
Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

MPASM	Assembler	Overview

An	overview	of	MPASM	assembler	and	its	capabilities	is
presented.

What	is	MPASM	Assembler

Assembler	Migration	Path
Assembler	Compatibility	Issues
How	MPASM	Assembler	Helps	You

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

What	is	MPASM	Assembler

MPASM	assembler	(the	assembler)	is	a	command-line	or
Windows-based	PC	application	that	provides	a	platform	for
developing	assembly	language	code	for	Microchip's	PICmicro
microcontroller	(MCU)	families.	Generically,	MPASM	assembler	will
refer	to	the	entire	development	platform	including	the	macro
assembler	and	utility	functions.

MPASM	assembler	supports	all	PICmicro	MCU,	memory,	and
secure	data	(KeeLoq))	products	from	Microchip	Technology	Inc.

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Assembler	Migration	Path

Since	MPASM	assembler	is	a	universal	assembler	for	all	PICmicro
MCU	devices,	an	application	developed	for	the	PIC16C54	can	be
easily	translated	into	a	program	for	the	PIC16C71.	This	would
require	changing	the	instruction	mnemonics	that	are	not	the	same
between	the	devices	(assuming	that	register	and	peripheral	usage
were	similar).	The	rest	of	the	directive	and	macro	language	will	be
the	same.

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Assembler	Compatibility	Issues

MPASM	assembler	is	compatible	with	all	Microchip	PICmicro	MCU
development	systems	currently	in	production.	This	includes
MPLAB	SIM	(PICmicro	MCU	discrete-event	simulator),	MPLAB
ICE	2000	(PICmicro	MCU	in-circuit	emulator),	MPLAB	ICD	2	(in-
circuit	debugger	-	PIC18	parts),	PRO	MATE	II	(device
programmer)	and	PICSTART	Plus	(low-cost	development
programmer).

MPASM	assembler	supports	a	clean	and	consistent	method	of
specifying	radix.	You	are	encouraged	to	develop	new	code	using
the	methods	described	within	this	document,	even	though	certain
older	syntaxes	may	be	supported	for	compatibility	reasons.

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

How	MPASM	Assembler	Helps	You

MPASM	assembler	provides	a	universal	solution	for	developing
assembly	code	for	all	of	Microchip's	12-bit,	14-bit,	16-bit,	and
Enhanced	16-bit	core	PICmicro	MCUs.	Notable	features	include:

All	PICmicro	MCU	Instruction	Sets

Command	Line	Interface
Command	Shell	Interfaces
Rich	Directive	Language
Flexible	Macro	Language
MPLAB	IDE	Compatibility

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Getting	Started	with	MPASM
Assembler

An	overview	of	assembler	(MPASM	assembler)	operation	and
instructions	for	the	installation	of	MPASM	assembler	on	your
system	is	shown.

Overview	of	Assembler

Assembler	Input/Output	Files
Assembler	Installation

http://www.microchip.com
mailto:techsupport@microchip.com

Overview	of	Assembler

MPASM	assembler	can	be	used	in	two	ways:

To	generate	absolute	code	that	can	be	executed	directly	by	a
microcontroller.

To	generate	object	code	that	can	be	linked	with	other	separately
assembled	or	compiled	modules.

Generating	Absolute	Code

Absolute	code	is	the	default	output	from	MPASM	assembler.	This
process	is	shown	below.

When	a	source	file	is	assembled	in	this	manner,	all	values	used	in
the	source	file	must	be	defined	within	that	source	file,	or	in	files
that	have	been	explicitly	included.	If	assembly	proceeds	without
errors,	a	HEX	file	will	be	generated,	containing	the	executable
machine	code	for	the	target	device.	This	file	can	then	be	used	in
conjunction	with	a	device	programmer	to	program	the
microcontroller.

Generating	Object	Code

MPASM	assembler	also	has	the	ability	to	generate	an	object
module	that	can	be	linked	with	other	modules	using	Microchip's
MPLINK	linker	to	form	the	final	executable	code.	This	method	is

very	useful	for	creating	reusable	modules	that	do	not	have	to	be
retested	each	time	they	are	used.

Related	modules	can	also	be	grouped	and	stored	together	in	a
library	using	Microchip's	MPLIB	librarian.	Required	libraries	can	be
specified	at	link	time,	and	only	the	routines	that	are	needed	will	be
included	in	the	final	executable.

Refer	to	Relocatable	Objects	for	more	information	on	the

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

differences	between	absolute	and	object	assembly.

http://www.microchip.com
mailto:techsupport@microchip.com

Assembler	Input/Output	Files

These	are	the	default	file	extensions	used	by	the	assembler	and
the	associated	utility	functions.

TABLE:	INPUT	FILES
Source	Code	(.asm) Default	source	file	extension	input	to	assembler.
Include	File	(.inc) Include	(header)	file

TABLE:	OUTPUT	FILES
Listing	File	(.lst) Default	output	extension	for	listing	files	generated	by	assembler.
Error	File	(.err) Output	extension	from	assembler	for	error	files.
Hex	File	Formats	(.hex,
.hxl,	.hxh) Output	extension	from	assembler	for	hex	files.

Symbol	and	Debug	File
(.cod)

Output	extension	for	the	symbol	and	debug	file.	This	file	may	be	output	from
assembler	or	MPLINK	linker.

Object	File	(.o) Output	extension	from	assembler	for	object	files.

Source	Code	(.asm)

Assembly	source	code	is	one	programming	language	you	may	use
to	develop	your	application.	The	source	code	file	may	be	created
using	any	ASCII	text	file	editor.	It	should	conform	to	the	following
basic	guidelines.

Each	line	of	the	source	file	may	contain	up	to	four	types	of
information:

Labels

Mnemonics
Operands
Comments

The	order	and	position	of	these	are	important.	Labels	must	start	in
column	one.	Mnemonics	may	start	in	column	two	or	beyond.

Operands	follow	the	mnemonic.	Comments	may	follow	the
operands,	mnemonics	or	labels,	and	can	start	in	any	column.	The
maximum	column	width	is	255	characters.

Whitespace	or	a	colon	must	separate	the	label	and	the	mnemonic,
and	the	mnemonic	and	the	operand(s).	Multiple	operands	must	be
separated	by	a	comma.

Sample	MPASM	Assembler	Source	Code	(Shows
multiple	operands)

;
;	Sample	MPASM	Source	Code.	For	illustration	only.
;
list	p=16c54
Dest	equ	H'0B'
org	H'01FF'
goto	Start
org	H'0000'
Start	movlw	H'0A'
movwf	Dest
bcf	Dest,	3
goto	Start
end

Labels

A	label	must	start	in	column	1.	It	may	be	followed	by	a	colon	(:),
space,	tab	or	the	end	of	line.

Labels	must	begin	with	an	alpha	character	or	an	under	bar	(_)	and
may	contain	alphanumeric	characters,	the	under	bar	and	the
question	mark.

Note:	Do	not	use	labels	with	a	leading	underscore	and	number,	e.g.,	_2NDLOOP.	Also,
do	not	use	the	assembler	reserved	word	Halt	as	a	label.

Labels	may	be	up	to	32	characters	long.	By	default	they	are	case
sensitive,	but	case	sensitivity	may	be	overridden	by	a	command
line	option.	If	a	colon	is	used	when	defining	a	label,	it	is	treated	as
a	label	operator	and	not	part	of	the	label	itself.

Mnemonics

Assembler	instruction	mnemonics,	assembler	directives	and	macro
calls	must	begin	in	column	two	or	greater.	If	there	is	a	label	on	the
same	line,	instructions	must	be	separated	from	that	label	by	a
colon,	or	by	one	or	more	spaces	or	tabs.

Operands

Operands	must	be	separated	from	mnemonics	by	one	or	more
spaces,	or	tabs.	Multiple	operands	must	be	separated	by	commas.

Comments

MPASM	assembler	treats	anything	after	a	semicolon	as	a
comment.	All	characters	following	the	semicolon	are	ignored
through	the	end	of	the	line.	String	constants	containing	a
semicolon	are	allowed	and	are	not	confused	with	comments.

Include	File	(.inc)

Assembler	include,	or	header,	file.	Usually	contains	device-specific
register	and	bit	assignments.

As	an	example,	to	add	the	standard	header	file	for	the	PIC18F452
device	to	your	assembly	code,	use:

#include	<p18f452.inc>

Listing	File	(.lst)

A	listing	file	provides	a	mapping	of	source	code	to	machine
instructions.	MPASM	assembler	and	MPLINK	linker	can	generate
listing	files.

Sample	MPASM	Assembler	Listing	File

The	product	name	and	version,	the	assembly	date	and	time,	and
the	page	number	appear	at	the	top	of	every	page.

The	first	column	of	numbers	contains	the	base	address	in	memory
where	the	code	will	be	placed.	The	second	column	displays	the	32-
bit	value	of	any	symbols	created	with	the	SET,	EQU,	VARIABLE,
CONSTANT,	or	CBLOCK	directives.	The	third	column	is	reserved
for	the	machine	instruction.	This	is	the	code	that	will	be	executed
by	the	PICmicro	MCU.	The	fourth	column	lists	the	associated
source	file	line	number	for	this	line.	The	remainder	of	the	line	is
reserved	for	the	source	code	line	that	generated	the	machine
code.

Errors,	warnings,	and	messages	are	embedded	between	the
source	lines	and	pertain	to	the	following	source	line.

The	symbol	table	lists	all	symbols	defined	in	the	program.	The
memory	usage	map	gives	a	graphical	representation	of	memory
usage.	'X'	marks	a	used	location	and	'-'	marks	memory	that	is	not
used	by	this	object.	The	memory	map	is	not	printed	if	an	object	file
is	generated.

MPASM	01.99.21	Intermediate	MANUAL.ASM	5-30-1997	15:31:05
PAGE	1
LOC	OBJECT	CODE	LINE	SOURCE	TEXT
VALUE
00001	;
00002	;	Sample	MPASM	Source	Code.	For	illustration	only.
00003	;

00004	list	p=16c54
0000000B	00005	Dest	equ	H'0B'
00006
01FF	00007	org	H'01FF'
01FF	0A00	00008	goto	Start
00009
0000	00010	org	H'0000'
00011
0000	0C0A	00012	Start	movlw	H'0A'
0001	002B	00013	movwf	Dest
0002	0A00	00014	goto	Start
00015
00016	end
MPASM	01.99.21	Intermediate	MANUAL.ASM	5-30-1997	15:31:05
PAGE	2
SYMBOL	TABLE
LABEL	VALUE
Dest	0000000B
Start	00000000
__16C54	00000001
MEMORY	USAGE	MAP	('X'	=	Used,	'-'	=	Unused)
0000	:	XXX-------------	----------------	----------------	----------------
01C0	:	----------------	----------------	----------------	---------------X
All	other	memory	blocks	unused.
Program	Memory	Words	Used:	4
Program	Memory	Words	Free:	508
Errors	:	0
Warnings	:	0	reported,	0	suppressed
Messages	:	0	reported,	0	suppressed

Error	File	(.err)

MPASM	assembler,	by	default,	generates	an	error	file.	This	file	can
be	useful	when	debugging	your	code.	The	MPLAB	IDE	Source
Level	Debugger	will	automatically	open	this	file	in	the	case	of	an
error.	The	format	of	the	messages	in	the	error	file	is:

<type>[<number>]	<file>	<line>	<description>

For	example:

Error[113]	C:\PROG.ASM	7	:	Symbol	not	previously	defined	(start)

The	error	file	will	contain	MPASM	assembler	errors,	warnings	and
messages.

Hex	File	Formats	(.hex,	.hxl,	.hxh)

MPASM	Assembler	is	capable	of	producing	different	hex	file
formats.

Format	Name Format	Type File	Extension Use
Intel	Hex	Format INHX8M .HEX for	standard	programmers
Intel	Split	Hex	Format INHX8S .HXL,	.HXH for	odd/even	ROM	programmers
Intel	Hex	32	Format INHX32 .HEX for	16-bit	core	programmers

Intel	Hex	Format

This	format	produces	one	8-bit	hex	file	with	a	low	byte,	high	byte
combination.	Since	each	address	can	only	contain	8	bits	in	this
format,	all	addresses	are	doubled.	This	file	format	is	useful	for
transferring	PICmicro	MCU	series	code	to	PRO	MATE	II,
PICSTART	Plus	and	third	party	PICmicro	MCU	programmers.

Each	data	record	begins	with	a	9-character	prefix	and	ends	with	a
2-character	checksum.	Each	record	has	the	following	format:

:BBAAAATTHHHH....HHHCC

where:

BB	-	is	a	two	digit	hexadecimal	byte	count	representing	the	number
of	data	bytes	that	will	appear	on	the	line.

AAAA	-	is	a	four	digit	hexadecimal	address	representing	the
starting	address	of	the	data	record.

TT	-	is	a	two	digit	record	type	record	type	that	will	always	be	'00'
except	for	the	end-of-file	record,	which	will	be	'01'.

HH	-	is	a	two	digit	hexadecimal	data	byte,	presented	in	low-
byte/high-byte	combinations.

CC	-	is	a	two	digit	hexadecimal	checksum	that	is	the	two's
complement	of	the	sum	of	all	preceding	bytes	in	the	record.

Example

<file_name>.HEX
:1000000000000000000000000000000000000000F0
:0400100000000000EC
:100032000000280040006800A800E800C80028016D
:100042006801A9018901EA01280208026A02BF02C5
:10005200E002E80228036803BF03E803C8030804B8
:1000620008040804030443050306E807E807FF0839
:06007200FF08FF08190A57
:00000001FF

Intel	Split	Hex	Format

The	split	8-bit	file	format	produces	two	output	files:	.HXL	and	.HXH.
The	format	is	the	same	as	the	normal	8-bit	format,	except	that	the
low	bytes	of	the	data	word	are	stored	in	the	.HXL	file,	and	the	high
bytes	of	the	data	word	are	stored	in	the	.HXH	file,	and	the
addresses	are	divided	by	two.	This	is	used	to	program	16-bit	words
into	pairs	of	8-bit	EPROMs,	one	file	for	Low	Byte,	one	file	for	High
Byte.

Example

<file_name>.HXL

:0A0000000000000000000000000000F6
:1000190000284068A8E8C82868A989EA28086ABFAA
:10002900E0E82868BFE8C8080808034303E8E8FFD0
:03003900FFFF19AD
:00000001FF
<file_name>.HXH
:0A0000000000000000000000000000F6
:1000190000000000000000010101010102020202CA
:100029000202030303030304040404050607070883
:0300390008080AAA
:00000001FF

Intel	Hex	32	Format

The	extended	32-bit	address	hex	format	is	similar	to	the	hex	8
format,	except	that	the	extended	linear	address	record	is	output
also	to	establish	the	upper	16	bits	of	the	data	address.	This	is
mainly	used	for	16-bit	core	devices	since	their	addressable
program	memory	exceeds	32	kwords.

Each	data	record	begins	with	a	9-character	prefix	and	ends	with	a
2-character	checksum.	Each	record	has	the	following	format:

:BBAAAATTHHHH....HHHCC

where:

BB	-	is	a	two	digit	hexadecimal	byte	count	representing	the	number
of	data	bytes	that	will	appear	on	the	line.

AAAA	-	is	a	four	digit	hexadecimal	address	representing	the
starting	address	of	the	data	record.

TT	-	is	a	two	digit	record	type:

00	-	Data	record

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

01	-	End	of	File	record

02	-	Segment	address	record

04	-	Linear	address	record

HH	-	is	a	two	digit	hexadecimal	data	byte,	presented	in	low	byte,
high	byte	combinations.

CC	-	is	a	two	digit	hexadecimal	checksum	that	is	the	two's
complement	of	the	sum	of	all	preceding	bytes	in	the	record.

Symbol	and	Debug	File	(.cod)

A	COD	file	is	used	by	MPLAB	IDE	to	debug	code.	The	COD	file
name,	including	the	path,	has	a	63	character	limit.	MPASM
assembler	and	MPLINK	linker	can	generate	a	COD	file.

Object	File	(.o)

Object	files	are	the	relocatable	code	produced	from	source	files.

MPASM	assembler	assembles	source	files	into	object	files.

MPLINK	linker	combines	object	files	and	library	files,	according
to	a	linker	script,	into	a	single	output	file.
MPLIB	librarian	combines	several	object	files	into	a	single	library

file.

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Assembler	Installation

When	MPLAB	IDE	is	installed,	the	windowed	version	of	MPASM
assembler	is	also	installed.	You	may	obtain	the	MPLAB	IDE
software	either	from	the	latest	MPLAB	IDE	CD-ROM	or	from	our
web	site.

Actually,	there	are	two	versions	of	MPASM	assembler:

a	Windows	version,	MPASMWIN.EXE	(Recommended)

a	DOS	version,	MPASM.EXE,	for	DOS	5.0	or	greater

Available	free	with	MPLAB	IDE

MPASMWIN.EXE	has	a	Windows	shell	interface.
MPASMWIN.EXE	may	be	used	with	Windows	95/98/ME,	Windows
NT/2000	or	Windows	XP.	You	can	use	this	version	with	MPLAB
IDE	(recommended)	or	stand-alone.

Available	free	with	MPLAB	C1X	compilers

MPASM.EXE	has	a	command	line	interface.	MPASM.EXE	may	be
used	with	DOS	or	a	DOS	window	in	Windows	3.x,	Windows
95/98/ME,	Windows	NT/2000	or	Windows	XP.	You	can	use	it	with
MPLAB	IDE,	though	MPASMWIN.EXE	is	recommended.

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Assembler	Usage	with	MPLAB	IDE

How	to	use	MPASM	assembler	with	MPLAB	IDE	v6.xx	and	later	is
discussed	here.	The	windows	version	(mpasmwin.exe)	of	the
assembler	should	be	used	with	MPLAB	IDE.

MPLAB	IDE	Interface

MPLAB	IDE	Projects
Project	and	Assembler	Setup

http://www.microchip.com
mailto:techsupport@microchip.com

MPLAB	IDE	Interface

MPASM	assembler	may	be	used	with	the	MPLAB	IDE	integrated
development	environment	to	provide	GUI	development	of	your
application.	In	order	to	use	MPASM	assembler	with	MPLAB	IDE,
you	must	first	install	MPLAB	IDE.	The	latest	version	of	this	free
software	is	available	at	our	website	(http://www.microchip.com)	or
from	any	sales	office	(back	cover).	When	you	install	MPLAB	IDE,
you	will	be	installing	MPASM	assembler	as	well.

Once	MPLAB	IDE	is	installed	on	your	PC,	check	the	settings	below
to	ensure	that	the	assember	is	installed	properly	as	a	language
tool.

1.	 From	the	MPLAB	IDE	menu	bar,	select	Project>Set	Language
Tool	Locations	to	open	a	dialog	to	set/check	language	tool
executable	location.

FIGURE:	MPASM	ASSEMBLER	EXECUTABLE
LOCATION

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

1.	 In	the	dialog,	under	Registered	Tools,	select	"Microchip
MPASM	Toolsuite".	Click	the	"+"	to	expand.

Select	Executables.	Click	the	"+"	to	expand.

Select	MPASM	Assembler	(mpasmwin.exe).	Under	Location,
a	path	to	the	mpasmwin.exe	file	should	be	displayed.	If	no	path
is	displayed,	enter	one	or	browse	to	the	location	of	this	file.	By
default,	it	is	located	at:

C:\Program	Files\MPLAB
IDE\MCHIP_Tools\mpasmwin.exe

Click	OK.

http://www.microchip.com
mailto:techsupport@microchip.com

MPLAB	IDE	Projects

A	project	in	MPLAB	IDE	is	a	group	of	files	needed	to	build	an
application,	along	with	their	associations	to	various	build	tools.
Below	a	generic	MPLAB	IDE	Project	using	the	MPASM	assembler
tool	is	shown.

FIGURE:	PROJECT	RELATIONSHIPS

In	this	MPLAB	IDE	Project,	an	assembly	source	file	(prog.asm)
is	shown	with	its	associated	assembler	(MPASM	assembler).
MPLAB	IDE	will	use	this	information	to	generate	the	object	file
prog.o	for	input	into	MPLINK	linker.

The	C	source	file	main.c	is	also	shown	with	its	associated
MPLAB	C1X	compiler.	MPLAB	IDE	will	use	this	information	to
generate	an	object	file	(main.o)	for	input	into	the	linker	(MPLINK
linker).	See	either	the	MPLAB	C17	Compiler	User's	Guide
(DS51290)	for	PIC17CXXX	devices	or	the	MPLAB	C18	Compiler
User's	Guide	(DS51288)	for	PIC18XXXXX	devices	for	more
information	on	using	these	compilers.

In	addition,	precompiled	object	files	(precomp.o)	may	be
included	in	a	project,	with	no	associated	tool	required.	Types	of
precompiled	object	files	that	are	generally	required	in	a	project	are:

Start	up	code

Initialization	code
Interrupt	service	routines
Register	definitions

Precompiled	object	files	are	often	device	and/or	memory	model
dependent.	For	more	information	on	available	Microchip
precompiled	object	files,	see	either	the	MPLAB	C17	Compiler
Libraries	(DS51296)	for	PIC17CXXX	devices	or	the	MPLAB	C18
Compiler	Libraries	(DS51297)	for	PIC18XXXXX	devices.

Some	library	files	(math.lib)	are	available	with	the	compiler.
Others	may	be	built	outside	the	project	using	the	librarian	tool
(MPLIB	librarian).	See	the	MPLIB	Object	Librarian	section	later	in
this	manual	for	more	information	on	using	the	librarian.	For	more
information	on	available	Microchip	libraries,	see	the	MPLAB	C1X
library	documents	previously	mentioned.

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

The	object	files,	along	with	library	files	and	a	linker	script	file
(device.lkr)	are	used	to	generate	the	project	output	files	via
the	linker	(MPLINK	linker).	See	the	MPLINK	Object	Linker	section
later	in	this	manual	for	more	information	on	linker	script	files	and
using	the	linker.

The	main	output	file	generated	by	MPLINK	linker	is	the	Hex	file
(prog.hex),	used	by	simulators	(MPLAB	SIM),	emulators
(MPLAB	ICE	2000)	and	programmers	(PRO	MATE	II	and
PICSTART	Plus).	The	other	output	files	are:

COFF	file	(.out).	Intermediate	file	used	by	MPLINK	linker	to
generate	Code	file,	Hex	file,	and	Listing	file.

Code	file	(.cod).	Debug	file	used	by	MPLAB	IDE.
Listing	file	(.lst).	Original	source	code,	side-by-side	with	final

binary	code.
Map	file	(.map).	Shows	the	memory	layout	after	linking.

Indicates	used	and	unused	memory	regions.

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Project	and	Assembler	Setup

To	set	up	an	MPLAB	IDE	project	for	the	first	time,	it	is	advisable	to
use	the	built-in	Project	Wizard	(Project>Project	Wizard.)	In	this
wizard,	you	will	be	able	to	select	a	language	toolsuite	that	uses
MPASM	assembler,	e.g.,	the	Microchip	MPASM	Toolsuite.	For
more	on	the	wizard,	and	MPLAB	IDE	projects,	see	MPLAB	IDE
documentation.

Once	you	have	a	project	set	up,	you	may	then	set	up	properties	of
MPASM	assembler	in	MPLAB	IDE.

1.	 From	the	MPLAB	IDE	menu	bar,	select	Project>Build
Options>Project	to	open	a	dialog	to	set/check	project	build
options.

Note:	MPASM	assembler	does	not	recognize	include
path	information	specified	in	MPLAB	IDE.

Click	on	the	MPASM	Assembler	tab	and	enter/change	assembler
settings.

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Assembler	Usage	without	MPLAB
IDE

How	to	use	MPASM	assembler	without	MPLAB	IDE	is	discussed
here.

The	command-line	version	(mpasm.exe)	may	be	run	from	the
command	line	or	a	command	shell.	The	windows	version
(mpasmwin.exe)	may	be	from	the	command	line	or	a	Windows
shell.

Command	Line	Interface

Command	Shell	Interface
Windows	Shell	Interface
Troubleshooting

http://www.microchip.com
mailto:techsupport@microchip.com

Command	Line	Interface

MPASM	assembler	can	be	invoked	through	the	command	line
interface	(command	prompt)	as	follows:

mpasmwin	[/<Option>[/<Option>...]]	[<filename>]

or

mpasm	[/<Option>[/<Option>...]]	[<filename>]

where

/<Option>	-	refers	to	one	of	the	command	line	options

<filename>	-	is	the	file	being	assembled

For	example,	if	test.asm	exists	in	the	current	directory,	it	can	be
assembled	with	following	command:

mpasmwin	/e	/l	test

The	assembler	defaults	(noted	below)	can	be	overridden	with
options:

Option Result
/<option> Enables	the	option

/<option>+ Enables	the	option

/<option>- Disables	the	option

/<option>
<filename>

If	appropriate,	enables	the	option	and	directs	the	output	to	the	specified
file

If	the	source	filename	is	omitted,	the	appropriate	shell	interface	is
invoked,	i.e.,

mpasmwin	-	a	Windows	interface	is	displayed,	which	includes
a	Help	button

mpasm	-	the	assembler	help	panel	is	displayed	(same	as
mpasm	/?)

Option Default Description
? N/A Displays	the	assembler	help	panel	(mpasm.exe).

a INHX8M Generate	absolute	.cod	and	.hex	output	directly	from	assembler;	/a<hex-
format>,	where	<hex-format>	is	one	of	[INHX8M	|	INHX8S	|	INHX32].

c On Enables/Disables	case	sensitivity.

d N/A Define	a	text	string	substitution;	/d<label>[=<value>].

e On

Enable/Disable/Set	Path	for	error	file.
/e	Enable
/e+	Enable
/e-	Disable
/e	<path>error.file	Enables/sets	path

h N/A Displays	the	assembler	help	panel.

l On

Enable/Disable/Set	Path	for	list	file
/l	Enable
/l+	Enable
/l-	Disable
/l	<path>list.file	Enables/sets	path

m On Enable/Disable	macro	expansion.

o Off

Enable/Disable/Set	Path	for	object	file.
/o	Enable
/o+	Enable
/o-	Disable
/o	<path>object.file	Enables/sets	path

p None Set	the	processor	type;	/p<processor_type>,	where	<processor_type>
is	a	PICmicro	MCU	device,	e.g.,	PIC16C54.

q Off Enable/Disable	quiet	mode	(suppress	screen	output).

r Hex Defines	default	radix;	/r<radix>,	where	<radix>	is	one	of	[HEX	|	DEC	|
OCT].

t 8 List	file	tab	size;	/t<size>.

w 0

Set	message	level;	/w<value>,	where	<value>	is	one	of	[0|1|2].
0	all	messages
1	errors	and	warnings
2	errors	only

x Off

Enable/Disable/Set	Path	for	cross	reference	file.
/x	Enable
/x+	Enable
/x-	Disable
/x	<path>xref.file	Enables/sets	path

y Disabled

Enable/Disable	extended	instruction	set.
/y	Enable
/y+	Enable
/y-	Disable
Can	only	be	enabled	for	processors	which	support	the	extended	instruction	set	and

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

the	generic	processor	PIC18CXX.	/y-	overrides	LIST	PE=<type>	directive.
(Specify	processor	type	and	enable	extended	instruction	set.)

http://www.microchip.com
mailto:techsupport@microchip.com

Command	Shell	Interface

The	MPASM	assembler	command	shell	interface	displays	a	screen
in	Text	Graphics	mode.	It	is	invoked	by	executing	mpasm.exe	in
Windows	Explorer.

On	this	screen,	you	can	fill	in	the	name	of	the	source	file	you	want
to	assemble	and	other	information.

FIGURE:	TEXT	GRAPHICS	MODE	DISPLAY

Source	File

Type	the	name	of	your	source	file.	The	name	can	include	a	DOS
path	and	wild	cards.	If	you	use	wild	cards	(one	of	*	or	?),	a	list	of	all
matching	files	is	displayed	for	you	to	select	from.	To	automatically
enter	*.ASM	in	this	field,	press	<TAB>.

Processor	Type

If	you	do	not	specify	the	processor	in	your	source	file,	use	this	field
to	select	the	processor.	Enter	the	field	by	using	the	arrow	keys,
then	toggle	through	the	processors	by	pressing	<RET>.

Error	File

An	error	file	(<sourcename>.err)	is	created	by	default.	To	turn
the	error	file	off,	use	the	<Ã​>	to	move	to	the	YES	and	press
<RET>	to	change	it	to	NO.	The	error	filename	can	be	changed	by
pressing	the	<TAB>	key	to	move	to	the	shaded	area	and	typing	a
new	name.	Wild	cards	are	not	allowed	in	the	error	filename.

Cross	Reference	File

A	cross	reference	file	(<sourcename>.xrf)	is	not	generated	by
default.	To	create	a	cross	reference	file,	use	the	keyboard	arrow
keys	to	move	to	the	NO	and	press	<RET>	to	change	it	to	YES.	The
cross	reference	filename	can	be	changed	by	pressing	the	<TAB>
key	to	move	to	the	shaded	area	and	typing	a	new	name.	Wild
cards	are	not	allowed	in	the	cross	reference	filename.

Listing	File

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

A	listing	file	(<sourcename>.lst)	is	created	by	default.	To	turn
the	listing	file	off,	use	the	<Ã​>	to	move	to	the	YES	and	press
<RET>	to	change	it	to	NO.	The	listing	filename	can	be	changed	by
pressing	the	<TAB>	key	to	move	to	the	shaded	area	and	typing	a
new	name.	Wild	cards	are	not	allowed	in	the	listing	filename.

HEX	Dump	Type

Set	this	value	to	generate	the	desired	hex	file	format.	Changing
this	value	is	accomplished	by	moving	to	the	field	with	the	<Ã​>	key
and	pressing	the	<RET>	key	to	scroll	through	the	available
options.	To	change	the	hex	filename,	press	the	<TAB>	key	to
move	the	shaded	area,	and	type	in	the	new	name.

Assemble	to	Object	File

Enabling	this	option	will	generate	the	relocatable	object	code	that
can	be	input	to	the	linker	and	suppress	generation	of	the	hex	file.
The	filename	may	be	modified	in	the	same	manner	as	the	error
file.

http://www.microchip.com
mailto:techsupport@microchip.com

Windows	Shell	Interface

MPASM	assembler	for	Windows	provides	a	graphical	interface	for
setting	assembler	options.	It	is	invoked	by	executing
mpasmwin.exe	in	Windows	Explorer.

FIGURE:	MPASM	ASSEMBLER	WINDOWS	SHELL
INTERFACE

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Select	a	source	file	by	typing	in	the	name	or	using	the	Browse
button.	Set	the	various	options	as	described	below.	Then	click
Assemble	to	assemble	the	source	file.

Note:	When	MPASM	assembler	for	Windows	is	invoked	through	MPLAB	IDE,	the
options	screen	is	not	available.	Refer	to	the	Make	Setup	option	in	the	MPLAB	IDE
User's	Guide	for	selecting	assembly	options	in	MPLAB	IDE.

Option Usage
Radix Override	any	source	file	radix	settings.
Warning	Level Override	any	source	file	message	level	settings.
Hex	Output Override	any	source	file	hex	file	format	settings.
Generated	Files Enable/disable	various	output	files.
Case	Sensitivity Enable/disable	case	sensitivity.
Macro	Expansion Override	any	source	file	macro	expansion	settings.
Processor Override	any	source	file	processor	settings.
Tab	Size Set	the	list	file	tab	size.

Extra	Options Any	additional	command	line	options.	See	Command	Line	Interface	for	more
details.

Save	Settings	on
Exit

Save	these	settings	in	mplab.ini.	They	will	be	used	the	next	time	you	run
mpasmwin.exe.

Extended	Mode Enable	extended	mode.

http://www.microchip.com
mailto:techsupport@microchip.com

Troubleshooting

If	you	are	using	mpasm.exe	and	get	a	message	saying	that	you
have	run	out	of	environment	space,	use	Microsoft	Windows
Internet	Explorer	to	select	the	mpasm.exe	file	in	the	MPLAB	IDE
installation	directory,	and	click	on	the	right	mouse	button	to	bring
up	the	Properties	dialog.

FIGURE:	PROPERTIES	DIALOG	-	MPASM.EXE

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Increase	the	size	of	the	Initial	Environment.	Usually	a	setting	of
2048	will	suffice,	but	if	you	have	a	lot	of	applications	that	set
variables	and	add	to	your	path	statement	in	your	AUTOEXEC.BAT
file,	you	may	need	to	make	it	larger.

http://www.microchip.com
mailto:techsupport@microchip.com

Directives

Directives	are	assembler	commands	that	appear	in	the	source
code	but	are	not	translated	directly	into	opcodes.	They	are	used	to
control	the	assembler:	its	input,	output,	and	data	allocation.

Many	of	the	assembler	directives	have	alternate	names	and
formats.	These	may	exist	to	provide	backward	compatibility	with
previous	assemblers	from	Microchip	and	to	be	compatible	with
individual	programming	practices.	If	portable	code	is	desired,	it	is
recommended	that	programs	be	written	using	the	specifications
contained	here.

Note:	Although	MPASM	assembler	is	often	used	with	MPLINK	object	linker,	MPASM
assembler	directives	are	not	supported	by	MPLINK	linker.	See	MPLINK	object
linker	documentation	for	more	information	on	linker	options	to	control	listing	and
hex	file	output.

Directives	discussed	are:

Note:	Directives	are	not	case-sensitive,	e.g.,	cblock	may	be	executed	as	CBLOCK,
cblock,	Cblock,	etc

_	_BADRAM	-	Identify	Unimplemented	RAM

_	_BADROM	-	Identify	Unimplemented	ROM
_	_CONFIG	-	Set	Processor	Configuration	Bits
_	_IDLOCS	-	Set	Processor	ID	Locations
_	_MAXRAM	-	Define	Maximum	RAM	Location
_	_MAXROM	-	Define	Maximum	ROM	Location
#DEFINE	-	Define	a	Text	Substitution	Label
#INCLUDE	-	Include	Additional	Source	File

#UNDEFINE	-	Delete	a	Substitution	Label
BANKISEL	-	Generate	Indirect	Bank	Selecting	Code
BANKSEL	-	Generate	Bank	Selecting	Code
CBLOCK	-	Define	a	Block	of	Constants
CODE	-	Begin	an	Object	File	Code	Section
CODE_PACK	-	Begin	an	Object	File	Packed	Code	Section
CONSTANT	-	Declare	Symbol	Constant
DA	-	Store	Strings	in	Program	Memory
Data	-	Create	Numeric	and	Text	Data
DB	-	Declare	Data	of	One	Byte
DE	-	Declare	EEPROM	Data	Byte
DT	-	Define	Table
DW	-	Declare	Data	of	One	Word
ELSE	-	Begin	Alternative	Assembly	Block	to	IF
END	-	End	Program	Block
ENDC	-	End	an	Automatic	Constant	Block
ENDIF	-	End	Conditional	Assembly	Block
ENDM	-	End	a	Macro	Definition
ENDW	-	End	a	While	Loop
EQU	-	Define	an	Assembler	Constant
ERROR	-	Issue	an	Error	Message
ERRORLEVEL	-	Set	Message	Level
EXITM	-	Exit	from	a	Macro
EXPAND	-	Expand	Macro	Listing
EXTERN	-	Declare	an	Externally	Defined	Label
FILL	-	Specify	Memory	Fill	Value
GLOBAL	-	Export	a	Label
IDATA	-	Begin	an	Object	File	Initialized	Data	Section

IF	-	Begin	Conditionally	Assembled	Code	Block
IFDEF	-	Execute	If	Symbol	has	Been	Defined
IFNDEF	-	Execute	If	Symbol	has	not	Been	Defined
LIST	-	Listing	Options
LOCAL	-	Declare	Local	Macro	Variable
MACRO	-	Declare	Macro	Definition
MESSG	-	Create	User	Defined	Message
NOEXPAND	-	Turn	off	Macro	Expansion
NOLIST	-	Turn	off	Listing	Output
ORG	-	Set	Program	Origin
PAGE	-	Insert	Listing	Page	Eject
PAGESEL	-	Generate	Page	Selecting	Code
PROCESSOR	-	Set	Processor	Type
RADIX	-	Specify	Default	Radix
RES	-	Reserve	Memory
SET	-	Define	an	Assembler	Variable
SPACE	-	Insert	Blank	Listing	Lines
SUBTITLE	-	Specify	Program	Subtitle
TITLE	-	Specify	Program	Title
UDATA	-	Begin	an	Object	File	Uninitialized	Data	Section
UDATA_ACS	-	Begin	an	Object	File	Access	Uninitialized	Data

Section
UDATA_OVR	-	Begin	an	Object	File	Overlayed	Uninitialized	Data

Section
UDATA_SHR	-	Begin	an	Object	File	Shared	Uninitialized	Data

Section
VARIABLE	-	Declare	Symbol	Variable
WHILE	-	Perform	Loop	While	Condition	is	True

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

_	_BADRAM	-	Identify	Unimplemented	RAM

Note:	badram	is	preceded	by	two	underline	characters,	with	no	space	in	between	these
characters.	A	space	is	added	here	for	readibility	only.

