sheet1").ChartObjects(1).Activate
ActiveChart.Floor.Interior.Color = RGB(0O, 255, 255)

Font Object

L

Multiple objects ~Font

Contains the font attributes (font name, font size, color, and so on) for an object.

Using the Font Object

Use the Font property to return the Font object. The following example formats
cells A1:C5 as bold.

Worksheets("Sheet1").Range("A1:C5").Font.Bold = True

If you don’t want to format all the text in a cell or graphic the same way, use the
Characters property to return a subset of the text.

FormatCondition Object

L

FormatConditions ~FormatCondition

L

Multiple objects

Represents a conditional format. The FormatCondition object is a member of
the FormatConditions collection. The FormatConditions collection can
contain up to three conditional formats for a given range.

Using the FormatCondition Object

Use FormatConditions(index), where index is the index number of the
conditional format, to return a FormatCondition object. The following example
sets format properties for an existing conditional format for cells E1:E10.

With Worksheets(1).Range("el:e10").FormatConditions(1)
wWith .Borders
.LineStyle = x1Continuous
.Weight = x1Thin
.ColorIndex = 6

End With
With .Font
.Bold = True
.ColorIndex = 3
End With

End With

Remarks

Use the Add method to create a new conditional format. If you try to create
more than three conditional formats for a single range, the Add method fails. If a
range has three formats, you can use the Modify method to change one of the
formats, or you can use the Delete method to delete a format and then use the
Add method to create a new format.

Use the Font, Border, and Interior properties of the FormatCondition object
to control the appearance of formatted cells. Some properties of these objects
aren’t supported by the conditional format object model. The properties that can
be used with conditional formatting are listed in the following table.

Object Properties
Bold

Color
ColorIndex
FontStyle
Font ialic
Strikethrough

Underline

The accounting underline styles cannot be used.

Bottom
Color
Left

Right

Style

Border The following border styles can be used (all others aren’t supported):

xINone, x1Solid, xIDash, xIDot, xIDashDot, xIDashDotDot,
x1Gray50, xIGray75, and xIGray25.

Top
Weight

The following border weights can be used (all others aren’t supported):
xIWeightHairline and xIWeightThin.

Color

ColorIndex
Interior

Pattern

PatternColorIndex

FreeformBuilder Object

FreeformBuilder

Represents the geometry of a freeform while it’s being built.

Using the FreeformBuilder Object

Use the BuildFreeform method to return a FreeformBuilder object. Use the
AddNodes method to add nodes to the freefrom. Use the ConvertToShape
method to create the shape defined in the FreeformBuilder object and add it to
the Shapes collection. The following example adds a freeform with four
segments to myDocument.

Set myDocument = Worksheets(1)

wWith myDocument.Shapes.BuildFreeform(msoEditingCorner, 360, 200)
.AddNodes msoSegmentCurve, msoEditingCorner, _

380, 230, 400, 250, 450, 300

.AddNodes msoSegmentCurve, msoEditingAuto, 480, 200
.AddNodes msoSegmentLine, msoEditingAuto, 480, 400
.AddNodes msoSegmentLine, msoEditingAuto, 360, 200
.ConvertToShape

End wWith

Graphic Object

L

PageSetup ~Graphic

Contains properties that apply to header and footer picture objects.

Using the Graphic object

There are several properties of the PageSetup object that return the Graphic
object.

Use the CenterFooterPicture, CenterHeaderPicture, LeftFooterPicture,
LeftHeaderPicture, RightFooterPicture, or RightHeaderPicture properties to
return a Graphic object.

The following example adds a picture titled: Sample.jpg from the C:\ drive to the
left section of the footer. This example assumes that a file called Sample.jpg
exists on the C:\ drive.

Sub InsertPicture()

With ActiveSheet.PageSetup.LeftFooterPicture
.FileName = "C:\Sample.jpg"
.Height = 275.25
.Width = 463.5
.Brightness = 0.36
.ColorType = msoPictureGrayscale
.Contrast = 0.39
.CropBottom = -14.4
.CropLeft = -28.8
.CropRight = -14.4
.CropTop = 21.6

End With

' Enable the image to show up in the left footer.
ActiveSheet.PageSetup.LeftFooter = "&G"

End Sub

Note It is required that "&G" is a part of the LeftFooter string in order for the
image to show up in the left footer.

Gridlines Object

Axis |‘Glridlines
|‘Bordelr

Represents major or minor gridlines on a chart axis. Gridlines extend the tick
marks on a chart axis to make it easier to see the values associated with the data
markers. This object isn’t a collection. There’s no object that represents a single
gridline; you either have all gridlines for an axis turned on or all of them turned
off.

Using the Gridlines Object

Use the MajorGridlines property to return the GridLines object that represents
the major gridlines for the axis. Use the MinorGridlines property to return the
GridLines object that represents the minor gridlines. It’s possible to return both
major and minor gridlines at the same time.

The following example turns on major gridlines for the category axis on the
chart sheet named "Chart1" and then formats the gridlines to be blue dashed
lines.

With Charts("chartl").Axes(x1lCategory)
.HasMajorGridlines = True
.MajorGridlines.Border.Color = RGB(®, 0, 255)
.MajorGridlines.Border.LineStyle = x1Dash

End With

GroupShapes Collection Object

L

Multiple objects ~GroupShapes

|‘ShapeRange

Represents the individual shapes within a grouped shape. Each shape is
represented by a Shape object. Using the Item method with this object, you can
work with single shapes within a group without having to ungroup them.

Using The GroupShapes Collection

Use the Groupltems property to return the GroupShapes collection. Use
Groupltems(index), where index is the number of the individual shape within
the grouped shape, to return a single shape from the the GroupShapes
collection. The following example adds three triangles to myDocument, groups
them, sets a color for the entire group, and then changes the color for the second
triangle only.

Set myDocument = Worksheets(1)
With myDocument.Shapes
.AddShape(msoShapelsoscelesTriangle, _
10, 10, 100, 100).Name = '"shpOne"
.AddShape(msoShapelsoscelesTriangle, _
150, 10, 100, 100).Name = "shpTwo"
.AddShape(msoShapelsoscelesTriangle, _
300, 10, 100, 100).Name = "shpThree"
wWith .Range(Array('"shpOne", "shpTwo", "shpThree")).Group
.Fill.PresetTextured msoTextureBlueTissuePaper
.GroupItems(2).Fill.PresetTextured msoTextureGreenMarble
End wWith
End wWith

HiLoLines Object

L

ChartGroup ~HiL.oLines

|‘Bordelr

Represents the high-low lines in a chart group. High-low lines connect the
highest point with the lowest point in every category in the chart group. Only 2-
D line groups can have high-low lines. This object isn’t a collection. There’s no
object that represents a single high-low line; you either have high-low lines
turned on for all points in a chart group or you have them turned off.

Using the Hil.oLines Object

Use the HiL.oLines property to return the HiL.oLines object. The following
example uses the AutoFormat method to create a high-low-close stock chart in
embedded chart one (the chart must contain three series) on worksheet one. The
example then makes the high-low lines blue.

Worksheets(1).ChartObjects(1).Activate
ActiveChart.AutoFormat gallery:=xlLine, format:=8
ActiveChart.ChartGroups(1).HiLoLines.Border.Color = RGB(0, 0, 255)

Remarks

If the HasHil.oL.ines property is False, most properties of the HiL.oLines object
are disabled.

HPageBreak Object

Multiple objects L

|‘HPageBreak
|‘Multiple objects

HPageBreaks

Represents a horizontal page break. The HPageBreak object is a member of the
HPageBreaks collection.

Using the HPageBreak Object

Use HPageBreaks(index), where index is the index number of the page break, to
return an HPageBreak object. The following example changes the location of
horizontal page break one.

Worksheets(1).HPageBreaks(1).Location = Worksheets(1).Range("e5")

Note There is a limit of 1026 horizontal page breaks per sheet.

Hyperlink Object

L

Multiple objects “Hyperlink

|‘Multiple objects

Represents a hyperlink. The Hyperlink object is a member of the Hyperlinks
collection.

Using the Hyperlink Object

Use the Hyperlink property to return the hyperlink for a shape (a shape can have
only one hyperlink). The following example activates the hyperlink for shape
one.

Worksheets(1).Shapes(1).Hyperlink.Follow NewwWindow:=True

A range or worksheet can have more than one hyperlink. Use
Hyperlinks(index), where index is the hyperlink number, to return a single
Hyperlink object. The folllowing example activates hyperlink two in the range
Al:B2.

Worksheets(1).Range("A1:B2").Hyperlinks(2).Follow

Interior Object

L

Multiple objects ~Interior

Represents the interior of an object.

Using the Interior Object

Use the Interior property to return the Interior object. The following example
sets the color for the interior of cell A1 to red.

Worksheets("Sheet1").Range("A1").Interior.ColorIndex = 3

IRtdServer Object

IRtdServer

Represents an interface for a real-time data server.

Using the IRtdServer object

The IRTDServer object can be instantiated or created only by implementing the
IRTDServer interface using the Implements keyword.

IRTDUpdateEvent Object

IRTDUpdateEvent

Represents real-time data update events.

Using the IRTDUpdateEvent object

To instantiate or to return an IRTDUpdateEvent object, declare a variable as an
IRTDUpdateEvent object, and then use that variable as a callback object.

LeaderLines Object

Series |‘LeaderLines

|‘Bordelr

Represents leader lines on a chart. Leader lines connect data labels to data
points. This object isn’t a collection; there’s no object that represents a single
leader line.

Using the LeaderLines Object

Use the LeaderLines property to return the LeaderLines object. The following
example adds data labels and blue leader lines to series one on chart one.

With Worksheets(1).ChartObjects(1).Chart.SeriesCollection(1)
.HasDatalLabels = True
.DataLabels.Position = xlLabelPositionBestFit
.HaslLeaderLines = True
.LeaderLines.Border.ColorIndex = 5

End with

Legend Object

|‘Legend

Multiple objects

Chart
L

Represents the legend in a chart. Each chart can have only one legend. The
Legend object contains one or more LegendEntry objects; each LegendEntry
object contains a LegendKey object.

Using the Legend Object

Use the Legend property to return the Legend object. The following example
sets the font style for the legend in embedded chart one on worksheet one to
bold.

Worksheets(1).ChartObjects(1).Chart.Legend.Font.Bold = True

Remarks

The chart legend isn’t visible unless the HasL.egend property is True. If this
property is False, properties and methods of the Legend object will fail.

LegendEntry Object

LegendEntries |‘LegendEntr;z

|‘Multiple objects

Represents a legend entry in a chart legend. The LegendEntry object is a
member of the LegendEntries collection. The LegendEntries collection
contains all the LegendEntry objects in the legend.

Each legend entry has two parts: the text of the entry, which is the name of the
series associated with the legend entry; and an entry marker, which visually links
the legend entry with its associated series or trendline in the chart. Formatting
properties for the entry marker and its associated series or trendline are
contained in the LegendKey object.

The text of a legend entry cannot be changed. LegendEntry objects support font
formatting, and they can be deleted. No pattern formatting is supported for
legend entries. The position and size of entries is fixed.

Using the LegendEntry Object

Use LegendEntries(index), where index is the legend entry index number, to
return a single LegendEntry object. You cannot return legend entries by name.

The index number represents the position of the legend entry in the legend.
LegendEntries(1) is at the top of the legend, and
LegendEntries(LegendEntries.Count) is at the bottom. The following
example changes the font for the text of the legend entry at the top of the legend
(this is usually the legend for series one) in embedded chart one on the
worksheet named "Sheet1."

Worksheets("sheet1").ChartObjects(1).Chart _
.Legend.LegendEntries(1).Font.Italic = True

Remarks

There’s no direct way to return the series or trendline corresponding to the
legend entry.

After legend entries have been deleted, the only way to restore them is to remove
and recreate the legend that contained them by setting the HasL.egend property
for the chart to False and then back to True.

LegendKey Object

LegendEntry |‘LegendKe;z

|‘Multiple objects

Represents a legend key in a chart legend. Each legend key is a graphic that
visually links a legend entry with its associated series or trendline in the chart.
The legend key is linked to its associated series or trendline in such a way that
changing the formatting of one simultaneously changes the formatting of the
other.

Using the LegendKey Object

Use the LegendKey property to return the LegendKey object. The following
example changes the marker background color for the legend entry at the top of
the legend for embedded chart one on the worksheet named "Sheet1." This
simultaneously changes the format of every point in the series associated with
this legend entry. The associated series must support data markers.

Worksheets("sheet1").ChartObjects(1).Chart _
.Legend.LegendEntries(1).LegendKey.MarkerBackgroundColorIndex =

LineFormat Object

L

Multiple objects ~LineFormat

ColorFormat

Represents line and arrowhead formatting. For a line, the LineFormat object
contains formatting information for the line itself; for a shape with a border, this
object contains formatting information for the shape's border.

Using the LineFormat Object

Use the Line property to return a LineFormat object. The following example
adds a blue, dashed line to mybDocument. There’s a short, narrow oval at the line's
starting point and a long, wide triangle at its end point.

Set myDocument = Worksheets(1)

wWith myDocument.Shapes.AddLine(100, 100, 200, 300).Line
.DashStyle = msoLineDashDotDot
.ForeColor.RGB = RGB(50, 0, 128)
.BeginArrowheadLength = msoArrowheadShort
.BeginArrowheadStyle = msoArrowheadOval
.BeginArrowheadwidth msoArrowheadNarrow
.EndArrowheadLength = msoArrowheadLong
.EndArrowheadStyle msoArrowheadTriangle
.EndArrowheadwidth msoArrowheadwide

End With

LinkFormat Object

Shape |‘LinkFormat

Contains linked OLE object properties.

Using the LinkFormat Object

Use the LinkFormat property to return the LinkFormat object. The following
example updates an OLE object in the Shapes collection.

Worksheets(1).Shapes(1).LinkFormat.Update

If the Shape object doesn’t represent a linked object, the LinkFormat property
fails.

Show All

ListColumn Object

L

ListObject ~ListColumns

L

ListColumn

|‘Multiple objects

Represents a column in a list. The ListColumn object is a member of the
ListColumns collection. The ListColumns collection contains all the columns
in a list (ListObject object).

Using the ListColumn Object

Use the ListColumns property of the ListObject object to return a
ListColumns collection.

Example

The following example adds a new ListColumn object to the default ListObject
object in the first worksheet of the active workbook. Because no position is
specified, a new rightmost column is added.

Sub AddListColumn()
Dim wrksht As Worksheet
Dim objListCol As ListColumn

Set wrksht = ActiveWorkbook.Worksheets("Sheet1")
Set objListCol = wrksht.ListObjects(1).ListColumns.Add
End Sub

ListDataFormat Object

L

ListColumn ~ListDataFormat

The ListDataFormat object holds all the data type properties of the
ListColumn object. These properties are read-only.

Using the ListDataFormat Object

Use the ListDataFormat property of the ListColumn object to return a
ListDataFormat object collection. The default property of the ListDataFormat
object is the Type property which indicates the data type of the list column. This
allows the user to write code without specifying the Type property.

The following code example creates a linked list from a SharePoint list. It then
checks to see if field 2 is required (field 1 is the ID field, which is read only). If
it's a required text field, the same data is written in all existing records.

Note The following code example assumes that you will substitute a valid
server name and the list guid in the variables strServerName and strListGuid.
Additionally, the server name must be followed by "/_vti_bin" or the sample will
not work.

Dim objListObject As ListObject
Dim objDataRange As Range

Dim strListGUID as String

Dim strServerName as String

strServerName = "http://<servername>/_vti bin"
strListGUID = "{<listguid>}"

Set objListObject = Sheetl.ListObjects.Add(x1SrcExternal, _
Array(strServerName, strListGUID), True, xlYes, Range("A1"))

With objListObject.ListColumns(2)
Set objbDataRange = .Range.Offset(1, 0).Resize(.Range.Rows.Count
If .ListDataFormat.Type = xlListDataTypeText And .ListDataFormat
objbDataRange.Value = "Hello World"
End If
End With

ListObject Object

L

Multiple objects ~ListObject

|‘Multiple objects

Represents a list object on a worksheet. The ListObject object is a member of
the ListObjects collection. The ListObjects collection contains all the list
objects on a worksheet.

Using the ListObject Object

Use the ListObjects property of the Worksheetobject to return a ListObjects
collection. The following example adds a new ListRow object to the default
ListObject object in the first worksheet of the active workbook.

Dim wrksht As Worksheet
Dim oListCol As ListRow

Set wrksht

= ActiveWorkbook.wWorksheets("Sheet1")
Set oListCol =

wrksht.ListObjects(1).ListRows.Add

ListRow Object

ListObject -
|‘ListRow

|‘Range

ListRows

Represents a row in a List object. The ListRow object is a member of the
ListRows collection. The ListRows collection contains all the rows in a list
object.

Using the ListRow Object

Use the ListRows property of the ListObject object to return a ListRows
Object collection. The following example adds a new ListRow object to the
default ListObject object in the first worksheet of the active workbook. Because
no position is specified, a new row is added to the end of the list.

Dim wrksht As Worksheet
Dim oListRow As ListRow

Set wrksht = ActiveWorkbook.Worksheets("Sheet1")
Set oListRow = wrksht.ListObjects(1).ListRows.Add

Mailer Object

You have requested Help for a Visual Basic keyword used only on the
Macintosh. For information about this keyword, consult the language reference
Help included with Microsoft Office Macintosh Edition.

Name Object

L

Names ~Name

|‘Range

Represents a defined name for a range of cells. Names can be either built-in
names— such as Database, Print_Area, and Auto_Open— or custom names.

Application, Workbook, and Worksheet Objects

The Name object is a member of the Names collection for the
Application,Workbook, and Worksheet objects. Use Names(index), where
index is the name index number or defined name, to return a single Name object.

The index number indicates the position of the name within the collection.
Names are placed in alphabetic order, from a to z, and are not case-sensitive (this
is the same order as is displayed in the Define Name and Apply Names dialog
boxes, returned by clicking the Name command on the Insert menu). The
following example displays the cell reference for the first name in the
application collection.

MsgBox Names(1).RefersTo

The following example deletes the name "mySortRange" from the active
workbook.

ActiveWorkbook.Names("mySortRange") .Delete

Use the Name property to return or set the text of the name itself. The following
example changes the name of the first Name object in the active workbook.

Names(1).Name = "stock_values"

Range Objects

Although a Range object can have more than one name, there’s no Names
collection for the Range object. Use Name with a Range object to return the
first name from the list of names (sorted alphabetically) assigned to the range.
The following example sets the Visible property for the first name assigned to
cells A1:B1 on worksheet one.

Worksheets(1).Range("al:b1").Name.Visible = False

ODBCError Object

L

ODBCErrors " ODBCError

Represents an ODBC error generated by the most recent ODBC query. The
ODBCError object is a member of the ODBCErrors collection. If the specified
ODBC query runs without error, the ODBCErrors collection is empty. The
errors in the collection are indexed in the order in which they’re generated by the
ODBC data source.

Using the ODBCError Object

Use ODBCErrors(index), where index is the index number of the error, to
return a single ODBCError object. The following example refreshes query table
one and displays the first ODBC error that occurs.

With Worksheets(1).QueryTables(1)
.Refresh
If Application.ODBCErrors.Count > 0 Then
Set er = Application.ODBCErrors(1)
MsgBox "The following error occurred:" &
er.ErrorString & " : " & er.SqlState
Else
MsgBox "Query complete: all records returned."
End If
End wWith

OLEDBError Object

L

OLEDBErrors "OLEDBETrTOr

Represents an OLE DB error returned by the most recent OLE DB query. The
OLEDBError object is a member of the OLEDBETrrors collection. If the
specified OLE DB query runs without error, the OLEDBErrors collection is
empty. The errors in the collection are indexed in the order in which they're
generated by the OLE DB provider.

Using the OLEDBError Object

Use OLEDBErrors(index), where index is the index number of the OLE DB
error, to return a single OLEDBETrror object. The following example displays
the error description and the SglState property’s value for the first error returned
by the most recent OLE DB query.

Set objEr = Application.OLEDBErrors(1)
MsgBox "The following error occurred:" & _
objEr.ErrorString & " : " & objEr.SqlState

OLEFormat Object

L

Shape ~OLEFormat

Contains OLE object properties.

Using the OLEFormat Object

Use the OLEFormat property to return the OLEFormat object. The following
example activates an OLE object in the Shapes collection.

Worksheets(1).Shapes(1).0LEFormat.Activate

If the Shape object doesn’t represent a linked or embedded object, the
OLEFormat property fails.

OLEODbject Object

OLEObjects -

L

OLEObject
Multiple objects

Represents an ActiveX control or a linked or embedded OLE object on a

worksheet. The OLEODbject object is a member of the OLEObjects collection.
The OLEOQODbjects collection contains all the OLE objects on a single worksheet.

Using the OLEODbject Object

Use OLEODbjects(index), where index is the name or number of the object, to
return an OLEQODbject object. The following example deletes OLE object one on
Sheet1.

wWorksheets("sheetl").0OLEObjects(1).Delete

The following example deletes the OLE object named “ListBox1.”

Worksheets("sheet1").OLEObjects("ListBox1").Delete

Remarks

The properties and methods of the OLEObject object are duplicated on each
ActiveX control on a worksheet. This enables Visual Basic code to gain access
to these properties by using the control’s name. The following example selects
the check box control named "MyCheckBox," aligns it with the active cell, and
then activates the control.

wWith MyCheckBox
.Value = True
.Top = ActiveCell.Top
.Activate

End With

For more information, see Using ActiveX controls on sheets.

Outline Object

L

Worksheet ~Outline

Represents an outline on a worksheet.

Using the Outline Object

Use the Outline property to return an Outline object. The following example
sets the outline on Sheet4 so that only the first outline level is shown.

Worksheets("sheet4").Outline.ShowLevels 1

PageSetup Object

Multiple objects L

|‘Graphic

PageSetup

Represents the page setup description. The PageSetup object contains all page
setup attributes (left margin, bottom margin, paper size, and so on) as properties.

Using the PageSetup Object

Use the PageSetup property to return a PageSetup object. The following
example sets the orientation to landscape mode and then prints the worksheet.

With Worksheets("Sheet1")
.PageSetup.Orientation = xlLandscape
.PrintoOut

End wWith

The With statement makes it easier and faster to set several properties at the
same time. The following example sets all the margins for worksheet one.

With Worksheets(1).PageSetup
.LeftMargin = Application.InchesToPoints(0.5)
.RightMargin = Application.InchesToPoints(0.75)
.TopMargin = Application.InchesToPoints(1.5)
.BottomMargin = Application.InchesToPoints(1)
.HeaderMargin Application.InchesToPoints(0.5)
.FooterMargin Application.InchesToPoints(0.5)

End With

Pane Object

L

Multiple objects ~Pane

|‘Range

Represents a pane of a window. Pane objects exist only for worksheets and
Microsoft Excel 4.0 macro sheets. The Pane object is a member of the Panes
collection. The Panes collection contains all of the panes shown in a single
window.

Using the Pane Object

Use Panes(index), where index is the pane index number, to return a single Pane
object. The following example splits the window in which worksheet one is
displayed and then scrolls through the pane in the lower-left corner until row five
is at the top of the pane.

Worksheets(1).Activate
ActiveWindow.Split = True
ActiveWindow.Panes(3).ScrollRow = 5

Parameter Object

L

Parameters —Parameter

|‘Range

Represents a single parameter used in a parameter query. The Parameter object
is a member of the Parameters collection.

Using the Parameter Object

Use Parameters(index), where index is the index number of the parameter, to
return a single Parameter object. The following example modifies the prompt
string for parameter one.

With Worksheets(1).QueryTables(1).Parameters(1)
.SetParam x1Prompt, "Please " & .PromptString
End With

Phonetic Object

Range |‘Phonetics

L

Phonetic

L

Font

Contains information about a specific phonetic text string in a cell. In Microsoft
Excel 97, this object contained the formatting attributes for any phonetic text in
the specified range.