Syntax

_	_badram	<expr>[-<expr>][,	<expr>[-<expr>]]

Description

The	_	_maxram	and	_	_badram	directives	together	flag
accesses	to	unimplemented	registers.	_	_badram	defines	the
locations	of	invalid	RAM	addresses.	This	directive	is	designed	for
use	with	the	_	_maxram	directive.	A	_	_maxram	directive	must
proceed	any	_	_badram	directive.	Each	<expr>	must	be	less
than	or	equal	to	the	value	specified	by	_	_maxram.	Once	the	_
_maxram	directive	is	used,	strict	RAM	address	checking	is
enabled,	using	the	RAM	map	specified	by	_	_badram.	To	specify
a	range	of	invalid	locations,	use	the	syntax	<minloc>	-
<maxloc>.

Example

See	the	example	for	_	_maxram.

See	Also

_	_MAXRAM

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

_	_BADROM	-	Identify	Unimplemented	ROM

Note:	badrom	is	preceded	by	two	underline	characters,	with	no	space	in	between	these
characters.	A	space	is	added	here	for	readibility	only.

Syntax

_	_badrom	<expr>[-<expr>][,	<expr>[-<expr>]]

Description

The	_	_maxrom	and	_	_badrom	directives	together	flag
accesses	to	unimplemented	registers.	_	_badrom	defines	the
locations	of	invalid	ROM	addresses.	This	directive	is	designed	for
use	with	the	_	_maxrom	directive.	A	_	_maxrom	directive	must
proceed	any	_	_badrom	directive.	Each	<expr>	must	be	less
than	or	equal	to	the	value	specified	by	_	_maxrom.	Once	the	_
_maxrom	directive	is	used,	strict	ROM	address	checking	is
enabled,	using	the	ROM	map	specified	by	_	_badrom.	To
specify	a	range	of	invalid	locations,	use	the	syntax	<minloc>	-
<maxloc>.

Specifically,	a	warning	will	be	raised	in	the	following
circumstances:

the	target	of	a	GOTO	or	CALL	instruction	is	evaluated	by	the
assembler	to	a	constant,	and	falls	in	a	bad	ROM	region

the	target	of	an	LGOTO	or	LCALL	psuedo-op	is	evaluated	by	the
assembler	to	a	constant,	and	falls	in	a	bad	ROM	region

a	.hex	file	is	being	generated,	and	part	of	an	instruction	falls	in
a	bad	ROM	region

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Example

See	the	example	for	_	_maxrom.

See	Also

_	_MAXROM

http://www.microchip.com
mailto:techsupport@microchip.com

_	_CONFIG	-	Set	Processor	Configuration
Bits

Note:	config	is	preceded	by	two	underline	characters,	with	no	space	in	between	these
characters.	A	space	is	added	here	for	readability	only.

Syntax

_	_config	<expr>	OR	_	_config	<addr>,	<expr>

Description

Sets	the	processor's	configuration	bits	to	the	value	described	by
<expr>.	For	PIC18CXXX	devices,	the	address	of	a	valid
configuration	byte	must	also	be	specified	by	<addr>.	Refer	to
individual	PICmicro	microcontroller	data	sheets	for	a	description	of
the	configuration	bits.

Before	this	directive	is	used,	the	processor	must	be	declared
through	the	command	line,	the	list	directive,	or	the	processor
directive.	If	this	directive	is	used	with	the	PIC17CXXX	family,	the
Hex	file	output	format	must	be	set	to	INHX32	through	the
command	line	or	the	list	directive.

Examples

example	1:
list	p=17c42,f=INHX32	;define	processor	and	select	output	format
_	_config	H'FFFF'	;default	configuration	bits

example	2:
list	p=16f877a	;list	directive	to	define	processor

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

#include	<p16f877a.inc>	;include	file	with	config	bit	definitions
_	_config	_HS_OSC	&	_WDT_OFF	&	_LVP_OFF	;Set	oscillator	to	HS,
;watchdog	time	off,
;low-voltage	prog.	off

example	3:
list	p=18f8720	;list	directive	to	define	processor
#include	<p18f8720.inc>	;include	file	with	config	bit	definitions
__CONFIG	_CONFIG1H,	_OSCS_OFF_1H	&	_HS_OSC_1H	;Set	osc
info
__CONFIG	_CONFIG2L,	_BOR_OFF_2L	&	_PWRT_OFF_2L	;Set
power	info

See	Also

_	_IDLOCS	LIST	PROCESSOR

http://www.microchip.com
mailto:techsupport@microchip.com

_	_IDLOCS	-	Set	Processor	ID	Locations

Note:	idlocs	is	preceded	by	two	underline	characters,	with	no	space	in	between	these
characters.	A	space	is	added	here	for	readibility	only.

Syntax

_	_idlocs	<expr>	or	_	_idlocs	<expr1>,	<expr2>

Description

For	PIC12CXXX	and	PIC16CXXX	devices,	_	_idlocs	sets	the
four	ID	locations	to	the	hexadecimal	value	of	<expr>.	For
PIC18CXXX	devices,	_	_idlocs	sets	the	two-byte	device	ID
<expr1>	to	the	hexadecimal	value	of	<expr2>.	This	directive	is
not	valid	for	the	PIC17CXXX	family.

For	example,	if	<expr>	evaluates	to	1AF,	the	first	(lowest
address)	ID	location	is	zero,	the	second	is	one,	the	third	is	ten,	and
the	fourth	is	fifteen.

Before	this	directive	is	used,	the	processor	must	be	declared
through	the	command	line,	the	list	directive,	or	the	processor
directive.

Example

_	_idlocs	H'1234'

See	Also

_	_CONFIG	LIST	PROCESSOR

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

_	_MAXRAM	-	Define	Maximum	RAM
Location

Note:	maxram	is	preceded	by	two	underline	characters,	with	no	space	in	between	these
characters.	A	space	is	added	here	for	readibility	only.

Syntax

_	_maxram	<expr>

Description

The	_	_maxram	and	_	_badram	directives	together	flag
accesses	to	unimplemented	registers.	_	_maxram	defines	the
absolute	maximum	valid	RAM	address	and	initializes	the	map	of
valid	RAM	addresses	to	all	addresses	valid	at	and	below	<expr>.
<expr>	must	be	greater	than	or	equal	to	the	maximum	page	0
RAM	address	and	less	than	1000H.	This	directive	is	designed	for
use	with	the	_	_badram	directive.	Once	the	
_	_maxram	directive	is	used,	strict	RAM	address	checking	is
enabled,	using	the	RAM	map	specified	by	_	_badram.

_	_maxram	can	be	used	more	than	once	in	a	source	file.	Each
use	redefines	the	maximum	valid	RAM	address	and	resets	the
RAM	map	to	all	locations.

Example

list	p=16c622
__maxram	H'0BF'
__badram	H'07'-H'09',	H'0D'-H'1E'
__badram	H'87'-H'89',	H'8D',	H'8F'-H'9E'

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

movwf	H'07'	;	Generates	invalid	RAM	warning
movwf	H'87'	;	Generates	invalid	RAM	warning
;	and	truncation	message

See	Also

_	_BADRAM

http://www.microchip.com
mailto:techsupport@microchip.com

_	_MAXROM	-	Define	Maximum	ROM
Location

Note:	maxrom	is	preceded	by	two	underline	characters,	with	no	space	in	between	these
characters.	A	space	is	added	here	for	readibility	only.

Syntax

_	_maxrom	<expr>

Description

The	_	_maxrom	and	_	_badrom	directives	together	flag
accesses	to	unimplemented	registers.	_	_maxrom	defines	the
absolute	maximum	valid	ROM	address	and	initializes	the	map	of
valid	ROM	addresses	to	all	addresses	valid	at	and	below	<expr>.
<expr>	must	be	greater	than	or	equal	to	the	maximum	ROM
address	of	the	target	device.	This	directive	is	designed	for	use	with
the	_	_badrom	directive.	Once	the	
_	_maxrom	directive	is	used,	strict	ROM	address	checking	is
enabled,	using	the	ROM	map	specified	by	_	_badrom.

_	_maxrom	can	be	used	more	than	once	in	a	source	file.	Each
use	redefines	the	maximum	valid	ROM	address	and	resets	the
ROM	map	to	all	locations.

Example

list	p=12c508
__maxrom	0x1FF
__badrom	0x2	-	0x4,	0xA
org	0x5

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

goto	0x2	;	generates	a	warning
call	0x3	;	generates	a	warning
org	0xA
movlw	5	;	generates	a	warning

See	Also

_	_BADROM

http://www.microchip.com
mailto:techsupport@microchip.com

#DEFINE	-	Define	a	Text	Substitution	Label

Syntax

#define	<name>	[<string>]

Description

This	directive	defines	a	text	substitution	string.	Wherever	<name>
is	encountered	in	the	assembly	code,	<string>	will	be
substituted.

Using	the	directive	with	no	<string>	causes	a	definition	of
<name>	to	be	noted	internally	and	may	be	tested	for	using	the
ifdef	directive.

This	directive	emulates	the	ANSI	'C'	standard	for	#define.
Symbols	defined	with	this	method	are	not	available	for	viewing
using	MPLAB	IDE.

Example

#define	length	20
#define	control	0x19,7
#define	position(X,Y,Z)	(Y-(2	*	Z	+X))
:
:
test_label	dw	position(1,	length,	512)
bsf	control	;	set	bit	7	in	f19

See	Also

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

#UNDEFINE	#INCLUDE	IFDEF	IFNDEF

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

#INCLUDE	-	Include	Additional	Source	File

Syntax

#include	<<include_file>>
#include	"<include_file>"

Description

The	specified	file	is	read	in	as	source	code.	The	effect	is	the	same
as	if	the	entire	text	of	the	included	file	were	inserted	into	the	file	at
the	location	of	the	include	statement.	Upon	end-of-file,	source	code
assembly	will	resume	from	the	original	source	file.	Up	to	5	levels	of
nesting	are	permitted.	Up	to	255	include	files	are	allowed.

<include_file>	may	be	enclosed	in	quotes	or	angle	brackets.
If	a	fully	qualified	path	is	specified,	only	that	path	will	be	searched.
Otherwise,	the	search	order	is:	current	working	directory,	source
file	directory,	MPASM	assembler	executable	directory.

Example

#include	"c:\sys\sysdefs.inc"	;	system	defs
#include	<regs.h>	;	register	defs

See	Also

#DEFINE	#UNDEFINE

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

#UNDEFINE	-	Delete	a	Substitution	Label

Syntax

#undefine	<label>

Description

<label>	is	an	identifier	previously	defined	with	the	#define
directive.	It	must	be	a	valid	MPASM	assembler	label.	The	symbol
named	is	removed	from	the	symbol	table.

Example

#define	length	20
:
#undefine	length

See	Also

#DEFINE	#INCLUDE	IFDEF	IFNDEF

http://www.microchip.com
mailto:techsupport@microchip.com

BANKISEL	-	Generate	Indirect	Bank
Selecting	Code

Syntax

bankisel	<label>

Description

For	use	when	generating	an	object	file.	This	directive	is	an
instruction	to	the	linker	to	generate	the	appropriate	bank	selecting
code	for	an	indirect	access	of	the	address	specified	by	<label>.
Only	one	<label>	should	be	specified.	No	operations	can	be
performed	on	<label>.	<label>	must	have	been	previously
defined.

The	linker	will	generate	the	appropriate	bank	selecting	code.	For
14-bit	core	devices,	the	appropriate	bit	set/clear	instruction	on	the
IRP	bit	in	the	STATUS	register	will	be	generated.	For	the	16-bit
core	devices,	MOVLB	or	MOVLR	will	be	generated.	If	the	user	can
completely	specify	the	indirect	address	without	these	instructions,
no	code	will	be	generated.

For	more	information,	refer	to	Relocatable	Objects.

Example

movlw	Var1
movwf	FSR
bankisel	Var1
:
movwf	INDF

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

See	Also

BANKSEL	PAGESEL

http://www.microchip.com
mailto:techsupport@microchip.com

BANKSEL	-	Generate	Bank	Selecting	Code

Syntax

banksel	<label>

Description

For	use	when	generating	an	object	file.	This	directive	is	an
instruction	to	the	linker	to	generate	bank	selecting	code	to	set	the
bank	to	the	bank	containing	the	designated	<label>.	Only	one
<label>	should	be	specified.	No	operations	can	be	performed
on	<label>.	<label>	must	have	been	previously	defined.

The	linker	will	generate	the	appropriate	bank	selecting	code.	For
12-bit	core	devices,	the	appropriate	bit	set/clear	instructions	on	the
FSR	will	be	generated.	For	14-bit	devices,	bit	set/clear	instructions
on	the	STATUS	register	will	be	generated.	For	the	16-bit	core
devices,	MOVLB	or	MOVLR	will	be	generated.	For	the	enhanced
16-bit	core	devices,	MOVLB	will	be	generated.	If	the	device
contains	only	one	bank	of	RAM,	no	instructions	will	be	generated.

For	more	information,	refer	to	Relocatable	Objects.

Example

banksel	Var1
movwf	Var1

See	Also

BANKISEL	PAGESEL

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

CBLOCK	-	Define	a	Block	of	Constants

Syntax

cblock	[<expr>]
<label>[:<increment>][,<label>[:<increment>]]
endc

Description

Define	a	list	of	named	constants.	Each	<label>	is	assigned	a
value	of	one	higher	than	the	previous	<label>.	The	purpose	of
this	directive	is	to	assign	address	offsets	to	many	labels.	The	list	of
names	end	when	an	endc	directive	is	encountered.

<expr>	indicates	the	starting	value	for	the	first	name	in	the	block.
If	no	expression	is	found,	the	first	name	will	receive	a	value	one
higher	than	the	final	name	in	the	previous	cblock.	If	the	first	cblock
in	the	source	file	has	no	<expr>,	assigned	values	start	with	zero.

If	<increment>	is	specified,	then	the	next	<label>	is
assigned	the	value	of	
<increment>	higher	than	the	previous	<label>.

Multiple	names	may	be	given	on	a	line,	separated	by	commas.

cblock	is	useful	for	defining	constants	in	program	and	data
memory.

Example

cblock	0x20	;	name_1	will	be	assigned	20
name_1,	name_2	;	name_2,	21	and	so	on

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

name_3,	name_4	;	name_4	is	assigned	23.
endc
cblock	0x30
TwoByteVar:	0,	TwoByteHigh,	TwoByteLow
Queue:	QUEUE_SIZE
QueueHead,	QueueTail
Double1:2,	Double2:2
endc

See	Also

ENDC

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

CODE	-	Begin	an	Object	File	Code	Section

Syntax

[<label>]	code	[<ROM	address>]

Description

For	use	when	generating	an	object	file.	Declares	the	beginning	of	a
section	of	program	code.	If	<label>	is	not	specified,	the	section
is	named	.code.	The	starting	address	is	initialized	to	the
specified	address	or	will	be	assigned	at	link	time	if	no	address	is
specified.

Note:	Two	sections	in	the	same	source	file	may	not	have	the	same	name.

For	more	information,	refer	to	Relocatable	Objects.

Example

RESET	code	H'01FF'
goto	START

See	Also

EXTERN	CODE_PACK	GLOBAL	IDATA	UDATA	UDATA_ACS
UDATA_OVR	UDATA_SHR

http://www.microchip.com
mailto:techsupport@microchip.com

CODE_PACK	-	Begin	an	Object	File	Packed
Code	Section

Syntax

[<label>]	code_pack	[<ROM	address>]

Description

For	use	when	generating	an	object	file.	Declares	the	beginning	of	a
section	of	program	code	or	ROM	data	where	a	padding	byte	of
zero	is	not	appended	to	an	odd	number	of	bytes.	If	<label>	is
not	specified,	the	section	is	named	.code.	The	starting	address	is
initialized	to	<ROM	address>	or	will	be	assigned	at	link	time	if
no	address	is	specified.	If	<ROM	address>	is	specified,	it	must
be	word-aligned.

Note:	Two	sections	in	the	same	source	file	may	not	have	the	same	name

For	more	information,	refer	to	Relocatable	Objects.

Note:	This	directive	is	only	available	for	the	PIC18	family	of	devices.

Example

00001	LIST	P=18Cxx
00002
00003	packed	code_pack	H'1F0'
0001F0	01	02	03	00004	DB	1,	2,	3
0001F3	04	05	00005	DB	4,	5
00006
00007	padded	code

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

000000	0201	0003	00008	DB	1,	2,	3
000004	0504	00009	DB	4,	5
00010
00011	END

See	Also

EXTERN	CODE	GLOBAL	IDATA	UDATA	UDATA_ACS
UDATA_OVR	UDATA_SHR

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.

CONSTANT	-	Declare	Symbol	Constant

Syntax

constant	<label>=<expr>	[...,<label>=<expr>]

Description

Creates	symbols	for	use	in	MPASM	assembler	expressions.
Constants	may	not	be	reset	after	having	once	been	initialized,	and
the	expression	must	be	fully	resolvable	at	the	time	of	the
assignment.	This	is	the	principal	difference	between	symbols
declared	as	constant	and	those	declared	as	variable,	or	created	by
the	set	directive.	Otherwise,	constants	and	variables	may	be	used
interchangeably	in	expressions.

Example

variable	RecLength=64	;	Set	Default
;	RecLength
constant	BufLength=512	;	Init	BufLength
.	;	RecLength	may
.	;	be	reset	later
.	;	in	RecLength=128
.	;
constant	MaxMem=RecLength+BufLength	;CalcMaxMem

See	Also

SET	VARIABLE

Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

DA	-	Store	Strings	in	Program	Memory

Syntax

[<label>]	da	<expr>	[,	<expr2>,	...,	<exprn>]

Description

Generates	a	packed	14-bit	number	representing	two	7-bit	ASCII
characters.	This	is	useful	for	storing	strings	in	memory	for	the
PICmicro	MCU	Flash	ROM	devices.

Examples

da	"abcdef"

will	put	30E2	31E4	32E6	3380	into	program	memory

da	"12345678"	,0

will	put	18B2	19B4	1AB6	0000	into	program	memory

da	0xFFFF

will	put	0x3FFF	into	program	memory

http://www.microchip.com
mailto:techsupport@microchip.com

Data	-	Create	Numeric	and	Text	Data

Syntax

[<label>]	data	<expr>,[,<expr>,...,<expr>]
[<label>]	data	"<text_string>"[,"<text_string>",...]

Description

Initialize	one	or	more	words	of	program	memory	with	data.	The
data	may	be	in	the	form	of	constants,	relocatable	or	external
labels,	or	expressions	of	any	of	the	above.	The	data	may	also
consist	of	ASCII	character	strings,	<text_string>,	enclosed	in
single	quotes	for	one	character	or	double	quotes	for	strings.	Single
character	items	are	placed	into	the	low	byte	of	the	word,	while
strings	are	packed	two	to	a	word.	If	an	odd	number	of	characters
are	given	in	a	string,	the	final	byte	is	zero.	On	all	families	except
the	PIC18CXXX,	the	first	character	is	in	the	most	significant	byte	of
the	word.	On	the	PIC18CXXX,	the	first	character	is	in	the	least
significant	byte	of	the	word.

When	generating	an	object	file,	this	directive	can	also	be	used	to
declare	initialized	data	values.	Refer	to	the	idata	directive	for
more	information.

Example

data	reloc_label+10	;	constants
data	1,2,ext_label	;	constants,	externals
data	"testing	1,2,3"	;	text	string
data	'N'	;	single	character
data	start_of_program	;	relocatable	label

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

See	Also

DB	DE	DT	DW	IDATA

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

DB	-	Declare	Data	of	One	Byte

Syntax

[<label>]	db	<expr>[,<expr>,...,<expr>]

Description

Reserve	program	memory	words	with	packed	8-bit	values.	Multiple
expressions	continue	to	fill	bytes	consecutively	until	the	end	of
expressions.	Should	there	be	an	odd	number	of	expressions,	the
last	byte	will	be	zero.

When	generating	an	object	file,	this	directive	can	also	be	used	to
declare	initialized	data	values.	Refer	to	the	idata	directive	for
more	information.

Example

db	't',	0x0f,	'e',	0x0f,	's',	0x0f,	't',	'\n'

See	Also

DATA	DE	DT	DW	IDATA

http://www.microchip.com
mailto:techsupport@microchip.com

DE	-	Declare	EEPROM	Data	Byte

Syntax

[<label>]	de	<expr>	[,	<expr>,	...,	<expr>]

Description

Although	designed	for	initializing	EEPROM	data	on	the	PIC16F8X,
the	directive	can	be	used	at	any	location	for	any	processor.

PIC18XXXX

Reserve	memory	word	bytes	are	packed.

When	using	de,	make	sure	to	specify	the	start	of	data	memory	at
0xF00000	for	use	with	programmers.

Other	PICmicro's

Reserve	memory	words	with	8-bit	data.	Each	<expr>	must
evaluate	to	an	8-bit	value.	The	upper	bits	of	the	program	word	are
zeroes.	Each	character	in	a	string	is	stored	in	a	separate	word.

When	using	de,	make	sure	to	specify	the	start	of	data	memory	at
0x2100	for	use	with	programmers.

Example

org	H'2100'	;	Initialize	EEPROM	Data
de	"My	Program,	v1.0",	0

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

See	Also

DATA	DB	DT	DW

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

DT	-	Define	Table

Syntax

[<label>]	dt	<expr>	[,	<expr>,	...,	<expr>]

Description

Generates	a	series	of	RETLW	instructions,	one	instruction	for	each
<expr>.	Each	<expr>	must	be	an	8-bit	value.	Each	character	in
a	string	is	stored	in	its	own	RETLW	instruction.

Example

dt	"A	Message",	0
dt	FirstValue,	SecondValue,	EndOfValues

See	Also

DATA	DB	DE	DW

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

DW	-	Declare	Data	of	One	Word

Syntax

[<label>]	dw	<expr>[,<expr>,...,<expr>]

Description

Reserve	program	memory	words	for	data,	initializing	that	space	to
specific	values.	For	PIC18CXXX	devices,	dw	functions	like	db.
Values	are	stored	into	successive	memory	locations	and	the
location	counter	is	incremented	by	one.	Expressions	may	be	literal
strings	and	are	stored	as	described	in	the	data	directive.

When	generating	an	object	file,	this	directive	can	also	be	used	to
declare	initialized	data	values.	Refer	to	the	idata	directive	for
more	information.

Example

dw	39,	"diagnostic	39",	(d_list*2+d_offset)
dw	diagbase-1

See	Also

DATA	DB	IDATA

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

ELSE	-	Begin	Alternative	Assembly	Block	to
IF

Syntax

else

Description

Used	in	conjunction	with	an	if	directive	to	provide	an	alternative
path	of	assembly	code	should	the	if	evaluate	to	false.	else	may
be	used	inside	a	regular	program	block	or	macro.

Example

speed	macro	rate
if	rate	<	50
dw	slow
else
dw	fast
endif
endm

See	Also

ENDIF	IF

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

END	-	End	Program	Block

Syntax

end

Description

Indicates	the	end	of	the	program.

Example

list	p=17c42
:	;	executable	code
:	;
end	;	end	of	instructions

See	Also

ORG

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

ENDC	-	End	an	Automatic	Constant	Block

Syntax

endc

Description

endc	terminates	the	end	of	a	cblock	list.	It	must	be	supplied	to
terminate	the	list.

See	Also

CBLOCK

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

ENDIF	-	End	Conditional	Assembly	Block

Syntax

endif

Description

This	directive	marks	the	end	of	a	conditional	assembly	block.
endif	may	be	used	inside	a	regular	program	block	or	macro.

See	Also

ELSE	IF

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

ENDM	-	End	a	Macro	Definition

Syntax

endm

Description

Terminates	a	macro	definition	begun	with	macro.

Example

make_table	macro	arg1,	arg2
dw	arg1,	0	;	null	terminate	table	name
res	arg2	;	reserve	storage
endm

See	Also

MACRO	EXITM

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

ENDW	-	End	a	While	Loop

Syntax

endw

Description

endw	terminates	a	while	loop.	As	long	as	the	condition	specified
by	the	while	directive	remains	true,	the	source	code	between	the
while	directive	and	the	endw	directive	will	be	repeatedly
expanded	in	the	assembly	source	code	stream.	This	directive	may
be	used	inside	a	regular	program	block	or	macro.

Example

See	the	example	for	WHILE.

See	Also

WHILE

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

EQU	-	Define	an	Assembler	Constant

Syntax

<label>	equ	<expr>

Description

The	value	of	<expr>	is	assigned	to	<label>.

Example

four	equ	4	;	assigned	the	numeric	value	of	4	to	label	four

See	Also

SET

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

ERROR	-	Issue	an	Error	Message

Syntax

error	"<text_string>"

Description

<text_string>	is	printed	in	a	format	identical	to	any	MPASM
assembler	error	message.	<text_string>	may	be	from	1	to	80
characters.

Example

error_checking	macro	arg1
if	arg1	>=	55	;	if	arg	is	out	of	range
error	"error_checking-01	arg	out	of	range"
endif
endm

See	Also

MESSG

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

ERRORLEVEL	-	Set	Message	Level

Syntax

errorlevel	{0|1|2|+<msgnum>|-<msgnum>}	[,	...]

Description

Sets	the	types	of	messages	that	are	printed	in	the	listing	file	and
error	file.

Setting Affect
0 Messages,	warnings,	and	errors	printed

1 Warnings	and	errors	printed

2 Errors	printed

-<msgnum> Inhibits	printing	of	message	<msgnum>
+<msgnum> Enables	printing	of	message	<msgnum>

Error	messages	cannot	be	disabled.	The	setting	of	0,	1,	or	2
overrides	individual	message	disabling	or	enabling.

Example

errorlevel	1,	-202

See	Also

LIST	ERROR

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

EXITM	-	Exit	from	a	Macro

Syntax

exitm

Description

Force	immediate	return	from	macro	expansion	during	assembly.
The	effect	is	the	same	as	if	an	endm	directive	had	been
encountered.

Example

test	macro	filereg
if	filereg	==	1	;	check	for	valid	file
exitm
else
error	"bad	file	assignment"
endif
endm

See	Also

ENDM	MACRO

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

EXPAND	-	Expand	Macro	Listing

Syntax

expand

Description

Expand	all	macros	in	the	listing	file.	This	directive	is	roughly
equivalent	to	the	/m	MPASM	assembler	command	line	option,	but
may	be	disabled	by	the	occurrence	of	a	subsequent	noexpand.

See	Also

MACRO	NOEXPAND

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site

EXTERN	-	Declare	an	Externally	Defined
Label

Syntax

extern	<label>	[,	<label>...]

Description

For	use	when	generating	an	object	file.	Declares	symbol	names
that	may	be	used	in	the	current	module	but	are	defined	as	global	in
a	different	module.

The	extern	statement	must	be	included	before	the	<label>	is
used.	At	least	one	label	must	be	specified	on	the	line.	If	<label>
is	defined	in	the	current	module,	MPASM	assembler	will	generate
a	duplicate	label	error.

For	more	information,	refer	to	Relocatable	Objects.

Example

extern	Function
:
call	Function

See	Also

GLOBAL	IDATA	UDATA	UDATA_ACS	UDATA_OVR	UDATA_SHR

http://www.microchip.com

Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

mailto:techsupport@microchip.com

FILL	-	Specify	Memory	Fill	Value

Syntax

[<label>]	fill	<expr>,<count>

Description

Generates	<count>	occurrences	of	the	program	word	or	byte
(PIC18CXXX	devices),	<expr>.	If	bounded	by	parentheses,
<expr>	can	be	an	assembler	instruction.

Examples

example	1
fill	0x1009,	5	;	fill	with	a	constant
fill	(GOTO	RESET_VECTOR),	NEXT_BLOCK-$

example	2
list	p=18f252
org	0x12
foo	goto	$
org	0x100
fill(goto	foo),	(h'8000'-$)/2	;Divide	by	2	for	2-word
;instructions
end

See	Also

DATA	DW	ORG

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200

GLOBAL	-	Export	a	Label

Syntax

global	<label>	[,	<label>...]

Description

For	use	when	generating	an	object	file.	Declares	symbol	names
that	are	defined	in	the	current	module	and	should	be	available	to
other	modules.	At	least	one	label	must	be	specified	on	the	line.

For	more	information,	refer	to	Relocatable	Objects.

Example

udata
Var1	res	1
Var2	res	1
global	Var1,	Var2
code
AddThree
global	AddThree
addlw	3
return

See	Also

EXTERN	IDATA	UDATA	UDATA_ACS	UDATA_OVR	UDATA_SHR

http://www.microchip.com

Fax:	(480)	899-9210
Microchip's	E-mail	Address

mailto:techsupport@microchip.com

IDATA	-	Begin	an	Object	File	Initialized	Data
Section

Syntax

[<label>]	idata	[<RAM	address>]

Description

For	use	when	generating	an	object	file.	Declares	the	beginning	of	a
section	of	initialized	data.	If	<label>	is	not	specified,	the	section
is	named	.idata.	The	starting	address	is	initialized	to	the
specified	address	or	will	be	assigned	at	link	time	if	no	address	is
specified.	No	code	can	be	generated	in	this	segment.

The	linker	will	generate	a	look-up	table	entry	for	each	byte
specified	in	an	idata	section.	You	must	then	link	or	include	the
appropriate	initialization	code.	Examples	of	initialization	code	that
may	be	used	and	modified	as	needed	may	be	found	with	MPLINK
linker	sample	application	examples.

Note:	This	directive	is	not	available	for	12-bit	core	devices.

The	res,	db	and	dw	directives	may	be	used	to	reserve	space	for
variables.	res	will	generate	an	initial	value	of	zero.	db	will
initialize	successive	bytes	of	RAM.	dw	will	initialize	successive
bytes	of	RAM,	one	word	at	a	time,	in	low-byte/high-byte	order.

For	more	information,	refer	to	Relocatable	Objects.

Example

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

idata
LimitL	dw	0
LimitH	dw	D'300'
Gain	dw	D'5'
Flags	db	0
String	db	'Hi	there!'

See	Also

EXTERN	GLOBAL	UDATA	UDATA_ACS	UDATA_OVR
UDATA_SHR

http://www.microchip.com
mailto:techsupport@microchip.com

IF	-	Begin	Conditionally	Assembled	Code
Block

Syntax

if	<expr>

Description

Begin	execution	of	a	conditional	assembly	block.	If	<expr>
evaluates	to	true,	the	code	immediately	following	the	if	will
assemble.	Otherwise,	subsequent	code	is	skipped	until	an	else
directive	or	an	endif	directive	is	encountered.

An	expression	that	evaluates	to	zero	is	considered	logically
FALSE.	An	expression	that	evaluates	to	any	other	value	is
considered	logically	TRUE.	The	if	and	while	directives	operate
on	the	logical	value	of	an	expression.	A	relational	TRUE
expression	is	guaranteed	to	return	a	nonzero	value,	FALSE	a
value	of	zero.

if's	may	be	nested	up	to	16	deep.

Example

if	version	==	100;	check	current	version
movlw	0x0a
movwf	io_1
else
movlw	0x01a
movwf	io_2
endif

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

See	Also

ELSE	ENDIF

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

IFDEF	-	Execute	If	Symbol	has	Been	Defined

Syntax

ifdef	<label>

Description

If	<label>	has	been	previously	defined,	usually	by	issuing	a
#define	directive	or	by	setting	the	value	on	the	MPASM
assembler	command	line,	the	conditional	path	is	taken.	Assembly
will	continue	until	a	matching	else	or	endif	directive	is
encountered.

Example

#define	testing	1	;	set	testing	"on"
:
ifdef	testing
<execute	test	code>	;	this	path	would	be	executed.
endif

See	Also

#DEFINE	#UNDEFINE	ELSE	ENDIF	IFNDEF

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200

IFNDEF	-	Execute	If	Symbol	has	not	Been
Defined

Syntax

ifndef	<label>

Description

If	<label>	has	not	been	previously	defined,	or	has	been
undefined	by	issuing	an	#undefine	directive,	then	the	code
following	the	directive	will	be	assembled.	Assembly	will	be	enabled
or	disabled	until	the	next	matching	else	or	endif	directive	is
encountered.

Example

#define	testing1	;	set	testing	on
:
#undefine	testing1	;	set	testing	off
ifndef	testing	;	if	not	in	testing	mode
:	;	execute	this	path
endif
end	;	end	of	source

See	Also

#DEFINE	#UNDEFINE	ELSE	ENDIF	IFDEF

http://www.microchip.com

Fax:	(480)	899-9210
Microchip's	E-mail	Address

mailto:techsupport@microchip.com

LIST	-	Listing	Options

Syntax

list	[<list_option>,	...,	<list_option>]

Description

Occurring	on	a	line	by	itself,	the	list	directive	has	the	effect	of
turning	listing	output	on,	if	it	had	been	previously	turned	off.
Otherwise,	one	of	the	following	list	options	can	be	supplied	to
control	the	assembly	process	or	format	the	listing	file.

List	Directive	Options

Option Default Description
b=nnn 8 Set	tab	spaces.

c=nnn 132 Set	column	width.

f=
<format> INHX8M Set	the	hex	file	output.	<format>	can	be	INHX32,	INHX8M,	or	INHX8S.

free FIXED Use	free-format	parser.	Provided	for	backward	compatibility.

fixed FIXED Use	fixed-format	parser.

mm=
{ON|OFF} On Print	memory	map	in	list	file.

n=nnn 60 Set	lines	per	page.

p=<type> None Set	processor	type;	for	example,	PIC16C54.

pe=
<type> None

Set	processor	type	and	enable	extended	instruction	set,	for	example;	LIST
pe=PIC18F4620
Only	valid	with	processors	which	support	the	extended	instruction	set	and	the
generic	processor	PIC18CXX.	Is	overridden	by	command-line	option	/y-
(disable	extended	instruction	set).

r=
<radix> hex Set	default	radix:	hex,	dec,	oct.

st=
{ON|OFF} On Print	symbol	table	in	list	file.

t=
{ON|OFF} Off Truncate	lines	of	listing	(otherwise	wrap).

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

w=
{0|1|2}

0 Set	the	message	level.	See	ERRORLEVEL.

x=
{ON|OFF} On Turn	macro	expansion	on	or	off.

Note:	All	list	options	are	evaluated	as	decimal	numbers.

Example

list	p=17c42,	f=INHX32,	r=DEC

See	Also

ERRORLEVEL	EXPAND	NOEXPAND	NOLIST	PROCESSOR	RADIX

http://www.microchip.com
mailto:techsupport@microchip.com

LOCAL	-	Declare	Local	Macro	Variable

Syntax

local	<label>[,<label>...]

Description

Declares	that	the	specified	data	elements	are	to	be	considered	in
local	context	to	the	macro.	<label>	may	be	identical	to	another
label	declared	outside	the	macro	definition;	there	will	be	no	conflict
between	the	two.

If	the	macro	is	called	recursively,	each	invocation	will	have	its	own
local	copy.

Example

<main	code	segment>
:
:
len	equ	10	;	global	version
size	equ	20	;	note	that	a	local	variable
;	may	now	be	created	and	modified
test	macro	size
local	len,	label	;	local	len	and	label
len	set	size	;	modify	local	len
label	res	len	;	reserve	buffer
len	set	len-20
endm	;	end	macro

See	Also

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

ENDM	MACRO

http://www.microchip.com
mailto:techsupport@microchip.com

MACRO	-	Declare	Macro	Definition

Syntax

<label>	macro	[<arg>,	...,	<arg>]

Description

A	macro	is	a	sequence	of	instructions	that	can	be	inserted	in	the
assembly	source	code	by	using	a	single	macro	call.	The	macro
must	first	be	defined,	then	it	can	be	referred	to	in	subsequent
source	code.

Arguments	are	read	in	from	the	source	line,	stored	in	a	linked	list
and	then	counted.	The	maximum	number	of	arguments	would	be
the	number	of	arguments	that	would	fit	on	the	source	line,	after	the
label	and	macro	terms.	The	maximum	source	line	length	is	200.

A	macro	can	call	another	macro,	or	may	call	itself	recursively.	The
maximum	number	of	nested	macro	calls	is	16.

Please	refer	to	Macro	Language	for	more	information.

Example

Read	macro	device,	buffer,	count
movlw	device
movwf	ram_20
movlw	buffer	;	buffer	address
movwf	ram_21
movlw	count	;	byte	count
call	sys_21	;	read	file	call
endm

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

See	Also

ENDM	EXITM	LOCAL

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

MESSG	-	Create	User	Defined	Message

Syntax

messg	"<message_text>"

Description

Causes	an	informational	message	to	be	printed	in	the	listing	file.
The	message	text	can	be	up	to	80	characters.	Issuing	a	messg
directive	does	not	set	any	error	return	codes.

Example

mssg_macro	macro
messg	"mssg_macro-001	invoked	without	argument"
endm

See	Also

ERROR

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

NOEXPAND	-	Turn	off	Macro	Expansion

Syntax

noexpand

Description

Turns	off	macro	expansion	in	the	listing	file.