Using the Phonetic Object

Use Phonetics(index), where index is the index number of the phonetic text, to
return a single Phonetic object. The following example sets the first phonetic
text string in the active cell to " 71U 7",

ActiveCell.Phonetics(1).Text = "ZUi=+"

The Phonetic property provides compatibility with earlier versions of Microsoft
Excel. You should use Phonetics(index), where index is the index number of the
phonetic text, to return a single Phonetic object. To demonstrate compatibility
with earlier versions of Microsoft Excel, the following example adds Furigana
characters to the range A1:C4. If you add Furigana characters to a range, a new
Phonetic object is automatically created.

With Range("A1:C4").Phonetic
.CharacterType = xlHiragana
.Alignment = x1PhoneticAlignCenter
.Font.Name = "MS pHi/w&"
.Font.FontStyle = "{E#"
.Font.Size = 6
.Font.Strikethrough = False
.Font.Underline = xlUnderlineStyleNone
.Font.ColorIndex = xlAutomatic
.Visible = True

End With

PictureFormat Object

L

Multiple objects ~PictureFormat

Contains properties and methods that apply to pictures and OLE objects. The
LinkFormat object contains properties and methods that apply to linked OLE
objects only. The OLEFormat object contains properties and methods that apply
to OLE objects whether or not they’re linked.

Using the PictureFormat Object

Use the PictureFormat property to return a PictureFormat object. The
following example sets the brightness, contrast, and color transformation for
shape one on myDocument and crops 18 points off the bottom of the shape. For
this example to work, shape one must be either a picture or an OLE object.

Set myDocument = Worksheets(1)

With myDocument.Shapes(1).PictureFormat
.Brightness = 0.3
.Contrast = 0.7
.ColorType = msoPictureGrayScale
.CropBottom = 18

PivotCache Object

L

PivotCaches —~PivotCache

Represents the memory cache for a PivotTable report. The PivetCache object is
a member of the PivotCaches collection.

Using the PivotCache Object

Use the PivotCache method to return a PivotCache object for a PivotTable
report (each report has only one cache). The following example causes the first
PivotTable report on the first worksheet to refresh itself whenever its file is
opened.

Worksheets(1).PivotTables(1).PivotCache.RefreshOnFileOpen = True

Use PivotCaches(index), where index is the PivotTable cache number, to return
a single PivotCache object from the PivotCaches collection for a workbook.
The following example refreshes cache one.

ActiveWorkbook.PivotCaches(1).Refresh

PivotCell Object

Range LPiVOtCeH

|‘Multiple objects

Represents a cell in a PivotTable report.

Using the PivotCell object

Use the PivotCell property of the Range collection to return a PivotCell object.

Once a PivotCell object is returned, you can use the PivotCellType property to
determine what type of cell a particular range is. The following example
determines if cell A5 in the PivotTable is a data item and notifies the user. This
example assumes that a PivotTable exists on the active worksheet and that cell
A5 is contained in the PivotTable. If cell A5 is not in the PivotTable, the
example handles the run-time error.

Sub CheckPivotCellType()
On Error GoTo Not In PivotTable

' Determine if cell A5 is a data item in the PivotTable.

If Application.Range("A5").PivotCell.PivotCellType = x1PivotCell
MsgBox "The PivotCell at A5 is a data item."

Else
MsgBox "The PivotCell at A5 is not a data item."

End If

Exit Sub

Not_In_PivotTable:
MsgBox "The chosen cell is not in a PivotTable."

End Sub

Once a PivotCell object is returned, you can use the ColumnItems or
Rowltems property to determine the PivotItems collection that corresponds to
the items on the column or row axis that represents the selected number. The
following example uses the ColumnlItems property of the PivotCell object to
return a PivotItemList collection.

This example determines the column field that the data item of cell B5 is in. It
then determines if the column field title matches "Inventory" and notifies the
user. The example assumes that a PivotTable exists on the active worksheet and
that column B of the worksheet contains a column field of the PivotTable.

Sub CheckColumnItems()

' Determine if there is a match between the item and column fiel
If Application.Range("B5").PivotCell.ColumnItems.Item(1) = "Inve
MsgBox "Item in B5 is a member of the 'Inventory' column fie

Else
MsgBox "Item in B5 is not a member of the 'Inventory' column

End If

End Sub

PivotField Object

LpivotField

|‘Multiple objects

Multiple objects

Represents a field in a PivotTable report. The PivotField object is a member of
the PivotFields collection. The PivotFields collection contains all the fields in a
PivotTable report, including hidden fields.

Using the PivotField Object

Use PivotFields(index), where index is the field name or index number, to return
a single PivotField object. The following example makes the Year field a row
field in the first PivotTable report on Sheet3.

wWorksheets("sheet3").PivotTables(1) _
.PivotFields("year").Orientation = x1lRowField

In some cases, it may be easier to use one of the properties that returns a subset
of the PivotTable fields. The following properties are available:

ColumnFields property
DataFields property
HiddenFields property
PageFields property
RowFields property
VisibleFields property

Show All

PivotFormula Object

L

PivotFormulas —PivotFormula

Represents a formula used to calculate results in a PivotTable report.

Remarks

This object and its associated properties and methods aren’t available for OLAP
data sources because calculated fields and items aren’t supported.

Using the PivotFormula Object

Use PivotFormulas(index), where index is the formula number or string on the
left side of the formula, to return the PivotFormula object. The following
example changes the index number for formula one in the first PivotTable report
on the first worksheet so that this formula will be solved after formula two.

Worksheets(1).PivotTables(1).PivotFormulas(1).Index = 2

Pivotlitem Object

L

Multiple objects ~Pivotltem

|‘Multiple objects

Represents an item in a PivotTable field. The items are the individual data
entries in a field category. The PivotItem object is a member of the PivotItems
collection. The PivotItems collection contains all the items in a PivotField
object.

Using the PivotItem Object

Use PivotItems(index), where index is the item index number or name, to return
a single PivotItem object. The following example hides all entries in the first
PivotTable report on Sheet3 that contain "1998" in the Year field.

Worksheets("sheet3").PivotTables(1) _
.PivotFields("year").PivotItems("1998").Visible = False

PivotLayout Object

Chart L
|‘PivotTable

PivotLayout

Represents the placement of fields in a PivotChart report.

Using the PivotLayout Object

Use the PivotLayout property to return a PivotLayout object. The following
example creates a list of PivotTable field names used in the first PivotChart
report.

Sub ListFieldNames
Dim objNewSheet As Worksheet
Dim intRow As Integer
Dim objPF As PivotField
Set objNewSheet = Worksheets.Add

intRow = 1

For Each objPF In _
Charts("Chart1").PivotLayout.PivotFields

objNewSheet.Cells(intRow, 1).Value = objPF.Caption
intRow = intRow + 1
Next objPF

End Sub

PivotTable Object

|‘PivotTable

|‘Multiple objects

Multiple objects

Represents a PivotTable report on a worksheet. The PivotTable object is a
member of the PivotTables collection. The PivotTables collection contains all
the PivotTable objects on a single worksheet.

Using the PivotTable Object

Use PivotTables(index), where index is the PivotTable index number or name, to
return a single PivotTable object. The following example makes the field named
year a row field in the first PivotTable report on Sheet3.

Worksheets("Sheet3").PivotTables(1) _
.PivotFields("Year").Orientation = x1lRowField

Remarks

Because PivotTable report programming can be complex, it’s generally easiest to
record PivotTable report actions and then revise the recorded code. To record a
macro, point to Macro on the Tools menu and then click Record New Macro.

PlotArea Object

Chart L

L

PlotArea
Multiple objects

Represents the plot area of a chart. This is the area where your chart data is
plotted. The plot area on a 2-D chart contains the data markers, gridlines, data
labels, trendlines, and optional chart items placed in the chart area. The plot area
on a 3-D chart contains all the above items plus the walls, floor, axes, axis titles,
and tick-mark labels in the chart.

The plot area is surrounded by the chart area. The chart area on a 2-D chart
contains the axes, the chart title, the axis titles, and the legend. The chart area on
a 3-D chart contains the chart title and the legend. For information about
formatting the chart area, see the ChartArea object.

Using the PlotArea Object

Use the PlotArea property to return a PlotArea object. The following example
activates the chart sheet named "Chart1," places a dashed border around the
chart area of the active chart, and places a dotted border around the plot area.

Charts("Chart1").Activate

With ActiveChart
.ChartArea.Border.LineStyle = x1lDash
.PlotArea.Border.LineStyle = x1Dot

End With

Point Object

L

Points —Point

L

Multiple objects

Represents a single point in a series in a chart. The Point object is a member of
the Points collection. The Points collection contains all the points in one series.

Using the Point Object

Use Points(index), where index is the point index number, to return a single
Point object. Points are numbered from left to right on the series. Points(1) is
the leftmost point, and Points(Points.Count) is the rightmost point. The
following example sets the marker style for the third point in series one in
embedded chart one on worksheet one. The specified series must be a 2-D line,
scatter, or radar series.

Worksheets(1).ChartObjects(1).Chart. _
SeriesCollection(1).Points(3).MarkerStyle = x1Diamond

Protection Object

Worksheet L
|‘AllowE ditRanges

Protection

Represents the various types of protection options available for a worksheet.

Using the Protection object

Use the Protection property of the Worksheet object to return a Protection
object.

Once a Protection object is returned, you can use its following properties, to set
or return protection options.

AllowDeletingColumns
AllowDeletingRows
AllowFiltering
AllowFormattingCells
AllowFormattingColumns
AllowFormattingRows
AllowInserting Columns
AllowInsertingHyperlinks
AllowInsertingRows
AllowSorting
AllowUsingPivotTables

The following example demonstrates how to use the AllowInsertingColumns
property of the Protection object, placing three numbers in the top row and
protecting the worksheet. Then this example checks to see if the protection
setting for allowing the insertion of columns is False and sets it to True, if
necessary. Finally, it notifies the user to insert a column.

Sub

SetProtection()

Range("A1").Formula = "1"
Range("B1").Formula = "3"
Range("C1").Formula = "4"

ActiveSheet.Protect

' Check the protection setting of the worksheet and act accordin
If ActiveSheet.Protection.AllowInsertingColumns = False Then
ActiveSheet.Protect AllowInsertingColumns:=True
MsgBox "Insert a column between 1 and 3"
Else
MsgBox "Insert a column between 1 and 3"
End If

End Sub

PublishObject Object

Workbook |‘Publish()bjects
|‘PublishObj ect

Represents an item in a workbook that has been saved to a Web page and can be
refreshed according to values specified by the properties and methods of the
PublishObject object. The PublishObject object is a member of the
PublishObjects collection.

Using the PublishObject Object

Use PublishObjects(index), where index is the index number of the specified
item in the workbook, to return a single PublishObject object. The following
example sets the location where the first item in workbook three is saved.

Workbooks(3) .PublishObjects(1).FileName = _
"\\myserver\public\finacct\statemnt.htm"

QueryTable Object

L

Multiple objects ~QueryTable

Multiple objects

Represents a worksheet table built from data returned from an external data
source, such as an SQL server or a Microsoft Access database. The QueryTable

object is a member of the QueryTables collection.

Using the QueryTable Object

Use QueryTables(index), where index is the index number of the query table, to
return a single QueryTable object. The following example sets query table one
so that formulas to the right of it are automatically updated whenever it’s
refreshed.

Sheets("sheet1").QueryTables(1).FillAdjacentFormulas = True

RecentFile Object

L

Application ~RecentFiles

L

RecentFile

Represents a file in the list of recently used files. The RecentFile object is a
member of the RecentFiles collection.

Using the RecentFile Object

Use RecentFiles(index), where index is the file number, to return a RecentFile
object. The following example opens file two in the list of recently used files.

Application.RecentFiles(2).0pen

RoutingSlip Object

L

Workbook ~RoutingSlip

Represents the routing slip for a workbook. The routing slip is used to send a
workbook through the electronic mail system.

Using the RoutingSlip Object

Use the RoutingSlip property to return the RoutingSlip object. The following
example sets the delivery style for the routing slip attached to the active
workbook. For a more detailed example, see the RoutingSlip property.

ActiveWorkbook.HasRoutingSlip = True
ActiveWorkbook.RoutingSlip.Delivery = xlOneAfterAnother

Remarks

The RoutingSlip object doesn’t exist and cannot be returned unless the
HasRoutingSlip property for the workbook is True.

RTD Object

Application |‘RTD

Represents a real-time data object.

Using the RTD object

Use the RTD property of the Application object to return a RTD object.

Scenario Object

L

Scenarios —Scenario

|‘Range

Represents a scenario on a worksheet. A scenario is a group of input values
(called changing cells) that’s named and saved. The Scenario object is a
member of the Scenarios collection. The Scenarios collection contains all the
defined scenarios for a worksheet.

Using the Scenario Object

Use Scenarios(index), where index is the scenario name or index number, to
return a single Scenario object. The following example shows the scenario
named "Typical" on the worksheet named "Options."

wWorksheets("options").Scenarios("typical").Show

Series Object

L

SeriesCollection —Series

L

Multiple objects

Represents a series in a chart. The Series object is a member of the
SeriesCollection collection.

Using the Series Object

Use SeriesCollection(index), where index is the series index number or name, to
return a single Series object. The following example sets the color of the interior
for the first series in embedded chart one on Sheet].

Worksheets("sheet1").ChartObjects(1).Chart. _
SeriesCollection(1).Interior.Color = RGB(255, 0, 0)

The series index number indicates the order in which the series were added to
the chart. SeriesCollection(1) is the first series added to the chart, and
SeriesCollection(SeriesCollection.Count) is the last one added.

SeriesLines Object

L

ChartGroup ~SeriesLines

|‘Bordelr

Represents series lines in a chart group. Series lines connect the data values from
each series. Only 2-D stacked bar or column chart groups can have series lines.
This object isn’t a collection. There’s no object that represents a single series
line; you either have series lines turned on for all points in a chart group or you
have them turned off.

Using the SeriesLines Object

Use the SeriesLines property to return a SeriesLines object. The following
example adds series lines to chart group one in embedded chart one on
worksheet one (the chart must be a 2-D stacked bar or column chart).

With Worksheets(1).ChartObjects(1).Chart.ChartGroups(1)
.HasSeriesLines = True
.SeriesLines.Border.Color = RGB(0, 0, 255)

End With

Remarks

If the HasSeriesLines property is False, most properties of the SeriesLines
object are disabled.

ShadowFormat Object

L

Multiple objects “ShadowFormat

ColorFormat

Represents shadow formatting for a shape.

Using the ShadowFormat Object

Use the Shadow property to return a ShadowFormat object. The following
example adds a shadowed rectangle to myDocument. The semitransparent, blue
shadow is offset 5 points to the right of the rectangle and 3 points above it.

Set myDocument = Worksheets(1)
wWith myDocument.Shapes.AddShape(msoShapeRectangle, _
50, 50, 100, 200).Shadow
.ForeColor.RGB = RGB(0, 0, 128)
.0ffsetX = 5
.0ffsetY = -3
.Transparency = 0.5
.Visible = True
End With

Shape Object

L

Multiple objects ~Shape

|‘Multiple objects

Represents an object in the drawing layer, such as an AutoShape, freeform, OLE
object, or picture. The Shape object is a member of the Shapes collection. The
Shapes collection contains all the shapes on a slide.

Note There are three objects that represent shapes: the Shapes collection, which
represents all the shapes on a document; the ShapeRange collection, which
represents a specified subset of the shapes on a document (for example, a
ShapeRange object could represent shapes one and four on the document, or it
could represent all the selected shapes on the document); and the Shape object,
which represents a single shape on a document. If you want to work with several
shapes at the same time or with shapes within the selection, use a ShapeRange
collection. For an overview of how to work with either a single shape or with
more than one shape at a time, see Working with Shapes (Drawing Objects).

Using the Shape Object

This section describes how to:

Return an existing shape.

Return a shape within the selection.

Return the shapes attached to the ends of a connector.
Return a newly created freeform.

Return a single shape from within a group.

Return a newly formed group of shapes.

Returning an Existing Shape

Use Shapes(index), where index is the shape name or the index number, to
return a Shape object that represents a shape. The following example
horizontally flips shape one and the shape named Rectangle 1 on myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes(1).Flip msoFlipHorizontal
myDocument .Shapes("Rectangle 1").Flip msoFlipHorizontal

Each shape is assigned a default name when you add it to the Shapes collection.
To give the shape a more meaningful name, use the Name property. The
following example adds a rectangle to myDocument, gives it the name Red
Square, and then sets its foreground color and line style.

Set myDocument = Worksheets(1)
wWith myDocument.Shapes.AddShape(msoShapeRectangle, _
144, 144, 72, 72)
.Name = "Red Square"
.Fill.ForeColor.RGB = RGB(255, 0, 0)
.Line.DashStyle = msoLineDashDot
End With

Returning a Shape Within the Selection

Use Selection.ShapeRange(index), where index is the shape name or the index
number, to return a Shape object that represents a shape within the selection.
The following example sets the fill for the first shape in the selection in the
active window, assuming that there’s at least one shape in the selection.

ActiveWindow.Selection.ShapeRange(1).Fill.ForeColor.RGB = _
RGB(255, 0, 0)

Returning the Shapes Attached to the Ends of a
Connector

To return a Shape object that represents one of the shapes attached by a
connector, use the BeginConnectedShape or EndConnectedShape property.

Returning a newly created freeform

Use the BuildFreeform and AddNodes methods to define the geometry of a
new freeform, and use the ConvertToShape method to create the freeform and
return the Shape object that represents it.

Returning a Single Shape from Within a Group

Use GrouplItems(index), where index is the shape name or the index number
within the group, to return a Shape object that represents a single shape in a
grouped shape.

Returning a Newly Formed Group of Shapes

Use the Group or Regroup method to group a range of shapes and return a
single Shape object that represents the newly formed group. After a group has
been formed, you can work with the group the same way you work with any
other shape.

ShapeNode Object

L

ShapeNodes ~ShapeNode

Represents the geometry and the geometry-editing properties of the nodes in a
user-defined freeform. Nodes include the vertices between the segments of the
freeform and the control points for curved segments. The ShapeNode object is a
member of the ShapeNodes collection. The ShapeNodes collection contains all
the nodes in a freeform.

Using the ShapeNode Object

Use Nodes(index), where index is the node index number, to return a single
ShapeNode object. If node one in shape three on myDocument is a corner point,
the following example makes it a smooth point. For this example to work, shape
three must be a freeform.

Set myDocument = Worksheets(1)
wWith myDocument.Shapes(3)
If .Nodes(1).EditingType = msoEditingCorner Then
.Nodes.SetEditingType 1, msoEditingSmooth
End If
End With

SmartTag Object

SmartTags |‘SInartTag

|‘Multiple objects

Represents an identifier that is assigned to a cell.

Using the SmartTag object

Use the Add method of the SmartTags collection to return a SmartTag object.

Once a SmartTag object is returned, you can store extra metadata to a smart tag
by using the Add method with the Properties property.

See the following example for a demonstration of this feature. This example
adds a smart tag titled "MSFT" to cell A1, then adds extra metadata called
"Market" with the value of "Nasdaq" to the smart tag and then returns the value
of the property to the user. This example assumes the host system is connected to
the Internet.

Sub UseProperties()

Dim strLink As String
Dim strType As String

' Define SmartTag variables.
strLink "urn:schemas-microsoft-com:smarttags#StockTickerSymbol
strType "stockview"

' Enable smart tags to be embedded and recognized.
ActiveWorkbook.SmartTagOptions.EmbedSmartTags = True
Application.SmartTagRecognizers.Recognize = True

Range("A1").Formula = "MSFT"

' Add a property for MSFT smart tag and define its value.
Range("A1").SmartTags.Add(strLink).Properties.Add _
Name:="Market", Value:='"Nasdaq"

' Notify the user of the smart tag's value.
MsgBox Range("Al1").SmartTags.Add(strLink).Properties("Market").Vv
End Sub

To view the extra metadata, use the XML property of the SmartTag object. This
example, which builds upon the previous example, displays the extra metadata
that was added to the smart tag in cell A1l. The metadata for this smart tag
represents the XML that would be passed to the action handler. This example
assumes the host system is connected to the Internet.

Sub CheckXML()

Dim strLink As String
Dim strType As String

' Define SmartTag variables.

strLink "urn:schemas-microsoft-com:smarttags#StockTickerSymbol
strType "stockview"

' Enable smart tags to be embedded and recognized.
ActiveWorkbook.SmartTagOptions.EmbedSmartTags = True
Application.SmartTagRecognizers.Recognize = True
Range("A1").Formula = "MSFT"

' Display the sample of the XML.
MsgBox Range("A1").SmartTags.Add(strLink) .XML

End Sub

SmartTagAction Object

SmartTa |‘SmartTagActions
omartiag

LMM

Represents the actions that can be performed with smart tags.

Using the SmartTagAction object

Use the Item property of the SmartTagActions collection to return a
SmartTagAction object.

Once a SmartTagAction object has been returned, you can activate a smart tag
to automatically annotate data using the Execute method. This example inserts a
refreshable stock quote for the ticker symbol "MSFT" and it assumes the host
system is connected to the Internet.

Sub ExecuteASmartTag()
Dim strAction As String
strAction = "Insert refreshable stock price"

' Enable smart tags to be embedded and recognized.
ActiveWorkbook.SmartTagOptions.EmbedSmartTags = True
Application.SmartTagRecognizers.Recognize = True

' Invoke a smart tag for the Microsoft ticker symbol.
wWith Range("A1")

.Formula = "MSFT"

.SmartTags(_
"urn:schemas-microsoft-com:office:smarttags#stockticker"
.SmartTagActions(strAction).Execute

End With

End Sub

SmartTagOptions Object

L

Workbook ~SmartTagOptions

Represents the options that can be performed with smart tags.

Using the SmartTagOptions object

Use the SmartTagOptions property of the Workbook object to return a
SmartTagOptions object.

Once a SmartTagOptions object is returned, you can use the following
properties to determine the display options of smart tags and whether or not to
have smart tags be embedded on the active workbook.

e EmbedSmartTags
e DisplaySmartTags

This example enables the ability to embed smart tags on the active workbook
and then checks the display settings for smart tags.

Sub CheckDisplayOptions()

'Enable SmartTags to be embedded on the active workbook.
ActiveWorkbook.SmartTagOptions.EmbedSmartTags = True

' Check the display options for smart tags.
Select Case ActiveWorkbook.SmartTagOptions.DisplaySmartTags
Case xlButtonOnly
MsgBox "The button for smart tags will only be displayed
Case xlDisplayNone
MsgBox '"Nothing will be displayed for smart tags."
Case xlIndicatorAndButton
MsgBox "The button and indicator will be displayed for s
End Select

End Sub

SmartTagRecognizer Object

Application |‘SInalrtTagRecognizelrs

|‘SInalrtTagRec:ognizer

Represents recognition engines which label data with types of information as
you work in Microsoft Excel.

Using the SmartTagRecognizer object

Use the Item(index) property of the SmartTagRecognizers collection to return a
single SmartTagRecognizer object.

Once a SmartTagRecognizer object is returned, you can determine if smart tag
recognizers are enabled for the application. This example determines if smart tag
recognizers are enabled and notifies the user.

Sub Check_SmartTagRecognizers()

' Determine if smart tag recognizers are enabled.

If Application.SmartTagRecognizers.Item(1).Enabled = True Then
MsgBox "Smart tag recognizers are enabled."

Else
MsgBox "Smart tag recognizers are not enabled."

End If

End Sub

SoundNote Object

This object should not be used. Sound notes have been removed from Microsoft
Excel.

Speech Object

L

Application ~Speech

Contains methods and properties that pertain to speech.

Using the Speech object

Use the Speech property of the Application object to return a Speech object.

Once a Speech object is returned, you can use the Speak method of Speech
object to play back the contents of a string. In the following example, Microsoft
Excel plays back "Hello". This example assumes speech features have been
installed on the host system.

Sub UseSpeech()
Application.Speech.Speak "Hello"

End Sub()

Note There is a speech feature in the setup tree that pertains to Dictation and
Command & Control that does not have to be installed.

SpellingOptions Object

Application |‘SpellingOptions

Represents the various spell checking options for a worksheet.