See	Also

EXPAND

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

NOLIST	-	Turn	off	Listing	Output

Syntax

nolist

Description

Turn	off	listing	file	output.

See	Also

LIST

http://www.microchip.com
mailto:techsupport@microchip.com

ORG	-	Set	Program	Origin

Syntax

[<label>]	org	<expr>

Description

Set	the	program	origin	for	subsequent	code	at	the	address	defined
in	<expr>.	If	<label>	is	specified,	it	will	be	given	the	value	of
the	<expr>.	If	no	org	is	specified,	code	generation	will	begin	at
address	zero.

For	PIC18CXXX	devices,	only	even	<expr>	values	are	allowed.

When	generating	an	object	file,	the	org	directive	is	interpreted	as
introducing	an	absolute	CODE	section	with	an	internally	generated
name.	For	example:

L1:	org	0x200

is	interpreted	as:

.scnname	CODE	0x200
L1:

where	.scnname	is	generated	by	the	assembler,	and	will	be
distinct	from	every	name	previously	generated	in	this	context.

Example

int_1	org	0x20
;	Vector	20	code	goes	here
int_2	org	int_1+0x10

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;	Vector	30	code	goes	here

See	Also

FILL	RES	END

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

PAGE	-	Insert	Listing	Page	Eject

Syntax

page

Description

Inserts	a	page	eject	into	the	listing	file.

See	Also

LIST	SUBTITLE	TITLE

http://www.microchip.com
mailto:techsupport@microchip.com

PAGESEL	-	Generate	Page	Selecting	Code

Syntax

pagesel	<label>

Description

For	use	when	generating	an	object	file.	An	instruction	to	the	linker
to	generate	page	selecting	code	to	set	the	page	bits	to	the	page
containing	the	designated	<label>.	Only	one	<label>	should
be	specified.	No	operations	can	be	performed	on	<label>.
<label>	must	have	been	previously	defined.

The	linker	will	generate	the	appropriate	page	selecting	code.	For
12-bit	core	devices,	the	appropriate	bit	set/clear	instructions	on	the
STATUS	register	will	be	generated.	For	14-bit	and	16-bit	core
devices,	MOVLW	and	MOVWF	instructions	will	be	generated	to
modify	the	PCLATH.	If	the	device	contains	only	one	page	of
program	memory,	no	code	will	be	generated.

For	PIC18CXXX	devices,	this	command	will	do	nothing.

For	more	information,	refer	to	Relocatable	Objects.

Example

pagesel	GotoDest
goto	GotoDest
:
pagesel	CallDest
call	CallDest

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

See	Also

BANKISEL	BANKSEL

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

PROCESSOR	-	Set	Processor	Type

Syntax

processor	<processor_type>

Description

Sets	the	processor	type	to	<processor_type>.

Example

processor	16C54

See	Also

LIST

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

RADIX	-	Specify	Default	Radix

Syntax

radix	<default_radix>

Description

Sets	the	default	radix	for	data	expressions.	The	default	radix	is
hex.	Valid	radix	values	are:

hex	-	hexadecimal	(base	16)

dec	-	decimal	(base	10)
oct	-	octal	(base	8)

You	may	also	specify	a	radix	using	the	list	directive.	For
specifying	the	radix	of	constants,	see	Numeric	Constants	and
Radix.

Example

radix	dec

See	Also

LIST

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

RES	-	Reserve	Memory

Syntax

[<label>]	res	<mem_units>

Description

Causes	the	memory	location	pointer	to	be	advanced	from	its
current	location	by	the	value	specified	in	<mem_units>.	In	non-
relocatable	code,	<label>	is	assumed	to	be	a	program	memory
address.	In	relocatable	code	(using	MPLINK	linker),	res	can	also
be	used	to	reserve	data	storage.

Address	locations	are	defined	in	words	for	12-,	14-	and	16-bit
PICmicro	MCUs,	and	bytes	for	enhanced	16-bit	PICmicro	MCUs.

Example

buffer	res	64	;	reserve	64	address	locations	of	storage

See	Also

FILL	ORG

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

SET	-	Define	an	Assembler	Variable

Syntax

<label>	set	<expr>

Description

<label>	is	assigned	the	value	of	the	valid	MPASM	assembler
expression	specified	by	<expr>.	The	set	directive	is	functionally
equivalent	to	the	equ	directive	except	that	set	values	may	be
subsequently	altered	by	other	set	directives.

Example

area	set	0
width	set	0x12
length	set	0x14
area	set	length	*	width
length	set	length	+	1

See	Also

EQU	VARIABLE

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

SPACE	-	Insert	Blank	Listing	Lines

Syntax

space	<expr>

Description

Insert	<expr>	number	of	blank	lines	into	the	listing	file.

Example

space	3	;Inserts	three	blank	lines

See	Also

LIST

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

SUBTITLE	-	Specify	Program	Subtitle

Syntax

subtitle	"<sub_text>"

Description

<sub_text>	is	an	ASCII	string	enclosed	in	double	quotes,	60
characters	or	less	in	length.	This	directive	establishes	a	second
program	header	line	for	use	as	a	subtitle	in	the	listing	output.

Example

subtitle	"diagnostic	section"

See	Also

LIST	TITLE

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

TITLE	-	Specify	Program	Title

Syntax

title	"<title_text>"

Description

<title_text>	is	a	printable	ASCII	string	enclosed	in	double
quotes.	It	must	be	60	characters	or	less.	This	directive	establishes
the	text	to	be	used	in	the	top	line	of	each	page	in	the	listing	file.

Example

title	"operational	code,	rev	5.0"

See	Also

LIST	SUBTITLE

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.

UDATA	-	Begin	an	Object	File	Uninitialized
Data	Section

Syntax

[<label>]	udata	[<RAM	address>]

Description

For	use	when	generating	an	object	file.	Declares	the	beginning	of	a
section	of	uninitialized	data.	If	<label>	is	not	specified,	the
section	is	named	.udata.	The	starting	address	is	initialized	to	the
specified	address	or	will	be	assigned	at	link	time	if	no	address	is
specified.	No	code	can	be	generated	in	this	segment.	The	res
directive	should	be	used	to	reserve	space	for	data.

Note:	Two	sections	in	the	same	source	file	may	not	have	the	same	name.

For	more	information,	refer	to	Relocatable	Objects.

Example

udata
Var1	res	1
Double	res	2

See	Also

EXTERN	GLOBAL	IDATA	UDATA_ACS	UDATA_OVR	UDATA_SHR

Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

UDATA_ACS	-	Begin	an	Object	File	Access
Uninitialized	Data	Section

Syntax

[<label>]	udata_acs	[<RAM	address>]

Description

For	use	when	generating	an	object	file.	Declares	the	beginning	of	a
section	of	access	uninitialized	data.	If	<label>	is	not	specified,
the	section	is	named	.udata_acs.	The	starting	address	is
initialized	to	the	specified	address	or	will	be	assigned	at	link	time	if
no	address	is	specified.	This	directive	is	used	to	declare	variables
that	are	allocated	in	access	RAM	of	PIC18CXXX	devices.	No	code
can	be	generated	in	this	segment.	The	res	directive	should	be
used	to	reserve	space	for	data.

Note:	Two	sections	in	the	same	source	file	may	not	have	the	same	name.

For	more	information,	refer	to	Relocatable	Objects.

Example

udata_acs
Var1	res	1
Double	res	2

See	Also

EXTERN	GLOBAL	IDATA	UDATA	UDATA_OVR	UDATA_SHR

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

UDATA_OVR	-	Begin	an	Object	File
Overlayed	Uninitialized	Data	Section

Syntax

[<label>]	udata_ovr	[<RAM	address>]

Description

For	use	when	generating	an	object	file.	Declares	the	beginning	of	a
section	of	overlayed	uninitialized	data.	If	<label>	is	not
specified,	the	section	is	named	.udata_ovr.	The	starting
address	is	initialized	to	the	specified	address	or	will	be	assigned	at
link	time	if	no	address	is	specified.	The	space	declared	by	this
section	is	overlayed	by	all	other	udata_ovr	sections	of	the	same
name.	It	is	an	ideal	way	of	declaring	temporary	variables	since	it
allows	multiple	variables	to	be	declared	at	the	same	memory
location.	No	code	can	be	generated	in	this	segment.	The	res
directive	should	be	used	to	reserve	space	for	data.

Note:	Two	sections	in	the	same	source	file	may	not	have	the	same	name.

For	more	information,	refer	to	Relocatable	Objects.

Example

Temps	udata_ovr
Temp1	res	1
Temp2	res	1
Temp3	res	1
Temps	udata_ovr
LongTemp1	res	2	;	this	will	be	a	variable	at	the

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;	same	location	as	Temp1	and	Temp2
LongTemp2	res	2	;	this	will	be	a	variable	at	the
;	same	location	as	Temp3

See	Also

EXTERN	GLOBAL	IDATA	UDATA	UDATA_ACS	UDATA_SHR

http://www.microchip.com
mailto:techsupport@microchip.com

UDATA_SHR	-	Begin	an	Object	File	Shared
Uninitialized	Data	Section

Syntax

[<label>]	udata_shr	[<RAM	address>]

Description

For	use	when	generating	an	object	file.	Declares	the	beginning	of	a
section	of	shared	uninitialized	data.	If	<label>	is	not	specified,
the	section	is	named	.udata_shr.	The	starting	address	is
initialized	to	the	specified	address	or	will	be	assigned	at	link	time	if
no	address	is	specified.	This	directive	is	used	to	declare	variables
that	are	allocated	in	RAM	that	is	shared	across	all	RAM	banks	(i.e.
unbanked	RAM).	No	code	can	be	generated	in	this	segment.	The
res	directive	should	be	used	to	reserve	space	for	data.

Note:	Two	sections	in	the	same	source	file	may	not	have	the	same	name.

For	more	information,	refer	to	Relocatable	Objects.

Example

Temps	udata_shr
Temp1	res	1
Temp2	res	1
Temp3	res	1

See	Also

EXTERN	GLOBAL	IDATA	UDATA	UDATA_ACS	UDATA_OVR

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

VARIABLE	-	Declare	Symbol	Variable

Syntax

variable	<label>[=<expr>][,<label>[=<expr>]...]

Description

Creates	symbols	for	use	in	MPASM	assembler	expressions.
Variables	and	constants	may	be	used	interchangeably	in
expressions.

The	variable	directive	creates	a	symbol	that	is	functionally
equivalent	to	those	created	by	the	set	directive.	The	difference	is
that	the	variable	directive	does	not	require	that	symbols	be
initialized	when	they	are	declared.

The	variable	values	cannot	be	updated	within	an	operand.	You
must	place	variable	assignments,	increments,	and	decrements	on
separate	lines.

Example

Please	refer	to	the	example	given	for	the	constant	directive.

See	Also

CONSTANT	SET

http://www.microchip.com
mailto:techsupport@microchip.com

WHILE	-	Perform	Loop	While	Condition	is
True

Syntax

while	<expr>
:
endw

Description

The	lines	between	the	while	and	the	endw	are	assembled	as	long
as	<expr>	evaluates	to	TRUE.	An	expression	that	evaluates	to
zero	is	considered	logically	FALSE.	An	expression	that	evaluates
to	any	other	value	is	considered	logically	TRUE.	A	relational	TRUE
expression	is	guaranteed	to	return	a	non-zero	value;	FALSE	a
value	of	zero.

A	while	loop	can	contain	at	most	100	lines	and	be	repeated	a
maximum	of	256	times.	while	loops	can	be	nested	up	to	8	deep.

Example

test_mac	macro	count
variable	i
i	=	0
while	i	<	count
movlw	i
i	+=	1
endw
endm
start
test_mac	5

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

end

See	Also

ENDW	IF

http://www.microchip.com
mailto:techsupport@microchip.com

Directive	Usage

How	to	use	the	MPASM	assembler	directive	language	is	shown
using	examples.

Directives	are	assembler	commands	that	appear	in	the	source
code	but	are	not	translated	directly	into	opcodes.	They	are	used	to
control	the	assembler:	its	input,	output,	and	data	allocation.

Many	of	the	assembler	directives	have	alternate	names	and
formats.	These	may	exist	to	provide	backward	compatibility	with
previous	assemblers	from	Microchip	and	to	be	compatible	with
individual	programming	practices.	If	portable	code	is	desired,	it	is
recommended	that	programs	be	written	using	the	specifications
contained	within	this	document.

For	a	reference	listing	of	all	directives	discussed	in	examples	here,
please	see	Directives.

Note:	Although	MPASM	assembler	is	often	used	with	MPLINK	object	linker,	MPASM
assembler	directives	are	not	supported	by	MPLINK	linker.	See	MPLINK	object
linker	documentation	for	more	information	on	linker	options	to	control	listing	and
hex	file	output.

There	are	six	basic	types	of	directives	provided	by	the	assembler:

Note:	Directives	are	not	case-sensitive,	e.g.,	cblock	may	be	executed	as	CBLOCK,
cblock,	Cblock,	etc.

Control	Directives

Conditional	Assembly	Directives
Data	Directives
Listing	Directives

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Macro	Directives
Object	File	Directives

For	all	directive	types:

Additional	Directive	Examples

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Control	Directives

Control	directives	control	how	code	is	assembled.

List	of	Control	Directives

Control	directive	examples	available:

Multiple	Directive	Example	1

Multiple	Directive	Example	2
ORG	PIC16CXXX	Example
ORG	PIC18CXXX	Example
RADIX	Example
SET/EQU	Example
UNDEFINE/DEFINE	Example
VARIABLE/CONSTANT	Example

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Conditional	Assembly	Directives

Conditional	assembly	directives	permit	sections	of	conditionally
assembled	code.

List	of	Conditional	Assembly	Directives

Conditional	assembly	directive	examples	available:

IF/ELSE/ENDIF	Example

IFDEF	Example
WHILE/ENDW	Example

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Data	Directives

Data	Directives	are	those	that	control	the	allocation	of	memory	and
provide	a	way	to	refer	to	data	items	symbolically,	that	is,	by
meaningful	names.

List	of	Data	Directives

Data	directive	examples	available:

CBLOCK/ENDC	Example

CONFIG	PIC16CXXX	Example
CONFIG	PIC18CXXX	Example
DA	Example
DATA	PIC16CXXX	Example
DATA	PIC18CXXX	Example
DB	PIC16CXXX	Example
DB	PIC18CXXX	Example
DE	PIC16CXXX	Example
DE	PIC18CXXX	Example
FILL	PIC16CXXX	Example
FILL	PIC18CXXX	Example
IDLOC	PIC16CXXX	Example
IDLOC	PIC18CXXX	Example
RES	Example

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Listing	Directives

Listing	Directives	are	those	directives	that	control	the	MPASM
assembler	listing	file	format.	They	allow	the	specification	of	titles,
pagination,	and	other	listing	control.	Some	listing	directives	also
control	how	code	is	assembled.

List	of	Listing	Directives

Listing	directive	examples	available:

ERROR	Example

ERRORLEVEL	Example
MESSG	Example

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Macro	Directives

These	directives	control	the	execution	and	data	allocation	within
macro	body	definitions.

List	of	Macro	Directives

Macro	directive	examples	available:

EXITM	Example

LOCAL	Example
MACRO/ENDM	Example

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Object	File	Directives

These	directives	are	used	only	when	creating	an	object	file.

List	of	Object	File	Directives

Object	file	directive	examples	available:

BANKISEL	Example

BANKSEL	Example
CODE	Example
GLOBAL/EXTERN	Example
IDATA	Example
PAGESEL	Example
UDATA	Example
UDATA_ACS	Example
UDATA_OVR	Example
UDATA_SHR	Example

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Additional	Directive	Examples

Short	examples	of	use	for	each	directive	are	listed	under	each
directive	topic.	See	Directives.

Examples	of	use	for	multiple	directives	are	available	from	the
following	sources:

readme.asm	-	Serial	EEPROM	Support

Application	Notes,	Technical	Briefs

Embedded	Control	Handbook,	Volume	1	(DS00092)

Embedded	Control	Handbook,	Volume	2	Math	Library
(DS00167)
Embedded	Control	Handbook,	Update	2000	(DS00711)
Website	-	http://www.microchip.com
Code	Examples	and	Templates

MPLAB	IDE	installation	directory

Website	-	http://www.microchip.com

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Relocatable	Objects

Since	the	introduction	of	MPASM	assembler	v2.00	and	MPLINK
linker	v1.00,	you	have	had	the	ability	to	generate	and	link
precompiled	object	modules.	Writing	source	code	that	will	be
assembled	to	an	object	module	is	slightly	different	from	generating
executable	code	directly	to	a	hex	file.	MPASM	assembler	routines
designed	for	absolute	address	assembly	will	require	minor
modifications	to	compile	correctly	into	relocatable	object	modules.

Header	Files

Program	Memory
Instruction	Operands
RAM	Allocation
Configuration	Bits	and	ID	Locations
Accessing	Labels	From	Other	Modules
Paging	and	Banking	Issues
Unavailable	Directives
Generating	the	Object	Module
Code	Examples

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Header	Files

The	Microchip-supplied	standard	header	files	(e.g.,
p17c756.inc)	should	be	used	when	generating	object	modules.
These	header	files	define	the	special	function	registers	for	the
target	processor.

http://www.microchip.com
mailto:techsupport@microchip.com

Program	Memory

Program	memory	code	must	be	preceded	by	a	CODE	section
declaration.

Absolute	Code

Start	CLRW
OPTION
:

Relocatable	Code

CODE
Start	CLRW
OPTION
:

If	more	than	one	CODE	section	is	defined	in	a	source	file,	each
section	must	have	a	unique	name.	If	the	name	is	not	specified,	it
will	be	given	the	default	name	.code.

Each	program	memory	section	must	be	contiguous	within	a	single
source	file.	A	section	may	not	be	broken	into	pieces	within	a	singe
source	file.

The	physical	address	of	the	code	can	be	fixed	by	supplying	the
optional	address	parameter	of	the	CODE	directive.	Situations
where	this	might	be	necessary	are:

Specifying	interrupt	vectors

Ensuring	that	a	code	segment	does	not	overlap	page	boundaries

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Example	Relocatable	Code

Reset	CODE	H'0lFF'
GOTO	Start
Main	CODE
CLRW
OPTION

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Instruction	Operands

There	are	some	restrictions	involving	instruction	operands.
Instruction	operands	must	be	of	the	form:

[HIGH|LOW|UPPER]	(<relocatable	symbol>	+	<constant	offset>)

where:

<relocatable	symbol>	is	any	label	that	defines	a
program	or	data	memory	address

<constant	offset>	is	an	expression	that	is	resolvable	at
assembly	time	to	a	value	between	-32768	and	32767

Either	<relocatable	symbol>	or	<constant	offset>
may	be	omitted.

Operands	of	the	form:

<relocatable	symbol>	-	<relocatable	symbol>

will	be	reduced	to	a	constant	value	if	both	symbols	are	defined	in
the	same	code	or	data	section.

If	HIGH	is	used,	only	bits	8	through15	of	the	expression	will	be
used.	If	LOW	is	used,	only	bits	0	through	7	of	the	expression	will	be
used.	If	UPPER	is	used,	only	bits	16	through	21	of	the	expression
will	be	used.

http://www.microchip.com
mailto:techsupport@microchip.com

RAM	Allocation

RAM	space	must	be	allocated	in	a	data	section.	Five	types	of	data
sections	are	available:

UDATA	-	Uninitialized	data.	This	is	the	most	common	type	of
data	section.	Locations	reserved	in	this	section	are	not
initialized	and	can	be	accessed	only	by	the	labels	defined	in
this	section	or	by	indirect	accesses.

UDATA_ACS	-	Uninitialized	access	data.	This	data	section	is
used	for	variables	that	will	be	placed	in	access	RAM	of
PIC18CXXX	devices.	Access	RAM	is	used	as	quick	data	access
for	specified	instructions.
UDATA_OVR	-	Uninitialized	overlaid	data.	This	data	section	is

used	for	variables	that	can	be	declared	at	the	same	address	as
other	variables	in	the	same	module	or	in	other	linked	modules.	A
typical	use	of	this	sec	tion	is	for	temporary	variables.
UDATA_SHR	-	Uninitialized	shared	data.	This	data	section	is

used	for	variables	that	will	be	placed	in	RAM	that	is	unbanked	or
shared	across	all	banks.
IDATA	-	Initialized	data.	The	linker	will	generate	a	lookup	table

that	can	be	used	to	initialize	the	variables	in	this	section	to	the
specified	values.	The	locations	reserved	by	this	section	can	be
accessed	only	by	the	labels	defined	in	this	section	or	by	indirect
accesses.

The	following	example	shows	how	a	data	declaration	might	be
created.

Absolute	Code

CBLOCK	0x20
InputGain,	OutputGain	;Control	loop	gains

HistoryVector	;Must	be	initialized	to	0
Templ,	Temp2,	Temp3	;Used	for	internal	calculations
ENDC

Relocatable	Code

IDATA
HistoryVector	DB	0
UDATA
InputGain	RES	1
OutputGain	RES	1
UDATA_OVR
Templ	RES	1
Temp2	RES	1
Temp3	RES	1

If	necessary,	the	location	of	the	section	may	be	fixed	in	memory	by
supplying	the	optional	address	parameter.	If	more	than	one	of	each
section	type	is	specified,	each	section	must	have	a	unique	name.	If
a	name	is	not	provided,	the	default	section	names	are:	.idata,
.udata,	.udata_acs,	.udata_shr,	and	.udata_ovr.

When	defining	initialized	data	in	an	IDATA	section,	the	directives
DB,	DW,	and	DATA	can	be	used.	DB	will	define	successive	bytes	of
data	memory.	DW	and	DATA	will	define	successive	words	of	data
memory	in	low-byte/high-byte	order.	The	following	example	shows
how	data	will	be	initialized.

Relocatable	Code

00001	LIST	p=17C44
00002	IDATA
0000	01	02	03	00003	Bytes	DB	1,2,3
0003	34	12	78	56	00004	Words	DW	H'1234',H'5678'
0007	41	42	43	00	00005	String	DB	"ABC",	0

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Configuration	Bits	and	ID	Locations

Configuration	bits	and	ID	locations	can	still	be	defined	in	a
relocatable	object	using	the	_	_CONFIG	and	_	_IDLOCS
directives.	Only	one	linked	module	can	specify	these	directives.
They	should	be	used	prior	to	declaring	any	CODE	sections.	After
using	these	directives,	the	current	section	is	undefined.

http://www.microchip.com
mailto:techsupport@microchip.com

Accessing	Labels	From	Other	Modules

Labels	that	are	defined	in	one	module	for	use	in	other	modules
must	be	exported	using	the	GLOBAL	directive.	Labels	must	be
defined	before	they	are	declared	GLOBAL.	Modules	that	use	these
labels	must	use	the	EXTERN	directive	to	declare	the	existence	of
these	labels.	An	example	of	using	the	GLOBAL	and	EXTERN
directives	is	shown	below.

Relocatable	Code,	Defining	Module

UDATA
InputGain	RES	1
OutputGain	RES	1
GLOBAL	InputGain,	OutputGain
CODE
Filter
GLOBAL	Filter
:	;	Filter	code

Relocatable	Code,	Referencing	Module

EXTERN	InputGain,	OutputGain,	Filter
UDATA
Reading	RES	1
CODE
...
MOVLW	GAIN1
MOVWF	InputGain
MOVLW	GAIN2
MOVWF	OutputGain
MOVF	Reading,W
CALL	Filter

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

Paging	and	Banking	Issues

In	many	cases,	RAM	allocation	will	span	multiple	banks,	and
executable	code	will	span	multiple	pages.	In	these	cases,	it	is
necessary	to	perform	proper	bank	and	page	set-up	to	properly
access	the	labels.	However,	since	the	absolute	addresses	of	these
variable	and	address	labels	are	not	known	at	assembly	time,	it	is
not	always	possible	to	place	the	proper	code	in	the	source	file.	For
these	situations,	two	new	directives,	BANKSEL	and	PAGESEL
have	been	added.	These	directives	instruct	the	linker	to	generate
the	correct	bank	or	page	selecting	code	for	a	specified	label.	An
example	of	how	code	should	be	converted	is	shown	below.

Absolute	Code

LIST	P=12C509
#include	"P12C509.INC"
Varl	EQU	H'10'
Var2	EQU	H'30'
...
MOVLW	InitialValue
BCF	FSR,	5
MOVWF	Varl
BSF	FSR,	5
MOVWF	Var2
BSF	STATUS,	PA0
CALL	Subroutine
...
Subroutine	CLRW	;In	Page	1
...
RETLW	0

Relocatable	Code

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

LIST	P=12C509
#include	"P12C509.INC"
UDATA
Varl	RES	1
Var2	RES	1
...
CODE
MOVLW	InitialValue
BANKSEL	Varl
MOVWF	Varl
BANKSEL	Var2
MOVWF	Var2
PAGESEL	Subroutine
CALL	Subroutine
...
Subroutine	CLRW
...
RETLW	0

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Unavailable	Directives

Macro	capability	and	nearly	all	directives	are	available	when
generating	an	object	file.	The	only	directive	that	is	not	allowed	is
the	ORG	directive.	This	can	be	replaced	by	specifying	an	absolute
CODE	segment,	as	shown	below.

Absolute	Code

Reset	ORG	H'01FF'
GOTO	Start

Relocatable	Code

Reset	CODE	H'0lFF'
GOTO	Start

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Generating	the	Object	Module

Once	the	code	conversion	is	complete,	the	object	module	is
generated	by	requesting	an	object	file	on	the	command	line	or	in
the	shell	interface.	When	using	MPASM	assembler	for	Windows,
check	the	checkbox	labeled	"Object	File."	When	using	the	DOS
command	line	interface,	specify	the	/o	option	and	toggle
"Assemble	to	Object	File"	to	"Yes."	The	output	file	will	have	a	.o
extension.

http://www.microchip.com
mailto:techsupport@microchip.com

Code	Examples

The	following	is	extracted	from	the	example	multiply	routines	given
as	a	sample	with	MPASM	assembler.	Most	of	the	comments	have
been	stripped	for	brevity.

Absolute	Code	becomes	Relocatable	Code,	Calling	File	and
Relocatable	Code,	Library	Routine.

Absolute	Code

LIST	P=16C54
#INCLUDE	"P16C5X.INC"
cblock	H	'020'
mulcnd	;	8	bit	multiplicand
mulplr	;	8	bit	multiplier
H_byte	;	High	byte	of	the	16	bit	result
L_byte	;	Low	byte	of	the	16	bit	result
count	;	loop	counter
endc
mpy	clrf	H_byte
clrf	L_byte
movlw	8
movwf	count
movf	mulcnd,w
bcf	STATUS,C	;Clear	carry	bit
Loop	rrf	mulplr,F
btfsc	STATUS,C
addwf	H_byte,F
rrf	H_byte,F
rrf	L_byte,F
decfsz	count,F
goto	loop
retlw	0
;***

;	Test	Program
;***
start	clrw
option
main	movf	PORTB,w
movwf	mulplr	;	multiplier	(in	mulplr)	=	05
movf	PORTB,W
movwf	mulcnd
call_m	call	mpy	;	The	result	is	in	F12	&	F13
;	H_byte	&	L_byte
goto	main
ORG	01FFh
goto	start
END

Since	an	eight-by-eight	bit	multiply	is	a	useful,	generic	routine,	it
would	be	handy	to	break	this	off	into	a	separate	object	file	that	can
be	linked	in	when	required.	The	above	file	can	be	broken	into	two
files:	a	calling	file	representing	an	application	and	a	generic	routine
that	could	be	incorporated	in	a	library.

Relocatable	Code,	Calling	File

LIST	P=16C54
#INCLUDE	"P16C5x.INC"
EXTERN	mulcnd,	mulplr,	H_byte,	L_byte
EXTERN	mpy
CODE
start	clrw
option
main	movf	PORTB,	W
movwf	mulplr
movf	PORTB,	W
movwf	mulcnd
call_m	call	mpy	;	The	result	is	in	H_byte	&	L_byte
goto	main

Microchip	Technology	Inc.
Microchip's	Web	Site

Reset	CODE	H'0lFF'
goto	start
END

Relocatable	Code,	Library	Routine

LIST	P=16C54
#INCLUDE	"P16C5x.INC"
UDATA
mulcnd	RES	l	;	8	bit	multiplicand
mulplr	RES	1	;	8	bit	multiplier
H_byte	RES	1	;	High	byte	of	the	16	bit	result
L_byte	RES	1	;	Low	byte	of	the	16	bit	result
count	RES	1	;	loop	counter
GLOBAL	mulcnd,	mulplr,	H_byte,	L_byte
CODE
mpy
GLOBAL	mpy
clrf	H_byte
clrf	L_byte
movlw	8
movwf	count
movf	muland,	W
bcf	STATUS,	C	;	Clear	carry	bit
loop	rrf	mulplr,	F
btfsc	STATUS,	C
addwf	H_byte,	F
rrf	H_byte,	F
rrf	L_byte,	F
decfsz	count,	F
goto	loop
retlw	0
END

http://www.microchip.com

Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Macro	Language

Macros	are	user	defined	sets	of	instructions	and	directives	that	will
be	evaluated	in-line	with	the	assembler	source	code	whenever	the
macro	is	invoked.

Macros	consist	of	sequences	of	assembler	instructions	and
directives.	They	can	be	written	to	accept	arguments,	making	them
quite	flexible.	Their	advantages	are:

Higher	levels	of	abstraction,	improving	readability	and
reliability.

Consistent	solutions	to	frequently	performed	functions.
Simplified	changes.
Improved	testability.

Applications	might	include	creating	complex	tables,	frequently
used	code,	and	complex	operations.

Macro	Syntax

Macro	Directives	Defined
Macro	Text	Substitution
Macro	Usage
Macro	Code	Examples

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Macro	Syntax

MPASM	assembler	macros	are	defined	according	to	the	following
syntax:

<label>	macro	[<arg1>,<arg2>	...,	<argn>]
:
:
endm

where	<label>	is	a	valid	assembler	label	and	<arg>	is	any	number
of	optional	arguments	supplied	to	the	macro	(that	will	fit	on	the
source	line.)	The	values	assigned	to	these	arguments	at	the	time
the	macro	is	invoked	will	be	substituted	wherever	the	argument
name	occurs	in	the	body	of	the	macro.

The	body	of	a	macro	may	be	comprised	of	MPASM	assembler
directives,	PICmicro	MCU	assembly	instructions,	or	MPASM
assembler	macro	directives	(LOCAL	for	example.)	The	assembler
continues	to	process	the	body	of	the	macro	until	an	EXITM	or
ENDM	directive	is	encountered.

Note:	Forward	references	to	macros	are	not	permitted.

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Macro	Directives	Defined

There	are	directives	that	are	unique	to	macro	definitions.	They
cannot	be	used	out	of	the	macro	context.

Macro	Directives

When	writing	macros,	you	can	use	any	of	these	directives	PLUS
any	other	directives	supported	by	the	assembler.

Note:	The	previous	syntax	of	the	"dot"	format	for	macro	specific	directives	is	no	longer
supported.	For	compatibility	reasons,	old	ASM17	code	that	uses	this	format	will
assemble	by	MPASM	assembler,	but	as	mentioned	before,	you	are	encouraged	to
write	new	code	based	on	the	constructs	defined	within	this	help	file	to	ensure
upward	compatibility.

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Macro	Text	Substitution

String	replacement	and	expression	evaluation	may	appear	within
the	body	of	a	macro.

Command Description
<arg> Substitute	the	argument	text	supplied	as	part	of	the	macro	invocation.

#v(<expr>)
Return	the	integer	value	of	<expr>.	Typically,	used	to	create	unique	variable	names
with	common	prefixes	or	suffixes.	Cannot	be	used	in	conditional	assembly	directives
(e.g.	IFDEF,	WHILE).

Arguments	may	be	used	anywhere	within	the	body	of	the	macro,
except	as	part	of	normal	expression.	For	example,	the	following
macro:

define_table	macro
local	a	=	0
while	a	<	3
entry#v(a)	dw	0
a	+=	1
endw
endm
when	invoked,	would	generate:
entry0	dw	0
entry1	dw	0
entry2	dw	0
entry3	dw	0

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Macro	Usage

Once	the	macro	has	been	defined,	it	can	be	invoked	at	any	point
within	the	source	module	by	using	a	macro	call,	as	described
below:

<macro_name>	[<arg>,	...,	<arg>]

where	<macro_name>	is	the	name	of	a	previously	defined
macro	and	arguments	are	supplied	as	required.

The	macro	call	itself	will	not	occupy	any	locations	in	memory.
However,	the	macro	expansion	will	begin	at	the	current	memory
location.	Commas	may	be	used	to	reserve	an	argument	position.
In	this	case,	the	argument	will	be	an	empty	string.	The	argument
list	is	terminated	by	white	space	or	a	semicolon.

The	EXITM	directive	provides	an	alternate	method	for	terminating
a	macro	expansion.	During	a	macro	expansion,	this	directive
causes	expansion	of	the	current	macro	to	stop	and	all	code
between	the	EXITM	and	the	ENDM	directives	for	this	macro	to	be
ignored.	If	macros	are	nested,	EXITM	causes	code	generation	to
return	to	the	previous	level	of	macro	expansion.

http://www.microchip.com
mailto:techsupport@microchip.com

Macro	Code	Examples

The	following	are	examples	of	macros:

Eight-by-Eight	Multiply

Constant	Compare

Eight-by-Eight	Multiply

subtitle	"macro	definitions"
page
;
;	multiply	-	is	an	eight	by	eight	multiply	macro,
;	executing	in	program	memory,	optimized	for	speed,
;	straight	line	code.
;
;	This	macro	has	five	parameters	as	defined	here:
;	arg1	-	first	eight	bit	literal	to	be	multiplied
;	arg2	-	second	eight	bit	literal	to	be	multiplied
;	dest_hi	-	memory	location	for	high	byte	of	result
;	dest_lo	-	memory	location	for	low	byte	of	result
;	temp	-	memory	location	for	temporary	storage
;
;	During	the	execution	of	this	macro,	the	w	register	is
;	destroyed.
;
;	The	result	of	multiply	is	a	16	bit	value	stored	in	the
;	two	eight	bit	registers	(dest_hi,	dest_lo)
;
;	This	macro	is	written	for	the	PIC17C42.
;
;
multiply	macro	arg1,	arg2,	dest_hi,	dest_lo,	temp
;

local	i	=	0	;	Establish	a	local	index
;	variable	and	initialize	it.
;
movlw	arg1	;	Setup	the	eight	bit
movwf	temp	;	literal	multiplier	in	the
;	memory	location	temp.
;
movlw	arg2	;	Setup	the	eight	bit
;	literal	multiplicand	in	the
;	w	register.
;
clrf	dest_hi,	F	;	Clear	both	the	high	and
clrf	dest_lo,	F	;	the	low	destination
;	registers.
;
bcf	ALUSTA,	C	;	Clear	the	carry	bit.
;
while	i	<	8	;	Use	the	loop	to	check	all
;	eight	bits	of	the
;	multiplier	(temp).
;
btfsc	temp,	i	;	Test	the	current
addwf	dest_hi,	F	;	multiplier	bit,	if	temp,I
;	then	add	the	multiplicand
;	to	the	high	register.
;
rrcf	dest_hi,	F	;	For	each	pass	in	the
rrcf	dest_lo,	F	;	loop,	right	shift	each
;	destination	register	using
;	the	carry	bit.
;
i	+=	1	;	Place	this	increment	in
;	column	1	to	avoid
;	Warning	[207].
endw	;
endm	;

The	macro	declares	all	of	the	required	arguments.	In	this	case,
there	are	five.	The	LOCAL	directive	then	establishes	a	local
variable	"i"	that	will	be	used	as	an	index	counter.	It	is	initialized	to
zero.	A	number	of	assembler	instructions	are	then	included.	When
the	macro	is	executed,	these	instructions	will	be	written	in	line	with
the	rest	of	the	assembler	source	code.	The	macro	writes	the
multiplication	code	using	an	algorithm	that	adds	for	each	bit	set	in
the	eight	bits	of	the	multiplier	and	uses	right	shifts.	The	WHILE
directive	is	used	for	this	function,	continuing	the	loop	until	"I"	is
greater	than	or	equal	to	eight.

Constant	Compare

As	another	example,	if	the	following	macro	were	written:

include	"16cxx.reg"
;
;	compare	file	to	constant	and	jump	if	file
;	>=	constant.
;
cfl_jge	macro	file,	con,	jump_to
movlw	con	&	0xff
subwf	file,	w
btfsc	status,	carry
goto	jump_to
endm

and	invoked	by:

cfl_jge	switch_val,	max_switch,	switch_on

it	would	produce:

movlw	max_switch	&	0xff
subwf	switch_val,	w
btfsc	status,	carry
goto	switch_on

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Expression	Syntax	and	Operation

Various	expression	formats,	syntax,	and	operations	used	by
MPASM	assembler	are	described	here.