Using the SpellingOptions object

Use the SpellingOptions property of the Application object to return a
SpellingOptions object.

Once a SpellingOptions object is returned, you can use its following properties
to set or return various spell checking options.

ArabicModes
DictL.ang
GermanPostReform
HebrewModes

IgnoreCaps

IgnoreFileNames
IgnoreMixedDigits

KoreanCombineAux

KoreanProcessCompound
KoreanUseAutoChangeL ist

SuggestMainOnly
UserDict

The following example uses the IgnoreCaps property to disable spell checking
for words that have all capitalized letters. In this example, "Testt", but not
"TESTT", is identified by the spell checker.

Sub IgnoreAllCAPS()

' Place mispelled versions of the same word in all caps and mixe
Range("A1").Formula "Testt"
Range("A2").Formula "TESTT"

wWith Application.SpellingOptions
.SuggestMainOnly = True
.IgnoreCaps = True

End With

" Run a spell check.
Cells.CheckSpelling

End Sub

Style Object

Workbook L

|‘St;[le

|‘Multiple objects

Styles

Represents a style description for a range. The Style object contains all style
attributes (font, number format, alignment, and so on) as properties. There are
several built-in styles, including Normal, Currency, and Percent. Using the Style
object is a fast and efficient way to change several cell-formatting properties on
multiple cells at the same time.

For the Workbook object, the Style object is a member of the Styles collection.
The Styles collection contains all the defined styles for the workbook.

Using the Style Object

Use the Style property to return the Style object used with a Range object. The
following example applies the Percent style to cells A1:A10 on Sheet1.

Worksheets("Sheet1").Range("A1:A10").Style = "Percent"

You can change the appearance of a cell by changing properties of the style
applied to that cell. Keep in mind, however, that changing a style property will
affect all cells already formatted with that style.

Use Styles(index), where index is the style index number or name, to return a
single Style object from the workbook Styles collection. The following example
changes the Normal style for the active workbook by setting the style’s Bold

property.

ActiveWorkbook.Styles("Normal").Font.Bold = True

Styles are sorted alphabetically by style name. The style index number denotes
the position of the specified style in the sorted list of style names. Styles(1) is
the first style in the alphabetic list, and Styles(Styles.Count) is the last one in
the list.

For more information about creating and modifying a style, see the Styles object.

Tab Object

L

Multiple objects ~Tab

Represents a tab in a chart or a worksheet.

Using the Tab object

Use the Tab property of the Chart object or Worksheet object to return a Tab
object.

Once a Tab object is returned, you can use the ColorIndex property determine
the settings of a tab for a chart or worksheet.

In the following example, Microsoft Excel determines if the worksheet's first tab
color index is set to none and notifies the user.

Sub CheckTab()

' Determine if color index of 1st tab is set to none.
If Worksheets(1).Tab.ColorIndex = xlColorIndexNone Then
MsgBox "The color index is set to none for the first " & _
"worksheet tab."
Else
MsgBox "The color index for the tab of the first worksheet "
"is not set none."
End If

End Sub

TextEffectFormat Object

L

Multiple objects ~TextEffectFormat

Contains properties and methods that apply to WordArt objects.

Using the TextEffectFormat Object

Use the TextEffect property to return a TextEffectFormat object. The following
example sets the font name and formatting for shape one on mybocument. For
this example to work, shape one must be a WordArt object.

Set myDocument = Worksheets(1)

With myDocument.Shapes(1l).TextEffect
.FontName = "Courier New"
.FontBold = True
.FontItalic = True

End with

TextFrame Object

L

Multiple objects ~TextFrame

Represents the text frame in a Shape object. Contains the text in the text frame
as well as the properties and methods that control the alignment and anchoring
of the text frame.

Using the TextFrame Object

Use the TextFrame property to return a TextFrame object. The following
example adds a rectangle to myDocument, adds text to the rectangle, and then sets
the margins for the text frame.

Set myDocument = Worksheets(1)
wWith myDocument.Shapes.AddShape(msoShapeRectangle, _
0, 0, 250, 140).TextFrame
.Characters.Text = "Here is some test text"
.MarginBottom = 10
.MarginLeft = 10
.MarginRight = 10
.MarginTop = 10
End With

ThreeDFormat Object

L

Multiple objects ~ThreeDFormat

ColorFormat

Represents a shape's three-dimensional formatting.

Using The ThreeDFormat Object

Use the ThreeD property to return a ThreeDFormat object. The following
example adds an oval to myDocument and then specifies that the oval be extruded
to a depth of 50 points and that the extrusion be purple.

Set myDocument = Worksheets(1)
Set myShape = myDocument.Shapes.AddShape(msoShapeOval, _
90, 90, 90, 40)
wWith myShape.ThreeD
.Visible = True
.Depth = 50
.ExtrusionColor.RGB = RGB(255, 100, 255)
' RGB value for purple
End With

Remarks

You cannot apply three-dimensional formatting to some kinds of shapes, such as
beveled shapes or multiple-disjoint paths. Most of the properties and methods of
the ThreeDFormat object for such a shape will fail.

TickLabels Object

L

Multiple objects ~TickLabels

Font

Represents the tick-mark labels associated with tick marks on a chart axis. This
object isn’t a collection. There’s no object that represents a single tick-mark
label; you must return all the tick-mark labels as a unit.

Tick-mark label text for the category axis comes from the name of the associated
category in the chart. The default tick-mark label text for the category axis is the
number that indicates the position of the category relative to the left end of this
axis. To change the number of unlabeled tick marks between tick-mark labels,
you must change the TickLabelSpacing property for the category axis.

Tick-mark label text for the value axis is calculated based on the MajorUnit,
MinimumScale, and MaximumScale properties of the value axis. To change
the tick-mark label text for the value axis, you must change thte values of these
properties.

Using the TickLabels Object

Use the TickLabels property to return the TickLabels object. The following
example sets the number format for the tick-mark labels on the value axis in
embedded chart one on Sheet1.

Worksheets("sheet1").ChartObjects(1).Chart _
.Axes(x1lvalue).TickLabels.NumberFormat = "0.00"

Show All

TreeviewControl Object

Represents the hierarchical member-selection control of a cube field. You use
this object primarily for macro recording; it is not intended for any other use.

Using the TreeviewControl Object

Use the TreeviewControl property to return the TreeviewControl object. The
following example sets the control to its “drilled” (expanded, or visible) status
for the states of California and Maryland in the second PivotTable report on the
active worksheet.

ActiveSheet.PivotTables("PivotTable2") _
.CubeFields(1).TreeviewControl.Drilled = _
Array(Array("", ""), _
Array("[state].[states].[CA]", _
"[state].[states].[MD]"))

Trendline Object

Trendlines |‘Trendline

|‘Multiple objects

Represents a trendline in a chart. A trendline shows the trend, or direction, of
data in a series. The Trendline object is a member of the Trendlines collection.
The Trendlines collection contains all the Trendline objects for a single series.

Using the Trendline Object

Use Trendlines(index), where index is the trendline index number, to return a
single Trendline object. The following example changes the trendline type for
the first series in embedded chart one on worksheet one. If the series has no
trendline, this example will fail.

Worksheets(1).ChartObjects(1).Chart. _
SeriesCollection(1).Trendlines(1).Type = x1lMovingAvg

The index number denotes the order in which the trendlines were added to the
series. Trendlines(1) is the first trendline added to the series, and
Trendlines(Trendlines.Count) is the last one added.

UpBars Object

L

ChartGroup ~UpBars
L

Multiple objects

Represents the up bars in a chart group. Up bars connect points on series one
with higher values on the last series in the chart group (the lines go up from
series one). Only 2-D line groups that contain at least two series can have up
bars. This object isn’t a collection. There’s no object that represents a single up
bar; you either have up bars turned on for all points in a chart group or you have
them turned off.

Using the UpBars Object

Use the UpBars property to return the UpBars object. The following example
turns on up and down bars for chart group one in embedded chart one on Sheet5.
The example then sets the up bar color to blue and sets the down bar color to red.

With Worksheets("sheet5").ChartObjects(1).Chart.ChartGroups(1)
.HasUpDownBars = True
.UpBars.Interior.Color = RGB(0, 0, 255)
.DownBars.Interior.Color = RGB(255, 0, 0)

End With

Remarks

If the HasUpDownBars property is False, most properties of the UpBars object
are disabled.

UserAccess Object

AllowEditRange L

L

UserAccess

UserAccessList

Represents the user access for a protected range.

Using the UserAccess object

Use the Add method or the Item property of the UserAccessList collection to
return a UserAccess object.

Once a UserAccess object is returned, you can determine if access is allowed for
a particular range in an worksheet, using the AllowEdit property. The following
example adds a range that can be edited on a protected worksheet and notifies
the user the title of that range.

Sub UseAllowEditRanges()
Dim wksSheet As Worksheet
Set wksSheet = Application.ActiveSheet

' Add a range that can be edited on the protected worksheet.
wksSheet.Protection.AllowEditRanges.Add "Test", Range("A1")

' Notify the user the title of the range that can be edited.
MsgBox wksSheet.Protection.AllowEditRanges(1).Title

End Sub

Validation Object

L

Range —Validation

Represents data validation for a worksheet range.

Using the Validation Object

Use the Validation property to return the Validation object. The following
example changes the data validation for cell E5.

Range("e5").validation _
.Modify x1ValidatelList, xlvValidAlertStop, "=A1:3A10"

Use the Add method to add data validation to a range and create a new
Validation object. The following example adds data validation to cell E5.

wWith Range("e5").Validation
.Add Type:=xlvalidateWholeNumber, _
AlertStyle:=x1vValidAlertInformation, _
Minimum:="5", Maximum:="10"

.InputTitle = "Integers"

.ErrorTitle = "Integers"

.InputMessage = "Enter an integer from five to ten"
.ErrorMessage = "You must enter a number from five to ten"

End With

VPageBreak Object

Multiple objects |‘VPageBreaks
|‘VPageBreak
L

Multiple objects

Represents a vertical page break. The VPageBreak object is a member of the
VPageBreaks collection.

Using the VPageBreak Object

Use VPageBreaks(index), where index is the page break index number of the
page break, to return a VPageBreak object. The following example changes the
location of vertical page break one.

Worksheets(1).VPageBreaks(1).Location = Worksheets(1).Range("e5")

Walls Object

Chart L

L

Walls
Multiple objects

Represents the walls of a 3-D chart. This object isn’t a collection. There’s no
object that represents a single wall; you must return all the walls as a unit.

Using the Walls Object

Use the Walls property to return the Walls object. The following example sets
the pattern on the walls for embedded chart one on Sheet1. If the chart isn’t a 3-
D chart, this example will fail.

Worksheets("Sheet1").ChartObjects(1).Chart _
.Walls.Interior.Pattern = x1Gray75

Watch Object

Application |‘Watches

|‘Watch

Represents a range which is tracked when the worksheet is recalculated. The
Watch object allows users to verify the accuracy of their models and debug
problems they encounter. The Watch object is a member of the Watches
collection.

Using the Watch object

Use the use the Add method or the Item property of the Watches collection to
return a Watch object.

In the following example, Microsoft Excel creates a new Watch object using the
Add method. This example creates a summation formula in cell A3, and then
adds this cell to the watch facility.

Sub Addwatch()

wWith Application

.Range("A1").Formula = 1
.Range("A2").Formula = 2
.Range("A3").Formula = "=Sum(A1:A2)"

.Range("A3").Select
.Watches.Add Source:=ActiveCell
End With

End Sub

You can specify to remove individual cells from the watch facility by using the
Delete method of the Watches collection. This example deletes cell A3 on
worksheet 1 of book 1 from the Watch Window. This example assumes you have
added the cell A3 on sheet 1 of book 1 (using the previous example to add a
Watch object).

Sub DeleteAwatch()
Application.Watches(Workbooks("Book1").Sheets("Sheetl").Range("A

End Sub

You can also specify to remove all cells from the Watch Window, by using the
Delete method of the Watches collection. This example deletes all cells from the
Watch Window.

Sub DeleteAllwatches()

Application.Watches.Delete

End Sub

WebOptions Object

L

Workbook ~WebOptions

Contains workbook-level attributes used by Microsoft Excel when you save a
document as a Web page or open a Web page. You can return or set attributes
either at the application (global) level or at the workbook level. (Note that
attribute values can be different from one workbook to another, depending on the
attribute value at the time the workbook was saved.) Workbook-level attribute
settings override application-level attribute settings. Application-level attributes
are contained in the DefaultWebOptions object.

Using the WebOptions Object

Use the WebOptions property to return the WebOptions object. The following
example checks to see whether PNG (Portable Network Graphics) is allowed as
an image format and then sets the strImageFileType variable accordingly.

Set objAppwWebOptions = Workbooks(1).wWebOptions
wWith objAppwWebOptions
If .AllowPNG = True Then
strImageFileType = "PNG"
Else
strImageFileType = "JPG"
End If
End wWith

Window Object

L

Multiple objects “Window

|‘Multiple objects

Represents a window. Many worksheet characteristics, such as scroll bars and
gridlines, are actually properties of the window. The Window object is a
member of the Windows collection. The Windows collection for the
Application object contains all the windows in the application, whereas the
Windows collection for the Workbook object contains only the windows in the
specified workbook.

Using the Window Object

Use Windows(index), where index is the window name or index number, to
return a single Window object. The following example maximizes the active
window.

Windows(1).WindowState = x1Maximized

Note that the active window is always Windows(1).

The window caption is the text shown in the title bar at the top of the window
when the window isn’t maximized. The caption is also shown in the list of open
files on the bottom of the Windows menu. Use the Caption property to set or
return the window caption. Changing the window caption doesn’t change the
name of the workbook. The following example turns off cell gridlines for the
worksheet shown in the Book1.xls:1 window.

Windows('"book1l.x1s":1).DisplayGridlines = False

Workbook Object

L Workbook

|‘Multiple objects

Multiple objects

Represents a Microsoft Excel workbook. The Workbook object is a member of
the Workbooks collection. The Workbooks collection contains all the
Workbook objects currently open in Microsoft Excel.

Using the Workbook Object

The following properties for returning a Workbook object are described in this
section:

e Workbooks property
e ActiveWorkbook property
e ThisWorkbook property

Workbooks Property

Use Workbooks(index), where index is the workbook name or index number, to
return a single Workbook object. The following example activates workbook
one.

Workbooks(1).Activate

The index number denotes the order in which the workbooks were opened or
created. Workbooks (1) is the first workbook created, and

wWorkbooks (Workbooks.Count) is the last one created. Activating a workbook
doesn’t change its index number. All workbooks are included in the index count,
even if they’re hidden.

The Name property returns the workbook name. You cannot set the name by
using this property; if you need to change the name, use the SaveAs method to
save the workbook under a different name. The following example activates
Sheet1 in the workbook named Cogs.xls (the workbook must already be open in
Microsoft Excel).

Workbooks("Cogs.x1s").Worksheets("Sheet1").Activate

ActiveWorkbook Property

The ActiveWorkbook property returns the workbook that’s currently active. The
following example sets the name of the author for the active workbook.

ActiveWorkbook.Author = "Jean Selva"

ThisWorkbook Property

The ThisWorkbook property returns the workbook where the Visual Basic code
is running. In most cases, this is the same as the active workbook. However, if
the Visual Basic code is part of an add-in, the ThisWerkbook property won’t
return the active workbook. In this case, the active workbook is the workbook
calling the add-in, whereas the ThisWorkbook property returns the add-in
workbook.

If you’ll be creating an add-in from your Visual Basic code, you should use the
ThisWorkbook property to qualify any statement that must be run on the
workbook you compile into the add-in.

Worksheet Object

|‘Worksheet

|‘Multiple objects

Multiple objects

Represents a worksheet. The Worksheet object is a member of the Worksheets
collection. The Worksheets collection contains all the Worksheet objects in a
workbook.

Using the Worksheet Object

The following properties for returning a Worksheet object are described in this
section:

e Worksheets property
e ActiveSheet property

Worksheets Property

Use Worksheets(index), where index is the worksheet index number or name, to
return a single Worksheet object. The following example hides worksheet one
in the active workbook.

Worksheets(1).Visible = False

The worksheet index number denotes the position of the worksheet on the
workbook’s tab bar. Worksheets(1) is the first (leftmost) worksheet in the
workbook, and Worksheets(Worksheets.Count) is the last one. All worksheets
are included in the index count, even if they’re hidden.

The worksheet name is shown on the tab for the worksheet. Use the Name
property to set or return the worksheet name. The following example protects the
scenarios on Sheet1.

Dim strPassword As String
strPassword = InputBox ("Enter the password for the worksheet")
wWorksheets("Sheetl").Protect password:=strPassword, scenarios:=True

The Worksheet object is also a member of the Sheets collection. The Sheets
collection contains all the sheets in the workbook (both chart sheets and
worksheets).

ActiveSheet Property

When a worksheet is the active sheet, you can use the ActiveSheet property to
refer to it. The following example uses the Activate method to activate Sheetl1,
sets the page orientation to landscape mode, and then prints the worksheet.

Worksheets("Sheet1").Activate
ActiveSheet.PageSetup.Orientation = xlLandscape
ActiveSheet.PrintOut

WorksheetFunction Object

L

Application “WorksheetFunction

Used as a container for Microsoft Excel worksheet functions that can be called
from Visual Basic.

Using the WorksheetFunction Object

Use the WorksheetFunction property to return the WorksheetFunction object.
The following example displays the result of applying the Min worksheet
function to the range A1:A10.

Set myRange = Worksheets("Sheetl1").Range("A1:C10")
answer = Application.WorksheetFunction.Min(myRange)
MsgBox answer

)
Ty
=
=

*
f
Il

XmlDataBinding Object

L

XmlMap ~XmlDataBinding

Note XML features, except for saving files in the XML Spreadsheet format, are
available only in Microsoft Office Professional Edition 2003 and Microsoft
Office Excel 2003.

Represents the connection to the source data for an XmlMap object.

Using the XmlDataBinding Object

Use the LoadSettings method initialize the settings for an XmlDataBinding
object

Use the Refresh method to refresh a data binding.

Use the ClearSettings method to remove a data binding.

XmlMap Object

L

Multiple objects ~XmIMap

|‘Multiple objects

Note XML features, except for saving files in the XML Spreadsheet format, are
available only in Microsoft Office Professional Edition 2003 and Microsoft
Office Excel 2003.

Represents an XML map that has been added to a workbook.

Using the XmIMap Object

Use the Add method of the XmlMaps collection to add an XML map to a
workbook.

Importing and exporting XML data

Use the Import method to import XML data from an XML data file into cells
mapped to the specified XmlMap. The ImportXml method imports XML data
for a String variable.

Use the Export method to export data from cells mapped to the specified
XmlMap. The ExportXml method exports XML data to a String variable.

XmlINamespace Object

L

Multiple objects ~XmlINamespace

Note XML features, except for saving files in the XML Spreadsheet format, are
available only in Microsoft Office Professional Edition 2003 and Microsoft
Office Excel 2003.

Represents a namespace that has been added to a workbook.

Using the XmINamespace Object

Use the Prefix property to return the prefix of an XmlNamespace object.

Use the Uri property to return the Uniform Resource Identifier (URI) of an
XmlNamespace object.

XmlSchema Object

L

XmlMap ~XmlSchemas

L

XmlSchema

|‘XmlNamespace

Note XML features, except for saving files in the XML Spreadsheet format, are
available only in Microsoft Office Professional Edition 2003 and Microsoft
Office Excel 2003.

Represents an XML schema contained by an XmlMap object.

Using the XmlISchema Object

Use the Item method to return an XmlSchema object from the XmlSchemas
collection.

Use the Namespace property to return the target namespace for a schema.

Use the XML property to return the XML contents of a schema.

XPath Object

L

Multiple objects ~XPath

|‘XmlMap

Note XML features, except for saving files in the XML Spreadsheet format, are
available only in Microsoft Office Professional Edition 2003 and Microsoft
Office Excel 2003.

Represents an XPath that has been mapped to a Range or ListColumn object.

Using the XPath Object

Use the SetValue method to map an XPath to a range or list column. The
SetValue method is also used to change the properties of an existing XPath.

The following example creates an XML list based on the "Contacts" schema map
that is attached to the workbook, then uses the SetValue method to bind each

column to an XPath.

Sub CreateXMLList()
Dim mapContact As XmlMap
Dim strXPath As String
Dim lstContacts As ListObject
Dim lcNewCol As ListColumn

' Specify the schema map to use.
Set mapContact = ActiveWorkbook.XmlMaps("Contacts")

' Create a new list.
Set lstContacts = ActiveSheet.ListObjects.Add

' Specify the first element to map.

strxXPath = "/Root/Person/FirstName"

' Map the element.

1stContacts.ListColumns(1).XPath.SetValue mapContact, strXPath

' Specify the element to map.

strXPath = "/Root/Person/LastName"

' Add a column to the list.

Set 1lcNewCol = 1stContacts.ListColumns.Add

' Map the element.

lcNewCol.XPath.SetValue mapContact, strXPath

strxXPath = "/Root/Person/Address/Zip"

Set 1lcNewCol = 1lstContacts.ListColumns.Add

lcNewCol.XPath.SetValue mapContact, strXPath
End Sub

Use the Clear method to remove an XPath that has been mapped to a range or
list column.

AcceptAllChanges Method

Accepts all changes in the specified shared workbook.
expression.AcceptAllChanges(When, Who, Where)

expression Required. An expression that returns one of the objects in the
Applies To list.

When Optional Variant. Specifies when all the changes are accepted.
Who Optional Variant. Specifies by whom all the changes are accepted.

Where Optional Variant. Specifies where all the changes are accepted.

Example

This example accepts all changes in the active workbook.

ActiveWorkbook.AcceptAllChanges

Show All

Activate Method

Activate method as it applies to the Chart and ChartObject object.

Makes the current chart the active chart.
expression.Activate

expression Required. An expression that returns one of the above objects.

Activate method as it applies to the Worksheet object.
Makes the current sheet the active sheet. Equivalent to clicking the sheet's tab.
expression.Activate

expression Required. An expression that returns one of the above objects.

Activate method as it applies to the OLEObject object.

Activates the object.
expression.Activate

expression Required. An expression that returns one of the above objects.

Activate method as it applies to the Pane object.

Activates the pane. If the pane isn't in the active window, the window that the
pane belongs to will also be activated. You cannot activate a frozen pane.

expression.Activate

expression Required. An expression that returns one of the above objects.

Activate method as it applies to the Range object.

Activates a single cell, which must be inside the current selection. To select a
range of cells, use the Select method.

expression.Activate

expression Required. An expression that returns one of the above objects.

Activate method as it applies to the Window object.

Brings the window to the front of the z-order. This won't run any Auto_Activate
or Auto_Deactivate macros that might be attached to the workbook (use the
RunAutoMacros method to run those macros).

expression.Activate

expression Required. An expression that returns one of the above objects.

Activate method as it applies to the Workbook object.

Activates the first window associated with the workbook. This won't run any
Auto_Activate or Auto_Deactivate macros that might be attached to the
workbook (use the RunAutoMacros method to run those macros).

expression.Activate

expression Required. An expression that returns one of the above objects.

Example

As it applies to the Worksheet object.

This example activates Sheet1.

Worksheets("Sheet1").Activate

As it applies to the Range object.

This example selects cells A1:C3 on Sheetl and then makes cell B2 the active
cell.

Worksheets("Sheet1").Activate

Range("A1:C3").Select
Range("B2").Activate

As it applies to the Workbook object.

This example activates Book4.xls. If Book4.xls has multiple windows, the
example activates the first window, Book4.xls:1.

Workbooks ("BOOK4.XLS") .Activate

Show All

ActivateMicrosoftApp Method

Activates a Microsoft application. If the application is already running, this
method activates the running application. If the application isn't running, this
method starts a new instance of the application.

expression.ActivateMicrosoftApp(index)
expression Required. An expression that returns an Application object.

index Required XIMSApplication. Specifies the Microsoft application to
activate.

XIMSApplication can be one of these XIMSApplication constants.
xIMicrosoftWord

xIMicrosoftPowerPoint

xIMicrosoftMail

xIMicrosoftAccess

xIMicrosoftFoxPro

xIMicrosoftProject

xIMicrosoftSchedulePlus

Example

This example starts and activates Word.

Application.ActivateMicrosoftApp x1MicrosoftWord

ActivateNext Method

Activates the specified window and then sends it to the back of the window z-
order.

expression.ActivateNext

expression Required. An expression that returns a Window object.

Example

This example sends the active window to the back of the z-order.

ActiveWindow.ActivateNext

ActivatePrevious Method

Activates the specified window and then activates the window at the back of the
window z-order.

expression.ActivatePrevious

expression Required. An expression that returns a Window object.

Example

This example activates the window at the back of the z-order.

ActiveWindow.ActivatePrevious

Show All

Add Method

Add method as it applies to the AddIns object.

Adds a new add-in file to the list of add-ins. Returns an AddIn object.
expression.Add(FileName, CopyFile)
expression Required. An expression that returns an AddIns object.

Filename Required String. The name of the file that contains the add-in you
want to add to the list in the add-in manager.

CopyFile Optional Variant. Ignored if the add-in file is on a hard disk. True to
copy the add-in to your hard disk, if the add-in is on a removable medium (a
floppy disk or compact disc). False to have the add-in remain on the removable
medium. If this argument is omitted, Microsoft Excel displays a dialog box and
asks you to choose.

Remarks

This method doesn't install the new add-in. You must set the Installed property
to install the add-in.

Add method as it applies to the AllowEditRanges object.

Adds a range that can be edited on a protected worksheet. Returns a
AllowEditRange object.

expression.Add(Title, Range, Password)

expression Required. An expression that returns an AllowEditRanges object.
Title Required String. The title of range.

Range Required Range object. The range allowed to be edited.

Password Optional Variant. The password for the range.

Add method as it applies to the CalculatedFields object.

Creates a new calculated field. Returns a PivotField object.
expression.Add(Name, Formula, UseStandardFormula)

expression Required. An expression that returns a CalculatedFields object.
Name Required String. The name of the field.

Formula Required String. The formula for the field.

UseStandardFormula Optional Variant. False (default) for upward
compatibility. True for strings contained in any arguments that are field names,
will be interpreted as having been formatted in standard U.S. English instead of
local settings.

Add method as it applies to the CalculatedItems object.

Creates a new calculated item. Returns a PivotItem object.
expression.Add(Name, Formula, UseStandardFormula)

expression Required. An expression that returns a CalculatedItems object.
Name Required String. The name of the item.

Formula Required String. The formula for the item.

UseStandardFormula Optional Variant. False (default) for upward
compatibility. True for strings contained in any arguments that are item names,
will be interpreted as having been formatted in standard U.S. English instead of
local settings.

Add method as it applies to the CalculatedMembers object.

Adds a calculated field or calculated item to a PivotTable. Returns a
CalculatedMember object.

expression.Add(Name, Formula, SolveOrder, Type)

expression Required. An expression that returns a CalculatedMembers object.
Name Required String. The name of the calculated member.

Formula Required String. The formula of the calculated member.

SolveOrder Optional Variant. The solve order for the calculated member.

Type Optional Variant. The type of calculated member.

Remarks

The Formula argument must have a valid MDX (Multidimensional Expression)
syntax statement. The Name argument has to be acceptable to the Online
Analytical Processing (OLAP) provider and the Type argument has to be
defined.

If you set the Type argument of this method to xICalculatedSet, then you must
call the AddSet method to make the new field set visible in the PivotTable.

Add method as it applies to the ChartObjects object.

Creates a new embedded chart. Returns a ChartObject object.
expression.Add(Left, Top, Width, Height)
expression Required. An expression that returns a ChartObjects object.

Left ,TopRequired Double. The initial coordinates of the new object (in points),
relative to the upper-left corner of cell A1 on a worksheet or to the upper-left
corner of a chart.

Width ,HeightRequired Double. The initial size of the new object, in points.

Add method as it applies to the Charts object.
Creates a new chart sheet. Returns a Chart object.
expression.Add(Before, After, Count)
expression Required. An expression that returns a Charts object.

Before Optional Variant. An object that specifies the sheet before which the
new sheet is added.

After Optional Variant. An object that specifies the sheet after which the new
sheet is added.

Count Optional Variant. The number of sheets to be added. The default value
is one.

Remarks

If Before and After are both omitted, the new chart is inserted before the active
sheet.

Add method as it applies to the CustomProperties object.

Adds custom property information. Returns a CustomProperty object.
expression.Add(Name, Value)

expression Required. An expression that returns a CustomProperties object.
Name Required String. The name of the custom property.

Value Required Variant. The value of the custom property.

Add method as it applies to the CustomViews object.

Creates a new custom view. Returns a CustomView object that represents the
new view.

expression.Add(ViewName, PrintSettings, RowColSettings)
expression Required. An expression that returns a CustomViews object.
ViewName Required String. The name of the new view.

PrintSettings Optional Variant. True to include print settings in the custom
view.

RowColSettings Optional Variant. True to include settings for hidden rows
and columns (including filter information) in the custom view.

Add method as it applies to the FormatConditions object.

Adds a new conditional format. Returns a FormatCondition object that
represents the new conditional format.

expression.Add(Type, Operator, Formulal, Formula2)
expression Required. An expression that returns a FormatConditions object.

Type Required XIFormatConditionType. Specifies whether the conditional
format is based on a cell value or an expression.

XlFormatConditionType can be one of these X]IFormatConditionType constants.
xICellValue The conditional format is based on a cell value.
xIExpression The conditional format is based on an expression.

Operator Optional Variant. The conditional format operator. Can be one of the
following XIFormatConditionOperator constants: xIBetween, xIEqual,
xlGreater, xIGreaterEqual, xlLess, xILessEqual, xINotBetween, or
xINotEqual. If Type is xIExpression, the Operator argument is ignored.

Formulal Optional Variant. The value or expression associated with the
conditional format. Can be a constant value, a string value, a cell reference, or a
formula.

Formula2 Optional Variant. The value or expression associated with the
second part of the conditional format when Operator is xIBetween or
xINotBetween (otherwise, this argument is ignored). Can be a constant value, a
string value, a cell reference, or a formula.

Remarks

You cannot define more than three conditional formats for a range. Use the
Modify method to modify an existing conditional format, or use the Delete
method to delete an existing format before adding a new one.

Add method as it applies to the HPageBreaks object.

Adds a horizontal page break. Returns an HPageBreak object.
expression.Add(Before)
expression Required. An expression that returns an HPageBreaks object.

Before Required Object. A Range object. The range above which the new
page break will be added.

Add method as it applies to the Hyperlinks object.

Adds a hyperlink to the specified range or shape. Returns a Hyperlink object.
expression.Add(Anchor, Address, SubAddress, ScreenTip, TextToDisplay)
expression Required. An expression that returns a Hyperlinks object.

Anchor Required Object. The anchor for the hyperlink. Can be either a Range
or Shape object.

Address Required String. The address of the hyperlink.
SubAddress Optional Variant. The subaddress of the hyperlink.

ScreenTip Optional Variant. The screen tip to be displayed when the mouse
pointer is paused over the hyperlink.

TextToDisplay Optional Variant. The text to be displayed for the hyperlink.

Remarks

When you specify the TextToDisplay argument, the text must be a string.

Add method as it applies to the ListColumns collection object.

Adds a new column to the list object. Returns a ListColumn object.
expression.Add(Position)

expression Required. An expression that returns a ListColumns object for the
newly created column.

Position Optional Integer. Specifies the relative position of the new column
that starts at 1. The previous column at this position is shifted outward.

Remarks

If Position is not specified, a new rightmost column is added. A name for the
column is automatically generated. The name of the new column can be changed
after the column is added.

Add method as it applies to the ListObjects collection object.

Creates a new list object. Returns a ListObject object.
expression.Add(SourceType, Source, LinkSource, HasHeaders, Destination)
expression Required. An expression that returns a ListObjects object.

SourceType Optional XIListObjectSourceType. Indicates the kind of source
for the query. Can be one of the following XIListObjectSourceType constants:
xISrcExternal, or xISrcRange. If omitted, the SourceType will default to
xISrcRange.

Source Optional when SourceType = xISrcRange. A Range object
representing the data source. If omitted, the Source will default to the range
returned by list range detection code. Required when SourceType =
xISrcExternal. An array of String values specifying a connection to the source.

Element# Contents

0 URL to SharePoint Service
1 ListName

2 ViewGUID

LinkSource Optional Boolean. Indicates whether an external data source is to
be linked to the ListObject object. If SourceType is xISrcExternal, default is
True. Invalid if SourceType is xISrcRange, and will return an error if not
omitted.

HasHeaders Optional Variant. An X1YesNoGuess constant that indicates
whether the data being imported has column labels. If the Source does not
contain headers, Excel will automatically generate headers.

HasHeaders can be one of these XIYesNoGuess constants.

xlGuess
xINo
x1Yes

Destination Optional Variant. A Range object specifying a single-cell
reference as the destination for the top-left corner of the new list object. If the
Range object refers to more than one cell, an error is generated. The
Destination argument must be specified when SourceType is set to
xISrcExternal. The Destination argument is ignored if SourceType is set to
xISrcRange. The destination range must be on the worksheet that contains the
ListObjects collection specified by expression. New columns will be inserted at
the Destination to fit the new list. Therefore, existing data will not be

overwritten.

Remarks

When the list has headers, the first row of cells will be converted to Text, if not
already set to text. The conversion will be based on the visible text for the cell.
This means that if there is a date value with a Date format that changes with
locale, the conversion to a list might produce different results depending on the
current system locale. Moreover, if there are two cells in the header row that
have the same visible text, an incremental Integer will be appended to make
each column header unique.

Add method as it applies to the ListRows collection object.

Adds a new row to the list object. Returns a ListRow object.
expression.Add(Position)

expression Required. An expression that returns a ListRows object for the
newly created row.

Position Optional Integer. Specifies the relative position of the new row.

Remarks

If Position is not specified, a new bottom row is added.

Add method as it applies to the Names object.

Defines a new name. Returns a Name object.

expression.Add(Name, RefersTo, Visible, MacroType, ShortcutKey, Category,
NameLocal, RefersToLocal, CategoryLocal, RefersToR1C1,
RefersToR1C1Local)

expression Required. An expression that returns a Names object.

Name Optional Variant. Required if NameLocal isn't specified. The text to use
as the name (in the language of the macro). Names cannot include spaces and
cannot look like cell references.

RefersTo Optional Variant. Required unless one of the other RefersTo
arguments is specified. Describes what the name refers to (in the language of the
macro, using Al-style notation). Note Nothing is returned if the reference does
not exist.

Visible Optional Variant. True to define the name normally. False to define the
name as a hidden name (that is, it doesn't appear in either the Define Name,
Paste Name, or Goto dialog box). The default value is True.

MacroType Optional Variant. The macro type, as shown in the following table.

Value Meaning
1 User-defined function (Function procedure)
2 Macro (also known as Sub procedure)
3 or None (that is, the name doesn't refer to a user-defined function or

omitted macro)

ShortcutKey Optional Variant. The macro shortcut key. Must be a single letter,

mwn

such as "z" or "Z". Applies only for command macros.

Category Optional Variant. The category of the macro or function if
MacroType is 1 or 2. The category is used in the Function Wizard. Existing
categories can be referred to either by number (starting at 1) or by name (in the
language of the macro). Microsoft Excel creates a new category if the specified
category doesn't already exist.

NameLocal Optional Variant. Required if Name isn't specified. The text to use
as the name (in the language of the user). Names cannot include spaces and
cannot look like cell references.

RefersToLocal Optional Variant. Required unless one of the other RefersTo
arguments is specified. Describes what the name refers to (in the language of the
user, using A1-style notation).

CategoryLocal Optional Variant. Required if Category isn't specified. Text
identifying the category of a custom function in the language of the user.

RefersToR1C1 Optional Variant. Required unless one of the other RefersTo
arguments is specified. Describes what the name refers to (in the language of the
macro, using R1C1-style notation).

RefersToR1C1Local Optional Variant. Required unless one of the other
RefersTo arguments is specified. Describes what the name refers to (in the
language of the user, using R1C1-style notation).

Add method as it applies to the OLEObjects object.

Adds a new OLE object to a sheet. Returns an OLEQObject object.

expression.Add(ClassType, FileName, Link, DisplayAsIcon, IconFileName,
IconIndex, IconLabel, Left, Top, Width, Height)

expression Required. An expression that returns an OLEQODbjects object.

ClassType Optional Variant. (you must specify either ClassType or
FileName). A string that contains the programmatic identifier for the object to
be created. If ClassType is specified, FileName and Link are ignored.

FileName Optional Variant. (you must specify either ClassType or FileName).
A string that specifies the file to be used to create the OLE object.

Link Optional Variant. True to have the new OLE object based on FileName
be linked to that file. If the object isn't linked, the object is created as a copy of
the file. The default value is False.

DisplayAsIcon Optional Variant. True to display the new OLE object either as
an icon or as its regular picture. If this argument is True, IconFileName and
IconIndex can be used to specify an icon.

IconFileName Optional Variant. A string that specifies the file that contains
the icon to be displayed. This argument is used only if DisplayAsIcon is True. If
this argument isn't specified or the file contains no icons, the default icon for the
OLE class is used.

IconIndex Optional Variant. The number of the icon in the icon file. This is
used only if DisplayAsIcon is True and IconFileName refers to a valid file that
contains icons. If an icon with the given index number doesn't exist in the file
specified by IconFileName, the first icon in the file is used.

IconLabel Optional Variant. A string that specifies a label to display beneath
the icon. This is used only if DisplayAsIcon is True. If this argument is omitted
or is an empty string ("), no caption is displayed.

Left ,Top Optional Variant. The initial coordinates of the new object, in points,
relative to the upper-left corner of cell A1 on a worksheet, or to the upper-left
corner of a chart.

Width ,Height Optional Variant. The initial size of the new object, in points.

Add method as it applies to the Parameters object.

Creates a new query parameter. Returns a Parameter object.
expression.Add(Name, iDataType)
expression Required. An expression that returns a Parameters object.

Name Required String. The name of the specified parameter. The parameter
name should match the parameter clause in the SQL statement.

iDataType Optional Variant. The data type of the parameter. Can be any

XIParameterDataType constant:

xIParamTypeBigInt

xIParamTypeNumeric
xIParamTypeBinary

xIParamTypeLongVarChar
x|ParamTypeBit

x|ParamTypeReal
xIParamTypeChar

xIParamTypeSmalllnt
xIParamTypeDate

xIParamTypeTime
xIParamTypeDecimal

xIParamTypeTimeStamp
xIParamTypeDouble

xIParamTypeTinyInt
xIParamTypeFloat

xIParamTypeUnknown
xIParamTypelnteger

xIParamTypeVarBinary
xIParamTypeLongVarBinary

xIParamTypeVarChar
xIParamTypeWChar

These values correspond to ODBC data types. They indicate the type of value
the ODBC driver is expecting to receive. Microsoft Excel and the ODBC driver
manager will coerce the parameter value given in Microsoft Excel into the
correct data type for the driver.

Add method as it applies to the Phonetics object.

Adds phonetic text to the specified cellt.
expression.Add(Start, Length, Text)
expression Required. An expression that returns a Phonetics object.

Start Required Long. The position that represents the first character in the
specified cell.

Length Required Long. The number of characters from the Start position to the
end of the text in the cell.

Text Required String. Collectively, the characters that represent the phonetic
text in the cell.

Add method as it applies to the PivotCaches object.

Adds a new PivotTable cache to a PivetCaches collection. Returns a
PivotCache object.

expression.Add(SourceType, SourceData)
expression Required. An expression that returns a PivotCaches object.

SourceType Required XIPivotTableSourceType. The source of the PivotTable
cache data.

XIPivotTableSourceType can be one of these XIPivotTableSourceType
constants.

xIConsolidation
xIDatabase
xlExternal
xIPivotTable
xIScenario

SourceData Optional Variant. The data for the new PivotTable cache. This
argument is required if SourceType isn't xIExternal. Can be a Range object, an
array of ranges, or a text constant that represents the name of an existing
PivotTable report. For an external database, this is a two-element array. The first
element is the connection string specifying the provider of the data. The second
element is the SQL query string used to get the data. If you specify this
argument, you must also specify SourceType.

Remarks

If the PivotTable cache isn't referenced by a PivetTable object, the PivotTable
cache is automatically deleted before the workbook is saved.

Add method as it applies to the PivotFormulas object.

Creates a new PivotTable formula. Returns a PivetFormula object.

expression.Add(Formula, UseStandardF ormula)
expression Required. An expression that returns one of the above objects.
Formula Required String. The new PivotTable formula.

UseStandardFormula Optional Variant. A standard PivotTable formula.

Add method as it applies to the PivotItems object.

Creates a new PivotTable item.
expression.Add(Name)
expression Required. An expression that returns a PivotItems object.

Name Required String. The name of the new PivotTable item.

Add method as it applies to the PivotTables object.

Adds a new PivotTable report. Returns a PivotTable object.

expression.Add(PivotCache, TableDestination, TableName, ReadData,
DefaultVersion)

expression Required. An expression that returns a PivotTables object.

PivotCache Required PivotCache. The PivotTable cache on which the new
PivotTable report is based. The cache provides data for the report.

TableDestination Required Variant. The cell in the upper-left corner of the
PivotTable report's destination range (the range on the worksheet where the
resulting report will be placed). You must specify a destination range on the
worksheet that contains the PivotTables object specified by expression

TableName Optional Variant. The name of the new PivotTable report.

ReadData Optional Variant. True to create a PivotTable cache that contains all
records from the external database; this cache can be very large. False to enable
setting some of the fields as server-based page fields before the data is actually
read.

DefaultVersion Optional Variant. The version of Microsoft Excel the
PivotTable was originally created in.

Add method as it applies to the PublishObjects object.

Creates an object that represents an item in a document saved to a Web page.
Such objects facilitate subsequent updates to the Web page while automated
changes are being made to the document in Microsoft Excel. Returns a
PublishObject object.

expression.Add(SourceType, FileName, Sheet, Source, HtmlType, DivID,
Title)

expression Required. An expression that returns a PublishObjects object.

SourceType Required XlSourceType. The source type.

XlSourceType can be one of these X1SourceType constants. Identifies the
source object.

xISourceAutoFilter An AutoFilter range.
xISourceChart A chart.

xISourcePivotTable A PivotTable report.
xISourcePrintArea A range of cells selected for printing.
xISourceQuery A query table (external data range).
xISourceRange A range of cells.

xISourceSheet An entire worksheet.

x1SourceWorkbook A workbook.

FileName Required String. The URL (on the intranet or the Web) or path
(local or network) to which the source object was saved.

Sheet Optional Variant. The name of the worksheet that was saved as a Web
page.

Source Optional Variant. A unique name used to identify items that have one
of the following constants as their SourceType argument: xISourceAutoFilter,
xISourceChart, xISourcePivotTable, xISourcePrintArea, xISourceQuery, or
xISourceRange. If SourceType is xISourceRange, Source specifies a range,
which can be a defined name. If SourceType is xISourceChart,
xISourcePivotTable, or xISourceQuery, Source specifies the name of a chart,
PivotTable report, or query table.

HtmlType Optional Variant. Specifies whether the item is saved as an
interactive Microsoft Office Web component or as static text and images. Can be
one of the XIHTMLType constants listed in the following table.

Constant Description
xISourceAutoFilter An AutoFilter range
x1SourceChart A chart
xISourcePivotTable A PivotTable report
xISourcePrintArea A range of cells selected for printing

xISourceQuery A query table (external data range)
xISourceRange A range of cells
xISourceSheet An entire worksheet

DivID Optional Variant. The unique identifier used in the HTML DIV tag to
identify the item on the Web page.

Title Optional Variant. The title of the Web page.

Add method as it applies to the QueryTables object.

Creates a new query table. Returns a QueryTable object that represents the new
query table.

expression.Add(Connection, Destination, Sql)
expression Required. An expression that returns a QueryTables object.

Connection Required Variant. The data source for the query table. Can be one
of the following:

e A string containing an OLE DB or ODBC connection string. The ODBC
connection string has the form "ODBC;<connection string>".

e A QueryTable object from which the query information is initially copied,
including the connection string and the SQL text, but not including the
Destination range. Specifying a QueryTable object causes the Sql
argument to be ignored.

e An ADO or DAO Recordset object. Data is read from the ADO or DAO
recordset. Microsoft Excel retains the recordset until the query table is
deleted or the connection is changed. The resulting query table cannot be
edited.

e A Web query. A string in the form "URL;<url>", where "URL;" is required
but not localized and the rest of the string is used for the URL of the Web
query.

¢ Data Finder. A string in the form "FINDER;<data finder file path>" where
"FINDER;" is required but not localized. The rest of the string is the path
and file name of a Data Finder file (*.dqy or *.iqy). The file is read when
the Add method is run; subsequent calls to the Connection property of the
query table will return strings beginning with "ODBC;" or "URL;" as
appropriate.

o Atext file. A string in the form "TEXT;<text file path and name>", where
TEXT is required but not localized.

Destination Required Range. The cell in the upper-left corner of the query
table destination range (the range where the resulting query table will be placed).
The destination range must be on the worksheet that contains the QueryTables
object specified by expression

Sql Optional Variant. The SQL query string to be run on the ODBC data
source. This argument is optional when you're using an ODBC data source (if
you don't specify it here, you should set it by using the Sql property of the query
table before the table is refreshed). You cannot use this argument when a
QueryTable object, text file, or ADO or DAO Recordset object is specified as

the data source.

Remarks

A query created by this method isn't run until the Refresh method is called.

Add method as it applies to the RecentFiles object.
Adds a file to the list of recently used files. Returns a RecentFile object.
expression.Add(Name)
expression Required. An expression that returns a RecentFiles object.

Name Required String. The file name.

Add method as it applies to the Scenarios object.

Creates a new scenario and adds it to the list of scenarios that are available for
the current worksheet. Returns a Scenario object.

expression.Add(Name, ChangingCells, Values, Comment, Locked, Hidden)
expression Required. An expression that returns a Scenarios object.
Name Required String. The scenario name.

ChangingCells Required Variant. A Range object that refers to the changing
cells for the scenario.

Values Optional Variant. An array that contains the scenario values for the
cells in ChangingCells. If this argument is omitted, the scenario values are
assumed to be the current values in the cells inChangingCells.

Comment Optional Variant. A string that specifies comment text for the
scenario. When a new scenario is added, the author's name and date are
automatically added at the beginning of the comment text.

Locked Optional Variant. True to lock the scenario to prevent changes. The
default value is True.

Hidden Optional Variant. True to hide the scenario. The default value is
False.

Remarks

A scenario name must be unique; Microsoft Excel generates an error if you try to
create a scenario with a name that's already in use.

Add method as it applies to the SeriesCollection object.

Adds one or more new series to the SeriesCollection collection.
expression.Add(Source, Rowcol, SeriesLabels, CategoryLabels, Replace)
expression Required. An expression that returns a SeriesCollection object.

Source Required Variant. The new data, either as a Range object or an array
of data points.

Rowcol Optional XIRowCol. Specifies whether the new values are in the rows
or columns of the specified range.

XIRowCol can be one of these XIRowCol constants.
xlColumns default
xIRows

SeriesLabels Optional Variant. Ignored if Source is an array. True if the first
row or column contains the name of the data series. False if the first row or
column contains the first data point of the series. If this argument is omitted,
Microsoft Excel attempts to determine the location of the series name from the
contents of the first row or column.

CategoryLabels Optional Variant. Ignored if Source is an array. True if the
first row or column contains the name of the category labels. False if the first
row or column contains the first data point of the series. If this argument is
omitted, Microsoft Excel attempts to determine the location of the category label
from the contents of the first row or column.

Replace Optional Variant. If CategoryLabels is True and Replace is True, the
specified categories replace the categories that currently exist for the series. If

Replace is False, the existing categories will not be replaced. The default value
is False.

Remarks

This method does not actually return a SeriesCollection object as stated in the
Object Browser. This method is not available for PivotChart reports.

Add method as it applies to the Sheets and Worksheets objects.