Text	Strings

Numeric	Constants	and	Radix
Arithmetic	Operators	and	Precedence

http://www.microchip.com
mailto:techsupport@microchip.com

Text	Strings

A	"string"	is	a	sequence	of	any	valid	ASCII	character	(of	the
decimal	range	of	0	to	127)	enclosed	by	double	quotes.

Strings	may	be	of	any	length	that	will	fit	within	a	255	column
source	line.	If	a	matching	quote	mark	is	found,	the	string	ends.	If
none	is	found	before	the	end	of	the	line,	the	string	will	end	at	the
end	of	the	line.	While	there	is	no	direct	provision	for	continuation
onto	a	second	line,	it	is	generally	no	problem	to	use	a	second	DW
directive	for	the	next	line.

The	DW	directive	will	store	the	entire	string	into	successive	words.
If	a	string	has	an	odd	number	of	characters	(bytes),	the	DW	and
DATA	directives	will	pad	the	end	of	the	string	with	one	byte	of	zero
(00).

If	a	string	is	used	as	a	literal	operand,	it	must	be	exactly	one
character	long,	or	an	error	will	occur.

Code	Examples

See	the	examples	below	for	the	object	code	generated	by	different
statements	involving	strings.

7465	7374	696E	dw	"testing	output	string	one\n"
6720	6F75	7470
7574	2073	7472
696E	6720	6F6E
650A
#define	str	"testing	output	string	two"
B061	movlw	"a"
7465	7374	696E	data	"testing	first	output	string"
6720	6669	7273
7420	6F75	7470

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

7574	2073	7472
696E	6700

Escape	Characters

The	assembler	accepts	the	ANSI	`C'	escape	sequences	to
represent	certain	special	control	characters:

TABLE:	ANSI	`C'	ESCAPE	SEQUENCES
Escape
Character Description Hex

Value
\a Bell	(alert)	character 07
\b Backspace	character 08
\f Form	feed	character 0C
\n New	line	character 0A
\r Carriage	return	character 0D
\t Horizontal	tab	character 09
\v Vertical	tab	character 0B
\\ Backslash 5C
\? Question	mark	character 3F
\' Single	quote	(apostrophe) 27
\" Double	quote	character 22

\0OO Octal	number	(zero,	Octal	digit,	Octal	digit) 	
\xHH Hexadecimal	number 	

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Numeric	Constants	and	Radix

MPASM	assembler	supports	the	following	radix	forms	for
constants:	hexadecimal,	decimal,	octal,	binary,	and	ASCII.	The
default	radix	is	hexadecimal;	the	default	radix	determines	what
value	will	be	assigned	to	constants	in	the	object	file	when	a	radix	is
not	explicitly	specified	by	a	base	descriptor.

Note:	The	radix	for	numeric	constants	can	be	different	from	the	default	radix	specifed
with	the	directives	radix	or	list	r=.	Also,	allowable	default	radices	are
limited	to	hexadecimal,	decimal,	and	octal.

Constants	can	be	optionally	preceded	by	a	plus	or	minus	sign.	If
unsigned,	the	value	is	assumed	to	be	positive.

Note:	Intermediate	values	in	constant	expressions	are	treated	as	32-bit	unsigned	integers.
Whenever	an	attempt	is	made	to	place	a	constant	in	a	field	for	which	it	is	too	large,
a	truncation	warning	will	be	issued.

The	following	table	presents	the	various	radix	specifications:

TABLE:	RADIX	SPECIFICATIONS
Type Syntax Example

Decimal D'<digits>'
.'<digits>'

D'100'
.'100'

Hexadecimal H'<hex_digits>'0x<hex_digits>
H'9f'
0x9f

Octal O'<octal_digits>' O'777'
Binary B'<binary_digits>' B'00111001'

ASCII A'<character>'
'<character>'

A'C'
'C'

http://www.microchip.com
mailto:techsupport@microchip.com

Arithmetic	Operators	and	Precedence

Arithmatic	operators	and	their	precedence	are	listed	in
Table:	Arithmetic	Operators	and	Precedence.

Selected	operators	are	discussed	in	greater	detail	in	subsections
following	the	table.

TABLE:	ARITHMETIC	OPERATORS	AND	PRECEDENCE
Operator Example

$ Current/Return	program	counter goto	$	+	3
(Left	Parenthesis 1	+	(d	*	4)
) Right	Parenthesis (Length	+	1)	*	256
! Item	NOT	(logical	complement) if	!	(a	==	b)
- Negation	(2's	complement) -1	*	Length
~ Complement flags	=	~flags
high Return	high	byte movlw	high	CTR_Table
low Return	low	byte movlw	low	CTR_Table
upper Return	upper	byte movlw	upper	CTR_Table
* Multiply a	=	b	*	c
/ Divide a	=	b	/	c
% Modulus entry_len	=	tot_len	%	16
+ Add tot_len	=	entry_len	*	8	+	1
- Subtract entry_len	=	(tot	-	1)	/	8
<< Left	shift flags	=	flags	<<	1
>> Right	shift flags	=	flags	>>	1
>= Greater	or	equal if	entry_idx	>=	num_entries
> Greater	than if	entry_idx	>	num_entries
< Less	than if	entry_idx	<	num_entries
<= Less	or	equal if	entry_idx	<=	num_entries
== Equal	to if	entry_idx	==	num_entries
= Not	equal	to if	entry_idx	!=	num_entries
& Bitwise	AND flags	=	flags	&	ERROR_BIT
^ Bitwise	exclusive	OR flags	=	flags	^	ERROR_BIT
| Bitwise	inclusive	OR flags	=	flags	|	ERROR_BIT
&& Logical	AND if	(len	==	512)	&&	(b	==	c)
|| Logical	OR if	(len	==	512)	||	(b	==	c)
= Set	equal	to entry_index	=	0
+= Add	to,	set	equal entry_index	+=	1

-= Subtract,	set	equal entry_index	-=	1
*= Multiply,	set	equal entry_index	*=	entry_length
/= Divide,	set	equal entry_total	/=	entry_length
%= Modulus,	set	equal entry_index	%=	8
<<= Left	shift,	set	equal flags	<<=	3
>>= Right	shift,	set	equal flags	>>=	3
&= AND,	set	equal flags	&=	ERROR_FLAG
|= Inclusive	OR,	set	equal flags	|=	ERROR_FLAG
^= Exclusive	OR,	set	equal flags	^=	ERROR_FLAG
++ Increment i	++
-	- Decrement i	--

High/Low/Upper

Syntax

high	<operand>
low	<operand>
upper	<operand>

Description

These	operators	are	used	to	return	one	byte	of	a	multi-byte	label
value.	This	is	done	to	handle	dynamic	pointer	calculations	as	might
be	used	with	table	read	and	write	instructions.

Example

movlw	low	size	;	handle	the	lsb's
movpf	wreg,	low	size_lo
movlw	high	size	;	handle	the	msb's
movpf	wreg,	high	size_hi

Increment/Decrement	(++/--)

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Syntax

<variable>++
<variable>--

Description

Increments	or	decrements	a	variable	value.	These	operators	can
only	be	used	on	a	line	by	themselves;	they	cannot	be	embedded
within	other	expression	evaluation.

Example

LoopCount	=	4
while	LoopCount	>	0
rlf	Reg,	f
LoopCount	--
endw

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Troubleshooting

Error	messages,	warning	messages	and	general	messages	are
produced	by	the	MPASM	assembler.	These	messages	always
appear	in	the	listing	file	directly	above	each	line	in	which	the	error
occurred.

The	messages	are	stored	in	the	error	file	(.err)	if	no	MPASM
assembler	options	are	specified.	If	the	/e-	option	is	used	(turns
error	file	off),	then	the	messages	will	appear	on	the	screen.	If	the
/q	(quiet	mode)	option	is	used	with	the	/e-,	then	the	messages
will	not	display	on	the	screen	or	in	an	error	file.	The	messages	will
still	appear	in	the	listing	file.

Limitations	of	the	assembler	tool	are	also	listed	here.

Assembler	Errors

Assembler	Warnings
Assembler	Messages
Assembler	Limitations

http://www.microchip.com
mailto:techsupport@microchip.com

Assembler	Errors

MPASM	assembler	errors	are	listed	numerically	below:

101	ERROR:

User	error,	invoked	with	the	ERROR	directive.

102	Out	of	memory.

Not	enough	memory	for	macros,	#defines	or	internal	processing.
Eliminate	any	TSR's,	close	any	open	applications,	and	try
assembling	the	file	again.	If	this	error	was	obtained	using	the	Real
Mode	DOS	executable,	try	using	either	the	Windows	version
(MPASMWIN)	or	DPMI	version	(MPASM_DP)

103	Symbol	table	full.

No	more	memory	available	for	the	symbol	table.	Eliminate	any
TSR's,	close	any	open	applications,	and	try	assembling	the	file
again.	If	this	error	was	obtained	using	the	Real	Mode	DOS
executable,	try	using	either	the	Windows	version	(MPASMWIN)	or
DPMI	version	(MPASM_DP)

104	Temp	file	creation	error.

Could	not	create	a	temporary	file.	Check	the	available	disk	space.

105	Cannot	open	file.

Could	not	open	a	file.	If	it	is	a	source	file,	the	file	may	not	exist.	If	it
is	an	output	file,	the	old	version	may	be	write	protected.

106	String	substitution	too	complex.

Too	much	nesting	of	#defines.

107	Illegal	digit.

An	illegal	digit	in	a	number.	Valid	digits	are	0-1	for	binary,	0-7	for
octal,	0-9	for	decimal,	and	0-9,	a-f,	and	A-F	for	hexadecimal.

108	Illegal	character.

An	illegal	character	in	a	label.	Valid	characters	for	labels	are
alphabetic	(a..f,	A..F),	numeric	(0-9),	the	underscore	(_),	and	the
question	mark	(?).	Labels	may	not	begin	with	a	numeric.

109	Unmatched	(

An	open	parenthesis	did	not	have	a	matching	close	parenthesis.
For	example,	"DATA	(1+2".

110	Unmatched)

An	close	parenthesis	did	not	have	a	matching	open	parenthesis.
For	example,	DATA	1+2).

111	Missing	symbol.

An	EQU	or	SET	statement	did	not	have	a	symbol	to	assign	the
value	to.

112	Missing	operator.

An	arithmetic	operator	was	missing	from	an	expression.	For
example,	DATA	1	2.

113	Symbol	not	previously	defined.

A	symbol	was	referenced	that	has	not	yet	been	defined.	Only
addresses	may	be	used	as	forward	references.	Constants	and
variables	must	be	declared	before	they	are	used.

114	Divide	by	zero.

Division	by	zero	encountered	during	an	expression	evaluation.

115	Duplicate	label.

A	label	was	declared	as	a	constant	(e.g.,	with	the	EQU	or	CBLOCK
directive)	in	more	than	one	location.

116	Address	label	duplicated	or	different	in
second	pass.

The	same	label	was	used	in	two	locations.	Alternately,	the	label
was	used	only	once	but	evaluated	to	a	different	location	on	the
second	pass.	This	often	happens	when	users	try	to	write	page-bit
setting	macros	that	generate	different	numbers	of	instructions
based	on	the	destination.

117	Address	wrapped	around	0.

The	location	counter	can	only	advance	to	FFFF.	After	that,	it	wraps
back	to	0.

118	Overwriting	previous	address	contents.

Code	was	previously	generated	for	this	address.

119	Code	too	fragmented.

The	code	is	broken	into	too	many	pieces.	This	error	is	very	rare,
and	will	only	occur	in	source	code	that	references	addresses
above	32K	(including	configuration	bits).

120	Call	or	jump	not	allowed	at	this	address.

A	call	or	jump	cannot	be	made	to	this	address.	For	example,	CALL
destinations	on	the	PIC16C5x	family	must	be	in	the	lower	half	of
the	page.

121	Illegal	label.

Labels	are	not	allowed	on	certain	directive	lines.	Simply	put	the
label	on	its	own	line,	above	the	directive.	Also,	HIGH,	LOW,	PAGE,
and	BANK	are	not	allowed	as	labels.

122	Illegal	opcode.

Token	is	not	a	valid	opcode.

123	Illegal	directive.

Directive	is	not	allowed	for	the	selected	processor;	for	example,
the

_	_IDLOCS	directive	on	the	PIC17C42.

124	Illegal	argument.

An	illegal	directive	argument;	for	example,	LIST	STUPID.

125	Illegal	condition.

A	bad	conditional	assembly.	For	example,	an	unmatched	ENDIF.

126	Argument	out	of	range.

Opcode	or	directive	argument	out	of	the	valid	range;	for	example,
TRIS	10.

127	Too	many	arguments.

Too	many	arguments	specified	for	a	macro	call.

128	Missing	argument(s).

Not	enough	arguments	for	a	macro	call	or	an	opcode.

129	Expected.

Expected	a	certain	type	of	argument.	The	expected	list	will	be
provided.

130	Processor	type	previously	defined.

A	different	family	of	processor	is	being	selected.

131	Processor	type	is	undefined.

Code	is	being	generated	before	the	processor	has	been	defined.
Note	that	until	the	processor	is	defined,	the	opcode	set	is	not
known.

132	Unknown	processor.

The	selected	processor	is	not	a	valid	processor.

133	Hex	file	format	INHX32	required.

An	address	above	32K	was	specified.	For	example,	specifying	the
configuration	bits	on	the	PIC17CXXX	family.

134	Illegal	hex	file	format.

An	illegal	hex	file	format	was	specified	in	the	LIST	directive.

135	Macro	name	missing.

A	macro	was	defined	without	a	name.

136	Duplicate	macro	name.

A	macro	name	was	duplicated.

137	Macros	nested	too	deep.

The	maximum	macro	nesting	level	was	exceeded.

138	Include	files	nested	too	deep.

The	maximum	include	file	nesting	level	was	exceeded.

139	Maximum	of	100	lines	inside	WHILE-
ENDW.

A	WHILE-ENDW	can	contain	at	most	100	lines.

140	WHILE	must	terminate	within	256
iterations.

A	WHILE-ENDW	loop	must	terminate	within	256	iterations.	This	is
to	prevent	infinite	assembly.

141	WHILEs	nested	too	deep.

The	maximum	WHILE-ENDW	nesting	level	was	exceeded.

142	IFs	nested	too	deep.

The	maximum	IF	nesting	level	was	exceeded.

143	Illegal	nesting.

Macros,	IF's	and	WHILE's	must	be	completely	nested;	they	cannot
overlap.	If	you	have	an	IF	within	a	WHILE	loop,	the	ENDIF	must
come	before	the	ENDW.

144	Unmatched	ENDC.

ENDC	found	without	a	CBLOCK.

145	Unmatched	ENDM.

ENDM	found	without	a	MACRO	definition.

146	Unmatched	EXITM.

EXITM	found	without	a	MACRO	definition.

147	Directive	not	allowed	when	generating
an	object	file.

The	ORG	directive	is	not	allowed	when	generating	an	object	file.
Instead,	declare	a	data	or	code	section,	specifying	the	address	if
necessary.

148	Expanded	source	line	exceeded	200
characters.

The	maximum	length	of	a	source	line,	after	#DEFINE	and	macro
parameter	substitution,	is	200	characters.	Note	that	#DEFINE
substitution	does	not	include	comments,	but	macro	parameter
substitution	does.

149	Directive	only	allowed	when	generating
an	object	file	section.

Certain	directives,	such	as	GLOBAL	and	EXTERN,	only	have
meaning	when	an	object	file	is	generated.	They	cannot	be	used
when	generating	absolute	code.

150	Labels	must	be	defined	in	a	code	or
data	section	when	making	an	object	file.

When	generating	an	object	file,	all	data	and	code	address	labels

must	be	defined	inside	a	data	or	code	section.	Symbols	defined	by
the	EQU	and	SET	directives	can	be	defined	outside	of	a	section.

151	Operand	contains	unresolvable	labels
or	is	too	complex.

When	generating	an	object	file,	operands	must	be	of	the	form
[HIGH|LOW]([<relocatable	address	label>]+[<offset>]).

152	Executable	code	and	data	must	be
defined	in	an	appropriate	section.

When	generating	an	object	file,	all	executable	code	and	data
declarations	must	be	placed	within	appropriate	sections.

153	Page	or	Bank	bits	cannot	be	evaluated
for	the	operand.

The	operand	of	a	PAGESEL,	BANKSEL	or	BANKISEL	directive
must	be	of	the	form	<relocatable	address	label>	or	<constant>.

154	Each	object	file	section	must	be
contiguous.

Object	file	sections,	except	UDATA_OVR	sections,	cannot	be
stopped	and	restarted	within	a	single	source	file.	To	resolve	this
problem,	either	name	each	section	with	its	own	name	or	move	the
code	and	data	declarations	such	that	each	section	is	contiguous.
This	error	will	also	be	generated	if	two	sections	of	different	types
are	given	the	same	name.

155	All	overlaid	sections	of	the	same	name

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

must	have	the	same	starting	address.

If	multiple	UDATA_OVR	sections	with	the	same	name	are
declared,	they	must	all	have	the	same	starting	address.

156	Operand	must	be	an	address	label.

When	generating	object	files,	only	address	labels	in	code	or	data
sections	may	be	declared	global.	Variables	declared	by	the	SET	or
EQU	directives	may	not	be	exported.

157	UNKNOWN	ERROR.

An	error	has	occurred	which	the	assembler	cannot	understand.	It
is	not	any	of	the	errors	described	in	this	appendix.	Contact	your
Microchip	Field	Application	Engineer	(FAE)	if	you	cannot	debug
this	error.

http://www.microchip.com
mailto:techsupport@microchip.com

Assembler	Warnings

MPASM	assembler	warnings	are	listed	numerically	below:

201	Symbol	not	previously	defined.

Symbol	being	#undefined	was	not	previously	defined.

202	Argument	out	of	range.	Least	significant
bits	used.

Argument	did	not	fit	in	the	allocated	space.	For	example,	literals
must	be	8	bits.

203	Found	opcode	in	column	1.

An	opcode	was	found	in	column	one,	which	is	reserved	for	labels.

204	Found	pseudo-op	in	column	1.

A	pseudo-op	was	found	in	column	one,	which	is	reserved	for
labels.

205	Found	directive	in	column	1.

A	directive	was	found	in	column	one,	which	is	reserved	for	labels.

206	Found	call	to	macro	in	column	1.

A	macro	call	was	found	in	column	one,	which	is	reserved	for	labels.

207	Found	label	after	column	1.

A	label	was	found	after	column	one,	which	is	often	due	to	a
misspelled	opcode.

208	Label	truncated	at	32	characters.

Maximum	label	length	is	32	characters.

209	Missing	quote.

A	text	string	or	character	was	missing	a	quote.	For	example,	DATA
'a.

210	Extra),

An	extra	comma	was	found	at	the	end	of	the	line.

211	Extraneous	arguments	on	the	line.

Extra	arguments	were	found	on	the	line.	These	warnings	should	be
investigated,	since	they	are	often	indications	of	the	free-format
parser	interpreting	something	in	a	manner	other	than	was	intended
(try	assembling	OPTION	EQU	0x81	with	LIST	FREE).

212	Expected

Expected	a	certain	type	of	argument.	A	description	should	be
provided.	For	the	warning,	an	assumption	is	made	about	the
argument.

213	The	EXTERN	directive	should	only	be

used	when	making	a	.o	file.

The	EXTERN	directive	only	has	meaning	if	an	object	file	is	being
created.	This	warning	has	been	superseded	by	Error	149.

214	Unmatched	(

An	unmatched	parenthesis	was	found.	The	warning	is	used	if	the
parenthesis	is	not	used	for	indicating	order	of	evaluation.

215	Processor	superseded	by	command
line.	Verify	processor	symbol.

The	processor	was	specified	on	the	command	line	as	well	as	in	the
source	file.	The	command	line	has	precedence.

216	Radix	superseded	by	command	line.

The	radix	was	specified	on	the	command	line	as	well	as	in	the
source	file.	The	command	line	has	precedence.

217	Hex	file	format	specified	on	command
line.

The	hex	file	format	was	specified	on	the	command	line	as	well	as
in	the	source	file.	The	command	line	has	precedence.

218	Expected	DEC,	OCT,	HEX.	Will	use	HEX.

Bad	radix	specification.

219	Invalid	RAM	location	specified.

If	the	_	_MAXRAM	and	_	_BADRAM	directives	are	used,	this
warning	flags	use	of	any	RAM	locations	declared	as	invalid	by
these	directives.	Note	that	the	provided	header	files	include	_
_MAXRAM	and	_	_BADRAM	for	each	processor.

220	Address	exceeds	maximum	range	for
this	processor.

A	ROM	location	was	specified	that	exceeds	the	processor's
memory	size.

221	Invalid	message	number.

The	message	number	specified	for	displaying	or	hiding	is	not	a
valid	message	number.

222	Error	messages	cannot	be	disabled.

Error	messages	cannot	be	disabled	with	the	ERRORLEVEL
command.

223	Redefining	processor

The	selected	processor	is	being	reselected	by	the	LIST	or
PROCESSOR	directive.

224	Use	of	this	instruction	is	not
recommended.

Use	of	the	TRIS	and	OPTION	instructions	is	not	recommended	for

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

a	PIC16CXXX	device.

225	Invalid	label	in	operand.

Operand	was	not	a	valid	address.	For	example,	if	the	user	tried	to
issue	a	CALL	to	a	MACRO	name.

226	UNKNOWN	WARNING

A	warning	has	occurred	which	the	assembler	cannot	understand.	It
is	not	any	of	the	warnings	described	in	this	appendix.	Contact	your
Microchip	Field	Application	Engineer	(FAE)	if	you	cannot	debug
this	warning.

http://www.microchip.com
mailto:techsupport@microchip.com

Assembler	Messages

MPASM	assembler	messages	are	listed	numerically	below:

301	MESSAGE:

User	message,	invoked	with	the	MESSG	directive.

302	Register	in	operand	not	in	bank	0.
Ensure	that	bank	bits	are	correct.

Register	address	was	specified	by	a	value	that	included	the	bank
bits.	For	example,	RAM	locations	in	the	PIC16CXXX	are	specified
with	7	bits	in	the	instruction	and	one	or	two	bank	bits.

303	Program	word	too	large.	Truncated	to
core	size.

Program	words	for	the	PIC16C5X	may	only	be	12-bits;	program
words	for	the	PIC16CXXX	may	only	be	14-bits.

304	ID	Locations	value	too	large.	Last	four
hex	digits	used.

Only	four	hex	digits	are	allowed	for	the	ID	locations.

305	Using	default	destination	of	1	(file).

If	no	destination	bit	is	specified,	the	default	is	used.

306	Crossing	page	boundary	-	ensure	page
bits	are	set.

Generated	code	is	crossing	a	page	boundary.

307	Setting	page	bits.

Page	bits	are	being	set	with	the	LCALL	or	LGOTO	pseudo-op.

308	Warning	level	superseded	by	command
line	value.

The	warning	level	was	specified	on	the	command	line	as	well	as	in
the	source	file.	The	command	line	has	precedence.

309	Macro	expansion	superseded	by
command	line.

Macro	expansion	was	specified	on	the	command	line	as	well	as	in
the	source	file.	The	command	line	has	precedence.

310	Superseding	current	maximum	RAM
and	RAM	map.

The	_	_MAXRAM	directive	has	been	used	previously.

312	Page	or	Bank	selection	not	needed	for
this	device.	No	code	generated.

If	a	device	contains	only	one	ROM	page	or	RAM	bank,	no	page	or
bank	selection	is	required,	and	any	PAGESEL,	BANKSEL,	or

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

BANKISEL	directives	will	not	generate	any	code.

313	CBLOCK	constants	will	start	with	a
value	of	0.

If	the	first	CBLOCK	in	the	source	file	has	no	starting	value
specified,	this	message	will	be	generated.

314	UNKNOWN	MESSAGE

A	message	has	occurred	which	the	assembler	cannot	understand.
It	is	not	any	of	the	messages	described	in	this	appendix.	Contact
your	Microchip	Field	Application	Engineer	(FAE)	if	you	cannot
debug	this	message.

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Assembler	Limitations

General	Limitations

MPASM	assembler	only	looks	in	the	path	of	the	executable	or
the	file	being	assembled	for	included	files.	Therefore,	Include
Path	information	entered	in	the	MPLAB	IDE	Edit	Project	dialog
will	NOT	be	used	by	the	assembler.

Source	line	limit	(expanded)	=	200	characters
File	name	limit	=	8.3	format

Directive	Limitations

while	nest	limit	=	8	deep	while	loop	limit	=	100	lines	while
iteration	limit	=	256

if	nest	limit	=	16	deep
include	nest	limit	=	5	levels	include	max.	number	of	files	=	255
macro	nest	limit	=	16	deep	macro	source	line	limit	(expanded)	=

200	characters
Do	not	use	#includes	in	macros.

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Instruction	Sets

PICmicro	MCU	instruction	sets	are	used	in	developing	applications
with	MPASM	assembler,	MPLINK	object	linker	and	MPLIB	object
librarian.

Instructions	are	listed	here	based	on	device	core	size.	As	of	the
time	of	publication	of	this	document,	the	following	core	sizes	map
to	the	following	devices:

12-Bit	Core	Devices:	PIC12C5XX,	PIC12CE5XX,	PIC16X5X,
PIC16C505

14-Bit	Core	Devices:	PIC12C67X,	PIC12CE67X,
PIC12F629/675,	PIC16XXXX
16-Bit	Core	Devices:	PIC17CXXX
Extended	16-Bit	Core	Devices:	PIC18XXXXX

Topics	covered	are:

Key	to	PICmicro	Family	Instruction	Sets

12-Bit	Core	Instruction	Set
14-Bit	Core	Instruction	Set
16-Bit	Core	Instruction	Set
Key	to	Extended	16-Bit	Core	Instruction	Set
Extended	16-Bit	Core	Instruction	Set

http://www.microchip.com
mailto:techsupport@microchip.com

Key	to	PICmicro	Family	Instruction	Sets

Field Description
Register	Files

dest Destination	either	the	WREG	register	or	the	specified	register	file	location.	See	d.
f Register	file	address	(5-bit,	7-bit	or	8-bit).
p Peripheral	register	file	address	(5-bit).
r Port	for	TRIS.

x
Don't	care	(`0'	or	`1').
The	assembler	will	generate	code	with	x	=	0.	It	is	the	recommended	form	of	use	for
compatibility	with	all	Microchip	software	tools.

Literals

k

Literal	field,	constant	data	or	label.
k	4-bit.
kk	8-bit.
kkk	12-bit.

Bits

b Bit	address	within	an	8-bit	file	register	(0	to	7).

d
Destination	select	bit.
d	=	0:	store	result	in	WREG
d	=	1:	store	result	in	file	register	f	(default)

i
Table	pointer	control.
i	=	0:	do	not	change.
i	=	1:	increment	after	instruciton	execution.

s
Destination	select	bit.
s	=	0:	store	result	in	file	register	f	and	WREG
s	=	1:	store	result	in	file	register	f	(default)

t
Table	byte	select.
t	=	0:	perform	operation	on	lower	byte.
t	=	1:	perform	operation	on	upper	byte.

'	' Bit	values,	as	opposed	to	Hex	value.
Named	Registers
BSR Bank	Select	Register.	Used	to	select	the	current	RAM	bank.
OPTION OPTION	Register.
PCL Program	Counter	Low	Byte.
PCH Program	Counter	High	Byte.
PCLATH Program	Counter	High	Byte	Latch.
PCLATU Program	Counter	Upper	Byte	Latch.
PRODH Product	of	Multiply	High	Byte.
PRODL Product	of	Multiply	Low	Byte.
TBLATH Table	Latch	(TBLAT)	High	Byte.
TBLATL Table	Latch	(TBLAT)	Low	Byte.

TBLPTR 16-bit	Table	Pointer	(TBLPTRH:TBLPTRL).	Points	to	a	Program	Memory	location.
WREG Working	register	(accumulator).
Named	Bits
C,	DC,	Z,
OV,	N ALU	Status	bits:	Carry,	Digit	Carry,	Zero,	Overflow,	Negative.

TO Time-out	bit.
PD Power-down	bit.
GIE Global	Interrupt	Enable	bit(s).
Named	Device	Features
PC Program	Counter.
TOS Top-of-Stack.
WDT Watchdog	Timer.
Misc.	Descriptors
() Contents.
→,	↔ Assigned	to.
<	> Register	bit	field.

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

12-Bit	Core	Instruction	Set

Microchip's	base-line	8-bit	microcontroller	family	uses	a	12-bit	wide
instruction	set.	All	instructions	execute	in	a	single	instruction	cycle
unless	otherwise	noted.	Any	unused	opcode	is	executed	as	a
NOP.

The	instruction	set	is	grouped	into	the	following	catagories:	Byte-
oriented	file	register	operations,	bit-oriented	file	register	operations,
and	core	literal	and	control	operations.	Instructions	are	listed	by
catagory	in	the	tables	below.	Instruction	opcode	is	show	in	Hex	by
certain	making	assumptions,	either	listed	in	the	key	or	as	a
footnote.	For	more	information	on	the	opcode	bit	values	for	each
instruction,	as	well	as	the	number	of	cycles	per	instruction,	status
bits	affected	and	complete	instruction	details,	see	the	relevent
device	data	sheet.

TABLE:	12-BIT	CORE	BYTE-ORIENTED	FILE	REGISTER
OPERATIONS	

Hex Mnemonic Description Function
1Ef* ADDWF f,d Add	W	and	f WREG	+	f	→	dest

16f* ANDWF f,d AND	W	and	f WREG	.AND.	f	→	dest

06f CLRF f Clear	f 0	→	f

040 CLRW 	 Clear	W 0	→	WREG

26f* COMF f,d Complement	f .NOT.	f	→	dest

0Ef* DECF f,d Decrement	f f	-	1	→	dest

2Ef* DECFSZ f,d Decrement	f,	skip	if	zero f	-	1	→	dest,	skip	if	zero

2Af* INCF f,d Increment	f f	+	1	→	dest

3Ef* INCFSZ f,d Increment	f,	skip	if	zero f	+	1	→	dest,	skip	if	zero

12f* IORWF f,d Inclusive	OR	W	and	f WREG	.OR.	f	→	dest

22f* MOVF f,d Move	f f	→	dest

02f MOVWF f Move	W	to	f WREG	→	f

000 NOP 	 No	operation 	

36f* RLF f,d Rotate	left	f

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

32f* RRF f,d Rotate	right	f

0Af* SUBWF f,d Subtract	W	from	f f	-	WREG	→	dest

3Af* SWAPF f,d Swap	halves	f f(0:3)	↔	f(4:7)	→	dest

1Af* XORWF f,d Exclusive	OR	W	and	f WREG	.XOR.	f	→	dest
*	Assuming	default	bit	value	for	d.

TABLE:	12-BIT	CORE	BIT-ORIENTED	FILE
REGISTER	OPERATIONS	

Hex Mnemonic Description Function
4bf BCF f,b Bit	clear	f 0	→	f(b)

5bf BSF f,b Bit	set	f 1	→	f(b)

6bf BTFSC f,b Bit	test,	skip	if	clear skip	if	f(b)	=	0

7bf BTFSS f,b Bit	test,	skip	if	set skip	if	f(b)	=	1

TABLE:	12-BIT	CORE	LITERAL	AND	CONTROL	OPERATIONS	
Hex Mnemonic Description Function
Ekk ANDLW kk AND	literal	and	W kk	.AND.	WREG	→	WREG

9kk CALL kk Call	subroutine PC	+	1	→	TOS,	kk	→	PC

004 CLRWDT 	 Clear	watchdog	timer 0	→	WDT	(and	Prescaler	if	assigned)

Akk GOTO kk Goto	address	(k	is	nine	bits) kk	→	PC(9	bits)

Dkk IORLW kk Incl.	OR	literal	and	W kk	.OR.	WREG	→	WREG

Ckk MOVLW kk Move	Literal	to	W kk	→	WREG

002 OPTION 	 Load	OPTION	Register WREG	→	OPTION	Register

8kk RETLW kk Return	with	literal	in	W kk	→	WREG,	TOS	→	PC

003 SLEEP 	 Go	into	Standby	Mode 0	→	WDT,	stop	oscillator

00r TRIS r Tristate	port	r WREG	→	I/O	control	reg	r

Fkk XORLW kk Exclusive	OR	literal	and	W kk	.XOR.	WREG	→	WREG

http://www.microchip.com
mailto:techsupport@microchip.com

14-Bit	Core	Instruction	Set

Microchip's	mid-range	8-bit	microcontroller	family	uses	a	14-bit
wide	instruction	set.	This	instruction	set	consists	of	36	instructions,
each	a	single	14-bit	wide	word.	Most	instructions	operate	on	a	file
register,	f,	and	the	working	register,	WREG	(accumulator).	The
result	can	be	directed	either	to	the	file	register	or	the	WREG
register	or	to	both	in	the	case	of	some	instructions.	A	few
instructions	operate	solely	on	a	file	register	(BSF,	for	example).

The	instruction	set	is	grouped	into	the	following	catagories:	Byte-
oriented	file	register	operations,	bit-oriented	file	register	operations,
and	core	literal	and	control	operations.	Instructions	are	listed	by
catagory	in	the	tables	below.	Instruction	opcode	is	show	in	Hex	by
certain	making	assumptions,	either	listed	in	the	key	or	as	a
footnote.	For	more	information	on	the	opcode	bit	values	for	each
instruction,	as	well	as	the	number	of	cycles	per	instruction,	status
bits	affected	and	complete	instruction	details,	see	the	relevent
device	data	sheet.

TABLE:	14-BIT	CORE	BYTE-ORIENTED	FILE	REGISTER
OPERATIONS	

Hex Mnemonic Description Function
07df ADDWF f,d Add	W	and	f W	+	f	→	d

05df ANDWF f,d AND	W	and	f W	.AND.	f	→	d

01'1'f CLRF f Clear	f 0	→	f

01xx CLRW 	 Clear	W 0	→	W

09df COMF f,d Complement	f .NOT.	f	→	d

03df DECF f,d Decrement	f f	-	1	→	d

0Bdf DECFSZ f,d Decrement	f,	skip	if	zero f	-	1	→	d,	skip	if	0

0Adf INCF f,d Increment	f f	+	1	→	d

0Fdf INCFSZ f,d Increment	f,	skip	if	zero f	+	1	→	d,	skip	if	0

04df IORWF f,d Inclusive	OR	W	and	f W	.OR.	f	→	d

08df MOVF f,d Move	f f	→	d

00'1'f MOVWF f Move	W	to	f W	→	f

0000 NOP 	 No	operation 	

0Ddf RLF f,d Rotate	left	f

0Cdf RRF f,d Rotate	right	f

02df SUBWF f,d Subtract	W	from	f f	-	W	→	d

0Edf SWAPF f,d Swap	halves	f f(0:3)	↔	f(4:7)	→	d

06df XORWF f,d Exclusive	OR	W	and	f W	.XOR.	f	→	d

TABLE:	14-BIT	CORE	BIT-ORIENTED	FILE
REGISTER	OPERATIONS	

Hex Mnemonic Description Function
4bf BCF f,b Bit	clear	f 0	→	f(b)

5bf BSF f,b Bit	set	f 1	→	f(b)

6bf BTFSC f,b Bit	test,	skip	if	clear skip	if	f(b)	=	0

7bf BTFSS f,b Bit	test,	skip	if	set skip	if	f(b)	=	1

TABLE:	14-BIT	CORE	LITERAL	AND	CONTROL	OPERATIONS	
Hex Mnemonic Description Function

3Ekk ADDLW kk Add	literal	to	W kk	+	WREG	→	WREG

39kk ANDLW kk AND	literal	and	W kk	.AND.	WREG	→	WREG

2'0'kkk CALL kkk Call	subroutine PC	+	1	→	TOS,	kk	→	PC

0064 CLRWDT 	 Clear	watchdog	timer 0	→	WDT	(and	Prescaler	if	assigned)

2'1'kkk GOTO kkk Goto	address	(k	is	nine	bits) kk	→	PC(9	bits)

38kk IORLW kk Incl.	OR	literal	and	W kk	.OR.	WREG	→	WREG

30kk MOVLW kk Move	Literal	to	W kk	→	WREG

0062 OPTION 	 Load	OPTION	register WREG	→	OPTION	Register

0009 RETFIE 	 Return	from	Interrupt TOS	→	PC,	1	→	GIE

34kk RETLW kk Return	with	literal	in	W kk	→	WREG,	TOS	→	PC

0008 RETURN 	 Return	from	subroutine TOS	→	PC

0063 SLEEP 	 Go	into	Standby	Mode 0	→	WDT,	stop	oscillator

3Ckk SUBLW kk Subtract	W	from	literal kk	-	WREG	→	WREG

006r TRIS r Tristate	port	r WREG	→	I/O	control	reg	r

3Akk XORLW kk Exclusive	OR	literal	and	W kk	.XOR.	WREG	→	WREG

TABLE:	12-BIT/14-BIT	CORE	SPECIAL	INSTRUCTION
MNEMONICS	

Mnemonic Description Equivalent
Operation(s) Status

BTFSC 3,0

ADDCF f,d Add	Carry	to	File INCF f,d Z

ADDDCF f,d Add	Digit	Carry	to	File BTFSC
INCF

3,1
f,d Z

B k Branch GOTO k -

BC k Branch	on	Carry BTFSC
GOTO

3,0
k -

BDC k Branch	on	Digit	Carry BTFSC
GOTO

3,1
k -

BNC k Branch	on	No	Carry BTFSS
GOTO

3,0
k -

BNDC k Branch	on	No	Digit	Carry BTFSS
GOTO

3,1
k -

BNZ k Branch	on	No	Zero BTFSS
GOTO

3,2
k -

BZ k Branch	on	Zero BTFSC
GOTO

3,2
k -

CLRC 	 Clear	Carry BCF 3,0 -

CLRDC 	 Clear	Digit	Carry BCF 3,1 -

CLRZ 	 Clear	Zero BCF 3,2 -

LCALL k Long	Call
BCF/BSF
BCF/BSF
CALL

0x0A,3
0x0A,4
k

	

LGOTO k Long	GOTO
BCF/BSF
BCF/BSF
GOTO

0x0A,3
0x0A,4
k

	

MOVFW f Move	File	to	W MOVF f,0 Z

NEGF f,d Negate	File COMF
INCF

f,1
f,d Z

SETC 	 Set	Carry BSF 3,0 -

SETDC 	 Set	Digit	Carry BSF 3,1 -

SETZ 	 Set	Zero BSF 3,2 -

SKPC 	 Skip	on	Carry BTFSS 3,0 -

SKPDC 	 Skip	on	Digit	Carry BTFSS 3,1 -

SKPNC 	 Skip	on	No	Carry BTFSC 3,0 -

SKPNDC 	 Skip	on	No	Digit	Carry BTFSC 3,1 -

SKPNZ 	 Skip	on	Non	Zero BTFSC 3,2 -

SKPZ 	 Skip	on	Zero BTFSS 3,2 -

SUBCF f,d Subtract	Carry	from	File BTFSC
DECF

3,0
f,d Z

SUBDCF f,d Subtract	Digit	Carry	from	File BTFSC 3,1 Z

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

DECF f,d
TSTF f Test	File MOVF f,1 Z

http://www.microchip.com
mailto:techsupport@microchip.com

16-Bit	Core	Instruction	Set

Microchip's	high-performance	8-bit	microcontroller	family	uses	a
16-bit	wide	instruction	set.	This	instruction	set	consists	of	55
instructions,	each	a	single	16-bit	wide	word.	Most	instructions
operate	on	a	file	register,	f,	and	the	working	register,	WREG
(accumulator).	The	result	can	be	directed	either	to	the	file	register
or	the	WREG	register	or	to	both	in	the	case	of	some	instructions.
Some	devices	in	this	family	also	include	hardware	multiply
instructions.	A	few	instructions	operate	solely	on	a	file	register
(BSF	for	example).

The	instruction	set	is	grouped	into	the	following	catagories:	Byte-
oriented	file	register	operations,	bit-oriented	file	register	operations,
and	core	literal	and	control	operations.	Instructions	are	listed	by
catagory	in	the	tables	below.	Instruction	opcode	is	show	in	Hex	by
certain	making	assumptions,	either	listed	in	the	key	or	as	a
footnote.	For	more	information	on	the	opcode	bit	values	for	each
instruction,	as	well	as	the	number	of	cycles	per	instruction,	status
bits	affected	and	complete	instruction	details,	see	the	relevent
device	data	sheet.

TABLE:	16-BIT	BYTE-ORIENTED	FILE	REGISTER	OPERATIONS	
Hex Mnemonic Description Function
0Ff* ADDWF f,d Add	WREG	to	F (WREG	+	f)	→	dest

11f* ADDWFC f,d Add	WREG	and	Carry	to	f (WREG	+	f	+	C)	→	dest

0Bf* ANDWF f,d AND	WREG	with	f (WREG	.AND.	f)	→	dest

29f* CLRF f,s Clear	dest 0x00	→	dest

13f* COMF f,d Complement	f .NOT.	f	→	dest

31f CPFSEQ f Compare	f,	WREG,	skip	if	f	=
WREG f-WREG,	skip	if	f	=	WREG

32f CPFSGT f Compare	f,	WREG,	skip	if	f	>
WREG f-WREG,	skip	if	f	>	WREG

30f CPFSLT f Compare	f,	WREG,	skip	if	f<	WREG f-WREG,	skip	if	f	<	WREG

2Ff* DAW f,s Dec.	adjust	WREG,	store	in	dest WREG	adjusted	→	dest

07f* DECF f,d Decrement	f (f	-	1)	→	dest

17f* DECFSZ f,d Decrement	f,	skip	if	0 (f	-	1)	→	dest,	skip	if	0

27f* DCFSNZ f,d Decrement	f,	skip	if	not	0 (f	-	1)	→	dest,	skip	if	not	0

15f* INCF f,d Increment	f (f	+	1)	→	dest

1Ff* INCFSZ f,d Increment	f,	skip	if	zero (f	+	1)	→	dest,	skip	if	0

25f* INFSNZ f,d Increment	f,	skip	if	not	zero (f	+	1)	→	dest,	skip	if	not	0

09f* IORWF f,d Inclusive	or	WREG	with	f (WREG	.OR.	f)	→	dest

6pf MOVFP f,p Move	f	to	p f	→	p

4pf MOVPF p,f Move	p	to	f p	→	f

01f MOVWF f Move	WREG	to	F WREG	→	f

34f MULWF f Multiply	WREG	and	f (WREG	x	f)	→	PRODH:PRODL

2Df* NEGW f,s Negate	WREG,	store	in	dest -WREG	→	dest

0000 NOP 	 No	operation No	operation

1Bf* RLCF f,d Rotate	left	through	carry

23f* RLNCF f,d Rotate	left	(no	carry)

19f* RRCF f,d Rotate	right	through	carry

21f* RRNCF f,d Rotate	right	(no	carry)

2Af* SETF f,s Set	dest 0xFF	→	dest

05f* SUBWF f,d Subtract	WREG	from	f (f	-	WREG)	→	d

03f* SUBWFB f,d Subtract	from	f	with	borrow (f	-	WREG	-	c)	→	d

1Df* SWAPF f,d Swap	f f(0:3)	→	d(4:7),	
f(4:7)	→	d(0:3)

A8f TABLRD t,i,f

Read	data	from	table	latch	into	file	f,
then	update	table	latch	with	16-bit
contents	of	memory	location
addressed	by	table	pointer

TBLATH	→	f	if	t=1,
TBLATL	→	f	if	t=0;
ProgMem(TBLPTR)	→	TBLAT;
TBLPTR	+	1	→	TBLPTR	if	i=1

ACf TABLWT t,i,f

Write	data	from	file	f	to	table	latch
and	then	write	16-bit	table	latch	to
program	memory	location	addressed
by	table	pointer

f	→	TBLATH	if	t	=	1,
f	→	TBLATL	if	t	=	0;
TBLAT	→	ProgMem(TBLPTR);
TBLPTR	+	1	→	TBLPTR	if	i=1

A0f TLRD t,f Read	data	from	table	latch	into	file	f
(table	latch	unchanged)

TBLATH	→	f	if	t	=	1
TBLATL	→	f	if	t	=	0

A4f TLWT t,f Write	data	from	file	f	into	table	latch f	→	TBLATH	if	t	=	1
f	→	TBLATL	if	t	=	0

33f TSTFSZ f Test	f,	skip	if	zero skip	if	f	=	0

0Df* XORWF f,d Exclusive	OR	WREG	with	f (WREG	.XOR.	f)	→	dest

*	Assuming	default	bit	values	for	d	and	s.

TABLE:	16-BIT	CORE	BIT-ORIENTED	FILE
REGISTER	OPERATIONS	

Hex Mnemonic Description Function
8'1'bf BCF f,b Bit	clear	f 0	→	f(b)

8'0'bf BSF f,b Bit	set	f 1	→	f(b)

9'1'bf BTFSC f,b Bit	test,	skip	if	clear skip	if	f(b)	=	0

9'0'bf BTFSS f,b Bit	test,	skip	if	set skip	if	f(b)	=	1

3'1'bf BTG f,b Bit	toggle	f .NOT.	f(b)	→	f(b)

TABLE:	16-BIT	CORE	LITERAL	AND	CONTROL	OPERATIONS	
Hex Mnemonic Description Function
B1kk ADDLW kk Add	literal	to	WREG (WREG	+	kk)	→	WREG

B5kk ANDLW kk AND	Literal	and	WREG (WREG	.AND.	kk)	→	WREG

Ekkk CALL kkk Subroutine	call	(within	8k	page)
PC+1	→	TOS,k	→	PC(12:0),
k(12:8)	→	PCLATH(4:0),
PC(15:13)	→	PCLATH(7:5)

0004 CLRWT 	 Clear	watchdog	timer 0	→	WDT,0→	WDT	prescaler,	
1	→	PD,	1	→	TO

Ckkk GOTO kkk Unconditional	branch	(within	8k)
k	→	PC(12:0)
k(12:8)	→	PCLATH(4:0),	
PC(15:13)	→	PCLATH(7:5)

B3kk IORLW kk Inclusive	OR	literal	with	W (WREG	.OR.	kk)	→	WREG

B7kk LCALL kk Long	Call	(within	64k) (PC+1)	→	TOS;	kk	→	PCL,
(PCLATH)→	PCH

B8xk MOVLB k Move	literal	to	low	nibble	in	BSR k	→	BSR	(3:0)

BAkx MOVLR k Move	literal	to	high	nibble	in	BSR k	→	BSR	(7:4)

B0kk MOVLW kk Move	literal	to	WREG kk	→	WREG

BCkk MULLW kk Multiply	literal	and	WREG (kk	x	WREG)	→	PRODH:PRODL

0005 RETFIE 	 Return	from	interrupt,	enable	interrupt (PCLATH)	→	PCH:k	→	PCL	
0	→	GLINTD

B6kk RETLW kk Return	with	literal	in	WREG kk	→	W,	TOS	→	PC,
(PCLATH	unchanged)

0002 RETURN 	 Return	from	subroutine TOS	→	PC
(PCLATH	unchanged)

0003 SLEEP 	 Enter	Sleep	Mode
Stop	oscillator,power	down,	0	→	WDT,	
0	→	WDT	Prescaler	
1	→	PD,	1	→	TO

B2kk SUBLW kk Subtract	WREG	from	literal (kk	-	WREG)	→	WREG

B4kk XORLW kk Exclusive	OR	literal	with	WREG (WREG	.XOR.	kk)	→	WREG

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

Key	to	Extended	16-Bit	Core	Instruction	Set

Field Description
Register	Files

dest Destination	either	the	WREG	register	or	the	specified	register	file	location.	See	d.

f

Register	file	address.
f	8-bit	(0x00	to	0xFF).
f'	12-bit	(0x000	to	0xFFF).	This	is	the	source	address.
f"	12-bit	(0x000	to	0xFFF).	This	is	the	destination	address.

r 0,	1	or	2	for	FSR	number.

x
Don't	care	(`0'	or	`1').
The	assembler	will	generate	code	with	x	=	0.	It	is	the	recommended	form	of	use	for
compatibility	with	all	Microchip	software	tools.

Literals

k

Literal	field,	constant	data	or	label.
k	4-bit.
kk	8-bit.
kkk	12-bit.

Offsets,	Increments/Decrements

n The	relative	address	(2's	complement	number)	for	relative	branch	instructions,	or	the	direct
address	for	Call/Branch	and	Return	instructions.

*
*+
*-
+*

The	mode	of	the	TBLPTR	register	for	the	table	read	and	table	write	instructions.
Only	used	with	table	read	(TBLRD)	and	table	write	(TBLWT)	instructions:
No	Change	to	register
Post-Increment	register
Post-Decrement	register
Pre-Increment	register

Bits

a
RAM	access	bit
a	=	0:	RAM	location	in	Access	RAM	(BSR	register	is	ignored)
a	=	1:	RAM	bank	is	specified	by	BSR	register	(default)

b Bit	address	within	an	8-bit	file	register	(0	to	7).

d
Destination	select	bit
d	=	0:	store	result	in	WREG
d	=	1:	store	result	in	file	register	f	(default)

s
Fast	Call/Return	mode	select	bit
s	=	0:	do	not	update	into/from	shadow	registers	(default)
s	=	1:	certain	registers	loaded	into/from	shadow	registers	(Fast	mode)

'	' Bit	values,	as	opposed	to	Hex	value.
Named	Registers
BSR Bank	Select	Register.	Used	to	select	the	current	RAM	bank.
FSR File	Select	Register.
PCL Program	Counter	Low	Byte.
PCH Program	Counter	High	Byte.

PCLATH Program	Counter	High	Byte	Latch.
PCLATU Program	Counter	Upper	Byte	Latch.
PRODH Product	of	Multiply	High	Byte.
PRODL Product	of	Multiply	Low	Byte.
STATUS Status	Register
TABLAT 8-bit	Table	Latch.
TBLPTR 21-bit	Table	Pointer	(points	to	a	Program	Memory	location).
WREG Working	register	(accumulator).
Named	Bits
C,	DC,	Z,
OV,	N ALU	Status	bits:	Carry,	Digit	Carry,	Zero,	Overflow,	Negative.

TO Time-out	bit.
PD Power-down	bit.
PEIE Peripheral	Interrupt	Enable	bit.
GIE,
GIEL/H Global	Interrupt	Enable	bit(s).

Named	Device	Features
MCLR Master	clear	device	reset.
PC Program	Counter.
TOS Top-of-Stack.
WDT Watchdog	Timer.
Misc.	Descriptors
() Contents.
→ Assigned	to.
<	> Register	bit	field.

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

Extended	16-Bit	Core	Instruction	Set

Microchip's	new	high-performance	8-bit	microcontroller	family	uses
a	16-bit	wide	instruction	set.	This	instruction	set	consists	of	76
instructions,	each	a	single	16-bit	wide	word	(2	bytes).	Most
instructions	operate	on	a	file	register,	f,	and	the	working	register,
WREG	(accumulator).	The	result	can	be	directed	either	to	the	file
register	or	the	WREG	register	or	to	both	in	the	case	of	some
instructions.	A	few	instructions	operate	solely	on	a	file	register
(BSF	for	example).

TABLE:	EXTENDED	16-BIT	CORE	BYTE-ORIENTED	REGISTER	OPERATIONS	
Hex Mnemonic Description Function
27f* ADDWF f,d,a ADD	WREG	to	f WREG+f	→	dest

23f* ADDWFC f,d,a ADD	WREG	and	Carry	bit	to	f WREG+f+C	→	dest

17f* ANDWF f,d,a AND	WREG	with	f WREG	.AND.	f	→	dest

6Bf* CLRF f,a Clear	f 0	→	f

1Ff* COMF f,d,a Complement	f .NOT.	f	→	dest

63f* CPFSEQ f,a Compare	f	with	WREG,	skip	if
f=WREG

f-WREG,	if	f=WREG,	PC+4	→	PC
else	PC+2	→	PC

65f* CPFSGT f,a Compare	f	with	WREG,	skip	if	f	>
WREG

f-WREG,	if	f	>	WREG,	PC+4	→	PC
else	PC+2	→	PC

61f* CPFSLT f,a Compare	f	with	WREG,	skip	if	f	<
WREG

f-WREG,	if	f	<	WREG,	PC+4	→	PC
else	PC+2	→	PC

07f* DECF f,d,a Decrement	f f-1	→	dest

2Ff* DECFSZ f,d,a Decrement	f,	skip	if	0 f-1	→	dest,	if	dest=0,	PC+4	→	PC
else	PC+2	→	PC

4Ff* DCFSNZ f,d,a Decrement	f,	skip	if	not	0 f-1	→	dest,	if	dest	Â¼	0,	PC+4	→	PC
else	PC+2	→	PC

2Bf* INCF f,d,a Increment	f f+1	→	dest

3Ff* INCFSZ f,d,a Increment	f,	skip	if	0 f+1	→	dest,	if	dest=0,	PC+4	→	PC
else	PC+2	→	PC

4Bf* INFSNZ f,d,a Increment	f,	skip	if	not	0 f+1	→	dest,	if	dest	Â¼	0,	PC+4	→	PC
else	PC+2	→	PC

13f* IORWF f,d,a Inclusive	OR	WREG	with	f WREG	.OR.	f	→	dest

53f* MOVF f,d,a Move	f f	→	dest

Cf'
Ff" MOVFF f',f" Move	f'	to	fd"	(second	word) f'	→	f"

6Ff* MOVWF f,a Move	WREG	to	f WREG	→	f

03f* MULWF f,a Multiply	WREG	with	f WREG	*	f	→	PRODH:PRODL

6Df* NEGF f,a Negate	f -f	→	f

37f* RLCF f,d,a Rotate	left	f	through	Carry

47f* RLNCF f,d,a Rotate	left	f	(no	carry)

33f* RRCF f,d,a Rotate	right	f	through	Carry

43f* RRNCF f,d,a Rotate	right	f	(no	carry)

69f* SETF f,a Set	f 0xFF	→	f

57f* SUBFWB f,d,a Subtract	f	from	WREG	with	Borrow WREG-f-C	→	dest

5Ff* SUBWF f,d,a Subtract	WREG	from	f f-WREG	→	dest

5Bf* SUBWFB f,d,a Subtract	WREG	from	f	with	Borrow f-WREG-C	→	dest

3Bf* SWAPF f,d,a Swap	nibbles	of	f f<3:0>	→	dest<7:4>,	f<7:4>	→
dest<3:0>

67f* TSTFSZ f,a Test	f,	skip	if	0 PC+4	→	PC,	if	f=0,	else	PC+2	→	PC

1Bf* XORWF f,d,a Exclusive	OR	WREG	with	f WREG	.XOR.	f	→	dest
*	Assuming	default	bit	values	for	d	and	a.

TABLE:	EXTENDED	16-BIT	CORE	BIT-ORIENTED	REGISTER
OPERATIONS	

Hex Mnemonic Description Function
91f* BCF f,b,a Bit	Clear	f 0	→	f

81f* BSF f,b,a Bit	Set	f 1	→	f

B1f* BTFSC f,b,a Bit	test	f,	skip	if	clear if	f=0,	PC+4→PC,	else	PC+2→PC

A1f* BTFSS f,b,a Bit	test	f,	skip	if	set if	f=1,	PC+4→PC,	else	PC+2→PC

71f* BTG f,b,a Bit	Toggle	f f	→	f
*	Assuming	b	=	0	and	default	bit	value	for	a.

TABLE:	EXTENDED	16-BIT	CORE	CONTROL	OPERATIONS	
Hex Mnemonic Description Function

E2n BC n Branch	if	Carry if	C=1,	PC+2+2*n→	PC,	else	PC+2→PC

E6n BN n Branch	if	Negative if	N=1,	PC+2+2*n→PC,else	PC+2→PC

E3n BNC n Branch	if	Not	Carry if	C=0,	PC+2+2*n→PC,	else	PC+2→PC

E7n BNN n Branch	if	Not	Negative if	N=0,	PC+2+2*n→PC,	else	PC+2→PC

E5n BNOV n Branch	if	Not	Overflow if	OV=0,	PC+2+2*n→PC,	else	PC+2→PC

E1n BNZ n Branch	if	Not	Zero if	Z=0,	PC+2+2*n→PC,	else	PC+2→PC

E4n BOV n Branch	if	Overflow if	OV=1,	PC+2+2*n→PC,	else	PC+2→PC

D'0'n BRA n Branch	Unconditionally PC+2+2*n→	PC

E0n BZ n Branch	if	Zero if	Z=1,	PC+2+2*n→PC,	else	PC+2→PC

ECkk*
Fkkk CALL n,s Call	Subroutine	1st	word

2nd	word

PC+4	→	TOS,	n	→	PC<20:1>,
if	s=1,	WREG	→	WREGs,
STATUS	→	STATUSs,	BSR	→	BSRs

0004 CLRWDT 	 Clear	Watchdog	Timer 0	→	WDT,	0	→	WDT	postscaler,
1	→	TO,1	→	PD

0007 DAW 	 Decimal	Adjust	WREG

if	WREG<3:0>	>9	or	DC=1,
WREG<3:0>+6→WREG<3:0>,
else	WREG<3:0>	→	WREG<3:0>;
if	WREG<7:4>	>9	or	C=1,
WREG<7:4>+6→WREG<7:4>,
else	WREG<7:4>	→	WREG<7:4>;

EFkk
Fkkk GOTO n Go	to	address	1st	word

2nd	word n	→	PC<20:1>

0000 NOP 	 No	Operation No	Operation

Fxxx NOP 	 No	Operation No	Operation	(2-word	instructions)

0006 POP 	 Pop	top	of	return	stack
(TOS) TOS-1	→	TOS

0005 PUSH 	 Push	top	of	return	stack
(TOS) PC	+2→	TOS

D'1'n RCALL n Relative	Call PC+2	→	TOS,	PC+2+2*n→PC

00FF RESET 	 Software	device	reset Same	as	MCLR	reset

0010* RETFIE s Return	from	interrupt
(and	enable	interrupts)

TOS	→	PC,	1	→	GIE/GIEH	or	PEIE/GIEL,
if	s=1,	WREGs	→	WREG,	STATUSs	→	STATUS,
BSRs	→	BSR,	PCLATU/PCLATH	unchngd.

0012* RETURN s Return	from	subroutine
TOS	→	PC,	if	s=1,	WREGs	→	WREG,
STATUSs	→	STATUS,	BSRs	→	BSR,
PCLATU/PCLATH	are	unchanged

0003 SLEEP 	 Enter	SLEEP	Mode 0	→	WDT,	0	→	WDT	postscaler,
1	→	TO,	0	→	PD

*	Assuming	default	bit	value	for	s.

TABLE:	EXTENDED	16-BIT	CORE	LITERAL	OPERATIONS	
Hex Mnemonic Description Function
0Fkk ADDLW kk Add	literal	to	WREG WREG+kk	→	WREG

0Bkk ANDLW kk AND	literal	with	WREG WREG	.AND.	kk	→	WREG

09kk IORLW kk Inclusive	OR	literal	with	WREG WREG	.OR.	kk	→	WREG

EErk
F0kk LFSR r,kk Move	literal	(12	bit)	2nd	word

to	FSRr	1st	word kk	→	FSRr

010k MOVLB k Move	literal	to	BSR<3:0> kk	→	BSR

0Ekk MOVLW kk Move	literal	to	WREG kk	→	WREG

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

0Dkk MULLW kk Multiply	literal	with	WREG WREG	*	kk→	PRODH:PRODL

0Ckk RETLW kk Return	with	literal	in	WREG kk	→	WREG

08kk SUBLW kk Subtract	WREG	from	literal kk-WREG	→	WREG

0Akk XORLW kk Exclusive	OR	literal	with	WREG WREG	.XOR.	kk	→	WREG

TABLE:	EXTENDED	16-BIT	CORE	MEMORY	OPERATIONS	
Hex Mnemonic Description Function
0008 TBLRD* Table	Read Prog	Mem	(TBLPTR)	→	TABLAT

0009 TBLRD*+ Table	Read	with	post-increment Prog	Mem	(TBLPTR)	→	TABLAT
TBLPTR	+1	→	TBLPTR

000A TBLRD*- Table	Read	with	post-decrement Prog	Mem	(TBLPTR)	→	TABLAT
TBLPTR	-1	→	TBLPTR

000B TBLRD+* Table	Read	with	pre-increment TBLPTR	+1	→	TBLPTR
Prog	Mem	(TBLPTR)	→	TABLAT

000C TBLWT* Table	Write TABLAT	→	Prog	Mem(TBLPTR)

000D TBLWT*+ Table	Write	with	post-increment TABLAT	→	Prog	Mem(TBLPTR)
TBLPTR	+1	→	TBLPTR

000E TBLWT*- Table	Write	with	post-decrement TABLAT	→	Prog	Mem(TBLPTR)
TBLPTR	-1	→	TBLPTR

000F TBLWT+* Table	Write	with	pre-increment TBLPTR	+1	→	TBLPTR
TABLAT	→	Prog	Mem(TBLPTR)

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Useful	Tables

Some	useful	tables	are	included	for	reference	here.

ASCII	Character	Set

Hexadecimal	to	Decimal	Conversion

http://www.microchip.com
mailto:techsupport@microchip.com

ASCII	Character	Set

Least	Significant	Nibble

Most	Significant	Nibble
HEX 0 1 2 3 4 5 6 7
0 NUL DLE Space 0 @ P ` p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F V f v
7 Bell ETB ' 7 G W g w
8 BS CAN (8 H X h x
9 HT EM) 9 I Y i y
A LF SUB * : J Z j z
B VT ESC + ; K [k {
C FF FS , < L \ l |
D CR GS - = M] m }
E SO RS . > N ^ n ~
F SI US / ? O _ o DEL

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Hexadecimal	to	Decimal	Conversion

This	appendix	describes	how	to	convert	hexadecimal	to	decimal.
For	each	HEX	digit,	find	the	associated	decimal	value.	Add	the
numbers	together.

High	Byte Low	Byte
HEX	1000 Dec HEX	100 Dec HEX	10 Dec HEX	1 Dec

0 0 0 0 0 0 0 0
1 4096 1 256 1 16 1 1
2 8192 2 512 2 32 2 2
3 12288 3 768 3 48 3 3
4 16384 4 1024 4 64 4 4
5 20480 5 1280 5 80 5 5
6 24576 6 1536 6 96 6 6
7 28672 7 1792 7 112 7 7
8 32768 8 2048 8 128 8 8
9 36864 9 2304 9 144 9 9
A 40960 A 2560 A 160 A 10
B 45056 B 2816 B 176 B 11
C 49152 C 3072 C 192 C 12
D 53248 D 3328 D 208 D 13
E 57344 E 3584 E 224 E 14
F 61440 F 3840 F 240 F 15

For	example,	HEX	A38F	converts	to	41871	as	follows:

HEX	1000's	Digit HEX	100's	Digit HEX	10's	Digit HEX	1's	Digit Result

40960 768 128 15 41871	Decimal

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Support

The	general	information	contained	here	will	be	useful	to	know
when	working	with	Microchip	Technology's	MPASM	assembler	(the
assembler),	MPLINK	object	linker	(the	linker),	and	MPLIB	object
librarian	(the	librarian).

Recommended	Reading

The	Microchip	Web	Site
Development	Systems	Customer	Notification	Service
Customer	Support

http://www.microchip.com
mailto:techsupport@microchip.com

Recommended	Reading

Other	useful	documents	are	listed	below.

Readme	File	-	readme.asm

For	the	latest	information	on	using	MPASM	assembler,	read	the
readme.asm	file	(an	ASCII	text	file)	in	the	MPLAB	IDE	directory.
The	README	file	contains	update	information	and	known	issues
that	may	not	be	included	in	the	user's	guide	or	the	on-line	help	file.

Readme	File	-	readme.lkr

For	the	latest	information	on	using	MPLINK	linker	and	MPLIB
librarian,	read	the	readme.lkr	file	(an	ASCII	text	file)	in	the	MPLAB
IDE	directory.	The	README	file	contains	update	information	and
known	issues	that	may	not	be	included	in	the	user's	guide	or	the
on-line	help	file.

MPASM	Assembler,	MPLINK	Object	Linker,	and	MPLIB
Object	Librarian	User's	Guide	(DS00000)

This	user's	guide	describes	how	to	use	the	Microchip	PICmicro
MCU	MPASM	assembler,	MPLINK	object	linker	and	MPLIB	object
librarian.

MPASM	and	MPLINK	PICmicro	Quick	Reference	Card
(DS30400)

A	quick	reference	card	(QRC)	containing	MPASM	assembler
directive	language	summary,	MPASM	assembler	radix	types
supported,	MPLINK	object	linker	command	line	options,	MPLIB
object	librarian	usage	format	and	examples,	PIC18CXXX	core
special	function	register	files,	ASCII	character	set,	and	PICmicro
MCU	instruction	set	summaries.

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Microchip	Technical	Library	CD-ROM	(DS00161)

This	CD-ROM	contains	comprehensive	application	notes,	data
sheets,	and	technical	briefs	for	all	of	Microchip	products.	To
obtain	this	CD-ROM,	contact	the	nearest	Microchip	Sales	and
Service	location	(see	back	page).

Embedded	Control	Handbook	Vol.1	&	2	and	the	Embedded
Control	Handbook	Update	2000	(DS00092,	DS00167,	and
DS00711)

These	handbooks	contain	a	wealth	of	information	about
microcontroller	applications.	To	obtain	these	documents,	contact
the	nearest	Microchip	sales	and	service	location	(see	back	page).

The	application	notes	described	in	these	manuals	are	also
obtainable	from	Microchip	sales	and	service	locations	or	from	the
Microchip	website	
(http://www.microchip.com).

Microsoft®	Windows®	Manuals

This	manual	assumes	that	users	are	familiar	with	the	Microsoft
Windows	operating	system.	Many	excellent	references	exist	for
this	software	program,	and	should	be	consulted	for	general
operation	of	Windows.

http://www.microchip.com
mailto:techsupport@microchip.com

The	Microchip	Web	Site

Microchip	provides	online	support	on	the	Microchip	World	Wide
Web	(WWW)	site.	The	website	is	used	by	Microchip	as	a	means	to
make	files	and	information	easily	available	to	customers.	To	view
the	site,	you	must	have	access	to	the	Internet	and	a	web	browser
such	as	Netscape	Navigator	or	Microsoft	Internet	Explorer.

The	Microchip	web	site	is	available	by	using	your	favorite	Internet
browser	to	attach	to:

http://www.microchip.com

The	web	site	provides	a	variety	of	services.	Users	may	download
files	for	the	latest	development	tools,	data	sheets,	application
notes,	user's	guides,	articles,	and	sample	programs.	A	variety
information	specific	to	the	business	of	Microchip	is	also	available,
including	listings	of	Microchip	sales	offices,	distributors	and	factory
representatives.

Technical	Support

Frequently	Asked	Questions	(FAQ)

Online	Discussion	Groups	-	Conferences	for	products,
Development	Systems,	technical	information	and	more
Microchip	Consultant	Program	Member	Listing
Links	to	other	useful	web	sites	related	to	Microchip	products

Developer's	Toolbox

Design	Tips

Device	Errata

Other	available	information

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Latest	Microchip	Press	Releases

Listing	of	seminars	and	events
Job	Postings

http://www.microchip.com
mailto:techsupport@microchip.com

Development	Systems	Customer
Notification	Service

Microchip	started	the	customer	notification	service	to	help	our
customers	keep	current	on	Microchip	products	with	the	least
amount	of	effort.	Once	you	subscribe,	you	will	receive	email
notification	whenever	we	change,	update,	revise	or	have	errata
related	to	your	specified	product	family	or	development	tool	of
interest.

Go	to	the	Microchip	WWW	web	page	(http://www.microchip.com)
and	click	on	Customer	Change	Notification	under	Items	of	Interest.
Follow	the	instructions	to	register.

The	Development	Systems	product	group	categories	are:

Compilers

Emulators
In-Circuit	Debuggers
MPLAB
Programmers

Here	is	a	description	of	these	categories:

COMPILERS	-	The	latest	information	on	Microchip	C	compilers
and	other	language	tools.	These	include	the	MPLAB	C17,	MPLAB
C18	and	MPLAB	C30	C	compilers;	MPASM	and	MPLAB	ASM30
assemblers;	MPLINK	and	MPLAB	LINK30	object	linkers;	and
MPLIB	and	MPLAB	LIB30	object	librarians.

EMULATORS	-	The	latest	information	on	Microchip	in-circuit
emulators.This	includes	the	MPLAB	ICE	2000	and	MPLAB	ICE
4000.

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

IN-CIRCUIT	DEBUGGERS	-	The	latest	information	on	Microchip
in-circuit	debuggers.	These	include	the	MPLAB	ICD	and	MPLAB
ICD	2.

MPLAB	-	The	latest	information	on	Microchip	MPLAB	IDE,	the
Windows	Integrated	Development	Environment	for	development
systems	tools.	This	list	is	focused	on	the	MPLAB	IDE,	MPLAB	SIM
and	MPLAB	SIM30	simulators,	MPLAB	IDE	Project	Manager	and
general	editing	and	debugging	features.

PROGRAMMERS	-	The	latest	information	on	Microchip	device
programmers.	These	include	the	PRO	MATE	II	device	programmer
and	PICSTART	Plus	development	programmer.

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Customer	Support

Users	of	Microchip	products	can	receive	assistance	through
several	channels:

Distributor	or	Representative

Local	Sales	Office
Field	Application	Engineer	(FAE)
Corporate	Applications	Engineer	(CAE)
Hotline

Customers	should	call	their	distributor,	representative	or	field
application	engineer	(FAE)	for	support.	Local	sales	offices	are	also
available	to	help	customers.	See	the	back	cover	for	a	listing	of
sales	offices	and	locations.

Corporate	Applications	Engineers	(CAEs)	may	be	contacted	at
(480)	792-7627.

In	addition,	there	is	a	Systems	Information	and	Upgrade	Line.	This
line	provides	system	users	a	listing	of	the	latest	versions	of	all	of
Microchip's	development	systems	software	products.	Plus,	this	line
provides	information	on	how	customers	can	receive	any	currently
available	upgrade	kits.

The	Hotline	Numbers	are:

1-800-755-2345	for	U.S.	and	most	of	Canada.

1-480-792-7302	for	the	rest	of	the	world.

http://www.microchip.com
mailto:techsupport@microchip.com

Glossary

Absolute	Section

A	section	with	a	fixed	(absolute)	address	that	cannot	be	changed
by	the	linker.

Access	Memory	(PIC18	Only)

Special	registers	on	PIC18XXXXX	devices	that	allow	access
regardless	of	the	setting	of	the	bank	select	register	(BSR).

Address

Value	that	identifies	a	location	in	memory.

Alphabetic	Character

Alphabetic	characters	are	those	characters	that	are	letters	of	the
arabic	alphabet	(a,	b,	...,	z,	A,	B,	...,	Z).

Alphanumeric

Alphanumeric	characters	are	comprised	of	alphabetic	characters
and	decimal	digits	(0,1,	...,	9).

Anonymous	Structure

An	unnamed	structure	that	is	a	member	of	a	C	union.	The
members	of	an	anonymous	structure	may	be	accessed	as	if	they
were	members	of	the	enclosing	union.	For	example,	in	the
following	code,	hi	and	lo	are	members	of	an	anonymous	structure
inside	the	union	caster.

union	castaway
int	intval;

struct	{
char	lo;	//accessible	as	caster.lo
char	hi;	//accessible	as	caster.hi
};
}	caster;
ANSI

American	National	Standards	Institute	is	an	organization
responsible	for	formulating	and	approving	standards	in	the	United
States.

Application

A	set	of	software	and	hardware	that	may	be	controlled	by	a
PICmicro	microcontroller.

Archive

A	collection	of	relocatable	object	modules.	It	is	created	by
assembling	multiple	source	files	to	object	files,	and	then	using	the
archiver	to	combine	the	object	files	into	one	library	file.	A	library
can	be	linked	with	object	modules	and	other	libraries	to	create
executable	code.

Archiver

A	tool	that	creates	and	manipulates	libraries.

ASCII

American	Standard	Code	for	Information	Interchange	is	a
character	set	encoding	that	uses	7	binary	digits	to	represent	each
character.	It	includes	upper	and	lower	case	letters,	digits,	symbols
and	control	characters.

Assembler

A	language	tool	that	translates	assembly	language	source	code

into	machine	code.

Assembly	Language

A	programming	language	that	describes	binary	machine	code	in	a
symbolic	form.

Assigned	Section

A	section	which	has	been	assigned	to	a	target	memory	block	in	the
linker	command	file.

Asynchronous	Events

Multiple	events	that	do	not	occur	at	the	same	time.	This	is
generally	used	to	refer	to	interrupts	that	may	occur	at	any	time
during	processor	execution.

Asynchronous	Stimulus

Data	generated	to	simulate	external	inputs	to	a	simulator	device.

Binary

The	base	two	numbering	system	that	uses	the	digits	0-1.	The	right-
most	digit	counts	ones,	the	next	counts	multiples	of	2,	then	22	=	4,
etc.

Breakpoint,	Hardware

An	event	whose	execution	will	cause	a	halt.

Breakpoint,	Software

An	address	where	execution	of	the	firmware	will	halt.	Usually
achieved	by	a	special	break	instruction.

Build

Compile	and	link	all	the	source	files	for	an	application.

C

A	general-purpose	programming	language	which	features
economy	of	expression,	modern	control	flow	and	data	structures,
and	a	rich	set	of	operators.

Calibration	Memory

A	special	function	register	or	registers	used	to	hold	values	for
calibration	of	a	PICmicro	microcontroller	on-board	RC	oscillator	or
other	device	peripherals.