Creates a new worksheet, chart, or macro sheet. The new worksheet becomes the
active sheet.

expression.Add(Before, After, Count, Type)
expression Required. An expression that returns one of the above objects.

Before Optional Variant. An object that specifies the sheet before which the
new sheet is added.

After Optional Variant. An object that specifies the sheet after which the new
sheet is added.

Count Optional Variant. The number of sheets to be added. The default value
is one.

Type Optional Variant. Specifies the sheet type. Can be one of the following
XISheetType constants: xIWorksheet, xIChart, xIExcel4dMacroSheet, or
xIExcel4IntiIMacroSheet. If you are inserting a sheet based on an existing
template, specify the path to the template. The default value is xIWorksheet.

Remarks

If Before and After are both omitted, the new sheet is inserted before the active
sheet.

Add method as it applies to the SmartTags object.

Adds a smart tag. Returns a SmartTag object.
expression.Add(SmartTagType)
expression Required. An expression that returns a SmartTags object.

SmartTagType Required String. The type of smart tag.

Add method as it applies to the Styles object.

Creates a new style and adds it to the list of styles that are available for the
current workbook. Returns a Style object.

expression.Add(Name, BasedOn)
expression Required. An expression that returns a Styles object.
Name Required String. The new style name.

BasedOn Optional Variant. A Range object that refers to a cell that's used as
the basis for the new style. If this argument is omitted, the newly created style is
based on the Normal style.

Remarks

If a style with the specified name already exists, this method redefines the
existing style based on the cell specified in BasedOn. The following example
redefines the Normal style based on the active cell.

ActiveWorkbook.Styles.Add Name := "Normal", BasedOn := ActiveCell

Add method as it applies to the Trendlines object.

Creates a new trendline. Returns a Trendline object.

expression.Add(Type, Order, Period, Forward, Backward, Intercept,
DisplayEquation, DisplayRSquared, Name)

expression Required. An expression that returns a Trendlines object.

Type Optional XITrendlineType. The trendline type.

XlTrendlineType can be one of these XITrendlineType constants.
x|IExponential

xILinear default

xILogarithmic

xIMovingAvg

xIPolynomial

xIPower

Order Optional Variant. Optional Variant. Required if Type is x]Polynomial.
The trendline order. Must be an integer from 2 to 6, inclusive.

Period Optional Variant. Required if Type is xIMovingAvg. The trendline
period. Must be an integer greater than 1 and less than the number of data points
in the series you're adding a trendline to.

Forward Optional Variant. The number of periods (or units on a scatter chart)
that the trendline extends forward.

Backward Optional Variant. The number of periods (or units on a scatter
chart) that the trendline extends backward.

Intercept Optional Variant. The trendline intercept. If this argument is omitted,
the intercept is automatically set by the regression.

DisplayEquation Optional Variant. True to display the equation of the
trendline on the chart (in the same data label as the R-squared value). The
default value is False.

DisplayRSquared Optional Variant. True to display the R-squared value of the
trendline on the chart (in the same data label as the equation). The default value
is False.

Name Optional Variant. The name of the trendline as text. If this argument is
omitted, Microsoft Excel generates a name.

Add method as it applies to the UserAccessList object.

Adds a user access list. Returns a UserAccess object.
expression.Add(Name, AllowEdit)

expression Required. An expression that returns a UserAccessList object.
Name Required String. The name of the user access list.

AllowEdit Required Boolean. True allows users on the access list to edit the
editable ranges on a protected worksheet.

Add method as it applies to the Validation object.

Adds data validation to the specified range.
expression.Add(Type, AlertStyle, Operator, Formulal, Formula2)
expression Required. An expression that returns a Validation object.

Type Required XIDVType. The validation type.

XIDVType can be one of these XIDVType constants.
xIValidateCustom

xIValidateDate

xIValidateDecimal

xIValidateInputOnly

xIValidateList

xIValidateTextLength

xIValidateTime

xIValidateWholeNumber

AlertStyle Optional Variant. The validation alert style. Can be one of the
following XIDVAlertStyle constants: xIValidAlertInformation,
xIValidAlertStop, or xlValidAlertWarning.

Operator Optional Variant. The data validation operator. Can be one of the
following XIFormatConditionOperator constants: xIBetween, xIEqual,
xlGreater, xIGreaterEqual, xlLess, xILessEqual, xINotBetween, or
xINotEqual.

Formulal Optional Variant. The first part of the data validation equation.

Formula2 Optional Variant. The second part of the data validation when
Operator is xIBetween or xINotBetween (otherwise, this argument is ignored).

Remarks

The Add method requires different arguments, depending on the validation type,
as shown in the following table.

Validation type Arguments

Formulal is required, Formula2 is ignored.
Formulal must contain an expression that
evaluates to True when data entry is valid and
False when data entry is invalid.

xlInputOnly AlertStyle, Formulal, or Formula2 are used.

Formulal is required, Formula2 is ignored.
Formulal must contain either a comma-
delimited list of values or a worksheet reference
to this list.

xlValidateCustom

xlValidateList

xlValidateWholeNumber,

lealfdateDat?, One of either Formulal or Formula?2 must be
xIValidateDecimal, specified, or both may be specified
xIValidateTextLength, or P ’ y P |
xlValidateTime

Add method as it applies to the VPageBreaks object.

Adds a vertical page break. Returns a VPageBreak object.

expression.Add(Before)
expression Required. An expression that returns a VPageBreaks object.

Before Required Object. A Range object. The range to the left of which the
new page break will be added.

Add method as it applies to the Watches object.

Adds a range which is tracked when the worksheet is recalculated. Returns a
Watch object.

expression.Add(Source)
expression Required. An expression that returns a Watches object.

Source Required Variant. The source for the range.

Add method as it applies to the Workbooks object.

Creates a new workbook. The new workbook becomes the active workbook.
Returns a Workbook object.

expression.Add(Template)
expression Required. An expression that returns a Workbooks object.

Template Optional Variant. Determines how the new workbook is created. If
this argument is a string specifying the name of an existing Microsoft Excel file,
the new workbook is created with the specified file as a template. If this
argument is a constant, the new workbook contains a single sheet of the
specified type. Can be one of the following XIWBATemplate constants:
xIWBAT Chart, xXIWBATExcel4IntiIMacroSheet,
xIWBATExcel4dMacroSheet, or xXIWBATWorksheet. If this argument is
omitted, Microsoft Excel creates a new workbook with a number of blank sheets
(the number of sheets is set by the SheetsiInNewWorkbook property).

Remarks

If the Template argument specifies a file, the file name can include a path.

Add method as it applies to the XmlMaps collection.

Note XML features, except for saving files in the XML Spreadsheet format, are
available only in Microsoft Office Professional Edition 2003 and Microsoft
Office Excel 2003.

Adds an XML map to the specified workbook. Returns an XmlMap object.
expression.Add(Schema, RootElementName)
expression Required. An expression that returns a Workbook object.

Schema Required String. The schema to be added as an XML map. The string
can be a path to a schema file, or the schema itself. The path can be specified in
the Universal Naming Convention (UNC) or Uniform Resource Locator (URL)
format.

RootElementName Optional String. The name of the root element. This
argument can be ignored if the schema contains only one root element.

Example

As it applies to the AddIns object.

This example inserts the add-in Myaddin.xla from drive A. When you run this
example, Microsoft Excel copies the file A:\\Myaddin.xla to the Library folder on
your hard disk and adds the add-in title to the list in the Add-Ins dialog box.

Sub UseAddIn()
Set myAddIn = AddIns.Add(Filename:="A:\MYADDIN.XLA", _
CopyFile:=True)
MsgBox myAddIn.Title & " has been added to the list"

End Sub

As it applies to the AllowEditRanges object.

This example allows edits to range "A1:A4" on the active worksheet, notifies the
user, then changes the password for this specified range and notifies the user of
this change.

Sub UseChangePassword()
Dim wksOne As Worksheet
Set wksOne = Application.ActiveSheet

' Protect the worksheet.
wksOne.Protect

' Establish a range that can allow edits

' on the protected worksheet.

wksOne.Protection.AllowEditRanges.Add _
Title:="Classified", _
Range:=Range("Al1:A4"), _
Password:="secret"

MsgBox '"Cells Al to A4 can be edited on the protected worksheet.

' Change the password.
wksOne.Protection.AllowEditRanges(1).ChangePassword _

Password:="moresecret"

MsgBox "The password for these cells has been changed."

End Sub

As it applies to the CalculatedFields object.

This example adds a calculated field to the first PivotTable report on worksheet

one.

Worksheets(1).PivotTables(1).CalculatedFields.Add "PxS", _
"= Product * Sales"

As it applies to the CalculatedMembers object.

The following example adds a set to a PivotTable, assuming a PivotTable exists
on the active worksheet.

Sub UseAddSet ()

Dim
Dim
Dim
Dim

Set

pvtOne As PivotTable
strAdd As String
strFormula As String
cbfOne As CubeField

pvtOne = ActiveSheet.PivotTables(1)

strAdd = "[MySet]"
strFormula = "'{[Product].[All Products].[Food].children}'"

' Establish connection with data source if necessary.
If Not pvtOne.PivotCache.IsConnected Then pvtOne.PivotCache.Make

' Add a calculated member titled "[MySet]"
pvtOne.CalculatedMembers.Add Name:=strAdd, _

Formula:=strFormula, Type:=xlCalculatedSet

' Add a set to the CubeField object.

Set

End Sub

cbfOne = pvtOne.CubeFields.AddSet(Name:="[MySet]", _
Caption:="My Set")

As it applies to the ChartObjects object.

This example creates a new embedded chart..

Set co = Sheets("Sheetl").ChartObjects.Add(50, 40, 200, 100)

co.Chart.ChartwWizard Source:=Worksheets('"Sheet1").Range("A1:B2"), _
Gallery:=x1Column, Format:=6, PlotBy:=x1lColumns, _
CategorylLabels:=1, SerieslLabels:=0, HaslLegend:=1

As it applies to the Charts object.

This example creates an empty chart sheet and inserts it before the last
worksheet.

ActiveWorkbook.Charts.Add Before:=Worksheets(Worksheets.Count)

As it applies to the CustomProperties object.

This example adds identifier information to the active worksheet and returns the
name and value to the user.

Sub CheckCustomProperties()

Dim wksSheetl As Worksheet

Set wksSheetl = Application.ActiveSheet

' Add metadata to worksheet.

wksSheetl.CustomProperties.Add _
Name:="Market", Value:='"Nasdaq"

' Display metadata.

With wksSheetl.CustomProperties.Item(1)
MsgBox .Name & vbTab & .Value

End With

End Sub

As it applies to the CustomViews object.

This example creates a new custom view named "Summary" in the active

workbook.

ActiveWorkbook.CustomViews.Add "Summary'", True, True

As it applies to the FormatConditions object.

This example adds a conditional format to cells E1:E10.

With Worksheets(1).Range("el:e10").FormatConditions _
.Add(x1Cellvalue, xlGreater, "=%a$1")
wWith .Borders
.LineStyle = x1Continuous
.Weight = x1Thin
.ColorIndex = 6

End With
With .Font
.Bold = True
.ColorIndex = 3
End With
End With

As it applies to the HPageBreaks object.

This example adds a horizontal page break above cell F25 and adds a vertical
page break to the left of this cell.

With Worksheets(1)
.HPageBreaks.Add .Range("F25")
.VPageBreaks.Add .Range("F25")

End wWith

As it applies to the Hyperlinks object.
This example adds a hyperlink to cell A5.

With Worksheets(1)

.Hyperlinks.Add Anchor:=.Range("a5"), _
Address:="http://example.microsoft.com", _
ScreenTip:="Microsoft Web Site", _
TextToDisplay:="Microsoft"

End With

This example adds an email hyperlink to cell A5.

With Worksheets(1)

.Hyperlinks.Add Anchor:=.Range("a5"), _
Address:="mailto:someone@microsoft.com?subject=hello", _
ScreenTip:="Write us today", _

TextToDisplay:="Support"
End wWith

As it applies to the ListColumns collection object.

The following example adds a new column to the default ListObject object in
the first worksheet of the workbook. Because no position is specified, a new
rightmost column is added.

Set myNewColumn = ActiveWorkbook.Worksheets(1l).ListObjects(1).ListCc

Note A name for the column is automatically generated. You can choose to
change the name after the column has been added.

As it applies to the ListObjects collection object.

The following example adds a new ListObject object based on data from a
Microsoft Windows SharePoint Services site to the default ListObjects
collection and places the list in cell A1 in the first worksheet of the workbook.

Note The following code example assumes that you will substitute a valid
server name and the list guid in the variables strServerName and strListGUID.
Additionally, the server name must be followed by "/_vti_bin" or the sample will
not work.

Set objListObject = ActiveWorkbook.Worksheets(1).ListObjects.Add(Sou
Source:= Array(strServerName, StrListGUID), TRUE, XlGuess, Des

Note If there is existing data at cell A1, the existing list data will be moved to
the right to accommodate the new list.

As it applies to the ListRows collection object.

The following example adds a new row to the default ListObject object in the

first worksheet of the workbook. Because no position is specified, the new row
is added to the bottom of the list.

Set myNewColumn = ActiveWorkbook.Worksheets(1l).ListObject(1).ListRow

As it applies to the Names object.

This example defines a new name for the range A1:D3 on Sheet1 in the active
workbook. Note Nothing is returned if Sheet1 does not exist.

Sub MakeRange()
ActiveWorkbook.Names.Add _
Name:="tempRange", _
RefersTo:="=Sheet1!A1:D3"

End Sub

As it applies to the OLEQObjects object.
This example creates a new Microsoft Word OLE object on Sheetl.

ActiveWorkbook.Worksheets("Sheet1").OLEObjects.Add _
ClassType:="Word.Document"

This example adds a command button to sheet one.

Worksheets(1).0LEObjects.Add ClassType:="Forms.CommandButton.1", _
Link:=False, DisplayAsIcon:=False, Left:=40, Top:=40, _
Width:=150, Height:=10

As it applies to the Parameters object.

This example changes the SQL statement for query table one. The clause "
(city=7?)" indicates that the query is a parameter query, and the value of city is set
to the constant "Oakland."

Set qt = Sheets("sheetl").QueryTables(1)

gt.Sgl = "SELECT * FROM authors WHERE (city=?)"

Set paraml = qt.Parameters.Add("City Parameter", _
x1lParamTypeVarChar)

paraml.SetParam xlConstant, "Oakland"
gt.Refresh

As it applies to the Phonetics object.

This example adds three phonetic text strings to the active cell. The example
then sets the character type to Hiragana, sets the font color to blue, and sets the
text to visible.

ActiveCell.FormulaR1C1l = "HREREGHEL LA
ActiveCell.Phonetics.Add Start:=1, Length:=3, Text:="RJHaTIR"
ActiveCell.Phonetics.Add Start:=4, Length:=3, Text:="i-7 "
ActiveCell.Phonetics.CharacterType = xlHiragana
ActiveCell.Phonetics.Font.Color = vbBlue
ActiveCell.Phonetics.Visible = True

As it applies to the PivotCaches object.

This example creates a new PivotTable cache based on an OLAP provider and
then it creates a new PivotTable report based on the cache, at cell A3 on the
active worksheet.

Dim cnnConn As ADODB.Connection
Dim rstRecordset As ADODB.Recordset
Dim cmdCommand As ADODB.Command

' Open the connection.
Set cnnConn = New ADODB.Connection
with cnnConn
.ConnectionString = _
"Provider=Microsoft.Jet.OLEDB.4.0"
.0Open "C:\perfdate\record.mdb"
End wWith

' Set the command text.

Set cmdCommand = New ADODB.Command

Set cmdCommand.ActiveConnection = cnnConn
With cmdCommand

.CommandText = "Select Speed, Pressure, Time From DynoRun"
.CommandType = adCmdText
.Execute

End With

' Open the recordset.

Set rstRecordset = New ADODB.Recordset

Set rstRecordset.ActiveConnection = cnnConn
rstRecordset.Open cmdCommand

' Create a PivotTable cache and report.

Set objPivotCache = ActiveWorkbook.PivotCaches.Add(_
SourceType:=x1External)

Set objPivotCache.Recordset = rstRecordset

wWith objPivotCache
.CreatePivotTable TableDestination:=Range("A3"), _

TableName:="Performance"
End With

wWith ActiveSheet.PivotTables("Performance")
.SmallGrid = False
wWith .PivotFields("Pressure'")
.Orientation = x1RowField
.Position = 1
End With
wWith .PivotFields("Speed")
.Orientation = x1ColumnField
.Position = 1
End With
With .PivotFields("Time")
.Orientation = xlDataField
.Position = 1
End With
End With

' Close the connections and clean up.
cnnConn.Close

Set cmdCommand = Nothing

Set rstRecordSet = Nothing

Set cnnConn = Nothing

As it applies to the PivotFormulas object.

This example creates a new PivotTable formula for the first PivotTable report on
worksheet one.

Worksheets(1).PivotTables(1).PivotFormulas _
.Add "Year['1998'] Apples = (Year['1997'] Apples) * 2"

As it applies to the PivotItems object.

This example creates a new PivotTable item in the first PivotTable report on
worksheet one.

Worksheets(1).PivotTables(1).PivotItems("Year").Add "1998"

As it applies to the PivotTables object.

This example creates a new PivotTable cache based on an OLAP provider, and
then it creates a new PivotTable report based on the cache, at cell A1 on the first
worksheet.

Dim cnnConn As ADODB.Connection
Dim rstRecordset As ADODB.Recordset
Dim cmdCommand As ADODB.Command

' Open the connection.
Set cnnConn = New ADODB.Connection
with cnnConn
.ConnectionString = _
"Provider=Microsoft.Jet.OLEDB.4.0"
.Open "C:\perfdate\record.mdb"
End wWith

' Set the command text.

Set cmdCommand = New ADODB.Command

Set cmdCommand.ActiveConnection = cnnConn
With cmdCommand

.CommandText = "Select Speed, Pressure, Time From DynoRun"
.CommandType = adCmdText
.Execute

End wWith

' Open the recordset.

Set rstRecordset = New ADODB.Recordset

Set rstRecordset.ActiveConnection = cnnConn
rstRecordset.Open cmdCommand

' Create PivotTable cache and report.

Set objPivotCache = ActiveWorkbook.PivotCaches.Add(_
SourceType:=x1External)

Set objPivotCache.Recordset = rstRecordset

ActiveSheet.PivotTables.Add _
PivotCache:=objPivotCache, _
TableDestination:=Range("A3"), _
TableName:="Performance"

wWith ActiveSheet.PivotTables("Performance")
.SmallGrid = False
wWith .PivotFields("Pressure'")
.Orientation = x1RowField
.Position = 1
End With
wWith .PivotFields("Speed")
.Orientation = x1ColumnField
.Position = 1
End With
With .PivotFields("Time")
.Orientation = xlDataField
.Position = 1
End With
End With

' Close the connections and clean up.
cnnConn.Close

Set cmdCommand = Nothing

Set rstRecordSet = Nothing

Set cnnConn = Nothing

As it applies to the PublishObjects object.

This example saves the range D5:D9 on the First Quarter worksheet in the active
workbook to a Web page called Stockreport. htm. You use the Spreadsheet

component to add interactivity to the Web page.

ActiveWorkbook.PublishObjects.Add(_
SourceType:=x1SourceRange, _

Filename:="\\Server2\Qi\Stockreport.htm", _

Sheet:="First Quarter", _
Source:="D5:D9", _
HTMLType:=x1HTMLCalc) .Publish

As it applies to the QueryTables object.

This example creates a query table based on an ADO recordset. The example
preserves the existing column sorting and filtering settings and layout

information for backward compatibility.

Dim cnnConnect As ADODB.Connection
Dim rstRecordset As ADODB.Recordset

Set cnnConnect = New ADODB.Connection
cnnConnect.Open "Provider=SQLOLEDB;" & _
"Data Source=srvdata;" & _
"User ID=testac;Password=4me2no;"

Set rstRecordset = New ADODB.Recordset

rstRecordset.Open _
Source:="Select Name, Quantity, Price From Products", _
ActiveConnection:=cnnConnect, _
CursorType:=adOpenDynamic, _
LockType:=adLockReadOnly, _
Options:=adCmdText

With ActiveSheet.QueryTables.Add(_
Connection:=rstRecordset, _
Destination:=Range("A1"))

.Name = "Contact List"
.FieldNames = True
.RowNumbers = False
.FillAdjacentFormulas = False
.PreserveFormatting = True
.RefreshOnFileOpen = False
.BackgroundQuery = True
.RefreshStyle = xlInsertDeleteCells
.SavePassword = True
.SaveData = True
.AdjustColumnwidth = True
.RefreshPeriod = 0
.PreserveColumnInfo = True
.Refresh BackgroundQuery:=False
End wWith

This example imports a fixed width text file into a new query table. The first
column in the text file is five characters wide and is imported as text. The second
column is four characters wide and is skipped. The remainder of the text file is
imported into the third column and has the General format applied to it.

Set shFirstQtr = Workbooks(1).Worksheets(1)

Set qtQtrResults = shFirstQtr.QueryTables.Add(_
Connection := "TEXT;C:\My Documents\19980331.txt",
Destination := shFirstQtr.Cells(1,1))

With qtQtrResults
.TextFileParsingType = xlFixedwWidth
.TextFileFixedColumnwWidths := Array(5,4)
.TextFileColumnDataTypes := _

Array(xlTextFormat, x1SkipColumn, xlGeneralFormat)

.Refresh
End wWith

This example creates a new query table on the active worksheet.

sqlstring = "select 96Sales.totals from 96Sales where profit < 5"
connstring = _
"ODBC; DSN=96SalesData;UID=Rep21; PWD=NUyHwYQI; Database=96Sales"
With ActiveSheet.QueryTables.Add(Connection:=connstring, _
Destination:=Range("B1"), Sql:=sqlstring)
.Refresh
End With

As it applies to the RecentFiles object.

This example adds Oscar.xls to the list of recently used files.

Application.RecentFiles.Add Name:="Oscar.x1ls"

As it applies to the Scenarios object.

This example adds a new scenario to Sheet1.

Worksheets("Sheet1").Scenarios.Add Name:="Best Case", _
ChangingCells:=Worksheets("Sheetl1l").Range("A1:A4"), _
Values:=Array(23, 5, 6, 21), _

Comment:="Most favorable outcome."

As it applies to the SeriesCollection object.

This example creates a new series in Chart1. The data source for the new series
is range B1:B10 on Sheet].

Charts("Chartl").SeriesCollection.Add _
Source:=ActiveWorkbook.Worksheets("Sheet1").Range("B1:B10")
This example creates a new series on the embedded chart on Sheet1.

Worksheets("Sheetl").ChartObjects(1).Activate

ActiveChart.SeriesCollection.Add _
Source:=Worksheets("Sheet1").Range("B1:B10")

As it applies to the Sheets and WorkSheets objects.

This example inserts a new worksheet before the last worksheet in the active
workbook.

ActiveWorkbook.Sheets.Add Before:=Worksheets(Worksheets.Count)

As it applies to the SmartTags object.

This example adds a smart tag titled MSFT to cell A1, then adds extra metadata
called Market with the value of Nasdaq to the smart tag and then returns the
value of the property to the user. This example assumes the host system is
connected to the Internet.

Sub UseProperties()

Dim strLink As String
Dim strType As String

' Define smart tag variables.

strLink "urn:schemas-microsoft-com:smarttags#stocktickerSymbol
strType "stockview"

Range("A1").Formula = "MSFT"

' Add a property for MSFT smart tag and define its value.

Range("A1").SmartTags.Add(strLink).Properties.Add _
Name:="Market", Value:='"Nasdaq"

' Notify the user of the smart tag's value.
MsgBox Range("A1").SmartTags.Add(strLink).Properties("Market").V

End Sub

As it applies to the Styles object.

This example defines a new style based on cell A1 on Sheet1.

With ActiveWorkbook.Styles.Add(Name:="theNewStyle")
.IncludeNumber = False
.IncludeFont = True
.IncludeAlignment = False
.IncludeBorder = False
.IncludePatterns = False
.IncludeProtection = False

.Font.Name = "Arial"
.Font.Size = 18
End With

As it applies to the Trendlines object.
This example creates a new linear trendline in Chartl1.