Central	Processing	Unit

The	part	of	a	device	that	is	responsible	for	fetching	the	correct
instruction	for	execution,	decoding	that	instruction,	and	then
executing	that	instruction.	When	necessary,	it	works	in	conjunction
with	the	arithmetic	logic	unit	(ALU)	to	complete	the	execution	of	the
instruction.	It	controls	the	program	memory	address	bus,	the	data
memory	address	bus,	and	accesses	to	the	stack.

COFF

Common	Object	File	Format.	An	object	file	of	this	format	contains
machine	code,	debugging	and	other	information.

Command	Line	Interface

A	means	of	communication	between	a	program	and	its	user	based
solely	on	textual	input	and	output.

Compiler

A	program	that	translates	a	source	file	written	in	a	high-level
language	into	machine	code.

Conditional	Compilation

The	act	of	compiling	a	program	fragment	only	if	a	certain	constant
expression,	specified	by	a	preprocessor	directive,	is	true.

Configuration	Bits

Special-purpose	bits	programmed	to	set	PICmicro	microcontroller
modes	of	operation.	A	configuration	bit	may	or	may	not	be
preprogrammed.

Control	Directives

Directives	in	assembly	language	code	that	cause	code	to	be
included	or	omitted	based	on	the	assembly-time	value	of	a
specified	expression.

CPU

See	Central	Processing	Unit.

Cross	Reference	File

A	file	that	references	a	table	of	symbols	and	a	list	of	files	that
references	the	symbol.	If	the	symbol	is	defined,	the	first	file	listed	is
the	location	of	the	definition.	The	remaining	files	contain	references
to	the	symbol.

Data	Directives

Data	directives	are	those	that	control	the	assembler's	allocation	of
program	or	data	memory	and	provide	a	way	to	refer	to	data	items
symbolically;	that	is,	by	meaningful	names.

Data	Memory

On	Microchip	MCU	and	DSC	devices,	data	memory	(RAM)	is
comprised	of	general	purpose	registers	(GPRs)	and	special

function	registers	(SFRs).	Some	devices	also	have	EEPROM	data
memory.

Device	Programmer

A	tool	used	to	program	electrically	programmable	semiconductor
devices	such	as	microcontrollers.

Directives

Statements	in	source	code	that	provide	control	of	the	language
tool's	operation.

Download

Download	is	the	process	of	sending	data	from	a	host	to	another
device,	such	as	an	emulator,	programmer	or	target	board.

EEPROM

Electrically	Erasable	Programmable	Read	Only	Memory.	A	special
type	of	PROM	that	can	be	erased	electrically.	Data	is	written	or
erased	one	byte	at	a	time.	EEPROM	retains	its	contents	even
when	power	is	turned	off.

Emulation

The	process	of	executing	software	loaded	into	emulation	memory
as	if	it	were	firmware	residing	on	a	microcontroller	device.

Emulation	Memory

Program	memory	contained	within	the	emulator.

Emulator

Hardware	that	performs	emulation.

Emulator	System

The	MPLAB	ICE	2000	and	4000	emulator	systems	include	the
pod,	processor	module,	device	adapter,	cables,	and	MPLAB	IDE
software.

Endianess

Describes	order	of	bytes	in	a	multi-byte	object.

EPROM

Erasable	Programmable	Read	Only	Memory.	A	programmable
read-only	memory	that	can	be	erased	usually	by	exposure	to
ultraviolet	radiation.

Error	File

A	file	containing	error	messages	and	diagnostics	generated	by	a
language	tool.

Event

A	description	of	a	bus	cycle	which	may	include	address,	data,	pass
count,	external	input,	cycle	type	(fetch,	R/W),	and	time	stamp.
Events	are	used	to	describe	triggers,	breakpoints	and	interrupts.

Export

Send	data	out	of	the	MPLAB	IDE	in	a	standardized	format.

Extended	Microcontroller	Mode

In	extended	microcontroller	mode,	on-chip	program	memory	as
well	as	external	memory	is	available.	Execution	automatically
switches	to	external	if	the	program	memory	address	is	greater	than
the	internal	memory	space	of	the	PIC17CXXX	or	PIC18CXXX
device.

External	Label

A	label	that	has	external	linkage.

External	Linkage

A	function	or	variable	has	external	linkage	if	it	can	be	referenced
from	outside	the	module	in	which	it	is	defined.

External	Symbol

A	symbol	for	an	identifier	which	has	external	linkage.	This	may	be
a	reference	or	a	definition.

External	Symbol	Resolution

A	process	performed	by	the	linker	in	which	external	symbol
definitions	from	all	input	modules	are	collected	in	an	attempt	to
resolve	all	external	symbol	references.	Any	external	symbol
references	which	do	not	have	a	corresponding	definition	cause	a
linker	error	to	be	reported.

External	Input	Line

An	external	input	signal	logic	probe	line	(TRIGIN)	for	setting	an
event	based	upon	external	signals.

External	RAM

Off-chip	Read/Write	memory.

File	Registers

On-chip	data	memory,	including	general	purpose	registers	(GPRs)
and	special	function	registers	(SFRs).

Flash

A	type	of	EEPROM	where	data	is	written	or	erased	in	blocks
instead	of	bytes.

FNOP

Forced	No	Operation.	A	forced	NOP	cycle	is	the	second	cycle	of	a
two-cycle	instruction.	Since	the	PICmicro	microcontroller
architecture	is	pipelined,	it	prefetches	the	next	instruction	in	the
physical	address	space	while	it	is	executing	the	current	instruction.
However,	if	the	current	instruction	changes	the	program	counter,
this	prefetched	instruction	is	explicitly	ignored,	causing	a	forced
NOP	cycle.

Frame	Pointer

A	pointer	that	references	the	location	on	the	stack	that	separates
the	stack-based	arguments	from	the	stack-based	local	variables.
Provides	a	convenient	base	from	which	to	access	local	variables
and	other	values	for	the	current	function.

Free-Standing

A	C	compiler	implementation	that	accepts	any	strictly	conforming
program	that	does	not	use	complex	types	and	in	which	the	use	of
the	features	specified	in	the	ISO	library	clause	is	confined	to	the
contents	of	the	standard	headers	<float.h>,	<iso646.h>,
<limits.h>,	<stddef.h>,	and	<stdint.h>.

GPR

General	Purpose	Register.	The	portion	of	device	data	memory
(RAM)	avaliable	for	general	use.

Halt

A	stop	of	program	execution.	Executing	Halt	is	the	same	as
stopping	at	a	breakpoint.

HEX	Code

Executable	instructions	stored	in	a	hexadecimal	format	code.	HEX

code	is	contained	in	a	HEX	file.

HEX	File

An	ASCII	file	containing	hexadecimal	addresses	and	values	(HEX
code)	suitable	for	programming	a	device.

Hexadecimal

The	base	16	numbering	system	that	uses	the	digits	0-9	plus	the
letters	A-F	(or	a-f).	The	digits	A-F	represent	hexadecimal	digits
with	values	of	(decimal)	10	to	15.	The	right-most	digit	counts	ones,
the	next	counts	multiples	of	16,	then	162	=	256,	etc.

High	Level	Language

A	language	for	writing	programs	that	is	further	removed	from	the
processor	than	assembly.

ICD

In-Circuit	Debugger.	MPLAB	ICD	and	MPLAB	ICD	2	are
Microchip's	in-circuit	debuggers	for	PIC16F87X	and	PIC18FXXX
devices,	respectively.	These	ICDs	work	with	MPLAB	IDE.

ICE

In-Circuit	Emulator.	MPLAB	ICE	2000	and	4000	are	Microchip's	in-
circuit	emulators	that	work	with	MPLAB	IDE.

IDE

Integrated	Development	Environment.	MPLAB	IDE	is	Microchip's
integrated	development	environment.

IEEE

Institute	of	Electrical	and	Electronics	Engineers.

Import

Bring	data	into	the	MPLAB	IDE	from	an	outside	source,	such	as
from	a	HEX	file.

Instruction	Set

The	collection	of	machine	language	instructions	that	a	particular
processor	understands.

Instructions

A	sequence	of	bits	that	tells	a	central	processing	unit	to	perform	a
particular	operation	and	can	contain	data	to	be	used	in	the
operation.

Internal	Linkage

A	function	or	variable	has	internal	linkage	if	it	can	not	be	accessed
from	outside	the	module	in	which	it	is	defined.

International	Organization	for	Standardization

An	organization	that	sets	standards	in	many	businesses	and
technologies,	including	computing	and	communications.

Interrupt

A	signal	to	the	CPU	that	suspends	the	execution	of	a	running
application	and	transfers	control	to	an	Interrupt	Service	Routine
(ISR)	so	that	the	event	may	be	processed.

Interrupt	Handler

A	routine	that	processes	special	code	when	an	interrupt	occurs.

Interrupt	Request

An	event	which	causes	the	processor	to	temporarily	suspend

normal	instruction	execution	and	to	start	executing	an	interrupt
handler	routine.	Some	processors	have	several	interrupt	request
events	allowing	different	priority	interrupts.

Interrupt	Service	Routine

A	function	that	is	invoked	when	an	interrupt	occurs.

Interrupt	Service	Routine

User-generated	code	that	is	entered	when	an	interrupt	occurs.	The
location	of	the	code	in	program	memory	will	usually	depend	on	the
type	of	interrupt	that	has	occurred.

IRQ

See	Interrupt	Request.

ISO

See	International	Organization	for	Standardization.

ISR

See	Interrupt	Service	Routine.

Latency

The	time	between	an	event	and	its	response.

Librarian

See	Archiver.

Library

See	Archive.

Linker

A	language	tool	that	combines	object	files	and	libraries	to	create
executable	code,	resolving	references	from	one	module	to	another.

Linker	Script	Files

Linker	script	files	are	the	command	files	of	a	linker.	They	define
linker	options	and	describe	available	memory	on	the	target
platform.

Listing	Directives

Listing	directives	are	those	directives	that	control	the	assembler
listing	file	format.	They	allow	the	specification	of	titles,	pagination
and	other	listing	control.

Listing	File

A	listing	file	is	an	ASCII	text	file	that	shows	the	machine	code
generated	for	each	C	source	statement,	assembly	instruction,
assembler	directive,	or	macro	encountered	in	a	source	file.

Little	Endianess

A	data	ordering	scheme	for	multibyte	data	whereby	the	least
significant	byte	is	stored	at	the	lower	addresses.

Local	Label

A	local	label	is	one	that	is	defined	inside	a	macro	with	the	LOCAL
directive.	These	labels	are	particular	to	a	given	instance	of	a
macro's	instantiation.	In	other	words,	the	symbols	and	labels	that
are	declared	as	local	are	no	longer	accessible	after	the	ENDM
macro	is	encountered.

Logic	Probes

Up	to	14	logic	probes	can	be	connected	to	some	Microchip
emulators.	The	logic	probes	provide	external	trace	inputs,	trigger

output	signal,	+5V,	and	a	common	ground.

Machine	Code

The	representation	of	a	computer	program	that	is	actually	read	and
interpreted	by	the	processor.	A	program	in	binary	machine	code
consists	of	a	sequence	of	machine	instructions	(possibly
interspersed	with	data).	The	collection	of	all	possible	instructions
for	a	particular	processor	is	known	as	its	"instruction	set".

Machine	Language

A	set	of	instructions	for	a	specific	central	processing	unit,	designed
to	be	usable	by	a	processor	without	being	translated.

Macro

Macroinstruction.	An	instruction	that	represents	a	sequence	of
instructions	in	abbreviated	form.

Macro	Directives

Directives	that	control	the	execution	and	data	allocation	within
macro	body	definitions.

Make	Project

A	command	that	rebuilds	an	application,	re-compiling	only	those
source	files	that	have	changed	since	the	last	complete	compilation.

MCU

Microcontroller	Unit.	An	abbreviation	for	microcontroller.	Also	uC.

Memory	Models

Versions	of	libraries	and/or	precompiled	object	files	based	on	a
device's	memory	(RAM/ROM)	size	and	structure.

Memory	Models

A	description	that	specifies	the	size	of	pointers	that	point	to
program	memory.

Message

Text	displayed	to	alert	you	to	potential	problems	in	language	tool
operation.	A	message	will	not	stop	operation.

Microcontroller

A	highly	integrated	chip	that	contains	a	CPU,	RAM,	program
memory,	I/O	ports,	and	timers.

Microcontroller	Mode

One	of	the	possible	program	memory	configurations	of	the
PIC17CXXX	and	PIC18CXXX	families	of	microcontrollers.	In
microcontroller	mode,	only	internal	execution	is	allowed.	Thus,	only
the	on-chip	program	memory	is	available	in	microcontroller	mode.

Microprocessor	Mode

One	of	the	possible	program	memory	configurations	of	the
PIC17CXXX	and	PIC18CXXX	families	of	microcontrollers.	In
microprocessor	mode,	the	on-chip	program	memory	is	not	used.
The	entire	program	memory	is	mapped	externally.

Mnemonics

Text	instructions	that	can	be	translated	directly	into	machine	code.
Also	referred	to	as	Opcodes.

MPASM	Assembler

Microchip	Technology's	relocatable	macro	assembler	for	PICmicro
microcontroller	devices,	KeeLoq	devices	and	Microchip	memory

devices.

MPLAB	ASM30

Microchip's	relocatable	macro	assembler	for	dsPIC30F	digitial
signal	controller	devices.

MPLAB	C1X

Refers	to	both	the	MPLAB	C17	and	MPLAB	C18	C	compilers	from
Microchip.	MPLAB	C17	is	the	C	compiler	for	PIC17CXXX	devices
and	MPLAB	C18	is	the	C	compiler	for	PIC18CXXX	and
PIC18FXXXX	devices.

MPLAB	C30

Microchip's	C	compiler	for	dsPIC30F	digitial	signal	controller
devices.

MPLAB	ICD	2

Microchip's	in-circuit	debugger	for	PIC16F87X,	PIC18FXXX	and
dsPIC30FXXXX	devices.	The	ICD	works	with	MPLAB	IDE.	The
main	component	of	each	ICD	is	the	module.	A	complete	system
consists	of	a	module,	header,	demo	board,	cables,	and	MPLAB
IDE	Software.

MPLAB	ICE	2000

Microchip's	in-circuit	emulator	for	PICmicro	MCU's	that	works	with
MPLAB	IDE.

MPLAB	ICE	4000

Microchip's	in-circuit	emulator	for	dsPIC	DSC's	that	works	with
MPLAB	IDE.

MPLAB	IDE

Microchip's	Integrated	Development	Environment.

MPLAB	LIB30

MPLAB	LIB30	archiver/librarian	is	an	object	librarian	for	use	with
COFF	object	modules	created	using	either	MPLAB	ASM30	or
MPLAB	C30	C	compiler.

MPLAB	LINK30

MPLAB	LINK30	is	an	object	linker	for	the	Microchip	MPLAB
ASM30	assembler	and	the	Microchip	MPLAB	C30	C	compiler.

MPLAB	SIM

Microchip's	simulator	that	works	with	MPLAB	IDE	in	support	of
PICmicro	MCU	devices.

MPLAB	SIM30

Microchip's	simulator	that	works	with	MPLAB	IDE	in	support	of
dsPIC	DSC	devices.

MPLIB	Object	Librarian

MPLIB	librarian	is	an	object	librarian	for	use	with	COFF	object
modules	created	using	either	MPASM	assembler	(mpasm	or
mpasmwin	v2.0)	or	MPLAB	C1X	C	compilers.

MPLINK	Object	Linker

MPLINK	linker	is	an	object	linker	for	the	Microchip	MPASM
assembler	and	the	Microchip	MPLAB	C17	or	C18	C	compilers.
MPLINK	linker	also	may	be	used	with	the	Microchip	MPLIB
librarian.	MPLINK	linker	is	designed	to	be	used	with	MPLAB	IDE,
though	it	does	not	have	to	be.

MRU

Most	Recently	Used.	Refers	to	files	and	windows	available	to	be
selected	from	MPLAB	IDE	main	pull	down	menus.

Nesting	Depth

The	maximum	level	to	which	macros	can	include	other	macros.

Node

MPLAB	IDE	project	component.

Non	Real-Time

Refers	to	the	processor	at	a	breakpoint	or	executing	single	step
instructions	or	MPLAB	IDE	being	run	in	simulator	mode.

Non-Volatile	Storage

A	storage	device	whose	contents	are	preserved	when	its	power	is
off.

NOP

No	Operation.	An	instruction	that	has	no	effect	when	executed
except	to	advance	the	program	counter.

Object	Code

The	machine	code	generated	by	an	assembler	or	compiler.

Object	File

A	file	containing	machine	code	and	possibly	debug	information.	It
may	be	immediately	executable	or	it	may	be	relocatable,	requiring
linking	with	other	object	files,	e.g.	libraries,	to	produce	a	complete
executable	program.

Object	File	Directives

Directives	that	are	used	only	when	creating	an	object	file.

Octal

The	base	8	number	system	that	only	uses	the	digits	0-7.	The	right-
most	digit	counts	ones,	the	next	digit	counts	multiples	of	8,	then
8^2	=	64,	etc.

Off-Chip	Memory

Off-chip	memory	refers	to	the	memory	selection	option	for	the
PIC17CXXX	or	PIC18CXXX	device	where	memory	may	reside	on
the	target	board,	or	where	all	program	memory	may	be	supplied	by
the	Emulator.	The	Memory	tab	accessed	from	Options	>
Development	Mode	provides	the	Off-Chip	Memory	selection	dialog
box.

Opcodes

Operational	Codes.	See	Mnemonics.

Operators

Symbols,	like	the	plus	sign	`+'	and	the	minus	sign	`-',	that	are	used
when	forming	well-defined	expressions.	Each	operator	has	an
assigned	precedence	that	is	used	to	determine	order	of	evaluation.

OTP

One	Time	Programmable.	EPROM	devices	that	are	not	in
windowed	packages.	Since	EPROM	needs	ultraviolet	light	to	erase
its	memory,	only	windowed	devices	are	erasable.

Pass	Counter

A	counter	that	decrements	each	time	an	event	(such	as	the
execution	of	an	instruction	at	a	particular	address)	occurs.	When
the	pass	count	value	reaches	zero,	the	event	is	satisfied.	You	can

assign	the	Pass	Counter	to	break	and	trace	logic,	and	to	any
sequential	event	in	the	complex	trigger	dialog.

PC

Personal	Computer	or	Program	Counter.

PC	Host

Any	IBM™	or	compatible	personal	computer	running	a	supported
Windows	operating	system.

PICmicro	MCUs

PICmicro	microcontrollers	(MCUs)	refers	to	all	Microchip
microcontroller	families.

PICSTART	Plus

A	developmental	device	programmer	from	Microchip.	Programs	8-,
14-,	28-,	and	40-pin	PICmicro	microcontrollers.	Must	be	used	with
MPLAB	IDE	Software.

Pod,	Emulator

The	external	emulator	box	that	contains	emulation	memory,	trace
memory,	event	and	cycle	timers,	and	trace/breakpoint	logic.

Power-on-Reset	Emulation

A	software	randomization	process	that	writes	random	values	in
data	RAM	areas	to	simulate	uninitialized	values	in	RAM	upon	initial
power	application.

Pragma

A	directive	that	has	meaning	to	a	specific	compiler.	Often	a	pragma
is	used	to	convey	implementation-defined	information	to	the

compiler.	MPLAB	C30	uses	attributes	to	convey	this	information.

PRO	MATE	II

A	device	programmer	from	Microchip.	Programs	all	PICmicro
microcontrollers	and	most	memory	and	Keeloq	devices.	Can	be
used	with	MPLAB	IDE	or	stand-alone.

Program	Counter

The	location	that	contains	the	address	of	the	instruction	that	is
currently	executing.

Program	Memory

The	memory	area	in	a	device	where	instructions	are	stored.	Also,
the	memory	in	the	emulator	or	simulator	containing	the
downloaded	target	application	firmware.

Project

A	set	of	source	files	and	instructions	to	build	the	object	and
executable	code	for	an	application.

Prototype	System

A	term	referring	to	a	user's	target	application,	or	target	board.

PWM	Signals

Pulse	Width	Modulation	Signals.	Certain	PICmicro	MCU	devices
have	a	PWM	peripheral.

Qualifier

An	address	or	an	address	range	used	by	the	Pass	Counter	or	as
an	event	before	another	operation	in	a	complex	trigger.

Radix

The	number	base,	HEX,	or	decimal,	used	in	specifying	an	address.

RAM

Random	Access	Memory	(Data	Memory).	Memory	in	which
information	can	be	accessed	in	any	order.

Raw	Data

The	binary	representation	of	code	or	data	associated	with	a
section.

Real-Time

When	released	from	the	halt	state	in	the	emulator	or	MPLAB	ICD
mode,	the	processor	runs	in	real-time	mode	and	behaves	exactly
as	the	normal	chip	would	behave.	In	real-time	mode,	the	real-time
trace	buffer	of	MPLAB	ICE	is	enabled	and	constantly	captures	all
selected	cycles,	and	all	break	logic	is	enabled.	In	the	emulator	or
MPLAB	ICD,	the	processor	executes	in	real-time	until	a	valid
breakpoint	causes	a	halt,	or	until	the	user	halts	the	emulator.	In	the
simulator	real-time	simply	means	execution	of	the	microcontroller
instructions	as	fast	as	they	can	be	simulated	by	the	host	CPU.

Recursive	Calls

A	function	that	calls	itself,	either	directly	or	indirectly.

Recursion

The	concept	that	a	function	or	macro,	having	been	defined,	can
call	itself.	Great	care	should	be	taken	when	writing	recursive
macros;	it	is	easy	to	get	caught	in	an	infinite	loop	where	there	will
be	no	exit	from	the	recursion.

Reentrant

A	function	that	may	have	multiple,	simultaneously	active	instances.

This	may	happen	due	to	either	direct	or	indirect	recursion	or
through	execution	during	interrupt	processing.

Relocatable

An	object	file	whose	sections	have	not	been	assigned	to	a	fixed
location	in	memory.

ROM

Read	Only	Memory	(Program	Memory).	Memory	that	cannot	be
modified.

Run

The	command	that	releases	the	emulator	from	halt,	allowing	it	to
run	the	application	code	and	change	or	respond	to	I/O	in	real	time.

Runtime	Model

Describes	the	use	of	target	architecture	resources.

Section

A	named	sequence	of	code	or	data.

Section	Attribute

A	characteristic	ascribed	to	a	section	(e.g.,	an	access	section).

SFR

See	Special	Function	Registers.

Shell

The	MPASM	assembler	shell	is	a	prompted	input	interface	to	the
macro	assembler.	There	are	two	MPASM	assembler	shells:	one	for
the	DOS	version	and	one	for	the	Windows	version.

Simulator

A	software	program	that	models	the	operation	of	devices.

Single	Step

This	command	steps	though	code,	one	instruction	at	a	time.	After
each	instruction,	MPLAB	IDE	updates	register	windows,	watch
variables,	and	status	displays	so	you	can	analyze	and	debug
instruction	execution.	You	can	also	single	step	C	compiler	source
code,	but	instead	of	executing	single	instructions,	MPLAB	IDE	will
execute	all	assembly	level	instructions	generated	by	the	line	of	the
high	level	C	statement.

Skew

The	information	associated	with	the	execution	of	an	instruction
appears	on	the	processor	bus	at	different	times.	For	example,	the
executed	Opcodes	appears	on	the	bus	as	a	fetch	during	the
execution	of	the	previous	instruction,	the	source	data	address	and
value	and	the	destination	data	address	appear	when	the	Opcodes
is	actually	executed,	and	the	destination	data	value	appears	when
the	next	instruction	is	executed.	The	trace	buffer	captures	the
information	that	is	on	the	bus	at	one	instance.	Therefore,	one	trace
buffer	entry	will	contain	execution	information	for	three	instructions.
The	number	of	captured	cycles	from	one	piece	of	information	to
another	for	a	single	instruction	execution	is	referred	to	as	the	skew.

Skid

When	a	hardware	breakpoint	is	used	to	halt	the	processor,	one	or
more	additional	instructions	may	be	executed	before	the	processor
halts.	The	number	of	extra	instructions	executed	after	the	intended
breakpoint	is	referred	to	as	the	skid.

Source	Code

The	form	in	which	a	computer	program	is	written	by	the

programmer.	Source	code	is	written	in	some	formal	programming
language	which	can	be	translated	into	or	machine	code	or
executed	by	an	interpreter.

Source	File

An	ASCII	text	file	containing	source	code.

Special	Function	Registers

The	portion	of	data	memory	(RAM)	dedicated	to	registers	that
control	I/O	processor	functions,	I/O	status,	timers,	or	other	modes
or	peripherals.

Stack,	Hardware

Locations	in	PICmicro	microcontroller	where	the	return	address	is
stored	when	a	function	call	is	made.

Stack,	Software

Memory	used	by	an	application	for	storing	return	addresses,
function	parameters,	and	local	variables.	This	memory	is	typically
managed	by	the	compiler	when	developing	code	in	a	high-level
language.

Static	RAM	or	SRAM

Static	Random	Access	Memory.	Program	memory	you	can
Read/Write	on	the	target	board	that	does	not	need	refreshing
frequently.

Status	Bar

The	Status	Bar	is	located	on	the	bottom	of	the	MPLAB	IDE	window
and	indicates	such	current	information	as	cursor	position,
development	mode	and	device,	and	active	tool	bar.

Step	Into

This	command	is	the	same	as	Single	Step.	Step	Into	(as	opposed
to	Step	Over)	follows	a	CALL	instruction	into	a	subroutine.

Step	Over

Step	Over	allows	you	to	debug	code	without	stepping	into
subroutines.	When	stepping	over	a	CALL	instruction,	the	next
breakpoint	will	be	set	at	the	instruction	after	the	CALL.	If	for	some
reason	the	subroutine	gets	into	an	endless	loop	or	does	not	return
properly,	the	next	breakpoint	will	never	be	reached.	The	Step	Over
command	is	the	same	as	Single	Step	except	for	its	handling	of
CALL	instructions.

Stimulus

Input	to	the	simulator,	i.e.,	data	generated	to	exercise	the	response
of	simulation	to	external	signals.	Often	the	data	is	put	into	the	form
of	a	list	of	actions	in	a	text	file.	Stimulus	may	be	asynchronous,
synchronous	(pin),	clocked	and	register.

Stopwatch

A	counter	for	measuring	execution	cycles.

Storage	Class

Determines	the	lifetime	of	an	object.

Storage	Qualifier

Indicates	special	properties	of	an	object	(e.g.,	volitile).

Symbol

A	symbol	is	a	general	purpose	mechanism	for	describing	the
various	pieces	which	comprise	a	program.	These	pieces	include

function	names,	variable	names,	section	names,	file	names,
struct/enum/union	tag	names,	etc.	Symbols	in	MPLAB	IDE	refer
mainly	to	variable	names,	function	names	and	assembly	labels.
The	value	of	a	symbol	after	linking	is	its	value	in	memory.

System	Window	Control

The	system	window	control	is	located	in	the	upper	left	corner	of
windows	and	some	dialogs.	Clicking	on	this	control	usually	pops
up	a	menu	that	has	the	items	"Minimize,"	"Maximize,"	and	"Close."

Target

Refers	to	user	hardware.

Target	Application

Software	residing	on	the	target	board.

Target	Board

The	circuitry	and	programmable	device	that	makes	up	the	target
application.

Target	Processor

The	microcontroller	device	on	the	target	application	board.

Template

Lines	of	text	that	you	build	for	inserting	into	your	files	at	a	later
time.	The	MPLAB	Editor	stores	templates	in	template	files.

Tool	Bar

A	row	or	column	of	icons	that	you	can	click	on	to	execute	MPLAB
IDE	functions.

Trace

An	emulator	or	simulator	function	that	logs	program	execution.	The
emulator	logs	program	execution	into	its	trace	buffer	which	is
uploaded	to	MPLAB	IDE's	trace	window.

Trace	Memory

Trace	memory	contained	within	the	emulator.	Trace	memory	is
sometimes	called	the	trace	buffer.

Trigger	Output

Trigger	output	refers	to	an	emulator	output	signal	that	can	be
generated	at	any	address	or	address	range,	and	is	independent	of
the	trace	and	breakpoint	settings.	Any	number	of	trigger	output
points	can	be	set.

Uninitialized	Data

Data	which	is	defined	without	an	initial	value.	In	C,

int	myVar;

defines	a	variable	which	will	reside	in	an	uninitialized	data	section.

Upload

The	Upload	function	transfers	data	from	a	tool,	such	as	an
emulator	or	programmer,	to	the	host	PC	or	from	the	target	board	to
the	emulator.

Vector

The	memory	locations	from	which	an	application	starts	execution
when	a	specific	event	occurs,	such	as	a	reset	or	interrupt.

Warning

An	alert	that	is	provided	to	warn	you	of	a	situation	that	would	cause
physical	damage	to	a	device,	software	file,	or	equipment.

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Watch	Variable

A	variable	that	you	may	monitor	during	a	debugging	session	in	a
watch	window.

Watch	Window

Watch	windows	contain	a	list	of	watch	variables	that	are	updated
at	each	breakpoint.

Watchdog	Timer

A	timer	on	a	PICmicro	microcontroller	that	resets	the	processor
after	a	selectable	length	of	time.	The	WDT	is	enabled	or	disabled
and	set	up	using	configuration	bits.

WDT

See	Watchdog	Timer.

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

List	of	Control	Directives

Directive Description Syntax

CONSTANT Declare	Symbol	Constant constant	<label>	[=	<expr>,...,<label>	[=<expr>]]

#DEFINE Define	a	Text
Substitution	Label

#define	<name>	[[(<arg>,...,<arg>)]
<value>]

END End	Program	Block end

EQU Define	an	Assembly
Constant <label>	equ	<expr>

#INCLUDE Include	Additional
Source	File

include	<<include_file>>	include	"
<include_file>"

ORG Set	Program	Origin <label>	org	<expr>
PROCESSOR Set	Processor	Type processor	<processsor_type>
RADIX Specify	Default	Radix radix	<default_radix>

SET Define	an	Assembler
Variable <label>	set	<expr>

#UNDEFINE Delete	a	Substitution
Label #undefine	<label>

VARIABLE Declare	Symbol	Variable variable	<label>	[=	<expr>,...,	<label>
[=	<expr>]]

http://www.microchip.com
mailto:techsupport@microchip.com

Multiple	Directive	Example	1

Directives	highlighted	in	this	example	are:

processor

radix
#include
equ
org
end

Program	Functional	Description

This	program	continually	alternates	the	output	on	the	Port	B	pins
from	1's	to	0's.	Two	delay	routines	using	interrupts	provide	the
timing	for	the	alternating	output.	If	LEDs	were	attached	to	Port	B,
they	would	flash	(1=on,	0=off).

The	type	of	PICmicro	MCU	is	set	using	processor,	and	the
radix	is	set	to	hexadecimal	using	radix.	The	standard	header	file
for	the	processor	selected	is	included	using	#include.	Registers
are	assigned	using	the	equ	directive.	Sections	of	code	are
blocked	out	using	the	org	statement.	Finally,	the	program	is
finished	with	an	end.

Commented	Code	Listing

;**************************************
;*	MPASM	Assembler	Control	Directives	*
;*	Example	Program	1	*
;*	Alternate	output	on	Port	B	between	*

;*	1's	and	0's	*
;**************************************
processor	16f877	;Set	the	processor
radix	hex	;Set	the	radix
#include	<p16f877.inc>	;Include	header	file
DTEMP	equ	0x20	;Set	temp	register
DFLAG	equ	0x21	;Set	flag	register
DFL0	equ	0x00	;Set	flag	bit
org	0x00	;Reset	Vector
goto	Start
org	0x04	;Interrupt	Vector
goto	ServInt
org	0x06	;Start	Program
Start
clrf	PORTB	;Clear	PortB
bsf	STATUS,	RP0	;Select	Bank	1
clrf	TRISB	;Set	PortB	as	output
bcf	STATUS,	RP0	;Select	Bank	0
bsf	INTCON,	GIE	;Enable	Global	Int's
bsf	INTCON,	T0IE	;Enable	Timer0	Int
Loop
movlw	0xFF
movwf	PORTB	;Set	PortB
call	Delay1	;Wait
clrf	PORTB	;Clear	PortB
bsf	PCLATH,3	;Select	Page	3
bsf	PCLATH,4
call	Delay2	;Wait
bcf	PCLATH,3	;Select	Page	0
bcf	PCLATH,4
goto	Loop	;Repeat
ServInt	;Interrupt	Serice	Routine
bsf	STATUS,	RP0	;Select	Bank	1
bsf	OPTION_REG,	T0CS	;Stop	Timer0
bcf	STATUS,	RP0	;Select	Bank	0
bcf	INTCON,	T0IF	;Clear	overflow	flag
bcf	DFLAG,	DFL0	;Clear	flag	bit

retfie
;***************************************
;*	Delay	1	Routine	-	Timer0	delay	loop	*
;***************************************
Delay1
movlw	0xF0	;Set	Timer0	value
movwf	TMR0	;0x00-longest	delay
;0xFF-shortest	delay
clrf	DFLAG
bsf	DFLAG,	DFL0	;Set	flag	bit
bsf	STATUS,	RP0	;Select	Bank	1
bcf	OPTION_REG,	T0CS	;Start	Timer0
bcf	STATUS,	RP0	;Select	Bank	0
TLoop
btfsc	DFLAG,	DFL0	;Wait	for	overflow
goto	TLoop	;Timer0	0xFF->0x00
return
;**
;*	Delay	2	Routine	-	Decrement	delay	loop	*
;**
org	0x1900	;Page	3
Delay2
movlw	0xFF	;Set	DTEMP	value
movwf	DTEMP	;0x00-shortest	delay
;0xFF-longest	delay
DLoop
decfsz	DTEMP,	F
goto	DLoop	;End	loop	when	DTEMP=0
return
end

Additional	Comments

Header	Files

A	header	file	is	included	in	the	program	flow	with	the	#include

directive.

#include	<p16f877.inc>	;Include	header	file

Angle	brackets	are	used	to	enclose	the	name	of	the	file	to	be
included,	although	quotes	may	also	be	used.	You	may	specify	the
complete	path	to	the	included	file,	or	let	the	assembler	search	for
it.	For	more	on	search	order,	see	the	discussion	of	the	#include
directive	().

A	header	file	is	extremely	useful	for	specifying	often-used
constants,	such	as	register	and	pin	names.	This	information	can	be
typed	in	once,	and	then	the	file	can	be	included	in	any	code	using
the	processor	with	those	registers	and	pins.

Register	and	Bit	Assignments

You	can	specify	your	own	registers	and	bits	by	using	the	equ
directive,	as	is	done	in	the	following	lines.

DTEMP	equ	0x20	;Set	temp	register
DFLAG	equ	0x21	;Set	flag	register
DFL0	equ	0x00	;Set	flag	bit

DTEMP	and	DFLAG	are	assigned	to	the	values	0x20	and	0x21
respectively.	They	will	be	used	in	delay	loops	in	the	program	to
stand	for	the	general	purpose	registers	(GPRs)	0x20	and	0x21.
DFL0	is	assigned	the	value	0x00	and	will	be	used	as	the	name
for	pin	0	in	the	DFLAG	register.

FIGURE:	PIC16F877	REGISTER	FILE	MAP

Using	ORG

The	org	directive	is	used	to	specify	the	program	origin	for	specific
sections	of	code.	If	no	org	is	used,	code	generation	begins	at
address	zero.	For	Example	1,	org	is	used	to	specify	code	at	0x00
(reset	address),	0x04	(interrupt	address),	0x06	(program	start
address)	and	0x1900	(Delay2	address).

FIGURE:	PIC16F877	PROGRAM	MEMORY	MAP

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

Most	of	the	program	is	contained	on	page	0.	However,	the	code	for
delay	routine	Delay2	has	been	placed	on	page	3.	When	calling
this	routine,	you	must	remember	to	use	the	paging	bits	in	the
PCLATH	to	select	page	3,	and	then	use	them	to	switch	back	to
page	0	on	the	return.

bsf	PCLATH,3	;Select	Page	3
bsf	PCLATH,4
call	Delay2	;Wait
bcf	PCLATH,3	;Select	Page	0
bcf	PCLATH,4

http://www.microchip.com
mailto:techsupport@microchip.com

Multiple	Directive	Example	2

Directives	highlighted	in	this	example	are:

#define

#undefine
equ
constant
variable
set

Program	Functional	Description

This	program	performs	several	calculations	using	definded
constants	and	variables.	As	in	control	directives	-	example	1,
processor	is	used	to	specify	the	processor	type,	radix	is
used	to	specify	the	radix	used,	and	#include	is	used	to	include
a	header	file.	See	example	1	for	more	on	these	directives.