ActiveWorkbook.Charts("Chartl").SeriesCollection(1).Trendlines.Add

As it applies to the Validation object.

This example adds data validation to cell E5.

wWith Range("e5").Vvalidation
.Add Type:=xlvalidateWholeNumber, _
AlertStyle:= x1lValidAlertStop, _
Operator:=x1Between, Formulal:="5", Formula2:="10"
.InputTitle = "Integers"

.ErrorTitle = "Integers"

.InputMessage = "Enter an integer from five to ten"

.ErrorMessage = "You must enter a number from five to ten"
End With

As it applies to the VPageBreaks object.

This example adds a horizontal page break above cell F25 and adds a vertical
page break to the left of this cell.

With Worksheets(1)
.HPageBreaks.Add .Range("F25")
.VPageBreaks.Add .Range("F25")

End wWith

As it applies to the Watches object.

This example creates a summation formula in cell A3 and then adds this cell to
the watch facility.

Sub Addwatch()

wWith Application

.Range("A1").Formula = 1
.Range("A2").Formula = 2
.Range("A3").Formula = "=Sum(A1:A2)"

.Range("A3").Select
.Watches.Add Source:=ActiveCell
End With

End Sub

As it applies to the WorkBooks object.

This example creates a new workbook.

Workbooks .Add

Show All

AddCallout Method

Creates a borderless line callout. Returns a Shape object that represents the new
callout.

expression.AddCallout(Type, Left, Top, Width, Height)

expression Required. An expression that returns one of the objects in the
Applies to List.

Type Required MsoCalloutType. The type of callout line.

MsoCalloutType can be one of these MsoCalloutType constants.

msoCalloutOne. A single-segment callout line that can be either horizontal or
vertical.

msoCalloutTwo. A single-segment callout line that rotates freely.
msoCalloutMixed.

msoCalloutThree. A two-segment line.
msoCalloutFour. A three-segment line.

Left Required Single. The position (in points) of the upper-left corner of the
callout's bounding box relative to the upper-left corner of the document.

Top Required Single. The position (in points) of the upper-left corner of the
callout's bounding box relative to the upper-left corner of the document.

Width Required Single. The width of the callout's bounding box, in points.

Height Required Single. The height of the callout's bounding box, in points.

Remarks

You can insert a greater variety of callouts by using the AddShape method.

Example

This example adds a borderless callout with a freely rotating one-segment
callout line to mybocument and then sets the callout angle to 30 degrees.

Set myDocument = Worksheets(1)

myDocument .Shapes.AddCallout(Type:=msoCalloutTwo, _
Left:=50, Top:=50, Width:=200, Height:=100) _
.Callout.Angle = msoCalloutAngle30

AddChartAutoFormat Method

Adds a custom chart autoformat to the list of available chart autoformats.
expression.AddChartAutoFormat(Chart, Name, Description)
expression Required. An expression that returns an Application object.

Chart Required Chart. A chart that contains the format that will be applied
when the new chart autoformat is applied.

Name Required String. The name of the autoformat.

Description Optional String. A description of the custom autoformat.

Example

This example adds a new autoformat based on Chart1.

Application.AddChartAutoFormat _
Chart:=Charts("Chartl1"), Name:="Presentation Chart"

AddComment Method

Adds a comment to the range.
expression.AddComment(Text)
expression Required. An expression that returns a Range object.

Text Optional Variant. The comment text.

Example

This example adds a comment to cell E5 on worksheet one.

Worksheets(1).Range("E5").AddComment "Current Sales"

Show All

AddConnector Method

Creates a connector. Returns a Shape object that represents the new connector.
When a connector is added, it's not connected to anything. Use the
BeginConnect and EndConnect methods to attach the beginning and end of a
connector to other shapes in the document.

expression.AddConnector(Type, BeginX, BeginY, EndX, EndY)

expression Required. An expression that returns one of the objects in the
Applies To list.

Type Required MsoConnectorType. The connector type to add.

MsoConnectorType can be one of these MsoConnectorType constants.
msoConnectorElbow

msoConnectorTypeMixed

msoConnectorCurve

msoConnectorStraight

BeginX Required Single. The horizontal position (in points) of the connector's
starting point relative to the upper-left corner of the document.

BeginY Required Single. The vertical position (in points) of the connector's
starting point relative to the upper-left corner of the document.

EndX Required Single. The horizontal position (in points) of the connector's
end point relative to the upper-left corner of the document.

EndY Required Single. The veritcal position (in points) of the connector's end
point relative to the upper-left corner of the document.

Remarks

When you attach a connector to a shape, the size and position of the connector
are automatically adjusted, if necessary. Therefore, if you’re going to attach a
connector to other shapes, the position and dimensions you specify when adding
the connector are irrelevant.

Example

The following example adds a curved connector to a new canvas in a new
worksheet.

Sub AddCanvasConnector ()

Dim wksNew As Worksheet
Dim shpCanvas As Shape

Set wksNew = Worksheets.Add

'Add drawing canvas to new worksheet
Set shpCanvas = wksNew.Shapes.AddCanvas(_
Left:=150, Top:=150, Width:=200, Height:=300)

'"Add connector to the drawing canvas

shpCanvas.CanvasItems.AddConnector _
Type:=msoConnectorStraight, BeginX:=150, _
BeginY:=150, EndX:=200, EndY:=200

End Sub

Show All

AddCurve Method

As it applies to the Shapes object, returns a Shape object that represents a
Bézier curve in a worksheet. As it applies to the CanvasShapes object, returns a
Shape object that represents a Bézier curve in a drawing canvas.

expression.AddCurve(SafeArrayOfPoints)

expression Required. An expression that returns one of the objects in the
Applies To list.

SafeArrayOfPoints Required Variant. An array of coordinate pairs that
specifies the vertices and control points of the curve. The first point you specify
is the starting vertex, and the next two points are control points for the first
Bézier segment. Then, for each additional segment of the curve, you specify a
vertex and two control points. The last point you specify is the ending vertex for
the curve. Note that you must always specify 3n + 1 points, where n is the
number of segments in the curve.

Example

The following example adds a two-segment Bézier curve to myDocument.

Dim pts(1 To 7, 1 To 2) As Single

pts(1, 1) =0

pts(1, 2) =0

pts(2, 1) = 72
pts(2, 2) = 72
pts(3, 1) = 100
pts(3, 2) = 40
pts(4, 1) = 20
pts(4, 2) = 50
pts(5, 1) = 90
pts(5, 2) = 120
pts(6, 1) = 60
pts(6, 2) = 30
pts(7, 1) = 150
pts(7, 2) = 90

Set myDocument = Worksheets(1)
myDocument .Shapes.AddCurve SafeArrayOfPoints:=pts

AddCustomList Method

Adds a custom list for custom autofill and/or custom sort.
expression.AddCustomList(ListArray, ByRow)
expression Required. An expression that returns an Application object.

ListArray Required Variant. Specifies the source data, as either an array of
strings or a Range object.

ByRow Optional Variant. Only used if ListArray is a Range object. True to
create a custom list from each row in the range. False to create a custom list
from each column in the range. If this argument is omitted and there are more
rows than columns (or an equal number of rows and columns) in the range,
Microsoft Excel creates a custom list from each column in the range. If this
argument is omitted and there are more columns than rows in the range,
Microsoft Excel creates a custom list from each row in the range.

Remarks

If the list you're trying to add already exists, this method does nothing.

Example

This example adds an array of strings as a custom list.

Application.AddCustomList Array('"cogs", "sprockets", _

"widgets", '"gizmos")

Show All

AddDataField Method

Adds a data field to a PivotTable report. Returns a PivotField object that
represents the new data field.

expression.AddDataField(Field, Caption, Function)

expression Required. An expression that returns one of the objects in the
Applies To list.

Field Required Object. The unique field on the server. If the source data is

Online Analytical Processing (OLAP), the unique field is a cube field. If the

source data is non-OLAP (non-OLAP source data), the unique field is a
PivotTable field.

Caption Optional Variant. The label used in the PivotTable report to identify
this data field.

Function Optional Variant. The function performed in the added data field.

Example

This example adds a data field titled "Total Score" to a pivot table called
"PivotTablel".

Note : This example assumes a table exists in which one of the columns
contains a column titled "Score".

Sub AddMoreFields()
With ActiveSheet.PivotTables("PivotTablel")
.AddDataField ActiveSheet.PivotTables(_
"PivotTablel").PivotFields("Score"), "Total Score"
End wWith

End Sub

Show All

AddDiagram Method

Creates a diagram. Returns a Shape object that represents the new diagram.
expression.AddDiagram(Type, Left, Top, Width, Height)

expression Required. An expression that returns one of the objects in the
Applies To list.

Type Required MsoDiagramType. The type of diagram.

MsoDiagramType can be one of these MsoDiagramType constants.
msoDiagramCycle A process diagram with a continuous cycle diagram type.
msoDiagramMixed A mixed diagram type.

msoDiagramOrgChart A hierarchical relationship diagram type.
msoDiagramPyramid A foundation based relationships diagram type.
msoDiagramRadial A diagram type showing relationships of a core element.
msoDiagramTarget A diagram type showing steps toward a goal.
msoDiagramVenn A diagram type showing areas of overlap between elements.

Left Required Single. The position (in points) of the upper-left corner of the
diagram relative to the upper-left corner of the worksheet.

Top Required Single. The position (in points) of the upper-left top of the
diagram relative to the upper-left corner of the worksheet.

Width Required Single. The width of the diagram, in points.

Height Required Single. The height of the diagram, in points.

Example

This example adds a pyramid diagram to the active sheet.

Sub CreatePyramidDiagram()

Dim dgnNode As DiagramNode
Dim shpbiagram As Shape
Dim intCount As Integer

'"Add pyramid diagram to current document

Set shpDiagram = ActiveSheet.Shapes.AddDiagram _
(Type:=msoDiagramPyramid, Left:=10, _
Top:=15, Width:=400, Height:=475)

'"Add first diagram node child to pyramid diagram

Set dgnNode = shpDiagram.DiagramNode.Children.AddNode

'"Add three more diagram node children to the pyramid diagram
For intCount = 1 To 3

dgnNode.AddNode
Next intCount

End Sub

Show All

AddFields Method

Adds row, column, and page fields to a PivotTable report or PivotChart report.

expression.AddFields(RowFields, ColumnFields, PageFields, AddToTable,
AppendField)

expression Required. An expression that returns a PivotTable object.

RowFields Optional Variant. Specifies a field name (or an array of field
names) to be added as rows, or to be added to the category axis.

ColumnFields Optional Variant. Specifies a field name (or an array of field
names) to be added as columns, or to be added to the series axis.

PageFields Optional Variant. Specifies a field name (or an array of field
names) to be added as pages, or to be added to the page area.

AddToTable Optional Variant. Applies only to PivotTable reports. True to add
the specified fields to the report (none of the existing fields are replaced). False
to replace existing fields with the new fields. The default value is False.

AppendField Optional Boolean. Applies only to PivotChart reports. True to
add the specified fields to the report (none of the existing fields are replaced).
False to replace existing fields with the new fields. The default value is False.

Remarks

You must specify one of the field arguments.

Field names specify the unique name returned by the SourceName property of
the PivotField object.

This method is not available for OLAP data sources.

Example

This example replaces the existing column fields in the first PivotTable report on
Sheet1 with the Status and Closed_By fields.

Worksheets("Sheet1").PivotTables(1).AddFields _
ColumnFields:=Array("Status", "Closed_By")

Show All

AddFormControl Method

Creates a Microsoft Excel control. Returns a Shape object that represents the
new control.

expression.AddFormControl(Type, Left, Top, Width, Height)

expression Required. An expression that returns one of the objects in the
Applies To list.

Type Required XIFormControl. The Microsoft Excel control type. You cannot
create an edit box on a worksheet.

XIFormControl can be one of these XIFormControl constants.
xIButtonControl
xICheckBox
xIDropDown
xIEditBox
xIGroupBox
xlLabel
xIListBox
xlOptionButton
xIScrollBar
xISpinner

Left Required Long. The initial coordinates of the new object (in points)
relative to the upper-left corner of cell A1 on a worksheet or to the upper-left
corner of a chart.

Top Required Long. The initial coordinates of the new object (in points)
relative to the upper-left corner of cell A1 on a worksheet or to the upper-left
corner of a chart.

Width Required Long. The initial size of the new object, in points.

Height Required Long. The initial size of the new object, in points.

Remarks

Use the AddOLEObject method or the Add method of the OLEObjects
collection to create an ActiveX control.

Example

This example adds a list box to worksheet one and sets the fill range for the list
box.

With Worksheets(1)
Set 1lb = .Shapes.AddFormControl(xlListBox, 100, 10, 100, 100)
1b.ControlFormat.ListFillRange = "A1:A10"

End With

AddItem Method

Adds an item to a list box or a combo box.

expression.AddItem(Text, Index)

expression Required. An expression that returns a ControlFormat object.
Text Required String. The text to be added

Index Optional Variant. The position of the new entry. If the list has fewer
entries than the specified index, blank items from the end of the list are added to
the specified position. If this argument is omitted, the item is appended to the
existing list.

Remarks

Using this method clears any range specified by the ListFillRange property.

Example

This example creates a list box and fills it with integers from 1 to 10.

With Worksheets(1)
Set 1lb = .Shapes.AddFormControl(xlListBox, 100, 10, 100, 100)
For x =1 To 10
1b.ControlFormat.AddItem x
Next
End wWith

Show All

AddLabel Method

Creates a label. Returns a Shape object that represents the new label.
expression.AddLabel(Orientation, Left, Top, Width, Height)

expression Required. An expression that returns one of the objects in the
Applies To list.

Orientation Required MsoTextOrientation. The text orientation within the
label.

MsoTextOrientation can be one of these MsoTextOrientation constants.
msoTextOrientationDownward

msoTextOrientationHorizontal
msoTextOrientationHorizontalRotatedFarEast
msoTextOrientationMixed

msoTextOrientationUpward

msoTextOrientationVertical

msoTextOrientationVerticalFarEast

Some of these constants may not be available to you, depending on the
language support (U.S. English, for example) that you’ve selected or installed.

Left Required Single. The position (in points) of the upper-left corner of the
label relative to the upper-left corner of the document.

Top Required Single. The position (in points) of the upper-left corner of the
label relative to the top corner of the document.

Width Required Single. The width of the label, in points.

Height Required Single. The height of the label, in points.

Example

This example adds a vertical label that contains the text "Test Label" to
myDocument.

Set myDocument = Worksheets(1)

myDocument .Shapes.AddLabel(msoTextOrientationVertical, _
100, 100, 60, 150) _
.TextFrame.Characters.Text = "Test Label"

AddLine Method

As it applies to the Shapes object, returns a Shape object that represents the new
line in a worksheet. As it applies to the CanvasShapes object, returns a Shape
object that represents the new line in a drawing canvas.

expression.AddLine(BeginX, Beginy, EndX, EndY)
expression Required. An expression that returns a Shapes object.

BeginX , BeginY Required Single. The position (in points) of the line's starting
point relative to the upper-left corner of the document.

EndX , EndY Required Single. The position (in points) of the line's end point
relative to the upper-left corner of the document.

Example

This example adds a blue dashed line to myDocument.

Set myDocument = Worksheets(1)

wWith myDocument.Shapes.AddLine(10, 10, 250, 250).Line
.DashStyle = msoLineDashDotDot
.ForeColor.RGB = RGB(50, 0, 128)

End With

AddMemberPropertyField Method

Adds a member property field to the display for the cube field.
expression.AddMemberPropertyField(Property, PropertyOrder)

expression Required. An expression that returns one of the objects in the
Applies To list.

Property Required String. The unique name of the member property. For
balanced hierarchies, a unique name can be created by appending the "quoted"
member property name to the unique name of the level the member property is
associated with. For unbalanced hierarchies, a unique name can be created by
appending the "quoted" member property name to the unique name of the
hierarchy.

PropertyOrder Optional Variant. Sets the PropertyOrder property value for a
CubeField object. The actual position in the collection will be immediately
before the PivotTable field that currently has the same PropertyOrder value
that is given in the argument. If no field has the given property order value, the
range of acceptable values is 1 to the number of member properties already
showing for the hierarchy plus one. This argument is one-based. If omitted, the
property goes to the end of the list.

Remarks

The property field specified will not be viewable if the PivotTable view has no
fields.

To delete member properties, use the Delete method to delete the PivotField
object from the PivotFields collection.

Example

In this example, Microsoft Excel adds a member property field titled
"Description” to the PivotTable report view. This example assumes that a
PivotTable exists on the active worksheet and that "Country", "Area" and
"Description” are items in the report.

Sub UseAddMemberPropertyField()
Dim pvtTable As PivotTable
Set pvtTable = ActiveSheet.PivotTables(1)

wWith pvtTable
.ManualUpdate = True
.CubeFields("[Country]").LayoutForm = xlOutline
.CubeFields("[Country]").AddMemberPropertyField _
Property:="[Country].[Area].[Description]"
.ManualUpdate = False
End With

End Sub

Show All

AddNode Method

AddNode method as it applies to the DiagramNodeChildren object.

Creates a diagram node. Returns a DiagramNode object that represents the new
node.

expression.AddNode(Index, nodeType)

expression Required. An expression that returns a DiagramNodeChildren
object

Index Optional Variant. The position of the node.

nodeType Optional MsoDiagramNodeType. The type of node.

MsoDiagramNodeType can be one of these MsoDiagramNodeType constants.
msoDiagramAssistant
msoDiagramNode default

AddNode method as it applies to the DiagramNode object.

Creates a diagram node. Returns a DiagramNode object that represents the new
node. DiagramNode object.

expression.AddNode(pos, nodeType)
expression Required. An expression that returns a DiagramNode object.

pos Optional MsoRelativeNodePosition. Where the node will be added,
relative to another node.

MsoRelativeNodePosition can be one of these MsoRelativeNodePosition
constants.

msoAfterLastSibling
msoAfterNode default

msoBeforeFirstSibling
msoBeforeNode

nodeType Optional MsoDiagramNodeType. The type of node.

MsoDiagramNodeType can be one of these MsoDiagramNodeType constants.
msoDiagramAssistant
msoDiagramNode default

Example

This example adds a node to a diagram node on the active sheet.

Sub DiagramNodeOBJ()

Dim nodDiagNode As DiagramNode
Dim shDiagram As Shape

Set shDiagram = ActiveSheet.Shapes.AddDiagram _
(Type:=msoDiagramOrgChart, _

Left:=10, _
Top:=15, _
width:=400, _

Height :=475)
Set nodDiagNode = shDiagram.DiagramNode

'"Add a root node to the diagram.
nodDiagNode.Children.AddNode

End Sub

Show All

AddNodes Method

expression.AddNodes(SegmentType, EditingType, X1, Y1, X2, Y2, X3, Y3)

expression Required. An expression that returns one of the objects in the
Applies To list.

SegmentType Required MsoSegmentType. The type of segment to be added.

MsoSegmentType can be one of these MsoSegmentType constants.
msoSegmentLine
msoSegmentCurve

EditingType Required MsoEditingType. The editing property of the vertex.

MsoEditingType can be one of these MsoEditingType constants.
msoEditingAuto

msoEditingCorner

Cannot be msoEditingSmooth or msoEditingSymmetric

If SegmentType is msoSegmentLine, EditingType must be msoEditingAuto.
X1 Required Single.

If the EditingType of the new segment is msoEditingAuto, this argument
specifies the horizontal distance (in points) from the upper-left corner of the
document to the end point of the new segment.

If the EditingType of the new node is msoEditingCorner, this argument
specifies the horizontal distance (in points) from the upper-left corner of the
document to the first control point for the new segment.

Y1 Required Single.

If the EditingType of the new segment is msoEditingAuto, this argument
specifies the horizontal distance (in points) from the upper-left corner of the
document to the end point of the new segment.

If the EditingType of the new node is msoEditingCorner, this argument
specifies the horizontal distance (in points) from the upper-left corner of the
document to the first control point for the new segment.

X2 Optional Variant.

If the EditingType of the new segment is msoEditingCorner, this argument
specifies the horizontal distance (in points) from the upper-left corner of the
document to the second control point for the new segment.

If the EditingType of the new segment is msoEditingAuto, don't specify a
value for this argument.

Y2 Optional Variant.

If the EditingType of the new segment is msoEditingCorner, this argument
specifies the horizontal distance (in points) from the upper-left corner of the
document to the second control point for the new segment.

If the EditingType of the new segment is msoEditingAuto, don't specify a
value for this argument.

X3 Optional Variant.

If the EditingType of the new segment is msoEditingCorner, this argument
specifies the horizontal distance (in points) from the upper-left corner of the
document to the end point of the new segment.

If the EditingType of the new segment is msoEditingAuto, don't specify a

value for this argument.

Y3 Optional Variant.

If the EditingType of the new segment is msoEditingCorner, this argument
specifies the vertical distance (in points) from the upper-left corner of the
document to the end point of the new segment.

If the EditingType of the new segment is msoEditingAuto, don't specify a
value for this argument.

Example

This example adds a freeform with four segments to mybocument.

Set myDocument = Worksheets(1)

wWith myDocument.Shapes.BuildFreeform(msoEditingCorner, 360, 200)
.AddNodes msoSegmentCurve, msoEditingCorner, _

380, 230, 400, 250, 450, 300

.AddNodes msoSegmentCurve, msoEditingAuto, 480, 200
.AddNodes msoSegmentLine, msoEditingAuto, 480, 400
.AddNodes msoSegmentLine, msoEditingAuto, 360, 200
.ConvertToShape

End with

Show All

AddPageltem Method

Adds an additional item to a multiple item page field.
expression.AddPageltem(Item, ClearList)

expression Required. An expression that returns one of the objects in the
Applies To list.

Item Required String. Source name of a PivotItem object, corresponding to

the specific Online Analytical Processing (OLAP) member unique name.

ClearList Optional Variant. If False (default), adds a page item to the existing
list. If True, deletes all current items and adds Item.

Remarks

To avoid run-time errors, the data source must be an OLAP source, the field
chosen must currently be in the page position, and the

EnableMultiplePageltems property must be set to True.

Example

In this example, Microsoft Excel adds a page item with a source name titled "
[Product].[All Products].[Food].[Eggs]". This example assumes an OLAP
PivotTable exists on the active worksheet.

Sub UseAddPageItem()
' The source is an OLAP database and you can manually reorder it
ActiveSheet.PivotTables(1).CubeFields("[Product]"). _
EnableMultiplePageItems = True
' Add the page item titled "[Product].[All Products].[Food].[Egg
ActiveSheet.PivotTables(1).PivotFields("[Product]").AddPageItem
"[Product].[All Products].[Food].[Eggs]")

End Sub

Show All

AddPicture Method

Creates a picture from an existing file. Returns a Shape object that represents the
new picture.

expression.AddPicture(FileName, LinkToFile, SaveWithDocument, Left, Top,
Width, Height)

expression Required. An expression that returns one of the objects in the
Applies To list.

FileName Required String. The file from which the OLE object is to be
created.

LinkToFile Required MsoTriState. The file to link to.

MsoTriState can be one of these MsoTriState constants.
msoCTrue

msoFalse To make the picture an independent copy of the file.
msoTriStateMixed

msoTriStateToggle

msoTrue To link the picture to the file from which it was created.

SaveWithDocument Required MsoTriState. To save the picture with the
document.

MsoTriState can be one of these MsoTriState constants.
msoCTrue

msoFalse To store only the link information in the document.
msoTriStateMixed

msoTriStateToggle

msoTrue To save the linked picture with the document into which it’s inserted.
This argument must be msoTrue if LinkToFile is msoFalse.

Left Required Single. The position (in points) of the upper-left corner of the

picture relative to the upper-left corner of the document.

Top Required Single. The position (in points) of the upper-left corner of the
picture relative to the top of the document.

Width Required Single. The width of the picture, in points.

Height Required Single. The height of the picture, in points.

Example

This example adds a picture created from the file Music.bmp to mybocument. The
inserted picture is linked to the file from which it was created and is saved with
myDocument.