Commented	Code	Listing

;**************************************
;*	MPASM	Assembler	Control	Directives	*
;*	Example	Program	2	*
;*	Perform	calculations	*
;**************************************
processor	16f877	;Set	the	processor
radix	hex	;Set	the	radix
#include	<p16f877.inc>	;Include	header	file
#define	Tdistance1	50	;Define	the	symbol
;Tdistance1

#define	Tdistance2	25	;Define	the	symbol
;Tdistance2
#undefine	Tdistance2	;Remove	Tdistance2	from
;the	symbol	table
distance_reg	equ	0x20	;Set	up	distance_reg
;at	GPR	0x20
org	0x00	;Reset	Vector
goto	Start
org	0x06	;Start	Program
Start
movlw	Tdistance1	;Move	value	of	Tdistance1
movwf	distance_reg	;into	distance_reg
constant	distance1=10	;Declare	distance1
;a	constant	symbol
variable	distance2	;Declare	distance2
;a	variable	symbol
distance3	set	10	;Define	a	value	for
;the	symbol	distance3

Set	symbol	distance3	to	10.

distance2=15	;Give	distance2	an
;initial	value
distance2=distance1+distance2	;Add	distance1
;to	distance2
distance3	set	15	;Change	value	of	distance3
distance2=distance2+distance3	;Add	distance3
;to	distance2
movlw	distance2	;Move	value	of	distance2
movwf	distance_reg	;into	distance_reg
end

Additional	Comments

Using	Watch	Windows

Once	the	program	begins,	the	value	of	Tdistance1	is	placed

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

into	distance_reg.	This	can	be	observed	in	a	watch	window,
where	the	value	of	distance_reg	will	become	50.	The	symbol
Tdistance1	will	not	be	found	in	the	watch	window	symbol	list,
as	symbols	defined	using	the	#define	directive	are	not	available
for	viewing	in	MPLAB	IDE.

The	final	lines	of	the	example	program	write	the	final	value	of
distance2	to	distance_reg.	If	you	had	a	watch	window
open	to	see	distance_reg	loaded	with	the	value	of	50,	you	will
see	it	change	to	3A.	Remember	that	the	radix	is	hexadecimal,	so
hex	addition	was	used	to	determine	the	distance2	value.

Looking	in	the	watch	window	symbol	list,	you	will	find	the	symbols
distance1,	distance2	and	distance3.	However,	they	will
have	no	values.	These	symbol	values	are	not	actually	stored	on
the	PICmicro	device,	but	implemented	only	in	the	assembler.

http://www.microchip.com
mailto:techsupport@microchip.com

ORG	PIC16CXXX	Example

Directives	highlighted	in	this	example	for	PIC16CXXX	devices	are:

org

Program	Functional	Description

This	example	shows	the	usage	of	the	org	directive.	Code
generation	begins	at	an	address	spcified	by	org	<address>.	The
origin	of	a	data	table	also	can	be	specified	by	this	directive.	A	data
table	may	be	placed	either	in	a	program	memory	region	or	in	an
EE	data	memory	region,	as	in	case	of	PICmicro	device	with	EE
data	FLASH.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
org	0000	;The	following	code	will	be
;placed	in	reset	address	0.
goto	Main	;Jump	to	an	address	whose	label
;is	'Main'.
org	0004	;The	following	code	will	be
;placed	in	interrupt	address	4.
goto	int_routine	;Jump	to	an	address	whose	label
;is	'int_routine'.
org	0010	;The	following	code	section	will
;placed	starting	from	address	10H.
Main
;	;Write	your	main	program	here.
;
;

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

goto	Main	;Loop	back	to	'Main'.
org	0100	;The	following	code	section	will
;be	placed	starting	from	address
;100H.
int_routine
;
;	;Write	your	interrupt	service
;	;routine	here.
retfie	;Return	from	interrupt.
org	1000	;You	can	create	a	data	or
;character	table	starting	from
;any	address	in	program	memory.
;In	this	case	the	address	is
;1000h.
ch_tbl1	da	"PICwithFLASH"	;6	program	memory	locations
;(starting	from	1000h)	will
;be	filled	with	six	14-bit
;packed	numbers,	each
;representing	two	7-bit	ASCII
;characters.
org	2100	;The	absolue	address	2100h	is
;mapped	to	the	0000	location	of
;EE	data	memory	in	PIC16Fxxx.
;You	can	create	a	data	or
;character	table	starting	from
;any	address	in	EE	data	memory.
ch_tbl2	de	"PICwithFLASH"	;12	EE	data	memory	locations
;(starting	from	0)	will	be
;filled	with	12	ASCII
;characters.
end

http://www.microchip.com
mailto:techsupport@microchip.com

ORG	PIC18CXXX	Example

Directives	highlighted	in	this	example	for	PIC18CXXX	devices	are:

org

Program	Functional	Description

This	example	shows	the	usage	of	the	org	directive.	Code
generation	begins	at	an	address	spcified	by	org	<address>.	The
origin	of	a	data	table	also	can	be	specified	by	this	directive.	A	data
table	may	be	placed	either	in	a	program	memory	region	or	in	an
EE	data	memory	region,	as	in	case	of	PICmicro	device	with	EE
data	FLASH.

Commented	Code	Listing

list	p=18c452	;Select	the	device.
#include	<p18c452.inc>	;Include	standard	header	file
;for	the	selected	device.
org	0000	;The	following	code	will	be
;programmed	in	reset	address	0.
goto	Main	;Jump	to	an	address	whose	label	is
;'Main'.
org	0008	;The	following	code	will	be
;programmed	in	high	priority
;interrupt	address	8.
goto	int_hi	;Jump	to	an	address	whose	label	is
;'int_hi'.
org	0018	;The	following	code	will	be
;programmed	in	low	priority
;interrupt	address	18h.
goto	int_lo	;Jump	to	an	address	whose	label	is
;'int_lo'.

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

org	0010	;The	following	code	section	will
;be	programmed	starting	from
;address	10H.
Main
;	;Write	your	main	program	here.
;
;
goto	Main	;Loop	back	to	'Main'
org	0100	;The	following	code	section	will
;be	programmed	starting	from
;address	100H.
int_hi
;
;	;Write	your	high	priority
;	;interrupt	service	routine	here.
retfie	;Return	from	interrupt.
org	0200	;The	following	code	section	will
;be	programmed	starting	from
;address	200H.
int_lo
;
;	;Write	your	low	priority
;	;interrupt	service	routine	here.
retfie	;Return	from	interrupt.
org	1000	;You	can	create	a	data	or
;character	table	starting	from	any
;address	in	program	memory.	In
;this	case	the	address	is	1000h.
ch_tbl1	db	"PICwithFLASH"
end

http://www.microchip.com
mailto:techsupport@microchip.com

RADIX	Example

Directives	highlighted	in	this	example	are:

list	r=

radix

Program	Functional	Description

This	example	shows	the	usage	of	the	radix	directive	for	data
presentation.	If	not	declared,	then	the	default	radix	is	in
hex(adecimal).

Commented	Code	Listing

list	p=16f877,r=dec	;Select	the	device	and	set
;radix	as	decimal.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
movlw	50H	;50	is	in	hex
movlw	0x50	;Another	way	of	declaring	50	hex
movlw	50O	;50	is	in	octal
movlw	50	;50	is	not	declared	as	hex	or
;octal	or	decimal.	So	by	default
;it	is	in	decimal	as	default	radix
;is	declared	as	decimal.
radix	oct	;Use	`radix'	to	declare	default
;radix	as	octal.
movlw	50H	;50	is	in	hex.
movlw	0x50	;Another	way	of	declaring	50	hex.
movlw	.50	;50	is	in	decimal.
movlw	50	;50	is	not	declared	as	hex	or
;octal	or	decimal.	So	by	default

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;it	is	in	octal	as	default	radix
;is	declared	as	octal.
radix	hex	;Now	default	radix	is	in	hex.
movlw	.50	;50	is	declared	in	decimal.
movlw	50O	;50	is	declared	in	octal
movlw	50	;50	is	not	declared	as	hex	or
;octal	or	decimal.	So	by	default
;it	is	in	hex	as	default	radix
;is	declared	as	hex.
end

http://www.microchip.com
mailto:techsupport@microchip.com

SET/EQU	Example

Directives	highlighted	in	this	example	are:

set

equ

Program	Functional	Description

This	example	shows	the	the	usage	of	the	set	directive,	used	for
creating	symbols	which	may	be	used	in	MPASM	assembler
expressions	only.	The	symbols	created	with	this	directive	do	not
occupy	any	physical	memory	location	of	microcontroller.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
perimeter	set	0	;The	label	'perimeter'	is
;assigned	value	0.
area	set	0	;The	label	'area'	is	assigned
;value	0.
lngth	equ	50H	;The	label	'lngth'	is	assigned
;the	value	50H.
wdth	equ	25H	;The	label	'wdth'	is	assigned
;the	value	25H.
perimeter	set	2*(lngth+wdth)	;Both	'perimeter'	and
area	set	lngth*wdth	;'area'	values	are
;reassigned.
end

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

UNDEFINE/DEFINE	Example

Directives	highlighted	in	this	example	are:

#undefine

#define

Program	Functional	Description

This	example	shows	the	the	usage	of	#UNDEFINE	directive.	A
symbol	name	previously	defined	with	the	#DEFINE	directive,	is
removed	from	the	symbol	table	if	#UNDEFINE	directive	is	used.
The	same	symbol	may	be	redefined	again.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
area	set	0	;The	label	'area'	is	assigned
;the	value	0.
#define	lngth	50H	;Label	'lngth'	is	assigned
;the	value	50H.
#define	wdth	25H	;Label	'wdth'	is	assigned
;the	value	25H
area	set	lngth*wdth	;Reassignment	of	label	'area'.
;So	'area'	will	be	reassigned	a
;value	equal	to	50H*25H.
#undefine	lngth	;Undefine	label	'lngth'.
#undefine	wdth	;Undefine	label	'wdth'
#define	lngth	0	;Define	label	'lngth'	to	'0'.
end

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

VARIABLE/CONSTANT	Example

Directives	highlighted	in	this	example	are:

variable

constant

Program	Functional	Description

This	example	shows	the	the	usage	of	the	variable	directive,
used	for	creating	symbols	which	may	be	used	in	MPASM
assembler	expressions	only.	The	symbols	created	with	this
directive	do	not	occupy	any	physical	memory	location	of
microcontroller.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
variable	perimeter=0	;The	symbol	'perimeter'	is
;initialized	to	0
variable	area	;If	a	symbol	is	declared	as
;variable,	then	initialization
;is	optional,	i.e.	it	may	or	may
;not	be	initialized.
constant	lngth=50H	;The	symbol	'lngth'	is
;initialized	to	50H.
constant	wdth=25H	;The	symbol	'wdth'	is
;initialized	to	25H.
;A	constant	symbol	always	needs
;to	be	initialized.
perimeter=2*(lngth+wdth);The	value	of	a	CONSTANT	cannot

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;be	reassigned	after	having	been
;initialized	once.	So	'lngth'	and
;'wdth'	cannot	be	reassigned.	But
;'perimeter'	has	been	declared
;as	variable,	and	so	can	be
;reassigned.
area=lngth*wdth
end

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

List	of	Conditional	Assembly	Directives

Directive Description Syntax
ELSE Begin	Alternative	Assembly	Block	to	IF else
ENDIF End	Conditional	Assembly	Block endif
ENDW End	a	While	Loop endw
IF Begin	Conditionally	Assembled	Code	Block if	<expr>
IFDEF Execute	If	Symbol	is	Defined ifdef	<label>
IFNDEF Execute	If	Symbol	is	Not	Defined ifndef	<label>
WHILE Perform	Loop	While	Condition	is	True while	<expr>

http://www.microchip.com
mailto:techsupport@microchip.com

IF/ELSE/ENDIF	Example

Directives	highlighted	in	this	example	are:

if

else
endif

Program	Functional	Description

This	program	demonstrates	the	utility	of	IF,	ELSE	and	ENDIF
assembly	directives.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
variable	config	;variable	used	to	define
;required	configuration	of
;PORTA	&	PORTB
config	set	D'1'
RST	CODE	H'0'	;The	code	section	named	RST
;is	placed	at	H'0'.	The
;instruction	'goto	start'	is
;placed	in	code	section	RST
goto	start	;Jumps	to	the	location	labelled
;'start'.
INTRT	CODE	H'4'	;The	code	section	named	INTRT	is
;placed	at	H'4'.	The	instruction
;'goto	service_int'	is	placed	in
;code	section	INTRT.
goto	service_int	;Jumps	to	the	location	labelled

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;'service_int'.
PGM	CODE	;This	is	the	begining	of	the	code
;section	named	PGM.	It	is	a
;relocatable	code	section	since
;no	absolute	address	is	given
;along	with	directive	'CODE'.
start
if	config==H'0'	;If	config==H'0'	is	true,
clrw	;assemble	the	mnemonics	up	to
movwf	TRISA	;the	directive	'else'.
movlw	H'ff'
movwf	TRISB
else
clrw	;If	config==H'0'	is	false,
movwf	TRISB	;assemble	the	mnemonics	up	to
movlw	H'ff'	;the	directive	'endif'.
movwf	TRISA
endif
goto	$
service_int
retfie
end

http://www.microchip.com
mailto:techsupport@microchip.com

IFDEF	Example

Directives	highlighted	in	this	example	are:

#define

ifdef
else
endif

Program	Functional	Description

This	program	uses	the	control	directive	#define,	along	with	the
ifdef,	else	and	endif	directives	to	seletively	assemble	code
for	use	with	either	an	emulator	or	an	acutal	part.	The	list	directives
title	and	list	p=	are	used	to	set	the	title	and	processor	and
display	this	information	in	the	list	file.	The	control	directive
#include	is	used	to	include	the	standard	header	file	for	the
selected	device.

Commented	Code	Listing

title	"PICmicro	with	Flash	EE	data	memory	Interface"
list	p=12ce518
#include	<p12ce518.inc>
;#define	EMULATED
.
.
.
;	Emulation	Requires:
;	MPLAB-ICE
;	PCM16XA0	processor	module
;	DVA12XP80	Device	Adapter

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;	Define	EMULATOR	at	the	top	of	this	file
;	(#define	EMULATOR)
;	This	will	set	the	I2C_PORT,	SDA	and	SCL	lines
;	to	communicate	over	Port	A,	pins	0	and	1.	It
;	also	assembles	in	the	necessary	TRIS
;	instructions	to	allow	reading	from	the	SDA	line.
;
;	To	convert	the	code	for	the	actual	part,	simply	comment
;	out	the	#define	EMULATOR	line	and	reassemble.
.
.
.
#ifdef	EMULATED
I2C_PORT	EQU	5	;	Port	A	control	register,
;	used	for	I2C
SCL	EQU	01H	;	EEPROM	Clock,	SCL	(I/O	bit	7)
SDA	EQU	00H	;	EEPROM	Data,	SDA	(I/O	bit	6)
#else
I2C_PORT	EQU	GPIO	;	Port	B	control	register,
;	used	for	I2C
SCL	EQU	07H	;	EEPROM	Clock,	SCL	(I/O	bit	7)
SDA	EQU	06H	;	EEPROM	Data,	SDA	(I/O	bit	6)
#endif
.
.
.
START_BIT
BCF	I2C_PORT,SDA	;	Start	bit,	SDA	and	SCL
;	preset	to	"1"

http://www.microchip.com
mailto:techsupport@microchip.com

WHILE/ENDW	Example

Directives	highlighted	in	this	example	are:

while

endw

Program	Functional	Description

This	example	shows	the	usefulness	of	directive	while	to	perform
a	loop	while	a	certain	condition	is	true.	This	directive	is	used	with
the	endw	directive.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
variable	i	;Define	the	symbol	'i'	as	a
;variable.
reg_hi	equ	20	;Assign	value	20H	to	label
;reg_hi.
reg_lo	equ	21	;Assign	value	21H	to	label
;reg_lo.
ORG	0000	;The	following	code	will	be
;programmed	in	reset	address	0.
goto	start	;Jump	to	an	address	whose	label
;is	'start'.
shift_right	macro	by_n	;Beginning	of	a	macro,	which
;shifts	register	data	n	times.
;Code	length	generated	after
;assembly,	varies	depending	upon
;the	value	of	parameter	'by_n'.

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

i=0	;Initialize	variable	i.
while	i<	by_n	;Following	3	lines	of	assembly
;code	are	repeated	as	long	as
;i<	by_n.
bcf	STATUS,C	;Clear	carry	bit.
rrf	reg_hi	;reg_hi	and	reg_lo	contains
rrf	reg_lo	;16-bit	data	which	is	rotated
;right	through	carry.
i+=1	;Increment	loop	counter	i.
endw	;End	while	loop.	The	loop	will
;break	here	after	i=by_n.
endm	;End	of	'shift_right'	macro.
org	0010	;My	main	program	starts	at	10H.
start	;The	label	'start'	is	equal	to
;10H.
shift_right	3	;Shift	right	3	times	the	16-bit
;data	in	reg_hi	and	reg_lo.	This
;is	an	example.	A	value	8	will
;shift	data	8	times.
goto	$
end

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

List	of	Data	Directives

Directive Description Syntax

_	_BADRAM Specify	invalid	RAM
locations _	_badram	<expr>

CBLOCK Define	a	Block	of
Constants cblock	[<expr>]

CODE_PACK No	Padding	at	End	of
Odd	Byte code_pack

_	_CONFIG Set	configuration	fuses _	_config	<expr>	OR	
_	_config	<addr>,	<expr>

DA Store	Strings	in	Program
Memory

[<label>]	da	<expr>	[,	<expr2>,	...,
<exprn>]

DATA Create	Numeric	and	Text
Data

data	<expr>,[,<expr>,...,<expr>]	data	"
<text_string>"
[,"<text_string>",...]

DB Declare	Data	of	One	Byte db	<expr>[,<expr>,...,<expr>]
DE Declare	EEPROM	Data de	<expr>[,<expr>,...,<expr>]
DT Define	Table dt	<expr>[,<expr>,...,<expr>]

DW Declare	Data	of	One
Word dw	<expr>[,<expr>,...,<expr>]

ENDC End	an	Automatic
Constant	Block endc

FILL Specify	Memory	Fill
Value fill	<expr>,	<count>

_	_IDLOCS Set	ID	locations _	_idlocs	<expr>

_	_MAXRAM Specify	maximum	RAM
address _	_maxram	<expr>

RES Reserve	Memory res	<mem_units>

http://www.microchip.com
mailto:techsupport@microchip.com

CBLOCK/ENDC	Example

Directives	highlighted	in	this	example	are:

cblock

endc

Program	Functional	Description

This	example	shows	the	usage	of	CBLOCK	and	ENDC	directives
for	defining	constants	or	variablers	in	data	memory	space.	The
same	directives	can	be	used	for	program	memory	space	also.

The	program	calculates	the	perimeter	of	a	rectangle.	Length	and
width	of	the	rectangle	will	be	stored	in	buffers	addressed	by
length	(22H)	and	width	(23H).	The	calculated	perimeter	will	be
stored	in	the	double-precision	buffer	addressed	by	perimeter
(i.e.20H	and	21H).

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
CBLOCK	0x20	;Starting	address	of	program	or
;data	memory	space.	Here	the	value
;is	20H,	which	is	in	data	memory
;space.
perimeter:2	;The	label	perimeter	is	2-byte
;wide.	Address	20H	and	21H	is
;assigned	to	the	label	perimeter.
length	;Address	22H	is	assigned	to	the
;label	length.

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

width	;Address	23H	is	assigned	to	the
;label	width.
ENDC	;This	directive	must	be	supplied
;at	the	end	of	CBLOCK	list	to
;terminate	the	list.
clrf	perimeter	;Clear	the	buffer	addressed	by
;'perimeter'	i.e.	address	20H.
clrf	perimeter+1	;Clear	address	21H.
movf	length,w	;Move	the	data	present	in	the
;register	addressed	by	'length'
;to	'w'
addwf	width,w	;Add	data	in	'w'	with	data	in	the
;register	addressed	by	'width'.
movwf	perimeter	;Move	'w'	to	the	register
;addressed	by	20H.
incfsz	perimeter+1	;Increment	register	21H	if	carry
;is	generated.
bcf	STATUS,C	;Clear	carry	bit	in	STATUS
;register.
rlf	perimeter+1
rlf	perimeter
incfsz	perimeter+1	;High	byte	of	perimeter	is	in
;21H	and	low	byte	is	in	20H.
goto	$
end

http://www.microchip.com
mailto:techsupport@microchip.com

CONFIG	PIC16CXXX	Example

Directives	highlighted	in	this	example	for	PIC16CXXX	devices	are:

_	_	config

Program	Functional	Description

This	program	demonstrates	the	utility	of	the	_	_	config
directive.	This	directive	is	used	to	program	configuration	bits	in	the
configuration	register	during	device	programming.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
__config	_LP_OSC	;Configuration	register	is
;programmed	to	select	low
;power	oscillator.	Refer	to
;data	sheet	for	details	of
;configuration	register.
RST	CODE	H'0'	;The	code	section	named	RST
;is	placed	at	H'0.'
;The	instruction	'goto	start'
;is	placed	in	code	section	RST.
goto	start	;Jumps	to	the	location	labelled
;'start'.
INTRT	CODE	H'4'	;The	code	section	named	INTRT
;is	placed	at	H'4'.
;The	instruction	'goto
;service_int'	is	placed	in	code
;section	INTRT.
goto	service_int	;Jumps	to	the	location

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;labelled	'service_int'.
PGM	CODE	;This	is	the	begining	of	the
;code	section	named	PGM.	It	is
;a	relocatable	code	section
;since	no	absolute	address	is
;given	along	with	directive
start	;'CODE'.
goto	$
service_int
retfie
end

http://www.microchip.com
mailto:techsupport@microchip.com

CONFIG	PIC18CXXX	Example

Directives	highlighted	in	this	example	for	PIC18CXXX	devices	are:

_	_	config

Program	Functional	Description

This	program	demonstrates	the	utility	of	the	_	_	config
directive.	This	directive	is	used	to	program	configuration	bits	in	the
configuration	register	during	device	programming.

Commented	Code	Listing

list	p=18c452	;Select	the	device.
#include	<p18c452.inc>	;Include	standard	header	file
;for	the	selected	device.
;code	protect	disabled.
__CONFIG	_CONFIG0,	_CP_OFF_0
;Oscillator	switch	disabled,	RC	oscillator	with	OSC2
;as	I/O	pin.
__CONFIG	_CONFIG1,	_OSCS_OFF_1	&	_RCIO_OSC_1
;Brown-OutReset	enabled,	BOR	Voltage	is	2.5v
__CONFIG	_CONFIG2,	_BOR_ON_2	&	_BORV_25_2
;Watch	Dog	Timer	enable,	Watch	Dog	Timer	PostScaler
;count	-	1:128
__CONFIG	_CONFIG3,	_WDT_ON_3	&	_WDTPS_128_3
;CCP2	pin	Mux	enabled
__CONFIG	_CONFIG5,	_CCP2MX_ON_5
;Stack	over/underflow	Reset	enabled
__CONFIG	_CONFIG6,	_STVR_ON_6
RST	CODE	H'0'	;The	code	section	named	RST
;is	placed	at	H'0'.
;The	instruction	'goto	start'

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;is	placed	in	code	section	RST.
goto	start	;Jumps	to	the	location	labelled
;'start'.
INTRT	CODE	H'8'	;The	code	section	named	INTRT
;is	placed	at	H'4'.
;The	instruction	'goto	service_int'
;is	placed	in	code	section	INTRT.
goto	service_int	;Jumps	to	the	location	labelled
;'service_int'.
PGM	CODE	;This	is	the	begining	of	the	code
;section	named	PGM.	It	is	a
;relocatable	code	section
;since	no	absolute	address	is
;given	along	with	directive
start	;'CODE'.
goto	$
service_int
retfie
end

http://www.microchip.com
mailto:techsupport@microchip.com

DA	Example

Directives	highlighted	in	this	example	are:

da

Program	Functional	Description

This	example	shows	the	usefulnes	of	directive	da	in	storing	a
character	string	in	the	program	memory	of	14-bit	architecture
devices.	This	directive	generates	a	packed	14-bit	number
representing	two	7-bit	ASCII	characters.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
ORG	0000	;The	following	code	will	be
;programmed	in	reset	address	0.
goto	start	;Jump	to	an	address	labelled
;'start'.
start	;Write	your	main	program	here	to
;display	the	string	given	in
;'Ch_stng'.
goto	$
ORG	1000	;Store	the	string	starting	from
;1000H.
Ch_stng	da	"PICmicro"
Sngl_ch	da	"A"	;7-bit	ASCII	equivalents	of	'A'
;and	a	NULL	charater	will	be	packed
;in	a	14-bit	number.
da	0xff55	;Places	3f55	in	program	memory.
;No	packing.

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

end

Additional	Comments

Determining	14-Bit	Numbers

For	the	following	statement:

Ch_stng	da	"PICmicro"

directive	da	produces	four	14-bit	numbers:	2849,	21ED,	34E3	and
396F	representing	the	ASCII	equivalent	of	PI,	Cm,	ic	and	ro.

To	see	how	the	14-bit	numbers	are	determined,	let's	look	at	the
ASCII	values	of	P	and	I,	which	are	50h(01010000)	and
49h(01001001)	respectively.	Each	is	presented	in	7-bit	as
(0)1010000	and	(0)1001001	respectively.	The	packed	14-bit
number	is	101000	01001001,	which	is	stored	as	(00)101000
01001001	or	2849.

http://www.microchip.com
mailto:techsupport@microchip.com

DATA	PIC16CXXX	Example

Directives	highlighted	in	this	example	for	PIC16CXXX	devices	are:

data

Program	Functional	Description

This	example	shows	the	usefulnes	of	directive	data	in	storing	one
or	more	words	in	program	memory.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
ORG	0000	;The	following	code	will	be
;programmed	in	reset	address	0.
goto	start	;Jump	to	an	address	labelled
;'start'.
start	;Write	your	main	program	here	to
;display	the	string	given	in
;'Ch_stng'.
goto	$
ORG	1000	;Store	the	string	starting	from
;1000H.
Ch_stng	data	'M','C','U'	;3	program	memory	locations
;will	be	filled	with	ASCII
;equivalent	of	'M','C'	and
;'U'.
tb1_dta	data	0xffff,0xaa55	;Places	3fffh	and	2a55h	in
;two	consecutive	program
;memory	locations.	As	program
;memory	is	14-bit	wide,

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;the	last	nibble	can	store
;a	maximum	value	3.
end

http://www.microchip.com
mailto:techsupport@microchip.com

DATA	PIC18CXXX	Example

Directives	highlighted	in	this	example	for	PIC18CXXX	devices	are:

data

Program	Functional	Description

This	example	shows	the	usefulnes	of	directive	data	in	storing	one
or	more	words	in	program	memory.

Commented	Code	Listing

list	p=18c452	;Select	device.
#include	<p18c452.inc>	;Include	standard	header	file
;for	the	selected	device.
ORG	0000	;The	following	code	will	be
;programmed	in	reset	address	0.
goto	start	;Jump	to	an	address	labelled
;'start'.
start	;Write	your	main	program	here	to
;display	the	string	given	in
;'Ch_stng'.
goto	$
ORG	1000	;Store	the	string	starting	from
;1000H.	In	PIC18Cxxx	devices,	the
;first	character	is	in	least
;significant	byte.
Ch_stng	data	'M','C','U'	;3	program	memory	locations
;will	be	filled	with	ASCII
;equivalent	of	'M','C'	and
;'U'.
Ch_stg1	data	"MCU"	;2	program	memory	locations
;will	be	filled	with	two

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;words	(16-bit	numbers),
;each	representing	ASCI
;equivalent	of	two
;characters.	The	last
;character	will	be	taken	as
;NULL	in	case	odd	number	of
;characters	are	specified.
tb1_dta	data	0xffff,0xaa55	;Places	ffff	and	aa55	in
;two	consecutive
;program	memory	location.
end

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

DB	PIC16CXXX	Example

Directives	highlighted	in	this	example	for	PIC16CXXX	devices	are:

db

Program	Functional	Description

This	example	shows	the	usefulness	of	directive	db	in	storing	one
or	more	byte	or	character	in	program	memory.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
ORG	0000	;The	following	code	will	be
;programmed	in	reset	address	0.
goto	start	;Jump	to	an	address	labelled
;'start'.
start	;Write	your	main	program	here.
goto	$
ORG	1000	;Store	the	string	starting	from
;1000H.
Ch_stng	db	0,'M',0,'C',0,'U'
tb1_dta	db	0,0xff	;Places	00ff	in	program	memory
;location.
end

http://www.microchip.com
mailto:techsupport@microchip.com

DB	PIC18CXXX	Example

Directives	highlighted	in	this	example	for	PIC18CXXX	devices	are:

db

Program	Functional	Description

This	example	shows	the	usefulnes	of	directive	db	in	storing	one	or
more	byte	or	character	in	program	memory.

Commented	Code	Listing

list	p=18c452	;Select	device.
#include	<p18c452.inc>	;Include	standard	header	file
;for	the	selected	device.
ORG	0000	;The	following	code	will	be
;programmed	in	reset	address	0.
goto	start	;Jump	to	an	address	labelled
;'start'.
start	;Write	your	main	program	here	to
;display	the	string	given	in
;'Ch_stng'.
goto	$
ORG	1000	;Store	the	string	starting	from
;1000H.	In	PIC18Cxxx	devices,	the
;first	character	is	in	least
;significant	byte.
Ch_stng	db	'M','C','U'
tb1_dta	db	0,0xff	;Places	ff00	in	program	memory
;location.
end

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

DE	PIC16CXXX	Example

Directives	highlighted	in	this	example	for	PIC16CXXX	devices	are:

de

Program	Functional	Description

This	example	shows	the	usage	of	the	de	directive.	This	directive	is
designed	mainly	for	initializing	data	in	the	EE	data	memory	region
of	PICmicro	devices	with	EE	data	FLASH.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
org	2100	;The	absolue	address	2100h	is
;mapped	to	the	0000	location	of
;EE	data	memory.
ch_tbl2	de	"PICmicro"	;6	EE	data	memory	locations
;(starting	from	0)	will	be	filled
;with	6	ASCII	characters.
end

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

DE	PIC18CXXX	Example

Directives	highlighted	in	this	example	for	PIC18CXXX	devices	are:

de

Program	Functional	Description

This	example	shows	the	usage	of	the	de	directive.	This	directive	is
designed	mainly	for	initializing	data	in	the	EE	data	memory	region
of	PICmicro	devices	with	EE	data	FLASH.

Commented	Code	Listing

list	p=18c452	;Select	device.
#include	<p18c452.inc>	;Include	standard	header	file
;for	the	selected	device.
org	F0	;The	absolue	address	F0h	is
;mapped	to	the	0000	location	of
;EE	data	memory.
ch_tbl2	de	"PICmicro"	;6	EE	data	memory	locations
;(starting	from	0)	will	be	filled
;with	6	ASCII	characters.
end

http://www.microchip.com
mailto:techsupport@microchip.com

FILL	PIC16CXXX	Example

Directives	highlighted	in	this	example	for	PIC16CXXX	devices	are:

fill

Program	Functional	Description

The	fill	directive	is	used	to	program	successive	program
memory	locations	with	a	constant	or	an	assembly	instruction.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
org	0000	;The	following	code	will	be
;programmed	in	reset	address	0.
goto	start	;Jump	to	an	address	labelled
;'start'.
FILL	0,	INTRPT-$;Fill	with	0	up	to	address	3.
INTRPT	org	0004
goto	ISR
FILL	(goto	start),	start-$;Fill	upto	address	0Fh	with
;instruction	<goto	start>.
ORG	0010
start	;Write	your	main	program	here.
FILL	(nop),	5	;Fill	5	locations	with	NOPs.
goto	$
ISR	;
RETFIE
END

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

http://www.microchip.com
mailto:techsupport@microchip.com

FILL	PIC18CXXX	Example

Directives	highlighted	in	this	example	for	PIC18CXXX	devices	are:

fill

Program	Functional	Description

The	fill	directive	is	used	to	program	successive	program
memory	locations	with	a	constant	or	an	assembly	instruction.	For
PIC18CXXX	devices,	only	an	even	number	is	allowed	to	be
specified	as	a	count	of	locations	to	be	filled.

Commented	Code	Listing

list	p=18c452	;Select	device.
#include	<p18c452.inc>	;Include	standard	header	file
;for	the	selected	device.
org	0000	;Following	code	will	be	programmed
;in	reset	address	0.
goto	start	;Jump	to	an	address	labelled
;'start'.
FILL	0,	HI_INT-$;Fills	0	in	2	program	memory
;locations:	0004	and	0006.
HI_INT	org	0008
goto	INTR_H
FILL	(goto	start),6	;Fills	6	locations	(each	location
;is	2	bytes	wide)	with	3	numbers
;of	2	word	wide	instructions
;<goto	start>
LO_INT	org	0018
goto	INTR_L
FILL	10a9,	start-$;Fills	address	1Ch	and	1Eh	with
;10a9h

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

ORG	0020
start	;Write	your	main	program	here
;
FILL	(nop),	4	;Fills	2	locations	(4	bytes)	with
;NOP
goto	$
INTR_H	;
RETFIE
INTR_L	;
RETFIE
END

http://www.microchip.com
mailto:techsupport@microchip.com

IDLOC	PIC16CXXX	Example

Directives	highlighted	in	this	example	for	PIC16CXXX	devices	are:

__idloc

Program	Functional	Description

This	program	demonstrates	the	utility	of	the	__idlocs	directive.
This	directive	is	used	to	program	device	ID	bits	in	the	IDLOC
register	during	device	programming.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
__idlocs	H'1234'	;Sets	device	ID	to	1234.
RST	CODE	H'0'	;The	code	section	named	RST
;is	placed	at	H'0'.
;The	instruction	'goto	start'	is
;placed	in	code	section	RST
goto	start	;Jumps	to	the	location	labelled
;'start'.
INTRT	CODE	H'4'	;The	code	section	named	INTRT	is
;placed	at	H'4'.The	instruction
;'goto	service_int'	is	placed	in
;code	section	INTRT.
goto	service_int	;Jumps	to	the	location	labelled
;'service_int'.
PGM	CODE	;This	is	the	begining	of	the	code
;section	named	PGM.	It	is	a
;relocatable	code	section	since
;no	absolute	address	is	given	along

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

start	;with	directive	'CODE'.
goto	$
service_int
retfie
end

http://www.microchip.com
mailto:techsupport@microchip.com

IDLOC	PIC18CXXX	Example

Directives	highlighted	in	this	example	for	PIC18CXXX	devices	are:

__idloc

Program	Functional	Description

This	program	demonstrates	the	utility	of	the	__idlocs	directive.
This	directive	is	used	to	program	device	ID	bits	in	the	IDLOC
register	during	device	programming.

Commented	Code	Listing

list	p=18c452	;Select	device.
#include	<p18c452.inc>	;Include	standard	header	file
;for	the	selected	device.
__IDLOCS	_IDLOC0,	H'1'	;IDLOC	register	0	will	be
;programmed	to	1.
__IDLOCS	_IDLOC1,	H'2'	;IDLOC	register	1	will	be
;programmed	to	2.
__IDLOCS	_IDLOC2,	H'3'	;IDLOC	register	2	will	be
;programmed	to	3.
__IDLOCS	_IDLOC3,	H'4'	;IDLOC	register	3	will	be
;programmed	to	4.
__IDLOCS	_IDLOC4,	H'5'	;IDLOC	register	4	will	be
;programmed	to	5.
__IDLOCS	_IDLOC5,	H'6'	;IDLOC	register	5	will	be
;programmed	to	6.
__IDLOCS	_IDLOC6,	H'7'	;IDLOC	register	6	will	be
;programmed	to	7.
__IDLOCS	_IDLOC7,	H'8'	;IDLOC	register	7	will	be
;programmed	to	8.
RST	CODE	H'0'	;The	code	section	named	RST

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;is	placed	at	H'0'.	The	instruction
;'goto	start'	is	placed	in	code
;section	RST.
goto	start	;Jumps	to	the	location	labelled
;'start'.
INTRT	CODE	H'8'	;The	code	section	named	INTRT	is
;placed	at	H'4'.The	instruction
;'goto	service_int'	is	placed	in
;code	section	INTRT.
goto	service_int	;Jumps	to	the	location	labelled
;'service_int'.
PGM	CODE	;This	is	the	begining	of	the	code
;section	named	PGM.	It	is	a
;relocatable	code	section	since
;no	absolute	address	is	given	along
start	;with	directive	'CODE'.
goto	$
service_int
retfie
end

http://www.microchip.com
mailto:techsupport@microchip.com

RES	Example

Directives	highlighted	in	this	example	are:

res

Program	Functional	Description

This	example	shows	the	advantage	of	res	directive	in	developing
relocatable	code.	The	program	calculates	the	perimeter	of	a
rectangle.	Length	and	width	of	the	rectangle	will	be	stored	in
buffers	addressed	by	length	and	width.	The	calculated
perimeter	will	be	stored	in	the	double-precision	buffer	addressed
by	perimeter.

Commented	Code	Listing

list	p=18c452	;Select	device.
#include	<p18c452.inc>	;Include	standard	header	file
;for	the	selected	device.
UDATA	;This	directive	allows	the
;following	data	to	be	placed	only
;in	the	data	area.
perimeter	res	2	;Two	locations	of	memory	are
;reserved	for	the	label
;'perimeter'.	Addresses	of	the
;memory	locations	will	be
;allocated	by	MPLINK.
length	res	1	;One	location	of	memory	is
;reserved	for	the	label	'length'.
;Address	of	the	memory	location
;will	be	allocated	by	MPLINK.
width	res	1	;One	location	of	memory	is
;reserved	for	the	label	'width'.

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;Address	of	the	memory	location
;will	be	allocated	by	MPLINK.
Start	CODE	0000	;Following	code	will	be	placed	in
;address	0.
goto	PER_CAL	;Jump	to	label	PER_CAL
CODE	;CODE	directive	here	dictates	that
;the	following	lines	of	code	will
;be	placed	in	program	memory,	but
;the	starting	address	will	be
;decided	by	MPLINK.
PER_CAL
clrf	perimeter	;Clear	the	buffers	addressed	by
clrf	perimeter+1	;'perimeter'.
movf	length,w	;Move	the	data	present	in	the
;register	addressed	by	'length'
;to	'w'.
addwf	width,w	;Add	data	in	'w'	with	data	in	the
;register	addressed	by	'width'
movwf	perimeter	;Move	'w'	to	the	register
;addressed	by	'perimeter'.
incfsz	perimeter+1	;Increment	'perimeter+1'	if	carry
;is	generated.
bcf	STATUS,C	;Clear	carry	bit	in	STATUS
;register.
rlf	perimeter+1
rlf	perimeter
incfsz	perimeter+1
goto	$
end

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

List	of	Listing	Directives

Directive Description Syntax
ERROR Issue	an	Error	Message error	"<text_string>"
ERRORLEVEL Set	Messge	Level errorlevel	0|1|2|<+-><msg>
LIST Listing	Options list	[<option>[,...,<option>]]
MESSG Create	User	Defined	Message messg	"<message_text>"
NOLIST Turn	off	Listing	Output nolist
PAGE Insert	Listing	Page	Eject page
SPACE Insert	Blank	Listing	Lines space	[<expr>]
SUBTITLE Specify	Program	Subtitle subtitl	"<sub_text>"
TITLE Specify	Program	Title title	"<title_text>"

http://www.microchip.com
mailto:techsupport@microchip.com

ERROR	Example

Directives	highlighted	in	this	example	are:

error

Program	Functional	Description

This	program	demonstrates	the	utility	of	the	error	assembler
directive,	which	sets	an	error	message	to	be	printed	in	the	listing
file	and	error	file.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
variable	baudrate	;variable	used	to	define
;required	baud	rate
baudrate	set	D'5600'	;Enter	the	required	value	of
;baud	rate	here.
if	(baudrate!=D'1200')&&(baudrate!=D'2400')&&
(baudrate!=D'4800')&&(baudrate!=D'9600')&&
(baudrate!=D'19200')
error	"Selected	baud	rate	is	not	supported"
endif
RST	CODE	H'0'	;The	code	section	named	RST
;is	placed	at	H'0'.	The
;instruction	'goto	start'	is
;placed	in	code	section	RST
goto	start	;Jumps	to	the	location	labelled
;'start'.
INTRT	CODE	H'4'	;The	code	section	named	INTRT	is
;placed	at	H'4'.The	instruction

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;'goto	service_int'	is	placed	in
;code	section	INTRT.
goto	service_int	;Jumps	to	the	location	labelled
;'service_int'.
PGM	CODE	;This	is	the	begining	of	the
;code	section	named	PGM.	It	is	a
;relocatable	code	section	since
;no	absolute	address	is	given
;along	with	directive	'CODE'.
start
goto	$
service_int
retfie
end

http://www.microchip.com
mailto:techsupport@microchip.com

ERRORLEVEL	Example

Directives	highlighted	in	this	example	are:

errorlevel

Program	Functional	Description

This	program	demonstrates	the	utility	of	the	errorlevel
assembler	directive,	which	sets	the	type	of	messages	that	are
printed	in	the	listing	file	and	error	file.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
errorlevel	0	;Display/print	messages,
;warnings	and	errors.
messg	"CAUTION:	This	program	has	errors"
errorlevel	1	;Display/print	warnings
;and	errors.
messg	"CAUTION:	This	program	has	errors"
group1	udata	0x20
group1_var1	res	1	;Label	of	this	directive	is	not
;at	column	1.	This	will	generate
;a	warning	no.	207.
errorlevel	-207	;This	disables	warning	whose
;msgnum	is	207.
group1_var2	res	1	;label	of	this	directive	is	also
;not	at	column	1,	but	no	warning
;is	displayed/printed.
errorlevel	+207	;This	enables	warning	whose
;msgnum	is	207

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

group2	udata
errorlevel	2	;Display/print	errors
group2_var1	res	1	;label	of	this	directive	is	not
;at	column	1.	This	will	generate
;a	warning	no.	207.
errorlevel	1	;Display/print	warnings
;and	errors.
group2_var2	res	1	;label	of	this	directive	is	not
;at	column	1.	This	will	generate
;a	warning	no.	207.
RST	CODE	H'0	'	;The	code	section	named	RST	is
;placed	at	H'0'.	The	instruction
;'goto	start'	is	placed	in	code
;section	RST.
goto	start	;Jumps	to	the	location	labelled
;'start'.
INTRT	CODE	H'4	'	;The	code	section	named	INTRT	is
;placed	at	H'4'.	The	instruction
;'goto	service_int'	is	placed	in
;code	section	INTRT
goto	service_int	;Label	'service_int'	is	not
;defined.	Hence	this	generates
;error[113].
PGM	CODE	;This	is	the	begining	of	the	code
;section	named	'PGM'.	It	is	a
;relocatable	code	section	since
;no	absolute	address	is	given	along
;with	directive	'CODE'
start
movwf	group1_var1
goto	$
end

http://www.microchip.com
mailto:techsupport@microchip.com

MESSG	Example

Directives	highlighted	in	this	example	are:

messg

Program	Functional	Description

This	program	demonstrates	the	utility	of	the	messg	assembler
directive,	which	sets	a	message	to	be	printed	in	the	listing	file	and
error	file.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
variable	baudrate	;variable	used	to	define
;required	baud	rate
baudrate	set	D'5600'	;Enter	the	required	value	of
;baud	rate	here.
if	(baudrate!=D'1200')&&(baudrate!=D'2400')&&
(baudrate!=D'4800')&&(baudrate!=D'9600')&&
(baudrate!=D'19200')
error	"Selected	baud	rate	is	not	supported"
messg	"only	baud	rates	1200,2400,4800,9600	&	19200	Hz	"&&
"are	supported"
endif
RST	CODE	H'0'	;The	code	section	named	RST
;is	placed	at	H'0'.	The
;instruction	'goto	start'	is
;placed	in	code	section	RST
goto	start	;Jumps	to	the	location	labelled
;'start'.

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

INTRT	CODE	H'4'	;The	code	section	named	INTRT	is
;placed	at	H'4'.The	instruction
;'goto	service_int'	is	placed	in
;code	section	INTRT.
goto	service_int	;Jumps	to	the	location	labelled
;'service_int'.
PGM	CODE	;This	is	the	begining	of	the
;code	section	named	PGM.	It	is	a
;relocatable	code	section	since
;no	absolute	address	is	given
;along	with	directive	'CODE'.
start
goto	$
service_int
retfie
end

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

List	of	Macro	Directives

Directive Description Syntax
ENDM End	a	Macro	Definition endm
EXITM Exit	from	a	Macro exitm
EXPAND Expand	Macro	Listing expand
LOCAL Declare	Local	Macro	Variable local	<label>	[,<label>]
MACRO Declare	Macro	Definition <label>	macro	[<arg>,...,<arg>]
NOEXPAND Turn	off	Macro	Expansion noexpand

http://www.microchip.com
mailto:techsupport@microchip.com

EXITM	Example

Directives	highlighted	in	this	example	are:

exitm

Program	Functional	Description

This	program	demonstrates	the	utility	of	the	exitm	assembler
directive,	which	causes	an	immediate	exit	from	a	macro.	It	is	used
in	the	example	to	exit	from	the	macro	when	certain	conditions	are
met.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
result	equ	20	;Assign	value	20H	to	label
;result.
ORG	0000	;The	following	code	will	be	placed
;in	reset	address	0.
goto	start	;Jump	to	an	address	whose	label	is
;'start'.
add	MACRO	num1,num2	;'add'	is	a	macro.	The	values	of
;'num1'	and	'num2'	must	be	passed
;to	this	macro.
if	num1>0xff	;If	num1>255	decimal,
extim	;force	immediate	return	from
;macro	during	assembly.
else
if	num2>0xff	;If	num2>255	decimal,
extim	;force	immediate	return	from
;macro	during	assembly.

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

else
movlw	num1	;Load	W	register	with	a	literal
;value	assigned	to	the	label
;'num1'.
movwf	result	;Load	W	register	to	an	address
;location	assigned	to	the	label
;'result'.
movlw	num2	;Load	W	register	with	a	literal
;value	assigned	to	the	label
;'num2'.
addwf	result	;Add	W	register	with	the	memory
;location	addressed	by	'result'
;and	load	the	result	back	to
;'result'.
endif
endif
endm	;End	of	'add'	MACRO
org	0010	;My	main	program	starts	at	10H.
start	;The	label	'start'	is	assigned	an
;address	10H.
add	.100,.256	;Call	'add'	MACRO	with	decimal
;numbers	100	and	256	assigned	to
;'num1'	and	'num2'	labels,
;respactively.	EXTIM	directive	in
;macro	will	force	return.
end

http://www.microchip.com
mailto:techsupport@microchip.com

LOCAL	Example

Directives	highlighted	in	this	example	are:

local

Program	Functional	Description

This	code	demonstrates	the	utility	of	local	directive,	which
declares	that	the	specified	data	elements	are	to	be	considered	in
local	context	to	the	macro.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
incr	equ	2	;Assembler	variable	incr	is	set
;equal	to	2.
add_incr	macro	;Declaration	of	macro	'add_incr'.
local	incr	;Local	assembler	variable	'incr'.
incr	set	3	;Local	'incr'	is	set	to	3,	in
;contrast	to	'incr'	value
;of	2	in	main	code.
clrw	;w	register	is	set	to	zero
addlw	incr	;w	register	is	added	to	incr	and
;result	placed	back
endm	;in	w	register.
RST	CODE	H'0'	;The	code	section	named	RST	is
;placed	at	H'0'.	The	instruction
;'goto	start'	is	placed	in	code
;section	RST.
goto	start	;Jumps	to	the	location	labelled
;'start'.

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

INTRT	CODE	H'4'	;The	code	section	named	INTRT	is
;placed	at	H'4'	The	instruction
;'goto	service_int'	is	placed	in
;code	section	INTRT.
goto	service_int	;Jumps	to	the	location	labelled
;'service_int'.
PGM	CODE	;This	is	the	begining	of	the	code
;section	named	'PGM'.	It	is	a
;relocatable	code	section	since
;no	absolute	address	is	given	along
;with	directive	'CODE'
start
clrw	;W	register	set	to	zero.
addlw	incr	;W	register	is	added	with	the
;value	of	incr	which	is	now	equal
;to	2.
add_incr	;W	register	is	added	with	the
;value	of	incr	which	is	now	equal
;to	3	(value	set	locally	in	the
;macro	add_incr).
clrw	;W	register	is	set	to	zero	again.
addlw	incr	;incr	is	added	to	W	register	and
;result	placed	in	W	register.
;incr	value	is	again	2,	not
;affected	by	the	value	set	in	the
;macro.
goto	$
service_int
retfie
end

http://www.microchip.com
mailto:techsupport@microchip.com

MACRO/ENDM	Example

Directives	highlighted	in	this	example	are:

macro

endm

Program	Functional	Description

This	code	demonstrates	the	utility	of	macro	directive,	which	is
used	to	define	a	macro.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
result	equ	20	;Assign	value	20H	to	label
;result.
ORG	0000	;The	following	code	will	be	placed
;in	reset	address	0.
goto	start	;Jump	to	an	address	whose	label	is
;'start'.
add	MACRO	num1,num2	;'add'	is	a	macro.	The	values	of
;'num1'	and	'num2'	must	be	passed
;to	this	macro.
movlw	num1	;Load	W	register	with	a	literal
;value	assigned	to	the	label
;'num1'.
movwf	result	;Load	W	register	to	an	address
;location	assigned	to	the	label
;'result'.
movlw	num2	;Load	W	register	with	a	literal

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;value	assigned	to	the	label
;'num2'.
addwf	result	;Add	W	register	with	the	memory
;location	addressed	by	'result'
;and	load	the	result	back	to
;'result'.
endm	;end	of	'add'	MACRO
org	0010	;Main	program	starts	at	10H.
start	;The	label	'start'	is	assigned	an
;address	10H.
add	.100,.90	;Call	'add'	MACRO	with	decimal
;numbers	100	and	90	assigned	to
;'num1'	and	'num2'	labels,
;respactively.	100	and	90	will	be
;added	and	the	result	will	be	in
;'result'.
end

http://www.microchip.com
mailto:techsupport@microchip.com

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

List	of	Object	File	Directives

Directive Description Syntax

BANKISEL Generate	RAM	bank	selecting	code	for	indirect
addressing bankisel	<label>

BANKSEL Generate	RAM	bank	selecting	code banksel	<label>
CODE Begins	executable	code	section [<name>]	code	[<address>]

EXTERN Declares	an	external	label extern	<label>	[,
<label>]

GLOBAL Exports	a	defined	label extern	<label>	[.
<label>]

IDATA Begins	initialized	data	section [<name>]	idata
[<address>]

PAGESEL Generate	ROM	page	selecting	code pagesel	<label>

UDATA Begins	uninitialized	data	section [<name>]	udata
[<address>]

UDATA_ACS Begins	access	uninitialized	data	section [<name>]	udata_acs
[<address>]

UDATA_OVR Begins	overlayed	uninitialized	data	section [<name>]	udata_ovr
[<address>]

UDATA_SHR Begins	shared	uninitialized	data	section [<name>]	udata_shr
[<address>]

http://www.microchip.com
mailto:techsupport@microchip.com

BANKISEL	Example

Directives	highlighted	in	this	example	are:

bankisel

Program	Functional	Description

This	program	demonstrates	the	utility	of	the	bankisel	directive.
This	directive	generates	the	appropriate	code	to	set/clear	the	IRP
bit	of	the	STATUS	register	for	an	indirect	access.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
group1	udata	H'20'	;group1	data	stored	at	locations
;starting	at	H'20'(IRP	bit	0).
group1_var1	res	1	;group1_var1	located	at	H'20'.
group1_var2	res	1	;group1_var2	located	at	H'21'.
group2	udata	H'120'	;group2	data	stored	at	locations
;starting	at	H'120'(IRP	bit	1).
group2_var1	res	1	;group2_var1	located	at	H'120'.
group2_var2	res	1	;group2_var2	located	at	H'121'.
RST	CODE	H'0'	;The	code	section	named	RST
;is	placed	at	H'0'.	The
;instruction	'goto	start'	is
;placed	in	code	section	RST
goto	start	;Jumps	to	the	location	labelled
;'start'.
INTRT	CODE	H'4'	;The	code	section	named	INTRT	is
;placed	at	H'4'.The	instruction
;'goto	service_int'	is	placed	in

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;code	section	INTRT.
goto	service_int	;Jumps	to	the	location	labelled
;'service_int'.
PGM	CODE	;This	is	the	beginning	of	the
;code	section	named	PGM.	It	is	a
;relocatable	code	section	since
;no	absolute	address	is	given
;along	with	directive	'CODE'.
start
movlw	H'20'	;This	part	of	the	code	addresses
movwf	FSR	;variables	group1_var1	&
bankisel	group1_var1	;group1_var2	indirectly.
clrf	INDF
incf	FSR,F
clrf	INDF
movwf	FSR
bankisel	group2_var1
clrf	INDF
incf	FSR,F
clrf	INDF
goto	$
service_int
retfie
end

http://www.microchip.com
mailto:techsupport@microchip.com

BANKSEL	Example

Directives	highlighted	in	this	example	are:

banksel

Program	Functional	Description

This	program	demonstrates	the	utility	of	the	banksel	directive.
This	directive	generates	the	appropriate	code	to	set/clear	the	RP0
and	RP1	bits	of	the	STATUS	register.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
group1	udata	H'20'	;group1	data	stored	at	locations
;starting	at	H'20'(bank	0).
group1_var1	res	1	;group1_var1	located	at	H'20'.
group1_var2	res	1	;group1_var2	located	at	H'21'.
group2	udata	H'A0'	;group2	data	stored	at	locations
;starting	at	H'A0'(bank	1)
group2_var1	res	1
group2_var2	res	1
RST	CODE	H'0'	;The	code	section	named	RST
;is	placed	at	H'0'.	The
;instruction	'goto	start'	is
;placed	in	code	section	RST
goto	start	;Jumps	to	the	location	labelled
;'start'.
INTRT	CODE	H'4'	;The	code	section	named	INTRT	is
;placed	at	H'4'.	The	instruction
;'goto	service_int'	is	placed	in

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;code	section	INTRT.
goto	service_int	;Jumps	to	the	location	labelled
;'service_int'.
PGM	CODE	;This	is	the	beginning	of	the
;code	section	named	PGM.	It	is	a
;relocatable	code	section	since
;no	absolute	address	is	given
;along	with	directive	'CODE'.
start
banksel	group1_var1	;This	directive	generates	code
;to	set/clear	bank	select	bits
;RP0	&	RP1	of	STATUS	register
;depending	upon	the	address	of
;group1_var1.
clrf	group1_var1
clrf	group1_var2
banksel	group2_var1	;This	directive	generates	code
;to	set/clear	bank	select	bits
;RP0	&	RP1	of	STATUS	register
;depending	upon	the	address	of
;group2_var1.
clrf	group2_var1
clrf	group2_var2
goto	$
service_int
retfie
end

http://www.microchip.com
mailto:techsupport@microchip.com

CODE	Example

Directives	highlighted	in	this	example	are:

code

Program	Functional	Description

This	program	demonstrates	the	utility	of	the	code	directive,	which
declares	the	beginning	of	a	section	of	program	code.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
RST	CODE	H'0'	;The	code	section	named	RST
;is	placed	at	H'0'.	The
;instruction	'goto	start'	is
;placed	in	code	section	RST
goto	start	;Jumps	to	the	location	labelled
;'start'.
INTRT	CODE	H'4'	;The	code	section	named	INTRT	is
;placed	at	H'4'.	The	instruction
;'goto	service_int'	is	placed	in
;code	section	INTRT.
goto	service_int	;Jumps	to	the	location	labelled
;'service_int'.
PGM	CODE	;This	is	the	begining	of	the
;code	section	named	PGM.	It	is	a
;relocatable	code	section	since
;no	absolute	address	is	given
;along	with	directive	'CODE'.
start

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

clrw
goto	$
CODE	;This	is	a	relocatable	code
nop	;section	since	no	address	is
;	;specified	with	the	CODE
;	;directive.
;
;
service_int
retfie
end

http://www.microchip.com
mailto:techsupport@microchip.com

GLOBAL/EXTERN	Example

Directives	highlighted	in	this	example	are:

global

extern

Program	Functional	Description

The	program	main.asm,	along	with	sub.asm,	demonstrate	the
utility	of	the	GLOBAL	and	EXTERN	directives,	which	make	it
possible	to	use	symbols	in	modules	other	than	where	they	are
defined.

Commented	Code	Listing

;***
;main.asm
;***
list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
UDATA
delay_value	res	1
GLOBAL	delay_value	;The	variable	'delay_value',
;declared	GLOBAL	in	this
;module,	is	included	in	an
;EXTERN	directive	in	the	module
;sub.asm.
EXTERN	delay	;The	variable	'delay',	declared
;EXTERN	in	this	module,	is
;declared	GLOBAL	in	the	module
;sub.asm.

RST	CODE	H'0'	;The	code	section	named	RST
;is	placed	at	H'0'.	The
;instruction	'goto	start'	is
;placed	in	code	section	RST
goto	start	;Jumps	to	the	location	labelled
;'start'.
INTRT	CODE	H'4'	;The	code	section	named	INTRT	is
;placed	at	H'4'.	The	instruction
;'goto	service_int'	is	placed	in
;code	section	INTRT.
goto	service_int	;Jumps	to	the	location	labelled
;'service_int'.
PGM	CODE	;This	is	the	begining	of	the
;code	section	named	PGM.	It	is	a
;relocatable	code	section	since
;no	absolute	address	is	given
;along	with	directive	'CODE'.
start	movlw	D'10'
movwf	delay_value
xorlw	H'80'
call	delay
goto	start
service_int
retfie
end
;***
;sub.asm
;***
list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
GLOBAL	delay	;The	variable	'delay'	declared
;GLOBAL	in	this	module	is
;included	in	an	EXTERN	directive
;in	the	module	main.asm.
EXTERN	delay_value	;The	variable	'delay_value'
;declared	EXTERN	in	this	module

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;is	declared	GLOBAL	in	the
;module	main.asm.
PGM	CODE
delay
decfsz	delay_value,1
goto	delay
return
end

http://www.microchip.com
mailto:techsupport@microchip.com

IDATA	Example

Directives	highlighted	in	this	example	are:

idata

Program	Functional	Description

The	directive	idata	is	used	when	generating	an	object	file.	It
reserves	RAM	locations	for	variables	and	directs	the	linker	to
generate	a	lookup	table	that	may	be	used	to	initialize	the	variables
specified	in	this	section.	The	Starting	Address	of	the	lookup	table
can	be	obtained	from	the	Map	(.map)	file.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
group1	IDATA	0x20	;Initialized	data	at	location
;20h.
group1_var1	res	1	;group1_var1	located	at	0x20,
;initialized	with	0.
group1_var2	res	1	;group1_var2	located	at	0x21,
;initialized	with	0.
group2	IDATA	;Declaration	of	group2	data.	The
;addresses	for	variables	under
;this	data	section	are	allocated
;automatically	by	the	linker.
group2_var1	db	1,2,3,4	;4	bytes	in	RAM	are	reserved.
group2_var2	dw	H'1234	';1	word	in	RAM	is	reserved.
RST	CODE	0x0	;The	code	section	named	RST	is
;placed	at	H'0'.
;Following	instruction	'goto

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;start'	is	placed	in	code
;section	RST.
goto	start	;Jumps	to	the	location	labelled
;'start'.
PGM	CODE	;Code	section	named	PGM	is
;declared.	It	is	a	relocatable
;code	section	since	no	absolute
;address	is	specified.
start
;
;
end

http://www.microchip.com
mailto:techsupport@microchip.com

PAGESEL	Example

Directives	highlighted	in	this	example	are:

pagesel

Program	Functional	Description

This	program	demonstrates	the	utility	of	the	pagesel	directive,
which	generates	the	appropriate	code	to	set/clear	PCLATH	bits

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
RST	CODE	H'0'	;The	code	section	named	RST
;is	placed	at	H'0'.	The
;instruction	'goto	start'	is
;placed	in	code	section	RST.
goto	start	;Jumps	to	the	location	labelled
;'start'.
INTRT	CODE	H'4'	;The	code	section	named	INTRT	is
;placed	at	H'4'.	The	instruction
;'goto	service_int'	is	placed	in
;code	section	INTRT.
goto	service_int	;Jumps	to	the	location	labelled
;'service_int'.
PGM0	CODE	H'500'	;The	code	section	named	PGM0	is
;placed	at	H'500'.
start
PAGESEL	page1_pgm	;address	bits	12	&	11	of
;page1_pgm	are	copied	to	PCLATH
;4	&	3	respectively.

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

goto	page1_pgm
PGM1	CODE	H'900'	;The	code	section	named	PGM1	is
;placed	at	H'900'.	Label
;page1_pgm	is	located	in	this
page1_pgm	;code	section.
goto	$
service_int
retfie
end

http://www.microchip.com
mailto:techsupport@microchip.com

UDATA	Example

Directives	highlighted	in	this	example	are:

udata

Program	Functional	Description

This	program	demonstrates	the	utility	of	the	udata	directive,
which	declares	the	beginning	of	a	section	of	uninitialized	data.	This
directive	is	used	when	generating	an	object	file.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
group1	udata	0x20	;group1	data	stored	at	locations
;starting	at	0x20.
group1_var1	res	1	;group1_var1	located	at	0x20.
group1_var2	res	1	;group1_var2	located	at	0x21.
group2	udata	;Declaration	of	group2	data.	The
;addresses	for	variables	under
group2_var1	res	1	;this	data	section	are	allocated
group2_var2	res	1	;automatically	by	the	linker.
RST	CODE	H'0'	;The	code	section	named	RST	is
;placed	at	H'0'.	The	instruction
;'goto	start'	is	placed	in	code
;section	RST.
goto	start	;Jumps	to	the	location	labelled
;'start'.
INTRT	CODE	H'4'	;The	code	section	named	INTRT	is
;placed	at	H'4'.The	instruction
;'goto	service_int'	is	placed	in

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;code	section	INTRT.
goto	service_int	;Jumps	to	the	location	labelled
;'service_int'.
PGM	CODE	;This	is	the	beginning	of	the	code
;section	named	PGM.	It	is	a
;relocatable	code	section	since
;no	absolute	address	is	given	along
start	;with	directive	'CODE'.
banksel	group1_var1
clrf	group1_var1
clrf	group1_var2
banksel	group2_var1
clrf	group2_var1
clrf	group2_var2
goto	$
service_int
retfie
end

http://www.microchip.com
mailto:techsupport@microchip.com

UDATA_ACS	Example

Directives	highlighted	in	this	example	for	PIC18CXXX	devices	are:

udata_acs

Program	Functional	Description

This	program	demonstrates	the	utility	of	the	udata_acs
directive,	which	is	used	when	generating	an	object	file.	This
directive	declares	the	beginning	of	a	section	of	uninitialized	data.

Commented	Code	Listing

list	p=18c452	;Select	device.
#include	<p18c452.inc>	;Include	standard	header	file
;for	the	selected	device.
group1	udata_acs	0x20	;group1	data	stored	at	access
;RAM	locations	starting	at	0x20.
group1_var1	res	1	;group1_var1	located	at	0x20.
group1_var2	res	1	;group1_var2	located	at	0x21.
group2	udata_acs	;Declaration	of	group2	data.	The
;addresses	for	data	under	this
;secton	are	allocated
;automatically	by	the	linker.
group2_var1	res	1	;All	addresses	be	will	allocated
group2_var2	res	1	;in	access	RAM	space	only.
RST	CODE	H'0'	;The	code	section	named	RST	is
;placed	at	H'0'.	The	instruction
;'goto	start'	is	placed	in	code
;section	RST.
goto	start	;Jumps	to	the	location	labelled
;'start'
INTRT	CODE	H'8'	;The	code	section	named	INTRT	is

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

;placed	at	H'4'.	The	instruction
;'goto	service_int'	is	placed	in
;code	section	INTRT.
goto	service_int	;Jumps	to	the	location	labelled
;'service_int'.
PGM	CODE	;This	is	the	begining	of	the	code
;section	named	PGM.	It	is	a
;relocatable	code	section	since
;no	absolute	address	is	given	along
;with	directive	'CODE'.
start
clrf	group1_var1,A	;group1_var1	initialized	to	zero
clrf	group1_var2,A	;group1_var2	initialized	to	zero
clrf	group2_var1,A	;group2_var1	initialized	to	zero
clrf	group2_var2,A	;group2_var2	initialized	to	zero
goto	$
service_int
retfie
end

http://www.microchip.com
mailto:techsupport@microchip.com

UDATA_OVR	Example

Directives	highlighted	in	this	example	are:

udata_ovr

Program	Functional	Description

This	program	demonstrates	the	utility	of	the	udata_ovr
directive,	which	is	used	when	generating	an	object	file.	This
directive	declares	the	beginning	of	a	section	of	overlayed
uninitialized	data.

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
same_var	udata_ovr	H'20'	;Declares	an	overlayed
;uninitialized	data	section
;named'same_var'	starting	at
var1	res	1	;location	H'20'.
same_var	udata_ovr	H'20'	;Declares	an	overlayed
;uninitialized	data	section
var2	res	1	;with	the	same	name	as	the	one
;declared	above.	Thus	variables
;var1	and	var2	are	allocated
;at	the	same	address.
RST	CODE	H'0'	;The	code	section	named	RST	is
;placed	at	H'0'.The	instruction
;'goto	start'	is	placed	in	code
;section	RST.
goto	start	;Jumps	to	the	location	labelled
;'start'.

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

INTRT	CODE	H'4'	;The	code	section	named	INTRT	is
;placed	at	H'4'.	The	instruction
;'goto	service_int'	is	placed	in
;code	section	INTRT.
goto	service_int	;Jumps	to	the	location	labelled
;'service_int'.
PGM	CODE	;This	is	the	begining	of	the	code
;section	named	PGM.	It	is	a
;relocatable	code	section
;since	no	absolute	address	is	given
;along	with	directive	'CODE'
start
banksel	var1	;Any	operation	on	var1	affects
movlw	H'FF'	;var2	also	since	both	variables
movwf	var1	;are	overlaid.
comf	var2
goto	$
service_int
retfie
end

http://www.microchip.com
mailto:techsupport@microchip.com

UDATA_SHR	Example

Directives	highlighted	in	this	example	for	PIC16FXXX	devices	are:

udata_shr

Program	Functional	Description

This	program	demonstrates	the	utility	of	the	udata_shr
directive,	which	is	used	when	generating	an	object	file.	This
directive	declares	the	beginning	of	a	section	of	shared	uninitialized
data.	This	directive	is	used	to	declare	variables	that	are	allocated
in	RAM	that	is	shared	across	all	RAM	banks	(i.e.	unbanked	RAM.)

Commented	Code	Listing

list	p=16f877	;Select	the	device.
#include	<p16f877.inc>	;Include	standard	header	file
;for	the	selected	device.
shared_data	udata_shr	;Declares	the	beginning	of	a	data
;section	named	'shared	data',
var	res	1	;which	is	shared	by	all	banks.
;'var'	is	the	location	which	can
;be	accessed	irrespective	of
;banksel	bits.
bank0_var	udata	0X20	;Declares	beginning	of	a	data
var0	res	1	;section	named	'bank0_var',
;which	is	in	bank0.	var0	is
;allocated	the	address	0x20.
bank1_var	udata	0xa0	;Declares	beginning	of	a	data
var1	res	1	;section	named	'bank1_var',
;which	is	in	bank1.	var1	is
;allocated	the	addess	0xa0
bank2_var	udata	0x120	;Declares	beginning	of	a	data

var2	res	1	;section	named	'bank2_var',
;which	is	in	bank2.	var2	is
;allocated	the	addess	0x120
bank3_var	udata	0x1a0	;Declares	beginning	of	a	data
var3	res	1	;section	named	'bank3_var',
;which	is	in	bank3.	var3	is
;allocated	the	addess	0x1a0
RST	CODE	H'0'	;The	code	section	named	RST	is
;placed	at	H'0'.	The	instruction
;'goto	start'	is	placed	in
;code	section	RST.
goto	start	;Jumps	to	the	location	labelled
;'start'.
INTRT	CODE	H'4'	;The	code	section	named	INTRT	is
;placed	at	H'4'.	The	instruction
;'goto	service_int'	is	placed
;in	code	sectionINTRT.
goto	service_int	;Jumps	to	the	location	labelled
;'service_int'.
PGM	CODE	;This	is	the	beginning	of	the	code
;section	named	PGM.	It	is	a
;relocatable	code	section	since
;no	absolute	address	is	given	along
start	;with	directive	'CODE'.
banksel	var0	;Select	bank0.
movlw	H'00'
movwf	var	;var	is	accessible	from	bank0.
banksel	var1	;Select	bank1.
movlw	H'01'
movwf	var	;var	is	accessible	from	bank1
;also.
banksel	var2	;Select	bank2.
movlw	H'02'
movwf	var	;var	is	accessible	from	bank2
;also.
banksel	var3	;Select	bank3.
movlw	H'03'

Microchip	Technology	Inc.
Microchip's	Web	Site
Voice:	(480)	792-7200
Fax:	(480)	899-9210

Microchip's	E-mail	Address

movwf	var	;var	is	accessible	from	bank3
;also.
goto	$
service_int
retfie
end

http://www.microchip.com
mailto:techsupport@microchip.com

	MPASM Assembler Overview
	What is MPASM Assembler
	Assembler Migration Path
	Assembler Compatibility Issues
	How MPASM Assembler Helps You

	Getting Started with MPASM Assembler
	Overview of Assembler
	Assembler Input/Output Files
	Assembler Installation

	Assembler Usage with MPLAB IDE
	MPLAB IDE Interface
	MPLAB IDE Projects
	Project and Assembler Setup

	Assembler Usage without MPLAB IDE
	Command Line Interface
	Command Shell Interface
	Windows Shell Interface
	Troubleshooting

	Directives
	_ _BADRAM - Identify Unimplemented RAM
	_ _BADROM - Identify Unimplemented ROM
	_ _CONFIG - Set Processor Configuration Bits
	_ _IDLOCS - Set Processor ID Locations
	_ _MAXRAM - Define Maximum RAM Location
	_ _MAXROM - Define Maximum ROM Location
	#DEFINE - Define a Text Substitution Label
	#INCLUDE - Include Additional Source File
	#UNDEFINE - Delete a Substitution Label
	BANKISEL - Generate Indirect Bank Selecting Code
	BANKSEL - Generate Bank Selecting Code
	CBLOCK - Define a Block of Constants
	CODE - Begin an Object File Code Section
	CODE_PACK - Begin an Object File Packed Code Section
	CONSTANT - Declare Symbol Constant
	DA - Store Strings in Program Memory
	Data - Create Numeric and Text Data
	DB - Declare Data of One Byte
	DE - Declare EEPROM Data Byte
	DT - Define Table
	DW - Declare Data of One Word
	ELSE - Begin Alternative Assembly Block to IF
	END - End Program Block
	ENDC - End an Automatic Constant Block
	ENDIF - End Conditional Assembly Block
	ENDM - End a Macro Definition
	ENDW - End a While Loop
	EQU - Define an Assembler Constant
	ERROR - Issue an Error Message
	ERRORLEVEL - Set Message Level
	EXITM - Exit from a Macro
	EXPAND - Expand Macro Listing
	EXTERN - Declare an Externally Defined Label
	FILL - Specify Memory Fill Value
	GLOBAL - Export a Label
	IDATA - Begin an Object File Initialized Data Section
	IF - Begin Conditionally Assembled Code Block
	IFDEF - Execute If Symbol has Been Defined
	IFNDEF - Execute If Symbol has not Been Defined
	LIST - Listing Options
	LOCAL - Declare Local Macro Variable
	MACRO - Declare Macro Definition
	MESSG - Create User Defined Message
	NOEXPAND - Turn off Macro Expansion
	NOLIST - Turn off Listing Output
	ORG - Set Program Origin
	PAGE - Insert Listing Page Eject
	PAGESEL - Generate Page Selecting Code
	PROCESSOR - Set Processor Type
	RADIX - Specify Default Radix
	RES - Reserve Memory
	SET - Define an Assembler Variable
	SPACE - Insert Blank Listing Lines
	SUBTITLE - Specify Program Subtitle
	TITLE - Specify Program Title
	UDATA - Begin an Object File Uninitialized Data Section
	UDATA_ACS - Begin an Object File Access Uninitialized Data Section
	UDATA_OVR - Begin an Object File Overlayed Uninitialized Data Section
	UDATA_SHR - Begin an Object File Shared Uninitialized Data Section
	VARIABLE - Declare Symbol Variable
	WHILE - Perform Loop While Condition is True

	Directive Usage
	Control Directives
	Conditional Assembly Directives
	Data Directives
	Listing Directives
	Macro Directives
	Object File Directives
	Additional Directive Examples

	Relocatable Objects
	Header Files
	Program Memory
	Instruction Operands
	RAM Allocation
	Configuration Bits and ID Locations
	Accessing Labels From Other Modules
	Paging and Banking Issues
	Unavailable Directives
	Generating the Object Module
	Code Examples

	Macro Language
	Macro Syntax
	Macro Directives Defined
	Macro Text Substitution
	Macro Usage
	Macro Code Examples

	Expression Syntax and Operation
	Text Strings
	Numeric Constants and Radix
	Arithmetic Operators and Precedence

	Troubleshooting
	Assembler Errors
	Assembler Warnings
	Assembler Messages
	Assembler Limitations

	Instruction Sets
	Key to PICmicro Family Instruction Sets
	12-Bit Core Instruction Set
	14-Bit Core Instruction Set
	16-Bit Core Instruction Set
	Key to Extended 16-Bit Core Instruction Set
	Extended 16-Bit Core Instruction Set

	Useful Tables
	ASCII Character Set
	Hexadecimal to Decimal Conversion

	Support
	Recommended Reading
	The Microchip Web Site
	Development Systems Customer Notification Service
	Customer Support

	Glossary