Set myDocument = Worksheets(1)

myDocument .Shapes.AddPicture _
"c:\microsoft office\clipart\music.bmp", _
True, True, 100, 100, 70, 70

Show All

AddPolyline Method

Creates an open polyline or a closed polygon drawing. Returns a Shape object
that represents the new polyline or polygon.

expression.AddPolyline(SafeArrayOfPoints)
expression Required. An expression that returns a Shapes object.

SafeArrayOfPoints Required Variant. An array of coordinate pairs that
specifies the polyline drawing's vertices.

Remarks

To form a closed polygon, assign the same coordinates to the first and last
vertices in the polyline drawing.

Example

This example adds a triangle to mybocument. Because the first and last points
have the same coordinates, the polygon is closed and filled. The color of the
triangle's interior will be the same as the default shape's fill color.

Dim triArray(1

triArray(1,
triArray(1,
triArray(2,
triArray(2,
triArray(3,
triArray(3,
triArray(4,
triArray(4,

1)
2)
1)
2)
1)
2)
1)
2)

Set myDocument =
myDocument .Shapes.AddPolyline triArray

To 4, 1 To 2) As Single

25

100

100

150

150

50

25 ' Last point has same coordinates as first
100

Worksheets(1)

AddReplacement Method

Adds an entry to the array of AutoCorrect replacements.
expression.AddReplacement(What, Replacement)
expression Required. An expression that returns an AutoCorrect object.

What Required String. The text to be replaced. If this string already exists in
the array of AutoCorrect replacements, the existing substitute text is replaced by
the new text.

Replacement Required String. The replacement text.

Example

This example substitutes the word "Temp." for the word "Temperature" in the
array of AutoCorrect replacements.

With Application.AutoCorrect
.AddReplacement "Temperature", "Temp."
End With

Show All

AddSet Method

Adds a new CubeField object to the CubeFields collection. The CubeField

object corresponds to a set defined on the Online Analytical Processing (OLAP)
provider for the cube.

expression.AddSet(Name, Caption)

expression Required. An expression that returns one of the objects in the
Applies To list.

Name Required String. A valid name in the SETS schema rowset.

Caption Required String. A string representing the field that will be displayed
in the PivotTable view.

Remarks

If a set with the name given in the argument Name does not exist, the AddSet
method will return a run-time error.

Example

In this example, Microsoft Excel adds a set titled "My Set" to the CubeField
object. This example assumes an OLAP PivotTable report exists on the active
worksheet. Also, this example assumes a field titled "Product" exists.

Sub UseAddSet()

Dim pvtOne As PivotTable
Dim strAdd As String

Dim strFormula As String
Dim cbfOne As CubeField

Set pvtOne = Sheetl.PivotTables(1)

strAdd = "[MySet]"
strFormula = "'{[Product].[All Products].[Food].children}'"

' Establish connection with data source if necessary.
If Not pvtOne.PivotCache.IsConnected Then pvtOne.PivotCache.Make

' Add a calculated member titled "[MySet]"
pvtOne.CalculatedMembers.Add Name:=strAdd, _
Formula:=strFormula, Type:=xlCalculatedSet

' Add a set to the CubeField object.
Set cbfOne = pvtOne.CubeFields.AddSet(Name:="[MySet]", _
Caption:="My Set")

End Sub

Show All

AddShape Method

As it applies to the Shapes object, returns a Shape object that represents the new
AutoShape in a worksheet. As it applies to the CanvasShapes object, returns a
Shape object that represents the new AutoShape in a drawing canvas.

expression.AddShape(Type, Left, Top, Width, Height)
expression Required. An expression that returns a Shapes object.

Type Required MsoAutoShapeType. Specifies the type of AutoShape to
create.

MsoAutoShapeType can be one of these MsoAutoShapeType constants.
msoShapel6pointStar
msoShape24pointStar
msoShape32pointStar
msoShapedpointStar
msoShape5pointStar
msoShape8pointStar
msoShapeActionButtonBackorPrevious
msoShapeActionButtonBeginning
msoShapeActionButtonCustom
msoShapeActionButtonDocument
msoShapeActionButtonEnd
msoShapeActionButtonForwardorNext
msoShapeActionButtonHelp
msoShapeActionButtonHome
msoShapeActionButtonInformation
msoShapeActionButtonMovie
msoShapeActionButtonReturn
msoShapeActionButtonSound
msoShapeArc

msoShapeBalloon
msoShapeBentArrow
msoShapeBentUpArrow
msoShapeBevel
msoShapeBlockArc
msoShapeCan
msoShapeChevron
msoShapeCircularArrow
msoShapeCloudCallout
msoShapeCross
msoShapeCube
msoShapeCurvedDownArrow
msoShapeCurvedDownRibbon
msoShapeCurvedLeftArrow
msoShapeCurvedRightArrow
msoShapeCurvedUpArrow
msoShapeCurvedUpRibbon
msoShapeDiamond
msoShapeDonut
msoShapeDoubleBrace
msoShapeDoubleBracket
msoShapeDoubleWave
msoShapeDownArrow
msoShapeDownArrowCallout
msoShapeDownRibbon
msoShapeExplosionl
msoShapeExplosion2
msoShapeFlowchartAlternateProcess
msoShapeFlowchartCard
msoShapeFlowchartCollate
msoShapeFlowchartConnector
msoShapeFlowchartData
msoShapeFlowchartDecision

msoShapeFlowchartDelay
msoShapeFlowchartDirectAccessStorage
msoShapeFlowchartDisplay
msoShapeFlowchartDocument
msoShapeFlowchartExtract
msoShapeFlowchartInternalStorage
msoShapeFlowchartMagneticDisk
msoShapeFlowchartManuallnput
msoShapeFlowchartManualOperation
msoShapeFlowchartMerge
msoShapeFlowchartMultidocument
msoShapeFlowchartOffpageConnector
msoShapeFlowchartOr
msoShapeFlowchartPredefinedProcess
msoShapeFlowchartPreparation
msoShapeFlowchartProcess
msoShapeFlowchartPunchedTape
msoShapeFlowchartSequential AccessStorage
msoShapeFlowchartSort
msoShapeFlowchartStoredData
msoShapeFlowchartSummingJunction
msoShapeFlowchartTerminator
msoShapeFoldedCorner
msoShapeHeart

msoShapeHexagon
msoShapeHorizontalScroll
msoShapelsoscelesTriangle
msoShapeLeftArrow
msoShapeLeftArrowCallout
msoShapeLeftBrace

msoShapeL eftBracket
msoShapeL.eftRightArrow
msoShapeL.eftRightArrowCallout

msoShapeLeftRightUpArrow
msoShapeLeftUpArrow
msoShapeLightningBolt
msoShapeLineCallout1
msoShapeLineCallout1AccentBar
msoShapeLineCallout1BorderandAccentBar
msoShapeLineCallout1NoBorder
msoShapeLineCallout2
msoShapeLineCallout2AccentBar
msoShapeLineCallout2BorderandAccentBar
msoShapeLineCallout2NoBorder
msoShapeLineCallout3
msoShapeLineCallout3AccentBar
msoShapeLineCallout3BorderandAccentBar
msoShapeLineCallout3NoBorder
msoShapeLineCallout4
msoShapeLineCallout4AccentBar
msoShapeLineCallout4BorderandAccentBar
msoShapeLineCallout4NoBorder
msoShapeMixed

msoShapeMoon

msoShapeNoSymbol
msoShapeNotchedRightArrow
msoShapeNotPrimitive

msoShapeOctagon

msoShapeOval

msoShapeOvalCallout
msoShapeParallelogram

msoShapePentagon

msoShapePlaque

msoShapeQuadArrow
msoShapeQuadArrowCallout
msoShapeRectangle

msoShapeRectangularCallout
msoShapeRegularPentagon
msoShapeRightArrow
msoShapeRightArrowCallout
msoShapeRightBrace
msoShapeRightBracket
msoShapeRightTriangle
msoShapeRoundedRectangle
msoShapeRoundedRectangularCallout
msoShapeSmileyFace
msoShapeStripedRightArrow
msoShapeSun
msoShapeTrapezoid
msoShapeUpArrow
msoShapeUpArrowCallout
msoShapeUpDownArrow
msoShapeUpDownArrowCallout
msoShapeUpRibbon
msoShapeUTurnArrow
msoShapeVerticalScroll
msoShapeWave

Left , Top Required Single. The position (in points) of the upper-left corner of
the AutoShape's bounding box relative to the upper-left corner of the document.

Width , Height Required Single. The width and height of the AutoShape's
bounding box, in points.

Remarks

To change the type of an AutoShape that you’ve added, set the AutoShapeType
property.

Example

This example adds a rectangle to myDocument.

Set myDocument = Worksheets(1)
myDocument .Shapes.AddShape msoShapeRectangle, 50, 50, 100, 200

Show All

AddTextbox Method

Creates a text box. Returns a Shape object that represents the new text box.
expression.AddTextbox(Orientation, Left, Top, Width, Height)

expression Required. An expression that returns one of the objects in the
Applies To list.

Orientation Required MsoTextOrientation. The orientation of the textbox.

MsoTextOrientation can be one of these MsoTextOrientation constants.
msoTextOrientationDownward

msoTextOrientationHorizontal
msoTextOrientationHorizontalRotatedFarEast
msoTextOrientationMixed

msoTextOrientationUpward

msoTextOrientationVertical

msoTextOrientationVerticalFarEast

Some of these constants may not be available to you, depending on the
language support (U.S. English, for example) that you’ve selected or installed.

Left Required Single. The position (in points) of the upper-left corner of the
text box relative to the upper-left corner of the document.

Top Required Single. The position (in points) of the upper-left corner of the text
box relative to the top of the document.

Width Required Single. The width of the text box, in points.

Height Required Single. The height of the text box, in points.

Example

This example adds a text box that contains the text "Test Box" to myDocument.

Set myDocument = Worksheets(1)

myDocument .Shapes.AddTextbox(msoTextOrientationHorizontal, _
100, 100, 200, 50) _
.TextFrame.Characters.Text = "Test Box"

Show All

AddTextEffect Method

Creates a WordArt object. Returns a Shape object that represents the new
WordArt object.

expression.AddTextEffect(PresetTextEffect, Text, FontName, FontSize,
FontBold, Fontltalic, Left, Top)

expression Required. An expression that returns one of the objects in the
Applies To list.

PresetTextEffect Required MsoPresetTextEffect. The preset text effect.

MsoPresetTextEffect can be one of these MsoPresetTextEffect constants.
msoTextEffectl
msoTextEffect2
msoTextEffect3
msoTextEffect4
msoTextEffect5
msoTextEffect6
msoTextEffect7
msoTextEffect8
msoTextEffect9
msoTextEffect10
msoTextEffect11
mso TextEffect12
msoTextEffect13
msoTextEffect14
msoTextEffect15
msoTextEffect16
msoTextEffect17
msoTextEffect18
msoTextEffect19

msoTextEffect20
msoTextEffect21
mso TextEffect22
msoTextEffect23
mso TextEffect24
msoTextEffect25
mso TextEffect26
msoTextEffect27
mso TextEffect28
msoTextEffect29
msoTextEffect30
mso TextEffectMixed

Text Required String. The text in the WordArt.
FontName Required String. The name of the font used in the WordArt.
FontSize Required Single. The size (in points) of the font used in the WordArt.

FontBold Required MsoTriState. The font used in the WordArt to bold.

MsoTriState can be one of these MsoTriState constants.
msoCTrue

msoFalse

msoTriStateMixed

msoTriStateToggle

msoTrue

Fontltalic Required MsoTriState. The font used in the WordArt to italic.

MsoTriState can be one of these MsoTriState constants.
msoCTrue

msoFalse

msoTriStateMixed

msoTriStateToggle

msoTrue

Left Required Single. The position (in points) of the upper-left corner of the
WordArt's bounding box relative to the upper-left corner of the document.

Top Required Single. The position (in points) of the upper-left corner of the
WordArt's bounding box relative to the top of the document.

Remarks

When you add WordArt to a document, the height and width of the WordArt are
automatically set based on the size and amount of text you specify.

Example

This example adds WordArt that contains the text "Test" to myDocument.

Set myDocument = Worksheets(1)

Set newWordArt = myDocument.Shapes.AddTextEffect(_
PresetTextEffect:=msoTextEffectl, Text:="Test", _
FontName:="Arial Black", FontSize:=36,

FontBold:=msoFalse, FontItalic:=msoFalsg, Left:=10,
Top:=10)

AddToFavorites Method

Adds a shortcut to the workbook or hyperlink to the Favorites folder.
expression.AddToFavorites

expression Required. An expression that returns a Workbook or Hyperlink
object.

Example

This example adds a shortcut to the active workbook to the Favorites folder.

ActiveWorkbook.AddToFavorites

Show All

AdvancedFilter Method

Filters or copies data from a list based on a criteria range. If the initial selection
is a single cell, that cell's current region is used. Variant.

expression.AdvancedFilter(Action, CriteriaRange, CopyToRange, Unique)

expression Required. An expression that returns one of the objects in the
Applies To list.

Action Required XIFilterAction.

XlIFilterAction can be one of these XIFilterAction constants.
xIFilterCopy
xIFilterInPlace

CriteriaRange Optional Variant. The criteria range. If this argument is
omitted, there are no criteria.

CopyToRange Optional Variant. The destination range for the copied rows if
Action is xIFilterCopy. Otherwise, this argument is ignored.

Unique Optional Variant. True to filter unique records only. False to filter all
records that meet the criteria. The default value is False.

Example

This example filters a database (named "Database") based on a criteria range
named "Criteria."

Range("Database").AdvancedFilter _
Action:=x1FilterInPlace, _
CriteriaRange:=Range("Criteria")

Show All

Align Method

Aligns the shapes in the specified range of shapes.
expression.Align(AlignCmd, RelativeTo)

expression Required. An expression that returns one of the objects in the
Applies To list.

AlignCmd Required MsoAlignCmd. Specifies the way the shapes in the
specified shape range are to be aligned.

MsoAlignCmd can be one of these MsoAlignCmd constants.
msoAlignCenters

msoAlignMiddles
msoAlignTops
msoAlignBottoms
msoAlignL efts
msoAlignRights

RelativeTo Required MsoTriState. Not used in Microsoft Excel. Must be
False.

MsoTriState can be one of these MsoTriState constants.
msoCTrue

msoFalse

msoTriStateMixed

msoTriStateToggle

msoTrue

Example

This example aligns the left edges of all the shapes in the specified range in
myDocument with the left edge of the leftmost shape in the range.

Set myDocument = Worksheets(1)
myDocument .Shapes.SelectAll
Selection.ShapeRange.Align msoAlignLefts, False

Apply Method

Applies to the specified shape formatting that’s been copied by using the PickUp
method.

expression.Apply

expression Required. An expression that returns a Shape or ShapeRange
object.

Example

This example copies the formatting of shape one on mybocument and then
applies the copied formatting to shape two.

Set myDocument = Worksheets(1)

wWith myDocument
.Shapes(1).PickUp
.Shapes(2).Apply

End With

Show All

ApplyCustomType Method

ApplyCustomType method as it applies to the Series object.

Applies a standard or custom chart type to a series.
expression.ApplyCustomType(ChartType)
expression Required. An expression that returns one of the above objects.

ChartType Required XIChartType. A standard chart type.

XlChartType can be one of these XIChartType constants.
xILine
xlLineMarkersStacked
xILineStacked

x|Pie

xIPieOfPie
xIPyramidBarStacked
xIPyramidCol
xIPyramidColClustered
x|IPyramidColStacked
xIPyramidColStacked100
xIRadar

xIRadarFilled
xIRadarMarkers
xIStockHL.C
xI1StockOHL.C
xIStockVHL.C
xI1StockVOHLC
xISurface

xISurfaceTop View
xISurfaceTopViewWireframe

xISurfaceWireframe
xIXYScatter
xIXYScatterLines
xIXYScatterLinesNoMarkers
xIXYScatterSmooth
xIXYScatterSmoothNoMarkers
xI3DArea
xI3DAreaStacked
xI3DAreaStacked100
xI3DBarClustered
xI3DBarStacked
xI3DBarStacked100
xI3DColumn
x13DColumnClustered
xI3DColumnStacked
xI3DColumnStacked100
xI3DLine

xI3DPie
x13DPieExploded
xlArea

xlAreaStacked
xlAreaStacked100
xIBarClustered
xIBarOfPie
xIBarStacked
xIBarStacked100
xIBubble
xIBubble3DEffect
xlColumnClustered
xlColumnStacked
xlColumnStacked100
xlConeBarClustered
xlConeBarStacked

xlConeBarStacked100
x1ConeCol
x1ConeColClustered
xIConeColStacked
x1ConeColStacked100
xICylinderBarClustered
xICylinderBarStacked
xICylinderBarStacked100
xICylinderCol
xICylinderColClustered
xICylinderColStacked
xICylinderColStacked100
xIDoughnut
xIDoughnutExploded
xlLineMarkers
xlLineMarkersStacked100
xILineStacked100
xIPieExploded
xIPyramidBarClustered
x|IPyramidBarStacked100

ApplyCustomType method as it applies to the Chart object.

Applies a standard or custom chart type to a chart.

expression. ApplyCustomType(ChartType, TypeName)

expression Required. An expression that returns one of the above objects.

Chart Type Required XIChartType. A standard chart type.

XlChartType can be one of these XIChartType constants.

xlLine
xlLineMarkersStacked
xlLineStacked

xIPie

xIPieOfPie
xIPyramidBarStacked
xIPyramidCol
xIPyramidColClustered
xIPyramidColStacked
xIPyramidColStacked100
xIRadar

xIRadarFilled
xIRadarMarkers
xIStockHL.C
xIStockOHL.C
xIStockVHL.C
xIStockVOHLC
xISurface

xISurfaceTop View
xISurfaceTopViewWireframe
xISurfaceWireframe
xIXYScatter
xIXYScatterLines
xIXYScatterLinesNoMarkers
xIXYScatterSmooth
xIXYScatterSmoothNoMarkers
xI3DArea
xI3DAreaStacked
xI3DAreaStacked100
xI3DBarClustered
xI3DBarStacked
xI3DBarStacked100
xI3DColumn
x13DColumnClustered
xI13DColumnStacked
x13DColumnStacked100

x13DLine

xI3DPie
x13DPieExploded
xlArea

xlAreaStacked
xlAreaStacked100
xIBarClustered
xIBarOfPie
xIBarStacked
xIBarStacked100
xIBubble
xIBubble3DEffect
xlColumnClustered
xlColumnStacked
xIColumnStacked100
xlConeBarClustered
xlConeBarStacked
xlConeBarStacked100
xIConeCol
xIConeColClustered
xIConeColStacked
xIConeColStacked100
xICylinderBarClustered
xICylinderBarStacked
xICylinderBarStacked100
xICylinderCol
xICylinderColClustered
xICylinderColStacked
xICylinderColStacked100
xIDoughnut
xIDoughnutExploded
xlLineMarkers
xlLineMarkersStacked100

xlLineStacked100
xIPieExploded
xIPyramidBarClustered
x|IPyramidBarStacked100

TypeName Optional Variant (used only with a Chart object). The name of the
custom chart type if ChartType specifies a custom chart gallery.

Example

This example applies the “Line with Data Markers" chart type to chart one.

Charts(1).ApplyCustomType xlLineMarkers

Show All

ApplyDataLabels Method

Applies data labels to a point, a series, or all the series in a chart.

expression.ApplyDataLabels(Type, LegendKey, AutoText, HasLeaderLines,
ShowSeriesName, ShowCategoryName, ShowValue, ShowPercentage,
ShowBubbleSize, Separator)

expression Required. An expression that returns one of the objects in the
Applies To list.

Type Optional XIDatal.abelsType. The type of data label to apply.

XlDataLabelsType can be one of these X1DataL.abelsType constants.
xIDatal.abelsShowBubbleSizes

xIDatal.abelsShowLabelAndPercent. Percentage of the total, and category for
the point. Available only for pie charts and doughnut charts.

xIDatal.abelsShowPercent. Percentage of the total. Available only for pie
charts and doughnut charts.

xIDatal.abelsShowLabel. Category for the point.
xIDatal.abelsShowNone. No data labels.

xIDatal.abelsShowValue. default. Value for the point (assumed if this
argument isn't specified).

LegendKey Optional Variant. True to show the legend key next to the point.
The default value is False.

AutoText Optional Variant. True if the object automatically generates
appropriate text based on content.

HasLeaderLines Optional Variant. For the Chart and Series objects, True if
the series has leader lines.

ShowSeriesName Optional Variant. The series name for the data label.

ShowCategoryName Optional Variant. The category name for the data label.

ShowValue Optional Variant. The value for the data label.
ShowPercentage Optional Variant. The percentage for the data label.
ShowBubbleSize Optional Variant. The bubble size for the data label.

Separator Optional Variant. The separator for the data label.

Example

This example applies category labels to series one in Chart1.

Charts("Charti1").SeriesCollection(1). _
ApplyDatalabels Type:=xlDatalabelsShowLabel

Show All

ApplyNames Method

Applies names to the cells in the specified range.

expression.ApplyNames(Names, IgnoreRelativeAbsolute,
UseRowColumnNames, OmitColumn, OmitRow, Order, AppendLast)

expression Required. An expression that returns one of the objects in the
Applies To list.

Names Optional Variant. An array of the names to be applied. If this argument
is omitted, all names on the sheet are applied to the range.

IgnoreRelativeAbsolute Optional Variant. True to replace references with
names, regardless of the reference types of either the names or references. False
to replace absolute references only with absolute names, relative references only
with relative names, and mixed references only with mixed names. The default
value is True.

UseRowColumnNames Optional Variant. True to use the names of row and
column ranges that contain the specified range if names for the range cannot be
found. False to ignore the OmitColumn and OmitRow arguments. The default
value is True.

OmitColumn Optional Variant. True to replace the entire reference with the
row-oriented name. The column-oriented name can be omitted only if the
referenced cell is in the same column as the formula and is within a row-oriented
named range. The default value is True.

OmitRow Optional Variant. True to replace the entire reference with the
column-oriented name. The row-oriented name can be omitted only if the
referenced cell is in the same row as the formula and is within a column-oriented
named range. The default value is True.

Order Optional XIApplyNamesOrder. Determines which range name is listed
first when a cell reference is replaced by a row-oriented and column-oriented
range name.

X1ApplyNamesOrder can be one of these XI1ApplyNamesOrder constants.

xlColumnThenRow
xIRowThenColumn default

AppendLast Optional Variant. True to replace the definitions of the names in
Names and also replace the definitions of the last names that were defined. False
to replace the definitions of the names in Names only. The default value is False.

Remarks

You can use the Array function to create the list of names for the Names
argument.

If you want to apply names to the entire sheet, use Cells.ApplyNames.

You cannot "unapply" names; to delete names, use the Delete method.

Example

This example applies names to the entire sheet.

Cells.ApplyNames Names:=Array('"Sales", "Profits")

ApplyOutlineStyles Method

Applies outlining styles to the specified range.
expression.ApplyOutlineStyles

expression Required. An expression that returns a Range object.

Example

The following example applies automatic outlining styles to the selection. The
selection must include the entire outline range on a worksheet.

Selection.ApplyOutlineStyles

AreaGroups Method

On a 2-D chart, returns an object that represents either a single area chart group
(a ChartGroup object) or a collection of the area chart groups (a ChartGroups
collection).

expression.AreaGroups(Index)
expression Required. An expression that returns a Chart object.

Index Optional Variant. The chart group number.

Example

This example turns on drop lines for the 2-D area chart group.

Charts(1).AreaGroups(1).HasDropLines = True

Show All

Arrange Method

Arranges the windows on the screen. Varint.

expression.Arrange(ArrangeStyle, ActiveWorkbook, SyncHorizontal,
SyncVertical)

expression Required. An expression that returns one of the objects in the
Applies To list

ArrangeStyle Optional XIArrangeStyle.

XlArrangeStyle can be one of these X]1ArrangeStyle constants.
xlArrangeStyleCascade. Windows are cascaded.
xlArrangeStyleTiled default. Windows are tiled
xlArrangeStyleHorizontal. Windows are arranged horizontally.
xlArrangeStyleVertical. Windows are arranged vertically.

ActiveWorkbook Optional Variant. True to arrange only the visible windows
of the active workbook. False to arrange all windows. The default value is False.

SyncHorizontal Optional Variant. Ignored if ActiveWorkbook is False or
omitted. True to synchronize the windows of the active workbook when
scrolling horizontally. False to not synchronize the windows. The default value
is False.

SyncVertical Optional Variant. Ignored if ActiveWorkbook is False or
omitted. True to synchronize the windows of the active workbook when
scrolling vertically. False to not synchronize the windows. The default value is
False.

Example

This example tiles all the windows in the application.

Application.Windows.Arrange ArrangeStyle:=xlArrangeStyleTiled

AutoComplete Method

Returns an AutoComplete match from the list. If there’s no AutoComplete match
or if more than one entry in the list matches the string to complete, this method
returns an empty string.

expression.AutoComplete(String)

expression Required. An expression that returns a Range object (must be a
single cell).

String Required String. The string to complete.

Remarks

This method works even if the AutoComplete feature is disabled.

Example

This example returns the AutoComplete match for the string segment “Ap." An
AutoComplete match is made if the column containing cell A5 contains a
contiguous list and one of the entries in the list contains a match for the string.

S = Worksheets(1).Range("A5").AutoComplete("Ap")
If Len(s) > 0 Then
MsgBox '"Completes to " & s
Else
MsgBox '"Has no completion"
End If

Show All

AutoFill Method

Performs an autofill on the cells in the specified range. Variant.
expression.AutoFill(Destination, Type)

expression Required. An expression that returns one of the objects in the
Applies To list.

Destination Required Range object. The cells to be filled. The destination
must include the source range.

Type Optional XIAutoFillType. Specifies the fill type.

XlAutoFillType can be one of these XIAutoFillType constants.
xIFillDays
xIFillFormats
xIFillSeries
xIFillWeekdays
xIGrowthTrend
xIFillCopy
xIFillDefault default
xIFillMonths
xIFillValues

xIFill Years
xlLinearTrend

If this argument is xIFillDefault or omitted, Microsoft Excel selects the most
appropriate fill type, based on the source range.

Example

This example performs an autofill on cells A1:A20 on Sheet1, based on the
source range A1:A2 on Sheetl. Before running this example, type 1 in cell A1l
and type 2 in cell A2.

Set sourceRange = Worksheets('"Sheetl1").Range("Al1:A2")
Set fillRange = Worksheets("Sheet1").Range("A1:A20")
sourceRange.AutoFill Destination:=fillRange

Show All

AutoFilter Method

Filters a list using the AutoFilter. Variant.

Note Apply the AutoFilter property to a Worksheet object to return an
AutoFilter object.

expression.AutoFilter(Field, Criterial, Operator, Criteria2, VisibleDropDown)

expression Required. An expression that returns one of the objects in the
Applies To list.

Field Optional Variant. The integer offset of the field on which you want to
base the filter (from the left of the list; the leftmost field is field one).

Criterial Optional Variant. The criteria (a string; for example, "101"). Use
"="to find blank fields, or use "<>" to find nonblank fields. If this argument is
omitted, the criteria is All. If Operator is xITop10Items, Criterial specifies the
number of items (for example, "10").

Operator Optional XIAutoFilterOperator.

XlAutoFilterOperator can be one of these X1AutoFilterOperator constants.
xI1And default

x|Bottom10Items

x|Bottom10Percent

x1Or

x1Top10Items

xITop10Percent

Use xIAnd and x1Or with Criterial and Criteria2 to construct compound
criteria.

Criteria2 Optional Variant. The second criteria (a string). Used with Criterial
and Operator to construct compound criteria.

VisibleDropDown Optional Variant. True to display the AutoFilter drop-

down arrow for the filtered field. False to hide the AutoFilter drop-down arrow
for the filtered field. True by default.

Remarks

If you omit all the arguments, this method simply toggles the display of the
AutoFilter drop-down arrows in the specified range.

Example

This example filters a list starting in cell A1 on Sheet1 to display only the entries
in which field one is equal to the string "Otis". The drop-down arrow for field
one will be hidden.

Worksheets("Sheet1").Range("A1").AutoFilter _
field:=1, _
Criterial:="0tis"
VisibleDropDown:=False

AutoFit Method

Changes the width of the columns in the range or the height of the rows in the
range to achieve the best fit.

expression.AutoFit

expression Required. An expression that returns a Range object. Must be a
row or a range of rows, or a column or a range of columns. Otherwise, this
method generates an error.

Remarks

One unit of column width is equal to the width of one character in the Normal
style.

Example

This example changes the width of columns A through I on Sheet1 to achieve the
best fit.

Worksheets("Sheet1").Columns("A:I").AutoFit

This example changes the width of columns A through E on Sheet1 to achieve
the best fit, based only on the contents of cells A1:E1.

Worksheets("Sheet1").Range("A1:E1").Columns.AutoFit

Show All

AutoFormat Method

AutoFormat method as it applies to the Range object.

Automatically formats the specified range, using a predefined format.

expression.AutoFormat(Format, Number, Font, Alignment, Border, Pattern,
Width)

expression Required. An expression that returns one of the above objects.

Format Optional XIRangeAutoFormat. The specified AutoFormat.

XIRangeAutoFormat can be one of these XIRangeAutoFormat constants.
xIRangeAutoFormat3DEffects1
xIRangeAutoFormat3DEffects2
xIRangeAutoFormatAccountingl
xIRangeAutoFormatAccounting2
xIRangeAutoFormatAccounting3
xIRangeAutoFormatAccounting4
xIRangeAutoFormatClassicl default
xIRangeAutoFormatClassic2
xIRangeAutoFormatClassic3
xIRangeAutoFormatClassicPivotTable
xIRangeAutoFormatColorl
xIRangeAutoFormatColor2
xIRangeAutoFormatColor3
xIRangeAutoFormatListl
xIRangeAutoFormatList2
xIRangeAutoFormatList3
xIRangeAutoFormatLocalFormat1
xIRangeAutoFormatLocalFormat2
xIRangeAutoFormatLocalFormat3

xIRangeAutoFormatLocalFormat4
xIRangeAutoFormatNone
xIRangeAutoFormatPTNone
xIRangeAutoFormatReportl
xIRangeAutoFormatReport10
xIRangeAutoFormatReport2
xIRangeAutoFormatReport3
xIRangeAutoFormatReport4
xIRangeAutoFormatReport5
xIRangeAutoFormatReport6
xIRangeAutoFormatReport7
xIRangeAutoFormatReport8
xIRangeAutoFormatReport9
xIRangeAutoFormatSimple
xIRangeAutoFormatTablel
xIRangeAutoFormatTable10
xIRangeAutoFormatTable2
xIRangeAutoFormatTable3
xIRangeAutoFormatTable4
xIRangeAutoFormatTable5
xIRangeAutoFormatTable6
xIRangeAutoFormatTable?
xIRangeAutoFormatTable8
xIRangeAutoFormatTable9

The default constant is xIRangeAutoFormatClassicl. Some of these constants
may not be available to you, depending on the language support (U.S. English,
for example) that you’ve selected or installed.

Number Optional Variant. True to include number formats in the AutoFormat.

The default value is True.

Font Optional Variant. True to include font formats in the AutoFormat. The
default value is True.

Alignment Optional Variant. True to include alignment in the AutoFormat.
The default value is True.

Border Optional Variant. True to include border formats in the AutoFormat.
The default value is True.

Pattern Optional Variant. True to include pattern formats in the AutoFormat.
The default value is True.

Width Optional Variant. True to include column width and row height in the
AutoFormat. The default value is True.

AutoFormat method as it applies to the Chart object.

Automatically formats the specified chart.
expression.AutoFormat(Gallery, Format)

expression Required. An expression that returns one of the above objects.
Gallery Required Long. The specified Gallery.

Format Optional Variant. The specified AutoFormat.

Remarks

If the range is a single cell, this method also formats the active region
surrounding the cell. In other words, the following two statements are
equivalent:

Cells("A1").AutoFormat
Cells("A1").CurrentRegion.AutoFormat

Example

This example formats cells A1:D8 on Sheet1, using a predefined format.

Worksheets("Sheet1").Range("A1:D8"). _
AutoFormat Format:=x1RangeAutoFormatClassicl

AutomaticLength Method

Specifies that the first segment of the callout line (the segment attached to the
text callout box) be scaled automatically when the callout is moved. Use the
Customl.ength method to specify that the first segment of the callout line retain
the fixed length returned by the Length property whenever the callout is moved.
Applies only to callouts whose lines consist of more than one segment (types
msoCalloutThree and msoCalloutFour).

expression.AutomaticLength

expression Required. An expression that returns a CalloutFormat object.

Remarks

Applying this method sets the AutoL.ength property to True.

Example

This example toggles between an automatically scaling first segment and one
with a fixed length for the callout line for shape one on mybocument. For the
example to work, shape one must be a callout.

Set myDocument = Worksheets(1)
With myDocument.Shapes(1).Callout
If .AutoLength Then
.CustomLength 50
Else
.AutomaticLength
End If
End wWith

AutoOutline Method

Automatically creates an outline for the specified range. If the range is a single
cell, Microsoft Excel creates an outline for the entire sheet. The new outline
replaces any existing outline.

expression.AutoOutline

expression Required. An expression that returns a Range object.

Example

This example creates an outline for the range A1:G37 on Sheetl. The range must
contain either a summary row or a summary column.

Worksheets("Sheet1").Range("A1:G37").AutoOutline

AutoShow Method

Displays the number of top or bottom items for a row, page, or column field in
the specified PivotTable report.

expression.AutoShow(Type, Range, Count, Field)

expression Required. An expression that returns one of the objects in the
Applies To list

Type Required Long. Use xlIAutomatic to cause the specified PivotTable
report to show the items that match the specified criteria. Use xIManual to
disable this feature.

Range Required Long. The location at which to start showing items. Can be
either of the following constants: xITop or xIBottom.

Count Required Long. The number of items to be shown.

Field Required String. The name of the base data field. You must specify the
unique name (as returned from the SourceName property), and not the displayed
name.

Example

This example shows only the top two companies, based on the sum of sales:

ActiveSheet.PivotTables("Pivotl1").PivotFields("Company") _
.AutoShow xlAutomatic, x1Top, 2, "Sum of Sales"

Show All

AutoSort Method

Establishes automatic field-sorting rules for PivotTable reports.
expression.AutoSort(Order, Field)

expression Required. An expression that returns one of the objects in the
Applies To list.

Order Required X1SortOrder. The sort order.

XISortOrder can be one of these X1SortOrder constants.
xlAscending

xIDescending

xIManual. To disable automatic sorting.

Field Required String. The name of the sort key field. You must specify the
unique name (as returned from the SourceName property), and not the displayed
name.

Example

This example sorts the Company field in descending order, based on the sum of
sales.

ActiveSheet.PivotTables(1).PivotField("Company") _
.AutoSort xlDescending, "Sum of Sales"

Show All

Axes Method

Returns an object that represents either a single axis or a collection of the axes
on the chart.

expression.Axes(Type, AxisGroup)

expression Required. An expression that returns a Chart object.

Type Optional Variant. Specifies the axis to return. Can be one of the
following X1AxisType constants: xIValue, xICategory, or xISeriesAxis

(xISeriesAxis is valid only for 3-D charts).

AxisGroup Optional XI1AxisGroup. Specifies the axis group. If this argument
is omitted, the primary group is used. 3-D charts have only one axis group.

X1lAxisGroup can be one of these XIAxisGroup constants.
xIPrimary default
xISecondary

Example

This example adds an axis label to the category axis in Chartl1.

wWith Charts("Chartl").Axes(x1lCategory)
.HasTitle = True
.AxisTitle.Text = "July Sales"

End wWith

This example turns off major gridlines for the category axis in Chart1.

Charts("Chart1").Axes(x1lCategory).HasMajorGridlines = False

This example turns off all gridlines for all axes in Chart1.

For Each a In Charts("Charti1").Axes
a.HasMajorGridlines False
a.HasMinorGridlines False

Next a

BarGroups Method

On a 2-D chart, returns an object that represents either a single bar chart group (a
ChartGroup object) or a collection of the bar chart groups (a ChartGroups
collection).

expression.BarGroups(Index)
expression Required. An expression that returns a Chart object.

Index Optional Variant. Specifies the chart group.

Example

This example sets the space between bar clusters in the 2-D bar chart group to be
50 percent of the bar width.

Charts(1).BarGroups(1).Gapwidth = 50

BeginConnect Method

Attaches the beginning of the specified connector to a specified shape. If there’s
already a connection between the beginning of the connector and another shape,
that connection is broken. If the beginning of the connector isn’t already
positioned at the specified connecting site, this method moves the beginning of
the connector to the connecting site and adjusts the size and position of the
connector. Use the EndConnect method to attach the end of the connector to a
shape.

expression.BeginConnect(ConnectedShape, ConnectionSite)
expression Required. An expression that returns a ConnectorFormat object.

ConnectedShape Required Shape object. The shape to attach the beginning of
the connector to. The specified Shape object must be in the same Shapes
collection as the connector.

ConnectionSite Required Long. A connection site on the shape specified by
ConnectedShape. Must be an integer between 1 and the integer returned by the
ConnectionSiteCount property of the specified shape. If you want the
connector to automatically find the shortest path between the two shapes it
connects, specify any valid integer for this argument and then use the
RerouteConnections method after the connector is attached to shapes at both
ends.

Remarks

When you attach a connector to an object, the size and position of the connector
are automatically adjusted, if necessary.

Example

This example adds two rectangles to mybocument and connects them with a
curved connector. Notice that the RerouteConnections method makes it
irrelevant what values you supply for the ConnectionSite arguments used with
the BeginConnect and EndConnect methods.

Set myDocument = Worksheets(1)

Set s = myDocument.Shapes

Set firstRect = s.AddShape(msoShapeRectangle, 100, 50, 200, 100)

Set secondRect = s.AddShape(msoShapeRectangle, 300, 300, 200, 100)

Set ¢ = s.AddConnector(msoConnectorCurve, 0, 0, 100, 100)

with c.ConnectorFormat
.BeginConnect ConnectedShape:=firstRect, ConnectionSite:=1
.EndConnect ConnectedShape:=secondRect, ConnectionSite:=1
c.RerouteConnections

End wWith

BeginDisconnect Method

Detaches the beginning of the specified connector from the shape it’s attached
to. This method doesn’t alter the size or position of the connector: the beginning
of the connector remains positioned at a connection site but is no longer
connected. Use the EndDisconnect method to detach the end of the connector
from a shape.

expression.BeginDisconnect

expression Required. An expression that returns a ConnectorFormat object.

Example

This example adds two rectangles to myDocument, attaches them with a
connector, automatically reroutes the connector along the shortest path, and then
detaches the connector from the rectangles.

Set myDocument = Worksheets(1)
Set s = myDocument.Shapes
Set firstRect = s.AddShape(msoShapeRectangle, 100, 50, 200, 100)
Set secondRect = s.AddShape(msoShapeRectangle, 300, 300, 200, 100)
Set ¢ = s.AddConnector(msoConnectorCurve, 0, 0, 0, 0)
With c.ConnectorFormat
.BeginConnect firstRect, 1
.EndConnect secondRect, 1
c.RerouteConnections
.BeginDisconnect
.EndDisconnect
End wWith

Show All

BorderAround Method

Adds a border to a range and sets the Color, LineStyle, and Weight properties
for the new border. Variant.

expression.BorderAround(LineStyle, Weight, ColorIndex, Color)

expression Required. An expression that returns one of the objects in the
Applies To list.

LineStyle Optional XILineStyle. The line style for the border.

XlLineStyle can be one of these XILineStyle constants.
xIContinuous default.

xIDash

xIDashDot

xIDashDotDot

xIDot

xIDouble

xILineStlyeNone

xISlantDashDot

xILineStlyeNone

Weight Optional XIBorderWeight. The border weight.

XIBorderWeight can be one of these XIBorderWeight constants.
xIHairline

xIMedium

xIThick

xIThin default

ColorIndex Optional XICoelorIndex. The border color, as an index into the
current color palette or as a XIColorIndex constant.

XlColorIndex can be one of these XIColorIndex constants.
xlColorIndexAutomatic default
xlColorIndexNone

Color Optional Variant. The border color, as an RGB value.

Remarks

You must specify either ColorIndex or Color, but not both.

You can specify either LineStyle or Weight, but not both. If you don't specify
either argument, Microsoft Excel uses the default line style and weight.

This method outlines the entire range without filling it in. To set the borders of
all the cells, you must set the Color, LineStyle, and Weight properties for the
Borders collection. To clear the border, you must set the LineStyle property to
xILineStyleNone for all the cells in the range.

Example

This example adds a thick red border around the range A1:D4 on Sheet1.

Worksheets("Sheet1").Range("A1:D4").BorderAround _
ColorIndex:=3, Weight:=x1Thick

Show All

Breakl.ink Method

Converts formulas linked to other Microsoft Excel sources or OLE sources to
values.

expression.BreakLink(Name, Type)

expression Required. An expression that returns one of the objects in the
Applies To list.

Name Required String. The name of the link.
Type Required XILinkType. The type of link.

XILinkType can be one of these XILinkType constants.
xILinkTypeExcelLinks A link to a Microsoft Excel souce.
xILinkTypeOLELinks A link to an OLE source.

Example

In this example, Microsoft Excel converts the first link (an Excel link type) in
the active workbook. This example assumes at least one formula exists in the
active workbook that links to another Excel source.

Sub UseBreakLink()
Dim astrLinks As Variant

' Define variable as an Excel link type.
astrLinks = ActiveWorkbook.LinkSources(Type:=x1LinkTypeExcellLink

' Break the first link in the active workbook.
ActiveWorkbook.BreakLink _
Name:=astrLinks(1), _
Type:=x1LinkTypeExcellLinks

End Sub

BreakSideBySide Method

Ends side-by-side mode if two windows are in side-by-side mode. Returns a
Boolean value that represents whether the method was successful.

expression.BreakSideBySide()

expression Required. An expression that returns one of the objects in the
Applies To list.

Example

The following example ends side-by-side mode.
Sub CloseSideBySide()
ActiveWorkbook.windows.BreakSideBySide

End Sub

BringToFront Method

Brings the object to the front of the z-order.
expression.BringToFront

expression Required. An expression that returns an object in the Applies To
list.

Example

This example brings embedded chart one on Sheetl to the front of the z-order.

Worksheets("Sheetl").ChartObjects(1).BringToFront

Show All

BuildFreeform Method

Builds a freeform object. Returns a FreeformBuilder object that represents the
freeform as it is being built. Use the AddNodes method to add segments to the
freeform. After you have added at least one segment to the freeform, you can use
the ConvertToShape method to convert the FreeformBuilder object into a
Shape object that has the geometric description you’ve defined in the
FreeformBuilder object.

expression.BuildFreeform(EditingType, X1, Y1)

expression Required. An expression that returns one of the objects in the
Applies To list.

EditingType Required MsoEditingType. The editing property of the first node.

MsoEditingType can be one of these MsoEditingType constants.
msoEditingAuto

msoEditingCorner

Cannot be msoEditingSmooth or msoEditingSymmetric.

X1 Required Single. The position (in points) of the first node in the freeform
drawing relative to the upper-left corner of the document.

Y1 Required Single. The position (in points) of the first node in the freeform
drawing relative to the upper-left corner of the document.

Example

This example adds a freeform with five vertices to mybocument.

Set myDocument = Worksheets(1)

wWith myDocument.Shapes.BuildFreeform(msoEditingCorner, 360, 200)
.AddNodes msoSegmentCurve, msoEditingCorner, _

380, 230, 400, 250, 450, 300

.AddNodes msoSegmentCurve, msoEditingAuto, 480, 200
.AddNodes msoSegmentLine, msoEditingAuto, 480, 400
.AddNodes msoSegmentLine, msoEditingAuto, 360, 200
.ConvertToShape

End wWith

Calculate Method

Calculates all open workbooks, a specific worksheet in a workbook, or a
specified range of cells on a worksheet, as shown in the following table.

To calculate Follow this example
All open workbooks Application.Calculate (or just Calculate)

A specific worksheet Worksheets(1).Calculate
A specified range Worksheets(1).Rows(2).Calculate

expression.Calculate

expression Optional for Application, required for Worksheet and Range. An
expression that returns an object in the Applies To list.

Example

This example calculates the formulas in columns A, B, and C in the used range
on Sheetl.

Worksheets("Sheet1").UsedRange.Columns("A:C").Calculate

CalculatedFields Method

Returns a CalculatedFields collection that represents all the calculated fields in
the specified PivotTable report. Read-only.

expression.CalculatedFields

expression Required. An expression that returns a PivotTable object.

Example

This example prevents the calculated fields from being dragged to the row
position.

For Each fld in _
Worksheets(1).PivotTables("Pivot1") _
.CalculatedFields

fld.DragToRow = False
Next

Show All

CalculatedItems Method

Returns a CalculatedItems collection that represents all the calculated items in
the specified PivotTable report. Read-only.

expression.CalculatedItems

expression Required. An expression that returns a PivotField object.

Remarks

For OLAP data sources, this method returns a zero-length collection.

Example

This example creates a list of calculated items and their formulas.

Set pt = Worksheets(1).PivotTables(1)
For Each ci In pt.PivotFields("Sales'").CalculatedItems
r=r +1
With Worksheets(2)
.Cells(r, 1).value
.Cells(r, 2).value
End With
Next

ci.Name
ci.Formula

CalculateFull Method

Forces a full calculation of the data in all open workbooks.

expression.CalculateFull

expression Required. An expression that returns one of the objects in the
Applies To list.

Example

This example compares the version of Microsoft Excel with the version of Excel
that the workbook was last calculated in. If the two version numbers are
different, a full calculation of the data in all open workbooks is performed.

If Application.CalculationVersion <> _
wWorkbooks(1).CalculationVersion Then
Application.CalculateFull

End If

CalculateFullRebuild Method

For all open workbooks, forces a full calculation of the data and rebuilds the
dependencies.

expression.CalculateFullRebuild

expression Required. An expression that returns one of the objects in the
Applies To list.

Remarks

Dependencies are the formulas that depend on other cells. For example, the
formula "=A1" depends on cell Al. The CalculateFullRebuild method is
similar to re-entering all formulas.

Example

This example compares the version of Microsoft Excel with the version of Excel
in which the workbook was last calculated. If the two version numbers are
different, a full calculation of the data in all open workbooks is performed and
the dependencies are rebuilt.

Sub UseCalculateFullRebuild()

If Application.CalculationVersion <> _
wWorkbooks(1).CalculationVersion Then
Application.CalculateFullRebuild

End If

End Sub

CancelRefresh Method

Cancels all background queries for the specified query table. Use the Refreshing
property to determine whether a background query is currently in progress.

expression.CancelRefresh

expression Required. An expression that returns a QueryTable object.

Example

This example cancels a query table refresh operation.

With Worksheets(1).QueryTables(1)
If .Refreshing Then .CancelRefresh
End wWith

CanCheckIn Method

True if Microsoft Excel can check in a specified workbook to a server.
Read/write Boolean.

expression.CanCheckIn

expression Required. An expression that returns one of the objects in the
Applies To list.

Example

This example checks the server to see if the specified workbook can be checked
in. If it can be, it saves and closes the workbook and checks it back into the
server.

Sub CheckInOut(strWkbCheckIn As String)

' Determine if workbook can be checked in.
If Workbooks(strWkbCheckIn).CanCheckIn = True Then
Workbooks(strWwkbCheckIn).CheckIn
MsgBox strWkbCheckIn & " has been checked in."
Else
MsgBox "This file cannot be checked in " & _
"at this time. Please try again later."
End If

End Sub

CanCheckOut Method

True if Microsoft Excel can check out a specified workbook from a server.
Read/write Boolean.

expression.CanCheckOut(FileName)

expression Required. An expression that returns one of the objects in the
Applies To list.

FileName Required String. The name of t